SYSTEM

-

THE IBM 705

This manual is a reprint of the subject matter originally included in the
Intermediate Manual, PRINT 1 with the following changes:

Page Line
No. No.
20 15 E09: Echo check or 0903 error, channel 12 in carriage con-

trol tape

23 (added) op code: ENT; comments: Enter PRINT mode

(added) op code: ATR; comments: explanation on p. 34

last op code: rcp; variable field: uniT, TRADD; comments: Read
a card. UNIT is either tape t or card reader. Transfer to
TRADD on end-of-file condition. (Optional specification of
TRADD.)

31 (added) op code: ENT (inserted between lines 2 and 3 of the example,
i.e., between SCALE and RSTRT)

33 24 In the case of arithmetic commands, . .. (to replace: For the
MAD, MMA, PMA and MPA instructions, . . .)

37 6 LARL......... 2044 2059 2059

52 26 Change A (word length) + 19/21/23, which refers to first

address of Tsc, to A (word length) + 19/23/27

52a
through
52y Omitted

Contents

Purpose, 3

General characteristics, 3

705 components, 5

System components, 5
Overall mode of operation, 6
General coding instructions, 8
Regional notation, 9

Coding PRINT instructions, 10
Coding 705 instructions, 12
Special operations, 13
Indexing, 16

Diagnostic routines, 17

Arithmetic operations, 18

Summary of mnemonic codes, 21

Summary of indexable operations, 22

Input-output operations, 38
Printing operations, 38
Tape data storage operations, 40

Card operations, 41

Pre-edit and system entry, 44
Pre-edit conversion, 47

Summary—System operation, 49

Appendix I—Operation execution times,

translation, 50

Appendix II—-Examples, 53

Summary of non-indexable operations, 23

Indexable computing operations, 24

Arithmetic operations, 24

Mathematical function operations, 24

Data transmission operations, 24
Comparison transfer operations, 25

Table search operations, 26

Non-indexable computing operations, 29

Transfer operations, 29
Replace operation, 29

Extract operation, 30

Set index register operations, 31
Non-test transfer operations, 31
Test transfer operations, 32
Repeat operations, 32

Switching operation, 34

Generating PRINT instructions, 35

Fixed symbolic locations, 37

This manual is a programmer’s reference to PRINT 1. Further information will
be supplied in supplementary form early in 1957. This includes the 10- and
12-digit mantissa systems, the tinkertoy appendix, and a primer to be read in
conjunction with this manual.

Existing pre-edit and executive routines will be furnished in card form
upon written request, automatically placing those installations on the mailing
list for subsequent revisions, particularly to include all mantissa lengths. The
symbolic listing of the pre-edit routine will not normally be turnished, except
upon special request. PRINT 1 coding forms and instruction cards may be
obtained at Stationery Stores under form numbers 19-6905-0 and 887834,
respectively. Assistance in programming and operating the PRINT I system may
be obtained from Applied Science representatives.

Working committee Programming Research Department

Bemer, R. W. International Business Machines Corporation
Fromm, D. 590 Madison Avenue

Glans, T. B. New York 22, N. Y.
Hira, G. R.

Hoggatt, A.
Krasnow, E.
Levitan, R.
Michels, L.
Williams, E A.

91956 by International Business Machines Corporation

no

PRINT 1

Purpose

The prINT I (PRe-edited INTerpretive) system has been primarily designed to
meet the engineering and scientific computing needs of those 705 installations

where such work is a secondary computing requirement.

General characteristics

PRrINT I is an automatic coding system of the interpretive type, designed to
make the 705 itself do the major portion of the coding and clerical work.
It is designed for ease of learning and operation by personnel with little or

no previous programming experience. It has the following desirable features:

Floating point arithmetic. The programmer need not concern himself with
the position of decimal points throughout calculation. Entry of fixed point
numbers and production of fixed point printed output may be made without
the operator concerning himself with the fact that internal calculation was
in the floating point mode.

Matching mathematical functions. All functions operate near optimum speed
and are computed to an accuracy which is consistent with the arithmetic used.
Facility is made for the user to insert his own sub-routines, by using the
“tinkertoy” appendix. The library of functions is greatly extended by the
floating sub-routine feature, which allows non-standard functions in tape

storage to be used as though they were standard functions in core memory.

Variable address and instruction format. The instructions in this system are
of varying length and contain a variable number of specified addresses,
depending on the amount of information each instruction must carry. This is
consistent with the variable length features which enhance the 705. Coding is
done in a variable field, with the multiple addresses and other information

separated by commas.

Advanced instruction set. Many useful combinatorial instructions are incor-
porated to give greater flexibility to calculations. Among these are vector
multiply-adds, polynomial multiply-adds, special operations for convergence
testing, indirect address features, counting switches, counting printing instruc-
tions and a completely automatic table search operation with an adjustable
block feature. All of these are performed by the use of a single instruction.

Index registers. An incremental type of indexing is used for address modifica-
tion, substantially reducing the number of program steps to be written, by
factors of from 2-1 up to 50-1. Each address may be indexed by the sum of
the contents of up to three registers, greatly facilitating internal loops. Index
registers may also be used as counters for control purposes, without actually
being used for address modification.

Repeat instruction. This instruction controls automatic repetition of a
following instruction, allowing grouped data to be handled with very few
instructions. This is advantageous in converting input and output data from
fixed decimal to floating and vice versa, in table searching, in matrix calcu-
lations, etc. It also permits a secondary form of indexing.

Facility. PRINT 1 may be thought of as a means of using the 705 as a giant but
convenient desk calculator. Elapsed time between problem statement and
production of answers can now be a matter of hours, rather than days or
weeks. The instruction set is straightforward and restrictions are minor;
many logical errors in the written program are automatically detected and

typed out to the operator in the form of an error message.

Interpretive system. PRINT 1 is operated by an executive routine which is
always in memory during the running of a problem. This routine fabricates
the requisite 705 instructions as it computes, finding the various components
in the pattern of the converted PRINT instruction. There is no necessity for
developing expert machine language programmers; the intricate coding is
already built in. The executive routine, under various options, occupies

o

from 4000 to 6000 characters in memory (equivalent to 800 to 1200 705
instructions), but experience with the system has shown that for mathematical
work one PRINT instruction is the equivalent of about 40 705 instructions.
The break-even point is therefore at around 30 PRINT instructions, which is
a relatively small program. Interpretation is not generally time-consuming
in PRINT, because the repeat instruction enables the following instruction to
be performed n times in succession with only a single interpretation. For
the remaining n—1 times, the instruction operates, in general, even faster
than the most expert coder or compiler could generate the program. This
statement may appear contradictory unless it 1s understood that, due to the
possibility of selecting the most advantageous fixed locations in memory,
certain machine characteristics may be utilized to decrease the operating
times. These same routines, if compiled in random memory locations, would

be incapable of operating correctly.

705 components

The only components required to operate the PRINT system are the magnetic
core memory and sufficient tape units (> 3) to handle expected problem size.
An on-line printer and on-line card reader are assumed to be available,

although they may be dispensed with by certain modifications to the system.

System components

When operating in the PRINT system, the 705 is for all practical purposes
changed to a different machine, that is in a non-physical sense. Certain simu-

lated hardware exists in the system, as:

Index registers. There are three of these registers. They are addressable by
certain instructions for setting and augmenting their contents. They are
effectively addressable in the body of other instructions to enable their

contents to be used to modify addresses.

Limit registers. There are three of these, one for each index register. They
are for maintaining limits to the contents of the index registers, which are

used for automatic termination of loops of indexed instructions.

Line image. This is an image in memory of the printer type wheels, such that
each of the type wheels is effectively addressable. All printing and error
correcting routines associated with printing are automatically associated

with this line image.

Heading image. This is also an image in memory of the printer type wheels,
but is used exclusively for heading printed pages of reports in any format
the programmer desires. The programmer merely uses two cards in his
program to specify this heading format.

Card image. This is an image in memory of the card columns. All columns
are effectively addressable. All card reading, whether from the card reader
or tape, enters this area; all card writing, whether on tape or to the card

punch, is done from this area.

Fixed symbolic locations. There are six fixed locations in memory. Although
addressed symbolically, they are automatically interpreted as actual addresses:

For numbers (data word length) For addresses
PACI1 (Pseudo-ACcumulator 1) LARI1 (Location of ARGI)
PAC2 (Pseudo-ACcumulator 2) LAR2 (Location of ARG2)

ARGI! (ARGument 1)
ARG2 (ARGument 2)

PACI is the basic component for the multi-address instructions, for which
it is the understood address. All arithmetic operations send the result to
PACI1 as a secondary result storage or temporary working area. The other
locations are mainly pertinent to the table search operations.

Overall mode of operation

The use of PRINT to solve a problem falls into four basic steps. They are
described very generally here; the actual details of each of these steps are
contained in the full description of each which follows later in the manual.

The programmer writes, on the symbolic coding form for this system, a

sequence of PRINT and/or 705 instructions designed to bring in data, do
arithmetic and logical operations, and finally prepare and produce output
data. He does this knowing the function of each of the PRINT instructions, as
described in detail under individual sections.

Cards are punched from this coding form, each line of coding representing
a single card. Punching is done in consecutive columns and may be done
without a drum card, as the format is variable. The only column skipped
before the end of punching is that defining the end of the variable field and
the beginning of the comments.

These cards are read into the 705 along with the PRINT 1 system, which
consists of two independent parts. The first of these is the pre-edit routine,
which will process the program cards and convert them to pseudo-instructions
in card or tape form for actual running of the problem. The second part is
the executive routine, which is always in core memory during the operation
of a program prepared for this system. The pre-edit routine is not maintained
in memory after performing its function and is destroyed by entry of the
executive routine and the program. It is possible to pre-edit at one time and
save the execution of the problem until a later time, as these are entirely
separate functions. Pre-editing is a triple function of assembling, compiling
and conversion to a form more convenient to the executive routine. For each
card with its mnemonic instruction and variable field, pre-edit produces a
corresponding pseudo-instruction especially tailored for the fabrication of
705 instructions from its components. These are of varying length of
characters according to the operation specified. Matched sets of mnemonic
and pseudo-instructions may be printed at pre-edit time, at the option of
the operator, together with the comments punched in the right hand part
of the variable field. This should be his permanent coding record.

The actual running of the problem is under the control of the executive
routine, which may be called from tape immediately after pre-editing. The
executive routine fills from 4000 to 6000 characters in memory, including the
floating sub-routine position and input-output images. Overflow or sign
check indicators are not used in PRINT as decision elements. They are reserved
for stops while operating with 705 instructions and the switches may therefore
be set to automatic stop during the operation of PRINT. Any entry to PRINT
sets up the ASU’s as required for its operation. All ASU’s are therefore avail-
able for use in 705 language. Their settings should be noted from the ENTer
sub-routine (see Page 12) to avoid redundant resetting for 705 usage.

PRINT I INSTRUCTION CARD

General coding instructions

Addressing in the PRINT I system is entirely symbolic; that is, the address
nomenclature can be descriptive of the contents. The symbolic address of a
location must be a sequence of one alphabetic character followed by three
or four alphanumeric characters. If these following characters are all numeric
the address is said to be “regional”’, which is a sub-class of symbolic notation
with certain useful properties (see the next section). A “region” is indenti-
fiable by the first or first two characters (i.e., the “G” region, the “F3” region).
If the sequence begins with a numeric character, the following characters
must be all numeric and this signifies an actual 705 address. The symbolic
locations may be coded in any sequence desired. The format of the PRINT

coding card is:

LOCATION

OPER.

VARIABLE FIELD COMMENTS

0
1
!

—

000
345
111
22222
33333
44444
55555
66666
11111
88888

333313
thaas
555#5
6666l
711

I
A AL U A B AR
IIIIIIIIIIIIIIII|lllllIlIIllIIIllllllllllllllllllllIllllllllllllllIlll
22
33
44‘4
55
G866665665665568666865668566856666865666566668666656656666666566668685
7777777777777777777777777771771777777771777777777777777717777777777777

8808888888888888888888808888888888888888888888888888888808888888888888

SERIAL

LOCATION

OPER-|
ATION

VARIABLE FIELD

COMMENTS [IDENTIFICATION]

12345

s 78 9110

1112 13]14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 4243 44 45 46 47 48 48 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 7273 74]75 76 7778 79 80

BMEATY

34

Columns

1-5

Columns

6-10

Serial number. This provides for sequence control and the collation of
change cards. Serial numbers must be in ascending sequence. A convenient
convention is the use of the first two columns for coding page number, the

second two for line number and the last for inserts.

