File No. 7040-36
Form C28-6806-1

IBM Systems Reference Library

IBM 7040/7044 Operating System (16/32K)
Subroutine Library

(FORTRAN IV Mathematical Subroutines)

This publication contains information for both rortranN and Mmap
programmers who desire to use the FORTRAN 1v Mathematical
Subroutines.
The publication includes the information required to call each
subroutine (i.e., calling sequences and valid -argument ranges),
| optional returns for invalid arguments, algorithms and accuracy
statistics for most of the subroutines, timing estimates, error con-
ditions, and error messages.

Preface

This publication describes the FORTRAN 1v mathemati-
cal subroutines. These subroutines are available to any
FORTRAN IV or MAP programmer who wishes to use
them.
The first part of this publication deals primarily with
the rules for calling FORTRAN 1v mathematical subrou-
tines in either a FORTRAN 1v or MAP program. The
second part details the mathematical principles from
which these subroutines have been constructed. Also
included are performance statistics indicating the speed
and accuracy of the subroutines.
The reader should be familiar with one of the follow-
ing publications, depending upon the programming
language with which he works:
IBM 7040/7044 Operating System (16/32K): FOR-
TRAN IV Language, Form C28-6329

IBM 7040/7044 Operating System (16/32K): Macro
Assembly Program (MAP) Language, Form C28-
6335

Major Revision (May 1965)

This publication, Form C28-6806-1, supercedes the previous
cdition, Form C28-6806-0, which contained some errors regard-
ing the performance of the subroutines. Changes in the text
are indicated by a vertical line to the left of each change;
revised illustrations are indicated by the symbol (®) to the left
of each caption.

Copies of this and other 18BM publications can be obtained through 18m Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D39, 1271 Avenue of the Americas, New York, N.Y. 10020

© 1965 by International Business Machines Corporation

IBM Technical Newsletter ~ File Number

Re: Form No.
This Newsletter No.
Date

Previous Newsletter Nos.

Errata to IBM 7040/7044 Operating System (16/32K)
Subroutine Library
(FORTRAN IV Mathematical Subroutines)

Attached is a replacement for page 8 of the publication IBM 7040/7044 Operating
System (16/32K), Subroutine Library (FORTRAN IV Mathematical Subroutines),
Form C28-6806-1. The only change is a correction in the valid argument range for
subroutines XP2 and XP3.

File this newsletter at the back of the publication. It will provide a reference to
changes, a method of determining that all amendments have been received, and a
check for determining whether the publication contains the proper pages.

7040-36
C28-6806-1
N28-0542-0

February 1, 1966

None

IBM Corporation, Programming Systems Publications, Dept. D39, 1271 Avenue of the Americas, New York, N.Y. 10020

PRINTED IN U.S.A.

Contents

FORTRAN IV Mathematical Subroutine Library 5 Symbols Used In Describing Accuracy 15
T 5 Algorithms 15
Calling Sequence.c.oiveremeiraieaiean.. 5 Algorithms and Performance Statistics................. 16
Arguments and Answers.......... 5 XPN o 16
Double-Precision Arguments 5 SQR ... 16
Complex Arguments. 5 SCN L. 16
ADSWEIS .+ + o o oo e e 5 TNCT .« oot e 17
Role of the Execution Error Monitor. 6 ATN Lo 18
Floating-Point Trap Subroutine....................... 6 ARSCN 19
Floating-Point Overflow 6 LOG oot 19
Floating-Point Underflow 6 SCNH 20
Double-Precision Simulation. 6 TNH .. 20
Evaluating ACCUTACYottt 7 ERF 21
FORTRAN IV Mathematical Subroutines. 7 GAMA 21
Figure 2. Single-Precision Exponential Subroutines. 8 FDXP 22
Figure 3. Single-Precision Trigonometric Subroutines... 9 FDSQ ..ottt 23
Figure 4. Miscellaneous Single-Precision Subroutines... 10 FDLG 23
Figure 5. Double-Precision Exponential Subroutines. ... 11 FDSC ... 24
Figure 8. Double-Precision Trigonometric and) FDAT 25
Logarithmic Subroutines 12 FCSQ ... 25
Figure 7. Complex Subroutines..................... 13 FCXP ... 26
Figure 8. Other Subroutines 14 FCLG . . e e 26
FCSC .ottt e 26
Appendix A: FCAB ..ottt 97
Algorithms and Accuracy Considerations 15 FCA ..o 27
Introductory Information 15 MTN 27
ACCUTACY
Accur);cy of the Argament ig Appendix B: Storage Requirements 29

Performance of the Subroutine. 15 Appendix C: Error Messages

FORTRAN IV Mathematical Subroutine Library

Introduction

The FoRTRAN 1v mathematical subroutine library con-
tains three types of subroutines: single-precision,
double-precision, and complex. These subroutines may
be used by a FORTRAN 1v or a MAP programmer to per-
form mathematical computations. This publication pro-
vides the information required by a FORTRAN 1Iv or MAP
programmer who wishes to use these subroutines.

Calling Sequences

Each subroutine in the library provides one or two
mathematical functions. Each function is identified by
a unique entry point. For this reason, the name of each
subroutine is distinct from the name of its entry
point(s).

The method used to call a specific function depends
upon the programming language used (i.e., FORTRAN 1v
or MaP). In each case, however, the programmer must
specify an entry point and one or more arguments.
(An argument is the name of a location that contains
the value to be supplied as input to a function.) Figure
1 shows the general form by which a mathematical
function is called in each language. The specific form
for calling each function is shown in Figures 2 through
8 of the section “FORTRAN 1v Mathematical Subroutines.”

Arguments and Answers

The arguments of most of the functions provided by
the subroutines must be normalized floating-point num-
bers. Only the MmN, xP1, xP2, and Fpx1 subroutines
differ in this respect. These four subroutines, along
with xps, Fpxe, and Fca, require calling sequences that
differ from the general forms shown in Figure 1. These

exceptions are given in Figures 2 through 8 of the sec-
tion, “FORTRAN 1v Mathematical Subroutines.”

Double-Precision Arguments

A double-precision argument consists of two adjacent
words. The location of the first word is considered to
be the location of the entire argument. The first word is
the high-order part of the double-precision number,
while the second word is the low-order part. Map pro-
grammers should note that the location of the high-
order part must be an even-numbered storage loca-
tion if the processing unit they use is equipped with
the double-precision instruction set. This restriction
does not apply if double-precision operations are simu-
lated by the Floating-Point Trap Subroutine.

Complex Arguments

A complex argument consists of two adjacent words.
The first word contains the real part of the complex
argument, while the second word contains the imagi-
nary part. The location of the real part is considered
to be the location of the entire complex argument.

Answers

Each function produces a single answer. For FORTRAN
v programs, the answer is stored in the leftmost vari-
able of the arithmetic assignment statement that was
used to call the function (see Figure 1). For maP pro-
grams, upon return to the calling program, the answer
is found either in the Ac register (for single-precision
functions), or in the ac and mq registers (for double-
precision and complex functions). More specifically,
for double-precision functions, the high-order part of
the answer is stored in the ac, and the low-order part
in the mQ; for complex functions, the real part is stored
in the ac, and the imaginary part is stored in the MQ.

answer left in AC or AC-MQ

Source Calling Sequences for Functions Calling Sequences for Functions
Language that Require One Argument that Require Two Arguments
FORTRAN [V = entry point (argument) = entry point (arg1, arg2)
answer stored in 'y answer stored in y
MAP CALL entry point (argument) CALL entry point (argl, arg2)

answer left in AC or AC-MQ

Figure 1. General Form of Calling Sequences

FORTRAN IV Mathematical Subroutine Library 5

Role of the Execution Error Monitor

The nature of the functions and the nature of the ma-
chine registers used in computations impose certain
limits on the range of input arguments for most func-
tions. Figures 2 through 8 of the section, “FORTRAN 1v
Mathematical Subroutines” give the valid argument
range for each function.

Any function that places a limitation on the range of
arguments it will accept also provides the user with an
option for handling invalid arguments. These options
are called optional returns and each type of optional
return is identified by an error code. Thus, for each of
the 28 optional returns, there is a specific error code.
(The optional return and error code for each function
are given in Figures 2 through 8 of the section, “FoR-
TRAN 1v Mathematical Subroutines.”)

Whenever an invalid argument is detected by a func-
tion, the function immediately transfers control to the
Executor Error Monitor (i.e., subroutine xeM—see the
publication IBM 7040/7044 Operating System (16/
32K): System Programmer’s Guide, Form (28-6339,
for information about xem). The xEmM subroutine then
checks the option control bits (i.e., bits 1 through 28)
of maToP., a one-word control section within xem. The
position of each option control bit corresponds to an
error code (and, thus, a specific optional return); that
is, bit 1 corresponds to error code 1, bit 2 corresponds
to error code 2, etc. If the option control bit corre-
sponding to the error code of the function that called
XEM is set to 1, then the optional return for that par-
ticular function is to be taken. The xeEm subroutine
prints a warning message to this effect and execution
continues with the optional return having been taken.
However, if the option control bit is set to 0, then the
optional return for that particular function is not to be
taken and execution is to be terminated. The xEMm sub-
routine prints error messages for both the user and the
machine operator and then terminates execution.

In the distributed version of xem, all the option con-
trol bits in MaTOP. are set to 1. Thus, if these control
bits are not reset, all cases of invalid arguments will re-
sult in the taking of the appropriate optional return.
Termination of execution because of an invalid argu-
ment can result only for those functions whose option
control bits have been set to 0. This resetting can be
accomplished in either of two ways:

1. It can be done during execution by a MAP program
which reassembles the maTop. control section. How-
ever, the resetting is effective only for that particular
application.

2. It can be done prior to execution by reassembling
XEM so that the configuration of the option control bits
would permanently meet the user’s requirements.

Whenever an optional return is taken, a conventional

answer is returned to the user. Among the conventional
answers given for invalid arguments is the largest pos-
sible floating-point number, 2!27 — 2% in single-pre-
cision cases, or 2127 — 27 in double-precision cases. For
the sake of brevity, these numbers are written as omega
(i.e.,) in Figures 2 through 8 of the section, “FORTRAN
v Mathematical Subroutines.”

Floating-Point Trap Subroutine

A floating-point trap occurs whenever the ac or M, or
both, reach an overflow or underflow condition.

Floating-Point Overflow

Except for those subroutines that deal with complex
numbers, floating-point overflow can never occur be-
cause the arguments are screened upon entry to a sub-
routine. If an argument is one that could cause over-
flow, it is immediately treated as an invalid argument
and control passes to the Execution Error Monitor.

