File No 7040-25
Form C-28-6329-2

Systemé Reference Library

- IBM 7040/7044 Operating System (16/32K)
FORTRAN IV Language

. automatic coding system designed primarily for scientific
and engineering computations, and it closely resembles the
ordinary language of mathematics. The 7040/7044 FORTRAN
v compiler (IBFTC) operates under control of the 7040/7044
Processor Monitor (1BjoB), a component of the 7040/7044
Operating System.

This publication describes the 7040/7044 roRTRAN 1v lan-
guage, the language accepted by the 16/32K FORTRAN 1v :
compiler — 7040-FO-815. roRTRAN is a problem-oriented

" Preface

This publication describes the language of the 7040/
7044 ForTRAN 1v compiler (1BFTC), which is a part of
the 7040/7044 Processor. Before reading this publica-
tion, the reader should refer to the publication, IBM
7040/7044 Operating System (16/32K): Programmer’s
Guide, Form C28-6318, for a complete discussion of
the use of the Processor.

7040/7044 rorRTRAN 1v, hereafter referred to as
FORTRAN, is a component language of the Processor.
It is assumed that the reader is thoroughly familiar
with the basic concepts of ForTRAN, which are in the
FORTRAN General Information Manual, Form
F28-8074-1. '

The minimum machine requirements for the use of
the FORTRAN 1v compiler are described in the Program-
mer’s Guide, Form C28-6318. Operating instructions
for the operator are in the publication, IBM 7040/
7044 Operating System (16/32K): Operator’s Guide,
Form C28-6338.

Major Revision (December, 1964)

This publication, Form C28-6329-2, makes obsolete the previous
edition, Form C28-68329-1. Changes have been made to in-
corporate material on an expansion of the previously existing
DIMENSION statement; in addition, changes have been made
to incorporate material on the DATA statement and on the
BLOCK DATA subprogram. These changes are a part of Ver-
sion 8 of the operating system.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to: : .
IBM Corporation, Programming Systems Publications, Dept. D39, 1271 Avenue of the Americas, New York, N. Y. 10020

© 1963 by International Business Machines Corporation

General Properties of a FORTRAN Source Program 5

PUNCHING A SOURCE PROGRAM 5
Tyepes oF FORTRAN STATEMENTS 6
Constants, Variables, Subscripts, and Expressions 7
CONSTANTS . « o v oot e e 7
Integer Constants oo oo 7
Real Constantso 7
Double-Precision Constants 7
Complex Constants oo oo 7
Logical Constants oo 7
VARIABLES P 8
Variable Nameso ooiie e 8
Variable Type Specification 8
Implicit Type Assignment 8
SUBSCRIPTS . . o o e e oo e et e e 8
Forms of Subscripts 8
Subscripted Variables o 8
Arrangement of Arrays in Storage "~ 8
EXPRESSIONS . . o oo cee e e e e e 8
Arithmetic Expressions o 9
Logical Expressions 9
Arithmetic and Logical Assignment Statements 11
Control Statements 13
Unconditional co To Statement 13
Computed co 1O Statement 13
Assigned o TO Statement. 13
ASSIGN Statement 13
Arithmetic 1F Statement 13
Logical 1F Statement [13
po Statement 14
CONTINUE Statement T 15
PAUSE Statement 15
STOP Statemento 15
END Statement 15
Input/Output Statements 16
LIST SPECIFICATIONSo\ ooieie oo oo 16
InpuT/OUTPUT OF ENTIRE ARRAYS 16
FORMAT . . o oottt e e 17
Numerical Fields 17

D-, E-, F-, I- and O-Conversion 18

Complex Number Fields 18
AlphamericFields 18

A-CONVEISION . . . o o oo oe e 18

H-CONVETSION oo e 18

Logical Fields 19
Blank Fields — X-Conversion 19
Repetition of Field Format 19
Repetition of Groups e 19
Scale Factors oo 19
Multiple Record Formats 19

Carriage Control e 20

Contents

FORMAT Statements Read in at Object Time 20
Data Input to the Object Program 20
Tue GENERAL INPUT/OUTPUT STATEMENTS 20
INPUE . oo 20
OUtPULo 21
THE AUXILIARY INPUT/OUTPUT STATEMENTS 21
Subroutinesand Functions 23
NAMING SUBROUTINES o o ot ooeeieneee e 23
DEFINING SUBROUTINES i 23
Arithmetic and Logical Statement Functions 23
Built-in (or Open) Functions 23
Library (or Closed) Functions 24
FUNCTION Subprogramoooceos 27

Rules for Calling Functions 28
SUBROUTINE Subprogram- 28

RETURN Statement 28
CALL STATEMENTo\ oo 28
SusPrOGRAMS ProvipED BY FORTRAN 29
Mathematical Subroutines 29
EXIT, DUMP, and PDUMPooooooe. 29
The Specification Statements-- 30
DIMENSION STATEMENTo 30

Integer Dimensionso 30

Adjustable Dimensions 30
DATA STATEMENT . . . o« o v ovooe e e 31
BLOCK DATA SUBPROGRAM cooooee i 31
COMMON STATEMENT« o cvovoneveene e 32
COMMON and DIMENSION. [32
EQUIVALENCE STATEMENT 32
EQUIVALENGE and COMMON« ooohhoee 33
TYPE DECLARATION STATEMENTS. - 33

Rules for Type Statements S 34
Appendixesl .. 35
A. TABLE OF SOURCE PROGRAM CHARACTERS 35

B. SOURCE PROGRAM STATEMENTS AND SEQUENCING. . . 35
C. Dirrerences BETWEEN FORTRAN II

AnD FORTRAN IV 36

D. ADDITIONAL STATEMENTS ACCEPTED BY
THE COMPILER o oeee e 37
Input/Output Statements 37
Input 38
OUPUL .. . 38
E. MacHINE-DEPENDENT FEATURES 38
Built-in Featureso ovveeeae e .. 38
Machine Indicator Testso 38
AppeENDIX F: COMPILATION OUTPUT 38
Fortran Source Statement Listing. 38
MAP Gontrol Dictionary Listing 39
Assembled Text Listing., 39
Cross-Reference Dictionary Listing PP, 39
Error Messagesocoveenaaaa . 39
INdeX . o 41

General Properties of a FORTRAN Source Program

A FORTRAN source program consists of a sequence of
source statements, which are described in detail in
the following chapters.

Punching a Source Program

Each statement of a FORTRAN source program is
punched into a separate card (the standard FORTRAN
card form is shown in Figure 1); however, if a state-
ment is too long to fit on one card, it can be continued
on as many as nine continuation cards. The order of
the source statements is governed solely by the order
of the statement cards.

Cards that contain a C in column 1 are not proc-
essed by the FORTRAN compiler. Such cards can be
used for comments that appear when the source pro-

gram deck is listed.

A number punched in columns 1-5 of the first card
statement is the statement number of that statement.
It permits cross-referencing within a source program.
Statement numbers can be assigned in any order,
since they do not affect the sequence of operation.

Column 6 of the first card of a statement must be
blank or punched with a zero. However, in continua-
tion cards (other than for comments), column 6 must
be punched with some character other than zero.

Continuation cards for ¢omments need not be punched
in column 6; only the C in column 1 is necessary.

The FORTRAN statements themselves are punched in
columns 7-72, both on initial cards and on continuation
cards. Thus, a statement can consist of not more than
660 characters (i.e., one initial card and nine continua-
tion cards). A table of the admissible characters for
FORTRAN is in Appendix A. Blank characters, except in
column 6 and-in alphameric fields (H fields of ForMAT
statements or alphameric arguments of CALL state-
ments), are ignored by FORTRAN and may be used
freely to improve the readability of the source program
listing.

Columns 73-80 are not processed by FORTRAN and
may be punched with any desired identifying infor-
mation.

The brief program shown in Figure 2 illustrates the
general appearance and some of the properties of a
FORTRAN program. It is shown as coded on a standard
FORTRAN coding sheet.

The purpose of this program is to determine the
largest value contained in a set of numbers, A, [repre-
sented by the notation A (I)], and to write the num-
bers on logical unit 6. The numbers exist on an input
medium, 12 to a record, each number occupying a
field of 6 columns. The actual size of the set is given in
the first record and is the only data in that record. The
input medium is logical unit 5.

—

For
/ C’?.wmv

STATEMENT
NUMBER

FORTRAN STATEMENT

IDENTIFICATION

olgooe

112345

1:1111

- en & CONTINUATION

212222

~

123 45l6l78310111213415181718132021
15M 888157

5006/00000000
1B I NN RZOMBEI BB R BNEHTBD0RTBWIH T BI04 4646414649505 12535 55657 BBO6QBHBCTRON NI MHISBIT 890
RRERRRERERREERERRER RN R R AR R R R AR R R R R R R R R R R R AR AR AR R A AR A RER R RARRRER.
9222{22222222
4333
ﬂ444444444¢444‘41444444444444444444444
55555/5/55655555555555555555/55655555
ﬂﬂ5665668668666666665EBGGGGGGEEGBBSEE6BGEBB5BG6666666666655586666566666SSGGGEBSG
M1 11171111171171711717111117171101111171711177717177771717771771717117111711179)117771717
ﬂsaaﬂﬂsﬂﬂsﬂﬂﬁﬂﬂﬂ88308808888B88888888888888888BBBBBBBBBBB388888808888888888888888

95999(3/389959595999:99999998°
LBUBXARS

30 31 32 33 34 25 35 37 38 39 40 41 42 43 44 45 4G 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 6263 64 6565 6768 63 7071 72‘121&?575777‘70. ’

Figure 1. Standard ForTRAN Card

General Properties of a FORTRAN Source Program 5

FORTRAN CODING FORM

Form X28-7327-3
Printed in U.S.A,

Program
Coded By Date
Checked By Identification Page of
| SR S| -
= C FOR COMMENT . 8o
[\ statement |
NUMBER |8 FORTRAN STATEMENT

) slelr 10 15 20 25 30 35 40 45 50 55 60 65 70 72
C. PROGRAM FOR._FEINDING THE { ARGEST. VALUE . ' : ! ! \

C CONTAINED TN A SET OF NUMBERS | ! A . : . L

I MENSTON A(9.99)

QRMAT. (I.3/(1.2F6.2))

1

2| FORMAT. (2.2/41ms LARGEST OF. TMMERQ. IS, F7.2)

,_A.‘D (5.]|)A{ /A(I) I.--1 ”)1

BIGA:=A (J_).

1

1 1 1

5] 20 I=2,N

1

| " | ISR

E (A(L). .euLeAsgz.eA A{.I) N I T

20 CONTINUE |

WRITE (6;12).M..316A 1 1

1042 1 1 L 1

A[D L 1 1 1 1

_J 1 L 1 1 1

Figure 2. Example of a FORTRAN Program

Types of FORTRAN Statements

The types of statements that can be used in a FORTRAN
program are classified as follows:

Arithmetic or Logical Assignment Statements spec-
ify a numerical or logical computation. The symbols
available for referring to constants, variables, and
functions are discussed in the section “Constants, Vari-
ables, Subscripts, and Expressions;” the section “Arith-
metic and Logical Assignment Statements” gives the
rules for combining these into arithmetic and logical
assignment statements. .

Control Statements govern the flow of control in the
program. These statements and the END statement are
discussed in the section “Control Statements.”

Input/Output Statements provide the necessary in-

put and output functions. These statements are dis-
cussed in the section “Input/Output Statements.”

Subprogram Statements enable the pi'ogrammer to
define and use subprograms. The use of subprograms
is discussed in the section “Subroutines, Functions, and
Subprogram Statements.” -

Declarative Statements provide information to the
compiler regarding certain properties of names ap-
pearing in other statements, such as the type assumed
by a variable or the dimensions of an array of numbers.
These statements are discussed in the section “The
Specification Statements.”

Constants, Variables, Subscripts, and Expressions

FORTRAN provides a means of expressing numerical
constants and variable quantities. A subscript notation
is also provided to express one-, two-, or three-dimen-
sional arrays of variables.

Constants

The following types of constants can be used in the
FORTRAN source program language: integer (fixed
point), real (floating point), double-precision, com-
plex, and two special logical constants.

Integer Constants

An integer constant consists of one to eleven decimal

Double-Precision Constants

A double-precision constant consists of one to seven-
teen significant decimal digits written with a decimal

_point.

To specify a decimal exponent or a constant contain-
ing 10 or fewer digits, the programmer must use the
letter D, followed by the exponent, after the number;
however, when there are more than 10 digits, the D
is not necessary, unless the programmer wishes to use

an exponent.

The exponent is an integer constant. The field follow-
ing the letter D must not be blank; it may be zero. The
Jecimal point may be omitted in a_whole number
written with a D exponent.

digits written without a _decimal point; the constant
may be signed or unsigned.

EXAMPLES!:

14

+3

—47

2898762403

An integer constant can be as large as 2—1, ex-

cept when used for the value of a subscript or as an
mdex of a o statement, in which case the value of the
integer must be Jess than 2°.

Real Constants

A real (floating point) constant consists of -one to nine
decimal digits, with a decimal point at the beginning,
at the end, or between two digits. i

A real constant can be followed by a decimal ex-
ponent that is written as the letter E followed by the
exponent. The field following the letter E must not be
blank; it may be zero. The decimal point may be
omitted in a whole number written with an E exponent.

EXAMPLES:
21.987538229
.203D0
5.0D3 (5.0 X 103; i.e., 5000)
5D2 (5. X 102; ie., 500; FORTRAN will

treat this form as if the decimal point
were punched between the 5 and
the D)

A double-precision constant is a floating-point
quantity. It may have up to 17 significant_decimal
“digits that have a value not greater than 2%—1. The
magnitude of the constant expressed must lie between
the approximate limits of 10~2° and 10%, or must be
zero. Numbers between 10—2° and 10—%¢ may also be
used, but only eight digits are significant in this range.

Complex Constants

A complex constant consists of an ordered pair of real
Constants separated by a comma and enclosed in
parentheses.

EXAMPLES:

154

5.

0003
5.0E3
50E-3
5E2

(5.0 X 108; i.e., 5000)

(5.0 X 10-3; i.e., .005)

(5. X 102; i.e., 500; FORTRAN will
treat this form as if the decimal point
were punched between the 5 and
the E)

N [
A real constant may have up to nine significant digits

EXAMPLES:
(3.2, 1.86) represents 3.2+ 1.86i
(2.1, 0.0) represents 2.1+0.0i .
(5.0E3, —2.12) represents 5000. —2.12i
Y=CLOG ((3.0,+1.33))
Z=(4.17, —1.0) +(18.28, 2.2)

The first real constant represents the real part of the
complex number, and the second real constant repre-
sents the imaginary part of the complex number. The
parentheses are required regardless of the context in

that have a value not greater than 2°7—1. The magni-

which the complex constant appears. Each part of the

tude of the constant expressed must lie between the

“complex constant may be preceded by a + (plus) or

approximate limits of 1028 and 108, or must be zero.

a — (minus) sign. -

Constants, Variables, Subscripts, and Expressions 7 ‘

Logical Constants

A logical constant may be defined as either .TRUE. or
-FALSE. and then used in a logical 1¥ statement (see
“Logical 1r Statement”), as in this example:

A = .TRUE.

IF(A) GO TO 20
In the example, the logical constant .TRUE. has been
stored in A. According to the logical ¥ statement, the
program will go to statement number 20. However, if
FALSE. had been stored in A, the program would have
continued on to the next sequential statement.

Variables

A variable is specified by its name and type. The

following types of variables are permissible: integg::
real, double-precision, complex, and logical. The rules

for naming each type of variable are in the following

text.

Variable Names

A variable name consists of one to six alphameric char-
acters, the first of which is alphabetic. A variable name
may not contain a special character (* $ @ etc.).

EXAMPLES:
L5
JOB1
BETATS
COST
K

Subroutines are named in the same manner as
variables (the section “Naming Subroutines” has ad-
ditional information).

The names of the built-in functions cannot be used
as variable or subroutine names [the sections “Built-in
(or Open) Functions” and “Appendix E,” under “Built-
in Features,” have additional information].

The same name should not be used for more than one
purpose in the same program. ‘

Variable Type Specification

The type of a real or integer variable name or a real or
integer function name may be specified in one of two
ways: implicitly by name, or explicitly by a Type state-
ment (the section “Type Statements” has additional in-
formation). Double-precision, complex, and logical
variables must be specified by a Type statement.

Implicit Type Assignment

A variable or a function is considered integer if the
first character of the name is 1, J, K, L, M, or N; e.g.,
MAZX, JOB, I, M2.

8

A variable or a function is considered real if the
first character of the name is not L J, K, L, M, Or N; e.g.,
DELTA, BMAX, A, B7.

