Error Halts
in the BSS
Loader

704 FORTRAN II

Error Halt List for BSS Loader, November 28, 1958.

Halt (Octal):

Reason for Halt:

Procedure:

-

77775

Instructions and
symbol table of
Loader overlap.

End of File in

the card reader.

Instructions and
data overlap.
Check sum error.

More than 20
subroutines are

‘missing,

Missing
Subroutines.

Get off machine. Combination of
program and transfer vectors too long.
Rewrite program.

Press START to read more cards.

Get off machine. Combination of
instructions and data too long. Re~-
write program.

Press START to accept information.

 If missing subroutines are at hand,

press START until stop at 777758 is
reached. Follow instructions (a) for
that stop.

This stop indicates the TRANSFER
CARD has been reached, It is

caused by one of two occurances:

(a) Loading has been completed, but
at least one of the subroutines called
for is missing. Location 77453 con- -
tains the BCD name of the first missing
subroutines, location 77454, the second,
etc. If the missing subroutine (s) is
immediately available, it may be loaded
without starting the entire loading pro-
cess over again, Place another
TRANSFER CARD (9 punch in col 1) at
the end of the routine (s), ready in the
card reader, and press START.

{b) The TRANSFER CARD encountered

is really a premature one that simply
has not been withdrawn. Be certain
that a TRANSFER CARD is the last card
at the end of the deck and press START.



FORTRAN SUBPROGRAM TYPES

Following is a table of FORTRAN subprogram types and
their general characteristics.

Open or Calling Se- Single- or Mul-  Name
Subprogram Type Closed quence Type  tiple-Valued Type
Built-in Functions open (None) S 1
Function Definition closed 1 S 1
FORTRAN I Function closed 1 S 1
FORTRAN II Function closed 2 | S 2
FORTRAN 1II Subroutine closed 2 7 M 3

All Types:

a)

b)

c)

d)

c)

d)

e)

c)

d)

Subprogram Names

Only the 36 alpha-numeric (non-special) characters may be used.

The first character must be alphabetic.

4 to 7 characters.

The first character must be X if and only if the result will be
fixed point.

The last character must be F.

3 to 6 characters.

The first character must be I, J, K, L, M, or N if and only if
the result will be fixed point.

The last character must not be F if the total number of
characters is 4, 5, or 6.

3 to 6 characters.

The last character must not be F if the total number of characters
is 4, 5, or 6. '



Type 1:
Type 2:

LDQ

TsX

TSX

3

=i
%]
<

T8X

Calling Sequences

ARG1
ARG2

NAME, 4

(If ARG2 exists)

Upon entry ARG3, if it exists, will be
stored at 77775, ARG4 at 77774, etc,

Upon entry the n

argument locations

are specified in the

address fields

of the n words immediately following

the entry word. Control returns to the
main program at n+ 1.



POUGHKEEPSIE
South Road Laboratory
Department $35
November 26, 1958

Memorandum for All 704 Users

Subject;: FORTRAN Program Library And END Cards

There are currently 20 library functions availabie for use with the Depart-
ment 535 FORTRAN system (in addition to the twenty built-in routines). Their

names are listed below in one of three groups according to type. The decimal
numbers in parenthesis indicate the storage required.

F I Functions:

LOGF - (42) - natural logarithm
SINF - (91) - sine

COSF - cosine

EXPF - (63) - exponential
SQRTF - (21) - square root
ATANF - (40) - arctangent

TANHF - (139) - hyperbolic tangent

XRANDF - (35) - PE RAND, psuedo random number generator
CERF - (28) - PK CERF, complementary error function
LGAMF - (110) - PK LGAM, natural log of the gamma function

F II Functions: None
F II Subroutines

OFF - (9) - PE OVFL, to turn off AC and MQ overflow triggers.
TEST - PE OVFL, to test the AC and MQ overflow triggers.
SAVE1l - (129) - EL SAVE 1 (Q1), core save and restore.

SAVE 2 - (148) - EL SAVE 2, core and drums save and restore.

AIDE - (368) - GL AIDE (D2), integrator.

LAS865 - (229) - LA S885 (F4), to solve the matrix equation AX = B.
BES] - (990) - NU BES1 (C3), function of the first kind.

BESI - NU BES1 (C3), modified function of the first kind.
BESY - NU BES! (C3), function of the second kind.
BESK - NU BES1 (C3), modified function of the second kind.

QUOD - PE QUOD, EAI Dataplotter output routine.



POUGHKEEPSIE
South Road Laboratory
Department 535
October 28, 1958

Memorandum for All 704 Users

Subject: FORTRAN Program Library Addition

Program Description;

PE RAND - Psuedo random number generator.
(Not distributed through 8 HARE)

FORTRAN Usage: As 2 FORTRAN I Functicen.
Example
I = XRANDF ( MOD)
where MOD is a fixed point interger variable.
A fixed point random number moduloc MOD will
be generated and stored at the location of I.
Restriction;

See FORTRAN fixed point constants.

