Systems Reference Library

IBM 7070-Series Programming Systems
FORTRAN

This publication is a reference text for the IBM 7070-
Series FORTRAN language. It provides information
for writing programs in both FORTRAN I and
FORTRAN II languages. In addition to describing the
basic elements of the FORTRAN languages, this pub-
lication discusses the various types of FORTRAN
language statements available to users of the 7070-
Series FORTRAN. Also detailed is a method that will
enable the user to expand the FORTRAN system by
including additional routines. Separate sections de-
scribe the various limitations imposed on the size of
FORTRAN source program statements, and error
messages that are produced by the Basic FORTRAN
and Full FORTRAN processors.

Several appendixes provide a complete description
of the 7070-Series Library subroutines; admissible
characters in the FORTRAN source program; method
of preparing and punching a FORTRAN source pro-
gram, including an illustration of a tested routine;
and a summary of differences between the Full
FORTRAN and Basic FORTRAN languages.

File Numbher 7070-25
Form C28-6170-1

MAJOR REVISION (December, 1963)

This publication is a major revision of the previously published
edition, Form C28-6170, and makes that edition obsolete. The
revised version incorporates the contents of Technical News-
letter, Form N28-1092, and makes it obsolete. Several addi-
tions and corrections have been made throughout the text. This
edition should be reviewed in its entirety.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N.Y.

@ 1963 by International Business Machines Corporation

INTRODUCTION

PARTI: BASIC CONCEPTS
Constants
Variables
Subscripts
Expressions
Subroutines

PART II: THE FORTRAN LANGUAGE
The Arithmetic Statement
Control Statements

DO Statement

Computed GO TO Statement
Assigned GO TO Statement
ASSIGN Statemento0.... ...
IF Statementuu....
IF ACCUMULATOR OVERFLOW Statement

IF QUOTIENT OVERF

LOW Statement

IF DIVIDE CHECK Statement
SENSE LIGHT Statement
IF (SENSE LIGHT) Statement
IF (SENSE SWITCH) Statement

CONTINUE Statement

PAUSE Statement

STOP Statement . . .
END Statement
Input/Output Statements

Specifying Lists of Quantities.

Input/Output in Matrix
Input/Output of Entire

Form
Matrices

FORMAT Statement

READ Statement . . .
PUNCH Statement . .
PRINT Statement . . .

WRITE OUTPUT TAPE Statement,...
READ TAPE Statement

REWIND Statement .

BACKSPACE Statement

Specification Statements
DIMENSION Statement

Using COMMON and E
Together

QUIVALENCE Statements

FUNCTION and SUBROUTINE Subprograms

FUNCTION Statement

24
25
25
26

SUBROUTINE Statement
CALL Statement

CONTENTS

PART III: EXPANDING THE FORTRAN SYSTEM

The FORTRAN Loader

Requirements of Relocatable Routines . , . .,

The Title Card
TheTransfer Entry Cards
The Execute Card
The End-of-File Card
The Data-Area Card
Relocatable Program Cards
Relocation Indicators
The FORTRAN Package

Autocoder Routines for Use with a FORTRAN

Program
Library Functions
Arguments

Branch List

Coding Subprograms for Use with Full FORTRAN

Program

PART IV: GENERAL RULES FOR FORTRAN

PROGRAMMING

Truncation During Computation
Relative Constants

Limitations on the Size of a Single Statement
Limitations on the Size of a Full FORTRAN Program .
Limitations on the Size of a Basic FORTRAN Program

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F.

SOURCE PROGRAM STATEMENTS
AND SEQUENCING . . .

ADMISSIBLE CHARACTERS IN A

FORTRAN SOURCE PROGRAM

PREPARING AND PUNCHING A
SOURCE PROGRAM . .

7070-SERIES FORTRAN LIBRARY

FUNCTION SUBROUTINES

AND FULL FORTRAN

EXPLANATION OF CONDITION CODES . .

SUMMARY OF DIFFERENCES BASIC

27
27
27

28
28
28
28
29
29
30
30
31
31
33

33
33
33
34

35

38
38
38
38
38
39
39
40

41
41
44

45

46

47

49
59

60

61

PURPOSE OF THE PUBLICATION

This publication is a reference text for writing
programs in the FORTRAN language for use on
IBM 7070-Series Data Processing System. The
FORTRAN language closely resembles the language
of mathematics and, therefore, may be used to
facilitate the writing of programs that will perform
scientific computation and data handling.

THE FORTRAN SYSTEM

The FORTRAN System is the IBM FORmula TRANs-
lating System and consists of two parts: the lan-
guage and the processor.

Elements of the Language

The following are the basic elements of the
FORTRAN language:

1. Constants (such as 27 or 3.14159).

2, Variables (such as X or Y).

3. Subscripted variables (such as x; or y;, which
are written in FORTRAN as X(I) or Y(D).

4, Arithmetic statements, which cause math~
ematical computations, (such as a == which is
written in FORTRAN as A = B/C).

5. Mathematical expressions, which are mean-
ingful to FORTRAN, (such as X + Y or 3*J).

6. Control statements, which govern the
sequence of operations.

7. Specification statements, which assist the
FORTRAN processor in producing the machine-
language program.

8. Input/Output statements, which are used to
specify and control the transmission of data between
the computer and the Input/Output devices.

9. Subroutine statements, which permit the
logical subdivision of programs to be incorporated
within larger programs. This allows the pro-
grammer to write a program without specifying

each instruction every time the sequence is to occur.

The FORTRAN source program is written using
these elements of the language. The processor
converts source programs written in the FORTRAN
language into machine-language programs. IBM
provides two processors for the IBM 7070-Series
Data Processing Systems: the Basic FORTRAN
processor and the Full FORTRAN processor.

Basic FORTRAN

The Basic FORTRAN processor does not require
any tape units for compilation on a 7070 or 7074
Data Processing System. However, tape units

INTRODUCTION

must be provided when the program is to be com-
piled on an IBM 7072. The Basic FORTRAN proc-
essor accepts only a subset of the statements
accepted by the Full FORTRAN processor and

corresponds to the FORTRAN I language. The out-
put of the Basic FORTRAN processor is a symbolic
program in the Basic Autocoder language. In order
to obtain a machine-language program, this output
must be processed by one of the following: Basic
Autocoder, Four-Tape Autocoder, or Autocoder.

Full FORTRAN

The Full FORTRAN processor is a component of the
7070/2/4 Compiler Systems Tape and consists of
two major parts. The first part accepts and con-
verts FORTRAN source statements corresponding
to the FORTRAN II language into Autocoder element
records for the second part. The second part fol-
lows the first part without interruption and produces
a machine-language program. The Full FORTRAN
processor requires at least six magnetic tape units.
If multifile compilations are desired, a minimum of
eight tape units or seven tape units and an IBM 7550
Card Punch are required.

The main differences between the Full FORTRAN
processor and the Basic FORTRAN processor can
be stated as follows:

Basic FORTRAN is the FORTRAN I Language
Full FORTRAN is the FORTRAN II Language

Full FORTRAN permits the use of subprograms
whereas Basic FORTRAN does not. Full FORTRAN
allows for six-character variable names, EQUIVA-
LENCE within COMMON and triple subscripting
whereas Basic FORTRAN does not.

PREREQUISITES

The use of this manual presupposes that the pro-
grammer has read IBM General Information Manual:
FORTRAN, Form F28-8074. Familiarity with the
material contained therein is essential to the use of
this publication,

Additional Reference Material

A knowledge of the following IBM publications will
be helpful in understanding this manual:
IBM 7070-7074 Data Processing Systems, Form
A22-7003.
Glossary for Information Processing, Form
C20-8089.
Operator's Guide, IBM 7070 Series Program-
ming Systems: Compiler Systems, Form
C28-6249,

Introduction 5

PART 1. BASIC CONCEPTS

This section describes in detail the basic elements
that comprise the FORTRAN language.

CONSTANTS

Two types of constants are permissible in a
FORTRAN source program -- fixed-point (re-
stricted to integers), and floating-point (character-
ized by being written with a decimal point). The
rules for writing each of these constants are given
below.

GENERAL FORM

EXAMPLES

GENERAL FORM EXAMPLES

Fixed-Point Constants
A fixed-point constant is written without 3

a decimal point, using from 1 to 10 +1
digits. The constant may have a pre- -28987
ceding + or - sign. An unsigned con- 0
stant is assumed to be positive. The
magnitude or absolute value of the con-
stant must be less than 1010,

Floating-Point Constants
A floating-point constant is written with .17

a decimal point at the beginning, or the 5.

end or between two digits. The constant -0, 0003
may have a preceding + or - sign. An
unsigned constant is assumed to be
positive.

An integer exponent preceded by an E may 5. 0E+3 means

follow a floating-point constant. The ex- (5.0 x 103)
ponent may have a preceding + or - sign 5.0E3 means
(an unsigned exponent is assumed to be (5.0x 103)
positive). The magnitude of a number 5. 0E15 means
must be expressed as follows: (5.0 x 1015

5. 0E-17 means
(5.0 x 10717)

1.0 x 10791 = x < 1.0 x 1049, or the
magnitude must be equal to zero.

VARIABLES

A FORTRAN variable is a symbolic representation
of a value that may change either for different exe-
cutions of the program or at different stages within
the program. As with constants, a variable may be
fixed-point or floating-point, depending on whether
the value(s) that is represents are fixed-point or
floating-point, respectively. To distinguish between
fixed-point and floating-point variables, the follow-
ing rules for naming each type of variable must be
used.

Naming Fixed-Point Variables
The name of a fixed-point variable con-
sists of a series of alphabetic and numer-
ical characters (not special characters),
of which the first is [, J, K, L, M, or N.
The length of a fixed-point variable name
is:

1 to 6 characters in Full FORTRAN

1 to 5 characters in Basic FORTRAN

A fixed-point variable can assume any
integral value provided the magnitude is
less than 1010, Values used for sub-
scripts, however, are treated modulo
104; i. e., the right-most four digits are
used.

Naming Floating-Point Variables
The name of a floating-point variable con-
sists of a series of alphabetic and numer-
ical characters (not special characters),
of which the first is alphabetic but not I,
J, K, L, M, or N. The length of a
floating-point variable name is:

1 to 6 characters in Full FORTRAN

1 to 5 characters in Basic FORTRAN

A floating-point variable can assume any
value expressible as a normalized
floating-point number. The magnitude of
such numbers must be expressed as
follows:
1.0x 10791 < x<1.0x 1049, or the
magnitude should be equal to zero.

Full FORTRAN
I

M1234
IOBNOM

Basic FORTRAN
1

M1234

JOBNO

Full FORTRAN
A

B7

DELTAT

Basic FORTRAN
A

B7

SEVEN

Restrictions on Naming Variables

The following restrictions must be observed when
naming variables (either fixed-point or floating-
point):

1. Subscripted variables (see below) must not be
given names ending with F, because the FORTRAN
processors will consider variables so named to be
functions.

2. A variable must not be given a name which
coincides with the name of a library function (being
used in the same program) without its terminal F,
Thus, if a library function is named TIMEF, no
variable should be named TIME.

SUBSCRIPTS

When a variable name represents a list of numbers
(or array), there must be a means of referring to a
specific element of that list. The FORTRAN lan-
guage provides this capability through the use of
subscripts. A subscript consists of a constant,
variable, or limited expression attached to a vari-
able name and contained within parentheses.

Each subscript of a subscripted variable name
must be an expression in one of the following forms:

GENERAL FORM EXAMPLES
A% I
C 3
vV+C MX+2
v-C NA-2
C*vV S*J
C*V+C' 6*K+5
C*v-C' 8*L-9

Where: V is any fixed-point variable.
C is any unsigned fixed-point
constant.
C' is any unsigned fixed-point
constant.
* denotes multiplication.

NOTES:

1. The variable (V) in a subscript must not
itself be subscripted.

2. Where a fixed-point constant is used for the
value of a subscript, it is treated modulo 104,

Subscripted Variables

GENERAL FORM EXAMPLES

A subscripted variable is the name of a
fixed- or floating-point variable followed
by parentheses enclosing subscripts,
which are separated by commas.

Full FORTRAN permits 1, 2, or 3 Full FORTRAN

subscripts. A(I)
K(3,23*L6+13)
BETA(J,K, 3)

Basic FORTRAN permits 1 or 2 Basic FORTRAN
subscripts. A(D

K(L, M)
BETA(5%J-2, K+2)

Each variable that is subscripted must have the
size of its array (i. e., the maximum values that its

subscripts can attain) specified prior to the first
appearance of the variable in subscripted form.
This is accomplished by a DIMENSION statement
(see discussion of DIMENSION statement).

The value of a subscript exclusive of its addend,
if any, must be greater than zero and not greater
than the corresponding array dimension.

Arrangement of Arrays in Storage

If an array, A, is 2-dimensional, it will be stored
sequentially in the following order: A(1,1), A(2,1),
ABB, 1), . o .y Am, 1), AL, 2), A2,2), AS,2), . . .
A(m,2), . .., A(m,n).

Arrays are thus placed in core storage in col-
umn order with the first of their subscripts varying
most rapidly, and the last varying least rapidly.
The same is true of 3-dimensional arrays. Arrays
which are 1-dimensional are simply stored sequen-
tially. All arrays are stored in order of increasing
absolute storage locations. '

EXPRESSIONS

An expression in FORTRAN is a sequence of con-
stants, variables (subscripted or nonsubscripted),
and functions, separated by operation symbols,
commas and parentheses. An expression appears
on the right-hand side of arithmetic statements and
in certain types of control statements,

Rules for Constructing Expressions

The simplest expression consists of a single con-
stant, variable or subscripted variable. If the
quantity is a fixed-point quantity, the expression is
said to be in the fixed-point mode. If the quantity
is a floating-point quantity, the expression is in the
floating-point mode. Although a FORTRAN expres-
sion may be either fixed-point or floating-point, it
must not be a mixed expression. This does not
mean that a floating-point quantity cannot appear in
a fixed-point expression, or vice versa, but rather
that a quantity of one mode can appear in an expres-
sion of the other mode only in certain ways as
shown below:

1. A floating-point quantity may appear in a
fixed-point expression only as an argument of a
function (see ' Naming of FORTRAN Function
Subprograms').

2. A fixed-point quantity may appear in a
floating-point expression only as an argument of a
function, as a subscript, or as an exponent.

Part I: Basic Concepts

In addition to the foregoing, the following rules
pertain to the formation of expressions:

1. Any constant, variable, or subscripted vari-
able is also an expression of the same mode. Since
variables with names beginning with I, J, K, L, M,
or N, and integers are fixed-point, 3 and I are
fixed-point expressions. However, ALPHA and
A(1,J,K) are floating-point expressions.

2. If SOMEF is some function of n variables,
andif E, F, . .., Hare a set of n expressions of
the correct modes for SOMEF, then SOMEF (E,

F, . .., H) is an expression of the same mode as
SOMEF.

3. If E is an expression, and if its first char-
acter is not + or -, then +E and -E are expressions
of the same mode as E. Thus, -A is an expression,
but +- A is not.

4. If E is an expression, then (E) is an expres-
sion of the same mode as E. Thus (4), ((4)),
(((4))), etc., are expressions.

5, If E and F are expressions of the same mode,
and if the first character of F is not + or -, then

E+ F

E-F

E*F

E/F

are all expressions of the same mode, but A-+B
and A/+B are not expressions. (The characters
+, -, *, and / denote addition, subtraction, multi-
plication, and division, respectively.)

6. Exponentiation is denoted by **. Therefore,
A**¥B is equivalent to AB. The rules for exponenti-
ation are as follows:

a. An exponent may not have a + or - sign as
its first character. A**+B and A**-B are
illegal expressions in that they contain
consecutive operators. Furthermore,
since +A**B and - A**B are defined by the
rule of Hierarchy of Operations as +(A**B)
and —(A**B), respectively, rather than
(-A)**B and (+A)**B, caution must be
exercised in using a + or - as the first
character of an exponential expression.

b. If FLT designates a floating-point expres-
sion, and FIX denotes a fixed-point ex-~
pression, then the following mode combi-
nations are permissible:

FLTFLT FIxFIX- FLTFIX
Thus, A**B, I¥*J, and A**I are all per-
missible, but I¥*A is not. That is, a
fixed-point expression may not be raised
to a floating-point power.

NOTE: In the case of FLTFLT, the expo-

nential expression may not be a negative

quantity.

c. The notation A**B**C is not acceptable in
FORTRAN, The expression (A¥*B)**C or
A**(B**C) although acceptable will yield
different results e. g., (2.0%*2,0)*¥0.0 =1,
and 2. 0%%(2, 0%*0, 0) = 2.

Hierarchy of Operations

The order of evaluation of an expression may be
explicitly specified through the use of parentheses.
Computation begins with the innermost parentheses
and proceeds to the outermost. When the hierarchy
of operations in an expression is not explicitly
specified by the use of parentheses, the order of
computation is understood by FORTRAN to be the
following:

Exponentiation

Multiplication and Division

Addition and Subtraction

For example, the expression
A+B/C+D¥*EXF-G
will be taken to mean
A+ (B/O+(DE*F)-G

SUBROUTINES

A subroutine is any sequence of instructions that
performs some desired operation. A closed sub-
routine is one which will appear in the object pro-
gram only once regardless of the number of times
it is referred to in the source program. Thus, for
each reference to a closed subroutine by the source
program, the processor constructs only the proper
linkage to the routine in the object program once
for every reference to it in the source program.
An open subroutine is a set of instructions that is
placed in an object program, every time a reference
is made to the subroutine.

All subroutines in FORTRAN are closed sub-
routines except the Library Functions ABSF and
XABSF.

FUNCTION and SUBROUTINE Subprograms

There are four types of subprograms that may be
utilized in FORTRAN. Three of the four types of
subprograms are classified as functions. A function
is a subprogram that may be called (i. e., used) by
writing the name of the function in an expression.
The fourth type of subprogram is the SUBROUTINE
subprogram. Since the SUBROUTINE subprogram
is not a function, it can be called only by the use of
a special statement. As noted below, each type of

subprogram is defined in a different way. Table I
shows the characteristics of the four types. The
numbers refer to the notes below:

Table I. Function and SUBROUTINE Subprograms

Calling How How
Type of Subprogram Method Named Defined
Library Functions 1 2 3
Arithmetic Statement 1 2 4
Functions (Full FORTRAN)
FORTRAN FUNCTION 1 5 6
Subprogram (Full FORTRAN)
SUBROUTINE Subprogram 7 5 8

(Full FORTRAN)

1. The function is referred to by an arithmetic expression
containing its name.

2. See "Naming of Library and Arithmetic Functions. "

3. The library function is a subprogram, coded in Autocoder
and assembled separately. It is placed in core storage in
absolute form with the object program at object time.

4. These are functions that are defined by a single FORTRAN
arithmetic statement and apply only to the particular pro-
gram or subprogram in which their definition appears.

5. See "Subprogram Statements. "

6. These subprograms must be defined by a FUNCTION
statement.

7. The SUBROUTINE subprogram may be called only by a
CALL statement.

8. These subprograms must be defined by a SUBROUTINE
statement.

Calling Subroutines

As indicated in Table I, there are two distinct ways
to call subprograms. Following are examples of
arithmetic statements which contain function names:
Y = A-SINF(B-C)
C = MINOF (M, L)+ ABC(B*FORTF(Z), E)

The names of library, arithmetic statement, and
FORTRAN function subprograms are used in this
way. The appearance in the arithmetic expression
serves to call the function; the value of the function
is then computed using the arguments that are sup-
plied in the parentheses following the function name.
Only one value is produced by these three types of
functions, whereas the SUBROUTINE subprogram
may produce many values. (A value is here defined
to be a single numerical quantity.) The SUBROU-
TINE subprogram is not a function and, therefore,
is not called in the same way. A SUBROUTINE
subprogram is called by using a CALL statement.

Naming of Library and Arithmetic Statement
Functions

Library and arithmetic statement functions are
named in the same way. Note, however, that while

library functions are available in both Full and
Basic FORTRAN, arithmetic statement functions
may be defined and used only in Full FORTRAN.,

GENERAL FORM EXAMPLES

The name of the function consists of a
series of alphabetic and numerical
characters (not special characters),

of which the last must be F and the
first must be alphabetic. Furthermore,
the first must be X if and only if the
value of the function is to be fixed-point.
The name of the function is followed by
parentheses enclosing the arguments
separated by commas. The length of
the name is:

In Full FORTRAN, 4 to 7 characters
for library functions and arithmetic
statement functions.

ABSF (B)
XMODF (M/N, K)
XFIRSTF(L,Y, R10)

In Basic FORTRAN, 4 to 6 characters
for library functions.

COSF(A)
XMODF (M/N, K)
FLOATF(])

Naming of FORTRAN FUNCTION Subprograms

Although FORTRAN FUNCTION subprograms are
referred to in arithmetic expressions in the same
manner as the two types previously mentioned, the
rules for naming them are different. These func-
tions are named in exactly the same way as ordinary
variables of the program; that is, the name of a
fixed-point FORTRAN function must have I,J,K, L, M,
or N for its first character. The only restriction

is that the name of a FORTRAN FUNCTION sub-
program which is 4 to 6 characters long may not

end with F.

Mode

Consider a function of a single argument. It may
be desired to state the argument either in fixed or
floating point; similarly the function itself may be
in either of these modes. Thus, a function of a
single argument has 4 possible mode configurations;
in general, a function of n arguments will have 201
configurations.

A separate name must be given, and a separate
routine must be available, for each of the mode
configurations which are used. Thus, a complete
set of names for a given function might be:

SOMEOF Fixed argument, floating function
SOME1F Floating argument, floating function
XSOMEOF Fixed argument, fixed function
XSOME1F Floating argument, fixed function

The Xs and Fs are mandatory, but the rest of the
naming is arbitrary.

Part I: Basic Concepts 9

Library Functions

Library functions are subprograms that are pre-
written and included with the compiled program at
object time, A hand-coded library function sub-
program may be used in a FORTRAN program by
referring to its name in an arithmetic statement and
then including the subprograms in absolute relo-
catable form with the object program at object time.
In Basic FORTRAN, symbolic as well as absolute
subprograms can be used.

