File No. 7040-21
Form C28-6335-2

Systems Reference Library

IBM 7040/7044 Operating System (16/32K)
Macro Assembly Program (MAP) Language

This publication gives detailed information for writing
source programs in the 7040/7044 Macro Assembly Program
(MapP) language.

The mar language is a versatile symbolic programming
language that provides the user with an extensive set of
pseudo-operations as well as all of the 7040/7044 machine
operations.

The Macro Assembly Program, iBmar — 7040-SP-814, is
a component of the 7040/7044 (16/32K) Processor and, as
such, opcrates under the Processor Monitor.

Preface

This publication provides the user with complete in-
formation for writing programs in the 7040/7044
Macro Assembly Program (MaP) language.

The map language, which encompasses all 7040/
7044 machine operations, special operations, 10Cs op-
crations, prefix codes, and the pscudo-operations de-
scribed herein, is the language accepted by the 16/32K
7040/7044 assembly program, IBMAP. IBMAP is a com-
ponent of the 7040/7044 Processor, and, as such, oper-
ates under the Processor Monitor, using the facilities
provided by the processor for input/qutput, loading,
references to other assemblies, etc.

This publication is divided into three major parts:
the first part is a description of the structure and com-
ponents of the language, detailing the fundamentals of
coding symbolic instructions; the second part de-
scribes in detail the mar pseudo-operations; and the
third part describes the macro-operation facility and
its use. In addition, this publication contains three
appendixes: a list of the 7040/7044 machine operations,
special operations, 10cs operations, and prefix codes;
a list of the character set acceptable to map; and an
example of amap assembly output. To fully describe the
facilities of the mar language, references are made to
the functioning of the assembly program.

As a prerequisite to use of this publication, the
reader should be familiar with the 7040/7044 Data
Processing System, machine language for the 7040
7044, and the 7040/7044 Operating System, as de-
scribed in the following 1BM publications:

IBM 7040/7044 Systems Summary, Form A28-6289

IBM 7040/7044 Principles of Operation, Form
A22-6649

IBM 7040/7044 Operating System (16/32K): Pro-
grammer’s Guide, Form C28-6318

Mmvor RevisioN (March 1965)

This edition, Form C28-6335-2, supersedes the previous edition,
IForm C28-6335-1 and associated Technical Newsletters N28-
0504, N28-0512, and N28-0515-0. This edition is to be included
with the changes to the system released with Version 9.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D39, 1271 Avenue of the Americas, New York, N. Y. 10020

© 1963 by International Business Machines Corporation

Symbolic Programming Using MAP §
INTRODUCTION 5
MAP LANGUAGE FEATURES 5
Operations 5
Macro-operations 6
Location Counters 6
ABSMOD anp RELMOD ASSEMBLIES 6
STRUCTURE OF THE MAP LANGUAGE 7
Symbolic Instructions e 7
Symbolic Card Format = .. . 8
Remarks Cards 8
Examples of Symbolic Instructions 9
Symbols 9
Ordinary Symbols o 9
Immediate Symbols T 9
Relocation Properties of Symbols e 9
Writing Expressions 10
Elements 10
Terms10
Expressions 10
Rules for Forming Expressions 10
Evaluation of Expressions 10
Relative Addressing 11
Decimal Data Items 11
Literals, 12
Decimal Literals 12
Octal Literals 13
Alphameric Literals 13
Error CHECKING 13
Rules for Sequence Checking 13
MAP Pseudo-operations14
LocaTioN COUNTER PSEUDO-OPERATIONS 14
USE . . 14
BEGIN 14
ORG . . 15
DaTa GENERATION PSEUDO-OPERATIONS 15
OCT . . 15
DEC 16
BCI ... 16
VED . . 17
DUP . 18
STORAGE ALLOCATION PSEUDO-OPERATIONS 18
BSS ... 18
BES 18
EVEN e 19
SymBoL DEFINITION PSEUDO-OPERATIONS 19
EQUand SYN. L 19
MAX 19
MIN . 20
SET . . oo 20
BOOL 20
PROGRAM SECTION PSEUDO-OPERATIONS 20
QUAL 20
ENDQ 21

Contents

LiTERAL POSITIONING PSEUDO-OPERATIONS
LORG . .
LITORG

CONDITIONAL . ASSEMBLY PSEUDO-OPERATIONS
1FT and IFF

OPERATION DEFINITION PSI» UDO-OPERATIONS
orD . . .
OPSYN . .

SUBROUTINE PSEUDO-OPERATIONS
CALL
SAVE . . .
RETURN .

CoNTROL DICTIONARY PSEU])O OPERATIONS . . .
CONTRL
ENTRY
EXTERN

File Description Pscudo -operations
FILE
LABEL

LisT CONTROL PSEUDO-OPERATIONS

PMC
TTL
INDEX
UNLIST
LIST

Macro-operations A
MACRO-DEFINITION PSEUDO-OPERATIONS
MACRO
ENDM

ProTOoTYPE CARD IMAGI:S .

DEFINING A MACRO-OPERATION
The Format of a Macro-instruction

LINKING PARTIAL SUBFIELDS L
QUALIFICATION WITHIN MACRO-OPERATIONS
NESTED MACRO-OPERATIONS
DUP Witit MACRO-OPERATION
MACRO-RELATED PSEUDO-OPERATIONS
IRP
Created Symbols e
NOCRS . . . o
ORGCRS\t

21
21
29

22
22
22
22
23
2

23

B

24
24

2]

26
26
26
26
27
27
28
28

5]
v

28
)
2

o)
2

)

29
29
29
30
30
30
30
30
31

32
32
32
33

34
34

35
36

37
38
38
38
39
39

Appendixes 40
A. 7040/7044 MacuINE OPERATIONS, SPECIAL
OprERATIONS, PREFIX CoDES, AND IOCS OprgraTiONs . . . 40
Instruction Assembly 40
Column Headings 40
Machine Operations 40
Prefix Codes 42
Special Operations, . 42
1ocs Operations e 42
Disk and Drum Orders 42

System Macro, ... 42
B. Tie MAP INTERNAL 7040 CHARACTER CODE

(9 CoDE) .. 43
C. ExaMPLE OF AssemBLY QuTPUT e 44
Control Dictionary Listing 44
Assembled Text Listing 44
Cross-reference Dictionary Listing 45
Error Messages Listing 46
Index 47

Introduction

Communication with a computer always involves the
concept of language. The programmer writes his pro-
gram in a specific source language, which, like all
languages, must conform to certain rules of structure.
In general, there are three levels at which a pro-
grammer can communicate with a computer,

The first of these, and the most basic, is the language
of the machine itself. Because the computer executes
a job at the machine language level, a source program
written at either of the other two levels must eventually
be converted by some means to a machine language
object program before it can be executed. In the 7040
and 7044, machine language consists of a sequence of
binary numbers that instructs the computer in the
performance of a given task. From one standpoint, the
most efficient programming is done in this language,
since no translation is required frora source program
to object program. For the programmer, however, pro-
gramming in machine language is tedious, time-con-
suming, and given to programming errors, since, among
other things, a machine language program bears little
resemblance to a statement of the problem itself.

At the opposite end of the scale are such program-
ming languages as ForRTRAN and coBor, which are scien-
tific and commercial languages, respectively. A source
program written in FORTRAN closely resembles the
mathematical notation a person would use to state a
problem if he were going to solve it by traditional
methods. The coBoL language is based on English, and
the coBoL programmer writes his source program in
the form of English language statements much like
those he would use to explain to someone else the pro-
cedure to be used. Both of these languages are rela-
tively easy to learn and use because of their similarity
to the ordinary languages of business and science.

Since the computer, using a compiler, can produce
an efficient machine language program from a FORTRAN
Or COBOL source program faster and more accurately
than cana programmer, the use of such compiler lan-
guages offers marked advantages over the use of ma-
chine language. However, certain programming fea-
tures, available when using machine language, cannot
be included in the scope of any present-day compiler.

At the intermediate level are the assembly program
languages, such as the map language. For the most
part, an assembly program language is similar in struc-
ture to machine language, but with mnemonic symbols

Symbolic Programming Using MAP

substituted for each of the binary instruction codes
and programmer symbols for the other fields of an
instruction; it may also have various added features.
Among these features might be a set of pseudo-opera-
tions to expand the programming facilities of machine
language. Thus, the programmer has available through
an assembly program language all of the flexibility and
versatility of machine language, plus facilities that
greatly reduce machine language programming effort.

The ForTRAN and coBoL compilers, as they are im-
plemented in the 7040/7044 Processor, do not produce
a machine language object program directly from the
source program. Instead, they produce a program in
the assembly program language, which is then as-
sembled into machine language using the assembly
program. To compile, then, is to produce assembler
input from a source program written in a language
such as coBoL or FORTRAN. To assemble is.to produce a
machine language program from a program either
written in the assembly program language itself or pro-
duced by a compiler.

MAP Language Features

Operations

The map language provides the user with all of the
7040/7044 machine operations, prefix codes, special
operations, and 10Cs operations, as well as an extensive
set of pseudo-operations.

In the mAP language, the machine operation codes
are expressed in their Bco form. The prefix codes are
provided to enable the programmer to specify the value
of the bits in the prefix portion of a word. The special
operations are extensions of standard machine opera-
tions and are provided for frequently occurring condi-
tions. The 10cs operations are provided for the user of
7040/7044 10cs. See Appendix A for a listing of these
codes.

A pseudo-operation is any operation included in the
MaP language that is not an actual 7040/7044 machine
operation, prefix code, or special operation. There are
more than fifty pseudo-operations available in map
to perform the programming functions briefly de-
scribed below; these functions are discussed in full

‘later in this publication.

Location Counter Pseudo-operations are used to cre-
ate and control the operation of location counters.

Symbolic Programming Using MAP 5

Data Generation Pseudo-operations are used to in-
troduce data into the program in any one of a variety
of formats. They are also used in combination to gen-
crate tables of data.

Storage Allocation Pseudo-operations are used to re-
serve areas of core storage.

Symbol Definition Pseudo-operations are used to
assign a specific value to symbols in the program.

Program Section Pseudo-operations are used to qual-
ify the symbols in certain sections of a program.

Literal Positioning Pseudo-operations are used to
specify the location within a program where the literals
used in that program are to be stored.

Macro-definition Pseudo-operations are used to de-
fine programmer macro-operations. The macro-related
pseudo-operations are used in conjunction with these
to extend the facilities of macro-operations.

Conditional Assembly Pscudo-operations are used
to specify that an instruction is to be assembled only
when certain criteria are satisfied.

Operation Definition Pseudo-operations are used to
define new operation codes or to redefine existing ones.

Subroutine Pseudo-operations are used to generate
subroutine calling sequences and to save and restore
the index registers used by a subroutine.

Control Dictionary Pseudo-operations are used to
make entries into the Control Dictionary to allow ref-
erences between program segments. I'ile Description
Pseudo-operations are used to define the requirements
of input/output files used by the program.

List Control Pseudo-operations are used to specify
what is to be listed in an assembly output listing and
what format the listing is to take.

Miscellaneous Pseudo-operations are used to specify
the punching mode, to enter remarks into a program,
to extend the variable field of an operation, and to indi-
cate the end of a program.

Macro-operations
The programmer macro-operation is a very flexible
and powerful programming tool. Many programming
applications involve a repetition of a pattern of in-
structions, generally with variations in parameters at
cach iteration. Using the macro-definition pseudo-
operations, a programmer can define this pattern as a
macro-operation, indicating in the definition the vari-
able parameters. Thereafter, by coding a single instruc-
tion, he can use the pattern as many times as needed,
varying the parameters as much as desired. The param-
cters to be varied may appear in any field of any of the
instructions within the pattern.

In defining the pattern, the programmer gives it a
name. This name becomes the operation code of
the instruction by which he will later call the

6

macro-operation. This instruction is referred to as a
macro-instruction. The use of macro-operations and
macro-instructions is described in full in the section
“Macro-operations.”

Location Counters

During assembly, a location counter is used to deter-
mine the next location to be assigned to an instruction.
For each machine instruction processed by the assem-
bler, the location counter in effect at that time (i.e.,
the “current” location counter) is increased by one.
Certain pseudo-operations may result in no increase
at all, whereas others may result in an increase of one
or more.

Mmap provides for an indefinite number of symbolic
location counters, which are established and controlled
by the programmer. Using the location counter pseudo-
operations, he can create as many location counters
as he needs and then transfer control back and forth
among them as often as desired.

This facility effectively means that instructions can
be coded in one sequence to be loaded for execution
in another, and is useful in establishing remote se-
quences, constant tables, ctc.

ABSMOD and RELMOD Assemblies

The control routines of the operating system occupy
lower core storage. Therefore, a program to be loaded
may not be loaded into this area but must be loaded
into the first machine location that is unused by the
system. It is not necessary, however, for the program-
mer to know the address of this location, since the
Loader will automatically relocate in storage each pro-
gram segment to be loaded. The first address of a pro-
gram segment to be exccuted is referred to as the load
address, and each succeeding instruction is loaded rel-
ative to that address, so that the actual address of an
instruction at load time is the address assigned to that
instruction during assembly plus the load address of
that program segment.

In its normal mode of operation, 1BMAP produces
an output deck, which is to be relocated at execution
time by the Loader. This is referred to as a RELMOD
assembly. In some cases, however, it may be desirable
to load a program beginning at a certain fixed location
in core storage, i.e., an absolute origin. This is referred
to as an ABsMob assembly. In this case, the programmer
specifies a certain location as the load address for that
deck. (An absolute origin may also be specified within
a RELMoOD assembly; see “Relocation Properties of Sym-
bols.”)

The basic difference between rELMOD and aBsMOD
assemblics is that, in a RELMoD assembly, the relocation

bits indicate that, at load time, the contents of certain
fields of the instructions may be altered relative to the
load address determined by the Loader. In an aBsmobp
assembly, these bits indicate that the contents of the
instructions are, for the most part, not to be altered
at load time; a certain amount of relocation is necessary
in the case of system symbols, external symbols, and
control sections.

The mode of assembly is determined by selecting
either the reLMOD or the ABsMOD option on the stBMAP
card (see the 7040/7044 Programmer’s Guide) that

precedes the source deck.

Structure of the MAP Language

Symbolic Instructions

A symbolic instruction consists of the following three
parts:

1. The Name Field, which may contain a name by
which other instructions can refer to the instruction
named. In machine instructions, use of this field is op-
tional, and it may be left blank. Specific name field
requirements for each of the pseudo-instructions are
given later in this publication.

2. The Operation Field, which contains the machine
operation code, pseudo-operation code, or programmer
macro-operation code. A blank operation field will
cause a word to be assembled with a prefix of zero.
In this connection, note that a blank card in the sym-
bolic program will cause a word of zeros to be gen-
erated in the object program.

An asterisk (*) may appear in the operation field
immediately to the right of the last character of a
machine operation code. The presence of this charac-
ter indicates that the operation is indirectly addressed,
and the assembler inserts the appropriate bits into the
word. Indirect addressing is permitted only with cer-
tain machine operations, as shown in Appendix A.

3. The Variable Field, which contains the necessary
address, tag, and decrement (or count) portions of a
7040/7044 machine instruction, or, in the case of a
pseudo-instruction, whatever is specificd for that in-
struction.

The address, tag, and decrement portions of the
variable field are supplied in that order, separated by
commas, and are referred to as subfields of the variable
field. (Note that this order is the reverse of the internal
order, from left to right, of subfields in a machine
instruction word, i.e., decrement, tag, address.) Dif-

ferent types of instructions require different combi-
nations of address, tag, and decrement subfields. Ap-
pendix A lists the 7040/7044 instructions, indicating
for each the maximum and minimum number of sub-
fields. The assembly program will check each instruc-
tion to see that it contains the minimum number of
subfields required and that it does not contain more
than the maximum number of subfields allowed. 1t
does not check for the presence or absence of any
specific subfields.

A null subfield is a subfield that is indicated as being
present but that has no value. It is expressed in one
of three ways:

a. if it is at the beginning of the variable field, by
a single comma;

b. if it is between two other subfields, by two
consecutive commas;

c. if it is at the end of the variable field, by a
single comma followed by a blank.

If an irrelevant subfield (i.e., a subfield that is not
used by the instruction) is to be followed by a relevant
subfield, the irrelevant subfield must be indicated.
Irrelevant subfields at the end of the variable field
may be indicated as null or may be omitted entirely.
Thus, the pairs of symbolic instructions below are
equivalent:

a. TXH 0,0,1
TXH ., 1

b. IORD ALPHA, 0,1
IORD ALPHA ,, 1

c. CLA ALPHA , 0
CLA ALPHA

d. TXH ALPHA,0,0
TXH ALPIIA ,,

e. PXA 0,0
PXA ,

In cach case above, each member of the pair is
correct and neither is preferred over the other.

Note that in the last two cases it is not permissible
to omit the commas, since the assembler checks for a
minimum number of subfields. The Txu instruction
requires three subfields; the rxa instruction, two. In
other words, these subfields, although at the end of the
variable field, are not irrelevant and must be indicated.

Two optional fields are available to the programmer
for comments and sequencing:

1. The Comments Field, which is used for explana-
tory remarks; it exists solely for the convenience of the
programmer and does not affect execution of the pro-
gram.

2. The Sequence Field, which may be used, at the
programmer’s option, to indicate the sequence of cards
in the source program deck. If this field is used, the

Symbolic Programming Using MAP 7

assembler will check the sequence of the cards using
the 7040/7044 9-code collating sequence.

Symbolic Card Format

Symbolic instructions are punched one-per-card in the
following format:

The name field begins in column 1 and may be up
to six characters in length.

Column 7 is always blank, except in the case of a
remarks card with an asterisk in column 1; see below.

The operation field begins in column 8 and is from
one to six characters in length, plus the asterisk (if
any) for indirect addressing. Therefore, it may extend
through column 14.

At least one blank column separates the operation
field and the variable field, which in no case may begin
after column 16. The variable field may extend through
column 72. Except in certain cases, the scan of the
variable field of a card is terminated by a blank; if the
variable field extends through column 72, the assembly
program assumes a terminating blank to be present.
(The blank column at the end of the variable field is
actually an end-of-card indicator rather than an end-
of-variable-field indicator, and it is possible to extend

the variable field of most operations over several cards,
using the erc pscudo-operation.)

The comments field follows the variable field and
extends through column 72. It must be preceded by
at least one blank column to separate it from the vari-
able ficld. In the absence of a variable field, the com-
ments field may not begin before column 17.

Columns 73-80 are the sequence field.

REMARKS CARDS

A special type of source card is the remarks card with
an asterisk (*) in column 1 and any desired informa-
tion in the rest of the card. The contents of columns
1-80 are printed out in the assembly listing.

Remarks cards can be grouped, and can appear at
any point in a program except between erc cards. They
are frequently used at the beginning of a program to
state the problem to be solved, to describe the tech-
nique used, ete.

mapr also provides a remarks card through the
pseudo-instruction REM.

