5 ,ﬁ
N: N Wl

General Information Manual

General Information Manual

Programmer’'s Primer for FORTRAN
Automatic Coding System

for the IBM 704 Data Processing System

© 1957 by International Business Machines Corporation

This edition is a reprint of Form No. 32-0306-1 and does not
obsolete it or 32-0306. No changes have been made to 32-0306-1.

TABLE OF CONTENTS

GENERAL INTRODUCTION e e e e

SECTION | - PUNCHED CARD INPUT, ARITHMETIC OPERATIONS,

STANDARD FUNCTIONS, PRINTED OUTPUT

Introduction e e e e e e e
Arithmetic Statements
READ and PRINT Statements e e e e
IF, Unconditional GO TO, and STOP Statements
Additional Examples
Check List.

SECTION II - DEFINITION OF FUNCTIONS, MANIPULATION OF SINGLE-

SUBSCRIPTED VARIABLES, MAGNETIC TAPE INPUT AND OUTPUT
Introduction L.
Integer Constants and Variables
DIMENSION Statements .

DO Statements

Function Statements

The Meaningofa List. e e e

FORMAT Statements e e e e

Magnetic Tape Input and Output
READ INPUT TAPE and WRITE OUTPUT TAPE Statements .

General Information about the Use of Tapes . .
Additional Examples
Check List.

SECTION 1l - MANIPULATION OF TWO- AND THREE-DIMENSIONAL ARRAY'S

Introduction
Subscripts for Two- and Three- Dlmensmnal Arrays
DONests
Lists for Two- and Three D1mensxonal Arrays
Assigned GO TO Statements
Computed GO TO Statements
FORMAT Statements
Scale Factors
Hollerith Fields
Multiple-line Format.
Example Problem and Program . e e e e e e e
Debugging
Storage e e e e e e e e s s
Master Check L1st e e e e e

Page

23
26
28
28
30
31
32
35
35
36
37
41

43
45
45
47
48
49

51

31
52
52
53
58
60
61

GENERAL INTRODUCTION

Every type of electronic computer is designed to respond to a
special code, called a "machine language, " which differs for
different types of computers. A program, or set of instructions,
telling a computer what steps to perform to solve a problem must
ultimately be given to the computer in its own language. However,
the FORTRAN System makes it unnecessary for the 704 programmer
to learn the 704 machine language.

The FORTRAN System has been developed to enable the
programmer to state in a relatively simple language, resembling
familiar usage, the steps of a procedure to be carried out by the
704 computer, and to obtain automatically from the 704 an efficient
machine language program for this procedure. The FORTRAN
System has two parts: the FORTRAN language, and the FORTRAN
translator or executive routine.

The FORTRAN language consists of 32 types of statements,
which may be grouped into four classifications: arithmetic state-
ments, control statements, input/output statements, and specification
statements. The FORTRAN programmer uses this language to state
the steps ultimately to be carried out by the 704. The FORTRAN
translator is a large set of machine language instructions which
causes the 704 to translate a FORTRAN program into an efficient
(or "optimized") machine language program. The 704 does not
respond directly to a FORTRAN program, but to the machine
language program produced by means of the FORTRAN translator.
The name FORTRAN comes from "FORmula TRANslation" and
was chosen because many of the statements which this system
translates look like algebraic formulas.

The purpose of the FORTRAN Primer is to introduce the reader
to the FORTRAN language, which has been designed as a concise,
convenient means of stating the steps to be carried out by the 704
in the solution of many types of problems, such as frequently occur
in engineering, physics, and other scientific and technical fields.
No prerequisite knowledge of computing technology or techniques
on the part of the reader is assumed.

In order to clarify what the 704 can do and what it cannot do,
consider, for example, the problem of finding the roots of a
quadratic equation. The 704 cannot be given an equation of the form

2

3x“+1.7x-31.92=0

and be directed to find its roots. The 704 can, however, be directed
to compute the value of

(-1.7 +V (1.7)% - 43)(-31.92))/2(3)

which gives one of the roots of the preceding equation. That is,
the 704 must be told how to find the answer. It will do the work.

Once the 704 has been told how to solve a problem, it can
take in data from punched cards at a rate exceeding 1000 numbers
per minute, perform arithmetic steps at an approximate rate of
10, 000 per second, and print results at a rate of about 750 per
minute. Thus the 704 can do in minutes calculations which would
require weeks or months to do manually.

Virtually any numerical procedure may be expressed in the
FORTRAN language. The FORTRAN System is intended to reduce
substantially the time required to produce an efficient machine
language program for the numerical solution of a problem, and to
relieve the programmer of a considerable amount of manual
"clerical" work, minimizing the possibility of human error by
relegating the mechanics of coding and optimization to the 704.

In this primer, as an aid to efficient study, the FORTRAN
language is approached cumulatively through three stages, Section I,
Section II, and Section III. The division into three sections is
convenient for the description of successively more complex
problem-solving procedures.

By using only the types of statements presented in Section I,
it is possible to direct the 704 to take individual numbers from a
card reader; combine them according to formulas involving
arithmetic operations and standard functions such as sine, square
root, log, etc.; make tests and follow different directions depending
on the outcome of the tests; and finally print the results.

Section II presents additional types of statements which provide
for the definition and use of functions peculiar to the problem to
be solved; the iterative manipulation of subscripted variables (the
elements of vectors or lists of numbers); the use of magnetic tape
for input and output information; and greater flexibility in the
format of input and output information. When magnetic tape is used
for input and output information, the 704 can read or write more
than 900 numbers per second, a much greater rate than is possible
when the 704 reads cards and prints results directly. Since all
information to be used or processed by the 704, other than magnetic
tape output from a previous computer operation, must initially be
recorded on punched cards, and since it is often desirable to
maintain permanent records on punched cards or in printed form,
the use of magnetic tape for input and output requires a means of
transferring information from cards to tapes, tapes to cards, and
tapes to printed form; this transfer may be effected by means of
separate peripheral equipment.

Section III adds to these facilities the ability to handle two-
and three-dimensional arrays of numbers, to perform more complex
iterative procedures, and to direct the flow of control within a
program more flexibly.

The three sections of this primer do not include all the
facilities offered by the complete FORTRAN language. Full infor-
mation about the FORTRAN language is given in the Programmer's
Reference Manual for FORTRAN, Form 32-7026, which can be
obtained from IBM Stationery Stores, Endlcott, N.Y., in the
usual manner.

This primer describes the writing of FORTRAN programs for
the 704; it does not explain the mechanics of tape loading, card
feeding, and other related operations needed to get the 704 working
on a problem, since it has been assumed that the 704 will be
operated by a computing center. At the computing center, the
FORTRAN program statements are first transcribed onto punched
cards exactly as they have been written, each letter, digit, or
punctuation mark resulting in one or more holes in a single column
of a card. These cards are then placed in the card reader for the
704. By means of the FORTRAN translator or executive routine,
the 704 is directed to start reading the FORTRAN statements from
the cards; to translate the FORTRAN statements into machine
language, one FORTRAN statement usually resulting in a sequence
of several machine language instructions; and to record the machine
language instructions as output on punched cards. The new set of
cards contains a machine language program, which can be entered
into the 704 any number of times, each time causing the 704 to
carry out the procedure specified by the original set of FORTRAN
statements.

Before the presentation of FORTRAN statements, a short
description of the 704 itself may be of interest. The 704 consists
of a control unit; an arithmetic and logical unit; a magnetic core
storage unit capable of storing 4, 096, 8,192, or 32,768 numbers;
magnetic tape units and magnetic drum units for holding information
exceeding the instantaneous storage capacity of the magnetic core
storage unit; a card reader; a card punch; and a printer. The
control unit directs the flow of information between the other units
in accordance with the machine language instructions currently
in the magnetic core storage unit.

Most calculations performed by the 704 are carried out in
"floating point"” form. Numbers are represented in the machine
in this form, and the results produced } by the arlthmeuc unit are
usually in this form.

For example: calculation of the product

5 x0.0037
would be carried out by the 704 in a form analogous to

(5000 0000 x 10) x (.3700 0000 x 10™2) = (. 1850 0000 x 10”}).

This would be the case even though the numbers were entered as
5.0 and 0.0037 and the result were printed as 0.0185. All floating
point numbers in the 704 are carried to about 8 significant decimal
digits. Numbers outside the range 10738 to0 1038 (other than zero)
cannot normally be accommodated.

Since FORTRAN language statements have to be translated by
a machine, the 704, before a problem is ready to be run, FORTRAN
statements must be written in exactly the proper form. The
machine has no ability to understand what was meant; it can only
translate what was written. Therefore, the omission of a single
decimal point or operation symbol will make a FORTRAN statement
incapable of being translated correctly. For this reason, the
rules for writing FORTRAN statements must be carefully followed.
In devising the FORTRAN System, considerable effort was devoted
to making these rules consistent and having them conform to
familiar usage wherever possible. A number of examples have
been provided to illustrate these rules without having to include
specific statements of them in the text. At the end of each section,
a check list of things not to write is given, which should answer
any remaining questions. Some of the rules in the check lists are
not explicitly stated elsewhere.

SECTION | - PUNCHED CARD INPUT, ARITHMETIC OPERATIONS,
STANDARD FUNCTIONS, PRINTED OUTPUT

Introduction

Consider the quadratic equation example previously presented
3x2 +1.7x - 31.92 = 0

The algebraic representation for one of the two roots of the equation
could be written

V2
Foot = -B+V B~ - 4AC
2A

where A=+3
B=+1.7
= -31.92

The complete FORTRAN program which describes this calculation
and provides for printing the result may be written in six separate
statements as follows:

FOR

[2
COMMENT § FORTRAN STATEMENT
STATEMENT z
HUMBER 2
1 S5 [} 2 72
i A=3.
| B=1.7
; C= -31.92
! | ROOT= (-B + SQRTF(B**2, - 4.*A*C)) / (2.*A)
i | PRINT 1, ROOT
| sTOP
|
|

The first statement means: "Assign the value 3. to the variable A."
The next two statements have a similar meaning. The fourth
statement means: "Evaluate the expression on the right side and
assign the result to the variable ROOT." The fifth statement prints
the computed value of ROOT (see pages 8 ff.). The last statement
instructs the computer to stop.

Notice the sequential nature of the program. The computer
executes instructions in the same order as the order of the state-
ments. For example, if the fourth statement were to be moved
up and made the first statement, then the computer would evaluate
ROOT before obtaining the desired values of A, B, and C. ROOT
would therefore be evaluated using some arbitrary, unknown values
for these variables.

The above example was written to illustrate the use of variables.

Arithmetic
Statements

However, the same result could be obtained by writing

-
COMMENT

FOR

FORTRAN STATEMENT

]

STATEMENT
NUMBER

CcoNTINUATION

s 8 |7 72

ROOT = (-1.7 + SQRTF (1.7**2, - 4.,*3.* (-31.92))) / (2.*3.)

PRINT 1, ROOT

L
i
i
L
{

STOP

in which the actual numerical values appear in the statement
describing the evaluation of ROOT.

The program on page 5 illustrates the use of three types of
FORTRAN statements. In all, six types of statements will be
presented in this section:

1. Arithmetic statements (e.g., first four statements in the
program).

READ statements.

PRINT statements (e.g., fifth statement in the program).
IF statements.

Unconditional GO TO statements.

STOP statements (e.g., last statement in the program).

N U i LN

The first four statements in the above example are called arithmetic
statements. An arithmetic statement looks like a simple statement
of equality. The discussion of arithmetic statements in this section
will be restricted to those in which the left side of the equality is a
simple variable. In Section II, additional facilities will be presented
for handling arithmetic statements in which the left side is a function
of one or more variables. The right side of all arithmetic statements
is an expression which may involve parentheses, operation symbols,
constants, variables, and functions, combined in accordance with

a set of rules much like that of ordinary algebra.

The fourth statement in the example illustrates the use of the
five basic operations in the FORTRAN language. The symbols +
and - are used in the usual way for addition and subtraction. The
symbol * is used for multiplication, and the symbol / is used for
division. The fifth basic operation, exponentiation, is represented
by the symbol **. A**B is used to represent A to the exponent B
(i.e., AB)

If only the types of statements presented in this section are used,
all calculations will be carried out by the 704 in floating point
arithmetic, and the programmer must so instruct the 704 by writing
all constants with a decimal point. All numbers (and only numbers)
are considered constants with the exception of statement numbers.
The FORTRAN arithmetic expression

A**B*C + D**E/F - G

will be interpreted to mean
ABC + QE_: -G
F

That is, if parentheses are not used to specify the order of
operations, the order is assumed to be:

1. exponentiation

2. multiplication and division

3. addition and subtraction
Parentheses are used in the usual way to specify order. For
example

(AGB + C))P
is written in FORTRAN as
(A*(B + C)) **D

There are just three exceptions to the ordinary rules of
mathematical notation. These are:

1. In ordinary notation AB means A‘'B or A times B. However,
AB never means A*B in FORTRAN. The multiplication
symbol cannot be omitted.