Subscripts

A variable can represent any element of a one-, two-
or three-dimensional array of quantities if the user
appends one, two, or three subscripts, respectively, to
the variable name. The variable is then a subscripted
variable. The value of the subscript determines the
member of the array to which reference is made.

Forms of Subscripts

. GENERAL FORM

| Let v represent any unsigned, nonsubscripted integer
variable and ¢ (or ¢’) any unsigned integer constant. Then,
a subscript is an expression that may take any of the fol-
lowing forms:)

v S

c

v+corv—c

c*v

c*v+c¢’ or c*v—c’

EXAMPLES:

IMAS
3
MU+2
5*MU-6
9+] (Invalid: for addition, the variable must precede the
constant.) .
K*2 (Invalid: for multiplication, the constant must precede
the variable.)

Real quantities may not appear in subscripts; nor

may constants be signed.

Subscn"ipled Variables

A subscripted variable consists of a variable name fol-
lowed by parentheses enclosing one, two, or three sub-
scripts that are separated by commas.

EXAMPLES:

A (1)

K (3)

BETA (8*J+2,K-2,L)

MAX (L), K)

During execution, the subscript is evaluated so that

the subscripted variable refers to a specific member
of the array. The value of a subscript must be greater

than zero but not greater than the corresponding array

dimension. The size of each array must be specified

before the first appearance of the subscripted variable.
This is accomplished with a pMENSsION statement, a
dimensioned commoN statement, or a dimensioned
Type statement. :

Arrangement of Arrays in Storage

Arrays are stored in columnar order in, increasing stor-
age locations, with the first of their subscripts varying

most rapidly and the last varying least rapidly.

Example: The two-dimensional array Am,, is stored
as follows, from lowest storage location to highest:

. ,Am,z, “en ,Am,n

ALLA2L .., Am,1,AL2,A2S, L .

Expressions ,
The rorTRAN language includes two kinds of expres-

sions: arithmetic and logical. An expression is a se-
quence of constants, variables (subscripted or non-
subscripted), and operation symbols that indicates
a quantity or a series of calculations. It must be formed
according to the rules for constructing expressions.
The expression may include commas and parentheses
and may also include functions (to be discussed later).

Arithmetic Expressions

An arithmetic expression consists of certain sequences
of constants, subscripted and nonsubscripted variables,
and arithmetic function references separated by arith-
metic operation symbols, commas, and parentheses.

The arithmetic operation symbols +, —, *, /, **
denote addition, subtraction, multiplication, division,
and exponentiation, respectively. The rules for form-
. ing arithmetic expressions are:

1. Figures 3 and 4 indicate which constants, vari-
ables, and functions may be combined by the arith-
metic operators to form arithmetic expressions. Figure
3 gives the valid combinations with respect to the
following arithmetic operators: +, —, *, and /. Figure
4 gives the valid combinations with respect to the arith-
metic operator **, In these figures, Y indicates a valid
combination and N indicates an invalid combination.

Double-
+ - */ Real | Integer | Compl Precisi Logical
Real Y N Y Y N
Integer N Y N N N
Complex Y N Y N N
Double- _ ~¢)
Precision Y N N Y N
Logical N N N N N
Figure 3
Exponent
Double-
** Real | Integ Compl Precisi Logical
Real Y Y N Y N
Integer N Y N N N
8 Complex N Y N N N
& Double-
Precision Y Y N Y N
Logical N N N N N
Figure 4

2. The simplest expression consists of a single con-
stant, a single variable, or a subscripted variable. If
the quantity is integer, the expression is said to be of
the integer type. If the quantity is real, the expression
is said to be of the real type.

A real constant, yariable, or function name com-
bined with a double-word quantity forms an expres-
sion of the same type as the double-word quantity;
e.g., a real variable plus a complex variable forms a
complex expression.

3. Quantities can be preceded by a + or a —, which
does not affect the type of the expression. Also, ex-
pressions can be connected by any of the arithmetic
operators (+, —, *, /) to form other expressions,
provided: -

a. No two operators appear consecutively.
b. All operators are explicitly expressed.

4. Any expression may be enclosed in parentheses.
Parentheses can be used to specify the order in which
the operations in the expression are to be computed.
Where parentheses are omitted, the hierarchy of
operations is:

a. Function Reference

b. Exponentiation **

c. Multiplication and Division *and/
d. Addition and Subtraction +and—

For example, the expression A+B/C+D**E*F—G
will be taken to mean A + (B/c) + (DP*F) —G.

(The expression A**B**C is not permitted; it must
be written as either A**(B**c) or (A**B)**c,
whichever is intended.)

Logical Expressions

The second type of expression is the logical expression.
The logical operation symbols (where a and b are
logical expressions) are:

SYMBOL DEFINITION

NOT.a This has the value true only if a is false; it
has the value false only if a is true.

a.AND.b This has the value true only if both a and
b are true; it has the value false if either
a or b is false or both a and b are false.

a.OR.b (Inclusive OR) This has the value true if

either a or b is true or if both ¢ and b are
true; it has the value false only if both a
and b are false.

The logical operators NoT, AND, and OR must always
be preceded and followed by a period.

The relational operators ‘are used to compare arith-
metic quantities. The relational operation symbols
(where x and y are arithmetic expressions) are:

. DEFINITION
Greater than .

True if x is greater than y; false if x is less
than or equal to y.

SYMBOL
x.GT.y

Constants, Variables, Subscripts, and Expressions 9

SYMBOL DEFINTTION

x.GE.y Greater than or equal to
True if x is greater than or equal to y; false
if x is less than y.

xLT.y Less than
True if x is less than y; false if x is greater
than or equal to y.

x.LE.y Less than or equal to)
True if x is less than or equal to y; false
if x is greater than y.

xEQ.y Equal to
True if x is equal to y; false if x is not
equal to y.

x.NE.y Not equal to

True if x is not equal to y; false if x is equal
to y.

The relational operators must always be preceded
and followed by a period.

A logical expression consists of certain sequences of
logical constants, references to logical functions, logical
variables (which must be separated by logical opera-
tion symbols), and arithmetic expressions (which
must be separated by relational operation symbols).

A logical expression always has the value .TRUE. or

.FALSE. .

Rules for constructing logical expressions are:

1. Figure 5 indicates which constants, variables,
and functions may be combined by the relational
operators to form a logical expression. In this figure,
Y indicates a valid combination and N indicates an
invalid combination.

2. A logical expression can consist of a single
logical constant, a logical variable, or a reference to
a logical function.

10

.GT. .GE. .LT. Double-

lE. .EQ. .NE. Real | Integer| Complex| Precision | Logical
Real Y| N | N Y N
Integer N Y N N N
Complex N N N N N
Double-
Precision Y *N N Y N
Logical N N N - N N

Figure 5

3. The logical operator .NoT. must be followed by a
logical expression, and the logical operators .AND, and
-Or. must be preceded and followed by logical ex-
pressions to form more complex logical expressions.

4. Any logical expression can be enclosed in paren-
theses; however, the logical expression to which the
.Not. applies must be enclosed in parentheses if it
contains two or more quantities as, for example, .NoOT.
(a.anp.b), where a and b are logical expressions or
NOT. (X.LE.y), where x and y are arithmetic expres-
sions. '

5. Parentheses can be used in logical expressions to

specity the order in which the expression is to be
computed. Where parentheses are omitted, the hier-
archy of operation is: :

a. Arithmetic Operations

b. .LT.,.LE., EQ.,.NE.,.CT.,.CE.

C. .AND.

d. .or.

Since the logical operator .NoT. does not connect

two operands, it does not appear in the hierarchy of

operations.

Arithmetic and Logical Assignment Statements

Each arithmetic statement or logical statement de-
fines a numerical or a logical calculation. These
FORTRAN statements closely resemble conventional
arithmetic formulas. However, the equal sign in a
FORTRAN statement specifies replacement, or “assign-
ment,” rather than equality. Thus, A =4.0 means “assign
the quantity 40to A.”

GENERAL FORM

a=b
where:

1. a is any type of variable (subscripted
or nonsubscripted).

2. b is an expression.

EXAMPLES:

QI=K

A(I)=B(I) — SIN (C(I))

V=.TRUE.

E=C.GT.D.AND.F.LE.G

Figure 6 indicates which type of expression can be

equated to which type of variable in an arithmetic or
a logical statement. In this figure, Y indicates a valid
statement and N indicates an invalid statement.

Right Side of Equal Sign

3. If the variable on the left is logical, the expression
on the right must be logical.

4. If the variable on the left is double-precision and
the expression on the right is real or integer, the ex-
pression is converted and the result computed as
double-precision.

5. If the variable on the left is real or integer and
the expression on the right is double-precision, the
expression ‘is evaluated in double-precision and the
result is truncated.

6. If a relational expression includes both a real
quantity and a double-precision quantity, the real
quantity is converted to double-precision before the
relation is evaluated.

In the following examples of arithmetic statements,
I is an integer variable, A and B are real variables,
DD is a double-precision variable, CP is a complex
variable, and G, H, and P are logical variables.

Expression Double-
Variable | Real | Integer | Complex | Precision| Logical
Real Y Y N Y N
'éf;* Integer Y Y N Y N
o; © Complex Y N Y N N
Equal Double-
Sign Precision Y Y N Y N
Logical N N N N Y
Figure 6

If the variable on the left and the expression on the
right are the same type, the computation is done in
that type.

The following rules hold for the manner in which
the expression is evaluated and the result stored, if
the type of the expression on the right and the type of
the variable on the left are different. ‘

1. If the variable on the left is integer and the ex-
pression on the right is real, the result is computed
as real, truncated to the largest integer it contains, and
converted to integer.

2. If the variable on the left is real and the expres-
sion on the right is integer, the result of the expression
is computed as integer and is converted to real.

A=B

Replace A by the current value of B.
I=B

Truncate B to an integer, convert it to an integer constant,
and store it in L.
A=I

Convert I to a real variable and store it in A.
I=I+1

Add 1 to I and store itin L.
A=3*B

Not permitted. The expression is mixed for multiplication,
i.e., it contains both a real variable and an integer constant.
DD=A+B

Convert A and B to double-precision, compute their sum,
and store it as double-precision in DD.
A=DD+B

Convert B to double-precision, add B to DD, truncate the
sum, and store it in A.
A=DD+SIN(X)

Convert the result of SIN(X) to double-precision, add DD,
truncate the sum, and store it in A.

DD .GT. A
Convert A to double-precision and compare it with DD.

A LE.CP
Not permitted. A complex quantity may not appear in a
logical expression.

G=.TRUE.
Store the logical constant .TRUE. in G.
H=.NOT.G

If G is . TRUE,, store the value .FALSE. in H; if G is FALSE.,
store the value .TRUE. in H. B
H=ILGE.A ’

Not permitted. An integer and a real variable may not be
joined by a relational operator.

Arithmetic and Logical Assignment Statements 11

G=H.OR..NOT.P

H P | ~P | Hv~P

T T F T where:

T F T T ~ implies .NOT., and v

F T F F implies .OR.

F F T T .
G=3..GTB

G is .TRUE. if 3. is greater than B; G is .FALSE. otherwise.

12

The last two examples illustrate the following rules:

1. Two logical operators can appear in sequence
only if the second logical operator is .NOT. ,

2. Two decimal points may appear in succession
only when the situation described in item 1 occurs or

when one decimal point belongs to a constant and the

other to a relational operator.

The second class of FORTRAN statements is a set of
control statements. With this set the programmer can
control the flow and termination of the program.

Unconditional GO TO Statement

This statement interrupts sequential execution and
directs flow to the statement that is to be executed next.

GENERAL FORM

GOTOn
where:
n is a statement number.

EXAMPLE:
GO TO3
In the example, control is transferred to statement
number 3.

Computed GO TO Statement

This statement also interrupts sequential execution
and directs flow to the statement that is to be executed
next, It differs from the unconditional co To statement
in that it allows different statements to be executed
at various stages in the program.

Control Statements

s

EXAMPLE:
GO TOK, (17,12, 19)

This statement causes transfer of control to the state-
ment with a statement number equal to that value of
i that was last assigned by an aAssiGN statement; ny, no,

.., Ny, are the values that may be assigned to i. In the
example, if K had been assigned 12 by a previous AssicN
statement, a transfer to statement 12 would occur.

ASSIGN Statement

The AssioN statement is used in conjunction with the
assigned co To statement.

GENERAL FORM

ASSIGN ntoi
where:

1. nis a statement number.

9. i is a nonsubscripted integer variable that appears
in an assigned GO TO statement in the same program.

EXAMPLE: V
ASSIGN 12 to K
This statement causes a subsequent ¢o TO X, (ny,
..., Ny) to transfer control to statement number 12.

GENERAL FORM

GO TO (n1,ng, . ..,nm),i
where:
1. ni, ne, . .., are statement numbers.

2. iis a nonsubscripted integer vaiiable.

EXAMPLE:
GO TO (30, 42, 50,9),1

Control is transferred to the statement numbered

ny, Ng, N3, . . . , Ny, depending on whether the value of i
~ at the time of executionis 1, 2,3, ..., m, respectively.

Thus, in the example, if I is 3 at the time of execution,
a transfer to the third statement of the list, namely
statement 50, occurs.

The computed co To statement is used to obtain
many computed choices from one statement.

Assigned GO TO Statement

The assigned co To is used to obtain one of a number
of preset choices from one statement.

GENERAL FORM

GO TOi, (n1,n2,...,nm)
where:

1. i is a nonsubscripted integer variable appearing in a
previously executed ASSIGN statement.

2. ni1, n2, . . . ,nm are statement numbers.

Arithmetic IF Statement

This statement permits the programmer to change the
sequence of statement execution, depending upon the
value of an arithmetic expression.

GENERAL FORM

IF (a) ni,n2,n3
where:

1. a is an arithmetic expression (it may not be of the
complex type).

9. n1, n2, and n3 are statement numbers of executable
FORTRAN statements.

EXAMPLE:
IF (A(J,K)—B)10, 4, 30

Control is transferred to the statement numbered
N, ng, or ng if the value of a is less than, equal to, or
greater than zero, respectively. In the example, if
A(J,K) — B is less than zero, control will transfer to
statement 10; if it is equal to zero, control will trans-
fer to 4; or if it is greater than zero, control will transfer
to statement 30.

Logical IF Statement

This statement permits a programmer to change the
sequence of statement execution, depending on the
value of a logical expression.

Control Statements 13

GENERAL FORM

IF (t)s
where:
1. tis a logical expression.
2. s is any executable FORTRAN statement except a DO

statement or another logical IF statement.

EXAMPLES:
IF (A.AND.B) F=SIN(R)
IF (17.GT.L) GO TO. 24
IF (D.ORX.NE.Y) GO TO (18,20),1.
IF (Q) CALL SUB ‘

If the logical expression t is true, statement s is exe-
cuted and control passes to the next statement (unless
statement s is an arithmetic 1F-type or 6o To-type state-
ment, in which case control is transferred as indicated
by the statement). If t is false, control passes to the next
sequential statement without statement s being exe-
cuted. -

If tis true and s is a CALL statement, control is trans-
ferred to the next sequential statement upon return
from the subprogram.

DO Statement
The po statement is used to cause repetitive execution
of a series of statements, as many times as specified.

GENERAL FORM

DO ni=m;,m,,m,
where:
1. nis a statement number.
2. i is a nonsubscripted integer variable,
3. my, m2, and m3 are each either an unsigned integer
nstant or an unsigned i i i ;
if m3 is not stated, FORTRAN assumes it to be 1.

EXAMPLES: .

DO 30 I=1, 10

DO24J=1,M,2

The po statement results in the repeated execution

of the statements that follow the po, up to and includ-
ing the statement numbered n. The first time the state-
ments are executed, i=m;. (This takes place even if
m; exceeds m,.) For each succeeding execution, i is
increased by my; i.e., the second time, i=m; + mj, the
third time, i=m; +2ms,, etc. This pattern of execution
continues until i is equal to the highest value of this
sequence that does not exceed m,. Control then passes
to the statement following the last statement in the
range of the po.

Consider, for example, the following program:

10 DO 20 I=1, 20, 2
20 A (1)=I*N(I)

14

This would cause the following computation to take
place:
A(1)=1*N(1) .
A(3)=3*N(3)
A(5)=5*N(5)

A(19)=19*N(19)

During each execution, the correct index is substi-
tuted for 1, r*N(1) is computed, and the result is stored
in A(1). When the po is satisfied, control passes to the
statement following statement 20. '

1. The Range of a po is that set of statements that
is executed repeatedly; i.e., it is the sequence of con-
secutive statements immediately following the po state-
ment, up to and including the statement numbered n.
After the last execution of the range, the po is said to
be satisfied. In the previous example, the range is state-
ment 20.