Symbolic location. This field provides a referral name for the entry; that
is, if the entry is not referred to by any other instruction in the program, the

Columns
11-13

Columns
14-74

Columns
75-80

field can and should be left unpunched. This will reduce the size of the table
of symbolic and actual address correspondence, thus decreasing the running
time of pre-editing by minimizing search time. If the field is punched it must
follow the rules for a symbolic address, with the alphabetic character in
column 6. Punching is optional in column 10.

Operation code. This field must be punched with a 3 character (including
blanks as characters) mnemonic code which describes the function of the
entry. This may be a PRINT operation, a 705 operation or one of the several
special operations for constants, memory reservations, origins or headings.

Variable field. This field is punched as the requirements of the particular
instruction dictate. The first blank column indicates the beginning of the
comments field, which may actually extend through to column 80 if no iden-

tification is required.

Identification. Any 6 character alphanumeric designation may be punched
(ganged) here to identify the program. An identification obtained from the
first card of the symbolic program deck will be punched in the first 6 columns
of the 705 load cards produced by pre-edit for reloading, and will also
appear in the heading of the pre-edit listing.

Regional notation

An alternate method of using symbolic addressing is available if the pro-
grammer desires to code with “unitized” components. If the symbolic address
is regional, the serial number in columns 1 to 5 may be omitted, in which
case the numbering sequence within the regional address controls instruction
sequence in the program. Columns 6 to 10 will always be filled with a regional
address, regardless of referral status, and referral will now be indicated by
punching an 11-punch in column 1. The drum card of the keypunch should
be arranged to skip to column 6 for the next punching. If the programmer
fears becoming careless in noting referral addresses, he may gang the 11-punch
in column 1 of every card, but this could retard the pre-edit process by
carrying a complete table of referrals.

Regional addressing is convenient for quick replacement of identifiable
components with a specific function in the program. To illustrate, consider
that in a program to compute airplane performance the calculation of engine

thrust is assigned to region T1. This region receives as input data certain
information produced by other regions, computes thrust with this data and
certain equations, finally putting this resultant thrust value in a location
usable to other regions. For several different engines, or several different
ways of computing thrust, different T'1 regions would be coded. All of these
receive and store data in addresses not common to the computing regions,
but accessible to all. If the programmer wishes to compute performance for
a certain configuration he selects one form for each region involved and
processes this combination through the pre-edit routine. He is thus
guaranteed that housekeeping is perfect and that no pattern of computation
will have been erroneously disrupted.

Coding PRINT instructions

The variable field of PRINT instructions is coded according to the context of
the instructions. Each operation is described as having a certain number
of positions in the variable field. Fach of these positions are separated by
commas. An exception occurs for indexable instructions, where a position is
defined to contain both the address and its index register tag, although
separated by a comma. The tag is therefore in a sub-position immediately
following the address it modifies. An address is a field of four or five char-
acters. It is symbolic if it begins with an alphabetic character; if the first
character is numeric, all must be numeric and the address is actual. An index
tag is a field composed of the digits 1, 2 and 3 not repeated which designate
the index register or registers which are to affect the address in context. If an
address is not to be indexed, no tag field is written. In the first example the
address in the second position is the only one indexed; in the second example
the address in the third position is also indexed.

LocaTion | oremaTion] vamiABLE FiELD COMMENTS
8- -310] 1t. -13} 14- -80
] ADD P 22, R 532, 12, QYR5 A blank column terminates
} ADD P 202, R 532, 12, QYR5, 2 the instruction and starts
| IMPY | RATE, 2, TIME, 23, DIST, 3 the comments

Both numeric and alphabetic characters are used in coding for this system.

10

As a standard precautionary practice, always write the letters @, 1and £ as
shown, with slashes and cross-bars to safely distinguish them from the
numerals 0, 1 and 2.

Every program will begin with either a 705 instruction or an ENT
(ENTer) instruction. Every transfer of control from 705 to PRINT instructions
and back will be called for by the programmer. Consequently, every block of
PRINT instructions must be preceded by an ENT, which is compiled by the

pre-edit into three 705 instructions:

LOCATION OP%ROAJEION VARIABLE FIELD COMMENTS
6- -10| 1 <13 | t4.- -80
BADD-11| SET | 4, 1
BADD- 6 |L@D | BADD-6, 1
BADD-1 |TR (to the address of the first instruction in the ENT Sub-routine in

the PRINT Executive Routine)

The basic address of the first PRINT instruction is at BADD. This is computed
by the ENT sub-routine from BADD-6 in ASUOl. ASUs are set to length
and control is transferred to the fetch sub-routine, which brings in the first
PRINT instruction in the interpretation cycle.

Following an ENT, all entries are considered by pre-edit as PRINT instruc-
tions until the instruction LVE (LeaVE) is encountered. LVE is a PRINT
instruction whose address is normally pre-edited as the location of the next
705 instruction. When executed, it will cause the executive routine to
transfer control to that instruction. All succeeding entries will then be
considered as 705 operations or special operations until another ENT is
encountered. Thus ENT and LVE are normally coded without addresses in
the variable field. When LVE is coded with the address of a 705 instruction,
pre-edit gives that address in conversion rather than that of the next 705
instruction in sequence.

An asterisk in the variable field of an ENT indicates that this is the point
at which the operation of the program will be commenced, rather than the
first ENT or 705 instruction encountered by the pre-edit. If more than one
ENT contains an asterisk in the variable field, the first encountered takes
precedence. An ENT must not precede a 705 or special instruction, else a
compiling error will occur in memory assignment. When successive entries
change from PRINT to 705 instructions or vice versa, without intervening
ENT or LVE entries, pre-edit will type out a mode change error message.

11

Upon executing a LVE instruction, advantage may be taken in 705 opera-
tions of the fact that the ASUs are left with known length settings, as follows:

ASU Length ASU Length ASU Length

o1 4 06 4 11 2

02 1 07 4 12 3

03 2 08 Word Length 13 Indeterminate
04 4 09 1 14 5

05 4 10 1 15 18

Two successive commas imply that the intervening address is that of the
main pseudo-accumulator PAC1, which is a field in memory reserved for this
function. PACI is incapable of being indexed, even if tagged; a zero indicator
is automatically inserted for it by the pre-edit routine. PACI may also be
addressed by the symbol PACI. If fewer addresses are coded than required by
a particular instruction, the remaining addresses will be interpreted to be
PACI by the pre-edit. For example, the following instructions are equivalent,
incidentally doubling the contents of PACI.

ADD PACI1, PACI, PACI ADD,,b ADD

An exception to this rule occurs in the SAC operation. If the result addresses
are not specified in the second and third positions of the variable field, the
second position is interpreted as PAC1 and the third as PAC2.

Coding 705 wnstructions

705 instructions are coded either before the first ENT or between LVE and
the next ENT. Standard 705 mnemonic codes are used. The first field after
the operation code is interpreted as the address. An actual address can be
any combination of 4 or 5 numeric digits, as the leading zero does not have

LOCATION

OPERATION
CODE

- -13

VARIABLE FIELD COMMENTS

14- -80

| ® | crcie
"I raD | F@L3-52, 2 FL3-52 zoned for ASU 02
| |seT | 9,13 Set ASU 13 to length of 0009

12

to be punched. A symbolic address must satisfy the same criteria as the
addresses of PRINT instructions do. If the address is terminated in a sign,
the next field is interpreted as an increment. The following field is the ASU
designation. The instruction refers to the 00 accumulator if no ASU coding

is present.

Special operations

PRINT I uses various mnemonic special operation codes for initial organi-
zation of a program. These are illustrated at the end of this section. These
operations are static and do not create working PRINT or 705 instructions.

ADC (ADdress Constant) produces a 4 character constant which is the 705
address determined by the symbolic address, increment and ASU coding in
the variable field.

ORG (ORiGin) controls the actual memory assignment of subsequent
instructions or areas. These are four types of ORG entries, and pre-edit will
handle up to 100 ORGs with addresses in the variable field.

When the address in the variable field is actual (i.e. numeric), the first
character of the next entry will be at that specified address.

When the variable field is blank, all following entries will be assigned in
order following the highest location assigned previously.

When the address in the variable field is identical to the symbolic address
of the ORG itself, the location of the previous entry will be stored in the
table of origins for later reference.

When the address in the variable field is a symbolic address stored under
the conditions of type 3, the succeeding entries will be assigned following
the location stored by type 3. This is a device for remembering and con-
tinuing an interrupted series.

CON (CONstant) and BLK (BLocK) reserve filled or unfilled memory
space. For either entry, the first position in the variable field is a number of
from 1 to 3 digits specifying the length of the entry, which in the case of
CON is limited to 50 characters. If an asterisk precedes the length speci-
fication the entry starts with a memory position ending in 0 or 5. If a
constant is signed, the plus or minus sign follows just after the length; plus

13

signs may not be omitted. A blank column and the actual constant follow.
A record or group mark may appear only in the first character of a constant.
The address assigned by pre-edit is that of the highest memory position (or
right-hand character) in the field.

FLC (FLoating Constant) is a PRINT entry corresponding to CON for
the 705. Coded in the variable field is the sign and the 1 or 2 character
exponent, followed by the mantissa sign and as many digits of the mantissa
as the coder cares to write. These are not separated by commas. The initial
number of characters in the mantissa is not limited; pre-edit automatically
converts to internal format, without rounding if the number of characters
exceeds mantissa length for the system. A blank variable field is considered
an error by pre-edit.

DEL (DELete) is a special operation for program correction and is
explained in the operation of pre-edit and system entry.

REG (REGister reservation) is a PRINT entry corresponding to BLK for
705 entries. It is used to reserve memory space for floating point PRINT
numbers (words). For reservation of a single word or number space the
variable field is normally left blank, as the length is already specified by
the system. The word length area is addressed in other instructions by the
symbolic address of the REG entry. If the address is regional, a lower address
in that same region may be written in the variable field, signifying reserva-
tion for all addresses within those limits. For indexing purposes, all randomly
symbolic addresses in an operational sequence must be reserved sequentially
and individually. It is therefore preferable to reserve addresses for indexable
instructions in the regional mode. Pre-edit will accommodate up to 60 of these
multiple reservations.

SAY (SAY it) will enter a line of comment into the pre-edit listing.

HDG (HeadDinG) is a PRINT entry for inserting a page heading for
printed reports. Coded in the variable field are a blank (column 14) and
up to 60 characters in columns 15 to 74. One or two cards may be used, the
second corresponding to type wheels 61 to 120.

FIN (FINish) is an entry which signifies termination, in the card reader,
of the program to be pre-edited. It has the same effect as an end-of-file signal.
This permits data cards to be loaded into the reader simultaneously with the
program, without being considered as entries to be pre-edited. The entire
program may thus be run in a continuous fashion.