Floating-point overflow can occur during some of
the complex subroutines when an answer approaches
the overflow threshold even though both the real and
imaginary parts of the complex argument lie within the
valid range. Such is the case with those subroutines for
which the cost (in space and time) of an effective pre-
screening of arguments would be so excessive as to
hinder seriously the efficiency of the subroutine.

An occurrence of such an overflow causes a floating-
point trap. The Floating-Point Trap Subroutine (i.e.,
system subroutine rpT) then sets the ac and the mMQ ac-
cording to the trap condition. (See the publication
IBM 7040/7044 Operating System (16/32K): System
Programmer’s Guide, Form C28-6339, for information
about trap conditions.) After the ac and MQ have been
set, FpT prints an overflow message and then returns
control to the subroutine from which the trap origi-
nated.

Floating-Point Underflow

Any subroutine can cause floating-point underflow. An
occurrence of underflow causes a floating-point trap.
The rpT subroutine then sets the ac and M@ according
to the trap condition; after the ac and MQ have been
set, FPT returns control to the subroutine from which
the trap originated.

Double-Precision Simulation

If a 7040/7044 System is equipped with the double-
precision instruction set, the Subroutine Library will
take full advantage of it. However, for a 7040/7044
System that does not have the double-precision instruc-
tion set, the simulation of double-precision operations
is performed by the rpT subroutine as described below.

A floating-point trap occurs whenever a double-pre-
cision instruction is encountered during execution.
After the trap occurs, the Fpr subroutine simulates the
double-precision operation and then returns control to
the point at which the trap occurred.

Note: If double-precision simulation is not required,
the user may delete that part of rpr that provides the
simulation capability. The publication IBM 7040/7044
Operating System (16/32K): System Programmer’s
Guide, Form C28-6339, gives the details for the dele-
tion procedure.

Evaluating Accuracy

Because the size of each machine word is limited, small
errors may be generated by mathematical subroutines.
In an elaborate computation, slight inaccuracies can
accumulate to become larger errors. Thus, in interpret-
ing final results, the user should take into account any
errors introduced during the various intermediate steps.
For a detailed discussion of errors, see Appendix A,
“Algorithms and Accuracy Considerations.”

Fortran IV Mathematical Subroutines

The roRTRAN 1v mathematical subroutine library is
summarized in the figures that make up the rest of this
section. The figures are organized as follows:
Figure 2. Single-Precision Exponential Subroutines
Exponential (xpN)
Exponential, fixed-point base and exponent (xp1)
Exponential, floating-point base, fixed-point expo-
nent (xp2)
Exponential, floating-point base and exponent
(xp3) :
Square Root (sQR)
Figure 3. Single-Precision Trigonometric Subroutines
Sine/Cosine (scn)
Tangent/Cotangent (TNCT)

Arctangent (ATN)
Arcsine/Arccosine (ARSCN)
Figure 4. Single-Precision Miscellaneous Routines
Logarithm (Loc)
Hyperbolic Sine/Cosine (scNm)
Hyperbolic Tangent (TnH)
Error Function (Err)
Gamma/Loggamma (GAMA)
Figure 5. Double-Precision Exponential Subroutines
Exponential (Fpxp)
Exponential, with floating-point base and fixed ex-
ponent (Fpx1; entry point DXp1.)
Exponential, with double-precision base and sin-
gle- or double-precision exponent (rpxz2)
Square Root (¥psQ)
Figure 6. Double-Precision Trigonometric and Log-
arithmic Subroutines
Logarithm (¥prc)
Sine/Cosine (¥psc)
Arctangent (FDAT)
Figure 7. Complex Subroutines
Square Root (FcsQ)
Exponential (rcxp)
Exponential, with complex base and fixed expon-
ent (FDX1; entry point cxp1.)
Logarithm (rcrLc)
Sine/Cosine (Fcsc)
Absolute Value (rcas)
Arithmetic (rca)
Figure 8. Other Subroutines
MTN Routine
Modular Function (Fpmp)

Note: Some of the ranges in these figures are repre-
sented in powers of 2. Listed below are these values
and the approximate decimal value corresponding to
each.

277 == 5.878 X 10*

2% ==1.049 x 10°

2% =< 3.355 x 107

2% =<1.126 X 10®
2'* =« 1.663 X 10*

FORTRAN 1V Mathematical Subroutine Library 7

Form C28-6806-1
Page Revised 2/1/66
By TNL N28-0542-0

Options
Subroutine Entry Valid Argument Error If Argument Then the
Name Point Definition Calling Sequence Range Code Range Is Answer Is
XPN EXP y =e* FORTRAN IV x = 88.029692 8 x > 88.029692 Q
(exponential) y = EXP(x)
MAP
CALL EXP(x)
XP1 .EXP1. y=m" FORTRAN 1V m7#=0 1 o 0
(exponential, y = m**n n>0 m=n=20
ﬁxed-:of:m bas:a, MAP
m, and fixed-point CLA m
exponent, n) bQ n 2 m=0 0
CALL .EXP1. n<0
XP2 EXP2. y =x" FORTRAN IV x7#0
. k% 1 x=n=20 0
(exponential, y = x**n
floating-point I:.mse MAP
x, and fixed-point CLA x
exponent n) bQ n 2 x—=0 0
CALL .EXP2. n<0
XP3 EXP3. y = x/"2 FORTRAN IV x1 >0 1 x1 = x2 =0 0
(exponential, y = x1**xa
ﬂouting-poin.l base MAP
xl,'cmd floating- ClLA x 2 X =0 0
point exponent xz) 10Q xs x2 <0
CALL .EXP3. . 7 x1 < 0 [x|
x2 7% 0
SQR SQRT y = xi FORTRAN IV x=0 14 x <0 [x[?
(square root) y = SQRT(x)
MAP
CALL SQRT(x)

®Figure 2. Single-Precision Exponential Subroutines

Options

CALL ARCOS(x)

Subroutine Entry Valid Argument Error If Argument Then the
Name Point Definition Calling Sequence Range Code Range Is Answer Is
SCN SIN y = sine(x) FORTRAN IV x| <2® 12 | x|=2% 0
(sine and cosine y = SIN(x)
functions, w!1ere MAP
argument x is CALL SIN(x)
expressed in radians)
cos y = cosine(x) FORTRAN IV
y = COS(x)
MAP
CALL COS(x)
TNCT TAN y = tan(x) FORTRAN 1V | x| < 2* and x may 3 [x|=2% 0
(tangent and co- y = TAN(x) not be an odd -
tangent functions, MAP integral multiple x=k —
where argument x CALL TAN(x) of m/2 (see Note) 4 where k is an o
is expressed in odd integer
radians) —
COTAN |y = cot(x) FORTRAN IV | x] < 2™ and x may [x]|=2* o
y = COTAN(x) not be a multiple 4 x=ku Q
MAP of 7 (see Note) where k is
CALL COTAN(x) an integer
ATN ATAN |y = arctan(x) FORTRAN IV Any argument not not not
(arctangent y = ATAN(x) applicable{ applicable applicable
functions, where MAP
the result y is in CALL ATAN(x)
radians) —_———
ATAN2 y = arctan (ﬁ) FORTRAN IV (x1,x2) 5% (0,0) 9 (x1,x2) = (0,0) 0
X2 y = ATANz(X1,X2)
MAP
CALL ATAN2(x1,x2)
ARSCN ARSIN | y = arcsin(x) FORTRAN IV [x]=1 13 [x|>1 0
(arcsine and y = ARSIN(x)
arccosine functions, MAP
where the result y CALL ARSIN(x)
is in radians)
ARCOS | y = arccos(x) FORTRAN IV
y == ARCOS(x)
MAP

Note: For a more detailed discussion of the valid argument ranges for the TNCT subroutine and how these ranges may be
reduced with the MTN subroutine, see Appendix A, “Algorithms and Accuracy Considerations.”

expanded or

Figure 3. Single-Precision Trigonometric Subroutines

FORTRAN IV Mathematical Subroutine Library ¢

Options

ALGAMA

©
y = log [{ u""(e“')du:l

y = ALGAMA(x)
MAP
CALL ALGAMA(x)

or

x = 1.54926(2'%)

Subroutine Entry Valid Argument Error If Argument Then the
Name Point Definition Calling Sequence Range Code Range Is Answer ls
LOG ALOG y = loge (x) FORTRAN 1V x>0 10 x=0 —Q
(common y = ALOG(x)
and n.uturol MAP
fogarithm CALL ALOG(x)
functions)
ALOG10 |y = logu (x) FORTRAN |V 1 x <0 log | x |
y = ALOG10(x)
MAP
CALL ALOG10(x)
SCNH SINH — 1 e — e FORTRAN IV | x| = 88.029692 5 | x | > 88.029692 o
(hyperbolic =2 e y = SINH(x)
sine c.md cosine MAP
functions) CALL SINH(x)
COSH I AP FORTRAN IV
y=7 @ +e? y = COSH(x)
MAP
CALL COSH(x)
TNH TANH et —e" FORTRAN IV any argument not not not
(hyperbolic Y= + e y = TANH(x) pplicabl pplicabl applicable
tangent) MAP
CALL TANH(x)
ERF ERF X FORTRAN 1V any argument not not not
(error sub- y = _if e'"ﬂdu y = ERF(x) applicable applicable applicable
routine) L ° MAP
CALL ERF(x)
GAMA GAMMA =] FORTRAN IV 277 < x < 34.843 271 = x Q
(gamma and Y ={ v (e ™)du — GAMMA(x) 20 or
|cggcfmma MAP x == 34.843
functions) CALL GAMMA(x)
FORTRAN IV 0 < x < 1.54926(2"™) 21 x=0 Q

Figure 4. Miscellaneous Single-Precision Subroutines

10

Options

CALL DSQRT(x)

Subrautine Entry Valid Argument Error If Argument Then the
Noame Point Definition Calling Sequence Range Code Range Is Answer Is
FDXP DEXP y =e* FORTRAN IV x = 88.029692 24 x > 88.029692 Q
(exponential) y = DEXP(x)
MAP
CALL DEXP(x)
FDX1 DXP1. y=x" FORTRAN IV x5%0 1 x=n=0 0
(exponential, y = x**n n=0
floating-point base MAP]
x, and fixed-point CLA x
exponent n) bQ x 4 1 2 x=0 0
(see Note 1) TSL DXPI. n<0
PZE n
FDX2 DXP2. y = x:™2 FORTRAN IV x1 >0 1 x1==xa =0 0
(exponential, Yy = x1**xz x2 =0 or
double-pret:sion MAP x3 < 0
b,"": X °":j o CLA x]
smg.e.- or double- DQ x: + 1
precisfon ex- TSL DXP2. 7 x1 < 0 | X1 l”
ponent xa) pfx x2 xa 5% 0
(see Note 2)
FDSQ DSQRT y = xi FORTRAN IV x=0 28 x <0 | x |2
(square root) y = DSQRT(x)
MAP

ision exponent

Pr

exp

Note 1: Subroutine FDX1 also has an entry point, CXP1., that provides an exponential function for a complex base with a fixed-point ex-
ponent. Information on CXP1. is found in Figure 7.
Note 2: pfx = PZE for a double-prec
pfx = MZE for a singl

