File No. 7040-36
Form C28-6339-4

L M Systems Reference Library

IBM 7040/ 7044 Operating System (16/32K)

Systems Programmer's Guide

This publication contains information useful to systems program-
mers who require a thorough understanding of the sy 7040/7044
Operating System, Program Number 7040-PR-150. This system
consists of the following:

(#7040-SV-951)
(#7040-10-952)

(#7040-SM-953)
(#7040-UT-975)

System Monitor

Input/ Output Control System
Generalized Sorting System
Monitored Utility Programs

Processor (#7040-PR-954)
Monitor (#7040-SV-811)
Loader (#7040-SV-812)
Library (#7040-LM-813)
Macro Assembly Program (#7040-SP-814)

FORTRAN 1V Compiler

COBOL Compiler

Debugging Processor
Update Program

(#7040-FO-815)
(#7040-CB-816)
(#7040-TA-817)
(#7040-UT-955)

The publication includes descriptions of the format of the Sys-
tem Library, the system assembly parameters, the System Editor
control cards used for system maintenance, and the contents of
the Nucleus. It also contains detailed descriptions of the Processor
components. :

Separate publications describe the MAP, FORTRAN 1v, CcoBOL, and
Debugging languages, the Input/Output Control System, and the
Generalized Sorting System. Other related publications contain
information needed by applications programmers, instructions for
machine operators, and information on the contents of the Sub-
routine Library, which is a Processor component.

Nore: The M 1302 Disk Storage Unit is now designated the
M 2302 Disk Storage Unit; there has been no change in the unit
itself, in the applications for which the unit may be used, or in the
programming parameters used to specify those applications. Refer-
ences in this publication to 1M 1302 Disk Storage Units should be
understood to be references to the M 2302 Disk Storage Units.

Preface

This publication contains editing instructions and
descriptive information useful to systems programmers
who require a thorough understanding of the mBM
7040/7044 Operating System. It includes descriptions
of the format of the System Library, the system assem-
bly parameters, the System Editor control cards, and
the contents of the Nucleus. It also includes detailed
descriptions of the Processor components.

" It is recommended that one person at each installa-
tion be assigned the responsibility of authorizing and
documenting all changes made to the 1M 7040/7044
Operating System at the installation. This ensures ade-
quate control over the contents of the System Library.
This person and his assistants are the systems program-
mers for whom this publication is written.

The machine requirements of the M 7040/7044
Operating System are given in the publication IBM '
7040/7044 Operating System (16/32K): Programmer’s
Guide, Form C28-6318.

It is assumed that the reader of this publication is
familiar with the contents of the following 1M
publications:

IBM 7040/7044 Principles of Operation, Form
- A22-6649

IBM 7040/7044 System Summary, Form A28-6289

IBM 7040/7044 Operating System (16/32K): Pro-
grammer’s Guide, Form C28-6318 A

Major Revision (October 1965)

This publication, Form C28-6339-4, supersedes Form C28-6339-3 and tech-
nical newsletters N28-0520-0, N28-0525-0, and N28-0529-0. Significant
changes are indicated by a dot (®) to the left of the heading on the Con-
tents page. :

Copies of this and other 1M publications can be obtained through 1M Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D39, 1271 Avenue of the Americas, New York, N.Y. 10020

© 1963 by International Business Machines Corporation

Replacerent Using Symbolic Edltmg

Contents

System llbrury B e e T i A e -5 . System Monitor L PR SR ¢
. FORMAT:. ceea e e . B THE NUCLEUS oo n L s T CITRRETER L., 36
STRUCTURE 6 ® Words Allocated for Machine Use T R B Li0. e 36
TaBLE oF. CONTENTS 6 Trap Words e L . 36
INDEX ... e s s el D 2+ 7 - Engineering Words RS A R L 36
SYsTEM PROGRAMS EERE s et siane e s T Toad Area 36
. . . R System Transfer Wordsooii i 37
System Assembly Lo ..o09 System Data Areas B R S 380
AsSEMBLY PARAMETERS e S R A CO"{StantS* T RIS e e 38
Machine Conﬁguratlon R BT s SRR o 9 - Variable Data e T e e 38
Input/Output Device Assxgnment ,,,,, o100 Symbolic Units Table v . 42
Input/Output Unit Availability:. L...0.. ... 11 - Control Blocks e 43
Assembly Options0........... RRSPERC T ORAN B B Other Tables B e R e e s 43
System Editor Assembly Options ...+ R I Nﬂdeu? Routines It I R : : :
Subroutine Library Assembly Optlons Eelh EREI A 14~ System Loader-.......... L R e R R AL R S
@ Other Assembly Options:.... Sl 15 . Operator Interrupt Test L 4
. InmriavL Eprming INSTRUCTIONS % .00 0. 0oL, i 1B Dump Routine e
Initial System Unit Requirements 50070 00 I %Ysttem II:’IOI:“O’ Recall .Routme SRR R :ii
Preparirig the Backup Library D S 15 eturn houtmme ... e R -
~Maintaining the Symbolic Master File i, .00 0. 16 Restart Routine RES SRR coo: 45
. e Installation Accounting Routine 0.0 oo i BN - 45
. : ‘ T Change Communication Begmn Routme SR A |1
System Editor ... SRR AR S SUPERVISOR:ot i i, AU SEELY .45
Systep EDITOR CoMEONENTS e IMMON Routinecccovoeomonn. ESS 45
Bditor Montfor ;% it i oo e : IMAST Routine L s
JOpUE IMSYS Routinec...cc...........io..... 45
EdIl’t};);sPr(l)gram A S ki 5 et S 1 - IMSRT Routine s TR R Ve ig ‘
el s sy s e o 190 IMEXE Routine ...l R e
Phase 20.ivaionii Vs e 200 "INJOB Routineoooeeeenn.. S T 48
pxternal Ifggig%f;g; Requirements i 21 IMRCD Routine G T e
Oy TR TR Routine LR S 48
.zEBI\JEDD}::rDICrI‘aIdcard " IMPASBOutine :
Eprror PARAMETER CARDS IMUQL Routine
CALLS Card ‘ : G B yine .. ,
O Ca'dc“ci“"-“‘f’“'-->~'*-': : : IMDLY Routine R R 47
REPLACE Gard” S B IMSW Roudne e
........ : outine : LA)
L fad o SEREERALE S ' IMDET Routinec...loco.. ... 47
AR ot or S R g ke e IMCLO Routine Sl 4T
DUP Card - Ty g IMRES Routine Vi L 48
REMARE. Gand i A R R R IMTIF Routine e aE L 48
REWIND Gard e _ IMPUN Routine RN il 48
LIBE Card o s e e IMLIS Routine A G NS 48
LIBEND Card 00007 R R & A IMUNL Routine . . . T R R 48
L A IMOID Routine - . .- : i
SING TH(]i: ysTEM EprTor IMPAU Routine . :
OCT Card 0. i il alt
Preparation of Programs to be Edited " iﬁ%}‘so RI((,?;S]?
Symbolic- Unit Assignment s , IMTIM Routi
Examples of Edit Runs00..... .00 00 00 S TORST R outine
Edit Run for Di ; . Q outine e
Inserting @ Program’into the Librar IORSC. Routine G
’ g & Program fnto the Library . IMUNI Koutine

@ Modification Using Symbolic Editing ‘Isl\égllglIARRo;tme S T R R ig
Inserting a Relocatable Subroutine IMBDC. Ru DO e ! TlETAIzn sl L

o outine e T et e .. 49

Adjustments After Reassemblmg the Nucleus .. . I IMOPN Routi i o SRR 49
Inserting a Source Language Subroutine I /0 v Cn O o SysTEM. R DRERE L

® Inserting a New Subroutine Library Corr 32 NeuT/OuTtPUT CONTROL YSTEM [50

Inserting a Chain Program Lo 30 @DUME PROGRAM:........... ... e, 80

Special Considerations L e e U 32) . , .)

. INTERFACE WITH THE PROCESSOR SN ~. 38 PI'OCGSSOI‘ (IBJOB) [. 51
$JEDIT Card00........0.... 83 ' PROCESSOR MONITOR Y |
Special Conditions.0......c........... 833 Operation P T P 51

@ Eprror PROGRAM OFF-LINE MESSAGES 33 Routines .- T, O A T S e 51

21 :%‘;Processor Flles e B T S 54

System Input File il 54
System Qutput File P 55
System Punch File v o
Alternate System Input File oo
Alternate System Output File Tt P
System Load File U S A
System Edit File e SN
System Copy and Reload File. i .
Processor File Maintenance

~Utility Files . ..o on . e e e e

Labelso i i e

. Compiler and Assembler Work Umts
. Available Work* Umts

Loader (IBLDR) T, 59

‘A Brier DESCRIPTION OF THE LOADER OPERATION‘ Creeln.. B9

DESCRIPTION OF THE-PrROGRAM DECK
BCD Card Format
- Binary Card Format
Binary Control Dxctlonary
Relocatable Binary Program Text
STORAGE ALLOCATION
ReLoAD PROGRAM

Forthatof Inputoo o e e i
Operation, il i e e e s
Macro Assembly Program. i BT
A Brier DISCUSSION :OF THE ASSEMBLY PROCESS 67
Phase A ... e e 68
TInterface e e 68
Dictionary Reduction ciiiiiiheseies 69
Phase B ... @i e 69
Cross Reference Dictionary e eiwia .. 69
ErrorEditor - SO)
The FORTRAN Compller R L i 70
A Brigr. DEscripTioN oF THE FORTRAN COMPILER ., 70 -
Definitions i 70
Scan R TR B I 70 -
Storage Allocator, PR 70
_ Arithmetic and. Logical Translator. e T
- Indexing Analyzer0....... PR e TT
Instruction Generator and Index Generator, ., 7L
- FORTRAN System Routines e G ST
Format Conversion Routines &

Machine-Oriented Subroutines Iy
System Communications Subroutines -
FORTRAN File Routines ‘

FORTRAN Routine Storage Requirements 75.
Subroutine Error Exits e 76
Input/Output Subroutine Error Exits................. 76
Convert Subroutine Error Exits. B N 76
Machine-Oriented - Subroutme Error Exits.oo...... 76-

The COBOL Compller
Phase I, Language Reduction
Phase II, Syntax Analysis 0 .o loiie.
Phase III, Data Reduction.0 .. . 0 .o.oiiooin. ..
Phase IV, Procedure Generation.
Special Operands B S RS S
Subscript Symbols

Intermediate Results
Processor Limitations i in e 82
Input/OQutput Unit Allocation e 83
Phase I, Part 1 — Initial Edit.0.o. 83
. ‘Phase I, Part 2 — Quallﬁcatlon Reduction.. 83
Phase II, Part 1 — Syntax Analysis. 83
_Phase I, Part 2 — Table Processing. .. Z........0...... 83

" Phase I1I'— Data Reduction

-~ Phase IV — Procedure Generation
- Files'Assigned to System Units. TR
System Input Unit e RPN 84 -

System Output Unit oL e oo, 84
System Peripheral Punch Unit.. ... L i ceeeil. 84
COBOL Library Subroutines) : il
MOVPAK Routine - PRI 85
. Compare Subroutine '
@ Display Subroutine:
Examine Subroutine
Add Subroutine e e e
Subtract Subroutine
Multiply Subroutine
Divide Subroutine e i e e
Exponentiation Subroutine 0 .o i 89
Round or Truncate-Subroutine . . ’
Scale Subroutine il d
IF Alphabetic Subroutine ;.

IF Numeric Subroutine I e, 90

- Subroutine lerury SR S e R L 91
FORMAT .. it e e 91
® Debugging Processor o RS AT 93
Preprocessor i ..ot o soen . 98
Debug Assembly Parameters0.0.0.... 94
Format of the DDICT000. . LT e, 94
Object-Time Routineso oo i, 95
POSEPIOCESSOT .. ot ve et e e s T 95

Appendlx A. System Input and Output Ednors . 96
Input Editor
Output Editor

Appendix B. 7040/7044 — 1401 Auxnllury
Programs 00 ol ... 98

REASSEMBLY OF THE 7040/7044 — 1401
AUXILIARY PROGRAMS

 AUXILIARY PROGRAMS S ... 98
Input/Qutput Utility Program i e ..., 98
MAP Symbolic‘Up'date Program R S AR ... 98
Apperwhx c. Symbolic Unit Asslgnmeni : -
Subroutines i 99
S.SCHI Subroutine0.... B 99

® S.SCOD.Subroutine R R P 99
S.SCHL Subroutine PRI S 100
S.SVUN Subroutine o 0 0 G 101
SSLDSSubroutme.‘.....‘.....t 101
Appendix D. Processing the $CHANNEI. Card S
(IMCHA Routine).o Ui ..., 102
Index e e e e e T e 104

The »mu:- 7040/ 7044"Operating System consists:of a col-

lection of monitors, processors; and installation pro-
grams, which are organized into a System Library on
an external storage ‘medium. The: System Library is
composed of absolute programs.and relocatable sub-
routines. Ini: the distributed version;, ‘subroutines ‘and

tables are organized into the Subroutine Library -
(1BLIB), which is loaded by the Loader (IBLDR) used-

for relocatable oblect programs. The System Loader
(s:SLDR), Wthl’l is an absolute loader in the Nucleus,

obtains system phases (for processing compllatlons ,

assembhes sorts, etc.) from the System Library.

' The System Library is generated by the: System Edl-
tor on-one or two system umts

Format

Every: Systern Lrbrary generated by the System Edrtor
is composed of absolute core storage loads; or phases.
A phase of an edited program is composed of one or

more physical records; or blocks, each chained to the -

next for loading by the System Loader. This chaining

permits phases to be scatter-loaded into -core storage

if necessary.

The blocks of a phase appear in a System lerary in
ascending order according to their load addresses. The
records are ordered and chained in this way to mini-

mize searching time during later modification to any

part of the phase. A simple matching process between
the records in the library and the alteration records is

followed. Ordermg and charmng blocks may also resultf
in longer blocks: for those programs that contam many’

overlaid portrons

The blocks are‘ ‘hamed to each other by a word ap-e
word of each block. This additional
: € any portlon of the program already:
loaded to be lost as the System Loader saves and re-.

pended to the l

stores the locatlons S0 over aid.

The chain word contams the load address and the

word count of the next:block With this information,
the System Loader can locate and save the word that is

about to be overlaid by the followmg chain word. Bit -
2 of the preﬁx of a chain word is-set on when the next-
record contains a fill word A fill word is appended to
any absolute record that is only one word in lengthr

, System Library

since all blocks must be a minimum of three words. The
chain word of the last record of the phase differs from
the chain words of the other records in that phase: its
sign is minus, it has a word count of zero, and it con-

tains the address of the entry point to the phase.

The System Loader finds the load address and word

. count of the ﬁrst block m the Table of Contents

The first block in each phase is preﬁxed by a one-
word Bcp name that is used to verify loading of the
System Library and to facilitate editing. This Bcp phase

- name of six or fewer left-justified characters is prefixed
- -to the block during editing fromthe phase name ap-
_pearing on the INsERT card, or it is taken from the first

word of pup input records. The addition of this prefix
word does not cause the locatlon below the load point

~ of the record to be lost, since the System Loader saves

and restores that location.

This type of System Libfary format permits use of a
7040/7044 Data Processing System with limited core -
storage to edit a library for a computer with a greater
capacity. More dependable loading of the-system
phases can be expected with shorter records and pre-
determined input/output command -words. Scatter-
reading must be simulated for those programs not
assembled in contiguous order, .

Figure 1 illustrates the absolute format of a program
phase in the System lerary The symbols used in that
ﬁgure are defined as follows:
name e . B :
BCD phase name used to de31gnate the core: storage load;
for example, F TCl, MAP1

addrn) : ‘
Load address of the next block" e

numn
Number of words in the next block

entry : N
Entry pomt for the core storage load

" The extent of a phase is determlned by the mput to
the assembler and the Loader, and by the size of core
storage; it is not influenced by the length of a block.

The length of a block is detérmined by the length of

the Editor’s. buffer by the maximum length of a physi-

~ cal record on an external storage medium, or by the

block size specified by the user on the SIBEDT card,
whlchever is the smallest...

System Library' 5

“Block 17 | a1 name

PZE. addr2, , num2

-Block 2

 PZE addi3,, num3
Any number
of blocks T =
B!ock n—1 N B e
CPZE 's):d:cirn,', nhmh 1
7 Block n

le\ZE . entry

Figure 1. System Library Format ‘

Structure

The minimum System lerary generated by the" Sys-

tem Editor has the followmg as 1ts ﬁrst six phases
IBOOT -
Dewce-orlented Bootstrap routine

IBNUC | : ERE TN
The ‘system commumcatlon and data words the ‘Nucleus
routines, and a portion of TOCS (IOEX and IOOPI)

- IBSUP

The combined. momtors, that is, the dependent llnks under

IBSUP: IBJOB, which 1ncludes IBEDT and MONITO, whlch
mcludes IMSRT - ./

" IBTOC :)
The Index-and Table of Contents for the System lerary

'IBDMP1 .
Phase.1 of the Dump program :

I1BIOC
I00P2, IOLS, and IOBS

In addition, the followmg phases are reqmred for
system operation: : %

IBDMP2 . -
Phase 2 of the Dump program B i s ’
IBDMP3 S R e
Phase 3 of the Dump program™ : S e
- A map of the,contents of the System Library can be

“obtained during an edit run, using the System ‘Editor.

Since the 1BooT phase that is edited into“the System

Library depends- on the type of device that is’ being
used to produce the new library; several forms ‘of ooT

6

are contained within the System Editor. The distribu-
ted version of the System Editor includes 1sooT pro-

- grams for magnetic tape and for disk and drum storage.

" The oot and 1BNUC phases must be located on

* s.suB1. The other system phases may be on either
" 's.SLB1 or s.sLB2, but all the blocks that make up a single

phase must be ‘on the same library unit. The 1BooT,
IBNUC, IBSUP, IBTOC, and 1BIOC are loaded at initial
start. Pressing 1L.OAD brings in an 1800T routine, which
loads the Nucleus, including 10Ex and 100pP1 with select
and: error recovery routines for s.sLBi. Control is then
transferred to the housekeeping routine of the Nucleus.

“The decrement and address- of the first word in the
Systéem lerary contain the version number and the
modlﬁcatlon number, respectively, of the ‘system cur-
rently in operation. These numbers are loaded into

~octal location 100, and control is transferred to octal

location 101. The housekeeping routine later moves the
contents of octal location 100 to locatlon S.SLVL.

The housekeeping routine transmits thie trap wdrds
to lower core storage, overlaying the Bootstrap routine.
The second section of the housekeeping routine sorts
the system control blocks into ascending order, and the
third section attaches the input/output devices, accord-
ing to the specifications used in assembling the Nucleus.
After initializing the Nucleus, the housekeeping routine

* transfers control to s.sreT, and the System Loader loads

the combined monitors and: the higher levels of rocs;
permanently overlaying the housekeeping routine.

During operation of the System, the Supervisor, the
Table of Contents, and’the Input/OQutput Control Sys-
tem phases (1Bsup, mTOC, and IBIOC) are brought into
core. storage when required. .. :

Table of Contenfs .

The System Loader can: pre-posmon the devices as-
signed as system hbrary units so that they are correctly

- positioned when the System Loader is called to provide

the next phase of a system program. This facﬂlty is par-
tlcularly valuable when the System Library is distribu-
ted over more than one external storage device or when
several system components share a common phase. The
use of portions of the Macro Assembly Program by both -
the cosoL and FORTRAN compllers is an example of the
latter.

“ To-pre- posmon devwes the System Loader refers to
the Abbreviated Table - of Contents in the Nucleus,

“which indicates the phases that compose the pertlnent‘

section of the System Library. As each phase of a sys-
tem program is called to be executed, the System
Loader checks the Abbreviated Table of Contents be-

fore loading and transferring control to the phase.

The Abbreviated Table of Contents is set up by each -
subsystem monitor from $ections of the Table of Con--
tents in the 1BTOC logical record. The System Monitor
sets up. the Abbreviated Table of Contents for pro- -
grams that are executed by a sexmcure card. The
Loader, the Reload Program and the Restart Program

create the Abbreviated Table of Contents for object
programs. :

‘An entry in the Table of Contents consists of three ,

~words; there is one entry for each phase of every sys-
tem component edited into the System Library. Thus,

a system component of n phases has n entries in the

Table of Contents. These entries are arranged in ‘the
table in a sequence that reflects the logical flow of the
component from phase to phase. The order of the
entries is specified on the caLLs card. (For a description

of the caLrs card see the section “Editor Parameter ,

Cards ”)

Among the entries for a particular system component,

there may be entries for some phases used in'common
- with other system components. For example, some

phases of the Macro Assembly Program are used for

compiler input. Entries of this type are included if the

names of the common phases appear on the carLs card -

‘defining the logical flow for the system component.

‘The information in each Table of Contents entry is

used to locate a particular logical record in the System
Library. To position the system library unit; the unit
number and the block number of the first block of the
phase are given. To load the phase into core storage,

the load address and the word count of the first blockj

are provided.

The first three words of the Table of Contents are
- shown in Figure 2. In the figure, loc is the location
of the first word of the Index or Table of Contents, and

length is the number of words in the Index or Table of .

Contents.

shown in Figure 3. The symbols used in that figure are
defined as follows:

pfx - k :
A prefix describing the unit on which the _phase reSIdes, as
follows:

PZE = Library unit; an entry created by the System Editor,

MZE . Utility umt ‘an entry created by other programs to
use the System Loader to load a phase in library for-
mat from a utility unit. (Entries of this type do not
-appear in -the Table of Contents; but can be placed
in the Abbrev1ated “Table of Contents.) :

pfn

prefix is either 1 or 2; for a utility unit, 0 through 7, If the prefix
is 0, the unit number is in the decrement

lognam -
The BCD phase name.

la

Load4a<4iﬂdrfess, ef the first block
wdct e
Number of words in the ﬁrst block

recno

Record number of the first block. The record number of ﬂle
first block of the System Library is zero.

res
Reserved for use by the Editor.

unit :
Unit number (0-99) if pfn is Zero, otherwise reserved for

use by the Edltor
Word 1 BCI 1,IBTOC
Word 2 PZE ~loc, , length of Index)
Word 3. ° PZE = loc, , length of Table of Contents

The format of an entry in the Table of Contents is

A preﬁx contammg the unlt number For a hbrary unit, the

Figure 2. The First Three Words of the Table of Contents

"Word1' . BCI 1,lognam
Word 2 - pfx la, res, wdct
Word 3. pfn recno, , unit

Figure 3. Format of an Entry in the Table of Contents

~Word 1 BCI
Word 2 PZE

1, sysnam
reladd, ; count

- Figure 4. Format of an Entry in the Index’

' Inder(

The Index is provided to aid a monitor in finding the
pertinent entries in the Table: of Contents It contains
a two-word entry for each system ‘component, as
shown ‘in Figure 4. Word 1 contains the Bcp name of
the system component. This is usually the name used‘
on the card that causes control to be passed to a par-
ticular program, such as 1Br1C for the FORTRAN Com-

- piler, The address of Word 2 contains the location,

relative to the beginning of the Table of Contents, of
the first word of the entries for the system component. -
The decrement of Word 2 contains the total number of
words occupied by the entries for the system

_component:

System Programs

Following the 1BTOG phase are the phases of systems
edited into the System Library, as well as any sub-
routine libraries, such as 1BLIB, generated by the Sys-
tem Editor. The sequence of programs in the Library,
the posmon of the end-of- file trailer’ label, and the

System Library = 7 ’

distribution of the System Library between the library
units are controlled by parameters that are supplied as

input to the System Editor. For example, Phases land
2 of the Editor program can ‘be located anywhere in the\

-System Library.

If the System Library resides on ‘one unit, the last
record on the unit is the 120-character end-of-file
(1EOF) trailer label. If the library is distributed between
two-units, the end-of-reel (1EOR) traxler label is the last
record on the prlmary unit. :

The Nucleus of the IBM 7040/7044 Operatmg System
is assembled using the distributed -version .of the

Nucleus and the Macro Assembly Program. This as-
sembly is divided into two core storage loads or phases B

that are delimited by a Tcp pseudo-operation in the
MAP symbolic deck. This deck contains all of the
installation options that determine the contents of the
Nucleus.

All other system parts are assembled in relocatablel

form. Their absolute locations are determined by the
Loader (IBLDR) after the Nucleus is estabhshed

Assembly Parameters

The options that permit an installation systems pro-
grammer to specify much of the content of the Nucleus
during assembly of the system _are descnbed in the
following paragraphs.

Machine Configuration o
It is-necessary to define the, conﬁguratlon of the 7040/
7044 Data Processing System for which the Operatmg

System is being used, so that the proper amount of core

storage can be allotted for unit control blocks and Sys-

tem control blocks. The MaP symbolic statements used

to define the number of input/output devices present

on each channel are shown in Figure 5. Each of these -

definitions must be mcluded in the symbollc input deck
for the Nucleus, ‘even if its variable field is Zero:
The letters xyz denote the number of devices attached

to 1414 Input/Output Synchronizer interfaces, num-

bered 1, 2, and 3, respectively. The number of devices

that may be attached to an mterface is llmlted ast

follows: -
0 or L for DTUA PTRA PRTA, RPUA
0, 1, or 2 for RiuA -
0,1,2 0r3for'1'T1A TTOA
The letter p is ei
absence of the device. The lettern may be any decimal

number from 0 through 10, and g may be any digit from
0 through 6. Disk modules are defined as being present

or absent by using 1 or 0, respectively. Thus, modules

-0 through 4 are de
represented as abcde. The series fghn‘represents the

definition of modules’ 5through 9:

Space is reserved in the Nucleus for control blocks

for each device in the 7040/7044 Data Proeessmg Sys- ‘

tem, according to the following rules:
1. Nine words for each unit control bloek;

2. F our words for each system control block forc .

- System Assembly.

er 1 or 0, indicating the presence or

‘by a series of five digits, here

Symbol Code Variable Remark
CTNAC O SET xyz INPUT TELEGRAPH UNITS ON
e - 'CHAN'A .
- TTOA -~ SET: ~ xyz OUTPUT TELEGRAPH UNITS ON.-
ORI . CHANA . .
_DTUA _ SET xyz - DATA TRANSMISSION UNITS ON
R ~ CHANA
CRIVA " USET xyz REMOTE INQUIRY UNITS ON
BRI N “CHAN A~
‘PTRA = SET . ‘xyz* {PAPER TAPE.READERS ON CHAN A
PRTA . SET xyz . :PRINTERS ON CHAN A
RPUA SET xyz READER/PUNCHES ON CHAN A
TAPA - SET n - TAPES ON CHAN A
PRTS . - SET P PRINTER ON ON-LINE 1401
RPUS SET P READER/PUNCH ON 1401
TAPS: SET q ... TAPES ON ON-LINE 1401
TAPB SET. . n TAPES ON CHAN B
| DF1B. - SET abcde . © DISK ACCESS 0, MODULES 0-4
DF2B .- _SET . fghij ‘DISK ACCESS 0, MODULES 5.9 -
DF38 SET abcde DISK ACCESS 1, MODULES 0-4
DF4B = SET fghij " DISK ACCESS 1, MODULES 59
“DDIB- USET p " “DIRECT DATA cormecnon ON
Chmmese o _CHAN B -
BMXB . - SET P COMMUNICATION CONTROL
- ‘ _ /SYSTEM ON CHAN B
TAPC SET n . TAPES ON CHAN C ,
DFIC SET abede DISK ACCESS 0, MODULES 0-4
‘DF2C. SET - fghii * "DISK ACCESS 0, MODULES 5-9
DF3C | ° ~SET - abcde - ~'DISK'ACCESS 1, MODULES 0-4
DF4C SET fghij DISK ACCESS 1, MODULES 5-9-
.. DIRECT DATA CONNECTION ON

DDIC . SET- [
B . CHANC v
BMXC ~ SET p . COMMUNICATION CONTROL
Sk T " 'SYSTEM ON’'CHAN C

TAPD - SET" n

* TAPES ON CHAN'D -
“DFID" ' “SET- ' abcde - ¢ DISK ACCESS 0, MODULES 0-4
DF2D - SET fghij - - DISK ACCESS 0, MODULES 5-9
DF3D - SET . abede " DISK ACCESS 1, MODULES 0:4
DF4D - " SET:. - fghij .. . DISK ACCESS 1, MODULES 5-9
. DDID SET P “DIRECT DATA CONNECTION ON

CHAN D
COMMUNICATION CONTROL
. SYSTEM ON CHAN D
. TAPES ON CHAN E

BMXD. SET. p

TAPE SET . n

| DFIE SET abede DISK ACCESS 0, MODULES 0-4
“DF2E- * SET . fghii - DISK ACCESS 0, MODULES 5.9
DF3E SET abcde DISK ACCESS 1; ‘MODULES 0-4'
DF4E SET fghij DISK ACCESS 1, MODULES 5-9
DDIE . SET P “DIRECT DATA CONNECTION ON
i “ CHAN E
BMXE SET P COMMUNICATION CONTROL

SYSTEM ON CHAN E
Note: The sefting of a Direct Dutu parameter allocates nine words

for @ unit control block.

Figure5. Symbolic Deﬁnitiongof ‘the Machine Configuration

System Assembly -9

magnetic tapé units, unit record equipment, telccom—
munications: devices attached through Model 1v or v
of the 1414 Input/Output Synchronizer, and 7740
Communication Control System input devices.

3. Eight words for each system control block for
disk and drum storage units and 7740 Commumcatlon
Control System output devices. :

Each card reader/punch, 1009 Data ,Transmlssmn
Unit, 1014 Remote Inquiry Unit, 7740 Communication
Control System, and telegraph unit is considered to be

two devices requiring two unit control blocks — one
for input, one for output.”A"disk or drum module is
treated as a device that requires one unit control
block. A device may require one or more system con-

trol blocks, depending on the logical unit assignments -

made with the ATracm: macro-mstructxon descrrbed
later in the text

o

Input/ Output Devnce Assugnmem

- All 1nput/ output devices and ‘each system unit must be:‘

defined at assembly time by an ATTACH mAacro-
instruction. This macro-instruction is used to construct
the Symbolic Units Table. If changes must be made in

this table, the ATTACH macro-instructions can be modi-
fied and the Nucleus reassembled, or the spETacH card

and the sartacu card can be used.

Care should be taken in the assignment of system"
utility units so that no. priority program will use a
utility unit specified for use by a system program or

an installation program.:

In general, each system unit should refer to a unique

physical unit. However, the. system checkpomt unit

(s.sck1) may be. the same physical unit as a system.

utility unit (s.suxx). Note that this may cause conflicts

in unit assignments during use of certain features of;
the Operating System (Sort, load-time debugging, the-

Chain feature; the Copy and Reload features).

- The format of the ATTACH macro- instruction ‘is as:

follows: ‘
8 ‘,418
" -ATTACH:-

[dlr][n[from, to]][%%éé%]

The arguments in the variable ﬁeld are separated byf

¢ommas. They arev

S.Sxxx .

This must be one of the following mnemonics: '

MNEMONIG SYSTEM FUNGTION
S.SLB1 Library 1
S.SLB2 Library 2
‘S.SIN1 Input 1
S.SIN2 Input 2
S§.SOU1. Output I
S$.S0U2 Output 2
S.SPP1 ~Punch 1

10

_treated as a device, “number,”

S.Sxxx, device, chan, number, type’

MNEMONIC SYSTEM FUNCTION
S.SPP2 Punch 2.
S.SCK1 Checkpoint
S.SU00 R Utility 00

S.SUOL Utility 01
S.SUnn . .U.tll.lt); nn '

devrce

ThlS may be any of the following symbols:

T ‘Magnetic tape

DT Data transmission unit
PT . Paper tape reader
BRI - Reimote inquiry unit
D Disk or drum'storage
RD ' Cardreader -
- PU.__ Card punch -
- PR Printer
TT Telegraph unit
BX - Communication control system:
chan s : :
Channel or channel A mterface to whreh the dev1ce is con-

“nected. It must be oné of the following characters, consistent

with device and system configuration: A, B, C, D, .E, S for the
appropriate channel; or in the case of dev1ces attached to chan-
nel A (other.than magnetic tape units), the appropriate 1, 2,
or 3 interface to which the device is attached. The letter S
indicates that the device is attached to channel A through an
on:line. 1401; For example, the 1403 Printer .can be attached
only to interface 1, 2, or 3, or to channel S.

The systems engineer should determine from the customer

“engincer the appropriate 1414 1/0 Synchromzer interface num-

ber to which the unit record equipment has been attached.
Generally, ‘when. unit record devices are attachied, - interface
numbers are assigned in the following manner: first device of a
type; ‘interface number 3; second device, 1nterface number 1;
third: device, interface number 2:

number i :

“This is the ‘device number. It nmust be one of the following
numbers, consistent with device; channel,-and system configura-
t10n01234567891011 12, 13, 14, .15, 16,
17, 18, 19, or 20, The numbers 0 through 9 are used for tape

) dev1ces, the némbers 1 through 10 are used for 1301 Disk. Stor-

age, 1302 Disk Storage, and 7320 Drum Storage, the nurnbers
11 through 20 are used for 1302 Disk Storage. :

The ‘device number may not be larger than the quantlty of
these’ devices defined as available on the channel; however, de-
vice numbers. 11 through 20 are treated in the same manmner as
device numbers 1 through 10. Since each access: mechanism is
for example, is a 1 for access 0
module 0, 10 for access 0 module 9, 11 for access 1 module 0,
ete. (see Figure 6). For ‘magnetic tape units, this digit de51g-
nates the number that is dialed on the tape umit. g
type

This must be one of the following equ1prnent type numbers
consistent with device, channel, and system configuration: 729,
1009, 1011,: 1014, 1301, 1302, 1402; 1403, 1622 7320, 7330,
7740, and telegraph.
dir) o =

One of the following symbols: I for an input unit, O for an
output tinit, or-blank for both. This option is required for de-

vices that - need separate-input and output unit- control blocks
(1009, 1014, 7740, and telegraph).

~ The following arguments are-omitted for sequentla]
access devices, such as. umt record equipment or. r.mag:-
netic tape units: .
n

This argument.is used to: spemfy the “method of using a
random access devrce such as disk storage, It is one of the

_ following:

R Random access. :
FT Full track with record addresses.
~CY Cylinder mode (optional feature).
x ' Single-record operation. The letter x represents the
" number (1-63) of records defined on one format
‘track.” .
from
This is the logical startmg point for the function within the
device. It is-the cylinder number of the first cylinder assigned
to the functlon 0-249 for disk storage; 0-9 for drum storage.

to
This is the logical ending point of the function within the
device. It is the number of the last cylinder assigned to the
function: 0-249 for disk storage; 0-9 for drum storage. This
argument must be supplied for functions for which a logical
starting point-is specified.
157 or'I58 : L
This is the permanent reservation code (71s or 72s) to be

appended to- the ‘device being attached. All preceding fields, -

if null, must be-indicated by commas. _

If a logical starting point and a logical ending point
are not specified for a random access device, the func-
tion is assumed to occupy the entire device. The argu-
ments used in the ATTACH macro-instruction ‘must
appear in the order presented

Access 0

module 0 1 20 3 4 5 6 7 8 9
number 1 2 3 4 5 6 7 8 9 10
Access 1 -)

module "0 1 2 3 4 5 6 7 8 9

number 11 12 13 14 15 16 17 18 19 20

Figure 6. Disk and Drum Device Numbers

After the Nucleus is initialized at an. initial start,
each entry in the Symbolic Units Table has the form:
- 1loe(ucb), , loc(scb) .

In this table, loc(ucb) is the location of several unit
control words describing the device and its status, and
loc(scb) is the location of several system control words
that further describe the symbolic unit. S.Sxxx is as de-
fined for the ATTACH macro-instruction.

An- explanatlon of the prefix, pfx, may be found
under “Symbolic Units Table.” The prefix should be

“set by object programs not using the 108s level of 10cs.
If a particular symbolic unit has no device attached to
it, the address and decrement of the appropriate entry
are set to zero and the symbolic unit may not be used.

If the parameters of an ATTACH macro-instruction
refer to a channel that has not been defined, the appro-
priate entry in the Symbolic Units Table is set to zero
and the corresponding symbolic unit may not be used.
The table entry is set at initial start when a SRESTORE
card is encountered or “when- $ATTA(‘H cards are
processed.

The following is an example of an ATTACH macro-
mstructmn

- 8.8xxx . pfx

8 16
ATTACH . S.SLB1,T,C,1,729

- IFRPM: - ~SET n

This card causes a 729 Magnetic Tape Unit with a
dial setting of 1 on channel C to be assigned as the pn-
mary system library unit.

Inpuf/ Output Unit ,AVaanbiIity

- Disk and drum units are considered available for use

under the variable unit selection techniques only if
their formats, as specified in the system control blocks,
match one of the allowable formats specified in the
ALLOW macro-instruction.

~ aLLow is punched in columns 8-12 of the aLrow
macro-instruction. The variable field starts in column
16. The arguments in the variable field are separated
by commas. They are:

-FORMAT : CODE (OCTAL) IN SYSTEM
TYPE i MEANING CONTROL BLOCK
R Random 20
SR Single record .21
. FT. - Fulltrack . 22.
- C1301 Cylinder 1301 23
C7320 Cylinder 7320 24
C1302° Cylmdei’"l302 25

If an installation does not wish to have disk or drum
units of any format type chosen as available units, an
ALLOW macro-lnstructlon with a blank variable field
must be used.

-The following is an example of an ALLOW macro-
mstructlon ’ '

8 16
ALLOW FT

ThlS macro-instruction will cause the selection of
only those disk and drum units that are attached as
full track.

Assembly Options

The following parameters allow the system program-
mer to specify the conditions that apply at his installa-
tion. The values given for n are the equlvalences in
the d1str1buted version of the system;

SYMBOL
"IBNUC

! CODE
BOOL

VARIABLE
‘n=135

DESCRIPTION

The octal number n is the
location of the first system
transfer word, S.SLDR.
The octal number is the
greater of the following:

- 1. The location of the
first word available to ob-
ject programs if ‘the value °
of S.SORG is greater than
IPIND: (the limit of the low-
est level of IOCS).

2. The end of protected
o storage.

n=37777 The octal number n is the
o location of the last word
available to the system.
If the system is to be stor-
age protected, n is 1; other-
wise, n is 0.
If the interval timer may
be used by the system, n
is 1; otherwise, n is 0.

S.SORG = BOOL - n=3000

S.SEND * BOOL

Il
=

IFCLK ~ SET .n=0

; System Assembly 11

SYMBOL
MXCLK

IBPER

RDNRT

RUPSW

CYLMO

IFSHF

LABELS

LABSW

EOMTR -

12

CODE
EQU

EQU

EQU

SET

SET

SET

EQU

AE:QU

VARIABLE

n=3

n=100

=]
Il
p—

 n=6

n=4

DESCRIPT;ON B

The decimal number n' is
:the ‘maximum: number - of

minutes that a]ob may run

- if a $TIME card is not used.
" This is not s1gmﬁcant un-

less JFCLK is- 1.

The decimal numbér n s

the percentage of redun-
dancies that, ‘if exceeded,
causes .an on-line: ‘message
to-be typed when a $STOP

 card is read. It may range

from ‘0 through 1,000 in
tenths of a percent. - - -
The - decimal number n is

the number . of ‘times the;

input/output operation will
be repeated in attempts to
recover from redundancy
erTors.

The decimal number n, 1-6,
is the sense switch to be

" ‘used for operator interrup-

tion of a stack of jobs,
This option indicates -
‘whether the cylinder mode

is present on the 7631 file
control for the 1301 disk,

1302 disk or 7320 drum as1

follows:
‘0—The cylinder mode is
not present.
1—The cylmder mode is

~ present.

This option indicates
whether a 7631 file control
is shared with another host
computer.

0 —File control is not

shared
1 — File control is shared

. This option specifies the

use that an installation
makes of labeled storage
media.as follows:

~ 0—The IOLS. creation
- and verification routines do
not appear on the System
:Library. :

1-The IOLS creatlon
and verification routines ap-

~pear on the System Li-

brary, but they are not used

to verify the retention dates

of output reels.
2—The - IOLS

creation

and verification routines ap-

pear on the System Li-

‘brary and must be used to

verify the retention dates
of output reels.

The IOLS reel-handling
routines are not affected by

" this parameter.

The - decimal number n' is
the sense switch tested by
I0LS.

This option' is used - when a
disk or drum storagearea
is assigned as a symbolic

SYMBOL

| IBLTZ

IBRTZ

IBRSL

IFSNS

IFCHO.

IFLSC

IF162

CPRPU

IFURA .

CODE

SET

SET

SET

" SET

EQU

SET

VARIABLE

" DESCRIPTION

unit. The decimal number

n is the number of tracks

that should remain unused
on the unit at the time the
end-of-medium return is -
taken

The decunal number n is

the number of entries in the
Abbreviated Table of Con-
tents.

The decimal number n is

. the. number of “entries in

the . Recognizable - Control
Card Table, S.SRCC.

The decimal number n speci-

" fies the number of priority
_ levels (1-8) that determine

whether a routine can be
interrupted to permit exe-
cution of a special routine

-of a higher ‘priority. When

IBRSL is 0, no special rou-

" tine can be executed. It gov-
~ erns the length of the push-

down list in IOEX used to
save the registers of the
interrupted routines. This

number is not identical to:

the. number of priorities
permitted.

This option specifies how
IOOP handles the IOSNS

‘operatxon as follows:

‘0 = IOOP will ignore the

operation.
1 —I00P will sense the
specified device. _
If n is 0, IBJOB and IBEDT

will choose work units with-
out attempting to optimize
channel usage: If n is 1,
IBJOB and IBEDT will at-

‘ ‘tempt to optimize channel
" usage

in choosing = work
units. If n is 1, IFSNS
should be set to 1.

This option specifies whether

the installation uses de-

ferred- label searching as
follows:
© 0 "The ‘installation’ does
not use deferred label
_+ searching. -
1 — The installation uses
" deferred-label search-
ing. -
Non-zero if the card reader
is a 1622.)
Assembled combined sys-
tem prlnt/punch ﬂag set-
ting.
If nis 0, IOCS does not
respond to umit record in-
terrupts. If n is 1, TOCS
responds - to - unit record
interrupts originating from
a 1402 Card Read Punch

- or a 1403-Printer. If IF162

is 1, JFURA will be as-
sumed to be 0.

SYMBOL
LISTSW

INCWD'

TPOPN

IFTYP

IFCHT

SHARE

“CODE" *
SET -

SET

 SET

SET

SET

SET

VARIABLE

DESCRIPTION

If a listing of all unassem-
bled cards in IBNUC is to
be provided; n is 1; other-
wise, n is 0.

This option specifies how
IOCS will handle errors on
magnetic tape, If n is 0,
10CS will -distinguish be-
tween incomplete word
errors and redundancy

errors. If n is 1, IOCS will .
treat incomplete word errors -

as if they were redundancy
errors. 4

If n is 0, IOCS discards a
telecommunications message
received prior to the open-

" ing of telecommunications
input. If n'is 1, a waiting -

message is accepted upon
opening, i.e., the IOCS spe-
cial routme is entered.

If n is non-zero, the typé-

wtiter ‘routine, S.XPRT, is
-assembled to “execute in

single-character . mode. If
Tele-processing devices. are
attached to channel A,
IFTYP will be assumed to
be non-zero.

If n is 1, devices defined in
IBNUC as attached to a
nonexistent channel will be

detached by IBSUP. Fur-

ther, if n is 1, disk or drum
units which have been de-
fined in IBNUC but which
are not ready will also be
detached -by. IBSUP. The

parameter - on. the system -

tape is n=0 because the
version of IBNUC distrib-

- uted to ‘the wuser defines

disk . units -on channels B

“and C. Individual .systems

without a disk or a drum
unit ‘physically attached to
channels “B .and C - and
without Control Adapter
1074 will hang up in
IBNUC if - n=1." If ‘the
input/output configuration
defined in IBNUC matches
the system conﬁguratlon n
should be 1.

If n is 1, the SHARE set of
data record control charac-
ters is used: The. character

= M is taken as an indication.

that the record is binary.

“If n is 0, the alternate set
of data record control' char-
acters -is- used.

For additional. mforma-
tion, see the section on
record formats in the pub-
lication .- IBM . 7040/7044

: Operatmg System (16/32K):
Input/Output Control Sys- ‘

tem, Form C28-6309.

* Priority Processing: The ca'p’ability for priority proc-
essing is controlled by the assembly option IBRSL. A

specification of*

1 : :»31 ,18
IBRSL SET e

prevents any prlorlty programmmg from taking place
A main program cannot be interrupted by a real-time
routine or by a random processing routine.

A spemﬁcatlon of: N

1 .8 .16

IBRSL . SET = .1

' permlts all priority processmg ‘However, if a special

routine has been entered, no other special routine can
be entered, no matter how high its priority may be,
until the special routine in"control has been completed.
Eventually, all special routines are entered and com-
pleted and the main program is permitted to continue.
This specification entails ‘the addition of approximately
150 instructions in 10EX, as well as a pushdown list of
16 words. :

Each additional nestmg level that s spemﬁed re-
quires an additional 16 words in the pushdown list.
Each additional nesting level permits an additional
level of priority processing; for instance, it is less likely
that a higher priority program will find the pushdown
list full and will have to wait until a lower priority
routine has finished. The total length of time in special
routines, until the main program is permitted to con-
tinue, is not affected by the nesting level.

Priorities 0 through 7 are. avallable to object pro-
grams.

Unit Record Interrupts Response to unit record in-
terrupts is controlled by the assembly option 1FURA. A
spec1ﬁcat10n of:

1 g 16

IFURA SET 0

prevents response to unit record interrupts. If a unit
record operation is scheduled, but the device is busy,

- and no other activity on any channel is in progress or

can be scheduled, 10Ex waits in a hold loop until the
unit record device is no longer busy.

A specification of:

1 8 16

IFURA ~SET -~ 1

permlts response to umit record interrupts. If a unit
record ‘operation is scheduled, but the device is busy,
and no other activity on any channel is in progress or

~ can be scheduled, 10Ex returns to the calling program.

A umit record interrupt trap occurs when the device is

no longer busy.

This prov1des addltlonal processmg time followmg ‘
a call to s.xact or following an Initiate or Return Im-

System Assembly 13

mediate call to s.aoop. The additional time is used if
 the call for the next operation on a unit record device
is made immediately after the end-of-operation trap for
the current operation on the same device. Any calcula-
tions performed between the two requests for unit
record operations reduce the beneﬁt of the unit record
interrupt trap. T : S

. In general, a program is elther process hrmted or
limited to the sum of rocs trap-processing time and
transmission time on the busiest channel. If the pro-
gram is completely process limited, no benefit accrues
from unit record interrupt traps. Programs that tend
to fall into a set input/output pattern accrue Tlimited
benefit from .unit record interrupt traps. Thus, . this
specification is most useful when 1BRsL is not zero, since
the intermittent processing on unit record devices tends
to break the input/output pattern, and the quicker
return from I0EX assists the interrupted program.
System Editor Assembly Options \
" The following symbol definitions appear in the System
Editor symbohc decks.

VARIABLE DESCRIPTION

~n=1000" The size of the largest buf-
- fer ‘the’ System Edltor may
use.
Word length of. physical
"system - records on mag-
netic ‘tape . units ‘on " the
1401. IOCP: and . IBEDT
allow the 1401 buffer size
tobeup to 370.
The decimal number n is
the position in the Nucleus,
relative to S.SFLG, of the
System Editor’s ﬂag words
20 The decimal number n is
the number of cards per
block in the IBLIB subrou-
“tines for the Processor.
The decimal number n is
the number of words re-
_quired by IOOP in each
buffer. i

SYMBOL CODE
IERO1 EQU

IERO3 ~ EQU n=330

I[ELFG = EQU n=16

IELCT EQU n

Il
—

IEWST EQU n=

Subrouhne llbrury Assembly Options

The following symbol definitions appear in the sym-

bohc input to the Subroutine Library:

_SYMBOL _ CODE . VARIABLE
ERRIN SET n=0 -

DESCRIPTION

ERRIN must be set to
the same value in decks
.7 INSYFB and IASYFB. If .
. *S.SIN1 is attached to a
unit record dewce and a
read error occurs, retry is’

- permitted #f nis 1.~
~'ERROU" must be set to
the same value in decks
k . .. OUSYFB and OASYFB. If
~ : : S.SOU1 is attached to a
: © . unit record devwe and a-

_ERROU SET n=0

14

SYMBOL CODE VARIABLE DESCRIPTION

: print-error occurs, the error
‘ ‘ ey is ignored if n is 1.
ERRPP . SET n=0 ERRPP appears in deck
' : PPSYFB. If S.SPP1 is at--
tached to a unit record de-
vice and a punch error
occurs, the error is ignored.
if nis 1. -

This option specifies a fea-
ture in the ECV routine
(see “FORTRAN System
Subroutines”).

This option specifies a fea-
ture in the FCV routine
(see “FORTRAN System
Subroutines™).

'SUPRES SET n=1
EXTRA SET = n=0

FPTLIM

EQU n=10 These options specify fea-

FPULIM ~ EQU = n=10 tures in the FPT subroutine

ODDLIM EQU n=1 (see “FORTRAN System
"MESLIM- EQU n=20 Subroutines”).’

