


| Logical M                | lacro-Instructions                        | Page                 | Input-Outpu | ut Macro-Instructions                   | Page       |
|--------------------------|-------------------------------------------|----------------------|-------------|-----------------------------------------|------------|
| _                        | Alternate Transfer                        | 69                   | RDCD        | Read Card                               | 33         |
| ALTTR                    |                                           | 73                   | ***         |                                         |            |
| FTNOP                    | First Time Only NOP                       | 74                   | DPDR        | Dump on Drum                            | 7          |
| FTTR                     | First Time Only TR                        | 7 <del>4</del><br>78 | RDDR        | Read Drum                               | 35         |
| IFxxx                    | If, then CMP and TR                       |                      | WRDR        | Write Drum                              | 51         |
| TREH                     | Transfer Equal or High                    | 104                  | WKDK        | Wille Diam                              |            |
| TREL                     | Transfer Equal or Low                     | 105                  |             | - Drinton Auto Ctl.                     | 9          |
| TRLOW                    | Transfer Low                              | 106                  | DPPRA       | Dump on Printer, Auto. Ctl.             | ,          |
| TRMIN                    | Transfer Minus                            | 107                  | _           | = · · · · · · · · · · · · · · · · · · · | 11         |
| TRNE                     | Transfer Not Equal                        | 109                  | DPPRT       | Dump on Printer, Pgm. Ctl.              | 1.1        |
| TRNZ                     | Transfer Non-Zero                         | 108                  |             |                                         |            |
| IRNA                     | Transiti i.o. —                           |                      | PRINT       | Print Under Program Ctl.                | 29         |
| CUNOD                    | Set Switch to NOP                         | 101                  | PRNTA       | Print Under Auto. Ctl.                  | 27         |
| SWNOP                    |                                           | 102                  | WREPA       | Write Erase Printer, Auto. Ctl.         | 53         |
| SWTR                     | Set Switch to TR                          | 83                   | WREPR       | Write Erase Printer, Pgm. Ctl.          | 55         |
| LOOP                     | Start Loop                                |                      | WKELK       | Wille Diago I , 5                       |            |
| END                      | Test for End of Loop                      | 72                   |             |                                         |            |
| RPTA                     | Repeat Loop (ASU Ctr)                     | 89                   | ~**         | 1.                                      | 13         |
| RPTM                     | Repeat Loop (Mem. Ctr)                    | 91                   | DPPCH       | Dump on Punch                           |            |
| 1/1                      | 1000000                                   |                      | PUNCH       | Punch Card                              | 31         |
| HLTOF                    | Halt Off                                  | <b>7</b> 5           | WREPN       | Write Erase Punch                       | 5 <b>7</b> |
|                          | Halt On<br>Halt On                        | 76                   |             |                                         |            |
| HLTON                    | Halt On<br>Halt and Transfer              | 77                   | ALTP        | Alternate Tape Units                    | 5          |
| HLTTR                    | Halt and Iransiei                         | • •                  | BSTP        | Backspace Tape                          | 6          |
|                          |                                           | 0.3                  |             | Dump on Tape                            | 15         |
| RCMP                     | Restore CMP Trigger                       | 93                   | DPTP        |                                         | 19         |
| RSGN                     | Restore Sign Trigger                      | 94                   | FSTP        | Forward Space Tape                      | 21         |
| SCMP                     | Save CMP Trigger                          | 95                   | FWDTP       | Forward Wind Tape                       |            |
| SSGN                     | Save Sign Trigger                         | 97                   | RDTP        | Read Tape                               | 37<br>47   |
| SOUL                     | 5avc 54gi                                 |                      | WRCTP       | Write Check Tape                        | 47         |
|                          | Move Data                                 | 84                   | RWDTP       | Rewind Tape                             | 42         |
| MOVE                     |                                           | 85                   | RWWLG       | Read While Write Tape                   | 23         |
| MOVEC                    | Move Characters                           |                      |             | Logical (1st time only)                 | 23         |
| MOVEI                    | Move Instruction Addr.                    | 86                   | WWRTP       |                                         | 39         |
|                          |                                           | ~ ~                  | RWWTP       | Read While Write Tape                   | 39         |
| LLL                      | Load Left Location                        | 79                   | WWRTP       | <del>-</del>                            | 39<br>59   |
| LLL14                    | Load Left Location, ASU14                 | 80                   | WRETP       | Write Erase Tape                        |            |
| LRL                      | Load Right Location                       | 81                   | WRTM        | Write Tape Mark                         | 65         |
| LRL14                    | Load Right Location, ASU14                | 82                   | WRTP        | Write Tape                              | 63         |
| LKLL                     | Luau Right Doubles,                       |                      | •           | -                                       |            |
|                          | DO G 1kino                                | 71                   | DPTYP       | Dump on Typewriter                      | 17         |
| DOxxx                    | DO Subroutine                             | 71                   | D1          | (without checking)                      | 17         |
| CHKT                     | Check Total                               |                      | TYDCK       | Type and Check                          | 45         |
| ORDCH                    | Order Check                               | 87                   | TYPCK       |                                         | 43         |
| SEQCH                    | Sequence Check                            | 99                   | TYPE        | Type (without checking)                 | 61         |
| SETUP                    | Set ASUs to standard                      | 103                  | WRETY       | Write Erase Typewriter                  |            |
| -                        | Autocoder configuration                   |                      |             | (without checking)                      | 61         |
|                          |                                           |                      | _           |                                         |            |
| Floating                 | Decimal Macro-Instructions                |                      | Floating D  | Decimal Subroutines                     |            |
| o                        | 51                                        | 119                  | DO FATN     | Arctan                                  | 129 & 131  |
| FLO                      | Float                                     | 119                  | DO FEX      | Exponential                             | 129 & 133  |
| FIX                      | Fix                                       |                      |             | Natural Logarithm                       | 129 & 135  |
| FAB                      | Absolute                                  | 115                  | DO FLN      |                                         | 129 & 137  |
| FAD                      | Floating Add                              | 116                  | DO FSIN     | Sine                                    | 129 & 139  |
| FDV                      | Floating Divide                           | 117                  | DO FSQR     | Square Root                             | 167 @ 10,  |
| FMP                      | Floating Multiply                         | 120                  |             |                                         |            |
| FRA                      | Floating Reset Add                        | 121                  |             |                                         |            |
|                          | Floating Reset Subtract                   | 122                  |             |                                         |            |
|                          | r watting recover and                     | 123                  |             |                                         |            |
| FRS                      | Electing Store                            |                      |             |                                         |            |
| FRS<br>FST               | Floating Subtract                         |                      |             |                                         |            |
| FRS<br>FST<br>FSU        | Floating Subtract                         | 124                  |             |                                         |            |
| FRS<br>FST<br>FSU<br>FTM | Floating Subtract Floating Transfer Minus | 124<br>125           |             |                                         |            |
| FRS<br>FST<br>FSU        | Floating Subtract                         | 124                  |             |                                         |            |

#### IBM 705 AUTOCODER MACRO-INSTRUCTION MANUAL

The IBM Autocoder System is a new method of preparing programs for the IBM 705 Electronic Data Processing Machine. Using the speed and logical abilities of the 705, the Autocoder compiles instructions written in a simple notation and translates them into a program in the language of the machine.

In the design of the Autocoder System emphasis was laid on three major points: (1) making the Autocoder simple and easy to use and understand by employing English notation; (2) reducing the time and effort required to write and check out a program by transferring much of the clerical burden of writing, editing and checking to the machine itself, and (3) providing new commands which are desirable either as a convenience in programming or as an extension of the basic logic of the machine.

One of the most important features of the Autocoder resulting from these efforts is its system of macro-instructions. Macro-Instructions are easily written commands to the Autocoder which cause it to create sequences of machine instructions to carry out certain commonly used functions. A typical macro-instruction consists of a single line entry written by the programmer in the same format as a 705 instruction. It will automatically cause the generation of from one to more than a dozen

705 instructions and may also call in desired subroutines of hundreds of instructions. These macro-instructions range in function from input-output instructions to logical aids in programming and to commands for computing in floating point arithmetic.

The ability to use macro-instructions enables a programmer to reduce his coding efforts by writing fewer instructions and his debugging efforts by making it easy for him to use already tested routines.

This manual contains detailed descriptions of the approximately 100 macro-instructions presently available and information on how to construct new ones. It is designed to be used in conjunction with the 705 Autocoder System Manual. The macro-instructions described herein are divided into three sections covering the following subjects: Input-Output Instructions; Logical Instructions; and Floating-Decimal Arithmetic Instructions. A fourth section covers the construction of new macro-instructions.

As new macro-instructions written by IBM and our customers become available for general distribution, they will be released as insertions to the manual.

### Working Committee

Goldberg, B.
Goldfinger, R.
Klein, B. B.
Michels, L.
Selden, W. M.
Szabronski, S. J.

Programming Research Dep't. IBM World Headquarters 590 Madison Avenue New York 22, New York

### SECTION I -

### INPUT-OUTPUT MACRO-INSTRUCTIONS

Where applicable the input-output macro-instructions in this section provide for inclusion of the appropriate error subroutine and for an end-of-file transfer address and a restart transfer address. These transfer address are optional. If specified, the appropriate transfer will be made. If not, a message will be typed and transfer made to a built-in program stop.

The tape instructions are designed for use with the 754 Control Unit and those for the printer with the 717. Future plans call for the development of suitable macro-instructions for the 777 Tape Record Coordinator and the 760 High-Speed Printer Control Unit.

#### GENERAL NOTES

The various macro-instructions and their subroutines make use of the accumulator and ASU's 13, 14 and 15. The length setting of the accumulator and ASU 15 is variable. ASU 13 and 14, however, must be set to lengths 10 and 4 respectively before executing a macro-instruction or subroutine. A program produced by the Autocoder System provides for establishing these settings initially and upon completion of execution of a macro-instruction the settings remain the same. Therefore, the programmer need not be concerned with the settings unless he uses ASU's 13 and 14 in his own coding.

Because the accumulator and ASUs are used by the macro-instructions and subroutines, the settings of the sign, zero and comparison triggers may be changed by their execution. In almost all cases the ASU sign trigger is left set to plus. Exceptions to this and changes to the other triggers are noted in each description. It is pointed out that the conditions of the various triggers may be saved prior to execution of a macro-instruction and restored afterwards by use of the Save and Restore series of commands.

The multi-address instructions have succeeding addresses written in the Operand and Comments fields. The convention that has been adopted is that these multiple addresses must each be immediately followed by a lozenge (X). In cases where an address is optional or left blank, the

lozenge must still be included.

For purposes of modification of and transfer to the various macro-instructions, the Tag written by the programmer is usually applied to the first generated 705 instruction. Reference to the "Coding Produced" portion of each description will show the amount this tag should be incremented to modify any particular generated instruction.

Macro-Instruction: Alternate Tape Units Op

Operation Code: ALTP

Function: To alternate the tape unit selected by a designated macro-instruction or 705 SEL instruction between two specified tape numbers. May also be used to alternate addresses of other input-output units.

### Instruction Format:

| TAG | OPERATION | NUM. | OP   | ERAND  | COMMENTS |
|-----|-----------|------|------|--------|----------|
| Tl  | ALTP      |      | T2 💢 | X1   💢 |          |

where: T2 is the tag of the macro-instruction or 705 SEL instruction which is to be alternated.

Xl is the alternate tape unit number, two or three digits, left justified. Leading zeros may be omitted.

Description: The macro-instruction contains two operands which specify the tag of the macro-instruction or 705 SEL instruction which is to have the tape unit number alternated and the alternate tape unit number. The Autocoder generates an in-line sequence of five 705 instructions.

The first time that this sequence is executed in the user's program, the original tape unit number is replaced by the alternate and the alternate is replaced by the original. Thereafter each time the macro-instruction is executed the numbers are reversed.

# Coding Produced:

| TAG | OPERATION | NUM. |    | OPERAND | COMMENTS                      |
|-----|-----------|------|----|---------|-------------------------------|
| Tl  | LOD       | 14   | T2 |         |                               |
|     |           |      |    |         |                               |
|     | RAD       | 15   | Tl | +20     |                               |
|     | UNL       | 15   | T2 | l       |                               |
|     | ST        | 14   | Tl | +20     |                               |
|     | AACON     | +    | XI | 1       | (alternate tape unit number.) |

Requirements:

- (a) Applicable Instructions Macro-instructions RDTP, WRTP
  DPTP, WRETP, RWWTP, WWRTP,
  WRCTP, WRTM, BSTP, FSTP,
  RWDTP and FWDTP and the 705
  SEL instruction.
- (b) Auxiliary Storage Units The ASU sign and zero triggers may be changed. The sign trigger is left plus.
- (c) Memory

- 25 characters

Macro-Instruction: Backspace Tape (using 754 CU) Operation Code: BSTP

Function: To backspace a designated tape unit a specified number of times.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | BSTP      | nn   | X2      |          |

where:

nn is the last 2 digits of the tape unit number, right justified.

Zeros may be omitted.

X2 is the number of times the tape is to be backspaced, left justified, of up to 4 digits, leading zeros omitted.

Description: The macro-instruction contains two operands which specify the tape unit and the number of records that the tape is to be backspaced. The Autocoder generates an in-line sequence of seven 705 instructions.

During the execution of this sequence of instructions in the user's program the designated tape unit is selected and the tape is backspaced the specified number of times. Upon completion of the spacing transfer is made to the next instruction written by the user. The tape unit remains selected.

### Coding Produced:

| TAG | OPERATION | NUM. | 0    | PERAND | COMMENTS |
|-----|-----------|------|------|--------|----------|
| Tl  | SEL       |      | 02nn |        |          |
|     | RAD       | 15   | Tl   | +30    |          |
|     | BSP       |      |      |        |          |
|     | SUB       | 15   | (+1) |        |          |
|     | TRZ       | 15   | T1   | +35    |          |
|     | TR        |      | T1   | +10    |          |
|     | AACON     | +    | X2   | 1      |          |

Requirements:

- (a) Auxiliary Storage Units -
- The ASU sign and zero triggers may be changed, the zero trigger being left on and the sign trigger plus.

(b) Memory

- 35 characters for instructions plus the single character literal constant 1. Macro-Instruction: Dump on Drum Operation Code: DPDR

Function: To write a record from a specified address to the end of memory, passing over group marks (WR01) onto a specified drum section or sections. Test for writing and end-of-file error conditions and attempt correction.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND   |      | COMMENTS |
|-----|-----------|------|-----------|------|----------|
| Tl  | DPDR      |      | X1 H X2 H | X3 🎞 |          |

where: Xl is the 4 digit number of the starting drum section.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the restart procedure transfer address, either actual, descriptive or blank (omitted).

X1, X2 and X3 must be immediately followed by a lozenge ( ).

Description: The macro-instruction contains three operands which specify the drum section, the writing address and the restart procedure transfer address. The Autocoder generates an in-line sequence of five 705 instructions and causes the inclusion of the drum error subroutine DRERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program the ANY indicator is found on, it is turned off and a transfer is made to the subroutine DRERR. Here a further analysis is made. If a redundancy has been detected in the memory write-out area, the message "901 R xxxx" is typed and a transfer is made to the restart address. If no restart address is specified the 705 will come to Stop 0901. Pressing the console start key will cause successive rewrites.

If a writing error has occurred the message "902 R xxxx" is typed and three re-writes are attempted. If re-writing is successful a transfer is made back to the main program. The specified drum section remains selected. If it is impossible to write on the drum correctly, and a restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Pressing the console start key will again cause successive re-writes.

If an erroneous end-of-file condition has occurred, the inputoutput indicator and the 0902 check indicator will be turned off and the message "EOF R xxxx" typed. If a restart address has been specified a transfer is made to it. If none is specified the 705 will come to Stop 0566. Pressing the console start key will cause successive re-writes. An error in typing will not be corrected. The check indicators 0901 and 0902 and the ANY indicator will simply be turned off by the subroutine XOFF.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS                   |
|-----|-----------|------|---------|----------------------------|
| Tl  | SEL       |      | X1      |                            |
|     | WR        | 01   | X2      |                            |
|     | DOA       |      | DRERR   |                            |
| Цп  | LOD       | 14   | Д n     |                            |
|     | TRA       |      | DRERR   |                            |
|     | INCL      |      | DRERR   |                            |
|     | RACON     |      | X3      | (restart transfer address) |
|     | INCL      |      | XOFF    |                            |

### Requirements:

- (a) Check Indicator Switches
- (b) Auxiliary Storage Units
- (c) Memory

- 0902 on Program
- The sign, comparison and zero triggers may be changed. The sign trigger is left plus.
- 25 characters each time the macro-instruction is written plus 485 characters for the subroutines DRERR and XOFF and various literal constants which are included only once.

Macro-Instruction: Dump on Printer Operation Code: DPPRA (Auto Control, 717 Printer)

Function: To print a line from memory ignoring group marks (WR 01). Test for and take appropriate action upon detection of error conditions.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND   | COMMENTS |
|-----|-----------|------|-----------|----------|
| T1  | DPPRA     | Χl   | х2 д х3 д |          |

where:

Xl is the last two digits of the printer number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the restart procedure transfer address, either actual, descriptive or blank (omitted).

X2 and X3 must be immediately followed by a lozenge  $(\square)$ .

Description: The macro-instruction contains three operands which specify the printer number, the writing address and the restart procedure transfer address. The Autocoder generates an in-line sequence of five 705 instructions and causes the inclusion of the printer error subroutine PRERB and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence in the user's program, the ANY indicator is found on it is turned off and a transfer is made to the subroutine PRERB. Here a further analysis is made. If a redundancy error has been detected in the memory write-out area the message "901 04xx" is typed and a transfer is made to the restart address. If none has been specified the 705 will come to Stop 0901. Pressing the console start key will cause successive re-writes.

If a writing error has occurred the message "902 04xx" is typed and three re-writes are attempted. If re-writing is successful a transfer is made back to the main program. The printer remains selected. If it is impossible to write correctly and a restart address has been specified a transfer is made to it. If none is specified the 705 will come to Stop 0902. Again, pressing the console start key will cause successive re-writes.

If a printing error has occurred the message "903 04xx" is typed and the line "PRINT ERROR 2 LINES UP" printed. Transfer is made back to the main program.

An error in typing or printing messages will not be corrected. The check indicators 0901, 0902 and 0903 and the ANY indicator will simply be turned off.

# Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS          |
|-----|-----------|------|---------|-------------------|
| Tl  | SEL       |      | 04X1    |                   |
| * * | WR        | 1    | X2      |                   |
|     | DOA       |      | PRERB   |                   |
| Дn  | LOD       | 14   | ¤ n     |                   |
|     | TRA       |      | PRERB   |                   |
|     | INCL      |      | PRERB   |                   |
|     | RACON     |      | X3      | (restart address) |
|     | INCL      |      | XOFF    |                   |

### Requirements:

- (a) Check Indicator Switches 0902 and 0903 on Program.
- (b) Auxiliary Storage Units The sign, zero and comparison

triggers may be changed. The sign trigger is left plus.

(c) Memory - 25 characters each time the

macro-instruction is written
plus 495 characters for the subroutines PRERB and XOFF and
various literal constants which

are included in the user's

program only once.

(d) Printer Control Switch - On single or double space.

Macro-Instruction: Dump on Printer Operation Code: DPPRT

(Pgm ctl, 717 Printer)

To print a line from memory, ignoring group marks (WR01). Function:

Test for and take appropriate action upon detection of end-of-page

and error conditions.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND       | COMMENTS |
|-----|-----------|------|---------------|----------|
| T1  | DPPRT     | Xl   | X2 🖂 X3 🗖 X4Д |          |

where.

Xl is the last two digits of the printer number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the end-of-page transfer address, either actual, descriptive or blank (omitted).

X4 is the restart procedure transfer address, either actual, descriptive or blank (omitted).

X2, X3 and X4 must be immediately followed by a lozenge ( $\mu$ ).

Description: The macro-instruction contains four operands which specify the printer number, the writing address, the end-of-page transfer address and the restart procedure transfer address. The Autocoder generates an in-line sequence of six 705 instructions and cuases the inclusion of the printer error subroutine PRERA and the typewriter subroutine XOFF at the end of the program.

> If, during the execution of this sequence of instruction in the user's program the ANY indicator is found on, it is turned off and a transfer is made to the subroutine PRERA. Here a further analysis is made. If a redundancy error has been detected in the memory write-out area the message "901 04xx" is typed and a transfer is made to the restart address. If none has been specified the 705 will come to Stop 0901. Pressing the console start key will cause successive re-writes.

> If a writing error has occurred the message "902 04xx" is typed and three re-writes are attempted. If re-writing is successful a transfer is made back to the main program. The printer remains selected. It it is impossible to write correctly and a restart address has been specified a transfer is made to it. If none is specified the 705 will come to Stop 0902. Again, pressing the console start key will cause successive re-writes.

If a printing error has occured the message "903 04xx" is typed and the line "PRINT ERROR 2 LINES UP" printed. Transfer is made back to the main program.