Figure 5. Double-Precision Exponential Subroutines

FORTRAN 1V Mathematical Subroutine Library 11

Options

y = DATAN2(x,,x2)

MAP
CALL DATAN2(x1,x2)

Subroutine Entry Valid Argument Error If Argument Then the
Name Point Definition Calling Sequence Range Code Range Is Answer Is
FDLG DLOG y = loge(x) FORTRAN IV x>0
(natural and = DLOG(x)
:omn:lon logarithm MAP \ e 0
unctions) CALL DLOG(x) 5 x = —
DLOG10 | y = logio(x) FORTRAN IV 2 x <0 log | . I
y = DLOG10(x)
MAP
CALL DLOG10(x)
FDSC DSIN y = sine(x) FORTRAN IV [x| < 2% 27 x| = 2% 0
(sine and cosine y == DSIN(x)
f:ncﬁons, where MAP
the argument x CALL DSIN(x)
is expressed in
radians) DCOS y = cosine (x) FORTRAN IV
y — DCOS(x)
MAP
CALL DCOS(x)
FDAT DATAN y = arctan(x) FORTRAN IV any not not not
(arctangent y = DATAN(x) argument applicable applicable applicable
f:ncﬁonls, vs{here MAP
the result y is CALL DATAN(x)
expressed in
radians) DATAN2 | y — arctan (%) FORTRAN IV (x1,x2) 7= (0,0) 22 (x1,x2) = (0,0) 0

Figure 6. Double-Precision Trigonometric and Logorithmic Subroutines

12

For the purpose of the following figure,

Z = (X1, Xp) = X3 + X

Yy = (y1, y2) = y1 +iy2

Options
Subroutine Entry Valid Argument Error If Argument Then the
Name Point Definition Calling Sequence Range Code Range Is Answer Is
FCSQ CSQRT | y =z} FORTRAN IV any argument not not not
(square root) y = CSQRT (z) (see Note 1) pplicabl pplicabl applicable
realy =0 MAP
CALL CSQRT(z)
FCXP CEXP y=-¢e" FORTRAN IV x1 == 88.029692
(exponential) y = CEXP(z) | Xz | < 2% 15 x1 > 88.029692 Q(cosxs -~ isinxz)
MAP 16 | x| == 2% 0+ 0i
CALL CEXP(z)
FDX1 CXP1. y=12" FORTRAN V- z50
(exponential, y = z**n n>o0
complex base z, MAP 1 z=nz=
and fixed-point CLA z 2 z— 0
expo:'an' n) 10Q z 41 n<o
(see Note 2) TSL CxPl.
PZE n
FCLG CLOG | y =PV loge(z)| FORTRAN IV 2540 4 0 17 z2=1040i — Q4 0i
(natural logarithm) (see Note 3) y = CLOG(z) (see Note 1)
MAP
CALL CLOG(z)
FCSC CSIN y = sine(z) FORTRAN IV | x| < 22
(sine and cosine y = CSIN(z) | xa | = 88.029692
functions) MAP
CALL CSIN(2) 18 | x2 | > 88.029692 (see Note 4)
ccos = cosine(z) | FORTRAN IV 19 [x| =2 0 + 0i
y = CCOS(z) or
— 0 — 0
MAP o
CALL CCOS(z)
FCAB CABS y = I z] FORTRAN 1V any argument not not not
(absolute value) y = CABS(z) (see Note 1) pplicabl pplicabl applicable
MAP
CALL CABS(z)
FCA FCAOP.| Complex (see Note 5) any argument not not not
(arithmetic addition, (see Note 1) pplicabl pplicabl applicable
operations) subtraction,
multiplication,
and division
Note 1: Floating-point overflow can occur. Note 5: Calling sequences for FCA subroutine:
Note 2: Subroutine FDX1 also has an entry point, DXP1., to an ex-
ponential function for a ﬂoahng-polnf.base on.d a fixed-point Arithmetic MAP
exponent. (See Figure 5 for further information.) Operation FORTRAN IV 21 in AC-MQ
Note 3: The letters “PV" indicate that the “Principal Value’” is re- P !
turned to the user. That is, the answer given will be from
that branch where the imaginary part lies between — Addition y=zn+4z TSL FCAOP.
and . More specifically, — 7 <y:= 7 unless x; <0 and z+ 22 PZE z:
xz == —0 in which case y» = —r.
Note 4: Optional answers for FCSC subroutine when imaginary part . _
of the complex argument is invalid: Subtraction y=En—zn TSL FCAOP.
Z— Z2 PON z:
result of result of
if xa is CSIN(z) is CCOS(z) is Multiplication Yy = 'z TSL FCAOP.
Q Q z "z PTW z.
> 88.029692 2 (sinxy -}- icosx;) g (cosxy — isinx,)
Q Q Division Yy =2z/z TSL FCAOP.
l < —88.029692 2 (sinx; — icosx:) =, (esox: - isinxs) z1/22 PTH z.
£4

@ Figure 7. Complex Subroutines
FORTRAN IV Mathematical Subroutine Library 13

Options

denote the in-
tegral part of
the quantity

CALL DMOD(x,z)

Subrovutine Entry Valid Argument Error tf Argument Then the
Name Point Definition Calling Sequence Range Code Range s Answer Is
MTN MTAN Resets the ac- FORTRAN IV k=0 not not not
curacy guarantee CALL MTAN(k) but k must be applicable applicable applicable
for the single- MAP an integer
precision tangent CALL MTAN(K) (see Note)
subroutine.
FDMD DMOD y = x (mod z) FORTRAN IV any double- not not not
(modular is computed as y — DMOD(x,z) precision applicable applicable applicable
function) y=x—[x/z] z MAP floating-point
where brackets numbers

Note: A detailed description of the purpose and use of MTN is foundin Appendix A, “Algorithms and Accuracy Considerations.”

Figure 8. Other Subroutines

14

Appendix A: Algorithms and Accuracy Considerations

Introductory Information

This section contains information on the algorithms
and performance of most of the subroutines in the
FORTRAN 1v mathematical subroutine library. The sub-
routines for which no such information is given are:
XP1, XP2, XP3, FDX1, FDX2, and FDMD.

Accuracy

Because the size of a machine word is limited, small
errors may be generated by mathematical subroutines.
In an elaborate computation, slight inaccuracies can
accumulate to become larger errors. Thus, in inter-
preting final results, the user should take into account
any errors introduced during the various intermediate
stages.

The accuracy of an answer returned by a subroutine
is influenced by two factors: (1) the accuracy of the
argument, and (2) the performance of the subroutine.

The Accuracy of the Argument

Most arguments contain errors. An error in a given
argument may have accumulated over several steps
prior to the use of the subroutine. Even data fresh
from input conversion contain slight errors since deci-
mal data cannot usually be exactly converted into the
binary form required by the processing unit; the con-
version process is usually only approximate. Argument
errors always influence the accuracy of answers. The
effect of an argument error on the accuracy of an an-
swer depends solely on the nature of the mathematical
function involved and not on the particular coding by
which that function is computed within a subroutine.
In order to assist users in assessing the accumulation of
errors, a guide on the propagational effect of argument
errors is provided for each function. Wherever possi-
ble, this is expressed as a simple formula.

The Performance of the Subroutines

The performance statistics supplied in this appendix
are based upon the assumption that arguments are
perfect (i.e., without errors, and therefore having no
argument error propagation effect upon answers). Thus
the only errors in answers are those introduced by the
subroutines themselves.

For each subroutine, accuracy figures are given for
one or more segments throughout the valid argument
range(s). In each case the particular statistics given
are those most meaningful to the function and range

under consideration. For example, the maximum rela-
tive error and standard deviation of the relative error
of a set of answers are generally useful and revealing
statistics, but useless for the range of a function where
its value becomes 0, since the slightest error of the
argument value can cause an unbounded fluctuation
on the relative magnitude of the answer. Such is the
case with sin(x) for x near =, and in this range it is
more appropriate to discuss absolute errors.

Symbols Used in Describing Accuracy
In the presentation of error statistics, the following
symbols are employed:

g(x) = the answer given by the subroutine for the mathe-
matical function under discussion.

f(x) = the correct extra precision answer for the mathe-
matical function under discussion.

€ = f(x)f(;)g(x) , the relative error of the answer.

X

& = the relative error of the argument.

E = |f(x) — g(x) | , the absolute error of the answer.

A = the absolute error of the argument.

M(E) = Max | f(x) — g(x) | , the maximum absolute error
produced during testing.

M(e) = Max f(i)f_(.—x)g()o , the maximum relative error

produced during testing.

o(E) = '\/’1{1’? |f(x') — 8()| | the root-mean-square
(standard deviation) absolute error.
1 f X1) — Xi
w0 =\ S [
(standard deviation) relative error.

When applied to complex numbers, the absolute
value signs in the above formulas should be regarded
as denoting complex absolute value. Thus, the above
formula for E represents the vector error when applied
to a complex function.

2

, the root-mean-square

Algorithms

Some of the formulas are widely known; those that are
not widely known are derived from more commonly
known formulas. In such cases, the steps leading from
the common formula to the computational one have
been detailed so that the derivation may be recon-
structed by anyone who has a basic understanding of
mathematics and who has access to the common texts
on numerical analysis. Background information for
algorithms involving continued fractions may be found
in Wall, H.S., Analytic Theory of Continued Fractions,
D. Van Nostrand Co., Inc., Princeton, N. J., 1948.

Appendix A: Algorithms and Accuracy Considerations 15

Algorithms and Performance Statistics

Single-Precision Exponential—XPN
Algorithm

1. Write x[logs(e)] = n+r (where n is the integer
part and r is the fraction part). Then

e =(2")(29), -1 <r<1

2. Compute 2' by means of a rational approximation
formula. This formula was derived in the following
way:

Take the Gaussian-type continued fraction

L z z 2z 2z z 2z z 2z
“1-142-342-5+2-T+2—...,
truncate at the ninth term and rewrite it to obtain

&3

o 1680 -+ 840z 4 180z* 4 202° 4 z*
~ 1680 — 840z + 180z* — 20z° 4 z*

Substituting r[log.(2)] for z and rewriting the above,
we get:

2r

Cr”——-r—l—D—(?—_E—A)

where A, B, C, and D are constants.