2. The Index of a po is the integer variable i.
Throughout the range of the po, the index is available
for computation, either as an ordinary integer variable
or as the variable of a subscript. Upon exiting from a
po by satisying the po, the index i must be redefined
before it is used in computation. Upon exiting from a
po by transferring out of the range of the po, the index
i is available for computation and is equal to the last
value it attained. In the previous example, the index
is L. '

3. DOs within DOs. Among the statements in the
range of a po may be other po statements; such a con-
figuration is called a nest of DOs. If the range of a po
includes another po, then all the statements in the
range of the latter must also be in the range of the
former. .

4. Transfer of Control and DOs. Control may not
be transferred into the range of a po from outside its
range. »

Thus, in the following configuration, 1, 2, and 3 are
permitted transfers, but 4, 5, and 6 are not.

DO

==
]

N

—>» 2

5. Restrictions on Statements in the Range of a DO.
Any statement that redefines the index or any of the
indexing parameters (m’s) is not permitted in the range
of a po. In other words, the indexing of a po loop must
be completely set before the range is entered. When
a CALL statement is executed in the range of a po to
reference a subprogram, care must be taken that the
called subprogram or function does not alter the po
index or indexing parameters.

The statement that terminates the range of a po must
be an executable statement. The range of a po cannot
end with an arithmetic 1F-type or o To-type statement.
The range of a po may end with a logical 1¥, in which
case control is handled as follows: if the logical ex-
pression is false, the po is reiterated; if the logical ex-
pression t is true, statement s is executed and then the
po is reiterated. However, if t is true and s is an arith-

metic 1¥-type or Go To-type statement, control is trans- '

ferred as indicated.

CONTINUE Statement

The coNTINUE statement provides a means for inserting
statement numbers in a source program without gen-
erating any instructions in the object program; that is,
it is used as a point of reference.

GENERAL FORM

CONTINUE

CONTINUE may be used as the last statement in the
range of a po when the po would otherwise end with
an 1F-or GO To-type statement (neither of which is
permitted). :

PAUSE Statement

The pause statement causes the machine to halt and
(optionally) an octal number to be printed on the type-
writer. Depressing the Start key causes the object pro-

gram to resume execution with the next executable
FORTRAN statement. ’

’
GENERAL FORM

PAUSE or PAUSE n
where:

n is an unsigned octal integer constant of one to five
digits.

EXAMPLES:

PAUSE)
PAUSE 77777

Note that when the pause statement is executed,
records processed by previous WRITE statements may
not have been completely written or punched on the
physical output unit.

STOP Statement

This statement terminates the execution of any pro-
gram by returning control to the Monitor.

GENERAL FORM

STOP

Execution of a program can also be terminated by a
RETURN statement or by a caLL to the exrr and pump
subroutines (the section, “exrr, pump, and poump” has
additional information).

END Statement

The END statement terminates compilation of a pro-
gram, a FUNCTION subprogram, or a SUBROUTINE sub-
program.

GENERAL FORM

END

This statement must be the last statement of every
program. ‘

Control Statements 15

Input/Output Statements

The FORTRAN statements that specify transmission of
information to or from input/output devices may be
grouped as follows:

FORMAT Statement: The nonexecutable statement
FORMAT specifies the arrangement of the information
in the external input/output medium specified by the
general input/output statements.

General Input/Output Statements: The statements
READ and WRITE cause the transmission of a specified
list of quantities between core storage and an input/
output device.

Auxiliary Input/Output Statements: The statements
END FILE, REWIND, and BACKSPACE specify non-data
actions of the input/output devices.

List Specifications

The statements that cause transmission of information
require a list of quantities to be transmitted. This list
must be in the same order that the words of informa-
tion are (for input). For output, the list determines the
order on the output medium.

The following example illustrates the formation and
meaning of an input/output list:

A

B(3)

DO 51=1, 10
C(I)

D(LK)
.DO9J=LK

. DO 81=1,10,2
- E(L])

. F(J,3)

An implied po is best defined by an example. In the
preceding input/output list, the list item (c(1),p(1x),
1=1, 10) is an implied po; it is evaluated as in the
preceding program. The range of the implied po must
be clearly defined by parentheses. A constant may
appear in an input/output list only as a subscript or
as an indexing parameter. Indexing information, as in
pos, consists of three constants or integer variables,
and the last of these may be omitted, in which case it
is assumed to be 1. o /

For a list of the form x, A (x) or x, (a(1), 1=1,x),
where an index or_indexing parameter itself appears

(C(1), D(I,K),1=1, 10)

C® N> U W

earlier in the list of an input statement than its use,

A, B(3), (C(I), D(LK), I=1, 10), ((E(L, J), I=1, 10,
2), F(J, 3),J=1,K)

If this list is used with an output statement, the in-
formation will be written on the output medium in the
following order: v

A, B(3), C(1), D(1, K), C(2), D(2, K), .. ., C(10),
D(10,K),

E(1,1),E(3,1),...,E(9,1), F(1, 3),
E(1,2), E(3,2), ..., E(9, 2), F(2, 3), ..., F(K, 3).

Similarly, if this list is used with an Input statement,
the successive words, as they are read from the ex-
ternal medium, are placed into the sequence of storage
locations just given. '

Thus, the list reads from left to right, with repetition

for variables enclosed with parentheses. The list items
are separated by commas. Only subscripted or non-
subscripted variables or an implied po may be listed.
The execution is exactly that of a po loop, as though
each left parenthesis (except subscripting parentheses)
were a po, with indexing given immediately before the
matching right parenthesis and with the po range ex-
tending up to that indexing information. The order of
the preceding list can thus be considered the equiva-
lent of the following “program”:

16

indexing j ITi -

value.

Any number of quantities may appear in a single
list. During a read operation, the list controls the quan-
tity of data read; if a record contains more quantities
than are in the list, only the number of quantities
specified in the list are transmitted, and any remaining
quantities are ignored. Conversely, if the list contains
more quantities than are given on one Bcp input record
(as defined by the FORMAT statement), more records
are read; if a list contains more quantities than are
given in one FORTRAN binary record, either job execu-
tion or reading is terminated and the remaining list
items are filled with zeros.

Input/Output of Entire Arrays

When input/output of an entire matrix is desired, an
abbreviated notation can be used in the list of the
input/output statement; only the name of the array
need be given, and the indexing information can be
omitted.

Thus, if A has previously been listed in a prMENsION
statement or in a dimensioned common or Type state-
ment, the following statement is sufficient to read in
all of the elements of the array, A:

READ (5, 10)A .
If A has not appeared in a DIMENSION statement or a
dimensioned coMMoN or Type statement, only the
first element is read in.

The elements read in by this notation are stored in
accordance with the description of the arrangement of
arrays in storage. Arrays are read or written in col-
umnar fashion, with the first of their subscripts varying
most rapidly and the last varying least rapidly.

Format

The BCD input/output statements require, in addition
to a list of quantities to be transmitted, reference to a
FORMAT statement that describes the type of conversion
to be performed between the internal machine lan-
guage and the external notation for each quantity in
the list. :

GENERAL FORM

FORMAT (S1,Sg, . -
where:]
each field, Si, is a format specification.

.,80/8'1,8"2, .. .,.S'n/...)

EXAMPLE!:
FORMAT (12/(E12.4, F10.2))

The FORMAT statement specifies the types of data
conversion to be performed. ;

1. FORMAT statements are executed out-of-line; they
can be placed anywhere in the source program. Each
FORMAT statement must be given a statement number.

2. The ForMAT statement indicates, among other
things, the maximum size of each record to be trans-
mitted. In this connection, it must be remembered that
the FORMAT statement is used with the list of some
particular input/output statement, except when a
FORMAT statement consists entirely of H and/or X
fields. In all other cases, control in the object program
switches back and forth between the list (which
specifies whether data remains to be transmitted) and
the FORMAT statement (which contains the specifica-
tions for transmission of that data).

3. Slashes are used to terminate records. In each
case, the record length specified must be no longer than
132 characters. FORMAT -(3F9.2, 2F10.4/8E14.5) specifies
that the first, third, fifth; etc., records have the format

- (3F9.2, 2F10.4) and that the second, fourth, sixth, etc.,
records have the format (sE14.5).

4. During input/output of data, the object program
interprets the FORMAT statement to which the relevant
input/output statement refers. When a specification
for an A-, D-, E-, F-, I-, L-, or o-type field is found, and
list items remain to be transmitted, input/output takes
place according to the specification, and interpretation
of the FORMAT statement resumes. If no items remain,
transmission ceases and execution of that particular
input/output statement is terminated. Thus, a Bcp
input/output operation ends when there are no items
remaining in the list.

Numerical Fields
Five forms of conversion for numerical data are avail-

able:

’

INTERNAL TYPE EXTERNAL
Real D Real, with D exponent
Real E Real, with exponent -
Real F Real, without exponent
Integer 1 Integer
Octal integer o Octal integer

These types of conversion are specified in the forms:
Dw. d, Ew. d, Fw. d, Iw, and Ow
where:
D,E,F,I,and O

represent the type of conversion.
w

is an unsigned integer constant that represents the field width
for converted data; this field width may be greater than re-
quired to provide spacing between numbers.
d .
is an unsigned integer or a zero that represents the number
of positions of the field that.appear to the right of the‘decimal
point, not including the D or E exponent field, if present.

The format of a numerical field is specified by
giving, from left to right (beginning with the first char-
acter of the field): ‘ ‘

1. The control character (D, E, F, 1, or 0) for the field.

2. The width (w) of the field. Leading zeros in the
integer part of an output number are suppressed, and

~ a blank or a minus sign is placed in front of the first

integer digit. If the entire integer part of the number
is zero, the digit is zero. The specified width can be
greater than required to provide spacing between
numbers.

3. The number of positions (d) of the decimal
fraction that appears to the right of the decimal point
for D-, E-, and F-type conversion. If d is greater than
the maximum number of digits permitted by the ma-
chine (i.e., 16 for D-type conversion, and 8 for E- and
F-type conversion), the maximum number of digits is
carried and unused digits are truncated.

For example, the statement FORMAT (I12,E12.4, O8,
F10.4, D25.16) might cause the following line to be
printed: ' '

I2E124 08 F104 D25.16
2ih-0,9321Eb02'5773427¢>bb-0.007¢>-0.78789779095006721)1)031

here:

b indicates a blank space. ,

Specifications for successive fields are separated by
commas. A format specification that provides for more
characters than the maximum input or dutput unit.
record size should not be given. Thus, a format for
printed output should not provide for-more characters
per line (including blanks) than may be printed on
one line by the printer. , '

Input/Output Statements 17

D-, E-, F-, I, AND O-CONVERSION

D-conversion results in the transmission of ‘w charac-

ters containing a double-precision number of up to 16

decimal digits. For input, the number is stored such
that the most significant and least significant parts are
in adjacent core storage locations. For output, the two
core storage words representing the double-precision
quantity are treated as a single data item and are
converted as such.

E-conversion results in the transmission of w char-
acters containing a decimal mixed number and its
exponent field, e.g., 5.02e2. The exponent, which must
be used with E-conversion, is the power of 10 to which
the number must be raised to obtain its true value.
The exponent is written with an E, followed by a
minus sign if the exponent is negative or a plus sign
or a blank if the exponent is positive, and then fol-
lowed by the two numbers that are the exponent. For
example, the number .002 is equivalent to the number
2E-02.

F-conversion results in the transmission of w char-
acters containing a decimal mixed number only.

I-conversion results in the transmission of w char-
acters containing an integer number of up to 11 decimal

COMPLEX NUMBER FIELDS

Since a complex quantity consists of two separate and
independent real numbers, a complex number is trans-
mitted by two successive real number specifications or
by one real number specification that is repeated.

The following is an example of a FORMAT statement
that transmits an array consisting of six complex num-
bers:

FORMAT (2E.10, E8.3, 1PE9.4, E10.2, F8.4,
3(E10.2,F8.2))

Two levels of parentheses, in addition to the paren-
theses required by the FORMAT statement, are per-
mitted. The second level of parentheses facilitates the
transmission of complex quantities.

Alphameric Fields

FORTRAN provides two specifications to transmit alpha-
meric information: Aw and nH. Both result in storing
the alphameric information internally in Bcp form.

1. The specification Aw causes w characters to be
read into, or written from, a variable or array name,
without conversion.

(digits. If an output number converted by D-, E-, F-,
or I-conversion requires more spaces than are allowed
by the field width w, the excess on the high-order side
is lost and no rounding occurs. If the number requires
fewer than w spaces, the leftmost spaces are filled
with blanks. If the number is negative, the space pre-
ceding the leftmost digit contains a minus sign if suf-
ficient spaces have been reserved.

O-conversion results in the transmission of w char-
acters of octal information. If w>>12, only the twelve
rightmost characters are transmitted and w— 12 blanks
precede the field (output) or w—12 preceding char-
acters are skipped (input). If w=12, the rightmost w
characters of the word are transmitted (output) or
the next w characters are right-adjusted in the word
and the word is filled out on the left with zeros (input).

The field width w for D-, E-, and F-conversion of
output must include a space for the decimal point and
a space for the sign. Thus, for D- and E-conversion,
w=d+7, and for F-conversion, w=d+3..

Information to be transmitted with O-conversion
may be given either a real name or an integer variable
name; information to be transmitted with E- and F-
conversion must have real names; information to be
Jransmitted with D-conversion must have a double-

2. The specification nH introduces alphameric in-
formation into a FORMAT statement.

precision name; and information to be transmitted
with_I-conversion must have an integer name. The

names must be used as specified above; any other
practice is invalid. '

18

The basic difference between A- and H-conversion
is that information handled by A-conversion is given
a variable name or an array name and hence can be
referred to by this name for processing and modifica-
tion, whereas information handled by H-conversion is
not given a name and may not be referred to or manipu-
lated in storage in any way.

A-CONVERSION

The variable name to be converted by A-conversion
must conform to the normal rules for naming FORTRAN
variables; the name may be any type.

Input: nAw means that the next n successive fields
of w characters each are to be stored as Bcp informa-
tion. If w is greater than 6, only the 6 rightmost char-
acters are significant. If w is less than 6, the characters
are left-adjusted, and the word is filled out on the
right with blanks.

Output: nAw means that the next n successive fields
of w characters each are to be the result of transmission
from storage without conversion. If w is greater than 6,

.only 6 characters of output are transmitted, preceded

by w-6 blanks. If w is less than 8, the wleftmost char-
acters of the word are transmitted.

H-CONVERSION

The specification nH is followed in the Fg;iiMAT state-
ment by n alphameric characters, as for example, in
the following: ‘

31HbTHISbISbLALPHAMERICBINFORMATION

Blanks are considered alphameric characters and
must be included as part of the count n. The effect of
nH depends on whether it is used with input or with
output.

Input: The n characters are extracted from the input
record and replace the n characters immediately fol-
lowing the character H in the FORMAT specification.

Output: The n characters following the character H
in the specification, or the characters that replaced
them, are written as part of the output record.

Example: The statement FORMAT (4bxY=, F8.3,A8)
might produce the following lines:

XY =_b—93.210bbbbbbbb
XY = 9999.999bbOVFLOW
XY = bB28.7685BPbbhbDh
where: -
b indicates a blank space.

This example assumes that there are steps in the
source program that read the data ovrLow, store this
data in the word to be printed (as six Bcp characters)
in the format as when overflow occurs, and store six
blanks in the word when overflow does not occur.

LOGICAL FIELDS

Logical variables may be read or written by means of
the specification Liw.

Input: The first T or F encountered in the next w
characters of the input record causes a value of TRUE
or FALSE, respectively, to be assigned to the correspond-
ing logical variable. If the field w consists entirely of
blanks, a value of FALSE is assumed. Any character
other than T, F, or blank encountered prior to a T, F,
or blank causes an error exit.

Output: AT or an F is inserted in the output record
for a corresponding logical variable with a value of
TRUE Or FALSE, respectively. The single character is pre-
ceded by w—1 blanks.

Blank Fiélds — X-Conversion

The specification nX affects an input or an output

record as follows: A
Input: nX causes n characters in the input record to

be skipped. : .

- Output: nX causes n blanks to be introduced into

the output record.

Repetition of Field Format

It may be desired to read, write, punch, or print n
successive fields within one record in the same format.
The programmer may specify this by giving n, an un-
signed integer constant, before A, D, E,F, 1L, orO.
The following format field will then be repeated n
~times. Thus, the field specification 3E12.4 has the same
effect as the specification E12.4, E12.4, E12.4.

Repetition of Groups

A limited parenthetical expression is permitted to en-
able repetition of data fields according to certain for-
mat specifications within a longer FORMAT statement
specification. The first character- in the expression
specifies the number of repetitions and is known as the
group count. Thus, ForMAT (2(F10.6, E10.2), 14) is
equivalent to FORMAT (F10.6, E10.2, F10.6, E10.2,).

