Reference Manual
IBM 7030 Data Processing System

Master Control Program

Reference Manual

[BM 7030 Data Processing System

Master Control Program

MAJOR REVISION (June 1964)

This manual; Form C22-6678-1 obsoletes Form C22-6678-0 and
Technical Newsletter, Additions and Corrections to the MCP Refer-
ence Manual, N22-0085 and should be reviewed in its entirety.

Los Alamos personnel worked closely with IBM in planning this
Master Control Program.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Dept. D83, PO Box 390, Poughkeepsie, N.Y. 12602

© 1962 by International Business Machines Corporation

MASTER CONTROL PROGRAM

Automatic Operation
Processor Supervision

Symbolic and System Input-Output
Minimum I/O and Core Storage for the 7030
Minimam IBM 1401 System.

PROGRAMMING WITH MCP

The Input Deck and Compiling

Definition Cards .
JOB Card . .
TYPE Card . .

> LIMIT Card .
IOD Card . .
Reel Card . .

Preparation of the Input Deck
Jobs to be Compiled

Jobs to be Executed

Card Classes . .
Programming Uses .

Symbolic 1I/O Operations

.

.

.

.

.

.

Machine 1/O Pseudo-Operations
Support I/O Pseudo-Operations .
System I/O Pseudo Operations .
Termination Pseudo-Operations
Check-Out Pseudo-Operations .

Interrupt Classes .
Error Interrupts

Maskable Interrupts

Timing Operations

OPERATING WITH MCP
Initializing the System
Input
Procedure . . .
Options

Suppress Messages

I/0O Status Report

Rejected Job Count Report

.

.

.

.

Abnormal MCP Mode Report

Time and Date .
Messages. . o .

Date Verification Message

.

.

1/0O Assignment Messages

Error Messages

Restart-Console Reinitialization

Procedure . . .
Restart Options .

Write Commentator Buffer

.

Write Output Buffers .

Dump . . .

Disk IPL PN

Disk Initialization .
Procedure . . .
Error Situations .
Normal Running Modes
Off-Line Overlapped
On-Line Overlapped
Bypass
Console Usage . . .
Check-out . . .,

°

.

.

°

.

°

Set Instruction Counter

Start
Stop « . . .
Enter Information

Display Information

Dump. . . .

°

.

.

.

.

.

.

[0 WY, B RO R0 |

W 00 NN NNN

12
12
13
13
14
14
15
16
19
22
22
25
25
25
28

29
29
29
29
29
29
29
29
30
30
30
30
30
30
31
31
31
31
31
31
32
32
32
32
32
33
33
33
34
34
34
34
35
35
35

EOJ v v v & v o o v
ABEOJ] . + & 4 .« . .

Summary of Console Check-Out Facilities .

Commands

Commands that Change the System Operating Mode

Commands that Affect the Current Input
Commands that Affect the Current Job

Other Commands . . + . .
Off-Line Operations
Output Tape Construction . . .
Problem Program File . . .
Processing Output Tapes o e e
Format of the Input Tape . . .
Updating the System

Initial Preparation of the MCP Deck for

APPENDIX . . . ¢«

Appendix A. MCP Pseudo-Operation Codes

Appendix B, I/O Operations . . .
Read . . « + .
Write L e
Copy Control Word
Release
Locate Arc «.
FeedCard
Tape Indicator Off
Erase Long Gap . . « « . .
Space Record « . .« + . . .
Backspace Record e e e
Space File . . . + + « . .
Backspace File.
Write Tape Mark . . « .« . &
Rewind
Rewind and Unlopad
Reserve Light Off
Reserve Light On
Check Light On
Sound Gong . . o . .« o o
High Density
Low Density. . . o
Even Parity, No ECC.
Odd Parity, NoECC
Error Chetcking and Correction .
No Error Checking and Correction

Appendix C. Programming Examples
Buffered Tape Input »
Card-to-Tape Routine

Appendix D. Messages to the Operator

Initialization Error Messages (IPL Program)

Initialization Messages
Normal Running Messages . . .
Abnormal Running Messages . .
Job Termination Messages « . .
Command Responses « o+ o+ . .
Checkout Messages . . o . .
Console Reject Messages o+ o« .
Error Messages « o« « « + 2 o
Restart Messages « + « o« o .

Appendix E, Messages to the Programmer

Standard Job Output Messages . .
System Rejectss o« & o+ o o
Loader Rejects .+ & .« . . .
Errors During Execution
Operator Rejection
Miscellaneous Messages « « . .
Reel History Messages o« . .+ .
Appendix F, Character Codes . . .

.

.

.

.

.

.

Updating

.

.

-

CONTENTS

.

.

35
37
37
37
38
38
38
38
39
39

B8B83 ¢

s
NN

CERRNRERBEBEESSESSGRRRRRREBROESSSS

49

50
50
50
51
51
51
52
53
53
53
53
54
54
54
55
56

The Master Control Program (MCP) for the IBM
7030 Data Processing System is described in this
manual with the assumption that the user has a
knowledge of the IBM 7030 and the 7030 assembly
program, STRAP II,

The general characteristics of MCP are:

Automatic Operation

Processor Supervision

Symbolic and System I/0

Automatic Operation

As an automatic operator, MCP loads problem
programs in a continuous sequence requiring
specific control cards which contain instructions
and descriptions of the problem program in order
to schedule a queue of jobs. .

MCP accepts commands from the operator to
alter the mode of operation, to change the normal
sequence of jobs to be run, or to change the system
I/0 configuration.

Instructions issued by MCP, enable the operator
to set up jobs before they are run and to service
I/O units after a problem program has started
operation. The identification of jobs and the phase
of execution are also communicated to the operator
for logging purposes.

MCP controls the interrupt system to ensure its
own continuity, After all MCP interrupts are
handled, the problem program interrupts are
routed to the problem program with the correct
machine status. If the problem program interrupts
are unexpected, MCP automatically issues an
indication to the problem program, dumps the
machine status, and proceeds to the next problem
program, thus eliminating operator intervention
for these error situations.

Processor Supervision

By using a "type of problem'" card, MCP sets up
and controls the sequence of processors that are to
operate on the problem program, For the proc-
€ssor programs, MCP provides a common
communication region by means of which MCP can
communicate with processors and processors can
communicate among themselves. The information
provided in this region consists of identification of
the chain of processors, the type of run, reject
indicators, and a description of the I/O require-
ments of the processors,

MCP also maintains a system disk that contains
the processors themselves and a library of subrou-
tines. Subroutines, in whole or in part, may be

MASTER CONTROL PROGRAM

fetched by the processors. The fetching mechanism
incorporates a buffer and a dictionary of names of
the material on the disk,

The system disk also includes programs that are
not subroutines or true processors but are problem
programs acting as processors. To eliminate the
handling of large, often used problem program card
decks, the problem program may be placed on the
system disk, The "type of problem" card becomes
the only card handled in place of the entire binary
deck,

Symbolic and System Input-Output

The configuration of I/0 devices varies from
installation to installation and at times, within the
same installation, MCP assumes the responsibility
of maintaining a record of the status and availability
of all 1/0 devices attached to the exchange, MCP
can then assign I/O devices to problem programs
and prevent conflicting requirements between them,

The I/O requirements for any problem program
may change from run to run. To provide for the
greatest flexibility, the problem program describes
its I/0O requirements by means of Symbolic I/O
Definitions (IOD). In the source program, an IOD
defines the symbol to be used by the problem
program in any MCP calling sequence. In the object
program, the IODs furnish the I/O requirements in
advance of their use so that absolute channels and
units can be assigned and made ready. Before
execution, the IODs are expanded into tables by
means of which MCP controls the corresponding
units. The symbol naming the IOD is equated to a
reference number by the compiler. In turn, this
number locates the appropriate IOD table to be used
during execution,

Symbolic I/O permits programming without
absolute references to channels and units, It
implies that maintenance of the status of I/O units
and the issuance of absolute hardware instructions
to the I/0 units is a function of MCP, I/O require-
ments must be given to MCP in symbolic form in
both the source and object program,

In addition to assigning tape units symbolically,
MCP includes the ability to check the requested
tape reel against the reel which is actually mounted
by the operator., When a working tape to be used at
a later date as a special tape, the label is recorded
in a"reel history' included at the end of the prob-
lem program output and the operator is informed
that the tape is to be put in the library.

MCP allows the problem program to use system
as well as symbolic I/O, Under system I/0O, all

Master Control Program 5

the necessary control words, mode, density,
interrupts, etc., are handled by MCP. The pro-
grammer need concern himself only with providing
MCP with locations and sizes via a calling
sequence. The system I/O includes input, output,
disk fetching of prestored routines, and console
typewriter facilities,

Minimum I/O and Core Storage for the 7030

The minimum input-output and storage require-
ments for the IBM 7030 Data Processing System
under MCP are:

An IBM 1401 Data Processing System (Tape-
Oriented), used for off-line operation,

A minimum of three IBM 7302 Core Storage
units.

An IBM 7612 Disk Synchronizer with at least one
disk unit used to store system programs and as
auxiliary storage for the problem program.

An IBM 7619 Exchange with the minimum eight
basic exchange channels is used as follows:

1. An IBM 7152 Operator's Console is used by
the operator to issue and receive commands con-
trolling MCP, This unit may also be used by the
programmer to control his own program.

2. An IBM 7503 Card Reader is used by the
system input subroutine to read in problem pro-
grams and MCP commands while MCP is in either
the on-line overlapped or bypass mode of operation.
While MCP is in the off-line overlapped mode, the
card reader may be used by the problem program.
(See ""Normal Running Modes" for a discussion of
MCP modes.)

3. At least four IBM 729 IV Magnetic Tape Units
with one or more tape control units are used as
follows:

a., The system output tape contains informa-
tion to be printed and/or punched off-line
by the tape-oriented IBM 1401 System.
This tape cannot be controlled or used
directly by the problem program,

b. The alternate system output tape is used
to eliminate waiting while the other
system output tape is being unloaded,

c. The system read tape, used in an over-
lapped mode, contains problem programs
about to be run,

d. The system write tape is used with the
card reader in the on-line overlapped

mode to prepare a tape for subseguent
reading, This same tape unit may con-
tain the system scan tape during operation
in the off-line overlapped mode,

Note: For optimal performance, the write-scan
tape and the read tape should be on different chan-
nels, and both output tapes should be on a third
channel, Except for these requirements, all other
magnetic tape units may be used by the problem
program.,

All other channels on the basic exchange are not
required by MCP or by the system programs,

The system, including the off-line functions, can
operate in a limited way when these minimum
requirements are not completely satisfied,

1, The system can operate while the tape-
oriented IBM 1401 System is temporarily
inoperative.

2. The system can operate in the off-line over-
lapped mode without the card reader,

3. The system can operate with one output tape
while waiting for reloading.

4, The system can operate in the bypass mode
without the input tapes.

5. The system can operate in either overlapped
mode with one input tape unit while waiting for input
prescan and rewind time.

Minimum IBM 1401 System

An IBM 1401 Data Processing System (Tape-
Oriented) will perform all peripheral operations
associated with the IBM 7030 System. These
operations are:

Card-to-Tape Tape-to-Printer System Output

Tape-to-Punch System Input

The System Input and System Output operations
are performed by 1401 programs supplied with the
7030 programming system.

The operations require an off-line system with
the following minimum components:

1. IBM 1401 Model C3 Processing Unit with
Column Binary Feature.

2. IBM 1402 Model N1 Card Read Punch.

3. IBM 1403 Model 2 Printer,

4, IBM 729 II or IV Magnetic Tape Units (at
least two).

Alternatively, an IBM 1401 Model E3 System
may be used with IBM 7330 Magnetic Tape Units,

THE INPUT DECK AND COMPILING

Input through MCP is defined as that read by MCP's
system input program. Every problem program
must be entered through MCP and must provide
definition cards that identify and describe it to
MCP. Beyond this requirement, the problem pro-
gram may either read its own input or request
MCP to read it through the system input program.

Definition Cards

Definition cards are processed only by MCP or by
a processor program; they are never given to the
problem program. They are classified by a unique
punch, B, in column 1. Definition cards have four
fields:

Column Field
1 B
2-9 Name
10-72(62) Statement. JOB, TYPE and LIM
cards can be punched to column
72; IOD and REEL cards can be
punched only to column 62 be-
cause the processor punches
information in columns 63-72.
73-80 Program identification and se-

quencing., Information in this field
does not affect the operation of
the program in any way.

Commas separate the statement field into sub-
fields that are subject to a right-to-left drop-out.
There are five types of definition cards:
JOB LIM REEL
TYPE I0D
One JOB card and one TYPE card must be at the
beginning of every problem program in that order.
If other definition cards are required, they must
follow these cards. They must also precede any
other input from the problem program, except T
cards, T cards may be mixed with LIM, IOD and
REEL cards.

JOB Card

The JOB card is always the initial card in an input
deck. It serves as a logical separation between

PROGRAMMIi"3 WITH MCP

jobs; its appearance signals the beginning of a new
job. The format of the JOB card is:

112 210 72[73 80

B JOB, any identification

The characters JOB, must appear in columns 10-13,

The first eight characters of the identifying
information, normally the name of the job, are
printed out on the typewriter when the job starts.
They are also written on the output tape. At the
option of the installation, an accounting program
may also make use of the identifying information
supplied on JOB cards.

MCP always supplies a reproduction of the JOB
card on the output tape to separate and identify the
punch output.

TYPE Card

The TYPE card is the second card of the problem
program input deck. It defines the actions that
MCP must take in the total job processing. If the
problem program requests a compilation as part of
the job process, the TYPE card must name the
processor chain; it may also indicate special output
options. The format of the TYPE card may be any
of the following: .

112 9o 80

TYPE, GO, , Options

TYPE, GO, Chain, Options

TYPE, COMPILE, Chain, Options
TYPE, COMPILGO, Chain, Options

o www

Chain indicates the name of a list of processors
that must operate on this problem program. Chain
may include installation chains of processors as
well as the following:

FORTRAN (TYPE, GO, FORTRAN)

FORTRAN (TYPE, COMPILGO, FORTRAN)

SMAC

STRAP

Programming *vith MCP 7

Options is a group of fields on the TYPE card
following the chain field, The group has a maximum
of 15 fields which need not be in any particular
order within the group. Six of these are standard
output options while nine are installation options
which may be added to the system. Each option
field causes MCP to set an appropriate indicator in
the communication region, The problem program
and processors can then test these communication
bits for their own purpose. The six standard out-
put options are:

NRL: STRAP name reference listing included on
output

SEQ: STRAP adds a sequence number to each
symbolic card

NOLIST: Processor suppresses listing

NOPUNCH: Processor suppresses binary deck
punching

TITLE: A TITLE is added to each page of GO
phase output

PBINARY: The entire binary deck including
library subprograms will be punched by BSS.

Limit Card

This card states the core storage requirements for
a problem program class that does not require
dynamic storage allocation. The STRAP II chain
can produce this class of problem program, The
LIM card is input with the problem program only
for GO type jobs and must follow the TYPE card.
The LIM card is part of the output produced by the
processor chain, The format is:

12 oo 72173 80

[LIM,n1, ny

nj and ny are six-digit octal integers (with lead-
ing zeros if necessary).

ny is the full word (18 bit) address that contains
the problem program's lowest bit address. n; must
be = 418.

n, is the full word (18 bit) address immediately
following the problem program's highest bit
address. Enough storage must remain above n, to
accommodate tables set up by MCP for this prob-
lem program plus MCP itself, (The size of these
tables is discussed under "IOD Card.')

At load time, ny becomes the lower boundary
and ny the upper boundary of unprotected storage,

The tables that the problem program requires will
be above n, in protected storage.

If the problem program consists of more than
one load, the limits must be set so that the lower
limit includes the lowest limit of any of the loads,
and the upper limit includes the highest limit of any
of the loads.

IOD Card

The configuration of I/O devices can vary not only
from installation to installation but also, at times,
within a single installation, MCP assumes the
responsibility of maintaining an up~to-date record
of the status and availability of all I/O devices
attached to the exchange, The system can then
assign I/0 devices to problem programs and pre-
vent conflicting assignments of these devices.
Moreover, the I/0 requirements for any problem
program may change from one run to another. To
provide greatest flexibility, the problem program
describes its I/O requirements by means of sym-
bolic I/0 definitions, the IOD cards.

An IOD card describes symbolically an I/O
requirement, or logical I/0 unit, by giving param-
eters that specify the type of I/0 device to be used;
how the device is to be operated; and the exit to be
taken upon I/0 interruption. Several IOD state-
ments (logical units) can share one physical unit,
The position of the IOD cards in an input deck is
shown for all cases in the section, "Preparation of
the Input Deck'.

The processors reproduce IOD cards as they are
submitted and include them in the punched output.
The processors punch two additional fields in each
duplicate IOD card: the I/O reference number field
(column 63-66) and the absolute exit field (columns
67-72). Thus, when writing an IOD statement, the
programmer can use only columns 1-62,

The problem program names each IOD card with
a symbol and thereafter refers to the particular
logical I/0 unit by using this symbol as a param-
eter in a pseudo I/0O operation,

The IOD card is divided into five fields:

Class: Column 1 contains the single character "B"
to classify the card as a definition card provided by
the problem program.

Name: Among definition cards, the name field is
used only on IOD cards. Columns 2-9 contain a
problem program symbol (used in compilations) not
more than eight characters long that names the
logical I/O unit. This symbol is called the
IODNAME. Each IOD must have a unique name, It
is a description of a logical unit; each physical unit

is symbolized either by a channel name if a single-
unit channel is involved, or by channel and unit
names in the case of a multi-unit channel, In the
latter case, channel name is a request for grouping
physical units. There may be many 10D cards for
each physical unit and their order is important if
they are indexed by the problem program,

Statement: The statement field of an IOD card con-
tains subfields that vary with the type of I/0O unit
described, The general format of the statement
field is:
10D, type, exit, channel,....
in which:
Type must be one of the following symbols that
define I/0 equipment:
PRINTER READER
CONSOLE PUNCH

DISK
TRACK

TAPE

Exit is a problem program symbol (used at com-
pilation) that specifies the location of the I/O table
of exits to be used when an interrupt occurs for the
logical unit. The symbol may not contain more
than eight characters,

Channel is a programmer symbol (it is not used
for compilation) that corresponds to an absolute
channel number which will be assigned by MCP. The
same channel symbol on several IOD cards of the
same type of equipment is a request to assign them
to the same channel. A different channel symbol on
IOD cards of the same type is a request to assign

them to different channels. MCP will honor such re-
quests as the I/0O configuration and its current usage
allow. The symbol may not contain more than eight
characters. A null symbol indicates that any channel
of that type may be used.

I/O Reference Number: Columns 63-66 are left blank
by the problem program. On the output IOD cards,
STRAP II converts the IODNAME to an absolute
humber and punches this four-digit octal number in
this field, The first IOD card encountered has the
humber 1 punched in this field, the second IOD

card has the number 2 punched here, and so on.

Absolute Exit: Columns 67-72 are left blank by the
problem program, On the output IOD cards, STRAP
II punches the six-digit octal equivalent of the evalu-
ated symbol for the first word address of the I/O
table of exits in this field,

The name field and the exit subfield are used
only on compilations, Upon running the problem
program, the absolute values in the I/O reference
number and absolute exit subfields are used,
respectively, in place of the symbols used for
compilation,

There are four classes of IOD cards, An IOD
card is classified by the type of I/O unit to which
the symbolic file of information is to be assigned.

PRINTER OR CONSOLE IOD CARD:

66]67 72)73 80j

2 9o 62[63
B IODNAMHIOD, type, exit, channel 1/O Absolute
Reference | Exit
Number

where type is PRINTER or CONSOLE,

READER OR PUNCH IOD CARD:

12 9ho 62p3 66167 72|73 80
B [IODNAME[IOD, type, exit,channel , 1/0 Absolute
mode Reference Exit
Number
where:

type is READER or PUNCH;
mode is ECC or NOECC, If mode is null, NOECC
is assumed,

DISK OR TRACK IOD CARD:

12 no 62 163. 66|67 72(73 80
B {IODNAME|IOD, type, exit,channel, 1/0 Absolute
number Reference | Exit
Number
where:

type is either DISK or TRACK;
number is a decimal integer indicating:
a. Number of arcs if type is DISK, or
b. Number of tracks if type is TRACK. MCP
reserves the requested multiple of eight
arcs, the first reserved arc being the first
arc of a track. This permits the program-
mer to perform an autoaccess elimination
operation, butf his control word must meet
the requirements of the 7030 as stated in the
Automatic Access Elimination section of the
Reference Manual, IBM 7030 Data Process~
ing System, Form A22-6530-2,

Programming With MCP 9

For both DISK and TRACK, a null number field
is a request for all the disk storage available to
problem programs. Only one such request per
problem program will be honored for an installation
with only one disk channel.