Table II shows the functions that are available
and whether the function is an open subprogram or
contained in the FORTRAN Package or the FORTRAN
Library. For a complete description of the
FORTRAN Library routines, see Appendix D.

Arithmetic Statement Functions

Arithmetic statement functions are available only in
Full FORTRAN. These are functions which are
defined by a single FORTRAN arithmetic statement
and apply only to the particular program or sub-
program in which their definitions appear.

GENERAL FORM EXAMPLES

FIRSTF(X) = A*X+B
SECONDF(X, B) = A*X+B
THIRDF(D) - FIRSTF(E)/D
FOURTHF (F.G) - SECONDF
(F, THIRDF (G))
FIFTHF(I. A) - 3. 0*A**[
SIXTHF(J) ~ J+K
XSIXTHF (J) - J+K

The statement which defines an
arithmetic statement function is
of the form "a b where a is a
function name tollowed by paren-
theses enclosing its arguments
(which must be distinct nonsub-
scripted variables) separated by
commas. and b is an expression
which does not involve sub-~
scripted variables. Any func-
tions appearing in b must be
library functions or already
defined by previous arithmetic
statements.

An arithmetic statement function should be defined
prior to any reference to it. That is, it should be in
logical sequence in the program (definition followed

10

by the use). As with the other functions, the answer
will be expressed in fixed- or floating-point format,
depending on whether the name does or does not
begin with X,

The right-hand side of a statement that defines
an arithmetic statement function may be any expres-
sion not involving subscripted variables. In par-
ticular, it may involve functions which are either
library functions or previously defined arithmetic
statement functions.

Variables appearing in the expression on the
right-hand side can be stated, as the arguments of
the function on the left-hand side. Since the argu-
ments are really only dummy variables, their names
are unimportant (except when indicating fixed- or
floating-point mode) and may even be the same as
names appearing elsewhere in the program.

Those variables on the right~hand side which are
not stated as arguments are treated as parameters.
Thus, if FIRSTF is defined in a function statement
as FIRSTF(X) = A*X+B then a later reference to
FIRSTF(Y) will cause ay+b to be computed, based
on the current values of a, b, and y. The naming
of parameters, therefore, must follow the normal
rules of uniqueness.

An arithmetic statement function may be used
just as any other function. In particular, its argu-
ments may be expressions and may involve
subscripted variables; thus a reference to
FIRSTF(Z+Y(I)), with the above definition of FIRSTF,
will cause a(z+y;)+b to be computed on the basis of
the current values of a, b, y; and z.

FORTRAN FUNCTION Subprograms

A FORTRAN FUNCTION subprogram is defined by a
completely independent FORTRAN program.

Since FORTRAN FUNCTION and SUBROUTINE
subprograms are defined in similar ways, a dis-
cussion of their definitions is included in Part IL,

Table II.

Library Function

T f Function Definition Number of Name Mode of Where
ype o Arguments Argument Function Found
*Trigonometric Cosine Arg 1 COSF Floating Floating Library

Cosine
*Trigonometric Sine Arg 1 SINF Floating Floating Library
Sine
*Arcsine Arcsine Arg 1 ASINF Floating Floating Library
*Arctangent Arctan Arg 1 ATANF Floating Floating Library
*Hyperbolic Tanh Arg 1 TANHF Floating Floating Library
Tangent
Square Root N Arg 1 SQRTF Floating Floating Library
Choosing Max (Argj, 22 MAXOF Fixed Floating Library
largest value Argg,....) MAX1F Floating Floating Library
XMAXOF Fixed Fixed Library
XMAXI1F Floating Fixed Library
Choosing Min (Argl, z2 MINOF Fixed Floating Library
smallest value Argz,) MIN1F Floating Floating Library
XMINOF Fixed Fixed Library
XMIN1F Floating Fixed Library
Transfer of Sign of Argy 2 SIGNF Floating Floating Library
sign times Argy XSIGNF Fixed Fixed Library
Positive Arg; -Min 2 DIMF Floating Floating Library
difference (Arg,, Argy) XDIMF Fixed Fixed Library
**Remaindering Argy (mod Arg,) 2 MODF Floating Floating Library
XMODF Fixed Fixed Library
Truncation Sign of Arg. 1 INTF Floating Floating Library
times largest XINTF Floating Fixed Package
integer < |Arg|
Natural Logex 1 LOGF Floating Floating Package
Logarithm
Base 10 Log1 oX 1 LOGF Floating Floating Package
Logarithm
Base e eX 1 EXPF Floating Floating Package
Exponential
Base 10 10% 1 EXPXF Floating Floating Package
Exponential
Float Floating a fixed 1 FLOATF Fixed Floating Package
number
Fix Same as XINTF 1 XFIXF Floating Fixed Package
Absolute value lArg | 1 ABSF Floating Floating Open
XABSF Fixed Fixed Open
* Trigonometric functions

** The function MODF (Arg,), Arg,) is defined as Arg1 - Argl/Arg2] Arg,, where [x] = integral part of x.

Part I: Basic Concepts 11

PART II. THE FORTRAN LANGUAGE

The basic unit of the FORTRAN language is called
a '"statement." There are 36 different types of
statements that are accepted by the Full FORTRAN
processor. Each statement deals with one aspect
of a given problem; it may cause data to be fed into
the computer, calculations to be performed,
decisions to be made, results to be printed, etc.
Some statements do not cause specific computer
action, but rather provide information to the
processor.

THE ARITHMETIC STATEMENT
The arithmetic statement defines a numerical cal-

culation. It very closely resembles a conventional
arithmetic or algebraic formula.

GENERAL FORM EXAMPLES

a-b

a is a variable that may or
may not be subscripted.
b is an arithmetic expression.

Q1- K
A(D) - B()+SINF(C(D)

In a FORTRAN arithmetic statement, the equal
sign (=) specifies replacement, rather than equal-
ity. For example,

Y = N-LIMIT (J-2)
means that the value of N-LIMIT (J-2) is to replace
the value of Y. The result is stored in fixed-point
or floating-point format according to the variable
to the left of the equal sign.

If the variable on the left is fixed~point and the
expression on the right is floating-point, the re-
sult will be computed in floating-point format and
then truncated and converted to a fixed-point integer.
Thus, if the result is +3.872 the fixed-point num-
ber stored will be +3, not +4. If the variable on
the left is floating-point and the expression on the
right fixed-point, the latter will be computed in
fixed-point format, and then converted to floating-
point.

12

Examples of Arithmetic Statement

Arithmetic

Statement Explanation

A-B Store the value of B in A.

[+ B Truncate B to an integer. convert to fixed-
point and store in I.

A1 Convert I to floating-point. and store in A.

- I+1 Add 1 to I and store in I. This example
illustrates the fact that an arithmetic state-
ment is not an equation. but is 2 command
to replace a value.

A - 3.0*B Replace A by 3. 0(B).

A - 3*B Not permitted. The expression is mixed;
i. e., contains both fixed- and floating-point
quantities.

A= I*B Not permitted. The expression is mixed.

CONTROL STATEMENTS

Control statements enable the user to control the
flow of his program. The following section pro-
vides a description of the control statements that
are available to the users of this program.

DO Statement

GENERAL FORM EXAMPLES

DO30I=1, 10

"DOni= my, my' or DO ni= my,
DO 14JOB = 2, M, 3

mp, mg' where n is a statement
number, i is a nonsubscripted fixed-
point variable, and mj, my, mg

are each either an unsigned fixed-
point constant or nonsubscripted
fixed-point variable. If m3 is not
stated, it is taken to be 1.

The DO statement is a command to execute
repeatedly the statements which follow, up to and
including the statement with statement number n.

The first time the statements are executed with

i =mj; for each succeeding execution i is increased
by mg. After these statements have been executed
with i equal to the highest value which does not
exceed my, control passes to the statement fol-
lowing statement number n.

The range of a DO is that set of statements
which will be executed repeatedly (i.e., the se-
quence of consecutive statements immediately fol-
lowing the DO, up to and including the statement
numbered n).

The index of a DO is the fixed-point variable i,
which is controlled by the DO in such a way that
its value begins at my and is increased each time
by mg until it is about to exceed my. Throughout
the range, it is available for computation, either
as an ordinary fixed-point variable or as the vari-
able in a subscript. After the last execution of the
range, the index is not available for use until it is
redefined. The index of a DO cannot exceed 9999.

DOs Within DOs

A DO can be contained within another DO. This is
called a nest of DOs. If the range of a DO contains
another DO, then all statements in the range of the
enclosed DO must be within the range of the en-
closing DO. The maximum number of DOs that can
be contained within a nest is 50; i.e., a DO can
contain a second DO, the second can contain a
third, and so on.

Transfer of Control

Transfers of control that are permitted in and out
of the range of a DO are illustrated in Figure 1.
In this illustration 1, 2, and 3 are permitted trans-
fers. However, 4, 5, and 6 are permitted only if
the values of the indexes or parameters are un-
changed; and the returns are made as follows:

4 is permitted, if the return is made from 1

5 is permitted, if the return is made from 2

6 is permitted, if the return is made from 3

7 is never permitted, since it is a transfer into

the range of a DO from outside its range.

Restrictions on Statements in the DO Range

1. Any statement which redefines the value of
the index or any of the indexing parameters (m's) is
not permitted in the range of a DO.

2. The first statement in the range of a DO must
not be one of the non-executable FORTRAN state-
ments.

3. The range of a DO must not end with a trans-
fer statement (see ""Assigned GO TO").

DO

-

N -

DO 1 4

A

-~ -

Figure 1

Ending of the DO Statement
The DO statement must end with a Continue state-
ment, Format statement, or an Arithmetic state-

ment.

Unconditional GO TO Statement

GENERAL FORM EXAMPLES

"GO TO n'" where n is a statement
number

GO TO 3

This statement causes transfer of control to the
statement with statement number n.

Computed GO TO Statement

GENERAL FORM EXAMPLES

"GO TO (ny, ng, . . ., Oy, i" GO TO (30,42.50.9), 1
where ny, ng, . . ., ny are
statement numbers and i is a non-
subscripted fixed-point variable.
The limits of the value of i are

l<is<m.

This statement causes control to be transferred
to the statement with statement number ny, ns,
n3,...,0y,, depending on whether the value of i at
time of execution is 1, 2, 3, ..., m, respectively.
Thus, in the example, if i is 3 at the time of ex-
ecution, a transfer to the statement whose number
is third in the list (namely, statement 50) will occur.
This statement is used to obtain a computed many-
way fork.

Part II: The FORTRAN Language 13

Assigned GO TO Statement

IF ACCUMULATOR OVERFLOW Statement

GENERAL FORM EXAMPLES

"GO TO n, (n1, ny, . . ., Ny)"’ GO TO K, (17, 12, 19)
where n is a nonsubscripted fixed-
point variable appearing in a pre-
viously executed ASSIGN statement,
and ny, ng, . . ., np, are.state-
ment numbers.

This statement causes transfer of control to the
statement with statement number equal to that value
of n which was last assigned by an ASSIGN state-
ment; ny, n2,...,0y are a list of the values that
n may have assigned.

The Assigned GO TO is used to obtain a preset
many-way fork. When an Assigned GO TO exists
in the range of a DO, the statement to which it may
refer must all be in the exclusive range of a single
DO, or all outside the DO nest.

ASSIGN Statement

GENERAL FORM EXAMPLES

"ASSIGN { TO n' where i isa ASSIGN 12 TO K
statement number and n is a
nonsubscripted fixed-point
variable that appears in an

assigned GO TO statement.

This statement causes a subsequent GO TO n,
(n1, ..., Dy ..., D) to transfer control to the
statement with statement number i.

IF Statement

GENERAL FORM EXAMPLES

"IF (a) ny, ny, ng" where (a) is IF (A(J, K)-B) 10,4, 30
an expression and nj, ng, ngy are

statement numbers.

This statement will cause control to be trans-
ferred to statement number ny, ny, or ng, de-
pending on the result of the computed expression (a):

if the result is less than zero, statement number

ni will be executed

if the result is equal to zero, statement number

n2 will be executed

if the result is greater than zero, statement

number ng will be executed.

14

GENERAL FORM EXAMPLES

IF ACCUMULATOR
OVERFLOW 30, 40

"IF ACCUMULATOR OVERFLOW
ny, ng' where nj and ny are
statement numbers.

This statement will cause control to be trans-
ferred to statement number nj if an accumulator
overflow condition has occurred, or to statement
number n2 if no overflow has occurred. For fixed-
point operations, accumulator two is tested for
overflow. For floating-point operations, accumu-
lator two is tested for overflow; additional tests are
made for floating-point overflow and floating-point
underflow. The execution of this statement will
cause the overflow and/or underflow indicators to
be turned OFF. (Also see Note under "END State-
ment.,'")

IF QUOTIENT OVERFLOW Statement

GENERAL FORM EXAMPLES

IF QUOTIENT
OVERFLOW 30, 40

"IF QUOTIENT OVERF LOW ny,
n2" where nj and ny are statement
numbers.

This statement will cause control to be trans-
ferred to statement number nj if a quotient overflow
condition has occurred or to statement number ng if
no overflow condition has occurred. The execution
of this statement will cause the quotient overflow
condition indicator to be turned OFF. Also see
note under ""END Statement.')

IF DIVIDE CHECK Statement

GENERAL FORM EXAMPLES

"IF DIVIDE CHECK nj, nyp" IF DIVIDE CHECK 84,
where ni and ng are statement 40
numbers.

This statement will cause control to be trans-
ferred to statement number nj if a divide check
indicator is ON (i.e., if an attempt has been made
to divide by zero); otherwise statement number ny
will be executed. An internal indicator is used to
denote the divide check condition; it is reset after
the execution of this statement. The execution of
this statement will turn the indicator OFF, (Also
see note under " END Statement.'")

SENSE LIGHT Statement

PAUSE Statement

GENERAL FORM EXAMPLES

""SENSE LIGHT i'" where i is 0,
1. 2, 3. or 4.

SENSE LIGHT 3

Sense Lights are simulated using Electronic
Switches in the 7070, 7072 and 7074. Ifiis 0, all
Sense Lights will be turned OFF. If i is a digit
from 1 through 4, the corresponding Sense Light
will be turned ON.

IF (SENSE LIGHT) Statement

GENERAL FORM EXAMPLES

"IF (SENSE LIGHT i) n1, ny" IF (SENSE LIGHT 3) 30,
where nj and ny are statement 40
numbers and i is 1, 2, 3, or 4.

This statement will cause control to be trans-
ferred to statement number n; when the Sense
Light corresponding to i is ON or to statement num-
ber n2 when the designated Sense Light is OFF,
The execution of this statement will cause the
Sense Light to be turned OFF. (Also see note under
"END Statement.")

IF (SENSE SWITCH) Statement

GENERAL FORM EXAMPLES

"IF (SENSE SWITCH i) nj, ng"
where nj and ng are statement
numbers and i is 1, 2, 3, or 4.

IF (SENSE SWITCH 3)
30, 40

The Alteration Switches on the 7070, 7072 and
7074 consoles serve as Sense Switches in FORTRAN.
Control is transferred to statement number ny,
when the Sense Switch corresponding to i is ON or to
statement number ng when the designated Sense
Switch is OFF,

CONTINUE Statement

GENERAL FORM EXAMPLES

"CONTINUE" CONTINUE

CONTINUE is a dummy statement and does not
produce any executable instructions. It is used as
the last statement in the range of a DO to provide a
transfer address for IF and GO TO statements that
are to begin another repetition of the DO range.

GENERAL FORM EXAMPLES

"PAUSE" or "PAUSE n'' where n
is an unsigned fixed-point constant
less than 10°.

PAUSE
PAUSE 777177

This statement is used when the execution of the
program is to be temporarily interrupted. The
machine will halt and type out the number n. If n is
not specified it is understood to be zero. Depressing
the Start key causes the object program to resume
execution at the next instruction.

STOP Statement

GENERAL FORM EXAMPLES
"STOP" or '""'STOP n'"" where n is STOP
an unsigned fixed-point constant STOP 77777

less than 10°.

This statement is used where a terminal stop is
desired. When the program halts, number n is
typed out. If n is not specified, it is understood to
be zero.

END Statement

GENERAL FORM EXAMPLES
"END" or "END (I3, Iy, I3, I3, I5)" END
where I'is 0, 1, or 2.

END (2.2.2,2.2)
END (1,2,0,1,1)

The END statement defines the end of a program
or subprogram. Only the word END has any sig-
nificance. The remainder of the statement, if
included, is ignored by the processor.

This statement may only appear as the last state-
ment in a program. In a multifile compilation, the
END statement must appear as the last statement
of all programs except the last program. In unifile
compilation, the use of an END statement is optional,
since the physical tape mark or end-of-file will
signify the end of the source program.

This statement does not cause a halt instruction
to appear in the object program.

NOTE: When using the

IF ACCUMULATOR OVERFLOW n,n,
QUOTIENT OVERFLOW
DIVIDE CHECK
SENSE LIGHT i

Part II: The FORTRAN Language 15

the condition specified may be initialized by using
the statement in question with ng =nj, where n, is
the statement number of the next desired executable
statement. These statements then serve as ' Un-
conditional GO TO" statements.

INPUT/OUTPUT STATEMENT

Input/output statements specify and/or control the
handling of information between the computer and the
input/output devices. This section describes each
of these statements and their respective functions:

Specifying Lists of Quantities

Most I/O Statements call for the transmission of in-
formation and must, therefore, include a list of the

quantities to be transmitted. The order of this list

must be the same as the order in which the words of
information exist (for input), or will exist (for out-

put) in the input/output medium.

The formation and meaning of a list can be de-

scribed by an example
A, B(3), (C(), D, K), I=1, 10),
(E@,J), I=1, 10, 2), FJ,3), J =1,K)

Suppose that this list is used with an output state-
ment. Then the information will be written on the
input/output medium in this order:

A, B(3), C(1), D(1,K), C2), D2,K),...,
C(10), D(10,K),

E@1,1), E@3,1),..., E©9,1), FQ,3),

E(1,2), E3,2),..., £E9,2), F(2,3),...,
F(K,3).

Similarly, if this list were used with an input
statement, the successive words, as they were
read from the external medium, would be placed
in storage in the sequence just given.

Thus, the list reads from left to right with rep-
etition of variables enclosed within parentheses.
Only variables and not constants may be listed.

The execution is exactly that of a DO loop, as though
each opening parenthesis (except subscripting
parentheses) were a DO, with indexing given im-
mediately before the matching closing parenthesis,
and with the DO range extending up to that indexing
information. The order of the above list can thus

be considered to be the equivalent of the ""program':

1 A

2 B(3)

3 DO51I=1, 10

4 cq

5 D(,K)

6 DO9J=1, K

7 DO8I=1, 10, 2
8 E(LJ)

9 F(J,3)

16

Note that indexing information, as in DOs, con-
sists of three constants or fixed-point variables,
and that the last of these may be omitted, in which
case it is taken to be 1.

For a list of the form K, (A(K)) or K, (A(]),

I=1, K) where an index or indexing parameter
itself appears earlier in the list of an input state-
ment, the indexing will be carried out with the newly
read-in value.

Input/Output in Matrix Form

FORTRAN treats variables according to conventional
matrix practice. Thus, the input/output statement
READ 1, (A(L,Jd), I=1, 2), J =1, 3)

causes the reading of I x J (in this case 2 x 3) items
of information. The data items will be read into
storage in the same order as they are found on the
input medium.

For example, if punched on a data card in the

form:
A(1.1) A(z.l) A(1.2) A(‘n) A(l-,:;) A(z.ﬁ

the items will be stored in locations N, N - 1,
N-2,..., N-5, respectively, where N is the
highest absolute location used for the array of in-
formation to be read in.

[
o

Input/Output of Entire Matrices

When input/output of an entire matrix is desired, an
abbreviated notation may be used for the list of the
input/output statement; only the name of the array
need be given and the indexing information may be
omitted.

Thus, if A has previously been listed in a
DIMENSION statement, the statement,

READ 1, A

is sufficient to read in all of the elements of the
array A. In 7070 FORTRAN the elements, read in
by this notation, are stored in order of increasing
storage locations. If A has not previously appeared
in a DIMENSION statement, only the first element
will be read in.

FORMAT Statement

GENERAL FORM EXAMPLES

"FORMAT (Specification)'" where
specification is as shown in the
examples. The specification must
be enclosed in parentheses.

FORMAT (I2/(E12. 4,
F 10. 4))
FORMAT (E 10. 6, (I8))

FORMAT statements are used in conjunction with
other input/output statements. These statements
specify thae arrangement of the data that is to be
transferred. They also specify the type of con-
version to be performed between the internal and
external representations for each element in the
list. FORMAT statements are non-executable and,
therefore, may be placed anywhere in the source
program.

For the sake of clarity, the details of writing a
FORMAT specification are given below for use with
PRINT statements. However, the description is
valid for any case simply by generalizing the con-
cept of "printed line" to that of unit record in the
input/output medium. A unit record may be:

1. A printed line with a maximum of 120 char-

acters.

2. A punched card with a maximum of 72 char-
acters.

3. A BCD tape record with a maximum of 120
characters.

Conversion of Numeric Data

The three types of conversion that can be used with
numerical variables are E, F, and I. Each type
can convert data from external to internal notation
and vice versa, depending on whether the data is
entering or leaving the computer.

Conversion
Internal Representation Code External Representation
Floating-Point E Floating-point (with
exponent)
Floating-Point F Floating-point (without
exponent)
Integer I Integer

The three types of conversion codes are specified
in the following manner:
FORMAT (Ew.d)
FORMAT (Fw.d)
FORMAT (Iw)
E, F, and I specify the type of conversion
desired.

w

is an unsigned integer constant specifying the
field width of the data.
d

is an unsigned integer constant specifying the
number of positions of the field that are to appear
as a fractional part (d is treated module 10).