Scale Factors

To permit more general use of D-, E-, and F-conver-
sion, a scale factor followed by the letter P can precede
the specification. The magnitude of the scale factor
must be between —8 and +8 inclusive.

The scale factor for input is defined as follows:

'10—scale factor X external quantity = internal quantity
"The scale factor for output is defined as follows:
10-+scale factor X internal quantity = external quantity
For input, scale factors affect only F-conversion. For
example, if input data is in the form xx.xxxx and it is
Josired to use it internally in the form .xxxxxx, then
the FORMAT specification to effect this change is 2PF7.4.
F-conversion. o .
For example, the statement FORMAT (12, 3F11.3)
would give the printed line:

27bbbb—93.209bbbbb—0.008bbbbbb0.554
The statement FORMAT (12, 1P3F11.3), used with the
same data, would give the line:
On the other hand, the statement FORMAT (12, — 1P3F11.3)
would give the line:

27bbbbb—9.321bbbbb—0.001bbbbbb0.055
A positive scale factor used for output with D- and

E-conversion increases the number and decreases the
exponent. Thus, with the sa : '
1p3E12.4) would produce the line:
27b—9.3209Eb01b—7.5804E—03bb5,5536E—-01

The scale factor is assumed to be zero if no other
value has been given. However, once a value has been
given, it holds for all D-, E-, ‘and F-conversions fol-
Towing the scale factor within the same FORMAT state-
ment. This applies to both single-record formats and

multiple-record formats. Once a scale factor has been
given, a subsequent scale factor of zero in the same
FORMAT statement must be specified by OP. Scale
factors have no effect on I- or O-conversion.

Multiple-Record Formats

So that it applies to more than one input or output
record, a FORMAT specification can have several differ-
ent one-record formats separated by a slash (/) to
indicate the beginning of a new record. ' '

Input/Output Statements 19

Thus, FORMAT (3F9.2, 2F10.4/8E14.5) would specify a
multi-record block of print in which records 1,35,
- . . have the format (3r9.2, 2F10.4), and records.2, 4, 6,
... have the format (8E14.5).

If a multiple-record format is desired in which the
first two records are to be transmitted according to a
special format and all succeeding records transmitted
according to another format, the last record specifica-
tion should be enclosed in a second pair of paren-
theses; e.g., FORMAT (12, 3E12.4/2F10.3, 3F9.4/(10F12.4)).
If data items remain to be transmitted after the format
specification has been completely used, the format
repeats from the last open parenthesis, using its pre-

ceding group count, if any. As these examples show,

both the slash and the right parenthesis of the FORMAT
statement indicate a termination of a record.

The programmer may introduce blank records into
a multi-record FoRMAT statement by listing consecu-
tive slashes. When n consecutive slashes appear at the
end of the FormAT, they are treated as follows: for
input, n records are skipped; for output, n blank rec-
ords are written. When n consecutive slashes appear
in the middle of the ForMAT, n-1 records are skipped
for input and n-1 blank records are written for output.

Carriage Control

When any Bcp output statement that causes records to
be written is given, the records are either printed
directly on-line or may be printed later by an off-line
printer. To space the printed output records properly,
the following carriage control characters may be used:

CHARACTER EFFECT
Blank Single space before printing.
0 Double space before printing.
1 Skip to a punch in Channel I; i.e., eject.

To obtain such carriage control, the control character
must appear as the first character of the first word of
the Bcp record. This may be done if the FormaT speci-
fication for a Bep record is begun with 1H followed by
the desired control character. Under program control,
the control character is not printed.

FORMAT Statements Read in at Object Tilﬁe

FORTRAN accepts a variable name in the place of a

statement number when referencing a ForRMAT state-

ment. This provides the facility of specifying a FORMAT

tor an input/output list during -execution of the com-

Eiled program.

EXAMPLES:
DIMENSION FMT (12)

L 'FORMAT (12A6) _
FMT (1), 1=1, 12
EAD (5, FMT) A, B, (C(1).1=1, 5)

20

Thus, A, B, and the array C would be converted and
stored according to the FORMAT specification read into
the array Mt at object time.

The format read in at object time must take the same
form as a source program FORMAT statement, except
that the word FORMAT is omitted; i.e., the variable
format begins with a left parenthesis and ends with a
right parenthesis.

JFORMAT statements may not be subscripted; thus, an
expression such as READ (5, FMT(1)) A, B would not be
permitted.

Data Input to the Object Program

Data input to the object program is f)repared according
to the following specifications:

1. The data must correspond in order, type, and field
to the field specifications in the FORMAT statement.
Punching begins in card column 1.

2. Plus signs can be omitted, or they can be indi-
cated by a blank or a 12-punch. Minus signs must be
indicated by an 11-punch. o

3. Blanks in numerical fields are regarded as zeros.

4. Numbers for D-, E-, and F-conversion can contain
any number of digits, but only the high-order digits
are retained. For D-conversion, the number is rounded
to the 16 high-order digits of accuracy and, for E- and
F-conversion, to the eight high-order digits of accuracy.

To permit economy in punching, certain relaxations
in input data format are permitted:

1. Numbers for D- and E-conversion need not have
four columns occupied by the exponent field. The start
of the exponent field must be marked by the E or D or, -
if that is omitted, by a + (plus) or a — (minus), not
a blank. Thus, E2, E+2, +2, +02, and D+02 are all
permissible exponent fields. ;

2. Numbers for D-, E-, and F-conversion need not
have their decimal point punched. If it is not punched,
the ForMAT specification supplies the number of
decimal places expected. For example, the number
—09321+2 with the specification E12.4 is treated as
though the decimal point had been punched between
the 0 and the 9. If the decimal point is punched on the
card, its position overrides the position indicated in the
FORMAT statement.

The General Input/Output Statements

This set of statements -specifies transmiqﬁon of infor-
mation between core storage and the input or output .
media.

Input
The ReAD statement designates input.

GENERAL FORM

Following are the two forms of the READ statement:
READ (i, n) list
READ (i) list
where: _

1. i is an unsigned integer constant or an integer variable
that refers to an input device.

2. n is a FORMAT statement number or a variable
FORMAT name.

EXAMPLES:
READ (5, 10) A, B, (D(]),J=1, 10)
READ (N, 10) K, DC (J)
READ (3) (A(]),J=1,10)
READ (N) (A(]),J=1, 10)

1. The ReaD (i, n) list statement causes Bcp informa-
tion to be read from logical unit i.

9. The rEAD (i) list statement causes binary informa-
tion to be read from logical unit i.

Under the form reap (i, n) list, successive records
are read until the entire input/output list has been

satisfied; i.e., all data items have been read, converted, .

and stored in the locations specified by the input/out-
put list.)

Under the form meap (i) list, a record is read
completely only if the list specifies as many words as
the record contains. The list cannot specify more words
than the record contains. Binary records to be read in
by a FORTRAN program should be written by a FORTRAN
program or should be in the proper binary record for-
mat, as follows:

Consider a ForTRAN record to be any sequence of
words written by one FORTRAN output statement. When
written in binary, this FORTRAN record may be divided
into several 1ocs logical records. The 1ocs record
length is specified in the publication, IBM 7040/7044

Operating System (16/32K): Systems Programmer’s

Guide, Form C28-6339. The first word of each of these
logical records is a signal word interpreted only by
FORTRAN. The decrement of this signal word specifies
the number of words in the logical records that follow;
the address is zero for all but the last logical record
of the rorTRAN record. The address of this last signal
word contains the number of logical records in the
entire FORTRAN record.

Output
The WrITE statement designates output.

GENERAL FORM

Following are the forms of the WRITE statement:
WRITE (i, n) list
WRITE (i) list
where:

1. i is an unsigned integer constant or an integer variable
that refers to an output device.

2. n is a FORMAT statement number or a variable
FORMAT name.

EXAMPLES:

WRITE (6, 10) A,

B, (C(]),J=1,10)
WRITE (N, 11) K, D(]J

2]

C

, 10}

Hi A/\
=20

WRITE (2) (A(])
WRITE (M) A, B,

1. The writE (i, n) list statement causes Bcp infor-
mation to be written on logical unit i.

2. The write (i) list statement causes binary infor-
mation to be written on logical unit i.

3. In the output statement in item 1, successive
records are written in accordance with the FORMAT
statement until the list has been satisfied. In the output
statement in item 2, one FORTRAN record, consisting of
all the words specified in the list, is written.

Figure 7 shows the correspondence between FORTRAN
logical units and system units.

FORTRAN
. Logical System System
Input/Output Unit Unit
Unit - Assignment Description

[} S.5U00 Utility O

1 S.5U01 Utility 1

2 S.5U02 Utility 2

3 §.5U03 Utility 3

4 §.SU04 Utility 4

5 S.SIN1 System {nput Unit

] $.S0U1 System Output Unit)

7 S.SPP1 System Peripheral Punch Unit
READ S.SIN1 System Input Unit
PRINT $.S0U1 System Output Unit
PUNCH S.SPP1 System Peripheral Punch Unit -

Figure 7. Correspondence Between FORTRAN Loglca] Umts
and System Units .

The Auxiliary Input/Output Statements

The statements END FILE, REWIND, and BACKSPACE,
cause, respectively, the object program to write an
end-of-file mark on the tape unit specified, or a rewind
or backspace of the symbolic or actual tape unit
specified.

GENERAL FORM

Following is the form of the END FILE, REWIND, and
BACKSPACE statements:
END FILE i
REWIND i
BACKSPACE i
where:
i is an unsigned integer constant or ‘integer variable that
refers to an input/output device.

Input/Output Statements 21°

EXAMPLES:

END FILE 3
END FILE N
REWIND 3
REWIND N
BACKSPACE 3

1. The EnD FILE i statement causes the object pro-
gram to close the file corresponding to logical unit i
with an end-of-file procedure; there is no rewind pro-
cedure, -

2. The REWIND i statement causes the object program
to close the file corresponding to logical unit i with
the end-of-file and the rewind procedure,

3. The BACKSPACE i statement causes device i to be
backspaced one physical record if i refers to an input/
output device in BCD mode, or it causes the device i
to be backspaced one FORTRAN record if i refers to
an input/output device in binary mode. The mode of a
device is determined by the mode of the most recent
input or output statement referring to that device.

22

When backspacing occurs, one physical tape record is
assumed to consist of only one 10cs logical record.
Therefore, when'a BACKSPACE statement refers to a
logical unit of which the current mode is binary, the
signal word address of the last physical record deter-
mines the total number of physical records to be back-
spaced. .

4. A request to write an end of file or to rewind
system files s.sIN1, s.sou1, and s.sppi, corresponding in
the standard ForTRAN Input/Output Library to logical
units 5, 6, and 7, causes job termination or is ignored.
(The publication, IBM 7040/7044 Operating System
(16/32K): Programmer’s Guide, Form C28-6318, has
additional information.)

5. Care should be taken to prevent writing an end
of file, rewinding, and backspacing on units attached
to unit- record equipment. (The publication, IBM
7040/7044 Operating System (16/32K): Input/Output
Control System, Form C28-6309, has additional in-
formation.)

There are four classes of subroutines in FORTRAN: arith-
metic or logical statement functions, built-in functions,
FUNCTION subprograms (including library functions),
and sUBROUTINE subprograms. The major differences
among the four classes of subroutines are:

1. The first three classes may be grouped as func-
tions; they differ from the suBROUTINE subprogram in
the following respects:

a. The functions are always single-valued (that
is, they return a single result); the SUBROUTINE
subprogram may return more than one value.

b. A function is referred to by an arithmetic or
logical expression containing its name; a suUB-
ROUTINE subprogram is referred to by a caLL
statement. ’

2. A built-in function is an open subroutine; ie., a
subroutine that is incorporated into the object program
each time it is referred to in the source program. The
three other FORTRAN subroutines are closed; i.e., they
. appear only once in the object program.

Naming Subroutines

All four classes of subroutines are named in the same
manner as a FORTRAN variable (see the section “Vari-
ables”).

1. A subroutine name consists of 1-8 alphameric
characters, the first of which must be alphabetic.

2. The type of the function, which determines the
type of the result, may be defined as follows:

a. The type of an arithmetic or logical statement
function may be indicated by the name of the
function or by placing the name in a Type state-
ment.

b. The type of a FUNCTION subprogram may be in-
dicated by the name of the function (if it is real
or integer) or by writing the type as part of the
function statement (REAL FUNCTION, INTEGER
FUNCTION, COMPLEX FUNCTION, DOUBLE PRECI-
SION FUNCTION, LOGICAL FUNCTION). In the latter
case, the type, implied by name, is overridden.

c. The type of a built-in function is indicated
within the FORTRAN processor and need not ap-
pear in a Type statement.

3. The type of a suBrOUTINE subprogram is un-
important and need not be defined, since the type of
results returned is dependent only on the type of the
variable names in the dummy argument list.

Subroutines and Functions

Defining Subroutines

The method of defining each class of subroutines is
discussed in the following text.

Arithmetic and Logical Statement Functions

Arithmetic and logical statement functions are defined
by a single arithmetic or logical assignment statement
in the source program and apply only to the particular
program or subprogram in which the definition ap-
pears.

GENERAL FORM

a=b
where:

1. a is a function name followed by parentheses enclos-
ing its arguments, which must be distinct, nonsubscripted
variables, separated by commas.

2. b is an expression that does not involve subscripted
variables. Any arithmetic statement function appearing in b.
must have been defined previously.

EXAMPLES:

FIRST (X)=A*X+B

JOB (X, B)=C*X+B

THIRDF (D)=FIRST (E)/D
MAX (A, I)=A**I-B-C
LOGFCT (A, C)=A**2.GE.C/D

The type of the function and its arguments must be
defined in the same manner as normal variables.

As many as desired of the variables appearing in b
may be stated in a as the arguments of the function.
Since the arguments are dummy variables, their names,
which indicate the type of the variable, may be the
same as names of the same type appearing elsewhere
in the program.

Variables included in b that are not stated as argu-
ments are the parameters of the function. They are
ordinary variables.

The type of each argument must be defined pre-
ceding its use in the statement function definition.

All statement function definitions must precede the
first appearance of the function name in an executable
statement or another statement function definition.

Built-in (or Open) Functions

Built-in functions are predefined open subroutines that
exist within the FORTRAN processor. They generate
instructions that are compiled in-line every time the
function is referred to. ’

Subroutines, Functions, and Subprogram Statements 23

The names of built-in functions cannot be used as
subroutine or variable names.
Figure 8 lists all available built-in functions.

Library (or Closed) Functions

Library (or closed) functions are Funcrion subpro-
grams that are prewritten and exist on the library tape
or in prepared card decks. These functions constitute

closed subroutines; ie., instead of appearing in the
object program for every reference that has been made
to them in the source program, they appear only once
regardless of the number of references.

Library subroutines that perform mathematical
functions are provided. Subroutines marked with an
* (asterisk) are internal to FORTRAN and cannot be
referred to by a call in the source program.

Function Function Type of
Definition Name No. of Args. Function Argument
Absolute value of ABS 1 Real Real
the argument 1ABS 1 Integer Integer
" DABS 1 Double-precision . Double-precision
Truncation, sign of AINT 1 .Real Real
argument times absolute INT 1 Integer Real
value of the largest IDINT 1 Integer Double-precision
integer in argument
Remaindering, AMOD Real . Real
Arg 1 [Arg 1/Arg2]* Arg2, MOD 2 Integer Integer
where [X] indicates the
integral part of X
Choosing the largest AMAXO =2 Real Integer
value of the set of AMAXT =2 Real Real
arguments MAXO0 =2 Integer Integer
MAX1 =2 Integer Real
DMAX1 =2 Double-precision Double-precision
Choosing the AMINO =2 Real Integer
smallest value of the AMINT =2 Real Real4
set of arguments MINO =2 Integer Integer
) MIN1T =2 Integer Real -
DMIN1 =2 Double-precision Double-precision
Floating an integer FLOAT 1 Real Integer
Same as INT IFIX 1 Integer Real
Transfer of sign, SIGN 2 Real Real
the sign of Arg 2 ISIGN 2 Integer Integer
times Arg 1 DSIGN 2 Double-precision Double-precision
Positive difference, DIM 2 Real ' Real
Arg 1 — Min (Arg 1, Arg 2) IDIM 2 Integer Integer
Obtaining the most significant SNGL 1 ‘Real Double-precision
part of a double-precision
argument .
Obtaining the real part of a REAL 1 Real Complex
complex argument
Obtaining the imaginary part AIMAG 1 Real Complex
of a comple’xrorgumenl'
Expressing a singlé-precision DBLE 1 Double-precision " Redl
arg t in doubl P isi
form
Expressing two real arguments CMPLX 2 ‘Complex * Real
in complex form
C = Argl + iArg2
Obtaining the conjugate of a CONJG 1 Complex Complex
complex argument; for ’
Arg=X+i¥,C=X— iy)

Figm'e 8. Built-in Functions
24

ENTRY POINT

.EXP1.

