Reference Manual

IBM 7070/7074 Four-Tape Autocoder

EM Reference Manual

IBM 7070/7074 Four-Tape Autocoder

©

operation:

1.

Stacking

2. Messages
3.
4

. Choice of parameters in skeleton routines

Tape density

The following Input/Output Control System sections have been added:

1. Restrictions on the use of the Input/Output Control System with

2.

Four-Tape Autocoder.

A list of halts and messages that may occur during assembly.

Part III has been revised.

A detailed list of changes incorporated into this manual is given in
Appendix F.

This edition supersedes the previous manual, form C28-6102.

0, 1961 by IMternational Business Machines Corporation

Contents

INTRODUCTION

PagrT I—7070/7074 FOUR-TAPE AUTOCODER LANGUAGE 1
7070/7074 Four-Tape Autocoder Statements 1
Coding Sheet i 1
AAress TYPES oo vee e e 3
Field Definitionot 4
Address Adjustment 5
Index WOrds . ..o o 5
Electronic Switches 7
Input/Output Unit and Alteration Switch Designations 7
Remarks and Commentst 7
Imperative Operationso 8
Declarative Operationsooeeeennmmnnnneneen ns 9
DA—DefiNe ATCA . . . o o oo oot e 10
DA Header Line 10
Succeeding Entries o 12
Relative Field Definition 14
DC—Define Constant 15
DCHeader Lineot 15
Numerical Constants and Adcons 16
Alphameric Constants 18
DRDW-—Define Record Definition Word 20
EQU—EQUAteoouiiniiitt s 21
Actual or Symbolic Address 21
Index Word or Electronic Switch Number 22

Channel, Channel and Unit, Arm and File, Unit Record and
Inquiry Synchronizers, Alteration Switches 23
Control Operationsoerenuneam e 23
Origin Control i 23
Litorigin Control S 25
Branch Control oo 26
End Control . .. oo e 27
ParT 11—7070/7074 FOUR-TAPE AUTOCODER LIBRARY 29
Macro-INStrUCHONS . . . o o vttt e e 29
S UM o e 30
CALL . 31
Writing Substitution-type Macro-instructions 31
SUDFOUHIIES .« o o v oo e e e e e e e e e e e 37
Writing Subroutines 38
Part I1I—7070/7074 Four-TAPE AUTOCODER PROCESSOR 41
Organization of the Processor ... 41
Program Functioning o 41
System Control 41
Librarianot s 41
Phase 1 ..ot 41
Phase & oo o e 43
Phase 3 . o 44

PRhase 4 .o oo 44

Typesof Runs 45

Original Assembly Run 45
Re-assembly Run 45

System Run 46

RUN Control Cards . .. 48
OptionCards 49
Stacking Input and Output 53
Stacking Source Programs 53
Stacking Edited Listings 54
Stacking Object Programs 54
Operating Instructions 54
Preparations for an Original Assembly 55
Preparations for a Re-assembly 56
Preparations for a System Run 56
Console Procedure 57
Halts and Messages 58
MeSsages 61
System Control and Librarian 61
Phase 1 62
Phase 2 63
Phase 3 64
Phased 65
Input/Output Control System 66
Appendix A—Processor Flow Charts 69

Appendix B—Alphabetic List of 7070 Autocoder Imperative Operation Codes 74

Appendix C—Glossary 78
Appendix D—Note on Optional Characters 80
Appendix E—Use of the Input/Output Control System 81
Appendix F—Changes to the Four-Tape Autocoder Manual 82

Introduction

The 7070/7074 Four-Tape Autocoder is a symbolic programming system designed
to simplify the preparation of programs for the 7070 and 7074 Data Processing
Systems. With the increased capacity and versatility of data processing systems,
machine-language instructions have increased correspondingly in both number
and complexity. The fact that coding in machine language today is an extremely
tedious and time-consuming task has led to the development of symbolic program-
ming systems like 7070/7074 Four-Tape Autocoder. These systems permit the
programmer to code in symbolic languages which are more meaningful and easier
to handle than numerical machine language. They also perform automatically
many burdensome tasks such as assigning and keeping track of storage locations
and checking for errors. Use of these systems will save the programmer a signifi-
cant amount of valuable programming time and effort.

This manual is to serve as a reference text on the 7070/7074 Four-Tape Auto-
coder. The information presented will enable the reader to code and process his
program using the Four-Tape Autocoder system. The manual assumes that the
programmer is familiar with the methods of data handling and the functions of
instructions in the 7070 Data Processing System; this information is included in
the 1M Reference Manual “7070 Data Processing System,” form A22-7003-2.

The 7070/7074 Four-Tape Autocoder system is designed for use in installations
having a 7070 or 7074 Data Processing System with four or five 1BM 729 Magnetic
Tape Units. Four-Tape Autocoder provides programming features that are not
available to users of 7070 Basic Autocoder. These features include the processing
of Library subroutines and “substitution-type” macro-instructions, and a consider-
able expansion of the functions of the LITORIGIN CNTRL entry. Also, columns 60-75
of the Autocoder Coding Sheet may be used for source program entries.

To avoid the need for reprogramming when advancing from Basic Autocoder to
Four-Tape Autocoder, 7070/7074 Four-Tape Autocoder has been designed to
process any program that can be assembled with 7070 Basic Autocoder. The
reverse, however, is not necessarily true.

The ability to process macro-instructions can simplify programming and reduce
the time required to write a program. Although the method of writing “substitu-
tion-type” macro-instructions for processing by Four-Tape Autocoder differs from,
and is less powerful than, the macro-generator method available in the more
advanced 1BM 7070/7074 Autocoder system (requiring six tape units), it will be
found to be an extremely valuable and time-saving programming feature. If the user
advances from Four-Tape Autocoder to 18M 7070/7074 Autocoder at some future
date, the “substitution-type” macro-instructions may be duplicated by the use of
macro generators or the program may be recoded to utilize macro-instructions
provided with, or added by the user to, the Autocoder system.

The subroutines and “substitution-type” macro-instructions processed by Four-
Tape Autocoder may come from three sources as follows:

1. Macro-instructions which are part of the Input/Output Control System may
be used as explained in Appendix E; these macros are described in the 7070
Data Processing System Bulletin “zsM 7070 Input/Output Control System,”
form]J28-6033-1. '

9. A few macro-instructions are supplied in the Library portion of the Four-
Tape Autocoder System Tape.

3. Subroutines and macro-instructions written by the user and inserted into the
Library may be utilized.

The Four-Tape Autocoder system consists of three parts: the Autocoder symbolic
language used in writing a program, the Library which contains subroutines and
macro-instructions that may be incorporated into a program, and the Four-Tape
Autocoder processor which translates the program written in Autocoder language
to a 7070 machine-language program.

An Autocoder instruction consists of three parts: a label (optional); an operation
code; and an operand, or address portion. The Autocoder imperative operation
codes are easily remembered alphameric mnemonics ranging from one to five char-
acters; e.g., the Zero Accumulator 1 and Add, Store Accumulator 2, and Halt and
Proceed instructions have Autocoder mnemonics of zal, st2 and HP, respectively.
Each 7070 machine-language command has a unique Autocoder mnemonic repre-
sentation, even though the machine-language codes may be the same. For ex-
ample, the Unit Record Read and Unit Record Punch machine commands are both
+69; the corresponding Autocoder mnemonics are Ur and up, respectively.

A major advantage of coding in Autocoder language is that the programmer need
not be concerned with the actual core storage locations of instructions or data.
Instead, he may assign meaningful mnemonic labels, or names, to instructions and
to data fields within an area. The programmer may then refer to a certain instruc-
tion or operate on a particular data field merely by writing the name which he has
assigned to the instruction or data field in the operand of an imperative operation.

In addition to the imperative operation codes, which correspond to the 7070
machine-language codes, the Autocoder language includes “declarative” opera-
tions which serve to provide the processor with the information necessary to prop-
erly complete the program imperative instructions. They are used by the pro-
grammer to name and define the positions and lengths of data fields within an
area; to name and enter program constants; to instruct the processor to generate
record definition words associated with particular data areas; and, for program-
ming convenience, to give names to items such as alteration switches, unit record
synchronizers and index words.

To illustrate Autocoder coding, a programmer might assign, through the pa
(Define Area) declarative operation, the following mnemonic names to data fields
within a payroll record: HRSWORKED, RATE, EARNINGS. Also, the name CALVACDUE
might be given to the first instruction of a routine within a payroll program which
is used to calculate the amount of vacation time due an employee. Suppose it is
desired to multiply the contents of the field named HRswORKED by the contents of
the field named RATE, store the result in the EARNINGS field, and then branch to
the CALVACDUE routine. The Autocoder coding for this operation might appear as
follows:

Linel Label 10perati onl OPERAND (
3 5i6 15]16 20j21 25 30 35 40 45

ot v, |ZA3 , HRSWORKED . . o o b o i)
o2 |, M. RATE e
°3, | |8T2 JEARNINGS. .. ot i\
o4 |, ..., .B ., |CALVACDUE.,]
97 ICALVACDUE. [(Firs jon pf i /

The Autocoder language allows the use of “literals,” that is, the actual data to be
operated on by an instruction. Thus, if the programmer desires to add the number
—90 to the contents of accumulator 1, he may simply enter the symbolic instruc-
tion

Line Label peratiSL OPERAND J
3 5|6 1516 20J21 25 30 35 40 45

ob, 1 vy v ,l.LA-‘Z.QL...A.,....,.A....,,...‘xx\
0.2

AA‘AYIlllAAljillll)llllllllllllAAAIIL

Besides imperative and declarative operations, the Autocoder language includes
“control” operations. These may be used by the programmer to control the place-
ment of data and instructions in storage, and to instruct the processor to generate
unconditional Branch instructions to be executed during or following the loading
of the “processed” machine-language program.

The program written in the Autocoder language, which is the input to the proces-
sor, is called the “source program.” The processor will convert the source program
mnemonic imperative operation codes into the corresponding machine-language
codes and assign core storage addresses to the symbolic instructions, literals and
symbolic data references. The assigned core storage addresses, together with the
proper field definition, will be inserted by the processor into the corresponding
assembled machine-language instructions. Besides performing a number of rou-
tine and clerical tasks for the programmer, the processor will also check for com-
mon coding errors and indicate these by appropriate messages on the console
typewriter.

The use of symbolic names makes a program independent of actual machine loca-
tions; therefore, programs and routines written in Autocoder language can be
relocated and combined as desired. Routines within a program can be written
independently with no loss of efficiency in the final program. Also, symbolic in-
structions may be simply added or deleted without the necessity of reassigning
storage addresses.

The Library contains a few macro-instructions supplied with Four-Tape Auto-
coder plus subroutines and/or additional macro-instructions written by the user.
Use of items from the Library simplify and speed up the writing of programs by
providing frequently used routines that may be easily incorporated into programs
to be assembled using Four-Tape Autocoder.

The Four-Tape Autocoder processor is divided into six sections as follows:

Systems Control. This section performs “housekeeping” operations for later
sections of the processor.

Librarian. Subroutines and macro-instructions may be added to, or deleted
from, the Library through the use of this section of the processor.

Phase 1. In this section, subroutines and macro-instructions are taken from
the Library and inserted into the program.

Phase 2. Locations are assigned to data and instructions in this part of the
processor.

Phase 3. Storage locations are inserted into the operands of instructions to
complete the machine-language program.

Phase 4. This section prepares a listing of the program, a program tape and
an optional program deck.

The Four-Tape Autocoder processor is used for three types of machine “runs”
which are: an original assembly which uses the original source program, a re-
assembly which uses the listing tape of a previous assembly plus any additions,
deletions and corrections, and a system run which reproduces and/or changes the
contents of the Four-Tape Autocoder System Tape.

The 7070/7074 Four-Tape Autocoder processor can assemble programs for use
with any configuration of 7070 or 7074 system. However, the processor itself re-
quires only a Data Processing System having 5,000 words of core storage and four
magnetic tape units. For operating convenience, provisions have been made to
allow the use of optional on-line unit record machines; e.g., an on-line 1M 7550
Card Punch may be used to produce a program deck in addition to the normal
program tape output. If the 7070 or 7074 Data Processing System used for assembly
has more than the minimum of four tape units, the additional tape units may be
used for multiple input and/or output to reduce tape handling time between
assemblies.

The Four-Tape Autocoder program may be obtained by sending a reel of mag-
netic tape, at least 400 feet in length, to the M Program Librarian. The 7070/
7074 Four-Tape Autocoder will be written on the tape which will be returned. It
is suggested that a duplicate of that tape be made (by a system run) as soon as
it is received so that one copy of the program can be kept in reserve. The extra
copy should be used only in case the working copy becomes unusable, e.g., the
tape has been damaged by dropping the reel containing the working copy of the
tape. The reel of magnetic tape for 7070/7074 Four-Tape Autocoder should be
sent to:

1M 7070/7074 Program Librarian

International Business Machines Corporation

590 Madison Avenue

New York 22, New York

Part I:

7070/7074 Four-Tape Autocoder Language

7070/7074 Four-Tape Autocoder Statements

Coding Sheet

Heading Line

Page Number (Columns 1-2)

Line (Columns 3-5)

Label (Columns 6-15)

Operation (Columns 16-20)

Operand (Columns 21-75)

Identification (Columns 76-80)

All Four-Tape Autocoder statements are written on the 7070 Autocoder Coding
Sheet, form X28-6417-2 (see figure 1). The coding sheet indicates by column
numbers the input card format for both the Basic Autocoder and full Autocoder
systems. Four-Tape Autocoder uses the same input card format as full Autocoder.
An explanation of the purpose of each heading on the sheet is given below.

Space is provided at the top of each page to identify and date the program. The
information entered in the spaces labeled “Program,” “Programmed By,” and

“Date” is not part of the source program language and is not punched.

A two-character page number sequences the coding sheets. Any alphameric char-
acters may be used, providing they are acceptable to the input/output equipment
of the 7070 or 7074 system used to process the Autocoder source program. (This
applies in general to the usage of alphameric characters in all Autocoder state-
ments.) The standard collating sequence should be followed in sequencing the
pages. The collating sequence and alphameric characters which are not acceptable
to various input/output equipment may be found on page 9 of the 1BM Reference
Manual “7070 Data Processing System,” form A22-7003-2.

A three-character line number sequences coding entries on the sheet. The first
twenty-five lines on each sheet are prenumbered 01 through 25. Any alphameric
character may be used in the units position. The collating sequence should be
followed in using the units position. Also provided are five non-numbered lines at
the bottom of the sheet. These may be used to continue the line numbering or
for inserts.

The sequence of the cards entered into the processor will be checked by the page
and line numbers punched in the source program deck. Any variation from the
collating sequence will be noted on the console typewriter during the running of
the assembly program.

The label column is used to represent the location of data or instructions in the
machine. It may be blank or it may contain an actual or symbolic address. Only
those data or instructions which will be referred to elsewhere in the program need
have a label.

The operation column contains the mnemonic representation of the operation to be
performed. Actual machine operation codes are never used. The Four-Tape Auto-
coder mnemonic operation codes are composed of from ome to five alphameric
characters, and are written left-justified in the operation column. Operation codes
are categorized as “imperative,” “declarative” and “control” codes. A description
of these three types of codes is contained on pages 8, 9 and 23.

The operand contains the actual or symbolic address of the information which is
to be acted on by a particular command. In some cases, field definition, address
adjustment and indexing may be used in conjunction with the address. The
operand may contain the actual data to be operated on by an instruction, re-
ferred to as a “literal.” It may also be used to specify index words, electronic
switches, channels, channel and unit, arm and file, inquiry and unit record syn-
chronizers, latch numbers and alteration switches.

Program identification is punched into columns 76-80 of all cards in the source
program deck. All five positions of the identification entry must be numerical.

IBM.

Program

Programmed by

Date

7070

AUTOCODER CODING

SHEET

FORM X28-6417-2
PRINTED IN U.S.A,

ldentificction [
76 80

Page No .| I lzl of

OPERAND

Line Label peration Basic Aufocoder—»’ Autocoder
3 5 15]16 20j21 25 30 38 40 43 50 1] 60 65 70 7
OAI. " " " " i Y Y Y S TN S S G SR N ST S N S SO R S SR T T S YOO T S T VS S S S S RN
OA2 1 L L L L Y RS TN TR S U T S U N S SN NS S YU SN S SN L1 Lo SR S WS T U S S T U S R R R
0,3A 1 n n 1 L Lo 1 | ST U S S S S S W SU SN SN S N U L1 TS S S ST | Y G T EE S O S ST S N SHN ST RNt
O|41 i 1 i L i - 1 i 1 1 I Il 1 1 1 1 1 1 1 L 1 1 1 1 1 i i I} 1 e L 1 1 1 1 H 1 1 1 1 1 i 1 L 1 1
015. 3 1 1 1 n 1 VS R W U SOU S A SN W N SN TRUN S N I | Y N N B S S T Y O TR W TR S S N S
o 6. i 1 1 It it T § Ll YRS U W VSIS SN SN W SN SN SN R N) | J I 1 Ll 1 Y IS S I W W S | VIR U S S S S 1
0‘7. 4 L L) s O | L S W Y ST W SO S SR SN S T . T S S T Loy gy
OAe. n s 1 i s L3 S R NSRS Y S I S T S S SR AU S S W T - TN S S S N TN S N Y W T S W WA S S G
049| I L L L L Loa T N WSS S WO S TN S SR S S W S G N I Y TR W I O WY S Y S TV N S WO ST S R
le, 1 1 1 1 i L 1 4 1 1 L 1 1 1 4. I 1 i 1 1 i 1 1 i 1 1 1 i 1 1 1 L 1 1 1 1 1 1 1 1 1 1 L el i 1
| IL i I I 1 1 FE | U W TS W S TS DU U TN SN SN SR N N L1 ITUNS W W S S) W W U S T S U NN S W W S St
! 21 1 1 I 1 1 IR | Y ST S Y T ENY S NN S S SR T T S S L4 [W S G St TR TS U W T SO S WS SR G S NS U
! 3. 1 I L i L L1 R SN W TN WY T S S T S A U U SRR I Nt T SR S | T IS N O S N S S WU WS W W
'A4| 1 1 1 1 1 L1 1 RN D S W TR SO N W (O B NS A R F Lot g VI N NN W TN S T G R T ST
| 5‘ 1 i 1 1 L . U TR WS WSO Y DU W NN WU NN G SN SN SN W N | [VU SO S S | D T N S S R T U S S S S
|,6, N) " L 1 Loy N W R W U SN T WS PN S SUNS SNY W O T 111 U S S N VS T T W WS T N N TN G T S
'47. 1 I 1 1 I L4 2) W T Y S T I S S T S GO G SN N I 1) S A S T T | VI I S T U BT) U Y W S S SRY
|18| " L) L 1 PRI YN S TN [S T T S S U SN ST RS S N FU N} TS R S S IS N S WY Y S W W S B U UNE
| 9‘ I 1 L L 1 R | SN Y VRN U VNN ORI W T H S T W N G ST b T St I U S U D W T S N S SN SN N N SO S
2 01 1 1 L ! i I 1t IS R O T T T Y T S SN D N W W1 T T VR T N | Y S S WD N W S S T N R S S U
2.' ! 1 1 L L L | SN NN W SO T VU S TS W U SO SN WY T T B T S S W G N VA Y S S W U T WY G S
2.2. 1 i 1 L 1 L1 4 RS S WO WY U TS WO T NN T WO S U WS S B I T B T Y SN S U U T S N T S T SO
2 31 1 1 It Il 1 R { ¥ S W U FONN TR VA U N S N T S U N VU IS T R 1 NS Y W VU S T S T T T
2.4. I I i L 1 R F NS U T SO WY WS T U U S NN S SN S N I U T T | S N W TN S T N T T N A G
2.5. i | 1 i L a1 Y S Y TN T W T SO N S N N T N 1 L 1 | | Y N | S O T R T N R O R L
N N 1 1 It Il JE |) BN NN U T TR T S U T T T T N T | N | I S T Y RS S Y S W SO T N O N S N
T i L 1 | ! I | S VO N S O Y Y SO T S N S RO 11) S N S T Y RS W WOV N T S TN S R S S S |
L 1 s I 1 L 11 YN S Y N T T W N S W R Y A B B FU T T S N T R U Y S [SN N W S S G
i1 1 L L L i1 1 1SS OO W N S S O N IS T U DY S S W) S 1 R W W T W1 GO R T S Y Y S S T T GO R S
I n . " L L M |) SRS S W WY WU N (U SN S S ST JE SR PR N W R S | T UG SN W R SU N S S SR W S S

Figure 1.

Address Types

Blank

Actual

Symbolic

Literal

The following types of addresses may appear in the label and/or operand fields
of Four-Tape Autocoder statements: blank, actual, symbolic and literal. A de-
scription of these address types and the rules governing their usage follows.

The label column may be blank if the corresponding entry is not referred to
elsewhere in the program. A blank operand is valid for certain operations only.
If a Priority Release command has a blank operand, the processor will insert 0097.
In all other cases where a blank operand is valid, the processor will insert 0000.
If a blank operand is invalid, an error message will be typed out.

An actual address is valid in the label column and in the operand. It may be from
one to four digits, written left-justified on the coding sheet. An actual address in
the label column will cause the corresponding instruction to be assigned that
actual location. The actual location will not be reserved, however, and the con-
tents of the processor’s location assignment counter will not be changed. Hence,
the programmer should be extremely cautious when using an actual label. Note
that an actual label may not be used with declarative operation codes.

Line Label peration OPERAND J
3 sle lsils zoL 1 25 30 35 40 as

o1 456 081 . .8 .y)
02 0972 , .. . 1B, 12554 , .ottt
03, U DN)

A symbolic address is valid in the label column and in the operand. It may con-
tain from one to ten digits or letters (no special characters), with the following
restrictions: the first, or leftmost, position must be a letter; blanks may not appear
within a symbol.

The asterisk, *, is a special-purpose type of symbol which is valid in the operand
only. Unless an actual address has been written in the label column, the processor
will assign to * the contents of the location assignment counter, which will be the
location of the instruction being processed. For example, if the instruction zal ®
has been entered with an * operand, the processor will assign to * the actual label
ie., the assembled machine instruction will be +1300094440. If an actual label
has been entered with an * operand, the processor will assign to * the actual label
address.

Use of the asterisk address will reduce the number of symbols required in the
label column. Unless there is a note to the contrary, the special symbol * may be
used as an operand address wherever this manual indicates that a symbolic ad-
dress is valid.

EXAMPLES

Line Label perati :nL OPERAND J
3 sle 1s)i6 2021 25 30 35 40 as

ol XPLUS,24 . |ZAl, . .2.4.A.B\C,‘...‘A,A.‘,.,.,....,,)
0.2.W,AI.T..,.1.B‘...*‘.,.......1......“.,‘...,1)
°.3,TLMS_MM___BJM3,.S‘E.C.1.4............H..,.J..,AJX
04 e

A literal is the actual data to be operated on by an instruction. It is valid in the
operand only. A literal may be numerical or alphameric. A numerical literal is
from one to ten digits preceded by a plus or minus sign. An alphameric literal is
from one to five alphameric characters preceded and followed by the @ symbol.

An alphameric literal may include blanks; it may not include the @ symbol.

Field Definition

A special-purpose numerical literal may be used to provide address constants.
This special-purpose literal, called an “adcon,” is of the form -+ symsoL. The
plus or minus sign indicates a numerical literal. When the sign is followed by
a symbol, the processor will find the address which has been assigned to the
symbol, and then treat the sign and the address as a four-digit numerical literal.
Note that the special symbol * may not be used as an adcon.

The processor will assign a storage address and field definers to a literal, and
build that address and field definition into the instruction being processed. Lit-
erals will be packed into words to conserve storage. They will be -positioned in
the object program and symbolic-language program as specified by Litorigin Con-
trol entries in the source program (see page 25).

ExaMPLE

Line’L Label Epercﬁ onI OPERAND (
3 sle 1slie 2021 25 30 35 40 45

[N I P L +‘L2.3.0.5.6.7...1....,,...‘A...‘.)
02 | .‘..—‘21.A....‘.A......,‘..‘...ii‘
03L+181
0‘4.“4.,‘...A.AA.BC.D.E.@....,.....1.....H..,,/
05 || N L et L llllk
o6 | 1 T ¢
°7l”.‘.......,.+ANAN.O............“.,...,.T)
08 |\, N

Certain imperative instructions (e.g., Priority Control, Index Word Load, Tape
Write) operate on full words and do not permit field control. If a literal which is
less than ten digits, or an adcon, is used as the operand of any of these instruc-
tions, it will be converted to ten-digit form by being right-justified in a word.
Thus, if ~50 is entered as the address portion of a Tape Write instruction (Tw),
the area to be written from will be defined by the record definition word
-0000000050. Also, assume that ATABLE is the label of an instruction or data occu-
pying location 2000. If the adcon —ATABLE is entered as the address portion of an
Index Word Load and Interchange command (xLv), the contents of the specified
index word will be replaced by -0020000000.

Field definition, if required, is written immediately after the operand address.
The field definers, digits 0-9, are enclosed in parentheses and the starting position
of the field is separated from the ending position by a comma. When operating
on a single digit, the comma and ending digit position may be omitted. Field
definers may be omitted entirely when operating on a whole word or a field de-
fined by a declarative operation (see pages 9 through 22).

The listing of Autocoder imperative operation codes in Appendix B indicates
those operation codes which permit field definition to be associated with the
address. Field definition may be used with actual and symbolic addresses, and
with literals, if applicable.

