IBM 7030 DATA PROCESSING SYSTEM

MASTER CONTROL PROGRAM USER'S GUIDE

MCP, the Master Control Program, is designed to perform the following functions for
the programmer:

1.

G W N

o

Concurrently process one program while reading in subsequent jobs and putting
out the results of previous jobs.

Call in processing programs and correction subroutines for execution,
Assign and protect storage areas for the programmer.

Maintain constant communication between the program and the operator.
Assign absolute input-output units to symbolic units defined in the problem
program.

Actuate input-output operations as requested by the programmer via
pseudo-operations.

Handle maskable interrupts for the programmer or, if desired, give him
control of any of the maskable interrupts.

Handle I-O interrupts.

Perform various specialized functions for the programmer that are initiated
by special pseudo-operations.

This manual is intended as a programmer's guide to the use of MCP. It provides him
with descriptions of the above functions, and supplies calling sequences and table for-
mats wherevernecessary. A knowledge of the IBM 7030 Data Processing System
Reference Manual, Form A22-6530, is assumed.

~ COMPOSITION OF THE INPUT DECK

Input to the system may consist of:

W DN

Definition cards
Symbolic Program Cards
Absolute Binary Cards
Data Cards

Column 1 of all cards is reserved for identification.

NOTE: This bulletin does not attempt to describe all of the functions performed by the Master Control Program.

Instead, emphasis is placed on those conventions which the programmer must follow in his own programs
in communicating with the control program and its facilities.

Moreover, all specifications and conventions applying to the Master Control Program that are described
here are preliminary in nature and are subject to modification and/or expansion in the near future.

© 1960 by International Business Machines Corporation

DEFINITION CARD
The five types of definition cards are:

Job Card

. Type-of-Problem Card
LIM Card

I0D Card

Reel Card

.

G W N

.

A job card and a type-of-problem card must precede every deck in the order stated.
If the first four types of definition cards are used, they must appear in the order in
which they are listed above.

JOB CARD

This card is always the initial card in an input deck. It serves as a logical separation
between jobs; its appearance signals the beginning of a new job.

The format of the job card is:

112 910 68169 80
JOB, ANYIDENTIFICATION

The identifying information is printed out on the typewriter and heads and follows any SPOOL output.
At the option of the individual installation, an accounting program will also make use of the identifying
information supplied on job cards.

TYPE-OF-PROBLEM CARD

This card must be punched in one of the following formats:

2 9]10 6869 80
B GO
B STRAP, NOLIST; NOPUNCH
or
B COLASL, NOLIST, NOPUNCH
B STRAPGO, NOLIST, NOPUNCH
or
B COLASLGO, NOLIST, NOPUNCH

COLASL is the Los Alamos compiler.

NOLIST suppresses the listing produced by the compiler named.

NOPUNCH suppresses punching of the binary output deck by the compiler named. Either one, or
both, of these fields may appear if a compiler is named. Neithet is appropriate in a straight GO
deck.

LIM CARDS

This card is present only in a GO deck, i.e., it can only follow a GO definition card.
The LIM card, which is part of the output of STRAP II, is punched in the format:

-

A and B are six~digit octal integers,

10 68169 80
LIM, A.0, B.O

A = the full word address which contains the program's lowest bit. A must be = 41g.
B = the full word address immediately following the program's highest bit address.

MCP uses the information contained in a LIM card for storage assignment; at load time,
MCP loads A and B into the boundary registers.

IOD CARD

The configuration of I-O devices can vary not only from installation to installation, but
also within a single installation from time to time. MCP assumes the responsibility
of maintaining an up-to-date record of the status and availability of all I-O devices that
are attached to the exchange. The system can then assign I-O devices to problem pro-
grams and prevent conflicting assignments of these devices. Moreover, the I-O re-
quirements for any problem program may change from one run to another. To provide
greatest flexibility, the problem program describes its I-O requirements by means

of symbolic I-O definitions, the IOD cards.

An IOD card describes an I-O requirement by giving parameters that specify the type
of 1-O device to be used, how the device is to be used, and the exit to be taken when
the I-O operation is terminated. Several files may share one IOD statement.