DPOPT: - SET n=1

Unit Record Error Returns: These returns are con-
trolled by the followmg cards:

v 8¢ 16

ERRIN SET Oor1

A specification of 0 causes the system file block
s.FBIN (deck INsYFB) to specify that the error return
S.INER is to be assembled as EQU o. When any error
occurs while reading, 10Bs performs its standard error
procedure, If the system input unit is a unit record
device and the error occurs on this device, no retry
is perrmtted the job is terminated.

. A specification of 1 causes a control section (S.INER)
to be assembled. This control section replaces the
standard error recovery routine in 10Bs. If the system
input unit is a unit record device and either an unre-
coverable error occurs while reading or an incomplete

word is typed, the computer pauses to allow the opera-
tor to reload the card reader, and the card is reread.

ERRIN must be set to the same value in decks 1asYFB
and INSYFB.

~ The format of the ErroU card is:

s

ERROU SET Oorl

‘A spec1ﬁcat10n of 0 causes the system file block
s.FBou (deck ousyFB) to specify that the error return
S.OUER is to be assembled as EQu 0. When any error

~oceurs ‘while writing, 10Bs perfomls its standard error
‘procedure. If the system output unit is a unit record

device and the error occurs on thls deviee, the job is
terminated.

A specification of 1 causes a control section (.0UER)
to be assembled. This control section replaces the
standard error recovery routine in 108s. If the system
output unit is a unit record device and an unrecover-

able error occurs while writing, then a message is

written on the system output unit, the erroneous record

is ignored, and the job continues.

~ ERROU must be set to the same value in decks oAsyrB
and oUsYFB. v

" The format of the ErrPP cardis: .
1 s 16
ERRPP SET | ' Oorl

v

A spec1ﬁcat10n of 0 causes the system file block
s.FBPP (deck PPsYFB) to specify that the error return
S.PPER is to be assembled as EQU. 0, When any error
occurs while writing, 10Bs performs its standard error

procedure. If the system punch unit is a unit record -

device and the error occurs on thls device, the job is

terminated. e
A specification of 1 causes a control section (S.PPER)

to be assembled. This control section replaces the

~standard error recovery routine in 108s. If the system

punch unit is a unit record device and an unrecover-
‘able error occurs while punching, then a message is
typed, the computer pauses to allow the operator to
mark the dec]; the erroneously punched card is ig-
nored and the job' continues.

Other Assembly Options

Assembly options related to specific subsystems are dis-
cussed - elsewhere. Options in the Macro Assembly
program, which apply to disk and drum orders, are
described later, in the section “Phase A.” Options in the
Dump program are described in the publication IBM
7040/7044 Operatmg System (16/32K): Debugging
Facilities, Form (C28-6803. Assembly options in the

Sort program are discussed in the publication IBM
- 7040/7044 Operating System (16/32K): Generalized

Sortmg System F orm C28-6337.

- Initial Editing Instructions

The binary system tape, distributed by the 1M Data
Processing Division Program Information Department,
can be used immediately at an installation as a 7040/

7044 Operating System. Its first application should be

the generation of an operating system adapted to the
~ particular needs of that installation.

‘The configuration of the 7040/7044 Data Process-

ing System for which the distributed system tape is -

assembled is shown in Figure 7 in the fonnat of the
' ATTACH macro-instruction.

Initial System Unit Requirements

~The systems programmer determines the changes, if
any, that must be made in the conﬁgurahon of the

S$.SLB1,T,C,1,729
S$.SIN1,T,C,2,729
S.SOU1,T,C,3,729
S.SPP1,1,B,4,729

| $.5CK1,1,8,1,729
$.SU00,T,B,2,729
$.8U01,1,8,3,729
$.5U02,T,C, 4,729
S.SUO03,T,A,1,729 °
S.SU04,T,A,2,729
S.5U05,T,A,3,729

© 5.5U06,T,A,4,729
$.5U07,T,C,5,729
§:5U08,T,A,5,729
"8.5U09,T,A,6,729

S.SUIQ,T,A,7,729
S.SUTT.T,B,5,729
S:SU12,T,S,1,729
S.SU13,RD,3,1,1402
S$.SU14,RD,S,1,1402
$.SU15,PU,3,1,1402
S.SU16,PU;S,1,1402
S.SU17,PR,3,1,1403
S.SU18,PR,S,1,1403
$.5U19,D,B,1,1301,FT,0,99
$.5U20,D,B,1,1301,FT,100,149
$.5U21,D,B,1,1301,FT,150,199
$.5U22,D;B,1,1301,FT,200,249
$.5U23,D,B,2,1301,FT

| $.5U24,D,C,1,1301,FT,0,99
$.SU25,D,C,1,1301,FT,100,149

| S.SU26,D,C,1,1301,FT,150,199

$.SU27,0,C,1,1301,FT,200,249

© $.5U28,D,C,2,1301,FT
S$.5U29,T,B,6,729

" $.SU30,T:B,7,729

" These entries
are in the
format of the
ATTACH macro-
instruction.)

Figure 7. Machine Conﬁguration for the Distributed System

7040/7044 Operating System at his installation to per-
mit him to make the initial edit runs with the dis-
tributed system tape. He then prepares the necessary
ssWITCH cards to effect these changes. If the 7040,/7044
Data Processing System at his installation does not
have an on-line card reader, he can switch units
through the entry keys. The minimum configuration
that he must have to prepare the backup library is:

SYMBOLIC UNIT DEVICE CHANNEL
S.SLBI 729 Tape A
S.SINT 1402 Card Bead Punch A
‘§.S0U1 - 1403 Printer. A
S.SU00 729 Tape : A
S.sUo1 729 Tape i A

Both utllrty units may be-attached to different cylinders
on the same module of disk storage.

Preparmg the Backup Library

‘This procedure is optlonal but strongly recommended

as it prov1des system maps and a duplicate library for
emergency use.

System Assembly 15

1. Place the followmg cards on the system mput ﬁle
$DATE r .
$IBEDT
SENDEDIT
$IBSYS
$STOP

2. Mount the system tape.
3. Follow the initial start procedures gwen in

th(, publication IBM 7040/7044 Operating System

(16/32K): Operator s Guide, Form C28-6338..

Momtammg the Symbolic Master File

From the listing of symbolic cards that is obtamed »

from the symbolic master file and from the assembly

16

parameters described in this publication, determine
the serial numbers of the symbolic cards that must -be

replaced on the symbolic master -file. Prepare the

change cards, and insert the changed assembly param-
eters into the symbolic master file.

The first deck on reel 1 of the distributed symbohc
master tape contains comments ‘cards (ccarps). This
deck contains information regarding the contents of
the symbolic tapes and describing the runs necessary
to maintain the distributed tapes and to create a System
Library. Specific deck setups that include the control
cards for each deck in the Subroutine Library and
each phase of the Operating System are also shown.

The System Editor (1BEpT) is used to maintain the
System Library of the 1BM 7040/7044 Operating Sys-
tem. With the proper control cards, the user can add,
delete, or modify any absolute records of systerh pro-
igrams or add or delete any relocatable records from
the Subroutine Library (1sLis). The System Editor
itself is incorporated in the System Library as a moni-
tored subsystem that is called through the System
Monitor. The System Editor can be used with the
Loader (1BLDR), or with a processor that an installation
may edit into the System Library to generate and insert

new library records. The user’s programs, or any sub-

routines or data, are thus added to the System L1brary
in the proper format.

The System Editor can also be used to place a pro- ‘

gram that was compiled and/or assembled by the

Processor into the System Library in absolute machine -

language format or in therelocatable subroutine format,
A program added in absolute format can be loaded
and executed with the sexecuTe card. In the case of
subroutines added in relocatable format, the program-
mer directs the Loader (mBLDR) to load the subroutine
by using the EXTERN pseudo-operation in his coding.

In this way, the user can create a specific operating

system for his own installation. If desired, an installa-
tion monitor could be placed into the combined moni-
tor core storage loads for monitoring these special
subsystems. It would be called by the $xxxxxx control
card specified by the installation, where xxxxxx is the
name given to the 1nstallat10n monitor.

System Editor Componem‘s ,

The System Editor consists of two loglcal sections:
~ the Editor Monitor and the Editor program, which is
-further d1v1ded into Phase land Phase 2.

Editor Monitor

The Editor Monitor is part of the combined monitor
core storage loads. It is entered directly from the
System Monitor when a sIBEDT ca1d is encountered. A
description of the stBepT card is in the sectlon “Editor
Control Cards.” :

The Editor Monitor processes the Edltor control
cards and, in effect, the Processor control cards, if any,
before the editing process begins. This monitor also
determines which input/output units will be used and

initializes them for the Editor program. If the LABEL_

System Editor

option is specified on the siBepT card, the Editor Moni-
tor checks the labels of the old library unit(s) con-
taining the System Library to be updated and/or the
new library unit(s) on which the new System Library
is to be created. If the assembly parameter LABELS

was defined as rLABELs ser 2, header labels on the
-output units are checked for retention dates.

The Editor Monltor in effect, directs the use of the
Processor Monitor (or any other processor that the in-

stallation has edited into the System Library) durmg

edit runs involving source language input or relocat-
able input (see Figure 8)

Inpuf

The System Editor can accept the followmg types
of input:
MAP, FORTRAN, Or COBOL source language codmg

“ocT instruction cards
- Absolute column binary cards
. Relocatable binary cards
. Source l‘anguage statements
- Records in System Library format

Input to the Editor program on ocr instruction
cards for patching, or in the absolute column binary
format produced by an assembler such as the 7040/
7044 Basic Assembly Program (see Figure 9),1s passed
directly to the Editor program.

Encnuag,o.mg—

- The Editor program verifies check sums except in

~ the following cases:

1. When duplicating with the pup card

2. When the check-sum word is zero

3. When bit 2 of the load control word is punched
The first instruction in the card is loaded in the core
storage word whose actual address is specified in bit -
positions 21-35 of word 1 of the card; other instructions
in the card are loaded in words with ascending sequen-

_ tial addresses. The decrement and address fields within

the instructions cannot be modified during loading.
This absolute column binary format should not be
confused with the ABsmop output of the Macro Assem-
bly Program, which has an absolute orlgln but is essen- -
tially in relocatable format.
Under the control ‘of the Editor Monitor, the"
Loader (1BLDR) may be used to convert relocatable

~binary output from the Macro Assembly Program

into the System Library binary format acceptable
to the Editor program. These converted records

System Editor 17

System ‘
Monitor

Processor - | g o oo e i ol] _Editor - i User's
Monitor) Monitor | — | Subsystem
N !
I
L
N
[
I
[

& - Macro | Subroutine | :
COBOL FORTRAN Assembly Loader L Library - Phase 1
Compiler Compiler Program : ibrary |

l :
RIETISE S M J
’ Phase 2
Figure 8. Use of the Processor by the Systelli Editor
11213 6171819 [10011]12[13]14]15 16|17] 18/ 19{20|21 222324
-00000000
TIMTETETI 87980

(%) IERRRBR R

— ce

Ol=s 22222222

£ 5 ; : o DR

Zi@ Data >33333333

L Ot Has)

O 8 44444444

I .
@ O 55555555
6 66666666
11111111
.| 88888888 -
99999999

Word Bit Positions

1 S

a1

2

9
n

~ Must be blank. -

Contents

Must'be blank. -
1 punched; -the System Editor doés not
compute a check sum from card data for

_comparison with the card’s prepunched

check sum:
Must be punched.
Must be punched.

Word .

3-24

Figure 9. Absolute Column Binary Fornat Acceptable ‘to, the Editor Monitor

~18

Bit Positions =

SA27.

2135

835

)] . Contents
.Count of words in the card, excluding
words 1 and 2.

Absolute loading address — the actual ad-
dress of the core storage word where the
first instruction of this card is stored.

‘Check sum'— the logical sum (Add ‘and
Carry Logical Word) of all words in this
card except word 2. ’

Absolute binary instructions.

are stored on a utility file, called the edit file, for

sorting during Phase 1. The Editor Monitor chooses
an available unit for the edit file. Relocatable subrou-

tine decks destined for the Subroutine Library (1sLB) -

must remain in relocatable format. Consequently, they

are not passed to the Loader, but are placed in the edit

file and later put into the proper format by the Edltor
program,

~ The characteristics of the edit ﬁ]e are given in the

section “Processor Files,” which is included in the

discussion of the Processor (1Bjos).

The capability of the System Editor to use the Proc-
essor permits source language (FORTRAN 1v, COBOL, and -

Map) editing. This means that programs to be edited

into the System Library may be in any source language

that can be translated by the Processor. If translation

and/or conversion is necessary, the Editor Monitor

passes control to the Processor and ultimately receives
an absolute machine language version of the symbolic
coding for the particular phase on the edit file follow-

ing the parameter cards. The edit file is rewound after

all translation is complete. All the input to Phase 1
is on the edit file; Phase 1 treats the edit file as though
it were on s.siN1. The same capability can be extended
to any processor that the installation has edlted onto
the System Library.

Editor Program

The Editor Program is called into core storage by the

Editor Monitor when the editing is to begin. Phase 1
performs all necessary sorting of input data and an-
alyzes the Editor parameter cards, placing them on an
intermediate storage unit followed by the linked pro-
grams. Phase 2 uses this information to create the new
version of the System Library on the designated output

unit. Figure 10 shows.the flow of control during an-

edit run.

Phase 1 o .
Phase 1 of the Editor program passes over the input

units, blocking the card image (or mLdR) input and

sorting all the blocks of a phase in ascending order
by the load addresses. The sorted blocks are -con-

catenated, and the load address and the word count

of each block are placed in the first word of the block.
The input unit, which may be the system input unit,
the edit file, or auxiliary - units, is specified by the
Editor Monitor and by certain Editor parameter cards.
Phase .1 also performs a full check of the parameter

cards and passes encoded information about them to
Phase 2.

If necessary, Phase 1 sorts the input to agree with
the sequence in which the altered phases appear in the
Subroutine Library.

; S.SIN1 ;

System | Input Unit

- - -7
Editor \
Moniter [— T T T File /

: _

1. Initialization by the Editor Monitor. Dotted lines indicate a device that may
not always be used.

s

\ Oldlu (Used to r_ Opﬂonal /
\ Read 1BTOC) / Aux lnput/
if not S.SLB1{ /\ Units
——d N Al S

N , g
N s
N 7/

X » ———
‘ ’ N R :\Newlu (used// :
IBEDT1 . - as merge
] e ————-\ devnce_)/l

(If Input Out
of Sequence)

WORK1 -
Intermiediate
Storage
Unit

1. Storing of Input and Analysis of Parameter Cards by IBEDT1.

. - Alt te
WORK1) e/
‘ : A (o) /
. /7 —

\
R\ W
(Used. if Input
Has a LIBE card)

Error Message

Ill." Creation of New System.

- Figure 10. F low of Control During an Edit Run ..

System Editor

19.

The Table of Contents is created or updated by

Phase 1. For some edit runs, Phase 1 is able to pass
a final Table of Contents to Phase 2. For other runs,
Phase 2 may have to alter the Table of_ Contents. If the
edit deck includes a MopIFY parameter, a DUP param-
eter, or a LIBE parameter, or if the edit run involves
devices with different maximum block sizes, Phase 1 is
unable to determine the exact number of blocks that
will result from the operations. o

If it is later determined during Phase 2 that these
operations did alter the block count, and if the new
library unit is a sequential device, a second pass will
be made to insert the updated Table of Contents into
the new library. (If the new library unit is a random
access device, there is no need for a duplication pass
because the Editor program, when writing the new
System Library, reserves enough tracks to accommodate
the phase containing the Index and the Table of Con-
tents. This phase, 1BTOC, is inserted into the proper
place upon completion of the edit run.)

Phase 2

Phase 2 merges the update records on the intermediate
storage unit with the old master System Library. Upon

completion of Phase 2, an updated version of the Sys-\

tem Library is ready for use.

The first function of Phase 2 is the selection of the

Bootstrap program appropriate for the new library
unit. Then the update records are merged

As the blocks are written, a chain word is set up in
the last word of each block. The load address and the
word count of the first block of each phase are placed
in the Table of Contents. The last word in the last block
of a phase has an MzE prefix code and contains the
entry point to the phase in its address portion. ‘

Then, Phase 2 writes the 1EoF trailer label, rewinds
the units; and returns control to the Supervisor via
$.SRET. ' '

The new library may be on one or two units. The

new library will be on two units if a 1EOR trailer label

is encountered while copying the old library unit or
if the edit deck included an INSERT EOR parameter card.
Units are switched and writing continues until editing
is completed and a 1koF trailer label is written. All
trailer labels are updated to the current date. The ver-
sion and modification level is changed only if: it so
specified on the sBEDT card. A discussion of the LABEL
option on the sBEDT card is presented later in the text.
In Figure 11, a sample sequential map is shown that
depicts the physical order of all phases written onto
the new library unit, with an indication of the Editor
parameters, if any, that affected specific phases. Ap-
pearing beside each phase name is a string of entries
that indicate the block number and word count of each
" record that makes up the phase. If the edit run includes

20

- 18007
IBNUC
EBSUP
IBTOC
18DMPL -,
1810C
HONITO

18408 -
LDRPRE
RELOAD"

CBCO10

cscol2
CBCO14
cBCols
CBCO20

" cBCO30 -

CBCO40
€BCO50
-€BCO60

CBEOBG
CBCOTO-

CBCO74
' FTCO10

FTCO020
FTCO30

~ FTC040
FTCO50

MAPOO-

MAPO20
MAPO30

MAPO35"
MAPO40
MAP050

MAPO&O

_{MAPO70
HAPOT2

| MAPOT4
MAPOSO
MAPOS2

MAPOB6
LDRO
LDRI
LDR1
1BLIB
SRNAD
IBREL

LDR2
LDRL
LDR3
LDR4
180MP2
18DMP3

* IBOLVA
IBDLYB

18DLVC

" IBDPPE
. IBTRAN

IBEDTL
iBEDT2

SORT
EDPHAZ

DMPYEX
PHLFIX
PHZFIX
PH3FIX
LOAD

PHLVAR
PH2VAR -
PH3VAR

"upDATE
‘BXLOAD

65061

77040744 18SYS EDIT
SEQUENTIAL MAP OF PHASES

07 48

1710005 2/ 1000y 3/ 1000,

©54710005 - 6f 1000 T/ 548y
97, 291 ’

10/° 104 R

1171000, 12/ 939

.13/ T 14/ 1000, 15/ 1000,
568

187 7 506, - 1971000y - & 20/

217 T, 22/ 10005 © 23/ 10004
26/, 1000y . 27/ 10004 28/ 1000,
317 103, 32/ 1000, 33/ 1000,
36/ 11 k

37/71000; ~° 38/ 1000, - 39/ 1000,
427 1000, 43/ 37, 44/ 17
45/ 7s 46/ 918 :

1/ 7, 48/ 1000, = 49/ 964
50/ © Ty ~S1/.927, 52/ 233
53/ 633, 54/ 1000, 55/ 1000,
58/ 25y . 59/ 52y 60/ 475%

_-62/:10004 63/ 1000, 64/ 1000¢

&1/°10004 68/ -1000¢ 69/ 1000,

6
T4/ 40y - TS5/ 1000, 76/ 1000,
80/ 1000, ~ 81/ 1000. 82/ 1000,

87/ 1000y 88/ 10001 89/ 1000,

- 95/ 1000, 96/ 1000, 97/ 1000,
© 100/ 1000, 101/ 1000, 102/ 1000,

107/.1000y ° 108/- 1000y 105/ 1595

112/ 1000y - 113/ 1000, 1147 - 914y

117/ 1000, 118/ 1000, 1197 1000,
4 .

123771000, 124/ 1000, - 125/ 1000,
&

128/ 3, 129/ 3y 130/
131/ 10005 132/ 640, 1337 125;

1284/ 449, 285/ 443, 286/ 449,
©2897..435, 290/ 407, 291/ 463,

296/ Ty - 297/ 1000, 298/ 1000+
301/ ‘74 302/ .1000, - 303/ 83
304/ 7. 305/ 1000, 306/ 1000y

3107 761, 311/ 1000, - 312/ 1000y
314/ 10003 315/ 1000, 316/ 1000,

©. 318/ 10005 319/ 659y 320/ - 13

3217 7s..322/ 1000, 323/ 1000,
326/ 1000, 327/ 1000, 328/ 1000,
330/ 7. 331/ 10004 332/ 1000,

3371/ 7, 338/ 1000, 339/ 1000,

345/ 520, 346/ 561, 347/ 561,

352/°10005 -, 353/-1000, ~354/ ‘181,
357/ 1000, 358/ 1000, 359/ 1000,
ke

3637 1000, 364/ 36y 365/ 10003
369/ 1000, ©370/.1000, - 371/ 1000,

375/ 1000, - 376/.1000y. 377/ 1000y
380/ 10005 381/ 1000, 382/ 859,

389/ 522, 390/ 1000, 391/ 154,
394/ 1000, 395/ 1000, 396/ 370
399/ 540, 400/ 1000y 401/ 234,

410/ 1000, 411/ 831

413/ IDBO; 414/ 1600. 415/ 1000,
418/ 1000y 419/ ;000, 4207 1954

IBSYS - . 7Q50

4/ 748
.82 13

16/ 1000,
247 1000,
29/ 646,
34/ 1000,

40/ 1000y

56/ 551,

13
65/ 1000,
T0/ - 969,

77/ 1000,
83/ 1000,
907 1600,

98/ 1000,
103/ 1000,

110/ 1000,
115/ - 604,

120/ 29,

126/ 1000y

134/ 284y
139/ 10004

B 6
148/ 1000,

157/ 10004
162/ 233

170/ 1000, -

3’178/ 1000,

183/ 18

197/ 1000,
205/ 992

214/ 1000;

222/ 449,
2277 505,
232/ - 505,
237/ 505,

242/ 435,

24T/ 449,
252/ 561,
257/ 4114
262/ 505,
267/ 4354
272/ 393,
277/ 449y
282/ 449,
2877 449,
2927 449,

299/ 1000,
307/ 491

313/ 910
317/ 466

324/ 10001

333/ 1000.

340/ 10004

348/ 561,

355/ 428,
3607 330,

3667 1000,
372/ 758

378/.1000,
- 383/ 861

392/ 173

402/ 187

416/ 6634
421/ .19

17/ 1000y .

25/ 434,
35/ 615,
41/ 1000,

57/ 107,

66/ 1000,
T1/ 1000,

78/ 519,
84/ 10004
91/ 9864

997 1000,
10471000,

111/ 1000y
116/ 12,
121/ 61,
1277 372,

135/ 6,
140/ 1000,
149/ 1764

158/ 1000,

171/ 1000,

1179771000,

198/ 1000,

215/ 426,

223/ 505,
228/ - 505,
2337 - S61,
238/ 505,

243/ 4494

248/ 421y

253/ - 505y -
2587 379y

263/ 505,
268/ 407,
273/ 421,
278/ 449,
283/ 449,
288/ 449,

293/ 4494 -

300/ 626,

3257 1000,
334/ 610,

341/ 793y

349/ 561,

356/ Ty
361/ 428,

367/ 1000,

379/ 1000,

417/ 1000,

L

Figure 11. Sequential Map of the System Library

a LIBE parameter, a sequential map of the relocatable
Subroutine Library is also written. e

In Figure 12, a sample logical map, made from the
Index and the Table of Contents, depicts the grouping

of the phases of each system in the Sys’t’emLibrary.

_ The headings for these maps contain page numbers,’

the data stored in s.spat, and the contents of the first
REMARK card in' the edit deck. The Bcp trailer label
is printed at the end of the sequential map. o

A complete copy of the System Library may be ob-
tained by performing an edit run, using only the stBEDT

card and the seNDEDIT card. A map of the Subroutine
Library may be obtained during this run by adding the

LIBE and LIBEND parameter cards. -

External Storage Unit Requirements ‘ :
In addition to the usual complement of system units
(such as the system library unit, system input unit, and
system output unit), the System Editor requires a mini-
- mum of two utility units, selected for the Editor phases
by the Editor Monitor. The first is used as an inter-
mediate storage unit (work1); the second is the new
system library unit (newlu): The minimum configura-
tion is limited to edit runs that involve only absolute
column binary cards or the special oct patch cards de-
scribed later in the text. Another utility unit, WORK?,
must be available for an edit run that alters the IBREL
section of the Subroutine Library (1sriB). If an edit
run causes the creation of an edit file, an additional unit
is required. This unit must be a device that is not on
channel S,

Editor Control Cards

Editor control cards, as distinguished - from Editor
parameter cards, have the standard System Monitor
control card format with a $ in column 1 and the
control card name in columns 2-8. They are interpreted
by the Editor Monitor and govern the use that the
System Monitor makes of its Editor program and any
Processor components. :

$IBEDT Card

The format of the stBepT card is:
1 CoL T 16
$IBEDT . .~ options

This is the basic Editor control card, appearing as
the first card of every edit deck. Options that regulate
the edit run are specified in the variable field, which
starts in column 16. If the number of options specified
is too great for all of them to be contained .on the
SIBEDT card, a seTC card may follow the stBEDT card, In

this case, a comma must follow the last option on the
SIBEDT card., ‘ :

T SYSNAM
8XLOAD

DEBUG1

4bEBUG

c.18c8C

IBDMP*

IBEDT

IBFTC

IBMAP

" IBSYS

. LDRPRE
RELOAD
UPDATE

| DEBUGZ.

IBLDR

IBSRT

IBUTL

7040/44 IBSYS EDIT

LOGNAM
" BXLDAD

dBDLVA
iBbLvs
I8DLVC
DEFA
IBDEF
18086

1BDPPE
IBTRAN

1EDBG
SRNDB
1BDBG

CBCC10
CBCO12
CBCO14
cBCO16
€BC020
CBCO30
CBCO40
€BCO50
CBCO6O
CBCO66

CBCO70~

CBCO74
MAPO10

1BDMP1

1BOMP2

7 1BDMP3

- IBEDT1
IBEDT2

FTCOL0
ETCO20
FTCO30
FTC040
FTCO050
MAPG1O0

LDRO
LDRI
LDR1
IBLIB

SRNAD . -

- - IBREL
LOR2
LDRL
LDR3
LDR4%4

MAP020 .

MAPQ30
MAPO35
MAP.040
MAPOSO

MAPO6O

MAPOTO
MAPO72
MAPQ74
MAP080O
‘MAP0S&2
MAPO86

SORT.
EDPHAZ
“DMPYEX
PHLIFIX
PH2FIX
PH3FIX
LOAD
PH1VAR
PH2VAR

PH3VAR

1B0OT
IBNUC
IBSUP
1BTOC
IBIOC
MONITO
1BJOB

1BUTL
1BUF
IBUL
IBUD
IBUR
IBUY
1BUC

LDRPRE

RELOAD

UPDATE

“RECNO
422

318

321 -

330
335

337 -

345

352

357

342
343

345

107

145

206
209
211
216

217
.. 219,

296
301
304
308

152
154
163
ies

167
175

184
187
189
192

194

202

373
375

384

403
405
407
408
409

410

412

26
=31
4}3

Figure 12. Logical Map of the ?System Library

System Editor

21

The options that can be specified in the variable field
are: SR AR P A » SR

S.SLBI 51 ho ‘ .
(22=n (S.SLB2) - I
: ?.Sl[Jl;\tj([—IYY] ‘D(‘s.suxx[ﬂyyhﬂ '

e YL ((yyIR]) S

This option is used to specify the unit or units that contain
the old (master) System Library. Both a primary unit and a
secondary unit may be specified. The primary unit specification
appears first; the secondary unit specification’ follows immedi-
ately and is enclosed in parentheses. T

S.SLB1 indicates that the primary system library unit is to
be used. . o) ‘

S.SUxx indicates that utility unit xx is to be used. If the =Iyy
specification is included, the unit is to be"assigned the inter-
system reservation -code yy:.- -

Iyy indicates that the unit already reserved by intersystem
code yy is to be used. If R is added, the intersystem code is
released -and the. reservation:is canceled upon completion of
the edit run. ‘

NONE indicates that no units are needed for the old System
Library. The Editor is to create a new System Library, using
only the contents of the edit deck for input. The IBOOT phase
is inserted automatically. IBTOC is created in core storage but
must be inserted into the new library through the use of an
INSERT parameter card {described below). !

S.SLB2 indicates that the secondary system library unit is
to be used. This option may be specified only when the primary
-unit specification is S.SLB1.

If the primary unit for the old System Library is not specified
(that is, if column 16 contains a blank or a comma), the primary
system library unit (S.SLB1) is used. i

If the old System Library is contained on more than one
unit, the last record on the first unit is a 1EOR trailer label.
When the Editor encounters this record, it switches to the
specified -secondary unit. In the event no secondary unit is
specified, the Editor switches to S.SLB2 if S.SLB1 was used
as the primary unit. Otherwise, the edit run is terminated.

S.SUsx[=Iyy]} [~ ((S.SUx[=1Iyy]))’ :
> sIyy[R] (Iyy[R])
Tyy: R-{ Iyy: (Iyy: R=1yy:) 7

This option is used to specify the unit or units that will con-
tain the new System Library. Both a primary unit and a sec-
ondary unit'may be specified. The primary unit specification
appears first; the secondary unit specification follows immediately
and is enclosed in parentheses. The secondary unit must be the
same type of device as the primary unit. :

S.SUxx indicates that utility unit xx is to be used. If the:

=Iyy specification is included, the unit is to be assigned the
intersystem reservation code yy. . :

Iyy indicates that the unit already reserved by intersystem
code yy is to be used. If R is added, the intersystem code is
" released and the reservation is canceled upon completion of the
edit run.) .

Iyy, R=Iyy: indicates that the unit reserved by intersystem
code yy: is to be used. Upon completion of the edit run, this
code is to be released and the unit is to be reserved by the
intersystem code yys. - :

If the primary unit for the new System Library is not speci-
fied, S.SUO1 is used. I S.SUOIL is not available, an available
unit is chosen. If no unit is available, the edit run is terminated.

If a secondary unit for the new System Library is not speci-
fied, but a secondary unit is required, the edit run is ter-
minated. _ . :
[3LABEL (nnémmaqsp)]' eI : N

This option is specified if checking of the version and modi-
fication numbers of the old library unit(s) or label checking of
the new library unit(s) is desired to preclude improper use of
these units. : :

22

interpretation: = . !
“qn = the version number of the old System Library.
mm = the modification number of the old System Library.
q = the number of old library units (1 or 2).
p = the number of new library units (1or 2).

The four-subfields-of the LABEL option have ‘the following

graphs. - : - .

. The version and- modification numbers apply to the entire
Operating System and should appear in the first word on each
master library unit. This is the word that the System Monitor,

The use of these subfields is explained in the following para-

. at an initial start, moves from location 100s to Jocation S.SLVL

in the Nucleus. If these subfields are used, the Editor Monitor

_ checks the first word on the master library unit(s) against the

specified nn and mm values to ensure that the proper System
Library is being updated. An unequal ‘comparison results in a
code 31501 error message, and an operator-action pause permits
acceptance or termination of the edit run. If the nn and mm
values are verified or accepted, the modification number (mm)
is incremented by one, and the new System Library is given
this. updated value. . ! ' T

The .q and p subfields specify the number of library units
that require checking before the edit run begins. If q is omitted,
one old library unit is assumed. If p is vmitted, one new library
unit is assumed; at the installations that use a Jabeled system,
header labels on all intermediate units and. one new library unit

~ are checked by IOLS, unless p specifies a number greater than

one. If label checking detects an invalid label, an error message
is typed and an operation-action pause permits acceptance or
rejection of the unit. If the installation does not use labels (indi-
cated by the system assembly parameter LABELS SETOor 1),
no header label verification is made for output units.
The following combinations of the LABEL option subfields
are valid: D i :
OPTION
LABEL(,,, 1)

MEANING
Check the label on one new
library unit.: -
Check the labels on two new
library units.
Check the version and modifi-
cation numbers on one old
library -unit against the-values .
nn and mm; and check the
label: on one new library unit.
Same as the above, except that

LABEL(,,,2)

LABEL(nn, mm)-
LABEL(nn, mm, 1)
LABEL(nn, mm,, 1)
LABEL(nn, mm, 1, 1)

LABEL(nn, mm, ,2)

- LABEL(nn, mm, 1, 2) the labels on the two new
S library units are to be checked.
LABEL(nn, mm, 2) Check the version and modifi-

cation numbers on- two old
" library units against the values
nn’ and mm, and check the
label on one new library unit.
Same as the above, except that
the labels on -the two new
library units are to be checked.

LABEL(nn; mm, 2, 1)

LABEL(nn, mm, 2, 2)

To reset the version number, the preceding version number
nn must be specified and mm must be omitted.

The following examples ‘show several LABEL options and
the version and modification level of the new System Library
resulting from each option: e

LABEL(9;) Version 10, Level 0

" LABEL(9,,1,1) Version 10, Level 0

LABEL(9,0,1,1) Version 9, Level 1

“fSOURCE
NOSOURCE {

This subfield indicates to the Editor Monitor the format of
the edit run input. SOURCE indicates that some decks in the

edit deck are in the source language ‘'of FORTRAN, COBOL, or
MAP, whereas NOSOURCE indicates that some decks are in
the MAP binary output format and must be processed by
IBLDR. The SOURCE" option logically includes “the . NO-
SOURCE option. Thus, the former should appear on the
$IBEDT card, if the edit deck includes source language decks

as well as binary decks in MAP output format. The absence of

either SOURCE or NOSOURCE indicates that the edit deck
(including any LIBE data) consists only of cards in a format
that may be processed directly by the Editor program, i.e.,
absolute column binary cards, OCT instruction cards, or re-
locatable cards. for. a subroutine library. The list of options can
be extended by assembly modification of the Editor Monitor
and the Editor program. : e
[, MXBLK (nnnn)] o R

This subfield specifies the maximum block size for the mew
system library unit. It may be any deéinal number that is less
than, or equal to, the assembly parameter IEROL, If the decimal
number is greater than the parameter IER01, the block size of
IERO1L is used. ' ’ ‘ ‘ o

[, NOMAP] .
This subfield specifies that the two maps, including the Sub-

routine- Library section list, will not be listed during the edit

run. However, all parameter cards and error messages ‘are
listed. o ’ : i

[, EDTFIL(nn)] - o . : .
This subfield indicates that a previously generated edit file
(with utility number nn) is to be accepted by the Editor, in-
stead of creating another edit file. The number nn must not
refer to a utility unit on channel S. The use of this option is
meaningful only when a prior edit attempt was terminated
(after the message 11500 BEGIN EDIT was typed) because
of a machine or program malfunction.) S

[,CORE(nnnnon)] *

This subfield indicates to the Editor Monitor that the value)

of S.SEND will have changed ‘as a result of this edit run. The
use of this subfield does not itself effect the change, but it

enables the Editor to relocate the IBTOC record of the new

system, using the new value of S.SEND. The new value
(nnnnn) is expressed as a decimal number between 16383 and
32767. ')

This subfield should be used only in a total relocatable
edit when it is essential that the IBTOC record be relocated;
that is, when- éither: - CrELT L

1. The value of S.SEND will be decreased.)

2. The system has been expanded such that IBSUP on the
new system will overlay a part or all of the IBTOC. record,
if the location of the IBTOC record is determined by the
Editor using:the current value of S.SEND. ° ‘ :

[, MIN] : R v

This subfield indicates that the physical unit on ‘which the
edit file is located is to-be used for the intermediate storage unit
WORK2. This reduces by one the number of units required for
a NOSOURCE edit run that both alters the Subroutine Library

and causes the creation of an edit file (e:g., a total system edit). i

The MIN option may net be specified when SQURCE is specified
on the $IBEDT card. B

Note that when the MIN option is ,s'peciﬁedf, the edit file is
destroyed during the edit and; therefore, cannot be saved for
subsequent runs that specify EDTFIL,

Examples of typical stBepT cards follow:
1 _ R
$1BEDT ~ »LABEL(4,19,1,2)

This card causes the Editor Monitor“to&ch;evck the

decrement and the address of the first word on the
single master library unit (s.stB1) for the values 4 and

19 (that is, version 4 and modification. 19). The modi-

fication number 20 will appear on the new System
Library. If the installation uses a labeled system, the
Input/Output Label System checks the retention dates
on the new library .units as well as on the editor work
tape.

1 : .18 o

$IBEDT S.SU03,5.SU04,SOURCE

This card causes the old System Library on s:suo3
to be edited onto s.suo+. No check. of the version and
modification numbers is made, and the new System
Library will have the same modification number as the
master library. The source option causes the edit file
to be stacked with the siBEDpT card, the appropriate
parameter control cards, and an absolute ‘machine
language version of the source language program.

$ENDEDIT Card
The forrhat:of the senpEDIT card is: ‘
I ’ 18 oo gy
$ENDEDIT o

any text [serial]

- This is the last card in the edit deck. It indicates
to the Editor Monitor, during the stacking of the edit
file, that the ‘end of the deck has been reached. -

During Phase 1, the senpepIT card indicates the end
of the input deck to the Editor program. If the source

Or NOSOURCE option was taken, this card indicates the
end of theedit file. =~ 7 -

' Any text may appear in columns 16-72. A

Upon completion of an edit run, the message EprT
COMPLETE is typed on line. If there is a nonterminal
error during editing, the message ERROR ENCOUNTERED
appears after the Eprr cOMPLETE message. If there is a
terminal error during editing, the message EprT TERMI-
NATED is typed. In all cases, the Editor Monitor will
position the system input unit immediately after the

* seNDEDIT card. If the terminal error was due to an un-

recognizable card on the system input unit, the Editor
saves the unrecognizable card, record and directs the
Supervisor to inspect it. ‘

‘An example of a typical seNpEprT card follows:
T - :
$ENDEDIT " MOD 25 COMPLETED

This card causes the contents of the master library

to be éqpied onto the new library through the 1EorF
--record. C * ' '

Any Editor parameter cards on the system input
unit after the seNpEDIT card (and not preceded by a
new $IBEDT card) are treated as erroneous control
cards. - TS : ‘

System Editor 23

Editor Parameter Cards .
Editor pararneter cards direct the Editor program in

the creation of an updated System Library. Note that

these cards do not have a $ in column 1. The card name
begins in column 8, and the variable field begins in
column 16. In some cases, a variable appears in col-
umns 1-6. Serial numbers may be punched in columns
73-80. ‘

These Bcp cards are mterpreted by the Editor pro-
gram. The Editor Monitor simply stacks them on the
edit file if the SOURCE or NOSOURCE OptIOIlS are taken

CALLS Card -

The format of the caLLs card is:
1 8 6. B
sysnam ~CALLS phases, phases, ..., phasen [serial]

This card defines the normal sequence taken during
execution of the phases of a subsystem. The Editor
program requires this information to construct the
Index and the Table of Contents.

The caLLs parameter need only be used for the edrt
run during which a subsystem program is initially in-
troduced into the System Library. The Index and Table
_ of Contents entries are then available for subsequent
edit runs involving that subsystem. However, this
parameter may be used again, if it is desired to change
a phase name, add a new phase or alter the flow. of

a subsystem.

The removal of a phase from the- System lerary
does not require a new caLLs card. The name of the
removed phase is deleted from the Table of Contents
by using a REMOVE card (described later in this text),

and the flow is assumed to pass from the phase prior

to the removed phase to that following it.

The variable field of the cALLs card can be extended’

by the Exc card (described later in this sectlon)
The content of columns 1-6 i is:
sysnam -
This is the name by which a partlcular subsystem is 1dent1ﬁed

It will be stored in the first word of the Index entry for thlS sub-
system.

The content of columns 16-72 i is:

phase:, phase:, . . ., phasea

This is a list of the BCD phase names of the subsystem iden-
tified by sysnam in the order in which they are called by the
System Loader. The phase name is stored in the ﬁrst word of
the Table of Contents entry for the phase.

This list does not necessarily describe the actual sequence of
the phases on the library unit. Accordingly, it is not necessary

- to have duplicate copies in the System Library of a phase com-
mon to several subsystems. If the name:of a phase that is
already. part. of the System Library appears.on a CALLS card,
the Editor program creates, within that portion of the Table of
Contents used by the new subsystem, an entry. deﬁnmg the loca-
tion of the common phase.

The carus card and all ETC cards used to- extend'

the list of phase names must be ‘grouped together in

24

the edit deck ahead of all other Editor parameter cards,
except the REMARK cards, if any. :

An example of a t,yplcal caLLs card follows:
B R 16 ‘ k .
“INAB CALLS ~ABCO10,ABCOQ.(‘),AB’CO30,XY20420-

A card of this form results in the creation of one
Index entry and four Table of Contents entries for the
subsystem identified by 1vaB. This example shows how
any phase in the System Library, xyzozo in this case,
may be designated as part of the loglcal flow of any
subsystem component merely by placmg it in the phase
name string of the subsystem. This assumes, of course,
that the phases can be executed sequentially, and that
the common phase already exists or is bemg inserted
into the System Library.

ETC Card
- The format of the Erc card is;
8 16) 73 -
v ETC S varlable field contmuatron [serial]

ThlS card may ‘be used to extend the hst of phase

.names in the vanable field of the carLs card, if this
list overflows the parameter card

INSERT Card
T he format of the INSERT card i 1s

8 R) N 73
) ’ lognam S.SUxx. .
-INSERT - i EOR % [egy[R] g} [serial}

The INsERT card causes the specified phase pre-
viously defined in a caris card, to be placed on the
new library unit at its current position. If EOR is speci-
fied, it causes a standard 1EOR trailer label to be written
immediately on’ the new library unit. The previous
positioning of the library units is accomplished by
other Editor parameter cards. Insertions may be made
from either the system input unit, where it is now
positioned, or any ut111ty ‘unit ‘designated. If the pro-
gram being inserted was assembled by the 7040/7044
Basic Assembly Program, the last card of the absolute
column binary deck must be a transfer card indicating
the entry point to the program.

The, eontent of the variable field is:

{lognam }
EOR

The lognam is the BCD phase name (w}uch must begm with
a character other than zero) that the Editor program préfixes to
the first block of the phase being inserted. This phase name is
used by the System Loader to verify the loading of the phase
and by the. Editor .program for altering the Table. of Contents
and for later editing of the System Library. The Editor program
ignores any attempt to insert a phase with the same name as
one that is already in’ the: System :Library and that is not re-

moved during the:edit run, prior to the insertion of the new
phase. The identical binary deck may be inserted at various
points in the System Library by using different phase names on
the INSERT card. B

The EOR option is available to cause reel switching to the
next new library unit while writing on the new library unit. A
1EOR trailer label is placed on the current new library unit,
preceded and followed by a file mark, at the point at which it is
currently positioned.

[’3S'SUXX$: e
Iyy[R] :I —_—

S.SUxx is the alternate utility unit containing the program to
be inserted. Iyy specifies that the device to: be used was pre-
viously assigned intersystem. reservation code yy. If ‘R is ap-
pended to the Iyy code, the reservation will be removed after
the device is used by the Editor program. :

"This specification directs the Editor program. A subsystem
must be directed by its own control cards, e.g., $IEDIT.

‘An example of a typical iNserT card follows:
3 16
INSERT FTCO010

This card can be used to insert the phase F1co10 from
the system input unit into the System Library at the
current position of the new library unit.

REPLACE Card
The format of the RepLACE card is:

8 - 16 73

REPLACE lognam [’ % 5-SUxx 2] [serial]

Iyy[R]

This card is used to replace a phase in the System
Library. '

The REPLACE card causes the master System' Library
to be copied onto the new library unit(s) up to the
phase (logical record) identified by lognam. The speci-
fied phase is skipped over on the master library, and
a new one is written in its place on the new library

from the deck following the RePLACE card. The new

phase has the same name as the deleted phase, and.the
Table of Contents. is updated to reflect the new load
address and word count of the replacing phase’s first
block. o

The content of the variable field is: -

lognam A : i
This is the BCD: phase name. See the definition of lognam
given in the description of the INSERT card.

[, % S.SUxx }] :

Iyy[R] :

8.8Uxx is the alternate utility unit containing the deck of
alteration cards or card images if it is not on the system input
unit. Iyy specifies that the device to be used was previously
assigned intersystem reservation code yy. If R is appended to
the Iyy code, the reservation will be removed after the device
is ‘used by the Editor program. S
This specification directs the Editor program. A subsystem
must be directed by its own control cards, e.g., $IEDIT. -

An example of a.typiéal REPLACE card follows:
8 16

¥

REPLACE FTCO10

- This card causes the blocks in the phase Frco10 to be
replaced in the System Library by the data following

this REPLACE card on s.sIN1. -

MODIFY Card ,

The format of the Mobpiry card is: .

’ 8 ’ 6 .73
MODIFY 1ogna§1 [’ g Isyf[li;)ix } :' [serial]

- The moprry card provides the normal means of
patching a program that already resides within the
System Library in absolute form. Corrections within
or beyond the original program length may be made
with this parameter. i S
The old System Library is copied. onto the new
library unit(s) up to the phase lognam. The word(s)

‘to be changed within the program is overlaid by the

patch word(s) while the program phase specified by -
lognam is being copied onto the new library unit. In
cases where the modification is not within the length
of the original program, new blocks may have to be
created or the present ones expanded (the section
“System Library Format” gives the description‘ of a
block). Yo .

The modification cards, containing the load address
and the patch, may be in the format of the special ocr
patch card described later. in the text, or they may be
in any other card format acceptable to-the Editor
Monitor. ’ . :
The content of the variable field is:

lognam

in the description of the INSERT card.)

[Aaset]

This is the BCD phase name, (A definition of lognam is given

This option is used to specify the alternate unit holding the
modification cards if they do not follow the MODIFY card on

- the system input unit. When the modification cards are on the

system input unit, the Editor program -can determine the end
of ‘the correction cards by the ‘appearance of the next Editor
parameter card. If an alternate unit is specified by this option,
the final modification card should be a transfer card. If the

“transfer address is zero, the existing entry point is not modified.
-This specification directs the Editor program. A subsystem must

be directed by its own control cards, e.g., $IEDIT.

S.SUxx specifies that utility unit xx is to be used as the alter-
nate unit. Iyy specifies that the device to be used ‘was ‘previ-
ously assigned intersystem reservation code yy. If R is appended
to the Iyy code, the reservation will-be removed after the device
is used by the Editor program. .

Sys';em Editor 25

An example of a typical MoprFy card follows: -
8 . 16

MODIFY = FTC010,5.SU10 -

This card causes the patéhes on the modification
cards on utility unit 10 to be included in the phase
FTCO10 as it is being written on the new library unit.

REMOVE Card

The format of the REMQVE card is:

1 8 16 .73

[sysnam] REMOVE [% l}ggll:m %] [serial]
This card is used to remove a phase from the System
Library. If a subsystem name appears in the location
field (card columns 1-6), the entire subsystem will be
deleted. x)
Upon recognizing the REMOVE card, the Editor pro-
gram copies the old System Library onto the new
library unit up to the designated phase or up to the
1EOR trailer label. The phase is spaced over on the old
library unit, its name is removed from the Table of

Contents, and editing resumes with the next Editor = -

parameter card.

When a phase has been removed from the Table of
Contents by means of a lognam or a sysnam reference
(as explained below) that phase may not be used: in
another Editor parameter card until the phase is re-
inserted. '

The content of columns 1-6 is:

[sysnam] -

This is the name by which the subsystem to be removed is
identified. It appears in the first word of the Index entry for this
subsystem. In this use of the REMOVE parameter, the variable
“ field (card columns' 16-72)- is left blank. Phases common to
other subsystems and the subsystem being removed are not re-
moved from the System Library. Only their appearance in the
Table of Contents string of entries for the removed subsystem
is deleted. o ' L

The content of columns 16-72 is:

[3 lognam %]
EOR §]° | |

The lognam is the BCD phase name- that identifies the phase
to be removed. It appears as the first word of the Table of Con-
‘tents entry for the phase. - S ‘ :
*-If the EOR option is specified, the contents of the System
Library up. to, but not -including, the 1EOR ‘trailer. label are
copied into the new library. This is a method of condensing
the System Library onto-one system’ unit. While unit switching
océurs on the master library unit, the new library unit remains
unchanged. g ‘ :

An example of a typical MMQVE card follows:
IBCBC

" REMOVE

26 - -

This card_would be used to remove the cosor. Com-
piler from the Operating System. .
AFTER Card

The ‘fomiﬁ of the AFTER card 1s

8 ’ 16 ‘73
AFTER i }gég)nl:m % [serial]

This card causes the copying from the old library
to the new library of all phases up to and including
either the phases specified or the 1EOR trailer label. In
either case, unit switching of both the old and the new
library units is automatic when the end-of-reel record
is read.

The content of the variable field is:

k % lognam%

EOR

The lognam is the BCD phase name of the last phase to be
copied. If EOR is specified, the master System Library will be
copied through the 1EOR . trailer label, with automatic unit
switching. ‘ '

An example of a typical ArTER card follows:
8 16 ‘

_ AFTER FTCO10

~ The use of this card causes the master System Library

to be copied from its current position through phase
FTCO10. . : ,

DUP Card

The format of the pup card is:
8 16 S 7
DUP unitl, unit2, n, inlabel, [serial]

cdate, oulabel, rd‘ays

This parameter permits a specified number of phases
to be copied from one symbolic unit to another. Phases
may be duplicated from a master library unit onto a
utility unit, from a utility unit onto a new library unit,
or from one utility unit onto another utility unit.

The use of the pup card with the rREwIND card (de-
scribed in the next section) simplifies the reordering
of various phases or complete systems within the Sys-
tem Library. This parameter is also useful for placing

specially edited phases, such as special data blocks,
‘ Iibrary subroutines, test cases, etc., on the new library
“unit, provided they are in the System Library format.