14

PRINT I SYMBOLIC CODING FORM

ILLUSTRATING THE VARIOUS USAGES FOR SPECIAL OPERATIONS
MANTE ADC | POWER - 2,9 (, 09 also correct)
| DRG | 5040 (05040 also correct)
A123 _ RAD CcaL08, 2 (instruction located at 5044)
| @RG | 35040
‘ C¢N4:5 CBN| 2+b45b..... (the number 4-5, located at address 3504)
| XNYC| | BLK | 56 (reserves 56 characters in memory)
| | CON| * 28bFOURbSCORED
ZERZ | | FLC | +0+0 0x 10° = ZERO
LBC1, | FLC | +1+1 1x 10' = @NE
" FLC | -12+528 528 x 107'2
_ | FIC | +3-2 -.2x 10% = -200
FLC | +3-200 v
10000 | DEL | 10006
F121 | | REG | F119 e —
F119 | | REG | FI21 -\
F119 | | REG > Identical effects
F120 | | REG
F121 | | REG]
F121 | | REG] Will cause normal indexing
F120 : REG B fo oceur in
F119 : REG J reverse order
| | SAY | THE F@LL@WING 3 ADDRESSES ARE DESIGNED F@R INDEXING
J¢NE\fS REG] Pre-edit assigns memory positions
SMIT |H| REG t in the order in which
BREW'N REG J they are encountered
A001IA| REG | A100A | Useful technique for greatly
A001/B| REG | A100B b expanding the number
BOO1 :A REG | BI0OA J of available regions
| | SAY | THE FLLGWING LINES SHZW ILLEGAL USAGE
10006 I | DEL | 10001 Will delete 10006 only
20684 ; DEL | Al106,13,,F+/4 (Dangerous to maintain old variable field)
F120 |1| REG (Will not be Included in F119 = F121 sequence)
| | REG | SMITH
SMIT |H REG | JBNES
TEMP (2| REG | TEMPI

15

Indexing

A system of indexing is simulated within the PRINT framework. Most 705
programmers are already familiar with one means of specifying the location
of a number without using the actual address. This is symbolic addressing,
where the actual address is determined by searching a table of symbolic
addresses, each of which has a corresponding actual address. Indexable
addressing is one further step up conceptually. If either a symbolic or actual
address, not only is the corresponding actual address determined from the
symbolic, but the address which the instruction really refers to is that actual
address plus the number contained in the index register specified. If that
index register has a different number in it every time that the same instruc-
tion refers to it, then the same instruction obviously uses a different address
every time, although the instruction itself never changes. The examples in
Appendix II show how the same instruction may be used repetitively to
advantage. The justification for indexing is the resultant economy in the
number of instructions that the programmer must write.

In the out-of-context example shown, the angle whose sine is placed in
PACI, and whose cosine is placed in PAC2, is not the angle in the address
P220. Since R2 (register 2) and R3 have been set to 3 and 8 word lengths
respectively, it is rather the angle in address P231, which is P220 plus 3 plus 8.

P240 ; REG | P20 Reserve sequential addresses
L | ENT
| IsR2 |3 Set R2 to 3 word lengths
| |sr3 |8 Set R3 to 8 word lengths
| | sac | p220, 23 Sine to PAC |, cosine to PAC 2

The 23 tag after the address in the first position indicated that the address
was to be incremented by the sum of the contents of R2 and R3. In PRINT I,
the contents are added to the address and indexing is said to be incremental.
By contrast, 704 indexing is decremental. There are 3 index registers, referred
to as R1, R2 and R3. Any address in an indexable instruction may be incre-
mented by the contents of any of these registers or the arithmetic sum of

16

the contents of any two or all three. This alteration takes place in a work
area before fabricating the necessary machine language instructions from the
address portions of the PRINT instruction involved. The original PRINT instruc-
tion in operating sequence is never altered. Loops formed by transfer on index
instructions will therefore be re-indexed from the original instructions. Such
transfer is dependent upon the contents of the index register not having
exceeded a specified limit.

The contents of index registers are used only for address modification with
705 add-to-memory instructions. The contents are unsigned and 4 digits in
length. Increments are carried in memory as true numbers, decrements as
the complements of 40,000. To increase operating speeds, all possible sums
of contents of index registers are carried along in memory. When any register
is altered, the contents of each combination in which that register participates
are altered by the same amount. This permits indexing any address by a
single add-to-memory instruction.

Direct access to the contents and limits of index registers may be had (in
705 machine language) by using the actual addresses of 4-character unsigned

numeric fields as follows:

R1 0718 R1 limit 0723
R2 0728 R2 limit 0733
RI4+R2 0738
R3 0748 RS limit 0753
R1+4R3 0758
R24R3 0768
R14+R24R3 0778

Diagnostic routines

Two types of diagnostic methods for error finding are used with PRINT instruc-
tions. The first of these is a memory print associated with the system control,
the operation of which is described under the section on pre-editing (page
44). This method is used primarily to determine cause of machine stops
during computation.

The second type of diagnostic is that commonly called “snapshot”, and is
entirely under the selective control of the programmer. This is accomplished
by inserting extra instructions in the program to be pre-edited. These instruc-
tions are designed by the programmer to view selected intermediate results

17

or logical path indications. When the program is ascertained to be correct,
these snapshot instructions have their operation codes changed to DEL and
are re-collated in with the previously assembled program, thus removing
them from the operating program. This feature is possible only because
of the fast re-assembly time in the PRINT system. Most programs will take
from 30 seconds to 1 minute for tape re-assembly.

For detail work, a 705 machine language tracing routine is furnished. This
routine (primarily developed by Mrs. Helen Meek of the Hughes Aircraft
Company, Culver City, California) may be used as a separate diagnostic tool
for all work encountered by the installation, including commercial problems.
The basic principle of this routine is the temporary displacement (and
storage for later replacement) of certain operating instructions in the working
program by transfers to the tracing routine. This permits high speed opera-
tion to various points of interest, at which time detailed tracing occurs. High
speed operation of the program may be resumed at specified points. Deter-
mination of the local regions to be traced is under card control.

Arithmetic operations

All priNT 1 arithmetic operations use numbers in floating decimal form as
the operands. All 705 operations are in fixed decimal form. A floating decimal
number is essentially a piece of data and is referred to as a “word”. This
floating point word is comprised of two parts, a proper decimal fraction (called
the “mantissa”’) with a non-zero leading digit and a power of 10 multiplying
that fractional number (called the “power”, although “characteristic” is an

alternate term). Floating point words are

stored in memory as: although written for input as FLGCs:
+ =+
XXX. ... XXXPP +=PPXXX. . ..

The X'’s represent the digits of the mantissa and the P’s represent the two
digits of the power, which may range from —99 to 499. The dots signify
that PRINT I is furnished in separate forms for 8, 10 and 12 digit mantissas.
The 12 digit system (word length — 14 characters) will be furnished origi-
nally with 12 digit arithmetic but having the mathematical functions
normally provided with the 10 digit system. A 12 digit system to consistent
accuracy and a 20 digit system will be available about January 1957.

Each of these systems will then be complete in itself for all operations,

18

having all sub-routines designed to an accuracy equivalent to the length of
the mantissa. Sample words in input format, floating point format and their

equivalent fixed decimal form are:

Input format Internal format Actual number
+ +
+0-+12345678 1234567800 12345678
-+
+5—1234567899 1234567805 12345.678—
+ —
—5+1234567899 1234567805 0000012345678
+ +
+146 6000000001 6
+ +
+8+6 6000000008 60,000,000
+ —
—10+6 6000000010 .00000000006
+ +
+641 1000000006 100,000 (=10%)
-+
+2-—3579 3579000002 35.79—
+ +
4040 0000000000 0

The second example is —.12345678 times 10°. It can be seen from the exam-
ples that when the power is positive, it represents the number of whole
number digits; when the power is negative, it represents the number of zeros
to be placed after the decimal point before the actual number begins. A
power of zero means that the number is a decimal number just as it is without
using the power. A true zero is always signed positively.

Whereas as 705 instructions refer to the contents of a single address, PRINT
instructions are in a multi-address form. All PRINT operations except FPR
are performed without rounding, to save operation time. If this should ever
cause inconvenience, use a system with a longer mantissa. Arithmetic instruc-
tions which are found to refer to zero operands will operate in accelerated
fashion, since all operands are first tested for zero in the arithmetic sub-
routines.

If an error occurs during execution because of the impossibility of fore-
seeing certain illegal conditions, an error message will be written on the
typewriter. The “tinkertoy” appendix will provide options for this type-out.

19

If the programmer wishes to conserve memory space he may select the option
which types out the letter E followed by a 2 digit code number; referral to
the manual will tell him the type of error which has occurred. If economy
of memory is not vital, he may select the option of typing out an expository
message. Under either option, the actual address of the failing instruction

is also typed out. Error messages are:

EO1: Division by zero

E02: Logarithm of zero or a negative number

E03: Sine and cosine of an angle greater than =318~

E04: Square root of a negative number

E05: Power overflow (>99)

E06: Power underflow (<—99) (only if desired by user)

E07: Line image overflow

E08: Too many whole numbers

E09: Echo check, or 0903 error, channel 12 in carriage control tape

E10: Line or HDG won’t write correctly 0902

E11: Read card error or card punch error

E12: Card won’t punch correctly 0902

E13: 0901 error on write tape

E14: Tape won’t read /write correctly

E15: End-of-file before read /write tape completed

E16: Exponential to the base 10 of |ARG| 299
Exponential to the base e of |ARG|>225.65334

20

Non-
indexable
operations

Special
operations

Indexable
operations

Summary of mnemonic codes

ATR Alternating TRansfer TNZ Tiransfer on Non-Zero

BSi BackSpace tape “1” TRM TRansfer on Minus

LVE LeaVE PRIN'T TRP TRansfer on Plus

RCD Read a CarD TRU TRansfer Unconditionally

RPL RePlLace TRZ TRansfer onZero

RPT RePeaT

RWi ReWind tape “i” TXi Transfer tes'tin% .i’l”ldeX limit,

RWR Repeat With Reset (PACI) augmenting 1

SRi Setindex Register “i” WCD Write a CarD

TMi write Tape Mark on tape “i” ~WHIi Write a Heading, space “i”

TNi Transfer Not testing limit, WLi Write a Line, space “i”
augmenting “i”’ XTP eXTract Power

ADC ADdress Constant FLC FLoating Constant

BLK BLocK HDG HeaDinG

CON CONstant ORG ORiGin

DEL DELete REG REGister reservation

FIN FINish SAY SAYit

ADD ADD MPM Minus Polynomial Mult.—add

ART ARcTangent MPY MultiPlY

DIV DIVide PMA Polynomial Multiply—Add

EXD EXponential, Decimal base RTi Read Tape “i”

EXE EXponential, base E (e) SAC Sine And Cosine

FLO FLOat SQR SQuare Root

FPR Fix for Printing Rounded SUB SUBtract

FXP FiX for Printing TAB Transmit ABsolute

LGD LoGarithm to Decimal base =~ TMT TransMiT

LGE LoGarithm to base E (e) TNA Transmit Negative Absolute

MAD Multiply — ADd TRC TRansfer on Comparison

MDYV Minus DiVide TRE TRansfer on Equality

MMA Minus Multiply — Add TSC Table Search on Comparison

MMY Minus MultiplY WTi Write Tape “i”

21

Summary of indexable operations

OPERATION
CODE

11- -13

VARIABLE FIELD COMMENTS

14 -80,

ADD | @PER1, PPER 2, SUMM (@PER 1) + (@PPER 2) ~ SUMM

SUB | @PER1, @PPER2, DIFF (PPER 1) - (PPER 2) DIFF

MPY | MLPLR , MCAND , PRDCT (MLPLR) (MCAND) PRDCT

MMY| MLPLR, MCAND, NGPRD -(MLPLR) (MCAND) ~ NGPRD

DIV | DVDND, DVS@R, QU@T (DVDND) + (DVS@R) - QU@T

MDV| DVDND, DVS@R, NGQU@ -(DVDND) + (DVS@R) - NGQUP

MAD| MLPLR, MCAND , CRSFT (MLPLR) (MCAND) + (PAC1) —— CRSFT

MMA MLPLR, MCAND , CRSFT - (MLPLR) (MCAND) + (PAC1) CRSFT

PMA| ADDND, MCAND,RSULT (ADDND) + (PAC1) (MCAND) ——> RSULT

MPM| ADDND , MCAND , RSULT (ADDND) - (PAC1) (MCAND) RSULT

SQR | SXTY 4, EIGHT VY (SXTY 4) > EIGHT

SAC | ANGLE, SINE, C@SIN sin (ANGLE) —= SINE, cos (ANGLE) — C@SIN

ART | TNGNT, ANGLE tan ' (TNGNT) ~ ANGLE

LGD| NUMBR, DECLG log ,, (NUMBR) - DECLG

LGE | NUMBR, NATLG loge (NUMBR) = NATLG

EXD | EXP@N, TEN2X antilog (EXP@N) > TEN2X

EXE | EXPPN, EZTHX antilog (EXP@N) — E2THX

(FSR) | ARGUM, RSULT function (ARGUM) > RSULT

TMT | HERE, THERE (HERE) > THERE

TAB | MINUS, PLUS [(MiNuS) >~ PLUS

TNA| PL/MN, MINUS [(PL/MNY| —~ MINUS

TRC | TRADD, THIS, THAT Transfer to TRADD if (THIS) = (THAT)

TRE | TRADD, THIS, THAT Transfer fo TRADD if (THIS) = (THAT)

TSC | + A, TABLE, ARGUM Search argument table for first number > (ARGUM) , be-
ginning at TABLE. f(TABLE) is +A word lengths away.