Entry point for
an integer exponent
and base. The out-
put is integer.

.EXP2.

Entry point for
an exponential sub-
routine whose base
is real and whose
exponent is integer.

EXP3.

~ Entry point for
an exponential sub-

routine whose base

and exponent are

real.

EXP-

Entry point for
a real natural anti-
logarithm subrou-
tine.

ALOG

Entry point for
the real natural log-
arithm subroutine.

ALOGI10

Entry point for
the real common
logarithm subrou-
tine.

" ATAN
Entry point for

the real arc tangent .

subroutine. This en-
try point has one
argument.

DESCRIPTION

A call to this subroutine. is
compiled for a source pro-
gram exponential .term such
as I**], where I and] are
integer. This subroutine com-
putes the: Jth power of I
with accuracy up to 35 sig-
nificant bits.

A call to this subroutine is
compiled for a source pro-
gram exponential term such

as A**], where A is real and’

J is integer. This subroutine
computes the Jth power of A
with accuracy up to eight
significant digits.

A call to this subroutine is
compiled for a source pro-
gram exponential term such
as A**B, where A and B are
real. This subroutine com-
putes the Bth power of A
with accuracy up to eight sig-
nificant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=EXP(X), where X is

real. This subroutine com- -

putes €%, the natural anti-
logarithm of X, with an
accuracy up to eight sig-
nificant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=ALOG(X), where X is

real. This subroutine com- -

putes Loge(X) with accu-

racy up to eight signifi-

cant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=ALOGI10(X), where X
is real. This subroutine com-
putes Logio(X) with accu-
racy up to eight significant
digits. - -

A call to this subroutine is

compiled for a source pro-.

gram statement such as
Y=ATAN(X), where X is
real. This subroutine com-
putes Arc tan(X) in radians
with accuracy up to eight sig-
nificant digits. -

- ROUTINE

*XP1

*XP2

- *XP3

XPN

~ LOG

LOG

ATN'

ENTRY POINT

ATAN2

Entry point for
the real arc tangént
subroutine. This en-
try point requires
two arguments.

SIN
Entry point for
the real sine-cosine

subroutine. The in-

put is expressed in
radians.

CcoSs

Entry point for
the real sine-cosine
subroutine. The in-
put is expressed in
radians.

TANH :

Entry point for
the hyperbolic tan-
gent subroutine.

SQRT

Entry point for
the real square root
subroutine.

ARSIN

Entry point for
the real arc sine-
arc cosine subrou-
tine.

ARCOS

Entry point for
the real arc sine-
arc cosine subrou-
tine.

FCAOP.

Entry point for
arithmetic opera-
tions involving two
complex numbers.

DESCRIPTION

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=ATAN2(X, ¥), where X

_and Y are real. This subrou-

tine computes Arc tan(X/Y)
in radians with accuracy up
to eight significant digits.

A call to this subroutine is

compiled for a source pro-
gram statement such as
Y=SIN(X), where X is
real. This subroutine com-
putes Sin(X) with accuracy
up to eight significant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=COS(X), where X is
real. This subroutine com-
putes Cos(X) with accuracy
up to eight significant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=TANH(X), where X is

" real. This subroutine com-

putes Tanh(X) with accu-
racy up to eight. significant
digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=SQRT(X), where X is
real. This subroutine com-
putes the square root of X
with accuracy up to eight
significant digits. -

A call to this subroutine is

compiled for a source pro-
gram statement such as
Y=ARSIN(X), where X is
real. This subroutine com-
putes Arc sin{X) in radians
with accuracy up to eight
significant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=ARCOS(X), where X is
real. This subroutine com-
putes Arcrcos(X) in radians
with - accuracy up to eight
significant digits.

A call to this subroutine is
compiled for souree program
statement such as CA=CB+
CC, CA=CB-CC, CA=

ROUTINE

ATN

SCN

SCN

TNH

SQR

ARSCN

ARSCN

*FCA

Subroutines, Functions, and Subprogram Statements

25

ENTRY POINT

-CXP1.

Entry point for
a complex base and
integer exponent.

DXPI.

Entry point for
a - double-precision
base and an integer
exponent.

DXP2.

Entry point for
a double-precision
base and exponent.

DMOD

Entry point for a
double-precision re-
maindering func-
tion.

DEXP

Entry point for
a double-precision
natural antiloga-
rithm subroutine.

DESCRIPTION

CB*CC,orCA=CB/CC,
where CA, CB, and CC are
complex. This subroutine
performs the complex opera-
tion required with accuracy
up to eight significant digits
for the real and imaginary
parts of the result. ‘

A call to this subroutine is
compiled for a source pro-
gram exponential term such
as CA**1, where CA is com-
plex. This subroutine com-
putes the Ith power of CA
with accuracy up to eight
significant digits.

A call to this subroutine is
compiled for a source pro-
gram exponential term such
as DA**I, where DA is dou-
ble-precision. This subroutine
computes the Ith power of
DA with accuracy up to 16
significant digits.

A call to this subroutine is

.compiled for a source pro-

gram exponential term such
as A**B, where A is real
and B is double-precision,
or A is double-precision and
B is real, or A and B are
double-precision. If. one
term is real, it will be con-
vérted to double-precision
before entry into the sub-
routine. This subroutine com-
putes the Bth power of A
with accuracy up to 16 sig-
nificant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as Y=
DMOD(X, Z), where X and
Z are double-precision. This
subroutine computes the ex-
pression X—[X/Z]*Z, where
[]1 (brackets) indicate the
integral part of the division.
The result is accurate up to
16 significant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as Y=
DEXP(X), where X is
double-precision. This sub-
routine computes €%, the nat-
ural antilogarithm of X, with
accuracy up to 16 significant
digits. :

ROUTINE

*FDX1

*FDX1

- *FDX2

FDMD

- FDXP

ENTRY POINT

DLOG

Entry point for
a double-precision
natural logarithm
subroutine.

DLOGI10

Entry point for
a double-precision
common logarithm
subroutine.

DATAN

Entry point for
thedouble-precision
arc tangent sub-
routine. This entry
point has one argu-
ment.

DATAN2

Entry point for
the double-precision
arc tangent. sub-
routine. This entry
point requires two
arguments.

DSIN
Entry point for

- thedouble-precision’

sine-cosine subrou-
tine. The input is
expressed in ra-
dians.

DCOS

Entry point for’

thedouble-precision
sine-cosine subrou-
tine. The input is
expressed in ra-
dians.

DSQRT

Entry point for
the double-precision
square root subrou-
tine.

DESCRIPTION

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=DLOG(X), where X is
double-precision. This sub-
routine: computes Loge(X)
with accuracy up to 16 sig-
nificant digits.

A call to this subroutine
is compiled for a source
program statement such as
Y=DLOG10(X), where X
is double-precision. This sub-
routine computes Logio(X)
with accuracy up to 16 sig-
nificant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=DATAN(X), where X is
double-precision. This sub-
routine computes Arc tan (X)
in radians with accuracy up
to 18 significant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=DATAN2(X,Z), where X
and Z are double-precision.
This subroutine computes
Arc tan(X/Z) with accuracy
up to 16 significant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=DSIN(X), where X is
double-precision. This * sub-
routine computes Sin(X)
with accuracy up to 16 sig-
nificant digits.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=DCOS(X), where X is

" double-precision.” This sub-

routine computes Cos({X)

- with accuracy up to 18 sig-

nificant digits.

A call to this subroutine is

compiled for a source pro-

gram statement such as
Y=DSQRT(X), where X is
double-precision. This sub-
routine computes the square
root of X with accuracy up
to 16 significant digits.

ROUTINE

FDLG

FDLG

FDAT

FDAT

FDSC

FDSC

FDSQ

ENTRY POINT

CABS

Entry point for
the complex abso-
lute value subrou-
tine. (The - argu-
ment is complex,
but the function is
real.)

CEXP

Entry point for
the complex natural
exponential subrou-
tine.

CLOG

Entry point for

the complex nat-
ural logarithm sub-
routine,

CSIN

Entry point for
the complex sine-
cosine subroutine.

CCOS

Entry point for
the complex sine-
cosine subroutine,

CSQRT

Entry point for
the complex square
root subroutine.

DESCRIPTION

A call to this subroutine is

compiled for a source pro-

gram statement such as.

Y=CABS(X), where X is
complex. This subroutine
computes (X12+X32)1/2,
where X1 and Xz are the real
and imaginary parts of X,

‘with accuracy up to eight

significant digits for the real
variable Y.

A call to this subroutine is

compiled for -a source pro-
gram statement such as

~ Y=CEXP(X), where X is

complex. This subroutine
computes . eX, the natural

antilogarithm of X, with accu-

racy up to eight significant

digits for the real and imagi-
nary parts of the result.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=CLOG(X), where X is
complex. This subroutine
computes Loge(X) with accu-
racy up to eight significant
digits for the real and imagi-
nary parts of the result.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=CSIN(X), where X is
complex. This = subroutine
computes Sin(X) with accu-
racy up to eight significant
digits for the real and imagi-
nary parts of the result. -

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=CCOS(X), where X is
complex. This subroutine
computes Cos(X) with accu-

racy up to eight significant.

digits for the real and imagi-

~ nary parts of the result.

A call to this subroutine is
compiled for a source pro-
gram statement such as
Y=CSQRT(X), where X is
complex. This subroutine
computes the square root of
X with accuracy up to eight
significant digits for the real
and imaginary parts of the
result.

ROUTINE

FCAB

FCXP

FCLG

FCSC

FCSC

FCSQ

FUNCTION Subprogram

FUNCTION subprograms are subroutines that cannot be
defined by only one arithmetic statement and that are
not used often enough to warrant a place on the library
tape. FUNCTION subprograms are defined as separate
FORTRAN source language programs

GENERAL FORM

FUNCTION name (a1,a2, . ..,an)

where: .
1. name is the symbolic name of a single-valued function.
2. The arguments a1, az, ... an of ich ther

at least one, are nonsubscn te vari :

.—.——L——-1
SUBROUTINE _subprograms, names of FORTRAN func-

tions, or names of library functions.

EXAMPLES: .
" REAL FUNCTION ROOT (B, A, C)
-FUNCTION INTRST (RATE,YEARS)
LOGICAL FUNCTION IFTRU (D, E, F)
INTEGER FUNCTION CONST (ING SG)
DOUBLE PRECISION FUNCTION DUBL (DD, DF)
COMPLEX FUNCTION CPLEX (CA, CB)

Where it is desired to override the implicit or normal
type of name in a FUNCTION statement, one must state
the type (see “Type Declaration Statements”); the

© type must immediately precede the word FUNCTION.

The FUNCTION statement appears, therefore in one

of the following six ways:

FUNCTION

REAL FUNCTION

INTEGER FUNCTION

LOGICAL FUNCTION ;
DOUBLE PRECISION FUNCTION
COMPLEX FUNCTION

The FUNCTION statement must be the first statement
of a FUNCTION subprogram. In a FUNCTION subprogram,
the name of the function must appear at least once as
the variable on the left side of an arithmetic or-logical
statement or in an input statement; for example, NAME
appears in the following both as the name of the func-
tion and as the variable on the left of an arithmetic
statement:

FUNCTION NAME (A, B)

NAME=Z+B

RETURN

This returns the output value of the function to the
calling program.

A FUNCTION subprogram:constitutes a complete com-
pilation and need not be compiled with other programs
or subprograms. It must be loaded with other programs
to form a complete object program.

The arguments folowing the name in the FuncTiON
statement may be considered dummy variable names.
That is, during object program execution, other

Subroutines, Functions, and Subprogram Statements 27

actual arguments are substituted for them. Therefore,
the arguments that follow the function reference in the
calling program must agree with those in the FuncTION
statement in the subprogram in number, order, and
type. Furthermore, when a dummy argument is an
array name, the corresponding actual argument must
also be an array name. Each of these array names with
the same dimensions must appear in DIMENSION state-
ments of their respective programs. None of the
dummy variables may appear in EQUIVALENCE or in
COMMON statements in the FUNcTION subprograms.

The runcTiON subprogram must be logically termi-
nated by a RETURN statement (the section “RETURN
Statement” has additional information).

The FUNCTION subprogram can contain any FORTRAN
statement except a SUBROUTINE statement or anether
FUNCTION statement. A FUNCTION subprogram is re-
ferred to when the programmer uses its name as an
operand in an arithmetic expression.

RULES FOR CALLING FUNCTIONS

Functions are called in a program by their appearance
within an arithmetic expression. For example:
Y = A-SIN(B-C)
X = NAME (Z(I), Q) +KOUNT
All names of library and rorTRAN functions are used
in this way. Their appearance in the arithmetic expres-
sion serves to call the function; the value of the func-
tion is then computed, using the arguments that are
supplied in the parentheses following the function
name. The arguments must be the same type as those
used in the function definitions. The arguments used
can be constants, variables with or without subscripts,
and/or arithmetic/logical expressions, including func-
tion usages. An argument of a statement function can-
not be a function or subroutine name.
The arguments of a FUNCTION subprogram can be
any of the following:

1. Any type of constant.’

2. Any type of subscripted or nonsubscnpted vari-
able.

3. An arithmetic or logical expression.

4. The name of a FUNCTION or SUBROUTINE sub-
program.

SUBROUTINE Subprogram

SUBROUTINE subprograms are separate FORTRAN source
language programs.

- GENERAL FORM

SUBROUTINE name (a1, a2, ...an)

where:
1. name is the symbolic name: of a subprogram
. Each _argument, if

] name or the name of a SUBRQUTINE or FUNCTION

28

EXAMPLES:

SUBROUTINE MATMPY (A, N, M,B,L,),C, K, I)
SUBROUTINE NOPAR

The sUBROUTINE statement must be the first state-
ment of a SUBROUTINE subprogram and defines it as
such. A subprogram introduced by the suBrRouTINE
statement must be a FORTRAN program and may con-
tain any FORTRAN statement except a FUNCTION state-
ment or another SUBROUTINE statement.

Unlike the FuncTION subprogram, which returns only
a single value, the SUBROUTINE subprogram may use
one or more of its arguments to return output. The
arguments may be considered dummy variable names
that are replaced at the time of execution by the actual
arguments supplied in the cALL statement that refers
to the suBrouTINE subprogram. The actual arguments
must agree with the dummy -arguments in number,
order, and type. When a dummy argument is an array
name, it must appear in a DIMENSION statement in the
SUBROUTINE subprogram; also, the corresponding actual
argument in the caLL statement must be a dimensioned
array name. None of the dummy arguments may ap-
pear.in an EQUIVALENCE Or COMMON statement in the-
SUBROUTINE subprogram.

The suBrOUTINE subprogram must be logically termi-
nated by a RETURN statement.

RETURN Statement

This statement logically terminates SUBROUTINE and
FUNCTION subprograms and returns control to the call-
ing program.

GENERAL FORM
RETURN

The ReTURN statement must be the last executed
statement of the subprogram. It need not be physically
last; it can be reached by program flow at any point.
Any number of RETURN statements may be used.

A RETURN statement in a main program terminates
execution in the same manner as a sTop statement.

CALL Statement

The caLL statement is used to transfer control to a
SUBROUTINE subprogram.

GENERAL FORM

CALL subr (ay, a2, ...an) or CALL ;ubr
where:
1. subr is the name of a SUBROUTINE subprogram

2. ai, a2, . .. an are the arguments.

EXAMPLES:

CALL MATMPY (X,5,10,Y,10,2,Z,5, 2) ’
CALL QDRTIC (9, 732, Q/4. 536, R-S**2. 0, X1, X2)

The cALL statement transfers control to the sub-
program and presents it with the actual arguments.
Each argument may be one of the following:

1. Any type of constant.

9. Any type of subscripted or nonsubscripted vari-
able. ‘

3. An arithmetic or a logical expression.

4. The name of a FUNCTION Or SUBROUTINE sub-

rogram. ‘

5. Alphameric characters. Such arguments must be
preceded by nH, where n is the count of the characters
included in the argument, e.g., 6HbsTaRT. Blank spaces
and special characters are considered part of the
character count when used in_alphameric field,

The arguments presented by the caiLL statement
must agree with the corresponding arguments in the
SUBROUTINE statement of the called subprogram in
number, order, type, and in array size.

Subprograms Provided by FORTRAN

-FORTRAN includes several commonly used subroutines
that are available to the programmer. The mathe-
matical subroutines that are provided are defined as
FUNCTION subprograms. In addition, FORTRAN includes
the SUBROUTINE subprograms EXIT, buMP, and PDUMP.
EXIT terminates job execution, pump dumps core stor-
age and then terminates job execution, and PpUMP
dumps core storage and then continues execution.