2. In ordinary usage, expressions like A/B-C and A/B/C
are considered ambiguous. However, such expressions
are allowed in FORTRAN and are interpreted as follows:

A/B*C means (A/B)*C
A*B/C means (A*B)/C
A/B/C means (A/B)/C

Thus, for example, A/B/C*D*E/F means ((((A/B)/C)*D)*E)/F

That is, the order of operations is simply taken from left
to right, in the same way that

A+B-C+D-E
means
((A+B)-C)+D)-E

C
3. The expression AB” is often considered meaningful .
However, the corresponding expression using FORTRAN
notation, A**B¥**C, is not allowed in the FORTRAN

language. It should be written as (A**B)**C if (AB)C is

meant, or as A** (B**C) if A(B) is meant.

Besides the ability to indicate constants (like 3.57 and 2.),
simple variables (like A and ROOT), and operations (like - and *),
it is also possible to use functions. In the example on page 5
SQRTF() indicates the square root of the expression in
parentheses.

Since the number of possible functions is very large, each 704
computing center will have its own list of available functions, with
information about their use. Functions given in this list must be
referred to exactly as indicated.

Some functions which might appear in a typical list are:

FORTRAN Symbol Function

ABSF(X)lX! (absolute value of X)
SQRTE(X) VX

SINF(X)sinX

ARCTANF(X) arctan X

EXPF(X) . eX

LOGEF(X) e ... logX

LOGIOF(X) logoX

INTF(X) integral part of X
MAXF(X,Y) maximumof XandY

Notice, as in the last example, that a function may have more
than one argument; as in general mathematical usage, multiple
arguments are separated by commas. Section II will present facilities
for defining functions peculiar to the problem at hand and not
available from the computing center list.

READ and PRINT As stated in the General Introduction, this section presents
Statements FORTRAN statements which can direct the 704 to take numbers
from a card reader and, after carrying out the desired calculations,
print the results. Consider again the example of finding a root of
a quadratic equation.

In many cases it will be desired to find ROOT for a number of
sets of values of A, B, and C. To do this, the 704 would have to be
directed to read a card in which values for A, B, and C have been
punched, compute the value of ROOT, print ROOT (along with A,

B, and C), read another card with different values for A, B, and C,
compute and print the corresponding value of ROOT and so on. In
this case, the FORTRAN program could be written:

Fom

TioN

-
COMMENT

FORTRAN STATEMENT

STATEMENT
NUMBER

1 S| 6 |7

10 READ 1,A,B,C

ROOT = (-B + SQRTF (B**2. - 4.*A*C)) / (2.*A)

PRINT 1, A, B, C, ROOT

GO 1O 10

72

L

|
}
|
|
1

1

The first statement (which has been given the number 10 for
reference purposes) causes the 704 to read the first card from the
deck in the card reader. Three numbers should be on this card,
represented by three sets of punches. The value of the first number
is named A; the value of the second number, B; and the value of

the third number, C.

The 704 then proceeds to compute ROOT as before, after
which it prints (on one line across the page) the values named A,

B, C, and ROOT in that order. Upon reaching the last statement,
the 704 is directed: "Go to the statement numbered 10 and do what
it says."” Thus the 704 reads the next card with three new values
for A, B, and C, then computes ROOT, prints the current values

of A, B, and C and the computed value of ROOT, and again returns
to statement 10. This process continues as long as there are cards
in the hopper of the card reader. When the cards are exhausted,

the 704 stops upon its return to statement 10.

FORTRAN provides means for specifying the format of input
and output data in a great variety of ways by the use of FORMAT
statements. Two very useful formats are presented in this secticn.
Rules for writing FORMAT statements to specify other formats
are given in Sections II and III, on pages 32-34 and 51-53,
respectively.

One or both of the two FORMAT statements which specify
the input/output formats presented in this section will be added
to the completed program by the computing center, provided the
computing center has been requested to do so; these FORMAT
statements are always numbered 1 and 2. To use these two state-
ments one must know what arrangement of data each specifies.

The input data must be prepared in conformity to the data
arrangements specified by one of the FORMAT statements used;
similarly, the output data will conform to one of these specified
arrangements. If input data on punched cards conforms to FORMAT
statement 1 or 2, the READ statement is given with a 1 or 2
following, respectively; similarly, either PRINT 1 or PRINT 2 is
used to print results.

If FORMAT 1 is used, statement number 1 must be reserved
for it; if FORMAT 2 is used, statement number 2 must be reserved
for it. The statement number reserved for a FORMAT statement
must not be used as the number of any other FORTRAN statement.

READ and PRINT statements are similar to each other in
nature and in appearance. Consider first the READ statement in the
preceding example:

READ 1, A, B, C

The first item after READ is the number of the FORMAT statement
which describes the arrangement of data on the cards to be read. Then

there follows an ordered list of the variable names which are to
be associated with the values to be read in (A, B, and C). Such a
list can be as long as necessary.

In any case, when a READ statement is executed, a stream of
numbers comes in from the card reader, and each variable name in
the list part of the statement is associated with the value of the
corresponding number, the first number corresponding to the first
variable, the second number to the second variable, etc. The card
reader continues to read in numbers until the last variable in the
list has received a value, unless the cards are exhausted first.
Both FORMAT statements 1 and 2 specify five numbers on a card;
therefore, the stream of numbers which is brought in by giving
either READ 1 or READ 2 consists of five numbers from the first
card, five from the second, and so on until the list is exhausted.
In the example, only three variables appear in the list. Thus, the
list is completed before the end of the card is reached, and only
the first three numbers on a card are read. Since each new
execution of a READ begins with a new card, the values of A, B,
and C must be placed in the first three of the five fields on each
card. The arrangement of the numbers might appear as:

Field 1 2 3 4 5
card 1 3. 1.7 -31.92

card 2 | 1.5794 -17.3 |4+0.00023

card 3 -180. -.001 4.20

etc.

As has been mentioned, PRINT statements are very similar to
READ statements. PRINT 1 and PRINT 2 both specify that up to five
numbers are to be printed on each line until all the values associated
with the variables in the list given in the PRINT statement have
been printed. The PRINT statement in the above example

PRINT 1, A, B, C, ROOT

would cause lines like the following to be printed each time the
statement is executed:

+3.00000 +1.70000 -31.92000 (value of ROOT)
+1.57940 -17.30000 +0.00023 (value of ROOT)
etc.

The difference between the two standard FORMAT statements
is that FORMAT 1 calls for fixed point input or output whereas
FORMAT 2 calls for floating point input or output.

10

Fixed Point Input:

If fixed point input conforming to FORMAT statement 1 is

desired, data must be arranged in five fields. Each line of data is
punched on a single card. Each number may have a sign and must
have a decimal point; unsigned numbers are interpreted as positive.
A maximum of ten digits per number is permitted.

Several examples follow.

Example 1:

Statement:

READI1, A, B, C, D, E, F

Data Sheet
Casel1 A,B,C,D,E 1.0 +50001. -.0007 160. -0.0615
F 14.2
Case 2A,B,C, D, E 4.7 -1763. +.0589 87. -0.0023
F -3.0
etc.
Example 2:
Statements (appearing together in a program):
READ1, A, B, C
READ1, D, E, F, G
Data Sheet (for both READ statements)
Case 1 A,B,C 150579.1 10000000. 15.1007
D,EF,G -1005.7 |-.00000005 | +1.0003 14.
Case 2 A,B,C 2704.3 100000. 23.0823
D,EFG -99.5 -.087654 | +0.3879 7.

Floating Point Input:

The data sheet for floating point input conforming to FORMAT
statement 2 must be arranged with five major fields, each field
having a right-hand sub-field wide enough for the exponent (a sign
and two digits). The same examples could be written for floating
point input as shown on the following page.

11

Example 1:

Statement:

READ 2, A, B, C, D, E, F

Data Sheet
|
Case 1 A,B,C, D, E 1.0:+00 +50001.=+00 -.0007 =+00 1.6 }+02 -6.15 -02
| | | | '
F 1.421401 | | |
Case 2 A,B,C,D,E 4.7 |+00 -17630. | -01 | +.0589 [+00 | 8.7 l+01 -2.30 :-03
F -3.00]+00 | ! | {
Example 2:
Statements:

READ 2, A, B, C
READ 2, D, E, F, G

Data Sheet

Case 1 A,B,C 1.505791 | +05 1. ,407|15.1007 |-l-OO

[

I | |
D,E,F,G | -1.0057|+03 5.0-08 |+1.0003 400 | 1.4 |+01

|

|

|

i

I
Case 2 A,B,C 2.7043|+03 1. +05]23.0823 I-l-OO

D,EF,G -9.95!401{-8.7654|-02| +3.879|-01| 7.

There must always be three characters in the exponent sub-field,
a sign and two digits. As in the case of fixed point input, there is a
limit of ten digits per field; the maximum number of digits for the
number is therefore eight, two digits being required for the exponent.

Fixed Point Output:

For fixed point output, PRINT 1 causes numbers to be printed
with five decimal places, five numbers per line. PRINT 1 should not
be used if any result will exceed 999, 999. If the input data of the
preceding examples were to be printed as output in the fixed point
form specified by FORMAT statement 1, the FORTRAN statements
and printed sheets would appear as shown on the following page.

12

Example 1:

Statement:
PRINT 1, A, B, C, D, E, F

Printed Sheet

+1.00000 +50001.00000 -0.00070 +160.00000 -0.06150
+14.20000
+4.70000 -1763.00000 +0.05890 +87.00000 -0.00230
-3.00000
Example 2:
Statements:

PRINT 1, A, B, C
PRINT 1, D, E, F, G
Printed Sheet

+150579. 10000 (too large to print) +15.10070

-1005.70000 +0.00000 +1.00030 +14.00000

+2704.30000 +100000.00000 +23.08230

-99.50000 -0.08765 +0.38790 +7.00000

Floating Point Output:

The use of PRINT 2 causes numbers to be printed in floating
point form, up to five numbers to a line. The numbers appear with
the sign and one digit to the left of the decimal point and five digits
to the right of the decimal point, followed immediately by the letter
E and the sign and the two digits of the exponent. The FORTRAN
Statements necessary to print the numbers from the preceding
examples in floating point form appear on the following page along

with examples of the printed sheets.

13

IF, Unconditional

Example 1:

Statement:
PRINT 2, A, B, C, D, E, F
Printed Sheet
+1.00000E400 +5.00010E+04 -7.00000E-04 '+1.60000E+02 -6.15000E-02
+1.42000E+01
+4.70000E+00 -1.76300E+03 +5.89000E-02 +8.70000E+01 -2.30000E-03

-3.00000E+00

Example 2:

Statements:
PRINT 2, A, B, C
PRINT 2, D, E, F, G

Printed Sheet

+1.50579E+05

-1.00570E+03

+2.70430E+03

-9.95000E+01

+1.00000E+07

+5.00000E- 08

+1.00000E+05

-8.76540E-02

+1.51007E+01

+1.00030E+00 +1.40000E+01

+2.30823E+01

+3.87900E- 01 +7.00000E+00

Besides arithmetic, READ, and PRINT statements, three other

GO TO, and STOP types of statements are included in this section. Two of these have

Statements

already appeared in the examples on pages 5 and 8: STOP and the
unconditional GO TO. The latter is called "unconditional” to
distinguish it from two other types of GO TO statements covered
in Section III.

A STOP statement is used, as in the example on page 5, to
tell the computer when the end of the calculation has been reached.
It may be omitted in certain cases, such as that encountered in the
example on page 8, where the absence of cards in the card reader
causes an automatic halt.

The unconditional GO TO statement is used to specify at some
point in a program that the next statement to be executed is not the
one following, as it normally would be, but instead, the statement
numbered n. The statement GO TO n transfers control to statement n,
and execution proceeds from there.

14

As an introduction to a third type of control statement, ,
consider the following problem:

Given values a, b, ¢, and d punched on a card,
and a set of values for the variable x punched
one per card, evaluate the function defined by
ax2+bx+c ifx<d
flx) =9 0 ifx=d
2 .
L-ax +bx-c if x> d
for each value of x, and print x and {(x).

The FORTRAN program for this problem could be written as
follows:

FOR :
 comen : FORTRAN STATEMENT
waE | 3
1 L] [3 7 72
| 10 READ 1,A,B,C,D
' | | ReAD 1, X -
12 | | _IF(x-D)13, 15,17
| 13 | | _FOFX= A*x#*2.+ B*X +C
|14 | | coT018 i
| 15 | | FOFX=o0.
L] 16 GO 10 18
117 | | FOFX= -A*X**2, + B*X - C
18 | | PRINT 1, X, FOFX
g 19 | _GoT0MN
I

The values for A, B, C, and D are read from the first card
(statement 10), and the first value of X is read from the next card
(statement 11). Statement 12 is then executed. Statement 12 means:
"If the quantity (X-D) is negative, go to statement 13; if it is zero,
go to statement 15; and if it is positive, go to statement 17." Hence,
if X<D, the value of FOFX is calculated by means of the proper
formula, and the execution of statement 14 transfers control to
statement 18, which is executed next. Similarly, if X = D, control
goes from the IF statement to the proper formula (statement 15),

and then from statement 16 to statement 18. If X> D, the IF state-
ment selects statement 17, after which statement 18 is automatically
taken next. Thus, in all three cases, control eventually reaches
statement 18, the PRINT statement, which prints the values of X

and FOFX. Statement 19 then returns control to the READ statement,
which reads in the next value of X. The whole pattern repeats until
all of the X-cards have been processed. The 704 will automatically
halt when it attempts to execute the READ with no more cards in the
card reader.