When both DISK and TRACK IOD cards are used,
they should be grouped by type to optimize allocation
of storage on the disk,

TAPE IOD CARD:

1]2 210 62163 6667 72|73 80

B IODNAME|IOD, TAPE, exit,channel, 1/0 Absolute
unit, mode, density, Reference Exit
disposition Number

where:
unit is a programmer symbol, limited to eight
characters, which corresponds to an absolute unit
number which will be assigned by MCP, The same
unit symbol on several tape IOD cards uncon-
ditionally associates them with the same tape
unit. A different unit symbol on tape IOD cards
unconditionally associates them with different
tape units. A tape unit will be assigned for each
unique unit symbol, including the null symbol
(many null unit fields are treated as a single,
unique unit symbol). In turn, tape units will be
grouped by the channel symbol but only condi-
tionally. Where both the channel and unit fields
are null, there will be unit separation.
The mode field on the IOD card must be one
of the following:

ODD 0Odd parity, no ECC
EVEN Even parity

ECC 0Odd parity, ECC
Null See "Reel Labeling"

The density field on the IOD must contain one
of the following;:

HD High density
LD Low density
Null See ""Reel Labeling"

Disposition indicates what is to be done with

the tape last mounted when the job is terminated,
It must be one of the following:

NSAVE Do not dismount in any case
CSAVE Dismount only if job is complete
ISAVE Dismount only if job is incomplete
SAVE Dismount in any case

PSAVE Do not dismount; tape to be passed
NULL Equivalent to NSAVE

MCP normally unloads those problem program
tapes which cannot be immediately reused as

10

scratch tapes. If PSAVE disposition had been spec-
ified in the problem program's tape IOD, the end of
job procedure would not have unloaded the tape but
would have simply rewound it to be used by a later
problem program. In the bypass system inputoper-
ating mode (to be discussed under " Normal Running
Mode''), PSAVE must be the tape IOD disposition
for tape passing to occur,

In either the on-line or off-line mode operation,
MCP prescans the IOD cards and preassigns the
required tape reels. MCP is therefore in a position
to accomplish tape passing among those jobs which
have been preassigned without using PSAVE dispo-
sitions. The number of preassigned jobs may be as
low as one job. Therefore, to improve the possi-
bility of tape passing between non-contiguous jobs,
the problem program should specify a PSAVE
disposition,

For all dispositions except PSAVE, a file pro-
tected tape will be dismounted. In PSAVE usage, a
file protected tape can not be passed to a job that
requires a non-protected tape and dismounting will
occur,

The programmer must allow adequate space for
tables. The amount of space needed is a function of
the number of IOD cards in the program, the number
of I/0 units required, and the number of tape reels
required, If:

K = Largest I/0O reference number

I = Number of IOD cards

U = Number of units

R = Number of reels, including scratch tapes
the number of full words that must be reserved for
tables above the upper limit of the problem program
can be computed using the equation:

K+7I+9U+ 2R+ 1
The letter R represents not only the number of reels
designated by the REEL cards, but any scratch tapes
mounted in response to sequential unload pseudo-
operations, Although no scratch tape need be spec-
ified, requests for tapes beyond those specified on
REEL cards will be honored by mounting scratch
tapes. The identity of such tapes will be placed in
a pool along with those designated by the REEL
cards.

If the computed number of full words is not avail-
able, the programmer should not attempt to run his
program,. If he does, MCP will remove his job
from the computer as soon as the available space is
exhausted.

Reel Card

The REEL card contains the identification of tapes to
be mounted. A REEL card must immediately follow
the tape IOD card to which it refers, unless there is

more than one IOD for the same unit and channel, In
this latter case, the REEL card must immediately
follow one of the IOD cards for that unit and channel.
A REEL card may also follow another REEL card
that refers to the same unit and channel., A REEL
card is punched in the format:

1|2 o 62]63 80

B | blank REEL,reelq,reel 5, etc blank

where:
REEL represents a pseudo-operation code
that identifies a card which lists reel numbers of
tapes associated with a tape IOD statement., Reelj
are subfields that identify tapes in the order in
which they are to be mounted. Each reelj repre-
sents a symbol eight characters in length. The
first three characters are not part of the reel
identification, but specify whether the tape is
labeled or unlabeled and whether the tape is pro-
tected (ring out) or not protected. If the entire
subfield is not null, the reelj may be:

PLBXXXXX Protected, labeled
PULXXXXX Protected, unlabeled
NLBXXXXX Unprotected, labeled
NULXXXXX Unprotected, unlabeled

The remaining five characters, XXXXX, are
the same as those shown externally on the tape
container, If it is a labeled tape, they are the
same as those on the (magnetic) reel label file,

If the entire subfield is null, any labeled, unpro-
tected tape will be used. Therefore, it is impossible
to specify an unlabeled scratch tape, If all tapes tobe
mounted on the same physical unit are to be labeled
and unprotected, no REEL card is necessary.

REEL HISTORY: A reel history is added by MCP to
the end of the problem program output. For every
physical tape unit assigned to the problem program,
N+ 1 lines of output will appear where N is the num-
ber of tape reels that have operated on this tape unit.
The first line of each N+ 1 group contains the actual
channel and unit number assigned to the tape request
as well as the IOD number (in octal) that last sym-
bolically referenced this unit.

Each subsequent line of the N+ 1 group contains
the following tape reel information:

1. Reel name

2, UK interrupt count

3. UK-EOP interrupt count

4. Read pseudo-operation count

5. Write pseudo-operation count
6. Control pseudo-operation count
7. Actual tape disposition

REEL LABELING: When a tape is required by the
problem program, it is identified by a REEL card.
This identification is given to the operator by MCP
in mounting instructions typed on the console
typewriter. The operator matches this identifica-
tion with that appearing externally on the tape and
mounts the required tape. If the tape is labeled,
MCP verifies that the tape requested is the tape
mounted,

A labeled tape contains a magnetic identification
that corresponds to the external identification on the
tape. The magnetic identification is contained in
the reel label., The reel label is written as the
first record on the tape and is followed by a tape
mark. A reel label consists of one (tape) BCD rec-
ord of at most 15 words and at least 66 bits (11 six-
bit bytes) as follows:

0-29 Reel name

30-35 Density

36-41 Mode
with the remaining bits of the record unused. -

Reel Name: The reel name consists of five charac-
ters that correspond to the exterior reel identifica-
tion., If less than five nonblank characters are used
on the REEL card, rightmost blanks are provided
when it is decoded'so that five characters are
verified,

Density: The density, as coded in the reel label, is
that in which the remainder of the tape, including
the tape mark following the label, is written. It
must be either:

H (111000)9 High, or

L (100011), Low

Mode: The mode, as coded in the reel label, is that
of the current I0D used when the label is written, &
must be one of the following:

O (100110)2 Odd parity, no ECC

C (110011); Odd parity, ECC

E (110101)9 Even parity

Label Tape Mark: The reel label record is followed
by a tape mark which is the problem program's logi-
cal load point. The first tape mark is written in the
density as coded in the reel label record. The reel
label, including the first tape mark, is rewritten
on-~line only if all the following conditions are met:

1. The tape is labeled.

2. The first problem program operation that
moves the tape is either a write or write end of file,

Programming With MCP 11

3. The density or the mode in the label is differ-
ent from that on the IOD used in the first operation,
The density or mode stated in the IOD is used when
rewriting the label.

Because the information in the reel label is not
used by the problem program, the tape mark follow-
ing this initial file is used to simulate the beginning-
of-tape metallic strip. If the programmer attempts
to backspace over this end-of-file mark to the real
metallic strip, his action is prohibited by MCP, The
tape will be positioned at the end of the reel label and
a branch will be made to the error return in the I/O
table of exits. (See'I/O Interrupts.') Repeated
attempts to backspace over the reel identification
will be met with the same response and signal from
MCP.

The mode and density options offered by the sys-
tem are:

Label Mode and Density: The mode and density in
which the label is written on the tape.

Information Mode and Density: The mode and density
appearing in the label and in which the file mark fol-
lowing the label and at least the first information
record are written, The information density is the
density in which the rest of the tape is written, The
mode used to write a tape may be altered after the
first record. Thus, data following the first record
can be written in a mode different from that appearing
in the label.

The two sets of parameters for label and informa-
tion mode and density can be altered by compilation.
All MCP systems will be delivered with the following
modes and densities:

Label -- High density, even parity

Information -- High density, odd parity
Individual installations may elect to alter these
modes and densities, in which case they may be
incompatible with the modes and densities of other
installations.

Installation Mode and Density: The mode and
density established by an installation for either or
both the label and information modes and densities.
These modes and densities may or may not be differ-
ent from the modes and densities set upon delivery of
the MCP system to the installation.

In the earlier description of the mode and density
fields on IOD cards, the null case was referred to
this section. For the mode field, the following is
true:

$READ operation, labeled tape: Use mode speci-
fied in the label (information mode).

$READ operation, unlabeled tape. Use installa-
tion information mode.

12

$WRITE or $WEF, labeled or unlabeled tape: Use
installation information mode.

In discussing the null case for the density field, it
must be realized that the density is set for the entire
tape by the first operation. Therefore, the following
rules apply only to the first operation:

$READ operation, labeled tape: Use density
specified in tape label.

$READ operation, unlabeled tape: Use installa-
tion information density,

$WRITE or $WEF, labeled or unlabeled tape: Use
installation information density.

On all $READ or $WRITE requests after the first,
the density request is ignored, and the tape is oper-
ated upon in the density established by the first
operation,

Note that if a $READ operation is given with a
density specified by the IOD card, the density for
the operation performed becomes the density for the
entire tape. This density may not agree with the
information density, in which case errors will occur.
It is advisable to use a null density and mode on the
IOD used for reading the first record, or to use the
same IOD with which the first information record
was written,

Whenever a tape reel is to be written in a density
other than the current active density, the rewind
and change density pseudo-operations must be
issued., The next write pseudo-operation issued to
that tape will cause a new label and file mark to be
written prior to writing the requested record.

Preparation of the Input Deck

The structure of input decks may be divided into two
general classes: (1) those decks which require com-
pilation by one of the language processors before

the job can be loaded and executed, and (2) those
decks which are output from a previous compilation
and can be loaded and executed without compilation.

Jobs to be Compiled

For jobs to be compiled, the programmer may re-
quest that the deck be handled by MCP as a compi-
lation only (execution is not to be attempted) by
using the COMPILE option on the type card:

B TYPE, COMPILE, Chain, Options
The programmer may request that the deck be
loaded and executed at the completion of compila-
tion by using the COMPILGO option on the type
card:

B TYPE, COMPILGO, Chain, Options

If STRAP is the name of the processor chain,
the deck should have the following structure:
JOB, identification
TYPE, COMPILE (COMPILGO), STRAP
IOD (if any)

REEL (if any)

SYMBOLIC CARDS in STRAP language
PROGRAM DATA (if any) (if option is
COMPILGO)

W ww

If FORTRAN is the name of the processor chain,
the deck should have the following structure:
JOB, identification
TYPE, COMPILE (COMPILGO), FORTRAN
SUBTYPE, FIOD (if any IOD/REEL)
IOD (if any)

REEL (if any)
END
SUBTYPE, FORTRAN
SYMBOLIC CARDS
T SUBTYPE, STRAP
SYMBOLIC CARDS
T SUBTYPE, BIN
PRECOMPILED BINARY CARDS
T SUBTYPE DATA

PROGRAM DATA (if any) (if option is

COMPILGO)

Notes: 1. The T SUBTYPE card indicates to the
language processor, the language in which the follow-
ing subprogram is written, A more complete de-
scription of T SUBTYPE cards and more examples
of input decks may be found in the IBM 7030
FORTRAN IV Reference Manual, Form C22-6751,
chapter 12,

2. The preceding example of a sample
job deck illustrates that the job may include subpro-
grams in a mixture of symbolic languages and previ-
ously compiled binary subprograms,

WwWwH ©W

=

Jobs to be Executed

A job is ready to be loaded and executed if all sub-
programs in the deck have been previously com-~
piled. The binary cards which make up the input
deck must contain only card classes (See ' Card
Classes,") acceptable to the MCP loader,

If the job does not require dynamic storage allo-
cation provided by the BSS processor, the input deck
to MCP should have the following structure:

B JOB, identification
B TYPE, GO

B LIM, A,B

B IOD (if any)

B REEL (if any)
BINARY CARDS (acceptable to the MCP
loader, including any correction, patch,
or dump cards)
BRANCH CARD (absolute)
PROGRAM DATA (if any)

If the job was compiled with the FORTRAN chain
of processors, the input deck to MCP should have
the following structure:

B JOB, identification

B TYPE, GO, FORTRAN, TITLE
TITLE PROGRESS REPORT

B IOD (if any)

B REEL (if any)

B TYPE, GO, FORTRAN (optional)
T SUBTYPE, BIN (optional)

BINARY CARDS (acceptable to MCP
loader, including any correction,
patch, or dump cards for the
subprogram)

B TYPE, GO, FORTRAN (optional)
PRECOMPILED BINARY CARDS
FORTRAN BRANCH CARD
PROGRAM DATA (if any)

Notes: 1, If TITLE is specified as a TYPE
card option, the TITLE card must immediately
follow the TYPE card, Otherwise, the problem pro-
gram will be ended with a TYPE card error.

2, Any B TYPE or T SUBTYPE cards
which appear after the first binary card will be
printed, Otherwise, they will have no effect on the
input deck,

3. The reading of program data which
follows the branch card must be initiated by the
problem program.,

~

Card Classes

The MCP loader handles 18 classes of cards,
vidual card formats and their functions may be
found in the IBM 7030 Loader and BSS Processor
Data Processing System Bulletin, C28-6379. The
names of the cards are listed below:

Indi-

Card Name Column 1 Punches
1. Absolute origin 7,8,9)
2. Absolute flow (7,9)
3. Absolute branch (6,7,9)
4. Absolute correction (C) (12, 3)
5. Absolute patch (P) (11, 7)
6. Absolute dump (D) (12, 4)
7. Relocatable data (6,7,8,9)

Programming With MCP 13

8. Relocatable instruction (5,7,9)
9. FORTRAN program (5,6,7,9)
10, Common definition 5,7,8,9)
11, FORTRAN Branch (5,6,7,8,9)
12. Relocatable correction (K) (11, 2)
13. Relocatable patch (A) (12,1)
14. Relocatable dump (Z) 0,9)
15, T (0,3)
16. Super T (09 2’ 3)
17. Loader adjustment (O) (11, 6)
18. B (12,2)
PROGRAMMING USES

A problem program may issue a request to MCP to
perform a specific function such as stack I/0O inter-
rupts, write an end-of-file mark, dump problem
program core storage, and so on. These requests
must be issued as pseudo-operations in the form of
macro-instructions, or calling sequences, The
macro-instructions take the general form:

MOP, parameter 1, parameter 2, etc.
where:

MOP represents the STRAP II mnemonic for

the requested operation, prefixed by the charac-

ter M. Any parameters required, including null
parameters, are written in a specified order
separated by commas,

The macro-instructions are expanded to calling
sequences by the macro-generator (SMAC), in the
general form:

B, $MCP

» $OP
followed, in consecutive half-words, by the specified
parameters.,

The calling sequences replace the macro-
instructions, and are subsequently assembled by
STRAP II along with the other symbolic statements.
If SMAC is not in the compiling chain, pseudo-
operations must be specified as calling sequences in
the STRAP II form.

The first instruction in all pseudo-operation call-
ing sequences is a B, $MCP, where $MCP is a
STRAP II system symbol assembled as address 32.
MCP always protects location 32., therefore, the
attempted branch causes an instruction fetch (IF)
interrupt. The interrupt handling routine within MCP
examines the rest of the calling sequence to deter-
mine the requested pseudo-operation and to initiate
the appropriate action. Thus, the programmer is
cautioned that his program must be enabled, and that
the IF mask bit must be one,

14

Symbolic I/0 Operations

Operations on I/O units are initiated through pseudo-
operations expressed either as macro-instructions or
as calling sequences. MCP receives all pseudo-
operations as calling sequence linkages.

MCP operates on logical units that are grouped on
physical units by means of the problem program's
IOD cards. Before problem program execution, MCP
assigns an absolute channel and unit to each IOD,
This information is also typed on the console type-
writer, as a message to the operator, if operator
intervention is required,

As part of this assignment, MCP stores the
parameters appearing on the IOD cards in special
tables, IODNAME is then used to form the nec-
essary addresses to retrieve the parameters from
these tables. IODNAME is a problem program
symbol which appears in the name field of the appro-
priate IOD card, and refers to the requested logical
unit via that IOD card. (See''IOD CARD",) Thus,
MCP relieves the programmer of any concern over
absolute units and channels,

The general form for I/0 pseudo-operation
macro-instructions is:

MOP, IODNAME (J)
where:

MOP represents the STRAP II mnemonic for

the I/O operations prefixed by the character M.

I represents any index register, excluding

index register zero, ($0). '

The I/0 macro-instructions are expanded to call-
ing sequences in the general form:

B, $MCP
, $op
, JODNAME (J)

The I/0 pseudo-operation is expressed as a sys-
tem symbol -- the STRAP IT mnemonic prefixed by
a §. IODNAME will be assembled by STRAP II as
an integer, the I/O Reference Number, If a B, $MCP
execution is attempted by the problem program, con-
trol will be given to a subroutine in MCP via the IF
interrupt. IODNAME is used to locate the table of
parameters specified on the appropriate IOD card,
Thus, the operation write end of file might be written
in the macro-instruction form:

MWEF, PPSYMB ($4)
which would be expanded to the calling sequence:
B, $MCP
, SWEF
, PPSYMB ($4)
where:

PPSYMB ($4) is the effective IOD reference

number,

Symbolic I/O pseudo-operations are separated
into two types:

1. Machine I/O pseudo-operations

2. Support I/0 pseudo-operations

Machine I/O Pseudo-Operations

MCP, upon receiving control from a problem pro-
gram calling sequence, issues the necessary hard-
ware 1I/0 instructions required to perform the re-
quested operation, When the exchange has accepted
the instruction and initiated the operation, MCP
returns control to the problem program at the first
instruction following the calling sequence. When the
exchange signals the completion of the operation,
MCP processes the interrupt and communicates it to
the problem program. (See "I/O Interrupts,') This
action preserves the asynchronous nature of I/0
operations in the 7030 System.

If the requested channel is busy because another
operation is already in progress on that channel, the
instruction counter is frozen until the channel is
free, When both the channel and unit are free, set-
up of the requested operation is begun, This set-up
may include:

1. Locating a unit on a multiple-unit channel,

2, Setting the mode and density as requested on

the IOD card, or tape label.,

3. Saving and checking the control word or arc

number, if one is given,

In summary, it may be said that MCP supplies
the necessary 7030 instructions to perform the
requested I/0 operation,

The read, write, and copy control word opera-
tions require the use of control words. The location
of the first control word used by the operation should
be specified symbolically in the macro-instruction
as:

MOP, IODNAME (), CTLWD ()
where:

CTLWD is the problem program symbol for

the first control word location, and I is any index

register, excluding $0. (I indicates the use of an

index register and not the register itself so that I

for IODNAME () is any register and I for CTLWD

(D may be the same or any other register exclud-

ing $0.)

The control word chain indicated by CTLWD (f)
must be in the problem program's core storage when
the operation is started, and should not be altered
until the operation is completed,

The macro-instruction MOP, IODNAME @,
CTLWD (J) is expanded to a calling sequence of the
general form:

B, $SMCP
£ $OP

, JIODNAME(I)
, CTLWD())
(return)

Not all I/O operations available in the 7030 in-
struction set may be actuated by means of macro-
instructions, but the intent of these pseudo-
operations, as used by the problem program, can be
accomplished. For example, a locate tape pseudo-
operation will result in an EPGK interrupt to the
problem program, but MCP automatically locates
the problem program tape for other tape usage
pseudo-operations. A complete list of machine I/0O
pseudo-operations and the resultant interrupts are
given in Appendix B.

I/O INTERRUPTS: The I/0 table of exits, whose
location is specified symbolically on the IOD card, is
used by MCP to communicate I/O interrupts to the
problem program. Each table is six full words in
length, The first two words provide storage into
which MCP can transmit information about the inter-
rupt. The remaining words must contain instructions
to handle the interrupt.

Every IOD has a table of exits associated with it;
several IOD cards may, however, share a table of
exits. Thus, if a program has N IOD cards, there
may be as many as N or as few as one I/0 tables of
exits.

The programmer must construct each I/0 table
of exits himself. Each table must begin at a full
word address. A simple method of constructing a
table is to assemble the instruction

EXIT DRZ(N), 2
followed by one full-word or two half-word instruc-
tions for each of the four interrupt groups. EXIT is
the name of the first word of the table that is cur-
rently associated with an IOD, .
The format of each table is:

0 17 |18 31|32 50 |51 63
Word 0| Reference Number zero Actuated Address zero
0 8|9 13| 14 31|32 50 |51 63

Word 1| zero Status Bits zero Interrupted Address zero

Word 2 ERROR INTERRUPT INSTRUCTION
Word 3 END INTERRUPT INSTRUCTION
Word 4 SIGNAL INTERRUPT INSTRUCTION
Word 5 NORMAL INTERRUPT INSTRUCTION

Programming With MCP 15

The unused bits of the first two words are reset to
zero each time the table is used by MCP, The I/O
reference number is that of the logical unit for
which the interrupt occurred, The actuated address
is the location of the macro-instruction (actually the
location of the first instruction of the calling
sequence) used to actuate the unit. The status bits
contain all indicators turned on at the time of the
interrupt, including the high-order indicator that
directly caused the interrupt. The interrupted
address is the location of the next instruction to be
executed at the time of the interrupt. It is given
for programmer reference only; MCP does not use
it on return.

MCP gives control to the error interrupt instruc-
tion when the high-order status bit is either EPGK
(. 9) or UK (. 10); to the end interrupt instruction
when the high-order bit is EE (, 11); to the signal
interrupt instruction when CS (. 13) is on alone; or
to the normal interrupt instruction when the high~
order bit is EOP (. 12) with or without CS.

