File No. 7040-27
Form C28-6803-1

IBM Systems Reference Library

IBM 7040/7044 Operating System (16/32K)
Debugging Facilities

This publication describes the 7040/7044 (16/32K) Operating
System Debugging Package and the dump routines available with
the 7040/7044 Operating System, Version 9. The Debugging
Package is a prograraming aid that enables the user to obtain
dynamic dumps of specified areas of core storage and machine
registers during program execution.

Among the subjects discussed in this publication are Compile-
Time Debugging for coBoL programs, Load-Time Debugging for
FORTRAN and MAP programs, Dump Routines and Parameters,
and the Snapshot Routine.

Preface

The 1BM 7040/7044 Operating System Debugging
Package provides a means of taking highly selective
dumps of core storage areas and machine registers
with a minimum of programming effort. By carefully
selecting the areas to be dumped and the time at
which to dump them, the user can obtain information
valuable in locating and correcting program errors.
The facilities described in this publication pertain to
FORTRAN 1V, COBOL, and MAP program debugging.

As a prerequisite to understanding this publication,
the reader should be familiar with the 1BjoB Processor,
as described in the 1BM publications IBM 7040/7044
Operating System (16/32K): Programmer’s Guide, and
IBM 7040/7044 Operating System (16/32K): Opera-
tor’s Guide. He should also be familiar with at least one
of the programming languages accepted by the proc-
essor that are described in the following 1BM publi-
cations:

IBM 7040/7044 Operating System (16/32K): Macro
Assembly Program (Map) Language, Form C28-
6335.

IBM 7040/7044 Operating System (16/32): FOR-
TRAN IV Language, Form C28-6329.

IBM 7040/7044 Operating System (16/32K): COBOL
Language, Form C28-6336.

The actual debugging languages themselves are
based on coBoL (for coBoL programs) and FORTRAN IV
(for FORTRAN 1v and MAP programs). The MaP pro-
grammer who is totally unfamiliar with ForRTRAN should
be able to use all the facilities described in this pub-
lication with limited reference to the FORTRAN lan-
guage publication listed above.

The 7040/7044 (16/32K) Processor Debugging
Package requires the same minimum machine con-
figuration as the 7040/7044 18joB Processor. The only
difference lies in the use of the load-time facility,
where the Debug Work Unit or the system checkpoint
unit is required for the intermediate debugging output.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D39, 1271 Avenue of the America’s New York, N.Y. 10020

© 1964 by International Business Machines Corporation

IBM Technical Newsletter . ' File Number 7040-27

Re: Form No. C28-6803-1

This Newsletter No. N28-0537-0

Date November 1, 1965

Previous Newsletter Nos. None

IBM 7040/7044 Operating System (16/ 32K)
Debugging Facilities
Addenda and Errata to Form C28-6803-1

Attached are replacement pages for the publication IBM 7040/7044 Operating System
(16/32K), Debugging Facilities, Form C28-6803-1. The numbers of the amended
pages are 6, 7, 9, 11, 13, 16, 27, and 28.

Revisions to the text are indicated by a vertical line to the left of the change.
File this Newsletter at the back of the publication. It will provide a reference to

changes, a method of determining that all amendments have been received, and a
check for determining if the publication contains the proper pages.

IBM Corporation, Programming Systems Publications, Dept. D39, 1271 Avenue of the Americas, New York, N.Y. 10020

PRINTED IN U.S.A.

Introduction 5
Notation Conventions 5
Compile-Time Debugging for Cobol Programs 6
Compile-Time Debugging Packet. 6
Compile-Time Debug Requests. 6
DISPLAY Verb 6
Count-Conditional Statement 7
Compiler Limitations 7
Deleting Debug Requests. 7
Example of a Compile-Time Debugging Packet........... 7
Load-Time Debugging for FORTRAN IV and
MAP Programs 8
Load-Time Debugging Packet......................... 8
$IBDBL Card 8
$IDEND Card i, 9
Load-Time Debug Requests. 9
Extending the Variable Fieldof a Card. 9
Debugging Statements, 10
Arithmetic and Logical Expressions in Debugging
Statements 10
SET (Arithmetic) Statement............. 11
Logical IF Statement. 11
ON Statement 11
GO TO Statement. 12
LIST Statement 12
DUMP Statement 13
CALL Statement 14
RETURN Statement 14
PAUSE Statement 14

Contents

NAME Statement
Redefining Symbols
Debugging Dictionary

Supplying Modal Information to the Debugging

Dictionary
KEEP Pseudo-Operation
Additional Load-Time Debugging Features..............

Quantities Available for Use in Debug Request

Statements
Example of a Load-Time Debugging Packet Used with

a FORTRAN VI Program.
Example of a Load-Time Debugging Packet Used with

AMAP Program.

DUMP Program
Calling Sequence
Format
Message Code Numbers.
Dump Parameters
Snapshot
Execution of the Dump Program.
Dump Routine |
Phase 1
Phase 2
Phase 3

Appendixes.............

Appendix A. IBJOB Deck Setup Using the Debugging
Package

Appendix B. System Restrictions with Debug Use.

The problem of locating program errors rapidly and
efficiently is of major concern to all computer users.
The 7040/7044 (16/32K) Processor has been extended
to include a debugging package as an aid in locating
and correcting errors. To diagnose program errors,
the programmer may wish to obtain information at key
points in his program. The debugging package enables
him to manipulate data, control processing, and print
out the contents of program areas or machine registers.
To use the debugging package, the programmer writes
a debug request in the appropriate debugging lan-
guage. Each request specifies what action to take and
when to take such action.

The debugging package provides two types of de-
bugging: compile-time and load-time. Compile-time
debugging is included with 1BcBC at compilation to
specify dumps at various points in a coBoL source pro-
gram. The text of the debug requests is similar to the
coBoL language. Load-time debugging uses the capa-
bilities of 1BMAP and 1BLDR to provide debugging dur-
ing the execution of a FORTRAN Iv or MAP source
program without recompiling or reassembling the pro-
gram. The text of these debug requests is in a form
similar to that of the FORTRAN 1v language.

Introduction

In addition to the debugging package, the 7040/7044
Operating System provides a dump program that can
be used by object programs, system programs, or
machine operators. This program lists the operator
console panel, certain symbolic unit information, and
specified portions of internal and external storage. It
is not intended to replace object program symbolic
debugging tools.

Notation Conventions
The following conventions apply to all card formats
given in this publication:

1. Brackets, [], indicate that the enclosed material
may be omitted.

2. Braces, (), indicate that the user must make a
choice of the enclosed material.

3. Upper-case words, if used, must be present in
the form indicated.

4. Lower-case words represent generic quantities
whose values must be supplied by the user.

The statement formats for coBoL and FORTRAN 1v
adhere to the notation conventions given for each in
their respective language publications.

Introduction 5

Form C28-6803-1
Page Revised 11/1/65
By TNL N28-0537-0

Compile-Time Debugging for COBOL Programs

The compile-time facility of the debugging package
enables the coBoL programmer to include debug re-
quests with his source-language program. Debug re-
quests are compiled with the source program and are
executed at object time. The text of the requests is
similar to the procedural text of cosor. In addition,
a special count-conditional statement is provided. Since
the procedural capabilities of the cosoL compiler are
available, a user can be highly selective in specifying
what is to be dumped. He can manipulate and test the
values of intermediate results in his program and
dump only pertinent and meaningful information with-
out affecting execution of the program itself.

It is possible to delete the debug requests at load
time without recompiling. The coBor programmer
may, if desired, take advantage of the load-time
facility, including the Additional Load-Time Debug-
ging Features, and debug from an assembly listing of
his program.

Compile-Time Debugging Packet

All compile-time requests for a given program are
grouped together into a debugging packet and placed
immediately after the scBenp card of the associated
source program.

Compile-Time Debug Requests

Each compile-time debug request is headed by a
siBDBC control card. The siBbBc card identifies indi-
vidual requests and defines the point at which the
request is to be executed. The siBbBC card may contain
any blanks desired for legibility except in a character
string that is to be treated as a single parameter. The
general form of this card is:

1 8 16-72
$IBDBC name location [, FATAL] [, DUMP=
symbolic unit] [, MARKER=
file-name]

The parameters in the card are described as:

name
An optional user-assigned control-section name. Use of this
parameter makes it possible to delete the request at load
time. The name must be a unique control-section name
consisting of at most six alphabetic or numeric characters.
At least one of the characters must be alphabetic.

location
The COBOL section-name or paragraph-name (qualified,
if necessary) indicating the point in the program at which
the request is to be executed. Debug request statements
are executed as if they were physically placed in the source
programs following the section-name or paragraph-name
specified, but preceding the text associated with that name.
FATAL
If FATAL is specified, severity codes normally assigned to

errors in COBOL statements will also be generated for
errors in debug request statements. If FATAL is not spec-
ified and in the procedural text of a debug request an error
is encountered that would normally be given a severity
code of 2 or greater, the error message will be given a
severity code of 1. An attempt will be made to interpret
the statement; loading and execution of the object program
will not be prevented. If interpretation is impossible, the
erroneous statement will be discarded (but not the entire
request, if it consists of more than one statement).

Note that an error in location on an $IBDBC card or on an
undefined symbol in the procedural statement of a debug
request is always identified as a level 2 error, regardless
of whether FATAL is specified.

DUMP =symbolic unit

This option indicates the unit on which the debugging
output is to be written. The symbolic unit can be the sys-
tem output unit, OU; or a utility unit, Uxx (where xx
is 01, 02, . . . 20). When this option is not specified, the
debugging output will be written on the system output unit.
The unit specified in the DUMP option must not be the
same as an output unit used in the COBOL program.

MARKER =file-name
This option causes a dump indication record to be written
on the output file specified by file-name each time a de-
bugging display occurs at the location specified in this
$IBDBC card. file-name is the name used in the FD entry
to name the file.

Dump indication records have the following format:
ekt DUMP NO. xxxxx WRITTEN ON u, ¢, nn *****

where:
xxxxx is n when the nth debugging display is being executed.

u is the output medium designation such as T for tape
or M for disk/drum modules.

c is the channel to which the output medium is attached.

nn is the unit number.

When the above options cannot fit between columns
8 and 72 of the siBpBC card, this control card can be
extended if the remaining options are inserted between
columns 8 and 72 of subsequent cards. These extension
cards must contain a hyphen in column 7, and columns
1 through 6 must be blank.

Note that the above options must appear on the
stBDBC card in the order in which they are described.

The text of the debug request follows immediately
after the siBpBC card. The text may consist of any valid
procedural statements conforming to the requirements
of the cosoL language and format and the count condi-
tional statement described in the following text.

A compile-time debug request is terminated by an-
other s1BpBC card or any other control card with a $ in
column one.

DISPLAY Verb

When used for debugging, the cosoL verb pispLAY is
modified to write on the symbolic unit specified by the
DUMP parameter on the siBpBC card or on the system
output tape.

Count-Conditional Statement

A count-conditional statement available only for use in
debug requests allows the programmer to qualify the
time at which a debugging action should be taken. The
count-conditional statement has the same structure as
the 1F statement in coBoL (conditional, true option,
false option) and may be used in the same manner;
ie., it may be nested within other count-conditional
statements or 1¥ statements and may have other count-
conditional statements or 1F statements nested within
it. The general form of the count-conditional statement
is:
ON k [AND EVERY m] [UNTIL n] statement-1
ELSE
[; OTHERWISE 2 statement-z:l

The letters k, m, and n are positive integers.

If AND EVERY m is not specified, but uNTIL n is speci-
fied, m is assumed to be 1. The uNTIL option means
up to but not including the nth time. If neither anp
EVERY M nor UNTIL n is specified, action will take place
only the kth time.

EXAMPLES

ON 3 DISPLAY A.
The third time the count-conditional statement is executed,
A is displayed. No action is taken at any other time.

ON 4 UNTIL 8 DISPLAY A.
A is displayed on the fourth, fifth, sixth, and seventh times
through the count-conditional statement. No action is taken
at any other time. (This example implies, and has the same
effect as, the statement ON 4 AND EVERY 1 UNTIL 8
DISPLAY A.)

ON 5 AND EVERY 3 UNTIL 12 DISPLAY A.
A is displayed on the fifth, eighth, and eleventh times
through the count-conditional statement. No action is taken
at any other time.

ON 3 AND EVERY 2 DISPLAY A.
A is displayed on the third, fifth, seventh, ninth, . . . times
through the statement. On the first, second, fourth, sixth,
... times, no action is taken.

ON 2 AND EVERY 2 UNTIL 10 DISPLAY A ELSE
DISPLAY B.
A is displayed on the second, fourth, sixth, and eighth times
through the statement. B is displayed at all other times.