15

Additional
Examples

As has been illustrated, the IF statement is a kind of
conditional, three-way GO TO statement. It often happens, as in
the above problem, that the computer must choose one of alternative
paths depending on whether the current value of an expression is
negative, positive, or zero. This is done, as in the above program,
by writing

IF (E) n, n2, ng

where (E) is an arithmetic expression, and the number of the
statement to which control is to be transferred is n, if (E) is
negative; no, if (E) is zero; and ng, if (E) is positive.

It is not necessary to number every FORTRAN statement in
a program. The only statements which must be numbered are those
to which reference is made (as in GO TO or IF statements). Any
numbers between 1 and 32, 000 may be used, provided two different
statements are never given the same number. As has been mentioned
earlier, statement numbers 1 and 2 are reserved for the two
standard FORMAT statements when the data arrangements specified
by these statements are desired.

Example 1: Find the approximate numerical solution of the ordinary
differential equation

dy /dx=xy +1
in the interval 0 <x £ 1, given that
y=0whenx=0

A method which can be used to approximate the solution of this
equation is as follows:
Assume that a point (xO, yo) of the solution function is known.
In this example, the point X = 0, yo= 0 is known. It is then
known from the differential equation that dy / dx, the rate of
change of y with respect to x, at this point is x;yy + 1. Hence,

an increment in x of A x would produce an approximate change
in y of

A y=Ax(xgyg +1)
Let A x be the interval between successive x, terms

(i=0, 1, 2, ...). Then y(at x)) = y(at xy + Ax)=yy + 4y
=yo +4 x(xqyg +1).

16

After the point (xl, yl) has been obtained, it can be used to find
(x9, y9) in a similar way:

yolat x9) = yy(at x; + Ax) = v; +Ax(x; y; + 1.

In this example, the procedure is continued until the point x =1 is
reached, the upper bound of the interval for which the solution is
being found. In general, the equation for stepping forward is

Since it depends on the mesh size, A X, the error of approximation
is left as a parameter in the program. The solution for various
values of A x can be compared to give an empirical idea of the error.
To print the value of every point obtained would be unnecessary

and costly, since A x must be quite small, so the program has been
arranged to print only at intervals of 0.01. The program for this
example, with an explanation of some of the statements, follows.

C< FOR g ‘]

COMMENT

STATEMENT
NUMBER

FORTRAN STATEMENT ’
|

[® conrmu,

s 7 72

READ 1, DELTAX

PRINT 1, DELTAX

i
i
t
I

-

XPRINT = 0,01

X=0.0

|
I
I
|

—

Y=0.0

3 Y = Y + DELTAX*(X*Y + 1.0)

X= X+ DELTAX

IF (X - XPRINT) 3, 4, 4

4 PRINT 2, X, Y

XPRINT = XPRINT +0.01

IF(X-1.003,5,5

5 STOP

[
|
|
[
|
|
I
|
|
I

Ll

The only input to the program is the value of DELTAX punched
in fixed point form on a card. The first statement causes the 704
to read DELTAX from the card. The second statement causes the
704 to print DELTAX to head the answer sheet. The third Sstatement
initializes XPRINT to 0.01; the first value of X which equals or
exceeds XPRINT will be the next value printed. The next two
Statements assign the proper initial values to X and Y. Statement 3
is the basic equation for finding the next value of Y. Notice that
the previous value of Y is used in the calculation and then is
replaced by the result of the calculation to give the new value of
Y. The next statement calculates the new value of X. This value of
X is then compared with the value of XPRINT; if it is less than this
value, control goes back to calculate the next point. As soon as X

17

equals or exceeds XPRINT, the calculation is interrupted to allow
the current values of X and Y to be printed according to statement 4
(in floating point form). The value of XPRINT is increased by
0.01 for the next value to be printed. Then a test is made to
determine whether the value of X has reached 1.0. If X equals or
exceeds 1.0, the problem is finished and the computer stops
(statement 5); if not, control returns to statement 3 to calculate
the next point. (Note: the time required by the computer to
calculate a point is about 0.9 milliseconds. Hence, for the case
AX=10"3 i.e., 100,000 points, the calculation time would be
about 1.5 minutes.)
Example 2: Determine the current in an alternating current circuit
consisting of resistance, inductance, and capacitance in series,
given a number of sets of values of resistance, inductance, and
frequency. The current is to be determined for a number of equally
spaced values of the capacitance (which lie between specified limits)
for voltages of 1.0, 1.5, 2.0, 2.5, and 3.0 volts.

The equation for determining the current flowing through such
a circuit is

where 1 = current, amperes
E = voltage, volts
R = resistance, ohms
L = inductance, henrys
C = capacitance, farads
f = frequency, cycles per second
m=3.1416

The FORTRAN program could be written as follows:

ﬁ‘“m" s FORTRAN STATEMENT
TWERT | §
. oo ls 2l
|] 10| | _READ 1, OHM, FREQ, HENRY
-—|| 11| | READ 2, FRD1, FRDFIN
| |12 | | _PRINT 1, OHM, FREQ, HENRY
11a | | vour-1.0
14 || _PRINT 1, vOLT
115 | |_FARAD=FRD1
s AMP = VOLT/SQRTF(OHM**2. + (6.2832*FREQ*HENRY
X -1./(6.2832*FREQ*FARAD))**2.)
17 | | PRINT 2, FARAD, AMP
18 IF (FARAD - FRDFIN) 19, 21, 21
19 FARAD = FARAD + 0,000 000 01
I 20 GO TO 16
21 IF (VOLT - 3.0) 22, 10, 10
| 22 VOLT = VOLT +0.5
: b2 GO TO 14

Check List

Statement 10 causes the values of the resistance, the frequency,
and the inductance to be read, in that order, from the first card.
Statement 11 causes the initial and final values of the capacitance
to be read from the next card. The values of the resistance, frequency,
and inductance are printed (statement 12) in fixed point form. The
initial value of the voltage is introduced and printed (statements 13
and 14). Statement 15 initializes the current value of the capacitance
(denoted by FARAD) to the first value to be used in calculation
{denoted by FRD1). The actual calculation is specified by statement 16.
The result of that calculation, together with the current value of the
capacitance, is printed (statement 17).

The current value of the capacitance is compared with the final
value to determine whether or not all values have been investigated
(statement 18). If not, the expression (FARAD -FRD 1) is negative
and the program proceeds to statement 19, which causes the current
value of the capacitance to be increased by the given increment.
This is followed by a transfer (statement 20) to statement 16 which
causes the calculation to be repeated for the new value of the
capacitance. If the expression in statement 18 is zero or positive,
all values of the capacitance have been investigated and the program
transfers to statement 21.

At this point the value of the voltage is compared with the upper
bound to determine whether or not all specified values of the voitage
have been used. If not, the expression in statement 21 (VOLT - 3.0)
is negative and the program proceeds to statement 22, which causes
the value of the voltage to be increased. Following this, a transfer
(statement 23) is made to statement 14, which causes the new value
of the voltage to be printed. The program proceeds to statement 15,
and the entire process of investigating all values of the capacitance
is begun again.

If all values of the voltage have been used (the expression in
statement 21 is zero or positive), the calculations for the current
set of values of resistance, frequency, and inductance are finished.
The program is returned to statement 10 so that the two cards
defining the next case may be read and the program repeated. This
process is repeated until all of the cases have been considered;

i.e., all of the cards have been read.

In the preceding descriptions of six types of instructions no attempt
was made to cover in detail all of the information necessary or
helpful in writing a program using these types. The following list
of items, together with what has already been presented, supplies
this information.
1. The basic characters which may be used in writing a

FORTRAN statement are:

a. A, B C, ..., Z (26 alphabetic characters)

b. 0,1, 2, ..., 9(10 numerical characters)

19

20

10.

11.

c. +(plus), - (minus), * (asterisk), / (slash), ((left
parenthesis),) (right parenthesis), , (comma),
= (equal sign), and . (decimal point).

. Upper and lower case alphabetic characters are not

distinguished on a punched card; e.g., D and d are
represented by the same punches.

. The digits 1 and 0 must be carefully distinguished from

the alphabetic characters I and O.

. If calculations involving a constant (i.e., any number

except a statement number) are to be carried out in floating
point arithmetic, as is always the case if only the types of
instructions presented in this section are used, the constant
must be written with a decimal point.

. A variable symbol can consist of six or fewer characters.

It must satisfy the following conditions:

a. The first character must be alphabetic.

b. The first character cannotbe I, J, K, L, M, or N,
which are set aside to denote integer variables, as
discussed in Section II.

c. Any character following the first may be alphabetic
or numerical, but not one of the special characters.

d. The names of all functions appearing on the computing
center list, as well as these names with the terminal F
removed, must not be used as variable symbols. For
example, if SINF is used as the name of a function,
neither SINF nor SIN can be used as a variable symbol.

. If a function appearing on the computing center list is used,

the name of the function, as written by the programmer,
must agree exactly with the name as it appears on the list.

. The argument of a function is enclosed in parentheses;

e.g., SINF (X).

. If a function has more than one argument, the arguments

are separated by commas; e.g., SINF (X, Y, Z).

. The left side of an arithmetic statement must never be a

constant. In the type of arithmetic statement covered in
this section, the left side is always a simple variable;
e.g., A. In Section II, arithmetic statements will be
extended to include function statements, in which the left
side is a function of one or more variables.

Never omit the intended operation symbol between two
quantities; e.g., do not write AB for A*B.

Never write two operation symbols in a row; e.g., do not
write A* -B for A*(-B). There are no exceptions. The
exponentiation symbol ** may seem to be an exception,
but it is regarded as a single symbol.

. Blank spaces can be used or not used as desired, since
blanks are ignored in the translation. For example

A=0.1
could be written as

A=0.1
and

GO TO 25
could be written as

GOTO25

. The prescribed form for the various non-arithmetic
statements must be followed exactly, except for the
arbitrary use of blank spaces. For example, the state-
ments

READ 1 A, B
IF A-B, 5,6,7
are incorrectly written. They should be written
READ 1, A, B
IF (A-B) 5, 6, 7

with the punctuation marks appearing exactly as shown.
. The magnitude of every non-zero quantity must lie between

10_'?’8 and 1038. By "quantity" is meant any constant or
any value assumed by a variable or function in the course
of the calculation.

. Numbers to be read by means of a READ 1 statement must
not exceed 10 digits.

. Numbers to be read by means of a READ 2 statement

must not exceed 8 digits. The exponent must have two digits
and a sign, making a total maximum of ten digits to a field.
. Numbers to be printed by means of a PRINT 1 statement
should not exceed 999, 999.99999.

. The program statement which is written last should be

a STOP statement or a statement which causes a transfer
to some other statement in the program (a GO TO or an

IF statement).

SECTION 1l - DEFINITION OF FUNCTIONS, MANIPULATION OF SINGLE-

Introduction

SUBSCRIPTED VARIABLES, MAGNETIC TAPE INPUT AND OUTPUT

The part of the FORTRAN language presented in Section I can be
used to direct the operation of the 704 in the solution of certain
problems. However, it is difficult or impossible to program the
solution of some problems using only the six types of statements
described in Section I. These six types of statements, grouped
into classifications, were:

Arithmetic statements

READ
- t stat t
Input-output statements { PRINT
IF
Control statements Unconditional GO TQ
L\ STOP

In this section arithmetic statements will be extended to include
function statements, and additional types of statements will be
introduced which make it possible to direct the 704 in the solution
of problems more complex than those dealt with in Section I.

If programming were done using only the six types of statements
presented in Section I, laborious programming would be necessary
to carry out relatively simple iterative calculations or logical steps
such as are encountered in the addition of two vectors or the selec-
tion of a certain number from a list of numbers. However, it is
possible, using the additional types to be presented in this section,
to employ the subscript notation of mathematics to make the
programming of such problems easier.

A mathematician would denote that c; is the sum of the vectors
(ay, a4 ag)and (by, b, bs) by writing

C1=al+b1 i=1, 2, 3
Notice that the first part of the statement

Ci=ai+bi

is a general statement which, in effect, becomes three specific
statements

cl=a1 +Db

1
c2=a2 +b2

23

by assigning the values 1, 2, and 3toi.
By using the FORTRAN language, it is possible to make

general statements like ¢; = a; + b;, and to make other statements

which assign the desired values to i. When a general statement

is executed it is always executed in one of its specific senses. For
example, if the variable 1 has the value 3 when the FORTRAN
equivalent of ¢; = a; + by

C(D) = A(D + B(D

is executed, the values denoted by A(3) and B(3) are added and the
sum is assigned as the value of C(3). Thus, to compute the sum
vector

(C(1), C(2), C(3))

it is necessary to execute the general statement 3 times, each time
with I having one of the values 1, 2, 3. Therefore, in addition to
providing for arithmetic statements with subscripted variables, it
is necessary to provide for a method of stating that a given set of
such statements should be executed repetitively for certain values
of the subscript. The FORTRAN statement which provides this
ability is called a DO statement. An example of a DO statement,
followed by an explanation, appears below.

