Systems Reference Library

IBM 7030 Data Processing System Bulletin

Loader and BSS Processor

This publication describes the 7030 Master Control
Program (MCP) loader and the FORTRAN Binary and
Symbolic Subroutine (BSS) processor. The MCP
loader is capable of processing relocatable or abso-
lute binary decks. The BSS processor allocates storage,
calls subprograms from the FORTRAN library, and
completes subprogram cross references. A segmen-
tation program, which provides a method of storage
overlay, is included in the BSS processor.

File No. 7030-27
Form C28-6379-0

PREFACE

The purpose of this document is to provide a pro-
grammer's guide to loader functions. Examples of
various deck arrangements are given in a separate
section. Appendixes containing card formats and ex-
planations of diagnostic messages are also provided.
Considerable detail has been provided in the section
on segmentation to assist a reader interested in the
depth of the overlay feature of the IBM 7030 system.

The discussion in this bulletin assumes the under-
standing of the following publications:

Reference Manual, IBM 7030 Data Processing
System, Form A22-6530.

Reference Manual, IBM 7030 Master Control
Program, Form C22-6678.

Reference Manual, IBM 7030 FORTRAN 1V, Form
C22-6751.

The segmentation portion of the BSS processor
described in this bulletin was programmed by the
Naval Weapons Laboratory, Dahlgren, Virginia.

Copies of this and other IBM publications can be obtained at IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D83, PO Box 390, Poughkeepsie, N,Y. 12602

The IBM 7030 system loader consists of two pro-
grams: (1) the resume load program of MCP, with
the loader as a subroutine, and (2) the Binary and
Symbolic Subroutine (BSS) processor. These two
programs allow the programmer to submit an input
deck containing subprograms written in FORTRAN
(which produces relocatable binary cards) or STRAP
(which produces relocatable or absolute binary cards,
as specified), or to submit a mixture of FORTRAN
and STRAP subprograms. The programmer may re-
ceive automatic storage allocation by specifying that
he wishes to operate in the FORTRAN environment.
In this case, the BSS processor assigns storage,
processes relocatable and absolute binary input, calls

IBM 7030 SYSTEM LOADER

specified routines from the FORTRAN library, and
computes all subprogram cross references. The
BSS processor gives control to the resume load pro-
gram and provides information necessary to complete
the loading function.

The programmer may specify that he wishes to
operate in a non-FORTRAN environment. In this
case, the BSS processor is not involved, and control
is passed to the resume load program. Storage allo-
cation for relocatable subprograms may be specified
by control cards which are meaningful to the loader.
No storage allocation is necessary for absolute sub-
programs, whose locations are specified on the cards.

IBM 7030 System Loader 3

MCP LOADER

The resume load program of MCP may be used by
the problem programmer who wishes to load and ex-
ecute his program in sections. In a non-FORTRAN
environment, this procedure is accomplished with
the following calling sequence:
B, $MCP
, SRESLD

Loading is resumed with the next binary card from
the same source as the previous load (system input
or disk). Loading is terminated when the next abso-
lute branch card is encountered, and control is given
to the address specified on the branch card.

Care should be taken when $RESLD is issued in
an I-O fix-up routine. The pseudo-operation does
nothing to alter any I-O stacking mode that may be in
effect, so that the next section of the job could be
given control in the auto-stacked mode. (See Refer-
ence Manual, IBM 7030 Master Control Program,
Form C22-6678, for a description of the auto-stacked
mode.) In this situation the first $RET pseudo-
operation issued by the second section would attempt
to return control to a location in the first section.

In a FORTRAN environment jobs may be seg-
mented with the use of the segmentation feature of
the BSS processor. (Refer to the Segmentation sec-
tion.)

The resume load program also serves as the final
phase of FORTRAN relocatable BSS loading. Inthis
capacity, resume load obtains the loader limits of
the problem program from the communication region
of MCP (previously set up by the BSS processor) and
sets them to extend from the lower limit to the base
address of blank common, inhibiting loading into blank
common. Resume load then sets the input source to
disk, initializes the loader to take information from
the relocation tables set up by the BSS processor, and
continues the loading function.

In a non-BSS environment, problem program stor-
age is cleared, upon initial entry to resume load,
from location 33.0 to the upper limit of the problem
program. In a BSS environment, problem program
storage is not cleared.

The MCP loader operates as a subroutine of the
resume load program. After loading a card, control
is returned to resume load by way of normal return
(which tries to load another card), branch return
(which gives control to the problem program), orerror
return (which terminates loading and gives a diagnos-
tic message).

The loader handles 18 classes of cards, identified
by column 1 punches:

1. Absolute origin (7, 8,9)
2. Absolute flow (7,9)
3. Absolute branch (6,7,9)

4, Absolute correction (C) (12, 3)

5. Absolute patch (P) (11, 7)

6. Absolute dump (D) (12, 4)

7. Relocatable data (6,7,8,9)

8. Relocatable instruction (5,7,9)

9. Fortran program (5,6,7,9)
10. Common definition (5,7,8,9)
11. Fortranbranch (5,6,7,8,9)
12. Relocatable correction (K) (11, 2)
13. Relocatable patch (A) (12, 1)
14. Relocatable dump (Z) (0, 9)
15. T (0, 3)
16. Super T 0, 2,3)
17. Loader adjustment (O) (11, 6)
18. B (12, 2)

The formats for each of the above cards may be
found in Appendix A. The function of each card in
the MCP loader is described below:

1. Absolute origin card. Up to 23 half-words of
information are loaded, beginning at the originspeci-
fied on the card. Bits may be skipped or zeroed be-
fdre or after loading. The sequence number and
check sum are verified.

2. Absolute flow card. Exactly 25 half-words of
information are loaded, beginning immediately after
the highest location loaded on the previous origin or
flow card. If no previous origin is found, a diagnos-
tic message is issued. The sequence number and
check sum are verified.

3. Absolute branch card. The sequence number
and check sum are verified. The branch address is
checked to see if it is within bounds. If there is no
branch address, the origin found on the first origin
card loaded is used as the branch address. Control
is passed, by way of the branch return in resume
load, to the branch address.

4. Absolute correction card. Up to four half-
words of information are loaded, beginning at the
origin specified on the card. If there is no origin
on the correction card, the card is interpreted as
a continuation card, from which up to four half-words
of information are loaded, beginning at the location
following the highest location loaded from the pre-
vious card. A correction card is ignored by the
loader if a 1 punch is found in the decimal point
column of the origin. A half-word correction is ig-
nored if a 1 punch is found in the decimal point col-
umn for the half-word. The loading address is
stepped, although the half-word correction is ignored
by the loader (except when the half-word ignored is
the last half-word on the card, in which case the
loading address is not stepped).

5. Absolute patch card. The instruction at the
origin specified on the card is replaced by a branch
(or a branch; NOP, depending on the length of the in-
struction replaced) to a patch area, which starts at
the lowest location above all previously loaded loca-
tions. The upper limit of the program may have to
be extended by the programmer to allow space for the
patch area. At the patch area the following is placed:
(1) the instruction replaced by the branch to the patch
area, (2) the half-words which appear on the patch
card, (3) a branch instruction which transfers to the
next instruction after the one which was replaced by
the branch to the patch area. If there is no origin
on-the patch card, the card is interpreted as a con-
tinuation patch card, from which up to four half-
words are loaded beginning at the location following
the highest location in the patch area loaded from the
previous card.