Normally, the last four words of an I/O table of
exits will contain branch instructions that provide
entry into fix-up routines, It is the responsibility of
the fix-up routines to determine the combination of
status bits that are on in order to correctly evaluate
the interrupt and to provide appropriate corrective
action. (Appendix B contains summaries of I/0O
status indicators with their interpretations for dif-
ferent types of I/O units.) Occasionally, some of
these last four words will be one-word fix-up rou-
tines themselves,

1/0 operations with suppress end of operation
(SEOP) specified, function the same as non-SEOPed
operations, except that interrupts are not issued for
an end of operation (EOP) condition.

I/0 OPERATING MODES: There are three modes of
running in conjunction with I/O operations; only two
are under problem program control.

Auto-Stacked Mode: The problem program is placed
in the auto-stacked mode whenever an I/O interrupt
occurs for that problem program during mainstream
and control is passed to an I/0O table of exits. This
is known as an I/0 fix-up.

The auto-stacked mode is a pseudo-disabled
mode; the problem program is effectively disabled
while MCP proceeds enabled. All additional prob-
lem program I/O interrupts are automatically
stacked in an interrupt queue as they occur. This is
done in the same manner as the exchange would
stack them when in the disabled mode, except that
MCP may still process MCP interrupts immediately.

Once the programmer has processed the initial
1/0 interrupt, there are several options for handling
any remaining stacked I/0 interrupts.

16

1. He may disregard all stacked I/O interrupts
for a logical unit by issuing the Release pseudo-
operation, (See Appendix B.)

2. He may selectively process the stacked inter-
rupts, on a per unit basis, by issuing the Wait
pseudo-operation, (See '"Support I/O Pseudo-
Operations, ")

3. He may process the stacked interrupts on a
first-come first-served basis, by issuing the Return
pseudo-operation. (See "' Support I/O Pseudo-
Operations. ')

The Return pseudo-operation is the only means of
removing the problem program from the auto-
stacked mode,

The problem program's lower registers, 3-31,
are saved in protected storage upon entry into the
auto-stacked mode, Whenever control is given to
an I/0 table of exits, the indicator register is zero;
the mask register is zero except for the IF bit; index
register 15 is zero; and the remaining lower regis-
ters contain insignificant information. Thus, when
going from mainstream to auto-stacked mode, the
problem programmer cannot depend upon his main-
stream lower registers until he has returned to the
mainstream mode via the Return pseudo-operation.
The converse is also true. In the mainstream mode,
he cannot depend upon the lower registers that he
set up in the auto-stacked mode. If the programmer
requires the contents of his mainstream registers
while operating in the auto-stacked mode, a Fetch
Lower Registers pseudo-operation may be issued.
The registers will be placed into the program speci-
fied buffer and the auto-stacked fixup may then load
any registers that it requires from the appropriate
location within the buffer. (See' Fetch Lower Reg-
isters Pseudo-Operation,')

Mainstream Stack I/0 (SIO) Mode: The second I/O
operating mode causes all I/O interrupts to be
stacked in a queue, as they occur, while the problem
program is executing instructions in mainstream.
The interrupts are not released to the problem pro-
gram until requested by a Release I/0 pseudo-
operation or a Wait pseudo-operation,

Mainstream Mode: The third mode is the normal
operating mode, where an I/0 interrupt is released
to the problem program immediately upon receipt,
invoking the auto-stacked mode.

Support I/0 Pseudo-Operations

In order to further facilitate machine I/O processing
for the programmer, ten support I/O pseudo-
operations are available, which do not require hard-
ware I/0 instructions, (except in the case of the
Free tape drive pseudo-operation) and which, in

themselves, do not cause any I/O interrupts to be
generated or communicated to the problem program,

Wait Pseudo-Operation ($WAIT): $WAIT is specified
by the following macro-instruction:

MWAIT, IODNAME ()
which is expanded to the calling sequence

B, $MCP

, SWAIT

, IODNAME (J)

(return)
It is used to freeze the instruction counter until an
I/0 interrupt occurs on a particular logical unit.
The interpretation of $WAIT depends upon the status
of the logical unit specified by IODNAME(I) and the
mode in which the problem program is operating,.

In the most common usage, an I/O operation is
in progress on the logical unit specified by the
$WAIT. $WAIT directs MCP to freeze the instruc-
tion counter until any I/O interrupt occurs on that
logical unit. MCP immediately releases the inter-
rupt to the problem program, a fix-up is executed,
and control is returned to the mainstream to con-
tinue processing.

If an I/O interrupt is already stacked for the
logical unit named by the $WAIT, the interrupt is
immediately released to the problem program, If
there is neither an I/O operation in progress nor an
interrupt stacked on the logical unit specified,
$WAIT is treated as a no-operation.

The effect of a $WAIT is also determined by the
mode in which the problem program is operating,

If the problem program is in neither the auto-
stacked nor the stack I/O mode, other interrupts
are released as they occur, but control is always
returned to the $WAIT, If the problem program is
in either the auto~stacked or the stack I/O mode, no
other interrupts are released and the action of
$WAIT does not alter the mode in effect. When the
awaited interrupt is stacked on the specified logical
unit, it is released by $WAIT regardless of the mode
of the problem program, but no other stacked inter-
rupts are released at this time,

If $WAIT is effected in the auto-stacked mode, a
second fix-up is executed to process the awaited
interrupt, If this fix-up is terminated by a return
pseudo-operation and no other I/0 interrupts are
stacked, control is returned to the mainstream, not
to the instruction after the auto-stacked $WAIT. If
other interrupts are stacked, they are released and
Procegsed and control is then returned to the main-

stream. A chart summarizing the action of $WAIT
follows,

Logical Unit
Problem Operating. Awaited interrupt | Not operating.
Program Awaited inter- already stacked Awaited inter-
Mode rupt not stacked rupt not stacked

Hold mainstream IC
until awaited inter-
rupt occurs. Service | Impossible NOP
others as they occur

Mainstream

Hold mainstream IC

Mainstream | until awaited inter- | Release awaited in- | NOP

SIO Mode rupt occurs. Stack terupt immediately
others
. Hold fix-up IC until
/0 Fix-up awaited interrupt Release awaited in-
AS Mode occurs. Stack all terrupt immediately |NOP

others

Return Pseudo-Operation ($RET): $RET is used to
take the problem program out of the current I/0
fix-up and, if no other interrupts require service,
out of the auto-stacked mode. The macro-
instruction

MRET
which is expanded to-the calling sequence

B, $MCP

,$RET
indicates to MCP that the current I/O interrupt has
been processed. Any other I/0 interrupts that have
been held in queue are released to the problem pro-
gram, one at a time, in the order in which they were
received and stacked by MCP, If there were no
other interrupts in the queue, or if the queue has
been exhausted, the lower registers are restored to
their mainstream status, the problem program is
taken out of the auto-stacked mode; and control is
returned to the address in mainstream where the
interrupt occurred,

$RET is the only way in which the problem pro-

gram can be taken out of the auto-stacked mode, and
the only way to have the lower registers restored by
MCP. If $RET is used when the auto-stacked mode
is not in effect, it is treated as a no-operation,

Stack I/O Pseudo-Operation ($SI0): $SIO is
requested via the macro-instruction
MSIO

Programming With MCP 17

which is expanded to the calling sequence

B, $MCP

, $SI0

(return)
$SIO places the problem program in the stack I/0
(SIO) mode, which causes all I/O interrupts to be
stacked in a queue while the problem program is
executing instructions in the mainstream, The
stacked I/0 interrupts are not released until
requested by the problem program.

Release I/0O Pseudo-Operation ($RIO): $RIO is the
inverse of $SIO,

MRIO
is the macro-instruction and is expanded to the call-
ing sequence

B, $MCP

» $RIO

(return)
This pseudo-operation tells MCP to begin unstacking,
on a first in-first out basis, any I/O interrupts held
in the stacked queue and to change the mode from
mainstream SIO to normal mainstream. I no
interrupts were stacked, the mode is simply
changed. If there were stacked interrupts, they are
now released, one at a time, As soon as the first
1/0 interrupt is released, and the problem program
enters an I/0 fix-up, the auto-stacked mode is
invoked. After all I/O interrupts have been proc-
essed, control is returned to the location following
$RIO in mainstream, provided the I/0O fix-up (in
auto-stacked mode) has issued a $RET, When
$RIO is given in the mainstream, unstacking begins
immediately. I $RIO is given in an I/O fix-up,
the auto-stacked mode has priority and $RIO will
not take effect until a $RET has been issued.

Change I/O Table of Exits Pseudo-Operation
($CHEX): $CHEX permits the programmer to
change the table of exits address for a particular
logical unit, The macro-instruction
MCHEX, IODNAME(I), NEXIT(I)
is expanded to the calling sequence
B, $MCP
, SCHEX
, IODNAME (I)
, NEXIT (T)
(return)
where:
NEXIT(Y) is the problem program symbol locating
a new table of exits to be associated with the
IOD statement as specified by IODNAME (I).
The problem program is given control at the
return word in the linkage when the operation is
completed.

18

Alter Tape IOD Disposition Pseudo-Operation
($ATID): $ATID allows the problem programmer to
change the disposition of a tape reel during execu-
tion, The macro-instruction

MATID, IODNAME(I), NDISP
is expanded to the calling sequence

B, $MCP

,$ATID

, JIODNAME(I)

, NDISP

(return)
where:

IODNAME (I) must specify a tape IOD state-
ment, and NDISP represents the new disposition
for the tape reels used in association with
IODNAME (I). The NDISP must be specified in a
full-word address form, selecting one of the fol-
lowing disposition codes:

NSAVE = 0.0 ISAVE

CSAVE = 1,0 SAVE

PSAVE = 4.0

il

2.0
3.0

1

Fetch Lower Registers Pseudo-Operation (SFELR):
$FELR and store lower registers pseudo-operations
may be used by the programmer to examine the con-
tents of the mainstream lower registers and to alter
them if he chooses. $FELR is expressed in the
macro-instruction
MFELR, FWA, (I)
and is expanded to the calling sequence
B, $MCP
, SFELR
, FWA. ()
(return)
where:
FWA, () specifies the first word (18 bit)
address of a 31 word buffer into which the con-
tents of the problem program's lower registers
will be placed. The fetched lower registers
describe the status of the mainstream problem
program., The problem program buffer will have
the following contents after execution of $FELR:
FWA, (I)(.00-,17) IOD Reference Number

FWA, (I)+1. Boundary Register

FWA, (I)+ 2. Maintenance Bits

FWA, (I)+3. Channel Address

FWA, (I)+ 4, Other CPU Bits

FWA, (I)+5. Left Zeros Count and
All Ones Count

FWA, (I)+6., Left Half of Accumulator

FWA, I)+7, Right Half of Accumulator

FWA, (I) +8, Accumulator Sign Byte

FWA, I)+9, Indicator register

FWA, (I)+10. Mask register

FWA, I)+11, Remainder register

FWA. (I)+12, Factor register
FWA, (I)+13. Transit register
FWA, (I)+14.-

FWA, ()+29, Index Registers 0-15
FWA. (I)+ 30. Instruction Counter

Base Address of I/O Location
Tables

An 10D reference number will appear in FWA, (I)
if the current I/O fix-up is for a unit other than the
one that the programmer is still expecting in his
mainstream non-SIO $WAIT, The reference number
will be the $WAIT reference number, otherwise
FWA, (I) will be zero.

FWA, (I) + 30. 32

Store Lower Registers Pseudo-Operation ($STLR):
$STLR allows the user to replace mainstream lower
registers with the contents of a 31 word problem
program buffer, $STLR may be used only in the
auto-stacked mode., The macro-instruction

MSTLR, FWA, (I)
is expanded to the calling sequence

B, SMCP

, $STLR

, FWA, (I)

(return)
where:

FWA, () specifies the first word (18 bit)

address of the 31 word buffer which will be used

to replace the lower registers saved by MCP.

The following are restrictions on the use of
$STLR:

1. Word 3, boundary control, is not changed.

2. The time signal (TS) and the execute exception
(EXE) indicators are not changed.

3. The instruction fetch (IF) mask bit is forced to
one,

The user's lower registers from the maintenance
bits to index register 15, as well as the instruction
counter, will be taken from the buffer in the same
order as described under $FELR., The IOD Refer-
ence Number, Boundary Register and Base Address
of the I/O Location Tables are not stored.

I/O Definition Pseudo-Operation ($IODEF): $IODEF
allows the problem program to obtain in an IQS
Statement, the absolute channel and unit number
associated with an IOD statement, The macro-
instruction

MIODEF, IODNAME (I), ADDR, (I)
is expanded to the calling sequence

B, $SMCP

, SIODEF

, JODNAME (I)

,ADDR, (I)

(return)

where:
ADDR, (I) is a full word (18 bit) address of the
problem program storage location into which the
full word IQS statement is placed. The IQS state-
ment is in the following form:
CHXX UNY

Free Tape Drive Pseudo-Operation (§FREE): $FREE
expressed by the macro-instruction

MFREE, IODNAME (I)
is expanded to the calling sequence

B, $MCP

» SFREE

, JODNAME (I)

(return)
$FREE indicates to MCP that this problem program
no longer requires the tape unit specified by the
IODNAME (I). MCP will unassign the unit from the
problem program and give control to the return word
in the calling sequence, After a $FREE is issued,
the problem program can no longer use the tape
drive specified by IODNAME (I).

A list of all the support I/O pseudo-operations is

contained in Appendix A,

System 1I/O Pseudo-Operations

System Card Read Pseudo-Operation ($SCR): MCP
provides a pseudo-operation that transmits to the
programmer a specified number of card images from
an input buffer maintained by MCP, The programmer
specifies the number of cards to be read and the
address of the first word of the core storage block
into which they are to be read, If it is necessary to
fill the buffer, MCP constructs the necessary I/0O
bardware instructions, initiates the reading opera-
tion, and handles any I/O interrupts that may occur.
MCP returns control to the problem program when
the transmission is terminated.

$SCR is a request to transmit a number of cards
from the input buffer to a block of core storage with~
in the problem program. For the purposes of $SCR,
each card is assumed to be a column binary card
image of 15 full words, 80 twelve~bit bytes. Each
byte is a map of a card column where bit 0 corre-
sponds to row 12, bit 1 to row 11 etc., and bit 11 to
row 9, A one bit corresponds to a punch and a zero
bit corresponds to no punch, Only complete cards
may be transmitted to consecutive multiples of 15
words in the user's core storage area., $SCR is

~ specified by a macro-instruction of the form:

MSCR, FWA, (), N.(I), END
which is expanded to the calling sequence

B, MCP

, $SCR

Programming With MCP 19

» FWA, ()

» N. (D)

, 0. (described as ""M." following)
B,END' END RETURN

{normal return)

where:

FWA, () is the first word (18 bit) address of the

buffer into which the cards are to be transmitted,

N. (I) is the number of cards to be transmitted.

I there are at least N, (I) cards remaining to be

transmitted to this job, 15N, (I) words are trans-

mitted and the normal return is given,

END represents a problem program symbol

for the location where the programmer wishes

control returned if less than N, (I) cards are
transmitted,

The macro-generator reserves a half-word for
M., which will contain the number of cards that
were actually transmitted if there were fewer than
N. (D cards remaining. If this situation occurs, the
end return is given to the half-word preceding the
normal return, where a branch instruction has been
constructed by the macro-generator, using the
programmer symbol END as the address.

The primary function of the MCP output program
is to provide a standard method of output for both
- printing and punching, Output requests are made
through two pseudo-operations rather than through
I/O commands by the user. Buffering is used to
output the data with a minimum of I/O interruption.
The output program prepares a tape for processing
on the IBM 1401 Data Processing System.
System Print Pseudo-Operation ($SPR): $SPR is a
request to move a number of lines to the print buffer
maintained by the output program. Each line con-
sists of 17 full words, 136 eight-bit bytes. The
first byte of each line must be one of the following
characters, which control spacing before printing
the line:

Binary 8-Bit BCD
Function Representation Code
Restore 00000001 1
Single Space 00100000 - (Minus)
Double Space 00100001 J
Triple Space 00100010 K
Quadruple Space 00100011 L

The 132 bytes which follow, must be 8-bit BCD (A8)
characters to be printed. The remaining 3 bytes are
used for padding and may contain any configuration of
bits. Only complete lines may be moved from con-
secutive multiples of 17 full words in the user's core

20

storage area, $SPR is specified through the macro-
instruction
MSPR, FWA. (D), N.(D
which is expanded to the calling sequence
B, $MCF
,$SPR
» FWA, (D
» N.(I)
(return)
where:

FWA, () is the first word address from which the

lines are moved.

N, (I) is the number of lines to be moved.

Information is not altered in the user's core

storage.

In addition to performing the $SPR function, the
Output program in MCP can insert a TITLE, a
page number, and start a new page in the GO
phase of a problem program as a TYPE card option,
If TITLE is specified as an output option, the TYPE
card must be followed immediately by a TITLE card
of the following format:

| I 6 1789 10

TITLE XYY |TITLE ON OUTPUT

Where X may be:
1 = insert a title if a restore character is
encountered in a $SPR line. Substitute a double
space character in the output buffer but not in the
problem program's core storage for the $SPR
line,
2 = ingert a title and start a new page for every
YY lines of problem program output (including the
title line of output). If YY is blank, 55 will be
used, A double space character will be used as
in 1,
blank = insert a title for either a restore
character (as in 1) in the problem program $SPR
output or for every YY lines (as in 2).

System Punch Pseudo-Operation ($SPU): $SPU is a
request to transmit a number of cards to the punch
buffer maintained by the output program. Each
card is a column binary card image of 15 full words,
80 twelve-bit bytes., Each byte is a map of a card
column where bit 0 corresponds to row 12, bit 1 to
row 11, etc., and bit 11 to row 9. A one bit corre-
sponds to a punch and a zero bit corresponds to no
punch., Only complete cards may be transmitted

from consecutive multiples of 15 full words in the
user's core storage area. $SPU is written as a
macro-instruction in the form
MSPU, FWA, (D), N.(D)
which is expanded to the calling sequence
B, $MCP
, $SPU
, FWA. (D)
»N.(D)
(return)
where:
FWA. (I) is the first word (18 bit) address from
which the cards are to be transmitted. N, ()
is the number of cards to be transmitted.
Information is not altered in the user's core
storage.

Fetch Pseudo-Operation ($FETCH): $FETCH pro-
vides access to named system material on the disk.
The requested material does not have to start at an
arc boundary, and the amount of material to be
transmitted is not limited to multiples of ares, It
eliminates the need for the programmer to provide
core storage for an entire arc. The disk storage
unit attached to the 7030 System is divided into
logical sections by MCP, One section, the perma-
nent read only storage area (PROSA), cannot be
read or written by the problem program, but may be
obtained via $FETCH, System material, such as
mathematical subroutines, tables, and similar
items, is maintained by MCP as a system library
in PROSA,

PROSA is divided into two levels of storage,
areas within types. An area normally contains a
subroutine, or a set of tables, and several such
areas are grouped into types. Each type-area has a
unique name consisting of eight (tape) BCD charac-
ters in the following format:

TTAAAAAA

where:

TT, the first two characters, identify the type,

AAAAAA, the remaining six characters, identify

the area within the type.

The composite name, type-area, must be unique.
However, the same area name may be used with
different type names. Type-areas are ordered on
the disk in BCD code order.

A type-area is the largest logical unit of PROSA
that can be fetched with one operation, $FETCH is
a request to transmit a type-area, or part of a type-
area, into the problem program core storage, The
macro-instruction:

MFETCH, TTAAAAAA, RELFWA. (), FWA. (I),
, N, (I), ERROR, END

is expanded fo the calling sequence:

B, $MCP
»SFETCH
(AX)DD(BU, 48, 6), TTAAAAAAX
»RELFWA_ ()
» FWA. (D
» N. (D
, 0. (described as ""M." following)
B, ERROR' Error return
B, END' End return
(normal return)
where:

TTAAAAAA is an eight-character name of a
specific entry in PROSA,

RELFWA, (I) specifies the first word within the
type-area to be fetched, relative to the starting
address of the type-area. The effective
RELFWA., (I) must be an integer. RELFWA, (I)
should be zero if fetching is to begin with the first
word of the type-area, one if fetching is to begin
with the second word of the type-area, and so on.
FWA, (I) specifies the first word (18 bit) address
of the block of core storage into which the
requested library material is to be transmitted,
N. (D) specifies the number of full words
requested. If N, () is zero, fetch will read in all
of the specified type~area from RELFWA. (]) to
the end of the type~area.

ERROR is the address of a fix-up which the pro-
grammer wishes to execute if the fetch attempts
to violate protected storage or when a nonexistent
type-area is requested.

END is the address of a routine that the pro-
grammer wishes to execute in case the type-area
is exhausted before the requested number of full
words can be transmitted,

M. is a half word reserved by the macro-
generator for the case when $FETCH cannot
transmit N, (I) full words or when N, (I) = 0, In
either event, M, will then contain the number of
full words that were actually transmitted. The
error return slot in the calling sequence consists
of a branch instruction constructed by the macro-
generator whose address is that specified by the
programmer symbol ERROR in the macro-
instruction, Similarly, the end return slot con-
sists of a branch instruction whose address is the
programmer symbol END,

Comment Pseudo~Operation (§COMM): $COMM is
a request from the problem program to transmit a
message from its core storage to MCP, to be output
to the operator via the console typewriter. $COMM
is specified in the macro-instruction

MCOMM, FWA, (1), N. ()

Programming With MCP 21

which is expanded to the calling sequence
B, $MCP
, $COMM
, FWA. (D)
s N. (D)
(return)
where:
FWA. () is the first word address of a mes-
sage to be typed.
N. (I) is the number of words in the message.
The message to be typed must be a multiple of
full words and cannot exceed ten, A message
consists of IQS characters to be typed and need
not include words for carriage control. Words
for console display and end bytes must not be
included.