If an end-of-page condition has occured and an end-of-page transfer address has been specified, a transfer is made to it. If none is specified a blank line is printed causing a skip to the start of the next page (channel 1). Again transfer is made back to the main program.

An error in typing or printing messages will not be corrected. The check indicator 0901, 0902 and 0903 and the ANY indicator will simply be turned off.

### Coding Produced:

| TAG | OPERATION | NUM. | OPERAND        | COMMENTS              |
|-----|-----------|------|----------------|-----------------------|
| T1  | SEL       |      | 04X1           |                       |
|     | WR        | 01   | X2             |                       |
|     | DOA       |      | PRERA          |                       |
| Цn  | LOD       | 14   | ц <sub>п</sub> |                       |
|     | TRA       |      | PRERA          |                       |
|     | INCL      |      | PRERA          |                       |
|     | RACON     |      | х3             | (end-of-page address) |
|     | RACON     |      | X4             | (restart address)     |
|     | INCL      |      | XOFF           |                       |

#### Requirements:

- (a) Check Indicator Switches 0902 and 0903 on Program.
- (b) Auxiliary Storage Units The Sign, zero and comparison
- - - triggers may be changed. The sign trigger is left plus.

(c) Memory

- 30 characters each time the macro-instruction is written plus 716 characters for the subroutines PRERA and XOFF and various literal constants which are included in the user's program only once.

Macro-Instruction: Dump on Punch Operation Code: DPPCH

Function: To write a record from memory, ignoring group marks (WR01), punching it on a card. Test for and take appropriate action upon detection of errors.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | DPPCH     | Χl   | X2口 X3口 |          |

where:

Xl is the last two digits of the punch number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the restart procedure transfer address, either actual, descriptive or blank (omitted).

X2 and X3 must be immediately followed by a lozenge (1).

Description: The macro-instruction contains three operands which specify the punch number, the writing address and the restart procedure transfer address. The Autocoder generates an in-line sequence of five 705 instructions and causes the inclusion of the punch error subroutines PNERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program the ANY indicator is found on, it is turned off and a transfer is made to the subroutine PNERR. Here a further analysis is made. If a redundancy error has been detected in the memory write-out area the message "901 03xx" is typed and a finder card is punched with the message "ERROR PREV CD." If a restart address has been specified a transfer is made to it. If none is specified the 705 will come to Stop 0901. Pressing the console start key will cause successive re-writes.

If a writing error has occurred the message "902 03xx" is typed and three re-writes are attempted. If re-writing is successful a transfer is made back to the main program. If it is impossible to write correctly and a restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 902. Again, pressing the console start key will cause successive re-writes.

If a punching error has occurred the message "903 03xx" is typed and a finder card is punched with the message "ERROR 3RD CD FWD". Then transfer is made back to the main program.

An error in typing or punching finder cards will not be corrected. The ANY indicator and 0901, 0902 and 0903 check indicators will simply be turned off.

# Coding Produced:

| TAG | OPERATION | NUM. | OPERAND        | COMMENTS                   |
|-----|-----------|------|----------------|----------------------------|
| Т1  | SEL       |      | 03X1           |                            |
|     | WR        | 01   | X2             |                            |
|     | DOA       |      | PNERR          |                            |
| Цп  | LOD       | 14   | H <sub>n</sub> |                            |
|     | TRA       |      | PNERR          |                            |
|     | INCL      |      | PNERR          |                            |
|     | RACON     |      | X3             | (restart transfer address) |
|     | INCL      |      | XOFF           | ,                          |

## Requirements:

- (b) Auxiliary Storage Units
- (c) Memory
- (a) Check Indicator Switches 0902 and 0903 on Program.
  - The sign, zero and comparison triggers may be changed. The sign trigger is left plus.
  - 25 characters each time the macro-instruction is written plus 503 characters for the subroutines PNERR and XOFF and literal constants which are included in the user's program only once.

Macro-Instruction: Dump on Tape (using 754 CU) Operation Code: DPTP

Function: To select a designated tape unit and write the contents of memory on tape from a specified location to the upper end of memory, ignoring group marks (Write 01). Test for and take appropriate action upon detection of end-of-file and writing error conditions.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND |          | OPERAND |  | COMMENTS |
|-----|-----------|------|---------|----------|---------|--|----------|
| Tl  | DPTP      | X1   | X2 🛱    | хзц х4 ц |         |  |          |

where:

- X1 is the last 2 digits of the tape unit number, right justified.

  Zeros may be omitted.
- X2 is the writing address, either actual, descriptive, literal or blank.
- X3 is the end-of-file transfer address, either actual, descriptive or blank (omitted).
- X4 is the restart procedure transfer address, either actual, descriptive or blank (omitted).
- X2, X3 and X4 must be immediately followed by a lozenge ( $\Pi$ ).

Description: The macro-instruction contains four operands which specify the tape unit, the writing address, the end-of-file transfer address and the restart procedure transfer address. The Autocoder generates an inline sequence of six 705 instructions and causes the inclusion of the tape error subroutine TPERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and transfer is made to the subroutine TPERR. Here a further analysis is made. If a redundant character has been detected in the output area of memory the message "901 R 02xx" is typed and a transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0901. Pressing the console start key will cause successive re-writes.

If a writing error has occurred the message "902 R 02xx" is typed and three re-writes are attempted. If re-writing is successful a transfer is made back to the main program. The tape unit remains selected. If it is impossible to successfully write the record and a restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Pressing the console start key will cause successive re-writes.

If an end-of-file condition has been detected by sensing the reflective spot on the end of the tape, the input-output indicator will be turned off and a transfer made to the address specified. If none is specified the message "EOF R 02xx" is typed and the 705 will come to Stop 0566. Again, pressing the console start key will cause successive re-writes.

An error in typing messages will not be corrected. The check indicators 0901 and 0902 and the ANY indicator will simply be turned off by subroutine XOFF.

# Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS                       |
|-----|-----------|------|---------|--------------------------------|
| T1  | SEL       |      | 02X1    |                                |
|     | WR        | 01   | X2      |                                |
|     | DOA       |      | TPERR   |                                |
| Д n | LOD       | 14   | Цп      |                                |
|     | TRA       |      | TPERR   |                                |
|     | INCL      |      | TPERR   |                                |
|     | RACON     |      | X3      | (end-of-file transfer address) |
|     | RACON     |      | X4      | (restart procedure address)    |
|     | INCL      |      | XOFF    |                                |

### Requirements:

- (a) Check Indicator Switches-0902 on Program.
- (b) Auxiliary Storage Units -The setting of the ASU sign, comparison and zero triggers may be changed. The sign

trigger will be set plus.

(c) Memory

-30 characters each time the macro-instruction is written plus 532 characters for the subroutines TPERR and XOFF and various literal constants which are included only once.

Macro-Instruction: Dump on Typewriter (without checking) Operation Code:

DPTYP

Function: To select a designated typewriter and write a record from memory, ignoring group marks (WR01). Turn off the ANY indicator and check indicators 0901 and 0902 if they are turned on.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | DPTYP     | Хl   | X2      |          |

where:

Xl is the last 2 digits of the typewriter number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

Description: The macro-instruction contains two operands which specify the typewriter and the writing address. The Autocoder generates an in-line sequence of four 705 instructions and causes the inclusion of the typewriter subroutine XOFF at the end of the program.

If during the execution of this sequence of instructions in the user's program the ANY indicator is found on, it is turned off and a transfer made to the subroutine. The subroutine turns off the 0901 and 0902 check indicators and transfers back to the main program.

# Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | SEL       |      | 05X1    |          |
|     | WR        | 01   | X2      |          |
|     | DOA       |      | XOFF    |          |
| Дп  | LOD       | 14   | Дn      |          |
|     | TRA       |      | XOFF    |          |
|     | INCL      |      | XOFF    |          |

# Requirements:

- (a) Check Indicators 0902 on Program.
- (b) Memory

   20 characters each time the macroinstruction is written plus 44 characters for the subroutine XOFF and
  a literal constant which are included
  only once.

Macro-Instruction: Forward Space Tape (using 754 CU) Operation Code: FSTP

Function: To forward space a designated tape unit a specified number of times without reading records into memory (Read 01).

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | FSTP      | X1   | X2      |          |

where:

- X1 is the last 2 digits of the tape unit number, right justified. Zeros may be omitted.
- X2 is the number of times the tape is to be forward spaced, left justified of up to 4 digits, leading zeros omitted.

Description: The macro-instruction contains two operands which specify the tape unit and the number of records that the tape is to be spaced forward. The Autocoder generates an in-line sequence of thirteen 705 instructions.

During the execution of this sequence of instructions in the user's program the designated tape unit is selected and the tape is spaced forward the specified number of times using the Read 01 instruction. The records read will not enter memory. Upon completion of the spacing the ANY and 0902 indicators are turned off and transfer is made to the next instruction written by the programmer. The tape unit remains selected.

If a tape mark (end-of-file) is sensed before completion of the specified number of forward spaces, the forward spacing is discontinued and the tape is backspaced once. Transfer is then made to the programmer's next instruction after turning off the ANY and 0902 indicators. The input-output indicator is left on. It may either be interrogated by the programmer or the end-of-file condition may be detected during a subsequent read operation when the tape mark is again sensed.

#### Coding Produced:

| TAG | OPERATION | NUM. |       | OPERAND | COMMENTS |
|-----|-----------|------|-------|---------|----------|
| T1  | SEL       |      | 02X1  |         |          |
|     | RAD       | 15   | Т1    | +35     |          |
|     | RD        | 1    | $Q_0$ |         |          |
|     | TRS       |      | Tl    | +40     |          |
|     | SUB       | 15   | (+1)  | l       |          |
|     | TRZ       | 15   | Τl    | +45     |          |
|     | TR        |      | T 1   | +10     |          |
|     | AACON     | +    | X2    |         |          |

### Coding Produced(continued:)

| TAG | OPERATION | NUM. | OPERAND    |     | COMMENTS |
|-----|-----------|------|------------|-----|----------|
|     | BSP       |      |            |     |          |
|     | TRA       |      | Tl         | +50 |          |
|     | SEL       |      | 902        |     |          |
|     | TRS       |      | <b>T</b> 1 | +60 |          |
|     | SEL       |      | 02X1       |     |          |

# Requirements:

- (a) Check Indicator Switches-0902 on Program.
- (b) Auxiliary Storage Units The ASU sign and zero triggers may be changed. The sign trigger will be set plus. The zero trigger will be on if the required number of spacings are completed before sensing a tape mark.
- (c) Memory 65 characters for instructions plus the single character literal constant +1.

Macro-Instruction: Forward Wind Tape (using 754 CU) Operation Code: FWDTP

Function: To wind a designated tape forward to the next tape mark and position it to read the next file on the same tape. Used primarily to space over files on a multiple file tape.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | FWDTP     | X1   |         |          |

where: Xl is the last 2 digits of the tape unit number, right justified.

Zeros may be omitted.

Description: The macro-instruction contains one operand which specifies the tape unit to be wound forward. The Autocoder generates an in-line sequence of nine 705 instructions.

During the execution of this sequence of instructions in the user's program the designated tape unit is selected and the tape is spaced forward using Read 01 (records do not enter memory). When the next tape mark is sensed (end-of-file) the input-output indicator, ANY indicator and 0902 check indicator are turned off. The tape is now positioned to read the first record of the next file. The 705 then proceeds to the next instruction written by the programmer.

### Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | SEL       |      | 02X1    |          |
|     | RD        | 1    | @0      |          |
|     | TRS       |      | T1 +20  |          |
|     | TR        |      | T1 +5   |          |
|     | TRA       |      | T1 +25  |          |
|     | SEL       |      | 902     |          |
|     | TRS       |      | T1 +35  |          |
|     | SEL       |      | 02X1    |          |
|     | IOF       |      | 1       |          |

#### Requirements:

- (a) Check Indicator Switches 0902 on Program.
- (b) Memory 45 characters.

Macro-Instruction: Logical Read-While-Write Tape Operation Code: RWWLG and WWRTP

Function: To select a designated input tape unit and read a record into memory the first time the macro-instruction is executed and thereafter select designated input and output tape units and simultaneously read a record into memory while writing a record on tape. Test for and take appropriate action upon detection of end-of-file and reading and writing error conditions.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND        | COMMENTS |
|-----|-----------|------|----------------|----------|
| Tl  | RWWLG     | Xl   | х2 д х3 Д х4 Д |          |
| T2  | WWRTP     | X5   | х6 Д х7Д х8Д   |          |

where:

- X1 is the last 2 digits of the input tape unit number, right justified.

  Zeros may be omitted.
- X2 is the reading address, either actual, descriptive, literal or blank.
- X3 is the input end-of-file transfer address, either actual, descriptive or blank (omitted).
- X4 is the input restart procedure transfer æddress, either actual, descriptive or blank (omitted).
- X5 is the last 2 digits of the output tape unit number, right justified. Zeros may be omitted.
- X6 is the writing address, either actual, descriptive, literal or blank.
- X7 is the output end-of-file transfer address, either actual descriptive or blank (omitted).
- X8 is the output restart procedure transfer address, either actual descriptive or blank (omitted).

The operation codes RWWLG and WWRTP must be used together and in that order with no intervening operations. X2, X3, X4, X6, X7 and X8 must be immediately followed by a lozenge ( M ).

Description: The macro-instruction consists of the two operation codes RWWLG (Logical Read-While-Write Tape) and WWRTP (Write While Read Tape) which are used together. Each contains four operands, which for RWWLG specify the input tape unit, reading address, input end-of-file transfer address and input restart procedure transfer address. The operands for WWRTP similarly specify the output addresses. The Autocoder generates an in-line sequence of nineteen 705 instructions and includes the read while write error subroutine RWWER, the tape error subroutine TPERR and the typewriter subroutine XOFF at end of the program.

The first time that this sequence of instructions is executed in the user's program only the input tape is read. If the ANY indicator is found on, it is turned off and a transfer is made to the tape error subroutine TPERR where correction is attempted in the same manner as explained below for a read error occurring during a read while write. If the reading was correct a switch is set which causes the instruction sequence to perform a simultaneous read while writing operation during subsequent executions.

If, during the read while writing, the ANY indicator is found on, it is turned off and transfer is made to the subroutine RWWER. Here the writing and reading operations are set up as two distinct sequences of instructions and the cause of the error analyzed for each operation in turn using the tape error subroutine TPERR.

If a redundant character has been detected in the output area of memory the message "901 R 02xx" is typed and a transfer is made to the output restart address. If an output restart address is not specified the 705 will come to Stop 0901. Pressing the console start key will cause successive re-writes of the output tape.

If a writing error has occurred the message "902 R 02xx" is typed and three re-writes of the output tape are attempted. If it is impossible to successfully write the record and an output restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Pressing the console start key will cause successive re-writes of the output tape.

If the re-writing was successful the reading of the input tape is then checked. If a reading error has occurred the message "902 Y 02xx" is typed and three re-reads of the input tape are attempted. Again if it is impossible to successfully read the record and an input restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Pressing the console start key will cause successive re-reads of the input tape.

If an end-of-file condition has occurred on either the input or output tape the appropriate input-output indicator will be turned off and a transfer made to the address specified. If none is specified either the message "EOF Y 02xx" or "EOF R 02xx" will be typed and the 705 will come to Stop 0566. Pressing the console start key will cause successive re-reads or re-writes depending upon which tape had the end-of-file condition.

An error in typing messages will not be corrected. The check indicators 0901 and 0902 and the ANY indicator will simply be turned off by subroutine XOFF.

### Coding Produced

| TAG | OPERATION | NUM. | OPERAND |                  | COMMENTS                     |
|-----|-----------|------|---------|------------------|------------------------------|
| Τl  | NOP       |      | T1      | <b> +4</b> 5     |                              |
|     | SEL       |      | 02X1    |                  |                              |
|     | RD        |      | X2      | 1                |                              |
|     | DOA       |      | TPERR   |                  |                              |
| Пm  | LOD       | 14   | Цm      | _1               |                              |
|     | TRA       |      | TPERR   | 1                |                              |
|     | INCL      |      | TPERR   | 1                |                              |
|     | RACON     |      | X3      |                  | (input end-of-file address)  |
|     | RACON     |      | X4      |                  | (input restart address)      |
|     | SGN       | 15   | Tl      | -4               |                              |
|     | TR        |      | Т1      | <sub> </sub> +95 |                              |
|     | SEL       |      | 02X1    | 1                |                              |
|     | RWW       |      | X2      |                  |                              |
|     | RACON     |      | Х3      | 1                | (input end-of-file address)  |
|     | RACON     |      | X4      |                  | (input restart address)      |
|     | INCL      |      | XOFF    |                  |                              |
| T2  | SEL       |      | 02X5    | 1                |                              |
|     | WR        |      | X6      | <u></u>          |                              |
|     | DOA       |      | RWWER   |                  |                              |
| Пп  | LOD       | 14   | Дп      |                  |                              |
|     | TRA       |      | RWWER   | .1               |                              |
|     | INCL      |      | RWWER   |                  |                              |
|     | RACON     |      | X7      |                  | (output end-of-file address) |
|     | RACON     |      | X8      | 1                | (output restart address)     |
|     | INCL      |      | TPERR   | 1                |                              |
|     | INCL      |      | XOFF    | 1                | ,                            |

### Requirements:

- (a) Check Indicator Switches 0902 on Program.
- (b) Auxiliary Storage Units

(c) Memory

- The ASU sign, comparison and zero triggers may be changed, the sign trigger being set to plus.
  - 95 characters each time the macroinstruction is written plus 783 charac ters for the subroutines RWWER, TPERR and XOFF and various literal constants. The subroutines and constants are included in the user's program only once. 25

Macro-Instruction: Print under Automatic Control Operation Code: PRNTA (717 Printer)

Function: To print a line from memory. Test for and take appropriate action upon detection of error conditions.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND   | COMMENTS |
|-----|-----------|------|-----------|----------|
| Tl  | PRNTA     | X1 1 | х2 д х3 д |          |

where:

Xl is the last two digits of the printer number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the restart procedure transfer address, either actual, descriptive or blank (omitted).

X2 and X3 must be immediately followed by a lozenge (X).

Description: The macro-instruction contains three operands which specify the printer number, the writing address and the restart procedure transfer address. The Autocoder generates an in-line sequence of five 705 instructions and causes the inclusion of the printer error subroutine PRERB and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence in the user's program, the ANY indicator is found on it is turned off and a transfer is made to the subroutine PRERB. Here a further analysis is made. If a redundancy error has been detected in the memory write-out area the message "901 04xx" is typed and a transfer is made to the restart address. If none has been specified the 705 will come to Stop 0901. Pressing the console start key will cause successive re-writes.

If a writing error has occurred the message "902 04xx" is typed and three re-writes are attempted. If re-writing is successful a transfer is made back to the main program. The printer remains selected. If it is impossible to write correctly and a restart address has been specified a transfer is made to it. If none is specified the 705 will come to Stop 0902. Again, pressing the console start key will cause successive re-writes.

If a printing error has occurred the message "903 04xx" is typed and the line "PRINT ERROR 2 LINES UP" printed. Transfer is made back to the main program.

An error in typing or printing messages will not be corrected. The check indicators 0901, 0902 and 0903 and the ANY indicator will simply be turned off.

# Coding Produced:

| TAG  | OPERATION | NUM. | OPERAND | COMMENTS          |
|------|-----------|------|---------|-------------------|
| Tl   | SEL       |      | 04X1    |                   |
|      | WR        |      | X2      |                   |
|      | DOA       |      | PRERB   |                   |
| Д' п | LOD       | 14   | Цп      |                   |
|      | TRA       |      | PRERB   |                   |
|      | INCL      |      | PRERB   |                   |
|      | RACON     |      | X3      | (restart address) |
|      | INCL      |      | XOFF    |                   |

## Requirements:

- (a) Check Indicator Switches -
- (b) Auxiliary Storage Units
- 0902 and 0903 on Program.
  - The sign, zero and comparison triggers may be changed. The sign trigger is left plus.

(c) Memory

- 25 characters each time the macro-instruction is written plus 495 characters for the subroutines PRERB and XOFF and various literal constants which are included in the user's program only once.
- (d) Printer Control Switch
- On single or double space.

#### Macro-Instruction: Print under Program Control Operation Code: PRINT (717 Printer)

To print a line from memory. Test for and take appropriate Function: action upon detection of end-of-page and error conditions.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND        | COMMENTS |
|-----|-----------|------|----------------|----------|
| T1  | PRINT     | X1   | х2 Д х3 Д х4 Д |          |

where:

Xl is the last two digits of the printer number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the end-of-page transfer address, either actual, descriptive or blank (omitted).

X4 is the restart procedure transfer address, either actual, descriptive or blank (omitted).

X2, X3 and X4 must be immediately followed by a lozenge  $(\square)$ .

Description: The macro-instruction contains four operands which specify the printer number, the writing address, the end-of-page transfer address and the restart procedure transfer address. Autocoder generates an in-line sequence of six 705 instructions and causes the inclusion of the printer error subroutine PRERA and the typewriter subroutine XOFF at the end of the program.

