
1

Customer Engineering
C

1

> .*
Manual of Instruction I V

k

.?
1 FORTRAN

" I; 'N,AND *, , I 709

a
I

a 1

C
C.
c,,
C.

I

C
c,
C..
C
C

L, f - . FORTRAN
L... 8 I, I I , AN D 709

<g,
Customer Engineering

Manual of Instruction

Issued to:

Department or Telephone
Branch Office Number-

Address C i t y - S t a t e -

Home Address C i t y - s t a t e -

If this manual is mislaid, please notify the above address.

@ 1959 by
International Business Machines Corporation

Form R23-9518-0
Printed in U.S.A.

FOREWORD

C..

THE PURPOSE of this manual i s to familiarize the IBM customer engineer with the
language and data processing methods found in the Fortran automatic coding systems.
Some service hints are also included where available.

The reader is expected to have at least a cursory knowledge of the Fortran Primer
and Fortran Reference manuals. With this background, the material in this manual
can be of great value; without it many points will be obscure. Wherever possible,
references are made to the two manuals just mentioned.

Much thought has been given to what should be included in this manual. A survey
of customer engineering opinion indicates that the most difficult problems are ex-
perienced in the data transmission area. Therefore, this manual concentrates most
heavily on input-output, and mentions arithmetic processing only briefly.

A word should be said concerning the interrelationships of the various Fortran
systems. At this time the Fortran I and I1 systems have been stabilized; that is ,
there will be no more major changes in the organization of their executive programs.
The Fortran 709 system i s at present in a state of major change. In general, much
will be common in all three systems. For instance, the function of all tape units in
the three Fortran modes will be the same. Where the drum was used in Fortran I
and 11, upper core storage will be used by Fortran 709. More diagnostic routines are
written into Fortran I1 and Fortran 709 than in Fortran I. All manual operation
features of the three systems are alike, except for the use of sense switch 6 to control
batch compiling in Fortran I1 and Fortran 709.

This manual supersedes the Fortran Translator Customer Engineering Manual of
Instruction, Form 29-9437-0. It supplements the following published IBM manuals:

Title Form

Programmer's Primer for Fortran 32-0306
Programmer's Reference Manual Fortran 32-7026
IBM Reference Manual, Fortran I1 (S) C28-6000
IBM Reference Manual, Fortran I1 (S) C28-6001
IBM Reference Manual, Fortran Automatic

Coding System C28-6003
IBM Fortran Gener a1 Information Manual F28-6019

CONTENTS

1.00.00 FORTRAN EXECUTIVE
ROUTINE

1.01.00 Introduction
1.02.00 General Organization of

Translator
1.02.01 Section 1
1.02.02 Section 1'.
1.02.03 Section 2
1.02.04 Section 3
1.02.05 Section 4
1.02.06 Sec t ion5and5 ' . . .
1.02.07 Section 6

1.03.00 Number of Instructions in
Each Section

1.04.00 Fortran Systems Tape . .
1.04.01 General Organization . .
1.04.02 Fortran I Ordinary System

. . . . Records
1.04.03 1-CS (Tape 1 to Core

Storageprogram) . .
1.04.04 The Tape Record Monitor .
1.04.05 Listing of 1-CS on Tape .
1.04.06 Listing of 1-CS in Storage .
1.04.07 Control Words of 1-CS .

Monitor
1.05.00 Updating the Edit Deck . .
1.06.00 Fortran Tape Assignment . .
1.07.00 Relating Tape Assignment

Fortran I & I1 to Fortran 709
1.08.00 Fortran Source Program

CardFormat
1.09.00 Using the Fortan System Tape .
1.10.00 Running the Object Program .
1.11.00 Description of Tape and Drum

Usage During a Fortran I Run
. . . . 1.12.00 Service Aids

1.13.00 Fortran I1 Refinements . .
1.14.00 Answers to Common General

Questions Involving Fortran .

2.00.00 GENERAL FORTRAN RECORD
7 STRUCTURE . 33

. . . . 2.01.00 CALLFN Record 33
2.02.00 CLOSUB Record . 33
2.03.00 Compiled Instruction Tables

(CIT) . 3 3
. . . . 2.04.00 Common Record 34

2.05.00 DIM Record . 35
. . . . 2.06.00 DOTAG B Format 36

2.07.00 END Record . 37
2.08.00 EQUIT Record . 38

. . . . 2.09.00 FIXCON Record 38
2.10.00 FLOCON Record . 39

. . . . 2.11.00 FORMAT Record 39
2.12.00 FORSUB Record . 39

. . . . 2.13.00 FORTAG Record 40
2.14.00 FORVAL and FORVAR

Records . . . 40
. 2.15.00 FRET Table 41

. . . . 2.16.00 HOLARG Record 42
2.17.00 LAMBDA. ALPHA. and BETA

Tables . . 42
. . . . 2.18.00 NONEXEC Record 43

. . . 2.19.00 SIGMA and TAU Tables 43
. 2.20.00 SIZE Record 45

. . . . 2.21.00 SUBDEF Record 45
. 2.22.00 TDO Record 46

. . . . 2.23.00 TEIFNO Record 46
. 2.24.00 TIFGO Record 47

2.25.00 TRAD Record . 49
. 2.26.00 TSTOP Record 50

3.00.00 FORTRAN AUTOMATIC CODING
SYSTEM . . . 51

......
TABLE I . 62

30 TABLE I1 64 . .

1.00.00 FORTRAN EXECUTIVE ROUTINE

1.01.00 INTRODUCTION

The problems involved in man's communication with the complex computer
are in many respects similar to those problems involved with his communi-
cation with another man who speaks an unfamiliar language. There must be
language translation in either situation in order that the communication be
fruitful. In considering current problems of communication with the computer
we will consider here only the medium of "writtenM language, although there
are research teams seriously engaged in communicating with the machine by
the spoken word.

The Frenchman who must learn English has a great advantage over the
Oriental who i s faced with the same task. The former need not learn a
new set of symbols (Roman and Arabic) that i s the first task of the latter.
The position of man and machine i s more akin to the Oriental's problem
of learning English than that of the Frenchman. Man must f irst learn the
symbols that the machine uses to build its words.

The machine's symbolism (speaking now of the 701, 704, 709, and 7090) is
binary in nature. The need for recognition of two symbols makes the internal
circuitry of the machine relatively simple. In terms of machine hardware,
the binary symbol takes the form of a component conducting or not conducting,
a pulse available or not available, a core saturated in one direction or the
opposite direction, o r a changing magnetic flux on tape or the lack of that
change. The internal evidence of this binary symbolism is brought to the
surface of the machine in the readable fokm of light patterns. The individual
lights are binary, in that they are either on or off. Needless to say, the nor-
mal man has little difficulty learning the binary symbolism of the computer.

The Oriental should not be considered an English scholar, simply because
he has learned the 36 symbols that express all our literature. Similarly, the
man who wants to communicate with the machine should not feel satisfied that he
knows machine language by virtue of his recognition of the on or off condition
of a light. He must learn the limitations and rules involved in grouping the
symbols together into intelligible patterns to form words, and those words
into complete thoughts.

In considering words of the English language, we know that the words can
be categorized into one of seven types (nouns, verbs, adjectives, and so on)
depending primarily upon their use in a sentence. When considering binary
language, the types of words recognizable by the machine are clearly defined
by their use in a program and fall into the following categories.

Operation Code. Command to the machine to perform a given sequence of
events (E. g. , the binary bit pattern 000101000000 informs the computer:
"Remove a number fr0.m core storage and place that number into a central
processing unit register called the accumulator. If another number is already
in the accumulator, destroy it. 11)

Address. Action in the computer cannot take place unless the location of an
activity i s defined. The address defines the location of activity during the
execution of an instruction. In the example given in the definition of an instruc-
tion, the core storage cell from which data is withdrawn has a location called
an address (e. g. , 01010101). Similarly, if an operation code informs a tape
unit to write, an associated address defines which specific tape unit is to
perform this action.

Data. Arithmetic processing involves the combination of numbers. Usable
numbers must have magnitude and sign and should be expressible in either
fixed point (1.64,268) or exponential form (3 x lo6, 1.6 x 10 -4). The internal
circuitry of the computer expresses all these factors in binary form.

AddressModifiers. It is possible to perform the same series of operations
many times on different areas of the machine, without repeating the writing
of the instructions, through modification of the addresses associated with the
instructions. The address modifiers alter the addresses between successive
executions of the instructions. This is comparable to the use of business
routing forms where the originator fills in the blanks, indicating destinations
of the information. For example:

Form number-is forwarded to , , and v i a -
on the following dates: a n d - .

The blanks represent areas of activity; the preset wording represents the
commands that are unchanging. The selection of words to "fill in the blanks1'
in a computer i s controlled by address modification words. Generally, the
select ion is sequential in nature.

What can man gain by grouping the computer's words together? Consider
f irst the grouping of operation codes. The uninitiated vChinamanll will be
delighted to learn that there are only 200 or less combinations of words that
can be called operation codes. He says to himself, "If I could express these
A, B, C combinations in Chinese, which is familiar to me, I will have little
difficulty remembering all the operation codes. "

This system has been adopted by the users of computers. IBM and the SHARE
organization have established a standard set of symbols to take the place of the
operation code bit-no-bit pattern. This symbolism is in the form of abbrevia-
tions of the function of each code. These symbols are called mnemonic because
they are reminders of the function. The following chart illustrates the point.

Machine Language Function Mnemonic Code

0 0 0 1 0 0 0 0 0 0 0 0 ADD to the current value in the ADD
accumulator

0 0 0 0 1 0 0 0 0 0 0 0 MULTIPLY the present value of the MPY
given register by a given number

0 0 0 0 0 0 0 1 0 0 0 0 TRANSFER to a new location when the TRA
next instruction is required

0 0 0 1 1 0 0 0 0 0 0 1 STORE the contents of the MQ STQ
register in core storage

Consider again the Oriental's problem of learning English. In the light of
the previous paragraph, he has learned that groups of symbols are called words,
and there seems to be no end to the combination of symbols. In order to
systematize his approach to the language learning problem, he knows that he
can group the words in categories depending on their usage. This grouping
brings out common factors from which general conclusions can be drawn.
Once the general conclusions a re accurately drawn, the learning of the new
language i s reduced to expansion of well established facts. Unfortunately
for the Oriental, English cannot be resolved into a collection of precise,
arithmetic formulae. Therefore, he is always faced with modification of
his general conclusions.

The man communicating with the machine, however, does not have to
contend with this "grey area" of learning. After all, the machine is just
a machine. Provided it is operating in the manner for which it was designed,
the message delivered by a given command will be identical on the first
and millionth pass. The mechanism is designed to respond in as predictable
a series of events a s those which occur when a simple lever is operated.

Notice that the language of the computer is highly precise in form, as is
the mnemonic code. There is no need for confusion intranslating from the
mnemonic to binary--and yet the translation must be accomplished.

The next question is , which agent in the transaction should learn the foreign
language? (It is only necessary for the Oriental to learn English in order
to communicate with an ~iqglishman. If the Englishman were also to learn the
other language, a redundant effort would be made.) Based on its speed and
accuracy and its untiring effort, the computer was selected as the translator.

Fortran is a program which controls the machine to accept our familiar
notation and pass on the binary translation to the machine circuits. Man
writes his operation codes in familiar mnemonic and the machine translates
the mnemonic to binary. This translation is one of the functions of Fortran,
SCAT, and other assembly routines. An important difference in Fortran is
that the machine does not start with mnemonic language but rather with a
special, concise Fortran language of mathematical symbols from which it
generates its mnemonic and binary operation codes. It is to be emphasized
here that the prime function of the Fortran system was to permit the math-
ematician to use his symbols rather than SHARE mnemonic codes in

controlling the machine. The word Fortran is a contraction of Formula Translation.
The following diagram shows how the Fortran language relates to mnemonic.

Fortran Language Mnemonic Function Machine Language

ADD Add to the current 0 0 0 1 0 0 0 0 0 0 0 0
' value in the

ac cumulator

TRA Transfer to a new
location when the
next instruction
is required

X=A + B *ST0 Put the current value
of A + B in storage
cell X

*The ST0 represents the mnemonic translation of the equal sign only.

The ultimate goal in translating the Fortran language to usable form is a binary
object program. In writing the binary program, Fortran also writes its own series
of mnemonic instructions. A listing of the mnemonic program is available to the pro-
grammer under sense switch control, in addition to a binary punched object program.

In review, we have considered only one part of the machine language, operation
codes. Through our analysis we learned that the number of operation codes was
limited. The machine assumes the burden of translation. Also, since the machine is
concise in its language, we must be concise in the language we use in communicating
with it. Fortran language is a form of mathematical language which meets the quali-
fications of precision. Fortran :mnemonic instruction coding i s a secondary output of
the prime function of converting from the mathematical source program to the binary
object program.

Let us focus our attention on the second category of machine words -- addresses.
We have stated that addressing defines the area of activity of an operation code. How
can these addresses be best grouped and then subjected to translating from binary to
familiar language? Grouping can best be accomplished by considering core storage
as opposed to non-core-storage locations.

Core storage addresses each have well defined binary "cell numbersll similar to
the house numbers on a given street. The number of numbers depends on how long
the street is or how large core storage is. (From the Fortran point of view, there
are different programs written for 4k and 8k systems.)

Again, difficulty i s experienced in communicating in the binary symbolism of the
machine when referring to core storage addresses. Man has grouped his addresses
into octal notation by considering groups of three binary lights to produce eight possi-
ble light patterns. By inspection, in other words, man has simply translated binary
to octal notation for ease of communication (from one man to another). The combina-
tion of a mnemonic operation code and address is called an instruction; e. g. , C LA

0700, clear and add the number which i s at storage location 0700. With the mnemonic
notation of operation code and octal addressing, man is prepared to program the com-
puter. He can specify precisely what i s to happen (operation code) and where it i s to
happen (address). However, in using the octal address notation already described,
the programmer i s limited in his programming flexibility, Programming of the type
just described (CLA 0700) is called absolute addressing because the address (0700) is
inflexibly 0700. If for some unpredictable reason the data at 0700 was moved, the
CLA instruction must be altered to meet the requirements of the new data location
and, for that matter, any absolute address in the program may have to be altered to
meet unpredictable requirements.

In order to take into consideration future needs of a given program, absolute ad-
dressing was replaced by symbolic addressing. Essentially , symbolic addressing
put the bookkeeping job of assigning data and instructions to storage squarely on the
shoulders of the computer. Using the preceding example, the CLA 0700 instruction
in symbolic form might appear as CLA R, where R is now an arbitrary symbolic
address. The machine has the capability of doling out the storage area to a given
program and eventually assigning an absolute value to R once all the needs of the
program have been satisfied. The assignment of core storage locations to instruc-
tions and data i s called assembling. Assembly is one of the functions of UASAP 1
and 2, UASAP 3 and 4, SCAT, and Fortran. Fortran differs from the other executive
routines listed because the programmer has no control over the symbols used as
symbolic addresses by the Fortran program. This is a great advantage in that the
programmer using Fortran need not be concerned with the details of keeping track of
symbols. (Because the programmer using SCAT must make constant reference to
his symbols, it i s best that he have his choice of symbols for his addresses.) The
symbols that the machine has manufactured for its core storage addresses will ap-
pear in the printed symbolic listing of the Fortran assembled program.

In summary, although core storage addresses represent one of the major cate-
gories of machine "words, fl the programmer using Fortran need not concern himself
with these addresses because the machine assigns both symbolic and binary addresses
to the object program.

Let us next consider the non-core storage addresses. Input-output devices all have
addresses. Unlike core -storage, these devices provide the programmer with
his program results. If results are to appear on tape, for example, the programmer
must have control over which tape i s to receive this information. The Fortran
program cannot assign arbitrary symbolic and absolute binary addresses to input-
output media; this assignment i s the responsibility of the programmer. A family
of Fortran statements is provided to specify use of tapes, card machines, drum,
sense lights, and sense switches during the run of the object program. The language
used is specific and closely resembles the standard SHARE coding. For example:

SHARE Fortran Statement

RDS 302
WRS 232

READ DRUM 2*, 1, AB
WRITE TAPE 2*, AB

*The 2's in these statements are drum and tape unit addresses.

Consider next the data. Like the operation code and the address, the internal cir -
cuits of the machine respond only to the data in binary notation. However, Fortran
controls the machine to accept decimal notation and to pass on the binary equivalent
to the machine circuits. In addition, when required, Fortran control informs the
machine to translate the binary back to understandable decimal for the printed report.

Using Fortran, data coming into the machine during the run of the object program
can be alphabetic, decimal, fixed point, floating point, on tape, or on cards. No
standard form is required of the data because the author of the source program de-
scribes the form with Fortran statements, called Format statements. Format state-
ments describe the data cards according to field length, floating versus fixed point,
sign, and placing of the decimal point.

Address modifiers like adverbs are difficult to describe in general terms. Their
use is associated only with the modification of core storage addresses. They add
finesse to the programmer's technique by relieving him of the monotony of repeating
instructions used in a repetitive manner. Address modification is defined in terms
of operation codes, addresses, and a new term, index registers. Index registers are
central processing unit devices. Index registers enter into the discussion because
they contain the amount that an address is changed during a given operation. For
example: TRA 6000, 1 is an ''indexedM instruction written in SHARE symbolic. In
everyday terms it says lltake the next instruction from location 6000 less the amount in
the number one index register. " Therefore, if the index register contained 1000, the
transfer would take place to location 5000 instead of 6000. Address modifier words
describe the contents (i. e. , 1000) of index registers and the "nameM of the index regis-
ter (i. e. , 1). There are three index registers in the 704 and 709, identified in SHARE
symbols as 1 , 2, and 4. Whenever an index register i s called for in an instruction such
as CLA, TRA, or STQ, the contents of the index register are subtracted from the ad-
dress of that instruction. Other instructions (e.g. , TM, TXI, AXT) alter the contents
of the index registers. Simply by using the notation already introduced in operation
coding and addressing, a system of address modification can be built into a UASAP 1
and 2, UASAP 3 and 4, or SCAT program. How does Fortran handle address modifiers?
Easily understandable Fortran statements are translated to address modifiers. Con-
sider the Fortran l1DOM statement. This statement permits the programmer to repeat
a series of commands. For example:

External Formula Number
1 DO25 I = l , 10

A(1) = B+C
R(1) = A*D

25 PRINT 1 . A (I) , R (I)
STOP

The first statement (1) indicates the address modifiers. It says ''the object pro-
gram should execute the following statements up to and including the one labeled 25.
It should repeat this process from the time that I has an initial value of 1 up to and
including the time that I equals 10, each time through the program increasing I by
a factor of 1. l 1 The contents of the index register would initially be 10, and indexing
instructions would be built into the object program to reduce these contents by 1 ,

each pass through the program. The selection of which index register (1, 2, or 4)
is to be used in the object program is the choice of the Fortran program. A series
of SCAT coded instructions to accomplish the same result would require several
dozen instructions.

