705

autocoder
system

manual of informetion

MAJOR REVISION (February, 1957)

This cdition, Form 22-6726-1, obsoletcs Form 22-6726-0 and all
carlier editions. Significant changes have bzen made throughout the
manual, and this new edition should be reviewed in its entirety.

© 1956 by
International Business Machines Corporation
590 Madison Avenue, New York 22, N. Y.
Printed in U. S. A,

Form 22-6726-1

CONTENTS

ORGANIZATION
ProcraM Form

Heading Line
Page Number ...
Line Number
Tag oo
OPperation ...
Numerical ...
Operand

Comments

AUTOCODER PROGRAMMING

AREA DEFINITION ...
Tag o
Operation ...
Numerical ...
Operand
Comments

INSTRUCTIONS .
Tag (o

Operation

Nt
INUITICTICAL ...

Operand ..o

Character Adjustment ... :
Comments

SpECIAL OPERATIONS
Title
Translation
Address Modification
Tape and Drum Loading
Assignments
Address Constants

Macro-INSTRUCTIONS
Tag ...
Operation

14
14
i4
15
16
17
17
17
18
i8
19
20
21

21
22
22
22
22
23
24
25
25

25

Page

Numerical, Operand and Comments ... 25
Listing of Macro-Instructions 26
SUBROUTINES ...t 27
Listing of Subroutines ... 29
KEY PUNCHING 29
OPERATING INSTRUCTIONS ... 30
Program Assembly ... 30
Restart at Beginning of Phase I1 ... 30
REASSEMBLY ... 31
Insertion31
Substitution ... 31
Deletion ... 31
Program Reassembly 32
NEw OPERATION, ACON 4 ... 32
ProGgraMMING NOTES 32

AUTOCODER OUTPUT
ORGANIZATION OF MEMORYc..occooci 33
OuTPUT PROGRAM 33
AUTOCODER LIBRARY
WRITING MACRO-INSTRUCTIONS ... 34

Form ... 34

Component Instructions : 34
Control Matrix ... 35
Macro-Instruction in Preparation36
KeY PuNcHING COMPONENT INSTRUCTIONS ... 36
GENERAL CONSIDERATIONS 37
WRITING SUBROUTINES37

AUTOCODER SERIAL TABLE SEARCH 39

LIBRARIAN

Hraper-Carp Key PUNCHING 44

Use oF THE LIBRARIAN

THE 705 AUTOCODER SYSTEM

THE AUTOCODER is a simplified system of pro-
gram writing for the 705 Data Processing Machine.
This system relieves the programmer of considerable
clerical work and removes many of the restrictions
placed upon him by the machine-instruction coding
system. Programs written in autocoder form can be
combined and relocated at will because they are in-
dependent of actual memory location. Additions,
corrections, or deletions to an autocoder program can
be made by a reassembly process without changing
the addresses written.

The autocoder recognizes either descriptive names
of instructions or the 705 machine codes. Programs
may be written with mnemonic operation codes, or
with a mixture of mnemonic and single-character
operation codes. The programmer may refer to data
or instructions by name rather than by absolute
memory location. The name is usually a2 mnemonic
abbreviation which becomes the “tag” of the refer-
ence point. With tags, the program may be written
with minimum comment and without reference to
tables of locations for the data to which instructions
refer.

The autocoder system incorporates all the 705
instructions plus an expanded set of autocoder
special operations and macro-instructions. (Macro-
instructions are special instructions developed by the
autocoder programmer that permit one instruction
to take the place of a number of 705 instructions.)
In addition, one autocoder instruction or macro-
instruction will incorporate from a library tape each
subroutine which is called for in a particular pro-
gram. Any program, or any part of a program, may
easily be placed on the library tape as a subroutine.
Combined, these features mean that the programming
required for any specific job need be done only once.

An important point in handling business data is
the ease of making changes in the form and contents
of a record. A program written in autocoder form
can be reassembled by the autocoder program with
a new arrangement of any, or all, of the record for-
mats and will operate exactly as it did originally.
This feature may be extended. If the definitions of
records common to an installation and used in several

programs are entered as subroutines on the library
tape, a change in the subroutine will permit machine
correction of all programs which refer to these com-
mon records by the autocoder program reassembly.

With the autocoder, each field has a unique desig-
nation. The autocoder program adjusts references to
this field as required by various instructions which
refer to the right or left position of the field, or the
left location plus four (as in high-speed receive and
transmit). In the autocoder system it is not necessary
for the programmer to give every instruction a “tag.”
Only those instructions which are referred to by
other instructions in the program need to be tagged.
Tags not only eliminate considerable writing, but
also serve to identify the critical instructions which
are operated upon or to which transfers are made.
This simplifies checking a program after it has been
written.

One useful feature of the autocoder is the use of
literal operands. One entry can specify an operation
and arrange for the storage in memory of the con-
stant or coefficient which is the actual data to be
used in that operation. The autocoder program picks
up this constant from the literal operand, assigns it
a location, and inserts that address in the program.
Constants specified as literal operands are stored only
once in memory, and subsequent occurrences of the
same literal operand will reuse the same stored con-
stant.

After a program is written and punched, in the
first pass the autocoder program:

1. Assigns memory locations to all record and con-

stant areas and fields.

2. Assigns memory locations to all tagged and

untagged instructions.

3. Translates mnemonic operation codes to the

machine operation code.

4. Incorporates the 705 instructions corresponding

to each macro-instruction used.

5. Incorporates subroutines as required.

6. Compiles tag tables for all tagged locations.

On the second pass, the autocoder program:

1. Determines (from the tag tables) and adjusts

the actual machine addresses of all operands.

705 AUTOCODER SYSTEM

2. Punches directly, or through auxiliary opera-
tions, a machine program complete with a
loading program and transfers from the load-
ing program to the first instruction written.

3. Prints directly, or through auxiliary operations,
a listing of the original program exactly as
written and the resulting machine program.

Even the best programmers sometimes make mis-
takes, but the likelihood of error is greatly reduced
because the autocoder will remember field locations
and lengths and do most of the clerical-type work
rapidly and accurately. Meaningful abbreviations
will help the programmer keep things straight.
Macro-instructions and subroutines will be already
checked, free from error.

In addition, the autocoder will detect some mis-
takes and will warn the programmer through the
typewriter. For example, because multiplication must
be carried out in the accumulator, the autocoder will
correct any attempt to multiply in an auxiliary stor-
age unit. The program is expected to be in sequence,
and if entry cards are not in order, a message will
be typed. However, because he was combining differ-
ent programs or for other reasons, the programmer
may have planned to have this occur; therefore, no
correction is attempted. No mistake the programmer
can make will stop the assembly. Each error encoun-
tered by the autocoder program is listed on the type-
writer, so that all errors may be dealt with at one time.

The information presented in this manual should
be adequate to furnish a working knowledge of the
autocoder system. A thorough understanding of the
705 Preliminary Manual of Operation and of basic
programming techniques is assumed.

ORGANIZATION

ALL information for a 705 program is originally sup-
plied by the programmer. The information is written
in autocoder language on the program sheet (Figure
1). Machine instructions, record areas, work areas,
and all other program data are described in complete
detail. Each separate item of information forming a
program entry is written on one line of a sheet.

Entries are written in the order in which they are
to be stored in the memory of the 705, unless some
other sequence is specifically indicated by the pro-
grammer. A space is provided for writing program
page numbers. Line numbers are preprinted on the
sheet.

After the program has been written and checked,
it is key punched into autocoder instruction cards
(Figure 2). Each card contains one program entry.
Card field arrangement conforms exactly with the
columnar arrangement of the program sheet. All in-
formation on each line is punched exactly as written,
including the page and line number. An identifica-
tion of the entire program may be gang-punched
into all cards.

Punching is verified for accuracy by the card veri-
fier or by checking the original sheet with listed or
interpreted cards. After verification, the instruction
cards are sorted to line number, then to page number,
to place the program entries in the exact sequence
given by the programmer.

The instruction cards may then be used as direct
input to the 705, or cards may first be converted to
tape records to provide a faster input to the program
assembly (Figure 3). In either case, the program

race_ 27/

roGRAM ___ S ALARY PrYRoLL onte._Dec Jo oenr. PAYRL [
LINE TAG OPERATION NUM. OPERAND COMMENTS
M |GRoss 70 weT Ses 20 | /QM.J. e
o0 B> PAY Record | ’
g RS END oF Jo8 |
o0 TRA REad ERROR |
050 Rad | 4 | (#0000) | Aot aud Ll Asus .
o0 RAD | 2] (+000) | Y
o RAD TAx CiHss | Compols tyempZiom bmsund]
080 _ Mey.- L/ r300) i LA 4
o ADD GRoSs PAY |
100 TRz erw || Toet for prdtdens Loy
1o TRP CTw 2 [7 4
10 Grii st 1 win Tax | No Wit fubling — Shre 2erow
1% TR &7y 3 L 4 7
140 SN A MPY (Fr2) i Gm;@c&z— WA Tax

FIGURE 1,

ORIGINAL PROGRAM

y
~

I L | § |
[

COMMENTS

PAGE 4 Lwg | TaG |oPERAT (0N {NuM] OPERAND

==\

[
| Em«mou I [Fow] |

PAGE & LINE | | TAG

OPERAND] [COMMENTS |

1M AUTOCODER SYSTEM

T[S TS TN N T AN AN ZANBRTABNN LIRS

00[0000080000080/00000/000000000000:000000/000000000000000000000000000000000000]0000009]
12458 T NN AN AN R AN R IUS T NN QU SETANNS UGS ETNARNCRHESI RN IR NIEIANS
IR RN Rl RN R R R R AR R R R R R AR R R AR R AR AR AR AR R R R RN RN RN RN AR RRRERR R ERERE!
22121222222222222222222222222222h22222222222222222222ZZ2222222222222222222122222
3333333333333333333333333333333%333333333333333333333333333333313333333333333333
44444444444444444(444‘44
5555555555555555555555555555555%55
EEGEGEEGGSGGSG56SSSGSSGSSESSG55465SGGSGGBGGSGSSSGGGGSGSBGGBGSSGGSSGGEGSSSGEGEEES
7771777777777777777777777777777ﬁ771771777777777777777711717717777771771771771111
888888888883888388888888888888838808388888888

X FEHEFEYE E]

16t LINE TAG OPERAND

COMMENTS

s 833094

Ficure 2. InstrRuUcTION CaRD

instructions are one input to the 705; the autocoder
system tape is the second.

The autocoder system tape (Figure 4) contains
several types of information:

1. System control. Instructions to load the auto-
coder into the 705 memory and miscellaneous in-
structions to control the form of input and output
as directed by the console operator.

2. Librarian. Instructions to control the revision
of the library.

3. Phase I. Instructions and controls of the first
phase of assembly.

4. Phase II. Instructions and controls of the sec-
ond phase of assembly.

5. Macro-instructions. A library of tested se-
quences of 705 instructions. Each sequence is identi-
fied on the tape by a name.

LISTING I

i

LISTING
(OPTIONAL)

\J
AUTOCODER TAGS, LITERALS
SYSTEM CONTROLS |
0200
INSTRUCTION
CARDS
> 705 >
\
(verFY
PROGRAM
ENTRIES — EXPANDED
ENTRIES 3
AND/OR
—
INSRUCHON“M . PHASE |
CARDS || i
Ficure 3.

LISTING
0202
TAGS
0203

PHASE Ii

(OPTIONAL)

ORGANIZATION OF AUTOCODER ASSEMBLY

705 AUTOCODER SYSTEM

FiGURE 4. AUTOCODER SYSTEM TAPE

6. Subroutines. A library of tested 705 sub-
routines. Each routine is also identified on the tape
by its name.

During assembly, the 705 operates upon the in-
struction records, one at a time, as input data. The
entire assembly is under control of the autocoder
tape. A complete 705 program is produced as output.
Instructions originally written in autocoder language
are automatically converted into five-character 705
absolute machine coding. Instructions and record
areas are assigned actual memory locations. Constants
are properly located for storage as program data.
Information also may be taken from the library, if
called for, in the form of subroutines or macro-
instructions and included with the output program.

The autocoder assembly progresses through two
phases of operation to produce the output program
without intervention by the console operator. Assem-
bly will continue without interruption under all

normal operating conditions. Errors or other incon-
sistencies are noted on the typewriter.

The completely assembled output program may be
written on tape and punched in cards, or it may be
written on tape only. Loading instructions are pro-
duced in front of the output program to provide a
convenient method of loading the program when it
is placed into the 705 for actual operation. Figure §
is a sample output program card record containing
the identification of the program, the serial number
of the card, the number of columns of program in-
formation punched, and the actual memory location
where that information is to be stored. Up to 13 in-
structions in machine code or 65 characters of other
program data may be contained in a single program
record. Identification, columns 75-80 of the auto-
coder entry cards, is taken from the first entry
processed.

Figure 6 is a sample of an output or subject pro-
gram listing. All the information which was written
on the original program sheet is listed for reference.
In addition, the actual memory locations of instruc-
tions and data, machine operation codes, and instruc-
tion addresses are listed as produced by the assembly.

The printed list and the program cards are optional
output from the assembly. A listing tape and a pro-
gram tape are always produced.

When assembly has been completed, the output
program can be changed, revised, or rearranged by a
reassembly process. Either the output program listing
tape or the original program tape is then used as
input to the autocoder. Revision entries are punched
into instruction cards and are fed into the reassembly
in the same page and line number sequence as the
original output program. Reassembly is also under
control of the autocoder systems tape. The revised
program will be produced as reassembly output in
the same form as normal assembly output.

PROGRAM FORM

THE 705 autocoder requires two basic types of in-
formation to produce a finished program:

L. Area Definition. Reservation of memory space
for input, output, and working areas which will con-
tain the data to be processed or the various fixed
factors or combinations of characters (constants)
needed in executing the program.

2. Instructions. Commands to the 705 to operate
upon data, constants, or other instructions using
available components in the machine system.

AUTOCODER PROGRAM FORM

3, a 5 3 | 7 [}

| |
I

e

/ L---; EHEJ L-IJ Lﬂg
IOENTIFICATION | [IR ADORESS T } z
|
1

| |
1 |
| \ INSTRUCTIONS
1 !

9 0

[12 13 AND DATA

1BM
EDPM PROGRAM CARD

888888/888
. SErIAL] INLTIAL
IDERTIF (GAT 0K e aooness

12333558
1524865187

A LB AL A B LU
1111HIIHI|I1lllll1lllll|11lll|11llhl1lHHIIIllH‘lIlllIIlI'll1IIHIIIIHIHHIHHHII
22Z222222222222222222222222222|2227222222|22222|22222|22222I2222222222222222222222222
33333333333333333333,3333333333333333333333333,33333,33333,3333333333'333333333333333
444u444444444444444.44444!444444uu'uuuu444u444444444444‘44444|u444444u'444u
5555555555555555555555555:5555555555I5555555555'55555'55555'55555'55555|55555'55555l55555
li8G6GBBSE668666BGSG5|5$EEEIGGGSMEGGSB,ESGSB'GE665'6G666’8EGEGlsli5EE'GEBEGIESBGNGSGEG:GGESB
77777777771777777777,77777|77777I77717'77777|77777|77777”7777677777'77177'77777177777|77777

88BSSIBBBBNSBBﬂBIB858Blﬂ8888|88888|88888I98888|88888|89088%3388!883!&88858
INSTRUCTIONS AND DATA

| |

[N N T - I &

Ficure 5. Output ProcraM CarbD

All program information is written on the auto-
coder program sheet, Form 22-6705-0 (Figure 1).
The following sections explain the use of each column
on the sheet.

Heading Line

A line is provided at the top of the page to identify
and date the written program. The DENT entry on
this line is punched into columns 75-80 of all in-
struction cards in the program (Figure 2) which
are input to the autocoder assembly.

Page Number

A two-character page number entry sequences the
program sheets. Pages may be numbered alphabetical-

ly as well as numerically. The collating sequence of

the 705 determines the order of the pages.

Line Number

A three-character line number sequences the pro-
gram entries on each sheet. The first 25 lines are
prenumbered from 010 to 250 to reduce the amount
of written information required. Line numbering
may continue beyond 250 for one sheet number up
to the three-character limit of the field. The units
position of the line number may be used for inserts.
Blank lines are reserved at the bottom of the program
sheet for this purpose.