> If, during the execution of this sequence of instructions in the user's program the ANY indicator is found on, it is turned off and a transfer is made to the subroutine PRERA. Here a further analysis is made. If a redundancy error has been detected in the memory write-out area the message "901 04xx" is typed and a transfer is made to the restart address. If none has been specified the 705 will come to Stop 0901. Pressing the console start key will cause successive re-writes.

If a writing error has occurred the message "902 04xx" is typed and three re-writes are attempted. If re-writing is successful a transfer is made back to the main program. The printer remains selected. If it is impossible to write correctly and a restart address has been specified a transfer is made to it. If none is specified the 705 will come to Stop 0902. Again, pressing the console start key will cause successive re-writes.

If a printing error has occured the message "903 04xx" is typed and the line "PRINT ERROR 2 LINES UP" printed. Transfer is made back to the main program.

If an end-of-page condition has occured and an end-of-page transfer address has been specified, a transfer is made of it. If none is specified a blank line is printed causing a skip to the start of the next page (channel 1). Again transfer is made back to the main program.

An error in typing or printing messages will not be corrected. The check indicators 0901, 0902 and 0903 and the ANY indicator will simply be turned off.

### Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS              |
|-----|-----------|------|---------|-----------------------|
| Tl  | SEL       |      | 04X1    |                       |
|     | WR        |      | x2      |                       |
|     | DOA       |      | PRERA   |                       |
| Пn  | LOD       | 14   | II n    |                       |
|     | TRA       |      | PRERA   |                       |
|     | INCL      |      | PRERA   |                       |
|     | RACON     |      | X3      | (end-of-page address) |
|     | RACON     |      | X4      | (restart address)     |
|     | INCL      |      | XOFF    |                       |

### Requirements:

- (a) Check Indicator Switches -
- (b) Auxiliary Storage Units
- (c) Memory

- 0902 and 0903 on Program.
- The sign, zero and comparison triggers may be changed. The sign trigger is left plus.
- 30 characters each time the macro-instruction is written plus 716 characters for the subroutines PRERA and XOFF and various literal constants which are included in the user's program only once.

Macro-Instruction: Punch Operation Code: PUNCH

Function: To write a record from memory, punching it on a card. Test for and take appropriate action upon detection of errors.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Тì  | PUNCH     | X1   | х2Д х3Д |          |

where:

Xl is the last two digits of the punch number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the restart proceedure transfer address, either actual descriptive or blank (omitted).

X2 and X3 must be immediately followed by a lozenge  $(\square)$ .

### Description:

The macro-instruction contains three operands which specify the punch number, the writing address and the restart proceedure transfer address. The Autocoder generates an in-line sequence of five 705 instructions and causes the inclusion of the punch error subroutine PNERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program the ANY indicator is found on, it is turned off and a transfer is made to the subroutine PNERR. Here a further analysis is made. If a redundancy error has been detected in the memory write-out area the message "901 03xx" is typed and a finder card is punched with the message "ERROR PREV CD." If a restart address has been specified a transfer is made to it. If none is specified the 705 will come to Stop 0901. Pressing the console start key will cause success re-writes.

If a writing error has occurred the message "902 03xx" is typed and three rewrites are attempted. If rewriting is successful a transfer is made back to the main program. If it is impossible to write correctly and a restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 902. Again, pressing the console start key will cause successive rewrites.

If a punching error has occurred the message "903 03xx" is typed and a finder card is punched with the message "ERROR 3RD CD FWD. Then transfer is made back to the main program.

An error in typing or punching finder cards will not be corrected. The ANY indicator and 0901, 0902 and 0903 check indicators will simply be turned off.

### Coding Produced:

| TAG     | OPERATION | NUM. | OPERAND        | COMMENTS                   |
|---------|-----------|------|----------------|----------------------------|
| Tl      | SEL       |      | 03X1           |                            |
|         | WR        |      | X2             |                            |
|         | DOA       |      | PNERR          |                            |
| $\mu_n$ | LOD       | 14   | ¤ <sub>n</sub> |                            |
|         | TRA       |      | PNERR          |                            |
|         | INCL      |      | PNERR          |                            |
|         | RACON     |      | X3             | (restart transfer address) |
|         | INCL      |      | XOFF           |                            |

### Requirements:

- (a) Check Indicator Switches 0902 and 0903 Program.
- (b) Auxiliary Storage Units
- The sign, zero and com
  - parison triggers may be changed. The sign trigger is left plus.

(c) Memory

- 25 characters each time the macro-instruction is written plus 503 characters for the subroutines PNERR and XOFF and various literal constants which are included in the user's program only once.

Macro-Instruction: Read Card Operation Code: RDCD

Function: To select a designated card reader and read a card into memory.

Test for and take appropriate action upon detection of end-offile and reading error conditions.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND   | COMMENTS |
|-----|-----------|------|-----------|----------|
| Tl  | RDCD      | Xl   | х2 Д Х3 Д |          |

where:

- Xl is the last 2 digits of the card reader number, right justified.

  Zeros may be omitted.
- X2 is the reading address, either actual, descriptive, literal or blank.
- X3 is the end-of-file transfer address, either actual, descriptive or blank (omitted.)

X2 and X3 must be immediately followed by a lozenge ( ).

Description: The macro-instruction contains three operands which specify the card reader number, the reading address and the end-of-file transfer address. The Autocoder generates an in-line sequence of five 705 instructions and causes the inclusion of the card reader error subroutine CDERR and the typewriter subroutine XOFF at the end of the program.

If during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and transfer is made to the subroutine CDERR. Here a further analysis is made. If reading error has occurred the message "902 0lxx" is typed and the 705 will come to Stop 0902. The operator may then correct the card in error and reload the card reader starting with the corrected card. Pressing the console start key will cause the corrected card to be re-read.

If an end-of-file condition has occurred, the input-output indicator will be turned off and a transfer made to the address specified. If none is specified the message "EOF 01xx" is typed and the 705 will come to Stop 0566. If the card reader is loaded with more cards, pressing the start key will cause the program to continue, reading the next card.

An error in typing messages will not be corrected. The 0901 and 0902 check indicators and the ANY indicator will simply be turned off by subroutine XOFF.

# Coding Produced:

| TAG OPERATIO  |       | NUM. | OPERAND        | COMMENTS              |
|---------------|-------|------|----------------|-----------------------|
| Т1            | SEL   |      | 01X1           |                       |
|               | RD    |      | X2             |                       |
|               | DOA   |      | CDERR          |                       |
| $\mu_{\rm n}$ | LOD   | 14   | Д <sub>п</sub> |                       |
|               | TRA   |      | CDERR          |                       |
|               | INCL  |      | CDERR          |                       |
|               | RACON |      | Х3             | (end-of-file address) |
|               | INCL  |      | XOFF           |                       |

# Requirements:

- (a) Check Indicator Switches -
- (b) Auxiliary Storage Units
- (c) Memory

- 0902 on Program.
- The ASU sign, comparison and zero triggers may be changed, the sign trigger being set to plus.
- 25 characters each time the macro-instruction is written plus 264 characters for the subroutines CDERR and XOFF and various literal constants. The subroutines and literal constants are included in the user's program only once.

Macro-Instruction: Read Drum Operation Code: RDDR

Function: To read a specified drum section into memory. Test for reading and end-of-file error conditions and attempt correction.

# Instruction Format:

| TAG | OPERATION | NUM. |    | OPERAND |      |      | COMMENTS |
|-----|-----------|------|----|---------|------|------|----------|
| Tl  | RDDR      |      | Xl | 口       | х2 7 | х3 ц |          |

where: Xl is the 4 digit number of the starting drum section.

X2 is the reading address, either actual, descriptive, literal or blank.

X3 is the restart procedure transfer address, either actual, descriptive or blank (omitted).

X1, X2, and X3 must be immediately followed by a lozenge ( $\square$ ).

Description: The macro-instruction contains three operands which specify the drum section, the reading address and the restart procedure transfer address. The Autocoder generates an in-line sequence of five 705 instructions and causes the inclusion of the drum error subroutine DRERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program the ANY indicator is found on, it is turned off and a transfer is made to the subroutine DRERR. Here a further analysis is made. If a reading error has occurred the message "902 Yxxxx" is typed and three re-reads are attempted. If re-reading is successful a transfer is made back to the main program. The specified drum section remains selected. If it is impossible to read from the drum correctly and a restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Pressing the console start key will cause successive re-reads.

If an erroneous end-of-file condition has occurred, the input-out-put indicator and the 0902 check indicator will be turned off and the message "EOF Y xxxx" typed. If a restart address has been specified a transfer is made to it. If none is specified the 705 will come to Stop 0566. Pressing the console start key will cause successive re-reads.

An error in typing will not be corrected. The check indicators 0901 and the ANY indicator will simply be turned off by the subroutine XOFF.

# Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS                   |
|-----|-----------|------|---------|----------------------------|
| Tl  | SEL       |      | Xl      |                            |
|     | RD        |      | X2      |                            |
|     | DOA       |      | DRERR   |                            |
| Дn  | LOD       | 14   | Пп      |                            |
|     | TRA       |      | DRERR   |                            |
|     | INCL      |      | DRERR   |                            |
|     | RACON     |      | X3      | (restart transfer address) |
|     | INCL      |      | XOFF    |                            |

# Requirements:

- (a) Check Indicator Switches
- (b) Auxiliary Storage Units
- (c) Memory

- 0902 on Program
- The sign, comparison and zero triggers may be changed. The sign trigger is left plus.
- 25 characters each time the macro-instruction is written plus 485 characters for the subroutines DRERR and XOFF and various literal constants which are included only once.

Macro-Instruction: Read Tape (using 754 CU) Operation Code: RDTP

Function: To select a designated tape unit and read a record into memory.

Test for and take appropriate action upon detection of end-offile and reading error conditions.

#### Instruction Format:

| TAG | OPERATION | NUM. |    | OPERAND |          |   | COMMENTS |
|-----|-----------|------|----|---------|----------|---|----------|
| T1  | RDTP      | X1   | X2 | п       | X3 II X4 | п |          |

where:

- X1 is the last 2 digits of the tape unit, right justified. Zeros may be omitted.
- X2 is the reading address, either actual, descriptive, literal or blank.
- X3 is the end-of-file transfer address, either actual, descriptive or blank (omitted).
- X4 is the restart procedure transfer address, either actual, descriptive or blank (omitted).
- X2, X3 and X4 must be immediately followed by a lozenge (  $\mu$  ).

Description: The macro-instruction contains four operands which specify the tape unit, the reading address, the end-of-file transfer address and the restart procedure transfer address. The Autocoder generates an in-line sequence of six 705 instructions and causes the inclusion of the tape error subroutine TPERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and transfer is made to the subroutine TPERR. Here a further analysis is made. If a reading error has occurred the message "902 Y 02xx" is typed and three rereads are attempted. If re-reading is successful a transfer is made back to the main program. The tape unit remains selected. If it is impossible to successfully read the record and a restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Pressing the console start key will cause successive re-reads.

If an end-of-file condition has occurred, the input-output indicator will be turned off and a transfer is made to the address specified. If none is specified the message "EOF Y 02xx" is typed and the 705 will come to Stop 0566. Pressing the console start key will cause successive re-reads.

An error in typing messages will not be corrected. The check indicators 0901 and 0902 and the ANY indicator will simply be turned off by subroutine XOFF.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | SEL       |      | 02X1    |          |
|     | RD        |      | X2      |          |
|     | DOA       |      | TPERR   |          |
| Пn  | LOD       | 14   | Пп      |          |
|     | TRA       |      | TPERR   |          |
|     | INCL      |      | TPERR   |          |
|     | RACON     |      | X3      |          |
|     | RACON     |      | X4      |          |
|     | INCL      |      | XOFF    |          |

- Requirements: (a) Check Indicator Switches -
  - (b) Auxiliary Storage Units
  - (c) Memory

- 0902 Program.
- The ASU sign, comparison and zero triggers may be changed, the sign trigger being set to plus.
- 30 characters each time the macro-instruction is written plus 532 characters for the subroutines TPERR and XOFF and various literal constants which are included only once.

Macro-Instruction: Read-While-Write Tape (using 754 CU) Operation Code: RWWTP and WWRTP

Function: To select designated input and output tape units and simultaneously read a record into memory while writing a record on tape. Test for and take appropriate action upon detection of end-of-file and reading and writing error conditions.

## Instruction Format:

| TAG | OPERATION | NUM. |      | OPERAND |      | COMMENTS |
|-----|-----------|------|------|---------|------|----------|
| Tl  | RWWTP     | Xl   | х2 ц | X3 ¤    | X4 ¤ |          |
| T2  | WWRTP     | X5   | х6 д | X7 🖽    | X8 ¤ |          |

where:

- X1 is the last 2 digits of the input tape unit number, right justified. Zeros may be omitted.
- X2 is the reading address, either actual, descriptive, literal or blank.
- X3 is the input end-of-file transfer address, either actual, descriptive or blank (omitted).
- X4 is the input restart procedure transfer address, either actual, descriptive or blank (omitted).
- X5 is the last 2 digits of the output tape unit number, right justified. Zeros may be omitted.
- X6 is the writing address, either actual, descriptive, literal or blank.
- X7 is the output end-of-file transfer address, either actual descriptive or blank (omitted).
- X8 is the output restart procedure transfer address, either actual, descriptive or blank (omitted).

The operation codes RWWTP and WWRTP must be used together and in that order with no intervening operations. X2, X3, X4, X6, X7 and X8 must be immediately followed by a lozenge  $(\mbox{$\mbox{$\square$}}$ ).

Description: The macro-instruction consists of the two operation codes RWWTP (Read While Write Tape) and WWRTP (Write While Read Tape) which are used together. Each contains four operands, which for RWWTP specify the input tape unit, reading address, input end-of-file transfer address and input restart procedure transfer address. The operands for WWRTP similarly specify the output addresses. The Autocoder generates an in-line sequence of ten 705 instructions and includes the read while write error subroutine RWWER, the tape error subroutine TPERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and transfer is made to the subroutine RWWER. Here the writing and reading operations are set up as two distinct sequences of instructions and the cause of the error analyzed for each operation in turn using the tape error subroutine TPERR.

If a redundant character has been detected in the output area of memory the message "901 R 02xx" is typed and a transfer is made to the output restart address. If an output restart address is not specified the 705 will come to Stop 0901. Pressing the console start key will cause successive rewrites of the output tape.

If a writing error has occurred the message "902 R 02xx" is typed and three rewrites of the output tape are attempted. If it is impossible to successfully write the record and an output restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Pressing the console start key will cause successive rewrites of the output tape.

If the rewriting was successful the reading of the input tape is then checked. If a reading error has occurred the message "902 Y 02xx" is typed and three rereads of the input tape are attempted. Again if it is impossible to successfully read the record and an input restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Pressing the console start key will cause successive rereads of the input tape.

If an end-of-file condition has occurred on either the input or output tape the appropriate input-output indicator will be turned off and a transfer made to the address specified. If none is specified either the message "EOF Y 02xx" or EOF R 02xx" will be typed and the 705 will come to Stop 0566. Pressing the console start key will cause successive rereads or rewrites depending upon which tape has the end-of-file condition.

An error in typing messages will not be corrected. The check indicators 0901 and 0902 and the ANY indicator will simply be turned off by subroutines XOFF.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS                     |
|-----|-----------|------|---------|------------------------------|
| Tl  | SEL       |      | 02X1    |                              |
|     | RWW       |      | X2      |                              |
|     | RACON     |      | X3      | (input end-of-file address)  |
|     | RACON     |      | X4      | (input restart address)      |
| T2  | SEL       |      | 02X5    |                              |
|     | WR        |      | x6      |                              |
|     | DOA       |      | RWWER   |                              |
| Пп  | LOD       | 14   | Дп      |                              |
|     | TRA       |      | RWWER   |                              |
|     | INCL      |      | RWWER   |                              |
|     | RACON     |      | X7      | (output end-of-file address) |
|     | RACON     |      | X8      | (output restart address)     |
|     | INCL      |      | TPERR   |                              |
|     | INCL      |      | XOFF    |                              |

## Requirements:

- (a) Check Indicator Switches 0902 on Program.
- (b) Auxiliary Storage Units The ASU sign, comparison and zero
  - triggers may be changed, the sign trigger being set to plus.

(c) Memory

- 50 characters each time the macroinstruction is written plus 783 characters for the subroutines RWWER, TPERR and XOFF and various literal constants. The subroutines and constants are included in the user's program only once. Macro-Instruction: Rewind Tape (using 754 CU) Operation Code: RWDTP

Function: To rewind a designated tape unit and turn off its input-output indicator.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | RWDTP     | Xl   |         |          |

where:

X1 is the last 2 digits of the tape unit number, right justified.

Zeros may be omitted.

Description: The macro-instruction contains one operand which specifies the tape unit. The Autocoder generates an in-line sequence of three 705 instructions.

During the execution of this sequence of instructions in the user's program the designated tape unit is selected and rewinding is started. The 705 then proceeds to the next instruction written by the programmer.

# Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | SEL       |      | 02X1    |          |
|     | RWD       |      |         |          |
|     | IOF       |      |         |          |

Requirements:

(a) Memory

15 characters.

Macro-Instruction: Type (without error correcting) Operation Code: TYPE

Function: To select a designated typewriter and write a record from memory. Turn off the ANY indicator and check indicators 0901 and 0902, if they are turned on. Used primarily to type messages.

## Instruction Format:

| LINE | TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|------|-----|-----------|------|---------|----------|
| 010  | Tl  | TYPE      | X1   | X2      |          |

where: X1 is the last 2 digits of the typewriter number, right justified.

Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

Description: The macro-instruction contains two operands which specify the typewriter and the writing address. The Autocoder generates an in-line sequence of four 705 instructions and causes the inclusion of the typewriter subroutine XOFF at the end of the program.

If during the execution of this sequence of instructions in the user's program the ANY indicator is found on, it is turned off and a transfer made to the subroutine. The subroutine turns off the 0901 and 0902 check indicators and transfers back to the main program.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T 1 | SEL       |      | 05X1    |          |
|     | WR        |      | X2      |          |
|     | DOA       |      | XOFF    |          |
| Дn  | LOD       | 14   | Пп      |          |
|     | TRA       |      | XOFF    |          |
|     | INCL      |      | XOFF    |          |

Requirements: (a) Check Indicators - 0902 on Program.

- (b) Memory
- 20 characters each time the macroinstruction is written plus 44 characters for the subroutine XOFF and a literal constant which are included only once.

Macro-Instruction: Type and Check Operation Code: TYPCK

Function: To write a record on the typewriter. Test for and take appropriate action upon detection of errors.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND   | COMMENTS |
|-----|-----------|------|-----------|----------|
| T1  | TYPCK     | Xl   | х2 Д х3 Д |          |

where:

X1 is the last 2 digits of the typewriter number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the restart proceedure transfer address, either actual, descriptive or blank (omitted).

X2 and X3 must be immediately followed by a lozenge (II).

#### Description:

The macro-instruction contains three operands which specify the typewriter number, the writing address and the restart proceedure transfer address. The Autocoder generates an in-line sequence of five 705 instructions and causes the inclusion of the typewriter error subroutines TYPER and XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program the ANY indicator is found on, it is turned off and a transfer is made to the subroutine TYPER. Here a further analysis is made. If a redundancy error has been detected in the memory write-out area the message "901 05xx" is typed and a transfer is made to the restart address. If none has been specified the 705 will come to Stop 0901. Pressing the console start key will cause successive rewrites.

If a writing error has occured the message "902 05xx" is typed and three rewrites are attempted. If rewriting is successful a transfer is made back to the main program. If it is impossible to write correctly and a restart address has been specified a transfer is made to it. If none is specified the 705 will come to Stop 0902. Again, pressing the console start key will cause successive rewrites.

An error in typing error messages will not be corrected. The 0901 and 0902 check indicators and the ANY indicator will simply be turned off by subroutine XOFF.

# Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS          |
|-----|-----------|------|---------|-------------------|
| Tl  | SEL       |      | 05X1    |                   |
|     | WR        |      | X2      |                   |
|     | DOA       |      | TYPER   |                   |
| Пп  | LOD       | 14   | Пп      |                   |
|     | TRA       |      | TYPER   |                   |
|     | INCL      |      | TYPER   |                   |
|     | RACON     |      | X3      | (restart address) |
|     | INCL      |      | XOFF    |                   |

# Requirements:

- (a) Check Indicator Switches 0902 on Program.
- (b) Auxiliary Storage Units
- The sign, zero and comparison triggers may be changed. The sign trigger is left plus.

(c) Memory

- 25 characters each time the macro-instruction is written plus 358 characters for the subroutines TYPER and XOFF and various literal constants which are included only once.

Macro-Instruction: Write Check Tape (using 754 CU) Operation Code: WRCTP

Function: To select a designated tape unit, write a record from memory and re-read it to check that it has been written correctly. Test for and take appropriate action upon detection of end-of-file and writing error conditions.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND |   |      | COMMENTS |  |  |
|-----|-----------|------|---------|---|------|----------|--|--|
| Tl  | WRCTP     | Xl   | X2      | П | X3 I | 1 X4 🎵   |  |  |

where:

- Xl is the last 2 digits of the tape unit number, right justified. Zeros may be omitted.
- X2 is the writing address, either actual, descriptive, literal or blank.
- X3 is the end-of-file transfer address, either actual, descriptive or blank (omitted).
- X4 is the restart procedure transfer address, either actual, descriptive or blank (omitted).
- X2, X3 and X4 must be immediately followed by a lozenge ( $\Pi$ ).

