it
»
[+ 4]
=
]
=
[+ 1]
=}
-
cjmed
A

C22-6732-1

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

Student Text

IBM 7040 and 7044 Data Processing Systems

(© 1963 by International Business Machines Corporation

Preface

The primary aim of this publication is to instruct novice
7040/7044 programmers. The material may be used
with more experienced programmers by skipping sec-
tions familiar to the student and stressing the new
and unfamiliar. Material should be presented serially;
each section requires understanding of the previous
one.

The program examples and techniques use symbolic
language to emphasize programming concepts rather
than machine details. Problems for the student are in-
cluded in most sections; answers are in the Appendix.

Minor Revision (May 1963)

This edition, Form C22-6732-1, is a minor
revision of, and obsoletes, the preceding edi-
tion, Form C22-6732.

Copies of this and other 18M publications can be obtained through 18M Branch Offices.
Address comments concerning the content of this publication to:
18M Corporation, Customer Manuals, Dept. B398, PO Box 390, Poughkeepsie, N. Y.

Introduction 5
Computer Data and Iristructions 14
Numbers Concept 14
Number Conversions 18
Computer Codes 20
Code Definitions 21
Processing Unit Operations 23
Introduction to Programming Systems 28
COBOL System 30
FORTRAN System 32
Program Checkout 32
Input/Output Control Systems 33

IBM 7040/7044 Programming Systems Programs . 36

Over-all Operation 37
Macro Assembly Program 38
Macro Assembly Program Language 39
Instruction Descriptionsand Use. 43
Instruction Specifications 43
Fixed-Point Arithmetic Instructions 44
Shifting Operations 49
Control Instructions 52
Indexing Operations 55
Logic Operations 62
Packing and Unpacking 64
Character Handling Operations 67
Data Transmission 67
Floating-Point Operations 68
Single-Precision Floating-Point Instructions 71
Trapping 73
Double-Precision Floating-Point Instructions 74
IBM 7040/7044 Input/Output Control System 76
Basic Concepts 76
1ocs Organization 77
Input/Output Devices and Operations. 79
Reading and Writing 79

Data Buffering 79

Contents

Devices and Control Units used on

7040/7044 Systems 81
Data Channels 83
IBM 1414 Input/Output Synchronizers. 87
IBM 1414 Models 1,2, and 7 87
IBM 1414 Models 3,4, and 5 97
Punched Cards, Readers, Punches, and Printers. .. 99
IBM 1403 Printer 105
Console Typewriter 106
Disk Storage and Other Optional Features 108
IBM 1301 and IBM 7631 108
Direct Data Connection 112
Storage Protection Instructions 114
IBM 1401 Data Processing System 114
Trapping 116
Processing Unit Traps 116
Data Channel Traps 119
Trap Flow Chart 120
Instructions used with Trapping 122
Systems Compatibility 124
Compatible Features 124
Incompatible Features 124
Detailed Compatibility Information 124
Programming Compatibility Notes 126
Trapping Notes 127
Programming Examples. 128
Appendix o 139
A Instructions, 139
B. Instruction List—Alphabetic Order with Formats. . 142
C. Powers of Two Table 147
D. Octal-Decimal Integer Conversion Table 148
E. Octal-Decimal Fraction Conversion Fable 152
F. Scaling for Fixed-Point Calculation 155
G. Problem Answers 159
Index 167

BV 7044 SYSTIBIM

Data processing consists of planned actions and oper-
ations upon data to produce a desired result. These
actions and operations are accomplished with a data
processing system — a combination of units that nor-
mally includes input, storage, processing, and output
devices. The systems are designed to handle business
and scientific data at electronic speeds with internal
checks for accuracy and have as their key element a
high-speed computer — the processing unit.

Data processing systems vary in size, ability, speed,
and cost but, regardless of the information to be proc-
essed or the equipment used, all systems involve at
least three basic considerations:

1. The source data or input entering the system.
2. The planned processing within the system.
3. The end result or output from the system.

Input Data may be classified into two basic groups.
The first, historical data, is a record of something that
has already occurred. The second, real-time data, origi-
nates as something happens.

Processing is carried out in a pre-established se-
quence of instructions, which is automatically followed
by the computer. The plan of processing is always of
human origin. By calculation, sorting, analysis, and
other operations, the computer arrives at a result,
which may be used for further processing or control
or may be recorded as output.

Output from the computer may take the form of
printed reports, punched cards, reels of magnetic tape
or paper tape, messages on communication networks,
or any combination of these forms. Output may be
used to directly control other devices or processes.

Stored Program Concepts

After data are received as input, the data processing
system can take over the complete processing and
preparation of results; however, all procedural steps
that are to take place within the computer system must
be precisely defined in terms of opcerations the system
can perform. The definitions of these procedural steps
are called instructions.

A series of instructions pertaining to an entire pro-
cedure is a program. In current data processing sys-
tems, the program is stored internally, and the system
has electronic-speed access to the instructions in this
stored program.

All instructions and data words are assigned a num-
ber as they are placed in core storage. This number

IBM 7040-7044 Data Processing Systems
Student Text

is called an address and corresponds to a specific core
storage location. Using the address, the program can
locate and retrieve the information as needed during
processing.

Instructions

Each computer operation is directed by an instruction
— a unit of specific information located in core storage.
The processing unit interprets this information as an
operation to be performed. If data are involved, the
instruction directs the computer to the data. If some
device — a magnetic tape unit for example — is to be
controlled, the instruction specifies the device and the
required operation.

Instructions may shift data from one location in stor-
age to another, they may cause a tape unit to rewind,
they may change the condition of an indicator, or they
may change the contents of a register or counter. Some
instructions arbitrarily, or as a result of some machine
or data indication, can specify the storage location of
the next instruction or block of instructions to be
performed.

Most instructions consist of at least two parts (Fig-
ure 1):

The Operation Part designates read, write, add,
subtract, compare, move data, and so on.

The Operand designates the address of the data or
device needed by the operation part. Operands are
also used to designate the number of places the con-
tents of a register are to be shifted, to set an indicator,
to test an indicator, and so on.

During an instruction cycle, an instruction is re-
moved from storage and analyzed by the processing
unit. Each computer operation, such as add or divide,
is assigned a unique code, which can be recognized

Operation Part Operand Part

Read Select Select o tape unit for reading and read one record
into storage locations 1000 through 1050

Quantity in storage location 1004 is placed in the
accumulator register. This action clears old data
from the accumulator.

Quantity in storage location 1005 from the contents
of the accumulator register.

Store Result in storage location 1051

Transfer To instruction in storage location 5004

Clear and Add

Subtract

Figure 1. Instruction Format

IBM 7040-7044 5

by the computer. The operand further defines the func-
tion of the operation — for example: to perform arith-
metic, the storage location of one of the factors in-
volved is indicated; for input or output devices, the
unit to be used is specified; for reading or writing,
the area in storage in which the data will be located
is indicated.

Because instructions are stored in the same storage
medium as data are, they must be represented in the
same form as data. The number of storage positions
required by a single instruction is usually constant for
a given computer; stated another way, instructions are
usually fixed in length.

In general, no particular areas of storage are re-
served for instructions only. In most instances, they are
grouped and placed in ascending sequential locations
in the normal order in which they will be executed
by the computer. The order of execution may be
varied, however, by special instructions or recognition
of certain conditions within the system.

The normal sequence of computer operation in a
complete program is:

1. The computer locates and executes the first in-
struction.

2. The computer locates and executes the next in-
struction.

3. The process continues automatically, instruction
by instruction, until the program is completed or until
the computer is instructed to stop.

Serial and Parallel Operation

Computers are classified as either serial or parallel,
depending on the method the computer uses to per-
form arithmetic.

In a serial computer, numbers to be added are con-
sidered one position at a time (the units position, tens
position, hundreds, and so on) in the same way that
addition is done with paper and pencil. Whenever a
carry is developed, it is retained temporarily and, on
the next machine cycle, is added to the sum of the
next higher-order position.

The time required for serial operation depends on
the number of digits in the factors to be added. Fig-
ure 2 shows serial addition.

First Step Second Step | Third Step Fourth Step
Addend 1234 1234 1234 1234
Augend 2459 2459 2459 2459
Carry 1 1
Sum 3 93 693 3693

Figure 2. Serial Addition

6

In a parallel computer, addition is performed on
complete numbers. The entire numbers, including
carries, are combined in one machine cycle. Any two
values, regardless of the magnitude of the numbers,
can be added in the same time. Figure 3 shows parallel
addition.

Numbers Being 00564213
Added 00000824

Carry 1

Final Result 00565037

Figure 3. Parallel Addition

Fixed and Variable Word Length

Fixed and variable word length describe the unit of
data that can be addressed and processed by a com-
puter system.

In fixed word length operation, information is
handled and addressed in units or words containin}
a fixed number of positions. The size of a word is
designed into the system and normally corresponds to
the smallest unit of information that can be addressed
for processing in the processing unit. Records, fields,
characters, or factors are all expressed as words; reg-
isters, counters, accumulators, and storage are designed
to accommodate a fixed word.

In variable word length operations, data handling
circuitry is designed to process information serially as
single characters. Records, fields, or factors may be of
any practical length within the capacity of the stor-
age unit. Information is available by character instead
of by word.

Operation within a given data processing system
may be entirely fixed word, entirely variable, or a
combination.

In the 1BM 7040 and 7044 Data Processing Systems,
data are stored and processed as 36-bit words; all data
manipulation operations, including arithmetic, are done
in parallel. Provision is made, however, to select, shift,
and perform logic operations on portions of words.
Consequently, the amount of data within a word can be
adjusted.

Reading Data
All data entering the computer system must first be
read by an input device and then routed to core stor-
age. Each input device is assigned a number to serve
as its address in the same way that each storage posi-
tion is also assigned a location address.

A data processing procedure is normally concerned
with entire files of records, which may be on mag-
netic tape, 1BM cards, or paper tape. These files are

placed on the input device, where the computer has
access to them. To read a record from a file, one or
more instructions in the program activate the input
device and place the record in storage.

At this point, it must be determined exactly where
in storage the incoming record is to be placed, and
an instruction must direct the computer to send the
record to this location. Also, in the plan of manipula-
tion, it is necessary to know at all times where to
find information as needed in successive stages of
processing.

These considerations involve the allocation of storage
space for specific purposes in a logical and convenient
manner. For example, particular fields or quantities
may be used for computation. The instructions to be
used later must specify the location in storage where
this information from each record can be found.

The reading operation performs these distinct func-
tions:

1. The input device is selected and made ready by
the read select instruction. The device chosen is the
one determined by the programmer to have access to
the proper file of records. This device is selected by
specifying its assigned code number (address). The
read operation causes the selected input unit to trans-
fer a record to computer storage. The record is placed
in a storage area reserved for this purpose and is then
available for further processing. A number of input
areas may be assigned to handle several related records
at a time (for example, a master record and its re-
lated transaction detail record).

2. The order of the read instructions in the program
determines the sequence in which files are read. Other
instructions later compare records from separate files
to determine the relationship of detail to master, de-
tail to detail, and so on.

3. The number of records to be placed in storage at
one time depends on the construction of the files, the
type and length of records being handled, and the
available storage capacity.

Calculating

Once data have been read into the computer system
and placed in known locations of storage, calculation
can begin. Each computer is capable of performing
addition, subtraction, multiplication, and division,
either as built-in operations or under program control.
For most commercial applications, these operations
are adequate. Even in many advanced scientific pro-
cedures, the most complex equations can be reduced
to steps of elementary arithmetic. In the 7040 and
7044 systems, however, many specialized operations
can be performed to make the solving of mathematical
problems easier.

In every operation of simple arithmetic, at least two
factors are involved: multiplier and multiplicand, di-
visor and dividend, and so on. These factors are oper-
ated on by the arithmetic unit of the computer to
produce a result, such as a product or quotient. In
every calculation, therefore, at least two storage loca-
tions are needed. One quantity is usually in core
storage and the other is in the accumulator or multi-
plier-quotient register, which are parts of the arith-
metic unit. (A register is a device with the ability to
accept and hold data and to transfer the data to an-
other register or related device.)

A calculation can be started by placing one factor
in the accumulator and, at the same time, clearing this
unit of any previous factors or results contained there.
The address part of the instruction specifies the stor-
age location of the first factor; the use of the accumu-
lator or multiplier-quotient register is implied by the
operation.

When one factor is properly placed in the register,
the actual calculation is executed by an instruction
whose operation part specifies the arithmetic operation
to be performed and whose operand is the location of
the second factor. The computer acts upon the two
factors and produces a result, which is placed in a
register. The result is returned to core storage by an-
other instruction, which designates the storage location.

Any practical number of calculations can take place
on many factors in a single series of instructions: that
is, a factor may be placed in the accumulator and
several other factors may be added to or subtracted
from the product; division can then be executed; other
operations of adding and subtracting can proceed using
this quotient. Intermediate results can be stored at
any time.

All calculations must take into account the algebraic
sign of factors in storage or associated registers. Con-
sequently, the computer is equipped to store and rec-
ognize the sign of a factor. With fixed word data
records, the sign position automatically accompanies
the word. Accumulators also include either a special
sign position of storage or a sign indicator that is avail-
able to the programmer. In this way, the sign of re-
sults can be specified, together with the effect on fol-
lowing calculations. The computer follows the rules
of algebra in all basic arithmetic operations.

The size of words, quantities, and values depends
on the design of each data processing system. The ex-
act rules governing the placement of factors, size of
results, and so on vary from system to system. In all
cases where a result is expected to exceed the capacity
of the accumulator or storage register, the programmer
must arrange (scale) his data to produce partial re-
sults and then combine these for totals. Other oper-

IBM 7040-7044 7

ations of scaling may be executed so that very large
or small values and fractions may be handled con-
veniently.

Calculation is carried out in all computer systems
at much higher speed than input or output, because
reading and writing require mechanical devices and
movement of documents, while calculation is per-
formed electronically. In many commercial applica-
tions, calculation is relatively simple, and the over-all
speed of the system is usually governed by the speed
of the input/output units. In mathematical applica-
tions, the situation is reversed; calculation is usually
complex and involved, and high calculating speeds are
essential.

Logic Operations

The sequence in which a stored program computer
follows its instructions is determined in one of two
ways: either it finds the instructions in consecutive
storage locations or the instruction operand also desig-
nates the location of each following instruction. If
instructions could be followed only sequentially in a
fixed pattern, a program would follow only a single
path of operation with no possibility of dealing with
exceptions to the procedure and with no ability to
choose alternatives based on special conditions en-
countered in processing data. Further, without some
way of resetting the computer to repeat a given series
of instructions, it would be necessary to have a com-
plete program for each record in a file.

Consider the program illustrated in Figure 4. These
instructions taken alone compute T for only one record.
But by returning to the first instruction, any number
of records may be processed, repeating the same pro-
gram as a loop. For this purpose, another instruction
is given to return to the first instruction (Figure 5).

Once this program is started, it will continue until
there are no more records to process. Such program
loops are common and can be terminated in many

Read
Record

Compute
A+B=T

Write
Record

Figure 4. Block Diagram, A + B=T

8

@

Read
Record

Compute
A+B=T

Write
Record

Loop

Figure 5. Program Loop

ways. For example, the computer may be instructed
to examine T each time it is computed and to notify
the operator when the value of T becomes negative
(Figure 6).

In this case, the instruction becomes a conditional
transfer. The program loop is repeated only if some
predetermined condition (T is positive) is present.
The computer can also be instructed to execute the
program for ten records and then stop for operator
intervention (Figure 7). It is assumed that the con-
stants 10 and 1 are stored in the computer and that
1 is subtracted from 10 each time the loop is com-
pleted. After ten times around, a 0 will be in the loca-
tion that contained 10 originally. A transfer or branch
instruction then terminates the loop.

Start

Read
Record

Y

Compute
T

Is T No

Negative
?
Notify Write
Operator Record

Figure 6. Conditional Transfer

Operator
Intervention

Set Counter
to 10

Read
Record

Compute

Write
Record

Figure 7. Program Loop under Count Control

Read
Record

Check
Record

Error

Compute

Write
Record

Set
Error Counter
to 10

The conditional transfer or branch operation may
be used to cause a special-purpose program (sub-
routine) to be executed outside the normal or straight-
line path of the main program. This subroutine is
executed only when a predetermined exception or con-
dition is noted by the computer.

One common example of the subroutine is checking
the accuracy of records as they are read from or written
on magnetic tape. As each record enters or leaves the
processing unit, a read-write error indicator is tested.
If the indicator has been turned on, the computer is
instructed to enter a subroutine of instructions that
attempts to correct the error. Figure 8 shows the pro-
gram logic for such a subroutine for the reading only;
a similar loop might also be included for writing.

When a reading error is detected, a transfer is made
to the error subroutine. A counter is set to 10 to
count the number of times a re-read will be attempted.
The tape is backspaced over the error, and a second
read instruction is given. Another check is made to de-
termine if this operation is correct. If it is, a transfer
returns to the main program, where computing con-
tinues.

Backspace
One Record

Figure 8. Tape Read Error Program Loop

R

Subtract 1
from Counter

Yes

Notify
Operator

No

IBM 7040-7044

If the error persists, 1 is subtracted from the counter
and the counter is tested for 0. The error loop is again
entered and a second re-read and check are executed.
The machine can re-read ten times and, if the error is
not corrected, operation is halted. Further instructions
can be programmed to indicate to the operator the
cause of the stop.

Comparing

The ability of the computer to make limited decisions
based on programmed logic is substantially extended
by operations of comparing. Such operations enable
the computer to determine if two data fields in stor-
age are equal in value or if one is lower or higher
than the other.

A value assignment for each character is built into
the computer. For example, the familiar ascending
sequence of the digits 0-9 assumes that the digit 9
is the highest digit of the series. In the same manner,
the letter Z is assumed to be the highest letter of the
alphabet. To the computer, therefore, as in any file,
the number 162 is higher in sequence than 159, and
the name Jones is lower than the name Smith. Special
characters, such as /, @, *, or — may also be included
because these characters must be manipulated as data
for report printing and other special purposes.

Comparing operations are used to program the se-
quence checking of files, sorting procedures, or the
rearrangement of records in some desired order. The
comparison of an identifying field in one record with
that of another insures that the proper records are
processed. Out-of-sequence records are detected by
the comparison operation.

The two fields to be compared are placed in core
storage. One field is then placed in an accumulator
register, and a compare instruction is given to com-
pare this field against the second specified field. The
results of comparison are registered in high, low, or
equal indicators, which are then interrogated to deter-
mine their condition. If a particular indicator is on, an
automatic operation transfers the program to a sub-
routine that continues processing according to the re-
sult of the comparison.

Figure 9 shows a typical program arrangement for
sequence checking a single file of records. All records
in the file are assumed to be in ascending sequence
by account number. An input area — where records are
received, one at a time, from an input unit —is set
aside in storage. A second area is also reserved in
storage to store the account number from the preced-
ing record. The purpose of this area is to allow com-
parison of the account number of the incoming record
with the corresponding field of the previous record.

10

@

4

Read
Record

Account No.
to
Accumulator

Compare

Write ith Previ
Record with Previous >———
Low
y
Store Notify Operator
Compute Account (Records are out
Number of sequence)
i] !
-~ — — — — o

Figure 9. Sequence Checking

If the tile is in ascending sequence, the incoming
record should always be higher than the record that
preceded it. When duplicate records are encountered,
the incoming record is equal to the preceding one. If
any incoming record is lower than the previous record,
it is recognized as an out-of-sequence condition, and
an error is signaled to the operator. The out-of-
sequence record may be noted, and corrective action
may be either taken by the operator or programmed
as a subroutine. After each high comparison, the ac-
count number field is placed in storage where it may
be compared with the next record.

Instruction Modification

Some of the preceding examples have shown how
branching or transfer instructions can cause the com-
puter to follow a varied path through the program.
The routine to be executed depends on the result of
a previous comparison or a test of indicators that have
been set by a zero in a counter, an error condition,
and so on.

Another method of varying the program is by chang-
ing or modifying the operation part of the instructions
themselves. Instruction modification, for example, can
be used to set up a program switch, which can cause
the machine to take one of two alternate paths. The
switch (which is an electronic switch) is turned on or
off by instruction. Figure 10 shows the use of the
switch.

Assume that two files are being read. The files are
in sequence by a common identifying field, such as
part number, account number, or employee number.
One file is a master file; the second is a transaction file

that represents adjustments to the master. Three con-
ditions may be encountered in applying the transac-
tions to the corresponding master files:
1. One or more transactions may match a single
master record.
2. There may be no transactions for a master
record.
3. There may be transactions that do not match
a master — these are errors.

It is necessary to process the two files in step; that
is, each transaction record must be compared against
a corresponding master record, if there is one. If sev-
eral transactions apply to the same master record, the
transaction file must continue reading without reading
a new master record. Conversely, if a master record
is read in without a corresponding transaction, this
record is written out unchanged and the following
master is read in. The reading and writing of master
records continue until a matching transaction is found.

Figure 10 shows that one master record is read in
first. A switch instruction is inserted between the read-
ing of the master and the transaction. As operations

Start

Read
Master

Switch

1 Off

Set '
Switch Off

Compare
Detail and

Master,
High (D>M) Low (D<M)
y Equal y (D=M)

Write Adjust Write

Master Master ‘from Detail
Detail

Set
Switch On

Figure 10. Program Switch

begin, this switch is turned off, allowing one trans-
action to be read in. The identifying field of the trans-
action is compared against the master. If they are
equal, the master is adjusted and a second transaction
is read in. If this transaction is not to be applied
against the master (which is still in storage), it should
be high when compared. The previously adjusted
master is then written out and the switch is turned on.
A new master is then placed in storage but, because the
switch is on, a transaction is not read; instead the ma-
chine transfers directly to the compare instruction.
The switch is turned off each time this happens. Oper-
ation continues, with comparison for each new record
placed in storage. If a transaction is low (has no
master record), it is written out on a separate output
unit, and a new transaction is then read in.

The switch, when on, acts as an instruction with an
operation part specifying an unconditional transfer.
The address part is the location of the compare in-
struction. To turn the switch off, the operation part is
changed to no operation by the program. In this case,
the computer ignores the instruction and proceeds to
the following instruction: read a transaction.

Address Modification

Because the address portion of instructions may be
treated as data, instruction addresses can be modified
by arithmetic, reducing the number of instructions in
a program and conserving storage capacity for data or
other factors. One instruction, or a single series of in-
structions, can serve to address variable locations in
storage.

For example, the address part of instructions that
select the devices of a system may be modified by
other instructions in the program. One use of this type
of modification is the selection of alternate magnetic
tape units when an end-of-file or end-of-reel condi-
tion is signaled. A reading or writing operation may
then continue without interruption on an alternate
unit while the first unit is rewinding or standing by
for reel change. When a tape file is made up of more
than one reel, reading or writing may proceed from
reel to reel with minimum lost time.

Assume that the addresses of two tape units are
0201 and 0203. The sum of the units and tens positions
of these addresses is stored as a constant factor 04.
When an end-of-file condition is signaled by tape unit
0201, a transfer is made to a subroutine. In the sub-
routine, the units and tens positions of the tape unit
being used (01) are placed in an accumulator. The
constant 04 is subtracted to obtain minus 03 as a re-
sult. This result is then used as the tape unit address,
converting it from 0201 to 0203. The sign of the re-
sult is ignored.

IBM 7040-7044 11

The subroutine then transfers back to the main
routine and uses tape unit 0203. When end-of-file is
signaled from this unit, the constant 04 is subtracted
from 03 to obtain the result minus 01. Using this re-
sult changes the tape address from 0203 to 0201. The
address of the select instruction alternates between
0201 and 0203 each time an end-of-file is signaled.

Indexing

In the 7040 and 7044 computers, the address portion
of an instruction can be modified by adding or sub-
tracting variable quantities contained in one or more
special-purpose registers called index registers.

Computers with an indexing feature use an instruc-
tion format that allows a particular register or word
to be specified as a part of the instruction.

Assume that fifty quantities are placed in ascending
word positions of storage from locations 1001 to 1050
inclusive and that these quantities are to be added to
the contents of an accumulator. Without indexing or
address modification, it is necessary to repeat an add
instruction fifty times with the address of each instruc-
tion incremented by 1. For example: app 1001, app
1002, app 1003, and so on.

With indexing, the add instruction can be written
as app 1051 with the address decremented by an index
register containing the quantity 50. The address in
storage remains 1051, but the computer calculates and
uses an effective address of 1051 minus 50, or 1001.
When the add instruction is executed, the contents of
the index register are also decremented by 1 (leaving
a remainder of 49) and are tested for 0. When the
same add instruction is re-executed and is again decre-
mented by the contents of the same index register, the
effective address is 1051 minus 49, or 1002. Each time
the index register is decremented, it is also tested for 0.

If a program loop is formed to repeat this process,
the effective address of the add instruction is stepped
up 1 each time it is executed (as the index register
contents are stepped down). When the index register
equals zero, all 50 quantities will have been added
and the loop is terminated. The computer has conse-
quently performed 50 operations using the same add
instruction. Figure 11 is a flow diagram of the index
loop.

The first instruction places the quantity 50 in index
register 4. An add instruction, with an address 1051,
also specifies as part of its operand that the given
address is to be modified by the quantity contained in
index register 4. The next instruction is transfer on
index, which means: reduce the contents of index regis-
ter by 1; if the contents of the register are greater than
0, transfer to repeat the add instruction; if the contents

12

of the index register equal 0, continue to the next in-
struction in the program.

The indexing feature greatly simplifies programming
of repetitious calculations or other operations and re-
duces the number of instructions required.

Indirect Addresses

All instruction addresses discussed in preceding illus-
trations are classified as direct, that is, they refer
directly to the location of data or other instructions
in storage, they select a system component, or they
specify the type of control to be exercised.

Addresses may also be indirect. Such an address can
refer only to a storage location that contains another
address. The second address in turn refers to the loca-
tion of data, a system component, or a control function.

Indirect addressing is particularly useful in perform-
ing address modification. For example, in a program it
may be necessary to refer a number of instructions to
a value which changes with each program iteration.
Without indirect addressing, a number of modification
instructions would be needed.

However, if the instructions are indirectly addressed
to one core storage location, that location can contain
a single address, the address of the values being used
by the program. Therefore, to change or modify all in-
struction addresses, it is only necessary to modify the
single effective address to which the instructions refer
(Figure 12). In this text, the asterisk (*) is used with
the operation code to designate indirect addressing.
Any number of indirect addresses throughout a pro-
gram may refer to a single effective address. In Figure
12, each indirectly addressed clear and add instruction
(CLA* 4069) would bring in the contents of core loca-
tion 2000 instead of location 4069.

Set Index
Register to

50

ADD 1051
(Modified
by IR 4)

Subtract 1
‘Méom IR 4 090_
Test for 0
v

Continue
Processing

Figure 11. Indexing Loop

Core Storage Location 4069

Read Select
Input Tape v

CLA* 4069 ™

SUBROUTINE, .f

CLA* [4069

i

|

Effective Address in Storage

MAIN | PROGRAM

|

Transfer

Routine — e

il
|

CLA*
— | SUBRQUTINE

CLA* | 4069

|
|
|

il

!

Figure 12. Indirect Address

IBM 7040-7044 13

Computer Data and Instructions

Numbers Concept

The common decimal system, with its ten different
symbols, is learned by most people early in their train-
ing. This system serves very well for counting. Why
then, should computers, which are designed to assist
engineers, businessmen, and scientists, be designed to
use a different system of notation?

The decimal system is built around the base ten and
uses the 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 symbols. Com-
bining these symbols and a place system for their
arrangement, any number can be expressed, no mat-
ter how large or how small. The value of each symbol
depends on its place in a row of symbols. For example,
the symbol 1, by itself, has a place value of 1. Com-
bined with another symbol, as in 21, the 1 symbol
still has a place value of 1. Reverse the symbols, how-
ever, (12) and the 1 symbol now has a place value
of 10.

This concept can be readily applied to any other
number system. For example, imagine a number sys-
tem containing only the symbols 0, 1, 2, 3, and 4. Since
there are five symbols used, the system is called
quinary or, more commonly, a base 5 system. To count
in this system, the first symbol used is the 0. This is
followed by the 1, 2, 3, and 4. At this point, all five
symbols have been used. The next step is to assign the
decimal value of five to the 1 symbel by placing it one
position to the left and combining it with the 0 sym-
bol (10). This combination is then followed by the 11,
12, 13, and 14 combinations. The third symbol in the
system (2) is then assigned the decimal value of ten
and is combined with the 0 giving the combination
20. This is followed by 21, 22, 23, 24, 30, and so forth.

The following table shows the arrangement of sym-
bols used to represent the same values in each system
of notation,

DECIMAL QUINARY DECIMAL QUINARY
0 0 10 20
1 1 11 21
2 2 12 22
3 3 13 23
4 4 14 24
5 10 15 30
6 11 16 31
7 12 17 32
8 13 18 33
9 14 19 34

The main difficulty in using an unfamiliar number
system is recognizing the new values assigned to
familiar symbols. For example, to add the decimal

14

symbols 3 and 4 and get a decimal result of 7 is sim-
ple for anyone acquainted with the decimal system.
To add the quinary symbols 3 and 4 and get a quinary
result of 12 is more difficult because of limited use of
the quinary system.

Arithmetic Tables

The construction of arithmetic tables makes operations
faster and easier. Figure 13 shows sample add tables
for both decimal and quinary systems.

Decimal Quinary

JO 1 23! 4 5 [0 1_2'31 4 10
00 1 21314 5 oo 1 2131 4 10
1|1 2 34,5 6 1[v 2 31450 1
212 3 4.,5,6 7 202 3 40,11 12
3[3_4 5'6,7 8 3.3 4 1001512 13
4475 6778 9 414 10 111213 14
505376 7 8 9 10 0 16 11 72 13 14 20
616 7 8 9 10 N 1213 14 20 2

Figure 13. Add Tables

To use these tables, the symbols being added (3
and 4 in the decimal table) are located, one on the top
and the other on the left side of the table. Lines are
then projected until they meet. The value at the inter-
section is the result of the addition. Using the quinary
table: 4 + 3 = 12,11 + 4 = 20,2 + 4 = 11, and
so forth. The results are expressed in quinary values.

The same principle may be applied to other arith-
metic processes. Multiply tables for both systems are
shown in Figure 14. The use of these tables is the
same as with the add tables; only the results differ.
For example, 3 X 4 with the decimal table gives the
result of 12, while 3 X 4 with the base 5 table gives
the result 22; both results represent the same quantity.

Decimal Quinary
0 1 2:3!4 10 1 2131 4
0/0 0 01010 00 0 o0'0'o0
110 1 2,34 110 1 2'3, 4
210 2 4 ,6,38 210 2 4,11113
3.10_3 619112 300 _3 114122
4o _4 8702516 4o 432

Figure 14. Multiply Tables

Binary Mode

Computers function in what is called a binary mode.
This term simply means that the computer components
can indicate only two possible states or conditions.
Therefore, the binary mode system may also be called
a base 2 system. For example, the ordinary light bulb
operates in a binary mode; it is either on, producing
light; or it is off, not producing light. The presence
or absence of light indicates whether the bulb is on
or off. Likewise, within the computer, transistors are
either conducting or not conducting, magnetic mate-
rials are magnetized in one direction or in the opposite
direction; and specific voltage potentials are present
or absent (Figure 15). The binary modes of operation
of the components are signals to the computer, as the
presence or absence of light from an electric light
is to a person.

0 State

[

IBM Punched Card

Magnetic Core

a2

1 State

Relay or Switch

—)

Tube or Transistor

Electrical Pulses

Figure 15. Binary Indicators

Representing data within the computer is accom-
plished by assigning or associating a specific valye to
a binary indication or group of binary indications. For
example, a device to represent values could be de-
signed with four electric light bulbs and switches to
turn each bulb on or off (Figure 16).

The bulbs are assigned arbitrary values of 1, 2, 4,
and 8. When a light is on, it represents the value as-
sociated with it. When a light is off, the value is not

considered. With such an arrangement, the single
value represented by the four bulbs will be the nu-
meric sum indicated by the lighted bulbs.

Values 0 through 15 can be represented. The value
0 is represented by all lights off; the value 15, by all
lights on; 9, by having the 8 and 1 lights on and the
4 and 2 lights off; 5, with the 1 and 4 lights on and
the 8 and 2 lights off; and so on.

The value assigned to each bulb or indicator in the
example could have been something other than the
values used. This change would involve assigning new
values and determining a scheme of operation. In a
computer, the values assigned to a specific number
of binary indications become the code or language for
representing data.

Because binary indications represent data within a
computer, a binary method of notation is used to
illustrate these indications. The binary system of nota-
tion uses only two symbols, zero (0) or one (1), to
represent all quantities. In any single position of
binary notation, the 0 represents the absence of a
related or assigned value and the 1 represents the
presence of a related or assigned value. Using the
light bulbs in Figure 16, for example, the binary nota-
tion 0101 would represent a decimal 5.

The binary notations 0 and 1 are commonly called
bits. The 0 bit is described as no bit and the 1 bit
is described as a bit. Although 0 or 1 bits are necessary
to illustrate the condition of a binary indication or a
group of binary indications, the 1 bits are the bits
generally referred to. For example, the binary notation
0101 of Figure 16 would be described as having a bit
in the 1 and 4 bit positions. The assumption is that
there are no bits (0 bits) in the 2 and 8 bit positions.

Binary Number System

In some computers, the values associated with the
binary notation are related directly to the binary num-
ber system. This system is not used in all computers,

Figure 16. Representing Decimal Data

Computer Data and Instructions 15

but the method of representing values using this num-
bering system is useful in learning the general concept
of data representation.

The common decimal number system uses ten sym-
bols or digits to represent all quantities, and the place
value of the digits signifies units, tens, hundreds,
thousands, and so on. The binary or base 2 number
system uses only two symbols or digits: 0 and 1. The
position value of the bit symbols (0 or 1) is based
on the progression of powers of 2; the units position
of a binary number has the value of 1; the next posi-
tion, a value of 2; the next, 4; the next, 8; the next,
16; and so on (Figure 17).

18192 I4096|204811 024 |512 I256|128 lé4l32|lé|8l4 |2]T|

Figure 17. Place Value of Binary Numbers

In pure binary notation, the binary digits or bits
indicate whether the corresponding power of 2 is ab-
sent or present in each position of the number. The
1 bit represents the presence of the value and the 0
bit represents the absence of the value. The place
value of the digits does not signify units, tens, hun-
dreds, or thousands, as in the decimal system; instead,
the place value signifies units, twos, fours, eights, six-
teens, and so on. Using this system, the quantity 12,
for example, is expressed with the symbols 1100,
meaning (1 X 2%) + (1 X 22) + (0 X 2!) +
(00X 2°) or (1 X 8) + (1 X4) + (0X2) +
(0 X1).

Figure 18 shows the binary representation of the
decimal values 0 through 9. Note that the decimal
digits O through 9 are expressed by four binary digits.
The system of coding or expressing decimal digits in
an equivalent binary value is called binary coded
decimal cp. For example, the decimal digits 2, 6,
5, 4, 9, and 8 would appear in binary coded decimal
form as shown in Figure 19.

£

g2 Place Value

aO>|8 4 2]
0 [000 O
1 10001
2 |]001 0
3|00 11
4 101 00
5 (0101
6 (01 10
7 101 11
8 1 000
9 /1 001

Figure 18. Binary Representations

16

Although binary numbers, in general, have more
terms than their decimal counterparts (about 3.3 times
as many), computation in the binary system is quite
simple.

For addition, it is only necessary to remember three
rules:

1. Zero plus zero equals zero.

2. Zero plus one equals one.

3. One plus one equals zero with a carry of one
to the next position on the left.

To see how the rules work, consider the addition
of 15 + 7, with these numbers expressed in binary
notation:

SIXTEENS EIGHTS FOURS TWOS ONES
(Carries) (1) (1) (1) (1)
0 1 1 1 1 =15
0 0 1 1 1= 7
1 0 1 1 0 = 22

In the ones column, we have 1 + 1 for a sum of 0
and a 1 carried to the twos column. In the twos col-
umn, we have 1 + 1 for a sum of 0, but we must also
add the carry from the ones column, making a final
sum of 1 with a carry to the fours column. In the
eights column, we have a 1 + 0 giving a sum of 1,
but adding in the carry from the fours column makes
the final sum 0 with a carry to the sixteens column.
In this column, we have 0 + 0, giving a sum of 0
and to this we add the carry from the eights column,
making a final sum of 1.

The resultant sum of the addition contains 1’s in
the sixteens, fours, and twos column, which is the
binary representation of 22, the correct sum of 15 plus
7(16 + 4 + 2 = 22),

The rules for subtraction of binary digits are equally
simple:
1. Zero minus zero equals zero.
2. One minus one equals zero.
3. One minus zero equals one.
4. Zero minus one equals one, with one borrowed
from the left, '

Decimal Digits 2 6 5 4 9 8

Binary Value [00110 g1[1]o fof1fof1 |of1]o0 | 1]ojo)1 [1[olo

Place Value 8421 21 18421 |8142]1 | 814121 21

Figure 19. Binary Coded Decimal

Using the same numbers as we did in the addition,
the subtraction is:

SIXTEENS EIGHTS FOURS TWOS ONES

(Borrows) (0) (0) (0) (0) (0)
0 1 1 1 1 =15
-0 0 1 1 1= 7
0 1 0 0 0= 8

In the ones column we have 1 — 1 for a sum of 0
with no borrows. The same procedure occurs in the
twos and fours columns. In the eights column, we
have 1 — 0 for a sum of 1. In the sixteens column,
we have 0 — 0 for a sum of 0. With the subtraction
finished, we have 1’s in the eights column only, signi-
fying the answer to be 8.

For multiplication, only three rules are needed:
1. Zero times zero equals zero.
9. Zero times one equals zero; no carries are con-
sidered.
3. One times one equals one.

In the binary multiplication table, all that is neces-
sary when multiplying one number (multiplicand) by
another (multiplier) is to examine the multiplier digits
one at a time and, each time a 1 is found, add the
multiplicand into the result, and each time a 0 is
found add nothing. The multiplicand must be shifted
for each multiplier digit, but this is no different from
the shifting done in the decimal system.

An example of binary multiplication is 26 X 19:

DECIMAL BINARY
26 =16 + 8 + 0 + 2 + 0 = 11010

X 19=16+0+0+ 2 + 1 = 10011
Using the rules, the product is 11010
arrived at by a series 11010
of adding the multiplicand 00000
and shifting whenever 00000
a lis in the 11010
multiplier. 111101110

Interpreting the binary result of the multiplication
by using the ones, twos, fours, . . . etc. system, we find:

256 + 128 + 64 + 32 + 0+ 8+ 4+2+0

which equals 494, proving the problem.

Binary division is accomplished by applying similar
concepts. From the examples of addition, subtraction,
and multiplication, you can see that whatever opera-
tion the computer is working on is accomplished by
repetitive addition.

The computer operates internally using the binary
system. However, it is able to convert from one sys-
tem to another by use of a stored program. Thus,

input/output data may be expressed in decimal (or
any other) form when the programmer finds it con-
venient to do so.

Octal Number System

It has been noted that binary numbers require about
three times as many positions as decimal numbers to
express the equivalent number. This is not much of a
problem to the computer; however, in talking and
writing or in communicating with the computer, these
binary numbers are bulky. A long string of 1s and
0's cannot be effectively transmitted from one indi-
vidual to another. Some shorthand method is necessary.

The octal number system fills this need. Because of
the simple relationship of octal to binary, numbers
can be converted from one system to another by in-
spection. The base or radix of the octal system is 8.
This means there are eight symbols: 0, 1, 2, 3, 4, 5, 6,
and 7. There are no 8s or 9’s in this number system.
The important relationship to remember is that three
binary positions are equivalent to one octal position.
The following table is used constantly when working
on or about the computer.

BINARY OCTAL

000
001
010
011
100
101
110
111

~I DU W - O

At this point, all eight symbols have been used, and
a carry to the next higher position of the number is
necessary.

BINARY OCTAL
001 000 10
001 001 11
001 010 12
001 011 13
001 100 14

and so on.

Remember that as far as the internal circuitry of the
computer is concerned, it only understands binary. But
an operator can look at a series of lights on the com-
puter console showing binary 1’'s and 0’s, for example:

100 011 101 000 111 010 100 011 110 111 101 001

and say that the lights represent the octal value
435072436751. This is easier to state than the actual
binary 1’s and Os.

Computer Data and Instructions 17

Number Conversions

Before converting numbers from one system to another,
it is best to review what a number represents. In the
decimal system, a number is represented or expressed
by a sum of terms. Each individual term consists of a
product of a power of ten and some integer from 0
to 9. For example, the number 123 means 100 plus 20
plus 3. This may also be expressed as:

(1 X10°) + (2 x10") + (3 x 10°)

Ten is said to be the base or radix of this system.
Radix is defined as an integer used in a system of nota-
tion whereby all numbers are expressed as powers of
the integer. In the decimal system, the radix is 10; in
the binary system, it is 2. If 2 is chosen as the base,
numbers are said to be represented in the binary sys-
tem. Consider the binary number 1 111 011. What do
these zeros and ones represent? They represent the
coeflicients of the ascending powers of 2. Expressed
in another way the number is:

(I X2%) 4+ (1xX2%)+ (1x2)+(1x2%
+ (00X 2) + (1x2) + (1x2)

The places do not have the meaning of units, tens,
hundreds, thousands, etc., as in the decimal system;
instead they signify units, twos, fours, eights, sixteens,
etc. In applying the above information, the decimal
number 123 breaks down in both systems as:

DECIMAL BINARY
123 1 111 011
L— 3 units L1 units
20 tens 2 twos
100 hundreds 0 fours
123 8 eights

16 sixteens
32 thirty-twos
- 64 sixty-fours

123

In the octal system, a number is represented in the
same manner, except that the base is 8. The digits of
the number represent the coefficients of the ascending
powers of 8. Consider the octal number:

173 = (1 X 8) + (7 X 8') + (3 x 8)

= 64 + 56 + 3
123 (decimal)

Similarly:
Octal 173
L3 units
56 eights

64 sixty-fours

123

By remembering what a number represents in the
binary or octal system, you can convert the number

18

to its decimal equivalent by the method shown. As the
numbers get bigger, this method becomes quite im-
practical. The following section provides detailed
methods for converting from one system to another.

Integers

DECIMAL TO OCTAL

Convert decimal number 149 to its octal equivalent.
Rule: Divide the decimal number by 8 and develop
the octal number:

81149 Remainder 5

8 |18 2 = 225
8 L2 “ 2
0 Read

The original number to be converted is divided by 8.
The remainder of this first division becomes the low-
order digit of the conversion (5). The quotient (re-
ceived from the first division) is then divided by 8.
Again the remainder becomes a part of the answer
{next higher order, 2). This method is continued until
the quotient is smaller than the divisor. The final
quotient is considered the high order of the conver-
sion (2).

OCTAL TO DECIMAL

Convert octal number 225 to its decimal equivalent.
Rule: Multiply by 8 and add, as in the example:

225

X 8
16
+ 2

18
X 8

144
+ 5

149

The high-order digit is multiplied by 8'and the next
lower-order digit is added to the result. The resultant
answer is then multiplied by 8 and the next lower-
order digit is added to the result. When the low-order
digit has been added to the answer, the process ends.
In the following examples, where multiplication or
division is used, detailed explanations are not given
because the operations are similar.

OCTAL TO BINARY AND BINARY TO OCTAL

Rule: Express the number in binary groups of three:

BINARY TO OCTAL
010 010 101

P v)

5 = 225

OCTAL TO BINARY

2 2 5

010 010 101 = 010 010 101 2 2

DECIMAL TO BINARY

Convert 149 to its binary equivalent.
Rule: Divide the decimal number by 2 and develop
as in the example:

2| 149 Remainder

«

[ol S
ol (2 R

1
0
1
0
“ 1|= 010 010 101
0
0
1

Flelelo

BINARY TO DECIMAL

Convert 010 010 101 to its decimal equivalent.
Rule: Multiply by 2 and add as in the example:

10 010 101
2

2
0

+

X |+ |x
[SR KR i S S

+
-

or 10 010 101

X
[Se Vo]

|<

=1(27) +0(2°) +0(2°) +1(2") +

|+
_
| S

0(2°)+1(2°)+0(2") +1(2%

X
[

=128+16+4+1

+
f
A=

= 149

X
[S2]

-1

+
[0\

X
~
(SN

4

— Qo

1
+1

1

el

©

Fractions
DECIMAL TO OCTAL

Rule: Multiply by 8 and develop the octal number
as in the example:

Read
1
1
4
{2

OCTAL TO DECIMAL

Rule: Express as powers of 8, add and divide as in
the example:
1142 = 1(87%) +1(87*) +4(8%) +2(8%)
=1/8 + 1/64 + 4/512 + 2/4096
= 610/4096
= 1489 plus
or .149

OCTAL TO BINARY AND BINARY TO OCTAL

Rule: The same rule applies for fractions as for
whole numbers:

1 1 4 2 001 001 100 010
.001 001 100 010 1 1 4 2

BINARY TO DECIMAL

The same rule applies as for whole numbers:

.001 001 100 010
=1(2®)+1(2°% +1(27") +1(2™)
=1/8 + 1/64 + 1/128 + 172048
= 305/2048
= .1489 plus
or .149

DECIMAL TO BINARY

The same rule applies as for whole numbers:

Read .149

X 2
0o [298
X 2
0o |59
X 2
1 192
X 2
0o |384
X 2
0o [768
X 2
1 [536
% 2
1 [o7e
X 2
o [14
X 2
0o [288
X 2
o [576
X 2
1 |12
"
o I304
! = 001 001 100 010 +

Computer Data and Instructions 19

Improper Fractions

DECIMAL TO BINARY

Convert 149.149 to its binary equivalent. This requires
conversion from decimal to octal and then to binary:

8 | 149. remainder 5
8 18 “ 2

s L2 2 '

0 Read
1
4
4
Read 2

= 2 2 5 1 1 4 2

010 010 101 - 001 001 100 010
149.149,, = 225.1142, = 010 010 101.001 001 100 010.

BINARY TO DECIMAL

This requires conversion from binary to octal and then
to decimal:

010 010 101 - 001 001 100 010

vy ey ey iy ey

= 2 2 5 +« 1 1 4 2

ad AN

2
18 8teat szt do06
x 8 610

144 m= .149

+5

149

As with decimal-to-binary, conversion of the integer
and fraction parts is performed independently.

Computer Codes

The method or system used to represent (symbolize)
data is a code. In the computer, the code relates data
to a fixed number of binary indications (symbols).
For example, a code used to represent numeric and
alphabetic characters may use seven positions of
binary indication; by the proper arrangement of the
binary indications (bit, no bit), all characters can be
represented by a different combination of bits.

Some computer codes in use are: seven-bit alpha-
meric code, two-of-five fixed count code, bi-quinary
code, six-bit numeric code, and the binary system.

Code Checking

Most computer codes are self-checking; that is, they
are provided with a built-in method of checking the
validity of the coded information. This code checking

20

occurs automatically within the system as the data
processing operations are carried out. The method of
validity checking is a part of the design of the code.

In some codes, each unit or character of data is
represented by a specific number of bit positions, and
these must always contain an even number of 1 bits.
Different characters are made up of different combina-
tions of 1 bits, but the number of 1 bits in any valid
character is always even. With this code system, a
character with an odd number of 1 bits is detected
and an error is indicated. Likewise, a code may be
used in which all characters must have an odd number
of 1 bits; an error is indicated when a character with
an even number of 1 bits is detected.

This type of checking is known as a parity check.
Codes that use an even number of 1 bits are said
to have even parity. Codes that use an odd number
of bits are said to have odd parity.

In other codes, the number of 1 bits present in each
unit of data is fixed. For example, a code may use five
bit positions to code all digits but only two 1 bits will
be present in each digit. Digits having more or fewer
than two 1 bits cause an error indication. This system
of checking is known as a fixed count check.

Seven-Bit Alphameric Code (Binary Coded Decimal)
In this code, all characters — numeric, alphabetic, and
special —are represented (coded) using seven positions
of binary notation. These positions are divided into
three groups: one check position, two zone positions,
and four numeric positions (Figure 20).

Check Bit | Zone Bits | Numeric Bits

C B A 8 4 21

Figure 20. Bit Positions, Seven-Bit Alphameric Code

The four numeric positions are assigned decimal
values of 8, 4, 2, and 1 and represent, in binary coded
decimal form, the numeric digits 0 through 9 (Figure
21). Note that 0 is represented as 1010, actually the
binary number for 10. The B and A zone bits are
not present (they are 00) when the numeric digits
0 through 9 are represented.

Combinations of zone and numeric bits represent
alphabetic and special characters. The B and A bits
provide three bit combinations: 10, 01, and 11. Figure
22 shows the zone and numeric bit combinations used

,

g —3 Place Value

o>18 4 21
0 {010
1 /10001
2 0010
3 (0011
4 101 00
5101 01
6 |01 10
7 0111
8 1000
9 {1 001

Figure 21. Seven-Bit Alphameric Code (Numeric Part)

to represent numeric, alphabetic, and special charac-
ters in the 18M 705 and 7080 Data Processing Systems
and on 1BM magnetic tape. In other systems using this
code, there may be special characters not shown; how-
ever, these characters follow the same scheme of bit
arrangement.

The C position, known as the check bit, is used for
code checking only. Because the seven-bit alphameric
code is an even parity code, the number of bits that
represent a character must have an even number of
bits, or the character is considered invalid. The check
bit is present in a character when the sum of the zone
and numeric bits representing the character is odd.
If the number of bits in a character is even without
the C bit, the C bit is not used.

Problems

1. Convert 89,, to its octal equivalent.

2. Convert 010001110010111, to its decimal equiv-
alent.

3. Convert the fraction .358,, to its octal equivalent.

4. Convert the improper fraction 139.247,, to its
binary equivalent.

0123456789

1J KLMNOPQRSTUVWXYZ

With the next four problems, it is necessary to first
convert the decimal numbers and then perform the
arithmetic operation.

5. Add 18,, and 92,, in binary.

6. Subtract 34,, from 71,, in binary.

7. Multiply 17, times 43,, in binary.

8. Divide 448,, by 14,, in binary.

9. Make a binary add and a binary multiply table.

Code Definitions

Four code structures are used with the 7040 and 7044
systems and input-output equipment. Each code is a
specific system of representing numeric, alphabetic,
and special characters. Figure 23 shows the codes and
relations between them.

Two sets of graphics are used. One is designed for
report writing and the other for programming lan-
guage. A print head for the console typewriter is avail-
able for each graphic set. For other 1M Printers, spe-
cial character arrangement A agrees with the report
writing set and special character arrangement H agrees
with the programming language set.

Code headings in Figure 23 are:

H (standard M card code) defines the combination
of punches used to represent each of the 64 code
combinations.

9 (as used in 1BM 704, 709, 7090, 7094) shows the
same characters as they are normally placed in internal
storage of the 7040 and 7044 systems. The six-bit code
groups are represented as two octal digits.

5 (as used in the 705, 7080, and on binary coded
decimal (Bcp» magnetic tape) shows the same char-
acters as they normally appear on BCD magnetic tape
for communication with other 1BM magnetic tape
equipment. Note that this representation permits only
63 code combinations, not 64.

14 (as used in the 1401, 1410, and 1414) shows the
same characters as they normally appear in the internal

& .0-§*/, %+@

Check { C

{
Zone

Numeric

N

Figure 22. Seven-Bit Alphameric Code on Magnetic Tape

Computer Data and Instructions 21

Report Programming Report Programming

Writing Languoges Writing Languages

Graphics Graphics HCode 9 Code 5 Code 14 Code Graphics Graphics HCode 9 Code 5Code 14 Code
@ (zero) g 0 00 12 12 - - n 40 40 40
1 1 1 01 01 01 J J 11-1 41 4] 41
2 2 2 02 02 02 K K 11-2 42 42 42
3 3 3 03 03 03 L L 11-3 43 43 43
4 4 4 04 04 04 M M 11-4 44 44 44
5 5 5 05 05 05 N N 11-5 45 45 45
[6 6 06 06 06 (@] (o] 11-6 46 46 46
7 7 7 07 07 07 P P 11-7 47 47 47
8 8 8 10 10 10 Q Q 11-8 50 50 50
9 9 9 11 11 1 R R 11-9 51 51 51
b) 8-2 12 Note 20 ! ! 11-0 52 52 52
#® = 8-3 13 13 13 $ $ 11-8-3 53 53 53
@ ' 8-4 14 14 14 * * 11-8-4 54 54 54
' : 8-5 15 15 15 J | 11-8-5 55 55 55
> > 8-6 16 16 16 ; ; 11-8-6 56 56 56
V(TM) s 8-7 17 17 17 A A 11-8-7 57 57 57
& + 12 20 60 60 blank blank No Punch 60 20 00
A A 12-1 21 61 61 / / 0-1 61 21 21
B B 12-2 22 62 62 S S 0-2 62 22 22
C C 12-3 23 63 63 T T 0-3 63 23 23
D D 12-4 24 64 64 V) u 0-4 64 24 24
E E 12-5 25 65 65 v \% 0-5 65 25 25
F F 12-6 26 66 66 w w 0-6 66 26 26
G G 12-7 27 67 67 X X 0-7 67 27 27
H H 12-8 30 70 70 Y Y 0-8 70 30 30
| | 12-9 31 71 71 4 z 0-9 71 31 31
? ? 12-0 32 72 72 1 (RM) t 0-8-2 72 32 k)
. . 12-8-3 33 73 73 . ’ 0-8-3 73 33 33
a) 12-8-4 34 74 74 % (0-8-4 74 34 34
C C 12-8-5 35 75 75 M M 0-8-5 75 35 35
< < 12-8-6 36 76 76 \ \ 0-8-6 76 36 36
§ (GM) 3 12-8-7 37 77 77 +H ++ 0-8-7 77 37 37

Note: The octal combination 00 cannot exist in 5 code because it
must be written on BCD tape and would be indistinguishable from blank
tape. This means there are only 63 possible combinations in 5 code
and that 5 code cannot be used directly to represent essentially binary
information, such as programs, arithmetic quantities, and so on from

the 7040/7044 system.

Code Translations

Provision is made in the 7040/7044 system for automatic translation
from one code to another, as required, when data are transmitted

to or from input/output devices. In some cases, it may be necessary
to perform programmed translations (either in the 7040/7044 or in an
off=line 1401) to achieve a desired result. Programmed translation
is required to maintain compatible card formats when binary infor-
mation is recorded in H code on cards and it is desired to read or
punch the cards both on-line on a card reader and off-line via a
card-to-tape or tape-to-card operation. Programmed translation
can be avoided if the octal group 12 in 9 code can be omitted,
since the information can use BCD tape (rather than binary tape)

for off-line operations.

Figure 23. 7040 and 7044 Code Combinations

22

storage of a 1401 or 1410 and as they exist in the input
and output buffers of a 1414 used on the 7040 or 7044
system,

The octal code groups should be interpreted as rep-
resentations of a six-bit pattern in the order of: (BA8)
(421). For example, 101010 equals 52 octal. The entire
figure (Figure 23) is in the order of 9 code. This order
is the same as the collating sequence on the 7040, 7044,
7090, and 7094 systems. (The collating sequence deter-
mines the rank of the characters in compare opera-
tions; 00 is low, 77 is high.)

Figure 24 shows Bcp characters, both in core storage
and as they appear on magnetic tape:

(9 Code) (5 Code) (9 Code) (5 Code)

Character In Storage On Tape | Character In Storage On Tape
0 00 0000 00 1010 - 10 0000 10 0000
1 00 0001 00 0001 J 10 0001 10 0001
2 00 0010 00 0010 K 10 0010 10 0010
3 00 0011 00 0011 L 10 0011 10 0011
4 00 0100 00 0100 M 10 0100 10 0100
5 00 0101 00 0101 N 10 0101 10 0101
6 00 0110 000110 o] 100110 100110
7 00 0111 00 0111 P 100111 100111
8 00 1000 00 1000 Q 10 1000 10 1000
9 00 1001 00 1001 R 10 1001 10 1001
00 1011 00 1011 0 10 1010 101010
@ 00 1100 00 1100 $ 10 1011 101011
& 01 0000 11 0000 * 10 1100 10 1100
A 01 0001 11 0001 Blank 11 0000 01 0000
B 01 0010 11 0010 / 11 0001 01 0001
C 01 001 11 0011 S 11 0010 01 0010
D 01 0100 11 0100 T 11 0011 01 0011
E 01 0101 11 0101 U 11 0100 01 0100
F 01 0110 110110 \ 11 0101 01 0101
G o1 01N 11 0111 W 11 0110 01 0110
H 01 1000 11 1000 X 1101 01 0111
| 01 1001 11 1001 Y 11 1000 01 1000
[} 01 1010 111010 z 11 1001 01 1001
L——01 101 111011 * 11 1010 01 1010
o 01 1100 111100 , 11101 01 1011
% 11 1100 01 1100

Figure 24. Bcp Characters in Storage and on Tape

Processing Unit Operations

The processing unit controls and supervises the entire
computer system and performs the actual arithmetic
and logic operations on data. From a functional view-
point, the processing unit consists of two sections: con-
trol and arithmetic-logic.

The control section directs and coordinates all opera-
tions called for by instructions. This involves control
of input/output devices, entry or removal of informa-
tion from storage, and routing of data between storage
and the arithmetic-logic section. Through the action
of the control section, automatic integrated operation
of the entire computer system is achieved.

In many ways, the control section can be compared
to a telephone exchange. Data transfer paths exist, just

as there are connecting lines between all telephones
serviced by a central exchange. The telephone ex-
change has a means to control the movement of sound
pulses from one phone to another, to ring bells, to
connect and disconnect circuits, and so on. The path
of conversation between one telephone and another
is set up by controls in the exchange itself.

In the computer, execution of an instruction involves
the opening and closing of many paths or gates for
a given operation. The control section can start or stop
an input/output device, turn a signal indicator on or
off, rewind a tape reel, or direct some process of
calculation.

The arithmetic-logic section contains the circuitry
to perform arithmetic and logic operations. The arith-
metic portion calculates, shifts numbers, sets the
algebraic sign of results, compares, and so on. The
logic portion carries out the decision-making opera-
tions to change the sequence of instruction execution.

Instructions and Data

The only distinction between instructions and data in
core storage is the time when they are brought into
the processing unit. Information brought into the proc-
essing unit during an instruction cycle is interpreted
as an instruction. Information brought into the process-
ing unit during any other type of computer cycle is
considered to be data. Consequently, the computer can
readily operate on its own instructions if those in-
structions are supplied as data (that is, if an instruc-
tion is brought into the processing unit during any
cycle other than an instruction cycle). Also, the com-
puter can be instructed to alter its own instructions
according to conditions encountered during the han-
dling of a procedure.

It is this ability to process instructions that provides
the almost unlimited flexibility and the so-called logical
ability of the stored program system.

In the 7040 and 7044 systems, information (both data
and instructions) is handled in fixed groups of 36 posi-
tions (bits) each. Each group is called a word. Each
position within a word is named with the S (sign) posi-
tion followed by positions 1 through 35. Computer
instructions with an address in the operand part indi-
cate the core storage location to be subjected to some
arithmetic or logic operation. This address part, or
field, always occupies bit positions 21 through 35 of
the word (Figure 25).

/////’Z/’ Address Field l

51 0N ELN

Figure 25. Word Address Field

Computer Data and Instructions 23

Capacity of the largest core storage available on the
7040 and 7044 systems is 32,768 words of 37 positions
each; 36 positions are for data and the 37th is a check
bit for the word. The 15-position address field (posi-
tions 21-35) is just large enough to hold or indicate
the largest core storage address. This address, ex-
pressed in the computer’s language (code), is simply
15 consecutive 1's (Figure 26).

111” ni]

20 35 C

Figure 26. Word Address with Largest Core Storage Address

Other core storage capacities available with the
7040 and 7044 systems are: 16,384; 8,192; and 4,096
words. In a system with a 16,384-word capacity, the
largest address is contained in 14 positions of the ad-
dress field. The left-most position (position 21) is
ignored. Similarly, a 8,192-word system uses 13 posi-
tions (23-35), and a 4,096-word system uses 12 posi-
tions (24-35) as its address field.

The operation part of most instructions is contained
in word positions S, 1-11. Positions 21-35 of the same
word would then contain the address of the operand
to be used with the instruction. For example, assume
that two factors, A and B, are to be added. In the
7040 and 7044 systems, one of these factors is always
taken from core storage by the add instruction; the
other factor is already in a processing unit register
called the accumulator. The accumulator factor must
have been placed there by a previous instruction.
Figure 27 shows the format of an add instruction
when A is the contents of core storage location 00001
and factor B is the contents of the accumulator.

ADD Factor A

5

Figure 27. Instruction Format for an Add Instruction

When this instruction is executed, factor A is added
to factor B and the resulting sum is returned to the
accumulator. Actual computer coding is used (binary
code), and the 36 positions are shown in groups of
three for easier reading and conversion to the octal
number system.

As an example of computer operation, assume that
the accumulator contains the number +1. If the num-
ber in location 00001 is +2, the result of executing
the add instruction is +3. This is shown in Figure 28
(a 0 in the S position indicates a plus number; a 1
indicates a minus number).

Register
A register is a device capable of receiving informa-
tion, holding it, and transferring it as directed by con-
trol circuits. The electronic components used may be
magnetic cores, transistors, or similar components.
Registers are named according to function: an ac-
cumulator register accumulates results, a multiplier-
quotient register holds either multiplier or quotient,
a storage register contains information taken from core
storage or sent to core storage, an address register
holds the address of a storage location or device, and
an instruction register contains the instruction code
(operation part) of the instruction being executed
(Figure 29).

Core Storage
Location

i
YY1
L Storage Register

7N

A 00002
Instruction Address
Register Register

Figure 29. Register Nomenclature and Function

"0400" "00001"
ADD Instruction 000 100 000 Q0OPZZ//7ZZZ7////4A000 000 000 000 001
S, 1 n 21 EL}

Location 00001 contents (+2)

[000 000 000 000 000 000 000 000 GO0 000 000 010]
S 1

3s

Accumulator contents before

the addition {+1)

[ofo]000 000 00O 00O 000 000 000 000 000 000 000 001]
sQ P 35

Accumulator contents after

the addition (+3)
Figure 28. Execution of an Add Instruction

24

[0Jo 000 000 000 000 000 000 000 000 000 000 000 011)
SQP1 a5

Registers differ in size and use. In some cases, extra
register positions are used to detect overflow condi-
tions during an arithmetic operation. The accumulator
register is made up of 38 positions; 36 are used for
data and two positions (P and Q) are used to remem-
ber overflow conditions. If, for example, two 36-bit
binary numbers are added, it is possible that the re-
sult is a 37-bit answer.

In Figure 30 the accumulator register holds one
factor and the other factor, from storage, is in the

Accumulator [0007 00110111010001101010011100010101 01

1
Contents sar 1 35

Storage Register
Contents

[G11017000101000110110110001010010010]
51

35

Accumulator [50101110100010001101011111111011100111]

Result - 35

Figure 30. Overflow Condition Resulting from Addition

Single Register Shifting:

storage register. The two factors are added and the
result is placed back into the accumulator register,
where the overflow is indicated by the presence of a
1 bit in the first (P) overflow position. The accumula-
tor might then be shifted right one place and a rec-
ord kept of the lost low-order bit.

The contents of other registers can be shifted right
or left within the register and, in some cases, even
between registers. The effect, when shifting from one
register to another, is the same as if the two registers
were one large register. Figure 31 shows three types
of shifting. With shifting within a register, data shifted
out of the register may, or may not be lost, depending
on the instruction used. With double register shifting,
data shifted out of the registers are lost. In the types
of shift operations where data loss is possible, vacated
positions of the registers are filled with 0’s.

In other uses, a register holds data while associated
circuits analyze the data. For example, an instruction
can be placed in a register, and circuits can determine

Before

(Shift right seven places)
Note: Left-hand positions

ﬁom 100010010011101101000111001 100ﬂ

are filled with zeros; data
shifted out of position 35
are lost.

N

--------- @
After RN

|60000000100HOOO]0010011101101000111 0011001

S

3

Before

IOIOOHOOO]OOIOOI 1101101000111001 lOO]l

Single Register Shifting:

(Shift right seven places)
Note: Data are not lost when
shifted out of position 35; the

R

data are re=entered in

position S. ‘1 1TT4

After \
IOO] 10010100110001001001110110100011 1]

Before

Double Register Shifting:
(Shift right seven places)

[o100110001001001 11011010001 11001 1001

W)OO]OOOlOOlOOI 1101101000111001 1001'

Note: Data are shifted from
position 35 of the first register
into position S of the second
register. Data shifted out of
position 35 of the second

A

AN

register are lost. Vacated
positions are filled with zeros.

IOOOOOOOO] 0011000100100111011010001 IJ

|00110010]00]1000100100]110110]0001H 0011001

Figure 31. Types of Register Shifting

Computer Data and Instructions 25

the operation to be performed and locate the data to
be used. Data within specific registers may also be
checked for validity.

The main registers of a system, particularly those
involved in normal data flow and core storage address-
ing, have small lights associated with them. These
lights are located on the operator’s console for visual
indication of register contents and various program
conditions. If a light is on, a 1 bit is indicated for that
position. If the light is off, a 0 bit is indicated.

Counter

The counter is closely related to a register and usually
performs the same functions. In addition, its contents
can be increased or decreased by some amount. The
action of a counter is related to its design and use
within the computer system. Like a register, it may
also have visual indicators on the operator’s console.

Adder

The adder receives data from two or more sources,
performs addition, and sends the result to a receiving
register. Figure 32 shows two positions of an adder
circuit with inputs from registers like the accumulator
and storage register.

The sum is developed in the adder. A carry from
any position is sent to the next higher-order position.
The final sum goes to the corresponding position of
the receiving register.

Accumulator
Adder 2 I

To Next Adder ;Carry Sum Sum
Receiving Register ulaa

Figure 32. Adders in a Computer System

Machine Cycles

To receive, interpret, and execute instructions, the
central processing unit must operate in a prescribed
sequence. The sequence is determined by the specific
instruction and is carried out during a fixed interval
of timed pulses. These intervals are measured by reg-
ular pulses emitted from an electronic clock at fre-
quencies as high as a million or more per second. A
fixed number of pulses determines the time of each
basic machine cycle.

26

Within a machine cycle, the computer can perform
a specific machine operation. The number of operations
required to execute a single instruction depends on the
instruction.

All instructions have one instruction (I) cycle and
some instructions require only an I cycle for complete
execution. Other instructions require both an I and an
execute (E) cycle. Various machine operations are
thus combined to execute each instruction.

INSTRUCTION CYCLE

The first cycle required to execute an instruction is
called an instruction (I) cycle. The time for this cycle
is instruction or I time. During I time:

L. The instruction is taken from a main storage loca-
tion and brought to the processing unit.

2. The operation part is decoded in an instruction
register; this tells the machine what is to be done.

3. The operand is placed in an address register; this
tells the machine what it is to work with.

4. The location of the next instruction to be executed
is determined.

At the beginning of a program, the instruction
counter is set to the address of the first program in-
struction. This instruction is brought from storage and,
while it is being executed, the instruction counter auto-
matically advances (steps) to the location coryespond-
ing to the space occupied by the next stored instruc-
tion. By the time one instruction is executed, the coun-
ter has located the next instruction in the program
sequence. The stepping action of the counter is auto-
matic; in other words, when the computer is directed
to a series of instructions, it will execute these instruc-
tions one after another until instructed to do otherwise.

Assume that an instruction is given to add the con-
tents of storage location 00002 to the contents of the
accumulator register. Figure 33 shows the main reg-
isters involved and the information flow lines. ‘

I time begins when the instruction counter transfers
the location of the instruction to the address register.
This instruction is selected from storage and placed in
a storage register. From the storage register, the oper-
ation part is routed to the instruction register and the

(for E cycle)

ADD 0002

Storage

ADD 0002

I Instruction Register ‘F—liforoge Register —I_’ Address Register l
Operation Decoders llnsrrucrion Counter I

Figure 33. Computer I Cycle Flow Lines

operand to the address register. Operation decoders
then condition circuit paths to perform the instruction
while the address register locates the operand.