WTi | BEGIN,ENDD, TRADD, TM Write all successive words from BEGIN to ENDD, inclus-
ive, as 1 record on tape i. Transfer to TRADD if end-of-
file is reached, write tape mark if TM is written.

RTi START , TRADD Read record from tape i, filling as many successive locat-
fons as on record, beginning with START. Transfer to
TRADD if a tape mark is encountered.

FXP | FLNUM,t,wW,dD,s Fix (FLNUM) x 10° for print in line image, decimal point
in type wheel t, with w whole numbers and d decimals.

FPR | FLNUM,t,wW,dD,s Same as FXP, except round the number when fixing.

FLP | COLXX, n, R/L s,FLNUM Take the n digit number with units position in column XX,

Move the decimal point R (ight) or L (eft) s positions. Put

in floating point format in FLNUM.

22

Summary of non-indexable operations

OPERATION
CODE

VARIABLE FIELD

14-

COMMENTS

-80

TRZ TRADD, TEST Transfer to TRADD if (TEST) are zero

TNZ TRADD, TEST Transfer to TRADD if (TEST) are non~zero

TRP TRADD, TEST Transfer to TRADD if (TEST are plus

TRM TRADD, TEST Transfer to TRADD if (TEST) are minus

TRU TRADD Transfer to TRADD unconditionally |

RPL ADDR!, INSTR Replace the Ist address in INSTR by ADDRI |

XTP FIRST, SECND Give (SECND) the same power as (FIRST)

SR +n,+lim Set contents of R; toxn, limit toslim

TNi TRADD, = A Augment R; by + A, transfer to TRADD

TX1i TRADD, =+ A Augment R; by + A, transfer to TRADD only if |
new (R;) < lim;. Otherwise proceed. |

RPT n, i, *j, %k Repeat (perform) the next Instruction n times, in-
dexing Its 1st, 2nd, and 3rd addresses, as they |
exist, by 1, i, and k words lengths respectively. |

RWR n, =i, +j,+k Reset PAC] to zero, then operate same as RPT. 41,
4] and £k may all be prefaced in RPT and RWR
by an * to indicate indexing by number of char-
acters, not word lengths.

ENT Enter PRINT mode

LVE TRADD __Leave PRINT, Next instruction is next 705 instruct-
fon if TRADD is not written, TRADD Iif written.

BS 1 n Backspace tape i for n records

RW i Rewind tape 1.

IM1 Write a tape mark on tape 1.

WL UNIT, n, TRADD Write a line, UNIT is tape t or printer, 1 Isthe
space control ofterwriting. n, TRADD is optionall.
Write n lines, transfer to TRADD rather than

. write the (n +1)th line

WH i UNIT, n, TRADD Write a heading. (Equivalent to WLi) .

wcCD UNIT Write a card. UNIT is either tape t or punch., |

RCD UNIT, TRADD Read a card. UNIT is either tape t or cardreader.|
Transfer to TRADD on end-of~file condition. |
(Optional specification of TRADD,)

ATR FIRST, a, SECND, b For explanation, see p. 34

28

Indexable computing operations

Arithmetic operations

These operations are largely self-explanatory from the operation summary
preceding this section. It should be noted that MAD, MMA, PMA and
MPM are compound, or double, arithmetic operations, although they are
still written with only three positions in the variable field. The understood
operand is always the contents of PACI, the primary pseudo-accumulator.
Although these accumulative operations may be used singly, their design
purpose is for repetitive arithmetic. As such, the result of each operation may
be found in PACI as well as in the normal result address. The Multiply-
ADds are designed for vector products. The Polynomial-Multiply-Adds are
designed for evaluation of polynomials with the argument addressed in the
second position. Although no index register modification is shown in the
summary, all of these operations may have a sub-position for each address,
indicating this.

Mathematical function operations

These operations are also self-explanatory. SAC (Sine And Cosine) is the only
operation with three positions in the variable field, all others having two
positions. Each position may have a sub-position for index register indication.
The first position address for all of these operations is that of the argument.
In contrast to arithmetic operations, the results are not sent to PACI unless

specified.
Data transmission operations

TMT (TransMiT), TAB (Transmit ABsolute), and TNA (Transmit Nega-
tive Absolute) are operations for moving blocks of data from one group of
locations to another. The address in the first position of the variable field
is that of the original location; the address in the second position is that of
the location to which the data is moved. Both positions may have sub-positions
for index register modification. Unless PACI is specified in either position

24

it will be unaffected by the transmittal. Unless destroyed by a later operation,
the original contents will be unaffected. TAB guarantees that the contents
will be positively signed in the new location, TNA that they will be negatively
signed. The first example shows the 40 numbers in locations M001 through
M040 being transmitted in a reverse fashion, with a blank location between
each number, to the locations P080 down to P002. The second example shows
that ANY word-length block of characters may be transmitted by use of

this instruction.

BLNK IS | CAN | (word length)
POSO | | REG | P0O1

L | ENT

[RPT |40, 1, -2

| | TMT | M0OO1, PO8O

| | TMT_| BLNKS, AREA

Comparison transfer operations

TRC (TRansfer on Comparison) and TRE (TRansfer on Equality) are
conditional transfer instructions which make an algebraic comparison of
two operands. They are written with three positions in the variable field,
the first of which is the address to be transferred to if the condition is met.
TRC takes place when the number addressed in the second position is equal
to or algebraically greater than the number addressed in the third position.
TRE takes place only when these two numbers are equal. All three addresses
may be modified by index registers.

These operations have special characteristics when preceded by a RPT or
RWR operation. The number of repetitions may be set at a maximum by a
positive number or to an indefinite repeat by a negative number in the first
position of the RPT instruction. In either case, transfer may occur before
the repeat tally is reduced to zero in normal fashion. The tally is therefore
automatically reset to zero on a transfer. Considering for purposes of iden-

tification that the general instruction is:

TRC/TRE TRADD, THIS, THAT

25

transfer to TRADD will occur when the contents of THIS, as indexed by the
RPT, are greater than or equal to the contents of THAT, as also indexed.
When the transfer occurs, the following quantities are left in specialized

symbolic locations:

Location Contents
ARG]1 (working position) Last THIS used
ARG2 © - Last THAT used

LARI1 (Location of ARG1) Address of last THIS used
LAR2 (Location of ARG2) Address of last THAT used

LARI and LAR2 are usable only by the RPL operation. Using LAR1 or
LAR?2 as an address in any other instruction will cause an error message in
pre-edit. None of these special addresses is indexable by either index registers
or RPT or RWR instruction increments. Their index indicators are automat-
ically set to zero by pre-edit. RPT or RWR increments, if used, must be coded
as zero by the programmer or a machine stop will occur. When TRC or TRE
is used with RPT or RWR the second position in RPT or RWR, which would
normally be considered to modify the transfer address, must be coded as
zero by the programmer or a machine stop will occur. Although TRC and
TRE are indexable instructions, transfer addresses are obviously not index-

able in a system using variable length instructions.

Table search operations

TSC (Table Search on Comparison) is a special variation of TRC which is
especially designed for fast and flexible table search. Rather than a transfer
address, the first position in the variable field contains the differential number
of word lengths between the arguments of the table and the corresponding
functions of these arguments. No transfer is made after TSC; the next
instruction in sequence is executed.

A special RPT or RWR instruction must precede TSC. The first position
contains a negative number for indefinte repetition. The second and fourth
positions must contain zeros. The third position contains the interval of
gross search. Table Search automatically consists of two parts. Letting N
symbolize the gross search interval, the first part compares the first argument
and successive arguments in intervals of N against the test argument. When
one of these is found to equal or exceed the test argument, the search auto-

26

matically backs up to the previous grouped argument. The second part of
the search consists of a comparison of successive arguments in this localized
area against the test argument in intervals of one. N may be the integer 1 or
any other integer, PROVIDED that the number of arguments in the table
equals (some multiple of this integer plus one). For example, consider the
case of a table with 65 arguments. Valid values of N would be 16, 8, 4 and 2.
The first, 17th, 33rd, etc. arguments would be compared against the test
arguments if N were assigned as 16. In practice, the most effective interval of
gross search is that which most closely approximates the square root of the
number of arguments in the table, in this case, 8.

Further suppose that the 33rd argument was found to exceed the test
argument. Comparison is now made to the 18th, 19th, 20th, etc., until some
argument between the 17th and 33rd is found to exceed the test argument,
or equal it. When this is found, the Table Search is discontinued and the
following items are to be found:

X is defined as the first argument greater than

test’ n

If for any argument X

or equal to X, and the previous argument X is less than X

Location Contents

ARGI (ARGument 1) X,

LARI1 (L.ocation of ARgument 1) Address of X argument

PACI (Pseudo-ACcumulator 1) Corresponding function f (X)
ARG2 (ARGument 2) X,

LAR2 (Location of ARgument 2) Address of X | argument

PAC2 (Pseudo-ACcumulator 2) Corresponding function f(X)

All of these are useful as addresses, although LAR1 and LAR2 may be used
only with the RPL operation, and none of the addresses is indexable.
Caution! Arithmetic operations use PACI1 as a result address, so the contents
of PACI after a TSC will have to be used before any arithmetic operation or
else transmitted to a temporary location.

It should be standard practice to make the last argument in any table
equal to the highest number in the PRINT system (4994999999). This
dummy number ensures against overrunning the table with an unexpectedly
high argument. In a table of 398 entries, for example, it would also be very

practical to make the last 3 entries to be this dummy number, thus increasing

27

the number of arguments to 401 and allowing a gross search interval of 20,
which is the most efficient.

Let A symbolize the number of words lengths between the table of
arguments and the corresponding functions. If A were set to zero, PACi
would not contain the functions of the argument; the contents would be
identical to the contents of ARGi, which are the arguments again. Sliding
sets of tables might be constructed with this feature, using a variable A.
Furthermore, using 4+ A in one case and —/\ in another permits interchange
of the dependent and independent variables.

A standard method of coding is shown in the example, illustrating Table

Search and linear interpolation, according to the formula:

FX,) — X,)

f(Xtest - f()(n——l) +

(Xtest - Xn—1>

Xll - Xl‘l—

1

" TRPT | -1, 0, (interval), 0

| [1sc | A, XsuB 1, XTEST

| |suB |, PAC 2, TEMP 1 f(Xy) = F(X._1)
i SUB | XTEST, ARG 2, TEMP 2 Xiest - Xl

| |SUB | ARG 1, ARG 2 X, = X1

| | DIV | TEMP 2 (PAC | implied as divisor)
| | PMA | PAC 2, TEMP 1, RSULT = F (Xest)

28

Non-indexable computing operations

Transfer operations

There are four conditional and one unconditional operations in this group.
Conditional transfer commands are written with mnemonic symbol and two
positions in the variable field. The address in the first position is always that
of the instruction to which the transfer is to be made if the condition is met.
The address in the second position is that of the number whose condition is
to be tested. The mnemonic symbols TRZ, TNZ, TRP and TRM signify
respectively that this condition is to be zero, non-zero, plus or minus. TRU
signifies that transfer is to be made unconditionally to the instruction whose
address is in the single position in the variable field. In the example shown,
the program will operate in normal sequence if the contents of JONES is
a positive non-zero number; otherwise control transfers to the instruction in

B006 and proceeds sequentially from there.

SERIAL

1.