The page and line number fields control the se-
quence in which the written program, as punched in
cards or written on tape, will be fed into the auto-
coder assembly. Any 705 characters may be used in
assigning page and line numbers. However, if alpha-

betic, numerical, and special characters are used, pro-
gram entries should be in 705 collating sequence.
Any variation from this sequence will be noted on
the typewriter during assembly.

Tag

A program must be stored in memory when it is to
be operated upon by the 705. The positioning of the
program within available memory capacity is subject
to certain restrictions which are inherent in the 705
itself. For example:

1. The units position of an instruction must al-
ways be placed in a memory location whose
address ends in the digit 4 or 9.

Areas to be moved by five-character transmis-
sion must be evenly divisible by five.
Sufficient space must be reserved for records
and other program data.

Some instructions are addressed to the right
position of a field, others to the left position.

The tag field in the autocoder system is used to
represent the location of program data in memory.
Consequently, the programmer need not specify nor
be concerned with actual memory locations. Informa-
tion can be identified entirely by its particular label
or tag. However, only items which are to be ad-
dressed by program instructions need to be tagged.

Each item to be referred to is assigned a distinctive
and unique tag. These items may be records, areas,
fields, instructions, or individual characters. Any
item may be addressed after it has been assigned a tag.

During phase I of assembly, the autocoder assigns
actual memory locations to the program data. Five
memory positions are automatically assigned for each

4.

10 705 AUTOCODER SYSTEM

PG LINE TAG oP NUM OPERAND PROGRAM PAYRL1 COMMENTS LOC OP ASU ADDRESS
01 010 GROSSTONET SEL 202 READ INPUT 00164 2 00202 0202
01 020 RD PAYRECORD 00169 Y 00380 0380
01 030 RS ENDOF JOB 00174 0O
01 040 TRA READERROR 00179 1
01 050 RAD 1 #§0000# SET & FILL ASUS 00184 H 1 00423 0453
01 060 RAD 2 #5000# 00189 H 2 00426 04K6
01 070 RAD TAXCLASS COMPUTE EXEMPTION AMOUNT 00194 H 00385 0385
01 080 MPY #-1300# 00199 V 00430 0430
01 090 ADD GROSSPAY 00204 G 00406 0406
01 100 TRZ GTN1 TEST FOR WITHHOLDING TAX 00209 N 00219 0219
01 110 TRP GTN2 00214 M 00229 0229
01 120 GTN1 ST 1 W/HTAX NO WITHHOLDING - STORE ZEROS 00219 F 1 00410 04/0
01 130 R GTN3 00224 1 00254 0254
01 140 GTN2 MPY #618#% COMPUTE WITHHOLDING TAX 00229 vV 00432 0432
01 150 RND 2 00234 E 00002 0002
01 160 SET 4 00239 B 00004 0004 .
01 170 ST W/HTAX 00244 F 00410 0410
01 180 ADM YTOM /H 00249 6 00397 0397
01 190 GTN3 RAD #6420000% TEST FOR FICA TAX 00254 H 00438 0438
01 200 suB YTDGROSS 00259 P 00391 0391
01 210 TRZ GTN4 00264 N 00274 0274
01 220 TRP GTN5 00269 M 00284 0284
01 230 GTN& ST 2 FICA NO FICA = STORE ZEROS 00274 F 2 00413 04J3
01 240 R GTNG 00279 1 00334 0334
01 250 GTNS suB GROSSPAY 00284 P 00406 0406
02 010 TRP GTNT 00289 M 00304 0304
02 020 ADD GROSSPAY COMPUTE PARTIAL FICA 00294 G 00406 0406
02 030 R GTNS 00299 1 00309 0309
02 040 GTN? RAD GROSSPAY COMPUTE WHOLE FICA 00304 H 00406 0406
02 050 GTN8 MPY #e2# 00309 V00439 0439
102 060 RND 2 00314 € 00002 0002
102 070 SET 3 00319 8 00003 0003
|0z 080 ST FICA 00324 F 00413 0413
02 090 ADM QTDFICA 00329 6 00401 0401
02 100 6TN6 RAD GROSSPAY COMPUTE NET PAY 00334 H 00406 0406
02 110 ADM YTDGROSS 00339 6 00391 0391
02 120 suB W/HTAX 00344 P 00410 0410
02 130 suB FICA 00349 P 00413 0413
02 140 ST NETPAY 00354 F 00418 0418
02 150 SEL 203 WRITE RESULT 00359 2 00203 0203
02 160 WR PAYRECORD 00364 R 00380 0380
02 170 RS SWITCHTAPE 00369 0
02 180 TRA WR1TEERROR 00374 1
02 190 R GROSSTONET 00379 1 00164 0164
02 200 PAYRECORD DRCD DEFINE PAY RECORD 00380
02 210 MANNO 5 6 00384
02 220 TAXCLASS 1% 00385
02 230 YTDGROSS 6 & 00391
02 240 YTOW/H 6 & 00397
02 250 QTDFICA “ & 00401
02 251 GROSSPAY 5 & 00406
02 252 W/HTAX 4 & 00410
02 253 FICA 3 & 00413
02 254 NETPAY 5 & 00418
SIGNED LITERAL 1 00419
SIGNED LITERAL 4 0006 00423
SIGNED LITERAL 3 006 00426
SIGNED LITERAL 4 130- 00430
STGNED I ITERAL 2 1H 00432
SIGNED LITERAL 6 420006 00438
SIGNED LITERAL 1 B 00439
FiGure 6. OuTtPuT PrROGRAM LISTING
instruction and additional space is reserved for other 1. The first character may not be a # (used as a
areas according to their size. The programmer merely parenthesis in instruction card punching), I (loz-
specifies the length of all such miscellaneous data. enge), or @ (commercial “at”).
Tags may be made up of ten characters or less in 2. An & (ampersand) or a - (hyphen) may not
any pattern of numbers, letters, and special char- be used in the tag field.
acters acceptable to the 705. including blanks, with 3. The tag may not be ten 9’s.

the following exceptions: 4, Tags of library subroutines are made up of a

AUTOCODER PROGRAM FORM 11

five-character name of the subroutine followed by up
to five characters. The name portion of the subroutine
tag should not be used as the first five characters of
any other tag in the program.

Operation

The 705 can perform 35 different operations in-
volving data which either are stored in memory or
are handled by the various components of the ma-
chine. Each of these operations is assigned a single-
character code. When stored in memory, the code
can be interpreted by the machine as an order to
calculate, read, write, compare, and so on. A com-
plete machine instruction is always made up of two
parts:

1. The single-character operation code.

2. The four-character address.

In the autocoder system it is unnecessary for the
programmer to use any actual machine codes. Each
operation has been given a mnemonic abbreviation
which suggests the machine operation to the pro-
grammer. For example, the operation set left is
abbreviated as sET, the operation load as Lop, and so
on. All 705 operations have been abbreviated to
either two- or three-character mnemonics. The auto-
coder will accept either machine codes or mnemonics,
which ever are written into the program.

A number of operations are also available from the
autocoder itself. These inciude special operations
which assign memory areas to records, fields, and con-
stants, produce address constants, use macro-instruc-
tions, call for subroutines in the library, or do other
operations necessary to produce a finished program.

Figure 7 is a list of all 705, TRc, and high-speed
printer operations with corresponding autocoder ab-
breviations. It gives a brief description of each opera-
tion together with the corresponding actual 705
single-character code.

Figure 8 lists all autocoder operations which are
available, including those which call for subroutines
from the library or are used to revise the program
during reassembly or during revision of the library.
Macro-instruction operations presently available are
listed in the section “Macro-Instructions.” As addi-
tional instructions are added to the library, the cor-
responding operations are also available.

Numericali

The numerical column of the program sheet:

1. Adjusts the memory location to which the
first character of a defined area will be assigned.
A zero in the numerical column, for example, prop-
erly locates an area for five-character transmission.

2. Specifies the accumulator or an asu with opera-
tions such as raD, SET, and so on.

3. Specifies the length of a record, record field,
constant or other area.

4. May be used to sign the units position of an
instruction.

The numerical entry, in combination with the
operand, forms the address portion of an instruction.

Operand

The operand field is used in any of the following
ways:

1. As an actual memory location, thereby provid-
ing the programmer with the ability to assign all,
or portions of, the program or data to some predeter-
mined specific section of memory. It may also be
the actual address of data or of a machine component,
such as a tape unit, drum section, check indicator, or
alteration switch.

2. As the descriptive location of data or other in-
structions in memory. In this case, the operand is the
exact duplicate of the tag of the data or instruction
to which it refers. If there is no tag which exactly
corresponds to a descriptive operand, the autocoder
may use a tag which is very similar to the operand
and which differs from it only in the position of a
blank. A message will notify the programmer that
an exact duplicate could not be found and that a
substitution was made. The descriptive operand may
also be the name of a machine component, provided
that the component has been assigned this name by
a special TRANS entry.

3. As the data to be operated upon. This form of
operand relieves the programmer of any planning for
memory reservation of constant facters. The auto-
coder, for example, permits the programmer to write
an instruction with a literal operand as rap(+1),
without regard to where +1 will be stored. The
assembly assigns the factor +1 to a memory location
and automatically substitutes the address of this loca-

Mne-

monic Oper.
Instruction Code Part Description
705 OPERATIONS
Add ADD G Result in accumulator or aux. stor.
Add Mem ADM 6 Signed memory field--algebraic addition
Unsigned mem. field--non-algebraic and zone addition
Compare CMP 4 Accumulator or aux. stor. with memory
Ctrl 0000 1OF 3 Turn off input-output indicator
Ctrl 0001 WTM 3 Record tape mark
Ctrl 0002 RWD 3 Rewind tape unit
Ctrl 0003 ION 3 Turn on input-output indicator
Ctrl 0004 BSP 3 Back space tape one record
Ctrl 0005 SUP 3 Prevent printing or punching one cycle
Divide DIV W Dividend in acc. 00; divisor in mem.; quotient in acc. 00
Lengthen LNG D Add zeros to right {accum. 00)
Load LOD 8 Loads zones as well as numbers
Multiply MPY A Multiplier acc. 00; multiplicand mem.; product acc. 00
No Oper NOP A No operation
Norm Tr NTR X Left-hand zero in accum. or aux. stor. causes transfer. Zero deleted
except lost zero
Read 00 RD Y From tape, card reader, or drum to memory
Read 01 RD Y Pass tape record without storing in memory
Read- RWW S Alert reading tape unit to operate simultaneously with next write instruction
Write
Receive RCV U Use with TMT for mem. to mem. transfer (See TMT)
R Add RAD H Resets accum. or aux. stor.; adds from memory
R Sub RSU Q Resets accum. or aux. stor.; subtracts from memory
Round RND E Drop positions from right and 1/2 adjust (accum. 00). Zero balance is plus
Select SEL 2 Select input, output, alter sw. or check indicator
Set Left SET B Place storage mark to left of indicated address (00-15)
Shorten SHR C Drop positions from right (accum. 00). Zero balance is plus
Sign SGN T Remove zone 11, 10, or 01 from memory, place & or == in accumulator or
aux. stor.
Stop HLT J Stop machine
Store ST F Store numerical field in memory
St Print SPR 5 Store field for printing. Skips decimals, commas. Removes left-hand zeros
and commas
Subtract SuB P Result in accumulator or aux. storage
Transfer TR 1 Unconditional transfer
Tr Any TRA ! Transfer if any 1/O or check indicator is on
Tr Equal TRE L Transfer if acc. or aux. stor. is equal to memory
Tr High TRH K Transfer if acc. or aux. stor. is higher than memory
Tr Plus TRP M Transfer if acc. or aux. stor. sign is plus
Tr Signal TRS O Transfer if indicator is on
Tr Zero TRZ N Transfer if factor in acc. or aux. stor. is zero
Transmit TMT 9 Use with RCV for transmitting data from memory to memory, S-character
group or single character
Unload UNL 7 Unload zones and numbers
Write 00 WR R From memory to tape, card punch, printer, or drum
Write 01 WR R Dump memory to card, printer, tape, drum
Wr Erase WRE z Replace each char. in mem. with blank and write on tape, card punch,
printer, or drum
760 OPERATIONS
Ctrl 0026 RWS 3 Read/Write start
Crrl 0027 RWT 3 Read,Write tape
Ctrl 0028 RST 3 Reset counter
Ctrl 0029 PTW 3 Print tape write
777 OPERATIONS
Ctrl 0015 PRW 3 Prepare to read while writing
Ctrl 0016 RTS 3 Read tape to TRC
Ctrl 0017 WST 3 Write TRC to tape
Ctrl 0018 BPC 3 Bypass TRC

NOTE; Control instructions may also be written as CTL with proper address.

FiGure 7. TABLE orF MacHINE OPERATIONS

12

AUTOCODER PROGRAM FORM 13

tion for the literal operand. The operand may be a
signed or unsigned field. The autocoder will define
all signed literals as arithmetic fields, separate them

AUTOCODER OPERATIONS

OPERATION DESCRIPTION

DRCD Define record

DCON Define constant

DFPN Define floating point number

AACON Actual address constant

LACON Left address constant

RACON Right address constant

TITLE Title entry

TRANS Translate tag to address

LDDR Load program on drum

LDTP Load program on tape

LLDTP Load program on tape, WIM, RWD

LASN Location assignment

SASN Special Assignment

DELET Delete from library or delete during reassembly

INSER Insert in library

REPLA Replace library

INCL Include sub-routine

DO Include sub-routine and transfer unconditional ly

DOA Include sub~routine and transfer on any

DOE Include sub-routine and transfer on equal

DOH Include sub-routine and fransfer on high

DOS inciude sub-routine and transfer on signal

Ficure 8. TABLE OF AuTOocODER OPERATIONS

from unsigned literals, and enter all literals in a table
at the end of the program data. A literal will appear
in the table only once even though it may appear
several times in the program.

Operands can be written which refer to any char-
acter position within an instruction, field, or record
by using character adjustment. The adjustment is a
plus or minus factor written after the operand. An
address may be adjusted in such a manner that every
position of memory may be referred to by the pro-
gram.

Comments

A comments field is provided where additional
information concerning the program may be included
if desired. Ordinarily comments are transcribed to
the output program listing for reference only.

The comments column may also contain constants
if special constant areas have been defined. The
operands of certain macro-instructions may overflow
into the comments column depending upon the num-
ber of parameters which must be supplied to a par-
ticular instruction.

AUTOCODER PROGRAMMING

THIS section describes in detail the various steps to
be followed for the preparation of the written auto-
coder program. Methods of assigning or “defining”
records, fields, constants, and work areas are ex-
plained, together with the rules to be followed in
writing 705 instructions in autocoder language.

AREA DEFINITION

MEMORY areas should be reserved for the storage of
all records and any other data which are to be proc-
essed by the program. Such records and data are
normally made up of various fields which are of
known length and arrangement. Records will be
automatically assigned to memory locations in the
order in which they are defined in the program.
However, they can overlap other areas if so specified
by the programmer. Program instructions which
perform operations upon records are addressed to
the specific memory positions where these records are
located.

A simplified payroll record input and output area
is illustrated in Figure 9. The arrangement of fields
and the number of positions within each field is
shown. A total of 35 positions of memory will be
needed to store the input record, and 44 positions to
store the output record.

Record layout description is written on the pro-
gram sheet as shown in Figure 10. The record name
and the name of each field is written in the tag col-
umn and the number of positions in each field
(length) in the numerical column.

Tag

The record may be given a tag to provide a refer-
ence for instructions, such as read and write, which
address the entire area. It is usually an advantage
to choose tags which are descriptive of the area to
which they are assigned, e.g., PAYROLL IN, WITH-
DRAWALS, RECEIPTS, and so on. Such tags not only
provide an easily remembered reference for the pro-
grammer, but also assist others who may be called
upon to follow the program for testing, correction
and actual operation.

Each individual field is also given a tag if that field
is to be addressed by program instructions. These tags
provide program reference for instructions which are
normally concerned with individual fields in the
record, such as compare, load, arithmetic instructions,
and so on. Fields which are common to several differ-
ent areas may be given distinctive tags by using an
alphabetic or numerical prefix or suffix, as written
for input and output areas in Figure 10.

As a general rule the tag column should not be
used only for description. Such descriptive informa-
tion should be placed in the comments column.