- If the pup card is used to rearrange the system, do
not copy the Table of Contents (mTOC), since it reflects
the order of the old system. :

e

The content of the variable field is:

unitl ’ RS IS

This is the unit from which the phase will be duplicated.
The unitl specification may be either 'S.Sxxx or Iyy[R]. S.Sxxx
specifies the symbolic unit to be used. Iyy specifies. that the unit
previously assigned intersystem reservation code yy is to be

used. If R is appended to the Iyy code, the reservation will be.

removed after the unit is used by the Editor program,

unit2

This is the unit onto which the phases are copied. An attempt
to copy records onto a master library unit or onto a system
library unit, system input unit, system output unit, or system
punch unit is ignored. The unit2 specification may be either of
those described above for unitl. ‘

n

The number of phases to be duplicated is specified by n. Oﬁe
phase is duplicated if n is blank.

inlabel 4

This specifies up to ten characters, which will be left-justified
with trailing zeros. These ‘characters are used to verify the input
label.

cdate

The five-digit date in the form yyddd on which the input label
was created

oulabel

Up to ten characters that will be left-justified with trailing
zeros and used to create the output label

rdays

A four-digit number that specifies the number of days the file
is to. be retained

All arguments appearing in the variable field must
be separated by commas and must be in the order
presented.

The fields inlabel, cdate, oulabel, and rdays are
optional and are used to effect label verification or
creation for puP input or output units. It is the users
responsibility to include these fields on pup cards at
the point where label verification or creation is re-
quired. The Editor assumes all units to be properly
positioned in front of the data to be processed next.
The REWIND parameter should be used, if required,
before label verification or creation.

Examples of typical bup cards follow:
8 16

DUP $.5U03,8.5U04,3,DUPLICIN,
63031,DUPLICIN,10

This card causes three phases to be copied from
§.8U03 onto s.suo4. It will also verify the header label
on s.5U03, created on January 31, 1963 with file identi-
fication pupLIcIN, and will create on s.suo4 a label that
has the same file identification and that is to be retained
at least ten days.

8 16

DUP S.SLB1,S.8U04,1,,,DUPOUTB,365

This card causes one phase to be copied from s.s.B1
onto s.suo4. It also causes a header label with file
identification ,ourouTB and a retention period of 365
days to be written on s.suo4. s.sLB1 has no label.

8 16
DUP S.§ U04,S;SU1 1,,LBLNAM,63032

This card causes one phase to be copied from s.suo4
onto s.sutl. It also causes the verification of the header
label on s.suo4. The label was created on February 1,
1963 and has the file identification LBLNAM. No label
will be created on s.su11. s.su11 may not be positioned
at the beginning of the file. ‘

Format Requirements: Phases copied onto the new
library unit must meet the following System Library
format requirements: .

L. Each block of the phase, except the last block,
must end with a word whose sign is plus.

2. The last block of the phase must end with a word
whose sign is minus.

3. The first word of the initial block must contain
a BCD phase name that is also listed on a CALLS card.

4. There must exist a three-word header block speci-
fying the load address and word count of the initial
block of the phase to be duplicated, with the following
format: '

WORD1 BCI 1,phznam
PZE la,,wdect
B CI l s dkkok Kok

The following definitions apply to the symbols used
above: :

phznam
Phase name to be entered into the Table of Contents. It is
left-justified, with trailing blanks, if any.
la
Load address of the first block.
wdct R
Number of words in the first block.

This three-word block is used by the Editor program
to update the Table of Contents entry for the specific
phase. All phases duplicated by the Editor from the old
library unit are prefixed by this header; it is not copied
into the new System Library. '

If the record being duplicated on the new library
unit does not have a three-word header block, the
Editor accepts the logical record, but the load address
in Word 2 of the Table of Contents entry for the phase
is set to zero. The System Loader may be used to
position the library to this block, but it cannot be used
to load the phase. This requirement for a header block
does not apply when duplicating a phase from the old
library unit indicated on the siBEDT card, as the Table
of Contents already contains the proper phase name,
load address, and word count for such a phase.

System Editor 27

REMARK Card .
The format of the REMARK card is:
8 16 1
A REMARK any text ’ [seriall

The BEMARK card is wrrtten in full on the system
output unit. Columns 16-36 of the first REMARK card
in the edit deck are inserted into the title line of the
‘System Library maps. Subsequent REMARK cards are
typed and are followed by a machine pause for action
by the operator during Phase 1. An asterisk in card
column 7 will effect typing- and. pause during Phase 2
for pup reel handling.

The variable field contains the message for- the
machine operator and/or programmer.

An example of a typical REMARK card follows.

8 16

'REMARK 7040/44 OPSYS 9/5

If this is the first REMARK card in the deck, it will

appear in the title line of the System Library maps on
the system output unit.

REWIND Card | |
The format of the REwIND card is:
' 8 16 73
REWIND { fysf‘;‘{’]‘ % [serial]

This parameter causes the specified symbolic unit to

be rewound. Any attempt to rewind the new library
unit or the System Editor intermediate unit (WORK1)
is disregarded, and the next control card is read.

 The content of the variable field is:
§S.Sxxx }

Iyy[R]

This is the symbolic unit to be rewound. Iyy specifies that the
device to be used was previously assigned intérsystem reserva-

tion codé yy: If R is appended to the Iyy code, the reservation
will be removed after the device is used by the Editor program.

An example of a typical REwmNp card follows: -

8) 16

'REWIND = S.SU05

This Card will'eause utility unit 5 to be rewound.

LIBE Card

The format of the LBE card is:
8 16 73
LIBE. [libenm] [format] : [seria]]

The LIBE parameter signals that relocatable sub
routines are to be added, deleted, or replaced in the

28

System Library. Each subroutine deck must be pre-
ceded by an INSERT, REPLACE, REMOVE, OI AFTER param-
eter card to specify the type of editing to be performed.

An alternate input unit may not be specrﬁed on any of

these cards. :

The relocatable subroutme deck that is used as
direct input to the Editor program for editing into
the Subroutine Library (1BLIB) contains a sTBLDR card,
a scpict card, a binary control dictionary, a STEXT
card, brnary text, and a spkEND card, in that order (see
Figure 17, which appears later in the text). This is

‘the relocatable binary deck normally produced by

the Macro Assembly Program. The Editor program
analyzes the control dictionaries of all the subroutines
and generates the Control Section Name List, the
Dependency Name List, and the subroutine deck
blocks needed by the Loader (1BLDR). sTEXT and binary
text may be omitted, in order to include only the
control dictionary information with the Subroutine
Library. ‘

The. content of the varrable field is:

[libenm]

The libenm is the phase name of the subroutine library to be
edited. It speclﬁes the phase up to which the master System
Library is copied. If libenm is omitted, IBLIB is assumed. If

libenm is JEDBG, a separate subroutine library will be edited,

for use by the Debug_gmg Proeessor
L format]

This option defines the relocation scheme; that is, it mdlcates
the format of the relocatable card - decks. For example, re-
Iocatable” binary output’ from the Macro Assembly Program
would be designated by IBMAP. If this option is omitted, Macro
Assembly Program output format is assumed

7 An example of a typical LiBE card follows:
8 - 16
LIBE IBLIB,IBMAP

This card causes the System lerary to be copied
up to the Subroutine Library. It must be followed by
an INSERT, REPLACE, REMOVE, AFTER, or LIBEND card.
A map relocatable output deck or a Processor deck,
including a source language deck, may follow next.
In the latter case, the Editor Monitor calls the Proc-
essor to produce the relocatable deck.

LIBEND Card

The format of the LBEND card is:

8 O 73
LIBEND

[serial]

The LiBeND card must be the last card on a Subrou-
tine Library alteration deck. It signals the Editor pro-
gram that the end of the alteration cards for the Sub-
routine Lrbrary spemﬁed on a prior LIBE card has been
reached.’

- An example of a typical 'L;BENb card follows: -

s

- LIBEND

This card would be used to indicate the end of the
last relocatable deck. If the LiBE card is followed by
a LIBEND card, the Subroutine Library (isLis) is re-
processed. That is, a new Control Section Name List
and a new Control Section Dependency List are gen-
erated, and a map of the Subroutine Library is printed.

Using the System Editor

The System Editor can accept any of the following
types of input: 7 L
1. MAP, FORTRAN 1v, or COBOL source language coding
2. Source language coding for any subsystem that

an installation has added to the System Library whose

output is in an acceptable format -

3. Absolute 22-word column binary card images

4. Macro Assembly Program binary output card
images. R S :

5. Records in System Library format. -

6. ocr card images S '

In addition, the System Editor can be expanded by
an installation to include other formats for which a
processor exists on the System Library.

The first five types of input were described pre-
viously in the discussion of the Editor Monitor. A de-
~ scription of the oct instruction or patch card follows.

OCT Card
The format of the ocr card is as follows:
1 78 16 . 73
loada [*] OCT patchy,patchs,...,patchn’ [serial]

The ocr card is convenient for changing existing
programs in absolute format without reassembly.
The content of columns 1-6 is:

loada

This is the octal location at which the first data word will be
overlaid or inserted. :

Column 7 contains an asterisk if the oct card and the
name of the phase it affects are to be listed by Phase 1
of the Editor program.

The content of columns 16-72 is:

patchy, patch,, . .., patch,

These indicate -the patches for n consecutive data words,
starting with the data word at location loada; Fach patch is
separated from the others by commas and may consist of from
0 through 12 octal digits. If there are fower than 12 octal digits
in'a patch, the specified digits are inserted into the rightmost
positions of the data word; the leftmost positions are-filled ‘with
zeros. Consecutive commas (a patch consisting of 0 octal digits)
result in a patch word that contains only zeros. Thus, up to
58 patches may appear on one OCT card. k

Serialization, if present, is checked on the parameter
cards as well as on the binary change-cards. A blank
serial field tefminates one serial check and begins
anothier. Cards that are out of sequence will be noted
on the system output unit during Phase 1; however,
they will be used. SR ; .

‘An example of a typical ocr card follows:

1 g .16

11325 OCT 05000041 0351,007400410102,
77777,,0,400000

This ocr card would be used to insert-a cLa instruc- -
tion, a Tsx instruction, and four parameters into six
consecutive data words, starting with -octal location
11325. The following shows the octal location and the
contents of each patched word: T '

11325 050000410351
11326 . 007400410102
11327 000000077777 .
11330 000000000000
11331 000000000000
11332

.~ 000000400000

Preparation of Prograrﬁs to be Edited

Programs that are not assembled by the Macro As-
sembly Program must be pre-assembled in- absolute
column binary format. The System Editor does not
consider relocation schemes. The relocation of Macro
Assembly- Program output is performed solely by the
Loader, except in the case of subroutines to be. placed
in the Subroutine Library (IBLIB).

Programs must have a means of indicating the point
to which control should be transferred after they are
loaded by the System Loader. This may be accom-
plished by the transfer card produced by the Basic
Assembly Program when the symbolic name of the
entry point appears in the variable field of the Exp
card. Determination of the entry point of a Macro
Assembly Program output deck is accomplished by

- the Loader through inspection of the control dictionary

for that program or inspection of the seNTRY control
card. The Loader passes this information to the Editor
program. The sENTRY card is omitted in input to the
Subroutine Library. ‘ : :

An object program that is not in a format acceptable
to the Editor Monitor, but which must be included in
the System Library, can only be added by use of the
pup card. Blocks are copied from the pup input unit
onto the new library unit without alteration in format.

If the programs to be edited onto the new library
unit are in a source language that can be translated
by the Processor, in the Macro Assembly Program
binary output card format, or in a format that can be
treated by a processor that the installation has added
to the System Library, the programmer must provide
the control cards normally required by any of these.

System Editor 29

For example, he must prepare- $SIBJOB, SIEDIT, SIBFTC,
sFiLE, and SENTRY cards. In the case of the Macro

Assémbly Program output, he must ‘ensure ‘that .the
SIBLDR, $CDICT, $TEXT, and sDKEND cards (and possibly:

the sENTRY card) ate present in the deck.

" If a sporcr card is encountered during any edit run,
this card andfthe' subsequent debugging dictionary
will be ignored by the Editor; they will not appear in
the phase on the new System Library. R

Symbolic Unit Assignment. PR
If:symbolic channel assignment or symbolic unit refer-
ence is used in an object program that is to be edited
into the System Library, the following points should
be noted: ‘ ‘ : -

1. If a symbolic unit reference is specified, the ab-
solute address of the Symbolic Units Table entry for
the unit is taken from the Nucleus corcr in the Sub-
routine Library at load time. '

- 9. If a symbolic channel reference, intersystem reser-

vation code, or “any unit” reference is specified, a
symbolic unit is equated to the reference at load time

and the absolute address for the unit is determined as

in point 1 above. However, a unit that is available at
l6ad time may not be available at execution time.

- 3. If label searching is specified and the mounting
option is not DEFER, the unit chosen is the one for which
the label on the device is suitable at load time. The
absolute address for the unit is determined as in point
1 above. : S o - :

- 4. If deferred label searching is specified, the unit
chosen is the one for which the label is suitable at
execution time. . . . A ‘ :

5. If NonE is specified, the Symbolic Units Table ad-
dresses of the primary and secondary units must be

placed in the appropriate fields of the file control blocks
‘before the file is opened. Subroutines are included in
the Subroutine Library to search for appropriate units.
One of these subroutines, s.scop, accepts as input any
of the unit specifications that are allowed on the sFILE
card or in the variable field of the FiLE pseudo-
operation, This subroutine converts the unit specifica-
tion into codes that can then be used as input to
other routines: A description of these ‘subroutines is
given in AppendixC. -~ '

Exumples qf'Eidlif Runs

Edit RunforDisk R A
‘Figure 13 shows the method of editing the System
‘Library onto disk storage. It includes the control
cards needed to format'a 1301 Disk Storage unit
_before " editi g, as well as those needed to edit the
“system onto the disk. The following points are assumed:

30

‘1. The Nucleus-of the master- library has been re-
assembled so that s.suB1 is attached as a disk unit. -
‘2. The system wag initially loaded from s.su19,a tape

 unit, using the special initial start procedure for load-

ing the system from a unit other than s.sLB1 (see
the publication IBM 7040/7044 Operating System
(16/32K): Operator’s Guide, Form C28-6338). This will
cause an automatic switch of s.sLs1 and s.s019.

YR ARET SRR PE (- ey S
$DATE 01/29/65
$EXECUTE = 1BUTL

1BUFBW 5.5U19/0-99/01/465
TBUFHW Z/0-3999
$1BSYS)
$IBEDT $.5LB1,5.5U19
$ENDEDIT ’
$18SYS
$STOP

Figure 13. Editing the System onto Disk

Inserting o Program Into 1he’LibrarY

Figure 14 shows the control cards needed to edit the
system sysx, composed of the phases LoG1, LOG2, and
comp, into the System Library. The new System Library
is written on utility unit 6. After the system has been
edited into the System Library, it may be called by
means of the sexecuTE card. :

8 16

 ;5.5U06 e
CALLS ~ LOG1,L0G2,COMP
INSERT LOG1

1
$1BEDT
SYSX

‘v&22;wogbiABSQLUTE.COLUMN‘BI&ARY DECK)
INSERT LOG2 .
(22-WORD ABSOLUTE. COLUMN. BINARY DECK)
;NSERT comp
(22-WORD. ABSOLUTE. COLUMN. BINARY DECK)

$ENDEDIT .

Figure 14. Inserting a Program into the Library

Replacement Using Symbolic Editing : :

Figure 15 shows the method of editing a source lan-
guage program, in this case a MAP language program,
into the System Library. Since the phase PHz98 is re-

" placing a previously existent phase, there is no need

for another ¢aLLs parameter. The LABEL option indi-
cates to the Editor Monitor that it must check the

first word of the master System Library for the values

corresponding to version 3, modification 19. The 2 -

“in the t_hirdf subfield of the LABEL argument indicates
" that the master System Library is on two devices. The

mbdiﬁcqti'oﬁ number 20 will appear on the new System
Library. The Input/Output Label System checks the

retention date in the label on the unit used for the new
System Library.

Although two master library units are 1ndlcated the

new System Library will be created on only one unit.
- A REMOVE EOR parameter is included to cause the re-

maining contents of the two units to be combmed on
one new library unit. - : .

The Editor Monitor, finding the SOURCE option on
the siBEDT card, causes the edit file to be stacked ini-
tially with the REPLACE parameter. Control is released
to the Processor to prepare a machine language version
of the source program puz9s. The Processor Monitor

calls the Macro Assembly Program to assemble the

program, directs the Loader (1BLDR) to place an abso-

lute machine language version of the program on the

edit file, and returns control to the Editor Monitor.

1 8 16

$IBEDT LABEL(3,19,2,1),SOURCE
REPLACE PHZ98

$1BJOB PHZ98

$FILE PHZ98 'FILEA',U00

(SOURCE LANGUAGE PROGRAM 1N THE MAP LANGUAGE)

$ENTRY PHZ98
REMOVE EOR
SENDEDIT

Figure 15. Replacement Using Symbolic Editing

Modification Using Symbolic Editing

Figure 16 shows the absolute source method of editing
for system modification. The example illustrates how
a routine for initial start processing can be inserted
after the Nucleus.

8 16
SOURCE

MODIFY 1BNUC

$1BJOB

$IBMAP IBHOUR ABSMOD

1BXIT BOOL 7157

ORG IBXIT

1
$1BEDT

ABSOLUTE LOCATION OF IBXIT

TRA IBTIM OVERLAYS INST. SWT RUPSW
ORG 7647 LAST LOCATION + 1 OF HOUSE-
#® KEEPING IS S.SCBL + IBS15 + 1

IBTIM EQU
(ROUTINE IN MAP LANGUAGE)

SWT RUPSW

RESTORE OVERLAID INST,
TRA IBXIT+1
TRA IBXIT+2
IBMVE BOOL 6246 START OF HOUSEKEEPING
END I1BMVE
$SENTRY
$ENDEDIT

Figure 16. Modification Using Symbolic Editing

The Assembler produces a standard entry point for
every deck it assembles. Since the deck that is being
assembled, in most cases, will not have thé same entry
point as the system record that is being modified, the
entry point of the system record is designated by plac-
ing a symbol in the variable field of the Exp card.

. The origin of the. modlﬁcatlon (specified in the vari-
able field of the ore pseudo- -operation) must be the
ﬁrst]ocatxon at Wthh the mod1ﬁcat1on is to be placed.

lnsertmg a Relocafable Subrounne

Figure 17 illustrates the insertion of a program into
the Subroutine Library (mrm) and the removal of a-
program already in 1BL1B. The LIBE parameter speci-
fies the library name and the format of the cards. The
siBEDT card does not contain the NOSOURCE option
because the Editor program processes the map binary
decks and control cards itself when a run affects only
the Subroutine Library. In this example, the master
System Library is on s.suo7, and the new one is chosen
by the Editor since it is unspecified.

1 .8 16

$IBEDT 5.s5007
LIBE IBL1B, IBMAP
INSERT DECKXY

$IBLDR DECKXY
$CDICT DECKXY

CCONTROL. DICTIONARY. FOR. DECKXY)
S$TEXT
(BINARY TEXT FQR .DECKXY)

SDKEND DECKXY
REMOVE
LIBEND

SENDEDIT

DECKPQ

Figure 17. Inserting a Relocatable Subroutine

Adjustments After Reassembling the Nucleus

If the Nucleus or a relocatable program used by the
Processor, such as the Input Editor or the Output
Editor, is reassembled and system symbols are re-
defined, all subsystems may require reloading to adjust
their references to the changed program. The sub-
routines with their revised references must be in-
serted into the Subroutine Library (1BLiB), and the
Control Section Name List and the Dependency Name
List must be regenerated. After the library has been
revised, it is possible for the Loader to reload the
subsystem programs that are affected by changes,
e.g., to the Nucleus, with the altered locations of entry
points, and data, properly adjusted. .

A pause may be made with the spause card if not
enough input/output devices are available to allow
a device to replace the one containing the original
System Library. It is possible in two (uninterrupted)
runs to obtain a properly reloaded System Library. A

System Editor 31

similar situation arises when a revision to the input/

output editors necessitates an- edlt run to reload certain

system programs.

The sswrrcH card is used to sw1tch the hbrary func-
tion with a utility function; the only changes onthe
first. newly ‘written System Library are the record
counts of various Table of Contents entries and the
1BLIB, SRNAD, and 1BREL logical records. Upon determin-
ing that the s.sLB1 function is being sw1tched, the:
Supervisor reads in a new Index and Table of Contents, -
a new IBSUP phase, and. resets the contents of location -
s.spEx. The Loader on the new System- Library re-
locates those systems programs within the second edit
deck, against a revised 1BLB. At the completion of the
edit run for the second deck a new: System’ Library,
containing a new Nucleus and a properly adjusted

subsystem program, is ready for testing. -

Inserting o Source Languuge Subroutine

" Figure 18 shows the input deck used to insert the
relocatable subroutine ARCTAN into the Subroutine
Library. The Editor Monitor passes control to the
Processor to translate the FORTRAN source language
subroutine and stack it on the edit file in relocatable

format. After this edit run, arctan will be the first -

subroutine in the Subroutine Library. Since the Loader

(1BLDR) is not used on.decks to be placed in the Sub- -

routine Library, the senTRy card is not used. Instead,
the sjEpIT. card feturns control to the Edltor Momtor

1 8 16

$DATE 12/31763
$J0B ’
$1BEDT SOURCE
REMARK '~ SYMBOL1C - LIBRARY “UPDATE -
LIBE : .)
INSERT ~ARCTAN: -
NOGO

ARCTAN

$1BJOB
$1BFTC

(FORTRAN.STAIEMENIS-EOR:AREIAN:SUBROUTINE)

$UEDIT
LIBEND *
$ENDEDIT
$1BSYS
$J0B

.. .NEXT J0B...

Figure 18 Inserting a Source Language Subroutine. '

Inserting a:New Subrouﬂne Library

Figure 19 shows the input deck used to msert the new
Subroutine Library 1£p8G for the Debugging Processor.
The carLs cards causes the three names IEDBG, SRNDB,
and IBDBG to be added to the Table of Contents. These
names are counterparts of 1BLIB, SRNAD, and IBREL in
the Subroutine Library mLis. After this edit run, IEDBG

32

W1ll appear -after phase 1BDEF of the Debuggmg Proc-
essor.

1 8 16 ;
SDATE 1246764 -
$JOB
- SIBEOT -
DEBUG = CALLS IEDBG.SRNDB.IBDBG
AFTER IBDEF :
SLIBE . - IEDBG’
o7 (DECKY :
‘LIBEND-
,sENBEDIT
- $185YS"
$STOP: -

Figufe 19. Insertihg New Subroutine Library

Inserfmg cl Chmn Program

* Figure. 20 shows the procedure to be followed to insert

a chain program into the System lerary

SDATE

$J0OB INSERT MAINAM ONTO SYSTEM
$1BEDT - NOSOURCE =~ :

MAINAM ~ CALLS MAINAM,LINKI, LINKZ, ..., LINKN
: AFTER” SUBR
RE INSERT MAINAM

$1BUOB -PROGR NOSOURCE

$CHAIN MAINAM

$ENTRY

S$LINK LINK1

SENTRY’

SLINK LINKN®

SENTRY
- $ENDCH

SENDEDIT.

$1BSYS:

$STOP

Flgure 20. Insertmg a Chain_ Program

The program should then be called as follows

$DATE -

$JOB

$EXECUTE MAINAM

SIBSYS -
$STOP ; T

| Special Considerations

Because of the simulation of scatter-loading of System
Library programs, the Editor program must end a
block whenever there is a break in contiguity within
the edited program. Such breaks occur because of Bss
areas, new origins, etc.- Thus, to avoid unnecessary
interrecord gaps on a tape library unit, or poor usage
of disk track space, depending on the programs edited
into the System Library, it might be practicable to re-
place Bss areas within the program data length by
words of zero. For Bss areas: appearing after the data
length of the program, no problem arises.

It might be desirable to patch an-existing, prevmusly
loaded program by inserting a: one-word overlay. If

this one-word ‘overlay ‘is ‘contiguous wrth ‘data in the
program, no problem arises. However, if the one-word
overlay is not contiguous with other data, a new block
will be created for this single word Since all blocks
must.be three words or longer, a zero word will be
appended to the data word by the System Editor.
Such a block would cause a word in the overlald pro-
gram to be lost, since the System Loader saves only
the single word overlaid by the cham word.

To avoid this problem, such a one-word overlay
should always be lengthened to two words by also
overlaying ‘the word following the originally desired
overlay address. This would bring the data block,
plus the chain word, up to the standard block length
and no zero word need be appended

Interface with the Processor

Upon enéountering SOURCE .0r NOSOURCE on the SIBEDT

card, the Editor Monitor prepares to pass control to
the Processor to have the input to the Editor program
preprocessed that is, compiled, assembled, and, if
necessary, relocated. The Editor Monitor defines the
- edit stack file as described in the section “Editor Moni-

tor,” turns the edit ﬂag bit on in location s.sFLg, and

initializes. the Nucleus commumcatron word $.EDUN,

Then, the monitor copies all cards from s.sivi- onto
the edit stack file, except Processor control cards such
as those processed by the Loader or by the FORTRAN
and cosor compilers. The Processor control cards are
indicated by the presence of a siBjoB card immediately
after the Editor parameter card nammg the phase to be
replaced, inserted, or modlﬁed

Upon encountering the smBjos. card, the Edlt()l' Mon-
itor allows the Processor to gain control of the system

input unit, s.sivi. The Processor then causes ‘the ma-

terial affecting the specified phase to be converted and
_ Placed on the edit stack file, immediately after the

Editor parameter card. Following this stacking by the

Processor, control is returned to the Supervisor by

means of a control card, sjeprr, which is placed in:

s.savE by the Loader (IBLDR) This card causes the
Supervisor to return control to the Editor Momtor
which recogmzes that -an edlt stack file is bemg pre-
pared.

The Editor Momtor then sets'a swrtch in the Super-
visor to cause the card—readmg routine, IMRET, to re-
enter the Editor Monitor when a binary card or a Bcp
card that is not a'$ card s read. Such cards are stacked
on the edit stack file.” Control is given either to the
Processor, because a sBjos card follows an Editor
parameter card, or to the Editor program, because a
sENDEDIT card is found. When the last control card is
encountered, the edit stack file is closed and rewound,
* and control is given to the Editor program through

s.sLDR. Phase 1 of the Editor: program now reads the
edit stack file instead of s.s1N1, and editing proceeds as
usual e

$JEDIT Card

‘This card is used to terminate each SOURCE insertion

or replacement that affects - the Subroutine Library.
This card is also generated by the Loader after the
Loader has stacked all material for a phase to be
inserted or replaced in the System Library. Upon
reading this card, the System Monitor transfers control
to the Editor Monitor which processes the Edltor con-
trol or parameter card

Special Cohditions ;

To cause the Editor Monitor to enter a monitor other
than the Processor Monitor, the $ control card for the
particular monitor must be entered in the Recognizable
Control Card Table for the Supervisor. During an edit
run, the presence of the $ control card after an Editor
parameter card causes control to be given over to the
specified monitor,

Further modlﬁcatlon may be. effected by causing
the Editor Momtor to recognize options other than
SOURCE or NOSOURCE on the siBEDT card and by trans-
ferring to the necessary routines to operate with the
new .monitor. The list limited by symbols mesa and
mesB should be expanded to include the new option
and the entry point to the new subroutine. If the new
monitor accepts the opening and stacking by the
Editor Monitor of the edit stack file, and the setting of
bit 24 of s.sFLG, the only change required is the addi-
tion of the new monitor’s control card and entry point'
in the Recognizable Control Card Table for the Super-
visor. In this case, the appearance of NOSOURCE on the
siBEDT card is sufficient to accomplish proper preproc- -
essing for the edit run.

Editor Program Off-Line Messages

The following messages are listed off-line on s.sout.
Any one of the three action messages below may be
appended to the message text.

1. Condition ignored — indicates that' the error
(check sum error, etc.) is accepted.

2. Condition cannot be ignored — indicates that edit-
ing proceeds by deleting the erroneous data (invalid
parameter card, etc.).

3. Edit terminated — indicates that the edit run is
stopped and that control is returned to 1Bsup.

If no action message appears, the message comes
from the Editor Momtor
11500 ° BEGIN EDIT

This message is typed and control is transferred to Phase 1
of the Editor following . opening of - the input/output devices

System Editor 33

and’ interpretation of the $IBEDT .card. This message also-ap-

pears following possible use of processor programs for specral,

preprocessmg of edit input.

11501
XXXXXX

This message is typed when the Editor Monitor temporarily

releases control to the Supervisor for reading and routing of -a
System Monitor control card, such as a $IBJOB card, because of
the SOURCE-NO SOURCE option (or a similar opt10n) on the

$IBEDT card. For: example, the $IBJOB card causes control

to pass to a Processor component. to-compile, assemble, and/or
load the phases to be edited. So that it mdy be saved for
future use, the edit file is identified by means-of the EDTFIL

(nn) option of the $IBEDT. card. Message number: 11500 is.

typed when the $ENDEDIT ecard. is read, and- control is
transferred to the Editor program.

11502 PREPROCESSOR DETECTED ERROR

One or more errors that would cause deletion of execution
in a non-edit run have been detected by IBLDR and/or:IBMAP
during edit preprocessing. The specific error(s) is listed on the
system output unit. This message wrll always be followed by
message 11541.

11503 $.8U01L NOT AVAILABLE;’ NEWLU IS xxxxxx .
‘The new libraty unit was not ‘specified in the $IBEDT card.

Since ‘S.SUOL is reserved, xxxxxx is the unit chosen for the d

new library unit.

11504 =xxxxxx F IELD IN ERROR OPTION IGNORED

This message is typed when an option on'the $IBEDT card
is not valid. For example, -this-message would be. used if
the LABEL option specifies six new library units or if the speci-
fied new library unit duphcates the edit stack ﬁle

11505 ILLEGAL PABAMETER XXXXXX
xxxxxx is the contents of columns 8-13 of an input card that
is niot a valid Editor parameter card. The edit run is terminated.

11506 DUPLICATE PHASEr NAME, NEW:PHASE OF
“sxxxxx’> SKIPPED, -, CONDITION CANNOT BE
IGNORED .

_ The specified phase name, xxxxxx, on an INSERT “card al-
ready exists within the System Lrbrary and cannot be re-entered.
The phase already in -the library is. retained; the mput phase
is ignored.

11507 CHECK SUM ERROR CARD NO xxxxxxxx
o ’CONDITION ICNORED
11507 ~ CHECK SUM ERROR IN PHASE XXXXXX, LOAD
ADDR=xxxxx, CONDITION IGNORED :
11508 CARD ORDER ERROR, Xxxxxxxx, CONDITION

IGNORED
Card serial numbers in columns 73-80 are not in sequence.

11509 PARAMETER CARD: SEQUENCE ERROR, OPER:
ATION - ‘xxxxxx’ - ON ‘yyyyyy RESEQUENCED,
CONDITION IGNORED

The ordér of phase alterations in the edit run 1nput should be -

in the same order that the phases appear in the System Library.
If the order is different, the.Editor. will resequence the input
phase alterations to agree with the phase order in the System
Library, as shown in IBTOC. To accomplish the resequencing,
Phase 1 of the Editor will start a sort sequence; thereby slowing
the speed of the edit run. Parameters affecting the Subroutine
Library must be in the same order as the subroutmes w1thm the
library.

11510 xxxxxx DOES NOT EXIST CONDITION CAN-
NOT BE-IGNORED -
. A REPLACE,. REMOVE, or MODIFY parameter carmot

affect a phase name not alréady within the System Lrbrary

11511 ILLEGAL DUP OPERATION ‘xxx... . xxx, CON-
DITION CANNOT BE IGNORED :
Certain DUP: requests. (e;g., *S.SLB1;S. SLB2 ‘4’) canniot be
processed; they are deleted from the edit run.- g

34

BEGIN EDIT - PREPROCESSING, . EDIT FILE(

~INVALID LOAD ADDRESS FOR OCT - ‘xxxxxx’,
S CONDITION CANNOT.BE IGNORED

‘An OCT patch card has an invalid character in the load-
address portion. The complete ‘card is deleted from the edit run.

11513/‘ INVALID CHARACTER “FOR 'OCTAL,
S Saoxooooasx - SET ZERO, CONDITION: CANNOT
% BE IGNORED
An OCT patch card has an mvahd character in its data -words
field (columns 16- 72) That data word 1s changed to ZE10S..

11514 ILLEGAL REWIND OF S. Sxxx,) CON{DITION

CANNOT BE IGNORED T

A REWIND operation (e.g., on the new library unit) cannot
be: accompllshed the: operation is-. deleted from the edit run.

11515 i BLANK CARD READ ' 'CONDITION IGNORED
11516 IBTOC 'CANNOT BE LOCATED ON OLDLU=
1 S Sxxx’, EDIT TERMINATED o

When an old hbrary unit; other thanS.SLB1; is spec1ﬁed on
the $IBEDT card, it must be searched for the Table of Con-
tents. The inability to find the Table of Contents, because of a

permanent input/output error or readrng a ﬁle mark termmates
the edit run.

11517’ “JLLEGAL PARAMETER FOR' LIBE EDITING
i “xxxxxx’,, CONDITION CANNOT BE IGNORED.
The parameter cards allowed between the LIBE and
LIBEND parameters “do not include MODIFY, sysnam RE-
MOVE; DUP, ‘or REWIND The parameter card is - deleted
from the ‘edit run..

11518‘ * “ENTRY POINT FOR PHASE ‘xxxxxx: MISSING,
.. ZERO ASSUMED CONDITION, IGNORED .

A transfer card or an MZE record (from IBLDR) was not
read beforé the reading of a parameter card, The Editor sup-
plies‘a phase on the new library unit whose entry ‘point is zero.
As exception is made for the MODIFY paraineter,. this may be
altered by a_ later run using the 'MODIFY parameter, whlch
contams only a transfer card.”

11519 UNEXPECTED PARAMETER CARD READ
L CONDITION CANNOT BE IGNORED (or EDIT
% ~TERMINATED) .

If Phase 1 reads, for example; two REPLACE cards with no
data between them, the first REPLACE card is deleted, and the
phrase CONDITION' '‘CANNOT BE IGNORED is appended
to the message. Phase 2: terminates: the ‘edit run, as this condi-
tion. is probably caused. by a machine error. The TODER rou-
tine of IOOP is used to 1ndlcate the probabrhty of 1nput/0utputv
error conditions. -

11520) UNEXPECTED BINARY RECORD READ, CON-
: - DITION CANNOT BE IGNORED (or EDIT
TERMINATED)

) Phase lor2 expects a parameter card but reads a bmary
card or load record (from IBLDR). If this occurs in Phase 2,

115'12 :

_the edit run is terminated, as it is probably a machine error. The

IODER routine types.an error message.

11521 UNEXPECTED EOF ‘READ, CONDITION CAN-

NOT BE IGNORED (or EDIT TERMINATED)

Phase 1 .or 2 expects data, but reads a file mark.. IODER also

types an érror message specifying the unit in error. If this occurs
in Phase 2; the edit run i$ terminated. P

11522 “cx...xx¢ WAS READ, IEOR/lEOF EX-
: sEEA PECTED EDIT TEBMINATED :
' Phase 2 _expects a trailer:label after the file mark on. the old

hhrary umt but reads somethmg else.

11523 xxxxxx . NOT IN TABLE OF CONTENTS CON-
‘DITION CANNOT BE IGNOP\ED (or EDIT
TERMINATED)

“All phases to be ‘edited into the ‘System Lrbrary must appear
on a CALLS parameter to be entered in the Table of Contents.

For example, any INSERT parameter that specifies a phase that
is not on a preceding CALLS ¢ard or in the Table of Contents is

deleted from the edit run. A phase being duplicated onto the

new library unit may also cause this error.

11524 ILLEGAL DEVICE TYPE, S.Sxxx, EDIT TER-
MINATED ,

The ‘unit-type- indicator in the system control block for-the
unit S.Sxxx ‘shows ‘that the unit requested for editing may not
be used. Forexample, the card reader cannot be the new library
unit. The TODER routitie types an error ‘message similar to this

off-line message.

11525 PROBABLE MACHINE ERROR AT LOC xxxxx,
. -EDIT TERMINATED :
See hstlng at octal location xxxxx for the condltlon that

caused this message.

11526 OLDLU PHASE READ xxxxxx, EXPECTED yyyYyy,
EDIT TERMINATED

The Subroutine Library Edit routine expects one of its three

phases (IBLIB; ‘SRNAD, ‘or IBREL), but: reads another phase"

11527 xxxxxx DECK SEQUENCE ERROR CONDITION
CANNOT BE IGNORED

- The Subroutine Library Edit routine requires the ‘relocatable

MAP decks to be in sequence number order; also, the $ con-

trol cards must be in the order $IBLDR $CDICT $TEXT

and $DKEND. - .. RN

11528 xxxxxx DUPLICATE DECKNAME CONDITION
'~ CANNOT BE IGNORED =

The Subroutine Library Edit routine canriot insert the name

of the duphcate relocatable subroutine; the mput deck 1s deleted.

11529 - UNEXPECTED $ CONTROL CARD ENCOUN-
' TERED, EDIT TERMINATED -

" The Editor has read a' $ card which it cannot process ThlS
$ card is placed in S.SAVE for interpretation by the System
Monitor, and the Editor transfers to the System Dump program,
which skips to the next job.

CARD'CENERATED FOR LIBRA,RY.ROUTINE;
CONDITION IGNORED

The Editor has found the $DKEND or LIBEND card to be
missing from the edit run input and has attempted to supply
the proper card in order to continue editing.

Note: Further meamngless error messages ‘may’ result from
“this attempt. ;

11532 ILLEGAL xxxxxx EOR REQUEST CONDITION
o CANNOT BE IGNORED
‘The symbol xxxxxx is either REMOVE or INSERT ‘No more
than the: assembled - limits: of: S.SLBx units ' may. be created
~ by INSERT EOR; no more EOR trailer labels can’ be removed
than already ex1st

11530 '

11533

IMPROPER LIBE INPUT — REMAINING DECKS
IGNORED. CONDITION CANNOT BE IGNORED.
An error is present in the Editor input that follows the

- LIBE card. The efror may be either of the following:

1. The order in which subroutines are specified in the
input deck does not correspond to the order of the subroutines
in the library.

2. A subroutine specified on a REPLACE, REMOVE or
AFTER card is not contamed in the library.

11534 : SECONDARY xxxxx NEEDED BUT UNSPECI-

..+ FIED, EDIT TERMINATED. .
©UXXXXX S elther NEWLU or OLDLU. ThlS message is pro-
duced ‘when the input to an ‘edit run requires a- secondary unit
but the secondary unit has not been specified. :

11536~ 1BTOC ENTRY REMOVED -FROM TABLE OF
‘ - CONTENTS;, CONDITION CANNOT - BE IG-
NORED .

“The IBTOC entry in the Table of Contents may not be
removed “either by a phase REMOVE - card or a subsystem
REMOVE card. The edlt is terminated.

11540 xXXXXXXXXXEX EBROR ON SSxxx nrinnn EDIT
TERMINATED
The twelve x’s indicate the type “of mput/output error.
nnnnn is ‘the device address.

11543 UNRECOGNIZABLE INPUT TYPE ENCOUN-
" TERED, PHASE xxxxxx NOT PROCESSED, CON-
DITION ‘CANNOT BE IGNORED
-.The binary "data following- an: Editor parameter card is not
of a form directly acceptable. to the Editor. The data and the
parameter card are deleted from the edit run.

11544 NO MERGE DEVICE ‘AVAILABLE, CONDITION
CANNOT BE IGNORED (or EDIT TER-
MINATED)

In certain cases, Phase 1 of the Editor: must sort and merge

. the input for a phase, or must attempt to resequence the input

phase order. If no merge device (new library unit) is avail-
able (since it might be the edit file at the moment), a merge
requirement will terminate the edit, while:a resequence condi-
tion will result in merely droppmg the: out-of-sequence phases(s)

11545 = :S:SUxx CANNOT BE USED FOR MERGING -

Phase 2 of the Editor must perform a_duplication pass to
insert an updated Table of Contents into the new System
Library. S.:SUxx, the work unit to be used for this pass, cannot
accept’ the records from the new: library because: their block size
is too.great. The edit - run is terminated.

‘11549 EDIT COMPLETE — NEWLU xxxxxx, AND YYYyyy
The edit run has been completed, xxxxxx is the primary
NEWLU, and the secondary NEWLU 1f apphcable, is indi-

cated by yyyyy

System Editor 35

System Monitor

The System Monitor provides for continuous machine

processing of jobs that require subsystems ‘of the BM

7040/7044 Operating System. It accomplishes this by

providing a constant area of core storage, the Nucleus,

for communication of information from subsystem to

subsystem. A supervisory routine, the Supervisor,
processes System Monitor control cards.to change the
core storage environment; symbolic unit assignments,

- and the input/output device configuration and to pass
control to the subsystem or program required by the
next application. An Input/Output Control System and
several routines in the System Momtor are also pro-
v1ded for the user.

The Nucleus

‘The Nucleus contains the data and tables that must
be passed from: subsystem to .subsystem and routines
that may be useful to any.object program. The contents
of the Nucleus may be divided into the following | func-
tlonal sections:

Words allocated for machine use

. System transfer points

. System data areas

. Control blocks

. Other tables -

Nucleus routines

. Lower levels of the Input/ Output Control System

Flgure 21 shows the appr0x1mate core storage al-
located to the Nucleus. -

The locations of the ends of 1oLs and 10Bs may be
greater than indicated if core storage protection is used
by the System Monitor: Neither 10Ls nor 10Bs is storage
protected; the erasable portion of 1oLs and all of 10Bs
must follow the end of storage protection.

Lower storage is reserved for communication words
and system routines of the Nucleus, 10Ex, and 100P1.
100p2, 10LS, and 10Bs may be overlaid by a subsystem
or an object program. The System Monitor restores
these whenever control is returned to it. The entire
Nucleus is defined at system assembly time and is as-
'sembled in absolute format.

{ ~1 O UL 0D

Words Allocated for Machine Use

The first 93 words of core storage are allocated to ma-

chine functions.

~ Trap Words

Locations 0-33 (0-415) are trap words initialized by the
System Monitor at initial start. They are used ‘to
transfer control to trap routines in 10EX.

36

Approximate)
Section Size
"IBNUC ‘
Machine Functions 93
Pointers and Data Words 120

‘ *Symbolic Units Table

*Unit Control Blocks

*System Control Blocks
(Unit record, Tele-processing,
magnetic tape, or 7740
‘input) .

- *System Control Blocks
(7740 output or

1 word/symbolic unit
9 words/device'
4 words/symbolic unit

8 words/symbolic unit

1301/1302/7320)
Nucleus Routines T 600
IOEX ! o -
-Basic Functions: 510

*Basic Functions Channel Tables 14 words/channel
. 1301/1302/7320 Functions 140
#%1301/1302/7320 Functions 4 words/channel (approx.
:, Channel Tables N 1.5 words/module)
Inferrupt Scheduler 150 3
*Interrupt S:heduler Channel
- Pushdown" Llsf

1 word/ehunne|
16 words/level (level =1BRSL)

Storage Protect ;: o .40
~ loop e .

- Header-. .. . , 320
Magnetic Tape 350

*%1301/1302/7320 : 500

***pit Record . 170
Telecommunications ' 349
4 Common ~) 120
10LS) ,

- Reel Processing : : 290
Labels . 360
System N 70

088 940

“*Variable, based on configuration. :
**IP'IND is' located at the end of the 1301/‘302/7320 sechon (|f
: present) or tape section.
***|P2ND is located at.the end of the Unit Record section.. This
section' varies, depending on the devices (e.g., 1402, 1403)
specified during system assembly.

Figure 21. Approximate Core Storage Allocation

A description of the content of each word is given
in Figure 22.

Evngineering. Words
Locations 34-63 (42-775) are reserved for engineering
use.

Load Area

Locations 64-92 (100-1345) are reserved as a read-in
area for loading. - :

Octal Inifialized to System Transfer Words
Location | Label - OP Address Description The system transfer words begin at location 93 (1354).
o BTEP - PZE - o Address word for floating They contain’ transfer instructions to entry points in
DI point overflow and un- the Nucleus routines, 10Ex routines, 100P, I0LS, and
i ‘derflow_traps_and STR 108s. - The first system' transfer word must be s.sLpr
) e frap .. because it is used as a reference point for the Restore
! VD 12/1XTPR Us:'ir;: reset 'he "up routine of the System Monitor. A description of the
CEE 19700 ‘When Interval Timer not content of each word is given in Figure 23.
Lo available . . -
: ...oor ‘ Label - . i:.OP Address Routine
, ETC 12/IXTPl _ When Interval Timer avail- - — - :
: . able : ORG IBNUC
" ETC 12/9 S:SLDR - 'TRA ‘IBLOD System Loader
2 * TRA IXTPR Transfer word for STR trap S.SRPT: SWT RUPSW Operator interrupt test
3 IBTDD -~ PZE 0 Direct Data trap words S.SDMP ~ BRAY IBDMP, , Dump routine
4 COOTRA 34 ' o _IBDMP
5 IBCLK - " PZE 0. Interval Timer Count S.SRUP TRA IBRUP System Monitor Recall routine
6 IBTH "' PZE 0 Interval Timer Overflow S.SRET. - BRA IBRET, , Return routine (if disk is not
‘ o trap words : IXTRL ‘assembled, the decrement is 0
7 TRA IXTPI When Interval Timer avail- S.SRST TRA IBRST Restart routine
) able o ' S.SCCR. - TRA ‘IBCCR Change ‘Communication Region
- or Lo routine
TRT* IBTTI . When Interval Timer not S.SIDR TRA. 2,4 Installation Accounting routine
S available: SXACT ™ TRA IXACT 10EX Active routine
10 - TRA n Transfer word for floating- " SXDAC. BRA IXDAC,, {OEX Deactivate routine
: point overflow and un-)) IXCON +. :
. derflow traps : IXCDX e .
15 TRT* IBTFP Transfer word for floating- S.XPRT TRA - IXPRT IOEX Print routine
' point overflow and un- SXPSE TRA IXOPP IOEX Pause routine
derflow traps R
12 IBTCA PZE 0 Channel A trap words S.XOY'A “ A TRA IXOCV +1 Binary to octal, address
.) o IXT00 . S.XOYI? TRA IXocv Binary to octal, decrement
14 IBTCB - PIZE 0 Channel B trap words S.XDVA TRA IXDCV+1 Binary to decﬁmul, address
15 ©rsL IXT00) S$.XDVD 4 TRA .- IXDCVY Binary to decimal, decrement
16 IBTCC -PZE 0 Channel C trap words S;XUCY‘ ‘ :TRA . lopev Ch:nge. UCUNI o display
T ey : ’ . . ‘ormat
17 : o TSL IXT00 S.SCKT TRA' 3,4 Checkpoint routine
20 IBTCD PZE 0 Channel D trap words) (Must be mmallzed by fhe
21 ~..TSL - IXTOO . s K L object program.)
22 IBICE - .PZE 0 Channel E.trap words SIOOP TRA I10POO . IOOP Unit Synchronizer
23 S TSE IXT00 S.TPBF TRA . ITPBF Tele-processing Buffer
24-30 e Assembly o;':tions and date ‘ . System (assembled only if
of assembly Tele-processing devices are
31 " Not used i ~ . _ attached)
32 IBISP _PZE. O Storage Protection frap SIOLS TRA ILS0O IOLS Verification and Creation
e . word o . routines
33 _ TRT*. IBTSP When Storage Protection S.OPEN - TRA - - ISNOO 1OBS Open routine
not available S.OPNL- ~ TRA ISNO1 IOBS Open Llist routine
or SGETL ~ TSL -~ ISGPE IOBS Get logical Record
TRA IXTPS ‘When Storage Protection BC I routine 4
: *“available S.GETB TSL ' . ISGPE IOBS = Get Physical Record
34 RCT Restores trapping for SRS R . : routine
R Direct Data trap S.PUTL © .~ TSL ISGPE IOBS Put Logical Record routine
35 _TRT*J 1BTDD . S.PUTB TSL - ISGPE OBS Put Physical Record routine
36 IBTIR PZE 0 Interval Timer Reset trap SPLoC TSL ' ISGPE I0BS Put Locate routine
T R words S.CISE TRA 15C00 10BS Close routine
37 TRT* IBTIR When Interval Timer not S.CLSL. _ TRA. 1sco1 I0BS Close List roytine
T available S.BSR TRA 1SBSB IOBS Backspace Record routine
O S.WEF. . TRA . ISWEF 10BS Write File Mark routine
TRA - IXTPL When Inferval Timer ‘avaik S.REW . - TRA. ISREW 10BS Rewind routine
- ’ “able . e S.FEOR.- 'TRA "~ ' ISFER I0BS Force End-of-Reel routine
40 IBTPA ~ PZE - 0 - Storage Parity trap words S.CKPT ~“TRA . 'ISCPT 1OBS Checkpoint routine
41 - CTRA L AXTRPY T S - S.BDMP - EQU " 'ISDME I0BS Error Roufine’
Figure 22, Trap Words - Figure 23. System Transfer Words

System Monitor 37

CONTENTS DESCRIPTION

causes ‘an on-line mes-
sage to be typed when
a $STOP. card-is read.

The next group of words provides information con-
cerning the location and length of the tables within the
‘Nucleus. These symbolic locations can be considered
to be pointers to these tables.