In conclusion, the Fortran system contains a concise language, mathematical in
background, employing familiar symbols which are readily translated to machine
binary coding. The programmer need not learn anything more about the machine
than the limitations placed on his mathematics by the physical size of the machine and
some statements governing the input-output transmission. In the run of the Fortran
executive routine, Fortran language i s translated to SHARE mnemonic and relocatable
binary cards. The SHARE symbolic operation code listing is only secondary to the
machine control. Addressing of core storage is symbolic and i s entirely under control
of the machine. Input-output addressing i s under option of the programmer. Data
can be of any decimal form, as is described by Format statements in the program.
Address modification i s employed by the Fortran program but is given to the program-
mer in easily understood language. The selection of index registers and indexing
instructions i s made by the computer under control of the Fortran translator program.

1.02.00 GENERAL ORGANIZATION OF TRANSLATOR

In all three Fortran modes (I, 11, and 709), the translator is described in terms
of six sections. Each section is distinct in purpose. Section 3.00.00 of this manual
describes, in programmer's terms, the functions of each section of the translator.
A digest of Section 3.00.00 follows in Section 1.02.

1.02.01 Section I

In this translator section, source cards, punched in the Fortran language, or BCD
tape containing the source information, are read into the system. If card input is
used, the information on the cards is transmitted to tape 2 in BCD. If tape input
i s used, tape 2 is originally set up with the source program in BCD.

With tape 2 containing the source program, the translator proceeds to code all
the statements in the source program. Every statement receives a code number,
called the "internal formula number" (IFN). These numbers are assigned in sequence
starting with 1. All internal references to the original statement are made using
IFN as identification. The IFN i s not to be confused with the "external formula number"
(EFN) punched in the source program cards. Input-output statements receive more
than one IFN.

The scanning of the BCD file on tape 2 occurs only once. All information con-
tained in this file must be coded as it i s being read. The information will take one
of two forms: compiled instruction tables (CIT) or non-CIT . (The CIT format i s
described in detail in Section 2.03.00. It i s a standard form, and the final form of
all Fortran statements and data before they are compiled in Section 6). The CiT

information i s stored temporarily on tape 3 in Section 1. This information is erased
during Section 1' and i s stored on tape 2, file 2. The CIT contains the results of
analysis of all arithmetic statements. This analysis i s completed in Section 1.
It is the most important part of the Fortran program in that it accomplishes the
translation between source arithmetic statements and machine instructions.

A l l arithmetic instructions written in this section are written in CIT form and
placed in a record called the COMP AIL file (Complete Arithmetic, Input-output,
Logical).

The non- CIT information is stored in buffer areas temporarily in core storage.
When the buffers are full, their information is transferred to tape 4. The buffer units
are ten words long and located in lower storage.

1.02.02 Section 1'

Section 1' places the CIT information of tape 3 on the second file of tape 2, arranges
the tape 4 tables in order, and stores the information in tape 2, files 3, 4, and 5.

1.02.03 Section 2

Section 2 compiles the instructions associated with indexing that result from DO
statements and the occurrence of subscripted variables. These instructions are
placed in the COMPDO file in CIT form.

In this section the program assumes that there are many index registers in the
machine. Indexing instructions are going to be generated through the use of:

Arithmetic statements. For example, I = N + 1 where N is a subscript.
The contents of an index register will be increased by one.

DO statements. For example, DO 10 I = 1, 5. Here, statements up to and
including 10 will be repeated for all values of I from 1 to 5. To the reader
familiar with programming, this statement implies the use of indexing
instructions to accomplish the given result. The handling of indexing becomes
more complex where DO statements fall within DO statements to create
llDO nests. l 1

Combination of arithmetic and DO statements.

1.02.04 Section 3

Section 3 merges the COMPAIL and COMPDO files into a single file, meanwhile
completing the compilation of non-arithmetic statements begun in Section 1. At this
point the object program is complete but it has been assumed that the 709 is a machine
with an unlimited number of index registers .

1.02.05 Section 4

Section 4 carries out an analysis of the flow of the object program to be used by
Section 5. The running of the object program is simulated in order to do this. The
object program may be run several hundred times in this section.

1.02.06 Section 5 and 51

Section 5 manipulates the symbolic tag information so as to write the object pro-
gram with the three actual index registers of the 704-9. The processing is very
complex; however, certain tabled information of interest is generated during the run.
All major decisions concerning index registers are recorded in the predecessor
(PRED) table, and a table of all tagged instructions (STAG) is recorded. These are
one-word entry tables which remain in core storage.

Section 5' is generally considered a bookkeeping section. Up to this point the
constants involved in the object program have been stored in tables. Since all
information from the translation must get to the object program in compiled instruction
tables (CIT), a departure i s made from the normal sense of CIT1s in that the constants
are also transmitted in this form. In the place of an instruction code, the SAP
mnemonic for octal data (OCT) is entered into the decrement field of the second word
of the CIT entry. In this form the information from the following tables is recorded
in the object program: FMCON, FLOCON, ASSIGNED CONSTANTS, FORMAT and
UNIVERSAL CONSTANTS.

1.02.07 Section 6

Section 6 assembles the object program, producing a machine language program on
cards or tape ready for running. The object program can also be produced in Share
symbolic language, if desired.

1.03.00 NUMBER OF INSTRUCTIONS IN EACH SECTION

There are approximately 24,000 instructions in the Fortran executive program.
The number of instructions in each section of Fortran I are as follows:

Section No. No. of Instructions

1.04.00 FORTRAN SYSTEM TAPE

1.04.0 1 General Organization

The complete Fortran translator program is written on the Fortran system tape.
The program is written and executed in sections, each section consisting of a number
of variable-length records. An individual record is called into core storage from the
system tape when it is needed.

Versions of the Fortran translator differ according to size of the 704 used to run the
program. The most common version is designated 4- 1-4-1. This program requires
a single 737 (4k words), a single 733 Drum (8k words), and four 727 tape units. There
is also an 8-1-4-1 version almost identical to 4-1-4-1 except that it requires a

704 with two 737 I s providing Bkstorage. For large programs i t will run considerably
faster than the 4- 1-4- 1 version. There is another modified Fortran version for use
on 704% with the 738 (32k words and no drum).

The system tape has three files. The first two files are the executive routine o r the
system proper. The third file is the library (FSgure 1). File 1 contains a special
f i rs t record called 1-CS and 7 other ordinary system records (Figure 2.) The end-of-
file mark is not considered to be an ordinary system record. File 2 of the Fortran
system tape consists of ordinary records numbered 8 through 67 (Figure 3). These
records are not called into core storage and executed in sequence, but a re executed in
the order shown in Figure 4. Firs t of all, the special program 1-CS, the first record
(number 0) in file 1, is loaded. Then 1-CS reads in record 1. This is the first
executable record of Section 1. It i s called the "card-to-tape simulator. It reads
the source program from the card reader. This source program, consisting of
Fortran statements, is converted to BCD and written on tape 2. The EOF signal
from the card reader causes the skip to the beginning of file 2. Records 8 through
67 are then executed in sequence. The following list specifies the records of file 2
and the section of which each is a part, for Fortran I.

Section No.
1
2
3
4
5
5
6

Records Included
8-20

21-36
37-41
42-48
49-54
55-67
2-7

1.04.02 Fortran I Ordinary System Records

The first word of each system record is a check sum for that record; i t is placed
in location 2 by the 1-CS program (Figure 5). The second word of each record is a
control word which is placed in location 178. The address field of the control word
gives the first storage location into which the first step of the program is to be stored.
This location is called the llload address." The remaining words of the program will
be stored in consecutive locations above the first location o r load address.

The decrement of the control word contains the address to which control is to be
transferred after the record has been completely read (Figure 6). This address is
referred to as the llTRA address."

The information stored in location 17 can be displayed to find out the last TRA
and LOAD address handled by the 1-CS program. This information could be helpful
if the machine "hangs upt1 somewhere in the running of the Fortran program or comes
to a halt at some storage location not in an e r ror stop listing. Table I shows the
TRA and LOAD add re~se s for the various records of the Fortran program, providing
a reference for determining what record or what area of the program is failing. By
displaying location 178 and using the table, the particular record and section where
the stop is encountered can be identified. This does not necessarily mean that the
e r ro r is in this particular record, since the trouble could be introduced earlier and
not indicated at that time.

PROGRAM OR SYSTEM PROPER LIBRARY

Figure 1. Fortran System Tape

F I L E I FNLE 2

- 7 ORDINARY SYSTEM 'I
SPECIAL 4 RECORDS
F I R S T RECORD

I-cs

FORTRAN EXECUTIVE

EOF

Figure 2 . File 1 of the System Tape

60 ORDINARY SYSTEM 4
RECORDS

F I L E 3

Figure 3. File 2 of the System Tape

EOF

LOAD

Y

I-CS

F l L E 2 F l L E 3

RECORD 8

9

- 10

- 11

- 12

F

RECORD I

2

3

4

LIBRARY
*

4

- 65

- 66

- 67

5

6

Figure 4. Execution Order of the Recordr

17

STOP 7775

V

LOCATION 17

Figure 5 . Ordinary Fortran Record

TRA ADDRESS LOAD ADDRESS

STORE RECORD PROPER

ADDRESS AFTER THE BEGINNING A T T H I S

RECORD I S READ. ADDRESS

3 DECREMENT 17 2 1 ADDRESS 3 5

Figure 6 . Record Control Word

After record 67 is loaded, a search through the library, file 3, follows to incorpo-
rate any library functions into the compilation. When this search is completed, the
system tape is rewound and the first two records of file 1 are skipped. Records 2
through 7 a re loaded and executed. These six records comprise Section 6 of the
Fortran program. At this point the Fortran run is complete. This arrangement of
the program into records on tape requires a program within the machine that allows
the next record to be read when it is signaled that the previous record is completed.
This program is called 1-CS and is described in detail in the following section.

1.04.03 1-CS (Tape 1 to Core Storage Program)

It is important from a service standpoint for the customer engineer to understand
the 1-CS self loading program. This short program is relatively simple but it is the
key program in monitoring the progression of the Fortran translator. With a knowledge
of the loader the customer engineer can better determine which record of the trans-
lator is failing. A listing or a map of the translator will have to be used by the
customer engineer to isolate the subroutine of the record that is giving trouble.

Figure 7 is a block diagram representing the loading of 1-CS into storage. After
the load-button sequence and bootstrap, the tape record monitor is loaded in des-
cending sequence from locations 27 to 4. The COPY instruction at location 1 and
the TXI at location 2 accomplish this loading. The copy loop stores COPY 3 at 3 and
LTM at 2. The LTM is performed and the COPY 3 stores BST at location 3. The
program control enters the monitor proper at location 4. Figure 8 shows the oper-
ation of the monitor in block diagram form.

1.04.04 The Tape Record Monitor

The program in storage from 4 through 27 reads in, sequentially, all the records of
the systems tape (tape 1). The records are check sum and redundancy checked. If
no e r ro rs exist, the program proceeds into the record that has read in. The check
sum, which is the first word of each tape record, is stored a t location 2. The
record control word, which is the second word on tape, is stored a t location 17. The
record control word's address is the address used to store the first instruction
(third word) of the record currently being read in. The record control word's de-
crement is the location of the first instruction to be executed after the current re-
cord is read in. These a re not relative addresses but absolute locations. Refer to
FIgure 8.

1.04.05 Listing of 1-CS on Tape

The following listing of 1-CS shows the instruction
sequence on tape and the locations where the instruc-
tions a r e stored.

Sequence
On Tape

0

Storage
Locations Operation

0 LXA
1 (originally) CPY
2 (originally) TXI
1 CPY

27 HTR
26 TZE
25 COM
24 ACL
23 COM
22 TRA
21 RTT
20 WRS
17 HTR
16 TXI
15 CAD
14 CAL
13 STA
12 ARS
11 STA
10 CAL
7 CPY
6 CPY
5 RDS
4 LXD
3 (originally) CPY
2 LTM
3 BST

Address, Tag,
Decrement

091
2 , l
1,1,1
3 1 , l
3
0
6
2
6
27
12
333
0
15,1,77777
091
17
26
22
15
17
17
2
221
2 7 , l
3
7
221

W I T H COPY A T LOC. I,

LOAD NEXT 20 WORDS

INTO 27 THROUGH 4.

P U T COPY 3

LOC. 3

INTO 2 +
L T M A T 2 a

PUT E S T 221

I INTO I
LOC, 3 '

A T LOCATION 4 ENTER 0 I PROGRAM MONITOR O F

TRANSLATOR RECORDS

FlGUR E I:'
Figure 7.

FIGURE 7 n
p 7 l TAPE

I SEQUENCE I

READ NEXT r - l

Figure 8. 1-CS, Tape Record Monitor

OK

TRANSFER TO

LOCATION

SPECIFIED IN

DECREMENT OF

LOCATION 17
L

-
STOP AT 27

UNMATCHED

B I T S I N ACC

NO
4

OK
F

1.04.06 Listing of 1-CS in Storage

The original boot-strap loading loop in locations 1 ,2 ,3 is wiped out by the self-
loading 1-CS. After loading, the program is located in core storage as follows:

ADDRESS TAG,
LOCATION OPERATION DECREMENT

I X A
CPY
LTM
BST
IXD

RDS
CPY
CPY
CAL
STA

ms
STA
CAL

CAD

TXI

HTR
WRS

RTT
TRA
COM
ACL

COM
TZE

HTR

COMMENT

Zero to XRA initially
Loads most of 1-CS

Backspace to reread record
Clear XRA before reading

next record of Fortran
Read next record
Check sum of record ---- 2
Control word -----------I7
Control word ---------- Acc
Where record is to begin in

storage
DECREAcc ----ADRAcc
Transfer address -------26
Again control word ----- Acc

to start computing check
sum

Copy record &.compute check
sum

Repeat & store record in con-
secutive ascending
addresses

Control word location
Write delay

Test for redundancy error
Recognize redundancy e r ror
Check sum in Acc
Bring in transmitted check

sum to be compared

Check sum OK, go to TRA
address

Read error

1.04.07 Control Words of 1-CS Monitor

Table I shows a listing of all the control words used by the monitor. An under -
standing of this listing will give you access to the area of Fortran that is causing an
error stop. The control word for the record currently in process is stored i;
location 17. Suppose, for example, that the machine stopped at an unlisted stop
during the Fortran run. A display of location 17 showed a decrement of 335 and an
address of 110. In Table I you will find that all the control words a r e unique and
that the one in this example indicates the stop occurred during the run of Section 1,
while record 1 of the first file on the tape was being run. Also indicated in the
listing is the first instruction stored in this record (REW. . .222). Notice that this
is not the first instruction executed in this record. The first instruction executed in
this record is located a t the address indicated by the decrement of storage location
17. In the present example this is an RDS. . . .32 1 instruction located a t 335. With a
dump or listing of the Fortran tape you should be able to follow the sequence of
instructions from that starting point. The last column in the list indicates the high
order storage location used in the storing of the current record. Notice that the
load address and last address of the records indicate that during the assembly many
core storage locations a re rewritten many times. For instance, records 11 and 12
of Section 1 are both stored starting at 3440 and ending above the 50000 area. This
may make tracing difficult where only portions of a previous record a r e erased in
order to store the shorter current record.

On a listing of the Fortran system tape you may have difficulty locating the
f i rs t executed record if you do not know the organization of the list. Most lists of
tape records indicate the order of full 704 words in the record starting with zero.
Recall that the I1zeroth" word in the record i s the record check sum and the flfirst'l
word is the control word that is stored in location 17. The first ordinary word of the
record proper is the "secondw word. Since the order of instructions is relative to a
starting point of zero, how do you find inthe listing, the first executed instruction
whose absolute location is 3351 To find the relative address in the list use the
following formula:

Relative Address =: decrement of 17 - address of 17 + 2

In the example of the previous paragraph, the relative address in the listing of
the RDS 32 1 instruction is:

R.A. = 335 - 110 + 2 = 227

The corresponding listing of records on the Fortran I1 Systems tape i s given in
Table 11. It follows the same general organization a s the information in Table I
for Fortran I.

1.05.00 UPDATING THE EDIT DECK

Additions, deletions, and changes in the list of library functions can be made by
means of the Fortran librarian, FNLIB 1. Each time the librarian is used it re-
writes completely the list of functions; hence it should be followed by all the routines
which the system is to contain.

Each routine consists of one o r more control cards, followed by the routine
proper on relocatable binary cards. The routine proper must meet the specifications
given on page 40 of Form 32-7026.

The control cards a re punched a s if for loading by NYBL1. The loading address
(9L address) must be zero, and the check sum must be given. The first control
card has in its 8L address the number of locations occupied by the subroutine, and
in its 8R address the 2's complement of n, where n is the length of the common
storage regionused by the routine. Succeeding rows have in the left word a function
name (without the terminal F) followed if there is room by a blank character and
zeros in internal 704 BCD with the significant characters packed to the left, and
in the address of the right word the corresponding entry point into the routine,
relative to zero. For example, the control card for the UASC--1 routine, which
can calculate either cosine o r sine by entering a t relocatable 0 or 1, has COSbOO and
0 in its 7's row and SINbOO and 1 in its 6's row. If there a re too many function
names to fit on 4 single control card, they may be continued on additional control
cards. On these additional cards do not repeat the information given in the 8's row
of the first control card.

The entry point which will cause the specifications for a library routine to be
met can be given a function name (or several names if desired). Such names can be
distinguished a s primary or secondary names by not prefixing, or prefixing, the
entry point with a minus sign (punch in column 37 of the appropriate row of the
control card). The meaning of primary and secondary arises from the following
rule of precedence which is used by the Fortran system in compiling library routines
into the object program.