STRAP II reproduces IOD cards exactly as they are submitted and includes them in the
punched output. STRAP punches two additional fields in each duplicate IOD card: the
I-O Reference Number field (columns 69-72), and the Absolute Exit field (columns
73-80). Thus, when writing an 10D statement, the programmer can use only columns
1-68.

The problem program names each I0D card with a symbol and thereafter refers to the
particular I-O device by using this symbol as a parameter in the calling sequence for
a pseudo I-O operation. (See Pseudo I-O Operations.)

The IOD card is divided into five fields:

1. Class: column 1 contains the single character ""B" to identify the card as a
definition provided by the problem program.

2. Name: columns 2 through 9 contain a symbol up to 8 characters in length that
names the symbolic file. Symbolic file is used here as a synonym for the I-O
requirement defined by the parameters appearing on the IOD card.

3, Statement: columns 10 through 68 contain parameters, each separated by a
comma, that describe the symbolic I-O file. These parameters vary with the
type of I-O device requested, but the pseudo-op code and the first three param-
eters are the same for all types of units: 10D, TYPE, EXIT, and CHANNEL.
10D is the mnemonic for the pseudo-operation "I-O Definition." TYPE symbol-
izes the field where the programmer specifies the type of input-output unit re-
quired. TYPE may be PRINTER, CONSOLE, READER, PUNCH, DISK, TRACK,
or TAPE. EXIT represents a programmer symbol that specifies the location of
the first word of the I-O Table of Exits. (See I-O Interrupts.) The symbol EXIT
may not contain more than eight characters. CHANNEL represents a programmer
symbol, not more than eight characters in length, that will be assigned an absolute
channel number by MCP. If the programmer supplies several IOD's and he wishes
them all to be assigned to units on the same channel, he must use the identical
channel symbol on each IOD card; if each request is to be assigned to a different
channel, a different channel symbol must be specified on each IOD card. If no
channel symbol is supplied (null CHANNEL field) on an IOD card, MCP assumes
that channel assignment is of no importance to the problem program and will
assign any unit available, regardless of the channel to which it is attached. If
special channel assignments are requested and they cannot be honored by MCP,
the problem program is run and the channels actually assigned conform as closely
as possible tothe programmer's request.

4. I-O Reference Number: columns 69-72 are left blank by the problem program.
On the output IOD's, STRAP II converts the IODNAME to an absolute number and
punches this octal number in this field. The first IOD card encountered has the
number 1 punched in this field, the second IOD card has the number 2 punched

here, etc.

5. Absolute Exit: columns 73-80 are left blank by the problem program. On the
output I0D's, STRAP II punches the octal equivalent of the evaluated symbol
for the first word address of the I-O Table of Exits in this field. (See "Input-
Output Interrupts.')

The general format for an IOD card is:

112 9|10 6869 72|73 80
B | IODNAME 10D, TYPE,EXIT,CHANNEL,.... I-O ABSOLUTE
REFERENCE EXIT
NUMBER

There are four classes of IOD cards. An IOD card is classified by the type of I-O unit
to which the symbolic file of information is to be assigned.

1. Printer, Console IOD Card

1]2 9|10 68|69 72173 80
B |IODNAME IOD, TYPE, EXIT,CHANNEL 1-0 ABSOLUTE
REFERENCE EXIT
NUMBER

where TYPE is PRINTER, CONSOLE

2. Reader, Punch IOD Card

112 9{10 6869 72|73 80
B | IODNAME 10D, TYPE, EXIT, CHANNEL, MODE I-O ABSOLUTE
REFERENCE EXIT
NUMBER

where TYPE is READER or PUNCH
MODE is either ECC
NOECC
If MODE is null, NOECC is assumed.