Termination Pseudo~Operations

There are three pseudo-operations recognized by
MCP that allow the problem program to terminate
an entire job or a section of a job.

Resume Load Pseudo-Operation ($RESLD): $RESLD
can be used by the programmer to load and execute
his program in sections that may or may not over-
lap in core storage. To begin the loading of a new
section, the problem program specifies the macro-
instruction

MRESLD
which is expanded to the calling sequence

B, $MCP

, SRESLD

The loading is resumed with the next binary card,

obtained from the same source as that of the pre-
vious load operation (system input or disk).

The loading is terminated when a branch card is
encountered. Control is then given to the address
specified on the branch card, where execution of
that section begins,

The programmer must use caution when issuing
a $RESLD in an I/O fix-up. The pseudo-operation
does not remove the problem program from the
auto-stacked mode and the next section of the job
will be given control in the auto-stacked mode, In
this case, the first Return pseudo-operation issued
by this section would attempt to give control to a
location within the first section of the job, which
may no longer be in core storage.

End of Job Pseudo-Operation ($EOJ): $EOJ is the
normal method used by the programmer to fermi-

nate his job. It is specified in the macro-instruction

MEOJ

which is expanded to the calling sequence
B, $MCP
,$EOJ

22

$EOJ signals the end of the current job to MCP,
and under no circumstances will ‘control be returned,
to this problem program. As a result of a $EOJ,
MCP does the following:

1. Cancels the auto-stacked or stack I/0 mode if
either is in effect, and discards all stacked interrupts.

2. Treats the current job's I/O in the following
manner:

a. A release is issued if a channel is being
read,

b. A release is issued to a channel being
written under control of a time delay
(designated by the installation).

c. Control operations are completed nor-
mally since the four tape control functions:
Space Record, Space File, Backspace
Record, and Backspace File, can only be
released by operator intervention, and the
rest of the control operations do not effect
the status of the machine when allowed to
terminate normally.

3. Unloads the tapes for the completed job under
a priority scheme (discussed under tape dispositions
in the ""IOD Card' section), and informs the opera-
tor when it is necessary to save a tape.

4. Unassigns all of this problem program's I/O
units, making them available for the next job to be
run,

5. Completes any problem program output, and
writes a tape mark on the systems output tape to
indicate job output separation.

6. Prepares to process the next job.

Abnormal End of Job Pseudo-Operation ($ABEOJ):
$ABEOJ is provided to permit the programmer to
request the job terminating facilities of MCP when
some abnormal condition is detected. $ABEOJ also
provides additional, automatic facilities for checking
purposes that are not provided under $EOJ. SABEOJ
may be expressed in the macro-instruction

MABEOJ
which is expanded to the calling sequence

B, $MCP

, SABEOJ

The actions of MCP for $EOJ all apply to a

$ABEOJ condition (except under $ABEX control),
and in addition, an error dump will be taken of the
problem program's core storage and of the associ-
ated I/0 tables, if any, (See " Check-out Pseudo-
Operations.")

Check-Out Pseudo-Operations

MCP provides four pseudo-operations that are use-
ful to the programmer for debugging purposes, or
for logging information automatically when an ab-
normal condition arises.

Problem Program Exit from Abnormal End of Job
Pseudo-Operation (JABEX): $ABEX allows the
problem program to regain control in the event that
MCP terminates the job for a problem program or
machine error. The macro-instruction

MABEX

is expanded to the calling sequence

B, $MCP

, $ABEX

, FWA. (D)

(return)

where:

FWA, (D is the first word (18 bit) address of a
32 word table, that includes a return slot, into
which the following information will be placed:

FWA., (D)+0.00-0.17 contains the associated
IOD reference number, if the problem program
was terminated while in a mainstream wait
status, for an I/O interruption that was not re-
leased to the problem program,

FWA., ()+0. 25 contains a one if the problem
program was interrupted during an I/O fixup
(the auto-stacked mode).

FWA, (D+0, 26 contains a one if the problem
program was interrupted while in the stack I/O
mode (SIO).

FWA, ()+0.28-0.45 contains the error code
indicating the cause of termination (described
later),

FWA., ()+0. 46-0. 63 contains the I/O interrupt
queue count of the number of non-SEOPed I/O
operations actuated by the problem program;
the interrupts for these operations were not
released to the problem program.

FWA, (D+1, 0-30. 0 contains the problem
program's lower registers, in the format of the
$FELR buffer. (See "Fetch Lower Registers
Pseudo-Operation. ')

FWA, (D+31, 0 is the address where control
will be returned to the problem program.

Note; This last word, FWA, ()+31. must be set-
up by the problem program.

At ABEOJ time, MCP checks to see if the cur-
rent job had previously issued a $ABEX, If so,
and if the abnormal job termination was neither a
result of the problem program issuing a $ABEOQOJ
nor a result of an improper use of RESLD, MCP
does the following: sets up the $ABEX table; clears
the interrupt queue count and the interrupt queue of
all previously stacked problem program interrupts;
removes the problem program from any combination
of auto-stacked mode, suppressed I/O mode, or wait
status; clears the refill field of $15; clears the Indi-
cator Register; resets the Mask Register to the MCP
magk; and returns control to the problem program at
location FWA, ()+31, in the mainstream mode.

Each time a problem program receives control
via $ABEX, a new $ABEX must be issued to regain
control from the next abnormal job termination. Each
$ABEX is in effect for one abnormal job termination
only.

MCP will return control to the problem program
N times per job, if the job is terminated due to a
problem program error or a machine error. (N is
specified by the installation.) However, control will
be returned only once per job, when the operator
terminates the job, regardless of the problem pro-
gram's issuance of a new $ABEX,

The following is an example of the output, on the
system output tape, from a job termination with
$ABEX in effect:

1. A message indicating the cause of the abnormal
job termination. Examples:

a. ABNORMAL EOJ REQUESTED BY OPERA-
TOR. (Error Code 0).
b. JOB ENDED -- ERROR TYPE YY
(Where YY is one of the error codes 1-64).
c. XXXX INTERRUPT AT LOCATION 'loca-
tion'. (Where XXXX is one of the indica-
tors 0-3, 5-8, 15-17 or 19 which are
represented by $ABEX error codes 65-76)
d. A descriptive diagnostic message,
(Error codes 77-80).
(See Appendix E for error code descriptions)

2, The ABEOJ dump indicating the status of the
machine at the time of job termination. (The dump is
taken before the current $ABEX table is set by MCP).
The problem program I/0 will have been released at
this time.,

3. The message indicating the address where con~
trol was returned within the problem program
(FWA., ()+31.). The message is:

YOU HAVE BEEN GIVEN CONTROL VIA $ABEX,
AT LOCATION 'location’',

Hold Pseudo-Operation ($HOLD): $HOLD allows the
programmer to halt his operations at the point where
$HOLD occurs. It may be specified in the macro-
instruction

MHOLD
which is expanded to the calling sequence

B, $MCP

, $HOLD
When $HOLD is encountered, the corresponding hold
binary light (above binary switch 16), on the console
is turned on. The contents of the instruction counter
are displayed, in the octal format, in the right half
of the console numeric display. (See '"Checkout
Facilities" for console options with a $HOLD.)

Programming With MCP 23

The only means of continuing the problem pro-
gram after a $HOLD has taken effect, is via the
operator's console in the following manner:

1, Set the start Key (Binary Key 48)

2, Press the Enter Key

3, When the Enter light comes on, press the End
Key.

Dump Pseudo-Operation ($DUMP): $DUMP provides
a means of performing breakpoint dumps of the
problem program's core storage. The dump(s) may
be taken in one of four formats, described indir-
ectly by a parameter, The macro-instruction

MDUMP, ADDR())

is expanded to the calling sequence

B, $MCP

,$DUMP

» ADDR(I)

(return)

where:

ADDR (D) is the (19 bit) address of the first
word in a string of dump requests, as illustrated
by the following example.

ADDR »AL (D)

» B. (D)
, FORMAT ()

es 0000 scce

»C.(D
»D. (D)
NOP, FORMAT (T)

where:
A, (D is the first location to be dumped
B. (D) is the last location to be dumped
and FORMAT must be one of the following:

0,0 Octal hex with mnemonics, panel
0.32 Octal hex with mnemonics, no panel
1, Floating point with panel
1,32 Floating point without panel
2. Index word with panel
2.32 Index word without panel
15, Octal hex with panel, no mnemonics
15,32 Octal hex without panel, no
mnemonics

More than one dump request may be specified
with each $DUMP issued. The additional parameters
immediately follow the first dump request param-
eters (C. (), D.(I) in preceding example), until the
requests are terminated by a NOP, FORMAT ().

The specified dump information will be written in
the problem program file on the system output tape
by MCP,

H an error is detected in a dump request, only
the panel will be dumped. Possible errors are:

1. Hlegal format

2, A.(D=B.(D)

Control is returnedtothe $DUMP calling sequence
return slot after all requests have been processed.

24

Error Dump Pseudo-Operation ((EDUMP): An error
dump is automatically executed by MCP whenever an
abnormal end of job occurs. A pseudo-operation need
not be supplied by the programmer. The error dump
will include the entire problem program if no
$EDUMP has been issued. The format of the dump
is fixed as octal-hex with the panel, no mnemonics,

If the programmer wishes to change the error
dump limits or format, he may issue a $EDUMP as
a macro-instruction

MEDUMP, FWA.(I)
which is expanded to the calling sequence
B, $MCP
, SEDUMP
, FWA. (I)
(return)
where:

FWA, () is the first word (19 bit) address of a

string of dump requests similar to that used by

$DUMP, The dump descriptors at FWA, (I) replace
those originally set up by MCP based on the pro-
blem program limits, or any descriptors pre-
viously set up by another $EDUMP,

A maximum of six dump requests is permitted for
$EDUMP. I there is an error in the calling sequence,
the $SEDUMP will be ignored, and the previously set
conditions will remain in effect.

$EDUMP does not cause a dump fo be executed; it
only sets parameters for the dump to be executed at
ABEOJ time. If SEDUMP is accepted, and the param-
eters are set, control is returned to the return slot
in the calling sequence.

Figure 1 illustrates and explains a typical panel
dump as well as lines from a typical core storage
dump in various possible formats.

The panel dump indicates the contents of the
lower registers. A description of the registers
can be found in the 7030 Data Processing System
Reference Manual (A22-6530-2, pages 34-38), An
identification of the registers from the abbreviations
in the panel dump and a description of the format
and interpretation of each follows. The registers
are dumped in octal format unless otherwise
specified.

LC The Location Counter where the dump
was taken,

IT The value of the Interval Timer at the
time of the dump.

UB Upper Boundary Register.

LB Lower Boundary Register.

LZC Left Zeros Counter,

AOC All Ones Counter.

FT Factor Register.

AC Accumulator, When interpreting the
contents of the accumulator, ignore the
first bit in the left most octal digit, In
the example, the left half of the accumu-

LC 000114.4 IT 1156166 UB 000125 LB 000044
AC 000 00000013 56024713 56200000 00000000 00100340

L2C oo03
S8 0100+010
MASK 0100000000000000000000000000
X0 000000.00+ 0 000000 000000
X4 000000.00+ 3 000145 000000
X8 000000.00+ 0 000000 000000
XC 000012.00+ 0 000000 000000

X1 000051.00+
X5 000000.00+
X9 000000.00+
XD 000013.00+

0 000000 000000
0 000000 000000
0 000000 000000
0 000000 000000
+ 001 +.10000000000000

000044 + 002 +.10000000000000

000050 000000.00+ 0 S67012 345671 053517.00+ 7 000005 030071

000054 000000.00 08 560247.13 B9 053517.00 70 000120.60 39

053517.07 01
LVI .3

030071.07 03
LRI ,3

000005.07 02
Lcr L3

000060 000023.31 80

FIGURE 1. DUMP EXAMPLE

lator contains the same number that is

shown in locations 54 and 56 in the octal

hex dump.

Accumulator Sign Byte Register. The

first four bits represent the accumulator

zone bits, the fifth bit is the accumulator

sign, and the last three bits represent

the accumulator flags.

Remainder Register,

Indicator Register. Each bit in the indi-

cator register is represented. In Figure 1,

indicators 20 (DF), 23 (PF), 28 (XPFP), and

61 (AE) were on at the time of the dump,

Multiplier Register. This register is

dumped in floating point format,

Mask Register, The portion of the mask

register (indicators 20-47) that the pro-

grammer may set for those interrupts he

wishes to handle, The IF bit (21) however,

is always masked to 1 by MCP,

Transit Register. This register is

dumped in hexadecimal format.

RIO, NOT AUTO-STACKING MODE. This mes-

sage may contain the word SIO instead of
RIO and may say AUTO-STACKING MODE,
(See ""Support I/O Pseudo-Operations. ")

X0 - XF Following the special registers, the in-
dex registers (0 - 15) are dumped inindex word format.

Examples of the four dump formats are given after
the panel dump.

Locations 44 - 47 were dumped in floating point
format and illustrate respectively the numbers 1, 10,
100, and a number with exponent flag and the three
data flags TUV.

Locations 50 - 53 were dumped in index word
format. The number in word 52 was loaded into the
left half of the accumulator and was still there when
the dump was taken, This same number was stored
into location 50.

Locations 54 - 57 contain the same information as
locations 50 -~ 53 but were dumped inoctal hexformat,

Locations 60 - 63 were dumped in octal hex with
mnemonics format.

SB

RM
IND

MASK

TR-16

Interrupt Classes

Interrupts are divided into the following three classes:

AOC 000

X2
X6
XA
XE

FT 0300000000037777777760

2 RM 0000000000000000000160
IND 00000000000000000000 1001000010000000000000000000 0000000000000100

MR +F003 +.12000000000000 TUv
TR-16 0000000000000070 RIO, NOT AUTO-STACKING MODE

000000.00+ 0 000007 000000
000000.00+ 0 000000 000000
000010.00+ 0 000000 000000
000014.00+ 0 000000 000000

X3 053517.00+ 7 000005 030071
X7 000000.00+ 0 000000 000000
XB 000011.00+ 0 000000 000000
XF 000015.00+ 0 000000 000000
+ 003 +.10000000000000

+F003 +.12000000000000 TUV

000000.00+ 0 567012 345671 006000.00+ 0 001777 777777

000000.00 0B 560247.13 B9 006000.00 00 037777.77 Fr

003000.36 FO 000051.07 10
CM 1111 SX 43

000053.00 80 000000.20 A0

LFT 8u

Class Indicators
1. Error Interrupts 0-3, 5-8, 15-17, 19, 21
2, Input-Output Interrupts 9-13
3. Maskable Interrupts 4, 18, 20, 22-47

Error Interrupts

The handling of interrupts in Class 2 has been pre-
viously discussed. For interrupts in Classes 1 and 3,
other than 0-3 and 5, if the error occurs at the prob-
lem program level, the identifying message is written
on the output tape and $ABEQJ is issued.

Interrupts 0-3 and 5, designate equipment checks.
It is not recommended to continue. However, if the
interrupt is at the problem program level, the inter-
rupt is identified and the operator is instructed to
press the console Signal key if he wishes to continue,
If the channel signal is given, a message is written
on the output tape to identify the interrupt, $ABEOJ is
given to the problem program, and the next job is run.

Any error interrupts at the MCP level {except 21,
the IF interrupt) will result in a console message and
a halt, The system must then be reinitialized.

Maskable Interrupts: The problem program can
exercise control over interrupts due to any problem
program condition which causes’ the following indica~
tors to be turned on:
4 Time Signal

18 Execute Exception

20 Data Fetch

22-34 Result Exceptions

35-38 Flaggings

39-40 Transits

41-47 Programs

Time signal and execute exception are perman-
ently masked on, but to give the problem program
more control, they are treated as pseudo-maskable,
These, together with indicators 20-47, except for
21 (Instruction Fetch), are called the maskable
interrupts,

Once a programmer indicates that he wishes to
take a maskable interrupt (by setting the appropri-
ate mask bit to one), he may then elect to use either
a special fix-up routine that he provides within the
problem program, or a standard fix-up routine
provided by MCP, This choice is specified within a

Programming With MCP 25

problem program table of exits (PTOE), in the
following format:

0 18
Word1| INSTRUCTION COUNTER zero
Word 2 INDICATOR REGISTER
Word 3 MASK REGISTER
Word 4 PATTERN WORD
Word5 INSTRUCTION FOR FIRST PATTERN BIT SET TO ONE

Word 6 INSTRUCTION FOR SECOND PATTERN BIT SET TO ONE

- *Word

n+4 INSTRUCTION FOR THE Nth PATTERN BIT SET TO ONE

*N=The number of bits in the pattern set to one

The PTOE isa table provided by the programmer.
The first three words of the table provide storage
space in which MCP can save the instruction coun-
ter, indicator register, and mask register when-
ever the PTOE is used. The saved indicator regis-
ter does not include the bit that caused the interrupt.

Pattern Word: The selection of a standard or
special correction routine is made in the pattern
word of the PTOE, In Word 4 of the PTOE, there
is one bit which corresponds to each indicator in
the maskable interrupt group. Each of these bits
is in the same position of Word 4 as are the indi-
cators in the indicator register. If the programmer
wishes to use a special routine for a particular
maskable interrupt, he sets to one, the bit in Word
4 that corresponds to that indicator. If he desires
to use a standard routine, the appropriate bit in
Word 4 is left as zero, If the programmer is willing
to- use only standard correction routines, no PTOE
is required.

Word 5 of the PTOE contains the instruction re-
lated to the first bit in the pattern word (proceeding
from left to right) that is set to one. This instruc-
tion will normally be a branch to the special routine
provided by the programmer, Word 6 contains a

26

branch to a special routine for the second Pattern
bit set to one, and so on., One full word must be
provided for each Pattern bit that is set to one,

Maskable Interrupt Linkages: K the programmer
is supplying a PTOE, he must tell MCP where the
table is located. This is done by placing the address
of the first word of the PTOE in the refill field of
Index Register 15 ($15) which is reserved for this
purpose, The PTOE must begin at a full-word ad-
dress, because the refill field is 18 bits long.

MCP initially sets the refill of $15 to zero.
Therefore, whenever the problem program reaches
a phase where the mask that is in effect permits
maskable interrupts to be taken, and any special
fix-ups are to be used, the initial location of the
PTOE must be in the refill field of $15, If this
field is zero, MCP assumes that no PTOE is
provided.

Because the refill field of $15 is permanently un-
protected, it may be addressed by any program at
any time. The programmer can change the address
of the PTOE several times during a single run in
order to have different sets of special fix-ups avail-
able during different phases of the job. For example,
if a programmer wishes to use a particular set of
special fix-ups to handle any maskable interrupts that
may occur while a special fix-up is already in prog-
ress, it is his responsibility to load the initial loca-
tion of the new PTOE into the refill field of $15 at the
appropriate time.

Standard Fix-Up Routines: Standard fix-up routines
are provided by MCP {o handle maskable interrupts
when either the refill field of $15 is zero, or the
corresponding problem program pattern bit is zero.
The standard fix-up routines produce the following
results for maskable interrupts:

Indicator
Number Symbol Result
4 TS No Operation
18 EXE No Operation
20 and A message is printed,
22-47 through the output program

giving the name of the inter-
rupt and its location. If this
is done more than 50 times,
a $ABEOJ is given.

Note that MCP makes two permanently
masked indicators appear to function as mask-
able indicators in the system -- indicator 4,
Time Signal, (TS): and indicator 18, Execute
Exception (EXE). Time signal causes a

completely asynchronous interrupt. Ifthe programmer
wishes to use time signal, he must turn on the appro-
priate pattern bit and also supply a special fix-up.

The occurrence of an execute exception interrupt
can be anticipated more readily. It is the program-
mer's responsibility, therefore, to have a PTOE in
effect that has the pattern bit for indicator 18 turned
on whenever execute type instructions are being
processed,

Restore After Maskable Pseudo-Operation ($RAM):
At the conclusion of a special fix-up, the programmer
may elect to restore the environment at the time of
entry into the fix-up, or to have MCP perform the
restoration. In the latter case, the programmer must
provide the $RAM. The macro-instruction

MRAM
is expanded to the calling sequence

B, $MCP

» SRAM
When $RAM is encountered, MCP restores the indi-
cator and mask registers from the PTOE, whose
address is specified in the refill field of $15. MCP
then executes a branch enabled to the address which
was saved in the instruction counter slot of the same
PTOE. The restored registers will be the same as
they were when the maskable interrupt occurred,
unless they were changed in the PTOE by the special
fix~-up routine, The lower registers, 3-31, except
for the indicator and mask, will be in the same con-
dition as when $RAM was given.

If the interval timer is to be used, the problem
program must provide a special fix-up routine to
handle the resultant TS interrupt and must use $RAM
to exit from all maskable interrupt routines. Thus,
$RAM serves to inform MCP when TS may be given
safely to the problem program without destroying
the condition of another current interrupt.