Description: The macro-instruction contains four operands which specify the tape unit, the writing address, the end-of-file transfer address and the restart procedure transfer address. The Autocoder generates an in-line sequence of eight 705 instructions and causes the inclusion of the write check error subroutine CWRER, the tape error subroutine TPERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and transfer is made to the subroutine CWRER. Here the writing and re-reading operations are set up as two distinct sequences of instructions and the cause of the error analyzed for each operation in turn using the tape error subroutine TPERR.

If a redundancy has been detected in the memory write-out area, the message "901 R 02xx" is typed and a transfer made to the restart address. If no restart address has been specified, the 705 will come to Stop 0901. Pressing the console start key will cause successive rewrites.

If a writing error has occurred the message "902 R 02xx" is typed and three re-writes are attempted. If it is impossible to successfully write the record and a restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Pressing the console start key will cause successive re-writes.

If the re-writing was successful the record is re-read to check that it is on tape correctly. If a reading error occurs the message "902 Y 02xx" is typed and three re-reads are attempted. If re-reading is successful a transfer is made back to the main program. The tape unit remains selected. Again, if it is impossible to successfully read the record and a restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Pressing the console start key will cause successive re-reads.

If an end-of-file condition has occurred, the input-output indicator will be turned off and a transfer made to the address specified. If none is specified the message "EOF R 02xx" is typed and the 705 will come to Stop 0566.

An error in typing messages will not be corrected. The check indicators 0901 and 0902 and the ANY indicator will simply be turned off by subroutine XOFF.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS              |
|-----|-----------|------|---------|-----------------------|
| Tl  | SEL       |      | 02X1    |                       |
|     | WR        |      | X2      |                       |
|     | BSP       |      |         |                       |
|     | RD        | 1    | @ 0     |                       |
|     | DOA       |      | CWERR   |                       |
| Дп  | LOD       | 14   | Дn      |                       |
|     | TRA       |      | CWRER   |                       |
|     | INCL      |      | CWRER   |                       |
|     | RACON     |      | X3      | (end-of-file address) |
|     | RACON     |      | X4      | (restart address)     |
|     | INCL      |      | TPERR   |                       |
|     | INCL      |      | XOFF    |                       |

# Requirements:

- (a) Check Indicator Switches 0902 on Program.
- (b) Auxiliary Storage Units
- The setting of the ASU sign, zero and comparison triggers may be changed, the sign trigger being set plus.

(c) Memory

- 40 characters each time the macro-instruction is written plus 757 characters for the subroutines CWRER, TPERR and XOFF and various literal constants which are included only once.

Macro-Instruction: Write Drum Operation Code: WRDR

Function: To write a record from memory to a specified drum section or sections. Test for writing and end-of-file error conditions and attempt correction.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND |      |      | COMMENTS |  |  |
|-----|-----------|------|---------|------|------|----------|--|--|
| Tl  | WRDR      |      | хід     | х2 Ц | x3 🎞 |          |  |  |

where: Xl is the 4 digit number of the starting drum section.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the restart procedure transfer address.

X1, X2 and X3 must be immediately followed by a lozenge (  $\Pi$  ).

Description: The macro-instruction contains three operands which specify the drum section, the writing address and the restart procedure transfer address. The Autocoder generates an in-line sequence of five 705 instructions and causes the inclusion of the drum error subroutine DRERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program the ANY indicator is found on, it is turned off and a transfer is made to the subroutine DRERR. Here a further analysis is made. If a redundancy error has been detected in the memory unit out area the message "901 R xxxx" is typed and a transfer is made to the restart address. If none is specified the 705 will come to Stop 0901. Pressing the console start key will cause successive re-writes.

If a writing error has occurred the message "902 R xxxx" is typed and three re-writes are attempted. If re-writing is successful a transferis made back to the main program. The specified drum section remains selected. If it is impossible to write on the drum correctly and a restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Again, pressing the console start key will cause successive re-writes.

If an erroneous end-of-file condition has occurred, the input-out-put indicator and the 0902 check indicator will be turned off and the message "EOF R xxxx" typed. If a restart address has been specified a transfer is made to it. If none is specified the 705 will come to Stop 0566. Pressing the console start key will cause successive re-writes.

An error in typing will not be corrected. The check indicators 0901 and 0902 and the ANY indicator will simply be turned off by the subroutine XOFF.

# Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS                   |
|-----|-----------|------|---------|----------------------------|
| Tl  | SEL       |      | X1      |                            |
|     | WR        |      | X2      |                            |
|     | DOA       |      | DRERR   |                            |
| Цn  | LOD       | 14   | Дп      |                            |
|     | TRA       |      | DRERR   |                            |
|     | INCL      |      | DRERR   |                            |
|     | RACON     |      | Х3      | (restart transfer address) |
|     | INCL      |      | XOFF    |                            |

# Requirements:

- (a) Check Indicator Switches
- (b) Auxiliary Storage Units
- (c) Memory

- 0902 on Program
- The sign, comparison and zero triggers may be changed. The sign trigger is left plus.
- 25 characters each time the macro-instruction is written plus 485 characters for the subroutines DRERR and XOFF and various literal constants which are included in the user's program only once.

Macro-Instruction: Write Erase Printer Operation Code: WREPA

(717 Printer, Auto Ctl)

Function: To write a record from memory onto a printer, setting the memory record area to blanks. Test for and take appropriate action upon detection of error conditions.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND   | COMMENTS |
|-----|-----------|------|-----------|----------|
| T1  | WREPA     | X1   | х2 Д х3 Д |          |

where:

X1 is the last 2 digits of the printer number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the restart procedure transfer address, either actual, descriptive or blank (omitted).

X2 and X3 must be immediately followed by a lozenge ( $\Pi$ ).

Description: The macro-instruction contains three operands which specify the printer, the writing address and the restart procedure transfer address. The Autocoder generates an in-line sequence of six 705 instructions and causes the inclusion of the write erase error subroutine WRERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and a transfer is made to the subroutine WRERR. Here a further analysis is made. If a redundant character has been detected in the output area of memory the message "901 Z 04xx" is typed and transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0901.

If a writing error has occurred the message "902 Z 04xx" is typed and a transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0902.

If a printing error has occurred the message "903 Z 04xx" is typed and a transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0903.

Pressing the console start key after any of the above stops will cause a return to the Stop. An error in typing messages will not be corrected. The check indicators 0901,0902 and 0903 and the ANY indicator will simply be turned off by subroutine XOFF.

## Coding Produced:

| TAG | OPERATION | NUM. OPERAND |        | COMMENTS          |
|-----|-----------|--------------|--------|-------------------|
| Tl  | SEL       |              | 04X1   |                   |
|     | WRE       |              | X2     |                   |
|     | DOA       |              | WRERR  |                   |
| Дn  | LOD       | 14           | Цп     |                   |
|     | TRA       |              | WRERR  |                   |
|     | INCL      |              | WRERR  |                   |
|     | RACON     |              | T1 +30 |                   |
|     | RACON     |              | X3     | (restart address) |
|     | INCL      |              | XOFF   |                   |

#### Requirements:

- (a) Check Indicator Switches
- 0902 and 0903 on Program.
- (b) Auxiliary Storage Units
- The sign, zero and comparison triggers may be changed by the macro-instruction and subroutine. The sign trigger being left plus.

(c) Memory

- 30 characters each time the macro-instruction is written plus 528 characters for the subroutine and various literal constants are included in the program only once.
- (d) Printer Control Switch
- On single or double space.

Macro-Instruction: Write Erase Printer Operation Code: WREPR

(717 Printer under pgm ctl)

Function: To write a record from memory onto a printer, setting the memory area to blanks. Test for and take appropriate action upon detection of end-of-page and writing error conditions.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND        | COMMENTS |
|-----|-----------|------|----------------|----------|
| Tl  | WREPR     | Xl   | х2 П х3 П х4 П |          |

where:

Xl is the last 2 digits of the printer number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the end-of-page transfer address, either actual, descriptive or blank (omitted).

X4 is the restart procedure transfer address, either actual, descriptive or blank (omitted).

X2, X3 and X4 must be immediately followed by a lozenge ( $\chi$ ).

Description: The macro-instruction contains three operands which specify the printer, the writing address and the restart procedure transfer address. The Autocoder generates an in-line sequence of six 705 instructions and causes the inclusion of the write erase error subroutine WRERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and a transfer is made to the subroutine WRERR. Here a further analysis is made. If a redundant character has been detected in the output area of memory the message "901 Z 04xx" is typed and transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0901.

If a writing error has occurred the message "902 Z 04xx" is typed and a transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0902.

If a printing error has occurred the message "903 Z 04xx" is typed and a transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0903.

Pressing the console start key after any of the above stops will cause a return to the Stop. An error in typing messages will not be corrected.

The check indicators 0901, 0902 and 0903 and the ANY indicator will simply be turned off by subroutine XOFF.

## Coding Produced:

| TAG        | OPERATION | NUM. | OPERAND | COMMENTS              |
|------------|-----------|------|---------|-----------------------|
| T1         | SEL       |      | 04X1    |                       |
|            | WRE       |      | X2      |                       |
|            | DOA       |      | WRERR   |                       |
| <u>M</u> n | LOD       | 14   | Цn      |                       |
|            | TRA       |      | WRERR   |                       |
|            | INCL      |      | WRERR   |                       |
|            | RACON     |      | Х3      | (end-of-page address) |
|            | RACON     |      | X4      | (restart address)     |
|            | INCL      |      | XOFF    |                       |

## Requirements:

- (a) Check Indicator Switches -
  - 0902 and 0903 Program.
- (b) Auxiliary Storage Units
- The sign, zero and comparison triggers may be changed by the macro-instruction and subroutine. The sign trigger being left plus.

(c) Memory

- 30 characters each time the macro-instruction is written plus 528 characters for the subroutine WRERR and XOFF and various literal constants. The subroutines and constants are included in the program only once.
- (d) Printer Control Switch
- On Program.

Macro-Instruction: Write Erase Punch Operation Code: WREPN

Function: To write a record from memory, punching it on a card and setting the memory record area to blanks. Test for and take appropriate action upon detection of errors.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND   | COMMENTS |
|-----|-----------|------|-----------|----------|
| T1  | WREPN     | X1   | х2 Д х3 Д |          |

where:

X1 is the last two digits of the punch number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

X3 is the restart procedure transfer address, either actual, descriptive or blank (omitted).

X2 and X3 must be immediately followed by a lozenge ( $\Pi$ ).

Description: The macro-instruction contains three operands which specify the punch, the writing address and the restart procedure transfer address. The Autocoder generates an in-line sequence of six 705 instructions and causes the inclusion of the write erase error subroutine WRERR and the typewriter subroutine XOFF at the end of the program.

If during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and transfer is made to the subroutine WRERR. Here a further analysis is made. If a redundant character has been detected in the output area of memory the message "901 Z 04xx" is typed and transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0901.

If a writing error has occurred the message "902 04xx" is typed and a transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0902.

If a printing error has occurred the message ''903 Z 04xx'' is typed and a transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0903.

Pressing the console start key after any of the above stops will cause a return to the Stop. An error in typing messages will not be corrected. The check indicators 0901, 0902 and 0903 and the ANY indicator will simply be turned off by subroutine XOFF.

# Coding Produced:

| TAG        | OPERATION | NUM. | OPERAND | COMMENTS          |
|------------|-----------|------|---------|-------------------|
| Tl         | SEL       |      | 03X1    |                   |
|            | WRE       |      | X2      |                   |
|            | DOA       |      | WRERR   |                   |
| <b>Д</b> п | LOD       | 14   | Цп      |                   |
|            | TRA       |      | WRERR   |                   |
|            | INCL      |      | WRERR   |                   |
|            | RACON     |      | T1 +30  |                   |
|            | RACON     |      | X3      | (restart address) |
|            | INCL      |      | XOFF    |                   |

Requirements:

- (a) Check Indicator Switches -
- (b) Auxiliary Storage Units
- 0902 and 0903 on Program.
- The sign, zero and comparison triggers may be changed by the macro-instruction and subroutine. The sign trigger being left plus.

(c) Memory

- 30 characters each time the macro-instruction is written plus 528 characters for the subroutine WREPR and XOFF and various literal constants. The subroutines and constants are included in the program only once.

Macro-Instruction: Write Erase Tape (using 754 CU) Operation Code: WRETP

Function: To select a designated tape unit and write a record from memory, setting the memory record area to blanks. Test for and take appropriate action upon detection of end-of-file and writing error conditions.

## Instruction Format:

| TAG | OPERATION | NUM. |    | OPERAND |   |    |   | COMMENTS |
|-----|-----------|------|----|---------|---|----|---|----------|
| T1  | WRETP     | Xl   | X2 | Д X3    | п | X4 | П |          |

where:

- Xl is the last 2 digits of the tape unit number, right justified. Zeros may be omitted.
- X2 is the writing address, either actual, descriptive, literal or blank.
- X3 is the end-of-file transfer address, either actual, descriptive or blank (omitted).
- X4 is the restart procedure transfer address, either actual, descriptive or blank (omitted).

X2, X3 and X4 must be immediately followed by a lozenge. ( $\Pi$ )

Description: The macro-instruction contains four operands which specify the tape unit, the writing address, the end-of-file transfer address and the restart procedure transfer address. The Autocoder generates an inline sequence of six 705 instructions and causes the inclusion of the write erase error subroutine WRERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and transfer is made to the subroutine WRERR. Here a further analysis is made. If a redundant character has been detected in the output area of memory the message "901 Z 02xx" is typed and transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0901.

If a writing error has occurred the message "902 Z 02xx" is typed and a transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0902.

If an end-of-file condition has been detected by sensing the reflective spot on the end of the tape, the input-output indicator is turned off and a transfer made to the address specified. The tape unit remains selected. If no address is specified the message "EOF Z 02xx" is typed and the 705 will come to Stop 0566.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS              |
|-----|-----------|------|---------|-----------------------|
| T1  | SEL       |      | 02X1    |                       |
|     | WRE       |      | X2      |                       |
|     | DOA       |      | WRERR   |                       |
| Цn  | LOD       | 14   | Дп      |                       |
|     | TRA       |      | WRERR   |                       |
|     | INCL      |      | WRERR   |                       |
|     | RACON     |      | Х3      | (end-of-file address) |
|     | RACON     |      | X4      | (restart address)     |
|     | INCL      |      | XOFF    |                       |

- Requirements: (a) Check Indicator Switches
  - (b) Auxiliary Storage Units
  - (c) Memory

- 0902 on Program.
- The sign, zero and comparison triggers may be changed by the macro-instruction and subroutine. The sign trigger being left plus.
- 30 characters each time the macro-instruction is written plus 528 characters for the subroutine and various literal constants. The subroutines and constants are included in the program only once.

Macro-Instruction: Write Erase Typewriter Operation Code: WRETY

(without error correcting)

To write a record from memory onto a typewriter, setting the Function: memory record area to blanks. Turn off the ANY indicator and check indicators 0901 and 0902, if they are turned on.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | WRETY     | X1   | X2      |          |

where:

X1 is the last 2 digits of the typewriter number, right justified. Zeros may be omitted.

X2 is the writing address, either actual, descriptive, literal or blank.

Description: The macro-instruction contains two operands which specify the typewriter and the writing address. The Autocoder generates an in-line sequence of four 705 instructions and causes the inclusion of the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and a transfer made to the subroutine. The subroutine turns off the 0901 and 0902 check indicators and transfers back to the main program.

#### Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | SEL       |      | 05X1    |          |
|     | WRE       |      | X2      |          |
|     | DOA       |      | XOFF    |          |
| Цn  | LOD       | 14   | Щn      |          |
|     | TRA       |      | XOFF    |          |
|     | INCL      |      | XOFF    |          |

Requirements: (a) Check Indicator Switches - 0902 on Program.

(b) Memory

- 20 characters each time the the macro-instruction is written plus 44 characters for the subroutine XOFF and a literal constant which is included only once.

Macro-Instruction: Write Tape (using 754 CU)

Operation Code: WRTP

Function: To select a designated tape unit and write a record from memory onto tape. Test for and take appropriate action upon detection of end-of-file and writing error conditions.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND        | COMMENTS |
|-----|-----------|------|----------------|----------|
| Tl  | WRTP      | X1   | X2 д X3 д X4 д |          |

where:

- X1 is the last 2 digits of the tape unit number, right justified. Zeros may be omitted.
- X2 is the writing address, either actual, descriptive, literal or blank.
- X3 is the end-of-file transfer address, either actual, descriptive or blank (omitted).
- X4 is the restart procedure transfer address, either actual, descriptive or blank (omitted).
- X2, X3 and X4 must be immediately followed by a lozenge ( ).

Description: The macro-instruction contains four operands which specify the tape unit, the writing address, the end-of-file transfer address and the restart procedure transfer address. The Autocoder generates an inline sequence of six 705 instructions and causes the inclusion of the tape error subroutine TPERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and transfer is made to the subroutine TPERR. Here a further analysis is made. If a redundant character has been detected in the output area of memory the message "901 R 02xx" is typed and a transfer is made to the restart address. If a restart address is not specified the 705 will come to Stop 0901. Pressing the console start key will cause successive re-writes.

If a writing error has occurred the message "902 R 02xx" is typed and three re-writes are attempted. If re-writing is successful a transfer is made back to the main program. The tape unit remains selected. If it is impossible to successfully write the record and a restart address has been specified, a transfer is made to it. If none is specified the 705 will come to Stop 0902. Pressing the console start key will cause successive re-writes.

If an end-of-file condition has been detected by sensing the reflective spot on the end of the tape, the input-output indicator will be turned off and a transfer made to the address specified. If none is specified the message "EOF R 02xx" is typed and the 705 will come to Stop 0566. Again, pressing the console start key will cause successive re-writes.

An error in typing messages will not be corrected. The check indicators 0901 and 0902 and the ANY indicator will simply be turned off by subroutine XOFF.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS                       |
|-----|-----------|------|---------|--------------------------------|
| Tl  | SEL       |      | 02X1    |                                |
|     | WR        |      | X2      |                                |
|     | DOA       |      | TPERR   |                                |
| Дn  | LOD       | 14   | Дп      |                                |
|     | TRA       |      | TPERR   |                                |
|     | INCL      |      | TPERR   |                                |
|     | RACON     |      | X3      | (end-of-file transfer address) |
|     | RACON     |      | X4      | (restart procedure address)    |
| *   | INCL      |      | XOFF    |                                |

## Requirements:

- (a) Check Indicator Switches-0902 on Program.
- (b) Auxiliary Storage Units The ASU sign, comparison and zero triggers may be changed, the sign trigger being set to plus.
- (c) Memory

-30 characters each time the macro-instruction is written plus 532 characters for the subroutines TPERR and XOFF and various literal constants which are included only once.

Macro-Instruction: Write Tape Mark (using 754 CU) Operation Code: WRTM

Function: To write a tape mark on a designated tape; checking to see that it was written correctly.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | WRTM      | X1   |         |          |

where: Xl is the last 2 digits of the tape unit number, right justified.

Zeros may be omitted.

Description: The macro-instruction contains one operand which specifies the tape unit. The Autocoder generates an in-line sequence of six 705 instructions and causes the inclusion of the tape error subroutine TPERR and the typewriter subroutine XOFF at the end of the program.

If, during the execution of this sequence of instructions in the user's program, the ANY indicator is found on, it is turned off and transfer is made to the subroutine TPERR. Here a further analysis is made. If the tape mark has been written incorrectly the message "902 3 02xx" is typed and three attempts are made to re-write it. If re-writing is successful a transfer is made back to the main program. The tape unit remains selected. If it is impossible to write the tape mark correctly the 705 will come to Stop 0902. Pressing the console start key will cause successive re-writes.

If the physical end of the tape has been sensed the input-output indicator is turned off and a transfer is made back to the main program.

An error in typing messages will not be corrected. The check indicators 0901 and 0902 and the ANY indicator will simply be turned off by subroutine XOFF.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | SEL       |      | 02X1    |          |
|     | WTM       |      |         |          |
|     | DOA       |      | TPERR   |          |
| Дn  | LOD       | 14   | дn      |          |
|     | TRA       |      | TPERR   |          |
|     | INCL      |      | TPERR   |          |
|     | RACON     |      | T1 +30  |          |
|     | RACON     |      |         |          |
|     | INCL      |      | XOFF    |          |

## Requirements:

- (a) Check Indicator Switches -
- (b) Auxiliary Storage Units
- (c) Memory

- 0902 on Program.
- The setting of the ASU sign, comparison and zero triggers may be changed. The sign trigger will be set to plus.
- 30 characters each time the macro-instruction is written plus 532 characters for the subroutines TPERR and XOFF and various literal constants which are included only once.