3. Disk, Track IOD Card

1|2 9|10 68|69 72|73 80
B| IODNAME |10D, TYPE, EXIT, CHANNEL, NUMBER 1-0 ABSOLUTE
REFERENCE EXIT
NUMBER

where TYPE is either DISK or
TRACK

NUMBER is a decimal integer indicating:
a) Number of arcs if TYPE is DISK or
b) Number of tracks if TYPE is TRACK. MCP reserves the requested multiple of 8
arcs, the first reserved arc being the first arc of a track. This permits the programmer
to perform an auto access elimination operation, but his calling sequence must meet
the requirements of the 7030 as stated in the Automatic Access Elimination section of

the 7030 Reference Manual,

4. Tape IOD Card

1]2 9|10 68|69 72173 80
B| IODNAME 10D, TYPE, EXIT, CHANNEL, UNIT, 1-0 ABSOLUTE
MODE, DENSITY, DISPOSITION REFERENCE EXIT
NUMBER

where TYPE is TAPE

UNIT represents a programmer symbol which specifies an I-O unit of the type specified. The symbol may
not be longer than eight characters. It is associated with a channel by means of the CHANNEL symbol.
UNIT is assigned an absolute value by MCP after CHANNEL has been examined. The method of requesting
several units on different channels has been explained under CHANNEL above. Except where TYPE is TAPE,
all channels are one-unit channels; thus, in most cases, CHANNEL and UNIT are synonymous.

MODE is either ODD - odd parity, no ECC
EVEN - even parity, no ECC
ECC - odd parity, ECC

Density is either HD - high density
LD - low density

If MODE and/or DENSITY are null, the missing information is taken from the reel label (see Reel Labeling
section). If the information cannot be obtained in this manner, the program is removed from the computer.

DISPOSITION may be NSAVE - do not save reels in any case
CSAVE - save reels only if job is complete
ISAVE - save reels only if job is incomplete
SAVE - save reels in any case

IF DISPOSITION is null, NSAVE is assumed,

A REEL card must immediately follow the tape IOD card to which it refers, unless
there are more than one I0D for the same unit and channel. In this latter case, the
REEL card must immediately follow one of the IOD cards for that unit and channel. A
REEL card may follow another REEL card that refers to the same unit and channel.

A REEL card is punched in the format:

1]2 910 6869 72173 80
blank REEL, REEL1, REEL2, etc. blank blank

REEL represents a pseudo operation code that identifies a card that lists reel numbers of tapes
associated with a TAPE IOD statement.

REELI represents any symbol up to eight characters in length, The first three characters are

not part of the reel identification, but specify whether the tape is labelled or unlabelled and
whether the tape is protected (ring out) or not protected. The remaining 5 characters agree with
the identification shown on the physical reel. Thus REELi may be:

PLBxxxxx protected, labelled
PULxxxxx protected, unlabelled
NLBxxxxx unprotected, labelled

If REELi is null, a labelled, unprotected tape is assumed.

SPOOL
SPOOL is the routine within MCP that performs the following services for the user:

1. Preprocesses input (data and programs).
2. Attempts to minimize handling of jobs by the operator.
3. Attempts to optimize use of the high-speed on-line devices.

The three functions in SPOOL are Read, Punch, and Print. Any of these functions can
be operating simultaneously with another function or with the problem program.
Furthermore, SPOOL may be operated in one of two modes, overlapped or not overlapped.

In the overlapped mode, successive jobs are read in or the results of successive jobs
are printed out or punched out while the problem program itself, or another problem
program, isbeing executed. Input and output is performed on, and only on, the I-O
devices assigned to SPOOL. In the not-overlapped mode, the problem program has the
exclusive use of SPOOL I-O devices. In effect, a program running in the not-overlapped
mode is granted top priority and, therefore, by-passes all other jobs which may be in
queue on SPOOL input and output tapes.

SPOOL operates in the overlapped mode unless a system command is given by the
operator which places it in the not overlapped mode.

Once the mode has been established, the problem program communicates with SPOOL
by means of pseudo-instructions that use calling sequences to initiate reading, punching
and printing. These operations move data between SPOOL and the program via SPOOL
I-O devices. The SPOOL I-O devices in effect at any time are defined by the operator.

SPOOL READER

The SPOOL reader maintains buffers that contain 15 words for each problem program
data card. Eighty columns of each card are read. Dataare movedfrom these buffers
whenever the problem program uses the following calling sequence:

B, $MCP

, $SCR

, FWA(D)

, N.

» (N7)

, (End Return)
(Normal Return)

The pseudo-operation symbolized by $SCR is interpreted as a request to move N column
binary card records (15 word records) to the problem program storage area whose
effective first word address (an 18-bit address field) is specified by the problem pro-
gram symbol FWA(I). Control is returned to the problem program at the normal return
in the calling sequence, when 15N words have been moved. N is a decimal integer.