The maximum relative error of this formula is
1.6 X 109,

3. If x <—89.415987, then 0 is given as the answer.

4. Computation is carried out in fixed-point to mini-
mize truncation errors.

2 =1+

Effect of an Argument Error

e~ A. Since A = 8x, for the larger value of x, even the
round-off error of the argument causes a substantial
relative error in the answer.

Performance Statistics

Average

Root-Mean-Square Maximum .Speed in
Argument Relative Error Relative Error | Microseconds
Range o(e) M(e) 7040) 7044
0=x=1 3.37 X 107° 7.32 X 107 859 339
| x| = 88.028 4.80 X 10°° 150 X 10° | 850 | 334
Note: The sample arguments upon which the above statistics are

based were uniformly distributed over the specified range.

Figure 9. XPN, Exponential Function
Single-Precision Square Root—SQR
Algorithm

1. Write x = [2?»—4] (m), where p is an integer, |
q=0 or 1, and 1/2=m <1. Then, Vx =20 1/2=9(m)
for1/4 = [2-9(m)] < L.

16

2. The first approximation y, of vx for 1/4=x<1
is obtained by one of the four hyperbolic fits of the
form y, =a +b/(c + x) depending on the size of x.
If 2-12=x< 1, then the constants ¢, b, and ¢ are
chosen to minimize the relative error of the fit while
giving the exact value for x = 1. The maximum relative™
error of this fit is 0.5 X 10—¢, and its contribution to the
final relative error is less than 0.13 X 10-8, :

If 1/4 = x < 2732 or 2732 = x < 1/2, o
1/2=x<2-1/2, the constants a, b, and ¢ are chosen
to minimize the contribution to the absolute error of
the answer. In these cases, the contribution to the final
absolute error is less than 0.5 X 10—2, or 0.6 X 10—?, or
0.7 X 10—? depending on the range.

3. Apply the Newton-Raphson iteration once to get

the answer:
1 X
Y1 —-2‘()’0 +;)

Effect of an Argument Error

e~3%38

Performance Statistics

Average
Root-Mean-Square Maximum .Speed in
Argument Relative Error Relative Error Microseconds
Range ale) M(e) 7040 | 7044
All positive 3.32 X 10° 7.54 X 107° 688 243
numbers

Note: The sample arguments upon which the above statistics are
based were exponentially distributed over the specified range.

Figure 10. SQR, Square Root Function

Single-Precision Sine/Cosine—SCN

Algorithm
1. sin (—x) = — sin (x),
x=0,

cos (—x) = cos (x); assume

2. Write x =71r—— (q) + r, where g is an integer, and
ér<%.Leth = q [mod 8].

3. If cos (x) is desired, raise qo by 2, reduce it modulo
8 and compute sine. If sin (x) is desired and if x < 213,
give x as the answer.

4. Now the case is reduced to the computation of

sin (% qo + 1), 0 = qo = 7. Using the formulas:

sin[%(él + qo) + r] = —sin [%(qo) + r] 0=q=3

sin[lz——l-- 1']: cos[—z— — r]

sin [% -+ r:l = cos (r)

NERn I,

sin 2 -l—r]_sm i
the case is reduced to the computation of sin (r) or
cos (r) for0=r é%. ‘

5. The coefficients of the approximation
sin (r) =1 (so + $112 + sor* + s31%) were obtained by the

Chebyshev interpolation over the range 0 =r é% .

The coefficients of the approximation
cos (r) =1 cyr% + cor* + c3r® + cyr® were obtained by
the Chebyshev interpolation over the range

=r="T
—001l=r i

The relative error of the sine formula is less than
0.34 X 108,

The relative error of the cosine formula is less than
0.73 x 1010,

6. Computations are carried out in fixed-point to
minimize truncation errors.

Effect of an Argument Error

E ~ A. As the argument gets larger, A grows, and since
the value of the function is periodically diminishing, no
consistent relative error control can be maintained out-

side the principal range of(— -, =). This holds true
2 2
for cosine as well.
Performance Statistics
Average
Root-Mean-Square Maximum Speed in

Microseconds

Average

Root-Mean-Square Maximum Speed in

Argument Relative Error Relative Error
Range a(e) M(e) 7040 | 7044
[x] = % 4.82 X 107° 1.64 X 10° | 1063 | 437

Figure 11. SCN, Sine Function (I)

Average

Root-Mean-Square Maximum Speed in

Argument Absolute Error Absolute Error | Microseconds
Range o(E) M(E) 7040 | 7044
|x|= 3 0.90 X 27 120 X 2% | 1063 | 437
%< [x|=10| 110x2* 184 X 27 | 1150 | 475
10<[x|é100 111 x 27% 1.90 X 277 1154 482

Figure 12. SCN, Sine Function (II)

Argument Absolute Error Absolute Error | Microseconds
Range o(E) M(E) 7040 | 7044
0=x=nm 1.14 X 27% 1.85 X 277 1236 501
—20=x<0 -8 —27
< x = 20 1.11 X 2 1.88 X 2 1234 500

Figure 13. SCN, Cosine Function

Note: The sample arguments upon which the statistics in Figures
11, 12, and 13 are based were uniformly distributed over the speci-
fied ranges.

Single-Precision Tangent/Cotangent—TNCT

Algorithm
1. If x <0, use tan (x) = —tan (|x|),
cot (x) = —cot(|x|). Assume x=0 now.

2. Write x =%(q) + 1, where q is an integer and

Oér<—1— . Let qo = q [mod 4].

3. If =0 or 2 (ie., octant 1 and 3), define r,=r.
If go=1 or 3 (ie., octant 2 and 4), define ro = i - T,

4. Define the case number s as follows:

If tan (x) is desired, s = qj.

If cotan (x) is desired, s =1 for qo = 0, or s =0 for
qo =1, or s =3 for qo = 2, or s = 2 for qp = 3.

5. Compute the factor F as follows:

13.946 r# — 313.11
1 — 104.46 + (33?;%3)
(]

Ifro=2" thenF = 1.

F=1+ , if ro > 27

This approximation can be obtained by rewriting the
continued fraction:
tan(r) 1 1° 1’ I? e
To ~ 1—3—5—17 —8.946
The maximum relative error of this formula is 10--°,

6. Now the answer is ro/F for s =0, F/r, for s =1,
— F/ry fors =2, — ro/F fors = 3.

Relative Error Control

Let x = (2%) m. If the case number s above is 1 or 2,
and if the reduced argument r, is less than 2—26+2 (with
the exception of a cotangent entry with small argu-
ments), an execution error is signalled. This is the case
when the argument is so close to a singularity that the
minimal indeterminate value of the argument (caused
by pre-rounding) can cause a relative error of up to
1/3. No screening is given for arguments near a zero
of the function.

Appendix A: Algorithms and Accuracy Considerations 17

The foregoing can be strengthened or eliminated by
the use of the MmN subroutine.

An execution error is also signalled if |x| = 2%, or if
the cotangent function is requested with |x| <2725,

Effect of an Argument Error

E ~ A/cos?(x), e~ 2A/sin (2x) for tan (x). Thus, near
the singularities x = (k + 1/2) =, where k is an integer,
neither absolute error control nor relative error con-
trol can be maintained. Similarly, this is true for
cotan(x), where x = k =, and k is an integer.

Performance Statistics

Single-Precision Arctangent—ATN

Algorithm
1. Assume 0=x=1],
arctan (—x) = — arctan (x);
arctan(l%l) :% —arctan (|x|)

2. If [tan(15°):| =x =1, reduce further to the range
x| = [tan(15°)] by arctan(x) = 30° + arctan(X), where
_4
x+V3

3. By transforming the Taylor series into a con-
tinued fraction, we obtain

£=V3—

Average % (4)(5)
|Root-Mean-Square Maximum 'Speed in tan(x) = 1— x* + 5 (THT)9)
Argument Relative Error Relative Error | Microseconds arctanix) = x 3 5 o 43 e
Range) M(e) 7040 | 7044 7 tx man T W
(where w is an abbreviation for further items)
Ix|= % 4.40 x 107 1.41 X 10 | 1106 | 458 Dropping w and rewriting the formula, we get
o T - - 64 x* (41)(64)
<|x|= 529 X 10° | (6.46 X 10+ | 1386 | 557 — -
4 I I 2 arctan(x) =X (3)(53)(72) + (53)(72) +
% <[x]=10] 935x10° (6.09 X 107%* | 1307 | 532 (3%A3)(79)
BT
i 100 5~ 100 . (14641)(1100)
<|x|= 9.70 X 10 (9.97 X 107%* | 1311 | 533 o 34063 NA3T
(3)(5)(13)(79) < (11)(389)
Fi 14. TNCT. T: t F i (3)13)(79)
1gure 1% - Hangent Function The maximum relative error of this approximation
for |x| = [tan(15°)] is 6 X 1011,
4. Fixed-point computation is used to minimize
truncation errors.
Average 5. arane provides the extended answer range
Root-Mean-Square Maximum .Speed in —r=y=m, depending on the combination of signs
Argument Relative Error Relative Error Microseconds of the two arguments.
Range o(€) M(e) 7040 | 7044
Effect of an Argument Error
L - -
Ix|= 7 434 X 10 134 X 107 | 1234 | 498 E~ ﬁ. For small x, e ~ §; and as x becomes large,
X
s the effect of § on e diminishes.
X =271 105x 10°® (8.64 X 10°%* | 1345 | 537
4 < %1 4 Performance Statistics
3r — -8 -8 Average
4 < Ix I =10 9.08 X 10 (241 X 107)* | 1406 559 Argument Root-Mean-Square Maximum .SPeed in
Range Relative Error Relative Error Microseconds
a(e) M(e) 7040 | 7044
Figure 15. TNCT, Cotangent Function
. The Entire Range 3.56 X 10~° 1.41 X 107 1293 516

*The figures cited as the maximum relative errors are those en-
countered among 2500 random samples in the respective ranges.
For all the perfect arguments in the full legal range (under the
standard error control), the maximum relative error is estimated to
be 2 X 107

Note: The sample arguments upon which the statistics in Figures
14 and 15 are based were uniformly distributed over the specified
ranges.

18

s

range.)