Address Adjustment

Index Words
Indexing

EXAMPLE

Line Label peration OPERAND (
3 S|6 1516 20]21 25 30 35 40 45

o‘l‘..u....‘..‘.*‘(.8...9.\....“.A....‘..u_u_‘_._‘_:%
02 Vb MAN.N.Q(.O,..Z.)HH..H.,,‘....,L
03‘.‘.u.‘1‘0A2.4.(.2..‘8.)....H.“,.......‘J
0‘4.......‘.‘...,‘L.PHA.(.sA....l...l.......1...)
o5 |, b .0“‘....‘.1.....‘..1.1J_1_{
0,61,..,_.,".A,1.0.2.4....,..‘.,‘......,L,..,Hﬁ
o7 | e ,‘..+.1.5.6,8,2A7,(.3,,14ﬁ),‘,.L,.l,.u,.,u}
O.S.x.“.l..,‘.‘.-1SXLLBQL(‘2...3,).....,.....,...,,)
0‘9.........‘.JA..‘......,.‘.1..|\‘A.|...1.A“

When used with literals, field definition will be relative to the literal itself. Thus,
the entry +156827(3, 4) refers to the fourth and fifth digits of the literal, i.e.,
+82. Also, the entry —symBoL(2, 3) refers to the third and fourth digits of the
location assigned to symBoL; i.e., if location 2332 has been assigned to SYMBOL,

—symBoL(2, 3) would be equivalent to —32. (See “Relative Field Definition” on
page 14.)

Address adjustment may be used to allow the programmer to refer to an entry
which is a given number of locations away from a symbolic address. Its usage
will thus reduce the number of symbols necessary for the source program. Address
adjustment is indicated by writing immediately after the symbolic address, or
field definers, if any, a plus or minus sign followed by from one to four digits.

Address adjustment is permitted with all symbolic addresses, excepting the single-
address operand of a prOW statement (see page 20). It is not permitted with
actual addresses or literals. The programmer should be careful when using ad-
dress adjustment. For example, inserts and deletions of program entries could
change addresses in such a way that ®+10 should now be *+9.

EXAMPLES

Line Label peration OPERAND 4‘(
3 sle 1she 20l21 25 30 35 40 as

(SN T S e PO ANNQ+1.5 » « v v va e A:g
02 R SN B ANNQ-2, . o v 0 v
03, . . L ANNQ(0,,.2),+15 ., , . 4o LA
04*-11(
0.5.,.1‘.A.1"AAA‘.....‘A......:‘...-1A.1|111)

If location 2150 has been assigned to the symbolic address MaNNo, then 2165
will be assigned to Man~o+15, and 2148 will be assigned to MANNO-2. The entry
MaNNo(0, 2) +15 refers to the first three digit positions of location 2165. Sim-
ilarly, if 2196 is the location of an instruction containing *-11 as an operand, then
location 2185 will be assigned to this operand.

An indexing word may be written symbolically or in the form xn; it is always
preceded by a plus sign. x denotes an index word and n is the number (1-99) of
the index word. The x is required so that Autocoder can distinguish between ad-

Uses Other Than Indexing

Index Word Reservation

dress adjustment and indexing. (When used for other than indexing purposes,
the form xn will be considered a symbol.) The indexing word always follows the
operand address, after field definers and address adjustment, if any.

Symbolic and actual addresses of all imperative instructions are indexable. Lit-
erals are not indexable. With the exception of Branch Control and End Control
operations (see pages 26 and 27), indexing is not permitted in declarative and
control operations.

. ExXAMPLES
LiniL Label Operation OPERAND (
S|6 I15]i6 20]J21 25 30 35 40 45
CL'......l,,A..J.‘A.N.N.OﬁXZ...‘.J..‘.‘.“.AA.‘.‘(
o2 |, .y . |.., MANNO-15+X2. ., 7]
o3 | A.N.N.0+ALO.O,P.A,L..,‘...........(
04 | . e A,.‘2.3.4‘4.+.LD.0P...1...1.,A....,...7
°s (. v b]2844(,0,5) HLOOP, ., . . RN N)
I I B D |

Autocoder will interpret +x2 as index word 2, and +roop as the symbolic des-
ignation of an index word.

When an index word is to be specified for other than indexing purposes, i.e., in
index word commands such as Index Word Load (xr) and Index Word Load and
Interchange (xLIN), or in commands such as Record Gather (r¢) and Record
Scatter (ms), the index word may be written in actual or symbolic form and
appears first in the operand. In these cases, xn would be interpreted as the sym-
bolic designation of an index word.

ExAaMPLES

LineJ Label Pperaﬁon OPERAND (
13 Sl6 1|16 20j21 25 30 35 40 45

or, ., XL |2,CONSTANT
02 [S U WP S XILA L1 2L’ L+IOIOLO|0|011101110I01 PR S U SN AN WU SN NS N N S |7
°3 |. RG , HERE,SCATAREA _, . ..)
oe | ., , KL ., X4,CONSTANT ., "¢
o 5| A 1 1 1 i 1 i 1 1 1 1 " 1 1 i 1 i i I 1 1 1 1 1 1 1 L 1 1 1 " 1 1 1 i i 1 1 1 IY

The first two examples refer to an actual index word, i.e., index word 2. The last two
examples refer to symbolic index words. Note that Autocoder may assign any index
word as x4 in the last example because x4 is a symbolic index word; x4 does not
mean index word 4 when used in this manner.

The processor reserves all actual index words used in the source program in
Phase 2. The unreserved index words (excepting index words 97, 98 and 99) will
be assigned in numerical sequence to symbolic index words during Phase 3. Index
words will also be reserved during Phase 2 if the location assigned to an impera-
tive operation or if any location defined by a declarative operation falls within
the range 0001 to 0096. If the programmer desires, actual index words may be
assigned to symbols by use of the declarative operation EQU (see page 21); index
words thus assigned will be reserved in Phase 2.

It is possible that the programmer may wish to reserve a particular group of
index words for subsequent use in his program. This may be accomplished by
inserting an Origin Control operation code entry (see page 23) whose operand
is an actual index word address. Succeeding entries will be assigned sequential

Electronic Switches

locations starting at the specified index word address. Unlabeled succeeding
entries will reserve the index words they occupy; labeled entries will both reserve
and name the index words.

Electronic switches may be coded in actual or symbolic form. Switches referred
to by their actual number (1-30) will be automatically reserved in Phase 2. The
unreserved switches will be assigned in numerical sequence to symbolic switches
during Phase 3. Actual switches may be assigned to symbols by use of the declara-
tive operation EQU (see page 22); switches thus assigned will be reserved in
Phase 2. Unlike index words, electronic switches will not be reserved if the loca-
tion assigned to an imperative operation or if any location defined by a declara-
tive operation falls within the range 0101-0103.

EXAMPLES

Line‘L Label peration OPERAND 4(
3 sle 15)i6 20[21 25 30 35 40 as

oi. !, ., ., ..., BES, . |19, COMPUTE,+ 1)
o2 |\, ., , ., . BSF IEND,LOOP ., ., v o+ o0 111011 A
03 |y i SN..z&.\.t..,.‘_..,‘.‘........J
OI4A " 1 1l -t i 1 1 S 1 i 1L 1 1 11 1 1.1 1 I | 1 1 1 1 1.1 It 1 1 i j S

Input/Output Unit and Alteration Switch Designations

Remarks and Comments

The following items may be specified in actual or symbolic form in the operands
of those instructions which refer to the particular items: channel, combined chan-
nel and unit, combined arm and file, unit record synchronizers, inquiry synchro-
nizers and alteration switches. The declarative operation EQU is used to equate
item numbers to symbolic names (see page 23).

EXAMPLES

Line Label perotim!‘ OPERAND (
3 5{6 15§16 20§21 25 30 35 40 45

ot, { oy, TR S.TAE.R...IN.P.U,TA.J.“.,.H”.”_‘S
°3 | ., .. ., .. |PTW Léuﬂ&&LZAzJﬁﬁﬂ‘.....,..x,.le
0.4 o L ...‘..J....l.‘L|..||L;A1...J
05 |, .,K.T.S|B..2.5...FAIT.EBA.C.K,....,......,IH_L)

Remarks may be included anywhere in the operand, provided they are separated
by at least two blank spaces from the operand of the instruction.

The programmer may insert lines of descriptive information in the program by
placing an asterisk (*) in column 6 of the label column. Comments inserted in
this way will appear in the symbolic output, but will not in any way affect the
operation of the program. A comments card produces no entry in the object
program. Comments cards may be placed anywhere in the source program except
as follows:

1. A comments card may not be placed between the pTF entries describing the

files used in the program.

Imperative Operations

2. A comments card may not be placed between subsequent entries under a
DTF.

3. A comments card may not be placed between continuation cards of a macro-
instruction.

Any part of the label, operation or operand columns may be used for the descrip-
tion. Comments cards are useful as descriptive headings for various sections of a
program, such as operating instructions, or where the operand column of an in-
struction does not allow enough room for necessary remarks.

ExampLEs

LineL Label peration OPERAND 7
3 sls 1s}ie 20|21 25 30 35 40 as

91, [*NET, .PAY CJALCULATION,.. e }
%2 |, ., ., |ZA1 | |GROS,S, . PUT, GROS,S PAY, ,IN

03 | |81 . ITAX .. DEDUCT. .INCO.

7 T [N FICA ., DEDUCT FICA ., L
05 lllllllAl‘llLllll‘lAllllAllllbll[lxllJll

Autocoder imperative operations are direct commands to the 7070 or 7074 to oper-
ate on data, constants or other instructions, using the available components of the
machine. Each machine-language instruction has a corresponding unique im-
perative operation code. The codes consist of from one to five alphameric char-
acters and are mnemonic in form. For example, the Autocoder equivalents of the
Branch, Unit Record Read, Unit Record Punch, and Shift Right Split commands
are B, UR, UP, and sRs, respectively.

Only those imperative operations which will be referred to elsewhere in the pro-
gram need have labels. Operands may contain the symbolic or actual address of
data which is to be operated on by the instruction, with or without address adjust-
ment and indexing; they may contain the actual data itself (literals). Field defi-
nition is permitted in the operand of any imperative operation whose correspond-
ing machine-language instruction permits it; i.e., digit positions 4 and 5 are
reserved for field control or are unused. Note that address adjustment is not per-
mitted with literals and actual addresses, either with or without field definition.

The correct order of entry for operand addresses is as follows: operand address,
field definers, address adjustment, indexing. For example,

: LineL Label peration OPERAND T
3 sle lslls ZOLI 25 30 35 40 a5

ov { .. . v,]CD FLELDA(.2).+4+IWQRD .6 ,, ...
02 T —) U W 1.1 ®) SR S U S T y U T S 11 S S 1 I W Y- V. I?

03 . >
AAllllllAllxlllllllAAlxlllllllAlllll!lllll

4 1. ... XA .. liwarn FIELDA +4.+1IWO
05

e S SRS N W U S S U U S S W S SR ST S S N ST T

Assume in the above illustrations that FIELDA has been defined as word 2000 and
that the indexing portion of index word Tworp contains 0100. In the first example,
digit position 2 of location 2104 will be compared to a “6.” In the second example,
2104, considered plus, will be algebraically added to the number 0100 in the
indexing portion of TwoRp.

Declarative Operations

An alphabetic list of Autocoder imperative operation codes is contained in
Appendix B. The list is preceded by an operand symbol key, which indicates what
is permissible in the operand field and the order in which the information must
be entered on the coding form.

Following is a section of a payroll routine which illustrates typical Autocoder
coding. Note that the remarks may appear anywhere in the operand, provided
two blank spaces separate the remarks from the operand of the instruction.

Line Label peration OPERAND Basic{
3 5|6 15]16 20|21 25 30 35 40 45 50

0.1, C.A.L.C,TAX..“ZA.&AT.Cxl..“l‘.‘A.‘D.ET,E,R.MI.N,E..IF..‘.41
02 |, .., H;FM,*..,-1,3.0‘0,‘,....l...PA.YUIS‘..,. A
03 2 ., GROSS, .. ,.‘.,.TAXARL,EJ.:..KA.K.(
o4 | . . BM2 NO TAX, ., .,....BRANGH .IF. NO rax(
o5 | . .. ,zA.s..9L9.9.2...‘.A..‘....‘,.,....,,A,..j
06 | i o, L i+1.8 . 4., CALCULATE TAX, J_)
o7, SRRZ\
os | B
o9 INOTAX, |s2 . .9992,... CLEAR ACCUM 2&
o l.. lste . |wiTHHOLD. STORE TAX .AMQU.N.’ij{
(] T S S R R O S T S

Autocoder declarative operations are statements to the processor which provide
it with the necessary information to complete the imperative operations properly.
Declarative operations are never executed in the object program and should be
separated from the program instruction area, placed preferably at its beginning
or end. Otherwise, special care must be taken to branch around them so that the
program will not attempt to execute something in a data area as an instruction.

Four-Tape Autocoder includes the following four declarative operation codes:
pa (Define Area), oc (Define Constant), prow (Define Record Definition Word),
and EQu (Equate). pa and pc operations require more than one entry. The pa
code is used to name and define the positions and lengths of fields within an area.
The pc code is used to enter constants into the object program. Since the 7070
and 7074 make use of record definition words (Rpows) to read, write, and other-
wise examine blocks of storage, the pa and pc codes provide the option of generat-
ing Rows automatically. When so instructed, Autocoder will generate one or more
rows and assign them successive locations immediately preceding the area with
which they are associated. An row will be of the form ==00xxxxyyyy, where xxxx
is the starting location of the area and yyyy is its ending location. These addresses
are calculated automatically by the processor.

In some cases, it may be more advantageous to assign locations to rRows associated
with pa and pC areas in some other part of storage, i.e., not immediately preced-
ing the pa or pc areas. The operation code prRow may be used for this purpose.
The prow code may also be used to generate an rRow defining any area specified
by the programmer.

The declarative operation code EQu will permit the programmer to equate sym-
bolic names to actual index words, electronic switches, arm and file numbers,
channel and tape unit numbers, alteration switches, etc., and to equate a symbol
to another symbol or to an actual address.

A detailed description of the formats and functions of the Four-Tape Autocoder
declarative operations follows below.

DA—Define Area

DA Header Line

10

The declarative operation pa may be used to reserve and define any portion of
storage, such as an input, output or work area, or an area which will contain more
than one record, all of which are identical in format. The pa operation instructs
the processor with regard to the positions, lengths and names of fields which make
up the area being defined. The processor will then automatically assign locations
and field definers, so that the fields may be conveniently referred to by name in
instruction operands. Thus, the programmer need not be concerned with the
actual locations of the fields within storage.

A pa operation consists of a header line and one or more succeeding entries with
blank operation columns. The pa header line is used to initiate the reservation of
a portion of storage. The succeeding entries define the fields within this portion
and specify the amount of storage to be reserved.

The general format of the pa header line is as follows:

El Label JOperoﬁon OPERAND

3 3|6 15]i6 2021 25 30 35 40 45

ot f{. vl [IN.RDW,ADDR, ., ..
o2 AREANAME . pA , {|N,+RDW.ADDR,... |
o3 | |IN.-RDW,ADDR .,

Use of a label is optional. (An actual label may not be used.) Also, “Row” and a
specified address, ADDR, may be omitted from the operand. if row is omitted, sep-
arating commas must be punched in two consecutive columns between N and
ADDR. If ADDR is omitted, the preceding comma need not be punched. Also, if both
RDW and ADDR are omitted, both commas may be omitted.

ARreA NUMBER

N specifies the number of identical storage areas to be reserved by the pa opera-
tion, only the first of which will be defined. For example, suppose that records of
identical format are to be read into storage in blocks of ten. The programmer
would then enter a pa header line, with N equal to 10, followed by succeeding
entries which specify the starting and ending positions and names of the fields
in one record.

N may be from 1 to 999. The number of storage words to be reserved for the
entire area will be N times the number of words reserved by succeeding entries,
i.e.,, N times the number of words reserved for one record area. The maximum
number of words which may be reserved for one record is 999. F requently, N will
equal 1, as in a work area.

Recorp DerFiNITION WORDS

Record definition words are required by the 7070 and 7074 for reading in and
writing out data and for moving blocks of data within storage. If “Row” is writ-
ten in the operand of the pa header line, the processor will automatically generate
N rows associated with the ~ defined areas. These rows will be assigned ~ loca-
tions immediately preceding the first word of the area. The label of the pa header
line will be made equivalent to the first Row generated by the processor; i.e., if
the label appears as the operand address of an imperative instruction, it will refer
to the location of the first kow. The first word of the area (and any field which
occupies this first word) may be referred to by the pa label +.

If rRow is not preceded by a sign, all generated rRows will be plus except the last,
which will be minus. If a + or ~ sign precedes row, all generated rows will be
given the indicated sign.

If rpW is not written in the operand, rows will not be generated and the label of
the pa header line will be made equivalent to the first word of the area.

For example, suppose that an area is to contain a group of four 10-word records
and that the following pa header line is entered, the fields within a record being
defined by succeeding entries:

Lini Label Operoﬁﬂ OPERAND J
3 5|6 16 2021 25 30 35 40 45

ol , AJAX , ., ., ., DA ., 4. RDW .. . vy)
IIIJ_L‘)

PR B W S S

]

02
0131
OA4|

R
PO R N U T T NS NI S NS (ST T ST UU ST SIS N VA S S U S S T S e
L

.
N U U U S0 MU [N T US T S S S S TR SH N NS S W —————

NS T R T NIRRT SN ST SIS I S U WA S SN SH W S NI S W N B S W T B S e e

Assume that Autocoder’s location assignment counter contains 1000 when the
above DA operation is encountered. The processor will generate the following
rows associated with the four record areas and store them in locations immedi-
ately preceding the first record area:

Location RDW
1000 + 0010041013
1001 40010141023
1002 + 0010241033
1003 —0010341043

The label ajax will refer to the first Row; e.g., the imperative instruction zal AJAX
will be translated in the object program as -+1300091000. The first word of the
area, occupying location 16)4, may be referred to by Ajax +4. If row had not been
entered in the pa header line, the first word of the area would be stored in loca-
tion 1000 and would be referred to by the label Ajax.

RELATIVE ADDRESSING

The fields defined in succeeding entries may be assigned addresses relative to an
address (appr) specified in the operand of the pa header line. For example, as-
sume that a relative address of 0 is specified. Then any field which occupies the
first, second or third word, etc., of the area will be assigned relative addresses of
0000, 0001, 0002, etc., respectively. Thus, if FrELDC is the name of a field occupying
the third word of the area, the instruction zal FiELDC(0, 4) +x11 would be trans-
lated in the object program as -+ 1311040002.

The relative address may be written in actual or symbolic form. If the latter, the
symbol must have appeared as a label earlier in the program sequence. (Note
that the special symbol * may not be used.) Address adjustment is permitted with
a symbolic address.

The chief use of relative addressing would be to facilitate indexing if an area
contains grouped records and it is desired to operate on fields within successive
records. This may be accomplished by making the fields relative to 0 and index-
ing the instructions which refer to the fields by an index word containing, success-
sively, the rRows associated with the records. For example, assume that an area
is to contain a group of four 10-word records (as in the previous example). Sup-
pose that it is desired to perform the following operation on three fields named
FIeLpA, FIELDB and FIELDC, which occupy the first, second and third words, re-
spectively, of each record: subtract the contents of FIELDB from the contents of
FiELpA and store the result in FrELDC. This could be accomplished by the following
coding:

11

Succeeding Entries

12

Line Label Operation| X
3 56 1516 2021 25 30 35
ol |INAREA . DA . |4, +RDW.0, \
02 . (Succeeding entries de e)
0.3 | . . the fields within a reco)(As
sembled
04 R R P TS T ,j Location Instruction
05 . Z 2000 +4500034432
1 1 1 4 A 1 L i 4 1 " 1 1 1 1 L n 1 e 1 4 L 1 I i 1 1 1 2001 +4503021000
06, | .., . XL ., |3,+0000000003 ,,) 200 1302090000
2003 -1402090001
0171 DLRDAWI Looa) 1 X.L| 1 1 2A‘A IbNAALRaE»A)+XI3| 1 1 L :\ 2m4 +12020%002
o8 | . i, |ZAL JFIELDA+X2, .. ., .K 2005 +4900032001
%9, { ., v, |81 ., FIELDB+X2, , {
Vo v, 18T1 | IFIELDCAHX2,)
ne‘.HBLX.‘&..LD.RD.W‘...X.,.%
II2A 1 i 1 1 1 i 1 i 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1

Assume that Autocoder’s assignment counter contains 1000 when the pa operation
is encountered, 2000 when the first instruction of the routine is encountered, and
the literal +0000000003 has been assigned location 4432. The corresponding as-
sembled machine-language instructions would be as shown above, to the right
of the coding entries.

Lines directly below the pa header line contain the names and starting and ending
positions of fields within an area (or first record of an area if is greater than 1).
These lines have blank operation columns.

When defining the fields within an area, it is important to remember how the
7070 and 7074 operate. The 7070 and 7074 have the flexibility of operating on a
field within a word. Thus, when the control part of a machine-language instruc-
tion contains field definers, only that part of the word specified by the field de-
finers is used in the operation.

The position of a field within an area defined by a pa operation is indicated in
the operand column by its starting digit position in the area, a comma, and its
ending digit position in the area. If a field occupies one digit position, the comma
and ending digit position may be omitted. The first word of the area is referred to
as word 0, the second as word 1, the third as word 2, etc. Digits within a word are
numbered 0 through 9, from left to right. A digit position of an area is defined as
a word number (one to three digits) followed immediately by a digit number
(one digit). For example, digit 6 of the ninth word of the area (word number 8)
corresponds to digit position 86 of the area. If the area reserved by a pa operation
is considered to be a consecutive string of digits, the first being 00, the second 01,
etc., the digit position of any digit will be its placement in the entire string of
digits composing the area.

The order of entries of fields under a pa is irrelevant: i.e., fields need not be in
ascending storage position order.

The following example illustrates the procedure for entering the positions of fields
under a pa header line:

Line Label Operation| OPERAND j
3 sl 15]16 20i21 25 30 35 40 a5

OV GRUMP, ., . . DA . 11 v s LJL
02 AME1l, . | .., ,100,,16 . o ovoavc i wu v ‘/
o3 NAMEZ2, . ! ., 137,39 oy e ey ,\
04 NAMES,} .., ., 120,29 . . . wu oy wan ey ,(
o5 NAME4, ., ! ., 183,57 . vty ,\
06 NAMES, ., . { ., |48 . v 0 vahv e c e e \/
or 1. e)
o8 | b e b e e e .-.1.;...1)

The above entries define an eight-word area, beginning with three fields of lengths
17, 3 and 10 digits, respectively. A gap of 18 digits then occurs, followed by the
one-digit NAMES. A second gap of 4 digits occurs, and then the five-digit field
namEe4. (Note that Name4 and NAMES are not in ascending storage position
order.) The rest of the area is unnamed. The one-digit field with a blank label in
digit position 79 establishes that the area occupies eight words. Note that a field
which is unreferenced by the program and which terminates the area whose fields
are being defined may be entered with a blank label, as in this example. Other-
wise, only named fields need be entered under a pA.

Subfields are indicated to any desired degree of depth by simply entering their
starting and ending digit positions, which may overlap, fall within or bridge other
fields. Again, the order of entry is irrelevant. To illustrate, the following entries
might appear under a pa header line:

Line Label fperoﬁon OPERAND (
3 5|6 1516 20j21 25 30 35 40 45

ot |IDECADE. .. . |... 118 . oo
0z DAY . . ol 76T s e e S
o3 [YEAR ... | ... l78.79 .0 0 0]
o4 IMONTH | |74 o o i
o5 IDATE |... . lea.re 0 0 i
016l1¢llltl|lll‘|lllllAlJAlAllAllIAAIlIlIllll\

A field which bridges two or more consecutive words cannot be operated on with
field definers in one instruction. A bridging field may be given one name; however,
if the name appears as the operand address of an instruction, only that part of the
field which occupied the first word will be operated upon.

The following rule applies to fields which cross word boundaries: If a bridging
field starts with digit 0 of a word, any part (which does not cross word bounda-
ries) may be referred to by the proper use of address adjustment and field defi-
nition. If a bridging field starts with a digit other than a 0 and it is desired to
refer to parts of the field that lie beyond the first word boundary, names must be
given to these parts on separate entries below the pa header line. To illustrate this
rule, the following examples present both methods of referring to data in a field
that crosses word boundaries. In both examples, the field that crosses word bounda-
ries is labeled FULLNAME and it is assumed that the first sixteen digits contain the
first name, the second sixteen digits the middle name and the remaining thirty digits
the last name.

13

Relative Field Definition

14

ExaMPLE 1

The following pa entry includes a field that crosses word boundaries and begin in
digit position 0 of a word:

Line Label OperofionL OPERAND (
3 sls 15)i6 2021 25 30 35 40 45

o!, HISTORYREQDA , [1,RDW . . ., ., .~~~ 7
oz pEPTNO . | . loo,05 . .,~
03 EMPLOYEENO . . 10,19, ., L T S T T k
4 FULLNAME | ., |20,83, L 7
05 RESTOFREC, o 182, 182 1
06 e L LxlllAAAIIIKAIIAAIAIAAIII\IZ

Any part of the FuLLNaME field which does not cross word boundaries may be
referred to using field definition and address arithmetic because FULLNAME begins
in digit position 0 of a word. The initials of the first, middle and last names in the
FULLNAME field can be referred to as FuLLNaME (0, 1), FuLLNAME (6, 7) + 1 and
FULLNAME (2, 3) + 3, respectively.

ExaMpLE 2

The following pa entry includes a field that crosses word boundaries and begins in
digit position 6 of a word:

Lini Label _EperationL OPERAND (
3 6 1516 20§21 25 30 35 40 4%

oI, [HLSTORYRECDA . l1,BDW ., . ., .. .
o2 IDEPTNO | . . Joo,o05 . . ., 7]
03 |[EMPLOYEENd lo6.15 7]
04 |[FULLNAME | ., lwe.77 "«
95 IRESTOFREC | ma‘Lm&.A..,A‘,..l.,...‘.,l.f
06, MIDDL L L A
07, |LASTNAME .| a&“mm..‘A.,,.,,‘A,A,,.A,..,%
o8

Labels have been assigned to the parts of the FuLLNAME field containing the middle
name and last name; those parts cannot be referred to using address arithmetic
because FuLLNAME does not begin in digit position 0. The initials of the first, middle
and last names can be referred to as FuLLNAME (0, 1), MmpLENAME (0, 1) and
LASTNAME (0, 1), respectively.