L. O. Nippe
Dept. 535

LON/hc



Names of the above programs must be used in FORTRAN statements exactly as
listed followed by the necessary arguments. Function names should appear in
the right hand side of arithmetic statements, and subroutine names should appear
in CALL statements,

Additional storage used by the input-output-convert programs in your binary deck
is listed below,

(DBC) 462
(CsH) 137
(TSH) 21
(BDC) - (FIL) 435
(sCH) 90
(SPH) 158
(STH) 12
(RTN) - (LEV) 80
EXP(1 34
EXP(2 40
EXP(3 113

As you know, Sense Switch 5 controls the punching of library programs during
compilation. With the increasing number of compilations per day, this on-line

most library programs punched are redundant because the programmer already has them
in his binary deck from a previous compilation. In order to eliminate this problem,
coples of all FORTRAN library programs have been placed in a card file drawer in the
machine room. In the future, it will be appreciated if ail FORTRAN programs would

be compiled with the following END card:

END (X,X,2,X,0) where eachXis 0, 1, or 2

After compilation, the programmer should refer to the last category of the second
file of output for a list of the necessary library programs.

L. O. Nippe
Department 535
LON/c



POUGHKEEPSIE
South Road Laboratory
Department 535
November 14, 1858

Memorandum to: All 704 Users

Subject: FORTRAN Library Addition

Program Description;
PK CERF - Complimentary error function (1 - probability

integral)
Not distributed through SHARE

FORTRAN Usage: As a FORTRAN I Function
Example:
C = CERF(X)
Where X is a positive floating point argument. The

normalized floating point value of the function will
be stored at location of C.

H. 5. Long
L. Q. Nippe
HSL/LON/c Department 535



POUGHKEEPSIE
South Road Laboratory
Dept. 535

October 28, 1958

Memorandum to: All 704 Users

Subject: FORTRAN Program Library Addition

Program Description:

PK LGAM - Natural logarithm of the Gamma Function.
(Not distributed through SHARE)

Example
F = LGAMF (X)
where X is a positive floating point argument.

The normalized floating point value of the function
will be stored at the location of F.

Restriction:

X> O. Bee PK LGAM write-up.

aws o .

L. O. Nippe
Department 535

LON/hc



POUGHKEEPSIE
South Road Laboratory
Department 535
November 25, 1958

Memorandum for All 704 Users

Subject: FORTRAN Program Library Addition

Program Description;
PE OVFL - Reset or test overflow triggers.
FORTRAN Usage: As a FORTRAN II Subroutine

CALL OFF -~  Turn off the AC and MQ overflow triggers
and lights,

CALL TEST - Test the status of the AC and MQ overfiow
triggers. The SR address field will contain
2123 at stop for AC overflow and 44504 at
stop for MQ overflow.

In order to determine the program location of the overflow, he should
dump memory immediately following the overfiow stop and use the con-
tents of index register 4 to trace back to the main program location.

L. O. Nippe
Department 535



POUGHKEEPSIE
South Road Laboratory
Department 535
October 28, 1958

Memorandum for All 704 Users

Subject: FORTRAN Program Library Addition

Program Description:
EL SAVE 1 - Save and restore cores, and

EL SAVE 2 - Save and restore cores and drums,
(SHARE classification Q1)

FORTRAN Usage: As FORTRAN II Subroutine.
Example
IF ( SENSE SWITCH 6) 101, 100
100 CALL SAVE 1
101 (next statement of sequence)
The above will save core storage only. SAVE 2

should be used when it is desired to save both
core storage and drums.

Restrictions:

Sense switch 6 must be used with these two subroutines.

= W ess e

L. O. Nippe
Department 535

LON/hc



POUGHKEEPSIE
South Road Laboratory
Department 535
October 28, 1958

Memorandum for All 704 Users

Subject: FORTRAN Program Library Addition

Program Description:

LA §885 - to solve the matrix equation
AX = B for X and to evaluate the determinant A.

( SHARE classification F4)
FORTRAN Usage: As a FORTRAN II Subroutine.
Example
CALL 1A 8885 (M, N, TEMP (N, M), I, DETA)

where M is the number of columns and N is the
number of rows of the combined AB matrix, Temp
(N, M) is the first element of the AB matrix
stored row-wise and backwards in memory, I = O
means solve the equation only, I = 1 means solve
the equation and evaluate the determinant A, etc.,
and DETA is the variable name assigned to the value
of the determinant of A or its inverse.

Restrictions:

See SHARE write-up.

L. O. Nippe
Department 535

LON/hc



POUGHKEEPSIE
South Road Laboratory
Department 535
QOctober 28, 1958

Memerandum for All 704 Users

Subject: FORTRAN Program Library Addition

NU BES1 - Bessel functions for real argument and order,
(SHARE classification - C3)

FORTRAN Usage: As a FORTRAN II Subroutine.