Compiler Limitations

In debugging statements, the word oN may not be
used with the s1ze ERROR option as is normally permis-
sible with arithmetic statements or with the pEPENDING
option in the co To statement.

When the name associated with an unconditional
6o 7o is referred to by a symbolic debugging request,
the transfer point specified by the co To statement
should not be changed by an ALTER statement.

With a 16K Operating System whose nucleus can
be reduced sufficiently, the user may include expo-
nentiation in symbolic debug. However, if the nucleus
cannot be reduced sufficiently, he will not be able to

Form C28-6803-1
Page Revised 11/1/685
By TNL N28-0537-0

use exponentiation in his coBoL debug requests. (A
32K user can always include exponentiation in his
cosoL debug requests.)

Deleting Debug Requests

Any debug request may be deleted by using thc
somiIt card. Its form is:

1 8
$OMIT

On the card, name is the control-section name of
the request to be deleted. When used, som1T cards are
placed after the siBjoB card for the processor applica-
tion and before the source deck or relocatable binary
deck of the program involved.

16-72

name

Example of a Compile-Time Debugging Packet

Figure 1 gives an example of a compile-time debugging
packet. The numbers in the first line across indicate
the card columns in which the various fields begin.

In the first request, on the first, fourth, and seventh
times that control passes through point A in the pro-
gram, Z is displayed (in its own format as defined in
the source program) with the identifying heading, Z=.

In the second request, the value of T (with the iden-
tifying heading, T=) is displayed and its value re-
places the value of S at the point in the program
identified as B of C. Further, if S is unequal to T, S is
also displayed. This request may be deleted at any
time through the use of a somrT card with the follow-
ing form:

1 8 16-72
$OMIT NAME

Execution of the third request causes both the mes-
sage, v OUT OF RANGE, v=, and the value of V to be
displayed the first nine times that V is greater than
vMax when program control passes through point D.
On the tenth time the request causes sTop RUN to be
executed. The FaTaL option on the siBpBC card head-
ing this request inhibits execution of the source pro-
gram if the compiler encounters an error.

1 8 12 16

$18DBC A
ON 1 AND EVERY 3 UNTIL 8 DISPLAY
tZmtZ

B OF C
IF S NOT EQUAL TO T DISPLAY 1S=ts,
MOVE T TO Ss DISPLAY 'T=iT,

Ds FATAL
IF V GREATER THAN VMAX ON 1 UNTIL
10 DISPLAY 'V OUT OF RANGE, V=ty
ELSE STOP RUN.

$1BDBC NAME

$18DBC

Figure 1. Example of a Compile-Time Debugging Packet

Compile-Time Debugging for COBOL Programs 7

Load-Time Debugging for FORTRAN IV and MAP Programs

The load-time facility of the debugging package en-
ables FORTRAN 1v and MaP programmers to include
debug requests at load time to be executed with the
object program. MAP object programs can be those gen-
erated by 1BrTC and 1BcBC as well as those written in
Map itself. The coBoL programmer may, if desired,
take advantage of the load-time facility and debug
from an assembly listing of his program. The copoL
programmer may use load-time debugging features
while compile-time debug requests are still in his pro-
gram. He may also use load-time debugging features
at the same time he is using a somiT card to delete a
debugging request. The FORTRAN IV programmer may
also use the load-time facility at the map level.

The debugging package, which consists of three
main parts, is another processor application under
BjoB. Following are the three parts:

1. The first is a preprocessor used to compile all
debug requests and to associate these requests with
programs to be debugged.

2. The second is an executable debugging program
that is in core storage with the object program to be
debugged and that performs necessary debugging.

3. The third is a postprocessor that processes all
dumps produced during program execution and causes
those dumps to be written in the proper format.

The debugging language used with the load-time
facility is derived from the rorTrRAN 1v language. The
statements available permit the programmer a high
degree of flexibility in obtaining meaningful data. It
is possible to perform arithmetic operations with object
time values, to test results, and to freeze program ac-
tion at a specified point and then dump selected infor-
mation. In addition, the user can refer to symbols
appearing in the source program by selecting the ap-
propriate debugging dictionary option on the $IBFTC
and siBMAP control cards. (For additional information,
see the section entitled “Debugging Dictionary.”)

Load-Time Debugging Packet

All load-time debug requests for a particular job run
(any configuration of FORTRAN, COBOL, Or MAP source
and/or binary decks) are grouped into a debugging
packet headed by a siBpBL card and terminated by a
spEND card. The load-time debugging packet is placed
in the job deck following any source decks. The de-
bugging packet may be placed either before or after

8

the binary decks of the job run. The packet may be
followed only by the following cards: SENTRY, $LINK,
SENDCH, $IBREL, and binary decks.

The program stacking option on the siBjos card must
be SOURCE.

$IBDBL Card

The general form of the siBpBL card is:

1 8 16-72

$IBDBL [TRAP MAX=n.] [,LINE

MAX=n.] [,Dump Marker
Option] [,Debugging Work
Unit Option]

Columns 16-72, which are scanned in full, may con-
tain any blanks desired for legibility, except in a char-
acter string that is to be treated as a single symbol or
constant. Note that in the options TRAP MAX=n; and
LINE MAX=n, the user may, if he desires, separate the
equal sign with blanks.

The letters n, and n, are integers that should fall
within the range 1 to 32767 decimal.

The contents of the variable field, which control the
debugging output and may be used in any order are:

TRAP MAX =1,

This specification causes termination of all debugging
action after n, requests have been executed. If this
option is omitted, the system assembly parameter for
TRAP MAX, assembled as 30,000 decimal, will be used.
LINE MAX =115

The postprocessor will print no more than n, lines of
output, excluding postmortem dumps. If this option is
omitted, the system assembly parameter for LINE MAX,
assembled as 1000 decimal, will be used.

Dump Marker Option

FORTRAN

JOBOU

JOBOUL

IOBS =file-name

IOOP = unitl

This option specifies the 10cs level that the debug-

ging routines will use to write dump markers each
time a debug dump is taken. The 10cs level specified
should be the same as that used by the object program
so that the dump markers will be synchronized with
object program output. These markers will match the
dump numbers written with the debug dumps after
the object program is executed. If the dump marker
option is not taken, no marker will be written.

If ForTRAN is specified, the object program uses the
FORTRAN input/output subroutines, and markers are
written on FORTRAN logical unit 6 in Bcp mode using
the FORTRAN input/output subroutines.

If yoBou or joBouL is specified, the object program
uses the Output Editor.

If 1oBs=file-name is specified, the object program
uses the 10Bs level of 10cs. The name associated with
the output file is file-name. Markers will be written on
this file according to the mode and record type defined
in the file control block. Note that no marker will be
written if the file is not open, or if the logical record
length of a Type 1 file or the block size of any file is
less than the necessary six words that indicate the
length of the dump marker. Only one file may be speci-
fied for dump marking.

If 100p=unitl is specified, the 100p level of 10cs is
used by the object program. unitl is a system output
unit (OU), a system utility unit (U00-U99), or an
intersystem reservation unit (101-120). Only one unit
may be specified for dump marking.

Debug Work Unit Option
[, DWU =unit2]

This option specifies the work unit for intermediate
debugging output. unit2 is any unit designation that
would be valid on the sFiLE card, except the following:
NONE, *, LB1, LB2, IN, OU, PP, or card equipment. (For
information on the sFLE card, see IBM 7040/7044
Operating System (16/32K): Programmer’s Guide,
Form C28-6318.) If this option is not taken, the debug
work unit is assumed to be the system checkpoint unit
(ck1). The assumed debug work unit is set by the
sFILE card used when editing the debug preprocessor
onto the system tape.

Nore: Debug work unit and dump marker unit
specifications are processed following the assignment
of 1BjoB work units, and prior to BLDR processing of
unit designations on sFiLE cards and from FiLE pseudo-
operations. If the programmer wishes to assign the
debug work unit to a specific unit, he should assign an
intersystem reservation code to that unit on the 1Bsys
level or otherwise insure that 1BjoB will not assign that
unit as one of the system work units.

$DEND Card
The spEND card terminates the load-time debugging
packet. The card format is:

1 8
$DEND

16-72

Load-Time Debug Requests

Each load-time debug request is headed by a spEBUG
card, which identifies individual requests and specifies

Form C28-6803-1
Page Revised 11/1/65
By TNL N28-0537-0

the point in the program at which the request is to be
executed. There may be multiple requests per deck.
The general form of the spEBUG card is:

1 8 16-72
$DEBUG locationl [, location2...]

The variable field (columns 16-72) is scanned in full
and, therefore, may contain any blanks desired for
legibility, except in a character string that is to be
treated as a single symbol or integer. The parameters
of the spEBUG card are:

deckname

deckname ,
The name of the object deck to which this debug request
applies. If this field is blank, the deck name specified on
a preceding $DEBUG or $REDEF card will be assumed.
If no deck name was specified, the request will be deleted.

Symbols in the request that follows are considered
to be in this deck.
locationl...

The location(s) of the executable instruction(s) at which
this debug request is to be inserted. A location may be
specified in any of the following ways:

1. A statement number of an executable statement
(FORTRAN 1V only. See Appendix B, Restriction 6)

2. A symbol

3. A symbol * an unsigned decimal integer

4, The characters =R followed by an unsigned octal in-
teger for a relative location (i.e., relative to the load ad-
dress of the deck)

5. The characters =A followed by an unsigned octal in-
‘teger for an absolute location

The debug request will be executed as if it had been
physically inserted in the deck at the location(s) speci-
fied. Debug request action occurs before the execution
of the statement or instruction at the location. The
locations at which debugging is specified will be modi-
fied to provide a transfer (sTR instruction) to the de-
bugging supervisor. Bits 1-11 will be set to zero and
should not be changed by the object program. The
transfer to the debugging supervisor is executed each
time this location is reached, although conditional
statements may cause action within the debug request
to be skipped. The original instruction is always exe-
cuted before the debug supervisor returns to the object
program,

The text of the request itself follows immediately
after the spEBUG card. If an invalid or erroneous action
is specified in the text of a debug request, that action is
deleted. The text consists of procedural statements
written in the FORTRAN format. |,

Extending the Variable Field of a Card

The variable field of siBpBL and spEBUG control cards
may be extended over more than one card by following
the card with serc cards as shown below.

1 8 16-72

$ETC Extension of variable field

Load-Time Debugging for FORTRAN IV and MAP Programs 9

Columns 16-72 are scanned in the same manner as
the card preceding the setc card.

Debugging Statements

The statements used in the text of a request are de-
rived from the FORTRAN 1v language, with additions
and changes made for debugging purposes. Constants,
variables, subscripts, arithmetic expressions, and logi-
cal expressions that may be used within a debug state-
ment are similar to those used by the FORTRAN 1v pro-
grammer.

The debugging restrictions and modifications to
standard FORTRAN 1v usages are listed below.

1. The debugging compiler treats blanks in a state-
ment as terminators. Therefore, no blanks may be im-
bedded in a character string that is to be treated as a
single symbol, constant, operator, or verb. This re-
striction also applies to debug elements preceded by
the character =.

2. At least one blank must follow each statement
verb (for example, pumpbx, where b represents a
blank).

3. The operator ** (exponentiation) cannot be used
in debug statements.

4. Functions cannot appear in debug statements.

5. The logical constants .TRUE. and .FALSE. cannot
be used.

6. A numerical constant may be represented as a
real constant, a decimal integer constant, or an octal
integer constant. A real constant is indicated by the in-
clusion of a decimal point, or by the inclusion of the
decimal point and the letters E, EE, or D, followed by
an exponent. (E indicates single precision, EE and D
double precision.) Octal integer constants are differ-
entiated from decimal integer constants as follows: if
the first digit of the number is zero and if the number
does not contain any non-octal characters (8 or 9), it
will be considered octal, and it may be up to 13 digits
in length; otherwise it will be considered a decimal
constant. Complex constants are of the form (n;, n;),
where n, represents the real part of the complex num-
ber and n, the imaginary part. However, unlike the
FORTRAN IV representation of a complex constant, n,
and n, may be octal integers, decimal integers, or real
constants.

The following are examples of numerical constants:

0123 Octal Integer
123 Decimal Integer
0129 Decimal Integer
0.120E3 Real

(0120, -129) Complex

7. A variable name may be any legal Mar symbol.
However, FORTRAN 1v conventions will override MaPp
notation, and those MaP symbols (1.2) that would be

10

treated as numerical constants (as on the right hand
side of the equal sign in ser statements) should be
redefined prior to use. (See the explanation of the
sREDEF card for details on the redefining facility.) The
mode of a variable is indicated in a debugging dic-
tionary or NAME statement rather than, as in FORTRAN
1v, by its leading character or by the use of a FORTRAN
v Type statement.