DO 201=1, 250

This statement instructs the 704: "Execute all statements which
immediately follow, up to and including the statement numbered 20,
250 times (the first time for I = 1, the second time for I= 2, and

so on, and the last time for I = 250), and then go on to the statement
following statement 20." Thus, to return to the example of vector
addition, the FORTRAN statements necessary to add A(I) and B(I) are

FOR

COMMENT

FORTRAN STATEMENT

STATEMENT
NUMBER

1 s| s |7

po11=1.3
(D = AD +B(D

|
I 1
|
2
|

When the statement numbered 2 is encountered, the values of C(1),
C(2), and C(3) will have been computed and stored.

24

Example: It is required to compute the following quantities

5 _ /.2 2 _
P, = \/sm (Ai Bi+Ci) + cos (Ai B; Ci)

— ain2 2 _

fori=1, ..., 100. A possible FORTRAN program for this
calculation follows.

< FOR H
COMMENT | 3 FORTRAN STATEMENT

STATEMENT
NUMBER

s

™ cowr

TRIGF(X, Y) = SINF (X+Y)**24+COSF(X-Y)**2
DIMENSION A(100), B(100), C(100), P(100), Q(100)
READS, A, B, C
DO61=1,100

_P(D = SQRTF(TRIGF(A(D*B(D, C(D))
Q(D = TRIGF(A(D, C(D)
PRINT 8, (A(D, B, CM, P(D, Q(D, I=1,100)
FORMAT (5F 10.4)
S1OP

0| N[O [[(e [N =

i
|
I
|
|
!
|
i
|
I
I
|

Ll

Statement 1 defines the function TRIGF(X, Y) as equal to the
expression (sin2 (X+Y) + cos2 (X-Y)). The DIMENSION statement
indicates that the arrays A, B, C, P, and Q each have 100 elements.
A, B, and C in the READ statement will cause all elements of A,
then all elements of B, and then all elements of C to be read into
the 704 from cards. Notice that the READ Statement refers to a new
type of statement (8), FORMAT. In this example, the FORMAT
statement specifies the external arrangement for both input and
output data. In this FORMAT statement, SF10.4 means: "There
are Fixed point decimal fields per card or line, each field being
10 columns wide with 4 decimal places to the right of the decimal
point." Hence, A, B, C, P, and Q will be read or printed in the
form __ +XX.XXXX, that is, two blanks, a sign, two digits, a
decimal point, and four digits, a total of 10 columns. Statement 4
says: "DO the following statements through statement 6 for I=1,

E2, ..., =100." Statements 5 and 6 compute P; and Q;. The PRINT
Statement says: "Print the arrays A, B, C, P, and Q for =1, ..., 100
as specified by FORMAT statement 8. " Statement 9 stops the computer.

The method of subscript notation and the use of the DO, FORMAT,
DIMENSION, and function Statements which have been introduced
here will be further illustrated in the following pages of this section.
In addition, several new statements for input and output and tape
manipulation will be presented.

25

Integer Constants
and Variables

In Section I, only floating point constants (which must have a decimal
point) and floating point variables (which must not begin with I, J,

K, L, M, or N) were considered. However, it should be clear that
floating point numbers are neither desirable nor necessary for use
as subscripts; i.e., X1 3 is not generally a useful notation, and

X3 pls redundant and wastes space. Integer constants and integer

variables are more useful for this purpose. The two rules which
follow describe the method of writing such numbers:

1. Integer constants are written without a decimal point.

2. Integer variables must begin with I, J, K, L, M, or N.
When used in FORTRAN statements, a subscripted variable is
written as the name 8f the variable followed by the subscript (an
integer constant or variable) in parentheses; e.g., A(3) is the
FORTRAN representation of Ag and X(I) is the FORTRAN repre-
sentation of Xj.

Subscripts are not restricted to single quantities. They may
take the general form

K*1+L

where I represents any integer variable and K and L represent any
unsigned integer constants (L may also be zero, in which case the
form reduces to K*I). Further examples appear below:

Y(M+1) means Ym +1

XY
P(3*K-5) means PSk-S

If a floating point variable, for example, A, is used as a
subscripted variable, it represents the collection of variables A(1),
A(2), A(3), ... etc. and may not be used without a subscript,
except in an input/output statement (like READ or PRINT) when it
is desired to transfer the entire array, or in an arithmetic state-
ment where A will be interpreted as A(1). Thus it is not possible
to use B(J) and B in different statements and expect to have both a
vector, B(J), and a non-subscripted variable, B.

Reference to a subscripted variable whose subscript is an
integer variable, for example, X(N), is always interpreted in a
specific sense determined by the value of N. Therefore, some
statement which assigns a value to N, such as

N=1+]
or

DO 10, N= 1, 20
or

READ 6, N

26

should always be encountered before reaching a statement which
refers to X(N).

Integer quantities are not permitted to appear in floating point
expressions except as subscripts or as exponents. However, an
expression containing integer quantities only (such as I + J) may be
written; such expressions will be evaluated using truncated integer
arithmetic rather than floating point arithmetic. Some examples
of expressions which are and are not permitted appear below.

Expression Permissible Arithmetic Used
A*BX(C**2) Yes Floating

2*A No (ne decimal point) ~ =--=----

I+] Yes Integer

2.*A Yes Floating
A**(1+]) Yes Floating

2*1 Yes Integer

I+A No eeeena-

As long as the expression on the right side of an arithmetic
statement is a legitimate one as described above, there are no
further restrictions on arithmetic statements. There are, however,
certain pitfalls which may be encountered if arithmetic statements
are written having an integer expression on one side and a floating
point expression on the other. For example, the formula

1= A+B*¥]

instructs the 704 to compute the value of A+BJ using floating point
arithmetic, truncate the result (i.e., drop any fractional part),
and assign the integer so obtained as the value of I. This meaning
results from the fact that the expression on the right is a floating
point expression whereas the variable on the left is an integer
variable. Conversely, the formula

A =]JOB +N/3

instructs the 704 to compute the value of JOB+N/3 using integer
arithmetic, put the resulting integer in floating point form, and
assign this as the value of A. Note that integer arithmetic gives
an integer result even for N/3. Thus, the value of 8/3 would be 2,
the largest integer not exceeding 8/3, whereas the value of 8./3.
in a floating point expression is 2.66666. . .

27

DIMENSION
Statements

DO Statements

Whenever a subscripted variable appears in a FORTRAN program,
it is necessary to include a statement which indicates the size of
the array referred to by this variable. This type of statement is a
DIMENSION statement. A DIMENSION statement causes the 704 to
assign the proper number of storage locations to each subscripted
variable.)

A DIMENSION statement consists of the name of each subscripted
variable followed by an integer in parentheses which represents the
greatest number of elements which will ever be included in the array.
The variables are separated by commas, and the whole group of
names is preceded by the word DIMENSION.

If the subscripted variables ALPHA(I), GAMMA(]), and
VECTOR(N) appear in a FORTRAN program, then a DIMENSION
statement mentioning these variables must also be included.

Assume that the number of elements in ALPHA(I) will never exceed
100, the number in GAMMA(]) will never exceed 25, and the number
in VECTOR(N) will never exceed 12. The DIMENSION statement
must then be written

DIMENSION ALPHA(100), GAMMA(25), VECTOR(12)

DIMENSION statements are not actually executed. No instruc-
tions corresponding to this statement will appear in the translated
machine language program. In the FORTRAN program, however,

a DIMENSION statement giving the size of each array must precede
the first executable statement mentioning that array. A single
DIMENSION statement, including all subscripted variables mentioned
in the program, may be used, or separate statements may be
inserted prior to mentioning each new array.

An example of the use of a DO statement of the unconditional type
appeared in the introduction to this section. The usefulness of such
a statement for carrying out repetitive calculations was mentioned
then. The standard form for an unconditional DO statement is

DO NI=m

where N is a statement number

& SR iiiTaa ACA LA RIS

I is an integer variable

m, and m, are integer constants.

The meaning of the DO statement is: "Execute the statements

immediately following this DO statement, up to and including the
statement numbered N, first with I equal to m,, then with I equal

28

to m, + 1, etc., and finally with I = m,, and then go to the

statement following statement N."

The set of statements immediately following the DO statement
and extending through statement N is called the range of the DO
statement. In Section III, the use of "nests" of DO statements, with
one or more DO statements in the range of another, will be discussed.
In the use of DO statements discussed in the present chapter, no
DO statement contains another DO statement within its range.
However, the range of 2 DO statement may contain GO TO or IF
statements, and these may transfer control out of this range.

As a further illustration of the usefulness of the DO statement,
consider a number B and a set of fifty numbers, A(J). The problem
is to select the smallest of the values of J for which B= A(]), if
there are one or more such values of J. A program to accomplish
this could be written as follows:

— I

1

Ce

STATEMENT
NUMBER

FOR |
|

FORTRAN STATEMENT !

L e

COMMENT

™ coxnmuaion

1

10 DO 12 J=1,50 J—

L
T F (B-AW) 12,20, 12 //
{12 | | CONTINUE

13 ﬁf control reaches Statement 13,

the search has been unsuccessful,

|
|
|
—
[
|
|

20 If control reaches Statement 20,

the desired value of J is available for use.

Control passes to statement 20, out of the range of the DO
statement, as soon as J, the index of the DO statement, reaches a
value for which B-A(J) equals zero. Any reference which is now
made to] will be interpreted for J equal to that specific value.
Whenever B-A(]J) is not equal to zero, control goes to the last
statement in the range of the DO. This statement, CONTINUE,
means "no operation.” The reason for using it relates to the meaning
of the DO statement. The DO statement causes the index,] in this
example, to be increased by 1 each time the last statement in its
range, statement 12 in this example, is reached, after which control
goes to the first statement in its range. In this example, when
B-A(]) is not zero, it is desired to increase J and begin the range
again. To accomplish this, control must reach the last statement
in the range (which cannot be the IF statement) even though no more
work remains to be done with the current value of J. In this example,
therefore, the last statement in the range of the DO statement must
be CONTINUE, which means "do nothing."

29

Function
Statements

Within the limits of the part of FORTRAN introduced in Section I,
certain functions, specified by the computing center, were permitted
in writing arithmetic expressions, such as square root, sine, log,
etc. The functions were restricted to those appearing in the list
furnished by the computing center.

It is also possible, however, to write expressions involving
functions peculiar to the problem at hand. Each desired function is
defined by means of a function statement. For example, suppose
it is desired to use the function

G(X)= 1.3 +\ 4.1X+X2

several times in a program. The function statement defining G(X)
might be written as follows:

GXXF(X) = 1.3 + SQRTF(4.1*X+X**2)

A later arithmetic formula in the program, employing GXXF,
might be

Y = 10.3*GXXF(ALPHA*BETA) + 14.7

In this use of GXXF, before the value of the function is computed,
the quantity ALPHA*BETA will be substituted for X in the expression
defining GXXF.

In general, function statements must obey the following rules:

1. All function statements in a program must be the first
executable statements in that program.

2. The function name must have four to seven alphabetic or
numerical characters; the first must be alphabetic, and
the last must be F.

3. The name of the function is followed by parentheses
enclosing the argument or arguments. Multiple arguments
are separated by commas. Each argument must be a single
non-subscripted variable.

4. Any argument which is a floating point variable in the
definition of a function should be a floating point quantity
in any subsequent use of the function. A similar rule
applies to integer arguments.

5. The value of a function is a floating point quantity unless
the name of the function begins with X, in which case the
value is an integer quantity.

30

The following example illustrates some properties of function

Statements.

comen | 3 FORTRAN STATEMENT

STATEMENT g
, NUMBER . : , 12

1| | FIRSTF(X) = X**2 + A%*2

! 2 | | _SECONDF(R,S)= SQRTF(FIRSTF(R/(R+S)))
: - -

; _

‘l _

| _

I .

! 15 | | QM = FIRSTE(Y*B(D)

| _ .

i

i _

|

|

i _

| .

I 27 P= SECONDF(I.7*DELTA, ALPHA)*PI

I}

1

Notice that it is permissible to use a previously defined
function in the definition of subsequent functions. Notice also that
the variable A is involved in the definition of FIRSTF but is not an
argument. A may be used in the same way as any other variable
in the problem, and its current value is used each time FIRSTF
is evaluated.