Constants - | * ’ : . SYMBOL - CONTENTS DESCRIPTION
The followmg data prov1ded by assembly parameters S.SUBC .PZE IBUCB,,CHE5 This word points to a

System Data Areas o . SYMBOL

System data areas are classrﬁed as follows:

1. Constants set from system assembly parameters

2. Variable data set by subsystem components for
communication to other components

3. Tables describing the. loglcal and physrcal orgam-
zation of the system

is stored in this region: table delimiting the
SYMBOL - ¥ CONTENTS
S.SLVL - PZE nn,;mm

DESCRIPTION
This word: contains the -
*‘version number, mm,
.and the level number, !
~nn, of this:system.:
_These are the limits of
core storage- available
" to object program.
"IBORG+1 equals -
"IPIND or S.SORG,
‘whichever i is the greater

S.SCOR PZE S.SEND,,
IBORG+1

unit control blocks.
This table contains one
word per channel and
has the following for-
mat:

PZE lucbhx,,lgx
where Igx is the number -
of words required by
the unit control blocks
for a specific channel, x,
and lucbx is the loca-
tion of the first of these

LR * value. : ;
$.SCSN - PZE ‘ILEND,, ILEND is 1 plus the Plocks. IBUCB is the

ISEND last location of IOLS.
; ISEND is'1 plus ‘the

. last location of IOBS.
‘The sign bit of this
word indicates the set- -

S.SPND VFD l/IFSNS
ETC ' 1/SHARE
ETC 16/LABELS
ETC 18/IP2ND+1" Nucleus as follows:

. , + IFSNS is 0
o —IFSNSis1 =
The value of SHARE
indicates which set of
data control characters
is’being used. .
T LABELS" indicates
_whether or. not the in-

_ stallation uses labeled
storage media as . fol-
lows:

0—Label creation
and verification routines.

“do not exist on “the
System Library.

I-Label creation
and verification routines
are on the System Li- -
brary, but. blank reel
‘header labels are mnot -
verified.

:"2-Label creation
. and verification routines
-exist on the System Li-
brary and all output
reels must be checked
““for purge dates.
IP2ND+1 is the last

- -location of IOOP2. .

S. SCMX PZE MXCLK s .. MXCLK is-the value to

NTRES which the interval timer
should be set. The value -
“is the maximum num-

‘ber of minutes that a

ting of IFSNS in the"

S.SSBC PZE IBSCB,,CHES

S.SUNI PZE S.SU00,,n

S.SLTC PZE IBLTB,,
IBLTZ*3

S:SRCC -PZE 1BRTB,,
- IBRTZ*2

. SBSLA PZE ISLBL

CHES is the number of
channels. ;
IBSCB is a table in the
following format that
delimits the system
control blocks:

PZE lscbx,, lgx
where lgx is the num-
ber of words required
by . the system control
blocks for a specific
channel, x, and Iscbx
is ‘the location of the
first of these blocks.

- IBSCB is: the location

of this table; CHES is
the number of chan-
nels.

S.SU00 is the first of n

_number of utility units.

This:information is used
to assign a utility unit
to a program.

The address of the word
contains the location of
the first word in the

. Abbreviated Table of

Contents; * the decre-

~ ment gives the length

of this table.

The' address of this
word contains the loca-
tion of the first word in
the Recognizable Con-
trol Card Table; the
decrement . gives the
length of this table.
Pointer to IOBS label
area.

]ob may run. Vanable Data

NTRES Sontaing the The following variable data is used for communication
reservation code of the

- Interrupt unit for input among the subsystem components:

e during the - job inter- - : .SYMBOL -CONTENTS : : DESCRIPTION
o rupt procedure. - . . S.SDAT BCI 2mmddyy0yyddd The current date is

S.SPER PZE IBPER .. Percentofredundancies. ; . _stored here . from - the
: that, if exceeded, - $DATE. card or the

38

" SYMBOL © CONTENTS

S.SCLK PZE **

S.SCIS PZE **

S.SDEX pfx 1la,,In
pfn re

S.SCUR BCI 1,

S.SFAZ BCI 1,

S.S8SWI PZE ,,**

e ‘A]A)l'éZSéRVI"P'l."‘ION')
entry keys. It may be

used by any part of the

system. :

This word'contains the - -
.,.time of day at the time
when‘the interval timer -

was~last set in binary

format.. It is set by the
Supervisor before con- .

“trol “is -passed ‘to -any ~ -
subsystem. This_infor- "

mation-may be used by

“the -object program.
‘This is the last value to

which the clock was set

* by the IMTIS routine. |
This routine is_called . "~

by every monitor. be-
fore ‘any exit to‘a sub-

-System.
.~This. information is used
- by ‘the -Supetvisor, the

Editor Monitor, and the

Sort Monitor to read the’

Table of Contents from
the System Library. It
is .provided by the

~Supervisor at an' initial

start. Ia is the load -ad-
dress of the first block
of the Table of Con-
tents phase. In is the
number of words in

that block, pfn is the : :
number of the library’

unit, and re is . the
block number.:.

The name' of the .cur-
rent subsystem in con-
trol:is.- stored in this

‘location. S.SCUR'is set
to IBSYS by the Super-

visor -at system -assem-
bly. It'is reset by a sub-
system monitor when it
receives control,.When

control: is returnéd to -

the Supervisor, . it is
reset to IBSYS. It is

also “reset to 'IBSYS .

when_control is _given
to an object program:
S.SCUR is used by the

Systemy Dump program. -

This word is set” by
the System Loader
(S.SLDR) to. the name

of the ‘last phasethat

was loaded. “It-is -used
by ‘the System Dump.

S.SSWI contains one of
«the-following code
numbers, identifying

the subsystem in ‘con-
trol to the Supervisor.

1—The System Moni-

“tor, the -Utility

SYMBOL . CONTENTSs

S.SFLG DEC,,,,,,,,,
“DEC 5,555

SSAVE "DEC,,,,; 115450,

" SSCDI pfx %

| USPGCT pfx

_Monitor, the Up-

date program, and

the object pro-

gram i
2—The Processor
4—The System Editor
8—The Sort program

SSHDR BCI 3,

.DESCRIPTION =
Up . to 15 codes are
available to an installa-

-tion, This code is set by

each subsystem moni-

- tor. as it receives con-

trol.

These 20 flag words
contain information
that must be trans-
mitted from one part of
a processor to another.
(Figure 24 illustrates

‘the usage by the Proc-

€essor.)
These words contain
the next control card to

.be processed by the
“system when one of the
‘combined’ monitors is

not in ‘control. This
card was read by some
system part and was
stored in this location
for use by the S.SRET

- routine.

The sign bit of this
word indicates the pres-
ence or absence of a
card in S:SAVE as fol-

“lows:

—Card present.
+Card absent.
S.SCDI is set to minus

by the INSAVE - rou-

tine of the (Processor)
Input Editor, by the
close function of the

System Input Editor,

or by a routine of
-similar function in the

~ assembler or the com-
“pilers. The S.SRET rou-

tine - resets. it to ‘plus

"~when the card is used.

~ The decrement con-
tains one of the follow-
ing codes indicating the
reason for recalling the

- System Monitor:

1-Return without
the next card

‘2—Return” with the
next card

3—Initial start

4—Return for inter-
rupt -

This information is used

‘by the S.SRET "rou-
“tine and by the Sys-

tem Monitor.

-This word contains the

listing page count. The

. sign bit of this word is
. the list switch as fol-

lows:
.+the list switch is
on. - :

"~ —the list switch is -
 off. .

The switch is assem-

bled as —.

These words contain

the heading text from

the $JOB card.

System Monitor 39

Word Bit- - :Name: -~ Set by Used by Word ©Bit -~ “Name Set-by = - Used by
1 . S - SOURGEfag.. - IBJOB 1BJOB, IBMAP, “4 S Indicator for _* LDRPRE . IBLDR
’ L IBLDR, DEBUG $POOL chain ’ L
1 DECKflag ' IBJOB IBMAP, IBJOB 12 'Unspecified - o
2 -Stordge Mop . . 1BIOB IBJOB, IBLDR 317 ‘Number of LDRPRE 1BLDR ¥
fag. . $POOL cards -, .
- IBLDR IBMAP 18-20 . Unspecified . .
Reset for no 21-35 JBPCI “LDRPRE . IBLDR (this field
load by IBMAP HEDEES is the relative
IBCBC location of the
o “IBFTC first $POOL
3 GO flag “::1BJOB IBJOB, IBMAP, chain entry in
;o sl IBLDR B R o 1) :
Reset for 5 S Indicator for . . .LDRPRE IBLDR, DEBUG
NOGO $NAME chain. . L
‘by IBMAP 120 " Unspecified o
CIBFTC 21-35 JBNCI LDRPRE 7+ IBLDR, DEBUG
" IBCBC . - - (this field is the
IBLDR :relative location of
4 1OGIC flag - *1BIOB 1BJOB, IBLDR, the first $NAME
N IBMAP : “ chain ‘entry in
IBLDR L CICISB) -
Reset for no] S Indicator for LDRPRE IBLDR, DEBUG
IR load by 1BMAP $USE, OMIT "~ : :
5 . COBOL flag 1BJOB 1BJOB 120 * - Unspecified ‘
67 . 10CS flag 1BJOB IBLDR 21-35 JBUOI .- LDRPRE .. IBLDR, DEBUG
8 FILES flag 1BJOB, IBLDR IBLDR (this field is the
9 - load file flag = 1BJOB 1BJOB, IBLDR relafive location
10-12 d " Reserved :°’ the first $USE
13 - IEDIT flag 1B1OB JOBIN, 18J0B ‘or SOMIT chain
‘ © -..IBLDR IBLDR , oo . enfry in CISB)
‘14 SEARCH flag _ IBJOB JOBIN 78 ;‘i‘x;:':' for /IDRPRE = - IBLDR
15 OEDIT flag . 18JOB JOBOU 1.20 Unspecified R
, 1BLOR ©21:35 .. JBLC LDRPRE. IBLDR, S.LABL
16 - COPY flag ‘1BjOB IBLDR : 7 ahis field s the
-~ Reset for no ‘relafive location
. load by IBMAP of the first $LABEL
17 Punch ﬁle,’oper} IBSUP, JOBPP IBSUP, PCLOSE : chain entry jn
18 RELOC flag 1BJOB 1BJOB, IBLDR - CISB)
19 Loader called IBLDR iBJOB 8 H Replace (+) - IBEDT -+ IBLDR
. fag. . .. or insert (—) poEs : -
20 Preprocessor 1BJOB 1BJOB on edit
2 Interrupt uhit - 1-2 Unspecified
- for S.FBIN 317 Reservation 1BEDT IBEDT
22 .~ CHAIN flag 1BJOB -1BLDR codefor . ;. ; B
23 E _ Reserved primary newly
24 " 1BEDIT flag 1BEDT 1BJOB, IBLDR 18-20 Unspecified .~
T N Reset by ' 21-35 Reservation IBEDT 1BEDT
1BEDT code for 1:
-1IBCBC . secondary
1BLOR newl -
1BFTC 9 8§35 Unspecified”
. : IBMAP 10 S35 -IBDMP1 . IBDMP2
25 Obiect fime files LDRPRE IBLDR 13535 , o Wnspacified . o
26 Unload COPY _ IBJOB {BLDR 12 S35 Match $ Field 1BJOB - JOBIN.
file b INCLOS .
27 Output file open “JOBOU JOBPP, JOBOU 13§35 Maich - 18JOB JOBIN -
RIS JoBPP deckname INCLOS :
28 IBMAPT.O.C. . ‘IBJOB 1BJOB 1 Unspecified |
to. Nucleus 15 UP;’;:ig::
e e e 16 " Unspecifie of
» ':Elil'o‘c' fo " 18108 18108 17 $2 - Number of 1BEDT . IBEDTI,
30 IBCBCT.OC.fo - IBJOB 1BJOB ;. ot .
Nucless : 317 Address of 1BEDT ‘IBEDT1
s T - oLDLY Lo
o ,Lf:::ut‘qq":° sJop IrJ0B 18-20 Number of BEDT IBEDT] :
32 . LIBEDIT IBEDT IBMAP NEWLU's L e
33 SFBIA ‘1108 JOBIN 2135 Addres of IgeDt | 1BEDT!
opened with) NEWLY . i
o and | 18 S MAPfiag 1BEDT 1BEDT2
rewind 1 Discontinue IBMAP IBEDT
34 IEDIT Match - - INCLOS JOBIN edit flag JBLOR .. :
. S.SAVE fo . 2 l!nspecuﬁed IO
P : : ‘I;:;; Version number :JBEDT o " IBEDT2 .
B nspecified - ° - N
. 35 DLOGICfag . IBJOB 1BLDR 2135 level number: <. IBEDT 1BEDT2
2 S No separate .IBJOB 1BCBC 1 S2 Unspecified o E
LOADUN : 3.17 Core size . IBEDT . - IBEDT2 .
1-20 -Unspecified . (if specified) o -
21-35 " Compiler/ I1BCBC IBMAP (contains 18.20° " Unspecified .
- Map Unit + IBFTC - the S.SUNI ref- 2135 Maximum block . IBEDT: 'IBEDT1, IBEDT2
L] erence for the size of NEWLU ..~ - . O U
o < internal text file) 20 s2 Unspecified - . :
3 S indicator for LDRPRE IBLDR, DEBUG 3.17 Addiess of sec- IBEDT "~ [BEDTI
ciss) - ondary oldly o ; .
120 F "7 Unspecified 1820 - “Unspecified *
2135 JBCISB length LDRPRE IBLDR, DEBUG 2135 Address of sec: - IBEDT IBEDT1
-of CISB: ondary newlu - i

Note: WQrds 2:20 of S;SFLG are overlaid by IBLDR (in a GO situation) and Reload.

Figure 24.. Cpmuﬁicétion Flags

40

The next two words, containing information regard-

ing input/output operation, are set by 100p for use by

a calling program. The publication IBM 7040/7044
Operating System (16/32K): Input/Output Control
System, Form C28 6309, contains additional mforma-
tion.

SYMBOL . CONTENTS DESCRIPTIONi;
S.SSCH pfx **, ** This word contains the
. . : results of the last oper-
ation on an-input/out-
put unit. . The address
portion contains- 1 plus
the last location of the
data transmitted. The
prefix and decrement
contain flags indicating
the status at the end of

B . the operation.
S.SSNS : PZE ** %% ~ This word contains the
R : results of the last oper-
ation on an input/out-
put unit other than tele-
communications input -
devices.

The followmg words, containing information regard-
ing input/output operations, are set by the Input/Out-
put Executor (10Ex) for use by select plus and select
minus routines. - :

SYMBOL "~ CONTENTS ’ ' DESCRIPTION
SXTDT PZE ** , ** : The decrement of
- o ~ . S.XTDT -contains trap
“condition indicators de-
rived from the channel
trap. cell. The address
contains 1 plus the
) location of the inter-
S rupted program.
S.XSNS* BCI 2, These words contain
i the sense data obtained
by IOEX before each
entry to a select plus
routine or to a select
minus routine for an
operation that resulted
in an unusual end con-
' ' dition.
SXLTP PZE ** ** S.XLTP contains the
R) - position of the device
prior to the activity
: R that ended in a trap.
S.XSCH PZE - **, ** The address of S.XSCH
‘ : is equal to 1 plus the
location of the last
word that was read or
written. The decre-
ment contains the num-
ber of words remain-
‘ LE R ing.
SXTPS- pfx The sign of this word
: is set and interpreted
by the Input/Output
Executor as follows:
+Trap is not in prog-
"l ress; trapping -is .
not inhibited. .
~Trap is in prog-
ress; - trapping is -
inhibited. - .
S.XTPS is interrogated
by any Troutine that

SYMBOL

‘CONTENTS

+

‘DESCRIPTION
must temporarily in-
hibit and restore chan-
nel traps.

The followmg words contain miscellaneous in-

formation:

SYMBOL
S.XCPS: pfx

S.NAPT pfx

CONTENTS

»» NTRPT

SSFBL PZE a,,ln
PZE d,.,L

S.JNAM BCI

1,jobnam

DESCRIPTION
The sign bit of this
word is set and inter-
preted by the Check-
point routine, as fol-
lows:
+Checkpoint is ‘not
in progress.”
—Checkpoint is in
© progress. :
The prefix of S.NAPT
indicates whether or
not a snapshot has been

. taken as follows:

- +No snapshot has

been taken.
—Snapshots exist on

S.SCK1.

The prefix of S.NAPT

is set by the Snapshot

routine for use by the

System Monitor “and

the Dump program. It

is reset by the Dump
program and the Check-
point routine.

NTRPT is a pointer
to ‘the interrupt unit
used for input during
the job intetrupt pro- ,
cedure. '
These words contain
the following informa-
tion pertaining to ‘the
file control blocks:

a: Location of the
first word of the area
occupied by contigu-
ous file control blocks

Im: Total length of

the file control blocks

d: Displacement of
label information from
the start of each file
control block

In: Total length of
each control block

This information is
set by initialization rou-
tines for all subsystem
components and by the
Loader for object pro-
grams. It is used by the
Checkpoint routine.
Jobnam is one of the
following: -

‘1. Deck name from
columns 8-13 of the
$IBJOB card -

2. Main name from
columns 8-13 of the
$CHAIN card in a
Chain application

3. Program name
from the variable field
of the $RELOAD card

System Monitor 41

SYMBOL " - CONTENTS

. DESCRIPTION,

- 4. Phase name. from

columns 16-21 of the
$EXECUTE card =~
In items 1-3, jobnam

is stored by the Proc-‘,\,
essor Monitor “for use "

by the Loader, thé Re-
load Program, and the
CHAIN ‘subroutine.

In item 4, jobnam is
stored by the System
Monitor for use by the
CHAIN subroutine.

‘The following words contain information.necessary.
for symbolic channel assignment. - -
- SYMBOL - . ‘CONTENTS - £y DESCRIPTION
©8.SYCV Forany of the five sym- . These ~words are: the
S.SYCW bols, the.contents may ~defining words for sym- -
S.SYCX - be: bolic channels V-Z. The

S.SYCY VFD 6/chan, fields are set by the
SSYCZ "ETC - 6/aml “System - Monitor ‘when

SETC - 6/am2 a $CHANNEL card is

~ETC " 6/am3 recognized, and they are

- ETC 6/am4 - cleared when a $JOB
© ETC 6/amb5 card is recognized.

Chan is the absolute

These unit reference words are extracted from the
unit references in the appropriate file control block

immediately after any of these files are released; that -

is, closed without rewinding. The Processor Input and
Output Editors maintain them for the alternate input,
output, and punch files. The Loader and the post-
execution routines maintain them for object programs.

The following words are used to save information

channel code in octal
as follows:
00=No channel
10=Channel A
20=Channel B
30=Channel C
" 40=Channel D
50=Channel E
aml-am5 is symbolic

‘module n and contains:
. 00-11 (octal) indi-

about the Processor’s files.
'SYMBOL CONTENTS
SJAUN PZE **, **

S.OAUN PZE **,,**

S.EDUN PZE **,,**

S.SRUS e i o ” ok

sk . skk ok

S.SPRP. .VFD. 1/IFCHO,
) + ETC- 1/IFCHT,
- ETC 1/1IF162,
ETC. 1870,
ETC - 15/CPRPU

42

DESCRIPTION
S.IAUN is initialized
by the Processor Moni-
tor whenever a $IEDIT
card specifying an al-
ternate input file is en-
countered.

S.OAUN is initialized
by the Processor Moni-
tor whenever a $OEDIT
card specifying an al-

ternate output file. is

encountered
S.EDUN s mmahzed
by the Editor Monitor

. to the proper unit to be

used as the edit file. It
is set by the Processor
Monitor to the proper
unit to be used as the
copy or reload file.

The first word indicates
the contents of the Sym-
bolic Units Table entry
for S.SIN1 when there
is an alternate unit for

. an intetrupt job.

The second word in-
dicates- the contents of
the Symbolic Units
Table entry for the in-
terrupt unit used for
input during the job
interrupt procedure.

. The prefix bits of.this

word indicate the set-
tings of the assembly
parameters IFCHO,
IFCHT, and IF162.
The address field,
CPRPU, indicates the
setting of the system
print/punch flag, which
may be modified by
using the $OPEN and
$CLOSE control cards.

cating arml module
0-9, '12:23 (octal) :in-
.- dicating arm2 module
- 09, 77 (octal) ‘unde-
fined.-
Codes 1 through:6 rep—‘
resent the allowable
.disk ~and/or drum
‘format types for selec-
tion as available units
within an" installation.
These codes are de-
fined by the use of the
ALLOWmacro-instruc-
tion. In the released
version, code 1 is full
track and codes 2
through 6 are not used.
This word contains in-
formation used by the
‘Debugging Processor,
the Loader, the Proces-
sor Monitor, and the
System Monitor. The
sign bit is on (—) if
debugging is requested.
Bit 1 is on if there is
output on the debug
work unit.. Bit 2 is on
if IBDMP has termi-
nated execution and
called the postproces-
sor. In the address field,
dwu is the location of
the entry in the Sym-
bolic Units - Table for
. 2 : the debug: work : unit;
S oL - in the decrement field,
‘” blksiz is the block size
for the debug work
unit.

S.SYFS VFD 6/code6 or 0
... ETC .6/code5 or 0

. ETC' 6/coded or 0

- ETC. 6/code3or0

.. ETG. 6/code2 or0

- ETC -6/codel or 0

SSDBG pfx dwu,, blksiz

Symbolic Units Table
The Symbolic Units Table, which occupies the re-
maining system data area, describes the logical units
available to the system. At an initial start, an entry
for each. log1ca1 unit available to the system is initial-

" ized by the System Monitor housekeeping routine from

the ArTacH macro-instructions used at system assembly

time. A list of units not physically available.to. the
system. will be typed The Supervisor mamtalns thls
table and modifies it when processmg ‘a sSWITCH,
SATTACH, $DETACH, Or SRESTORE card The table is ﬁxed
- in length up to s.suo2.

‘The ‘Symbolic . Umts Table is: referred to by any~
part: of the system that uses an Jinput/output unit in-
processing, by the calhng sequence to. s.100P, and by

all file .control blocks.: -
The content of the Symbohc Umts Table is: .o
SYMBOL OPC VAR FIELD SYSTEM UNIT

S.SLB1 *x% .« ik e LIBRARY'1 *
S.SLB2 **+ ... -.**,:,** “onooo) LIBRARY:2 v
S.SIN1 **# LA L INPUT 1

S.SIN2 #*** ML INPUT 2

S.SOU1 #* : LA L OUTPUT 1
S.SOUQ ~#+* ek OUTPUT.2 = - =
S.SPP1 *** *h Kk PUNCH1
S.SPPQ - #k* o kR ~“PUNCH?2 -
S.SCK1. ***. . .. %4 & - CHECKPOINT 1.
S.SUQD ~ **# TR L ~UTILITYO
S.SUQL **+ kA UTILITY1 *
S.SUQQ - *xx - TRk UTIEITY 2 o
S.SUQQ **x LA L UTILITY 99

Each entry in the’table requires one word; the num-
ber of entries is determined by the ATracH macro-

instructions at system assembly time. The prefix bits of

each word are interpreted as follows:

Bit0. =0 . Unit may or may- not. be unloaded after bemgf
- rewound.

=1 Unit must be unloaded ‘after ‘being rewound.
© 72 2 “This 'bit 'should be set ‘for' §.SIN1, 'S.SIN2;

S.S0U1, S. SOU2 S. SPPI and S. SPP2 for data
protection; - ¢ £
Bitl =0 - Unitis not in use by. current program
= Unit is in use by current program. This- bit
should be set by any object program that does
“.i not use the IOBS level of I0CS, so that.check-
point and restart procedures.can be; -performed.
Bit 2 Not used.

The address and decrement portion of these words
are: A e
Address

to this logical unit
Decrement

The location of the system control block for the part of the

device assigned to thrs logrcal unit

Control Blocks ‘ : R TIEITI I
The unit control'blocks and the system control blocks

which occupy the next section of the Nucleus, are de-
scribed in the publication IBM 7040/7044 Operating

System (. 16/32K) Input/Oatput Control System Form
C28-6309.

Other Tables

Two other tables are included in the final portion of

the Nucleus along with the Nucleus routmes that use
them e e

qc:_cn.&pégy“-t

The location of the unit control block for the devxce assrgned‘

Abbreviated Table of Contents: The Abbreviated
Table of Contents, 18LTB, consists of three-word entries
1dent1cal to the Table of Contents entries for the sub-
system ‘in control. Since it contains the ‘name and
position in the library of each phase of a subsystem,
it allows the s.sRET routine to use the System Loader
to call subsystem. parts without reloading the Super-
visor and the subsystem monitors. The Abbreviated
Table of Contents, also referred to as a. phase dic-
tionary, is set up by all monitors through the 1Mpas
routine.

An entry in the Abbreviated Table of Contents has
the same format as an entry in the Table of Contents
(see the section “Table of Contents”). -

Recognizable Control Card Table: The Recogmzable
Control Card Table, mrrs, is a list of control cards
that can be reco’gniie’d by the 's.sReT routine and used
by the System Loader to call a specified subsystem
component: The Recognizable Control Card List con-

' tams two words per entry in the followmg format:

“SYMBOL " CONTENTS - DESCRIPTION
IBRTB BCI 1, $lgerd The first ‘Word contains -
PZE p .a_ recognizable control

card name, $lgred, from
- columns 1-6 of any sub- .~
system control card. pis °
the location of the Abbre-
... viated Table of Contents
“entry for the subsystem
component associated
with' the-preceding con-
trol card name.

Nucleus Routines

The following routines remain in storage at all times

to maintain the continuity of the system' -
. Systern Lioader (s; Stbr) " :

. Interrupt Test (s.sRPT)

Dump routine (s.spmp) ~

. System Monitor Recall routme (s. SRUP)

- Return routine (s.sReT)

. Restart routine ($.SrsT)

. Change Communication Region routine (s.sccr) -

_f;.In addition, the Installation Accounting Routine

(s SIDR). might be added to- the Nuc]eus to remain in

core storage at all times. e

; .

Sysfem loader : ‘
The System Loader is an absolute program loader that
positions the proper system library unit for loading,

loads a system phase, and verifies ‘that phase using

information supplied to it from the Abbreviated Table
of Contents, It performs. the following functions:

1. Pre-positions the device specified in the Abbre-
viated Table of Contents, loads a phase from the de-
viee; and verifies the accuracy of the ‘positioning by
comparing the phase name to the first word of the

~ Abbreviated Table of Contents entry..

2. Initiates post-positioning of the device.

System Monitor 43

3. Transfers control to the phase just loaded

Functmns 1 2 and 3 are optlonal -as specrﬁed in ther

calling sequence to the System Loader, ‘which is:

TSX . . SS:LDB4
cpix . ptr

where the preﬁx codes have the followrng meamngs

Sign Bit ~
1-Do'not’ post-posrtion
- 0—Post-position, ..~
Bit1
. 1~Do not load.
0—Load.
Bit 2

 1—Do not transfer control
‘0—Transfer control “

and ptr has the followmg 1nterpretat1on
ptr

of Contents in the established sequence.

£ 0: Read]ust the reference to-the- Abbrevrated Table of

Contents to]ocatnon ptr. -

NorteE: Calhng s.sLDR with a preﬁx code of PTH w111
position the devrce in front of the phase referred to
by ptr f :

‘The- System Loader uses the following subroutines:
1. SIOOP - oo

2. S.XPRT

3. S.XPSE

Two error conditions are possible. In the eVent ef’

a permanent error when reading, a code 20529 error
message is typed and processing is suspended. If the
phase name cannot be verified, a code 20527 error
message is typed and processing is suspended. For
both cases, pressing START causes the device to be re-
wound and the loading to be restarted. -

Operator Interrupt-Test -

The machine operator ‘can mterrupt the ﬂow of proc-
essing to ‘process a priority job by settmg ‘the “entry

keys and then executing the operator interrupt pro-
cedure. To test for an operator interrupt request, any.

program may, at a convenient point, mclu] e the fol-
lowmg instructions:
. XEC SSRPT _
e ' 'This mstructlon is. executed 1f there is nov lnter-
© - rupt request. - ’
This’ instruction’ is executed 1f there is’ an“mter-
: : rupt: request i :
*¥% s’ any operation code. Index regrster 4» may be
altered by this procedure. If an interrupt request exists,

*kok

 the programmer should: complete all _operations ‘cur-

rently in progress, take a checkpomt 1f applrcahle and
transfer control to's. stP Pers : ,

44

= 0: Use the pointer as is to reference the Abhrewated Table

- The 1nstruct10n in locatron S.SRPT, in the dlstrlbuted
version, st ot e T R .

“SSRPT ' SWT + RUPSW
':The parameter RUPSW m the dlstnbuted versmn is:
RUPSW. . EQU . 1

By modlfymg RUPSW, the mstallatlon may assign the
test to any sense switch. By modifying s.srpT, the in-
stallation’ may modlfy ‘the interrupt test procedure.
Since it is specified that index register 4 may be altered
by this procedure the mstallatron is free to assemble

S.SRPT TSX B routn4

 where routn is the entry. point t to-an interrupt analysrs

routine’ that the installation has ‘included in the Nu-
cleus. :
e

Dump Rounne

- The Dump routme uses 1I00P to write an area: of core

storage on the system checkpoint unit, if that unit is
attached. It then calls the System Loader to load the
Dump program ‘into that area. The calling sequence
to the Dump routine is:

. SXA * 43, 4 (or the equivalent)
b TSX S.SDMP; 4
opfx - return; t; errno
PZE L RE

where return, t is the locatron to which the Dump
program will transfer control “after ‘dumping. If -the
effective address (return, t)is zero, control is returned
to; the Supervisor. The symbol errno is the five-digit
; .The preﬁx pfx is mterpreted as follows:

Srgn Brt =1 Pause before returnmg
Bit 1. =1 Dump system panel
Brt 9 ‘1 Traceback

The error message 20298 is typed i s.5cK1 cannot be
written without error.

System Monitor Recall Routine

This routine uses the System Loader to bring the
Supervisor -into core storage. It is called w1th a TRA
$.SRUP instruction.

Refurn Routme

This routine examines columns 1 6 of the next control
card-that is in location s.save. If the card is recog-
nized, the System Loader loads the required subsystem
component and passes control to it. If the next. card has
not been saved, or if it is not recogmzed the System
Loader loads the Supervisor record containing the
combined monitors.

-.s.sRET uses-the contents of S:SAVE and s.sco to ob-
tain the next control card and: calls the System Loader
to bring in the proper phase.

Restart Routine s
This routine reads in the record of core storage

the checkpoint device and transfers control to. the pro-l
gram being restarted. The Restart routlne 1s called

with a TRA s.SBST instruction.
As input, the Restart routine requlres a Work area
_ descrlbmg the checkpornt dev1ce the core storage to

The Restart routme ‘uses_ T00P 'to read from the'
checkpoint dev1ce under the assumptlon that it 1s‘

properly positioned.

The error message 20298 is typed if the checkpomt

device cannot be read without error.

Installation Accounting Routine. -

This routine-is defined by eachhmstallatlon It has theg

following calling sequence:
TSX S.SIDR4
PZE - loe_,,n e

where loc has the following meanings:

5 0: loc is the location of the $ID, $JOB, or $STOP card.

- = 0: No $ID, $]0B or $STOP card exists.

and n has the followmg meanings if loc = 0

= 0: Entry is from the Superv1sor)

¢ Entry is from IBMAP. -
: Entry is from IBFTC.
Entry is from IBCBC.) i
: Entry is from the beginning of IBLDR. =
: Entry is from the end of IBLDR. P
Entry is from S.JXIT. :
: Entry is from IBSRT. ; e
12: Entry is from the beginning of RELOAD. -
13: Entry is from the end of RELOAD. - kA i

One transfer to the accounting routine is made for
the first sjoB card that is encountered after initial start;
two transfers are made for each subsequent $]OB card.

In the distributed version of the system,"
S.SIDR is°a TRA 2,4 instruction which should be changed

when the 1nstallatron deﬁnes its accountmg routme f

m@g»gmu

Change Commumcaﬂon Reglon Roufme
The Change Communication Region routme

Nucleus, and restore storage protectlon The calhng
sequence is:

TSX S SCCB 4
) :‘*"f, .- Instruction that alfects the Nucleus
“HkE -

Return :

Supervisor

The Supervisor routines process the System ‘Monitor
control cards. They may be called by any subsystem
that an 1nstallat10n assembles 1nto the comblned
monitors. '

‘The functlons of the Supervrsor are performed by
the following:

1.- IMMON Routine
2. IMAST Routine
3. IMSYS Routine

4 ‘IMSRr"untmé’f o7
5. IMEXE Routine’
6. INJOB Routine

, Tocation

.. 7. IMRCD Routme ., 21. IMLIS Routine
8. IMSCN Routine " 22, IMUNL Routine
* 9. IMPAS Routine 23. IMOID Routine
:10. IMUQI-Rautine - -+~ 24 IMPAU Routine
11. IMINT Routine' - 25: . IMSTO Routine
‘12, IMLSU Routine ‘ 26, IMTIS Routine
13. IMDLY Routine 97 ITMTIM-Routine -
14.- IMSWI Routine .~28: IQRST Routine
-15. IMATT. Routine _ .29, IQRSC Routine
16. IMDET Routine 30. IMUNI Routine
17. IMCLO Routine " “31."IMCHA Routine
18. IMRES Routine 32. SCAN: Routine
19. IMTIF Routine -33. IMBDC Routine
20. IMPUN Routine 34, IMOPN Routine
IMMON Rouhne

Purpose: The main flow of control through the Super-
visor begins with this routine. The routine checks to
see if 1BJOB is in control and, if it is not, releases all units
wrth 70 and 62 reservation codes. The routine also ex-
amines the decrement of location s.scpr to determine
the reason that the Superv1sor was entered Processmg"
is 1n1tlahzed if this is an initial start.

IMAST Rounne -
Purpose To type the contents of as* card on~hne
Cal[mg Sequence ‘
“TRA - IMAST ;
The SuperwsOr enters th1s routme after recogmzmg
a s<card. . S :

Input s¥card.

_ Output: None. 4

" Subroutine Used: imTiF

“Error- Conditions: None o
IMSYS Rolmne ' o

Purpose To msert the name of the subsystem cur-
rently in control into locatlon S. SCUR and to set S.SSWL.

Calling Sequence:

TRA IMSYS
The Supervrsor enters tl‘llS routme after recogmzmg a
stBsys card.

Input: siBsys card.

Output: None,

- Subroutine Used: s.sccr

" Error Conditions: None
IMSRT Routine

Purpose: rocess the siBsrr card. This routine
places msnr’fri:ﬁg:‘atlon S:SCUR, sets [sswr and trans—

fers control to the 1 EXE routme e

“Calling Sequence:
TRA* IMSRT -
- The Supervisor enters thls ‘routine after recogmzmg a
$IBSRT card. .
- Input: siBsrr card.. -
.. Output: None.

Subroutine Used: s.Sccr -
Error Conditions: None

" IMEXE Routine

Purpose: To process a SEXECUTE card, whlch provrdes
convenient access to a program in the System Library.

4 System Monitor 45

This routme scans | the Index for the program ‘name
starting in column 16 of the sexecutE card. If this
name is found, the library-unit pos1tlon(s‘) and the
load address(es) of vthe program are placed :
Abbreviated Table ,f Contents in the Nucleus, In ad-
dition, the program name is stored in s.]NAM and con-
trol is passed to the System Loader. If the pam IS not

found, a code 10515 error message: is typed e

Calling Sequence : i
TRA

‘IMEXE

The Superv1sor enters this routme after recogmzmg a}i

SEXECUTE card.
Input SEXECUTE card
Output: None. .
Subroutines Used s. SLDR ssccn IMSCN and SXPRT‘
Error Condmons The name of the program to be

executed is not in the Table of Contents The $EXECUTE‘

card is ignored and the next control card 1s read o

INJOB Routine . 7
_ Purpose: To process 3 sjoB card. All 1ntersystem res-\
ervation codes system work unit codes, and ob]ect
program unit codes in the reservation fields of the
system control blocks are set to zero, columns 16- 45

of the sjoB card are saved in S.SHDR, the mstallatron

accounting routine is called, the interval timer is reset
to the value assembled as MXCLK in IBNUC, and the
control card is typed. Word 1 of s.sFLG is relmtrahzed
except for the punch file open and output ﬁle open bits.
Entries to special input/output routines are cleared if
those entries pomted to Jocations within s.scor lrmrts ’
All 100p specral routine entries that fall between IBORG
and s.senp will-be deleted.

Calling Sequence: ;

TRA IN]OB S e .

The Supervrsor enters this routine after recogmzmg a
sjoB card.

Input: sjoB card.

Output: None. '

Subroutines Used: $.SCCR, S.SIDR, IMZTIS and IMTIF

Error Conditions: None. ’

IMRCD Routine .. ’
Purpose: ‘To move the next card mto a ﬁxed area

and initialize the ™MscN routine. The IMRCD routine

reads a control card and checks it for a $ in column 1.
Calling Sequence:

IMRCD 4

LTSX..
i Return 1
ol Return 2

Return 1 is taken if the next card is a binary card or
if it is not a $ control card. Return 2 1s taken 1f the
next card is a $ control card T

Input: None.

Output: None.

- Subroutine Used: JoBIN -

“Error Conditions: None, 2

48

IMSCN Routine

Purp:"se To prck up twelve characters at a trme
from ‘control card; |

“Calling Sequenee

TSX

Input None e

Output: Up to twelve low-order BCD characters in
the accumulator and multrpher-quotlent register. If
there are fewer than twelve characters, the hlgh-order:
positions are filled wrth leading Zeros. .

Subroutines Used: None.

Error Condm_ons.: (,None.c

IMSCI\I{,A“ L

IMPAS Routine

Purpose: To pass a portion of the Table of Contents
to- the Nucleus and construct a table of recogmzable
control cards. - et

Calling Sequence:
TSX IMPAS 4
pfx iy b
CBCE i e

where the preﬁx, pfx is plus for a new Table of Con-
tents and minus for an’ addrtlon to the existing Table

‘of Contents. The letter a is the length of the portion
of the Table of Contents, b is the location of ‘the first

word in the portion, and c is the contents of colurnns
1-6 of the control card. - »
Input: None.
Output: Abbreviated T able of Contents
* Subroutine Used: s.ScCR -
~Error. Condmons Table of Contents or control card

hst overﬂow

‘~lMUQl Roufme L

Purppse To compare the utlhty umts port1on of the
Symbolrc Units Table with the entire Symbohc Units

‘Table, checkmg for unrqueness If one of the two sym-

its composed is s.sck1, this is. not con51dered a

‘non-u qne entry.

Calhng Sequence S N
CTSX IMUQI‘4 S ‘
hx * Retiirn if each entry is umque
hid Retum if any entry is- non-unique.

~ Input: None. \
" Output: Address of owest non-umque entry in the
accumulator if any is non-unique.
Subroutines Used: None.
~ Error.Conditions: None.

IMINT Routine :
Purpose To change unrt assignments and/or process
a special job when' the operator interrupt procedure
is followed. The entry keys are examlned for the type
of action to be taken.
Calling Sequence,

. TSL .. = IMINT

-~ Input: Entry keys..

_Output: None.

Subroutines Used: s.xpRT and s. XPSE. .
Error Conditions: Unable to determlne request

IMLSU Routine L
Purpose: To validate a symbohc umt name

Calling Sequence: -
TSX IMLSU, 4 #
EE ‘Beturn if the symbohc umt _name
T s invalid!
Hokk Return if the symbohc name is
- valid. . AL

Input: The symbolic unit name in the MQ.

Output: The relative locatron in the Symbolic Unit
Table, in index register 2. ;

Subroutines Used: None.

Error Conditions: None.

IMDLY Routine . -
Purpose: To delay untrl all 1nput/output actrwty is
completed.
Calling Sequence:)
.~ »TSL. - IMDLY
Input: None.
Output: None. 4
Subroutine Used: s. IOOP
Error Conditions: Since no error return 1s prov1ded
an 100P error results in a dump. ,

" IMSWI Routine

Purpose: To process a sswitce card Whlch mter-
changes the devices assigned to the - symbelic units

that are either specrﬁed or 1nd1cated by mtersystem :

reservation codes.
- Calling Sequence: - e T R
TRA IMSWI wll Tl
‘ »The Supervrsor enters thrs routine after a’$SWITCH card
is recognized. ~ v ni sty

Input: sswrrcu card.

Output: None ,

* Subroutines Used: IMSCN S:XPSE, IMDLY SXPRT and
S.SCHI. :
Error Conditions: Two error conditions a,pply

1. An attempt to switch s.siN1, s.sout, Or S.SLBIL w1th
a symbolic unit that has no deviee attached results in
an error message and a_pause. The. card is ignored.

2. Tyy specified was illegal or not defined. The card

is ignored.

IMATT Routine -
Purpose: To attach a devrce to the system and' 1s-
sign it to the symbolic unit specifiéd; This rotitine sets
an attachment indicator in the unit control block ‘and
places the location of the unit and- “system-control
blocks in the Symbolic Units Table =
Cadlling Sequence: . o
, TRA. IMATT. it b
The Supervisor enters thrs routine after recogn' ‘mg a
$ATTACH card. ST

- Input: SATTACH card.

‘Qutput: None: cen gk

Subroutines Used: Mscx, s.xpsE, IMDLY, and S.XPRT.
- Error Condztwns The: followrng error condltlons
apply:

1. Attempt to attach an attached unit.

"2, Attempt to attach a devrce not defined at assem-

bly time.

:3. Attempt to attach more symbohc units. to a devrce
than were attached at assembly time. ‘
4. Attempt to attach a device not. physmally avail-
able.

5. Attempt to a531gn a reservatron code other than

57 or .58 to the device,

These conditions result in an error message and a
pause. The card is ignored.

IMDET Routine L it CEN
.. Purpose:-To detach a devme and its unit.
Calling Sequence: . .,
TRA IMDET
The Supervrsor enters thlS routine after recogmzmg a
spETACH card. = . o : -

Input: spETACH card

Output: None. o '

Subroutines Used: mMscN, 1MpLY, SXPSE and S.XPERT.

Error Conditions: Two_error conditions apply:

1. Attempt to detach a device for which there is no
unit control block will result in an error message and
the card will be ignored.

2. Attempt to detach a devrce reserved by the pro-
grammer or an attempt to detach a detached device
results in an error message, and a pause. The card is

‘ignored.

IMCLO Routine

- Purpose: One of the following, dependmg upon the
unit specification on the scrosg card:

1. If s.spp1 is specified, the combined prmt/punch
status bit is set to combined, If either Mark, REMOVE,
or REWIND is specified, the punch unit is. closed ac-
cordingly and the punch-file open bit is set to off.

2. If ssuxx is specified, the unit is released, the

‘associated reservation: code is reset to Zero, and the

other options are processed.
3. If IyyR is speclﬁed the unit ‘to Wthh the inter-

‘system reservation code yy is appended is treated as
in point:2-above. E cratgey

Callmg Sequence:
TRA IMCLO
The SuperV1sor enters this routine after recogmzrng a
SCLOSE card. : ot
 Input: scLOSE card.
Output: None.
Subroutines Used:
IMDLY, and S.SCHI. .
Error Conditions: The fo]lowmg .@rTor - condltrons

apply:

IMSCN SXPRT SXPSE SIOOP

System Monitor = 47

1. An attempt to close s.8IN1, 5.50U1, or $.SLB1 results
in an error message and a pause The control card is
~1gnored

20 Iyy is’ undeﬁned or- lllegal The card is 1gnored

IMRES Routine

~Purpose: To restore the unit’ ass1gnment “scheme to

its initial conditions. All intersystem reservation' codes
~are released and a hst of all umts not physxcally avall-
able is typed. ' wt :
~Calling Sequence: St
TRA IMRES
The Supervisor enters this routlne after recogmzmg a
$RESTORE card. :
Input: sRESTORE card.
Output: None. '

Subroutines Used: s.SLDR, 5.100P, S.XPRT, and: S.XPSE.
Error Conditions: Unable to:restore results in an

error message. The card is 1gnored

IMTIF-Routine . : stk
‘Purpose: To type the control card unless it is: already

typed. .
Callmg Sequence
:) TSL IMTIF
I nput Control card in IMCBD)
Output: None.

" 'Subroutine Used: s.xpRT.
Error Conditions: None..

IMPUN Routine i . : e :
- Purpose: To type a card c0nta1mng an 1nvahd ﬁeld
and an error message.
Calling Sequence: ,
: CTRA IMF‘UN*
Input: Control card in IMCRD.
" Output: None. L
* Subroutines Used: s.xprT and 1MTIF.
- Error Condmons None Lk &

IMlIS Roufme B . : : ;
Purpose: To set the hst SWltCh S0 that all $ contrel

cards, processed by the combined monitors, are typed ,

Calling Sequence: .
TRA : : -

The Superwsor enters thls routine after recogmzmg a
sLIsT card. : : :

Input: suist card. i

Qutput: s.scoi set plus:-

Subroutine Used: tMTI¥.

Error Conditions: None.

IMUNL Routine-
Purpose: To turn off the hst sw1tch
Callmu Sequence: -~

TRA IMUNL
48

" Subroutines Used:

The Supervisor enters this routine after recogmzmg a
SUNLIST card. . -
- Input: sUNLIST car,d
Output: s.scp1 set minus.
Subroutine Used: None.
Error Conditions: None.

IMOID Routine \ A
"“Purposé: To enter the mstallatlon accounting rou-

-tine...

Callmg Sequence _
TRA® IMOID

“The Superv1sor enters this routme after recogmzmg a

sip card.
Input: s card.
" Output: None.
Subroutmes Used: mmTiF and s.SIDR.
‘Error Condztzons None:

IMPAU Routine

Purpose: To pause or suspend machme processmg
Callmg Sequence: :
TRA IMPAU

The Superv1sor enters thlS routme after recognizing a
‘$PAUSE card.

Input: spAUSE card.

Output: None. .

Subfoutines Used; itvrie and s:XpSE.
Error Condztwns None

|MSTO Rounne

Purpose: To termjnate an interrupt job or the series
of jobs on s.siN1. The installation accounting routine

‘is-called and the interval timer is reset to zeros, and

all intersystem reservation codes are released
Calling Sequence: ‘ '

» TRA IMSTO
" The Supervisor enters this routine after recognizing a
ssTOP card. 4
Input: ssTop card.
Output: None.

IMTIF, 'S.XPRT, S.XPSE, .S.XDVA,
S.XDVD, IMRES (IMRES is not used in an 1nterrupt job),
s.5I0R, and IMTIS.

- Error Conditions: None.

“IMTIS Routine .

Purpose To set the 1nterval timer prior to entermg

‘an object program.
“+.Calling Sequence:

TSL IMTIS o
: Input Length of job in imT1C,
Qutput: Interval timer (1BcLK) is set.
- Subreutine Used: s.sccr. :
Error Conditions: None

IMTIM Routine :
Purpose: Sets the lnterval timer to the tlme spe01ﬁed
on the sTiME card,
Calling Sequence
. TRA

£ LTy

IMTIM

The Supervrsor enters thls routlne after recogmzmga'

a STIME card.
Input: stime card. o
‘Output: Length of]ob in mvIC,
Subroutines Used: IMSCN and IMTIF,
~ Error Conditions: None.

IQRST Routine ~

Purpose: To accomplish a restart
’ Callmg Sequence: o
 TRA IQRST
Input: Key setting.

Output: None.

Subroutines Used: tMscn and IMINT.

Error Conditions:

1. Specified checkpoint dev1ce not attached

2. Specified checkpoint record cannot be Iocated An

error message is typed and a halt for operator actlon’

OCClll'S

IQRSC Routine
Purpose: To accomplish a restart.
Calling Sequence:
TRA

Input: sRESTART card.
Output: None. e
Subroutines Used: See “1grst Routine” above.“
Error Conditions: See “1grsT Routine” above.

IQRSC

IMUNI Routine

Purpose: To type the current unit a331gnments and
reservation codes. :
Calling Sequence: o
' TRA IMUNI
The Supervisor enters this routine after recogmzlng a
SUNITS card.
Input: sunrrs card.
Output: The typewritten paragraph. -
Subroutine Used: s.xprr.
- Error Conditions: None. -

IMCHA Routine

Purpose: To set up equivalences between the real

~ channels and the symbolic channels specified in the

SCHANNEL card. Also, to set up equivalences between

real disk access mechanisms (or drum modules) and
any symbolic access mechanisms specified. See Ap-

pendix ‘D for a detalled ‘description of the IMCHA

routine.

"Celling’Sequen‘ce:

’ TRA 'IMCHA
The Superwsof enters thlS routme when a SCHANNEL
card is recognized.

Input: scuaNNEL card.

Output: None.

Subroutines Used: s. SCCR, S.XPRT, IMTIF IMSCN, SCAN,

- and IMBDC.

Error Conditions: Any irregularities encountered
while the scHANNEL card is bemg processed cause the
following to be done: :

1. The scHANNEL card is typed.

2. A message is typed:

10502 : $CHANNEL CARD IN ERROR
- 3. A message is written on the system output unit:
SKIPPING TO NEXT JOB o

4 If ‘the requlrements specified by the $CHANNEL

- card cannot be fulfilled, the contents of the SCHANNEL

card are typed and a second message is written:
10518 $CHANNEL REQUIREMENTS CANNOT BE‘

SATISFIED:
SCAN Routine
Purpose: To scan one or more characters of IMCBD
(fixed area)
Callmg Sequence:
AXT n4
TSL SCAN
TRA Return 1
TRA Retum 2

‘n 1ndlcates the number of characters (1-6)
_Return 1 s for a valid control card,

Return 2 is for an invalid control card. -

Input: None. :

Output: The n characters ‘scanned, in the accumu-
lator, right-justified, high-order zeros.