E-TYPE CONVERSION: External representation
suitable for E Conversion is of the form
txExe

ES 4
is a decimal number of not more than eight
digits including the decimal point.

E
denotes the start of the exponent field.

+e
is a one- or two-digit decimal number indicating
the power of ten to which £X is to be raised. The
magnitude of the number should be
1.0 x 10751, = X < 1,0 x 1049
or it may be zero.
Examples:
+1,E-1
-14376210. E+32

is interpreted as +0.1
is interpreted as
-1437621x1033

.0003572E +5 is interpreted as +35.72

F-CONVERSION: External representation for F
Conversion is of the form

+X
where

X is a decimal number of not more than eight
digits, including a decimal point.
Examples:

+1

35267.453

-.23456

+4356789.

I-TYPE CONVERSION: I-type conversion is used
only with fixed-point variables. External notation
suitable for I conversion is of the form

+X
where

X is a decimal number of not more than ten
digits which must not contain a decimal point.
Examples:

1

+1234567890

~5634945

39495

NOTE: For additional information on preparing
data see the discussion on ""Data Input to the Object
Program."

Alphameric Fields

FORTRAN provides two ways to read or write

alphameric information; the specifications for this
purpose are nAw and wH, Both result in storing

Part II: The FORTRAN Language 17

the alphameric information internally. The basic
difference is that information handled with the A
specification is given a variable or array name and,
hence, can be referred to by means of this name for
processing and/or modification. Information
handled with the H specification is not given a name
and may not be referred to or manipulated in storage
in any way.

The specification nAw causes n fields of w char-
acters to be read into, or written from, a variable
or array, where 0 = n*w = 120. The name of the
variable or array must be constructed in the same
manner as the name of either a fixed-point or a
floating-point variable.

On input, n successive fields of w characters
each will be stored in double-digit form. If w is
greater than 5, only the five right-most characters
of each field will be transmitted. If w is less than
5, the w left-most characters of each field will be
read and each word will be filled on the right with
blanks.

On output, the next n successive fields each con-
taining w characters will be transmitted to the
external medium without conversion. If w exceeds
5, only five characters of output will be trans-
mitted (for each field) preceded by w-5 blanks. If
w is less than 5, the w left-most characters of each
field will be transmitted.

The specification wH is followed in the FORMAT
statement by w alphameric characters. For
example:

24H THIS IS ALPHAMERIC DATA

Note that blanks are considered alphameric
characters and must be included as part of the count
W.

1. Input. The w characters are extracted from
the inpmcord and replace the w characters
included with the specification.

2. Output. The w characters following the spec-
ification, or the characters which replaced them,
are written as part of the output record.

Example: The statement FORMAT (3HXY = F8.3,
A8) might produce the following lines:

XY= -93.210bbbbbtbb

TR St Nt St S Wi St Sl B Sl St ¥

#,Y,%,2%99-,999b5bb0VFLO

XY =bb28.768bbbbbbbb

P Ul T St Wl Sl St Sl B St St Wl M Mt Wt W 1

This example assumes that there are steps in
the source program which read the data ""OVFLO,"
store this data in the word to be printed in the for-
mat A8 when overflow occurs, and stores five
blanks in the word when overflow does not occur.
(The b is used to indicate blank characters.)

18

27 ~9,.,9,3218 02 -0.7580E-02

Blank Fields

The specification wX introduces blank characters
as follows:

For an input record, w number of characters are
skipped over, and are considered to be blank regard-
less of what they actually are.

For an output record, w number of blank char-
acters are placed in the record.

The number of blanks inserted or characters
skipped must be less than 120. The control char-
acter X need not be separated by a comma from the
specification of the next field.

Basic Field Specifications

These basic field specifications are given in the
forms:

Iw, Ew.d, and Fw.d
The specifications for successive fields are sep-
arated by commas. Thus, the statement

1, FORMAT (12,E12.4,F10.%4)

P Sl Wihet! Wy Ut Sl Sl A3 Yoo Wt S0 Tl Ml St Sl WA §

might give the line:

2,7,,-,0,:,9,3,2,L,E,_,0,2 0,.0,0,7,6

G S T W S it Al O UL B

As in this example, the field widths may be made
greater than necessary in order to provide spacing
blanks between numbers. In this case, there is 1
blank following the 27, there is 1 blank after the E
(automatically supplied except in cases of a negative
exponent, when a minus sign will appear), and there
are 3 blanks after the 02. Within each field the
printed output will always appear in the right-most
positions.

It may be desired to print n successive fields
within one record, in the same fashion. This may
be specified by giving n before E, F, or I. Thus,
the statement FORMAT (12, 3E12.4) might give:

553,68 00

i L1 IALOA.I

Repetition of Groups

A parenthetical expression is permitted in order to
enable repetition of data fields according to certain
format specifications within a longer FORMAT
statement specification. Thus, FORMAT (2(F10.6,
E10.2), I4) is equivalent to FORMAT (F¥10.6,
E10.2, F10.6, E10.2, I14). Only one level of these
parentheses is allowed.

Repetitions are made from the last open paren-
thesis including the number (if any) preceding the
parenthesis if the LIST in the I/O statement is not
satisfied. For additional information, see the dis-
cussion on ending a FORMAT statement.

For example, consider the following FORMAT
statement:

FORMAT (3F10.2, 2(F15.8, I110,I5))
Nine fields will be read from the first record, of
which the first 3 will be 10 digits, the next in order
will be 15, 10, 5, 15, 10, and 5 digits, respectively.
If the I/O LIST is not satisfied, a new record will
be read assuming 6 fields of 15, 10, 5, 15, 10, and
5 digits. Additional records will be read following
this pattern until the LIST is satisfied.

Scale Factors
To permit more general use of F-type conversion,
a scale factor followed by the letter P may precede

the specification. The scale factor is defined in
such a way that:

Printer number = Internal number x loscale factor

Thus, the statement FORMAT (I2, 1P3F11, 3) used
with the data of the preceding example, would give:

27 4 t‘19|3|2|’|019-6| FEl |-|Ol'no17|6| Lo . 20936

FORMAT (12, -P3F11. 3) would give:

20y 29033, -0,-001 0,:,055

I S T T S T W T

A scale factor may be used with E-type conversion.
Thus, with the same data, FORMAT 12, (1P3E12.4)
would produce:

27 -9,-3210E ,01 -7

1)

L 1’1518|O|h.E|‘|0,31 L2123 61E - 01

St Rl S S

Once a value has been given, it will hold for all
E- and F-type conversions following the scale fac-
tor within the same FORMAT statement. This
applies to both single-record and multiple-record
formats. Once a scale factor has been given, a
subsequent scale factor of zero in the same FORMAT
statement must be specified by 0P. Scale factors
have no effect on I-type conversion.

NOTE: When a scale factor is used with F-type con-
version, the absolute value of the number is changed

by the scale factor. However, when used with
E-type conversion, the scale factor only expresses
the same number in a different form. Thus, if the
number -93.2096 were printed with a specification
1PF11, 3, it would become -932.096. However, if
the same number were printed with the specification
E12.4, it would appear as -0.9321E 02; and with the
specification 1PE12.4, it would be -9.3210E 01.
(The control character X need not be separated by a
comma from the specification of the next field.)

Multiple-Record Formats

To deal with a block of more than one line of print,
a FORMAT specification may have several different
one-line formats, separated by a slash (/) to indi-
cate the beginning of a new line. Thus, FORMAT
(3F9.2, 2F 10.4/8E14.5) would specify a multi-line
block of print in which lines 1, 3, 5, have for-
mat (3F9.2, 2F10.4), and lines 2, 4, 6, have
format 8E14.5.

If a multiple-line format is desired in which the
first two lines are to be printed according to a
special format and all remaining lines according to
another format, the last line-specification should
be enclosed in a second pair of parentheses; e.g.,
FORMAT (12, 3E12,4/2F10.3, 3F9.4/ (10F12.4)).
If data items remain to be transmitted after the for-
mat specification had been completely "used,' the
format repeats from the last open parenthesis,
including the number (if any) preceding the
parenthesis.

As these examples show, both the slash and the
closing parenthesis of the FORMAT statement indi-
cate a termination of the record.

Blank lines may be introduced into a multiline
FORMAT statement by listing consecutive slashes.
N + 1 consecutive slashes produce N blank lines.

FORMAT and Input/Output Statement Lists

The FORMAT statement indicates, among other
things, the maximum size of each record to be
transmitted. In this connection, it must be remem-
bered that the FORMAT statement is used in con-
junction with the list of some particular input/output
statement, except when a FORMAT statement con-
sists entirely of alphameric fields. In all other
cases, control in the object program switches back
and forth between the list (which specifies whether
data remains to be transmitted) and the FORMAT
statement (which gives the specifications for trans-
mission of that data).

Part I: The FORTRAN Language 19

Ending a FORMAT Statement

An input/output operation under the control of a
FORMAT statement will end:

1. When a specification of a numerical field is
given and all the items in the list have been trans-
mitted, the execution of the particular statement is
terminated.

2. When the end of the FORMAT statement is
encountered.

FORMAT Statements Read in at Object Time

FORTRAN accepts the name of a variable as a
FORMAT address. This provides the facility of
entering a statement at object time.

Example: C for Comment

To permit economy in punching, certain relax-
ations in input data format are allowed:

1. Numbers of E-type conversion need not have
4 columns devoted to the exponent field. The start
of the exponent field must be marked by an E, or if
that is omitted, by a plus or minus sign. Thus,

E2, E02, +2, +02, E 02, and E + 02 are all per-
missible exponent fields.

2. Numbers for E- or F-type conversion need
not have their decimal point punched, because the
FORMAT specification automatically makes such an
insertion. For example, the number -09321+2 with
the specification E 12.4 will be treated as though the
decimal point had been punched between the 0 and
the 9. If the decimal point is punched, its position
will over-ride the indicated position in the FORMAT
specification.

READ Statement

Statement
Number FORTRAN STATEMENT
DIMENSION FMT (12)
1 FORMAT (12A5)

READ 1, FMT
READ FMT, A, B, (C (I), I- 1, 5)

Thus, A, B, and the array C would be converted
and stored, according to the FORMAT specification
read into the array FMT, at object time.

The FORMAT read in at object time must take
the same form as a source-program FORMAT
statement, except that the word FORMAT is omitted;
i.e., the variable format begins with a left
parenthesis.

Data Input to the Object Program

On-line input data to be read by means of a READ
or READ INPUT TAPE statement, when the object
program is executed, must be in essentially the
same format as given in the previous examples.
Thus, a card to be read according to FORMAT
(I2, E12.4, F10.4) might be punched:

27 -0 19131211LE| 02 4 159 +,0 O|7|b

1

Within each field, all information must appear at
the extreme right. Plus signs may be omitted or
indicated by a blank or plus. Minus signs may be
punched with an 11-punch or an 8-4 punch. Blanks
in numerical fields are regarded as zeros. Num-
bers for E- and F-type conversion may contain any
number of digits, but only the high-order eight
digits will be retained (rounding will be performed).
Numbers for I-type conversion will be treated
modulo 1010,

20

GENERAL FORM EXAMPLES

"READ n, List'" where n is the
statement number of a FORMAT
statement or the name of a vari-
able, and List is an input list.

READ 1, ((ARRAY
(I, H, 1-=1,3),
J=1,5)

The READ statement causes the reading of cards
from the card reader. Record after record (i.e.,
card after card) is read until the complete list has
been transmitted; i.e., brought in, converted, and
stored in the locations specified by the list of the
READ statement. The FORMAT statement to which
the READ refers describes the arrangement of infor-
mation on the cards and the type of conversion to
be made.

PUNCH Statement

GENERAL FORM EXAMPLES

"PUNCH n, List" where n is the
statement number of a FORMAT
statement or the name of a vari-
able, and List is an output list.

PUNCH 30, (A(J).
J=1.10)

The PUNCH statement causes the object program
to punch cards according to specifications in a
FORMAT statement. The cards are punched until
the entire list is exhausted.

PRINT Statement

GENERAL FORM EXAMPLES

"PRINT n, List" where n is the PRINT 2, (A(J),
statement number of a FORMAT 1, 10)
statement or the name of a vari-
able and List is an output list.

The PRINT statement causes the object program
to print output data on an on-line printer according
to specifications in a FORMAT statement. Succes—
sive lines are printed until the entire list has been
exhausted.

TYPE Statement

GENERAL FORM EXAMPLES

"TYPE n, List" where n is the
statement number of a FORMAT
statement or the name of a vari-
able and List is an output list.

TYPE 56, (A(J),
J=1, 10

The TYPE statement causes the object program
to type out data on the console typewriter in accord-
ance with specifications in a FORMAT statement.
The data is typed out until the entire list is
exhausted.

Tape Input and Output

FORTRAN includes a complete set of statements
which will read or write tapes. It makes a distinc-
tion between logical tape unit numbers specified in
a FORTRAN source program, and the actual tape
units which will be affected by the resulting object
program.

Any 7070-Series Data Processing System may
have one of two conventions for denoting tape units
depending on whether or not the system is equipped
with an optional device; i.e., Feature Code 12.
Without Feature Code 12, only unit numbers 0-5 are
legal on each channel. For example, a reference by
a 7070 to channel 1 unit 9 would be permissible only
if the machine were equipped with a Feature Code 12
device.

FORTRAN allows the programmer to substitute
the name of a fixed-point variable for a logical tape
number in the tape statements explained later in
this chapter. The value of the variable when refer-
enced by the tape statement must be the logical
number of an available tape unit.

FORTRAN can read and write tape in twd ways.
One set of tape read/write statements (READ
INPUT TAPE i, n, List and WRITE OUTPUT TAPE
i, n, List), reads or writes information in external
notation which is especially suitable for off-line
printing. These statements must refer to a FOR-
MAT statement.

The second set of statements (READ TAPE i,
List and WRITE TAPE i, List) reads or writes tape
in internal notation which normally is used as input
to a 7070, 7072 or 7074, or can be printed off-line
if internal notation is acceptable to the particular
application.

All FORTRAN tapes on the 7070, 7072 or 7074
are written in binary coded decimal. Each tape
contains one or more physical records that are
combined to form one or more logical records. A
physical record is a group of data on tape preceded
and followed by an inter-record gap. A logical
record is one or more physical records that are
written or read by a single list. Thus, one list
produces one logical record. The number of char-
acters per physical tape record depends on the type
of statement that was used to write the record.

A tape written in internal notation contains logical
records, each of which is preceded and followed by
a one-character record called a segment mark.
The format of a tape written in internal notation
might be as follows:

sm 240 240 240 (or less) smsm 240 (or less) smsm 240 240 (or less) sm

where

240 is the number of characters

sm is a segment mark

A tape written in external notation contains logical

records which are not separated by segment marks.
The only identifying characteristic of a logical
record in external notation is the programmer's
knowledge that a group of physical records was
written by a single list.

READ INPUT TAPE Statement

GENERAL FORM EXAMPLES

"READ INPUT TAPE i, n, List" READ INPUT TAPE

where i is an unsigned fixed-point 4, 3, K. A{J)
constant or the name of a fixed- READ INPUT TAPE
point variable; n is the statement N, 8, K, A(J)

number of a FORMAT statement
or the name of a variable, and
List is an input list.

The READ INPUT TAPE statement causes the
object program to read information in external
notation from logical tape unit i. Each record is
brought in, in accordance with specifications in a
FORMAT statement, until the entire list has been
read.

A READ INPUT TAPE statement accepts records
of less than 120 characters. This enables FOR-
TRAN to read card images put on tape by peripheral
equipment. When the record to be read is less than
120 characters, the FORMAT statement referred to
must describe the record exactly; i.e., it must not
specify more than the number of characters actually
present in the record.

Part I: The FORTRAN Language 21

WRITE OUTPUT TAPE Statement

GENERAL FORM EXAMPLES

WRITE OUTPUT TAPE
2,3, (A@), J=1, 10)

WRITE OUTPUT TAPE
L, 10, (AQ), J = 1, 10)

"WRITE OUTPUT TAPE i, n,
List'" where i is an unsigned
fixed-point constant or the name
of a fixed-point variable, n is the
statement number of a FORMAT
statement or the name of a vari-
able, and List is an output list.

The WRITE OUTPUT TAPE statement causes the
object program to write information in external
notation on symbolic tape unit i. Successive physical
records are written in accordance with the spec-
ifications in a FORMAT statement, until the list
has been exhausted.

Programming Carriage Control

The WRITE OUTPUT TAPE statement prepares a
BCD tape that can be used later to obtain off-line
printed output. The off-line printer is manually set
to operate in one of three modes: single space,
double space, and Program Control. Under Pro-
gram Control, which gives the greatest flexibility,
the first character of each BCD record is used to
control the spacing of the off-line printer and that
character is not printed. The following control
characters may be used to specify the format:

Character Explanation
Blanks Single-space before printing
0 Double-space before printing
+ No space before printing
1-9 Skip to printer control channel 1-9
J-L Short skip to printer control channels 1-9

Thus, a FORMAT specification, for WRITE
OUTPUT TAPE for off-line printing with Program
Control, will usually begin with 1H followed by the
appropriate control character. (This procedure is
not required for the PRINT statement.)

READ TAPE Statement

A logical record is read completely only if the
list specifies as many words as the tape record
contains; no more than one logical record will be
read. The tape, however, always moves to the
beginning of the next logical record.

NOTE: A tape written by a WRITE OUTPUT TAPE
statement must have been read by a READ INPUT
TAPE statement. A tape written by a WRITE TAPE
statement must have been read by a READ TAPE
statement.

WRITE TAPE Statement

GENERAL FORM EXAMPLES

"WRITE TAPE i, List'" where i is
an unsigned fixed-point constant or
a fixed-point variable, and List is
an output list.

WRITE TAPE 14,
(A, J=1, 10)
WRITE TAPE K,
(A(J). =1, 10)

The WRITE TAPE statement causes the object
program to write information in internal notation on
a symbolic tape unit i. One logical record is written
consisting of all the words specified in the list.

If a list specifies a number of characters other
than a multiple of 240, the final physical record will
be written consisting of only the remaining char-
acters in the list.

END FILE Statement

GENERAL FORM EXAMPLES
"END FILE i'" where i is an un- END FILE 5
signed fixed-point constant or a END FILE K

fixed-point variable.

The END FILE statement causes the object pro-
gram to write an end-of-file mark on logical tape
unit i.

REWIND Statement

GENERAL FORM EXAMPLES

"READ TAPE i, List" where i is READ TAPE 14, (A(J),

an unsigned fixed-point constant J=1, 10)
or a fixed-point variable, and READ TAPE K, (A(J),
List is an input list. J=1, 10)

The READ TAPE statement causes the object
program to read information expressed in internal
notation from logical tape unit i into locations
specified in the list.

22

GENERAL FORM EXAMPLES
"REWIND i" where i is an unsigned REWIND 3
fixed-point constant or a fixed-point REWIND K

variable.

The REWIND statement causes the object pro-
gram to rewind logical tape unit i.

BACKSPACE Statement

GENERAL FORM EXAMPLES

"BACKSPACE i" where i is an
unsigned fixed-point constant
or a fixed-point variable.

BACKSPACE 18
BACKSPACE K

If the BACKSPACE statement is used on a tape
that has been written in internal notation, it will
cause the tape to backspace one logical record. If
BACKSPACE is used on a tape written in external
notation, it will cause the tape to backspace one
physical record.

SPECIFICATION STATEMENTS

Specification Statements provide the processor with
necessary information to make storage allocations.
The three specification statements discussed in this
section are the DIMENSION statement, the EQUIV-
ALENCE statement, and the COMMON statement.
All these statements are non-executable and are
available to the users of the Full FORTRAN pro-
cessor. The Basic FORTRAN processor cannot
handle the COMMON statement.

DIMENSION Statement

GENERAL FORM EXAMPLE

Full FORTRAN
B34 (10, 25, 15)

"DIMENSION v, v, v, . . . "
where v is the name of a vari-

able subscripted with fixed-point B(5, 15)
constants.
1. 2. or 3 subscripts are permitted JOBNUM (8)

in Full FORTRAN.

1 or 2 subscripts are permitted
in Basic FORTRAN.

Basic FORTRAN
TOR(23, 7) 1(305)

The DIMENSION statement provides information
necessary to allocate storage for arrays in the
object program. Each variable that appears in
subscripted form in a source program must appear
in a DIMENSION statement of the source program.
The DIMENSION statement normally precedes the
first appearance of each subscripted variable whose
array size it is to specify. Since the DIMENSION
statement lists the maximum dimension of arrays,
programming references to these arrays should not
exceed the specified dimensions.

The above example indicates that B is a 2-
dimensional array for which the subscripts never
exceed 5 and 15. The DIMENSION statement there-
fore, causes 75 (i.e. 5 x 15) storage locations to
be set aside for array B.

A single DIMENSION statement may specify the
dimensions of any number of arrays, provided it is
within the bounds of the statement card.

EQUIVALENCE Statement

GENERAL FORM EXAMPLES

"EQUIVALENCE (a, b, ¢, . . .),
d, e, f,...),..." wherea, b,
c, d, e, f, . . . are variables
optionally followed by a single
unsigned fixed-point constant in
parentheses.

EQUIVALENCE (A(1),
B(1)), (B(1). C(5)).
(D(17), E@)

The EQUIVALENCE statement causes two or
more variables tobe assignedthe same core-storage
location and, thus in effect, increases the storage
capacity. This statement may be placed anywhere
in the program, but is generally placed in the
beginning.

Each pair of statement list parentheses encloses
the names of two or more quantities which are to be
stored in the same locations during execution of the
object program; any number of equivalences (i.e.,
sets of parentheses) may be given.

The subscript in an EQUIVALENCE statement
has a different meaning from that of normal
FORTRAN subscripts. For example, the EQUIVA-
LENCE subscripts, C(5), means the fourth storage
location following C(1) or C(1, 1) or C(1, 1, 1),
depending on whether the array is one-, two-, or
three-dimensional. In general, C(p) is defined for
p>0 to mean the (p - 1)th location after C or after
the beginning of the C-array. Generally, p is
specified, but if p is not specified, it is taken to be
1. Also p cannot exceed the maximum number of
elements in the array. Nonsubscripted variables in
an EQUIVALENCE statement need not be followed
by parentheses. Quantities or arrays that are not
mentioned in an EQUIVALENCE statement will be
assigned unique locations.