Operation

The operations bRcp (define record), pcon (define
constant), and pFPN (define floating point number)
initiate the memory assignment of individual memory
areas during assembly. The arrangement of fields

PAYROLL RECORD - INPUT A

FELDS s 21! maN |.| Y.T.D Y.T.D. |QUAR.| GROSS
e & (. NO. O] EARN. WITH. FICA PAY bbb ¥
&8 &
X XIx XIX X X X X/ X{X X X X X X[X X XX X X|X X X X|X X X X X[X X X X
LENGTH 2 2 5 T 6 6 4 5 4
PAYROLL RECORD - OUTPUT B
s
fEps 82| MAN 5| Y.T.D. | Y.T.D. | QUAR.|GROSS | CUR. |CUR.| NET
- 15| NO. [§| EARN. WITH. FICA | PAY W.H. |FICA| PAY [£
&8 K
XXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXAXXXXXXXK)‘XXX
LENGTH 2 2 5 1 ¢ 4 5 4 3 5 1

FiGURE 9. Pavrorr REcorps, PartiaL LavouT

14

-4

>
C

O
0O
(@)
[w)
m
A

v
A

(e]
®
Pt
>
=
z
Z
®
G

within the record is described on the program sheet
by entries written on immediately following lines
(Figure 10).

Drcep, pcon and DFPN entries are prepared in the
same manner. The following conditions apply.

A tag may or may not be supplied, depending
upon whether reference is made in the program to
the entire area or only to individual fields within the
area. The actual memory address which will be cal-
culated by the autocoder for the entire defined area
is that of the last character of that area, which be-
comes the address of the area for all low-order refer-
ence instructions, such as Lop. Addressing the entire
area by a high-order reference instruction, such as
read or write, however, results in the address of the
first character of the defined area.

For example, the payroll record input area in Figure
10 may be addressed by a read instruction by writing
the instruction RD PAY REC IN. Rbp is the conven-
tional 705 operation code; PAY REC IN is the address
of the input record.

After the location of the last character of an area
has been established, it is then used to calculate ad-
dresses for all instructions referring to the entire area.
For example, if the last character of PaY REC IN is
assigned to location 4084, then the address of a load

instruction is 4084. The address of a read instruction,
however, becomes 4084 (location of last character)
—35 (length of all the fields in the record) 41, or
4050. The look-up and calculation of addresses is
accomplished during phase II of the assembly.

The operation column may contain DRCD, DCON, or
DFPN, depending upon the type of area to be defined.

Entries describing record fields, constants and float-
ing point numbers are written on lines which follow
the DRCD, DCON, DFPN entries. The operation column
of an entry following a DRCD, DCON, or DFPN is
blank except when the length of the entry is greater
than 99.

The entire operation column remains blank when
describing floating point numbers.

Numerical

The numerical column in the prRcp, pCow, and
DFPN entries specifies the proper memory location to
which the first character of the defined area will be
assigned. If blank, the area will start at the current
setting of the assignment counter. If a digit from
1 to 4 is used, the first character will be located at the
next memory address ending in 1 or 4, or at an address
ending in 1 to 4 plus 5, whichever is more conserva-

LINE TAG OPERATION | Num.

OPERAND

COMMENTS

00 JPAY REC IN DRCD

Payroll record input

20 | APAY PER

o0 | ADEPT NO

00 |AMAN NO

os0 | ATAX CL

00 |AYTD EARN

e JAYTD WITH

%0 JAQUAR FICA

+ |+ [+]+ [+

%0 JAGROSS PAY

10 [AREC MARK

1o |PAY RC OUT DRCD

Payroll record output

20 |BPAY PER

1o |BDEPT NO

140 |BMAN NO

150 IBTAX CL

10 |BYTD EARN

170 1BYTD WITH

180 |BQUAR FICA

% |BGROSS PAY

200 |BCUR WH

20 |BCUR FICA

+ |+ [+ [+ [+]+]+]+

220 |BNET PAY

=G| bslo| S|l [= 0 |NIMISIAO|S|oc|on|=lo iMoo

230 [BGR MARK

240

|
|
|
|
|
|
I
]
|
|
|
|
|
|
|
|
|
1
|
]
I
|
|
|

FicUre 10. PayroLr REcorps, DEFINITION

16 705 AUTOCODER SYSTEM

tive of memory. If the digit 0 is used, the first char-
acter will be properly located for high speed trans-
mission at an address ending in 0 or 5, whichever
is more conservative of memory. The numerical col-
umn should be left blank when a descriptive, or
actual address is used in the operand field.

The length of each record field or constant is writ-
ten in the numerical column of the entries following
a DRCD, DCON, or DFPN entry. Memory space is
allocated equal to the number of positions specified
for each field. When a field length exceeds 99 posi-
tions, overflow from the two-digit numerical column
on the program sheet may extend up to three places
into the operation column. The total space in memory
assigned to a defined area is equal to the total lengths
of the various fields which make up that area. Field
lengths may be specified up to the capacity of
memory.

The length of a constant field is equal to the num-
ber of characters in the constant. When a length is
specified which is less than the actual number of char-
acters in the constant, the autocoder will shorten the
constant to the specified length by omitting right-
hand characters. When a length is specified which is
greater than the actual constant, the autocoder will
add zeros to the right of a signed constant, and
blanks to the right of an unsigned constant. Plus or
minus signs preceding the constant are not counted
as characters when specifying length.

The numerical column remains blank for floating
point numbers. The assembly supplies a length of 10.

Operand

The operand column of the prCD, DCON or DFPN
entry specifies the location of the defined area in
memory. If the field is left blank, the record area will
immediately follow the location of preceding entries,
and this area will be reserved to prohibit other entries
from being placed there.

However, the programmer may, if he wishes,
instruct the autocoder to assign areas to some speci-
fied location in memory. In this case it will be the
responsibility of the programmer to make sure that
nothing else is improperly placed in that location.

A record area may be located in any specified por-
tion of memory by placing the actual address in the
operand column. Actual addresses are preceded by the
symbol @ on the program sheet. The first character

of the record will be located in the actual memory
address specified.

A previously assigned tag may be used as an
operand. In this case the area will be assigned the same
locations as the entry identified by that tag.

A defined area can be assigned to a location which
follows in line with the regular sequence of instruc-
tions and other areas; it can be assigned to a specific
prelocated portion of memory, or it can overlap some
previously defined area. In the latter case, the longer
area should be defined first to avoid overlapping be-
yond the proper portion of memory.

The use of the operand column is optional when
describing fields within records. Information written
will be key punched into the instruction cards and
will be printed on the output program listing for
reference.

A plus or minus sign should be written as a one
position operand in a field within a DRcD area that is
to be addressed by an arithmetic operation. During
assembly the autocoder checks to see that the field
which is addressed by arithmetic operations (exclu-
sive of Lop, UNL, st, and apM) has been written
with a sign as the first position of the operand. If
this is not done, a sign check message will be typed
during assembly. This check aids the programmer in
manually checking that all such work areas are signed
by the program or that the data are signed.

To set up constants in memory, write DCON in the
operation column. Starting with the next line.
write the constants in the operand column, one con-
stant to a line. Any 705 characters are acceptable
as constants. The constant may extend into the
comments column and up to 52 characters may be
written (including the sign) as one entry. Constants
longer than 52 characters must be written as two or
more entries with the proper length specified for each.

A numerical constant field may be signed by writ-
ing a plus or a minus sign preceding the field on the
program sheet. Only numerical constants should be
signed. This results in the signing of the last digit of
the field. Plus signs are punched as & and minus
signs as — in the instruction cards and are properly
interpreted by the autocoder assembly.

Figure 11 is the complete record and constant lay-
out which might be used to process the payroll records
shown in Figure 9. A print area and a work area have
been included to permit total accumulation, by de-
partment, of gross, tax, and net pay. A constant

AUTOCODER PROGRAMMING 17

INPUT AREA
_ 2 MAN | Y.T.D. Y.T.D. QUAR.| GROSS
&1 NO. |G| EARN. WITH. FICA PAY bbb#*
> E %
cia iy
XXX X[X X X X X{X{X X X X X XIX X X X XX|XXXX|XX XX X[X XXX

OUTPUT AREA

MAN] Y.T.D. Y.1.D. QUAR.| GROSS | CUR. |CUR. NET
NO. EARN. WITH. FICA PAY W.H. | FICA PAY ¥

= Pay Per
X
x Dept. No.

x

X X X X X[X|X X X X X X[X X X XX X[XXXX{XXXXX[XXXX[Xxxx[xxxxx|x

CONSTANT - RESET TOTAL PRINT

xxxx,xxx.xxxx,xxx.xxe,xxx.xxxxx,xxx.xx**

TOTAL WORK AREA

RECORD GROSS CURRENT | CURRENT NET
COUNT EARN, W.H. FICA PAY
IN ourt
X X X XX X X X[X X %X X X X X[X X X X X x|X X X X X X|x x X X KX X

TOTAL PRINT

GROSS CURRENT CURRENT NET
EARN. W.H. FICA PAY

x Dept. No.

xx,xxx.xxxx,xxx.xxxx,xxx.xxxxx,xxx.xxx*

x

Figure 11. PayrorL Recorps, CoMPLETE Layour

print pattern is placed in memory to reset total print
areas. Figure 12 shows how the constant pattern may
be written on the program sheet. The figure also
shows how the constant 4 4200 would be set up.

One or more floating-point-number entries may
appear following the operation prpN. Each floating
point number is written in the form

T ee = xxx...

in which ¢ stands for the exponent on the base 10
and xxx. .. is a mantissa between 0 and .99999999.
For example, the number 365 would be written as
+ 03 4 365. Up to eight mantissa places may be
specified. However, if fewer than eight are entered,
the autocoder will complete the number by supply-
ing zeros. The representation of the quantity zero is
written as — 99 + 0.

It should be remembered that DRcD entries differ
from pconN and DFPN entries in that only the latter
produce output program cards.

Comments

The use of the comments column is optional with
record and field definition entries. The column can
be used for recording program notes or other infor-
mation which may clarify the logic or function of the
program. The tag may serve as an adequate label of
the various areas involved but should not be used as
a substitute for comments.

Entries in the comments column are punched into
the instruction cards and will be printed on the out-
put program listing exactly as originally written by
the programmer.

Constants may extend into the comments columns
if necessary.

INSTRUCTIONS

ALL instructions which can be performed by the 705
are valid input to the autocoder assembly. Instruc-
tions are written on the program sheet, one instruc-
tion per line, in the exact sequence in which they are
to be executed by the machine. The correct sequence
of input is assured by sorting all instruction cards to
page and line number before assembly.

Tag

The assignment of instruction tags is subject to
the same rules previously outlined for the assignment
of tags to record and constant areas. Only instruc-
tions which are addressed by other instructions in

am need to be tagged.

It is usually most convenient to form tags which
are descriptive of the section of the program which is
to be addressed. For example, the first instruction of '
a routine to calculate net pay can be tagged NET
carc. The tag then becames an easily remembered
descriptive reference point. A transfer to this routine
can then be written as TR NET carc. Switches, digit
selectors, and instructions which are to be modified
by other instructions may be tagged with the actual
name of the reference point, e.g., sw 1, pic SeL 1,
ALPHA LOD, and so on. The autocoder assembly con-

LINE TAG OPERATION | NUM. OPERAND COMMENTS
o0 DCON |

oo | PRINT 41 | bbbb,bbb. bbbh, bbb . bbbb, bbb .bbbbb, bbb .bb+
%0 | CONSTANT 1 04 | +4200 |

Ficure 12. DcoN ENTRY, PRINT AREA

18) 705 AUTOCODER SYSTEM

verts all tags to actual memory locations during phase
I. Operands which refer to these tags are converted
to addresses during phase II.

It is often convenient to relate program instruc-
tions directly to the corresponding blocks of a flow
diagram. This procedure furnishes cross reference be-
tween the diagram and the program and is an aid to
program testing and correction. Reference between
the program and the diagram may be provided by the
following procedure:

1. Repeat the page and line number as a tag.
This method furnishes a sequenced reference which
may be easily keyed to the flow diagram. In this case,
however, the advantage of the descriptive tag is lost.

2. Use descriptive tags carrying their own sequence
indication, such as NET cALc 1, NET CALC 2, NET
caLc 3, and so on. This method combines the advan-
tages of both the sequence and descriptive features.

3. Insert title entries at various points in the pro-
gram. These entries can also be referenced to the flow
diagram where convenient. (Refer to “Title” section.)

However, as a general rule, the tag column should
not be used for description only. Such descriptive
information should be placed in the comments col-
umn.

Operation

All 705 instructions with corresponding mnemonic
abbreviations are listed in Figure 7 and are described
in detail in the 705 Preliminary Manual of Operation,
and in the manuals of operation on the 777 and 760.
Either the mnemonic abbreviation or the single-
character code is acceptable as autocoder input.

The autocoder processes all 705 instructions ac-
cording to the kinds of operands with which each
may be associated. Figure 13 lists the six groups of
instructions together with their permitted types of
operands. The proper character position addressed in
memory is also shown.

Autocoder operations may also be written into the
operation column of the instruction. Some of the
operations, such as the assignment of areas to specific
sections of memory, place certain functions of the
assembly under the control of the programmer. These
are explained in the section “Special Operations.”
Other autocoder operations call for subroutines from
the library. Up to five characters may be used.

An operation may also bec a macro-instruction
name, causing the assembly to substituie a scqueice
of conventional 705 instructions from the library.

705 Permitted Character
Group | Instructions Operands Addressed
ADD RAD Blank Low-order
ADM RSU Actual (5-digit max.)
CMP SGN | Literal
1 DIV SPR Descriptive
LOD ST
MPY SUB
NOP UNL
RD Blank High-order
RWW Actual (5-digit max.)
2 WR Literal
WRE Descriptive
RCV 01-15
TMT 01-15
RCV 00 Blank High-order +4
3 TMT 00 Actual (5-digit max.)
Descriptive
NTR TRH Blank Low=ordet

4 R TRP
TRA RS
TRE TRZ

Actual (5-digit max.)
Descriptive

CTL SEL Blank

5 HLT SET Actual (4-digit max.)
LNG SHR Literal
RND Descriptive
BPC RTS Blank. The operation
BSP RWD code 3 and the proper
6 IOF. RWS numerical address
ION RWT are supplied by the
PRW SUP Autocoder.
RST WM

FiGure 13. INSTRUCTIONS BY AUTOCODER CLASS

Numerical

The numerical column is used to specify an Asu
or the accumulator. Either one or two digits, from 1
to 15, may be written. A blank numerical column,
0, or 00 will denote the accumulator. An asu desig-
nation may be written as 4 or 04.

The numerical column must be considered when
using the rRcv instruction. Unlike actual 705 usage,
the autocoder requires asu designation with the rcv
instruction to determine whether five-character or
serial transmission is involved and to calculate the
address accordingly. The same asu should be specified
for both corresponding Rcv and TMT instructions.

Operand

The instruction operand is written in the operand
column of the program sheet. It is converted to an
address in phase II of the autocoder assembly. In-
struction operands may be of several types.

ACTUAT,
Actual opcrands may designate an actual memory

address. In this case, the operand must be preceded

o
(o}

SRAMMING

-—
0

;i

by an @ symbol. Any address may be specified from
0 to the limit of memory. Insignificant zeros need
not be written for actual addresses; the assembly sup-
plies necessary zoning if a five-digit address is speci-
fied. For example, location 00250 is written as actual
operand @250; location 25,000 as @25000.

Instructions such as sET or seL (group §, Figure
13) which normally have actual operands, may, but
do not have to, be preceded by the @ symbol.

LITERAL

A literal operand is literally the data which are to
be operated upon by the instruction. It may consist
of from ene to fifty characters, not counting a sign.

The use of literal operands eliminates the need for
preliminary layout of constant areas, messages, and
miscellaneous factors before writing the program.
Such fields may be entered as literal operands when
needed.

For example, assume that a factor +1300 is needed
for calculation of a withholding tax exemption
amount. To introduce this factor into the program,
write the factor as (4 1300) in the operand column
of the instruction which uses the factor (Figure 14),
enclosing it in the parentheses to indicate that it is a
literal. Parentheses are key punched as # signs and
will appear as # signs on the final program listing.
The first character of the literal is its sign. During
assembly, the factor 41300 is properly assigned a
memory location as a signed numerical field. The lo-
cation of the field becomes the address of the instruc-
tion. Figure 14 illustrates the proper method of
writing literal operands.