6. Absolute dump card. The absolute dump card
has the same instruction displacement property as the
absolute patch card. However, the loader places a
calling sequence to the MCP dump routine in the patch
area. The first and second half-words on the dump
card are inserted as the lower and upper limit dump
parameters, and the third half-word is inserted as
the format parameter. The dump calling sequence is
followed by a branch to the instruction that follows
the one which appears at the origin on the dump card,
in the same manner as a patch. More than one dump
request may be given for the samelocation, by placing
the lower limit for the second request as the fourth
half-word on the card and continuing the upper limit
and format, and subsequent dump requests, on con-
tinuation absolute dump cards (characterized by hav-
ing no origin on the card). (See dump card format
in Appendix A.)

7. Relocatable data card. The relocatable data
card contains data information (up to 744 bits) and a
count of the number of bits to be skipped or zeroed
before or after loading. Datamay be loadedinto prob-
lem program storage or into acommonblockin a FOR-
TRAN environment. (Common blocks are meaningful
to the loader only in the FORTRAN environment.)
The card is checked to insure that the data will be
loaded within bounds. The origin of the subprogram
and the origins of common blocks are taken from the
relocation table in a FORTRAN environment; the ori-
gin of the subprogram in a non-FORTRAN environ-
ment is taken from the preceding loader adjustment
card.

8. Relocatable instruction card. A variable a-
mount of information is loaded. (The amount of in-
formation that can be punched on a card depends on
the number of relocation bits necessary to describe
the instruction on the card.) The origin of the sub-
program is taken from the relocation table in a FOR-
TRAN environment and from the previous loader

adjustment card in a non-FORTRAN environment.
The absolute origin is computed by adding the sub-
program origin to the relative origin on the card.
Addresses are computed from the relocation bits on
the card, using the relocation table for loading bases.

9. FORTRAN program card. The FORTRAN
program card furnishes information to the BSS proc-
essor regarding the size of blank common and names
of entry points. When the MCP loader encounters a
FORTRAN program card, it takes the origin of the
subprogram and the number of cards in the subpro-
gram from the relocation table and computes the
number of relocation bits to describe the number of
named commons within the subprogram. A FORTRAN
program card is accepted by the MCP loader only in
a FORTRAN environment.

10. Common definition card. The common def-
inition card contains common names and sizes, in-
formation used by the BSS processor. A common
definition card is not accepted by the MCP loader in
a non-FORTRAN environment, and is ignored in a
FORTRAN environment.

11. FORTRAN branch card. The FORTRAN
branch card is used to terminate the input phase of
the BSS processor. It is ignored by the MCP loader.

12. Relocatable correction (K) card. Up tothree
half-words are loaded, beginning at the effective ori-
gin formed by relocating the relative origin on the
card with respect to the subprogram or the named
common specified. Each half-word is relocated ac-
cording to the reloecation columns on the card. (See
also card formats - Appendix A.) If there is no ori-
gin on the correction card, the card is interpreted as
a continuation card, from which up to three half-words
of information are loaded, beginning at the location
following the highest location loaded from the previous
card. A correction card is ignored by the MCP
loader if a 1 punch is found in the decimal point of
the origin. A half-word correction is ignored ifa 1
punch is found in the decimal point column for that
half-word. The loading address is stepped whether
or not the half-word correction is ignored by the
loader (except if the half-word ignored is the last
half-word on the card). It should be noted that a re-
locatable correction card at an origin higher thanthe
highest origin in the subprogram has the effect of re-
setting the patch area to the highest origin encountered.

13. Relocatable patch (A) card. The effective
origin is formed by relocating the relative origin on
the card with respect to the subprogram origin. The
instruction at the effective origin is replaced by a
branch (or a branch; NOP, depending on the length of
the instruction replaced) to a patch area at the end of
the subprogram. The size of the subprogram is ex-
tended when storage allocation takes place in BSS, so
that storage for relocatable patch cards is automati-
cally provided in a FORTRAN environment. In a

MCP Loader S

non-FORTRAN environment, however, no space is pro-
vided for relocatable patch cards, and the limit must
be extended by the programmer. It may bedesirable
to extend the size of a subprogram or to force the
patch area to begin at a location higher than the high-
est location loaded by the subprogram. This exten-
sion may be accomplished by a relocatable correction
card at a relative origin higher than the highest loca-
tion within the subprogram. At the patch area, up to
three half-words which appear on the card areplaced
after the half or full-word instruction replaced by the
branch or the branch; NOP. The instructions making
up the patch are followed by a branch instruction that
transfers to the next instruction after the one that
was replaced by the branch to the patch area. If
there is no origin on the patch card, the card is in-
terpreted as a continuation patch card, from which
up to three half-words are loaded, beginning at the
location following the highest location in the patch
area loaded from the previous card. Each half-word
from a relocatable patch or continuation relocatable
patch card is relocated according to the relocation
columns on the card. (See also card formats -
Appendix A.)

14. Relocatable dump (Z) card. The effective
origin is formed by relocating the relative origin on
the card with respect to the subprogram specified
(or the named common, although it seems unlikely
that the origin would be relocated with respect to
named common). The relocatable dump card has the
same instruction displacement property as the relo-
catable patch card. However, the loader places in
the patch area a calling sequence to the MCP dump
routine, and inserts parameters from the card in the

same manner as from an absolute dump card, with

the additional feature that the parameters are relo-
cated according to the relocation columns on the card.
(See also card formats - Appendix A.) It should be
noted that, like the relocatable correction and patch
cards, only three half-words are allowed. Additional
dump requests at the same location may be given by
using continuation relocatable dump cards, charac-
terized by the absence of a relative origin on the card.
Storage allocation for the relocatable dump card is
similar to that for the relocatable patch card; i.e.,
storage is automatically allocated in a FORTRAN
environment only.

15. T card. No information is loaded from a T
card. When the next binary card is encountered, its
sequence number is not checked. Instead, the se-
quence counter is reset to that sequence number. T
cards are printed by either the MCP loader or the
BSS processor.

16. Super T Card. A Super T card has the effect
of stopping sequence checking for the entire job. Super
T cards are printed by either the MCP loader or the
BSS processor.

17. Loader adjustment (O) card. In a FORTRAN
environment, the loader adjustment card has no
function in the MCP loader. In a non-FORTRAN
environment, however, a FORTRAN program card
is not accepted, and the loader adjustment card is
used to set the origin for the subprogram thatfollows
it. The origin on the card is checked to see if it is
within bounds.

18. B card. A B card is ignored by the MCP
loader.

The Binary and Symbolic Subroutine (BSS) processor
operates as a preprocessor to the MCP loader in a
FORTRAN environment. Its function is to create a
relocation table, from which the MCP loader obtains
all the information necessary to assign storage areas
dynamically to FORTRAN relocatable subprograms.
The BSS processor may run as the last link in the
FORTRAN chain of processors, or, if the subpro-
grams are all previously compiled, it may run as a
single processor. In the latter case, it is called by
the following TYPE card:
B TYPE,GO, FORTRAN

Input to the BSS processor consists of a collection
of subprograms, each of which begins with a FORTRAN
program card. Input is from the disk if the BSS proc-
essor is operating as the final phase of the FORTRAN
chain of processors, or from system input if the BSS
processor is running as a single processor. In the
latter case, the BSS processor places the subpro-
grams on the disk, so that the MCP loader, in both
cases, finds the input on the disk. The last subpro-
gram must be followed by a FORTRAN branch card.