For example, if R and S are arrays, which are
defined by the statement DIMENSION R(10, 9),
S(15, 15, 3), and if it is desired to have R(2, 3)
occupy the same location as S(1, 1, 1) then the
following statement would have the desired effect:

EQUIVALENCE (R(22), S)

Locations can be shared only among variables,
not among constants. The sharing of storage loca-
tions cannot be planned safely without a knowledge
of which FORTRAN statements, when executed in
the object program, will cause a new value to be
stored in a location. These statements are:

1. An arithmetic formula, which stores a new
value of the variable for the left-hand side of the
formula.

Part II: The FORTRAN Language 23

2. An ASSIGN i TO n, which stores a new value
in n.

3. A DO, which stores a new indexing value in
the cell containing i.

4. A READ, READ INPUT TAPE, or READ
TAPE, which stores new values for the variables
mentioned in the statement list.

The dummy variables that are used as arguments
of FUNCTION or SUBROUTINE statements should
not appear in EQUIVALENCE or COMMON state-
ments in a subprogram.

For an example of the use of EQUIVALENCE,
see " Using COMMON and EQUIVALENCE Together."

COMMON Statement

The COMMON statement is available only in Full
FORTRAN.

GENERAL FORM EXAMPLES

"COMMON A, B, . . ." where

A, B, . . . are the names of vari-
ables and nonsubscripted array
names.

COMMON X, ANDMN,
MATA, ATB

The COMMON statement refers to a common
area of core storage and has a twofold function. It
allows the programmer to specify variables and
arrays to be placed in upper storage; and it serves
as a medium to transmit arguments from the calling
program to the called FORTRAN FUNCTION or
SUBROUTINE Subprogram.

The common area is assigned normally starting
with the highest location in storage and continuing
downward. However, the programmer can specify
any location as the highest location of storage by
modifying control cards at compilation time.

The common area is assigned separately for
each program compiled. Therefore, it can be
shared between a program and its subprograms.
Thus, the COMMON statement enables a data stor-
age area to be shared between programs in a way
analogous to that by which the EQUIVALENCE
statement permits data storage sharing within a
single program.

Array names appearing in the COMMON state-
ment must also appear in a DIMENSION statement
in the same program.

The programmer has complete control over the
locations assigned to the variables appearing in
common area. The locations are assigned in the
sequence in which the variables appear in the COM-
MON statements, beginning with the first COMMON
statement of the problem. If, however, a variable
expressed in a COMMON statement also appears in

24

an EQUIVALENCE statement, the assignment of a
common area varies as described under ' Using
COMMON and EQUIVALENCE Together,"

Arguments in Common Storage

The arguments in common storage are implicitly
transmitted. To obtain these arguments, the cor-
responding variables in the two programs must
occupy the same location. This can be done by
having them occupy corresponding positions in
COMMON statements of the two programs.

NOTES:

1. In order to force correspondence in storage
locations between two variables which otherwise
will occupy different relative positions in common
storage, it is permissible to place dummy variable
names in a COMMON statement. These dummy
names, which can be dimensional arrays, may be
used to provide the reservation of space that is
necessary to cause correspondence.

2. While implicit arguments can take the place
of all arguments in CALL-type SUBROUTINES,
there must be at least one explicit argument in a
FORTRAN FUNCTION subprogram. Here, too, a
dummy variable may be used for convenience.

3. No dummy variables that are arguments of
FUNCTION or SUBROUTINE statements may appear
in EQUIVALENCE or COMMON statements in a
subprogram.

Using COMMON and EQUIVALENCE Statements
Together

When a variable is made equivalent to another vari-
able that appears in a COMMON statement, the first
variable will also be located in common storage.
When variables appearing in a COMMON statement
also appear in EQUIVALENCE statements, the ordi-
nary sequence of common variables is changed and
priority is given to variables that appear in the
EQUIVALENCE statements. These variables follow
the order in which they appear in the EQUIVALENCE
statements. To illustrate the use of an EQUIVA-
LENCE statement, consider a program in which
five separate arrays (A, B, C, D, E) are to be
placed in core storage. The maximum amount of
storage that must be allocated for these arrays is
specified in a DIMENSION statement as follows:

DIMENSION A(20), B(30), C(40), D(50), E(60)
If this DIMENSION statement appeared in the
program without an EQUIVALENCE or COMMON
statement, 200 storage locations would be reserved
as shown in Figure 2. The addition of the statement
EQUIVALENCE (A(5), B(10)), (C(5), D(1))
will indicate to the compiler that the fifth element of

the array A is to occupy the same location as the
tenth element of the array B, with the remaining
elements similarly equated.

For arrays C and D, the EQUIVALENCE state-
ment indicates that the fifth element of C and the
first element of D are to occupy the same location,
and so on for the succeeding elements. The use of
the EQUIVALENCE statement thus reduces the
storage required for the five arrays from 200 loca-
tions to 144 (Figure 3).

The addition of the following statement to the
above illustration will cause storage allocations to
be altered further as shown in Figure 4.

SUBPROGRAM STATEMENTS

Subprogram statements can only be used in Full
FORTRAN. By using the Full FORTRAN language,
the user can write his own subroutines that can be
referred to by other programs. These subroutines,
known as subprograms, may, in turn, refer to still
other subprograms also writteninthe Full FORTRAN
language.

This section discusses the two types of FORTRAN
subprograms; FORTRAN FUNCTION subprograms
(referred to also as FUNCTION subprogram); and
SUBROUTINE subprograms. Also included is a
description of four statements that are necessary
for the definition and usage of these subprograms.

FUNCTION and SUBROUTINE Subprograms

Although FUNCTION subprograms and SUBROUTINE
subprograms are treated together and may be viewed
as similar, they differ in two fundamental respects.

1. The FUNCTION subprogram is always single-
valued, whereas the SUBROUTINE subprogram may
be multi-valued.

2. The FUNCTION subprogram is called or
referred to by an arithmetic expression containing
its name; the SUBROUTINE subprogram is referred
to by a CALL statement.

Each of the two types of subprograms must be
regarded as independent FORTRAN programs, and
must conform to the rules for FORTRAN program-
ming. These subprograms may be compiled sepa-
rately or along with the main program by means of
a multifile run.

COMMONE, D

N

9989 E 9989

o

t—— O —]

=

> o0 -t

et~ o e — O —]

Instruction

~_

Figure 2 Figure 3

Instruction
Area Area

/\J

A
Instruction
Area

8

Figure 4

Part II: The FORTRAN Language 25

Schematically, the relationship between the main
program and the nested subprograms is illustrated
in Figure 5. The flow of control begins at ""START"
and continues through the numbered arrows.

FUNCTION Statement

GENERAL FORM EXAMPLES
"FUNCTION Name (a3, 2g, + + «, ap)'" | FUNCTION ARCSIN
where Name is the symbolic name of (RADIAN)

a single-valued function, and the FUNCTION ROOT
arguments a3, a9, . . ., ap, of which (B. A. C)

there must be at least one, are
nonsubscripted variable names only.

FUNCTION INTRST
(RATE. YEARS)

The function name consists of 1 to 6
alphameric characters, the first of
which must be alphabetic. The first
character must be I, J, K, L, M, or
N if, and only if, the value of the
function is to be fixed point, and the
final character must not be F if there
are more than three characters in the
name. The function name must not
occur in a DIMENSION statement in
the subprogram, or in a DIMENSION
statement in any program that uses
the function.

The arguments may be any variable
names occurring in executable state-
ments of the subprogram.

MAIN PROGRAM

START

The FUNCTION statement must be the first state-
ment of a FUNCTION subprogram. A subprogram
introduced by a FUNCTION statement must be a
Full FORTRAN program and may contain any Full
FORTRAN statements except SUBROUTINE or
another FUNCTION statement.

In a FUNCTION subprogram, the name of the
function must appear at least once as the variable
on the left-hand side of an arithmetic statement or
alternately, in an input statement list. By this
means, the computed value of the function is re-
turned to the calling program.

The arguments following the name in the FUNC-
TION statement may be considered as dummy vari-
able names. That is, duriqg object program execu-
tion, other actual arguments are substituted for
them. Therefore, the arguments which follow the
function reference in the calling program mustagree
with those in the FUNCTION statement in the sub-
program in number, order, and mode. Furthermore,
when a dummy argument is the name of an array,
the corresponding actual argument must also be
used as the name of an array. Each of these array
names must be of the same dimension and appear
in a DIMENSION statement of the respective
program.

None of the FUNCTION statement arguments
(i. e., the dummy variable names) may appear in
EQUIVALENCE or COMMON statements in the
subprogram.

SUBPGMA

CAL SUBPGMA ——@J

RE-ENTER MAIN

ENTER A

CALL SUBPGMB

SUBPGMB

e ENTER B

+O-

STOP

RE-ENTER A -

RETURN

©

Figure 5

26

v
RETURN

SUBROUTINE Statement

GENERAL FORM EXAMPLES
"SUBROUTINE Name (a3, ag, . . ., ap)'' | SUBROUTINE
where Name is the symbolic name of a MATMPY
subprogram, and the arguments (A.N, M, B, L, C)
aj, ag, . . ., 4y, if any, are nonsub- SUBROUTINE
scripted variable names only. QDRTIC

(B. A. C, ROOT1.
The name of the subprogram may con- ROOT2)

sist of 1 to 6 alphameric characters,
the first of which is alphabetic. Its
final character must not be F if there
are more than three characters in the
name. Also, the name of the subpro-
gram must not appear in a DIMENSION
statement of any program which calls
the subprogram, or in a DIMENSION
statement of the subprogram itself.

The arguments may be any variable
names occurring in executable state-
ments in the subprogram.

The SUBROUTINE statement must be the first
statement of a SUBROUTINE subprogram. A sub-
program introduced by a SUBROUTINE statement
must be a Full FORTRAN program and may contain
any Full FORTRAN statements except FUNCTION
or another SUBROUTINE statement.

A SUBROUTINE subprogram must be referred
to by a CALL statement in the calling program.
The CALL statement specifies the name of the sub-
program and its arguments.

The SUBROUTINE subprogram uses one or more
of its arguments to return the computed values.
These arguments, therefore, must appear on the
left side of an arithmetic statement or in an input
statement list within the subprogram.

The arguments of the SUBROUTINE statement
are dummy variables and are replaced, at execution,
by the actual arguments supplied by the CALL state-
ment., Therefore, the arguments between the two
sets must agree in number, order, and mode.

Furthermore, when a dummy argument is the
name of an array, the corresponding actual argu-
ment must also be the name of an array. Each of
these array names must appear in a DIMENSION
statement of the respective program with the same
dimensions. For example, the subprogram headedby

SUBROUTINE MATMPY (A, N, M, B, L, C)
could be called by the main program through the
statement

CALL MATMPY (X, 5, 10, Y, 7, Z)
where the dummy variables, A, B, and C are the
names of matrices. A, B, and C must appear in
a DIMENSION statement in subprogram MATMPY
and X, Y, and Z must appear in a DIMENSION
statement in the calling program. The dimensions
assigned must be the same in both statements.

None of the SUBROUTINE statement arguments
(i. e., the dummy variable names) may appear in
the EQUIVALENCE or COMMON statements in the
subprogram.

The SUBROUTINE subprogram must not contain
more than one entry point. However, one SUB-
ROUTINE subprogram may be written to call another
SUBROUTINE subprogram. This approach can
usually be used to get the same effect as one routine
having more than one entry point.

CALL Statement

GENERAL FORM EXAMPLES

CALL MATMPY.
X, 5,10, Y, 7, 2)

"CALL Name (aj, ag, - - -, an)"
where Name is the name of a
SUBROUTINE subprogram and
ay, ag, . . ., ap are arguments
which take one of the forms
described below.

CALL QDRTIC
(P*9. 732, Q/4.536,
R - 8%*%2.0, X1, X2)

This statement is used only to call SUBROUTINE
subprograms; the CALL transfers control to the
subprogram and presents it with the parenthesized
arguments. Each argument may be one of the
following:

1. Fixed-point constant.

2. Floating-point constant.

3. Fixed-point variable, with or without
subscripts.

4. Floating-point variable, with or without
subscripts.

5. Arithmetic expression.

6. Alphameric characters. Such arguments
must be preceded by nH where n is the count of
characters included in the argument; e.g., 9HEND
POINT. Note that blank spaces and special char-
acters are considered characters when used in
alphameric fields. Alphameric arguments can, of
course, be used only as input to hand-coded
programs.

The arguments presented by the CALL statement
must agree in number, order, mode and array size
with the corresponding arguments in the SUBROU-
TINE statement of the called subprogram.

RETURN Statement

GENERAL FORM EXAMPLES

"RETURN" RETURN

This statement terminates the execution of a
subprogram and returns control to the calling pro-
gram. A RETURN statement must be the last sub-
program statement to be executed although not
necessarily the final statement in the series of
instructions of the subprogram. Any number of
RETURN statements may be used in a subprogram.

Part II: The FORTRAN Language 27

PART III: EXPANDING THE FORTRAN SYSTEM

The FORTRAN system may be expanded by using
subprograms and library-function subroutines in
conjunction with the IBM 7070/72/74 FORTRAN
Loader/Package program.

The FORTRAN Package is a set of subroutines
used as part of the object program., These sub-
routines are loaded by the FORTRAN Loader prior
to the object program, and appear in storage at a
predetermined location.

The IBM 7070/72/74 FORTRAN Loader/Package
is distributed as one program. However, the loader
portion and the package portion function separately
and are discussed as such in this section.

THE FORTRAN LOADER

When additional routines are written and compiled
for inclusion in the main program, FORTRAN uses
the principle of relocatability to ensure the proper
assignment of storage locations. In FORTRAN,
relocatability may be considered as a feature that
allows a number of distinct routines to be compiled
independently of each other, and yet operate simul-
taneously and communicate with each other as
needed. The FORTRAN Loader is relocatable and
performs the following functions:

1. Loads the FORTRAN package.

2. Loads the main program and subprograms
sequentially into core storage.

3. Records the number of routines loaded and
the number of locations each routine requires.

4. Notes the address of the first location (the
base address) of each routine as it was originally
assembled.

5. Computes new addresses for each routine in
order to place the routine in any part of storage as
needed.

6. Constructs linkages where needed so that the
routines can communicate with one another.

Requirements of Relocatable Routines

Each routine handled by the FORTRAN Loader must
meet the following requirements:

1. Every routine loaded must be preceded by a
Title Card.

2. If a routine calls or refers to any other rou-
tine (subroutine or subprogram), the calling program
cards must include a Transfer Entry Card for each
called routine.

3. Each routine loaded must have an Execute Card

as its last card.

28

4. Each routine loaded by the FORTRAN Loader
must be punched in the standard Autocoder Relocat-
able Condensed Card format.

5. Each routine that calls another routine must
have space reserved in it for a Branch List which is
constructed by the FORTRAN Loader using the
Transfer Entry Card.

All necessary Title Cards, Transfer Entry
Cards, Branch Lists, etc., are produced by the
FORTRAN processor at the time of compilation.

The Library subroutines include the necessary
Branch Lists, Title Cards, and Transfer Entry
Cards that are required by the FORTRAN Loader.

The Title Card

The Title Card is compiled as the first card of
every routine processed by FORTRAN. It must be
supplied by the user for every routine loaded by the
Loader which has not been compiled by the FOR-
TRAN processor. This card may be supplied either
in symbolic form at compilation time or in actual
form at object time. Each form of Title Card is
described separately below.

Symbolic Title Card

Label Operation Operand Comments

EXECUTE CNTRL 7
DC

@ NAME @ 1. Name of the routine,
left-justified, in double-
digit form.

+000000 LLLL 2. Number of locations to
be reserved for the
data area immediately
following the last in-
struction of the routinc
(right-justified).

+000000TTTT 3. Number of locations to
be reserved at the top
of storage for the
common data area
(right-justified).

+000000BBBB 4. Base address (right-
justified).

+0000000000 5. Contents of this word
may be any number.

+910000000d 6. Valueof dis 0, 1 or 2
as explained under
"Relocation Indicators."

To include identification in the Title Card, change
the operand of the EXECUTE CNTRL entry to 8 and
add a subsequent entry under the DC.

Although these entries do not result in a program
card, the assignment counters of the assembly pro-
gram are increased when EXECUTE CNTRL entries
are processed; therefore, they should be followed
by an ORIGIN CNTRL entry to resume processing at
the proper location.

Actual Title Card

Card Columns Contents
1-20 Name of the routine, left-justified, in
double-digit form (see example below).

21-30 Number of locations to be reserved for the
data area immediately following the last
instruction of the routine (right-justified).

31-40 Number of locations to be reserved at the
top of storage for the common data area
(right-justified).

41-50 Base address (right-justified).

51-60 The contents of this word may be any
number.

61-62 Must contain 91 which identifies this card

as Title Card to the FORTRAN Loader.
63-69 Zeros.

70 Digit 0, 1 or 2 as explained under
""Relocation Indicators."

71-75 Card identification number.
76-80 Program identification.

10, 20, 30, 40, 50,
60,70, 79, 80

12-punch in each column.

Example: A subroutine called SINF would be
entered into columns 1-20 in this form:
82 69 75 66 00 00 00 00 00 00
S I N F b b b b b b
For a complete list of double-digit codes, see
Appendix B.

The Transfer Entry Cards

Transfer Entry Cards are used by the Loader to
complete linkages between routines after they have
been loaded into storage. If a routine uses or calls
no other routines, no Transfer Entry Cards are
included. This card may be supplied either in sym-
bolic form at compilation time or in actual form at
object time. Each form of Transfer Entry Card is
described separately below.

Symbolic Transfer Entry Card

Label Operation Operand Comments

EXECUTE CNTRL 7
DC

@NAME @ 1. Name of the routine to be
called, left-justified, in
double-digit form.

+0000000000 2. Contents of this word may
be any number,

+0000000000

+0000000000

+0000000000

+9200000000

To include identification in the Transfer Entry
Card, change the operand of the EXECUTE CNTRL
entry to 8 and add another subsequent entry under
the DC.

Although these entries do not result in a program
card, the assignment counters of the assembly pro-
gram are increased when EXECUTE CNTRL entries
are processed; therefore, they should be followed
by an ORIGIN CNTRL entry to resume processing
at the proper location.

Actual Transfer Entry Card

Card Columns Contents

1-20 Name of the routine to be called, left-
justified, in double-digit form (see example
above).

21-30 Contents of this word may be any number.

31-60 Zeros.,

61-62 Must contain 92 (together with the zero in

column 65) to identify to the FORTRAN
Loader that this is a Transfer Entry Card.

63-70 Zeros,
71-75 Card identification number.
76-80 Program identification.

10, 20, 30, 40, 50,
60, 70,79, 80

12-punch in each column.

The Execute Card

Every routine loaded by the Loader must have an
Execute Card as its last card. This card is proc-
essed automatically for programs compiled by the

Part III: Expanding the FORTRAN System 29

FORTRAN processor. The format of the Execute
Card is as follows:

Card Columns Contents

1-10 A branch to the first instruction of the
routine.

11-55 Zeros.

56 The relocation indicator for the Branch

instruction in columns 1-10.
57-60 Zeros,
61-62 Must contain zeros together with the zero in

column 65 to indicate to the FORTRAN
Loader that this is an Execute Card.

63-70 Zeros,
71-75 Card identification number,
76-80 Program identification,

10, 20, 30, 40, 50,
60,70, 79, 80

12-punch in each column,

The End-of-File Card

The End-of-File Card allows object program data to
be placed into a card reader at the same time as a
program deck. This card is placed at the end of a
program followed immediately by object program
data that is to be read from the same input unit.
The FORTRAN Loader regards the End-of-File card
as a substitute for a physical end-of-file condition.
Similarly, on card-to-tape operation, the use of the
End-of-File Card eliminates the need for writing a
tape mark between the program and the data for the
object program.

The format of the End-of-File Card is as follows:

Card Columns Contents
1-60 Zeros.
61-62 Must contain 93, which, together with the

zero in column 65, identifies this card to
the Loader as an End-of- File Card.

63-80 Zeros.

10, 20, 30, 40, 50,
60,70, 79, 80

12-punch in each column,

There is no symbolic form of the End-of-File
Card because the assembly program will not put out
anything following the Execute Card which ends a
program. The End-of-File Card is never produced
during a FORTRAN compilation.

NOTE: When a relocated program deck or tape
(produced by the FORTRAN Loader) is being loaded,

an End-of-File Card must not be used. Instead, the

30

relocated program should be loaded by the standard
Condensed Card Load Program. If the data for the
object program is to be read from the same unit, it
should be placed immediately after the relocated
program. The execute card produced at the end of
the relocated program will cause the object program
to be executed without interruption after it is loaded.

The Data~Area Card

The Data-Area Card is produced only by the Basic
FORTRAN processor after the entire program has
been processed. This card indicates to the loader
the number of locations to be reserved for data, and
by its position in the compiled program, also indi-
cates where the data area begins.

NOTE: Since Basic FORTRAN is a one-pass Com-
piler, it must put out the Title Card at the beginning
of the compilation (even though it does not contain
all the required information). The Title Cards pro-
duced by Basic FORTRAN always contain zeros in
the data field (columns 21-30).

The symbolic and actual forms of the Data~Area
Card are described separately below:

Symbolic Data-Area Card

Label Operation Operand Comments

EXECUTE CNTRL
DC +000000LLLL (The number of locations

to be reserved for the data
areal)

+0000000000

+0000000000

+0000000000

+0000000000

+0000000000

+9400000000 (Identifies this as a Data-

Area Card.))

To include identification in the Transfer Entry
Card, change the operand of the EXECUTE CNTRL
entry to 8 and add a subsequent entry under the DC.