If N card records have been specified, but there are fewer than N card records, the
card records that are in the reader buffer are moved but return of control is made to
the end return in the calling sequence and the number of cards actually moved is rec-
orded in bits 0-17 of N' in the same calling sequence.

Example: At location ABLE, the problem program requests that the 10 cards in the
reader buffer be moved to locations BAKER to BAKER +149, inclusive.

ABLE B, $MCP
+ .32 , $SCR
+1.0 , BAKER
+1.32 , 10.
+2.0

+ 2,32 B, END
+3.0 -

If the number of cards in the data file= 10, control will be returned at ABLE + 3. 0.

If the number of cards in the data file <10 (8, for example), locations BAKER to BAKER
+119. 0 inclusive will contain the data moved, bits 0~17 of location ABLE + 2.0 will
contain 8, and control will be transferred to ABLE + 2.32.

SPOOL PUNCH

The SPOOL punch routine maintains buffers to hold output column binary card records
(80 columns) in preparation for punching on the SPOOL card punch. Data is moved
from a specified problem program storage area to these buffers whenever the following
calling sequence is written:

B, 3MCP
, $SPU

, FWA(I)
, N.

(Return)

SPOOL PRINT

Output data, in the form of 132 - character lines, are moved from the problem program's
storage area to buffers maintained by the SPOOL printer whenever the following calling
sequence is issued:

B, $MCP
, $SPR

, FWA(I)
» N.

(Return)

The pseudo-operation symbolized by $SPR is interpreted as a request to move edited
lines, from the problem program's storage area whose effective first word address is
specified by FWA(I), to the SPOOL buffer. Nisa decimal integer that specifies the
number of lines to be moved. Each line is assumed to consist of 17 words where suc-
cessive 8-bit bytes are BCD characters, except for the last 24 bits of the 17th word,
which are all zero. The first character of each line is a control character which must
be one of the following:

- 00 1000009 single space before printing
J 00 1000015 double space before printing
1 00 0000019 channel one before printing (restore)

When the N lines have been moved from problem program storage to the SPOOL buffers,
control is returned to the return entry in the calling sequence.

The output of each program is preceded and followed by a line that identifies the output.
This information is taken from the JOB card.

Example: The problem program has formed three lines (54 words) of output beginning
at location BAKER. At location ABLE, the program requests that this block be moved
to output SPOOL.

ABLE B, $MCP
+ .32 , $SPR
+1.0 ,» BAKER
+1.32 , 3.
+2.0 -

If this was the first use of output SPOOL, the problem program's identification is
written before the output block is moved. Output SPOOL moves the contents of BAKER
to BAKER + 53 to its buffers and returns control to ABLE +2.

INPUT-OUTPUT

Prior to problem program execution, MCP assigns an absolute channel and unit to each
IOD. This information is also printed as a message to the operator. As part of this
assignment, MCP stores the parameters appearing on the IOD cards in special tables.
The IODNAME is then used to form the necessary addresses to retrieve the parameters
on any particular IOD card from these tables. Thus, MCP relieves the programmer

of any concern over absolute units and channels.

PSEUDO I-O OPERATIONS

All I-O devices are actuated by the Actuator subroutine within MCP. Use of an I-O
device is requested by the programmer in calling sequence form, which varies with

10

the type of operation requested. In general, the calling sequence takes the form:

B, $MCP
, $OP
, IODNAME(I)

where: OP represents an I-O operation
IODNAME is the symbol in the name field of an IOD card
I represents any index register

The dashes at the end of the calling sequence format indicate the space where the rela-
tive arc numbers or the symbolic locations of control words would be placed if required
by the operation being requested.

The branch to $MCP causes control to be given to the Actuator subroutine. The IODNAME
refers to a word in a table thatinturn locates the block of parameters specified on the
10D card. If the channel is busy because an operation is in progress on that channel,

the instruction counter is frozen until the channel is free.