Mathematical Subroutines

The mathematical subroutines are FUNCTION sub-
programs and are listed in the section “Library (or
Closed) Functions.”

EXIT, DUMP, and PDUMP

The subprograms exrt, pump, and poump are referred
to with a carL:statement. The following table shows
how they appear:

CALL EXIT
CALL DUMP (a1, b, f1, . . ., an, bn, fn)
CALL PDUMP (ai, b1, f1, ..., an, bn, fn)

where:

1. a and b are variable names that indicate the limits
of core storage to be dumped (either a or b may represent
upper or lower limits).

2. f is an integer that indicates the dump format
desired, defined as follows:

0=dump as octal

1=dump as real

2=dump as integer

3=dump as octal with mnemonics

If for the pump or ppuMP subprogram the integer
that indicates the dump format is omitted, FORTRAN
assumes it to be 0 and the dump is in octal; for example,
instead of FLD1,FLD2,0,FLD3,FLD4,0 the programmer may
write FLD1,FLD2,,FLD3,FLD4 for his arguments. If no argu-
ments are given, all of core storage is dumped in octal.

caLLs to the Exrr, pump, and pouMP subprograms
perform the following: B

1. caLL to the ExrT subprogram: This terminates the
execution of a program by returning control to the
Monitor. :

2. caLL to the pump subprogram: This causes the
limits of core storage indicated by the arguments to be
dumped and execution to be terminated by returning
control to the Monitor.

3. caLL to the ppump subprogram: This causes the
limits of core storage indicated by the arguments to be
dumped and execution to be continued.

Subroutines, Functions, and Subprogram Statements 29 -

The Specification Statements

DIMENSION, DATA, COMMON, EQUIVALENCE, and the Type
statements are nonexecutable statements that supply
the compiler with necessary information about storage
allocation for the constants and variables used in the
program.

DIMENSION Statement

The piMENsION statement specifies the number of di-
mensions of an array. A single DIMENSION statement
may specify the dimensions of more than one array.
The dimensions may be unsigned integer constants or
integer variables. When integer constants are specified,
the size of the array is defined. When integer variables
are specified, location and size of an array are deter-
mined at execution time as explained in the section,
“Adjustable Dimensions.”

The pIMENSION statement must precede the first ap-
pearance of each subscripted variable in an executable
‘statement or DATA statement.

GENERAL FORM

DIMENSION V1(11) va(iz), .
| where:

1. vis a variable.’

2. i is composed of one, two, or three unsigned integer
constants and/or integer variables, separated by commas
(i may be composed of variables only when the DIMEN-
SION statement appears in a FUNCTION or SUB-
ROUTINE subprogram).

.., vin(im)

EXAMPLES:
DIMENSION A(10), B(5, 15), CVAL(3, 4, 5)
DIMENSION NEXT(I, J, K)
DIMENSION A(1, 2)

Integer Dimensions

The size of an array is defined when all its dimensions
are integer constants in a pIMENsION statement. This
DIMENSION statement provides the information neces-
sary to allocate storage for an array.

One, two, or three integer constants may also be
specified as the dimensions of an array in a comMoN
statement or any of the Type statements.

Adjustable Dimensions

The name of an array and the constants that are its
dimensions may be presented as arguments in a call to
a FUNCTION Or SUBROUTINE subprogram. In the subpro-
gram the dimensions of the array are given as variables,

30

and the absolute dimensions are substituted when the
subprogram is entered. Thus, the same subprogram
may be used for arrays of varying sizes (but with the
same number of dimensions).

A subprogram array that has adjustable dimensions
must be defined in a calling program. Only a pIMENSION
statement or one of the Type statements may be used
to define the array. The actual dimensions are pre-
sented to a FUNCTION subprogram through an arith-
metic expression and to a SUBROUTINE subprogram
through a caLL statement.

In the subprogram the SUBROUTINE Or FUNCTION
statement argument list must contain the dummy array
name and all the variables used as dimensions. The
DIMENSION statement in the subprogram must show
the variables as dimensions of the dummy array. These
dimensions may not be altered within the subprogram..

The following example illustrates the use of ad-
justable dimensions: -

CALLING PROGRAM SUBPROGRAM

SUBROUTINE MAYMY
(R, L, M) '

DIMENSION B(2, 3)

CALL MAYMY(B, 2, 3) DIMEI\’ISION R(L, M)

DIMENSION C(4, 5)

DO 1001=1,L
CALL MAYMY(C. 4, 5) i

.

The first time the subprogram maymy is entered,
L and M, the variables used as dimensions of the array
R, are replaced by 2 and 3, respectively. The array
name B is substituted for the dummy array name R.
The second time the subprogram is entered, the varia-
bles L and M are replaced by 4 and 5, respectively, and
the array name C is substituted for the dummy array
name R.

Following is an example of the use of ad]ustable
dimensions in a FUNCTION subprogram

MAIN PROGRAM

DIMENSION A(3)
X=]JOB(A, 3)

SUBPROGRAM

FUNCTION JOB (R, I)
DIMENSION R(I)

JOB=R(1) + R(2) + R(3)

DATA Statement

Data variables may be defined in the source program
by means of the parta statement. The paTA statement
provides for data to be placed into the object program
during compilation of the program. If the data varia-
bles are redefined during program execution, they will
assume their new values regardless of the value given
in the pATA statement.

GENERAL FORM

DATA list/d1, ds, . . .
where:

1. list contains the names of the variables being defined,
separated by commas (the elements of the list may have
integer constant subscripts). '

2. d is an element of data.

3. kis an integer constant that appears before the d field
to indicate that the d field is to be repeated k times [an
asterisk (*) must appear after the k].

dn/, list/d1, d2, k*ds, ... dm/, ...

The element, d, may be any of the following:

1. Aninteger, real, double precision, or complex con-
stant, When double precision and/or complex constants
are specified, the corresponding variables must have
appeared in a preceding DOUBLE PRECISION statement
and/or COMPLEX statement.

2. One or more alphameric characters. This field is
written as:

nHajagzas . .. an
where:

n is the number of alphameric characters follow-

ing H.

a is an alphameric character or blank.
Each group of six alphameric characters or blanks
forms a word. If n is not a multiple of six, the char-
acters are left-justified and the remaining character
locations in the last core storage word are filled with
blanks. '

When more than 6 alphameric characters are re-
quired, the paTa statement must be preceded by a
DIMENSION statement indicating the number of core
storage words needed by the alphameric field. For
example, if the programmer wishes to define 15 alpha-
meric characters starting at G(1), he must-use a DIMEN-
sION statement defining G as at least three words in
length.

EXAMPLE:
DIMENSION G(3)

DATA G/15HDATALTObLBEbREAD/

3. A series of octal digits. An octal field is written asa
series of octal digits preceded by the letter O. The field
following the letter O may include from one to twelve
signed or unsigned octal digits.

4. A logical constant. A logical field may be written
in one of the following forms: ‘

.TRUE.

.FALSE.

T

F ’
The logical constants T and F may be used only in the
pATA statement. Furthermore, if a logical constant is
specified in a pATA statement, a LOGICAL statement must
precede it. The rocicaL statement must contain the
variables that will be replaced by logical constants.

Uses of the paTa statement are illustrated in the

following examples:

DATA R, Q/14.2, BHEND/, Z/O77T7777000001

LOCICAL LA, LB, LC, LD
DATA LA, LB, LC, LD/F, .TRUE., FALSE. , T/

DIMENSION E(5),A(4),B(3,3,4)
COMPLEX D
DATAE, A(3),B(2,1,4), D/5*0.0,1.0,2.0,(3.1,4.5)/
There must be a direct relationship between the list
and the data. Each element of data should correspond
to one nondimensioned variable or an element of an
array. When data is to be placed into an entire array,
the name of the array is placed in the list without
subscripts. The number of data elements must be equal
to the size of the array. When data is to be placed into
a complex variable field, the data should be a complex
constant.
The following two statements illustrate the one-for-
one correspondence between list items and data items.
DIMENSION B(25))
DATA A,B,C/24*4.0,3.0,2.0,1.0/ .
The paTA statement places 4.0 into A, B(1), ... B(23),
and 3.0, 2.0, and 1.0 into B(24), B(25), and C, re-
spectively.

BLOCK DATA Subprogram

The BLOCK DATA subprogram causes data to be entered
into a labeled comMmon block. This subprogram may
contain only the pPATA, COMMON, DIMENSION, and Type
statements associated with the data being defined.

GENERAL FORM

BLOCK DATA

The first statement of this subprogram must be the
BLOCK DATA statement. The subprogram may not con-
tain any executable statements.

One or more labeled common blocks may be speci-
fied in a coMMON statement, and data can be entered .
into as many labeled comMon blocks as are specified.

The Specification Statements 31

The comMoN statement must include all elements of
the labeled common blocks, although these elements
need not appear in the paTA statement. The pATA state-
ment, however, must define only the elements listed in
the coMMoN statement. 7

Following is an example of a BLOCK DATA subprogram.
Note that the element A of the common block L~ and
the element Y of the comMon block rMmg are listed in
the comMoON statement.but are not defined in the paTa
statement.

BLOCK DATA

COMMON/ELN/C,A,B/RMG/Z,Y

DIMENSION B(4),Z(3)

DOUBLE PRECISION Z

COMPLEX C

DATA B(1)/1.1/,C/(2.4,3. 769)/ Z(1)/7.6498085D0/
END

COMMON Statement

GENERAL FORM

COMMON a, b, c,...
where:
a,b,c,...

are variables that may be dimensioned.

EXAMPLES:
COMMON A, B,C
COMMON 4, B(5,3),C

Variables, including array names, appearing in a
COMMON statement are assigned locations relative to
the beginning of comMon. This comMMoN area may be
shared by a program and its subprograms. The loca-
tions in the comMoN area are assigned in the sequence
in which the variables appear in the comMoN state-
ment, beginning with the first common statement of
the program.

1. Two variables in coMmMoN may not be made
equivalent to each other.

2. Variables brought into a common block through
EQUIVALENCE statements may increase the size of the
block (the section “The EQUIVALENCE Statement” has
additional information).

3. If the variables appearing in a coMMON statement
contain dimension information, they must not appear
in a DIMENSION statement.

4. Elements placed in comMoN may be placed in
separate blocks. These separate blocks may share
space in core storage at object time. Blocks are given
names, and those with the same name occupy the
same space.

5. The symbolic name of a common block contains
one to six alphameric characters, the first of which is
alphabetic. The symbolic name precedes the variable
names comprising the block. The block name is always
embedded in slashes (e.g., /BB/). It must not be used
for any other purpose in the same Processor appli-
cation.

There are two types of common blocks: blank and
labeled. ¢

a. Blank common is indicated either by omitting
the block name if it appears at the beginning
of the coMMON statement, or by preceding the
blank common Varlable by two consecutive
slashes.

b. Labeled common is indicated by preceding the
labeled comMon variables with the block name
embedded in slashes.

6. The field of entries pertaining to a block name
ends with a new block name, the end of the comMon
statement, or a blank common designation.

7. Block name entries are cumulative throughout the
program. For éxample, the first two coMmMoON state-
ments have the same effect as the third:

COMMON A,B,C/R/D,E/S/F
COMMON G, H/R/I/S/P
COMMONA B,C,G,H/R/D,E,1/S/F, P

8. Blank comMoN may be any length. Labeled
coMMON must conform to the following size require-
ment: all common blocks of a given name must have
the same length in all programs that are executed
together. -

9. Arrays with adjustable dimensions may not be |
specified in a coMMoON statement (see “Adjustable Di-
mensions” under “DIMENSION Statement”).

COMMON and DIMENSION

Array names appearing in coMMoN must also appear

in a DIMENSION statement in the same program, or the

dimension information must be included in the com-

MON statement, as in the following example:
COMMON A, B (10, 15), C

The comMoN statement may appear anywhere in the
program, unless it contains dimension information. In
this case, it must precede the first appearance of the
dimensioned variables in any executable statement.

EQUIV ALENCE Statement

This statement permits data storage to be shared
within a single program in a way analogous to that in
which the comMoN statement causes the data storage |
area to be shared between programs.

GENERAL FORM

EQUIVALENCE (a, b,c, ..

D (d e f,.00)
where:
a,b,c,d, e f, ... are variables that may be subscripted;

these subscripts must be integer constants. The number
of subscripts appended to a variable must -be equal to the
number of dimensions of the variable.

32

EXAMPLE!:
DIMENSION B(5), C(10, 10), D(5, 10, 15)
EQUIVALENCE (A, B(4), C(5, 4)), (D(1,4,3),E)
Each major pair of parentheses in the EQUIVALENCE
statement list encloses the names of two or more vari-
ables that are to be stored in the same location during
execution of the object program; any number of equiv-
alences (i.e., sets of parentheses) may be given.

In an EQUIVALENCE statement, B(4) is the third stor-
age location following the one that contains B(1). In
general, B(p) is defined for p>>0 to mean the (p—1)th
location after the beginning of the B array (ie., the
pth location in the array). If p is not specified, it is
taken to be 1. Thus, in the preceding example, the
EQUIVALENCE statement ‘indicates that A, B(4), and
C(5, 4) occupy the same location. It also specifies that
D(1, 4, 3) and E are to share the same location.

Locations can be shared only by variables, not by
constants. The sharing of storage locations requires the
knowledge of which FoRTRAN statements will cause a
new value to be stored in a location. There are four
such statements: ‘ '

1. Execution of an arithmetic or logical statement
stores a new value in the variable on the left side of
the equal sign.

9. Execution of a po statement stores a new indexing
value. -

3. Execution of a READ statement stores new values
in the variables in the input list.

4. Execution of a caLL statement stores new values
in arguments used to return values.

Note: The EQUIVALENCE statement is designed to cause
only the sharing of data storage. It does not cause the
sharing of characteristics of two variable names; for
example: '

1. A Type declaration made for one variable name
will not be applied to the other.

2. The fact that a variable controls indexing will not
be applied to a related variable. Although the second
variable changes, it may not be reflected in the index-
ing generation.

The layout of storage is:

A

B

c D) |,
D(2)
D(3)

In the above example, a statement such as EQuIv-
ALENCE (A,D(3)) which would extend comMmoN in the
reverse direction, is invalid.

Because the programmer has complete control over
the sequence of location of the variables in comMmoON,
they may be used as the medium for transmitting argu-
ments from the calling program to the FORTRAN FUNC-
TION or SUBROUTINE subprogram being called. In this
way, they are transmitted implicitly, as if specified in
the argument list following the subroutine name.

To obtain implicit arguments, it is necessary only
to have the corresponding variables in the two pro-
grams occupy the same location. This can be done by
having them occupy corresponding positions in coM-
MON statements of the two programs or by having
them appear in comMoN blocks with the same label.

A double-word variable in comMoN must start the
coMMoN block or be an even number of words away
from the beginning of each common block.

In EQUIVALENCE statements, the effect of the EQUIV-
ALENCE must place double-word variables at the be-
ginning of the EQUIVALENCE chain or an even number
of words away from the beginning of the EQUIVALENCE
chain. For example, the following statement is valid:

EQUIVALENCE (A, G(3))
The following statement is invalid:
EQUIVALENCE (A, C(2))

In these examples, A is a double-word variable, and

C is a dimensioned single-word variable.

EQUIVALENCE and COMMON

The sequence in which data is listed in comMon is the
sequence in which data is stored. However, variables
brought into a common block through EQUIVALENCE
statements may increase the size of the block indicated
by the comMoN statements, as in the following
example:

COMMON/X/A, B, C

DIMENSION D(3)
EQUIVALENCE (C, D)

Type Declaration Statements

There are six Type statements: INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, EXTERNAL. These state-
ments determine the type of variable associated with
each variable name in the statement. This Type declara-
tion is in effect throughout the program.

GENERAL FORM ~

INTEGER a(i1), b(i2), c(is), ...

REAL a(i1), b(i2), c(i3),
DOUBLE PRECISION a(i1), b(iz), c(is), ...
COMPLEX a(i1), b(iz), c(is), ...

LOGICAL a(i1), b(iz), c(is), ...
EXTERNAL ab,, ...

where:

1. ab,c, . .. are variable names or function names appear-
ing within the program.

2. i is an optional subscript composed of 1, 2, or 3 in-
teger constants that may be used to specify dimensions for
each variable. Subscripts may only be apperided to variable
names appearing within the program, mnot to function

names.

33

EXAMPLES:

INTEGER BIGF, X, QF, LSL, A(10, 10)
REAL IMIN, LOG, GRN, KLW
DOUBLE PRECISION Q, J, DSIN
EXTERNAL SIN, MATMPY, INVTRY
LOGICALF, G,L(2,5)

COMPLEX C(4,5,3),D

RULES FOR TYPE STATEMENTS .

1. A variable or function declared to be of a given
type remains of that type throughout the program.
The type may not be changed.