Examples of Symbolic Instructions

Figure 1 illustrates the appearance of mMar symbolic
instructions. The contents of the various fields will be
explained in the discussions that follow.

IEM e
7040/44 7090/94 SYMBOLIC LANGUAGE CODING SHEET
PROGRAM PUNCHING INSTRUCTIONS PAGE OFf
GRAPHIC CARD ELECTRO NUMBER
PROGRAMMER I DATE PUNCH
NAME OPERATION VARIABLE FIELD COMMENTS SEQUENCE
{Location) (Address, Tag, Decrement/Count) (Identification)
1 1] R 14|15{16 20 25 30 35 45 50 55 60 65 70 73 30
inle] Jelelc|clelwltnlal Ids| o] o olalelalu slelqnerw Wihlrlc M [=l]c]olsHelaldels| Hlulel [clelolziv]g
ole| lsIxMieleliizle] |cinlsidelulcmzielnis]. EREEN
AlX|T] 1ol . 11
LolelP] clLla allpidlat o], (/] cPhlal lalwd! |BeTA| |alelel |TlHE [SiYiMBlelcTlc| [4blRlEs|sE]lS)
D 2uali Ea Tl NIANES | [TH|E] |BirelcKls| leF| IDIATIAL [Tiel Bl 1mbIblAh . |
7ol G IMMLALH 110 1y |1 TIHE] [sluiMis | IRIRIE| |SiTlel@eld] TN |BlLlelclk] ['GAMMAL. L]
ITILIX rleolPly[1ls]! TGN SIFIEIR (TS| [71e] |slvimM8lelL|Tic| |A|biDIRIESIS| |' |LiBlaR. |’
CHIS ZIF] Vel v AIRITIABIL] FIZIE|LID,| [CloMMIEWN TS| IMALY| |SITIA N_|clejelvimin] [1]7]-]
el b+ 1 2] THIZ]S INSTZUchT v Os!|” DI lelelc (7 lyl 1albdlelels|s]
ALlTiHlellel! minle, |V glde |Arlellp| |Maly! |strislelT] |BeFerle] |clol|ulMw] [1]6y] [7iHz]s]_|clelr|ulmm
,%5 aepleRplLILY| |ADeIPTIED 1als| [THIE| [SITIRITL |81F| [THIE| [V RIEABILIE] [FIDE|LD] FleRl |AILIL
|s|Tlew|cl7irienis]. | IS! LaeicYlsl [THE ICIOMMEINTIS Flrieic bl nleeld| IlelTl Istialetn (v —rgﬁ shiMeE]
elol lulmi]| |Fele] lalelc] IrnlstrieulcFrimes|,| 8w 7| (7iiEs| 55| [Gleple@aciclyl Dleiiel (Foiel lepisel (nm
REQDIIING| FTHE] |BisISlEMBly LITISITITNG - i | L

Figure 1. Examples of Symbolic Instructions

8

Symbols

A symbol is a string of from one to six nonblank char-
acters. Only alphabetic characters, numeric charac-
ters, or the period may be used, and at least one char-
acter must be non-numeric.

For example, the following are valid symbols:

A 3.2
ALPHA DECLOC
1234X .TBL1

A symbol is said to be defined when it is assigned a
value. As will be seen in the discussions that follow,
symbol definition can occur in several ways.

ORDINARY SYMBOLS

Symbols used in the variable field of machine instruc-
tions and most pseudo-operations are of four types
(exceptions for certain pseudo-operations will be noted
in the discussions of those operations):

1. Location Symbols, which are symbols used to
denote some address in the program. They are de-
fined by their appearance in the name field of an in-
struction, and the value assigned is the address (re-
locatable or absolute) of the instruction in which they
appear.

2. Virtual Symbols, which are symbols used in the
variable field of an instruction but that never appear
in the name field of an instruction; these symbols
must be identified as “external symbols” and provide
references to entry points in other program segments.
They will then be defined at load time when the pro-
gram to which they refer is loaded.

3. Assigned Symbols, which are symbols assigned
a specific value (relocatable or absolute) by the pro-
grammer, using the symbol definition pseudo-opera-
tions.

4. System Symbols, which are of the form S.xxxx,
where xxxx may be from zero to four characters. These
symbols refer to locations defined by the operating
system and the user is therefore cautioned in the use
of symbols of this form. If system symbols are used
within a program but are not defined in that program,
the assembly program will automatically generate
EXTERN instructions to identify them as external.

It is the programmer’s responsibility in all cases to
avoid circular definitions and undefined symbols.

IMMEDIATE SYMBOLS

There arc some situations where it is necessary to use
a symbol that is assigned a value during the first pass
of the assembly program (e.g., in the variable field of
an 1FT operation). In MAP, normal symbol definition is
not effected until the first pass of the assembler is com-
plete. Therefore, a special class of symbols is provided
whose value can be assigned and used during the first
pass. These symbols, called immediate symbols, are

assigned an arbitrary value, called the S-value, using
the ser pseudo-operation. This value is also effective
during the second pass of the assembler.

Immediate symbols can be redefined throughout the
program, using additional seT pseudo-operations, and
can be used in machine instructions and pseudo-
instructions, subject to the following conditions:

1. An immediate symbol must be unique; it cannot
have the same name as any other symbol in the pro-
gram.

2. An immediate symbol may not be qualified.

3. An immediate symbol used in an instruction is
given the current S-value of the symbol at the time it is
encountered. Therefore, any use of immediate symbols
must be preceded by a defining set.

4. The S-value is always evaluated to yield an un-
signed 15-bit integer.

For convenience in using the pseudo-instructions
1FF, 17T, and sET, ordinary symbols are also assigned an
S-value, as follows:

0
if the symbol has not yct been defined as an ordinary symbol;

1

if it has.

However, this value is effective during the first pass
only; the actual definition of the symbol is used in the
second pass.

RELOCATION PROPERTIES OF SYMBOLS

In an aBsMoD assembly, all symbols are absolute; i.e.,
their values are constant and will not be changed when
the program is loaded for execution. In a RELMOD as-
sembly, symbols (with the exceptions noted below)

. are relocatable with respect to the first location (load

address) of the program, and their values are subject
to change at load time.

An absolute origin may be specified within a RELMoD
assembly. This is not to be confused with an aBsmop
assembly: If an absolute origin is given in a RELMOD
assembly, any symbols whose definitions are dependent
on that origin will be absolute (nonrelocatable). In-
structions under the absolute origin may, however,
refer to symbols elsewhere in the program. The assem-
bly can be returned to the relocatable mode by sub-
sequent specification of a relocatable origin.

Symbols that are dependent on an absolute origin
may be used as entry points or as limits of a control
section (described in “Control Dictionary Pseudo-
Operations,”) only if the assembly is aBsmob.

The following classes of symbols are absolute sym-
bols even though they appear within a RELMOD assem-
bly: ,

1. Symbols whose definition depends on an absolute
origin, i.e., as the result of an absolute orc or an ab-
solute BEGIN.

Symbolic Programming Using MAP 9

2. Symbols defined by:
a. A BooL pseudo-operation;
b. An EQU pseudo-operation which reduces to a
constant;
c¢. A Max or MIN pseudo-operation which yields
a constant.

Writing Expressions

The programmer writes expressions to represent the
subfields of the variable field of a symbolic instruction.
Expressions may be used in the address, tag, and dec-
rement portions of the variable field of a machine
instruction. Expressions are also used in the variable
fields of certain of the pseudo-instructions, in accord-
ance with the rules set forth in each specific case.

The components of an expression are elements,
terms, and operators.

ELEMENTS

The smallest component of an expression is the ele-
ment. An element is either a single symbol or a single
integer less than 2'5.

The asterisk (*) may also be used as an element.
When it is used in this way, it stands for the location
of the instruction in which it appears. Thus, the ele-
ment * will have different values in different instruc-
tions.

TERMS

A term is a string composed of one or more clements
and the operators

* (multiplication)

/ (division)

A term may consist of a single element, of two ele-
ments separated by an operator, of three elements
separated by two operators, etc. A term must begin
with an element and end with an element. It is not per-
missible to write two operators in succession or to
write two elements in succession.

For example, the following are valid terms:

TMP*FUNC*TAXY

FIRST/SCND*THRD*4

2*2303

5*X

OFICA

There is no ambiguity between the usc of the asterisk

as an element and the use of the asterisk to denote
multiplication, since the position of the asterisk always
makes clear what is intended. For example, a field
coded as

**B
would be interpreted as “the location of this instruc-
tion multiplied by B.”

10

When the asterisk is used as an element, it is a re-
locatable symbol unless it appears under an absolute
origin.

EXPRESSIONS

An expression is a string composed of onc or more
terms and the operators

+ (addition)

— (subtraction)

Any expression may consist of a single term, of two
terms separated by an operator, of three terms sepa-
rated by two operators, etc. It is not permissible to
write two terms in succession or two operators in suc-
cession, but an expression may begin with a + or —.
For example, the following are valid expressions:

3
OFICA

TMP -4

-77

—TMP*FUNC/X = 7*H +13759601*YMNG*ZWYT/4+3
*—A+B*C

RULES FFOR FORMING EXPRESSIONS

Let R stand for a relocatable symbol, and A for an
absolute symbol or constant. Then the following re-
lationships hold and are acceptable to mar:

R-R=A R*R = complex A+A=A
R—-A =R R*A = complex A-A=A
A—R = complex A/R = complex A*A = A
R+R = complex R/R = complex A/A =A

R+A =R

A complex expression is one that is neither simply
relocatable (i.e., R) nor absolute. A virtual symbol
is a complex element. Any expression containing a com-
plex element is itself complex.

Relocatable and complex expressions are generally
evaluated at load time, when absolute values are as-
signed to the symbols as part of the loading' process.
In the case of pgeudo-operations that may affect a
location counter (e.g., BEs and Bss) or the definition
of a symbol (e.g., Max and MiIN), it is necessary that
the variable field of such operations be evaluated be-
fore load time. Therefore, certain rules must be ob-
served in using expressions; these rules will be stated
in the discussions of the pseudo-operations affected.

R/A = complex

EVALUATION OF EXPRESSIONS

Expressions are evaluated in the same order as they
are described above. That is, first the elements are
evaluated, then the individual terms, and finally the
complete expression. The procedure is as follows:

1. Each element is replaced with its numeric value.

2. Fach term is evaluated by performing the indi-
cated multiplications and divisions from left to right.
In division, the integral part of the quotient is re-
tained and any remainder is discarded immediately.
For example, the value of the term 5/2*2 is 4.

In the evaluation of a term, divisicn by zero is the
same as division by one and is not regarded as an error.

3. The terms are combined from left to right in the
order in which they occur, with all intermediate results
retained as 35-bit signed numbers.

4. Finally, the rightmost 15 bits are retained, com-
plemented if the result was negative.

Grouping of terms, by parentheses or other means,
is not permitted, but this is rarely a serious restriction,
since a product such as a(B+c) can be written as

A*B+A*C
The expression ** is commonly used to designate

a field whose value is to be computed and inserted by
the program. It is an absolute expression of zero value.

RELATIVE ADDRESSING

Once an instruction has been named by the presence
of a symbol in the name field, it is possible for other
instructions to refer to that instruction using that sym-
bol. Moreover, it is possible to refer to instructions pre-
ceding or following the instruction named by indicat-
ing their position relative to that instruction. This pro-
cedure is referred to as relative addressing. A relative
address is, effectively, a type of expression.
For example, given the sequence

ALPHA TRA BETA
CLA GAMMA
SUB DELTA

STGAM STO GAMMA
TPL LOCI

control may be transferred to the instruction cra
camma by either of the following instructions:

TRA ALPHA+1
TRA STGAM -2

Since some pseudo-operations may generate more
than one word or no words in the object program, care
must be exercised in using relative addressing in com-
bination with pseudo-operations. For example, the in-
struction

ALPHA OCT 2732,427,12716
generates three words of octal data in the object pro-
gram, with aLpiia assigned to the address of the first
word generated; therefore, the address ALPHA +2 refers
to the third word generated, i.e., 12716.

It is also possible, using relative addressing, to refer
to a word in a block of storage reserved by a Bss or
BEs pseudo-operation. For example, the instruction

BETA BSS 50

reserves a block of 50 words, where BETA is assigned to
the first word of the block. Then the address BETA+1
refers to the second word, and BETA+n refers to the
(n+1)th word.

Decimal Data ltems

A decimal data item is used to specify in decimal form
a word or words of data to be converted into binary
form. Decimal data items may be used in the variable
field of a prc pseudo-instruction, or, when preceded
by an equal sign, as decimal literals.

Three types of decimal data items are recognized:

1. Decimal Integers. A decimal integer is a string of
digits, from 0 through 9, which may be preceded by a
plus or minus sign. The maximum size of a decimal
integer is 23—1. For example, the decimal integer

=31
would be converted to a 35-bit signed binary number
whose octal representation is

—000000000037

2. Floating-Point Numbers. A floating-point numbecr
has two components:

a. The principal part is a signed or unsigned deci-
mal number, which may be written with or
without a decimal point. The decimal poirit may
appear at the beginning, at the end, or within
the decimal number. If the exponent part (sce
below) is present, the decimal point may be
omitted, in which case it is assumed to be lo-
cated at the right-hand end of the decimal
number. The principal part cannot exceed 20
digits. If it does, the number will be truncated
and only the first 20 digits will be used.

b. The exponent part consists of the letters E or
EE followed by a signed or unsigned decimal
integer. The exponent part may be omitted if
the principal part contains a decimal point. If
used, it must follow the principal part. The
exponent part cannot exceed two digits. If it
does, it will be truncated and only the first two
digits will be used.

If the letters EE are present, the number is taken as
a double-precision floating-point number.

A floating-point number will be converted to a nor-
malized floating-point binary word. The exponent part,
if present, specifies a power of ten by which the prin-
cipal part will be multiplied during conversion. For
example, all of the following floating-point numbers
are equivalent and will be converted to the same
floating-point binary number:

3.14159
31.4159E -1
314159.E-5

314159E—5
.314159E1

The octal representation of this number is
202622077174

Symbolic Programming Using MAP 11

Similarly, the number .314159EE1 will be converted
to a double-precision floating-point number whose
octal representation is

202622077174
147015606335

3. Fixed-Point Numbers. A fixed-point number has
three components:

a. The principal part is a signed or unsigned deci-
mal number, which may be written with or
without a decimal point. The decimal point
may appear at the beginning, at the end, or
within the decimal number. If the exponent
part is present, the decimal point may be
omitted, in which case it is assumed to be
located at the right-hand end of the decimal
number. The principal part cannot exceed 20
digits. If it does, the number will be truncated
and only the first 20 digits will be used.

b. The exponent part consists of the letters E or
EE followed by a signed or unsigned decimal
integer. The exponent part may be omitted if
the principal part contains a decimal point. If
used, it must follow the principal part. The
exponent part cannot exceed two digits. If it
does, it will be truncated and only the first two
digits will be used.

c. The binary-place part consists of the letters
B or BB followed by a signed or unsigned deci-
mal integer. The binary-place part must be
present in a fixed-point number and must come
after the principal part. If the number has an
exponent part, the binary-place part may pre-
cede or follow the exponent part. The binary-
place part cannot exceed three digits. If it does,
it will truncated and only the first three digits
will be used.

If the letters EE or the letters BB are present, the
number is taken as double-precision.

A fixed-point number is converted to a fixed-point
binary number that contains an understood binary
point. The purpose of the binary-place part of the
number is to specify the location of this understood
binary point within the word. The number that follows
the letter(s) B or BB specifies the number of binary
places in the word to the left of the binary point (that
is, the number of integral places in the word.) The sign
bit is not counted. Thus, a binary-place part of zero
specifies a 35-bit binary fraction. B2 specifies two in-
tegral places and 33 fractional places. B35 specifies a
binary integer. B—2 specifies a binary point located
two places to the left of the leftmost bit of the word;
that is, the word would contain the low-order 35 bits of
a 37-bit binary fraction. As with floating-point num-
bers, the exponent part, if present, specifies a power

12

of ten by which the principal part will be multiplied
during conversion.

For example, the following fixed-point numbers all
specify the same configuration of bits, but not all of
them specify the same location for the understood
binary point:

22.5B5
11.25B4

1125E—2B4
9B7E1

All of the above fixed-point numbers will be con-
verted to the binary configuration whose octal repre-
sentation is

264000000000
The following double-precision fixed-point numbers

10BB35

1B35EE1

1BB35E1

1BB35EE1l
will be converted to the binary configuration whose
octal representation is :

000000000012
000000000000

Literals

It is often necessary for a programmer to refer to a
location containing a constant. For example, if he
wishes to add the number 1 to the contents of the ac-
cumulator, he must have somewhere in storage a loca-
tion containing the number 1. The introduction of data
words and constants into a program is most easily ac-
complished using a literal. A literal is a symbol or
quantity which is itself data rather than a reference to
data.

In contrast to other types of subfields, the content of
a literal subfield is itself the data to be operated upon.
The appearance of a literal directs the assembler to
prepare a constant equal in value to the content of the
literal subfield; store this constant in a special table
(called the Literal Pool); and replace the field of the
instruction containing the literal with the address of
the constant thus generated.

There are three types of literals: decimal, octal, and
alphameric.

DECIMAL LITERALS

A decimal literal consists of an equal sign (=) fol-
lowed by a decimal data item. Thus, three types of
decimal literals are recognized: decimal integers, fixed-
point numbers, and floating-point numbers.

A decimal literal is considered to be single-precision
except where a double E or a double B is used. Double-
precision literals are stored in consecutive locations,

with the high-order part first in an even location rela-
tive to the beginning of the Literal Pool.

For example, the following are valid decimal literals:

=1409
=314159E—1
=1125E—2B4

OCTAL LITERALS

An octal literal consists of an equal sign (=), followed '

by the letter O, followed by a signed or unsigned octal
integer. An octal integer is a string of not more than 12
digits. The permissible characters are

+ —-01234567

For example, the following are valid octal literals:

=02303
=0-12716
=0-123456712345

ALPHAMERIC LITERALS

An alphameric (Hollerith) literal consists of an equal
sign (=), followed by the letter H, followed by ex-
actly six alphameric characters (see Appendix B); the
six characters following the H are taken as data even if
one or more of them is a comma or a blank.

For example, the following are valid alphameric
literals (where b represents a blank):

=H123456
=HTADbbb
=HXYZb,b

Error Checking

IBMAP incorporates a comprehensive system of error
checking. Source programs are thoroughly checked for
errors in the use of the language, and the line number
of an instruction in error is printed out at the end of
the assembly listing along with the corresponding
error message(s). This enables the programmer to
locate errors quickly and correct them according to the
information in the error message.

Rules for Sequence Checking

If columns 73-80 of the source program cards are not
blank, the assembly program will check them for se-
quence (using the 7040/7044 9-code collating se-
quence) and will issue warning messages, as follows:

Any card out of sequence will cause a warning mes-
sage.