If both the channel and the unit are free, the Actuator begins the set-up of the requested
operation. This set-up may include:

1. Location of a unit on a multiple-unit channel.
2. Setting the mode as requested on the IOD card, or tape label.
3. Saving and checking the control word or arc number, if one is given.

In general, it may be said that Actuator supplies the necessary 7030 instructions that
are required to perform the requested I-O operation.

When the operation has been set up and accepted by the exchange, control is given to the
return address associated with the calling sequence (the location after the last control
word given, or, if no control word is given, the location immediately after the half
word where the IODNAME is specified).

Two restrictions apply to any control words that are addressed in an I-O calling
sequence:

1. The control word(s) must be in storage.
2. The chain bit in the last control word must be 0.

All 1-O operations available in the 7030 system may be actuated by means of the above
calling sequence linkage. In addition, all I-O operations, with the exception of Copy
Control Word, may be suffixed by the letter S (which represents SEOP) to suppress the
EOP interrupt. The complete calling sequences for all I-O operations are listed in
the Appendix.

REEL LABELING

The initial file of every tape reel used by MCP must be prepared in a special format
and the information contained in this file is used only by MCP. This file consists of
one record containing:

1. Reel identification - this matches the label on the physical reel.

2. Density in which the remainder of the reel is written.

3. Common mode for the reel; if a tape IOD card contains a null mode field, the
tape unit is set to the mode specified in the reel label.

The reel identification is written off-line prior to use of the reel in the system. The
tape mark following the initial file is written in the density given for the entire reel.
The label itself is always written in the standard mode for the installation (here meant
to be high density, even parity).

Because the information in the reel label is not used by the problem program, the tape
mark following this initial file is used to simulate the beginning-of-tape metallic strip.
If the programmer attempts to backspace over this end-of-file mark to the real metallic
strip, his action is prohibited by MCP. The tape will be positioned at the end of the
reel label and a branch will be made to the Signal Return in the I-O Table of Exits.

(See "I-O Interrupts.') Repeated attempts to backspace over the reel identification will
be met with the same response and signal from MCP.

COMMUNICATION BETWEEN MCP AND THE PROBLEM PROGRAM

Any problem program may issue a request to MCP to perform a specific function, such
as stack I-O interrupts, write end-of-file, turn tape indicator off, etc.

Requests such as these are issued as pseudo-operations in the form of calling sequences.
The first instruction in all pseudo-operation calling sequences is a B, $MCP. $MCP

is a system symbol for an address in protected storage. The attempted branch causes
an instruction fetch interrupt. The instruction fetch interrupt handling routine within
MCP examines the rest of the calling sequence to determine which pseudo-operation is

being requested and to initiate the appropriate action. Thus, the programmer is cautioned

that his program must be enabled and the [F _mask bit set to one.

Most of the pseudo-operations in this category are described in detail in other sections
of this bulletin, such as Program Interrupts and Input-Output Operations. Two additional
pseudo-operations are discussed here. The general format is:

B, $MCP
,» $0P

where OP may be:

1. RESLD - Resume Loading. This pseudo-operation calls on the loader to resume
loading binary cards from the appropriate SPOOL buffer, or from the disk if the

11

12

program is being run subsequent to a compilation. Control is returned to the
address punched in the next branch card encountered.

2. EOJ - End of Job. This pseudo-operation terminates execution of the current
problem program. MCP saves or releases the tapes used by the program in
accordance with the dispositions specified on the IOD cards. The loader then
calls in the next job from the appropriate SPOOL buffer.

INTERRUPTS

The linkage between MCP and a problem program, both intentional and non-intentional,
is wholly dependent upon the 7030 interrupt system. Therefore, the problem program
must run in the enabled mode, The programmer retains the option of ignoring any or

all of the maskable interrupts during part or all of his program by setting the appropriate
mask bit(s) to zero. Naturally, non-maskable interrupts must remain masked on or

off as the circuitry dictates. The only exception to this rule is that Instruction Fetch
must be masked on as previously explained. Interrupts are divided into the following
four categories:

Group Indicators
1. Equipment interrupts 0-8
2. Input-Output interrupts 9-13
3. Instruction Error interrupts 15-17, 19, 21*
4, Program interrupts 18, 20, 22-47

* Indicator 21, Instruction Fetch, may represent a valid program interrupt
when functioning as the linkage between MCP and the problem program.