The primary function of the pa declarative operation is to instruct the processor
as to the positions and lengths of fields within an area, thereby allowing the
processor to assign storage locations and field definers automatically when a field
is referred to by name in the operand of an instruction. Sometimes it may be
desirable to refer to a portion of a field which has been defined by a declarative
operation. For the convenience of the programmer, this is done relative to the
field itself, so that it is not necessary to remember the actual digit positions of
the field.

To illustrate, assume that the name custNo is a field of seven digits, defined under
a pA as follows:

Line Label peration OPERAND /
3 Sl6 1516 20!21 25 30 35 40 45

OV JINPUTAREA, DA . . {1, P :(
02 CUSTNO. . . . { .., 103,09 ..., .,., N S 3
0‘3 n 1 3 A 1 I A it S I i :

DC—Define Constant

DC Header Line

A field might occupy only the low-order digit positions of a word, as does CUSTNO
above. However, positions within the field itself are numbered starting with 0.
If the programmer wishes to refer to the three high-order positions of cusTNO,
he would refer to positions 0, 1 and 2 by placing the entry custNO(0, 2) in the
operand. During assembly, the processor will convert the field definers relative to
cusTNO to field definers which refer to actual digit positions of a word. Thus, dur-
ing assembly, the processor will convert custno(0, 2) to the actual digit positions
3, 4 and 5 of the word of which custNO is a portion. If the storage location of this
word is 1001, symbolic instructions using cusTvo and their assembled equivalents
might be as follows:

Symbolic Instruction Assembled Instruction
ZA1l CUSTNO(0, 2) + 1300351001
ZAl CUSTNO(4,5) 41300781001
ZA1l CUSTNO + 1300391001

cusTNO might instead be defined as a full word, as follows:

Line Label perati OPERAND i
3 sle 15|16 20§21 25 30 35 40 45

oI, INPUTAREA DA . |1 ... v v o0 v v K
02 |ICUSTNO . . .} .. 0 0,.09 . v e v e 1&
o 3 A1 1 I 1 1 e i4 1 1 8 I i PE S 14 1 1 1 L PR | 1 J 1 JE S

In this case, any field definition following custxo would be both relative and
actual. If the storage location of this word is 1001, symbolic instructions using
custNo and their assembled equivalents might be as follows:

Symbolic Instruction Assembled Instruction
ZA1l CUSTNO(0, 2) 41300021001
ZA1l CUSTNO(4, 5) +1300451001
ZAl CUSTNO + 1300091001

In the example on page 13 illustrating how subfields are entered, the subfield pay
would be equivalent to DATE(2, 3).

The declarative operation pc may be used to enter numerical, alphameric and
address constants (adcons) into the object program, and to assign names to con-
stants for ease of reference. Like the pa operation, the pc operation consists of a
header line and one or more succeeding entries with blank operation columns.
The pc header line directs the processor to assign an area in storage to the con-
stants entered directly below.

The format of the pc header line is as follows:

Line Label perqti OPERAND 4(
3 5’6 15(16 20121 25 30 35 40 45

o!, ANYNAME , ., [DC , +RDW, (or blank))
02,

‘JIIAAlllIAAIALJ.A:IIIIAI!IlIIlAlIIlIIlIIﬁ

Use of a label is optional. (An actual label may not be used.) If plus or minus
“ppw” is written in the operand, the processor will generate an row with the indi-
cated sign, which defines the area in storage containing the constants written
under the pc header line. The row will be stored in the location immediately pre-
ceding the “constant” area. The label of the pc header line will refer to the row.

15

Numerical Constants
and Adcons

16

If the operand is blank, no row will be generated and the pc label will refer to
the first word of the “constant” area.

Constants are entered in the operands of succeeding entries, as described below.
Note that any combination of numerical and alphameric constants may be entered
under a pc, provided the rules for each are obeyed.

Like numerical literals, numerical constants may be from one through ten digits
preceded by a plus or minus sign. As previously mentioned, adcons are of the
form +svymMBoL.

Numerical constants and adcons may or may not be packed into words, as the
programmer desires. Constants written without field definition will be right-justi-
fied in separate words. Constants written with field definers will be packed into
words according to the following rules:

1. A change in sign will start a new word.

2. Field definition which would cause overlapping in the same word will force
the overlapping constant into a new word.

The programmer may enter more than one numerical constant or more than one
adcon on a line, but not a mixture of both. The constants or adcons will be right-
justified in separate words. Field definition is not permitted when more than one
constant or adcon is entered on a line.

Constants may be assigned separate names for ease of reference in the source
program. The named constants may or may not be packed into words, as the
programmer desires.

Following are examples which illustrate the various ways in which numerical
constants and adcons may be entered under a pc header line. Assume in all these
examples that Autocoder’s location assignment counter has reached 1000 when
the pc operation is encountered.

ExampLE 1

The following entry

Line Label JF)peroﬁon[OPERAND {
3 5|6 1516 20§21 25 30 35 40 45

ol CONAREA , IDC . ‘..‘..‘..‘..1..A,.A..,l‘..‘x
o2 | .,y .|, ., |*152+38+97-21,-304+186, ., . ., .
03 L L) T T ‘}

will cause the indicated constants to be right-justified in separate words. Auto-
coder will make the following assignments:

Symbol Field Definers Address Contents
CONAREA 0,9 1000 40000000152
1001 40000000038
1002 0000000097
1003 —0000000021
1004 —0000000304
1005 0000000016

In this example, the operand of the pc header line is blank. Therefore, the label
CcoNAREA will refer to the first constant, +152; coNarea+1 will refer to +38;
CONAREA + 2 will refer to +97, etc.

EXAMPLE 2

If the programmer desired a +Row to be associated with the “constant” area of

the previous example, he could write

Lii Label peration OPERAND (
3 sle 116 20/21 25 30 35 40 a5
o1 |CONAREA _ DG . l+RDW. . oo
02 ST B +152+38+917-21-304+16, , , . ., 4
03 !
Autocoder would then make the following assignments:
Symbol Field Definers Address Contents
CONAREA 0,9 1000 40010011006
1001 -+ 0000000152
1002 40000000038
1003 + 0000000097
1004 —0000000021
1005 — 0000000304
1006 + 0000000016

The label coxarea will refer to the row defining the “constant” area; CONAREA -1
will refer to the first constant, +152; conarea +2 will refer to + 38; etc.

ExaMPLE 3

The following coding shows how separate names

may be assigned to constants:

Line Label Operation| OPERAND (
3 sle i5)i6 20/21 25 30 35 40 as
o1 [CONAREA . .pc . | e . C]
o2 ¢y, oo b R LB20 e e J\
03 lco . ol 4+88 ., e .
os lcs . | et &
Y R
o6 IC5 ., ..., .]=-804 , RS R (
o7 ICc6, . .ol M6 L L j
o8 lete | |-CONAREA ... e)
c9 Ic8 oy -,C.5.AL.....H..,.,A‘...,ll,,‘)
o |)
In this case, Autocoder will make the following assignments:
Symbol Field Definers Address Contents

g?NAP‘EA } 0.9 1000 +0000000152

C2 0,9 1001 +0000000038

C3 0,9 1002 + 0000000097

C4 0,9 1003 — 0000000021

C5 09 1004 — 0000000304

Cé6 0,9 1005 0000000016

C7 0,9 1006 — 0000001000

C8 0,9 1007 — 0000001004

17

Alphameric Constants

18

ExAMPLE 4

The following coding shows how constants may be assigned separate names and
packed into words:

LineJr Label Eperoﬁ on‘ OPERAND (
3 5(6 1516 20J21 25 30 35 40 45

Ol JICONAREA . . IbC . . | l..,..A..‘A...IA..‘AK
%2 el v R152000.2) 0]
os jca ., |.., |+38¢3.4).1
K A B ET L Y R
LA 7 A I BT S R B T |
o6 Jcs |, |-804(6,8). ...
A (o T +16JW
°8. ler .. ,....|.., . |-CONAREA(2,5). e
09, 1c8 i -G890 e
|‘0‘.|‘|‘||“LJ‘Alll‘lvA‘,I.“l‘.‘.‘l.“,’llll)

Autocoder will make the following assignments:

Symbol Field Definers Address Contents

CONAREA 0,9

Cl 0,2

o 3.4 1000 +- 1523897000
C3 5,6

C4 0,1 _

cs 6.8 1001 2100003040
Cé 0,9 1002 + 0000000016
Cc7 2,5 B

cs 6.9 JL 1003 0010001001

An alphameric constant is preceded and terminated by the @ sign. The @ sign
may be used as a character within an alphameric constant only if it immediately
precedes the terminal @ sign. Alphameric constants are always packed into
words. Therefore the programmer (in writing a message, for example) must
include all blanks in the proper places.

Autocoder will extract groups of five characters from the alphameric constant
entered under a pc and store them in separate words. The characters will be con-
verted to double-digit form and stored successively beginning in the high-order
position of a word, i.e., digit 0. If the total number of characters in the constant
is not a multiple of five, blanks (double-digit zeros) will be stored in the low-
order positions of the last word used. The sign of all the words used to contain the
characters will be alpha.

ExamMmpLE 1

Assume in this and subsequent examples that Autocoder’s location assignment
counter has reached 1000 when the pc operation is encountered.

Line Label Eperuﬁon! OPERAND Basic Aurocoder——g
3 6 15/16 20j21 25 30 35 40 45 50 55

91, S.G . C . . |-RDW , .. ., P N A R S U SRR N
2 ¢\y}, |@GREMQVE TAPE ON UNIT 00 AND MQUNT NEXT @
03

Autocoder will make the following assignments:

Symbol Field Definers Address Contents
EOFMSG 09 1000 —0010011008
1001 REMOV
1002 E TAP
1003 E ON
1004 UNI T
1005 00 AN
1006 D MOU
1007 NT N E
1008 XT

Note that the label EormsG refers to the row defining the constant area.
EXAMPLE 2

The constant in the previous example may be written as follows if it is desired to
name a portion:

Line Label Operati OPERAND ‘
3 5|6 15116 20]2t 25 30 35 40 45

o! |[EOFMS8G, , ., . DC . [-RDW , (0t
02 RS B! EMQVE TAPE, ON, UNIT, @ .,
03 |TAPENO. . . . | 200G . i S
oa |. 1.le AND MOUNT., NEXT@. . o\t oro..)
°A5I A 1 i 1 y 1 i 1 I 1 1 1 1 1 n 1 R 1 1 1 i 1 1 4 i 1 1 1 1 1 1 1 1 1 1 1 1 1 A_L)

Autocoder will make the following assignments:

Symbol Field Definers Address Contents
EOFMSG 0,9 1000 —0010011008
1001 REMOV
1002 E TAP
1003 E ON
1004 UNI T
TAPENO 0,3 1005 00 AN
1006 D MOU
1007 NT NE
1008 X T

It will be the programmer’s responsibility to insure that any named portion does
not overlap, or bridge, words.

The record mark sign (==) may not be entered on the coding sheet. If desired, a
record mark (80 in double-digit code) may be generated in an alphameric con-
stant by entering the letter R immediately following the terminal @ sign. If the
number of characters in the constant is not a multiple of five and the terminal @
is followed by the character R, a record mark will be placed in digits 8-9 of the
last word used. If the number of characters is a multiple of five, the record mark
will be placed in digits 8-9 of the next word preceded by eight zeros (four alpha-
betic blanks). For example, if the following coding is entered,

Line Label peration| OPERAND ‘(
3 si6 1516 20l21 25 30 35 40 45

I P S | o X o I [S S S S S R
o2 o1, ., T lGABC@R.)
o5 lca|.... l@ABCDE B
04 e N S R S S S S S SO S ST S J

19

Autocoder will make the following assignments:

Symbol Field Definers Address Contents
C1l 09 1000 ABC ==
C2 09 1001 ABCDE

1002 =+

The record mark in location 1000 could be referred to by Cl1 (8, 9); the record
mark in location 1002 could be referred to by C2 (8, 9) + 1. The following coding
shows how a record mark may be entered and named so that feld definers are
not necessary when operating on‘it:

Line Label Operation OPERAND (
3 5'6 1slie 2021 25 30 35 40 as k

ol DG

o | . .
o2 BLANKS .. [. la .. . @& .. . 11.,,.‘..,‘.K.1{
03 RECMARK. . .| ... |@@R

os | .. i Y |

Autocoder will make the following assignments:

Symbol Field Definers Address Contents
BLANKS 0,7
RECMARK 89 1000 +

The record mark may be referred to directly by the label RECMARK.

DRDW—Define Record Definition Word

20

The declarative operation prow may be used to generate an rRow defining an area
of storage specified by the programmer. Tt may also be used to generate an
RDW (s) associated with an area defined by a pa or pc operation and to place it in
any desired portion of storage. The formats for these two functions of the prow
operation are presented below. Note that an actual label may not be used with
a DRDW operation.

A prow entry with the format

Line Label Operation OPERAND (
3 sle 15/16 20|21 25 30 35 40 45

0./, JANYSY OL, DRDW {+ADDR,1,,ADDR.2, N \}
02 1 1 e 1 1 i L 1 1 i 1 L 1 1 1 4 1 1 1 1 L L 1 1 i 1 1 1 1 1 1 1 1 It 1 L H L

will cause the processor to generate an rRow defining the area from apprl through
AppR2. The sign of the row will be the sign entered in the operand. AppRl and
ADDR2 may be two actual or two symbolic addresses, or an actual and a symbolic
address. The row may be referred to by the label of the prow entry.

As previously mentioned, writing “kbw” on a pa or pc header line will cause the
processor to generate an Row (s) associated with the pa or pc entry and to assign
it a storage location immediately preceding the defined area. Sometimes it may
be advantageous to generate an RDW (s) associated with a pa or pc operation and
to place it in another portion of storage. This may be accomplished by entering

Line Label lOperoﬁon OPERAND T
3 5{6 15)i6 20f21 25 30 35 40 a5
X e

o e L (FSYMBOL L ,

02 A.N‘YS;YMBO]LI D,RDAWJ —‘SXMOIL PR S S S S S U SNV SN Rt S W Nt 1{
°3......l..‘H.‘IS.Y.MBOL...,...A.M ...,v,.,.?
0‘4‘ 1 1 1 4 i i ya— llll—ll 1 1 A 1 4 1 1 i L 1 1 1 1 1 i 11 1 1 i 1 1 i A/

EQU—Equate

Actual or Symbolic Address

where symBor must be the label of some pa or pc header line which has appeared
earlier in the program sequence. If symBoL is the label of a pa header line, N RDOWS
will be generated, where X is the N entered on the pa header line. If symBoOL is
the label of a pc header line, one Row will be generated; the operand of a pc header
line has an implied ~ equal to 1.

The operand +symBoL will produce N +RpWS; —SYMBOL will produce N —RDWS;
and symsor will produce ~ rows, all plus except the last which will be minus.
The label axysyamsoL of the prow will refer to the first Row; AxysymBoL 1 will
refer to the second row, etc. Address adjustment is not permitted with this type
of prROW entry.

The declarative operation EQu may be used to equate a symbol to:
1. An actual or symbolic address.

2. A channel, combined channel and tape unit, combined arm and file, unit
record synchronizer, inquiry synchronizer or alteration switch number.

3. An index word or electronic switch number.

The EQU operation allows the programmer to use easily remembered names in-
stead of actual machine numbers in his program. Also, it is possible that two dif-
ferent symbols may be assigned to the same item in different parts of a program.
The EQU operation may be used to equate the second symbol to the first. Note
that an EQU entry may be inserted anywhere in the source program (in contrast
to the other declarative operations, which must be separated from the program
instruction area).

The method of coding each of the three above uses of the EQU operation is de-
scribed below.

The symbol to be equated is written in the label column. The operand may con-
tain an actual or symbolic address, with or without field definers. The special
symbol ® is not permitted. If a symbol is written in the operand, it must have
appeared as a label earlier in the program sequence.

EXAMPLE

Line Label Operation OPERAND (
13 516

1516 20)21 25 30 35 40 45

QAL#,QWC STNOO Ll oo
02 FURD W S B |) S S | S U W S) lIlIl!‘ll‘l!lllLlllll]J

L1

The above entry will cause the processor to assign to the symbol crass the same
Jocation previously assigned to custNo; the two high-order positions of custNO
will be assigned as the field definition (see “Relative Field Definition” on page
14).

Note that the EQu operation does not allow the transitive relation

Line Label IOperation OPERAND (
3 sie 15)i6 20|21 25 30 35 40 a5

ov, A . ., ... EQU B, ... §
0‘2 PR VD N S (SO W S 11 * 4 FUNES U0 S UUNS S EAS S " llllill‘lllllllll
013 YRS W S S WA 1 RS T LAKLAAIIA_LIIIKIJ lAIl,\llllLJ_(
or b Reu o]
0‘5‘ SRR NS W WY GRS EE S St FE T Y U VS Y YN YN SN UMD SN S PR SN N S WU St RN WS WA W N G W

Index Word or
Electronic Switch Number

22

Statements of this form are not acceptable because they will not result in a cor-
rect location assignment.

Two other methods are suggested for assigning two different symbolic names to
the same field. One is to list both names under the same pa, repeating the starting
and ending digit positions of the field. The other is to place the second name
under a separate pa that is made equivalent to the first by an Origin Control
entry. An example of the first method is as follows:

LineJ Label Operation| OPERAND 7
3 sle 15)i6 zolzl 25 30 35 40 45

T I »Y W
02 IFIELDA. . . {19 2% v o v R R D
O3 IFILELDB, ., .| ., |44,88, .. . N T R .(
KN T e N
OA5IIIIAAAAA|11'IIAIAIAAAIIIIKIIAXIlllllllllil\
AT VN R b N L A S R S R T 7
LA : NN I 7 O S
OLBA Pt P y I T S R | i1 1.1 dd i1 4 RS G S W SN T 1 P B JU R | TR [ENNS WS S N

In this example, A is made equivalent to FIELDA and B is made equivalent to
FIELDB.

An example of the second method is as follows:

LineJ Label Eperariﬂ OPERAND {
3 S|6 1516 20J2i 25 30 35 40 43

o, DANAME, ., oA . 0, . o . o]
02 FIELDA. ., .| .., 2,90 0@
03 | e)
KN BT e
05 DRIGIN, , . ICNTRUDANAME . . ., |
N N Y W T
O FIELDB ., |, ., |2,90 .\ o .o T

In this example FIELDA is made equivalent to FIELDB by assigning both fields to the
same location in storage.

The label column contains the name to be assigned. The operand contains the
one- or two-digit index word (1-99) or switch number (1-30), followed by a
comma and the letter x or s, respectively. An index word may be field defined.
The index word or switch that is equated to the label will be reserved in Phase 2;
Le., it will be passed over on Autocoder’s automatic assignment of index words
and electronic switches in Phase 3.

EXAMPLES

Line Label peration| OPERAND {
3 5|6 1516 20]21 25 30 35 40 45

o, LQOAP‘C.O.U.N‘T.E.Q.U..L..X..A.‘l...,JA.A......A.IA.‘.\
0.2 [J,l{
03)
04 [IXWOQORD, . , EQU 5?,(2,.51)‘..1(.....‘.‘,.A..l.,;..j
o7 |SWITCHA ., [EQU, [25,8 .,,,... . """

Channel, Channel and Unit,
Arm and File, Unit Record
and Inquiry Synchronizers,
Alteration Switches

Control Operations

Origin Control

Format 1

The first entry will assign the name LoorcounT to index word 1. The second entry
will assign the name xworD to the indexing portion of index word 52. The third
entry will assign the name SwITCHA to electronic switch 25.

The label column contains the name to be assigned and the operand contains the
number of the item, followed by a comma and an explanatory code character.
The explanatory code characters used in EQU statement operands are as follows:

ftem Code Item Code
Tape Channel and Unit CU Unit Record Synchronizer
Tape Channel C Reader R
Disk Storage Arm and Unit AF Printer w
Index Word X Punch P
Electronic Switch S Inquiry Synchronizer Q
Alteration Switch SN Typewriter T
Unit Record Latch I

To illustrate, the following entry will cause the processor to assign the name
MASTERTAPE to channel 1 and tape unit 1:

Line Label Operation OPERAND (
3 sle 15|16 2021 25 30 35 40 a5

0,1 ASTERTAPEEQU, . [1L1,CU . . ., . o o o0 v v v v 01 Ag
012 A 1 1 1 1 1 i 1 - 1 1 1 1 11 1 1 1 i i 1 1 1 i i 1 1 1 Fa i A 1 i 1 1 1 1 !

The Four-Tape Autocoder language includes the following four control opera-
tions: Origin Control, Litorigin Control, Branch Control and End Control. These
operations are orders to the processor which give the programmer control over
portions of the assembly process. Specifically, Origin and Litorigin Control opera-
tions give the programmer control over the placement of his program in core
storage. Branch Control and End Control operations order the processor to produce
unconditional branches to locations specified by the programmer. The formats and
usages of the four control operations are presented below.

Origin Control statements order the processor to override its automatic assign-
ment of storage and to begin the assignment of succeeding entries at the particu-
lar location specified by the programmer. Thus, they enable the programmer to
control storage assignments of instructions, constants and data areas. If an Origin
Control statement is not the first entry in a source program, the processor will
begin the assignment of storage at location 325.

Origin Control statements may be coded as follows:

Line Label perati OPERAND j
3 S|6 1516 20§21 25 30 35 40 45

oV, e b D.D.RA......,A.LEgm\Atl),.‘“.....(
0z ORIGIN .. |CNTRD(Blank) (Formet2).|
o3 | ‘..A(nnn..s._...\A(Eorma.ta)l..,,..‘,.\
oA4A 1 1 1 A1 4 1 i i 1 1 1 1 i [S i 1 'S 1 1 L i 1 1 i 1 1 1 1 1 1 S N 1 1 1 1 1 1 l(

This type of Origin Control statement directs the processor to reset its location
assignment counter to the particular location (ADDR) specified in the operand,
causing the assignment of succeeding entries to begin at this address. ADDR may
be an actual or symbolic address. If an actual address is entered, the programmer
must be careful that it does not inadvertently result in overlapped portions of the

23

Format 2

Format 3

24

program. If a symbolic address is entered, it must have appeared as a label earlier
in the program sequence. An * address will refer to the current contents of the
location assignment counter, which will be the location assigned to the preceding
entry plus one.

ExAMPLES

Line Label Operation| OPERAND (
3 sle 15)i6 20|21 25 30 35 40 a5

Ol IORIGIN ., , K CNTRIL1000 , , . , ., P N S 1 z
02 1 1 1 1. 1 1 i 1 i i a1 i 1 1 1 1 L i 1 ' 1 1 1 1 L L 1 1 1 S o i 1 1 1 1 1

0A3 —_ 1 2 1 1 e i i L 1 l.l i i i 1 It 'y 1 i 1 e 1 1 1 i 1 1 1 1 i 1 1 1 1 1 1 i i 1 i
94 |IORIGIN, . CCNTRLXYZ H15 0 0 o L
051 L 4 1 1 1 i 1 i 1 1 1 1 e 1 1 1 1 1 i 1 1 1 1 1 i ' 1 1 i 1 L 1 1 i A 1 H 1 A1 1 1

The first entry will direct the processor to begin the assignment of succeeding
entrics at location 1000. The second entry will direct the processor to begin the
assignment of succeeding entries at the location that has been assigned to the
symbol xvz plus 15. The symbol xyz must have appeared previously as a label.

The processor maintains a high assignment counter which keeps a record of the
highest location to which any source program entry has been assigned. An Origin
Control statement with a blank operand directs the processor to begin the assign-
ment of succeeding entries at the contents of the high assignment counter plus 1.
This type of statement would normally be used if the programmer wished to over-
lap variable length areas in storage; it will direct the processor to resume storage
assignments immediately following the longest area.

An Origin Control statement with an operand address (appr) followed by a
comma and the letter s resets the processor’s location assignment counter to the
specified address and orders the processor not to alter the contents of its high
assignment counter during the processing of succeeding entries. Normally, literals
and library subroutines will be stored in locations immediately following the
highest location assigned to the source program, ie., starting at the contents of
the high assignment counter plus 1. This type of statement would generally be
used to place a group of instructions in the upper part of storage without altering
the contents of the high assignment counter, thereby preventing the possible
assignment of literals and/or library subroutines outside the upper limits of stor-
age. One of the other two types of Origin Control statements must follow these
instructions in order to reset the location assignment counter and to enable the
high assignment counter to function again.

If the first entry in the source program (except for comments cards) is an Origin
Control statement in Format 3, the high assignment counter will be maintained at
its starting point, i.e., 0000. If the next Origin Control statement in the source pro-
gram has a blank operand (Format 2), the location assignment counter will be set
to 0000. Setting of the location assignment counter to 0000 is not usually desired;
therefore, an Origin Control statement with an address in its operand (Format 1)
will usually be required under these conditions.

When the 1 7070 Input/Output Control System is used in the source program,
the piocs entry will affect the high assignment counter. Regardless of the format
of the last Origin Control statement, if any, that precedes the piocs entry, the high
assignment counter will be set to the location immediately following the one
assigned to the last instruction resulting from the procs entry. The setting of the
high assignment counter by the procs entry must be considered to avoid uninten-
tional overlap of areas if other Origin Control statements follow the procs entry.

Litorigin Control

As mentioned above, literals and library subroutines will normally be assigned
locations immediately following the highest location assigned to the source pro-
gram. If the programmer wishes to specify the placement of literals and library
subroutines that have appeared in the preceding Litorigin Segment (that portion
of the source program since either the last Litorigin entry or the beginning of the
program, if there is no previous Litorigin entry) will be inserted into the program
at the point where the Litorigin entry appears. A Litorigin entry may have one of
the following formats:

Line Label peration| OPERAND 4(
3 sie 116 2021 25 30 35 40 as

ot v v v v vy MADDR O, ey

02 |LITORIGIN, CNTRIL(Blank) ., ...

°3 (. ..., WDDR,.S

0A4A PRt 1 J Y B L 1 F" 1 1 4 1 il il 1 TR j W W B | 1 [T § 1) DU 11

The label and operation must be as shown.