Fixup Pseudo-Operation ($FIXUP): $FIXUP is
provided to facilitate the handling of maskable
interrupts for indicators 20 and 22-47, excluding
the pseudo-maskable indicators TS(4) and EXE(18).
$FIXUP allows the programmer to insert a 64-bit
word (one full word or two half word instructions)
directly into the MCP interrupt table slot corre-
sponding to the maskable indicator. The macro-
Instruction

MFIXUP, A(I), B())
is expanded to the calling sequence

B, $MCP

, SFIXUP

»A(D

» B(D

(return)

where:
A() may either be zero or may specify the
first word (19 bit) address of a table of N+ 1
words in problem program core storage, If A(l)
is zero, it is ignored; if A(I) is a non-zero
address, the following information will be stored
into the table:
1. The original Pattern Word defined at B(J)
2. The current contents of each of the inter-
rupt slots that are to be altered, unless
they contain the standard MCP instruction,
in which case, all zeros will be stored in
place of the instruction.
B(I) specifies the first word (19 bit) address of a
second table of N+ 1 words in problem program
core storage., The table structure is as follows:

Word 1 PATTERN WORD

(leftmost)
Word 2 Instruction for first pattern bit = one
Word 3 Instruction for second pattern bit-= one
Word N+ T Instruction for Nth pattern bit = one
N = the number of pattern bits set to one (20, 22-47)

The Pattern Word specifies the maskable interrupt
entries to be altered, by containing a one bit in the
corresponding indicator position, e.g., to replace
the zero divisor (ZD) interrupt table instruction, bit
position 24 of the Pattern Word must contain a one.

For each pattern bit containing a one, there must
be a 64 bit replacement word, in ascending order,
in the table. This word may be set up as one of the
following: -

1. A full-word instruction, (e.g., VFL or SIC;B).

2, Two half-word instructions (e.g., two floating-
point instructions or a half-word instruction followed
by a NOP, However, only the first half-word instruc-
tion will be executed,

The following instructions are illegal replacements
with $FIXUP and will cause job termination:

1. All I/O instructions.

2. All BD instructions.

3. All SIC; BD instructions.

Note: An MCP pseudo~-operation will not cause job
termination in $FIXUP, but will cause a TYPE 01
error when execution takes place in the interrupt
table, since MCP depends upon the instruction coun-
ter to examine the calling sequence,

If the replacement word is all zeros, the standard
MCP instruction will be restored into the interrupt
table slot. This is the only method by which the

Programming With MCP 27

programmer can restore the original MCP interrupt
table during execution. Control is passed to the return
slot in the $FIXUP calling sequence when all replace-
ments to and from the interrupt table have been
completed.

Timing Operations

Reading the Time Clock Pseudo-Operation ($TIME):
$TIME will read the time clock; adjust the reading by
a predetermined calibration constant; convert the
result into hours, minutes, and seconds; and transmit
this information, in an edited form to a requested
problem program location. The macro-instruction
MTIME, A, ()
is expanded to the calling sequence
B, $MCP
, $TIME
»A.(D
(return)
where:
A. (D is the full word (18 bit) address to which
the edited reading is transmitted. The edited read-
ing will consist of eight IQS~coded characters and
will occupy A. (I) in the format:
.00 - .15 Hours
.16 = .23 Colon
.24 - .39 Minutes
.40 - , 47 Colon
.48 - ., 63 Seconds

28

Note that the following sequence of macro-instructionsg
MTIME, A.(])
MCOMM, FWA, (I), 1.
will cause the current reading of the time clock to be
typed on the console typewriter, assuming that A, (I)
and FWA, (I) specify the same address.

Set Interval Timer Pseudo-Operation ($SIT): The
interval timer measures elapsed time over rela-
tively short intervals, It can be set to any time,
and a TS interrupt occurs when the time period has
ended, The value of the interval timer occupies bit
positions 0-18 of word 1inthe 7030 special registers,

To simplify the problem of accessing the interval
timer, which is permanently protected, MCP pro-
vides $SIT, Through use of $SIT, the programmer
can transmit any 19-bit value from core storage to
the interval timer. The macro~instruction

MSIT,A. (D)
is expanded to the calling sequence

B, $MCP

, $SIT

AL

(return)
The 19-bit value at A.(I) (bits 0-18) is stored into
the interval timer,

Note: To take advantage of the TS interrupt, the
appropriate pattern bit must be on in the PTOE,
and a special fix-up must be provided (See
""Maskable Interrupts'.) Control is passed to the
return slot in the $SIT calling sequence, when the
interval timer has been set and the timing begins
immediately.

INITIALIZING THE SYSTEM

The 7030 Programming System must be initialized
whenever the power has been turned on; the pro-
gramming system or disk is suspected of being
contaminated; or a machine error has made it
impossible for MCP to continue.

At the time of initialization, the minimum
machine configuration is assumed to be available,
Basically, the initialization program reads the
MCP portion of the master system tape into core
storage and writes a copy of the entire tape on the
disk in the PROSA area,

o Entire

Confole > Initialization System
Options Program on Disk
l Storage
MCP in

Core
Storage

Input

The current MCP master system tape is file pro-
tected and mounted on any tape unit dialed to zero.
Density for this unit is set to HIGH and the unit is
made READY.

Procedure

1. Select initialization options as outlined in
"Options" if an abnormal start of MCP is to be
executed, Otherwise, binary keys 28, 29, 30, and
31 should be latched off and the operator should
proceed immediately to step 2.

2. Set up the time in binary keys 0-23, and the
date in binary keys 32-55, (See Figure 2.)

3. Press IPL key.

4, Press Signal key on the adapter unit for the
channel on which the master system tape is
mounted,

5. If the I/O status report option is desired,
proceed as directed in step 3 under "I/O Status
Report"; otherwise, omit this step and continue.

OPERATING WITH MCP

6. Mount the system tapes as directed by the
mounting messages issued by the initialization

program. (If key 28 is on, the IPL mounting

messages are suppressed.)

Options

Any or all of the five options and their related
parameters should be selected before pressing the

IPL key.

Console Binary Key

Latched On Options
0-23 Time
32-55 Date
28 Suppress Messages
29 I/0 Status Report
30 Rejected Job Count Report
31 Abnormal MCP Mode

Report
Suppress Messages

If binary key 28 is latched on, all initialization
program messages will be suppressed except the
system tape '"Date Verification Message" and the
invalid Date Time message, if applicable. (See
"Time and Date.") -

I/0 Status Report

To place a unit, or an entire channel, in the not
available status, binary key 29 and the numeric
switches are used, as explained in the following
steps.

1, The unavailable device is identified in the
numeric switches.

Numeric Switch

Column Contents
7 and 8 Channel number of the device.
15 and 16 Tape unit number, If the device

is not a tape unit, these two
columns are not used, If an
entire tape channel is unavailable,
put 08 in columns 15 and 16,

Note that the numbers on the numeric switch col-
umns run from 1 to 16; there is no numeric switch
column 0 as with the binary keys. (See Figure 2.)
The contents of these switches will appear in the

Operating With MCP 29

numerical display for visual verification when the
1/0 Status option is used. A logging of the I/O
status report will be given on the typewriter.

$ STATUS REPLY: CHXX ZZZ DELETED
where ZZ7Z is either UNY or ALL,

2. Return to step 3 of ""Operation of the Initial-
ization Program™ to continue the initialization
procedure, Note that since binary key 29 latched
on indicates that at least one I/O status report is
to be made, the initialization program must later
inquire through a message whether there are addi-
tional I/0 status reports to be made.

3. The following message indicates that the next
1/0 status report be made.

$ MAKE YOUR NEXT I/0 STATUS REPORT.

4, Unlatch binary key 29 if there are no addi-
tional units to be made unavailable, If binary key
29 is left on, it will indicate that there is at least
one more unavailable unit to be specified after the
current one, Enter next channel and unit numbers
in the numeric switches at this time,.

5. Activate the sampling of the numeric switches
and key 29 by pressing the console Signal key,

6. Return to step 6 of '"Operation of the Initial-
ization Program'" if there are no more devices to
be made unavailable, Otherwise, select the next
I/0 device to be made unavailable and return to
step 3 above.

Rejected Job Count Report

In the off-line overlapped mode, key 30 when
latched on allows MCP to start processing a prob-
lem program that is not the first job on the system
input tape. The installation mode option (see
"Abnormal MCP Mode Report') may be used to
select the off-line overlapped mode if it is not the
normal installation mode., When MCP is in control,
the mode can be changed by the system commands
provided for this purpose. (See ''Commands.'")
The number of jobs to be rejected is inserted in
columns 10 and 11 of the numeric switches.

Note: MCP will reject the number of jobs spec~
ified, but if the first off-line tape has less jobs than
specified, MCP will reject as many jobs as is
necessary from the subsequent off-line tapes to
honor the count.

Abnormal MCP Mode Report

The installation system operating mode may be
overridden at initialization time by latching on
binary key 31 and specifying a mode code in
numeric switch column 13. The installation's
normal mode is established from the MCPP card
(see "Updating the System') and this mode is

30

selected if key 31 is off or if an invalid code is
given,

Mode . Code
On-line overlapped 0
Off-line overlapped 1
Bypass 2

Mode from MCPP card
Time and Date

Binary keys 0-23 and 32-55 are used to enter the
time and date. (See Figure 2.) Each number
entered must be 9 or less to be valid, If the time
and date entries are valid, they are saved by MCP,
and the date and adjusted time are included on each
problem program's output listing.

An invalid time or date entry will cause the
following IPL message:

$ DATE/TIME ERROR. USE COMD, CLOCK

For the console response to a valid time and date

setfting, see the write-up for "COMD, CLOCK",

Messages

The following messages will be typed on the console
typewriter:

Date Verification Message:

$DATE OF IPL TAPE XX MONTH YY DAY
where XX and YY are two-digit numbers. The
dates should be visually verified by the operator to
determine if the current master system tape has
been used in the initialization,

I/0 Assignment Messages:

$MCPIPL*MOUNT-REEL NUMBER 'reel'
CHANNEL XX UNIT Y

The preceding message specifies an I/O assignment

for the system., Depending upon system require-

ments, other messages of this type may follow.
$READER IS INPUT SOURCE ON CHANNEL
XX

In the on-line overlapped and bypass modes, a card

reader is the system input source.

Error Messages

H an error condition is detected, the gong is
sounded and a message stating the error condition
is typed on the console typewriter. The error
address is displayed in the accumulator lights on
the maintenance console, (A complete list of error

messages for the initialization program is in
Appendix D. under "Initialization Error Messages''.)
The instruction BD, $ will terminate the initializa-
tion error procedure.

RESTART - CONSOLE REINITIALIZATION

The Restart program permits the MCP system to
renew itself, without recourse to the systems tape,
if an error should occur while MCP is in core
storage. Restart can write out the commentator
and output buffers, execute a dump, and reinitialize
MCP from the disk. Should the error be such that
MCP cannot recover using Restart, MCP can be
reinitialized from the disk. (See '"Disk
Initialization, ")
Procedure

1, Latch on binary keys 12 and 27, This sets up
a control word that is necessary when the console
channel signal is given.

2. Select any combination of the four options,
using binary keys 60, 61, 62, and 63,

Console Binary Key

Latched On Option
60 No check sum for disk
IPL
61 Dump
62 Write output buffers
63 Write commentator
buffer

For a detailed description of these options see
"Restart Options, "

3. Press the IPL key.

4, Press console Signal key.

The following two messages are always given
when Restart begins:

$ READ FROM DISK OK.
This signifies that Restart bootstrap has success-
fully positioned Restart in core storage and given
it control.
$ IPL. OCCURRED DURING JOB "ppname' IN
""system'' MODE WITH IC = "location'.
In this message, the condition of the system at the
time of the Restart is given. The current job name,
mode of operation, and instruction counter are
included in the message.

5. Follow the directions printed by the various
options selected in step 2, If keys 60-63 are not
on, Restart goes directly to the Disk IPL program,
checks PROSA for contamination, and renews the
system,

Restart Options

Binary keys 60-63 are the four option keys. They
should be set before the IPL and Signal,

Write Commentator Buffer

When binary key 63 is latched on, Restart will
type the commentator buffer on the console
typewriter.
Preceding the commentator output is the
message:
$ BEGIN WRITE OF $COMM OUTPUT.
The terminating message is:
$ END WRITE OF $COMM OUTPUT.
If there is no output to be written within the buffer,
this option is ignored and Restart proceeds to the
next option.

Write Output Buffers

With binary key 62 latched on, the output program's
print and punch buffers are written on the output
tape. The first message with this option is:
$ BEGIN WRITE OF OUTPUT BUFFERS
If there is no output the next message is:
$ NO OUTPUT
The terminating message is always:
$ END BUFFER WRITE.

A number of conditions may exist concerning the
output tape. If the tape is not available, a mounting
message is given.

$ MNT AND RDY OUTPUT TP ON CHXX,
UNOo.

When the tape is mounted and made ready, the
tape label will be spaced over and a message
written on the tape to explain that it is a Restart
output buffer write (OUTPUT AT IPL FOLLOWS.,
SOME OUTPUT MAY BE REPEATED.,..), Both

print and punch buffers are written, two tape marks
are written, and the tape is rewound and unloaded.
Should an EPGK condition occur, the message is:
$ PUT A RING IN TP NOW UNLOADING
AND READY IT, -
I EKJ or UK occurs, the output cannot be
written and the message is:
$ XXX ON TP WRITE, OUTPUT SKIPPED.,
XXX is either UK or EKJ,
Restart then gives the end buffer write message
and continues, '

Dump
Key 61 latched on, signifies a dump request. The

message is:
$ OPTR PUSH CNSL CS FOR DUMP.

Operating With MCP 31

The dump limits and format are set in the
numeric switches. The octal address of the lower
limit is put in numeric switches, columns 1-8; the
octal address of the upper limit is put in numeric
switches, columns 9-15. Column 16 is reserved
for the code that indicates the dump format as
follows:

0 = octal hex with mnemonics
1 = f{loating point

2 = index word

3 = hexadecimal

R, 4-9 or blank = octal hex without mnemonics

The output device is selected by binary keys 44,
45, 46, 47 as shown by the following table:

Output Unit
Latched On Selected
Key 44 Printer
Key 45 CH 32, UNO Unlabeled Tape
Key 46 CH 33, UNO Unlabeled Tape
Key 47 CH 34, UNO Unlabeled Tape

If keys 44~-47 are all latched off, the dump is given
on the printer,

Ready the tape or printer, set up the limits, and
give channel signal from the console, Latch off
key 61 after the channel signal is given for the last
dump, The dump can be executed on several
channels simultaneously. At the end of the last
dump, a tape mark is wriften on all dump tapes,
the tapes are rewound and unloaded and Restart
continues, While the last dump is being given, the
operator will have time to set up the IPL options
(time, date, etc.).

Disk IPL

I key 60 is latched on, this means Restart will IPL
from the disk without calculating the check sum of
PROSA.
A message is given
$NO CHECK SUM

as a reminder that no check was made of the disk.

For a check sum calculation of PROSA in
Restart, it is necessary only to keep key 60 off and
have a type-area on the disk with the name ")))))))."
(See explanation of Disk IPL with check sum,
Procedure, 3. under "Disk Initialization.')

DISK INITIALIZATION

Note: In this section, the initials IPL represent
the entire initial program loading procedure. A
successful IPL involves placing MCP in core stor-
age and writing a copy of the entire master system
tape on the disk in the PROSA area.

32

The Disk IPL program can be used to reinitialize
the system quickly, and eliminate the need for the
master system tape once there has been a suc-
cessful IPL,

Procedure

1. Press the IPL key.

2. Set up the IPL options as explained in
"Initializing the System,"

3. Put the binary deck of the Disk IPL program
in the card reader,
The Disk IPL program has the ability to calculate
a check sum of the disk PROSA area. The
UPDATE30 program computes a check sum of the
master system tape and places it in a type-area
PM)., which is written on the new master source
tape and is later included in PROSA. I there is no
type-area))))))). on the disk, the Disk IPL program
will reinitialize the system without checking the
disk, A message will be printed:

$ NO CHECK SUM

The use of Disk IPL without the check sum is not
recommended because the disk should be checked
for contamination of PROSA,

4. Ready the card reader.

Error Situations

Disk IPL gives two error messages:
1. $ CHECKSUM INCORRECT
2. $ IPL THE TAPE

Both messages 1 and 2 are given if the check
sum computed by Disk IPL does not agree with the
one calculated by UPDATE 30 when the tape was
made, This means that the disk is contaminated,
so the program halfs and the system must be
rewritten on the disk by a tape IPL,

If any error interrupts occur, or the disk dic-
tionary is incorrect, message 2 is given and the
program halts, The system must be reinitialized
by a tape IPL,

NORMAL RUNNING MODES

After successful initialization of the 7030 Pro-
gramming System is completed, MCP is given con-
trol and begins to read in the first job to be run
from the system input source. The MCP System
Input Program is designed to:

1. Provide a standard method for buffering card
input, regardless of the I/O device utilized by MCP,
2. Allow MCP to scan the input so that the jobs
can be identified and controlled by type; the symbolic
I/0 requests can be assigned to absolute units, and
system commands can be given by the operator via

the card reader.

3. Minimize the handling of jobs by the operator.

4. Maximize the use of I/0O units on-line.

Input is scanned to detect boundaries between
jobs. When input is being read from tape, job
boundaries are detected by tape marks. Thesetapes
were originally prepared from card input, however,
which did not provide such boundaries. Therefore,
whenever cards are being read by the IBM 1401 for
the off-line overlapped mode, or by the card reader
when in either the on-line overlapped mode, or
bypass mode, the following rule is used to detect
job boundaries:

The first card of a job is that which is either a
JOB card or a COMD card. A job extends up to the
next JOB or COMD card.

The System Input Program can operate in one of
three modes:

Off-line Overlapped
On-line Overlapped
Bypass

Off-line Overlapped

An input tape (SCAN tape) is prepared off-line by an
IBM 1401. The scanning of this tape overlaps the
running of jobs from a previously processed tape
(READ tape). MCP allows a maximum of twenty
jobs for each SCAN tape because of core storage
limitations on the scanning tables.

the writing of the tape overlaps the running of jobs
from a previously processed tape (READ tape).

On-=line
Card Reader

4 Table
Buffer 1 J_ Buffer 2 ———=> of /0

Scan Tape
————— prepared
|r_ IBM 1401
|
|
| e Table
" Buffer 1 Buffer 2 ——=—» of |/O
| Requests
| T
| |
L Scan Read !
Tape Tape :
|
|
|
Buffer 3 Buffer 4 :
|
4
Program éOb' | I/0
Problem =onrol p=— = Assignment
Loader

Console

Printer

On-line Overlapped

An input tape (WRITE tape) is prepared on-line
using a card reader. The scanning of the input and

Requests
]
|
Write Read !
Tape Tape :
|
|
I
|
Buffer 3 <—r Buffer 4 I
|
Y
Job
1/O
Problem Control ——— {5‘ .
Program Loadar ssignment
i
Console
Printer
Bypass

Input from the card reader bypasses the overlapped
tape, if any. Scanning of the input is done before
running the job from the card reader buffer.

On-line
Card Reader

Table
Buffer 1 Buffer 2 - of I/O
/C Requests
Problem Job 1/0
Program Control 1~ Assignment
Loader

Console
Printer

The mode of the input program affects the sequence
in which the jobs are to be run and the sequence in
which their I/O requirements will be assigned. How-
ever, programs can be written without regard to the
mode in which the input program is operating: the
method of giving cards to the problem program is
the same for all modes.

Operating With MCP 33

After the problem program has been loadeddby
MCP, and at the point when control is transferred
from MCP to the job, the programmer can assume
that the following conditions will exist:

1. All registers from 4.0 through 31. 63 are
cleared to zero.

2. The 7030 is enabled.

3. The IF bit in the mask register (12.21) is set
to one.

4. The boundary registers are set to the limits
specified on the LIM card if the job was an absolute
GO job or to the limits specified by the processor
chain for this program.

5. No interrupts will be stacked and the job will
be operating in the RIO mode.

CONSOLE USAGE

Under MCP, the console is a particularly active I/0
device because of its flexibility of input. The opera-
tor can enter information without the delay of
punching a card, generating a 1401 tape or, in
general, preprocessing the input. For this reason,
MCP includes routines to allow the operator to alter
the current course of system or problem program
action.

When the console is not being used as a system
or symbolic I/O output device, the operator may use
the " Check-Out'' routine in MCP to assist the pro-
grammer in finding his errors. The operator may
use the '""Command" routine to alter system operation
or he may use the console as a symbolic I/O problem
program input device.

At any particular time, the entire facilities of
the console must be available to either the problem
program or to the system. This is achieved by dis-
tinguishing the manner in which the channel signal at
the console is generated. A channel signal created
by the Signal key (Figure 2) implies that console
hardware belongs entirely to the programmer. If
the Enter key is used to generate the channel signal,
a typewritten message determines console owner-
ship. I the mnemonic PP was typed, the console
hardware and the following typewritten message
belong to the problem program. In this case, MCP
transfers control to the signal return slot in
the problem program's I/0 table of exits, For any
other typewritten message, the information from the
console belongs to MCP.

A null message, one in which the End key is
depressed with no preceding typewritten message,
places the console in the check-out mode. Any
typed mnemonic other than PP would imply that the
information from the console is to be handled by
MCP. In any event, when the Enter key is used to
generate a channel signal, the End key should not be

34

depressed until the Enter light comes on. Other-
wise, it will appear as if the channel signal were
generated by the Signal key.