EQUIPMENT INTERRUPTS

All equipment interrupts are completely outside the control of the problem program
and are handled completely by MCP.

INPUT-OUTPUT INTERRUPTS

Receptor is the routine within MCP that handles processing of I-O interrupts. When any
1-0 interrupt occurs, the indicated six steps are performed sequentially.

Step One
MCP determines which I-O operation was being processed when the interrupt occurred.
Step Two

MCP saves the lower registers.

Step Three

MCP determines if the problem program is in the stacked or released mode. When a
program is in the released mode, the problem programmer wishes to process immed-
iately any I-O interrupt that may occur. When a program is placed in the stacked mode,
the intention is to place any I-O interrupts that may occur in a queue and have them held
in that status until such time as the released mode is entered. Then interrupts that have
been stacked will be processed, one at atime, inthe order in whichthey were stacked.

Pseudo-operations are used to invoke these modes:

B, $MCP
, $SIO

causes the program to operate in the stacked mode,

B, $MCP
, $RIO

places the program in the released mode.

If a program is in the released mode and an I-O interrupt is being processed, any
further interrupts that occur during that interrupt will automatically invoke the stacked
mode. Restoration to the released mode is also accomplished automatically by MCP
and actually need not be of any concern to the programmer.

Step Four

MCP determines the appropriate I-O Table of Exits. Every IOD has a table of exits
associated with it; several IOD's may, however, share a table of exits. Thus, if a
program has N IOD statements, there may be as many as N or as few as one I-O
tables of exits.

The purpose of an I-O table of exits is to provide storage space for information pertin-
ent to an I-O interrupt. Each table is composed of six full words, and must begin at a
full word address. Each of the last four words contains instructions supplied by the

programmer,

0 17(18 31]32 50|51 63
word O Reference Number blank Actuated Addr. blank

0 8{9 13(14 31132 50(51 63
word 1 blank 1-O Inds. blank Interrupted Addr. blank
word 2 ERROR RETURN INSTRUCTION
word 3 END EXCEPTION RETURN INSTRUCTION
word 4 SIGNAL RETURN INSTRUCTION
word 5 NORMAL RETURN INSTRUCTION

13

When an I-O interrupt is released to the problem programmer, the indicators are
stored in the I-O indicators field of word 1. The actuated address, or the location of
the first word of the I-O pseudo-operation calling sequence (the B, $MCP instruction)
that requested the particular I-O operation that was being processed when the interrupt
occurred, is stored in bits 32-50 of word 0. The reference number of the appropriate
IOD statement is stored in bits 0-17 of word 0. Finally, the interrupted address (the
location of the instruction being executed when the interrupt occurred) is stored in bits
32-50 of word 1.

The I-O table of exits must be constructed by the programmer. An easy way to
accomplish this is to assemble the instructions

CNOP
EXIT DRZ(N), 2

followed by four full-word instructions for the four returns. EXIT, the name of the
first word of the table, is the symbol that appears in the IOD statement.

The pseudo-operation $CHEX, Change I-O Tables of Exits, permits the problem pro-
grammer to change the symbol EXIT in an IOD statement to a new symbol that represents
a new location for the table (NEXIT). The format for this pseudo-operation is:

NAME B, $MCP
,» 3CHEX
, IODNAME(T)
, NEXIT
(Return)

Control is returned to the problem program at the return word in the linkage when the
operation has been completed.

The other four words in the I-O table of exits provide for entering correction routines.
Normally, each word will contain two half-word instructions, one of which is a Branch
instruction.

The significance of Signal Return, word 4, varies with the type of I-O device associated
with the table. The alternatives are:

a. If unit is Reader, Printer, Punch or Console, signal return means a channel
signal interrupt has occurred independently of the other I-O status bits.

b. If unit is a Disk, signal return is given upon completion of a locate instruction.

c. If unit is Tape, signal return indicates an attempt to move backward over the
reel label or its associated tape mark (as previously explained in ""Reel
Labeling').