LOCATION

OPERATION VARIABLE FIELD COMMENTS

-13] 14- -80

03041 | B006, JONES
03042 ! B006, JONES
03043 { JONES, SMITH

Replace operation

The instruction for this operation is written with the mnemonic RPL
(RePLace) and two positions in the variable field. This operation causes the
instruction in the address specified by the second position to have its first
position address replaced by the first position address of the RPL instruction.
If the first position address is written “LAR1” or “LAR2” the replacement
address is not LARi but the address in LARi. This indirect address feature
is used in conjunction with the TRC, TRE and TSC operations. This
operation has three other usages. It may be used as a “flip-flop” or sequencing

29

switch, for direct exiting from sub-routines and for command modification
by replacement rather than by indexing.

RPL will operate only on the arithmetic, mathematical function and data
transmission operations, all transfer operations, ATR, FXP and FPR. In
addition, it will operate on the transfer addresses of the WLi, WHi, RCD,
WTi and RTi operations, although these addresses are not in the first position
of the variable field. The example shown depicts the condition of the instruc-
tion in TEXAS before and after a RPL. Further examples of usage may be

found in Appendix II.
LOCATION OPERATION VARIABLE FIELD COMMENTS
6- -101 1 -13] 14- -80
T
TEXAS | | MAD | COMIC, 1, SMITH, 2, RSLT3
| |RPL_ | CAPS, TEXAS
TEXAS | | MAD | CAPS, 1, SMITH, 2, RSLT3 (new form of TEXAS)

Extract operation

The instruction for this operation is written with the mnemonic XTP
(eXTract Power) and two positions in the variable field. The first position
contains the address of the floating point number whose power is to be
extracted. The second position contains the address of another floating point
number whose power is to be replaced by the power extracted from the first
number. This operation is designed for convergence testing, since in floating
point the size of a number during the course of calculation may not be pre-
dicted. The example shown illustrates the programming of a convergence
test on (JANES), where it is desired that the valid value of (JANES) shall
not differ from the previous value of (JANES) by more than 3 in the 7th digit
of the mantissa. The power of (JANES) is assigned to mantissa of .3 in TEST
and scaled by 10-®. After step CONV2 the number in TEST is the proper
value for testing for convergence. When the difference between the present
and previous value becomes less than this increment, the iterative loop is
abridged by the TRC command. Without such an instruction, an oscillatory
condition in the last digit of an iterated number might make it impossible
to exit from the loop. It also provides for a less exacting matching than all of
the digits in the mantissa. An appreciable speed-up of computing time may

30

also be realized in slowly converging operations, if less stringent accuracies

are made acceptable.

LOCATION OPERATION
CODE

VARIABLE FIELD

COMMENTS

Compute new value for JANES

6- <10 11- -13] 14- -80
TEST ; FIC | -0+3 Power has no significance
SCAL | E FLC | -5+1 10
L | ENT
RSTR : T TA‘AT JANES, SMITH Send old JANES to SMITH
!
!

with proper expression

JANES, TEST

|
CQNV,rl XTP

_,,CQNVI MPY | TEST, SCALE, TEST)
C@NM 3 SUB | JANES, SMITH Differential in PAC |
C¢N\{ 4 TAB Absolute value of differential
C@NV 5 TRC | RSTRT,, TEST To RSTRT if not converged

Set index register operations

The instruction for this operation is written with the mnemonic SRi (Set
Register) and two positions in the variable field. The third character in
the mnemonic symbol is written 1, 2 or 3, thus specifying the number of the
index register to be set. It is set to the number of plus or minus word lengths
in the first position.

The limit tally of that register is set to the number of word lengths written
in the second position. If the second position is blank, the limit tally will
automatically be set to zero. The limit tally is always a positive quantity and
when converted (by multiplying by data word length, which is 2 plus the
mantissa length) must be less than or equal to the memory capacity of the
705 minus 10,000.

Non-test transfer operations

The instructions for these operations are written with the mnemonic TNi

31

(Transfer No test) and two positions in the variable field. The third
character in the mnemonic symbol is written 1, 2 or 3, thus specifying the
index register to be operated upon. The first position contains the address
of the instruction to which unconditional transfer is made after augmenting
the contents of the index register with the number of word lengths written
in the second position. This transfer address will, in many cases, merely be
the next instruction. The increment for the index register may be either plus
or minus; the minus sign is written before the number and no sign is written

for plus numbers.

Test transfer operations

The instructions for these operations are written with the mnemonic TXi
(Transfer testing indeX) and two positions in the variable field. The third
character in the mnemonic symbol is written 1, 2 or 3, thus specifying the
index register to be operated upon. This operation functions in the same
manner as TNi except that the transfer (to the instruction whose address is
specified in the first position) is nullified if the contents of the index register,
as now incremented, are equal to or greater than the limit tally previously
specified. If this is so, the program does not transfer but rather proceeds to

the next instruction in sequence.

Repeat operations

The instructions for these operations are written with the mnemonic RPT
(RePeaT) or RWR (Repeat With Reset) and four positions in the variable
field. RWR is equivalent to RPT except that PACI] (the primary pseudo-
accumulator) is reset to zero. A RPT signifies that the next instruction in
sequence is to be repeated (i.e. performed) the number of times specified
in the first position of the RPT. This instruction is to be performed as
written the first time, but for each repetition the numbers or addresses in the
first, second and third positions of that next instruction are to be additionally
augmented by the numbers respectively in the second, third and fourth
positions of the RPT. If the next instruction does not have a third address,
it is not necessary to specify a fourth position for RP'L.

RPT and RWR apply only to the next instruction, not to any sequence

32

of instructions. Their purpose is to both minimize the number of instructions
written by the programmer and reduce operating time on repetitive instruc-
tions. This is accomplished by letting the executive routine know in advance
that the next instruction is repetitive so that interpretation and command
fabrication is performed only once.

Indexing by RPT is secondary and subordinate to indexing by the
contents of index registers and the simultaneous use of both is possible. All
four positions of the variable field may be written as 1 or 2 digit numbers
and all may be signed both plus and minus. The first position, however, is
normally plus, for when it is signed minus it indicates indefinite repeat and
as such must be used with caution. Indefinite RPT is designed to be used
with the TRC, TRE and TSC operations. When an exit is made for any of
these, the repeat tally is automatically reset to zero so as not to influence the
next instruction in sequence. A leading asterisk in any of the second through
fourth positions indicates that incrementation will be by that integer number
rather than by that number of word lengths. This is mainly used for indexing
the card column on FLO and the decimal position in the type wheels for FXFE

All indexable instructions and only indexable instructions are repeatable.
Fach of these interrogates the number in the first position (serving asa count)
before storing the result. If this is non-zero, the count is reduced by 1 and
the operation is automatically repeated with further indexing by the RPT
increments. If it is zero, it signifies either that the instruction was not intended
to be repeated or that it has been performed for the last time. In either case,
the program proceeds to the next instruction in sequence. In the case of
arithmetic commands, if the address to which the result is sent is not indexed
by the RPT, the result is stored intermediately in PACI only, and not sent to
the result storage until the repeat tally is zero.

Advantage may be taken of the fact that RPT and RWR do not alter the
contents of PACL. The following example illustrates the calculation of

(%)n n being an integer, which result is then available in PACI.

>

33

ocation [oremarion] vaminse Fieco
TEMP | | REG

L LENT

| | DIV | LGCA, LBCB, TEMP

l| RPT | (n=1)

| | MPY | TEMP

Switching operation

The instruction for this operation is written with the mnemonic ATR
(Alternating TRansfer) and two positions in the variable field, each of which
is tagged. In operation, an unconditional transfer is made to the address in
the first position each time the instruction is executed, up to the number of
times designated by the tag for that position. After this limit is reached,
succeeding executions of this instruction cause unconditional transfer to the
address in the second position, up to the number of times designated by its
tag. The instruction then reverts to the original condition for further alter-
nation as required. Execution is dynamic and it is impossible to return to
the initial condition without performing the entire cycle; thus a conditional
transfer exit from the cycle destroys the utility of the ATR unless the program
is read in again to restore the initial conditions.

Tags for both positions are unsigned positive numbers, from 1 to 400.
A zero is an illegal tag for which pre-edit will substitute a 1. For purposes of
counting only, this operation is generally more efficient than using index
registers with their transfer instructions.

The first example shows the preferable, but not the only, method for
executing n times the routine commencing with the operation in the address
“START”. The second example illustrates a method for simulating the
general extended case when the desired tags for both addresses exceed the

limit 400 and are not prime.

34

STAR |T| !
| I
' '
o
_ : ATR | START, (n=1), NXTCM, 1
NXTC M
li _]
STAR IT| ATR | FIRST, o, SECND, ¢ | SIMULATES
FIRS [T| |
Lo ATR FIRST, ab, SECND, cd
| | ATR | FIRST, (b-1), START, 1
SECN /D : WHERE:
] ab> 400, NOT PRIME .
| | ATR | SECND, (d-1), START, 1) cd> 400, NOT PRIME

Generating print instructions

As programmers become more experienced in using the PRINT system, the
translation charts on pages 51 and 52 will become increasingly useful. PRINT
instructions, due to their variable length and specialized format for maximum
operating speeds, may not be modified directly except by indexing. Very often
specific coding for a problem will depend upon parameter values. An
excellent example of this is the martix inversion kernel in Appendix II.
Rather than recode the problem each time for a different order of matrix
and a different number of column vectors, it would be advantageous to have
705 instructions preceding the general coding which would generate the
necessary variable portions of the PRINT instructions, given only the values
of n and b. To do this, the structure of the translated PRINT instructions
must be known.

As an example, consider the tape instructions RTi and WTi, which are
specifically designed to operate with PRINT data words in fixed lengths. The
coding kernel below shows how to make use of these same instructions to

35

Theoretical PRINT data word?

write and read irregular blocks of memory on tape, taking advantage of the

error-correction routines contained in these PRINT instructions. The record

as formed is illustrated below:

/ B+ 1 posiﬂon-}‘

X

X

X

X

X

P

P

x|x|x|x|x]x|[x|x]|P

x| x|x P o
o (7] I
- o / E
o
o 3
=
LOCATION OPERATION VARIABLE FIELD COMMENTS
CODE
6- .10 11 13 14- -80
JBNES| BLK | 3
e
SMIT IH BLK | 5
BROWIN ADC | JBNES - 2 a-9 portion
BLAC (K| ADC | SMITH + 1,9 B+ 1 portion
| | L®D | BROWN, 4
| UNL| PUTT + 12,4
i
| UNL | TAKE + 12,4
| | LoD | BLACK, 4
|| UNL| PUTT + 16,4
| | ENT
PUTT | | WT8 | 0000, 0000 Zeros are dummy addresses, later replaced
I ,
I 1)
TAKE ! RTS8 0000 Zeros are dummy addresses, later replaced

36

Fixed symbolic locations

Actual location for the fixed symbolic data words defined on page 4 are:

Address of right-hand digtt

Mantissa: 8-digit 10-digit 12-digit
PACl 0254 0256 0258
PAC2 o o 0244 0244 0244
ARGLo o o 2439 2441 2443
ARG2 oo 2449 2453 2457
LARL o oo 2044 2059 2059
LAR2 oo o 2019 2019 2019

In addition, all line, heading and card image positions are considered fixed

symbolic locations if addressed as:

TWxxx TW stands for type wheel, xxx for 001 to 120
HDxxx HD stands for heading, xxx for 001 to 120
COLxx COL stands for column, xx for 01 to 80

Locations of these images are:

LINE 3265-3385 Address=TW-+-3265

* 3386

HDG 3387-3507 Address=HD-}3387
F 3508

CARD 8509-3588 Address=C@L 3508
¥ 3589

The position referenced in the coding is considered as:

1. BADD for prRINT data words as called for in PRINT instructions.

+ =
XxXX. . . .xxx PP Pre-edit must make conversions of BADD

as required for the several types of PRINT instructions.

9. The addressed character for 705 commands.

Examples: UNL C@QLO06=UNL (3271)
ST TWO086+4, 15

Image addresses must contain all five characters. In the above examples,
COL6 or TW86 would not be allowable.

37

Input—output operations

Printing operations

Much emphasis has been placed, within the PRINT system, upon ease of
entering data and recording results. Both on-line and off-line operations are
equally feasible. There are several operations especially designed for sim-
plified control of printed output.