The BSS processor scans the cards in each sub-
program and computes the amount of storage to be
occupied by the program, including storage for re-
locatable patches and subprogram extension. Three
intermediate tables are set up, containing:

1. Information from FORTRAN program cards.

2. Information about blank and named common.

3. Names of transfer vectors to be filled in. (See
card types for details of information taken from each.)
If calls are made to library subprograms, the li-
brary routines are fetched from the library and scan-

ned, and information from these cards is used to
create entrieg in the three intermediate tables. The
relocation table is created from the three interme-
diate tables. Absolute origins for subprograms,blank
common, and named common are computed. The
storage allocation is made as follows: blank common
occupies the highest block of storage and named com-
mons, the next highest blocks; subprograms are as-
signed consecutive blocks starting from address 33.0,
in the order in which they are encountered by the BSS
processor. Library subprograms are assignedhigher
locations than non-library subprograms, in the order
in which calls to the library routines are encountered;
and there may be unused storage between the highest
subprogram and the lowest common block.

Card Order
The BSS processor requires a rigid ordering of cards

within each subprogram:
A. One or more FORTRAN program cards.

BSS PROCESSOR

B. One or more FORTRAN common definition
cards.

C. A loader adjustment (O) card (if present).

D. One relocatable binary instruction card, con-
taining an index word whose count field specifies the
length of the transfer vector (number of distinct en-
try points to routines called by the subprogram).

E. One or more relocatable binary data cards,
containing the transfer vector (A8 names of the entry
points outside the subprogram to which transfersare
made in the subprogram).

F. Subprogram deck (relocatable or absolute).

G. Correction, patch, or dump cards (relocatable
or absolute).

No FORTRAN common definition cards are pres-
ent unless there is a common defined. If the count
field of the index word on the first relocatable binary
instruction card is zero, no relocatable binary data
card containing the transfer vector is expected to be
present.

K, A, and Z cards are associated only with the
subprogram which they follow. K, A, and Z cards
may be intermixed, but K cards should precede those
A or Z cards at the same location., Continuation K,
A, and Z cards must immediately follow the cards
which they continue.

The function of each card accepted by the BSS
processor is described below. (The column 1 codes
for the various card types are listed under the MCP
loader.)

1. FORTRAN program card. The FORTRAN
program card contains the entry point names and
their relative origins in the subprogram. (Seebinary
card formats in Appendix A.) The first FORTRAN
program card contains, in addition, the size of blank
common. The BSS processor sets up an entry in the
first intermediate table (Figure 1) upon encountering
a FORTRAN program card. Pointers to the second
and third intermediate tables (Figures 2 and 3), and
the entry point names and their origins relative to
the subprogram, are placed in the first intermediate
table. When the entry point name *MAIN* is en-
countered, its origin is placed in MCP's communica-
tion region, and is used as the location to which con-
trol in the problem program will be passed by the
MCP loader.

The subprogram size on the FORTRAN program
card is either (a) the size computed at assembly
time (if STRAP generates the card) or (b) all 1's
(if FORTRAN generates the card). The BSS proc-
essor computes the amount of space occupied by the
subprogram in storage. The FORTRAN program
card is also a signal to the BSS processor to place
the computed size of the previous subprogram inthat

BSS Processor 7

First Intermediate Table

Entry Point Name

Number of Cards
in Subprogram

0 47 48 63

Absolute Origin Segment Amount of Stor- | Pointer to 3rd

of Entry Point Number age Occupied by | Intermediate
Subprogram Table Entry

] 18 19 27 28 45 46 63

Relative Not Pointer to 2nd Disk Address of

Entry Point Used Intermediate Subprogram (If Not
Table Entry in Library)

0 18 25 28 45 46 63

FIGURE 1. ENTRY IN THE FIRST INTERMEDIATE TABLE

Notes: For an absolute subprogram, the origin specified on the
loader adjustment card will be placed in the first 19 bits

of the second word.

Bit 25 of the third word is set to 1 if the entry is for a

library routine.

subprogram's entry in the first intermediate table.
If there are no entry points in a subprogram it must
be a data subprogram, and the appropriate indication

is made in the second intermediate table.

The size of

blank common is determined by the BSS processor to
be the largest blank common size declared by any sub-
program, and is updated, if necessary, in the entry
for blank common in the second intermediate table.

2. FORTRAN common definition card. The
FORTRAN common definition card contains the names
and sizes of the named commons used by the sub-

program.

(See binary card formats in Appendix A.)

If two or more subprograms declare the same named
common, the largest size declared is assigned tothat

named common.

The names and sizes of named com-

mons are placed by the BSS processor in the second
intermediate table, when the common definition card
containing this information is encountered.

3.

Loader adjustment card. The loader adjust-

ment card is a signal to the BSS processor to allo-
cate space for the following subprogram starting at

the absolute origin specified on the card.

(Seebinary

card formats in Appendix A.) If there is a conflict
between storage previously allocated (i.e., to asub-
program physically preceding the subprogram con-
taining the loader adjustment card), the BSS proc-
essor indicates that an error has occurred. Subse-
quent subprograms are allocated space higher instor-
age than the one containing the loader adjustment
card. The additional stipulation is made that every
absolute binary subprogram must contain either a
loader adjustment card or a T card to reset the se-

quence counter.

Second Intermediate Table

Common Name Not
Used
0 47 63
ébsolute Not Amount of Not Segment
ommon Used Common Used Number
Origin
0 17 25 28 45 56 63

FIGURE 2. ENTRY IN THE SECOND INTERMEDIATE TABLE

Note: Bit 25 of the second word is set to 1 if the entry is for
a block data subprogram common,
4. T cards. The only BSS processor function of

a T card is to reset the sequence counter, except
for two significant card types: define or define imme-
diate cards, and NODE cards. The define anddefine
immediate cards provide the ability to associate and
dissociate named commons. The BSS processor re-
acts to these cards in the following manner: for a
define card (see card format in Appendix A), the
second common name appearing on the define card
replaces the name of the first common named, inthe
second intermediate table. The restriction is made
that the define card must not appear in the deck be-
fore the first common definition card declaring the
name of the named common which is to be replaced.
The define card may be used, then, to handle two
distinct named commons as one. The effect of the

Third Intermediate Table

Subprogram Name Not Segment
Used | Number

0 47 56 63

Transfer Vector Entry

0 47 63
Entry Point Name from Not | Transfer
First Intermediate Table Used| Segment
Number

0 4849 56 63

FIGURE 3. ENTRY IN THE THIRD INTERMEDIATE TABLE

Notes: Bits 48 and 49 of the third word are used for verifying legality
of transfers between segments (segmentation feature).

The second word is replaced by a branch; NOP to the absolute
transfer address,

define immediate card is opposite to that of the de-
fine card. A define immediate card is interpreted

so that the second common named replaces the name
of the first common named only within the subprogram
in which the card appears. The second common
named may be a new name, not occurring anywhere
else in the deck. A define immediate card may be
used, then, to dissociate two named commons in-

tended to be dissimilar.
NODE cards are a signal to the BSS processor

that the job uses the overlay feature of the system.
(Refer to the Segmentation section.)

5. Relocatable binary instruction card. These
cards are scanned by the BSS processor only to com-
pute the size of each subprogram, except for thefirst
relocatable binary instruction card, which must con-
tain an index word in the first 64 bits. The length of
the transfer vector (number of entry points to rou-
tines called by the subprogram) is contained in the
count field of this index word.

6. Relocatable binary data card. These cards
are scanned by the BSS processor only to compute
the size of each subprogram, except for the datacards
immediately following the first relocatable binary in-
struction card. The BSS processor saves the trans-
fer vector from these data cards and makes an entry
for each name in the third intermediate table.