8. Subscripts may be any valid arithmetic expres-
sions. Nonintegral subscripts will be truncated to in-
teger values.

9. =An and =Rn, where n is an unsigned octal
integer, may be used as elements of expressions. The
mode of these elements is octal. (See the “LisT State-
ment” for a further description of the quantities =An
and =Rn.)

10. Elements of expressions may be preceded by
deck name qualifiers of the form:

deckname$$element
(See description under “Qualification of List Items.”)

11. Additional items that may be used as elements
of expressions are described in Table 1, in the section
“Quantities Available for Use in Debug Request State-
ments.” For full information on expressions, see the
following section.

Debug statements are punched in columns 7-72 of
the card. Continuation cards are indicated by any
character other than a blank or zero in column 6. Com-
ments cards (those with a C punched in column 1) are
permitted.

Arithmetic and Logical Expressions in Debugging
Statements

Arithmetic and logical expressions used in debugging
statements are modified forms of the FORTRAN 1v lan-

guage.
Arithmetic Expressions

An arithmetic expression consists of sequences of con-
stants, subscripted variables, and nonsubscripted vari-
ables, separated by arithmetic operation symbols,
commas, parentheses, and various special elements.

The arithmetic operation symbols + — * / denote
addition, subtraction, multiplication, and division, re-
spectively.

Quantities in arithmetic expressions need not be in
the same mode. The hierarchy of modes is as follows:

1. Complex

2. Double precision real

3. Real

4. Octal and decimal integer
Where modes are mixed, the quantities in the expres-
sion will be converted to the mode used in the expres-
sion that is highest in the hierarchy of modes.

Note that if octal integer, decimal integer, symbolic,
logical, and/or alphameric modes are specified in
arithmetic expressions no conversion will be per-
formed, since these modes are equally low in the hier-
archy.

Logical Expressions

A logical expression consists of sequences of logical
variables, which must be separated by logical opera-
tion symbols, and arithmetic expressions, which must
be separated by relational operation symbols. A logical
expression always has the value true or false.

The permissible logical operators (where b repre-
sents a blank and x and y are logical expressions) are:

bNOTbx or b.NOT.bx
xbANDby or xb.AND.by
xbORby or xb.OR.by

The operands can be relational expressions or logical
variables. A logical variable is true if its sign is minus,
false if its sign is plus.

The permissible relational operators are:

bGTb or b.GT.b Greater than

bGEb or b.GEDb Greater than or equal to

bLTb or b.LTb Less than

bLEDb or b.LEDb Less than or equal to

bEQb or b.EQb Equal to

bNEb or b.NE.b Not equal to

bLGTb or b.LGTDb Logically greater than

bLGEb or b.LGEDb Logically greater than or
equal to

bLLTb or b.LLTDb
bLLEDb or b.LLEb
bLEQb or b.LEQb
bLNEb or b.LNEDb

Logically less than

Logically less than or equal to
Logically equal to

Logically not equal to

The operands can be numerical variables or expres-
sions.

The first six of the above relational operators result
in an algebraic comparison between the operands. If
they differ in mode type, the conversion is made as de-
scribed for arithmetic expressions. If the operands are
complex (e.g., (m, np) represents one operand and
(n3, ny) represents the other), they are considered
equal only if n;=n;3 and n,=ns. The values n,;2+n,?
and ng?+n,? are used to determine which operand is
greater.

The last six of the above relational operators result
in a 36 bit unsigned comparison. If the modes are
mixed, no conversion is performed.

Parentheses can be used in arithmetic or logical
expressions to specify the order in which the opera-
tions are to be performed. Where parentheses are
omitted, the order of operations is as follows:

*and /

+ and —

relational operations
NOT

AND

OR

Form C28-6803-1
Page Revised 11/1/65
By TNL N28-0537-0

SET (Arithmetic) Statement

The ser statement provides the programmer with
arithmetic and logical capabilities within a debug re-
quest. The general form of this statement is:

SET s

The letter s is any valid arithmetic or logical state-
ment other than the logical 1r statement.

EXAMPLES

SET A=0
SET B=C .GT. 4 (B is true if C is greater than 4; B is false
otherwise)

Logical IF Statement
The debugging logical 1 statement is similar to that of
FORTRAN 1v, with certain additions and restrictions. The
general form of this statement is:

IF (t) s

or
IFbtbs
The letter b represents one or more blanks; ¢, any

logical expression that contains neither function calls
nor the ** operator; and s, an unconditional executable
statement or an oN statement followed by an uncon-
ditional executable statement.

If the logical expression ¢ is true, statement s is exe-
cuted. If ¢ is false, statement s will not be executed.
EXAMPLES

IF (BEQA *35) DUMPX, Y, Z
IF A(I I-J) EQ 3.4E2*QSUM DUMP X

| IF (X .EQ. 3 .AND. Z .LT. 24) GO TO 3

IF LOGVAR .AND. (ALPHA+6 LE BETA OR LGVAR1)
RETURN

ON Statement

The on statement is a count-conditional statement that
permits the programmer to control the time when a
debugging action is to be taken. It is similar to the
FORTRAN 1v logical IF statement and is of the general
form:

ONI[(e)]i b ks

The letters i, {, and k are any arithmetic expressions
(if they are not integral, they will be truncated); c is
a unique symbol representing a counter name, which
should not be contained in the debugging dictionary;
and s is an unconditional executable statement or an
1r statement followed by an unconditional executable
statement.

Statement s is executed the ith time through the o~
statement and each kth time thereafter until j is ex-
ceeded. If j is omitted, the statement is executed the
ith time and every kth time thereafter. If k is omitted,
it is assumed to be one. If both j and k are omitted, the
statement is executed only the ith time through the
ON statement.

Load-Time Debugging for FORTRAN IV and MAP Programs 11

When included, ¢ creates a named counter for the
oN statement. The value of ¢ is initially zero; during
execution of the on statement, the counter is in-
cremented by one before being tested. As with other
variables, ¢ may be used in any computation or test,
and it may be named in other oN statements.

If ¢ is named in other on statements, c¢ is incremented
by one each time any one of the o~ statements is exe-
cuted. The counter can appear on the left-hand side
of an expression in a ST statement. The deck name on
the speBuG card heading the request implicitly quali-
fies ¢. All references to ¢ that are implicitly or explicitly
qualified by this deck name are treated as references
to the counter created by c. Therefore, if ¢ is dupli-
cated by a symbol in an object deck’s debugging dic-
tionary, it will not be possible to refer to that object
deck’s symbol in the subsequent statement of the de-
bugging packet.

If ¢ is not specified, an unnamed counter is created
internally; it cannot be referred to by any other state-
ment.

GO TO Statement

The statement co To n (where n is a decimal integer)
is an unconditional transfer to the debugging state-
ment numbered n. Statement numbers used in an un-
conditional o To must refer to statements within the
debugging packet, not to statement numbers in the
program being debugged.

LIST Statement

The LisT statement specifies the storage areas and/or
registers that are to be dumped. Its general form is:

statement number LIST elementl, element?2....

statement number is a standard FORTRAN statement
number of up to five numeric characters (punched in
columns 1-5) and element denotes the address of a
quantity to be dumped. Any number of elements, sep-
arated by commas, may be specified.

The mode in which the data is dumped is deter-
mined from the debugging dictionary, or from a NAME
statement. If this information is not available, the
dumps will be octal unless the mode is specified as
in item 2 in the following text.

Except where otherwise indicated “symbol” in the
following items is defined either in the debugging dic-
tionary or in a NAME statement.

Elements may be specified in seven ways:

1. Quantity — the specified quantity is dumped. It
may be one of the following:
symbol

The array, double-precision number, complex number, or
single word denoted by this symbol is dumped.

12

symbol (subscripts)

The array element, double-precision number, complex num-
ber, or single word denoted by this subscripted symbol is
dumped. Any symbol may be singly subscripted, but only
those symbols that have had dimensions specified may have
more than one subscript. The subscripts may be any arith-
metic expressions. The mode of the dump is the same as
the mode of the symbol. If ALPHA(8) is specified, the
contents of the location ALPHA +5 are dumped; however,
if ALPHA is double-precision or complex, ALPHA+10
and ALPHA +11 are dumped.

symbol = n
This causes the single word denoted by this quantity to
be dumped. symbol is as defined in the preceding text and
n is an unsigned decimal integer. The mode of the dump
is that of the specified location and is not necessarily the
same mode as the symbol.

=Rn
The word at relative location n where n is an unsigned
octal integer, is dumped. Only one word is dumped, even
though it may be part of a double-precision or a complex
number.

=An
The word at absolute location n where n is an unsigned
octal integer, is dumped. Only one word is dumped, even
though it may be part of a double-precision or a complex
number.

The MaP programmer may refer to the sections
“Quantities Available for Use in the Debug Request
Statements” and “Item Designations for rist State-
ments” for additional ways of addressing quantities.

2. (locl, loc2 [, m]) — this specification causes the
region from locl through loc2 to be dumped in format
m. locl and loc2 may be any of the quantities defined
above, or a FORTRAN statement number within the
source program. The permissible values of m are:

Octal

Symbolic instruction
Floating-point number
Fixed-point number
Double-precision number
Complex number

Logical

Alphameric

DT gxE®nO

If m is specified, it overrides any other mode desig-
nations for the quantities involved. If m is not speci-
fied, the region is dumped in the mode(s) of each item
in the region, as defined in the debugging dictionary.

Thus, if Locs is a double-precision array and Locs
is a floating-point array with dimensions of (3, 10), the
specification (roc3(6), Loc4(3,4), F) causes Loc3+10
through rocs+11 to be dumped in the floating-point
mode. A specification of (6, = R127) causes the region
from statement number 6 through relative location 127
(octal) to be dumped in the mode(s) supplied by the
debugging dictionary. A specification of (ARRAY1,
ARRAY2, X) causes all of ARRAY1, all intervening loca-
tions, if any, and all of aArrav2 to be dumped in the
fixed-point decimal mode.

3. (data list) —selected elements of arrays are
dumped. This specification operates in a manner sim-
ilar to the implied po in FORTRAN 1v input/output lists.

data list may be one of the following:
symbol (subscripts) e.g., (A(I), I= 1 4)

(data list, range) e.g, ((B(1,J),I=1,4),J=1,3)
data list, data list... e.g., (A(I), (C(},I),]J=1,9,2),
D(1),I=1,4)

Any arithmetic expression may be used as a sub-
script. If it is not integral, it will be truncated.

range has the following form:
v=ay, as [, as]

The letter v is a subscript in this statement and the
a; are arithmetic expressions. Any other use of v in the
program or in the debugging packet will be ignored for
this statement. The dumps specified by the data list are
taken for v=a, through v=a, in increments of a;. If
ag is omitted, it is assumed to be 1. Ranges may be
nested to a maximum subscript depth of three.

The following are valid examples:

(A(LI), I=1,3)

dumps A(1,1), A(2,2), A(3,3)

(B(1,6-1),1=1,5,2)

dumps B(1, 5), B(3,3), B(5,1)

((A(L)),1=1,3),]J=6,8,2)

dumps A(1,6),A(2,6),A(3,6),A(1,8),A(2,8),A(3,8)

((C(2*]—4,10-3%),1=1, 3)]=3,4)

dumps C(2,7), C(2,4),C(2,1),C(4,7),C(4,4),

(A(J,]), (C(2*J—4,10-3*1),1=1, 3),J==3, 4)

dumps A(3, 3), C(2, 7), G(2, 4), C(2, 1), A(4, 4), C(4,7),
C(4,4),C(4,1)

C(4,1)

Because the following example contains four nested
ranges, it is invalid:
((((A(L],K),B(L],L),I=1,2),J=1,2),K=1,2),
L=1,2)

The statement LisT (A(L, J), 1=1, 3) specifies (1, J),
A(2,7), and A(3, J), where] is a variable defined pre-

viously either in the source program or in the de-
bugging packet.

4. // or /control-section name/ — blank common or
the specified control section is dumped. If the /control-
section name/ option is specified, the debug pre-
processor uses the following as the length of the con-
trol section: the length of the first real section of the
name encountered, even if SNAME, susg, or soM1T cards
cause this section to be deleted in favor of another of
different length at object time,

5. //£n or /control-section name/*n — the word
that is dumped is at the beginning of blank comMon
% n or at the beginning of the specified control section
*n, where n is an integer. FORTRAN labeled common
names are considered control-section names.