2. A variable may appear in a maximum of two
Type statements only if one of them is the EXTERNAL
type.

3. INTEGER indicates that the variables listed are
integer (fixed point) and overrides the alphabetic
naming convention.

4. reAL indicates that the variables listed are real
(single-precision floating-point) variables and over-
rides the alphabetic naming convention.

5. LocGICAL indicates that the variables are logical
variables and assume only the value TRUE or FALSE.

6. EXTERNAL indicates that the names listed after
EXTERNAL are subprogram names to be used as argu-
ments in a subroutine or function call; for example:

MAIN PROGRAM SUBPROGRAM

SUBROUTINE SUBR (F, X, Y)

MAIN PROGRAM SUBPROGRAM
EXTERNAL INVTRY .
EXTERNAL AMNT Y=F(X)

. 4 c .
RETURN

CALL SUBR (INVTRY,AB)

CALL SUBR (AMNT,"C,D)

In the first caLL, F becomes invIRY, X becomes A, and
Y becomes B; that is, the cALL means B=INVTRY(A).
The second caLL means p=amNT(C).

The section “The caLL Statement” contains a dis-

' cussion of arguments.

7. DOUBLE PRECISION indicates that the variables
listed - are double-precision variables.

8. compLEX indicates that the variables listed are
complex variables.

9. All Type statements pertaining to any given vari-
able must precede the first appearance of the variable
within an executable statement of the program.

10. The EXTERNAL statement may not specify the
dimension of variables. _

11. Any variable having its dimension specified by
a Type statement may not have its dimension specified
elsewhere.)

Appendix A. Table of Source Program Characters

Appendixes

; 3 | 2 AN 3,

3 N - - B 2 N - 2 T O ot - I O Il I 4

s 2| 8| 5| Bl 5|81l s g1 51 8| 812 5 S| s

O (3 @ @\ (9] () @ [(&) (V] o n (o] (o] @ @\
12 n 0

1 1 01 01 1 61 21 J 1 41 41 / 1 21 &1
12 n 0

2| 2 Jo2 |o2]| B | 2 6 |22 k| 2| @ 2]s 2 22 | 62
12 n 0

3|3 |03 || c| 3|6 |23 L 3| 43| 43T 3 23 | 63
12 " 0

4 4 04 04 D 4 64 24 M 4 44 44 U 4 24 64
12 1 0 .

5|5 Jos | os]| E 516 | 25 N| 5| 4] 45|V 5 25 | 65
12 n 0

é 6 06 06 F [66 26 ol 6 46 46 w 6 26 66
12 1 0)

7 7 07 07 G 7 67 27 P 7 47 47 X 7 27 67
12 1 0

g | 8 |10 |1w)] n| 8|7 |30 al s|s0f 50|y |8 30 | 70
12 1 0

9 9 n 1 i 9 71 31 R 9 51 51 z 9 31 71

b | b |20 e | + | 12]60 |20 -l |4 4o 0 12 | 00
12 n 0

= |83 |13 | 13 8-3 | 73 | 33 $ |s3 | 53| 53|, ls3 | 33|
12 11 0

v lgal1a | 14|y |84 |74 |34 | * l8-4a| 54 54 (|84 | 34|74

NOTE: The characters $ and ' can.be used in FORTRAN only as alphameric text in a FORMAT

statement or as alphomeric arguments.

Appendix B. Source Program Statements and Sequencing

The following is a complete list of the 7040/7044 FORTRAN 1v source program state-
ments, their sequence of execution, and their ordering in the source program.

EXECUTABLE ORDERING
NORMAL OR IN THE

STATEMENT SEQUENCING NONEXECUTABLE SOURCE PROGRAM

a=b Next statement Executable May be placed anywhere.

ASSIGN ntoi Next statement Executable May be placed anywhere.

BACKSPACE i Next statement Executable May be placed anywhere.

BLOCK DATA Next statement Nonexecutable Must be the first statement of the subprogram.**

CALL First statement of called Executable May be placed anywhere.

subprogram

COMMON Next statement Nonexecutable May be placed anywhere in the program unless
it contdins dimension information, in which .
case it must precede the first appearance of
the dimensioned variables in any executable
statement.*

COMPLEX Next statement Nonexecutable Must precede the first appearance of the vari-
able(s) to which it refers in any executable
statement of the program.*

CONTINUE Next statement Executable May be placed anywhere but it is most often
used as the last statement in the range of a DO.

DATA Next statement Nonexecutable May be placed anywhere.

DIMENSION Next statement Nonexecutable Must precede the first appearance of each sub-
scripted variable in any executable statement
for which it specifies the size.* *

DO Normal DO sequencing, Executable May be placed anywhere.*

then the next statement

Appendixes 35

STATEMENT
- DOUBLE PRECISION

END

END FILE
EQUIVALENCE
EXTERNAL

FORMAT

FUNCTION

GOTOn

GO TO i, (n1, n2,
vee,im)

GO TO (ni, n2,

..,nm),i

IF (t)s
INTEGER
LOGICAL

PAUSE
READ
REAL

RETURN

REWIND
STOP

SUBROUTINE

WRITE

NORMAL
SEQUENCING

Next statement

Terminates compilation
of program

Next statement

Next statement

Next statement

Next statement
Next statement

Statement n

Statement last
assigned to i

Statement ni

Statement s or next
statement if relation is
true or false, respectively

Next statement

Next statement

Next statement

Next statement
Next statement

The first statement, or
part of a statement,
following the reference
to the subprogram

Next statement
Terminates the execution
of the program

Next statement

Next statement

*This statement may not end the range of a po.
**This statement may not appear anywhere except as the first statement of a subprogram.

Appendix C. Differences Between FORTRAN II b.

and FORTRAN IV
1. Function Naming

EXECUTABLE
OR
NONEXECUTABLE

Nonexecutable

Nonexecutable

Executable
Nonexecutable
Nonexecutable

Nonexecutable
Nonexecutable

Executable
Executable

Executable

Executable
Nonexecutable
Nonexecutable

Executable
Executable

Nonexecutable

Executable

Executable
Executable -

Nonexecutable

Executable

a. Incompatibilities may arise where the initial
character of a function name is used to denote
the type as floating point (real) or fixed point

(integer) in FORTRAN 1. In FORTRAN 1v, this

difficulty is handled by the Type statements
REAL and INTEGER, which define a variable or
function name as floating or fixed point, re-
spectively (the section “The Type Declaration

Statements” has additional information),

36

ORDERING
IN THE
SOURCE PROGRAM

Must precede the first appearance of the vari-
able(s) to which it refers within an executable
statement of the program.*

Must be the physically last statement of the
program. .

May be placed anywhere.

May be placed anywhere.*

Must precede the first appearance of the
variable(s) to which it refers within an
executable statement of the program.*

May be placed anywhere.*

Must be the first statement of a FUNCTION
subprogram.**

May be placed anywhere.*
May be placed anywhere.*

May be placed anywhere.*

May be placed anywhere.

Must precede the first appearance of the
variable(s) to which it refers within an
executable statement of the program.*

Must precede the first appearance of the
variable(s) to which it refers within an
executable statement of the program.*

Should be placed where a temporary halt is
desired.

May be placed anywhere.

Must precede the first appearance of the
variable(s) to which it refers within an
executable statement of the program.*

Must be the last executed statement of a sub-
program,

May be placed anywhere.

Should be placed where the termination of the
program is desired.

Must be the first statement of a SUBROUTINE
subprogram.**

May be placed anywhere.

An open, closed, or arithmetic statement func-
tion name in FORTRAN 1 contains 4-7 char-
acters, ending in F; in FORTRAN 1v, the number
of characters is 1 through 6 and the final F has
no meaning. In both cases, the first character of
the function name must be alphabetic.
Built-in and' arithmetic statement functions
are not identified by a terminal F in FORTRAN'
1v; they are named as described in item b. The
FORTRAN 1 library function isa FORTRAN Iv
FUNCTION subprogram that is internal to the
Processor.

2. COMMON and EQUIVALENCE

a. In FORTRAN 1v, EQUIVALENCE does not affect the
ordering within comMon, and it does not
create a gap in COMMON storage; the only
effect it can have on a common block is to
make its size greater than that indicated by
the coMMoON statements’ of the program.

b. The FORTRAN Iv COMMON statements may con-
tain dimension information.

3. In FORTRAN 1v, if an explicit type is given to a
variable name that is used throughout the program as
an ordinary variable and also as an argument of an
arithmetic statement function, the explicit type applies
in both contexts.

4. Implicit multiplication, which occurs in FORTRAN 11
as a by-product of the arithmetic translator techniques,
is not permitted in ForTRAN 1v. Thus, the following
combinations are not permitted in FORTRAN 1V:

K()
()V
()X

where:

\'

is a variable.
K

is a constant.

()

is any arithmetic expression within parentheses.

5. The FORTRAN II statements in column 1 are
changed to the FORTRAN 1v statements in column 2.

FORTRAN IV
FORTRAN II STATEMENT STATEMENT
IF ACCUMULATOR CALL OVERFL (J)

OVERFLOW ni, n2
IF QUOTIENT OVERFL% n1, n2
IF DIVIDE CHECK fn:
IF (SENSE SWITCH i) n1, n2
SENSE LIGHT i
IF (SENSE LIGHT i) n1, n2
READ TAPE i, list

CALL OVERFL (])
CALL DVCHK (])
CALL SSWTCH (L])
CALL SLITE (1)
CALL SLITET (LJ)
READ (i) list ~
Binary record
READ (i, n) list
BCp record
WRITE (i) list
Binary record
WRITE (i, n) list
BCp record

READ INPUT TAPE i, n, list
WRITE TAPE i, list
WRITE OUTPUT TAPE i, n, list

The FREQUENCY, READ DRUM, and WRITE DRUM state-
ments of FORTRAN 1 are not part of the FORTRAN IV
language.

6. Locicar, an additional Type statement that de-
fines variables to be used in logical computation, has
been added to FORTRAN 1v.

7. pouBLE PRecIsIoN and compLEX, additional Type
statements that define variables to be used in arith-
metic computation, have been added to FORTRAN 1v.

~ 8. The computational results of an object program
produced from a source program by the 7040/7044
FORTRAN Iv compiler and the computational results of

an object program produced from an equivalent source
program by the 7090/7094 FORTRAN 11 compiler may

- not be identical. Differences that occur are due to the

following dissimilafities between the 7040/7044 ror-
TRAN 1v compiler and the 7090/7094 FORTRAN 11 com-
piler:

a. The logarithm subroutine of FORTRAN 1Iv em-
ploys a new algorithm that yields more accurate
results for most arguments than does the loga-
rithm subroutine of FORTRAN IL

b. Real constants written into the source program
are converted by FORTRAN 1v by a somewhat
different algorithm than that used by FORTRAN
11. The result is that more significance tends to
be preserved and a more accurate conversion is
achieved by FORTRAN 1v than by its predecessor.

c. The mathematical subroutines in FORTRAN IV
are assembled by the Macro Assembly Pro-
gram aBMAP), and those in FORTRAN II are as-
sembled by rap. The conversion routines in °
1BMAP provide more precise conversions for
constants than do those in FAP. As a conse-
quence, FORTRAN Iv tends to produce more
precise results than FORTRAN 1 for subroutines -
that use the same algorithm (and its associ-
ated constants). The siN/cos subroutine is a
very good example of this effect.

d. The order in' which a sequence of multiplica-
tions (or of multiplications and divisions) is
executed by the object program in FORTRAN IV
may be different from that in FORTRAN 1L If
such a difference in ordering should occur,
neither method may be considered superior to
the other from the standpoint of computational
accuracy. -

e. In FORTRAN 1, the maximum size of an integer
is 217; in FORTRAN Iv it is 235, ’

Appendix D. Additional Statements Accepfed
by the Compiler

The following source program statements are not part
of the FORTRAN Iv language. They are currently being
processed by the FORTRAN 1v compiler for compatibility
with FORTRAN IL :

Input/Ovutput Statements . ‘

The input/output statements READ n, PUNCH n, and-
PRINT n are processed by the 7040/7044 compiler. The
form of the statements is given as follows, where n is
a FORMAT statement number or a variable FORMAT
name. '

Appendixes 37

INPUT

GENERAL FORM

READ n, list

EXAMPLE:
READ 10, (A(I),I=1,5)

This statement causes records to be read from the
systems input unit. Successive records are read in ac-
cordance with the FORMAT statement until the list has
been satisfied; i.e., all data items have been read, con-
verted, and stored in the locations specified by the list.

OUTPUT

GENERAL FORM
PUNCH n, list

PRINT n, list

EXAMPLES:
PUNCH 20, (A(J),J=1,6)
PRINT 2, (A(]),J=1,6)

The punch statement causes records to be trans-
mitted to the systems punch unit. The prINT statement
causes the object program to transmit data to the sys-
tems output unit. In both of these statements, succes-
sive records are written in accordance with the FORMAT
statement until the list has been satisfied.

Appendix E. Machine-Dependent Features

Built-in Features

The built-in functions shown in Figure 9 are included
only to allow the user of FORTRAN to utilize the special
logical operations of the 7040/7044 Data Processing
Systems. They do not form a part of the standard
FORTRAN language, since their function cannot be
exactly duplicated on other machines.

Function Function | No. of Type of
Definition Name Args. | Function Arguments
Logical intersec- | AND =2 Real Real or Integer
tion of two or more
36-bit arguments
Logical union of the OR =2 Real Real or Integer
two or more 36-bit
arguments

Logical 1's com- COMPL 1 Real
plement of the 36-bit

argument

Real or Integer

Figure 9. Built-in Functions

Machine Indicator Tests

The following suBROUTINE subprograms are available
in the library so that the FORTRAN user may test the

38

status of machine indicators and traps. They are called
by a caiv statement. (The parameter J must be an
integer variablfa and I must be an integer expression.)

OVERFL(])

J is set to: 1 if a floating-point overﬂow condition exists, 3 if
a floating-point underﬂow condition exists, or 2 if neither condl-
tion exists.

DVCHK(])

J is set to: 1 if the Divide Check indicator is on, or 2 if it is
off. The indicator is left in the off condition.

SSWTCH(LJ)

Sense Switch I (where I is equal to 1, 2, 3, 4, 5, or 6 at
execution) is tested, and J is set to: 1 if the sense switch is on,
or 2 if it is off.

SLITE(I)

If I=0, all FORTRAN sense lights are turned off. If I=1, 2, 3,
or 4, the corresponding FORTRAN sense light is turned on. Be-
cause there are no physical sense lights on the 7040, the status
of the sense lights is kept as a logical variable internal to the
sense light routines. .

SLITET(L])

Sense Light I is tested and turned off. The variable J is set
to: 1 if the sense light is on, or 2 if the sense light is off.

Appendix F: Compilation Output
Depending on control card options, a complete output
listing of a FORTRAN compilation may consist of five’
parts:

1. FORTRAN source listing

2. map Control Dictionary

3. maP assembly listing (3 options in siBFTC card:

FULIST, LIST, NOLIST)

4. map Cross-Reference Dictionary (2 optlons in
SIBFTC card: REF, NOREF)

5. Error Message (if there are errors)

FORTRAN Source Statement Listing
Figure 10 illustrates a typical list.
1. The first line of the list contains text from the sjoB

card, “FORTRAN SOURCE LisT,” the deck name (card col-

umns 8-13) from the siBFTC card, date, and page num-

ber.

2. Line two consists of the column headings “1sn”
(Internal Serial Number) and “SOURCE STATEMENT.”

3. Each source statement that appears on the listing
is assigned an 1sN, and that number is shown in the 1s§
column next to the card image of the statement (note
that thenumber set is octal). Numbers are also assigned
internally; these numbers do not appear on the listing;
they cause gaps in the number sequence

4. The remainder of the listing is the FORTRAN source
input.

FORTRAN ILLUSTRATION FORTRAN SOURCE LIST 08/24/64 PAGE 1

ISN SOURCE STATEMENT
0 $IBFTC ILLUS LIST,REFyNODECK ¢ ILLO0O010
1 DIMENSION Y(10),X(10,10) ILLO0020
2) DO 1 I=1,10 ILLO0030
31 X(I,J)=Y(I)+1. ILLO0040
5 IF (1.EQ. 1) A=A+l. ILLO004S
10 IF (1.EQ.1) A=A+L ILLO00S0
13 READ (0) Ay (IX(T14J)31=1,10),B,Y{J)y4=1,10) I1LL00060
24 GO TO 8

25 syoe 1LLO0080
26 END ILL00090

Figure 10. FORTRAN Source Statement Listing

MAP Control Dictionary Listing

Figure 11 illustrates a typical Control Dictionary list-
ing. The first column on the left contains the number
of the Control Dictionary entry. The second column
contains the octal representation of the binary entry.
The remaining three columns are generated by the
assembler for documentation: the third column is the
external identification for the entry, the fourth column
indicates the type of entry, and the last column gives
additional miscellaneous information.