The function of the operand in Litorigin Control is identical to the function of the
operand in Origin Control (page 23). ‘

The assignment of storage locations for literals and library routines are made in
Phase 4 while all other storage assignments are made in Phase 2. This method
of assigning locations requires that an Origin Control entry be used following
each Litorigin entry so that the entries following the Litorigin Control statement
are not assigned the same locations as the literals; control operations, e.g., BRANCH
CNTRL, are the only type of entries which may appear between the Litorigin Con-
trol statement and the following Origin Control statement. The Origin Control
entry may be omitted wherever the Litorigin Control statement is either the last
entry in the source program or followed by an End Control operation. The format
of the Origin Control entry which follows a Litorigin Control statement depends
on the operand of the Litorigin entry as follows:

If the operand contains an address only (see Iine 01), the setting of the high
assignment counter is affected and the Origin Control statement must be the
type described as Format 1 under “Origin Control.”

If the operand contains an address followed by a comma and an s (see Line
02), the setting of the high assignment counter is not affected so the Origin
Control entry may be any of the formats described under “Origin Control.”

To illustrate the use of a Litorigin Control operation, assume that it is desired to
overlap the housekeeping portion of a program with the main routine after the
housekeeping routine has been executed. This may be programmed as follows:

Branch Control

26

Line Label peration OPERAND

3 5|6 15116 20j21 25 30 35 40 45

OV, MOUSEKEEP, | . .*, |\,
02 T N T S |
03 | o u. . | . | (Housekeeping Routine). ...,/[
0.5...‘....‘.w'..—1‘...,..1..”..H..l...;l,j
°6, | B ., LOADPROG. ., ., ., ¢
07 ILITORJIGIN CNTRU* « o\ o\ oy i i
°8 IBRANCH. . . . |CNTR H.OU.S.E.KE.E.P.....,..‘.‘.‘......z
99, ORIG.IN. . . . |CNTRUHOUSEKEEP. X
]Ao..x.,.‘x.,..n;\‘...,..;..n,.....A.,.‘,nl.j
'AalllllllljllIAllllillk|lllJllIAlJAl|llll]117

The Branch Control entry (Line 08) causes the housekeeping routine to be ex-
ecuted when the program is loaded at object time. The Litorigin Control entry
(Line 07) is placed ahead of the Branch Control entry so that the literals and/or
library subroutines used in the housekeeping routine will be loaded before the
housekeeping routine is executed. The last entry (Line 06) in the housekeeping
routine is a Branch instruction which returns control to the load program and
causes the main routine to be loaded. (If the M 7070 Condensed Card Load
Program is being used as recommended, the last instruction in the housekeeping
routine may be a Branch to 0000.) The Origin Control entry (Line 09) specifies
that the main routine is to be loaded into the area used by the housekeeping
routine, i.e., the main routine will be stored beginning with symbolic location
HOUSEKEEP,

The Branch Control operation

Line Label peration OPERAND f
516 15|16 20j21 25 30 35 40 45

01, BRANCH., ., ., ICNTRLADDR. N S z

012 1 i 1 1 a1 1 1 L i 1 i 1 i 4 1 1 1 L 1 1 1 i 1 L 1 1 i 1 1 1 1 '} 1 1 1 - | 1 1

will cause the processor to produce an unconditional Branch instruction which,
when encountered during the loading of the object (machine-language) program,
will cause the normal loading process to stop and a branch to be executed to the
location (Appr) specified in the operand. Appr may be actual or symbolic.

For example, the entry

LineJ Label perati OPERAND ?
3 sle 1she 20j21 25 30 35 40 45

o', BRANCH ., |ICNTRI1000 , . ., ., Ly, ‘K
o 2 1 1 1 1 A I 1 1 1 1 i 1 1 14 1 1. L Al 1 i 1 1 1 i I I} 1 1 1 I 4 1 1 1 1 1 1 1 1

will cause an unconditional branch to location 1000 during the loading of the
object program.

End Control

A Branch Control entry may be used in conjunction with an Origin Control entry
to execute portions of a program already loaded into storage and to overlap these
with other instructions. For example,

Line Label peration OPERAND l
3 5[6 1516 20j21 25 30 35 40 45

o1. |START, |(First o e}
oz | L)
03 | o e e
04 XYZ ., . “ I8 |LOADPROG.\t
°.5ARRA.N.CH1.‘.CN|T.R.S.T.A.R.T.‘..,.IJA..\.‘..l....I,‘S
OAGAO.R.IG‘I.NAA..CN.T‘R.S‘T.A‘R.T.H,..)..A...l..t.,,...xs
0‘9L e N ...;.‘n.,.,......,...n..n...[

The preceding entries will cause an unconditional branch to the location assigned
to the symbol starT, followed by the execution of instructions from sTART through
the instruction located at xvz. The instruction located at xvz will cause a branch
to the load program which will resume the loading of the remainder of the object
program. The latter has been assigned locations beginning with the location sTART
and will thus overlap the instructions which have been executed. (In this example,
it is assumed that the starting location of the load program is symbolic location
LOADPROG.)

The End Control operation

Line Label IOperation OPERAND j
3 sls 15]16 20]21 25 30 35 40 as

o1 JEND |CNTRLADDR. . . .\ o\ooiioiinnr e
o L 2 4 It 1 1 1 1 L L LA 1 L 1 1 VU T 1 1 U S Y G § S 1 J. 1 1 Fu— i 1 § U T | LJ;L)

is used to begin the execution of the object program immediately after the object
program, including literals, has been loaded into storage. It will cause the proces-
sor to write out the literals used in the program and to generate an entry contain-
ing an unconditional branch to the location (appr) specified in the operand. (A
Branch Control operation would not be used for this purpose, because the branch

would occur before the literals have been loaded.) appbr may be actual or sym-
bolic.

If an End Control operation is used, it must be the last entry in the source pro-
gram. If it is not used, the processor will generate an unconditional branch to
location 325.

To illustrate, the entry
Line Label Pperotim OPERAND j
3 sle 1s)is 2021 25 30 35 40 45
o, END. JICNT.R START . . PR PR S S S .}
ol 2 i | L 1 A 1 1 1 1 1 1 1 1 1 1 1 i 1 " 1 i 1 1 1 1 1 i il i 1 4 i 1 1 '

will cause an unconditional branch to the location assigned to the symbol sTarT
when the loading of the object program, including literals, has been completed.

Part 1I:

Macro-Instructions

7070/7074 Four-Tape Autocoder Library

In addition to the input and output macro-instructions described in the 7070 Data
Processing System Bulletin “1BM 7070 Input/Output Control System,” the 7070/
7074 Four-Tape Autocoder system provides additional macro-instructions in the
Library portion of the System Tape. Each of the macro-instructions in the
Library are described separately below. Additional macro-instructions written by
the user may be inserted into the Library as explained under “Library Changes.”

The macro-instructions processed by Four-Tape Autocoder are substitution-type
macros which appear in the Library as short sequences of symbolic language in-
structions. These sequences of instruction are in “skeleton” form; i.e., they may
have missing Labels, Operation Codes and/or Operands. When a macro-instruc-
tion is encountered in the source program, the corresponding sequence of skeleton
instructions will be obtained from the Library and the parameters in the operand
of the original macro-instruction (the one written on the coding sheet) will be
inserted into the skeleton instructions. The sequence of “completed” symbolic in-
structions will then be merged into the source program in place of the original
macro-instruction.

The skeleton routine used by a particular macro-instruction is selected from the
Library by placing the name of the macro in the Operation column of an entry
in the source program. Skeleton routines in the Library are identified by the same
name as the macro-instruction which uses it.

Up to nine parameters may be written in the Operand columns of the macro-
instruction; the nine parameters must be contained on five lines. When more than
one line is needed for a macro, the Label and Operation columns of the additional
cards must be blank. The parameters for the macro-instructions described in this
manual must be separated by commas and may not contain blanks unless the
blanks appear between @ characters. Only input and output macro-instructions
may use single blanks with connective words as specified in the publication de-
scribing the M 7070 Input/Output Control System. Two consecutive blanks in
the Operand columns are considered to be the end of the card and are considered
as the end of the macro-instruction only when the Operation columns of the next
line are not blank. Four-Tape Autocoder does not automatically add a comma as
the last character of each line of a macro-instruction. Therefore, the last parameter
on a line must be followed by a comma, unless it is desired to indicate that a
parameter is carried over to the next card. The following examples illustrate the
function of commas in the operands.

ExamprE 1

No parameters will be omitted if written as follows:

Linel Label lOperoﬁon OPERAND K
3 5|6 1516 20J2¢t 25 30 35 40 45

0! ANYLABEL . MNAMEP P e

o2 |, ., . vy vl |PARD ,PARE. PARF PARG. 0 .« 1 . ' 1+ 1 1
0.3‘“‘..,‘..,.,APARH..P.AR.I..‘.‘,..,.‘.uu...‘}
04 WD W B W | 1 T R B S} L 11 i 1

29

ZSUM

30

EXAMPLE 2

Written as follows, the fourth and eighth parameters will be omitted:

LineJ Label Operation OPERAND C
3 sle 15)ts 2021 25 30 35 40 a5

01, ANYLABEL, , MNA PARA,PARB,.PARC,,,,, .. s
02 v e by, |[PARE JPARF L, PARG 0, 0 0 0y 1)
°3 ¢ .. . e)., |PARI, ., “.,.‘.,.-lHLA.l
Ol4 At A1 1 1 4 I " | " i 1 i 1 1 D 'Y ol 11 1 1 1 e 1 1 1 1 1 1 1 1 L — i e 1 5

ExampLE 3

Written as follows, the first, fourth, fifth, sixth and eighth parameters will be
omitted:

Linﬂ Label peration OPERAND (
3 sle 15)16 20[21 25 30 35 40 a5

O! JANYLABEL, . IBLNAAAM_E.PA.R.B...PARC..“A”“ S S S L
02 e b VIPARG . e ey 1(
°3 | e e VPARL e A

LineJ Label lOperqtiml OPERAND {
3 5|6 15)16 20j21 25 30 35 40 45

0.1, NYLABEL. ZSUM JACC# ,RESULT ,A,B,C,D, E F. G .‘}
o 2 i1 L1 1 i L1 ST i 1) S N S S |) W S S | S U 1 SRR W T S I W

This macro-instruction will set a specified accumulator to zero, add up to seven
fields together and store the result.

The accumulator to be used by this macro-instruction is specified by a 1, 2 or 3
as the first parameter (acc#) in the operand.

After summing the fields specified by the third through ninth parameters, the
answer is stored in the symbolic location specified by the second parameter
(rEsuLT). The address specified may have field definition, address arithmetic,
and indexing; when field definition is specified, the unused digit positions of the
word receiving the answer will be set to zeros. If the answer need not be stored,
the second parameter (RESULT) may be omitted and the answer will be located
in the accumulator specified by the first parameter (acc#).

The fields to be added together (the third through ninth parameters) may have
field definition, address arithmetic, and indexing.

Each zsum macro-instruction must specify the first and third parameters; other
parameters need be included only when they are necessary. Note that the zsum
macro-instruction does not check for an accumulator overflow condition; if an
overflow condition can occur, the programmer must check for it after the macro
has been executed.

CALL

Line Label Operation| OPERAND f
3 5,6 s 20|21 25 30 35 40 as \

o', ANYLABEL L CALL [SUBROUTINE, .,+ 4
02

U TS WS N RN S WS UL T S W' lllleAAlilllll\!llLlllllll/

This macro-instruction will insert a linkage to a library subroutine into the source
program and include that subroutine in the program.

The name of the desired subroutine (up to five characters) must be placed in the
operand. At the point in the program where the caLL macro-instruction occurs,
7070/7074 Four-Tape Autocoder will insert a linkage to the desired subroutine.
At object time, index word 94 is used to hold the address to which control will
return after the subroutine has been executed. The cALL macro-instruction also
locates the subroutine in the Library and enters it into the program; the sub-
routine will be stored as indicated by a Litorigin Control entry (see page 25).

If more than one CALL macro-instruction names a certain subroutine, the sub-
routine will be entered into the program only once in each Litorigin Segment in
which it is used. The linkages inserted by each caLL macro-instruction will send
control to the start of the subroutine. Return to the proper point in the program,
i.e., the instruction following the carL entry, will be controlled by index word 94.

Writing Substitution-type Macro-instructions

Additional macro-instructions may be included in Four-Tape Autocoder by writ-
ing skeleton routines and inserting them into the Library as explained under
“Library Changes.” The five-character name of a macro is assigned by a Library
Change Card at the time the macro-instruction is placed into the Library.

Each skeleton instruction, which forms part of a substitution-type macro-instruc-
tion in the Library, may consist of an Autocoder entry in various stages of com-
pletion as follows:

The instruction may be complete and will be used each time the macro is
called for.

The instruction may be partially complete and require that the omitted para-
meter(s) be supplied each time the macro is used. When this type of skeleton
instruction is used and a required parameter(s) is omitted, the skeleton in-
struction will appear in the routine without the missing parameter(s) and
an error message to indicate the omission will be typed.

The instruction may be partially complete and used only when the omitted
parameter (s) is supplied by the macro. If the macro does not supply the re-
quired parameter (s) for this type of skeleton instruction, the skeleton instruc-
tion will be deleted from the routine; no message will result from this dele-
tion.

END CNTRL Or LITORIGIN CNTRL cannot be used in skeleton routines or subroutines.

Any portion of an Autocoder entry, except the label, may be complete in a skele-
ton instruction. Labels for skeleton instructions may be specified if the macro-
instruction can occur only once in any one program; use of the macro more than
once in the source program would produce duplicate symbols and result in im-
proper assembly of the program.

A special two-character code is used within skeleton instructions to indicate that
a source program macro-instruction parameter is to be inserted, or may be in-

31

serted, into the skeleton instruction in place of the code. The first character is a
It character (lozenge) which identifies the code and causes the insertion to be
initiated. The second character identifies which parameter is to be inserted and
also indicates whether the parameter must be present or may be omitted. The
special two-character code may also be used in place of symbolic labels within
the skeleton routine.

A parameter which must be present each time the macro is used must be identi-
fied by xt1 through 19 in the skeleton instruction. The number following the
I character specifies the position of the parameter in the operand of the macro-
instruction; thus, 14 specifies the fourth parameter of the macro-instruction.

Parameters in skeleton instructions which are to be used only when the parameter
appears in the operand of the macro must be identified by A through m1. The
numerical portion of the character following the 1 character specifies the posi-
tion of the parameter in the operand of the macro-instruction, e.g., 1 is the ninth
parameter.

The label, if any, for a substitution-type macro is indicated by 10 in the Label
column of a skeleton instruction. The label for the skeleton routine will be the
same as the label of the macro-instruction that supplies the parameters. If the 10
appears in the label of a skeleton instruction that may be deleted by omitting its
parameter, the label will be assigned to the first subsequent skeleton instruction
that is used.

To illustrate the writing of a substitution-type macro-instruction, the skeleton
routine of the zsum macro (see page 30) will be used; it appears in the Library
as follows:

Line Label Operoﬁj{- OPERAND (
3 5|6 15{16 20j21 25 30 35 40 45

Ol M0 ot AT RS)
02 .nlnDi,“j
03 | o ARL RE e
0,4 I:LlTIFK
05 | v v i AL MG
AT N W = & T)1 : S S
A I S - & VI | -» S
o8 | . . . lgsTmidwB
oo | v)

As explained in the description of the zsuMm macro-instruction, operands 1 and 3
must always be supplied; this is specified in the skeleton instructions by the use
of 11 and 13. Other skeleton instructions are optional, so the parameters are
specified by 1B and xp through r1. The 10 in the label indicates that a label
may be assigned if desired.

For example, if the following zsum macro-instruction is written into a program,

Line Label peration OPERAND 2

S|6 15]16 20j21 25 30 35 40 45

3
0, |CALCGROS.S. z.s.um_mxmw_@mmm%
0 2 1 1 A1 " ' 1 1 i L1 " 1 COAM‘MIAS|110N1 1 1 1 1 1 1 1 1 SR 1 1 1 i1 1 i i

03

.LlAJl\l‘AllxAllxlllllllltlll‘IIIAIIIIII\{

the followmg sequence of instructions will be inserted into the source program:

Line Label peration| OPERAND A
3 sls 1s)ie 20f2t 25 30 35 40 a5

0!, |CALCGRO.S.S, 7ZA3 ,ISALARY. . . v on i

02 . ., |A3 ., |OVERTIME 1 oot
03 ... |A3 [COMMISIJON. . . . v v i

04 e 7z 3 [GROSSPAY, ot LJ
05, e o N U S T S S U S S ST S B J

The sixth through ninth parameters of the macro-instruction are omitted by not
entering them on the coding sheet: no message will be typed during assembly
because HF through 11 in the operands of the skeleton instructions indicate that
the parameters may be omitted. Similarly, if the second parameter (GROSSPAY)
had been omitted, the zst3 instruction would not appear in the source program
nor would a message be typed.

The programmer may write the operand of a skeleton instruction so that a choice
of parameters from the macro will be made. A choice of parameters is specified in
a skeleton instruction by separating parameters in the operand with a / character
(slash). The parameter preceding the / character must be identified by 111 through
119; the parameter following the / character may be identified by 11 through 19,
11 a through X1 or it may be a literal.

If the parameter preceding the / character appears in the operand of the macro-
instruction, the parameter from the macro will be used and the parameter following
the / character in the skeleton instruction will be ignored. If the parameter pre-
ceding the / character is omitted from the macro, the parameter following the /
character will be used. When both parameters are omitted from the macro, the
processing of the skeleton instruction will depend on the form of the parameter
that follows the / character. The form of the parameter affects the processing as
follows:

If the parameter following the / character is identified by rt1 through 9,
the skeleton instruction will appear in the source program without the omitted
parameter; i.e., the skeleton instruction will be made as complete as possible
and placed in the program. An error message indicating the omission will be
typed.

If the parameter following the / character is identified by x4 through 1, the
skeleton instruction will be omitted completely; no error message will occur.

The following skeleton instructions illustrate various choices of parameters:

Line Label Operation| OPERAND l
3 516 1516 20j21 25 30 35 40 45

o | i lzA, X1/ 41000, e f‘
02 | . ., . lSTD1 A4/ R2 o
o3 { ., B, X3/ XE . J

The zal instruction will always appear in the source program; +1000 will be used
whenever the first parameter is omitted from the macro-instruction. The s1pl
instruction will use the second parameter whenever the fourth parameter is omitted
from the macro; if neither parameter appears in the macro-instruction, the stpl
instruction will appear in the source program without an operand and an error
message will be typed. The Branch instruction will use the fifth patrameter when-
ever the third parameter is omitted from the macro-instruction; if neither parameter

33

34

appears in the macro, the Branch instruction will not appear in the source program
and no message will be typed.

The parameters in a macro-instruction and the operands in a skeleton instruction
may have field definition, address arithmetic, and indexing. Use of these program-
ming methods will be interpreted as follows:

If field definition is used in both the skeleton instruction and the parameter
supplied by the macro, the field definition in the skeleton instruction will be
considered as relative to the field definition in the parameter. For example,
if the field definition in the operand of the skeleton instruction is (2, 4) and
that in the parameter of the macro is (2, 7), the field definition of the instruc-
tion inserted into the source program will be (4,6).

If address arithmetic is used in both the skeleton instruction and the param-
eter supplied by the macro, the instruction inserted into the source program
will have address arithmetic equal to the algebraic sum of the two. For
example, if the address arithmetic of one is +7 and the other is —4, the in-
struction in the source program will have address arithmetic equal to +3.

Indexing may be used in either the parameter supplied by the macro or the
operand of the skeleton instruction but not both. If a parameter contains an
actual index word that is used only for indexing, the index word must be
written in the form xnn where nn is an index word number from 1 through 99.
The index word, in the form xnn, from the parameter may not be used as the
first item in the operand of an index instruction, e.g., an Index Word Load
(xL) instruction, because xnn will be interpreted as a symbolic index word as
explained under “Uses Other Than Indexing.”

To illustrate field definition, address arithmetic, and indexing, assume that param-
eter 6 of a macro is workaRea (1, 7)+23+workrw and the operand of one of
the skeleton instructions which uses that parameter is 16 (0, 3)—1. The operand
of the instruction inserted into the source program would be woRkaREa (1, 4) -+
22 +WORKIW.

In order to allow symbolic references to other skeleton instructions within a rou-
tine, symbolic addresses may be generated automatically through the use of mj
through Kr in skeleton instructions. To properly generate a symbolic address the
symbol, e.g., 1P, must be used as a label of one skeleton instruction and in the
operand of at least one other skeleton instruction in the same skeleton routine.
Skeleton instructions that have a label of HJ through MR may not have ma
through w1 as operands; if such a combination were used and a skeleton instruc-
tion were deleted because a parameter is omitted from the macro, the instruction
referring to the deleted instruction would have an undefined svmbol in its
operand.

To avoid duplicate labels, they are generated in the form aCRommmMmA where
mmmm is the number of the macro within the source program and n is the
numerical portion of the character identifying the symbolic address, i.e., 1 through
9 for j through R respectively. An example of a generated label appears in the
coding example below.

To illustrate symbelic addressing within a skeleton

Library contains the following skeleton routine:

routine, assume

that the

Line Label Operation OPERAND J
3 sl 15)ie 20§21 25 30 35 40 a5

S T S Lt P S S S S A R e o AA
02, L L L P T S T S S W S S T L L L)
03 PR b - N | - 0 /U VP S S ST R ,‘.nk
04 o , Lty S S R S S S S ‘4]
05 T) "|) P T S S R SO S L R)
06 Img |ZAT PR L e s e e
07 o e Lt N R S S A T L L
I D N e
09, o a L N O A i S S L LJ

Assume that the macro-instruction supplied the name
and that this is the twenty-fifth macro in the source
structions will be inserted into the source program:

cost for

the first parameter

program. The following in-

Line Label rati OPERAND j
3 5|6 1516 20§21 25 30 35 40 45

o1, T S L T S T S S S S G S L A_X
02 4y) J', L T S S A R S S L L ‘A
os | 5. MAcRQee2sL
04 o e e) ...) e L X A
05, S ,‘| R T S S S S L J_J
06 MACRO00251ZA1 ICOST , . . v 0 v v RS
017. o ...nl N S S S S L ‘J
0.8‘ L o) "‘) e e L L L. X J\
0‘9‘ o L N S A L J_J

Operands of instructions used in skeleton routines may use the special symbol *
with address arithmetic only if all instructions between the one with the * symbol
and the one referred to will be present always, i.e., the operands do not specify
optional parameters by using 14 through n1. Two examples of the proper use of
the special symbol * follow.

ExaMPLE 1

Use of the * symbol to branch around constants.

Line Label ﬁroﬁ\on OPERAND (
3 5|6 15]16 20|21 25 30 35 40 45

ol 1., N R S A S S S WS S S Y S T S G G S S A,‘J_A}
02 |, v ,,lj
03, . R 1: T BT - Y S U St S S S \
05 Mg ... 1 iea)
06, MK . . . 1 1284500040, o0 i)
o7 |mIL, | L . L +25(.8,.9) o0 . ./
o8, 1 AR B e e)
oo |, B R L
o L, , N L
UL B N T S T S U VT S S S S U S b

35

36

ExaMPLE 2

Use of the * symbol to form a loop.

Linej Label peration OPERAND <
3 s 15)i6 20j21 25 30 35 40 as

02 | e)
o3 |, |zAn1 wo+wsa . .]
04 NN 70 - 45 PR = 0 1) = . A }
OS5 | v v ISRBEGHB 1.,Lﬁ
08 | ZSTHRUNS A Y,
Ol BIX AR, ‘
Operands of instructions used in skeleton routines may use literals as required.

However, it is not possible to substitute parameters into
constant because @ HN@ is assumed to be the desired
the following coding appeared in a skeleton routine,

an alphameric literal or
coding. For example, if

Line Label Operation OPERAND

3 sle 15|16 20j21 25 30 35 40 a5

OJ;'J WS W R U W S St II.AA ¥ VS S S S W S U W T WIS S SN SN S T G S W S N TR ll\
02 T S §) U S S | I‘IA S WS U TN SUNS SN T NN G U S NN SN S SN S S ST N Allll)
LI I | : P LI R &
04 mJDC . I-RDW\ o]
051) U SV W U U S T R Lol 1 4 AnAS@AIAIAAIIIAIIIIKIII) S S S
08, e CITYP L RT)
OA71 § T S Y S l‘LA.Al JAIIIAAIAIIL!IA]IIIII Allll)
o8 ¢

A R B .r\
091 UV W Y S UN S S Tt PN WSS 7 USNED VRS W UUN WY U W Uy W WS SR S S S U SR S S S N lIlAAZ

execution of the

routine.

routine will cause the two characters 15 to be typed regardless
of what appeared as the fifth parameter of the macro-instruction which uses this

None of the instructions used in the skeleton routine of one macro-instruction may
be another macro-instruction. However, it mayv be desirable to use a library sub-
routine at some point in a macro-instruction so the special operation xcL has
been made available in Four-Tape Autocoder. The special operation 1xcL used
with a BLX instruction in a skeleton routine performs the same function as a caLL
macro in the source program. The following entries must be made to use a sub-
routine in the skeleton routine of a macro-instruction:

LineJ Label
3 5|6

peration
15)16 20[21 25

OPERAND
40

o1, ANYLABEL...

02

o JINCT, |SNAME .,

03

P S T S

Special operation INCL may appear only in the skeleton routine of a macro-instruc-
tion or in a subroutine. The above example assumes that the subroutine (SNAME)
has been written to be called in by the carLL macro as explained under “Sub-
routines.” (The use of the dollar sign in this example is explained on page 38.)

Subroutines

ExXAMPLE 3
Assume that a macro-instruction to compute the value of /x+z is to be written.

If the Library contains a subroutine for calculating the square root of a number,
the subroutine may be included in the skeleton routine; for this example, assume
that the subroutine is named sQrT and that it takes the square root of a number
placed in accumulator 1 and places the answer in accumulator 3. The skeleton
routine for this operation could be written as follows:

Line Label Operation OPERAND K
3 sis 1s|i6 20[21 25 30 35 40 a5

o', Imo ., . 1ZAT, X, ey A ‘l
02 A 2 a1 Jij
o3 i, BLX 9.4...S.Q.RT‘.‘$..,..”H.JL.‘,..‘.,\
04, oo JJINCL SQRT, o0 ey .2
o5 | i ZST8 I8 e A<
06, L L oy T !7

The macro-instruction which uses this skeleton routine would specify the location
of x as the first parameter, the location of z as the second parameter and the third
parameter would specify the location into which the answer is to be stored.