Note that the instruction to write an end-of-file
message includes the group mark as the last character
of the message. The literal operand of the unload
instruction reserves a 13-character field in memory
where a control or indicative field might be stored for
comparison with other fields from following records.

Any field may be similarly reserved by writing an
operand containing a number of characters equal to
the number of memory positions needed for storage.

There-are no restrictions on the use of valid 705
characters within literals. The literal is called “‘signed”
if its first character is a plus or minus sign. The same
literal may be used any number of times within the
same program. However, the literal will be assigned
only one location by the autocoder assembly and will
appear only once in the final output program arrange-
ment. The signed literals are grouped together at the
end of the program. A blank precedes the group;
the unsigned literals follow the signed literals. Literals
cannot be located for high-speed transmisison. There
is a limit to the number of different literals that can
be assembled by the autocoder. If this limit is ex-
ceeded, succeeding literals will be ignored. If the
average length of the literals used is five, about 250
distinct literals can be used. When it appears that this
limit may be exceeded, it is suggested that the longer
literals be set up as DcoN entries.

Because literals are enclosed within parentheses
(translated as # by autocoder), their lengths are
limited to 50 positions, or 49 characters plus a sign,
which is the limit of the columns in the instruction
card. '

Note: Working storage literals which may be
modified during the actual running of the program
should always be entered as a field with at least one
non-numerical character, or they should be preceded
by a blank if a pure numerical field is used. This con-
vention avoids the possibility of conflict if a sub-
routine or macro-instruction should generate a literal
that is a duplicate of one used in the main routine.

DESCRIPTIVE
The descriptive operand corresponds to a tag that
appears elsewhere in the same program. The operand
may be the tag of any area, field, or instruction.

LINE TAG OPERATION | NUm OPERAND COMMENTS

010 IWH TAX RAD | (+1300) | Get exem factor ’
o0 |

030 WR (END OF FlLEi? EOF message

040 |

0s0 UNL (COMPARE FIELD)

bt !

or0 ADM 4 | (+0005) | Address modify factor

bl l

Ficure 14. Literar OPERAND ENTRIES

20 705 AUTOCODER SYSTEM

Restrictions on the use of certain characters in tags
also apply to descriptive operands. Figure 15 illus-
trates the use of descriptive operands.

BLANK
The blank operand always has blanks in the first
ten positions of the operand field. Such instructions
are to have proper addresses inserted by the running
program. No AsU zoning may be used with blank
operands and character adjustment does not apply.

OTHER

When a descriptive operand is used, reference is
usually made to the location in memory of the data
designated by the descriptive operand. However, the
operands of instructions such as CTL, HLT, LNG, RND,
sEL, SET, and SHR refer to machine components or
functions, the length of accumulator fields, and so on.
This class of instructions may carry descriptive oper-
ands, however, if the operand is the tag of some field
defined in the program.

For example, in a program where the tag MANNO
has been defined to be of length 6, the sequence of
autocoder instructions:

MANNO
MANNO

SET 15
LOD 15

will cause asu 15 to be set to 6 and the field MaNNO
loaded into asu 15.

Machine components may also be addressed with
descriptive operands, provided that such components
have been defined by a TRaNs operation. Refer to
section “Special Operations.”

Normally when a literal operand is used, the literal
is the actual data to be acted upon by the 705
instruction. However, instructions such as CTL, HLT,
LNG, RND, SEL, and sHR may have literal operands.
In such cases the actual data is not referred to, but

reference is made to the number of positions of the
literal.
For example, in the following program:

SET (01298)
LOD (01298)
the autocoder will translate this as:
SET 0005
LOD Address assigned to 01298 by

the autocoder.

For group five instructions only (cTL, HLT, and
so on), the autocoder assumes an operand to be actual
if it is wholly numerical and of a length less than five
characters. An operand is considered descriptive if it
contains a non-numerical character or is of a length
greater than four characters. The autocoder recog-
nizes only those characters to the left of the first
blank in the operand field in making this determina-
tion. Therefore the operands bAB or 1bAB would
be considered as actual addresses, and assembled as
0000 and 0001, respectively.

Character Adjustment

Any memory position within a designated field,
area, or instruction may be addressed by the use of
character-adjusted operands. This feature is useful,
for example, in functions of address modification
when it is desirable to modify only the operation code
or the address portion of an instruction.

One common use of address modification is to
change a program switch setting by changing the
operation code from Nop to TR. This is done by
changing the Nor code, character a, to the TR code,
character 1, by removing the zoning from a with a
sign instruction.

The instruction on line 010 in Figure 16 is a pro-
gram switch. With its operation code set to ~Nop
(character a), the instruction will not be executed.

r LINE TAG OPERATION | NUM. OPERAND COMMENTS
010 RD PAY REC IN] Read in pay record
020 TRA RD TRA | To error routine
039 I
040 ADM AQUAR FICA | Adjust quar FICA
050 |
060 RCV PAY RC OUT Move pay record to
070 T™MT PAY REC IN | output area
080 1
090 MPY BTAX CL | Calc exem amt
100 l

Ficure 15. DEscripTIVE OPERAND ENTRIES

3>
<
-
O
(@}
O
lv)
m
P

]
A

(0]
@
0
b3
b
z
o)
N

With its operation code set to TR (digit 1), a transfer
will be made to the instruction tagged READ CARD.

A 56N instruction to set the switch to TR is shown
on line 040. The operand is the tag sw 1 with a —4
character adjustment. The autocoder interprets the
operand with the adjustment factor as the address of
the sw 1 instruction minus four, or the address of its
operation code. Lines 070 and 080 show instructions
with character-adjusted operands to set sw 1 to Nop.

All descriptive operands may be character adjusted.
The character adjustment factor is always written
after the operand to which it applies. The number
and direction of character adjustment is indicated by
a plus or minus sign followed by the factor, whic
may be up to five digits in length.

To adjust an operand to four higher positions of
memory, the adjustment factor is written +4. To
adjust an operand four lower positions of memory,
the adjustment factor is —4. Character adjustment
proceeds from the high-order position of an area
when used with operations such as rD, WR, RCV, TMT,
and from the low-order position when used with
operations such as RAD, LOD, cMP, and so on.

The sign of the character-adjustment may be lo-
cated anywhere after the significant portion of the
operand itself, but no farther to the right than the
eleventh position of the entire operand field. An oper-
and field may be written like any of the following:

PAY+4
PAYbbb-+4
pAYbbbbbbb-4

Literal operands may also be character-adjusted, by
placing the adjustment factor after the parentheses
enclosing the literal. The sign of the adjustment may
appear in any position after the parenthesis, up to,
and including, the eleventh position of the entire
operand field. Adjustments may be written for literals
longer than ten positions if the adjustment factor

immediately follows the literal. Adjustments to literal
operands may be written as shown by instructions in
Figure 17.

The instruction LoD on line 020 will result in load-
ing the digits 1234 into asu 10. The instruction on
line 040 will write the phrase EoF UNIT 204 on the
selected output unit.

Note: If the program is to be checked by Eawm,
it is advisable, wherever possible, to put all character
adjustments in the 11th position of the operand field
(viz., put the sign in column 33).

Comments

The comments field is normally reserved for com-
ments which may be helpful in checking the pro-
gram. The information in this field will have no
effect upon the subject program produced by the
autocoder. Exceptions are the following.

1. Certain macro-instructions may have several
operands separated by a lozenge (II) character. These
may extend into the comments field.

2. *asuxx (any asu 00-15) in the first six col-
umns of the comments field of a 705 instruction has
the special effect described under “Address Modi-
fication.”

SPECIAL OPERATIONS

SPECIAL operations other than pcoN, prep and preN
are described in this section.

Title

The TITLE operation code permits the insertion of
lines of descriptive information in the program. These
lines are printed on the output listing for reference
but do not in any way affect the operation of the
program. They are not included on the output pro-
gram tape or program cards.

LINE TAG OPERATION | NUM. OPERAND COMMENTS
oo [SW1 NOP READ CARD To next transaction
020 |
030 J
040 SGN 1 | SW1-4 | Set SWto TR
050
1
b |
070 SGN 1| SWi-4 | Set SW to NOP
080 ADM 1 | SWi-4 |
%0 |

FiGURE 16. ENTRIES FOR PROGRAM SwITCH SETTINGS

22 705 AUTOCODER SYSTEM

Any part of the tag, numerical, operand, and com-
ments fields may be used for description. Title en-
tries are useful as descriptive headings for various
branches or sections of a program and may provide
convenient reference points when the program is
ready for testing and use. Figure 18 illustrates two
title entries.

NotEe: Title entries may #o¢ be placed between
an area and its field definition entries.

Translation

The operation TRANs may be used to establish
direct program reference to a numerical operand field.
An operand used with TRANS may be only an actual
number from one to five digits.

For example, the first entry shown in Figure 19
is tagged MASTERTAPE with a TRANS operation. The
operand in this case is the actual address of the master
tape unit, 0204.

Any entry in the program which refers to the tag
MASTERTAPE will cause the assembly to translate the
tag into the given actual address. The second entry
shown in Figure 19, SELECT MASTERTAPE, is there-
fore translated into SELECT 0204, in the output pro-
gram.

Address Modification

The entry *asuxx (any asu 00-15) in the first six
columns of the comments field of a 705 instruction
will produce an ApM instruction as the next opera-
tion. The ApM operation will have xx in its numerical
field and will operate on the preceding instruction.

The use of this feature for address modification
presupposes prior steps in initializing the address to
be modified. The address modifier must be in the
specified Asu, and other programming must be writ-
ten to control the number of executions.

Figure 20A shows an address modification entry
which specifies Asu 04 in the comments column. The
entries generated by the assembly are represented in
Figure 20B.

Tape and Drum Loading

The following operations provide for the loading
of the output program, or any selected part of the
program, on a tape or drum:

LDDR Load drum
LDTP Load tape
Liote Last load tape

The special load entry is always the last entry of
that part of the program which is to be placed on
the drum section or tape unit. The second operand
of the load entry is the tag of the first entry to
be loaded. The section loaded will therefore be de-
fined as beginning with the entry specified by the
load operand and ending with the load entry itself.

LppRr, LDTP, and LLDTP insert 00 control cards in
the output program deck. (Refer to the section “Out-
put Deck.”) When the program is being loaded for
actual operation, the loading is interrupted and in-
structions on the control cards are executed. These
instructions place a group mark after the last char-
acter of the program just loaded, select the output
unit (drum section or tape unit), write the blocks

LINE TAG OPERATION | NUM. OPERAND COMMENTS
010 SET 10 | 4 1 Adjust ASU
020 LOD 10 | (123456)-2 | Get 1234
030 |
040 WR (FALSE EOF UNIT 204 $)+
050 |
L

FiGURE 17. CHARACTER ADJUSTMENT TO LITERAL OPERANDS

LINE TAG OPERATION: | NUM OPERAND COMMENTS
010 TITLE GROSS TO NET PAYROLL
020 |
030 1
040 TITLE CALCULATE ORDERING QUANTITY
050
I

Ficure 18. TrrLE ENTRIES

PROGRAMMING 23

LINE TAG OPERATION NUM. ‘OPERAND COMMENTS
o0 | MASTERTAPE | TRANS 204 |

020 I

030 i

o]

050 I

0s0 SEL MASTERTAPE |

070 |

FiGure 19. TRANSLATE ENTRY

LINE TAG OPERATION | NUM. OPERAND COMENTS
o1 | GET GROSS [RAD 15 | GROSS PAY | *ASUO4

o !

030 A |

o0 |

050 l

060 RAD 15 | GROSS PAY |

a7 ADM 4| GETGROSS

o%0 I

090 B)

Ficure 20. ADDRESs MODIFICATION

of the program on the selected unit, and then transfer
back to the loading program. Liprp also writes a
tape mark and rewinds the tape. Any machine errors
made in carrying out these operations will be detected
by the load program.

If it is desired to load library subroutines on tapes
or drum, it will be most convenient to include a
LDTP, LDDR, or LLDTP as part of the subroutine. The
literal table cannot be loaded on tapes or drum by
LDDR, LDTP, Or LLDTP.

The next portion of the program following the
section loaded on drum or tape will be assigned to
succeeding memory areas. If it is expedient to over-
lap this section, the load entry should be followed
by an assignment entry whose operand is also the tag
of the first entry of the drum or tape-loaded section.
This operand may be character-adjusted to overlap
the area partially if desired.

The instructions are written as shown in Figure 21,
where:

1. X1 is the 4-digit tape unit or drum section
address.

2. X2 is the address of the first character of the

block of information to be written, either descriptive,
actual, or blank (omitted).

If the address of the first character is omitted, the
autocoder will assume that the entire program is to
be loaded, starting at the first character of real in-
formation (a constant or instruction).

In all cases, the section to be loaded is assumed to
end with the ceding immediately preceding the tape
or drum loading command. If the first character loca-
tion specified is higher than the location just preced-
ing the tape or drum loading command, it is an error
and the results in the output program will be in-
correct.

Assignments

The most important entries in the autocoder
assembly are the rasN (location assignment) and
saSN (special assignment). These are the only instruc-
tions whose misuse is likely to result in a wasted
assembly. They are methods by which the pro-
grammer can control the assignment of 705 memory
to instructions, constants, and records which are
input to the autocoder.

LINE TAG OPERATION | NuM.

OPERAND COMMENTS

w0 |7 LDDR

X1 X2 1

020

|

Ficure 21. Loap DruM ENTRY

24 705 AUTOCODER SYSTEM

The LaSN entry is the signal to the autocoder to
over-ride the automatic assignment of memory loca-
tions and to accept directions from the programmer
where future entries are to be assigned. If an actual
address is placed in the operand column, following
entries will be placed starting at that actual location.
For example, to begin the program assignments
during assembly at memory address 1000, the first
written program entry would be LasN@1000. If a
tag is placed in the operand, the following entries
will be placed overlapping that tagged item. The
tag must have been defined previously in the pro-
gram. If the operand of the LasN entry is left blank,
the following entries will be placed immediately after
the highest point already reserved in the assembly;
or, to express this another way, the following entries
will be placed in the first unreserved (blank) loca-
tion in memory. The autocoder will at this point
resume its automatic assignment process.

The LasN with a blank operand is normally used
to terminate overlapping, or to terminate the effect
of a sasn entry. Using the LAsSN to overlap, it is not
necessary to write the largest area of programming
first.

In normal autocoder processing a record is kept
of the highest location to which any item has been
assigned. This not only permits the rLasN with a
blank operand to function, but also will establish
the beginning location of the subroutines (if any)
and the literals. SAsN permits the programmer to
make assignments to any location in memory with-
out affecting the high assignment counter.

SAsN is normally used to place instructions in
upper memory without forcing the assignment of
subroutines and the literal table outside memory.

The overlap of program instructions must be
planned by the programmer. When using an LASN
entry which covers a preceding section of the pro-
gram, the instructions which are thereby erased must
be executed before they are covered. The autocoder
does not automatically provide for interruption of
the loading process so that a given routine may be
worked before succeeding instructions are loaded into
the same area. The programmer must either manually
insert control cards into the program deck to control
the loading, or he may save the covered instructions
by loading them on a drum section or tape before-
hand using LDTP, LLDTP, Of LDDR.

For example, it is often desirable to overlap house-

keeping instructions which may be executed only
once during a job. The housekeeping instructions
must be executed, however, before they can be cov-
ered by succeeding instructions. The loading process
can be interrupted by control cards; housekeeping is
then executed and loading continues.

Address Constants

The operation codes LACON, RACON, and AACON
(address constant definitions), together with the
proper operand, produce a five-character constant
during assembly. The constant is made up of the
character A followed by the four-character memory
address of the location where the field referred to by
the operand has been stored. An address constant will
always begin at a 0 or § position and end at a 4
or 9 position.

The operation LACON produces the actual memory
address of the left (high-order) character of the
field referred to by the operand as an address con-
stant.

The operation RACON produces the actual memory
address of the right (low-order) character of the
field referred to by the operand as an address con-
stant.

The operation AAcON operates like the code rRacoN
with an actual operand. However, when using AACON,
it is not necessary to insert the @ before the operand.