6. PrOGRAM — the entire object program and all sys-

Form C28-6803-1
Page Revised 11/1/65
By TNL N28-0537-0

tem subroutines used by the object program, as well
as file text, buffers, and blank common, are dumped.

7. ‘message’ — a message is printed as specified. The
message itself should not exceed the number of char-
acters allowable for a single printed line. It cannot con-
tain quotation marks. The external quotation marks,
however, are required. Two quotation marks will yield
a blank line.

8. consoLE — the contents of the ac, MQ, index regis-
ters, entry keys, sense switches, divide check, and over-
flow indicators are dumped.

Additional list items are described in Table 1, in the
section “Quantities Available for Use in Debug Re-
quest Statements.”

Quualifications of LIST ltems

Unless explicitly qualified, all symbols in a debug re-
quest are implicitly qualified by the deck name of the
spEBUG card heading the request.

To allow for communication between decks, any
item or set of items may be qualified with the deck
name and two dollar signs, as shown:

deckname$$item
deckname$$ (item, item...)

The items specified are as defined for List elements.
For example, assB refers to symbol B in deck A, and
ABs$(BB, CB, (RB, sB, 0))refers to items BB, CB, and the
octal region rB through sB, which are all in deck as.

DUMP Statement

The pump statement dumps the quantities to be printed
as debugging output. It is similar in structure to the
FORTRAN IV WRITE statement and is of the general form:

DUMP list

list is a series of items that is either a direct refer-
ence to the data to be dumped or the statement num-
ber(s) of ListT statements specifying the data to be
dumped. The acceptable data specifications for both
direct references and LisT statements are itemized in
the discussion of the LisT statement.

The pume statement causes information to be written
on the debug work unit (pwu). The postprocessor
edits the data on the owu and writes it and the dump
number on the system output unit. The formats sup-
plied for the list items of the pump statements are:

1. The symbolic reference of the item, along with
its location(s), deck name, and control section, is
written to identify the debugging output. (The relative
location may not agree with that of the MAP assembly
because of the deletion of control sections and adjust-
ment caused by the use of the EVEN pseudo-operation.)

2. The value(s) of the item is written. The format,
which is based on the number of elements in the item

Load-Time Debugging for FORTRAN IV and MAP Programs 13

and the mode of the item (as listed under point 2 in
the section “LisT Statement”), is derived as follows:

TYPE NO./LINE FORMAT
Octal 4 OP XXXXXX XXXXXX
Symbolic
Instruction 2 *x xxxxx x xxxxx OP A, T, D.
Floating-
Point 6 *+ XXXXXXXX & XX
Fixed-Point 6 + xxxxxxxxxxxx. (leading

zeros dropped)

Double-

Precision 4 = XXxxxxxxxxxxxxxxD =+ xx
Complex 3 + XXXXXXXX XX & XXXXXXXX *xx]
Logical 8 .TRUE. or .FALSE.

Alphameric 96 char XXXX.. XXX

CALL Statement

The caLL statement is used to call subroutines. Its gen-
eral forms are:

CALL subr
CALL subr (argl, arg2,...)

where subr is the name of the subroutine being called
and argl, arg2, . . . are the arguments. The subroutine
that has been called must use neither the cuain facili-
ties of 1BJoB nor call s.sLDR; otherwise, overlay might
be induced. subr must be a real section name. The
subroutine must be in one of the input decks if the
job is a chain job. Otherwise it may be loaded from
1BL1B. Output arguments to a subroutine that has been
called may not be constants, any of the quantities listed
in Table 1, or quantities that involve address computa-
tion.

RETURN Statement

The RETURN statement causes a return to the inter-
rupted program. There is an implicit RETURN at the
end of each debug request.

PAUSE Statement

This statement causes the message “DEBUG REQUEST
PAUSE” to be printed, and processing to be suspended.
When sTART is pressed, execution continues with the
next statement in the request.

STOP and CALL EXIT Statements

The storp and cALL EXIT statements terminate execu-
tion by transferring to s.jxrr.

NAME Statement

The NAME statement permits the programmer to define
symbols for use within debug requests. It also defines
symbols where no debugging dictionary, or an insuf-
ficient one, has been supplied.

10P A, T, D refers to the symbolic representation of a machine language

instruction. This is primarily of interest to the MAP programmer.

14

The general form of the NAME statement is:

NAME symbol,/ ;Zﬁﬁ% E |: (mode [(dimensions)])
[, symbol,/..]
The parameters are:
symbol,
Any valid MAP symbol.
location
A location designation. It may be a nonsubscripted symbol
(plus or minus an integer, if desired); =Rn (relative

location), where n is an unsigned octal integer; or =An
(absolute location) where n is an unsigned octal integer.

=NEW
A location of octal format or an area corresponding to the
specified mode and dimensions is to be generated for the
symbol.

(mode)
The mode of symbol. It may be O, F, X, D,], L, S, or H,
as described in the discussion of the LIST statement.

(dimensions)
The dimensions, if any, of the array denoted by symbol

are specified as:
(dlr d’x d'ﬂ)

Arrays are structured and referred to exactly as they are
in FORTRAN 1V.

The rForTRAN programmer will primarily use the
=NEW option of the NAME statement.

The deck name on the spEBuc card heading the
debug request in which a NAME statement is found
qualifies implicitly the symbol defined in the NaMmE
statement. The NAME statement defines the symbol
only for subsequent uses of that symbol (which has
been implicitly or explicitly qualified by the deck
name on the spEBUG card).

This also applies to =NEw symbols. The same sym-
bol may not appear more than once under the =NEw
option; that is, the user should not use the =NEw
option in more than one NAME statement for the same
symbol. By the same token, he may not define the same
symbol in NAME statements more than once for a single
object deck.

Redefining Symbols

The srepEF card allows the user to change the names
of symbols used in source decks to make them accept-
able for use in debug requests. Unacceptable symbols
are those MAP symbols that would be interpreted as
numbers by the debug compiler (e.g., 0.1E3, 4.6EE2,
633.D4, 1.2). The general form of the sreper card is:

1 8 16-72

$REDEF old;bASbnew;

[, old:bASbnews, . . .].
deckname is the name of the deck in which the sym-

bol to be redefined appears; b represents one or more

deckname

blanks; the old, are the symbols to be redefined; and
the new, are the new names of the symbols.

The variable field (columns 16-72) of a srepEF card
may be extended to more than one card by using the
seTC card as described for the spEBUG card in the sec-
tion “Load-Time Debug Requests.”

sREDEF must be followed immediately by a speBuUG
card or another sRepEF card.

Debugging Dictionary

The debugging dictionary provides communication be-
tween the program being debugged and the debugging
package. This dictionary contains symbols, with their
relative locations, modes, dimensions, and mode
changes. It also contains FORTRAN statement numbers
and their relative locations.

The debugging dictionary is requested by the user
on a $IBMAP or siBFTC control card and, when re-
quested, is produced by Bmap. The general form of
the control card is:

1 8

$IBMAP|
$IBFTC

16-72

other options
[, debug dictionary options]

deckname

The card name, deck name, and other options are as
given in the publication IBM 7040/7044 Operating Sys-
tem (16/32K): Programmer’s Guide, Form C28-6318.

The debugging dictionary options are:

NODD
No debugging dictionary. This is the standard option, which

specifies that a debugging dictionary is not desired. If no
option is specified, NODD will be assumed.

DD
Full debugging dictionary. All mode changes and symbols
used in the MAP program will appear in the debugging
dictionary. In a FORTRAN IV program, all statement num-
bers, all variable names, and all symbols generated by
IBFTC will be included.

SDD
Short debugging dictionary. Only those symbols specified
by the MAP pseudo-operation KEEP (described in the
section “KEEP Pseudo-Operation”) will appear in the de-
bugging dictionary. If this option is specified on a $IBFTC
card, IBFTC will generate KEEP operations for statement
numbers and program variable names.

Supplying Modal Information to the Debugging
Dictionary

BFTC supplies modal and dimensional information to
1BMAP and then, automatically, to the debugging dic-
tionary. When double-precision (D) or complex (])
modes are specified, the dimensions indicate the num-
ber of two-word entries contained in the array. (The
product of these numbers will equal half the value
field of the Bss.) However, the MaP programmer must
supply this information himself when it cannot be

assumed by the nature of the instruction, i.e., when
he is using Bss, BEs, EQuU, and syN. (Only modal in-
formation may be given with a BEs; dimensional data
will be ignored.) This information is specified in addi-
tional subfields of the variable field of these opera-
tions, as:

OPERATION
NAME FIELD FIELD

Symbol BSS)
BES

EQU ;
SYN

symbol and value are the standard forms for thesc
pseudo-operations; mode is O, F, X, D, J, L, S, or H,
as described in the discussion of the LisT statement;
and d,, d,, and ds are the dimensions, if any, of the
array denoted by the symbol. (Arrays are structured
and are referred to as in FORTRAN.)

VARIABLE FIELD

Value I:, mode [(d, ds, da)]”

EXAMPLES
A BSS 25, F(5,5)
B EQU A+ 10,F(5,3,2)
o] SYN A+6X
D BES 2,X

KEEP Pseudo-Operation

The keep pseudo-operation permits the MaP program-
mer to specify, in his source program, a debugging
dictionary that contains only those symbols he wishes
to use in debug requests. The format of the xemr
pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks KEEP One or more symbols separated

by commas.

The symbols in the variable field are entered into
the debugging dictionary along with any modal and
dimensional information that was supplied in Bss, BEs,
EQU, and syYN pseudo-operations. Any number of xeEp
pseudo-operations may appear in a program. If the
NODD or pp option was specified on the siBMaP card,
the xeep pseudo-operation is ignored.

Note that qualified symbols are not entered into the
debugging dictionary. The first encountered of the
same named symbols is the one entered into the de-
bugging dictionary.

Additional Load-Time Debugging Features

The following sections contain descriptions of addi-
tional debugging facilities that are of interest mainly
to the MAP programmer, but may also be used by the
FORTRAN O COBOL programmer.

Quantities Available for Use in Debug Request
Statements

The quantities in Table 1 are available for use in state-
ments that make up the text of a debug request. There

Load-Time Debugging for FORTRAN IV and MAP Programs 15

Form C28-6803-1 /
Page Revised 11/1/65
By TNL N28-0537-0

should not be a blank between the equal sign and the
quantity.
Table 1. Special Quantities Available for Use in Statements

QUANTITY DEFINITION

= AC Accumulator (S,1,2,...,35).

= AC (i1 — i2) Accumulator bits i1, through i»;
0=<i, =i, =35; bit 0=S-bit.

= LAC Logical accumulator (P, 1,2, ..., 35).

= LAC (i, — is) Logical accumulator bits i, through i;
0=<i, =i, =35; bit 0=P-bit.

= MQ Multiplier-quotient register (S, 1,2, ...,35).

= MQ (i: —iz) Multiplier-quotient bits i, through i;
0=<i; =i, =35; bit 0=S-bit.

= XRn Index register n; 1=n =7.

NoOTES:

1. The above quantities in arithmetic or logical expressions
have the value of the registers upon entry to the debugging
routines or the values subsequently assigned by their appear-
ance on the left-hand side of a SET statement. The values of
=XR3, =XR5, =XR6, and =XR7 are the logical OR’s of index
register 1, 2, and/or 4. Reference to these values does not auto-
matically reset the index registers.

If the above quantities (except =XR3, =XR5, =XR6, or
=XR7) appear on the left-hand side of a SET statement, the
register contains the newly assigned value when subsequently
dumped or referred to in a DEBUG statement. The register will
also contain this newly assigned value upon re-entry to the
object program wunless the register specified was =LAC,
=LAC(ii—i:), XR3, XR5, XR6, or XR7. Note that =LAC
and =AC refer to separate locations in the /DEBUG deck;
setting one does not affect the other.

The mode of an index register quantity in a statement is in-
teger (i.e., fixed-point). The other register quantities are of
indeterminate mode; they are never converted and the values of
other variables in the statement are not converted to agree with
them.

2. When the user specifies a bit extraction of AC, LAC, or
MQ, the bits extracted will be right-justified and will be dumped
under the heading /DEBUG+n (where n is a relative location).

The following examples of the logical 1¥ clause illus-
trate the use of some of the quantities that refer to
internal registers.

IF (=LAC OR =MQ)
IF (=XR4—8 EQ 3*=XR2)

Address Computation

Considered as a whole, an expression represents an
effective address just as does any individual element.
The effective address is determined through the chain-
ing effect of a series of sequential steps, each step be-
ing the effective address upon which the succeeding
step is to operate.