The rules for the typed mnemonics are:

1. Either upper or lower case characters may
be used.

2. The carriage return, tabulate, and blank
character codes appearing before the typed
mnemonics are ignored.

3. The backspace character code is edited out of
the message to be read.

Regardless of the cause of the channel signal
from the console, the typewritten message can be
no longer than ten words, or approximately one line.
MCP always issues the hardware read that will
accept a maximum of 13 words. When the subse-
quent pseudo-operation read occurs, MCP will
transfer the console information as if a hardware
read had just been issued. Depression of the
Tabulate, Backspace and Carriage Return keys
causes the appropriate character(s) to be sent as
part of the ten-word message.

Check-Out

If the Enter~-End key combination creates the channel
signal, the console is read and the information is
given to the MCP Check-Out program for interpre-
tation. The End key should not be depressed until
the Enter light comes on; otherwise it will seem as
if the Signal key produced the channel signal inter-
ruption. When the console is in the check-out mode,
the location of the next problem program instruction
to be executed is displayed in the right half of the
numeric display in octal.

Once the console has been placed in the check-out
mode, several basic functions may be performed
from the console. The functions use the binary keys,
binary switches, binary lights, numeric switches
and the numeric display.

Set Instruction Counter

The binary key, set instruction counter (16), starts
or restarts the program from the console. This

key enables the programmer to change the contents
of the instruction counter which, arbitrarily alters
the path of the program. When the key is active, the
bit address is taken from the left bank of numeric
switches; however, only the first 19 bits of the
address will be used. This new address is also
displayed in the right half of the numeric display
when it is entered in the instruction counter.

Start

The binary key, start (48), is provided to begin the
problem program from the console. When it is

sensed, it causes the problem program to start,
peginning at the location currently in the instruction
counter. If the set-instruction-counter binary key
has not been used, the start key serves as a means
of restarting the program from where it had been
stopped. This key provides the only way of returning
to the problem program once MCP has been placed
in a check-out mode, Its action includes turning off
the binary light hold (16).

Stop

Complementary to the problem of starting is the
problem of stopping. One may randomly halt the
execution of the problem program by depressing the
binary key hold (47). When it is initiated, a corre-
sponding binary light, labeled hold, is turned on and
the contents of the next problem program instruction
to be executed are displayed in octal in the right
half of the numeric display. If both the start and
hold binary keys are set, the binary light hold will
be turned on and the problem program's instruction
counter will be displayed; but the actions related to
the start key will then occur. The primary function
of the hold key is to randomly halt the problem
program from the console without initiating any other
action. If any other action were requested, then the
hold key need not be set because it would be redun-
dant. Stopping at a specific location can be accom-
plished by use of the pseudo-operation $HOLD. In
any event, restarting is accomplished by means of
the start key and the Enter key and End key com-
bination.

Enter Information

The enter-from-binary-keys switch (17) enables the
programmer to enter up to 64 bits into his program,
beginning at the location specified in the left bank

of numeric switches. The decimal number of bits,
n, to be entered is placed right, justified in the
right bank of numeric switches. Only the rightmost
two columns of switches are sensed. If 64<n<99,
an error indication is given by means of binary light
18, to be labeled as the incorrect address, and no
information will be entered. K n=0, 64, or blank,
a full word will be entered. Bits entered are taken
from the binary keys in a left to right fashion.

Note: If n=103, three bits of information will
be entered with no error indication.

By the nature of the action requested, no further
actions can be implemented through the binary keys.
Therefore, the binary keys must be reset and a
second channel signal must be generated. Mean-
while, the problem program will act as if a $HOLD
had been issued.

Display Information

The display-on-binary-key-lights switch (16) ena-
bles the programmer to display 64 bits on the
binary key lights, beginning at the bit address
specified in the left bank of numeric switches. If
any binary key is not in a neutral position when a
display is requested, the action will not be carried
out and binary light 17, to be labeled incompatible
combination, will be turned on. If both the enter-
from-binary-keys switch and the display-on-binary-
key-lights switch are on at the same time, neither
displaying nor entering may be accomplished. In
this case too, the binary light incompatible combina~-
tion will be turned on.

Dump

The programmer may request a dump from the
console by setting the dump binary key (46). The
range of the dump is specified in the numeric
switches; the starting location is entered in the left
bank of switches, and the last location to be dumped
is placed in the right bank. If either address is
partially blank; either address is invalid; either
address is totally blank, or the left address is
greater than the right address; then the binary light
to be labeled incorrect address will be turned on
and the dump will not be given.

The lower registers will always be included in
the dump request unless the suppress lower registers
binary switch is on. The formats are: octal hex,
floating point, index word, or octal hex suppressing
mnemonics.

To select one of the last three formats, the cor-
responding binary switch labeled:

FP FORMAT (13)

OHS FORMAT (14)

XW FORMAT (15)
must be selected. If none of the format switches is
set, the format will be octal hex. I more than one
format switch are set, the binary light labeled in-
compatible combination will be turned on and the
dump will not be given.

EOJ

The binary key, end of job (EOJ) (58), enables the
operator to end the current problem program with-
out using the console typewriter. The operator
should not have other check-out options indicated on
the console because binary keys 58 and 59 will be
interrogated first and action taken immediately. If
the programmer wishes a check-out dump and EQJ,
the operator should perform the dump function and
then the EQJ function. Neither the hold nor display
actions will occur for this console option.

Operating With MCP 35

Numeric Display

Numeric Switches

—
1
— 00000
Initial Pr Ld Key 00000
1 00000
Running Light Q0000
Inactive Light 8 8 g 8 8
Power On Light 00000
1 00000
Powér On Key || 00000
Power Off Key || 8 8 g g 8

00000000000

16

O0000000O0 —
0000000000 Emergency Key
0000000000] .
0000000000 _Reservedeghf
0000000000 Check Light
0000000000 _—
0000000000 Ready Light
0000000000 —
0000000000 | [Ready Key
0000000000 Not Ready Light
0000000000 L

|

|

Release Bars PANEL PORTION

0 15
0000 0000 0000 0000
0 15
INREEEREERRERREN
Hour Hour Minute Minute
0000 0000 0000 0000
0 15
[IITITTTITITTTITITT]
Month Month Day Day

0000 0000 0000 0000
32 47

Erase Key

Signal Key

Ribbon Shift Key

16

31

SEssmmEmasamEmmn=t

0000 0000 0000 0000

16 31
[ITTTTTITIT T} je
IPL
Second Second Options
0000 0000 0000 0000 <
16 \ 31
[(TIITTTITTITITTITTI T+
Restart
Year Year Options
0000 0000 0000 0000 <
48 63
Console
Printer

«— Enter Light
-«—Wait Light

End Key

Enter Key

/Binary Lights
| Binary Switch Lights

| _—~Binary Switches

| _—Binary Key Lights

Binary Keys
| _—Binary Key Lights

Binary Keys

FIGURE 2. CONSOLE LAYOUT

36

DESK PORTION

IPL OPTIONS

Binary Keys:
0-23 Time
28 Suppress Messages
29 1/O Status Report (See "A" below)
30 Rejected Job Count (See "B" below)
31 Abnormal Mode Report (See "C" below)
32-55 Date

Numeric Switches:

RESTART OPTIONS

Binary Keys:

12 and 27 Initial Control Word

44 Dump on Printer

45 Dump on CH32;UNO

46 Dump on CH33;UNO

47 Dump on CH34;UNO

60 No Check Sum

61 Dump (See Numeric Switches below)
62 Write Output Buffers

DEBUGGER OPTIONS

Binary Keys:

16 Set Instruction Counter

46 Dump (See Numeric Switches below)
47 Hold

48 Start

58 Eoj

59 Abeoj

Binary Switches:

A. Columns:
7-8 decimal channel number

15-16 decimal tape unit number Numeric Switches:

63 Write Commentator Buffer

11 Decimal Entry
12 Suppress Lower Register
13 Floating Point Dump -

B. Columns: Columns: 14 Octal Hex No Mnemonics Dump
10-11 number of jobs rejected 1-8 Lower Dump Limit 15 Index Word Dump
C. Column 13: 9-15 Upper Dump Limit 16 Display On Binary Key Lights
Mode Code: 0 = On-line overlapped 16 Format: 17 Enter from Binary Keys
1 = Off-line overlapped = Octal Hex with Mnemonics
2 = Bypass = Floating Point Binary Lights:
16 Hold

0
1
2 = Index Word
3 = Hexadecimal
R

, 4-9, blank = Octal Hex No Mnemonics

FIGURE 3. CONSOLE USAGE SUMMARY

ABEOJ

The binary key, abnormal end of job (ABEOJ) (59),
enables the operator to perform the ABEOJ function
without using the console typewriter. The general
information for EOJ will apply to ABEOJ.

Summary of Console Check-Out Facilities

A general rule applies to all console check-out
facilities: whenever invalid settings or incompatible
combinations of switches are encountered, the func-
tion will not be performed and an error indication
will be given.

Numeric addresses entered via the numeric
switches are always assumed to be in the octal
radix. However, a decimal binary switch (11) has
been provided which, when on, will cause address
information being entered to be interpreted in the
decimal radix. K entry of either 8 or 9 is attempted
when the decimal switch is not active, no informa-
tion will be entered and the binary light labeled
incorrect address will be turned on.

Figure 2 is a working drawing of the console.
Figure 3 is a summary of the console functions and
corresponding console settings.

Commands

System commands are used by the operator to direct
MCP to perform specific tasks.

17 Incompatible Combination
18 Incorrect Address

Numeric Switches:
Columns:

1-8 Lower Dump Limit
9-16 Upper Dump Limit

System commands may be entered through the
operator's console or the system input source. In
either case, the characters COMD, followed by a
comma, must precede the mnemonic designation for
the command.

There must be a B in column one of the command
card if the source of the command is system input.
The command card must be placed between jobs,
never within a job. The command card is punched
in the following format:

1|2 910 62

B| blank |COMD, mnemonic,other
parameters

If the operator's console is the command source,
press the Enter key on the console. When the Enter
light comes on, type the information that would be
punched in column 10-62 of a command card. No B
is needed. When through typing, press the End
key and wait for an acknowledgment of the command
to be given on the console typewriter before at-
tempting to enter another command.

Operating With MCP 37

The source of commands may make a great deal
of difference in the time of execution of the command
because of the asynchronism involved. Therefore,
restrictions are placed on certain commands with
regard to source. Following is a list of system com-
mands and the sources to be used.

Commands That Change the System Operating Mode

The mode in which the system is operating remains
in effect until another command is given to change it.

COMD, BYPASS: This command informs MCP that
the next job is to be run in the bypass mode from the
card reader as soon as the job currently running is
completed. If the system is in the on-line overlapped
mode, the command source must be the system card
reader. If the system is operating in the off-line
overlapped mode, the command source must be the
operator's console.

COMD, ONLINE: This command informs MCP that
the next job in the system card reader is to be
written on the write tape as soon as the tape is
available. The next job to be run comes from the
read tape. If the system is in the bypass mode, the
command source must be the system card reader.
If the system is in the off-line mode, the command
source is the console.

COMD, OFFLINE: This command informs MCP that
the next job to be run will be read from the read tape.
Regardless of the current operating mode, the com-
mand source must be the last card in the system
card reader.

Commands That Affect The Current Input

COMD, REWIND: This command informs MCP, if
in the on-line overlapped mode, to terminate and
rewind the write tape. The command source must
be the system card reader.

COMD, EOF: This command marks the end of the
previous job in the system card reader. The com-
mand source must be the system card reader and
the card must be the last one in the reader.

Commands That Affect The Current Job

COMD, REJECT: This command informs MCP, if
in either of the overlapped modes, to reject the job
immediately preceding the reject command. The

command source is always the system input source.

COMD, EOJ: This command terminates the job being
executed. The operator's console or system card
reader may be the source of the command.

38

COMD, ABEOJ: This command terminates and
dumps the current job. The command source may be
the operator's console or the system card reader.

COMD, OUTPUT: This command informs MCP that
the current job being run is to be the last job on the
current system output tape. The output for the next
job will be the first file on the new system output
tape. Either command source is acceptable.

Other Commands

COMD, IOCHANGE, Channel, Unit, Code, Type:
This command is used to alter the availability of

I/O units and channels to the 7030 Programming Sys-
tem. This may result in reassignment of MCP units
and/or termination of the presently operating prob-
lem program. Either command source is acceptable.

Channel is the decimal number of the channel.

Unit is the decimal number of the unit (0-7). If an
entire channel is being altered, ALL should be used
as the unit parameter.

Code may be one of the following:

ADD Make channel or unit available.

DELETE Make channel or unit unavailable. The
command is effective if and when the channel or unit
is not operating.

DELETM Make channel or unit unavailable only
if unassigned at the present time. If the channel or
unit is assigned, the command is ignored.

Type is used only if the Code is ADD. It must be
one of the following:
READER PRINTER PUNCH

If the Type field is blank, it means no change in
equipment type.

COMD, CLOCK, hours, minutes, seconds, mm/dd/
yy: This command gives MCP the real time in the
three 2-digit parameters shown, which are used to
compute the calibration constant for the time clock.
The date field also contains three 2-digit parameters
separated by / and not by commas.
mm is the 2-digit month or day
dd is the 2-digit month or day
yy is the last two digits of the year.
The date and time are written on the output tape and
on the console typewriter. The time can be entered
without a date.
Response to the clock command is acknowledged
by the following message.
$HH:MM:SS - TIME-HH:MM:SS DATE - mm/
dd/yy

The time on the left is before calibration; the time
on the right is the recalibrated time. If the time
entered is zero, the time clock is not reset to zero
but the present time clock setting is used; therefore,
the time before and after is the same. This allows
a date to be entered without changing the time clock
calibration. The console, system input, or IPL
program can be the source of this command.

COMD, COMMENT, maximum 40 character mes-
sage: This command is used for communication
between the operator and the programmer. The
operator's console or system input may be the
source. The comment will be written on the console
typewriter and on the output tape preceding the job
card.

OFF-LINE OPERATIONS

MCP is designed to operate with labelled input and
output tapes. The normal 1401 programs, to process
input and output, expect a label file. If MCP is al~
tered to operate unlabelled, then unlabelled versions
of the 1401 programs must be used and all comments
about labels in the following section can be ignored.

Output Tape Construction

The output tape is written by the output program to
be processed by an off-line IBM 1401 Data Proc-
essing System.

The tape is written at high density with odd parity
in the NO-ECC mode. 0Odd parity is used to accom-
modate both column binary cards and BCD lines.
The tape contains a label file followed by a separate
file for each problem program. The last file on the
tape is followed by a double tape mark and a trailer
record.

Problem Program File

Each file contains at least one print record and one
punch record. Within the same file, these different
records are distinguished by their first character.

Print Record: A print record is written as a con-
tinuous string of six-bit characters. The first char-
acter is the identifying character P. Each succes-
sive string of 133 characters contains a form control
character and 132 characters to be printed as a line.
The last line in the record is followed by padding
characters because of the relationship of the 64-bit
word and the six-bit frame.

A 12-line print record is written with a word

count of 150, which produces 1600 six-bit characters:

1 P (100111),
2 Form control, line 1

3 Print position 1, line 1

134 Print position 132, line 1
135 Form control, line 2

1597 Print position 132, line 12

1598 Padding character

1599 Padding character

1600 Padding character

The form control character for each line must be

-one of the following:

(000001)y Restore form
(100000)5 Single space
(100001), Double space
(100010)9 Triple space
(100011)9 Quadruple space

These space-before-printing characters, except for
the single space, are used as d-characters for the
carriage control instruction on the IBM 1401. The
single space character is ignored, because the
IBM 1403 Printer always spaces after each line is
printed.

The padding character used is the BCD blank
(010000)5. Unused portions of the last print record,
if any, are filled with blank lines.

Punch Record: A punch record is written as a con-
tinuous string of six-bit characters. The first char-
acter is the identifying character C. Each suc-
ceeding pair of characters corresponds to a card
column so that successive strings of 160 characters
correspond to 80 columns to be punched. The last
card in the record is followed by padding characters.

A ten-card punch record is written with a word
count of 151, which produces 1611 six-bit charac-
ters:

1 C (110011)y
2 Rows 12-3, column 1, card 1
3 Rows 4-9, column 1, card 1
161 Rows 4-9, column 80, card 1
162 Rows 12-3, column 1, card 1
1601 Rows 4-9, column 80, card 10
1602 Padding character
1611 Padding character
The padding character used is the unpunched column
(000000) 9" Unused portions of the last punch record,
if any, are filled with padding characters.
Trailer Record: The trailer record indicates
whether the last file on the output tape was ter-
minated physically and logically, or physically,
only. In the latter case, the last file will be con-
tinued on the next output tape. The trailer record

Operating With MCP 39

consists of 11 characters of which only the first is
used:

(000000)5 physical and logical end

(000001)5 physical end only

Processing Output Tapes

Mount the tape on unit 2 and set density to high.
Load the punch with blank 7030 binary cards. Set
printer for 132-character print-out. Set sense
switches and I/0O switch off.

Load the output program with blank cards follow-
ing. These blank cards should be of a different color
or corner cut from those on the punch side. These
cards will be used to separate jobs on the punch side.

Error comments and operator instructions will be
printed on the right side of the page.

The label file is skipped by the output programbe-
fore any printing or punching is started.

Format of the Input Tape

The input tape, written by the IBM 1401 or by the
system input program when in the on-line overlapped
mode, is a labeled tape (the label is the first file).
The tape is multifile, with each file corresponding to
a job and with a double tape mark terminating the last
job. Each file consists of one or more records.

Each record, except the last one, consicts of 17 col-
umn binary card images (160 characters each). The
last record of each file may contain 17 or fewer card
images.

Job boundaries are determined by a card with a B
in column 1 and either a COMD or a JOB, in col-
umns 10-13. All COMD cards become the first cards
in the next job's file. Any COMD cards on the end
of an input deck will be placed in a file of their own,
followed by two file marks.

UPDATING THE SYSTEM

A program called UPDATE 30 is available fo facili-
tate the incorporation of changes into the current
system located in the PROSA area of the disk. For
a complete writeup of the UPDATE 30 program, see
page 215 of the MCP Programming Systems Analysis
Guide (C22-6728), or the bulletin published on the
UPDATE 30 program (C22-6718).

40

UPDATE 30
Program Changes
PROSA
PROSA
Listing

Initial Preparation of the MCP Deck for Updating

Upon receipt of the MCP assembly output tape, the
following directions should be followed to prepare
the MCP deck for the initial update run.

A. List and punch the MCP assembly tape. The
deck after punching will contain these types of cards
in the following order:

1. JOB card
2. TYPE card
3. LIM card
4, IOD cards
5. HED card MCP Bootstrap Type Area
6. Binary cards with PUNID 11E11BSP
7. HED card IPL Type Area
8. Binary cards with PUNID 11C11IPL
9. HED card Restart Type Area
10. Binary cards with PUNID 33RESTRT
11. HED card MCP Mainleg Type Area
12. Binary cards with PUNID 11D11MCP
13. HED card MCP Loader Type Area
14. Binary cards with PUNID 22LOADER
15. HED card MCP Dump Type Area
16. Binary cards with PUNID 228DUMP
17. HED card MCP System Commands Type
Area
18. Binary cards with PUNID 22SCOMD
19. HED card MCP Job Control Type Area
20. Binary cards with PUNID 22§EOJ
21. BRANCH card.
B. Interpret all B cards
C. Discard:
JOB card
TYPE card
LIM card

The four IOD cards that have instructions on

them to "pull card before updating,"

BRANCH card

D. Each installation must make up IOCD cards.

There must be an IOCD card for each channel used
by the system. The IOCD card gives the channel
number, the type of equipment attached to the chan-
nel, the availability of the channel, and the number
of units attached to the channel and their status. The
format of a typical IOCD card is as follows:

1]2 92110 80

B 10CD32TPUUUDUU

Punch a B in column 1, IOCD incolumns 10-13, the
channel number in columns 14 and 15, and the type
of equipment attached to the channel in columns 16
and 17 using the appropriate codes: DK for disk,
CN for console; PU for punch; PR for printer; RD
for reader; TP for tape.

The initial state of the channel is given in column
18; punch a D for down or a U for up. The status of
each unit on the channel is given, starting in column
19. Punch a D for every down unit and a U for every
up unit on the channel. The order of the Ds and Us
is important as columns 19 through 27 represent
units 0-7, respectively. A single unit channel needs
only a D or a U punched in column 18. The status of
channels and units can be altered during the running
of the MCP program by using the IOCHANGE com-
mand. Place the IOCD cards before the IOD cards.

E. The MCPP card must be made by the instal-
lation. The MCPP card determines the normal mode
that the IPL program will leave in control after it
has initialized the system. This mode can be over-
ridden at IPL time (see "Abnormal MCP Mode Re-
port") or after IPL by issuing a system command.
The format of the MCPP card is as follows:

1]2 2{10 80

B MCPP'mode’

Where '"MODE' is one of the following: BYPASS,
ONLINE, OFFLINE. Place the MCPP card after the
IOD cards.

F. Place the IOCD cards, I0D cards, and MCPP
card in that order, after the IPL binary deck.

G. Insert any C and P cards after the binary deck
of the Type Area to which they pertain. I is advised
that C cards be placed before P cards in order to
eliminate possible errors should a P card reference
the same location as a C card. Any corrections to
the IPL program should be placed after the MCPP
card. It is not recommended to use P cards in IPL
as they are loaded above the IPL upper limit where
the IOCD and IOD cards are located.