Execution of instructions does not have to proceed
sequentially. Certain instructions alter the process of
sequential execution unconditionally. In this case, an
instruction brought from storage indicates that the next
sequential instruction is not to be executed but that
one located in another position is next; the normal
stepping of the instruction counter is altered accord-
ingly. For instance, the instruction counter can be reset
back to the beginning of the program so that the entire
program can be repeated for another incoming group
of data.

This transfer (branch) to alternative instructions
may also be conditional. The computer can be directed
to examine some indicating device and then transfer
if the indicator is on or off. Such an instruction can
say: “Look at the sign of the quantity in the accumu-
lator; if this sign is minus, take the next instruction
from location 5000; if the sign is plus, proceed to the
next instruction in sequence.” The instruction counter
is set according to one of the two possible storage
locations (5000, or the location of the next instruction
in sequence). The logic path followed by the computer
(that is, the precise sequence of instructions executed)
may be controlled either by unconditional transfers or
by a series of conditional tests applied at various points
in the program. The arrangement of instructions in
storage, however, is not normally altered.

EXECUTE CYCLE

I time is usually followed by one or more computer
cycles that complete the operation being done by the
computer. Execution of an E cycle results in bringing
a word into the processing unit from core storage or
in taking a word from the processing unit and placing
it in core storage. Any word brought into the processing
unit during an E cycle is treated as data for the oper-
ation decoded by the previous I cycle. Figure 34 shows
the data flow following the I time illustrated by Fig-
ure 33.

The E-cycle starts by removing from storage the in-
formation located at the address (00002) indicated by
the address register. This information is placed in the
storage register. In this case, the core storage factor
is then placed in the adders, together with the number
from the accumulator. The contents of the storage reg-
ister and accumulator are combined in the adders, and
the sum is returned to the accumulator.

(get the number located at 00002)

Storage

number at
location 00002

¥

Storage Register

Address Register

l Instruction Counter

Figure 34. Computer E Cycle Flow Lines

The address register may contain information other
than the storage location of data. It can indicate the
address of an input/output device or a control function
to be performed. The operation part of the instruction
tells the computer how to interpret this information.

Processing Unit Data Flow

Instruction flow charts are included with many of the
instruction descriptions to assist in understanding data
and instruction flow through the processing unit. Fig-
ure 35 shows a simplified processing unit data flow.
In this figure, the positions of the word that are placed
in a register or counter are shown below the com-
ponent.

L Core Storage l I

5,1 A 3B C

i
Tag L Storage Register I
Register
S,1 35, C
18 20
Index Registers
21 35
I | | Adders]
Q,P,1 | EY

Shift LI | l Accumulator] L MQ Register I
Counter

w5 S QAP 35S, 35

Figure 35. Simplified Processing Unit Data Flow

Computer Data and Instructions 27

Introduction To Programming Systems

A programming system enables the programmer to
communicate with the computer in a language closely
related to his own language. Thus, the business man
might communicate with a business-oriented language
and the mathematician might use a language based on
mathematical formulas. '

The aim of the programming system is to get com-
puter systems into productive operation sooner by
freeing the programmer from the intricacies of working
in machine language.

Since the BM 7040/7044 Data Processing Systems
are designed as fixed length binary machines, instruc-
tions to the computer must be given in binary notation.
However, there is an obvious advantage to the pro-
grammer in being able to write:

ADD DIVIDENDS TO INCOME
as opposed to writing in machine language:

000101000000000000000000000110000000
000100000000000000000000000010111000

The English language code is easier to learn and .use,
invites fewer clerical errors, and makes more sense to
anyone reading it. These advantages all add up to one
thing: high-level languages (related to the program-
mer’s own) allow the programmer to program the
problem instead of the machine.

Experience has shown that a computer can be pro-
grammed to recognize instructions expressed or written
in other languages and to translate those expressions
into its own language. This has led to the development
of a number of programming languages which are
easier to use and understand than the language of the
machine.

The first such languages permitted the programmer
to write convehient equivalents of machine instructions
using symbols (called mnemonics) to represent them.
Symbolic instruction representations include: App for
add, sus for subtract, piv for divide, Tra for transfer
control, rps for read, and so on. The computer, acting
under control of previously written machine language
programs, would then translate these symbolic instruc-
tions into equivalent machine instructions, which could
then be used in solving the actual problem.

These first languages resulted in a one-for-one trans-
lation. That is, each instruction written in the pro-
gramming language was translated into one machine
language instruction. For example, the instruction:

ADD 184
would produce the machine language instruction:

28

000100000000000000000000000010111000

Later, “macro-instructions” were developed. That is,
single programmer language instructions could be used
to produce a whole series of machine instructions. This
development greatly increased the power of program-
ming languages. The art of programming has pro-
gressed to a point at which it is possible to give
directions to a computer by writing statements and
sentences in a language which is based on, and which
can be read in the same way as, English itself or even
mathematical formulas.

The translation feature of the machine language pro-
gram is perhaps the most important feature, but not
the only one. The computer instructions needed to pro-
duce a given result must be executed in a given
sequence. If an addition is to be performed, one of the
values involved must be in the computer before the add
instruction itself is executed. This is normally accom-
plished with an operation called cra, “Clear and Add.”
After this operation is executed, the add operation may
then be executed. The two-instruction sequence is
shown in both machine and symbolic language as: -

~Machine Symbolic
000101000000000000000000000101111111 CLA 383
0001000000000000000000000001 10000000 ADD 384

Each final machine language instruction must be as-
signed a particular location in core storage. If the cLa
instruction is to be assigned a location of 100 (its
precise slot in core storage), and the App instruction is
to immediately follow it, the location of the app in-
struction must be 101. Therefore, the location of each
instruction must be known precisely. It is, in effect, the
“name” of the instruction. If an additional instruction
is to be inserted in a program of many instructions,
every instruction from the point of insertion must have
its previously assigned location changed. Since most
programs undergo changing or up-dating, instruction
location assignment becomes a tedious but necessary
part of programming. The solution, of course, is to have
the translating program do the actual assignment of
instruction locations in addition to its translating func-
tion. The programmer need simply tell the translating
program the desired location of the first instruction
and succeeding instructions are assigned sequentially
ascending locations.

The advantage of expressing a problem in symbolic
language over machine language should now be evi-

dent. This symbolism may be carried one step further
by using symbolic data addresses as well as symbolic
operation codes. The translating program can then be
designed to translate and assign these symbols to actual
core storage locations. Using the same instructions as
before, assume that the two values to be added are ex-
pressed as values “A” and “B”. Of course, in both
methods the values must have been previously placed
in core storage, but the problem can now be stated as
in Figure 36.

Instruction Instruction

Location) Operation Part Address Part
CLA A
ADD B

Figure 36. Symbolic Operations and Addresses

If we now tell the translating-assigning program we
want the first instruction placed at core storage loca-
tion 100, the program shown in Figure 37 would result
(the program is expressed with symbolic operation
codes and decimal addresses and locations, instead of
machine language, for better understanding).

Instruction Instruction

Location Operation Part Address Part

100 CLA 102
101 ADD 103
102 Value A
103 Value B

Figure 37. Assigned Addresses and Locations

In a basic sense, the translating-assigning program
is called a “processor program,” or, more simply, the
processor. In normal operation, the processor is entered
into the computer system and placed in some type of
storage. Next, the instructions, prepared by the pro-
grammer to accomplish a particular job as coded in his
language, are fed into the computer. The computer
then, in translating the programmer’s instructions into
machine language instructions, writes its own program.
The translated machine instructions are placed in core
storage and form the actual job program.

Operation
A processor is made up of at least two parts: a lan-
gauge, with associated rules of grammar; and a ma-
chine language program, whose main function is to
translate the language of the programmer into machine
language.

The input to a processor is called the source program.
This is written by the programmer in the language of
the programming system (processor language) and

states the requirements of the problem and the method
of solution. Before the programmer writes his source
program, he must have completely analyzed and de-
fined the problem.

The output from the processor is the object program,
the translation of the source program from the pro-
grammer’s language to the language of the computer
system on which the program will be used. Figure
38 shows the basic procedure for producing an ob-
ject program; this is called the assembly or compiling
run. In this case, the assembly (processor) program
has been previously recorded on a reel of magnetic
tape and is available to the computer for the assembly
process.

The source card deck may be fed directly to the com-
puter or recorded on another magnetic tape reel in an
off-line card-to-tape operation. Off-line means a sepa-
rate operation not controlled by the computer and may
be considered as a preparatory or set-up operation. The
information from each source card is translated by the
assembly program instructions into object (machine)
instructions. Each object instruction is then placed in
storage. When all source information has been trans-
lated and assembled, the resulting object program is
sent from the computer signalling the end of the as-
sembly run.

The object program is printed (program listing) and
an object program card deck is produced. This opera-
tion, as with source program input, may be produced
directly from the computer or by off-line tape-to-card
and tape-to-printer operations. Note that both the pro-
gram listing and object card deck are referred back to
the programmer for modification or correction if nec-
essary.

Once the object program is satisfactory, the execu-
tion run may be started (Figure 39). Fed into the com-
puter with the object program are the data required
to solve this particular problem. As with Figure 38, the
information is fed directly to the computer from card
decks or from magnetic tape reels prepared off-line.
Subroutines (standard programs used with many prob-
lems) together with rate tables and other constant
factors may also be available to the computer to assist
in the execution of this problem. Figure 39 shows the
use of a subroutine tape for this purpose.

After the problem is executed (solved) by the com-
puter, the result (output) may be recorded on mag-
netic tape for an off-line printing operation or printed
results may be received directly from the computer.

A proven object program may be used time after time,
with varying problem data, to produce periodic results
—such as production type programs of payroll or in-
ventory; or to produce different results to assist the
designer seeking an optimum design — such as the best

Programming Systems 29

Programmer

Coding
Sheets

Card Punch

Off-Line
Source Cards

(Processor Language)

| Card Reader

Tape
to Printer

Program
Listing

Assembly
Program

On-Line

On-Line

Tape Object Tape
Program to Card
Tape
Object Program
Cards
Off-Li

Computer e (Machine Language)

On-Line
Card Punch

Object Program
Cards

Program
Listing

(Machine Language

Figure 38. Assembly Process to Object Program

wing air foil, or the most eflicient placement of steam
pipes within a boiler, considering all variables for each
application.

COBOL System

The copoL (Common Business Oriented Language)
system, unlike the first programming languages, is
“problem oriented.” That is, the language itself, and
the techniques for using it, are conceived in terms of
the problems to be solved and the results to be ob-
tained; not, for the most part, in terms of the technical
features of the computer. Of course, each problem

30

-

Programmer

must still be solved by technical means; it is still nec-
essary to produce a machine-language program before
a problem can be solved. However, the language
written by a coBoL programmer bears little resemblence
to machine language, and the programmer has little
direct concern with the method by which the cosoL
language program is translated into machine language.

A simple example will best illustrate the basic
principles of the problem-oriented type of program-
ming system. Assume we wish to increase the value of
an item called incoME by the value of an item called
pivipenps. The coBoL language allows us to specify
this addition by writing the following sentence:

ADD DIVIDENDS TO INCOME.

Object
Program
Cards

On Line On Line

Card Reader Card Reader

Off-Line

Computer

Tape
to Printer

Printed
Results

Printed
Results

Figure 39. Execution Process Using Object Program

Before the processor can interpret this sentence,
however, it must be given certain information. For ex-
ample, the programmer will have to write the names
PIVIDENDs and INCOME in a special part of the program
called the “data division.” Here, facts about the data
represented by those names, such as maximum size,
how the data is expressed, and so on, are stated.

When the processor encounters the sentence, it has
access to certain information that will aid it in trans-
lating the sentence. In addition, it will be able to obtain
certain information “built into” the processor itself.
(The reader should note, however, that the exact pro-
cedure will vary from machine to machine and that, in
any case, the programmer is not directly concerned
with the details.)

First, the processor examines the word app. It con-
sults a special list of words that have clearly defined
meanings in the coBoL language. This list is a part of

the processor. If app is one of these words, the pro-
cessor interprets it to mean that it must insert into the
object program the machine instruction (or instruc-
tions) necessary to perform an addition.

The processor then examines the word DIVIDENDS.
Since it can obtain certain information about pIVIDENDS,
it will know where and how this information is to be
stored in the computer, and it will insert into the object
program the instructions needed to locate and obtain
the data.

When the processor encounters the word To, it again
consults the special word list. In this case, it finds that
to directs it to the value of iNcoME which is to be
increased as a result of the addition.

The processor must now examine the word INCOME.
Again it has access to certain information about this
word, and, as a result, it is able to place in the object
program the instructions necessary in locating and
using INCOME data.

We have indicated that the programmer placed a
period (.) after the word INCOME, just as he would in
terminating an English-language sentence. The effect
of the period on the coBoL processor is quite similar.
It tells the processor that it has reached the last word
to which the verb app applies.

The previously described steps are performed by the
processor in creating the object program. They might
not be performed in exactly this way or in the same
sequence, because machines vary and because each
processor is adapted to a particular machine. How-
ever, regardless of the machine, the same cosoL-
language sentence produces machine instructions that
will cause the object program to add together the
values pIviDENDs and INCOME.

FORTRAN System

The ForTRAN (Formula Translation) system is very
similar in concept to the coBoL system. One of the
main differences is in the language the programmer
uses to express his source program. Where business
English is used by cosor, mathematical language is
used with FortRAN. The effect of the coBoL sentence:
ADD DIVIDENDS TO INCOME
could be achieved by the FORTRAN statement:
INCOME = DIVIDENDS + INCOME
However, FORTRAN processors for some machines might
insist that the words be abbreviated to something like:
INCO = DIV + INCO

This would depend on the individual machine FORTRAN
processor. The statement, in effect, tells the processor
to insert the necessary instructions into the object pro-
gram to make the iINcoME data location equal to the

Programming Systems 31

pivipenp data added to the present iNcoMmE data. Note
that the computer is not merely instructed to find the
value of INcoMmE, but is also told where to put the result
of the addition after it is performed. If the original
incoME field (in core storage) contained 10000, and
the pivibenp field contained 15, the original iNcoME
field would be replaced by 10015 after the operation
has been executed.

If this result is not desired, the programmer could
change the statement to:

INCOME 1 = DIVIDENDS + INCOME

With this change, a new incoME 1 data field would be
generated in core storage, the result of the addition
would be placed there, and the original incoMmEe field
would remain unchanged.

Since only a few of the many features of the cosoL
and FORTRAN systems have been discussed, the reader
is referred to the COBOL General Information Manual,
Form F28-8053, or the FORTRAN General Informa-
tion Manual, Form F28-8074, for additional informa-
tion.

Programming System Segment Relationship

Thus far, the terms Symbolic Language, Programming
System, Source and Object Programs, and Processor
have been used. In actual operation these terms are
expanded to:

1. Programming System: Any method of program-
ming problems, other than machine language, that
consists of a language and its associated processor(s).

2. Symbolic Language: Any collection of symbols
used in programming to represent operation codes,
functions, addresses, with rules of usage.

3. Processor: A machine language program that per-
forms the functions necessary to convert a source pro-
gram into the desired object program.

4. Source Program: A program coded in other than
machine language that must be translated into machine
language before being used.

5. Object Program: A program coded in machine
language for use by the computer.

6. Compiler: A translation program that translates
macro-instructions of a symbolic program into one-for-
one symbolic instructions, and then passes the entire
set of instructions to an assembly program for final
' translation.

7. Generator: A machine language program used
during compiling to produce symbolically coded (one-
for-one) instructions that will perform the operation
called for by the symbolic coding of the source pro-
gram,

8. Assembly Program: A translation program that
substitutes binary coding for symbolic instructions, may
assign storage locations, and performs other activity

32

necessary to produce an object program directly load-
able into the computer. This object program may be
self-loading or, in some systems, a load program is
needed.

Figure 40 shows the segment relationship in pro-
gramming systems.

@ Symbolic @ Programming System
Language
@ Processor

@ Source Program; 1 I

one-for-one sym- (® Compiler @Obiect

bolic instructions Assembly program;

and macro I B Program T instructions

instructions and data
are binary
coded

Figure 40. Programming System Segment Relationship

Program Checkout

After successful translation and assembly of a source
program, execution of the resultant machine language
object program with test data occurs. This is done to
assure that the program does not have logical errors
and that it is capable of producing a right answer when
using test data. Two results are possible, The first and
hopefully only result is that the problem (for which
the program was written) can now be attempted with
real data. The second result — the test run does not
function properly — may occur because of many things.
The most frequent cause is that the source program
has been improperly or incompletely stated.

Mistakes by the programmer are more difficult to
avoid than might be expected. It is, in fact, a rare pro-
gram that works correctly the first time it is tried with
test data. In most cases, several test runs must be made
before all mistakes are found and corrected. The pro-
gramming system itself finds most of the obvious mis-
takes during the translation and assembly run. Such
things as calling for a storage location by a name when
that name has not been defined, attempting to perform
integer arithmetic on floating point data (or the re-
verse), lack of defined alternative paths on testing
operations, and keypunching errors of all kinds are
detected and noted during the assembly and transla-
tion run of the program.

Computer mistakes are usually obvious. Built-in de-
tection circuits will normally reflect the kind of mis-
take the computer has made by turning on an indicator
and stopping the computer. Detection and classifica-
tion of the mistakes a programmer can make are, how-
ever, many times more complex.

Testing Techniques

As previously stated, a computer program may be ex-
pressed in machine, symbolic, or one of the problem-
oriented languages such as FORTRAN or coBoL. Source
program coding is harder and more error prone when
machine language is used, but becomes progressively
easier with symbolic and higher level languages. These
circumstances are reversed when source program de-
bugging is required. That is, it is easier to debug a
symbolic language program than a FORTRAN or COBOL
program. The main reason for this is that the symbolic
program results in a one-for-one translation (one
machine language instruction for each symbolic lan-
guage instruction), whereas high-level languages
usually result in 2 many-for-one translation.

Many techniques exist to assist the programmer dur-
ing the check out phase of his work. Each has its own
advantages and disadvantages. The one to be used for
a particular problem will depend upon the pro-
grammer’s thoughts as to what area of his program is
in trouble and how extensive the trouble is. Tech-
niques that involve extensive use of switches on the
operator’s console are very wasteful of computer time
and are not recommended.

Storage Printout

This type of utility program (routine) is most efficient
from a machine standpoint because practically the
entire contents of storage, plus the contents of working
computer registers and the condition of indicators and
switches, may be presented in printed form. Normally,
the register contents and condition of indicators and
switches are printed first. The contents of storage are
then printed. Each line of printing representing stor-
age begins with the starting location of that line ex-
pressed in octal format. Seven complete word loca-
tions are printed on each line. The print (dump) rou-
tine sometimes has provisions for dumping one or more
selected blocks of storage instead of all of it. It may
also have the ability to restore the dumped blocks of
storage back into their original locations.

Tracing

If visually checking a storage print-out fails to reveal
the program difficulty, a technique called “tracing”
may be used. The trace technique usually involves an
interpretive routine and, therefore, executes a number
of instructions for each program instruction being
traced. The print-out received while tracing normally
includes: the location of the instruction being executed,
the instruction being executed, and the contents of
the working registers after the instruction has been
executed. The printing of each instruction execution
in a program would result in excessive machine time

and should be used only when all other methods fail to
reveal the program trouble.

The basic tracing technique may be revised, how-
ever, and only selected storage locations can be printed
when program execution reaches a specified point in
the program. With this variation, a “snapshot” can be
obtained of a particular part of the program under
particular conditions. For example, the trace and re-
sultant print-out can be specified to occur only when
the program executes a transfer instruction. A whole
series of “snapshots” will then be obtained showing the
execution path through the program. Likewise, only
those instructions which altered the normal execution
path can be “snapshot,” to show the exception paths
the program has executed.

Summary

Successful program check out depends on many things.
The time consumed by this necessary but frustrating
phase of programming may be lessened if certain basic
rules are followed:

1. Document your program wherever possible so
that you (and anyone else) will know what you in-
tended to accomplish by a given program step.

2. Check the source program cards against the docu-
mentation before an assembly and test run is attempted.
This point cannot be overemphasized.

3. Leave space in your program for insertion of test-
ing or printing routines that may be used in the test
run of the program. Program space is useful also if
changes have to be made.

4. Be aware of the debugging techniques available,
and know how best to use them; avoid becoming a
slave to one technique, excluding all others.

5. Be absolutely sure that the program does what it
is supposed to do and nothing more.

6. A successful test run does not insure that the pro-
gram will run to completion with actual data. Actual
data may be too large for the storage area assigned to
it, too slow to be properly processed by the program,
or may not be in the planned data format.

Input/Output Control Systems

While macro instructions save much labor, the prob-
lem of organizing input/output operations in a complex
application could still involve considerable work on the
part of even the most expert programmer. From a
standpoint of simplicity, it is far easier to work with
one record at a time; that is, read a record, process the
record, and then write the resulting record. However,
efficient utilization of tape or disk systems requires
that records be grouped both on input and output and
that the processing of records be scheduled to best use
the available computing time.

Programming Systems 33

To solve this and other problems, the concept of
input/output control systems aocs) was developed.
Basically, adding 10cs to a programming system makes
it possible for the programmer to think of his problem
as a simple sequential operation. Given a description
of how the input and output files are organized, the
processor associated with the 10cs takes care of all the
machine language coding necessary to read and write
tape, card, or disk storage records.

It is important to recognize that the 10cs statements,
which give the programmer the facility of using these
techniques for input/output programming, are part of
the total language for an individual system. The impor-
tance of these subroutines and their relatively recent
inclusion in programming systems have led many to
discuss them as a separate subject. There can be no
argument with this sort of discussion as long as we
keep in focus the entire programming problem and
the relative place of input/output control systems.

The use of an 10cs, then, enables the programmer to
divorce himself almost completely from the physical
requirements of the data, the recording media on
which the data are written, and the input/output de-
vices on which the media are mounted, and permits
him to concentrate most of his efforts upon the process-
ing of the data.

With disk storage attached to data processing sys-
tems, additional complexities of input/output pro-
gramming have been introduced. Because of the
random access nature of these devices, proper sched-
uling becomes even more important and more difficult.

Where a tape 10cs can use the serial nature of tape
files to call in the next block from the tape before it
is requested by the user’s program, this is not always
possible when using a disk. Here, the “next” record of
the file may be physically located anywhere in the
disk storage, and several “logical” records may share
the same physical disk record. Many techniques exist
for solving this problem. Some are quite simple; others
are very complicated. Several of the latter involve seg-
menting the user’s program into two or more subpro-
grams. Each subprogram can process one type of rec-
ord or locate the new record of a given type. The
10cs, then, can enter these subprograms in a more or
less random sequence, depending on which of many
records being sought on the file is found first. This is
actually a simple form of multiprogramming, where
several different logical programs perform their com-
putation in a sequence partially dictated by a master
scheduling routine.

Important features found in most of the input/output
control systems in use are listed below. No one 10cs
contains all features listed, but all of them utilize many
of the procedures. Features not in universal usage are
included to show the great versatility of these systems.

34

Input/output control systems have grown past the
point of merely handling the normal input and output
requests and are becoming an integral part of the
entire operating system for a data processing system,
in some cases handling the manipulation of data inter-
nally as well as to or from the input/output devices.

Input/Output Scheduling

Some computers handle input/output in a serial,
synchronous fashion. No computing can be done until
an input/output operation is completed and, con-
versely, no 1/0 can be done while the central proc-
essor is engaged in computation. Other computers,
however, achieve simultaneous input/output and com-
puting operation by simply allowing the central
processor to continue with its operation while the
input/output device locates data or reads it into or
out of the main storage of the system. This simul-
taneous (asynchronous) input/output for all types of
input/output equipment helps greatly to prevent
unnecessarily delaying the central processor while
information is being read into or out of main storage.

The use of an 10cs, then, allows the programmer to
easily make use of the complex asynchronous input/
output devices that permit a modern data processing
system to operate efficiently.

Blocking and Deblocking of Records

High density tape or disk storage units become rela-
tively inefficient when used to record short blocks of in-
formation. When recording 80 character blocks, for
example, over three-quarters of the file contains no use-
ful information; instead, it is made up of end-of-record
gaps. By grouping together or blocking a number of
such short records, all but one of the useless end-of-
record gaps can be eliminated. The result is that a given
length of tape contains several times as much informa-
tion as before. Since the tape passes through the tape
unit at a fixed rate, the tape unit now spends more of
its time reading useful information and less time spac-
ing over end-of-record gaps. The end result is a higher
effective input/output data rate.

Note that this technique fails if the records are not
requested often enough to keep the tape unit in con-
tinuous operation. In this case, the speed of the cen-
tral processor becomes the limiting factor and the
program is said to be process limited. If the reverse
is true, the program is said to be input/output limited,
and blocking may be used to decrease the time re-
quired to read an average logical record.

Since input/output units usually require that the
entire physical block be read or written once trans-
mission is started (there is no way to stop tape mo-
tion in the middle of a block), it is desirable to collect

together all records to be written as one block and,
conversely, on input, to unpack or deblock such a
physical block into its many logical records and release
them to the processing program as requested by it.

Standard Error Correction and
Unusual Condition Routines
Many conditions met in performing input/output are
exceptions to the normal case of simply reading or
writing a record. The programmer does not wish to
concern himself with all of these eventualities each
time he makes an 1/0 request. For example, he should
not have to perform a test each time a file is refer-
enced to determine if the end of the file has been
reached. Doing so makes the infrequent end-of-file
condition require as much programming, perhaps, as
the normal reading of the record. Many unusual or
exceptional conditions are of a general nature and, as
such, can be handled by common routines within an
10CS.

Listed below are a few of the exceptional conditions
detected or handled by input/output control systems:

ERROR CORRECTION PROCEDURES

If transmission to or from an input/output device is
not successful the first time it is attempted, cerfain
techniques can be used to attempt to clear the failure
and allow the program to continue uninterrupted. Such
standard error correction routines might involve an
attempt to erase a record recorded incorrectly on tape
and to rewrite the record correctly. Obviously, if the
rewrite is successful, the programmer need not be con-
cerned and need not provide additional instructions to
handle the resulc.

If the repeated erase and rewrite are not successful
in clearing the failure, only then does the machine
operator or the program need to be informed of the
uncorrectable error., Thus, most errors can be auto-
matically corrected without any additional program-
ming being required.

END-OF-REEL AND END-OF-FILE PROCEDURES

When all data records on a single reel of tape are
processed, the tape is said to be at end-of-reel. If, in
addition, all records of the file, which can consist of
more than one reel, are processed, the file is said to be
at end-of-file. Obviously, if an end-of-file condition is
met, the processing of that file is complete and the
user’s program must be informed of this fact.

IMPROPER LENGTH RECORD PROCEDURES

If a record is read that, through malfunction or pro-
gramming error, is not of correct length, this condi-
tion must be detected and corrective action taken.

If the error is such that the system cannot continue
processing the current job, automatic transition to the
next job can be initiated or the system may be stopped
after informing the operator of the nature of the error.
In some cases, it is enough to inform the user’s pro-
gram of the condition and allow it to make the deci-
sion as to how the condition is to be handled.

Tape Labeling

The maintenance of a large library of tapes containing
data costing thousands of dollars to generate imposes
a large responsibility of preserving the integrity of the
data. A careless operator, who inadvertently mounts
a master tape containing valuable data and allows the
tape to be written upon, can cause almost complete
collapse of the application using this master tape
(writing on tape automatically erases previously re-
corded information).

To insure accurate library maintenance, a technique
of tape labeling has been developed. This technique
consists of recording, as the first block of information
on each reel, a header label containing information
that uniquely identifies the reel to the user’s program
or the 1ocs label checking routine. By comparing the
desired reel identification against the information re-
corded on the reel, correct reel mounting can be in-
sured and file integrity preserved.

Programming Systems 35

IBM 7040/7044 Programming Systems Programs

The 1BM 7040/7044 Operating System aBsys) is an
integrated set of systems, coordinated by the iBsys
Basic Monitor and using the 7040/7044 Input/Output
Control System. The basic monitor provides continuous
operation during a sequence of jobs, each of which
might involve a different system. The systems that
work with the Basic Monitor include:
IBEDT A systems library editor that maintains the sys-
tem library.
10cs A control system for efficient scheduling of input
and output.
IBSRT A generalized sorting program to sort and merge
data.
IBJoB A processor program containing the following
components:
1BjoB Monitor: Supervises the execution of the com-
pilers, assembly program, and loader.
1BLDR Loader: Processes and combines programs pro-
duced by 1BMAP to form one binary object program,
1BLIB Subroutine Library: Contains routines that will
be loaded if required for object program generation.
1BMAP Macro Assembly Program: Processes pro-
grams written in the map language (a machine-
oriented language with macro facilities) and the
internal language programs produced by the cosoL
and FORTRAN compilers. 1BMAP produces from each
compilation a binary program deck that retains
enough symbolic content to enable communication
with previously compiled program decks.
1BFTC FORTRAN Compiler: Processes programs writ-
ten in the FORTRAN 1v language (a scientifically ori-
ented language) and produces input to 1BMAP.
1BcBC coBoL Compiler: Processes programs written
in the coBoL language (a commercially oriented
language) and produces input to 1BMAP.

Figure 41 shows the relationship between 1Bsys op-
erating system components. The input/output control
system aocs) and the 1Bsrt, 1BjoB, and 1BEDT monitors
communicate directly with the basic monitor. After
control is taken by 1BsrT, 1BjOB, or 1BEDT, the individual
monitor of that component controls the system until
a new control card is encountered.

The 1BM 7040/7044 Operating System contributes to
the flexibility and economy of the computer installa-
tion by:

1. Significantly reducing machine time and human
handling when processing a stack of jobs. Specifically,

36

the system reduces the number of tape reel changes,
provides a convenient method of updating and modify-
ing all system programs, allows storing all systems pro-
grams in one storage device, makes possible continuous
machine operation with a minimum of operator inter-
vention, and uses control cards to specify input/output
devices available to the basic monitor.

2. Providing for adaptation of 1BM programming sys-
tems to a wide range of input/output devices. This
enables a particular installation to gain immediate
benefits by the addition of new input/output devices
according to its requirements. An installation need not
be card, tape, or disk oriented.

3. Allowing the user to maintain up-to-date source
language statements of his jobs by modifying only seg-
ments of a program in FORTRAN or COBOL language. A
small section of a program may be re-compiled with-
out the necessity of re-compiling the whole program.

Figure 42 shows the operation of the 18joB Processor
on source language programs of different types.

The operation of the 18M Operating System aBsys
is automatic; once an input reel is mounted it should
not be necessary for the computer to be idle until the
output reel is dismounted, provided enough input/
output devices are available. It should not be necessary
for the operator to take any action other than dismount-
ing unloaded reels and replacing them with reels to
be used later in the job or on succeeding jobs.

The operation of each phase of 1Bsys is directed by
control cards, but the programmer has to use only the

IBSYS
Basic Monitor 10Cs
IBSRT 1BJOB IBEDT
Monitor Monitor Monitor

1 1
Ileses of IBSRT] IIBMAPl hBFTCl IECBC] llBLDRI"'{lBLIBI [Phases of IBEEI

Figure 41. 1Bsys Operating System Components

M C_:ir_ngi_lg IBMAP IBLDR Result
Assembler Loader
Loader
FORTRAN FORTRAN Compiler -- Control
Programs produces programs Cards
for IBMAP assembler *
Input programs
COBOL Compiler == are Combi
COBOL »{produces programs assembled ombines
. relocatable
Programs for IBMAP assembler into ™ bi
relocatable mcl:(ry. Single
binary decks info Executable
decks absolute
binary Program
IBMAP Language program
Programs
Relocatable ?
decks from IBLIB
previous Subroutine
assemblies Library

Figure 42. 1BjoB Processor Flow Chart, Source Programs

parts of the operating system that apply to his current
job. Basic monitor control cards are ordinarily not
used by the programmer; they are the concern of the
machine operator. Thus, the programmer concerns
himself with a comparatively small number of control
cards to run any one job.

Over-all Operation

The basic monitor aBsys) acts as an intersystem moni-
tor that calls the appropriate submonitor according to
control card specifications. A portion of 1Bsys remains
in core storage at all times and permits return of con-
trol to the basic monitor, reference to the input/output
control system, and loading of the programming sys-
tems into core storage. This portion of 1Bsys contains
a set of common system routines and subroutines and
a communications region where common information
shared by the programming systems is maintained.

A supervisory portion of the basic monitor is called
in when required to transfer control between system
monitors, to initialize the first portion of 1Bsys, to
change the machine environment, and to assign exter-
nal storage devices to logical input/output functions.

Figure 43 shows a typical input to the 1Bsys operating
system. The input consists of a data card (handled

by the basic monitor), two jobs to be processed by
1BjoB, followed by the control cards for an 1BSRT ma-
chine run. The first job to be processed by 1BjOB is a
program consisting of two FORTRAN source decks, two
MAP source decks, a binary deck (from a previous com-
pilation), and data cards. The second job is unspecified.

When the basic monitor (which is already in core
storage) encounters the siBjoB control card, it transfers
program control to the 1BjoB Monitor. The $ symbol
specifies that this card is a control card. The siBjoB
card is recognized by the 1BjoB monitor, as well as by
the basic monitor, and indicates the beginning of a
new job. Thus, the 1BjoB monitor will supervise job-to-
job transition until it encounters a siBsys control card,
which indicates that the next operation is not within
1BJOB’s operating scope. When this occurs, program
control is returned to the basic monitor.

When the basic monitor encounters a siBsrr control
card, it calls in the sort monitor (supervisory portion
of the generalized sorting program) and transfers con-
trol to it. The sort monitor controls execution of the
sort, according to specifications on the control card.
Successive sorting and merging jobs can be handled by
the sort monitor without relinquishing control to the
basic monitor. Control is returned to the 1Bsys basic
monitor when the next smBsys control card is en-
countered.

Programming Systems Programs 37

IBSRT
in Control

//$IBSRT
/$1BSYS

DATA DECK

Return Control to
Basic Monitor

/

/$ENTRY
MAP SOURCE DECK

/SIBMAP

/{ELOCATABLE BINARY DECK

IBJOB in

/SIBLDR

Control

/ FORTRAN SOURCE DECK

/SIBFTC

MAP SOURCE DECK

/
/ $1BMAP

FORTRAN SOURCE DECK

/[

/ SIBFTC

Basic Monitor
in Control

Figure 43. Typical Input for the 1Bsys Operating System

Macro Assembly Program

The 1BM 7040/7044 Macro Assembly Program asmap)
is a versatile, general purpose assembler for the 7040
and 7044 Data Processing Systems. It accepts source
language statements written in the Map language.

A map symbolic instruction consists of four major
divisions: location field, operation field, variable field,
and comments field. A portion of the coding form used
is shown below.

Froblem 1
Coder Yoge]
. | Location omments]
|
1 :2 5|7 (8
' (
W T [R IR
'] \
..... _ b
Rnm———————)

The location field normally contains a name that
other instructions may refer to when that instruction
is to be executed, the operation field contains the
machine operation (or pseudo-operation), and the

38

variable field normally contains the location of the
operand. The comments field is for the convenience
of the programmer and plays no part in directing the
computer.

Symbolic instructions, expressed in the map lan-
guage, are punched one instruction per card. The card
format is:

CARD COLUMNS USE
1 through 6 Location Field: May be blank.
7 Not used, must always be blank.

8 through 14 Operation Field: Starts in column 8 and is
three to seven characters long. A blank col-
umn must separate the operation and vari-

able fields.

Variable Field: May begin in column 12 (if
operation field is three characters), but may
not begin after column 16. Each user nor-
mally assigns a fixed column as the begin-
ning of the variable field for all instructions.
The variable and comment fields must be
separated by a blank column.

Comments Field: Follows the blank column
after the variable field and may extend up
to column 71.

Normally used for identification of the pro-
gram being assembled.

12 through 71

17 through 71

73 through 80

Macro Assembly Program Language

In writing symbolic instructions, the programmer is
concerned with building expressions to represent the
address, tag, and decrement portions of the machine
instruction.

The smallest component of an expression is an ele-
ment, which is either a single symbol or a single inte-
ger. When elements are combined with operators
(symbols representing machine operations) a term is
formed. A term may consist of a single element, two
elements separated by an operator such as the * or /
character (* represents multiply and / is the divide
character), three elements separated by two operators,
and so on. A term must begin with an element and
end with an element. Two operators or two elements
in succession are not allowed.

In addition to being an operator, the asterisk is also
an element. In this use, the asterisk stands for the loca-
tion of the instruction in which it appears. Thus, the
element * will have different values in different instruc-
tions. There is no ambiguity between this use of the
asterisk and its use to denote multiplication, because
the position of the asterisk always makes clear what
is meant.

An expression is made up of terms separated by the
+ or — operators, (+ means add and — means
subtract). An expression may consist of a single term,
two terms separated by + or —, three terms sepa-
rated by two operators, and so on. The programmer
may not write two operators in succession or two
terms in succession, but an expression may begin with
+ or —.

An expression is terminated by a comma symbol or,
for the last expression of a statement, by a blank
column. A negative expression is represented in 2s
complement notation (See “Indexing Concept”). A
null expression is an expression that is indicated as
being present but has no value. It can occur:

1. When an assembly scan encounters a comma
rather than the first element of an expression. The
comma shows that a null expression is indicated. Two
consecutive commas indicate a null expression, or a
comma as the first character of the variable field indi-
cates that the first expression is null.

2. When a scan encounters a blank following a
comma. This character combination indicates that the
last expression of the statement is a null expression.

Operation Codes

The 1BMAP program recognizes all 7040/7044 machine
operation codes. Instructions consist of:

1. A symbol or blanks in the location field.

2. The appropriate operation code in the operation

field.

3. Address, tag, and decrement {or count) subfields
appearing in the variable field, each of which may be
a symbolic expression.

Literals

Often a programmer wishes to refer to a word con-
taining a constant. For example, if he wishes to add
the number 1 to the contents of the accumulator, he
must have somewhere in storage a word containing the
number 1. Pseudo-operations are provided to allow in-
troduction of data words and constants into the pro-
gram, but often this introduction is more easily accom-
plished by the use of a literal.

The appearance of a literal directs the assembler to
prepare a constant equivalent in value to the contents
of the literal subfield, store this constant in a location
at the end of the program, and replace the address field
of the instruction containing the literal with the address
of the constant thus generated. Three types of literals
are permitted: decimal, octal, and alphameric.

DECIMAL LITERALS

A decimal literal consists of the = symbol followed
by a decimal data item. For example, the instruction
MpY = —3 means “multiply the contents of the mQ by
the decimal number —3.” (That is, multiply the con-
tents of the M@ by the contents of a storage location
that contains —3.)

Three types of decimal data items are recognized:

Decimal Integer. A decimal integer is composed of
one or more digits, and may be preceded by a plus or
minus sign. A decimal integer is distinguished from
other types of decimal data items by the absence of the
letter B, the letter E, and the decimal point.

Floating-Point Number. A floating-point number has
two components:

1. The principal part is a decimal number written
with a decimal point. The decimal point may
appear at the beginning, at the end, or within
the principal part, or it may be omitted if the
exponent part is present. If omitted, the decimal
point is assumed to be at the right end of the
principal part.

2. The exponent part consists of the letter E fol-
lowed by a signed or unsigned decimal integer.
The exponent part must follow the principal
part; it may be omitted if the principal part
contains a decimal point.

A floating-point number is distinguished from a deci-
mal integer by the presence of either a decimal point
or the letter E (or both). It is distinguished from a
fixed-point number by the absence of the letter B.

Programming Systems Programs 39

Fixed-point number. A fixed-point number has three
components:

1. The principal part is a decimal number written
with or without a decimal point. The decimal
point may appear at the beginning, at the end,
or within the principal part, or it may be
omitted. If omitted, the decimal point is as-
sumed to be at the right end of the principal
part.

2. The exponent part consists of the letter E fol-
lowed by a signed or unsigned decimal integer.
The exponent part may be absent; if present,
it must follow the principal part, and may pre-
cede or follow the binary-place part.

3. The binary-place part consists of the letter B
followed by a signed or unsigned decimal in-
teger. The binary-place part must be present
in a fixed-point number and must follow the
principal part. If the number has an exponent
part, the binary-place part may precede or fol-
low the exponent part. A fixed-point number is
distinguished from other types of decimal data
items by the presence of the letter B.

Literals are considered to be single precision num-
bers unless two E’s (Ep) appear in the exponent of a
floating-point number. Double precision numbers are
stored in consecutive storage locations with the high-
order part first. (See “Double Precision Floating Point
Instructions.”)

OCTAL LITERALS

An octal literal consists of the character =, followed
by the letter O, followed by a signed or unsigned octal
integer. For example, the instruction App =037 means
“add to the contents of the accumulator the contents
of a core storage location that has 000000000037,.”

ALPHAMERIC LITERALS

An alphameric literal consists of the character =, fol-
lowed by the letter H, followed by six Bcp characters.
For example, the instruction 1@ =H12aB would load
into the MQ the contents of a core location that con-
tains 0102212260605. When fewer than six Bcp charac-
ters are specified, the unspecified characters are as-
sumed to be Bcp blank characters.

Data-Generating Operations

These pseudo-operations (oct, pEc, and Bci) may be
used to introduce words of data into a program during
assembly. Numbers introduced in this way are often
referred to as constants. The pseudo-operation, pup,
causes a sequence of symbolic instructions to be dupli-
cated a specified number of times. pupr is often used
with vFD to generate tables of data.

40

OCT — OCTAL DATA

The oct pseudo-operation is used to create binary data
expressed in octal form. It consists of a symbol or
blanks in the location field, the operation code ocr in
the operation field, and one or more subfields, each
containing a signed or unsigned octal integer, in the
variable field. The symbol in the location field is the
address of the pseudo-operation.

The subfields of the variable field are separated by
commas; any number of subfields is permissible, but
the last subfield must be terminated by a blank.

The effect of this operation is to convert each sub-
field to a binary word; these words are assigned to
successively higher storage locations as the variable
field is processed from left to right. If there is a symbol
in the location field, it refers to the first word of data
generated.

An example of the data generating function of the
oct pseudo-operation is:

OCT —23456777777, 63, 47, 5,
generates data in core locations as follows:

LOCATION DATA

5000 —23456777777
5001 400000000063
5002 400000000047
5003 400000000005
5004 400000000000

DEC — DECIMAL DATA

The pEC pseudo-operation is used to create words of
data expressed as decimal numbers. pEc is identical to
ocr, except that the subfields of the variable field are
taken to be decimal data items. It consists of a symbol
or blanks in the location field, the operation code pEc
in the operation field, and one or more subfields, each
containing a decimal data item, in the variable field.

The subfields of the variable field are separated by
commas; any number of subfields is permissible, but
the last subfield must be terminated by a blank.

The effect of this operation is to convert each sub-
field to a binary word; these words are stored in suc-
cessively higher storage locations as the variable field
is processed from left to right. If there is a symbol
in the location field, it refers to the first word of data
generated.

An example of the data generating function of the
pEC pseudo-operation is:

DEC 15, —24,9,107,,

LOCATION DATA

1000 400000000017
1001 —00000000030
1002 400000000011
1003 +00000000153
1004 400000000000
1005 400000000000

BCI — BINARY CODED INFORMATION

The Bcr pseudo-operation is used to create binary
coded character data. Each data word generated by
this pseudo-operation consists of six 6-bit characters
in standard Bcp character code. It consists of a symbol
or blank in the location field, the operation code BcI
in the operation field, two subfields in the variable field
— the count subfield, which consists of an integer fol-
lowed by a comma (a null expression specifies a count
of ten), and the data subfield, whose length is deter-
mined by the count subfield.

The number in the count subfield specifies the num-
ber of six-character words to be generated; the number
of characters in the data subfield is the number in the
count subfield multiplied by six. Since the count sub-
field determines the total length of the variable field,
the comments field is assumed to begin immediately
following the end of the data subfield, and no blank
character is needed to separate the comments field
from the variable field.

Thus, the Bar operation introduces data words into
consecutive locations, the number of words generated
being equal to the number in the count subfield. If
there is a symbol in the location field, it refers to the
first word of data generated. An example of the data
generating function of the Bcr pseudo-operation is:

BCI 2, BCD MESSAGE COMMENT

LOCATION DATA

0030 222324604425
0031 626221272560

Storage Allocation Operations

The following operations are used to allocate core stor-
age space:

BSS — BLOCK STARTING WITH SYMBOL

The operation consists of a symbol or blanks in the
location field, the operation code Bss in the operation
field, and any expression in the variable field.

The effect of this operation is to reserve a specified
amount of storage. This is achieved by increasing the
value of the current location counter by the assigned
value of the variable field expression. If there is a
symbol in the location field, its definition is taken to
be the value of the location counter before the increase.

BES — BLOCK ENDING WITH SYMBOL

This operation functions exactly like Bss, except that
a symbol in the location field is defined after the loca-
tion counter is increased.

BSS AND BES EXAMPLES

An example of reserved storage locations generated
with the Bss pseudo-operation is:

TRA START
BSS 4
DEC 97

With the TRa instruction located at 1000, the Bss re-
serves four locations, and the pEc is then located at
1005:

1000 TRA START
1001 BSS 4
1005 DEC 97

In a similar fashion, the Bes pseudo-operation appear-
ing in the instruction string:

TRA START
BES 4
DEC 97
gives the following result:
1000 TRA START

1005 BES 4
1005 DEC 97

Symbol Defining Operations

The following operations are .declarative in nature.
They are used to define symbols.

EQU — EQUAL

The operation consists of a symbol in the location field,
the operation code EQU in the operation field, and any
expression in the variable field.

The effect of this operation is to give the location
field symbol the same definition as the variable field
expression.

As an example, consider the use of the EQu pseudo-
operation in the following instruction string:

CLA TMP1
FSTL EQU *
ADD TMP2

If the cLa instruction is assigned to location 102, the
symbol FstL would be defined as a symbol, which can
be relocated in the program, whose value is 103; the
add instruction would then be assigned to location 103.
Note that the occurrence of the QU between two in-
structions does not alter the sequence of locations as-
signed by the assembler.

MAX — MAXIMUM

The Max pseudo-operation defines the symbol in the
location field to have the value of the maximum of the
expressions in the variable field. The operation consists
of a symbol in the location field, the operation code
MAX in the operation field, and a series of expressions,
separated by commas, in the variable field.

Programming Systems Programs 41

MIN — MINIMUM

This pseudo-operation is the opposite of MAX; it uses
the expression with the lowest value definition.

MAX AND MIN EXAMPLE

As an example of Mmax and MIN use, assume that records
of three different sizes are to be used in a program.
The routine is:

LOCATION OPERATION ADDRESS, TAG COMMENT
SIZE1 EQU XX
SIZE2 EQU xx Addresses to be supplied by user.
SIZE3 EQU XX
BUFSZ MAX SIZE1, SIZE2, SIZE3

BUFFR BES BUFSZ

ERRSZ MIN SIZE1-1, SIZE2-1, SIZE3-1

The max pseudo-operation sets the maximum size
of the records and may be referred to by the BEs to
reserve enough storage space. The MmN may then be
used to find records that are too small and are, there-
fore, errors.

BOOL — BOOLEAN

The BooL pseudo-operation consists of a symbol in the
location field, the operation code BooL in the operation
field, and an unsigned octal integer in the variable
field. The symbol in the location field will be defined
as being equal to the integer in the variable field. For
example, in the statement:

START BOOL 1200
START is defined as being equal to 1200;.

Location Counter Operations

The programmer may use an indefinite number of lo-
cation counters, represented by symbols of his choice.
The operations use, BEGIN, and ORG control these
counters.

USE

The operation consists of blanks in the location field,
the operation code use in the operation field, and a
single symbol or blank in the variable field.

The effect of this operation is to place succeeding
cards under control of the location counter represented
by the variable field symbol. The location counter in
control at the time of the usk is suspended at its cur-
rent value, and will be continued from this value if
reactivated by another use. If no usk is given, the in-
struction will be assembled using the location counter
represented by blanks.

LOCATION OPERATION ADDRESS, TAG

FINAL
USE A
BEGIN A, FINAL + 47
CLA

42

Instructions preceding use are under machine loca-
tion counter control. When the UsE is encountered, its
address (A) is used to set up a different control
counter. The BEGIN operation’s address of A is modified
by riNaL+47. This means that the location of the cLa
instruction is 47 locations after the location of rFINAL.
Succeeding instructions are located at cLa+1, cLa+2,
cLA +3, etc., until location control is changed to another
location counter.

BEGIN

The operation consists of blanks in the location field,
the operation code BecIN in the operation field, and
two subfields in the variable field — the first subfield is
a location counter symbol, followed by a comma, and
the second is any expression. The definition of the ex-
pression in the variable field is used as the initial def-
inition for the given location counter.

If no BEGIN is given for the blank location counter,
its initial definition is taken to be 0. If no BEGIN is given
for the nth location counter (considered in location
counter order), its initial value is taken to be one more
than the last (not necessarily the highest) value
reached by the n—1Ist location counter. A BEGIN may
appear anywhere in the program (under control of any
location counter).

ORG — ORIGIN

The operation consists of a symbol or blanks in the
location field, the operation code orc in the operation
field, and any expression in the variable field.

The orc operation performs the following functions:

1. The current location counter is reset to the defi-
nition of the expression in the variable field.

2. The symbol in the location field, if any, is given
this definition. If, in a relocatable assembly, the vari-
able field consists entirely of numbers, the orc will be
taken as absolute. Thus:

ORG 5
will origin at absolute location 5. To origin at the fifth
word from the beginning of the program (that is, for
the field to be relocatable), one must write:

ORG START + 4
where sTART is the symbol attached to the first program
location.

END

The END operation is used to signal the end of the
symbolic deck. It consists of blanks in the location
field, the operation code EnD in the operation field, and
a symbolic expression in the variable field. In both
absolute and relocatable assemblies, this pseudo-opera-
tion terminates (ends) the assembly. The Enp instruc-
tion must be present and must be the last card in the
symbolic card deck being assembled.

Instruction Specifications

A symbolic instruction consists of four major divisions:
location field, operation field, variable field, and com-
ments field. The location field normally contains a name
by which other instructions may refer to the instruction
named. The operation field contains the machine opera-
tion or pseudo-operation, and the variable field nor-
mally contains the location of the operand. The com-
ments field exists for the convenience of the program-
mer and plays no part in directing the computer.

Instruction Descriptions and Use

Symbolic instructions are printed on the coding form
(Figure 44) or are punched on a card in the following
format (one instruction to a line or to a card):

The Location Field, which may be blank, occupies
columns 1-6.

Column 7 is always blank.

The Operation Field begins in column 8 and is from
three to seven characters long.

A Blank Column separates the operation field and
the variable field, which may begin in column 12 but
may not begin after column 16.

Symbolic Coding Form

Problem
oder Date Page of
Tocotion Operafion T~ T Address, Tog, Decrement/ Count Tomments [~ Tdenmtiication
| [|
| [|
1,2 kAL | 72,73 80
! 1 |
e — L — | }
1 (] I
— e — } +
| [|
=t — t
| [t
] B -
| [|
'—_r“—*"'“ ______ B t
. L |
L T
I I, R R |).
1 [Nl |
I . O R I | L
i [|
—_ —1 1 |
| [|
_______ Y I }
| [|
_ — '
| [|
—t—] — F t
. . I |
L /T T
i R I | |
I [[
] e e e e | |
[[|
e L |
| [l [
f.____ ______ 1} L
I

+.____ e e —— _‘ : L
| [|
—— — o} +
1 [1
e S U S }
| 11 |
_r___l _______ . — i t
[|
S — T
I B I T 1 I
| [l |
I S, P I | 1
| |1 |
| _ R I | i

Figure 44. Symbolic Coding Form

Instruction Descriptions and Use 43

The Variable Field does not normally extend beyond
column 71 and must be followed by a blank column
to separate it from the comments field.

The Comments Field follows the variable field and
extends through column 80. If there is no variable field,
the comments field may not begin before column 17.

Columns 73-80 are normally used for identification
and serialization.

This section defines the computer instructions. The
instruction format, shown in mar language, appears
with each instruction description. Preceding the format
is the full name of the instruction. For example, the
first instruction described appears:

Clear and Add — CLA Y, T

This means that the instruction is a clear and add in-
struction with its operation symbolically expressed as
cLA. The number of spaces between the operation part
«cLa> and the variable field «v, 1 is four on the coding
form. This gives the possible total of seven symbolic
characters for the operation code. If the operation code
were four characters long, only three spaces would
separate the code from the variable field.

The comma (,) symbol in the variable field may be
seen in the field heading in Figure 44. The Y symbol
is used when the instruction requires an address part.
A comma follows the Y symbol if indexing (specified
by the T symbol) is to be used with the instruction.
A second comma symbol follows the T symbol if decre-
menting or counting (specified by the V symbol) is a
part of the instruction. For example, the variable length
multiply instruction format is vLm v, T, v. If an in-
struction does not use indexing but does use the count
field, the T symbol is omitted and the instruction for-
mat becomes: vLM ¥, , v. Note that no blank spaces
occur in the variable field.

Instructions using indirect addressing are designated
by use of the (*) asterisk symbol immediately follow-
ing the operation code. For example, a normal add
instruction is expressed as ApD Y, T; an add instruc-
tion using indirect addressing is expressed as
ADD* Y, T.

Instruction descriptions use special terms and abbre-
viations:

1. ccv) denotes the contents of storage location Y,
where cao, comQ), and csr) denote the contents of
the accumulator, multiplier-quotient, and storage reg-
isters. For example, coMq@yg, ;.17 is read “the contents of
positions S, 1 through 17 of the MQ register.” When
subscripts are not used, the entire register is implied.
For example, ccac) denotes the contents of accumu-
lator positions S, Q, P, 1-35, inclusive.

2. When a register or part of a register, or a core
storage location is cleared, the cleared part is reset to
ZEeros.

44

3. The negative of a number is the number with its
sign position reversed.

4. The magnitude of a number is the number with
its sign position considered positive (a zero in position
S corresponds to a positive sign).

5. In the alphabetic code of the instruction:

a. The letter Q designates the mQ register.

b. The letter X in the second or third position des-
ignates use of an index register.

c¢. The first letter of all transfer instructions is a T.

Fixed-Point Arithmetic Instructions

When dealing with fixed-point numbers, the first of the
36 data bits contains the algebraic sign of that number.
A 0 signifies a positive number and a 1 signifies a nega-
tive number. The remaining 35 positions contain the
magnitude of the number. When fixed-point instruc-
tions are used, the programmer must decide where the
point is to be located. On the computer, the point that
separates the integral part from the fraction part is
termed a binary point.

Before any arithmetic operations can be executed,
one of the numbers involved in the operation must be
taken from core storage and placed in the appropriate
cpu register. The arithmetic instruction is then given
and the second number is brought from core storage
and placed in the storage register.

The problem of A + B could be solved with two
instructions. The first would clear (or destroy) the
formed contents of the accumulator register and place
the first number in that register. The second would be
brought from core storage, placed in the storage regis-
ter, and then combined (or added) with the number
in the accumulator. The actual adding occurs in the
adders. When addition is complete, the result is placed
back in the accumulator (which destroys the first num-
ber). The format of the first instruction (clear and
add) is shown to demonstrate relationship between
the symbols and the form. '

All succeeding instruction formats are shown with
spacing between the operation field and the variable
field. The location field is not shown.

Clear and Add — CLA YT

« | location Gperanion T TAddress, Tog, Decrement/ Count \
) !2 6|7 |8 ; i
I leca__ YT
IR N R
S S e —

The ca0 g, 1.35 (contents of the accumulator) are re-
placed with the ccv> (contents of the Y storage loca-
tion). P and Q of the ac are set to zeros and the
c(y> remain unchanged.

Add — ADD Y, T

The ccy> are algebraically added to the ccac). The re-
sulting sum is placed in the ac. The ccy» are unchanged.
Numbers of the same magnitude but different signs
give a zero result, whose sign is the same as the sign
of the original Ac. A carry from position 1 turns on the
ac overflow indicator.

To state the problem in greater detail, assume that
factor A is in core storage location 100 while factor B
is in location 101. The problem is then written:

CLA 100
ADD 101

If factor C (held in storage location 102) is added to
the problem, the formula becomes A + B + C and
the instructions are increased to:

CLA 100
ADD 101
ADD 102

After the result is obtained, it should be stored in
core storage so that it may be used later in the pro-
gram for further arithmetic operations or recorded on
an output device. A storage location is assigned by the
programmer to receive the result (assume location
500). The program instruction used to store the con-
tents of the accumulator register is:

Store — STO YT

The cac g, ;.35 replace the cov) and the cac) remain
unchanged. The program is then increased to:

CLA 100
ADD 101
ADD 102
STO 500

If the number to be placed in the accumulator (be-
fore the addition) has the wrong sign, a clear and sub-
tract «cLs) instruction may be used instead of the cra.

Clear and Subtract — CLS Y,T

The negative of the cy) replaces the ccaCg ;.35. Posi-
tions P and Q of the Ac are set to zero. The cy) are
unchanged. The negative of a number is that number
with its sign position reversed.

If the difference between the numbers A and B is
needed instead of the sum of these numbers, a sub-
tract (suB) instruction may be used instead of the abp
instruction.

Subtract — SUB YT

The cayy are algebraically subtracted from the cwac.
The difference replaces the ccac) and the cv) are un-
changed. As with the abp instruction, overflow is pos-
sible from position 1 of the ac to position P and from
P to Q, but carries from position Q are lost.

A combination of both arithmetic operations would
occur with the formula A + B — C and store the re-
sult at location 500, and would be written:

CLA 100
ADD 101
SUB 102
STO 500

Figure 45 shows a simplified flow chart for the crLa,

cLs, and caL instructions (discussed later).

$,1-11

Obtain
Instruction
from Storage

I

Instruction
Placed in
Storage Register

I

21-35

Operation Code
Placed in
Instruction Reg

!

Address Routed
through Adders
to Storage

!

Operation
Decoded in Address of Data
Decoders is Located
Bring Up Data Routed
Execution to the Storage
Control Lines Register
T

l CLS CAL ¢ y CLA
Minus to SR Sign t Data Routed
Storage Add '9';, ° through Adders
Register Sign e to Accumdlator

| R

Figure 45. craA, cus, and caL Flow Chart

Figure 46 shows the flow chart for the app and sus
instructions. The terms complement and true form are
explained in the Complement Arithmetic section.

Problems

10. Write a program to solve: A+ B — C + D and
store the result at location E.

11. Write a program to solve: A — B + C — (D
— E) and store the result at location F.

Multiply and Divide Operations
The arithmetic operations multiply and divide are ac-
complished in much the same manner as with add or
subtract, except that the multiplier-quotient (mQ) regis-
ter is used in addition to the accumulator register and
the adders.

With a multiply operation, the multiplier factor must
be placed in the MQ register before execution of the

Instruction Descriptions and Use 45

Obtain
Instruction
from Storage
Y
Instruction
Placed in
Storage Register
S,1-1 T 21-35
] 3
Operation Address Routed
Code Placed through Adders
in Instruction to Storage
Register
1 Y
Operation Address of
Code Decoded Data is
in Operation Located
Decoders T
Bring Up Data Routed
Execution »{to the Storage
Control Lines Register
ADD {
Data from the
Storage Register
S8 to Adders
Invert
SR
Sign Unlike
Complement ‘J
Accumulator
in the Adders
Accumulator

to the Adders
in True Form

)
Adders Back
to the
Accumulator

)
Check Signs
and Q Carry
and Adjust the
Accumulator

Answer Is Now
in the
Accumulator

Figure 46. app and sus Flow Chart

actual multiply instruction. This is accomplished with
a load multiplier-quotient (b instruction.

Load Multiplier-Quotient — LDQ Y, T

The cv) are loaded into the MQ and the ccy) are un-
changed. After the MQ register is loaded with the multi-
plier, the multiply instruction may be executed.

Multiply — MPY Y,T

The cy) are multiplied by the ca@). The 35 most
significant (high order) bits of the 70-bit product re-
place the cwc)ias, and the least significant (low
order) bits replace the caMQ)i3s. CACqqp positions
are cleared to zero. The signs of the ac and Mq are set
to the algebraic sign of the product. The number of

46

bits to the right of the binary point of the first factor
added to the number of bits to the right of the binary
point of the second factor give the total number of bits
to the right of the binary point in the product. The
c(y) are unchanged.

The programmer must know the size of the product
that is possible for his problem. If this product cannot
exceed 35 bits, the complete product will be in the Mo
at the end of the mpy. In this case, a store multiplier-
quotient (sTQ> instruction may be used to get the
product into core storage.

Figure 47 shows the flow chart for the mpy, viMm,
and vMa instructions.

Store MQ — STQ YT
This instruction places the ca@) into the location
specified by Y. The ccm) remain unchanged.

For the formula A X B and store the product at C,
the program may be written:

1 location Operation [~ | Address, Tog, Decrement/ Caunt R
1 !2 &7 8 J :L

L g . A

.4 ... | MPY__ __|.B

IR 5T ___|ic __|

If the possibility of a product with more than 35 bits
exists, the higher-order bits of the product will end
up in the accumulator. The programmer may store the
high-order product in one storage location (using the
1O instruction) and the low-order product in another
location (using the stQ), or he may adjust the entire
product with shift and test instructions explained later.

The execution of a multiply instruction occurs as
follows and assumes that the mMQ register has been
loaded with the multiplier.

1. The ccy) are tested and, if the magnitude of the
c is zero, the ccac and com) are cleared to zero.
In this case, step 2 is skipped and step 3 occurs.

2. If the magnitude of the cy) is not zero, the
C(AC),p,1.35 are cleared to zero and the multiplication
proceeds.

a. If MQy5 contains a 1 bit, the ccyy;.35 are added
to the ccac). The cACq p.1.35 and the coMQy.g5
are then shifted right one position.

b. If MQs5 contains a 0 bit, the cacqp,1.35 and
C(MQ)y.35 are shifted right one position.

3. If the signs of the Mq and location Y are the same,
the signs of the ac and MQ are made positive. If the
signs differ, the signs of the ac and mq are made
negative.

As an example, assume that the ac, Mo, and location
Y are four bits long instead of 35. The following se-
quence of steps would occur during a multiplication.
The number 15 (13,9) is in the Mm@ (multiplier) and

Instruction in
the Storage
Register

S, 1-11 |

21-35

]

Operation Code
Placed in the IR

i

Operation
is Decoded

Y

Bring Up
Execution
Control Lines

VMA VLM MPY
Inst

Set Count Field Set Count Field Set 43 in
in Shift Ctr in Shift Ctr Shift Ctr

L

!

Clear AC

Figure 47. Mpy, viM, and vMa Flow Chart

the ccy) are 6 (multiplicand). Figure 48 shows the
actual bit configuration in each register (after the step
is complete).

Problems

12. The following quantities are stored in the sym-
bolic storage locations as fields of a pay record. Com-
pute net pay and store the amount in PYRCD+4. All
quantities are assumed to be plus, and results are not

larger than 35 bits.

SYMBOLIC LOCATION FIELD NAME
PYRCD Employee’s Number
PYRCD + 1 Base Pay
PYRCD + 2 Overtime Pay
PYRCD + 3 Deductions
PYRCD + 4 Net Pay (to be computed)

Contents of
AC MQ Y

K

Address through
the Adders to
Storage

!

Address of Data
is Located

!

Data Routed to
the Storage

Shift
Ctr

Register
=] =0
Add Storage Do Not Add SR
Register to AC to Accumulator
Take Result Shift AC and
to AC MQ Right One
Place
|

Set Signs

Y

Operation
Complete

Comments

0000 1101 0110

0110 1101
0011 0110
0001 1011

o111 1011
0011 1101
1001 1101
0100 1110

Initial contents of the registers. MQ (35) ready to
be tested.

C (Y) added to AC since MQ (35) isa 1.

C (AC,MQ) shifted right one place. Test MQ (35).

No addition, since MQ (35) contained a 0.

C (AC, MQ) again shifted right one place and
MQ (35) is tested.

C (Y) added since MQ {35) isa 1.

C (AC,MQ) shifted right and MQ (35) tested.

C (Y) added since MQ (35) isa 1.

C (AC,MQ) shifted right. At this point, the shift
counter (set initially to a binary 4 in this example)
has been reduced to 0 and the process stops with
the eight=bit product in the AC and MQ registers.
Note: In normal machine operation, the shift
counter is set to a binary 43 (which is equal to 35
decimal shifts) automatically.

Figure 48. Multiply Sample Example

Instruction Descriptions and Use 47

13. The following quantities are stored in storage
locations as fields of a parts inventory record. Compute
stock balance and availability.

SYMBOLIC LOCATION FIELD NAME

PRTIN Receipts (+ Sign)

PRTIN + 1 Withdrawals (— Sign)
PRTIN + 2 Adjustments (+ Sign)

PRTIN + 3 On Order (+ Sign)

PRTIN + 4 Reserved for Service / + Sign)

Stock Balance = receipts — withdrawals + adjustments
Availability = stock balance, + on order, ~ reserved for service

Store Zero — STZ YT

The store zero instruction may be used to change the
contents of an entire core storage location to zeros.
The cov) are replaced by 0 bits (sign of Y is made

plus).

Variable Length Arithmetic Instructions

Three variable length arithmetic instructions are pro-
vided. Positions 12-17 of these instructions designate
a count (V) field. It is possible to express a count value
up to 77 with this field. However, counts of 603 or
larger result in placing 1 bits in positions 12 and 13 of
the instruction and cause indirect addressing to occur.
Counts larger than 574 should not be used with these
instructions.

The contents of the V field are placed in the shift
counter instead of the 435 (35;9) normally placed there
during a multiply or divide instruction. This means
that the time required to complete any variable length
instruction is a direct result of the V field contents. If
the count field of any of these instructions is zero, the
instruction is treated as a no-operation and the com-
puter takes the next sequential instruction and pro-
ceeds from there.

Variable Length Multiply — VLM Y1V

This instruction multiplies the ccv) by the V low-order
bits of the Mq register to produce a 35 plus V bit prod-
“uct. The 35 most significant bits of the product replace
the cacyy.35, and the least significant bits replace the
cMQ)r.y. The ccacy @ and p positions are set to zero.
The remaining 35 minus V positions of the MQ contain
the original 35 minus V high-order bits of the Mq.
The signs of the ac and Mq are set to the algebraic
sign of the product. If V is zero, the vLM is treated as a
no-operation and the computer takes the next se-
quential instruction and proceeds from there. If V is
not zero, but the c«v) are zero, the ccac) and como) are
set to zeros. If the M@ and Y signs are the same, the
ac and MQ signs are made positive; if the Mo and Y

48

signs differ, the ac and MQ signs are made negative.
If V contains 1 bits in positions 12 and 13, indirect ad-
dressing occurs. Counts (V) larger than 35, are mean-
ingless.

Variable Length Multiply and
Accumulate — VMA YTV
This instruction is similar to the vLM instruction ex-
cept that the cac)q, p, 1.35 are not cleared before the
multiplication begins. Thus, the vma generates the sum
of the magnitude of the cacrq, ¢, 135 and the magni-
tude of 35 + V bit product. If ac positions p and ¢
originally contain 1 bits, a carry may be lost during
the accumulation, and the overflow indicator will not
be turned on. The V least significant bits of the prod-
uct replace the ccMQ);y. The 36 most significant bits
replace the cACp 1.35; ACq is set to zero. The remain-
ing 35 minus V positions of the MQ contain the original
35 minus V high-order bits of the MQ. The signs of the
Ac and MQ are set to the algebraic sign of the product.
If V is initially zero, the instruction is treated as a
no-operation and the computer takes the next sequen-
tial instruction. If V is not zero, but the ccy> are zero,
the instruction is interpreted as an Lrs instruction of
V places and the signs of the ac and Mq are set to the
sign of the product of the ccv) and the original cao.
Figure 49 shows register content, both before and
after a variable length multiply operation.