If the assembler encounters one or more duplicate
sequence fields, it will issue a warning message on the
first (and only the first) duplication.

Blank sequence fields are ignored and are not treated
as a sequence €rror.

Symbolic Programming Using MAP 13

MAP Pseudo-operations

Strictly speaking, there is a distinction between an
operation and an instruction, although the terms are
frequently used interchangeably. The instruction is the
order to the computer to perform in some manner,
and the operation is the actual internal functioning
of the computer. In the context of this publication,
“instruction” refers to the statement that is written by
the programmer.

A pseudo-operation might be defined as any opera-
tion available in map that is not an actual machine
operation. Then, by extension, a pseudo-instruction
is any valid MaP instruction that is not a machine in-
struction.

Note that while machine instructions generate words
in the object program on a one-for-one basis, pseudo-
instructions may generate no words, one word, or more
than one word in the object program.

The mar pseudo-operations (except for those re-
lated to macro-operations) are described in full in this
part of the publication. They are grouped according
to type of function. For each operation, there is a de-
scription of the format of the instruction and a dis-
cussion of how the operation is used.

Location Counter Pseudo-operations

Location counters provide the user with the facility to
write instructions in one sequence to be loaded in
another. This is useful in establishing remote se-
quences, etc. IBMAP assigns the necessary origins at
assembly time, but repositioning of instructions under
the various location counters is a function of the Loader
and occurs at load time; the object deck produced by
an assembly will have the same sequence as the source
program deck.

The basic location counter of map is referred to as
the blank location counter, since it has no associated
symbol. A second mar location counter, denoted by
two slashes (//), enables the user to obtain the blank
coMMoN area of 7040/7044 rortraN 1v (described in
“The conTRL Pseudo-operation”™).

In addition to the blank counter and the // counter,
mar provides the facility for creating and controlling
as many symbolic location counters as desired. Since
the symbols representing location counters are used
only in the pseudo-instructions USE, BEGIN, and CONTRL,

14

they may duplicate any other symbol in the program
without causing ambiguity.

The USE Pseudo-operation

The use (Use Location Counter) pseudo-operation
specifies which of the location counters is to control
the sequence of the instructions following it. The for-
mat of this instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks USE One of:
1. A single symbol (or //)
2. Blanks

3. The word PREVIOUS

The effect of this operation is to place succeeding
instructions under control of the location counter rep-
resented by the contents of the variable field. The loca-
tion counter in control at the time the UsE is en-
countered is suspended at its current value, is tem-
porarily preserved as the “previous” counter, and- is
continued from this value if reactivated by another
USE.

If the use PrEvVIOUS option is selected, the previous
location counter is reactivated. For example, the se-
quence

USE A

USE B

USE PREVIOUS
is identical in effect to

USE A

USE B

USE A

The blank location counter is primary: if no UsE is
given, instructions will be assembled under it.

The initial value of the blank location counter is
always taken as zero. The initial value of the nth loca-
tion counter is taken as the last value reached by the
(n—1)st location counter, except where a BECIN
pseudo-instruction is given. Location counters are se-
quenced with the blank counter first, the other loca-
tion counters in the order of their first appearance
in a use or BEGIN, and the // counter last.

The BEGIN Pseudo-operation

The BEGIN pseudo-operation specifies a location counter
and gives it an initial value. The format of the BEGIN
instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks BEGIN Two subficlds, separated by

a comma:

1. A location counter
symbol

2. Any non-complex cx-
pression; if it is relocatable,
it must be positive

The effect of this operation is to define the symbol
in the first subfield of the variable field as a location
counter symbol whose initial value is the value of the
expression in the second subfield. For example, if the
instruction

BEGIN CNTRA, ALPHA+50

is given, then the first appearance of a USE CNTRA in-
struction would cause succeeding instructions to be
assembled beginning at location ALPHA +50.

A BEGIN may appear anywhere in the program, re-
gardless of the location counter in control. No BEGIN
may be given for the blank location counter.

The following example illustrates the use of location
counters:

instruction
BEGIN
USE
instruction
instruction
BEGIN
instruction
instruction
USE
instruction
instruction
USE
instruction
instruction
USE
instruction 10
END

*

*

BN UR W0

ac e

The location counter order arising from the above
sequence is:

blank
A

C

B

//

and the sequence of the instructions at load time will

be:
instruction 1
2
3 .
0 (instructions 4 and 5 will
be overlaid)

1

MO X®

The ORG Pseudo-operation

The orc (Origin) pseudo-operation is used to redefinc
the value of a location counter. The format of the orc
instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol or ORG Any absolute or positive re-

blanks

locatable expression; or a sin-
gle virtual symbol (plus or

minus a constant, if desired)

The effect of this instruction is to reset the current
location counter to the value of the expression in the
variable field. The next instruction to be assembled
will then be assigned to the new origin.

If there is a symbol in the name field, it is defined
as the new origin.

If the variable field is entirely numeric, the orc is
considered absolute, and all symbols defined while this
oRe is in effect will be absolute. Thus, the instruction

ORG 10000

will cause the current location counter to be set to
10000, and the next instruction to be assembled will be
assigned to machine location 10000.

On the other hand, to set the location counter to

the sixth location of the program, the instruction
ORG START+5

must be used, where start is defined as the first loca-

tion of the program.

If the variable field of an orc instruction contains a
virtual symbol (plus or minus a constant, if desired),
then no symbols may be defined under this origin, no
literals may be positioned under this origin, and no
other explicit or implicit origin derived from any
Location Counter pseudo-opcration may depend upon
this origin.

Data Generation Pseudo-operations

The data generation pseudo-operations are used to
enter words of data into the program during assembly.
The data might be in the form of octal constants, deci-
mal constants (integers, floating-point numbers, and
fixed-point numbers), binary-coded characters, or in a
combination of several different forms.

The pur operation is included in this classification
becausc its most common use is in the generation of
tables of data.

The OCT Pseudo-operation

The ocr (Octal Data) pseudo-operation is used to
enter binary data expressed in octal form into a pro-
gram. The format of the ocr instruction is:

MAP Pseudo-opcrations 15

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol or OCT One or more subfields, sep-
blanks arated by commas, cach con-

taining a signed or unsigned
octal integer of n digits,
where n = 12

The effect of this operation is to convert each sub-
field of the variable field to a binary word; these words
are assigned to successively higher storage locations
as the variable field is processed from left to right. A
null subfield causes a word of zeros to be generated;
therefore, the number of words of data generated is
always one more than the number of commas in the
variable field.

The variable field of an oct instruction may be ex-
tended over more than one card, using the erc instruc-
tion; however, a single ocrt instruction may not gen-
erate more than 60 words.

If there is a symbol in the name field, it is assigned
to the first word of data generated.

For example, the instruction

ODATA OCT TTTTTTTN7,,77, - 66,

would generate the following data words:

SYMBOLIC

LOCATION CONTENTS
ODATA 377777777
ODATA+1 + 000000000000
ODATA+2 +000000000077
ODATA+3 - 000000000066
ODATA+4 + 000000000000

The DEC Pseuvdo-operation

The pec (Decimal Data) pseudo-operation is used to
enter binary data expressed in decimal form into a pro-
gram. The format of the pEc instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD

Symbol or DEC One or more subfields, scp-

blanks arated by commas, each con-

taining a decimal data item
(see “Decimal Data Items”)

The effect of this operation is to convert each sub-
field in the variable field into one or two binary words,
depending on whether the decimal data item is single-
or double-precision. These words are stored in suc-
cessively higher storage locations as the variable field
is processed from left to right. (Note that double-pre-
cision numbers will not necessarily be entered into
even locations, except where the Evex pseudo-instruc-
tion is used preceding the pec.) Since a subfield may
contain any valid decimal data item, this instruction
can be used to generate decimal integers, fixed-point

16

numbers, or floating-point numbers. A null subfield
causes a word of zeros to be generated.

The variable field of a pEc instruction may be ex-
tended over more than one card, using the £rc instruc-
tion; however, a single pEC may not generate more than
60 words.

If there is a symbol in the name field, it is assigned
to the first word of data generated.

For example, the instruction

DDATA DEC 13,—22,5B5,1,,

would genecrate the following data words:

SYMBOLIC

LOCATION CONTENTS
DDATA +000000000015
DDATA+1 —000000000026
DDATA+2 +050000000000
DDATA+3 +000000000001
DDATA+4 + 000000000000
DDATA+5 + 000000000000

The BCl Pseudo-operation

The Bct (Binary Coded Information) pseudo-opera-
tion is used to gencrate data words consisting of six
6-bit characters in the 7040/7044 standard character
code. The format of the Bc1 instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol or BCI Two subfields, separated by a

blanks comma:

1. The count subfield,
which consists of a single
digit or an immediate symbol
that determines the number
of words to be generated. A
null subfield indicates a count
of ten. In order.to accommo-
date a full ten words of data
on the card, the null subfield
must be indicated by a
comma in column 12.

2. The data subficld, con-
taining the desired data. The
length of this subfield is
determined by the count sub-
field, and it may contain com-
mas, embedded blanks, and/
or trailing blanks.

The effect of this operation is to generate, in suc-
cessively higher storage locations as the data field is
processed from left to right, the number of six-
character words indicated by the count subfield. Since
the count subfield determines the total length of the
variable field, the comments field may begin immedi-
ately following the data subfield, without the usual
blank separator. Similarly, any part of the data subfield
that extends beyond the limit indicated by the count
subfield will be treated as comments.

If there is a symbol in the name field, it is assigned
to the first word of data generated.

For example, the instruction

BDATA BCI 2,BCD MESSAGE
would generate the following data words:
SYMBOLIC
LOCATION" CONTENTS
BDATA 222324604425
BDATA+1 626221272560

If the count subfield of the instruction above were
greater than 2, an appropriate number of data words
containing blanks would be generated in locations
BDATA +2, etc.

The VFD Pseudo-operation

The vep (Variable Field Definition) pseudo-operation
is used primarily for the generation of data tables.
Using this operation, it is possible tc prepare packed
binary data words containing symbolic, octal, and/or
alphameric information. The format of the vrp instruc-
tion is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

Symbol or VFD
blanks

Any number of subfields, sep-
arated by commas, Each sub-
field is of one of three types:
symbolic, octal, or alpha-
meric; the format of these
subfields is detailed below.

If there is a symbol in the name field, it is assigned to
the first word of data generated.

Each subfield of the variable field generates zero,
one, or more bits of data; thus, the unit of information
for this pseudo-operation is the single bit.

Each vrp subfield consists of:

1. The type letter:

a. The letter O signifies an octal field.

b. The letter H signifies an alphameric field.

c. The absence of either O or H as the first letter
signifies a symbolic field.

2. The Bit Count: This is given as a decimal integer
or as an immediate symbol having an S-value; it
specifies how many bits of data are to be generated by
the subfield. If an immediate symbol is used, care
should be exercised to avoid confusion with a type
letter. The immediate symbol will be replaced by its
current S-value.

3. The Separation Character: slash (/).

4. The Data Item: The form of the data item de-
pends on the type of subfield:
a. In a symbolic subfield, the data consists of one
expression.
b. In an octal subfield, the data consists of one
octal integer. The number of digits must be
less than or equal to 12.

c¢. In an alphameric subfield, the data consists of
a string of characters, none of which is a comma
or a blank.

Any number of subfields may be used. Successive
subfields are converted and packed to the left to form
generated data words. If n is the bit count of the first
subfield, then the data item in that subfield is con-
verted to an n-bit binary number. This number is
placed in the leftmost n bit positions of the first data
word to be generated. If n exceeds 36, the leftmost 36
bits of the converted data item form the first gencrated
data word, and the remaining bits are placed in the
first (n-36) bit positions of the second generated word.
Each succeeding subfield is converted and placed in
the leftmost bit positions remaining after the preceding
subfield has been processed.

If the total number of bit positions used is not a
multiple of 36, then the unused bit positions at the right
of the last generated data word will be filled out with
ZEros.

If the data item is a signed octal integer, the sign is
recorded as the high-order bit of the specified bit
group.

The data item in a symholic subfield is evaluated as
a symbolic expression and the rightmost 30 bits are
retained, complemented if the result was negative.
Decimal integers must be less than or equal to 32767.

If the data item is symbolic or octal and occupics
more than n bits, only the rightmost n bits of the con-
verted data item are used. If the data item occupies
fewer than n bits, sufficient zero bits are placed at the
left of the converted data item to form an n-bit binary
number. Neither condition is regarded as an error by
the assembler.

The data item in an alphameric subfield may consist
of any combination of characters other than a comma
or a blank. Each character is converted to its 6-bit
binary equivalent. If the data item occupies more
than n bits, only the rightmost n bits are used. If it
occupies fewer than n bits, sufficient 6-bit groups of
the form 110000 (the internal code for blank) are
placed at the left of the converted data item to form
an n-bit binary number; if n is not a multiple of 6, the
leftmost character used, or the leftmost blank, is
truncated. None of these conditions is regarded as an
error by the assembler.

For example, suppose the programmer would like to
break up a single 36-bit word as follows:

BIT POSITIONS CONTENTS

S, 1-9 Binary . equivalent of the decimal inte-
ger 895

10-14 Binary equivalent of the octal integer 37

15-20 Binary code for the character C

21-35 Binary value of the symbol ALPHA

MAP Pseudo-operations 17

The instruction to generate this word is

VFD 10/895,05/37,H6/C,
15/ALPHA

The DUP Pseudo-operation

The pup (Duplicate) pseudo-operation causes a card
or sequence of cards to be duplicated a specified num-
ber of times. The format of the pup instruction is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD
Symbol or puUp Two subfields, separated by
blanks a comma:

1. The card count

2. The iteration count
Each subfield consists of one
symbolic expression contain-
ing integers and/or imme-
diate symbols. Immediate
symbols will be replaced by

their current S-values.

Let m stand for the card count and n for the iteration
count. Then the meaning of the instruction
DUp m, n

is “duplicate the binary data generated by the next
m card images n times.”

The m cards following the pup are referred to as the
range of the pup. If the iteration count is zero, the cards
within the range of the pur will be ignored. If the
iteration count is one, the pur statement is ignored.

For example, the sequence

DuUP 2,3
PZE X
PZE Y

results in the sequence

PZE
PZE
PZE
PZE
PZE
PZE

<R R R

If there is a symbol in the name field of a pup, it
refers to the first word generated by instructions within
the range of the pup.

If a statement within the range of the pup has a
symbol in the name field, then this symbol appcars
only in the first iteration of the range except in the
following cases when the name field appears in every
iteration:

1. Operation requires a name field (i.e., BoOL, EQU,
SYN, MACRO, MAX, MIN, OPD, OPSYN, SAVE, Or SET opera-
tions).

2. Operation is REM, TTL, Or CONTRL.

3. The name field contains an asterisk in column 1
(i.e.,a comments card).

A pup will not take effect if an Enp card is encoun-
tered within the range of the pup.

18

A pup may not be used within the range of another
DUP.

When a pup is generated by a macro-operation or
when a macro-operation falls within the range of a
pup, certain card images may not be included within
the count. See the section “pup With Macro-operations”
for a detailed explanation.

Storage Allocation Pseudo-operations

The Bss and BEs pseudo-operations are used to reserve
core storage areas as data storage areas or work areas.
The EveN pscudo-operation causes the next word gen-
crated to be assigned to an even storage address, and
is used to ensure that double-precision numbers are
properly entered into core storage.

The BSS Pseudo-operation

The Bss (Block Started by Symbol) pseudo-operation
is used to reserve an area of core storage within a pro-
gram for data storage or working space. The format
of this instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol or BSS Any absolute expression
blanks

Bss performs two functions:

1. A block of consecutive storage locations is re-
served. The number of locations reserved is the value
of the expression in the variable field; the location of
the block is determined by the value of the current
location counter when the Bss is encountered.

2. If there is a symbol in the name field, it is as-
signed to the first location of the block reserved by
the Bss.

BSS causes an area to be skipped, not cleared, and
therefore it may not be assumed that an area reserved
by a Bss contains zeros.

Consider the following example:

ALPHA IORD BETA, 4
BETA BSS 4
GAMMA IORD DELTA,,6

Assume that the symbol aLpuA has been assigned
to location 1001. Then the symbol BETA will be assigned
to location 1002, and the symbol camma to location
1006, leaving four locations (1002-1005) for the block
BETA.

A description of the extended variable field specify-
ing mode and dimensions for load-time debugging can
be found in the section “Supplying Modal Information
to the Debugging Dictionary” of the manual IBM
7040/7044 Operating System (16/32K): Debugging
Facilities, Form C28-6803.

The BES Pseudo-operation

The BEs (Block Ended by Symbol) pseudo-operation
is used to reserve an area of core storage within a pro-
gram for data storage or working space. The format
of the BEs instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol or BES Any absolute expression
blanks

BES performs two functions:

1. A block of consecutive storage locations is re-
served. The number of locations reserved is the value
of the expression in the variable field; the location of
the block is determined by the value of the current
location counter when the BEs is encountered.

2. If there is a symbol in the name field, it is assigned
to the next location following the location of the block.

BES causes an area to be skipped, not cleared, and
therefore it may not be assumed that an area reserved
by a BEs contains zeros.

Consider the following example:

ALPHA IORD BETA, 4
BETA BES 4
GAMMA IORD DELTA,4

Assume that the symbol aLrua has been assigned to
location 1001. Then both the symbol BETa and the
symbol camma will be assigned to location 1006,
leaving four locations (1002-1005) for the reserved
block BETA.

Note that if the name fields are left blank, BEs and
Bss have the same effect, and that the three sequences

1. ALPHA BES 25
CLA BETA

2. BES 25
ALPHA CLA BETA

3. BSS 25
ALPHA CLA BETA

are effectively the same.

A description of the extended variable field specify-
ing mode and dimensions for load-time debugging can
be found in the section “Supplying Modal Information
to the Debugging Dictionary” of the manual IBM
7040/7044 Operating System (16/32K): Debugging
Facilities, Form C28-6803.

The EVEN Pseudo-operation

The EvEN pseudo-operation causes the next word gen-
erated to be assigned to an even address and is used
to ensure an even load address for the data or instruc-
tion that follows — usually, a double-precision floating-
point number. The format of the EVEN instruction is:

The effect of this operation is to force the load ad-
dress of the next word to an even number. If the load
address is odd when an vEN operation is given, an
AXT 0, 0 instruction is generated in the odd location
and the next word is assigned to the next (even) loca-
tion. In an aBsmob assembly, this function is performed
by the assembler at assembly time. In a RELMOD assem-
bly, it is performed by the Loader at load time.

Symbol Definition Pseudo-operations

Except for a few of the pseudo-operations, any opera-
tion may be used to define a symbol simply by placing
the symbol to be defined in the name field of that op-
eration. However, the symbol definition pseudo-opera-
tions (EQU, SYN, MAX, MIN, SET, and BOOL) exist solely
for the purpose of defining symbols.