The Meaning of Examples of lists have already appeared in READ and PRINT
a List statements. A list is a set of items separated by commas; when
a list appears in an input or output statement, the order of
reading or writing is the order of the items in the list, with
arrays expanded as described below.
For example, the statement

PRINT 20, A, B, C

has the list A, B, C; the quantities A, B, and C will be printed in
that order. If any of the items A, B, or C have been specified in a
DIMENSION statement as arrays, then the values of each element

of the array will be printed. For example, if A and C are simple
variables and B has been specified in a DIMENSION statement as a
subscripted variable having 3 elements, then the quantities which

the 704 would be instructed to print by means of the PRINT statement

above are

A, B(1), B(2), B3), C

31

If A and B were large arrays and one wished to specify the reading
or writing of the quantities

A(1), B(1), A(2), B(2), ...A(100), B(100)
in that order, the list would consist of the single item
(A1), B(D, I=1, 100)

If one wished to specify the first seven elements of the array A
(in ascending subscript order), followed by the first five elements
of the array B (in ascending subscript order), the list would be

(A(D, 1=1, 7), (B(D), I=1, 95)

However, if A and B have dimensions seven and five respectively,
and the arrays are to be transmitted in descending subscript
order, A(7), ..., A(1), B(5), ..., B(1), the list would be

A, B

When, as above, an item in a list specifies part of an array
or a mixture of arrays, the item must be enclosed in parentheses
and the variables inside must be separated by commas as shown.
The indexing information (e.g., I=1,100) is written exactly as in
a DO statement.

FORMAT An input or output statement, such as READ or PRINT, specifies

Statements the variables which are to receive values or are to be printed. It
also refers to the number of a FORMAT statement which specifies
the arrangement of a line of input and/or output data. The FORMAT
statement contains the specifications for each field in the line.
There are three general forms for a field specification

Iw, Ew.d, Fw.d

where Iw indicates an Integer decimal number having a field width
of w columns; Ew.d indicates a floating decimal point number (E),
having a field width of w columns, and d places to the right of the
decimal point; Fw.d indicates a Fixed decimal point number, having
a field width of w columns, and d places to the right of the decimal
point. For example, the statements

25 FORMAT (E10.4, F8.3, F7.5, E9.2, 13, F4.1)

READ 25, A, B, C, D, I, E

32

might be used to instruct the 704 to read the following lines of
input data from cards:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

! |
+.8765 | E+406 | +345.648 | +.56872 | -2.34 |[E+01| +81 |-1.5

|
- 1223 B-02 | +124.785 | -.78963 | -6.78 lg+09| +15 [49.8
|
|

+.1034 [E+05 | -728.654 | +.12345 +4.35 |E- 07| -28 |-2.3

Note that the field width includes a column each for the sign, decimal
point, and, in the case of floating decimal point numbers, the four
characters of the exponent: the letter E, the sign of the exponent,
and the two digits of the exponent. Floating decimal or fixed decimal
point numbers may have any number of digits in the input field,
depending on specifications in the FORMAT statement; however,
only eight significant digits will be retained in the calculations. If
the decimal point punched in the card does not agree with the
specifications in the FORMAT statement, the decimal point over-
rides the specification; i.e., calculations will be performed with
the decimal point as placed on the card. If no decimal point is given,
the number is treated as if the decimal point were located according
to the specification. No provision is made for handling decimal
integers larger than 32767. A line of input data may have a maximum
of 72 characters.

Prior to sending the input data sheets to the computing center
for punching, the card columns for each of the fields must be
specified. Columns 1-72 are available for use. For this example,
the columns for field 1 should be specified as columns 1-10 (since
10 columns are specified by the FORMAT statement for the first
field); field 2, columns 11-18; field 3, columns 19-25; field 4,
columns 26-34; field 5, columns 35-37; and field 6, columns 38-41.

Specifying a field width larger than the number of characters
in the field is particularly valuable for use with output statements.
For example, the statements

*

PRINT 10, A, B, C, D, I, E
10 FORMAT (El14.4, F11.3, F10.5, E13.3, 16, F7.1)
would cause the 704 to print the example data as follows:
--- 0.8765E 06___ 345.648___ .56872___-0.234E 02___ 81___-1.5
----0.1223E-02___ 124.785___-.78963___-0.678E 10___ 15___ 9.8

--- 0.1034E 05___-728.654___ .12345___ 0.435E-06___-28___-2.3

33

Note the three-column separation between fields (represented by
dashes) provided for by the FORMAT statement (10). In the case of
floating decimal point numbers, the field width includes the zero
preceding the decimal point. Floating decimal point numbers are
printed with the first significant digit immediately to the right of
the decimal point; therefore, these numbers have as many significant
digits as there are decimal places specified. However, no more
than eight significant digits are possible. A maximum of 119 char-
acters may be printed per line.

The FORMAT statement is not executed and may be piaced
anywhere in the program. The field specifications are enclosed in
parentheses with commas between the specifications for successive
fields. Successive fields having the same format may be specified
by inserting a coefficient (indicating the number of identical fields)
before the code letter E, F, or I. Thus

is equivalent to
FORMAT (13, E12.3, E12.3, F8.4)

It may be of interest to consider now the FORMAT statements
which were referred to as 1 and 2 in Section I. FORMAT statement 1,
which referred to fixed decimal point input and output, is written as

1 FORMAT (5F14.5)

The code letter F is preceded by the number 5, which indicates
how many times this specification is to be repeated per line. The
field width of 14 allows for six digits and a sign to the left of the
decimal point (7 spaces), the decimal point (1 space), and five digits
to the right of the decimal point (5 spaces), plus one additional
space for field separation.

FORMAT statement 2, which referred to floating decimal
point input and output, is written as

2 FORMAT (1P5E14.5)

The scale factor (1P) shifts the decimal point so that there is
one significant digit to the left of the decimal point. (See Section III
for scale factors.) The field width of 14 allows for one digit and a
sign to the left of the decimal point, the decimal point, five digits to
the right of the decimal point, the four-character exponent field,
plus two additional spaces for field separation.

34

Magnetic Tape
Input and Output

Thus far, the only methods that have been mentioned for transferring
decimal data into and out of the magnetic core storage of the 704 are
use of the on-line card reader for input and use of the on-line printer
for output. The operation of these units is controlled by the READ
and PRINT statements introduced in Section 1. However, there is
another method for transferring information into and out of magnetic
core storage, the use of magnetic tapes.

1. READ INPUT TAPE and WRITE OUTPUT TAPE Statements:

Just as a READ statement directs the 704 to read data from
cards, a READ INPUT TAPE statement directs the 704 to read data
into core storage from magnetic tape. Similarly, just as the use of a
PRINT statement causes on-line printing, a WRITE OUTPUT TAPE
statement causes the output information to be written on magnetic
tape. '

Most computer installations have two machines available which
are not connected to the computer. One of these machines can read
information from punched cards and write this information on
magnetic tape. The other machine can read information written
on magnetic tape and print this information. By means of the card-
to-tape machine, the information contained in a deck of data cards
can be written on magnetic tape, which the 704 can subsequently be
instructed to read by means of a READ INPUT TAPE statement.

The output information written on magnetic tape by a WRITE OUTPUT
TAPE statement can subsequently be printed by using the tape-to-
printer machine.

The advantages of using magnetic tape for input and output lies
in the fact that the computer reads from and writes on magnetic
tape much more rapidly than it reads cards and prints. This means
that a great deal of computer time which would otherwise be required
for card reading and printing can be relegated to the relatively
inexpensive card-to-tape and tape-to-printer equipment.

The 704 computer may have up to ten attached tape units which,
in the FORTRAN language, are referred to by the numbers 1, 2, ...,
10. The general form of the two input-output statements mentioned
above is

READ INPUT TAPE I, N, List
WRITE OUTPUT TAPE I, N, List
where I is the number of the tape unit (an integer between 1 and 10

or an integer variable), N is the number of a FORMAT statement,
and "List" denotes a list of names of quantities to be read or written.

35

2. General Information about the Use of Tapes:

Information is recorded linearly on magnetic tape in blocks
called records, which may be of various lengths. Each record is
separated from the next by a gap of blank tape called the end-of-
record gap. ’

In order to indicate that the last record of information has been
written on a tape, the statement

END FILE I

where I is the number of the tape unit, is used. This causes an
end-of-file mark to be written on the specified tape. Later, during
reading, the end-of-file mark is recognized by the tape reading
mechanism as a direction to stop tape reading at that point.

When a WRITE OUTPUT TAPE statement is executed, the tape
mechanism writes the current values of the quantities in the list as
one record or successive records, with the division into records
determined by the associated FORMAT statement. For example,
assuming that the list refers to five single quantities, the statement

WRITE OUTPUT TAPE 6, 1, A,B,C, D, E

causes the five numbers which are the current values of A, B, C, D,

and E to be written, in accordance with standard FORMAT statement 1,

as a single record, in the order A, B, C, D, E, on the tape mounted

on tape unit 6. Physically, the tape is moved forward over the

Stationary tape read-write head, which magnetically records the

five numbers and then erases a short segment of tape as the end-

of-record gap. At the end of this operation, the tape is in position

for the writing of the next record. No end-of-file mark is written.
Again assuming that the list refers to five single quantities, the

effect of the statement

READ INPUT TAPE 6, 1, A,B,C,D, E

is to move the tape mounted on tape unit 6 forward over the read-
write head, causing the 704 to start reading the next five numbers
(which must constitute a record conforming to FORMAT 1), assigning
the first number as the value of A, the second as the value of B, etc.
After the five numbers called for by the list have been stored,

control passes to the next executable statement, leaving the tape
positioned for the reading of the next record.

The above examples are simple cases, intended to give an idea
of the movement of the tape in response to the program, and of the
way information is transmitted between core storage and tape.

A tape can be read or written only in the forward direction.
However, there are two statements which can be used to move the

36

tape backward: REWIND I and BACKSPACE 1. REWIND I moves
tape I back to the physical starting point regardless of its current
position. BACKSPACE I moves tape I back to the beginning of the
preceding record. If the tape is in a rewound position, a BACKSPACE
statement has no effect.

In order to move a tape forward one record without reading
any information into storage, the statement

READ INPUT TAPE I, n

may be used, where n is the number of the FORMAT statement
describing the record to be skipped. Note the omission of the list.

By means of REWIND I, BACKSPACE I, and READ INPUT TAPE I,
n (without a list), a tape can be positioned for reading or writing
at the beginning of any record desired. However, because of the
nature of the tape read-write mechanism, writing a new record on
tape makes it impossible to read any of the old information physically
following this new record on the tape. Since the tape can be positioned
only at the beginning of a record, it is not possible to begin reading
or writing in the middle of a record.

There are two other types of statements for programming tape
operations: READ TAPE and WRITE TAPE statements. For information
about these types, see the Programmer's Reference Manual for
FORTRAN, Form 32-7026.

Additional Several examples which illustrate the use of many of the statements
Examples introduced in this section appear below.
Example 1: It is required to calculate the amount of heat necessary
to raise the temperature of a mixture of ten gases from a given base
temperature, Tl’ to a series of higher temperatures. These

temperatures are 25 degrees apart and range from T1 up to a
maximum of T2.

The heat required may be calculated by multiplying the heat
capacity of the gas mixture by the temperature difference. However,
the heat capacity is dependent upon the temperature. The mean
heat capacity over a given range may be estimated by using the
equation

R o) C 2 2

where Cp = the mean heat capacity

T = the upper temperature, degrees Kelvin

37

T0 = the lower temperature, degrees Kelvin

a, b, ¢ = empirical constants, different for each gas
(degrees Kelvin = degrees Centigrade + 273.1)

Input data to the program must therefore include the amount
of each gas present, the three empirical constants, (a, b, c) for
each gas, the base temperature (Tl, in 0C), and the maximum

temperature (T,, in °C).

A possible FORTRAN porgram to carry out this calculation
appears below. It has been written to provide the individual heat
capacities in each range as well as the total heat requirement. The
program incidentally illustrates the fact that statements need not
be numbered sequentially.

commen | £ FORTRAN STATEMENT
s | §
si e |7 —
9 | | DIMENSION X(10), A(10), B(10), C(10), CP(10)
; 10 FORMAT (10F8.3)
| 11| | FORMAT (10E11.3)
12 | | READINPUTTAPE4, 10, X, A, TI, T2
| 113 | | READINPUT TAPE4, 11, B, C
|14 | | TIK=Ti1+273.1
|15 TK= TIK
16 | | TK=TK+25.0
117 | | SuMm=0.0
18 | | IF ((K -273.1)-T2) 19, 19, 27
119 | | DO 21I=1,10
| 20 CP@ = AM+B(D* (TK+T1K)/2.0+C(D*(TK**2+TK*TIK+T1K**2)/3.0
I 21 SUM = X(D*CP(D)+SUM
| 2 HEAT= SUM*(TK-TIK)
|23 T=1K - 273.1
| 24 WRITE OUTPUT TAPE 5, 31, T1, T, HEAT
| 25 WRITE QUTPUT TAPE 5, 32, X
| 36 WRITE OUTPUT TAPE 5, 34, CP
! 2 GO 1O 16
|2z IF (T2 - 2500.) 12, 28, 28
[128 END FILE 5
[12 REWIND 4
20 REWIND 5
| 31 FORMAT (2F10.1, E15.5)
| |32 | _|_FORMAT (10F8.3)
I 34 FORMAT (5E14.5)
i 33 sToP

The DIMENSION statement sets aside storage locations for
the constants and results. Statements 10 and 11 describe the

38

arrangement of the input data as follows:

X (fractional amount of each gas) = 0.xxx

A = +£x.Xx
B = +xx.xxxEtee
C = tx.xxxEtee

T1l, T2 = £xxxx.X

Statements 32 and 34 describe the arrangement of the output
data as follows:

X 0.xxx

CP 0.xxxxxExee

T, T = xxxx.X

HEAT

+0.xxxxxE+ee

Statements 12 and 13 cause the data for a case to be transferred
into the 704 from tape unit 4. The calculation of the absolute tem-
perature in degrees Kelvin from the base temperature is carried
out by statement 14. Statement 15 sets the initial value of the
temperature range to TloK. Statement 16 causes the range to be
increased by the specified increment. Statement 17 sets the location
designated as SUM to zero. The upper limit of the range is compared
to the maximum temperature specified for this case. If the maximum
has not been reached, control reaches the DO statement (statement
19). The statements in the range of the DO (statements 20 and 21)
cause the specific heat of each component to be calculated and
weighted according to the fraction of that component in the mixture.
The actual calculation of the heat requirement is described by
statement 22. Statement 23 causes the upper limit of the range to
be expressed in degrees Centigrade. Writing of the resuits, along
with the fractions of each component, on tape unit 5 is accomplished
by statements 24, 25, and 36. A transfer to begin the calculation
for the next range is effected by statement 26.