Although these entries do not result in a program
card, the assignment counters of the assembly pro-
grams are increased when EXECUTE CNTRL entries
are processed. The EXECUTE CNTRL entries,
therefore, should be followed by an ORIGIN CNTRL
entry to resume assignment at the proper location.

NOTE: Basic FORTRAN puts out the DC subsequent
entries all on one line, with high-order zeros omit-
ted, as shown below:

+LLLL+0+0+0+0+0+9400000000

Actual Data-Area Card

Card Columns Contents
1-10 The number of locations to be reserved for

the data area immediately following the
highest location used up to this point (right-

justified).
11-60 Zeros.
61-62 Must contain 94, which, together with the

zero in column 65, identifies this to the
FORTRAN Loader as a Data-Area Card.

63-70 Zeros.
71-75 Card identification number.
76-80 Program identification.

10,20, 30, 40, 50,
60,70,79, 80

12-punch in each column.

Whenever the Data-Area Card is used, the infor-
mation it provides regarding the size of the data
area (columns 1-10) override the information in the
corresponding field of the Title Card (columns 21-
30). The Data~Area Card also introduces a new
assumption about the location of the data area. In
the absence of this Card, the FORTRAN Loader
assumes that the data area, if any, is at the end of
the program, as it is in all programs compiled by
Full FORTRAN. However, when the FORTRAN
Loader encounters a Data-Area Card, it assumes
that the data area begins immediately after the
highest location used up to that point, which may or
may not be the end of the program. In programs
compiled by Basic FORTRAN, the literals follow the
data area; this means that only programs that pro-
duce no literals have the data area at the end.

Relocatable Program Cards

The FORTRAN Loader loads object programs and
subroutines in relocatable form. Relocatable pro-
gram cards are punched with up to five contiguous
instructions of the routine. The relocatable codes
of each instruction, and the relocatable address of
the instruction in word 1 are also punched. The
card format is as follows:

Card_Columns Contents
1-10 Instruction one.

11-20 Instruction two.

21-30 Instruction three,

31-40 Instruction four.

41-50 Instruction five.

Card Columns Contents

51-60 The relocation codes for words 1, 2, 3, 4
and 5, respectively (see below).

61-64 Zeros.

65 The number of instructions (1-5) punched in
the card. If this column is punched with
zeros, it is identified by the FORTRAN
Loader as an Execute Card.

66 Zero,

67-70 The address of the instruction in word 1 as
it was originally assembled.

71-75 Card identification number.
76-80 Program identification.

10, 20, 30, 40, 50 11- or 12-punch in each column.
60,70, 79, 80

12-punch in each column.

Relocation Indicators

Relocation indicators are necessary because when-

ever the location of an instruction, or constant, or

any data is changed, all references to that location
which occur in other instructions must also be
changed. The relation indicators for a given instruc-
tion tell the FORTRAN Loader which portions of

that instruction are to be changed.

Instructions punched in the standard Autocoder
condensed card format are limited to five instruc-
tions per card with word six (columns 51-60)
reserved for relocation indicators.

The FORTRAN Loader recognizes either of two
sets of relocation indicators; the set produced by
Four-Tape Autocoder and Basic Autocoder (also
produced by Autocoder prior to October 1961), and
the set produced by Autocoder starting in October
1961.

In the following discussion of Relocation
indicator:

I; represents the relocation increment for the
upward relocation of programs and ordinary
data (it may be negative).

I, represents the relocation decrement for the
downward relocation of common area and the
FORTRAN Loader itself (it is never negative).

The values of I, and I, are computed by the
FORTRAN Loader. I, and Iy are used to adjust the
addresses in a routine being loaded.

The value of I; is computed separately for each
program. This value is equal to the relocated start-
ing location of the program minus the original
starting location as found in the compilation listing
or in the Title Card.

Part III: Expanding the FORTRAN System 31

The value of I is the same for all programs in a
given run. It is equal to 9989 (the compiled top of
common area for all FORTRAN programs) minus
the top of storage for the run, as indicated to the
Loader by the user.

If it is desired to compare a relocated program
with the original program, the original location of
an instruction may be found by subtracting I3 from
the relocated address of the instruction. This ad-
dress appears on the storage map produced by the
typewriter with Alternation Switch No. 3 ON, or in a
listing of the relocated deck or tape optionally pro-
duced by the FORTRAN Loader.

The original values of the relocated instructions
depend on the relocation indicators, and can be cal-
culated as follows:

1. For upward relocation indicators, subtract
the value of I from the part(s) of the instruction
that the relocation indicator shows has been
adjusted.

2. For downward relocation indicators, add the
value of I to the part(s) of the instruction that the
relocation indicator shows has been adjusted.

Relocation Indicators Produced by Four-Tape Auto-
coder and Basic Autocoder

This set of relocation indicators will be produced
for the following types of programs:

1. Basic Autocoder programs or the symbolic
output of Basic FORTRAN programs processed by
Basic Autocoder starting in October 1961. These
programs can be identified by a +2 in column 70.
Programs processed by Basic Autocoder before
October 1961 contain a +0 in column 70 and do not
contain any relocation indicators.

2. Four-Tape Autocoder programs or the sym-
bolic output of Basic FORTRAN programs processed
by Four-Tape Autocoder. These programs can be
identified by +0, +1, or +2 in column 70. Programs
having + 0 in column 70 begin with a Branch instruc-
tion that bypasses the Branch List located at the
beginning of the program. Programs having +1 or
+2 in column 70 begin following the Branch List and
thereby eliminate the need for a Branch instruction
to bypass the Branch List. The Branch List pro-
vides linkages with subprograms and subroutines.

3. FORTRAN programs processed before
October 1961. These programs can be identified by
a +0 in column 70.

4, Autocoder programs or subroutines processed
by Autocoder before October 1961. These programs
can be identified by a +0 in column 70.

32

The relocation indicators produced for the pro-
grams listed in 1 through 4 above and their location
in the card are as follows:

Card Columns Relocation Indicator for:

56 Word 1, card columns 1-10
57 Word 2, card columns 11-20
58 Word 3, card columns 21-30
59 Word 4, card columns 31-40
60 Word 5, card columns 41-50

Let I be the relocation increment, and I5 be the
relocation decrement. I1 and I are numbers formed
by the FORTRAN Loader and are used to adjust the
addresses in a routine being loaded. The meanings
of the codes in card columns 56 through 60 are as
follows:

Value Meaning
0 Do not alter instruction.
1 Add I; to digit positions 6-9.
2 Add I to digit positions 2-5.
3 Add Iy to digit positions 2-5 and 6-9.
5 Subtract Iy from digit positions 6-9.
6 Subtract Iy from digit positions 2-5.
7 Subtract I, from digit positions 2-5 and 6-9.

I, is always added to the contents of card columns
67-70, which gives the relocatable location of the
instruction in word 1.

NOTE: Relocation indicators 5, 6, and 7 are pro-
duced only by Four-Tape Autocoder.

Relocation Indicators Produced by Autocoder

This set of relocation indicators will be produced
for the following types of programs:

1. FORTRAN programs processed from October
1961. These programs can be identified by a +1 in
column 70.

2. The symbolic output of Basic FORTRAN pro-
grams processed by Autocoder from October 1961.
These programs can be identified by a +1 in column
70.

3. Autocoder programs or subroutines proc-
essed by Autocoder from October 1961. These
programs can be identified by a +1 in column 70.

The relocation indicators produced for the pro-
grams listed in 1 through 3 above and their location
in the card are as follows:

Card Columns Relocation Indicator for:

51, 5 Word 1, card columns 1-10.
52, 5 Word 2, card columns 11-20,
53, 58 Word 3, card columns 21-30.
54, 59 Word 4, card columns 31-40.
55, 60 Word 5, card columns 41-50.

Left-Hand Digit

The following table lists the meanings of the digits
punched in card columns 51 through 55:

Value Meanin

0 Do not alter instruction.

1 Add I; to digit positions 1-5.

3 Add I to digit positions 2-5.

4 Add I to digit positions 0-4.

5 Subtract I from digit positions 1-5.
7 Subtract I, from digit positions 2-5.
8 Subtract Io from digit positions 0-4.

Right-Hand Digit

The following table lists the meanings of the digits
punched in card columns 56 through 60:

Value Meaning

0 Do not alter instruction.

1 Add I to digit positions 6-9.

2 Used in additional-storage mode only.
Add I to digit positions 3 and 6-9.

4 Add I; to digit positions 5-9,

5 Subtract I from digit positions 6-9.

6 Used in additional-storage mode only.
Subtract Iy from digit positions 3
and 6-9.

8 Subtract Iy from digit positions 5-9.

THE FORTRAN PACKAGE

The FORTRAN Package is not relocatable and con-
tains subroutines that are loaded into storage begin-
ning at location 0325. The following subroutines are
included in this package:

1. Input/Output Subroutines -- These subrou-
tines are used by the object program to read in data
required for processing and to write or punch out
results of calculations. The input/output subrou-
tines are of two types: those for unit record input/
output equipment and those for tape input/output.

2. Exponentiation Subroutines -- These subrou-
tines perform the three types of exponentiation
permissible in an arithmetic expression. Quantities
may be raised to powers as follows:

FLTFLT FLTF]'X F[XF]X

3. Function Subroutines -~ The library function
subroutines in the package are:

LOGF (logex)

LOGXF (logqox)

EXPF (eX)

EXPXF (10%)

FLOATF (fixed-point to floating-point
conversion)

XFIXF (floating~-point to fixed-point
conversion)

XINTF (same as XFIXF)

4. Floating-Decimal Arithmetic Subroutines --
These subroutines perform the floating-point add,
subtract, multiply, and divide required by the
object program on machines not equipped with the
floating device. On machines with the floating
device, these subroutines are omitted from the
package (except for a few instructions which check
for a zero divisor before a floating divide).

In general, the order of input to the object
machine consists of the following decks in the indi-
cated order.

1. The FORTRAN Loader.

2. The FORTRAN Package.

3. The compiled main program; any subroutines;
and any required function or subprograms placed in
any order. (See discussion below for the exact
requirements of hand-coded subroutines to be used
as FORTRAN library functions.)

AUTOCODER ROUTINES FOR USE WITH FORTRAN
PROGRAM

In a FORTRAN system, the user can code his own
library function subroutines and subprograms in the
7070-Series Autocoder languages. These routines
may then be used with a Full FORTRAN program.
However, when such routines® are coded in the
Autocoder language, the following conventions must
be observed:

Library Functions

When library functions are written, the called pro-
gram must assume:

1. The conditions of all indicators, electronic
switches, and index registers used in the subroutine
must be saved, and then restored after the subrou-
tine is executed. Also, if accumulators are being
used in the subroutine, their contents must be saved,
as well as their overflow-underflow conditions. The
machine is assumed to be in the '"sense' mode for
the Field Overflow and Sign Change latches. How-
ever, the subroutine may put the machine into stop
mode at any time, providing the sense mode is
restored before exit is made.

2. Priority masks, and latches such as the High,
Low, Equal, or Zero latch may be used freely and
changed at will. Control must not be returned to a
compiled FORTRAN program in the priority mode.

Arguments

The rules governing the location of arguments in a
user's library function subroutine are given below.

*In addition, these routines must conform, at object time, to
specifications discussed earlier in this section.

Part III: Expanding the FORTRAN System 33

Single Argument Library Functions

Upon entry into the library function subroutine, the
argument will be in:

1. Accumulator 1 if the mode of the argument is
floating-point.

2. Accumulator 2 if the mode of the argument is
fixed-point.

Upon exit from the library function subroutine,
the result must be in:

1. Accumulator 1 if the mode of the function is
floating-point.

2. Accumulator 2 if the mode of the function is
fixed-point.

Entry into the library function subroutine is
effected by the following instruction in the object
program:

BLX 94, NAME
where NAME is the designation of the called routine.
Return to the main program from the subroutine
should be effected by the following instruction in the
subroutine:

B 0+ X94

Multiple Argument Library Functions

As in the case of a single argument function, entry
into a subroutine evaluating a function of multiple
arguments is by means of a BLX 94, NAME from

the object program. The locations in storage imme-
diately following this instruction contain the addres-
ses of the arguments in the sequence in which they

appear in the source statement. Thus, if the
statement
ANYF (A, B, C, D)

appeared in the source statement, 0 + X94 would
contain the address of the first argument, (A),

1 + X94 would contain the address of the second
argument, (B), etc.

The return to the main program is accomplished
by a branch to n + X94, where n is the number of
arguments in the library function.

As in the case of the library function of a single
argument, the result of the multiple argument sub-
routine must be in:

1. Accumulator 1 if the mode of the function is
floating-point.

2. Accumulator 2 if the mode of the function is
fixed-point.

Branch List
All programs which call other routines must contain

a Branch List. Thus, a main program which refers

34

to any library function subroutines or any subpro-
grams must have a Branch List. If a hand-coded
program refers to any other routines, the program-
mer must provide space for a Branch List. This
Branch List is filled in with branch instructions by
the FORTRAN Loader after it places various rou-
tines in storage. The Branch List has one storage
location for each different routine called, regard-
less of the number of times it is called.

When a routine transfers control to another rou-
tine, it does so by a BLX 94 to the location in the
Branch List which has.been previously filled in by
the FORTRAN Loader. The branch instruction in
this location, in turn, transfers control to the called
subroutine. The order in which branch instructions
appear in the Branch List is specified in the Trans-
fer Entry Cards.

The Branch List can be placed anywhere in a
routine. The Full FORTRAN processor compiles a
Branch List at the beginning of a program, while the
Basic FORTRAN processor places it immediately
after the last executable instruction of a program.

The Branch List in a hand-coded routine need not
come at the beginning of a program, nor need it be
in contiguous locations. However, the Transfer
Entry Card for a particular subroutine must be at a
point in the calling program that is not overlaid by
data or an instruction. The FORTRAN Loader will
place a branch to the subroutine in question at this
point. Also, the first executable instruction may
occupy any location used by the program (the Exe-
cute Card provides the FORTRAN Loader with this
location, whereas the Title Card provides the lowest
location used by the program, which may or may
not be the same).

The following example illustrates how the pro-
grammer can provide space for a Branch List as he
codes a subroutine using an Autocoder system:

Label Operation Operand

EXECUTE CNTRL 7

DC
@ SUBAF @
+0000000050
+0000000010
+0000000325
40000000000
+9100000001

CNTRL 7

DC

EXECUTE

@ SUBBF @
+0000000000
+0000000000
+0000000000
+0000000000
+9200000000

Label

EXECUTE

ORIGIN

SUBBF
SUBCF
SUBAF

SUBBF may be in the following form:

Label

EXECUTE

ORIGIN
SUBBF

SUBCF may be in the following form:

Label

EXECUTE

EXECUTE

Operation

CNTRL
DC

CNTRL
DA

BLX
HB
HB
HP

BLX

HB

Operation

CNTRL
DC

CNTRL

B

Operation

CNTRL
DC

CNTRL
DC

Operand

7

@SUBCF @
+0000000000
+0000000000
+0000000000
+0000000000
+9200000000
325

1

00,09

10,19
XXKXXKKXKXX

94, SUBBF
ARG1
ARG2
ARG3

94, SUBCF

Operand

7

@ ASUBBF @
+0000000000
+0000000000
+0000000325
+0000000000
+9100000001
325
b[9.:9:0.0.0.0:0:0.0.¢

3+X94

Operand
7

@SUBCF @
+0000000000
+0000000010
+0000000325
+0000000000
+9100000001
7

@SUBBF @
+0000000000
+0000000000
+0000000000
+0000000000
+9200000000

Label Operation Operand
ORIGIN CNTRL 325
DA 1
SUBBF 00,09
SUBCF XU 94, STORE94
BLX 94, SUBBF
HB ARG1
HB ARG2
HP ARG3
XL 94, STORE94
B 3+X94

The Transfer Entry Cards required for the fore-
going example would be as follows:

SUBAF Object Deck

The routine SUBAF must contain a Transfer Entry
Card for SUBBF as well as one for SUBCF.

SUBBF Object Deck

The routine SUBBF requires no Transfer Entry
Cards.

SUBCF Object Deck

The routine SUBCF must contain a Transfer Entry
Card for SUBBF.

The above discussion of the Branch List has been
in terms of library function subroutines. However,
any routine which is handled by the FORTRAN
Loader and which calls another routine must have a
Branch List. Each routine that a FORTRAN com-
piler processes is provided automatically with all
necessary Branch Lists, Title Cards, and Transfer
Entry Cards.

Coding Subprograms for Use with Full FORTRAN
Program

When a hand-coded routine is to be used as a sub-
program, the programmer must follow the conven-
tions used by FORTRAN (i. e., transferring of
arguments, saving of index words, etc.), and dupli-
cate what would be compiled for the FORTRAN
FUNCTION, SUBROUTINE, and RETURN
statements.

All indicators, relocation switches, and index
words used in a subprogram must be saved and then
restored after the subprogram is executed. The
machine is assumed to be in the "sense' mode for
the Field Overflow and Sign Change latches, This

Part III: Expanding the FORTRAN System 35

may be changed by the subprogram, but must be
restored before exit is made.

An example of subprogram calling is given below.

MAINPROG calls SUBPGM and uses library
functions ANYF and XANYF. The routine SUBPGM
is hand-coded and uses library function ANYF and
has five arguments. See Figure 6 for the schematic
view of the flow of control between MAINPROG and
SUBPGM. (For clarity, the library functions have
been eliminated from the schematic.)

The following is the coding of MAINPROG:

Label Operation Operand Comment
EXECUTE CNTRL 7
DC
@ MAINPROG @
+0000000150
+0000000025
+0000000325
+0000000000
+9100000001
EXECUTE CNTRL 7
DC
@ SUBPGM @
+0000000000
+0000000000
+0000000000
+0000000000
+9200000000
EXECUTE CNTRL 7
DC
@ ANYF @
+0000000000
+0000000000
+0000000000
+0000000000
+9200000000
EXECUTE CNTRL 7
DC
@XANYF @
+0000000000
+0000000000
+0000000000
+0000000000
+9200000000
ORIGIN CNTRL 325
DA 1
SUBPGM 00,09 1
ANYF 10,19
XANYF 20,29
MAINPROG XXX XXXKXXXKXXXX 2
BLX 94, ANYF 3
BLX 94, SUBPGM 3
. XZA 1,A 4
. XZA 2,B
XZA 3,C
. XZA 4,D
. XZA 5E
BLX 94, 0+X94
XXX):9.0.9.0.9.0.9.0.9.¢ 5

36

Label Operation Operand Comment
HB *
Coding for SUBPGM might appear as follows:
Label Operation Operand Comment
EXECUTE CNTRL 7
DC
@ SUBPGM @
+0000000010
+0000000005
+0000000325
+0000000000
+9100000001
EXECUTE CNTRL 7
DC
@ANYF @
+0000000000
+0000000000
+0000000000
+0000000000
+9200000000
ORIGIN CNTRL 325
DA 1
ANYF 00,09 1
SUBPGM XZA 98,1
RS 98, INSTORAGE
BLX 94, 0+X94
XU 94, SAVEEXIT 7
BLX 94, ANYF 3
B RESETIW 8
IWSTORAGE DRDW -*+1, %46
DA 1
00, 59 9
SAVEEXIT 60, 69
RESETIW XZA 98,1 10
RG 98, IWSTORAGE
XL 94, SAVEEXIT
B 0+X94
Comments

1. Branch List which is filled by the FORTRAN
Loader.

2. First executable instruction of MAINPROG.

3. A branch to the Branch List which, in turn,
transfers control to the appropriate routine.

4, Temporary re-entry into MAINPROG. A, B,
C, D, E are the addresses of the arguments appear-
ing in the CALL statement. MAINPROG inserts
them into index words beginning with word 1, which
makes them available to SUBPGM, and then returns
to SUBPGM.

5. Re-entry point of MAINPROG.

6. Entry point of SUBPGM, where the subprogram
saves the contents of the index words it requires,
and then returns temporarily to MAINPROG.

7. Re-entry into SUBPGM, which begins its
computation after saving the contents of index word
94, for use in returning to MAINPROG. The con-
tents of index word 94 must be saved because it is
used by SUBPGM to go to ANYF.

8. End of SUBPGM.

9. Space is reserved to store the contents of
index words used by SUBPGM, and the re-entry
location of MAINPROG.

10. A routine executed after the SUBPGM has
been completed. It resets the index words used by
the subprogram, restores the re-entry location of
MAINPROG to index word 94, and returns to
MAINPROG.

NOTE: A FORTRAN FUNCTION subprogram can
have only a single result. Thus, upon exit from a
FORTRAN FUNCTION subprogram, the result must
be left in:
Accumulator 1, if it is floating-point
Accumulator 2, if it is fixed-point

A SUBROUTINE subprogram can have more than
one result. The names of these results are included
in the argument lists of the CALL statement in the
calling program and the SUBROUTINE statement in
the called program.,

The following schematic diagram shows MAIN-
PROG and SUBPGM as they appear in storage.
Numbers in parentheses correspond to comment
numbers in the coding example. Arrows indicate
the flow of control (beginning with Start).

Branch List (3) Branch List (3)
MAINPROG 0 - SUBPGM (4)
Start Save index words
Save exit and compute ()
CALL SUBPGM (2)
RETURN @)
Insert addresses of
Arguments into index (5)
words
Storage for
index words 8)
and exit
Re-entry into (10)
RESETIW (9)
MAINPROG et
Reset index
words ond exit
END
Figure 6

Part III: Expanding the FORTRAN System 37

PART IV: GENERAL RULES FOR FORTRAN PROGRAMMING

FIXED-POINT ARITHMETIC

The use of fixed-point arithmetic is governed by the
following considerations:

1. Fixed-point constants specified in the source
program must have magnitudes that are less than
1010, or 10% if used as a subscript.