The EQU and SYN Pseudo-operations

The EQu (Equals) and syn (Synonym) pseudo-opera-
tions are used to assign to a symbol a value other than
that of the value of the location counter in control when
the symbol is encountered. The format of the EQu and
SYN instructions is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol EQU or An absolute or relocatable

SYN expression, or a single virtual
symbol (plus or minus a con-
stant, if desired)

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks EVEN Blanks

The effect of the EQu (sYN) operation is to define the
symbol in the name field as having the value of the
expression in the variable field (and the same reloca-
tion properties).

If an asterisk (*) is used as an element in the vari-
able field of an EQuU (s¥N), the value assigned to the
asterisk is the next location to be assigned by the as-
sembler. For example, in the sequence

CLA TMP1
FSTL EQU *
ADD TMP2

if the crLa instruction is assigned to location 0102, the
symbol ¥sTL would then be defined as having the value
0103, and the avp instruction would be assigned to loca-
tion 0103.

A description of the extended variable field specify-
ing mode and dimensions for load-time debugging can
be found in the section “Supplying Modal Information
to the Debugging Dictionary” of the manual IBM
7040/7044 Operating System (16/32K): Debugging
Facilities, Form C28-6803.

The MAX Pseudo-operation

The Max (Maximum) pseudo-operation defines a sym-
bol as having a value equal to that of the expression
in the variable field having the greatest value. The
format of the max instruction is:

MAP Pseudo-operations 19

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol MAX A series of non-complex

expressions, separated by
commas

The Max operation acts as an EQU, using the value
and relocation properties of the expression in the vari-
able field that has the greatest value. If two or more
expressions are equal in value, the first will be used.

In a relocatable assembly, comparisons arc made
using the value assigned at assembly time. For ex-
ample, in the sequence

ALPHA PZE X
BETA PiE Y
DELTA M.AX ALPHA +20, BETA

DELTA will be defined as aLrua+20 if the assembler
generates 20 words or less between aLriia and BETA; it
will be defined as Beta if the assembler gencrates more
than 20 words between aLrua and BETA.

The MIN Pseudo-operation
The miN (Minimum) pseudo-operation defines a sym-
bol as having a value equal to that of the expression

in the variable field having the least value. The format
of the MIN instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol MIN A series of non-complex

expressions, separated by

If a symbol appearing in the variable field has not
been defined as an immediate symbol by a sET instruc-
tion, it has an S-value of 1 if it has already been de-
fined as an ordinary symbol, or 0 if it has not. This
is particularly useful in the r and rr pseudo-instruc-
tions in determining whether a symbol has already
been defined.

An immediate symbol may be redefined as many
times as desired by subsequent set instructions, but no
immediate symbol may duplicate an ordinary symbol
in the program.

The BOOL Pseudo-operation

The BooL (Boolean Constant) pseudo-operation is
used to define a symbol as an octal constant. The format
of this instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol BOOL An unsigned octal integer of

five digits or less

commas

MiN is the opposite of MaX; it acts as an EQU, using
the value and relocation properties of the expression in
the variable field that has the least value.

The SET Pseudo-operation

The ser pseudo-operation is used to define immediate
symbols for use in instructions. The format of this in-
struction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol SET Any symbolic expression

The effect of this operation is to assign the numeric
value of the expression in the variable field to the sym-
bol appearing in the name field, regardless of any prior
immediate value of the symbol. This value is then re-
ferred to as the “current S-value” of the symbol.

The expression in the variable field is evaluated using
the current S-values of any symbols appearing in it.
It is evaluated as a 35-bit signed integer and is then
truncated to 15 bits. If it is negative, it is comple-
mented prior to truncation.

20

The effect of this operation is to define the symbol
in the name ficld as having the value of the octal con-
stant in the variable field.

Program Section Pseudo-operations

The program section pseudo-operations (QuaL and
NDQ) provide a means of dividing a program into
sections by “qualifying” all of the symbols defined in
a given section with an additional symbol. Other sec-
tions of the program can then refer to a symbol within
a qualification section by using that symbol in combi-
nation with the qualification symbol. This is particu-
larly useful when parts of the same program are writ-
ten at different times or by different programmers, in
that it climinates the possibility of inadvertent duplica-
tion of symbols from one part to the next.

The QUAL Pseudo-operation

The @uaL (Qualify) pseudo-operation is used to indi-
cate the beginning of a qualification section and its
associated qualification symbol. The format of this in-
struction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks QUAL A single symbol

The symbol in the variable field becomes a qualifier
for all symbols defined within the range of the section
controlled by the QuaL operation (ENDQ is used to de-
limit the range; sce below). Refererices to a name
defined in a qualification section from within the same
section neced not be qualified. References from outside
the section are qualified by placing the qualifier in
front of the desired symbol, with a connecting dollar
sign ($). For example, to refer to a symbol aLpHA that
is defined in qualification section @si, the symbol is

written Qs1sALPHA. To refer to a symbol BETA in a sec-
tion that is not qualified from within a qualification
section, the notation sBeta is used. The nonqualified
section may be considered as effectively having a blank
qualifier.

Qualification scctions may be nested to provide mul-
tiple qualification. The range (from a QUAL to its cor-
responding ENDQ) of a lower-level Quar must fall com-
pletely within the range of the next higher-level Quar.
A symbol is automatically qualified by any qualifiers
of a higher level than the highest one specified in using
the symbol. A multiply-qualified symbol can be re-
ferred to without using all of its qualifiers, provided
enough qualifiers are given to uniquely determine the
symbol. In any case, the qualifiers must be specified
in the same order that the nesting occurs. Below are
several examples illustrating qualification.

In the sequence

QUAL H
A BSS 1 Qualification
CLA X section H
ENDQ 0
A %SSAL { Qualification
ENDQ j section J
if x is written as A or Hsa, it refers to the first definition
of a;
if x is written as jsa, it refers to the second definition
of a.

In the sequence with nested qualification

QUAL M

A]é%; AL 11\1 Quali- Quali-
CLA X fication fication
ENDQ N section section
ENDQ M MSN M

A BSS 1
CLA Y

if x is written as 4, it refers to the first definition of a;
if it is written as sa, it refers to the second (non-
qualified) a.

if Y is written as a, it refers to the second a; if it is
written as Msa, it refers to the first.

In the more complicated sequence

QUAL ONE
BSS 1

BQ;ISAL FIFWO Qua‘liﬁcation ﬁch::k)n
CLA X section section
ENDQ Two) ONESTWO| oNE
CLA Y

ENDQ ONE

QUAL THREE

BSS 1 Quali-
QUAL TWO) Qualification fication
BSS 1 section section
ENDQ TWO) THREE$TWO\ THREE
ENDQ THREE

the references taken for x and v are as follows:
if X is written as ONEsa, it refers to the first definition of

A; if it is written as A, TWOsA, Or ONESTWOSA, it
refers to the second a; if it is written as THREESA, it
refers to the third a; if it is written as THREEsTWOSA,
it refers to the fourth a.

if v is written as A or ONEsa, it refers to the first defini-
tion of a; if it is written as TWoOsA or ONEsSTWOsA, it
refers to the second a; if it is written as THREESA,
it refers to the third a; if it is written as
THREESTWOSA, it refers to the fourth a.

It should be noted that the two sections Two are
distinct, and not separate parts of the same scction.
The first is section oNEstwo and the second, section
THREESTWO.

The ENDQ Pseudo-operation

The EnpQ (End Qualification) pseudo-operation ter-
minates the range of a qualification section. The format
of the END(Q instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks ENDQ A symbol or blanks

ENDQ terminates the qualification section whose
qualifier appears in the variable field. If the variable
field is blank, the innermost qualification section is
terminated.

In the case of nested qualification, an ExpQ with a
higher-level qualifier in the variable field will also
terminate all lower-level qualification sections. For ex-
ample, in the sequence

QUAL ALPHA
QUAL BETA
QUAL CAMMA
ENDQ ALPHA

the last instruction terminates the qualification sections
ALPHASBETA and ALPHASBETASCAMMA, as well as the
section ALPHA.

Literal Positioning Pseudo-operations

Two pseudo-operations (LorG and LITORG) are pro-
vided for controlling the location at which the literals
used within a program are to be placed.

The LORG Pseudo-operation

The Lorc (Literal Pool Origin) pseudo-operation con-
trols the positioning of all of the literals used in a pro-

MAP Pseudo-operations 21

gram except those positioned under LitoreG control. The
format of the LORG instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks LORG Blanks

The effect of this operation is to position the Literal
Pool, starting at the location of the LorG in the symbolic
deck. If Lore is not specified, the Literal Pool origin
is the final value of the location counter in use at the
end of the program, plus one. There may be only one
LORG in a program.

The LITORG Pseudo-operation

The vrrore (Literal Origin) pseudo-operation cnables
literals used within a block of coding to be associated
with that block. The format of this instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks LITORG |Blanks

The effect of this operation is to position all of the
literals encountered up to the vrrorc (either from
the beginning of the program or from a previous
LITORG), starting at the location of the Litorc in the
symbolic deck. Any literals encountered following a
L1tore will be positioned at the next LITORG, or, if there
is none, they will be positioned under the control of
LORG.

Note that duplicate literals under control of a Lorc
will be eliminated; however, under LITORG control,
duplicate literals will be eliminated only within each
LITORG section.

The primary uses of LITORG are for associating literals
used within a control section (see “Control Dictionary
Pseudo-operations”) with that control section, and in
the assembly of multiphase programs.

Conditional Assembly Pseudo-operations

The conditional assembly pscudo-operations (1¥T and
1rF) arc used to specify that an instruction is to be
assembled only when certain criteria are satisfied.

The IFT and IFF Pseudo-operations

The w1 (If True) and 1rF (If False) pseudo-operations
allow conditional assembly of the following instruction.
The format of these instructions is:

22

OPERATION

NAME FIELD FIELD VARIABLE FIELD

Blanks IFT(IFF) [One subfield, consisting of
two symbolic expressions,
separated by an equal sign

(=); or a single expression.

The effect of 17T is to cause the following instruction
to be assembled only if the two symbolic expressions
separated by the equal sign have the same value. The
effect of 1¥F is just the opposite; the following instruc-
tion will be assembled only if the two expressions are
uncqual in value.

If only one expression is present and there is no
equal sign, then =0 will be assumed.

The expressions in the variable field are evaluated
using the current S-values of any symbols which are
present.

For example, the sequence

A SET 11
IFT A+25=B*3
CLA X
IFT A+25=B*3+3
CLA Y
STO Z

would produce

CLA X
STO Z

if B had been previously defined by
B SET 12

If, on the other hand, B had been previously defined
by

B SET 11
the sequence produced would be

CLA Y

STO Z

Both 1Fr and 1FF may be used anywhere in a pro-
gram, and may precede any machine instruction,
pscudo-instruction, or macro-instruction.

Operation Definition Pseudo-operations

The operation definition pseudo-operations (opp and
opsyN) are provided to allow the programmer to define
his own operation codes.

The OPD Pseudo-operation

The opp (Operation Definition) pseudo-operation de-
fines a symbol as a machine operation code. The format
of this instruction is:

OPERATION|
FIELD

OPD

NAME FIELD VARIABLE FIELD

Five subficlds, separated by
commas, as follows:

1. An octal machine op-
eration code skeleton; i.e., a
12-digit signed or unsigned
octal integer. The digit rep-
resenting the tag field must
be zero.

2. An asterisk if indirect
addressing is permissible;
otherwise, this subfield must
be null.

3. The minimum number
of subfields permitted in this
operation.

4. The maximum number
of subficlds permitted in this
operation,

5. The number of bits al-
lowed in the decrements (0-6
or 15).

All of the subfields must
be present and in the order
indicated.

Symbol

The effect of this operation is to define the symbol in
the name field as the operation code for the operation
definition in the variable field.

For example, to define an operation cap to be the
same as the machine operation cLa, the following in-
struction would be used:

CAD OPD 050000000000,*,1,2,0

If the symbol in the name field is the same as an
existing machine operation code, that code is defined
and the new definition replaces the former. For ex-
ample, if a programmer desired to allow three subfields
in a Tsx instruction where the third subfield might be
a subroutine parameter, he would write

TSX OPD 007400000000,,2,3,6

The OPSYN Pseudo-operation

The orsyn (Operation Synonym) pseudo-operation is
used to define synonyms for existing operation codes.
The format of this instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol OPSYN An operation code

The effect of this operation is to define the symbol
in the name field as the equivalent of the operation
code in the variable field. Thereafter, the two codes
may be used interchangeably.

The operation code *** ENDM, ETC, IRP, Or MACRO
may not be used in cither the name field or the variable
field of an opsyN instruction. If the operation code Bcr,
REM, Or TTL appears in an orsyN instruction, neijther it
nor its equivalent may appear in a macro-definition or
macro-expansion.

Subroutine Pseudo-operations

The subroutine pseudo-operations (caLL, save, and
RETURN) are provided to aid the programmer in pre-
paring closed subroutines and the linkages to them
from the main program.

The CALL Pseudo-operation

The caLL psuedo-operation is used to produce a stand-
ard subroutine calling sequence. The format of this in-
struction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol or CALL One or more subfields, as
blanks follows:

1. A symbol (the name of
a subroutine), or **.

2. The arguments of the
calling sequence (if any) en-
closed within parentheses and
separated by commas. These
may be any symbolic expres-
sion,

3. The error returns (if
any), separated by commas.

4. An identification symbol
(if desired) of up to six
alphameric characters, de-
limited by apostrophes.

The general form of a caLr instruction is:

CALL , argn)

, retm’id’

name(argl, arg2, . . .
retl, ret2, . ..

symbol

where name is the name of a subroutine, argl, arg2,

., argn are the arguments of the calling sequence;
retl, ret2, . .., retm are the error returns, and 'id’ is the
identification symbol. If ‘id’ is spccified, this symbol
will appear in the calling sequence if it is not specified,
the symbol in the name field will appear in the calling
sequence instead.

Note that no comma precedes the left parenthesis or
follows the right parenthesis or precedes the 'id’".

If the subroutine name is not included in the same
program, then the programmer must identify the name
as external through an EXTERN instruction (see below).

Expansions of the CALL Instruction: The following
are examples of the calling sequences generated by
various CALL instructions. ARG is used to denote an
argument and RET to denote a return.

INSTRUCTION EXPANSION
LCS CALL NAME(ARG], ..., ARGn)RETN, . . .,
RETm'IDENT’

I.CS TSL NAME

TXI *+24+n+m,n
BCI 1,IDENT
PZE ARGl

- MAP Pseudo-operations 23

INSTRUCTION EXPANSION
PZE ARGn
TRA RETm
TRA RETI
LCS CALL NAME(ARGI1, ARG2)
LCS TSL. NAME
TXI *+2+2+0,2
BCI 1,LCS
PZE ARGI
PZE ARG2
LCS CALL NAME,RET
(see note following) LCS TSL NAME
TXI *+2+0+1,0
BCI 1,L.CS
_ TRA RET
LCS CALL NAME'ID’
(see note following) LCS TSL. NAME
TXI *+2+0+0,0
BCI L1ID ’

Note: The first subfield of the variable field (i.e., the
name of the subroutine) may be delimited by a
comma, a left parenthesis, an apostrophe, or a blank.

The SAVE Pseudo-operation

The save pseudo-operation is used to produce the in-
structions necessary for the saving and restoring of the
index registers used by a program, and for the updating
of s.sroc. The format of this instruction is:

INSTRUCTION EXPANSION

NAME SAVE 1,2,4
BCI 1, NAME

AXT **1

AXT **2

AXT **, 4

SXA S.SLOC, 4
AXT ** 4

NAME TXI **

SXA *-2,4
LXA S.SLOC, 4
SXA *-6,4

LAC NAME, 4
TXI *+1,4,1
SXA S8.SLOC, 4
SXA *-11,2
SXA *-13,1

The RETURN Pseudo-operation

The rETURN pseudo-operation is designed to be used
with caLL and save, making use of the error (or alter-
nate) returns option provided with these operations.
The format of this instruction is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol or RETURN |One subfield, or two sub-
blanks fields, separated by a comma,

as follows:

1. The name of the associ-
ated SAVE instruction. (This
subfield must be present.)

2. The number of the
alternate (or error) return
desired. This may be an inte-
ger, an immediate symbol, or
an absolute expression.

Symbol SAVE Up to threc numeric sub-
fields, separated by commas,
specifying the particular in-
dex registers to be restored.

Any or all of them may be

specified, and in any order.

Index register 4 is always automatically saved and
restored, but may still be specified.

Index registers 1 and 2 are always automatically
saved but are restored upon exit from the subprogram
only if they are specified in the variable field of the
sAVE instruction. If 1 and/or 2 are not specified, the
second and/or third words, respectively, of the expan-
sion (see below) will have tag fields of zero.

s.sLoc, which is automatically updated by the save
operation, is a standard communication location.

If the name associated with the save instruction is
to be referred to from outside the program in which
it appears, it must also appear in the variable field of
an ENTRY instruction.

Expansion of the SAVE Instruction: The following
is an example of the instructions generated by the
SAVE instruction.

24

An error or alternate return should be specified in
the second subfield only if the associated caLL state-
ment provided for returns.

Expansions of the RETURN Instruction: The follow-
ing are examples of the instructions generated by the
RETURN instruction.

INSTRUCTION EXPANSION
To specify the normal return:
LCS RETURN NAME)
LCS BSS ©
TRA NAME-5

To specify the ith return (where zero is the normal return):

1.CS RETURN NAME,i
LCS BSS 0
LXA NAME, 4
SXA *+1,4
LXA ** 4
TIX *+1,4,i
SXA NAME, 4
TRA NAME-5

Control Dictionary Pseudo-operations

An 1BMAP assembly always produces a Control Dic-
tionary, which is the first part of the binary object pro-
gram deck. One of the primary purposes of this

dictionary is to provide the information necessary to
enable the Loader to make references between program
segments that are assembled separately but are loaded
together and refer to each other. The Control Diction-
ary pseudo-operations are the means by which the user
makes entries into this dictionary.

Each Control Dictionary entry made by the user
consists of two words: the first word contains a name
that provides external identification for this entry; the
second word gives the length of the entry and, in the
case of control sections and entry points, its position in
the deck relative to the beginning of the program
segment.

There are four types of entries that can be made by
the user: control section names, file names, entry point
symbols, and external symbols. The length of a control
section must be nonzero; entries for files, entry points,
and external symbols have zero length.

Control Section Names: These entries are made
using the conTRL pseudo-operation. The mode of the
limits of a control section is assumed to be the same
as the mode of the assembly; therefore, in a RELMOD
assembly, absolute symbols may not be specified as
the limits of a control section. Control sections may
not be overlapped or nested.

File Names: These entries are made using the FiLE
pseudo-operation. The file name is entered into the
dictionary and refers to the file control block associated
with that file.