FXP (FiX for Printing) and FPR (Fix for Printing Rounded) are index-
able operations which will convert the floating point number in a specified
address to a fixed decimal condition and store it in the specified position in
the line image in memory just as it should be printed.

The variable field of these instructions consists of the address of the
number to be converted, index tag (if any), a 1 to 3 digit type wheel position
for the decimal point, a 1 or 2 digit maximum number of expected whole
numbers and a W, the number of decimal positions and a D, and a 1 or 2
digit power of 10 by which the number is to be scaled. The last position
should be left blank if there is no scaling. (The heading should note this
scaling if it exists). Typical commands and results are:

+ +
FXP JONES, 28, 2W, 10D, —2 123456787803 bl. 2345678780b
— +
FPR G116, 13,9,4W, 2D 438692617804 4386.93—
— 4
FPR G116,8,4W, 2D 438692617804 86.93— (ERROR)

In the first example, 2, 20, and +20 would have been acceptable as scale
factors. The error shown is due to calling for 4 whole numbers to the left
of type wheel 3. Similar errors can occur by exceeding type wheel 120. Only
the address in the first position is modifiable by index registers. Both the
address and the type wheel position are modifiable by RPT or RWR. An
example is shown where more than one number is converted to the same
specifications; this will occur quite often in matrix output. In the example,
(ROWO1) are fixed with the decimal point in type wheel image 8,
(ROWO01+-1) with the decimal point in type wheel image 19, etc., thus using
only three instructions to convert the entire line and print it. OW and 0D
must be used to indicate absence of either whole numbers or decimals.

38

LOCATION

OPERATION
CODE

- -13

VARIABLE FIELD COMMENTS

14-

-80

RPT

8, 1,*11

FXP

RAWO1, 1, 8, 1W, 6D

b — e — |,

WLS

PRINTER

There are many combinatorial instructions for output control, as illustrated.
All are non-indexable. Either the printer or a tape unit may be specified
in the variable field. Either the full word description or the initials P or T
may be used. An asterisk as the preceding character signifies a fast skip
under carriage tape control.

Both on-line and off-line printers must be set to program control to use
the PRINT 1 system. Except for special skip instructions, there should be a
punch in only channel 1 of the carriage tape; a channel 12 punch is illegal
and will cause an error message. All carriage control should be built into the
program to eliminate most tape-changing.

Headings are put into the heading image with the HDG entries; for
multiple usage of heading in a single run, reserve extra positions for heading
components in memory with CON operations, and transmit these to the
heading image as required. When a line is written successfully, without echo
checks or other errors, the line image is erased to blanks. This allows a
flexible line format, as the programmer makes provision for positioning only
those numbers which he wishes to print, regardless of the make-up of the
previous line. Card and heading images are NOT erased after writing.

PRINTER Write a Line - No spacing

PRINTER Write a Line - Single spacing

TAPE 4 Write a Line - Double spacing

17

Write Heading - Double spacing

P

Write Heading - Triple spacing

TAPE 7 Write a Line - Skip to channel 2 punch

* TAPE 8 Write Heading - Fast skip to channel 4

These operations may have counting transfers added by using two more
positions in the variable field. The second position is a 1 or 2 digit number
specifying the number of times the write line or heading operation is to be

39

executed, up to a limit of 98. The third position contains the address of the
instruction to which control is to be transferred when writing is attempted
after the limit is reached. This transfer restores the initial condition of the
instruction so that the same process may be repeated. The following example
shows the control operations for writing 20 pages, each with a heading and

50 lines of answers, grouped in 5 groups of 10.

LOCATION

6 -10

OPERATION
CODE

11- -13

VARIABLE FIELD

14.-

COMMENTS

-80

- I
HEAD |

WHT | T6, 20, PAGES PAGES. LINES and LASTL are used

C¢MP:U I as conv’enieni' mnemonic names for

| wLs | T6, 9, LINES the associated instructions. The first

Ti TRU | C@OMPU line therefore reads.
LINE |S| WLD | T6, 4, LASTL

!1 TRU | COMPU "'Write a Heading, Triple space,
LAST L| wLl | T6 on Tape 6 - write 20 PAGES. "

i TRU | HEAD
PAGE |S (continues computation after 20 pages are written)

Tape data storage operations

WTi (Write Tape) and RTi (Read Tape) are indexable operations
provided for storage and retrieval of data words on tape, which is essentially
a function of increasing memory capacity. The third character of the
mnemonic symbol is the dial setting of the tape unit addressed. WTi is
written with two positions in the variable field, each of which may have an
index register tag. These positions contain the first and last addresses of a
consecutive series of words in memory which are to now constitute a record
on tape. RTi is written with one position in the variable field, which is the
starting address in memory for reading one record from tape. As many words
will be replaced in memory as the record itself contains, so the programmer
is cautioned to know the pattern of his tape operations very thoroughly, to
avoid destruction of wanted data. Discretion should also be maintained in
using these instructions with the 4 tape units normally associated with
pre-edit and library.

It is possible to add other positions in the variable field of WTi and RTi.

40

The third position may be a transfer address or the two letters TM. The
fourth position must be TM, and exist only if there is an address in the third
position. The transfer address of WTi is that of a sequence of instructions
defining procedure in case the physical end of tape is reached before com-
pleting the write instruction. TM puts a tape mark as the next record after
completion of writing. The transfer address of RTi is that of a sequence
of instructions defining procedure in case where the record consists of a tape

mark written by a WTi.

ocation | ovemarion] vamiksLE riet CoMMENTS
aolu. sl 80
| | WTé | BOO1, BO20
| | WT6 | BoO1, 1, BO20, 12, PATCH
| WI5 | G136, 1, G136, 12, TM
fr RT5 | RAND
. | RT9 | FIRST, TROUT
{ BS8 | 20 (backspace tape 8 by 20 records)
| RW8 (rewind tape 8)
| T™8 (write a tape mark on tape 8)

BSi (BackSpace tape) and RWi (ReWind tape) are non-indexable
operations for positioning records to be read or written. In the variable field
of BSi is written the number of records to be backspaced. This isa 1 to 3
digit number; the programmer may not specify more records than exist on
the tape from that point back. RWi has no information in the variable field,
nor does TMi, which is a separate instruction for writing a tape mark

unconnected with other operations.

Card operations

The card image in memory is used for both reading and punching. Special
facilities are provided for reading both floating point and fixed point data,
but punching is restricted to floating point form unless special handling is
made in 705 language. This is based on the assumption that actual punched
cards will be produced for local re-loading only, in which case there is no

41

purpose in refloating data which may be had already in floating form.

Suggested floating point loader cards are as follow:

8 digit mantissa 8 words per card addressed at 10(10)80
10 digit mantissa 6 words per card addressed at 20(12)80
12 digit mantissa 5 words per card addressed at 24(14)80

The card for the 8 digit mantissa may be reduced at option to 7 words, thus
allowing the first 8 columns in any system to be indicative information. For
fixed data, there is no specified format and commands are so designed that it

is not necessary. Typical movement of data and production of a punched card

might be:
LOCATION OPERATION VARIABLE FIELD COMMENTS
CODE
-10] 11 -13 14 - -80
T
: RPT | 7. 1, %10
| | TMT | A001, COHL20
'l wep| T4

WCD (Write CarD) and RCD (Read CarD) are operations for reading and
writing 80 character records. Reading may be from either the card reader
or a numbered tape unit, and this is written in the variable field. Writing
is onto either the punch or a numbered tape unit, and this is specified
in the variable field. The use of tape for these operations is designed
for peripheral equipment, although it is another method of temporary data
storage in fixed decimal format. The unit in the variable field may be written
with the full name or the initials T, P or R as required. The transmission
to or from the card image in memory is implicit in all of these instructions.
The second position of RCD is a transfer address for an end-of-file condition.

42

| | wep | TAPE 8

' | wcp | PUNCH

'l wep| P

| | RCD | Té

| | RCD | READER, TRADD

FLO (FLOat) is an operation for converting a fixed point number of any
specified length to floating point form, thus making it suitable as an operand
in the PRINT system. It is written with these four positions in the variable field:

The symbolic address of the units position of the number to be converted.
This will most often be CQLxx. A sign for this number must exist over
the units position for negative numbers only.

The number of digits comprising the number. Must be <2 mantissa lengths.

The direction (L or R) for shifting the decimal point to put it in the true
position and the number of places to shift, considering the number to be
originally comprised of whole numbers. (See examples). For no shift, either
L0 or RO must be coded.

The symbolic location where the number is to be stored after conversion,

with an index register tag if required.

Only the address in the fourth position is indexable by the contents of index
registers, but both it and the address in the first position may be indexed by
a RPT instruction. The first position address will most commonly be COLxx,
and the RPT increment will most commonly be asterisked to indicate num-
ber of character positions rather than word lengths. The indications in the
comments field of the examples show the true decimalization of the numbers.
The third example is a program for reading in 200 pieces of 4 digit data for
processing, condensed for loading purposes on 10 cards. When converted to
floating point form, the data words occupy PRINT memory addresses A001
to A200 inclusive.

43

1- 6- -10] 1. .13} 14- -80
|| RPT | 4,1,
| | FL® | FXWRD, 6,R2, INPUT, 3 XXXXXX00.
| | RPT | 6,%5,]1
i FL® | coL4s, 5,12, TAX4 XXX . XX
|
01010 ||A200! | REG | A0O1
01020 | | sR1 | 0,200
01030 |[RDATIA| RCD | READER
01040 Ll ReT | 20, %4,
01050 { FL@ | C@LO04,4,L3,A001,1 X XXX
01060 | | TX1 | RDATA, 20

Pre-edit and system entry

If a system tape does not exist by virtue of previous usage of the PRINT 1
system, operations are commenced by placing the PRINT 1 program deck in the
card reader, followed by symbolic cards for the program to be pre-edited.
The system is then initiated from the console by:

1. Clear memory Address selector Typewriter key
2. Place in manual instruct status

3. Select the card reader 0100 2

4. Read into lowest memory position 0000 Y

5. Depress the start key

After loading these cards, the PRINT 1 system will be on tape 0200, in 9 sections:

1. System control 1 6. Last pass of pre-edit

2. Memory print (13 records) 7. System control 2

3. Tape print 8. PRINT I executive routine
4. First pass of pre-edit 9. Non-standard library

5. Intermediate pass of pre-edit .

44

If a system tape does exist, it is loaded on tape 0200, and the system initiated
from the console by:

1. Clear memory Address selector Typewriter key
2. Place in manual instruct status

3. Select the system tape unit 0200 2

4. Rewind the system tape 0002 3

5 Turnoff IOF 0000 3

6. Read into lowest memory position Y

7. Depress the start key

Programs may be pre-edited from card, tape or combined card and tape input.
Tape input will be on 0202 if Alteration Switch 0915 is OFF, on 0203 if it is
ON. The combined card and tape input feature exists for purposes of repair-
ing programs. Steps may be inserted or deleted by change cards. A complete
reorganization of the program within memory takes place every time this
is done.

Pre-editing starts with system control 1 and proceeds to the first pass.
Card and tape input are checked for sequence and merged on serial number
(col. 1-5 of the card). When the serial of a card matches that of a card image
on tape, the card record replaces that tape record unless the card carries the
mnemonic operation code DEL (DELete). In this case, that record is deleted
and so are all subsequent records up to and including the record whose
serial is punched in the variable field of the DEL card. Tape records having
DEL for operation and DEL cards without matching tape records are both
deleted. Non-DEL cards whose serials do not match with any card images
on tape are collated with them.

The output of the first pass is on 0202 or 0203. Records contain the actual
locations of the instructions. Other conversion is deferred until the last pass.
In the event that the assignment table overflows available memory, the over-
flow blocks will be on 0201. The intermediate pass is executed only when
3 or more overflow blocks occur; this pass finds actual addresses for the
symbolic addresses referring to the overflow blocks. When there are 3 or
less blocks of the assignment table yet to be searched, the last pass is called
into memory for operation. This last pass completes conversion of the

mnemonic intructions, writing:
A program tape on 0201, consisting of actual 705 instructions and converted

pseudo-instructions. If Alteration Switch 0913 is ON, standard 705 load cards
will be punched for reloading by card rather than the 0201 tape. This is

45

suitable for short programs, or where a permanent record of the program is
desired for storage in a more flexible medium. This should be done only

when the program is known to be correct and working.