2. Fixed-point data read in by the object pro-
gram itself is treated modulo 1010,

3. The output from fixed-point arithmetic in the
object program is modulo 1010, However, if, during
computation of a fixed-point arithmetic expression,
an intermediate value occurs which is greater than
1010, it is possible that the final result will be inac-
curate even though modulo 1010,

4. Indexing in the object program is modulo 104,

5. Any fixed-point number raised to the zero
power produces an answer of one.

6. Any fixed-point number raised to a negative
fixed-point power other than zero produces an
answer to zero.

TRUNCATION DURING COMPUTATION

The partial or intermediate results during the com-
putation of an arithmetic expression are truncated,
if necessary. The resultant error depends on the
error in which the computations and truncations
take place. To insure accuracy of fixed-point mul-
tiplication and division, it is suggested that paren-
theses be inserted into the expression involved.

Examples:

Fixed-point Expression Truncated Result

((5%3)/2) 7
((5/2)*3) 6
(-(5*3)/2) =7
(-(5/2)*3) -6

RELATIVE CONSTANTS

A relative constant is defined as a variable in a sub-
script, which is not under control of a DO, or a DO-
implying parenthesis in a list. For example, in the
sequence:

A = B(K
DO 10I= 1,10
X = B(D + C(I, 3*J+2)

K and J are relative constants, but I is not.

The appearance of a relative constant in any of
the following ways will be called a relative constant
definition.

38

1. On the left side of an arithmetic statement.

2. In the list of an input statement.

3. As an argument for a FORTRAN FUNCTION
or SUBROUTINE subprogram.

4. In a COMMON statement.

Relative Constants in an Argument List*

A variable defined in one program may have its
value transmitted to another program where it is
relative constant and where, consequently, the
value is used. This may be done by placing it in an
argument list. The appearance of a relative con-
stant in an argument list is sufficient to provide the
necessary computation for the relative constant.

‘Relative Constants in COMMON Statements*

A relative constant value may be transmitted from
one program to another by placing it in the common
area, but only if it is being transmitted from the
calling to the called subprogram.

Example:

Main Program

SUBROUTINE ABC

COMMON K COMMON 1
DIMENSION B(10)

K=5 A- BQY

CALL ABC

LIMITATIONS ON SOURCE PROGRAM SIZE

During compilation, the FORTRAN processors
internally store certain kinds of information about
the source program. Areas of core storage (called
tables), set aside to store and process this informa-
tion, are of finite size. This places limits on the
extent of certain kinds of information that the
source program may contain. These limitations
are different for each processor and so are listed
separately below.

There are two general types of limitations on the
size of a Full FORTRAN source program. One type
of limitation restricts the complexity of a single

* These topics apply to subprograms only and, therefore, need not
concern the user of Basic FORTRAN.

statement; the other type of limitation governs the
complexity of a group of statements or of a program
as a whole.

Limitations on the Size of a Single Statement

1. No FORTRAN statement may consist of more
than 660 characters, including blanks, and must be
contained on a maximum of 10 cards.

2. The total number of parameters in a single
arithmetic statement must not exceed 50. A param-
eter is defined as any name or constant. Thus, the
arithmetic expression Y = X*3.2 - ROOT*3, 0*
(SINF(X) + P) contains eight parameters. This max~
imum of 50 parameters also applies to an arithmetic
expression appearing in an IF statement.

3. The CALL statement is subject to the follow-
ing rules:

a. The maximum number of parameters permis-
sible in one CALL statement is 50. Each
name (or constant) in a CALL statement,
excluding the word CALL but including the
name of the SUBROUTINE subprogram, is
counted as a parameter.

b. An argument is composed of one or more
parameters. For example, the statement
CALL MANEF (A, R + SIGMA *5.0, I) con-
tains three arguments and six parameters,
including the name of the SUBROUTINE sub-
program. The rule

a+p=<69
defines the maximum number of arguments
and parameters allowed in a CALL statement,
where

a is the number of arguments

p is the number of parameters
From the rule, (3a) above, it must be remem-
bered that p must never be greater than 50.
It follows that the greatest number of argu-
ments ever permitted in a CALL statement is
34 (assuming each argument to be a single
parameter). The rule governing the maximum
number of arguments which may be present in
any subprogram also affects the CALL
statement.

4. The maximum number of arguments in a
FORTRAN FUNCTION subprogram is limited by the
number of parameters in the arithmetic statement
calling the subprogram.

a. The maximum number of parameters in the

entire arithmetic statement must not exceed
50.

b. The number of arguments permissible in each
of the FORTRAN FUNCTION subprograms
called in a single arithmetic statement is
determined as follows:

a+p=<69

where,
a is the number of arguments in a
FORTRAN FUNCTION subprogram
p is the number of parameters in the
arithmetic statement in which the
FORTRAN FUNCTION is called
5. The number of consecutive nonsubscripted
variables (including nonsubscripted array names)
that may appear in an input or output list is limited
to 46. The appearance of either a DO loop or a sub-
scripted variable will end a sequence.
6. A computed GO TO statement may contain a
maximum of 93 statement numbers.
7. The maximum number of arguments in a sin-
gle arithmetic statement function may be computed
as follows:

Let x be the number of arguments with names
consisting of five characters or less;
Let y be the number of arguments with names
consisting of more than five characters
Finally, the number of arguments in an arithmetic
statement function must agree with the formula:

X + 2y <40

Limitations on the Size of a Full FORTRAN Program

The following limitations are imposed by the maxi-
mum sizes of various tables that are constructed by
the Full FORTRAN processor. If any of these
tables are filled during the compilation of a program,
an appropriate message will be typed.

1. Dimension Table -- The total number of
dimensioned variables in one source program must
not exceed 290. Of these, not more than 50 may be
three-dimensional arrays. '

2. The total number of nonsubscripted variables
in a single source program must not exceed 290.

3. The innermost DO loop within a nest of DO
loops must not exceed the 50th level. Implied DO's
in the lists of input/output statements are also
included in the level count.

4. The limit of the number of arithmetic state-
ment functions in a single source program may be
computed as follows:

Let x be the number of arithmetic statement

functions with names of five characters or less;

Let y be the number of arithmetic statement func-

tions with names of more than five characters,

The maximum number may be computed as

follows:

X+2y = 75

5. Vector Table -- The number of different sub-
programs and Library functions called by a single
source program must not exceed 50.

6. Transfer Table -- The total number of differ-
ent statement numbers appearing in all the control
statements of a program must not exceed 400.

Part IV: General Rules for FORTRAN Programming 39

7. Main Table -~ The number of ""Forvals' and
DO statements together must not exceed 500.

NOTE: A Forval is a nonsubscripted fixed-point
variable on the left-hand side of an arithmetic state-
ment, in an input list, in a COMMON statement, or
in any argument list of a subprogram.

8. The maximum number of arguments in a sub-
program depends on the length of the name of the
argument,

Let x be the number of arguments with names of

five characters or less

Let y be the number of arguments with names of

more than five characters.

The maximum number of arguments in a subpro-

gram may be computed as follows:

X+ 2y =50

Note that the maximum number of arguments in
a subprogram may also depend on the number of
arguments that are stated as arithmetic expressions
in the calling program.

Limitations on Source Program Size - Basic
FORTRAN

1. No FORTRAN statement may consist of more
than 660 characters, including blanks, and must be
contained on a maximum of 10 cards.

40

2. No statement may contain more than 50 pairs
of parentheses (those used with subscripts are not
counted).

3. The maximum number of user's function sub-
routines that may be included in any one source
program is 20. These 20 are in addition to the open
function subroutines and to those available in the
7070 FORTRAN Programming Package.

4. The number of different fixed- or floating-
point constants that may be used in any one state-
ment must not exceed 40. (Constants differing only
in sign are not considered different, neither are
numbers such as 4., 4,0, 40. E-1, etc., considered
different.)

5. The maximum number of variables allowed in
a source program is determined as follows:

x + 2y < 200

where

x is the number of variables whose names do
not appear in a DIMENSION statement or in
an EQUIVALENCE statement

y is the number of variables whose names
appear in a DIMENSION statement or
EQUIVALENCE statement, or both.

6. The innermost DO loop within a nest of loops
must not exceed the 27th level, Implied DOs in the
lists of input/output statements are included in the
level count.

Each 7070-Series FORTRAN processor has its own
method of detecting errors during the compilation
of a source program. In general, however, when a
rule of the language is violated or the capacity of a
table is exceeded, a message is typed on the con-
sole typewriter.

ERROR MESSAGES IN FULL FORTRAN

The following is a description of the error mes~
sages that are produced by the 7070-Series Full
FORTRAN processor:

Types of Errors

Language Errors: These errors occur when state-
ments in the source program do not meet FORTRAN
language specifications for programs to be run on a
7070-Series machine.
Internal Errors: These errors occur when the
processor detects invalid records produced as a
result of machine errors, incorrect input, or
source program logic errors.

When internal errors occur, review the source
program, make corrections if necessary, and then
retry the operation,

Contents of Message List

The messages are listed below alphabetically with
an explanation that indicates:

1. Whether the error is a language error or an
internal error.

2. The section of the 7070-Series FORTRAN
Processor that detected the error.

3. The cause of the error,

NOTE: If a halt occurs after a message is typed
and no action is indicated, processing cannot be

continued.

Types of Messages

When an error occurs, the following types of mes-
sages may be typed:

Descriptive Message: indicates the nature of the
error.

Statement Type: indicates the type of source state-
ment that led to the error; e.g., DO, CALL,
ARITH,

FORTRAN Number: indicates the FORTRAN num-
ber that was assigned to the source statement in
error,

PART V: FORTRAN ERROR MESSAGES

Card Count: indicates the number of the card that
contained the source statement in error.
Message and Explanation

ARITH STMNT FNCT ARGS EXCEED TABLE

Explanation: Language error, section III. The number of
arguments of a function defined by an Arithmetic Statement exceeds
the table limit of 40 words.

ARITH STMNT FNCTS EXCEED TABLE
Explanation: Language error, section IIIl. The number of
Arithmetic Statement functions exceeds thetablelimit of 75 words.

xxxxxx ARRAY EXCEEDS STORAGE

Explanation: Language error, section IV. A variable in a
Dimension Statement, indicated above by xxxxxx, has an array
that will exceed 10K core storage at object time.

BLX ADDR +000000yyyy

Explanation: Internal error, section II. This error appears
only if the operations digit has been turned on in the Communica~-
tion region of Autocoder. The yyyy is the location in the proc-
essor that follows the instruction BLX 94, xxxx
This instruction branches to the error routine that begins at loca-
tion xxxx.

BLX ADDR¥ +00yyyy0000

Explanation: Internal error, section I. This error appears
only if the operations digit has been turned on in the Communica-
tion region of Autocoder. The yyyy is the location in the proc-
essor that follows the instruction

BLX 94, xxxx

This instruction branches to the error routine that begins at loca-
tion xxxx.

BLX ADDR +000000yyyy, STMNT TYPE ttttt, FORTRAN NO. nnnnn

Explanation: Internal error, section IV. This error appears
only if the operations digit has been turned on in the Communica-
tion region of Autocoder. The yyyy is the location in the proc-
essor that follows the instruction

BLX 94, xxxx
where
BLX 94 is the instruction that branches to the error
routine
XXXX is the starting location of the error routine
ttttt is the type of FORTRAN statement in error
nnnnn is the number of the FORTRAN statement inerror.

*CARD COUNT** +00xxxx0000

Explanation: Language error, section I or section III. The
actual card number of the erroneous FORTRAN statement is indi-
cated by xxxx.

*CHARACTER COUNT ZERO OR EXCEEDED XXXXXXXXXX

Explanation: Language error, section I. Either the name of
a variable or the number of a statement exceeds six characters.
The name of the variable or the type of statement is indicated by
xxxxxxxxxx, When the character count is zero, anything typed to
replace XXXXxxxXxxx is meaningless. This message is also pro-
duced when a DO index exceeds four characters.

*CLASSIFY ERROR xx*TLU CHARACTERS

Explanation: Language error, section I. In the message, xx
represents the first two characters of a FORTRAN statement
whose format cannot be classified in the non-arithmetic table by
the 7070-Series FORTRAN processor.

Part V: FORTRAN Error Messages 41

DIMENSION TABLE EXCEEDED xxXXXXXXXXX

Explanation: Language error, section IL. The total number of
dimensional variables in a single source program exceeds 290.
The variable that caused the error indication is represented by
XXXXXKXKKX.
*DO LOOP OPEN

Explanation: Language error, section I. The FORTRAN state-
ment number corresponding to n in the statement

DOni=mp, mg, mg

is missing.

*DO NEST EXCEEDS 50

Explanation: Language error, section I. The number of DO
loops that make up a nest exceeds 50. All DO loops associated
with input/output statements that appear in the DO nest have been
counted.

DUPLICATE COMMON VARIABLE
Explanation: Language error, section IV. A variable has
appeared more than once in a COMMON statement.

DUPLICATE VARIABLE xxxxXX

Explanation: Language error, section II. A subscripted vari-
able (xxxxxx) has appeared more than once in one or more DIMEN-
SION statements.

ERR 1
Explanation: Internal error, section VI. An instruction with
negative address adjustment has been created.

ERR 2
Explanation: Internal error, section VI. No more index words
are available.

ERROR IN ARITH STATEMENT FUNCTION
Explanation: Language error, section III. An Arithmetic State-
ment function has been written incorrectly.

*ERROR IN FORMAT OF STMNT

Explanation: Language error, section I. A statement does not
meet FORTRAN language specifications for programs to be run on
a 7070-Series machine.

ERROR xx IN FORMAT STMNT

Explanation: Language error, section 1, This message is typed
when an error is detected in a FORMAT statement. One of the
following numbers will be typed in the message (xx above), depend-
ing upon the type of error.

Number Error

01 A left parenthesis is not the first character
(excluding blanks) to follow FORMAT.

02 There are more than two levels of
parentheses.

03 The record exceeds 120 characters.

04 Format specifications follow the final right
parenthesis.

05 The final right parenthesis is missing.

06 H or X field size is blank.

07 A or I field size is blank.

08 E or F field size is blank.

09 There is no decimal point after E or F
specification.,

10 The decimal portion of E or F exceeds
field size.

11 A constant precedes a plus or a minus
sign.

12 No plus or minus sign is associated with

the P factor.

42

13 E, F, I, or A processing is not followed
by a right parenthesis, a slash, or a
comma,

14 An illegal character is used.

ERROR IN I/O LIST
Explanation: Language error, section III. There is an error
in the list of an input/output statement.

ERROR IN USE OF CONSTANT
Explanation: Language error, section IIl. The message indi-
cates misuse of a fixed- or .floating-point constant.

ERRORS IN INPUT, TO CONTINUE HIT START TO COMPILE
NEXT PROGRAM HIT PROGRAM RESET AND START
Explanation: Language error, section VII. Major errors in
input.
Action: To continue this compilation, press START. To com-
pile the next program, press PROGRAM RESET and START.

EXTRANEOUS TXT RCD

Explanation: Internal error, section III. There is an extra
TXT record following a SAT (communication between sections)
record; this TXT record is not required.

FLT CONST ERROR

Explanation: Language error, section IIl. An error in a
floating-point constant has been detected. The exponent portion
of a floating-point constant is in error, or a decimal point is
included in a fixed-point number.

*FORTRAN NO** xxxxx

Explanation: Language error, section I. The number of the
erroneous FORTRAN statement is typed as indicated above by
xxxxx. If the FORTRAN statement is not numbered, the message
is typed without a number.

FORTRAN NO** xxxxx

Explanation: Language error, section IIIl. The number of the
erroneous FORTRAN statement is typed as indicated above by
xxxxx. If the FORTRAN statement is not numbered, the message
is typed without a number.

*FORTRAN NO. ** xxxxx

Explanation: Language error, section Ill. The number of the
erroneous FORTRAN statement is typed as indicated above by
xxxxx. If the FORTRAN statement is not numbered, the message
is typed without a number.

*FUNCTION STMNT NOT FIRST

Explanation: Language error, section I. The FORTRAN
FUNCTION statement must be the first statement (not including
comments cards) of a FORTRAN FUNCTION subprogram.

ILLEGAL COMBINATION OF CHARS

Explanation: Language error, section III. An illegal com-
bination of characters has been used; e.g., two operations grouped
together in the format of an Arithmetic Statement.

ILLEGAL SUBSCRIPT
Explanation: Language error, section III. An invalid subscript

has been used.

ILLEGAL SUBPGRM ARGUMENT XXXXXXXXXX

Explanation: Language error, section I. A COMMON EQUIVA-
LENCE variable has been used as an argument in a subprogram.
The erroneous subprogram argument is indicated by xxxxooxxx
above.

ILLEGAL SUBPGRM ARGUMENT
Explanation: Language error, section IV, There is an error
in a subprogram argument.

INCONSISTENT EQUIV
Explanation: Language error, section IV. An EQUIVALENCE
statement is inconsistent.

INCORRECT RECORD NAME
Explanation: Internal error, section IV. The names of the DA
and EQU records are incorrect.

INVALID TAPE RECORD xxxxx

Explanation: Internal error, section II. A FORTRAN section 1
output record, indicated by xxxxx, on tape C is not a DIM (dimen-
sion) or SAT (communications between sections) record.

xxxxxx IS AN UNDEFINED OPERAND

Explanation: Language error, section III. This message may
be written on the output listing at the completion of the Autocoder
portion of the FORTRAN compilation. In the message above,
xxxxxx is replaced by the name of the operand that has not been
defined by one of the following means of defining a nonsubscripted
variable:

1. EQUIVALENCE statement

COMMON statement
The left-hand side of an arithmetic statement.
The n of ASSIGN i TO n
A variable in the list of a READ, READ INPUT
TAPE, or READ TAPE statement.
An argument of a CALL statement
The i of DOni=mj, mg, mg, ori of an implied
DO in the list of an input/output statement.

'U’lbbwl\ll

~N o

MAIN TABLE OVERFLOW

Explanation: Internal error, section V. The combined total of
"Forvals' (FORTRAN variable and data format) and DO state-
ments exceeds 50.

MISSING TXT RCD

Explanation: Internal error, section III. A TXT record,
required after a SAT (communications between sections) record,
is missing.

MORE THAN 290 NONSUBSCRIPTED VARIABLES

Explanation: Language error, section IV. The total number
of nonsubscripted variables in any one source program exceeds
290.

MORE THAN 50 VECTORS

Explanation: Language error, section IV. The number of dif-
ferent subprograms and library functions called by any one source
program exceeds 50.

NODIMEN STMNT FOR SUBSCRIPTED VARIABLE IN EQUIV

Explanation: Language error, section IV. There is no
DIMENSION statement defining a subscripted variable shown in
an EQUIVALENCE statement.

*PAREN COUNT NZ OR MINUS

Explanation: Language error, section I. There is an excess
of either left or right parentheses; the parenthesis counter was
non-zero at the end of the scan or less than zero during the scan.

*READ DRUM ILLEGAL
Explanation: Language error, section I. The 7070-Series
FORTRAN processor does not process the READ DRUM statement.

RECORD FORMAT ERROR XXXXXXXXXX

Explanation: Internal error, section V. The format of an
internal record is incorrect. In the message above, xxxxxxxxxx
represents the serial number of the erroneous record.

*RETRN STMNT ILLEGAL
Explanation: Language error, section I. A RETURN state-
ment has been used in a main program.

*RTRN STMNT MISSING

Explanation: Language error, section I. A RETURN statement
is missing in 2 FORTRAN FUNCTION subprogram or a SUB-
ROUTINE subprogram.

SAME NAME FOR SBSCRPTED AND NONSBSCRPTED VARIABLE
Explanation: Language error, section IV, The same name has

been used for both a subscripted variable and a nonsubscripted

variable; i.e., the variable name is not in the DIMENSION table.

*STMNT NUMBER 0 OR BLANK
Explanation: Language error, section I. The n in
DOni=my, my, mg
is zero or blank,

*STMNT TOO LONG
Explanation: Language error, section I, A FORTRAN state-
ment exceeds 660 characters.

*STMNT TYPE** ttttt

Explanation: Language error, section I or section II. The type
of FORTRAN statement in error is indicated as shown by ttttt
above.

STMNT TYPE ttttt, FORTRAN NO. nnnnn

Explanation: Language error, section 1V. The type of
FORTRAN statement in error is indicated by ttttt, and the
FORTRAN statement number is indicated by nnnnn.

*SUBRTINE STMNT NOT FIRST

Explanation: Language error, section I. The SUBROUTINE
statement must be the first statement (not including comments
cards) of a SUBROUTINE subprogram.

TRANSFER TABLE EXCEEDED xxxxx

Explanation: Language error, section II. The total number of
different statement numbers in all the control statements exceeds
400. The number of the statement that caused the message to be
typed is represented above by xxxxx.

TRNSFR ENDS DO
Explanation: Language error, section I. A DO loop ends in a
transfer statement.

TXT AND SAT MACRO NAMES MISMATCHED
Explanation: Internal error, section III. The macro-instruction
names written in FORTRAN section I do not match.

+xxxxxx0000 TYPE nnn ERROR

Explanation: Language error or internal error, section VII.
This message is generally produced whenever invalid records are
received as a result of errors in the source program. In the
message, xxxxxx represents the six high-order digits of the ten-
digit internal serial number of the statement being processed at
the time the invalid record is received; nnn represents a three-
digit number indicating either the type of statement being proc-
essed (500-580) or the type of error (600-901). The meanings of
the various numbers that replace nnn are given below along with
an indication of whether the error was a language error (L) or an
internal error(l).

Where a number is followed by an asterisk (*), the asterisk is
not typed; it indicates that the limitations allowed by the processor
have been exceeded.