Examples

CALL BES] (ARG, F, N, STORE (m))
CALL BESI (ARG, F, N, STORE (m))
CALL BESY (ARG, F, N, STORE (m))
CALL BESK (ARG, F, N, STORE (m))

where ARG is the name of the floating variable argument,
F and N are the floating fraction and fixed integer parts
of the Bessel function order, and STORE ( m ) is the last
( low order ) word of an m word array. Upon return from
the subroutine, using the function of the first kind as an
example, Jg will be found at STORE (m), J; at STORE
(m-1), etc. through Jy at STORE (m-N ).

estrictions;

The respective AC overflow error stops are located near the
end of the program at BESJ+3, BESI+3, BESY+3, and BESK+3.

This FORTRAN version will cause a program stop at BESJ+4 618



October 28, 1958

if any entry is attempted with Arg > 50,

See the NU BES1 write-up for the minimum size of the
STORE array.

L. O. Nippe
Department 535



MASTER (BM CARGmAAYOUT

¢

FORTRAN RELOCATABLE BINARY INSTRUCTION OR DATA CARD

Left Left Right Right
Decrement Addresas Decrement Address

00000000
NUBATINNK
IRRRERRR
222222122
33333333
4444440
955555395
66666666
1171711111
§osgsass

BHEBRTINANR

aiva

000p0O0O0OOOO0OOCOO00OOD{OON0OOCO00CO0000000GIO00000000000000000/00MO000000000000¢0
1238587 13BN UBBINIR H{RENEE0A2N NI USRI ABVICUUERITUBNIRNHE SO REHERTSNTT
IR R R R R R AR R AR R R R R R R R R R R R R BRI IR R R R R R R R R R i ER IR R R R R R R EERERE!
2220222222222222224220222222222222222222{222222222222222{22022222222222222
333B33333333333333%33%333333333333333333/1333333333333333(333333333333333133
SA4RA44 4444844484448 014444444444448414 4444444444444444444444444444444444
5555555555555 555 55 M55555555555555%555/555555555555555{555/55555555555555
b6bp6oGEEECEEO666EG66B66666606666666060G666666666666666666{666{66666666666666
First Word Second Word |
1R RRRRRRERERARRE AR \ARRRRRREERRERE] TTMHIITTT01 1011111 10T 1111111111711111
Relocation indicators
(88828888888888883888808888888888888858888888888880888888883088888888883838838
dCnt first word address leave checksum blank
9..999!99999 99999/99%9999999999999991999999999999999999995999999999938989
11345678 81011121 uuunammznnunnnnamnnuua WNONQOAMERTE05I 2554555857 8DMEI K265 6THEMTN
Row_ Col.
9 2,3 Must be punched
14-18 Card word count (1 - 24g)
22-36 Storage locatmn relative to zero of first word (7 -left)
9 Right Blank
8 1-72 Relocation digits for 71.d, 7La, 7RH, 7Ra, 6Ld, etc.
0- do not relocate, 10- relocate directly, 11- relocate inversely

7 Left - First word

7 Right Second word

etc.

"ON LHOd3Y

aAOvd




MASTER 18M C.&RDIQQOUY

- FORTRAN ABSOLUTE BINARY INSTRUCTION OR DATA CARD

3iva

959§

Left
Decrement
08000
1231458 S0 1112131415 1617 18
tipit 1111111111

666P666566F6666666¢€

0cooo00000006/000000000000G00000
1
11

222222222222222222{222(222222222222222
333333333333333333333333333333333333
444t44444444444444444&4444444444444‘

59555555555555/555/55555555555555 5}

TTIRYI1710901001 1901107711 11711111117 111111171191 11 0100101 01711111111117

First Word
88838888883838888818881!!8888888888888888888888888388888‘88838888!888888888

rllﬂ AMBANBXR A8 MG R

|IRRHEEEREREERERERE

666{66666666666666 6k

Left
Address

0000000
BB QOMUAGSENBBNIIHUBEST N0 NRBHES KRN A; UBERTINKR®
HIH]H]IIIHI‘Illlll?llllltlllilllll |IRRERRER
22222222222222222{22222222222222222202222222
333333333333333333333333333333333333333333
44 44444444444444£44444444444444444 4444444

55(55555555555555555555555

6666666

66 666558686555655651‘556565555686555
1111111

000000000000000000 0“1000000000000(!0

35655595555555555

|

Second Word |

8588888
Wd Cnt first word address leave checksum blank
9959999999999/99939/999/9999999999399594 9¢999999999999999999899999993999999(939998939
12348678 8100121311508 IT1ENSNNP20N252527 28293031 323330 35 37 38 3 40 41 42 43 44 45 46 47 48 45 50 51 52 53 54 55 55 57 5 58 08 61 62 &3 54 85 06 67 68 58 2 71 uERIANN
Row Col.
F >
9 3 Must be punched 3 @
14-18 Card word count (1-26g) 4 g
22-36 Absol ute storage location of first word (8- left) 6 ﬂ
9 Right Blank :
8 Left First word
8 Right Second word
etc. :



FORTRAN MODIFICATIONS/BOOLEAN EXPRESSIONS

Description of Boolean Statement

FORTRAN will now accept Boolean statements. A Boolean
statement is in the same form as an arithmetic statement,
with the arithmetic operators ¢+, *, and unary - taken to be
the logical operators._t_)_}:; _a:_r.\__:i_ and complement. The oper-
ator * has greater binding_strength than the‘qperator +.