7. Absolute binary cards and absolute correction,
patch, and dump cards. These cards are ignored by
the BSS processor.

8. Relocatable correction, patch, and dump cards
(K, A, Z cards). These cards are scanned by the
BSS processor in order to compute the size of each
subprogram. A relocatable correction card con-
taining an origin higher than the highest location used
by the subprogram itself has the effect of extending
the subprogram to the origin specified. Relocatable
patch and dump cards cause the subprogram to be
extended to allow space for the additional instructions
or dump calling sequence.

9. FORTRAN branch card. The FORTRANbranch
card is used to signal end-of-deck to the BSS proc-
essor. The job may not be run in the absence of such
a card.

10. B cards. IOD cards and REEL cards cause
the amount of storage available to the problem pro-
gram to be reduced by the BSS processor, whichallo-
cates necessary space to IOD tables. All other B
cards are ignored by the BSS processor.

11. Super T card. A super T card is a signal to
the BSS processor to stop sequence checking on all
binary cards for the entire job. Otherwise, the BSS
processor verifies sequence numbers and computes
check sums of all binary cards.

Upon finishing the scan of the input deck (en-
countering a FORTRAN branch card), the BSS proc-

essor tries to match the transfer names in the third
intermediate table with the entry points in the first
intermediate table. If a name is not found, the BSS
processor tries to fetch that subprogram from the
FORTRAN library on disk, and proceeds to set up
tables for library material in the same mamer as for
the input deck. The search for matching transfer
names continues until all entries in the third inter-
mediate table are linked to the first intermediate table.

At this point, the BSS processor has all the in-
formation it needs to construct the relocationtables
and allocate storage for the MCP loader. The BSS
processor performs the following functions in con-
nection with storage allocation:

1. Computes the upper limit of storage available
for the job, the size of the relocation table, and the
origin of blank common.

2. Places the origin of blank common in the MCP
communication region.

3. Computes the absolute origins for the subpro-
grams and places them in the first intermediate table.
4. Eliminates commons declared to have iden-
tical names and reserves space for the largest of the

identically named commons.

5. Computes absolute named common origins
and places them in the second intermediate table.

6. Checks for common and program overlap of
space allocated.

The BSS processor constructs the relocation table
from the three intermediate tables. One entry in
the relocation table is created for each subprogram,
and contains the following information: (1) subpro-
gram origin, (2) number of named commons used,
(3) absolute origins of named commons, (4) length
of transfer vector (number of branches to other sub-
programs), (5) transfer vector (actual branch instruc-
tions to absolute storage locations), (6) pointer tothe
next entry in the relocation table, and either (7)ad-
dress of the subprogram on the disk and the number
of cards (if the subprogram is not a library subpro-
gram), or (8) the entry point name (if the subprogram
is a library subprogram).

The BSS processor leaves the relocation table in
storage, beginning at the base address of blank com-
mon. The BSS processor completes its function by
placing the main entry point address in the MCP
communication region, sorting the relocation table
entries so that library subprograms are loaded in
the order in which they appear on the disk, and printing
out a mapping of the storage allocation scheme.

(See example 4.)

Control is passed from the BSS processor to MCP
and then to the MCP loader, which loads the sub-
programs from the disk into storage, using informa-
tion from the relocation tables.

BSS Processor 9

SEGMENTATION

The function of the segmentation portion of the BSS
processor is to provide a method of subprogram
overlay for FORTRAN jobs too large to fit intoavail-
able storage.

In order to use segmentation, the set of subpro-
grams making up the input deck is first divided into
groups (called segments) of subprograms. In front

of each group of subprograms should be placed a
NODE card which contains its segment number (any

non-zero two-digit number) and the segment number
of another segment to which the first segment listed
on the card is attached. (See Appendix A for NODE
card format.) One segment, called the primary
segment, remains in storage at all times, and should
contain the "main'" subprogram (designated by having
an entry point called *MAIN*), and the FIOD subpro-
gram. The NODE card which precedes the primary
segment should have as its second segment number
00, since it is attached to no other segment. All
library routines are assigned storage in the primary
segment.

Upper storage is allocated in a particular way in
a job which requires segmentation. Since the reloca-
tion table (Figure 4) must remain in storage (except
for the primary segment) during the execution of
the object program, so that the table may be available
for loading bases when another segment is called in,
the relocation table is assigned storage higher than
blank common. A node table (Figure 5), which con-
tains information necessary for segmentation, ex-
tends from a storage location immediately above the
relocation table to the top of storage available to the
problem program.

Storage for named common is reserved below
blank common. Whether a named common is avail-
able when a given segment is in storage depends on
the following:

1. The given segment must be contained in all
groups of segments making up a storage load that
refer to that named common.

2. The given segment must have been assigned
the highest position in storage, consistent with (1),
that is not higher than the position of any segment
which refers to that named common,(See Figure 6.)

Block data is associated with the segment that
contains that block data subprogram. Therefore, all
other segments that reference that block data must
be in the same group of segments that contains that
subprogram and must be allocated storage at ahigher
level.

Storage for named commons associated with seg-
ments which are assigned lower storage locations
are assigned higher storage locations than named
commons associated with segments which are as-
signed higher storage locations.

10

Relocation Table

Disk Address Number of
Not . Not
of Cards in
Used Used
Subprogram Subprogram)

0 17 28 . 47 63
Absolute Not Length of Pointer to Next
Subprogram Used Transfer Relocation
Origin se Vector Table Entry
0 17 28 45 46 63
Number of First

. Not Not
Commons in Used Common Used
Subprograms © Origin se

0 17 32 50 63
Second Not Common Origins
Common Used Continued
Origin s

0 17 .-

Transfer Vector

Transfer Vector Continued

FIGURE 4. ENTRY IN THE RELOCATION TABLE

Notes: Bit 63 of the first word is set to 1 if the entry is for a library

subprogram.

The first 48 bits of the first word contain the entry point
name if the entry is for a library subprogram.

Node Table (Segmentation Only)

Beginning End
Not Not
of Used of Used
Common s¢ Common se
0 17 28 45 63
Beginni End S
cginning Not egment Attached
of of Used Number from S s
e
Program Program NODE Card gmen
0 17 18 35 40 47 63
Attached Segments
0 63
FIGURE 5. ENTRY IN THE NODE TABLE

FIGURE 6.

TREE STRUCTURE OF A JOB REQUIRING THE SEG-
MENTATION FEATURE OF THE BSS PROCESSOR

Notes: Segment 5 is the primary segment and con-
tains the subprogram with entry point *MAIN*, all
library subprograms, the FIOD subprogram, and the
link subprogram. Segment 5 is allocated starting at
location 33.0 and remains in storage at all times.

The NODE card in front of segment 5 should con-
tain T NODE, 05,00 in the NODE card format, (See
card formats, Appendix A.) The NODE card infront
of segment 2 should contain T NODE, 02, 04.

Segments 10 and 11 are allocated storage begin-
ning at the same location, and therefore will not be
in storage at the same time. Segment 9 is allocated
storage higher than segment 6 in the diagram. Seg-
ments 5, 6, 8, and 11, with their associated named
commons, may make up one storage load.

Since only segments 2 and 3 use named common A,
named common A is associated with segment 4 and is
available for storage whenever segment 4 is called
in, Named common B is associated with segment 6.
Named common C is associated with segment 8.

If A were a block data subprogram contained in
segment 3 and referenced by segment 2, an error
would be indicated.

Named common B would be allocated spacehigher
in storage than named common C.

The number of segments contained in a single
storage load cannot exceed 8. The total number of
segments cannot exceed 99.