Address constants developed by raconN, rRacoN
and AACON entries may have Asu zoning over the tens
and hundreds positions or may be signed over the
units digit. The asu designation or the algebraic sign
of the constant is entered in the numerical column of
the program sheet. Lacon, racoN, and aaconN
entries may be written within a sequence of instruc-
tions, because the character o of the constant func-
tions as a no-operation. The address constant is, in
effect, a no-operation instruction which is executed
without affecting the program.

Three types of addresses may be used with address
constants.

DESCRIPTIVE ADDRESS

This is the address of a record area, field, constant,
or instruction. Figure 22A shows a RACON entry
used to develop the address of the BNET pay field
shown in Figure 10. The entry is tagged ADDRESS 1
so that the constant may be addressed by other pro-
gram instructions. The constant address is to be used
as an instruction specifying asu 14,

PROGRAMMING 25

LINE TAG OPERATION | Num. OPERAND COMMENTS
oto A

20 ADDRESS 1 RACON |14 BNEIPAY Descriptive constant
030 B8

o0 | ADDRESS 2 RACON |10 | @24629 Actual constant

%° | ADDRESS 3 AACON |10 | 24629

%0 | ADDRESS 4 RACON | + | @200

Actual constant

0
o7t C

%% | ADDRESS 5 LACON (1300)

|
|
]
|
| Actual constant
|
|
|

Ficure 22. Appress CONSTANT ENTRIES

The tag of a program instruction may also be used
as a LACON or RAacoN operand. This device is useful
in developing the constant addresses of program in-
structions. Such constants may be used to perform
the various functions of address modification.

ACTUAL ADDRESSES

The operand of the LACON or RACON entry may
be an actual 705 address. In this case, the first char-
acter written on the program sheet must be an @
followed by up to five digits of an actual address.
Asu or sign designation may be placed in the numeri-
cal column. Figure 22B shows two entries to develop
the actual address 24629 as a constant specifying
AsU 10. An entry to develop the address of tape
unit 200 as an algebraic constant is also shown.

NoTte: In this case the actual four-character con-
stant, not its address, is placed in memory. The con-
stant is preceded by the character A.

LITERAL ADDRESS

The operand of LACON or RACON may be a literal
constant. In this case, the operand is indicated as a
literal by enclosing it in parentheses. The address
constant developed during assembly is the memory
location of the literal constant, not the constant itself.
Figure 22C shows an entry to develop the location
of the literal constant. The left-hand address of the
constant 1300 is developed.

MACRO-INSTRUCTIONS

MACRO-INSTRUCTIONS may be written into the pro-
gram in place of the conventional 705 instructions.
During assembly, each macro-instruction is replaced
by a sequence of component instructions. Parameters
of the macro-instruction entry written in the operand
column are inserted in the proper locations of the
replacing instruction sequence under direction of a

control matrix. Each component instruction in the
sequence and its corresponding control are stored in
the macro-instruction library on the autocoder sys-
tem tape. The use of macro-instructions in a program
does not require an understanding of the mechanics
of this process.

However, note that macro-instructions may use the
asU’s and the accumulator and, therefore, may affect
the sign, zero, high, and equal triggers. The macro-
instructions listed in this manual use only asu’s 13,
14, 15 and the accumulator. Some of the macro-
instructions assume that asu 13 is set to 10 and that
ASU 14 is set to 4. Refer to the macro-instruction
manual for details.

A list of available macro-instructions is furnished
in this section. Others may be added by a process
explained in the section “Autocoder Library.” The
writing of macro-instructions is described in the fol-
lowing sections.

Tag

A tag is required only if the macro-instruction is
referred to by some other instruction in the program.
The tag is usually applied to the first entry in the
replacing sequence. The rules for tags are the same
as those previously described.

Operation

The operation is the macro-instruction name, e.g.,
SSGN, SCMP, RSGN, and TYPE.

Numerical, Operand and Comments

The information needed to complete a macro-
instruction is written into the numerical, operand,
and comments columns of the program sheet. This
information must be furnished to the autocoder so
that the assembly can complete the component
instructions taken from the library.

26 705 AUTOCODER SYSTEM

The numerical column may be used to specify an
ASU or other information, such as addresses of com-
ponents.

Several operands may be needed to complete the
instruction. These are written in the operand column
and may extend into the comments field. Each oper-
and part is separated by the character I1 (lozenge).
Each operand part, or a single operand, is written
according to the rules associated with operands. For
example, the operation MOVE may be used to desig-
nate a macro-instruction transmitting a record in
memory from one location to another. Three operand
parts must be specified to complete the replacing
sequence of instructions (Figure 23):

1. Five-character or single-character transmission.
If five-character, the accumulator is designated;
if single-character, the proper asu is desig-
nated. This information is written into the
numerical column,

2. The tag of the record or field to be transmit-
ted. This information is the first part of the
operand and is followed by a I character.

3. The tag of the area which receives the record
or field. This information is the second part of
the operand and may extend into the com-
ments column.

Listing of Macro-Instructions

The following macro-instructions are available as
part of the autocoder system. Complete specifica-
tions for each are given in the Aufocoder Macro-
Instruction Manual.

INPUT-OUTPUT MACRO-INSTRUCTIONS

WRTM Write tape mark

BSTP Backspace tape (specified number of
times)

FSTP Forward space tape (RD 01 specified
number of times)

RWDTP Rewind tape

FWDTP Forward wind tape (rp 01 forward to
next file)

ALTP Alternate tape units

RDDR Read drum

WRDR Write drum

DPDR Dump on drum (Wr 01)

RDCD Read card

PUNCH Punch card

DPPCH Punch 01 card

PRINT Print under program control

DPPRT Print 01 under program control

PRNTA Print under automatic control (single
or double)

DPPRA Print 01 under automatic control

TYPE Type without checking (turn check
indicators off)

DPTYP Type 01 without checking

TYPCK Type and check

WREPR WRE printer (program control)

WREPA WRE printer (automatic)

WREPN wRE punch

WRETY WRE typewriter (without checking)

NoTe: Where applicable, the above macro-
instructions provide for inclusion of the appropriate
error subroutine, end-of-file transfer address, and re-
start transfer address. Both latter addresses are op-
tional. If specified, the appropriate transfer will be
made; if not, a message will be typed and transfer
made to a built-in stop.

RDTP Read tape
< Hep The tape instructions are designed for use with
WRTP Write tape
the 754 control unit and printer instructions for
DPTP Dump on tape (WR 01) the 717
. o e 717.
RWWTP Read-while-writing tape
a WRTT
and WWRT) o) LOGICAL MACRO-INSTRUCTIONS
RWWLG Read-while-writing tape logical (first
and WWRTP time RD only) TRLOW Transfer low
WRETP Write erase tape TRNZ Transfer non-zero
WRTCP Write check tape (WRr, BsP, RD 01) TRMIN Transfer minus
UINE TAG OPERATION | NUM OPERAND COMMENTS
o0 MOVE [nn | TAG 11 TAG 2R
020 1
1

FiGURE 23. MACRO-INSTRUCTION MOVE

(o]
®
»

>

Z
o
n
~N

TREH
TREL
TRNE
FTTR
FTNOP
ALTTR
Loor
END
RPTA
SWNOP
RPTM
SWTR
HLTON

HLTOF

HLTTR
IFXXX

CHKT
ORDCH
SEQCH
SETUP
SSGN
SCMP
RSGN
RCMP
MOVE

MOVEC

MOVEI

LLL

LRL
114

LRL14
DOMIN
DOZ
DONZ
DOP
DONE
DOEH
DOEL
DOLOW

Transfer equal or high
Transfer equal or low
Transfer not equal
First-time-only transfer
First-time-only Nop
Alternate transfer (flip-flop)

Repeat loop (asu counter)

Set switch to Nop

Repeat loop (memory counter)

Set switch to transfer

Halt on (if specified alteration switch
is on)

Halt off (if specified alteration switch
is off)

Halt and transfer

If —, then compare and transfer if
specified condition is met

Check total

Order check

Sequence check

Set AsU’s

Save sign trigger

Save comparison trigger

Restore sign trigger

Restore comparison trigger

Move data (Rcv/TMT at either high or
low speed)

Move characters (low-speed Rcv/TMT
the specified number of characters)
Move instruction address (low speed
RCV/TMT)

Load left location (4-digit location of
left end of specified field into a speci-
fied asu)

Load right location

Load left location into asu 14 (4-digit
location of left end of specified field,
zoned for a specified Asu, into asu 14)
Load right location into asu 14

Do minus

Do zero

Do non-zero

Do plus

Do non equal

Do equal high

Do equal low

Do low

FLOATING DECIMAL MACRO-INSTRUCTIONS

FLO Float

FIX Fix

FRA Floating reset add

FRS Floating reset subtract
FAD Floating add

FSU Floating subtract

FMP Floating multiply

FDV Floating divide

FAB Absolute

FST Floating store

FTP Floating transfer plus
F1Z Floating transfer zero
FTM Floating transfer minus

NotEe: The above macro-instructions make use of
a pseudo accumulator. This is a floating decimal
accumulator stored in memory as a signed literal work
area (-+FLOATACCUM).

SUBROUTINES

THE LIBRARY of subroutines forming a part of the
autocoder system contains two classes of material.
In the first class are the subroutines themselves. These
are brief programs which, when executed, perform
specific functions, such as taking square root or cal-
culating gross-to-net pay. The other class contains
record areas and constant definitions used in defining
the data in a program. For example, a rate table may
be stored in the library, or the definition of the rec-
ords employed by an installation may be stored in
the library. For convenience, both classes of material
are referred to here as “subroutines.”

All entries in the library are in autocoder language.
Their inclusion in the program being assembled
causes them to be processed in the same manner as
written entries. They therefore make use of all of
the features of the autocoder system.

There are two levels of operation for the incor-
poration of subroutines. The second level automati-
cally employs the first. The operand in each case is
the five-character name of the subroutine to be in-

cluded.

OPERATION INCL (INCLUDE)

The operation INcL instructs the autocoder to add
the label of the subroutine to the list of subroutine re-
quests already encountered, provided that the present

28 705 AUTOCODER SYSTEM

request does not result in duplication. At the end of
the assembly, the requested subroutines are located
and added to the program. Exit from the main pro-
gram and linkage to the subroutine must be written
by the programmer. Further INCL operations may be
encountered in the subroutines being processed. If
they are, the additional subroutines are incorporated,
provided they are not duplicates.

The operation INCL may appear anywhere in the
entry program. The material called for is included
in the output at the end of the program. Nothing is
inserted in the program at the point occupied by the
INCL operation, although the entry appears in the
listing.

OTHER OPERATIONS

The following operations automatically include the
subroutine and transfer to it subject to certain con-
ditions.

DO Include subroutine and transfer to it
unconditionally.

DOA Include subroutine and transfer to it
on ANY signal.

DOE Include subroutine and transfer to it
on EQUAL.

DOH Include subroutine and transfer to it
on HIGH.

DOS [nclude subroutine and transfer to it
on SIGNAL.

DOMIN Include subroutine and transfer to it
on MINUS.

DOP Include subroutine and transfer to it
on PLUS.

DONZ Include subroutine and transfer to it
on NON-ZERO.

DOZ Include subroutine and transfer to it
on ZERO.

DONE Include subroutine and transfer to it
on NON-EQUAL.

DOEH Include subroutine and transfer to it

on EQUAL or HIGH.
DOEL Include subroutine and transfer to it
on EQUAL Or LOW.
Include subroutine and transfer to it
on LOW.

DOLOW

Note: The numerical column written in the po
instruction is used to specify the accumulator or an
asu; thus, the appropriate sign and zero indicators
are interrogated by the operations DOMIN, DOP, DONZ,
and poz.

The autocoder provides a linkage to the sub-
routine requested by generating the sequence INcL,
LoD, TR. The operands of the ivcL and the TR opera-
tion are the same as the operand of the po operation,
that is, the name of the subroutine. The LoD opera-
tion places its own location in asu 14 which is always
assumed to be set to length 4. If the po operation is
tagged, that tag is applied to the LoD operation; if
the po is not tagged, a tag is generated which con-
sists of 11 followed by a number.

For example, if the programmer writes:
INST Y DO SUBROUTINE

the autocoder generates and processes:

INCL SUBROUTINE
INST Y LoD 14 INST Y
TR SUBROUTINE

Or, if the po is not tagged; the autocoder gener-
ates and processes:

INCL SUBROUTINE
HIT000n LoD 14 T 000n
TR SUBROUTINE

NotEe: A linkage to a subroutine always sets the
AsU sign and zero trigger to plus and non-zero, re-
spectively, by execution of the Lop instruction. The
settings of the comparison indicator and accumulator
sign and zero triggers are not affected.

The Do operation is contained within the autocoder
program and is not placed on the library tape. It is
not a macro-instruction. One line produced by a
DO operation is a TR. The poa, pos, poH and DOE
operations are similar and produce, respectively:
TRA, TRS, TRH and TRE.

In the case of DOZ, DOP, DONZ, DOMIN, DOEL, DOEH,
poLow and DONE operations, two-instruction linkage
is not suitable. These operations are regular macro-
instructions in the library. The programmer using
the autocoder need not concern himself with the
detauls.

For example, if the programmer writes:

TAG DOZ 02 SUBROUTINE,

the autocoder generates:

INCL SUBROUTINE

TAG TRZ 02 TAG + 10
TR TAG + 20
LOD 14 TAG + 10
TR SUBROUTINE

AUTCCODER PROGRAMMING 29
Listing of Subroutines 16-20 Operation as written, beginning at left

The following subroutines are called for and used

by the present set of autocoder macro-instructions.

side of field.

Numerical as written, right justified.
Some cards may have a field greater than
two digits in length; if so, extend to
the left, as required, into the operation

field.

Operand. Some operands will be en-
closed in parentheses. Punch both right
and left parentheses as number sign (#).
Some operands may extend beyond the
operand column into the comments col-
umn. In this case, the comments column
is regarded as a continuous extension of
the operand column. All letters shown
should be punched into consecutive col-
umns unless a “b” separates them. A
“b” indicates a column to be spaced
over.

Comments as written.

Identification on top of coding sheet.

It must be punched in the first card of the pro-
gram and should be duplicated into the remaining

21-22
INPUT-OUTPUT ERROR ROUTINES
CDERR Card read error
CWRER Check tape-writing error
DRERR Drum error 23-38
PNERR Punch error
PRERA Printer error (under program control)
PRERB Printer error (under automatic control)
RWWER Read-while-writing tape error
TPERR Tape error
TYPER Typewriter error
WRERR Write erase error
XOFF Turn check indicators 0901 and 0902 off.
FLOATING DECIMAL ARITHMETIC SUBROUTINES
FAD Floating add and subtract
FATN Floating arctan 39-74
FDV Floating divide
FEX Floating exponential 75-80
FIX Fix
LN Floating natural logarithm
FLO Float
FMP Floating multiply
FSIN Floating sine cards.
FSQR Floating square root

KEY PUNCHING

The following conventions for the writing of cer-
tain characters on the coding sheet may prove helpful
in avoiding key-punching errors in mixed alphabetic
and numerical fields.

THE instruction card (Figure 2) is to be key punched
from the coding sheet as follows. (Page number and
the identification may be duplicated.)

WRITTEN CHARACTER

PUNCHED CHARACTER
1 (number one)

COLUMNS PUNCHED
1-2 Page number from top of coding sheet.
Right justified. Example: Page 2 is
punched 02.
3-5 Line number, three characters.
6-15 Tag as written, beginning at left side

of field. All letters shown should be
punched into consecutive columns un-
less a “b” separates them. A “b” indi-
cates a column to be spaced over.

Mo ol of+# | + &=~ Qo —

I (letter T)

0 (zero)

O (letter O)
blank

#

#

12 punch

12 punch

11 punch
12-5-8 punch
0-2-8 punch

12-0 punch

11-0 punch
2 (number 2)
Z (letter Z)

30 705 AUTOCODER SYSTEM

OPERATING INSTRUCTIONS

THE FOLLOWING sections list the operating instruc-
tions for 705 operation of the autocoder. Operating
instructions will be distributed with the autocoder
system deck. These operating instructions will su-
persede this entire section.