Because - is a unary operator it is part of the expression
or symbol to which it applies. - Therefore it must be bound
to its expression or symbol b

ception.

y parentheses, with one ex-

If E is a variable or function name the complement

can be written as - E when it is not part of a larger
expression in the same statement. C = -E is correct,
but C = - E 4+ D is not correct. When E is part of

a larger expression it must be written as ( - E).

Thus, the latter expression must be written as

C =(-E)+D.

Example 1. %

W

A() BUC would be written in FORTRAN as

D
D:A*(-(B+4C)

i

The inner pair of parentheses is required to indicate
the scope of complementation. The outer pair of
parentheses is required because the expression, - (B+C)
is a part of a larger expression. '

* The use of a Boolean statement in a complete FORTRAN
problem is illustrated in FORTRAN MODIFICATIONS/
MACHINE LANGUAGE write-up, Appendix I.



II.

Example 2.

IMPF (E, 6) is written as
-IMPF (-B, -C)

bi]

D
D

n

No additional parentheses are required here because the
function name as well as the argument names are not
parts of a larger expression.

Use of Boolean statements.

i~

. A Boolean statement in FORTRAN requires a "B"

in card column 1.

in 2 Roonle
in a2 poole

bles
FORTRAN floating point names.

. Variable names can be subscripted in the normal

FORTRAN manner.

. All Boolean operations are performed upon the

full 36 bit logical word.

. Table size limitations, such as for Lambda and Alpha

tables, apply in exactly the same way as for arithmetic
statements.



FORTRAN MODIFICATIONS/FUNCTION AND SUBROUTINE NAMES
AS ARGUMENTS

Fortran will accept Function and Subroutine names as arguments
in other subroutines. Thus:

Example 1. SUBROUTINE BOB (DUMMY, Y)

A = DUMMY F(Y)

will permit the Dummy function to be different depending upon the
arguments specified in the call statements., Thus:

Example 2. CALL BOB (SIN, S)
CALL BOB (COS, S)
will result in placing the Sin(S) and the Cos(S) in cell A respectively.

In order to distinguish between the data name and the function
name in an argument list; an F card is required to list these sub-
routine names used as arguments, Thus for example 2, the F card is:

col, 1 7
F SIN, COS

Note: If a subroutine name requires a terminal 'F’ when occuring
within an arithmetic statement then the dummmy name must also have the
terminal 'F'. This terminal 'F' must be dropped from the name whenever
it occurs in an F card list or as the argument of a Call or Subroutine
statement. The F card must be in the program containing the CALL

statement and may appear anywhere in the deck.



IBM Applied Programming
November 1959-

Page 1

FORTRAN MODIFICATIONS/ADDITIONAL FORMAT FEATURES

Format facilities have been expanded, in‘the new Input-Output
Hollerith Routine (IOH), as follows:

1. The control character X; written: nX, where 0 Zn £120.

a) IOH, on input, will interpret this to mean that the fol-
lowing n characters of input should be skipped.

e.g.: READ 1, K, A
1 FORMAT (12X, 12, 8X, F8.3)

This will cause cols. 1-12 to be skipped, cols.13~14 (K) to be
read, cols. 15-22 to be skipped, and cols. 23-30 (A) to be read.

b) IOH, on output, will interpret this to mean that the fol-
lowing n characters of output should be blanks.

e.g.: PRINT 1, K, A
(1 as in the above example)

This will print K, preceded by 12 blanks, and A, preceded by 8
blanks.

2. The control character O; written: nOw, where 0<£n%*w £.120,

a) IOH, on input, will interpret this to mean that the fol-
lowing n successive fields of w characters each are to be conver-
ted from octal to binary. If w ig greater than 12, only the 12 right-
most characters will be significant. If w is less than 12, the num-
ber will be right-adjusted and filled out with zeros. Leading blanks
will be treated as zeros.

e.g.: READ 1, A, B, C
1 FORMAT (2015, 09)

Where A is 27, punched in cols. 14-15, preceded by 13 blanks; B
is 777777777777, preceded by 3 blanks; and C is -~ 12345, preceded
by 3 blanks; then, in memory A will be: 0000000000278 B will be

?