The 7070/7074 Four-Tape Autocoder system allows subroutines to be added to
the Library portion of the System Tape. Library subroutines are commonly used
sequences of instructions which can be loaded into one area of storage and
entered from any number of points in the source program. A subroutine differs
from a macro-instruction in the following ways:

1. All instructions in a subroutine are complete; no parameters may be in-
serted.

2. Subroutines usually consist of many instructions which would occupy too
many storage locations if the whole sequence of instructions were repeated
each time the subroutine were used. Although a subroutine entry may be
entered from many points in a program, each subroutine will appear only
once within the Litorigin Segment in which it is used.

3. Subroutines are not included in the program at the point where the carLL
macro is used; the locations into which the subroutine is stored will be de-
termined by a Litorigin entry (see page 23).

4. Data to be operated on by the subroutine must be placed in specific loca-
tions as required by the individual subroutine.

Subroutines are incorporated into a source program by using the name of the sub-
routine in a CALL macro-instruction (see page 31). Before the caLL macro is used,
all data required by the subroutine must be placed in the storage location(s)
where the subroutine expects to find it. For example, if a library subroutine
named cuskE for raising a number to the third power requires that the number to
be cubed be in accumulator 1 at the start of the subroutine, the number (vALUE)
must be placed in accumulator 1 before the cuse subroutine is called for; coding
to do this would be as follows:

37

Writing Subroutines

38

Line Label peration| OPERAND (
3 e 1sjie 20j21 25 30 35 40 a5

02 I G S 0 W R hd L LIAIIAIllllllllllxllllllllll
03 | |ZAY NALUE,y
°4 1. .. JCALL |ICUBE 1..,.,.1...1,A..x...,.,k
05 . {
1 i WD U S S WU Y S N | I S S T WY NN W S SR GRS G SH S Gt) (D S R U SN U SN SN S SN N SN S
06 ;
't W G S S W SN S G PR S B § VRS W WO N W S SN SN TR SN SN S SN S SN S SN S SH S SN S SN G SR G S
07 !
1) U S W W WY S S G FUND S S § NSNS S S W N Y U SN S [SV S UGS Y U S U S TR S A R SR R SN S S

The result of the subroutine would always be placed in the storage location speci-
fied by the subroutine. In the example above, the subroutine might be written to
store the result in accumulator 1 in place of the original number.

The procedure for inserting subroutines into the Library is explained under
“Library Changes.” The name of a subroutine may contain up to five characters
and is assigned by a Library Change Card at the time the subroutine is inserted
into the Library.

The ability to use a library subroutine in any program processed by 7070 Four-
Tape Autocoder requires that care be taken to avoid accidental duplication of
symbols that are used in a subroutine and a source program. Duplicate symbols
can be avoided by using a period (12-8-3 punch) within the symbols contained
in a subroutine because periods may not be used in symbols of source programs.

The function of the Litorigin entry in storing literals and library subroutines
could introduce duplicate symbols if a subroutine were used in more than one
section of a source program, i.e., a subroutine is named in caLL macro-instructions
that are separated by a Litorigin entry. To avoid duplicate symbols written within
subroutines, a dollar sign (11-8-3 punch) may be used within the symbols appear-
ing in the subroutine. Four-Tape Autocoder will substitute a different alphabetic
character for the dollar sign in each section of the program. For example, if a
label in a subroutine were carcror.$, the label would appear as carcrot.a for
the first Litorigin, as carcror.B for the second Litorigin, etc.; if the subroutine
were called for only in the first and fourth sections of a program, the label would
appear as caLCTOT.A for the first time and carcror.n the next time.

If a subroutine is to be called for by the caLL macro-instruction provided with
7070/7074 Four-Tape Autocoder (rather than a similar macro written by the
user), index word 94 must be used to return control to the proper point in the
source program after the subroutine has been executed. This is easilv done by
executing a Branch to 0+x94 when processing in the subroutine has been com-
pleted.

When writing subroutines to be inserted into the Library, any Autocoder entries
that are acceptable to Four-Tape Autocoder may be used except that subroutines
may not include anv macro-instructions. However, it may be desirable to use
one subroutine at some point in another subroutine so the special operation 1NCL
has been made available in Four-Tape Autocoder. The special operation INCL
used with a BLX instruction in a subroutine performs the same function as a cALL
macro in the source program. The following entries must be made to use one sub-
routine in another:

Line Label peration OPERAND 4(
as

3 K3 15|16 20)21 25 30 3% 40

ol, ANYLABEL, |BLX ,6 |94,SNAME,$, k
0.2 PR S | AIAIINICJLJ SANAA]MEI]IlLlIlLIIlAleAAllllll
03

N SR Y T RS NS S SNVUN [S S WA S S N TN ST G WA S U S U S S S S i N S E R S ———

The special operation INCL may appear only in a subroutine or the skeleton routine
of a substitution-type macro-instruction. The above example assumes that the
subroutine (sNaME) has been written to be called in by the caLL macro, ie,
return to the proper point in the program is controlled by index word 94.

EXAMPLE

Assume that a subroutine to solve the following formula and store the answer in
accumnulator 1 is to be written:

FREQ: 4196_.

27 LC
If the Library contains a subroutine to find the square root of a number placed in
accumulator 3, the square root subroutine (sQrt) may be used to find the value of

v/xc as follows:

LineJ_ Label peration OPERAND J
3 Sl6 1316 20]21 25 30 35 40 43

ol [FREQ.8 . 1o Il o
02 | oy e ’...Calcula.te\f.alueQfo‘timesGandl....Hz
os | storevaluein PRODLC.S. ., , . . ., ...
0,4 ...l..u,z,Ais‘.pAR.OD,L.c..A&..‘,,.,.......,.J.,,I
os | ., ., Ixi A XSUBREXIT,,94 . SavecontentsoflI. W, B_4Lz
o | . . . BLX . |94.,8QRT.$,
o7 | . . INCL |SQRT, , .. Assum is stored i T.

OLBI PEES NS SRR U WU S W' P A S | PURE SN N U S G W S S TR Y - SHNTUNS TN WU SR SH SH S SR SH S S S S S
09 { by e Caleulate 2 ,.$.a.ndstqre...,...(
1,0, RN B .. Aapsyweriggeeymulator 1 o, S
2 |, . . B JorXSUBREXIT.l
N R |

39

Part Il

7070/7074 Four-Tape Autocoder Processor

Organization of the Processor

Program Functioning

System Control

Librarian

Phase 1

The Four-Tape Autocoder processor is divided into six sections named: Svstem
Control, Librarian, Phase 1, Phase 2, Phase 3 and Phase 4. The first section is used
to control the other sections; the Librarian is used to add to, delete from, change
and/or duplicate the System Tape. Phases 1 through 4 are used to convert the
source program which is on cards and/or tape to a machine-language program.
Two tapes are produced by the processor; one contains the assembled machine-
language program in condensed card format and the other contains an edited list-
ing showing the symbolic-language source program entries and the corresponding
assembled machine-language instructions. Additional on-line printing and/or
punching of the output may be elected through the use of control cards (see
“Option Cards™).

The operation of the Four-Tape Autocoder processor is shown in the general flow
chart in Figure 2. The functions performed in each section of the processor are
explained briefly below. Programmers who are interested in the methods used to
perform these functions are referred to Appendix A which contains a general flow
chart of each phase.

This section of the processor is loaded into storage from the System Tape and
remains there throughout Autocoder assembly to control the operation of each
phase of the processor. (The Librarian section is loaded into storage with the
System Control section; however, it may or may not remain in storage depending
on the tyvpe of run as explained below.)

System Control first reads any option cards (see page 49) which may be necessary
to alter one or more of the “permanent” options for a particular machine run.
From a rRux Control Card, the System Control section will determine whether an
original assembly, a re-assembly or a system run is to be done. If the run Control
Card indicates a system run, System Control will cause the Librarian section of
the processor to be executed. If either an original assembly or a re-assembly run
is indicated, a table contained in the Librarian section will be preserved in storage
and Phase 1 will be loaded into the storage locations occupied by the Librarian
section; the table that is saved contains the names of all subroutines and macro-
instructions which are available from the Library portion of the System Tape.
After Phase 1 has been loaded, it is executed. As each phase is completed, System
Control loads the next phase and causes it to be executed.

The Librarian section of the processor is executed only when a system run is
made. In a system run, the Librarian section provides for adding to, deleting
from, and changing the System Tape; it may also be used to produce a duplicate
of the System Tape.

As stated above, the Librarian and System Control are loaded into storage to-
gether although only the table of macro-instructions and subroutines required in
Phase 1 is retained when an original assembly or re-assembly run is made.

The System Control section causes Phase 1 to be loaded and executed whenever
the run Control Card specifies either an original assembly or re-assembly run. The
operations performed in Phase 1 are as follows:

1. The source program is read from tape and/or cards.

41

42

ORGANIZATION OF THE 7070 FOUR-TAPE AUTOCODER PROCESSOR

Systems Control
Load and Librarian

Move Perma-
nent Options to
Working

Options

Read Card
from
Option Unit

Original Assembly or

Re-Assembly

Systems

Execute
Librarian

Figure 2

Place Options
and Macro Table
for Phase 1

Load
Phase
1

Execute
Phase 1

Systems

Control

Load
Next
Phase

Execute
Phase

2. Page and line numbers are checked for ascending sequence.

3. The skeleton routine corresponding to each macro-instruction used in the

source program is obtained from the Library and inserted in sequence at
the point in the source program where the macro-instruction was used.

A linkage to a subroutine is inserted at the point in the source program
where a cALL macro-instruction names that subroutine. The instructions
which form the subroutine will be obtained from the Library and entered
into the source program at a point specified by a Litorigin Control entry.

LITORIGIN CNTRL entries are partially processed in this section of the proces-
sor. Each Litorigin Control entry produces an Origin Control entry which is
placed immediately ahead of the Litorigin Control entry. If any subroutines
are used in the program, they will be inserted between the generated Origin
Control entry and the source program Litorigin Control entry.

Declarative entries which require symbolic operands to be defined earlier in
the program sequence, e.g., pRbw with a single operand and EQu, are placed
in a table for use during Phase 2.

A 17-word output tape record to be used as input to Phase 2 is written for
each entry in the source program. Macro-instructions and subroutines are
exceptions to this procedure; there will be a 17-word output tape record for
each instruction contained in a subroutine or macro-instruction.

Messages will be prepared and typed for errors which are detected by this
phase of the processor.

Phase 2 The output records produced by Phase 1 are processed by Phase 2, which performs
the following functions:

1.

Each operation code is checked to see if it is a valid Autocoder operation
code. Invalid operation codes will be processed as NOP instructions.

Imperative Autocoder entries are converted to the corresponding 7070
machine-language codes.

A table of symbolic labels and the corresponding storage locations assigned
during this section of the processor is generated. If the number of symbols
fills the storage area allotted to the symbol table, the table will be written
on tape and a continuation of the table will use the same storage area. (This
method of processing avoids limiting the number of symbols that may ap-
pear in a source program.)

Storage locations are assigned to fields and constants defined by pa and pc
entries.

The operands of imperative Autocoder entries are processed as completely
as possible. Operands containing symbolic addresses cannot be processed
completely at this time because the symbol table is generated during Phase 2
and is not available until the end of this phase. Actual addresses, asterisks,
index words, electronic switches, etc. which appear in operands are proc-
essed during this phase.

Availability tables which indicate actual index words and electronic switches
used in the source program are generated; these tables are used in Phase 3
to avoid duplication when assigning symbolic index words and electronic
switches.

A 26-word output tape record to be used as input to Phase 3 is written for
each Phase 2 input record. The 26-word record contains, in addition to the

43

input information, symbols which appear in operands plus an indication of
how the symbol is used. For example: is the symbol the name of an index
word; is it a literal rather than a symbol; does the symbol have address
arithmetic?

Messages will be prepared and tvped for errors which are detected by this
phase of the processor.

Phase 3 Processing of the output records produced by Phase 2 may require one or more
passes of Phase 3. The number of passes depends on the number of symbols used
in the program; if all symbols can be contained in the allotted storage area at one
time only one pass is required. The functions performed by this section of the
processor are as follows:

1.

A check for duplicate labels assigned to different locations is made and an
error message will be typed each time this condition is detected.

The storage location assigned to each symbolic address is inserted into the
partially completed instructions produced by Phase 2.

During the last pass of Phase 3, which may be the first pass if only one is
required, all symbolic index words and electronic switches are reserved and
assigned to available index words and electronic switches; the availability
tables generated in Phase 2 are used to avoid duplicate assignments. Sym-
bolic index words and electronic switches are placed in a special table for
use in Phase 4.

The last pass of Phase 3 will also insert the assigned index word or electronic
switch into instructions (except arithmetic type) that define a symbol as an
index word or electronic switch by its use in the operand rather than by an
EQU entry.

An output record to be used as input for Phase 4 is written on tape.

Messages to indicate errors detected during this phase of the processor will
be prepared and typed.

Phase 4 This phase is the last section in Four-Tape Autocoder and its output is the object
program. The following functions are performed in this section of the processor:

1.

Arithmetic type instructions containing symbolic index words and/or elec-
tronic switches are completed during this phase by inserting the assigned
index words and electronic switches. The special table of symbolic names
and the corresponding assigned index words and electronic switches pre-
pared in Phase 3 is used for this purpose.

All literals are “packed” into storage locations. These assigned locations with
appropriate field definition are inserted into the instructions which use the
literals.

All instructions are checked for completeness; a message indicating an un-
defined symbol will be typed for incomplete instructions.

A tape containing the object program in M 7070 Condensed Card format
is written; a typed message will indicate which tape unit holds this output
file. This tape is written in the alphameric mode for punching into cards by
an off-line (or spooL) tape-to-card operation; cards punched from this tape
by an off-line tape-to-card operation will contain a load card indicator in both
columns 65 and 79. (The 1BM 7070/7074 Condensed Card Load Program is
automatically included as the first five cards of each program assembled using
Four-Tape Autocoder.)

Types of Runs

Original Assembly Run

Re-assembly Run

5. An edited listing tape showing the symbolic-language source program en-
tries and the corresponding assembled machine-language instructions is
written; the listing includes a table of all index words and electronic
switches that are not used by the object program. A typed message will in-
dicate which tape unit holds this output file. This tape file may be printed
off-line to obtain a listing which shows each entry of the source program
and, on the same line, the corresponding machine-language instruction; the
assigned location of the instruction also appears on the line. One use of the
listing is in preparing “patch” cards to correct or alter an assembled program.
The edited listing tape may also be used as an input tape for re-assembly
runs of the Four-Tape Autocoder processor.

6. If anv on-line printing and/or punching options are elected (see “Option
Cards”), the on-line operation (s) will occur simultaneously with the writing
of the two output tapes.

The functions performed in each of the three possible types of runs are described
below, together with the form of input required for each run.

An original assembly run processes a source program in Autocoder form into a
machine-langnage program. The input to an original assembly run may consist of
either a deck of cards containing the Autocoder statements or a reel of tape pre-
pared from those cards. When the source program is on tape, each tape record
must be one Autocoder statement written in the alphameric mode, i.e., a mode
change character may not be the first character of the tape record.

A re-assembly run makes additions, changes and/or deletions to a previously
assembled program. Re-assembly runs provide the means to correct errors that
have been noted during either the testing of assembled programs or previous
assemblies. Two forms of input are used for a re-assembly run; one is the edited
listing tape that was produced by an original assembly or a previous re-assembly,
the other is Autocoder statements giving additions and changes or indicating dele-
tions. The additions, changes and deletions may be read directly from cards or
the cards may be written on tape by a card-to-tape operation and the tape used
as input. The additions, changes and deletions are merged with the original source
program as it is listed to produce a new source program which includes the correc-
tions. The new source program is processed as though it were the input for an
original assembly. At least one addition, change or deletion must be included for
each re-assembly run; if for some reason it is desired to re-assemble a program with
no change in logic, this requirement may be met by changing one entry to itself.

Both the source program and the Autocoder statements for additions, changes and
deletions must be in ascending sequence according to the page and line numbers.
The page and line numbers are used by the processor to locate the statements to
be affected by the re-assembly run.

ApDITIONS AND CHANGES

To change an Autocoder entry in the program being re-assembled, a new Auto-
coder entry must be prepared using the page number and line number of the one
to be changed. The processor will locate the entry to be changed on the edited
listing tape by comparing page and line numbers; when an old entry equal to the
new entry is found, the new Autocoder entry will replace the old entry. If the
edited listing tape does not have an entry with page and line numbers equal to a
new entry, the new Autocoder entry will be regarded as an addition and inserted
into the program in proper page and line number sequence.

45

System Run

46

DELETIONS

Autocoder entries in the program being re-assembled may be deleted through the
use of an Autocoder statement having pELET in the Operation columns. One entry
or several consecutive entries may be deleted depending upon the operand of the
DELET statement. Depending on the number of entries to be deleted, one of the
following forms of DELET statement must be used:

Page & Line No. Label Operation Operand
FIRST DELET FINAL
ONENO DELET

The first line shows the form of a DELET statement to be used to delete any num-
ber of consecutive Autocoder entries from the program being re-assembled. Col-
umns 1 through 5 of the DELET statement must contain the page number and line
number of the first entry to be deleted; the operand must contain the page and
line number of the last entry of the sequence that is to be deleted.

The second line shows the form of a DELET statement to be used to delete one
Autocoder entry from the program being re-assembled. The page number and
line number of the entry to be deleted must be placed into columns 1 through 5
of the DELET statement; the operand must be blank.

Note that a pELET statement is not required when a new Autocoder entry is to
replace an old one; replacing one entry with a new entry is explained above
under “Additions and Changes.”

ExAMPLES

The following examples illustrate the use of PELET statements:

Page & Line No. Label Operation Operand
MX76 DELET 34A91
9 834 DELET

The first line will delete all entries from MX76 through 34A91; the second line
will delete entry 98]34.

A system run makes changes to “permanent” options, Library routines, and/or
program portions of the Four-Tape Autocoder processor. Three forms of input
are used for a system run; one is the System Tape to be changed, another is
Autocoder statements for changes of “permanent” options, subroutines and macro-
instruction skeleton routines, the other form is condensed load cards for changes
of program portions of the Four-Tape Autocoder processor. The changes may be
read directly from cards or the cards may be written on tape by a card-to-tape
operation and the tape used as input. If no changes are provided, a system run
will produce a duplicate of the System Tape used as input.

The methods of changing various portions of the System Tape are described sep-
arately below. Any number of portions of the System Tape may be changed dur-
ing one system run.

PERMANENT OPTION CHANGES

To change “permanent” options on the System Tape, Autocoder entries specifying
the new “permanent” options must be prepared; see “Option Cards.” An AsicN
card must precede the option card(s) which specifies the new “permanent” options.

An AsIGN card is prepared as follows:

Linei Label peration OPERAND S
3 sle 15}i6 20f21 25 30 35 40 a5

ov |, ..., lastgN|o . A
012 S i 1 L 1 A S T S 'S 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 L 1 'l A 4 i A 1 i 1 (

After the system run, the options specified in the option cards which followed
the asioN card will be “permanent” options on the System Tape. The new
“permanent” options can be replaced by temporary working options for individual
runs through the use of option cards ahead of the rux Control Card of any run.

LiBrary CHANGES

Subroutines and macro-instruction skeleton routines may be added, changed or
deleted from the Library portion of the System Tape through the use of library
change cards. When inserting new items into the Library, a library change card
also serves to assign a name to the subroutine or macro-instruction being added.
Library change cards may be in one of the following forms:

peration OPERAND (
5/16 20j21 25 30 35 40 45 i
INSE N§
0.2 sARN.A.M.E.,JI.le.E.Rs..N...‘,A,.”,A..H‘.A..»..A.J
03 CRO EDELETM *l
04 sARNlAMH‘DLL@,TsH.,.,,.,,...,.1,,......,,,,}
05 E [UPDAT J\LL.J)
0.6.s.RNAA,ME...U.P.DAn:s...N...H.....H..A_.A.U...J\

The label of all forms of library change cards must contain the name (up to
five characters) of the macro-instruction or subroutine to be added, replaced,
deleted or changed.

The first two lines of the coding sheet show the entries to be used when adding
or replacing macro-instructions and subroutines respectively; the Operation col-
umns must always contain 1vser. The first character in the operand must be either
an M or an s to indicate whether the addition or replacement is a macro-instruc-
tion or a subroutine. A number (N) from 1 through 9999 preceded by a comma
may be included in the operand to specify the number of cards (not counting the
inser card) which form the subroutine or macro-instruction skeleton routine
being added or replaced. Whenever the number is included in the operand, the
processor will compare that number against the number of cards actually used for
the subroutine or macro-instruction skeleton routine; if the number of cards does
not agree with the number in the operand, an error message will be typed.

Whenever additions or replacements are made, the INser card must be followed
immediately by the cards containing the subroutine or skeleton routine named in
the label of the INser card. Subroutines and skeleton routines must be in the cards
in Autocoder form. An 1NsER card for replacing an item in the Library will use the
name of a subroutine or macro-instruction that already exists in the Library; the
item already in the Library will be deleted before its replacement is inserted.

The next two lines of the coding sheet show the entries to be used for deleting
entire macro-instructions and subroutines respectively; the Operation columns
must always contain DELET. The operand must be either an M or an s'to indicate
whether the item to be deleted is a macro-instruction or a subroutine.

47

RUN Control Cards

Original Assembly Card

48

The last two lines of the coding sheet show the entries to be used for changing
macro-instructions and subroutines already existing in the Library. Again the
operand must be an M or an s to identify the item to be changed. A number (~)
may be included as in the case of the insEr card. The uppar card must be fol-
lowed immediately by the cards containing the changes. The format of these
cards is identical to the cards described under “Additions and Changes” and
“Deletions” in a Re-assembly Run on page 41.

ProcraM CHANGES

Program portions of Four-Tape Autocoder may be changed through the use of
UPDAT cards followed by the changes in condensed card format. An vepat card
is required to specify the portion of the System Tape to be changed. The five
forms of uPDAT cards that may be used are as follows:

Line Lobel peration| OPERAND

3 s‘s 15)i6 20[21 25 30 35 40 a5

0! SYSTEMS. . . UPDAT Ly L L L PR
02 [PHASE1 . . JUPDATN ., . .,\ . .. Ly Ly
03 [IPHASE2 . [UPDATN, _ . . - — N 7
°% IPHASES3 .. . [UPDATN. ., ., L j
05 [PHASEM4. . . [UPDAT R G S S R T S S L .(

The label of the vppat card indicates the portion of the System Tape to be
changed. For a system run, the System Control section and the Librarian section
are regarded as one; the uPDAT card to be used when changing the System Con-
trol and/or Librarian sections is shown on the first line.

The operand of the vppat card may be blank or may contain a number to specify
the number of change cards which follow the uppaT card. When a number is in-
cluded in the operand, the processor will compare that number against the number
of cards that actually follow the uPDAT card and type a message if the two do not
agree. Even though the number of change cards differs from the number in the
operand of the uPpAT card, all of the change cards will be processed.

Only one of each form of uPpAT card may be included in a system run, i.e., UPDAT
cards with duplicate labels must not be used. The uPpAT cards, followed by the
changes to the section of the processor named by the label, may be read in any
order, e.g., the UPDAT card and changes for Phase 4 may be followed by the uPpaT
card and changes for Phase 2.

One run Control Card must be provided each time the Four-Tape Autocoder
processor is used. The type of rux Control Card needed depends on the process-
ing that is to be done during a particular run. A rux Control Card for each of the
three possible types is described below.

The run Control Card for an original assembly is punched as follows:

Line Label Operation) OPERAND C
3 sle 15)i6 20l21 25 30 35 40 as

OV ORIGINAL [RUN. . [000y 0y 7
0‘2 1 A A A 1 " L 1 1 A1 1 1 i 1 i 1 4 T A1 i s 1 1 i 1 1 1 L S 1 1 L i 1 1 1 Ai
The operand must be blank.

Re-assembly Card

System Card

Option Cards

The source program for an original assembly may consist of a deck of Autocoder
cards to be read from an on-line card reader or a tape that was prepared from
Autocoder cards by an off-line card-to-tape operation.

The run Control Card for a re-assembly run is punched as follows:

Line Label Operation
3

OPERAND {
5{6 15]16 20J21 25 30 35 40 45

o), RECOMPILE RUN, . 1‘.,§
OAZ S W W | W — I T B illlltllllll,\llkllJJAAAAlAlA}

The operand must be blank.

The source program for a re-assembly run is the edited listing tape from an
original assembly or a previous re-assembly. Other input for a re-assembly run
will consist of additions, changes and/or deletions to the source program as ex-
plained under “Re-assembly.”

The ruN Control Card for a system run is punched as follows:

Line Label jF)peraﬁon OPERAND (
3 sle 1slie 20/21 25 30 35 40 45

o' ISYSTEMS . |IRUN. . |, 0 0 v v 0wy vy v vy \
Ol 2 11 FEl ALl It Il 1 i IR N GO B T 1 1 L 1§ 1 1 it 11 L 1 N U U WU TR S S T I}

The operand must be blank.

The input for a system run is the current System Tape. Other input for a system
run will consist of additions, changes and/or deletions to the Systems Tape. A
system run with no additions, changes or deletions will produce a duplicate of the
current System Tape.

Option cards may be used to temporarily ignore a “permanent” option written on
the System Tape and substitute a different working option for the current pro-
gram run. Option cards specify working options which select input/output units,
tape label procedures, and the size of core storage of the 7070 or 7074 svstems
to be used for Autocoder assembly and/or for running the object program.

Whenever an option card(s) is used for an original assembly or a re-assembly.
it must be loaded immediatelv ahead of the rux Control Card. An option card(s)
used for a svstem run may be placed either before or after the rux Control Card
depending on the function intended: uses of option cards for a system run are
explained under “System Run.”