Entry Point Symbols: These entries are made using
the ENTRY pseudo-operation and define the points at
which other programs can refer to this assembly. The
mode of the entry points is assumed to be the same as
the mode of the assembly; therefore, in a RELMOD as-
sembly, absolute symbols may not be specified as entry
points.

External Symbols: These entries are made using the
EXTERN pseudo-operation. Symbols that are identified
as external must be virtual in the assembly; i.e., they
may not be defined in this assembly. They will be de-
fined by the Loader at load time.

When the separate assemblies are loaded together,
the several Control Dictionaries are examined by the
Loader to determine the correct values necessary to
transfer control between program segments, to obtain
data from other program segments, etc.

The CONTRL Pseudo-operation

The contRL (Control Section) pseudo-operation is
used to define a control section and to make the proper

entry for it into the Control Dictionary. The format of
the conTRL instruction is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

One of the following:
1. Two subfields, each an
expression, separated by a

Control section [CONTRL
name (other
than //) or

blanks comma
2. A single location coun-
ter name
3. A single qualification
symbol

The contents of the name field are entered into the
Control Dictionary as the name of the control section.
If the name field is blank, then the first name in the
variable field will be used. The length and initial loca-
tion of the section is dependent on the content of the
variable field, as follows:

1. If the variable field contains two subfields, each
an expression, the length of the control section is the
difference of the values of the second and first subfields,
and the initial location is the value of the first subfield.

2. If the variable field contains a location counter
name or a qualification symbol, the length of the con-
trol section is the same as the range of the location
counter or qualification section named, and the initial
location is the first instruction within the range.

The length of a section is determined by its first and
last locations, rather than by the number of locations
coded between these points; therefore, the user is
cautioned to consider the effect of any orc pseudo-
instructions within a control section.

Symbols whose locations fall within the limits of a
control section will be treated as part of that control
section. A symbol defined as relative to a location
within a control section will not be considered as part
of the control section if its location falls outside the
limits of the control section.

If it is desired to obtain the blank comMoON area of
7040/7044 FORTRAN 1v, then only the Bss and BEs
pseudo-instructions may appear under the // counter;
the last location counter in location counter sequence
should end at the highest location in the program (ex-
clusive of blank comMoN); and a control section of
the form

CONTRL //
must be given. Note that the name field must be blank.

MAP Pseudo-operations 25

For example, in the sequence

CONTRL //
USE A

USE B

USE /7
BSS 20
USE C

USE A

END

the blank comMoN counter, //, will have its initial
location defined as one higher than the last value
reached by location counter C.

The ENTRY Pseudo-operation

The ENTRY pseudo-operation identifies a symbol as an
entry point in the program and makes an entry in the
Control Dictionary. The format of the ENTRY instruc-
tion is: i

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks ENTRY A symbol, which may be

qualified

The symbol in the variable field must be an ordinary
symbol, defined elsewhere in the program. It is entered
into the Control Dictionary as an entry point. The
symbol may be qualified, in which case the base (right-
most) symbol is used. The symbol should not be
defined under the // (blank comMon) control section.

The EXTERN Pseudo-operation

The exTern (External Symbol) pseudo-operation is
used to identify a symbol as external and to make the
appropriate entry into the Control Dictionary. The
format of this instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks EXTERN |One or more subfields, sep-

arated by commas, each con-
taining a single virtual
symbol

This operation identifies each symbol in the variable
field as an external symbol for purposes of reference
throughout the assembly. Each symbol causes a sepa-
rate entry of zero length in the Control Dictionary.

26

EXTERN instructions will be generated automatically
for any symbols of the form S.xxxx used within a pro-
gram but not defined in the name field of an instruction
in that program.

Any virtual symbol in a program that is not identified
by an EXTERN instruction will be treated as undefined.

File Description Pseudo-operations

The file description pseudo-operations, FILE and LABEL,
arc used to specify the requirements of any input/
output files used by a program and are very similar
to the Loader control cards sFiLE and SLABEL.

All FiLe and rLABEL pseudo-instructions must pre-
cede any instructions in the program except for com-
ments cards of the type with an asterisk in column 1
and list control pseudo-operations.

Notation Conventions: In the discussion of riLE, the
following notation conventions are used:

1. Material in brackets [] indicates that the enclosed
material may be omitted, in which case the under-
scored option, if any, will be used.

2. Material in braces {} indicates that a choice of the
contents is to be made by the user.

3. Upper-case words, if used, must be present in the
form indicated.

4. Lower-case words represent generic quantities
whose values must be supplied by the user.

The FILE Pseudo-operation

The rFiLE pseudo-operation is used to describe the
characteristics of input/output files used by the pro-
gram. The format of this instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol FILE From 2 to 21 subfields, sepa-

rated by commas, as listed
below. The first two subfields
must be present and must
contain the unit assignments;
the order of the remaining
subfields is not important,
and, if one is omitted, the
standard case will be as-
sumed.

The riLE pseudo-operation causes the symbol in the
name field to be entered into the Control Dictionary
as the external name of the file, enabling other assem-
blies to refer to this file description (file control block).

The subfields of the variable field are discussed in
detail in the srFiLE card section of the 7040/7044 Pro-
grammer’s Guide publication and, therefore, are only
listed here:

1. Unit Assignment Option
Unit-1, unit-2
2. Mounting Option

MOUNT MOUNTi
»{ READY and/or |»{ READYi
DEFER DEFERi

3. File Usage Option
[,CKFILE]
4. Block Size Specification
, BLOCK = xxxx
where xxxx is a number that specifies the block size for this file,

5. Buffer Options
[1 Dovets |]

6. Reel Handling Options
(4 mercst]

7. File Density Options
[} 863 1]

8. Mode Option

[LMIXED]
9. Block Sequence Options

[SEQ
'} NOSEQ %]

10. Check Sum Options
I:’% CKSM %:I

NOCKSM

11. Checkpoint Options
— , CKAFLB \
CKCKFL
CKLBFL
L\ NOCKPT
12. File Close Options
— , PRINT =
PUNCH
HOLD
|\ SCRTCH / _

13. Labeling Options
[ADDLBL =symbol
’1 NSLBL=symbol]

where symbol is the name of a routine that processes additional
label fields (ADDLBL) or nonstandard labels (NSLBL). This
symbol must be defined in this assembly by an EXTERN or
ENTRY operation or as a control section name.

14. Record Format Options

TYPE1
» < TYPE2
TYPE3

15. Record Length Option
[,LLRL =xxx]

where xxx is a number that specifies the length of a logical
record in this file.

16. Record Count Option
[,LRCT =xxx]
where xxx is the number of logical records in a block.
17. Error Option
[,LERR =symbol]
where symbol is the name of a routine to be entered on an error

condition. This symbol must be defined in this assembly by an
EXTERN or ENTRY operation or as a control section name.

’

’

18. End of Reel Option
[,EOR =symbol]

where symbol is the name of a routine to be entered when an
end of reel is encountered. This symbol must be defined in this
assembly by an EXTERN or ENTRY operation or as a control
section name.

19. End of File Option
[,LEOF =symbol]

where symbol is the name of a routine to be entered when an
end of file is encountered. This symbol must be defined in this
assembly by an EXTERN or ENTRY opcration or as a control
section name.

The LABEL Pseudo-operation

The LABEL pseudo-operation is used to further describe
a file. This instruction, which must immediately follow
the rFiLE instruction that describes the file to be labeled,
is of the format:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks LABEL Up to four subfields, sepa-

rated by commas, as follows:

1. File serial number: up
to five alphameric characters

2. Reel sequence number:
up to four decimal digits

3. Date or days: ‘'up to four
decimal digits; or two deci-
mal digits followed by a slash,
followed by up to three deci-
mal digits

4. Identification: a string
of ten characters

The reader is referred to the sLABEL card section of
the 7040/7044 Programmer’s Guide publication for the
details of the parameters of this card.

List Control Pseudo-operations

The list control pseudo-operations provide the user with
the ability to control the form of the assembly output
listing. More specifically, these pseuado-operations are
used to indicate what is to be listed, to indicate spacing
and page ejection, to print subtitles for pages, and to
prepare an index of important locations within an
assembly.

The PCC Pseudo-operation

The pcc (Print Control Cards) pseudo-operation is
used to cause the listing of list control pseudo-
instructions that would not otherwise be listed. The
format of the pcc instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks PCC One of: ON, OFF, or blanks

pcc controls listing of the following list control
pseudo-instructions: DETAIL, EJECT, INDEX, LIST, PMC,

MAP Pseudo-operations 27

SPACE, TITLE, TTL. (The pcc instruction itself will always

be listed.)

pcc ON causes the listing of these cards; PcC OFF
suppresses listing of these cards and is the normal
mode. If the variable field is blank, the current setting
of pcc will be inverted.

The SPACE Pseudo-operation

The spAce pseudo-operation is used to generate one or
more blank lines in the assembly listing. The format of
this instruction is:

OPERATION
FIELD

SPACE

NAME FIELD

Blanks

VARIABLE FIELD

An expression

The expression in the variable field is evaluated,
using the current S-values of any symbols in the ex-
pression. This value is the number of blank lines that
will appear in the listing, except that, if the value is
zero, one blank line will appear.

The sPACE instruction is not itself listed except where
the mode of pcc is oN.

The EJECT Pseudo-operation

The gJecT pseudo-operation causes the next line of the
listing to appear at the top of a new page. The format
of this instruction is:

OPERATION
FIELD

EJECT

NAME FIELD
Blanks

VARIABLE FIELD

Any information

EJECT is not itself listed except where the mode of
PCC is ON.

The TITLE Pseudo-operation

Most symbolic instructions generate one binary word
in the object program; some pseudo-operations gen-
erate no binary words; and some pseudo-operations
may generate several binary words. The pseudo-
operations in the last category (BcI, DEC, DUP, OCT,
and vep) are called generative pseudo-operations. Nor-
mally, the assembly listing will contain all of the binary
words generated by these pseudo-operations. The TITLE
pseudo-operation is used to abbreviate the assembly
listing by eliminating from the listing all but the first
word generated by any of the generative pseudo-
operations. (In the case of pup, the original sequence

28

will appear, but iterations are eliminated from the
listing.) The format of the TITLE instruction is:

OPERATION
FIELD

TITLE

NAME FIELD VARIABLE FIELD

Blanks

Any information

Following the occurrence of a TrTLE, and until the
next occurrence of a DETAIL instruction (see below),
the assembler will exclude from the listing any line
that contains octal information but not the symbolic
instruction which caused it to be generated.

TITLE will not itself be listed except where the mode
of pcc is oN.

The DETAIL Pseudo-operation

The peTAIL pseudo-operation is used to resume the
listing of generated data after such listing has been
suspended by a TITLE instruction. The format of the
DETAIL instruction is:

OPERATION
FIELD

DETAIL

NAME FIELD

Blanks

VARIABLE FIELD

Any information

The pETAIL instruction will not itself be listed except
where the mode of pcc is on.

The PMC Pseudo-operation

In its normal mode of operation, the assembler does
not list the card images generated by a macro-instruc-
tion or the subroutine pseudo-instructions, The pmc
(Print Macro Cards) pseudo-operation is used to cause
these cards to be listed. The format of the pmc instruc-
tion is:

OPERATION
FIELD

PMC

NAME FIELD

Blanks

VARIABLE FIELD
One of: ON, OFF, or blanks

PMC ON causes listing of the card images generated
by macro-instructions, CALL, SAVE, and RETURN. PMC
oFF suppresses such listing and is the normal mode.
A blank variable field inverts the current setting of
PMC.

pmc will not itself be listed except where the mode
of pcc is on.

The TTL Pseudo-operation

The TTL (Subtitle) pseudo-operation is used to place a
subheading on each page of the listing and to initiate
renumbering of the pages in the listing. The format of
this instruction is:

OPERATION

NAME FIELD FIELD

Blanks or a TTL
decimal integer

VARIABLE FIELD

A string of characters (the
desired subtitle), starting in
column 13. The string may
contain any MAP character,
and may also include em-

bedded blanks.

The appearance of a TTL causes a page ejection.

The effect of the TTL operation is to generate a
subheading on each page of the listing. Card columns
13-72 are printed in words 4-13 of a subheading line for
each page until changed by another T1L or until deleted
by a TrL with a blank variable field.

A decimal integer (from 1 to 32768) in the name
field will cause a renumbering of pages, beginning with
that number. If the name field is blank, the page
numbering sequence will not be changed.

The INDEX Pseudo-operation

The 1nvpEX pseudo-operation is used to generate in the
assembly listing an index of specified symbols and the
definitions assigned to them. The format of the iNDEX
instruction is:

OPERATION
FIELD

INDEX

NAME FIELD

Blanks

VARIABLE FIELD

A series of symbols, sepa-
rated by commas

The INDEX operation generates a table of contents of
any desired locations in the program; i.e., it lists the
symbols specified in the variable field along with the
definition assigned to each. The first appearance of an
INDEX instruction will cause the heading

TABLE OF CONTENTS

NAME VALUE CONTROL
to be printed preceding the index. Subsequent INDEX
instructions will not cause this heading to be printed.

The UNLIST Pseudo-operation

The unLisT pseudo-operation causes all listing to be
suspended. The format of this instruction is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

Blanks UNLIST |Any information

The uNLIST instruction is itself listed (unless a
previous unListT is still in effect), but thereafter no
lines will be listed until a LisT pseudo-instruction (see
below) is encountered.

Note that, even though no actual listing takes place,
the list control pseudo-instructions DETAIL, EJECT, PCC,
TITLE, and TTL will still be effective under unLIsT con-
trol. For example, if the mode of pcc is oFr when the

UNLIST is encountered and a subsequent pcc oN is used,
the mode of pcc will be on when listing is resumed.
However, only one page ejection will occur, regardless
of the number of EjecT or TTL pseudo-instructions en-
countered under UNLIST control.

The LIST Pseudo-operation

The LisT pseudo-operation is used to resume the assem-
bly output listing following an unrist. The format of
this instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks LIST Any information

The wvisT instruction will not itself appear in the
assembly listing except where the current mode of pcc
is on, but it will cause one blank line to appear in the
listing whether or not an uNLisT is in effect.

Miscellaneous Pseudo-operations

Of the seven pseudo-operations in this category, two
(aBs and FuL) are aBsMoD assembly pseudo-operations
(i.e., they are only effective in an ABsMoD assembly);
one (REM) is a remarks card; one (Etrc) is used to
extend the variable field of an instruction over more
than one card; one (~uLr) is effectively a “no opera-
tion”; one (END) is used to indicate the end of the
symbolic deck; and one (rTcp) is used to indicate the
end of a memory load.

The FUL Pseudo-operation

The rur (Full) pseudo-operation is used to specify
card output in the 24-words-per-card “full” mode. The
format of this instruction is:

OPERATION

NAME FIELD FIELD

Blanks FUL

VARIABLE FIELD

Blanks

Column-binary cards or card images produced in the
full mode contain the first word of output in columns
1-3, the second word in columns 4-6, and so on, to a
maximum of 24 words per card.

Regardless of whether the full mode is already in
force, the effect of a FuL instruction on the binary out-
put is to cause any words remaining in the punch
buffer to be written out and the next output to start at
the beginning of a new card. Binary output will there-
after be in the full mode until the end of the assembly
or until an ABs instruction (see below) is encountered.

FuL is effective only in an aBsmop assembly; in a
RELMOD assembly, it will be ignored.

MAP Pseudo-operations 29

The ABS Pseudo-operation

The ass (Absolute Punch Mode) pseudo-operation is
used to return from the full mode of assembly to the
normal punching mode following the use of a rFuL
instruction. The format of the ABs instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks ETC A series of subfields, sepa-

rated by commas

The effect of this operation is to append its variable

NAME FIELD

OPERATION
FIELD

VARIABLE FIELD

Blanks

ABS

Blanks

field as a continuation of the variable field of the pre-
vious card. As many as nine ETc cards may be used,
provided no element of an expression is split between

The aBs operation is effective only when the assem-
bler is in the full mode of operation, through the prior
appearance of a FUL instruction. The effect of aBs is to
cause any words remaining in the punch buffer to be
written out and the next output to start on a new card,
in the normal punching mode.

An ass instruction will be ignored in a RELMOD as-
sembly.

The TCD Pseudo-operation

The tcp (Transfer Card) pseudo-operation is used to
delimit a core storage load when there is more than
one load in an assembly. The format of this instruc-
tion is:

OPERATION
FIELD

TCD

NAME FIELD

Blanks

VARIABLE FIELD

A non-complex expression

The Tcp pseudo-operation performs the following
function:

Text is produced that indicates to the Loader the
end of a core storage load whose entry point is defined
by the value of the expression in the variable field.

TCp is recommended for use only in a single ABsmoD
assembly that does not call subroutines. The loading of
subsequent parts of the deck must be accomplished by
the programmer through the use of s.sLpr. The calling
sequence to obtain subsequent core storage loads is:

TSX S.SLDR, 4
MZE

The next instruction after the Tcp should be a Bcr
identification word for the next memory load. This
word will not be loaded and should be followed by an
ORG pseudo-operation, as follows:

cards. For example, the instruction

TIX NAME+1,4,1
could be written in the forms
TIX NAME+1
ETC 4,1
or
TIX NAME+1, 4,
ETC 1
but could not be written as
TIX NA
ETC ME+1,4,1

Note that the following operations may not be fol-
lowed by an etC card:

ABS EVEN NOCRS QUAL
BCI FUL NULL REM
CONTRL IRP OPSYN TITLE
DETAIL LIST ORGCRS TTL
EJECT LITORG PCC UNLIST
ENDM LORG PMC USE
ENDQ

If an ETC does follow one of these operations, it will

be ignored.

The NULL Pseudo-operation

The NuLL pseudo-operation defines a symbol. The for-
mat of this instruction is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD
Symbol or NULL Any information
blanks

If there is a symbol in the name field, it is assigned
the current value of the location counter; NuLL has no
other effect on the assembly.

TCD LCS
BCI 1,1ID
ORG SYMBOL

The ETC Pseudo-operation

The blank that separates the variable field of a sym-
bolic card from the comments field is an end-of-card
indicator rather than an end-of-variable-field indicator.
The variable field of most instructions may be extended
over more than one card by means of the Erc
(Etcetera) pseudo-operation. The format of this in-
struction is:

30

The REM Pseudo-operation

The reMm (Remarks) pseudo-operation is used to enter
remarks into the assembly listing. The format of this
instruction is:

OPERATION

NAME FIELD FIELD VARIABLE FIEL.D

Any informa- |REM Any information
tion, except that
column 1 may
not contain a

dollar sign ($)

In the listing, the contents of colurans 8-10 (i.e., the
operation field) will be replaced by blanks and the con-
tents of the remainder of the card will be listed in full:
The rREM operation has no other effect on the assembly.