177777777777g and C: 400000012345g



Page 2

FORTRAN MODIFICATIONS/ADDITIONAL FORMAT FEATURES

b) IOH, on output, will interpret this to mean that the foi-
lowing n successive fields of w characters each of output are to be
the result of conversion from binary to octal. If w exceeds 12, the
excess will be blanks, and the result will be right-adjusted. If w
is less than 12, only the w rightmost digits will be significant.
Leading zeros will be converted to blanks, -and the number will be
signed if negative. However, 12 or more significant digits will be
unsigned.

e.g.: PRINT 1, A, B, C
(1 as in the above example with same data)

This would print 27 preceded by 13 blanks, 777777777777 prece-
ded by 3 blanks, and -12345 preceded by 3 blanks.

3. The control character A; written:nAw, where 0 £ n*w _é 120.

a) IOH, on input, will interpret this to mean that the fol-
lowing n successive fields of w characters each are io be stored in
memory as BCD information. If w is greater than 6, only the 6
rightmost characters will be significant. If w is less than 6, the
characters will be left-adjusted, and the word filled out with blanks,

e.g.: READ 1, (RECORD (I), I=1, 13)
1 FORMAT (11A6, A4, 02)

This would result in the first 70 characters of the card being stored
in the first 12 words associated with the array "YRECORD". The
last 2 characters of the 12th word would be blanks. Characters 71
and 72 would be converted from octal to binary and stored right-
adjusted in the 13th word. An appropriate Dimension entry must
have been made for "RECORD".

b) IOH, on output, will interpret this to mean that the fol-
lowing n successive fields of w characters each of output are to be
the result of transmission from memory without conversion. If w
exceeds 6, only 6 characters of output will be transmitted, preced-
ed by w-6 blanks. If wis less than 6, the w leftmost characters of
the word will be transmitted.



FORTRAN MODIFICATIONS/ADDITIONAL FORMAT FEATURES

4. Format Statements read in at object time.

FORTRAN will accept a variable Format address. This
provides the faeility of describing a List at object time.

e.g.: DIMENSION F MT (12)
FORMAT (12A6)
READ 1, (FMT (1), I1=1, 12)
READ FMT, A, B, (C(I), I=1,5)

Thus A, B, and C would be converted and stored according to the

Format Specification read into the array, FMT, at object time.
P y J



IBM Applied Programming

January 1960

FORTRAN MODIFICATIONS/MACHINE LANGUAGE INSTRUCTIONS

IN FORTRAN PROGRAMS

I. Machine Language Codes

II. Coding Rules

III. Optimizing Programs

IV. Additional Information

Appendix 1. Example of program using machine
language and Boolean statement.

Appendix 2. List of Fortran Machine Language In-
structions .

10



-2-

A 704 FORTRAN program may now include machine-language code among
its instructions. This code, which is in Share Mnemonics, must be con-
sidered part of a FORTRAN program, and is therefore subject to restric-
tions that do not apply when the code only is prepared for an assembly.
These restrictions primarily are (1) a slight limitation on instructions
available, (2) certain rules for specifying subscript values, and (3) main-
tenance of some instruction sequences with respect to transfer instructions.

I. These codes may be divided into machine instructions and pseudo-ops.

A.

Format for a FORTRAN machine instruction.

Col. 1 2-5 Tommmmm e 72
S Statement No. Instruction

Statement Number: A decimal integer

Instruction:

Operation - (a) Machine language code (listed in Appendix II)
(b) Pseudo-op (listed in B below.)

Address - (a) A statement number, preceded by an asterisk.
(b) A positive decimal integer.
(c) A variable name, subscripted or unsubscripted.

Tag - A symbolic tag name. This will always be a fixed
point variable, with no coefficient or addend. It
must be enclosed in parentheses. This field may
be used for shift, read, write and non-indexable
instructions. (With caution, it may be used with
certain other indexable instructions. See IV, A
below.)

Decrement-A signed or unsigned decimal integer. If negative,
the complement will be used.

NT — L2 o - s P ) N A mm~ e
Notice that there can be no ref

4~
erence to an absolute
o~ —

storage location in the address field or to an absolute
index register in the tag field. As in all FORTRAN
instructions, blanks are ignored. The fields of an
operation must be separated by commas. When a
blank field is followed by a non-blank field, the blank
field must have a comma after it; a zero may occupy

a blank field.



-3-

Examples of FORTRAN machine instructions:

TRA*25 TXL*25, ,4 STA*1
RTB6, (I) RQL 27 LBT
PXD, (I) LXA INDEX, (I) ORS A(I)
PXDo, (I) TXH*25,(I), 1 ETT

CLAA(I+3,2%J,5%K-1)

There are three pseudo-ops that may be used in a FORTRAN program.
These define program variables.

Format for pseudo-operation.

Cols, 1 2-5 Tomem e 72

Instructions(Pseudo-ops): |

DEC: Any signed or unsigned fixed or floating-point number
conforming to the FORTRAN specifications of constants.
K the number is fixed point, it is stored in the decrement
field of the word.

OCT: A string of from 1-12 octal digits. This octal number is
unsigned; the sign must be made part of the number., These
octal digits are right-adjusted in the storage word.