The form for an address expression is:

% :|= C (effective address) :I
%}

=C (effective address l: g

k

~N tH < sl

16

An effective address is of the form:

base address [l:, COMPL:I

The base address may be any of the following:

1. Any subscripted or nonsubscripted variable de-
fined in the source deck, to which reference is cur-
rently being made

2. Any of the special names (=xrn, =Aac, etc.)
specified previously. These special names must be
followed by one of the extraction options described
below [i.e., ADDR, DECR, or (ij-iz)]

3. A relative (=Rn) or an absolute (=An) address

4. A decimal integer

5. A statement number (FORTRAN only)

6. Another effective address expression using any
of the four items above as a base address and the
operators described below

Components of the operator string may be any of
the following terms:

ADDR
DECR
(=iz)

OPERATOR DEFINITION

ADDR Use, as the next effective address, the address
portion of the word specified by the current
effective address.

DECR Same as above, using the decrement portion.

(i1—iz) Same as above, using bits i; through i. for
0=i, =i, =35.

COMPL Complement the current effective address to
form the next effective address.

+ argument Add the specified argument, which can be
any of the forms defined for a base address,
to the current effective address to form the
next effective address.

~ argument Same as above, but subtract.

* argument Same as above, but multiply.

/ argument Same as above, but divide.

The following are examples of address computation:

=C(A) The address of A

DUMP =C(A) Same as DUMP A

SET =C(A)= =C(B)+2 Same as SET A=B+2
=C(A,ADDR) The address portion of the

word at location A

The complement of the
decrement portion of A(5),
plus A(3)

The decrenient portion of
A(7) plus the address por-
tion of A(7), minus one

=C(A(5), DECR, COMPL,
+A(3))

=C(A(7), DECR, + =C(A(7),
ADDR), —1)

Bit Extraction

In arithmetic expressions (e.g., in SET, IF, CALL, Or ON
statements and also in address computation and in
subscripts) it is convenient to be able to handle partial
word operations. The notation to be used is:

=C (address computation) (bit specification)

or
=mr (bit specification)

where the bit specification is i;-i», ADDR, or DECR, and
mr (machine register) is Ac, LAC, MQ, Or XRn;

=mr (i)
where 0:=i=35 is also permitted.

The following are examples of partial word oper-
ations:

=C(A) (18-20) The tag of A
=AC(0) The sign of the AC
=MQ(17) Bit 17 of the MQ

The following statement replaces the decrement of
the word at A with the sum of 6 and the tag of B:

SET =C(A) (DECK)= =C(B) (18-20)+6

The following statement replaces the address por-
tion of the ac with the address portion of the word
at Q (the rest of the ac is not affected) if the MQ
bits 4 and 6 are 1, and bits 5 and 7 are 0:

IF =MQ (4-7) EQ012 SET =AC (ADDR) =Q

The value of an item in an expression or output list
on which bit extraction has been performed consists
of those bits right-adjusted with zeros in the high-
order positions. Note that the logical value of such
an item is always false if the number of bits extracted
is 35 or fewer. (Any type conversion necessary is done
after the extraction.)

Location Values

When manipulating instructions, the mMap program-
mer often needs the value of a symbol rather than the
contents of the location addressed by the symbol. The
programmer uses the notation =V (symbol) to desig-
nate the value of a symbol.

EXAMPLE
SET =C (Q, ADDR)= =V(S)+1

This replaces the address field of Q with one plus
the location value of S.

Example of a Load-Time Debugging Packet
Used with a FORTRAN IV Program

Figure 2 contains an example of a load-time debugging
packet for a ForTRAN 1v program. The numbers in the
first line across indicate the card columns in which the
various fields begin.

The siBpBL card heading the packet calls in the de-
bugging compiler. It specifies that all debugging ac-
tivity is to cease when 450 debug requests have been
executed at object time, that a maximum of 500 lines
of debugging output is to be printed, that the ForTrRAN
Input/Output Subroutines are to be used to write

IBM 7090 Symbolic and Fortran Coding Sheat
NAME, |n—5r-r. lm«ms §O. | Pm—rﬁm R
sL"JﬁQE.’;"E FORTRAN STATEMENT s FORTRAN [
IDENT.| PG.| LINE
SYMBOL OPERATION | ADDRESS, TAG, DECREMENT / COUNT et symsoLic OJ
ll213 4 515 718 |9]10111112{13]14/15, lsll7 "1‘“ 202122 {23 j24 |293031k2 {33 [34 B35 p6 37 P8 BB 140 W1 148149 50| 51| 52| 59|60, 61 62 68 73] 72{73| i475 76 77|74 79 80
$TBDBL iRl Malx|=ldlsis], L zine| maxi=isiglgl,
$elvic] | [ElolrriRlaN, Diwlulzjuilt
besuq_m&gﬁ 12/§ |
L 1 nlamlel | [al/l=mlemi((€)
| | joinl 4] | slem |Al=|4]. 4 1
|- L lrlel Blelvial lae| lo] RleTviriN | | |
| L plumiel Blelria,| |*Blelrial ool lsMAlLLL. | 5]
L | [SlelT. A=A~ L L
PeBYIG |SVEB SEY 1
| LIn EE! x/l=new (Ix]) ; i
| L IsleT] xi=ld] | | 1 :
$DeBY grru 8 !
1 Lrlel ‘Al-B*C (N€| (3] S*#D RIETURN !
! Lpluimp (v, Vi, 7)), Dia riRlIAYI(4,17),:3)), 1 ; -
| 4| |'al-Bi¥e] lag 3. 'sl#D ‘clavlslew pRoGrAM 'SiT o’ ¥
L L fslrlop |11 B HESEENREE RENE
5 LrlsT ((apula (2, 7)), 3=12),12)) , riz8, 12), BARR
bi€BY G SluBR 3¢ | 1 |
Ll el Cx): 1]51,8 | Dlump malzhé ARRAlYIA,
Ll |CenrRAY[(T), X)), Tel1,000) |
$DEND| R L i L] :
L Piiidd ; r |
I | - L. ! L
| 1 1 [‘; 1
I L : Ll L L4 i
| ! i L L

Figure 2. Symbolic Debugging — FORTRAN Example

MO2-0830-0

Load-Time Debugging for FORTRAN IV and MAP Programs 17

NAME DEPT.

PROBLEM NG. DATE DUE OUT

SHEET___OF.

7090 Symbolic and Fortran Coding Shest

PROGRAM TITLE:

THONE NO.
STATEMENT I]

=
NUMBER |3| | FORTRAN STATEMENT —————

FORTRAN [

SYMBOL OPERATION ADDRESS, TAG, DECREMENT / COUNT mrmaaipe

~|IDENT| PG.| LINE
symsoLic O

1]:

3 4Is|a 7189 mu)zlauuxaiuuiszonzzzsu

! 2 33 34 :5};9 B7 ps Pl ‘Aa [41142(43/44 143484

36{57/58/ 39/ 60| 61 62 63 71]72|73] 74| 75{ 76 77|78 79180

S TlBpEL TiRlR| Mak|=|1l6l6ld1, L IxInle HAlxls |5 el

1Jjoislolule I

>
$emrie) |
B 184 |

ms%

L |

==

S

'
~ [

$De/Blug|

-

|

=

I ! 3,118),/3 DumP x|,/ lenTRA/,

Qo

| It

3 {

=

$DIEB Yg

m

E(=)

i)
VIS R6 N AR RT

=

|
!
16 ||
I
I

2

"
<
LR [=)

eh}

z YR REm[zgm I~
ﬂ

> 9= |~ [0

ORI
e
LR
5
“i"z—
|
s
L
L=

|
|
I
|

-
-
W C [
3
[~
bl
n D
mie -
>
2 r
ﬂ
-‘
x O
a
Wl
anm
bl
- o
+* | -
S
=
7Y
|

(]

DleB UG

m
o |
FaY

BEY

[
&)

’\l ny

B

m

-.‘

<

E:)

z

<M T
3
0~
>
>3
LT+
58 =
=
R

Figure 3. Symbolic Debugging — MAP Example

dump markers (on FORTRAN logical unit 6) and that
utility unit 11 is to be used for the debugging work
unit, '

The first debug request is executed immediately
before statement 25 in deck MaiN. The real variable
A is defined for use in the debugging requests for that
deck. The first time statement 25 is executed, A is
set to 1.4. BETA (in program MAIN) is tested before
each execution of statement 25. If BETA is less than A,
BETA and the elements described by LisT statement
number 5, contained in the third request, are dumped;
the message BETA TOO SMALL is printed; and A is de-
creased by 0.1. If BETA is greater than or equal to A,
return is made to the interrupted program; then state-
ment 25 is executed.

The second and fourth debug requests are executed
at statements 1 and 30, respectively, in deck susr.
Suppose that deck main calls suBr several times and
that statement 1 is the first executable statement in
suBr. Further, suppose that susr contains a po loop
that causes statement 30 to be executed several times.
Under these conditions, the second request sets the
counter X to 0 each time that susmr is called; the fourth
request dumps array ARRAYA in program MAIN, the
first, fourth, seventh, etc., times that statement 30 in
SUBR is executed; in addition, it dumps the principal
diagonal of the matrix carray (in deck susr). Thus,

18

M02:0890-0

the second and fourth requests trace the initial action
of suBr each time it is called.

The third request is executed immediately before
each execution of statement number 48 in main. The
value of A-B*c is tested against 3.5*D, and if the two
values are not equal, control returns to the program.
If they are equal, the following are dumped:

1. The area (in complex number format) from U
through V (if V is an array, the entire array will be
dumped).

2. paRRAY (1, 7, 3) and the message A-B*C EQ 3.5%D
CAUSED PROGRAM STOP. Program execution then stops
and the debug postprocessor is called.

The third request also contains LisT statement num-
ber 5, which, when used in a pump statement, causes
the following information to be dumped: aLpuA (8, 1),
ALPHA (8,2), ALPHA (9,1), ALPHA (9, 2),..., ALPHA
(11, 2); all of the elements of BARRAY; and all of blank
COMMON.

The spEND card terminates the action of the debug-
ging compiler.

Example of a Load-Time Debugging Packet
Used with a MAP Program

Figure 3 illustrates a load-time debugging packet for
a MaP program. The numbers in the first line across
indicate the card columns in which the various fields
begin.

The sipBL card heading the packet specifies that all
debugging activity is to cease when 1,000 requests
have been executed and that a maximum of 500 lines
of debugging output is to be printed. It also specifies
that the object program is using the Output Editor
(joBouL) and that the Debugging Work Unit is as-
sumed to be the system checkpoint unit.

The first request specifies that the elements in L1ST
statement numbers 2 and 3 (which appear later in the
packet) are to be dumped the first time and each time
thereafter up to but not including the eleventh time
that the instruction at B4 in pECKA is to be executed.

The second request is executed immediately preced-
ing each execution of the instruction at sTART+7 in
pECKB. On the third, sixth, ninth, twelfth, fifteenth, and
eighteenth times that logical variable LoGvAR is true
(i.e., sign is nonzero), the following will be dumped:
X; control section cNTRA; and the region from relative
locations 6 (octal) through 103 (octal) in octal for-
mat. The second request also contains LisT statement
3, which, when used in a pump statement, causes the
quantity ouan and the blank common (//) control
section to be dumped.

On the hundredth time that location B4 in DECKA
is reached, information specified by the third request
is dumped, program execution is terminated, and the
debug postprocessor is called. At all other times, con-
trol is returned to the interrupted program. The intor-
mation dumped consists of the status of the console
registers (LIST statement number 2), and the elements
specified in LIST statement number 3, contained in the
second request.

The fourth request causes a test to be made the
first time and every second time thereafter, until the
ninth time that the instruction at RESTART in DECKB is
to be executed. It tests QuaN, and if QUAN is zero, the
following are dumped: the elements in LIST statement
number 2 (contained in the third request), the mes-
sage QUAN EQUAL TO zERO, and the elements in Lis¥
statement number 6 (which specifies the region from
RESTRT through RESTRT +99 in symbolic format).

The fifth request is executed immediately before
each execution of statements B7 and A4 in pecka. If
A is less than B, control is returned to the interrupted
program; otherwise, A and B are dumped.

Load-Time Debugging for FORTRAN IV and MAP Programs - 19

Dump Program

The M 7040/7044 Operating System contains a gen-
eral diagnostic and Dump program that provides error
messages, error dumps, and debugging dumps during
operation of the system. Assembled with this program
is a series of dump parameters, identified by five-digit
error numbers, that permits the system program to
specify the error message and extent of the dump to
be provided when a specific error condition occurs.