The page number, line number, and program identification portions of the Auto-
coder entry are ignored for all option cards; therefore, this information need not
be punched unless the user desires it.

1. If the source program is to be read from an input unit that differs from the
one specified as a “permanent” option, use one of the following option cards:

Line Label peration| OPERAND j
3 sls 15| 20j21 25 30 35 40 a5

0! ISOURCEDECKIUSE., . TAPE. .,+ v v v v v v v 45
02 ISQURCEDECKIUSE, . I8 . 4 v v v v v v v v v v v v 1 .S
o 3 A i i 1 L be A 1 A i " A L WS TS N S S— 1 1 1 i 1 1 A 1 1 1 1 1 L 1 1 1

49

50

The first line shows the option card to be used to read the source program
from a tape mounted on tape unit 2 connected to tape channel 1; however,
when this option card is used and Alteration Switch 4 is ox to indicate that
several source programs are on one tape (see “Stacking Source Programs™),
tape unit 4 connected to tape channel 1 must be used for reading the tape.

The second line shows the option card to be used to read the source pro-
gram from a card reader. The value of s in the operand may be 1, 2 or 3,
specifying a unit record synchronizer to which an 18y 7500 Card Reader is
connected.

To produce only an edited listing tape when on-line listing has been made
a “permanent” option or to produce an on-line listing for the current run,
one of the following option cards may be used:

Li nel Label peration
3 6

S

OPERAND <
15}i6 20j21 25 30 35 40 45

o1,

EPORT LISTUSE, . TAPEONLY, . .,, ., e

02

. {
.E.POR.TL,IKS.TU,SE..S.A.....AJ..|41;L11..(A.,.11}

)

013A

AAAIAAAAIIIAlAll‘j)leIlAAIAIAIIAIIILIIA\

The first line shows the option card to be used to eliminate the on-line list-
ing called for by a “permanent” option established by the user. Instead of
producing both an on-line listing and an edited listing tape, the Four-Tape
Autocoder processor will produce only the tape for listing; the tape unit
used for writing this tape will be indicated by a typewritten message.

The second line shows the option card which will cause the processor to
produce an on-line listing in addition to the edited listing tape which is
always produced. The value of s in the operand may be 1, 2 or 3 to specify
the unit record synchronizer to which an By 7400 Printer is connected.

To produce only a tape containing the object program when on-line punch-
ing has been made a “permanent” option or to produce on-line punching
for the current run, one of the following option cards may be used:

3 S

Li neJ Label |Operuﬁon
3 15)i6

OPERAND <
20]21 25 30 35 40 45

0,1

OBJECTDECKUSE . TAPEONLY. . . .\ . . 000y 0y

1

02

OBJECTDEC ULSE..S\Lx.......;...LJ;LA.AL‘I.I.é

L

OA3A

lnllllAAIlA|IAIIAAI||lAJJAIIA)lllIAAIlAJ

The first line shows the option card to be used to eliminate on-line punching
of the object program when punching is called for by a “permanent” option
established by the user. When this card is used, the Four-Tape Autocoder
processor will produce only the tape containing the object program rather
than both the tape and a deck of cards punched on-line. The tape unit used
for writing this tape will be indicated by a typewritten message.

The second line shows the option card which will cause the object program
to be punched into cards by an on-line card punch; this punching occurs in
addition to writing of the object program on tape. The value of s in the
operand may be 1, 2 or 3 to specify the unit record synchronizer to which
an M 7550 Card Punch is connected.

If option cards and/or control cards are to be read from an input unit that
differs from the one specified as a “permanent” option, use one of the fol-
lowing option cards:

Line Label peration| OPERAND (
3 5|6 1516 20J21 25 30 35 40 45

0! OPTIONUNITUSE, . {TAPE ., . ., ., v v i \
02 OPTIONUNITUSE - T U S S R S S S SRV S S SR STt JA)S
03

The first line shows the option card to be used to read control cards and
other option cards from a tape mounted on tape unit 2 connected to tape
channel 1; whenever option cards and/or control cards are to be read from
tape, the tape must be read from this unit.

The second line shows the option card to be used to read option cards
and/or control cards from a card reader. The value of s in the operand may
be 1, 2 or 3, specifying a unit record synchronizer to which an M 7500
Card Reader is connected.

The opTIONUNIT Option card must always be read from the input unit estab-
lished by a “permanent” option.

Error messages produced by Phases 1 through 4 of the processor will always
be printed at the end of the program listing. The messages may also be pro-
duced separately on a typewriter or an on-line printer by using one of the
following option cards:

LmjL« Label tperohori OPERAND (
Ol21 2% 30 38 40 45
ESSAGES |USE [TYPEWRITER = {

0.2

03
0.4

ESSAGES |use . B o o o
ESSAGES |USE |TAPEONLY,\ .o oo,

PN S S S WS SN G T SRS S S St JlllAAlllllAllAAlllllllALlA&

The first line shows the option card to be used to have the messages typed on
the console typewriter in addition to being printed following the program
listing.

The second line shows the option card to be used to have the messages printed
on an on-line printer in addition to appearing at the end of the program list-
ing. The value of s in the operand may be 1, 2 or 3 to specify the unit record
synchronizer to which an 1BM 7400 Printer is connected; when this option is
used, the 7400 Utility Panel must be used with the printer alteration switches
set to BBAA or BBBA.

The third line shows the option card to be used when the messages are to be
printed only following the program listing. (This option is assumed on the
Systems Tape obtained from 18M.)

Messages produced by System Control and messages accompanying pro-
grammed halts will always be typed regardless of the option used for the
Phase 1 through 4 messages.

If the number of storage locations available for running the object program
differs from the number specified by the “permanent” option, an option card
punched as follows must be used:

0,1

JILS

“i’ Label J(Bperaﬁon OPERAND (
3 5|6 1516 20021 25 30 35 40 45

QORYSI.Z O,BJ.C,TN‘N.N.N.lA,......A..‘.,..‘...l.‘s

02

i

IR VRS WA N WA U T W T ST T llllAAIAJAJIIIIIIlAlllAlllll!

51

The value of NNNN in the operand specifies the storage location one greater
than the highest location that may be used by the object program at the
time it is executed; NNNN must be less than, or equal to, 9990.

7. If the number of storage locations available to Four-Tape Autocoder for
assembly of the program is different from the number specified by the
“permanent” option, an option card punched as follows must be used:

OPERAND C
21 25 30 35 40 45

N‘NN.N...L+J.JAA‘..;‘..,‘A..‘lls

FIVIDY RN U S WA U WS WU VA WU NS T S TNY S0 N GRS T N S S W NN

The value of NNNN in the operand may be any number from 5000 through
9990 which specifies the storage location one greater than the highest loca-
tion that may be used by the Four-Tape Autocoder processor during the
assembly of a program.

8. If input to the processor is on tape and the presence or absence of labels is
not as specified by the “permanent” option, one of the following option cards
may be used:

LineJ Label peration OPERAND 6
3 S|6 1516 20J21 25 30 35 40 45

O, ILABELSIN | |[EQUIPYES 0w 0y .‘5
02 WABELSIN , |EQUIPNO , ., .\ v oy oy s 1(>
03

The first line shows the option card to be used to indicate that the input
tape has a standard header label written at the density specified by the
TAPDENSITY EQUIP option. The format of header labels is described in the 7070
Data Processing System Bulletin “1BM 7070 Input/Output Control System,”
form J28-6033-1.

The second line shows the option card which indicates that the input tape
does not have any labels.

Input tapes may or may not have standard trailer labels; trailer labels are
ignored regardless of the option card used or the “permanent” option on
the System Tape.

9. If the absence or presence of standard tape labels on work tapes used by
the processor is not as specified by the “permanent” option, one of the fol-
lowing may be used:

Line Label Eperaﬁon OPERAND C
3 sle 15)i6 20[21 25 30 35 40 45

o', WABELSOUT [EQUIPNYES, , , , 0y oy v vy b g o)
02 ABEL.SQUT QUIPNO oy v 0w e s gy ,3

The first line shows the option card which indicates that the work tapes to
be used by the processor have standard header labels written at the density
specified by the TAPDENsITY EQUIP option. The Four-Tape Autocoder proces-
sor will change the File Identification and Creation Date fields of the header
label; all other fields will remain unchanged.

Stacking Input and Output

Stacking Source Programs

The second line shows the option card to be used to indicate that the work
tapes do not have standard header labels. The Four-Tape Autocoder proces-
sor will create header labels and write them on the work tapes at the density
specified by the TAPDENSITY EQUIP option.

Regardless of the option card used or the “permanent” option on the System
Tape, the tapes containing the edited listing and the object program will
always have tape labels except when the output of several runs are “stacked”
on one tape as explained below. However, a System Tape produced during
a system run will never have labels.

10. If the density of the input and output tapes is to be other than that specified
by the “permanent” option, one of the following cards must be used:

Line Label peration OPERAND (
3 sl is)i6 20l21 25 30 35 40 45

o1 |TAPDENSITYEQUIPHIGH o o o otooooe o oot a o)
02 | TAPDENSITYEQUIPLOW , , , , .\ . o vy v v 0oy 1 ‘(
03

The first line shows the option card which specifies that the input tape, the
object program tape and the program listing tape will have records and
labels, if any, written in high density (556 characters per inch). If the
LABELSOUT EQUIP YES option is used, the labels on the work tapes must be
written in high density. The second line shows the option card which specifies
that the input tape, the object program tape and the program listing tape will
have records and labels, if any, written in low density (200 characters per
inch). If the LABELSOUT EQUIP YES option is used, the labels on the work tapes
must be written in low density.

If the TAPDENSITY EQUIP option is to be used for temporarily changing the tape
density, the “permanent” option unit must be a card reader. If the “perma-
nent” option unit is to be changed temporarily to a tape unit, the opTIONUNIT
Ust TAPE card must follow the TapPpENsITY EQUIP card in the card reader be-
cause the TAPDENSITY EQUIP option cannot be read from tape, i.e., tape density
cannot be changed once reading from tape has begun.

If more than four tape units are available in the 7070 or 7074 Data Processing Sys-
tem, the extra tape unit(s) may be used to “stack” the input or output of several
runs. “Stacking” refers to the writing of the input or output of several programs
successively on one reel of tape. Stacking permits processing of many programs
while reducing the number of manual operations, i.e., tape reels need not be
changed after processing each source program. Depending on the number of tape
units available in addition to the initial four and the tape channels to which they
are connected, the user may stack any or all of the following;:

1. Source programs if an extra tape unit is on channel 1.
2. Edited program listings if an extra tape unit is on channel 1.
3. Object programs if an extra tape unit is on channel 2.

The options of stacking the input and output are selected through the console
alteration switches.

Several source programs for successive original assembly runs may be read from a
tape mounted on tape unit 4 connected to channel 1 whenever Alteration Switch 4

53

Stacking Edited Listings

Stacking Object Programs

Operating Instructions

54

is oN and the SOURCEDECK USE TAPE option is used. The tape containing the source
programs must be written so that each source program is followed by a tape mark.

Each program is independent of the others on the tape; therefore, each source
program must be preceded by an oriciNaL run Control Card and any option cards
that may be desired. (The option cards may be read from an on-line card reader
instead of including them on the tape.)

If the LABELSIN EQUIP YES option is in use, the first card of each source program deck
written on tape must be a “dummy” card which acts as a tape label; a blank card
may be used as the “dummy” card. Alternately, if option cards are being read from
an on-line card reader, the label option may be changed temporarily by using a
LABELSIN EQUIP NO option card. Trailer labels must not be used regardless of the
LABELSIN EQUIP option in effect.

The tape containing the stacked source programs will never be rewound by Four-
Tape Autocoder.

Tape unit 2 connected to channel 1, normally used for individual (not stacked)
source program input, is used as a work tape when source programs are stacked.

The edited listings of several programs processed by Four-Tape Autocoder may be
written on tape unit 5 connected to channel 1 whenever Alteration Switch 2 is oN.
The listing of each object program will be followed by a tape mark to identify the
end of the listing.

The tape containing the stacked listings will not have tape labels, will never be
rewound by Four-Tape Autocoder, and may not be used as the input to a re-assem-
bly run.

The object programs in Condensed Card Format, produced by several Four-Tape
Autocoder runs, may be written on tape unit 2 connected to channel 2 whenever
Alteration Switch 3 is oN. The condensed card deck of each object program will be
followed by a tape mark to identify the end of the program.

The tape containing the stacked object programs will not have tape labels and it
will never be rewound by Four-Tape Autocoder. If only channel 1 is to be used for
processing (see “Operating Instructions”), object programs may not be stacked.

Each of the three types of runs possible with Four-Tape Autocoder requires
slightly different preparations before a run can be started. Once the 7070 or 7074
system has been set up for a particular type of run, the same console procedure
may be used to start the run. Preparations required for each type of run are de-
scribed separately below and are followed by one group of instructions pertaining
to console operations.

The System Tape that is available from the 1BM 7070/7074 Program Librarian
assumes a typical 7070 or 7074 Data Processing System that might be used for
assembling programs with Four-Tape Autocoder. This typical system is described
by the following “permanent” options included as part of the System Tape:

1. Option cards, control cards and the source program will be read from tape.
2. No on-line unit record machines will be used.

3. The 7070 or 7074 Data Processing Systems to be used by the object pro-
gram and the processor both have 9,990 words of core storage available.

4. Neither the source program tape nor any of the work tapes will have labels.

5. The source program tape, the program listing tape and the object program
tape will be in low density, i.e., 200 characters per inch.

6. Error messages will be printed only at the end of the program listing.

If these “permanent” options describe the user’s 7070 or 7074 system, no option
cards need be included when assembling with Four-Tape Autocoder. However,
if the user’s system differs from the assumed one or if additional options are de-
sired, the “permanent” options on the System Tape may be changed or new
options added through a system run; new options may also be added or substi-

tuted for a particular run by the use of option cards ahead of the rux Control
Card.

To simplify the description of the preparations for each type of run, option cards
and control cards which may be read from either cards or tape will be explained
in terms of “cards” although thev may actually be on tape. For example, if the
“permanent” option unit is a tape unit, the statement “Place option cards in the
permanent option unit,” means that the option cards must be written on a tape
which is then mounted on the “permanent” option unit.

The level number of the Four-Tape Autocoder System Tape will be typed at the
head of the console typewriter output for each run. The level number will also be
printed on the first heading line of each page of the edited program listing.

In the operating instructions given below, tape units are referred to by a combined
channel and unit number. For example, tape unit 21 refers to tape unit 1 connected
to channel 2.

Preparations for an Original Assembly

1. Mount the Four-Tape Autocoder System Tape on tape unit 20. If only one
channel is available, mount the System Tape on tape unit 10. Set the tape unit

to high density.
9. Mount two work tapes as follows:
Tape Channel Tape Unit
2 Channel 1 3
Operation 2 1
1 Channel 1 3
Operation 1 1

3. Place the option cards, if any, in the “permanent” option unit. If an opTION-
UNIT option card is included, any option card(s) which follows the opTION-
unNIT card must be placed in the unit specified by the opTIONUNIT card.

4. Place an oriGINAL RUN Control Card in the “permanent” option unit; if an
OPTIONUNIT option card is included in step 3, the run Control Card must be
placed in the unit specified by the opTioNUNIT card.

5. Prepare the source program to be assembled as follows:

A. If the source program has been written on tape by a card-to-tape opera-
tion, mount the tape on tape unit 12. Set the tape unit to the density
specified by the TaPDENSITY EQUIP option. (The source program may
occupy one full reel of tape.)

B. If the source program is in cards, place the source program deck in the
on-line card reader, insert the 7500 Utility Panel and set the card reader

55

Preparations for a Re-assembly

Preparations for a System Run

56

alteration switches to BBAA. When an on-line card reader is used for the
source program, mount a work tape on tape unit 12.

If a “permanent” option on the System Tape or an option card included in
step 3 specifies on-line printing or punching, insert the 7400 Utility Panel
or the 7550 Utility Panel into the on-line printer and punch, respectively.
Set the printer alteration switches to Aaaa; set the punch alteration switches
to Aaaa to have the load card indicator (12 punch) punched into column 65
or ABAA to have it punched into column 79.

Continue as explained under “Console Procedure.”

Mount the Four-Tape Autocoder System Tape on tape unit 20. If only one
channel is available, mount the System Tape on tape unit 10. Set the tape unit
to high density.

Mount a work tape on tape unit 21. If only one channel is available, mount
the work tape on tape unit 11.

Mount the edited listing tape produced by an original assembly or a pre-
vious re-assembly on tape unit 13.

Place the option cards, if any, in the “permanent” option unit. If an opTION-
UNIT option card is included, any option card(s) which follows the opriOoN-
unNIT card must be placed in the unit specified by the opTiONUNIT card.

Place a rRecompILE RUN Control Card in the “permanent” option unit; if an
OPTIONUNIT option card is included in step 4, the rux Control Card must be
placed in the unit specified by the orrronunTtT card.

Arrange the corrections to the source program in page number and line
number sequence (see “Re-assembly Run” for card format used for correc-
tions). Prepare the corrections for the re-assembly run as follows:

A. If the corrections have been written on tape by a card-to-tape operation,
mount the tape on tape unit 12. Set the tape unit to the density specified
by the TAPDENsITY EQUIP option. (The corrections may occupy one full
reel of tape.)

B. If the corrections are in cards, place the cards in the on-line card reader,
insert the 7500 Utility Panel and set the card reader alteration switches
to BBaa. When an on-line card reader is used for reading the correc-
tions, mount a work tape on tape unit 12.

Note: At least one correction card must be supplied for each re-assembly run.

If a “permanent” option on the System Tape or an option card included in
step 4 specifies on-line printing or punching, insert the 7400 Utility Panel or
the 7550 Utility Panel into the on-line printer and punch, respectively. Set
the printer alteration switches to Aaaa; set the punch alteration switches to
AAAA to have the load card indicator (12 punch) punched into column 65 or
to ABAA to have it punched into column 79.

Continue as explained under “Console Procedure.”

Mount the Four-Tape Autocoder System Tape on tape unit 20. If only one
channel is available, mount the System Tape on tape unit 10. Set the tape
unit to high density.

2. Mount the two work tapes as follows:

Tape Channel Tape Unit
2 Channel 1 3
Operation) 1
1 Channel 1 3
Operation 1 1

3. Place the option cards, if any, in the “permanent” option unit. If an opTION-
UNIT option card is included, any option card(s) which follows the oprION-
uNIT card must be placed in the input unit specified by the oprioNuNIT
card.

4. Place a systeEms RuN Control Card in the “permanent” option unit; if an
OPTIONUNIT option card is included in step 3, the rux Control Card must be
placed in the unit specified by the opTIONUNIT card.

5. Group the changes to the System Tape as follows (if no changes are used,
a duplicate of the Svstem Tape will be produced):

Place changes to “permanent” options behind one asioN card.

Place all additions and/or changes to any item(s) in the Library behind
an 1nser card for that item(s). (pELET cards need not be grouped.)

Place changes to the Four-Tape Autocoder processor behind an vppaT
card(s) which identifies the section(s) of the processor that is to be
changed.

The various groups of changes may be in any order, e.g., the asiox card fol-
lowed by option changes may follow changes to the Library. Card formats
for the various changes to the Svstem Tape are described under “System
Run.” Prepare the changes for the system run as follows:

A. If the changes have been written on tape by a card-to-tape operation,
mount the tape on tape unit 12. If the density has been specified by a
TAPDENSITY EQUIP option card, set the tape unit to that density; if the
original density option (the one on the System Tape supplied by 1BM)
has not been changed, set the tape unit to low density.

B. If the changes are in cards, place the cards in the on-line reader, insert
the 7500 Utility Panel and set the card reader alteration switches to
ABAA; cards which are not in the load card format may not contain a plus
sign (12 punch) in column 79. When an on-line card reader is used for
reading the changes, mount a work tape on tape unit 12.

6. Continue as explained under “Console Procedure.”
Console Procedure

1. Manually store the following three instructions where c is either a 1 or a 2
to indicate whether 1 or 2 channels are to be used for the run:

Storage Location Instruction to be Stored
0000 —8C01010004
0001 —0100030010
0002 -+-5100C10002

57

Halts and Messages

58

2. Set 7070 console switches as follows:

Turn Alteration Switch 1 oN to cause certain halts. (See Halts 1111, 2222,
0031 and 3333.)

Turn Alteration Switch 2 on if edited program listings are to be stacked on
tape unit 15.

Turn Alteration Switch 3 on if object programs are to be stacked on tape
unit 22.

Turn Alteration Switch 4 on if source programs are stacked on tape unit 14
and mount a work tape on tape unit 12.

Turn all accumulator overflow switches oFF.

Turn both Unit Record Priority Controls to oFr and N.
3. Depress the Run key.
4. Depress the Computer Reset key.
5. Depress the Start key.

When a halt occurs in program operation, the contents of the instruction counter
and the program register will be automatically typed on the console typewriter.
The halts and associated messages which may occur during a Four-Tape Auto-
coder assembly are listed below, together with the causes and appropriate action.
The programmed halts are arranged in numerical order according to the halt
number, i.e., the last four digits of the contents of the program register typed
when the halt occurs.

Programmed halts executed by the 1BM 7070 Input/Output Control System dur-
ing Four-Tape Autocoder processing are listed separately following the processor
halts.

Halt Number Explanation and Action

0000 END OF SYSTEM RUN, NEW SYSTEM TAPES ON C1 AND
12.

A system run has been completed. A new System Tape is on each
of the tape units named in the message. The value of C will be
either a 1 or a 2 depending on the number of tape channels used.

0001 CARD READ ERROR
A card reader validity error has occurred while reading either an
option card or a library change card; the card read when the
error occurred is the last card in the stacker. Replace the last
card, and all cards following it, in the hopper. Depress the Start
key on the card reader and the Start key on the console.

0002 END OF FILE WHILE READING OPTION CONTROL
CARDS
The last option card was not followed by a rux Control Card.
Insert the appropriate RuNn Control Card and start the assembly
from the beginning.

Halt Number

Explanation and Action

Phase 1

0011

1111
Phase 2

2992
Phase 3

0031

3333
Phase 4

0042

4444

PGLIN CARD READ ERROR

A card reader validity error has occurred while reading the
source program. The page number and line number of the card
read when the error occurred appears in the message in place of
PGLIN; this card is the last card in the stacker. Replace the last
card, and all cards following it, in the hopper. Depress the Start
key on the card reader and the Start key on the console.

END PHASE 1

This message is always typed but the machine will halt only if
Alteration Switch 1 is on at the end of Phase 1; Phase 2 will be
entered automatically if Alteration Switch 1 is oFF.

This halt is provided for users who wish to save tapes used as
input to Phase 1. When the halt occurs, replace the source input
tapes (channel 1, unit 2) and, for a re-assembly run, the previous
edited listing tape (channel 1, unit 3) with work tapes. After
the work tapes have been mounted, depress the Start key to
begin Phase 2.

END PHASE 2

This message is always typed but the machine will halt only if
Alteration Switch 1 is ox at the end of Phase 2; Phase 3 will be
entered automatically if Alteration Switch 1 is oFr. Depress the
Start key to begin Phase 4 after this halt.

SYMBOL TAPE CU PROCESSED

This programmed halt and message occurs at the end of the sym-
bol processing portion of the first pass of Phase 3 only if Altera-
tion Switch 1 is ox. If the user desires to preserve the symbol
tape, it may be removed from the tape unit indicated by channel
and unit number (CU) in the message and replaced by a work
tape. Depress the Start key to resume Phase 3.

END PHASE 3

This message is always typed but the machine will halt only if
Alteration Switch 1 is o~ at the end of Phase 3; Phase 4 will be
entered automatically if Alteration Switch 1 is oFr. Depress the
Start key to begin Phase 4 after this halt.

(No Message)
An error has occurred during a Lookup Lowest operation. De-
press the Start key to repeat the operation.

ASSEMBLY COMPLETED LISTING ON TAPE XX PRO-
GRAM ON TAPE YY

An original assembly or a re-assembly run has been completed.
The edited listing tape is on tape unit XX and the assembled
program in condensed card format is on tape unit YY. The sym-
bols XX and YY each represent the channel and unit numbers
of the tape units holding the corresponding output tapes.

59

Input/Ovutput Control System

60

Halt Number

Explanation and Action

2910

2911

2912

2960

2961

TPZZ COUNT DTF-XXXXX TRL-YYYYY

The block count, XXXXX, (stored in the prr) made while read-
ing tape ZZ does not agree with the block count in the trailer label
on input tape ZZ. The operator may ignore the discrepancy by
depressing the Start key.

One, two or three messages will be typed when this halt occurs.
TPZZ RN ERR LI-XXXXX HDR-YYYYY

The reel sequence number, XXXXX, in the label information pc
for input tape ZZ does not agree with the reel sequence number,
YYYYY, in the header label on tape ZZ.

TPZZ ¥S ERR LI-XXXXX HDR-YYYYY

The file serial number, XXXXX, in the label information bc for
input tape ZZ does not agree with the file serial number, YYYYY,
in the header label on tape ZZ.

TPZZ 1D ERR LI-XXXXX HDR-YYYYY

The file identification, XXXXX, in the label information bc for
input tape ZZ does not agree with the file identification, YYYYY,
in the header label on tape ZZ. The five Xs and Ys represent
either the first five characters of the file identification, if they do
not agree, or the last five characters of the file identifications, if
the first five characters of both agree.

When this halt occurs, the error(s) may be corrected by mounting
the proper reel of tape, depressing the Program Reset key and
then depressing the Start key. If desired, the discrepancy may be
ignored by depressing the Start key.

One of two forms of messages will be typed when this halt occurs.

TPXX LAB ERR CY

An unusual condition, identified by condition code Y, occurred
when reading a label on tape XX. Probably there is no label on
the tape. Either depress the Start key to reread the label or change
to another reel of tape and then depress the Start key.

TPXX TM ERR CY

An unusual condition, identified by condition code Y, occurred
when writing a tape mark on tape XX. To try to write the tape
mark again, depress the Start keyv.