AC MQ

Before 1
Multiplication [| L : l
[————
! 3 CBit Multiplier 35

1 | ——

35 - C Unused Bits of MQ —]

After |
Multiplication L

35 + C Bit Product

Figure 49. Variable Length Multiply Formats

Divide or Proceed — DVP YT

The divide operation assumes prior loading of the
MQ and Ac registers with the dividend. Maximum pos-
sible dividend is 70 bits. Dividend loading may be ac-
complished with a LpQ instruction if the dividend is
35 bits or less and it is known that the entire ac is
set to zero, or with a cLa and a oo if the dividend ex-
ceeds 35 bits.

The ctaC)gp,1.35 and the caMQy a5 are treated as a
70-bit dividend, plus sign, and the ccv) as a 35-bit divi-
sor. If the magnitude of cov) is greater than the

magnitude of ccao, division takes place. A 35-bit
quotient replaces the cavQyy.35 and the remainder re-
places the ccac;.35. The MQ sign is the algebraic sign
of the quotient, and the ac sign is the sign of the
dividend. If the magnitude of the ccy) is less than .or
equal to the magnitude of the cao), division does not
take place, the divide check indicator is turned on, and
the computer program proceeds to the next sequential
instruction. The c(y> are unchanged.

Execution of the divide instruction occurs as fol-
lows and assumes prior loading of the dividend.

1. The ccac and MQ»,.35 are shifted left one position,
creating a zero in MQss.

2. If the magnitude of the ccy» is less than or equal
to the magnitude of ccac, the magnitude of coy is
subtracted from the magnitude of cac) and a 1 bit
replaces the 0 bit in MQss. Step 1 is then repeated.

3. If the magnitude of the cv) is greater than the
magnitude of the cac, the computer returns to step 1.

These steps occur 35 times for each division instruc-
tion. As an example, again assume that the computer
works with only 4 bits. The problem is then 66 <+ 5. In
Figure 50, the binary numbers with each step repre-
sent the result after the completion of that step.

The programmer must remember the possibility of
a remainder after a divide instruction. He may decide
to disregard it, check for it and round the quotient if
a remainder exists, or use a sTo instruction to store
the remainder with a s1Q to store the quotient.

Variable Length Divide or Proceed — VDP YIV

The cAC)qp 1.35 and the camQ) ¢ are treated as the
dividend plus sign, and the cv are treated as a 35-bit

Contents of | Shift
AC M@ Y |Cir

Comments

0100 0010 0101 4 | initial contents. C (AC) are less than C (Y);

division takes place.

1000 0100 3 | C (AC and MQ) shifted left one place; C (AC)
greater than C (Y).

0011 0101 C (Y) subtracted from C (AC) and a | replaces
MQ (35).

0110 1010 2 | C (AC,MQ) shifted ieft one place; C (AC) greater
than C (Y).

0001 1011 C (Y) subtracted from C (AC) and o 1 replaces
MQ (35).

0011 0110 1 [C (AC,MQ) shifted left one place; C (AC) less
than C (Y).

0110 1100 0 | C (AC,MQ) shifted left one place; C (AC) greater
than C (Y).

0001 1101 C (Y) subtracted from C (AC) and a 1 replaces

MQ(35). At this point, the shift counter {set to a
binary 4 in this case) has been reduced to 0 and
the quotient is complete in the MQ, with the
remainder in the AC. Note: In normal operation,
the shift counter would have been set to a binary
43 so that 35 decimal shifts could occur.

Figure 50. Divide Sample Example

divisor. A V bit quotient replaces the V low order posi-
tions of the MQ. The remainder replaces the cac, 35
and the 35 minus V high-order positions of the mq.
Figure 51 shows the flow chart for the pve and vor
instructions.

Problems

14. Write a program to solve:

AX* + BX* + %’5

and store the result in location ANS. All results are
assumed to be no more than 35 positions and whole
numbers.

15. X,, X,, Xs, X;, and X; are fractions in storage
locations X1, X2, X3, X4, and X5. Write a program
to solve:

X, X, X,
X, X,
and store the result in location XANS. Assume that X, >
Xy, X5 > X,, that results do not exceed 35 positions,
and that remainders (if any) are to be ignored.

Shifting Operations

Shift instructions are used to move the contents of the
accumulator and the MQ register either to the right
or the left of their original positions. Except for the
rotate MQ left instruction, zeros are automatically in-
serted in the vacated positions of a register. Thus, a
shift larger than the bit capacity of the register causes
the contents of the register to be replaced by zeros.

When a shift instruction is decoded during the I
cycle, the amount of the shift is determined by the con-
tents of bit positions 28-35 of the shift instruction. This
provides a maximum shift of 3775 places. Any number
larger than 377; is interpreted as modulo 400, which
means that, given any shift count, the actual number
of positions shifted with the instruction is the remain-
der after dividing the shift count by 400s.

When the contents of a register are shifted right, the
result is equivalent to dividing the original contents
by a power of 2. Likewise, shifting to the left is equiv-
alent to multiplying by a power of 2 (as long as no
significant bits are lost).

In the following description of shift instructions, the
number of positions to be shifted is specified by posi-
tions 28-35.

Accumulator Left Shift — ALS YT

This instruction causes the caGq, p, 135 to be shifted
left the number of places specified by Y. For example,
ALs 3 would shift the ccac three places to the left. The

Instruction Descriptions and Use 49

the Storage
Register

Instruction in

!

Operation is
Decoded

Dvp VDP

Set 43 in the
Shift Counter

Set V in the
Shift Counter

¥

Divisor Is in
Storage Register|

Yes

Shift C(AC and MQ)
One Place to
the Left

MQ(1) to AC(35)

Proceed

<2

Figure 51. pve and vop Flow Chart

sign position of the ac is not shifted (Figure 52). If
a 1 bit is shifted into position P from position 1, the
Ac overflow indicator is turned on. Bits shifted past
position Q are lost and vacated positions are filled
with zeros.

»]

s
“a.ra

Figure 52. ALs Schematic

Accumulator Right Shift — ARS Y, T

The ccacq, p, 1.35 are shifted right the number of places
specified by Y. The sign position is not shifted (Figure
53), bits shifted from position 35 are lost, and vacated
positions are filled with zeros. Bits shifted from position
Q enter position P and bits from P enter position 1.

50

No Yes

' I

0 1 to MQ(35),
fo SR Subtracted
MQ(35) from AC
#0 @
=0
Operation
Complete.

Quotient in MQ.
Remainder in AC,

ika,P,l—————~> 35

Figure 53. ams Schematic

Long Left Shift — LLS YT

The cAC, p, 1.35 and the caMQ);.35 are treated as one
register. The contents of this register are shifted left
the number of places specified by Y. For example,
LLs 35 shifts the covQy.35 to Aciss. Bits enter acss
from mQ; (Figure 54). If a 1 bit is shifted into or
through position P, the ac overflow indicator is turned
on. Bits shifted past position Q are lost, and vacated
positions are filled with zeros. The MQ sign position is
unchanged and the Ac sign is made to agree with it.

AC MQ

s| 10

»)

5
Tar

Figure 54. LLs Schematic

Long Right Shift — LRS YT
The cacyg, », 135 and coMQ); s are shifted right the
number of places specified in Y. Bits enter Mm@, from
Acy; and bits shifted past MQs; are lost (Figure 55).
Vacated positions are filled with zeros. The ac sign is
unchanged, and the MqQ sign is made to agree with it.
Both the 1is and Lrs instructions may be used to
move complete words from the Mq to the ac and from
the ac to the MQ registers. This results in a reduction
of stored instructions. The stQ and cLA instructions
could be replaced by an ris of 35 places, and the 1gs
could be used instead of the sto and LpQ sequence. LLs

S

£y
s~

s

S
e

Figure 55. LRs Schematic

or Lrs with an address of zero may be used to make
ac and MQ signs agree without shifting their data.

Rotate MQ Left — RQL YT

The ¢ (MQ) are shifted left the number of places speci-
fied by Y. Bits from Mg are routed to MQs; and
from MQ; into MQs, in effect, making the mQ register
a circular register (Figure 56). For example, RQL 6 takes
the six high-order bits (S, 1-5) of the M@ and places
them in the low-order six positions (30-35). With the
RQL, no bits are lost. Figure 57 is a simplified process-
ing unit flow chart for the ALs, ARs, 11s, 1Rs, and RQL

C—

Figure 56. rQL Schematic

Decode Inst
and Set Shift
Counter

LLS, LRS = Operation
Complete
ALS ARS LLS LRS LGL LGR RQL
. Shift AC and MQ ift AC and MQ
Shift AC Left [| Shift AC Right | | Shift AC and MQ 1 | shift AC and MQ Left One Place :l.;:.: One Place Shift MQ Left
One Place One Place eft One Place Right One Place MQ1) to MQ(S); AC(35) to MQ(S); ne Place
MQ(D) 10ACES) | | ACE5) oMAM) | | \as) 10 ACES) | | MaIS) to MAQ) [| MRS toMAGES)
Reduce
Shift Counter
= Shift
< LLS, LRS 0 Q: nr/ #£0
LLS LRS
Set AC(S) Set MQ(S)
to MQ(S) to AC(S)
L T I =0 Not LLS or LRS
y

Operation

Complete

Figure 57. ALS, ARS, LLS, LRS, LGL, LGR, and RQL Flow Chart

Instruction Descriptions and Use

51

instructions. The oL and LR instructions shown in
this figure are described under “Logical Operations.”

Shifting Problems

Use shift instructions for all multiplication and divi-
sion.
16. Compute 2 (A + B + C) and store result at
location P.
(A+B-2C)
16
18. Compute (A — B) X 8 and store result at P.

17. Compute and store result at P.

Control Instructions

Instructions that govern the flow of a program and, in
particular, those that cause an alteration in the com-
puter’s normal process of taking its instructions from
sequential core storage locations are called control
instructions.

Unconditional transfer instructions specify the loca-
tion Y from which the computer is to take the next in-
struction. Conditional transfer instructions also specify
a location Y; whether the computer takes its next in-
struction from location Y or the next sequential location
depends on the outcome of a test of some kind. This
test is specified by the operation code of the in-
struction.

Test instructions are similar to conditional control
instructions in that they cause some test to be per-
formed. Unlike conditional transfer instructions, how-
ever, test instructions do not specify a location Y to
which control may be transferred. Instead, the alterna-
tive location to which control may be transferred is
fixed relative to the location of the test instruction.

Halt and Proceed — HPR

This instruction causes the computer to halt. The in-
struction counter contains the location of the next
sequential instruction and is displayed on the operator’s
console. Positions 21-35 (Y), not used by the instruc-
tion but displayed in the storage register lights, may
be used to identify each particular npr. This is done
by placing an identifying number in positions 21-35 of
the HPR.

Divide Check Test — DCT T

If the divide check indicator is on, it is turned off and
the computer takes the next sequential instruction. If
the indicator is off, the computer skips the next instruc-
tion and proceeds from there.

NOTE: The DCT, LBT, and PBT instructions use the address field (Y)
for special purposes and no address may be specified. If the T field is used,
the operation code itself may be changed (See “Appendix, Instruction List
with Formats™).

52

Low-Order Bit Test — LBT T

If the ccay; is a 1 bit, the computer skips the next
instruction and proceeds from there. If the cacs; is a
0 bit, the computer takes the next sequential instruction.
This instruction may be used to test for an odd or even
accumulator.

P Bit Test — PBT T

If the ccaop is a 1 bit, the computer skips the next in-
struction and proceeds from there. If the cacp is a
0 bit, the computer takes the next sequential instruc-
tion. This instruction may be used to test for ac over-
flow. If the ac overflow indicator is on, it is not turned
off by execution of the pBr instruction. Figure 58 shows
the flow chart for the pBT, LBT, and pCT instructions.

Sense Switch Test — SWT YT

This instruction tests the status of the sense switch (on
the operator’s console) specified by Y. If the cor-
responding switch is down o, the computer skips
the next sequential instruction and proceeds from there.
If the switch is up (oFp), the computer takes the next
sequential instruction. For example, swr2 tests the
status of sense switch 2. There are six switches on the
operator’s console that may be tested by the swt in-
struction.

Execute — XEC YT

This instruction causes the computer to execute the
instruction at location Y. Since the location counter is
not altered (when Y contains any instruction except

P8T
No \AC(P)=I/ Yes
LBT
No AC(35)=1 Yes
On DCT
Turn Off ivide Off
Indicator : C':’“k
M@m
Advance Instruction

Counter to Skip the
Next Sequential
Instruction

Do Next
Sequential
Instruction

Figure 58. pBT, LBT, and pct Flow Chart

a successful transfer or test instruction), the program
advances to the next sequential instruction following
the execute instruction after performing the instruction
at location Y. If location Y contains a transfer instruc-
tion, it will be executed and program control is altered
from the sequential process. If location Y contains a
test instruction, the instruction following the execute
instruction will be located relative to the execute in-
struction rather than to the test instruction. Thus, any
instruction that changes the instruction counter alters
program control when that instruction is executed by
the xec instruction.

Transfer on No Zero — TNZ YT
If the caC)q p,1.35 are not zero, the computer takes its
next instruction from the location specified by Y and
proceeds from there. If they are zero, the next sequen-
tial instruction is taken.

Figure 59 shows the flow chart for the TNz, TPL,
1OV, TZE, and T™I instructions.

Transfer on Plus — TPL YT

If the sign position of the Ac is a zero, the computer
takes its next instruction from the location specified by
Y and proceeds from there. If the sign position is a
one, the computer takes the next sequential instruction.

Decode the
Instruction

1

Address Switch

Transfer on Overflow — TOV Y, T

If the ac overflow indicator is on, it is turned off and
the computer takes its next instruction from the loca-
tion specified by Y. If the indicator is off, the computer
takes the next sequential instruction. Note also that
the BT instruction may be used as an overflow test
instruction.

Transfer — TRA YT

This instruction causes the computer to take its next
instruction from the location specified by Y and pro-
ceed from there.

Transfer on Zero — TZE YT

If the ccaC)q p,1.35 are zero, the computer takes its next
instruction from the location specified by Y. If they are
not zero, the computer takes the next sequential in-
struction.

Transfer on Minus — TMI Y,T

If the sign position of the ac is negative (1 bit), the
computer takes its next instruction from the location
specified by Y and proceeds from there. If the sign
position is positive (0 bit), the computer takes the next
sequential instruction.

to Address
Register
TNZ, TZE l TOV
Comp AC to Adders,

Adder QCarry to
Adder Position 35

Transfer

On Off

Transfer

Transfer

Execute the
Next Sequential
Instruction

Figure 59. 1NZ, TPL, TOC, TZE, and ™I Flow Chart

Instruction Descriptions and Use 53

Compare Accumulator with Storage — CAS YT

If the ccac are algebraically greater than the ccp, the
computer takes the next sequential instruction. If the
CO are algebraically equal to the cv), the computer
skips the next instruction and proceeds from there. If
the ccac) are algebraically less than the cov, the com-
puter skips the next two instructions and proceeds from
there. A plus zero is considered greater than a minus
zero. Note: The comparison is made on all positions
of the ac (including positions P and Q) and the con-
tents of location Y.

Decrement Field

Some instructions use the decrement part (Figure 60)
of themselves or the decrement part of a register or
core location in their execution. With some instructions,
a portion of the decrement field (positions 15-17) is
used as a part of the operation field. Another group of
instructions is used to test or alter the contents of index
registers. The number or value used to test or alter an
index register is contained in positions 3-17 of these
instructions.

Decrement Part

5123 17

Figure 680. Decrement Field in a Word

Set Sign Plus — SSP T

The sign of the Ac is set plus (0 bit). Since the address
part of the ssp instruction is a part of the operation
code, address modification may change the operation.

Change Sign — CHS T

If the ac sign is plus, it is made minus; if minus, it is
made plus. Since the address part of the cus instruc-
tion is a part of the operation code, address modifica-
tion may change the operation.

Make Storage Sign Minus — MSM Y,T

The sign position of the location specified by Y is re-
placed with a 1 bit (made minus). The remainder of
the location specified by Y is unchanged. The decre-
ment part of the Msm instruction is a part of the opera-
tion code.

Make Storage Sign Plus — MSP Y,T

The sign position of the location specified by Y is re-
placed with a 0 bit (made plus). The remainder of the
location specified by Y is unchanged. The decrement
part of the Msp instruction is part of the operation code.

NOTE: The SSP and CHS instructions are not exactly control instructions
but are normally used with or after control instructions. These instructions
use the address field for special purposes and no address may be specified.
If the T field is used, the operation code itself may be changed (See
“Appendix, Instruction List with Formats”).

54

Storage Minus Test — MIT YT

If the sign position of the location specified by Y is
minus, the computer skips the next instruction and
proceeds from there. If the sign position is plus, the
computer takes the next sequential instruction. The
decrement part of the MIT instruction is a part of the
operation code.

Storage Plus Test — PLT YT

If the sign position of the location specified by Y is
plus, the computer skips the next instruction and pro-
ceeds from there; if the sign position is minus, the
computer takes the next sequential instruction. The
decrement part of the pLT instruction is a part of the
operation code.

Enter Keys — ENK T

This instruction places the contents of the console entry
keys into the MmQ register. Since the address part of the
ENK instruction is a part of the operation code, address
modification may change the operation. A depressed
switch is interpreted as the not-zero or ox condition.

Problems

19. Three numbers are stored in symbolic locations
A, B, and C. Determine which is the lowest number
and store this number in location LOW (none of the
numbers are equal).

20. The fields of an inventory parts record are ar-
ranged in storage as follows:

LOCATION FIELD NAME
PARTN Part Number
PARTL Part Location
UCOST Unit Cost

FIND Master Part Number

Compare the master part number against the part
number of the given record and:

a. If master is higher than the given record, transfer
to QUIT.

b. If master is equal to the given record, transfer
to PROCS. '

c. If master is lower than the given record, transfer
to MORE.

21. There are four numbers in locations A, B, C, and

D. Program the following:

a. Add the four numbers and check for overflow on
each addition; if an overflow occurs, keep a count
in location OVFLW adding 1 for each overflow.

b. Take the sum generated in step a and shift it to
the right until a 1 bit appears in AC,;.

c. Take the result of step b and test for a one in ACp.
If there is a 1 bit, shift right one position and store
a 1 bit in location PBIT.

NOTE: Other control instructions than those covered in this section exist

on the 7040/7044 systems, but they are more concerned with other features
of the system and are described with their own feature.

Indexing Operations

Several techniques may be used to increase program
efficiency. One technique is address modification; an-
other is indirect addressing. Two approaches to address
modification are considered here: the destructive type
and the indexing type.

Destructive Address Modification

The term destructive means that the original address
of the instruction being modified is destroyed as it is
modified. Regardless of the computer used, this is the
method of address modification used unless the com-
puter is equipped with index registers and indexing
instructions. If an application required an instruction
to be repeated many times, that instruction would have
to be duplicated in the program and stored in core
storage. For example, if the contents of 50 word loca-
tions were to be added together, 50 add instructions
would have to be placed in the stored program. Each
add instruction would have, as its address part, the
storage location for one of the 50 words.

The technique of modifying an instruction’s address
may be used to reduce the number of stored instruc-
tions. This technique, however, does increase over-all
execution time for the problem. Using the same exam-
ple as above, assume that the 50 word locations. are
designated FIRsT, FIRST + 1, etc. Figure 61 shows a pro-
gram that could add the contents of these locations.

Note the use of the * (asterisk) symbol in the address
part. When used this way, the * means the location of
the instruction itself. Thus, the cLa *—2 means to
bring into the accumulator the contents of the location
that is two locations in front of the cra instruction
location (App FIrsT+1).

Indirect Addressing

The concept of address modification may be extended
for a large group of instructions for which indirect
addressing is provided. This is accomplished by using
the V field of the instruction. Positions 12 and 13, when
they contain 1 bits, signal indirect addressing.

When indirect addressing is specified, the instruction
is executed as follows. Instead of using the address
part of the instruction to designate the storage location
to be used in the operation, the address part of the
addressed location tells the program which storage
location is to be used. For example, assume that the
address part of location 54 contains 273. If the instruc-
tion App 5¢ (with indirect addressing specified) is exe-
cuted, the contents of location 273 would be added into
the accumulator.

Indirect addressing is specified in symbolic language
by placing an * (asterisk) after the last character of
the operation field. Thus, the App 54 instruction, when
specifying indirect addressing would be expressed as
ADD* 54, Figure 62 shows a sample program using in-
direct addressing.

The contents of the instruction counter are stored in
location 12. Location 13 is designated as symbolic loca-
tion BTRAP in Figure 62. After execution of the channel

Comments

Location Operation Address, Tag

BTRAP Store instruction counter at 12 and
get next instruction from location 13.
RCT Restore channel B.
TRA* 12 Go to 12 for address of next instruction.

Figure 62. Indirect Addressing Example

Figure 61, Address Modification Example (Destructive)

. I[Location Operation T | Address, Tog, Decremont/ Count Comments [~ Tdenmicotion

) 12 sl7 s j’ :L izin 80
__1_ —_ gf_@____l :r Locate the program. ,I
| START CLA_ ... \EIRST Location of first number. 4:
_I,__ | d,Q._Q.*._._,_i' :FIKST"I‘J. The address of this instruction is changed. :

| 11 .

lr<_,_._._ f;’f%w_w_} ﬂp ;e‘mpo‘rcvty stfo‘ruge? location. I 1:
_I'—‘— SR A D.E IS _1| : -1 Lli';:::u;r:s ruction into accumulator. ;
- | - B—]
e | 87T 12e-4 Store altered instruction. |
L _______ | |svse_._ _. _I icoonT Reduce the number counter. }
E‘_] Izﬁ___J IE/V.D Test for program end. l
T Q_A‘A‘_______l !TEM) d Temporary storage location. l
: _______ I |ICRA ... ~_1' :5'77’” +1 Return to add next number, :
_l;EQAEJ_V.I ﬁf;?__ ___3' %FIRST+47 g.;):;fant for number counter. ;
PR 1) |
_}E/__g_g_r §§§____ﬁl :5‘0 Reserved storage area. :
/J/\.—’é ND_ . o Last symbolic_instruction. |

Instruction Descriptions and Use 55

B trap routine, a restore channel traps (rcT instruction
is executed to restore the channel indicators to a non-
trap state. An indirectly addressed Tra* 12 will then
transfer program control to the location contained in
the address part of location 12.

Indexing Concept

Indexing instructions are available as a part of the
optional extended performance instruction set. These
instructions may be used to modify addresses of exist-
ing instructions, reducing the number of core storage
locations used for instruction storage.

Indexing is the ability of a computer to combine the
contents of an index register with the address portion
of an instruction before the instruction is executed.
There are two main reasons for indexing: (1) the
instruction as it appears in core storage is never
changed and therefore its address never has to be
initialized (set at the beginning of the program run),
and (2) many addresses can be modified by the same
index register’s contents.

The index registers may be loaded with either true
or complement numbers. When combined with the
address part of an instruction, the address may be
either increased or decreased depending on the type of
number (true or complement) the index register
started with.

The 7040/7044 systems have three index registers.
These registers are termed A, B, and C or 1, 2, and 4.
The latter terminology is more convenient for the pro-
grammer working in machine language because the
numbers 1, 2, and 4 are the octal representation of the
addresses of the registers. Index register addresses are
specified in a part of the instruction word known as the
tag field. The tag field tells the computer whether an
instruction is going to use an index register and, if so,
which register is to be used. The tag field is located
in bit-positions 18, 19, and 20 of the instruction word
(Figure 63). By having more than one tag bit in the
tag field, two or more index registers may be used by
a single instruction. Thus, the contents of the index
registers would be combined and the resultant or (see
“Packing and Unpacking”) would be used. With some
indexing instructions, the omission of 1 bits in the tag
field simulates an index register of all zeros.

Register Operation Part Tag Field Address Part
Aorl ojoj1
Bor2 o[1jo
Cor4 1000
s.1 mn 1718192021 3

Figure 63. Index Register Tag Bits

56

The 7040/7044 index registers are 15 positions long
— large enough to hold the largest possible storage
address. Instructions are available to test index register
contents and control program instruction execution
depending on that content. The contents of index
registers may also be reduced or increased by variable
amounts,

Complement Arithmetic

When index registers are used for address modification,
the contents of an index register is always subtracted
from an instruction’s address. Since neither the address
of the instruction nor the contents of the index register
is associated with any algebraic sign, it is not possible
to accomplish effective address modification by addi-
tion in any direct manner. However, addition is accom-
plished by using complement arithmetic. The following
definitions apply to this type of arithmetic:

The I's Complement of a binary number is the num-
ber that results by replacing each 1 in a number with a
0 and each 0 with a 1. For example, given the binary
number of 101; the I’s complement would be 010.
Also, the sum of a binary number and its I's com-
plement is a binary number composed of all ones
(101 + 010 = 111).

The 2's Complement of a binary number is defined
as the 1’s complement of a number increased by
one. Thus, for the preceding example, the 2’s comple-
ment of a number (101) would be 011. If the 2’s com-
plement of a number occupies an index register and is
used to modify an address, the effective address is the
sum of index register contents and the address portion
of the instruction. If the true number occupies the
index register, the effective address is the difference
between index register contents and the address part of
the instruction.

Note that since both the contents of an index register
and an instruction address are 15-bit numbers, all
carries out of the leftmost position are lost.

As an example of the arithmetic involved when index
registers are used, assume that index register xr> 1
contains the binary number 2 and that an App instruc-
tion with a tag of 1 and an address of 200 is to be
executed (Figure 64). When the app instruction is
decoded, the tag bit in position 20 specifies xrl. The
contents of xrl are complemented (2's complement)
and placed in the adders. Note that index register con-
tents are always automatically (2's) complemented
when taken to the adders. This feature results in sub-
tracting the contents of the xr from the address part
of the instruction. The address part of the App instruc-
tion is also placed in the adders; after adding the two
numbers, the result (called the effective address) is
used in execution of the App instruction instead of the

actual address. In this case, the effective address is
1765.

If the programmer wishes to increase the effective
address, the number placed in the xr is inserted in 2’s
complement form by instruction. Thus, when the ad-
dress of the instruction and xR contents are combined,
the result is an additive process. Using the same facts
(as in Figure 64) with the xr contents in 2's comple-
ment form, the effective address is now 202; instead of
176, (Figure 65).

Multiple Tags

As previously stated, an instruction may refer to more
than one index register by placing multiple 1 bits in
the tag field (Figure 66). Thus, a tag of 3s specifies
index registers 1 and 2. Care must be exercised when
multiple tags are used. The use of multiple tags re-
sults in a “logical or” (see “Packing and Unpacking”)
of the contents of the specified index registers. For
example, if a tag of 3 is given, the 15 positions of index
register 1 are matched against the corresponding 15
positions of index register 2. If corresponding positions
of each register contain 1 bits, the resultant logical sum
is a 1 bit. If both positions are 0 bits the logical sum
for that position is a 0 bit.

Assume that index register 1 contains 032045 (000
011 010 000 100) and index register 2 contains 030615
(000 011 000 110 001). The instruction ApD 065215, with
an index tag field of 3, causes the “inclusive or” (see
“Packing and Unpacking”) of the contents of the two
registers as shown in Figure 67.

Tag Field Index Registers Specified
Binary Octal Octal Alpha

000 0 None None

001 1 1 A

010 2 2 B

o1 3 1 and 2 A and B

100 4 4 C

101 5 1and 4 Aand C

110 6 2and 4 Band C

111 7 1,2,and 4 A,B,and C

Figure 66. Multiple Tags

The effective address received from the subtraction
is 032344, which the Apbp instruction uses.

Partial Store Instructions

Two store type instructions, sta and s1p, are available
which store only parts of a word instead of the whole
word. With both of these instructions, the check bit
(position 36) of the word stored is automatically
changed if necessary.

000 011 010 000 100
000 011 000 110 001

Index Register 1 Contents
Index Register 2 Contents
Inclusive OR‘ed Result 000 011 010 110 101 or

032658

Figure 67. Inclusive or Example

Operation Tag Address Index Register 1
foo0 100000000 000000] 001 | 0000000 10000000
Address Part of Add 0000000110000000 (2's Complement)
XR1 Contents ILRARARRARRRERIY IRRRRARARRRRRERLY)
Effective Address 000000001111110 = 176 Octal
Figure 84. Index Register Arithmetic, Subtracting

Operation Tag Address Index Register 1

fo00 100000000 J000000] 001 [0000000 10000000]

(2's Complement)

Address of ADD 0000000 10000000
XR Contents 0000000 00000010 =
Effective Address 0000000 10000010 = 202 Octal

Figure 65. Index Register Arithmetic, Adding

)00000000000010

Instruction Descriptions and Use 57

Store Address — STA Y,T

The ccAC)y; 35 replace the cyizrgs. The covig 20 and
the ccac remain unchanged.

Store Decrement — STD YT
The c(AC);.17 (decrement part) replace the c(yy3 17. The
C(¥)g,1,2,18.35 and the cac) remain unchanged.

Index Register Servicing and Testing

Computer instructions, when tagged, are subjected to
address modification; exceptions are instructions that
load, store, modify, or test the contents of an index
register. These instructions use the tag field to specify
the index registers affected. The following instructions
are used for index register xr» servicing and testing.

Address to Index True — AXT Y,T

The value specified in the Y portion of this instruction
replaces the contents of the index register specified by
the T portion of this instruction. For example, AxT 30,1
places the decimal value 30 (coded in binary format)
in index register 1. The instruction itself remains un-
changed. A tag of zero results in a no-operation.

Load Complement of Address in Index — LAC Y, T
The 2’s complement of the cy),;.35 replaces the con-
tents of the specified xr. For example, LAC 5,2 takes
positions 21-35 of core location 5 and places the 2's
complement of this value in index register 2. The cx»
remain unchanged. A tag of zero results in a no-
operation.

Load Complement of Decrement in Index —LDC Y,T
The 2's complement of the c(y»3.17 replaces the contents
of the specified xr. The cty) are unchanged. A tag of
zero results in a no-operation.

Load Index from Address — LXA Y,T

The cyy2;.35 replace the contents of the specified xr.
The ccy) are unchanged. A tag of zero results in a no-
operation.

Load Index from Decrement — LXD Y,T

The c)s.17 replace the contents of the specified index
register. The ccy) are unchanged. A tag of zero results
in a no-operation. Figure 68 is the flow chart for the
LAC, LDC, LXA, and LXD instructions.

Place Complement of Address in Index — PAC T

The 2’s complement of the ccac)s;.35 replace the con-
tents of the specified xr. The cac) are unchanged. A
tag of zero results in a no-operation.

58

Place Address in Index — PAX T

The ccasy.35 replace the contents of the specified xz.
The ccac are unchanged. A tag of zero results in a no-
operation.

Place Complement of Decrement in Index — PDC T
The 2's complement of the ccac3.17 replace the contents
of the specified xr. The ccac) are unchanged. A tag of
zero results in a no-operation.

Place Decrement in Index — PDX T

The ccacyz.47 replace the contents of the specified xr.
The cac) are unchanged. A tag of zero results in a
no-operation. The flow chart for the rac, rax, poc, and
PpX instructions is shown in Figure 69.

Place Index in Address — PXA T

The entire accumulator is cleared to zero, and the
contents of the specified xr are placed in ACyy.35. With
a tag of zero, the ccao are set to zero. The cxm are
unchanged.

Place Index in Decrement — PXD T

The entire accumulator is cleared and the comtents of
the specified xr are placed in Acs.,7. With a tag of zero,

SB (18-20) to
Tag Register
LXA,LAC XD, LDC
SR(21-35) to SR (5,1-35) to
Adder (P-17) Adder (P-35)
I I
Y
Adder (3-17) to
Index Register
Y
Index Register
to Adders with
Carry to Adder
1Z
LAC,LDC
Inst
LXA Adder (3-17)
to Index
LXD Regi
egister
Next

Instruction

Figure 68. LAC, LDC, LXA, and Lxp Flow Chart

AC (5,1-35)
! to Storage
Register
PAX, PAC PDX,PDC
SR (18-35) to SR (1-35) to
Adder (P-17) Adder (1-35)
L { |
Adder (3-17) to
Index Register
PAX, PDX PAC, PDC
Index Register to
Adders with Carry
to Adder 17
¥
Adder (3~17) to
Index Register
I
¥
. Next
Instruction

Figure 69. pac, PaX, poc, and ppx Flow Charts

the ccac> are set to zero. The cxr> are unchanged.
Figure 70 shows the flow chart for the pxa and pxp
instructions.

Store Index in Address — SXA Y,T

Positions 21-35 of the location specified by Y are re-
placed by the contents of the specified xr. The cc¥yg,1-20
and the cxm) are unchanged. With a tag of zero, the
C(Y)2;.35, are set to zero.

Store Index in Decrement — SXD YT

The c(¥)3.17 are replaced by the contents of the speci-
fied xr. The cvrg1,2,15.35 and the cxr> are unchanged.
With a tag of zero, the decrement (positions 3-17 of
the specified Y) is replaced with zeros. Figure 71 is
the flow chart for the sxa and sxp instructions.

Transfer on Index — TIX YTV

If the ccxr) specified by T are greater than the value
specified by V, the contents of the xr are reduced by

XR to Adders
and Adders (3~
17) Back to XR
XR
fo
Adders
PXD PXA
Adder (Q-35) Adder (3-17)
to AC to AS

!

AS to SR (21-25)
and SR (5-35)
to Adder (P-35)

!

Adder (Q-35)
to AC

Figure 70. pxa and pxp Flow Chart

Index Register
to Adders

y
Adder (3-17) to
Index Reg and
Index Reg to
Adder (3-17)

SXD SXA

Adder (3-17) to
Add. Swand
Add. Swto Stg
Reg (21-35)

Adder (P-35) to
Stg Reg (5-35)

!

Adder (3-17) to
Index Register

! !

Storage Register
(21-35) to
Storage

Adder (3-17) to
Index Register

Storage Register
(3-17) to

Storage

Figure 71. sxa and sxp Flow Chart

V and the computer takes its next instruction from Y.
If the cxm are less than or equal to V, the cxm) are
unchanged and the computer takes the next sequential
instruction. With a tag of zero, no transfer occurs.

As an example of the use of the 1Ix instruction, as-
sume that 50 words are to be added into the accumu-
lator and that the result is to be stored in location

Instruction Descriptions and Use 59

ToTAL. The words are located in the symbolic loca-
tions worp. Figure 72 shows two possible instruction
sequences.

Transfer on No Index — TNX \ARY

If the cxm specified by T are greater than V, the cxm
are reduced by V, and the computer takes the next
sequential instruction. When the cxr) are equal to or
less than V, no reduction is made but the computer
transfers to location Y. With a tag of zero, a transfer
occurs.

Transfer on Index High — TXH Y1V

If the cxm specified by T are greater than V, the com-
puter takes its next instruction from location Y. If the
cxp) are less than or equal to V, the computer takes the
next sequential instruction. With a tag of zero, no
transfer occurs.

YTV

V is added to the cxr) specified by T. The computer
then takes its next instruction from location Y. With a
tag of zero, only the transfer occurs,

Transfer with Index Incremented — TXI

YTV
If the caxm specified by T are less than or equal to V,
the computer takes its next instruction from location Y.

Transfer on Index Low or Equal — TXL

If the cxm) are greater than V, the computer takes
the next sequential instruction. With a tag of zero, a
transfer occurs. Figure 73 summarizes the transfer, test,
and modify actions of indexing instructions and gives
the conditions on each instruction.

Figure 74 shows data low between storage, accumu-
lator, and index registers (for index transmission in-
structions). Both true and complement lines are shown
with appropriate instructions.

Indexing Problems:

22. There are 24 numbers stored in locations N to
N+23. Compute and place the sum of the numbers
that are positive in location PSUM. The sum will not
exceed 35 bits.

23. There are 31 numbers stored in locations M to
M +30. Compute and place the sum of the numbers

Actions Conditions
Test and Modify If XR >V IFXR< V
TIX C(XR)=XR-V and transfer to Y Take next instruction
TNX C(XR)=XR-V and take next instruction| Transfer to Y
Test Only
TXL Take next instruction Transfer to Y
TXH Transfer to Y Take next instruction
Modify Only C(XR) = XR + V and Transfer to Y
TXI|

Figure 73. Index Transfer Instruction Summary

« [Tocation Operation T~ | Address, Tog. Decrement/ Count Comments T Taeniicarion |

! [|

b 6718 ' n'n [
| WoRD_| BEs__ _ _,| &0 Reserve storage locations. !
| AXT. 492 Put 49 into XR 1. 0

N CLA . _._! 'WorRD-8&9 Put first word in accumulator. I
L llesAa_ | |
| START APD_._. _._| |WIRD,L Get next word, i

| I~L~)L_._._.__1' }_STﬁI?T.J..J Check for equal XR and V; if I

| SR N I, I | unequal, reduce XR by V i
L e j : and transfer. IT
JI._._._._‘ éAI._Q._._._._: TOTAL When equal, store result. :
I I R !

i._ S N ___,; ; Another program variation could be: ;

+ S ; !
L AXT 184 Put 50 into XR 1. [
ﬁl_A_,_ _ 1 \PXD_ . _. __: Ir Clear accumulator. |
__;_&[AR 7N ADD . . _1iworRD. L Put first word into accumulator. :

i T
] I.L.A._._._.J :S‘rﬁ RT;1,1 Check for equal XR and V; if i

[- 1

) _._._,_._._._1 : unequal reduce XR by V '
:._._._._ . _.__A__l' { and transfer. :
4_._._~_._ 21.’2____1' li_-I:C’T/'L- When equal, store result. !

I KPR I Stop. l

'w_g,gﬂ_ _&EQ____: &0 Reserve storage locations. |
; | END .. _1' ! End of symbolic instructions. :

T
,*/\—"WVW\,'—W

Figure 72. Tix Instruction Uses

60

St 3 17 21 35
R:;:?; r] Decrement Address
LDC‘\\ SXA / AXT
\ LXD
PARY
Index True
Register ——= Complement
,
PDC PXA
/PXP
// pbx PAC
A/
Accumulator L
Register [I Decrement Address
3 17 21 35

Figure 74. Index Transmission Data Flow

that are positive in location PSUM and the sum of
the numbers that are negative in location MSUM.

24, One hundred numbers are stored in consecutive
locations starting with location HUND. Find the loca-
tion of the number with the largest absolute value and
store the location of this number at LARGST. Assume
that there are no equal numbers.

25. Examine the numbers stored in locations DATA
to DATA+49. Determine how many of these numbers
are greater than zero and store the count of these num-
bers in the decrement field of the location ANS. One
of the locations contains all zeros. Find this location
and place the address of this location in the address
field of the location ANS.

96. Given ten numbers: Al, A2, A3, . . AlO, and
two other numbers Bl and B2 where B1>0 and B2>

B1. Write a program to compute how many Ai’s satisfy
the following conditions (A+0>—0).

a. 0==Ai<Bl
b. B2=Ai<B2
c. Ai=B2

27. Sort one hundred numbers algebraically in as-
cending sequence. Stop when no interchange occurs
(natural sequence), or when all numbers are sequenced.
Numbers are stored in locations NUM through NUM
+99.

28. Write a program to compute:

32 (Xi = Y))?

i=1
where X; and Y, are integers. No overflow is to be ex-
pected.

Complement Magnitude — COM T

Although not actually an index transmission instruc-
tion, the complement magnitude instruction is often
used with indexing instructions.

All 1 bits are replaced with 0 bits and all 0 bits are
replaced with 1 bits in the caCq p,1.35. The sign posi-
tion of the ac is unchanged. Since the Y portion of the
coM is a part of the operation code, address modifica-
tion may change the operation.

As an example of com use, the program shown in
Figure 75 shows a table look-up. Given a group of

Figure 75. coM Instruction Program Example

T tocation Operation T rxmmumraw Tomments T Tderthication

| 11 {

) ol7is ' ! w
| ORG | loka _ | 100 Begin program at location 100. '
;] ﬁ.L.I._._._._: !rov Zeros to XR 1. !

H CLA .. _._ | |ARRCUE Place argument into accumulator. |
_sL.Q.Q.S _@.J,QA_,__._.__} 'ILJ': 2 Compare first T number with argument. :
T IX._L‘_._,_._: LO0K, 1 -1 AC>T !

! TRA_.__._| | £EQUAL AC=T !

L X4 .. _1490k,2,-1 AC<T |
L_iﬁ.g.lli L PXA_ : :0_.1 Address of equal T in complement form. !
—L~_] eem_.__._ __: H Complement this address. !
: YY1 ADD_ . _ _; = 1 bit in position 35 to obtain 2's complement. :

; ApD_ . _._\1L06K Instruction with address of first T number. !
L | |STA__ __|ICATCH Address of T number which agrees)

! HPR_._._. ' with the argument., |
| ARG UE BSS ¥ :

__Jll. 1l8ss_._._._, 00)

CATCH BsS _.__,_,__,' { !
.0 — !

/MWVW‘M

Instruction Descriptions and Use 61

numbers in storage locations T1 to T99, find the Ti
that agrees with the argument (number being searched
for) and store its location in storage location carca.
Figure 75 shows both the instructions and comments.

Transfer and Set Index — TSX Y,T

The 2’s complement of the location of the Tsx is placed
in the specified xr. The computer takes its next instruc-
tion from location Y.

This instruction may be used to set up a return ad-
dress to the main program when it is necessary to trans-
fer to a subroutine and, after finishing with the sub-
routine, to come back to the main program. For ex-
ample, assume that arithmetic operations are tested for
error conditions and, when these conditions are found,
a transfer to a fixup routine is to be executed. The
last instruction of the fixup routine could be a Tra 00001
instruction tagged for the same index register as used
by the Tsx instruction. If the 1sx is located at core
location 1000 and program return to location 1001 is
required, the program could be as shown in Figure 76.

Main Program Index Register

Inst 111 111 000 000 000
Inst '
Inst

060 ~TSX, FIXUP, 1 ew—ed>Fixup Routine 2's

FIXUP Inst Complement
Inst Inst
Inst Inst 000 001 000 000 000
Inst TRA 00001, 1 000 000 000 000 001

000 001 000 000 001
Program Return 007

Figure 76. Possible Use of the Tsx Instruction

Indirect Addressing

Indirect addressing extends the concept of address
modification for a large group of instructions. This ex-
tension is carried out in a simple way: just as index
registers are “addressed” with a tag, indirect address-
ing is specified or addressed by a flag (1 bit in both
positions 12 and 13 of the instruction). With a flag,
the instruction is executed as follows:

1. An effective address is computed in the normal
way, by subtracting the contents of the specified
index register (if one is specified) from the address
part of the instruction. This is called an indirect ef-
fective address.

2. The computer then examines the location spec-
ified by this indirect effective address and uses the
tag and address parts of this word to compute a direct
effective address.

62

The instruction is then executed as if its address part
had contained this direct effective address with no tag
or flag. The following examples illustrate this process.

Assume that the address part of location 000545 in
core storage contains 002735, If the instruction App
00054y is executed, the contents of location 000545 are
added to the contents of the accumulator register.
However, if this same instruction has flag bits, the
contents of location 00273; instead of 00054, would be
added to the accumulator.

Now, assume further that index registers 1 and 2
contain 4 and 3, respectively, and that core storage
location 000505 contains a 2 in its tag field and 00167,
in its address field. If the instruction app 00054z with
an index tag of 1 and flag bits is executed, then the
indirect effective address equals 000505 (address field
of the app instruction minus the contents of index regis-
ter 1). The direct effective address is 00164 (address
part of location 000505 minus the contents of index
register 2), and the contents of this location are added
into the accumulator (Figure 77). Remember that
flagging always requires positions 12 and 13 of the
instruction to contain 1 bits. In text and in program
examples, an asterisk represents these 1 bits and indi-
cates that indirect addressing is called for.

Logic Operations

Logic operations provide means for working on a 36-
bit unsigned word or an individual character within a
word. All logic operations interpret the sign position
of the storage location addressed by the instruction as
a numeric bit corresponding to position P of the ac-
cumulator. The sign position of the accumulator is
either ignored or cleared. The instructions to clear,
add, and store logical words are:

Clear and Add Logical Word — CAL Y, T

The cav replace the ccacp 1.35. The sign of Y appears
in acp and accumulator positions S and Q are set to
zero. The ccy» are unchanged.

Add and Carry Logical Word — ACL Y,T

The ccy) are added to the cacip 1.55 and the resultant
sum replaces the caCp 1 35. The sign of Y is added to
Acp and a carry from acp is added to acs;. Positions
S and Q of the Ac are not affected and the ccv are
unchanged.

Logical Left Shift — LGL YT

The cuacqgp1.35 and cMQyg i35 are treated as one
register and are shifted left the number of places
specified by Y. The sign of the ac is unchanged. Bits
enter the MQg from M@, and go from MQs to acys. If a

Instruction

Index Register 1

Flag Tag Address
ADD [11] Joot | 00054
51 111213 14 1718 2023 35
"00054
00004 =

00050 Indirect Effective Address

Core Location 00050

Tag
[[or0] | 00167
00167
00003 =

Index Register 2
00003]

00164 Direct Effective Address

Figure 77. Computing Indirect and Direct Effective Addresses

1 bit is shifted through ac position P, the ac overflow
indicator is turned on. Bits are shifted from P to Q and
bits shifted from Q are lost. Vacated positions are
filled with zeros (Figure 78).

35 l<—|s,1‘ 35]
AC MQ

S
“ar

Figure 78. oL Schematic

Logical Right Shift — LGR YT

The GG p135 and CMQg 135 are treated as one
register and shifted right the number of places spec-
ified by Y. The Ac sign is unchanged. Bits enter MQg
from acss, and from mQg they are placed in M. Bits

shifted past mQs; are lost and vacated positions are
filled with zeros (Figure 79).

35 |—| s, —

S
e

AC MQ

Figure 79. LGr Schematic

logical Compare Accumulator with Storage—LAS Y, T
The ccAG)q p,1.35 are treated as an unsigned 37-bit num-
ber and are compared with the c(Yg .35, which are
treated as a 36-bit unsigned number. If the cac are
greater than the c, the computer takes the next
sequential instruction. If the cao are equal to the
¢, the computer skips the next instruction and pro-
ceeds from there. If the cac) are less than the cov,
the computer skips the next two instructions and pro-
ceeds from there.

Store Logical Word — SLW Y, T

The caCp 135 replace the covy. The P position of the
Ac is sent to Yg and the ccac) remain unchanged.

Parity Checking Instructions

Two instructions, cap and sLp, check the parity bit
checking circuits to allow operations on an invalid word
in the parity trap routine without requesting another
parity trap and to enable a program to force a parity
trap, thus inhibiting parity checking during special
programming situations. Traps are explained in the
Trapping section. The format and description of these
instructions are:

Clear and Add Logical Word with Parity — CAP Y,T
The ¥ g,1.35 replace the cACg p 1.35. The parity bit
(C) of location Y appears in Acy and the sign position
of Y appears in Acp. Position Q of the ac is set to zero.
The can are not parity checked and cannot cause a
parity trap request. The ccy> are unchanged.

Store Logical Word with Parity — SLP YT

The ccac)g 135 replace the C(Y)q g 1.35. Position S of
location Y is replaced by acp. Unlike all other store
operations, parity is not generated during the store;
instead, the parity bit of location Y is replaced by acs.
The cac are unchanged. Parity is not checked during
the store operation. If an even number of 1 bits are
stored in the ccv, any reference to location Y other than
a full word store operation or a car instruction will re-
sult in a parity trap request.

Logical Check Sums

One of the principal methods of keeping a check on a
block of information in storage is to attach to this block
a sum value of all the words in the block. This sum is
called a check sum. When computing the sum through

Instruction Descriptions and Use 63

use of logic instructions, the check sum is called a
logical check sum. It is normally not equal to the alge-
braic sum of the block since no overflow occurs with
logic instructions.

An example to compute the logical check sum for
a block of 300 words in core storage is shown in Figure
80. Normally a symbolic location is assigned to the
block of words. For example, the symbol rirst could
be used to designate the location of the first word of
the block. The symbol cksum could be used to specify
the location where the computed check sum is to be
stored.

Another example of check sum computation is shown
in Figure 81. Assume five blocks of nine words each.
The first block starts at symbolic location BLoCK + 1,
the second at BLock + 11, the third at BLock + 21, and so
on. The problem is to find the logical check sum of each
block and place it in the first location preceding that
block. If the program is started at symbolic location
START, the instruction sequence could be as shown in
Figure 81.

Packing and Unpacking

There are many cases where the information to be
handled by the computer is made up of individual
items, each of which is less than the 36-bit computer
word. For example, it may be necessary to work with
numbers no larger than three decimal digits. To con-
serve storage space, three such numbers could be
stored in the same word (Figure 82), where positions
S, 14, and 25 are the sign positions of the numbers N1,
N2, and N3, respectively.

[NI | N2 [N3

512 1314 2425 35

Figure 82. Diagram of Packed Word

Handling information in this way is called packing.
In addition to conserving storage space, packing also
increases the entry and exit speed of information by
reducing, for instance, the amount of magnetic tape to
be read or written.

| Location Operotion T~ | Address, Tog, Decrement/ Count Tomments T identfication
| [1

1 !2 §|7 |8 f [77:73 80
e AXT . 299,1 Load 299 into XR 1. i
r_;_,,.,.,.A QAQ‘__,_: ;FIRS I Clear accumulator and add 1st word. ;
4_,_._._._ AQL____} :FIRS T'f’JOOY,I Two instruction loop to compute check J!
_;,.7.?.7.* I_I_l_ —'—'ﬁl :*—1 N I N 1 sum and test for end condition. |

o 7 +
L hsLw ICKSUM Store computed check sum. !
f HPR i End of i
—._y PR nd of routine. |
_FIRST BSSs____|i300 Reserve storage !
CKSUM B8SS 111 locations. i
!

Figure 80. Check Sum Sample Program

« T tocation Gperation T T Address, Tag, Decrement/ Count Tomments T~ Tdentication

| 1 !

1 17 8|7 18 : ll 721173 80
| \START AXT . __| 49,2 Put 49 into XR 2, !
AT _ 19,1 Put 9 info XR 1. !
-———:’—~—-—-—-— BX.QW._A_._} e Clear accumulator to zeros. |
L |ACL | \BLOCK+IO,2 Addtheblock. !
:._._._,__ INX____.: i*+4", 2,1 Test all blocks for end condition. !
b_,},,._._._‘_ T 1.X_ _,_; k. o ZI, 1 P Zz Reduce word count of the block. !
__:‘,_,_._4_ S LW 1 {B LOCK+40,2 Storethe check sum for that block.]|
| TLX. _: :S TAR 7—"‘1’,3 1 Test for end of block. :
| L | |Sew . .| IBLOCK+4O Store check sum (last one). !
l;‘_._._‘_¢ EEBAA‘_J Il Stop. :
| B8L0cK BSS | S0 Reserve storage locations. i

: ! End of symbolic instructions.
m——

Figure 81. Check Sum Sample Program

64

The anp and or concept is used, together with a
process called masking, to accomplish the packing and
unpacking of parts of words. When two numbers are
combined with an aND operation, they are matched
bit-for-bit. If the same position in each word contains
a 1 bit, the result is a 1 bit. If in one word the position
is a 0 bit and in the other word it is a 1 bit, the result
is a 0 bit. If the same position in both words is a 0 bit,
the result is a 0 bit. For example:

101101011011 logically added to
101001001101 gives the resulting ANp sum of
101001001001

An or function (sometimes called inclusive or) also
matches two numbers bit-for-bit. The difference, how-
ever, when compared with an anp, is: (1) if the same
position in either word contains a 1 bit, the result is a
1 bit; (2) if the same position in both words is a 1 bit,
the result is again a 1 bit; (3) only if the same position
in both words is a 0 bit, is the resulting position a 0 bit.
For example:

011010110101 combined with

001100100100 by the or operation gives the resulting or of

011110110101

To summarize, mask contents when using the anp
operation are 0 bits to unpack and 1 bits to leave data
“as are.” Mask contents for the or operation use 1 bits
to pack and 0 bits to leave data as are.

\

AND to Accumulator 1/— ANA,’Z YT

Each bit of the c¥)s 135 is matched with the corre-
sponding bit of the ccacp 1.35. The sign position of Y
is matched with the acp. When the corresponding bits
of both Y and the ac are 1 bits, a 1 bit replaces the con-
tents of that position in the ac. When the correspond-
ing bit of either location Y or ac, or both, is a 0 bit,
a 0 bit replaces the contents of that position of the Ac.
The S and Q positions of the Ac are set to zero and the
cay) are unchanged. Figure 83 is the flow chart for the
ANA instruction.

OR to Accumulator — ORA YT

Each bit of the ccvg 135 is matched with the corre-
sponding bit of the c(AC)p,1.35. The sign of Y is matched
with acp. When the corresponding bit of either loca-
tion Y or of the ac, or both, is a 1 bit, a 1 bit replaces
the contents of that position in the ac. When the cor-
responding bits of both location Y and the ac are 0 bits,
a 0 bit replaces the contents of that position of the ac.
The ccv> and the S and Q positions of the ac are un-
changed. Figure 84 is the flow chart for the ora in-
struction.

Complement
Accumulator

!

Contents of Y
to SR

Exchange SR
and AC

!

Complement
AC

!

SR to AC, At the same|
fime gate SR to SR
land ACto SR{AND

IComplement in SR)

{

Exchange SR
and AC

!

Complement
AC

!

Figure 83. ana Flow Chart

AC (P,1-35) to
Storage Register,
and at Some Time

SR to SR

SR (5,1-35) to
Adder (P,1-35)

Adder (Q-35)
to AC

Figure 84. ora Flow Chart

ANA Example

As an example in the use of the aNa instruction, assume
that a word in core storage has the format shown in
Figure 82 and the number N2 is to be operated on.
Before arithmetic operations can be performed with
this item, it must be separated from the other items in
that word location. This separation is called unpacking

Instruction Descriptions and Use 65

or extracting. Since items N1 and N3 are not to be
destroyed, the unpacking will be done in the accumu-
lator, leaving the other items intact in core storage.
The symbolic program shown in Figure 85 will accom-
plish this. The mask used in the program contains 1 bits
in positions 14-24 (177744) and 0 bits elsewhere. The
result of using this mask with the ana instruction places
the N2 number in AC;4.u4. By varying the format of the
mask, any of the three numbers could have been un-
packed from the packed word.

After performing the desired arithmetic operations
on the number N2, a new number, N4, is the result.
This number is the same size as N2 and is to be packed
(inserted) in lpcation rakwb, replacing N2, while N1
and N3 are to remain unchanged. The program shown
in Figure 86 will accomplish this.

Adding BCD Coded Numbers

CALIGEe A

. . AL Lapp B
Both the aNa and ora instructions may be used to per-4¢.

form addition of numbers coded in Bcp format. Figureve st
87 shows the instruction string that accomplishes the., |

3

addition and the actual bit patterns within the com-
puter.

The bit pattern for the cus instruction is shown insci

G

complement form because changing the sign of the
accumulator and then adding ca results in a subtract

ANA SIXTY| 110000 110000 110000 110000 110000 110000
$t© CB 000000 110000 110000 110000 000000 000000
ARS 3 000000 000110 000110 000110 000000 000000
ORA CB 000000 110110 110170 110110 000000 000000
ieHs 111111 001001 001001 001001 111111 1111114
ABB CA 001010 111110 171011 111111 000100 000101

Problem

29. Two packed words, X and Y, contain several
small numbers that are distributed within each word as

follows:
X1 (S, 1-10) Y1 (S, 1-10)
X2 (11-17) Y2 (11-17)
X3 (18-28) Y3 (18-28)
X4 (29-35) Y4 (29-35)

The signs of these numbers are in positions S, 11, 18,
and 29 of locations X and Y. Write a program to satisfy
the following conditions:
a. If XI = Y1, put a 1 bit in location TEST. If
X1 <Y1 put a binary 2 in location TEST.
b. Same conditions for X2, X3, X4, Y2, Y3, and
Y4, using TEST+1, TEST+2, and TEST +3.

Bit Patterns
001010 000101 000010 000100 000111 001000 (052478)
001010 000011 000011 000100 000110 000111 (033467)
110110 110170 110110 110110 110110 110110 085945 Ans
001010 1111710 111011 1171111 000100 000101

Instructions

ABB

001010 001000 000101 001001 000100 000101 (Carry)
0 8 5 9 4 5

operation. Figure 87. Bcop Add Operation Using aNa and ora Instructions

B Localion Operation [~ TAddress. Tag, Decrement/ Count Tomments T~ dennhcation]

| [!

i :2 é 8 l‘ E 77:73 80
| leAz .| PAKwD Place packed word into AC positions P, 1-35. I]
;L_.__ P A.N.A.,ﬁ._._‘.; :MASK N2 is left in AC as a result of ANA operation. :

___1~A,_] Aéﬁ;‘__: :14 Shift N2 until the sign occupies position P. :
,,_lr_.._ e §.L.ﬂ_‘_.‘,ﬂ LOCN2 Store N2 in location LOCN2. i
! T
L] H,f.ﬂ__**; ! Stop |
MASK | l0oc.T o {0000 17774000 Mask configuration to unpack N2 only. :
|
Figure 85. Unpacking Program Instructions
T Tecarion Operation [TAddress, Tag, Decremont/ Count Tomments T Identfication |
b [{
! l s|7 8 : L 77!73 8
I Agﬁéﬁ___; :14‘ Shift N4 (N2 after arithmetic operations) to AC 14-24. :
_SLQJ_____: ;L0c N4 Place N4 in temporary storage. J‘I
CAL . |'PARWD Bring packed word into accumulator, |
= — t
ﬁ4ﬂ.A.__._._._1' :LMASK Erase N2. ;
ORA . . L ILOCNA Place N4 in old N2 positions. :
SLW _: {PA KWD Store new packed word. ;
HPR | : Stop. :
_} i 777760005777 Mask configuration to erase N2. :

Figure 86. Packing Program

66

Character Handling Operations

Three character handling instructions are used to ex-
pedite six-bit character operations. In each of these
instructions, positions 15-17 of the instruction itself
specify which character of the word located at the
effective address (Y) is to be used in the operation.
Valid bit patterns for the position field are octal num-
bers from zero to five and specify the following char-
acters within the word:

WHERE THE CHARACTER TO BE USED
IS LOCATED WITHIN THE WORD
S, 1-5
6-11

12-17

18-23

24-29

30-35
See MsM and MIT instructions
See Mmsp and PLT instructions

OCTAL POSITION FIELD
prTs 15-17

Positions:

SN UR WD —=O

Compare Character with Storage — CCS Y1,V

The character specified by V and located in Y is com-
pared with the cacyy0.55. If the ac character is greater
than the character in Y, the computer takes the next
sequential instruction. If the ac character is equal to
the Y character, the computer skips the next instruction
and proceeds from there. If the ac character is less than
the Y character, the computer skips the next two in-
structions and proceeds from there. The caCis g p,1.20
are ignored and the ccac and ccy) are unchanged.

Place Character from Storage — PCS YTV

The character specified by V and located in Y replaces
the ca®30.35. The CaCs g.p.1.29, and the coyy are un-
changed.

Store Accumulator Character — SAC YTV

The caG)30.35 is placed in location Y in the character
position specified by V. The remaining bits of Y and
the ccacy are unchanged.

As an example in the use of the pcs and sac instruc-
tions, assume that a word consisting of six alphameric
characters (9-code) is located in storage location
FRWRD. The instruction sequence shown in Figure 88
would create a word of the same six characters in re-
verse order and store these characters in storage loca-
tion BKWRD.

Problem

30. A parts purchase record in core storage consists
of three words:

Word 1. Part number (six alphameric characters,

9-code)

Word 2. Quantity (binary integer)

Word 3. Price per unit in cents (binary integer)
There are five types of parts, distinguished by the last
character (positions 30-35) of the part number. Write a
program to compute the total money invested in each
part type by summing the individual calculations of
price times quantity for each part type. Parts types
are A, C, F,], and R. There are no invalid part types.
There are 9,000 parts purchase records located in stor-
age locations INVPR through INVPR 8999. Place the
part type totals in locations ATOTL, CTOTL, FTOTL,
JTOTL, and RTOTL.

Data Transmission

The ability to move blocks of information from one
series of storage locations to another set of storage
locations is provided by one instruction, TMT.

Transmit — TMT Y, T

This instruction uses the ccacy;17 as a FRoM address
and the cACy,; 35 as a To address. The contents of the
rrOM location in core storage replace the contents of
the 1o location and the carroM» remain unchanged. The

Tomments Tdentfcation

Character in FRWRD positions S, 1-5 are

placed in BKWRD positions 30-35.

FRWRD position 6-11 are placed in

BKWRD positions 24-29.

FRWRD positions 12~17 are placed in

FRWRD positions 18-23 are placed in

BKWRD positions 12-17.

FRWRD positions 24-29 are placed in

BKWRD positions 6-11.

FRWRD positions 30-35 are placed in

I
|
|
1
!
}
i
{
i
:
- T
BKWRD positions 18-23.]
T
|
|
L
|
1
|
1
I
T
|

BKWRD positions S, 1-5.

Ol Location Operation T [Address, Tag, Decrement/Count
[Pl
IJ|2 6|7 (8 Ji Il
. __||Pes | \FRWRD,,0
i |l|sac_ . ! BKWRD, .5
R | fgg_.__A_i FRWRD, , 1
L _||sae____'Bkwep, ,4
IR Bci__.;_ﬂl FRWRD,,2
| lsac_ . IIBK\NRD,.J
o | lpes___) \FRwRD, ,3
I | lsae___ 1 \BKWRD, ;2
] B.Qi.*_._*.*._J IFRWRD' 4
: SAC__ _ | |BKWRD,, 1
IR | lPes_ I IFRWRD,,S
L |lsac ! BKwRD,,0
e

Figure 88. pcs and sac Instruction Use

Instruction Descriptions and Use 67

c(rrom+1) then replace the c(to+1) and the
¢(rroM + 1) remain unchanged. This process continues
until the total words specified by the Y part of the
T™T instruction have been transmitted.

Positions 28-35 of the T™T specify the number of
words to be moved and provide a maximum transfer
of 3774 or 255,, words. Any number larger than 3774
is interpreted as modulo 4005, Modulo 4003 means that,
given a transmit count, the actual number of words
moved will be the remainder after dividing the count
by 4004. With indexing, the count number is modified
(positions 28-35 only) by the specified index register.
A step-by-step description shows that:

1. Positions 28-35 of the vt are modified by the
specified xr (if any) and then are placed in the shift
counter.

2. If the contents of the shift counter are zero, the
instruction ends.

3. With a non-zero value in the shift counter, the
C(AC;. (7 are used to address core storage.

4. The ca» specified by the ccacy 7 are placed in
the storage register.

5. The ccaC; .45 are used to address core storage.

6. The csr are placed in the location specified by
the Ay 35,

7. The ciay47 and caCw 35 are both increased by
one.

8. The shift counter is reduced by one.

9. Execution returns to step 2.

At the completion of the t™rt, the cacy;. 7 contain
the address of the last word read, plus one. The

C(AC)21 .35 contain the address of the last word stored,
plus one. Another T™™T instruction can be given if it is
desired to transmit more than 3775 words. As an exam-
ple in possible use of the T™T, assume that 512 words
stored in locations AREA1 are to be relocated to storage
locations area2. The program could be as shown in
Figure 89.

Problems

31. Given a block of 100,, words in core storage, in
storage locations 17505 through 21145, move the first
25,, words to locations 100, 101, etc.; move the second
block of 25,, words to locations 200, 201, etc.; the third
block of 25 words to locations 300, 301, etc.; and the
fourth block to locations 400, 401, etc.

32. Given three blocks of data located in storage and
containing:

Block 1 = 45,, words

Block 2 = 30,, words

Block 3 = 15,, words
Make one block of 90,, words in consecutive storage
locations.

Floating-Point Operations

When the range of numbers anticipated during a calcu-
lation is either large or unpredictable, it becomes diffi-
cult to work with fixed-point arithmetic instructions.
An alternative set of floating-point instructions is avail-
able for such calculations. These instructions maintain
the binary point automatically.

Comments

Tdentification

72

Put 512 into XR1

Get Starting oddress,

Transmit one word,

Test for end; if not end, reduce and repeat.

End of symbolic instructions

Get starting address

Transmit 255 words,

Tronsmit 255 words,

Transmit 2 words

I
i
|
Il
I
1
|
I
f
5
AR A Start addresses for From and To !
|
1
|
|
1
|
|
1
1
i
L
i

ol Location Operation | 1 Address. Tag, Decrement/Count
I I
) !2 6|7 |8 ! L
L AXT_ .| 512,12
LA . sTADD
IR TmT_ 1
L Taax I %-21,14
..JL..A.A.‘. ﬂE@____; ; Stop.
'S TADD \PZE_ _._. ||
b | IEND . 1]
I ______] ___7__7_7_v.7.j IAnother variation might be:
L |eLA) isTADD
| |rMT___ 1255
L |lrmr____| 255
L rmMr iz
L] Hgﬂ_ffv,ﬂ' L Stop.
t/ﬁhM

Figure 89. Sample Transmit Programs

68

A floating-point decimal number X may be expressed
as a signed proper fraction (N) multiplied by some
integral power (n) of 10. The number is normal if the
power of 10 (n) is chosen so that the decimal point
is positioned to the left of the most significant digit
of N. Examples:

X N 10"
-~.010 = -.10 x 10
140 = 14 X 10°
4600 = .46 X 10
88.000 = .88 x 10°

Likewise, a floating-point binary number (X) may
be represented as a signed proper fraction (B) times
some integral power (b) of 2. In the normalized case,
the binary point is positioned to the left of the most
significant digit of B. Examples:

X({ BINARY) B(BINARY) 2" (DECIMAL)
-.001 = —-.100 X 22
100 = 100 X 20
1.100 = 110 X 2!
110.000 = 110 X 28

The algebraic addition of two floating-point numbers
in the computer is analogous to the ordinary algebraic
addition of two signed numbers with decimal points.
An example is the algebraic addition of the numbers
100 and —0.1009:

100.0000
-000.1009

99.8991

Note that the second number must be shifted to
the right to line up the decimal points, and that the
first number must be supplied with additional zeros.
The same addition performed with. numbers expressed
in floating-point decimal form is:

1000 x 10°
—.1009 x 10°

Again, before the addition, the lower number is
shifted to the right with a compensating .change in the
exponents, and corresponding zeros are added to the
number on the upper line:

1000000 x 10°
—.0001009 x 10°

0998991 X 10* = 998991 X 107

Note also that the digits of the answer must be
moved to the left to be in normalized form (no zero
in the position to the right of the point) and that the
final fraction contains more digits than either of the two
numbers involved in the addition.

In the computer, the two numbers are expressed as
binary fractions, each having an eight-bit binary char-
acteristic to represent the exponent 2. The “lining}&p”
is done by shifting from the ac into the MQ. The result

of an addition or multiplication is normalized by shift-
ing the fractions in the ac and Mm@ left while making
compensating changes in the characteristic of the sum
or product.

In the computer, a floating-point number is stored
in a word location as shown in Figure 90.

[SlChcructeristic] Fraction I
O] 39 35

Figure 90. Floating-Point Word Format

The fraction is contained in bit positions 9 through
35. The sign of the fraction is contained in the S
position of the word, and position 1 of the characteristic
may be considered the sign of the characteristic. For
example, an exponent of —32;, would be represented
by a characteristic of 2005 minus 40y or 140y. An ex-
ponent of 100, would be represented by a character-
istic of 2004 plus 1444 or 3444. Since 128;, is equal to
200y, the characteristic of a non-negative exponent al-
ways has a 1 bit in position 1 of the floating-point word,
while the characteristic of a negative exponent always
has a 0 bit in position 1. A normal zero has no bits in
either the characteristic or the fraction, and is the
smallest possible zero available in this notation.

Conversion

A procedure for converting numbeérs to floating-point
notation can be illustrated by the problem: Convert
the decimal fraction .149 to floating-point notation:

1. Convert to binary form:

149, = 11425 = .001 001 100 010.
2. Enter the binary number into the fraction part of
the word with a zero (2004) characteristic:
10 000 000. 001 001 100 010 or (200. 1142},
3. Normalize:
01 111 110. 100 110 001 or (176. 461), = answer

Now, convert the decimal integer 149 to floating-
point notation:
1. Convert to binary form

149, = 225: = 010 010 101
2. Strike out leading zeros
10 010 101

3. Enter this binary number into the fraction part
of the word with a zero characteristic

10 000 000. 100 010 101 or (200. 452).