## SECTION II -

## LOGICAL MACRO - INSTRUCTIONS

The macro-instructions in this section are of two general types: programming aids; and extensions of machine logic. They include the following topics:

Address Modification

Comparison, Sign and Zero Trigger Storage

Conditional Stops

Conditional Transfers

Data Transmission

Loop Control

Switch Setting

Total and Sequence Checking

Macro-Instruction: Alternate Transfer Operation Code: ALTTR

Function: Alternate transfer and non-transfer.

# Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | ALTTR     |      | xxxx    |          |

where:

Tl is any tag, or may be left blank.

xxxx may be any descriptive or actual address of an instruction.

Description: Is a Transfer to designated address first time, NOP the second,

TR the third, etc.

# Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | TR        |      | T1 + 15 |          |
|     | SGN       | 15   | Tl - 4  |          |
|     | TR        |      | T1 + 30 |          |
|     | SGN       | 15   | T1 - 4  |          |
|     | ADM       | 15   | Tî - 4  |          |
|     | TR        |      | xxxx    |          |

## Restrictions:

(a) Turns on the ASU zero trigger.

Macro-Instruction: Check Total Operation Code: CHKT

Function: To take a check total of a specified field.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND      | COMMENTS |
|-----|-----------|------|--------------|----------|
| T1  | СНКТ      | nn   | xxxx p TAG p |          |

where:

Tl is any tag, or may be left blank.

nn is the length of the field to be checked.

xxxx is the descriptive or actual address of the field to be

checked by check totaling.

TAG is the tag to be applied to the counter containing the

check total.

Description: Loads the designated field in the accumulator and removes

the zoning, then adds this quantity to a counter.

## Coding Produced:

| TAG   | OPERATION | NUM. | OPERAND         | COMMENTS |
|-------|-----------|------|-----------------|----------|
| Tl    | SET       |      | 00nn            |          |
|       | LOD       |      | xxxx            |          |
|       | SUB       |      | (+0)            |          |
|       | TR        |      | п TAG           |          |
| TAG   | DCON      |      | 1               |          |
|       |           | 05   | 00000           |          |
|       |           | nn   | +00000(51 zeros | 5)       |
| ¤ TAG | ADM       |      | TAG             |          |

#### Requirements:

- (a) 30 positions plus the length of the field to be checked.
- (b) Uses the literal (+0).
- (c) Uses the accumulator.
- (d) Maximum size of field to be checked 99 characters.
- (e) Maximum safe number of records to total 99999.

Macro-Instruction: Do Subroutine

 $\underline{\text{Operation Code:}} \ DO \begin{cases} P \\ Z \end{cases}$ 

Function: Creates linkage to subroutine which transfer when designated

transfer conditions are met.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | DOxxx     | nn   | SUBRT   |          |
|     |           |      |         |          |

where:

nn is designated ASU

xxx is designated transfer condition.

SUBRT is name of subroutine

Tl is any tag, or may be left blank.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | TRxxx     | nn   | T1 + 10 |          |
|     | TR        |      | T1 + 20 |          |
|     | LOD       | 14   | T1 + 10 |          |
|     | TR        |      | SUBRT   |          |
|     | INCL      |      | SUBRT   |          |

Macro-Instruction: End Loop Operation Code: END

Function: To be used in conjunction with the LOOP macro-instruction to

control the number of passages through a loop.

#### Instruction Format:

| LINE | TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|------|-----|-----------|------|---------|----------|
| 010  | T1  | END       | nn   | xxxx    |          |

where:

Tl is any tag, or may be left blank.

xxxx is the tag of the corresponding LOOP instruction.

nn is the accumulator or ASU designated as loop monitor in the

LOOP instruction.

Description:

Subtracts + 1 from the accumulator or ASU and transfers to the next instruction if 0; if not to the instruction following the LOOP instruction.

#### Coding Produced:

| LINE | TAG | OPERATION | NUM. | OPERAND  | COMMENTS |
|------|-----|-----------|------|----------|----------|
| 010  | T1  | SUB       | nn   | (+1)     |          |
| 020  |     | TRZ       | nn   | T1 + 15  |          |
| 030  |     | TR        |      | xxxx  +5 |          |

## Requirements and Restrictions:

(a) Turns on the zero trigger of the ASU or accumulator upon leaving the loop.

Macro-Instruction: First Time NOP Operation Code: FTNOP

Function: NOP first time, transfers afterward.

# Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | FTNOP     |      | xxxx    |          |

where:

Tl is any tag, or may be left blank.

xxxx is any descriptive or actual address.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | NOP       |      | xxxx    |          |
|     | SGN       | 15   | T1 - 4  |          |

Macro-Instruction: First Time Transfer Operation Code: FTTR

Function: Transfers first time, afterward NOP.

# Instruction Format:

| T | TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|---|-----|-----------|------|---------|----------|
|   | T l | FTTR      |      | xxxx    |          |

where:

Tl is any tag, or may be left blank.

xxxx is any descriptive or actual address.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | NOP       |      | T1 + 15 |          |
|     | SGN       | 15   | T1 - 4  |          |
|     | TR        |      | xxxx    |          |

Macro-Instruction: Halt Off Operation Code: HLTOF

Function: Halts when alteration switch is off.

#### Instruction Format:

| LINE | TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|------|-----|-----------|------|---------|----------|
| 010  | T1  | HLTOF     | nn   |         |          |

where:

Tl is any tag, or may be left blank.

nn designated alteration switch.

Description:

Halts when designated the alteration switch if OFF. Pushing

Start causes a continuation of the program.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | SEL       |      | 09nn    |          |
|     | TRS       |      | T1 + 15 |          |
|     | HLT       |      | 09nn    |          |
| -1, |           |      |         |          |
|     |           |      |         |          |
|     |           |      | 1       |          |

Macro-Instruction: Halt On Operation Code: HLTON

Function: Halts with alteration switch on.

## Instruction Format:

| LINE | TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|------|-----|-----------|------|---------|----------|
| 010  | Т1  | HLTON     | nn   |         |          |

where:

Tl is any tag, or may be left blank.

nn is designated alteration switch.

Description:

Halts if designated alteration switch is on. Pushing Start

causes a continuation of the program.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | SEL       |      | 09nn    |          |
|     | TRS       |      | T1 + 15 |          |
|     | TR        |      | T1 + 20 |          |
|     | HLT       |      | 09nn    |          |

Macro-Instruction: Halt Transfer Operation Code: HLTTR

Function: Halts and transfers.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND       | COMMENTS |
|-----|-----------|------|---------------|----------|
| Tl  | HLTTR     |      | xxxx ¤ nnnn ¤ |          |

where:

Tl is any tag, or may be left blank.

xxxx may be any descriptive or actual address of an instruction.

nnnn is the number of the Halt.

Description: Halts, pressing start causes transfer to designated address.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | HLT       |      | nnnn    |          |
|     | TR        |      | xxxx    |          |

Macro-Instruction: If xxx

Operation Code: IF LOV H EH EL

Z NZ

Function: Transfers on high, equal, etc.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND           | COMMENTS           |
|-----|-----------|------|-------------------|--------------------|
| T1  | IFxxx     | nn   | FIRST ITEM #SECON | D ITEM # ADDRESS # |

where:

Tl is any tag, or may be left blank.

nn is designated ASU.

xxx is designated transfer condition.

Description: Compares the items in two locations, and transfers to the address if the condition is satisfied, otherwise proceeds to next instruction. The condition may be those built into the machine or the additional condition EH, EL, LOW, NE; the appropriate condition is specified in place of the xxx, i.e. IFH, IFNZ, etc.

### Coding Produced:

| TAG | OPERATION | NUM. | OPERAND     | COMMENTS |
|-----|-----------|------|-------------|----------|
| T1  | SET       | nn   | FIRST ITEM  |          |
|     | LOD       | nn   | FIRST ITEM  |          |
|     | СМР       | nn   | SECOND ITEM |          |
|     | TRxxx     | nn   | ADDRESS     |          |

NOTE: The first six possible transfer conditions demand the instruction CMP in order to function.

The last three possible transfer conditions demand only the LOD instruction to function. If the first item consists of zeros, it will cause a transfer zero to ADDRESS assuming Z is the designated transfer condition.

Macro-Instruction: Load Left Location Operation Code: LLL

Function: The high-order location of the designated field is loaded

in the designated ASU (or accumulator).

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | LLL       | nn   | FIELD Q |          |

where: Il is any tag, or may be left blank.

FIELD Q is any descriptive or actual address.

Description: The designated ASU is set to 4 and the high-order

location of the designated field is loaded in that ASU.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | SET       | nn   | 0004    |          |
|     | LOD       | nn   | T1 +10  |          |
|     | LACON     |      | FIELD Q |          |

Macro-Instruction: Load Left Location 14 Operation Code: LLL14

Function: Loads in ASU 14 the high-order location of the designated field,

zoned for the designated ASU.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | LLL14     |      | FIELD Q |          |

where:

Tl is any tag.

FIELD Q is any descriptive or actual location. nn is the designation of any ASU or accumulator.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | LOD       | 14   | T1 +5   |          |
|     | LACON     | nn   | FIELD Q |          |

Macro-Instruction: Load Right Location Operation Code: LRL

Function: The low-order location of the designated field is loaded in the

designated ASU (or accumulator).

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | LRL       | nn   | FIELD Q |          |

where:

Tl is any tag, or may be left blank.

FIELD Q is a descriptive or actual address.

Description: The designated ASU is set to 4 and the low-order location

of the designated field is loaded in that ASU.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | SET       | nn   | 0004    |          |
|     | LOD       | nn   | T1 +10  |          |
|     | RACON     |      | FIELD Q |          |

Macro-Instruction: Load Right Location 14 Operation Code: LRL14

Function: Loads in ASU 14 the low-order location of the designated field,

zoned for the designated ASU.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | LRL14     | nn   | FIELD Q |          |

where:

Tl is any tag, or may be left blank.

FIELD Q is any descriptive or actual location.

nn is the designation of any ASU or accumulator.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | LOD       | 14   | T1 +5   |          |
|     | RACON     | nn   | FIELD Q |          |

Macro-Instruction: Loop Operation Code: LOOP

Function: All of the following instructions until a completing end

instruction, will be repeated M times, where the location

of M is indicated in the operand.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| TAG | LOOP      | nn   | M       |          |

where: Tag is any tag.

nn is any accumulator or ASU.

M is a literal, descriptive or actual location of the number

of times this loop is to be passed through.

Description: Reset adds M in ASU nn. To be used with END macro-

instruction.

(b)

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| TAG | RAD       | nn   | M       |          |

Requirements and

(a) The loop instructions must be tagged.

Restrictions:

The quantity in M must be signed (it may be a literal). If negative the sign trigger will be set negative.

Macro-Instruction: Move Operation Code: MOVE

Function: Moves information to a specified place from a specified place

in memory.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND       | COMMENTS |
|-----|-----------|------|---------------|----------|
| T1  | MOVE      | nn   | FROM II TO II |          |

where:

nn is the designation of the accumulator or ASU's. TO and FROM are descriptive or actual addresses.

Description: Produces a Receive and Transmit instruction. If the numeric column of the macro-instruction designates the accumulator, high-speed transmission will occur. If the numeric column of the macro-instruction designates an ASU, slow-speed transmission will occur. In this case the number of characters transmitted will depend upon the setting of the designated ASU.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | RCV       | nn   | TO      |          |
|     | TMT       | nn   | FROM    |          |

Macro-Instruction: Move Characters Operation Code: MOVEC

Function: Moves the number of characters specified by the digits in the numerical column from a specified address to a specified address.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND    | COMMENTS |
|-----|-----------|------|------------|----------|
| Tl  | MOVEC     | nn   | FROM TO TO |          |

where: nn is any unsigned number from 1 to 99.

Tl is any tag, or may be left blank.

FROM and TO are descriptive or actual addresses.

Description: Sets ASU 15 to the length specified in the numeric column and

produces a RCV and TMT via ASU 15.

#### Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | SET       | 15   | ()0nn   |          |
|     | RCV       | 15   | то      |          |
|     | ТМТ       | 15   | FROM    |          |

# Requirements and Restrictions:

- (a) If nn is a number greater than 31 the contents of ASU 1 and other higher ASU's may be effected.
- (b) May change the setting of ASU 15, which in turn may effect the zero trigger of the ASU's.

Macro-Instruction: Move Instruction Address Operation Code: MOVEI

Function: Moves the four character portion of an instruction.

#### Instruction Format:

| LINE | TAG | OPERATION | NUM. | OPERAND       | COMMENTS |
|------|-----|-----------|------|---------------|----------|
| 010  | Tl  | MOVEI     |      | FROM II TO II |          |
| 020  |     |           |      |               |          |

where:

Tl is any tag, or may be left blank.

FROM and TO are descriptive address of instructions or address

constants.

Description:

Produces a Receive and a Transmit instruction via ASU 14 supplying the character adjustment necessary to move the four characters.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | RCV       | 14   | TO + 1  |          |
|     | TMT       | 14   | FROM +1 |          |

#### Requirements and

#### Restrictions:

- (a) ASU 14 set to 4.
- (b) The TO and FROM address may be descriptive or literal, but may not be actual. If literal, must be 5 characters in length and the first character will be ignored, the last four only are moved.

Macro-Instruction: Order Check Operation Code: ORDCH

Function: To check the order of items in a specific file and branch to different paths depending upon the high, equal or low (out of sequence) condition encountered.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND            | COMMENTS    |
|-----|-----------|------|--------------------|-------------|
| Tl  | ORDCH     | nn   | хххх д HIGH д EQUA | L ¤ ERROR ¤ |

where:

Tl is any tag, or may be left blank.

nn is the length of the field.

HIGH is the actual or descriptive address of the next instruction to be executed if items are strictly in sequence.

EQUAL is the actual or descriptive address of the next instruction to be executed if the items are equal.

ERROR is the actual or descriptive address of the next instruction to be executed if the items are out of sequence.

xxxx is the actual or descriptive location of the field being checked.

Description: Sets aside a working storage area and compares the specified field with this quantity. Unloads the new quantity in the working storage and transfers to the appropriate address.

Note: See also SEQCH which checks for strictly in sequence condition and Halts on error.

| TAG   | OPERATION | NUM. | OPERAND | COMMENTS |  |
|-------|-----------|------|---------|----------|--|
| Tl    | SET       | 15   | 00nn    |          |  |
|       | LOD       | 15   | xxxx    |          |  |
|       | СМР       | 15   | A'TAG   |          |  |
|       | UNL       | 15   | ДТАG    |          |  |
|       | TRH       |      | HIGH    |          |  |
|       | TRE       |      | EQUAL   |          |  |
|       | TR        |      | ERROR   |          |  |
| ····  | DCON      |      |         |          |  |
| ¤ TAG |           | nn   |         |          |  |

# Requirements and Restrictions:

- (a) Require 35 positions plus the number of positions in the field to be checked if a multiple of S; if not, to the next larger multiple of 5. (i. e.) If the field is 5 a total of 45 positions; if the field is 15 a total of 50.
- (b) If the field is of greater length 31, ASU 1 and higher ASU may be affected.
- (c) Comparison is used and the setting will normally be left High.
- (d) Under certain situations this macro may give a false stop on the first item. This possibility will be eliminated if at least one of the following conditions is met:
  - (1) Clear memory button is pushed before loading program.
  - (2) The first field to be checked will contain at least 5 characters that are not blank.
  - (3) The field to be checked will be a multiple of 5 in length.

Macro-Instruction: Repeat, ASU Controlled Operation Code: RPTA

Function: To traverse a loop a designated number of times, using an ASU as loop monitor.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND      | COMMENTS |
|-----|-----------|------|--------------|----------|
| T1  | RPTA      | nn   | хххх.Д nnnnД |          |

where:

Tl is any tag, or may be left blank.

xxxx is the location of the first instructions of the loop.

nnnn is the number of times the loop is to be repeated before exiting (maximum 9999).

Description: The macro-instruction contains two operands, first in the address of the first instruction in the loop and second is the number of times the loop is to be passed through before exiting.

The macro-instruction RPTA follows the loop it controls. After the specified number of times through the loop, the instruction immediately following the RPTA main instruction is executed.

The macro-instruction will <u>not</u> function properly if in traversing the loop the ASU sign trigger is set minus. If the loop instructions can create this condition, use macro-instruction RPTM.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | NOP       |      | T1 +25  |          |
|     | SGN       | 15   | Tl -4   |          |
|     | RAD       | nn   | T1 +20  |          |
|     | TR        |      | T1 +25  |          |
|     | NOP       |      | nnnn    |          |
|     | SUB       | nn   | (+1)    |          |
|     | TRZ       | nn   | T1 + 40 |          |
|     | TR        |      | xxxx    |          |
|     | SGN       | 15   | Tl -4   |          |
|     | ADM       | 15   | Tl-4    |          |

Modification: To reset the RPTA instruction use the instruction

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
|     | SWNOP     |      | SWITCH  |          |

where:

SWITCH is the tag of the RPTA instruction.

The number of passages through the loop may be altered by

adding or subtracting from the designated ASU.

Restrictions:

(a) Turns on the zero trigger of the ASU's.

(b) Uses an ASU for a monitor.

(c) Requires 51 character positions.

Macro-Instruction: Repeat, Memory Controlled Operation Code: RPTM

Function: Provide ability to traverse a loop a designated number of times, using a memory counter as loop monitor.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND      | COMMENTS |
|-----|-----------|------|--------------|----------|
| T1  | RPTM      |      | xxxx 🕱 nnnnជ |          |

where:

Tl is any tag, or may be left blank.

xxxx is the descriptive or actual address of the first instruction

of the loop.

nnnn is the number of times the loop is to be traversed.

Description: The macro-instruction RPTM contains two operands, first is the address of the first instruction in the loop and the second is the number of times the loop is to be passed through before exiting.

The macro-instruction RPTM follows the loop it controls. After the specified number of times through the loop, the instruction immediately following RPTM is executed.

| TAG | OPERATION | NUM, | OPERAND | COMMENTS        |
|-----|-----------|------|---------|-----------------|
| Tl  | NOP       |      | T1 +30  |                 |
|     | SGN       | 15   | Tl -4   |                 |
|     | RAD       | 15   | T1 +20  |                 |
|     | TR        |      | T1 +35  |                 |
|     | AACON     | +    | nnnn    | Coding Produced |
|     | RACON     |      | L       |                 |
|     | RAD       | 15   | T1 +25  |                 |
|     | SUB       | 15   | (+1)    |                 |
|     | TRZ       | 15   | T1 +55  |                 |
|     | ST        | 15   | T1 +25  |                 |
|     | TR        |      | xxxx    |                 |
|     | SGN       | 15   | Tl -4   |                 |
|     | ADM       | 15   | T1-4    |                 |

Modification: To reset the loop issue the instruction

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
|     | SWNOP     |      | T1      |          |

where:

Tl is the tag of the RPTM instruction.

Requirements and

(a) Turns on the zero trigger of the ASU's.

Restrictions:

- (b) Maximum of 9999 times through the loop.
- (c) Uses 61 character positions.

Macro-Instruction: Restore Comparison Operation Code: RCMP

Function: To be used after SCMP macro-instruction (which see) to restore the condition of the comparison triggers.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | RCMP      | nn   | 1       |          |

where:

Tl is any tag or may be blank.

nn are any two 705 characters or may be blank.

Description:

Reset Adds +2 in ASU 15, and compares to the literal (-nn)

where nn is specified in the numeric column.

### Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | RAD       | 15   | (+2)    |          |
|     | СМР       | 15   | (-nn)-l |          |

## Requirements and Restriction's:

- (a) The programmer should specify SCMP with the same entry in the numeric column somewhere in his program.
- (b) SCMP should be executed before the corresponding RCMP.

Macro-Instruction:

Restore Sign of ASU

Operation Code: RSGN

Function: To be used after SSGN macro-instruction (which see) to restore

the condition of the sign and zero triggers.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
|     | RSGN      | nn   |         |          |

Description:

Reset Adds in ASU 15, the contents of the literal (+nn)

where nn is specified in the numeric column.

### Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Т1  | RAD       | 15   | ( + nn) |          |

# Requirements and Restrictions:

- (a) The programmer should specify SSGN with the same entry in the numeric column somewhere in his program.
- (b) SSGN should be executed before the corresponding RSGN.
- (c) Contents of ASU 15 are destroyed.

Macro-Instruction: Save Comparison Operation Code: SCMP

Function: Saves the indication of the comparison triggers in the literal table in memory. Designed to be used with the RCMP (Restore Comparison) macro-instruction.

Any two 705 characters identifying the comparison (including blanks) may be placed in the numerical column. The RCMP macro-instruction will restore the comparison trigger to the condition existing prior to the SCMP with the same entry in the numerical column.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | SCMP      | nn   |         |          |

where:

Tl is any tag or may be left blank.

nn are any two 705 characters including blanks.

Description: Creates a literal of the form (-nn) when nn is the entry in the numeric field. A 2 is stored there if the equal trigger is on, a 1 if the high trigger is on and a 3 if neither is on.

#### Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | TRE       |      | T1 + 30 |          |
|     | TRH       |      | T1 + 20 |          |
|     | RAD       | 15   | (+3)    |          |
|     | TR        |      | T1 + 35 |          |
|     | RAD       | 15   | (+1)    |          |
|     | TR        |      | T1 + 35 |          |
|     | RAD       | 15   | (+2)    |          |
|     | UNL       | 15   | (-nn)-l |          |

# Requirements and Restrictions:

- (a) Creates a literal of the form (-nn) which is used as working storage altering its contents. This might conflict with other literals in the program.
- (b) Uses literals (+1), (+2), and (+3) which should not be modified by the main program.

Macro-Instruction: Save Sign of ASU Operation Code: SSGN

Function: Saves the indication of the sign and zero triggers of the ASU's in memory. Designed to be used with the RSGN (Restore Sign) macro-instruction.

Any two 705 characters (including blanks) may be placed in the numeric column. The RSGN macro-instruction will restore the triggers to the condition existing prior to the SSGN instruction with the same entry in the numeric column.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| _T1 | SSGN      | nn   |         |          |

where:

Tl is any tag, or may be left blank.

nn are any two 705 characters including blanks.

Description:

Creates a literal of the form (+nn) where nn is the entry in the numeric field. +0 is stored in this literal if the zero trigger were on, and +1 is stored there if the plus trigger were on, and -1 is stored if neither were on.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | TRZ       | 15   | T1 + 30 |          |
|     | TRP       | 15   | T1 + 20 |          |
|     | RSU       | 15   | (+1)    |          |
|     | TR        |      | T1 + 35 |          |
|     | RAD       | 15   | (+1)    |          |
|     | TR        |      | T1 + 35 |          |
|     | RAD       | 15   | (+0)    |          |
|     | ST        | 15   | (+ nn)  |          |

Requirements and Restrictions:

(a) Creates a literal of the form (+nn) which is used as working storage altering its contents. This might conflict with other literals in the program.

- (b) Does not alter the condition of the sign and zero triggers except that zero is considered to be plus zero.
- (c) Zeros are assumed to be positive.
- (d) Uses literals (+1) and (+0) which should not be modified by the main program.

Macro-Instruction: Sequence Check Operation Code: SEQCH

Function: Sequence check a specified field in a file and halt if the file is not in ascending sequence. Will not accept equals.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND         | COMMENTS |
|-----|-----------|------|-----------------|----------|
| Tl  | SEQCH     | nn   | xxxx II mmmm II |          |

where: nn is the length of the field to be checked.

xxxx is the actual or descriptive address of the field. mmmm is the number of the Halt to be used if out of sequence occurs.

Description: Sets aside a working storage area and compares the specified field with this quantity. If high, unloads the new quantity, if equal or low, halts. Pushing start will cause continuation in spite of the out of sequence conditions.

Normally used immediately following a read instruction of a supposedly well ordered file, or immediately prior to writing a sorted file.

Note: See also macro ORDCH (order check), which provides different paths for High, Equal and Low conditions.

| TAG  | OPERATION | NUM. | OPERAND | COMMENTS |
|------|-----------|------|---------|----------|
| Tl   | SET       | 15   | 00nn    |          |
|      | LOD       | 15   | xxxx    |          |
|      | СМР       | 15   | ITAG -5 |          |
|      | TRH       |      | ∏TAG +5 |          |
|      | TR        |      | ITAG    |          |
|      | DCON      |      |         |          |
|      |           | nn   |         |          |
| ДТАG | HLT       |      | mmmm    |          |
|      | UNL       |      | TAG -5  |          |

# Requirements:

- (a) Requires 35 positions plus the number of digits in the field to be checked. May waste up to 4 additional positions if followed by an instruction.
- (b) If the field is of greater length than 31, ASU 01 and higher ASU's may be affected.
- (c) Comparison is used and the setting will vary.

Macro-Instruction: Set Switch to NOP Operation Code: SWNOP

Function: Sets designated switch to NOP.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | SWNOP     |      | SWITCH  |          |

where:

Tl is any tag, or may be left blank.

SWITCH is the descriptive address of some switch.

Description: Signs in ASU 15 and ADM 15 the operation part of the designated

instruction. Will set to NOP regardless of the previous setting.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND    | COMMENTS |
|-----|-----------|------|------------|----------|
| Tl  | SGN       | 15   | SWITCH 1-4 |          |
|     | ADM       | 15   | SWITCH L-4 |          |

#### Requirements and

Restrictions:

- (a) Turns the zero trigger of ASU's on.
- (b) The switch must be designated as a descriptive, may not be an actual address.

Macro-Instruction:

Set Switch to TR

Operation Code:

SWTR

Function:

Sets designated switch to TR.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | SWTR      |      | SWITCH  |          |

where:

Tl is a tag.

SWITCH is the descriptive location of some switch.

Description: Signs in ASU 15 the operation part of the designated switch.

Will set switch to TR regardless of previous setting.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND    | COMMENTS |
|-----|-----------|------|------------|----------|
| T 1 | SGN       | 15   | SWITCH  -4 |          |

## Requirements and

(a) Turns the zero trigger of the ASU's on.

#### Restrictions:

(b) The switch must be designated as a descriptive, may not be an actual address.

Macro-Instruction:

Set Up

Operation Code:

SETUP

Function:

Establishes certain recommended ASU settings.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
|     | SETUP     |      |         |          |

Description:

Sets ASU 1 to length 1, ASU 2 to length 2, ASU 3 to length 3,
ASU 4 to length 4, ASU 5 to length 5, ASU 13 to length 10,
ASU 14 to length 4. These are the initial settings made by the
loading program and 00 card produced by the Autocoder. Some
of the routines and macro-instructions depend upon these
settings.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
|     | SET       | 1    | 1       |          |
|     | SET       | 2    | 2       |          |
|     | SET       | 3    | 3       |          |
|     | SET       | 4    | 4       |          |
|     | SET       | 5    | 5       |          |
|     | SET       | 14   | 4       |          |
|     | SET       | 13   | 10      |          |

Restriction:

(a) May turn on the ASU zero trigger.

Macro-Instruction: Transfer Equal or High Operation Code: TREH

Function: Transfers equal or high.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | TREH      |      | xxxx    |          |

where:

Tl is any tag, or may be left blank.

xxxx may be any descriptive or actual address.

Description:

Transfers to designated address if high or equal triggers are on.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | TRH       |      | xxxx    |          |
|     | TRE       |      | xxxx    |          |

Macro-Instruction: Transfer Equal or Low Operation Code: TREL

Function: Transfers on equal or low.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | TREL      |      | xxxx    |          |

where:

Tl is any tag, or may be left blank.

xxxx may be any descriptive or actual address.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | TRH       |      | T1 +15  |          |
|     | TRE       |      | xxxx    |          |
|     | TR        |      | xxxx    |          |

Macro-Instructions:

Transfer Low

Operation Code:

TRLOW

Function:

Transfers low.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T 1 | TRLOW     |      | xxxx    |          |

where:

T1 is any tag, or may be left blank.

xxxx may be any descriptive or actual address of an instruction.

Description:

Transfers to the designated address if neither the high nor equal

triggers are on.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | TRH       |      | T1 + 15 |          |
|     | TRE       |      | T1 + 15 |          |
|     | TR        |      | xxxx    |          |

Macro-Instruction: Transfer Minus Operation Code: TRMIN

Function: Transfers minus.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | TRMIN     | nn   | xxxx    |          |

where: Tl is

Tl is any tag, or may be left blank.

xxxx may be any descriptive or actual address of an instruction.

Description: Transfers to the designation if zero trigger is not on.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | TRP       | nn   | T1 + 10 |          |
|     | TR        |      | xxxx    |          |

Macro-Instruction:

Transfer Non-Zero

Operation Code:

TRNZ

Function:

Transfers non-zero.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | TRNZ      | nn   | xxxx    |          |

where:

Tl is any tag, or may be left blank.

xxxx may be any descriptive or actual address of an instruction.

Description: Transfers to the designated address if plus trigger is not on.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | TRZ       | nn   | T1 + 10 |          |
|     | TR        |      | xxxx    |          |

Macro-Instruction: Transfer Not Equal Operation Code: TRNE

Function: Transfers not equal.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | TRNE      | nn   | xxxx    |          |

where:

Tl is any tag, or may be left blank.

xxxx may be any descriptive or actual address of an instruction.

nn is designated ASU.

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Τl  | TRE       | nn   | T1+10   |          |
|     | TR        |      | xxxx    |          |

#### SECTION III

#### FLOATING DECIMAL ARITHMETIC MACRO-INSTRUCTIONS

A library of subroutines and macro-instructions for floating point operations, is available with the 705 Autocoder System. A mnemonic code, beginning with F requests each such operation.

#### LIST OF FLOATING POINT OPERATIONS

| MNEMONIC | OPERATION      | TYPE |
|----------|----------------|------|
| FRA      | Reset Add      | M    |
| FRS      | Reset Subtract | M    |
| FAD      | Add            | MS   |
| FSU      | Subtract       | MS   |
| FMP      | Multiply       | MS   |
| FDV      | Divide         | MS   |
| FAB      | Absolute       | M    |
| FST      | Store          | M    |
| FTP      | Transfer Plus  | M    |
| FTZ      | Transfer Zero  | M    |
| FTM      | Transfer Minus | M    |
| FLO      | Float          | MS   |
| FIX      | Fix            | MS   |
| DO FLN   | Log            | DMS  |
| DO FEX   | Exponential    | DMS  |
| DO FSQR  | Square Root    | DMS  |
| DO FSIN  | Sine           | DMS  |
| DO FATN  | Arctan         | DMS  |
|          |                |      |

### Explanation of Types

- M Macro-instruction.
- MS Macro-instruction linkage and linked subroutine, which may require a specified operand.
- DMS Macro-instruction linkage and linked subroutine, not requiring a specified operand.

  (See DO Subroutine, page 129)

Each floating point number consists of two parts: a mantissa, a number between 0 and 1; and an exponent, which is the power of 10 that restores the mantissa to its true form (fixed-point) by multiplication.

## Examples:

#### Fixed-Point

## Floating Point

| -12.345678  | = | $12345678 \times 10^{2}$              |
|-------------|---|---------------------------------------|
| . 12345678  | = | . 123456 <b>7</b> 8 × 10 <sup>0</sup> |
| . 012345678 | = | $.12345678 \times 10^{-1}$            |

The floating point word-length for these operations described herein is 10 characters: 8 for the mantissa and 2 for the exponents. Both the mantissa and exponent are signed. In the 705 memory the above numbers would appear as:

| 02      | $1234567\overline{8}$ |
|---------|-----------------------|
| +<br>00 | 12345678              |
| 01      | 12345678              |

The range of the mantissa M is

 $0 \le M < 1$ .

The range of the exponent P is

 $-99 \le P \le 99$ .

Floating point operations which could possibly produce numbers whose exponents exceed this range have programmed halts.

A floating point zero is represented as  $9\overline{9}$  0000000 $\overline{0}$ 

A 10-character area in memory, which is designated by the signed literal operand

#### (+FLOATACCUM)

is used as a pseudo-accumulator for floating point operations, serving the same function as the accumulator for 705 instructions. Any Autocoder instruction, other than a floating point operation, will not disturb the contents of the pseudo-accumulator unless the instruction specifies the signed literal operand

#### (+FLOATACCUM)

Use of the floating point operations FLOAT and FIX is restricted to fixed point numbers of the form + xxxxx.xxxx

a 10-character field. The decimal point should not be written.

## PROGRAMMED HALTS IN FLOATING POINT OPERATIONS.

| FAD/FSU Underflow in exponent Overflow in exponent Modulo 100  FMP Underflow in exponent Overflow in exponent Underflow in exponent Underflow in exponent Underflow in exponent Underflow in exponent Overflow in exponent | HALT ADDRESS | OP      | CAUSE                 | RESULTS ON PRESSING<br>START KEY |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|-----------------------|----------------------------------|
| 8001 8002 FMP Underflow in exponent Voverflow in exponent Overflow in exponent Underflow in exponent Underflow in exponent Underflow in exponent Underflow in exponent Voverflow in exponent Overflow in exponent Accumulator is set 9999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8000         | FAD/FSU | Underflow in exponent | Exponent reduced                 |
| 8002 FMP Underflow in exponent 8003 FMP Overflow in exponent 8004 FDV Underflow in exponent 8005 FDV Overflow in exponent 8006 FDV Division by zero Contents of Floating Decimal Accumulator is set 999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         | ,                     | -                                |
| 8003 FMP Overflow in exponent 8004 FDV Underflow in exponent 8005 FDV Overflow in exponent 8006 FDV Division by zero Contents of Floating Decimal Accumulator is set 999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8002         | · ·     | 1                     |                                  |
| 8005 FDV Overflow in exponent 8006 FDV Division by zero Contents of Floating Decimal Accumulator is set 999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8003         | FMP     | -                     |                                  |
| 8005 FDV Overflow in exponent 8006 FDV Division by zero Contents of Floating Decimal Accumulator is set 999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8004         | FDV     | Underflow in exponent |                                  |
| Accumulator is set 999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8005         | FDV     |                       |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8006         | FDV     | Division by zero      | Contents of Floating Decimal     |
| 9007   FIV   Number too large   000000000 := -t1t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |         |                       | Accumulator is set 9999999999    |
| out   rix   Number too large   9999999999 is stored at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8007         | FIX     | Number too large      | 9999999999 is stored at          |
| designated address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |         |                       | designated address               |
| 8008 FSQR Square root of negative Original contents of Floating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8008         | FSQR    |                       | 9                                |
| argument Decimal Accumulator left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |         | argument              | •                                |
| intact. Transfer out of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |         |                       |                                  |
| subroutine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000        |         | _                     |                                  |
| 8009 FEX Argument too large Contents of Floating Decimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8009         | FEX     | Argument too large    | 8                                |
| 8010 FSIN Argument too large Contents of Floating Decimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0010         | TOOTE   |                       |                                  |
| Tilgament too large Contents of Floating Beeman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0010         | FSIN    | Argument too large    | S                                |
| Accumulator are set to 0110000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |         |                       |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8011         | ET N    | Log of possitive      |                                  |
| FLN Log of negative Original contents of Floating argument Decimal Accumulator are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0011         | LLI     | -                     |                                  |
| left intact and a transfer out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         | argument              |                                  |
| of the sub-routine is executed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         | 1                     |                                  |
| 8012 FLN Log of zero argument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8012         | FLN     | Log of zero argument  | or the sub-routine is executed   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | ,       |                       |                                  |

Macro-Instruction: Absolute, Floating Operation Code: FAB

Function: The sign of the mantissa in the Floating Decimal Accumulator is

made plus.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Т1  | FAB       |      |         |          |

where: Tl is any tag or may be blank.

(+FLOATACCUM) is the literal referring to the Floating Decimal

Accumulator

Description: The sign of the mantissa is stripped off and replaced by a Plus

sign.

## Coding Produced:

| Tl | RAD | 15 | (+FLOATACCUM) |  |
|----|-----|----|---------------|--|
|    | UNL | 15 | (+FLOATACCUM) |  |
|    | LOD | 15 | (+FLOATACCUM) |  |
|    | ST  | 15 | (+FLOATACCUM) |  |

Requirements and (a) Contents of ASU 15 are destroyed.

Restrictions: (b) Memory: 20 characters.

Macro-Instruction: Add, Floating Operation Code: FAD

Function: The contents of the Floating Decimal Accumulator are added algebraically to the operand, and this sum replaces the contents of the Floating Decimal Accumulator.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | FAD       |      | OPERAND |          |
|     |           |      | 1       |          |

Description: The difference of the exponents is calculated and tested. If this difference is greater than seven the larger argument is placed in the Floating Decimal Accumulator. Otherwise the difference of the exponents (in absolute value) is used by a shift instruction to line up the decimal points of the two arguments for addition. After addition of the two arguments, the exponent of the sum is determined by the exponent of the larger argument. In the case of overflow in the addition of the mantissas, a one is added to the exponent of the sum.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND  | COMMENTS |
|-----|-----------|------|----------|----------|
| T1  | LOD       | 13   | OPERAND  |          |
| Ħn  | LOD       | 14   | Цn       |          |
|     | TR        |      | FAD  +00 | 020      |
|     | INCL      |      | FAD      |          |

# Requirements and Restrictions:

- (a) ASU 13 must be set to 10 characters.
- (b) ASU 14 must be set to 4 characters.
- (c) Contents of ASU's 13, 14, 15 are destroyed.
- (d) The sign of the ASU's is set to plus.
- (e) Contents of the accumulator are destroyed.
- (f) Programmed stops:
  - 1. HLT 8000 Underflow in exponent
  - 2. HLT 8001 Overflow in exponent

Upon pressing the start key the exponent is reduced mod 100 (by a SET 0002 instruction).

- (g) Number of instructions: 57.
- (h) Amount of space required: 327.
- (i) Execution time: 5.1 milliseconds.

Macro-Instruction: Divide, Floating

Operation Code: FDV

Function: The contents of the Floating Decimal Accumulator are divided by the operand, and this quotient replaces the contents of the Floating Decimal Accumulator.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | FDV       |      | OPERAND |          |
|     |           |      |         |          |

Description: The divisor is tested for zero, in which case there is a programmed halt. Then the dividend is tested for zero to by-pass calculation of a zero quotient. If neither argument is zero, a division is executed and the leading digit of the quotient is tested for zero. In the case of a zero leading digit, the exponent of the quotient is the difference of the exponents of the arguments. In the case of a non-zero leading digit, one is added to the exponent of the quotient.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | LOD       | 13   | OPERAND |          |
| Пn  | LOD       | 14   | Дп      |          |
|     | TR        |      | FDV L   |          |

## Requirements and Restrictions:

- (a) ASU 13 must be set to 10 characters.
- (b) ASU 14 must be set to 4 characters.
- (c) Contents of ASU's 13, 14, 15 are destroyed.
- (d) The sign of the ASU's is set to plus.
- (e) Contents of the accumulator are destroyed.
- (f) Programmed stops:
  - 1. HLT 8004 Underflow in exponent
  - 2. HLT 8005 Overflow in exponent

Upon pressing the start key the exponent is reduced mod 100 (by a SET 0002 instruction).

3. HLT 8006 - Division by zero

Upon pressing the start key the contents of the Floating Decimal Accumulator are set to a mantissa of 99999999 and an exponent of 99.

- (g) Number of instructions: 35.
- (h) Amount of space required: 211.
- (i) Execution time: 15.7 milliseconds.

Macro-Instruction: Fix, Floating Operation Code: FIX

Function: The number in the Floating Decimal Accumulator is converted to a fixed decimal word

xxxxx. xxxx<del>x</del>

and stored at the designated address.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Т   | FIX       |      | OPERAND |          |
|     |           |      |         |          |

Description: The exponent of the contents of the Floating Decimal Accumulator is compared (in absolute value) to five which is the maximum exponent possible. If the exponent is less than or equal to five, it used for a shift instruction. If the exponent is less than -5, the answer is set to zero.

## Coding Produced:

| TAG   | OPERATION | NUM. | OPERAND |                | COMMENTS |
|-------|-----------|------|---------|----------------|----------|
| Т1    | NOP       |      | OPERAND |                |          |
|       | RCV       | 14   | T1      | <b>+</b> 00026 |          |
|       | TMT       | 14   | Т1      | l+00001        |          |
| $I_n$ | LOD       | 14   | $\pi_n$ | 1              |          |
|       | TR        |      | FIX     |                |          |
|       | ST        |      | OPERAND |                |          |

# Requirements and Restrictions:

- (a) ASU 14 must be set to 4 characters.
- (b) Contents of ASU's 14, 15 are destroyed.
- (c) Contents of the accumulator are destroyed.
- (d) Programmed stops:
  - 1. HLT 8007 Argument out of range Upon pressing start key the number 99999.99999 is stored at the designated address.
- (e) Number of instructions: 20.
- (f) Amount of space required: 128.
- (g) Execution time: 1.36 milliseconds.

Macro-Instruction: Float

Operation Code: FLO

Function: The fixed decimal word

XXXXX. XXXXX

at the designated address is converted to a floating decimal word and stored in the Floating Decimal Accumulator.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | FLO       |      | OPERAND |          |
|     |           |      |         |          |

Description: An initial maximum exponent of 5 is assumed. By normalizing and shifting, leading zeros are stripped from the word. Each zero thus dropped accounts for a one subtracted from the working exponent.

## Coding Produced:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | RAD       |      | OPERAND |          |
| Жn  | LOD       | 14   | Ħn      |          |
|     | TR        |      | FLO     |          |
|     | INCL      |      | FLO     |          |

# Requirements and Restrictions:

- (a) ASU 14 must be set to 4 characters.
- (b) Contents of ASU's 14, 15 are destroyed.
- (c) Contents of the accumulator are destroyed.
- (d) Programmed stops: None.
- (e) Number of instructions: 13.
- (f) Amount of space required: 82.
- (g) Execution time: 2.48 milliseconds.