Note: The sample arguments upon which the above statistics are
based were tangents of uniformly distributed numbers between

-3 and 12r_ (That is, the sample was such that the values re-

turned by the function were uniformly distributed over the answer

Figure 16. ATN, Arctangent Function

Single-Precision Arcsine/Arccosine—ARSCN
Algorithm

1. If 0=x=1/2, compute arcsin(x) by the use of
the Chebyshev interpolation polynomial of degree 5
over this range.

2 If L<x=1,

arcsin (x) = -7—2"—_ 2 [arcsin(\/i—z:—x)]

In this range we have 0= \/ 1 ;}E< 1/2, which re-

duces the case to that of item 1 above.

3. If 0=x=1, arccos(x) = % — arcsin(x). This re-
duces the case of arccosine to that of arcsine.

4. If —1=x<0, use arcsin(x) = — arcsin(— x), and
arccos(x) = = — arccos(— x) to reduce to the earlier
cases.

5. The sQr subroutine is used in step 2, above.

Effect of an Argument Error

A
E ~——== Thus, for small x, E ~ A, For arsiN with

V1 — x2
a small x, e ~ §. Toward the limit of the range, a small
argument error causes a substantial error in the answer.,

Performance Statistics

Average

Root-Mean-Square Maximum Speed in

Argument Relative Error Relative Error | Microseconds
Range o(e€) M(e) 7040 | 7044
[x [= 539 x 107 3.15 X 107 1335 551

Figure 17. ARSCN, Arcsine Function

Average

Root-Mean-Square Moaximum Speed in

Argument Relative Error Relative Error Microseconds
Range a(e) M(e) 7040 | 7044
[x|=1 5.60 X 107 1.93 X 10° | 1421 | 575

Figure 18. ARSCN, Arccosine Function

Note: The sample arguments upon which the statistics in Figures
17 and 18 are based were uniformly distributed over the specified
range.

Single-Precision Logarithm—LOG
Algorithm

1. If |1 —x| <277, use the polynomial approxima-
tion:

log(l + z) =z — [27 + 3(27%)] 22 + % z°%,
wherez = x — 1.
The maximum relative error of this formula for
|z| <277, is 3x 108,
2. If |1 —x|=277, reduce the case as follows:

write x = 2%(m), where —;; =m<1;

1

m———
= —\/—12 , then | z | < 0.1716.

s

l1+2z 5
Also T = mV2 and

log.(x) = [p— % + log: (if :)] log«(2).

3. By transforming the Taylor series into a continued
fraction, we obtain

2

VA

5
5
-7tz + w(z)

142\ . z
log. (1_2) =2z 14 3 +

(1)(11)
2843

remainder term w(z) is l:

When z = , the approximate value of the

_ 1—1] . Thus, we ob-

(7)(9)(140)
tain the approximation:

o (l + Z) _(3)(4)(B)T*) — (3)(3371)(z") — (1019)(z*)

C\T—2/57 @@6EI™) — 0)E311=)

This formula reduces to the form
loge G i ;) =z [(:1 + c222 + c3/ (22 + c4)].

The maximum relative error of (*) is 0.62 X 10~-*
for |z| <0.1716. However, since the procedure in item
2 may involve the cancellation of significant digits, this
relative accuracy can not be maintained for the final re-
sult if the argument value is near 1.

(22) (0

Effect of an Argument Error

E ~ 8. In particular, if § is the round-off error of the
argument, say 8§ ~7 X 10—2, then E ~7 X 10~?. This
means that if the argument is close to 1, the relative
error can be very large, since the value of the function
at that point is very small.

Performance Statistics

Average
Root-Mean-Square Maximum .Speed in
Argument Absolute Error Absolute Error | Microseconds
Range o(E) M(E) 7040 | 7044
—-]i = é—z 117 X 27% 1.44) 27 1024 419
16 16
Note: The sample arguments upon which the above statistics are
based were uniformly distributed over the specified range.

Figure 19. LOG, Natural Logarithm Function (I)

Appendix A: Algorithms and Accuracy Considerations 19

Effect of an Argument Error
Average
Root-Mean-Square Maximum Speed in For the siNu function:
Argument Relative Error Relative Error | Microseconds A2 A
Range a(e) M(e) 7040 | 7044 E ~ A [cosh(x)] + —-[sinh(x)] and e~ A [coth(x)] + —5~
All positive For the cosu function:
numbers outside| 330 5 100 | 895 10° | 1104 | 452 , A2 A®
(E a7 E ~ A [sinh(x)] + 5~ [cosh(x)] and e ~ A [tanh(x)] + —-
16 16
In particular, for cosH, e ~ A over the entire range.
Note: The sample arguments upon which the above statistics are H £ . 11 value §
based were exponentially distributed over the specified range. owever, 1or SINH given a small value 1or x, e ~ 3.

Performance Statistics
Figure 20. LOG, Natural Logarithm Function (II)

Average
Root-Mean-Square Maximum .Speed in
Average Argument Relative Error Relative Error | Microseconds
Root-Mean-Square Maximum Speed in Range o(e) Me) 7040 | 7044
Argument Absolute Error Absolute Error | Microseconds
Range o(E) M(E) 7040 | 7044 [x |=0.3466 578 X 107 1.45 X 10°® 731 | 288
—:i =x = % 1.95 X 27 114 x 27 1151 471 0.3466<|x|=10] 7.10 X 107 2.61 X 10°® 1427 | 534
Note: The sample qrgur.neljis upon which the .ubove statistics are Figure 23. SCNH, Hyperbolic Sine Function
based were uniformly distributed over the specified range.
® Figure 21. LOG, Common Logarithm Function (I) Average
Root-Mean-Square Maximum .$peed in
Argument Relative Error Relative Error | Microseconds
Range ole) M(e) 7040 | 7044
Average
Root-Mean-Square [Maximum Speed in [x|=10 7.26 X 10° 222 X 10° | 1314 | 500
Argument Relative Error Relative Error | Microseconds
R ol Mi(e; 7040 | 7044
ange © @ Figure 24. SCNH, Hyperbolic Cosine Function
All positive Note: The sample arguments upon which the above statistics in
numbers outside 4.84 X 10° 1.75 X 107 1231 504 Figures 23 and 24 are based were uniformly distributed over the
(_E , A7 specified range.
16 16
Note: The sample arguments upon which the above statistics are Single-Precision Hyperbolic Tungent—TNH
based were exponentially distributed over the specified range.
Algorithm
@ Figure 22. LOG, Common Logarithm Function (II) 1. For [x] < 0.5493, use a modified continued fraction
X x° X X x
Sinalo-Procision Hymarbolic Sine/Hyparbolic toh®) =7 + 3 + F + 7 + 502743
ingle-Frecision erpolic sine erbolic Cosine -
—SQCNH P P The maximum relative error of this approximation is
4 x 109,
Algorithm 9
2. For 0.5493 =x <104, use tanh(x) = 1 - ——
. __e“+e* (e*)+1
1. cosh(x) = g 3. The xpn subroutine is used in step 2, above.
. ex — g% 4. For x =10.4, give tanh(x) = 1.
2. If [x| > 0.3465736, use sinh(x) = — 5. For x = — 0.5493, use tanh(— x) = — tanh(x).
. x x5 X'
3. If |X| = 0.3465736, use sinh(x) = x + 37 + Bl + Lal Effect of an Argument Error
The maximum relative error of this approximation is 2A
2 |
6 x 10-19. E~[1—tanh?(x)]A, e~ Smh(%) ° Thus, for small values
4. This subroutine uses the exponential subroutine of x, e~ 3, and x gets larger, the effect of & on
XPN. diminishes.

20

Performance Statistics

Effect of an Argument Error

N E ~ A (e—). As the magnitude of the argument in-
verage
Root-Mean-Square| Maximum Speed in creases from 1, the effect of an argument error on the
Argument Relative Error | Relative Error | Microseconds final accuracy diminishes rapidly. For small x, e ~ 3.
Range a(e) M(e) 7040 | 7044
| x |=0.5493 570 X 10°° 1.44 X 107 993 | 401 Performance Statistics
0.5493<|x|=10.4| 4.28 X 107 1.09 X 10° | 1307 | 495 Average
N - i Speed in
Note: The sample arguments upon which the above statistics are A ROOR‘ IM:un:quare RAIM:?“mtEJm Mic:,oseconds
based were uniformly distributed over the specified range. rgument elative trror elative trror
Range o(e) M(e) 7040 | 7044
Figure 25. TNH, Hyperbolic Tangent Function
[x|=4 475 X 107 195 X 10° | 1972 | 792

Single-Precision Error Function Subroutine—ERF
Algorithm

1. erf(— x) = — erf(x). Assume x = () now.

2. If x> 4.17, erf(x) = 1.

3. If 417=x>1.51, use the following Gaussian-
type continued fraction:

1 — erf(x) = -\/—%- [fe'"2 du]
m | x

where
“, . 0.5x 0.5
xf et du=e | T 105 — ¥+ 25

3.0 (n - %)n

—x*+45 —...—x*4+2n+% —...

0.5x 0.5 3.0

=e* | 405 — x*+25 — x445
75 10.803

— X465 — x4+ 4.269

The maximum absolute error of this approximation I
is 1.1 X 109,

The two constants in the last term are obtained by
requiring that the formula give the exact values at

x = v2.3125 and x = V2.75.

4, If 1.531=x=0, use the continued fraction ob-
tained by transforming the Taylor expansion of erf:
vr X x X x
()t =1-% + 35 — 37 + 35 ~
1.0281x* - 167.17

T ¥ 110216 + x* + 9.8103
201.39 31.228

+ ¥ 11570 + ¥ — 17730
64.244
+ X+ 5.578 + w(x)
(Constants given in the second formula are approxi-
mate.)

Drop w(x) and modify the two constants of the last
term so that the formula is exact at x =1 and x = V2. '
The maximum relative error of the formula obtained
in this way is 2 X 10~-°,

5. Fixed-point computation is employed to minimize
truncation errors. This subroutine uses the exponential
subroutine XpN.

Note: The sample arguments upon which the above statistics are
based were uniformly distributed over the specified range.