Some types of transfer are illegal. The general
rule is made that no transfer is legal which causes
the originating segment to be overlaid. Hence, trans-
fers from a subprogram in one storage load to a sub-
program in another storage load are illegal. A trans-
fer from one segment of a storage load to another seg-
ment of that storage load is legal provided no transfer
is made by the second segment which can cause the
originating segment to be overlaid, since the return
cannot be executed. In Figure 6, a transfer from
segment 6 to segment 4 is illegal. A transfer from
segment 11 to segment 8 is illegal if segment 8 at-
tempts to transfer control to segment 10 before the
return to segment 11,

The BSS processor determines whether illegal
overlay can occur, and gives an error message if an
illegal transfer exists. There are two exceptions to
the BSS processor checking procedure:

1. No check is made to determine if illegal over-
lay is caused by a called subprogram which appears
in an argument list by way of an EXTERNAL statement.

2. No check is made to see if named commons are
overlaid.

A named common cannot be expected to be pre-
served when the segment with which it is associated
has been overlaid.

The total of all subprograms and common asso-
ciated with the segments of any storage load must not

exceed in size the storage available. An error
message is given by the BSS processor if the limit is
exceeded.

Detail of Segmentation Function

There are two parts to the segmentation feature. The
first part operates as a departure from the normal
path of the BSS processor, and its function is to set
up the node table, which contains information neces-
sary for segmentafion, and to form the relocation
table, used by the MCP loader. The second part of
the segmentation feature is the link program, which
operates at execution time, and performs the super-
visory function of calling for the proper segment to
be loaded by the MCP loader. (Refer to the Link
Program section.)

BSS Processor Deviation For Segmentation Function

When the BSS processor has completed its scan of
the input deck, the segmentation portion of code is
entered if a NODE card had been encountered. The
node table, which at this time contains the segment
numbers and the segments to which they are attached
(taken from the NODE cards), is expanded in the
following way: successive scans of the node table are
made, picking up the chain of attachment of the seg-
ments. (For example, if a table entry shows that
segment 5 is attached to segment 2, a search is made
to find out to what segment segment 2 is attached.)
When the primary segment is encountered (attached
to segment number 00), the lower limit for available
storage is placed in the node table, and an entry is
made in the second intermediate table for the segment
number of blank common. A link table mask is set
up in the communication region of MCP (Figure 7) to
indicate which is the primary segment. This mask
is a bit string used by the link program to determine
which segments are currently in storage. (See in-
formation on the link program.) The scan for at-
tached segments continues until all segments are

BSS Processor 11

traced to the primary segment. If a segment is not
attached properly in this phase, an error message is
given. A node table entry would show 08, 04, 02, 01,
00, where segment 8 was attached to segment 4, seg-
ment 4 was attached to segment 2, etc., at the end of
the scan.

The expansion of the node table is followed by the
normal scan of the library subprograms called by
the input deck.

The remaining functions of the segmentation fea-
ture of the BSS processor are divided into 8 phases,
described below.

Communication Region Format

Word O

Defined by MCP

Word 7

Word 8| problem Program
Lower Limit

Problem Program
Upper Limit

Origin of
Word 91 Blank Common

Address of
Relocation Table

Branch Address Main Entry Point

Word 10

Word 11| Address of Node Table

Word
12-13 Link Table Mask
Word 14
Defined by Chain of Processors
Word 24

0 32 63

FIGURE 7. MCP COMMUNICATION REGION

Phase 1 -- Computation of storage addresses for the
beginning and end of each segment and computation
of absolute locations of entry points: A scan is made
of the node table for the primary segment entry.
This discovery initiates scanning the first interme-
diate table, picking up all subprograms in the pri-
mary segment, and computing absolute origins of
entry points in all subprograms of that segment.
When all entries in the first intermediate table have
been scanned, the storage address of the end of the
segment is placed in the node table. (A pointer which
contains the address of the sum of the subprogram
originandits length is kept duringthe scan of the first
intermediate table.) The storage address of the begin-
ning of the next segment is placed in the node table. The
node table is scanned for that segment number, and the

12

process continues until all origins of entry points are
complete, and all storage addresses for the beginning
and end of each segment have been computed.

Phase 2 —— Elimination of commons of the same name
and adjustment of the segment in which the duplicate

appears: A scan of the second intermediate table is
made. The segment number of the segment inwhich
the common was declared has been filled in when the
common definition card was encountered in the input
deck. When two named commons are found which
have the same name (but are not necessarily in the
same segment), the size of the larger of the two
named commons is substituted in the entry in the sec-
ond intermediate table for the size of the smaller.
A search of the node table is initiated for the entries
which have the same segment numbers as the seg-
ment numbers of the duplicate commons. Pointers
are moved across the entries in the node table until
a match is made of associated (attached) segment
numbers. When the match is found, that segment
number is placed in one of the duplicate named com-
mon entries in the second intermediate table. The
segment number of the duplicate entry is set to zero,
and a pointer is set up in the entry that has been
eliminated in this way. A check is made for duplicate
block data commons and for an attempt to associate
a block data common with a segment other than the
one in which it occurs. If either of the two conditions
occurs, an error message is given,

The scan is continued until all commons of iden-
tical names have been handled and the associated seg-
ment numbers have been filled in.

Phase 3 -- Computation of absolute common origins:
The end of blank common is computed and placed in
the node table entry for the primary segment. The
second intermediate table is scanned to find all com-
mons associated with the primary segment. The
origins of these commons are computed by subtract-
ing the amount of common from the origin of the
common previously computed, starting from the base
address of blank common. In the primary segment
the common origins are lowered, if necessary, to
allow space for the relocation table for the primary
segment. When all commons associated with a seg-
ment have been treated, the beginning and end ad-
dresses of common for that segment are placed in
the node table. The above-process is repeated for
each entry in the node table.

A second scan of the second intermediate table is
made in order to complete the origins of duplicate
commons. The origin of the duplicate common is
obtained from the entry of the same name.

Phase 4 —- Checking for overlap of program and
common: A scan is made of the node table. If the
beginning address of common for any segment islo-
wer than the highest address occupied by a subpro-
gram in that segment, an error message is given.
An additional check is made to insure that there is
space available for the relocation table for the pri-
mary segment.

Phase 5 -- Formation of transfer vectors and check-
ing for legality of initial transfers between segments:
Segment numbers of segments transferred to are
matched, from the third intermediate table, in the
node table., If the desired transfer address is either
within the segment or to a segment which will be
loaded at a lower storage address, the actual address
of the transfer is computed and stored in the third
intermediate table entry. If the desired transfer ad-
dress is to a segment which will be loaded at a higher
storage address, a transfer to the link subprogram is
stored in the third intermediate table. (See also in-
formation about the link subprogram.)

In order to test the legality of the transfers, the
structures of the node table entries for the two seg-
ments involved in the transfer are examined (that is,
the entry for the segment from which the transfer is
made and the entry for the segment to which the trans-
fer is made). If it is possible to match the segment
number from which the transfer is made with one of
the associated segment numbers in the node table
entry for the segment to which the transfer is made,
the transfer may be legal. The transfer may also
be legal if it is possible to match the segment num-
ber to which the transfer is made with one of the as-
sociated segment numbers in the node table entry
for the segment from which the transfer is made.
However, if neither of the two above conditions are
met, then the transfer is illegal. In Figure8, thele-
gality of transfers of the following kinds are tested by
this phase: (1) a transfer from segment 1 to segment
4 may be legal; (2) a transfer from segment 4 to seg-
ment 1 may be legal; (3) a transfer from segment 3
to segment 4 is illegal; (4) a transfer from segment
2 to segment 3 is illegal.