Part V: FORTRAN Error Messages 43

Type of
Number Error Type of Statement
500-502 L GO TO
503-508 L ASSIGNED GO TO
509-514 L ASSIGN
515-521 L COMPUTED GO TO
527-529 L SENSE LIGHT
533-541 L IF SENSE LIGHT/SWITCH
545-550 L IF ACC/QUOT OVERFLOW, IF
DIVIDE CHECK
551-553 L PAUSE, STOP
563-565 L READ, PUNCH, PRINT, TYPE
566-568 L READ/WRITE TAPE, BACKSPACE,
REWIND, END FILE
569-574 L READ INPUT/WRITE OUTPUT
TAPE
575-580 L IF
Errors in Arithmetic Statements
600 1 No TEXT record for ARITH
statement
601-605 I Error in records for ARITH
612% L More than 94 parameters in ARITH
620 I ARITH-defined function has no
Element Record
640%* L More than two characters, not
including the sign, after the E in
a floating-point constant
650* L Characteristic of floating-point con-
stant > 99
651* L Characteristic of floating-point con-
stant < 0
Errors in Control or Specification
Statements
700,702 I Same Internal Number as previous
statement
701 I Macro-instruction name on DO or
subscript not legitimate
703 I Initial record incorrect
800 I Statement incorrectly identified as
FORMAT statement
801 I FORMAT statement has no TEXT
890 I Subscripted variable in I/O List
incorrectly processed
901%* I More than 49 routines have been

called for

VARIABLE NAME TOO LONG
Explanation: Language error, section IIl. The number of
characters in a variable name exceeds six.

*WRITE DRUM ILLEGAL

Explanation: Language error, section I. The 7070-Series
FORTRAN processor does not process the WRITE DRUM
statement.

44

ERROR MESSAGES IN BASIC FORTRAN

The 7070-Series Basic FORTRAN processor detects
two types of coding errors:
1. An error in which one of the limitations
imposed on the source program has been exceeded.
2. An error in which one of the rules for writing
a source statement has been violated. (This type
of error concerns the format of a statement; e. g.,
punctuation.)

For either coding error, a message is typed and
the machine continues processing with the next
statement of the source program.

For the first kind of error, the following mes-
sage is typed:

TYPE n ERROR
where n is the code number of the type error as
given in the table below.

In addition to this message the first 40 columns
of the statement will be typed for use in identifying
the statement in which the error occurred.

Type Description

1 Program begins with a continuation card.

2 Program contains too many user's function sub-
routines.

3 Program contains too many variables.

4 There are too many subscripted variables in use
at this point.

5 A subscripted variable was not previously
mentioned in a DIMENSION statement.

6 A DO loop ends with a GO TO, IF, or STOP
statement.

7 A DO loop exceeds the maximum limit specified
for a nest of DO loops.

8 A DO loop in the list of an input/output statement

exceeds the maximum limit specified for a
nest of DO loops.

9 Statement is too long.
10 Statement contains too many constants.
11 Statement contains todo many parentheses.
12 Statement contains unmatched parentheses.
13 Statement contains a variable having a name that
is too long.

For the second type of error, i.e., when a
statement is encountered in which one of the rules
of the FORTRAN language has been violated, the
following message is typed:

STMNT WRITTEN INCORRECTLY
In addition to this message, the first 40 columns of
the statement are typed for use in identifying the
incorrect statement.

APPENDIX A: SOURCE PROGRAM STATEMENTS AND SEQUENCING

This appendix describes the rules that govern the Statement Normal Sequencing

order in which source program statements of a

FORTRAN program are executed. IF DIVIDE CHECK nl,nz Statement n, nz if the

1. Control originates at the first executable FORTRAN Divide Check
statement. indicator is ON or OFF,
2. If control has been with statement S, then respectively.
control passes to the statement indicated by the PAUSE or PAUSE n Next executable statement.
normal sequencing of statement S (see ""Table of STOP or STOP n Terminates program.
i "

‘Source Program Statement Sequencing''). However, DOnim, m, DO sequencing, then next

if S isthelast statement in the range of one or more or executable statement.

DOs which are not yet completed, then the normal DOnim, my, m,

sequencing of Sis ignored, and DO sequencing takes

plat.lce g gn ’ q g CONTINUE Next executable statement.

3. The specification statements, and the FOR- END (I}, L, 15,1, 1) Notseq“?ncti“g; thisb?tatement
erminates a problem.

MAT, FUNCTION, and SUBROUTINE statements P

are non-executable. FUNCTION and SUBROUTINE ! fALL Name (&y»8g-., First statement of subroutine

a ame.

statements must precede all executable statements o

in a subprogram. The specification and the FOR- t SUBROUTINE Name (a,, Next executable statement.

MAT statements may be placed anywhere in the 2,52)

program. FUNCTION N; Next table statement

: a_,a e .
4. Every executable statement in the source f a) ame (4,25, executable statemen

program (except the first) must have some path of n

control leading to it. + RETURN The statement or part of

statement following the

TABLE OF SOURCE PROGRAM STATEMENT calling statement. Note that

turn from a FORTRAN
E E G a re:

SEQUENCIN FUNCTION subprogram is
Statement Normal Sequencing made to the same arithmetic
R — statement which contains the
a=b Next executable statement function; it is not made to

the following statement.
GO TOn Statement n
READ n, List Next executable statement.
GOTOn, (n,,n_,...,n) Statement last assigned ton
1’2 m READ INPUT TAPE i,n, Next executable statement.
ASSIGN i TO n Next executable statement List
GO TO (nang,..oom)i Statement n, PUNCH n, List Next executable statement.
IF (3-)1‘11, n,, 0, Statement n,,n,, orn, if PRINT n, List Next executable statement,
(@<0, (2)=0, or if (a)>0, TYPE n, List Next executable statement.
respectively,
WRITE OUTPUT TAPE i, Next executable statement.
SENSE LIGHT i Next executable statement. n, List
IF (SENSE LIGHT f)n ,n, Statement n,, n, if Sense READ TAPE i, List Next executable statement.
Light i is ON or OFF, WRITE TAPE i, List Next executable statement.,
respectively.
END FILE i Next executable statement.
IF (SENSE SWITCH i) n_, n Statement n_,n_ if Alteration
12 12 REWIND i Next executable statement.
Switch i is ON or OFF,
respectively. BACKSPACE i Next executable statement.
IF ACCUMULATOR OVER- Statement n, n, if the FORMAT (Specification)
FLOW n_,n .

12 FORTRAN internal overflow DIMENSION v, VorVgre-- Non-executable statement;
indicator is ON or OFF, may be placed anvwhere
respectively. F;QUI;/'ALENCE (a,b,c,...) y bep yw :

d,e, f,...),....
IF QUOTIENT OVERFLOW Statement n_, n, if the + COMMON A B,...
Tty FORTRAN internal overflow
indicator is ON or OFF,
respectively. 1 Available only in Full FORTRAN.

Appendix A: Source Program Statements and Sequencing 45

APPENDIX B: ADMISSIBLE CHARACTERS IN A FORTRAN SOURCE PROGRAM

The following chart indicates the list of characters
which may be used in a FORTRAN program.

Core Storage Core Storage
2-Digit Magnetic 1-Digit
Card Alphameric Tape Numerical
Character Code Code BCD Code Code
Blank 00 CA
12-3-8 15 CBA821

) 12-4-8 16 BA34

+ 12 20 BA

$ 11-3-8 25 B821

* 11-4-8 26 CB84

- 11 30 CB

/ 0-1 31 Al

s 0-3-8 35 A821

(0-4-8 36 CA84

= 3-8 45 C821

- 4-8 46 84

A 12-1 61 CBAl

B 12-2 62 CBA2

C 12-3 63 BA21

D 12-4 64 CBA4

E 12-5 65 BA41

F 12-6 66 BA42

G 12-7 67 CBA421

H 12-8 68 CBAS

1 12-9 69 - BAS81

J 11-1 71 Bl

K 11-2 72 B2

L 11-3 73 CB21

M 11-4 74 B4

N 11-5 75 CB41

(e} 11-6 76 CB42

P 11-7 7 B421

Q 11-8 78 B8

R 11-9 79 CBsl

S 0-2 82 A2

T 0-3 83 CA21

U 0-4 84 A4

\Y 0-5 85 CA41

w 0-6 86 CA42

X 0-7 87 A421

Y 0-8 88 A8

V/ 0-9 89 CA81

0 0 90 82 0

1 1 91 C1 1

2 2 92 C2 2

3 3 93 21 3

4 4 94 C4 4

5 5 95 41 5

6 6 96 42 6

7 7 97 C421 7

8 8 98 Cc8 8

9 9 99 81 9

FORTRAN SPECIAL CHARACTERS
Only the special characters shown in the table are
meaningful to the FORTRAN processor. These

characters are always identified by their card

46

codes. However, off-line peripheral equipment is
available with a choice of special character sets.
Depending on the set of characters supplied with a
printer or a keypunch, a column punched.12-4-8
may be equated to any one of the following:

pxt

<

)

The various sets of characters are known as
"Type-Wheel Configurations A, B, C, D, etc."
Type-Wheel Configuration F is the special char-
acter set used by FORTRAN.

When punching a source program, the character
must be punched using the appropriate card code.
For example, when punching

)
the card code 12-4-8 must be used, regardless of
how a given printer interprets this code.

The special characters used in FORTRAN are
given below with their equivalents in other type-
wheel configurations.

Type-Wheel Configuration
Special Characters Card
used in FORTRAN Code

A[B|C|DIE|FIG| H| K

+ 12 &I/ &= |=|+]|+]|++

. 12-3-8 S (PO IR R A IR I S (S

) 12-4-8 7O 7 V) |)

- 1 [R D -1 -1 -

$ 11-3-8 AR R R ACHERRARIR]

* ‘]_4-8 * * * * * * * * *

/ 0-1 /&0 |/ |&|/ 1/ | /1/

’ 0'3"8 ’ r | ’ ’ ’ ’ ’ ’

(0-4-8 %| %% %|[%|(|%]| (]|(

= 3-8 #lF|F|F ¥ =] =|=

- 4-8 @ e e>|-|-|,|@

Figure 7

NOTE: The two minus signs indicated in the table
are used as follows:
FORTRAN Source
Program Cards 11 punch minus sign
Input data to the
object program 11 punch or 4-8 punch minus
sign
Output data from the
object program 11 punch minus sign
The character
$
can be used in FORTRAN only as:
Alphameric text in FORMAT and CALL
statements
and
Alphameric data for the object program.

APPENDIX C: PREPARING AND PUNCHING A SOURCE PROGRAM

The statements of a FORTRAN source program are
written on a standard FORTRAN Coding Form,
Form X28-7327. A sample FORTRAN source pro-
gram is shown on the aforementioned coding form
and is illustrated in Figure 9.

PUNCHING A SOURCE PROGRAM

Each statement of a FORTRAN source program is
punched into a separate card (the standard FORTRAN
card form is shown in Figure 8); however, if a
statement is too long to fit on one card, it can be
contained on as many as nine continuation cards.
The order of the source statements is governed
solely by the order of the statement cards.

Cards which contain a "'C" in column 1 are not
processed by the FORTRAN processor. Such cards
may, therefore, be used to carry comments which
will appear when the source program deck is listed.

(Columns 1-5)

Statement numbers are punched in columns 1-5 of
the initial card of a statement. These statement
numbers permit cross references within a source
program and, when necessary, facilitate the cor-
relation of source and object programs and com-
pilation listing. The statement numbers need not
be punched in sequence.

(Column 6)

Column 6 of the initial card of a statement must be
left blank or punched with a zero. Continuation
cards must have column 6 punched with a character
other than a blank or zero. Continuation cards for
comments need not be punched in column 6; only
the "C" in column 1 is necessary.

(Columns 7-72)

The statements themselves are punched in columns
7-72 both on initial and continuation cards. Thus,
a statement may consist of not more than 660 char-
acters (i.e., 10 cards). A table of the admissible
characters for FORTRAN is given in Appendix B.
In general, blank characters, except in column 6,
are simply ignored by FORTRAN and may be used
freely to improve the readability of the source pro-
gram listing (exceptions to this rule can occur in
certain fields in FORMAT and CALL statements).

(Columns 73-80)

Columns 73-80 are not processed by FORTRAN and
may, therefore, be punched with any desired identi-
fying information. The identification may consist of
any admissible character, except that column 79
should not contain a 12 punch. This eliminates the
letters A through I, the period, the right parenthesis,
and plus sign from column 79 (see Appendix B).

C ~colitln
STATEMENT
NUMBER

FORTRAN STATEMENT

IDENTIFICATION

0'ooo00

000000000ﬂ00000000000000000000000000000ﬂ00000000000000000000&00000

tl2aas

1:1111

- EPDIIIIMATIDI

1111]111111lIIIIIIIIIlll
ﬂ222
ﬂ333
44
ﬂs55
458E6666656565656665656665656586666566GG6666BG66666656565655588686666668
ﬂ771777777777777777771777777771777
q8880080880888888 8Bﬂ8888888680BBBlll8300888888llBIUOIOIOBOBlllllllI!!ll

9/9999(9j9
3 4 516

12 7
!

Sw oo
- w

99999999
91011 1213141518
8ssis?

Sew

9
] an nuANNY
il

7881011112 |3ulstsnuuznzlzznuﬁanan:nnnnu:xn::.«ntuusnnunsoslszsaussssrasuuluouslnuunnn

00000000
muBAN NN
IRRRERER]
22222222
33333333
444440444
55555555
66666666

111111117

99999!999999999!99999999989!999999999999999!99!9399999999!99!
nNnRUBN BUBR

nu:u«uuuuuuuunnnaul:naunuununnnnunnn UBRTINBNAN

Figure 8

Appendix C: Preparing and Punching a Source Program

47

The input to the FORTRAN processors may be
either the deck of source statement cards, or a
tape prepared on peripheral card-to-tape equipment,
Input specifications for Full FORTRAN are given in
the Operator's Guide, 7070 Series Programming
Systems, Form C28-6249. Input specifications for
Basic FORTRAN are given in IBM 7070 Series
Operating Instructions: Basic FORTRAN, Form
J28-6171.

IBM

FORTRAN CODING FORM

SAMPLE PROGRAM

The sample program (Figure 9) is designed to find
all of the prime numbers between 1 and 1,000. A
prime number is an integer that cannot be evenly
divided by any integer except itself and 1. Thus,
1, 2, 3, 5, 7, 11, ... are prime numbers. The
number 9, for example, is not a prime number
since it can evenly be divided by 3.

Form X28-7327-4
rinted in .. A

Punching Instructions Poge 1 of 2
Progrom Grophic Cord Form # * Identification
Programmer lDO'C Punch g
"< o comment
vl FORTRAN STATEMENT
; _ 576 b 0 15 20 25 30 35 40 45 I 750 55 60 65 70 72
C_ .| PRIME NUMBER PROBLEM . _, 4 . 1 . 1 . . .
100 WRITE OUTPUT TAPE 68 . \ \ . n \ ! 1
8 FORMAT (52H FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000/
119X, 1H1/19X, 1H2/ 19X, 1H3), \ L L
101 '1=5 | o)) . L) | L)
3 |A=1 | , \ N .) \ N \ .) N
102 |A=-S2RTF(A) . . \ \ . " . . . L
103 J=A | N N L N L L n | L 1 1
104 pO t, K=3,J,2 | \ . L . , . . \ \ 1
105 [L=1/K)) . .) N N . \ . 1
106, IF(L*K-1)1,2,4 L n L L i I 1 L L
IBM FORTRAN CODING FORM)
Punching Instructions Page 2 of 2
Progrom Graphic Cord Form # * Identitication
Progrommer Dote Punch IY_B_A_L_WF_._.EI
< roR comment
s FORTRAN STATEMENT
\ slsl7 o s 2 2 » 35 w0 s 50 55 o o o 7
1| [CONTINUE |)) . ,) . e
107 WRITE OUTPUT TAPE 6;9)))) .)) L
5| FORMAT (120) |) L X))) .))
2 I=1+2 .)) .) .) K) . o
108 [IF(1000-1)7,4,) A ,)))) .)
4 WRITE OUTPUT TAPE 6,9 ,))) L)))
8| FORMAT (14H PROGRAM ERROR .)) K)))
7 WRITE OUTPUT TAPE 6,6 .))) s) .)
6| FORMAT (31H THIS IS THE END OF THE, PROGRAM) e , ,
109 |STOP, L))) ,))) .))
END) ,) X K))))) N
L L \ . . 1 '
:
1 1 1 1 1 i 1 1 1 i 1. L 1
1 1 1 1 1 1 1 i 1 1 1 1
1] 1 1 1 1 L 1 A1 i 1 1 1
1 1 1 1 1 L 1 L 1 1 L 1
1 1 i 1 1 1 1 1 i 1 1 1
1 1 L 1 1 1 1 1 1 1 1 1
L 1 | 1 1 1 1 1 1 1 1 1
1 1 1 i 1 1 1 1 1 i 1 L

* A standard card form, [BM electro 888157, is available for punching source statements from this form.

Figure 9

48

APPENDIX D: 7070-SERIES FORTRAN LIBRARY FUNCTION SUBROUTINES

This appendix describes the library function sub-
routines that are available to users of 7070 Series
FORTRAN. The use of floating-point mnemonic
codes is optional with floating- point function sub-
routines. Instructions for the use of floating-point
arithmetic accompany the program tape. Detailed
descriptions of these subroutines follow in alpha-
betical order for floating-point and fixed-point,
respectively. Any error messages or programmed
halts are described under the appropriate subroutine.

LIBRARY FUNCTION SUBROUTINE INDEX

The following are the floating-point subroutines.
Except for MODF and TANHF, which use floating—
point mnemonic codes, all other subroutines use
fixed-point mnemonic codes.

ASINF

ATANF

COSF

DIMF

ERRTYPE

INTF

MAXOF

MAX1F

MINOF (see MAXO0F)
MIN1F (see MAX1F)
MODF

SIGNF (see XSIGNF)
SINF (see COST)
SQRTT

SORTT

TANHF

The following are the fixed-point subroutines and
use only fixed-point mnemonic codes:

XDIMF

XMAXOF

XMAX1F

XMINOF (see XMAXOF)
XMIN1F (see XMAX1F)
XMODF

XSIGNF

ASINF
Purpose

This subroutine computes the arcsine of an argu-
ment, Y, in floating-decimal form.

Range

-1l=Y=+1

Method

The arcsine is approximated by means of the
expression

7 .
m/2 - - [Yh)"” e v

i=0

where:
/2= +1.570 796 327
CO =+1.570 796 305
C1 = -0 214 598 802
Cy =+0 088 978 987
C3 ==0,050 174 305

C4=+0 030 891 881
Cs = -0 017 088 126
Cg = +0.006 670 090
Cy =-0.001 262 491

Error Approximation

With -1 = Y = +1, the maximum absolute error is
<5.10°8

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. The subroutines SQRTF and ERRTYPE must
be available for use.

3. A minimum of 68 core storage locations must
be provided for storing instructions, constants, and
transfer vectors.

4. Accumulators 1, 2, and 3; index words 93,
94, and 98; indicators high, equal, and low must be
available for use.

Entry and Exit

Using FORTRAN, an entry example could be
A = SINF (B/C) with C#0

and return would be to the next FORTRAN state-
ment, with the normalized unrounded result in A,
in radians.

In any Autocoder program with the symbolic
deck for ASINF as an out-of-line subroutine, an
example of an entry could be

ZA1 Result of (B/C) in floating decimal
form
BLX 94, ASINF

Return is made to the instruction following the BLX
with the normalized unrounded result, in radians,
in Accumulator 1.

Appendix D: 7070-Series FORTRAN Library Function Subroutines 49

Halt and Message

If an attempt is made to compute the arcsine of a
number having an absolute value >1, the message:
ASINF ERROR BLX ADDR XXXX
will be typed and a halt will occur
where,
XXXX indicates the location following the
BLX instruction in the calling
program.

Action

Correct the data and start from the beginning; or
place an approximate answer in floating-point form
in Accumulator 1 and make a branch manually to
location XXXX.

ATANF
Purpose

This subroutine computes the arctangent of an argu-
ment, N, in floating-decimal form.
Range:

—104'9 <N=+ 104t9

Method

The arctangent is approximated by the continued
fraction

A
N 1

A
2 €
Az + (NAl) - 3 D)
+ (NA
A4 (1)
where:
Al = +0.163 636 363 6 A3 = +(, 027 099 842 5
AZ = +0.216 649 136 0 A4 =+0., 051 119 459 05
To improve the accuracy, the range between 0
and 7/2 has been divided into five intervals:
0 to n/18, /18 to 7/6, /6 to 57/18, 51/18
to 77/18, Tn/18 to n/2

In the first interval, the arctangent is computed
directly. In the other intervals, it is computed with
the following relation:

ATANF (N) = kn/9 ATANF (N")
for N in the interval k, where

-1
k) L]

2
Ak = Cotan (k7/9), Bk =1 +Ak or

1 + (Cotan (kvr/9))2:|
N + Cotan (kn/9)

T = -
N Ak Bk(N+A

N' = Cotan (k7/9) - [

with each contangent value entered as a constant.

50

Error Approximation

The maximum absolute error is < 2 - 10"8

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. A minimum of 90 core-storage locations must
be provided for storing instructions and constants.

3. Accumulators 1, 2, and 3; index words 94 and
98; and indicators high, equal, and low must be
available for use.

Entry and Exit

Using FORTRAN, an entry example could be

A = ATANTF (B/C) with C#0
and return would be to the next FORTRAN statement,
with the normalized unrounded result in A, in
radians.

In any Autocoder program with the symbolic deck
for ATANF as an out-of-line subroutine, an example
of an entry into the ATANF subroutine is:

ZAl Result of (B/C) in floating decimal form
BLX 94, ATANF

Return is made to the instruction following the
BLX, with the normalized unrounded result in Accu-
mulator 1.

COSF and SINF
Purpose

This subroutine computes the trigonometric cosine
or the trigonometric sine of the argument, X, in
floating-decimal radians.

Range

10

-107 <X < +1O10

Method (SINF)
with | x| = 1074, SINF () = X. With 10”% < |x|,x
is divided by /2 and the quotient is separated into
an integral and decimal part (Q; and Qg). If Q;

(mod 4) = 3 or 4, Qd is replaced with the magnitude
of (1 - Qg). Then, SINF (X) is evaluated by means
of the polynomial.

% o +1(Qd)21+1
i=o

where:
Cy1=+1.570 796 318 C7 = -0.004 673 766
C3 =-0.645 963 711 C +0.000 151 484

C5 = +0.079 689 679 /2 +1.570 796 327

1l

Method (COSF)

with |X| = 1074, COSF () =+1.0. With 10™% < |X],
the method is identical to that for SINF except that

Qj is argumented by +1 before the quadrant analysis
and polynomial evaluation.