Subroutme Used.: mmrep.

Error Conditions: None.

IMBDC Routine
Purpose: To convert Bcp to binary.
Calling Sequence: "
TSL - IMBDC

Input: Bco word in accumulator,
‘Output: Converted binary data in accumulator
Subroutines Used: None. S

~ Error Conditions: None.

"IMOPN Routine

~ Purpose: To process the soPEN card as follows
1. If the card specifies s.spp1, the combined print/
punch status bit is set to uncombined.
. If the card specifies S.SUxx= Iyy, reservation
code yy is placed in the reserved status field of the

- system control block for §.SUxx.

System Monitor 49

3. 1If the card specifies T Iyy, D=lyy, or U=lyy,

reservation code yy is placed in the reserved status
field of the system control block for an available tape
unit (T), an available disk or drum unit (D), or any
available unit (U).

4, If REWIND is spe01ﬁed the unit w1ll be rewound

- Calling Sequence: ‘ o '

TRA IMOPN

Input: soPEN card.

Output: None. ;

Subroutines Used: IMSCN, §.SCCR, $.SCHI, and SCAN.

‘Error Conditions: s

1. S.SUxx was already reserved.

2. Iyy is the reservation code for another umt

3. Illegal variable field..

4. No units of the type requested were avallable

All of the error conditions listed above cause the

soPEN card to be ignored and a message to be written.

lnpuf/ Oufpuf Control Sysfem'
The system requires that the following levels of the

Input/Output Control System (see Figure 25, whmh»

appears later in the text) remain in core storage

1. 10EX.
- 2. 100P synchronizer. ,

3. 1001 select and error recovery routines.

The subsystem réquirements of the Input/Output
Control System are:

1. 1oLs and 10Bs are required by the Superv1sor the
Processor, and the Update Program.”

2. 1oLs is required by Sort, Dump, the System
Editor, and the monitored utility programs.

100P2, 10Ls, and 10Bs are optionally available to ob-
ject programs processed by the Processor.

Dump Program

The 18M 7040/7044 Operating System contains a Dump
program that provides error messages, error dumps,
and debugging dumps during operation of the system.
The Dump program uses the Input/Output Opera-

- tions (100p) level of the Input/Output Control System

(10cs). Error returns for all conditions are provided.
The Dump program also uses the system Output Edltor
for writing on the system output unit. ~

The Dump program is “discussed fully in the pubh-

‘cation IBM 7040/7044 Operating System (16/32K):

Debugging Facilities, Form C28-6803.

High Blank Table of Available Work Units Modification Table of Available Work Units
Storage | COMMON : LT Programs
s Common
Debugging S
Subroutines Parameter
________ Area
| Macro , , . . »
Object COBOL [FORTRAN IV . . Combined | Debugging | Debugging
Program Compiler | Compiler Loader Assembly Dump Sort Editor Monitors | Preprocessor | Postprocessor
) . «~Program. R ;
: ; DMPYEX
7 SRR el - Sort e
V . i 1085, 2 Monitor 108S
// IoLs
/ 10082
1D CARD PROGRAM IF ANY
tow | 2y BNUC
Storage - JOEX AND 100P1

Figure 25. Storage Allocation for All Operating System Components

50

This section - contains detailed information on the
Processor:components for: the systems programmer.

Processor Monitor

The Processor Monitor, one of the combined monitors,

controls. Processor applications,

Operation S .
The Supervisor transfers. control to the Processor
Monitor when a siBjos card is read. The Processor
Monitor has the following functions: -
1. It decodes the s1BjoB card and saves thlS mforma-
tion. '
2. It sets up the 1nput/ Output unit. conﬁguratlon and
ensures availability of the units.
3. It creates the phase dictionary from the Table of
Contents, using the siBjos card parameters.

4. It creates a list of control cards that are valid: for

this Processor application. :
5. It-calls the Preprocessor (LpRPRE), which inter-
prets the Preprocessor cards, converts the information

~ Processor (IBJOB)

to bmary codmg, aqd writes the information on a
utlhty unit. The Preprocessor is called into core stor-
age only one time for each Processor application.

6. It processes the siBrrTC, sIBCBC, SIBMAP, SIBLDR, and
SRELOAD cards. That is, it processes the first such card in
a Processor apphcatlon and processes subsequent cards
when they are not recogmzed by s.SRET.

7Tt transfers to the s.SRET routine, which examines
columns 1-6 of the card in s.save. If the card is valid
for this application, s.sLor loads the system part re-
quired and passes control to it. The s.sRET routine is in
core storage at all times and if, subsequently, s.srET
examines a card in s.sAVE that is invalid for this Proc-
essor application, it calls in the combined monitors and
transfers control to the Supervisor.

Figure 26 shows the Processor Monitor operatlon

Routines - :
The following is a list of Processor Monitor routines

that indicates the function and calling sequence for
each routine:

> Supervisor
r
: Processor -
No card N Monitor
and
invalid)
e S .SRET T Debus
L |« — .| Postprocessor
S.SLDR
; B
FORTRAN | cosoL Macro Assembly. Reload Lo Debug
- Compiler “Compiler = = - . :Prograrm R Leqder " Program Preprocessor + Preprocessor
. Object " Object -
Program Program

Figure 26. Flow of Control During a Processor Application

Processor (IBJOB) 51

 AVLUNI tests the availability of units for work,
work?, and works and places the Symbolic Units Table
addresses of the units into the compxler units table. The
calhng sequence for this routine is:
TSL AVLUNTI . :
CBAVL tests for the availability of the extra cosoL

unit work4. If the unit is not available, the load file is

used as the unit for work4. The Symbolic Units Table-

address of the unit is placed in the compiler units table.
- The calling sequence for this routine is: '
TSL. - CBAVL

FTCENT obtains the address of the Table of Con-
tents entry for a Processor section. Prlor to executmg'

the calhng sequence, the accumulator ‘must be set to
BCI 1, xxxxxx, where xxxxxx is the approprlate control

card name. The calling sequence for this routlne is:
- TSL “FTCENT i
The routine returns with the: accumulator set to PZE

A1,,L1, where a1 is the control address of the Table of
Contents entry for the specified control ‘card, and L1
is three times the number of phases in the TabIe of
Contents entry.

GERP writes error messages The callmg sequence

" for this routine is:
TSX GERP, 4
PZE A,m,n
where: LT R

= the number of parameter words at A.
m .
= the error severity code.

IMCHN processes the scHAIN card. The calhng
sequence for this routine is:

TRA ~ IMCHN
IMCBC processes the siBce card when elther the

siBceC card is the first SIBCBC, SIBFTC, OT $IBMAP: card
after the siBjoB card, or when an error has occurred-
in the first phase of a compiler, causing no card to be .

read ahead. The calling sequence for thls routine is:
TRA IMCBC

IMDBL processes_the s1BDBL card. The calhng se- -

quence for this routine is:
TRA IMDBL

IMFTC processes the sisrrc card when elther the,
strTC card is the first sIBMAP, sIBFTC, or sIBCBC card -
after the siBjoB card, or when an error has occurred in -

the first phase of a compiler, causing no card to be
read ahead. The calling sequence for this routine is:
TRA IMFTC ‘

IMECH processes the SENDCH card The calling

sequence for this routine is:
. TRA IMECH

" IMENT calls the sextrY card processmg routine.
~ The calling sequence for this routine is:
TRA IMENT

IMJOB places the Processor Momtor in control :

processes a sisjoB card, and initializes the job param-
eters. The calling sequence for this routine is:
TRA _IMJOB-

52

IMLDR processes the sBLDR card. The calling
sequence for this routine is: .
TRA IMLDR.
IMLNK processes the sLINk card. The callmg se-
quence for this routine is:
~ TRA . IMLNK
IMMAP processes the stBMAP card when either the
stBMaP card is the first stBMAP, SIBFTC, Or sIBCBC card
after the siBjoB card, or when an error has occurred in
the first phase of a compiler, causing no card to be
read ahead The calling sequence for this routme is:
: ‘TRAt © - IMMAP
IMPRE calls the Preprocessor, which is a separate
phase, using the System Loader. The calling sequence
for thls routme is:
: TRA' IMPRE
IM REL ‘processes the ~SIBREL card The calhng

sequence for this rouhne is:

TRA IMREL

IM RLD calls the RELOAD program The calhng
sequence for this routine is:

TRA IMRLD :

~INCLOS closes the system input file or:its alternate
without rewinding or label checking. The callmg se-
quence for this routine is: ,

CALL INCLOS -

INCLSM is used by the monitor to close the system
input file: without rewinding or label checking. The
calling sequence for this routine is: :

CALL INCLSM

INSAVE saves a card from the system input ﬁle in

the area s.save and closes the system input file or its

- alternate without rewinding or label checking. The
system input file must be open before INsavE is called.
. ‘The calling sequence for this routine is:

 CALL INSAVE .
JBKILL prints a message that the job is terminated,

'fcloses files, and returns to the caller. The calling se-
“quence for this routine is:

TSL JBKILL
JBSCAN scans the variable field of a control card,
beginning with column 16. The calling sequences for
this routine are:

X1 TSL " JBSCI (for the initial entry
. ~ for any one card).
Xa. TSL - JBSCAN (forsubsequent entries

" for the same card)

: ,Return from thls routme is to X, +1 for an error return,
and.to X, +2 for a normal return. The initial location

of the card to be scanned is CARD. The collected char-

acters are in cHARs through cHaRs+2, left-justified with
trailing blanks. The terminating character is in the ac--
“cumulator.

- JOBERR is entered when a utility unit is not avail-

able; the return is made to the s.srer routine. The in-

terrupt switch will be tested when the combined

" monitors. are loadgd, ‘The calling sequence for this
routine is: : ‘
' TSX

"~ JOBERR, 4
" PIE - -

JOBIN is used for inp'ut from the system input unit
or its alternate by all Processor components except the

monitor. The calling sequence for this routine is:

- CALL = JOBIN)
A logical record is located in the input file buffer. If the
record is acceptable, the routine returns with the ac-

cumulator set, as follows:
. pfx la, ,n
where:
pfx : :
= PZE if the record is BCD and the control character in.the
logical control word was 4 or 5. v .)
= PON if the record is BCD with a $ in column 1 and the
control character in the logical control word was 4 or 5.
= MZE if the record is binary and the control character in

the logical control word was 6 or 7.

k = the initial address of the record in the buffer.
) = the number of words located: 14 if the words are BCD;
- 27 (from unit record equipment) or 28 (from nonunit
- record equipment) if-the words are ‘binary. o
The following is a list of ‘conditions that cause the
record to -be unacceptable: , I
1. A redundancy on the system input file or its
alternate. Py
2. A file mark on the system input file, o -
3. An unsuccessful search for a matching $ card on

the alternate input file. =~ ,

JOBINM is used by the monitor to TOpen‘ the system

‘input unit or its alternate on the first entrance or to get
a single logical record of input from the system input

file. The calling sequence for this routine is: -
- CALL JOBINM . -

The routine returns with the accumulator set as in-

dicated previously under “joBv.” PRI
JOBOU is used for output to the system output unit
or its alternate by all Processor components except the
monitor. The calling sequences for this routine are:
 CALL JOBOU (list) =
- CALL JOBOUL (list)
where list is the initial address of a set of parameters
that have the following form: e :

PZE Lom. o
pix A1 Ti, Mi
) : 4 i)fx -_ An, Tn, Mn 4
where: o :
n .

= the number of words in the list fdllxowing‘tlni_'e first word.
pfx - : L : L
= PZE if a new line is to be started after a single space.
= PON if a new line is to be started. after a skip to a new
page. , B s ke
= PTW if a new line is to.be started after a-double space: -
- =PTH if a new line is to be started after a space that is

- determined by the first character of the output line.
=MZE if the current line is to be continued, =~~~ .

quence for this routine is:

NOTE: When the preceding prefixes are used, line over-

- flow is ignored. When PTH is used, the user has assumed
*; responsibility for spacing, page overflow, and page count.
The-user ean maintain the line count by decrementing the
-counter L.PGLN by the number of lines that are used for
output. L.PGLN is_initially set. to. 57 (octal 71) and is
., reset when it reaches zero.
Ayl BRI
* - = the location of the first word ‘of the text.
= 0 if the initial byte = 0.
~ 54 0'if the initial byte = T; — T.
M; :

= the word count if Ty =0, .

_ = the character count if T -« 0.

- The symbol j may be 1. . .n.

. JoBouL is used for writing complete lines. The first
character of the line must be a blank. When joBouL
be the word count. o .

Page heading and page numbering are automatic
and are printed at the top of every new page.
Page Heading: A field of 17 words (racep) and a
field of 14 words (susHp) are provided as ‘entry points
within joBou for page heading information, They must
be initialized by the object program. The contents of
S.SHDR are inserted into the first five words of pacup

|is used, mzE is invalid, TJ must be 0, and M; must

on the first entry to josov. ,

~Page Numbering: A one-word page number counter,
PGNUM, is provided within josou for page numbering.
The field is entirely numeric and the page number is
right-justified within it. The field is set to the address

field of s.pccr on the first entry to joou; the routine

L.UPPG increments the field by one before a page head-
ing is written. The calling sequence for L.uppc is:
’ ~TSL - L.UPPG o R
PGNUM may be modified at any time by the user’s
program. T x: ' ‘
* *Data Record Control Character: 1085 Type 3 data
records produced by the System Output - Editor
(JoBOU) in a combined print/punch installation do not

- have the" specified look-ahead control characters on
‘a mode change. The 7040/7044-1401 Input/Output

Utility program, as distributed, ‘correctly processes
mixed-mode records. .-
~ JOBOUM ‘is used by the monitor for output to the
system output unit or its alternate. The calling se-

4 CALL “JOBOUM (list)
where list is the initial address of ‘a set of parameters
that are described under “yoov.”

JOBPP is used for output to the system punch file.

The calling sequence for this routine is: =~

: CALL JOBPP(list) ‘
The symbol list is the location of one parameter hav-
ing the following form: v

list .. pfx . ~card
- where: . :
= PZE ifthé record is BCD,"

= MZE if the record is binary:
Processor (IBJOB) 53

1

card R
= the initial address of a block of 14 words if the record is

“BCD or a block of 24 words if the record is binary. The.

- block contains the information to be placed in ‘the buffer.
The last two words of ‘a' binary record (that is, ‘card col-
umns 73-80) ‘will ‘be taken from the field PPLBL.

Card sequencing of binary cards is provided auto- -

matically from the ppLBL field. The symbol PPLBL is an
entry point within jospp that may be initialized by the
user. It is an eight-character card label (Bcp) and is
left-justified. Its initial setting is: '
BCI 2, 00000001

The first four bytes are assumed to be alphabetlc
the next four numeric, and the lastv four blank. The
Punch Editor will increase the numeric bytes by one,
after each binary record is placed into the buffer.

JOBPP opens the system punch file with reposmon-
ing and label check if both the punch ﬁle open bit (17
in s.sFLc) and the combined status bit (35 in S.SPRP)
are off. If the punch file open bit is on and the com-
bined status bit is off, JoBeP opens the punch file with-
out repositioning or label checking. If the combined
status bit is on, jospp does not open the system punch
file.

LDAVL tests for the need and avallablhty of a load

file and opens the load file, if necessary. The. calhng

‘sequence for this rqutme is:
~ TSL.. . LDAVL

LDRSTK stacks the load file, or skips the deck on the’

input file. The calling sequence for this routme is:
TSL . LDRSTK)

OCLOS closes the system output file or its alternate

without rewinding or label checking. The calhng se-

quence for this routine is:
CALL OCLOS

OCLOSM is used by the Processor Monitor to close
the system output file without rewinding or label

checking. The calling sequence for this routine is:
CALL OCLOSM

PCLOSE closes the peripheral punch file. T he callmg

sequence for this routine is:
CALL PCLOSE
IMJIE processes the siepit card. The calhng se-
quence for this routine is: -
TRA IMJIE .
PIMENT processes. the SENTRY card. The calhng se-

quence for this routine is:
TSL PIMENT

PIREL processes the smrer card. The calhng se-
quence for this routine.is: = Sl
TSL - PIREL
POEDIT processes the SOEDIT card. The callmg se-
quence for this routine is:
TSL POEDIT
PPAVL checks the availability of the system punch
unit. The calling sequence for this routme is:
TSL ~ PPAVL :

54

PVAR] decodes the variable field of the siBjoB card.
The calling sequence for this routine is: -
 TSL ., PVARJ ,
SYSTUS tests availability status and reserve status
of a given unit. The calling sequence for this routine is:

. TSL SYSTUS:
. pix ‘name
where: ‘ :
pfx
= PZE if name is S.SUxx

= MZE if name is a file name
name
‘= a symbolic unit (S. SUxx) ora file name

Any of the following ﬁle names may be used in the
calling sequence: .

S.FBIA ')

S.FBOA

S.FBPP

S.FBLD
Each of these file names is- the mltlal address of a
standard 19-word. file control block, as described in
the publication IBM 7040/7044 Operating System

(16/32K): Input/Output Control System, Form C28- ‘

6309. ,
At the completlon of the routine, the accumulator
is set to + if the unit is avallable, it is set to — 1f the

unit is not available.

" TESTIO decodes 10cs 0pt10ns on the siBjoB card
The calling sequence for this routine is:
TSL " TESTIO o

Processor Files: e 7
The Processor files have the following file control

blocks (note that the file name becomes the name of
the file control blocks) : '

_ ASSIGNED TO -

System. lnput File

NAM,E, . DESCRIPTION.
S.FBIN ~ System input file S.SIN1
S.FBOU ' System output file ©.S.S0U1
"~ S.FBPP System punch file < - S.SPP1 or S.SOU1 if
RIS print and punch out-
: ; ;. .- .put are combined
S.FBIA . Alternate system input - S.SUxx, as indicated by
file ' .~ a $IEDIT card
S.FBOA Alternate system output S.SUxx, as indicated by
file a $OEDIT card
S.FBLD System load file S.SUxx; as "determined
by the Editor or Proc-
essor Monitor
S.FBED System edit file S.SUxx, as determined
by -the Edit Monitor
S.FBCP System copy and reload $.SUxx, as indicated on
: file the $IBJOB and

$RELOAD eards

This file contains the mput to the system and may be

_used by object programs. It has the followmg char-

acterlstlcs

L

L It may be labeled. ~
2 It is multireel. Unit switching is automat1c
3. There must not be file marks ‘within the body of
the ﬁle .

4. Its file control block S.FBIN, is in the Subroutine
Library. It specifies an error return, s.INer, which per-
mits retry only on card equipment’errors. ’

5. Its file description is fixed by system requirements

and installation option. Its error return is ﬁxed by

installation option. :

6. Its buffer areas are included in the using program,

7. All' $ control cards are singly blocked “on this
file; all other cards are blocked accordmg to mstalla-
tion option. ‘

8. The file may be created on the 1401.

9. Itis a mixed-mode file. -

System Output File -

This file contains the print output for the system and
may be used by object programs. It has the followmg
characteristics:

1. It may be labeled.

2. It is multireel. Unit switching is automatlc

3. There must not be file marks within the body of
-the file.

4. Its file control block S.FBOU, is in the Subroutme
Library.

5. Its file descr1pt1on is fixed by system requu'e-
ments and installation option.

6. Its buffer areas are included in the-using program.

7. Itis a Bep file, unless it is a combined print/ punch
file.

8. If print and punch output are combined, then
both files (s.FBou and s.FBPP) are assigned to s.soul,
buffer areas are shared in the program, and the com-
bined files form one mixed-mode file. :

System Punch File
This file contains the punch output for the system
and may be used by object programs. It has the follow-
ing characteristics:

1. It may be labeled. -

2 It is multireel. Unit switching is automatic. :

3. There must not be ﬁle marks within the body of

the file.

4. Its file control block S.FBPP, is in the Subroutme
lerary

5. Its file descnptlon is. ﬁxed by system requlrements‘

and installation option. Its ‘error return is fixed by
installation option.
6. Its buffer areas are mcluded in the using program
7. Itis a mixed-mode ﬁle

Alternate System Input File
This file (s.FB1a) serves as an alternate source of sym-

bolic input to the compilers and relocatable input to’

the Loader. It is used by inserting a steprT card in the
system input file. It has the same characteristics as the
system input file, except that it cannot be multireel
and that it only contains source or relocatable decks.

Alternate System Output File

This file serves as an alternate for compiler print out-
put only. It is used by inserting a soEprr card in the
system input file. It has the same characteristics as the
system output file except that it cannot be multireel.

System Load File
This file contains stacked relocatable input to the
Loader. It has the following characteristics: -
- 1. Tt may be labeled.

- 2. It is single-reel. ,

3. There may be no file marks within the body of the
file.

4. Its file control block, S.FBLD, is in the Subroutine
Library.

5. Its file description is ﬁxed by system requirements
and installation option.

6. Its buffer areas are included i in the using program.

7. It is a binary file. '

8. If rrcHo is set to 1, it is preferably on the same -
channel as s.siN1. It is preferably not on channel A or

~ on channel S.

9. If only four work umts are ava1lable for a COBOL
compile and load application, it is on a unit that is one
of the compiler work units. :

- 10. Itis a tape file or a disk or drum ﬁle in a standard
format other than random access.

Sysrem Edit File :
This file contains control cards and absolute input to

“the System Editor. It has the following charactenstlcs

1. It may be labeled.-

2. It is single-reel.

3. It may not contain file marks w1th1n the body of
the file.

4, Its file control block S.FBED, is in the Subroutine
L1brary

. Its file description is fixed by system requ1rements

and installation option.

-6. Its buffer areas are included: in the using pro-

grams.

7. Itisa bmary ﬁle
8. If Nosourck is specified on the siBEDT card, the

edit file will preferably not be on the same channel as

s.siN1. If source is specified, the edit file will be on the
same channel as s.siN1.: In any case, the edit file will
preferably not be on channel A and will never be on

‘channel S. (These rules apply only 1f the system is

assembled with 1FcHO SET 1.)

Processor (IBJOB) 55

9. Itisa tape file or a disk or drum ﬁle ina standard
format other: than random access. ‘ e

Sysfem Copy and Reload F:le

This file contains absolute programs in System beraryv
format, to be used by the Reload Program It has the -

following characteristics:

1. It may be labeled.

- 2. Ttis single-reel.

3. It will contain file marks within the body of the
file.

4. Tts file control block, s.Fecp, is in the Subroutme
Library.

5. Its file description is fixed by system requlrements
and installation option. ‘

. 6. Its buffer areas are mcluded in the Reload Pro-
gram, but they are created by the Loader only: 1f COPY
is specified. : o

7. Itis a binary file.

8. Its block size is the same as that of the system
edit file. It is assembled as zero. :

Processor File Maintenance

Beginning- and end-of-file' procedures include rewind-
ing and, if the file is labeled, verlﬁcatlon or creatlon of
header or trailer labels.

" The following are cases in which ﬁles are opened
with beginning-of-file procedures:

1. The s.sin1 and s.sout files are opened with a
beginning-of-file procedure by the Supervisor. -

2. The s.sep1 file is opened with begxnnlng-of file
procedures by josep. Bit 17 of locatlon S.SFLG 1S set to
1 to indicate the file is-open. ¢

3. The alternate input and the alternate output files
are opened with a beginning-of-file procedure by the
Processor Monitor when it encounters a SIEDIT Or $OEDIT
card specifying an alternate unit. \

4. The load file is opened with beginning-of- ﬁle pro-
cedures, first by the Processor Monitor when stacking
of relocatable decks ‘is required by the Loader, and
later by the Loader itself.

- 5. The edit file is opened with a begmmng-of-ﬁle
procedure by the System Editor,

- The following are caseés in' which files are closed w1th
end-of-file procedures:

1. The s.siN1, s.s0U1, and s.spp1 files are closed wrth
end-of-file procedures by the Supervisor. :

2. The alternate input and alternate output files are
closed with' end-of-file procedures by the Processor
Monitor when the next sEDIT or $SOEDIT card is en-
countered or at the end of a job. -

3. The load file is closed with end-of-file procedures
by the compilers or by the Processor Monitor.

4. The edit file is closed with end-of-file procedures
by the Editor Monitor and later by the Loader.

56 o<

A file is reopened when it is opened without rewind-
ing or label processing. Any system component that
uses a system file must reopen it. Only a monitor is
permitted to open the files. Before the alternate input,
alternate output, peripheral punch; lead, or edit files
are opened, a unit assignment must be obtained from
the Nucleus and placed in the file control block. -

A file is released when it is closed without rewinding
or:label processing. Any system component that uses
a system file must release it. -

The Input and Output Editors (joBIN,]onou JOBPP)
perform reopening ‘and releasmg automatically for all
system files except the load file and the edit file. The
pre- and post-execution routines of the Processor Moni-
tor perform these procedures for object programs. -

The copy and reload file is opened and closed with
end-of-file procedures and label processing for each
program that is stacked and loaded. A dummy file,

- created by the Loader 1nd1cates the end of all stacked ‘

programs. - -

Uhhty Files
All utility files can be opened and closed at the user’s

‘discretion. All of them must be closed when processing

is completed by the routine. Object program files will

- be closed by the post-execution routines of the Proc-

essor Monitor. Figure 27 shows the use of input/output
units by the Processor components.

Labels

The file block for each of these files may mclude the
following label mformatlon

WORD = CONTENTS
FCFSN PZE

FCRSN PZE 1
FCRET -PZE

FCIDl ~ BCI 2, S.Sxxx

FCIDZ S BCI 1,000000

Compiler and Assembler Work Units .
The Processor Monitor chooses available units for the -

*compilers, assembler, and Loader. It places the Sym-
‘bolic Units Table entry for each of these units into a

table in common storage. If possible, units are chosen
according to the specifications that follow:

- 1. worki (and work4 if cosoL is specified) should
be on the same channel as s.siN1, but should not be on
channel A or on channel S.

"2, work2 and works should not be on the same
channel as s.siN1, nor should they be on either channel
A or channel S. o

3. In an edit run using the NOSOURCE option; WORK3
is the umt used for the system edit file. -

4. The units are tape, disk, or drum units. Disk or
drum units must be in a standard format other than
random access. :

. Note: If 1FrcHo is set to 0, no- éons1derat1on is glven
to channel qualifications when - choosmg units (rules
1 and 2 above do not apply).

Available Work Units » ‘ v :
A unit is available if the following conditions exist:
1. The unit is attached.

2. The unit is in ready status: (A test for ready status -

1. When a job specifies the cosor, Noco, NoMaP, and
NOLOGIC options, the job will be terminated. if there
are not at least four available units. -

2. When a job specifies the COBOL, and GO, MAP, LOGIC,

~ Or pLOGIC options, the job will run normally if there are

- five available units (four work units plus the load unit).
 If there are four available units, no Preprocessor cards

~ (SNAME, $USE, $POOL, SOMIT, SLABEL, sFILE) will be allowed.

is performed only if the system is assembled with -

IFSNS SET 1.)
3. The reservation code assxgned to the umt is 00.
4. The unit is not a unit record device.

a standard format of the installation.
6. If the system is assembled with LABELS SET 2, the

label associated with the unit must be standard and

must have an expired retention date.

The following procedures will be followed when'

there is a shortage of available work units:

The job will run if there is only one cosoL deck and it
appears first; otherwise, the job will be terminated.

‘The job will also be terminated if less than four units
‘are avallable

3. When a]ob specifies the NocoBoL and sourck, co,

. MAP, LOGIC, OF DLOGIC options, four units must be avail-
5. The format of a disk or drum unit corresponds to

able (three plus the load. ﬁle) or the job will be ter-

minated.

4. When a job specifies the Nosource optron and less
than three units are available, the job will run until

" one more than the number of avallable units is re-

qulred

Processor (IBJOB) 57

Output
File
5 - .°5.50U1
- Processor cosoL 4 (.of alternate
 Monitor . - Input * Compiler if SOEDIT)
S.SINT .
(or alternate ~ Compiler
if $IEDIT) Work Output
SN . Unit 3 .
Output] 5-50U1
File ./ (oralternate
[if $OEDIT)
S, SOU1
(or alternate ’
. FORTRAN _: ¥ $OED|T)
) Compiler‘ - ' i
S.SIN1
(or alternate -
if $IEDIT) Compiler
Output
Unit 3. ’
Absolut
g
(or alternate Fil
i $IEDIT) =
Preprocessor
Work\ Outputif [—— 5 The Loader
Unir 2\NOSOURCE/"=— ~ ~>1 (1BLDR)
Run ’ . .
N $.50U1
f \\ (or alternate if $OEDIT)

Subroutine
Library
S.SLB)

$.SCK1 or Specified
Utility Unit

s.soul

(or alternate
if $OEDIT)

Debug)
Work
Unit

Debug

Preprocessor -Debug

Postprocessor Output

S.SCK1 or Specified S.SCK1 or ' " 5.50U1
Utility Unit Specified :
Utility Unit

Load
File

Work
Unit 3

Figure 27. Flow of Input/Output Data During a Processor Application

58

A Brief Description of the Loader Operation
The Loader operation is divided into phases or sections.-

Section 1 performs the followmg functions:

1. It reads the relocatable input decks.

2. It forms a text-processrng control dictionary and
program name table from the input control dictionaries.

3. It separates the file text from the data and pro-
cedure text and stores them for later processing. -

4. It processes the information retained by the Pre-
processor from the sNAME, susk, and somMrr cards.

5. It determines which control dictionary entries
refer to virtual names.

6. It searches the Subroutine Name Table for virtual
names and forms a list of the required subroutines.

7. It reads the subroutine input decks, completes
the control dictionary processing, and saves the sub-
routine file, data, and procedure texts. ' :

8. It processes the information saved by the Pre-
- processor from the spoor cards. -
9. It determines the size of blank coMMoON.

Section 2 performs the following functions:

1. It assigns an absolute location to s.sLoc and as-
signs absolute locations to control dictionary file entries.

2. It assigns absolute locations to control drctlonary
data and procedure entries.

3. It processes the file text saved by Sectron 1,
forming workmg file blocks. ‘

4. It processes the working file blocks; ‘it performs

unit assignment, buffer assrgnment and data and pro-

cedure address field assignment. V

Section 3 performs the following functlons

1. It places the file blocks in absolute text.

2. It processes the data and procedure text to form
absolute text. :

3. It places absolute text in core storage and places
any overflow on an external storage unit in a form
acceptable to the System Loader.

4. It creates a copy file if copy is specified.

Section 4 performs the following functions:

1. It clears those parts of storage not used by the
object program.

2. It loads the text from core storage and uses the
System Loader to load from the overﬂow umt if
necessary.

3. It transfers control to the object program.

Section O and Section I are two small sections that

control Loader processing and perform mltrahzatlon
respectively.

Loader (IBI.DR)

Section L produces a MaP, Locic, pLocIC, and/or

- FILES output listing, if specified on the s1BjoB card.

-Description of the Program Deck -

The program deck that is produced by the Macro
Assembly Program for processing by the Loader con-
sists of: Bcp control cards; a binary control dictionary;

-~ binary text; and, optionally, a debugging dictionary. -

The first card of each program deck is a siBLDR card.

 This is followed by a scpict card, which signifies that

the binary card(s) that follows contains the -control
dictionary for the deck. If a poict (either full or ab-
breviated) has been requested on either a siBMAP or
SIBFTC card, the next alphameric card is a sppicr card fol-
lowed by the binary card(s) containing the debugging
dictionary. Otherwise, the next alphameric card is a
sTEXT card indicating that the subsequent binary
card(s) contains the program text for this deck. The
last card of every deck is a spkEND card.

The stext card and the binary text cards following

it are optional in a program deck that is to be loaded;

however, they are usually included. All other previ-
ously mentioned cards, must be present for each deck
to be loaded and executed. At least one deck, in a
group of decks to be loaded and exccuted together,
must contain the stext card and the associated binary
text cards o

BCD qud 'Formui
| COLUMN INDICATES
1 8 Co
$IBLDR decknm Beginning of the program deck.
$CDICT decknm Beginning of the binary control
- dictionary.
- $DDICT decknm Beginning of ‘the bmary debug-
Sl -ging dictionary.
$TEXT decknm - . ‘Beginning of: the relocatable bi-
nary text:
$DKEND decknm End of the program deck.

The decknm in columns 8-13 is not checked by the
Loader. The Loader uses the deckname entry in the
binary control dictionary to identify the deck. The
date, which is inserted by the Assembler starts in
column 16 of the stBLpR card. «

Binary Curd Format

There are three binary sectrons of the Loader program
deck: the binary control dictionary, the binary de-

buggmg dictionary _(optional), and program text.

Loader (IBLDR) - 59

T 1112 3

19(20(21 23|24

VBHBENBN .

XRERERE
“l22222222° |

33333333

CARD CONTROLS
CHECK SUM

i
(65555555
B6BEE6EE

11171111
88888888
99999998

' Flgure 28. Column Bmary-Card Format

The 24-word ‘column blnary card form is used as
shown in Figure 28. :

‘Each 36-bit binary word is punched in three columns
of the card as shown in Figure29. - : '

The first word of the column binary card is a control
word that describes the mformatlon on the rest of
the card as follows: :
MEANING :

BITS CONTENT
S, 1 11 Relocatable program deck mdlcator
2 0 - Verify check sum. N
1 Do not verify check sum.
3 ‘0~ IBJOB relocatable deck.
S 1 'Deck unacceptable to the Loader.
4 0 -
5-7- 001 The mformatlon on the rest of the
 card is relocatable program text.
010 - “The information on the rest of the
- card is control dictionary.text.
100 The information on the rest of the
. card is debugging dictionary text.
8-12 01010 Column binary card ‘indicators (9-7
o punch).
13-17 S XXXXX Word count of meanmgful words on
card. - :
18-20 2000 s
2135 - o Card sequence number

The second word on the card is the logical sum of
all words on the card except the check sum word. If
this word is zero or if bit 2 of word 1 is 1, the Loader
will not check the logical sum. B

These two words are common to the control dlC-
tionary, relocatable program text, and the debuggmg
dictionary portlons of the deck (if present). Each of
the three sections is sequenced mdependently (word 1,

‘bits 21-35). Sequencmg starts at zero; all cards must

be in sequence.

The description of the other words on the card
(words 3-24) will depend on whether the ‘card is a
control dictionary card, a relocatable program text
card, or a debugging dictionary card. Since the debug-
ging dlctronary is ‘an optional section, words 3~24 of

60

- the ppict card are:discussed in detall in the sectlon

Debuggmg Processor.”

Bmary Confrol chhonary

Each card of the bmary control dictionary has bits
5-7 of word 1 punched 010. The data words start
in word three of the card and continue until, either
there is no. more room on the card or the. contro]
dictionary is complete. The word count in the first
word spe01ﬁes the number of control dlctlonary words
on each card.

The control drctronary is made up- of two-word

entries. There are seven possible kinds of entries in

the control dictionary of each program deck to be

Joaded: Preface, Deck Name Control Section, Ref-
~erence. Point, External Reference ‘Even, and Flle

_ The order of these entrles in the control dictionary is:
1. The Preface entry '
2. The Deck Name entry
3. All File entnes R .
4. All External Reference entrles

12 5 12 24
" 1| 13 | o2s
0 2 | 14 % |
1 3 15 27
w2 4 6 | 28
g - e P
2 3 5 17 2
4| 6 18 30
- - -
g 5 7 19 31
&
6 8 | .20 | 3
70 o [2| 3
8 | 10 22 34
9 | n | 3 | 3
; ;;sx 17 18
: CurdCqumns

Frgure 29 P]acement of a 36 Bit (S- 35) Bmary Word in Three
Columns of a Column Binary Card

5. Control Section, Reference Pomt and Even entrres .

in ascending order according to address
The sign bit of the last word of the control dictionary
is minus.

Preface Entry: The ﬁrst entry in the control drc— .
tionary indicates whether the deck is a relative or ab-
solute deck, gives the location of the entry point for

the deck, and indicates the number of bits needed to
express a reference to the control dictionary. The con-
tents of the two words in the Preface entry are:

pfx : X, r

PZE n

where: a ‘
pfx

£PZE if the deck i isa relatrve deck (produced by a RELMOD

assembly).

=PTW if the deckis a: ‘relative- deck and contams a (TCDd

pseudo-operation y break.

=MON if the deck is an absolute deck (produced by an |

ABSMOD assembly):

=MTH if the deck is.an absolute deck and contams a (TCD;

pseudo-operation) ‘break.

X ' !

=the relatlve or absolute locatlon of the entry point for thrs

deck.-

binary text, if the deck is a relative deck,

=the number of control dlctlonary entnes, if the deck 1s an’

absolute deck
—the maximum number of ‘bits required to express.a refer-
ence to any entry in the control dlctlonary The value of n
is such that the number of entries in the control dictionary

" is'less than or equal to 2" buit greater than 2% (For ex--

- ample; if ‘the control dictionary has 15 entries, n=4.).-:

Deck Name Entry: This is the second entry in the 4

control dictionary. The contents of the two words in

the Deck Name entry are:

BCI

s decknamel‘ o
‘PZE o

: Oaan:,'4 :
where:

deckname . '
=the -deck riame as punched in columns 8-13 of the $IBMAP
$IBFTC or $IlCBC card for the deck
n
—the length of the program for the deck.

File. Entries: These entries are for file areas wrthln
the program deck that may be replaced, deleted, or .
referred to by other program decks. The format of

each File entry is:

BCI 1, filnam
PTW 0 -

where filnam (a real name) is the name of the file area.

External Reference Entries: These entrles are for
references within a program deck to names in other

program decks. The Macro Assembly Program pro-

duces External Reference entries for a symbolic deck

containing:

=the hxghest relatlve locatmn ass1gned to the relocatable

1. EXTERN pseudo-operations. Every name in the var-
lable field of an ExTERN pseudo-operation is included
in the control dictionary.: S

2. System symbols, of the form S.xxxx, that are not
defined within the symbolic deck.

“The contents of the two words in each External

Reference entry are:

‘BCI 1, exname

“PTH 0, , 00
where exname is the name that i is external to- the deck.
Exname is a virtual name. :

Control Section Entries: These entries are for pro-

cedure and data areas within the program deck that
may be replaced, deleted, or referred to by other pro- -
gram decks. The contents of the two words in each
Control Section entry are:

© BCI
PON

1, ctlnam)
S loc, s lngth

where: . ‘

ctlnam

—the name of the control section. Ctlnam is a real name.

loc
V-—the relatlve or absolute locatron of - the begmmng of the;
_...control section.: :
Ing th :
: —the length of the control section;

Reference Point Entries: These entries are for ref-
erence points within this program deck. These refer-
ence points are not necessanly entry points to the deck.
References can be made by other program decks to
be loaded with this program deck. Entries of this type
are produced by an ENTRY' ‘pseudo-operation. The con-
tents of the two words in each Reference Point entry
are: :

BCI
PON

1, refnam
loc,, 0

“where:

refnam. : : g
* =the name of the reference point. Refnam isa real name.
loc
=the relatlve or absolute locatron of the reference point,

Even Entries: These entries prov1de information to
the Loader in order to ensure an even load address for
a certain instruction or word of data: Even entries are

- produced by an EvEN pseudo -operation in the program
~deck. The- contents of -the~ two words 1n each Even

entry are:

f BCI 1, 000000
“ PZE loc, 5

where loc is the location of the data or mstructmn
relative to the start of the deck.

Relocatuble Bmary Progrum Text

kkThere are two sections of relocatable blnary text:

‘1. File text
- 2. Data and procedure text. -

Loader (IBLDR) 61

File text always appears first, if it exists. Data and
procedure text follows file text and always starts on a

new card. Either or both of these parts of the relocat-

able binary program text: may be omitted. Words 1

and 2 are control and check sum words, as previously

noted. Bits 5-7 of the first word are 001 for relocatable

binary program text cards. Words 3, 4, and 5.contain -

nineteen 5-bit control groups that give relocation in-
formation for the nineteen data words on the card
(words 6-24). Words 3 and 4 each contain seven con-
trol groups; word 5 contains the remaining five control
groups (see Figure 30). The sign of these words is
plus, with one exception: word 3 of the first card
containing data and procedure text has a sign of minus.

Words 6 through 24 of the card contain relocatable k

binary program text.

The five-bit control groups 1nd1cate to the Loader

how the associated data word is to be processed The
first bit of the five bits indicates that the data word
which follows is elther a standard entry or a special
entry.

Standard Entry: Bit 1 of the five-bit control group -

is 1 for a standard entry. The remaining four bits
describe the manner in which the address and decre-
ment of the associated data word are to be processed.
It is important to realize that several data words on a
card may form a single absolute text word. Only the

address and decrement fields of the standard entry

data word are relocatable. The prefix and tag fields
are not changed by the Loader; they are determined
by the Macro Assembly Program and passed on to the
Loader

Standard entry control. grOups have the following
format:

1 ddaa. : i

where the bits dd and aa specify the type of relocatlon
for the decrement and address, respectively, of the
data word. The followmg bit settings are poss1ble for
dd oraa:

‘00 means the value of the field is constant.

01 means the value of the field is determined in relatlon to the
start of the deck. .

10 means the field is a reference to the control dictionary (thls
setting is possible for aa only):

11 means the field is part of a complex expression that may ex-
tend into the subsequent data words.

_ Constant Addresses and Decrements: The code 00
indicates that the address or decrement of the associ-
ated data word that is passed to the Loader by the
Macro Assembly Program is not changed by the Loader.

-No processing is done by the Loader; the field has

been completely processed: by the Macro Assembly -
Program.

Relative Addre.sses and Decrements: The code 01
indicates that the address or decrement of the asso-
ciated data word is a value that is determined in rela-
tion to the start of the program deck. The Control
Break Table, which is internal to the Loader and ac-
counts for deletions or insertions made in a program
deck, is scanned for the relative value in the associated
data field (address or decrement). If the relative value

is within a deleted section of this deck, the reference
is considered invalid and no assignment will be made.

If the value is within a retalned section of the deck,

iw-1.20 |2y

(]}

loooooonol

B nn'mnnnsgo«
1111111
22222222|

33333333

DATAWORBT :

‘CARD CONTROLS.
CHECK SUM

1444400s|
55555555
66666666
11111111
38888888]

99998999
BusEEn B0

DATA WOR D i

Figure 30. Relocatable Binary Text Forrnat

62

an absoluetejbase that has been adjusted for all previous

insertions and deletions is added to the relative value.

Dictionary Reference Addresses: The code 10 indi-
“cates that the value in the address field is a dictionary
reference. This code may be used for only the address
field of a data word within a long form complex. A

dictionary reference always results in a complex ex- .

pression.

NotE: Any reference within a symbolic deck to a
point within a control section is expressed to the Loader
in the form b + ¢, where b is a pointer to the control
dictionary and c is a displacement from the start of
the control section. At load time, the Loader will adjust
this reference to-allow for insertions within the control
section that result from EvEN pseudo-operations. Ex-
ternal references are. expressed in the form b + ¢, wrth
c equal to 0. : e i

Complex Field Decrements and Addresses: The dec-
rement or address, or both, of a data word can be repre-
sented as a complex expression requiring evaluation at

load time. Addresses or decrements requiring such

evaluation are given a relocation code of 11. The ex-
pression to be evaluated may then be expressed in one
of two ways:

1. The associated data field (decrement/address)
equals zero (sometimes-called Long Form Complex).
The long form complex:is used when: an expression
(e.g., A/4+3/4) is longer than can be expressed in‘the
associated data field or when an expression uses multi-
plication or division. The long form complex consists
of a string of data words, each with a correspondmg
control group.

Each word of a long form complex has the form:
pfx . “a,bc
where: '

pfx - .
=PZE if addition (+) is indicated
=PON if subtraction (—) is indicated
=PTW if multiplication (*) is indicated
=PTH if division (/) is indicated

- The control groups describing subsequent words in
the strings for an expression have the same format as

the control groups already described, except that the
meaning of the 11 code is changed to mean a result
storage cell. Seven such result storage cells (desrgnated
by placing b equal to 0, 1, . . ., 6) can be used for inter-
mediate results dunng the evaluatlon of a complex

expression. . , , STy
A word in a complex expression is mterpreted as:
a . pfx = b L

_where b is the result storage cell into which the result

4 is to be placed. The complex expression is terminated
_ by a word for which b =

‘2. The_ assqciated data ﬁeld (decrement/address)
does not ‘equal zero (sometimes called Short Form
Complex). This form may be used to express complex
fields of the form, name+-c, where name is the exter-
nal name of a control section The 15-b1t ﬁeld is formed
as fOIIOWS ;

Bit 1
=(Q.
Bnts 2 through n + 1

indicate the relative location. of name in thls deck’s control
dictionary. n is the number of bits required to express the total
length of the control dictionary (for example, if CDICT ‘contains

15 entries, then 4 bits, required to express 15 as ‘a: binary num-.
ber, would be used i.e., bits 2-5)

Bitsn + 2 through 15

“-contain a constant (15 — n —'1 bits long) to be added to the
location assigned to name. Note that the long form complex may
have to be used if more than 14 bits are required to express the
length-of the control dictionary and the addend:

Special Entry Bit 1 of the five-bit control group is 0
for a special entry. Special entry control groups have
the following format:

0 ssss

where the four bits, ssss, specify the type of special
entry. o o _

0 0000: End of card (no data word is associated with
this entry).:No more data words appear on this card.

0 0001: Location counter control. The associated data
word expresses a change in location counter. The for-
mat of the data word is:

4 pfx - X
where:

pix
—PZE ifxis an absolute orlgm
-PON if x is a relative origin.!

=MZE if a complex origin within thrs deck is deﬁned in the
‘associated expression that ¢ontains a dlctlonary reference to
a real section.

- =MON if a complex origin within this deck is deﬁned in the
.. associated expression that contains a dictionary reference to
a virtual section.

: (,-‘MTW if a complex origin may or may not “be within this
"deck. Tt is used in a FORTRAN blocked data program.

=PTW. if this is a BSS of -length x. -
. =PTH if this is an-EVEN pseudo-operation; x is zero. \

0 0011: File text follows. The address portion of the
associated data word contains the relative location of

_the file name entry in the control dictionary. The

decrement portion contains the number of file informa-
tion words that follow. (This number is dependent on
whether label information is. present or not. If label
1nformatxon is present the 51gn s minus.) The subse-

IOrigms are an integral part of text and each card does not carry its rela-
tive load address. .

Loader (IBLDR) 63 v

quent data words and their associated control groups
contain information for generatin\g" file control
blocks. They are formed from FILE pseudo-operations.

‘The eight words of file text, which follow the first
word, correspond respectively: to words FCCUR, FCLNG,
- FCRCT, FCUNI, FCCON; FCFCN, FCBSN, and FCEX1 of the file
control block described in the publication IBM 7040/
7044 Operating System (16/32K): Input/Output Con-
trol System, Form C28-6309. Control groups of constant
address and decrement are associated with them except
where an external name is specified (as in ERR,-EOR,
FOF, ADDLBL, and NSLBL options), in which case the
appropriate portion of the control group is complex and
the data field is short form complex. If there is labeling
information, there are five more words of file text.
- These have control groups 1nd1cat1ng ‘constant ad—
dresses and decrements :

0 01XX: End of current loglcal record (TCD pseudo-

operation) break, where xx describes the address por-

‘tion of the data word as follows

00 Constant

01 Relative

11 Complex
The address formed will be the location of the entry
point for the storage load that has just been con-
structed. (All Subroutine Library subroutines called by
a program using the Tcp pseudo-operation will be
loaded with the final logical record; all file control

blocks and pool control words will be loaded w1th the i

first logical record.)

0 10VV: v¥D expression, where vv descnbes the man-
“ner in which the data field is to be processed by the
_ Loader. (The meaning of the vv codes is given later
in the text.) The Loader will assemble a string of bits
or words that contain constants, relative locations, dic-
tionary references, and complex expressions that do not

' necessanly fall w1th1n the normal boundanes of address
or decrement.

Each data word that corresponds : to ‘a VED’ control‘

group specifies one field of the v¥p expression and
specifies whether a word should be termmated The
general format of a data word is: :

t | ct ; data ﬁeld
s 1 o 56 \ T35
where:: ’ '
i | e : : g 2
=0 if the assembly continues ‘in the same machme’ word or
- words (across machine word boundaries)..
=1.if the current machine word is termmated and ﬁlled w1th
zeros in the unused rlghtmost positions. :
ct

—the number of blts from the data field that are to be mserted
into the generated string. The rightmost ct bits are mserted
T (etL30)

64

“The vv codes that may appear in the control group
for a VFD expressmn are as' follOWS

vV
- =00, 1f the data ﬁeld is constant .
=01 if the address’ portion (last 15 bltS) of the data field
“‘contains a relative address { described tinder “Standard En-
try”). Tt is relocated in the same manner as any other rela-
tive field. The rlghtmost ct bits are inserted into the VFD
strmg
=10 if the address portion of the data field is a dictionary
. reference (described under “Standard Entry”). The address
“is computed and the nghtmost ct bltS are inserted ‘into the
VFD: string.
=11 if the address portlon of the data ﬂeld conforms to_the
~rules for complex expressions “(described under “Standard
“‘Entry”). After evaluation, the rxghtmost ct blts are 1nserted
- into the VFD: string.