A master symbolic tape on 0203 (or 0202 for referrals > 1000) which contains
the corrected and updated program in symbolic form, just as the original
punched cards were. This is suitable as input for re-editing and further cor-
rection. The selection of either 0203 or 0202 as the proper input tape for
re-editing is automatic. A concluding typewriter message will indicate the

correct location of tapes.

A listing tape on 0202 (or 0203 for referrals > 1000) which is the permanent
record of coding, pre-editing and assembly of the program. If Alteration
Switch 0914 is ON, the listing will be written on the line printer during the
pre-edit process, in which case this tape need not be saved unless more copies
are desired. If the switch is OFF, the availability of an auxiliary printer is
normally assumed. For both printing methods, time will be lost if the com-
ments exceed 25 characters, since an extra line will be printed just to accom-
modate the overflow. Comment characters above 50 will not be printed on

this listing.

If the program is to be executed without pre-editing, Alteration Switches
0911 and 0912 are both OFF, thus diverting to system control 2. Alteration
Switch 0913 is then interrogated. If it is ON, the edited program will be
read from punched cards; if it is OFF, the program will be read from tape
0201. The combination of both card and tape input is not possible here.
System control 2 reads the edited program and the executive routine into
memory, activating a typewriter message calling for setting Alteration Switches
for the program to be executed and stopping on HL'T 1111. Depressing the
start key will cause execution of the program starting at the first instruction,
which is either a 705 instruction or the compiled ENTer instruction in
prINT. If the 0902 indicator is turned on, loading is in error. Press the
start key to reload from tape. Cards must be reloaded; reset, start and read
again. Pre-edit will blank unused memory before reading in the program.

Memory print and tape print routines are incorporated in the system tape.
They are called into use by setting Alteration Switch 0916 ON and depressing
the reset and start keys. A typewriter message will give instructions for next
setting of 0916 (OFF to bypass memory print). The tape to be printed is
selected by setting Alteration Switches 0911 thru 0914 in a binary represen-
tation of the units position of the tape unit desired, as:

46

Alteration switch Value if ON Value if OFF

0911 8 0
0912 4 0
0913 2 0
0914 1 0

For example, if 0912 and 0914 were the only switches ON, it would signify
that tape 0205 would be printed, as 4 4+ 1 = 5. Configurations which sum
more than 9 are in error. Printing of the tape selected continues until a tape
mark is sensed or operation is changed to manual. Tapes may be selected and
printed successively but in any order, by changing the Alteration Switch
configuration and depressing the start key each time. The return to system
control 1 is effected by turning 0916 OFF, reset and start.

Pre-edit conversion

Two types of addresses are recognized by pre-edit. The basic address of a
floating point data word is that of its highest (or right-hand) memory position.
Pre-edit allocates memory in (m -+ 2) modules, where m is the mantissa
length. FLC and REG are the two operations which cause memory to be
reserved this way.

The basic address of a PRINT pseudo-instruction, which is of variable
length, is that of its lowest (or left-hand) memory position. BADD = (the
basic address of the previous instruction) 4 (the length of the previous
instruction), since they are normally obeyed in order of ascending memory
position.

When either REG or FLC is encountered by pre-edit, a test is made to
see if the previous instruction was either REG or FL.C. If not, (and a previous
ORG falls in this category), the location counter leaves a blank preceding
the entry to insure definition of a numeric field. If an initial origin is supplied
in the program it will take precedence over the standard origin supplied by
pre-edit, which follows immediately after the executive and loading routines.

The typewriter may operate during pre-edit to send error messages about
system restrictions which have been ignored in coding. Each message is iden-
tified with the serial and symbolic location of the erroneous instruction. Some
of these are for:

RPT or RWR tally > 99.

47

10.

11.

Non-repeatable instruction following a RPT or RWR.

Actual address for 705 instructions TR and 00 TMT not ending in 4 or 9.
Infraction of rules for symbolic or actual location addresses.

Minus index limit for any register, or a converted limit > (memory—10,000).
More than 2 HDG cards.

Problem overflows memory.

Non-PRINT or non-705 operation codes.

Attempting to increment non-indexable address (i.e. PACI, PACZ, etc.)
ATR tally greater than 400.

Non-indexable entry tagged (i.e. PACI, decimal location in FL.O, etc.)

There may be instances when the programmer has a definite and legitimate
purpose in ignoring these restrictions. Error messages do not necessarily
indicate that revision must be made; they exist to warn the programmer
to be certain that this was his true intent.

When a floating sub-routine symbol is coded, the pre-edit knows that the
symbol has no assigned operation code number in the table of correspondence.
The operation code for all floating sub-routines is assigned to it (this code
comes from the last two digits of the address of the first instruction in the
FSR area). Pre-edit automatically compiles the 705 instructions necessary to
bring the proper sub-routine (if it exists on the library tape 0200) into the
floating position in PRINT during the course of computation. Such a linkage
is compiled only the first time that function is needed, or if another function
has superseded it before it was to be used again. The criterion for compiling
the linkage is thus change of requirement only. If only one non-standard sub-
routine is used for a particular problem, the net effect is as though it were
a permanent component of the executive routine in memory.

No floating sub-routines will be furnished with this manual. They are
primarily the responsibility of the user, although IBM will distribute any
routine contributed. The “tinkertoy” appendix in the supplement will show
various means of extending this feature so that the programmer may specify
the amount of memory he is willing to expend for floating sub-routines.
Replacement would then be set up only if the desired sub-routine exceeded

in size the amount of available specified memory left.

48

Summary—System operation

Tape Assignments 0200—System Tape 0202—Listing
0201—Actual Program 0203—Symbolic (updated)

Alteration Switches

Function Operation 0911 0912 0913 0914 0915 09161
INPUT. Card and tape 0202 ON ON OFF OFF
Card and tape 0203 ON ON ON OFF
Card ON OFF OFF
Tape 0202 OFF ON OFF OFF
Tape 0203 OFF ON ON OFF
OUTPUT . . . On-line printer listing® — - ON
On-line punched program® — — ON
Memory and tape print® 8 4 2 1 ON-(ON)
Memory print only* ON-ON
Tape print only® 8 4 2 1 ON-OFF
PROGRAM . . Start key®
Start key (As required for subject program)
PROGRAM . . Card-loaded program OFF OFF ON OFF
(Without Tape-loaded program OFF OFF OFF OFF

pre-edit)

* Alteration Switch 0916 must be OFF if re-entry to system is by reset and start, except as noted
under memory and tape print instructions.

2 These will be on tapes 0202 and 0201 respectively, regardless of settings.

3Reset-start. Start again after typed message. Memory print will occur first, then a tape print for
each start until 0916 is turned OFF. Select tape units by binary representation, in 0911 thru 0914,
of units digit of desired unit.

*Reset-start. Start again after typed message. Turn 0916 OFF, reset and start to return to system
control 1.

sReset-start. Turn 0916 OFF after typed message. Select tape unit by Alteration Switch combina-
tion. Selected tapes will print for each start until reset.

Brings executive routine and subject program into memory to operate. After typed message and
HLT 1111, set switches as required and depress start key.

49

Appendix I—Operation execution times

The execution times for certain operations are given here to indicate the
general speed range for the PRINT 1 system, in running time. It should be
noted that these times cannot reflect elapsed problem time, and that in general
they bear the burden of flexibility and convenience. As the system is still
in process, final times for other mantissa lengths than those shown here may
be expected to vary. The final manual will contain a complete list of guaran-
teed execution times for all operations not associated with input-output

equipment.

The times given here are for complete multi-address operation and include
all interpretation and miscellaneous times. All times are given, in milli-

seconds, for a 10 digit mantissa system, except as noted for 8 digit.

PMA,MPM
MAD,MMA

TRU
TRZ, TNZ, TRP, TRM .
TRC
ATR
RPT,RWR

50

Non-zero operands Zero operands
Single 10 time Single 10 time
execution average execution average
4.9 4.2 3.1 24
7.1 6.3 4.9 3.2
18.6 17.5 3.1 2.0
8.6 7.4
8.8 7.6
16.4 (8 digit)
26.9 (8 digit)
20.1 (8 digit)
18.0 (8 digit)
25.7 (8 digit)
13.9
16.8
2.2 T™MT 1.9
.8 TAB, TNA........ 2.1
.8 XTP L1
14 RPL............ L7
2.3 SRi 1.3
1.5 TXiy, TNi. 1.0
1.3

Translation chart for non-indexable

(non-repeatable) operations

glslialsinslzle ~lalolsivlolnfo|o
o
S|5|5(5|8|8|8|E|R|R(R|E|5|8|R|5|E|8 COMMENTS
+
0 4 | This operation sacrificed for system control.
+
o 9
+
1 4
TRP__ TRM i ; a B—Zi M1 Tens position of B~2 is signed + for TRP and TRZ,
RZ__TNZ x ¥ % x]x x x x]N signed - for TRM and TNZ
+
TRU 2 4
RPT 2 3 n-l : y n-1 is either ‘% or o7 for indefinite RPT
Tl1x x|x x x x|x x x x]x x x x| ¥]|i,iand k follow the rules for SRi except =
RWR 3 4 actual number only when asterisked.
TN], | 3 $ a ; Increment a = basic address (BADD) of the command to which transfer is
I)l\(& —~x ¥ % « = x x x «x made. Increment follows the rules for SRi.
o 7]
TN3 + 1
™ 14 ° 7]
RPL 5 I a-9/11/13 B+2 B = command basic address. If RPL is indirect for LAR1 or LAR2, the
x X x ¥Ix x x x| a position is replaced by 2043 or 2019, respectively.
XTP 5 & a-]+ -1 a and B are basic addresses of data words,
X X x x|x x x_x
+ a i B i tally | i ond | are zoned in the 10s position for count
AR 6 4 x ¥ % x|x x|x X% x x}10 0] up to 399, in ADM collating sequence.
WLi + or LC+1 | tally unit 2 6 N s is the spacing control character. u is
WHi | 6 9 Gf n§t §p6ecif?e) x tlo 51x 0 x 3 8 G| |° |4 for tape, 5 for printer. UNIT is i or
BS p Dl o T 400, with units pos. zoned - for friple
RWi 7 4]:; 3 0 o o]0 o0 A space, + for none, single or double. Line
o i N count (LC+1) is 5 if not specified.
WCD punch +10 0 0 ol3 o o IR-2
RCD reader 79 x % % x |1 Y 4
SR1 8 X ~ limit set to set = f(first position) , - limit = f(second position). Both are
x x x x|tlx x x x{ unsigned true (or 40,000 complements) products of (number)
SR2 8 3 times the (word length).
+
SR3 9 4
LVE 9 ; i « a « «| ¢ is first following 705 command location if not specified.