## Macro-instruction: Multiply, Floating

Function: The contents of the Floating Decimal Accumulator are multiplied by the operand, and this product replaces the contents of the Floating Decimal Accumulator.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | FMP       |      | OPERAND |          |
|     |           |      |         |          |

Description: Each number is tested for zero, in which case calculation is bypassed. For a non-zero product the leading digit is tested for zero. In the case of the non-zero leading digit the exponent of the answer is the sum of the exponents of the arguments. In the case of the zero leading digit, one is subtracted from the exponent of the product.

## Coding Produced:

| TAG        | OPERATION | NUM. | OPERAND | COMMENTS |
|------------|-----------|------|---------|----------|
| <b>T</b> 1 | LOD       | 13   | OPERAND |          |
| Цn         | LOD       | 14   | Пп      |          |
|            | TR        |      | FMP     |          |

# Requirements and Restrictions:

- (a) ASU 13 must be set to 10 characters.
- (b) ASU 14 must be set to 4 characters.
- (c) Contents of ASU's 13, 14, 15 are destroyed.
- (d) The sign of the ASU's is set to plus.
- (e) Contents of the accumulator are destroyed.
- (f) Programmed stops:
  - 1. HLT 8002 Underflow in exponent
  - 2. HLT 8003 Overflow in exponent

Upon pressing the start key the exponent is reduced mod 100 (by a SET 0002 instruction).

- (g) Number of instructions: 29.
- (h) Amount of space required: 173.
- (i) Execution time: 3.9 milliseconds.

Macro-Instruction: Reset Add, Floating Operation Code: FRA

Function: The contents of the Floating Decimal Accumulator are replaced by

the operand.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | FRA       |      | OPERAND |          |

where:

Il is any tag or may be blank.

(+FLOATACCUM) is the literal referring to the Floating Decimal

Accumulator.

Description: The operand is loaded into ASU 13 which is then unloaded into a

10-character area of memory referred to as the Floating Decimal

Accumulator.

### Coding Produced:

| Tl | LOD | 13 | OPERAND         |  |
|----|-----|----|-----------------|--|
|    | UNL | 13 | (+ FLOAT ACCUM) |  |

### Requirements and

- (a) ASU 13 must be set to 10 characters.
- (b) Contents of ASU 13 are destroyed.
- (c) Address modification of the macro-instruction should refer to T1.
- (d) Memory: 10 characters.

Macro-Instruction: Reset Subtract, Floating Operation Code: FRS

Function: The contents of the Floating Decimal Accumulator are replaced by

the negative of the operand.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | FRS       |      | OPERAND |          |

where:

Tl is any tag or may be blank.

(+FLOATACCUM) is the literal referring to the Floating Decimal

Accumulator.

Description: The operand is loaded into ASU 13 and ASU 13 is then unloaded into a 10-character area of memory referred to as the Floating Decimal Accumulator. The negative of the mantissa is placed in Accumulator and then this negative mantissa is stored in the Floating Decimal Accumulator.

## Coding Produced:

| TAG   | OPERATION | NUM. | OPERAND       | COMMENTS |
|-------|-----------|------|---------------|----------|
| Т1    | LOD       | 13   | OPERAND       |          |
| ····· | UNL       | 13   | (+FLOATACCUM) |          |
|       | RSU       |      | (+FLOATACCUM) |          |
|       | ST        |      | (+FLOATACCUM) |          |

## Requirements and

- (a) ASU 13 must be set to 10 characters.
- (b) The contents of ASU 13 are destroyed.
- (c) Address modification of the macro-instruction should refer to T1.
- (d) Memory: 20 characters.

Macro-Instruction:

Store, Floating

Operation Code:

**FST** 

Function:

The operand is replaced by the contents of the Floating Decimal

Accumulator.

### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | FST       |      | OPERAND |          |

where:

Il is any tag or may be blank.

(+FLOATACCUM) is the literal referring to the Floating Decimal

Accumulator.

Description: The contents of the Floating Decimal Accumulator is transmitted

(character-by-character) to the location of the operand.

### Coding Produced:

|    |     |    | 1             |  |
|----|-----|----|---------------|--|
|    |     |    |               |  |
| Tl | RCV | 13 | OPERAND       |  |
|    | TMT | 13 | (+FLOATACGUM) |  |

## Requirements and

- (a) ASU 13 must be set to 10 characters.
- (b) Contents of ASU 13 are destroyed.
- (c) Address modification of the macro-instruction should refer to T1
- (d) Memory: 10 characters.

## Macro-Instruction: Subtract, Floating

Operation Code: FSU

Function: The operand is subtracted from the contents of the Floating Decimal Accumulator, and this difference replaces the contents of the Floating Accumulator.

## Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| T1  | FSU       |      | OPERAND |          |
|     |           |      |         |          |

Description: The sign of the operand is changed. Then the sub-routine Add, Floating is used.

## Coding Produced:

| TAG                         | OPERATION | NUM. | OPERAND                   | COMMENTS |
|-----------------------------|-----------|------|---------------------------|----------|
| T1                          | LOD       | 13   | OPERAND                   |          |
| $\mathbf{\Pi}_{\mathrm{n}}$ | LOD       | 14   | $\mathbf{I}_{\mathrm{n}}$ |          |
|                             | TR        |      | FAD                       |          |
|                             | INCL      |      | FAD                       |          |

# Requirements and Restrictions:

- (a) ASU 13 must be set to 10 characters.
- (b) ASU 14 must be set to 4 characters.
- (c) Contents of ASU's 13, 14, 15 are destroyed.
- (d) The sign of the ASU's is set to plus.
- (e) Contents of the accumulator are destroyed.
- (f) Programmed stops:
  - 1. HLT 8000 Underflow in exponent.
  - 2. HLT 8001 Overflow in exponent.

Upon pressing the start key the exponent is reduced mod 100 (by a SET 0002 instruction).

- (g) Number of instructions: 57
- (h) Amount of space required: 327
- (i) Execution time: 5.1 milliseconds

Macro-Instruction: Transfer Minus, Floating Operation Code: FTM

Function: Control is transferred to the instruction at the designated address if the mantissa in the Floating Decimal Accumulator is minus.

#### Instruction Format:

| LINE | TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|------|-----|-----------|------|---------|----------|
| 010  | T1  | FTM       |      | OPERAND |          |

where:

Tl is any tag or may be blank.

(+FLOATACCUM) is the literal referring to the Floating Decimal Accumulator.

Description: The mantissa is placed in the Accumulator and then the sign of the Accumulator is tested for plus. If the sign is not plus then a transfer is executed to the designated address.

## Coding Produced:

| тl | RAD | (+FLOATACCUM) |  |
|----|-----|---------------|--|
|    | TRP | T1 + 15       |  |
|    | TR  | OPERAND       |  |

Requirements and

- (a) The contents of the Accumulator are destroyed.
- (b) Address modification of the macro-instruction should refer to T1+ 10.
- (c) Memory: 15 characters.

Macro-Instruction:

Transfer Plus, Floating

Operation Code:

FTP

Function:

Control is transferred to the instruction at the designated address if the sign of the mantissa in the Floating Decimal Accumulator is Plus.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | FTP       |      | OPERAND |          |

where:

Il is any tag or may be blank.

(+FLOATACCUM) is the literal referring to the Floating Decimal

Accumulator.

Description: The mantissa is placed in the Accumulator and then the sign of the

Accumulator is tested for plus.

#### Coding Produced:

| Tl | RAD | (+FLOATACOUM) |  |
|----|-----|---------------|--|
|    | TRP | OPERAND       |  |

## Requirements and

- (a) The contents of the Accumulator are destroyed.
- (b) Address modification of the macro-instruction should refer to T1 + 5.
- (c) Memory: 10 characters.

Macro-Instruction: Transfer Zero, Floating Operation Code: FTZ

Function: Control is transferred to the instruction at the designated address if

the mantissa in the Floating Decimal Accumulator is zero.

#### Instruction Format:

| TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|-----|-----------|------|---------|----------|
| Tl  | FTZ       |      | OPERAND |          |

where: Tl is any tag or may be blank.

(+FLOATACCUM) is the literal referring to the Floating Decimal

Accumulator.

Description: The mantissa is placed in the Accumulator and then the contents

of the Accumulator is tested for zero.

## Coding Produced:

| TI | RAD | (+FLOATACCUM) |  |
|----|-----|---------------|--|
|    | TR₹ | OPERAND       |  |

Requirements and

- (a) The contents of the Accumulator are destroyed.
- (b) Address modification of the macro-instruction should refer to T1 + 5.
- (c) Memory: 10 characters.

Macro-Instruction:

DO FATN

Operation Code:

FEX

FLN

Operand: Name of Subroutine

FSIN **FSQR** 

The number in the Floating Decimal Accumulator is replaced by the functional value (i. e. FSQR produces the square root of the number).

#### Instruction Format:

| LINE | TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|------|-----|-----------|------|---------|----------|
| 010  | Т1  | DO        |      | xxxxx   |          |
| 020  |     |           |      |         |          |

where:

Tl is any tag, or may be left blank.

xxxxx is the mnemonic code for the subroutine. (i.e. FSQR)

Description:

An INCLude operation code for the specific subroutine and the

link to the subroutine are produced.

### Coding Produced:

| LINE | TAG | OPERATION | NUM. | OPERAND | COMMENTS |
|------|-----|-----------|------|---------|----------|
| 010  |     | INCL      |      | FSQR    |          |
| 020  | Tl  | LOD       | 14   | T1      |          |
| 030  |     | TR        | 14   | FSQR    |          |

#### Requirements and

(a) ASU 14 must be set to 4 positions.

Restrictions:

(b) Contents of ASU 14 are destroyed.

(c) See Requirements and Restrictions for specific subroutine.

Sub-routine: Arctan, Floating <u>Label</u>: FATN

Function: The number in the Floating Decimal Accumulator is replaced by its arctan.

Method of Calculation: The argument is converted to fixed-point form. To reduce the range of the argument for the approximating polynomial the following inverse trigonometric relation is used:

arctan x = arctan x<sub>m</sub> + arctan z

where

$$\mathbf{z} = \frac{\mathbf{x} - \mathbf{x}_{\mathbf{m}}}{1 + \mathbf{x}_{\mathbf{m}} \cdot \mathbf{x}}$$

which has the range (-. 13734, + . 13734) required for the approximating polynomial.

A table of values of the arctan function over the quadrant  $(0,\frac{\pi}{2})$ , which is divided into twelve segments, provides the necessary accuracy for the approximating polynomial in the argument  $\mathbf{z}$ .

A 5-th order approximating polynomial for arctan z is used:

 $\arctan \mathbf{z} = \mathbf{a}_1 \mathbf{z} + \mathbf{a}_3 \mathbf{z}^3 + \mathbf{a}_5 \mathbf{z}^5$ 

where

$$a_1 = +0.9999999922$$
 $a_3 = -0.3332964$ 
 $a_5 = +0.1957$ 

The final calculation:  $\arctan x = \arctan x_m + \arctan x$ 

requires the value of  $arctan\ x_m$  extracted from the table of the arctan function and the evaluation of the approximating polynomial.

## Requirements and

- (a) Programmed stops: None.
- (b) Number of instructions: 99.
- (c) Amount of space required: 801.(d) Execution time: 26.8 milliseconds.
- (e) Accuracy: Maximum absolute error of 5 in 9th decimal place.
- (f) Range of argument:  $/x/<10^{99}$ .

Sub-routine: Exponential, Floating Label: FEX

Function: The number in the Floating Decimal Accumulator is replaced by its exponential.

Method of Calculation: Let 
$$e^{x} = 10^{Mx} \text{ where } M = \log_{10}e.$$
 Since 
$$10^{Mx} = 10^{W} + D = 10^{W} \cdot 10^{D}, 0^{\frac{7}{2}} D < 1$$
 then 
$$e^{x} = 10^{W} \cdot 10^{D}.$$

To reduce the range of the argument D for a polynomial approximation of range (-.054, .054), the following transformations are employed:

A. The first relation applied reduces the range of the argument D to a range of  $(0, \log_{10} 2)$ :

for 
$$0 \not = D < \log_{10}^2 2$$
 we have  $10^D = 1.10^D$ 

$$\log_{10}^2 \not = D < \log_{10}^4 4$$

$$\log_{10}^4 \not = D < \log_{10}^8 8$$

$$\log_{10}^8 \not = D < 1$$

$$= 2.10^{D-\log_{10}^2}$$

$$= 4.10^{D-\log_{10}^4}$$

$$\log_{10}^8 \not = D < 1$$

$$= 8.10^{D-\log_{10}^8}$$

B. To employ a polynomial approximation for  $e^{\mathbf{z}}$  we apply the following relation to the new arg  $\overline{\mathbf{D}}$   $\underline{\underline{\mathbf{I}}}$  . $\overline{\mathbf{D}}$ 

If we let 
$$\frac{1}{10^{\overline{D}} = e^{\overline{M}}} \cdot \overline{D}$$

$$Y = \overline{M}$$

then the range of the new argument Y is 0 < /Y/ < .7

C. To further reduce the range of the argument a table of the exponential function supplies the value  $\mathbf{x}_0$  such that

$$/Y - x_0 / < .054$$
Let  $Y - x_0 = Z$ 
then  $e^Y = e^{x_0} . e^{x_0}$ 

Corresponding to  $x_0$ , the table supplies  $e^{X_0}$ .

Sub-routine:

Exponential, Floating

-2-

Label: FEX

To evaluate e<sup>z</sup> we apply the polynomial

$$e^{z} = a_0 + a_1 + a_2 + a_3 + a_4 + a_4 + a_5 + a_4 + a_5 + a_$$

where

 $a_0 = 1.00000000$ 

 $a_2 = 0.50000000$ 

 $a_3 = 0.166688$ 

 $a_4 = 0.04167$ 

The range of  $\Xi$  is (-.054, +.054).

Finally we find the product

$$10^{\mathrm{W}}$$
.  $2^{\mathrm{i}}$ .  $e^{\mathrm{x}}$ o.  $e^{\mathrm{z}}$ 

which is 
$$10^{\,\mathrm{W}}$$
 .  $2^{\,\mathrm{i}}$  (e  $^{\,\mathrm{Y}}$ )

$$= 10^{W} \cdot 10^{D}$$

 $= e^{X}$ 

## Requirements and Restrictions:

- (a) Programmed stops:
  - HLT 8009 Argument out of range (too large). Upon pressing start key the contents of the Floating Decimal Accumulator are set to  $(.99999999 \times 1099.)$
- (b) Number of instructions: 101
- (c) Amount of space required: 799
- (d) Execution time: 20.74 milliseconds
- (e) Accuracy: Maximum absolute error of 5 in 9th decimal place.
- (f) Range of argument:  $/x/<10^2$ .

Sub-routine: Natural Logarithm, Floating Label: FLN

Function: The number in the Floating Decimal Accumulator is replaced by its natural logarithm.

Method of Calculation: Let N = M. 10P, where  $.1 \not \le M \le 1$  and P is an integer, then  $log_{10}N=P+log_{10}M$ 

Given a table of multipliers

$$A_1, A_2, \ldots, A_9$$

a multiplier is chosen on the basis of the first significant digit of the argument M. The product of M and the multiplier is formed to obtain the next multiplier, on the same basis as the first multiplier. This process continues until the final product

$$M' = M(A_1 A_2 A_3 ... A_k) = M \prod_{i=1}^{k} A_i$$

falls in the range  $1 \stackrel{\cancel{\ }}{=} M' < 1.1$ . The calculation of  $\log_{10}M$  is based on

$$\log_{10}M = \log_{10}M' - \sum_{i=1}^{k} \log_{10}A_i$$

To evaluate  $\log_{10} M'$  (1  $\frac{1}{2}$  M' < 1.1), the following approximating polynomial is used

$$\log_{10} (1 + x) \quad a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$$
where
$$a_1 = + 0.4342944616$$

$$a_2 = -0.2171448$$

$$a_3 = + 0.14466$$

$$a_4 = -0.10653$$

$$a_5 = + 0.068$$

which has a maximum absolute error of 68 in the 12th decimal place.

is computed while the multipliers are chosen, having stored log Ai in the table with their corresponding Ai.

Finally  $log_eN$  is obtained by multiplying  $log_{10}N$  by  $log_e10$ .

Sub-routine: Natural Logarithm, Floating -2- Label: FLN

## Requirements and Restrictions:

(a) Programmed stops:

- 1. HLT 8011 Negative Argument
- 2. HLT 8012 Zero Argument

Upon pressing start key, the original contents of the Floating Decimal Accumulator are left intact, and a transfer out of the sub-routine is executed.

- (b) Number of instructions: 69
- (c) Amount of space required: 572.
- (d) Execution time: 21.05 milliseconds.
- (e) Accuracy: Maximum absolute error of 5 in 9th decimal place.
- (f) Range of argument:  $0 < x < 10^{99}$ .

Sub-routine: Sine (radian), Floating

Label: FSIN

Function: The number in the Floating Decimal Accumulator is replaced by its sine.

Method of Calculation: The argument is converted to fixed-point form and multiplied by  $\frac{1}{2\pi}$ . The fractional part of this product represents the angle as a fraction of  $2\pi$  radians. The integral part is discarded. By use of trigonometric identities the angle is reduced to an angle in the first quadrant as follows:

for 
$$o = x < \frac{\pi}{2}$$
 radians  $\sin x = \sin x$   
 $\frac{\pi}{2} = x < \pi$   $\sin x = \sin (\pi - x)$   
 $\pi = x < 3 \frac{\pi}{2}$   $\sin x = \sin (x - \pi)$   
 $\frac{3\pi}{2} = \frac{1}{2} = x < 2\pi$   $\sin x = \sin (2\pi - x)$ 

The angle, now in the first quadrant, is changed to a fraction of  $\frac{\pi}{2}$  radians for use in the approximating polynomials for  $\sin\frac{\pi}{2}$  z and  $\cos\frac{\pi}{2}$  z. The range of the argument, x, which is a fraction of  $\frac{\pi}{2}$  radians, is (-1, +1)

A table of sine and cosine values for angles which are fractions of  $\frac{\pi}{2}$  in the range (-1, +1) produces a new argument

$$z = x-y$$
 /z/<.11934

where y is the nearest table value to x. The sine and cosine values of y are applied in the trigonometric relation

$$\sin (z + y) = \sin z \cos y + \sin y \cos z$$

The approximating polynomials for  $\sin \frac{\pi}{2}$  z and  $\cos \frac{\pi}{2}$  z, respectively, are:

$$\sin \frac{\pi}{2} \quad \mathbf{g} = \mathbf{a}_1 \mathbf{g} + \mathbf{a}_3 \mathbf{g}^3 + \mathbf{a}_5 \mathbf{g}^5$$
where
$$\mathbf{a}_1 = +1.57079637$$

$$\mathbf{a}_3 = -0.64597$$

$$\mathbf{a}_5 = +0.08$$

$$\cos \frac{\pi}{2} \quad \mathbf{g} = \mathbf{a}_0 + \mathbf{a}_2 \mathbf{g}^2 + \mathbf{a}_4 \mathbf{g}^4$$
where
$$\mathbf{a}_0 = 1.$$

$$\mathbf{a}_2 = -1.233698$$

$$\mathbf{a}_4 = +0.2532$$

Requirements and Restrictions:

(a) Programmed Stops:

1. HLT 8010 - Argument out of range (too large). Upon pressing start key the contents of the Floating Decimal Accumulator are set to one.

- (b) Number of instructions: 122.
- (c) Amount of space required: 946.
- (d) Execution time: 25.5 milliseconds.
- (e) Accuracy: Maximum absolute error of 5 in 9th decimal place.
- (f) Range of argument:  $/x/<10^{3}$ .

Sub-routine: Square Root, Floating <u>Label:</u> FSQR

Function: The number in the Floating Decimal Accumulator is replaced by its square root.

Method of Calculation: Let N = M.  $10^{P}$ , where  $1 \stackrel{L}{=} M < 1$ 

To establish a common program for odd and even powers of 10.

$$N = M' \cdot 10^{P'}$$
, where  $\cdot 01^{\frac{1}{2}} M' < 1$   
P' is even.

then  $N = M' \times 10.5P'$ 

Cor even nowers we have

For even powers we have

P' = PM' = M

but for odd powers

P' = P + 1 $M' = M \cdot 10^{-1}$ 

Two Newton's iterations are required after a first approximation  $A_1$  is calculated. This first approximation is derived by using a table of linear segments which approximate M' within a tolerance of 5 in the 5th decimal position. The range of the argument is (.01, 1).

Using Newton's Iteration Formula we find

$$A_2 = \frac{1}{2}(A_1 + \frac{M'}{A_1})$$
 $M' = \frac{1}{2}(A_2 + \frac{M'}{A_2}).$ 

Requirements and Restrictions:

(a) Programmed stops:

1. HLT 8008 - Negative Argument Upon pressing start key, the original contents of the Floating Decimal Accumulator are left intact, and a transfer out of the sub-routine is executed.

- (b) Number of instructions: 76.
- (c) Amount of space required: 497.
- (d) Execution time: 17.54 milliseconds.
- (e) Accuracy: Maximum absolute error of 5 in 9th decimal place.
- (f) Range of argument:  $0 < x < 10^{99}$ .