RULE. When a function is mentioned in a source program, the routine which will
be used is the first routine on the system tape which meets either of the following
conditions: (1) the name mentioned is a primary name of the routine; or (2) the
name mentioned is a secondary name of the routine, and at least one of the primary
names of the routine is also mentioned. (If no such routine exists, the universal
empty routine HTR 1, 4 is compiled).

If the system tape is arranged with the routines which have many secondary
names preceding the routines with few or none, this rule will prevent unnecessary
duplication of routines in the object program. Suppose, for example, that the
system tape contains an a r c sine routine which also has an entry point which will com-
pute a square root, and that this routine is given two names, ASINF (primary) and
SQRTF (secondary). Suppose also that later on the tape is an ordinary square
root routine with the single name SQRTF (primary). Then a source program which
asks for both ASINF and SQRTF will cause compilation of the former program only.

In addition to the updating of the edit deck, your listing in this manual of the
records on the master tape should be maintained up to date. In order to do this
properly you must have three documents:

1. The memorandum describing the change.

2. The deck of cards which produce the correction.

3. Either a dump or SAP listing of FORTRAN.

Referring to Table I, the following items a re required:

Required Information Where Found

Record number
Description of record
Transfer address
Load address
Last address
Contents of transfer word
Contents of load word

Section No.

First three digits of *000 correction card
Usually not changed
8L decrement of 000 correction card
8L address of 000 correction card
8R address of 000 correction card
SAP listing or dump of Fortran
SAP listing or dump of Fortran

Memorandum

*The 000 correction card is the first card in the correction deck; the three
zeros are the last three digits of the card number.

1.06.00 FORTRAN TAPE ASSIGNMENT

Figures 9 and 10 represent the contents of the tapes in Fortran processing. They
indicate the contents of all four tapes at the end of each of the six sections. With the
exception of the first four records of file 5, tape 2, the assignment of tapes is
identical in all Fortran modes. (Fortran I processing does not develop these fowr
records.)

1.07.00 RELATING TAPE ASSIGNMENT IN FORTRAN I AND I1 TO FORTRAN 709

Fortran I and Fortran I1 utilize the first four tapes identically. Fortran 11, how-
ever, uses additional tape units 5, 6 and 7. They have the following function
during batch compiling;

Tape 5: The programs to be batch compiled a re recorded on tape, separated
by END statements. If the input is card on-line, all card information
i s transmitted to tape 5. If the input is off-line, tape 5 is used as
the off-line input.

Tape 6: This becomes the output tape for batch compiling. All source
programs in Fortran language, storage maps and SAP mnemonic
outputs appear on this tape. This tape receives the output infor-
mation for all object programs that p rev iwly were consigned to tape 2.

Tape 7: This tape recovers the binary object programs of the batch-compiled
source programs. This is , in Fortran I, the responsibility of tape 3.

Notes: (1) If no entries exist, no identification exists either. (2) Also includes new FUNCTION statement. (3) Identification
label number of the tape tables.

FIGURE 9. FORTRAN TAPE 2

Sect.
No.
1 '

2

3

4

5

5 '

6

FIGURE 10. FORTRAN 709

File
1

SOURCE
PROGRAM

(BCD)
All others
in Binary

EOF

End of
Section

1

1'

2
3

4

5

S t
Pre-6

6

File
2

COMPAIL

EOF

Fortran Tape 3

File
3

COMPAIL
RECORD
COUNT

and
FORSUB (1)

EOF

File 1

1. Non Exc.
2. T Stops

CIT1s from Sec. 3
(erased)
cm Is
CIT Is

Binary Output

Fortran Tape 4
File 1

Tape Table
Entries

TRALEN
CIT Is

lo0 WDS /REC
CIT Is

CIT Is

File
4

FLOCON
FORMAT
SIZE

EOF

File 2

EMPTY

File 2

COMPDO
Closed

Subroutines
Closed

Subroutines

CONSTANT
EOF

File
5

10 END
11 SUBDEF (1)
12 COMMON
13 HOLARG
0 TEIFNO
2 TIFGO
3 TRAD
1 TDO
6 FORVAL
5 FORVAR
4 FORTAG
7 FRET
8 EQUIT
9 CLOSUB

EOF (3)

File 3

Tag List
? 5 WRIREC

EOF

File 4

BB List

ASSIGN
CONSTANT

EOF

File
6

File
7

- D O T A G B - m D O
Rec. Count

EOF

-'

-_

Not
in

Fortran I

File
8

ASSIGN
EOF

File
9

RECORD
COUNT
FIXCON

File
10

Symbolic Name* Fortran 11 709 Fortran

STAPE4
STAPES
STAPE6
STAPE7

*This is the name used by the executive program in
referring to tape in any one of the three Fortran modes.

1.08.00 FORTRAN SOURCE PROGRAM CARD FORMAT

Each statement of the Fortran Source Program is punched onto a separate card.
If a single statement is too long to fit on a single card under the card layout system
specified below, it may continue over as many as nine continuation cards.

A properly punched Fortran 709 source statement card is shown in Figure 11.

I F TH IS CARD CONTAINS
A SOURCE PROGRAM

COMMENT ONLY, A C I S I PUNCHED I N COLUMN I.

THE STATEMENT I S
PUNCHED I N

COLUMNS 7-72

FORTRAN STATEMENT
SAMPLE Y(I)=A*X (I) + q

THE STATEMENT I F THIS I S A CON-
NUMBER, WHICH TINUATION CARD, A

MUST NOT EXCEED CHARACTER OTHER
32767, IS PUNCHED THAN ZERO I S

I N COLUMNS 1-5 PUNCHED I N
COLUMN 6

I F THE STATEMENT COLUMNS 73-80 ARE
HAS NOT BEEN IGNORED BY
COMPLETELY FORTRAN AND ARE

PUNCHED AFTER AVAILABLE FOR
COLUMN 72, I T 80URCE CARD
MUST BE CON- IDENTIFICATION.
TINUED ON A
CONTINUATION

CARD

Figure 11. Sample Source Statement Card

26

1.09.00 USING THE FORTRAN SYSTEM TAPE

Set the system tape to logical 1, and set two machine tapes to logical 3 and 4. If
operating with off-line input, set the input tape (bearing the source program as the
first file) to logical 2; otherwise se t a machine tape to logical 2.

At the 704 card reader, load the one-card Fortran system caller FNSC1, followed
(if the input is on-line) by the source program deck. Do not use extra blank cards.

(If tape 1 is known to be rewound, FNSCl is not necessary. With off-line input,
simply press LOAD TAPE and, when the card reader is selected, press
START on the card reader. With on-line input, ready the source program in the
card reader and press LOAD TAPE.)

Place the SHARE printer board 2 in the 704 printer. Set the sense switches as
follows :

Switch 1. UP to obtain the object program as a binary tape (tape 4)
and a s a deck of binary cards.
DOWN to obtain binary tape (tape 4) only.

Switch 2. UP to produce on tape 2 two files containing the source program
and a map of object program storage,
DOWN to add a third file to tape 2, containing the object program
in the language of the forthcoming modified SHARE symbolic
assembly program.

Switch 3. DOWN to list on-line the first two or three files of tape 2, de-
pending upon whether switch 2 is up or down.

Switch 4. Up or DOWN to cause on-line listing to be single or double-
spaced.

The program ends by executing a load button sequence to the card reader. If
the card reader is not ready, the machine will hang up a t location 77775*; if i t is
ready but empty the machine will stop at 777778.

1.10.00 RUNNING THE OBJECT PROGRAM

The binary deck that is produced when switch 1 is up consists of the object
program in relocatable binary, together with the four-card Fortran relocating
loader UA CSB3 and appropriate control card and transfer card. The binary deck
is thus ready far immediate loading and execution. For further details see the forth-
coming SHARE write-up for UA CSB3.

Details about using the binary tape form of the object program will be announced
later.

The printer board to be used with Fortran object program is SHARE 2.

There a r e nine standard error stops in object level input-output routines.
They a r e to be recognized not by looking at the instruction counter but by looking a t

the HPR instruction itself in the storage register.

HPR 0,o End of file in reading binary tape. Press START
to resume reading next file.

HPR 0 , l End of file in reading cards o r BCD tape. Press
START to resume reading next file.

HPR 1,l Inappropriate character encountered in a data
HPR 2 , l field in reading cards o r BCD tape. Pressing
HPR 3 , l Start causes that character to be treated a s a zero.
HPR 4 , l

HPR 0,2 Non-Hollerith character encountered in reading card.
Correct card, ready in card reader, and press START.

HPR 0 ,3 Redundancy check in reading BCD tape. Press START
to accept information read.

HPR 0,4 Echo check in printing. Press START to continue. Press
RESET and START to repeat line, and continue.

1.11.00 DESCRIPTION OF TAPE AND DRUM USAGE DURING A FORTRAN I RUN

With sytem tape rewound on tape drive 1 and the source program ready in the
card reader, hit the load tape button. The special f irst record on the system tape
is stored in 0-27. The second record on the first file of the system tape is a
card- to-tape simulator that puts the source program on tape 2 in BCD. If the
card reader is empty, this program is not executed since the source program is
assumed to be on tape 2 already. In either case the EOF signal from the card
reader causes the Fortran system tape to skip to the beginning of the second file.
The records in file 2 a r e executed sequentially. Each record is a program or part
of a program. In some cases these records a r e copied to drum and used over
again.

During the first section, tape 2 is read, using programs copied from tape and
some stored temporarily on drum. All four logical drums are used. Tape 3 is
also written during this section. Tables of information are written on drums and
tape 4. At the end of this section, the tables from the drums and tape 4 a re written
a s additional files on tape 2. If the programmer has made e r rors which the Fortran
diagnostic can catch, these e r ro rs are printed on line at the end of Section 1.

The second section processes table information from the drums and tape 2
(additional files) and writes a new tape 4; it also writes tables on drums.

The third section merges the tapes 3 and 4 using another file on tape 22
intermediately, and finally prepares a tape 3.

The fourth section examines this tape 3 and writes tables on drums and in
core.

The fifth section writes a tape 4, and tables on drums, then uses the tables
from section 4 and tape 4 to write a new tape 3.

The last section takes the tables from the additional files on tape 2 and writes
them on the drums, then, using these tables, writes the first part of the output
storage map as a new second file on tape 2. Next the first pass of a special assembly
program is made over tape 3. Then a library search is made. The library is the
third file on the Fortran tape. When this is finished the Fortran tape rewinds, spaces
over the first two records on the first file, and makes the second pass of the assembly.
The binary output from this assembly is written on tape 4. More of the storage map
is written on tape 2.

If sense switch 1 is up, contents of tape 4 are punched on line; if not, no punching
takes place.

If sense switch 2 is down, a third file is written on tape 2 (obtained by translating
tape 3). This is the symbolic version of the tlobjectll program.

If sense switch 3 is down, tape 2 is rewound and printed on line.

Finally all tapes (1,2,3,4) are rewound and the load button sequence is executed.
The words "end of diagnostict1 a re printed, tapes a re rewound, and the 704 stops at
17777.

1.12.00 SERVICE AIDS

To successfully run the Fortran translator the 704 must be in prime working
order. The tape system in particular, and the drum are given a good work-out
during the execution of the program. The following items are listed to assist you in
analyzing troubles.

1. Mechanical adjustment of 727's is very critical as far as tape creep goes.
Creep can be recognized by observing a mark on tape (e. g. , load point during a
multiple write-backspace-write operation. The tape should tend to creep forward
(i. e. , lengthening the inter-record gap). Care must be taken on 704 systems to
keep this forward creep to a point where 20 to 25 passes a r e possible before the
gap becomes too large. The customer is allowed to program up to ten passes.

2. When using Model I 727's the belt tension for capstans must be correct.
Refer to page 55 of 727 Customer Engineering Manual of Instruction (Form 223-6681).

3. Tape operation may be improved by installing the capstan drive shaft change,
E.C. 242797, B/M 561995, on a Model I1 727.

4. The recovery time of the "write load point delay SS-753" has given trouble.
Refer to CEM 803 for correction.

5. If you have installed B/M 562270, note:
1. Item4ofCEM787.
2. CEM 815.

These modifications eliminate the necking down of the start envelope that appeared
about 12 rns after go.

6. Noisy pre-amps have caused record trouble on Fortran and the SHARE assembly
program. Refer to CEM 234; recommended frequency is two weeks if trouble has been
encountered.

7. A 100 uu capacitor must be connected from the output of AND circuit E to
ground on Systems 5.11.05 to prevent errors on "read printer. " E. C. 243552 adds
this capacitor (704).

8. E. C. 242469 must be installed to prevent drum LDA trouble on Fortran.
During the installation of E. C. 242469, wires may have been left out from MF 1-617-1
to MF 1-G29- 1 and from MF 1-F30-2 to MF 1-G29-2. Check your machine.

Keep in mind that some of the stops recorded in operator's manuals a re mislead-
ing in their explanations. It is possible that a drum check sum er ror may be in-
dicated by the listing but the actual trouble may be due to tape creep. Some stops a re
ambiguous in this respect. Make sure you have the latest listing of error stops to
obtain the greatest assistance in analyzing machine operation and stops.

I. 13.00 FORTRAN I1 REFINEMENTS

From a user's standpoint, there are generally two areas where the present
Fortran system needs improvement. First of all, the system requires improved
facilities for debugging source programs. Secondly, it needs better facilities for
creating and using subroutines. An improved version of the system called Fortran I1
will contain improvements in these areas. This version is to be available in the not too
distant future.

The main improvement contemplated a s far as debugging is concerned, is the in-
corporation of a general and expandable diagnostic procedure in the translator. This
procedure i s designed to find and print a description of every detectable e r ro r in a
source program. Thus, stops in translation will be eliminated or reduced to a mini-
mum. The description of the failure will be documented in such a way as to eliminate
ambiguity. The print-outs will include useful information in locating trouble and will
be a definite aid to the customer engineer as well a s the customer.

A variety of routines that a re helpful in debugging object programs during execution
can be added to the library of Fortran. The routines can be included in the object
program during translation by making use of the improved subroutine facilities added
to Fortran 11. These new facilities are provided by six new statements that a re added to
the Fortran language.

1.14.00 ANSWERS TO COMMON GENERAL QUESTIONS INVOLVING FORTRAN

1. Why is Fortran used and what a re its advantages over the SHARE assembly
program ?

Fortran allows a programmer to write in relatively familiar and simple language
the steps of a procedure to be carried out by the 704. The programmer need
not know 704 language, and is relieved of clerical work; human e r ror is
minimized. The programmer writes in symbolic machine language in SHARE.
Fortran translates, compiles, and assembles, whereas a SHARE assembly
program essentially just assembles, although subroutines can be compiled from
the library tape of SHARE.

2. Can Fortran be used for logical problems a s well a s mathematical problems?

Fortran is essentially designed for mathematical problems. It can be used for
logical problems. However, it wouldn't be as efficient in input/output as a
manually coded program.

3. What a re the minimum machine requirements for using Fortran? Can the
library routines used during the translation be contained on more than one tape?

Fortran will run on the minimum 704 defined by the SHARE organization: Single
737, 733, four tape units, floating point, and the Copy Add and Carry Logical
word instruction. There are variations of Fortran for 704's with larger core
storage with or without a drum. As Fortran now stands, any library routines
to be used during translation must be included in file 3 of the Fortran system
tape.

4. What size of program will it write and how can it be determined whether the
object program is too large for the particular 704 system?

There is no definite limit as to the size of an object program that can be
written by the Fortran system. It is possible to exceed the capacity of a 32k
core storage. It is not too difficult, therefore, to write a program that will
exceed 4k storage. This is an aspect of Fortran that is bothersome. The size
of the object program can be estimated by a method described on page 60 of
Form 32-0306. Other limits regarding the size of the source program a r e given
on page 44 of Form 32-7026.

5. What does the 704 system do during each of the six phases or sections? Which
tapes a re used?

The general description of the six sections of the Fortran translator a re in-
cluded in Section 1.11.00 of this manual. An explanation of the machine opera-
tion during the six different phases is simmarized in Section 3. There may be
an exception but generally all four tapes are used in every section.

6. How are the Fortran statements translated into 704 language? Does each
statement se t up a standaridzed loop ?

A brief description of the Fortran translation is contained in Section 1.02.00.
In general, each subroutine of the output program has been constructed, in-
struction by instruction, so as to produce an efficient program. In addition
each subroutine is constructed to fit efficiently with adjacent subroutines and
the over-all program. Fortran written programs seldom contain sequences of
even three instructions whose operation parts alone could be considered a
precoded "skeleton. "

7. How can the program be restarted after an unlisted stop ?

There is no convenient restart point for running Fortran after an unlisted stop.
Essentially, it means starting over at the beginning. If all the source program
has been read from cards successfully, then the cards do not have to be reread.
The source program will already be on tape 2 in BCD. The starting procedure

is the same a s if the source program were put on tape 2 after being prepared
on off-line equipment.

8. Can the 704 be put into an e r ror loop so that the cause of machine trouble can
be located?

No, there a re no facilities in Fortran that permit looping on an e r ror condition.
It is possible, by altering the program manually, to accomplish this, but it
would be time consuming. It may be necessary in some instances.

9. What do each of the 32 Fortran statements accomplish and how are they used?

The Fortran language is completely covered in Form 32-7026. It is recom-
mended that the beginner s tar t with Form 32-0306 which provides a very
sound introduction to the Fortran language.

10. How would an operator go about running the object program?

The complete details regarding tapes, sense switches, cards, and so on,
related to running the Fortran program or the object program, are
in Section 1.09.00 of this manual.

2.00.00 GENERAL FORTRANeRECORD STRUCTURE

THE TWO PRINCIPAL forms that the ob ject-source program takes in its examination
by the translator a re CIT1s (compiled instruction tables) and tables. Both forms a re
described in detail in the Section 3.00.00.

There is common information which should help in integrating the tables. For
instance, file 5 of tape 2 contains many tables. The first word of all these tables is
a label number which is used in Section 1' to merge together all common information.
The second word in the records of this file is a count of the number of words in the
record.

Fortran I does not have any of the first four records of file 5, tape 2 of Fortran I1
and Fortran 709. Therefore, the record number of a record in Fortran I1 will be
four more than the corresponding number in Fortran I.