If the comparison at statement 18 indicates that the maximum
temperature for the given case has been exceeded, control reaches
statement 27. At this point, the maximum temperature is examined
to determine whether it exceeds 2500°C (which is the indication that
the problem has been completed). If the problem has been completed,
control reaches statement 28, an end-of-file mark is written, the

39

tapes used in the program are rewound (statements 28, 29, and
30), and the 704 stops. If the problem has not been completed,
control is transferred to statement 12, which causes data for a
new case to be read from the input tape.

Example 2: Given X;j, Y;, Zj fori=1, ..., 10andj=1, ..., 20,
compute:
10 20
PROD=(> Ai)(> z.)
. . J
i=1 j=1
where 2

A= XS4y i Xy
A= X +Y it |%,|<[%;]
A=0 if X[||

A possible FORTRAN program follows

FOR K
R FORTRAN STATEMENT
spEment | 2
1 5! ¢ |7 72
3 DIMENSION X(10), Y(10), Z(20)
: 4 FORMAT (5F14.4)
5 | | READ4, X, Y, Z
: 6 | | _suma=o0.0
7 | | po12g=1,10
! 8 IF(ABSF(X(D)~ ABSF(Y(D)) 9, 12, 11
9 SUMA = SUMA+X(D+Y(D**2
10 | | corto12
11 SUMA = SUMA+X(M**2+Y(D
! 12 | | _CONTINUE
|13 SUMZ = 0.0
| 14 DO15J=1, 20
15 SUMZ = SUMZ+Z(J)
16 PROD = SUMA*SUMZ
|17 PRINT 4, SUMA, SUMZ, PROD
2 18 STOP
|

The DIMENSION statement sets aside storage locations for the
input data. Statement 4 specifies the input and output data as fixed
point numbers having 4 decimal places. The READ statement reads
the input data from cards into the 704. Statement 6 sets the quantity
SUMA to zero. Statements 8-12, under control of the DO statement 7,
10 20

compute) A . Statement 15 computes > Zj under the control
i=1 ji=1

of DO statement 14. The following statements compute and print

40

Check List

PROD. Statement 12, CONTINUE, serves as a common reference
point; and since it is the last statement in the range of the DO,
Iis increased after its completion, and the next repetition is begun.

41

1.

B ow N

10.

11.

12.

13.

All subscripted variables must appear in a DIMENSION
statement. This statement must appear in the program
before reference is made to the variables.

. Negative subscripts are not permitted.
. Subscripting of subscripts is not permitted.
. In a floating-point expression, integer variables and

constants can be used only as subscripts and/or exponents.

. Integer constants are written without a decimal point;

integer variables must begin with I, J, K, L, M, or N.

. The names of all functions defined in the program or

appearing on the computing center list, as well as these
names with the terminal F removed, must not be used

as variable symbols. For example, if SINF is used as the
name of a function, neither SINF nor SIN can be used as
a variable symbol.

. If a subscripted variable has 4 or more characters in its

name, the last of these must not be an F. For example,
SINF(I) cannot be used as a subscripted variable, regard-
less of whether SINF is used as the name of a function.

. The last statement in the range of a DO must not be a

transfer.

. Decimal integers larger than 32767 are treated modulo

32768.

An end-of-file mark should always be written on output
tapes.

Provision for rewinding tapes should be made in the
program.

No constants may be given in a list for an input/output
statement, only variables.

FORMAT statements for output must be written so that
the first character of the first field is a blank.

(Refer to the end of Section I for additional points.)

SECTION 11l - MANIPULATION OF TWO- AND THREE-DIMENSIONAL ARRAYS

Introduction The following is a list of the 15 types of statements, grouped into
classifications, which have been presented in Sections I and 1L

Arithmetic statements

" IF
Unconditional GO TO
Control statements ﬁ STOP
DO
L CONTINUE

(READ

PRINT

FORMAT

READ INPUT TAPE
WRITE OUTPUT TAPE
REWIND

BACKSPACE

L END FILE

Input-output statements ﬁ

Specification statement DIMENSION

Several of the statements introduced in Section II offered a
convenient method for handling one-dimensional arrays in an
iterative manner. However, no provision was made for handling
two- and three-dimensional arrays. The present section will
describe additional features. In this section, subscripting is extended
to two- and three-dimensional arrays. This provision greatly
facilitates the solving of many engineering and scientific problems
which require matrix manipulations for their solution. Several
new statements will also be introduced.

The following example of matrix multiplication will serve to
illustrate DO nests and multiple subscripts. (A DO nest is a set of
two or more DO statements, the range of one of which includes the
ranges of the others.)

Given the matrix A with dimensions 10 x 15 and the matrix B
with dimensions 15 x 12, compute the elements cij of the matrix

C = AB. To compute any element C;;, select the i row of A and the

j column of B, and sum the products of their corresponding elements.
The general formula for this computation is

15
C..= Z A, B..
k
ij K21 ik "kj

43

The following is a possible FORTRAN program for this
matrix multiplication.

[

STATEMENT
NUMBER

FOR

COMMENT

FORTRAN STATEMENT ?

|* coattnuation

DIMENSION A(10, 15), B(15, 12), C(10, 12) /
FORMAT (5E14.5)

w

READ 3, A, B

DO 301I=1, 10 Range of 1st DO

DO 30J=1,12 Range of 2nd DO

CE, p=0.0

DO 20K=1,15 Range of 3rd DO

C{L,d) = ClLd) + ALKI*BK,)]

PRINT 50, I, J, C(L,J)

FORMAT (215, E16.7)

888 B loln|n

STOP

‘The DIMENSION statement says: "Matrix A is of maximum
size 10 x 15, matrix B is of maximum size 15 x 12, and matrix C
is of maximum size 10 x 12." The READ statement reads all
elements of the matrix A and then all elements of matrix B into
the 704 from punched cards, the format of which is specified by
statement 3. Since two-dimensional arrays are stored column-wise,
the matrices A and B must be punched column-wise; i.e. all the
Ai of column 1, followed by all the A; of column 2, etc. (All’ A21,

Agys A4pr oo Aqp 15)» and similarly for matrix B. Notice that

statements 6 through 30 constitute a program similar to programs
considered in Section II. Whatever values I and J have at the moment,
this program computes and prints C(J, J) along with I and J. State-
ment 5 says that this program is to be repeated 12 times, first

for J=1, then for J= 2, ..., J= 12. Notice that for each repetition
of statements 6 through 30 statement 20 is executed 15 times, first
for K= 1, then for K= 2, and so on. Thus, when the process called
for by statement 5 is complete, the I row of the product matrix has
been computed and printed. In a similar manner, statement 4 causes
the program from statement 5 to statement 30 to be repeated for the
appropriate values of I, thereby producing all of the rows of the
product matrix.

This example illustrates the fact that one or more DO statements
may appear in the range of a DO statement. This nesting of DO
statements can result in a single statement being the last statement
in the range of several DO statements. For example, statement 30
is the last one in the range of DO statements 4 and 5. Consequently,
a more general rule is needed to describe the flow of control and
the incrementing of indices following the last statement in the range

44

Subscripts for
Two- and Three-
Dimensional Arrays

DO Nests

of a DO; the following rule holds for DO ranges which have the

same last statement: '
Upon the completion of the last statement in the range of a DO,
control passes to the first statement in the range of the nearest
preceding DO which is not yet completed and which has the same
last statement, and the index of that DO is incremented. The
last statement in the range of a DO may not be a control state-
ment (e.g., IF, GO TO, DO, etc.). If all DO ranges containing
this last statement as the end of their range are completed,
control passes to the next statement.

In the preceding example of matrix multiplication, A, B, and C
were two-dimensional arrays. As was noted, each variable had two
subscripts which were separated by commas, and the set of two
subscripts was enclosed in parentheses.

For example:

A(lL, K)
B(K,]
C D

Three-dimensional arrays are denoted by the use of three subscripts.
For example:

X(M, N + 10, 5*L)

The same rules presented in Section II regarding the formation of
subscripts apply to the two- and three-dimensional cases.

The DIMENSION statement is similarly extended to two- or
three-dimensional arrays. For example, the statement

DIMENSION W(10, 10, 15), ALPHA(15, 5), V(20, 10)

causes 1500 locations in storage to be set aside for the three-
dimensional array W, 75 locations for the two-dimensional array
ALPHA, and 200 locations for the two~dimensional array V.

There are certain rules which must be observed when using DO
statements within the range of another DO statement:
1. If the range of a DO statement includes another DO
statement, all statements in the range of this second
statement must also be in the range of the first DO

45

statement. The following diagram illustrates this rule.

Permitted Violation of Rule 1

: [[f

L] L

2. No transfer of control by IF or GO TO statements is
permitted into the range of any DO statement from outside
its range, since such transfers would not permit the DO
loop to be properly indexed. The following diagram
illustrates this rule.

Permitted Violation of Rule 2

[)
) i
1) ;
All of the DO statements so ifar presented were written in the
form

DO NI=m1, m2’

In these cases, the index, I, started at the specified value, my, and
was increased by one each time the statements in the range of the
DO were executed, until the value of I equaled m,,. It is possible,

however, to achieve greater flexibility in the DO statements by
adding a third fixed point number so that the general form is

DO NI= my, mz, mg

In this case the value of the index, I, starts at m, (as before), but
it is increased by mg (which may be different from one) each time,
until the value of I equals or exceeds m.,, at which point the DO is
"satisfied." It is not necessary to include the increment, mg, in

the DO statement unless the increment is different from one; i.e.,
the statements

DO 201I=1, 10
and
DO 201I=1, 10, 1

are equivalent.

46

»

Lists for Two- and
Three-Dimensional
Arrays

Every type of calculation is permitted in the range of a DO
with one exception. No calculation which changes the value of the
index or any of the indexing parameters (ml‘, m,, m3) of the DO

statement is permitted within the range of that DO statement. The
indexing parameters (m;, my, m3) may be either integer constants
or non-subscripted integer variables. '
The extension of the input-output statements to govern the transfer
of two-and three-dimensional arrays to or from magnetic core

storage requires only that the subscripting information given earlier
be used when writing the list. If the list

JOBNO, CASE, RUN, K, (X(I), Y(I,K), I= 1, 4),
((Z(L J)’ I=1, 3): w(J: 3): J= 1, 3)

were used with an input statement, the successive words, as they
were read into the 704, would be interpreted as the following
sequence of variables and placed in the storage locations (previously
assigned by FORTRAN) in that same order:

JOBNO, CASE, RUN, K, X(1), Y(1,K), X(2), Y(2,K),

X(3), Y(3,K), X(4), Y(4,K), Z(1,1), Z(2,1), Z3, 1),

W(1,3), Z(1,2), Z(2,2), Z3,2), W(2,3), Z1,3), Z2,3),

Z(3, 3), W(3, 3)

Note that a variable subscript (K) was used at one point. This
is permissible only if that variable has been previously assigned a
value (in this case, a value would have been read in earlier).

To transfer a complete array, subscripting and index information
is not necessary. Such information is provided, in this case, by the
DIMENSION statement. Using the example above, the statements

DIMENSION ALPHA (15, 5)
READ 1, ALPHA
would cause the entire 75 word array

ALPHA(1, 1), ALPHA(2, 1), ALPHA(3,1), ALPHA(4,1)...,

ALPHA(15, 1), ALPHA(1, 2), ALPHA(2, 2), ALPHA(S, 2),

ALPHA(4, 2)..., ALPHA(15, 5)

to be transferred into magnetic core storage in the reverse of the

above order.
47

Assigned GO TO
Statements

One modification of the GO TO statement which allows greater
freedom in directing the logical flow of a program is the assigned
GO TO statement. The assigned GO TO statement requires a
companion statement, an ASSIGN statement, which must be
previously executed.