Figure 26. ERF, Error Function

Single-Precision Gamma/Loggamma—GAMA

Algorithm

1. If 0<x=2"127 use log[r(x)] =
ALGAMA.

9. If 2-127 < x < 4 for camma, reduce the case to
1=x=2, using x[[(x)]=T(x+1). Computc TI'(x)
for 1=x = 2, using a continued fraction obtained in the
following manner:

—log(x) for

e o] 2k+l ax

0
T(x)= | ett=?dt= ¥ (x — 1.5)F %)
Of k=0 ki

where
o 2
ax = f (log t)* e* t*dt
0
and

Ao — é\/;
a; = 0.80845993 X 107

an = —0.1628 X 10*°

Then, by transforming (*) into a continued fraction,
we obtain, :

I(z + 1.5) = a a2 as
Z+ B+ z+B + 2t
[+ 2} as (k%)
+ z+4+ Bt + z+ Bs + w(z)
where
a = — 1.2581927 pr = —11.746649
a = 33.814358 B: = — 4.8326355
as = 59.285853 Bs = 8.1171874
a = — 3.6512651 Be= 0.20317850
a5 = 6.0985782 Bs = 1.4063097

Finally, drop w(z) in (**), and compensate for it by
modifying the constants B4, a5, and B; to obtain an
approximation formula accurate to within an absolute
error of 2.3 X 10—9.

3. If 2—127 < x < 4 for ALGaMA, compute log [T'(x)]

Appendix A: Algorithms and Accuracy Considerations 21

by first computing T'(x) as in item 2, and then taking
the logarithm of the result.

4. If 4 =x < 1.54926(21%°) for ALcaMa, compute
log [T(x)] as follows:

log [T(x)] = x [log(x) — 1] — % log(x) + % log(2~) + F(x)
where

F(x) = 0 if x = 22) .
1 1]

FO) = Tox — 360w T 1360¢ — T7eow

This formula is the result of economizing Stirling’s
asymptotoc series. For the range considered, its abso-
lute error is less than 2.1 X 109,

5. If 4=x<34.843 for camMMa, compute T'(x) by
first computing log[T'(x)] as in item 4, and then tak-
ing its exponential base e.

6. Subroutines roc and xpn are used by this sub-
routine.

if x <2

Effect of an Argument Error

For T(x), e ~ [¥(x)]A, and for log[I(x)], E ~ [¥(x)]a,
where ¥ is the digamma function.

For 1/2<x<3, —2<¥(x)<1, and E~A for
log [T(x)]. However, since x=1 and x = 2 are zeros
of log [T(x)], even a small § can cause a substantial
e in this interval.

For large values of x, ¥(x) ~ log(x). Hence, for T(x),
e~ 8 [xlog(x)]. This shows that even the round-off
error of the argument contributes greatly to the relative
error of the answer. However, for log [I'(x)] with large
values of x, e ~ 8.

Performance Statistics

Average

Root-Mean-Square Maximum .Speed in
Argument Relative Error Relative Error | Microseconds
Range o(e) Me) 7040 | 7044
0<x=1/2 5.18 X 107 2.14 X 10° | 2620 | 1039
3=x<4 8.45 X 107° 3.47 X 107 2761 | 1102
4=x<10 1.08 X 107 3.61 X 10° 2221 943
10 = x < 100 1.30 X 1078 3.35 X 107 2228 950

Figure 28. GAMA, Loggamma Function (I)

Average

Root-Mean-Square Maximum 'Speed in
Argument Absolute Error Absolute Error | Microseconds
Range a(E) M(E) 7040 | 7044
172 < x <3 1.28 X 27% 1.94 X 27 | 2574 | 1020

Average

Root-Mean-Square Maximum .Speed in
Argument Relative Error Relative Error Microseconds
Range o(e) M(e) 7040 | 7044
277 < x < 1 4.38 X 10™° 1.26 X 10°® 1542 596
1=x<2 5.32 x 10°° 1.06 X 107 1446 552
2=x<<4 6.88 X 107° 2.84 X 1078 1617 632
4=x<10 9.00 X 1078 3.31 X 1077 3175 | 1308
10 = x < 34 5.88 X 107 2.02 X 10 3178 | 1310

Figure 27. GAMA, Gamma Function

22

Figure 29. GAMA, Loggamma Function (II)

Note: The sample arguments upon which the statistics in Figures
27, 28, and 29 are based were uniformly distributed over the speci-
fied ranges.

Double-Precision Exponential—FDXP

Algorithm

1. e =2, wherey = x[logg(e):l.

Write y =y; + y,, where y; is the integer part and
y2 is the fraction part.

If y =0, then set z; = y;, and 7y = y,.

If y <0, thensetz, =y; —1,and z, = y2+ 1.

Then, 2= (2%)(2%2), where z; is an integer and
0= Zo =],

2. For 0=2z,=1, 2% is computed by use of the
Chebyshev interpolation polynomial of degree 11 for
the interval. The maximum relative error of this poly-
nomial is 2—57,

3. If x = —89.415987, 0 is given as the answer.

Effect of an Argument Error

€~ A. Since A = 8%, for the larger value of x even the
round-off error of the argument causes a substantial
relative error in the answer.

Performance Statistics

Most of the double-precision subroutine perform-
ance figures have two sets of statistics for each argu-
ment range. Those statistics preceded by an “S” were
calculated on machines not having the double-preci-
sion instruction set; those preceded by a “D” were cal-
culated on machines having the double-precision in-
struction set.

Average
|Root-Mean-Square| Maximum .Speed in
Argument Relative Error | Relative Error] Microseconds
Range o(e) M(e) 7040 | 7044
424 X 1077 1.68 X 107121008 —_
0=x==1
D 3.74 X 107 1.07 X 107°| 2619 | 1289
4.82 X 107 1.96 X 107 |21018 —
| x | = 88.028
D| 438X 107" 1139 X 107%°| 2633 | 1293
Note: The sample arguments upon which the above statistics are
based were uniformly distributed over the specified range.

Figure 30. FDXP, Exponential Function (Double-Precision)

Double-Precision Square Root—FDSQ
Algorithm
1. Write x = 2%°—9(m), where p is an integer, q = 0
orl, and-%ém <1. Then
Vx = 27 V2 (m)
2. Take the first approximation y, to be
‘m 1\ ..
y=2°r (E-+—2-)’ ifgq=0
or
m_ 1Y .
y = 2”(-2?"*‘—4—),111‘(1 =1

The relative error of y, is less than 2—4.

3. Apply the Newton-Raphson iteration four times
to yo (three times in single-precision and the fourth
time in double-precision).

1
Yn+1 =3(Yn + ;‘xn)
The maximum relative error of ys is 2758,

Effect of an Argument Error
1

e~ 3

2

Performance Statistics

Double-Precision Logarithm—FDLG
Algorithm

1. Write x = 28(m), where%ém <1. Define the base:

value F as:

2
m-—F _ 1+z _
Letz = . Then, m = Fx(7 -2) and | z | <0.1716.

log(x) = n [1og(2)] + log(F) + log (1)

log(F) = —log(2) for < m <12%
log(F) =0 for\/?zé m<1
14+2z_ zz z
2. Iog(sz)—2z (l 'f?‘l“? + .. .)

=z(co+c1z22+...+crz!?)
where the coefficients co, cy, . . . , ¢ are obtained by
the Chebyschev interpolation.
The maximum relative error of this approximation
is 2—59.9.

Effect of an Argument Error

E ~ 8. In particular, if 8§ is the round-off error of the
argument, say § ~ 5.6 X 10—7, then E ~ 5.6 x 10-17,
This means that if the argument is close to 1, the rela-
tive error can be very large, since the function value
is very small at that point,

Performance Statistics

Average

Root-Mean-Square Maximum .Speed in
Argument Relative Error Relative Error Microseconds
Range a(e) M(e) 7040 | 7044
107% = x < 10| 4.26 X 107 1.59 X 107 1346 496

Note: The sample arguments upon which the above statistics are
based were exponentially distributed over the specified range.

Average
Root-Mean-Square | Maximum .Speed in
Argument Absolute Error | Absolute Error | Microseconds
Range a(E) M(E) 7040 | 7044
~55 ~58 —
Vg =2 1.3 X 2 1.64 X 2 20801
2 D| 176 X 2™ 1.89 X 2% | 2278 | 1102
Note: The sample arguments upon which the above statistics are
based were uniformly distributed over the specified range.

Figure 31. FDSQ, Square Root Function (Double-Precision)

Figure 32. FDLG, Natural Logarithm Function (I)

Appendix A: Algorithms and Accuracy Considerations 23

3. Divide x by%and separate the integer part, qi,

and the fraction part, qo, of the quotient. Let

Average
Root-Mean-Square | Maximum ‘Speed in
Argument Relative Error Relative Error | _Microseconds
Range o(e) M(e) 7040 | 7044
Full Range |s 9.65 X 1077 2.95 X 107" | 20827 —_
excluding
(l 2) p| 6.09x 10 1.80 X 107 | 2307 | 1123
2
Note: The sample arguments upon which the above statistics are
based were exponentially distributed over the specified range.

Figure 33. FDLG, Natural Logarithm Function (II)

qo = q1[mod 8]. Then
. . ™
sin(x) = sin (%qo + z—q:)
4. Further reduce the case to the computation of

either sin(%r) or cos(% 1) (where 0=r=1) by the

formulas:

sin [I (4+q) + @ | = —sin (5 o+ a)
0=q <3

sin

5. Fo

-

0

Average
Root-Mean-Square| Maximum .Speed in
Argument Absolute Error | Absolute Error |_Microseconds
Range a(E) M(E) 7040 | 7044
S 1.85 X 2% 1.12 X 279 |22340 —
1= x =2
2
D 1.66 X 27% 1.64 X 27 2446 1182
Note: The sample arguments upon which the above statistics are
based were uniformly distributed over the specified range.

@® Figure 34. FDLG, Common Logarithm Function (I)

sin (':1;— r):sor-l-slrs.'_szrs_*_ o Sort®
cos (% 1')=1+C1r2+Cgr“+--- + Car™

where the coefficients Sy, . . . , Sg are obtained by the
Chebyschev interpolation over the range 0 =r =1, and
the coefficients Cy, ..., Cq are obtained by the Cheby-
shev interpolation over the range —0.01 =r=1.

The maximum relative error of the sine approxima-
tion is 2-%. The maximum relative error of the cosine
approximation is 2754,

Average
Root-Mean-Square| Maximum Speed in
Argument Relative Error Relative Error | _Microseconds
Range a(e) M(e) 7040 | 7044
Fullrange | 5| 118 X 10 | 4.45 X 107° | 22370 —
excluding
1
(?. 2) D 9.10 X 1077 3.31 X 107 | 2475| 1203
Note: The sample arguments upon which the above statistics are
based were exponentially distributed over the specified range.

@ Figure 35. FDLG, Common Logarithm Function (II)

Double-Precision Sine/Cosine—FDSC
Algorithm

1. If cos(x) is desired, reduce the case to a sine func-
tion by

cos(x) = sin (% —x)

2. If x <0, use sin(—x) = —sin(x). Assume x=0. If
| x| <272, give x as the answer.

24

Effect of an Argument Error

E ~ A. As the argument gets larger, A grows, and since

the value of the function is periodically diminishing, no

consistent relative error can be maintained outside
ki3

the principal range(- lzr-, 3) . This holds true for co-
sine as well.