Any reference to storage on drums implies the use of either Fortran I o r 11. If 709
Fortran is under consideration, upper core storage will be used in place of the drum.

2.01.00 CALLFN RECORD

The CALLFN record is a table of IFN1s presented in CALL statements. (See page
16-18 of Form C28-6000 for a full explanation of the CALL statement). Each entry
into the table requires only one full word. The decrement of the word contains the
IFN of the first variable in the CALL statement; the address contains the IFN of the
last variable in the CALL statement.

2.02.00 CLOSUB RECORD

The CLOSUB record is a table of closed routines called for in the source program.
The entry is made for each library subroutine called for in the source program. The
entry is the BCD representation of the names of these closed subroutines and demands
only one word of storage because six BCD characters a r e sufficient to hold any of the
names of the closed subroutines. (See page 8 of Form 32-0306.)

The table entry is SQRTF for the following statement:

ROOT = (-B SQRTF (B**2. - 4. * A*C)) / (2*A)

The CLOSUB table is stored during the run of Section 1' on tape 2, file 5, record
14 in Fortran I1 and 709 or record 10 of the same tape in Fortran 1. The first word
of the first record is the labelnumber, 9. The second word is a count of the number
of words in the CLOSUB table.

2.03.00 COMPILED INSTRUCTION TABLES

By the end of Section 3, the object program is completely compiled in symbolic form
(with the exception of library subroutines). The compiled instructions, and later all
constants, must be placed in a table which is translatable by the compiler that is the
major porition of Section 6. Ultimately most source information must appear in a
compiled instruction table (CIT) .

Notice that several CIT1s a re stored on tape during the run of the executive routine.
There is only one standard four-word format for CIT1s:

Decrement Address

Word 1

Word 2

Word 3

Word 4

* Decrement of Word 4:
Fortran I - The subscript, if any, of the symbolic address.
Fortran I1 and 709 - Relative absolute part of address of the

instruction; for example, in
CLA N + 3

The + 3 would be entered into this field.

(IFN)
Internal formula No.
Operation code of Instr.
in SAP mnemonic

The decrement of word 1 contains the IFN of the statement from which the
instruction was generated. The address of word I indicates the number of the in-
struction generated as a result of the statement. It would contain four if the table
entry were the fourth instruction necessary to carry out the original Fortran state-
ment.

Instruction number
within formula number
Decrement of Type A
instruction

The decrement of word 2 contains a BCD mnemonic representation of the instruc-
tion for which this entry is made (e. g., CLA, OCT). From this entry the reader can
appreciate the sophistication of the Fortran translator; the executive program has
written a symbolic instruction which will be subsequently assembled by an assembly
program similar to USAP 1 and 2. The address of word 2 contains, if any, the
decrement of a type A instruction.

Word 3 contains a BCD representation of the symbolic address assigned to the
instruction by the executive routine. A s in coding by hand, the executive routine
uses symbolic addressing in writing its instructions in symbolic form. It is interest-
ing to note that the symbols used by the machine have no mnemonic value to the haman
reader but of course a one-bit differenoe in configuration is accurate enough dis-
crimination for the machine. A typical sumbolic address is) 84:

Symbolic address (BCD) assigned by executive
routine

The decrement of word 4 is explained in the footnote under the preceding diagram.
The address of word 4 contains the symbolic tag of the FORTAG table for this
instruction.

*

The COMPAIL file, the second file on tape 2, is a typical CIT table.

Symbolic tag

2.04.00 COMMON RECORD

Normally data and instructions a re compiled adjacent to each other in order to
preserve high-order storage cells.

The COMMON statement in FORTRAN I1 permits the programmer to assign
specific core storage areas to the storage of data. The COMMON statement is of the
following form: COMMON X, ANGLE, MATA, MATB

The items listed after COMMON statements will be assigned to core storage
starting at location 774628. Entire arrays may be shifted to high-order storage
through the use of the COMMON statement. (See pages 20-22 of Form C28-6000.)

The COMMON record is a compilation of all COMMON statements and is re -
corded on 2 , file 5, record 3 during the run of Fortran 11. It i s generated during the
run of Section 1'. The first word of this record is the label number, twelve. The
second word is a count of the number of words in the COMMON record.

Each entry into the table demands as many words a s there a re items following the
word vcommonw. For example, the COMMON statement

COMMON X, ANGLE, MATA, MATB
requires the use of four full words and is recorded in the following format in BCD:

Word 1
Word 2
Word 3
Word 4

2.05.00 DIM RECORD

The DIM record is generated during the arithmetic processing in Section 1, as a
result of encountering DIMENSION statements, and is recorded on drums. Recall
that the DIMENSION statement consists of a list of variables with an integer in
parentheses following the variables. Integer represents the greatest number of
elements in an array. (See pages 28 and 47 of Form 32-03061.) During Section 1'
the DIM table is converted to the SIZE table.

The DIMENSION statement is not executed (no instructions will appear in the object
program for this statement) but will preserve blocks of storage for subscripted
variables. The entry into the DIM table will occupy three words for one or two
dimensions and four words for three dimensions. The entries a re made according
to the following format:

One-dimensional array: (Example: DIM A (7))

Word 1
Word 2
Word 3

Decrement

Two-dimensional array (Example: DIM A (7, 12)

Word 1
Word 2
Word 3

Subscripted variable
Dimension
Check sum of entry

Decrement
A
7

A + 7

Subscripted variable
Dimensions 1 & 2
Check sum of entry

Address

12
+ 12

Three-dimensional array: Example: DIM A (7, 12, 6)

Word 2
Word 2
Word 3
Word 4

Decrement Address

A+ 7 + 1 2 + 6

Subscripted variable
Dimension 1 & 2 .
Dimension 3
Check sum of entry

2.06.00 DOTAG B FORMAT

This is the first record of file 6 on tape 2, with all Fortran modes. The DOTAG B
table is the result of an analysis of priority of interlocking DO statements (nests). In
this analysis an entry is made into the DOTAG table for every entry of the TDO table.
The DOTAG B table is a collection of nine-word records. The first five records a re
identical to the corresponding entry in the TDO table. The last four records a re a
result of the analysis of the nests of DO statements. The last four records take on
the following format: (for description of n l , ng, n3, see Section 2.22.00).

Word 6: Decrement eve1 number (described in Section 3.00.00).
Address f2 - ;: + nf "3 (Only the integral part of the term in

brackets is multiplied by n3).

Word 7 : Decrement An integer representing level 2 0.
Address Level of definition of nl.

Word 8: Decrement The bits in the field indicate to which level control will
pass from this DO statement. (I. e. , a bit in 7 indicates
that control will pass to the seventh level from the
current DO.) Control will always pass to a lower level
from current level.

Address Level of definition of n2.

Word9: 1 - 5 Test table number: A quantity to be entered into the
indexing routine which optimized XR 's.

6 - 19 Symbolic tag to which reference is made with the test
table number.

20 - 35 Level, of definition of n2.

For example, given the same DO statements a s described in the TDO table format
(5 DO 8 I = 1. 26, 2):

Word 6
Word 7
Word 8
Word 9

Address
26
Level of definition of n l
Level of definition of n2
Level of definition of n3

Decrement
1 (first DO in nest)
4

Test
Table No.

Symbolic
Tag

Use only integral part of previous calculation (13). Address of word 6 =
13 x n3 = 13 x 2 = 26

2.07.00 THE END RECORD

The END statement permits batch compiling. Several programs can be compiled
with one pass of the Fortran translator provided an END statement separates the
various symbolic programs. If only one program is being compiled, there is no need
to include an END statement, although an END record is generated with five 11211
entries a s described below.

The END statement permits the programmer to use separate sense switch control
for each of his programs. The specifications for use of the END statement a re on
page 22 of Form C28-6000. Briefly stated, the 0,1, or 2 designation following the
END indicate:

0 = Ignore the sense switch and assume it is up.
1 = Ignore the sense switch and assume it is down.
2 = Interrogate the sense switch.

For example: END (2, 2, 2, 0, 1). This statement indicates:
Interrogate SS 1, 2, and 3.
Ignore SS 4 and assume it is up.
Ignore SS 5 and assume it is down.

The END statement takes precedence over the sense switch settings if the 0 and 1
codes a re used.

In addition to sense switch control, the END statement simulates an end-of- file
condition on card reader o r tape and permits passage of 1-0 control from one program
to the next.

The END record is always generated, whether an END card is used or not. During
1' the END record is recorded on tape 2, file 5, record 1. (Of course, there is no
such entry in Fortran I, because it does not contain the END facility.) The END
record on file 5, is the only record in this file not to have a label number.

The END entry is always a five-word record. The 0, 1, or 2 designation is stored
in the addresses of these five words (in binary).

For example, END (2, 2, 2, 0, 1) appears in the END record as:

Word 1

Word 2

Word 3

Word 4

Word 5

2.08.00 EQUIT RECORD

The EQUIVALENCE statement permits the progra,mmer to equate the names of
several different quantities, o r to assign the same storage location to several different
variables, (See page 36, Form C28-6000.)

For example: EQUIVALENCE (A, B, C (5))

This statement says that location A, location B and the fourth location after C
(the fifth location including C) a r e identical. In general A (P) is defined for P 2 1
and means the (P-1)th location after A or the beginning of the A array, that is the
Pth location in the array.

The EQUIT record is a table containing all the information included in
EQUIVALENCE statements. Each item in the pairs of parentheses demands two full
704-9 words for storage. A minus sign in the last entry indicates the end of a series
of equivalent storage locations.

For example, the following entry would be made for the foregoing EQUIVALENCE
statement:

EQUIVALENCE (A, B (I) , C (5))

The Equit Entry
Word 1 1 A
Word 2
Word 3
Word 4
Word 5
Word 6 -
note minus sign

The "11' entry in word 2 is entered automatically and is associated with A. The lllu
entry is word 4 is the 1 in parenthesis after the B. The "5" entry in the word 6 is the
5 following the C.

The EQUIT record is generated during the run of Section 1' and is recorded on
tape 2, file 5, record 13 during Fortran I1 and 709 or record 9 during Fortran I.
The first word in the first record is the table number, 8. The second word is a count
of the number of entries into this table.

2.09.00 FIXCON RECORD

The FMCON record is a table of fixed point constants specified by the program.
These constants are entered in fixed point form a s data or a re subsequently computed
from other fixed point constants. These numbers, entered without decimal points
during READ statements and defined according to some FORMAT gtatement as fixed
point constants, a re one of the types entered into the FMCON table. Numbers
appearing a s constants in statements of the form A = 3 + B are entries in the
FMCON table; in this example is an entry.

The FMCON table is generated during Section 1 and is stored on drum in a two-
word format for each entry. It seems peculiar but it is necessary to the program
control, that each entry consists of (1) the fixed point constant in binary and (2) the

check sum of that word. An entry for the fixed point constant 5 would appear as:

Word 2 is the check sum of word 1.

Word 2

In Section 3 the FMCON table becomes the only record of tape 2, file 9.

000 0 101

2.10.00 FLOCON RECORD

The FLOCON record is a table of floating point constants occurring in the source
program. They may be entered from an input source such as cards o r tape, computed
from combinations of floating point constants, or appear as coefficients with decimal
points in Fortran source statements.

The FLOCON table is developed during Section I and i s stored on the drum, in
Fortran I, in the same format a s the FIXCON table. That is , there are two words
required for each entry, the first containing the floating point constant and the second
the check sum of this one word. (In Fortran 11 and 709, this table is stored in
high-order core storage.)

The FLOCON table is stored on tape 2, file 4, the first record, and also on the
drum during the processing that occurs in Section 1.

2.11.00 FORMAT RECORD

The FORMAT record is a table of arguments presented in FORMAT statements.
The arguments a r e stored in BCD form in sequential storage locations. Since the
length of arguments is a variable, the number of words required to store all the
argument must be variable. Each entry into the table is separated from succeeding
entries by a word filled with bits. See Section 2.16.00. The format of the FORMAT

entry is identical to that of the H0LAR.G entry.

The Format record is generated during the processing of Section 1'. It is
stored on tape 2, file 4, the second record.

2.12.00 FORSUB RECORD

The FORSUB record is a table of the subroutines described in the source program.
This table has only one word per entry. An entry is made for each Fortran I1
statement headed by the subroutine statement. The entry itself is a BCD image of the
function described in the subroutine statement. For example (page 31, Fortran
Reference --nual):

1. Subroutine MATMPY (A, N , M, B, L, C)

The BCD image of MATMPY would be entered into the FORSUB table.

This table is generated in Fortran II and 709 during the run of Section 1 1 . It is
stored in the second record of file 3, on tape 2. Of course, Fortran I does not have
subroutine calling facility.

2.13.00 FORTAG RECORD

The FORTAG record is a table that represents an index to the TAU table. It has
a one-word entry of the following format:

* XR INFO - This field indicates whether o r not the FORTAG entry uses an
absolute or symbolic index register. If there are no entries, a symbolic XR
is inferred. If there is an entry the field is treated like the tag field of an
instruction (e. g. , 24 = XRA, 25 = XRB, 26 =XRC).

IFN

** Index to TAU table - The bit configuration in this field indicates which TAU
table entry has the associated IFN.

This table is generated during Section 1 and appears as a table in storage as a
buffer. From the buffer area the table is written on tape 4 temporarily. Then
during Section 1' the FORTAG table becomes the eleventh record of file 5 on tape
2 in Fortran I1 and 709. It is the seventh record on the same tape of Fortran I.

1 17 24 26 27 35

* XR
INFO

2.14.00 FORVAL AND FORVAR RECORDS

** INDEX TO
TAU TABLE

The FORVAL and FORVAR records are tables of the fixed point non-subscripted
variable, appearing to the left of (FORVAL) , and the right of (FORVAR) , of the
equality sign in a statement. A fixed point non-subscripted variable must satisfy the
following conditions :

1. Must be six o r less than six characters.
2. The first character must be alphabetic.
3. If an integer, it must start with I, J, K, L, M, or N.
4. Must not read like a function name.
5. Must not have a left parenthesis following it.
6. Must be entered a s data in fixed point form.

For example, if A and B are fixed-point form, the statement, "ARG = BRAND +
6" contains "ARGT1 a s an entry in the FORVAL table and "BRAND" as an entry in the
FORVAR table.

The tables are generated during Section 1' and are written on tape 2, file 5, record
9 and 10 in Fortran I1 and 709 or record 5 and 6 in Fortran I. The label number of the
FORVAL table is 6. The label number of the FORVAR table is 5. Both label numbers
a re the first words of the first records, in the respective tables. The second words
in each record a re the counts of the entries into these tables. Only one word is
necessary to hold each entry in BCD form.

For example the statement ARG = BRAND +6 would be written:

FORVAL TABLE (BCD)

FORVAR TABLE (BCD)

2.15.00 FRET TABLE

The FRET table is a table generated from the FREQUENCY statements given in
the source program. (See page 37, Form 32-7026.) This is a variable length entry
table; that i s , each entry occupies an indeterminate number of words, dependent on
the number of branch points described by frequency statements. Each FREQUENCY
statement permits the programmer to specify the number of times a particular
branching point will be utilized by the source program. For instance, a particular
IF statement may appear in a program as:

The programmer can best use index registers in the program by informing the
program that branch 10 will be used five times, branch 20 will be used three times
and branch 30 will be used six times, by entering the following frequency statement:

FREQUENCY 38 (5,3,6)

The general form is

FREQUENCY N (i, j, k. . . .)
Where N = EFM of branch point

i, j , k = frequency of each branch

Entries into the FRET table are made according to the following format:

Word 1
Word 2
Word 3
Word 4

Decrement Address

The length of each entry will be determined by the number of branches.

The FRET table is generated during the run of Section 1. It appears a s record 8
on file 5, of tape 2, during Fortran I. It appears a s the record 14 of the same file
during Fortran 11 and 709. Notice that the first word in each entry is fbdgged with a
minu s sign.

Before the table is recorded on tape 2 in Section 1' all the EFN1s a re changed to
their corresponding IFN1s. This means that 38 in the previous example would be
replaced by its corresponding IFN.

2.16.00 HOLARG RECORD

The Holarg record i s a collection of Hollerith arguments of CALL statements. In
a CALL statement, the Hollerith argument is not describing argument of some
subroutine but is itself the data to be operated upon. (See page 16, of Fortran 11,
Form C28-6000.) An example of this kind of CALL statement is:

265 CALL 56H * * * * * * This data indicates the Orbital entry point
* * * * * *

The number 265 is the external formula number. The 56 specifies the number
of Hollerith characters (including blanks) that are in the Hollerith argument. H
indicates that this i s a Hollerith argument. The res t of the statement is data o r
commentary which will be later used in a print-out during the run of the object program
under control of a PRINT 265 statement.

The HOLARG record is generated during the run of Section 1'. It is on tape 2,
file 5, record 4 of Fortran I1 compilation. The first word in the record is the label
number, 13. The second word is a count of the number of words in this record.
After this a variable number of words are required to store each entry. Since the
storage consists of BCD entries, the number of full words required will be equal to
the number of BCD characters divided by six, allowing another full word for any
fractional part. A word consisting of 36 binary bits is stored immediately after the
last word. The preceding example will be entered into the HOLARG record in BCD
as:

Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 8
Word 9
Word 10
Word 11

*Blank - - 110 000

2.17.00 LAMBDA, ALPHA, and BETA TABLES

OCTAL

The LAMBDA and ALPHA tables a re generated during the arithmetic processing of
Section 1. They represent the output of the executive program in its analysis of arith-
metic statements. Pages 6 and 7 of Form 32-0306 describe the order of operation of
arithmetic statements. In terms of the object program arithmetic statements must
generate arithmetic and storing instructions with appropriate checking. These
instructions must occur in proper order according to the placement of the operation
symbols: + - * /) (**. The LAMBDA table is an internal record of the order of
operations necessary to accomplish the required object program. It contains a
symbol-by-symbol analysis of the right-hand side of arithmetic statements. Each
operation symbol receives a level number during this analysis which indicates the
priority that the operation has in the processing.

The ALPHA table is used in Section 1 a s a tally of the level of the operation symbol
currently under investigation. Because the level number changes repeatedly through
the analysis, the ALPHA table must be similarly altered. This alteration is much too
detailed for this manual.