Program Assembly

1. The assembly uses the following machine units:

0200 Autocoder system tape

0201 Expanded entries

0202 Instruction input-output program
listings

0203 Tags

0205 Tags, literals and controls

0206 OQutput program
OPTIONAL UNITS

0100 Instruction card input

0300 Program card output

0400 Program listing output

(0264) Program listing output, high-speed
printer

If the autocoder system is set up for use with TRC’s,
tape unit addresses are 0600, 0601, 0602, and so on.

If the system is set up with 760 and/or TRC’s, the
listing is also written on 0607 (0207), with record
marks replaced by blanks and group marks replaced
by lozenges (IX). This latter tape is to be used for
auxiliary listing on the high-speed printer, while 0202
(0602) is to be used for reassembly.

2. Set alteration switches:
0911 on Tape input (0202) for in-
struction records.
oFfF No tape input (0202).
0912 on Instruction card record input.
ofFr No instruction card input.
0915 onN Direct output program listing
on the printer. (Program
listing is always written on
tape 0202.)
oFf Output program listing on
tape 0202 only.

Direct program card output.
(The assembled program is
always written on 0206.)

oFrF OQutput program on 0206 only.

0916 ON

3. Check switches
0902 PROGRAM
0903 PROGRAM
All others to AuTOMATIC.

4. Manually give the instructions:
SEL (2) 0200
RD (Y) 0000

5. Press RESET and START.

The 705 halts 6996 following a message describing
the alteration switch settings the console operator has
selected. Tf the settings are correct, press sTarT. Tf
the settings are incorrect, change the alteration
switches, RESET and starT. The alteration switch set-
ting routine will be repeated.

The original input tape (card image or previous
listing) will be destroyed by the new listing tape
produced by the assembly on tape unit 0202. To
conserve the original input tape, it is necessary to file-
protect the input tape originally, changing the tape
setting in phase II to a non-file-protected 0202.

If the output program is to be loaded from tape
0206 directly, when it is placed in operation, the first
instruction on tape 0206 must be modified manually
before proceeding. This can be accomplished as
follows:

1. Press insTRUCT key.

SEL (2) 0206*

RD (Y) 0000

Set memory address selector keys to 0002.
Press sTORE key.

Depress 206* on keyboard.

Press RESET and START.

\lc\\n.[;w!\)

*or the address of the tape unit containing the
program, if this was changed after assembly.

Restart at Beginning of Phase Il
This operation is used only if assembly was not
completed after completion of phase I

1. Mount tapes removed at end of phasc I on the
following tape units:

0200 Autocoder system

*0201 Expanded entries
0202 Scratch
#0203 Tag table
*0205 Tags, literals, and controls
#0206 Scratch

AUTOCODER PROGRAMMING 31

0207 Scratch (760 only)
* All of these tapes must have been saved from
phase L

2. Set alteration switches:

0914 ON
0915 ON

Restart phase IL
Direct program listing on
printer. (Program listing is
always written on 0202.)
OFF Listing on 0202 only.
0916 oN Direct program card output.
(The assembled program is
always written on 0206.)
oFF Output program on 0206 only.

3. Set check switches:
0902 PROGRAM
0903 PROGRAM
All others to AuToMATIC.

4, Manually give the instructions:
SEL (2) 0200
RD (Y) 0000

5. Press RESET and START.

Complete operating instructions, with a list of mes-
sages and program stops, are furnished with each
autocoder system.

REASSEMBLY

REASSEMBLY is a function by which a program en
tape in autocoder language is processed while the
autocoder assembly incorporates corrections and re-
visions from instruction cards. It is intended to save
machine time (or card-to-tape conversion) during
program testing or when up-dating an established
program. During reassembly, entries may be inserted,
substituted or deleted from the original output pro-
gram. The result is 2 new output program incorpo-
rating the desired changes. The optional output list-
ing and program deck also contain the up-dated
program.

Each entry is identified for reassembly purposes by
its page and line number. The original program on
tape is assumed to be in page and line number se-
quence as is the set of revision cards in the card
reader.

Norte: During assembly, if two or more con-
secutive entries bear the same page and line number,
all but the first entry will be listed with blank page
and line numbers.

The tape may contain either the original 80-char-
acter card records resulting from a card-to-tape con-
version or the 120-character printer records on the
listing tape produced by the autocoder during a pre-
vious run. The autocoder determines which type is
to be reassembled by analysis of the first record.

Once the original program has been processed by
the autocoder, it is necessary to preserve only the list-
ing tape because it provides all of the information
necessary to effect a reassembly. Hence, a program
may be brought from preliminary to final form
through a succession of listing tapes. Also, the listing
tape has the desirable quality of being already edited
for printing.

Insertion

Card entries will be inserted in the program if they
have page and line numbers which cause them to fall
between successive tape entries. Alphabetic punching
of line numbers may be useful in providing additional
insertion space.

Substitution

A match between card-entry and tape-entry page
and line number causes the card entry to be substi-
tuted for the tape entry.

Deletion

A card bearing the operation code DELET and the
page and line number of a.tape entry will cause that
entry to be deleted from the output program. If the
operand field of the delete card specifies a second page
and line number (higher in the sequence), all the
tape entries between the lower and upper page and
line numbers (inclusively) will be deleted from the
output.

32 705 AUTOCODER SYSTEM

Program Reassembly

1. Machine units used are the same as for assembly.
Load the input tape (previous listing tape or card
image tape) and/or cards in card hopper.

2. Set alteration switches:

0911 onN Previously assembled tape in-
put (on 0202), either pro-

gram listing or program tape.

OFF No tape input.
0912 oN Instruction card input (correc-
tion cards).
oFrF No card input.
0915 oN Listing directly on printer
(listing always on 0202).
oFf Listing on 0202 only.
0916 oN Direct program card output
(always on 0206).
oFF Program on 0206 only.

3. Set check switches:
0902 PROGRAM
0903 PROGRAM
All others to AUTOMATIC

4. Manually give the instructions:
SEL (2) 0200
RD (Y) 0000

5. Press RESET and START.

The 705 halts 6996 following a message describing
the alteration switch settings.

If the settings are correct, press START. If the set-
tings are incorrect, change the alteration switch set-
tings; press RESET and sTART. The alteration switch
settings routine is repeated.

The original input tape (card image of previous

listing) is destroyed by the new listing tape produced
by the assembly on tape unit 0202.

If the output program is to be loaded directly from
tape, 0206, when it is placed in operation, the first
instruction on the tape must be modified manually
before proceeding.

1. Press INSTRUCT key
SEL (2) 0206*

RD (Y) 0000
Set memory address selector keys to 0002.
Press STORE key.
Depress 206 on keyboard.
Press RESET and START.
*or the address of the tape unit containing
the program card record, if this was changed
after assembly.

Nem s

NEW OPERATION, ACON 4

The operation acoN 4 (address constant four
digits) is another type of address constant as de-
scribed on page 24. It is used exactly in the same
manner as RACON, but produces just the four digit
machine address as a constant; it is not preceded by
the character A. It will be placed in the next four
available memory positions, regardless of whether the
location ends in a 4 or 9.

PROGRAMMING NOTES

A constant of a single & (ampersand) or
- (hyphen) may be created in memory by defining
a constant of length one with the sign in the first
position of the operand field.

Single character literals of the form &, -, #,
(ampersand, hyphen, or number sign) are acceptable
entries to produce the desired constant.

AUTOCODER OUTPUT

THE AUTOCODER produces as output a program
listing and a program deck. This deck consists of
loading instructions and the 705-coded result of the
autocoder assembly.

ORGANIZATION OF MEMORY

AFTER loading the program deck in preparation for
actual operation, the data are arranged as follows:

1. The first information is the loading program,
occupying 80 character locations (Figure 24).

2. The first program entry follows immediately
after the loading program, unless otherwise specified
by an LASN or sasN entry with an actual operand.

3. Succeeding entries (instructions, constants, rec-
ord areas) follow in order, unless otherwise specified
by LasN, or sasN entries or by actual or descriptive
operands on the “define” line of an area of constants
or record storage.

4. Subroutines, if any, follow the final program
entry.

5. After the subroutines (or the final pregram en-
try if there are no subroutines) there follows: (a) a
blank, (b) signed literals, and (c) unsigned literals.

6. Space is left in memory between entries when-
ever: (a) instructions are shifted forward in order
to place the operation character on a 0 or 5 location,
and (b) areas are shifted as directed by an entry in
the numerical column of a “define” operation.

Type-outs occur during assembly if there is an as-
signment of locations above 20,000 or 40,000.

INSTR. INSTRUCTION STOR.
LOCATION [OPER. ADDRESS | CODE

0004 | SEL 0100
0009 | NOP | 0018
0014 | SET 0002 | 6
0019 | SET 0004 | 7
0024 |RD 0080 :
0029 | TRA | 0079

F4
] AUXILIARY
@

ACCUMULATOR 00 STORAGE 01.15

SIGN|

0034 |1LOD | 0094 | 6

0039 |TRZ | 00% | 6

0044 |UNL | 0059 | 6

0049 |RCV__1 0061 |
0054 | TMT 0089 | 7 ‘

0059 |SET '00-- ' 8 ' !
0064 |RCY ‘

0069 [TMT [0095 ' 8

0074 | TR 0004
0079 HLT 100% |

i P

Ficure 24. Loap ProGraM

OUTPUT PROGRAM

THE ouTpuT produced by the autocoder may be
either on IBM cards or on tape as individual card
records. Output consists of:

1. A single-card loading routine.

2. The output program on program cards.

3. A 00 control card which is always placed at the
end of the program deck to transfer to the first
instruction of the program. Other control cards
may be placed in the deck.

The loading routine reads load cards and transmits

their contents to the proper locations in memory.

Program cards are punched as follows:

Cols. 1-6 Identification

Cols. 7-9 Serial number

Cols. 10-13 Initial address

Cols. 14-15 Number of columns
Cols. 16-80 Instructions and data

The cards are identical with symbolic assembly out-
put (Program Brief 6).

If a load card contains the quantity 00 in columns
14 and 15, control is transferred by the loading rou-
tine to column 20 of the load card which is assumed
to contain an instruction. The last card produced as
output by the autocoder is a 00 card that establishes
certain ASU settings and transfers control to the first

Pnan f mo simis o A 1 - f PRPI :
the program.

As a consequence of the loading program itself,
and of the instructions contained on the 00 card, the
following Asu settings and contents are established.
(In this list the asterisk indicates a setting essential to
the functioning of macro-instructions and subrou-
tines produced by the autocoder. The other settings
are of convenience in program preparation.)

ASU LENGTH CONTENT

1 1 —

2 2 —

3 3 —

4 4 —

5 5 —
13 10 —
*14 4 —

AUTOCODER LIBRARY

THE AUTOCODER library is divided into two sec-
tions, macro-instructions and subroutines. Each sec-
tion is arranged in sequence by the names of the
macro-instructions and subroutines. Use of an entry
in the library does not alter data in any manner;
information remains unchanged on the autocoder
system tape.

Material in the library may be added, deleted, or
substituted as described in “Librarian.” In this man-
ner, an installation may build its own library to
include information which may be adapted to partic-
ular applications.

WRITING MACRO-INSTRUCTIONS

REFER to this section only when it becomes necessary
to prepare supplementary instructions to meet the
requirements of an individual installation. An under-
standing of the process of preparing new macro-in-
structions to be added to the autocoder is not a
requirement of program writing, assembly, or use of
the autocoder system.

The library of the autocoder is intended to be as
general in application as possible. Typical of routines
available at present are address arithmetic, logical
functions, floating point arithmetic, common mathe-
matical functions, and input-output routines. The
library contains both macro-instructions and sub-
routines. Some macro-instructions call for a subrou-
tine and some subroutines use other subroutines as
well as macro-instructions. A single reference to the
library in an autocoder program may, therefore, lead
to the selection of several routines from the library.
The programmer need be concerned only with the
library reference which initiates the chain; the rest is
automatic.

Form

The form in which the macro-instruction is writ-
ten is determined by the need it must fulfill. A
macro-instruction may have a single or multiple ad-
dress. Its numerical field may be used for an asu
designation or a tape unit specification or it may have
other significance convenient to its function. The
format is variable, depending upon the use for which
the instruction is designed. Each macro-instruction

34

in the library is described in detail by exact specifica-
tions telling how it is to be written and what data
are to be supplied on the program sheet.

A macro-instruction represents a sequence of other
705 and/or autocoder operations grouped together
for the convenience of the programmer. Any given
programmed function also can be written using a
number of conventional 705 instructions and other
autocoder operations. It is usually more economical
of programming effort, however, to write a single
macro-instruction instead.

Component Instructions

In the following explanation, the term “macro-
instruction” refers to the written program entry.
This entry causes the autocoder assembly to refer to
the library for further information. Instructions
taken from the library and included in the output
program are referred to as component instructions.

The components in the library are all autocoder
operations, ie., 705 instructions, definitions, address
constants, and Do operations. A single macro-instruc-
tion may produce up to 20 components. Only the
last component of the series may be another macro-
instruction. This feature may be used to secure more
than 20 components. (For this purpose, po, poa,
DOE, DOH and DOS are not considered macro-instruc-
tions; they may be placed anywhere in the series.)

The component instructions, as they are stored
in the library, are only partially completed. The
autocoder assembly uses the information supplied by
the macro-instruction entry on the program sheet to
fill in the missing parts. For example, the macro-
instruction MOVE may be used to transfer informa-
tion from a designated location in memory to some
other location. (Refer to specification of MOVE.)

Several items of information are furnished by the
macro-instruction:

(1) the tag of the received area, (2) the tag of the
area to be transmitted, and
(3) the asu designation, if serial transmission is to

be used.

The two components of the MOVE macro-instruc-
tion contained in the library are the instructions rcv
and T™MT without addresses or AsU designation. lhe

AUTOCODER LIBRARY 35

tags of the areas to be moved are translated by the
assembly to actual addresses, the proper Asu is speci-
fied, and the completed instructions are placed in the
main program.

Control Matrix

Each partial instruction in the library has an asso-
ciated five-character code field. This code tells the
autocoder assembly how each field of the component
is to be treated. The five-character code is called a
control matrix and each position of the code is re-
ferred to as a cell within the matrix. Reading from
left to right, the cells correspond to the columns of
the autocoder program sheet except the fifth cell
(Figure 25).

A character entry in the first cell causes the inser-
tion of up to ten characters in the tag field of the
component. An entry in the second cell causes the
insertion of up to five characters in the operation
field of the component. An entry in the third cell
causes the insertion of up to two characters in the
numerical field; an entry in the fourth cell, up to 16
characters in the operand field; an entry in the fifth
cell causes the insertion of up to 52 characters in the
operand field of the component.

Should a component in a macro-instruction refer
to another component in the series, one of three tags
may be generated by the autocoder for the com-
ponent. The three possibilities are tags of eight char-
acters in length with either one lozenge, three
lozenges, or four lozenges as the initial characters.
Only one of each can be generated for the component
entries of a macro-instruction. One component may
also be tagged with the tag given to the macro-in-
struction. The use of codes A, E, F, W, X, Y, and Z
in the matrix determines which tags are generated.
(It will be noted that tags with two lozenges are
generated for po instructions. See “Subroutines” in
“Autocoder Programming.”)

Figure 26 is a list of permissible character entries
into the control matrix. The control functions of
each character, through which the autocoder is told
how to complete each component, are described.
The character used determines the place from which
the information is to be obtained. The number of
characters moved is determined as the lesser of two
limits. No more characters are moved than the source
can supply nor more than the destination can accept.
These limits are 10 for tag, § for operation, 2 for

Matrix
Code Description

blank No effect

Insert tag found in macro-instruction

Insert operation found in macro-instruction

Insert numerical found in macro-instruction

Insert operand (max. 10 characters) found in macro~instruction.

Insert H quantity as generated by the Autocoder.

Examine tag found in macro-instruction. {f blank, consider
as E; if not blank, consider as A.

Last component instruction. May be in any column.

K Insert numerical found in macro-instruction info positions

3 and 4 of operand. May be in any column of the matrix.

L Insert numerical found in macro-instruction into positions

3 and 4 of operand. SUB (-0) to add leading zero if

necessary .

M Insert operand (max. 16 characters) found in macro-instruction.
Check for character adjustment in macro=instruction and
component instruction, using the algebraic sum as the char-
acter adjustment in the resulting 705 instruction.

Insert operand (max. 52 characters) found in macro-instruction.

Insert @1 1 quantity as generated by Autocoder.