FIGURE 8, EXAMPLE OF TRANSFERS BETWEEN SEGMENTS

Phase 6 -- Further testing for legality of transfers

between segments: A scan of the third intermediate

table is made. The entries are marked in such a
way that each direction of transfer is unique. With
successive comparisons of the segment numbers of
the entries in the third intermediate table with seg-
ment numbers and their associated segment numbers
in the entries in the node table, in a manner similar
to the procedure described in phase 5, the compat-
ibility of the transfers is tested. A transfer to a
segment at a lower storage address is illegal inthis
phase if the return cannot be made because another
transfer would cause the original segment to be over~
laid.

Phase 7 —- Formation of relocation table: The base

address of the relocation table is computed. (Note:
A job which uses the segmentation feature will not
have its relocation table starting at the same storage
location as the base address of blank common. Refer
to discussion of storage allocation under Segmenta-
tion.) A check is made to see if the relocation table
is too large. Using the information in the three inter-
mediate tables, the relocation table entries for each
segment are filled in. The address of the relocation
table is placed in the communication region of MCP.
(See Figure 5.)

Phase 8 -- Transfer of the node table: The base ad-

dress of the node table is computed. (The node table
is originally located in lower storage, but its final
location is at the top of available storage.) A veri-
fication is made that the relocation table is lower in
storage than the computed address for the node table.
The first 64 bits of each entry in the node table are
not transferred to the upper address.

The BSS processor gives up control after re-
ordering the library subprogram entries in the relo~
cation table and printing out the mapping of storage
allocation.

The Link Program

The segmentation feature of the BSS processor places
into the transfer vector a branch to the link program,
if the call is to a subprogram in a segment which will
occupy a higher storage position than the segment
from which the call is made.

The communication region of MCP is set up by the
BSS processor to contain a link table mask, Each
bit which is turned on in the mask is an indication to
the link program that the segment designated by that
bit is currently in storage. (See Figure 7.)

Control is initially passed to the link program
(after the loading of the primary segment, but before
execution has begun). The only function of this entry

BSS Processor 13

to the link program is to pick up the communication
region, with the link table mask, from MCP. The
link program then gives control to the object program
at the main entry point.

The link program receives control again through
the transfer vector, as described above. The trans-
fer vector contains, in addition to the branch to the
link program, the absolute address to which the trans-
fer is requested and the segment number of the seg-
ment to which the transfer is made.

14

The link program determines from the link table
mask whether the required segment is currently in
storage. If the segment is already in storage, the
link program passes control to the absolute address
contained in the transfer vector. If the desired seg-
ment is not currently in storage, the link program
searches the node table entry for that segment num-
ber. The link program calls for the loading of each
of the segments in that node table entry until all the
segments in that entry are loaded. Control is then
passed to the required address.

The following examples illustrate various deck ar-
rangements and job environments which are accept-

able to

the BSS processor and the MCP loader. Ex-

ample 1 is a job for which the assembly program will
produce both relocatable and absolute output. The
deck arrangement of example 1, shown in Figure 9,
would be loaded by the MCP loader. The BSS proc-
essor would be used to handle storage allocation for

Example 1. Non-BSS Deck with Both Relocatable

and Absolute Subprograms.

START

ABSLUTE
MESSG1

RELOCAT
MESSG2

END
MESSG3

MESSG4

JOB,NON*BSS MIXED DECK
TYPEsCOMPILGO,STRAP

PUNREL
ORIGIN.(8)41.
BySMCP

»$SPR

+MESSG1

sle

ByABSLUTE
BySMCP
+$ABEOJ

SYN, (8)66.
(A8)DD(BU),J NOW IN MAIN SUBPROGRAMS
DRZ(BU),14 .

PUNNCR
StCy(B)66.
BySMCP
+$SPR
+MESSG2

vl.
ByRELOCAT
BySMCP
+$ABEQY
SYN, (8)103.
(AB)DD(BU),J NOW IN ABSL SUBPROGRAMB
DRZ(BU)y 14

PUNREL

ORIGIN,(8)103.

By $SMCP

»$SPR

+MESSG3

vl

B+ END

SYN,{(8)130.

(A8)DD(BU),J NOW IN RELOCATABLE Suss

PUNNOR
SLC,(8)130.
By SMCP
+$SPR
+MESSG4

v1.

Be$SMCP
»$ECQJ
(A8)DD(BU)Y,J END OF PROGRAMS
DRZ(BU),15
END, (8)41.

EXAMPLES

example 2, however, whose deck arrangement is
shown in Figure 10. Example 3 shows the use of

SUBTYPE cards and NODE cards in a job which uses
the segmentation feature of the BSS processsor. Ex-

ample 4 illustratesthe core storage allocation ofall
subprogram entry points and commons, provided by
the BSS processor in a FORTRAN environment.

Example 2. BSS Deck with Subprograms in Both
FORTRAN and STRAP

8 JOB,B8SS MIXED DECK
B TYPE,COMPILGO.FORTRAN

T SUBTYPE, FORTRAN
CONMON/BILL/A(10),C(10)
DIMENSION 0(10)

N=10
PRINT 100
DO 20 I=1,N
20 A(l)=I
CALL SUBL(N)
D0 21 I=1.N
21 D(I)=STSUBL(C(I))
SUM=0.0
DO 22 I=1,N
22 SUM=SUM+ABSSUB(DI(I))
PRINT 99,SUM
RETURN
99 FORMAT (6HOSUM =,E25.14)
100 FORMAT (26HOTHIS IS THE MAIN PROGRAM.)
END

T SUBTYPE, STRAP

PUNREL
SEMs 92,114,116
PUNFPC, LASY

ABSSUB ENTER,ENTPY
XW+ O

ENTPT Bel.($15) * RETURN

LAST DR(N)},0
END

T SUBTYPE, FORTRAN
SUBROUTINE SUBLI(N)
COMMON/JOE/B(10)
COMMON/BILL/A(10),C(10)

. PRINT 100
00 90 I=1,N
90 B(I)=A(1)=A(])

NN=N
CALL SUB2(NN,SQSUM)

DO 91 I=1,N

91 C(I)= A(I)/SQSUM
RETURN

100 FORMAT(2SHOTHIS IS SUBROUTINE SuBl.)
END

T SUBTYPE,STRAP
PUNREL
SEMy9241144116
PUNFPC,LAST

STSUBL ENTER,SUBEP

XWy 0
SUBEP Byl.($15) * RETURN
LAST DR(N)sO

END

T SUBTYPE,FORTRAN
SUBROUTINE SUB2 (MM, SQSUM}
COMMON/JOE/B(10)

SUM=0.0
PRINT 100
DO 90 I=1,MM
90 SUM=SUM+B(I)
SQSUMaSQRT(SUM}
RETURN
100 FORMAT (25HOTHIS 1S SUBROUTINE SUB2.)
END

Examples

15

Z Absolute Subprogram
PUNNOR

/ Relocatable Subprogram
PUNREL

Z Absolute Subprogram
PUNNOR:

/ Relocatable Subprogram

(PUNREL

(B TYPE, COMPILGO,

STRAP

B JOB, NON-BSS MIXED
DECK

FIGURE 9. STRAP JOB WITH SUBPROGRAMS IN BOTH
RELOCATABLE AND ABSOLUTE

Example 3. BSS Segmented Job (Compilgo)

Illustrating use of NODE Cards

/ FORTRAN Subprogram
T SUBTYPE, FORTRAN

/ STRAP Subprogram
{T SUBTYPE, STRAP

/ FORTRAN Subprogram
T SUBTYPE, FORTRAN

/ STRAP Subprogram
(T SUBTYPE, STRAP

/ FORTRAN Subprogram
(T SUBTYPE, FORTRAN

B TYPE, COMPILGO,
FORTRAN

B JOB, BSS MIXED
DECK

FIGURE 10. FORTRAN JOB WITH SUBPROGRAMS WRITTEN
IN BOTH STRAP AND FORTRAN

{ B TYPE, COMPILGO,

Rest of Deck

/ STRAP Subprogram
/T SUBTYPE, STRAP

/r NODE, 03, 02

SUBTYPE, BIN

/ FORTRAN Subprogram
(T SUBTYPE, FORTRAN

/T NODE, 02, 01

T SUBTYPE, BIN

/" STRAP Subprogram_
f"r SUBTYPE, STRAP

/T NODE, 01, 00
/T SUBTYPE, BIN

FORTRAN

B

JOB, SEGTEST

16

Example 4. Typical BSS Storage Map

#sCOMMONS* @

NO. NANME ORIGIN AMOUNT SEG. NO.