The LAMBDA table requires three words for each entry. Each entry in turn is the
result of an operation symbol in a Fortran statement. Therefore, it is common for
the LAMBDA table resulting from one Fortran arithmetic statement to extend over
100 core storage locations. The general configuration of the three-word entry is:

Word 1
Word 2
Word 3

Symbolic tag info. I Current level number
Operation code: + * ** / -
Level number o r BCD used in the source statement.

The BETA table is closely associated with the LAMBDA and ALPHA in that it
contains information on the control of arithmetic processing. This table requires
only one word per entry. Its control is beyond the scope of this manual.

2.18.00 NONEXEC RECORD

The NONEXEC record is a table of IFN's and associated EFNts for non-executable
Fortran statements. The following statements are non-executable,:

PAUSE, FORMAT, DIMENSION, EQUIVALENCE, FREQUENCY

Each entry into the NONEXEC table requires only one word. The decrement of
this entry contains the IFN, and the address contains the EFN of the non-executable
instruction.

The NONEXEC table is generated during the run of Section 1 and is stored during
Section 1' on tape 2, file 5, record 15 in Fortran I1 and 709 or a s record 11 in Fortran
I. The first word in the record is the label number; the second number is a count of
the number of words in the table.

2.19.00 SIGMA AND TAU TABLES

The SIGMA and TAU tables a re collections of the subscript information used by the
source program. An entry into the SIGMA table requires two or three full words of
storage, depending on the dimensions of the subscripts. An entry into the TAU table
requires three, five, or seven full 704-9 words, again dependent upon the dimensions
of the subscripts. Both tables are stored on drum during the run of Section 1. They
a re recorded according to the following format:

One-Dimension Subscripts. (Example: B (5 * I + 6)

The symbol in the parentheses is the subscript of B. It is the most complex type
of subscript, chosen intentionally to indicate its entry into the SIGMA and TAU tables.
It will be entered in a two word storage space of the SIGMA table according to the
following format:

Sigma Table

TAU tab le

Word 1
Word 2

Two-Dimensional Subscripts. Example: B (5 * I + 6, 7 * J + 8)

The example shown will enter the SIGMA and TAU tables in the following format.

S i m a Table

Decrement
+6
+6

Word 1
Word 2
Word 3

I Decrement I Address I
Word 1 1 6 8 I

Address

Decrement
5

5 + 1

Addend
Check sum

Address

I (BCD)

Word 2
Addends 1 & 2
Check sum

Multiplier
Variable
Check Sum

6 8 I
Tau Table

Multipliers 1 & 2
Variable 1
Dimension of I

1 in DIM statement

Address
7
I (BCD)
J (BCD)

Word 1
Word 2
Word 3
Word 4

Word 5 I 5 + D + 7+I+J I Check sum

Decrement
5

d. See Section
2.05.00

Three-Dimensional Subscripts. Example: B (5 * I + 6, 7 * J + 8, 4 * I + 2)

Sigma Table *
Decrement Address

Word 1 Addends 1 & 2
Word 2 Addend 3
Word 3 6 + 2 +8 Check sum

Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7

Tau Table

Multipliers 1 & 2
Multiplier 3

Decrement
5
4

dl=dimension of I
5 4 dl

Variable 1
Variable 2
Variable 3

Address
7

I (BCD)
J (BCD)
K (BCD)

d2=dimension of J
7 1 J K d 2 Check sum

2.20.00 SIZE RECORD

The SIZE record is a table of the variables and maximum dimensions of arrays
described by dimension statements. It is closely associated with the TAU table.
(See Section 2.19.00)

The SIZE record requires two full words for each entry. (See page 35 of
Form 32-7026 for a detailed description of the DIMENSION statement.) The entry is
of the following format:

Word 1
Word 2

BCD image of the variable
Total size of array in binary

For example, given the DIMENSION statement:
DIMENSION C (3, 4, 5)

The table entry would appear as:

Word 1
Word 2

C (BCD)
60 (i.e. 3 x 4 x 5)

The SIZE table is generated during Section 1 and is stored in Section 1' on tape 2,
file 4, record 3.

2.21.00 SUBDEF RECORD

Fortran 11 can also call in subroutines described by the programmer in the source
program. For example, the subroutine introduced by the statement SUBROUTINE
MATMPY (A, N, M, B, L, C) could be called into the main program by the statement:

CALL MATMPY (X, 5, 10, 4, 7, Z).

Essentially, what happens is that the previously described MATMPY subroutine is
brought into the compilation with the arguments of the SUBROUTINE statement.
Naturally the arguments of the SUBROUTINE statement should correspond in mode,
number, and order to those of the original MATMPY subroutine. (See pages 16 and
17 of Form C28-6000.)

The SUBDEF record is generated during the run of Section 1'. It is recorded on
tape 2, file 5, in record 2. The first word of this record is the label number, 11.
The second word of this record is a count of the number of words in the record.

Each entry into the SUBDEF record requires one full word for the name of the
subroutine (e.g. , MATMPY) and one full word for each of the arguments included
in the parenthesis. For example, the subroutine statement SUBROUTINE MATMPY
(A, N, M, B, L, C) is recorded as:

Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7

Decrement Address
MATMPY

A
N
M
B
L
C

2.22.00 TDO RECORD

The TDO record is a table which results from DO statements in the symbolic
program. Each entry requires five full words. The five words are written
according to the following format.

Word 1: Decrement External formula number (EFN) of the DO
statement (a)

Address The EFN of the last statement executed under
control of the DO statement (b)

Word 2: Decrement The BCD symbol for the integer variable of the
DO statement (I, J, K, L, M, ORN)

Word3: Address First value of variable (nl)
Word 4: Address Final value of variable (nP)
Word 5: Address Increment of the variable (n)

3

NOTE: The symbols in parentheses are those used by the authors of Fortran.
(See pages 24, 45 and 46 of Form 32-0306.)

The following DO statement would result in the table entry shown:

5 DO 8 I = 1, 25, 2

Word 1
Word 2
Word 3
Word 4
Word 5

The TDO record is written during the run of Section 11, on tape 2, file 5, on
record 4 of Fortran I or record 8 of Fortran I1 and 709. The first word of the first
record is the label number of the TDO record, 1. The second word of the first
record is a count of the number of words in the TDO table.

Decrement
5
I

Before tape 2 receives the TDO record in Section 11, all the EFN's a re replaced
by IFN1s. (For example, the address of the first word becomes an IFN.)

Address
8

1
25
2

2.23.00 TEIFNO RECORD

Two reference numbers a re associated with Fortran statements, the internal IFN
and external EFN formula numbers. All statements in the source program have
internal formula numbers (IFN). These numbers a re assigned to the statement
sequentially starting with 1. The external formula number (EFN), on the other hand,
is an arbitrary integer assigned to the statement by the programmer. It is entered
into the location field of the source program card by the programmer, generally to
permit reference to the particular statement by the source program. There is no
need to assign an external formula number to any statement to which reference is
never made. Therefore, all statements have IFN and some have both IFN and EFN.

The EFN's and their corresponding IFNts a r e stored in the TEIFNO record by the
translator during the run of Section l1 . Each statement requires the use of one

For example, if the following statement is the 28th statement in the program, the
indicated table entry is made.

full 704-9 word for storage. The entry is made a s follows:

STATEMENT
1 5 D 0 6 1 = 1 , 8

Decrement
IFN

TEIFNO Entry
28 15 I

Address
EFN

The TEIFNO (Table of External and Internal Formula Numbers) record is
generated during the run of Section 1' a s previously stated. This table is stored
on tape 2, file 5, record 1 of Fortran I or the fifth record of the same tape and
file on Fortran I1 or 709. The first word of the first record is the label number of
the record, 0. The second record is a count of the number of words in the table.

2.24.00 TIFGO RECORD

The TIFGO record is a table of the IF, ASSIGN, and GO TO statements in the
source program. Each statement in the program demands the use of two full 704 words
for storage. This section describes entries that result from each type of statement.
The first word of the first record in the TIFGO table is the label number. For this
table the label number is two. The second word of the first record is a count of the
number of words in the TIFGO table.

IF Statement Entry. Example: 16 IF (E) nl, n2, n3

The entry for this statement would be a s shown below, provided the IF statement
given was the 31st statement in the source program. (See page 16 of Form 32-0306.)

Word 1
Word 2

Unconditional GO TO Entry. Example: 21 GO TO n

Decrement
(IFN) 31
"2

The entry for this statement would be a s shown below, provided the given state-
ment was the third statement in the source program. (See page 14 of Form 32-0306.)

Address
n

n3

Word 1
Word 2

Decrement
(IFN) 3

0

Address
0
n

Assigned Go To Entry

In this type of statement the GO TO destination is determined by a previous ASSIGN
statement. (See pages 48 and 49 of Form 32-0306.) The list of alternatives following
in parenthesis are merely a list of all the possible GO TO destinations.

For example, consider the following statement:
21G0TON(B1, B2, B3, B 4 BN)

The GO TO destination will be the Ith statement. The TIFGO table entry for this
statement would be: (Assume an IFN of 6)

Decrement I Address

*CTRAD1 - The number of the entry in the TRAD record corresponding to
the first possible transfer address given in the GO TO argument.
**CTRADN - The number of the last possible transfer address.
(See Section 2.25.00)

Word 1
Word 2

Computed GO TO Statement. Example: 26 GO TO (B1, B2, B3.. . . BN) I.

In thts type of statement a transfer will take place in the object program dependent
on the current value of I. I is a variable which is assigned some computed integer
by the source program. The transfer takes place to the Ith term of the GO TO list
of B's. For example, if the value of I is computed a s 3, then the program will
transfer to the third location in the list of locations which follow GO TO (BQ in the
example). The entry for the computed GO TO takes the following form:

IFN (6)
*CTRAD1

2
**CTRADN

Assign Statement Entry. Example: 29 ASSIGN 30 to N

Word 1
Word 2

This statement is used in conjunction with a GO TO statement, a s described under
the computed GO TO Statement.

The table entry of the above example takes the following form:

Decrement
EFN 26
CTRAD,

Address
2*
CTRANN

Indicator- Controlled IF Statement. Example: 16 IF (sense light N) 30, 40

Word 1
Word 2

This statement is used in conjunction with:
1. Sense switches
2. Sense lights
3. Divide check indicator
4. Accumulator overflow light
5. Quotient overflow light

Decrement
EFN 29
BLANK

Address
6*

A s signed value 30 -

If the corresponding N light i s on or switch is down, transfer of the program proceeds
to the statement specified by the first number following the parenthesis. If the
corresponding N light is off o r switch is up, transfer of the program proceeds to
the statement specified by the second number following the parenthesis.

The table entry takes the following format, for the example given:

Word 1
Word 2

*3 = Sense Switch o r Sense Light
4 = Divide Check
5 = ACC or MQ overflow
(Refer to pages 18-19 of Form 32-7026.)

Decrement
EFN, 16

30

The TIFGO record is generated in Section 1. The entries indicated in this section
contain the external formula numbers (EFN) specified by the programmer. However,
before the TIFGO table is written on tape 2 in Section l t , all EFNts a re replaced by
their corresponding IFN 's.

Address
3, 4, o r 5*

40

2.25.00 TRAD RECORD

The TRAD record is a table of all possible transfer addresses listed in assigned
and computed GO TO statements. See Section 2.24.00.

As many words a re used for each entry (each assigned GO TO) a s there a re
possible transfer addresses in the GO TO statement. The transfer address is entered
in binary form into the address field of consecutive words on tape in the TRAD record.

Recall that the TIFGO record uses a standard two-word format, which did not
have enough storage space for the transfer acidresses of the assigned GO TO1s. In
the TIFGO record, the references made to the TRAD table were:

1. In the decrement field of the second word, the number of the word in the
TRAD table which contains the first possible transfer address, reading the
GO TO argument left to right.

2. In the address field of the second word, the number of the word in the TRAD
table which contains the last possible transfer address.
For example, if the following two assigned GO TO statements a re given first

in the source program:
26 GO TO (3, 6, 9, 4, 28) I ; IFN = 61
28 GO TO (11, 13, 14, 15) I ; IFN = 62

The following table entries a re made in binary, in Section 1':

TIFGO Table
Decrement Address

Word 1 Label number
Word 2 Number of entries

Word 4 1 3 (1st TRA adr) 1 7 (last TRA adr) I
Word5
Word 6

62(IFN)
8 (1st TRA adr)

2
1 (last TRA adr)

TRAD Table
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 8
Word 9

The TRAD record is generated during the processing in Section 1. It is entered
on tape 2, file 5, a s record 7 in Fortran I1 and 709 and record 3 in Fortran I. The
first word of the first record is the label number three. The second word of the
first record is a binary count of the number of words in the TRAD record.

Word 10
Word 11

The previous examples of table entries indicate the format in Section 1. In lt,
however, where the tables a r e recorded on tape 2, all the EFN1s are replaced with
their corresponding IFN1s.

3
X 1 4

28

13 l1

15

2.26.00 TSTOP RECORD

Label number
Number of entries

F i r s tGOTO

\ SecondGOTO

The TSTOP r e c o ~ d is a table of IFN1s associated with STOP statements in the
source program. Each entry into the table requires only one word. The decrement
of the word contains the IFN and the address contains the EFN of the STOP statements.

The TSTOP table is generated during Section 1' on tape 2, file 5, record 16 in
Fortran 11 and 709 or a s record 12 in Fortran I. The first word in the record is the
label number, the second word is a count of the number of words in the table.

3.00.00 FORTRAN AUTOMATIC CODING SYSTEM

I C..

This section reproduces, with permission of the Institute of Radio Engineers,
the paper which appeared in the Proceedings of the Western Joint Computer
Conference, February 26-28, 1957.

T h e FORTRAN Automatic Coding System
J. W. BACKUS?, R. J. BEEBERt, S. BESTS, R. GOLDBERGt, L. M. HAIBTt,

H. L. HERRICKt, R. A. NELSONt, D. SAYREt, P. B. SHERIDANT,
H. STERNt, I. ZILLERt, R. A. HUGHESO, AND R. NUTT(~

HE FORTRAN project was begun in the sum-
mer of 1954. Its purpose was to reduce by a large
factor the task of preparing scientific problems for

IBM's next large computer, the 704. If it were possible
for the 704 to code problems for itself and produce as
good programs as human coders (but without the
errors), it was clear that large benefits could be achieved.
For it was known that about two-thirds of the cost of
solving most scientific and engineering problems on
large computers was that of problem preparation.
Furthermore, more than 90 per cent of the elapsed time
for a problem was usually devoted to planning, writing,
and debugging the program. In many cases the de-
velopment of a general plan for solving a problem was
a small job in comparison to the task of devising and
coding machine procedures to carry out the plan. The
goal of the FORTRAN project was to enable the pro-
grammer to specify a numerical procedure using a con-
cise language like that of mathematics and obtain
automatically from this specification an efficient 704
program to carry out the procedure. I t was expected
that such a system would reduce the coding and de-
bugging task to less than one-fifth of the job it had been.

Two and one-half years and 18 man years have elapsed
since the beginning of the project. The FORTRAN

t Internat'l Business Machines Corp., New York, N. Y.
Mass. Inst. Tech., Computation Lab., Cambridge, Mass.
Radiation Lab., Univ. of California, Livermore, Calif.
United Aircraft Corp., East Hartford, Conn.

system is now complete. I t has two components: the
FORTRAN language, in which programs are written,
and the translator or executive routine for the 704
which effects the translation of FORTRAN language
programs into 704 programs. Descriptions of the FOR-
TRAN language and the translator form the principal
sections of this paper.

The experience of the FORTRAN group in using the
system has confirmed the original expectations con-
cerning reduction of the task of problem preparation
and the efficiency of output programs. A brief case
history of one job done with a system seldom gives a
good measure of its usefulness, particularly when the
selection is made by the authors of the system.
Nevertheless, here are the facts about a rather simple
but sizable job. The programmer attended a one-day
course on FORTRAN and spent some more time re-
ferring to the manual. He then programmed the job
in four hours, using 47 FORTRAN statements. These
were compiled by the 704 in six minutes, producing
about 1000 instructions. He ran the program and found
the output incorrect. He studied the output (no tracing
or memory dumps were used) and was able to localize
his error in a FORTRAN statement he had written.
He rewrote the offending statement, recompiled, and
found that the resulting program was correct. He esti-
mated that it might have taken three days to code this
job by hand, plus an unknown time to debug it, and
that no appreciable increase in speed of execution would
have been achieved thereby.

THE FORTRAN LANGUAGE previously defined functions. Having defined ROOTF

The FORTRAN language is most easily described as above, the Programmer it to any set of
arguments in any subsequent arithmetic statements. For by reviewing some examples.
example, a later arithmetic statement might be 7 '

Arithmetic Statements

Example 1: Compute:

root =
- (B/2) + z/(B/2IL AC

FOR TRA N Program :

ROOT
= (- (B/2.0) + SQRTF((B/2.0) * * 2 - A * C))/A.

Notice that the desired program is a single FOR-
TRAN statement, an arithmetic formula. Its meaning
is: "Evaluate the expression on the right of the = sign
and make this the value of the variable on the left."
The symbol * denotes multiplication and * * denotes
exponentiation (i.e., A * * B means AB). The program
which is generated from this statement effects the
computation in floating point arithmetic, avoids com-
puting (B/2.0) twice and computes (B/2.0) * * 2 by a
multiplication rather than by an exponentiation routine.
 a ad (B/2.0) * * 2.01 appeared instead, an exponentia-
tion routine would necessarily be used, requiring more
time than the multiplication.]

The programmer can refer to quantities in both
floating point and integer form. Integer quantities
are somewhat restricted in their use and serve primarily
as subscripts or exponents. Integer constants are written
without a decimal point. Example: 2 (integer form) vs
2.0 (floating point form). Integer variables begin with
I, J, K, L, M, or N. Any meaningful arithmetic expres-
sion may appear on the right-hand side of an arithmetic
statement, provided the following restriction is ob-
served: an integer quantity can appear in a floating-
point expression only as a subscript or as an exponent
or as the argument of certain functions, The functions
which the programmer may refer to are limited only
by those available on the library tape a t the time, such
as SQRTF, plus those simple functions which he has
defined for the given problem by means of function
statements. An example will serve to describe the latter.