H. Be certain that each Type Area of MCP is
preceded by the proper HED card.

I. The deck is now ready for updating the sys-
tem with the UPDATE 30 program. On subsequent
updates, once the deck is pre;;ared, it is only neces-
sary to update those Type Areas that have changes.

Operating With MCP 41

APPENDIX A. MCP PSEUDO-OPERATION CODES

The following list specifies mnemonic and absolute

codes for MCP pseudo-operations that are available

for use by the problem program. All have DDS of
(BU, 24).

42

$RD
$RDS
w
$WS
$CCW
$REL
$RELS
$LOC
$LOCS
$FC
$FCS
$TIF
$TIFS
$ERG
$ERGS
$SP
$SPS
$BSP
$BSPS
$SPFL
$SPFLS
$BSFL
$BSFLS
$WEF
$WEFS
$REW
$REWS
$UNLD
$UNLDS
$RLF
$RLFS
$RLN
$RLNS
$KLN
$KLNS
$FREE

01
32
33

32
33

01
32
33

01

01
32
5.33
6.0

6. 01
6. 32
6.33
7.0

7.01
7.32
7.33
8.0

8.01
32
33

R

01
32
.33
10. 00
10. 01
10. 32

[lo]

$GONG 11.0
$GONGS 11.01
$WAIT 11.32
$CHEX 12.0
$IODEF 13.0

$HD 14. 0
$HDS 14.01
$LD 14. 32

$LDS 14.33
$EVEN 15.0
$EVENS 15.01
$0DD 15.32
$ODDS 15.33
$ECC 16.0
$ECCS 16. 01
$NOECC 16.32
$NOECCS 16. 33
$ATID 17.0
$SIO 32.0
$RIO 32.32
$RET 33.0
$RAM 33.32
$STRG 34.0
$FECRG 34.32
$TIME 35.0
$COMM 35.32
$SIT 36.0
$FIXUP 36.32
$STLR 37.0
$FELR 37.32
$ABEX 38.0
$DUMP 64.0
SEDUMP 64.32
$EOJ 65. 0
$HOLD 65.32
$RESLD 66.0
$FETCH 66.32
$SPU 67.0
$SPR 67.32
$ABEOJ 68.0
$SCR 68.32

The I/0 operations are listed in this appendix in
both their macro-instructions and in the form of the
expanded calling sequence, The status bits that may
be turned on in the I/O table of exits, as a result of
each operation, are also listed. With the exception
of the pair EPGK and EOP, multiple bits may be
turned on, and this can be interpreted as a combina-
tion of individual results, Multiple bits are listed
which, by their special combination, identify a
unique result. CS can be turned on independently of
any operation, It may he caused by pressing the
Signal key or by readying the unit,

Read

MRD or MRDS, IODNAME(I), CTLWD. (J)
B, $MCP
, $RD or $RDS
, IODNAME(])
, CTLWD. (J)
(Return)
Note: A maximum of 13 words can be read when
IODNAME(]) defines a console.

EPGK (Punch or Printer) Invalid operation

EPGK (Disk) Operation would exceed requested
arcs

EPGK (Tape) First operation to scratch tape

UK (Disk, Tape, Console, or Reader) Unit
error

UK, EOP (Disk, Tape, Console, or Reader) Data
error

EE (Reader) Out of material or stacker full

EE (Tape) Crossed tape mark

EOP $RD completed

CS Unit readied for Reader

None $RDS completed

Write

MW or MWS, IODNAME(I), CTLWD, (J)

B, $MCP
, $W or $WS
, IODNAME(])
, CTLWD, (J)
(Return)

EPGK (Reader) Invalid operation

EPGK (Disk) Operation would exceed requested

arcs

APPENDIX B. I/O OPERATIONS

EPGK (Tape) Write on file protected tape

UK (Disk, Tape, Console, Punch, or
Printer) Unit error

UK, EOP (Disk, Tape, Console, Punch, or
Printer) Data error

EE (Printer) Out of material

EE (Tape) Crossed end mark

EE (Punch) Out of material or stacker full
EOP $W completed

CSs (Punch or Printer) Unit readied

None $WS completed

Copy Control Word

MCCW, IODNAME(]), CTLWD, (J)

B, $MCP

, $CCW

, IODNAME(])
» CTLWD, (J)
(Return)

Release

MREL or MRELS, IODNAME(])
B, $MCP
, $REL or $RELS
, TODNAME(Y)
(Return)
EOP S$REL completed
None $RELS completed

Locate Arc

MLOC or MLOCS, IODNAME(]), ARC. (J)
B, $MCP
, $LOC or $LOCS
, IODNAME(])
, ARC. (J)
(Return)
EPGK (Tape, Console, Reader, Punch, or
Printer) Invalid operation
EPGK (Disk) The arc number, ARC. (J), exceeds
the number requested for IODNAME(]).
Cs $LOC completed
None $LOCS completed

Appendix 43

Feed Card
MFC or MFCS, IODNAME(])

B, $MCP
,» $FC or $FCS
, IODNAME(])
(Return)
EPGK (Disk, Tape, Console, Reader, or
Printer) Invalid operation

UK Feed jam or punch failure

UK, EOP Punching error in last card in stacker
EE Out of material or stacker full

EOP $FC completed

None $FCS completed

Tape Indicator Off

MTIF or MTIFS, IODNAME(])

B, $MCP
» $TIF or $TIFS
» JODNAME(])
(Return)
EPGK (Disk, Console, Reader, Punch, or
Printer) Invalid operation
UK Repeated failure of operation
EOP $TIF completed
None $TIFS completed

Erase Long Gap

MERG or MERGS, IODNAME(])

B, $MCP
, $ERG or $ERGS
, IODNAME(])
(Return)

EPGK (Disk, Console, Reader, Punch, or

Printer) Invalid operation
EOP $ERG completed
None $ERGS completed

Space Record

MSP or MSPS, IODNAME(])
B, $MCP
, $SP or $SPS
, JODNAME())
(Return)
EPGK (Disk, Console, Reader, Punch, or
Printer) Invalid operation

44

EPGK (Tape) First operation on a scratchtape

UK Repeated failure of operation or tape at
physical end

EE, EOP Operation completed by spacing across
tape mark

EOP $SP completed

None $SPS completed

Backspace Record

MBSP or MBSPS, IODNAME(])

B, $SMCP
, $BSP or $BSPS
, JODNAME(])
(Return)
EPGK (Disk, Console, Reader, Punch, or
Printer) Invalid operation
EPGK (Tape) Tape at load point
UK Repeated failure of operation
EE, EOP Operation completed by backspacing
across tape mark
EQOP $BSP completed
None $BSPS completed

Space File

MSPFL, IODNAME(])
B, $MCP
» $SPFL
,» JODNAME(])
(Return)
EPGK (Disk, Console, Reader, Punch, or
Printer) Invalid operation
EPGK (Tape) First operation on a scratch tape
UK Repeated failure of operation or tape
at physical end
EE, EOP Operation completed

Backspace File

MBSFL, IODNAME(T)
B, $MCP
, $BSFL
, IODNAME(])
(Return)
EPGK (Disk, Console, Reader, Punch, or
Printer) Invalid operation
EPGK (Tape) Tape at load point
UK Repeated failure of operation
EE, EOP Operation completed

Write Tape Mark

MWEF or MWEFS, IODNAME(])

B, $MCP
,» $WEF or $WEFS
, IODNAME(])
(Return)

EPGK (Disk, Console, Reader, Punch or

Printer) Invalid operation
EPGK (Tape) Write on file protected tape

UK Repeated failure of operation

EE, EOP Operation completed and tape crossed
end mark

EOP $WEF completed

None $WEFS completed
Rewind

MREW or MREWS, IODNAME(])
B, $MCP
, $REW or $REWS
, JODNAME (I)
(Return)
EPGK (Disk, Console, Reader, Punch or
Printer) Invalid operation
UK Repeated failure of operation
(oF] $REW completed and new tape at load
point
None $REWS completed and tape at load
point

Rewind and Unload

MUNLD or MUNLDS, IODNAME(I)
B, $MCP
,$UNLD or $UNLDS
,JODNAME((I)
(Return)
EPGK (Disk, Console, Reader, Punch, or
Printer) Invalid operation
UK Repeated failure of operation
CSs $UNLD completed and new tape at load
point
None $UNLDS completed and new tape at load
point

Reserve Light Off

MRLF or MRLFS, IODNAME(])

‘B, $MCP

, SRLF or $RLFS

, JODNAME(I)

(Return)
EPGK (Disk or Tape) Invalid operation
UK Repeated failure of the operation
EOP $RLF completed

Cs (Reader, Punch, or Printer) Unit readied
None $RLFS completed

Reserve Light On

MRLN or MRLNS, IODNAME(I)
B, $MCP
, $RLN or $RLNS
, IODNAME(])
(Return)
EPGK (Disk or Tape) Invalid operation
UK Repeated failure of the operation
EOP $RLN completed
Cs (Reader, Punch, or Printer) Unit readied
None $RLNS completed

Check Light On

MKLN or MKLNS, IODNAME(])
B, $MCP
» $KLN or $KLNS
, IODNAME(])
(Return)
EPGK (Disk or Tape) Invalid operation
UK Repeated failure of the operation
EOP $KLN completed
Cs (Reader, Punch, or Printer) Unit readied
None $KLNS completed

Sound Gong

MGONG or MGONGS, IODNAME(])
B, $MCP
, $GONG or $GONGS
, IODNAME(])
(Return)
EPGK (Disk, Tape, Reader, Punch, or Printer)
Invalid operation
UK Repeated failure of operation
EOP $GONG completed
None $GONGS completed

High Density

MHD or MHDS, IODNAME(])
B, $MCP
,$HD or $HDS
, IODNAME(I)
(Return)
EPGK (Disk, Console, Reader, Punch or Printer)
Invalid operation
EPGK (Tape) Tape is not at load point
EOP $HD completed
NONE $HDS completed

Appendix 45

Low Density

MLD or MLDS, IODNAME(])
B, $MCP
,$LD or $LDS
, JODNAME(])
(Return)
EPGK (Disk, Console, Reader, Punch or Printer)
Invalid operation
EPGK (Tape) Tape is not at load point
EOP S$LD completed
NONE $LDS completed

Even Parity, No ECC

MEVEN or MEVENS, IODNAME(])

B, $MCP
+3EVEN or $EVENS
» JODNAME(])
(Return)

EPGK (Disk, Console, Reader, Punch or Printer)

Invalid operation
EOP $EVEN completed
NONE $EVENS completed

Odd Parity, No ECC

MODD or MODDS, IODNAME(])
B, $MCP
,$0DD or $ODDS

46

, IODNAME ()
(Return)
EPGK (Disk, Console, Reader, Punch or Printer)
Invalid operation
EOP $0DD completed
NONE $0ODDS completed

Error Checking and Correction

MECC or MECCS, IODNAME(])
B, $MCP
,$ECC or $ECCS
, JODNAME(])
(Return)
EPGK (Disk, Console or Printer) Invalid operation
EOP $ECC completed
NONE $ECCS completed

No Error Checking and Correction

MNOECC or MNOECCS, IODNAME(])

B, $MCP
, SNOECC or $NOECCS
, IODNAME(])
(Return)

EPGK (Disk, Console, Printer or Tape) Invalid

operation
EOP $NOECC completed
NONE $NOECCS completed

The programming examples in this Appendix serve

a two-fold purpose. First, they illustrate the
appearance and position of MCP pseudo-operations
intermixed with STRAP symbolic statements. Second,

JOB, ANYID
TYPE,COMPILGO, SMAC
SUBTYPE, AL
SUEJEANIOD, TAPE,,EXIT,,,0D0,HD
REEL,PLB12345
INIT LXy$14BSTRY?
READ MRD, SUEJEAN,CW1?*
By WAIT®
STARTY LVI,$2,15.
’ P SRS S 2222 2222222222222 X222 22222222222 2 X222)
* ANY COMPUTATION TO BE DONE WOULD BE INSERTED HERE
v REBERERRAEREAS AR B SRR AR BER TR BRI RFERARTRARRSARRERER
BZB,EXIT+1.11,WAIT® TEST EE BIT
MEODJ* IF ON GIVE EOQJ
WALT MWAIT,SUEJEAN'
BB,EXIT+1.94EPGK® TEST FOR EPGK
BBZ,EXIT+1.10,UKFIX*TEST FOR UK

D -w®w

UK RETRY COUNTER

Re$l? RESET COUNTER
SWAPI,1,CW1,CW2" SWITCH BUFFERS
MRD,SUEJEAN,CW1* INITIATE READ
B, START?®

UKFIX BZB,EXIT+1.12,UNITBAD' NOT UK-EOP, UNIT FAILURE
MBSP, SUEJEAN® BACKSPACE AND WAIT
MWAIT, SUEJEAN®
BByEXIT+1.9,EPGK?
BBZ,EXIT+1.10,UNITBAD®
CB,$1,READ" TRY READ AGAIN
MCOMM,MESG1le3."* QUIT ON THIRD TRY
MABEDJ®
UNITBAD MIODEF,SUEJEAN,MESG2+2.0°
MCOMMyMESG2) 4. "

MABEOJ?
EPGK MCOMM,MESG3,5."

MABEDJ*
CwWl CW,BUFFERL,N,O"* CW FOR BUFFER ONE
Cw2 CW,BUFFER2,N,0" CW FOR BUFFER TWO

BUFFER1 DR(BU),N*

BUFFER2 DR{BU),N?

CNOP*

{IQS*)0D(BU), DATA ERROR UNCORRECTIBLE#**
CNOP?Y

(IQSX)IDD(BY) y##2=OPERATOR==#2CH UN IS DOWNX®
CNOP?

MESG 1
MESG 2

MESG3

BSTRY XWys3,8"

EXIT DR(N),2*
MRET?®
MRET?
MRET?
MRET*

N SYNyL?*
MEND, INIT®

TABLE OF EXITS

FIGURE 4. PROGRAMMING EXAMPLE 1: BUFFERED TAPE INPUT

{1QS*)DD(BU) s THIS PROGRAM HAS BEEN CONTAMINATED.s='

APPENDIX C. PROGRAMMING EXAMPLES

they give specific applications of the pseudo-opera~
tions to demonstrate their use to the programmer
in the preparation of routines to be run under MCP.

Appendix 47

TIME 14/27/18, DATE 04/13/64, VERSION
B TYPE,COMPILGO,STRAP, NOPUNCH
1= B RON
2% »
3% 000041.00 000040.10 00
4% 000041.40 000104.40 80
5¢ 000042.00 000055.01 80
6+ 000042.40 000001.00 80
7+ 000043.00 000000.00 80
8% 000043.40 000051.10 00
9% 000044.00 000040.10 00
10% 000044.40 000013.40 80
11% 000045.00 00000t.00 80
12# 000045.40 000054.00 80 000055.02 EQ
13% 000046.40 000040.10 00
14* 000047.00 000001.41 80
15+« 000047.40 000001.00 80
L6+% 000050.00 000054.00 80
17+ 000050.40 000041.10 00
18+ 000051.00 000040.1C 00
13 000051.40 000007.41 80
20# 000052.00 000001.00 80
21* 000052.40 000040.10 00
22% 000053.00 000101.00 80
23* 000054.00 * 000056.00+ 000 000017 000000
24%* 000055.00 000075.00+ 000 000017 000000
25% 000056.00 = 000017.00
26* 000075.00 000017.00
27+ 000114.00 000002.00
28# 000116.00 000122.10 00
23% 000116.40 000000.30 00
30« 000117.00 000040.10 00
31* 000117.40 000101.00 80
32+ 000120.00 000040.10 00
33» 000120.40 000104.00 80
34% 000121.00 000040.10 00
35+« 000121.40 000041.00 80
36% 000122.00 000115.11 B0 000131.34 02
37 000123.00 000040.10 00
38+ 000123.40 000006.01 80
39s 000124.00 000001.00 80
40% 000124.40 000040.10 00
41+ 000125.00 000005.01 80
42« 000125.40 00C040.10 CO
43# 000126.00 000001.40 80
44% 000126.40 000001.00 80
1+ 000127.00 000054.00 80
2% 000127.40 000040.10 00
3» 000130.00 000013.40 80
4+ 000130.40 000001.00 80
5« 000131.00 = 000040.10 0C
6% 000131.40 000010.41 80
7+ 000132.00 000001.00 80
8% 000132.40 000040.10 00
9% 000133.00 000015.00 80
10* 000133.40 000001.00 80
11+ 000134.00 000142.00 80
12« 000134.40 000040.10 0O
13% 000135.00 000043.40 80
14« 000135.40 000142.00 80
15= 000136.00 000003.00 80
16% 000136.40 000040.10 0O
17+« 000137.00 000001.40 80
18#% 000137.40 000001.00 80
19* 000140.00 000054.00 80
20+* 200140.40 000040.10 00
21% 000141.00 000013.40 80
22= 000141.40 000001.00 80
23» 000142.00 = 000001.00
24+ 000143.00
25% 000145.00 = 000041.00

JOB, PPNAME

03/15/64

10D, TAPEyEXIT4,90DD,HD,CSAVE

START

EQJ

Cw

BUF1
BUF2
EXIT

UK

EPGK

MESG

FIGURE 5, PROGRAMMING EXAMPLE 2: CARD-TO-TAPE ROUTINE

48

PRNS

B, $MCP?

» $SCR?
LVE,sCW+1.0"
v1.0°

$ 0

B,EDJ?

By MCP?

P SWAIT?

» RON!
SWAPI,14CA,CHW+1.0"
By SMCP?*
»$US?

» RON?

s CW?

By START®*

By $MCP?*

» SWEFS?

s RON?
BysMCP?®

» $EQUJ?
CWyBUF1,15"
CWsBUF2,15"
DR(N}, 15"
DR(N),15"
DRIN),2°
B,UK?®

NGP ¢

B, $MCP!
»$EOJ?

8, $MCP?

+ SABEOJ?
B,8MCP?

» SRET?®
BByEXIT+1.09,EPGK®
By SMCP?*

» $BSPS?

s RON?

By sMCP?

» $ERGS?
8y8MCP?

s SW*

+RON®

+CW*

B, $MCP*
s SWAIT!
+RON?

B, sMCP?*
» SUNLDS?
+RON?
B,sMCP?
» $10DEF?*
s RN

2+ MESG*
B, $MCP?
» SCOMM?
yMESG?®
13.0°

B, $MCP*
» SW?
+RON?
2CW?

B, $MCP
» SWAIT?
+RON
DR(N),1*

SYSTEM INPUT

NO MORE CARDS

TAKE INTERRUPTS
SWITCH BUFFERS

ASSUME SUCCESS ON S$WEF

UK OR EPGK

EEy TAPE FILLED

CS NOT EXPECTED

Eop

TEST FOR UK OR EPGK

UK

$W EUP GIVES S$RET AND
CONTROL GOES TO MAINSTREAM

AT WAIT

REEL FILE PROTECTED

IDENTIFY THE UNIT

TELL OPERATOR TO INSERT RING

CH XX UNY FILLED IN BY IODEF

(1QS#)DD(BU), REQUIRES A RING#*

END, START?®

In Appendix D and E, many of the fields are to be
filled in, such as job name, etc. These fields are
indicated in two ways. A symbol may be inserted,
which is to be explained thereafter, or a self-
explanatory literal may be used, e.g., a literal
such as 'ppname' indicates that the job name fills
this field; 'reel’ indicates that the tape reel name
fills this field, etc.

Initialization Error Messages (IPL Program)

The Initialization error messages are all in the
following form;
'location’ - A TYPE IPLXX ERROR

where: 'location' is the address of the instruction

+1. at which the error was detected.
XX is one of the following error codes:

00 An exchange failure (EKJ) was detected during
the execution of a copy control word instruction.

01 The I/O test routine detected an error during
the execution of an I/O operation, (EKJ,

UNRJ or CBJ).

02 The space file operation was unsuccessful.

03 The read of the system tape was unsuccessful.

04 The disk locate was unsuccessful.

05 The disk write of PROSA was unsuccessful.

06 There were no IOCD cards detected.

07 An illegal equipment code was specified on an
IOCD card.

08 An IOCD card was punched incorrectly.

09 A non IOCD or non IOD card was detected
within the I/O Definition cards.

10 An illegal IOD card was detected.

11 The initialization program is unable to meet
the I/0 requirements defined, or is unable to
assign the I/O units in the manner defined by
the MCP IOD cards.

12 The I/O tables cannot be constructed properly
with the information specified on the IOD
cards.

13 The PROSA arc count is incorrect.

14 The MCP parameter input card is missing
(MCPP card).

15 An incorrect operating mode was specified.

16 The system input assignments were not made
correctly, or the system input IOD's were not
defined for the overlapped mode.

Initialization Messages

These operator messages can only occur during
initialization of MCP.
$ DATE OF IPL TAPE XX MONTH YY DAY.
The date specified reflects the date card used
when generating this system tape.

APPENDIX D. MESSAGES TO THE OPERATOR

$ STATUS REPLY: CHXX ZZZ DELETED,
Where ZZZ represents either UNY, or ALL
which means the entire channel is deleted.
This message is given in response to an I/O
status report,

$ MAKE YOUR NEXT I/O STATUS REPORT,
This message directs the operator to specify
any device that is currently not available to the
system,

$ MCPIPL*~ MOUNT REEL 'reel', ON CHANNEL

XX, UNIT Y.
A number of messages of this type will be
printed depending on the number of tapes
required for system operation,

$READER IS INPUT SOURCE ON CHANNEL XX
The card reader is the system input source for
either bypass or on-line system mode of
operation,

Normal Running Messages

Once the system has been initialized, MCP receives
control and issues a series of informative and action
messages to keep the system running. The action
messages are printed at the margin while the inform-
ative messages are shifted right for readability. The
following represents a typical series of MCP issued
messages while the system is running in the on-line
mode.