Performance Statistics

Average
Root-Mean-Square | Maximum .Speed in
Argument Relative Error Relative Error | Microseconds
Range o(e) M(e) 7040 | 7044
S 1.66 X 107 7.83 X 107° | 14989 —
[x| =%
D 9.08 X 107 3.81 X 10| 1974 943

Figure 36. FDSC, Double-Precision Sine Function (I)

Average
Root-Mean-Square] Maximum .Speed in
Argument Absolute Error |Absolute Error| Microseconds
Range a(E) M(E) 7040 | 7044
1.26 X 2°% 1.26 X 272 | 14989 —
x1=F
112 X 2°% 1.00 X 2752 | 1974 943
1.25 X 27 1.46 X 27 115014 —
—-—12"< [x I = 10
116 X 27 1.32 X 27| 2086 | 988
127 X 27 1.07 X 27 [15055 —
10 < | x| =100
1.08 X 27 1.21 X 274 | 2085 986

Figure 37. FDSC, Double-Precision Sine Function (II)

Average
Root-Mean-Square | Maximum .Speed in
Argument Absolute Error | Absolute Error | _Microseconds
Range o(E) M(E) 7040 | 7044
) 1.68 X 27 1.80 X 27 | 15924 —
0=x=r
D 1.52 X 27 114 27 | 2106 | 987
S 1.76 X 27 1.26 X 27 | 16034 —_
—20=x <0
=20
m<x D 1.63 X 272 1.33 x 2% 2202 | 1025

This formula can be derived by transforming the
Taylor series into the continued fraction

x (3)(4)
arctan(x) 1 3 (55(7)
X - 23
T Ee T
(5@ (A)T)(3)
M)A <5))(11><132)
59 (337 2
e T T man Tt

Then, as the approximation of the value w = w(x), use
the value —0.00398, so that when the above fraction is
rewritten with this value of w, the formula (*) is ob-
tained. The maximum relative error of the formula (*)
is less than 255,

4. As a result of the subtraction involved in item
2, computational errors are heaviest for the range
tan(15°) =| x| = tan(45°), especially as | x| approaches
tan (15°).

5. patanz2 provides the extended answer range

—»=y=mr, depending on the combination of the signs
of the two arguments.

Effect of an Argument Error

A .
E ~ T+ - For small x, ¢ ~ §; and as x increases, the

effect of 8 on ¢ decreases.

Performance Statistics

Figure 38. FDSC, Double-Precision Cosine Function

Note: The sample arguments upon which the statistics in Figures
36, 37, and 38 are based, were uniformly distributed over the speci-
fied ranges.

Double-Precision Arctangent—FDAT
Algorithm

1. Reduce the general case to 0 = x = 1 by using the
formulas:

arctan(—x) = —arctan(x), arctan (ﬁ) = % —arctan(| x }).

2. Then reduce the case further to | x | =tan (15°)
by using

_4

arctan(x) = 30° +arctan (V3 — i 5

if tan(15°) < x < tan(45°).

3. For the basic range | x | = tan (15°), a continued
fraction approximation of the following form is used:

xﬂ

B+ x* +ﬁs+x +ﬁa+x +B4+x(”)

arctan(x)
x

=1+

Average
Root-Mean-Square Maximum .SPeed in
Argument Relative Error Relative Error Microseconds -
Range a(e) M(e) 7040 | 7044
S 1.87 X 107¢ 121 X 107 | 18427 —
Full range —
D 2.12 X 107 129 X 107° | 2375 | 1137

Note: The sample arguments upon which the above statistics are |
based were tangents of random numbers uniformly distributed over :

o
2" 2
that the values returned by the function were uniformly distributed |
over the answer range.)

the iniervql(— l) (That is, the argument sample was such |

Figure 39. FDAT, Double-Precision Arctangent Function

Complex Square Root—FCSQ
Algorithm

1. Write Vx + iy =£ + iy
2. Ifx=+40,use = \/__________|x|+|x+1y|,n 2%

3. Ifx= —0, use ¢ = —2',)—;’—, 7= sgn(y) ‘\/I_x_l_j-_l_g_t.lﬁ -

Thus, if x <0, the case y = —0 is differentiated from
the case y = +0. That is,

Appendix A: Algorithms and Accuracy Considerations 25

Va—0i =]:ri 4o Vx—d
and
Vi O = B o Vi
4. If, in the foregoing computation,
| x|+ lzx +1iy | <g-120,

then 0 + 0i is given as the answer.

5. The sQr and FcaB subroutines are used by this
subroutine.
Note: If | x| + | x +iy | = 2'%7, floating-point overflow
oceurs.
Effect of an Argument Error

If we write x + iy = r(e't) and Vx+iy = R(™), then
«(R) ~ ;_ 5(r) and e(H) ~ 3(h).

Performance Statistics

Average

|Root-Mean-Squarel Maximum .Speed in
Argument Relative Error Relative ErrorfMicroseconds
Range o(e) M(e) 7040 | 7044

Complex Natural Logarithm—FCLG

Algorithm
1. Write log(x + iy) = £ + in. Then, ¢ =log | x + iy |,

and 5 = arctan (Z-) (in the sense of ATANZ).
X

2. This routine differentiates the argument x — 0i
from the argument x + 0i. That is,

log (x — 0i) = i‘ﬂ Lo logx—d)
log (x +0i) = 1:‘_“) +0 log (x + €i)

3. Subroutines FcaB, ATN, and LoG are use by this
subroutine.
Norte: If |x + iy | =27, floating-point overflow occurs.

Effect of an Argument Error

When we write x + iy = r(e') and log(x + iy) = £ + iy,
we have h = 5 and E(¢) ~ §(r). When the argument is
near 1 + 0i, the answer is almost zero; therefore a small
8 can cause a large e.

Performance Statistics

107% = | xsFix2 [== 10¥ 5.06 X 10° | 1.56 X 107°[2413 849

Note: The distribution of sample arguments upon which the above
statistics are based is exponential radially and uniform around the
origin.

Average

Root-Mean-Square Maximum .Speed in

Argument Relative Error Relative Error Microseconds
Range o(e) M(e) 7040 | 7044

Figure 40. FCSQ, Complex Square Root Function

Complex Exponential—FCXP

Algorithm

1. ex+ = e~ [cos(y)] + i[e* sin(y)]
2. The xpN and scN subroutines are used by this sub-
routine.

Effect of an Argument Error
If we write ex+%¥ = R(e'®), then H =y and ¢(R) ~ A(x).

Performance Statistics

Full range, except
the immediate
neighborhood of
1+ 0i

3.59 X 107° 1.14 X 10°® 4406 | 1656

Note: the distribution of sample arguments upon which the above
statistics are based is exponential radially and uniform around the
origin.

Average

Root-Mean-Square}] Maximum Speed in
Argument Relative Error iReIa‘live Error|_Microseconds

Range o(e) M(e) 7040 | 7044

| x| =85, |xz|==10] 9.34 X 10° |2.58 X 10°°| 3885 | 1528

Note: The sample arguments upon which the above statistics are
based were uniformly distributed over the specified range.

Figure 41. FCXP, Complex Exponential Function

26

Figure 42. FCLG, Complex Natural Logarithm Function

Complex Sine/Cosine—FCSC

Algorithm
1. sin(x + iy) = [sin(x)] [cosh(y)]
+ [i] [cos(x)] [sinh(y)]
cos(x + iy) = [cos(x)] [cosh(y)]
— [i] [sin(x)] [sinh(y)]
2. Subroutines scN and scNH are used by this sub-
routine.

Effect of an Argument Error

Combine the effects of the sine and cosine functions
of the scn subroutine and the sinh and cosh functions
of the scNH subroutine according to the algorithm in
item 1 above.

Performance Statistics

Average
Root-Mean-Square Maximum Speed in
Argument Relative Error Relative Error Microseconds
Range o(e) M(e) 7040 | 7044
x| =10, 168 X 10 [(415 X 109+ | 5548 | 2129
xs =1

* The maximum relative error cited here is hased on a set of 2500
random samples uniformly distributed over the range. In the im-
mediate neighborhood of the points nm 4 0i (where n = =1, *+2,
« + «) the relative error can be quite high in spite of a small
absolute error at these points. As x2 remains constant and IX1|
increases, the relative error increases; as x; remains constant and
Ixz’ increases, the relative error remains substantially the same.

Figure 43. FCSC, Complex Sine Function

Complex Arithmetic—FCA

Algorithm
1. (a+bi) = (c+di) = (a = c)+ (b = d)i
2. (a+ bi) (c + di) = (ac — bd) + (ad + be)i
3. If|c|=|d],
(a+bi) _ a/c+bd/c* — ad/c? + b/e,.
(c+d) = T+ @eF T 14 @or U
If |d|>]c|, then reduce to the above case by
transforming

(a+bi) _ (b—ai)

(c+di) — (d—ci)
Note: When the magnitude of the result is close to Q.
a floating-point overflow is possible. When the magni-

tude of the result is close to the underflow threshold,
the accuracy of the answer diminishes.

)

Performance Statistics

Average
Root-Mean-Square Maximum .sPeed in
Argument Relative Error Relative Error Microseconds
Range o(e) M(e) 7040 | 7044
=10
[| 1.70 X 1078 (4.12 X 10°)*| 5498 | 2119
MES

* The maximum relative error cited here is based on a set of 2500
random samples uniformly distributed over the range. In the im-
mediate neighborhood of the points (n 4- %)= + 0i (where
n=0, =1, £2,.. .)) the relative error can be quite high in spite
of a small absolute error at these points. As x» remains constant and
|x1| increases, the relative error increases; as x: remains constant

and I x2 | increases, the relative error remains substantially the same.

Figure 44. FCSC, Complex Cosine Function

Complex Absolute Value—FCAB

Algorithm
LI|x|>|y||x+y|=]x|VI+(y/x)?+0i
2. M|y |>|x|, [x+yi|=]|y|VI+(x/y)?+0i
3. The sor subroutine is used by this subroutine.

Note: If the result is greater than @, then floating-point
overflow occurs.