Function Statements

Exam$le 2: Define a function of three variables to be
used throughout a given problem, as follows:

THETA = 1.0 + GAMMA * ROOTF(P1, 3.2 a Y i / ~

+ 14.0, 7.63). 7

DO Statements, DIMENSION Statements, and Sub- a 1
scripted Variables I

'7
Example 3: Set Q... equal to the largest quantity J 1

P(ai+bi)/P(ai-bi) for some i between 1 and 1000 .
where P(x) =co+clx+c~x2+cfi8.

FORTRAN Program:

1) POLYF(X)=CO+X* (Cl+X* (C2+X*C3)).

* 21
2) DIMENSION A(1000), B(1000).
3) QMAX = - 1.0 E20.

3 ;
4) DO 5 I = 1, 1000.
5) QMAX = MAXF(QMAX, POLYF(A(1)

+B(I))/POLYF(A(I) -B(I))).
3

6) STOP.

The program above is complete except for input and
output statements which will be described later. The
first statement is not executed; i t defines the desired
polynomial (in factored form for efficient output pro-
gram). Similarly, the second statement merely informs
the executive routine that the vectors A and B each have
1000 elements. Statement 3 assigns a large negative
initial value to QMAX, - 1.OX 1020, using a special

3
concise form for writing floating-point constants. State-
ment 4 says "DO the following sequence of statements 3
down to and including the statement numbered 5 for
successive values of I from 1 to 1000." In this case
there is only one statement 5 to be repeated. I t is exe-
cuted 1000 times; the first time reference is made to
A(l) and B(l), the second time to A(2) and B(2), etc.
After the 1000th execution of statement 5, statement
6-STOP-is finally encountered. In statement 5,

3
the function MAXF appears. MAXF may have two
or more arguments and its value, by definition, is the 3
value of its largest argument. Thus on each repetition
of statement 5 the old value of QMAX is replaced by
itself or by the value of POLYF(A(I)+B(I))/POLYF
(A(1) -B(I)), whichever is larger. The value of QMAX

I

after the 1000th repetition is therefore the desired
maximum. 3 ~

Example 4: Multiply the n Xn matrix au(n < 20) by -
ROOTF(A, B, C) its transpose, obtaining the product elements on or be- '

= (-(B/2.0) + SQRTF((B/2,0). * 2 - A*C))/A. 10" the main diagonal by therelation 3
Function statements must precede the rest of the pro-
gram. They are composed of the desired function name
(ending in F) followed by any desired arguments which and the remaining elements by the relation
appear in the arithmetic expression on the right of the
= sign. The definition of a function may employ any c j , ~ = ci, j.

FORTRAN Program:
DIMENSION A(20, 20), C(20, 20)
DO 2 I = 1 , N P

1
I

1
I

2 / 1 U J , 1) = C(L J) I I READ, P R I N T , FORMAT, IF and GO TO Statements

I- / Erampk 5 : For each case, read from cards two vec-

STOP
tors, ALPHA and RHO, and the number ARG. ALPHA
and RHO each have 25 elements and ALPHA(1)

As in the preceding example, the DIMENSION
statement says tha t there are two matrices of maximum
size 20 X20 named A and C. For explanatory purposes
only, the three boxes around the program show the
sequence of statements controlled by each DO state-
ment. The first DO statement says tha t procedure P,
i .e . , the following statements down t o statement 2 (outer
box) is t o be carried ou t for I = 1 then for I = 2 and so
on up t o I =N. The first statement of procedure
P (D 0 2 J = 1, I) directs tha t procedure Q be done for
J = 1 t o J =I . And of course each execution of pro-
cedure Q involves N executions of procedure R for
K = l , 2, . . , N.

Consider procedure Q. Each time its last statement
is completed the "index" J of its controlling DO state-
ment is increased by 1 and control goes to the first
statement of Q, until finally its last statement is reached
and J = I. Since this is also the last statement of P and
P has not been repeated until I =N, I will be increased
and control will then pass to the first statement of P.
This statement (DO 2 J = 1, I) causes the repetition
of Q t o begin again. Finally, the last statement of Q and
P (statement 2) will be reached with J = I and I = N,
meaning that both Q and P have been repeated the
required number of times. Control will then go to the
next statement, STOP. Each time R is executed a new
term is added to a product element. Each time Q is
executed a new product element and its mate are ob-
tained. Each time P is executed a product row (over t o
the diagonal) and the corresponding columil (down t o
the diagonal) are obtained.

T h e last example contains a "nest" of DO state-

<ALPHA(I+l) , I = 1 t o 24. Find the SUM of all the -
elements of ALPHA from the beginning to the last
one which is less than or equal t o ARG [assume
ALPHA(1) SARG ALPHA(^^)]. If this last element
is the Nth, set VALUE =3.14159 * RHO(N). Print a
line for each case with ARC, SUM, and VALUE.

FORTRAN Program:

DIMENSION ALPHA(25), RHO(25)
1) FORMAT(SF12.4).
2) READ 1, ALPHA, RHO, ARG

SUM = 0.0
D O 3 I = 1 , 2 5
I F (ARG-ALPHA(1)) 4, 3, 3.

3) SUM =SUM +ALPHA(I)
4) VALUE=3.14159 * RHO(1- 1)

P R I N T 1, ARG, SUM, VALUE
GO T O 2.

The FORMAT statement says tha t numbers are to
be found (or printed) 5 per card (or line), tha t each
number is in fixed point form, that each number oc-
cupies a field 12 columns wide and tha t the decimal
point is located 4 digits from the right. T h e FORMAT
statement is not executed; i t is referred t o by the READ
and P R I N T statements to describe the desired arrange-
ment of data in the external medium.

The READ statement says "READ cards in the
card reader which are arranged according t o FORMAT
statement 1 and assign the successive numbers obtained
as values of ALPHA(1) I = 1, 25 and RHO(1) I = 1, 25
and ARG." Thus "ALPHA, RHO, ARG" is a descrip-

ments, meaning tha t the sequence of statements con- tion of a list of 51 quantities (the size of ALPHA and
trolled by one 110 statement contains other DO state- RHO being obtained from the DIMENSION state-
ments. Another example of such a nest is shown in the ment). Reading of cards proceeds until these 51 quanti-
next column, on the left. Nests of the type shown on the ties have been obtained, each card having five numbers,
right are not permitted, since they would usually be as per the FORMAT description, except the last which
meaningless. has the value of ARG only. Since ARG terminated the

Although not illustrated in the examples given, the list, the remaining four fields on the last card are not
programmer may also employ subscripted variables read. The P R I N T statement is similar t o READ except
having three independent subscripts. that i t specifies a list of only three quantities. Thus

each execution of PRINT causes a single line to be
printed with ARG, SUM, VALUE printed in the first
three of the five fields described by FORMAT state-
ment 1.

The I F statement says "If ARG-ALPHA(I) is
negative go to statement 4, if it is zero go to statement
3, and if it is positive go to 3." Thus the repetition
of the two statements controlled by the DO consists
normally of computing ARG - ALPHA(I), finding it
zero or positive, and going to statement 3 followed by
the next repetition. However, when I has been in-
creased to the extent that the first ALPHA exceeding
ARG is encountered, control will pass to statement 4.
Note that this statement does not belong to the se-
quence controlled by the DO. In such cases, the repeti-
tion specified by the DO is terminated and the value of
the index (in this case I) is preserved. Thus if the first
ALPHA exceeding ARG were ALPHA (20), then RHO
(19) would be obtained in statement 4.

The GO TO statement, of course, passes control to
statement 2, which initiates reading the 11 cards for the
next case. The process will continue until there are no
more cards in the reader. The above program is entirely
complete. When punched in cards as shown, and com-
piled, the translator will produce a ready-to-run 704
program which will perform the job specified.

Other Types of FORTRAN Statements

In the above examples the following types of FOR-
TRAN statements have been exhibited.

Arithmetic statements
Function statements
DO statements
I F statements
GO TO statements
READ statements
PRINT statements
STOP statements
DIMENSION statements
FORMAT statements.

The explanations accompanying each exam~le have
attempted to show some of the possible applications and
variations of these statements. I t is felt that these
examples give a representative picture of the FOR-
TRAN language; however, many of its features have
had to be omitted. There are 23 other types of state-
ments in the language, many of them completely
analogous to some of those described here. They pro-
vide facilities for referring to other input-output and
auxiliary storage devices (tapes, drums, and card
punch), for specifying preset and computed branching
of control, for detecting various conditions which may
arise such as an attempt to divide by zero, and for pro-

*

viding various information about a program to the
translator. A complete description of the language is to
be found in Programmer's Reference Manual, the FOR-
TRAN Automatic Coding System for the I B M 704.

Preparation of a Program for Translation

The translator accepts statements punched one per
card (continuation cards may be used for very long
statements). There is a separate key on the keypunch-
ing device for each character used in FORTRAN state-
ments and each character is represented in the card by
several holes in a single column of the card. Five
columns are reserved for a statement number (if pres-
ent) and 66 are available for the statement. Keypunch-
ing a FORTRAN program is therefore a process similar
to that of typing the program.

Translation

The deck of cards obtained by keypunching may
then be put in the card reader of a 704 equipped with
the translator program. When the load button is pressed
one gets either 1) a list of input statements which fail
to conform to specifications of the FORTRAN language
accompanied by remarks which indicate the type of
error in each case; 2) a deck of binary cards representing
the desired 704 program, 3) a binary tape of the program
which can either be preserved or loaded and executed
immediately after translation is complete, or 4) a tape
containing the output program in symbolic form suitable
for alteration and later assembly. (Some of these out-
puts may be unavailable a t the time of publication.)

THE FORTRAN TRANSLATOR

General Organization of the System

The FORTRAN translator consists of six successive
sections, as follows.

Section 1: Reads in and classifies statements. For
arithmetic formulas, compiles the object (output) in-
structions. For nonarithmetic statements including
input-output, does a partial compilation, and records
the remaining information in tables. All instructions
compiled in this section are in the COMPAIL file.

Section 2 : Compiles the instructions associated with
indexing, which result from DO statements and the oc-
currence of subscripted variables. These instructions

L/
are placed in the COMPDO file.

Section 3: Merges the COMPAIL and COMPDO
files into a single file, meanwhile completing the compila-
tion of nonarithmetic statements begun in Section 1.

3
The object program is now complete, but assumes an
object machine with a large number of index registers.

Section 4: Carries out an analysis of the flow of the
3

object program, to be used by Section 5.
Section 5: Converts the object program to one which

involves only the three index registers of the 704.
\3

Section 6 : Assembles the object program, producing
a relocatable binary program ready for running. Alsc 1.3
on demand produces the object program in SHARE
symbolic language.

(Note: Section 3 is of internal importance only; Sec-
tion 6 is a fairly conventional assembly program. These

3
sections will be treated only briefly in what follows.)

3

Within the translator, information is passed from
section to section in two principal forms: as compiled
instructions, and as tables. The compiled instructions
(e.g., the COMPAIL and COMPDO files, and later their
merged result) exist in a four-word format which con-
tains all the elements of a symbolic 704 instruction;
i.e., symbolic location, three-letter operation code, sym-
bolic address with relative absolute part, symbolic tag,
and absolute decrement. (Instructions which refer to
quantities given symbolic names by the programmer
have those same names in their addresses.) This sym-
bolic format is retained until section 6. Throughout, the
order of the compiled instructions is maintained by
means of the symbolic locations (internal statement
numbers), which are assigned in sequential fashion by
section 1 as each new statement is encountered.

The tables contain all information which cannot yet
be embodied in compiled instructions. For this reason
the translator requires only the single scan of the source
program performetl in section 1.

A final observation should be made about the organ-
ization of the system. Basically, it is simple, and most
of the complexities which it does possess arise from the
effort to cause it to produce object programs which
can compete in efficiency with hand-written programs.
Some of these complexities will be found within the
individual sections; but also, in the system as a whole,
the sometimes complicated interplay between compiled
instructions and tables is a consequence of the desire to
postpone compiling until the analysis necessary to
produce high object-program efficiency has been per-
formed.

Section 1 (Beeber, Herrick, Nutt, Sheridan, and Stern)

The over-all flow of section 1 is

which can be compiled are compiled, and the remaining
information is extracted and placed in one or more of
the appropriate tables.

In contrast, arithmetic formulas are completely
treated in section 1, except for open (built-in) sub-
routines, which are added in section 3; a complete set
of compiled instructions is produced in the COMPAIL
file. This compilation involves two principal tasks: 1)
the generation of an appropriate sequence of arith-
metic instructions to carry out the computation speci-
fied by the formula, and 2) the generation of (symbolic)
tags for those arithmetic instructions which refer to
subscripted variables (variables which denote arrays)
which in combination with the indexing instructions to
be compiled in section 2 will refer correctly to the indi-
vidual members of those arrays. Both these tasks are
accomplished in the course of a single scan of the for-
mula.

Task 2) can be quickly disposed of. When a sub-
scripted variable is encountered in the scan, its sub-
script(~) are examined to determine the symbols used
in the subscripts, their multiplicative coefficients, and
the dimensions of the array. These items of information
are placed in tables where they will be available to
section 2; also from them is generated a subscript com-
bination name which is used as the symbolic tag of
those instructions which refer to the subscripted vari-
able.

The difficulty in carrying out task 1) is one of level;
there is implicit in every arithmetic formula an order of
computation, which arises from the control over order-
ing assigned by convention to the various symbols
(parentheses, + , - , * , /, etc.) which can appear, and
this implicit ordering must be made explicit before
compilation of the instructions can be done. This ex-
plicitness is achieved, during the formula scan, by

1 Input-output 1 Arithmetic 7 Others 1 out in the order of increasing level number the correct
sequence of arithmetic instructions will be obtained. The

.

I

Treat statement I 1 Treat statement sequence of level numbers is obtained by means of a

+ set of rules, which specify for each possible pair formed
of operation type and symbol type the increment to be

Read and classify next source statement No more associating with each operation required by the formula

For an input-output statement, section 1 compiles the
appropriate read or write select (RDS or WRS) in-
struction, and the necessary copy (CPY) instructions
(for binary operations) or transfer instructions to pre-
written input-output routines which perform conver-
sion between decimal and binary and govern format (for
decimal operations). When the list of the input-output

I and assign internal sta ement numbed statements a level number, such that if the operations are carried

statement is repetitive, table entries are made which
will cause section 2 to generate the indexing instructions
necessary to make the appropriate loops.

The treatment of statements which are neither input-
output nor arithmetic is similar; i.e., those instructions

addid to or subtracted from the level number of the
preceding pair.

In fact, the compilation is not carried out with the
raw set of level numbers produced during the scan.
After the scan, but before the compilation, the levels
are examined for empty sections which can be deleted,
for permutations of operations on the same level which
will reduce the number of accesses to memory, and for
redundant computation (arising from the existence of
common subexpressions) which can be eliminated.

An example will serve to show (somewhat inaccurate-
ly) some of the principles employed in the level-analysis
process. Consider the following arithmetic expression :

A + B * * C * (E + F) . pression. The number of u's remaining a t this point - I 1

In the level analysis of this expression parentheses
are in effect inserted which define the proper order in
which the operations are to be performed. If only three
implied levels are recognized (corresponding to +, *
and * *) the expression obtains the following:

(in this case four) determines the number of intermedi-
ate quantities which may need to be stored. However,
further examination of this case reveals that the result
of 243 is in the accumulator, ready for uo; therefore the
store and load instructions which would usually be
compiled between 2.43 and uo are omitted.

The brackets represent the parentheses appearing in the
original expression. (The level-analysis routine actually
recognizes an additional level corresponding to func-
tions.) Given the above expression the level-analysis
routine proceeds to define a sequence of new dependent
variables the first of which represents the value of the
entire expression. Each new variable is generated when-
ever a left parenthesis is encountered and its definition
is entered on another line. In the single scan of the ex-
pression i t is often necessary to begin the definition of
one new variable before the definition of another has
been completed. The subscripts of the u's in the follow-
ing sets of definitions indicate the order in which they
were defined.

This is the point reached a t the end of the formula
scan. What follows illustrates the further processing
applied to the set of levels. Notice that UQ, for example,
is defined as * * F. Since there are not two or more
operands to be combined the * * serves only as a level
indication and no further purpose is served by having
defined UQ. The procedure therefore substitutes F for
UQ wherever UQ appears and the line ue = * * F is deleted.

Throughout the object program will appear in-
structions which refer to subscripted variables. Each
of these instructions will (until section 5) be tagged with
a symbolic index register corresponding to the particu-

3
lar subscript combination of the subscripts of the varia-
ble [e.g., (I, K, J) and (K, I , J) are two different sub- 3
script combinations]. If the object program is t o work "

correctly, every symbolic index register must be so
governed that i t will have the appropriate contents a t \3
every instant that i t is being used. I t is the source pro-
gram, of course, which determines what these appro-
priate contents must be, primarily through its DO 13
statements, but also through arithmetic formulas (e.g.
I = N+ 1) which may define the values of variables ap-
pearing in subscripts, or input formulas which may
read such values in a t object time. Moreover, in the

3
case of DO statements, which are designed to produce 3
loops in the object program, i t is necessary to provide
tests for loop exit. I t is these two tasks, the governing
of symbolic index registers and the testing of their ,
contents, which section 2 must carry out.

3
Much of the complexity of what follows arises from

the wish to carry out these tasks optimally; i .e . , when
a variable upon which many subscript combinations de-

3
pend undergoes a change, to alter only those index
registers which really require changing in the light of
the problem flow, and to handle exits correctly with

3
a minimum number of tests.

If the following subscripted variable appears in a
FORTRAN program 3

the index quantity which must be in its symbolic index
LJ

register when this reference to A is made is
7

Similarly, F is then substituted for u8 and us= * F is where cl, c2, and c3 in this case have the values 2, 4, and
deleted. This elimination of "redundant" U'S is carried 6 ; i, j, and k are the values of I , J, and K a t the moment,
t o completion and results in the following: and d i and d j are the I and J dimensions of A . The

2
uo = + A + 213

effect of the addends 1, 3, and 5 is incorporated in the
address of the instruction which makes the reference.

u3 = *u4*u5 In general, the index quantity associated with a sub-
- 3

script combination as given above, once formed, is not
recomputed. Rather, every time one of the variables in 3
a subscript combination is incremented under control of

These definitions, read up, describe a legitimate a DO, the corresponding quantity is incremented by
procedure for obtaining the value of the original ex- the appropriate amount. In the example given, if K ,3

is increased by n (under control of a DO), the index The decrement parts of the FORTRAN indexing
quantity is increased by csd;djn, giving the correct new
value. The following paragraphs discuss in further detail
the ways in which index quantities are computed and
modified.