(No Message)

An error in writing a segment mark or tape mark has occurred.
Depress the Start key to try writing five more times.

TPXX RDSM ERRY

An unusual condition, identified by condition code Y, occurred
when reading a segment mark on tape XX. To ignore the error,
depress the Start key.

Messages

System Control and Librarian

Messages which may be typed on the console typewriter during processing by
each phase of Four-Tape Autocoder are listed below in approximate alphabetical
order for ease of reference. When a message indicates an error condition, the
operator has the option of discontinuing the run immediately or allowing the run
to continue to the end. It is generally advisable to finish an original assembly or
a re-assembly run so that all errors will have been noted; errors may be corrected
manually by changing the condensed card output (object program) or automati-
cally by preparing corrections for a subsequent re-assembly. Of course, if the
errors are too numerous, the source program should be corrected and a new as-
sembly started. When errors in a system run occur, it is advisable to correct the
source material and start the system run from the beginning.

In addition to the typed list of error messages, the listing of the assembled pro-
gram will usually indicate the instruction which caused an error message to be
typed. Each message, except those preceded by an asterisk in this manual, will
correspond to a line in the program listing that has the word Error printed to the
right of the assembled instruction. The symbol PGLIN used as part of messages
in this list will be replaced by the page number (PG) and line number (LIN) of
the entry which is in error.

Messages typed by the 1M 7070 Input/Output Control System during Four-Tape
Autocoder processing are listed separately following the processor messages.

*DENSITY OPTION NOT PROCESSED

A change in density has been specified after part of the input tape has been
read; the specified change will be ignored. Four-Tape Autocoder will process
the source program in the density specified by the “permanent” option.

*PGLIN INVALID OPTION CONTROL CARD
An error in preparing an option card has occurred; the option card will be
ignored. If the intended option cannot be ignored, correct the option card and
restart the program from the beginning.

*PGLIN INVALID LIBRARY CONTROL CARD
An error in preparing a library control card for a system run has occurred; the
control card will be ignored. If the library control card cannot be ignored,
correct the control card and restart the system run from the beginning.

*MACRO TABLE EXCEEDS MAXIMUM SIZE
The macro-instructions and/or subroutines to be added to the Library during
this system run would exceed the maximum number (196) of items that the
Library may contain. Remove macro-instructions and/or subroutines (or use
pELET cards to delete items already in the Library) so that the total number of
items is 196 or less; restart the system run from the beginning.

*MNAME COUNT DOES NOT AGREE

*SNAME COUNT DOES NOT AGREE
The number of cards specified in the operand of an inser card does not agree
with the number of cards actually used for the macro-instruction (MNAME)
or subroutine (SNAME). If this error cannot be ignored, correct the INSER
card and/or the macro-instruction or subroutine; restart the system run from
the beginning.

61

Phase 1

62

*PGLIN MNAME NOT FOUND IN MACRO TABLE

*PGLIN SNAME NOT FOUND IN MACRO TABLE
The macro-instruction (MNAME) or subroutine (SNAME) used in a DELET
card is not in the macro table; the pELET card will be ignored. If the intended
deletion cannot be ignored for this system run, correct the pELET card and re-
start the system run from the beginning.

*INCORRECT CORRECTION CARD FORMAT PHASE X
A card containing corrections to a section of the Four-Tape Autocoder proces-
sor is not in condensed card format. The value of X will be a digit from 0
through 4 to indicate the section of the processor for which the correction was
intended. The digit 0 indicates the System Control and Librarian section;
digits 1 through 4 indicate Phases 1 through 4 respectively.

The card containing the change will be ignored and the system run will con-
tinue. If the change to the processor cannot be ignored, correct the error and
restart the system run from the beginning.

*PROGRAM NUMBER XXXXX
This message is typed for each assembly or re-assembly to identify the pro-
gram being processed. The program identification (XXXXX) will be the same
as the contents of columns 76 through 80 of the first card of the source pro-
gram.

PGLIN ADDRESS ADJUSTMENT ERROR
A parameter in either the operand of a macro-instruction or the operand of a
skeleton instruction has two address adjustment figures, e.g., FrELD+ 16+ 8.
The first address adjustment figure will be ignored and the operand processed
as though only the second figure were present.

*PGLIN, AFTER PGLIN,
The card identified by PGLIN, is out of page and line number sequence; it
follows the card identified by PGLIN,. This out-of-sequence condition will be
ignored and the card (PGLIN,) processed as though it should follow the
PGLIN, card.

PGLIN XXXXX ASSUMED BLANK

The Operation columns of a subsequent entry under a pTr descriptive entry
(DTF entries are part of the 7070 Input/Output Control System) are not blank
but contain the characters (XXXXX) printed in the message. This message
indicates that either the Operation columns of the entry were punched by
mistake or an insufficient number of subsequent entries for the pTF are present.
The Operation columns will be processed as blanks, i.e., as a legitimate entry
under the pTF.

If it is known that this message was caused by an insufficient number of entries
under the pTF rather than by a card punching error, it may be desirable to stop
the assembly if the Operation Code (XXXXX) assumed to be blank will in-
troduce many errors into other portions of the program.

PGLIN FIELD DEFINITION ERROR
A parameter in either the operand of a macro-instruction or the operand of a
skeleton instruction has incorrect field definition.

*PGLIN IMPROPER DELET
An improperly punched pELET card has been detected during a re-assembly
run. If the PGLIN does not correspond to a PGLIN of an Autocoder entry in

Phase 2

the program being re-assembled, the pELET card will be ignored and the dele-
tions indicated by this card will not occur. If the PGLIN corresponds to an
entry but the operand does not, as many consecutive Autocoder entries as do
exist in the sequence will be deleted from the program being re-assembled.

PGLIN INDEXING ERROR
Indexing of a parameter has been specified in the operand of a macro-instruc-
tion for a parameter that already has indexing specified in the skeleton instruc-
tion. The indexing in the skeleton instruction will be used; the indexing in the
operand of the macro-instruction will be ignored.

*PGLIN MACRO SELECTION NOT POSSIBLE
The operand of a macro-instruction provided by the 1BM 7070 Input/Output
Control System is incorrect. The macro-instruction will be omitted from the
assembled program; it will appear in the edited listing with no corresponding
machine-language instruction(s).

PGLIN OPERAND ASSUMED 0
The operand of a subsequent entry under an Input/Output Control System
ptF descriptive entry is incorrect; the operand will be assumed to contain a 0
and processed accordingly.

PGLIN OPERAND ASSUMED 1
The operand of a subsequent entry under an Input/Output Control System
pTF descriptive entry is not within its allowable range; the operand will be
assumed to contain a 1 and processed accordingly.

PGLIN OPERAND ERROR
The operand of the header line of a pTr descriptive entry does not begin with
an alphabetic character; Four-Tape Autocoder will process the pTF entry as
though the operand were blank. This condition may introduce errors in entries
which are intended to refer to this file. If this file is referred to frequently in
the source program, it is recommended that the pTF entry be corrected and the
assembly restarted from the beginning.

PGLIN PARAMETER MISSING
A parameter which must always be present in the operand of a macro-instruc-
tion (specified by 11 through 119 in the skeleton routine) has been omitted.
Four-Tape Autocoder will attempt to complete the macro-instruction; this will
probably cause other error messages to be typed in the following phases of the
assembly.

PGLIN SNAME NOT IN LIBRARY
A subroutine or the skeleton routine of a macro-instruction uses an INCL opera-
tion which names a subroutine that is not in the Library. The INcL entry will
be ignored and the subroutine or macro-instruction assembled without it.

PGLIN XXXXX ASSUMED NOP
The Operation columns of an entry contain an invalid Operation Code
(XXXXX); the entry will be assembled as though the Operation Code were
NOP.

PGLIN FIELD DEFINITION ERROR
The operand of an Autocoder entry has incorrect field definition.

63

PGLIN LABEL ERROR
The symbolic label of an Autocoder entry has an incorrect format. Four-Tape
Autocoder will ignore the label and process the entry as though the Label
columns were blank.

PGLIN XXXXXXXXXX NOT PREVIOUSLY DEFINED
The symbol (XXXXXXXXXX) has not appeared as a label earlier in the pro-
gram sequence although it is used in the operand of an Autocoder entry which
requires that the symbol be defined in this manner.

*PGLIN NUMBER OF WORDS ASSUMED 1
This message will be typed if there are no subsequent entries following a pa
or oc header line or if the number of words reserved by a pa or pc entry
exceeds 999. For either error, the pa or pc entry will be processed as though
one word were indicated.

PGLIN OPERAND OUT OF RANGE
The actual number used in the operand of an Autocoder entry to specify chan-
nel, channel and unit, arm and file, stacking latch, unit record synchronizer,
index word or electronic switch is not within the range of valid numbers for
the item being specified. For example, if the number 92 were used to specify
tape channel and unit, it would be out of the range of valid numbers for tape
channel and unit, i.e., 10 through 49.

PGLIN SHIFT AMOUNT ERROR
The number of positions to be shifted using an uncoupled shift exceeds 10 or
the number for a coupled shift exceeds 20. The entry will be processed as
though the shift number were 0.

PGLIN STORAGE LIMIT EXCEEDED

The number of storage locations available for the object program has been
exceeded. This error may be caused by an error in the MEMORYSIZE OBJCT
option card used for the assembly. Four-Tape Autocoder will continue assign-
ing locations even though the location falls above the limit indicated for the
object machine. Assignment of items above the storage limit will cause addi-
tional error messages in later phases of the processor when these locations are
used; therefore, if many items arc assigned above the limit, it is advisable to
restart from the beginning using the correct MEMORYSIZE OBJCT card.

Phase 3

PGLIN XXXXXXXXXX ADDRESS OUT OF RANGE
The symbol XXXXXXXXXX in the operand of an Autocoder entry has been
assigned a storage location above the limit specified for the object program.
This error may be caused by an error in the MEMORYSIZE OBJCT option card;
see last message for Phase 2. Four-Tape Autocoder will process this entry as
though the assigned location were within the range of the object machine.

XXXXXXXXXX ASSIGNED +0000FFNNNN

XXXXXXXXXX ASSIGNED -+0000FFNNNN
These messages will always appear in pairs to indicate that a symbol
(XXXXXXXXXX) has been used as a label of two source program entries that
either specify different field definition and/or have been assigned to different
locations. The message will show the field definition (FF') and the actual stor-
age location (NNNN) of the symbol. (These messages are not typed if the
symbol is used as a label more than once but has the same field definition and
storage location each time.)

Phase 4

PGLIN XXXXXXXXXX FIELD DEFINITION ERROR
The field definition used with the symbol XXXXXXXXXX to define a subfield
produces an error in relative field definition digits.

PGLIN XXXXXXXXXX NO MORE INDEX WORDS AVAILABLE
A 7070 index word cannot be assigned to symbolic index word XXXXXXXXXX
because index words 1 through 96 have already been assigned. No assignment
will occur and instructions using unassigned symbolic index words will con-
tain zeros in place of an index word number.

This message will be typed only for the first unassignable symbolic index
word; additional unassignable index words will be processed as explained
above but no message will be typed.

PGLIN XXXXXXXXXX NO MORE SWITCHES AVAILABLE
A 7070 electronic switch cannot be assigned to symbolic electronic switch
XXXXXXXXXX because electronic switches 1 through 30 have already been
assigned. No assignment will occur and instructions using unassigned symbolic
electronic switches will contain zeros in place of an electronic switch number.

This message will be typed only for the first unassignable symbolic electronic
switch; additional unassignable electronic switches will be processed as ex-
plained above but no message will be typed.

PGLIN XXXXXXXXXX NOT A SYMBOLIC INDEX WORD
The symbol XXXXXXXXXX is used as a symbolic index word in the Auto-
coder entry but it has been defined previously as something other than an
index word.

PGLIN XXXXXXXXXX NOT A SYMBOLIC SWITCH
The symbol XXXXXXXXXX is used as a symbolic electronic switch in the
Autocoder entry but it has been defined previously as something other than an
electronic switch.

PGLIN XXXXXXXXXX SYMBOLIC COMPONENT OUT OF RANGE
The source program has caused the processor to assign an invalid actual num-
ber to the symbolic name (XXXXXXXXXX) of a channel, channel and unit,
arm and file, stacking latch or unit record synchronizer; the actual number is
not within the range of valid numbers for the item being specified by the
symbol. The instruction will be assembled using the units or tens and units
positions of the actual number assigned.

PGLIN XXXXXXXXXX FIELD DEFINITION ERROR
The field definition used with the symbol XXXXXXXXXX to define a subfield
produces an error in relative field definition digits.

PGLIN PRINTER ERROR
A validity error has occurred during the printing of the listing on an on-line
BM 7400 Printer. The line will be printed using the Unit Record Write Invalid
(uw1v) instruction.

PGLIN XXXXXXXXXX UNDEFINED
The symbol XXXXXXXXXX appears in the operand of this Autocoder entry
but the symbol does not appear as a label of any entry in the source program.

*PUNCH ERROR, CARD # XXXXX
An error in punching a card of the object program (in condensed card format)
on an on-line M 7550 Card Punch has occurred. The number (XXXXX)

65

tvped in the message is the serial number of the card (card columns 71
through 75); the card will be offset in the punch stacker.

*TOO MANY LITERALS ADDRESSES OUT OF RANGE
Some or all of the literals used by the object program have been assigned
storage locations above the limit specified for the object program. This error
may be caused by an error in the MEMORYSIZE OBJCT option card. Four-Tape
Autocoder will process entries referring to the literals as though the assigned
locations were within the range of the object machine.

Input/Output Control System
Some of these messages will be followed by a machine halt to allow the operator
to make corrections, if necessary. Any halt associated with these messages is merely
procedural; therefore, the halt number has no significance.

CHGE TPXX
Tape XX has been processed and the next reel of the file is to be mounted on the
same tape unit. Mount the next reel on tape unit XX and depress the Start key.

CHK DISABLE ON
The Input/Output Control System is about to search an area for invalid words.
Set the Check Disable key on the Customer Engineering Console to the
DISABLE position and then depress the Start key.

CHK DISABLE OFF
The search for invalid words has been completed; all invalid words have been
corrected. Set the Check Disable key on the Customer Engineering Console to
the cHECK position and then depress the Start key.

ERR NNNNYYYYY
The Input/Output Control System error routine has found an error in location
NNNN. The contents, YYYYY, of that location will be typed and the machine
will halt to allow the operator to correct the error. After the contents of location
NNNN have been corrected, depress the Start key.

INVALPHA XY0000ZZZZ
The contents of digit positions X and Y in the alphameric word in storage loca-
tion ZZZZ constitute an invalid double-digit character.

TPXX NOT READY
Tape unit XX is not in ready status. Any of the following may cause this
message:

1. Thereisno tape on the tape unit.
2. The tape is being rewound.

3. Tape is loaded on the tape unit but the Start key (on the tape unit) was
not pressed to put the unit in ready status.

The operator should do whatever is necessary to place the tape unit in ready
status; no action may be required if the tape is rewinding.

TPXX READ FAIL
An error in reading tape XX was not corrected in nine rereading operations.
Depress the Start key to cause the tape record in error to be typed. After the
record has been typed, a halt will occur to permit the operator to correct the
error.

TPXX READ FAIL TP WD ERR
A tape word error (unusual condition code 0) has occurred in reading tape XX.
Depress the Start key to cause the tape record in error to be typed. After the
record has been typed, a halt will occur to permit the operator to correct it.

66

TPXX
TPXX
TPXX
TPXX

An

EOS

LLR

SCLR

SLR

unusual condition has occurred in reading from tape XX; the unusual

condition was an End-of-Segment (Eos), a Long Length Record (LLR), a Short
Character Length Record (scLr), or a Short Length Record (sLr) as indicated
in the message. Depress the Start key to ignore the unusual condition.

TPXX WRITE FAIL
An error in writing tape XX was not corrected in five rewriting operations (four
of the five operations were preceded by Tape Skip instructions). Depress the
Start key for five more rewriting operations.

TPYY XXXXX EZZ NQQ PWW
This message gives the statistics regarding the reading of input tape YY where:

XXXXX is the block count.

Z7Z is the number of times the Input/Output Control System error routine
was entered.

QQ is the number of noise errors that occurred. (A noise error is caused by
extraneous bits, i.e., magnetic spots, in inter-record gaps.)

WW is the number of “permanent” errors; a “permanent” error is one that
is not eliminated in nine rereading attempts.

TPYY XXXXX EZZ SK QQQ
This message gives the statistics regarding the writing of output tape YY where:

XXXXX is the block count.

Z7Z is the number of times the Input/Output Control System error routine
was entered.

QQQ is the number of Tape Skip (1sk) instructions executed during the
writing of the tape.

(A tape record will be typed.)

After the execution of a tape instruction, the record typed was found to
be in error.

(The sixteen words of a tape label will be typed.)
A word in the tape label area does not have an alphameric sign.

67

Appendix A: Processor Flow Charts

SYSTEM CONTROL AND LIBRARIAN

System Control
and Librarian

Move
"Permanent"
Options to
Working Options

Read a Card
from the Option

Unit (Card Reader
or Tape Unit)

Not a RUN card Original Assembly

or Re-assembly

Place Options and
${ Macro Table for

Phase 1

Merge Old System
Tape with Change
Tape to
Produce New
System Tapes

HALT
Sys. Run Complete

To
Phase 1

Space
Tape to
Next
Phase

69

PHASE 1

Initialize

Phase 1

Read Source
Program Cards
From Tape Unit
or Card Reader

Process
Subroutines
(if any)
Comments
Card
Macro- Yes Process
instruction Skeleton
Routine
- I
Symbolic
Operand Yes Build Symbolic
of Request Table
Declara- for Phase 2
tive or
Control No
. Yes
Litorigin
Write Process
Record Subroutines

(if any)

PHASE 2

Initialize
Phase 2

Yes
End-of-File

Process Operation
Code and Reserve
Storage According
to Type of Code

'

Process Operand, Build
Basic Instruction, Ex-
panded Portion of
Record and Indicator
Switch Word

!

Process Label
and Build
Symbol Table

71

72

PHASE 3

Initialize
Phase 3

Room
in Table for
all Symbols

Yes

Turn
Last Pass
Switch ON

Write Overflow
Symbol Block,
if Necessary

Randomize
Symbols

End-of-File

Read
Record

Yes

End-of-File

Complete Instruc-

tion According to

Indicator Switch
Word

Write
Record

Off

Last Pass Switch

Initialize
Phase 4

Read
Record

PHASE 4

Pack and
Write Literals
in Output

Complete
Assembled
Instruction

Pack
Literals

lt

Arrange in
Condensed
Card Format

Write
Listing

HALT
Assembly Complete

73

Appendix B:

Operand Symbol Key

74

Alphabetic List of 7070 Autocoder Imperative Operation Codes

In the following list, the symbols in the operand column indicate what is per-
missible in the operand and the order in which this information must be written
on the coding form.

In all cases where an “A” has been indicated, a literal may also be used. The list,
however, indicates a literal, “L,” and also field definition, “F,” only where it would
seem to be of practical value. Caution is advised when using literals with opera-
tion codes which do not specifically indicate them.

Symbol Meaning Type of Coding Range of Actual
A Address Svmbolic or actual Any storage location
B Blank
C Channel number Symbolic or actual 1-4
CU Channel and unit Symbolic or actual 10-49
D Digit Actual 0-9
F Field Definition Actual (Enclosed in 0-9
parentheses)
AF Arm and file Svmbolic or actual 00-03, 10-13, 20-23
I Unit record latch Aorl,Bor?2 1-2
L Literal
N Number Actual 0-10 (for normal shifts)
0-20 (for coupled or split
shifts)
0-9999 (for index word
codes)
P Digit position Actual (Enclosedin 0-9 (for CD)
parentheses) 0-19 (for split shifts)
S Unit record Symbolic or actual 1-4
svnchronizer
SN Alteration switch Symbolic or actual 1-4
SW Electronic switch Symbolic or actual 1-30
Q Inquiry synchronizer Symbolic or actual 1-2
X Index Word Symbolic or actual 199
, Used as a separator and must be written on the coding sheet (unless
the address which follows is blank).
/ Used to indicate the word “or” (e.g., A/L means either an address or
a literal).
Used to indicate an accumulator number (1, 2, or 3, which must appear

in place of the # symbol).

Alphabetic List of 7070 Autocoder Imperative Operation Codes

Mnemonic Operation Operand
A# Add to accumulator # A/L F
AA Add absolute to accumulator 1 A/L F
AASH Add to absolute storage from accumulator # A F
AS# Add to storage from accumulator # A F
B Branch A
BAL Branch if any stacking latch is ON A
BAS Branch if alteration switch is ON SN,A
BCB Branch if channel is busy CA
BCX Branch compared index word X,A
BDL Branch if disk storage latch is ON AF.A
BDX Branch decremented index word XA
BE Branch if equal A
BES Branch if electronic switch is ON SW.A
BFV Branch if field overflow A
BH Branch if high A
BIX Branch incremented index word XA
BL Branch if low A
BLX Branch and load location in index word XA
BM# Branch if minus in accumulator # A
BQL Branch if inquiry latch is ON QA
BSC Branch if sign change A
BSF Branch if electronic switch is ON and set OFF if ON ~ SW.A
BSN Branch if electronic switch is ON and set ON if OFF SW.A
BTL Branch if tape latch is ON CUA
BUL Branch if unit record latch is ON LA
BV# Branch if overflow in accumulator # A
BXM Branch if index word is minus XA
BXN Branch if indexing portion in index word is nonzero XA
BZ# Branch if zero in accumulator # A
C# Compare accumulator # to storage A/L F
CA Compare absolute in accumulator 1 to absolute

in storage A/L F
CD Compare storage to digit A(P),D
CSA Compare sign to alpha A
CSM Compare sign to minus A
CSp Compoare sign to plus A
D Divide A/L F
DAR Disk storage arm release AF
DLF Disk storage latch set OFF AF.A/B
DLN Disk storage latch set ON AF,A/B
DR Disk storage read CA/L
DW Disk storage write CA/L
EAN Edit alphameric to numerical X,A/L
ENA Edit numerical to alphameric XA/L
ENB Edit numerical to alphameric with blank insertion X,A/L
ENS Edit numerical to alphameric with sign control X,A/L
ESF Electronic switch set OFF SW,A/B
ESN Electronic switch set ON SW.A/B
FA Floating add A/L
FAA Floating add absolute A/L
FAD Floating add double precision A/L

75

76

Mnemonic Operation Operand

FADS Floating add double precision and suppress

normalization A/L
FBU Floating branch underflow A
FBV Floating branch overflow A
FD Floating divide A/L
FDD Floating divide double precision A/L
FM Floating multiply A/L
FR Floating round A/B
FS Floating subtract A/L
FSA Floating subtract absolute A/L
FZA Floating zero and add A/L
HB Halt and branch A
HMFV Halt mode for field overflow A/B
HMSC Halt mode for sign change A/B
HP Halt and proceed A/B
LE Lookup equal only A/L F
LEH Lookup equal or high A/L F
LL Lookup lowest A/L F
M Multiply A/L F
MSA Make sign alpha A
MSM Make sign minus A
MSP Make sign plus A
NOP No operation A/B
PC Priority control A/L
PDR Priority disk storage read CA/L
PDS Priority disk storage seek A
PDW Priority disk storage write CA/L
PR Priority release A/B
PTRA Priority tape read alpha CU,A/L
PTM Priority tape mark write CU
PTR Priority tape read CU,A/L
PTRR Priority tape read per record mark control CU,A/L
PTSB Priority tape segment backspace CUA/L
PTSF Priority tape segment forward space CUA/L
PTSM Priority tape segment mark write CU
PTW Priority tape write CU,A/L
PTWC Priority tape write with zero elimination and

per record mark control combined CUA/L
PTWR Priority tape write per record mark control CU,A/L
PTWZ Priority tape writc with zero climination CU,A/L
QLF Inquiry latch set OFF Q.A/B
QLN Inquiry latch set ON Q,A/B
QR Inquiry read Q,A/L
QW Inquiry write Q,A/L
RG Record gather X,A/L
RS Record scatter X,A/L
S# Subtract from accumulator # A/L F
SA Subtract absolute from accumulator 1 A/L F
SL Shift left coupled N
SL# Shift left accumulator # N
SLC Shift left and count coupled X
SL.C# Shift left and count accumulator # X
SLS Shift left split N(P)
SMFV Sense mode for field overflow A/B

Mnemonic Operation Operand

SMSC Sense mode for sign change A/B
SR Shift right coupled N
SR# Shift right accumulator # N
SRR Shift right and round coupled N
SRR# Shift right and round accumulator # N
SRS Shift right split N(P)
SS# Subtract accumulator # from storage A F
ST# Store accumulator # A F
STD# Store digits from accumulator # and ignore sign A F
TEF Tape end of file turn OFF (010]
TLF Tape latch set OFF CU,A/B
TLN Tape latch set ON CU,A/B
™ Tape mark write CU
TR Tape read CU,A/L
TRA Tape read alpha CU,A/L
TRB Tape record backspace CU
TRR Tape read per record mark control CUA/L
TRU Tape rewind and unload CU
TRW Tape rewind CU
TSB Tape segment backspace CU,A/L
TSEL Tape select CU
TSF Tape segment forward space CUA/L
TSHD Tape set high density CuU
TSK Tape skip CU
TSLD Tape set low density CuU
TSM Tape segment mark write CU
™W Tape write CUA/L
TWC Tape write with zero elimination and per record

mark control combined CU,A/L
TWR Tape write per record mark control CU,A/L
TWZ Tape write with zero elimination CU,A/L
TYP Type A/L
ULF Unit record latch set OFF I,A/B
ULN Unit record latch set ON LLA/B
UPpP Unit record punch S,A/L
UPIV Unit record punch invalid S.A/L
UR Unit record read S,A/L
UsS Unit record signal S.A/B
Uuw Unit record write S,A/L
UWIV Unit record write invalid S,A/L
XA Index word add to indexing portion X,A/N
XL Index word load X,A/L
XLIN Index word load and interchange X,A/L
XS Index word subtract from indexing portion X,A/N
XSN Index word set nonindexing portion X,A/N
XU Index word unload XA
XZA Index word zero and add to indexing portion X,A/N
XZS Index word zero and subtract from indexing portion ~ X,A/N
ZA# Zero accumulator # and add A/L F
ZAA Zero accumulator 1 and add absolute A/L F
ZS# Zero accumulator # and subtract A/L F
ZSA Zero accumulator 1 and subtract absolute A/L F
ZST# Zero storage and store accumulator # A F

Appendix C:

ACTUAL or
ACTUAL ADDRESS

ADDRESS ADJUSTMENT

ADDRESS CONSTANT
or ADCON

ALPHAMERIC
7070 AUTOCODER

7070 BASIC AUTOCODER

COMPILER

EXPRESSION
FIELD DEFINER(S)

GENERATOR

HEADER LINE

INSTRUCTION

LIBRARY

LITERAL

MACHINE-LANGUAGE
CODING

78

Glossary

The word “actual” usually refers to machine language. An actual address is the
same as an absolute or machine address.