The Dump program contains terminal diagnostic
facilities for system programs, for machine conditions
resulting in a trap under error conditions, and for
Input/Output Control System error conditions for
which no error return has been specified. When such
a system error occurs, the console panels and a portion
of core storage is saved, and the Dump program is
loaded automatically to give a partial or full core
storage dump and/or a selective dump of external
storage.

To preserve core storage space, all terminal error
messages are carried in the Dump program rather than
in the Nucleus or the Input/Output Control System.

The Dump program appears in the System Library
as four phases or core loads. When loaded, it overlays
the higher levels of 10cs. After the dump is finished,
the combined monitors and a new 10cs are brought in
and control is released to the Supervisor, unless the
return is specified. If the return is specified, core stor-
age is restored.

Calling Sequence

An object program may relinquish control to the
Dump routine in the Nucleus by means of the follow-
ing calling sequence:

SXA *+3,4 (or the equivalent)
TSX S.SDMP,4

pfx ret,t,errno

PZE ok

The prefix pfx is interpreted as follows:

Sign Bit = 1 Pause before returning
Bit 1 =1. Dump system panel
Bit 2 =1 Traceback

s.spbMP is the entry point to the Dump routine in the
Nucleus. The location ret,t is the point to which con-
trol returns upon completion of the dump. The errno
is a five-digit decimal number that is used to identify
the series of parameters describing the error message
desired, the special editing routines, and the portions
of internal and external storage to be dumped. Upon

20

completionn of the dump, control is returned to the
Supervisor, and processing resumes with the next sjos
card unless ret,t is non-zero.

A means of obtaining a terminal core dump is to
execute the following instructions:

SXA *+34
TSX S.SDMP,4
PZE ,»13000
PZE L

errno 13000 may be used to obtain a full core stor-
age dump in octal with mnemonics and Bcp.

Format
Depending upon the parameters assembled with the
Dump program, a call to the Dump program results
in one or more of the following types of output:

1. On-line message on the console typewriter

2. Off-line message on the system output unit

3. A dump on the system output unit

The dumps of the console panel and the system
panel, the core storage dump, and the external storage
dump on the system output unit may be obtained in-
dividually or in any combination. The storage dumps
may be given in any combination of the following five
options:

1. Octal dump (single line)

2. Bcp dump (single line)

3. Octal dump with Bcp (double line)

4. Octal dump with mnemonics (double line)

5. Octal dump with mnemonics and Bcp (double
line)

On-Line Message

The on-line message consists of a five-digit message
number that is included in the calling sequence and of
a briefly worded message. The phrase JoB TERMINATED
is appended by the Dump program if no return is
provided.

Off-Line Message

The off-line message consists of the five-digit message
number, the Bcp contents of location s.scur, the Bcp
contents of location s.sraz, the location of the Tsx in-
struction used in the calling sequence, and the com-
plete error message provided in the dump parameters.
This appears in the heading above the console dump.

Dump Ovutput

An example of an octal dump with mnemonics and Bcp
characters is shown in Figure 4.

SYSTEM LICRARY MAP FOR VANUAL 10000 DUMP OF IBSYS I[BIGC JOB START 000000000000 07/18/63 PAGE 19 TIME 00 MIN 00 SEC]
ERROR LOCATICN 00102
CPERATOR CALL TD CUMP
IND ICATORS SENSE ShITCHES XR1 XR2 XR4
CFL DCT 1 2 3 “ 5 6 00001 00014 57625
ON CFF CFF OFF OFF OFF OFF OFF -171777 -77764 -20153
AC Ma
0000001000001 €0000000000C
ATTACHEC DEVICFS
SYSTEM UNITS TABLE SYSTEM CONTROL BLOCK . UNIT CONTROL BLOCK
S.SLB1 327 € 01135 C 00571 1135 04 04 73 0 00327 571 0 0000 0 0 02201
412000 0 05134 000000 0 00037
000001000000 4 00000 0 00327
0 00000 0 00000 0 00000 0 00000
0 00000 0 00000
0 00000 0 00606
0 00000 0 00000
0 00000 0 00000
000000000000
$.SINL 331 C 01C35 0 00525 1035 04 03 74 0 00331 525 0 0000 3 0 01210
410000 0 07006 000000 0 00012
000001000000 4 00000 0 00331
0 00000 0 00000 0 00000 0 00000
0 00000 0 00000
0 00000 0 00012
0 00000 0 00000
0 00000 0 00000
0000060000000
DETACHED DEVICES
S.SLB2
S.SIN2
$.50U2
S.SPP2
$.5U07
$.SU31
$.5U32
S.5U33
S.5U34
5.5U35
00000 042000000000 =-012141410011 0020CC004121 000000C00000 002060000003 000000000000 000000000000 002000004141
HPR 4+0000 JAJJOS TRA 0+COJA 000000 TRA % 0+ 003 000000 000000 TRA 0+003J
00010 002000000011 002C60000000 €000CL1003560 =-162700003026 000001003560 -162700003026 000001004625 =16270C003025
TRA 040009 TRA # O+ 00C 0010+ TSL *GOOHF 0010+ TSL *GOOHF 00100E TSL #GOOKH
00020 000000000000 -1627000C3C26 0000CCO0CCO0 -162700C03026 374521200000 000701050603 000000000000 000000000000
000000 TSL #GOOHF 000000 TSL #GOOKF TXH #NA+00 071563 0 000000
00030 000000000000 0COCO0000000 000010007725 ~-176000000014 002000004154 000000000000 000000000000 000000006080
000000 00000¢C 008B0GE ICT # 000' TRA 0+00J+ 000000 000000 00cCen
00040 002000004210 000COCOCOCO0 0C20CC004223 000000000000 000000000000 000000000000 000000000000 00000000000
TRA 0+00K8 000000 TRA 0+0OKC 000000 000000 000000 000000 000009
00050 076400002221 200001100054 0420C0000C52 077400100012 076200002221 -054000000101 006100000056 =-002200000050
BSR 7U00BA TIX +C180% HPR 4+000- AXT 7(08C0 RDS 7SO0BA RCHB N-0011 TCOB 0/000% TRCB ~BOQDY)
00060 =-053400100101 063400100064 05356010C101 100001100064 050000100102 062100000101 =012060000101 062200000101
LXC N)O8LL SXA 6)080U LAC 5#C8L1 TxI 80180U CLA 500812 STA 6A00L11 TMI = J+ Oll STD 6BOOLL
00070 002000000053 000C00000C00 000000000000 000000000000 000000000000 000000000000 000000000000 00000000000
TRA 0+000$ 000000 €00000 ©00000 000000 000000 000000 000009
00100 000020000000 052700002232 C634C0400105 007400400137 223420000000 000000057625 050000000135 -170400000021
004000 XEC 5B00B+ SXA 6)0-15 TSX 0{0-1+ TIX B)+000 0005«E CLA 5000ls TMT #4000A
00110 076000000004 -076300000044 0602C000C054 040000000050 060200000050 -032000000117 076700000011 =~073400107089)
ENK 7 0004 LGL PTCOOM SLW 62C00%¢ ADD 40000Q@ SLW 620000 ANA L+001* ALS 7X0009 PDX P)}08YD)
00120 -050000100135 077400100003 -162301100060 077100000006 =-162300100060 077100000006 200001100122 00200€0D005
CAL NOO81s AXT 7({0803 SACl *C180 ARS 720006 SACO *C080 ARS 720006 TIX +0161B TRA 04000
00130 002600640542 -002400634541 0C24CC620541 —-002200614540 312245642360 002000001407 002000002073 002000002153
TRCE OFOUSK TRCC =-DOTNJ TRCC ODOS5J TRCB -BO/N- TXH IBNUC TRA 0+00'7 TRA 0+00+4, TRA 0+00As
00140 002000002235 002C00400002 C€020C0002251 002000002065 076000000161 002000400001 002000002723 002060002571
TRA 0+00B% TRA 0+0-02 TRA O+COBR TRA 0+00+V SWT 7 001/ TRA 0+0-01 TRA 0+006C TRA O+GOE/
00150 002000002651 002CCCOC2701 €020€C002700 002000002663 002000002662 002000400003 002000004251 002000007157
TRA 0+00FR TRA 040061 TRA 0+00G0 TRA O+0OFT TRA 0+00FS TRA 0+0-03 TRA O+O0KR TRA 000~
00160 002000010364 CC2000010372 =-16270001C607 =-162700010607 -162700010607 -162700010607 =~162700010607 002000010365
TRA 0+013U TRA 04013= TSL *GCl67 TSL *GOL67 TSL =GOl67 TSL »GOl67 TSL =GOl167 TRA O+O13Y
00170 002000010373 002CC0011731 0020C0011656 002000011650 002000011667 002000012001 000020000000 010000077777
TRA 04013, TRA 0+0lsl TRA 0+0lss TRA 0+014Q TRA 0+0lsX TRA 0+01+l 004000 TZE LDO7#+
00200 012224010364 CO0001010C00 0CO7CL734660 000000000001 000005002414 000005002421 000044000340 G0OL700D1675|
180130 001100 071,0 €00001 00500 0050DA 00M03- 01Y0#
00210 000016002126 0C0701100603 CCO6C3011111 000000000000 000000000000 000261077515 100000000006 31226270628
Q00 AF 071863 063199 000000 000000 02/7ss___TXI _ 800006 TXH__ _IBSYS

Figure 4. Octal Dump Format

Dump Program

21

The page heading is always provided if any dump
parameters exist for the message number. Fields in the
page heading pertaining to the time of day or elapsed

time are printed only when the interval timer is in .

operation.

The console panel is always provided if any dump
parameters exist for the message number. This infor-
mation includes:

1. The octal contents of location s.scix

2. The Bcp contents of location s.SpAT

3. The number of minutes for which the current
job has run

4. The contents of the registers

5. The settings of the sense switches and the entry
keys

6. The settings of the Overflow and Divide Check
indicators

The system panel is an option that provides the unit
control blocks and system control blocks for each at-
tached unit in the Symbolic Units Table.

The format of the core storage dump is specified by
the dump parameters.

The external storage dump is another option that
can be specified in the dump parameters. The follow-
ing information is provided:

1. Symbolic unit containing information to be
dumped

2. Type of device, channel, and unit, all identical
to information provided in the ATTACH macro-instruc-
tion during system assembly

3. Machine interface, select address, and subaddress

4. Number of the file containing information to be
dumped on the system unit

5. Number of the record within the file to be dumped
6. Number of words in the record (in octal)
7. Number of words in the record (in decimal)

The mode of each record dumped is indicated by
one of the following codes:

RECORD IN BCD

RECORD IN BIN

RECORD IN RDN
If there is an indication that the record is in the wrong
mode, this record and subsequent records are read in
the alternate mode. If a record is redundant, it is listed
in the mode in which it was requested, the error is
indicated, and the mode is not switched. However,
certain devices give no indication of whether the
record was BCD or binary.

Errors that occurred on the units that were dumped
are noted in the listing. Errors on units used by the
Dump program are noted on the typewriter and in the
listing, and are ignored.

Binary coded decimal
Binary
Redundancy error (unreadable)

22

Message Code Numbers
The message code numbers that identify each set of
parameters consist of five digits in the following for-
mat: i

Ten Thousands Position:

1. Message without pause.

2. Pause that requires a specified manual action be-
fore continuing

3. Pause that requires a choice of specified manual
actions before continuing

The 0 code is not used as there are no dead-end halts
in the Operating System.

Thousands Position:

0. For 1M use only

1. The general policy is that a 1 will not be used in
this position until all possible uses of 0 in combination
with the hundreds position have been exhausted

2. For 1BM use only

Hundreds Position: (This is used to designate the
programming system in which the error occurred.)

1. 10EX, 100P
IOLS, I0BS
Sort/Merge
Utilities
Supervisors
Simulators and Peripheral Programs
FORTRAN 1v compiler
coBoL compiler

© PN U

. Macro Assembly Program or Loader

Tens and Units Positions: (These positions are to be
used to ensure that every code format will be unique
and are left to the discretion of the programmer.)

X1500 — X1549 System Editor
X1550 — X1599 Processor and Input/Output
Editors

X1900 — X1999 Loader (1BLDR)

General Purpose Assignments:

10000 The message OPERATOR CALL TO DUMP
13000 No Message

Dump Parameters

Associated with each error number is a sequence of
parameters assembled in 1Bpmpe. The parameters in-
clude one word that identifies the error, a sequence of
words that describe the error message to be typed, a
series of words that describe the error message to be
listed on the system output unit, and words that de-
scribe the portions of core storage or external storage
media to be dumped.

Identifier

The word that identifies the error has the following
format:

PZE pointr,,errno
where:
pointr
is the location of the identifier of the next error sequence and
is equal to zero to terminate a sequence of pointers.
errno
is the five-digit error number.