The reM card has been largely supplanted by remarks
cards of the type with an asterisk in column 1. How-
ever, in a macro-definition, the variable field of an
REM card will be scanned for substitution parameters,
whereas the * remarks card will be completely ignored.

The END Pseudo-operation

The END pseudo-operation is used to signal the end of
the symbolic deck. The format of this instruction is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

Blanks END

A non-complex expression or

blanks

The effect of this operation is to terminate the as-
sembly and to place the definition of the expression in
the variable field in the Control Dictionary as the
nominal starting point of the program segment. In a
RELMOD assembly, the expression must be relocatable.
If the variable field is blank, the load address is as-
sumed in a RELMOD assembly; zero is assumed in an
ABSMOD assembly.

The END instruction must be present and must be the
last card of the symbolic deck.

MAP Pseudo-operations 31

Macro-operations

A macro-operation is a special type of pseudo-opera-
tion, the name and function of which are established
by the programmer. The instruction that calls a macro-
operation is a macro-instruction. The most significant
property of a macro-instruction is that it generates n
source card images, where n is usually greater than
one. The programmer determines the card images to be
generated by a given macro-instruction in a macro-
definition.

The contents of the card images so generated are
virtually unrestricted; a card within a macro-definition
may contain any machine instruction, pscudo-instruc-
tion, or macro-instruction.

The sequence of instructions generated by a macro-
instruction (i.e., the macro-expansion) is automatically
inserted in the normal flow of the program and exe-
cuted in-line, or serially, with the rest of the program
each time the macro-instruction is used.

A macro-definition has three principal parts: a macro-
definition heading card, prototype card images, and
the terminating card.

The macro-definition heading card is the card con-
taining the mMacro pseudo-instruction; the exact for-
mat of this instruction is given below. This card also
contains the name of the macro-operation; this name
becomes the operation code of the macro-instruction
for that macro-operation. Finally, the macro-definition
heading card contains a list of substitutable arguments;
these are dummy parameters for those fields of a
macro-operation that can be altered each time the
macro-operation is used.

The prototype card images establish the actual op-
eration, i.e., the instructions that are to be included
. and their sequence, and the position of those fields
within the operation that are to be substitutable argu-
ments and those that are to be text.

A prototype card image is a standard source card
image having a name field, an operation field, and a
variable field. It may also contain a comments field,
but this field will not normally appear in the card
image generated by the macro-instruction.

The fields (or subfields of the variable field) of a
prototype card image may consist of the following:

1. Text, which is reproduced in the macro-expansion
exactly as it appears in the prototype. A field or sub-
field is text if it does not appear in the substitutable
argument list of the macro-definition heading card.
Fields that are text are the fixed fields of the operation;

32

they will remain the same no matter how the macro-
operation is used and they must conform to the rules
governing each of the instructions involved. For ex-
ample, an operation field that is text must contain a
valid operation code.

2. Substitutable arguments, which are also listed in
the macro-definition heading card. Each substitutable
argument consists of a string of from one to six char-
acters.

3. Punctuation (Special) Characters, which delimit
arguments and are reproduced in the macro-expansion
as they appear in the prototype.

A macro-expansion consists of a reproduction of the
prototype card images within a macro-definition, with
text and punctuation characters exactly as they appear
on the prototype card, but with the substitutable ar-
guments replaced by parameters from the parameter
list of the macro-instruction card that caused the ex-
pansion.

The terminating card of a macro-definition is the
card containing the ENpM pseudo-instruction, discussed
below.

Macro-definition Pseudo-operations

The MACRO Pseudo-operation

The Macro pseudo-operation is used to define a macro-
operation; the card bearing this instruction is the
macro-definition heading card. The format of the
MACRO instruction is:

OPERATION
FIELD

MACRO

NAME FIELD VARIABLE FIELD

A name of up Up to 63 substitutable argu-
to six charac- ments (strings of not more
ters than six characters), sepa-
rated by special characters

The name in the name field is the operation code of
the macro-instruction defined by the prototype that
follows. It may be any valid symbol or may consist of
all numeric characters. The name may be the same
as any symbol appearing anywhere in the program. If
it is the same as any other machine instruction code,
pseudo-instruction code, or macro-instruction code,
the new definition will replace the old definition.

The substitutable arguments in the variable field
also appear in the prototype. Their appearance here

determines the order in which the parameters must
appear in the macro-instruction. The substitutable ar-
guments may be any valid symbols or may consist of
all numeric characters. They may be separated on the
heading card or delimited in the prototype by any of
the following punctuation (special) characters:

= + — % / () $ s 4
Hence, meaningful notation may be used in a macro-
definition. For example, the substitutable argument list

QAl MACRO 23, RATE, TIME, DIST,
QUSYM, SYM1, SYM2

could also be written

QAl MACRO 23(RATE*TIME=DIST)

QUSYM$SYM1$SYM2
Consecutive punctuation characters are ignored and
do not result in a substitutable argument. Parentheses
may not be used as part of a substitutable argument.

Since these substitutable arguments are dummy
names and have no effect on the execution of the pro-
gram, they may be identical to strings of characters
used elsewhere in the program, in location, operation,
or variable fields, including the operation code for this
or any other macro-instruction. Of course, they cannot
be identical to strings within the prototype itself ex-
cept those strings that are actually to be substituted.
The programmer must exercise caution so that, in the

prototype, fields intended as text are not confused with

substitutable arguments, since every string of six or
fewer characters, in any field, is compared with the
substitutable argument list. Special care should be
taken with the fields of Bci, vep, pEC, or ocr pseudo-
operations.

The effect of the Macro pseudo-operation is to define
the macro-operation by relating the name and the sub-
stitutable arguments to the prototype and entering the
prototype into the Macro Skeleton Table.

The ENDM Pseudo-operation

The ExoM (End Macro) pseudo-operation terminates
a macro-definition. The format of this instruction is:

OPERATION
FIELD

ENDM

NAME FIELD

Blanks

VARIABLE FIELD

A name of up to six charac-
ters or blanks

ENDM is used immediately following the last card
of a prototype, and signals the end of the macro-defini-
tion. The name in the variable field is the name of the
macro-instruction, as defined in the location field of the
corresponding MAcro card. If the variable field is blank,
all current macro-definitions are terminated (see
“Nested Macro-Operations™).

Prototype Card Images

The prototype of a macro-definition may include
macro-instructions, pseudo-instructions, and machine
instructions. Substitutable arguments may appear in
any field or subfield of any prototype card. The sub-
stitutable arguments can be delimited by blanks or
the following punctuation (special) characters:

=+ -=*/()8%,’

Except for the apostrophe ('), these characters are
considered as text and will be reproduced in the ex-
pansion.

The prototype of a macro-definition may include
macro-instructions that have not yet been defined;
however, these lower-level macro-instructions must be
defined before using a macro-instruction that generates
the higher-level macro-operation. Circular definitions
must be avoided; that is, a macro-operation A may not
include a macro-instruction whose definition includes
the macro-instruction for A. Also, a macro-operation
may not include within its prototype its own macro-
instruction.

Within a prototype, Bci, REM, and TTL cards are
scanned in full for substitutable arguments. If the
variable field of a Bcr card begins with a character
other than a comma in card column 12, a number, or a
blank, the first subfield should be a substitutable argu-
ment for which a count will be substituted in the
macro-instruction argument list.

If a blank is encountered before card column 72
in the variable field of a prototype card (except the
cards Bcr, REM, and TTL), it terminates the scan of the
card, and any information to the right of the blank will
not be included in the macro-definition.

Remarks cards of the type with an asterisk (*) in
column 1 will appear in a macro-definition but not in
the macro-expansion.

Macro-operations 33

Defining a Macro-operation

Suppose a program contains the sequences of instruc-
tions in Figure 2.

CLA FEDTAX
ADD STATAX
STO TOTTAX
SUBCOM CLA XSuB1
ADD YSUB1
STO ZSUB1
CLA PART1
ADD PART2
STO TOTAL

Figure 2

The pattern of three instructions in Figure 2 might
be identified by some name such as @sum, and this
name could then be defined as in Figure 3.

QSUM MACRO V1, V2, V3
CLA Vi
ADD v2
STO v3
ENDM QSUM
Figure 3

The sequence in Figure 3 itself generates no words
in the object program but constitutes the definition of
the macro-operation QsuM, which is entered into the
Macro Skeleton Table.

The first card is the macro-definition heading card,
containing the name of the macro (QsuM) in the name
field, the operation Macro in the opcration field, and
the substitutable argument list in the variable field.

The next three cards are the prototype, in which
V1, V2, and V3 are substitutable arguments. All of the
other fields (cLa, abp, sto) are text. The fifth card
marks the end of the macro-definition.

The operation code ***, Bss, or ETC may not be used
as the name of a macro. If Bci, ENDM, IRP, MACRO, REM,
or TTL is used as the name of a macro, it may not be
used within any macro-definition.

The Format of a Macro-instruction

Once a macro-operation has been defined, the macro-
instruction that calls it is written as follows:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol or Name of The parameters, separated by
blanks the macro- | commas or parenthescs
operation

34

If there is a symbol in the name field, it is assigned to
a Bss 0 instruction that will be generated preceding the
first card of the macro-expansion.

The argument list in the variable field contains the
parameters that are to replace the substitutable argu-
ments in the prototype. They must appear in the same
order as the arguments they are to replace appeared in
on the corresponding mMacro card. The parameter list
can be extended using Erc cards (see “The ErCc Pseudo-
Operation™).

It is not necessary to restrict the length of a param-
eter to be substituted to six characters. An entire in-
struction may be inserted into any field; no blank will
be inserted following a name field longer than six char-
acters, and the operation field, if any, will follow
immediately. The only restriction on the length of a
single parameter is that it be no more than 61 char-
acters and that it appear entirely on a single card.

The parameters of a macro-instruction parameter list
are separated either by commas or by being enclosed in
a pair of parentheses. Between two parameters, a single
comma following a right parenthesis, or a single comma
preceding a left parenthesis, is redundant and may be
omitted; it does not result in a null parameter. In this
case, a null parameter is indicated by two consecutive
commas; if a zero parameter is desired, an explicit
zero must appear in the parameter list. For example,
the following parameter lists are equivalent and will
generate the same expansion:

ALPHA,BETA, GAMMA
ALPHA, (BETA), GAMMA
ALPHA (BETA) CGAMMA

If, however, a null parameter is desired as the first or
last parameter of the list, this is indicated by a single
comma preceding a left parenthesis or following a right
parenthesis, respectively, as shown below:

,(BETA) GAMMA
ALPHA (BETA),

A pair of parentheses surrounding a string in a
macro-instruction parameter list signifies that every-
thing within the parentheses, including blanks and
special characters, is to be substituted for the corre-
sponding argument in the macro-definition prototype.
The parentheses will be removed during the expansion.

If, in a macro-instruction parameter list, parentheses
are to be included as part of a parameter, they must
be enclosed within another pair of parentheses, which
will be removed in the expansion of the macro-opera-
tion. In any case, pairs of parentheses must be bal-
anced.

A macro-operation must be defined in a program
prior to the use of the macro-instruction. Once the oper-
ation QsuM has been defined as in Figure 3, each of the
sequences in Figure 2 could be replaced by macro-
instructions as in Figure 4.

QSUM FEDTAX, STATAX, TOTTAX
SUBCOM QSUM XSUB1, YSUB1, ZSUB1
QSUM PART1, PART2, TOTAL
Figure 4

Note that suscom will be assigned as the location
symbol of a Bss 0 instruction preceding the first instruc-
tion of that macro-expansion, i.e., the cLA XsuB1 instruc-
tion in Figure 2.

If the order of the substitutable arguments in the
macro-definition heading card of Figure 3 were changed
to, for example, V3, V1, V2, then the macro-instructions
in Figure 5 would produce the same macro-expansions.

QSUM TOTTAX, FEDTAX, STATAX
SUBCOM QSUM ZSUB1, XSUB1, YSUB1
QSUM TOTAL, PART1, PART2
Figure 5

In the example given in Figure 3, the substitutable
arguments all appeared in the address fields of the
prototype and were replaced by symbols in the macro-
expansion. However, substitutable arguments may ap-
pear in the name field, in the operation field, or in any
of the subfields of the variable field. Moreover, the
arguments may be replaced by any appropriate char-
acter strings.

For example, a macro-definition can be written as
in Figure 6.

QPOLY MACRO COEFF, LOOP, DEG, T, OP
AXT DEG, T
LDQ COEFF

LOOP FMP GAMMA
opP COEFF+DEG+1, T
STO TEMP
LDQ TEMP
TIX LOOP, T, 1
ENDM QPOLY

Figure 6

In the example in Figure 6, mnemonic character
strings have been used to represent the substitutable

arguments, Notice that Loor appears in a name field,
op in an operation field, and that coerr and pEG appear
as symbols and as elements within expressions in ad-
dress subfields. Notice also that caMMa and TEMP are
text, i.e., symbols and not substitutable arguments, and
presumably are defined elsewhere in the program.

Any use of gpoLy should be accompanied by a param-
eter list of appropriate substitutions for the substitut-
able arguments. For example, Loop should be replaced
by a symbol, and op by a valid operation code. A gpoLY
macro-instruction might be written:

X015 QPOLY C1-4, FIRST, 5, 4, FAD

This macro-instruction would cause the eight card
images to be generated as in Figure 7:

X015 BSS 0
AXT 5 4
LDQ Cl—4
FIRST FMP GAMMA
FAD Cl1—4+5+1, 4
STO TEMP
LDQ TEMP
TIX FIRST, 4, 1
Figure 7

In the macro-expansion in Figure 7, the symbol X015
is assigned to a Bss 0 instruction preceding the first in-
struction, and each of the substitutable arguments is
replaced by the corresponding parameter in the macro-
instruction parameter list. The expression arising from
the prototype address coErrF+DEG+1 reduces to ci+2.

The following example illustrates the insertion of an
entire instruction in a single field of a prototype. Given
the macro-definition

XYZ MACRO A,B,C
CLA A
B
STO C

ENDM XYZ
then the macro-instruction (where b represents a blank)

SUM XYZ ALPHA (ADDbbbbbBETA)
GAMMA
would result in the expansion
SUM CLA ALPHA
ADD BETA
STO GAMMA

Linking Partial Subfields

The special character ' (apostrophe) is used to con-
catenate (link) partial subfields. It is possible to create
a single subfield combining arguments and text, since
the apostrophe delimits an argument in the macro-
definition prototype but is not itself included in the
macro-expansion. If apostrophes are used in the vari-

Macro-operations 35

able fields of Bci, REM, or TTL prototype cards to con-
catenate fields, they must be used in pairs and must
surround the substitutable argument. On other types of
prototype cards, only one apostrophe is necessary to
indicate concatenation.

The location field of a prototype card may not con-
tain more than six characters, including text, substi-
tutable arguments, and apostrophe(s). The operation
field may not contain more than seven characters.

For example, given the macro-definition

MACI MACRO X,YZ...
SX'X ADDR'Y,Z
ENDM MACI

then the first instruction generated by the macro-in-
struction

MAC1 Al2, ...
would be

SXA ADDR1,2

The first instruction generated by the macro-instruc-
tion

MAC1 D,2,2,...
would be
SXD ADDR2,2
Given the macro-definition
ALPHA MACRO A,B,C,
BCI A,bb’B’bERROR.LCONDI-
TION'C'bLIGNORED.
ENDM ALPHA
where b represents a blank, then the macro-instruction
ALPHA 6,(FIELD), '
would cause the following card to be generated:
BCI 6, bbFIELDbERROR. bCON-
DITIONLIGNORED.

Qualification Within Macro-operations

The character $ delimits an argument in the prototype
and is itself included as text within the macro-expan-
sion. This character may be used to indicate qualifica-
tion either in the prototype or in the macro-instruction
parameter list.

Any qualification in effect at the time a macro-
instruction is encountered will be used for symbols
defined in that macro-expansion. If a qualification
symbol is required within a macro-operation prototype,
it may be a substitutable argument, as may the symbols
it qualifies.

If a macro-operation containing a qualification sec-
tion falls within the range of a qualification section
in the program, the rules for nested qualification apply
when referring to symbols defined within the macro-
expansion.

36

Nested Macro-operations

Macro-operation definitions may be nested; ie., a
macro-operation definition may be entirely included
within the range of another (higher-level) macro-
operation definition.

Lower-level macro-operations are not defined until
all higher-level macro-operations within which they
are nested have been expanded. Therefore, the macro-
mstruction of a lower-level macro-operation cannot be
used until the macro-instructions of all higher-level
macro-operations have been expanded.

When the assembler encounters an outer MACRO
card, it defines the higher-level macro-operation and
enters it into the Macro Skeleton Table. Then, when
the higher-level macro-instruction is used, the expan-
sion of that macro-operation is inserted in-line in the
program, with its substitute arguments replaced by
parameters from the macro-instruction parameter list.
At this point, the assembler encounters the MAacro
card for the next lower-level macro-operation, defines
that macro-operation, and enters it into the Macro
Skeleton Table.

Each time a higher-level macro-instruction is used,
the next lower-level macro-operation will be defined
and an entry will be made in the Macro Skeleton Table.
Thus, if the name of the lower-level macro-operation
is a substitutable argument in the higher-level macro-
definition, each use of the higher-level macro-instruc-
tion causes additional macro-operations to be defined;
if the name of the lower-level macro-operation is text
in the higher-level macro-definition, each use of the
higher-level macro-instruction causes the lower-level
macro-operation to be redefined. Defining new macros
or redefining existing ones with a single instruction is
the most common use of the nested macro-operation
facility.

For example, given the sequence

MAC1 MACRO MAC2, ALPIIA, BETA,
GAMMA, DELTA
MAC2 MACRO ALPHA
BETA A
GAMMA B
DELTA C
ENDM MAC2
ENDM MAC1
then the instruction
MAC1 ABC, (A, B, C), CLA,
ADD, STO
would generate
ABC MACRO A, B, C
CLA A
ADD B
STO C

ENDM ABC
and aBc is defined as a macro-operation with A, B, and
c as substitutable arguments, and cra, apbp, and srto
as text.

The instruction

MAC1 XYZ, (OP1, OP2), OP1,
0OP2, STO
would generate
XYZ MACRO Ori1, Or2
OP1 A
oP2 B
STO C
ENDM XYZ

and xvz is defined as a macro-operafion with op1 and
oP2 as substitutable arguments, and A, B, ¢, and sTo as
text.

There is no significant limit to the depth of the nest-
ing allowed.

DUP With Macro-operations

A macro-operation may generate a DUP. Subsequent
card images generated by the same macro are counted
to determine the range of the pup. If another macro-
operation is encountered during this generation, only
the macro-operation card image is counted (i.e., none
of the images generated at lower levels by the macro
are counted). If the end of the range has not been
reached when the macro-generation stops, counting
continues at the source level {or a higher macro level
if the pur was generated by an inner level macro).
Once a higher level has been encountered, counting
is not resumed at any subsequent lower levels.