Examine tag found in macro-instruction. If blank, consider
as W; if not blank, consider as A.

Insert munn quantity as generated by Autocoder.

Exemine tag found in macro-instruction. If blank, consider
as Y; if not blank, consider as A.

1 Search for the first lozenge in the macro-instruction and

insert in the component all the characters preceding it in

the aperond.

2 Search for the second lozenge in the macro=instruction and
insert in the component the characters between the 1st and
2nd lozenge.

Same -~ between 2nd and 3rd lozenge.

Same - between 3rd and 4th lozenge.

Same ~ between 4th and 5th lozenge.

Same - between 5th and 6th lozenge.

Same - between 6th and 7th lozenge.

Same - between 7th and 8th lozenge.

Same - between 8th and 9th lozenge.

MM W >

[y

N< X5

NV ONOO AW

FicURE 26. TABLE oF MaTrix CoDES

TAG OPERATION NUM

OPERAND COMMENTS

FiGURE 25. MATRIX ARRANGEMENT

36 705 AUTOCODER SYSTEM

numerical, 16 for operand, and 52 for operand when
the control character is in the fifth column.

When a component is complete, it is further proc-
essed by the autocoder in the same manner as other
entries from the instruction cards.

Macro-Instruction in Preparation

In the preparation of a new macro-instruction to
be added to the library, its functions must be properly
defined. For the macro-instruction MOVE, it is known
that two instructions, Rcv and T™MT, always serve to
transfer 2 memory area from one location to another.
Therefore, the component instructions consist of
these two instructions only. It is also known that
three separate pieces of information must be supplied
from the macro-instruction. These are the addresses
for the receive and transmit instructions and the asu
designation to specify serial or five-character trans-
mission. The specification for move calls for the
macro-instruction to be written as shown in Figure
23. Tag 1 represents the location of the “from” area,
while tag 2 represents the location of the “to” area
and nn represents the Asu designation from 00 to 15.
The code MoOVE has been decided upon as the mne-
monic name of the macro-instruction.

The next consideration concerns the component in-
structions themselves and the arrangement of their
associated matrices. The compenents are written on
the autocoder program sheet in normal fashion as
shown in Figure 27. Note that the instructions rcv
and TMT are written in the operation column. The
control matrix is written in the first five positions of
the comments column. The first cell entry contains
an A to allow tagging of the Rcv instruction at the
option of the user; the second entry is blank. The
third character is C, which tells the assembly to insert
the numerical designation into the instruction. The
fourth character of the rcv instruction is a 2, which
scarches for the sccond lozenge in the macro-instruc-

tion operand and inserts the characters preceding it

into the component operand. This is the tag of the
“to” area. The fourth character of the T™T com-
ponent is a 1, which inserts the characters preceding
the first lozenge of the macro-instruction operand
into the operand of the component instruction. This
is the tag of the “from” area. The fifth cell of the
matrix contains J to signify that this is the last
instruction in the sequence.

Figure 28 is a listing of the components for certain
macro-instructions in the autocoder library. It should
serve to indicate some ways to use the matrix char-
acters.

KEY PUNCHING COMPONENT INSTRUCTIONS

COMPONENT instructions are key punched from the
autocoder program sheet, one instruction per card,
using the autocoder instruction cards shown in
Figure 2. Instructions are punched as described in
the section “Key Punching Instruction Cards,” ex-
cept that the control matrix is punched into the first
five positions of the comments field. The five-
character mnemonic identification of the macro-
instruction as written after IDENT on the top of the
coding sheet is punched into each card, preceded by
the letter M, into columns 75-80. Only one series of
components may be punched from a single program
sheet, because each series must have its own unique
identification.

A header card is also punched for each macre-
instruction as follows:

Operation field
(cols. 16-20)

Operand field
(cols. 23-26)

Identification field
(cols. 75-80)

The completed macro-instruction is placed in the

library by a special processing ruin o the 705 as de-

scribed in the “Librarian” section.

“INSER”

Number of components.

Letter M, followed by

mnemonic identification.

LINE TAG OPERATION | NUM. OPERAND COMMENTS
010 RCV | AbC2b
o0 TMT | bbC1J

|

Ficure 27. Macro-iNsTRUCTION COMPONENTS, MOVE

AUTOCODER OUTPUT 37

LNE oP NU OPERAND COMMENTS | IDENT
ALTP
20 | LOD 14 F 1 MALTP
40 | RAD 15 £00020 F MALTP
80 | UNL 15 1 MALTP
60 [ST 14 £00020 F MALTP
70 | AACON & 2J MALTP
ALTTR
30| TR §00015F F MALTTR
40 | SGN 15 =00004 F MALTTR
50 | TR £00030 F MALTTR
60 | SGN 15 ~00004| F MALTTR
70 | ADM 15 =00004| F MALTTR
80| TR PJ MALTTR
BSTP
20| SEL 02 F L MBSTP
30! RAD 15 £00030 F MBSTP
40| BSP MBSTP
50| sus 15 | #&61w MBSTP
60! TRZ 15 £00035 F MBSTP
701 TR £00010 F MBSTP
80| AACON & Dy MBSTP
CHKT
20 | SET 00 A L MCHKT
30| LOD 1 MCHK T
40| sus #E0¥ MCHKT
50 | TR € MCHKT
60 | DCON 2 MCHKT
70 05 | 00000 MCHK T
80 &0 (o MCHKT
90 | AOM E 2J MCHKT
DOFH
20| TRE &00015F F MDOEH
30| TRH §00015 F MDOEH
40| TR 600025 £ MDOEH
50| DO PJY MDOEH
DOEL
20 | TRE 600010F F MDOEL
30| TRH 600020 F MDOEL
40 | DO PJ MDOEL
DoLO
20 | TRE £00020F F MDOLOW
30 | TRH §00020 F MDOLOW
40 | DO PJ MDOLOW

Ficure 28. AUuTOCODER LIBRARY MACRO-INSTRUCTIONS

GENERAL CONSIDERATIONS

THE FOLLOWING general considerations should be
noted in preparing macro-instruction components
and in using macro-instructions, unlzss otherwise
specified.

1. Tagging of macro-instructions is optional.

2. Component instructions do not have tags.
Tags, as required, must be supplied through the use
of the control matrix.

3. Macro-instructions listed in this manual leave
the sign trigger of the asu’s either undisturbed or
set plus. Exceptions are noted in the macro-instruc-
tion manual.

4. Macro-instructions listed in this manual leave
the zero trigger of the asu’s either undisturbed or
turned off. Exceptions are noted.

5. Macro-instructions do not alter the condition
of the high and equal triggers, unless otherwise speci-
fied.

6. Some of the macro-instructions and the sub-
routines they include make use of asu’s 13, 14 and
15, subject to considerations 3, 4, and § above and
also subject to the provision that they find and leave
asu 13 set to length 10 and asu 14 set to length 4.
The floating arithmetic routines also make free use
of the accumulator. Any additional Asu requirements
are noted.

7. A character adjustment, if needed, must be
placed in positions 11 through 16 of the operand
column of the components.

8. Literals for working storage should contain at
least one non-numerical character to eliminate the
possibility of conflict with literals generated by com-
ponent instructions.

WRITING SUBROUTINES

A detailed knowledge of linked subroutines is not
necessary for their proper use or the proper use of
macro-instructions that employ them. However,
when it is desired to write new subroutines, or to
make changes in those already existing, to fit the
needs of a particular installation, then it is necessary
to know linked subroutines in some detail. It is very
important here to understand the relationship between
the format of an input-output macro-instruction,
and the error subroutine which operates on it in case
of error or end-of-file conditions.

38 705 AUTOCODER SYSTEM

There are three basic considerations which deter-
mine whether a series of 705 instructions should take
the form of an inline sequence (macro-instruction)
or of a linked subroutine: space, time and flexibility.
A linked sub-routine takes more time to execute,
but saves space in direct proportion to the number
of times that the same series of instructions may be
encountered at different points within a given pro-
gram. Macro-instructions (inline sequences) are flex-
ible, in that addresses can be specified by the pro-
grammer while subroutines must be of a fixed form
and can be assembled only in that form. The pro-
grammer has no method of modifying a subroutine
in the autocoder assembly process.

Figure 29 of the macro-instruction TYPE and the
linked subroutine XOFF, illustrate the linkage to, and
from, a subroutine. A linked subroutine is used in
this case to save space.

The linkage here is the simplest that is possible.
Following the execution of the WR instruction, the
location of the LoD instruction is loaded in asu 14
(alpha load alpha). If the aNy indicator is on, a
transfer is made to the subroutine xorr. Here the
location is unloaded from asu 14 into the last instruc-
tion in the subroutine to be executed, which is a TR

instruction. A constant of ten is added to this in-
struction so that the TR instruction will cause a
return to the correct place in the program after turn-
ing off the indicators.

The error subroutines associated with the input-
output macro-instructions require that more than an
exit back be provided. Typically, the unit selected,
the reading or writing address, the end-of-the-file
transfer address, and the restart transfer address must,
be moved from the main routine into instructions
in the subroutine so that the subroutine can carry out
its assigned functions. The tape error subroutine
(TPERR), which is listed in Figure 30 is of this type.

The linkage (from line 001 to line 054) consists
of the instructions necessary to initialize the basic
subroutine (from line 055 to line 089). Following
a TRA from the main routine (see Figure 30, macro-
instructions RDTP, page 01, line 010, and WRTP, page
01, line 190) to TPERR, the location is unloaded
from asU 14 into certain load instructions which are
then modified by either increments or decrements
so that these load instructions can move the necessary
addresses from the main routine into the subroutine.

For example, at line 004 the location is unloaded
into a LoD instruction at line 012. At line 011 a

LINE TAG OPERA"ON' NUM. OPERAND COMMENTS
' 0% T TYPE MESSAGE | Coded by programmer
E 020 |
tooso (TI SEL 500 | Instructions generated
HZY WR MESSAGE |
050 DOA XOFF | Generates next three entries
060 INCL XOFF 1
oo [gdn Lob |14 | mnn ,
080 ITRA XOFF |
090 I
100 |
no I
120 |
110 SUBRDUTIINE XOFF 1
140 l
150 1 XOFF UNL 14 | XOFF2] UNLOAD LOCATION INTO EXIT
160 LOD 14 | (0010)]
170 ADM 14 | XOFF2 | ADD TEN TO EXIT
189 SEL 901 |
190 ITRS XOFF1 | TURN OFF 901
200 IXOFF1 SEL 902 |
210 TRS XOFF2 [TURN OFF 902
220 | XOFF2 TR I EXIT BACK TO MAIN ROUTINE
230]
i

FIGURE 29. EXAMPLE oF LINKED SUBROUTINE

>
C.
C
C
C
T
Il

X
(]
C

i !

C

-t
w
N}

decrement of ten (1990, 40,000’s complement of ten)
is added to the LoD instruction. Therefore, when this
LOD instruction is executed, it has the proper address
and proper ASU zoning to load the SEL address into
ASU 14,

In a similar manner, the other parameters needed
are moved to the subroutine. Subroutines may call
for other subroutines. For example, TPERR, in turn,
alpha-loads-alpha and transfers to XOFF after typing
messages (line 071).

The po operation may be character adjusted, in
which case the named subroutine will be included
and transfer will be made to some other point than
the normal entry line of the subroutine. Also the
INCL operation honors only the first five characters
which are the name of the subroutine. If a po, or an
INCL, operation contains the tag of an entry within
the subroutine as the operand, and if the first five
characters of all the tags within a subroutine have
been planned to be precisely the name of the sub-
routine, including blanks, if necessary, these oper-
ations will cause the inclusion of the subroutine and
transfer to the tagged entry within the subroutine.
Ordinarily this operation will be useful when a single
subroutine is devised to carry out two similar func-
tions by having two entry points. An example of
this is the subroutine FLOATING aDD which has an
additional entry to accommodate FLOATING SUBTRACT
operations.

AUTOCODER SERIAL TABLE SEARCH

Figure 30 illustrates the use of macro-instructions
in writing a program to determine total cost (unit
cost X item quantity = total cost). Item quantity
is located in each record. The unit cost for the item
in each record is determined by performing a serial
table search. The table is entered in memory as a

constant and is made up of 20 two-digit codes with
their associated four-digit unit costs. The item code
and its associated cost are separated by a blank. The
item codes are in order according to frequency of use.

The input record is on tape #0202. Entries in the
item code and item quantity fields are already in
the record on tape. Entries for the unit cost and
total cost fields are supplied and developed by the
program.

The instructions which the programmer wrote are
shown in Figure 31. All other instructions were gen-
erated by the autocoder system. Macro-instructions
and the instructions linking the main program to
subroutines are made to stand out by over-printing.

The table search routine (Figure 30) is initialized
for each input record by the macro-instruction MOVETI,
located at 01040. This macro-instruction moves the
address portion from the instruction specified by the
first operand to the instruction specified by the second
operand by producing a receive-and-transmit instruc-
tion via ASU 14. A tag may be supplied in the tag
field (see entry 01110), or it may be left blank as in
entry 01040.

The initial address of the compare instruction
(01060) is modified after each comparison by the
entry *Asu04 in the comments field. This entry
produces the add memory instruction immediately
following entry 01060. This ADM steps up the
address of the compare instruction to the next item
code in the table. If the equal trigger is on at entry
01070 the address of the unit cost needed for com-
putation is two positions less than the address in entry
01060. Consequently, this address is moved to entry
01140. The address is then decreased by two by
adding the 40,000’s complement of two (I998) to it.

The total cost is then computed and a new record
is brought in.

PG LINE TAG oP NUM OPERAND PROGRAM TBL SH COMMENTS LOC OP ASU ADDRESS
01 000 TITLE SERIAL TABLE SEARCH
01 010 READ RCD RDTP 2 RCD AREABEOJ RTom
READ RCD SEL 0202 00164 2 00202 0202
RD RCD AREA 00169 Y 00400 0400
DOA TPERR
INCL TPERR
om000001 LOD 14 om000001 00174 8 14 00174 QAP&4
TRA 14 TPERR 00179 1 14 00574 OEP4
RACON EOJ RT 00184 A 00334 0334
RACON 00189 A
INCL XOFF
01 020 RAD 4 #E0007H TO STEP COMPARE ADDRESS 00194 H 4 01059 1 59
01 030 LRL1& LAST CODE&7
m0000002 LOD 14 ©0000002 &5 00199 8 14 00204 0B=4
RACON LAST CODE &7 00204 A 00562 0562
01 040 MOVEI BASIC ADDRmTBL SEARCHm
00000003 RCV 14 TBL SEARCHE&1 00209 U 14 00221 0BK1
T™T 14 BASIC ADDR&1 00214 9 14 00566 OEO06
01 050 RAD ITEM CODE 00219 H 00402 0402
01 060 TBL SEARCH CMP *ASUO4 00224 4
ADM 4 @00224 00229 6 & 00224 0S24
01 070 TRE ITEM FOUND 00234 L 00254 0254
01 080 CMP 14 TBL SEARCH 1S THIS LAST ITEM 00239 4 14 00224 QBK4
291 090 TRE NO CODE YES 00244 L 00394 0394
01 100 TR TBL SEARCH CONTINUE TABLE SEARCH 00249 1 00224 0224
01 110 ITEM FOUND MOVEI TBL SEARCHuCOMPUTESD
ITEM FOUND RCV 14 COMPUTE &1 00254 U 14 00271 0BP1
T™MT 14 TBL SEARCH&1 00259 9 14 00221 O0BKl
91 120 LoD 14 #1998% TO DECREMENT BY 2 00264 8 14 01068 1608
01 130 ADM 14 COMPUTE 00269 6 14 00274 0BP4
01 140 COMPUTE RAD UNIT COST 00274 H
01 150 ST UNIT COST 00279 F 00406 0406
01 160 MPY ITEM QTY 00284 V 00411 0411
01 170 RND 1 00289 E 00001 0001
01 180 ST TOTAL COST 00294 F 00419 0419
01 190 WRTP 1 RCD AREAmnom
SEL 0201 00299 2 00201 0201
WR RCD AREA 00304 R 00400 0400
DOA TPERR
or000002 LOD 14 ©m000002 00309 8 14 00309 0C~9
TRA 14 TPERR 00314 I 14 00574 OEP4
RACON 00319 A
RACON 00324 A
01 200 TR READ RCD 00329 1 00164 0l6&4
01 210 EOJ RT WRTM 1
EOJ RT SEL 0201 00334 2 00201 0201
WTM 00339 3 00001 0001
DOA TPERR
om000003 LOD 14 pm000003 00344 8 14 00344 OCM&4
TRA 14 TPERR 00349 I 14 00574 OEP4
RACON EOJ RT £30 00354 A 00364 0364
RACON 00359 A
01 220 RWD 00364 3 00002 0002
g1 230 TYPE #END OF JOBm#
SFL 0500 00369 2 00500 0500
WR #END OF JOBm# 00374 R 01069 1069
DOA XOFF
oo000004 LOD 14 om000004 00379 8 14 00379 OCP9
TRA 14 XOFF 00384 I 14 01019 1&J9
01 240 HLT 9999 00389 J 09999 9999
01 250 NO CODE HLT 1 00394 o 00001 0001
01 260 R NO CODE 00399 1 00394 0394
02 010 DRCD 00400
02 020 RCD AREA 1 00400
02 030 ITEM CODE 2 & 00402
02 040 UNIT COST [00406
02 050 ITEM QTY 5 & 00411
02 060 TOTAL COST 8 & 00419