51

Translation chart for indexable

(repeatable) operations

olslulolnloloaloj~lalolslv|olnlola]lo
S B B N B B L R B B B B R R T B COMMENTS
o o o o o [} (o] (= N o o o o o (o] (] o o
- H
B0 A «-9/N/ 13 e B oy | B-9/M/13] v -9/)18
APY | = Ix X x x|x x x|x x x x|x x x x|H
my_]0 9 Q]
IV - H
aov_1 ' * =
AAD 15 L H
AMA | Q|
'MA - H
w12 4 Q
WAC 2 9 Y X X x X \
QR 3 4 x x 0 0
GD - (0]
GE 39 1
:XD - 0
XE 4 4 1
WT [4 9 0
SRy |5 4 0
M|, 5 ! v | 0
TNA 3 s %s a + sign for TAB, a - sign for TNA
WCDt | , - Y a-9/11/13] z [3] 1= 3 for (TM)(WCD + WTi), =g for
XTH R PR A M k2 L P x/x/x 0 % o§o T] RTi + RCD + TIMJ(WCD + WTi)
6 9 B+1 y is the BADD of the next command
if not specified.
7 i a address is xxxx for WTi and RTi,
3509 for RCD and WCD.
- A(word length) + 19/23/27 B+1 is x®xx for WTi, 3NY9 for WCD.
7 9 / o; =0 for RCD+WCD, x for RTi+WTi.
| 1T -7 ;=0 for RCD+WCD +RTi i.
:(C; g 4 fE—dex X 2l p-9/nf13fy -9/ 11/13 |2 Pi=0 for CD*RT, x for Wi
a 0 «x - -
RE 8 5], £ &t x{x X x x|x X x /x 1 M-l or M+R
- a B-9/n1i3l N 4 writtens FLO, a units, N, RorL n, B, B index
LO 7 4 X X X X 0 x 0 x x x x|x x]x %] lLorR| <80 N £ 2 mantissa lengths
XP -1 o-9/11/13 0 F TW+265 D+1 , ID+W-MH1 command is written:
PR 9 9 2 o« x| XTET1% < Elx x Elx E]x % FXP a, aindex, TW, wW, dD, F

52

Appendix II—Example 1

Generalized The coding symbolized here is a basic method to effect the multiplication
matrix of a (k by m) matrix and an (m by n) matrix to produce the product matrix
multiplication (k by n). It is valid when sufficient memory locations can be reserved for
the elements of all three matrices. Many of the features of PRINT 1 as applied

to repetitive operations are illustrated in this general method.

The common practice in assigning memory to the elements of a matrix
is to store them row-by-row in sequential addresses. In this case these sequen-
tial addresses are regional for convenience. The general elements of these
matrices are to be in locations defined as:

Matrix Location
(k by m) A001 + (row—1) (m) + (col—1)
(m by n) B001 + (row—1) (n) + (col—1)
(k by n) C001 + (row—1) (n) + (col—1)
The program is generally written as below, with the proper numbers replac-
ing k, m and n. All operations are shown with referrals in the location column,
but steps 3, 4 and 8 are the only ones which need it.
LOCATION OPEC%ADTEION VARIABLE FIELD COMMENTS
- 10 11- -13] 14- -80
STEP |1| SR1_|0
STEP |2/ SR2 |0, km
STEP 3/ SR3 |0, n
STEP 14| RWR_|m, 1, n
STEP ;5 MAD |A001, 2, BOO1, 3, COOI, 123
STEP |6/ TX 3 |STEP 4, 1
STEP |7/ TN 1 |STEP 8, (n - m)
STEP 8] TX 2 |STEP3, m

If either of the two matrices to be multiplied are square, it should be used
as the multiplicand. Under these conditions the 1st and 7th steps may be
eliminated because m = n. Elements are computed row-wise in the example,

for efficient storage, but the problem could be re-coded to develop them

53

column-wise. Printing of a row at a time during calculation is possible by
inserting the necessary operations between steps 6 and 7, or 7 and 8.

A coding kernel is given here for matrix multiplication using tapes for input
of elements. This is again for the multiplication of a (k by m) matrix by a
(m by n) matrix. The (k by m) matrix is assumed to be stored on tape 0207
in k records, each record consisting of the m elements of a row. The (m by n)
matrix is assumed to be stored on tape 0208 in n records, each record con-
sisting of the m elements of a column. The first row and column are the
first records of the respective tapes, etc. The product matrix is to be stored

in row records on tape 0209.

LOCATION OPEC':)ADTEION VARIABLE FIELD COMMENTS
6- -10} t1. -13] t14. -80
R¢WS{ RT7 A001 m elements in each of k rows

| | sR2 | 0,n
C¢LS! RTS8 BOO1 m elements in each of n columns

| RWR | m, 1,1

. | MAD| A001, BOOT, CO0T1, 2

|| X2 | coLs, |

| | wre | coo1, coon

| | Rw8

L | ATR | ROWS, (k-1), NXTCM, 1
NXTC!M

Appendix II—Example 11

Three examples of efficient coding for polynomial evaluation are illustrated
below. As a general rule, requiring more instructions than are shown here
will indicate ineflicient assignment of memory for arguments and coefficients.
The programmer who has occasion to use this type of coding may profit by

extension of these examples.

54

1. Evaluating a Single Polynomial at N Arguments (N = 14)

6 Arguments X located in K203 (2) K229
P(X) = Z a, X! P (X)s to be sent to K204 (2) K230
0 Coefficients a, in (D006 + i)

2. Evaluating N Polynomials at a Single Argument (N =3)

6 Argument X located in K203
P(X) = z (@), X' P;(X)sto be sent to (D013 + 8j)
0 Coefficients (a)), in (D006 + i + 8j)
3. Evaluating the Bi-variate Surface
i=4 j=3
7= X a, Y where a, = Z b, X!
i=290 j=0

a, are in (C005 4 5i), by, are in (C001 + 5i + j), X is in CO26,
Y is in C027 and the answer Z is to be placed in C028.

LOCATION

OPERATION
CODE

VARIABLE FIELD COMMENTS

6 -10] 11- 13| 1a- -80
| [sr1 | 0,28

NXTAR| RWR | 7, -1
| | PMA | D012, K203, 1, K204, 1
| | TX1 | NXTAR, 2
' [sr1 | 0,40

NXTPIN RWR | 7,-1
| | PMA | D012, 1, K203, D013, I
| Tx1 | NxTPN, 8
| | sR2 | 0,25

NXTC!| RWR | 4,-1
| | pmA | coo4, 2,026, C005, 2
| | TX2 | NXTC@,5 B
| rRwr | 5,-5
| pmA | co25,C027, CO28

. 55

Appendix I1—Example 111

Matrix The coding kernel below gives a simple method for the inversion of a matrix
inversion and solution of simultaneous equations. It is adopted from R. DeSio’s 650
program, using Jordan’s method. The nth order matrix with b column vectors
furnishes the array:
A1 A1z A1z A aimn Viu Vg Vool Vi
d21 A2 A2z 24, azn Var Voo Vos............ Vo
Bt Bude i T T Vi
This array is stored row-wise in memory from A001 to AOOO + n(n + b), each
row starting at AO0O1 4 (row—1) (n +b). A001 + n (n 4 b) thru A000 4 (n 1)
(n — b) are reserved as working storage, for a total of (n 4 1) (n + b) words.
LOCATION | OPERATION| VARIABLE FIELD COMMENTS
6 dolu. 3] va 80
RED U;C DIV | L@HC1, ADO1,A000 + (n+1)(n+b) (Reciprocal of first element)
| RPT | (n+b-1),1,0,1
| MPY | A002, A00O+(n+1)(n+b), A0O1 + n(n+b)
. | sR1]0,(n-1)(n+b)
UPR@W RPT | (n+b),0,1,1
| | MMY| A001+(n+b), 1, A001 +n(n+b), AOO1, 1
| RPT | (n+b=1),1,1,1
| | ADD | A002+ (n+b), 1, A001,1,A001, 1
L1 x| urrgw, (n+b)
] RPT | (n+b), 1,1
I | TMT | A001 +n(n+b), AOO! + (n-1)(n+b)
| | ATR | REDUC, (n-1), NXTCM, I (Counting control)
NXTC M

n reductions are required, giving a new array in the identical block of memory

positions, according to the following schematic:

p——Column
Original / Vectors
Matrix Y, Inverse
Solutions //

56

Orders of matrices which may conveniently be inverted in memory are:

Memory size 8-digit mantissa 10-digit

20,000 38 35
40,000 58 53

A 10th order matrix may be inverted in

12-digit
33
49

10 seconds, 20th in 1 min., 20 sec.,

and 25th in 2 min., 36 sec. The 50th order in memory takes 20 min., 40 sec.,

and approximately 25 min. on tape. The program kernel for inversion of a

matrix stored on tape is shown below. Each record on tape 0208 is a row of the

combined array. As shown, the coding is limited to 99th order because of the
RPTs; insertion of multiple RPTs will increase the order capability.

LOCATION

OPERATION

CODE

VARIABLE FIELD

COMMENTS

RTAP]B RT8 | A001
| ATR | RBW1,1,RBWN, (n-1)
REWI1 | DIV | L@C1, A0OT, AOOO + 3(n+b)
i | ReT [(n+b=1),1,0,1
" | MPY | AD02, A00O + 3(n+b), AOD1+2(n+b)
| | ATR | RTAP8, 1,RTAPY, I
ROWN | RPT | (n+b),0,1,1
| | MMY| A001, A00T + 2(n + b), A0O1 + (n + b)
" RPT [(n+b-1),1,1,1
' | ADD | A002, A0OT + (n+b), A001 + (n+b)
| | ATR | WTAP9, (n-1), WIAPS, (n - 1)
WTAP 9| WT9 | A001+ (n+b), AG0O + 2(n + b)
| ATR | RTAP8,(n-2), NR@WI, 1
NROW 1| WT9 | A001+2(n+b), A00O +3(n+b)
RWTPIS| Rw8
L | RW9
| | ATR | RTAP9,1,RTAPS,
RTAP |9| RT9 | A001
| | ATR | RGW1,1,R@WN, (n-1)
WTAP8| WT8 | A0OT +(n +b), A000 + 2(n + b)
| | ATR | RTAP9,(n-2),NR@W2, 1
NR@W2| WT8 | A001+2(n+b),A000 + 3(n +b)
| | ATR | RWTPS, n, NXTCM, I

57

Appendix II—Example IV

This program is to prepare a table of (X + cos Y)(X — sin Z), Y and Z being
radian arguments. Each line is for 1 value of X, each page for 1 value of Z.

Columns are for Y.

SERIAL LOCATION OPCCROA:‘ION VARIABLE FIELD COMMENTS
. alfe wln. a3 e i _ -80
01010 HDG Housekeeping. The line descriptions and head-
01020 HDG ings are not coded for purposes of this example.
01030 || ROO8 | | REG | R0O1) Reserve

01040 || SINE |Z| REG working

01050 | TEMP | REG L storage

01060 || X020 REG | X001 [Reserve storage

01070 | voos8 REG | Y001 for loading

01080 || zo10 REG | 2001 J input data

01090 ENT

01100 RCD | READER A Read 2 data cards. The first cont
01110 RPT | 20, *4,1 tains 20 values of X as (xx. xx),
01120 FL® | CPLO4, 4, L2, X001 stored in X001 to X020, The sec-
01130 RCD | READER | ond contains 8 values of Y as
01140 RPT | 8,%5, 1 [(xx.xxx), stored in YOOl to Y008,
01150 FL@® | C®PLO5, 5, L3, Y001 and 10 values of Z as (x.xxx),
01160 RPT 10, *4, 1 stored in Z001l to Z010.

01170 FLP | CPL44, 4, L3, 2001 y

01180 SR 3 0, 10 Control for number of pages (Z)
01190 | PAGE | WHT | TAPE4 Heading, 2 spaces before lines
01200 SR 1 0, 20 Control for number of lines (X)
01210 SAC Z001, 3, SINEZ Compute sinZ for each page
01220 TRU | RSETY

01230 [LINE WLS | TAPE4 Write single-spaced result line
01240 | RSET|Y| SR2 0,8 Control for number of columns (Y)
01250 SUB X001, 1, SINEZ, TEMP X - 8inZ in TEMP (for each line)
01260 | COLMN| SAC | Y001, 2 cesY in PAC2

01270 ADD | X001, 1, PAC2 X 4+ cosY in PAC1

01280 MPY | ,TEMP, ROO], 2 RO00]1 through R008

01290 TX2 | CPLMN, 1 Re-cycle inner loop

01300 RPT | 8,1, *11 Fix for print rounded the line of 8
01310 FPR | ROO1, 8, 4W, 2D values, RO01 to R008 (xxxx.xx#)
01320 TX1 | LINE, 1 To write present line, % 20th
01330 WL1| TAPE4 Write 20th line, skip over fold
01340 TX3 | PAGE, 1 to new page on channel 1 control
01350 LVE To 705 HLT on completion of 10th page.

58

INTERNATIONAL BUSINESS MACHINES CORPORATION, 590 MADISON AVE.,' NEW YORK 22, NEW YORK

32-7334-1 Litho in U.S.A.

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	xBack