Assembled Text Listing

A Map listing will be produced if either the LisT or the
FULIST option is on the siBFrC card. The full listing
(ruList option) is illustrated and described in the
manual, IBM 7040/7044 Operating System: Macro
Assembly Program(MAP) Language, Form C28-6336-1,
Appendix C. The List option, which provides a con-
densed listing, is shown in Figure 12. For each instruc-
tion generated by the compiler, the listing contains the
* MAP statement number, the error flag (if any), the
relative location assigned to each instruction, the sym-
bolic operation code, and the symbolic variable field.
" The listing is read across one line at a time; there is
a maximum of three sequential instructions on each
line. The MAP statement number appears only once
per line, and it shows the number of the first instruc-
tion on the line.

There is a correspondence between the executable
FORTRAN statements and the generated Map instruc-
tions. The map instructions follow the statement UsE
PRGCT. (MAP statement number 19) and are assigned
relative location 00000.

Each numbered FORTRAN statement has a correspond-
ing name with an “S” appended to it on the map listing;
e.g., IsN-3 is statement number 1, and MAP statement 31
has the name 18.

All other executable FORTRAN statements have re-
lated names of the form P.nnnn on the map listing,

~where nnnn is the 1sN; e.g., IsN-2 corresponds to MAP
statement 21, which has the name P.0002.

Cross-Reference Dictionary Listing

The Cross-Reference Dictionary, shown in Figure 13,
contains three types of references: to defined symbols,
to location counters, and to multiply-defined symbols.

The listing of references to defined and multiply-
defined symbols gives the symbol, its value, and the
MAP statement numbers of those instructions that refer
to it. '

The P.xxxx symbols are generated by the compiler
for literals, for names on generated coding, and with
the LORG statement.

Error Messages

Figure 14 illustrates the Error Message listing, which
contains the following information:

1. The severity code identifies the action taken
because of the error. Following are the codes:

0 Warning message only.

1 Mild error. The object program will be loaded and
executed as specified on the $IBJOB card.

2 Definite error. The object program will be loaded
if the GO, MAP, or LOGIC options have been speci-
fied on the control card; then specified MAP or
LOGIC options will be performed. However, the-

~ program will not be executed.

4 Serious error. GO, MAP, and LOGIC optlons will be
deleted, and the binary deck will be incomplete.

7 Extreme error. GO, MAP, and LOGIC options will
be deleted. Output will be incomplete.

2. The listing contains the MAP statement number
that may be related to the Error Message. It will have
no significance if there is an 1sN number (see 4 below).

3. It contains the Error Message number.

4. When present, the 1sN number will relate the
message to a corresponding statement on the FORTRAN
Source List. If the 1sn information is present, the map
statement number will have no significance. In re-
ferring to the FORTRAN Source List, if the number is
skipped on the listing, the programmer should refer to
the next lower 1sN and its corresponding statement
(this statement has more than one 15N assigned to it).

5. The Error Message listing contains the message
text. '

Appendixes 39

FORTRAN ILLUSTRATION
CONTROL DICTIONARY

$IBLDR ILLUS
$CDICT TLLUS
BINARY CARD 0000C
000 500266000000
000000000004
001 314343646260 ILLUS DKNAME
000267000000
002 263143000033 FILOO. EXTERN
300000000000
003 . 224543314633 BNLIO. EXTERN
300000000000
004 636222314633 TSBIO. EXTERN
300000000000
005 514351314633 RLRIO. EXTERN
300000000000
006 623341673163 S.JXIT EXTERN
300000000000
007 622563264733 SETFP. EXTERN
: 300000000000
010 000000000000 EVEN
000000000101
$TEXT ILLUS

Figure 11. Control Dictionary Listing

FORTRAN ILLUSTRATION

1 BEGIN

IBMAP ASSEMBLY ILLUS

08/24/64

DECK-START=00000,DECK-END=00266

AT 00101

PLGCT,o» 00000
4 00073 USE STRCT. 00073
7 00077 ocr 201400000000 00100
10 00101 LTCR2. CCT 0000000000600,000000000000
11 00103 ccT 201400000000, 146000000000
13 00106 X 8s§s 100 00252 8
16 EXTERN FILOO. 00254 A
19 E 00000 USE PRGCT. 00000
22 00002 STQ 1 00003
25 00005 VLM =0000001200000,0,15
27 00007 PAC * 00010 S.0032
30 00011 FAD LITCT.+1 00012
33 00014 TXI #+1,2,-1 00015
36 00017 Sus LITCT.+2 00020
39 00022 FAD LITCT.+1 00023
42 00024 P.0010 CLA 1 00025
45 00027 P.G012 BSS 00027 P.0O11
48 00030 PLE FILOO. 00031
51 00033 P.0014 LDQ =0000000000001 00034
54 00036 SXA $.0033,4 00037 $.0034
57 00040 STQ 1 00041
59 00042 VLM =0000001200000,0,15
61 00044 PAC vl 00045 S.0035
13 00046 sTO X=11,1 00047 P,0020
67 00051 1 *+ly4,1 00052
70 00054 P.0021 TSL BNLIO. 00055
73 00057 LXA $.0033,1 00060
76 00061 $.0033 AXT LTS 00062
79 00064 PXA 4 00065
82 00067 TXH 5$.0034,4,~11 00070
85 00072 P.0025 TRA S.JIXIT 00073 P.0026
88 00000 USE PLGCT.
91 EXTERN RLRIO.
94 BEGIN PRGCT.,» 00073
97 00073 USE SFLCT.

-

o3 00074 ocry 000001200600 00075

SCKEND ILLUS

Figure 12. Condensed Listing

40

IBMAP ASSEMBLY ILLUS

USE
LORG
ocT

BSS
8SS
TSL
AXT

BSS
sT0
TXH
TNZ
ST0
sus
BSS
TSL
sTQ
BSS
LbQ

8SS
™I
SXA
S¥0
ST0
™I
sus
TSX
8SS
EXTERN
EXTERN
USE
BEGIN

PREFACE MODE=REL,PROGRAM-START=00000

PRGCT.

000000000001

1

1
SETFP.
~1,2

X=11,1
$.0032,2,~11
P.0006

A
LITCT.+2

BNLIOD.
J

*+1ly1,~1

T4

8

Y=1,1

*+194,-1
=0000000100000
RLRIO.,4

BNLID.
SIXIT
PRGCT.
STRCT.p®

GENERATED LITERALS

acr
END

000000100000

2

08/24/64

00073
00076

00105
00253
00255
00001
00004
00006
00010
00013
00016
00021
00024
00026
00027
00032
00035
00037

00043
00045
00050
00053
00056
00061
00063
00066
E 00071

00073

08/24/64 PAGE 2
ILLUOOO1L
PAGE 3 N
USE SFLCT.
LITCT. oCT 000000000000
EVEN
J 8SS 1
1 BSS 1
Y BSS 10
P.0002 LDQ =0000000000001
L0Q |
ADD 1
1s cLa ¥-152
P.0004 TXI #+ly1l,~1
P.0005 CLA 1
P.0007 CLA A
P.0006 BSS
TNZ P.0011
P.0013 TSX TSBI0.+4
1] A
AXT <14
P.0016 LDQ =0000000000001
ADD 1
P.0017 TSL BNLIO.
LXA Iv4
TXL $.0035,4,10
TSL BNLIO.
P.0022 BSS
SXA 5.0033,4
SLW J
P.0024 TRA 8
* START OF PROLOGUE
EXTERN TSBIO.
EXTERN SETFP.
BEGIN SFLCT.y»
acTt 000000000001

FORTRAN ILLUSTRAflON IBMAP ASSEMBLY ILLUS
CROSS-REFERENCE DICTICNARY

REFERENCES TO DEFINED SYMBOLS

STATEMENT NUMBERS

38,40,50

71

49,63,70,72

48
229261350421571601664968
24,452,58,81

3049364939443

83
20

85

47

31,64
29,74

37

44

34
54,73,78
82

69

100

5

106
21,51,56
25,59

80

REFERENCES TO LOCATICN COUNTERS

STARTING AND ENDING STATEMENT NUMBERS

1-1

88-94
2-2419-87+95-96
3~3,97-107
4-18"

REFERENCES TO UNDEFINED SYMBOLS

VALUE NAME
00010 1S
00254 A
00252 B
VIRTUAL BNLIO.
VIRTUAL FILOC.
00253 1
60105 J
00076 LITCT.
00101 LTCR2.
VIRTUAL RLRIO.
VIRTUAL SETFP.
VIRTUAL S.JXIT
VIRTUAL TSBIO.
00106 X
00255 ¥
00024 P.0006
00027 P.0O11
00010 $.0032
00061 $.0033
00037 5$.0034
00045 $.0035
G0073 P.0036
00076 P.0037
00073 P.0040
00073 P.004L
00074 P.0042
00075 P.0043

LC START NAME
00000
00000 PLGCT.
00000 PRGCT.
00073 'SFLCT.
00073 - STRCT.

NAME
8s

STATEMENT NUMBERS

84

Figure 13. Cross-Reference Dictionary Listing

FORTRAN [LLUSTRATION IBMAP ASSEMBLY ILLUS
ERROR MESSAGES

2 STATEMENT 19
O STATEMENT 19

2 STATEMENT 84

08/24/64% PAGE 4

08/24/64 PAGE 5

ERROR 1323 ISN-12 ILLEGAL MIXED MODE ON RIGHT HAND SIDE OF ARITHMETIC STATEMENT.

ERROR 1327 ISN-25 SHOULD HAVE A STATEMENT NUMBER BECAUSE OF

ARITHMETIC IF STATEMENT.
ERROR 26 8S IS AN UNDEFINED SYMBOL

HIGHEST SEVERITY WAS 2. EXECUTION DELETED.

Figure 14. Error Message Listing

THE PRECEDING 60 TO OR

Appendixes 41

A page number in italics mdlcates that the designated reference
is of particular importance.

A-conversion 17,18, 19
input ... 18
output B 18

alphameric fields
(see “fields, alphameric”)

AXTAYS . . .o 8, 16, 28
arrangement in storage............., ... 8
in FUNCTION subprograms................ 28
in SUBROUTINE subprograms.............. 28

arithmetic IF
see “IF, arithmetic”)

arithmetic statement 6,11

arithmetic statement function. 23

ASSIGN e 13,35

assigned GO TO
(see “GO TO, assigned”)

BACKSPACE 16, 21, 22, 35

BCD mode
(see “mode, BCD”)

binary mode
(see “mode, binary”)

“blank COMMON
(see “COMMON, blank”)

blank fields
(see “fields, blank”) -

blank records

- (see “records, blank™)

blanks 20

BLOCK DATA 31,35

built-in (or open) functions :
(see “functions, built-in (open)”)

CALL 14, 15, 28, 29, 33, 34, 35

CALLDUMP 29

CALL EXIT e 29

CALLPDUMP 29

carriage control oo 20

coding form
(see “FORTRAN, coding form”)

comments card

COMMON 8, 16, 28, 30, 31, 32, 33, 35
blanks 32
blocks 32
labeled 32

COMPLEX 23, 27, 31, 32, 33, 34, 35, 37

complex constants
(see “constants, complex”)

complex number fields
(see “fields, complex number”)

complex variables
(see “variables, complex”)

computed GO TO
(see “GO TO, computed”)

constant 7,8,9,10,11, 14
complex 7
double-precision 7
integer : e e, 7
logical 8
real ... 7

continuation cards 5

CONTINUE 15,35

control statements 6,13

42

lhdex

D-conversion 17, 18, 19, 20
DATA e 31, 32, 35
data input to the object program....... 20
declarative statements
DIMENSION 8, 16, 28, 30, 31, 32, 33, 35
DO . 14,15, 16, 33, 35

exit from 14
implied S 16
index ... 14
mests ... 14
TANGEe 14
restrictions inrange. 15
satisfied e 14
transfers within range of e 14
DOUBLE PRECISION 23, 27, 31, 32, 33, 36, 37

double-prec:sxon constants -

(see “constants, double-precision”)
double-precision variables .

(see varnbles, double-precision”)

DUMP

(see “CALL DUMP”)

DVCHK (J) 38
E-conversion e 17,18, 19, 20
END . 15,36
END FILE ©.... 16, 21, 22, 36
EQUIVALENCE 28, 30, 32, 33, 36
EXIT .

(see “CALL EXIT”) .
explicito . D 8
eXPressions 7,9,10,11,28

arithmetic 9,28

hierarchy of operations. 10

logical e 9,10, 11
EXTERNAL S 33, 34, 36
F-conversion 17, 18,19, 20
fields 17

alphameric18

blank 19

complex number L. 18

H o 17,19

logical (see “logical fields™)

numerical 17,20

X 17,20
FORMAT 16, 17, 18, 19, 20, 21, 36, 37
FORTRAN

Assembly Program (FAP)............... 37
~ binaryrecord P 16

card .. 5

coding form e 5,6

Input/Output Library e 22

listing (see “listing, FORTRAN”)

types of statements 6
FORTRAN II 36, 37
FORTRAN IV E 36, 37
FORTRAN statements B 6,13,14, 15
function 8,9, 23-28

arithmetic P 9

built-in (open) 23

calling e 28

library (closed) P 23, 24-27

logical P e 27

maming P © 36

type ... 23
FUNCTION subprogram 15, 23, 27, 28, 29, 30, 36

GO TO TR 13,14,15, 36

assigned 13, 36
computed 13, 36
unconditional 13, 36
H-conversionc.oiuiiiiiinnan.. 17,18, 19
Iput ... 19
output 19
H fields
(see “fields, H”))
I-conversion 17, 18,19, 20
TF oo 8,13, 14, 36
arithmetic 13
logical 13, 34
implicit 8
input/output 16
Bists ... 16
of matrices 16
input/output statements PR S 6, 16, 21 37, 38
mput ... 21, 38
OUEPUL - ..ottt 21, 38
INTEGER, 23, 27, 33, 34, 36

integer constants
(see “constants, integer”)
integer variables
(see “variables, integer”)
labeled COMMON
(see “COMMON, labeled”)
library (or closed) functions
(see “functions, library { closed)”)

listing e PRI 38, 39
Assembled Text 39
Cross-Reference Dictionary 39
Error Messages0 0. ... 39
FORTRAN Source Statement P 38
MAP Control Dictionary. 39

lists
(see “input/output lists™)

LOGICAL 23, 27, 33, 34, 36

logical constants
(see “constants, logical”)

logical fields P 19
INPUt ... 19
output 19

logical IF
(see “IF, logical”)

logical statement 6,11

logical statement functions.......................... 23

logical variables
(see “variables, logical”)

machine indicator tests..............., 38
Macro Assembly Program (IBMAP)................... 37
mMode 22
BCD 22
binary ... 22
multiple-record formats.......... P 20

numerical fields
(see “fields, numerical”)

O-CONVErsionoovueuiiuan ... e 17,18, 19
operation symbols 9,10
arithmetic 9
logical 9,10
relational 9,10
OVERFL (J) oo 38

PDUMP
(see “CALL PDUMP”)
physical records
(see “records, physical”) . ‘
PRINT 37,38

Processor 23
PUNCH A 38
READ e 16, 21, 33, 36, 37
REAL 23, 27, 33, 34, 36

real constants
(see “constants, real”)

real variables
- (see “variables, real”)

records 20
blank 20
FORTRAN 21,22
I0CS logical PP, 21, 22
physical O 21, 22

repetition of field format. 19

repetition of groups. P 19

RETURN 15, 28, 36

REWIND A R 16, 21, 22, 36

scale factors R 19
input e 19
OUtPUE ... 19

SLITE (I) 38

SLITET (L J) oo o 38

SOUXCE PrOGIAINottt e e 5.

source program characters........... 33

source statements 5

SSWTCH (I, J). ... i . 38

STOP 15, 28, 36

subprogram statements

subroutines 23
classes 23
defining 23
DAMINE ..ot 23
{87 ¢ - 23

SUBROUTINE subprograms 15, 23, 28, 29, 30, 33, 36

subscripts 7,8
formsof A 8
subscripted variables (see “variables, subscripted”)

Type statements 8, 23, 30, 33, 34 -
kinds 33 -
ralesfor 34

unconditional GO TO
(see “GO TO, unconditional”)

variables PSR 8,9,10,11, 23
complex 8,9,10,11
double-precision 8,9, 10,11
integer 8,9,10,11"
logical L 8,9,10,11
NAMES . . oo ot e e 8
real ... 8,9,10,11
subseripted 8
type specification 8

WRITE 16, 21, 36

X-conversion 17,19

X fields
(see “fields, X™)

Index 43

C€28-6329-2

JISIM

®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

T-8269'820

	01
	02
	03
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44