0.1100: Object-time. reference to the ob]ect program
entry point (used by the Debugging Processor): The
associated data word cdn be any constant that has-zero
in the address portion of the word. The address portion
will be set to the program entry point. by IBLDR.

0 1111: End of text indicator. No data word is.asso-
c1ated with this control group.

Storage A"bcaﬁon ,
~The Loader allocates storage to ‘the object program as

follows:

‘1. If s.sLoc is referenced in the program, it is as-
signed to the first non-storage-protected location after
the level of 1ocs specified on the stBjos card, and a five-
word ‘black:is placed in the succeeding locations.

The five words will contain the following:
S SLOC +1- fblorg, t totlng =
) 7, yfbllng :

+3 tabavl
+4 dporg, , dpend
S +5 . bleorg
where: '
fblorg

=the locatlon of the first word of the first ﬁle control blo¢k.
t ‘
=6 xf ‘the IOBS level of IOCS was spec:ﬁed on the $IB]0B :
card.
=4 if the IOLS level of IOCS was specrﬁed on the $IBJOB
card.
=2 if the IOOP2 level of IOCS was specrﬁed on the $IBJOB
card.
=0 if the JOOP1 level ef I0CS was spec1ﬁed on the $IBJOB
; card . i s
totlng
~=the total length in words of the file control blocks
fhllng
-~ =the length in words of a ﬁle control block (19).:

“tabavl -

. ‘“the first locatlon avaJlable for tables
o followmg
1. The first Tocation for the /DEBUG deck if load time
,debuggmg facilities are used.
. The first location in the Pool Control Table.
. The first location in blank COMMON if there are no
buffers.
. S.SEND if there are neither bufférs nor blank COMMON,

It is one of the

»#‘- W

dpoig e o .
' ~the first locatron used by data or procedure text i in the decks
Ioaded for this program. v

dpend

loaded for this program.u E

bleorg :
=the first locatron used in blank COMMON

NOTE If the appropriate 1tems do_not- exist. for a program,
fblorg, fbllng, and blcorg are zero Unspec1ﬁ'ed brts do not. nec-
essanly contain zeros. -’

Flgure 34 shows the relative Tocation of these words
in core storage. When a dependent cham lmk 1s loaded
1nto core storage, dpend is ad]usted ’

2. File text for each file is formed mto a 19-word file
control block All file control blocks are located’ either
immediately after the ﬁve word block followmg S.SLOC

- or at the first ; non-storage—protected location followmg
the area used by the level of 10cs specrﬁed on, the
$IB]0B card. (File text from ’the Subroutlne lerary
appears w1th the rest of the ﬁle text.)

3. The data and procedure text are fonﬁed into abso—
lute text starting at the first locatlon after the last word
assigned to the file blocks -

4. Subroutine lerary data. and procedure text fol-

low the data and procedure text formed from the. input

decks. .
-5. Blank COMMON is assrgned storage 1rnmed1ately
below the hlghest location ‘available to the system
(s.sEND).

6. Buffers are assigned immediately below blank
COMMON.,

7. Pool control words are created and are assigned
locatlons immediately below the buffers.

NotEe: Programs assembled in ABsMop are loaded
without regard to the points above. The user must,

therefore, exercise care so that absolute text does not

conflict with locations assigned for relocatable text,
file control blocks, etc. Locations assigned to absolute
text are not taken into account when relocatable text
(mcludmg library routines) is loaded.

Reload Program

The Reload Program is a subsystem under the Proc-
essor Monitor. It is designed to search for, load, and
- execute absolute object programs produced by the
Loader when copy is specified on the siBjos card.

The Reload Program eliminates the necessity of
using the Loader each time the programs are loaded,
thereby reducing load time of debugged programs.

Format of Input

The mput unit to the Reload Program contains one or.
" more ﬁles in the following format:

: —the last location USed by data or procedure text in the decks)

’
Blank COMMON

" Buffers

o 'Pool Corgfrolchble_

5.SLOC and 5 Words

Constant Core Storage

s

Figure 31. Storage Allocation

tabavl . .

/DEBUG
" "Unused Care Storage
/, #Peﬂd E
. Decks and Subroutines
~— dporg
- File Control Blocks
\ fblorg ‘

1. Information record about the object program in-

cludmg
a. Name

b. File block information -

c. . Entry point

d. Buffer origin

€. // coMMoN origin
. f. s.sEND at copy time

Loader (IBLDR)

65

~g. 10Cs level spemﬁed on siBjoB card at copy time

h. Absolute address of 10CS level specified at copy
time

i. Load address of first record’Of progr'am'

2. Table of Contents entries for object program,
consisting of one three-word entry for each logical
record (or link) in the format described in the sectlon
“Table of Contents.”

3. Absolute program in the format descnbed in the
section “System Lrbrary ~

4. End-of-file mark.

The last file is a dummy file, created by the. Loader,
to indicate the end of all programs. This file consists
of a three-word record followed by an end—of file mark.
The three-word record is created by means of the
followmg pseudo-operation:

BCI 3,7 DUMMY

Operation

The Reload Program seeks the absolute object program

" on the input unit, using the program name and optlons
specified in the sRELOAD card.

If the NoskcH offtion is specified, the Reload Program
rewinds the input unit, reads the first information
record, and checks the name from this record. If the
name corresponds to the program name from the

66

sReLOAD card, the rest of the information record is
processed and checking is ‘done to see if the program
can be loaded correctly. If the name does not corre-
spond, processing is terminated and the job is skipped.

If the srcH option is specified, the Reload Program
positions the input to the next information record and
checks the program name for this record. If the name
corresponds to the program name from the sRELOAD

" card, the rest of the information record is processed

and checkmg is done to see whether the program can
be: loaded. correctly If the name in the next informa-

“tion record does not correspond to the one in the

SRELOAD card, the Reload Program repeats the. above
process until the specrﬁed program is. Tlocated, or until

‘all ﬁles on the input unit have been checked If the

program cannot be located processmg is termmated

and the]ob is sklpped

The Tab]e of Contents record is then read and ad-

~ justed to correspond to the ‘unit _that contains the

object program. It is then transmltted to the Abbre--
v1ated Tabl ‘of Contents area in the Nucleus.

‘Core storage is then cleared ‘the System Loader is
used to load the object program, a BEGIN message is
typed ‘and control is given to the ‘object program. If the
System Loader finds that the device is incorrectly posi-
tioned, a permanent error occurs since the device can-
not be correctly positioned.” - i

7 A Bnef Dlscussnon of fhe Assembly Process

The mformatlon in thls sectlon is. prowded to glve the

reader an understanding of the basic- structure of the

Macro. Assembly Program. »

The Macro Assembly: Program is dwxded mto six
sections: (1) Phase A .(for source input only) per-
forms a pass over. source input to expand macro-
instructions and to form input to the Dictionary Re-
duction section and to Phase B; (2) Interface (for out-
put from the compilers only) performs a- pass over
output from the compilers to expand macro-instructions
and generate card images for the listing; (3) the Dic-
tionary Reduction section assigns values to symbols
for use in Phase B and produces the control dictionary
for use by the Loader; (4) Phase B assembles the in-
struction text for the Loader and produces the assembly
hstmg for the deck (5) the Cross Reference chtlonary

INPUT

! P iuse A or
Source Inpui
—{-Interface for

Compiler Input

> Work Unit 3|
1 DUP File for |
Source Input

Work Unit
1

y

Dictionary
Reduction

Control
Dictionary

Work Unit
2

Figure 32, Block Diagram for Source and Compiler Input

PPy confdln;

- Macro Assembly. Program

section produces the cross reference dictionary if ReF
is specified, and (6) the Error Editor writes out the
diagnostic error messages for the deck ,
The sequence of sections for source 1nput isio
- PhaseA - fegs : ;
chnonary Reductlon s
.Phase B
Cross. Reference chtlonary
Error Edltor Lok .
The sequence of sectlons for compller 1nput is:
Interface e :
Dictio ery Reductlon
PhaseB :
" Cross. Beference chtlonary
Error Edltor ’ :
Figure 32. shows the sequences in a generahzed
block dlagram form.

The mpui/output units are as follows:

IN contains the source input, if applicable, and muy be S.SIN1 or any
utility unit specified by a $IEDIT card.

Work Unit: 3 contains compiler input, if applicable, and later contains
diagnostic data from Dictionary Reduction and Phase B, for the Error
Edlfor Work Umf 3 is also the Phase A DUP file, if upphccble to
“'source: mpuf

Work Unit- 1 cotains the dictionary data between Phase A and the
Dictionary Reduction phase. It also contains intermediate data between
Phase B ‘and’: the Cross Reference phase, if REF is specified.

Work Uhif";z‘cen‘fains the internal text (T2) and, if LIST is specified, card
images-between Phase A and Phase B. It also contains a symbol diction-
ary for the Cross Reference Dictiondry and Error Editor.

ou confmns ‘the _assembly output, including the listing and diagnostic

i messages !t ‘may be S.SOUT or any - utility unlf specified ‘by ‘o $OEDIT
card.

;punched dufpu! “and i is S.SPP1.

-+ - Load File is 'used when either: GO MAP FII.ES qnd/or LOGIC or DlOGIC

] ophons are spec:ﬁed to coMcun the relocafqble bmqry decl(s for the
program

Macro Assembly Program 67

" The’ Input -Output;’ and Puiich Editors are used by
the Macro Assembly Program. The actual output of the
assembler is dependent upon the sIBCBC, SIBFTC, SIBMAP,
or siBjoB card options. '

Phase A .. ; e

This section obtains source input from the system input
unit (or the unit indicated by a sieprt card) and pro-
~ duces two sets of data: the definition file for the Dic-

tionary Reduction section and the 1nternal bmary text

(T2) to be processed by Phase B.-

Phase A contains an initialization section which:
(1) interprets the stBMaP card and sets the appropriate
switches, and (2) enters, by hashing, the operatlon
codes into an External Reference Table.

When the initialization process is completed each
source input statement is read in and classified as
either a macro definition, a macro usage, a pseudo-
operation, a one-for-one instruction, a comments (*)
card, or an ExD statement. Each source input state-
ment is then processed by the appropriate section of
Phase A to produce for that statement the internal
text (T2), which is written onto work2. If the state-
ment has a location symbol or is a pseudo-operation, an
entry is also written on work1 for the Dictionary Re-
duction section. When the END statement is detected,
the following processing is completed before the Dic-

From S.SLDR

| Initialization. |

Read a ~
Statement -

tionary Reduction section is called: literals are proc-
essed, ExTeRns for undefined system symbols (e.g.,
S.SEND) are written,on the definition file for the Dic-
tionary Reduction section, and the END statement is
written in internal text format on WORK1 and WORK2.

Disk and Drum Orders: The mm 1301 Disk, 1302
Disk, and 7320 Drum Orders are an optlonal feature of
the 7040/7044 Macro-Assembly Program. To assemble
thése orders; “the user must “updateé and reassemble
Phases A and B, and then edit the binary decks onto
the “current. system ‘tape. The symbolic instruction
DISKSW SET 0 must ‘be ‘changed to DIsKsw SET 1 in
MP3000, MP3300; and ‘MP600o. Since Phase A (np2600,
MP3000; MP3300, and MP4000) is chamed all of it must
be reassembled and edited together.

F;gu{e 33 s_hows ‘an overall flowchart for Phase A.

' Inte rfuce

This section: obtams mput from the compller mput file
and routes the T2 text to the Phase B file. If the state-
ment has a location symbol or is a pseudo-operation, an
entry is also written -on work1 for the Dictionary
Reduction section. In addition, this section produces
card images of the T2 text for subsequent listing on the
system output unit and expands the caLr, sAve; and
RETURN - operations. ‘When the Enp statement is- de-
tected, the. chtlona y Reductlon section is called.

Figure 33. Overall Flowchart for Phase A

68

¥

3 Y B R a "”, . B yoo
Process a Process a T Processa | | Process a Process a. R END Stater |
Macro. Maero .12 - Comments(*)-}- |.. Pseudo- “}+| One-for-One Other ment;Finish |
Definition Usage | Cord.. - Operation | Statement “Processing
) : i A
IE)rmrs;Pr’oduce‘ . “Cali
fagnostic Dictionary ,
| Code for the . .
Error Editor _ Redyction

chhonary Reduchon

The function of this section is assrgmng values to all
symbols and generating the control dlctlonary for use
by the Loader.
~ The Dictionary Reduction section builds an internal
dictionary that contains values for all symbols in the
program, as computed by the chtronary Reduction
section. Pseudo-operatlons are evaluated, if possible,
‘and the*location counter is incremented as requrred

The ENTRY, EVEN, and CONTROL pseudo-operahons are .

evaluated these, to gether with FILE and EXTERN pseudo-
'operatlons ‘are used to form the control drctlonary,
which is punched on s.spP1 and/or written on the load
file as it is formed. If a° - pseudo-operation cannot be
evaluated mlually, it is placed into the ‘pseudo- opera—
tion dictionary for later évaluation. Each entry in the
internal dlctlonary is chained to the preceding entry
to form a program chain; entries in the pseudo-opera-
tion dictionary are made part of the program chain.
When the END statement is read, the pseudo-opera-
tion. dlctronary is consulted to see if there are any un-
evaluated pseudo-operatrons which are then evalu-
ated. The internal text is then reordered into the format
required by Phase B. If errors are detected error indi-
cations are passed to the Error Editor.

The control dictionary w1ll be hsted ‘on s.sout, if
LIST is specified. -

At the oompletlon of the chtlonary Reductron sec-
 tion, the internal dictionary is left in storage and Phase
B is called.

Phase B

The primary function of thls phase is to produce an
* output deck in relocatable format. Direct input to this
- section is produced by both Phase A and Dictionary
Reduction. The output consists of sequential coding of
the program in the relocatable bmary format accept-
able to the Loader (IBLDR) s

Phase B reads the text from elther Phase A or the
Interface and, using the internal dictionary produced
by chtronary Reduction, inserts the appropriate (re-
locatable) values. If an error message is required for a
statement, a ‘code is written on the error unit for the
Error Editor. The statement is processed by deter-
mining the values of any symbols in the statement
from the internal diction ind producmg an-assem-

bled instruction in relocatable binary format. The

assembled statement s wrltten on the system peri-

: pheral punch file if pECK is specified on the § card for

the deck; it is written on the system output file with an

_ assigned statement number if L1sT is specified on the

$ card for the deck; and it is written on the load file if
6o, MAP, and/or LOGIC or DLOGIC are specified on the
siBjoB card for the Processor application. When Phase
B encounters the END statement 1t calls the Cross

necessary,: calls the Error Editor.- Otherwlse,;rt returns

to the System Return routine (s.sRet).

Cross Reference Dictionary

The function of the Cross Reference Dictionary section
is-to produce the cross reference dictionary that ap-
pears in’ the hstmg if the REF optlon apphes for an

. assembly." -

The ' cross reference dlctronary in the hstmg ‘may
contain four types of information:

1. Statement mumber: references to deﬁned symbols

2. Multrply-deﬁned symbols :

3. Undefined symbols

4. Starting and ending statement numbers for loca-
tion counters .

Internally, the Cross Reference D1ct10nary section
has three major parts. The first part reads the external
drctlonary produced by Phase A or Interface The
external dictionary contains the BCD symbol names in
the same order as the entries giving the definition of
these names in the internal drctronary Using the ex-
ternal and the ‘internal dictionaries, this ‘part classifies
all names as defined, multiply-defined, undefined, or
as names associated with the location counters. The
first part also alphabetlcally sorts the names within
each of these four groups. '

The second part reads a file’ that is produced by
Phase B. This file contains one-word entries (or two-
word entries, if within'a macro) giving the location

- in the internal dictionary where the name is defined,

and the statement number in which the reference to

it is found. Using this information, this part associates

the statement number with the Bcp name to which it

refers The thrrd part wntes the output on s.s0U1.

Error Ednor

This section interprets the internal codmg of error in-
dications from the Macro Assembly Program, the

'FORTRAN Compiler, ‘and the cosor. Compiler and pro-

duces’ the : appropnate dlagnostlc -error messages - for
the hstmg o

Macro Assembly Program 69,

The FORTRAN Compiler |

A Brief Descr:pﬂon of fhe FORTRAN Comp:ler

The five sections of the FORTRAN Compller are?

The Scan, which cla551ﬁes source statements, pro-
duces diagnostic messages, forms dictionaries of sym-
bols, and translates statements‘into internal text.

" The Storage Allocator, which generates constants,
translates FORMAT statements, builds alphameric tables,
generates equivalences, reserves storage, and generates
EXTERN pseudo-operations for external symbols. *

The Arithmetic and Logical Translator, which ex-

‘pands input/output lists, builds the indexing table, and -

reorders arithmetic and]ogrcal statements mto com-
putational order. i

The Indexing Analyzer, whifeh forms the input to the

Indexing Generator, optimizes the use of Subscnpts
and allocates index registers.

The Instruction Generator and Indexmg Genemtor
which completes the generatlon of the 'I‘2 text for mput
to the Macro Assembly Program. ;

Flgure 34 shows the relation of these sectlons mput/
output unit allocatlon, 1nterphase data flow,. and the
order of execution of these. sections, -

Deﬁmﬂons

TI Text: An mternal text produced by the Scan sec-
tion and modlﬁed by the Arithmetic and Loglcal Trans-
lator. .

;;;;;

bly Program

Scan

This phase lmtlally recelves control from S.SLDR, as a
result of a siBFTC card hemg recogmzed This phase
then reads all statements from s.siNt and lists: them: o
's.sout. Statements controlling data allocation. (com-
MON and EQUIVALENCE statements) are converted to in-

ternal reference text, and written on.a utility unit.

‘Other information is tabled in the internal and ex-
ternal dictionaries. The imperative statements are
written in the T1 text. During this process, undeclared
names are added to the external dictionary and. are
classified. When errors are detected in the source pro-
gram, the messages are placed in T2 text form in
COMMON-EQUIVALENCE text. At the end of the pass, the
now complete external dlctlonary, containing - BCD
names, is written on the T2 text file.

70

‘Storage Allocator : 4 .
“This phase performs storage allocatlon based upon

coMMON and EQUIVALENCE statements, and other in-
formation contamed within the internal dictionary.
Storage allocatlon mstructmns are added to the T2
text file. ‘As soon as the common and EQUIVALENCE in-
formatlon is read at the. begmnmg of this phase, the
unit is reposmoned for. use ‘by the first section of the
Arithmetic and. Loglcal Translator Phase. In addition,

Entry from the Processor .
Momtor or Eddor Monitor

Source Text

/ T1 Text] Sean -

\ Wor‘lgl.rlhit y

o Externql Dictionary :

|Common -y
| Equivalence Storage
J{Textand --Allocator

Data Reservatiqn,;, | T2 Text

o d Error Messag
* Messages I2 ¢
Work Unit
2
A
| ~o | . Arithmetic.and - |. . o
Tl Té)gf 5 L°9‘°°| _:r':?!‘s.l?b"/ Error Messages
5]
Work Unit Y o Eror Messag
oy Indexing -
i Analyzer R
4 | Indexing N\ workc unit
Information i
& . :
1 Text Modified "W°f'$2U““ :
= Instruction”
-~ 7} Generator and IR .
| ndex | T2 Text
1" Generator™ I5_ S

To INTER Phase
of Assembler

. Figure 34. Flowchart Showing Unit Allocation, Interphase Data

Flow; and the Order of Execution of the Sections

FORMAT statements are " translated into calling - se-
" quences to the proper FORTRAN library conversion: rou-

tines. Alphameric arguments in caLL statements are

also written out in T2 form; as are ‘any other ‘literals
referenced by the source program. Scan error messages
are copied in T2 form onto the T2 text ﬁle

Arithmetic and I.oglcal Trunslaior

This phase reads statements in T1 text form, reorders
and optimizes the arithmetic' and the logical expres-
sions read, and then writes the modified T1 text. The
Arithmetic and Logical Translator creates: the poror
table for input to the Indexing Analyzer and expands
input/output statements into po loops, where this is
implied in the input/output list. : E

Indexing Analyzer

This phase reads the altered T1 text prepared by the
Arithmetic and: Logical Translator. Simultaneously,
further indexing information and “regional” context
records are written. '

Instruction Generator and Index Generator

This phase reads T1 text and indexing information and
compiles generated instructions (in T2 format), add-
ing these instructions to the T2 text file. The T2 text file
then contains the entire input to the assembly phase of
the 7040/7044 Macro Assembly Program. Control is
transferred to the Macro Assembly Program, using the
System Loader (s.sLor), for completion of the assem-
bly and preparation of the object listing orl s.sout and

for writing-out the relocatable binary deck on the sys-

‘tem peripheral punch unit-(s.spp1).

~Figure 35 shows the use of symbohe units by the
FORTRAN Compller

FORTRAN System Rouﬁnés
Format Conversion Routines
The routines that provide for the edltmg and conver-
sion of input and output records under the control of
FORMAT statements are:

The ACV Routine performs’ alphamerlc conversion
for Bcp data.

-TOHAC. is the entry pomt for the FORMAT A specifica-
tion. :

The map calhng sequence generated by the compiler
for this routine is:

AXT field count, 2 (if any)
TSX IOHAC. , 4
PZE width

The DCV Routine performs floating- -point conversion
for double-precision numerical data.

IOHDC. is the entry point for the FORMAT b specifi-
cation.

. The MaP calling sequence generated by the compller
for this routine is:

AXT field count, 2 (if any)
TSX ‘IOHDC,, 4
PZE width,, number of decimals -

The ECV Routine performs floating-point conversion
for numerical data.
Edltmg of true zero values is available for D and E

Figure 35. Input/Output Unit Assighment

Compiler UNIT
Section S.SIN1 S. SOU1 Work Unit 1 - Work Unit 2| Work Unit 3
Scan Read Write Write Write
. Source . Source Common-~ m
Statements Statements Equivalence - Text
Text and Error
Messages - -
el . Write
Repositioning) Repositioning External
Dictionary
Storage : Read Repositioning | Write
Allocation : Common- * T2 Text
Equivalence Write
Text and Copy Error
Error Messages Messages
Arithmetic Repositioning Repositioning
Translator - Write
Write Read T1 Error
T1 Text Text Messages
Index Repositioning * Repositioning
Analysis T "
Read T1 Write Merge | Write
Text ool Text ,EAZ:;
ages
Instruction Repositioning Repositioning
Generation - o - -
Read T1 Read Write
Text Merge T2 Text .-
Text Write
Error)
“Messages

The FORTRAN Compiler 71

conversion of output. If the editing feature is included,’
a zero value is printed as a single digit, followed by a-
decimal point and, if the zero value-is negatlve pre-

ceded by a minus sign, as follows:

0. Positive zero. value .
-0. Negatlve Zero value ‘

The remainder of the field (the posrtrons followrng the

decimal point) contains blanks.

Without the editing feature, all zero digits and the:,

exponent are pnnted as in the followrng example
--0 00000000E- 38

“The use of the editing feature is: controlled by the

following assembly parameter in the Ecv routine: "

“SUPRES: - SET" «x
where:

< r r
=1 if the ed1t1ng feature is to be included -
=0 if the edrtmg feature is not to be included

The distributed versron of the ECvV. routrne provrdes

the editing feature.

IOHEC. is the’ entry point for the FORMAT E spemﬁca-
_ tion,

The MaP calling sequence generated by the comprler
for this routine is:

AXT field count, 2 (if any)
TSX - IOHEC 4
PZE width,, sumber of declmals

The FCV Routine performs fixed pomt conversron
- for numerical data.
For F conversion of output, the entire field is flled

with asterisks when the specified width is insufficient to
contain the number. For F conversion of positive num-

bers, limited relaxation of the field width requirement
is provided by the extra digit feature. If this feature
is used, the sign position of the field, which otherwise

contains a blank, provides space for an addrtlonal srg— ‘

nificant digit.

The use of the extra digit feature is controlled by the"

following assembly parameter in the Fcv routine:
EXTRA SET «x
where:

x) :
=1 if the sign position may be used for a digit
=0 if the sign position may not be used for a digit

The distributed version of the rcv routrne does not

provide the extra digit feature.

tion.

The MAP calhng sequence generated by the cornprler~~

for this routine is:

AXT field count, 2 (if any)
TSX IOHFC. , 4 o
PZE width, , number of decrmals

The HCV- Routine inserts Bcp characters from the
"input record into the FORMAT specification and. rnserts

Bop characters from the FORMAT specification into the

72

I0HFC. is the entry point for the FORMAT F specrﬁca- o

output: record.

‘IOHHC. is the entry pomt for the FORMAT H specrﬁca-
tion. oo

-"The ‘map ‘calling sequence generated by the com-
prler for-this-routine is: :

TSX IOHHC., 4

PZE number of characters
BCI “{mimber of characters+5)/ 6,
o o7 BCD text:

The ICV Routme performs mteger conversion for-
numerical data.:

IOHIC: s the entry pomt for the FORMA,T 1 specrﬁca-
tion. di

The MAP callmg sequence generated by the com-
piler for this routine is: /

AXT - = field count, 2 (if any)
TSX IOHIC.,4
PZE © . width

‘The LCV Routine performs Iogrcal conversion for

T and ‘F characters. -

IOHLC; is the entry pornt for the FORMAT L specrﬁca-
tion. sk s

" The MaP calhng sequence generated by. the com-
pller for this routine is: :

AXT - - field eount, 2 (lf any)
TSX . IOHLC.,4
PZE Wldth ‘

The OCV Routine performs octal conversron for
numerrcal data .

IOHOC. is the entry pomt for the FORMAT o spe01ﬁca-
tion.

‘'The MmaP calling sequence generated by the com-

‘ prler for this routine is:

AXT field count, 2 (1f any)
TSX . IOHOC.,4 -
“PZE - - width

The RWD. Routine controls the input and output
of Bcp records, and controls the conversion of alpha-

meric data in accordance with FORMAT specifications.

toncMm. is the initial entry point from conversion

~ routines that use input/output list data items.

IOHCT. . iS. the final entry point from conversion
routmes
1oHLP, is the entry point for the FORMAT left

parenthems

“The map calling sequence generated by the .com-

.pller for this routme is:

CAXT * group count, 1 (if any)
- TSL IOHLP.

““iomrp. is the entry pomt for the FORMAT right
parenthesm

The map calling sequence generated by the com-

"Tprler for thrs routine is:

: "TSL IOHRP,

- IoHEF. is the entry point for the end of a FORMAT
statement.

The Mmap calling sequence generated by. the com-

piler for this routine is: - -
TRA IOHEF

10HI0. is the entry point for the FORMAT slash- (1t is

“also for all required Bcp input/output).

The maP calling sequence: generated by the com-*“

piler for this routine is:
TSX IOHIO 4

IOHSF. is the entry point for a FORMAT scale factor.

‘The MAP calling sequence: generated by the com-
piler for this routine is: :

TSX IOHSF.,4
(signed scale factor) !

Other entry points to this routine that are not con-
cerned primarily with format conversion are listed in
the publication IBM - 7040/7044 - Operating: System
(16/32K): Programmer’s Guide, Form C28-6318."

The SCA Routine performs a scan and format trans-
lation for variable (or read-m) FORMAT' statements
at object time. v

FMTSC. is the entry point from RWD upon ascertam-.

ing that the FORMAT statement is variable and, thus, has
not been pretranslated by the compiler.

The XCV Routine skips characters in the input
record and inserts blanks in the output record.

IOHXC: is the entry point for the FORMAT x spec1ﬁca-' '

tion.
The maPp calling sequence generated ’by the com-
piler for this routine is: :
TSX IOHXC.,4
PZE ‘number of charaeters

Machine-Oriented Subrouﬂnes

The routines that provide for machine indicator test-
ing and traps at object time follow. - ~

Note that, in these routines, I equals an mteger
indicating the number of the sense light or sense
switch and J equals an integer variable to be set
according to the results of the test.

The DCT Routine tests the drwde-check mdrcator
sets J to 1 if it is oN, and sets J to 2 if it is OFF. -

DVCHK is the entry point for the followmg source
program statement:

CALL DVCHK(J)

The FPT Routine: The ac and Mo are set accordlng'

to the trap condition:
1. An Ac and MQ overﬂow condition has occurred:
the ac and Mo are set to all s,

2. An ac and MQ underflow condition has occurred:

the ac and MQ are set to all 0’s.

3. An MQ overflow condition has occurred: the ac is
set equal to the old ac and the MQ is set to all Is.

4. An MQ underflow condition has occurred: the ac
- is set equal to the old ac and the MQ is set to all 0's.

5. An ac overflow condition has occurred: the ac is
set to all I’s and the Mg is set equal to the old Mo. :

6. An Ac underflow condition has occurred: the ac

is set to all 0’s and the MmQ is set equal to the old MQ.

~The number of floating-point traps allowed depends
on three assembly parameters: :

FPTLIM is the maxrmum number of overﬂow traps
allowed.’ R R '

ODDLIM is the maximum- number of odd address
traps -allowed. R '

FPULIM is the maximum number of underflow traps
allowed.

A separate count is kept for ‘each type of trap con-

~ dition. When the number of traps exceeds the maxi-
~mum allowed, execution is terminated and the user

is notified of excessive traps. Each of the assembly
parameters, FPTLIM -and FPULIM, is set equal to 10
in the distributed version. The parameter ODDLIM is
set equal to 1. ‘
The user has the optlon of having a message printed
each time a trap occurs. The assembly parameter-
CETMES regulates this option. With GETMES sET 1,
messages will be printed; with GETMES SET 0, messages
will not be printed. ‘The dlstnbuted “version contams
GETMES. SET ‘1. L
- The following 'messa‘ges are possible:«

. 1, ACCMQ OVERFLOW AT XXXXX - -
"2. AG,MQ - UNDERFLOW AT XXXXX

3. MQ OVERFLOW AT XXXXX . -
4. MQ UNDERFLOW AT XXXXX
5. AC =~ OVERFLOW AT XXXXX
6. AC - UNDERFLOW - AT XXXXX

7. ODD ADDRESS TRAP AT. XXXXX

The assembly parameter MEsLIM indicates the maxi-
mum number. of messages-to be printed. In the dis-
tributed version, MESLiM equals 20.

SETFP. is the entry point for initialization of non-
standard processing of floating-point traps. ~

The Map calling sequence generated by the com-
pller for this routine is: + = -

TSL SETFP. :

OVERF. is the storage cell for the last ﬂoatmg-pomt
trap indicators; referenced by ovr.

FpT provides a routine to simulate double-precrsron
operations.. The inclusion of this routine is-controlled
by the following assembly parameter: :

DPOPT SET x
where: TN e

X
= 1 i the srmulatron routine is to be mcluded
=0 if the sxmulatron routine is to be deleted

The distributed version of the Fpr routine includes
the simulation routine. If this simulation is unnecessary,
the user may delete the routine by reassembling - FPT
with the proper setting of propT and editing the new
FPT into the Subroutine Library.

The OVF Routine tests for floating-point overflow/
underflow, sets J to 1 if there is overflow, sets J to 3
if there is underflow, and sets J to 2 if neither condi-

The FORTRAN Compiler 73

tion exists, =

“OVERFL is’ the entry: pomt for the followmg souree

program statement

+GALL OVEBFL (I)

The SLN Routme turns on the FORTRAN sense. lrght

it turns off all FORTRAN sense lights if 1=0. .

sLITE is the entry pomt for the followmg sourcef

program statement:

CALL SLITE (I)

The SLT. Routine tests FORTRAN Sense. nght I setsf

] to 1 if itis o, andsets]to21f1t1s0FF

~surrer is the entry point for ‘the followmg source':

program statemerit: .
CALL

‘1 : SLITET (1 J)

SSWTCH (I])

Sysfem Commumcanon Subrouhnes

The following routines. provrde drrect commumcatron;

with the System Momtor and Processor Monitor: -

- The DMP Routine takes storage. dumps accordmg

to specifications in arguments.
"pump is the: entry pomt f

program statement: -
CALL

the followmg source

DUMP (a1, bi, f]. « n, bh‘, fn)
where: : ¥

a,b

to be dumped..
‘=an integer mdlcatmg the dump format desrred

After dumpmg, control is: returned to the Systemf

Monitor.

ppuMP is the: entry pomt for the followmg source

-program: statement:
‘CALL

VPDUMP (al, b s 2 b,f, f,.)
where: i

a,b . :
—vanable data names mdlcatmg the hmrts of the core storagei
to be dumped i i

f =an mteger mdlcatmg the dilmp format desrred
After dumping, core storage is: restored and execu—
tion resuines.

The PWS Routine types the contents of the address
portion of the accumulator in octal and causes a pause
during execution.”

PAUSE. is the ent
gram statement e

PAUSE n EEE
llmg seqi k,fnce generated by the compller

/ point called by ‘the_fsource *pro—

g e L TSL PAUSE SRR
© The XE itin controls object program error
procedure. - Seciam ol Gt

74

=variable data names- rhdrcatmg the lmuts of the core storage .

ERROU. is the entry pomt from an mvahd Computed
GO TO.

‘FEXEM, is the entry pomt from FORTRAN library sub-
routines upon detectmg an ob]ect program error at

execution’ ‘time.

MATOP. is. the programmed sw1tch that allows by-
passing the call to s.spmp and resumption of execution
in the followmg miathematical library subroutines::

- XPL, XP2, XP3, XPN; ATN, LOG, SCN, ARSCN, SQR,
FCXP, FCLG, FCSC, FDXI1, FDX2,. FDXP FDLG,

~ FDSC, FDSQ, FCA e

The MaTOP. switch is a 1+ control sectron

“sysop. 'is the programmed ‘switch - that' allows by-
passing: the call to s:spmp and resumption of executron

in‘the: following system lrhrary subroutines::

L SWTE,UTV: ‘BST;, EFT RWT FPT..
The SYSOP..switch is a control section.
If the optional return to execution has been chosen
the followmg message is: wr1tten in the system output :

10S, :-RWB,- RWD, ‘ICV, LCV, DCV;: SCA ‘SLN, SLT

file: -

ERROR CONDITION AT XXXXX FORTRAN ERROB XX
/IGNORED RETURN‘TO EXECUTION

FORTRAN error messages that are wntten in the sys-
tem. output ﬁle mdrcate the.location of the error in the
object program; The followmg message appears in the
system output file: . o ~

ERROR CONDITION AT xxxxx : : N
where xxxxx is the address, in octal, of the core storage‘
location that contains the detected error,

The XIT Routme returns control to the Processor
Monitor. . ,

~ EXIT is the entry point. for the followmg terrmnal’
source program statements '

- gy " PROGRAM IN WHICHTHE "
STATEMEN,T{

- STATEMENT OCCURS . - -
- STOP - .. - Main or subprogram e
" CALL EXIT " Main or subprogram .~ B
RETURN) Mam program :
FOR‘I’RAN Flle’Rourmes '

The following: routines are used to. generate the file
control blocks for ForTRAN files. These routines are
located in the ‘Subroutine L1brary in the relocatable
brnary format '
BOUT]:NE) DESCRIPTION

- F00 Contains the file text used by any source program
R, mput/output statement ‘that refers to logical unit 0.

: FTCOO FILE U00, U00, BLOCK = 0257,
coiioeeo ETC _2,.SINGLE, TYPE3, LRL =256,
ETC - RCT = 001, ERR = RERRX.,
ETC EOF = REOFX.! ,
S ' ETC EOR = REORX REEL :
©FIL00® PZE- 'FTCOO

IRERRX.. and. REORX.: and REOFX ‘are oontrol sections.in the I0S rou-
tine. They are defined by an EXTERN in ‘each_file control block routine.
2This is therentty. pol hich. teference: is. made in the _instruction
sequences generated. by compller The entry pomt is deﬁned by an
ENTRY. pseudo-operatlo -

noﬁTINE
Fo1

F02

F03

Fo4
) -~ input/output statement that refers to logical unit 4, -

 FO5

F06 -

Fo7

- FTCol.

. FIL022

_ FIL04* PZE

DESCRIPTION PR

~Contains the file text used by any source program -

input/output statement that refers to logical unit 1.
FILE U01, U0, BLOCK = 0257,
ETC . SINGLE; TYPE3, LRL=256,
‘ ~ RCT = 001, ERR = RERRX.?
 EOF = REOFX.!
‘ , EOR = REORX.,' REEL
FILO1.? . FTCOL T
Contains the file text used by any source program
input/output statement that refers to logical unit 2.

- . ETC02. . FILE: U2, U02, BLOCK = 0257,
. -SINGLE; TYPE3, LRL=256, .

ETC LRL
ETC - RCT =001, ERR = RERRX.
ETC EOF = REOFX.'

ETC EOR = REORX.'REEL
PZE - FTCO2. '

Contains the file text used by any source program

- input/output statement that refers to logical unit 3. .
-+ FTCO03. FILE

U03, U03, BLOCK = 0257,
ETC - -SINGLE, TYPE3, LRL =256,

- ETC-~ RCT = 001,ERR = RERRX.'

ETC’ EOF = REOFX.,!
““ETC "EOR = REOI‘D{.,1 REEL
' FIL03* PZE FTCO3, -
Contains. the file text used by any source program
 FTCO4.

FILE U04, U04, BLOCK = 0257,

ETC
ETC EOF = REOFX.'

ETC EOR = REORX.'REEL

PZE FTCO4. o
This routine . is used to.refer to the system “input
file control block. It is used by any source pro-

.gram input/output statement that refers to log-
sicalunit5. . oo - o :

FIL05* PZE . S.FBIN

“This routine ‘is” used to ‘refer to the system -out-

“put file control .block. It is used by any source

program input/output - statement that refers to

logical unit 6. § e ’
FIL06> PZE S.FBOU. K

This routine is used to refer to the system periph-.

eral punch file control block. It is used by any
source program input/output statement that refers

"~ _to logical unit 7,

FRD .
. . file-control block. It is used by any source program

FIL07.2* MZE S.FBPP,, S.FBOU «
“This routine is used to refer to the system- input

. .input/output statement that refers to logical unit

_ READ.

FPR

FPC

~FILRD.?-PZE .. .S.FBIN o
This routine is used to refer to the system output
“file control block. It is used by any source program
input/output statement that refers to logical unit
PRINT. ... B N TR, T

FILPR:

PZE SFBOU

- This routine is used to refer to the system' pefifﬁh-

eral punch file control block. It is used by. any

. source program input/output statement that refers
~tological unit PUNCH.
... FILPC** MZE._ .S

BPP, , S.FBOU

IRERRX. and REORX. and REOFX; are control sections in the 10§ rou-
tine. They.are defined by an EXTERN in each file control block routine.
2This is the ‘entry point to which reference is made -in the instruction
Eﬁ%uencesj generated by the compiler. The:‘entry point is defined by an

. pseudo-operation.
*The punch file pointers are indicated with the MZE prefix: This

cate: the -use of S.FBOU' (the system 6utput file) -when" combined:
punch is involved. T

ETC = SINGLE, TYPE3, LRL=256, -
RCT =001, ERR = RERRX.,! .

rint/

“ FORTRAN Routine Storage Requirements

The following chart shows octal and ‘decimal storage

‘requirements and dependencies for FORTRAN routines.

Parentheses are used to indicate a non-FORTRAN routine.

STORAGE | = . ;
REQUIREMENTS . DEPENDENCIES—ROUTINES
ROUTINE OCTAL ~DECIMAL REFERRED TO BY THIS ROUTINE
ACV - - 30 247 RWD, IOS
ARSCN' 117 =79 XEM, SQR, ATN
ATN S 230 152 XEM : L3
BST @ - 7128 . 86 XEM, XIT, (IOBS), I0S -
CNSTNT- = 7 - EEE ¢ :
DCT 26 - 220 L ooan : -
Dev: 241 161 RWD, ECV, FFC, INT]
DMP 1670 952" XIT,I0S -
ECcvV 207 135° - RWD, INTJ, FFC, 1I0S
EFT 33 ~227 108, XEM, (IOBS)
~ERF 136 0 94 L, ;
FoO 24 ~20: One 257-word buffer
Fo1 ©. 24 20 One 257-word buffer
F0o2 - - 24 20 One 257-word buffer. .-
F03. . 24 . .20 - One257-word buffer. .
" Fo4 24 20 ' One257-word buffer
FO5° R | 1"~ (System input file control: "
Fo6. .- Ao 1. .. (System output file control
o . block) -
“Fo7 1 1° " (System peripheral punch file
gt e “.uur control block) < ,
.FRD I ‘1 .(System input file control -
LT _ . block) - -
“FPR & 1 1 (System' output file control
B e sooosrbloek) s S
.FPC 1. 1. -.(System peripheral punch file
ol : ... control block) »
FCA 131 8 XEM '
FCAB 44 f “SQR EEE :
FCLG 45 37 FCAB,ATN,LOG,XEM .
FCSC. . 110 . .72 SCN,SCNH, XEM. .
FCSQ 55 45 ' SQR, FCAB S
FCV AL R BT ‘RWD, INTJ; FFC, 10§ .
FCXP 63 51 SCN,XPN,XEM
FDAT 231 ~ 153 XEM
FDLG 166 118 XEM
FDMD . 60" 48
FDSC . 215 = 141 . XEM -
FDSQ 75 Bl, XEM
FDXP ' ‘174 ‘7124 XEM-
FDXI'~ 210 136 ~XEM = . 4
FDX2 72 58 FDXP, FDLG, XEM
FFC 367 -. 247 INTJ, RWD, 10S
FPT 350 232 .. +XEM, XIT, (IOEX) . -
GAMA 245 165 XEM, XPN,LOG
GCV 23 .19 ECV, FCV, RWD, FFC ..
HCV 103 67 ~.- RWD, I0S -. = :
10§ =« - 267 183 - XEM, XIT, (IOBS)
ICV 2 o090 16+ RWD,INT], I0S
INTJ 314 204 RWD, I0S
LCV . =35 29° . XEM; RWD, I0S -
LOG 145 101° -XEM: .
MTN 20 16 i,
OCV =7 60 48 - XEM, RWD, 10S
OVF - 34 -FPT. .-
- PWS 13 11 (IOEX)
RWB -~ 411 9265 I0S,XEM, (IOBS)
RWD 4687 311 - 108, XEM, (IOBS)
RWT - 17 15+ <108, XEM, (IOBS)
SCA - 266 =182+ - XEM; ACV, DCV, ECV,
= - .FCV, GCV, HCV, FCV,
) A woove a0 LGV, OCV, XCV, RWD
SCN 157 111 - XEM:
SCNH 100 64 XEM, XPN

The FORTRAN Compiler 75

STORAGE

s *REQUIREMENTS . - - DEPENDENCIES-—ROUTINES
RQUTINE) ‘OCTAL DECIMAL _REFERRED 'ro BY THIS ROUTINE
‘SLI T25 21 “XEM

SLN° R 1 S 37+ XEM

SLO 25 21 XEM

SLT 51 ¢ 41 XEM:

SQR - 100 - ::64 - XEM

SWT : 41 == 33 XEM

TNCT 171 121 XEM

TNH 76 <62 " XPN

UTV" 33 - 27 XEM,XIT, FOO FO1, F02

‘F03, F04, F05, F06, F07

XCV 16 14 RWD, IOS ¢

XEM - . 223" 147 _ (IBDMP), (IOEX) (IOBS)
XIT 2 .- 2 (IBJOB) ey
XpP1 - ‘73 597 XEM

XP2 et .85 XEM

XP3 51 41 XEM, XPN, LOG

XPN 106 70 ' XEM '

Subroutine Error Exrts

ROUTINE IN

Error conditions in the ‘object program that are d1s-
covered by the FORTRAN library will normally result
in a call to 1BDMP, Whlch will write error messages
on- and off-line and terminate execution. [On-line
messages are listed, together with an explanation, in

the publication IBM 7040/7044 - Operating System:

(16/32K): Operator’s Guide, Form C28- 6338.] How-
ever, two core storage locatlons used as sw1tches, are
provided to allow the BpMP call to be bypassed and
execution to be resumed in some FORTRAN subroutines.
These words, MATOP. and sysop., are assembled as

control sections in the XEM routine. Bits 1-29 of MaTOP.

control error conditions 01-29 [described in the pub-
lication IBM 7040/7044 Operating System (16/32K):
Subroutine Library (FORTRAN IV Mathematical Sub-
routines), Form C28-6806], while bits 1-29 of sysop.
control error conditions 31-59. If the optional return
for any of these error conditions is desired, the cor-
responding bit should be set to 1, either temporarily by
replacing the control section with the desired bit con-
figuration or permanently by reassembling the XEM
routine. - :

Input/Ouiput Subrounne Error Exrrs

ROUTINE IN
WHICH THE : i
ERROR IS EN- ERRon’ " . ERROR : i
COUNTERED ~* ‘CODE . .’ CONDITION OPTIONAL RETURN
UTvV - 32 - Variable unit not To the XIT -
" defined. : ‘routine. .
BST 33 Attempt to back- To the XIT
: space past begin- routine.
ning-pf—ﬁle. i :
" 59 -Attempt to back- Ignore the * -
space:the system ‘operation.
output or.punch file. E
EFT 34 . Attempt to write ‘Ignore the
~ file mark on the operation.
+- system input, out-)
L put; or punch unit. :
~RWT © .35 Attempt to rewind Ignore the
L - the system input, operation.
output ‘or punch B
Cuniti

76

- RWD

_WHICH THE, L L
ERROR IS EN- ERROR . ERROR .
'COUNTERED CODE, ~ CONDITION
IOS . 36 1. Attempt to write
, © _onthe system
. input unit.
37 2. Attempt to read
“"the system out-
+ ‘put file.*
v 23877 34 File mark
S reading.
‘49 4, Block sequence |
e “eITor. .
‘50 4. Check sum
o error. © .
51" 5. Block sequence .
" and check'sum
© i . ¢ €TTOXS: Ly
. 52 . 8, Permanent read:
oo e redundancy.
1w 853 . 7. Attempt to-write
.. . :onunopened file.
=54 8. Buffer overflow.
55 - 9. Error in IOBS
... Type2or3
" record control
-word.
. 56 10.. Unexpected
o ‘ "~ mode change.
RWB .39 1. Internal word
o ST “count £ JOCS -
© - word count, ‘°
‘40 - 2; Inmput list ex-

ceeds FORTRAN

-~record length. -

41 Output line has over-
- flowed: 1401 limit.

Convert Subroutine Error Exits

ROUTINE IN -
 WHICH THE R
“ERROR IS EN-__ERROR
COUNTERED
{0\ "2 42
LCV ~ % 43
= OCV- 44
SCA. 45

CODE

_ERROR
CONDITION
Invalid input

character.
* Tovalid input
- character.

Invalid input
character.
Invalid character
in vanable :

F ORMAT

OPTIONAL RETURN

To the XIT

. routine.

‘To the XIT

routine.

"< ‘Read the next

file.

Process the
record read.
Process the
record read.
Process the

- .record read.

Process the
record read.
Return to IOBS
for job termina-
tion.

‘Write as much

- of the record as
_ will fit in buffer.

Set the word
count to actual
number of words
remaining in
buffer. -
Process the rec-
ord that was read.
Process the rec-

- ord read.

Set the remain-
‘ing list items

-to zero.

Continue to: write

. on next line.

OPTIONAL RETURN

. Treat the charac- |
* ter as zero.
" Treat the charac-

ter as blank.

* “Treat the charac-

tet as zero.

- "Freat the charac-
- teras end of .
... format.

Machme-Orrenfed Subrounne Error Exits.

ROUTINE IN
WHICH THE v
'ERROR IS EN- - ERROR
COUNTERED CODE"
FPT) |
SLN 46
- SLT - - 4T
USWT . 487
XEM = 60

<" ERROR =
CONDITION |~

Excessive floating
point traps?
>4

~I\='0, I>4l e

1=0,1>6.
Illegal GO'TO

OPTIONAL RETURN
“-To the XIT

routine.
Take no action.

7 Set]=2.
—..-SetJ=2,

Take first brauch

1The maxmmm value is determmed by an; assembly parameter m the corre-

sponding routlge

The cosoL Compiler consists of four phases, as follows:
Phase I, Language Reduction, reads the source pro-

gram and reduces it to a concise form that can be:

handled easily by subsequent phases of the compiler.

Phase II, Syntax Analysis, reads the reduced —i.e., . names, sp
encoded — source program, and further reduces the .. names at point-of-definition are encoded and placed

statements in the Procedure Division to a simpler-

form suitable fop processing by Phase,, 1v. In addition,
it provides- special handling of PERFORM statements,
and collects information concerning files ‘and exter-

nal names from portions of the Enviranrgeqt% Data,

and Procedure Divisions.

Phase 111, Data Reduction, has a twofold function.
It generates in assembler-interface (T2) text, the neces-
sary area-reservation and data-generation instructions

for the entries in the Data Division, and creates the -

out-of-line 10cs linkages needed for each file described
in the File Section. Also, it attaches to each data-name
in the Procedure Division the characteristics described
for it in the Data Division. ‘ 73 A
Phase IV, Procedure Generation, reads the Procedure
Division statements, in reduced, internal-text form,

and generates the appropriate instructions in T2 text Phase I, Syntax Analysis

for the Macro Assembly Program.
The first three phases are each divided into two

parts, each part consituting a separate core storage -

load. Thus, the coBor. Compiler comprises seven distinct

core storage loads. Further, part 1 of Phase 1-consists of - ces or e ary o
*for the individual verb analyzers of Phase 1v. In addi-
-~ tion, part 1 extracts, from the main file, information

~ three dependent links chained to a main link. Phase 1v
consists of two dependent links ‘chained to a main link.