NAKE ORIGIN
000014

000041

000346
000271
002315 000022.0 000134
002451 000001.0 000007
002460

Pe ____
<0 000002

Examples

17

APPENDIX A. CARD FORMATS

Absolute Origin Card

Absolute Branch Card

112|3|4{5/6 7|8 9|10/11 1{2(3]|4|s5(6 7|8
Up to 23 half-words
a) .
:!;J.: of information
% Unused
=] 8-72
& & 2
0 =] 55}
: 1ok
z >
Z1E|e % s| [2IE] | &
I <Z 52
7 vl lag=} Y
Zl|xlo| 2 o] 7| |Bjx|m| O
5] =R 4
2|90l @ |00 59 é S
Oltiel £ | QF (e}
o|28|3|5]5| & | 85 N EEEE R
Secondary Bit Count (columns 8-9)
Bits to be zeroed/skipped before/after loading as
determined from 5.0, 5.1: FORTRAN Program Card
5.0 0-skip 1-zero
5.1 0-before 1-after
1{2]3j4|sl6 7|8]|o 1314 |16 2021 |23
Absolute Flow Card %
=
o0 [23] =
- b =
t|2|3|4]s bt 3 ps
) A
£z & Z =z
8w o 5 Etc.
8 ERe 9L
[& % b o = o across
E Exactly 25 half-words =) < 243 s o A the
5 ; ; 5| |& widal = <8R =B
of information j=] N B o= Z card
Z s v | B ‘3 Ex n® [SE)
— 6 w o oo @)
olal |1Z|e = =R <
NSz o
& UM R > p-
[5] 21921210 s =4 a4
s 2lE|2I8]5 3 & =
5 9|e|5|5|5|&|< O] &
=
o|a
71 |4 x
a § = Columns 6, 7, and 8 are blank on any subsequent
918 x|0 continuation program cards.

18

Common Definition Card

Relocatable Binary Data Card

SEQUENCE NUMBER
CHECK SUM
UNUSED

ID

9

1314 {16 2021

2 =
[_‘Z’a %Z
2%3 O% Etc
== ! Q2
o0 & across
3.7 3 th
o Tlge| o8 ¢
o M 7 card
z % Z
o= o)
(o] o
9] Q

112)314|5[6 78 90|11

&
s} Binary data
m O
?ﬁ’ Q
= -
§ B{'}," 11-72
6 mgh ol]
7| 9|25 =l
E"-‘:O Z zE
8 = 9 olA
={»w0im| O 7]]

If the number of named commons is greater than that
which will fit on a single card, additional cards will
be punched in the same format.

Relocatable Binary Instruction Card

SEQUENCE NUMBER
CHECK SUM

BIT COUNT
ORIGIN

UNUSED

9|8

Instructions only
No data

(Eventually followed
by relocation bits)

Relocation Bits (describing a half-word field)

0
10....
100..
101..
10..0
10..1..
10..10
10..111

No relocation

Relocation

First 18 bits (address)

Last 18 bits (refill)

As lower address

As upper address

With respect to blank common

With respect to named common num-
ber i (length of i sub-field is deter-
mined by number of named commons)

No relocation bits on this card.
Loading Base (column 10)
0 - Program Data
1 - 1st Named Common
2 - 2nd Named Common, etc.
Secondary Bit Count (columns 8-9)
Bits to be zeroed/skipped before/after loading as
determined from 5.0, 5.1:
5.0 0-skip 1-zero
5.1 0-before 1-after

FORTRAN Branch Card

6-72
Unused

v W N »

SEQUENCE NUMBER
CHECK SUM
BIT COUNT

1D

Appendix A. Card Formats 19

Relocatable K, A, or Z Card (Octal - Hex)

1 /12 9j10 11{12 2324 27128 3940 43 |44 55|56 59|60
o
.. -
K Origin First g Second 2 Third o
A of half-word z half-word 4 half-word 2 Unused
|
or form a or dump 3 or dump 2 or dump b 60-72
z (xxXXXX. x)8 o parameter -*:’ parameter Té parameter ﬁ
g g g £
= S “ %
& < 8 8
g g] a
E £ : :
3 8 3 E
8 g § §
Ee3 a3 e =]
5] 2 < o
8 k- k- 5
& o & o
Relocation columns for origin (columns 10-11) T Cards
00 - relocate with respect to the subprogram
origin. 1. Node Card
xx - relocate with respect to named common
number xx, where xx is a two-digit octal
number. (Named commons are numbered 2 S|1Q1111213)14i15) 1617181920
in the order in which they appear within
y app t T N|olp|e|, | x| x|, Y Y Unused
the subprogram,) Blank 20-72
Relocation columns for each half-word (columns 24-
27, 40-43, 56"59) DRI VNS Ve, P A et

No relocation

P--- Relocate with respect to the sub-
program origin

C--- Relocate with respect to common
origin

PO-- Relocate the leftmost 18 bits with
respect to the subprogram origin

Pl-- Relocate the rightmost 18 bits with
respect to the subprogram origin

CO-- Relocate the leftmost 18 bits with
respect to common origin

Cl-- Relocate the rightmost 18 bhits with
respect to common origin

COxx Relocate leftmost or rightmost 18

or bits, respectively, with respect to
Clxx named common number xx. (If xx =

00, relocate with respect to blank
common.)

Note: Blanks in significant columns will be con-
sidered to be 0's. The number of the named common
must be right-justified in the field in which it appears.
The format of continuation K, A, Z cards is the same
as above, except that columns 2-11 should be blank.
Dump parameters are the same as for absolute dump
cards.

20

XX is the two-digit segment number for the group
of subprograms following this node card and pre-
ceding the next node card. YY is a two-digit segment
number of the segment to which the current segment,
XX, is to be attached. The value of YY should be 00
on the node card for the primary segment.

2. Define and Define Immediate Cards
12 9l10{11]12}13[14
T D|E|F|, | ClOMNAM1, COMNAM2
Blank D|E|F|I |, |COMNAM1, COMNAM2

Note: Allother T cards may have columns 2-72
used for anything. The format of a super T card is
Sand T multi-punched in column 1, but the card is
printed by the loader as an ST. Columns 2-72 are
ignored.