Ficrre 30A. 705 LisTING oF SeErRiaL TABLE SEARCH

40

PG LINE TAG opP NUM OPERAND PROGRAM TBL SH COMMENTS LOC OP ASU ADDRESS
02 070 DCON 00420

02 080 1 | 00420

02 090 FIRST CODE 2 03 TABLE 00422

62 100 1 00423

02 110 4 0&TH UNIT COST FIELD 00427

02 120 49 02 124E01 112G17 0T4A05 299C06 151A12 038G08 2931 00476

02 130 49 09 300C19 290C11 281107 158D13 366A20 105D15 1028 00525

02 140 28 04 002G18 012F16 113C1l0 024G 00553

02 150 LAST CODE 2 14 00555

02 160 5 1C6D 00560

02 170 BASIC ADDR RACOCN FIRST CODE 00569 A 00422 0422
SU LNE FOLLOWING ARE SUBROUTINES

01 001 TPERR SET 15 1 TAPE ERROR SUBROUTINE 00574 B 15 00001 0&&1
01 002 LOD 15 TPERR K1 =& A 00579 8 15 00825 OHBS
01 003 UNL 15 TPERR1Os1 =4 MAKE NOP 00584 7 15 00850 OHEO
01 004 UNL 14 TPERR1 00589 7 14 00629 OFK9
01 005 UNL 14 TPERR2 00594 7 14 00674 OFP4
01 006 UNL 14 TPERR3 00599 7 14 00704 0G=&
01 007 UNL 14 TPERR& 00604 7 14 00719 0GJ9
01 008 UNL 14 TPERR6 00609 7 14 00749 OGM9
01 009 UNL 14 TPERR13 00614 7 14 00899 OHRY
01 010 LOD 14 #1990# 00619 8 14 01083 16Q3
01 011 TPERRIlsl ADM 14 TPERRL 00624 6 14 00629 OFK9
01 012 TPERR1 LoD 14 TAPE UNIT NUMBER 00629 8 14

01 013 UNL 14 TPERR10 00634 7 14 00844 OHM4
01 014 UNL 14 #EOF X XXXXo#=1 00639 7 14 01093 1&6R3
01 015 UNL 14 #9901 X XXXXa#=1 00644 7 14 01104 1lA=¢&
01 016 UNL 1la #902 X XXXXp#=1 00649 7 14 01115 1AJS
01 017 UNL 14 TPERR24 00654 7 14 00889 OHQS
01 018 LOD 14 #I9Z1# 00659 8 14 01120 1AKC
01 019 ADM 14 TPERRZ2 00664 6 14 00674 OFP4
01 020 ADM 14 TPERR3 00669 6 14 00704 0G=4
01 021 TPERRZ2 LoD i5 RD OR wWR OP CODE 00674 8 15

01 022 UNL 15 #EOF X XXXXma#=6 00679 7 15 01088 1&H8
01 023 UNL 15 #S01 X XXXXO#=6 00684 7 15 01099 1619
01 024 UNL 15 #902 X XXXXni#=6 00689 7 15 01110 1AAQ
01 025 RAD 15 #&00000# INITIALIZE COUNTER 00694 H 15 01064 1&F4
01 026 RCV 15 TPERR11 00699 U 15 00855 QOHES
01 027 TPERR3 T™T 15 RD OR WR INSTR 00704 9 15

01 028 LOD 14 #0010# 00709 8 14 01124 1AK4
01 C¢2¢9 ADM 14 TPERR% 00714 & 14 00719 0GJS
01 030 TPERR& LOD 14 EOF ADDR 00719 8 14

01 031 CMP 14 # # 00724 &4 14 01128 1AKS8
01 032 TRE 14 TPERRS NO EOF ADDR SPECIFIED 00729 L 14 00789 0GQ9
01 033 UNL 14 TPERR26 00734 7 14 00909 0I=9
01 034 TPERRS LoD 14 #CO15# 00739 8 14 01132 1AL2
01 035 ADM 14 TPERRS 00744 & 14 00749 OGMS
01 036 TPERR6 LOD 14 RESTART ADDR 00749 8 14

01 037 CMP 14 # # 00754 4 14 01128 1AKS8
01 038 TRE 14 TPERRS NO RESTART ADDR SPECIFIED 00759 L 14 00804 OH=4
01 039 UNL 14 TPERR18 00764 7 14 00964 0104
01 040 UNL 14 TPERR22 00769 7 14 01004 1l6=4
01 041 TPERR7 LOD 14 #0020# 00774 8 14 01136 1lALS
01 042 ADM 14 TPERR13 TO RETURN ADDR . 00779 6 14 00899 OHRY
01 043 TR TPERR12 00784 1 00869 0869
01 044 TPERRS RCV 14 TPERR26 &1 CHANGE TR TO STOP 0566 00789 U 14 00906 0I=6
01 045 T™T 14 TPERR K1 &1 00794 9 14 00826 OHK6
01 046 TR TPERRS 00799 1 00739 0739
01 047 TPERRY RCV 14 TPERR18 &1 CHANGE TR TO STOP 0901 & 0902 00804 U 14 00961 0101
01 048 ™T 14 TPERR K2 &1 00809 9 14 00831 OHL1
01 049 RCV 14 TPERR22 &1 00814 U 14 01001 1&=1
01 050 TMT 14 TPERR K3 &1 00819 9 14 00836 OHL6
01 051 TR TPERRTY TO CHECK FOR ERRORS 00824 1 00774 0774
01 052 TPERR K1 NOP TPERR14 00829 A 00914 0914
01 053 TPERR K2 NOP TPERR19 00834 A 00969 0969
01 054 TPERR K3 NOP TPERR23 00839 A 01009 1009
01 055 TPERR1O SEL TAPE UNIT NUMBER 00844 2

01 0564 BSP 00849 3 00004 0004
01 057 TPERR10el NOP els8 BYPASS TRC 00854 A 00018 0018

Ficure 30B. 705 LisTING FOR SERIAL TABLE SEARCH

41

PG LINE TAG oP NUM OPERAND PROGRAM TBL SH COMMENTS LOC OP ASU ADDRESS
01 058 TPERR11l RD REREAD OR REWRITE RECORD 00859 Y
01 059 TRA TPERR12 00864 1 00869 0869
01 060 TPERR12 SEL 901 00869 2 00901 0901
01 061 TRS TPERR1é REDUNDANCY IN MEMORY QUTPUT AREA 00874 0O 00944 0944
01 062 SEL 902 00879 2 00902 0902
01 063 TRS TPERR20 READING OR WRITING ERROR 00884 O 00979 0979
01 064 TPERRZ24 SEL TAPE UNIT NUMBER 00889 2
01 065 TRS TPERR25 END OF FILE 00894 0 00904 0904
01 066 TPERRI13 TR RETURN TO MAIN PROGRAM 00899 1
01 067 TPERR25 10F TURN OFF INPUT/QUTPUT INDICATOR 00904 3 00000 0000
01 068 TPERR26 TR TO EOF ADDR OR STOP 0566 00909 1
01 069 TPERR1l4 SEL 500 WR EOF ERROR MSG 00914 2 00500 0500
01 070 WR #EOF X XXXXo# 00919 R 01084 1084
01 071 TPERR15 LOD 14 TPERR1S 00924 B8 14 00924 OlK4
01 072 TRA XOFF TURN OFF 901 & 902 00929 1 01019 1019
01 073 HLT 566 END OF FILE ERROR 00934 J 00566 0566
01 074 TR TPERR10 TO REREAD OR REWRITE 00939 1 00844 0844
01 075 TPERR1é SEL 500 WR ERROR MSG 00944 2 00500 0500
01 076 WR #901 X XXXXo# 00949 R 01095 1095
01 077 TPERRL? LoD 14 TPERR17 00954 8 14 00954 OIN4
01 078 TR XOFF TURN OFF 0902 00959 1 01019 1019
01 079 TPERR18 TR TO RESTART ADDR OR STOP 0901 00964 1
01 080 TPERR19 HLT 901 REDUNDANCY IN MEMORY OUTPUT AREA 00969 J 00901 0901
01 081 TR TPERR10 TO WR AGAIN 00974 1 00844 0844
01 082 TPERR20 SEL 500 WR ERROR MSG 00979 2 00500 0500
01 083 WR #902 X XXXXn# 00984 R 01106 1106
01 084 TPERR21 LOD 14 TPERR21 00989 8 14 00989 01Q9
01 085 TRA XOFF 00994 1 01019 1019
01 086 NTR 15 TPERR10 TRY. TO REREAD OR REWRITE RECORD 00999 X 15 00844 QHD4
01 087 TPERR22 TR TO RESTART ADDR OR STOP 0902 01004 1
01 088 TPERR23 HLT 902 TRIED TO RD OR WR 4 TIMES 01009 J 00902 0902
01 089 TR TPERR10 TO TRY AGAIN 01014 1 00844 0844
02 001 XOFF UNL 14 XOFF3 TYPEWRITER INDICATOR OFF SUBROUTINE 01019 7 14 01054 1&6N4
02 002 LOD 14 #CO10# 01024 8 14 0l124 lAK4
02 003 ADM 14 XOFF3 TO RETURN ADDR 01029 6 14 01054 1lE&N4
02 004 SEL 901 01034 2 00901 0901
02 005 TRS XOFF2 TURN OFF 0901 01039 © 01044 1044
02 006 XOFF2 SEL 902 01044 2 00902 0902
02 007 TRS XOFF3 TURN OFF 0902 01049 O 01054 1054
02 008 XOFF3 TR RETURN TO MAIN PROGRAM 01054 1

SIGNED LITERAL 1 01055

SIGNED LITERAL 4 000G 01059

SIGNED LITERAL 5 0000¢& 01064

UNSIGNED LITERAL 4 1998 01068

UNSIGNED LITERAL 11 END OF JOBum 01079

UNSIGNED LITERAL 4 1990 01083

UNSIGNED LITERAL 11 EOF X XXXXo 01094

UNSIGNED LITERAL 11 901 X XXXXm 01105

UNSIGNED LITERAL 11 902 X XXXXu 0l1le

UNSIGNED LITERAL 4 1921 01120

UNSIGNED LITERAL 4 0010 0liz4

UNSIGNED LITERAL & ol128

UNSIGNED LITERAL &4 0015 01132

UNSTGNED LITERAL 4 0020 01136

Ficure 30C. 705 LisTING FOR SERIAL TABLE SEARCH

42

PAGE

srocram_SERIAL TABLE SEARCH oare_ NOV. 15,18 o TBL SH

LINE TAG OPERATION Num. OPERAND COMMENTS

o0 |READbRCO ROTP | 2 |RCDbAREA & EOJbRT4 <

020 RAD 4 |(+0007) | T alip compars addrece

030 LRLI4 LASTBCODE +7 | o

00 MOVE] BASICbADOR S TBLBSEARCHS

050 RAD ITEMbCODE |

%0 |TBLLSEARCH |CMP | £ ASUOH

070 TRE ITEMBFOUND

080 cmp |14 | TBLbSEARCH | dathie ot T

090 TRE NOBCODE | Yoo

100 TR tBLbseARcH | | Gofue Tabls aemncd

10 | ITEMbFOUND | MOVEI TBLESEARCH <- COMPUTE 4

120 LoD 14 | (1998) , o decreend by Z

130 ADM 14 | COMPUTE | v

140 1COMPUTE RAD i Uil coel

150 ST UNITBCOST |

160 MPY ITEMbQTY.

170 RND } |

180 ST TOTALLCOST |

190 WRTP | 1 | RCOBAREA 444

200 TR READbRCD |

210 |EQ)bRT WRTM | |

220 RWD |

230 TYPE (ENDbOFbIOB)|

240 HLT 9999 |

250 | NObCODE HLT f |

260 R NobCODE i

race_C2

procram__SERIAL TABLE SEARCH pare Nov. 15, 19 oent._TBL SH

LINE TAG OPERATION | NUM, OPERAND COMMENTS

010 DRCD |

20 |RCDHAREA | |

00 | | TEMbCODE 21+ |

oo | UNIThCOST Al+ |

os0 | ITEMbQTY. 5[+ |

‘%0 | TOTALDCOST 8|+ !

070 DCON |

080 B E3 1

o0 | FIRSThCODE 2|03 | TABLE

100 llb [

1o 4]0478 | UNIT COST FIELD

120 49)02b124501b1127,17b0741 [osb299306b151T12b038T08b2933

130 49/09b300319b290311b 2813 |07bi1584 13b366120b105415b1023

140 28|04 boo2718boiz8)16b1133 [10b0247

150 1 LASThCODE 2|14 |

180 5| bl06A

70 |BASICPADDR |RACON

180

|
FIRSTDCODE
l

1on

FIGURE 31. SERIAL TABLE SEARCH

43

LIBRARIAN

THE LIBRARIAN is the part of the autocoder system
which creates a new system tape containing a revised
library. The insertion of new macro-instructions or
subroutines and the replacement or deletion of some
already in the library are controlled by the librarian.
Input from the card reader is collated with the cur-
rent autocoder system tapes to produce the new sys-
tem tapes. The library on tape is organized alphabeti-
cally by macro-instruction and subroutine name. The
macro-instructions precede the subroutines. Input
from the card reader must be in the same sequence.

Each new addition to the library is preceded by
a header card with the word INsER in the operation
field. If the new entry is to replace one with the
same operation code or label, the word REPLA should
appear in the operation field of the header card. If a
routine is to be removed from the library, only a
header card need be supplied with the word DELET
in the operation field and the subroutine identification
in the identification field.

The following is a summary of card preparation re-
quirements and operating instructions required for
the use of the librarian.

HEADER-CARD KEY PUNCHING

A HEADER card precedes each macro-instruction or
subroutine.

AUTOCODER
COLUMNS CARD FIELD LIBRARIAN USE
1-5 Page and line Blank
6-15 Tag Blank
16-20 Operation DELET, INSER, Or REPLA
21-22 Numericai No effect
23-26 Operand Number of instructions in

macro or subroutine. Left
justified. (Not pertinent to
DELET.)

44

27-74 Blank

75 M or S (depending on
whether card refers to a
macro or a subroutine).

76-80 Name of macro or sub-

routine.

The punching requirements listed below are nec-
essary to the functioning of the librarian.

1. Each card of every macro-instruction (or sub-
routine) must have an M (or S) in column 75 and
the name in columns 76-80.

2. Each card of a macro-instruction and sub-
routine including the header must be in collating se-
quence with respect to columns 1-5.

3. All header cards, macro-instructions and sub-
routines must follow in collating sequence with re-
spect to columns 75-80.

USE OF THE LIBRARIAN

THE FOLLOWING procedure applies when the library
is to be revised.

1. Place the autocoder system tape on tape unit
0207.

2. Set 0913 on.

3. Ready the deck of macro-instructions and sub-
routines with their header cards in the card reader.

4. Manually execute: seL (2) 0207, rp (Y) 0000;
press RESET and START.

5. The autocoder system, complete with a new list
of macro-instructions and subroutines, is created on
tape unit 0200 at HLT 9999.

To use the new autocoder tape, set the alteration
switches for autocoder operation and push the start
key.

Form 22-6726-1 (2-57; 10M—ME)

	01
	02
	03
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	xBack