The compiler requires four tape units for compila-
tion in addition to the minimum of three required
concurrently by the Processor (s.sLBi, s.siNi, and
s.sou1). The assembler-interface input is written by
Phase 1v on one output tape.

Figure 36 shows the relationship of t’ﬁe' Hases, in-- : ; i .
& TR P P ~_procedures executed by these statements. This infor-

put/output unit allocation, and interphase data flow.
Figure 37 shows the input/output unit allocation for

compilations' that involve recursive passes. A more -

detailed description of each of the phases follows.

Phase I, Language Reduction

Phase 1 consists of two parts, each a separate core stor-
age load: part 1, the Initial Edit; and part 2, Qualifica-
tion Reduction. Phase 1, part 1 initially receives control
from s.sLDR, as a result of a smBcBc card being recog-
-nized. It initializes all coBoL system words, and then
reads the source program, one card at a time. It

‘The COBOL Compiler

; recognizes each of the four divisions of a coBoL pro-
~.gram and interprets the contents of each appropriately,

partially encoding all input statements. This includes
a recognition of coBoL words, data-names, procedure-
names, special-names, and file description. All source’

- in'an external dictionary for use by Phase 1, ‘part 2.
~In addition to building the external dictionary and

partially encoding the source program, part 1 pro-

_ duces the source-program listing on s.sout.

Phase L, part 2 reads the partially encoded program
on the main file and compares it with the external

- dictionary, assigning iritemal identifiers to the source

names at point-of-usage. This may require more than
one pass of the main file if the external dictionary

‘created by part 1 was too large to be retained in core

storage. In addition to the completely encoded main

__program, part 2 produces, on a separate file, an internal

dictionary that contains a unique identifier and en-
coded data characteristics for every name in the Data

- Division.. A’ glossary of source-program names with

corresponding generated names is produced on s.sou.

Phase 1 consists of two parts: (1) Syntax Analysis,
and (2) Table Processing. Phase 1, part 1 reads.the
main file written by Phase 1, part 2 and converts the
intern;allyf;coded ‘Procedure Division statements into
sequences of elementary operations in a form suitable

about each of the specified source-program files, all
external names specified in CONTROL and FILE-REFER-
ENCE statements in the Environment Division, and
external names following ENTRY statements in the
Procedure Division. Also, information is collected
from PERFORM statements for return linkages following

mation is placed in a table that is retained in storage

for analysis by Phase 1r; part 2.

~ Allother main-file input read by Phase 11, part 1 is

placed, unchanged, into the main output file. :
" Phase 11, part 2 processes the tables left in storage
by part 1. The output of this part is placed on the

miscellaneous file (an input to Phase 1), and con-
sists of the following types of records:

. FILE pseudo-operation records

. LABEL pseudo-operation records

. PERFORM insertion records

. CONTROL insertion records

GO DO

The COBOL Compiler 77

Entry ' '
fom . « .
S.SLDR : LB

*Source - ...

»\ Work Unit 3

Source Lisfin'é

Ty,

‘Gylos‘sury" of \Iynfei-nql and ;xtemu! Nq-nes ;

.

" Main File \

File Information, CONTROL
and 'PERFORM ‘Insertion List

“\T Unit2

Main File '\

A Phased : - Mqin File - S

K ;
" To Assembler -

r}iséaia}e Phase of . oo To AssemBlerr» v
Asserbler

Figure 36. I{Lpﬁt/ Output ‘vﬁit‘:AuQéatiQn for COBOL Compller

78

Source Listing

© FromS.SLDR

External
Dictionary:
Overflow C

“\ Work ’Unil'ri

Work Unit3 /B~
“and Work /-~ 7

Glessary of Internal and
Externdl Names

. Internal Dictionary String

Work Unit /- =~

internal
Dictionary Overflow. |- -

] File ‘Information, CONTROL: .-
and PERFORM Insertion, List R

an File . »

*Work Unit /

l Odd

v
To Assembler

Work Unit
4

C

Literals -
e E
“Intermediate |

" MainFile

Phase of
Assembler

 To Assembler

-

Figure 37. Input/Output Unit Allocation for COBOL Compilation with Recursive Passes

The COBOL Compiler

79

Phase Ili, Data Reduction
The functions of Phase mr are as follows

1. To generate, in T2 text, the necessary area-reser-

vation and data-generation -instructions for entries
in the Data Division. of the source program.”

2. To generate llnkages to all of the 10Cs routmes

required by a file.
3. To attach to each operand in the. Procedure

Division of the source program the data charactensthS

given in the Data Division.

the main program.

5. To generate. a short external dlctlonary, to be»;'

passed to the assembler, for all source statements

that require correlation between mternal and external

names.

Phase m is divided into two parts. Part 1 analyzes the

Data Division clauses (except vaLUE) that have been

encoded in Phase 1. It constructs an internal dictionary -
that contains, for each entry in the Data Division, a-

data-characteristic block containing descriptive infor-
mation for the entries such as USAGE, CLASS, SIZE, SYN-
CHRONIZED, scaling, decimal, and integer counts. This
internal dictionary remains in storage throughout the
execution of the phase. :

Part 2 compares the main file Wlth the mternalA

dictionary created by Phase mi, part 1, and makes
appropriate insertions into the main file from the mis-
cellaneous file created by Phase 1, part 2. For Phase
1, part 2, the main file consists of (1) a Data Division
which, in turn, contains a File Section, a Working-
Storage Section and a Constant Section; and (2) a
Procedure Division which has been reduced to basic
operations by Phase 1, part 1. '
‘When the File Section is ‘encountered: in the Data
Division, Phase m1, part 2 determines which input or
output routines are required for each file in the section,
and the out-of-line calling sequences to these routines
are generated. The location of the records associated
with the file in storage at load time is established by
equating the name of each record to the address of the
first word of the file control block for the file.

When the Working-Storage and Constant. Secf,,»tiQns;.;.f

are encountered in the Data Division, Phase 1m, part 2
determines, for each record, whether or not any VALUE
clauses have been specified. If not, a single Bss, labeled
with the record name, is generated having an operand
computed from the total number of characters stated
in the data-characteristic block. If any VALUE clauses
are present, oct pseudo-operations are generated to
incorporate the constants into the area generated for
the entry.
~ When the Procedure Division is encountered each
data-name has the characteristics that are defined for it

80

in the Data Division. As sections and paragraphs re-
ferred to by PERFORM verbs-are encountered, the trans-

- fers back to the PEREORM statement are generated from

the information given in the mlscellaneous file, and
inserted approprlately

- A separate external-dictionary file is generated dur-
ing the comparison of the main file. The entries on this
file are names of object-time routines, names associated

~with files, names of control sections, and names from
" ENTER ASSEMBLY-PROGRAM sections of the source pro-

4. To insert after all blocks of generated codmg o

referred to by PERFORM statements the linkage back to

gram. Note that in Phase 11, part 1, if the internal dic-

tionary does not fit in the storage available for it, it is
- written in segments onto an-external storage medium..
In Phase 11, part 2, then, each segment is compared
~ with the corresponding portion of the main file. In this

case, the external dictionary is not generated until the
last segment has been read into storage.

- Phase IV, Frocedure Generation

Phase 1v translates general statements to particular

" coding, where the coding varies-according to the input

variables. The statement “MOVE A TO B” may cause any
one of a large number of combinations of instructions
to be generated, depending on the definitions of A
and B (m the Data Division). For example, if A and
B both occupy one word of storage and have the same
characteristics, the following instructions are generated:
CLA - " A
STO -, B .
If both A and B occupy n words of storage and have .

~ the same characteristics, the followmg instructions are

“generated: :
CAL LABEL
TMT = =
LABEL PZE B,A -

where LABEL is generated out-of-line. If both A and B
are NUMERIC, COMPUTATIONAL, and SYNCHRONIZED RIGHT,
having pictures of 99vo-and 99v99 respectively, the fol-
lowing instructions are generated

LDQ A
~ MPY =10
STQ B

“The determmatlon of the partlcular series of in-
structions to be generated is accomplished by an
“analyzer.” There is one analyzer for each type of
statement possible (MOVE, ADD, I¥, GO TO, etc.).

- Another function of Phase 1v is the optimization of
generated coding. This involves keeping track of the

" contents of the index registers, arithmetic registers,

temporary storage area, and subscript address words
by associating the data-name with the status words for
the register or area. For example, if the instruction
LXA FIELD,4 is generated, FIELD is associated with the

status words: for index register 4. If an’instruction is
then generated that can change the contents of FIELD,
such ‘as sToFiELD, then the status words for index
register 4 would be cleared. All status words are cleared
if a source procedure-name or comprler-generated pro-
cedure-name is encountered. -

"The use of the status words is. 1llustrated by the fol-

lowmg example. A NUMERIC pispLAY field is moved to a
NUMERIC. COMPUTATIONAL - field. - Phase. 1v - generates

coding to convert the source field, saves the converted
field in a temporary storage area, and moves it to the
target field; in addition, it initiates the status words for

the temporary storage area. If, subsequent to the move

but prior to any procedure-name or codmg that would
change the contents of the NUMERIC pispLAY field, that
field is moved ‘to another COMPUTATIONAL field, the
generated codmg will plck up the conVerted field
from the temporary storage area. This eliminates a
duplicate conversion. The relevant status ‘words . indi-
cate that the converted field is in the temp 7_stor-
age area. ;

The optmuzrng procedure cannot detect that the
contents of a field are being changed when the con-
tents are referred to, by a different name, a situation
that arises when REDEFINES is used, Consequently, cau-
tion should be exercised in the use of REDEFINES when
numeric items are mvolved

Specml Opercmds TS

There are two specral types of operands whrch requrre
separate discussions; these are subscnpt symbols and
intermediate results el S ,

Subscnpt Symbols v

A subscript symbol is. used in order that a subscrrpt
" may be extracted from the statement in which it
appears and made into a separate‘ statement. This
method facrhtates proc ssrng in bo ,,_Phase 1 and
Phase 1v. The translatlon works _as follows consider
the source statement “Move A(1,) 10 B.” Phase 1
converts tlns to the two statements, (1) SUBS AL, S
and (2) MOVE §, B. The SUBS analyzer processes the
first statement and assrgns data charactenstrcs to the
subscnpt symbol S.
symbol in the MovE ; alyzer causes the vcharacterlsncs
assrgned to it to be use t MOVE genera-
tion. -

Intermediate Resulfs

A complex statement is broken down toa serres of
simple statements. For example, COMPUTF A= B + c*: ‘D
becomes: '

C»"Bi:‘:i);‘CIVINC IRl

MULT
ADD IR1, B GIVING IR2
MOVE IR2 TO A

The recognition of the subscript -

In the: preceding example; 11 and 1R2 represent inter-

mediate results: An intermediate result is-a value in the

AC, MQ, OF AC-MQ, Or in temporary storage;’

The general format of an arithmetic ‘operation is:
S o eratlon, operand 1; operand 2, operand3
The operatron is ‘addition, subtractlon multlphcatlon
drvrsron or exponentlatron, operands 1 and 2 are data
names, lrterals or prevrously defined intermediate re-
sults and operand 3 is. always an intermediate result.

LFor the p purpose of this drscussmn the deﬁmtlons of the

operands are generalrzed as:
operand 1 Q(m) V9(n)
operand 2 9(r) V 9(s)
operand 3 9(x) V9(y).-

r where x and y are a function of the, operatron and of

m, n, 1, 5, and d (d is the maximum number of deci-
mals used in the analyzed source statement up-to and

including the current operation).

The number of decimal places (y) in operand 3 is

calculated. as follows: - -

1. For 1ddition or. subtractlon (operand 1 =% oper-

and2): ...
y= (n, S)mxx
2. For - multiplication . (operand 1% operand 2):
y=n+ts

-3 F or d1v1310n Wlthm a COMPUTE statement or an IF .

statement (operand l/operand ")

S 2T . :
4. For division resultmg from a: DIVIDE. statement
y=t (fs +t—-n=0)
y=n-—s (ifs+t—-n<0)"’
where t is the’ number of decrmal places in the field to
. receive the quotient. - :

5.2 For exponentiation : (operand l ** operand 2):
—n+2¢
The number:of mteger places (x) in operand 3 for
double-premsron operations (that is, operand 1 and/or
operand 2 is double-precision) is- calculated as follows
1 ‘For addition or subtractron : S
s (m w100

‘:»};2:— For multiplication: -~ -

X= mors
o 3P or diviSion
arx =mides : ’ :
4. For exponentlatron wrth a hteral exponent
x=p*m
_where p is the number of plaoes in the exponent after it .
Vhas been rounded-to the next hxghest integer.
5 For exponentratxon wrth a nonlrteral exponent
g E=rtmt G
Fx+ y is_greater than 20 and dis greater than y; then x is
equated to 20 — y. o
If x + yis greater than 20 and d is less than y, then y is

equated to d If X + d is greater than 20, then x is equated
S t0 20 —rdis

- The: number of mteger”places (x) in operand 3 for

‘ smgle-precrsmn operations *(that is, both operand 1

The COBOL: Compiler - 81

and operand 2 are single-precision) is determined by -

calculating the largest value:that the intermediate re-

sult ‘can attain. This value-is :calculated -by picking.

values for operands:1 and 2:and performing the:rele-
vant operation. The values are picked to maximize the
result with the exception of an operand that is' an
intermediate result; the value calculated for an inter-
mediate result when it was defined is used. The nurnber
of bytes requlred for the (bmary) value is calculated
and the maximum number of dlglts that ckn;be ex-
pressed in that number of bytes mmus 'the number
of demmals is the number of mtegers

Processor Limituiion‘s" R

The Processor limitations are as follows: -
1. The size of all data fields (group or elementary)
may not exceed 32,766 characters. :
2. The number of files deﬁned ina’ COBOL program
may not exceed 50. :
3. The number of PERFOBM ‘statements and/or
external dictionary entries may not exceéd 300.
4. A single OPEN statement may not contam more
than 20 file-names. : :
5. A smg]e GO TO . . ;. DEPENDING ON statement may
not contain more than 95 procedure-names '
- 6. The maximum number of nested 1¥’s is 102. How-
ever, when any of these 1¥’s contain a Togical operator
(AND OR), the maximum depends on a number of
variables. These include:
a. The number of ELSE s
b. The number of AND’s, not followed by OR’s
¢. The number of or’s, not followed by AND’s
7. Error checking -of the ‘consistency between ‘the
names in the pATA-RECORDS clause and in the record
descriptions under an ¥p entry:takes place only. 1f there
are 50 or fewer data records for that ¥p entry.

8. Within the coMPUTE, 1F, and the UNTIL portlon of

a PERFORM statement, 860 is‘the maximum number of
elements that can be passed over before an operation
within a formula can be evaluated. Due to the hier-
archy of operations involved, the pattern in the first
formula below would cause overflow at the 51st level of

parenthesrzatlon and the pattern in the second formula 4

would cause overflow at the 180th level:
SA+BrC(AL+BLYCL™ (..
A+(A1+(A2+ (A3+(

When the number of elements exeeeds 360 all sub-
“sequent elements w1ll be deleted until any of the
_following are found s ' s i

a. The end of the statement

- UNTIL-portion of a PERFORM statement
3 1thm the UNTIL portron of a

‘b, The words AND or OR; within the ¥ and the

* Note: Within the 1r and the unTIL portion of the
PERFORM statement; the levels of parerithesization are
limited to 50:-Within, the COMPUTE statement there is
no limit on parentheses R ‘

9, ‘Within a formula: to be" evaluated by the ‘COM-
PUTE, IF, and the UNTIL portion ‘of ‘a PERFORM state- -
ment, an additional ‘limitation ‘exists. If the elements
to bé passed over, as explained under Limitation8; in-
clude: hterals or subscrrpted vanables overﬂow oceurs
whenz : i

By

a3y (2+Cn/6)+2N+NN+3S+D>900

. n—l

where A=

he number of alphanumerle hterals

he number of characters in each alphanumeric literal
the numiber”of ‘numeric literals; smgle or double:
i+ precision; used as subscripts or net : _

he number of double-precision numerlc llterals

he number of ‘subscripted variables

D = the gumber’ ‘of data—names used as subseripts

" When such overflow occurs; subsequent literals and
subscripted variables will be ‘deleted. Normal process-
ing will be resumed when the hierarchy of operation
allows some portion of the forrnula contarnmg sub-
scrlpts or hterals to'be evaluated.

10, The maximum number of hmes an area may be
redeﬁned when the redeﬁnmg entry is a group item,
is100. '

11. The maximum number of redefinitions on level
01 and/or level 77 is 100.

12. The maximum number of Data Division entnes
per data record'is about 1,110. The maximum depends
on a number of ‘variables, ‘such as the number and
length of error messages and report field pictures, and
the number of redefinitions and data items subscripted.

13. The area of core storage allocated for tables sets
the f"llowmg
RENAMING ‘option

S a A mrmum‘ of 10 SELECT statements with

1tat10ns on SELECI‘ entrles W1th the

“* mum source length and that each sense
 switch available to the usér has had ‘both its
. “k-,on and oE status symbOIically deﬁned

" “renamed and renammg ﬁle-names are of
" minimum source length, one to six bytes. “This
limit also assumes that the user does not use .
the sense switches at the source level. .
_ 14. The maximum number of elements allowed for
a Data Division entry is 54, The following example has
four distinct elements:

9(‘6)

"02A° PICTURE IS
1 R i g

The number of elemerits is-arrived' at by counting the

source name and its' level number as one element each»

~of the ‘COBOL words as 6

of ‘the picTURE: clause ‘as one” element Lrterals also

count as one element. - S =

15, The ‘maximurn number of temporary storage
areas that may be in use ‘at'one time is 50. Moreover, if
a field that is to bé saved is larger than any of the fields
already in the temporary storage area and ‘there are

more than 25 fields in this area, the" compilation. w1ll :

terminate with halt cBcoro; T emporary ’ storage areas
are required- by the Processor as follows:
a. For saving partial resuilts of a complex compu-
tation.
b. For saving the converted form of a ﬁeld when
_conversion is required.
¢. For saving reglsters that contain a ﬁeld that
- is an operand of an operatlon where one
: loperand is neither COMPUTATIONAL nor SYN-
g 'CHRONIZED chrrr ‘and has been scaled or the

" other operand is neither CO‘\/IPUTATIONAL norf'

* SYNCHRONIZED RIGHT, and requires scalmg

16, “The maximum number of invalid cosor words ¢ or 7

names in a Data Drvrsron entry is approxunately 25.
The maximum depends on several variables such as the

number and length of the error messages generated '

the appearance of data-names interspersed with, the
invalid cooL words, and the number of correct, clauses
already processed for the entry,, o

17. Due to the manner in wluch ﬁle -names and end-
of file. labels are constructed, a deck name consisting
of three letters followed by three.. numbcrs (eg.,
ABC001) may produce duplicate control sections. The
value of the numeric portion of the deck name. must
be greater than three times the number of files plus
the number of USE AFTER ERROR PROCEDURE statements.

18. The size of the cosoL Compiler restricts the use
of optional features of the 7040/7044 Operating System
for a machine with 16K core: storage, After editing the
system, the user :should examine the storage map- of
the cosor phases for unused core to determine whether
there is enough. space to: allow the addrtron of optlonal
features. . E sy webd e ¢ 5 i g n

Input/ Output Unit Allocation

A minimum of seven mput/ output umts is requrred by
the Processor ‘d comipilation. Three of
these are the system units, s.su81, 5.5iN1; and s.s0u1, re-
-quired by the Processor Moni . The ‘other four are

utility units used’ internally by the compiler; one of

these is used for the Phase v output file, which contains
 the T2-text input to the Macro Assernbly Program (In
an application that includes compilation, loading, and

execution, the Processor uses an additional utility unit

for the load file required by the Loader:) The over-all
allocation ‘of ‘the required seven ‘unitsis shown: in
Figure 36 and is described in the following paragraphs.
Figure 37 shows: the' unit allocation for compilation of
a‘large isource” program requmng recursrve passes of
the comprler phases I L

Phasel Parr 1 - lnmal Edlf

The source program is’ read from S:SIN1 and a.source
program listing is. produced. on 's:sout. The partially
processed source program (main file) is written on
WORK2. An external dictionary is created in storage; a

dictionary segment is written ‘on work1 at the end of

the pass and-each time: the dictionary exceeds storage.

Nothing is written on work1 if the external- dictionary
does ot exceed storage. WORK3 and WOBK4 may be
used mternally for: BENA.MING processmg

Phase l Parf 2 Quahf‘ ccmon Reduchon .
The main ﬁle is read from WORK2 - and if the extemal :

dictionary overflowed in part 1, a segment of the ex-

ternal 'dictionary is read from worki. The main file is
compared with the external dlctronary and the output
is written on work4, If more than one segment of the
external dictionary is involved, this pass wrll recur, the
main file read from nd ‘written onto woRk3 and
WORK4 alternately for each segment. ‘During the last
pass (the only pass if onIy one segment of the external
dlctronary was mvolved) an internal dlctlonary string -
is written on WORK1. A~ glossary of equrvalences of

’ mternal and external names lS wntten on s. SOUI

Phase ll Part 1 — Synmx Analysls o

The main ﬁle is read from WORK4. Processed output is
wntten on’ WORK3, Tables are created for PERFORM
CONTROL and FD mformatlon B

Phase lI Pcm2 Table Processmg S,
The ¥p° mformatlon and ‘the ‘PERFORM and CONTROL

- tables from part 1 are processed Output is wrltten on.

WORK4

Phase Ill - Dara Reducnon =¥

Part 1: ‘The internal dlctlonary is’ read from WORKI
and an internal table of these entries is built. If the
internal dictionary table area is exceeded, 'segments of
the internal dictionary are written onto WORK3 until
the complete 1nterna1 dlctlonary rnput strrng on WORK1
is processed. —

«Part 2::1f: the table area is not: exceeded in ‘part 1,
the main file is read from work2-and-a new ‘main fle
is. produced on works.-Updated rp information from
WORK4 constitutes the first records in the new main file.
Approximate insertions-from worka are made in the
newmain file:for PERFORM:and coNTROL statéments. In
addition, a. new external- dictionary. is created on

The COBOL Compiler 83

WORKS3, consisting of any:external names of coNTROL

entries that may have been rncluded in the source

program. ~

_ If overflow occurred in part 1 the main ﬁle is read
from work2 and compared .with the first internal dic-
tionary segment, the new main file being written on

woRrk1. Subsequent passes will cause the main file

to be read from and written onto WORK1 and” WORK2

alternately for each internal dictionary segmerit.

During the last pass the external dlctlonary is Wrrtten
o1 WORK3. ' i

Phase v — Procedure Generanon y
The main file is read from work1 and WORK2, depend-

ing uponthe number: of recursive passes, if -any, in
Phase 1. A new main file is written on WoRK3 so that

it follows the external dictionary. The new main file -

becomes the input to the Interface section of the Macro

Assembly Program. WOR““'" may be used lnternally for
long—hteral processmg : ;

Files Assrgned to System Umts
If the system input unit, system output unit, or system

- peripheral punch unit. (IN ou, or PP) is specrﬁed for a-

file, in an AssieN TO clause in the Environment DlVlSlOIl
the Input, Output or Punch ‘Editor, respectrvely, is
automatrcally loaded from the llbrary tape, at load
time, together with the ob]ect program. All references
to these files by mput/ output verbs are made through
the appropriate edltor Tt is the user’s respon’sibility to
ensure that the records described and the operations
specified for one of these files do not contradict the
system and installation file spemﬁcatlons These speci-
‘cations determine whether the file is input or output
“and determine its blockmg, : logrcal-record length,
mode, opening/closing characteristic, and labeling. The
compiler effectively ignores-any conflicting: specifica-
tions in the ¥p entry for the file in the Data Division,
any references to: the file in.the Environment Division
(other than the assieN To clause), and any input/
output statements in the Procedure Drvrsron whrch are
contrary to the file’s specifications. - * :

The files created on or for the system units are always ,

Type 3 when the system units:are not assrgned to umt-
record equrpment B ;

System lnpuf Umf

Records read from the system mput umt (SSINl) are
-available- in the buffer provided by the Input Editor.
All references to records in this file are to the record
in this buffer area. The user must determine: whether
the current record is Bcp or binary.-

The object program will execute the AT Exp portmn
of the READ statement for s.sint whenever $ appears
as the first character: ofa physrcal record on this unit.

84

Normally, thls signifies:. the appearance of a system
control card ‘on the system input file. If, however, it is
possible for the user’s file to legitimately contain rec-
ords with $ as the first character of the record; the user

“must detérmine, by interrogating other fields in the

record, whether this is one of his records, or a system
control card. In the former c¢ase, more READ statements
may be executed for the file. In the latter, a CLOSE state-
ment must be executed _This will cause the last card
to be the next card available to the system. :

For a file on s.sivi, processing of the file should be
terminated on the basrs of an AT END mdrcatron rather

record

System OWPU' un" syt b gy
Records for a. file asslgned to the system output unit

. (s.sou1) are processed through- the Output Editor. The
.compiler generates a single. 92-word work area for all

records of this ﬁle All references to fields W1th1n these
records result in references to locatlons in ‘this work
area. A WRITE statement causes the Output Editor to
move the record from. the ‘work area to the. output
buffer. The rec"rcl is never avallable in the buffer.
Records fora ﬁle on s.S0U1 must be BCD and are assumed
to be 1ntended for lrstmg

Sysrem Penpherul Punch Unit*

Records for a file. a331gned to the system penpheral
punch unit (s.sep1) are processed through the Punch
Editor. The comprler generates a single 28-word work
area for all records of this file. All references to fields
within these records result in ‘references to locations in

" the work area: A WRITE statement causes the Punch

Editor to move the record from the work area to an
output buffer The record is never avarlable in the out—
putbuﬁer Bl e S

~Itis possrble to. intermix ‘BCD" and binary’ records
on a s.sppi file. An indication is given to the Punch
Editor that a logical record. is binary if at least one
USAGE IS COMPUTATIONAL clause appears in the descrip-
tion of the record under the ¥p entry for the file. In the
abserice of 2 COMPUTATIONAL (i.e., binary) field in the
record, it is assumed that the record is to be punched
inscomode.

COBOL Library Subrouhnes

The 7040/ 7044 COBOL Comprler is desrgned to mrmmrze
storage reqmrements by using a number of common
r character. ‘handling. and_ parameter
: n subroutme calling sequences that’
mcludea a,,,dress reference, a standard cosor ad-
dress. parameter ised. This address parameter takes
one of the followr g forms

o PZE: locatlon,,byte

- The above form is used when the’ data item is in

working storage. - 5 o
: : MZE bl,,sp+nnn ‘

The above form is used when the data item is located
by a base locator (base=first word of the record in the
buffer). bl is the address of the base locator (first
word of the file control block). sp+nnn is the address
of the word containing the item’s relative location from

the base (word displacement in the address, byte dis-

placement in the decrement)
MON" - pi
The above form is used when the data item is located
by a pos1t10nal indicator, which contains the effective
address of a subscripted variable. pi is the reference to
the partrcular indicator. L
: . PON
The above form is used in MOVE ALL character to

field. The actual character to be moved is in byte 2 of
the parameter

‘no. of eharacters,,character

PON S character ,

The above form is. used to compare each ALL “char-
acter.” The actual character i Is in bvte 5 of the address
parameter. .

The evaluation of the effectlve address for an item
located by a base locator or a positional indicator is
done by the locator analyzmg subroutine, cBLAN. This
routine is entered by a rTsL cBLAN with the address
parameter in the ac. When cBLAN returns to the calling
spbroutine, the @contams the effechve address and
byte of the data item. &

- The common character-handlmg subroutmes are
PCSTAB, CCSTAB, and sacras. These are used, for exam-
ple, by the compare, move, and examine subroutines,
and assume initialization of a work, area and an index
register to point to the character to be handled. pcsTAB
assumes that-a work area, carLD, contains the address
of the word containing the character to be ‘obtained
and that index register 1 contains the byte number,
CCSTAB and SACTAB assume that cBFLD and index regis-
ter 2 contain the corresponding information. All three
routines contain instructions to increment the word
address and reinitialize the index. register when neces-
sary. In order to fetch a character, assuming all 1n1t1a11-
zation has been done, the 1nstructron used is:

. XEC PCSTAB]

CAFLD and CBFLD are among -a group- of one-word
work areas defined as entry points within a separate
deck in the hbrary These entries are referred to by
many of the subroutines and, in addltron may be.re-
ferred to by in-line coding. :

Other items defined within the deck are:

C.AC
CMOQ

an arithmetic subroutine source area
an arithmetic subroutine source area

~CACHLD -

an arithmetic subroutine work area

CMQHLD: .. .an arithmetic-subroutine work area

TALLY specral register that may be- altered by the

o " EXAMINE verb or referred to by other source
language statements

WORK 7 used as a switch by MOVPAK or C.COMP

C.OFLO- - the: COBOL size-error switch .

COFLOW. ' ' a subroutine to set.C. OFLO on and return to

. . - the in-line routine = .
. CERR a ‘subroutine to call S.SDMP if execution of a

program * containing a serious compilation

(source) error has been attempted.

The group of arithmetic areas above and the c.oFLo
switch are referred to by most of the arithmetic subrou-
tines. The c.orLo switch is tested to determine if a
SIZE ERROR option is to- e executed. It is set on for all
arithmetic overflows and for ﬂoatmg-pqmt errors (in
exponentratlon only). »

MOVPAK Routine

MOVPAK is a generahzed routrne or actually a group of

subroutines, which is called upon by the: object pro-
gram for movement; conversion, and editing: of data.
The routine has four major entry points and numerous
minor entry points. A TsX to one of the major entry
points is always followed by one or more Txr's to minor

entry points; except when.moving figurative constants.

The followmg is a description of the calling se-
quences for the four major ‘entry points in MOVPAK:

TSX C.MOVE 4
source address. reference .
target address reference =~
~ (begin specific move call)

The c.MOVE entry uses the source and target address
reference information to set the contents of the cAFLD
and cBFLD:locations. Control is then transferred to the
subsequent string of 1nstruct10ns to perform the move.
: : TSX C.MOV14

target address reference
(begin specific move call)

The C.Mov1 entry is used when no source address
is mecessary, or when the source field is in an arith-
metic register.

CTSX - c.Movad
source address reference
* (begin specific move call)

The C.MOV2 entry is used when the resultant field

is to be left in an arithmetic register. - i
TSX CMOV3, 4
“(begin specific move call)

The c.movs entry is used when both the source -
and target addresses are set up in-line.

Followmg the Tsx instruction and associated address
parameter(s) ‘the spe01ﬁc move ‘call consists of one or
more TXI instructlons with one exceptlon ‘where only
a control word is used (see “cHAN” below) Some of
the calls are fixed length; other calls are termmated by‘

‘a TXI mstructron whrch transfers control to a particular

location.

* The COBOL Compiler 85

AN “Alphanumeric- Field:(ALPHABETIC, ALPHA-
NUMERIC; non-report; or group item) " .

RP : "~ Report Freld (the PICTURE clause contains
editing characters)
XD © . External Decrmal (NUMERIC DISPLAY)
ID Internal Decimal (NUMERIC COMPUTA-
: “TIONAL and: SYNCHRONIZED RIGHT) '
IN) Internal Decrmal (not SYNCHRONIZED
o * _ RIGHT)
The followmg are ﬁguratrve constants
SP' ' SPACES
ZE ' ' ZEROS' ~ & ¢
cH “Characters (thrs category includes ALL htera]
© o QUOTE;: HIGH -VALUE,- and LOW-VALUE
...: constants) L

Lrterals are classed as AN or I, whrchever is: ap-
propriate.

The following MoveAk subroutine calls are given in
alphabetical order by the: abbreviated representations
for the type of source and target fields. The order is
AN, CH; ID, IN, RP, SP, XD, and zE. For example, the move
- from Internal Decimal to: External Decimal is desig-
nated by the letters Bxp. Combrnatrons other than
those given are not permitted. - P
" ANAN: Moves of AN ﬁeﬁs are handled by generated
in-line instructions if the
complex cases are handled by one of the followmg
calls: :

Move without trarlmg spaces T

TXI . . CANL]1, number of characters
to move 8

~ Move with tralhng spaces—)

TXI - G AN2 1, number of characters
: i Cveeeiog o to move
TXI . C AN3 1, number of spaces to
. insert

ANID ANIN, ANRP ANXD Substrtute XD for AN;
then see the equivalent section.

~ CHAN: Only the following control word is used for

thrs operation: r
PON" ~ number of characters, , character
The actual character to be 1nserted is in byte 2 of the
control word.
IDAN: See “xp.” . : :
IDID: MOVPAK is uot used In-hne decrmal-ahgnrnent
instructions are generated as appropriate.
_ IDIN: (See “mmw” first.)
‘ TXI C IDIN 1, character length of
: target N
The source field is in 'the accumulator or in the AC-MQ
Character length of target is the smallest multlple of
"chrent to contain the deﬁned In rnal

C.IDRP, 1, number of digits tc

convert

86

ﬁe]d is minus.

oves are simple, but more

- This instruction is ‘followed by one or more- instruc-
tions from the Report Field Tx1 instruction set described
below. The particular instructions - used reflect the
characters constituting the field’s picTURE clause.

T he members of the Report Field instruction set are:

STXL C R999 1, number of consecu-
i Loof o tive 9 occurrences-
CTXL. ;~C RZZZ 1 number of consecu-
A . tive Z occurrences
TXI C RAAA l number of consecu-
* tive ¥ occurrences
- TXI C. ROOO 1; number of consecu-
;) tive O occurrences
XL CRBBB 1, number of consecu-
it i : “tive B~ occurrences
TXI . - C.BSIN, 1, cl+64%*c2:

The character cl is inserted if the sign of the field is
plus;and the-character-c2 is mserted if the sign of the

TXI T CRSIG, 1, c3+64%c4

The character c4 is inserted if no precedmg s1gn1ﬁ-
cant digit has been inserted, and the character c3 is
inserted if a preceding significant digit has been in-
’serted If a Tx1 C.RFLS instruction (described’ next) has
been executed and the floating sign has not yet been
1nserted the character actually mserted is c4, cB, or c6.

S B ,‘TXI,}[\ CRFLS 1, cs+64*ce
i c5 is the ﬂoatrng-srgn character that is- ultimately in-
serted if the sign of the field is plus, and ¢6 is ultimately
inserted if the sign of the field is minus. If the first digit
value is zero, a blank or the appropriate.choice of c5
or cB is. immediately inserted:as a result -of this Txr in-
struction. Note that: the first- ﬂoatmg-srgn posrtron is

traversed by thrs TXI instruction.:

T CRFFF 1, number of consecu-
R Lo L tive floating-sign oc-

. . eurrences

The above codmg is used When other ﬂoatmg srgn
posrtrons are to follow o :

N - ! CTXI | CRFFQ, 1 number of consecu-

o o tive floating-sign oc-
currences

" The above codlng is used when no other ﬂoatmg-srgn
positions are to follow B

TXI: - C. REFC 1, number of consecu-
- ‘tive ﬂoatmg-srgn oc-
E : : B B 1L tigurrences
- The above codrng is used when'no other floating-sign
positions are to follow but there is a comma before the
next digit. " : :
Values that cl and c2 can assume as character pairs

- are: .
cl: + blank_ gblanki' blank fblaxrk plank .. §
c2: - . ‘— + C : R it D ¥ B o $

Values that ¢3 and c4 can assume as-character pairs
are: : e sesilady ;

L N S

c4: , blank * .. R SRt

Values that ¢5 and ¢6 can assume as character pairs
are: ' ‘ :

c5: + blank §
6: - - § SRR TR TRy RN
The report image Tx1 string is terminated by:
TXI - C.RQIT, 1, value -

where value =0, unless the field ‘is to be blank when

zero, in which case value is equal to the total length of
the target field.
Example 1: PICTURE IS $58,555.99 is handled by:

'TXI o CRFLS 1, c5 06 $
43+64%43
TXI CRFFF, 1,2 =~
TXI ~ CHRSIG, 1, = 3=,
el 59+64*48 o “cd=blank’
TXI 'CRFFQ, 1, 3
TXI C.RSIN, 1, cl=c2=.
‘ 27+64%27 - -
TXI < C.R999; 1,2
TXI C.RQIT, 1,0
Example 2: PICTURE 1s 7zz,7z2.7z+ is handled by:
' 2o TXE. CRZ7ZZ,1,3 . . -
TXI . CRSIG,1, 3=, .
. B9+64*48 , c4 blank
TXI C.RZ7Z 1,3
TXI " -GCRSIN, 1, " cl=c2=".
: o7 +64*27 e
TXI C.R999,1,2 note choice of
: , C.R999
"TXI © CRSIN,1, - “cl=4
C16+64*32° . @=—
TXI C.RQIT, 1,11 noteblank .
e .- whenzero-
option -

“IDXD: (See “mw” first.) The Internal Decunal con-
tents of the accumulator or the ac-M0 are converted
to External Decimal by one of the following calls:

TX1 C.IDX1, 1, number of characters
: : to develop

TXI C.IDXS3, 1, numbér of characters
to develop

where c.ipx3 is used if the target field is 51gned
INAN: See “INID, ” then apply “ IDAN '
INID: (Apply 1n” af o

TXI C INID 1 character]ength of
. source
The results are left in the AC o AC—MQ Character
length of source is.the smallest rr‘lul Iile of six bits suffi-
cient to contain the deﬁned Internal Decunal ﬁeld and
its sign.. ;
ININ: See “ INID > then apply “IDIN.”
INRP: See “INmD,” then apply “re.”

INXD: See “INm,” then. apply mm
-BPAN:; See “ANan.” s
:SPAN: See YCcHAN.”.
SPRP: See “cHAN.”
- SPXD: See “cHAN.”
XDAN: See “xpxp.” - .
- XDID: (Apply “ow” after the following.)
B) 4 { CXDID 1, number of charac-
ters to convert
This subroutine converts data from External Decimal
to Internal Decimal and leaves the results in the ac-

» cumulator or in the ac-mQ. The sign of the source field

is assumed to be over the low-order digit. The absence
of a sign is treated as denotmg plus. Leading spaces
appearmg in the source field are treated as zero.

 XDIN: See xp1p,” then apply “IN,”
' XDRP:
XU -~ CXDRP, 1,0

ThlS 1nstruct1on is followed by one or more 1nstruc-

tlons from the External Decimal - TXI 1nstruct10n set (see
“xpxp” for a deﬁmtlon of this set).

TXI . CXDRQ, 1 number. of dlglts

N < developed for tar-

3 get field

This mstructlon is preceded by the above-mentioned

External Decimal Txr string and is. followed by one

or more instructions from the Report Field txx

instruction set (see “mrp” for a definition of this set).

As W1th 1DRP, the calhng sequence is termmated by

TXLC, RQIT 1, value

XDXD: S e
TXI C.XDXD, 1, target sign. con-
vention -

Target sign convention is 0 if the target field has
no sign provision; it is 2 if the target field always has
a sign over the low-order digit.

This instruction is followed by one or more instruc-
tions from the External Decimal Tx1 instruction set. The
particular instructions used: Tepresent a procedural
method for construction of the proper string of digits
for the target ﬁeld The members of the set are as
follows:- -~ =~

) 'jTXIj ’ ,j G MOV 1, number of dlglts to
P o T - move.
XI - .CNZT 1, number of. digits to
} : test for non-zero
TXI ~ CBYP, 1; number of dlglts to
i) bypass
TXI C.INZ, 1, numbeér of digits to
insert
TXI CXRND 1,0

If non-zero s1gmﬁcance is encountered under control
of c. NZT, 1t causes C.OFLO to be set to non-zero

The COBOL Compiler 87

Three alternate sibroutine entry” pomts CiXMVS,

c.Nzs, and C.BYS, correspond to C.MOV, C:NZT; an

They are used instead when there may bea SIgn 'over :

the last digit treated by the instruction. -
The instruction string is termmated for XDXD moves

by:

TXI CXDXQ 1, nnmber of - digits
O developed for tar-
get

: Example 1: The statement COMPUTE A ROUNDED = B,
ON SIZE ERROR. . . (where A's PICTURE 18 8990V999 and B’s
PICTURE IS §9V9) results :

el CXDXD 1,2
TXI _ GNZT, L2
CTXIC ,‘CMOVIZ
“TXI - - CXRND,1,0" :
TXI - . .CBYS, 1,2 Note chorce of
T o “CBYSforSIgn
switeh
TXI .. CXDXQ,1,2

Example 2: The statement MOVE A TO B (where A’s
PICTURE I§ S9V99 and B’s PICTURE IS v9999) results in:

TXI .. CXDXD,L0
TXI CBYS, 1,1
TXI ' CMVS, 12
TXI CINZ, 1,2
TXI CXDXQ, 1, 4

ZEAN: See CHAN.” : “
ZEID: See “cHAN,” then apply INID
" ZEIN: See “chAN.” ¢

ZERP: A sufficient number of zero digits is provrded
by generated in-line instructions which place zeros in
one or more temporary storage words. The move is’
then performed as if 1t were XDRP.

ZEXD See ¢ “CHAN.”

Compare Subroutine
The linkage is:
TSX c. COMP, 4 e
'COBOL address parameter (first ‘ope rand)
- COBOL address. parameter (second operand)

- Length parameter: :
Transfer parameter

The length parameter takes the lorm

bit 0—On if COLLATE MACHINE-SEQUENCE specrﬁed

bit 1—-On.if first operand longer than second operand

- bit 2—On if sec perand Joniger than first operand

bits 3-17—Difference in length between first and second operand
bits 21-35—Lengt of shorter operand

The transfer parametel: takes the form:

= pfx transfer address
where: Rt e
pfx
= PTW if testmg ‘for ﬁrst equal to sec()nd operand L
= MZE if testing for first greater than second opeér ‘nd .
= PON if testing for first less thansecond opera N
= MON. if testmg for first not equal to second operand .
= PTH if testing for firét not greater than second’ oper d
= MTW if testmg for first not less than second’ operan [

88

: marker .

» Display - Subroutine::

Except for debuggmg sections, the lmkage is:

TSX , CTYPE, 4
COBOL address parameter
. Length parameter

If more than one area is to be typed, an additional
pair of address and length parameters is used for each
additional area.. . -

The length parameter is of the form

Sows wple o o
where-
pfx

= PZE if the 1tem is not the last one to be typed
= MZE if the item rs the, last one to be typed

= the length of the item n,characters i}
* Within debugglng sectlons the llnkage is:

TSX C. DUMP 4
“2 Dump’ parameter
COBOL address parameter
Length parameter ;

The form of the Ile 'gth parameter is the same as

described for the c.TYPE linkage.
The dump parameter is of the form:
e opfx dump, , marker
~where: [
pfxﬂk !

= MZE if a marker is to be written on a specified output file
= PZE if-no marker s to. be written
dump: ca ‘

=0 1f the drsp]ayed mformatron is-to be written on the sys-
tem-otitput unit (S.SOUx)

7 0 if the displayed information is to’ be written on an alter-
: nat output unit (S. SUxx) ;

= 0 if the requested marker is to. be wntten on the system
~output-file 0 o o

5 0 if the: requested marker is to be written on an alternate
output ﬁle : g

Examme Subrourme s
The Ilnkage is:

TSX C EXAM 4 ﬁ .
"“COBOL address parameter
Examine patameter

The examlne parameter is of the form
LLYING requested
bits 3- 17— The length in’ “bytes of the field to be exammed

bits* 18-23 - The character to examine for = :

bits 24-29 — The character to replace thh (if not replacmg, the
same as b1ts,18-23) :

d numerlc drsplay ﬁeld 1s berng ex-

numeric character (0-9)°

bits 33- 35 An indication of the condrtion controlhng the éx-

amination :

=1,if REPLACING FIRST

=2 if LEADING)

=3¢if ALL "

=4, if UNTIL FIRST without REPLACING -
=5, lf UNTIL FIRST with REPLACING

This routine scans a field, countmg or replacmg char--

acters as necessary.

Add Subroutine - .-
The linkages are: e it S el i
TSX " C.ADD1,4 -Add C.AC-C; MQ
to AC-MQ
TSX C.ADD2,4:: ‘Add-C.AC-C. MQ
to AC } e L
TSX C.ADD3,4 Add C. MQ to R
§ivind ACMQ
TSX ~ C.ADD44 'Add CMQtoAC
TSX C.ADD5,4 - Add double-preci-
.. sionnumberto
AC-MQ
COBOL address parameter,]
TSX . C.ADD64" Add sing ,e-prem—
) sion number to
~ACG-MQ
COBOL address parameter TR
‘ ’TSX e CADD7 4Add double-precr-
: - T sion number to ACS'
COBOL address parameter g -
TSX C.ADD8 4 Add smgle—precr-

sion number to AC
COBOL address parameter

The resulting sum is always placed in the ac-mg,
with the low-order portion in the moQ.

Subtract Subroutine

The linkages are:
' TSX . C.SUB14 Subtract C.AC-C.
) MQ from AC-MQ
TSX C.SUB2,4 = Subtract C.AC-C.
) MQ from AC
TSX C.SUB3,4 Subtract C, MQ
from AC
TSX ‘C.SUB4,4 "Subtract CMQ
' from AC
TSX C.SUB5,4 Subtract double-
precision number
. from AC-MQ
COBOL address parameter ‘
TSX . C.SUB6,4 Subtract single-
precision number
from AC-MQ
COBOL address parameter :
TSX C.SUB7,4 Subtract double-
precision number
“from AC
COBOL address parameter :
TSX C.SUB8,4 Subtract single-
: _precision number
from AC
COBOL address parameter

“The resultmg difference is always placed in the '

Ac-MQ with the low-order portion in the MQ.

C

‘Multiply Subroutine

The lmkage is: ,
' TSX. CMPYa
COBOL address parameter ‘

where', : _ .

n.

=1 1f‘the multlphcand is in; the MQ and the multlpher is
i louble precision .. - =
- =2 if the.njultiplicand. is in: the A
s double recision

if the multlphcand is m the AC- MQ and the multrpher
° is”singlée* precision {7 <

If the resultant product exceeds a double-precmon
number, it is saved in a four-word work. area, C.MRES,
and a switch, c.oFL2, is set. However, if €.0FL2 had been
previously set (and not restored), the normal ‘over-
flow switch, c.orvo, is set. If the resultant product is a
single- or double-precrslon number, it is left in the
AC-MQ. ‘ : '

-MQ and: «the\ mulhpher

Divide Subroutine =

- The linkage is:
‘ TSX C. DIVI 4 if AC-MQ/C.AC-C. MQ
TSX C. DIV2 14 <if AC-MQ/C.AC
TSXC.DIV3.4 if MQ/ C AC-C, MQ

The resultant quotlent onl s returned in the Ac-MmQ,
and the remainder is not retained. . : L

Exponentiation Subroutine

The linkage is: ‘
TSX . C.XPab
VFD 6/c, 8/d, 6/e, 18/0
where: :
-a

N if the object computer has floating-point capabilities ‘
Fif the ob]ect computer Iacks floating-point capabilities

ll l!

1if CMQ ** AC

2 if CMQ ** AC-MQ

3if CAC-CMQ ** AC
= 4if CAC-C.MQ ** AC-MQ

= the number of decimal positions desired in the result.
d

= the number of decimal positions desired in the base.
e - .
= the number of decimal positions desired in the exponent.

The exponentiation subroutine first scales the source

 fields, depending on the number of decimals, and then

converts the input into double-precision floating- -point
form. The result is converted to fixed-point form and
scaled to give the desited number of decimal positions.
It is returned in the ac-mq. In all cases, a maximum of -
15 digits will have mathematical significance.

Round or Truncate Subroutine

The linkage is:
AXT =~ n4
- TSL name

The COBOL Compiler 89

B the numberﬁf—deelm

where:

n

= the power of ten by which the AC-MQ or a four-word
area, C. MRES is. to be dlvxded (1 n<20)

name
= C.TRUN 1f the remainder of ‘the division jsto be 1gnored

= C.RND if the remainder of the division is to be tested to:

-~ determine if the quotient should be increased. -
= C TRN2 xf the quadruple—precmon result of

sult i isleftin the ac-MQ. .~ -

Scdlé Sybrouhne s ‘

Thc,linkéggis: UL e
; AXT o fn’,4%i

TSL . .. C

where:
n

= the power of ten by which the MQ or AG—MQ is to. be..

multiplied (1<n<20)
X
. =1 if the valueis'in the AG:MQ:
—2ifthevaluelsmtheMQ oy
Theé primary use of the scale Subroutme is inadjusting
the number of ‘decimal positions:in.a number: before
using the number in another computation or as output.
The result is left in the Ac-MQ.

90:

The linkage is: L
TSX C IFAL 4 e
COBOL address parameter .

~ IF Alphkiabetic Subroutine’ . - .

pf g transfer address;,n -

where:

pfx. - .
= PZE for transfer if ﬁeld is alphabetlc ,

= MZE for transfer if field i is not alphabetic™

= the length, in bytes, of the field to be tested

This subroutine tests whether all characters.of a field
are aslphabetie (i.nc‘hiding blanks). -

IF Numenc Subroufme

TSX CIFNMA

¥ COBQLiadd,reSS*parameter, :
< pfx_ . transfer address,n

pix S
= PZE for transfer 1f field is numenc
fer if field is not numeric™

= the length, in 'bytes, of the field to be tested

This subroutine - tests ‘whether all characters of a
field are numeric. If the field has a plus or minus sign
on the last character; it is considered to be numeric.