## SECTION IV - WRITING NEW MACRO-INSTRUCTIONS

The following section describes the process of preparing new macro-instructions which may be added to the Autocoder. An understanding of this process is not a requirement of program writing, assembly, or utilization of the Autocoder system. Reference to this section need only be made when it becomes necessary to prepare supplementary instructions to meet the requirements of an individual installation.

#### Form

The form in which the macro-instruction will be written is determined by the need it must fulfill. A macro-instruction may have a single or multiple address. Its numerical field may be used for an ASU designation or a tape unit specification or it may have other significance convenient to its function. The format is variable depending upon the use for which the instruction is designed. Each specification of a macro describes how it is to be written and what data are to be supplied.

A macro-instruction represents a sequence of other Autocoder operations which are grouped together for the convenience of the programmer. Any given programmed function can be also written using a number of conventional 705 instructions and other Autocoder operations. It is usually more economical of programming effort, however, to write a single macro-instruction instead.

#### Component Instructions

In the following explanation, the term macro-instruction refers to the written program entry. This entry causes the Autocoder assembly to refer to the Library for further information. Instructions taken from the library and included in the output program are referred to as component instructions.

The components in the Library are all Autocoder operations, i. e. 705 instructions, definitions, address constants, and DO operations. The last component of the series may be another macro-instruction. (For this purpose, DO, DOA, DOH, DOS, DOE are not considered macro-instructions. They may be placed in the series, while all other operations must be in the last line, if they are used. The component tag, if any, must be supplied by the Autocoder.)

The component instructions, as they are stored in the library, are only partially completed. The Autocoder assembly uses the information supplied by the macro-instruction entry on the program sheet to fill in the missing parts. For example, the macro-instruction MOVE may be used to transfer information from a designated location in memory to some other location. (Refer to specification of MOVE.)

Several items of information are furnished by the macro-instruction:

- 1. The tag of the area to be received;
- 2. The tag of the area to be transmitted;
- 3. The ASU designation, if serial transmission is to be used.

The two components of the MOVE macro-instruction contained in the library are the instructions RCV and TMT without addresses or ASU designation. The tags of the areas to be moved are translated by the assembly to actual addresses, the proper ASU is specified and the completed instructions placed in the main program.

#### Control Matrix

Each partial instruction in the library has a five-character code field associated with it. This code tells the assembly how each field of the component is to be treated. The five-character code is called a control matrix and each position of the code is referred to as a cell within the matrix. Reading from left to right, the cells correspond to the columns of the Autocoder program sheet, omitting the line number (Figure 1).

A character entry in the first cell causes the insertion of up to 10 characters in the tag field of the component. An entry in the second cell causes the insertion of up to five characters in the operation field of the component. An entry in the third cell causes the insertion of up to 2 characters in the numerical field; an entry in the fourth cell up to 16 characters in the operand field; an entry in the fifth cell causes the insertion of up to 52 characters in the operand field of the component. When a component is complete, it is further processed by the Autocoder in the same manner as other entries from the main program.

Should a component in a macro-instruction refer to another component in the series, the Autocoder assembly supplies one tag per macro-instruction. Such tags are always a full ten characters in length and begin with the character  $\sharp$  (lozenge).

Figure 2 is a list of permissible character entries into the control matrix. The control functions of each character, through which the Autocoder is told how to complete each component, are described. After a component instruction has been processed under control of the matrix, it is turned over to the main processing part of the Autocoder for normal incorporation into the output program.

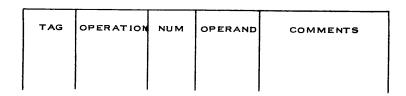



Figure 1

## Figure 2

## Cell Entries in Control Matrix:

| blank | No effect.                                                                                                                                                                      |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A     | Insert tag found in macro-instruction.                                                                                                                                          |
| В     | Insert operation found in macro-instruction.                                                                                                                                    |
| С     | Insert numeric found in macro-instruction.                                                                                                                                      |
| D     | Insert operand (10) characters found in macro-instructions. No test is made for character adjustment.                                                                           |
| Е     | Insert # quantity as generated by the Autocoder.                                                                                                                                |
| F     | Examine tag found in macro-instruction. If blank, consider as E; if not blank, consider as A.                                                                                   |
| J     | Last 705 instruction. May be in any column.                                                                                                                                     |
| K     | Insert numeric found in macro-instruction into positions 3 and 4 of operand. May be in any column of the Matrix.                                                                |
| L     | Insert numeric found in macro-instruction into positions 3 and 4 of operand. SUB ( 0) to add leading zero if necessary.                                                         |
| M     | Insert operand. Checks for character adjustment in macro-instruction and 705 instruction, using the algebraic sum as the character adjustment in the resulting 705 instruction. |
| P     | Move operand (maximum of 52 characters) from macro-instruction to operand field. Note: To move 52 characters must be in fifth column.                                           |
| w     | Insert Inquantity as generated by the Autocoder.                                                                                                                                |
| x     | Examine tag found in macro-instruction. If blank, consider as W; if not blank consider as A.                                                                                    |
| Y     | InsertHHHHquantity as generated by the Autocoder.                                                                                                                               |
| Z     | Examine tag found in macro-instruction. If blank, consider as Y; if not blank consider as A.                                                                                    |
| 1     | Search for the first lozenge in the macro-instruction and inserts in the component all the characters preceding it in the operand.                                              |
| 2     | Search for the second lozenge in the macro-instruction and inserts in the component the characters between the 1st and 2nd lozenge.                                             |

#### Figure 2

| 3 | Same - between 2nd and 3rd. |
|---|-----------------------------|
| 4 | Same - between 3rd and 4th. |
| 5 | Same - between 4th and 5th. |
| 6 | Same - between 5th and 6th. |
| 7 | Same - between 6th and 7th. |
| 8 | Same - between 7th and 8th. |
| 9 | Same - between 8th and 9th. |

The character in the matrix determines the place from which the information is to be obtained. An A causes information to be brought from the tag of the macro-instruction. A B causes information to be brought from the operation field of the macro-instruction. A C causes information to be brought from the numeric field of the macro-instruction. A D causes information to be brought from the operand field of the macro-instruction. In the case of multiple operand macro-instructions, a l causes information before the first lozenge be brought down. A 2 causes information between the first and second lozenge and so forth. Any information written after the terminal lozenge designated by the matrix is descriptive information only appearing in the output - the same function as comments.

The number of characters to be moved is determined as the lesser of two limits. Each place from which information may come has as a limit the number of characters in the field, similarly each place to which information may be sent has a limit equal to the number of characters in its field.

For instance the character 1 will cause the Autocoder to search for the 1st lozenge and insert a maximum of ten, five, two, sixteen or fifty-two characters in the component depending on whether it is placed in the 1st, 2nd, 3rd, 4th or 5th column of the matrix. The characters D, and P have identical effect, except that D establishes a limit of 10 and P a limit of 52 characters. Other exceptions to the general rule are J which flags the last entry of this macro-instruction; K and L which move two characters from the numeric column to the 3rd and 4th character positions of the operand field.

## Macro-Instruction Preparation

In the preparation of a new macro-instruction which is to be added to the Library, its functions must be properly defined. For the macro-instruction MOVE, it is known that two instructions RCV and TMT, will always serve to transfer a memory area from one location to another. Therefore, the component instructions will consist of these two instructions only. It is also known that three separate pieces of information must be supplied from the macro-instruction. These are the addresses for the receive and transmit instructions and the ASU designation to specify serial or five-character transmission. The specification for MOVE will call for the macro-instruction to be written as shown in Figure 3. Tag 1 represents the location of the "from" area; while Tag 2 represents the location of the "to" area; nn represents the ASU designation from 00 to 15. The code MOVE has been decided upon as the mnemonic of the macro-instruction.

| TAG | OPERATION | NUM. | OPERAND         | COMMENTS |
|-----|-----------|------|-----------------|----------|
|     | MOVE      | nn   | TAG 1 H TAG 2 H |          |

Figure 3

The second consideration concerns the component instructions themselves and the arrangement of their associated matrices. The components are written on the Autocoder Program sheet in normal fashion as shown in Figure 4. Note that the instructions RCV and TMT are written in the operation column. The control matrix is written in the first five positions of the Comments column. The first two cell entries are blank because neither the tag nor operation are needed from the macroinstruction. The third character is C which tells the assembly to insert the numerical information into the instruction. The fourth character of the RCV instruction is a 2 which searches for the second lozenge in the macro-instruction operand and inserts the characters preceding it into the component operand. This is the tag of the the "to" area. The fourth character of the TMT component is a 1 which inserts the characters preceding the first lozenge of the macro-instruction operand into the operand of the component instruction. This is the tag of the "from" area.

| TAG | OPERATION | NUM. | OPERAND  | COMMENTS |
|-----|-----------|------|----------|----------|
|     | RCV       |      |          | AbC2b    |
|     | TMT       |      | <u> </u> | bbC1J    |

Figure 4

#### Keypunching Component Instructions

Component instructions are key-punched from the Autocoder Program sheet, one instruction per card, using the Autocoder Instruction cards shown in Figure 5. Instructions are punched as described in the section of the Autocoder System Manual entitled Keypunching Instruction Cards, except that the control matrix is punched into the first five positions of the comments field. The five-character mnemonic identification of the macro-instruction is punched into each card preceded by the letter M into columns 75-80. Only one series of components may be punched from a single program sheet, since each series must have its own unique identification.

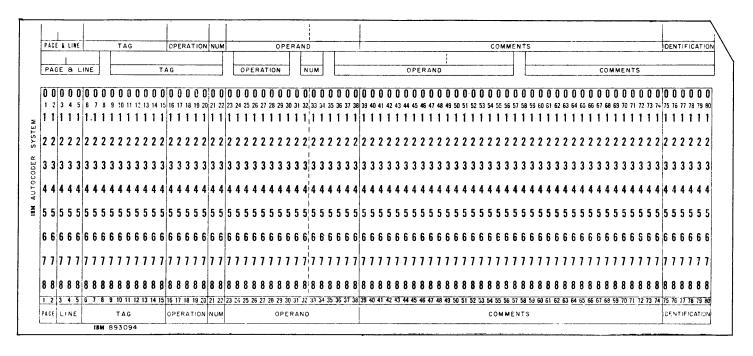



Figure 5

A header card is also punched for each macro-instruction.

| Operation field (cols. 16-20)      | Punch | INSER                   |
|------------------------------------|-------|-------------------------|
| Operand field (cols. 23-24)        | Punch | Number of components    |
| Identification field (cols. 75-80) | Punch | Letter M, followed by   |
|                                    |       | mnemonic identification |

The completed macro-instruction is placed in the library by a special processing run on the 705 as described in the Librarian section of the Autocoder System Manual.

## General Consideration

The following general considerations should be noted in the preparation of macro-instruction components, and in using macro-instructions.

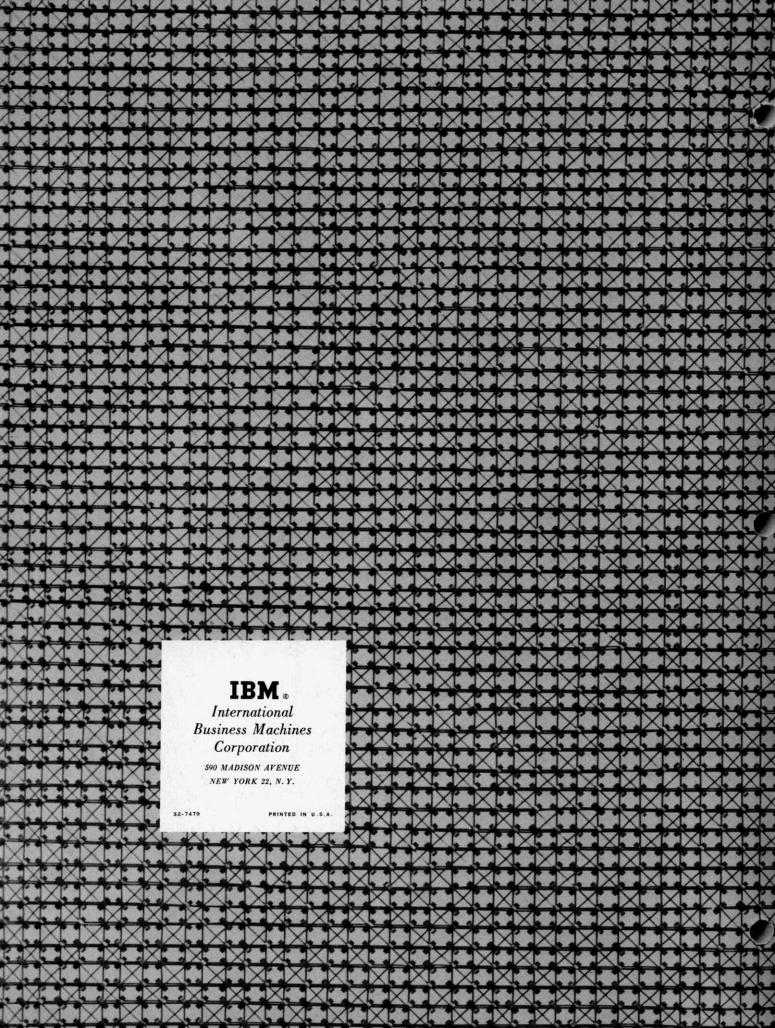
- 1. Tagging of macro-instructions is optional.
- 2. Component instructions do not have tags; tags, as required, must be supplied through the use of the control matrix.
- 3. Macro-instructions either will leave the sign trigger of the ASU's undisturbed or set plus. Exceptions will be noted.
- 4. Macro-instructions either will leave the zero trigger of the ASU's undisturbed or turned off. Exceptions will be noted.
- 5. Macro-instructions will not alter the condition of the High and Equal triggers, unless otherwise specified.
- 6. Macro-instructions and the sub-routines they include will make wide use of ASU's 13, 14 and 15 subject to 3, 4 and 5 above and also subject to the provision that they assume to find and will leave 13 set to length 10 and 14 set to length 4. The floating arithmetic routines will in addition make free use of the accumulator. Any additional ASU requirements will be noted.
- 7. Character adjustment must be placed in the 11th through 16th column of the components.
- 8. Figures for character positions required are maximum. As literals which may be shared with the rest of the program are used, and as sub-routines are included only once no matter how often they are called for, the actual requirement will have to be determined by Autocoding or else by careful study of the entire program.
- 9. Literals for working storage should contain at least one non-numerical character to eliminate the possibility of conflict with literals generated by component instructions.

## INDEX

| Macro-Instruction                           | Operation Code | Page     |
|---------------------------------------------|----------------|----------|
| Absolute, Floating                          | FAB            | 115      |
| Add, Floating                               | FAD            | 115      |
| Alternate Tape Units                        | ALTP           | 5        |
| Alternate Transfer                          | ALTTR          | 69       |
| Arctan, Floating                            | FATN           | 131      |
| Backspace Tape (using 754 CU)               | BSTP           | 6        |
| Check Total                                 | СНКТ           | 70       |
| Divide, Floating                            | FDV            | 117      |
| Do Floating Point Mathematical Subrouting   | ne             | 129      |
| Do Subroutine                               | DO P           | 71       |
|                                             | Z              | _        |
|                                             | NZ             |          |
|                                             | MIN            |          |
| Dump on Drum                                | DPDR           | 7        |
| Dump on Printer (Auto Control, 717 Printer) | DPPRA          | 9        |
| Dump on Printer (Pgm ctl, 717 Printer)      | DDDD T         | 1.1      |
| Dump on Punch                               | DPPRT<br>DPPCH | 11       |
| Dump on Tape (using 754 CU)                 | DPTCH          | 13       |
| Dump on Typewriter (without checking)       | DPTYP          | 15       |
| End Loop                                    | END            | 17<br>72 |
| Exponential, Floating                       | FEX            | 133      |
| First Time NOP                              | FTNOP          | 73       |
| First Time Transfer                         | FTTR           | 73<br>74 |
| Fix, Floating                               | FIX            | 118      |
| Float                                       | FLO            | 119      |
| Floating Decimal Arithmetic Macro-Instr     |                | 111      |
| Forward Space Tape (using 754 CU)           | FSTP           | 19       |
| Forward Wind Tape (using 754 CU)            | FWDTP          | 21       |
| Halt Off                                    | HLTOF          | 75       |
| Halt On                                     | HLTON          | 76       |
| Halt Transfer                               | HLTTR          | 77       |
| If xxx                                      | IF E           | 78       |
|                                             | LOW            | , 0      |
|                                             | Н              |          |
|                                             | EH             |          |
|                                             | EL             |          |
|                                             | NE             |          |
|                                             | Z              |          |
| Input-Output Macro-Instructions             | NZ             |          |

# INDEX (cont'd)

| Macro-Instruction                             | Operation Code | Page |
|-----------------------------------------------|----------------|------|
| Load Left Location                            | LLL            | 79   |
| Load Left Location 14                         | LLL 14         | 80   |
| Load Right Location                           | LRL            | 81   |
| Load Right Location 14                        | LRL 14         | 82   |
| Logical Macro-Instructions                    |                | 67   |
| Logical Read While Write Tape                 | RWWLG          | 23   |
| 208-04-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-   | WWRTP          |      |
| Loop                                          | LOOP           | 83   |
| Move                                          | MOVE           | 84   |
| Move Characters                               | MOVEC          | 85   |
| Move Instruction Address                      | MOVEI          | 86   |
| Multiply, Floating                            | FMP            | 120  |
| Natural Logarithm, Floating                   | FLN            | 135  |
| Order Check                                   | ORDCH          | 87   |
| Print Under Automatic Control (717 Printer)   | PRNTA          | 27   |
| Print Under Program Control (717 Printer)     | PRINT          | 29   |
| Programmed Halts in Floating Point Operations |                | 113  |
| Punch                                         | PUNCH          | 31   |
| Read Card                                     | RDCD           | 33   |
| Read Drum                                     | RDDR           | 35   |
| Read Tape (using 754 CU)                      | RDTP           | 37   |
| Read While Write Tape (using 754 CU)          | RWWTP          | 39   |
| Read While Write Tape, Logical                | RWWLG          | 22   |
|                                               | WWRTP          |      |
| Repeat, ASU Controlled                        | RPTA           | 89   |
| Repeat, Memory Controlled                     | RPTM           | 91   |
| Reset Add, Floating                           | FRA            | 121  |
| Reset Subtract, Floating                      | FRS            | 122  |
| Restore Comparison                            | RCMP           | 93   |
| Restore Sign of ASU                           | RSGN           | 94   |
| Rewind Tape (using 754 CU)                    | RWDTP          | 42   |
| Save Comparison                               | SCMP           | 95   |
| Save Sign of ASU                              | SSGN           | 97   |
| Sequence Check                                | SEQCH          | 99   |
| Set Switch to NOP                             | SWNOP          | 101  |
| Set Switch to TR                              | SWTR           | 102  |
| Set Up                                        | SETUP          | 103  |
| Sine, Floating                                | FSIN           | 137  |
| Square Root, Floating                         | FSQR           | 139  |
| Store, Floating                               | FST            | 123  |


## INDEX (cont'd)

| Macro-Instruction                                 | Operation Code | Page |
|---------------------------------------------------|----------------|------|
| Subtract, Floating                                | FSU            | 124  |
| Transfer Equal or High                            | TREH           | 104  |
| Transfer Equal or Low                             | TREL           | 105  |
| Transfer Low                                      | TRLOW          | 106  |
| Transfer Minus                                    | TRMIN          | 107  |
| Transfer Minus, Floating                          | FTM            | 125  |
| Transfer Non-Zero                                 | TRNZ           | 108  |
| Transfer Not Equal                                | TRNE           | 109  |
| Transfer Plus, Floating                           | FTP            | 126  |
| Transfer Zero, Floating                           | FTZ            | 127  |
| Type (without error correcting)                   | $	ext{TYPE}$   | 43   |
| Type and Check                                    | TYPCK          | 45   |
| Write Check Tape (using 754 CU)                   | WRCTP          | 47   |
| Write Drum                                        | WRDR           | 51   |
| Write Erase Printer (717 Printer, Auto Ctl)       | WREPA          | 53   |
| Write Erase Printer (717 Printer under pgm ctl)   | WREPR          | 55   |
| Write Erase Punch                                 | WREPN          | 57   |
| Write Erase Tape (using 754 CU)                   | WRETP          | 59   |
| Write Erase Typewriter (without error correcting) | WRETY          | 61   |
| Write Tape (using 754 CU)                         | WRTP           | 63   |
| Write Tape Mark (using 754 CU)                    | WRTM           | 65   |

It is suggested that this manual be maintained in a looseleaf form in order that new material may be easily added.

Macro-instructions and subroutines for the TRC and 760 are being prepared and will be distributed when completed.

A listing of the macro-instructions and subroutines as they appear on the Autocoder System tape is available upon request from the Program Librarian, Customer Assistance Department, IBM, 590 Madison Avenue, New York 22, New York. One master, suitable for reproduction, will be provided each account requesting this listing.