4. Add the octal number of binary digits in step 2 to
the zero characteristic of the computer word

10 001 000. 100 101 010 or (210. 452)s = answer

Instruction Descriptions and Use 69

Examples of equal exponential (binary) and floating-
point numbers are:

EXPONENTIAL BINARY FORM FLOATING-POINT FORM

(BINARY EXPONENTS) S 1 8 9 35
d xan 0 10 000 011 100 000 000..0
1 x2" 0 10 000 100 100 000 000..0
—101 xX2'=(—-0.101 x2'™) 1 10 000 100 101 000 000..0
A1 x 2° 0 10 000 000 110 000 000. .0
1 x2=(1x2") 0 01 111 110 100 000 000..0
—.101 x 27" 1 01 110 101 101 000 000..0

The fraction does not always have a significant bit to
the right of the binary point but, when it does, the
floating-point number is said to be in “normal” form.
The exception to this rule is a “normal” zero. A normal
zero is a floating-point number whose characteristic
and fraction are both zero. If a floating-point number
does not meet either of these qualifications, it is called
“unnormal.” The single-precision floating-point instruc-
tions are divided into the two general catagories:
normal and unnormal. The difference in machine oper-
ation between the two is that normal operation always
attempts to produce a normal answer and unnormal
does not.

Examples

Multiplication: Example 1. Add characteristics and
multiply fractions.

S I 8 9 35
0 10 000 011 .11....0 Multiplicand.
0 10 000 001 .101....0 Multiplier.
100 000 100 .O1111.. Add characteristics and mul-
tiply fractions.
10 000 000 Subtract extra 200s factors
10 000 100 01111 0 from Ch.aracteristi'c..
10 000 011 .1111...0 Normalize by shifting frac-

tions left one place and de-
creasing characteristic by
one; this does not alter the
value of product.

Multiplication: Example 2.

S 1 8 9 35

0 01 111 011 101..... 0
1 10 000 110 1100....0

Multiplicand.
Multiplier.

1 100 000 001 .01111 Add characteristics and mul-
tiply fractions.

10 000 000 Subtract extra 200, factor in
1 10 000 001 .Ol1l1 characteristic.

Normalize by shifting frac-
tion left one place and re-
ducing the characteristic by
one.

1 10 000 000 .1111

The sign of the product is negative because the signs
of the two original factors were different.

Normalization of one place is automatic on the Fmp
instruction, whether or not the multiplier or multi-
plicand is in normal form. If both factors are normal,
floating-point multiply will produce a normal product.
Normalization is not performed by the computer on
unnormalized floating-point multiply curMm> operations,

70

regardless of whether the factors are normal. uFM can-
not produce a normal product.
Division: Divide fractions and subtract character-
istics.
S 1 8 9 35
10 001 010 .1000..... 0

0

0 10 000 101 .1000....0

0 00 000 101 1.000....0
10 000 000

Divide fractions and sub-
tract characteristics

Add 200, (FP factor)

Shift fraction right one place
10 000 101 1.000....0 (point must be to left of
10 000 110 .1000....0 most significant figure)
Proof: (Decimal) .5 X 2 =1 X 2° = 32

5 x 2
(Binary) .1 X 2° = 2° = 32

Preceding the division, the dividend is in the ac and

the divisor in the sr. The MQ is automatically cleared

before division takes place. After division the quotient
appears in the M@ and any remainder in the ac.

If both the dividend and divisor are in normal form,
the quotient will be in normal form. When the dividend
or divisor is not in normal form, the quotient will be
normal only if the fraction of the dividend is greater
than half but less than twice the fraction of the divisor.

Addition and Subtraction: As in fixed point, sub-
traction is accomplished by inverting the sign of the sr.

Floating Point Binary: Example 1.

o0

S 1 8 9 35
0 10000011 .101....0 Signs different; subtraction is
1 10000011 .100....0 implied.
0010...0 Characteristics are equal;
10000011 .001....0 therefore subtract.
10000001 .100....0 Fractions assign same charac-

teristic.
Normalize: Shift fraction left
until A bit appears to right of
point.
Decrease the characteristic by
the number of shifts.

2% X .625

—23 x .500
22 x 125 =8x%x.125=1.0
1.0 = 10000001 .10....0

Proof (Decimal)

Example 2.
S 1 8 9 35
0 01 111 000 .001010....0
0 10 000 101 111000....0

Signs are alike; addition is implied.
LOWEST CHARACTERISTIC

01 111 000 .001010 The characteristics must be made
01 111 001 .000101 equal by shifting the fraction of
01 111 010 .0000101 the lowest number to the right and
01 111 011 .00000101 increasing the characteristic by the
01 111 100 .000000101 number of shifts.

01 111 101 .0000000101

01 111 110 .00000000101

01 111 111 .000000000101

10 000 000 .0000000000101

10 000 001 .00000000000101

10 000 010 .000000000000101

10 000 011 .000000000 0000101 The characteristics are
10 000 100 .00000000000000101 now equal; therefore
10 000 101 .000000000000000101 add fractions and affix
10 000 101 .111000000000000000 common characteristic.
10 000 101 .111000000000000101

In addition or subtraction, the characteristics must
be made equal before the fractions can be combined.
The number with the smallest characteristic is auto-
matically placed in the accumulator. Then it is shifted
right a number of places equal to the difference in the
ac and sr characteristics. Bits shifted past acs; go to
MQy, and bits leaving MQz5 are lost. Normalization of
the total occurs on Fap and Fss.

Summary

Floating-point arithmetic is used to reduce program-
ming complexity and increase the range of numbers
available for calculation. The only disadvantage is the
loss of two and one half decimal places of accuracy
(lost in accommodating the characteristic).

The only major difference in exponential and floating-
point arithmetic is the treatment of the exponent. Neg-
ative exponents are implied by floating-point char-
acteristics of less than 200s.

Multiplication:

Add characteristics and reduce by 200

Multiply fractions and normalize

Division:

Subtract characteristics and increase by 200

Divide fractions and normalize

Addition and Subtraction:

Equalize characteristics by shifting the fraction
having the smallest characteristic right, at the
same time increasing the characteristic propor-
tionately. Combine fractions (add or subtract)
and normalize.

Sign Control:

Multiplication and Division: Factors signs alike;
answer plus.

Factors’ signs unlike; answer minus.

Addition and Subtraction: Answer always has sign
of largest factor.

The possibility of floating-point overflow or under-
flow during execution of a floating-point instruction is
indicated by an (*) asterisk in the following descrip-
tions. All conditions of underflow and overflow are
discussed following the last floating-point instruction
and are also included under “Trapping.”

Single-Precision Floating-Point Instructions

Floating Add — FAD YT

The floating-point numbers located in Y and the ac
are added together. The most significant portion of the
result appears as a normal floating-point number in
the ac. The least significant portion of the result ap-
pears in the MQ as a floating-point number with a

characteristic 33 (octal) less than the ac character-
istic. The signs of the ac and MQ are set to the sign of
the larger factor. The sum in the ac and mq is always
normalized whether the original factors were normal
or not. If ccaci.35 contain zeros, the Fap may be used
to normalize an unnormal floating-point number.

1. The MQq register is cleared to zeros.
2. The cv) are placed in the sg.

3. If the characteristic in the sr is less than the
characteristic in the ac, the csr and ccg ;35 are
interchanged, as the number with the smaller char-
acteristic must appear in the ac before addition can
take place.

4. The MQ is given the same sign as the ac.

5. If the difference in the characteristics is greater
than 63, the ccac are cleared. If the difference in the
characteristics is a number N less than or equal to 63,
the ccacyy 35 are shifted right N places. Bits shifted out
of position 35 of the Ac enter position 9 of the mq. Bits
shifted out of position 35 of the Mm@ are lost.

6. The characteristic in the sgr replaces the cao; g,

7. The csRyg.35 are added to the cacigss and this
sum replaces the c(ACy.35. If the signs of the ac and
sR are unlike, the csryg 35 are added to the 1's com-
plement of the ccacyy.35. Since the cacyy.35 represent a
pure fraction, the magnitude of their 1’s complement
isequal to (1 —227) — caC)g.35.

8. Regardless of the sign or relative magnitudes of
the sr and ac, the result appears in double-precision
form with signs alike in both the ac and mQ. If the
signs of the ac and sr are the same and the magnitude
of the sums of the fractions is greater than or equal to
one, there is a carry from position 9 into position 8
of the ac. Thus, the characteristic of the ac is in-
creased by one. In this event, the fractions of the ac
and MQ are shifted right one position and a 1 is inserted
into position 9 of the ac. If the signs of the ac and sr
are different, there are two cases, both depending on
the difference between the sr and ac fractions.

Cask 1. If the magnitude of the sr fraction is greater
than the fraction in the ac, the ac and Mq signs are
both changed to the sign of the sr. If the fraction
of the mg is zero, the difference between the frac-
tions of the sr and ac is placed in the ac. If the
fraction of the mq is not zero, the difference be-
tween the fractions of the sr and Ac, minus one,
is placed in the ac; the 2's complement of the MQ
fraction replaces the fraction in the M.

Case 2. If the magnitude of the sr fraction is less
than the fraction in the ac, the difference of the
two fractions replaces the fraction of the ac. The
sign of the ac and the entire MQ remain un-
changed.

Instruction Descriptions and Use 71

9a. If the resulting fractions in both the ac and
MQ are zero, the Ac is cleared, yielding a normal zero.
If the fractions are in normalized form before the Fap
is given, this result can only occur if the signs are
different and the ccy);.35 are equal to the cao; 35. The
signs of the ac and mq will be equal to the sign of
the number originally in the ac. If the resulting fraction
in the ac is zero and the two numbers were not in
normalized form before addition, the signs of the ac
and MQ are equal to the sign of the original number
having the smaller characteristic.

9b. If the resulting fractions in the ac and MQ are
not zero, the fractions of the ac and Mq are shifted
left until a 1 appears in position 9 of the ac. Bits
enter position 35 of the ac from position 9 of the mq.
The characteristic in the Ac is reduced by one for each
position shifted. No shifting is necessary if the fraction
of the Ac is in normal form at the beginning of this
step.

10. The mMqQ is given a characteristic which is 27
less than the characteristic in the ac, unless the Ac
contains a normal zero, in which case zeros are left
in positions 1-8 of the mQ.

If the P and/or Q positions of the ac are not zero
before the execution of the rap, the result will usually
be incorrect. Non-zero bits in P and/or Q which are
initially interpreted as part of the ac characteristic
make it larger than the characteristic in the sr so that
the interchange in step 3 will always take place. Dur-
ing the interchange a 1 will be placed in position S
of the sr if there is a 1 in either S or P positions of the
AC, so that the sign of the number may be changed.
Any bit in Q is lost during the interchange and both
P and Q are cleared when the csr replace the cao.
The difference between the two characteristics is com-
puted after the interchange occurs, so that in step 5,
N will not be equal to the difference between the
original characteristics. In step 6 the characteristic in

the sr, with its Q and P bits missing, replaces the char-
acteristic in the ac. Consider as a sample problem the
addition of:

2?2 X .1001 = (SR) + 10000010.1001
28 %X .1001 = (AC) + 10000101.1001

First, the exponents must be equalized and then the
addition may proceed. The characteristics are checked
and found unequal, with the largest in the ac. The
numbers in the ac and sr are then exchanged, giving:

SR +10000101.1001
AC +10000010.1001

The MQ content is zeros at this time. The cacyy.s;
are then shifted right the number of places needed to
equalize the exponents. (Remember that the binary
point is located between positions 8 and 9 of all reg-
isters.) The registers then appear as:

SR +10000101.1001
AC +10000101.0001
MQ +00000000.0010
The fractions (positions 9-35) may now be added.
SR +10000101.1001
AC +10000101.1010
MQ +00000000.0010

ac position 9 is checked for a 1 and no normalizing
occurs. The MQ characteristic is now set. It is equal
to the ac characteristic minus the number of places in
the ac fraction (27 in the computer, 4 in this example):

SR +10000101.1001
AC +10000101.1010
MQ +10000001.0010

Decoding the results into the original format, we
find:

2° x .1001

2° x .0001001 AC =

2° x .1010001

MQ = 2' X .0010 = 2° x .00000010
2% x .1010

= 2° x .10100010

resultant sum

The rap instruction may be used to convert a fixed
integer to a floating integer of less than 2%7 through
use of a program as shown in Figure 91.

Figure 91. rap Conversion Sample Program

72

. | Tocotion Operation T TAddress. Tog, Decrement/ Count Tomments T 1denthication
[)
i [I
12 678 B 7'n 0
__4'_ _______] QLA__A_: ?/I[p Put fixed integer into accumulator. !
b ORA_.__._, CHAR |
O | FAD_._._ | \CHAR !
:._.,.;.A S To _._._1' 'rFL"‘T Store converted integer. Tl
T HPR .. _. | i
— —— r T
| lcuar | loeT . | 1253000000000 (Octal number) r
\/\//

Floating Divide or Proceed — FDP YT

The cae are divided by the cty). The quotient ap-
pears in the M@ and the remainder appears in the ac.
If the magnitude of the ac fraction is greater than or
equal to twice that of the c(v)y.35, or if the magnitude
of the c(yy.45 is zero, division does not occur and the
computer takes the next instruction in sequence. The
quotient is in normal form if both the dividend and
divisor are in normal form. The sign of the MQ is the
algebraic sign of the quotient. If the ac fraction is zero,
the c(AC)o p.1.35 are cleared and the ac sign is set plus.
The cy) are unchanged.

Floating Multiply — FMP Y, T

The ccv) are multiplied by the caMg). The most sig-
nificant part of the product appears in the ac and the
least significant part appears in the MmQ. The product of
two normalized numbers is in normalized form. If
either of the numbers is not normalized, the product
may or may not be in normalized form. The cy» are
unchanged.

Floating Subtract — FSB Y, T

This instruction albegraically subtracts the number
located in Y from the number in the ac and normalizes
the result. The c(y» are unchanged.

Unnormalized Floating Add — UFA Y, T

This instruction algebraically adds the two numbers
contained in the ac and located by Y. The sum is not
normalized and the ccy> are unchanged.

The ura instruction may be used to convert floating-
point numbers to fixed-point numbers if the magnitude
of the floating point number is less than 2%7. The in-
struction sequence could be as shown in Figure 92.

YT

This instruction multiplies the number at Y by the
number in the MQ. The result is not normalized and
the ccy) are unchanged.

Unnormalized Floating Multiply — UFM

YT

This instruction algebraically subtracts the number at
Y from the number in the ac. The result is not normal-
ized and the c«v) are unchanged.

Unnormalized Floating Subtract — UFS

Trapping

Automatic trapping of the program is used with the
7040/7044 systems to signal unusual conditions to the
program without special test instructions. With trap-
ping, system status is constantly monitored and, when
special conditions are detected, normal processing is
interrupted and the program is transferred (trapped)
to a trap routine.

To identify the causes of trapping and to allow for a
return to normal processing, the instruction counter
contents are automatically stored at a fixed location
in storage, usually with some trap identification data,
when a trap is initiated. The program is then auto-
matically transferred to another fixed core storage

Figure 92. ura Conversion Sample Program

. : Location Operation T TAddress, Tag, Decrement/Caunt Tomments T dentification
i J|2 8|7 (8 ; i 7?;73 80
} _______ | _QEQ__‘.__J L Start of program. !
__L_._.__A_‘ QLA___J ;FLOA T Place FP number in accumulator. H
I | lweAa__ __|cHar '
| JALS_ O i
| |ARs. .| :10 !
L | 8TOo | UNT Store integer. !
e] L,Q.L._._._.*: :8 !
e] AAE.JW._A_._: :0 Put AC sign in MQ. :
lg.._._‘_ $.7Q . . . _ | FRAC Store fraction. l
I PR ___ || ;
4i_c,ﬂ,ﬂ R_jloC€T | '23%000000000,0,0, :
[
i f— |
I, S5 SN Ty E e S T
FLQAT) | i '
L END !
l e —T N T T S U

Instruction Descriptions and Use 73

location for its next instruction. Many types of trapping
are used and each type is assigned a priority with re-
gard to the other types. Only the floating-point trap
is presented here. All other traps and the special trap-
ping instructions are described under “Trapping.”

Floating-Point Trap

During the execution of floating-point instructions, the
resultant characteristic in the Ac and MQ may exceed
eight bit positions (result is too large for storage).
The capacity is exceeded if the exponent goes beyond
1775 or below —2004. Beyond 1775 is termed overflow;
below — 200y is termed underflow. Overflow and under-
flow may occur in either the ac or the MQ registers.
The computer, on sensing an underflow or overflow,
will put the address, plus one, of the instruction that
caused the condition, into the address part of location
00000. An indication of the actual cause (a spill} is
stored in the decrement part of location 00000. The
decrement bit positions used and their meaning when
they contain a 1 bit is:

BIT MEANING
S Double-precision instruction on system with single-
precision only.

12 Double-precision address error

14 Single-precision divide instruction

15 Overflow in AC or MQ or both

16 AC overflow or underflow

17 MQ overflow or underflow

After the storing of the trap information, the com-
puter automatically executes the instruction located
in location 00010.

If a trap to location 00010 occurs and the contents
of location 00000 are 0000120000375, the instruction
that caused the trap was a floating-point divide instruc-
tion (a 1 bit in position 14). The cause of the trap itself
was an underflow in the accumulator (0 bits in posi-
tions 15 or 17 and a 1 bit in position 16) and the next
instruction following the floating-point divide in nor-
mal sequence is in location 00375 (positions 21-35 of
location 00000).

Double-Precision Floating-Point Instructions

Four double-precision floating-point instructions are
available for applications requiring higher accuracy
than possible with single-precision instructions. These
instructions increase floating-point precision from 8 to
16 decimal digits by working with two full 36-bit words
at a time. All double-precision numbers in core storage
must be located so that the high-order word is in an
even address core location followed by the low-order
word in the next higher odd address location. If the

74

effective address of a double-precision instruction is
odd, the instruction is trapped (explained under
“Trapping”).

All rules described for single-precision floating-point
instructions also apply to the double-precision floating-
point instructions. For overflow and underflow, the
exponent of the major or high-order word of the result
(in the Ac) may not exceed +177; and the exponent
of the minor or low-order word (in the MQ) may not
be lower than —2005. Double-precisions instructions
executed on a system with single-precision option only,
cause a trap operation.

Figure 93 shows the format of double-precision
floating-point words, both in the processing unit regis-
ters and in core storage locations.

LN T afga | ~no7 [8 (8 |
51 89 351 89 J
AC MQ

Bl m Jcifc [mor [0 §fo0
‘S,l 397 KL 89 v 351
Y 2

Figure 93. Double-Precision Word Format

Double-Precision Floating Add — DFAD YT

This instruction adds the number located in Y and
Y+1 to the number in the ac and MmQ. The result is a
normalized double-precision number with the major
answer in the ac and the minor in the mQ. The signs of
the ac and mQ are the algebraic sign. The contents of Y
and Y+1 are unchanged.

Double-Precision Floating Subtract — DFSB Y,T

This instruction is equivalent to pFap with the sign in
Y inverted.

Double-Precision Floating Multiply — DFMP YT
This instruction causes the number in Y and Y+1 to be
multiplied by the number in the ac and MQ. The result
is a normalized number in the Ac and Mo, with an asso-
ciated algebraic sign. The co» and c(y+1) are
unchanged.

Double-Precision Floating Divide or Proceed —
DFDP YT

This instruction causes the number in the ac and M
to be divided by the number in Y and Y+1. The result
is a double quotient in the ac and MQ, with an asso-
ciated algebraic sign. If the magnitude of the ac frac-
tion is greater than or equal to twice that of the ccv)y.g;,

or if the ccy9-35 are zero, the divide check indicator is a. Place a correctly signed zero in location 01000

turned on and the computer takes the next sequential if there is an underflow in the most significant
instruction. portion of the answer.

b. The routine should halt if there is a double-
Problem

precision address error or if there is an overflow

33. Write a trap routine to be used with a floating- in the most significant portion of the answer.

point arithmetic program. The program is only con-

cerned with the quotient in division and with the most c. Both the AC and MQ should be left unchanged
significant portion of the answer in other floating-point if the indicated error occurred in the least sig-
arithmetic operations. The trap routine should: nificant portion of the answer.

Instruction Descriptions and Use 75

IBM 7040/7044 Input/Output Control System

With the high internal processing speeds of modern
computers, most applications involving large amounts
of data handling are input/output limited; that is, the
time consumed by input/output devices in transmitting
data to and from core storage is very large when com-
pared with the time necessary to process that data.
Therefore, much effort has been expended to make
input/output as fast as possible. In the 7040 and 7044
systems, such features as multiple data channels, over-
lapping input and output with processing, and data
channel traps are direct results of the need for rapid
input/output.

These advanced concepts require careful program-
ming for efficient use. Even the simplest program re-
quires extensive coding if all input/output facilities of
the computer are to be used. Moreover, the resulting
routines resemble one another, so the programmer is
often duplicating work already accomplished else-
where.

To avoid this duplication of effort, a standard set of
input/output routines has been written. These routines
contain features that no single programmer would
have time to write on his own and are thus more flexi-
ble than an input/output routine written for a single
application, The aggregate of these routines is the
Input/Output Control System aocs).

The most important feature of 1ocs, aside from sim-
plification of input/output operations, is the provision
for symbolic reference to input/output units. Instead
of referring to a specific input/output device on a
specific channel, the programmer refers to a system
unit function. The device assigned to perform this
function can be changed by reassembly of the 1Bsys
Basic Monitor, under which 10cs operates, or by the
programmer. Thus, the uses made of input/output
devices may be varied to increase efficiency and speed
job-to-job transitions. 10cs also provides standardized
error recovery routines for each device that can be
attached to the 7040 and 7044 systems.

Basic Concepts

The data that the programmer manipulates is usually
in the form of a file. A file is a collection of related
information arranged in logical records. A logical rec-
ord may consist of a single number, may be all of the
information pertaining to a given business transaction,
or may be a record of the value of several parameters
at a given point in an experiment.

76

The main problem in the usual data processing ap-
plication is that of performing certain calculations with
the data contained in the files for that application.
Most files, however, are much too large to be held
entirely in core storage; it is necessary to read part
of the file, process it, and write out the results. Since
a logical record is the smallest amount of data that
a program can read and still have enough information
to begin calculating, the program is mainly concerned
with the handling of logical records. Sometimes logical
records are too small for efficient recording on tape or
disk storage. It then becomes necessary to block rec-
ords, by putting two or more logical records together,
before recording them. 10cs provides routines that
simplify the problems of blocking and deblocking logi-
cal records.

Labels

A label is a single block, at the beginning or end of
a data file, which describes the file. The label at the
beginning of the file is the header label. The trailer
label, the last block in the file, comes after the end-
of-file mark which indicates the last data record has
been read.

10Cs contains routines to verify and create standard
120-character 1BM header and trailer labels on input
and output files. All header labels begin with a file
character code and contain information such as: the
name of the file, the date of creation of the file, the file
retention period, and the parity and density at which
the file was written. Trailer labels begin with other
codes to indicate that the file continues on a different
input/output device or that the end of the data file has
been reached. :

Labels are also used for checking, to insure that the
right file is read, that it is read in the correct parity,
and that files containing data that should be retained
are not erased.

Overlap and Data Channels

Data channels control transmission of information to
and from an input/output device selected by the proc-
essing unit. When channel A is in operation, all process-
ing is delayed until data transmission is complete.
Channels B through E, however, allow the processing
unit to continue with calculation while data are being
transmitted. All four of these channels can carry on
input/output operations simultaneously, overlapping
channel operations and those of the processing unit.

Channel Traps

The most efficient use of overlapped channels is ob-
tained when they are kept in continuous operation.
Although the main program can determine by a trans-
fer instruction whether an input/output operation has
been completed, periodic checking of the channel-in-
operation indicator takes time and complicates pro-
gramming. To avoid this situation, the 7040 and 7044
systems can trap the program as soon as any channel
operation ends.

A trap causes the operation of the main program to
be suspended, and the contents of the instruction
counter to be stored in the address portion of one of
the first few words of core storage. Indications about
the reason for the trap and the conditions encountered
by the channel during the operation are also placed in
the same location. The next instruction is then taken
from the location immediately following the one in
which the information was stored. This instruction
transfers control to a supervisory routine, which chooses
the select and error recovery routine for the device
concerned and causes it to be executed. This routine
checks for errors in transmission, institutes error correc-
tion procedures if necessary, and starts new activity,
if possible. The supervisor then restores the traps and
returns control to the main program.

A fundamental part of 10cs is a trap supervisor, which
makes it unnecessary for the programmer to write
supervisory routines. In fact, the trap supervisor and
the trap locations in lower core storage are under
storage protection, and any attempt to modify them
halts the offending program.

Buffers

Effective overlapping of data transmission with proc-
essing requires at least two input/output areas (buffers),
for each file. At a given time, one buffer holds the
logical record or records being processed, and the other
holds the record or records being read or written. Be-
cause the buffers reverse roles as soon as the process-
ing and input/output operations are complete, buffering
involves switching procedures within the main pro-
gram. This may become complicated if several files
from different devices are being processed against one
another.

Also, since each buffer contains a single block, it may
contain several logical records. Separating these rec-
ords for individual processing can also make the pro-
gram more involved. 10cs contains routines that handle
the use of buffers and the blocking and deblocking of
logical records within the buffers.

I0CS Organization
The input/output control system is divided into four
sections:

Input/Output Buffering System — IOBS: Routines
necessary for buffering input/output and for blocking
and deblocking logical records.

Input/Output Operations — IOOP: Routines for
starting activity and error correction procedures on the
devices attached to the data channels. 1o00p is also
responsible for the scheduling activity of individual
devices.

Input/Output Labeling System — IOLS: Routines
that read, write, check, and construct labels.

Input/Output Executor — IOEX: A trap supervisor,
a channel scheduler, a series of conversion and utility
routines, and a scheduler of special routines to be
executed as soon as an input/output operation is com-
pleted.

10CS Level Concept

Although each section of 10cs performs a specific op-
eration, the sections are not independent. 10Bs, 100P,
1ors, and 10EX combine in various ways to form three
distinct levels of 1ocs.

The 108Bs level involves the existence in core storage
of all four sections of 10cs. The lower levels are all used
by 10Bs and, if 108s is used on a given file, none of the
lower levels may be used on the same file. The program
specifies the file characteristics to 10Bs and then can
view them as continuous strings of logical records that
enter or leave core storage on demand. 10Bs uses 10LS
according to the specifications of the file.

At the 100P level, the programmer loses the block-
ing, deblocking, and buffer supervision facilities of
10Bs. He communicates directly with 1oop, and also
with 1ors. The purpose of 100p is the reading and writ-
ing of blocks.

The 10Ex level, although it still permits the program-
mer to use 10Ls, mainly provides him with trap super-
vision and channel scheduling. The programmer must
provide the select and error recovery routines normally
provided by 1o00P.

Relationship of 10CS Levels

10Bs contains most of the coding necessary for efficient
use of all input/output capabilities of the 7040 and
7044 systems. If the 100p or 10Ex levels are used instead
of the 108s level, machine coding must be supplied to
make up the deficit between the facilities available at
the level being used and those necessary for efficient
operation of the program.

At the 100p level, blocking and deblocking and buf-
fer supervision routines necessary to handle the blocks
obtained through 100P must be supplied. This may be
the most efficient course if the files being handled do
not require elaborate blocking and deblocking. It is also
possible that the data are not arranged in sequential

7040/7044 Input/Output Control System 77

files, as on disk storage, in which case 108s is not appli-
cable.

At the 10EX level, routines to take the place of 100p,
in addition to the routines necessary to replace 10Bs
must be written. The extra routines include a unit
scheduler and a select and error recovery routine for
each type of device that the program uses. The 10Ex
level is useful to reduce the amount of space taken up
by input/output routines to the minimum possible for
the particular application. It may also be used in cir-
cumstances for which 100p is not appropriate.

Relationship of 10CS to IBSYS

10Cs is part of the Bsys Operating System. The input/
output executor and the parts of 100p required by the
systems library loader are kept in core storage at all
times, along with the nucleus of the basic monitor.
These two programs are storage protected to avoid
damage to them from untested programs (if the
memory protect option is a part of the system).

The remaining sections of 1ocs are loaded by the
monitors and left in core storage for object programs.
Any part that is not required by an object program may
be overlayed except where that part is storage pro-
tected. These sections are used by the program through
calling sequences to the entry points of the various
levels of 1ocs.

In using 10cs, the programmer refers to the devices
being used by the logical name of the function that they
perform, not by their actual machine addresses. When
10Cs receives a request for some input/output operation,
it obtains the machine address of the attached device
that can perform the system unit function specified.
This address is used to carry out the instructions re-
ceived from the main program. 1ocs itself is entirely
device-independent, and allows for the possibility that
any one of a large number of devices may have been
attached to a given system unit function. It is the re-
sponsibility of the operator to insure that the physical
devices attached to the system are compatible with the
use to which they are being put.

78

Random and Sequential Processing

I0CS contains facilities for both sequential and ran-
dom processing applications. In sequential processing,
the files have a fixed sequence and are read in and
processed according to that sequence. Card and tape
files are naturally sequential, and 1ocs provides for disk
storage to be used for sequential processing.

In random processing, the data files being processed
are not necessarily in sequence with respect to each
other. One file is read sequentially, and the sequence
of other files that must be processed at the same time is
indicated by the records of that file. All files that are
in a different order from the file being read sequentially
must be held on some random access input/output
device such as disk storage. 100p includes routines to
facilitate random processing. These routines are device-
oriented, since they require that a random access de-
vice be attached to the system unit function to which
they are applied. Also, the program must give 100p
the location on the device where the logical record of
data can be found.

Summary

The user of 10cs must determine at what level the best
use may be had of the 7040 and 7044 systems and of
the monitor facilities provided with the system.

The greatest programming flexibility (and conse-
quently the greatest effort required) and the least
core storage space sacrifice are available at the lowest
1ocs level. The closest approach to logical data han-
dling and the greatest storage space requirement occur
at the highest 1ocs level.

The intermediate levels of 10ocs may be the most
satisfactory for programs whose record format is com-
pletely known and whose buffering requirements are
easily coded, but which are completely independent
of the input/output devices available.

10cs, therefore, provides each user with a program
package that can fulfill his individual application re-
quirements. To use 10cs, a 7040/7044 Data Processing
System must have the extended performance instruc-
tion set option.

To use the fast, versatile processing ability of the
processing unit, the user must be able to put raw data
into the computer system, tell the system what to do,
and take the processed data from the system and record
it in a form that can be used. This chain of input, proc-
essing, and output always begins and ends with some
input/output device.

An input/output device is a machine linked directly
to the data processing system. Each device operates
under control of the processing unit as directed by the
stored program. In some cases, a separate unit, placed
between the processing unit and the input/output de-
vice, serves as a control or synchronizer unit. The syn-
chronizer not only controls the devices attached to it
but serves as an assembly-disassembly device for the
data passing through it. This is necessary since the
internal processing speeds are much faster than the
input devices that read data or the output devices that
record the results. Figure 94 shows the relationship be-
tween processing unit, synchronizer, and input/output
devices.

Input devices sense or read data from 1M cards,
magnetic tape, paper tape, or may simply supply data
to the processing unit in the form of electronic pulses.
The data are then placed in the core storage of the
system. Output devices record or write the data from
storage on 1BM cards, magnetic and paper tape, or
prepare printed copy. Output may also be in the form
of electronic pulses (for transmission over communica-
tions networks).

Reading and Writing

Reading takes place as the input medium physically
moves through an input device. The information is
sensed or read and is converted to a form that may

Input »| Output
Device Unit

Synchronizer Unit

Processing Unit and Storage

Figure 94. Input/Output Device Relationship

Input/Ovutput Devices and Operations

be used by the computer system. The information is
then sent to core storage.

Writing involves converting data from storage to a
form or language compatible with an output medium
and recording the data using an output device.

Most input/ocutput devices are automatic; once
started, they continue to operate as directed by the
stored program. Instructions in the program select the
required device, direct it to read or write, and indicate
the storage location that data will be put into or taken
from. A few input devices are manually operated, and
no medium for recording data is involved. Instead, data
are entered directly into the computer using a keyboard
or switches, which are usually a part of an operator’s
console.

Data Buffering

All data processing procedures involve input, process-
ing, and output. Each phase of the procedure takes a
specific time. The usefulness of a computer is often
directly related to the speed at which it can complete
a given procedure. Ideally, the configuration and speed
of the various input/output devices should be so ar-
ranged that the processing unit is always kept busy
with useful work. The efficiency of any computer sys-
tem can be increased to the degree in which input,
output, and internal processing can be overlapped or
allowed to occur simultaneously.

Figure 95 shows the basic time relationship between
input, processing, and output with no overlap of opera-
tions. In this type of data flow, processing is suspended
during reading or writing operations.

Figure 96 shows an overlapped time relationship.
The figure assumes that there are two buffers, one for
input and another for output. With this type of data

Figure 95. Non-Overlap Time Relationship

Input/Output Devices and Operations 79

Figure 96. Overlapped Time Relationship

buffering system, data are first collected in an input
buffer. When called for by the program, the contents
of the input buffer are sent to core storage. The trans-
fer takes only a fraction of the time that would be re-
quired to read the data directly from an input device.
Also, while data are being assembled in the buffer,
processing can occur in the processing unit. Likewise,
completed data from storage can be placed in an out-
put buffer at high speed. The output device is then
instructed to write out the contents of this buffer.
While writing occurs, the processing unit is free to
continue with other work.

With the 7040 and 7044 systems, both the nonover-
lap and overlapped types of operation are available.
For small computer applications, requiring only card
and printer equipment, the basic or nonoverlap system
could be used. If higher input/output volume is re-
quired, magnetic tape can be attached to the system,
still using nonoverlapped operation. If still higher job
completion time (throughput) is needed, the over-
lapped data buffering method may be used. Magnetic
tape units, Tele-Processing® equipment, and other
types of input/output devices may be attached to the
overlapped system.

Actually, input/output devices of the 7040 and 7044
systems are linked to the processing unit with a data
channel. Registers within the data channel control the
quantity and the destination of all data transmitted be-
tween storage and the input/output devices. The basic
system of the 7040 and 7044 computers includes one
input/output channel, data channel A, whose opera-
tion is not overlapped with processing unit operation.
Overlapped input/output and processing unit opera-
tion is available by using the 18m 7904 Data Channel.
Figure 97 shows a 7040 or 7044 system, using only data
channel A and some of the available input/output
units. By using the 7904 Data Channel, a multiple
channel system is possible, which expands to include
many different input/output devices in various com-
binations (Figure 98).

80

PROCESSING UNIT

Synchronizer

I

| 1403 Printer I

1402 Card
Read Punch,

Card System

Arithmetic I Input/Output | Core I Operator's
Processor ! Data Channel A Storage 1 Console
I L
T414-41/G

PROCESSING UNIT
Arithmetic : Input/Output | Core I Operator's
Processor | Data Channel A | Storage Console
1414-4 1/O 1414-1 1/0 | Typewriter |
Synchronizer Synchronizer
1
| 1402 Card 79u] |7330
Read Punch
1403 7291V 7330
Printer

1009 Data Transmission Unit

1011 Paper Tape Reader

1014 Remote Inquiry Unit

Telegraph Input/Output

Tele-Processing System

Figure 97. Channel A Systems

PROCESSING UNIT

Core ' Input/Qutput 1 Arithmetic Operator's
Storage , Data Channel A : Processor L Console
[1]] — .
| 7904 Data Channel 1622 Card Typewriter
I Read Punch
7631 File
Control
1301 Disk Direct Data 1414-1 1O 1414-1 /O
Storage Connection Synchronizer Synchroniz
<
I
1301 Disk 72911 7291] | 7330)
Storage

= 6 By

Multiple=Channel System

Figure 98. Multiple Channel System

Devices and Control Units used on A maximum of ten tape units {all models) may be
7040 and 7044 Systems attached to any 1414-1, -2, or -7 Input/Output Syn-

Many optional input/output device configurations are chronizer. The mm 1622 Card Read Punch and the

available on the 7040 and 7044 systems. Both the con- M 1401 Data Process'ing System do not require' an
trol units and actual input/output devices are pre- input/output synchronizer. A console typewriter is a

sented in list form; the input/output devices are then
described in Figures 99 through 108. Some channel A
devices do not require a control unit but are con-
nected directly to an adapter of channel A.

CONTROL UNIT DEVICE

BM 1414-1 1BM 729 1t Magnetic Tape Unit
1/0 Synchronizer 1M 729 1v Magnetic Tape Unit
1BM 729 v Magnetic Tape Unit (with
800 cp1 Feature)
M 7330 Magnetic Tape Unit (with
Tape Intermix Feature)

M 1414-2
1/0 Synchronizer 1BM 7330 Magnetic Tape Unit
1M 1414-3 mBM 1402-2 Card Read Punch
1/0 Synchronizer 1BM 1403-1 or -2 Printer
M 1414-4 1BM 1402-2 Card Read Punch

1/0 Synchronizer 18M 1403-1 or -2 Printer
1BM 1009 Data Transmission Unit
18M 1011 Paper Tape Reader
1M 1014 Remote Inquiry Unit
Telegraph-type Units
Column Binary Feature (for 1402)
M 1414-5 1M 1009 Data Transmission Unit
1/0 Synchronizer 18M 1011 Paper Tape Reader
M 1014 Remote Inquiry Unit
Telegraph-type Units

Reads 800 cards per minute

BM 1414-7 1BM 729 11 Magnetic Tape Unit .
1/o Synchronizer ~ 18M 729 1v Magnetic Tape Unit ;u:; 'L?visgo?:;d: ;:,:;"F:f:,u,e
1BM 729 v Magnetic Tape Unit Attached to 1414-3 or -4
1BM 729 vi Magnetic Tape Unit One 1402 per 1414
1BM 7330 Magnetic Tape Unit (with
Tape Intermix Feature) Figure 100. 18M 1402 Card Read Punch

Maximum of 132 printing positions per line

Reads 250 cards per minute Prints 600 lines per minute
Punches 125 cards per minute Tape controlled carriage
Attached directly to Data Channel A Attached to 1414-3 or -4

One 1622 per 7040/7044 system One 1403 per 1414

Figure 99. 1M 1622 Card Read Punch Figure 101. 1BM 1403 Printer

Input/Output Devices and Operations 81

standard feature on both the 7040 and 7044, and it
does not require a synchronizer.

Input/output control units (or devices) that may
be attached to channel A include one each of the
following:

W N

. One console typewriter.
. One 1BM 1414-1, -2, or -7 Input/Output Synchronizer

and its attached magnetic tape units.

. One 1BM 1414-3, -4, or -5, Input/Output Synchronizer

and its attached units, or one 1622 Card Read Punch.

. One 1BM 1401 Data Processing System, Models B

through F, and its attached input/output units.

Four 18M 7904 Data Channels may be attached to
the 7040 or 7044 system. Each 7904 has one input/

Character Rates (characters per second):
729 1l and 15,000 cps, or

729 V 41,667 cps, or
60,000 cps

729 IV and 22,500 cps, or

729 VI 62,500 cps, or
90,000 ¢ps

729 11 and V move tape at 75 inches per second

729 IV and VI move tape at 112.5 inches per
second

All 729 models attach to 1414-1 or -7

Maximum of ten units per 1414

Figure 102. BM 729 1 Magnetic Tape Unit

Character Rates (characters per second):
7,200 cps, or
20,016 cps

Tape moves at 36 inches per second

Attached to 1414-2 or the 1414-1 or -7 with
Tape Intermix Feature

Maximum of ten tape units per 1414, including
729 tape units on 1414-1 or -7

Figure 103. 1BM 7330 Magnetic Tape Unit

82

Data rates of 75, 150, 250, or 300 characters per
second

C ts two puters; each computer must have its
own 1009

Attached to the 1414-4 or -5

Figure 104. 18M 1009 Data Transmission Unit

Character rate of 500 paper tape characters per
second

Either 5-track or 8-track paper tape

Tape may be chad or chadless in strips, reels, or rolls

Attached to 1414-4 or -5

One 1011 per 1414

Figure 105. 18BM 1011 Paper Tape Reader

output control adapter. This control adapter allows
attachment of any one of the input/output devices
designed to the input/output control adapter interface
specifications. Interface is defined as the actual lines
and functions designed into such devices, including
the actual signal, data, and control lines (and their
precise cable connections), together with the necessary
internal functions. This means that future input/output

Maximum data rate of 15 characters per second
Maximum of 78 characters per message

Used to interrogate computer from remote location
Maximum of 20 units per 1414

Attached to 1414-4 or -5

Figure 106. 1BM 1014 Remote Inquiry Unit

Considered as an input/output device by the 7040/7044 system

Except for input/output instructions, each computer’s instructions function
normally

Both systems can operate together on a single problem or independently
(with the 1401 off-line) on different problems

Each system may interrogate the busy status of the other system

Attached directly to Data Channel A.

Figure 107. 1BM 1401 Data Processing System

devices designed to these same specifications may be
attached to the 7904 with a minimum of effort. In
addition to the one input/output control adapter, each
7904 Data Channel may have one of the following
devices:
1. One 1BM 1414-1, -2, or -7 Input/Output Synchronizer
and its attached tape units.
2. One Direct Data Connection (Explained later). This
feature provides for connection of non-1BM input/output

devices, such as analog/digital converters, radar, micro-
wave links, etc.

The 7904 input/output control adapter allows at-
tachment of any one of the following devices:
1. One 1BM 7631 File Control and its associated 1BM 1301
Disk Storage.

2. One 1BM 7750 Programmed Transmission Control and
its attached input/output devices.

Data Channels

Data channels of the 7040/7044 systems use a com-
mand word technique. With this technique, control
of an input/output operation passes logically from
the processing unit to the data channel. The com-
mand word is the means of transferring control from
processing unit to data channel and, therefore, the
data channel must have enough registers and counters
to exercise this control. The channel is required to

Input/Output Devices and Operations 83

Maximum of five 1301 units per 7040/7044

Maximum capacity of 55,800,000 characters of storage
per 1301

Controlled by one or two 7631 File Controls

Attached to the 7904 input/output control adapter

Figure 108. 1BM 1301 Disk Storage

perform such functions as word counting, address
changing, and (with some devices) the assembly and
disassembly of words of data.

Data Channel A Operation

Data channel A uses registers and data paths of the
processing unit to perform the input/output device
control function and therefore, no overlap exists be-
tween input/output and computer operations. Figure
109 shows data flow for channel A.

An input/output operation is started by execution of
a select instruction, which is decoded by the processing
unit. The output of the decoders is sent to the channel
to select the input/output adapter and the input/
output device specified by the select instruction. If
the device is busy with other work or is not ready for
operation, the select waits until the device is free.

Upon execution of the select, the input/output de-
vice called into use actually starts moving. When
selection is successfully completed, the channel ends
operation on the select and the processing unit gets
the next instruction for execution. This instruction is
normally a reset and load channel cr) instruction.
The rcH specifies a storage location that contains the

84

Storage
Register
‘ J I L
Operation Address
Decoder Adders Decoder
I [R—
4
Accumulator -
Register MQ Register
Address Shift .
Register Counter Pority
To Storage Address {
Register
Channel A
Adapter Selector
Adopters for Input/Output U
pters for input/Output Units
X N
; 1414-1, 1414-3, 4,
Typewriter 2,07 or 5, or 1622 1401

Figure 109. Data Flow for Channel A

data channel command for this input/output operation.
One reH exists for each data channel.

Understanding the relationship between the select
and the rcH instructions is very important. The speed
of input/output devices is much slower than processing
unit execution speeds; however, the program must
have executed a rcH instruction by the time the par-
ticular device being used is ready to read or write.
This is shown in Figure 110, using a read select in-
struction for a 729 1 Magnetic Tape Unit. A maximum
of 4 milliseconds may exist in the program between
execution of the rps to a 729 11 tape unit and execution
of the rca. The rRcH may, however, immediately follow
the ros or be placed anywhere within the time allowed.
To further point out the time relationship: the 4
milliseconds needed to get the tape unit moving and
actually reading data into the processing unit is enough
time for execution of 500 machine cycles on a 7040
system or about the time required to execute 200
average-time instructions.

Comments
Execution of the RDS starts physical motion in

Operation
RDS 729 1l Tape

the selected tape unit.

Four (4) milliseconds after the RDS is executed,
the RCH must be executed; otherwise, the tape
unit is disconnected from the read operation.

Figure 110. Time Relationship between Select and rcH
Instructions

Execution of the reset and load channel instruction
places the data channel command in the accumulator.
The command (Figure 111) specifies the number of
words to be moved (word count — positions 3-17) and
the first storage address (start address — positions
21-35) to be used for the read or write operation. Read
operations are defined as input; write operations are
defined as output.

IOperafion I Word Count l | Starting Address
51 23

1718 2020 35

Figure 111. Data Channel Command Format

The word count portion of the command is tested
for zero count and, when it is zero, the channel ends
operation on the command and disconnects the input/
output device. Disconnect means that the input/output
device is no longer needed (has finished its operation)
and may be released for further use. When the word
count is not zero, the starting address part is placed

in the address register (Figure 109), and the shift
counter is set to six. At this point, operation differs
for read and write operations.

READ OPERATION

The input/output device sends seven-bit bytes (six
data bits plus a parity bit) to the channel adapter
where the parity of the byte is checked. If a parity
check is detected, the channel redundancy check indi-
cator is turned on but the input/output operation
continues. The six data bits are sent to the multiplier-
quotient register oM@ and placed in positions 30-35.
The contents of the mQ are shifted left six positions and
the shift counter (set to six initially) is reduced by
one, This procedure continues until the shift counter
is reduced to zero, which indicates that a full 36-bit
word (six bytes) has been transferred to the mQ. The
contents of the MQ are then placed in the storage reg-
ister and stored at the address specified by the starting
address.

Command modification is now accomplished by rout-
ing the starting address to the adders, increasing this
address by one, and returning the address to accumula-
tor positions 21-35. The word count is likewise reduced
by one and returned to accumulator positions 3-17. If
the word count is zero, the channel stops reading into
storage and, when an end-of-record signal is received
from the input device, ends operation on the channel
command and disconnects the input device. If the word
count is not zero, the shift counter is again set to six and
the channel repeats the procedure.

As input bytes come to the MQ register, the parity
bit is removed and accumulated to check word parity.

‘WRITE OPERATION

A word (36 bits) is brought from the location specified
by the starting address and is placed in the MQ. Posi-
tions S, 1-5 are sent to the parity generating circuits,
and the parity bit is added to the six data bits. The
complete byte is then sent to the output device, through
the channel adapter selector. After transmission of the
first six data bits, the Mq is shifted left six positions and
the shift counter is reduced by one. This procedure
continues until the shift counter is reduced to zero,
indicating that 36 data bits have been transferred (as
six bytes) to the output device.

Command modification occurs as with a read opera-
tion and the word count is tested for zero. If it is zero,
the channel ends operation and disconnects the output
device. If it is not zero, a new data word is required
from core storage; therefore, the modified address is
sent to the address register and the shift counter is
again set to six. This procedure continues until the
word count equals zero.

Input/Output Devices and Operations 85

IBM 7904 Data Channel Operation

The 1M 7904 Data Channel is used with the 7040 and
7044 Data Processing Systems to provide an overlapped
compute and input/output program operation. Up to
four 7904 Data Channels may be attached to the com-
puter and are designated as data channels B through E.
These data channels incorporate four registers to per-
form their function. Figure 112 shows data flow within
the data channel. The registers used include:

Channel Data Register: This 37-position register
acts as a buffer between core storage and the assem-
bly register. The data register has inputs from the
storage bus, direct data, and assembly register on a
full-word basis.

Word Counter: This 15-position counter contains the
number of words to be transmitted to or from the data
channel. The counter is loaded from the storage bus
(positions 3-17) before data transmission begins and is
decreased by one for each word processed.

Address Counter: This 15-position counter contains
the starting address in core storage of the information
to be stored or transmitted. The counter is loaded from
the storage bus (positions 21-35) before data trans-
mission begins and is increased by one for each word
processed.

Assembly Register: This 36-position register serves
as a buffer between the channel data register and input/
output equipment. Data are assembled and disassem-
bled in the register for transmission.

Read and write operation, using the 7904 Data
Channel, is much the same as with data channel A. The
outstanding difference is that central processing unit
registers are not used with the 7904 and, therefore,

86

the cpu and the 7904 Data Channels can operate inde-
pendently. The operation is simply started by the cpu
and taken over by the 7904. The cpv is then signalled
when the 7904 has completed the operation or when
an error signal is received by the 7904, so that the
cpU can use the data from the input device or put
the channel to work on other operations.

Core Storage

Storage Bus

Positions 3-17 |] I Positions 21-35

Y Y

Word Counter

Data Register Address Counter

i

Assembly
Register

F———. Parity Controls

Input/Qutput Device
Control Adapter

!

Figure 112. 18M 7904 Data Channel Data Flow

IBM 1414 Models 1,2, and 7

These models of the 1414 perform a magnetic tape
control function for the 7040 and 7044 systems. Up to
ten magnetic tape units may be attached to any 1414
Models 1, 2, or 7:

1M 1414-1 BM 729 1 and 729 1v tape units; 729 v (if
the 1414 is equipped with the 800 cer fea-
ture) and 7330 if equipped with the Inter-
mix Feature.

BM 1414-2 1BM 7330 tape units.

M 1414-7 BM 729 1, 1v, v, VI tape units; 7330 if

equipped with the Intermix Feature.

The tape units operate in either binary or Bcp modes
under program control, as specified in the address part
of the select instruction.

Magnetic Tape

IBM magnetic tape is similar to the tape used in home
tape recorders. It is a plastic tape, ¥ inch wide, and
coated on one side with a metallic oxide. Data are
recorded as magnetized spots or bits in the metallic
oxide. Information recorded on tape is permanent and
can be retained for an indefinite time. Previous record-
ings are destroyed as new information is written. This
means that tape can be used repetitively with signifi-
cant savings in recording costs. Several types of mag-
netic tape are available to meet varying requirements
of strength, durability, reliability, and cost.

For handling and processing, tape is wound on plas-
tic reels containing up to 2,400 feet of tape (lengths
as short as 50 feet may be used). The magnetic tape
unit, which functions both as an input and output de-
vice, moves the magnetic tape and accomplishes the
actual reading or writing of information on the tape.
Data are recorded in seven parallel channels or tracks
along the tape. Seven bit positions across the width of

IBM 1414 Input/Output Synchronizers

the tape (one in each channel) provide one column of
data. The spacing between columns of bits is auto-
matically established by the magnetic tape unit used
in writing.

Records of data on tape may range from one or two
characters to several thousand. The size of the record
is limited only by the length of tape or the capacity of
the storage units that data will be placed in or removed
from.

Seven-Bit Alphameric Code

The seven recording tracks or channels on tape are
labeled C, B, A, 8, 4, 2, 1 and correspond to the seven
bit positions of the seven-bit alphameric code. A char-
acter is represented by the presence or absence of bits
in the seven channel positions of one column, across
the width of the tape. Figure 113 shows characters in
the seven-bit alphameric code as they appear on tape.

To verify tape reading and writing, each character
is checked for even parity. In addition to this vertical
parity check, a horizontal (longitudinal) parity check
is made on each record. At the time a record is written,
the bits in each horizontal row are counted. At the end
of the record, a check character is recorded. This char-
acter has a bit corresponding to each channel row with
an odd bit count. Thus, when the record is read, each
channel row of the complete record, including the
check character, should satisfy the even parity condi-
tion. The check character serves this purpose only and
is never included as part of the record when data are
transferred to the computer system.

Tape written in the seven-bit alphameric code can
be used by several data processing systems, providing
a means of intercommunication from one system to
another. There are instances, however, where special

0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ & .0-§%/, %+#@
Check € I (N o 11 11 (N | [1
, {B Prrrrrrrrrerrrentl 11
one
A Frrbrrrni I T T I I I (NN
s\ | (N I I Il I O I I
| |

~N

Nomaric 4 4 I 1 |
umeric
1 i 1 Hl Il
1| I

(I (I I

Figure 113. Magnetic Tape — Seven-Bit Alphameric Code

1414 1/0 Synchronizers 87

characters, peculiar to only one system, are written on
tape. For this reason, consideration must be given to
the characters used when tape written on one system
may be used on another.

Binary System

Binary information recorded on tape is related pri-
marily to the 1BM 704, 709, 7040, 7044, 7090, and 7094
Data Processing Systems. With these systems the basic
unit of information is the word — 36 consecutive bits —
compared to the character or digit of other systems.

To record a word of data on tape, the seven bit posi-
tions of each column on tape are used; however, the
C bit position of the column is for parity checking
only and is not considered a part of the word. Thus,
six bits of information can be recorded in each column.
A word of 36 bits is represented in six consecutive
columns on tape (Figure 114).

1 3

]
IOOIOOIIOOIIIOIIIIOIOIOOOII]IIOIOIO]IlllOll

1112 1718 2324 2029 35

Check Bits —<_ 1 0 1 0 0 0
sO 60 121 180 241 301
o 0 1 0 0 1
1 1 1 0 1 1
Data Bits o 1 0 1 0 1
[V 1 1 1 0
st 110 170 231 290 35l

Figure 114. Magnetic Tape — Binary System

To verify accuracy of tape reading and writing,
each column of bits must consist of an odd number
of bits and is tested to insure odd parity. As tape is
written, check bits are automatically added to the
columns that have an even number of bits. In addi-
tion to this vertical parity check, a horizontal (longi-
tudinal) parity check is made on each record. At the
time a record is written, the bits of each horizontal
row are counted. At the end of the record, a check
character is recorded. This character has a bit cor-
responding to each row with an odd bit count. When
the record is read, each row of the completed record,
including the check character, should satisfy the even
parity condition.

Tape Records, Inter-Record Gaps, and End-of-File Gap
Records on tape are not restricted to any fixed length
of characters, fields, words, or blocks. Records may
be of any practical size within the limits of available
storage capacity.

88

Records or groups of data are separated on tape by
a record gap — a length of blank tape about 34 inch
long. During writing, the gap is automatically pro-
duced at the end of the record. During reading,
the record begins with the first data sensed after a gap
and continues until the next gap is reached. The blank
section also allows for starting and stopping the tape
between records. A single unit or block of information
is, therefore, defined or marked by an inter-record gap
before and after the data (Figure 115).

One One
I‘slock *Block"
3/4:- 3/ " 3/ "
R
{ Gap Record Gap ecord Gap
One L_One
Record Record
r— One Block —bl
3/4" Record Record Record Record | 3/4"
Gop Gap
l¢—————— Four Records ——————————

Figure 115. Single and Multiple Record Blocks

An inter-record gap, followed by a special single-
character record, is used to mark the end of a file of
information. The character, a tape mark (Figure 116),
is generated and written on the tape following the last
record of the file.

Tape Mark
i Gap [Record| Gap [Record | Gap | Record | Gap Record}

Tape Motion —————=

Figure 116. Tape Mark at End of File

More than one file may be placed on a tape, pro-
vided these files are separated by the end-of-file char-
acters (tape marks). This is shown in Figure 117,
where three files of varying numbers of records are
recorded on tape.

/ Tape Marks\‘*

EGap Record | Gap | Record | Gap |Record | Gap | Record S

Figure 117, Multiple Files on a Tape

Instructions

Input/output instructions select and control input/
output operations. They contain information neces-
sary to:

1. Identify the device or channel adapter required
and the data channel to which it is attached.

2. Determine if the operation transmits data to core
storage (read) or takes data from core storage (write).

3. Select appropriate code translators for the serial-
by-character input/output devices.

4. Prepare the channel to accept a channel command
word, which is sent to the data channel by execution
of a reset and load channel instruction. The command
is then executed by the data channel itself.

5. Prepare the data channel to accept a control word
that contains an order for the 1301 Disk Storage. The
control word is sent to the channel by the reset and
load channel instruction and is then passed to the file
control for actual execution.

6. Start mechanical motion in the input/output de-
vices.

Thus, three different levels of execution exist in the
7040 and 7044 systems:

1. Instructions are executed in the processing unit.

2. Commands are executed in the data channel

3. Orders are executed in the file control unit for

disk storage.

Figure 118 shows the span of control and activity
for execution of instructions, commands, and orders,
together with data and information flow paths. Logi-
cally, data flow is the same with either type of data
channel in the 7040 and 7044 systems. Actually, with

Core Storage

7904 Data Channels, data flow is a direct path between
core storage and the channel; with Channel A (which
is physically a part of the processing unit), data flow
is as shown in the figure. Status data are available from
all devices and are directed to core storage. Trap sig-
nals, also available from all devices, are directed to the
processing unit but cause information to be placed in
core storage at preassigned locations. Both status data
and trap signals are discussed later. In Figure 118:

1. Instructions are taken from core storage and exe-
cuted in the processing unit.

2. A command is taken from storage by an instruc-
tion, and is sent to the data channel for execution.

3. An order is taken from storage by an instruction
and is sent to the file control for execution.

4. Status data, available from all devices, are sent to
core storage. The data may then be taken from storage
and interrogated by the processing unit to find the
operating status of the device.

5. Trap signals, available from all devices and cer-
tain processing unit operations, are used to automati-
cally force the program to a preassigned routine. This
routine is then used to fix up the condition causing the
trap signal and then to return program control to the
area it was operating in when trapped. Detailed infor-
mation on trapping is in the Trapping section.

Special Condition Program Indicators

Each input/output device has special condition indica-
tors used to signal the processing unit when a condition
requiring attention occurs. Device indicators include:
tape check on a tape unit, hole count on a card reader,

Instructions To 7904
—_— [— — 1
Commands ' I
Orjos |
r"— 9 hene Sl _"_‘!—'_"_’ _1
i Instructions l Com'm;nds ! Orders
i I
: l
l i :1 i e
| Status Data i Status Data Status Data
i Trap Signals ! Trap Signals Trap Signals
| N " 1301
i | File Control Storage Disk
' i

Attached 1/O
Devices

Figure 118. Instruction, Command, Order, and Data Flow

1414 1/0 Synchronizers 89

print echo on a printer, etc. In addition to this type of
indicator, each data channel has indicators that are
shared by all input/output devices attached to the data
channel. Such an indicator might be the redundancy
check indicator, which could be turned on by a tape
check, a hole count, a print echo, or other causes to
indicate that an error was sensed during data trans-
mission between the input/output device and data
channel.

The condition of the channel indicators may be pro-
gram tested by instructions. Alternate program paths
may be assigned to the results of the test. For example,
if a channel redundancy check indicator were tested
and found in the on condition (during a tape read
operation), the alternate path might be to backspace
tape and try to read the record again. Indicator descrip-
tions are interspersed with instruction descriptions and
examples in the following text.

In the following instruction descriptions, Y signifies
the address part of the instruction (positions 21-35).
This field selects the data channel and device to be
used; see Figure 119. If a device is selected on channel
A, additional information contained in positions 15-17
(designated V) is needed. Positions 15-17 are not in-
terpreted by the 7904 channels (channels B through
E). If the 1402 card punch is selected for use on chan-
nel A, additional information about stacker selection is
necessary. This information is in position 13 and is also

designated by V. Thus, the V field includes positions
13-17. Examples are given in text where this field
applies.

Read Select — RDS YTV

This instruction causes the channel to prepare to read
information into core storage from the input/output
device specified by'V and Y. Only positions 28-35 of the
address part are subject to address modification by an
index register. Position 14 of V must be a zero.

As an example of rps coding, assume that tape unit
4 attached to channel A is selected for reading in the
Bcp mode. The format of this rps instruction is:

RDS 644, T, 0

Write Select — WRS YTV

This instruction causes the channel to prepare to write
information from storage to the input/output device
specified by V and Y. Only positions 28-35 of the Y
field are subject to modification by indexing. Position
14 of V must contain a zero.

After a ros or wrs has conditioned the channel to
transmit data to or from a device, a reset and load
channel rcw» instruction must be given to deliver a
channel command word to the channel. This command
word contains the starting address of the data and a
word count to control the number of words trans-
mitted.

Chan A BCD Address Binary Address
Device Chan | Adapter (Octal) | (Decimal) (Octal) (Decimal)
Magnetic Tape A 1201-1212 0641-0650 1221-1232 0657-0666
B 2201-2212 1153-1162 2221-2232 1169-1178
C 3201-3212 1665-1674 3221-3232 1681-16%90
D 4201-4212 2177-2186 4221-4232 2193-2202
E 5201-5212 2689-2698 5221-5232 2705-2714
7904 Control B 2000 1024 2020 1040
Adapter C 3000 1536 3020 1552
D 4000 2048 4020 2064
E 5000 2560 5Q20 2576
Direct Data B 2240 1184 2260 1200
Connection C 3240 1696 3260 1712
D 4240 2208 4260 2224
E 5240 2720 5260 2736
1622 Card Reader | A 3 1210 0648 1230 0664
1622 Card Punch A 3 121 0649 1231 0665
1402 Card Reader A 3 1210 0648 1230 0664
1402 Card Punch A 3 1211 0649 1231 0665
1403 Printer A 3 1212 0650 1232 0666
Typewriter A 4 01000 00512 01020 00528
1401 On-Line A 5 1201-1212 0641-0650 1221-1232 0657-0666
1011 Paper Tape
via 1414-4 or -5| A 3 1601 0897 1621 0913
1009 Data Trans
via 1414-4 or -5 A 3 1301 0705 1321 0721
1014 Inquiry Units
via 1414-4 or -5| A 3 17011702 0961-0962 1721-1722 0977-0978
Telegraph Units
via 1414-4 or -5/ A 3 1401-1404 0769-0772 1421-1424 0785-0788

Figure 119. Possible Select Instruction Addresses

90

Reset and Load Channel A — RCHA YT

If the channel addressed by the rcH instruction has
been prepared by a select instruction, the contents of
the storage location specified by the Y field of the rcu
are sent to the channel registers to serve as a channel
command.

If the channel has not been prepared by a select
instruction, the input/output check indicator in the
channel is turned on.

The ccv> are sent to the channel and data transmis-
sion starts as soon as the device selected is ready to
operate. If a second RCH is given to a channel that is
in operation (in use), the ccy> specified by the second
RcH are sent to the channel and replace the previous
command. Since the second RcH resets the channel
data register of the selected channel, data may be lost.
One instruction exists for each channel; the mnemonics
are: RCHA, RCHB, RCHC, RCHD, and RCHE.

Because timing conditions vary widely among data
channels and their devices, it is recommended that the
channel be tested to insure it is no longer in use before
using the data area assigned to that channel. This test
may be accomplished with a transfer on channel in
operation instruction explained later.

Channel Command — IORD Y,V

Execution of the rcH instruction causes a channel com-
mand word to be sent to the addressed channel. This
word provides a 15-bit word count field (specified by
V) that regulates the length of the record (the number
of words) moved. A 15-bit starting address field (speci-
fied by Y) is also provided in the command word to
locate the first word to be moved. For example, if 450
words were to be read from a tape unit and the first
word was to be placed in core storage location NpuT,
the command word format would be:

IORD INPUT,,450

Additional words are taken from or sent to suc-
cessively higher word locations in core storage until
the end of record is reached on the input/output device,

or until the number of words specified in the word
count (V) field has been transmitted; whichever of
these conditions occurs first ends the operation. Thus,
in the previous example, the second word taken from
tape is placed in storage location mvpuT+1, the third
word in location iINpuT+2, and so on. Each time a word
is moved, the word count is automatically reduced by
one. Likewise, each time a word is moved, the starting
address is increased by one.

Figure 120 shows the rps and rcH instructions with
the 10rRD command. Assume that 250 Bcp coded words
are to be sent from tape unit 3, attached to channel B,
into an INPUT core storage area. If the first record on
tape were less than 250 words, only the number of words
in that record would be sent to storage because an
end of record is sensed by the tape unit at the end of
the record, and this Eor signal takes precedence over
the word count. If the first record were larger than
250 words, only the 250 words called for would be
sent to storage, but the tape unit would continue until
it reached the recorded end-of-record gap before it
stops. The remainder of the record would be, in effect,
skipped over.

By changing the ros in Figure 120 to a wrs instruc-
tion, exactly 250 words would be written from storage
on tape unit 3 as a complete record. Likewise, by
changing the address portion from 1155 to 1171, the
250 words would be written in the binary mode (See
Figure 119 for addressing).

Channel-in-Use Indicator

This indicator is turned on by execution of any select
instruction specifying that channel. Normally, the indi-
cator remains on during the reset and load channel
instruction, which loads the channel with a command
word. The indicator stays on during execution of the
command and is turned off at completion of the
command.

Since the select instruction initiates mechanical
motion in the tape unit, the rcH instruction must be

T TAddress, Tog, Decramen/ Caort
bl
[
]l L

Location Qperation

2 él7 |8

Comments

TdeatTcation

L | kLS __ | 115F5

Selects tape unit 3 on channel B

| obe

L | RCHB . | oM

I

H

. . i

Brings channel command into the +
L e conitrol Tegisters of channel B —— e

t

the first record on tape and places

these words into storage locations

——— S B SO e g :
= T T —r
| rcom | BCD . . | UNPUT,,2
|
IS SN [y PSR _i :[
T
|

INPUT, INPUT + 1, INPUT + 2, etc.

Figure 120. Tape Record Read Routine

1414 1/0 Synchronizers 91

executed within a certain time after the select instruc-
tion. This time depends on the tape unit being used
and is noted in milliseconds as:

UNIT READ WRITE
7330 7.0 13.0
729 4.0 6.5
729 v 2.5 4.0
729 v 4.0 6.5
729 vi 2.5 4.0

If the rcH is not executed within the allowed time,
the tape unit is disconnected and the input/output
check indicator is turned on.

The channel-in-use indicator is also turned on for
the duration of the specified operation. If a select, back-
space, write end of file, rewind, rewind and unload, or
write blank tape instruction is given with the channel-
in-use indicator on (as a result of a previous instruc-
tion), the execution of the instruction is delayed until
the channel-in-use indicator is turned off.

The channel should not be in operation when
selected for use. The channel status may be tested and,
if the channel is busy, a program delay (Tco instruc-
tion) may be used. Any other scheme that brings the
program back to testing the channel after doing other
operations may also be used.

Transfer on Channel A in Operation — TCOA Y,T

If the channel-in-use indicator is on for the specified
channel, the computer takes its next instruction from
location Y. Otherwise, the next sequential instruction is
taken. The operation of the channel is not affected by
the Tco and the Tco is never treated as a no-operation.
When used with channel A, the Tco, if it does not trans-
fer, tells the program that the channel has not been
loaded with a rcH instruction. One instruction exists for
each data channel; the mnemonics are: TCOA, TCOB,
TCOC, TCOD, and TCOE.

The Tco instruction, in its simplest application, may
be given an address that is the same as its location.
With this application, the Tco could be inserted in the
program instruction string immediately in front of the
rps or wrs (Figure 121). If the channel-in-use indi-
cator is on for channel B, the next instruction is taken
from location start. This one instruction loop con-
tinues until the channel-in-use indicator is not on.

The next sequential instruction (Rps or wgs) is then
executed.

The main limitation to this type of Tco use is that
the program is held in the one instruction loop until
the channel is not busy. The alternative method of
testing the channel and transferring to other work if
the channel is busy saves over-all program time but
might require more instructions. With this use, the
address of the Tco would be the location of other work
to be done. The last instruction in the other work rou-
tine would have to be a transfer back to the Tco to find
out if the channel is now ready for additional input/
output work.

Redundancy Check Indicator

Another aspect of data movement (reading or writing)
is the possibility of a parity error indication. This tells
the computer that the check bit with the character (or
word) does not agree with the number of bits within
the character (or word).

The redundancy check indicator, one for each data
channel, may be turned on at any time during a read
or write operation. It is turned on when a parity error
is detected on data being moved to or from core storage.
The indicator is turned off by execution of a transfer
on redundancy check instruction.