ALF: A string of 6 alphanumeric characters. In this case only,
a strict card format must be adhered to. This is because
blanks may be taken as alphanumeric characters. The
Operation must be in columns 7-9; the six alphanumeric .
characters will be taken from columns 13-18,

Examples of FORTRAN Pseudo-ops.

1Z DEC 23 MR OCT 4637021
NAME ALFbbbROBERT PI DEC 3.1416
Al4d DEC 68.924 E 8 %

The FORTRAN pseudo-op instructions must precede any executable
statement of the problem, including the Arithmetic Statement functions.
It should be noted from the above description that it is possible to
associate a floating point number with a fixed point variable name and
vice-versa. It is advisable not to do this as it can easily lead to errors;
for example, if the variable is used in an arithmetic statement.



I Coding Rules.

A.

Relative Constants.

A relative constant is a subscript symbol not under control
of a DO. As pointed out in the FORTRAN Reference Manual,
a relative constant must receive explicit definition. Within
the context of a single problem this definition is provided

by two means: (a) appearance on the left side of an arithmetic
statement and (b) appearance in an input list.

In using machine language it is necessary to provide instructions
corresponding to (a) and (b) whether the relative constant itself
appears in a machine instruction (e.g. CLA A(I)) or a normal

FORTRAN statement (e.g.

B = A(l)).

The following machine instructions serve to define a relative

constant:

STO, SXD, STD, SLQ, STQ, ORS, ANS, STZ, SLW, CPY, CAD.

Examples:

(1)

o w @

STQ

SLW J

¢

CLA A(IL,J)

(4) .

.
™ I7

LXD K, {I)
SXD I, (I)

L4

CLA A(3%I)

(2)

L]
]

CPY 1

TX1%5,(J), 1
SXD J, (J)

CLA A(I,7J)

(3)

STOJ
DO10I:1,5
LDQ A(L,J)

10 SLQ B(I,J)



These illustrations show:

a. That all relative constants must be explicitly defined. In
example (3) only '"J'" in the subscript combinations (I,J) is
a relative constant.

b. That this definition must occur after any change of value of
the Tag quantity, with one exception.

c¢. That this exception is shown in example (5). Notice how the
latter differs from examples (2) and (4). It does not have the
defining machine instruction after the change of value of the
Tag quantity.

Rule: Where the relative constant subscript expression
is one-dimensional and does not have a coefficient,
the machine instruction providing explicit de-
finition is not required.

In example (2) the subscript expression is not one-
dimensional and in example (4) it has a coefficient.

The instruction "TSX" may not be used. It is suggested that the
CALL statement be used when a transfer to a subroutine is re-
quired. In addition, of course, such transfers may be obtained
by function references in FORTRAN arithmetic statements.

In the analysis FORTRAN makes of a program for optimization
purposes, it expects to find certain instruction sequences at
points where transfers occur. The machine language coding
must conform to these sequences.

1. The CPY and CAD instructions must be used in one of the
following ways:

a. If a copy skip is anticipated CPY
TRA
TRA
TRA

b. If a skip is not anticipated, then the
copy instruction can be followed by
any instruction except a TRA.
2. A skip type test instruction must be followed either by two
unconditional transfers or by none with the exception of the CAS
which must be followed by three or by none.



111

-6-

D. Modification of Transfers.

E.

1.

2,

In order to assign index registers optimally, the FORTRAN
exeautive system must know all paths taken by any transfers.
Therefore, transfer instruction addresses must not be modi-
fied by other instructions in the program.

For a corresponding reason the machine language program
must not modify the operation field of an instruction to change
a non-transfer instruction into a transfer instruction.

Instruction Format Requirements.

1.

All transfer instructions must have addresses which are
statement numbers in the program.

2. Observe that MSE and PSE are missing from the instruction

list (Appendix II). The equivalent'SHARE code should be
used instead.

Relative addressing is not permitted (e.g. CLA A+2).
Addends, of course, are permissible in subscript expressions
(e.g. A(T+3) or A(2)).

To a limited extent, the programmer may insert constants
into unused fields of instructions at source program time.
The Appendix II chart indicates when this may be done.

Optimizing Programs.

Certain practices, if observed, can result in more efficient FORTRAN
programs with respect to indexing instructions.

A'

The DED instruction, Another pseudo-operation--of an unique
type--is available to programmers. The use of this pseudo-
operation can reduce the number of LXD and SXD instructions
FORTRAN must use. It is an instruction which informs the

Fole s s
LULRipilaT L diau yiax

niloar that 2 evmhanli
oL 5] LA

1. =

t

the program (without hav

is, therefore, dead.

Example:
S "DED, (I)

The DED instruction is non-executable and must not have
a statement number.



B.

Frequency Statements. Frequency statements may be applied
to machine language transfers as well as to ordinary FORTRAN
statements.

1. Conditional transfers. Each such transfer instruction, re-
gardless of how many appear in sequence, must have a
different frequency statement entry. This means, of course,
that each must have a statement number.