Performance Statistics

Average
Root-Mean-Square| Maximum Speed in
Argument Relative Error | Relative Error| Microseconds
Range o(€) M(e) 7040 | 7044
For pairs of operands
that are away from
the overflow or 1.09 X 10°° 262 X 10°%]| 883 305
underflow thresholds
Figure 46. FCA, Complex Multiplication Function
Average
iRoo'-Mean-‘Squure Maximum ‘Speed in
Argument Relative Error | Relative Error] Microseconds
Range a(e) M(e) 7040 | 7044
For pairs of operands|
away from the over-
flow or underflow 1.3 X 107 3.23 X 10°] 1444 554
thresholds

Figure 47. FCA, Complex Division Function

Note: The distribution of sample operands upon which the statistics
in Figures 46 and 47 are based is exponential radially and uniform

Average

Root-Mean-Square| Maximum _SPeed in
Argument Relative Error | Relative Error| Microseconds
Range o(e) Mie) 7040 | 7044
107%°=|xs+ixe|=510"] 671 X 10° | 2.29 X 10°| 1212 | 436

Note: the distribution of sample arguments upon which the abovel
statistics are based is exponential radially and uniform around the

origin.

Figure 45. FCAB, Complex Absolute Value Function

around the origin.

MTN Subroutine

Purpose

The purpose of the MTN subroutine is to modify the
error control of the TncT (single-precision tangent/co-
tangent)subroutine,

Appendix A: Algorithms and Accuracy Considerations 27

Usage and Effect
The calling sequence for the MmTN subroutine is

CALL MTAN(K)

When this calling sequence is used with k=0, 1, 2, 3,
4, or 5, the TNCT subroutine is modified to give a mini-
mum relative accuracy guarantee of 1/(2<+2—1) for
correctly rounded arguments near the singularities. If
this calling sequence is used with k greater than 5,
1~cT is modified to suspend the above accuracy guar-
antee feature completely. In this case, any argument
less than 22° in magnitude (and greater than 2-12¢ for
the cotangent function) will be accepted.

Modifications remain in effect until MmN is called
again.

28

NotE: A MaP programmer need not use the MTN sub-
routine to reset the accuracy guarantee. He can ac-
complish the same effect by including the following
coding in his program.

1. To modify the guarantee

CLA =1
ALS k
STO CRIT.
where
k=0,1,.,5

2. To eliminate the guarantee

STZ CRIT.

Appendix B: Storage Requirements

The following chart shows the octal and decimal stor- STORAGE REQUIREMENTS

age requirements for the FORTRAN 1v Mathematical =~ SUBROUTINE OCTAL DECIMAL
Subroutines. FDSC 215 141
: FDSQ 75 61
STORAGE REQUIREMENTS Eg;((é 2,;2]':ég
SUBROUTINE OCTAL DECIMAL FDXP 174 1 2 4
ARSCN 117 79 GAMA 245 165
ATN 230 152 LOG 145 101
ERF 136 94 MTN 20 18
FCA 131 89 SCN 157 111
FCAB 44 36 SCNH 100 64
FCLG 45 37 SQR 100 64
FCSC 110 72 TNCT 171 121
FCSQ 55 45 TNH 76 62
FCXP 63 51 XP1 73 59
FDAT 231 153 XP2 67 55
FDLG 166 118 XP3 51 41
FDMD 60 48 XPN 106 70

Appendix B: Storage Requirements 29

Appendix C: Error Messages

Listed below are the off-line error messages corre-
sponding to the FORTRAN 1v Mathematical Subroutine
Library. The last two digits of the number at the left
of each message is the error code. The error code iden-
tifies the type of optional return that was taken when

the error was detected. For example, error message
10709 signifies that the optional return identified by
error code 9 was taken. For further information on
error codes and optional returns see the section “Role
of the Execution Error Monitor.”

10701 0**0 INVALID ARGUMENTS

10702 0*X INVALID ARGUMENTS

10703 TAN-COT(X) WHERE |X | GT OR EQ TO 2+%20

10704 TAN-COT(X) WHERE X TOO CLOSE TO A SINGULARITY
10705 SINH-COSH(X) WHERE | X | GREATER THAN 88.029692

10707 -B**C WHERE C IS REAL

10708 EXP(X) WHERE X GREATER THAN 88.029692

10709 ATAN2(0,0) INVALID ARGUMENTS

10710 LOG(0) INVALID ARGUMENT

10711 LOG(-X) INVALID ARGUMENT

10712 SIN-COS(X) WHERE | X | GT OR EQ TO 2**25

10713 ARSIN-ARCOS(X) WHERE | X | GREATER THAN 1

10714 SQRT(-X) INVALID ARGUMENT

10715 CEXP(Z) WHERE Z REAL PART GREATER THAN 88.029692
10716 CEXP(Z) WHERE |Z | IMAG PART GT OR EQ TO 2**25
10717 CLOG(0) INVALID ARGUMENT

10718 CSIN-CCOS(Z) WHERE |Z| IMAG PART GT OR EQ TO 88.020692
10719 CSIN-CCOS(Z) WHERE |Z | REAL PART GT OR EQ TO 2**25
10720 GAMMA(X) WHERE X IS -, NEAR 0, OR GT OR EQ TO 34.843
10721 ALGAMA(X) WHERE X IS NON-POSITIVE OR GREATER THAN 1.54026%2*¥120
10722 DATAN2(0,0) INVALID ARGUMENTS

10724 DEXP(X) WHERE X GREATER THAN 88.029692

10725 DLOG(0) INVALID ARGUMENT

10726 DLOG(-X) INVALID ARGUMENT

10727 DSIN-DCOS(X) WHERE | X | GT OR EQ TO (2**50)PI

10728 DSQRT(-X) INVALID ARGUMENT

30

Absolute Exror 15
Maximum 15
Root-Mean-Square0ouniiirinin. 15

AcCUuracy 7,15
Evaluation of. 7

Algorithm 15

ADSWEIS 56
Conventional 6

Argument ...
Complex 5
Double-Precision 5

Argument Error........ oL 15

Argument Range........... 6

ARSCN Subroutine. 9
Algorithm 19
Performance. 19
Size ... 29
USe . oo 9

ATN Subroutine 9
Algorithm 18
Performance 18
Size 29
USe . .o 9

Calling Sequence i, 5

Complex Argumentsc.covuuuo... 5

Complex Subroutines. 13

{31 2 28

Double-Precision 5
Arguments 5
Simulation 6
Subroutines 11, 12

Entry Point. 5

ERF Subroutine. 10
Algorithm 21
Performance 21
Size, 29
Use ..o, 10

Error 6,7,15
Absolute 15
Relative 15

Error Code. 8, 30

Error Evaluation................................... 15

ErrorMessages. 6, 30

Execution Error Monitor (XEM). 6

FcASubroutine., 13
Algorithm 27
Performance 27
Size.............. e 29
Use . .o 13

FcaB Subroutine. 13
Algorithm 27
Performance 27
Size 29
USe . oo 13

FCLG Subroutine........ 13
Algorithm 26
Performance 26
SizZe . .o 29
USe .. 13

rcse Subroutine. L 13
Algorithm 26

Index

Performance 27
Size e 29
USe . oo 13
FcsQ Subroutine. 13
Algorithm 25
Performance 26
Size 29
Use e .. 13
FCxp Subroutine. 13
Algorithm 26
Performance 26
Size 29
USe . oo 13
FpAT Subroutine. 12
Algorithm 25
Performance 25
Size 29
Use ..o 12
FDMD Subroutine................... 14
Size. ... 29
Use ..o 14
FpLG Subroutine. L 12
Algorithm 23
Performance 23, 24
Size 29
USe ..o 12
FDSQ Subroutine. 11
Algorithm L, 23
Performance 23
Size 29
Use ... 11
FDXP Subroutine. 11
Algorithm 22
Performance 29, 23
Size 29
Use......... e 11
Fpx1l Subroutine................. 11
Size. ... 29
Use (Entry Point cxpl.). 13
Use (Entry Point pxel.)........................ .. 11
FDx2 Subroutine. 11
Size 29
Use ..o 11
Floating-Point Overflow 6
Floating-Point Trap Supervisor (FPT)........ 6,7
Floating-Point Underflow 6
Function 5,6
GAMA Subroutine................. 10
Algorithm 21, 22
Performance 22
Size 29
Use ..o 10
LogSubroutine. 10
Algorithm 19
Performance............... 19, 20
Size 29
USe . ..o 10
MATOP. . .. 6
MIN Subroutine. 14
Purpose 27
Size ... 29
USe .. oo 14, 28
Option Control Bits. 6
Resetting of 6

Index 31

Optional Return., 6

Relative Error 15
Maximumo 15
Root-Mean-Square, 15

SCN Subroutine. 9
Algorithm 16, 17
Performance 17
Size . 29
UsSe . . 9

scNH Subroutine. 10
Algorithm 20
Performance 20
Size . .. 29
UsSe . . 10

Single-Precision Subroutines. 8,9

Simulation of Double-Precision Computations. 6,7

sQR Subroutine. 8
Algorithm 18
Performance 16
Size 29
USe . . 8

Storage Requirements 29

TNCT Subroutine

32

Algorithm 17
Performance 18
Relative Error Control. 17
Size . .. 29
Use . 9
TNH Subroutine. 10
Algorithm 20
Performance 21
Size 29
Use .. oo e 9
xpN Subroutine. 8
Algorithm 16
Performance 16
Size 29
Use..... T 8
xpl Subroutine. 8
Size 29
USe . e 8
xp2Subroutine. 8
Size 29
USe . .o 8
xp3Subroutine. 8
Size 29
USe . ..o, 8

CUT ALONG LINE

FOLD

FoLD

COMMENT SHEET

IBM 7040/7044 OPERATING SYSTEM (16/32K) SUBROUTINE LIBRARY
FORTRAN IV MATHEMATICAL SUBROUTINES

FORM C28=6806-1

FROM

NAME

OFFICE NO,

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED

O SUGGESTED ADDITION (PAGE)
O sucecesTep peLETION (PAGE)

O error (PAGE)

EXPLANATION

NO POSTAGE NECESSARY IF MAILED IN U, S. A,

FOLD ON TWO LINES, STAPLE, AND MAIL

Fous

FOLD

STAPLE

ATTN:

STAPLE

FIRST CLASS
PERMIT NO, 33504

NEW YORK, Ng Y,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,

POSTAGE WILL BE PAID BY

IBM CORPORATION
1271 AVENUE OF THE AMERICAS
NEW YORK, N.,Y. 10020

PROGRAMMING SYSTEMS PUBLICATIONS,
DEPARTMENT D39

]
]
AN
I
L
S
L
A
S
L]
T
L
[
S
S
FOLD
STAPLE

CUT ALONG LINE

€28-6806-1

BM

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

LTV Ul pauld

1-9089-82D

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