As an example of the use of the assigned GO TO statement,
suppose it is desired to calculate several average values such as
average temperature, pressure, and density. If the data is on
cards, the following program might be used:

0=

STATEMENT
NUMSE!

i
COMMENT

FOR ‘

ATION

FORTRAN STATEMENT

| continu,

DIMENSION X(25)

ASSIGN 30 TO N

o

READ 2, X

SUM=0.0

DO 20I=1,25

SUM = SUM + X(D)

AVG = SUM/25.0

GO TO N, (30, 40, 50)

AVGTEM= AVG

28RBS G

ASSIGN 40 TO N

GO 1O 10

AVGPRE = AVG
ASSIGN 50 TO N

GO T0 10

AVGDEN = AVG
PRINT 60, AVGTEM, AVGPRE, AVGDEN

|_ | _stoP

FORMAT (3E14.5)

In this example, statement 26 transfers control to one of the
three statements referred to in the list, i.e., 30, 40 or 50,
depending upon the value of N at the time of execution, which is
determined by the last preceding ASSIGN statement. The first
execution of statement 26 causes control to be transferred to
statement 30, since statement 5, the last preceding ASSIGN state-
ment, assigned the value of 30 to N. Statement 31 assigns the value
of 40 to N; hence the second execution of statement 26 transfers
control to statement 40. The third execution of statement 26
transfers control to statement 50, the value of 50 having been
assigned to N by statement 41.

In general terms, the assigned GO TO statement is written

GO TO N, (nl, Ny «..; D

)

where N is a non-subscripted integer variable appearing in a
previously executed ASSIGN statement, and Ny, Do, ...y Dy stand

for statement numbers. These statement numbers are, in effect,

48

Computed GO TO
Statements

a list of values which may be assigned to N. Note the comma
which is inserted between the variable and the left parenthesis;
it must always be included.

The statement

ASSIGN 30 TO N
is not equivalent to the arithmetic formula
N= 30

A variable N which currently has a value is either an assigned
variable or an ordinary variable, never both simultaneously. It is
an assigned variable if its current value has been established by
an ASSIGN statement (e.g., ASSIGN 30 TO N); it is an ordinary
variable if its current value has been established by an arithmetic
formula (e.g., N= 30). The current value is the one given by the
last previous ASSIGN statement or arithmetic formula, whichever
was most recently executed. A variable N which is currently an
assigned variable is effective only in assigned GO TO N statements.
An ordinary variable N is effective in all statements involving N
except assigned GO TO N statements.

There is a restriction on the assigned GO TO statement when
it lies in the range of a DO statement, in addition to the general
restrictions on transfers on pages 45 and 46 . This restriction
requires that the statements to which the assigned GO TO statement
may transfer must all lie in one single part of the nest which
includes the range, or must all lie outside the nest. If this condition
cannot be met, it may be possible by suitable programming changes
to use a computed GO TO statement to accomplish the desired
brunching, since there is no such restriction on this type of
statement.

Computed GO TO statements are similar to assigned GO TO
statements in that both types establish a many-way fork. They
differ in that an assigned GO TO statement requires a companion
statement (ASSIGN) to pre-set or assign a current value to the
integer variable in the GO TO statement and thereby select the
proper branch. The value of the integer variable in a computed
GO TO statement may be arrived at by computation; no companion
statement (comparable to ASSIGN) is necessary.

Example:

Given: A;, Bi’ N;» Xi’ Y;fori=1, ..., 10, where, for
each i, Ni =1 or 2, compute

49

2

- 2.BY. forN =2
z.= | A2 - BY; for N = 2.

A possible FORTRAN program follows.

FOR

[
CONNENT FORTRAN STATEMENT

STATEMENT
NUMBER

[® continuation

DIMENSION A(10), B(10), N(10), X(10), Y(10), Z(10)
READ 3, (A, B, N@, XM, YD, I=1, 10)
FORMAT (2F13.5, I3, 2E13.5)

DO 21I=1,10

J= N@

GO TO (10,20), J

10 Z() = SQRTF(A@M*XM**2+ B*YD)

11 GO 10 21

20 | | _Z(M= SQRTFAM*X(D**2 - B*Y(D)

21 PRINT 23, AD, B{D, N(D, XD, YD, 20
22 STOP

23 FORMAT (2E13.5, I3, 3E13.5)

In this program, statement 7 transfers control to statement 10 if
J = 1 or to statement 20 if J= 2. The ten vaiues of Ni read into the
program are each either 1 or 2. Since] is set equal to N; by
statement 6, the correct formula for Z; is selected, depending
on whether the current value of Nj is 1 or 2. Statement 6 is
necessary since J cannot be a subscripted variable; subscripted
variables are not allowed in computed GO TO statements.

As illustrated in the program for the example, computed GO
TO statements have the form

GOTO(m, ny ..., n_), I

where the ng, Og, ..., O stand for statement numbers, and I is

a non-subscripted integer variable. Control is transferred to the
first statement in the list (statement nl) if, at the time of execution,

the value of I is one; it is transferred to the second statement in
the list (statement n,) if the value of I is two, etc. Any number of

statement numbers may appear in the list. The current value of I
may be arrived at in any manner desired (e.g., in the program
above, by an arithmetic formula modified by DO indexing), and

its value at the time of execution of the computed GO TO statement
determines which branch will be taken by the program. Note the
comma which is inserted between the right parenthesis and the
variable.

50

FORMAT
Staterments

In Section II the basic field specifications Iw, Ew.d, and Fw.d
were introduced. In the present section, scale factors, Hollerith
fields, and multiple-line formats will be discussed.
1. Scale Factors:

The use of scale factors allows greater flexibility in an output
format. The specification

(2E14.4)
might print the following output line (dashes stand for blank spaces):
-0.4321E 04____0.5674E-06
If the specification were written as
(2P2E14.4)

the same output data would be printed with six significant digits,
with the decimal point four places from the right. For example, the
same output data as above might print as

-43.2147E 02___56.7439E-08

The scale factor 2P causes the floating point number to be
multiplied by 102 and the exponent to be reduced by 2 prior to
printing. Only a positive scale factor may be used with an E-type
specification. However, positive or negative scale factors may

be used with an F-type specification. For example, the specification

(-1PF10.3, 7PF12.3)
would print the following data

-4321.47 .0000005674
as
-432.147 _______ 5.674

The scale factor is assumed to be zero if no other value has been
given. Once a value has been given, however, it will hold for all
subsequent E- and F-conversions within the same FORMAT statement
until a new value is given. If it is desired to specify a scale factor

of zero subsequent to another scale factor within the same FORMAT
statement, OP must be written. For example, the specification

(1PF10.1, F12.9)

51

would print the preceding data as
-43214.7.-.000005674
The same data would be printed by the specification

(1PF10.1, OPF12.9)
as
-43214.7--.000000567

The scale factor has no effect on I-conversion.
2. Hollerith Fields

~ English text may be printed by specifying a Hollerith field.
Suth fields are designated by the letter H preceded by a number
designating the number of characters in the text; the field designation
is followed by the desired English characters (including blanks).
In order to print the factors X and Y along with their product, the

FORMAT statement

10 FORMAT (2HX = F8.3, 4H-.Y = F8.3, 5SH__XY = F8.3)
could be used to print the output line
X=_.10.723__.Y= --12.561__XY = -134.692

Note that there is no comma after a Hollerith field specification
(e.g., 4H__) in the FORMAT statement.
3. Multiple-line Format:

Within the limitations of FORMAT statements as presented in
Section II, in order to print the following lines of output data,

_-67.8912E-03__.106.23_.-73
______ 732._....82.976.6.25
two FORMAT statements would have been necessary, for example
10 FORMAT (2PE13.4, OPF8.2, I5)
11 FORMAT (19, F12.3, F5.2)

However, with the introduction of multiple-line formats, only one
FORMAT statement is required to print the above lines

12 FORMAT (2PE13.4, OPF8.2, I5/19, F12.3, F5.2)

52

The slash (/) separates the formats for the different lines of each
set of lines. Thus, in this example, lines 1, 3, 5,... have the
format (2PE13.4, OPF8.2, I5) and lines 2, 4, 6, ... have the format
(19, F12.3, F5.2); successive pairs of lines constitute the sets
described by the FORMAT statement. Each line may have a
maximum of 119 characters.

Example Problem The following example illustrates the use of many of the types of
and Program instructions presented in the three sections of this primer:
The n points (xi, yi) are given to fit by the least-squares

method an m degree polynomial
y=ay+ta;x +a2x2 +.. ke X

In order to obtain the coefficients an, a;5 , a_, itis
0 "1 m

necessary to solve the normal equations

(1) Soa0+slal+°" +Smam=V0
(2) Sla0 +Sza1 + ... +Sm+lam=V1
(m +1) SmaO +S,4127 - +59m3m = Vm
n
where Sp=1 Vo= Z Vi
i=1
n n
Slz_z Xl V1= z ¥i¥i
i=1 i=1
n R n 5
Sp= 2 %" Vs LYK
i=1 i=1

53

After the S's and V's have been computed, the normal equations
are solved by the method of elimination which is illustrated by the
following solution of the normal equations for a second degree
polynomial (m = 2),

(1) SOa0 +Sla1 +Sza2= V0
(2) Sla0 +Sza1 +8332=V1

3) S ag +S,a; +S4a2=V2

2 3

The forward solution is as follows:
1. Divide equation (1) by Sg-

2. Multiply the equation resulting from step 1 by S, and
subtract from equation (2).

3. Multiply the equation resulting from step 1 by S, and
subtract from equation (3).
The resulting equations are
4) ag + b12a1 +bjza, =byy
(5) b22a1 +b23a2= b24

(6) by,a; +byaa, = by,

_Ss _s v

where b12 = 1/SO, b13 = 2/SO, b14 = O/SO
P22 = 537P1281r by3 = 837135y, byy=Vy -by,S)
b3 = 53-b198y b3z =5,-b;3S, by, =V, -b,,S,

Steps 1 and 2 are repeated using equations (5) and (6), with b22
and b32 instead of Sg and S; . The resulting equations are

(7) a) tcyzay=cyy
(8) 033 3.2 = C34
where Coa = 23/byy coy = P24/b
23 220 Co4 22
€33 = bgg - ca3b3,
Cg4 = b3y - Coybg,

54

The backward solution is as follows:
(9 ag= c:34/c33 from equation (8)
(10) a, = Cgy = Cy32y from equation (7)
(11) ag = b14 - blza1 - b13a2 from equation (4)
The following is a possible FORTRAN program for carrying out the

calculations for the case: n = 100, m <€ 10. SO’ Sl’ Sz, . S2m

are stored in SUM (1), SUM (2), SUM (3), ..., SUM(2M + 1),
respectively. Vs Vl’ Vo ooy Vm are stored in V (1), V (2),

V@3, ..., V(M +1), respectively.

rom
CoMMENT

FORTRAN STATEMENT

STATEMENT
NUMBER

[conrtwuation

DIMENSION _X(100), Y(100), SUM(21), V(11), A(11), B(11,12)
, READ 3, M, N

L3 FORMAT (2, 13)
! READ 4, (XM, YM,I=1, N)
L4 FORMAT _(4E14.7)
I LS=2*M+ 1

i LB=M+2

| V= M+1

i DO _51=2, 18
: 5 SUM(J) = 0,0

| SUM(1) = N

| DO 6J=1, LV
L6 V(9 = 0.0

| DO 16I=1, N
| P=1.0

! V(1) = V(1) + Y@
|

|

I

|

|

|

|

\

|

]

|

|

1

|

|

|

1

|
!
I
|
|

DO 13J=2, LV

P = X(D*P

SUM(J)= SUM(J) + P
13 V()= V() + Y(D*P
DO 16 J=1LB, LS
P = X(*P

16 SUM(J)= SUM(J) + P
17 DO 20I=1, LV
DO 20K=1, LV
J=K+1

20 B(K,D= SUM({J-1)
DO 22K= 1, LV

22 || _B(K,LB) = V(K)

23 DO 31L=1,LV
DIVB = B(L, L)

DO 26J=1L,LB

26 B(L,J) = B(L,J)/DIVB
Ii=L+1

IF_(I1 - LB) 28, 33, 33
28 DO _31I=1l, LV

|
|
|
I
|

FMULTB = B(I, L)
L DO 31J=1L,18B

55 (continued on next page)

(continued from preceding page)

IE‘ FOR H
CoMMENT | 3
z
£

FORTRAN STATEMENT

1

STATEMENT
NUMBER

3
5| 6 |7 72

|31 B(L, J) = B{, J) - B(L, J)*FMULTB

| 33 A(LV) = B(LV, LB)

i I=1v

'35 | | sIGMA=0.0

i DO 374=L v

; 37 SIGMA = SIGMA + B(I-1, J)*A(J)

I=1-1

Al = B(I, LB) - SIGMA

L 40 IF-1) 41, 41, 35

I 41 PRINT 42, (A@, I=1, LV)
| 42 FORMAT (5E15.6)

|43 | |stOP

The elements of the SUM and V arrays, except SUM(1), are
set equal to zero. SUM(1) is set equal to N. For each value of I,
XI and YI are selected. The powers of XI are computed and
accumulated in the correct SUM counters. The powers of XI are

multiplied by Y; and the products are accumulated in the correct

V counters. In order to save machine time when the object program
is being run, the previously computed power of XI is used when

computing the next power of Xj. Note the use of variables as index

parameters. By the time control has passed to statement 17, the
counters have been set as follows:

N
SUM (1) = N V()= Y Y
1=1 1
N N
SUM (2)= ¥ X V2= Y 1%
I=1 I=1
N, N)
SUM@3)= X X; V(i3)= 2 Y X
I=1 I=1
N
VM +1)=) YIXIM
I=1
N 2M
SUM (2M +1)= 2, X
I=1

56

By the time control has passed to statement 23, the values of
SO’ Sl’ oy S2m have been placed in the storage locations

corresponding to columns 1 through M + 1, rows 1 through M + 1,
of the B array, and the values of VO’ Vl’ .+ V, have been stored
in the locations corresponding to column M + 2, rows 1 through

M + 1, of the B array. For example, for the illustrative problem
beginning on page 54 (M = 2), columns 1 through 4, rows 1 through
3, of the B array would be set to the following computed values:

This matrix represents equations (1), (2), and (3) on page 54, the
normal equations for M= 2.