Step Five

MCP now analyzes the setting of the indicators stored in word 1. Depending on the
status of these indicators, control is given to word 2, 3, 4, or 5. As previously stated,

these locations will normally contain branches to other routines to correct the situation
that caused the interrupt. As soon as one of the instructions in locations 2, 3, 4, or 5
is executed, the program is considered to be in an I-O correction routine. Therefore,
all but the read-only portions of the lower register (0-31) are cleared to zero.

Step Six

The programmer must terminate all his I-O correction routines with the pseudo-
operation:

B, $MCP
, SRET

The Return pseudo-operation tells MCP that the routine has been executed and that the
programmer wishes to return to the main-stream of his program. MCP determines the
current mode of the problem program. I it is in the stacked mode, return is made
immediately to the main-stream. If the program is in the released mode, all stacked
interrupts are released from the queue and processed one at a time, the lower registers
previously saved are restored, and then control is returned to the main-stream. If RET
is issued outside of the correction routine, it is treated as a NOP.

One additional operation is available within MCP that is associated with I-O interrupts.
The pseudo-operation WAIT is issued via the calling sequence:

B, $MCP
, $WAIT
, IODNAME(])

The interpretation of WAIT by MCP is determined by the status of the IOD statement
referenced by the calling sequence via IODNAME.

PROGRAM
10D Not Stacked Stacked
not busy NOP NOP
actuated Wait for any interrupt Wait for specific interrupt
stacked Release specific interrupt

INSTRUCTION ERROR INTERRUPTS

Instruction error interrupts involve bits 15, 16, 17, 19, and 21 of the indicator register.

Indicators 15, 16, 17, and 19 are permanently masked on.

In order to operate within MCP, it is the programmer's responsibility to keep indicator
21, Instruction Fetch, masked on. Failure to do so will result in loss of communication
between the problem program and MCP and removal of the program from the computer.

All instruction error interrupts are handled completely by MCP; therefore, the pro-
grammer need not provide any correction routines for this class of interrupts.

15

16

PROGRAM INTERRUPTS

Program interrupts involve the following indicators:

18 Execute Exception
20 Data Fetch

22-34 Result Exception
35-38 Flagging

39-40 Transit

41-47 Program Indicators

Indicator bit 18 is permanently masked on. All other indicators in this category are
maskable by the problem programmer. Once a programmer indicates that he wishes to
take a program interrupt (by setting the appropriate mask bit to one), he may then elect
to use either a special correction routine that he provides within his own program or a
standard one provided with MCP. This choice is specified within a Program Table of
Exits (PTE). The format of this table is:

0 18
word 1 INSTRUCTION COUNTER blank
word 2 INDICATOR REGISTER
word 3 MASK REGISTER
word 4 PATTERN

word 5 INSTRUCTION FOR FIRST PATTERN BIT SET TO ONE
word 6 INSTRUCTION FOR SECOND PATTERN BIT SET TO ONE

*word n+4 | INSTRUCTION FOR THE Nth PATTERN BIT SET TO ONE

*N equals the number of bits in the pattern set to one

The selection of standard or special correction routines is made in the PATTERN word
of the PTE. In word four of the PTE there is one bit corresponding to each indicator
in the program interrupt group, and each of these bits is in the same position in word 4
as are the indicators in the indicator register. If the programmer wishes to use a spe-
cial routine for a particular program interrupt, he sets to one the bit in word 4 which
corresponds to that indicator. If he wishes a standard routine, the appropriate bit in
word 4 is left as zero. If the programmer is willing to use only standard correction
routines, no PTE is required.

Word 5 of the PTE contains the instruction related to the first bit in the PATTERN
(proceeding from left to right) that is set to one. This instruction will normally be a
branch to the special routine provided by the programmer. Word 6 contains a branch
to a special routine for the second PATTERN bit set to one, and so on. One full word
must be provided for each PATTERN bit that is set to one.

If the programmer is supplying a Program Table of Exits, he must tell MCP where the
table is located. This is accomplished by placing the location of the first word of the
PTE in the refill field of index register 15, which is reserved for this purpose. (Obvi-
ously, then, the PTE must begin at a full-word address since the refill field of $15 is
18 bits in length.) Whenever the program reaches a phase where the mask that is in
effect permits program interrupts to be taken, the initial location of the PTE must be
in $15. Normally, then, one of the first instructions of a problem program would load
this location, or zero, into the refill field of $15. If this field is zero, MCP assumes
no PTE is provided. If the programmer wishes the use of special correction routines
for an interrupt that occurs while a special correction routine is in progress, it is his
responsibility to load the initial location of the new PTE (if one is required) in $15 at
the appropriate time.