Absolute Correction/Patch Cards (Octal-Hex)

2

9|10 11j12 23 |24 27|28 39(40 43 |44 55156 59|60 71{72
1
Origin
of ~ First .x Second = Third > Fourth
form & | half-word E half-word k) half-word g half-word
(xxxxxx.x)8) = i /M
Each half-word should be of the form xxxxxx.xx HH.
Absolute Dump Card
2 910 11j12 23|24 2728 39(40 43 |44 55|56 59|60 74 72
1
Lower
Origin Lower Upper Format limit
X . % i 4 e
of g limit g limit g of the g of
form A parameter = parameter =2 dump A second
(XXXXXX. x)8 request
(if any)

Format of the dump (columns 44-55)

The following formats are available:

0.0 Octal - hex with panel

0.40 Octal - hex without panel

1.0 Floating-point with panel

1.40 Floating-point without panel

2.0 Index word with panel

2.40 Index word without panel
17. Octal - hex with panel, no mnemonics
17.40 Octal - hex without panel, no mnemonics

The termination of dump requests is determined by
bit 24 in the format half-word.

Bit 24 =0 No more requests follow

Bit24 =1 More requests follow

If more than one dump request is given for the
same location, the lower limit for the second request
begins in column 60. The upper limit and format of
the second request are continued on a second D card
in column 12, Columns 2-11 are left blank on this and
all subsequent dump continuation cards.

Loader Adjustment Card

1]2 9 110
o Origin
of Unused
form 10-72
(XXXXXX. X)8

Appendix A, Card Formats 21

APPENDIX B. REJECT MESSAGES

MCP Loader

MCP loader diagnostics are usually of the following
form:

LOD, REJ, CD. XXXX ID YYYYYYYY

(Reason)

LAST CORRECT CARD LOADED IS SEQUENCE
NO. XXXX ID YYYYYYYY

where:

1. XXXX is the sequence number taken from
column 3 of the binary card.

2. YYYYYYYY is the identification taken from
columns 73-80 of the binary card.

3. (Reason) is one of the following:

CHECK SUM ERROR

SEQUENCE ERROR

ILLEGAL TYPE OF CARD

ILLEGAL NON-BSS FUNCTION (I.e., a card
was encountered in a non-BSS environment which
may only be used in a BSS environment.)

TRIED TO LOAD OUTSIDE LIMITS (This
message is also given if the address specified on
the branch card is outside the problem program
limits. Normally, it means that a binary, C, P,
D, K, A, or Z card, if loaded, would have gone
outside the boundaries specified on the LIM card.
The programmer can probably correct the error
by extending the limits.)

C, P, D, K, A, or ZCD PUNCH ERR (There
is an illegal character in one of the fields.)

NO ORIGIN ON FIRST C OR K CARD

NO ORIGIN IN FIRST CARD (In an absolute
deck, this message may mean that the first card
was a flow card. A non-BSS relocatable deck
without a loader adjustment card will also cause
the above error message.)

4, If the last correct card loaded was in card
code, the entire card is printed, instead of the
sequence number and identification.

Other messages given by the loader are:

JOB CANNOT BE RUN BECAUSE OF INPUT

DIFFICULTIES (An uncorrectable UK was encountered

in the reading of this deck by MCP.)
NO BRANCH CARD IN CURRENT DECK--JOB
REJECTED

BSS Processor

The following error messages may be given by
the BSS processor:

1. JOB TERMINATED DUE TO SEQUENCE (OR
CHECK SUM) ERROR. LAST CORRECT CARD IS

22

SEQ. NO. X ID Y IN Z SUBPROGRAM. (X is the
sequence humber from column 3, Y is the identifi-

cation in column 4, and Z is the subprogram name.)
2, JOB REJECTED - COMMON AND PROGRAM
OVERLAP, (The total size of subprograms and

commons is greater than the size of available storage.)

3. BSS TERMINATED JOB - PROGRAMMER
ERROR (The above message appears on the console
only, for any of the errors below.)

JOB TERMINATED - (REASON) (This message ap-
pears on the output listing, where (reason)
is one of the following:)

T.V. XX INCOMPLETE IN YY SUBPROGRAM
(Entry point XX cannot be found, either in the
input deck or in the FORTRAN library. YY is
the name of the subprogram in which the trans-
fer vector appears. A missing subprogram
may have to be added to the input deck.)

TOO MANY NAMED COMMONS IN YY SUBPROGRAM
(The number of entries in the second inter-
mediate table has exceeded available storage.)

TOO MANY TRANSFER VECTORS IN YY

SUBPROGRAM (The number of entries in the third
intermediate table has exceeded available
storage.)

ILLEGAL TYPE OF CARD IN YY SUBPROGRAM
(The column 1 code is not acceptable to the
BSS processor.)

RELOCATION TABLES ARE TOO LARGE (The
number of entries in the relocation table has
exceeded available storage.)

INCORRECT CARD ORDER IN YY SUBPROGRAM
(See Card Order in section on BSS processor.)

4. ILLEGAL DISK INPUT TO BSS LOADER

5. LOADER ADJUSTMENT HAS LOW ORIGIN
(The origin specified on the loader adjustment card
would cause this subprogram, if loaded, to overlay
a subprogram previously loaded. The origin on the
loader adjustment card should be changed.)

6. REPEATED UK INTERRUPTS FROM DISK

7. EPGK INTERRUPT FROM DISK

8. COMMON XX WAS NOT IN THE SYMBOL
TABLE WHEN THE DEFINE CARD WAS
ENCOUNTERED IN SUBPROGRAM YY (The first
named common specified on the define card has not
yet been declared on a common definition card in the

Ainput deck.)

9. THE 50TH DEFINE CARD HAS BEEN
ENCOUNTERED. THE REST (IF ANY) WILL BE
IGNORED (No more than 50 significant define cards
may be used.)

10. NO ENTRY POINT WITH NAME *MAIN* -
JOB WILL NOT BE RUN (There is no main subpro-
gram in the input deck.)

The following additional error messages may ap-
pear in a job which uses the segmentation feature:

1. ERROR-SEGMENTS NOT PROPERLY
ATTACHED (A segment has been declared which is
not attached directly or indirectly to the primary
segment, The programmer may have to re-organize
his overlay.)

2. ERROR - SEGMENTS HAVE TOO MANY
LEVELS (Segments may have no more than eight
levels. The programmer should re-organize his
overlay.)

3. ERROR - ORIGIN CARD OVERLAYS
PREVIOUS CODING. ORIGIN IGNORED (The origin
specified on the loader adjustment card would cause
this subprogram, if loaded, to overlay coding which
should not be overlaid. The origin specified on the
loader adjustment card should be changed.)

4, ERROR - SEG END IN COMMON TABLE NOT
IN NODE TBL (An out-of-phase condition exists in
the BSS processor.)

5. ERROR - DUPLICATE DATA COMMONS
(Two block data subprograms have declared named
commons of the same name. Unique names should be
assigned.)

6. ERROR - DATA COMMON NOT IN PROPER
SEGMENT (The data common was not declared in the
segment with which it is associated by the segmenta-
tion logic. The block data subprogram should bhe
placed in another segment.)

7. ERROR - MAIN SEGMENT NOT FOUND (An
out-of-phase condition exists in the BSS processor.)

8. ERROR - THE PROGRAM EXCEEDS STORAGE
IN SEG XX (The total amount of storage used in seg-
ment XX for subprograms and commons is larger than
the amount of storage available. Segments should be
re-arranged.)

9. ERROR - ILLEGAL TRANSFER BETWEEN
SEGMENTS (See illegal types of transfers in Phase 5
of section on Segmentation.)

10. ERROR - TOO MUCH STORAGE USED BY
RELOCATION TABLE

11. ERROR IN LOCATION OF RELOCATION
TABLE (An out-of-phase condition exists in the BSS
processor.)

Appendix B. Reject Messages 23

C28-6379-0

TN

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

VSN ur pajung

0-64€9-820

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	xBack