Address adjustment refers to the procedure of changing an address, at process
time, according to an increment or decrement placed after the named address,

such as
NAME]1 + 26.

An apcon (address constant) is a constant which is an address rather than a value
such as 3.1416 or 1000000000. The characteristic of an apcox is that the desired
numerical value is usually not known when the program is being written, but is
inserted by Autocoder at process time.

Refers to characters which may be numerical digits, alphabetic letters, or special
characters.

A program which produces a 7070 machine-language object program from a
source program written in the 7070 Autocoder language.

The system described in the manual on the 7070 Basic Autocoder, form C28-6078.
This is a part of the 7070 Autocoder system, and the 7070 Basic Autocoder lan-
guage is a part of the 7070 Autocoder language.

There are various types of programming systems. The 7070 Autocoder program-
ming system processor is classed as a compiler. A compiler examines the source
language and selects appropriate material from a library, connects it together,
and transforms the results into machine language. Compiler is a specific term, as
compared with processor, which is the generic term.

An element of the source language where a combination of several names and
operators may be used, as well as a single name or address.

A number placed after an address to indicate the particular digit(s) in a word
which are occupied by a field.

A program or sub-program which selects instructions from the library to build
machine instructions or other statements described in a source statement. The
term “macro generator” is used for the generation process resulting in macro-
instructions.

A preparatory line in the source language which indicates the function of one or
more subsequent detail lines.

Usually means a single entry in machine language or in symbolic machine lan-
guage, as opposed to a statement, or macro-instruction, which usually means a
language entry that can produce many machine-language entries.

The Autocoder system includes reference material on a tape. This material in-
cludes subroutines, macro-instructions and other information. It is referred to as
the Library, and the tape is called the Library Tape. The program which creates
and updates the tape is called the Librarian.

Literal refers to an entry on the coding sheet of data as distinguished from the
location or address of the data.

Instructions written in the form which is intelligible to the internal circuitry of
the computer. Sometimes called actual or absolute coding.

MACRO-INSTRUCTION

NUMERICAL

OBJECT PROGRAM

OBJECT TIME

OPERAND

OPERATION,
OPERATION CODE

OPERATOR

PROCESSOR

PROCESS TIME

SOURCE LANGUAGE
SOURCE PROGRAM

SPECIAL CHARACTER

STATEMENT

SUBROUTINE

SYMBOL

SYMBOLIC
MACHINE LANGUAGE

A macro-instruction in the 7070 Autocoder is a line on the coding sheet for which
a series of instructions is usually generated or produced. This series of instructions
is usually entered in-line or in-sequence, rather than being placed out-of-line and
entered by a Branch instruction.

In the 7070, numerical usually refers to a field with a plus or minus sign, rather
than an alphabetic sign.

The output from a processor. In this case, a 7070 machine-language program as-
sembled from a source program coded in the language described in this bulletin.

The time at which the object program is being run. Opposed to process time, the
time at which Autocoder is being run.

Usually means the location or the field being operated on, as distinguished from
the operation, which is the function taking place. In a machine-language instruc-
tion the Operand is the address. The entire field beginning in column 21 on the
Autocoder source language card is also called the Operand field.

These terms usually refer to machine functions. Sometimes it is important to dis-
tinguish between a mnemonic, e.g., zal, and its machine equivalent +13. More
often, the context makes it clear whether “operation code” means “mnemonic op-
eration code,” or “machine operation code.”

Although the machine operation code could be considered an operator, this term
usually refers to such characters as +, —, =, which are said to “operate” on
addresses.

A program which performs the functions of assembly, compilation, generation, or
any similar functions.

The time at which the source program is being changed into an object program
by Autocoder. Opposed to object time, the time at which the object program is
being run.

The language in which a problem was coded, e.g., the 7070 Autocoder language.

The original coding of a program, used as input to a processor. Usually refers to
a program written in a language other than machine language.

One of a set of special symbols. Some common special characters are:

#$ + = —-*= () /,.nRn

Usually a source-language entry on the coding sheet, especially a line which
might eventually produce several machine-language instructions, such as the
ZSUM statement, or the GET statement.

Usually, a series of instructions entered by a Branch. Opposed to macro-instruc-
tions, which are normally entered sequentially, rather than by means of a Branch
instruction.

In Autocoder, symbol is used to refer to a name used instead of a machine ad-
dress. Thus “symbolic address,” “symbolic name,” or “symbolic label,” conveys
that one is not specifying machine addresses.

Usually refers to a language which is similar to machine language except for sym-
bolic addresses and mnemonic operation codes. Autocoder Imperative Operation
Codes are examples of instructions in symbolic machine language.

79

Appendix D:

Note on Optional Characters

In certain cases, special characters used on 1BM printers and other equipment have
optional equivalents. In each case the character must be punched according to
the card code, regardless of which option has been chosen for printing on the
printer in a given installation.

The special characters which have been used in this manual and their optional
equivalents for each type wheel configuration available are given in the following
table.

C:;:::c:':r CI:’:! Type Wheel Configuration
This Manual Code A B C D E F G H K
(084 | % | % | %o | o | o | (| % | ((
Jand g | 12-84 | | || <) x{))
@ 8-4 @ @ @ @ > — — ’ @
+ 12 & / & — — + -+ + +
/ 0-1 1 & 0 / & / / / /

Appendix E:

Use of the Input/Output Control System

When the 1M 7070 Input/Output Control System is used in source programs to
be processed using Four-Tape Autocoder, several restrictions regarding fields,
areas, index words, and pa entries must be observed. Except for the restrictions
which follow, source programs may use the Input/Output Control System as ex-
plained under “Use of the Input/Output Control System with Autocoder” in the
7070 Data Processing System Bulletin “mBM 7070 Input/Output Control System,”
form J28-6033-1.

When using PuT macro-instructions with Four-Tape Autocoder, the name preceding
the word ¥ must be the name of either an row which defines one area or a tape
input file. The use of a field name is not allowed unless, of course, the field name is
the label of an row that defines the field. The name of a card input file may not be
used in the PUT macro-instruction if the output file is a tape file. A record from a
card input file may be included in a tape output file if the unit record area is
defined by one row; the puT would then be written using the name of the row,
i.e., the name preceding the word v would be the same as the fourth item in the
DUF entry of the card input file.

The index words in the system descriptive entry (procs) must be specified by
actual two-digit addresses or omitted, i.e., represented by commas. Symbolic names
may be associated with the actual index words through the use of EQU operations
which follow the piocs entry in the source program sequence; similarly, instructions
that follow the p1ocs entry may use the symbolic names I0CSIXF, I0CSIXG, and IOCSIXH
as explained in the bulletin describing the Input/Output Control System.

All DTF entries must precede all Input/Output Control System macro-instructions
in the source program sequence. Symbolic names may be used in the File Speci-
fications (pTF) to specify index words 4 and B (Lines 19 and 20 of the ptF) pro-
vided the pTF entries appear in the source program sequence ahead of all impera-
tive instructions in the program. The procs entry may appear ahead of the prF
entries, if desired. The symbolic names entered in the pTF for the index words
A and B may not be equated to another symbol.

If the pTF entries do not appear in the source program sequence ahead of all im-
perative instructions which refer to the tape files, index words A and B must be
specified in the pTF by actual two-digit addresses. Symbolic names may be asso-
ciated with the actual index words through use of EQU operations which follow the
DTF entries in the source program sequence. Of course, entries for index words
A and/or B may remain blank if reference to them is not required.

Comments cards may not be placed between the pTF entries of the files used in the
program nor between the subsequent entries under a pTF.

The high assignment counter will be set to the location immediately following the
one assigned to the last instruction resulting from the piocs entry regardless of the
format of any Origin Control statement that may have preceded the procs entry.
To avoid unintentional overlap of areas, the setting of the high assignment counter
by the p1ocs entry must be considered when writing Origin Control statements that
follow the p1ocs entry.

81

Appendix F:

82

Changes to the Four-Tape Autocoder Manual

The additions, changes and corrections to the original 18BM manual (form C28-6102)
that are incorporated into this manual are listed below in page number sequence.

Page Number

Description

6

10

12

13

21

23

23

24
31

31

36

39
40

41

42

44

44

46
47

48

Added an example of symbolic index word in the form xnn.
Added a restriction on placement of comments cards.

Corrected the size of area to specify 999 words for one record
rather than 999 words for one area.

Repositioned information on fields that cross word boundaries
to associate it with added examples.

Added examples of fields that cross word boundaries and meth-
ods of referring to data in those fields.

Added an example of the second method of assigning two
different symbolic names to the same field.

Added a caution regarding use of an Origin Control statement
of Format 2 after one of Format 3.

Added a statement of the effect of a piocs entry on the high
assignment counter.

Added the definition of a Litorigin Segment.

Added a method of writing skeleton instructions to allow a
choice of parameters.

Added a caution regarding the use of actual index words in
parameters.

Corrected the coding example to save contents of index word
94 before the BLX instruction.

Deleted a phrase stating that there is only one pass of Phase 2.

Added a statement that the object program tape will have load
card indicators in columns 65 and 79.

Stated the requirement that a re-assembly run must have at least
one addition, change or deletion and that input must be in
ascending sequence.

Added an example of an asien card.

Added the option of placing the number of cards in the operand
of an UPDAT card.

Added a reference to stacked source programs for the sOURCE-
DECK USE TAPE option card.

Added a new option for messages.

Added references to the tape density option for the LABELsouT
options.

Added a reference to the tape density option for the LABELsOUT
option.

Page Number

Description

48

48
48

48
48

49
49

49
49

50

50
50

51
52

53
57
57
57

67
68
71
72

Added a comment on labels for stacked output for the LABELs-
ouT option.

Added a new option for stacked input and/or output.

Added items to the list of “permanent” options as supplied on
the Systems Tape.

Added a comment on the typing of the level number.

Changed references to tape units and channels to a combined
number in the form cu.

Added a reference to the tape density option.

Stated the choice of punch alteration switch settings to select
the column into which the load card indicator is to be punched.

Added a reference to the tape density option.

Stated the requirement of at least one correction card for a
re-assembly run.

Stated the choice of punch alteration switch settings to select
the column into which the load card indicator is to be punched.

Added a reference to the tape density option.

Changed the settings of the card reader alteration switches to
ABAA.

Added the settings of the console alteration switches.

Added the Input/Output Control System halts that may occur
during Four-Tape Autocoder processing.

Added a new message for System Control and Librarian.
Deleted PGLIN from the punch error message.
Added a new message for Phase 4.

Added the Input/Output Control System messages that may
occur during Four-Tape Autocoder processing.

Added the pTRA instruction to the list.
Added the TRA instruction to the list.
Added the / character to the table.

Added restrictions on the use of the Input/Output Control
System with Four-Tape Autocoder.

Index

When more than one page reference for a particular subject Numericalo inii it 16
is listed, the page number in italics indicates the major Origin Controlcooviiiiiiiiiiiin it 23
reference. Control Cards, Runcoviii i iiiennn 48
Control Operationscoeviiiiieenniienenonen 23
B e e e see: Dollar Sign Branch Controlcoiiiiiiiiiii., 26
H Character . ..o oo ieeiineeaenaennns see: Lozenge End Controloviii i e 27
/ Charactercooiiiiiiiiiii i, see: Slash Litorigin Controlt 25
@ Symbolo see: Alpha Symbol Origin Controlcoiiiiiiiiiin i 23
DA (Define Area)oviuiiiiiniiiiiiiiiaane 10
Actual Addressovvvieiin it 3 Area Numberot 10
EQU i e 21 DAHeader Linecovviieeeiiiiininnnnenn. 10
Field Definitionccvvvevveveneeennneennn... 4 Record Definition Wordscooiiiinn, 10
INdeXing . .evevnnen v 5 Relative Addressingcooiviiiiiiiia., 11
AdCOn vt e e e 4,16 Relative Field Definitionoiv.e. 14
Additions, Re-assembly it 45 Succeeding Entriesoooiiiiiiiiiiiiian... 12
Address Adjustmentc.c.eiiiiiiiiriiiiiii, D DA Header Linec.vuvieiniiiiiininniiinnnss 10
Macro-Instruction Parameter 34 DC (Define Constant)oeeveeeeereneieennn... 15
Skeleton Instruction Operand 34 AdCONS ot it e e e 16
ZS UM oottt e 30 Alphameric Constantsoovviiiin. 18
Address TYPES . .ovviveeeieiiaaeanieiiiiinaeens 3 DCHeader Linecovuiiiiiniiininnnennns 15
Alpha Symbol (@) Numerical Constantsccoeeiuerninen... 16
Alphameric Constantscoiiieuien.n. 18 DC Header Lineeiieriinvineiiiiineinannn 15
Alphameric Literalscooii... 3 DRDW e e e e 20
Macro-Instructionsccoviiiiiiiiiiiaan. 29 Declarative Operationsc.coveiiiiieeinnonn 9
Optional Equivalents 80 Define Areacviiiiiiinneennaan......5ee: DA
Alphameric Constants 18 Define Constanto iineenens see: DC
Alphameric Literalsoiiiiiieieinn. 3 Define Record Definition Word 20
see also: Literals DELET Cards
Alteration Switches Re-assemblyoviiit i 46
Designationsovuiiiiiiiiie e 7 System Runovvviiniiiiiniiniiineeenao... 47
EQU ..ottt 23 Deletions
Stacked Input/Outputcooiiii... 53, 58 Source Programeiiiiiiai i 46
Area Number in DAttt ieeaa e 10 Library ...euuiieie i e 48
ASIGN Card ..ot e i e 47 Dollar Sign ($) . oovvriiniiii i 38
Asterisk Duplicate Symbolo 38
Comment Card . ..ot e 7 Macro-Instructionsoiiiiiiiiiiiien 31
In Skeleton Routinescocviveiiiiiiiinnn, 35 Subroutinec.iiiiiiii e 38
Operand Symbol 3,5,11,21, 24 EQU (EqUuate)ovviiiiriiianenenaneeiaiannns 21
Blank Addressoovuenee vt 3 Actual Addressoviiiiiiii i 21
Branch Controlccoeeriiiiirnnneaninn.. 25, 26 Electronic Switch Number 22
CALL ot e e 31 Index Wordoovinvieiniiiiiii i enns 22
Changes Input/Output Unitsovvirieenieen e 23
Libraryouuiret it e i e 46 Symbolic Addressc.oiiiiiiiiiiiai 21
Permanent Optionouuueinueneararneenens 46 Electronic Switches 7
PrOgrameeeennanonsivnneneneaeasnanecnnns 48 EQU i 22
Re-assemblyieueeieniiiiiiii i 45 Field Definitionoveiiiiiiiiiiiinenneiennn. 4
Characters, Optional (Appendix D) 80 Literals ...ovvivnen e et i 5
Coding Sheetcviiiiiii i 1 Macro-Instruction Parameter 34
Comments in Source Program 7 Relative Field Definitionont. 14
Console Procedurec.ooviiiiiiiiinineennenn. 37 Numerical Constantsccvvveieanaienney 16
Constants Skeleton Instruction Operandco.... 34
AdCONS + oottt e e 16 ZS UM oot e 30
Alphamericooviiiiiiiii i 18 Fields That Bridge Wordsccovvviieiennn. 13
DCHeader Lineccvvveiiniiiiinnineeaneans 15 Flow Charts, Processor (Appendix A) 69
Field Definition ofcooveiiiiiiiiiiinean.. 4 Glossary (Appendix C)coiiiiiiieieeean e, 78
Literalsttt e 3 Halts and MeSSagesc.vvvivvnrunnnennnenenennns 58

Header Line
DA e e 10
DO 15
Heading Linecooiiiiiiii i, 1
Identification i 1
Imperative Operations 8
Codes (Appendix B)oooviiininiinnne... 74
INCL
In Macro-Instruction 36
In Subroutine i i 39
Index Wordsooooiii i, 5
EQU .. i e 22
Indexingcoiiiiiiiiiii 5
Macro-Instruction Parameter 34
Other Usesoovvriiniiii i 6
Reservation ofoccoiiiiiiinnnno.., 6
Skeleton Instruction Operand 34
ZSUM 30
Input/Output Control System 81
Input/Output Units
Designationsc.ccoiiiiiiiiii ., 7
EQU i . 23
INSER Cardooiiiii i i e i, 47
Instructions, Operating.see: Operating Instructions
Label ... i 1
Librarian ... i 41
Flow Chart (Appendix A)cccovvvinnnn. 69
MeSSaZES ..ottt e e 58
Library Change Cardsoovvninnn... 47
Library Changesccoiiiiiivnnnnenn... 46
Library Subroutines see: Subroutines
Line ... o 1
Literals ..o 3
Field Definitioncooiii e onnn... 4
In Skeleton Routinesco.oue.... 36
Litorigin Controlccooven.... 25
Origin Controlciiiiiiian... 23
Litorigin Control0coviinne... 25
Phase 1 ..o 43
Litorigin Segment 25
CALL .. e e e 31
Subroutinesciiiiiiii 37
Lozenge (H) ..otuiuiiin it 32
Optional Equivalents 80
Macro-Instructionsccovvivrnennnn... 29
Actual Index Wordscovviviineennnn... 34
Blank Charactersccoovvevirvunnn... 29
CALL . e 31
Commascoveiiiiiiiiii e 29
Duplicate Symbolscovvvinan... 31
Input/Outputc.coiiiiiiiiiiia.,. 81
Phase 1oonintiiiiiii it 43
Writingof ...l 31
ZSUM i e 30
MeSSageSttt e e 61
Halts and ...t 58
Librarianottt i 61
Phase 1 oot i iicninan.. 62
Phase 2o ittt e 63
Phase 3ooiiiiiin i 64

86

Phase 4 ...t e 65

System Controlccoiiiiiiiiiiiia, 61
Numerical Constantscccvvivunnnn. 16
Numerical Literalsooiiiiiiion... 3

AdCon ... 4,16

see also: Literals
Operandccoiiiiiiiiiiiiiiii i 1
Operating Instructionsccvuniinn... 54

Console Procedurecovvviiiiinnnieon.. 57

Original Assembly 35

Re-assembly oo 56

SystemRuncooiiiiiiiiiiiii i 56
Operation Codescoviiiiiiviniinninninnn. 1

Controlcoi it 23

Declarativecccooiiiiii ... 9

Imperativec.iiiiiiiiiiniiiiiiinnn.n. 8,74
Options

Cards ..ot 49

Changesc..oiiiiiiii i 46
Optional Characters (Appendix D) 80
Origin Controlottt 23

Index Word Reservationcooueunnn.... 6

Phase 1 ...t 43
Original Assembly Runl 46

Control Cardcoiiiiiiiiii . 48

Operating Instructionscovvvvinenn.... 55
Page Numbercoiiiiiiiiiiiininnn.. 1
Parameters, Macro-Instruction 29, 31, 32
Parameters with Slash 33
Permanent Option Changes 46
Phase 1 ...ttt 41

Flow Chart (Appendix A) 70

Halts and Messagesco.vveirinnennennnnnn.. 59

MeSSageS .« ..ttt it i e i i ... B2
Phase 2o 41, 43

Flow Chart (Appendix A)covuiiun... 71

Halts and Messagescovveereeennanenn... 59

MeSSages . .o.vi it e e e 63
Phase 3 .. i 41, 44

Flow Chart (Appendix A) 72

Halts and Messagescoovvvinivnnnn.... 59

MeSSageS ..ottt i e e 64
Phase 4 .. .oorii e 41, 44

Flow Chart (Appendix A) 78

Halts and Messagesoovvvvnevinnennn.... 59

MeSsagesovuiii i e 65
Processor i e 41

Flow Charts (Appendix A)c..ou.... 69

Librarianccooiiiii i 41

Organization Schematic 42

Phase 1 ...ttt it 41

Phase 2ccoviiiiiiiieininnnneninnn.....41, 43

Phase3oiiiiiii i 41, 44

Phase4 ...t 4], 44

System Control oL 41
Program Changescoooviiiiiiininninn.. 48
RDW i e e 10

DRDW e 20
Re-assembly Runooooiiiiinininn. .. 45

Additionsol e 45

Changesoceeeneteneeniininriarenennaeens 45

Control Cardccoviiiiiiiiiiiiiiiinn 49
Deletions . ..ovvereere i e 46
Examplescoviiiiiiiiiiii i 46
Operating Instructionscooeeiieiieen.e. 49
System Control il 41
Record Definition Wordsccooiieiin .. 10,20
Relative Addressingcoiiiiiiiiiiieaiann 11
Relative Field Definitioncooiiinn. 14
Remarks in Source Programcooovua.. 7
Run Control Cardsvoeeiei i nn 48
RUNS i e e i e 45
Original Assemblyl 45
Re-assemblycooiiiiiiiiiiiiiiiiiian, 45
SYStemM .. .vve e e ee e, 46
Skeleton Routinecovtiiiinenneiinnnanns, 29, 31
Of ZSUM MaACIO « oot veveiiiinn e nenannns 32
Slash (/) «envee e e e e e 33
Optional Equivalentsooiiiiineen 80
Stackingoooiii i e 53
SUbroutingsieiiiiie i i e 37
Avoiding Duplicate Symbols 38
CALL o e e 31
In Macro-Instructionsc.cooviiiuieiana.. 36
Litorigin Controlo, 25

Origin Controlcoooviviiiiiiiiiiiinenn... 24

Phase 1 . .ouoreee e iiiiiiniiineineneeeaeenn.. 43
Substitution-type Macro-Instructions
see: Macro-Instructions

Succeeding Entries i 12
SWItChes oottt e e s 7
Symbolic Addresscoiiiiiiiiiiiiiiaeiee 3
Address Adjustmentol 5
EQU it i i 21
Field Definitionovvvreiieneeeveneeinnennn... 4
In Skeleton Routinecovovenvienvnnninennnns 32, 34
INdexingoevvenrin i e 5
System Controlo 41
Flow Chart (Appendix A)ooviiiiienn e 69
MESSAZES « o v v vt vviitii e e 61
System Runot 46
Control Cardttt 49
Library Changescoevveeeeeeeeieenen... 46
Operating Instructionsccooviiiiinennnn 56
Permanent Option Changes 46
Program Changescoviiiiiiienenn e 48
UPDAT Cards .. .ovvreeie i ietaieeninnanannes 48
Writing
Macro-Instructionscoeiiiitiiniiiaans 31
Subroutinesiiiiiii i 38
ZSUM e e e 30
Skeleton Routineofcovviiiiiiiaa, 32

87

IBM 7070 Publications

The following IBM 7070 Systems literature has been published as of the date of this manual:

GENERAL INFORMATION MANUALS

Form Number

F22-6517
F28-8043
F28-8053

REFERENCE MANUALS

Form Number

C28-6078-1
C28-6090
C28-6099
C28-6102-1
C28-6110
C28-6111

BULLETINS

Form Number

J20-6067
720-8026
728-6032-1
J28-6033-1
728-6040
J28-6041-1
J28-6042-1
728-6045
728-6047-1
J28-6049
728-6053
728-6069
J28-6070
728-6083
J28-6095
J28-6105
J28-6112
728-8023

Form Number

D22-7004-3

REFERENCE MANUALS

Form Number

A22-6502-1
A22-7003-2

BULLETINS

Form Number

G22-6545
G22-6562
G22-6583
G22-6588

Title

Introduction to IBM Data Processing Systems
IBM Commercial Translator
The COBOL Translator

Title

7070 Basic Autocoder

Simulation of the IBM 650 on the IBM 7070

7070 Basic FORTRAN

IBM 7070/7074 Four-Tape Autocoder

IBM 7070/7074 Utility Programs

IBM 7070/7074 Generalized Sorting Program: Sort 90

Title

Uses of Index Words in the IBM 7070

Specifications for Submittal and Processing of Social Security Tape Reports

IBM 7070 Autocoder

IBM 7070 Input/Output Control System

IBM 7070 Sort 90 and Merge 91 Specifications

Assembly and Condensing of 7070 Basic Autocoder Programs on the IBM 650

Simulation of the IBM 7070 on the IBM 704 and the IBM 7090

IBM 7070 FORTRAN

IBM 7070 SPOOL System

IBM 7070 Report Program Generator

Additions to the IBM 7070 Autocoder; Writing Macro Generators for the IBM 7070 Autocoder
IBM 7070 Sort 90 and Merge 91: Timing Estimates; Modifications

Effects of Increased 7070 Tape Capacity and 7070 Tape-Oriented System on IBM Programs
Machine Requirements for IBM Programs and Programming Systems

IBM 7070 Utility Control Panels

IBM 7070/7074 Compiler Systems: Operating Procedure

IBM 7070/7074 Input/Output Control System: Addenda and Errata

Machine Optimal Approximations

The following IBM 7070 Machine literature has been published as of the date of this manual:

GENERAL INFORMATION MANUAL

Title
7070 Data Processing System

Title

IBM 700-7000 Series Auxiliary Operations
7070 Data Processing System

Title

General Information (7074 Data Processing System)
7072 Data Processing System

Additional Core Storage; Read Binary Tape (7074)
Changes to 7070 Reference Manual

C28-6102-1

IE
International Business Machines Corporation
- Bata Processing Division
' 112 East Post Road, White Plains, New York

1-2019-820 "W*S°N ut poiuly

	000
	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	xBack