When a program interrupt is taken, MCP saves the instruction counter, the indicator

register and the mask register in the first three words of the PTE, which must be re-
served by the programmer for this purpose. At the conclusion of a special correction

routine the programmer may elect to restore these three registers himself or have MCP

restore the registers. To specify the latter choice, the programmer must provide a
pseudo-operation in calling sequence form:

B, $MCP
,» SRAM
(Return)

When the $RAM pseudo-operation is encountered, MCP restores the instruction counter,
the indicator register and the mask register, and returns control to the problem program.

APPENDIX: INPUT-OUTPUT CALLING SEQUENCES

READ B, $MCP COPY CONTROL WORD B, $MCP
, $RD , $CCW
, IODNAME(I) , IODNAME(I)
, CTLWIXI'") , CTLWIXI')
(Return) (Return)
WRITE B, $MCP RELEASE B, $MCP
, W , $REL
, IODNAME(]I) , TODNAME(I)
, CTLWIXI') (Return)
(Return)
RESERVED LIGHT OFF B, $MCP
LOCATE B, $MCP , SRLF
(for , $LOC , IODNAME(I)
Disk) , IODNAME(I) (Return)
,» ARC(I')
(Return) RESERVED LIGHT ON B, $MCP
. , $SRLN
Here ARC(I') is an indexed decimal , IODNAME(I)
integer which is relative to the (Return)
number of arcs requested by the IOD.
That is, ARC(I') is less than or equal CHECK LIGHT ON B, $MCP
to the NUMBER field of the disk IOD , $KLN
for IODNAME(I). , IODNAME(I)
(Return)

17

18

FEED CARD

SOUND GONG

SPACE BLOCK

BACKSPACE
BLOCK

SPACE FILE

BACKSPACE
FILE

ERASE LONG GAP

WRITE END OF
FILE

TAPE INDICATOR

OFF

B, $MCP

, $FC

, IODNAME(I)
(Return)

B, SMCP
» $GONG
, JODNAME(I)
(Return)

B, $MCP

, $SP

, IODNAME(I)
(Return)

B, $MCP

s $BSP

,» IODNAME(I)
(Return)

B, $SMCP

s $SPFL

, IODNAME(I)
(Return)

B, SMCP

, $BSFL

, IODNAME(I)
(Return)

B, $MCP

» $ERG

» JODNAME(I)
(Return)

B, $SMCP

s $SWEF

» IODNAME(I)
(Return)

B, $MCP

» S$TIF

» IODNAME(I)
(Return)

APPENDIX (Cont.)
TAPE INDICATOR

ON

REWIND

UNLOAD

FREE

B, $MCP

, $STIN

, IODNAME(I)
(Return)

B, $SMCP

» SREW

» JODNAME(I)
(Return)

B, $MCP
, SUNLD
, IODNAME(I)
(Return)

This pseudo-operation requests that the
reel be rewound and removed. If,
however, the programmer has specified
no further reels for the particular file,
the operator will mount a scratch tape.
If two or more reels are asked for, it is
advisable for the program to supply two
IOD's to avoid waiting for the tape to
be mounted.

B, $SMCP

,» $FREE

, JODNAME(I)
(Return)

This pseudo-operation accomplishes the
following:

If the disposition for the particular file
is either SAVE or CSAVE, the tape is
rewound and unloaded. The empty
tape drive is released. If the disposi-
tion is either ISAVE or NSAVE, the
drive is released and the tape becomes
a scratch tape.

Any of the pseudo-operations, except CCW and FREE, may be suffixed by S, which
suppresses the EOP interrupt, except in rewind and unload, where the suffix S actually

suppresses the channel signal interrupt.

EN

International Business Machines Corporation
Data Processing Division, 112 East Post Road, White Plains, N.Y. Printed in U.S.A. J22-6559 12/60

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	xBack