Transfer on Redundancy Check, Channel A —

TRCA YT

If the redundancy check indicator for the specified
channel is on, it is turned off and the computer takes
its next instruction from the location specified by Y.
If the indicator is off, the next sequential instruction is
taken. One instruction exists for each data channel; the
mnemonics are: TRCA, TRCB, TRCC, TRCD, and TRCE,

Since it is possible for the redundancy check indica-
tor to be on from a previous operation, the indicator
should be turned off (if on) before a read or write
operation is started. This may be done by placing the
TRC directly in front of the rps or was in the instruction
string. The Trc is also placed in the program after the
RCcH to check data movement as it occurs (Figure 122).

The first TRc of Figure 122 would turn off the re-
dundancy check indicator if it were on and then allow

T 1 location Operation Address, Tog, Decrement/ Count
I

]
|
12 s 7 s :
|

Comments

Tdennficanon |

!
|
|
72,73 0
|

| |START| |Ico8_ |

START The TCO | bt

indicator is off,

Select for reading or writing.

L —] ey

Ly | |IRDS = WRS! |
|

|

|

Figure 121. Tco Instruction Loop

92

execution of the ®rps, rcH, and 10rD, The second Tco is
used to insure that the following Trc does not attempt
any testing before the data are actually in computer
core storage. Without the second Tco instruction, the
second TRe would be executed before any data had
been read by the tape unit. This points up the differ-
ence between time needed to get a mechanical device
moving and reading data and the time needed to exe-
cute computer instructions. Approximately 200 com-
puter instructions could be executed before data would
start to arrive from the tape unit.

The out address of the second Trc is the location
of a re-read routine that would be needed if error
data were encountered. The our routine would basic-
ally consist of instructions to backspace the tape record
and to re-read it. Present programming practices sug-
gest ten read attempts before the record is consid-
ered unreadable.

Backspace Record — BSR YTV

This instruction causes the tape unit designated by
Y and V to move tape backward. This backward motion
is continued until an end-of-record gap or load-point
gap is reached. If the tape unit is at load point when
this instruction is executed, the Bsr is treated as a no-
operation and the next sequential instruction is taken.
Only positions 28-35 of the address part of the Bsr
are subject to address modification.

There are five tape areas where the tape can stop
when operating under normal conditions. When the
tape is stopped, the read head is positioned at one
of these areas. The areas are labeled 1 through 5 on
Figure 123. Operation of Bsrand Rps instructions varies,
depending on tape positioning when the instruction
is executed (Figure 124).

Tape is positioned at the load-point marker (1) by
execution of a rewind instruction or by the initial
mechanical loading of a tape reel and depression of

Before Tape Mark (4)
After Tape Mork (5)

~
¥ |Records 4 H' Records
[7 Rocoras)| /L ..}l L‘ !

EOF
Gap Tope-Mark
Record

Load Point (1)
Load-Point

J Gap (2)

S—j_l 4 lFirst Record

End-of-Record Gap (3)

EOF Gap

Figure 123. Stopping Areas on Magnetic Tape

the tape load-rewind key. Positioning in the load-point
gap (2) occurs when a BsR is executed after the first
record has been read or written on the tape.

Tape is stopped in an end-of-record gap (3) when a
record is read or a BsR is executed at the end of any rec-
ord other than the first record of a file. Tape is stopped
before the tape mark (4) after the last record of a
preceding file is read or after a Bsm is executed for a
tape positioned after the tape mark. Tape is positioned
after the tape mark (5) by execution of a Bsr for a
tape positioned after the first record of the next file,
or by execution of a rps for a tape positioned before
the tape mark.

Figure 124 shows the differences in instruction exe-
cution according to tape position; the numbered
positions are the same as in Figure 123.

With Tape [(1)At Load [(2) In Load-|(3) InEOR |(4) Before[5) After
Exe= Positioned| Point Point Gap Gap Tape Tape
cuting a — Mark Mark
No-opera- | Back tape | Back tape over previous
BSR tion. Take | to load record of this file, if one
next Instr point exists.
Read first record of Read next| Read an |Read
RDS the first file record of | EOF first rec-
this file | condition |ord of
next file.}

Figure 124. Tape Instruction Execution

Figure 122. Trc Instruction Example

. | Tocation Ogperation T~ | Address, Tog, Decrement/ Caunt Tomments T Tdentfication |
| [|

1 :2 sl7 s : L 77:73 8
I;ﬁ.IA‘RL I.Q‘Q.E..,._J ;iﬂ&'l" Check for channel busy. !
,_l_.AA_'__,w Iﬁgefg_} ‘Move Turn off redundancy check, if on. !
__JMQ,I_E_4 E_D_S_i_f___: I XX XX Select channel, unit, and mode. !
'r,.,.f._.A RCHR _.f.;} lLCﬂA[Load command into the channel . T?
_'rcdf ¢k I4§.Q_vﬁ._.A._; KHECK Holds program until data have :

{‘. —_— T brpme—————____ actually been reed —~—mmro-u-—-]
T
S D T R&8 | 1QUT QUT is the location of o re-read |

_::: _____ — T T _: : routine for the error condition. ___’—-——-——_*ls_/

I e —— e S
— | T 1
lycoN b Channel command !
+L.C.9.] . I

o At o ———]

1414 1/0 Synchronizers 93

Figure 125 shows a basic routine for re-reading an
error record a maximum of ten times. Transfer to this
ouT routine from the one shown in Figure 122 occurs
when the second TR finds an error in data transmission.

The axrt places 9 into the xR to serve as a re-read
counter (the record has already been read once). The
tape unit is then tested by the first Tco and, when the
BSR is complete, the record is read (with the rps, RCHA,
and 10RD sequence) a second time. The next Tco checks
for “not busy” and the Trc checks this second reading.
The TRa instruction following the Trc is an uncondi-
tional transfer back to the main program to continue
processing. If the record is again read as an error
record, the Trc transfers to location counT. At COUNT,
the contents of xrl are reduced by one and the pro-
gram returns to the backspace instruction to try re-
reading a third time. This process continues until the
record is read as good, or until the xr is reduced to
1(Tix). At this time, the record has been read ten
times as an error and may be considered bad. Some
sort of operator intervention is needed, or the program
could type out that record number x could not be read
and continue without stopping.

For writing on tape, similar routines would be used
(wrs instead of ros) and, after twenty-five trys to write
a good record, that area of tape is assumed bad. In-
stead of operator intervention being indicated, a blank
section of about 3% inches of tape is written.

Write Blank Tape — WBT Y1V

This instruction causes the tape unit designated by Y
and V of the war to write a blank area of tape about
3% inches long. The instruction is used to erase bad
spots on tape which cannot be written over without a
redundancy check indication. The wBT must have a

1 bit in position 14 and should not be immediately fol-
lowed by a rcH instruction.

To illustrate use of the write blank tape instruction,
assume a tape write routine (similar to Figure 122)
and a TRC to the ouT routine, signaling a write error.
The out routine to attempt rewriting the record could
be as shown in Figure 126. The axr places 25 in the xr
and the tape unit is backspaced one record. The 1co
holds the program until the Bsr is complete, and the
wrs is then executed, along with the rcu and 108D
Again a Tco is used, followed by a Trc. If the record is
written without error this second time, program control
is returned to the main program for continued process-
ing. With a second error indication, the TRC transfers
to counT. couNT reduces the counter by 1 and transfers
back to the Bsr instruction. This procedure continues
until the record is written as a good record or the count
is reduced to 1. At this time, the wBT instruction is
executed, effectively skipping over the suspected bad
spot on tape. The rewrite routine then transfers back
to the original wrs instruction in the main program
and attempts to write the record on the new section
of tape.

Note that a count (30) of possible skips is kept by
index register 2. If this count is exceeded on one record
writing attempt, the operator should change tape units
and notify the Customer Engineer,

Tape Marks

When the series of tape records making a tape file has
been successfully written, this series must be marked
to make it a recognizable tape file. This is done by
writing a single-character record called a tape-mark
record. The tape mark consists of 1 bits in the 8, 4, 2,
and 1 tracks and is followed by a check character for
the tape mark.

Figure 125. Re-read Routine

94

.] Cocation Operation T [Address, Tag, Decramant/ Count Tomments [Tdentfication
I |1 |
1 :7 4718 J 1 77!73 ao
| _lovT_ | AxT_ __ __| 91 Places 9 in XR1. ;
‘iﬂA-Q-K* 57537774 ‘83 Backspaces the tape one record. i
'ROY | TCcoB | 'RDY Waits until backspace is finished. I
_I'__] KQ,S e _: LBJ Selects same tape for re-reading. !
T
| RECHB _: ' IQON Load channel command. |
T
SeELE | \lrCcoB) | ELE Holds program until data is ready. |
| | |ITReB | icouAT Error, go to COUNT. }
I . RA__ | :NEXT Good, return to main program. {
S -
_Jl_c OVUNT |TL X J {BAO—K'. 1:1 Reduce counter, transfer to BACK, {
,,,,,,, _| |[HP.R _: EOUT Record cannot be read without error. If another l
e —tT————ten fries are desired, press the start key. —_———— e
+ |l) |
;ngﬂ BC_I.____: ;IN, ' N Channel command 1!7
e i I e e S

End-of-File Indicator

The channel end-of-file indicator is turned on only
when a single-character tape-mark record is sensed
during a read operation. An end-of-file record may be
written on a tape by the write-end-of-file instruction,
but the end-of-file indicator is not turned on during
this operation. The indicator may be tested by the
transfer-on-end-of-file instruction and, if the indicator
is on when tested, it is turned off by execution of the
test instruction.

Write End of File — WEF YTV

This instruction causes the tape unit designated by Y
and V to write an end-of-file gap followed by a tape-
mark character on the tape. If the end-of-tape reflec-
tive marker is passed over during the wEeF instruction,
the end-of-tape indicator is turned on. Only positions
98-35 of the wEF are subject to address modification.

End-of-Tape Indicator

When the end-of-reel marker is sensed during writing,
the end-of-tape indicator in the channel to which the
tape unit is attached is turned on. No interruption in
the writing process occurs, so that the write operation
may be completed even though the end-of-reel marker
has been passed over. If the status of the indicator is
ignored and writing continues, the tape may be pulled
from the reel. This indicator is never turned on during
a read operation.

The end-of-tape indicator may be turned on during
execution of a WRs, WEF, or WBT instruction. It is not
turned on during a mps. If it is turned on during a
was, writing does not stop but continues until the end
of the record or until the end of operation. Since, how-
ever, this record may not be the last record in a file,
writing should stop on this reel of tape and restart on
a new tape reel.

Transfer on End of File, Channel A — TEFA YT

If the end-of-file indicator for the specified channel is
on, it is turned off and the computer takes its next
instruction from Y of the TEF instruction. If the indi-
cator is off, the next sequential instruction is taken.
The eor indicator may be turned on by magnetic tape,
a card reader, or the on-line 18M 1401 System.

When an end of file is sensed during reading, the
turning on of the channel end-of-file indicator logically
disconnects the tape unit from the channel. Execution
of the command word is terminated immediately, even
if it has not been completed. One instruction exists for
each channel; the mnemonics are: TEFA, TEFB, TEFC,
TEFD, and TEFE.

The recognition of an end of file occurs with execu-
tion of a mos instruction when the tape mark is spaced
over. Assuming that records and a tape mark have
been written on a tape, a routine to sense the end of
file could be as shown in Figure 127. Records are read
in a normal manner and tested for validity. When the
EOF is sensed, the Tcoa is executed until the channel
is not in use; then the TEFa is executed.

Tomments Tdeniification

Backspace one record.

Try writing once more.

Good writing, return to main_program.

Reduce write counter, transfer to BSR.

Backspace for WBT position.

Reduce skip counter, transfer to main

o | Location Operotion [~ [Address, Tag, Decrement/ Count
J [
1 :? &7 {8 } i
| ovr | AXT . _ .91 9 to XRI,
| \BAek | BSR__._. | B3
__:EAD._Yv _ I.Q.Q.B.A.A__: LEDI’ Backspace finished.
|
] %K.é. __.__1' :B5 "
i | (R HB | 11e0
—‘7>4._ —_ e
| 1ISELF r7¢ o 8 | | SELF Ready for checking.
I | lrRems i Ceunr Error, go to COUNT.
| L | \TRA_. . _ | NEXT
| leovnr |Tex | |BAex,1,1
S | |asr__ _1 183 e
_L‘_____'_ waT_ . "a: !35 9r|rex ank tape.
. axT - :Zi,z 29 to XR2.
! TLX_ I Man,2,1
N NGO I O _ 1t program.
! NMPR . __{ : Change tape unit.
/J__,/\I]

Figure 1268, Rewrite and Skip Routine

1414 1/0 Synchronizers 95

End of Tape Test, Channel A — ETTA YT

This instruction tests the status of the channel end-of-
tape indicator. The channel whose indicator is to be
tested is specified by Y of the err instruction. If the
end-of-tape indicator for channel Y is on, the computer
takes the next sequential instruction and turns the indi-
cator off. If the indicator is off, the computer skips the
next instruction and proceeds from there. One instruc-
tion exists for each channel; their mnemonics are:
ETTA, ETTB, ETTC, ETTD, and ETTE.

The instruction combination shown in Figure 128
would determine whether the end-of-tape marker has
been passed during a write operation.

If the end-of-tape marker is encountered while the
tape unit is being stopped, the channel end-of-tape
indicator is turned on but is not recognized by the
program until a succeeding (another) rTT instruction
is executed. This situation could occur when the end-
of-tape marker falls in an end-of-record gap.

Rewind Instructions

Two instructions, available for each channel, will re-
wind the tape reel to its load point. One simply rewinds
the tape reel; the other rewinds the tape and then un-
loads the reel for physical removal from the tape unit.

Rewind — REW YTV

This instruction causes the tape unit designated by Y
and V to rewind its tape to the load-point position. If
the tape is positioned at its load point when the rew
is executed, the instruction is treated as a no-operation.
Only positions 28-35 of the address part of the Rew
are subject to address modification. On a 7330 tape
unit, this instruction causes a low-speed rewind.

Rewind and Unload — RUN Y1V

This instruction causes the tape unit designated by
Y and V to rewind its tape and then to unload that
tape reel. The RUN is treated in the same manner as
the REw except, after the rewind operation, a normal
unload (manual) operation occurs. On a 7330 tape
unit at load point, the rRUN causes the channel to halt
operation. With 729 tape units at load point, the rRuN
causes an unload operation only.

Input/Output Check Indicator
If the data channel being used has not been condi-
tioned by a select instruction when the rca instruction
is executed, the input/output check indicator is turned
on (one indicator for all channels). This condition may
be tested by using the 10T instruction.

The indicator is turned on by any of the following
conditions:

. | Location Operation T TAddress, Tag, Decrement’ Count Comments [Tdentiication
! bl |
1]2 617 |8 JK : 77!73 80
ly | |RDS_._ | .85 ;
__:_._,_,_.* BQ ﬂﬂi__; l 1CON Get channel command ond load channel . ;
Lﬁf LF| IQQQAV_: ".SELF Holds program until channel is free. I[
w_lf_,A,f.i.ﬁ Tffﬂ_f___il ;CHAAVGE EQF is sensed, :
[{
. _.j r T
! ‘lN" ,h |
Figure 127. TEF Program Example
g 4
o T Location Operation T | Address, Tag, Decremant/ Count Commens T Tdeanficotion
| [l
! !2 g7 p f : !73 8,
1 _______] LVE_S‘AAf___‘I 83 Select tape and channel . :
_‘L.,4v._4 N R.Q.H.B.;,,._,‘ ;QC ON Get output command. :
f§| ELF | IQ,Q.Q.,;,“‘ 'SELF Hold program until write is finished. !
) 140 + indi .]
B _EIIﬂ___' il 00 :'e:' channel indicator !
| [} f .
L _R-E-ﬂ,._v_»_I ’53 n I'CO or on !
| Continve | I Indicator off. |
R —— | (Lontinue - !
| econ BCI __ _ _, QUT,m |

Figure 128. eTT Program Example

96

1. If a rcu is decoded and the data channel has not
been selected for use.

2. If, during writing, a channel data register has not
been loaded with a word from storage by the time its
contents are to be sent to the output device.

3. If, during reading, a channel data register has
not sent its contents to storage by the time new data
are to be loaded into the data register from an input
device.

The indicator is turned off by execution of an input/
output check test (ot instruction.

Input/Output Check Test — 10T T

If the input/output check indicator is on, the indicator
is turned off and the computer takes the next sequential
instruction. If the indicator is off, the computer skips
the next instruction and proceeds from there. Any
address modification may result in changing the opera-
tion because the Y portion of the 10T is a part of the
operation code itself.

Channel Reset and Store Instructions

The contents of data channel registers may be reset
to a starting condition or their contents may be stored
in core storage for use by the program.

Reset Data Channel A — RDCA ,T

This instruction resets all registers and indicators in
the data channel specified by the roc instruction. All
data transmission is terminated, and the selected de-
vices are immediately disconnected. If the instruction
is executed while a tape is in motion, the tape is imme-
diately stopped, regardless of the position of the tape
head with respect to the inter-record gap. All status
indicators previously set by an enable instruction
(explained later) are turned off. A moc cancels the
effect of a previous select instruction. One instruction
exists for each channel; the mnemonics are: Rbca, RDCB,
RDCC, RDCD, and RDCE.

Store Channel A — SCHA YT

This instruction replaces the ccy)2; .35 with the contents
of the specified channel’s address counter. Positions
3-17 are replaced with the contents of the channel’s
word counter. Positions S,1,2,18,19, and 20 are set to
zero. Since channel A uses the cacs 7 for its word
counter and C(ACy; g5 for its address counter, it is nec-
essary to give the scHA before changing the ac after
execution of an RCHA.

An scH to channels B through E may be executed at
any time, regardless of whether the specified channel
is in operation. If the channel is in operation and the
channel’s address counter is in the process of being
changed, execution of the scH is delayed until the

change is complete. The contents of the address coun-
ter are one greater than the storage location of the last
word involved in the data transmission. One instruc-
tion exists for each channel; the mnemonics are: SCHA,
SCHB, SCHC, SCHD, and SCHE.

Problem

34. Write a routine to read a 15-word binary record
from tape unit 3 attached to data channel B. Delay
checking until the record is read into core storage, and
then check for redundancy and end of file. If redun-
dancy occurs, try to re-read ten times. If redundancy
persists, halt with 77777, in the address portion of the
storage register. If end of file occurs, halt with 11111,
in the address portion of the storage register. For nor-
mal end, halt with 000014 in the address portion of the
storage register.

IBM 1414-3, -4, and -5 Input/Output
Synchronizers

These models of the 1414 provide data buffer storage
and control functions for the following units:

BM 1414-3 1BM 1403 Printer

1BM 1402 Card Read Punch

1BM 1402 Card Read Punch

1BM 1403 Printer

BM 1402 Column Binary Adapter. Two buf-
fers are required (one adapter per 1414).

1BM 1009 Data Transmission Unit Adapter.
One adapter controls one 1BM 1009, Two
buffers are required { one adapter per 1414).

18M 1011 Paper Tape Reader Adapter. One
adapter controls one M 1011. One buffer
is required (one adapter per 1414).

1BM 1014 Remote Inquiry Unit Adapter. One
adapter controls up to ten 1BM 1014’s. Two
buffers (one for input and one for output)
are required for each adapter (maximum of
two adapters per 1414).

Telegraph Input/Output Feature. One adapter
attaches two simplex circuits or one half-
duplex or full-duplex circuit. Two buffers
are required for each adapter (one adapter
per 1414).

Additional Telegraph Input Feature. One
adapter attaches one simplex, half-duplex,
or full-duplex circuit in conjunction with the
additional telegraph output feature. One
buffer is required for each adapter (maxi-
mum of two adapters per 1414).

Additional Telegraph Output Feature. One
adapter attaches one simplex, half-duplex,
or full-duplex circuit in conjunction with the
additional telegraph input feature. One buf-
fer is required for each adapter (maximum
of two adapters per 1414).

Only the communication-oriented input/out-
put devices used on the 1414-4 are available
on the 1414-5.

With communication-oriented devices, any combina-
tion of the optional adapters is permitted, provided

M 1414-4

M 1414-5

1414 1/0 Synchronizers 97

that the limitation on multiples of the same adapter
and the limit of six data buffers per 1414 are not ex-
ceeded.

Input Operation

Normal input operation from any input buffer uses an
RDs or PRD instruction followed by an rRcHA instruction
that loads a channel command into the channel reg-
isters. The select instruction selects the proper input
buffer, but no action occurs until the rcHA is given.
Therefore, no time limit exists between the select and
the rcHA instructions.

The select instruction also samples the check status
of the input buffer. If a check exists on the record in
the buffer, the channel A redundancy check indicator
is turned on. During the rcua, the characters are also
checked for parity as they enter the channel and, if
improper parity exists, the channel A redundancy check
indicator is turned on.

98

Ovutput Operation

Normal output operation to any of the output buffers
uses a wis or PWR instruction followed by a rcHA that
loads a command into the channel. The select instruc-
tion selects the proper output buffer, but no action
occurs until the next rcHA. Therefore, no time limit
exists between the select and the rcua. The select also
samples the status of the output buffer. Normally, this
is the status of the previous record; in a card punch
operation, it is the status of the card punched before
the previous card. If a check occurs on this record, the
channel A redundancy check indicator is turned on.

During the output data transfer, the 1414 checks
for proper parity on the data sent by the cpu. If an
error occurs, the channel A redundancy check indi-
cator is turned on. If the redundancy check indicator
is on at the end of an output data transfer, the output
buffer is not emptied and the data transfer from the
1414 is effectively cancelled.

In most applications, magnetic tape is the principal
input medium. It may be desirable to use 1M cards
as input in some situations where the volume of input
is small enough to permit economical operation. In
either case, 1BM cards are used as the medium for initi-
ally recording data because of their great flexibility:
errors are easily detected and corrected, input data may
be readily prepared on several card-punches simulta-
neously, and the cards may be collected before entry
into the computer.

Cards are particularly useful when manual access
to a file is desired. Punched card input and output
may represent any alphabetic character, special sym-
bol, or binary punching if the programs which manipu-
late this information are designed to recognize the code
used (Figure 129). Input card information is normally
coded in one of two ways: 1M card coding (Figure
129) or column binary.

Column Binary Feature

This optional feature permits reading or punching of
column binary cards or 1BM card coded cards inter-
mixed on the 1BM 1402 Card Read Punch. The feature

Punched Cards, Readers, Punches, and Printers

is not available on the 1M 1622 Card Read Punch. A
card recorded in column binary is identified by a 7 and
9 punch in card column 1. The 7-9 punches are sensed
at the read check station of the 1402 reader. The card
is then read at the read station so that card rows 12-3
are read into one buffer and rows 4-9 are read into
another buffer.

The first card character (six bits) is punched in
card rows 12-3 of card column 1. The second character
(7 and 9 control punches) is placed in card rows 4
through 9 of card column 1. The third character is
punched in rows 12-3 of card column 2, and so on
through card column 80. When all card columns have
been used, 160 characters may be recorded on a single
card instead of the 80 characters possible with 1M
card coding. Figure 130 shows a card partially recorded
in column binary format. With column binary record-
ing, as with M card coding, the computer regards
any punched hole as a binary 1. No punch indicates
a binary 0.

The first character recorded on a column binary card
is normally used for instruction count, etc., for that
card. The second character is always a 7 and 9 punch

Digits Letters Special Characters

0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ & .O—$*/ ,%4-

i snnn
sgoco0000 ssppeo00000000D 1)] ;IUUUDUUUDUU 1 oocooo0000
1234587690 RBREBUNVINNANSE% INRPUS BONLO4 48 9 90 5 2 53 54 55 56 57 50 59 60 61 62) 4 5 PHRIBMBTEN 880
IRRRRRREE! 1 IEEEREEER IRRRRRERER 1 11111111
2222222222 1 11 12222222212 2 222222222222 2 2 222222212
33333333333 3333333333333133 L 3333 3 3333333333“ 3 31538 33333333 &
44444444444484844444444444444 4144448 4444 4444442444404 4 F ‘44444444@
5555555555555.I 3 5555555555555@8 55558 555i 5555555859 5 5 55685555
666666666666668$ 5655656556556" 666668 6666 6666665666 6 6 66666666
777777777777777‘]77777777777777. 777777. 1771110 1711111111 1 111 171711111
3883383838888333' 388883388833883‘ T EEEEE] | 888888| 8883838355‘.8‘ Biil|ﬂ3833ﬂﬂﬂ
99999999399999999'9999999999999999'99999999“9999999i9939999999999999999999959359
123456 78 910111213 1415161716 1920 21 22 2324 2526 27 28 20 30 31 32 33 34 35 36 37 38 38 40 41 42 43 44 45 46,47 48 49 50 51 52 53 54 55 56 57 58 59 80 61 62 63 64 65 66 67 68697071 7273 T4 7576 77 78 79 80

Figure 129. Standard M Card

Punched Cards, Readers, Punches, and Printers 99

(the six-bit number 000 101). The third character, rows
12-3 of card column 2, is usually the first data character;
rows 4-9 of card column 2 contain the second char-
acter, etc. Each character is a six-bit binary number
and each requires six card rows for recording.

As an example of column binary recording (Figure
130) assume that the first card character is used for
a check sum, the second character must have a punch
in the 7 and 9 rows; the third character then is the first
data character. The data word (six characters) re-
corded on the card is:

—00101 101110 001000 110111 010110 011101 or
—055610672635«

For reading and punching cards, a record is defined
as the information contained in one card. A file consists
of any number of cards (records) and takes the form
of a deck of cards. Note here that definitions of records
and files depend on the device being used; for exam-
ple, a record on magnetic tape may contain more than
one card record.

Card Stackers

Two card stackers are provided for each feed unit of
a card reader: one for normal stacking and the other
for error selected stacking. The physical stackers on
the 1402 and 1622 readers are identical and are shown
in Figure 131, along with their use with each device.

Check Sum

—05
10
26
r— First character of next word

IBM 1622 Card Read Punch

This unit operates at 250 cards per minute while read-
ing and 125 cards per minute while punching (writing).
The read and punch portions are separate and func-
tionally independent, with separate switches, lights,
checking circuits, and buffer storage.

Cards are fed face down, 9-edge first, and an entire
80-column row is read at a time. This row, and the
eleven rows following it, are placed in a buffer storage
and held there until all information from that card
is in buffer storage. The reverse is true when cards are
being punched; cards are punched face down, 12-edge
frst.

Punch Feed Read Feed

| Ne | o4 s | | e I

Pocket 1402 Use 1622 Use

NP Error Punch Normal Punch

4 Normal Punch Error Punch

8/2 Selected Punch Not Used

1 Normal Read Error Read

NR Error Read Normal Read

Figure 131. Stacker Pockets on 1402 and 1622

Card ;
Row TT T
12— 1
11— [|
10— 00B0000000000000000000000000000000000000090600600000000000000000000000000000800000

12345878 910111213 14151617181920212223242526272829303132333435363738 394041424744 454647484950515253154555657 50596061 6263 64656667 68697071727374757677 7879 80
11— 1R RN ARRRRR R AR R R R R R R R RS R R R R R R R AR R R R R R R R AR R R R AR R R R AR AR R R R RRERE SRR R RAREE!
2— 222.22
3-— 3'33E
4— ARBAA4 444444444 40444444448484444484048484440444444844444444444444448444444444484444 3
5— 55005556555555555
6— 6BeBo66566666666665665666666666666666
7 EROR777111770000011077777011010101777117171717171117177710710011717111717171111117111171717171111111
8 — 8.'88083888838808080088888888083838888083888838883883803808880388888888338088888
9 - BoBH99989999999999999999999999949599399

} f ? ‘I ? 8789101213 141518171819202122232425262728293031 3230 343536373839 4041 424344454647 434950515253 545556 5758 59 6061 6263 646566876069 7071 7273 4757677787980

B 7and 9

| 56

67
35
L Second character of next word

Figure 130. Column Binary Recording

100

When the 1622 is attached to channel A, the 1414-3
or -4 Input/Output Synchronizers may not be used on
channel A. Likewise, with a 1414-3 or -4 attached to
channel A, the 7040 or 7044 system cannot have a 1622.

IBM 1402 Card Read Punch

This unit operates at 800 cards per minute while read-
ing and 250 cards per minute while punching. As with
the 1622, the read and punch portions are separate and
functionally independent.

The 1402 is attached to the computer system through
the 1414-3 or -4 Input/Qutput Synchronizers. The 1402
has its own buffer storage within the 1414-3 or -4,
thereby holding up the processing unit only for the
length of time required to fill or to empty the buffers.

Cards are read face down, 9-edge first, and punched
face down, 12-edge first. The entire 80 columns of the
card may be read or punched.

Card Reader Operation

The read buffer is initially filled when cards are fed
into the reader by the operator. Whenever a read
operation is executed, the entire contents of the buffer
are read out and a card feed cycle refills the buffer with
the contents of the next card. The actual storing of data
is under control of the channel 10rp command. One
command is required for each card read, but up to 80
card columns may be read from the card.

With 1M card code recording, 13 complete word
locations (six characters each) and the 12 high-order
(S, 1-11) positions of a 14th location are used to con-
tain the 80 character positions on a card. Positions 12-35
of the 14th location are filled with binary zeros.

With column binary recording (1402 only), 26 com-
plete word locations and the 24 high-order (S, 1-23)
positions of the 27th location are used to contain the
160 character positions on a column binary card. Posi-
tions 24-35 of the 27th location are filled with binary
Zeros.

For a normal operation, the program uses a read
select instruction followed by a rch, which loads the
1orp command into the channel registers. To read a
full card, the 1orp must have a word count of 14 or
greater for 1BM card code cards or 27 or greater for
column binary cards. Word counts greater than 14 or
27 are treated as 14 or 27.

Read Operation — 1622

Cards are read 9-edge first, face down, past two read-
ing stations: check and read. The read buffer is ini-
tially loaded with 80 columns of card data during a
start or load run-in operation. Thereafter, each card

feed cycle is under program control. The reader can
accept and translate card codes equivalent to the 64
combinations of six bits (with optional feature).

The channel transfers data to storage until 80 char-
acters are read or until the word count is reduced to
zero, whichever occurs first. This results in an efficient
read operation, because reading one card per com-
mand allows the cpu to process while the mechanical
card reading process is taking place. '

A read select directed to the 1622 causes a read
signal to be sent to the reader. If the read buffer is
not ready, the read signal is delayed. On receipt of
the signal, the 1622 takes a read buffer cycle and
transmits one data byte. A service request is also sent
to indicate the presence of the byte. The channel takes
the byte into the MQ register and sends a response to
the 1622. This response causes another read buffer
cycle and another byte is transferred. This request and
response process continues until the entire read buffer
is emptied. The channel stops data transmission when
the word count goes to zero but remains connected
to the 1622 until the end-of-record signal occurs. The
channel then ends operation, and the 1622 reads
the next card into the read buffer. The previous card
is stacked in the Nr pocket unless an error has occurred.

Special Read Conditions — 1622

1. Each card is read at two different places and the
results of the readings are compared. An unequal com-
parison is called a hole check. If a hole check error is
detected, the card feed stops, ready status is ended,
and the reader check indicator is turned on. The card
in error is placed in the error stacker. A transfer-on-
device-in-operation directed to the reader results in a
transfer, and the read select instruction causes the
channel to halt operation. The channel redundancy
indicator is not turned on and manual intervention is
required. The error card is placed in pocket 1.

2. Each data byte is parity checked as it leaves the
read buffer and, if a parity check is detected, the 1622
follows the same procedure as with the hole check. All
conditions are the same, except the error card is placed
in the normal stacker.

3. Each byte received by the channel is parity
checked. If a parity check is detected, the channel
redundancy indicator is turned on and the read opera-
tion continues to normal completion. The redundancy
indicator should be checked by the program to assure
that the transfer was valid.

4. An end-of-file signal is sent to the channel when
the last card in the read feed has been transmitted.
The signal turns on the channel end-of-file indicator
when the next read select addressing the reader is
given.

Punched Cards, Readers, Punches, and Printers 101

Write Operation — 1622

Cards are fed 12-edge first, face down, past the punch
and check stations. All 64 combinations of six bits (with
optional feature) can be translated and punched. In-
formation is transferred from storage until 80 charac-
ters are written or until the word count is reduced to
zero. A write select instruction addressing the 1622
results in a service request for the first byte. The 1622
stores this byte in its punch buffer and then requests
the next byte. This request and response process con-
tinues until the entire punch buffer is filled. When the
word count goes to zero, the channel stops sending
words but continues sending blanks to the 1622 until
an end-of-record signal is received. The channel now
ends operation and the 1622 proceeds to punch the data
just transferred. The card is placed in the NP pocket
unless a parity or punch check occurs.

Special Write Conditions — 1622

1. The channel checks parity on all words sent from
storage. If a parity error is detected, the channel word
parity indicator is turned on and an error signal, which
prevents the error record from being punched, is sent
to the 1622.

2. The 1622 checks parity on all bytes received from
the channel and on all bytes punched out of the punch
buffer. If a parity error or a punch error is detected,
a cycle delay is started and the punch is stopped one
card feed cycle after punching the incorrect data.
Ready status is terminated and the punch check light
is turned on. A TpoA instruction directed to the punch
will not transfer and a write select instruction fills the
punch buffer, but no punching occurs. The next Tpoa
directed to the 1622 transfers, and a write select in-
struction will now halt operation. The channel redun-
dancy check is not turned on and manual intervention
is required to clear the condition. The error card is
placed in pocket 4.

Read Operation — 1402

The read buffer is initially filled when cards are fed
into the reader by the operator. Whenever a read
operation is executed, the entire contents of the buffer
are read out and a card feed cycle refills the bufler
with the contents of the next card. The actual storing
of data is under control of the channel command. One
command is required for each card read, but up to
80 characters may be read from the card. Since each
core storage location can contain six characters, 13 com-
plete word locations are used and the 12 high-order
positions of a 14th location contain the 79th and 80th
characters; low-order positions are filled with zeros.
For a normal operation, the program uses an RDs
instruction followed by an rch, which loads the 1omp

102

command into channel registers. The ros selects the
read buffer, but no action is taken until the following
rcHA. Hence, the time between the rps and the RcHA
is variable.

Special Read Conditions —1402

1. The 1414-3 recognizes 64 valid characters. Any
card code that does not result in a valid character
causes a reader validity error. Channel A redundancy
check is turned on when the ros is given for that card,
and the card is placed in the Nr pocket.

2. When a card passes the read check station, the
number of holes in the card are counted. A hole count
check occurs if the comparison is not equal, and the
channel A redundancy check is turned on when the ros
is given for that card. The card is placed in the Nr
pocket.

3. Data read from the buffer are checked for proper
parity by the cpu. If a parity error is detected, the re-
dundancy check indicator is turned on. The program
should test this indicator for the corrective action
required.

4. A not-ready condition results from reader out of
cards and not end of file, reader in manual status (off-
line), or reader power off. These conditions require
operator intervention. When a read select instruction
is executed for the reader, the cpu halts operation.

5. If a hole count or parity error is detected, the
channel redundancy check indicator is turned on and
may be tested by the program.

6. If the buffer is being filled, a read buffer busy
condition exists. If a read select is given, the cpu waits
for a not-busy condition.

7. The end-of-file indicator in the 1414 is turned on
after data from the last card have been sent to core
storage. On the next select instruction to the reader,
the end-of-file indicator in the cpu is turned on and
the end-of-file indicator in the 1414 is turned off.

Write Operation — 1402

The punch buffer has a capacity of 80 characters plus
parity. Words are sent to the punch in the same way
as with the reader, except that a write select instead
of a read select instruction is used. When C words have
been sent to the punch, blanks are inserted in unfilled
buffer positions. When the buffer is full, a punch card
feed cycle is initiated. The channel is then discon-
nected and the cpu executes the next sequential instruc-
tion. For a normal punch operation, the program uses
a wrs followed by an rcua, which loads the 10rD com-
mand into the channel registers. The wrs selects the
buffer, but no action occurs until the RcrA instruction
is executed.

The program can select one of two pockets in the
1402 to stack the punched cards. If the write select
instruction has a zero in position 13, the card is stacked
in pocket 4. If the write select instruction has a one
in position 13, the card is stacked in pocket 8/2. In
either case, if a punch buffer parity check or a hole
count check occurs, the card is stacked in the np
pocket.

Special Write Conditions — 1402

1. The buffer contents are parity checked during
punching and, if an error is detected, the buffer check
indicator in the 1414 is turned on. On the next select
punch instruction, the redundancy check indicator in
the channel is turned on. If a punch buffer parity oc-
curs, the card is placed in the Np pocket.

2. As the buffer is read out, a hole count is retained
by the 1414. On the next card feed cycle, the card
passes the punch check station and the holes are again
counted and compared with the previous hole count.
If the comparison is not equal, the hole count check
indicator is turned on. If a select punch instruction
is given and the hole count check is on, the redun-
dancy check indicator in the cpu is turned on and the
card is placed in the Np pocket.

3. Character parity is checked against word parity
as the data are placed in the punch buffer. If an error
is detected, the word parity indicator in the channel
is turned on.

4. When a select instruction is given to the punch,
the not-ready and busy conditions are the same as
with the reader. If there has been a hole count or a
parity error on the previous card feed cycle, the redun-
dancy check indicator in the cpu is turned on and the
card is placed in the NP pocket.

Instructions

Normally, two instructions, read select ®ps) and write
select (wrs), are used to select the device for reading
or writing. When it is advantageous to have program
compatibility with m8m 7090/7094 systems, two differ-
ent instructions may be used: prepare to read ®rp»
and prepare to write ®wr>. Both of these instructions,
when executed on 7040/7044 systems are identical in
all respects to the read and write select instructions.
When either the PRD or PWR instructions are executed
on 7090/7094 systems, a store and trap operation re-
sults, providing a convenient linkage to a subroutine.
This subroutine may then simulate input/output func-
tions on the 7090/7094 systems. The ros and wrs
formats are described with magnetic tape operation.

In the following instruction descriptions, Y desig-
nates the address part of the instruction. This field
selects the data channel and device to be used on that

channel. If the device is attached to channel A, addi-
tional information contained in positions 15-17(V) is
needed to specify the proper channel A adapter; posi-
tions 15-17 are not interpreted by 7904 Data Channels.

Since both binary or Bcp coded information is pos-
sible, the address part of the select instruction not only
designates the channel, channel adapter, and device
attached to that channel, but also designates whether
binary or Bcp coded information is to be processed.
With a Bcp address, the information is automatically
translated to the internal binary coding scheme of the
computer. With a binary address, no translation oc-
curs. Therefore, a binary address may be used to proc-
ess any type of card coding, but the program will then
have to do whatever translation is necessary so that
the computer can operate on the information and reach
a meaningful result.

Prepare to Read — PRD YTV

This instruction prepares the channel to read informa-
tion from the input device specified by Y and V into
core storage. Only positions 28-35 of the address part
of the Prp are subject to address modification. Bit 14
of the prp must be a 0 bit.

The Y part (positions 21-35) of the prp selects the
mode of reading and is the same for the 1622 and
the 1402: 01210 for Bcp and 01230 for binary. The V
part (15-17) of the prp selects which card reader is
to be used.

Prepare to Write — PWR YTV

This instruction causes the channel to prepare to write
information from core storage to the output device
specified by Y and V. Position 13 of the V field is used
by the 1402 card punch and bit position 14 of the pwr
must contain a 0 bit. Only positions 28-35 of the ad-
dress part are subject to address modification.

The Y part of the pwr selects the mode of recording
and is the same for the 1622 and the 1402: 01210 for
Bcp and 01230 for binary. The V part selects which
card punch is to be used. Position 13 of a PwR is only
used with the 1402 and selects which punch stacker
pocket is to be used: a 1 for pocket 8/2 and a 0 for
pocket 4.

The V part is shown below as a five-position number
(binary) and designates the 1402 cards being selected
for the 8/2 pocket:

13 14 15 18 17 —V part of PWR
1 0 0 1 1 — Code for 8/2 pocket

This binary number, converted to a decimal number,
is then placed in the V part of the instruction as:

PWR 1230,,19

An example of the prp instruction (as used with
the 1622) is shown in Figure 132. Assume that an 1BM

Punched Cards, Readers, Punches, and Printers 103

coded card with 80 characters is to be read. As previ-
ously described, 13 full word locations and 12 positions
of a 14th location are used to hold 80 Bcp characters.

To record a card in column binary on the 1402 and
put the punched cards in the 8/2 select stacker pocket,
the routine shown in Figure 133 could be used.

Transfer on Channel A Device in Operation —

TDOA YTV

This instruction tests the busy status of individual de-
vices specified by the V part of the tpoa. The informa-
tion contained in the V part (positions 15-17) shows:

DEVICE TESTED

Reader (1622 or 1402)
Punch (1622 or 1402)
Printer (1403)
Console Typewriter
On-line 1401 System

When the TpoA is executed, the V part is sampled. The
adapter associated with the device is selected and the

UL W= <

proper busy indicator is tested. If the device is in
operation, the computer takes its next instruction from
Y. If the device is not in operation, the computer takes
the next sequential instruction. The Tpoa will always
transfer if channel A is in use, regardless of the status
of the device being tested.

Select Instructions

Two select instructions, sense and control, are similar
in operation to the read and write instructions except
that they do not result in movement of input/output
data. If either of these instructions is executed on an
1BM 7090 or 7094 System, a store and trap operation
occurs as with the prp and pwr instructions.

Sense Select — SEN Y1V

This instruction causes the channel to prepare to read
status data into core storage from the device specified

T Location Operofion T~ [Address, Tag, Decrement/ Count Comments [~ 1dentfication
1 [|
1 :7 &l 7 |8 J l 77171 80
1t
L _ | PRD .. |1648,,3 Selects the 1622 for BCD read. !
_;_A_ | RECHA _l ; 1COM Gets the ICOM command. 1:
+— e ——
b [o !
| B C I UNPUT, , 14 Moves 14 words into locations !
| leom | BCD . 1| o !
| —J o INPUT, INPUT+1, INPUT+2, etc. !
M [1T t
L —— T ——

Figure 132. 1622 Bcp Read Routine

o | Location Operation T [Address, Tag, Decrement/ Count Comments T~ Tdenificohion
| [|
1 L2 678 e 72n)
! I
1._.*‘4.* EwﬂA___J 66I,,19 Selects the 1402 for writing and the I
_L,.;A_A_.__ BSH_A_VAJ \oeoM 8/2 pocket. Gets the OCOM command. i
=t |

Moves 27 words from storage locations

! 5007',,,,2’7

I OUT, OUT+1, OUT2, ete.
i

v Tocation Oreration

Comments.

Tdentfication

I T

i |

1 |
12 5|7 I8

|

|
l 72 .73 80
.l sEen~_ 7._: L‘S& Status data are needed from tape 2 on channel A,
[——— o T —
P S
L | RCH Au,ﬂcom Channel command.
1
—— 1 1

Piaces one word of status data in core

'A.A,L.,....H

location 5000 (positions S, 1-5).

Figure 134. Status Data Example

104

by Y and V. Status data are broadly defined as informa-
tion about the status of the device being addressed by
the SEN.

In the V field, position 13 is used to designate an
input/output buffer when a 1414-3, -4, or -5 Input/
Output Synchronizer is addressed. A 0 bit selects input
buffers; a 1 bit selects output buffers. Position 14 must
contain a 1 bit and only positions 28-35 of the sex are
subject to address modification. If this instruction
addresses a device using the Bcp mode address, no
code translation occurs between the device and the
computer.

The instruction string shown in Figure 134 shows
tape unit 2, attached to data channel A, addressed by
a SEN instruction. Status data from the tape unit are to
be placed in core location 5000.

Ready Test

When a sen addresses a device and is followed by a
rcH that loads an rorp with a word count greater than
zero, the following status data are automatically stored
in the S, 1-5 positions of the addressed storage loca-
tion (start address) of the 1orp. Figure 135 shows the
status data in binary format.

Control Select — CTR YTV

This instruction causes the channel to prepare to send
control data to the device specified by Y and V of the
ctR. Position 14 of the V field must be a 1 bit, and
only positions 28-35 of the cIr are subject to address
modification. Use of the crr instruction is shown in the
1301 Disk Storage section.

Device 512345 Comment
Magnetic Tape on all | 010000 | Unit is not ready
000100 | Unit is rewinding
000001 | Unit is at load point
Channel A Devices
1622 010000 [Unit is busy or not ready
1414-3 or -4 010000 | Unit is not ready
000100 | Unit is busy
000010 | Condition (EOR, EOF, etc.)
000001 No translation (column
binary format for 1402)
1401 on line 010000 | Not ready or busy
7904 Data Channels
1/O Channel 010000 | Not operational . All normal
Adapter status data are stored if device
and odapter are operational

Figure 135. Status Data

As an example in use of the seN instruction, assume
that tape unit 3 attached to data channel B is to be
tested to find out if it is rewinding. Figure 136 shows
an instruction string that would accomplish this.

IBM 1403 Printer

This unit can produce output documents at 600 printed
lines per minute. A dual-speed, paper tape and com-
puter controlled carriage permits high-speed skipping
of the printer paper at 75 inches per second for skips
of more than eight printed lines. As with the 1402 Card
Read Punch, the 1403 printer has its own buffer stor-
age within the 1414-3 or -4 Input/Output Synchronizer.

Print Operation

The 1BM 1403 Printer has 100 printing positions per
line, with an additional 32 positions per line available
as an optional feature. Transfer of print characters is
under control of the 10rD channel command. If the

Commeats T Tdennficotion

80

Status data image for rewind condition.

Where status data were placed in storage.

To test or other procedure in case of

{
73
I
|
t
|
t
|
+
I
T
|
T
1
1
i
|
)
|
1
|
t
|

Figure 136. seN Program Example

- T Location Operotion T [Address, Tog, Decrement;/ Coun)
| {1
1 12 67 (8 } t
*Jggr, §_E/,V_____4I tr.ll 71 Select tape 3 on channel B, .
l‘_.'_v_‘ Rc ﬂg___" {OCOM Load command to put the status
! i Ir data into core storage.
Y
L |leca 1 REWND
keSS . 11/0sTO,,0
L] IRAi____| CQONT Continue program, nof rewinding.
| L | |[TRA__ _ _i\7esT
! e |Continue ___,I 1 rewind condition.
| l/0coM BCD. . _|uosro,,d
'(0ST7T9 8B5S [
L L O 79 DS
IREWND| |Bet {11 ,bbbbb M (bisthe blank character)
L

Punched Cards, Readers, Punches, and Printers 105

word count is greater than 16 or 22, only the first 100
or 132 characters, respectively, are transferred to the
print buffer. If the word count is equal to or less than
16 or 22, the print buffer is filled out with blanks.
When the buffer is full, the channel signals to print
the line. The channel is then disconnected and the
cpu proceeds to the next sequential instruction. For a
normal print operation, a wrs is used, followed by a
rcH, which loads the command into the channel regis-
ters. The rest of the operation is similar to the punch
operation.

Carriage Control Operation

The printer carriage is controlled by a special control
character. This character is sent to the printer by a
control «cTR) instruction followed by a rcua, which
loads the 10D command with a word count of one (a
word count greater than one is treated as one). The
character defined in bit positions S, 1-5 of the data
word is used. The channel then disconnects and the
cpu executes the next sequential instruction. Figure
137 shows the control characters.

Special Print Conditions

1. Buffer contents are checked for parity during
printing. If a parity error is detected, the buffer parity
check indicator in the 1414 is turned on. On the next
select printer operation, the redundancy check indica-
tor in the cpu is turned on.

2. During printing, the printer circuitry determines
if the proper character has been printed. If an error is
sensed, the next printer select instruction turns on the
redundancy check indicator in the cpu.

3. The printer-not-ready condition is caused by
printer out of forms, printer in manual status (off-line),

Control Function: Control Function:
Character | Immediate Skip to Character | Skip After Print to

1 Channel 1 A Channel 1

2 Channel 2 B Channel 2

3 Channel 3 C Channel 3

4 Channel 4 D Channel 4

5 Channel 5 E Channel 5

6 Channel 6 F Channel 6

7 Channel 7 G Channel 7

8 Chanrel 8 H Channel 8

9 Channel 9 | Channel 9

0 Channel 10 ? Channel 10

Channel 11 . Channel 11

@ Channel 12 o Channel 12

Immediate Space After Print Space

J 0 Space / 0 Space

K 1 Spaces S 1 Spaces

L 2 Spaces T 2 Spaces

Figure 137. Bcp Carriage Control Characters

106

or printer power off. When the printer is selected by
the cpu and is not ready, the cpu halts operation.

4. The printer-busy condition occurs when the
printer is selected and the previous line is still being
printed. If the printer is selected while in busy status,
the cpu waits for a not-busy condition.

5. If a parity or print error has been detected by
the 1414 during the preceding print cycle, the channel
redundancy check indicator in the cpu is turned on.

6. Character parity is checked against word parity
as the data are placed in the print buffer. If an error
is detected, the word parity indicator in the channel is
turned on.

Console Typewriter

The console typewriter, which is available for output
operations only, has a maximum rate of 15 upper-case
characters per second. Information is printed serially
by character under program control. A blank character
results in a space function on the typewriter. Auto-
matic carriage return is provided at the end of every
line and at the end of a record.

Typewriter Busy

The typewriter busy status, which may be tested by
TpOA instruction, will be present during carriage re-
turns and, in single-character operation, for about
20 milliseconds after channel-A-in-use indicator is
turned off. When the typewriter is selected with a cTr
instruction, the instruction only waits if channel A is
in use. If channel A is not in use, the ctr will be
executed even if the typewriter is busy. This will re-
sult in leaving the channel-A-in-use indicator on while
the typewriter is busy during the first part of the next
print cycle.

Write Operation

A prepare-to-write instruction (®°wm), addressing chan-
nel A and the typewriter, selects the typewriter for use.
The channel initiates data transfer by sending the first
byte on the write bus. The typewriter recognizes the
presence of data on the write bus and takes a print
cycle. When the print cycle is completed, a service re-
quest is generated for the next byte; all succeeding
characters are transmitted in like manner. The write
operation is completed when the word count goes to
zero. This initiates a carriage return.

Single Character Operation

The typewriter may be made to type a single character
and not carriage return. This is accomplished by a con-
trol select instruction «crr> selecting the typewriter

followed by a rcua, which loads a command. When
the command has fetched the data word, bits S, 1-5
will be loaded in the typewriter buffer and the rcuHa
will end operation. Channel A will remain in use, how-
ever, until the character has been typed. The next cTr
and RcHA must be given within 28 milliseconds after
the channel-in-use indicator is turned off to maintain
full typewriter speed. A carriage return will not occur
unless the end of a line has been reached. If the com-
mand has a word count of zero, no character will be
typed and the typewriter will carriage return.

Shifting

To print all 64 characters, it is necessary to translate
certain characters to upper case. All upper-case char-
acters have either 0 bits in the 8, 4, 2, and 1 positions
or have 1 bits in the 8 and 4 positions. During shifting
from upper to lower case or vice versa, an additional

character print time is required to accomplish the
shift. Blank, which is interpreted as a space, does not
require shifting, no matter if the typewriter is in upper
or lower case. Figure 138 shows upper-case characters.

Report Progromming Report Programming
A A @ !
: : - -
> > o)
v v -~ ~
< < [{
F ES & +
— - N N
* . % (
; ;] |
A

Figure 138. Typewriter Upper-Case Characters

Punched Cards, Readers, Punches, and Printers 107

Disk Storage and Other Optional Features

IBM 1301 and IBM 7631

The 1301 Disk Storage and the 7631 File Control are
available for the 1BM 7040 and 7044 Data Processing
Systems, 18BM 1410 Data Processing System, and other
1BM 7000 Series Systems.

The 1301 Disk Storage is available in two models:

Model 1 Single module, providing capacity for 27,960,000
characters
Two modules, providing capacity for 355,920,000

characters

Model 2

Other operating characteristics are:

50-180 milliseconds
17 milliseconds
111,840 maximum
90,100 per second
2,796 maximum

Positioning of Access Mechanism
Average Rotational Delay

Characters for One Access Positioning
Instantaneous Character Rate
Characters per Track

The 7631 File Control is available in four models:

Model 1
Model 2
Model 3
Model 4

For use with an 1BM 1401 system
For use with 7000 series systems
For shared use between a 7000 and 1410 system
For shared use between two 7000 series systems

Magnetic Disk Recording

The magnetic disk is a thin metal disk coated on both
sides with magnetic recording material. The 25 disks
are mounted on a vertical shaft and are slightly sep-
arated from each other to provide space for the move-
ment of read/write assemblies between them. The
shaft revolves, spinning the disks at a maximum of
1,790 revolutions per minute.

Data are stored as magnetized spots in concentric
tracks on both upper and lower surfaces of each disk.
There are 250 tracks on each surface for storing data.
The tracks are accessible for reading and writing by
the read/write heads, which move horizontally be-
tween the spinning disks.

The read/write heads are mounted on an access
mechanism, which has 24 arms arranged like teeth on
a comb. The arms move horizontally between the disks
(no vertical motion is involved). Two read/write
heads are on each arm. One head serves the bottom
surface of the upper disk; the other head serves the top
surface of the next lower disk. Thus, it is possible to
read or write on either side of a disk.

The magnetic disk data surface can be used many
times. Each time new data are stored on a track, the
old data are erased as the new are recorded. The re-
corded data may be read as often as desired; data re-
main recorded in the tracks of a disk until new data
are written over the old.

108

w

Although the total number of character positions of
each track is fixed, the arrangement as to the number
of records and the number of characters per record
can be varied to suit the needs of the application. Thus,
data can be stored on a track in any convenient arrange-
ment within the limitations of track requirements. Ad-
dresses must be provided to identify the track and the
individual records to the computer; also, space must
be provided in the form of gaps to separate address
and record areas.

The format track provides a means of defining and
monitoring the address, record, and gap areas for the
data tracks. In the 1301, one format track monitors 40
associated data tracks. The format track can be written
and rewritten to describe the desired data track format
as often as required to suit the needs of the user.

A disk storage module is composed of the stack of 25
magnetic disks and its associated access mechanism. Of
the 25 disks, 20 disks (40 surfaces) are used to store
data; of the other ten surfaces, six are alternate sur-
faces, one is a format surface, one is a clock surface,
and the other two are not used. Both the data and
format surfaces contain 250 concentric tracks that are
accessible for reading and writing.

Cylinder Concept

Since the heads and disk tracks are mechanically
aligned one above the other, the vertical alignment of
the tracks can be considered as a cylinder of tracks.
Thus, with the access mechanism placed in any one of
the 250 cylinders, 40 tracks of data (each data surface)
are available without further access mechanism mo-
tion. For example, for one access mechanism setting,
as many as 111,840 characters are available to the com-
puter.

The tracks are numbered sequentially, from the bot-
tom to the top of the cylinder (corresponding to the
40 heads, 00 through 39), starting at the outermost
cylinder on a given surface (000) to the innermost
cylinder (249). Thus, with large storage areas for refer-
ence tables, the data can be conveniently stored in a
cylinder of tracks or in a number of adjacent cylinders.
This technique reduces access time to a minimum. The
cylinder arrangement of tracks also permits the op-
tional feature (cylinder mode) to read or write a cylin-
der, or part of a cylinder, in one operation.

Data Track Address

The basic fixed recording area of the 1301 is the data
track. The physical make-up of the track limits over-all
recording capacity. All data tracks are equal in storage
capacity, but the entire recording area cannot be used
to store data. A number of track positions are used to
identify the track and records to the computer. These
positions are called index point, home address, record
address, and gaps.

The Index Point of the track is the reference point of
the track; it indicates both the beginning and end of
the track, and synchronizes the disk storage with the
computer. The index point of each track is fixed and
cannot be altered by the programmer.

The Home Address follows the index point and con-
sists of two parts called home address 1 (ual) and
home address 2 (HA2). Home address 1 is a prere-
corded four-digit track number (0000-9999); it indi-
cates the physical location of the track within the
module and cannot be written by the programmer.
Home address 2 is the home address identifier. HAZ is
written by the programmer and consists of two or more
characters, which can be numeric, alphabetic, or spe-
cial characters, depending on requirements of the com-
puter system. HAZ can be written to serve any con-
venient purpose, such as tagging a particular category
of records.

The Record Address consists of six or more charac-
ters, which can be numeric, alphabetic, or special char-
acters; it identifies an individual record on the track.
The record address ra> characters are assigned and
written by the programmer to fit any convenient ad-
dressing scheme. The home address (used for seek
orders) and the record address (used with the pre-
pare to verify single record order) need not be related
in any way. Only the numeric portion of the first four
record address characters is verified; the next two rec-
ord address characters are completely verified; addi-
tional (more than six) address characters are not veri-
fied.

Gaps, consisting principally of zero bits, are auto-
matically written between all address and all record
areas on a data track to distinguish between addresses
and records. The gaps contain check characters and
internal synchronization information required for
proper operation.

Format Track

Before the disk can be used for reading or writing, a
format track must be written for each cylinder of the
disk module. The format track designates how storage
space of the tracks of a disk cylinder is to be identified
and used. Once established, the format track provides
a fixed format for subsequent reading and writing. Data
used to create the format track must first be organized
in core storage and are then sent to the addressed
format track from core storage.

The writing and the layout of format tracks are under
control of the programmer. Once written, the format
track remains fixed until rewritten. To prevent acci-
dental changes to the format tracks, each disk module
has a two-position key-lock switch. A format track can
only be written when the switch is in the write posi-
tion; normally the switch is in the read position.

Each of the 10,000 data tracks must have an index
point, one home address, a record address for each
record stored on the track, and the necessary gaps to
separate the address and the records. Figure 139 shows
this layout.

Operation

The 7631 File Control and 1301 Disk Storage are used
to illustrate the use of 7040/7044 instructions as related
to an input/output control adapter. The following
functions are to be performed.

1. Select the 7631/1301 disk channel.

2. Give the 7631 enough orders to cause one access
mechanism to locate itself at some track before telling
it to write a record.

3. Write the record.

4, Check the record for validity.

The instruction sequence is:

1. Control — CTR: Selects the channel (bits 24-26).
A flag bit in position 14 denotes a control instead of a
write operation. Address of 02000 or 02020 denotes the
control adapter interface.

2. Reset and Load Channel — RCH: Brings the loca-
tion of a control word (the file control order — Seek)
from core storage. This order tells what head and tracks
are to be used. When the access mechanism has located
the proper address, the disk channel causes an atten-
tion interrupt. This interrupt must be serviced by a
sense instruction.

Figure 139. Sample Track Layout

Disk Storage and Other Optional Features 109

3. Sense — SEN: Selects the channel and control
adapter interface. Status data, including the attention
interrupt, have come from the disk, through the file
control, and are now in the data channel.

4. Reset and Load Channel — RCH: Brings in the
location of another control word. This word takes the
status data and places that data in core storage at a
specified location. The computer must analyze the
status data and determine what action is necessary.

5. Control — CTR: Selects the channel and control
adapter interface.

6. Reset and Load Channel — RCH: Brings the loca-
tion of a control word (prepare to verify — single rec-
ord) from core storage. This order verifies the record
address when the pwnr instruction is given.

7. Prepare to Write — PWR: Selects the channel and
the control adapter interface. The instruction prepares
the file control and the 1301 for a write operation.

8. Reset and Load Channel — RCH: Brings the loca-
tion of a control word containing the starting address
of the record to be written and a word count for the
number of words to be written. Data transmission starts
and continues until the word count equals zero. At this
point, the record has been written on the 1301, but,
since validity of the record should be checked, the
program must write-check what it has written.

9. Control — CTR: Selects the channel and the con-
trol adapter interface for the write check operation.

10. Reset and Load Channel — RCH: Brings the loca-
tion of a control word (prepare to write check) from
core storage into the file control.

11. Prepare to Write — PWR: Selects the channel
and control adapter interface for the write check opera-
tion.

12. Reset and Load Channel — RCH: Brings the
location of a control word with the same starting ad-
dress and word count as was brought into the data

channel with the rcu in step 8. The record is read from
the disk and compared bit-for-bit against the record
being transmitted again from core storage.

Programming Examples
Data transmission is accomplished by an rcu of the
channel command that transfers the data. For example,
if the channel is enabled to interrupt the cpu at com-
pletion of a seek operation, the instruction at the
“trapped-to” location could contain a transfer to a
location that contains:

SEN

RCH 1000

Location 1000 would contain the channel command
with a word count of 2. The routine would then:
(1) check the bit pattern of the two words sensed to
determine if the operation was a seek and what access
arm completed the seek, and (2) transfer control to
the proper location according to the condition.

The disk system operates in one of four modes: single
record, track record, home address, and cylinder mode
(optional feature). Single-record operation is used to
read or write a single record with the disk system; a
program to read a single record on track 2500 could be
like the one in Figure 140.

1. The control instruction «ctR) prepares the channel
to receive the file control order in Bcp format.

2. The reset and load channel B wcup) loads the
channel with an 10rp with a word count of 2. The ad-
dress of the 10rD contains the file order (seek track
2500) in Bep format.

3. The cpu then continues until the seek is com-
pleted, the channel is trapped (not shown) and con-
trol is transferred to location 00150.

4. The cpu executes another crr and a rcHB of an
order that contains a prepare to write single record
order. This is sent to the file control in Bcp format. The

T Location Qperation TAddress. Tag, Decrement/ Count

I

Comments

Tdeniication

]
|
77:73 8

!
[
[
|
|

Prepare control unit.

Load seek IORD.

This area contains the program to be used while seeking.

Prepare to verify.

Record address.

Prepare to read.

Load command.

1

|
}
|
J
}
t
|
t
|
T
|
T
|
|
|

"l

Seek track 2500..

Prepare to verify.

Record address.

Read~-into location.

!
|
1
t
|
t
|

| i0oloo| TR __._ | 02000
| _@el10ll ReHB . _| 00500
I S I
| (00150 CTR. . _||02000
00251 ReHB__._| 00503
00252 \PRD .. 102020
:001,5.'.1 RC HEB — :oosa&
D UV SN BRSPS B
| 00500 BCD _._ _|\501,02
| 00504 Bet . _||2¢00025000000
| woso3 BCD . _._|.504,02
| loof04 |88/ | 2,8200ANYRD#00
00506 BCD | 1100,0,700

Figure 140. Read Single Record Program Example

110

file control verifies the address of the order against the
record address on the track.

5. The prepare to verify order is followed by a pre-
pare to read and a rcuB that transmits data to core
storage. If the address is not verified, the file control
signals with an unusual end and no data are trans-
mitted.

In this example, the effect of the trap is not shown.
All traps in channel transfer control to a fixed location
and store the instruction counter. Certain conditions
may be determined by checking the decrement field of
this location for a 1 bit in positions:

16 For redundancy check

14 For word parity

12 For an unusual end signal
11 For an attention signal

For more detailed information (such as which arm
has completed seek) it is necessary to test the file con-
trol with a sense instruction followed by a rcH of an
1orp with a word count of two. This provides the cpu
with control status data.

Track record operation is used to read or write a full
track. This mode is also used to write a record address.
A routine to read a full track could be the same as the
preceding example, except that the file order prepare
to verify track is substituted for the prepare to verify
record order.

Home address operation transmits or receives all
track records, record addresses and home addresses.
To operate in this mode, substitute the order: prepare
to verify home address.

The other mode is the optional cylinder mode. This
mode enables the programmer to read or write all
cylinder records with one order, which is substituted
for the verify order.

The program in Figure 141: selects the disk system,
gives it enough orders to locate the access arm at the
desired record, and writes and then verifies the record.

1. Control is passed to the routine from the main
program by executing a Tsx instruction. Another means
to pass control is by a TsL; this operates similar to a

Location Operation T~ | Address, T0g, Decrement/ Count Tomments T Tdeatficorion |
1 }2 8|7 18 J 11 77;73 80
JSQQL rsx | :0020014 Transfer fo 1301 routine. :
_lggggg SAI.E__'_i__J !gz 000 Prepare control unit. :L
| 100202 RCHB | 00790 Lood seek IORD. !
’—If'ggg—oZ 7 RA 7.,_: ‘r—l** Return to main program (access arm attention occur§i here).
00203 g‘é‘_&____,i__: : 02 000 Prepare to sense. !
100204 RC HB_ . _ _1 :oa 704 Rec-eive status data. :
100 205 IQQQ_A | 1002 05 Wait for status data. |
_'ng_zgi CAL _: :01 o002 Is it Attention? {
,__:Q‘Q.ZQ._'Z ANA_ . _ _JI 'oz0 04 Check attention mask, !
| \vo210| T ZE__ _ _||08500 No, transfer. !
00211 CTR_ __: :Lzooo Yes, continue. :
002122 |RCHB . _ _“' ;00 702 Verify record address. 1
1002135 (PWR . | :02 020 Prepare to write, :
100214 £Qd5 _____ _l : 01007 Write single record. :
00225 LI_K_A._‘_ IR ¥ 4 Return to main program. !
_:_J_Q.g.l.‘ ecTR . _ _ _: Loz 200 Prepare to write check. J:
\o0z27 @g_/;/,g_,i,_; 204010 Load order. :
_:_o,g_z‘z.g PWR _1x :!2020 Write check. l
100221 |(RCHB_ .| oloo7 !
1CO0222 IEA_ . _'_]l| %1:4 Return to main program. ;
! el L)
| 00700 BCD__ _ | \1000,0,2 !
| 0070z BCD__ __||1002,0 2 !
loo702 BCD_ .. _|11005,0,2 !
b N |
101090 |Be 1 _ j; :2‘,’0 0020000000 Seek track 2000. E
1012004 0T __ _. __: }00000?,,0 01000 Attention mask, module 0. :
‘ 02008 |8e 1 _: Ig'QIOOAN YRD#00 Verify record address. l
| 021007 BCD .. 11l0090,0, 350 Write output. .
_lozo020| BCD .| iet012,0,2 Write check. l
lo1011] [Be 1 | 12,9¢00ANYRD#00 1

Figure 141. Write and Verify Program Example

Disk Storage and Other Optional Features

111

Tsx but does not involve index registers. (The TsL in-
struction is described under “Trapping.”)

2. The 7631 is selected by the ctr and the channel is
loaded with a control command aorp» whose address
contains the file order to seek track 2000.

3. Control is returned to the main program. If a TsL
is used, return is accomplished by indirectly addressing
the effective address of the TsL.

4. On receipt of an attention signal, control is passed
to the file routine. The routine for detecting the atten-
tion signal is not shown. The cpu tests the control unit
by executing a sense select and, through a channel
command, receives two words of sense data. If the trap
cause was an attention signal from module 0, a 1 bit is
placed in position 3 of the fourth character. The first
word of sense data is aND’ed against a mask of all zeros,
exclusive of position 3.

5. If it is an attention interrupt, the cpu prepares the
control unit for writing by transmitting a prepare to
verify single record order. This is immediately followed
by a write instruction. If the record address is not veri-
fied, the file control signals an unusual end and no data
are transferred.

6. Control is again returned to the main program.

7. The channel interrupts the main program at com-
pletion of transmission (not illustrated) and control is
returned to the file routine.

8. The cpu prepares the file control to write-check
by transferring a prepare to write check order. This is
followed by a repeat of the write sequence. If the
record does not verify, an unusual end results.

9. Control is returned to the main program.

Direct Data Connection

The direct data connection permits connection of non-
1BM input/output devices to an 18M 7040 or 7044 Data
Processing System through any of the 1M 7904 Data
Channels. Transfer of data between such devices and
the 7040/7044 is the same as with standard 18M input/
output units, with a full word being transferred at a
time.

The direct data connection, when installed on the
7040/7044, provides a communication link with analog-
digital converters, telegraph or telephone lines, radar,
telemeters, microwave links, engine test stands, or dis-
play units. The direct data connection consists basic-
ally of direct data interrupt, 36 data transfer lines, two
parity lines, 20 sense lines, and the necessary control
lines. This feature permits real-time or direct trans-
mission of data between core storage, via the 7904,
and external devices at data transmission rates up to
62,500 or 133,333 words per second (7040 and 7044,
respectively).

112

A direct data interrupt signal from the input/output
device to the computer automatically interrupts normal
program execution and transfers program control to
storage location 00004.