The forward solution, which results in equations (4), (7), and
(8) in the illustrative problem, and the backward solution, which
results in equations (9), (10), and (11) in the illustrative problem,
are carried out by statements 23 through 40.

By the time statement 31 has been executed for the last time,
the coefficients of the Aj terms in the M + 1 equations which would

be obtained in hand calculations have replaced the contents of the
locations corresponding to columns 1 through M +1, rows 1 through
M + 1, of the B array, and the constants on the right-hand side of

the equations have replaced the contents of the locations corresponding
to column M + 2, rows 1 through M + 1, of the B array. For the
illustrative problem, columns 1 through 4, rows 1 through 3, of

the B array would be set to the following computed values:

1 b, big Py
0 1 023 c24
U 0 €33 C34

This matrix represents equations (4), (7), and (8) on page 54.

The backward solution is then carried out. By the time
control has passed to statement 41, which prints the values of the
Ajp terms, the values of the M + 1 A; terms will have been

stored in the M + 1 locations reserved for the A array. For the

57

illustrative problem, the A array would contain the following
computed values for 3y ap and agy respectively:

Location Contents
A(3) ' c34/033
AQ2) C24 ~ €233y
A(1) b14 - byo a; - b13 a,

The resulting values of the AI terms are then printed according
to the FORMAT specification in statement 42.

Debugging In order to debug a FORTRAN program, it is recommended that
extra PRINT statements under the control of a sense switch be used.
The sense switches are located on the 704 console and may be used
to control the program. The following statement is used in con-
junction with the sense switches.

IF (SENSE SWITCH i) n,, n,

where i stands for the number of one of the six sense switches 1, 2,

3, 4, 5, or 6, and n, and n, are statement numbers. If sense switch i
is in UP status, control is transferred to statement number n2; if
sense switch i is in DOWN status, control is transferred to statement
number n,. The following example illustrates the use of sense switches

as an aid in debugging a program.
Example:

Given: a; bi’ and < fori=1, ..., 10, compute and print

10 0

10
RESULT = (T (s ci)2) (T (bi-ci)\) / (v (aibi-ciz))
i= 1 i=1 i=1

N AANT

llowing FORTRAN program has been written and
compiled (i.e., translated into machine language by the 704 by means
of the FORTRAN system) and is to be tested:

et

4+ 4l £,
Assume that the fo

58

[

FOR

commen | 3 FORTRAN STATEMENT

STATEMENT
NUMBER

3
si 6 |7 72

DIMENSION _A(10), B(10), C(10)

| _sumi=0.0

| sum2=o0.0

| sums=0.0

| READ 1, (A(D, B@, (D, I=1, 10)
DO _101=1, 10.

SUM 1= SUMI1 + (A(D*C(D)**2

SUM 2= SUM2 + B(D) - C())

SUM 3 = SUM3+ A(D*B(D) - C(D

IF_(SENSE SWITCH 1) 10, 5

5

PRINT 1, SUM 1, SUM2, SUM3

10

CONTINUE

RESULT = SUMI*SUM2/SUM3

PRINT 1, RESULT

STOP

|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
I
|
i
|
|
a
|
|

A test case is run using the compiled program. The 704 operator

is instructed to run the test case with sense switch 1 in UP status
(which causes the printing of intermediate results). Assume the test
case has the following input data

a, = -.23456 b1 =12.34111 ¢ = 27.86523

Then the first line of output is
42.72019 -15.52412 -30.75996

Hand calculations for i = 1, using the original formula for RESULT,
show that

SUM 1= 42.72019

SUM 2 = -15.52412

SUM 3 = -779.36577
The hand-computed results for SUM 1 and SUM 2 agree with the
output results; however, SUM 3 results do not agree. By looking at

the FORTRAN statement which computes SUM 3, the error is
located. The statement is changed from

SUM 3 = SUM 3 + A(I) * B(I) - C(I)

to
SUM 3 = SUM 3 + A(I) * B(I) - C(I) * * 2

59

Storage

After the indicated change is made, the FORTRAN program is
again compiled and the test re-run. This time the machine results
agree with the hand-computed results for all three sums. The 704
operator is instructed to run the program with sense switch 1 in
DOWN status. With sense switch 1 DOWN the IF (SENSE SWITCH)
statement transfers control to statement 10; therefore, no inter-
mediate results are printed.

Many problems which are to be solved using the 704 will require
the use of magnetic tapes and/or drums for additional storage. In
order to determine whether additional storage is necessary or not,
do the following:

1. Multiply the number of FORTRAN statements by 10; call
this value A.

2. Add up the number of locations required by entries in
DIMENSION statements; call this value B. For example,
A(12, 6) requires 72 locations.

3. Use the rules given below to determine the number of
storage locations needed for input/output routines; call
this value C.

4. The list of available functions provided by the computing
center should give the number of locations required for
each function. Add up the number of locations required
for all the functions used in the program; call this value D.

5. If (A +B + C + D) is much greater than the number of
locations in the storage unit of the 704 to be used for
running the program, the program will have to be rewritten,
using tapes and drums for auxiliary storage of data. If
(A +B + C + D) is nearly equal to the number of locations
in the storage unit, the program should be compiled to find
the precise number of locations required, since (A + B
+ C + D) is merely an estimate.

If it is necessary to use magnetic tapes and/or drums for
intermediate storage, consult the Programmer's Reference Manual
for FORTRAN, Form 32-7026, for information regarding the

necessary statements. This manual contains additional control
statements and covers particular situations in which some of the
restrictions presented here may be relaxed. It also includes
information regarding limitations on the size of a FORTRAN
program (e.g., the number of variables, the size of DO nests, the
number of transfer statements, etc.).

Rules for estimating storage required for input/output routines:

1. For each of the following types of statements which appear
in the program add the corresponding number once. (If, for

60

example, several PRINT statements appear, add in 258

only once.)
PRINT 258
READ 137
READ INPUT TAPE 21
WRITE OUTPUT TAPE 12
PUNCH 90

2. Add to the above total:

If there is both decimal input and output, 945

If only decimal output, 484
If only decimal input, 461
Master 1. The basic characters which may be used in writing a
Check List FORTRAN statement are
a. A, B, C, ..., Z (26 alphabetic characters)
b. 0, 1, 2, ..., 9 (10 numerical characters)

c. +(plus), - (minus), * (asterisk), / (slash), ((left
parenthesis),) (right parenthesis), , (comma),
= (equal sign), and . (decimal point).

2. Upper and lower case alphabetic characters are indistinguish-
able on a punched card; e.g., D and d are represented by
the same punches.

3. The digits 1 and 0 must be carefully distinguished from the
alphabetic characters I and O.

4. A variable symbol can consist of six or less characters.

It must satisfy the following conditions:

a. The first character must be alphabetic.

b. The first character cannot be I, J, K, L, M, or N,
unless the symbol is an integer variable; if the symbol
is an integer variable, the first character must be I,
J, K, L, M, or N.

c. Any character following the first may be alphabetic or
numerical, but not one of the special characters.

d. The names of all functions defined in the program or
appearing on the computing center list, as well as
these names with the terminal F removed, must not be
used as variable symbols. For example, if SINF is

61

62

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

used as the name of a function, neither SINF nor SIN
can be used as a variable symbol.

e. If a subscripted variable has four or more characters
in its name, the last of these must not be an F. For
example, SINF(I) cannot be used as a subscripted
variable, regardless of whether SINF is used as the
name of a function.

. The name used for a function in programming must agree

exactly with the name appearing in the list of functions.

. The argument of a function is enclosed in parentheses;

e.g., SINF (X).

o

. If a function has more than one argument, the arguments

are separated by commas; e.g., SINF (X, Y, Z).

. The left side of an arithmetic formula must always be a

variable or a function of one or more variables.

. Never omit the operation symbol between two quantities;

€.g., do not write AB for A*B.

Never have two operation symbols in a row; e.g., do not
write A*-B for A*(-B). The exponentiation symbol ** may
appear to be an exception, but it is regarded as a single
symbol .

Blank spaces can be used or not used as desired, since
blanks are ignored in the translation.

The prescribed form for the various non-arithmetic
statements must be followed exactly except for the arbitrary
use of blank spaces.

The magnitude of every non-zero quantity must lie between

10-38 and 1038. By "quantity"” is meant any constant or any

value assumed by a variable or function in the course of the
calculation.

Numbers to be read by means of a READ 1 statement must
not exceed 10 digits.

Numbers to be read by means of a READ 2 statement must
not exceed 8 digits. The exponent must have two digits

and a sign.

Numbers to be printed by means of a PRINT 1 statement
should not exceed 999, 999.99999 ,

The physically last statement of a program should be

a STOP statement or a statement (GO TO or IF) which
causes a transfer to some other statement in the
program.

All- subscripted variables must appear in a DIMENSION
statement, which must appear in the program before
reference is made to the variables.

Negative subscripts are not permitted.

Subscripting of subscripts is not permitted.

Summary of
FORTRAN State-

ments

21. Subscripts for two- and three-dimensional arrays should
be separated by commas.

22. In a floating-point expression, integer variables and
constants can be used only as subscripts and exponents.

23. Integer constants are written without a decimal point.

24. Decimal integers larger than 32767 are treated modulo
32768.

25. If the range of a DO includes another DO, then all state-
ments in the range of this second DO must also lie within
the range of the first DO.

26. Transfers into the range of any DO from outside its range
are not permitted.

27. The last statement in the range of a DO must not be a
transfer.

28. No calculation which changes the index or indexing
parameters of a DO is permitted within the range of that DO.

29. Assigned GO TO statements have a comma between the
variable and the left parenthesis.

30. Computed GO TO statements have a comma between the
right parenthesis and the variable.

31. An ASSIGN statement must be encountered by the program
prior to encountering an assigned GO TO statement.

32. The ASSIGN statement is not equivalent to an arithmetic
formula.

33. When an assigned GO TO lies in the range of a DO, all
statement numbers to which control may be transferred
must lie in a single part of the DO nest which includes the
range, or be completely outside the nest.

34. An end-of-file should always be written on output tapes.

35. Provision for rewinding tapes should be made in the program

36. No constants may be given in a list in an input/output
statement, only variables.

37. FORMAT statements for output must be so written so that
the first character of the first field is a blank.

The complete FORTRAN language provides for 32 types of state-
ments, which may be grouped as follows:
1. Arithmetic statements
2. Control statements (15 types)
3. Input/output statements (13 types)
4. Specification statements (3 types)
This manual has covered 19 types of statements:
1. Arithmetic statements
2. The following 9 types of control statements:
a. Unconditional GO TO
b. Assigned GO TO
c. Computed GO TO

63

4= Fm oo

e

g0 0 A0 D

4. Th

ASSIGN

IF

IF (SENSE SWITCH)

STOP

DO

CONTINUE

following 8 types of input/output statements:
FORMAT

READ

READ INPUT TAPE

PRINT

WRITE OUTPUT TAPE

END FILE

REWIND

BACKSPACE

following type of specification statements:
DIMENSION

The types of FORTRAN statements which have not been covered in
this manual are:

1. The
a
b
c.
d
e

f.
_2. The
a.

3.

b.
c.
d.
e.
The
a.

b.

following 6 types of control statements:
SENSE LIGHT

IF (SENSE LIGHT)

IF ACCUMULATOR OVERFLOW

IF QUOTIENT OVERFLOW

IF DIVIDE CHECK

PAUSE

following 5 types of input/output statements:
PUNCH

READ TAPE

READ DRUM

WRITE TAPE

WRITE DRUM

following 2 types of specification statements:
EQUIVALENCE

FREQUENCY

Having approached the FORTRAN language cumulatively through
the three stages presented in the sections of this primer, the reader
should have little difficulty in extending his knowledge of FORTRAN

i i tage aq rreacmmtad de 4l o
to include the entire FORTRAN language as presented in the

Programmer"’

s Reference Manual for FORTRAN, Form 32-7026.

64

International Business Machines Corporation

590 Madison Avenue, New York 22, N.Y.
Printed in U.S.A. F28-6019

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	xBack