Clzoosing the Indexing Instructions; Case of Subscripts
Controlled by DO'S

We distinguish between two classes of subscript ;
those which are in the range of a DO having that sub-
script as its index symbol, and those subscripts which
are not controlled by DO's.

The fundamental idea for subscripts controlled by
DO'S is that a sequence of indexing instruction groups
can be selected to answer the requirements, and that
the choice of a particular instruction group depends
mainly on the arrangement of the subscripts within the
subscript combination and the order of the DO'S con-
trolling each subscript.

DO'S often exist in nests. A nest of DO's consists of
all the DO's contained by some one DO which is itself
not contained by any other. Within a nest, DO'S are
assigned level numbers. Wherever the index symbol of a
DO appears as a subscript within the range of that DO,
the level number of the DO is assigned to the subscript.
The relative values of the level numbers in a subscript
combination prod.uce a group number which, along with
other information, determines which indexing instruc-
tion group is to be compiled.

The source language,

instructions are functions of the dimensions of arrays
and of the parameters of DO's; that is, of the initial
value nl, the upper bound n2, and the increment n3
appearing in the statement DO 1 i = n l , n2, n3. The
general form of the function is [(n2 - nl +nr)/n3]nrg
where g represents necessary coefficients and dimen-
sions, and [x] denotes the integral part of x.

If all the parameters are constants, the decrement
parts are computed during the execution of the FOR-
TRAN executive program. If the parameters are vari-
able symbols, then instructions are compiled in the
object program to compute the proper decrement val-
ues. For object program efficiency, it is desirable to
associate these computing instructions with the outer-
most DO of a nest, where possible, and not with the
inner loops, even though these inner DO'S may have
variable parameters. Such a variable parameter (e.g.,
N in "DO 7 I = 1, N") may be assigned values by the
programmer by any of a number of methods; it may be
a value brought in by a READ statement, it may be
calculated by an arithmetic statement, i t may take its
value from a transfer exit from some other DO whose
index symbol is the pertinent variable symbol, or it may
be under the control of a DO in the nest. A search is
made to determine the smallest level number in the
nest within which the variable parameter is not assigned
a new value. This level number determines the place
a t which computing instructions can best be compiled.

Case of Subscripts not Controlled by DO'S

The second of the two classes of subscript symbols is
DO S K = I , J that of subscript symbols which are not under control

5 . . . A (I, J, KK) . . . (some statement referring to of DO'S. Such a subscript can be given a value in a

A (I l J , K) number of ways similar to the defining of DO param-
DO 10K= J .5 eters: a value may be read in by a READ statement,

produces the following DO structure and group combi-
nations :

level 1

level 2

level 3

levels group no.

I , .T, K - (1, 2, 3) - 6

level 3

K , J, I - (3, 2, 1) - 1.

it may be calculated by an arithmetic statement, or it
may be defined by an exit made from a DO with that
index symbol.

For subscript combinations with no subscript under
the control of a DO, the basic technique used to intro-
duce the proper values into a symbolic index register is
that of determining where such definitions occur, and,
a t the point of definition, using a subroutine to compute
the new index quantity. These subroutines are generated
a t executive time, if i t is determined that they are
necessary.

If the index quantity exists in a DO nest a t the time
of a transfer exit, then no subroutine calculations are
necessary since the exit values are precisely the desired
values.

Producing the Decrement Parts of Indexing Instructions Mixed Cases

The part of the 704 instruction used to change or test In cases in which some subscripts in a subscript com-
the contents of an index register is called the decrement bination are controlled by DO'S, and some are not,
part of the instruction. instructions are compiled to compute the initial value

of the subscript combination a t the beginning of the
outside loop. If the non-DO-controlled subscript sym-
bol is then defined inside the loop (that is, after the
computing of the load quantity) the procedure of using
a subroutine a t the point of subscript definition will
bring the new value into the index register.

An exception to the use of a subroutine is made when
the subscript is defined by a transfer exit from a DO,
and that DO is within the range of a DO controlling
some other subscript in the subscript combination.
In such instances, if the index quantity is used in the
inner DO, no calculation is necessary; the exit values
are used. If the index quantity is not used, instructions
are compiled to simulate this use, so that in either case
the transfer exit leaves the correct function value in
the index register.

Modification and Optimization

Initializing and computing instructions correspond-
ing to a given DO are placed in the object program a t a
point corresponding to the lowest possible (outermost)
DO level rather than a t the point corresponding to the
given DO. This technique results in the desired removal
of certain instructions from the most frequent inner-
most loops of the object program. However, it necessi-
tates the consideration of some complex questions when
the flow within a nest of DO'S is complicated by the
occurrence of transfer escapes from DO-type repetition
and by other I F and GO TO flow paths. Consider a
simple example, a nest having a DO on I containing a
DO on J, where the subscript combination (I, J) appears
only in the inner loop. If the object program corre-
sponded precisely to the FORTRAN language pro-
gram, there would be instructions a t the entrance point
of the inner loop to set the value of J in (I, J) to the
initial value specified by the inner DO. Usually, how-
ever, it is more efficient to reset the value of J in (I , J)
a t the end of the inner loop upon leaving it, and the ob-
ject program is so constructed. In this case it becomes
necessary to compile instructions which follow every
transfer exit from the inner loop into the outer loop (if
there are any such exits) which will also reset the value
of J in (I, J) to the initial value it should have a t the
entrance of the inner loop. These instructions, plus the
initialization of both I and J in (I , J) a t the entrance
of the outer loop (on I) , insure that J always has its
proper initial value a t the entrance of the inner loop
even though no instructions appear a t that point which
change J. The situation becomes considerably more
complicated if the subscript combination (I , J) also ap-
pears in the outer loop. In this case two independent
index quantities are created, one corresponding to
(I , J) in the inner loop, the other to (I, J) in the outer
loop.

Optimizing features play an important role in the
modification of the procedures and techniques outlined
above. I t may be the case that the DO structure and

subscript combinations of a nest describe the scanning
of a two- or three-dimensional array which is the equiva-
lent of a sequential scan of a vector; i.e., a reference
to each of a set of memory locations in descending order.
Such an equivalent procedure is discovered, and where
the flow of a nest permits, is used in place of more com-
plicated indexing. This substitution is not of an empiri-
cal nature, but is instead the logical result of a general-
ized analysis.

Other optimizing techniques concern, for example,
the computing instructions compiled to evaluate the
functions (governing index values and decrements) men-
tioned previously. When some of the parameters are
constant, the functions are reduced a t executive time,
and a frequent result is the compilation of only one
instruction, a reference to a variable, to obtain a proper
initializing value.

In choosing the symbolic index register in which to
test the value of a subscript for exit purposes, those
index registers are avoided which would require the
compilation of instructions to modify the test instruc-
tion decrement.

Section 4 (Haibt) and Section 5 (Best)

The result of section 3 is a complete program, but one
in which tagged instructions are tagged only sym-
bolically, and which assumes that there will be a real
index register available for every symbolic one. I t is the
task of sections 4 and 5 to convert this program to one
involving only the three real index registers of the 704.
Generally, this requires the setting up, for each symbolic
index register, of a storage cell which will act as an
index cell, and the addition of instructions to load the
real index registers from, and store them into, the index
cells. This is done in section 5 (tag analysis) on the basis
of information about the pattern and frequency of flow
provided by section 4 (flow analysis) in such a way
that the time spent in loading and storing index registers
will be nearly minimum.

The fundamental unit of program is the basic block; a
basic block is a stretch of program which has a single
entry point and a single exit point. The purpose of sec-
tion 4 is to prepare for section 5 a table of predecessors
(PRED table) which enumerates the basic blocks and
lists for every basic block each of the basic blocks which
can be its immediate predecessor in flow, together with
the absolute frequency of each such basic block link.
This table is obtained by an actual "execution" of the
program in Monte-Carlo fashion, in which the outcome
of conditional transfers arising out of IF-type state-
ments and computed GO TO'S is determined by a ran-
dom number generator suitably weighted according
to whatever FREQUENCY statements have been pro-
vided.

Section 5 is divided into four parts, of which part 1 is
the most important. I t makes all the major decisions
concerning the handling of index registers, but records

them simply as bits in the PRED table and a table of
all tagged instructions, the STAG table. Part 2 merely
reorganizes those tables; part 3 adds a slight further
treatment to basic blocks which are terminated by an
assigned GO TO; and finally part 4 compiles the finished
program under the direction of the bits in the PRED and
STAG tables. Since part 1 does the real work involved
in handling the index registers, attention will be con-
fined to this part in the sequel.

The basic flow of part 1 of section 5 is,

Yes

I Any PRED entries- Form new region I

Treat new region '22
Consider a moment partway through the execution

of part 1, when a new region has just been treated. The
less frequent basic blocks have not yet been encoun-
tered; each basic block that has been treated is a mem-
ber of some region. The existing regions are of two
types: transparent, in which there is a t least one real
index register which has not been used in any of the
member basic blocks, and opaque. Bits have been en-
tered in the STAG table, calling where necessary for
an LXD (load index register from index cell) instruc-
tion preceding, or an SXD (store index register in index
cell) instruction following, the tagged instructions of the
basic blocks that have been treated. For each basic
block that has been treated is recorded the required
contents of each of the three real index registers for
entrance into the block, and the contents upon exit.
In the PRED table, entries that have been considered
may contain bits calling for interblock LXD's and
SXD's, when the exit and entrance conditions across the
link do not match.

Now the PRED table is scanned for the highest-
frequency link not yet considered. The new region is
formed by working both forward over successors and
backward over predecessors from this point, always
choosing the most frequent remaining path of control.
The marking out of a new region is terminated by en-
countering 1) a basic block which belongs to an opaque
region, 2) a basic block which has no remaining links
into i t (when working backward) or from it (when
working forward), or which belongs to a transparent
region with no such links remaining, or 3) a basic block
which closes a loop. Thus the new region generally
includes both basic blocks not hitherto encountered, and
entire regions of basic blocks which have already been
treated.

The treatment of hitherto untreated basic blocks in
the new region is carried out by simulating the action
of the program. Three cells are set aside to represent the
object machine index registers. As each new tagged in-
struction is encountered these cells are examined to see

if one of them contains the required tag; if not, the
program is searched ahead to determine which of the
three index registers is the least undesirable to replace,
and a bit is entered in the STAG table calling for an
LXD instruction to that index register. When the
simulation of a new basic block is finished, the en-
trance and exit conditions are recorded, and the next
item in the new region is considered. If it is a new basic
block, the simulation continues; if i t is a region, the
index register assignment throughout the region is
examined to see if a permutation of the index registers
would not make it match better, and any remaining mis-
match is taken care of by entries in PRED calling for
interblock LXD's.

A final concept is that of index register activity.
When a symbolic index register is initialized, or when
its contents are altered by an indexing instruction, the
value of the corresponding index cell falls out of date,
and a subsequent LXD will be incorrect without an
intervening SXD. This problem is handled by activity
bits, which indicate when the index cell is out of date;
when an LXD is required the activity bit is interrogated,
and if it is on an SXD is called for immediately after the
initializing or indexing instruction responsible for the
activity, or in the interblock link from the region con-
taining that instruction, depending upon whether the
basic block containing that instruction was a new basic
block or one in a region already treated.

When the new region has been treated, all of the
old regions which belonged to it simply lose their iden-
tity; their basic blocks and the hitherto untreated basic
blocks become the basic blocks of the new region. Thus
a t the end of part 1 there is but one single region, and
it is the entire program. The high-frequency parts of the
program were treated early; the entrance and exit con-
ditions and indeed the whole handling of the index
registers reflect primarily the efficiency needs of these
high-frequency paths. The loading and unloading of the
index registers is therefore as much as possible placed
in the low-frequency paths, and the object program
time consumed in these operations is thus brought near
to a minimum.

The preceding sections of this paper have described
the language and the translator program of the FOR-
TRAN system. Following are some comments on the
system and its application.

Scope of Applicability
The language of the system is intended to be capable

of expressing virtually any numerical procedure. Some
problems programmed in FORTRAN language to date
include: reactor shielding, matrix inversion, numerical
integration, tray-to-tray distillation, microwave propa-
gation, radome design, numerical weather prediction,
plotting and root location of a quartic, a procedure for
playing the game "nim," helicopter design, and a number

of others. The sizes of these first programs range from
about 10 FORTRAN statements to well over 1000, or
in terms of machine instructions, from about 100 to
7500.

Conciseness and Convenience

The statement of a program in FORTRAN lan-
guage rather than in machine language or assembly
program language is intended to result in a considerable
reduction in the amount of thinking, bookkeeping,
writing, and time required. In the problems mentioned
in the preceding paragraph, the ratio of the number of
output machine instructions to the number of input
FORTRAN statements for each problem varied be-
tween about 4 and 20. (The number of machine instruc-
tions does not include any library subroutines and thus
represents approximately the number which would need
to be hand coded, since FORTRAN does not normally
produce programs appreciably longer than correspond-
ing hand-coded ones.) The ratio tends to be high, of
course, for problems with many long arithmetic expres-
sions or with complex loop structure and subscript ma-
nipulation. The ratio is a rough measure of the concise-
ness of the language.

The convenience of using FORTRAN language is
necessarily more difficult to measure than its concise-
ness. However the ratio of coding times, assembly pro-
gram language vs FORTRAN language, gives some in-
dication of the reduction in thinking and bookkeeping
as well as in writing. This time reduction ratio appears
to range also from about 4 to 20 although it is difficult
to estimate accurately. The largest ratios are usually
obtained by those problems with complex loops and
subscript manipulation as a result of the planning of
indexing and bookkeeping procedures by the translator
rather than by the programmer.

Education

I t is considerably easier to teach people untrained in
the use of computers how to write programs in
FORTRAN language than it is to teach them machine
language. A FORTRAN manual specifically designed
as a teaching tool will be available soon. Despite the
unavailability of this manual, a number of successful
courses for nonprogrammers, ranging from one to three
days, have been completed using only the present ref-
erence manual.

Debugging

The structure of FORTRAN statements is such that
the translator can detect and indicate many errors
which may occur in a FORTRAN-language program.
Furthermore, the nature of the language makes it possi-
ble to write programs with far fewer errors than are to
be expected in machine-language programs.

Of course, it is only necessary to obtain a correct
FORTRAN-language program for a problem, therefore
all debugging efforts are directed toward this end. Any

errors in the translator program or any machine mal-
function during the process of translation will be de-
tected and corrected by procedures distinct from the
process of debugging a particular FORTRAN program.

In order to produce a program with built-in debugging
facilities, it is a simple matter for the programmer to
write various PRINT statements, which cause "snap-
shots" of pertinent information to be taken a t appropri-
ate points in his procedure, and insert these in the deck
of cards comprising his original FORTRAN program.
After compiling this program, running the resulting
machine program, and comparing the resulting snap-
shots with hand-calculated or known values, the pro-
grammer can localize the specific area in his FORTRAN
program which is causing the difficulty. After making
the appropriate corrections in the FORTRAN program
he may remove the snapshot cards and recompile the
final program or leave them in and recompile if the pro-
gram is not yet fully checked.

Experience in debugging FORTRAN programs to
date has been somewhat clouded by the simultaneous
process of debugging the translator program. However,
i t becomes clear that most errors in FORTRAN pro-
grams are detected in the process of translation. So far,
those programs having errors undetected by the trans-
lator have been corrected with ease by examining the
FORTRAN program and the data output of the ma-
chine program.

Method of Translation

In general the translation of a FORTRAN program
to a machine-language program is characterized by the
fact that each piece of the output program has been
constructed, instruction by instruction, so as not only
to produce an efficient piece locally but also to fit effi-
ciently into its context as a result of many considerations
of the structure of its neighboring pieces and of the
entire program. With the exception of subroutines (cor-
responding to various functions and input-output
statements appearing in the FORTRAN program), the
output program does not contain long precoded instruc-
tion sequences with parameters inserted during trans-
lation. Such instruction sequences must be designed to
do a variety of related tasks and are often not efficient
in particular cases to which they are applied.
FORTRAN-written programs seldom contain sequences
of even three instructions whose operation parts alone
could be considered a precoded "skeleton."

There are a number of interesting observations con-
cerning FORTRAN-wri tten programs which may throw
some light on the nature of the translation process.
Many object programs, for example, contain a large
number of instructions which are not attributable to
any particular statement in the original FORTRAN
program. Even transfers of control will appear which
do not correspond to any control statement (e.g., DO,
IF, GO TO) in the original program. The instructions
arising from an arithmetic expression are optimally

arranged, often in a surprisingly different sequence than
the expression would lead one to expect. Depending
on its context, the same DO statement may give rise to
no instructions or to several complicated groups of in-
structions located a t different points in the program.

While i t is felt that the ability of the system to trans-
late algebraic expressions provides an important and
necessary convenience, its ability to treat subscripted
variables, DO statements, and the various input-output
and FORMAT statements often provides even more
significant conveniences.

In any case, the major part of the translator program
is devoted to handling these last mentioned facilities
rather than to translating arithmetic expressions. (The
near-optimal treatment of arithmetic expressions is sim-

"ply not as complex a task as a similar treatment of
"housekeeping" operations.) A list of the approximate
number of instructions in each of the six sections of the
translator will give a crude picture of the effort expend-
ed in each area. (Recall that Section 1 completely treats

arithmetic statements in addition to performing a num-
ber of other tasks.)

Section Number Number of Instructions
1 5500
2 6000
3 2500
4 3000
5 5000
6 2000

The generality and complexity of some of the tech-
niques employed to achieve efficient output programs
may often be superfluous in many common applications.
However the use of such techniques should enable the
FORTRAN system to produce efficient programs for
important problems which involve complex and unusual
procedures. In any case the intellectual satisfaction of
having formulated and solved some difficult problems
of translation and the knowledge and experience ac-
quired in the process are themselves almost a sufficient
reward for the long effort expended on the FORTRAN
project.