On interruption, the address of the next normal in-
struction to be executed replaces the address part of
location 00003 so that re-entry to the normal program is
possible after processing. The direct data interrupt sig-
nal is under control of the enable instruction.

Data transfer between any associated 1BM channel
input/output device and core storage of the 7040/7044
is accomplished over 36 data lines and one parity line.
These lines are brought out to connectors that may be
cable-connected to the direct data 170 device.

The sense lines, which are under program control,
provide a data transfer between any core storage ad-
dress and the direct data connection. Ten lines are pro-
vided for input control and another ten lines are pro-
vided for output control. The sense lines may be used
for ten-bit data transfer, multiple 170 units control,
coding or decoding units selected, or logic functions.

The direct data connection is installed on any 1BM
7904 Data Channel and uses the data register of the
data channel as its buffer. The 10rp command is used
with the direct data connection as in standard 7904
operation.

Computer-to-Computer Operation

The direct data connection may be used for high-speed
communication between two 7040/7044 systems. Com-
munication between the computers is started by a
present sense lines (psL) instruction from one computer
to the other. Execution of the psL causes a direct data
interrupt at the other computer. The routine that
services this direct data interrupt executes a store sense
lines (ssL) instruction to determine what information
the first computer is sending. The second computer
may then respond by executing a pst. instruction, which
causes a direct data interrupt in the first computer. By
use of the sense lines and direct data interrupts in both
computers, the two programs are initialized for com-
munication over the 36-bit direct data interface.

One computer must be placed in read status and the
other computer in write status. Once each computer
has selected its direct data interface and set up controls
for starting address and word count, data transfer auto-
matically occurs between the systems on a demand
and response basis without further programming inter-
vention. When the word count in either computer is
reduced to zero, the other computer receives an end-
of-record signal and both channels disconnect. Word
parity errors occurring in one computer set the re-
dundancy check indicator in the other computer, allow-
ing both programs to determine transmission accuracy.

General Programming Information

The fastest 18BM input/output device available as stand-
ard equipment on the 7040/7044 System has a data
rate of about one word every 66.66 microseconds. If the
external device to be used with the direct data connec-
tion has a data rate no faster than this figure, no pro-
gramming restrictions other than the standard rules
are applicable. When data rates from these external
devices exceed the fastest 1BM data rates, other channel
activity must be curtailed. To achieve the maximum
data rate of 62,500 or 133,333 words per second (7040
and 7044, respectively), all other data channel opera-
tion must be stopped.

To determine the maximum data rate possible with
a given computer input/output configuration, include
one machine cycle for each additional data channel in
use plus two machine cycles for the 7040 processing
unit or three machine cycles for the 7044 processing
unit. Multiply the total number of machine cycles by
the cycle time of the computer system (8.0 microsec-
onds for the 7040, 2.5 microseconds for the 7044) to
obtain a figure in microseconds. Divide 1,000,000 by
this figure to obtain the maximum number of words
per second. Allow a safety factor percentage for ran-
dom fluctuations in computer timings.

Direct Data Connection Instructions

The attachment of the direct data connection to any
of the 7904 Data Channels permits connection of many
nonstandard input/output devices or connection of 1BM
7040, 7044, 7090, or 7094 Data Processing Systems.
Therefore, the direct data connection, when installed
on a 7040 or 7044 system, provides a communication
link with analog-digital converters, microwave links,
engine test stands, or other 1BM Data Processing Sys-
tems.

Data are transmitted, a full word (36 bits) at a time,
from the external device through the direct data con-
nection to core storage. All possible attached devices
are termed external devices in this description. The ex-
ternal device has the ability, through the direct data
connection, to interrupt normal computer processing
when necessary to transfer data to or from core storage.
Figure 142 shows data flow for the direct data con-
nection feature.

The external device is selected by an rps or wgs,
with the address specifying a data channel and the
direct data connection. Two new instructions are added
to the instruction set for setting and testing the 20
sense lines to the external device. These sense lines
are, therefore, under program control. Ten lines are
for input control and ten for output control. The sense

lines may be used for ten-bit data transfers, multiple
external device control, coding or decoding units se-
lected, or for logic functions.

Present Sense Lines, Channel B — PSLB YT

A separate instruction is provided for each 7904 Data
Channel and refers to positions 8-17 of the designated
storage location Y. The instruction presents this bit
configuration in pulse form to the direct data connec-
tion. The bit configuration is preceded by an automatic
reset pulse on a separate line. Mnemonics for all 7904
Data Channels are: PsLB, PSLC, PSLD, and PSLE.

Store Sense Lines, Channel B — SSLB YT

A separate instruction is provided for each 7904 Data
Channel. The instruction samples the static (at rest)
sense lines from the direct data external device and
stores their information in pesitions 8-17 of the storage
location specified by the Y part of the sst. A plus volt-
age level on the lines is decoded as a 1 bit. Mnemonics
for all 7904 Data Channels are: ssLB, ssLC, ssLb, and
SSLE.

To Core
Storage

Channel Storage
8us OR'ing
8-17
——— |
Channel Storage Input Data Sense
Bus Switches Bus Input
Direct Data
,5,1 Read Select
’ 135755 %09
Store Sense
Data .
Register Lines (SSL)
Device
o 4 3
C,0-35
Channel input
Switches
Output Sense
Data Bus Output
Channel Direct Data
Storage Bus LWrife Select T
C,0-35 (DD WRS) Present Sense
Lines (PSL)

From Core
Storage

Figure 142. Data Flow, 7904 Data Channel Direct Data
Connection

Disk Storage and Other Optional Features 113

Storage Protection Instructions

This optional feature provides a flexible means of pro-
tecting supervisory or subroutine programs from intru-
sions by other programs. Two auxiliary registers, set
by the supervisory program, are compared against the
high-order bits of an eflective store address. One
register, the count register, determines the number of
high-order bits to be examined; the other register, the
field register, determines the pattern of bits to be com-
pared against. Violations — attempts to store data in
a protected storage area — cause trapping either on an
equal or on an unequal compare result, according to
the selected protect mode. The format and description
of the two protect instructions are:

Set Protect Mode — SPM Y,T

This instruction places the high-order seven positions
of the effective address in the field register and places
the C field (positions 32-35) of the spm in the count
register. Bit position 32 sets the mode of protection,
and bits 33-35 contain the count of the number of bits
to be compared (Figure 143).

If the computer is already in the storage protect
mode when the spMm instruction is given, the location
of the spMm instruction, plus one, is stored in the address
part of core location 0032. Bit 16 of location 0032 is
set to a 1 bit (indicating a violation), protect mode is
turned off, and the computer takes its next instruction
from location 0033.

Indexing may be used to modify the effective address
placed in the field register. The count register is not
affected by indexing. If this instruction is indirectly
addressed, the count register, field register, and tag
register are replaced from the indirect location. If a

C Field Bits to be Compared in Each Storage Size
(Octal) 32K 16K 8K 4K

0 None None None None)

1 21 None None None

2 21-22 22 None None

3 21-23 22-23 23 None L Trap if unequal

4 21-24 22-24 23-24 24 compare result
5
6
7

21-25 22-25 23-25 24-25
21-26 22-26 23-26 24-26
21-27 22-27 23-27 24-27)

10 None None None None)
1 21 None None None
12 27-22 22 None None

13 21-23 22-23 23 None
14 21-24 22-24 23-24 24

15 21-25 22-25 23-25 24-25
16 21-26 22-26 23-26 24-26
17 21-27 22-27 23-27 24-27

Note: A comparison of no-bits olways results in an equal condition
and hence never traps if the unequal mode is selected and always
traps on a store operation if the equal mode is selected.

Trap if equal
compare result

Figure 143. Set Protect Mode Compare Bits

114

sPM instruction is given on a system that does not have
the storage protect feature, a no-operation results and
the computer takes the next sequential instruction.

Release Protect Mode — RPM

The location of the reMm instruction, plus one, replaces
positions 21-35 of storage location 0032. Positions S,
1-20 of location 0032 are set to zero. The computer then
takes its next instruction from location 0033. If the
computer is in storage protect mode, this instruction
turns the storage protect mode off and stores a 1 bit
in position 15 of location 0032. If the computer is not
in protect mode, a 1 bit is stored in position 14 of
location 0032. ‘

If this instruction is given on a system that does not
have the protect feature, a normal release protect mode
trap with memory protect off occurs. (See “Trapping.”)
Storage protect mode may also be turned off by press-
ing the reset or clear key on the operator’s console. In
this case, no trap occurs.

IBM 1401 Data Processing System

Any 18M 1401 Data Processing System and its input/
output devices may be connected to data channel A
by using the 1401 special feature Serial Input/Output
Adapter (sr 7080). Except for input/output instruc-
tions, computer instructions of both systems operate
normally.

To start an input/output operation, the 7040 or 7044
must be synchronized with the 1401 program. Syn-
chronization is possible when the 1401 program is in
a mode that enables it to respond to a 7040/7044 in-
struction. The 1401 informs the 7040/7044 that it is in
this mode by executing the KE instruction. This instruc-
tion sets an indicator (1401 in loop) in channel A.
When the 7040/7044 executes a Tpoa instruction for
the 1401, the indicator status determines if the pro-
gram transfers (if the indicator is off, the program
transfers).

When any select instruction DS, WRS, SEN, CTR, BSR,
WEF, REW, RUN) is directed to the 1401, that instruction
causes the cpu to hang up if the in-loop indicator is off.
If the indicator is on, the select instruction turns it off
and sends a signal to the 1401. The 1401 program can
sense this signal by executing the instruction Bcaaa2.
If the signal is present, the 1401 branches to location
aan); if the signal is not present, the 1401 executes
its next sequential instruction. A basic synchronization
loop in the 1401 program could be:

LOCATION INSTRUCTION
X KE
X 42 B(AAA)2
X +7 B(X)

When the instruction at X + 2 branches, the 1401
program should proceed to a routine that selects its
serial 0 adapter to read six bytes. When the serial
vo adapter is selected, the 7040/7044 transfers its en-
tire select instruction (without change) to the 1401.
The 1401 decodes this instruction to determine the
operation and unit involved. If the unit is tape, reader,
punch, or printer, the 1401 program sends status data
to the 7040/7044. The status data represent conditions
encountered while executing the operation; these con-
ditions may be error, end of file, or end of tape.

After transmission of these conditions (or if no con-
ditions exist), the 1401 executes the 1401 instruction kp
to signal the 7040/7044 to end operation on its current
select instruction. If the 170 operation requires data
transfer, the 1401 program should proceed to a routine
that selects its o adapter to read the record.

Data transfer proceeds when the 7040/7044 executes
a RcHA instruction. The data are transferred at 11.5
microseconds per character and cease when the.chan-
nel A word count goes to zero or upon an end-of-
record signal from the 1401. The 1401 end-of-record
signal occurs when the 1401 encounters a group-mark
word-mark in its storage. When the data transfer is
complete, the 1401 should send status data that repre-
sent any condition encountered during the data trans-
fer. The end-operation signal «m causes the 7040/
7044 to end operation on its current RCHA instruction.

When the 1401 program wishes to signal the 7040/
7044, a xF may be given that turns on the 1401 atten-
tion trap request in the 7040/7044. If channel A
attention is enabled, a channel A trap occurs.

When the 7040/7044 wishes to signal the 1401, a
status line is turned on. This line may be tested in the
1401 by using the Baaa)3 instruction. The alternate
path of the branch instruction can then be used by the
1401 program to interrupt the 7040/7044 by turning
on the 1401 ready indicator.

Two different results occur when 7040/7044 select
instructions address the 1401:

1. Execution of a BSrR, WEF, REW, or RUN instruction
leaves the channel not busy after the 1401 ends opera-
tion with its xp instruction.

2. Execution of a RDS, PRD, SEN, WRS, PWR, CTR, OI WBT
instruction leaves the channel in use after the 1401
ends operation with its xp instruction.

Two instructions are used to turn the 1401 status
line off and on:

Status Line On, Channel A — SLNA T

Execution of this instruction turns on the 1401 status
line. The line may be tested in the 1401 with a BaAA>3
branch instruction. If the line is on, the 1401 program
branches. Since the Y part of the sLna is a part of the
operation code, modification by indexing may change
the operation.

Status Line Off, Channel A — SLFA T

Execution of this instruction turns the 1401 status line
off. Since the Y part of the sLFa is a part of the opera-
tion code, modification by indexing may change the
operation,

The following 1401 instructions are used to send
various conditions to the 7040/7044 system:

KA Turn on channel A redundancy check
indicator.

KB Turn on channel A end of file indicator.

KC Turn on channel A end of tape indicator.

KD End of operation (terminates the 7040/

7044 select or RcHA instruction and
turns off the 1401 ready indicator).

KE Turn on channel A 1401 ready indicator.

KF' Turn on channel A 1401 attention trap
request.

M%A2BBBR Select the 7040/7044 and read into stor-

age starting at location BBB (1401
storage).

M%A2BBB W Select the 7040/7044 and write from 1401
storage starting at location BBB.

B(AAA)2 Branch to location aaa if the 7040/7044
is waiting with a select instruction.

B(AAA)3 Branch to location aaa if the 7040/7044

status line is on.

Disk Storage and Other Optional Features 115

Trapping

Processing Unit Traps

Automatic trapping of the program is used with the
7040 and 7044 systems to signal unusual conditions to
the program without requiring special test instructions.
With trapping, system status is constantly monitored
and, when particular special conditions are detected,
normal processing is interrupted and the program is
transferred (trapped) to a trap routine.

To identify the causes of trapping and to allow for
a return to normal processing, the instruction counter
contents are stored at a fixed location in storage, usually
with some trap identification data, when a trap is
initiated. The program is then transferred to another
fixed location.

Core storage locations assigned for trap operations
(Figure 144) are, in order of priority:

STORE TRAP
TYPE OF TRAP LOCATION LOCATION
Interval Timer Reset 00036 00037
Memory Protect Violation 00032 00033
Storage Parity 00040 00041
Instruction Traps:
Store Location and Trap (str) 00000 00002
Floating Point (underflow
and overflow) 00000 00010
Release Protect Mode (rRpM) 00032 00033
Set Protect Mode (spM —
protect mode already on) 00032 00033
Pre-interrupt Memory Protect 00032 00033
Interval Timer Overflow 00006 00007
Direct Data 00003 00004
Channel E 00022 00023
Channel D 00020 00021
Channel C 00016 00017
Channel B 00014 00015
Channel A 00012 00013

Delayed Traps

Pre-interrupt memory protect, interval timer overflow,
direct data, and channel traps are prevented until after
execution of the instruction following certain privileged
instructions: RDS, PRD, SEN, WRS, PWR, CTR, ENB, RCT, ICT,
or seM. Also, none of the delayed traps can occur be-
tween the xEc instruction and the instruction to be
executed. A trap can occur after execution of the in-
struction referred to by the xec unless the instruction
is a privileged instruction.

Halt and Proceed

If an interval timer reset, pre-interrupt memory pro-
tect, interval timer overflow, direct data, or channel
trap request occurs after execution of a HPR instruction,
the program stop light is turned off and the trap occurs.

116

The location of the HPR instruction plus one is placed
in positions 21-35 of the trap store location.

Trapping Priority

Interval timer reset, memory protect violation, and
storage parity traps do not need to wait until comple-
tion of an instruction to cause a trap. Interval timer
reset is the highest priority. Memory protect violation
and storage parity trap are mutually exclusive in that
if the store instruction has a parity error, it is not
executed and, if a store is attempted in a protected
area, the parity of the location is not checked. The next
highest priority are instruction traps, which are all
mutually exclusive because the system cannot be
executing a floating point instruction and a sTR, RPM, or
a spM instruction simultaneously. The same is true
of the privileged instructions. spM is considered a
privileged instruction when it does not trap as a
violation. Pre-interrupt memory protect trap has prior-
ity over interval timer overflow, direct data, and chan-
nel traps so that storage protect mode is never on
during these trap routines. The data channel farthest
from the cpu (cable connection) has the highest
priority of the channels. Channel A, being in the cpu,
has the lowest priority.

Interval Timer Reset

Every 16% milliseconds, the interval timer requests
two storage cycles to read out location 00005, add one
to it, and store the result back in location 00005. These
cycles can only occur:

1. Between instructions.

2. During the following instructions, if they have to
wait for the channel: RDS, PRD, SEN, WRS, PWR, CTR, BSR,
REW, RUN, and WEF. '

3. Between unoverlapped cycles of a rcHA.

Undefined instructions and error conditions exist that
prevent the interval timer from getting its two storage
cycles. If the interval timer makes a second request
before getting cycles for the first, an interval timer
reset trap occurs.

The computer may halt operation indefinitely in any
of the instructions mentioned, or trap inhibit can be
left on. In this case, the interval timer still takes its
cycles but an interval timer overflow trap cannot occur.
When an interval timer overflow trap is requested, the
overflow request is used to block more interval timer
cycles until after the interval timer overflow trap or an
interval timer reset trap occurs. Incrementing of loca-

tion 00005 is not blocked when the computer is in true
manual status. The interval timer overflow trap has
about 33 milliseconds in which to trap, or an interval
timer reset trap occurs.

The interval timer reset trap does not allow comple-
tion of the instruction in process. It resets all data chan-
nels including channel A. It does not reset the ac or
MQ registers. It stores the instruction counter contents
(normally the present instruction location plus one)
in positions 21-35 of location 00036 and the computer
takes its next instruction from location 00037. Trap
control is turned off, inhibiting all other traps, and the
two waiting interval timer cycle requests are reset,
This means that the contents of location 00005 are two
less than they should be when an interval timer reset
trap occurs. Interval timer reset trap also resets the
interval timer overflow trap request if it is on.

Memory Protect

A memory protect trap occurs if:

1. A rpMm instruction is executed (RpM trap).

2. Memory protect mode is on when a spM instruc-
tion is executed (violation trap).

3. The program attempts to store in a protected area
while memory protect mode is on and trap inhibit is
off (violation trap).

4. Memory protect mode is on and trap inhibit is off
and a channel, direct data, or interval timer overflow
trap is requested (pre-interrupt memory protect trap).

Note: Input operations on any channel are allowed
to store anywhere without causing a memory protect
trap.

Any of the above traps turn off memory protect
mode and store the location of the next instruction in
sequence in the address part of location 00032. The
computer then takes its next instruction from location
00033. In the case of a pre-interrupt memory protect
trap, the delayed trap is executed instead of the in-
struction located at 00033. The octal number 33 is
placed in the address part of the store location appro-
priate to the trap that caused the pre-interrupt memory
protect trap. The following positions of location 00032
are used to identify the cause of the memory protect
trap:

Bit 17

Bit 16

Bit 15
Bit 14

Pre-interrupt memory protect trap.

Violation trap or spM executed with protect mode on.
RPM executed with protect mode on.

RPM executed with protect mode off.

Storage Parity

Possible types of core storage cycles are:

I cycle: A cycle to read out an instruction.

IA cycle: A cycle to read out an indirect address.

E cycle: A cycle to read or store in the execution of
an instruction.

B cycle: A cycle to read out or store information to
or from an input/output device on an overlap channel
(the store cycle of a scu and the read-out of an 10RD
in a rcH are E cycles, not B cycles).

U cycle: A cycle to read out or store information to
or from an input/output device on channel A (the store
cycle of a scuA and the read-out of the 10RD in a RCHA
are E cycles, not U cycles).

C cycle: An interval timer cycle to either read out
or store location 00005 contents.

Since no parity bit is kept within cpu registers, a
word that is stored from the cpu has a parity bit gener-
ated as it is stored; therefore, cpu cycles are only
checked during read cycles. This includes all T and 1A
cycles and E and C read cycles. If a parity error occurs
during a read cycle, the word is placed in storage
unchanged. Parity is checked during both read and
store operations for B and U cycles. For a parity error
on an input/output store cycle, the word is stored
with a generated correct parity.

The following partial word store instructions require
one I and two E cycles: sta, sTL, SAC, sxa, sxp, sTD, and
TsL. The first E cycle is used to read out and check the
location where the store is to take place. If a parity
error is detected during this first E cycle, a parity trap
occurs and the instruction is not completed. If no error
is detected during the first E cycle, the storage word
is placed in the sr and the required portion of the sr
is replaced with the new information. During the sec-
ond E cycle, the complete sr is stored and no parity
€ITOr can occur.

If a parity error occurs during an I or IA cycle, with
parity inhibit and trap inhibit off, the instruction is
not executed. The location of the instruction in error,
plus one, is stored in positions 21-35 of location 00040.
The address of the location in error is stored in posi-
tions 3-17 of location 00040 and a bit is stored in
position 18 to indicate that the error was either an I
or IA cycle. The computer then takes its next instruc-
tion from location 00041.

If a parity error occurs during an E cycle with parity
and trap inhibits off, the instruction is not executed
and the location of the error instruction, plus one, is
placed in position 21-35 of location 00040. The address
of the location in error is placed in positions 3-17 of
location 00040, and a bit is placed in position 19 to
indicate that the-error occurred during an E cycle.
The computer takes its next instruction from location
00041. '

If a parity error occurs during a C cycle with parity
and trap inhibit off, the computer waits until the in-
struction being executed is completed; then, the loca-
tion of the next instruction to be executed is placed in
positions 21-35 of location 00040. A bit is placed in

Trapping 117

position 1 of location 00040 to indicate that the error
occurred during a C cycle. Nothing is placed in posi-
tions 3-17, because the location in error is 00005 for a
C cycle error. The computer then takes its next instruc-
tion from location 00041.

If a parity error occurs during an I, IA, E, or C cycle
when either parity inhibit or trap inhibit are on, execu-
tion of instructions is not interrupted until both parity
and trap inhibits are off. At this time, the location of
the next instruction to be executed is placed in positions
21-35 of location 00040, and a bit is placed in position S
of location 00040 to indicate that a stacked error oc-
curred. The location of the error is not placed in posi-
tions 3-17 of location 00040. Bits are placed in posi-
tions 1, 18, and 19 to indicate the type of cycle in which
the stacked error occurred. More than one of these bits
may be stored when multiple errors occur. The com-
puter takes its next instruction from location 00041.

When a parity trap occurs, both parity and trap
inhibits are turned on, preventing further traps. If it is
desired to enable all traps except parity, a TRT instruc-
tion must be executed. To enable parity traps, a TRP
instruction is used.

Parity trap occurs only when parity and trap inhibits
are off. The positions of location 00040 indicate:

S A bit in S indicates that an error occurred while trap
inhibit and/or parity inhibit were on (stacked)
1 Indicates an interval timer cycle parity error

3-17 Indicates the location in error if the error is not stacked
and is not an interval timer cycle error

18 Indicates that an error occurred during an I or IA cycle

19 Indicates that an error occurred during an E cycle

91-35 Indicates the location of the next instruction to be
executed for stacked and interval timer errors. Indi-
cates the location, plus one, of the instruction in
error for I or IA, or E cycle -error (not stacked)

Release Protect Mode

Execution of the release protect mode ®mpm» instruc-
tion places the location of the reM instruction, plus
one, in positions 21-35 of location 00032. Positions
S, 1-20 are replaced with zeros. The computer then
takes its next instruction from location 00033. If the
computer is in memory protect mode, this instruction
turns the memory protect mode off and stores a one in
position 15 of location 00032. If the computer is not in
memory protect mode (or the feature is not installed)
when this instruction is executed, a one is stored in
position 14 of location 00032. Memory protect mode is
also turned off by depression of the clear or reset keys.

Floating Point

During the execution of floating-point instructions, the
resultant characteristic in the ac and MQ may exceed
eight bit positions (result too large for storage). The
capacity is exceeded if.the exponent goes beyond

118

+1775 or below —200g; beyond + 1775 is termed over-
flow, below —2004 is underflow.

Overflow and underflow may occur in either the
Ac or MQ registers. The computer, on sensing under-
flow or overflow, puts the address, plus one, of the
instruction that caused the condition into the address
portion of location 00000. A spill indication is stored
in the decrement portion of location 00000 as follows:

BIT MEANING

S Double precision instruction on system with single
precision feature only.

12 Double precision address error

14 Single-precision divide instruction

15 Overflow in ac and/or MQ register

16 ac overflow or underflow

17 M@ overflow or underflow

The computer then takes its next instruction from
location 00010.

Store Location and Trap

Execution of the store location and trap TR instruc-
tion places the location of the sTr instruction, plus one,
in positions 21-35 of location 00000. Positions S, 1-20 of
location 00000 are replaced with zeros. The computer
then takes its next instruction from location 00002.

Interval Timer Overflow

This feature allows the computer to be interrupted
after a predetermined length of time. When the interval
timer increments location 00005 and an overflow from
position 1 occurs, a trap is requested. This trap cannot
occur unless trap control is on. The trap cannot occur
between execution of a privileged instruction and the
execution of the next instruction. If memory protect
mode is on, then a pre-interrupt memory protect trap
must occur before the interval timer overflow trap.
The contents of the instruction counter (normally the
location of the next sequential instruction to be exe-
cuted in the main program) replace positions 21-35
of location 00006 and the computer takes its next in-
struction from location 00007.

When an interval timer overflow trap request is
waiting, the interval timer is blocked from increasing
location 00005 unless the computer is in true manual
status. If the interval timer overflow trap request waits
more than 33 milliseconds, an interval timer reset trap
occurs, which resets the interval timer overflow trap
request.

Direct Data Trap

This feature allows the channels to signal or interrupt
processing by trapping the program. When a direct
data trap occurs, the contents of the instruction counter
(normally the location of the next instruction to be
executed) are stored in positions 21-35 of location
00003. Bits indicating which channels are requesting

a direct data trap are stored in the decrement of loca-
tion 00003. The computer then takes its next instruction
from location 00004. The instruction at location 00004
must be an unconditional transfer instruction to be
compatible with the 1BM 7090 System.

A direct data trap may occur only when trap inhibit
is off and channel trap control is on. A direct data trap
cannot occur between execution of a privileged instruc-
tion and execution of the instruction following the
privileged instruction. When memory protect mode is
on, the direct data trap cannot occur until after a pre-
interrupt memory protect trap. A direct data trap turns
off channel trap control and prevents further direct
data traps and channel traps from occurring until after
the channel trap control is turned back on with an ExB
or RCT instruction.

Each channel has a mask register of four bits. One
bit controls direct data interrupt requests from that
channel. The mask bits can be set to zero or one by
the ExB instruction. For each channel, there is also
an indicator that can be turned on by the direct data
device. A trap occurs if the indicator is on and the
direct data mask bit for that channel is a one. When
a direct data trap occurs and the indicator is on, a
one is stored in its position of the decrement portion
of the store location only if its mask bit is a one. When
a direct data mask bit is a zero, the direct data indicator
associated with it can be turned on, but a one is not
stored in the decrement portion of location 00003 if a
direct data trap occurs. The channel x direct data indi-
cator is turned off by an rocx or by the reset, clear, or
load keys. Whenever a one is stored, the indicator is
turned off. When a trap occurs and the mask bit is a
zero, the indicator is not turned off. The following are
the bit positions of location 00003 used to reflect in-
dicator status.

Bit 16 Channel B
Bit 15 Channel C
Bit 14 Channel D
Bit 13 Channel E
Data Channel Traps

This feature allows the data channel to signal or inter-
rupt processing by trapping the computer program.
Channel traps may be initiated by:

Completion of any channel operation

Redundancy check

End of file

Word parity check

Unusual-end signal from control adapter

Attention signal from control adapter

1401 attention signal (channel A only)

Tele-Processing equipment interrupt signal

Unit record equipment interrupt signal (channel A only).

When a channel trap occurs, the contents of the
instruction counter are stored in positions 21-35 of the
trap store location. Bits indicating the conditions that
caused the trap are stored in the decrement portion
of the store location. The remainder of the store loca-
tion is cleared to zeros. The computer then takes
its next instruction from the location specified by the
instruction counter. This instruction must be an un-
conditional transfer to be compatible with 1BM 7090
programs. The store locations and instruction locations
for each channel are:

CHANNEL STORE LOCATION INSTRUCTION LOCATION
A 00012 00013
B 00014 00015
C 00016 00017
D 00020 00021
E 00022 00023

A channel trap may occur only when trap inhibit
is off and channel trap control is on. A channel trap
cannot occur between execution of a privileged instruc-
tion and execution of the following instruction. When
memory protect mode is on, channel traps cannot occur
until after a pre-interrupt memory protect trap. A chan-
nel trap turns off channel trap control and inhibits
further channel traps and direct data traps until after
channel trap control is turned back on with an EnB or
RCT instruction.

Each channel has a mask register, which controls
conditions that can cause a channel trap. The mask
bits can be set to either a one or zero by the ENB
instruction. The clear, reset, or load keys set all mask
bits to zero. A rocx sets all four of channel x mask
bits to zero.

For each condition that can cause a channel trap
there is an indicator that can be turned on and off
by certain conditions. A trap occurs if the indicator
is on and the mask bit with which it is associated is a
one. When a trap occurs, and the indicator is on, a one
is stored in its position of the store location. When a
mask bit is a zero, the indicator associated with it can
be turned on and off but a one is not stored when a
trap occurs. All indicators in channel x are turned off
by execution of a rocx. They are also turned off by the
reset, clear, or load keys.

Whenever a one is stored, the indicator is turned
off. When a trap occurs and the mask bit is a zero, the
indicator is not turned off.

Channel Trap Stores

When a channel trap occurs, the following bits may
be stored in the decrement of the store location. With
each bit is a description of the indicator associated
with the trap. More than one indicator may signal a
trap and store its bit at the same time; therefore, all bit

Trapping 119

positions should be scanned rather than stopping at
the first position that is found to be a one. The bit
positions and indicator names are:

BIT POSITION
IN THE STORE

LOCATION INDICATOR NAME MASK BIT NAME
17 Operation Complete Operation
16 Redundancy Check Parity
15 End of File Operation
14 Word Parity Parity or Operation
12 Unusual End Operation
11 1/0 Adapter Attention Attention
10 1401 Attention Attention
9 Tele-Processing Interrupt Attention
8 Unit Record Interrupt Unit Record

Bit 17, Operation Complete is turned on whenever
the channel-in-use indicator is turned from on to off.
This occurs at completion of every read, write, sense,
and control operation (end of data transfer), or when
the magnetic tape unit has completed a Bsr, WBT, or
wEF, or started a REw or RuN. This indicator is turned
off whenever the channel-in-use indicator is turned on.
This indicator is masked by the operation mask bit.

Bit 16, Redundancy Check is turned on by a parity
check received from the ro device, or by byte parity
check in the channel. When the channel x parity
mask bit is a zero, this indicator may be tested and
turned off by a TRcx. When the channel x parity mask
bit is set to one, a TRcx does not transfer and does not
turn off this indicator. Whenever the parity mask bit
is a one and the redundancy check indicator is on, the
channel stops the transfer of data to or from storage.
The channel address register contains the address, plus
one, of the last word transferred. A trap or store opera-
tion does not occur unless the channel is not in use.
For read operations, the channel remains in use for
the entire record, even though data are not transferred
to storage. This indicator is masked by the parity mask
bit.

Bit 15, End of File is turned on by the end-of-file
signal from the 170 device. When the channel x opera-
tion mask bit is a zero, this indicator may be tested
and turned off by a TEFx. When the operation mask
bit is a one, the TEFx does not transfer and does not
turn the indicator off. A trap or store operation does
not occur unless the channel is not in use. This indi-
cator is masked by the operation mask bit.

Bit 14, Word Parity is turned on by a word parity
error during read or write (U or B) cycles to storage.
It may also be turned on during channel write opera-
tions by checking the 37th bit of a word with the sum
of the six parity bits of a disassembled word. When-
ever the parity mask bit is a one and the word parity
indicator is on, the channel stops data transfer to or
from storage. The channel address register contains the
address, plus one, of the last word transferred. There-
fore, if the parity enable bit is a one when an invalid

120

word is fetched from storage on a channel write opera-
tion, an sCHX stores one beyond the address of the in-
valid word. A trap or store operation does not occur
unless the channel is not in use. When the channel is
not in use, if either the parity mask bit or the opera-
tion mask bit is a one, the indicator may signal a trap
and store. (Note: This bit may be stored under con-
trol of two different mask bits. The difference between
the two is that the parity mask bit allows the channel
to stop transmission when an error occurs.)

Bit 12, Unusual End (Tape Word Incomplete) is
turned on at the end of a tape read or write operation
if the total number of characters was not a multiple
of six. A tape record that is not a multiple of six charac-
ters usually represents a tape read error. This indicator
is not set when an end of file is read. If this condition
occurs while writing tape, a malfunction is indicated.
This indicator is also turned on by the 1o adapter
unusual end signal at completion of an 10RD to indicate
an unusual condition. A sense operation is usually re-
quired to determine the condition. This indicator is
masked by the operation mask bit and cannot signal a
trap unless the channel is not in use.

Bit 11, Attention is turned on by the o adapter
attention signal. This indicator is masked by the atten-
tion mask bit and can signal a trap and store even
when the channel is in use. This indicator is used with
channels B through E.

Bit 10, 1401 Attention is turned on by the 1401 and
masked by the attention mask bit. This indicator can
signal a trap even when channel A is in use, but execu-
tion of a Rcu cannot be interrupted. The indicator is
used with channel A only.

Bit 9, Tele-Processing Interrupt is turned on when-
ever an inquiry buffer in the 1414-4 or 1414-5 has a
message waiting, or when an output buffer has emptied.
Included in this area are local inquiry, telegraph type
units, and 1M 1009 Data Transmission Unit. This
indicator is masked by the attention mask bit and can
signal a trap even if the channel is in use. The indicator
is used with channel A only. '

Bit 8, Unit Record Interrupt is turned on whenever
the following devices on the 1414-3 or 4 have com-
pleted their cycle: card reader buffer full, paper tape
reader full, card punch buffer empty, or printer buffer
empty. This indicator is masked by the unit record
mask bit and cannot signal a trap unless the channel is
not in use. This indicator is used on channel A only.

Trap Flow Chart

Figure 144 shows logical interaction of various traps
and their results, including the conditions that initiate
a trap, trap priority, and cpu action. Beginning at the
START or “A” box in the upper left corner, it is possible

uonoy ndo pue ‘Ajzolrq ‘suonrpuo)) dery -HH1 eangi A

o @

COISIOIOIO

?

_ _
| _ | 4oy josy
_ _ @ _ _ it
uoypiadQ
_ ON _ e o w pu3 _
o] D SHe=) @ | | o)
N__Soavmﬂoﬂo o |< _ v fouuoy> | | © o _
Ol <— oA
Z1000(v)<— DI _) _ “ _ uoionsy) u“ © 11
| _oN _ 0 12¥ _@A A vomo__z& _
:oooawﬂomo wﬂw < @" g |puuoy> “ _ _ _ \ m\ﬁuw_“ﬁﬁ“,\c_,mwmw\ Q44 SQ
Ol <+— SOA (@) 1O¥’ N
1000(v) +— DI |] _ il _ _ _
| on © | $6o) ON | N | —"
_ _? u_AﬂvNSSAMW _ dewow“” s
1000(q) <— 6oL 11 00000(V) < - uoy N
W_A'ﬂvn_oooﬁ_v RN [D [P _ e _ SBA _ u.'_o&m “
91000(v) <— [}
__ “ e 121 I 00000(q)<*—s60) “ oN _
oN _ Jl-<— 01000(v) $OSSBIPPD UOHOALISUL o|Hapun
| I iuieg < O PO 'MO[4IBA0 ‘MO
ONOOOAQVAI 6o @ _ suuoy - 5UO|41pUo’) °‘1 00000(V)<€— » =K m:_tuo_u _ PPO d4dQ ||
U_AII_NoooAM_v Tep 119! | Hou| |suupyyy | _ - |
02000(v) <— | _ |
_ oN h _ ZE000(S1 ¥ 1)+sBoL _ °N _ —
i O @ o
22000(q) <—6oL HOW N3 ZE000(v) DI | o e W 1 T DITS))
Ol<— £2000(y) < 1 i _ _ @A |) #o| Aued [Tu0
O
ze000ly)~— ol e 7y =¥B5] | = ! v,
_ _ A g f A] ANV | sou3 Auung
110, v
A fouoD _.lne %%Afl" 0v000(a) @ Hod b -5 b
@ _ _ ANV » auul Ul@ 000(V) <€— Dl | ¢ [y +Hq1yy|
£0000(q)<- sB0y | 2420499410 1 o VO [ouieuuey o hd s2A _ wo| u [
J)e— vooooAMw se) _ _ [! _
NSCOA{v o — A _ 1HO 41914 mo‘_._. “ _
°N anba)y
| wooro | any [*1 doi woy | | | " oo
_Alaﬁnwﬂoo?v o 1 |ewty joassyy _ oo 0000 _ _ | anv %H“n
200001~ 31 “ _ | _ | ‘ ™ anv
sBo) o N _ apow
@_ = | _ 1 w0 1.._ @ u_TnmosAww mw_ " oion |« ANV [| Jossoug 4os
Z€000(£1) < 6ol - -04d Aowapte——t ANV _ 26000(v)<— Ol Lo A || tsoweyy | pow [Uo
U.Aﬂlml.imoog%_ A _ nori-e! _ A._ ! i 1 _ HO 4094014 ‘
28000) e)
_ | @ uQ epowy j2ejoid _ $60) oN _ ON _ swonpUoD
= | suoiyipuo’ _®Al o0ty hmooﬁxw_v ﬁm_ tosoy souyy | | os9y .BE_.—
sBoy oN _ _ jos9y Jowy) AL :.vmom_ ._oE_._. _ 9E000(V) -— o _ |pAIB U _
Ol -— LE00O(V) [« A || eme | _ |
9£000(v) <— DI | & | _ Aspopg 4ioig .
doi) ..
cwonpuos uoloy
doig
uouy

121

Trapping

to trace situations involving multiple trap request,
privileged instructions, and so on, and determine the
sequence and ultimate action of each condition.
Assume that a parity error occurs during an E cycle.
Priority scan circuits pass the parity trap interrupt
(from the parity trap box on the left side of Figure 144)
out the vEs leg. This results in inhibiting further parity
trap requests (P output of parity trap box to P input
of parity inhibit box), and inhibiting further traps (S
output of parity trap box to S input of trap inhibit
box). Contents of the instruction counter are placed
in the address part of location 00040 (16— (A)00040),
the contents of the address register are placed in the
decrement part of location 00040 (Ar—(1D)00040), and
the location of the next instruction (00041) is placed
in the instruction counter ((A)00041—1c). After this
is accomplished, possible trap requests of the type
listed on the right side of Figure 144, are tested (output
B of parity trap to input B of interval timer reset). If
none of these traps occurs, priority circuits again re-
turn to point A (sTART) and the scanning continues.

Instructions Used with Trapping

The following instructions are used to store the con-
tents of the location counter or to condition both proc-
essing unit and data channel traps.

Enable From Y — ENB YT

The contents of the storage location specified by Y are
used to set the channel mask bits to one or zero. Execu-
tion of each ENB cancels the effect of previous EnB in-
structions. The mask bit name, conditions under which
it is enabled, data channel affected, and the mask bit
position are shown in Figure 145. The enable instruc-
tion turns on channel trap control.

Execution of a trap or inhibit channel traps instruc-
tion inhibits all further traps until a new ENB is executed
or a restore channel traps instruction is executed. De-
pression of the reset or clear keys, or execution of a
reset data channel instruction, will set all mask bits to
Z€Eros.

Restore Channel Traps — RCT T
This instruction turns on channel trap control, allowing
traps to occur as specified by the previous Ens instruc-
tion. It cancels the inhibiting effect of an executed trap
or an inhibit channel traps instruction. The address
part of the rcr is part of the operation code, and modi-
fication by an index register may change the operation
itself.

A program using the enable instruction and its mask
is shown in Figure 146. Assume that the routine is to

122

Effective
ifal
in Bit

Mask Bit Conditions Enabled Channel Position
Operation ~ Operation Complete, EOF, A 35
Word Parity, Unusual End,
or End
Operation Operation Complete, EOF, B 34
Word Parity, Unusual End,
or End
Operation ~ Operation Complete, EOF, C 33
Word Parity, Unusual End,
or End
Operation ~ Operation Complete, EOF, D 32
Word Parity, Unusual End,
or End
Operation Operation Complete, EOF, E 31
Word Parity, Unusual End,
or End
Direct Data Direct Data Interrupt B 25
Direct Data Direct Data Interrupt C 24
Direct Data Direct Data Interrupt D 23
Direct Data Direct Data Interrupt E 22
Parity Word Parity or Redundancy A 17
Check
Parity Word Parity or Redundancy B 16
Check
Parity Word Parity or Redundancy C 15
Check
Parity Word Parity or Redundancy D 14
Check
Parity Word Parity or Redundancy E 13
Check
Attention 1401 Interrupt or Tele - A 8
Processing Interrupt
Attention I/O Adapter B 7
Attention 1/O Adapter C 6
Attention 1/O Adapter D 5
Attention 1/O Adapter E 4
Unit Record Unit Record Interrupt A S

Figure 145. Enable Instruction Mask Bits

enable for an Eor condition on channel B, word parity
or redundancy check condition on channel B, and a
1401 attention signal on channel A.

Inhibit Channel Traps — ICT T

This instruction turns off channel trap control, inhibit-
ing all channel traps until a RCT or a new ENB instruction
is executed. The Y (address) part of the 1cT is a part of
the operation code and modification by an index regis-
ter may change the operation itself.

Transfer and Restore Parity and Traps — TRP YT
This instruction turns off trap inhibit and parity inhibit
and the computer takes its next instruction from Y and
proceeds from there.

Transfer and Restore Traps — TRT Y,T

The TrT instruction turns off trap inhibit and the com-
puter takes its next instruction from location Y and
proceeds from there.

Figure 146. Enable Routine and Mask Configuration

Transfer and Store Instruction Location Counter —
TSL YT

The location of the TsL instruction, plus one, is stored
in positions 21-35 of location Y. Positions S, 1-20 of Y
are unchanged. The computer takes its next instruction
from location Y +1 and proceeds from there.

Store Location and Trap — STR

The location of the str instruction, plus one, replaces
positions 21-35 of location 00000. Positions S, 1-20 of
location 00000 are set to zero. The computer then takes

- | Location Operafion [~ | Address, Tag, Decrement? Count CTomments [dentificarion |
| [|

1 s 7 s ! ‘L 2n 80
1‘,‘__4_,* ENB ___ _ _l L/”ASK This instruction sets up the conditions jl

— ¥_w__'_.;'V';_T:___\ for enabling according to the mask. '/_\I’\—/
_md.; K__| _o_QI___«: {002 00200008 2 This configuration places a 1-bit in !
| I positions 8,16,and 34 to enable the |
b b - '
! - proper conditions of the problem. |
E e I S PUU DT B — I T

\L/\J

its next instruction from location 00002. The contents
of positions 21-35 of the sTR instruction are not in-
terpreted by the computer. Note that operation codes
of pze (+0000), Mze (—0000) and zEro (+0000) are
also interpreted and treated as str instructions.

Store Instruction Location Counter — STL YT

The location of the stL instruction, plus one, replaces
the contents of Y, positions 21-35. Positions S, 1-20 of
Y are unchanged.

Trapping 123

Systems Compatibility

IBM 7040 and 7044 Data Processing Systems are de-
signed so that as the user grows he can, with a mini-
mum of effort, run a large portion of his programs
directly on the 1M 7090 or 7094 Data Processing Sys-
tems. To assure success, however, the programmer
should take certain precautions. There are also certain
restrictions to compatibility.

Compatible Features

1. Data and instruction word formats, addressing,
indexing, indirect addressing, accumulator, multiplier-
quotient registers, and the instruction counter are
compatible.

2. Instructions that are compatible include:

Basic instruction set:

ACL CLS LGL SSp T™I
ADD COM LGR STA TNZ
ALS DCT LLS STD TOV
ANA DVP LRS STL TPL
ARS ENK MPY STO TRA
CAL HPR ORA STQ TZE
CAS LAS PBT STZ VDP
CHS LBT RQL SUB VLM
CLA LDQ SLW SWT XEC
Extended performance set:
AXT LXD PDX SXD TXH
LAC PAC PXA TIX TXI
LDC PAX PXD TNX TXL
LXA PDC SXA TSX
Single-precision floating-point set:
FAD FMP UFA UFM UFS
FDP FSB
Input/output instructions:
BSR RCH RUN TEF WEF
ETT RDS SCH TRC WRS
10T REW TCO

3. Direct data connection is compatible with a 7090
system equipped with req¢ M90976*.

4, Traps common to both 7040/7044 and 7090/7094
operate in the same manner: floating point, direct data,
storage clock and interval timer and channel traps.
Adapter interface attention or unusual-end, unit record,
or 1401 traps on channel A may not be available on the
7090 or 7094 systems.

*Request for price quotation; availability of this feature can be deter-
mined only by requesting a price quotation from IBM.

124

Incompatible Features

1. The following instructions are not available on
the 7090. These instructions have a prefix of —1 (posi-
tions S, 1, and 2), which causes a store instruction
counter and trap operation on the 7090 or 7094 systems:
Basic instruction set:

CAP SLNA STR TRT VMA
SLFA SLP TRP TSL

Extended performance set:
CCS MIT MSP PLT T™T
SAC MSM PCS

Memory protect option:
RPM SPM

Input/output instructions:
CTR PWR SEN ICT TDOA
PRD

2. The 7040/7044 double-precision floating-point
instructions are not available on the 7090 system. Pro-
gram modification to include a calling sequence to an
interpretive routine is required. These instructions are
compatible with the 7094:

DFAD DFSB DFMP DFDP

3. Memory parity checking is not available on the
7090 or 7094, but lack of this feature does not affect
program execution.

4. Storage protection is not available on the 7090 or
7094. With proper simulation of the rem and spM
instructions, lack of this feature will not affect normal
program execution.

5. Core storage clock and interval timer is similar
to rrQ F89349%, but the interval timer reset trap is not
available on the 7090 or 7094.

6. Input/output incompatibility:

7040/7044 7090/7094
Unoverlapped channel A no
Console typewriter no
On-line 1401 no
Disk instructions and traps differ
16 tape units addressable on channel A 10
Channel word parity trap no

Detailed Compatibility Information

The following approach to compatibility is not the only
one. Note that the 7040 and 7044 are supported by
assemblers and compilers that are largely compatible
upward to the 7090 and 7094. Most customers, when

converting from 7040/7044 to 7090/7094, would even-
tually recompile to obtain the most efficient operation.
The use of Input/Output Control Systems aocs) pro-
vides an additional interim direct compatibility ap-
proach. It is possible to substitute a functionally equi-
valent 7090/7094 10cs for the 7040/7044 10Cs.

Programs and Routines Other than Input/Output

Programs and routines that do not involve 1/0 instruc-
tions can be operated directly on the 7090 or 7094 if a
subroutine is used to simulate the 7040/7044 features
not provided on the 7090/7094. Instructions common
to both systems operate in the same manner on both
systems, and “7040/7044 only” instructions are provided
with a prefix of —1 so that they operate as the str
(store location and trap) instruction when operated on
the 7090/7094. This provides a linkage to a subroutine
for interpreting and simulating these instructions.

RESTRICTIONS

1. Programs should be written for 32K core storage
for proper indexing operation. This restriction also ap-
plies to compatibility between 4K, 8K, 16K, and 32K
7040/7044 systems. The index registers, address reg-
ister, instruction counter, channel address registers and
channel word counters are 15 bits, regardless of the
storage size. The storage address register will only con-
tain the significant bits, and high-order unused bits
will be ignored when referencing a storage location.

2. There must be sufficient unused core storage to
contain the simulation routine. A subset of this routine
to handle the 7040/7044 str (—1000) and zero trap
(+0000) is necessary even when operating on the
7040/7044. None of the —1 type instructions should
appear in this routine or traps on traps will occur in
the 7090/7094.

3. Since the operating speeds of the systems differ,
there should be no time dependency. This is true be-
tween any of the 7040, 7044, 7090, and 7094 systems.

4. The 7040/7044 memory protection feature cannot
be functionally simulated. However, the simulation
routine can handle rem and spm by setting a pseudo-
memory protect word so that these two instructions
will behave as they do on the 7040/7044.

5. The 7090 and 7094 do not have word parity trap
or interval timer reset traps. Since the Trr and TRP
instructions should only occur in these trap routines,
the 7090/7094 should never encounter them. These
instructions can then be simulated as error halts on
the 7090/7094.

6. Any routine that depends upon the interval timer
reset trap will not operate on the 7090/7094 even with
the rpo, because this rro does not have the reset trap
features.

7. The double-precision floating-point arithmetic
feature of the 7040/44 is compatible with the 7090/
7094 when normalized numbers are used. If un-nor-
malized numbers are used, the results may not be
identical.

8. To run a program containing double-precision
floating-point on a 7090, it is necessary to reassemble,
substituting a calling sequence to an appropriate sub-
routine for each double-precision instruction.

Tape-Only Input/Output

Tape-only input/output routines can be operated
directly on the 7090/7094 if the following conditions
are met:

1. Channel A must be programmed as if it were
overlapped (the 7090 must be assured that channel A
is no longer in use by means of the Tcoa instruction)
before data in the 1/0 area are used.

2. The rcH (reset and load channel) instruction for
a given select instruction must issue within the start
time of the 7090 tape devices.

Message Printing

Message printing routines will not operate directly on
the printer used with the 7090 and 7094 systems. For
this reason, the pwr instruction has a prefix of —1
to cause an sTR on the 7090 or 7094. To simplify the
7090/7094 simulation, the rcHa identifying the mes-
sage should immediately follow the pwr instruction.

Card Input/Output

Card input/output routines will not operate directly on
the card reader and punch used with the 7090 and
7094 systems. It is possible, with off-line equipment
or with the 7040/7044 to prepare a unit-record tape
corresponding to the card input and to punch cards
from a tape prepared by the 7090/7094 in lieu of
punching cards. In this case, the 7090/7094 will oper-
ate its tape 1/0 directly by means of the 7040/7044 card
vo instructions. This procedure is facilitated by the as-
signment of tape addresses to the 7040/7044 card
equipment. If the card instructions are to properly
operate tape on the 7090/7094, a Tcoa instruction must
be used as above to interlock the 7090 channel, and
the RcHA must issue within the 7090/7094 tape start
time. (New error routines may also be desired.)

On-Line Job Printing

On-line job printing routines may also be handled as
tape operations using the 7040/7044 instructions
directly, but a format routine is required. The CTR

Systems Compatibility 125

instruction used by the 7040/7044 for this purpose is
provided with a prefix of —1 and will be interpreted
as an sTR when operated on the 7090. The resulting
trap may be used as a linkage to a routine for re-
aligning the print line for off-line tape-to-printer con-
version. Again, the Tcoa and RCHA restrictions must be
observed.

Disk Storage Input/Output

Disk storage input/output routines will not operate
directly on the 7090 or 7094. For this reason, all disk
storage instructions are provided with a prefix of —1 to
cause an STR operation in the 7090 or 7094. Through
this medium, the disk storage instructions may be con-
verted to 7909 commands to operate disk storage on
the 7090 or 7094.

1401 Input/Output

If the 1401 1/0 routines are a direct replacement for the
card and/or tape routines, they are compatible upward
as described. Compatibility is relinquished, however,
if more than ten tape-addressed units are used or if
any on-line editing or other data modification is per-
formed in the 1401.

1414-4 Devices

The 1414-4 serial vo devices are only available on the
7090 or 7094 via the 7909 Data Channel interface
adapter channel and 1414-6 interface adapter serial
1/0 buffer. Although a simulation routine is possible,
in general, recompiling is easier and much more ef-
ficient. The controlling instructions sen, PRD, and PWR

are provided with a prefix —1 to cause a store and trap
on the 7090 or 7094 if desired.

Programming Compatibility Notes

PRD, PWR

These two instructions, which are executed identically
to rps and wgs on the 7040 and 7044, should be used
when it is desirable to substitute a different 1/0 routine
on the 7090 or 7094 (for example, when using the
interface adapter or typewriter). It is recommended
that the rcH always be given as the next sequential
instruction to simplify the store and trap routine.
Note that on channel A, the interface adapter is used
to select the card reader, card punch, printer, or 1401
but, if careful planning is used, each device can be
given a different tape address so that the 7090 or 7094,
which will ignore the interface adapter, will select a
tape. In this case, the rps and wrs can be used rather

126

than pep and pwr, and the program will be directly
compatible.

SEN, CTR

These instructions, which prepare to sense or send con-
trol information are used in connection with the inter-
face adapter or with the Tele-Processing equipment
on channel A. In general, it is possible to simulate the
interface adapter on a 7090 or 7094 with the interface
adapter channel. The Tele-Processing equipment on
channel A is not usually adaptable to simulation.

SCHA

An scua instruction in the 7040 or 7044 is executed as
an sLw instruction. This allows the following sequence

of instructions to be executed as a general routine for
any channel on either the 7040, 7044, 7090, or 7094.

CAL CHA SAV
RDS
RCHX

SLW CHA SAV

TCOX *

CAL CHA SAV
SCHX

If the rcH was not for channel A, the same thing is
stored back in cua sav. If it is channel A, then the cua
sav has the new channel store. This is reloaded with
the caL before the scH is given, so if it is an scHa, it
will store the ac. Note that the routine also operates
correctly on a 7090 or 7094, since the Ac is ignored and
the Tco (or its equivalent) has assured that the chan-
nel is not in use.

TDOA

There is no way to directly simulate this instruction on
the 7090 or 7094, and it is recommended that it be
simulated as a Tcoa. The programmer should take this
into consideration when using this instruction.

ICT

This instruction can only be simulated as an ENB (zero)
instruction on the 7090 or 7094. In addition it must be
remembered that several instructions will be executed
before the ENB zero is executed. Therefore, if the fol-
lowing were given:

ENB MASK
ICT

no channel traps could occur on a 7040 or 7044 be-
tween the EnNB and 1cT instructions, but channel traps

could occur on the 7090 or 7094. Note that if the fol-
lowing is given:
ICT

RCT
all channel traps would be left disabled after the rcr
in the 7090 or 7094. If the following is given:

ICT

ENB MASK
the above is corrected but, if a redundancy check
occurs on the 7040 or 7044 during the instructions be-
tween the 1cT and ENB, the channel would disconnect
immediately. When run on the 7090 or 7094, it would
not disconnect until after the ENB MaAsk instruction.

Trapping Notes

Trap Stores

All traps on the 7040 and 7044 use a full word to store
information in the trap store location. On the 7090 and
7094, these stores do not affect the prefix or the tag.

Trap Execution

All traps on the 7040 and 7044 actually transfer to the
instruction location. Channel traps and direct data
traps on the 7090 and 7094 do not transfer but only
execute the instruction at the instruction location. This
means that on the 7090 and 7094, if the instruction at
the instruction location does not change the contents
of the instruction counter, the computer, after exe-
cuting the instruction, will go back to where it was
trapped from. It is necessary, therefore, on the 7040 or
7044 to make sure that this instruction does transfer.

Extra Channel Traps

Note that any operation that causes a channel to go in
use will request a channel trap on the 7040 or 7044.
On the 7090 or 7094, only an 10RT or 10sT will cause a
trap at their completion, and then only when no rLcu
instruction is waiting. These extra traps may be used
to advantage on the 7040 and 7044 without forsaking
compatibility. To do this, it is necessary to never de-
pend on a channel trap. For instance, do not use a
transfer to itself waiting for a trap. Instead, when the
program finds itself waiting for the completion of an
operation, it is necessary to enter the normal trap

routine and take over. This will result in slower opera-
tion on the 7090 and 7094.

Systems Compatibility 127

Programming Examples

The programming examples included in this section
are those thought to be of interest to an experienced
programmer. No particular sequence is maintained and
the range of problems extends from basic to advanced
coding techniques. Both machine symbolic and pro-
gramming system languages are used. In some
examples, flow charts, actual print-outs, and look-up
tables are used.

Example 1

Given: Ten ai’s and two b’s (bl and b2); where
b2>bl and b1>0. Assume a +0>—0.

Problem: How many of the ai’s satisfy the following?

CASE 1 0<ai<hbl
CASE 2 bl < ai < b2
CASE 3 ai =z b2

Store results in case1, case? and case3 storage locations.
Input: Punched card recorded in 18M card code —
10 ai’s followed by the two b’s.
Output: Typewriter — Contents of cAsE1, case2, and
CASE3.
Figure 147 is a flow chart for program example 1.
The following print-out was received using the 7040/
7044 Basic 4K assembly program:

Machine Octal Symbolic
Loc Oper Addr Loc Oper Addr
ORG 454
00454 060000 000517 START STZ CASEl
00455 060000 000520 STZ CASE2
00456 060000 000521 STZ CASE3
00457 076203 001210 RDS CR,,3
00460 054000 000515 RCHA ICOM
00461 077400 100012 AXT 10,1
00462 050000 100536 LOOP CLA A+ 10,1
00463 034000 000537 CAS B2
00464 002000 000500 TRA C3
00465 002000 000500 TRA C3
00466 034000 000536 CAS Bl
00467 002000 000504 TRA c2
00470 002000 000504 TRA c2
00471 034000 000522 CAS ZERO
00472 002000 000510 TRA cl
00473 002000 000510 TRA cl
00474 200001 100462 TEST TIX LOOP,1,1
00475 -176604 001000 PWR 512,,4
00476 054000 000516 RCHA ouT
00477 042000 000000 HPR
00500 050000 000517 cC1 CLA CASE1
00501 040000 000523 ADD ONE
00502 060100 000517 STO CASE1
00503 002000 000474 TRA TEST
00504 050000 000520 cC2 CLA CASE2
00505 040000 000523 ADD ONE
00506 060100 000520 STO CASE2
00507 002000 000474 TRA TEST
00510 050000 000521 C3 CLA CASE3
00511 040000 000523 ADD ONE
00512 060100 000521 STO CASE3
00513 002000 000474 TRA TEST
00514 002000 000454 TRA START

128

Machine Octal Symbolic
Loc Oper Addr Loc Oper Addr
00513 300020 000524 ICOM IORD A,,l6
00516 300003 000517 oOuUT IORD GASE1,,3
CR BOOL 1210
005170000 CASE1l BSS I
005200000 CASE2 BSS 1
005210000 CASE3 BSS 1
00522 000000 000000 ZERO DEC 0
00523 000000 000001 ONE DEC 1
005240000 A BSS 10
005360000 Bl BSS 1
005370000 B2 BSS 1
004540000 END START
Start
Initialize
Set 1 =1

Read Card

Case 3+ 1
—»Case 3

Case 2 + 1
—»Case 2

Case 3

Print Case 1,
Case 2, and

Halt

Figure 147. Flow Chart for Example 1

Example 2

Problem: Convert a binary word to six BCD
ters. The program could be coded:

charac-

location

Example 3

Addiess, 109, Decrement/ Count Comments T Tdentfication |
|

i 72 |73 80

LB/IV wbD Put the binary word in accumulator

:rZERO Load the MQ with zeros.

ﬂBLE +5,,4 Variable divide using table scaling

\TABLEtE, , 6 factor. Each division converts six

b v

'TABLE +3,, 6

binary bits to one BCD digit. The

=
ITABLE"'Z: , 6

count (V) is shown as the last digit

F‘B BLE +1 b in the address of the instructions.
| \TABLE ,, & Sixth BCD digit is converted.
! lBe.DWD
L Stop.
1 Scaling Factors:
024000000000
:MI 00 00 0000
1#00372 000000
1 100004704 0000
1000006065000

T 0000000800000

1
|
]
)
)
|
|
T
|
T
|
T
|
|
|

Store the BCD word. l
)
i
1
|
T
|
t
|
T
|
(
)
|
)

Problem: Convert six cp digits to a binary word. The

program could be coded:

- Location TAddress, Tag, Decremant/Count Tomments T Tdentfication |
)
1 i? ll 77:73 80
L , 'BepwD Put BCD word into the MQ. !
__:_‘4 R B | 2V A . ME_'_,_Q Multiply using the proper scaling !
__;_. | WMA . _ "IAB_L_E_-tl_,_,_L factor from the table. Each. : [
! Y. MA I multiply converts one BCD digit i
T T - N R . - . T
1 v MA I TABLE+3,, b to six binary bits. The count (V) is |
o ——— it —_———— e 4 P T
| _ VMA_ I shown as the last number in the |
A I N |
I I _ZMA I \7TABLE 'f‘S", ',4 instruction's address part. i
__1_ 1 éTO. . _: :B/N wpD Store the converted binary word. {
__IL__._., R : Stop. 1
'rABLE| loc. 1200000000000 Scaling Factors: |
1
L lleer_ ... |,024000000000 |
[}
S _leeT . _ :gOSI 0000 0000 |
' l000 372000000
e loeTr_ . _._|l00 ,
I JleeTr .. 100004 7040090 !
- 0C T _ . . _1 1000006065090 |
SN N
Example 4 3. When sense switch 1 is depressed, tapes will
Problem: To duplicate the information from one rewind and unload.
magnetic tape on another magnetic tape. Record length 4. When sense switch 1 is off, the start key must
is up to 15,000 words. Information recorded on the be pressed to copy another file.
master tape may be Bcp and/or binary. The program 5. Program is to be read in from 1402 card reader

assumes that:

by using the console entry keys.

1. Master tape is mounted on tape unit Bl. 6. The console load key must be depressed to
2. Work tape is mounted on tape unit Cl.

start the program.

Programming Examples 129

Example 4 (Cont'd)

00214

00215

00216

00217

00220

00221

00222
00223
00224
00225
00226
00227
00230
00231
00232
00233
00234
00235
00236
00237
00240
00241
00242
00243
00244
00245
00246
00247
00250
00251
00252
00253
00254
00255
00256
00257
00260
00261
00262
00263
00264
00265
00266
00267
00270
00271
00272
00273
00274
00275
00276
00277
00300
00301
00302
00303
00304

00305
00306
00307
00310
00311
00312
00313
00314
00315
00316
00317
00320
00321
00322
00323
00324
00325
00326

130

042000
-162307
002000
077200
006100
077200
006200
050000
060100
050000
060100
077400
076000
076000
056400
050000
060100
052200
-054000
-134107
002000
-134107
002000
-134107
002000
050000
002000
050000
060100
-162306
-064000
~053400
-063400
050000
040200
062200
200001
077400
075400
076000
002000
050000
002000
050000
060100
060100
-162306
052200
054100
-162306
050000
06010°
052240
-054000
-134107
002000
002000

060100
050000
076500
076000
002000
002000
076300
076000
002000
002000
076300
076000
002000
002000
076500
076000
042000
002000

000214
000541
000227
002221
000220
003221
000222
000476
000015

1000512

000017
100002
002352
003352
000536
100525
000531
000500
100525
000537
000237
000541
000466
000504
000247
000515
000250
000514
000513
000504
000533
200533
200534
000535
000534
100527
100262
100002
100000
000001
000267
000525
000270
000526
100531
000532
000540
000513
100531
000537
100525
000531
000500
100525
000540
000302
000237

000477
000014
000024
000001
000313
000360
000001
000001
000317
000327
000001
000001
000323
000361
000003
000001
000325
000374

ANEW HPR

BEGIN REW

DUPFIL AXT

BBUSY PLT

BINBIN CLA

CDWRD PXA

WRITE STO

RUREDY PLT

*
MMMMLS , , 7
DUPFIL
1169

*

1681
*

BBBBO1

MMMM12
MMMMO3,1
MMMMO7
BBBBO3
MMMMO3, 1
MMMML3,,7
*-1
MMMML5, ,7
AFILE
BBBBO7,,7
BINBIN
ccccoa
k42
Ccccco3l
cceco2
BBBBO7, ,6
MMMMO9
MMMMO9, 2
MMMM1O , 2
MMMM11
MMMM10
MMMMO5,1
CDWRD, 1,1
2,1

51

1

*+3
MMMMO 3
WRITE
MMMMO4
MMMMO7,1
MMMMO8
MMMM14, ,6
CCCCo2
MMMMO7,1
MMMML3, ,6
MMMO3, 1
MMMMO 7
BBBBO3
MMMMO3,1
MMMML4, ,7
*-1
BBUSY

HIT START TO COPY ANOTHER FILE
NEGATS EOF ROUTINE

COPY ANOTHER FILE

REWIND Bl

REWIND C1

CONTAINS AN UNCOND, XFER TO TRAPB ROUTINE

CONTAINS AN UNCOND. XFER TO TRAPC ROUTINE

ENABLE ALL TRAPS

READ COMMAND WORD

SAVE READ COMMAND WORD
READ SELECT Bl

READ Bl

IS B BUSY

YES

TEST SIGN, IF + SKIP NEXT INSTRUCTION
XFER TO EOF ROUTINE

ARE WE IN BCD MODE

NO

YES, CHANGE TO BCD MODE

NEGATS BCD MODE

STORE CH. B WORD COUNTER AND ADDRS. REG.
LOAD INDEX 2 WITH WORD COUNT

STORE INDEX 2

CLEAR AND ADD 15000 IN DEC PORTION OF ACC.
SUBTRACT WORD COUNT

STORE ABOVE IN DECREMENT OF WRITE COMD. WD.