1. Example of a macro falling within the range of a
DUP statement:

Given the macro-definition

MACA

then the instructions

DUP 2,2
InstC
MACA

would generate

count iteration

InstC 1
InstA
InstB
InstC
InstA

InstB
2. Example of a pup statement within a macro-
definition:
Given the macro-definition

MACB

would generate
count iteration
InstA - —
InstB
InstC
InstC
InstC
InstD
InstE. —

| ===
| wro— |

3. Example of a pup statement within a macro-
definition that contains a call to a lower level:
Given the macro-definitions

MACA MACRO
InstA
InstB
ENDM
MACRO
InstC
pupP 2,2
MACA
InstD
InstE
ENDM

MACB MACRO

then the instruction
MACB

would generate
count iteration
InstC - —

InstA
1

InstB
InstD
2 :

e
InstB
InstD

InstE

—~————
| DO = o —=

4, Example of a pup statement within a macro-
definition; the range of the pur being longer than the
range of the macro:

Given the macro-definition

MACA MACRO

InstA
DUP 2,2

InstB
ENDM

then the instructions

MACA
InstC

would generate

count iteration

InstA
InstB
InstC
InstB
InstC

.....

Macro-operations 37

Macro-related Pseudo-operations

The macro-related pseudo-operations (IRP, NOCRS,
ORGCRs) are provided to extend the facilities of macro-
operations. They have no significance except in rela-
tion to macro-operations.

The IRP Pseudo-operation

The 1rp (Indefinite Repeat) pseudo-operation is used
to repeat a sequence of card images within a macro-
operation, varying one argument in the sequence each
time the sequence is repeated. 1RP can only be used
within a macro-operation definition; it is undefined
outside of macro-operations. The format of this instruc-
tion is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks IRP Depends on whether the IRP

is to initiate or terminate the
sequence to bc repeated, as
follows:
1. To initiate a sequence, a
single substitutable argument
2. To terminate a se-

quence, blanks

For example, the instruction
IRP ARG
defines the beginning of such a sequence
IRP

defines the end of the sequence, and the variable field
ARG governs the iterations of the card images to be
generated within the sequence.

The macro-instruction that causes the macro-opera-
tion to be expanded should contain in its parameter
list, for the position corresponding to the substitutable
argument ARG, a series of subparameters, separated by
commas and enclosed within parentheses. All of the
subparameters must appear on a single card (either
the macro-instruction card itself or a subsequent ETC
card). Each subparameter will cause the sequence to
be repeated once, with arc replaced by the sub-
parameter. If only one subparameter is given, the se-
quence will appear once; if the subparameter list is
null, the whole sequence will be skipped. If there is
a blank in this subfield, succeedmg subparameters will
be ignored.

For example, given the macro-definition

XYZ MACRO ARG,B
IRP ARG
CLA ARG
ADD B
STO ARG Ll
IRP

ENDM XYZ

38

then the instruction

XY7Z (J,K,L),CONST

would generate the following instructions:
CLA] First sequence,
ADD CONST with subparam-
STO J eter J
CLA K Second sequence,
ADD CONST with subparam-
STO K eter K
CLA L Third sequence,
ADD CONST with subparam-
STO L eter L,

The variable field of an initial 1Rp must be a single
substitutable argument; if it is not, the mp will be
ignored and the sequence of instructions enclosed
within the 1rp statements will be generated once.

If the substitutable argument does not appear in the
range of the 1rp statements, the iterations will be identi-
cal, their number depending on the number of sub-
paramecters given.

An 1Rr cannot occur explicitly within the range of
another 1rr; such a nested pair causes the termination
of the first range and the opening of another range.
However, a macro-instruction within the range of an
IRP may itself contain pairs of 1RP operations, and
nested IRP ranges may be created in this way.

Created Symbols

If parameters are omitted from the end of the param-
cter list of a macro-instruction, the assembler auto-
matically supplies symbols to fill out the parameter list.
These symbols, called created symbols, are of the form

. 0001
. 0002
. 0003

. nnnn
A parameter indicated by a comma is treated as null;
created symbols are supplied only at the end of the
parameter list as shown in the following example:

Given the macro-definition heading card

ALPHA MACRO A,B,C ,
then the instruction
ALPHA X,

will cause: each appearance of the substitutable argu-
ment A to be replaced by X; each appearance of the
substitutable argument B to be omitted, since the
parameter is explicitly null; and each appearance of
the substitutable argument C to be replaced by a sym-
bol of the form . . nnnn, created to replace the omitted
parameter at the end of the macro-instruction param-
cter list.

The pseudo-operations Nocrs and ORGCRs are used
to control the creation of symbols in macro-instructions
following the NOCRS or ORGCES.

The NOCRS Pseudo-operation

The nocgrs (No Created Symbols) pseudo-operation is
used to suppress the creation of symbols for macro-
instruction parameter lists. The format of this instruc-
tion is:

The ORGCRS Pseudo-operation

The orccrs (Origin Created Symbols) pseudo-opera-
tion is used to resume the creation of symbols if they

"have been suppressed by a Nocrs instruction. The

format of the orcers instruction is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks NOCRS Blanks

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks ORGCRS |Blanks

Note that creation of symbols is the normal mode
of the assembler, and if it is desired to suppress their
creation, the Nocrs pseudo-operation must be used.

Creation of symbols will be resumed starting with
the next symbol to be created when the ~Nocrs instruc-
tion was cncountered.

Macro-operations 39

Appendix A. 7040/7044 Machine Operations,
Special Operations, Prefix Codes, and I0CS
Operations

This appendix contains complete lists of all 7040/7044
machine operations, special operations, prefix codes,
and 10Cs operations.

INSTRUCTION ASSEMBLY

The assembly of machine operations, special opera-
tions, prefix codes, and 10cs operations involves the
following functions:

1. If there is a symbol in the name field, this symbol
is given the value of the next location to be assigned
by the assembler when the instruction is encountered.

2. The operation code is translated into a 36-bit
binary instruction word. Note that the bits that de-
termine the operation may occupy positions in the
prefix, decrement, and address portions of the internal
binary word.

3. If indirect addressing has been specified, the ap-
propriate flag bits are inserted.

4. If an address subfield is present, the expression
in this subfield is evaluated.* The 15-bit result is com-
bined by a logical or with the rightmost 15 bits of the
instruction word (i.e., the address portion).

5. If a tag subfield is present, the expression in this
subfield is evaluated and the rightmost three bits of
the result are combined by a logical or with the tag
portion of the instruction word. If there is an expres-
sion in this subfield, it must be absolute.

6. If a decrement subfield is present, the expression
in this subfield is evaluated* and the n low-order bits
of the result (where n is the number of decrement bits
as given in the table below) are combined by a logical
or with the decrement portion of the instruction word.

7. The 36-bit instruction that results is assigned to
the next location to be assigned by the assembler.

COLUMN HEADINGS
The column headings used in this appendix are as
follows:

Mnemonic: This column gives the Bcp operation code
of the instruction.

Ind: An 1 in this column indicates that indirect ad-
dressing is permissible.

*Note that certain types of expressions are evaluated by the Loader at Load
time; however, the effect is the same as the description above.

40

Appendixes

Subfields: The column headings Appr, TAG, and DECR
stand for the address, tag, and decrement subfields of
the variable field. The coding in these columns is:

Address or number
Tag

Decrement

Blank

Character position
Count

Interface

HORmEgC A

A slash is used to indicate alternatives-(e.g., T/B
indicates that a tag field is permissible but not required
and may be blank). The number in parentheses follow-
ing the decrement indicates the number of bits in the
decrement; in some cases, this number is given in a
separate column headed pecr BrTs.

Min: This column gives the minimum number of
subfields required for the instruction. For example, if
the minimum is given as 2, the assembler will expect
two subfields, and an error will be indicated if there
is less than two. (Note that these subfields may be
null; see “Symbolic Instructions.”)

Max: This column gives the maximum number of
subfields allowed for the instruction.

Octal Prefix: For prefix codes, this column gives the
octal configuration of the bits that will be assembled in
the prefix portion of the word.

Assembles As: For special operations, this column
indicates how the operation code will be assembled.

Opt: This column indicates the option set that the
instruction belongs to. This column is coded as follows:

CODE OPERATION SET

Channel A and Basic Operations

Extended Machine Operations
Single-Precision Floating-Point Operations
Double-Precision Floating-Point Operations
Storage Protection Operations

Channel B Opcrations

Channel C Operations

Channel D Operations

Channel E Operations

HOQE ™ WP ~o

Machine Operations

MNE- SUBFIELDS

MONIC IND ADDR TAG DECR MIN MAX OPT
ACL I Y T/B B(4) 1 2 0
ADD I Y T/B B(4) 1 2 0
ALS Y T/B B(6) 1 2 0
ANA I Y T/B B(4) 1 2 0
ARS Y T/B B(6) 1 2 0
AXT Y T B(6) 2 2 1
BSR Y T/B 1I/B(4) 1 3 0
CAL 1 Y T/B B(4) 1 2 0
CAS I Y T/B B(4) 1 2 0

MNE- SUBFIELDS MNE- SUBFIELDS

MONIC IND ADDR TAG DECR MIN MAX OoPT MONIC IND ADDR TAG DECR MIN MAX orrt
ccs I Y T/B P(4) 3 3 1 RDCE B T/B B(8) 0 2 E
CHS B T/B B(6) 0 2 0 RDS Y /B I/B(3) 1 3 0
g5 1 Y B B4 1 2 o mewm 550 Be o 2 4
COoM B T/B B(6) 0 2 0 ROL Y T/B B(6) 1 2 0
CTR Y /B 1(3) 1 3 0 RUN Y /8 I/B(6) 1 3 0
DCT B T/B B(8) 0 2 0 SAC I Y T/B P(4) 3 3 1
DFAD I Y T/B B(4) 12 3 SCHA I Y /B B(0) 1 2 0
DFDP I Y T/B B(4) 1 2 3 SCHB I Y /B B(0) 1 2 B
DFMP I Y T/B B(4) 12 3 SCIHC I Y T/B B(0) 12 C
DFSB I Y T/B B(4) 1 2 3 SCHD I Y /B B(0) 1 2 D
DVP I Y T/B B(4) 12 0 SCHE I Y T/B B(0) 1 2 E
ENB I Y T/B B(4) 12 0 SEN Y T/B 1(8) 1 3 0
ENK B T/B B(6) 0 2 0 SLFA B T/B B(6) 0 2 0
ETTA B T/B B(6) 0 2 0 SLNA B T/B B(6) 0 2 0
ETTB B T/B B(6) 0 2 B SLW 1Y T/B B(4) 1 2 0
ETTC B T/B B(6) 0 2 C SPM I Y T/B C(4) 12 4
ETTD B T/B B(6) 0 2 D SSLB I Y T/B B(4) 12 B
ETTE B T/B B(8) 0 2 E SSLC 1Y T/B B(4) 1 2 C
FAD 1 Y T/B B(4) 1 2 2 SSLD I Y /B B(4) 1 2 D
FDP I Y T/B B(4) 1 2 2 SSLE I Y T/B B(4) 1 2 E
FMP I Y T/B B(4) 1 2 2 SSP B T/B B(6) 0 2 0
FSB I Y T/B B(4) 12 2 STA 1Y T/B B(4) 1 2 0
HPR Y/B B B(6) 0 2 0 STD I Y T/B B(4) 1 2 0
ICT B T/B B(6) 0o 2 0 STL I Y T/B B(4) 1 2 0
IORD Y B C(15) 3 3 0 STO I Y T/B B(4) 1 2 0
GO L DO DL A L0 I
LAS I Y T/B B(4) 1 2 0 STZ I Y T/B B(4) 1 2 0
LBT B T/B B(6) 0 2 0 SUB I Y T/B B(4) 1 2 0
LDC Y T B(6) 2 2 1 SWT Y T/B B(6) 12 0
LDQ I Y T/B B(4) 12 0 SXA Y T B(6) 2 2 1
LGL Y T/B B(6) 12 0 SXD Y T B(6) 2 2 1
LGR Y T/B B(6) 1 2 0 TCOA | ¢ T/B B(4) 1 2 0
LLS Y T/B B(8) 1 2 0 TCOB I Y T/B B(4) 1 2 B
LRS Y T/B B(6) 12 0 TCOC I Y T/B B(4) 1 2 c
o T TooEm i or b nyomowd g
1 OE I B E
MIT I Y T/B B(0) 1 2 1 TDOA I Y /B I(4) 3 3 0
MPY I Y T/B B(4) 1 2 0 TEFA I Y T/B B(4) 1 2 0
MSM 1 Y T/B B(0) 1 2 1 TEFB I Y T/B B(4) 12 B
MSP 1Y T/B B(0) 1 2 1 TEFC I Y T/B B(4) 1 2 c
ORA I Y T/B B(4) 1 2 0 TEFD I Y T/B B(4) 1 2 D
PAX S (11 B
IX
PBT B T/B B(6) 0 2 0 TMI I Y T/B B(4) 1 2 0
PCS I Y T/B P(4) 3 3 1 TMT Y T B(6) 1 2 1
PDC B T B(6) 2 2 1 TNX Y T D(15) 3 3 1
PDX B T B(6) 2 2 1 TNZ I Y T/B B(4) 1 2 0
PLT I Y T/B B(0) 12 1 TOV I Y T/B B(4) 12 0
PRD Y /B 1/B(3) 1 3 0 TPL Iy T/B B(4) L2 0
PSLB I Y T/B B(4) 12 B TRA r y T/B B(4) 2 0
PSLC I Y T/B B(4) 1 2 P TRCA I Y T/B B(4) 1 2 0
PSLD I Y T/B B(4) 1 2 D TRCB I Y T/B B(4) 12 B
BE Doy oTmosh1os B @G LT TR BG5S
PWR
DX amoume 0 0 e 1oy 1y b 138
TRP T/B B 2
PXD B T B(6) 2 2 1
RCHA I Y T/B B(0) 1 2 o IRT Iy /B B(4) 1 2 0
TSL I Y T/B B(4) 1 2 0
RCHB I Y T/B B(0) 1 2 B
TSX Y T B(4) 2 2 1
RCHC I Y T/B B(0) 1 2 C TXH Y T D(15) 3 3 1
RCHD I Y T/B B(0) 1 2 D
; TXI Y T D(15) 3 3 1
RCHE I Y T/B B(0) 1 2 E TXL Y T D(15) 3 3 1
RCT B T/B B(6) 0 2 0 TZE I Y T/B B(4) 1 2 0
RDCA B T/B B(6) 0 2 0 UFA I Y T/B B(4) 1 2 2
RDGG b T he o s & U T Y 1B e 1 2 3
S B
RDCD B T/B B(6) 0 2 D VDP 1Y T/B C(6) 3 3 0

oy
~

Appendixes

MNE- SUBFIELDS
MONIC IND ADDR TAG DECR MIN MAX OPT
VLM I Y T/B C(8) 3 3 0
VMA I Y /B C(6) 3 3 0
WBT Y /B I/B(3) 1 3 0
WEF Y /B I/B(6) 1 3 0
WRS Y T/B I/B(6) 1 3 0
XEC I Y T/B B(0) 12 0

Prefix Codes

In writing subroutine calling sequences, it is often
necessary to specify parameters in each of the four
sections of a binary word — prefix, decrement, tag,
and address. The decrement, tag, and address may be
specified in the variable field. (Of course, they must be
given in the order: address, tag, decrement.) To enable
the programmer to specify the value of the prefix bits,
the following codes have been provided:

OCTAL DECR
MNEMONIC MEANING PREFIX IND BITS MIN MAX
Blank Zero 0 15 0 3
PZE or Zero Plus Zero 0 1 15 0 3
PON or ONE Plus One 1 1 15 0 3
PTW or TWO Plus Two 2 1 15 0 3
PTH or THREE Plus Three 3 I 15 0 3
MZE Minus Zero 4 I 15 0 3
FOR or FOUR Four 4 I 15 0 3
MON Minus One 5 1 15 0 3
FVE or FIVE Five 5 I 15 0 3
MTW Minus Two 6 I 15 0 3
SIX Six 6 1 15 0 3
MTH Minus Three 7 1 15 0 3
SVN or SEVEN Seven 7 1 15 0 3

Note that certain operations may generate instruc-
tion words identical to those generated by the prefix
codes above (e.g., PrH, THREE, and TxH all generate the
same instruction word).

Special Operations

The following special operations are supplied to pro-
vide operation codes for frequently-occurring condi-
tions:

MNE- ASSEM- DECR
MONIC MEANING BLES AS IND BITS MIN MAX
Operation code to be PZE I 15 0 3
inserted during
execution
ok Operation code to be PZE 15 0 3
inserted during
cxecution
Blank operation code PZE 15 0 3
BRA Branch TXL 15 1 3
BRN No operation setting TXH 15 1 3
of a branch/no
operation switch
MSE Minus sense (—0760)s 6 1 2
NOP No operation AXT 6 0 1
PSE Plus sense (+0760)s 6 1 2
ZAC Zero accumulator PXD 6 0 1
ZSA Zero storage address SXA 6 1 1
ZSD Zero storage SXD 6 1 1
decrement

42

10CS Operations

7040/7044 mAP recognizes the 7040/7044 10Ccs opera-
tions given below, and will accept them in source lan-
guage input statements. They are described in detail
in the 1BM publication, IBM 7040/7044 Operating Sys-
tem (16/32K): Input/Output Control System, Form
(28-6309, and, therefore, are only listed here.

MNEMONIC ASSEMBLES AS DECR BITS MIN MAX
ILCLS MZE 15 3 3
ILFER PTW 15 3 3
ILOPN PON 0 3 3
ILRSW PTH 15 3 3
IODER 0003 0 1 2
IODLY 0004 0 0 0
IORBI —-0020 0 1 2
IORBP —0220 0 1 2
IORBR —0320 0 1 2
IORBS —-0120 0 1 2
IORDI -0000 0 1 2
IORDP —0200 0 1 2
IORDR —0300 0 1 2
IORDS —0100 0 1 2
IOSKP 0001 0 1 2
IOSNS 0105 0 1 2
10TPI —0001 0 0 2
IOWBI 0020 0 1 2
IOWBP 0220 0 1 2
IOWBR 0320 0 1 2
IOWBS 0120 0 1 2
IOWDI 0000 0 1 2
IOWDP 0200 0 1 2
IOWDR 0300 0 1 2
IOWDS 0100 0 1 2
IOWEF 0002 0 0 0

Indirect addressing is not indicated in an 1ocs opera-
tion by placing an asterisk after the operation code.

System Macro

Checkpoint: The cHKPNT macro-instruction generates
coding for checkpoint initialization. This is described
in detail in the 1BM publication, IBM 7040/7044 Oper-
ating System (16/32K): Input/Output Control System,
Form C28-6309.