$OPTR READY CHXX UNY.
In this example, the above message is a
request for the operator fo load and ready
the card reader.

$OPTR SERVICE THE CARD READER.
The system expects more cards and will not
reference the reader until the system gets
the channel signal from the reader.

$ CHXX UNY-THE NEW IP READ TAPE.
The system has prescanned and rewound this
tape. The first job on this tape will now be
run.

$ JOB 'ppname' 'time' 'date'
This job will now be run.

$OPTR MOUNT THESE TAPES:

$ PP - 'ppname’
$ REEL 'reel' ON CHXX UNY 'protect'
$ PP REQS CHXX UNY 'reel'

The message PP REQS CHXX UNY 'reel’
will be given if the desired tape (scratch or
special name) is currently mounted because
a previous job required the tape.

$ Begin Execution 'time'

Appendix 49

$OPTR LOAD CHXX UNY WITH REEL 'reel' JOB
'ppname’ 'protect’
The problem program or MCP has issued
an I/0 pseudo-operation and the tape must
be loaded before the program can continue.
In the next two messages, the SAVE field
will be blank if the tape is not to be sent to
the tape library.

$OPTR RPL CHXX UNY WITH RL 'reel' JOB
'ppname’' 'save' 'protect’
The problem program or MCP has issued a
$UNLD(S) and the indicated reel is to be
loaded and readied.

$OPTR UNLD CHXX UNY JOB 'ppname' 'save'
The problem program is finished with this
tape unit or MCP cannot assign this tape
(left by a previous problem program) to the
next problem program to be run.
If MCP issued the pseudo-operation that
generated any of the three preceding mes-
sages, 'ppname' will be **MCP**,

Abnormal Running Messages

The following list represents problem situations
of probable concern to the operator. In some cases,
operator intervention is required; in other cases,
the operator is informed about an unusual system
response.

$INSERT RING ON CHXX UNY AND READY UNIT.

$SERVICE RD/FD CHK ON THE READER.
If the Feed Check light is on, there has been a
card jam or a misfeed, Otherwise, a read
check has occurred. To correct a read check:
empty the hopper, press the Stop key, press
the Unload key, place the last four stacker
cards into the hopper, replace the cards that
were in the hopper, and press Start.

"DATA" FAILURE ON CHXX UNY, nFILE MARKS

ARE ON"PHYSICAL' END OF TAPE,
n=90, 1or?2
In the case of a unit failure, DATA will be
replaced by the word UNIT. In the case of a
failure prior to the physical end of tape (as
indicated by the end of tape reflective strip),
PHYSICAL will be replaced by the word
LOGICAL. The output tape has encountered
an uncorrectable UK situation, I may have
been caused by a bad tape unit or bad tape reel
while writing data, file marks or the end of
tape trailer record,

$STRIP CHXX UNY BEFORE REUSING,
The beginning of the tape reel is worn and
could not be written. Mount another reel in
its place,

50

$CHXX UNY IS UNLOADING, INPUT FOUNL END

OF TAPE,

$PP XXXX IC = 'location' CNSL CS TO CONTINUE,
XXXX represents interrupts MK, IK, IJ, EK,
and CPUS, The operator has the option at this
point of giving the machine to the Customer
Engineer or pressing the Signal key to $ABEGJ
the job and continue,

$PP GIVEN CONTROL VIA $ABEX.
The operator has initiated a $ABEOJ using the
console. The problem program has issued a
$ABEX previously, so that the problem pro-
gram will get control instead of being removed
from the machine. A second operator initiated
$ABEOJ will be necessary toremove the prob-
lem program from the machine,

$THE SCAN TABLES ARE FULL, THE PHASE I

TAPE MAY BE STOPPED,
The I/O preassignment tables have been filled,
Prescamning will resume as each problem pro-
gram in execution phase terminates and creates
space in the preassignment tables.

$NO JOB CARD IN THIS FILE,
A job has been lost because the first card of
the file cannot be recognized as a JOB card,

Job Termination Messages

At the option of the installation, any unexpected
problem program terminations can be typed on the
console typewriter as well as on the output tape.

Refer to APPENDIX E for lists of the types of
terminations. The exceptions to the lists in APPEN-
DIX E are as follows:

1. Loader Rejects: Line 2 of the . LOD. REJ. CD.
message will not be typed,

2, Operator Rejection messages will have
already been typed out by the COMD package and will
not be duplicated by the $EQJ procedure,

Command Responses

Command responses are operator messages given in
response to a system command,
$ABEQJ TO PP, UNIT DOWN,
A request was made to delete a unit assigned
to the problem program. The unit has been
made unavailable, and the problem program
terminated and dumped. An appropriate mes~
sage is written on the system output tape.
$ABEOJ TO PP, MCP REQ UN,
A request was made to delete a unit or channel
assigned to MCP. Sometimes, the configura-
tion is such that in order for MCP to continue,
a problem program unit must be reassigned to
MCP. The problem program is terminated and

dumped with an appropriate message on the
system output tape.
$NO REPLACEMENT FOR DELETED MCP UNIT,
A request was made to delete an MCP unit,
The unit has been made unavailable but a
replacement unit could not be found. The sys-
tem will try to continue, but if too many tape
units are taken from MCP or if key channels
are deleted, a TYPE 82 error will result.
$ CHANGE MCP UNIT FROM XX-Y TO XX-Y.
An IOCHANGE command that deleted a unit or
channel has been accepted,
The unit and channel number of the deleted
unit, and the unit and channel number of the
replacement unit for every unit deleted, is
given for the operator's information, If the
replacement unit was assigned to the problem
program, the problem program is terminated
and dumped, with appropriate messages given
to the operator, and written on the system out-
put tape.
$ 'command' COMMAND ACCEPTED.,
This message is given when a command is
accepted. Another command should not be
entered from the console before this acceptance
message or a rejection message for the current
command is given,
$COMD REJ - ILEGL SITUATN,
A legal MCP command was given, but the situ-
ation under which it was given is invalid for the
command: e, g., COMD, EOJ issued when a
problem program is already terminated.
$COMD REJ - ILEGL,
A command was given that was not recognized
as one of the MCP commands., Parameters
were missing or incorrect, or the format was
wrong.
$DISREGARD SYSTEM TAPE MOUNTING REQUESTS,
An off-line command has been received from
the system input source, The tapes have been
assigned for the off-line mode, but conditions
cause the system to remain in the bypass mode;
therefore, the request for off-line tapes must
be ignored. This error can occur if the COMD
card is not the last card in the card reader,
HH:MM: SS-TIME-HH: MM: SS DATE-mm/dd/yy
This message is issued in response to COMD,
CLOCK which sets the time clock calibration
constant, The time to the right has been com-
puted using the time value just entered, The
date is taken from the COMD, The date and
adjusted time are included on each problem
program's output.

Checkout Messages

Each time that one of the console functions is
performed, an appropriate record will be made on
the typewriter.
$ENT BK 'location' (O/D)

Enter from binary keys.
$DIS KL 'location' (O/D)
Display on binary key lights.
$SET IC 'location' (O/D)
Set Instruction Counter
$DUMP 'location 1' 'location 2' (O/D)
Dump.

The addresses typed out are taken from the

numeric switches. Either the letter O or the

letter D will appear in parentheses following the
address, indicating whether the address is in
octal or in decimal. This interpretation is
determined by the setting of the decimal-binary
switch.

Console Reject Messages

Under certain circumstances, console information
will not be accepted. In such a case, a message will
be typed and MCP will return to the location of the
console interruption.
$EPGK ON CONSOLE.
$UK ON CONSOLE.
$NO PP CONSL IOD.

When the Signdl key was depressed, the cur-

rent problem program did not have a console

IOD and, therefore, could not accept the chan-

nel signal,
$ MESSAGE ERASED,

This message is an indication that MCP has

received the EE (caused by depressing the

console Erase key) and has discarded the
preceding typed information,

Note: The problem program is not involved in
any of the above situations, The MCP conceptor
routine handles all of these unusual console
situations.

Error Messages

Error messages are given when an error condi-
tion occurs and MCP cannot continue.
$ SYSTEM ERROR. MCP WILL RE-IPL.
It is possible to execute an internal Restart
should an error occur, If this is done, the
gong is sounded once, the above message

Appendix 51

printed, and the Restart program is automat-
ically given control,

$PP XXXX, IC 'location' CNSL CS TO CONTINUE,

XXXX is either MK, IK, IJ, EK, or CPUS
interrupt. The instruction counter contents
are given and the operator may continue by
pressing the Signal key on the console, If the
Signal key is pressed, MCP will issue a
$ABEOJ and the system will continue., A
similar message will be written on the system
output tape, In the case of the MK interrupt,
after the channel signal is given, MCP
removes the MK from core by reloading the
affected location before continuing,

$MCP XXXX, IC 'location' IPL REQD,

An error interrupt has occurred in MCP,
XXXX represents either MK, IK, IJ, EK,
CPUS, AD, OP, DS, or USA interrupt. Itis
impossible for MCP to continue and the system
must be reinitialized,

$COMD ERROR. IPL REQD.

The source of the command cannot be deter-
mined or the system was not taken out of the
IPL Mode. The system must be reinitialized.

$TYPE XX ERROR, IPL REQD,

XX 1is one of the following codes:
75 Repeated failure of an MCP setup I/O operation
76 Repeated rejection by the exchange of some
I/0 command.
77 An interrupt was lost in the interrupt queue.
78 The available space in the interrupt queue has
been exhausted.
79 The available space in the prime queue has
been exhausted.
80 Attempted transfer from MCP major program
to major program while auto stacked.
81 MCP received an unexpected EPGK interrupt.
82 There is a special assignment error. This
error is usually caused by trying to assign a
system unit that has already been assigned.
83 There is an error in the assign routine. MCP
may be out of phase assigning jobs.
84 There is an error detected in job control. The
disk has been written incorrectly.
85 Repeated unit checks on the disk.

52

Restart Messages

$READ FROM DISK OK.
This message is given after Restart has been
positioned in core storage and has been given
control.

$IPL OCCURRED DURING JOB 'ppname’' 'system'

MODE WITH IC = 'location’',
This message gives the status of the system
when Restart was initiated.

$BEGIN WRITE OF $COMM OUTPUT.
This message is given before the commentator
buffer is written on the typewriter.

$END WRITE OF $COMM OUTPUT.
This message is given after the write of the
commentator buffer is completed.

$BEGIN WRITE OF OUTPUT BUFFERS,
This message is given before the print and
punch buffers are written on the output tape.

$NO OUTPUT
This message means that there is no output
available in the output buffers,

$XXX ON TP WRITE, OUTPUT SKIPPED
XXX = EKJ or UK

$MNT AND RDY OUTPUT TP ON CHXX, UNO
At the time when Restart was initiated, an out-
put tape was not ready. The operator must
ready a tape on unit zero of the requested
channel.

$PUT RING IN TP NOW UNLOADING AND RDY IT.
The output tape to be used for the buffer write
was file protected, After this message is
given, the indicated tape will be unloaded.

$END BUFFER WRITE
This message signals that the output buffers
have been successfully written on the tape.

$OPTR PUSH CNSL CS FOR DUMP,
The dump option was selected and the dump
will be executed if the limits are set up cor-
rectly in the numeric switches and the console
Signal key is pressed.

$NO CHECK SUM
This message is given in response to the option
selected by key 60 to disregard calculating the
PROSA check sum.

$CHECK SUM INCORRECT

$IPL THE TAPE
These two messages are given by Disk IPL and
by the Restart program in MCP, They signal
that the system is contaminated and must be
reinitialized from the master system tape,

Standard Job Output Messages

The following messages are given by MCP for

each job run, when they apply to that job.
JOB, 'ppname’

63 characters of the JOB card
TIME HH/MM/SS, DATE mm/dd/yy, VERSION
mm/dd/yy

DATE = current date

VERSION = the current system level of MCP
B TYPE,

79 characters from the current job's TYPE
card
BIODNAME IOD,
B REEL,
80 characters from the current job's IOD and
REEL cards (if any), if the job successfully
enters the GO phase,

BEGIN EXECUTION HH¥MM+SS
Indicates the time clock contents when the cur-
rent job successfully entered the GO phase,

System Rejects

JOB REJECTED 'Reason'

'Reason' is one of the following:

BY OPERATOR IN PHASE ONE.
The operator has inserted a COMD, REJECT
in the card reader (in most cases after a mal-
formed program deck) to reject the job pre-
ceding the COMD card.

DUE TO REPEATED UKS IN SCANNING.
The input program in MCP has been unable to
read the definition cards for preassignment
purposes because of UK difficulty.

TYPE CARD ERROR.

LIM CARD ERROR.

IOD CARD XXXX ERROR.
XXXX is the IOD reference number.

TAPE UNIT-CHANNEL CONFLICT.
The problem program has requested more tape
units than are available in the machine's hard-
ware configuration.

REEL CARD FOLLOWS A NON-TAPE IOD.

TYPE IS ILLEGAL ON AN IOD CARD.)

TWO INFINITY DISK REQUESTS.
An infinity disk request is a disk IOD that
requests the remainder of the disk (entire
disk, minus PROSA, minus the arcs con-
taining the program's binary deck). If two
such requests reference the same disk channel,
the job cannot be run.

APPENDIX E. MESSAGES TO THE PROGRAMMER

FIRST IOD CARD IS ILLEGAL.

I/0 REQ. INCOMP WITH MACH CONF.
The problem program has requested a set of
I/0 devices that cannot be satisfied by the
current logical I/0 device configuration (physi-
cal hardware minus those I/0 devices used
exclusively by MCP).

IOD CARD HAS A TYPE X ERROR.
X is one of the following numbers representing
mispunched fields on an IOD card.

= disposition error

= mode error

= disposition and mode errors

= density error

= disposition and density errors

= mode and density errors
7 = disposition, mode and density errors

IOD CARD HAS AN INVALID REFERENCE

NUMBER.

TOO MUCH DISK REQUESTED.

LIMIT IS TOO HIGH FOR I/O REQUESTS TO

BE HONORED.
The space between the problem program's
upper limit and MCP was insufficient to accom-
modate the IOD tables.

S G W

Loader Rejects

LOD. REJ. CD. XXXX ID YYYYYYYY 'reason'
(Line 1)
LAST CORRECT CARD LOADED IS SEQUENCE NO.
XXXX ID YYYYYYYY (Line 2)
where:
1. XXXX is the sequence number taken from
column 3 of the binary card.
2. YYYYYYYY is the identification taken from
columns 73-80 of the binary card.
3. 'reason' is one of the following:
CHECKSUM ERROR.
SEQUENCE ERROR.
ILLEGAL TYPE OF CARD.
ILLEGAL NON-BSS FUNCTION
-TRIED TO LOAD OUTSIDE LIMITS.
C, P, D, K, A, OR Z CD PUNCH ERR.
NO ORIGIN ON FIRST C OR K CARD.
NO ORIGIN IN FIRST CARD.
JOB CANNOT BE RUN BECAUSE OF INPUT UK
DIFFICULTIES.
NO BRANCH CARD IN CURRENT DECK-JOB
REJECTED.

Appendix 53

Errors During Execution

JOB ENDED, - ERROR TYPE YY

Where YY is one of the following:

01 The problem program caused an IF interrupt,
and the contents of the instruction counter
-.32 is not a B, $MCP.

02 The problem program issued an invalid
pseudo-operation.

03 The problem program's last referenced IOD,
addressed a channel which is not available to
the problem program.

04 The problem program issued an I/O request
that referred to an illegal IOD reference
number.

05 The problem program specified an illegal
problem program I/O Table of Exits on an
IOD card.

06 The problem program's last unload request
could not be honored because problem pro-
gram core storage, for the Reel Pool Table,
was exhausted.

07 The problem program's last I/O reference,
specified an invalid Control word.

08 The problem program's last I/O reference,
specified an invalid Control word address.

09 The problem program attempted to communi-
cate with protected storage, with one of the
following pseudo-operations: $FIXUP, $TIME,
$STLR, $FELR, $STRG, $FECRG.

10 The problem program specified a non-tape
IOD in a $ATID calling sequence.

11 The problem program specified an invalid
exit address in a $CHEX calling sequence.

12 The problem program attempted to actuate
an I/0O unit that had an interrupt stacked.

13 The problem program exceeded the limit of
maskable interrupts that MCP will process.

14 The problem program caused either an OP,
AD, USA, or DS interrupt while in the auto
stacked mode.

15 MCP encountered repeated UKs while verifying
a problem program tape label.

16 The problem program executed a successful
branch to location 32.0 or 32.32.

17 The problem program specified an illegal
PTOE address in the refill field of $15.

18 The problem program specified an invalid FWA
in a $COMM calling sequence.

19 The problem program specified an illegal
instruction in a $FIXUP calling sequence
(either a SIC;BD, BD or an I/O instruction).

20 The problem program issued a $STLR when
not in the Auto Stacked mode.

21 MCP encountered repeated UKs while reading
the problem program's input.

54

22 The problem program requested a tape that
could not be verified.

23 The problem program specified an error in a
$SCR, $SPR, or $SPU calling sequence.

For error types 15 and 22, REEL '"NAME' is
added to the JOB ENDED message to indicate which
reel caused the problem.

The preceding error type numbers correspond
to the $ABEX error code. Currently, codes 24-64
are unused.

XXXX INTERRUPT AT LOCATION 'location'
where XXXX is one of the following:
MK (ABEX error code 65)
IK (ABEX error code 66)
IJ (ABEX error code 67)
EK (ABEX error code 68)
CPUS (ABEX error code 69)

EKJ (ABEX error code 70)
UNRJ (ABEX error code 71)
CBJ (ABEX error code 72)

op (ABEX error code 73)
AD (ABEX error code 74)
USA (ABEX error code 75)
DS (ABEX error code 76)

Note: Both types of " Errors During Execution'
will cause a $ABEOJ dump which will include the
location of the instruction following the one that
caused the error.

Operation Rejection

EOJ REQUESTED BY OPERATOR

ABNORMAL EOJ REQUESTED BY OPERATOR
(ABEX error code 0)

ABNORMAL EOJ TO P, P. MCP NEEDS CHANNEL,
(ABEX error code 80)

Miscellaneous Messages

COMD, COMMENT, maximum 40 character message
Entered either by a COMD card or by the
operator's console,

XXXX INTERRUPT AT LOCATION 'location'

XXXX may be any of the maskable interrupts.
$ABEX TABLE IS OUT OF PP BOUNDS

$ABEX specified a bad address, the problem

program will continue but cannot regain control

if a SABEQJ occurs.

YOU HAVE BEEN GIVEN CONTROL VIA $ABEX,

AT LOCATION 'location'.

OUTPUT AT IPL TIME FOLLOWS, SOME OUTPUT

MAY BE REPEATED.,,

Restart gives this message before listing the
contents of the output buffer,

Reel History Messages

The following lines are added to a job's output if
any tapes were requested in the GO phase:
JOB 'ppname' - REELS. .. (Line 1)
CHXX UNY LAST IOD NO. ('number') 8 (Line 2)
AAANNNNN 'no.' UKS 'no.' UK-EOPS 'no.' RDS
'no.' WRTS 'no.' CTLS. 'saved' (Line 3)

AAA = one of the following tape descriptors
NLB, NUL, PLB, PUL

NNNNN = 'reel' or ***** for an unused scratch
tape

Line 3 is repeated for as many reels as were
requested for this channel and unit.

Lines 2 and 3 are repeated for each channel and
unit requested by this problem program.

Appendix

55

APPENDIX F. CHARACTER CODES

The following table lists the octal codes, by charac- Character 1IQS BCD Punches
ter, for eight-bit IQS, six-bit BCD, and the corre-
sponding column binary punches. The IQS codes

given for the letters and numbers are for upper § :1122 gg g:;
case. For lower case letters, simply change the
last bit of the upper case code to a 0 bit, Z 137 31 0-9
0 140 12 0
Character 1QS BCD Punches 1 142 01 1
_ T 2 144 02 2
A 055 61 12-1 3 146 03 3
B 057 62 12-2 4 150 04 4
C 061 63 12-3 5 152 05 5
D 063 64 12-4 6 154 06 6
E 065 65 12-5 7 156 07 7
F 067 66 12-6 8 160 10 8
G 071 67 12-7 9 162 11 9
H 073 70 12-8 blank 000 20 none
I 075 71 12-9 + 041 60 12
J 077 41 11-1 $ 042 53 11-3-8
K 101 42 11-2 = 043 13 3-8
L 103 43 11-3 * 044 54 11-4-8
M 105 44 11-4 (045 34 0-4-8
N 107 45 11-5 / 046 21 0-1
o] 111 46 11-6) 047 74 12-4-8
P 113 47 11-7 ! 050 33 0-3-8
Q 115 50 11-8 5 051 52 11-0
R 117 51 11-9 s 052 14 4-8
S 121 22 0-2 " 053
T 123 23 0-3 . 164 73 12-3-8
U 125 24 0-4 : 165
v 127 25 0-5 - 166 40 11
w 131 26 0-6 ? 167

56 6/64: 1M - BP - 60

C22-6678-1

I

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains N Y. 10601

woiBoid joipuo) 13jsoW 0£0L Wl

YIS uE patuig

L-8499°22D

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	xBack