TABLE I. STRUCTURE OF SYSTEM TAPE, FORTRAN I, PAGE 1

62

Editor
Record
Number

SECTION
FN090
FNl00
FNl 10
FN120
FN130
FN140
FN 150
FN160

SECTION
FN 170
FN180

FN190
FN200
FN2 10
FN220

SECTION
FN230
FN240

FN2SO
FN260

FN265
FN270
FN280

FN290
FN300
FN3 10
FN320
FN330
FN340
FN350

FN360

FN370

SECTION
FN380

7

FN390

FN400
FN4 10
FN420

Load
Address

30
30

7700
3440
3440
3440
3440
3472

6613

1666
30

3177
104
104

5474

5566
7730

5566
7742
3751

6665
7616
6721
6721
6721
450
30

5256

3646

30

6350

30
7200

30

30

Description
of

Subroutine

1
Clear Drum
Common Storage
Write Drum
State D
State C
State B
State A
Diagnostic

1 '
Drum tables to tape
Program constants

and subroutine
Subroutine
Program constant
Part I AMW
Part 11 AMW

2
Block 1
Block 2, RELCON

state
Drum set up
Block 2, normal

state

Block 2, common
Block 3, common

and Part 1
Block 3, Part 2
Block 3A
Block 3B
Block 3C
Block 4, RELCON
Block 5, Initializing
Block 5, Alpha

cycle
Block 5, Beta cycle

and common
Instruction inver -

sion

3
Merges DO file

and COMPAIL
file

Merges DO file
and COMPAIL
file

Creates TIFGO file
Creates TIFGO file
Merges TIFGO file

and file resulting
from 1

Contents of
TR Word

053400 100037

053400 102105
053400 102103
053400 102104
053400 102106
300000 403510

076600 000302
053400 101707
007400 101710

077200 000224

1 - CS
053400 207766

053400 207765

077200 000223

050000 007776
053400 100733
053400 100733
053400 100733
050000 001430
053400 105377

053400 200145

053400 200072

077200 000224

076200 000222

053400 402225

053400 401055

Last
Card
No.

001
8 3
03
48
35
45
79
85

19

06
0 2
01
20
12

41

24
02

26

42

07
05

006

055

1 10

005

004

050
005

055

0 26

Contents of

First Word

070000 000001
050000 100001
053400 102105
053400 103163
056000 002102
076000 000140
077200 000222
300000 403510

076600 000302

000000 000000
063400 200102
000000 000000
053400 101707
007400 101710

000000 000000

053400 100030
050000 003777

063400 405622
076600 000333
000000 000000

000000 000000
076600 000303
053400 100733
053400 100733
053400 100733
000000 000000
053400 105377

063400 406376

053400 105374

077200 000224

050000 102136

076200 000222
063400 407217
053400 402225

053400 401055

TRA
Address

30
4
4

7700
7703
7706
7711
3472

4

4
4

6613
104
104

5522

4
7730

7732
4

4012

4
6721
6721
6721
6721
470
30

62

66

30

4

30
4

30

30

Last
Address

40
3437
7763
5 370
50 30
5351
6750
7136

7407

2072
10 3

3177
753
502

7320

6565
7773

6650
776 1
5565

7073
7774
71 13
7613
7232
1443
2 17

7620

66 37

162

6520

2135
7324
2 367

11 22

C..

TABLE I. STRUCTURE OF SYSTEM TAPE, FORTRAN I, PAGE 2

Editor
Record
Number

Description
of

Subroutine

Last
Card
No.

SECTION 4
33
26
04
12
04
10
2 3

121
04
11
08
99

19
02
01
0 1

59
10
08
08
15
08
09
08
18
END

0 2
08
16
19
10
19
01
07

FN430
FN440
FN4SO
FN460
FN470
FN480
FN490

TRA
Address

Part I
Part I1

Part I11
Part IV
Part V
Part VI

107
4

1063
111
42
42

100

4
15651

314
314

3470

30
4
4

30

166
166
166
166
166
166
166
166
166

OF FILE

1-CS
335

4

166
166
166

4
74

FILE

Load
Address

SECTION 5 (TAG ANALYSIS)

30
33

3064
33
33
33
33

30
15651

317
320
317

30
1033
4020
7000

30
166
166
166
166
166
166
166
166

(Not in
110

1400
166
166
166

77766
74

MARK (END

FNSOO
FNS 10
FNS 20
FN5 30
FNSSO

SECTION
FN560
FN570
FNS80
FN590

Contents of
TR Word

Part IA
Part IB
Part 2
Part 3A
Part 4

5'

002000 000107

002000 001062
002000 000240
002000 000042
002000 000042
002000 OOO101

053400 100356
076200 000223
076200 000222
001622 000000

076400 000203

076200 000304
077200 000202
076200 000202
053400 100145
053400 1001%
053400 100111
076200 000303
076200 000304
076200 000221

edit deck)
077200 000222

077200 000203
077200 000204
076000 000162

077200 000202
OF FILE)

SECTION 6
FN600
FN6 10
FN620
FN6 30
FN640
FN65O
FN660
FN670
FN680
FN690

REWIND SYSTEMS TAPE

FNDSO
FN060
FIW70
FN080

Contents of
First Word

Last
Address

000000 000000
002000 001062
060100 000147
002000 000240
002000 000042
002000 000042
002000 000101

076700 000022
053400 100356
000000 077777
076200 000222
000000 000003

076400 000203
050000 000000
000000 000000
076000 000006

000000 200000
077200 000202
076200 000202
053400 100145
053400 100146
053400 100111
076200 000303
076200 000304
076200 000221

076200 000321
056000 001412
056000 001412
056000 001412
056000 001412
070000 OOOOO1
070000 OOOOO1

1305
1104
3210
437
16 1
205

1021

5672
16001

650
65 3

446 3

444
1063
4020
7013

205
SO1
424
434
664
424
472
450

100 1

357
2113
1024
474

1011
77777

309

Record
Number

Transfer
Address

8L Decrement

Load
Address

8L Address

0000
0110

Last
Address

8R Address

0027
0416

Contents of
Transfer Word

Contents of
Load Word

Description
of Record

FILE 1
000
00 1

1-CS (LOC'S 0-27)
Card to Tape

SECTIC
002
003
004
005
006
007
008
009
0 10
011

rT 6
Diag. Caller for Rec. 115
CIT to SAP Conver.
Diag. Caller for Rec. 003
On-Line Print
Diag. Caller for Rec. 005
Tape 3, 7 to 2, 6
Diag. Caller for Rec. 007
Successful Compilation
Source Program Error

4 l(4k)
Batch Compilation Monitor
Machine Error
Common (4k)
Delete (8k) Common, Initial

and State A.
Write Drum (Init.)
State D (4k)
Delete (8k) States B, C ,

and D.
State C (4k)
State B (4k)
State A (4k)
Diagnostic for Sec. 1

Diag . Caller for Rec. 024 -0 63400 2 00000 -0 63400 2 00000
Section 1' 7776 1302 1 0 77200 0 00202 0 77200 0 00202

* ~ e c o r h 020 Uses Modulo Addressing.

SECTION 1 '
021
022
023
024

Note: All Record Numbers suffixed by an "A" are 8k records.
TABLE 11. 704 FORTRAN 11, PAGE 1

64

Common
Part A
Diag. Caller for Rec. 022
Part B

I
SECTION 2
0 27
028
0 29
030
031

032
033
0 34
0 35

Block 1
Diag. Caller for Rec. 027
B u m Setup
Block 2 - RELCON
Diag. Caller for Rec.
029 and 030

Block 2 - Normal
Diag. Caller for Rec. 032
Block 2 - Common
Diag. Caller for Rec. 034

i C. Note: All Record Numbers suffixed by an "A" are 8k records.
TABLE 11. 704 FORTRAN 11, PAGE 2

Record
Number

SECTION
0 36
0 37
0 38

0 39
040
04 1
042
043
044
045
046
047
048
049
050
05 1
052
05 3
054

SECTION
055
056
057

058
059
060
06 1

I
SECTION

Description
of Record

2 (cont'd)
Block 3 - Common, Part 1
Block 3 - Part 2
Di ag . Caller for Re c.
036 and 037

Block 3A
Diag. Caller for Rec. 039
Block 3B
Diag. Caller for Rec. 041
Block 3C
Diag. Caller for Rec. 043
Block 4 - RELCON
Diag. Caller for Rec. 045
Block S - Initialization
Diag. Caller for Rec. 047
Block 5 - Alpha
Diag . Caller for Rec. 049
Block 5 - Beta and Common
Diag. Caller for Rec. 051
Block 6 - Inversion
Diag. Caller for Rec. 053

3
Open Subroutines
Part 1 of Merge
Diag . Caller for Rec.
055 and 056
Part 2 of Merge
Diag . Caller for Rec. 058
Part 3 of Merge
Diag . Caller for Rec. 060

4 (4k)

Transfer
Address

8L Decrement

0004
6721

0 300
6721
0300
6721
0300
672 1
7400
0470
2000
00 30
2000
0062
6000
0066
6000
00 30
7000

0004
0030

7755
00 30
7755
0030
7755

062
063
064
065
066

067
068
069
070
07 1
072
07 3
073A
074

SECTION
062
through
072

0112
1400
0004
1063

3211
011 1
0440
0042
0 162
0042
0444
0 100
0 100
1022

Part 1
Diag. Caller for Rec. 062
Part 2, First Rec.
Part 2, Second Rec.
Diag . Caller for Rec.
064 and 065

Part 3
Diag. Caller for Rec. 067
Part 4
Diag . Caller for Rec. 069
Part 5
Diag. Caller for Rec. 071
Part 6
Delete (8k) Part 4
Diag. Caller for Rec. 073

4 (8k)
Same Records as
used by the
4k Version

Load
Address

8L Address

6665
76 14

0 300
6721
0300
672 1
0300
6721
7400
0450
2000
0030
2000
5256
6000
3646
6000
0030
7000

707 1
0030

7755
0030
7755
00 30
7755

0030
1400
0033
3064

3211
0033
0440
0033
0 162
0033
0444
0033
0033
1022

Last
Address
8R Address

7073
7774

0321
7113
032 1
7613
0321
7232
742 1
1443
2021
0217
2021
76 20
602 1
66 37
6021
0162
7021

7777
2326

7776
2367
7776
2715
7776

1327
1421
1104
3210

3232
0437
046 1
0161
0203
0205
0465
1021
0000
1043

Contents of
Transfer Word

-0 53400 1 00027
0 so000 0 07776

-0 63400 2 00000
-053400100733
-063400200000
-0 53400 1 00733
-0 6 3400 2 00000
-0 53400 1 00733
-0 63400 2 00000
0 SO000 0 01430
-063400200000
0 53400 1 00131
-063400200000
053400200146
-0 63400 2 00000
0 53400 2 00126
-0 63400 2 00000
0 77200 0 00224
-063400200000

-053400100027
0 53400 1 02164

-0 63400 2 00000
0 53400 4 02274
-063400200000
053400401202
-0 63400 2 00000

Contents of
Load Word

0 00000 0 00000
-0 63400 1 77777

-0 63400 2 00000
-053400100733
-063400200000
-0 53400 1 00733
-0 63400 2 00000
-0 53400 1 00733
-0 63400 2 00000
+010000000001
-063400200000
0 53400 100131
-063400200000
-063400406252
-0 63400 2 00000
000000000000
-0 63400 2 00000
0 77200 0 00224
-063400200000

2OOOO1401306
0 53400 1 02164

-0 63400 2 00000
0 53400 4 02274
-063400200000
053400401202
-0 63400 2 00000

0 77200 0 00224
-063400200000
-053400100027
-053400100SSl

-0 63400 2 00000
-0 54300 3 07774
-063400200000
-053400100031
-0 63400 2 00000
OSO000000032
-063400200000
0 77200 0 00224

----- - -----
-0 6 3400 2 00000

000000000000
-063400200000
000000000000
-063400400122

-0 6 3400 2 00000
000000000000
-063400200000
OOOOO1000000
-0 63400 2 00000
000000700000
-063400200000
000000000000

----- - -----
-0 63400 2 00000

Transfer
Address

8L Decrement

SECTION 4 (8k) (cont'd)
Delete (4k) Part 6

:::A 1 Part 6 (8k)
Same as 4k

Load
Address

8L Address

OOO1
0033

SECTION
075
075A
076

076A
077

078
078A
079
080
080A
08 1
082
082A
08 3
084
084A
085
086
086A
087
088
088A
089

SECTION

Last
Address

8R Address

0000
1021

5 (4)
Part 1A - Optimize
Delete (8k) Part 1A
Part 1B - Initialize and

predict Limit
Delete (8k) Part 1B
Diag . Caller for Rec.

075 and 076
Part 1C - Succ. Limit
Delete (8k) Part 1C
Diag . Caller for Rec. 078
Part 1D - Pred. UNDO
Delete (8k) Part 1D
Diag. Caller for Rec. 080
Part 1E - Succ. UNDO
Delete (8k) Part 1E
Diag. Caller for Rec. 082
Part 2 - Permute
Delete (8k) Part 2
Diag . Caller for Rec. 084
Part 3 - GO TO N, ASCONS
Delete (8k) Part 3
Diag. Caller for Rec. 086
Part 4 - COMPILE
Delete (8k) Part 4
Diag. Caller for Rec. 088

5 '

Contents of

Entire Section
09 1 Ogo I Diag. Caller for Rec. 090

Contents of
Transfer Word

0210
1125

an "A" are 8k rec
TABLE 11.

I
SECTION 6

11, PAGE 3

09 2
093
094
095
096
097
098
099
100
10 1
10 2

10 3
104
105
106

Pre-6
Diag. Caller for Rec. 092
Binary Search
Diag. Caller for Rec. 094
Assign Common
Diag . Caller for Rec. 096
Equiv - DIM
Diag. Caller for Rec. 098
Common Mapping
Fortran FTN Assn
Diag. Caller for Rec.

100 and 101
First Pass CIT
Diag. Caller for Rec. 103
Map Fortran Funct.
Diag . Caller for Rec. 105

Note: All Record Numbers suffixed by

Transfer
Address

8L Decrement

Load
Address

8L Address
Address

8R Address
Contents of Contents of

Transfer Word Load Word

J 6 (contfd)
Map EIFN
Diag . Caller for Rec. 107
Map Program
Map Other Variables
Write Prog . Card
OP Tables
Second Pass CIT
Diag. Caller for Rec. 109,

110, 111, 112, 113
Library Search and Punch

J 1 (8k)
Delete (4k) Common
Common, Initial, and

State A (8k)
Delete (4k) Write Drum

and Initial
Delete (4k) State D
States R, C, and D (8k)
Delete (4k) State C
Delete (4k) State B
Delete (4k) State A
Diagnostic for Sec. 1

020 Uses Modulo Addressing.

016
016A
017
018
019
0 2 w
* Record

I
SECTIOE
075
075A
076
076A

i 5 (8k)
Delete (4k) Part 1A
Part 1A - Optimize
Delete (4) Part 1B
Part 1B - Initialize and

Pred. Limit
Diag . Caller for Rec.

075 and 076A
Delete (4k) Part 1C
Part 1C - Succ. Limit
Diag . Caller for Rec. 078A
Delete (4k) Part 1D
Part 1D - Pred. Undo
Diag . Caller for Rec. 080A
Delete (4k) Part 1E
Part 1E - Succ. Undo
Diag . Caller for Rec. 082A
Delete (4k) Part 2
Part 2 -, Permute

77750
0001
4740

77750
000 1
4740

77750
0001
4740

77750
0001
0317

77750
0001
0320

77750
0001
0317

77750
cords.

088
088A
089
Note: A:

Diag . Caller for Rec. 084A 77750
Delete (4k) Part 3 0000
Part 3 -, GO TO N, ASCONS 0320

Diag . Caller for Rec. 086A 77750
Delete (4k) Part 4 0000
Part 4 -, COMPILE 3541
Diag . Caller for Rec. 088A 77750

11 Record Numbers suffixed by an "Au are 8k re

TABLE 11. 704 FORTRAN 11, PAGE 4

67

Form R23-9518-0 (2/59:1M-AG;68)

	Foreword
	Contents
	1.00 Fortran Executive Routine
	1.01 Introduction
	1.02 General Organization of Translator
	1.02.01 Section 1
	1.02.02 Section 1'
	1.02.03 Section 2
	1.02.04 Section 3
	1.02.05 Section 4
	1.02.06 Section 5 and 5'
	1.02.07 Section 6

	1.03.00 Number of Instructions in each Section
	1.04.00 Fortran System Tape
	1.04.01 General Organization
	1.04.02 Fortran I Ordinary System Records
	1.04.03 1-CS (Tape 1 to Core Storage Program)
	1.04.04 The Tape Record Monitor
	1.04.05 Listing of 1-CS on Tape
	1.04.06 Listing of 1-CS in Storage
	1.04.07 Control Words of 1-CS Monitor

	1.05.00 Updating the Edit Deck
	1.06.00 Fortran Tape Assignment
	1.07.00 Relating Tape Assignment in Fortran I and II to Fortran 709
	1.08.00 Fortran Source Program Card Format
	1.09.00 Using the Fortran System Tape
	1.10.00 Running the Object Program
	1.11.00 Description of Tape and Drum Usage During a Fortran I Run
	1.12.00 Service Aids
	1.13.00 Fortran II Refinements
	1.14.00 Answers to Common General Questions Involving Fortran

	2.00.00 General Fortran-Record Structure
	2.01.00 CALLFN Record
	2.02.00 CLOSUB Record
	2.03.00 Compiled Instruction Tables
	2.04.00 COMMON Record
	2.05.00 DIM Record
	2.06.00 DOTAG B Format
	2.07.00 The END Record
	2.08.00 EQUIT Record
	2.0900 FIXCON Record
	2.10.00 FLOCON Record
	2.11.00 FORMAT Record
	2.12.00 FORSUB Record
	2.13.00 FORTAG Record
	2.14.00 FORVAL and FORVAR Record
	2.15.00 FRET Table
	2.16.00 HOLARG Record
	2.17.00 LAMBDA, ALPHA, and BETA Tables
	2.18.00 NONEXEC Record
	2.19.00 SIGMA and TAU Tables
	2.20.00 SIZE Record
	2.21.00 SUBDEF Record
	2.22.00 TDO Record
	2.23.00 TEIFNO Record
	2.24.00 TIFGO Record
	2.25.00 TRAD Record
	2.26.00 TSTOP Record

	3.00.00 Fortran Automatic Coding System
	Table I. Structure of System Tape, Fortran I
	Table II. 704 Fortran II