PLACE CONTENT OF INDEX REG. 1 INTO ACCUM.
TEST BIT 35, IF A 1 SKIP AN INSTRUCTION
A ZERO IN BIT 35, SKIP 3 INSTRUCTIONS
WRITE COMMAND, CORRELATES WITH MMMMOL

WRITE COMMAND, CORRELATES WITH MMMMO2
WRITE COMMAND WORD

SAVE WRITE COMMAND WORD

MAKE CHANNEL C BUSY

WRITE SELECT Cl

WRITE Cl1

MAKE CHANNEL B BUSY

READ COMMAND WORD

SAVE READ COMMAND WORD

READ SELECT Bl

READ Bl

IS CHANNEL C BUSY

YES

NO, GO AND SEE IF CHANNEL B IS BUSY

ek e o e dedeke ek e o e e dede dede ke dek ek dedede dede dedede ek dek dodedoke e dedededdedededkekok dekdodokeke ek dok kedckokkokokk

*

BTRAP TEST *

e dede do s dodedede e ede Fede dedede dedede dededede dodedededodedede dekdedededode ok dedeok deded dedckededekededok dokededededokoded dodkekokeok

TRAPB STO
CLA
LRS

TEST2 LLS

TEST3 LLS

TEST4 LRS

TRA

BBBBO2
12

20

1
TEST2
EOF

1

1
TEST3
REDUNB
1

1
TEST4
RETRN
3

1
*

BPARY

SAVE CONTENT OF ACCUMULATOR

TEST FOR EOF, BIT 15
TEST ANOTHER SWITCH
AN END OF FILE HAS BEEN SENSED

TEST FOR REDUNDANCY, BIT 16
TEST ANOTHER SWITCH
READ REDUNDANCY

TEST FOR OP. COMP., BIT 17
TEST ANOTHER SWITCH
A RECORD HAS BEEN SATISFACTORILY READ

TEST FOR PARITY, BIT 14
HALT, AN UNUSUAL CONDITION
PARITY CHECK, CPU

o derke e e ke e ek e e dededede g ke de dededededededededk e deded g dodedeokede de ek dedededekdek dok dededededodedededededodedok dokek ko

*

BTRAP *

Fedekdekde Fededededkodokdedekdeodokdok kdedodokkdokdok kddokkokdokekdokdokokdek kokddokdkekoded kedeodeddedok dok dededeodedededokok

Example 4 (Cont'd)

00327 -064000 000503
00330 -053400 400503
00331 335225 400343
00332 053400 400505
00333 076400 002221
00334 006100 000334
00335 200001 400337
00336 042000 000336
00337 063400 400505
00340 052200 000500
00341 ~-054000 000531
00342 002000 000371
00343 053400 400510
00344 200001 400351
00345 -162306 000504
00346 050000 000501
00347 060100 000500
00350 002000 000340
00351 063400 400510
00352 076400 002221
00353 006100 000353
00354 050000 000502
00355 060100 000500
00356 =162307 000504
00357 002000 000340
00360 -162306 000541
00361 050000 000507
00362 060100 000505
00363 060100 000506
00364 050000 000511
00365 060100 000510
00366 050000 000501
00367 060100 000500
00370 -162307 000537
00371 050000 000477
00372 076000 000014
00373 002060 000014
00374 053400 400506
00375 076400 002221
00376 006100 000376
00377 200001 400401
00400 042000 000400
00401 063400 400506
00402 002000 000340

00403
00404
00405
00406
00407
00410
00411
00412
00413
00414
00415
00416
00417
00420

060100 000522
050000 000016
076500 000023
076000 000001
002000 000411
002000 000421
076300 000001
076000 000001
002000 000415
002000 000441
076500 000003
076000 000001
042000 000417
002000 000452

00421
00422
00423
00424
00425
00426
00427
00430
00431
00432
00433
00434
00435
00436
00437
00440

053400 400516
053400 200517
076400 003221
006200 000424
200001 400430
200001 200434
042000 000427
063400 400516
052200 000513
054100 000532
002000 000447
063400 200516
063400 200517
076610 003221
006200 000437
002000 000431

REDUNB SCHB
LXD
TXH
LXA
BSR
TCOB
TIX
HPR
RDB1 SXA
XOXO0X0 XEC
RCHB
TRA
LXA
TIX
MSM
CLA
STO
TRA
SXA
BSR
TCOB
CLA
STO
MSP
TRA
MSM
CLA
STO
STO
CLA
STO
CLA
STO
MSP
CLA
RCT
TRA*
LXA
BSR
TCOB
TIX
PARITY HPR
RETRY SXA
TRA

RERED

BMODE

EOF
RETRN

TTT

BPARY

BBBBO6
BBBBO6,4
RERED,4,14997
BBBBO8 , 4

1169

*

RDBL,4,1
*

BBBBOS,4
BBBBO3
MMMMO 7
TTT
BBBBL1,4
BMODE ,4,1
BBBBO7,,6
BBBBO4
BBBBO3
XOX0X0
BBBB11,4
1169

*

BBBBOS
BBBBO3
BBBBO7,,7
XOXOX0
MMMMLS , , 6
BBBB10
BBBBO8
BBBBO9
BBBB12
BBBB11
BBBBO4
BBBBO3
MMMML 3, , 7
BBBBO2

12
BBBB09,4
1169

*

RETRY, 4,1
*
BBBB09, 4
XOXOX0

STORE CH. B WORD COUNTER + ADDR. REG.
LOAD WORD COUNT INTO INDEX REG. &
XFER TO RERED IF LESS THAN 3 WRDS. READ

BACKSPACE

PERMANENT READ REDUNDANCY

SELECT Bl

10 TRYS WITH BMODE THEN FALLS THROUGH

SWITCH CONSTANT TO BINARY MODE

BINARY MODE

SWITCH CONSTANT TO BCD MODE

BCD MODE

PERMITS ENTRANCE TO EOF ROUTINE

RESTORE
COUNTERS
FOR
CHANNEL
B
TRAP
ROUTINE

FREES CHANNEL B
RESTORE ACCUMULATOR

RETURN TO MAIN ROUTINE

BACKSPACE

HALT, EXCESSIVE PARITY CHECKS, CHANNEL B

oo dede e FedeFee ok e g e Tk ek ek o ek de o e driededodede ded dededok dedkok dedkdedek ki deke deok dekededokokedoke kekedokkeokokok

*

CTRAP TEST *

Sedededodedededodedodode oo de ke Fedode e dede dedode dededek dedeok dededede e keke ek dedde dededek dodkododk dok dededed dek deddedek deodedeodedcdekek

TRAPC STO
CLA
LRS

EXAM2

EXAM3

cCcceco9
14

19

1
EXAM2
EELDON
1

1
EXAM3
RETURN
3

1

*

CPARY

SAVE CONTENT OF ACCUMULATOR
CHANNEL C TRAP STORE LOCATION

TEST FOR REDUNDANCY, BIT 16
NO REDUNDANCY, TEST ANOTHER SWITCH
REDUNDANT RECORD, CHANNEL C

TEST FOR OPERATION COMPLETE, BIT 17
TEST ANOTHER SWITCH
OP. COMP., XFER + RESTORE COUNTERS

TEST FOR PARITY, BIT 14
HALT, AN UNUSUAL CONDITION
PARITY CHECK, CPU

FodkFede g dede oo dededd ek dededok hdedekk deddedok dededekdedkdeokdedokkdok ke dodok dek ke dededek kkokodokdodokdokedodook dokdok

*

CTRAP *

sk e dedededededodede dede e deded e e dekde dededededode ke dededodcedekedek dek sk dedek dededodkok dedeokodokdokdok ek dekekdeok kke ook

REDON LXA
LXA
BSR
TCOC
TIX
TIX
HPR

REDON1 SXA

ccc

REDON2 SXA

LLL

€CCCO5,4
€CCCo6,2
1681

*
REDONL,4,1
REDON2,2,1
*

€CCCO5,4
€CCCo2
MMMMO8
sss
€CCeo5,2
€CCeo6,2
1681

*

ccc

PERMANENT WRITE REDUNDANCY

Programming Examples

131

Example 4 (Cont'd)

00441
00442
00443

050000
060100
060100
00444 060100
00445 060100
00446 -162307
00447 050000
00450 076000
00451 002060
00452 053400
00453 053400
00434 076400
00455 006200
00456 200001
00457 200001
00460 042000
00461 063400
00462 002000
00463 063400
00464 063400
00465 002000

00466 -176000
00467 077000
00470 006200
00471 076000
00472 002000
00473 -077200
00474 -077200
00475 042000

00476
00477
00500
00501

002000
000000
076200
076200
00502 076200
00503 000000
00504 -000000
00505 000000
00506 000000
00507 000000
00510 000000
00511 000000

00512
00513
00514
00515
00516
00517
00520
00521
00522

002000
076600
076600
076600
0000090
000000
000000
000000
000000

000511
000516
000517
000520
000521
000540
000522
000014
000016
400520
200521
003221
000455
400461
200463
000460
400520
000431
200520
200521
000436

000014
003221
000470
000161
000214
003221
002221
000475

000305
000000
002221
002221
002201
000000
000000
000144
000144
000144
000013
000013

000403
003221
003221
003201
000013
000013
000013
000013
000000

00523
00524
00525
00526
00527
00530
00531
00532
00533
00534

335230
335230
300000
300000
300000
300000
300000
300000
000000
000000
00535 035230
00536 000002
00537 -000000
00540 000000
00541 000000
005420000

357720000

002170000

132

000542
035772
000542
035772
000000
000000
000000
000000
000000
000000
000000
000006
000000
000000
000000

RETURN CLA BBBB12

STO €CCCo5

STO CCCCOo6

STO €Cceeo7

STO CCCCo8

MSP MMMMLL, 7
$SS CLA €CCCo9 RESTORE ACCUMULATOR

RCT

TRA%® 14
CPARY LXA CCCCO7 ,4

LXA €CCCO8,2

BSR 1681

TCOC *

TIX REDO, 4,1

TIX REDU,2,1

HPR * PERMANENT CPU PARITY CHECK
REDO SXA CCCCO7,4

TRA cce
REDU SXA €ceco7,2

SXA €CCeo8, 2

TRA LLL
* WRITE TAPE MARK *
AFILE ICT INHIBIT ALL TRAPS

WEF 1681 WRITE EOF ON C1

TCOC * TEST READY STATUS OF CHANNEL C

SWT 113 TEST S.SW. 1-IF ON SKIP AN INSTRUCTION

TRA ANEW PREPARE TO COPY ANOTHER FILE

RUN 1681 UNLOAD C1

RUN 1169 UNLOAD Bl

HPR * END OF JOB
* CONSTANTS-BTRAP TEST AND BTRAP *
BBBBOL TRA TRAPB TO TRAP ROUTINE, CHANNEL B
BBBBO2 PZE 0 FOR RESTORING ACCUMULATOR
BBBBO3 RDS 1169 READ Bl IN BINARY
BBBBO4 RDS 1169 READ Bl IN BINARY
BBBBO5 RDS 1153 READ Bl IN BCD
BBBBO6 PZE 0 B CHANNEL WORD STORED HERE
BBBBO7 MZE 0 IF PREFIX IS + THEN BINARY, IF - THEN BCD
BEBBOS PZE 100 CHANNEL B REDUNDANCY, WILL TRY 99 TIMES
BBBBO9 PZE 100 CHANNEL B PARITY, WILL TRY 99 TIMES
BBBB10 PZE 100 USED FOR RESTORING BBRBO8 + BBBBO09
BBBB1l PZE 11 WILL TRY TO READ IN BCD 10 TIMES
BBBB12 PZE 11 USED FOR RESTORING BBBB11,CCCCO5,06,07,08
* CONSTANTS-CTRAP TEST AND CTRAP *
CCCCO1 TRA TRAPC TO TRAP ROUTINE, CHANNEL C
CCCCO2 WRS 1681 WRITE C1 IN BINARY
CCCCO3 WRS 1681 WRITE Cl IN BINARY
CCCCO4 WRS 1665 WRITE C1 IN BCD
CCCCO5 PZE 11 CHANNEL C REDUNDANCY, WILL TRY 55 TIMES
CCCCO6 PZE 11 ALLOWS WRITING OF BLANK TAPE UP TO 10 TIMES
CCCCO7 PZE 11 CHANNEL C PARITY, WILL TRY 55 TIMES
CCCC08 PZE 11 ALLOWS WRITING OF BLANK TAPE UP TO 10 TIMES
CCCCO9 PZE 0 FOR RESTORING ACCUMULATOR
* CONSTANTS-MAIN ROUTINE *
MMMMOL PTH MMMM16, ,15000 1ST READ COMMAND
MMMMO2 PTH MMMML17,,15000 2ND READ COMMAND
MMMMO3 PTH MMMM16, ,0 1ST WRITE OUT BUFFER
MMMMO4 PTH MMMML7, ,0 2ND WRITE OUT BUFFER
MMMMOS PTH 0 DETERMINES WRITE WORD COUNT
MMMMO6 PTH 0 DETERMINES WRITE WORD COUNT
MMMMO7 PTH 0 PRESENT READ COMMAND-FOR ERROR ROUTINE
MMMMO8 PTH 0 PRESENT WRITE COMMAND-FOR ERROR ROUTINE
MMMMO9 PZE 0 WHEN OP. COMP., CH. B WORD STORED HERE
MMMMLO PZE 0 USED FOR DETERMINING WRITE WORD COUNT
MMMMLL PZE 0,,15000 USED FOR DETERMINING WRITE WORD COUNT
MMMML2 PZE 6,,2 MASKS CHANNEL B + C
MMMM13 MZE 0 USED FOR DETERMINING READY STATUS OF CH. B
MMMM14 PZE 0 USED FOR DETERMINING READY STATUS OF CH. C
MMMML5 PZE 0 USED FOR DETERMINING AN EOF
MMMML6 BSS 15000 1ST READ IN BUFFER
MMMML7 BSS 15000 2ND READ IN BUFFER

END BEGIN

Example 5

Problem: On the 1402, read cards with a 7-9 punch
in card column 1 (column binary), edit for invalid
Bcp punching in the card, and punch the same informa-
tion out, substituting blanks for invalid Bcp charac-
ters. Column 1 will be blank on output cards, since any

combination involving the 7-9 punch is invalid.

IBM Symbolic Coding Form
Froiom ;
Coder S Date Poge of
.] Location Operahion [| Address, Tog, Decrement/ Count Tomments [Tdentification
| 1 |
) 1 o7 s b 72 80
|y | 0RG . __| 1024 . L
_;é.Lzl 7 RDS . __4' L&f .3 1230, ,3. Read card binary. ;
| RexA__ we1 |
_%.,7___ Q_QAQ__,*._: !FCARD'. 27 26 words and four bytes. :
L AxT 27,1 ;
Tlé 00pP | QAA ﬁ{ 'FCARD “'27', 1 Test in 12-bit bytes, three per word. |
o LGR .. ._1124 |
I | |rse_ . _ | TEST I
I O b o¥.' 4 _| #e+3 I
_.1__ | ISAC_ . _ _i ;C ARD+2 7’, 1.’,0 Store zeros for invalid characters, ;
| | |8Ac | |CARD+27,1,1 !
Ll zae 1 ;
L j L6l - {12 |
S 4 rse__ _ I \TEST |
| |TNZ_ | %43 {
B SAC__ | \CARD+27,1,4 !
| lsAc_ .| cARD+27,1,5 !
L Tex _llco0p 1,1 |
%.;_ | W_/?_S R ,ﬂl 1_665: }5 Write card binary. l
| lrena _ iEoiTr2 |
! TRA____|EOIT '
__1'§,Q_Q_D* PXA_ A Character test routine. Good return. :
54 T
: _______ | [TRA¥_ _ _ 1 | TEST I
| BAD_ _| |ZAC : : Bad return. :
ITE.ST TRA . _. l }** Entry and Exit, lL

(continued on next page)

Programming Examples

133

Example 5 (Cont’d)

IBM

Symbolic Coding Form

Froblem R
‘com_,w'/ §: c M) Dote Poge o
1 Tocation Operation T TAddiess. Tog. Decrement/ Count "Comments T Tdentification
' :2 8|78 E i nJ:m)
_,:,. |laxT__ _ ,4: :L.tz,d. :
| \TEST 1 f;‘aI_ _ _._: :* 171 Count punches in character. f
e | reXx w+l 2, !
B Ty ;
| lrex___ i iTEsT1,4,1 |
___[_' S B 7 A - Y A ~: :12 Shift character back. |
I | x4 . _. j I[TE'ST,. 2,.1 One or less equals good. :
A] I,!.ﬂ___._: :BADI 2,3 Four or more equals bad. !
I | I TXH 1 :TEST5'; 2, 2 Test 3 if triple punch. !
__ll-.ESI& PAX 4' l 12 Double punch, Character to index 2. IL
I TXH_ . _)| 4000 equals a 12 zone. :
L TXH ;ffsr,. 2,57¢ 11 or zero zone, all good. !
b lrtxn_ _: :MD', 2, 285 Double digit punch. One punch is bad. :
! ANA_ 1122 Must_have 8 punch. :
| rze .| BAD !
: TXH ___j‘ 16000;2,5 Rest are good except 12-11. !
L TRA__.__ \DAD !
%zs.s.rﬂ 1'.1}1.. e %RF&*M‘_]L—M except 12-11. %
—— rRA . _, D !
\TESTS |PAXx__ | 1,2 Triple punch. !
! aps___ 112 |
! L8r . [Must have 8 punch. |
T - T
I 1 ITRA __ _11BAD !
T T T [Te | 1BAD,2, 521 Mt hove o zome punch. !
! NA l 1-01 76 Must have 2, 3, 4, 5, 6, or 7 punch. J

Symbolic Coding Form

134

[Froblem N 1.
mw's'(-2 L = o
~ T location Bperation : :mcmmmlCmnl Tomments I Tdenicotion |
|
v L2 o7 s ! n'n »)
| TZe____, \BAp :
N l|AaNA_._ _. | |=0l00 +
; 7 ZE __J :_GOOD Good if no 2 punch !
|
RS %;j_—__i ;ﬂ;oo * 11-2, 12-2 combinations ars bad '
I “"RPA . -2, 12-2 combina
Tt - T
ICARD | BSS . _ | :27 :
] END_ .. _ _i 1 EouT :
T I i i
V“W

Example 6

Problem: Solve

i

N

X
=1 4
1

n
Y;
=1
2

N

Where X; and Y; are integers, and N; and N, are
integers always greater than EX ansz respectively.

IBM Symbolic Coding Form
Problem
Coder Date Page of
- 1 Tocation Operation [~ TAddress, Tag, Decrement/ Count Tomments T Tdennfication |
1 :2 67 |8 4; i 7?!73 80
b PXA ;
B . DQ Tizo :
e e —i }
L AXT 10,5 !
Lo XA IV, 2 !
ADD1_| DD ") ix1.1 |
I Ill__,gu*+b1;-z !
L N \LLX 1 1ADD1,2,1 |
i |l pvPp a7 :
L lsTaQ _IANS E
' PXD _ . .|| ;
| lbq ~_ =0 |
L XEC | 1ADDL-Z !
| ADD2 | ADD Y14 !
j TXI G ¥+Lr4,-1 i
L lTrLx ' [ADD2,2,1 !
Ll DvAe 1N !
I LLs_ 138 :
! ADD__ . _|IANS !
LS TE | ANS !
| HPR_ _._._| |
| IANS BSS i1 !
7A— | BSS__ i :
NI | BSS g !
| N2 BSS . . L :
| XZ | 1BSS L INMAX i
Yz BSS | INMAX i
1 .dl.,,_._. [l |

Programming Examples

135

Example 7

Ai+B) —C =D
Problem: Compute E(11_) 2) -
i=1
IBM Symbolic Coding Form
Coder Date Page of
. 1 Location Operation [~ | Address, Tag, Decrement/ Count Commen s T Tdeniicatio
| tt i
1 !2 6|7 |8 J : 77!73 80
| [|
e +
| XA _ ;/V;I f
I PXD_ __ ‘
S _| A.K.Z_V,AW;Z :
ICLEAR| ADD A2 :
[A,Q.‘QVfA 11B,2 |
o llsvs_ ___jic,2 I
I 87T __ D52 I
. | ADD_ _lic,e !
4_,_,‘_ IX.I; __: {i+]‘)2)—] {
A E—] ﬁéé _______ I ICLEAR, 1,1 1
| [
N Bss T |
.-;A‘_,_4_._ .Bii____l 1 i
8___ | BSS ___| i
c | BSs___ |4 !
D__._ | BSS L1 g !
e ————
_/\I

136

Example 8
Problem: Program Xi = ViXi 1+ Xi 2

i=1,2 ° " " IL

Where the values of X_; and X, are respectively minus
one and zero. Consider all quantities as integers with
no possibility of overflow.

IBM Symbolic Coding Form
Coder Bale of
o | Tocation Operation T~ T Address, Tog, Decremen 7 Count Tomments T Tdenification
T :2 6|7 18 l : 77!73 80
I I r I
I PR] — I
| XA N L !
o ILXA — 1X+1)2 :
LDQ | ILDQ | R1,2 |
L | MPY. 1 X+1,2 !
T kLS T3S |
L+ ... _{|ADD _ 11X, 2 i
L sTg 1iX1,2 ;
I N 0. S Ll i%+1,2,~1]
L TIx_ | LDQ,151 |
L | HPR_._. .11 |
X ____ DEC___ _ {“-1,0 i
X1 | BSS_.__ _ INMAX .
R 1 BSS____1NMAX ,
N | BSS____ 1 |
| ____||END_ || !
s O —

Programming Examples

137

Example 9
Problem: Compute K* where x is a fraction by evalu-

2 k
ating the series 1 + iir + ,2Xr SRR o %,

k

terminate when IP(Sf‘ < .000000001 .

IBM Symbolic Coding Form
. { Location Operation } IAddre;s, Tog, Decrement; Count Comments I Tdentification
1 !2 6§17 18 4: : 72k73 80

L I STE_ K i
L lleLA__ _'SPECA !
B AT T 5
—— oL 1 !
L dap | MsP___ | TERM |
| jleLA . 1K I
| |ADD =4 }

I I A 0 ¥ P K :
o lleLA IV ITERM :
I LRSS | 135 !

T 1 bve " 1K !

o f—;!}é ______ X ;
L | ISTE__ _ 1 I TERM i
! ADD | 1S UM :
S S T4 | 1SUM |
. MS M | \TERM !
LA I \TEST :
! SUB _ITERM !
L lirMI_ _1LogP |
| HPR___ | !
| k___ | BSS__ !4 |
| \SPECIH DEC ____|'1B2 !
SUM | BSS___ 1 ISMAX i
\TERM_| BSS 1 TMAX !
| TEST | DEC___ | IE-9B2 I
X . |BSS . .1 l
! END_ L I

138

Instructions for the 7040 and 7044 systems are offered
in several options to satisfy different performance re-
quirements. The basic set has been carefully selected
to satisfactorily operate a low-compute requirement
system application. The extended performance option
enhances the computing and compiling ability by pro-
viding automatic indexing and logic, and character-
handling operations. The single-precision floating-point
option significantly improves performance on large
number calculations and the double-precision floating-
point option provides higher accuracy.

Indirect addressing ability is provided for all ap-
propriate instructions, using the same method as with
18M 7090 and 7094 systems.

When the execution time of an instruction is vari-
able, an instruction type number is included in the
following instruction lists. To obtain the execution
times in microseconds, multiply the number of cycles
by the appropriate cycle time (2.5 or 8.0 micro-
seconds). Both an alphabetic instruction list by option
and a complete alphabetic list are included. The com-
plete alphabetic list also indicates which central proc-
essing unit, data channel, and device indicators are
set by execution of the instruction. For a detailed
description of how the indicators are set, refer to the
individual instruction description.

Instryction Types
7040 7044

Type 1—ALS, ARS, LGL, LGR, LLS, LRS, and RQL

These instructions are executed
in 1 cycle if the extent of the
shift is six places or less. Each
additional six-place shift or
portion thereof requires %4
cycle.

Type 2 — DVP
This instruction is executed in
723 cycles unless a divide
check occurs, in which case it
requires 2 cycles.

Type 3— MPY

This instruction is executed in
4 cycles if the MQ contains two
or fewer ones. Each additional
6 ones or portion thereof in
the MQ requires 15 cycle. If
the content of Y is zero, the
instruction is completed in 2
cycles.

These instructions are executed
in 2 cycles if the extent of the
shift is six places or less. Each
additional six-place shift or
portion thereof requires 1
cycle.

This instruction is executed in
20 cycles unless a divide
check occurs, in which case it
requires 3 cycles.

This instruction is executed in
9 cycles if the MQ contains two
or fewer ones. Each additional
6 ones or portion thereof in
the MQ requires 1 cycle. If
the content of Y is zero, the
instruction is completed in 3
cycles.

Appendix A. Instructions

7040

Type 4 — VDP
This instruction is executed in
2 cycles if the count is zero
or one. Each additional two
quotient positions or portion
thereof requires V3 cycle.

Type5 — VLM

This instruction is executed in
2 cycles if the count is zero or
one or if the content of Y is
zero. Each additional six steps
or portion thereof requires Y4
cycle. To determine the num-
ber of additional steps: add
the number of zeros to twice
the number of ones in the low-
order C bits of the MQ; then
subtract one.

Type 6 — FAD and FSB

These instructions are executed
in a minimum of 2% cycles
and a maximum of 824 cycles.
In determining average speed,
a number of representative
programs were traced. The
times shown are based on an
analysis of several million
operands. Execution times
greater than 2% cycles are a
result of shifting to equalize
exponents before adding and
to normalize the result after
adding. Shifting requires %4
cycle for each six places or
portion thereof.

Type 7 — FDP

This instruction is executed in
7 cycles unless a divide check
occurs, in which case it re-
quires 2 cycles.

Type 8 — FMP and UFM

These instructions are executed
in a minimum of 323 cycles
and a maximum of 5 cycles.
If c(MQ) fraction is zero, it
requires only 2 cycles.

Type 9 — UFA and UFS

Execution time is the same as
for type 6, except maximum is
614 cycles due to un-normal-
ized operation.

7044

This instruction is executed in
2 cycles if the count is zero. It
requires 3 cycles if the count
is one. Each additional two
quotient positions or portion
thereof requires 1 cycle.

This instruction is executed in
2 cycles if the count is zero. It
requires 3 cycles if the count
is one or if the content of Y is
zero. Each additional six steps
or portion thereof requires 1
cycle. To determine the num-
ber of additional steps: add
the number of zeros to twice
the number of ones in the low-
order C bits of the MQ; then
subtract one.

These instructions are executed
in a minimum of 4 cycles
and a maximum of 23 cycles.
In determining average speed,
a number of representative
programs were traced. The
times shown are based on an
analysis of several million
operands. Execution times
greater than 4 cycles are a
result of shifting to equalize
exponents before adding and
to normalize the result after
adding. Shifting requires one
cycle for each six places or
portion thereof.

This instruction is executed in
18 cycles unless a divide check
occurs, in which case it re-
quires only 3 cycles.

These instructions are executed
in a minimum of 8 cycles and
a maximum of 12 cycles. If
c(MQ) fraction is zero, it re-
quires only 2 cycles.

Execution time is the same as
for type 6, except maximum is
16 cycles due to un-normalized
operation.

Appendix 139

7040
Type 10 — DFAD, DFSB

These instructions are executed
in a minimum of 4 cycles and
a maximum of 11 cycles. The
longer times are a result of
shifting, as explained in Type 6.

Type 11 — DFMP

This instruction is executed in
a maximum of 1325 cycles. If
c(ac) and c{MQ) are zero,
theinstructionrequires 3cycles.

Type 12 — DFDP

This instruction is executed in
a maximum of 18% cycles,
and a minimum of 17 cycles.
If a divide check occurs, this
instruction may require as few
as 3 cycles,

7044

These instructions are executed
in a minimum of 7 cycles and
a maximum of 28 cycles. The
longer times are a result of

shifting, as explained in Type 6.

This instruction is executed in
a maximum of 36 cycles. If
c{ac) and c(mQ) are zero,
the instructionrequires 3 cycles.

This instruction is executed in
a maximum of 50 cycles, and
a minimum of 46 cycles. If a
divide check occurs, this in-
struction may require as few
as 4 cycles.

Type 13— BSR, ETT, PRD, PWR, RDS, REW,
RUN, SEN, WBT, WEF, and WRS

These instructions are executed
in the times given if the chan-
nel is not busy and the device
selected is ready and not busy.
Otherwise, execution is de-
layed until these conditions do
exist. If the channel is not
busy and the on-line 1401 is
selected, a programmed re-
sponse is required from the
1401 before these instructions
can complete execution.

“These instructions are executed

in the times given if the chan-
nel is not busy and the device
selected is ready and not busy.
Otherwise, execution is de-
layed until these conditions do
exist. If the channel is not
busy and the on-line 1401 is
selected, a programmed re-
sponse is required from the
1401 before these instructions
can complete execution.

Type 14 — BSR, REW, RUN, and WEF

These instructions complete
execution in the times given,
but the channel remains busy
for the duration of the back-
space or write end of file. The
channel is busy on rewind in-
structions only long enough to
pick relays in the tape unit.

Type 15— VMA

This instruction is executed in
2 cycles if the count is zero or
one. Each additional 6 steps
or portion thereof requires 14
cycle. To determine the num-
ber of additional steps add the
number of “zeros” to twice the
number of “ones” in the low
order C bits of the Mg, then
subtract one.

These instructions complete
execution in the times given,
but the channel remains busy
for the duration of the back-
space or write end of file. The
channel is busy on rewind in-
structions only long enough to
pick relays in the tape unit.

This instruction is executed in
2 cycles if the count is zero.
Three cycles are required if
the count is one. Each addi-
tional 6 steps or portion thereof
requires 1 cycle. To determine
the number of additional steps
add the number of “zeros” to
twice the number of “ones” in
the low order C bits of the Mo,
then subtract one.

Alphabetic Instruction List — By Option

AVERAGE CYCLES

INST OP CODE 7040

Basic Instruction Set

ACL +0361 2
ADD +0400 2

140

7044 TYPE PAGE
2 62
2 45

INST OP CODE 7040
ALS +0767 2
ANA —-0320 2
ARS +0771 2
CAL —0500 2
CAP —1510 2
CAS +0340 2
CHS +0760..002 1
CLA +0500 2
CLS +0502 2
COM +0760. .006 1
DCT +0760..012 1
DVP +0221 7%
ENK +0760. .004 1
HPR +0420 1
LAS —0340 2
LBT +0760. .001 1
LDQ +0560 2
LGL —0763 2
LCR —-0765 2
LLS +0763 2
LRS +0765 2
MPY +0200 5
ORA —=0501 2
PBT —0760..001 1
RQI —-0773 2
SLP -1612 2
SLW +0602 2
SSp +0760..003 1
STA +0621 3
STD +0622 3
STL —-0625 3
STO +0601 2
STQ —0600 2
STR —-1000 2
STZ + 0600 2
SUB +0402 2
SWT +0760. .16x 1
T™I -~0120 1
TNZ -0100 1
TOV +0140 1
TPL +0120 1
TRA +0020 1
TRP —1165 1
TRT —1164 1
TSL -1627 3
TZE +0100 1
VDP +0225 5
VLM +0204 4
VMA —-1204 —
XEC +0522 1

Extended Performance Set
AXT +0774 1
CCS —1341 2
LAC +0535 2
LDC —0535 2
LXA +0534 2
LXD -0534 2
MIT —1341 2
MSM —1623 3
MSP -1623 3
PAC +0737 1

AVERAGE CYCLES

7044
4

[
Wa b R R DN W D NOND NDNNNNDWND DN DN

[
o

—_
] ©©O 00 i bt e bt = PO NN O WL NN B DO D

[

O WWW PO W~

TYPE

QO b et et

PAGE

123

58
67

58
58
58
58

54
54
54

58

AVERAGE CYCLES

INST OP COLE 7040 7044
PAX +0734 1 2
PCS -1505 2 2
PDC —-0737 1 2
PDX —-0734 1 2
PLT —1341 2 3
PXA +0754 1 2
PXD -0754 1 2
SAC —-1623 3 3
SXA +0634 3 3
SXD —-0634 3 3
TIX +2000 1 2
TMT —1704 1+2N 242N
TNX —2000 1 2
TSX +0074 1 2
TXH 43000 1 2
TXI +1000 1 2
TXL —3000 1 2

Single-Precision Floating-Point Set
FAD +0300 3 5%
FDP 40241 7 18
FMP 40260 4% 10
FSB +0302 3 5%
UFA —0300 2% 5
UFM —0260 45 10
UFS —-0302 2% 5

Double-Precision Floating-Point Set
DFAD 40301 4% 8%
DFDP —0241 172%; 48
DFMP +0261 12 31
DEFSB +0303 4% 8%

Memory Protect Set
RPM —-1004 2 2
SPM —1160 1

Direct Data Set
PSLB — 0664 2 3

3]

PSLC +0665

TYPE

o N B

Nelie e}

10
12

10

114
114

113
113

INST OP CODE
PSLD - 0665
PSLE +0666
SSLB —0660
SSLC +0661
SSLD —-0661
SSLE + 0662

Input/Output Instructions
BSR +0764
CTR —-1766
ENB +0564
ETT —0760.x2xx
ICT —1760 014
10T +0760. .005
PRD - 1762
PWR —1766
RCHA +0540
RCT +0760. 014
RDC +0760. x352
RDS +0762
REW +0772
RUN -0772
SCHA + 0640
SEN —1762
TCOA + 0060

TDOA —1060
TEF + 0030
TRC +0022
WBT +0766
WEF +0770
WRS +0766

1401 Option Instructions

SLFA
SLNA

~1760
—1760

AVERACGE CYCLES

7040

[SSOI o SO R o)

2

b

1

2
1

[Sol &)

e e Y SR SR S

Lo ro o

1
1

7044

(SRS NSNS AN)

S

Lo

o o

[)

VD AR RO AR

S SO N MR N)

BO o

TYPE

13, 14

13

13
13

13
13, 14
13, 14

13

13
13, 14
13

Appendix

PAGE

113
113

113
113
113
113

93
105

122
96

122
97

103
103

91
122
97
90

96

97
104
92
104
95
92
94
95
90

115
115

141

Appendix B. Instruction List — Alphabetic Order with Formats

Symbols used with the instruction formats are: MNEMONIC AND NAME PAGE
F Indirect Addressing Flag Field CAS—Compare Accumulator with Storage 54
C Count Field
I Channel A 1/0 Device Adapter Field | +0340 lF m T I Y]
S Card Punch Stacker Select Character 5.1 11121374 718 202 35
B 10 Device Busy Status Character
M 1,0 Device Input/Output Buffer Select Character CCS—Compare Character with Storage* 67
T Index Register Tag Field
Y Operand Designation Field [-1341] F % C l T I Y
S 1 112131415 1718 20 3
Instructions are listed in alphabetic order without
regard to optional features. An asterisk (*) following CHS—Change Sign 54
the instruction name designates an optional instruc-
tion. Operation codes are shown in octal notation. ls" +0760 ”Z////////%,,WT m%u 2 Js
CLA—Clear and Add 45
|_+os00 [F 7 1 | Y |
MNEMONIC AND NAME PAGE S1 2114 1718 202 %
ACL—Add and Carry Logical Word 62 CLS—Clear and Subtract 45
| o1 |F 71 | Y | [0502 |F7ZZ 7 | Y |
S 1 11121314 1718 2021 35 S 11121314 1718 2021 35
ADD—Add 45 COM—Complement Magnitude 61
| _ros00 [FZ72 7 | Y o760 A T % 6 |
s 11121314 1718 2021 35 S ni2 1718 2021 2324 35
ALS—Accumulator Left Shift 49 CTR—Control Select 105
[wrer O 1 | Y [(1 [7] Y |
S 1 1112 1718 2021 35 s MI12131415 1718 2020 kL]
ANA—And to Accumulator 65 DCT—Divide Check Test 52
030 |F ZZ11 | Y | [70 O7ZZA T Y 12 |
S, 1 1 1314 1718 2021 35 $ 112 1718 202122 35
ARS—Accumulator Right Shift 50 DFAD—Double Precision Floating Add* 74
|+ 72 1 | Y |51 [r 7] 1 | Y]
[1112 1718 20 2% 3 S 1 11121314 1718 2021 35
AXT—Address to index True* 58 DFDP—Double Precision Divide or Proceed* 74
[+0774 V04 1| Y U -o24v [FYZZ4 1 | Y |
S.1 112 1718 2021 3 51 11121314 1718 2021 kL
BSR—Backspace Record 93 DFMP—Double Precision Floating Multiply* 74
wrea A1 1] Y i 06 [F7 1 | Y l
S, 1 niz 1415 1718 2021 33 S, 1 11121314 1718 2021 35
CAL—Clear and Add Logical Word 62 DFSB—Double Precision Floating Subtract* 74
| -os00 |F P77 1| Y +0383 |FVZA T | Y |
s T 121314 V718 207 3 o 121314 1718 202 3
CAP—Clear and Add Logical Word/Parity 63 DVP—Divide or Proceed 48
[50 [FO77 7 | Y | [+22n [rHA 1 | Y I
s NI21314 17182070 35 s MI121314 1718 0D (1

142

MNEMONIC AND NAME PAGE MNEMONIC AND NAME PAGE
ENB—Enable from Y 122 LDC—Load Complement of Decrement in Index* 58
|_vosee |F 77 1 | Y) o 777 1 | Y |
51 1121314 1718 2021 35 st n 1718 2027 35
ENK—Enter Keys 54 LDQ—Load Multiplier-Quotient 46
[0 V77, 1 7 a) | o0 [F 7 1 | Y |
] ni2 1718 2021 2324 35 S, 1 1121314 1718 2021 3s
ETTA—End of Tape Test, Channel A 96 LGL—Logical Left Shift 62
|_-oms0 7772773 1 7 1000 | | -8 7777 ' | Y
St 1112 1718 20212223 35 s 1112 1718 2021 3
ETTB — 0760 2000
ETTC — 0760 3000 LGR—Logical Right Shift 63
ETTD -~ 0760 4000 0765 I Y
ETTE — 0760 5000] IIWW zolzl 33
FAD—Floating Point Add* 7 LLS—Long Left Shift 50
[+s00 [FPZA 1| Y | 788 7777 1 | Y |
§,1 1M1213 14 1718 2021 35 S 1 112 1718 2021 35
FDP—Floating Divide or Proceed* 73 LRS—Long Right Shift 51

w241 |F) 1 | Y | [s 77777, T | Y J
1 11121314 1718 2021 35 S 1912 1718 2021 35
FMP—Floating Point Multiply* 73 LXA—Load index from Address* 58
w20 [F 7 1] Y |03 7772 1 | Y |
S 1 111213 14 1718 2021 3 S 1 112 1718 2021 35
FSB—Floating Point Subtract* 73 LXD—Load Index from Decrement* 58
w0302 |FOA 1] Y [-0« 77772 11 Y |

1 111213 14 1718 2021 3 [1112 1718 2020 35
HPR—Halt and Proceed 52 MIT—Storage Minus Test* 54
[sl v]
3 S 1112131415 1718 2021 35
1CT—Inhibit Channel Traps 122 MPY—Multiply 46
| w0 (700 T | 4 | o200 [F 77 1| Y |
S 1 112 1718 2021 35 s 11121314 1718 2021 35
IOT—Input/Output Check Test 97 MSM-—Make Storage Sign Minus* 54
[o V7 1 | 5] [oen TP 61] Y
S 1 11132 1718 2021 3 s 112131415 1718 2020 3.
LAC—Load-Complement of Address in Index* 58 MSP—Make Storage Sign Plus* 54
[w55 V74 1 | Y [e JrFA 7] 7] Y]
§1 1112 1718 2021 FC S 1712131415 1718 2020 35
LAS—Logical Compare Accumulator with Storage 63 ORA—Or to Accumulator 65
[-0s0 [r7 1] Y | 0500 | FOH T | Y |
S 1 1121314 1718 2021 s S, 1 1M121314 1718 2021 35
LBT—Low Bit Test 52 PAC—Place Complement of Index in Address* 58
w7 Y | [y)

,), 171

Appendix

143

MNEMONIC AND NAME PAGE MNEMONIC AND NAME PAGE
PAX—Place Address in Index* 58 RCT—Restore Channel Traps 122
o I i, s] 7
51 na2 1718 20 21 &
PBT—P Bit Test 52 RDCA—Reset Data Channel A 97
[w0 O77ZZZ + A 1] w60 V2722 1 | 1352
S 1 1112 1718 2021 23 24 35 S 1 Mmiz 1718 2021 35
PCS—Place Character from Storage* 67 sggg i g;gg ggg;

- RDCD + 0760 4352
I§l 1305 1||12F|3%15 Cnlw T zoln Y 35! RDCE + 0760 5352
PDC--Place Complement of Decrement in Index* 58 RDS—Read Select 90
/N A
1 mn 1718 202 s 1 1112131415 1718 2021 3
PDX—Place Decrement in Index* 58 REW—Rewind 96
Com T
’ s [M2 1415 1718 2021 3
PLT—Storage Plus Test® 34 RPM—Release Protect Mode* 14
I;l -]34] IIIIZF13%157 I7IIB T ZOJZI Y 35| _s . _]W i 4
PRD—Prepare to Read 103
RQL—Rotate Quotient Left 51
-1762 0 | T Y
L el L \ o v Y |
51 112 1718 2021 kL1
PSLB—Present Sense Lines, Channel B* 113 RUN—Rewind and Unload 9%
—Rewind and Unloa
-0664 F T
Is,l nlrusuy//éls ZOIZI Y :! L -0772 % l T I Y 4
PSLC + 0665 (] 1112 1415 1718 200 3
E:tg ; 8222 SAC—Store Accumulator Character* 67
~1623 F g C T Y
PWR—Prepare to Write 103 [S,l nllzlauls 17113 2o[2| 3
L -1766 Psd 1 [1] Y | scHA—store Channel A 97
S, 1 1112131418 1718 2021 35
PXA—Place Index in Address* 58 Is,, +0640 "[,,F:%el,.T ,OI,, Y 3
[+0754 T SCHB — 0640
s 1112 1718 2021 5 SCHC + 0641
SCHD — 0641
PXD—Place Index in Decrement* 58 SCHE + 0642
[7 Y0000 sen.sonce s o
RCHA—Reset and Load Channel A 91) -1762 "%I’—:{l‘lul "I" Tmln Y =
+0540 F
Is', ,,L,,,%?,L,T 20,,, Y ;l SLFA—Status Line Off, Channel A* 115
RCHB — 0540 | w0 V7 1 | 1501
RCHC + 0541 S 1 12 1718 2021 3
RCHD — 0541
RCHE + 0542 SLNA—Status Line On, Channel A* 115

144

mniz 1718

35

MNEMONIC AND NAME PAGE MNEMONIC AND NAME PAGE
SLP—Store Logical Word with Parity 63 SWT—Sense Switch Test 52
| -1612 | F] 1 | | | o760 V///M T V74 06100166 |
s 1 1314 17 18 20 35 S 1 1718 2021 2324 35
SLW—Store Logical Word 63 SXA—Store Index in Address* 59
| _+s02 ¢ 7 1] | | e D7) 1] Y]
51 11121314 1718 202 35 S 17 18 2020 35
SPM--Set Protect Mode* }l 14 SXD—Store Index in Decrement* 59

-0 (F T] ¢ | -0634 V////////% T | Y
1121314 1718 2021 N a2 35 1 1718 2021 35

SSLB—Store Sense Lines, Channel B* 113 TCOA—Transfer on Channel A in Operation 92
L -0 [fZZ 1]] |0 [F 1] Y]
S 1 11121314 1718 2021 s 5,1 11121314 1718 20 2% 35
tcon ¢
SSLD - — 0661 TCOD + 0063
SSLE + 0662 TCOE + 0064
SSP—Set Sign Plus 54 TDOA—Transfer on Device in Operation, Channel A 104
[_+0760 WTW/A 3] [o [FA B [1] Y |
S 1718 202 B2 35 S, 1 1112131418 1718 200 s
STA—Store Address 58 TEFA—Transfer on End of File, Channel A 95
L \] +062] IIIIZFH?////élB T 2012l JSI [mso IF m T l Y j
g 51 11121314 1718 2021 s
STD—Store Decrement 58 I::?: ; ggg?

+0622 F T TEFD — 0031
L 1 nllz 13%13 2ol21 :J TEFE + 0032
STL—Store Instruction Counter 123 TIX—Transfer on Index* 59

-5 F O 1 | +2 | D [7] Y

1 11121314 1718 2021 35 S,123 1718 202 35

STO—Store Accumulator 45 TMI—Transfer on Minus 53

20000 [F A 1 | [o0 [F7ZZ 1] Y |

1 1121314 1718 202 kL S 1 11121314 1718 202 35
STQ—Store Multiplier-Quotient 46 TMT—Transmit* 67
L 0600 [r 2 1] 1 e P27+ | Y |
(3] 11121314 1718 200 5 S Mz 1718 202 kL
STR—Store Location dnd Trap 123 TNX—Transfer on No Index* 60

), [l s T

3 1718 2021 35
STZ—Store Zero 48 TNZ—Transfer on No Zero 53
| 0 [FY g T1s | [_-o0 Tr P 1] Y |
5 1121314 1718 200 35 S 1 MN121314 1718 2021 35
SUB—Subtract 45 TOV—Transfer on Overflow 53
L 02 [F7 1] | [o [rP2Z 1] Y |
S 1 1M121314 1718 202t 35 S 1 MN121314 1718 2021 ki

Appendix 145

MNEMONIC AND NAME PAGE MNEMONIC AND NAME PAGE
TPL—Transfer on Plus 53 TZE—Transfer on Zero 53
[w20 [fF V77 1| Y | [+o00 [FZA 1] Y
S 1 11121314 1718 2021 35 S 1 11121314 1718 0 21 3
TRA—Transfer 53 UFA—Unnormalized Floating Add* 73
[w00 |r 77 1l Y | [-0 [F7Z 1 | Y
S 11121314 1718 2021 35 S 1 11121314 1718 2021 3.
TRCA—Transfer on Redundancy Check, Channel A 92 UFM—Unnormalized Floating Multiply* 73
[o2 [FV77Z 1 | Y [o260 [FY77Z 71 Y
s 1 11121314 1718 2021 35 51 11121314 1718 202) 3.
TRCB — 0022
TRCC + 0024 UFS—Unnormalized Floating Subtract*® 73
TRCD — 0024 -0302 F T Y
TRCE + 0026 I:l III|2 ISWIS 20121 3!
TRP—Transfer and Restore Parity and Traps 122 VDP—Variable Divide or Proceed 49
[-wes [F 4 1] 'Y | [wo22s [FET c [71] Y
51 1M121314 1718 2021 s S 1 1M12 1718 2021 3
TRT—Transfer and Restore Traps 122 VLM—Variable Length Multiply 48
[-va [F74 1] Y | [s0204 [F] c [1] Y]
s 11121314 1718 2021 35 S, 1 ni2 1718 2021 35
TSL—Transfer and Store Instruction Counter 123 VMA—Variable Length Multiply/Accumulate 48
[-z [F 74 1| Y | [-204 Flc [1] Y i
51 11121314 1718 2021 s S 1 112 1718 2021 35
TSX—Transfer and Set Index* 62 WBT—Write Blank Tape 94
[w0074 77 1 | Y 1 [0 70 1] 1] Y il
s 112 1718 2021 35 s 1112131415 1718 2021 3
TXH—Transfer on Index High* 60 WEF—Write End of File 95
= D | 1] Y | [0 71 [1] Y |
$,123 1718 2021 35 s 1112 1415 1718 2021 35
TXI—Transfer with Index Incremented* 60 WRS—Write Select 90
[+1] D [1] Y 1 [+o7e6 Pl 1_[1 | Y]
$,123 1718 2021 35 51 1112131415 1718 202} 35
TXL—Transfer on Index Low* 60 XEC-—Execute 52
[-3] D [1] Y] [ss22 FZA v | Y B
$.1213 1718 2021 35 S, 1 11121314 1718 2021 s

146

16
32
64
128

256
512
1024
2 048

4 096
8192
16 384
32 768

65 536
131 072
262 144
524 288

1048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864
134 217 728

268 435 456
536 870 912
1073 741 824
2 147 483 648

4 294 967 296
8 589 934 592
17 179 869 184
34 359 738 368

68 719 476 736
137 438 953 472
274 877 906 944
549 755 813 888

LWNI=O

I O

Appendix C. Powers of Two Table

OO OM
N O

25
125
0.062 5
0.031 25

0.015 625
0.007 812 5

0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25

0.000 244 140 625
0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812 5

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125
0.

000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5

0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25

0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

Appendix 147

Appendix D. Octal-Decimal Integer Conversion Table

0000 0000
fo to
0777 0511
(Octal) | (Decimal)
Octal Decimal
10000 - 4096
20000 - 8192

30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

letoeo = 33768

1000 0512
to to
1777 1023
(Octal) | (Decimal)

148

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0000 0000 0001 0002 0003 0004 0005 0006 0007 0400 [0256 0257 0258 0259 0260 0261 0262 0263
0010 [0008 0009 0010 OC11 0012 0013 0014 0015 04100264 0265 0266 0267 0268 0269 0270 0271
0020 |0016 0017 0018 0019 0020 0021 0022 0023 0420 0272 0273 0274 0275 0276 0277 0278 0279
0030 [0024 0025 0026 0027 0028 0029 0030 0031 0430|0280 0281 0282 0283 0284 0285 0286 0287
0040 {0032 0033 0034 0035 0036 0037 0038 0039 0440|0288 0289 0290 0291 0292 0293 0294 0295
0050 0040 0041 0042 0043 0044 0045 0046 0047 0450 {0296 0297 0298 0299 0300 0301 0302 0303
0060 |0048 0049 0050 0051 0052 0053 0054 0055 0460|0304 0305 0306 0307 0308 0309 0310 0311
0070 |0056 0057 0058 0059 0060 0061 0062 0063 0470|0312 0313 0314 0315 0316 0317 0318 0319
0100 {0064 0065 0066 0067 0068 0069 0070 0071 0500 |0320 0321 0322 0323 0324 0325 0326 0327
0110|0072 0073 0074 0075 0076 0077 0078 0079 0510 |0328 0329 0330 0331 0332 0333 0334 0335
0120 (0080 0081 0082 0083 0084 0085 0086 0087 0520 {0336 0337 0338 0339 0340 0341 0342 0343
0130|0088 0089 0090 0091 0092 0093 0094 0095 0530 {0344 0345 0346 0347 0348 0349 0350 0351
0140|0096 0097 0098 0099 0100 0101 0102 0103 0540 {0352 0353 0354 0355 0356 0357 0358 0359
0150 {0104 0105 0106 0107 0108 0109 0110 0111 0550 | 0360 0361 0362 0363 0364 0365 0366 0367
01600112 0113 0114 0115 0116 0117 0118 0119 0560 {0368 0369 0370 0371 0372 0373 0374 0375
01700120 0121 0122 0123 0124 0125 0126 0127 0570 {0376 0377 0378 0379 0380 0381 0382 0383
0200|0128 0129 0130 0131 0132 0133 0134 0135 0600 {0384 0385 0386 0387 0388 0383 0390 0391
02100136 0137 0138 0139 0140 0141 0142 0143 06100392 0393 0394 0395 0396 0397 0398 0399
0220|0144 0145 0146 0147 0148 0149 0150 0151 0620 [0400 0401 0402 0403 0404 0405 0406 0407
0230|0152 0153 0154 0155 0156 0157 0158 0159 0630 | 0408 0409 0410 0411 0412 0413 0414 0415
0240|0160 0161 0162 0163 0164 0165 0166 0167 0640|0416 0417 0418 0419 0420 0421 0422 0423
0250 {0168 0169 0170 0171 0172 0173 0174 0175 0650 | 0424 0425 0426 0427 0428 0429 0430 0431
0260|0176 0177 0178 0179 0180 0181 0182 0183 0660 | 0432 0433 0434 0435 0436 0437 0438 0439
02700184 0185 0186 0187 0188 0189 0190 0191 0670 | 0440 0441 0442 0443 0444 0445 0446 0447
0300|0192 0193 0194 0195 0196 0197 0198 0199 0700 | 0448 0449 0450 0451 0452 0453 0454 0455
0310|0200 0201 0202 0203 0204 0205 0206 0207 0710]0456 0457 0458 0459 0460 0461 0462 0463
0320|0208 0209 0210 0211 0212 0213 0214 0215 0720 | 0464 0465 0466 0467 0468 0469 0470 0471
0330|0216 0217 0218 0219 0220 0221 0222 0223 073010472 0473 0474 0475 0476 0477 0478 0479
0340|0224 0225 0226 0227 0228 0228 0230 0231 0740|0480 0481 0482 0483 0484 0485 0486 0487
0350 | 0232 0233 0234 0235 0236 0237 0238 0239 0750|0488 0489 0490 0491 0492 0493 0494 0495
0360|0240 0241 0242 0243 0244 0245 0246 0247 07600496 0497 0498 0499 0500 0501 0502 0503
0370{0248 0249 0250 0251 0252 0253 0254 0255 0770|0504 0505 0506 0507 0508 0509 0510 0511
0 1 2 3 4 5 6 T 0 1 2 3 4 5 6 7
1000{ 0512 0513 0514 0515 0516 0517 0518 0519 140010768 0769 0770 0771 0772 0773 0774 0775
1010]0520 0521 0522 0523 0524 0525 0526 0527 14100776 0777 0778 0779 0780 0781 0782 0783
1020} 0528 0529 0530 0531 0532 0533 0534 0535 1420 | 0784 0785 0786 0787 0788 0789 0790 0791
1030|0536 0537 0538 0539 0540 0541 0542 0543 1430|0792 0793 0794 0795 0796 0797 0798 0799
104010544 0545 0546 0547 0548 0549 0550 0551 1440|0800 0801 0802 0803 0804 0805 0806 0807
1050|0552 0553 0554 0555 0556 0557 0558 0559 1450 | 0808 0809 0810 0811 0812 0813 0814 0815
1060|0560 0561 0562 0563 0564 0565 0566 0567 1460 | 0816 0817 0818 0819 0820 0821 0822 0823
107010568 0569 0570 0571 0572 0573 0574 0575 1470|0824 0825 0826 0827 0828 0829 0830 0831
1100|0576 0577 0578 0579 0580 0581 0582 0583 1500|0832 0833 0834 0835 0836 0837 0838 0839
1110|0584 0585 0586 0587 0588 0589 0590 0591 1510|0840 0841 0842 0843 0844 0845 0846 0847
1120|0592 0593 0594 0595 0596 0597 0598 0599 1520|0848 0849 0850 0851 0852 0853 0854 0855
1130{ 0600 0601 0602 0603 0604 0605 0606 0607 1530|0856 0857 0858 0859 0860 0861 0862 0863
11400608 0609 0610 0611 0612 0613 0614 0615 1540|0864 0865 0866 0867 0868 0869 0870 0871
1150|0616 0617 0618 0619 0620 0621 0622 0623 1550 0872 0873 .0874 0875 0876 0877 0878 0879
1160 0624 0625 0626 0627 0628 0629 0630 0631 1560 | 0880 0881 0882 0883 0884 0885 0886 0887
1170{0632 0633 0634 0635 0636 0637 0638 0839 1570]0888 0889 0890 0891 0892 0893 0894 0895
1200|0640 0641 0642 0643 0644 0645 0646 0647 1600 |0896 0897 0898 0899 0900 0901 0902 0903
1210|0648 0649 0650 0651 0652 0653 0654 0655 1610 |0904 0905 0906 0907 0908 0909 0910 0911
1220(0656 0657 0658 0659 0660 0661 0662 0663 1620 (0912 0913 0914 0915 0916 0917 0918 0919
1230|0664 0665 0666 0667 0668 0669 0670 0671 1630 {0920 0921 0922 0923 0924 0925 0926 0927
1240|0672 0673 0674 0675 0676 0677 0678 0679 1640 |0928 0929 0930 0931 0932 0933 0934 0935
1250|0680 0681 0682 0683 0684 0685 0686 0687 1650 (0936 0937 0938 0939 0940 0941 0942 0943
1260|0688 0689 0690 0691 0692 0693 0694 0695 1660 0944 0945 0946 0947 0948 0949 0950 0951
1270|0696 0697 0698 0699 0700 0701 0702 0703 1670 (0952 0953 0954 0955 0956 0957 0958 0959
1300|0704 0705 0706 0707 0708 0709 0710 0711 1700 10960 0961 0962 0963 0964 0965 0966 0967
1310] 0712 0713 0714 0715 0716 0717 0718 0719 1710 [0968 0969 0970 0971 0972 0973 0974 0975
13200720 0721 0722 0723 0724 0725 0726 0727 1720|0976 0977 0978 0979 0980 0981 0982 0983
1330|0728 0729 0730 0731 0732 0733 0734 0735 1730|0984 0985 0986 0987 0988 0989 0990 0991
1340|0736 0737 0738 0739 0740 0741 0742 0743 1740|0992 0993 0994 0995 0996 0997 0998 0999
135010744 0745 0746 0747 0748 0749 0750 0751 1750|1060 1001 1002 1003 1004 1005 1006 1007
1360|0752 0753 0754 0755 0756 0757 0758 0759 1760 (1008 1009 1010 1011 1012 1013 1014 1015
1370|0760 0761 0762 0763 0764 0765 0766 0767 1770 (1016 1017 1018 1019 1020 1021 1022 1023

Octal-Decimal Integer Conversion Table

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 i
2000 {1024 1025 1026 1027 1028 1029 1030 1031 2400|1280 1281 1282 1283 1284 1285 1286 1287
20101032 1033 1034 1035 1036 1037 1038 1039 2410|1288 1289 1290 1291 1292 1293 1294 1295
2020|1040 1041 1042 1043 1044 1045 1046 1047 242011296 1297 1298 1299 1300 1301 1302 1303
2030|1048 1049 1050 1051 1052 1053 1054 1055 2430) 1304 1305 1306 1307 1308 1309 1310 1311
2040 {1056 1057 1058 1059 1060 1061 1062 1063 2440|1312 1313 1314 1315 1316 1317 1318 1319
2050|1064 1065 1066 1067 1068 1069 1070 1071 245011320 1321 1322 1323 1324 1325 1326 1327
2060 (1072 1073 1074 1075 1076 1077 1078 1079 2460|1328 1329 1330 1331 1332 1333 1334 1335
2070|1080 1081 1082 1083 1084 1085 1086 1087 2470|1336 1337 1338 1339 1340 1341 1342 1343
2100 (1088 1089 1090 1091 1092 1093 1094 1095 25001344 1345 1346 1347 1348 1349 1350 1351
2110|1096 1097 1098 1099 1100 1101 1102 1103 25101352 1353 1354 1355 1356 1357 1358 1359
21201104 1105 1106 1107 1108 1109 1110 1111 2520|1360 1361 1362 1363 1364 1365 1366 1367
21301112 1113 1114 1115 1116 1117 1118 1119 253011368 1369 1370 1371 1372 1373 1374 1375
21401120 1121 1122 1123 1124 1125 1126 1127 2540|1376 1377 1378 1379 1380 1381 1382 1383
215011128 1129 1130 1131 1132 1133 1134 1135 2550|1384 1385 1386 1387 1388 1389 1390 1391
21601136 1137 1138 1139 1140 1141 1142 1143 2560|1392 1393 1394 1395 1396 1397 1398 1399
2170]1144 1145 1146 1147 1148 1149 1150 1i51 2570|1400 1401 1402 1403 1404 1405 1406 1407
22001152 1153 1154 1155 1156 1157 1158 1159 2600|1408 1409 1410 1411 1412 1413 1414 1415
22101160 1161 1162 1163 1164 1165 1166 1167 2610|1416 1417 1418 1419 1420 1421 1422 1423
22201168 1169 1170 1171 1172 1173 1174 1175 2620|1424 1425 1426 1427 1428 1429 1430 1431
22301176 1177 1178 1179 1180 1181 1182 1183 2630|1432 1433 1434 1435 1436 1437 1438 1439
224011184 1185 1186 1187 1188 1189 1190 1191 26401440 1441 1442 1443 1444 1445 1446 1447
2250 (1192 1193 1194 1195 1196 1197 1198 1199 2650 1448 1449 1450 1451 1452 1453 1454 1455
2260 (1200 1201 1202 1203 1204 1205 1206 1207 2660|1456 1457 1458 1459 1460 1461 1462 1463
2270|1208 1209 1210 1211 1212 1213 1214 1215 267011464 1465 1466 1467 1468 1469 1470 1471
23001216 1217 1218 1219 1220 1221 1222 1223 270011472 1473 1474 1475 1476 1477 1478 1479
2310|1224 1225 1226 1227 1228 1229 1230 1231 27101480 1481 1482 1483 1484 1485 1486 1487
2320|1232 1233 1234 1235 1236 1237 1238 1239 2720|1488 1489 1490 1491 1492 1493 1494 1495
2330|1240 1241 1242 1243 1244 1245 1246 1247 2730|1496 1497 1498 1499 1500 1501 1502 1503
2340|1248 1249 1250 1251 1252 1253 1254 1255 2740|1504 1505 1506 1507 1508 1509 1510 1511
235011256 1257 1258 1259 1260 1261 1262 1263 2750|1512 1513 1514 1515 1516 1517 1518 1519
23601264 1265 1266 1267 1268 1269 1270 1271 27601520 1521 1522 1523 1524 1525 1526 1527
2370|1272 1273 1274 1275 1276 1277 1278 1279 27101528 1529 1530 1531 1532 1533 1534 1535
0 1 9 3 4 5 6 7 0 1 2 3 4 5 6 ki
3000[1536 1537 1538 1539 1540 1541 1542 1543 3400(1792 1793 1794 1795 1796 1797 1798 1799
3010|1544 1545 1546 1547 1548 1549 1550 1551 34101800 1801 1802 1803 1804 1805 1806 1807
3020 (1552 1553 1554 1555 1556 1557 1558 1559 342011808 1809 1810 1811 1812 1813 1814 1815
3030 (1560 1561 1562 1563 1564 1565 1566 1567 3430|1816 1817 1818 1819 1820 1821 1822 1823
3040|1568 1569 1570 1571 1572 1573 1574 1575 3440|1824 1825 1826 1827 1828 1829 1830 1831
3050 (1576 1577 1578 1579 1580 1581 1582 1583 34501832 1833 1834 1835 1836 1837 1838 1839
30601584 1585 1586 1587 1588 1589 1590 1591 3460|1840 1841 1842 1843 1844 1B45 1846 1847
3070 (1592 1593 1594 1595 1596 1597 1598 1599 3470|1848 1849 1850 1851 1852 1853 1854 1855
31001600 1601 1602 1603 1604 1605 1606 1607 3500|1856 1857 1858 1859 1860 1861 1862 1863
3110|1608 1609 1610 1611 1612 1613 1614 1615 3510|1864 1865 1866 1867 1868 1869 1870 1871
31201616 1617 1618 1619 1620 1621 1622 1623 35201872 1873 1874 1875 1876 1877 1878 1879
3130/1624 1625 1626 1627 1628 1629 1630 1631 353011880 1881 1882 1883 1884 1885 1886 1887
3140|1632 1633 1634 1635 1636 1637 1638 1639 3540|1888 1889 1890 1891 1892 1893 1894 1895
3150|1640 1641 1642 1643 1644 1645 1646 1647 3550|1896 1897 1898 1899 1900 1901 1902 1903
31601648 1649 1650 1651 1652 1653 1654 1655 35601904 1905 1906 1907 1908 1909 1910 1911
3170[1656 1657 1658 1659 1660 1661 1662 1663 3570[1912 1913 1914 1915 1916 1917 1918 1919
3200 {1664 1665 1666 1667 1668 1669 1670 1671 3600|1920 1921 1922 1923 1924 1925 1926 1927
3210 {1672 1673 1674 1675 1676 1677 1678 1679 3610|1928 1929 1930 1931 1932 1933 1934 1935
3220|1680 1681 1682 1683 1684 1685 1686 1687 36201936 1937 1938 1939 1940 1941 1942 1943
32301688 1689 1690 1691 1692 1693 1694 1695 36301944 1945 1946 1947 1948 1949 1950 1951
3240 (1696 1697 1698 1699 1700 1701 1702 1703 3640|1952 1953 1954 1955 1956 1957 1958 1959
3250|1704 1705 1706 17Q7 1708 1709 1710 1711 3650|1960 1961 1962 1963 1964 1965 1966 1967
32601712 1713 1714 1715 1716 1717 1718 1719 3660|1968 1969 1970 1971 1972 1973 1974 1975
3270 (1720 1721 1722 1723 1724 1725 1726 1727 36701976 1977 1978 1979 1980 1981 1982 1983
33001728 1729 1730 1731 1732 1733 1734 1735 3700|1984 1985 1986 1987 1988 1989 1990 1991
331011736 1737 1738 1739 1740 1741 1742 1743 37101992 1993 1994 1995 1996 1997 1998 1999
3320 (1744 1745 1746 1747 1748 1749 1750 1751 372042000 2001 2002 2003 2004 2005 2006 2007
33301752 1753 1754 1755 1756 1757 1758 1759 3730|2008 2009 2010 2011 2012 2013 2014 2015
3340 (1760 1761 1762 1763 1764 1765 1766 1767 37402016 2017 2018 2019 2020 202! 2022 2023
335011768 1769 1770 1771 1772 1773 1774 1775 375012024 2025 2026 2027 2028 2029 2030 2031
3360|1776 1777 1778 1779 1780 1781 1782 1783 37602032 2033 2034 2035 2036 2037 2038 2039
3370{1784 1785 1786 1787 1788 1789 1790 1791 3770] 2040 2041 2042 2043 2044 2045 2046 2047

2000 1024
to to
2777 1535

(Octal) | (Decim:

al)

Octal Decimal

10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000 1536
to to
3777 2047
(Octal) | (Decimal)

Appendix

149

Octal-Decimal Integer Conversion Table

150

4000 2048
to to
4777 2559
(Octal) | (Decimal)
Octal Decimal
10000 - 4096
20000 - 8192

30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

5000
to
5777
(Octal)

2560
to
3071
(Decimal)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
4000| 2048 2049 2050 2051 2052 2053 2054 2055 4400} 2304 2305 2306 2307 2308 2309 2310 2311
4010(2056 2057 2058 2059 2060 2061 2062 2063 4410|2312 2313 2314 2315 2316 2317 2318 2319
4020| 2064 2065 2066 2067 2068 2069 2070 2071 44202320 2321 2322 2323 2324 2325 2326 2327
4030} 2072 2073 2074 2075 2076 2077 2078 2079 4430|2328 2329 2330 2331 2332 2333 2334 2335
4040| 2080 2081 2082 2083 2084 2085 2086 2087 4440(2336 2337 2338 2339 2340 2341 2342 2343
4050| 2088 2089 2090 2091 2092 2093 20894 2095 4450|2344 2345 2346 2347 2348 2349 2350 2351
4060! 2096 2097 2098 2099 2100 2101 2102 2103 4460|2352 2353 2354 2355 2356 2357 2358 2359
4070| 2104 2105 2106 2107 2108 2109 2110 2111 4470(2360 2361 2362 2363 2364 2365 2366 2367
4100(2112 2113 2114 2115 2116 2117 2118 2119 45002368 2369 2370 2371 2372 2373 2374 2375
4110(2120 2121 2122 2123 2124 2125 2126 2127 4510(2376 2377 2378 2379 2380 2381 2382 2383
4120| 2128 2129 2130 2131 2132 2133 2134 2135 4520|2384 2385 2386 2387 2383 2389 2390 2391
4130 2136 2137 2138 2139 2140 2141 2142 2143 4530|2392 2393 2394 2395 2396 2397 2398 2399
4140| 2144 2145 2146 2147 2148 2149 2150 2151 4540|2400 2401 2402 2403 2404 2405 2406 2407
4150| 2152 2153 2154 2155 2156 2157 2158 2159 4550|2408 2409 2410 2411 2412 2413 2414 2415
4160] 2160 2161 2162 2163 2164 2165 2166 2167 4560) 2416 2417 2418 2419 2420 2421 2422 2423
4170{ 2168 2169 2170 2171 2172 2173 2174 2175 45702424 2425 2426 2427 2428 2429 2430 2431
4200] 2176 2177 2178 2179 2180 2181 2182 2183 4600 | 2432 2433 2434 2435 2436 2437 2438 2439
4210] 2184 2185 2186 2187 2188 2189 2190 2191 4610|2440 2441 2442 2443 2444 2445 2446 2447
4220] 2192 2193 2194 2195 2196 2197 2198 2199 4620 {2448 2449 2450 2451 2452 2453 2454 2455
4230{ 2200 2201 2202 2203 2204 2205 2206 2207 4630 (2456 2457 2458 2459 2460 2461 2462 2463
4240 2208 2209 2210 2211 2212 2213 2214 2215 4640|2464 2465 2466 2467 2468 2469 2470 2471
4250| 2216 2217 2218 2219 2220 2221 2222 2223 4650|2472 2473 2474 2475 2476 2477 2478 2479
4260 2224 2225 2226 2227 2228 2229 2230 2231 4660|2480 2481 2482 2483 2484 2485 2486 2487
4270 2232 2233 2234 2235 2236 2237 2238 2239 4670|2488 2489 2490 2491 2492 2493 2494 2495
4300(2240 2241 2242 2243 2244 2245 2246 2247 4700|2496 2497 2498 2499 2500 2501 2502 2503
4310] 2248 2249 2250 2251 2252 2253 2254 2255 47102504 2505 2506 2507 2508 2509 2510 2511
43202256 2257 2258 2259 2260 2261 2262 2263 47202512 2513 2514 2515 2516 2517 2518 2519
4330|2264 2265 2266 2267 2268 2269 2270 2271 4730[2520 2521 2522 2523 2524 2525 2526 2527
4340{2272 2273 2274 2275 2276 2277 2278 2279 47402528 2529 2530 2531 2532 2533 2534 2535
4350|2280 2281 2282 2283 2284 2285 2286 2287 4750|2536 2537 2538 2539 2540 2541 2542 2543
4360(2288 2289 2290 2291 2292 2293 2294 2295 4760|2544 2545 2546 2547 2548 2549 2550 2551
4370|2296 2297 2298 2299 2300 2301 2302 2303 47702552 2553 2554 2555 2556 2557 2558 2559