2. Skip type transfers. An external statement number is
associated with the test instruction and three frequency
estimates are listed if it is a CAS and two if it is any other.
These frequency estimates apply to the following instructions
whether they be FORTRAN statements or machine operations.

Paths of flow. As in FORTRAN programs generally, all executable
instructions must have a path of flow leading to them.

1v Additional Information.

A,

Where the indexable instruction addresses an array the symbolic
tag may be used. Of course, this will rarely be necessary
because ‘merely subscripting the array refers to the proper ele-
ment of the array. The danger in using the symbolic tag here

is that it does not take into account the relative address which
FORTRAN automatically supplies when a subscripted variable

is referenced. To illustrate:

CLA A, (I) and CLA A(D)

~are not equivalent. In the former case, the indexing is done

from location A; in the latter, from location A + 1.

Under the following circumstances, the contents of the Accumulator
and MQ will be destroyed.

a. Execution of a FORTRAN or machine instruction transfers
out of the range of a DO.

b. Execution of one of the following machine instructions if the
symbol in the address is an index of any subscript in the
program not under control of a DO.

STO, €XD, STD, SLQ, STQ, ORS, ANS, STZ,
SLW, CPY, CAD



c. Execution of the following FORTRAN statements:

Arithmetic

Arithmetic IF

ASSIGN

Boolean

CALL

DO

All Input/Output statements
RETURN

C. Storage allocation can be done only by means of Common,
Dimension, and Equivalence statements.



-9-
Appendix I.
Example of program using machine language and Boolean statement.

C Program to generate truth table of Boolean expression
C in four variables V1, V2, V3, V4.

DIMENSION V({4)
EQUIVALENGE (V1, V(1)), (V2, V(2)), (V3, V(3)), (V4, V(4))
FREQUENCY 8(4, 1)

S CNT DECH4

S STZ IVARY
DOIOI= 1, 16

S LbQ IVARY

S LLS 13

S LXD CNT, (J)

S 5 PXD

S LLS 1

S ALS 18

s STO V(J)

S 8 TIX*5, (1), 1

B TVALUE - VI¥(-V2)+(-((V3+V1)(-(V3+V2))))+ V4

PR ITNT 2
SN L &

10 IVARY = IVARY 1
STOP 77777
2 FORMAT (6(5XI1))

It should be noted that for Boolean output it is possible to use a fixed-point
Format description for a floating-point variable name. If a full word fixed-
point, octal or binary printout is desired, a FORTRAN II subroutine must
be written.



-10-

APPENDIX 2

LIST OF FORTRAN MACHINE LANGUAGE
INSTRUCTIONS

VARIABLE FILLD
ADDRLSS TAG DLC
EFN DAT NUM

ACL NO YES NO YES " NO
ADD YES YES NO DAT NO
ADM YES YES NO DAT NO
ALS NO  NU YLS YES NO
ANA NO YES NO YES NO
ANS NO YES NO YES NO
ARS ‘ NO RO YES YES  NO
BST NO NO YLS YRS NO
CAD YES YES NO YES NO
CAL YES YES  NO DAT  NO
CAS NG YES NO YE3 NO
CFF HO  NO  NO RO RO
CHS NO NO NG NO NO
CLA ‘ YES YES NO DAT NO
Cli . NO NO NO NO NO
cLs YES YES NO DAT  NO
COM NO  NO NO NO NO
CPY YES YES NGO YES NO
DCT NO  NO  NO  NO  NO
DVH NO TES MO YES  NO
DVP NO YES NO YES NO
EF M NO  NO  NO  NO - NO
ETH NO NO  RNO O HO
ETT NO MO O NO NO
FAL NO YES NO YES NO
FDH NO YES NO YES MO
FOP NO YES NO YES NO
Fip , NO YES NO YES NO
FsB NO YES WO YES NO
HPR YES YES YES YES NO
HTR REQ NO NO NO HO
10D NO NO  NO  NO RO
LBT O NO  NO  NO NO
LA NO YES NO YES NO

LDQ YES YES NGO DAT  NO



LFM
LGL
LLS
LRS
LTM™M
LXA
LAD

MPR

MPY
NOP
ORA
ORS
PAX
PBT
PDX
PXD
RCD
RDR
RDS
REW
RND
RPR
RQL
RTB
RTD
RTT
SBM
SLF
SLN
sLQ
SLT
SLW
SPR
SPT
SPU
SSM
sSSP
STA
STD
'STO
STP
STQ
STz

-iis

VARIABLE

ADDRESS
EFN DAT NUM
NO NO NO
NG NO YES
NG NO YES
NO NO .YES
O NO NO
YES YES NO
YES YES NO
NO YES NO
NO YES NO
YES YES YES
NO YES NO
NO YES NO
YES YES YES
NO NO NO
YES YES YES
YE3 YES YES
NO NO NO
NO NO YES
NO - NO. YES
NO NO YES
NO MO NO
NO NO NO
NO NO YES
NO NO YES
NO NO YES
NO NO NO