Error Messages
Each word in the error message sequence has the fol-
lowing form:
pix loc, t, count
where:

pix
consists of bits 0, 1, and 2, which have the following defini-
tions:

BIT DEFINITION
0 0 — The sequence continues.
1 — This is the final parameter in the sequence.
1 0 — This is a sequence of an error message.
1 — This is the entry point to a special editing
routine.
2 0 — The data is in core storage with the Dump
program.

1 — The data is in the core storage area of the
calling program, which may have been over-
laid, and may be found on the checkpoint
unit.

loc, t

is the location of the first word of a sequence of BCD words
to be included in the error message. The t may be index regis-
ters 1, 2, or 4, loaded by the transfer instruction (TSX) to
S.SDMP. If bit 1 of the prefix is 1, loc, t is the entry point of a
special editing routine assembled with IBDMP. The prefix bits
0 and 2, and the count are not interpreted. The format of param-
eters for the special editing routine may be defined by specifica-
tions for that routine. Return is to location IDPSC.
count

is the number of words starting at location loc, t to be in-
cluded in the error message. Indirect addressing of parameters
is indicated by a —1 in the decrement of a parameter. The loca-
tion and count are found in the location specified by loc, t. In-
direct addressing is not available if pfx bit 1 is 1.

If information, directly or indirectly addressed, is
not available because s.sck1 is not provided, a word
of asterisks will be substituted.

For a special editing routine to have access to data
that may have been overlaid and that may be found
on the checkpoint unit, a dummy message parameter
of the following form:

PON loc, t, erase
may be used before the following parameter:
PTW loc, t

The Dump program will retrieve the data word at
loc, t and will store it in location erase. If this word
has been overlaid and s.sck1 is not provided, erase will
be set to zero. The Dump program can differentiate
between a message parameter, a word retrieval, and
indirect addressing, because the length of a segment

of a message must be fewer than 200 words. Location

erase may not be within the Nucleus and must be
below 77777.

There must be a separate sequence of parameters for
the on-line and the listed messages. The type param-
eters must be specified first, followed by the list
parameters. Each of the error-message sequences must
be terminated by a parameter with pfx bit 0 equal to
1. If a message is not to be typed or listed, the mze
parameter must be supplied. If a special editing rou-
tine has completed a message, the parameter counter
must point to an MzE parameter upon return to the
Dump program.

Storage to Be Dumped

A sequence of sets of dump parameters follows the two
sequences of message parameters. Each set of dump
parameters consists of three words of the following
form:

pfx S.Sunn, , format+mode

PZE from
PZE to
where:
pfx
has the following interpretation:
Bit 0 0 — The sequence continues.

1 — This is the final set of parameters in the
sequence.

Bit 2 0 — The parameters are in core storage with
IBDMP.

1 — The parameters are in the core storage
area of the calling program, which may
have been overlaid, and may be found
on the checkpoint unit. This is signifi-
cant only for indirect addressing ‘of
parameters.

S.Sunn
is the function to which the external storage medium is
assigned; to dump core storage, this field must be zero.

One of the following codes is used to specify the
format:
1 — Octal (single line)
2 — BCD (single line)
3 — Octal with BCD (double line)
4 — Octal with mnemonics (double line)
5 — Octal with mnemonics and BCD (double line)
If a code is not specified, an error message is given.
Samples of the formats are shown in the section
“The Device Print Program” in the publication IBM
7040/7044 Operating System (16/32K): Programmer's
Guide, Form C28-6318.

The mode is significant for external storage media
only. It indicates the method of reading from the ex-
ternal device as follows:

8 —BCD
0 — Binary

The symbols from and ¢o specify the inclusive limits

of the dump.

Dump Program 23

For external storage media, the sequential file num-
ber is in the decrement and the record number is in

the address.
Indirect addressing is indicated by a first parameter
of the form:

pix loc, t, —1
where:
pfx
is as specified above.
loc, t

is the location in which the set of parameters may be found.

When indirect addressing is used, the remaining two
words are not provided.

If a dump parameter, directly or indirectly ad-
dressed, is not available because s.sck! is not provided,
the message DUMP PARAMETER OVERLAID AND LOST will
be listed.

If the parameter list is terminated by an Mze word,
the remaining two parameters in the set need not be
supplied.

To provide an error sequence that does nothing, at
least the following parameters must be supplied:

PZE *+6, errno

MZE TYPE MESSAGE
MZE LIST MESSAGE
MZE DUMP CORE
PZE

PZE

Example of An Error Dump

The following is an example of a call to dump in which
the parameter sequence and the information typed and
listed is the result of a violation of storage protection.

1. Assume that the core storage locations shown in
Figure 5 contain the information indicated

2. Assume that the routine shown in Figure 6 is in
core storage.

3. Assume that the subroutine shown in Figure 7 is
assembled in the Dump program and is used to edit
the message.

4. Assume that the parameter entries shown in
Figure 8 have been assembled in the Dump program.

The following message will be typed:

10505 STO VIOLATN JOB DELETED

The following message will be listed:
10505 IBJOB SPRING 02160 STO VIOLATN LOCAT
6564 STA INSTR 062100000033
Following the message will be a page heading;:

10505 DUMP OF IBJOB SPRING DATE 3/21/64 JOB,
START 000001735064 ELAPSED
TIME 03.50 MIN PAGE 10

A conventional panel print and the full core storage
print will follow this message.

24

00005 I18CLK 7717717765350
00032 IXTSP 00C0020C6565
00033 TRA IXTPS
00211 S.SDAT 00¢202010604
00213 $.5CLK 000001735064
00214 S.SCIS 777771152720
00217 S.SCUR 18J08

00220 S.SFAZ SPRING

06564 STA 33

Figure 5. Assumed Contents of Specified Core Storage Locations

1 8 16
REM STORAGE PROTECT TRAP
IXTPS ICT <INHIBIT TRAPS
SXA IXTP3,4 SAVE WORKING REGISTER
LXD IBTSP,4 LOAD ERROR INDICATOR
TXL IXTP244,0 IS ERROR INDICATED
TXH IXTP2,4,3 YES, 1S INSTRUCTION RPM
LXA 1BYSP,4 YES, LOAD LOCATION + 1 OF RPM
TXH IXTP2,4, IP2ND+1 IS RELEASE PERMITTED
LXA IXTP3,4 YESs RESTORE WORKING REGISTER
REM VIOLATION OF MEMORY PROTECT CONDONED
MIT S.XTPS MAY TRAPS BE RESTORED
RCT YES, RESTORE THEM
TRA# 1BTSP #RETURN TQ REPRIEVED VIOLATOR
REM VIOLATION OF MEMORY PROTECT CONDEMNED
IXTP2 STQ IXTP3+3 HOLD MQ
LDQ 1BTSP SAVE ERROR CONDITION WORD
sTQ IXTP3+1
LAC IBTSP,4 SAVE ERROR INSTRUCTION
LoQ 144
STQ IXTP3+2
LOQ IXTP3+3 RELOAD MOQ
TSX S.SDMP,4 ##«THATS ALL CHARLEY
PZE ++10505
IXTP3 PZE s
PZE e, e LOCATION + 1 IN ERROR,,ERROR FLAG
sas e INSTRUCTION IN ERROR
PLE L ERASEABLE

Figure 6. Routine Assumed to be in Core Storage

1 8 16
REM PROCESS STORAGE PROTECT TRAP MESSAGE
REM CALLING SEQUENCE FOR THIS ROUTINE
REM CANNDT BE OVERLAIC BY DUMP RECORDS
IDTPS LXA IDCX4 41 LOAD CALLING LINKAGE TO 1BDMP
CAL 3,1 LOAD ERROR CONDITION
PDX 12 HOLD ERROR CODE
sue . Q1 COMPUTE ERROR LOCATION
TSX IX0CV+144 $CONVERT LOCATION YO OCTAL
SLW ICTPL+3 HOLD LOCATION
TXL *424204 IS BIT PATTERN VALID
AXT 0,4 NO, SET TO INVALID MESSAGE
CAL ICTPl,4 LOAD TRAP TYPE
SLW ICTP1+1
CAL 4yl LOAD INSTRUCTION IN ERROR
TSL 1oICcy $CONVERT INSTRUCTION TO OCTAL
SLW IDTPL1+6 HOLD LEFT HALF
sTQ IDTPL+7 HOLD RIGHT HALF
CAL 41 LOAD INSTRUCTION IN ERROR
TSL 1DMCY SCONVERT INSTRUCTION TO MNEMONIC
SLW ICTPLl+4 HOLD MNEMONIC
TRA 1ocPsC +RETURN TO PARAMETER SCAN
BCI 1,570 VI
BCI leILL VI
BCI 1,RPM VI
IDTP1L BCI 1yILL VI
BCI Ty DLATN LOCAT INSTR

Figure 7. Subroutine Assumed to be in the Dump Program

1 8 16
PZE *+7,,10505 POINTER
PTH ICTPS ECI(RQYTINE
MZE ICTPL+1442 TYPE SEQUENCE
MZE ICTPL+1,,8 LIST SEQUENCE
MZE 0,445 DUMP CORE STORAGE
PZE [¢]
PLE -1

Figure 8. Parameter Entries

Snapshot

A snapshot routine can be used to dump the console
and selected areas of core storage. This facility is use-
ful for program debugging.

Any number of snapshots can be taken during the
execution of an object program. The following calling
sequence is used to request snapshots:

TSX S.SNAP4
PZE list,,header
where:
list
is the location of the first word of a list of parameters that

specify the areas of storage for which snapshots are required.
This list has the form:

list PZE fword,,count
PZE fword,,count
PZ.E fword,.,count
MZE fword,,count

fword is the location of the first word of the snapshot area,
and count is the number of words that are to be preserved.
The prefix MZE indicates the end of the list.
header
is the location of a BCD word that is to be used in the page
heading when the snapshot is printed.

When a request for snapshots is made, the Snapshot
routine waits until all channel activity has been com-
pleted. It then dumps the contents of the console (the
accumulator, M0, accumulator overflow and divide
check indicators, sense switches, entry keys, and index
registers) and the specified areas of core storage (in
binary) on s.scki. When the execution of the object
program has been completed, the System Dump pro-
gram places this binary information with mnemonics
and page headings in the format of an octal core stor-
age dump and then writes it on s.sout.

If there is no unit corresponding to s.sck1, a request
for snapshots is ignored. If the program is taking
checkpoints on s.sck1, it may not take snapshots. If the
program is taking snapshots, it may not take check-
points on s.SCK1.

Execution of the Dump Program

Execution of the Dump program involves execution
of the Dump routine in the Nucleus before control is
passed to the four major phases of the Dump program
itself. The core storage used by the Dump program is
shown in Figure 9.

Dump Routine (5.SDMP)

The Dump Routine in the Nucleus saves the console
panel, copies the contents of the second and third
quarters of the first 16K core storage lecations onto
the system checkpoint unit, and moves the first quarter
of core storage to the third quarter. If a checkpoint
unit is not attached, parts of the copied information
are lost. The Dump routine uses the System Loader
to load the first phase of the Dump program into the
upper portion of this core storage area and transfers
control to it.

Phase 1 (IBDMP1)

The first phase of the Dump program consists of a
brief routine to copy the contents of the third and
fourth quarters of the first of 16K core storage locations
on the checkpoint unit to provide working space for
Phase 2. Upon completion of this function, it returns
control to the System Loader to load 100p2, ioLs, and
the second phase. If the system checkpoint unit is not
attached, this routine acts as a link to the second phase.

12K

T |

S.SDMP
IBDMP1
IBDMP2 I1OLS
IBDMP3 10OLS

Core storage occupied

?/
_

Figure 9. Use of Core Storage by the Durap Program

Core storage saved

Dump Program 25

Phase 2 (IBDMP2)

The second phase of the Dump program saves the
calling sequence and error number, scans the Error
Number Table in this phase, and pieces together the
messages to be typed and/or written on the system
output unit,

It is possible that a parameter will refer to data in a
location that has been overlaid by the Dump program.
Phase 2 processes all parameters that refer to data in
its own phase, or in that portion of the caller’s record
that has not been overlaid. It then reads in the portion
of core storage that has been saved on s.sck1 and
completes the messages with data from that record.

This phase also sets up a communication region con-
taining information supplied by the dump parameters
for use by Phase 3 and, if applicable, writes the console
and system panels on the system output unit. It calls
the System Loader, which brings in the third phase
of the Dump program.,

Phase 3 (IBDMP3)

Using the information in the communication region,
this phase writes on the system output unit the areas
of core storage and external storage specified in the
dump parameters.