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
5000 [2560 2561 2562 2563 2564 2565 2566 2567 5400 | 2816 2817 2818 2819 2820 2821 2822 2823
5010|2568 2569 2570 2571 2572 2573 2574 2575 5410|2824 2825 2826 2827 2828 2829 2830 2831
5020 | 2576 2577 2578 2579 2580 2581 2582 2583 5420|2832 2833 2834 2835 2836 2837 2838 2839
5030|2584 2585 2586 2587 2588 2589 2590 2591 5430 [2840 2841 2842 2843 2844 2845 2846 2847
50402592 2593 2594 2595 2596 2597 2598 2599 5440 | 2848 2849 2850 2851 2852 2853 2854 2855
5050 | 2600 2601 2602 2603 2604 2605 2606 2607 5450|2856 2857 2858 2859 2860 2861 2862 2863
5060|2608 2609 2610 2611 2612 2613 2614 2615 5460|2864 2865 2866 2867 2868 2869 2870 2871
5070(2616 2617 2618 2619 2620 2621 2622 2623 54702872 2873 2874 2875 2876 2877 2878 2879
5100 (2624 2625 2626 2627 2628 2629 2630 2631 5500 | 2880 2881 2882 2883 2884 2885 2886 2887
51102632 2633 2634 2635 2636 2637 2638 2639 5510|2888 2889 2890 2891 2892 2893 2894 2895
5120 (2640 2641 2642 2643 2644 2645 2646 2647 5520 [2896 2897 2898 2899 2900 2901 2902 2903
5130|2648 2649 2650 2651 2652 2653 2654 2655 5530|2904 2905 2906 2907 2908 2909 2910 2911
51402656 2657 2658 2659 2660 2661 2662 2663 55402912 2913 2914 2915 2916 2917 2918 2919
5150 | 2664 2665 2666 2667 2668 2669 2670 2671 5550|2920 2921 2922 2923 2924 2925 2926 2927
51602672 2673 2674 2675 2676 2677 2678 2679 5560|2928 2929 2930 2931 2932 2933 2934 2935
5170|2680 2681 2682 2683 2684 2685 2686 2687 5570|2936 2937 2938 2939 2940 2941 2942 2943
5200 | 2688 2689 2690 2691 2692 2693 2694 2695 5600 |2044 2945 2946 2947 2948 2949 2950 2951
5210 (2696 2697 2698 2699 2700 2701 2702 2703 5610|2952 2953 2954 2955 2956 2957 2958 2959
5220 {2704 2705 2706 2707 2708 2709 2710 2711 5620 (2960 2961 2962 2063 2964 2965 2966 2967
5230 {2712 2713 2714 2715 2716 2717 2718 2719 5630 |2968 2969 2970 2971 2972 2973 2974 2975
5240 (2720 2721 2722 2723 2724 2725 2726 2727 5640 |2976 2977 2978 2979 2980 2981 2982 2983
5250|2728 2729 2730 2731 2732 2733 2734 21735 5650 {2984 2985 2986 2987 2088 2989 2990 2991
5260 {2736 2737 2738 2739 2740 2741 2742 2743 5660|2992 2993 2994 2995 2996 2997 2998 2999
5270 (2744 2745 2746 2747 2748 2749 2750 2751 5670|3000 3001 3002 3003 3004 3005 3006 3007
5300 {2752 2753 2754 2755 2756 2757 2758 2759 5700 (3008 3009 3010 3011 3012 3013 3014 3015
531012760 2761 2762 2763 2764 2765 2766 2767 5710]3016 3017 3018 3019 3020 3021 3022 3023
5320|2768 2769 2770 2771 2772 2713 2774 2715 5720|3024 3025 3026 3027 3028 3029 3030 3031
5330 (2776 2777 2718 2779 2780 2781 2782 2783 5730|3032 3033 3034 3035 3036 3037 3038 3039
5340|2784 2785 2786 2787 2788 2789 2790 2791 57403040 3041 3042 3043 3044 3045 3046 3047
5350 (2792 2793 2794 2795 2796 2797 2798 2799 5750 (3048 3049 3050 3051 3052 3053 3054 3055
5360 | 2800 2801 2802 2803 2804 2805 2806 2807 57603056 3057 3058 3059 3060 3061 3062 3063
5370|2808 2809 2810 2811 2812 2813 2814 2815 5770]3064 3065 3066 3067 3068 3069 3070 3071

Octal-Decimal Integer Conversion Table

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 (
6000|3072 3073 3074 3075 3076 3077 3078 3079 6400 3328 3329 3330 3331 3332 3333 3334 3335
6010 {3080 3081 3082 3083 3084 3085 3086 3087 6410| 3336 3337 3338 3339 3340 3341 3342 3343
6020 {3088 3089 3090 3091 3092 3093 3094 3095 6420 3344 3345 3346 3347 3348 3349 3350 3351
6030 (3096 3097 3098 3099 3100 3101 3102 3103 64301 3352 3353 3354 3355 3356 3357 3358 3359
6040|3104 3105 3106 3107 3108 3109 3110 3111 6440(3360 3361 3362 3363 3364 3365 3366 3367
6050 {3112 3113 3114 3115 3116 3117 3118 3119 6450(3368 3369 3370 3371 3372 3373 3374 3375
6060 ;3120 3121 3122 3123 3124 3125 3126 3127 6460| 3376 3377 3378 3379 3380 3381 3382 3383
6070|3128 3129 3130 3131 3132 3133 3134 3135 6470 3384 3385 3386 3387 3388 3389 3390 3391
6100|3136 3137 3138 3139 3140 3141 3142 3143 6500(3392 3393 3394 3395 3396 3397 3398 3399
61103144 3145 3146 3147 3148 3149 3150 3151 6510] 3400 3401 3402 3403 3404 3405 3406 3407
6120 (3152 3153 3154 3155 3156 3157 3158 3159 6520| 3408 3409 3410 3411 3412 3413 3414 3415
6130|3160 3161 3162 3163 3164 3165 3166 3167 6530| 3416 3417 3418 3419 3420 3421 3422 3423
6140 (3168 3169 3170 3171 3172 3173 3174 3175 6540 3424 3425 3426 3427 3428 3429 3430 3431
6150 {3176 3177 3178 3179 3180 3181 3182 3183 6550 3432 3433 3434 3435 3436 3437 3438 3439
6160|3184 3185 3186 3187 3188 3189 3190 3191 6560| 3440 3441 3442 3443 3444 3445 3446 3447
61703192 3193 3194 3195 3196 3197 3198 3199 6570| 3448 3449 3450 3451 3452 3453 3454 3455
6200 | 3200 3201 3202 3203 3204 3205 3206 3207 6600} 3456 3457 3458 3459 3460 3461 3462 3463
62103208 3209 3210 3211 3212 3213 3214 3215 6610| 3464 3465 3466 3467 3468 3469 3470 3471
6220 | 3216 3217 3218 3219 3220 3221 3222 3223 6620| 3472 3473 3474 3475 3476 3477 3478 3479
6230 {3224 3225 3226 3227 3228 3229 3230 3231 6630 | 3480 3481 3482 3483 3484 3485 3486 3487
6240 (3232 3233 3234 3235 3236 3237 3238 3239 6640| 3488 3489 3490 3491 3492 3493 3494 3495
6250 13240 3241 3242 3243 3244 3245 3246 3247 6650| 3496 3497 3498 3499 3500 3501 3502 3503
6260 (3248 3249 3250 3251 3252 3253 3254 3255 6660] 3504 3505 3506 3507 3508 3509 3510 3511
6270 (3256 3257 3258 3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516 3517 3518 3519
6300 | 3264 3265 3266 3267 3268 3269 3270 3271 6700 3520 3521 3522 3523 3524 3525 3526 3527
6310|3272 3273 3274 3275 3276 3277 3278 3279 6710] 3528 3529 3530 3531 3532 3533 3534 3535
6320 (3280 3281 3282 3283 3284 3285 3286 3287 6720 3536 3537 3538 3539 3540 3541 3542 3543
6330 {3288 3289 3290 3291 3292 3293 3294 3295 6730| 3544 3545 3546 3547 3548 3549 3550 3551
6340 | 3296 3297 3298 3299 3300 3301 3302 3303 6740(3552 3553 3554 3555 3556 3557 3558 3559
6350 (3304 3305 3306 3307 3308 3309 3310 3311 6750| 3560 3561 3562 3563 3564 3565 3566 3567
6360 (3312 3313 3314 3315 3316 3317 3318 3319 6760(3568 3569 3570 3571 3572 3573 3574 3575
6370|3320 3321 3322 3323 3324 3325 3326 3327 6770] 3576 3577 3578 3579 3580 3581 3582 3583

0 1 2 3 4 5 6 1 0 1 2 3 4 5 [7
7000[3584 3585 3586 3587 3588 3589 3590 3591 7400|3840 3841 3842 3843 3844 3845 3846 3847
7010} 3592 3593 3594 3595 3596 3597 3598 3599 7410(3848 3849 3850 3851 3852 3853 3854 3855
7020{ 3600 3601 3602 3603 3604 3605 3606 3607 7420(3856 3857 3858 3859 3860 3861 3862 3863
7030{ 3608 3609 3610 3611 3612 3613 3614 3615 7430(3864 3865 3866 3867 3868 3869 3870 3871
7040] 3616 3617 3618 3619 3620 3621 3622 3623 7440| 3872 3873 3874 3875 3876 3877 3878 3879
7050] 3624 3625 3626 3627 3628 3629 3630 3631 7450| 3880 3881 3882 3883 3884 3885 3886 3887
7060] 3632 3633 3634 3635 3636 3637 3638 3639 7460| 3888 3889 3890 3891 3892 3893 3894 3895
7070| 3640 3641 3642 3643 3644 3645 3646 3647 7470(3896 3897 3898 3899 3900 3901 3902 3903
7100| 3648 3649 3650 3651 3652 3653 3654 3655 7500|3904 3905 3906 3907 3908 3909 3910 3911
T7110| 3656 3657 3658 3659 3660 3661 3662 3663 7510|3912 3913 3914 3915 3916 3917 3918 3919
7120] 3664 3665 3666 3667 3668 3669 3670 3671 752013920 3921 3922 3923 3924 3925 3926 3927
7130] 3672 3673 3674 3675 3676 3677 3678 3679 7530|3928 3929 3930 3931 3932 3933 3934 3935
7140| 3680 3681 3682 3683 3684 3685 3686 3687 7540|3936 3937 3938 3939 3940 3941 3942 3943
7150} 3688 3689 3690 3691 3692 3693 3694 3695 7550|3944 3945 3946 3947 3948 3949 3950 3951
7160| 3696 3697 3698 3699 3700 3701 3702 3703 7560| 3952 3953 3954 3955 3956 3957 3958 3959
7170] 3704 3705 3706 3707 3708 3709 3710 3711 7570(3960 3961 3962 3963 3964 3965 3966 3967
7200| 3712 3713 3714 3715 3716 3717 3718 3719 7600 [3968 3969 3970 3971 3972 3973 3974 3975
7210} 3720 3721 3722 3723 3724 3725 3726 3727 7610{3976 3977 3978 3979 3980 398r 3982 3983
7220(3728 3729 3730 3731 3732 3733 3734 3735 7620|3984 3985 3986 3987 3988 3989 3990 3991
7230(3736 3737 3738 3739 3740 3741 3742 3743 76303992 3993 3994 3995 3996 3997 3998 3999
7240(3744 3745 3746 3747 3748 3749 3750 3751 764014000 4001 4002 4003 4004 4005 4008 4007
7250{ 3752 3753 3754 3755 3756 3757 3758 3759 7650 | 4008 4009 4010 4011 4012 4013 4014 4015
7260 3760 3761 3762 3763 3764 3765 3766 3767 76604016 4017 4018 4019 4020 4021 4022 4023
7270| 3768 3769 3770 3771 3772 3773 3174 3715 7670|4024 4025 4026 4027 4028 4029 4030 4031
7300|3776 3777 3778 3779 3780 3781 3782 3783 7700 | 4032 4033 4034 4035 4036 4037 4038 4039
7310] 3784 3785 3786 3787 3788 3789 3790 3791 771014040 4041 4042 4043 4044 4045 4046 4047
7320|3792 ,3793 3794 3795 3796 3797 3798 3799 7720 {4048 4049 4050 4051 4052 4053 4054 4055
7330(2800 3801 3802 3803 3804 3805 3806 3807 7730|4056 4057 4058 4059 4060 4061 4062 4063
7340{ 3808 3809 3810 3811 3812 3813 3814 3815 7740 | 4064 4065 4066 4067 4068 4069 4070 4071
7350| 3816 3817 3818 3819 3820 3821 3822 3823 775014072 4073 4074 4075 4076 4077 4078 4079
7360 3824 3825 3826 3827 3828 3829 3830 3831 77604080 4081 4082 4083 4084 4085 4086 4087
7370 3832 3833 3834 3835 3836 3837 3838 3839 7770|4088 4089 4090 4091 4092 4093 4094 4095

6000 3072
to to
6777 3583
(Octal) | (Decimal)
Octal Decimal
10000 - 4096
20000 - 8192

30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

7000
to
7777
(Octal)

Appendix

3584
to
4095
(Decimol)

151

Appendix E. Octal-Decimal Fraction Conversion Table

OCTAL DEC. OCTAL DEC, OCTAL DEC, OCTAL DEC,
. 000 .000000 . 100 . 125000 .200 . 250000 . 300 . 375000
.001 .001953 .101 . 126953 .201 .251953 .301 .376953
.002 ,003906 .102 . 128906 .202 . 253906 .302 , 378906
.003 . 005859 .103 . 130859 .203 . 255859 .303 . 380859
.004 ,007812 .104 .132812 .204 .257812 .304 .382812
. 005 . 009765 . 105 . 134765 .205 . 259765 . 305 . 384765
. 006 ,011718 . 106 . 136718 .206 .261718 .306 .386718
.007 .013671 . 107 . 138671 .207 .263671 .307 .388671
.010 . 015625 .110 . 140625 .210 . 265625 .310 . 390625
.011 .017578 L1 . 142578 .211 .267578 .311 .392578
.012 ,019531 . 112 . 144531 .212 .269531 .312 .394531
.013 .021484 .113 . 146484 .213 . 271484 .313 . 396484
.014 . 023437 114 . 148437 .214 . 273437 .314 .398437
.015 . 025390 .115 . 150390 .215 . 275390 .315 .400390
.016 . 027343 .116 .152343 .216 . 277343 .316 . 402343
.017 . 029296 117 . 154296 .217 . 279296 .317 .404296
.020 .031250 .120 . 156250 .220 . 281250 .320 . 406250
.021 .033203 .121 . 158203 .221 . 283203 .321 .408203
.022 . 035156 .122 . 160156 .222 . 285156 .322 .410156
.023 . 037109 .123 . 162109 .223 .287109 .323 .412109
.024 . 039062 .124 . 164062 .224 . 289062 .324 .414062
. 025 .041015 .125 .166015 .225 . 291015 .325 .416015
.026 . 042968 .126 .167968 .226 .292968 .326 .417968
.027 . 044921 127 . 169921 .227 . 294921 .327 .419921
. 030 . 046875 .130 . 171875 .230 . 296875 .330 .421875
.031 . 048828 . 131 .173828 .231 .298828 .331 .423828
.032 .050781 . 132 .175781 .232 .300781 .332 .426781
.033 . 052734 .133 177734 .233 .302734 .333 .427734
.034 . 054687 . 134 . 179687 .234 . 304687 .334 .429687
.035 . 056640 . 135 . 181640 .235 . 306640 .335 .431640
.036 . 058593 . 136 . 183593 .236 . 308593 .336 .433593
.037 . 060546 . 137 . 185546 .237 .310546 .337 . 435546
. 040 ., 062500 . 140 . 187500 .240 .312500 .340 .437500
.041 . 064453 .141 . 189453 .241 . 314453 .341 .439453
.042 . 066406 . 142 . 191406 .242 .316406 . 342 .4414086
. 043 . 068359 .143 . 193359 .243 . 318359 .343 .443359
. 044 .070312 . 144 .195312 .244 . 320312 . 344 . 445312
. 045 . 072265 . 145 . 197265 .245 . 322265 .345 . 447265
. 046 .074218 . 146 . 199218 .246 .324218 .46 .449218
. 047 .076171 . 147 .201171 .247 .326171 . 347 .451171
. 050 .078125 . 150 .203125 .250 .328125 .350 .453125
.051 . 080078 .151 . 205078 .251 , 330078 .351 .455078
.052 . 082031 .152 .207031 .252 .332031 .352 .457031
.053 .083984 . 153 .208984 .253 . 333984 .353 .458984
.054 . 085937 . 154 .210937 . 254 . 335937 .354 .460937
.055 . 087890 .155 .212890 .255 . 337890 .355 .462890
.056 . 089843 . 156 .214843 .256 .339843 . 356 .464843
.057 . 091796 . 157 .216796 .257 .341796 .357 .466796
. 080 . 093750 . 160 . 218750 . 260 . 343750 . 360 .468750
.061 .095703 .161 .220703 . 261 .345703 .361 .470703
. 062 . 097656 .162 . 222656 .262 . 347656 »362 . 472656
.063 . 099609 . 163 . 224609 .263 . 349609 .363 .474609
.064 . 101562 .164 .226562 . 264 .351562 .364 .476562
.065 . 103515 . 165 .228515 .265 .353515 .365 .478515
. 066 . 105468 . 166 .230468 .266 . 355468 . 366 .480468
.067 .107421 .167 .232421 .267 .357421 . 367 .482421
.070 . 109375 . 170 .234375 .270 . 359375 .370 .484375
.071 . 111328 171 .236328 .27 .361328 .371 .486328
.072 . 113281 .172 .238281 .272 . 363281 .372 .488281
.073 . 115234 .173 .240234 .273 .365234 L3713 .490234
.074 . 117187 .174 .242187 L2714 . 367187 .374 .492187
.075 . 119140 .175 . 244140 275 .369140 .375 .494140
.076 . 121093 . 178 246093 .276 .371093 .376 .496093
L0177 . 123046 177 . 248046 L2717 . 373046 L3717 .498046

152

Octal-Decimal Fraction Conversion Table

OCTAL DEC, OCTAL DEC, OCTAL DEC, OCTAL DEC.

.000000 . 000000 .000100 . 000244 .000200 . 000488 . 000300 . 000732
.000001 . 000003 .000101 . 000247 .000201 .000492 . 000301 .000735
. 000002 . 000007 .000102 .000251 .000202 . 000495 .000302 . 000740
. 000003 . 000011 .000103 .000255 . 000203 . 000499 . 000303 .000743
. 000004 . 000015 .000104 .000259 . 000204 .000503 . 000304 . 000747
. 000005 . 000019 .000105 . 000263 . 000205 . 000507 . 000305 .000751
. 000006 . 000022 .000106 .000267 . 000206 .000511 .000306 .000755
. 000007 . 000026 .000107 .000270 .000207 .000514 .000307 .000759
. 000010 . 000030 ,000110 .000274 . 000210 .000518 .000310 .000762
.000011 .000034 ,000111 . 000278 .000211 . 000522 .000311 .000766
,000012 . 000038 .000112 ,000282 . 000212 . 000526 . 000312 , 000770
.000013 . 000041 .000113 . 000286 .000213 . 000530 .000313 .000774
,000014 . 000045 .000114 . 000289 . 000214 . 000534 .000314 . 000778
.000015 . 000049 .000115 . 000293 . 000215 . 000537 . 000315 .000782
. 000016 . 000053 .000116 .000297 .000216 . 000541 . 000316 . 000785
. 000017 . 000057 ,000117 .000301 . 000217 . 000545 , 000317 .000789
. 000020 . 000061 ,000120 . 000305 .000220 . 000549 .000320 .000793
.000021 . 000064 .000121 .000308 . 000221 . 000553 .000321 .000797
. 000022 . 000068 .000122 .000312 . 000222 . 000556 .000322 .000801
.000023 .000072 .000123 . 000316 . 000223 . 000560 .000323 .000805
.000024 .000076 .000124 . 000320 . 000224 . 000564 .000324 .000808
. 000025 . 000080 .000125 .000324 . 000225 .000568 . 000325 . 000812
. 000026 ,000083 .000126 . 000328 . 000226 .000572 . 000326 .000816
. 000027 . 000087 .000127 .000331 . 000227 . 000576 . 000327 . 000820
.000030 . 000091 .000130 . 000335 . 000230 . 000579 . 000330 .000823
.000031 . 000095 .000131 .000339 . 000231 . 000583 .000331 . 000827
.000032 . 000099 . 000132 .000343 .000232 . 000587 .000332 .000831
.000033 ,000102 .000133 . 000347 . 000233 . 000591 .000333 . 000835
.000034 . 000106 .000134 . 000350 .000234 . 000595 . 000334 . 000839
.000035 .000110 .000135 . 000354 . 000235 . 000598 .000335 .000843
.000036 ,000114 .000136 .000368 . 000236 .000602 .000336 .000846
. 000037 .000118 .000137 . 000362 ,000237 .000606 .000337 . 000850
. 000040 . 000122 .000140 .000366 . 000240 ,000610 . 000340 .000854
.000041 .000125 .000141 . 000370 . 000241 .000614 .000341 . 000858
.000042 .000129 .000142 .000373 . 000242 . 000617 . 000342 . 000862
.000043 .000133 .000143 . 000377 .000243 .000621 . 000343 . 000865
. 000044 . 000137 .000144 . 000381 . 000244 . 000625 . 000344 .000859
. 000045 .000141 .000145 .000385 . 000245 .000629 . 000345 .000873
. 000046 .000144 .000146 .000389 .000246 .000633 . 000346 .000877
. 000047 . 000148 .000147 .000392 . 000247 . 000637 . 000347 .000881
. 000050 .000152 ,000150 .000396 . 000250 . 000640 . 000350 .000885
. 000051 . 000156 .000151 . 000400 .000251 . 000644 . 000351 .000888
. 000052 .000160 .000152 . 000404 . 000252 . 000648 .000352 .000892
.000053 ,000164 .000153 . 000408 . 000253 . 000652 .000353 . 000896
.000054 . 000167 .000154 . 000411 . 000254 . 000656 .000354 . 000900
.000055 .000171 . 000155 . 000415 . 000255 . 000659 . 000355 .000904
. 000056 .000175 .000156 . 000419 . 000256 .000663 . 000356 . 000907
.000057 .000179 .000157 . 000423 . 000257 . 000667 . 000357 .000911
. 000060 ,000183 .000160 . 000427 . 000260 .000671 . 000360 . 000915
. 000061 .000186 .000161 . 000431 . 000261 . 000675 . 000361 .000919
. 000062 .000190 .000162 . 000434 . 000262 . 000679 . 000362 . 000923
.000063 . 000194 .000163 .000438 .000263 . 000682 .000363 .000826
. 000064 . 000198 .000164 . 000442 .000264 . 000686 . 000364 . 000930
. 000065 .000202 . 000165 . 000446 . 000265 . 000690 . 000365 .000934
. 000066 . 000205 .000166 . 000450 . 000266 . 000694 . 000366 .000938
.000067 . 000209 .000167 . 000453 . 000267 . 000698 . 000367 .000942
.000070 .000213 .000170 . 000457 ,000270 .000701 .000370 .000946
.000071 . 000217 .000171 .000461 . 000271 , 000705 .000371 . 000949
.000072 . 000221 .000172 . 000465 .000272 . 000709 .000372 . 000953
.000073 . 000225 .000173 .000469 . 000273 .000713 .000373 .000957
. 000074 .000228 .000174 .000473 .000274 . 000717 . 000374 . 000961
.000075 . 000232 .000175 .000476 . 000275 . 000720 .000375 . 000965
.000076 . 000236 . 000176 .000480 .000276 .000724 . 000376 . 000968
.000077 . 000240 . 000177 . 000484 . 000277 .000728 .000377 .000972

Appendix 153

Octal-Decimal Fraction Conversion Table

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

. 000400 . 000976 .000500 .001220 . 000600 . 001464 .000700 .001708
. 000401 . 000980 . 000501 .001224 . 000601 . 001468 ,000701 .001712
. 000402 . 000984 . 000502 .001228 . 000602 . 001472 . 000702 .001716
. 000403 .000988 .000503 .001232 . 000603 . 001476 . 000703 .001720
. 000404 . 000991 .000504 .001235 . 000604 .001480 .000704 .001724
. 000405 . 000995 .000505 .001239 . 000605 . 001483 . 000705 ,001728
. 000406 .000999 . 000506 .001243 . 000606 . 001487 .000706 .001731
. 000407 .001003 . 000507 .001247 ,000607 . 001491 . 000707 . 001735
. 000410 .001007 .000510 .001251 . 000610 . 001495 .000710 ,001739
.000411 .001010 .000511 .001255 . 000611 .001499 .000711 .001743
.000412 .001014 .000512 .001258 , 000612 . 001502 .000712 ,001747
.000413 .001018 .000513 . 001262 . 000613 . 001506 .000713 . 001750
. 000414 . 001022 ,000514 .001266 . 000614 .001510 .000714 ,001754
. 000415 . 001026 .000515 .001270 . 000615 .001514 . 000715 .001758
.000416 .001029 .000516 .001274 . 000616 ,001518 .0007186 ,001762
. 000417 ,001033 ,000517 ,001277 . 000617 . 001522 . 000717 .001766
. 000420 . 001037 .000520 .001281 . 000620 . 001525 .000720 . 001770
. 000421 .001041 .000521 .001285 .000621 . 001529 .000721 .001773
. 000422 . 001045 .000522 .001289 . 000622 . 001533 . 000722 L 001777
.000423 . 001049 .000523 .001293 , 000623 .001537 . 000723 ,001781
. 000424 .001052 . 000524 .001296 . 000624 . 001541 000724 .001785
. 000425 . 001056 .000525 .001300 . 000625 . 001544 . 000725 .001789
. 000426 . 001060 . 000526 .001304 . 000626 .001548 .000726 .001792
. 000427 . 001064 . 000527 ,001308 . 000627 . 001552 . 000727 .001796
. 000430 ,001068 ,000530 ,001312 . 000630 . 001556 .000730 . 001800
. 000431 .001071 .000531 .001316 . 000631 , 001560 .000731 .001804
. 000432 . 001075 . 000532 .001319 , 000632 . 001564 . 000732 .001808
.000433 .001079 .000533 .001323 .000633 . 001567 ,000733 .001811
.000434 .001083 .000534 . 001327 . 000634 .001571 .000734 .001815
. 000435 .001087 .000535 .001331 . 000635 . 001575 . 000735 .001819
.000436 . 001091 .000536 .001335 . 000636 . 001579 . 000736 .001823
. 000437 .001094 . 000537 .001338 . 000637 .001583 . 000737 .001827
. 000440 . 001098 . 000540 ,001342 . 000640 .001586 .000740 .001831
. 000441 ,001102 . 000541 .001346 . 000641 . 001590 ,000741 .001834
. 000442 .001106 . 000542 .001350 . 000642 . 001594 . 000742 .001838
.000443 .001110 . 000543 .001354 . 000643 .001598 .000743 ,001842
.000444 ,001113 .000544 .001358 . 000644 . 001602 .000744 . 001846
. 000445 .001117 . 000545 .001361 . 000645 . 001605 .000745 .001850
. 000446 » 001121 .000546 .001365 . 000646 .001609 .000746 .001853
. 000447 .001125 . 000547 .001369 . 000647 .001613 .000747 .001857
., 000450 .001129 . 000550 .001373 . 000650 ,001617 . 000750 .001861
. 000451 .001132 . 000551 .001377 . 800651 . 001621 ,000751 .001865
. 000452 .001136 . 000552 .001380 . 000652 .001625 ,000752 .001869
. 000453 .001140 . 000553 .001384 . Q00653 .001628 ,000753 .001873
. 000454 .001144 . 000554 .001388 . 000654 .001632 . 000754 .001876
. 000455 . 001148 .000555 .001392 . 000655 ,001636 . 000755 .001880
.000456 .001152 . 000556 .001396 . 000656 ,001640 . 000756 .001884
.000457 . 001155 .000557 .001399 . 000657 .001644 . 000757 .001888
. 000460 .001159 . 000560 .001403 . 000660 ,001647 . 000760 .001892
. 000461 .001163 . 000561 .001407 . 000661 .001651 .000761 .001895
.000462 ,001167 .000562 .001411 .000662 . 001655 ,000762 .001899
. 000463 .001171 . 000563 .001415 . 000663 .001659 .000763 .001903
. 000464 .001174 . 000564 .001419 . 000664 .001663 .000764 . 001907
. 000465 .001178 . 000565 .001422 . 000665 .001667 .000765 .001911
.000466 .001182 . 000566 .001426 ., 000666 ,001670 . 000766 .001914
. 000467 .001186 . 000567 .001430 .000667 .001674 .000767 ,001918
.000470 .001190 . 000570 .001434 . 000670 .001678 .000770 ,001922
.000471 ,001184 .000571 .001438 . 000671 .001682 .000771 . 001926
.000472 .001197 . 000572 .001441 . 000672 .001686 .000772 , 001930
. 000473 .001201 .000573 . 001445 .000673 .001689 .000773 .001934
. 000474 . 001205 .000574 . 001449 . 000674 .001693 .000774 .001937
. 000475 . 001209 .000575 .001453 . 000675 . 001697 .000775 .001941
.000476 .001213 .000576 . 001457 .000676 . 001701 .000776 .001945
. 000477 . 001216 . 000577 . 001461 . 000677 . 001705 .000777 .001949

154

Appendix F. Scaling for Fixed-Point Calculation

Although no binary point is built into the computer,
one can think of such a point existing between any two
successive binary bits of a 36-bit word. The position of
such a point is determined by the choice of scale factor.
Scaling a problem connotes initially defining the posi-
tion of the binary point in each input number on the
basis of the bounds on the number’s magnitude, fol-
lowing the behavior of the point in all computational
steps (that is, the place of the point after multiplica-
tion and division, again taking into account the bounds
on the magnitude of the intermediate answers) and,
finally, knowing the place of the binary point in each of
the final results. Fixed-point scaling generally requires
complete and accurate information about the bounds
on the magnitude of all numbers that come into the
computation (input, intermediate, output).

The purpose of a careful scaling analysis is to make -

the most efficient use of the 35 bits in the full word
(minimize the presence of leading zeros and, thus, in-
crease accuracy) and at the same time provide for the
largest numbers so that no overflow (loss of the most
significant bits in a number) occurs.

It is convenient to write the symbols for the numbers
in a problem in a form that explicitly states the posi-
tion of the binary point. We write:

x = 21X
Where:

x = the true value

% = a 35-bit fraction (point before the first bit), the
so-called “scaled form” of x.

91 = the scale factor, generally such that q is the
smallest integral power of 2 that makes 29
greater than the maximum value for x.

The standard convention is to consider fixed-point
numbers as fractions and to express the numbers in a
problem as fractions multiplied by scale factors. We
are able logically to look at the 35 bits in the full word
in two ways: with the binary point at the extreme left,
it is %, the scaled fraction; with the point q places from
the left, it is x, the true value.

Neither adding nor subtracting changes the position
of the point. However, both in multiplication and divi-
sion, special consideration must be given to the place
of the point in the product and in the quotient. The
following rules apply for fixed-point calculation:

Multiplication: Two full-word fractions yield a prod-
uct that is a 70-bit fraction.

Multiplicand (35 bits) Storage Register
Multiplier (35bits) MQ Register
Product (70 bits) AC-MQ

Division: the divisor must be larger than the divi-
dend. If this is so, a 70-bit fractional dividend divided
by a 35-bit fractional divisor yields a 35-bit fractional
quotient. Generally, the dividend is a 35-bit fraction
and the 70-bit Ac-MQ space is used to shift the dividend
to the right the number of places required to make it
less than the divisor.

Dividend (70 bits) AC-MQ
Divisor (35 bits) Storage Register
Quotient (35 bits) MQ Register

Remainder (35 bits) AC

It is seen that the binary point remains at the ex-
treme left in both multiplication and division of frac-
tions. It is for this convenience that scaling is mostly
done in terms of fractions and scale factors.

The steps to follow in scaling are:

1. Find the bounds on the absolute values of the
numbers.

2. Set up the scaling relationship between true num-
bers and scaled fractions by determining the required
scale factor:

x=21%

3. By substitution, obtain from the “true value for-
mula” the “scaled value formula” and write the pro-
gram directly from the latter. Scale factors that do not
cancel specify the required shift operations.

Multiplication Scaling
The expression |x| means the absolute value
of x; the symbol < means less than.
Step I: |x| < 1000
ly] < 50
|z| < 4000
Frequently, additional information puts a bound on
|| which is less than the bound: max. x times max. y.
In this case, we want to take advantage of the fact that
|z| has an effective bound of, for example, 4,000 in place
of 50,000.

Xy =12

Appendix 155

Step 2: x = 2% (210 = 1024)
y=2y (2 = 64)
z=2127 (22 = 4096)

Note that in each case, q is the smallest integral
power of 2 that makes 29 greater than the absolute
bound. In effect, we are placing the point in the full
word so that no more binary places are carried to the
left of the point than are necessary to represent the
absolute bound.

Step3: xy=1z2

0% 280G = 2127

which reduces to:
AURy =2
Coding directly in terms of these fractions we write:
MPY L)

X

y)
LLS 4
STO L(Z)

LDQ L(
(

where L (%) means the “location of x”.

In the first two steps, we multiply two fractions to
generate a 70-bit fractional product. Because the effec-
tive bound of [zl is 4,000, not 50,000, four leading
binary zeros will always appear in the product and the
long left shift of four eliminates these and, at the same
time, brings four additional bits of accuracy from the
MQ. The last step stores the fraction product, Z, in
core storage.

We are able logically to look at the 35 bits in this cell
in two ways: with the binary point at the extreme left
it is 7, the scaled fraction; with the point 12 places over
from the left, it is z, the true answer. The scaling rela-
tionship

z= 2127

explicitly states this.

Division Scaling

X
X =,
y
Step 1: |x| < 1000
2<y|< 50
]z] < 200

The lower bound as well as the upper bound for all
divisors must be known in the case where no informa-
tion is available on the bound of the quotient. The
bounds on |x| and |y| imply an absolute bound on |z of
500. Frequently, as in this example, we are given a
lower figure, 200, as a usable bound. We again take
advantage of this in our scaling to achieve more accu-
racy to the right of the point.

156

Step 2: x = 210% (210 = 1024)
y =920y (28 64)
z=95% (28 = 256)

Step 3:
=z

210x

20y
which reduces to

2-4x

y

which we proceed to code as:

< |

=287

=7z

LDQ L(o)
CLA L(%)
LRS 4

The long right shift of four derived from the bounds
on x, y, and z prevents a divide check. Effectively, here
we are dividing the fraction (2—4%) by the fraction ¥
to obtain the quotient fraction Z.

Accumulation Scaling

Numbers added or subtracted in the accumulator must
have the same point. To prevent an overflow in the
summing process, however, it is not enough to scale
the final sum according to its bound but, generally
(unless special logic instructions are programmed), it
must be scaled by the largest bound that applies to*any
element in the sum or partial sum (P;) generated in the
process of summing,

To scale the sum
n
A = 2 i
i=1

the following is usually done: If we are given the
bounds

Al <A
lail <a’1 1=1,2,.. ,
P| <P, i=12...,n-2

Select the largest bound from A’, a'y, a’2,........
a'n, Py, P ..., P_s The largest of these is then
used as the effective bound to scale both the sum A
and the elements a;.

In the more common cases, where the partial sums
are not known, the bound used for selecting the scale
factor is n |am| where n is the number of elements and
a,, is the element with the greatest magnitude. In this
case, the largest element is known but the remaining
elements and the order in which the elements are
summed do not have to be known.

Exercises In Scaling

1. Scale and code:
A=a1+a2+a3+a4
given that |a1| < 200

las| < 300
]agl < 600
]a4| < 700
|A| < 1000
| partial sums| < 1000
Solution: a; =213, (210 = 1024)
as = 210 as
azg = 210 as
as = 210 ay
A=21°A
. A=51+§2+53+§4
Code:
CLA L(a)
ADD L(&)
ADD L(&,)
ADD L(a)
STO L(A)

If the bound on the partial sums had not been known,
1,800 would have been used to select the scale factor,
which would then have been 21* = 2,048. If the bound
on only the largest element had been known, then 2,800
would have been used to select the scale factor, which
would then have been 212 = 4,096. (In this case n = 4
and |am[< 700).

2. Scale and Code:
A= a; az ag

24 a5
given that |a1\ < 200
|a2| < 300
[8.3| < 600

200 < |aqf < 700
1000 < |as| < 1500
Solution: The implied maximum bound for A is:
|A] < 180
a = 28 5.1
as = 29 52
ag = 2103,
ag = 210 a4
az = 211 55
A=28A
Substituting;:
28A=2%3, + 2°a, + 2194,
9107, 211 3,

S(llved for A:

A =2-2(3,8,3;)
34 45

We code:

LDQ L(a)
MPY L(&)
STO L(&ds)
LDQ L(a)
MPY L(a.)
LRS 35
MPY L(7)

LRS 2

DVP L(3a)

STQ L(A)

Comment: The accuracy of the computation could
be improved if more information were given. The per-
son submitting the formula should be asked for bounds
for the intermediate quantities in the computation
(asas), (aras), (a; as) a3, which may be smaller than
the implied maximum bounds. For example, if we were
given the effective bounds:

|as a5 < 750,000
]al a2[< 32,000

then |A] < 96
We could then scale: ajas = 2% (aga;s)
a; a, = 219 (m)

A=2TA
and have 2TA = 2 (aray) 210 3,
reducing to: A=2"2%(g;a) 4,
(asa;5)

where
(a1 ag) = 22 a, Ao
(2435) = 23,3
The coding would then be:
LDQ L(&)
MPY L(i:)
LLS 1
STO L(aa)
LDQ L(a)
MPY L(&.)
LRS 33
MPY L(&,)
LRS 2
DVP L(T&)
STQ L(A)
Note that the third instruction eliminates a leading
zero and the seventh instruction eliminates two leading

zeros to retain more accuracy.

The programmer, in setting up the order of computa-
tion steps, should inquire about the bounds on all inter-
mediate quantities to see if it is necessary to use the
implied maximum bound or whether a smaller bound
may be used. Whenever there are alternatives to the
order of computation steps, it is wise to choose the
order that makes the most use of known effective
bounds replacing implied maximum bounds.

3. Scale and Code:

P(x) =a+ bx + cx?
given the bounds

| < 2
bl <2
le] < 2
x| < 4
[P (x)] < 30

Solution: For convenience and economy the poly-
nomial is factored into the form:
P(x) =a+ x (b + cx)

Appendix 157

The scale for [P (x)] is 2°. Thus
P (x) =25P(x) =a+x(b+cx)

P(x)= 2'5+ (b+cx)

Even though thls assures that the result P (x) will be
less than 1, we must now concern ourselves with scaling
all intermediate results to less than 1.
; lal
Since |A| < 2, then % <16

Since |x| < 4, then !Z’I <1

Therefore we write

Now we would like to scale ib‘ le]23|X| to <%g
Since |b| < 2 then ’b’ <|21j
Since |c| < 2and |xI < 4 then jel_x] <1

| cl |x
Therefore 2{[+ | ‘2;! | <4

This can be converted to <
tional scale of 2.
Thus we have

a x b

P =g+5ata=2s+al(zts)]
Hence the following scaling:

a=2%a

x = 2°%

b =2tb

c=2%¢

P(x)=2[a + x (b + &x)]

by applying an addi-

ALS 1
sto LLP(9]

158

Summary

1. With integer times integer and the result less than
2% the answer is in the Mm@ register. Thus:

LDQ A

MPY B

STQ C (answer)

2. With fraction (B = 0) times integer, the integer
part is in the ac with the fractional part in the mo.
Thus:

LDQ A LDQ A
MPY B Or, rounded MPY B
STO INT LLS 1
STQ FRAC ACL ONE
LRS 1
STO RINT (rounded

integer)

3. With fraction (B = 0) times fraction (B = 0),
the significant part is in the ac. Thus:

LDOQ A
MPY B

STO FRAC (significant part), or could be rounded as in 2.

4. Integer divided by integer equals an integer quo-
tient and integer remainder. Thus:

LDQ DVDND
PXD 0,0
LLS 0

DVP DVSOR
STQ QUOT
STO REM

Clear AC
Set sign of AC

Integer quotient if DVSOR 540
Integer remainder if DVSOR 540

5. Integer divided by integer may equal a fractional
quotient and a trivial remainder. Thus:

CLA DVDND

LDQ ZERO Clear MQ

DVP DVSOR

STQ FRAC Fractional quotient if DVSOR > DVDND

Observe that the scaling of any problem is not neces-
sarily unique. There may be several good approaches
to scaling any one problem. The twin goals should
always be to obtain scaling that is workable and that
preserves the greatest amount of accuracy.

Appendix G. Problem Answers

The problem answers presented do not use the most 010 001 110 010 111. = 21627,

sophisticated programming concepts but simply pre- Xi 1627

sent one way of solving the particular problem using —¢
only instructions and concepts described in text up to 1
the point where the problem is presented. 17
. . X8
Problem answers are identified by problem number =~ 3¢
and the page number on which the problems appear. 6
In most cases MAP language is used, but the oRG END, x31342
etc. pseudo-operations are not included in the problem 1136
solutions. 2—
1138
X8
Problem 1, page 21 9104
7—
8 (89 Remainder 1
s 3 Answer = 131 ol
8§ 1 1
Problem 3, page 21
Problem 2, page 21 358
X8
010 001 110 010 111 o864
X2 X8
0 6/912 = 2672
L X8
1 7,296
X2 X8
2 2(368
_0
x% Problem 4, page 21
4 139.247
0 8 139 3
4 8 |17 1 = 213.
X2 8 2 2
8 Answer = 213.1763
00— . 247
8 X8
X2
16
1 — = .1763
17
X2
34
I
35 569
X2 X2 Problem 5, page 21
70 1138
] — 0 2 118
71 1138 2 0
X2 X2 2 [4 1
14 o276 2 [Z 0 =10010
0 1 1 (1)
142 2277
x2_ x2 56 o
284 4554 2 [23 0
_0 —1 2 [IL 1 =1011100
284 4555 2 |5 1
X2 X2 2 (2 1
568 9110 1 0
N 1 10 1
569 9111 o180
Or Answer = 1101110

Appendix 159

Problem 6, page 21

Complement
Add 1000111

Result is

2 |34
2 7
2 |8
2 |4
2 12
1

bO O O DO BO DO
—
-3

100010

0 = 100010
0

0

1

1

1

1 = 1000111
0

0

0

1

1011101

1000111

(oo

0100100
1

Answer = 0100101

Problem 7, page 21
2 |17
2 18 1
2 4 0 = 10001
2 2 0
1 0
1
2 43
2 21 1
2 110 1 = 101011
2 5 0
2 2 1
1 0
1
AC MO CTR
Start 000000 10101 6]
Add Y 010001 10101
Shift 001000 _11010
Add Y 011001
Shift 001100 111010
Shift 000110 011101
Add Y 010111
Shift 001011 101110
Shift 000101 110111
Add Y 010110
Shift 001011 011011 |
Answer = 001011011011. or 1333. or
X8
8
+3!
11
X8
88
+3-
43 91
X 17 X8
301 728
43 +3—
731, Or 731, Answer proof

160

Problem 8, page 21

448,, + 14,,. Using the conversion charts:

Y
010001

448, = 7005 = 111 000 000.
141() = 164 = 000 001 1102
AC MOQ CTR Y
Start 000111 000000 [6] 001110
Shift 001110 000000
Sub; 1 to MQ 35 000000 000001
Shift 000000 000010
Shift 000000 000100
Shift 000000 001000
Shift 000000 010000
Shift 000000 100000
14 1448
42
28
28
Answer = 000 000 100 000, or 40, or 32,
Problem 9, page 21
0 1 10 11 100
0 0 1 10 11 100
1 1 10 11 100 101
10 10 11 100 101 110
11 11 100 101 110 111
100 100 101 110 111 1000
Add Table
0 1 10 11 100
0 0 0 0 0 0
1 0 1 10 11 100
10 0 10 100 110 1000
11 0 11 110 1001 1100
100 0 100 1000 1100 10000
Multiply Table
Problem 10, page 45
-1 Location Operation [~ [Address, Tag, Decrement/ Count
I o
1 :2 6 J“ :
b I CLA_ _,_; ‘:,LOCA
] A.J_J.Q._,_._.ﬁ - 0cs
L — i._U,ﬁ._._,_._: ;AOCC
o lapp___ |iLoep
i
[TO .| iLOCE
R
Problem 11, page 45
. Location l Operation T~ [Address, Tag, Decremant? Count
I ‘ I
Bt <7 !
_llcLa____uocp
I SvB_._.__, LoCcE
L | SsTo . _. |\ TEMP
I
[g.jg._ﬂé,_{ ;LOCA
| LOCS
I S OV N /7' 2SS
N ADD_.__. 1 1LOCC
1 SvuB____ 1\ TEMP
C't_.:_ﬁ.za ________ | 1LOCF
[
e S

Problem 12, page 47 Problem 16, page 52

-1 Location Operation T~ TAddress, Tag, Decremenl/Count <1 Localion Operation T] Address, Yog. Decremen 7 Count
1 :2 6 8 : } 1 :2 é 8 J E
LA __ . | PYRCD+1 L BRI RRTYY

\ .| 1ADD . _. _|\PYRCD +2 Vo ___| |Apo__ .| L0cP

L lsvus_ . _pyYRCD +3 L | lapo__.__iizoce

b STO_ | IPYRCD +#4 S 7 1 3. BRSNS

o To_ . _._licoep
— - i
Problem 13, page 48
TT T tocor Dperaron T TAddress, o5, Docremant/ Coul Problem 17’ page 52

| {1
! :7 s|7 B J : T~ location Operation T T&3deess, Top, Decroment Towm ’
| CLA___ | \PRTIN o Ll L

[+ I}

ey 4B iPRT/N+1 L el A_ . i4ocA

Lo | IADD __ _ | IPRTIN+2 | 40D ' ;LDCB

| llsTO __ |lSKBAL | 408 008
| ADD ___!|PRTI | s I
| |Sua____ \PRTIN*4 T e~ ez
e S TO ||A VAL R I gt
I S
Problem 14, page 49 Problem 18, page 52

-1[et Creraten I }Add'"" Tos, DecrepenyCaun o | Location Operation | [Address, Tog. Decrement/Count
l 12 = 4 4: 1 1 l? é 8 : : {

| (. + { L
T i,f'g' — itggﬁ T LA | LOCA
T T s ro 1 ITEAX Ly | Sv8_. . k0CHB

______ | 8TQ _H | dLs 3

! CLA . _ITEAX R - @&
T T T A npn i | | 8TO . }lL0CP
. . ADD_._ _ _liLocCs e =i
Ll s7e | ITAX8
e | L.Q._Q.,__._: :TAXB
I _ fo _ oLOCX

T T mMey T TliLoex Problem 19, page 54
L STQ | |TAXBX O ST TR T ST
| t2@ _iiLoeCx | N)

| MPY __1lLOCC o7 e —

o 1 sre_ ___ (TEMcX LA itocA
o eLA _IWTEMCX L] cAas _, [Loc8
| bvP i iLoCD o llesa___ _iicoes

! STQ . _ . TCXD | |[TRA____|l\oNE
RN I . R _| \TAXB X | lowE | leAs | koee
.y] |ADD__ _lircxp L eeA ___liseee

! §TO 1 TANS S A ITRA__ _ _ 1 TWo
e — | i7we_ | |sTo __ _ileow

e
Problem 15, page 49
Problem 20, page 54
.] Locatios Operation T [Address; Tog, Decremen t/Count

: ‘| : Tocation Operotion T TAddress. 155, Decremont/ Count
12 6718 — ¢ | { I
I |l lCLA__ . Locx1 2 o7 D

‘ o ' C.LA | \FIND
S _-Q.Z£ _______ o ELOC)(4 — — _‘_____4{ iL
I I MPY ___VLocxz .+ __| |€CAS _._._._| PARTN
Ve _llLocxs I | TRA__ . | 'QuT

| lMPy_ ___1140CX3 . __| TRA___._|PRoCS
T o___ 11 ' TRA | |moRE
L llsTOo ___|lANS [|rRa____jmeee |

Appendix 161

Problem 21, page 54 Problem 21 (Cont’d)
< T Locot Operot T~] Address. Tag, Decremant/ Count . 1 Location Operafion T [Address, Tag, Decrement/ Count
i) L | /
: ARTA LA | Léﬂdﬁ NOTE: PARTA assumes} _Lél’gsl ARS __4’ 'z e
4 | |ADP .| |LOEB thot AB,C, and D e JS7Te_._ __|reme
I ApD | 40@& are all positive values) L llceAa__ | rwe
__:_‘_____ ADD .. .__l :LOCD If they are not, :] IR&._'_,_,_: :§7’0£1f3
""!r""—‘“—'——' rev . __‘\ IroFLW another method is ____}_sz‘ogl ﬁk;______; :55
ﬁ]l’fdgre LBT *_:; shown in solution 21a. i] _SAI{Q_,____‘__{ JII_'EMP
L _ 1 ITRA . _._._11SHIFT b | RLAR | THREE
| |PARTE| PBT | i llrTRA___ _|isTeR1+3
%,“ﬁ 7RA | END | ONE_ | loeT . _ll2
L l|laRrRs . |1 | Twe | |leer . _ll2
R 1 koo | oNE \rHREE loeT '3
| |8ST@_ | |PBIT H’M
END | |HPR _ |
O FLW | IL RS 1)
] i.r.g,f,ﬁi Ersmp
| ADD | OVFLW
| |sTe_ | lOVELW
| |lecA | 1EMP
L lLLs 35
| ITRA . | \PARTS
'SH 1 FT| |[ARS 111 Problem 22, page 60
j ,,,,,,, | [rRa__ " ParTs Pee
_{Q.”E __QQZ —_1 :1 . } Location Operation ! :Addreu, Tog, Decrement/ Counl)
S S S VG B | 1 Jz s|7 (8 : I
NN B A L Axr 24,1 {
| PPxD___ 0,0)
| lmar | Nt242 /
| ALD___ | iNt241 |
> | | - . *
PTOblem 2 (Cont d) b_:_.__—ﬁ g;lf_'_;_w—_} ;PSUM z the location of this'
.{ Tocorion Tperation T TAdFress. Tog, Decroment/ Count _._}_-____ ''''''''''' _jl : instruction) I
l!? 67 |8 J}}\ :A/":\—__A—__l
| \PARTAl (LA | |LOCA
4o | [APD_.__ | LoCRB
L lToV_ . ___llovFLt1
| | lApD__ | Loce
| [TV | OVFLZ
| |40p . _1LoCD
Lo | |\reov._ .. . I IToR L
| IPARTP| |Same os previous example
| lOVFLI |[ADD . _ _loee Problem 23, page 60
—'l~--~—— I'g.z._._._._J LoVF‘ 3 . 1 Location Operation T [Address, Tag, Decremant/Count
| la2p ___izocD ! B /
| [Tey_ _ __|.sToR2 e §7 p L
| Sroei1 ARs | 138 | AxT 52,2 \
I _IsTo__ | IZEmMP | |pxD___ 0,0 \
o ljeca . ionE L M MeB12 /
. | ApD_ _ _ _iiovFLW I I V- Y- S _ime32,1 {
_:;‘____ \STo .. _| loveLw L | T X %=2,2,1 (Note: the'moans!
LA | \reme b |l |STO _Lipsem the location of this
T llars s] lexr "3 R R /
| ___ | |[TRA___ | iPARTS8 L llcca i im f
| OvFL2 |ADD | LoeD +.____ ADD .| M+
| |TeY___ _11sTOR2 I e X_ | pet,1,1
I | ITRA 1 1STOR1 o H{|2es8__ .| Bsum
| \OYEL3| [ADD . _ . iLoeD L _ | |sro__ __| Msum /
{ TOY . _._||STORS e

Problem 24, page 61 Problem 26, page 61
T T locato Creration T TAddress, Tag, Decremen 17 Count T Tocaron Operation T TRIdress. Tog, Decramant/ Coom
| X | P
L | AxT_ . 99,1 e AXT ___ | 10
| CtA__ __| HUND] AXT .| 12,2
\HoNnpe| lc AS__ _ _| uunp+g00,1 \ RETN_| |€LA_ !Bl \
L zax et _) | ____|less __ 1 1A+z0,1 /)
Ll TRA_ | let3 L TRA_ 14001
| |leLA__ | HUND+100,1 T a2, 24 \
L [Tax _ m -4,1,1 . RETNL [TLX x |L~3_,1,,1, \
Lo Jlsre _ __|ipLus | ____||sxa_ . CONDA,Z
|| |AxT_ . _1199,1 :Z'.euvﬁ AXT . le
L lleen _ lHoWp | [T | AxT____|02
: 2As_ __ \iwoNpiiop,1 T TllecAd " B2
___i_.____ QVL-AA._._._,_: LHU”.Df‘.ZGO,l lgﬁrgz ecAsS . ‘: '/4*-10_,1
A — T2 x___) *= I TRA . _ | |LogP
I | T1X - %'5;1:1 : IRA _: :*+1
o _llssPp___ I | Txi_ her1,2,2 /
R lleAas___ _\Peos | LpeP | ITiX _ — =g,
| leHs) . llsxa____|lconDe
! R ;+025 IR ;Cs,é.g._._._._. ;gxm
L | |leseA__ 'PL | |SvB___
TV laxT ilgoo,1 Tl [ses | icomoe]
I 2 AS |:vaD+_‘loa’,1_ I | lsTA__ v.ﬂw | CaNDB
I AT LX) K- ADDI | |[Tx 1 | :RETW,Z,.Z
I TRA_ . _ - {EQUAL ~
| |Tx %e-3,1,2 /
| l€quatl lPXA 1,1 |
Problem 24 (Cont’d)
1 Tocation Operation T TAddress, Tog, Decroment/ Coont
| [l
1 12 47 (8 : ‘L
SN B - 7~ W
e AP D__ _ | HUNDEC
| ____||STA___ _|%ResT
e -~] Problem 27, page 61
i tocal Operation [~] Address, Tog, Decremant/ Count
1 }2 é 8 } :
j I \
Problem 25, page 61 _TQI&ET z ;;—f e t:?z,.- 1)
.{,—777 _ _ 74___‘ I y
T Tocoron Dreroron T TAddrews, To5, Decremont/Co b CLA __: [Aft/M-v-?‘?,,i /
: b .| eAas | |NJm+100,1
1 sl 7 (8 [|-.“774 _TEAi“_ - NG
e ~ 24T ——1 1502 0] I.L.zt.,~~: w-3,1,1 \
e AT 18,2 x4
It — |
-+ PXD__._._ 0,0 TEST_| PXD__ _ i\
ey &As_ 4 ____|pxa___ 12
ey [TRA | b3 |l Nz \START
L | TRA__ _ | ;EQUAL L N | lAfthls point, the program is
| TXxd_ I ff"‘i 2 1 | I !fmlshed
] ot b t
L 1LQ0f | Tt X . | | pe-4, 1,1 ExeNe8l |LDQ___ I INUMi100,1 \
,_i . 512 . ._] IANS Z | _SIQ _1 : [+3100
: _______ - ﬁ.QSIW.,_ ID‘TA"“SO;I _L_“__ _SIQ o _: INUM *?7}1 j
| eyNe | [TIx_ _4 e+l 1,0 | TXL e+l 21
| sxA_ "4NSJ- _:—______ I.L.L._A_.,._;: :mR; |
'ﬁ‘ _______ R e R IKA___ '
| EQUAL |SXD ||CHNc,1 T ELYD___:'L \
I N IEA . IILOOP /\JN\'
‘_‘__—'—'\

Appendix

163

Problem 28, page 61

Problem 29 (Cont’d)

T tocation Operation T [Address. Tag, Decremeat/ Counr w1 Locatior Operotion T [Addr Tog, Decrement; Count (
{ b | [
s N L ool hr
I ‘ o I IsTe__ | lres)
L |sTZ L SuM s laxr_ e [
L laxr 3,1 L | lepg____!lone A
LOBP | CLA __ _ X1+3,1 o lleca___ ixes2)
Lt SUB_ i + | |lcAas . _._!Y+S1
T sT@ i SAVE L llege — i |
D LD@_._._. 1 SAVE o] I_R,A._.__..l r*-f-l
L mPY . _iSAVE | L llsre . _lirest+4,1
LS . 135 N N s U 5 S A B)
. __| ADD__ | |SUM zce0 | |l9eT___ |0
I Al sTe 1 iSUM oNe_ | loeT__ 111
. TIX_ ‘:_LM - M/—\l
L HPR_]
__:_.___._ L _3 :
A AP I S 1t
| SAVE | BSS_ __ L
| SUM__| |BSS i
| XZ | BSS i3
Y1 _|BsSs___ 13
. llewnn____
Problem 29, page 66 Problem 30, page 67
-1 Location Operotion [TAddress. Tag, Decremen/Count T Tocation Gperation T TAddress, Tog, Decrement/ Count (
{ (1 | [
) 22 8|7 (8 : L) lz 8|7 (8 f ll
R um__,__¢ ,Z_€Ro b A.x.r____i 'i?ooa,l
IR I <3 V- . \ENTER| (CLA_._._._| JCoN
L | lter_—_ 17 o llees ! mg&m,#a.{
ﬁ:.____ 5,1-,1._,_."__1: :fx+;o :] {gﬁ"'—'—i E%
| D@ . | |TRA
o _ L.c.g_._._._: ‘rfiE L Jleca____ iceon
L ste] X33 L | lces .1 LuNvPR+900
L _ | pDg_ . _ _iiZERO b | \7RA__ __1IE
| ker 17 L ||\ TRA___ i
L | lsrg___ | x+2 i | leca__._. | |{AADRS
T LQQ__._.ﬂ' | ZERQ ICOMP_| |STA__ | |ToTAL
L |eer 1144 | V| |sTA__.__||\ToTAL+]
A {5 Te 11X+l I | 29 __ ! lNVP 90 |
} LDQ . | ZERO : MPY I UNVPR+9002,1
I — cLA__ - IIY [LAL.i._A_,_.__t :..{5'
; LeR 17 TorA4 APL__ _ i AroTL
L llste____|.F+4 : llstre___ | Arem
| KkDQ__ __|ZERO ! A lrex___. | ewTeR, 1,3 |
Ll lteRm__ 111 L lger___
R | |lsre_ . _11ye3 e lleca___ " leaprs
Lo | |lLpg__ _ | ZERO L | |TRA__ _. IIc:mvurv
R L,e.ﬁ____: 7 e |leca__ "\ rapks
T
l ST 12 | |TRA___ _icomP |
| £DQ__ | IZERO A Jlesa___ | \TADRS /
! L ____|ln 1 o |

164

Problem 30 (Cont'd) Problem 33, page 75
. T' Location Operation } :Addten, Tog, Decrement/ Count T Toconion Goeration T T&IT e Tos Decremen Tom
i - | [l (
142 $|7 (8 I 1 52 8718 : {
| [TRA____|comp LNTER STo _4e \
 ___lesaA ! 'RADRS Ll \sre_ . .| 'mg
L | lrea i comp Yy AT 71
\ceoN | \Bet . I L,bbb N . llLes . _il2s
\JCON_| (Be t_ . . _ 1 bbbbbT L LB,r,AVA' i
\AADes| |[Pze | ATOTL | ||rea___._\i#ALT
:C.Q.QQ.S_ PZE .. 1 1eTeTL b L LS _ 1
FADRS| |PZE_._ . _| \FroTL Lo | le8r__ _ b
_i.l‘.a.g.ﬁi PZE . | JTOTL sl lrea____!'zero1
.] A__
_\RADRS| |PZE | RTPTL bl lbts |3
: e e T B IV
LA +.____ rTRA__. _._| |\RESTR
R _ fg,i._._._ 12
| 754{_ ~ T Zemoz
1 . .| L NA _ ... [
: c s [
IﬂAL)4 c LA _{ ILAC
| |ltoe_ . im@
NN - SN
[ZERo 1 f.égr._,__g 2
11
_______ | ksr___
I 4 rRAa__ _ _| RESTR
ks)
Problem 31, page 68 A A | e8r__ _ 1
T RA_.__ . BLANK
T I Tocanon Oreranian 1]Addreu,Yng,Dcuemnn! (o) { ! _ TRA l lHALr
e o7 s o
| WxT__ 4,2 ﬂ
| €A . CN
I TMT __._._| 28 {
] 4oL | I THRT 9
V| mex 2,11
ICoON__| |(PZE_ . | 164, ,2000
THRT Y E.Z.ﬁ._._‘_._: 39
Problem 33 (Cont'd)
" Tocation Operation T~ TR3Tress. Tog, Decremen T Count
| : \
| \ze#oz2 LDg | Mg (
|
| kS35
Problem 32, page 68 o lleca j Ae \
T Tocaron Bperarion T TAIFess Tog, Decremen Coum ﬁl_~_-_-ﬁ TRA¥ _: !ro J
1l] | [eans jcca e |
4 + [USNPUIP I — . . PPN ' I
o | leca . _lcoma ko Mg
L |lrMT___ 4§ L | lreasx___ilo
': | g.s.;____.: E,ggﬂz. IRESTR |CLA . _l4e
el TMT 1 [
S — P — — L4D-Q._._._.—J lm-g (
—i—~———— izi_,'_ ~~~~~~ - :‘13;”5 R | irrAa%*__ 2 j\
(] I
——— T T CONS | |TRA__ | |ENTER
[lcona | [PzE i iANswr,,BLkl | [iAe ass i1
| [l T e T |
|c.2.d3.ﬁ B.;.é.____: :ﬁﬂil(&ti&,__,_&LKiL ‘_}g__q_____ 8ss .14
| coxs | lpze \AUswR +75, . BLK3] | | l&END 1 |
L _,—J'\/—_/—\\
Appendix 165

Problem 34, page 97

166

.] Location Operation [[Address, Tag. Decrement/ Count /
| [

1 !2 47 |8 : !

L | AxT___ 10,1 A\
\Reap | |[RDs .| 'B3 \

| L | [ReHB__ | 10com |
L] REeB_ . _. DUN

| |rers 1 |Eor

| | KPR . .11

| |\ REDUN| BSR_ .| B3 /

I N PV S _| \R€AD, 1,1
| ()
\€9 F HPR .)

| /. 0CoM |PTH __ _ | INARA, ,15
\INABA| |Bss_._ 1115

BEE Eov___ 111271

Add .. 44
Add Tables 14
Adders 26
Adding Bcp Coded Numbers 66
Addition Overflow 25
Address Counter 86
Address Field 23
Address Modification 11
Arithmetic Tables 14
Assembly Process, 28
Assembly Programs 30
Assembly Register, 86
Base Elements of Programming System 30
Basic Monitor 36
Begin 42
Binary Addition 16
Binary Coded Information 41
Binary Indicators 15
Binary Mode 15
Binary Multiplication 17
Binary Number System 15
Binary Place Part 40
Binary Representations 16
Binary Subtraction 17
Binary System 88
Binary to Decimal 19
Binary to Octal 18
Block Diagram 8
Block Ending with Symbol 41
Block Starting with Symbol 41
Blocking and Deblocking 34
Boolean 42
Buffers 77
Calculating 7
Card Read Punch, 1M 1402. 81, 101
Card Read Punch, 1iBM 1622, 81, 100
Card Reader Operation 101
Card Stackers 100
Carriage Control 106
Channel Data Register 86
Channel-in-Use Indicator 91
Channel Trap Stores 119
Channel Traps iiiiiinnnnnoi.. 77
Check Sums 64
Code Checking 20
Code Combinations 22
Collating Sequence 23
Column Binary 99
Comments Field 38, 44
Comparing i 10
Compilers 31
Complement Arithmetic 56
Computing Addresses 63
Conditional Transfer 8
Control Cards 37
Count Control [P 9
Counters 26
Cylinder Concept 108
Data Channel Reset 96
Data Channel Store 96
Data Channel A Operation 84
Data Channel (1BM 7904) Operation 86
Data Generating Operations 40

Index

Data Track Address 109
Data Transmission 67
Data Transmission Unit, 18M 1009 82
Decimal Data 15, 40
Decimal Integer 39
Decimal to Octal 18
Decimal to Binary 19
Decrement Field 54
Delayed Trapso, 116
Destructive Address Modification 55
Direct Data Operation 112
Direct Data Connection 113
Direct Data Trap 118
Disk Gaps ... 109
Disk Operationcoiiiiiiiin.. 109
Disk Programming Examples 110
Disk Storage 10cs 35
Disk Storage, 1BM 1301. 82
Divide 46
Divide Example 49
Double-Precision Format 74
E Cycle Flow Lines 27
Edit Source Program 32
Effective Address 56
Elements 39
End 42
End-of-File Indicator 95
End-of-File Procedures 35
End-of-File Gaps 88
End-of-Reel Procedures 35
Equal 41
Error Correction Procedures 35
Execute Cycle 27
Execution Process 29
Exponent Part 39, 40
Exponents 70
Expression 39
Extra Channel Traps 127
Fixed and Variable Word Length 6
Fixed-Point Number L. 40
Floating-Point Format 69
Floating-Point Conversions 69
Floating-Point Examples 70
Floating-Point Number 39
Floating-Point Summary 71
Floating-Point Trap 74
Format Track 109
Fractions 19
Generator Programs 33
Halt and Proceed 116
Home Address 109
ICycleFlow Lines 26
1ocs Level Concept 77
I0CS SUMMATYot e 78
BjoB Processor Flow 37
msys Input 38
Bsys System Components 36
Improper Fractions 20
Improper Length Record Procedures 35
Inclusive OR 57,65
IndexDataFlow 61
Index Point 109

Index Register Arithmetic 57
Index Servicing 58
Index Transfer Instructions 60
Indexing 12
Indexing Concept 56
Indexing Loop 12
Indirect Address 12, 22, 55, 62
Input 5
InputData 5
Input/Output Check Indicator 96
Input/Output Control Systems 33
Input/Output Scheduling 34
Instruction Cycle 26
Instruction Format 5
Instruction Modification 10
Instructions 5
Instructions and Data 23
Integers 18
Inter-Record Gaps 88
Interval Timer Reset 116
Interval Timer Overflow 118
Labels 76
Literals 39
Loadand Go 29
Loader 36
Location Counter Operations 42
Location Field 38, 43
Logic Operations 8
Logical Check Sums 63
Logical or 57
Machine Cycles 26
Machine Language 33
Macro Assembly Program Language 39
Macro Generator Use 33
Macro Generators 32
Magnetic Disk Recording 108
Magnetic Tape 87
Masking 65
Maximum 41
Memory Protect 117
Minimum 42
Multiple Tags 57
Multiply 45
Multiply Example 47
Multiply Tables 14
Normal Form 70
Number Conversions 18
Object Program 28
Octal Data 40
Octal Number System 17
Octal to Binary 18
Octalto Decimal 18
Off Line 29
One’s Complement 56
Operand 5
Operating System 36
Operation Codes 39
Operation Field 38, 43
Operation Part 5
Operators 39
Origin 42
Output 5
Overlap and Data Channels 76
Packed Word 64
Paper Tape Reader, tisM 1011. 82
Parity Checking Instructions 63
Partial Store Instructions 57
Place Value 16

168

Principal Part 39,40

Print Operation 105
Printer, 1BM 1403. 81
Processing 5
Processing Unit Data Flow bt
Processor 29
Program Indicators 89
Program Loop 8
Program Switch 11
Pseudo Operation 38
Random and Sequential Processing 78
Read Operation 85,101, 102
Reading Data 6
Ready Test 105
Record Address 109
Redundancy Check Indicator 92
Register Shifting 25
Registers 24
Release Protect Mode 118
Remote Inquiry Unit, i8m 1014. 82
Rewind Instructions 96
Scale 7
Select Instructions 104
Sequence Checking 10
Serial and Parallel Operation 6
Seven-Bit Code 20, 87
Single-Character Operation 106
Source Program 28
Special Print Conditions 106
Special Read Conditions 101, 102
Special Write Conditions 102, 103
Spill .. 74
Stacker Select Example 104
Standard Error Correction Routines 34
Storage Allocation Operations 41
Storage Parity 117
Stored Program Concepts 5
Subroutine 9
Subtract 44
Symbol Defining Operations 41
Symbolic Assembly 33
Symbolic Coding 43
Symbolic Instructions 39
Tag Bits 56
Tape Labeling 35
Tape Marks 94
Tape Records 88
Tape Unit, 1BM 729. 81
Tape Unit, 18M 7330. 82
Terms 39
Translation 29
Transmit Example 68
Trap Execution 127
Trap Stores 127
Trapping Priority 116
Two’s Complement 56
Typewriter Busy 106
Typewriter Operation 108
Typewriter Shifting 107
Un-normal Form 70
Unpack 65
Unusual Condition Routines 34
Use . 42
Variable Field 38, 44
Variable Length Formats 48
Word Counter 86
Write Operation 85,102