"YES YES NO
NO NO NO
NO NO YES

YES YES NO
NO NO YES
NO YES NO
NO NO YES
NO NO NO
NO NO YES
NO NO NO
NO NO NO

YES YES NO

YES YES NO
NO YES NO

YES YES NO
NO YES NO
NO YES NO

FIELD
TAG D

NO
YES
YES
YES

NO
YES
YES

YES

YES
YES
YES
YES
YES
NO
YES
YEO
NO
YES

YES

YES
NO
NO

YES

YES

YES
~NO
DAT

NO
YES
DAT
YES
YES
YES

NO
YES

NO

NO
DAT
DAT
YES
DAT
YES
YES

EC

NO
NO
NO
NO
NO
NO
NG
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NG
NO
NQ
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

'NO

NO
NO
NO
NO
NO
NO
NO
NO



Sui
SwT
SXU
TIiX
TLQ
Tl
TNO
TNX
TNZ
TOV
TPL
TQO
TGP
TRA
TTR
TXH
TXI
TXLE
TLZE
UFA
UFi
Urs
WOR
WEF
WFR
wht
WRS
WiE
WTD
WTO
WwTv
ALF
DiEC
ocCT
DED

-12-

VARIALLE FIELD

AUDDRESS
EFN DAT NUHM
YES YES KO

NO NO YES
YES YES NO
REG NO  NO
REQ NO HO
REQ NO NO
REQ HO NO
REQ  NO  NO
REQ NO  NO
REQ NO NO
REQ NO NO
REQ NO NO
REG NO RO
REQ NO NO
REQ NO HO
REQ NO NO
REG NO  NO
REG NO NO
REQ NO WO

NG YES HO

NO YES NO

NO YES NO

NO NO LS

NO NO YES

NO  NO  NO

NO KO NO

NO NO YES

NO KO YES

NO NO YES

RO NO YES

NO KO 1O

TAG

DAT
YES
YES
YES

NO -

NO
NQ
YES
NO
NO
NG
~NO
HO
NO
HO
YES
YES
YES
NO
YES
YES
YES
YES

YES

NQ
NO
YLS
YES
YES
VLS

P
[EAw]

DEC

NO
NO
NO

YES
NO
NO
NO

YES
NG

NO
NO
NO
NO
NG
NO

YES

ve
[

YES
NO
NQO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NGO
e

PSEULOQOPLEATION
FSEUDCOPERATION
PSTUDOGPERATION

TAG FIELL ORLY



FORTRAN

PROGRAM CARDS

In preparing a SAP coded program for use with a FORTRAN program
the relocatable binary deck must be preceded by a "program card"”, The
simplest way to prepare this card is to have the assembler punch it for you

during the assembly process.

like the following example.

o~

9L
9R
8L
8R
7L
7R

END

COMMON

This may be done with a program arranged

REM (program identification)
FUL ‘
FOR 0,,END-1 (program card word count)
PZE (leave checksum blank)
PZE (last program location + 1), , (number of words in transfer list)
PZE -N-205 (where N is the number of common used) ’
BCD 1NAMEL (FORTRAN name assigned to first entry point)
PZE ENTRY1 (SAP symbolic address of first entry point)
BCD 1NAMEN (FORTRAN name assigned to last entry point)
PZE ENTRYN (SAP symbolic address of last entry point)
REL
ORG 0 - »
SYN -N-205 (where N is the number of common used)
SAP Program
END 0

After assembly the transfer card should be removed from the back
of the relocatable binary deck. This deck may now be loaded as part of

your FORTRAN object deck.

It may also be written on the FORTRAN library

tape if the program card check sum is first corrected.

Acknowledgement is given to W. R. Couch an S t t
Endicott Computing Laboratory (EL) who originated the above idea and gave

it to us.

LON/hc

October 19, 1959

Q.
m
tn
o]
o]
it
»
i~
®
w
[*]
[ ;Y

L. O. Nippe
Department 535



	1_BSS_loader
	1_Subroutines_01
	1_Subroutines_02
	1_Subroutines_03
	1_Subroutines_04
	1_Subroutines_05
	1_Subroutines_06
	1_Subroutines_07
	1_Subroutines_08
	1_Subroutines_09
	1_Subroutines_10
	1_Subroutines_11
	1_Subroutines_12
	2_CardLayouts_1
	2_CardLayouts_2
	3_Modifications_01
	3_Modifications_02
	3_Modifications_03
	3_Modifications_04
	3_Modifications_05
	3_Modifications_06
	3_Modifications_07
	3_Modifications_08
	3_Modifications_09
	3_Modifications_10
	3_Modifications_11
	3_Modifications_12
	3_Modifications_13
	3_Modifications_14
	3_Modifications_15
	3_Modifications_16
	3_Modifications_17
	3_Modifications_18
	4_ProgramCard