Traceback: This feature of the Dump program per-
mits the path taken by the program to be followed
backward from the location of the calling sequence to
the Dump program by using the linkage director set
up by the save macro-instruction to determine which
subroutines were most recently entered. Each linkage
is counted as one level of traceback. The level of trace-
back is limited to prevent an unending loop of trace-
back attempts.

26

Snapshot Development: Whenever a programmer
uses the Snapshot subroutine, a switch is set to indi-
cate to the System Monitor that snapshots have been
taken. Upon return of control to the System Monitor,
the Supervisor calls the Dump program to interpret
or develop the binary snapshot(s) on the system check-
point unit. The Dump program rewinds the system
checkpoint unit and writes the snapshots on the sys-
tem output unit in the octal dump format.

Return Facilities: These facilities are provided to
permit the continuation of the calling program after
a dump has been taken. Core storage is restored and
control is passed to the final portion of the Restart
routine.

If a return is not specified after writing out the
specified areas of storage, the Dump program returns
control to the System Monitor, which continues to
read cards.

Dump Assembly Option

The following symbol definition appears in the sym-
bolic input to the Dump program, PHASE 2 (mDMP2):

IDPDT SET n=1

The coding to process the following features of the
Dump program will be deleted if n is 0:

1. Traceback

2. System panel dump

3. Dump of 1/0 device

4. Listed error message text

The deletion of these features shortens the Dump pro-
gram and allows a full core dump when storage has
been memory protected up to 8K.

Appendix A. IBJOB Deck Setup Using the
Debugging Package (Figure 9)

(SENTRY
Object /
Deck $IBLDR

r $DEND

.

Load=time /
Debuggil
P:clt:egf " Debug Requests and
Storage LIST Cards
{$IBDBL)
MAP I

g
T
N~

Compile-time
Debugging
Packet

Requests

V{ﬁsosc

$CBEND

(COBOL Source Deck

(SIBCBC
($iBJOB

Figure 10, Example of IBJOB Run Using Debugging Package

Appendix B. System Restrictions with Debug
Use

1. Checkpoint and restart, or sNaP, may not be used
with debugging if the Debug Work Unit is the system
checkpoint tape.

Form C28-6803-1
Page Revised 11/1/65
By TNL N28-0537-0

Appendixes

2. Location 2, used for linkage to the object-time
debugging routines, should not be destroyed by the
object program.

3. The deck name of the debugging deck is /pEBUG.
This name should not be used for deck or control sec-
tion names in the job to be debugged.

4. The /pEBUG deck will not stack debug requests.
Thus, subroutines called from a debug request may not
execute another debug request. This also applies to
select and special routines.

5. Real (floating-point) numbers may not be used in
arithmetic operations if the user’s computer is not
equipped with the single-precision floating-point in-
struction set. In addition, the Debug postprocessor
must be reassembled in order to bypass conversion of
any values to floating-point, double-precision, or com-
plex modes when listing the debugging dumps (sce
the publication IBM 7040/7044 Operating System (16/

32K): Systems Programmer’s Guide, Form C28-6339).

6. A FORTRAN statement number may not be used as
a debugging request point when it is associated with a
CONTINUE statement that terminates a po range when:
a. the po increment (po 1000 I=1, 10, increment)
is a variable, or
b. within a subprogram with adjustable dimensions,
the adjustable area is subscripted within the po
range, and the subscript includes the po variable
(1in the example above).

7. Symbolic debugging cannot be used on decks
loaded from the subroutine library, nor may a library
name appear in the variable field of a sLiNk card.

8. The /pEBUG deck will contain virtual references
to the real sections that contain symbols referred to in
the debug requests. These virtual references are gen-
erated prior to processing of sNAME, sUsE, and soMIT
cards. As a result, even though sxaME cards may be
used to retain at object time two or more control sec-
tions of the same name, debugging references may be
made to symbols in only one of these control sections.
If these debugging statements refer to the symbols in
the control section that has not been renamed, the user
need make no further changes. However, if the control
section being referred to is one which has been re-
named, the user must provide a sNAME card that in-
cludes the deck name /DEBUG as a qualifier.

For example, the following cards will change the
control section named A to B in peck1 and will permit

Appendix 27

Form C28-6803-1
Page Revised 11/1/65
By TNL N28-0537-0

debugging references to be made to the control section
or to symbols within the control section:

$NAME DECKI1(A)=B
$NAME /DEBUG(A)=B

9. Under the following circumstances, deck names
will be changed to names having the form /nnxyz,
where nn are decimal digits and xyz are the three high-
order characters of the original deck name:

a. if debugging is specified for a reLMop deck whose
deck name matches one of the real sections
created by an ENTRY pseudo-operation (i.e., has
length of zero) and the relative origin of the
real section is not zero, or

b. if the original deck name is of the form /nnxyz.

If the deck name appears on a $USE, SOMIT, Or SNAME
card, however, it will not be changed, and, therefore,
debugging references to symbols within this deck may
be undefined.

10. =Rn may not refer to aBsmop decks.

11. Debugging may not be used in an edit run.

12. It is illegal to use symbolic debugging for a job
using Tcp, unless the debug requests refer to the link
immediately preceding the sENTRY card or unless they
refer to the parts of previous links that are not over-
laid. No debugging action will occur until the last
core load has been loaded. When the last core load
has been loaded, debugging str’s will be placed at
the locations of all specified request points, whether
or not they have been overlaid.

13. Except for the information in the mBNuc Con-

28

trol Dictionary, symbolic information about either
aBsMoD decks or absolute text in a RELMOD assembly
will not be used by the postprocessor when debugging
dumps are listed. Therefore, a debugging dump of
an area assembled under an absolute origin will never
include its symbol name. In addition, a debugging
dump of an instruction that refers to this area will not
include as a part of the variable field the symbol name
of the area. Modal information will be used to deter-
mine the format of a debugging dump of a portion
of core storage that has been assembled under an
absolute origin only if the element in the LisT or pump
statement is one of the following: symbol, symbol
(subscripts), or (locl, loc2, mode). Otherwise the
mode will be considered octal.

14. sieprT cards may not be placed following the
debugging packet of a job run. siEpiT cards may be
located preceding the debugging packet, but the oc-
currence of a siBpBL card will terminate stepIT control
and return to s.siN1 for input.

15. The copy feature cannot be used in a run which
includes load-time symbolic debugging. If copy is
specified, it will be ignored.

16. The user cannot specify DEBUG requests in stor-
age-protected areas, although he can dump portions
of storage-protected areas.

17. If the system checkpoint unit is used as the
Debug Work Unit, it cannot be assigned. to the same
physical unit (logical unit for disk or drum) as the
unit for the load file.

Index

A page number in italics indicates that the designated refer-
ence is of particular importance.

S A 9,12,14
absolute location (see location, absolute)
accumulator 13, 16
address,base oo 16
alphameric mode (see mode, alphameric)
AND 11
arithmetic expression (see expression, arithmetic)
arithmetic operators 10
arithmetic statement 10,11
ATTAY o oo et 12, 13, 14, 15,18
BES (see pseudo-operations)
blanks . .. 8,10
BSS (seec pseudo-operations)
CALL statement 14
S$CBEND 6
checkpoint and restart 27
COBOL 5,6,7
language 5,6
procedural text oo 6
PIOZIAIN . . oottt 5,6,7
statement 6,7
comments card ‘10
COMMON . 13
blank 13
dumping of 13
labeled 13
compile-time oo 5,6,7,8
debugging 5,6,7
TEQUESE . . oot 56,7,8
complex mode (see mode, complex)
complex number 10, 12
conditional statement 9
console 13, 20, 22
control-section name 6,7
count-conditional statement 6,7,11
compile-time 6,7
load-time 11
data list 13
SDEBUG 9,15
/DEBUG 27, 28
debug request 5,6,7,8,9, 10, 14, 27, 28
debugging compiler 10, 18
debugging dictionary 8, 11, 12, 13, 14, 15
debugging language L 5,8
debugging output 13
debugging package 5,6, 8, 15
debugging packet 6,7,8,09, 12, 17, 18, 19, 27
compile-time 6,7
load-time 8,9, 12, 17, 18, 19
debugging work unit e 8,9, 13, 27
assumed
option 9
deckname, 9, 10, 14, 15, 27, 28
SDEND 00 8,9, 18
dimension 12, 14, 15
DISPLAY verb 6,7
DO statement 27
double-precision mode (see mode, double-precision)
dump marker option 8,9
dump parameters, 20, 22, 24, 26
dump routine 25
DUMP statementot .. 13

edit TUD . . o oot e 23
SENDCH 8
SENTRY ... 8, 28
EQU (see pseudo-operations))
EITOT MESSALZE . . o oo oo et 6, 20, £3
SETC . oot .9
exponentiation 7,10
EXPIeSSiON 10, 11, 13, 16
arithmetic 10, 11, 13, 16, 17
1 10, 11, 16
FATAL option 0. 6,7
floating-point mode (see mode, floating-point)
floating-point number oL 10, 12, 14
FORTRAN IV
input/output subroutines 9,18
labeled common 13
JANGUAZE . . oo 5,811
statements for debugging L 9, 10
FUnCHONS . . o v o oo e e e 10
GO TO statemento 7,12
hierarchy of modes 10
SIBCBC . oottt .6
SIBDBC .. oo , 7
SIBDBL 8,9, 18,19
SIBETC .. 8,15
IBLDR]
SIBMAP . . 5,15
IF statement 11,17
index registers 13,16,25
TOBS . 8,9
IOCS .. o 8,9,20
IOOP &9
JOBOU 89
JOBOUL ... i 8,9,19
KEEP (see pseudo-operations)
LINE MAX o e . 8
SLINK ... 8,27
LIST statement oo 12,13,28
load-time 5,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18,28
location 9, 12, 14, 15, 17, 20, 23, 24, 25,27
absolute 9, 12, 14
relative 9, 12, 14, 15

logical expression (see expression, logical)
logical operators (see operators, logical)

logical variables Al
MAP . 5, 8,12, 14, 15,719
marker ... 6,89
compile-time 8
load-time 8 9
mode 9, 11, 12, 14, 15, 28
alphameric 11,14
complex number 9, 14,.15
double-precision 9, 14,15
fixed point 12,34
floating point 9,12, 14
logical o 11,.14
octal ... 9, 11, 12,14
supplying to the debugging dictionary AR ¥
symbolic instruction 11,14
multiplier-quotient register 13,16
SNAME . 27,28
NAME statement, 10, 12, /4
=NEW 14

Index 29

NOT . 11
NUCIEUS oo oo oo 7, 20, 25
object deck 9,14
object program e 6,8,9
SOMIT7,27
ONstatement i .. 7,11,12, 16
OPEIAtOYS 10,11
address computation 16
arithmetic 10
logical 11
relational L 11
OR . 11
output editor 9
PAUSE statement 14
POSEPIOCESSOT oot 8,18,19
PIEPIOCESSOT . . o voti e ottt e e 8
PIOCESSOT . . . oottt ittt e 5178
pseudo-operations 15, 28
BES . 15
BSS 15
ENTRY 28
EQU oo 15
KEEP 15
SYN 15
TCD . 28
qualification 13,15
of LIST items [T 13
of symbols 15
=R e 9, 10, 28
real number (see floating-point number)
$SREDEF00oooo 9, 10, 14, 15
relational operators (see operators, relational)
restart 27
RETURN statement 14
SET statement 11, 16, 17
SNAP . 27
snapshot 25,26

30

snapshot development, 26

source deck 7,8
COBOL, 8
FORTRAN, 8
MAP 8

STR . 9, 28

statement number 9, 12, 15, 18

STOP statement 14

subroutines 9, 13, 14, 27
calling 14
FORTRAN o 9
library 27

subscript 10, 12, 13, 16, 17

Supervisor 20, 22

symbol 9, 10, 12, 13, 14, 15, 27, 28
defining for debugging 10, 14
MAP 14
MEW .ot 14,15
qualified 13,15
redefining 14,15
unacceptable, 14

Symbolic Umnits Table 27

SYN (see pseudo-operations)

system restrictions, .. 7, 27,28

systemunits 6, 9, 13, 19, 22, 23, 25, 26, 27
checkpoint 19, 23, 25,27
output 6, 9, 13, 22,26
utility ... 6

TCD (see pseudo-operations)

traceback 26

TRAP MAX option 8

unconditional statement 12

SUSE28

variable 10, 11, 12,15
logical 11
subscripted 10

work unit (see debugging work unit) -

WRITE statement 13

C28-6803-1

TBM

International Business Machines Corpaoration
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

"¥'S'N Ul patuld

1-€089-820

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