IBM 1301 Disk and 7320 Drum Orders

The 7040/7044 Macro Assembly Program (IBMAP)
recognizes the following Disk and Drum Orders, de-
scribed in the publications IBM 1301 Models 1 and 2
Disk Storage, and IBM 1302 Models 1 and 2 Disk
Storage with IBM 7040/7044 Data Processing Sys-
tem, Form A22-6768, and IBM 7320 Drum Storage
with 7040/7044 System, Form A22-6793:

ASSEMBLES REQUIRED
MNEMONIC MEANING AS SUBFIELDS
DNOP No Operation 0000 None
DREL Release 0004 None
DEBM Eight-Bit Mode 0010 None
DSBM Six-Bit Mode 0011 None
DSEK Seek 1000 a,t
DVSR Prepare to Verify 1002 a, tr
(Single Record)
DWRF Prepare to Write 1003 a, t
Format

ASSEMBLES REQUIRED
MNEMONIC MEANING AS SUBFIELDS
DVTN Prepare to Verify 1004 a, t
('Track Without
Address)
DVCY Prepare to Verify 1005, a,t
(Cylinder Mode)
DWRC Prepare to Write 1006 atr
Check
DSAI Set Access Imperative 1007 a
DVTA Prepare to Verify 1010 a,t
(Track with Address)
DVHA Prepare to Verify 1011 a,t
(Home Address)

The symbolic representation of a Disk or Drum
Order should be of the form:

name dord a, tr
1. name — any symbol or blanks
2. dord — the Disk or Drum Order operation code

3. a — any symbolic expression that represents
the access mechanism and module. It is
evaluated and converted to BCD, the
low-order two characters being inserted
into the instruction.

4.t — any symbolic expression that represents
the track. It is evaluated and converted
to BCD, the low-order four characters
being inserted into the instruction.

5.1 — two alphameric characters that represent
the record to be selected. If this field is
used, two and only two characters must
be specified.

The a, t, and r subfields may be present even if not
required. The operation code will assemble as two
Bcp characters; hence, the order will consist of from
two to ten Bcp characters. These Bcp characters are
left-justified in two consecutive words. Any unused
portions of these words contain zeros.

Examples: In these examples assume that the fol-
lowing relationships hold:

ALPHA EQU 3
BETA EQU 8
GAMMA EQU 3329
DELTA EQU 35
a. DVTN ALPHA*BETA, GAMMA

' Assembles as:
1004 0204 0303
0211 0000 0000

b. DWRC
Assembles as:
1006 0101 0303
0211 2221 0000
Notice that the selected record, BA, is converted directly to
BCD as 2221.

c. DWRC
Assembles as:
1006 0005 0606
0302 2121 0000
Notice that ALPHA*DELTA is 105, but only 05 (the low-
order two characters) is assembled, Similarly, GAMMA*BETA
is 26632, but only 6632 (the low-order four characters) is as-
sembled.

d. DWRC
Assembles as:
1006 0100 0103
1001 2222 0000
To include the Disk and Drum Orders in the map
assembler, the user must reassemble map. The publi-
cation IBM 7040/7044 Operating System (16/32K):
Systems Programmers Guide, Form C28-6339, explains
this procedure in the section called “Macro Assembly
Program.”

ALPHA+BETA, GAMMA, BA

ALPHA*DELTA, GAMMA®*BETA, AA

10,1381,BB

Appendix B. The MAP Internal 7040 Character
Code (9-Code)

The following table lists the map graphics with the
corresponding 7040 internal character code (9 code)
and the standard 18m card code (H code).

9 cope
GRAPHIC (ocTAL)

blank 60

0 00
01
02
03
04
05
06
07
10
11
21
22
23
24
25
26
27
30
31
41

H CODE
(CARD CODE)

blank (no punch)

O

o1

vl vdodod ooy
r-t\‘:ll\')l\')(\ﬁll\')l\')l\ﬁl\"l\')
HOO-1OUWHR W01 WN~=O

Appendixes 43

9 CODE H CODE

GRAPHIC (ocTaL) (CARD CODE)
K 42 11-2
L 43 11-3
M 44 11-4
N 45 11-5
(0] 46 11-6
r 47 11-7
0 50 11-8
R 51 11-9
S 62 0-2
T 63 0-3
U 64 0-4
A% 65 0-5
W 66 0-6
X 67 0-7
Y 70 0-8
VA 71 0-9
+ (plus) 20 12
~ (minus) 40 11
/ (slash) 61 0-1
= (equals) 13 8-3
> (apostrophe) 14 8-4
. (period) 33 12-8-3
) (right parenthesis) 34 12-8-4
$ (dollar sign) 53 11-8-3
* (asterisk) 54 11-8-4
, (comma) 73 0-8-3
((left parenthesis) 74 0-8-4

Appendix C. Example of Assembly Output

The output listing of an 1BMAP assembly has four prin-
cipal parts: the Control Dictionary, the assembled text,
the cross-reference dictionary, and the error messages.

Control Dictionary Listing

Figure 8 illustrates a typical Control Dictionary listing,
The first column on the left contains the number of the
Control Dictionary entry. The second column contains
the octal representation of the binary entry. The re-

maining three columns are generated by the assembler
for documentation purposes: the third column is the
external identification for the entry, the fourth column
indicates the type of entry, and the last column gives
the deck information.

Assembled Text Listing

Figure 9 illustrates a segment of a listing of assembled
text. There are two types of text output: file text and
instruction text.

The file text, if any, precedes the instruction text
and is used by the Loader to generate file control
blocks. The first column is the octal representation of
the binary input to the Loader. The next column con-
tains the binary relocation bits. Following this is the
listing of the FiLE and LABEL source statements.

The instruction text contains machine instructions
and data used by the Loader. The first column on the
left indicates the octal location of the instruction — note
that the example in Figure 9 is taken from a RELMOD
assembly and, therefore, the location shown is relative
to the load address of the program. Following this is
the octal representation of the binary instruction text
and Loader control data. The next column contains the
binary relocation bits. The next item in the listing is
the card image. Finally, at the right-hand side of the
page is a single-character position for error flags, and
a column containing the statement numbers.

The Literal Pool is placed at the end of this portion
of the listing (unless positioned under LiTORC control),
followed by the EXTERN instructions generated for sys-
tem symbols (if any) and the Enp card.

A detailed description of the Loader control data
and the relocation bits is provided in the 1BM publica-

IBMAP ASSEMBLY DKNAME 11719764 PAGE 2
CCNTROL DICTIONARY
$IBLDR DKNAME 11/19/64 DKNAOQO1
$CDICT DKNAME DKNAQQO2
BINARY CARD 00000
Goo 000047000007 PREFACE MCDE=REL,PROGRAM=START=00007
0CCC00000004
001 244245214425 DKNAME DKNAME DECK-START=00000,DECK-END=00047
000050000000
002 466463476463 CUTPUT FILE
200000000000
003 255151446227 ERRMSG EXTERN
300C00000000
004 665131632560 WRITE EXTERN
300000000000
G05 623341673163 S«JXIT EXTERN
300000600000
006 623346472545 S.CPEN EXTERN
30000000000CC
007 234565255163 CNVERT ENTRY AT 00007
100000000007
010 255151465160 ERROR CCNTRL FROM 00032 70O 00035
100€03000032
01l 616160606060 124 CCNTRL FROM 00046 TO 00050
10000200004¢
$TEXT DKNAME DKNAQQO4

Figure 8. Control Dictionary Listing
44

BINARY

BINARY
00046
00046
00047
00000
00000
00001
00002
00003
00004
00005
00006
00007
00010
00011
00012
00013
00014
00015
00016

BINARY
00017
00020
00021
00022
00023
00024
00025

00026
00027
00030
00031
00032
00033
00034
00035
00036
00037

BINARY
00040
00041
00042
00043

00044
00045

CARD 00000

000010000002 00011 QUTPUT FILE

000000000000 10000
000000000016 10000
000001000000 10000
-010006610200 10000
011000000016 10000
00000000000¢ 10000
020000000000 11100
-000000000000 10000

IBMAP ASSEMBLY DKNAME

UQ2y#yLRL=14,RCT=1,BLOCK=14,00UBLE,ERR=ERROR

ERROR CONTRL ERROR,ERROR+3

CARD 00001
1 00000 0 00046 00001
2 00000 O Q0001 00001
2 00000 0 00001 00001 UPPER
1 00000 0 00000 00001
000000000067 10000
000000006667 10000
000000666667 10000
000066666667 10000
000C00000011 10000 NINE
-206060606060 10000 BLANKS
0 00000 0 00000 10000 SWOPEN

-1341 07 O 00006 10001 CNVERT
0020 00 ¢ Q0014 10001
-1623 06 O 00006 10001
0074 00 4 14000 10011
1 00000 O 04000 10011
-0500 00 0 22001 10011 UPNUM
040¢ 00 O 00044 10001
0

=1341 05 00045 10001

CARD 00002
0020 00 O 00030 10001

0020 00 0 00030 10001
0602 00 O 22001 10011 SETLST
0560 00 0 00005 10001
-0765 00 0 00006 10000
-0100 00 0 00023 10001
-0600 00 0 00000 10011
0 00001 O 00011 10010
1 0000l 7 00000 10011
-1627 00 0 10000 10011 PUT
0020 00 4 00000 10000 RETURN
0774 00 1 00005 10000
2 00001 1 60035 10001
0774 00 O 00000 10000 ERROR
0074 00 4 0£000 10011
0020 00 0 12000 10011
0771 00 0 GO006 10000 UPMOR
-1341 05 0 €0004 10001
0020 00 G 00031 10001
CARD 00003

0020 00 0 CQO031 10001
-0500 00 0 22001 10011
0400 00 1 00004 10001
0020 00 0 00021 10001

000000000001 10000

000000000012 10000
00007 01111
$DKEND DKNAME

Figure 9. Assembled Text Listing

ENTRY

CNVERT

EXTERN ERRMSG,WRITE
LITTLE SUBROUTINE

CONTRL

USE
BSS
BSS
USE
ocT
ETC

DEC
BCY
PZE
PLY
TRA
MSM
TSX
PCN
CAL
ABD
ccs

TRA
TRA
SLW
LbQ
LGR
TNZ
STQ

TSL
TRA
AXT
TIX

AxT

T5X
TRA
ARS
ccs
TRA

TRA
CAL
ADD
TRA

EXTERN
EXTERN

END

/7

144
1

1

PREVIOUS
6746667,
666667,66666667

9
1,

SWOPEN
UPNUM
SWOPEN
S.OPENs4
QUTPUT,,0
UPPER

=1
2012445

RETURN+1
RETURN+1
UPPER
BLANKS

6

w-
UPPER-1

WRITE

0+4

5¢1
UPMOR, 141

ERRMSGo 4
SJIXIT

6
NINEs»5
RETURN+2

RETURN+2
UPPER
NINE, 1
SETLST

LITERALS

SJIXIT GENERATED
S.QPEN GENERATED
CNVERT

PAGE 3

SUB00000

SUBOOO10
suUB00Q20
SUB00030
SUB00040
SUB00CSO

SUB00060
SUB00Q70
SuUB00080
SUB00090
SUB00100
SUB0OO110

5UB00120
SUB00130
SUBQ0O140
SUB00150
SuUB00160
SUB00170
5UB00180
5UB00190
SUB00200
SuUB00210
SUB00220

SUB00230
SUB00240
SUB00250
SUB00260
SUB00270
SUB00280
SUB00290

SUB00300
SUB0OO310
SUB00320
SUB00330
SuB00340
SUBQ0350
SUB00360
SUB00370
SUBD0380
SUB00390

SUB00400
SUB00410
SUB0O0420
SUB00430

SUBO0440

Appendixes

oOMPUWN

O ®
-0

47
48
49

45

tion, IBM 7040/7044 Operating System (16/32K): Sys-
tems Programmer’s Guide, Form C28-6339.

Cross-reference Dictionary Listing

The cross-reference dictionary, as shown in Figure 10,
contains four types of information: references to de-
fined symbols, references to location counters, refer-
ences to multiply defined symbols, and references to
undefined symbols.

The listing of references to defined symbols and
multiply-defined symbols gives the symbol, its value,
and the statement numbers of those instructions that
refer to it.

The P.xxxx symbols are generated by the assembler
for literals and with the L1TORG and LORG statements.

IBMAP ASSEMBLY ODKNAME

CROSS-REFERENCE DICTICNARY

REFERENCES TO DEFINED SYMBOLS
VALUE NAME STATEMENT NUMBERS

00005 BLANKS 26
00007 CNVERT 49
VIRTUAL ERRMSG 35
00032 ERROR 1

00004 NINE 38,42
FILE OUTPUT 1,19

06026 PUT
00027 RETURN 23424439440
00021 SETLST 43

VIRTUAL S.JXIT 36
VIRTUAL S.CPEN 18

00006 SWCGPEN 15,17

00035 UPMOR 33

00014 UPNUM 16

00047 UPPER 20325429441
VIRTUAL WRITE 30

00044 P.C0OCO 21

00045 P.COO1 22

REFERENCES TO LOCATICN COUNTERS
LC START NAME STARTING AND ENDING STATEMENT NUMBERS

00000 1-6410-49
00046 /77 7-9

Figure 10. Cross-reference Dictionary Listing

IBMAP ASSEMELY DKNAME

ERROR MESSAGES

0 STATEMENT 34 ERROR 127

HIGHEST SEVERITY WAS 0.

Figure 11. Error Messages Listing

46

The listing of references to location counters gives
the name of the counter, its starting location, and the
starting and ending statement numbers of the instruc-
tions positioned under it.

The listing of references to undefined symbols gives
the symbol and the statement number of those instruc-
tions that refer to the undefined symbol.

Error Message Listing
Figure 11 illustrates an error message listing. The first
column on the left gives the severity level of the error.
Following this is the statement number of the instruc-
tion in error, the error number, and, finally, the text
of the error message.

11/18/64 PAGE 5

11/719/64 PAGE 6

TGO FEW SUBFIELDS IN A STATEMENT

A page number in italics indicates that the designed
reference is of particular importance.

ABS e 30
ABSMOD assembly 6
Alphameric literals 12,13
Assemble 5
Assembly output 44

Assembled text listing 44

Control Dictionary listing. 44

Cross-reference Dictionary listing 45

Error Message listing. 46
Assembly program 7
Assembly program languages............ 5
Assigned symbols 9
Asterisk (*) 7,10
BCL .. 16
BEGIN 14
BES .. 18
Binary-place parto 12
Bit count 17
Blank location counter. 14, 26
BOOL . . 20
BSS 18
CALL .. 23
Checkpoint 42
Column headings, 40
Comments field 7
Compile 5
Compiler languages, 5
Conditional Assembly pseudo-operation. 6,22
Constants 12
Control Dictionary listing 44
Control Dictionary pseudo-operation 6, 24
CONTRL 25
Created Symbols 38
Cross-reference Dictionary listing. 45
Data generation pseudo-operation. 6,15
Data item 17
DEC . . . 16
Dccimal data items. o 11

INtEgers 11,12

literals 12
Defined symbol 9
Defining a macro-operation 34
DETAIL 28
Disk and drum orders. 42
DUP . 18
DUP with macro-operations 37
EJECT e 28
Elements 10
END 30
ENDM . 33
ENDOQ oo 21
ENTRY 26
EQU oo 19
Error checking 13
Error Message listing. 46
ETC . 30
EVEN 19
Exponent part 11,12

evaluation of
rules for forming

External symbols

File Description pscudo-operations. 6, 26
Fixed-point numbers
Floating-point numbers
exponent part
principal part

Immediate symbols

Indirect addressing
Instruction assembly . e
Internal 7040 Charactcr Code

(9-Code) MAP
IOCS Operations

Irrelevant subfields

.. 27
Linking partial subfields. 35
... 29
LlSt Control pseudo-operations

theral Positioning pseudo-operations.. 6, 21
............ 12

Load address

Location counter
Location Counter pscudo-operations
Location symbols

Machine language
Machine operations

Macro-Definition
heading card
pseudo-operations

Macro-instructions

Macro-operation(s)

qualification within
Macro-related pseudo-operations
MAP Internal 7040 Character

Code (9-Code)
MAP pseudo-operations

Miscellaneous pseudo-operations

Nested macro-operations

Index

C28-6335-2

NULL .. 30
Null subfield 7
Object program 5
OCT .. e 15
Octal literals 12,13
OPD ... 22
Operation Definition pseudo-operations. 6, 22
Operation field 7
Operators 10
OPSYN ... 23
Ordinary symbols
assignedsymbols 9
location symbols 9
system symbols 9
virtwal symbols 9
ORG ... 15
ORGCRS 39
PCC ... 27
PMC . 28
Prefix codes 42
Principal part 11,12
Program Section pseudo-operations.................... 6, 20
Prototype card images. 32, 33
Pseudo-instruction, 14
Pseudo-operations L 5,14
Conditional Assembly
IFE 22
IFT 22
Control Dictionary
CONTRL 25
ENTRY 26
EXTERN 26
File Description
FILE 26
LABEL 27
Data Generation
BCL ... 16
DEC ... 16
DUP ... 18
OCT 15
VFD DA 17
Operation Definition
OPD .. . 22,
OPSYN . . 23
List Control
DETAIL 28
EJECT ... 28
INDEX 29
LIST 29
PCC 27
PMC 28
SPACE 28
Literal Positioning
LITORG i . 22
LORG 21
TITLE 28
TTL . 28
UNLIST 29
Location Counter
BEGIN . .. 14
ORG 15
USE .. 14
Macro-Definition
ENDM 33
MACRO 32
Macro-Related
IRP 38
Created Symbols
NOCRS 39
B

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

ORGCRS ... 39
Miscellancous
ABS 30
END 30
ETC ... 30
FUL 29
NULL 30
REM . 30
TCD .. 30
Program Section
ENDQ ... oo 20
UAL 20
Storage Allocation
BES ... 18
BSS 18
EVEN . 19
Subroutine
CALL 23
RETURN 24
SAVE 24
Symbol Definition
BOOL 20
EQU . 19
MAX 19
MIN . 20
SET 20
SYN 19
Punctuation (special) characters. 32
QUAL . 20
Relative addressing, 11
Relevant subficlds 7
RELMOD assembly 6
Relocate 6
REM 30
Remarks cards 8
RETURN 24
SAVE ... 24
Separation character 17
Sequence checking
rulesfor 13
Sequence field .- 7
SET . 20
Source language 5
Source program 5
SPACE .. 28
Special operations 42
Storage Allocation pseudo-operations 6,18
Subficlds 7
Subroutine pseudo-operations 6, 23
Substitutable arguments 32
Symbol 9
Symbol Definition pseudo-operations. 6,19
SYN 19
System macro 42
Systemsymbols 9
TCD .. 30
Terminating card 32
Terms 10
Text .. . 32
TITLE 28
TTL . 28
Type letter 17
UNLIST 29
USE . 14
Variable field 7
VED ... 17
Virtual symbols 9
external symbols, . 9

‘V'S'N Ul pasuugd

¢-SE£€9-82D

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48