Format e G e
The Subroutine Library consists of two sections in the
System Library - located; in the distributed version,

between Sections 1.and 2 of the Loader (1BLDR). The: -
System Editor may be used to place one or more sub--
routines elsewhere in the System Library, such as on
a separate library unit.: The first section contdins two-

lists: - : :

The Subroutine Name Table (SRNT): This: table is:
~a list of all real control section names ‘appearing in the
Subroutine Library. Each control section -name ap-
pearing in.the list must be unique. Associated. with:
each entry in the list is a number (the. subroutine.
index) of the subroutine in which this control section'

appears and, if other routines are dependent upon
this control section, a position in a second list (the
Subroutine Dependence Table). The sgNT is in -alpha-
betical order.

- The Subroutine Dependence Table (SRDT): This
table contains, for each entry in the Subroutine Name

Table that has a dependency list, a list showing the con-

trol sections that must be loaded for execution of this
- control section. Therefore, a given control section is
said to be dependent upon those control sections whose
names appear in the corresponding portion of the
dependence list.

The second section of the Subroutine Library con-
tains the program decks for all library subroutines.

Figure 38 shows the format of the Subroutine Li-
brary. In the figure, 18118 is the name of the header
record, szseRNT is the size of the Subroutine Name

Table (senT), szsept is the size of the Subroutine

Dependence Table, seNAD is the name of the SRNT/SRDT
record, and 1BREL is the name of the relocatable deck
record.

The logical record of sRNT/SRDT contains the SRNT
and sBpT tables. .

In the smn, there is one entry for every real control
section file and entry point in the Subroutine Library.
The table is sorted alphabetically. Each entry consists
of twowords:

BCI 1, name
pfx " pt,; srn
where:
name

=the name of the control section.
pfx

=PZE if a dependency list is associated with this name and

starts in the decrement.)

=PON if a dependency list is associated with this name and

starts in the address. ~ ,
=MZE if no dependency list is associated with. this name.

Subroutine Library

= | BCI ..1,.IBLIB - e b
[Pz _szsRwT, szsroT |
F R
Bock2 -
| BCI 1.SRNAD
PZE - 0
-Block 3
Logical ..
Record of
~ SRNT and
SRDT Tables
PZE 0
Block n
"MZE © 0O
Block n+1 .
BCl 1, IBREL
PZE O
Block n+2
Logical
Record of-
the Program
‘ Decks
PZE 0
Block n4+m
MZE 0

Figure 38. Format of the Subroutine Library

Sub;Olltine Library 91

‘=an address of a word in SRDT (relative to the start of that
table) that contains the first word of ‘the dependency list
associated w1th this name.

srn

=the number of the subroutine in which the named sectxon
is a . real control section.

The srpT contains information for. virtual sections

in the Subroutine . lerary”decks., A dependency list
exists for each entry in srNT that is a real section in
a program deck that also. contains external sections.
Every entry in the dependency list, for which a de-

finition exists in the Subroutine Library, gives “the

address of an ent}rj in the sanT. If no definition exists
in the Subroutine Library, the address is equal to zero.
Every word in srpT has the followmg format

17 ;18,,,,20‘,.21 . S35

Fpi | ki/

IAopi+1 | ki+1 J

92

Where:

op
=PZE if thls is the start of a dependency list.
=PTW. if the dependency list is continued.
=MZE if this is the end of dependency list.

k

- 0 if it is the location +1 (relative to the start of SRNT)
that contains the definition of this section.

= 04f no definition exists in- the Subroutine Library. L

‘The logical record of program decks for the Sub-
routine Library consists of card image records of all
decks in the Subroutine Library: Each deck starts with
a siBLDR record that contains the deck name in columns
8:13 and ends: with a spkeND record also containing
the deck name. The blocking factor for the Subroutine
Library is 10 records (card images) per:block; the
logical record size is 28 column binary words for the
text and the dictionary of 14 alphameric-code’ words
for: control cards. Each block, ‘except for the last, has

~ a-final pzE word The last block: has a standard MZE

flag word.

'The Debugging Processor; which handles requests for -

load-time debuggmg, consists” of three major - parts:
the - preprocessor, the object-time routines, and the

postprocessor. The ‘preprocessor: scans the SIBDBL card,

compiles all of the debug requests, and creates' the

/pEBUG -deck. The /pEBUG deck: is loaded into upper
core storage at object time to perform the debug re- -

quests. The postprocessor-edits and translates the de-
bugging ‘dumps into a-meaningful listing. ‘Figure 39

.shows the sequences in-a generahzed bloek dlagram
- form.

T e Y ,«:,‘;

Preprocessor

The preprocessor is d1v1ded into two sections; Section
1 consists of the phases mBpLVA, 1BDLVB, and IBDLVC.
Section 2 consists of the phases pEFa and ‘IBDEF.

After all source decks in the 1BjoB. apphcatmn have
been processed, the smBpBL card causes ccontrol to be
transferred to the preprocessor Input to’ sectwn 1

- Debugging Processor

¢ debugf‘compiler-)*ﬁf‘ ‘the preprocessor comes from the
system- input unit.‘Output from section 1 consists of
“data to be'used as input to the second section (creation
‘of /pEBUG deck) and data to be written on the debug
‘Work umt;(’DWU) for use by the posl‘proceSSOI‘ ‘
“'The initialization" section assigns table space and
processes all of the information from the sBpbL card.
The main workload is handled by the debug compiler
‘which ‘scans ‘the” debug séurce - Ianguage statements
‘builds variots tables to be left in core storage for sec-
‘tion 2, ‘and ‘creates the debug requesf-pomt table. All
counters and constants: are “initialized during thls
‘process. The speND card termmates this procedure

At this point, a special pprcr for the /pEBUG deck, a

“list of subroutines not necessary for this appllcatlon

debuggmg text, and constants are written onto SCRi.
The poicr is created from symbols defined by =xew
in NAME statements The messages ‘encountered within
‘quotation: marks in LisT and DUMP" statements are written
i'onto the DWU. Control is then fransferred to sectlon 2.

Coutpur [

L SiSOU for
alternate -

: Oufpuf N
| Dump Marker

S SOUI F|L 06
“or file specxf:ed
by user”

[-5 SCKI or specnfled
‘ uhllty uml'

*“Blank Common -~

i $OEDiT)

g ;B’ufferszzz,

i

Section 1" compiles:| iy S s

dobog ropests rpwr e MU S B (10 ST

Work Unit 2 = _ s Posfé::.cessor

: itor
/DEBUG Deck
4 -Available. [
Memory |

-~ .Section 2: - - EREE e 5
/oééeﬁgfaéck < speaified utility unit " Debug

A 24 L ‘Postprocessor
i i Translator -~

File Control Blocks .

- Load File

~-Debug -\ New Load File

and/or : ;
S.SIN1 Subrouting .. f- 10CS
Work Unit 3 e
5.SLBI —— 5.50U1 - -
Preprocessor - Object Time " Postprocessor

. Figure 39. Deb'ugging Processor. o

Debugging Processor. ~ 93

“ﬁi‘hefunet‘ian offfsect‘l()n 2 ‘of the preprocessor is to
prepare a new load file and to prepare additional in-

formation for use by the postprocessor. Section 2 com-

pletes the tables built by section 1. It fills in information
about names and values from the ppicrs, reading first
, ,from SCRL if. there were symbols deﬁned by = =NEW, next

\rent run are used :

Tables contain wrtual _references (plus ad]us ments)
to deck nam d real sections in object decks.
erences within the debugglng routines
to decks that are berng debugged.. (The evaluation of

virtual references to deck name entries made in the
/oesuc deck differs from that of similar references in

object decks. Adjustments must be made to account for
EVEN pseudo-operations and deleted real sections.) .

Almost all tables used by the preprocessor occupy a B

“‘common table area. If the tables overflow this
debuggmg request package should be shortened (e.
by reducing the number of NAME statements or the

number of continuation cards for the statement bemg ,where X, m, and value are as above, and symbol is

* the Bop representation of the symbol.
The /pEBUG deckis posrtroned in upper core storage 3

v processed when the overflow occurred)

just below the buﬁers and pool control words

Debug Assembly Parameters e
If the TRAP MAX Or LINE MAX assembly parameters are

to be changed by a user, he must update and reas- - -

semble the first section of the preprocessor. (deck
1pLvA) and then edit: section 1 (binary decks 1BDLVA,
1BDLYVB, and IBDLVC) into the System Library. The sym-
bolic instructions to be changed are TMAX and LMAX.
The assumed pwu may be changed by re-editing sec-
tion 1 wrth a new sFILE card for the pwu file.

If the user’s computer is not equlpped with the
smgle-precrslon floating-point instruction set, the as-

sembly parameter FLTsW in the postprocessor Phas o

IBTRAN must be set as follows
MZE *ox

The phase must then be reassembled and edited into
the System Lrbrary ‘

=94

f the generatron of the following entry

Format of the DDICT

The debugglng dictionary, requested by either pp or
spp on the appropriate $ card, is always headed by a
‘sppict card. The rest’ of the dictionary consists of
binary cards having two words for control and check- -
+sum-information :(see “Binary Card: Format™)-and 22
words for: dictionary entries. A dictionary entry may

_-be contained on:more than one:card. The debugging

, dlctlonary f llows the control dletronary in: IBMAP
foutput ; - :
-« Each: entry in-ppICT 5 from one through three words
~in length. Mode:changes that occur-at:a location for
-which: there is norassociated symbol: will cause a one-
:iword»enh‘y i the followmg ferm to be placed in DDICT:
l value J

‘Fo = I
21-35

18-20
The X w1ll be 0 if the value is relative, 1 if it is ‘
absolute. The m is the four-bit mode desrgnator, The
- m, in octal; may. be one of the followrng Y

| m

3-17

07 = ﬂoatmg pomt L
“16 = double-precision”
17 = complex

A symbol having no dimensions will cause the gen-

4 eratlon of the followrng entry:’

17 3.17 1820 2135

Xi', m. | 0 m

.- value

symbol

A relative symbol having one dimension vwll cause

2135

1 .2 '3-17 1820
1| 04 m 1st dim m value
symbol

- where 1st-dim is-the dimension. -

A relative symbol having two or three dimensions, or

an absolute symbol having one, two, or three drmen—
. sions results in the followmg entry: .

0 12 '3-17 1820 ©'21-35

1|1 m Ist dim |’ m value
symbol -

0 2nddim .. | x 3rd dim

0-2 ’ 317 18-20 21-35

where x is 0 if the value is re]atrve 1if absolute The
3rd (and 2nd) dimension will be zero if not applicable.

Ob’ecf-'hme Routines

The object-time routines, along with tables and work
areas generated by ‘the preprocessor, make up the
/DEBUG deck. The routines necessary for object-time de-
bugging are an initialization routine, the sTR supervisor
that determines whether or not an str is the result of a
debuggmg request, the mterpretlve routines that proc-
ess the compiled. debugging requests and perform the

desired action, and a routine that executes the 1nstruc-;

tion overlaid by the sTr. .
Control is, transferred to the /DEBUG 1n1t1ahzat10n sec-

tion 1mmed1ately after the loadmg of each hnk Be-’ .

sides. nntrahzrng the /pEBUG deck thrs sectlon sayes

the instructions at- debug request. pomts inserts STR

mstructlons and writes mformatron on the second of
. the pwu. Control is transferred to the ob)ect program

Upon executlng an sTR lnstructlon the sTR supervisor

is entered. It saves all registers and machine conditions
that may be destroyed by the interpretive routines and
determines whether or not debugging has been re-
quested at this location. If debugging has. ‘been. re-
quested, control is transferred to-the debug request
interpreter; otherwise, a terminal dump is taken. .

The debug request interpreter mterprets computa—

tional, testing, and dumping instructions as. supplied
to it by the debug compiler in the preprocessor. Since
a wider range of functions may be.performed by: the
interpreter than is required for a particular execution;
the interpretive functions are coded in a modular
fashion. All functions are represented by control sec-

tions, and unneeded sections have been deleted by the -

Ppreprocessor. :
Output 1nforrnat10n is wntten on the debug work

unit using one of several logical records to describe the -

dump(s). When the debug request(s) has been satls-
fied, control is passed to a routine that restores regis-
ters and machine condrtlons, executes the instruction
overlaid by the str, and Teturns to the ob] ect program

ke

<+ A terminal dump is taken if the instruction.overlaid by

the sTR was an sTR or if it was an XEC referring to an STR.

I3
Postprocessor

The postprocessor, divided into the editing and trans-
lating sections, produces listings of object-time dumps
from mformatlon prevrously written on the pwu by
th prepr cessor by _IBLDR, and by the ob]ect-tlme,

'I‘he e,,ltmg‘phase transfonns mformatlon from the
ﬁrst file of the. WU to approprlate mtemal ‘tabular
formats. The;'tables contain. comment strings and as-
signed information, The debuggmg dictionaries are
‘matched against the absolute assignment form of the

control dlctronarres to produce final absolute values

' Unnecessary entries are deleted to conserve, space. The

generated tables are left in core storage for use by the

* translator phase. If table overﬂow occurs during post-

processing, the size and/or number of poicts should
be reduced. e

The translator sequentlally processes the table and
object-time dump records from the pwu to create the
full debugging listing that appears on the system out-
put file.)

These dumps appear“n the same order as the str
instructions executed at debuggmg request points. The
dumps are. 1dent1ﬁed by a number that. corresponds to
the object-time marker written on the output unit (if
specxﬁed on the siBpBL card _ach dump has an 1den—)
tification line indicating the dump number, the sym-
bolic request point, the deck name, and the relative
and absolute locations of the request point. Followmg
this, the dump is listed in the format specified for it. If
no mode has been specified (in the object-time output
or in a debugging dlctlonary) for the locatlons dumped
they appear-in octal mode.

At the end of the translator phase control is returned
to 1BsuP by way of s.SRET.

Debugging Processor 95

~ Appendix A. System Input And Ovutput Editors

The system Input and Output ‘Editors are used by
several system programs to read from the system mput

(IBEUr) the system ‘Outy
Dump program T he rout1

to the user in the Subroutme Library. :
The system Input and utput Editors call 100p for
input and output ‘operations and 1oLs for end-of-reel
procedures. Thus, the system ”:rograms mcorp tm’g
the editors may overlay IOBS. A

‘These editors can read or’ write Type. 1 records on

unit record equipment and Type 3 records on any
dev1ce on Wl.'IlCh a blocked record can be wntten

iy

Input Editor

The calling sequence | for the Input Editor is:
‘ TSX ’ SYSIN 4 ,
SRR T Heia (return)

On the ﬁrst call to the SYSIN routme the routlner mr-

blocked

contams ‘ :
_ Tpfx fwordg :‘,(Wdcnt :

Where«i. g R 6 4 L
R S . . S
=PZE if a BCD card w1th other than a $ in column 1 was read

. =PON if a BCD card.witha $ in ‘column 1 was read
=MZE if a binary card was read

fword
is the location of the first word of the card.

wdcnt (the word count)
is the number of words in the card.

The calling sequence used to close the Input Edltor is:

TSL SYS52
BRN SYSFR
MSP SYSIN+3

If a $ control card was read ahead, it is placed in s.SAVE,
and s.scpi is set on. '

If a file mark is detected while reading from unit
record equipment, the unit record equipment is imme-
diately reselected. If a file mark is detected while

reading a file that can be labeled, the Input/Output

Labeling System is called for trailer label verification.
If a 1EOF trailer label is read, the following message
is typed: i

10544 .

SSIN 1EOF

96

unit (s.siNx) and to write on’ the system Output unit

message is’ typed

Upon return from the SYSIN routme the acwmu : tor—

A $STOP card IS then s1mulated and control 1s trans-
SRET

'Block Length The block length for 1nput ﬁles 1s

preassembled as:
SYBRL

EQU 140

n ‘one ‘block."
: block control character m each block is

The operator may press STABT to continue processmg,
1gnormg the error. No error 1ndlcat10n is glven ‘to the
callmg program. :
4" devic not attached to §iSINT, the followmg
-~ NOT ATT ACHED

“10545 "+ S.SIN

TA $STOP" card s then s1mulated and control is trans-
ferred to' S.SRET. ' : :

: The calling sequence for the Output Ed1tor is:

- TSX SYSOU, 4
©opfx oo oo fword, s wdent o s e
R0 TS T (return). .
where .) r ’
pfx

* =PZE i a'line is to be prmted preceded by a smgle space
“i(block control .character 2+
,,—PON if ‘a line is to be prmted preceded by a sk,lp /o anew
" page (block control character 2)
=PTW if a line is to be printed, preceded by a double space
(block control character 6) - :
=PTH if a line is to be printed, preceded by -a double space
and followed by a double space
=MZE if a BCD card is to be punched (block control char-
acter 2)
=MON if a binary card is to be ‘punched
=MTW. if a new subheading line is to be used (block con-
trol character 2)
=MTH if the system Output: Edltor s to be closed (block
" control character 4)
fword -
is the location of the first word to be written out
wdcnt
" is the word count. If wdent is 0, only spacing or deletion
‘of the subheading]me will occur; no prmtmg or punching will
take place.

On the first call to the sysou routine, the routine
initializes itself to write Type 1 records on unit record
equipment or Type 3 records on devices that can be

blocked. The page count and the line count: are *
initialized from s.pccr. The calling program should -
initialize the page heading, which may be up to 22
words beginning at the location sysap. The routine
examines-locations s.sout and s.sppi to determine if
the print and punch output are combined.

If. the end of medium is detected w'ille wntmg on
$.50U1 or s.5Pp1, the Input/Output Labehng System is.
called to sw1tch umts

When the Output Edltor is closed the last block on;
s.soul and s.sPP1.are truncated with the Bcp look-ahead
block control characters. The page count and the line
count are saved in s. PGCT. . . 3

- Paging: The hstmg page length 1s assembled as:
~ SYPCT .].ZEQU 88 B :

Pages are e]ected and page’ numbers 1ncremented on:
each call to eject a. page, on each. call to use a new.
subheading line, and each time a page overflow oceurs,:
Page numbers and line counts appear in the address

field of locations sys22+1 and sysia, respectlvely These

‘may be modified by the. callmg program.

*

Block Length: The block length for output ﬁles 1s:i

preassembled as:

USYBLL. .« EQU- - 150 0

SYBCL EQU 150
Up to seven vprmt lines may be written on s.soui;
seven column bmary card images or 13 Bcp card
images may be written on s.spp1. If the print and punch
output are combined, up to five column binary card
images or 11 Bcp card images r may be written on s.sou1.

Note that the first block on s.sout or $.5pp1'is always
in Bep. If the first call for s.sout ‘or s.sept is for a
column binary card: ‘image, a special three-word Type:
3, P-(ignore) mode switch block is written.

Error Conditions: If an ‘error occurs while wntmg; ,
on s:50U1 or s.sPp1, one of the following messages is

- typed together with the first six' words of the block that

follows the block ertten in error:
90543 -8 SOU ERROR (suewords)
20543 - SSPP : ERR(}R :+(six words).
The:operator' may press START -to- dontinue. No error:
mdlcatlon is given to the ‘calling program. o
I deVlce is not attached to: sisou1, the followmg
message is: typed' S
10545 850U NOT ATTACHED
A sstop card is then 51mulated and control is trans-
ferred to s.SRET.

Appendix A. System Input and Qutput Editors 97

Appendix B. 7040/7044 — 1401 Auxiliary Progmms ~

Reassembly of fhe 7040/ 7 044 1401
Auxiliary Programs .

The 7040/7044 — 1401 auxﬂtary programs ‘as’ dlstrlb-'ﬁ
uted, are assembled for:an M 1401 Data Processing
System with 4,000 positions ‘of- core “storage: These.

programs may be easily reassembled for.a 1401 with

greater storage capacity, if such is available, to allow.
a larger maximum blocking factor: for the tape files
accepted or produced by the: programs.. Depending’

upon the blocking specified for the associated 7040/
7044 system input/outputfiles, this increased ‘maxi-

mum- blocking factor:ican result in greater: operatmg‘

efficiency for a particular 7040/ 7044 installation. .
- The reassembly for each: of the programs. mvolves an
expansion of one or more input/output buffer areas

date ten BCD card records (90 characters each), six
BCD print’ Tecords (138 characters each) or five binary
card records’ (174 characters each). This factor ¢an be’
increased to allow for as large a tape ‘récord as desired,
provided that the. ‘reassembled object program -does
not exceed the storage capacxty of the object machme :

MAP Symbohc Update Program -

The 1401 Autocoder statements that must be changed
in order to reassemble the 7040/7044 — 1401 map Sym-
bolic Update Program for a 1arger~than—4K 1401 are

spemﬁed in the dlstnbuted versmn of the program as-

and a change in-the. maximum blocking-factor -con- i

stants. Specific procedures for each program follow

Input/Output Utility Program -

The 1401 Autocoder statements which are to be
changed in order to reassemble the 7040/7044 — 1401
Input/Output Utility Program for a larger-than-4K
1401 are specified in the dlstrlbutlon version of the
program as follows:

Page No |9.|%|

...........

“The operand in columns 91 and 22 of this statement
should be changed to a number which is the maximum
Bep blocking factor allowed

Page No I(T)%l

Line Label rati : OPER‘Q
6 1sf L 25 30 38 a0

The size factor (900) in columns 23-25 of th1s state-
ment defines a tape buffer area which will accommo-

98

[Line Label ;‘Fﬂmﬁ%‘ , .- OPERA

6 - 1546 L _30_ 33 40

E:‘_{E&P.U.T. DA, [1x450. i {
The size factor (450) in columns 23-25 of these state-
ments defines a tape buffer area that can contain 5
Bep card records (90 characters each). This factor can
be increased according to the size of the available
1401. Of course, this limit must not exceed the buffer

size provided by the associated 7040/7044 Operating
System (16/32K). \

Page No.10:8)
L2
Line Label - ratic .) OPERAN
3 - . 15)i6 202 5 - .30 40,
41, }ﬁKQO.NLF. NIV SIS (o T X .

The operand in columns 21 and 22 of this statement
should be changed to a number that is the maximum
blocking factor allowed.

i ;?Aﬁi:féhydixf% 7

S.SCHI Subroutine
Calling Sequence:

‘CALL S.SCHI (pl p2)
. CALL: S.SCHA' .

Purpose To search for the ‘unit to whlch a glven‘

reservation code (in pl) is appended. The code in pl
is to be expressed as a binary number. It should be used
to find available units and units havmg intersystem
reservation codes.

Output: p2 will contain, in bits 21-35, the machme

address of the Symbolic Units Table entry corre-

sponding to pl. Bits 3-17 of p2 will contain the address

of the first word of the system control block for that

unit.

If pl contams zero, then P2 wﬂl pomt to the ﬁrst

available unit found

A call to s.scua (without parameters) must not be‘

the initial call to this routine. s.scaa will search for the
next entry in the Symbolic Units Table correspondmg

to pl. Tt will begin searching where the previous search ;

left off and will exit with p2 set as above.

Not Found Condition: If an entry is not found Wlth4

a code correspondmg to that in pl, or if pl is zero and

an available unit is not found p2 and the accumulator’

will contain zeros

S. SCOD Subroutine
Calling Sequence
' CALL s SCOD (p1)

Purpose: To encode a valid Bcp unit specification so
that it can be contained in an 18-bit field and used as
input to subsequent subroutines.

Input: pl and pl+1 (if necesséry) contam the BCDZ,

unit specification, left-justified, with :trailing blanks
p1+l is not examined if pl- contains a blank.

- Qutput: Bits 18-35 of the accumulator. contem the:

encoded form, The blts are set as follows:

BITS ~ CONTENTS - o . MEANING

18-20 6 Symbolic unit :
4 Mlscellaneous unit
5 “Variable unit":

If bits 18-20 are set to 6 to spec1fy a symbohc umt
bits 21-29 are as follows: ‘

BITS CONTENTS
21-29 ‘

MEANING
LBI -
LB2
IN
OU:

PP

SO bo =

Symbolic Unit Assignment Subroutines:

BITS CONTENTS

MEANING .

11 ckl

1004 xxs Uxx
~330+m - . PRAm

310+m . PUAm
.3204m RDAm

3604+m _ PRSm

340+m PUSm -

350+m RDSm

If bits 18-20 are set to 4 to spemfy a rmscellaneous
umt _bits 21 -29 are as follows -

MEANING

BITS CONTENTS
21-23 0 NONE
B e *(in secondaryonly)
3 ~Iyy[RL o
4 . LIN
5 " LOU
24-29 . - 770 Not used if bits 21 23 specxfy NONE
G iy RN o &0 :
vys . Iy
24+yys IyyR
m-+n LIN or LOU

.- m=0 for tape, disk, or drum]
- m=20fortape
- m=40 for disk or drum "
: n=0 for any channel .
n=1 for channel A
“n=2for channel B
n=3 for channe] C
- n=4 for channel D
. n=5for channel E
" n=10 for channel V
-n=11for channel W
.. n=12 for channel X
n=13 for channel Y
] n=14 for’ channel VAR

If bits 18 20 are set to 5 to speCIfy a vanable unit,
blts 21- 29 are as follows ‘

BITS CONTENTS , MEAN‘ING;
21-23 .. 0 Anyunit ‘
T 1 27 Tape
720 o Disk orsdrum: - -
24+m Disk or drum arm or module m.
S . (m=1=5) o
2429 - 0 : Any channel -
oot ooo1-12 . Channel V, index 1-10 ..
- 13-24 _Channel W, index 1-10.
25-36 Channel X, index 1-10 -
=37-50" ‘Channel Y, index 1-10 "
5162 Channel Z 1nde‘(1-10

The remammg bits indicate whether the unit isto be
assigned.a new mtersystem reservatlon code. Blts 30-35.
are set as follows: - =y : R

CUBITS . CONTENTS' MEANING .
: 30-’35 R S ‘No mtersys"tem code:
ooy o=hy

Error Conditions: If pl contains an unrecogmzable

set of characters, the ac will be zero upon return.

Appendix C. Symbolic Unit Assignment Subroutines 99

NortE: It is. the callers r

* is a valid specification to s.scop, but it may not be
acceptable in the context of the caller’s sFiLE card or
FILE statement).

$.SCHL Subroutine
Calling Sequence:

CALL S. SCHL (r, Ic, u) erret L
CALL S.SCHM (r, lh, v, If) erret e

The following apphes when the calhng sequence
CALL 8.SCHL is used. o

Purpose: "To search for an avallable 1n,put or output
unit of the type and channel spec1ﬁed and for input,
having a label that matches a spec1ﬁed label control
block.

Input: r contalns in bits. ‘?1 35 an encoded var1able
unit reference as output from s.scop. Note that this
routine will assign intersystem reservation codes. .

Ic contains, in bits 2135, the location of a ‘nine-
word label control block that has labeling information
for the unit being searched for. A label control block
is required for both input and output units.

Output: u will contain, in bits 21-35, the address of.

the Symbolic Units-Table entry for-the first unit that
satisfies the search specifications. If bits 30-35 of r are
nonzero, and contain a value from 01-24, that value
will be stored in the reservation code field of the system
control block for which-a match was found, provided
that no other unit already has that reservation code.

Not Found Conditions: If there are no units available
of the type and channel desired, u will contain zeros
in bits 21-35, and its sign will be made minus.

If there are available units but none can be found

that satlsfy all the label search spemﬁcatlons the oper-

ator is notified of the label being sought and of an avall-
able unit on which the file can be mounted The
spemﬁed unit, indicating an alternate unit to use, or
terminating the job. - ‘

Error Conditions: Return Wlll be made to erret if
any errors are detected in the: calhng sequence, a reser-
vation code greater than 24 (octal) is to be assigned,
or a duplicate: reservatlon code is to be assrgned

General: s.sCHL uses s.svON and s.svUA to provide it

. with Symbolic Units Table entries. If labels- are to be
checked and 1Fsns is-set to 1; all units are-initially re-
wound. After the label on each unit is checked, the unit
is rewound again. (For output label searching, labels
are checked only in a LABELS SET 2 system.) S.SCHI is
used to ensure that no duphcate reservation codes are
assigned. . , : w

IOLS must be in core storage when §.SCHL is called

100

esponsibility to. determine .
whether the field is valid in his case (eg., the character

. The ,’followmg applies when the calling sequence

" CALL 8.5CHM is used..

Purpose: To search for an available mput ot output

“unit of the type and channel specified, and for input
‘having a label that matches any one of a given list of

label control blocks.

Input: r contains, in bits 21-35, an encoded: variable
unit reference of the type described as output from
s.scop. It is equivalent to the.input to s.scHL.

Ih is a list header word- of the form pze It,, n where
It is a list of n label control block pointers:

1 PZE bl

PZE s 1eb2
PZE lcbn e

The label control blocks are requ1red for both mput
and output units.

Output: u will contain in 21-35 the address of the
Symbolic Units Table entry for the unit found, or zeros
if no unit is avarlable or 1f no matchlng label ‘can be
found. - '

If no units are avallable, the preﬁx will be Mze.

If no matchmg label is found the preﬁx w1ll be PZE.

If a unit is found and b1ts 30-35 of r are 01-24, that,
value will be, stored in the system control block for
whlch a match was ‘found, provxded that no other unit
already has that reservation code. If will contain, in
positions 21-25, the location in the It list of the pointer
to the label control block for which the match was
found. -
Error Conditions: Return will be made to erret if
any errors are detected in the calhng sequence, a res-
ervation code greater than 24 (octal) is to be assxgned
or a duplicate reservation code is‘to be assigned. -

--General: When 4 label is read from a unit, the label
will be matched against all the label control blocks
specified by the list Th ‘ :

If the prefix of a list pointer is' Mz, rather than pzE,
that entry will be skipped. When a match is found, the
pointer to the label control block giving the match will
be placed in If; ‘A label control block can be eliminated
from subsequent searches by setting the pomter prefix
to MZE.

1oLs must be in core. storage when thlS routine is
called. : .

Note that unhke s. SCHL ‘no operator mterventmn is
provided. .

Subroutines Used S.SVUN, S.SVUA, and sscHI are
used by s.scaM. :

Output from S.SCHL and S.SCHM: Figure 40 illus-
trates the output of these calling sequences.

LABELS S.SCHL
=0 INPUT operator option on first none available
available : .
OUTPUT | first available first available
=1 INPUT first available that first available that
matches* matches
OUTPUT first available first available
=2 INPUT first available that first available that
Fooeood it - matchest iy ot {: :matches.. . : - ‘
QUTPUT | first:availa . vaulable thu\‘ hqs
| e oxpired

*mdlcales operutor opﬂqn if no. mqtch or: |f Iabel has not. explred -erret
is taken if one of the follownng condmons occurs

B Encodmg of r'is'in error. }
2. Aresefvattion code greater than 245'is 1o be assigned: 8
3. A duplicate reservation code is to be assigned.

 Figure 40. Output from SSCHL and SSCHM |

S.SVUN: Subroutine” '
Callmg Sequence

CALL S.SVUN (pl, p2) erret
CALL 'S. SVUA erret

Purpose To find an avallable umt of the type
channel, and number spec:ﬁed : :

Input pl contains, in blts 18- 35, an encoded vari-
able unit reference of the type generated as output by
$.5COD. Note that thlS routme wﬂl not ass1gn an inter-

it ignores the six low-order

Output p2 will contain, in bits 21-35, the machine
address of the Symbolic Units Table entry for the unit.

Errors: If pl is encoded incorrectly, return is to
erret. If no unit is available, p2 will contain zeros and
a normal routine is taken.
NotE; A call to s.svua will find. the ‘next available
it (a ter | that found by sva) that meets the ; same
se given for the previous-
‘put is the same as for S.SVUN and is placed in p2. Thls
t not be us the prev10us unit pemﬁed was
1a symbolic - éu'm or module or 1f the previous call re-

ine is loaded from the Subroutme lerary
by IBLDR When the mountmg optlon is DEFER and label

stored in bits 3-17 of word FCFCN of the file control
block. The subroutlne is entered from IOLS when a file
is opened or unit § i , and the J pnmary or second-
ary unit field ‘specifies that a label search is required.

The user cannot use s, SLDS, but he can cause 10LS to

-Appendix C. Symbolic Unit Assignment Subroutines 101

‘Appendix D: Processing the SCHANNEL Card (IMCHA Routine)

‘specnﬁed symbohc modules a _
modules. The equlvalences estabhshed mus
requirements in the scHANNEL card except

~mum tape or disk requirements; if such requirements
are given, the equivalences must be tI
set in terms of satlsfymg the maximum

‘met the number of hmts avallable/must at eest be
‘equal to the sum ‘of aII the umts §] ‘e’ciﬁed for all the
'symbohc channels ’

able; the table also 1hdlcates the number ‘of such units

and areas requested.

The Arm Table contains an entry for each d1sk or
drum module and indicates the number of areas avail-
able for each. Each entry in the Arm Table also con-
tains a five-bit segment that is used in developing
symbolic module equivalences.

The Array Table is a 20-word table in which sym-
bolic module equivalences are developed for each
possible set of symbolic channel equivalences. At the
end of the processing done by the mvcraA routine, the
appropriate words are moved from the Array Table
into the symbolic channel table in mBNUC.

The Main Table is a matrix containing a row for each
symbolic channel and a column for each real channel.
Each element of the matrix is set to 63; the elements
are then reduced by varying amounts as the corre-
sponding equivalences between real and symbolic
channels are found to be less than optimal. An element
is set to zero only if the corresponding equivalence
is impossible to establish.

At the beginning of the iMcHA routine, the hardware

tables in 1BNUC are scanned and the Totals Table and

Arm Table are set up. Then the scHanNeL card is
scanned and the various parameters are converted to
entries in the tables. i ~

If a given number of tape or disks units is required

102

"nel the element of the Mam 1

E"for a partlcular'-ﬁsymbohc channel ‘the Totals Table is
scanned t
“required number of units avallable If. any real channel
“does not-have the required ‘number of units available,

de rrhme whiéch real ‘channels have the

the element in the Main Table correspondmg to that
real chanmel and the gwen symbohc channel is set
to zero.

If a max1mum number of tape (or dlsk) umts is
specified for a given symbohc channel, the same check
of the Totals Table is made. However, if a real channel
is found that does not have the maximum number of
units available, then the difference between the maxi-
mum specﬂied and the number avallable is multiplied
by the device bias’ factor,’ and the result is subtracted
from the appropriate element i in ‘the Main Table. (This
operation will never reduce an element to less than
one.) If it is specified that a g1Ven symbohc ‘channel
must not be made equlvalent' toa partlcular real chan-
able correspondmg to

given symbolic channel must be equwalent to a partic-

" ular real channel, the routine will not set the symbolic

channel equivalent to any other real channel, and will
not set any other symbolic channel equivalent to this
real channel. Therefore, every element except the cor-

" responding one in the Main Table is set to zero. If'a

system unit code or intersystem reservation code is
used, the corresponding real channel is found and
treated as above.

- If one or more symbolic modules are specified for
a given symbolic channel, the five-bit segments of the
Arm Table entries are used as a five-by-n matrix, with

the five columns corresponding to the five symbolic
" modules and the n rows corresponding to the n real

modules. Essentially the elements of this matrix are
given the same treatment as the elements of the Main
Table, with respect to the specifications given for each
symbolic module. The matrix is then divided into sub-
matrixes, one per channel, and each is examined to see
if a solution can be found. If a solution is found, it is

" transcribed into the Array Table for use if the cor-

responding equivalence is used. If no solution is found,
the corresponding element of the Main Table is set to
zero. When this process has been repeated for each of
the submatrixes, there will be a mapping of symbolic

‘modules to real modules for every equivalence of the

current symbolic channel to a real channel, except those

for which the corresponding elements in the Main -

Table are zero. : :

When the entire scHANNEL card has been processed,
the Main Table will contain nonzero elements only for
usable equivalences. The table is then examined for

possible solutions. A solution must have a nonzero
element for each specified symbolic channel (row),
no two of which are on the same real channel
(column). Each solution has a value consisting of the
sum of its elements. The solution with the greatest
value is used.

Appendix D. Processing the $CHANNEL Card (IMCHA Routine) 103

‘I,nd’ex

Abbreviated Table of Contents 6,7,43
© IMEXE routineieeeiaiion PR 46
location and length 38
accounting routine, installation P e 45
ACV TOULINE . o oo i e et e e s 71
add subroutine (COBOL)» 89
AFTER card 26
ALLOW macro-instruction 11
alternate system input file o 55
alternate system output file e e 55
assembly, system
machine configurationo 9.
input/output device assignment, 10 .
ODHONS . ..\ oot 11
parameters PP 9
priority processing i 13
unit record interrupts e 13
Subroutine Library options 14
System Editor optionso s 14
ATTACH macro-instruction 10, 11
attaching input/output devices (IMATT) 47
auxiliary programs (1401) 98
available units 57
AVLUNI . e 52
backup library IO AUV 15
BCD card format i 59
binary card format 59
control dictionary S P 60
program text, relocatable e 61
blank COMMON i 64
Bootstrap routine 6, 20
CALLS card i 24
CBAVL .. oot e 52
chain program, inserting L. 32
Change Communication Region routine 45
$CHANNEL cardcoveiiiiiiiiiae s 102
channel assignment, symbolic 30
checkpoint (S.NAPT and SSFBL) 41
check sum S U S 17, 60
COBOL - '
Compiler i 77
files assigned to system units 84
input/output unit allocation 83
library subroutines 0o, 84
processor limitations 82
special operands e 81
communication subroutineso 74
compare subroutine (COBOL) c..... 88
_complex field decrements. and addresses 63
~constant addresses and decrements 62
constants (system dataarea) 38
control
blocks e 43
cards, EAItOrot 21
cards, Editor parameter 24
dictionary, binary ST P 60
GIOUD .o ottt et e e 62
control section entries™.ol 61
convert subroutine error exits 76
copy and reload file, system 56
copying (DUP Card) 26
CORE 0ptoncouiiniiin i 23
CPRPU . o 12
Cross Reference Dictionary 69

‘104

CYLMO . 12
DCT routineot e e s 73
DCVroutineoiuianiiiiaenaennnn T e 71
debug assembly parameters 94
Debug Subroutine Library 32,94
debugging dictionary A <94
Debugging Processorc...eeeeniieaaaiians 93
deckname entry 61
dependency list 91
detach routine (IMDET) ...~ot 47
" device asSIGNIMENt 10
device number P P 10
device type numbers 10
dictionary
eductionot e 69
reference addresses and decrements 63
- disk and drum formats. R 1
disk and drum orders U 68
display subroutine (COBOL) 88
divide subroutine (COBOL) 89
DMP routine oo e 74
DPOPT .. s 73
DUMP R P PP 74
Dump
PIOZIAM .. oiem e oo D 50
routine R 44
DUPcard T PP 26
ECV 1outine 0 72
edit :
flle . 55
run for disk PR A 30
runs, examples of Lo 30
editing)
instructions, initial0 oo 15
instructions, symbolico o .30
Editor - -
components, system i e 17
control cards P 21
input I, 17
TNESSAZES .« .« e v oeeve e e 33
Monitor 1T
parameter cards 24
CUPTOZIAI ... 19, 28
EDTFIL option e e .23
$ENDEDIT card P T 23
engineering wordsl 36
EOMTR . . 12
ERRIN o 14
Error Editor 67, 69
error exits, subroutine (FORTRAN) 76
ERROU 14
ERRPP e 14
ETC card s 24
EVEN BNETIES .. . o it e 61
examine subroutines (COBOL) 88
exponentiation subroutine (COBOL) 89
external reference entries e 61
EXTRA ... 72
FCV routinet i 72
file -
control blocks 54
eNtIies 61
MAINEENANCE . . oo et 56
BEXE © et e 62

fixed-point conversion,... e ... 72 IMOIDroutinecoo i, 248
flags, communication PR e i .. 40 IMOPNroutine G s v 49
floating-point conversion - PSS ce 1172 IMPAS routine ., e .46
format conversion routines R 4 & IMPAU routine R e T e, 48
FORTRAN G IMPRE TS B ST)
Compiler 700 IMPUN routine T VORLIEo e e 48
file routines. i e 74 IMRCD routine oo 46
" routine-storage requirements R .75 IMREL i 52
subroutine error exits0 .0 .. LAY 76. IMRES routine : 2
csystem routines L. ey 7L IMRLD -
FPT routine s S T3 IMSCN routine :
FPTLIM i 2,173 IMSRT routine
FPULIM P LT3 IMSTO routine
FTCENT il . Lol 52 IMSWI routine
:) «ouns - IMSYS routine
GERP0. T, e 52 IMTIF routine
= IMTIM routine i v piabere s T 49
IMTIS routine O 48
IMUNI voutine0. 49
IMUNL routine00 48
IMUQI routine L. 46
INCLOS S0 B2
INCLSM T ... 52
INCWD . ..o 13
Index PR T
Indexing Analyzer S 7
"""""""""""""""""""""" initial editing instructions U o 5
"""""""""""""""""""""""" initial system unit requirements 15
"""""""""""""""""""""" INJOB routine ."............................ 0.7 . 48
"""""""""""""""""""""" Input Editor96
input -file, system e 54
T e Input/Output Control System-50
""""""""""""""""""""" Input/Output Subroutine Error Exits 78
"""""""""""""""""""""" Input/Output Utility Program L O8
"""""""""""""""""""""""" INSAVE59
""""""""""""""""""""""""""" INSERT card ..ol R4
"""""""""""""""""""""" inserting a relocatable subroutine 31
"""""""""""""""""""""""" installation accounting routine45
{g ﬁlf;],igitfuﬁsﬁ,gné PEEVIRN o Ifr;structioxl Generator and Index Generator SR O 4 §
IF162 ... e .1z integer conversion (ICV) R RAEETI R ST S T2
IFCHO - S, S ’ ;ﬁterface v e e e Ll S 67,68
IFCHTc..cco..o............... ‘13 Inferrupt test, operator ... v M
IFCLK T 11,12 interrupts, u'mt record13
IFLSCoooooo e 12 IQRSC routine o 49
IFRPM ... 11~ IORST routine EEREEER R R 49
IFSHF ... 12 jB»KILL R o 5o
IFSNS_ .. 12]BSCAN52
IFTYP B R R [EREEREEERRRRRe TS 18 JOBERRloonho 52
IFURA R AR E R PERER 12,13 = JOBIN llme 53
IMAST routine e 0 45 JOBINM L 53
IMATT routine e, 4T IOBOUo E3
IMBDCroutine“.“............4.4‘............“..\"49 JOBOUL7 53
IMCBC e A e e e e e e Bg JOBOUM ...«ooo—v 53
IMCHA routine 49,102 JoBpp 53
IMCHNo) e
IMCLO routine 4T LABEL(edltoptlon)...‘.4.......4.,...A...‘..,}...22‘
IMDBL IR LABELS(assemblyparameter) L LU NS SE S)
IMDET routine labels S EEE R
IMDLYroutme LABSWo Laiiooiees 12
IMECH LCV routine e Tleno 72
IMENT LDAVL .o e ¢ B4
IMEXE routine - LDRSTK RN TR LT 54
IMFTC 5% LIBE card ioonoo “28
IMINT routine) ‘ L. 46 LIBEND card LU 28
IMJIIE B LISTSW e i v 18
IMJOB L TE .52 LMAX AU e el o094
IMLDR U load area 7838
IMLIS routine : load e, system SIS SEN. 1;1
IMLNK T U P SR Loader Sl .
IMLSU routine CABLDR Lo i e 0 BY
IMMAP ~System (SSLDR) WEUTFL 43
IMMON routine= 45 ‘long form complex OO 63
s Index 105

LUPPG ... PR

machme-orlented subroutmes s

error exitsl e
machine use, words allocated for
Macro Assembly Program
MAP Symbolic Update Program T
MESLIM -

MIN option S T AP NY: .
MODIFY cardc............. L
MOVPAK routine (COBOL)
Multiply subroutine (COBOL)
MXBLK option Sy AT
MXCLK
NOMAP option S 28
NOSOURCE option S 295
Nucleus ; ST
reassembly ad]ustments ~
routines, P st :
object-time routines e 95
COCLOS oo NI L
OCLOSM PR
OCT cardottt AP
COCVroutine s 12
ODDLIMo 3
operator interrupt test et h e
orders, disk and drum . /... L v e B
Output Editor e o 96
output file, system S . o
OVF routine R T4
page TR
cheading ool T S T I % |
‘numbering T R SR veded i .53
PAGHD SRR I . 53
Paging ... LA 97
“PCLOSE i B4
PDUMP, G ieie e LT e Ly e § o T4
PGNUM S ERTRR il B3
Phase A (MAP) R T S TIp RO LT ST .68
Phase B (MAP) AT it o B9
PIMENT PP 54
PIREL Gt IR o B4
POEDIT failig, ciiie..o B4
postprocessor O U v T L7 9B
PPAVL .. . e .54
prefaceentry 61
preprocessor B P O .93
priority processing B P L0013
Processor (IBJOB) T PR R 1 |
filles ..o PR .. 54
‘Monitor [S it S0 51
program decko, .. B9
punch, file, system 1055
PVAR] ... 0o .54
PWS routinec....... ... oo CT4
SBRDNRT] PSRRI U 1)
reassembly Nucleus Wi el DA 281
Recall routine, System Monitor w44
Recognizable Control Card Table 38; 43
reference point entries. ciivve. 61
relative addresses and decrements. L6
reload file, system copy and . b
Reload Program Lt 8
relocatable) e
binary program text el £1981
: subroutine, inserting31
REMARK card SR L. 28
REMOVE cardcc...ii. 26
REPLACEcard e e e e e 25
replacement using symbohc editing o030
Restartroutine RTI iy 4B
Returnroutine0.............. B T~ |

CREWIND card ... oo BN R
" round or truncate subroutine (COBOL) ' R

RUPSW ..ottt e

- RWD routine RS AT R R
SBDMP ... 37
SBSLA s 38
S BSR . P v {
‘SCA routine: P TR T RPN R P PP (<
scale subroutine (COBOL) A e e 90
SCAN routineo iaiinn s 49
S.CKPT ... e B 1
S.CLSE 37
SICLSL . e 37
SEEDUN ... 42
SFBCP ... 54
SFBED . .. el 54
SFBIA ... 54
S EBIN 54
S FBLD . 54
SFBOA . ..o 54
SFBOU i 54
SFBPP . . e 54
SFEOR 37
S:GETB e e 37
SGETL . . . o 37
SHARE PR e 13
short form complex i 63
STAUN ... 42
SIOLS T 37
SIOOP - ... e 37
SINAM oo 41
SLNrToutine i 74
SLTroutine0 74
SNAPT ..ot L4l
snapshotl et 41
S.OAUN e 42
SOPEN ... e -
S.OPNL g a b e e B i 37
SOURCE option U ..22,23
special entry .. L. ..o o oL L oL e 63
SPGCT 39,53, 97
SPLOC ...t e 37
SPUTB . 37

CSPUTL D 37
SREW P i 37
SSAVE .. .39, 44 52
S.SCCR .. 37
SSCDI .. 39
SSCIS .. 39
SSCKT . .. e 37
SSCLK ... 39
SSSCMX . e 38
SISCOR, 38
S SCSN e 38
S.SCUR . . e 39
SSDAT . . 38
SSDBG 42
SSDEX ..ot 39
SSDMP 37
SSEND ..l 11,23
SSFAZ . 39
SSEFBL . 41
SSFLG 39
SSHDR 39
SSIDR . . .o 37
SSSLDR .. 37
SSLOC e 64
SSLTC . 38
SSLVL . e 38
SSORG e 11
SSSPER .. e 38
SSSPND .. e, 38

SSPRP 42
SSRCC . o i i e 38
SSRET oo ool T 37
SSRPT o 37
SSRST 37
SSRVP. . 37
SSRUS . 42
SSSBC 38
SSSCH 41
S.SSNS . 41
SSSWI ..o e 39
SSUBC 38
SSUNI 38
SSYCV 42
SSYCW ... e 42
SSYCX . .o oL 42
SSYCY . 42
SSYCZ 42
SSYFS42
standardentry T 62
STPBF “37
storage «
allocation0 o 64
Allocator..‘...“....‘.........‘.‘.....ﬁ 70
requirements, FORTRAN subroutme T
subroutine :)
Dependence Table 91
insertion Lo 31
Library - D I 1 |
Name Table e el o Lo.91
SUBHDc..... %
subtract subroutine (COBOL) 89
Supervisor oo 45
SUPRES07 72
SWEF AP 37
SWT routine D RS 74
SXACT T R 1187
SXCPS L 41
SXDVA ... 37
SXDVD 37

SXOVAo 37
SXOVD ..o 37
SXPRT ..o 37
SXPSE 37
SXSCH ... oo 41
SXSNS 41
SXTDT ... 41
SXTPS .. o 41
SXUCV .. 37
symbolic
channel assignment 00 o L 30
editing, replacement using- 30
masterfile0 e 16
unit reference e 30
Units Table42
Update Program Ceeaadoo.. 98
CSYSHD oo PO .. 97
System Editor 17
System Library U 5
System Menitor R, 36
SYSTUS S e e 54
Table of Contents 6,46, 52
TESTIOo oo o 54
time of day S RO, 39
TMAX .o 94
TPOPN e 13
transfer words Y 37
trapwords R P 36, 37
Tltext-.............. ... L 70
T2text B N S 68,70
Unit
assignment subroutines, symbolic 99
requirements L 15
Update Program, Symbolic 98
work umits ... o 56
XCVroutine e 73
XEMroutine e 74
XITroutine 74
i

st iIQd‘?Xf‘:. A07

C28-6339-4

112 East Pdst Rnad

VSN UL Pauld

¥-6£€9-82D

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108