Error Approximation

The maximum absolute error is = 10—7, where
-1/2=X=+7/2

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. The SINF subroutine must be included in any
COSF computation.

3. The ERRTYPE subroutine must be available
for either the SINF or COSF computation.

4. A minimum of 87 (for SINF) and 90 (for COSF)
core storage locations must be provided.

5. Accumulators 1, 2, and 3; and index words 93,
94, and 98 must be available for use.

Entry and Exit

Using FORTRAN, an entry example could be

A = SINF (B*C) or D = COSF (E+F)
and return would be to the next FORTRAN statement,
with the normalized unrounded result in A or D.

In any Autocoder program with the symbolic deck
for SINF or COSF as an out-of-line subroutine, an
example of an entry into this subroutine is:

ZA1 Result of (B*C) ZA1 Result of (E+F) in
in floating-decimal or floating-decimal
radians radians

BLX 94, SINF BLX 94, COSF

Return is made to the instruction following the
BLX, with the normalized unrounded result in
Accumulator 1.

Halt and Message

If an attempt is made to compute the sine or cosine
of an angle of magnitude = 1010 radians, one of the
following messages will be typed and a halt will
occur.

SINF ERROR BLX ADDR XXXX

or

COSF ERROR BLX ADDR XXXX
where:

XXXX indicates the location following the BLX

instruction in the calling program.

Action

Correct the data and start from the beginning; or
place an approximate answer in floating-point form
in Accumulator 1 and make a branch manually to
location XXXX.

DIMF
Purpose

This subroutine determines the positive difference
between two arguments, X; and Xo, with both argu-
ments in floating-decimal form, which may be
simulated by the floating-point routines of the 7070
Series FORTRAN Loader/Package.

Range

—1049 < Xi < +1049

Method
Obtaining the positive difference is accomplished by
subtracting as follows:

(argument 1) - (argument 2)
If this result is = 0, +0 is used as the result.

Error Approximation

No error is produced in the resultant numerical
value

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. A minimum of 11 core storage locations must
be provided for storing instructions.

3. Accumulators 1, 2, and 3; index words 93, 94,
and 98 must be available for use.

Entry and Exit

Using FORTRAN, an entry exampie could be

P = DIMF (X1, X2/4.)
and return would be to the next FORTRAN statement,
with the resultant numerical value in floating-point
form in P.

In any Autocoder program with the symbolic deck
for DIMF as an out-of-line subroutine, an example of
an entry into the DIMF subroutine is:

BLX 94, DIMF
HB X1
HP Word containing X2/4

Appendix D: 7070-Series FORTRAN Library Function Subroutines 51

Return is made to the instruction following the
HP, with the resultant numerical value in normalized
floating form in Accumulator 1.

ERRTYPE
Purpose

This subroutine types a standard error message for
known errors occurring in other routines.

Range

Input to ERRTYPE is the name of the function or
subroutine that has recognized an error and the
corresponding location in the main program that is
the normal return for the function or subroutine.
The name of the function or subroutine has the
form
NNNNN (five alphameric characters).
The corresponding location has the form
XXXX (four numeric characters).

Method

The function or subroutine name and corresponding
location (converted to double-digit form) are placed
in a skeletal form of the standard error message.
A typeout is then executed.

The standard error message produced by
ERRTYPE has the following form:

NNNNN ERROR BLX ADR XXXX

with NNNNN the alphameric name and XXXX the
location of the normal return.

Error Approximation

No programming error is produced, since no com-
putation is performed.

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both the sign change and the field overflow.

2. A minimum of 18 core storage locations must
be provided for storing instructions and constants.

3. Accumulators 1 and 2, and index words 93
and 94 must be available for use.

Entry and Exit

Since this subroutine has a 7-character name
(ERRTYPE), it cannot be called for in the FORTRAN
language.

In any Autocoder program, or any corresponding
function or subroutine written in the Autocoder lan-
guage, with the symbolic deck for ERRTYPE as an

52

out-of-line subroutine, an entry example could be
as follows:

If the location of the normal
return is not in Index Word 94,
include ...
XZA 94, xxxx

(with xxxx being the loca-
tion of the normal return,
as a four-digit number,
or an Autocoder label)

ZAl NNNNN
(the name of the function
or subroutine)

BLX 93,ERRTYPE

After the standard error message has been typed,
return is made to the instruction following the BLX.
The instruction in the user's function or subroutine
to which ERRTYPE returns may have a halt at the
user's option.

INTF

Purpose

This subroutine truncates an argument, X, by
attaching the sign of X to the largest integer = | X,
with X in floating-decimal form.

Range

—1049 <X <+ 1049

Method

The truncation is accomplished as follows:
(largest integer = 1X1) with sign of X attached

Error Approximation

No error is produced in the resultant numerical
value.

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. A minimum of 12 core storage locations must
be provided for storing instructions and constants.

3. Accumulators 1 and 2, and index words 93
and 94 must be available for use.

Entry and Exit

Using FORTRAN, an entry example could be

Z = INTF (X1+3.5)
and return would be to the next FORTRAN statement,
with the resultant numerical value in floating-point
form in Z.

In any Autocoder program with the symbolic deck
for INTF as an out-of-line subroutine, an example of
an entry into the INTF subroutine is:

ZA1 Result of X + 3.5 in
floating decimal form
BLX 94, INTF

Return is made to the instruction following the
BLX, with the resultant numerical value in normal-
ized floating form in Accumulator 1.

MAXOF and MINOF

Purpose

This subroutine determines the largest or the small-
est value of two or more arguments, Kj, Ko, . . .,
Ky, in fixed-point form.

Range

-9 999 999 999 = Ki = 49 999 999 999
Method
The largest (or smallest) value is chosen by
comparing

K. with K, wherei=1, 2, ..., n
After the first comparison, each successive com~
parison is made with the larger (or smaller) value

of the previous comparison.

Error Approximation

No error is produced in the resultant numerical
value.

Requirements for Subroutine Usage

1. The machine must be the sense mode for both
sign change and field overflow.

2. The subroutine MAXOF should only be used,
when it is provided with MINOF.

3. The subroutine FLOATF must also be pro-
vided when MAXOF is to be used.

4. A minimum of 16 and 13 storage locations
must be provided for subroutines MAX0F and MINOF
respectively.

5. Accumulators 1, 2 and 3, and index words 93,
94 and 98 must be available.

Entry and Exit

Using FORTRAN, an entry example could be
A = MAXOF (K1, 2*K2, K3 + 5) or
B = MINOF (L1**3, L2, L3-16)
and return would be to the next FORTRAN statement,

with resultant numerical value in floating-point form
in A or B.

In any Autocoder program with the symbolic deck
for MAXOF or MINOF as an out-of-line subroutine,
an example of an entry into this subroutine is:

BLX 94, MAXOF BLX 94, MINOF

HB K1 HB Word containing
or L1**3
HB Word containing HB L2
2%K2
HP Word containing HP Word containing
K3 +5 L3-16

Return is made to the instruction following the
HP, with the resultant numerical value in normalized
floating form in Accumulator 1.

MAXI1F AND MIN1F

Purpose

This subroutine determines the largest or the small-
est value of two or more arguments, Xl’ X2, ey
)gl in floating decimal form.

Range

---1049 < Xi < +1049

Method

The largest (or smallest) value is chosen by
comparing

. with X, wherei=1, 2, ..., n.
After the first comparison, each successive com-
parison is made with the larger (or smaller) value of
the previous comparison.

Error Approximation:

No error is produced in the resultant numerical
value,

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. The MAXIF subroutine must only be used
when it is provided with MIN1F subroutine.

3. A minimum of 16 for MAXIF and 13 for
MIN1F storage locations must be provided for
MAXIF and MIN1F respectively.

4. Accumulators 1, 2, and 3, and index words
93 and 94 must be available for use.

Entry and Exit
Using FORTRAN, an entry example could be

A = MAX1F(X1, X2%*%2, X3+ 1., X4) or
B = MINIF (3.*W1, W2, W3, W4/4.)

Appendix D: 7070-Series FORTRAN Library Function Subroutines 53

and return would be to the next FORTRAN statement,
with the resultant numerical value in floating point
form in A or B.

In any Autocoder program with the symbolic deck
for MAX1F or MIN1F as an out-of-line subroutine,
an example of an entry into this subroutine is:

BLX 94, MAX1F BLX 94, MIN1F
HB X HB Word containing

1
or 3. ¥W 1
HB Word containing HB W 2
Kok
HB Word containing HB W3
X3+1.
HP Xy HP Word containing

W
4/4.
Return is made to the instruction following the
HP, with the resultant numerical value in normal-
ized floating form in Accumulator 1.

MODF

Purpose

This subroutine determines the remainder between
two arguments, X; and X, by taking X; (modulo
Xy), with both arguments in floating-decimal form.
This subroutine uses floating point mnemonic codes,

which may be simulated by the floating routines of
the 7070 Series FORTRAN Loader/Package.

Range
—1049 < Xi <+ 1049
Method

Obtaining the remainder is accomplished as follows:

X1 (modulo X,)

| X
1
X, 2

considering only the integral part of

or

B}

If Xy = 0, the remainder is X;

If IXy] = 0, the result is set to X3

If IX;1> IXyl, the remainder is obtained
as shown

If IX3/< |Xpl, the remainder is X,

Error Approximation

No error is produced in the resultant numerical
value.

54

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. The subroutine INTF must be included in any
MODF computation.

3. A minimum of 21 storage locations must be
provided for storing instructions and transfer
vectors.

4. Accumulators 1, 2, and 3; index words 93,
94, and 98; and the accumulator overflow indicators
must be available.

Entry and Exit

Using FORTRAN, an entry example could be

A = MODF (X1, X2)
and return would be to the next FORTRAN statement,
with the resultant numerical value in floating-point
form in A.

In any Autocoder program with the symbolic deck
for MODF as an out-of-line subroutine, an example
of an entry into the MODF subroutine is:

BLX 94, MODF

HB X1

HP X2
Return is made to the instruction following the HP,
with the resultant numerical value in normalized
floating form in Accumulator 1.

SQRTF
Purpose

This subroutine computes the square root of an
argument, X, with X = 0 in floating-decimal form.

Range

+OSX<+1049

Method

A linear approximation of the form Y = AX + B is
used to determine the value ofNX/4 to two decimal
places. This result is used as a first approxima-
tion for two iterations of a modified form of New-
ton's formula where

Y, ~NX/4, Y, = NX/2, and Yq =X,

Error Approximation

-8
The maximum absolute error is 10

Entry and Exit

Using FORTRAN, an entry example could be

D = SQRTF(E-F) with F=E
and return would be to the next FORTRAN state-
ment, with the normalized unrounded result in D.

In any Autocoder program with the symbolic deck
for SQRTF as an out-of-line subroutine, an example
of an entry into the SQRTF subroutine is:

ZAl1 Result of (E -F) in floating-
decimal form
BLX 94, SQRTF

Return is made to the instruction following the
BLX, with the normalized unrounded result in
Accumulator 1.

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. The subroutine ERRTYPE must be available
for use with SQRTF.

3. A minimum of 45 storage locations must be
provided to store instructions, constants, and
transfer vectors pertaining to SQRTF.

4. Accumulators 1, 2, and 3, and index words
93, 94, and 98 must be available for use.

Halt and Message

If an attempt is made to compute the square root of
a number < 0, the message
SQRTF ERROR BLX ADDR XXXX
will be typed and a halt will occur
where,
XXXX indicates the location following the
BLX instruction in the calling
program.

Action

Correct the data and start from the beginning; or
place an approximate answer in floating-point form
in Accumulator 1 and make a branch manually to
location XXXX.

TANHF
Purpose

This subroutine computes the hyperbolic tangent of
an argument, X, in floating-decimal radians. This
subroutine uses floating-point mnemonic codes,
which may be simulated by the floating-point rou-
tines of the 7070 Series FORTRAN Loader/Package.

Range

—lO49 <X < +1049

Method

The hyperbolic tangent is computed by means of the
expression

e2X_1
ezx+1

Error Approximation

-7
The maximum absolute error is < 10

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. A minimum of 16 storage locations must be
provided to store instructions and constants.

3. Accumulators 1, 2, and 3; index words 93,
94, and 98; and the accumulator overflow indicators
must be available for use.

Entry and Exit
Using FORTRAN, an entry example could be

Y = TANHF (Z**2)
and return would be to the next FORTRAN statement,
with the normalized unrounded result in Y.
In any Autocoder program with the symbolic deck
for TANHF as an out-of-line subroutine, an example
of an entry into the TANHF subroutine is:

ZA1 Result of (Z**2) in floating
decimal radians
BLX 94, TANHF

Return is made to the instruction following the
BLX, with the normalized unrounded result in
Accumulator 1.

XDIMF

Purpose

This subroutine determines the positive difference
between two arguments, K; and Ko, with both argu-
ments in fixed-point form.

Range

-9 999 999 999 = Ki = +9 999 999 999

Appendix D: 7070-Series FORTRAN Library Function Subroutines 55

Method

Obtaining the positive difference is accomplished by
subtracting as follows:

(argument 1) - (argument 2)
If this result is = 0, + 0 is used as the result.

Error Approximation

No error is produced in the resultant numerical
value.

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. A minimum of 10 storage locations must be
provided for storing instructions.

3. Accumulators 2 and 3, and index word 94
must be available for use.

Entry and Exit

Using FORTRAN, an entry example could be
M = XDIMF (K1, K2)

and return would be to the next FORTRAN statement,
with the resultant numerical value in fixed-point
form in M,

In any Autocoder program with the symbolic deck
for XDIMF as an out-of-line subroutine, an example
of an entry into the XDIMF subroutine is:

BLX 94, XDIMF
HB K1
HP K2

Return is made to the instruction following the
HP, with resultant numerical value in fixed-point
form in Accumulator 2.

XMAXOF AND XMINOF
Purpose
This subroutine determines the largest or the small-

est value of two or more arguments, Ky, Ko, . . «,
K,, in fixed-point form.

Range

-9 999 999 999 = Ki = +9 999 999 999
Method
The largest (or smallest) value is chosen by com-
paring

Ki with Ki wherei=1, 2, .. ., n
After the first comparison, each successive com-

parison is made with the larger (or smaller) value
of the previous comparison.

56

Error Approximation

No error is produced in the resultant numerical
value.

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. The subroutine XMINOF must be provided for
usage with XMAXOF.

3. A minimum of 16 for XAXOF and 13 for
XMINOF storage locations must be provided.

4. Accumulators 1, 2, and 3, and index words
93 and 94 must be available for use.

Entry and Exit
Using FORTRAN, an entry example could be

I = XMAX0F(K1, K2, K3, K4, K5) or

J = MINOF(L1, L2, L3, L4, L5)
and return would be to the next FORTRAN state-
ment, with the resultant numerical value in fixed-
point form in I or J.

In any Autocoder program with the symbolic deck
for XMAXOF or XMINOF as an out-of-line sub-
routine, an example of an entry into the XMAXOF
or XMINOF subroutine is:

BLX 94, XMAXOF BLX 94, XMINOF

HB K1 HB L1
HB K2 HB L2
HB K3 or HB L3
HB K4 HB L4
HP K5 HP L5

Return is made to the instruction following the
HP, with the resultant numerical value in fixed-
point form in Accumulator 2

XMAXI1F AND XMIN1F

Purpose

This subroutine determines the largest or the small-
est value of two or more arguments, Xj, Xg, . .
)% in floating-decimal form.

Range

~10%9 < X, < +10%

Method

The largest (or smallest) value is chosen by
comparing

X; with X471 wherei=1, 2,..., n.
After the first comparison, each successive com-
parison is made with the larger (or smaller) value
of the previous comparison.

Error Approximation

No error is produced in the resultant numerical
value.

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. The subroutine XMIN1F must be provided
for usage with XMAXI1F.

3. The subroutine XFIXFLT (included in the
7070 Series Loader/Package) must be provided.

4. A minimum of 17 for XMAX1F and 14 for
XMINI1F storage locations must be provided.

5. Accumulators 1, 2, and 3; index words 93,
94 and 98; and the accumulator overflow indicators
must be available for use.

Entry and Exit

Using FORTRAN, an entry example could be

I = MAX1F(X1, X2, X3, X4) or

J = MIN1F(W1, W2, W3, W4)
and return would be to the next FORTRAN state-
ment, with the resultant numerical value in fixed-
point form in I or J.

In any Autocoder program with the symbolic

deck for XMAXI1F or XMIN1F as an out-of-line
subroutine, an example of an entry into the XMAXI1F
or XMIN1F subroutine is:

BLX 94, XMAXI1F BLX 94, XMIN1F

HB X1 HB W1
HB X2 or HB W2
HB X3 HB W3
HP X4 HP W4

Return is made to the instruction following the
HP, with the resultant numerical value in fixed-
point form in Accumulator 2.

XMODF

Purpose

This subroutine determines the remainder between
two arguments, Nj and Ng, by taking N; (modulo
Ny), with both arguments in fixed-point form.

Range
-9 999 999 999 = Niﬁ +9 999 999 999
Method

Obtaining the remainder is accomplished as
follows:
N
N1 (modulo N2) or Fz-

with the result being just the remainder.
If |N1l= 0, the remainder is Ny.
If INyl=0, the result is set to Ny.
If INyl= INgl, the remainder is obtained as
shown
If IN;I< INgl, the remainder is Ny

Error Approximation

No error is produced in the resultant numerical
value.

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. A minimum of 11 storage locations must be
provided for storing instructions.

3. Accumulators 1, 2, and 3; index words 93
and 94; and the accumulator overflow indicators
must be available for use.

Entry and Exit

Using FORTRAN, an entry example could be

L = XMODF (N1, N2)
and return would be to the next FORTRAN state-
ment, with the resultant numerical value in fixed-
point form in L.

In any Autocoder program with the symbolic
deck for XMODF as an out-of-line subroutine, an
example of an entry into the XMODF subroutine is:

BLX 94, XMODF

HB N1

HP N2
Return is made to the instruction following the HP,
with the resultant numerical value in fixed-point
form in Accumulator 2.

XSIGNF AND SIGNF
Purpose

The routine XSIGNF transfers the sign of an argu-
ment Kg to another argument Ky, with both argu-
ments in fixed-point form.

The subroutine SIGNF transfers the sign of an
argument X, to another argument X, with both
arguments in floating-point form.

Range

-9 999 999 999 = K; = +9 999 999 999
and
-10%9 . X, < +10%?

Appendix D: 7070-Series FORTRAN Library Function Subroutines 57

Method
The transfer of sign is accomplished by attaching

the
(sign of argument 2) to l(argument 1) |
i.e.,

(sign of K,) to I(Kl) |
(sign of Xo) to (X))

Error Approximation

No error is produced in the resultant numerical
value.

Requirements for Subroutine Usage

1. The machine must be in the sense mode for
both sign change and field overflow.

2. The subroutine SIGNF must be provided when
subroutine XSIGNF is to be used.

3. A minimum of 10 for XSIGN and 9 for SIGNF
storage locations must be provided.

58

4. Accumulators 1, 2, and 3, and index word
94 must be available for use.

Entry and Exit

Using FORTRAN, an entry example could be

[= XSIGNF(K1, K2 +3) or

A = SIGNF(X1-10., X2 + 1.)
and return would be to the next FORTRAN state-
ment, with the resultant numerical value in fixed-
point form in I, or in floating-point form in A.

In any Autocoder program with the symbolic
deck for XSIGNF or SIGNF as an out-of-line sub-
rou:ci.ne, an example of an entry into the XSIGNF or
SIGNF subroutine is:

BLX 94, XSIGNF
HB K1 or

BLX 94, SIGNF
HB Word con-
taining X1-10.
HP Word containing HP Word con-
K2 +3 taining X2+1.

Return is made to the instruction following the
HP with the resultant numerical value in fixed-point
form in Accumulator 2 for XSIGNF. The resultant
numerical value will be in normalized floating form
in Accumulator 1 for SIGNF.

This appendix provides an explanation of condition
codes that may occur using the 729 tape units or
7340 Hypertape drives. These condition codes
specify whether the priority signal is due to a nor-
mal or an unusual condition.

CONDITION CODES OCCURRING WITH IBM 729
MAGNETIC TAPE UNITS

Code Symbol

Explanation

0 TWE
1 ERROR
2 CLR
3 SLR
4 LLR

Tape word error occurs during 729 tape
reading if the record has: (1) less than
five digits or more than ten digits
before the sign character is detected
(numeric code); (2) a mode change
character (delta) anywhere in the
record except between words

Either a tape data error or a machine
error

Correct length record
Short length record

Long length record

APPENDIX E:

EXPLANATION OF CONDITION CODES

Code Symbol

Explanation

5 EOF
6 EOS
7 SCLR

End of file occurs when reading a tape
mark or writing into the foil strip,
indicating that the end of the 729 tape
reel has been reached

End of segment

Short character length record

CONDITION CODES OCCURRING WITH IBM 7340
HYPERTAPE DRIVES

Code Explanation

1 Channel error (information bus validity
check, address bus validity check,
inhibit validity check, translation
error, data error, control error)

2 Short length record
3 Long length record
4 Unusual end caused by error in 7640

Hypertape control of Hypertape
Drives; e.g., trying to write on a
file protected Hypertape Drive

Appendix E: Explanation of Condition Codes 59

APPENDIX F: SUMMARY OF DIFFERENCES: BASIC AND FULL FORTRAN

In the course of this manual, differences between
the Full FORTRAN language and the Basic FORTRAN
language were pointed out as the various parts of
the languages were defined and explained. The fol-
lowing list is a summary of these differences:

1. Basic FORTRAN does not include the follow-
ing statements:

FUNCTION
SUBROUTINE
CALL

RETURN
COMMON ,

2. Basic FORTRAN language allows a maximum
of two subscripts, while the Full FORTRAN lan-
guage allows a maximum of three subscripts.

3. Basic FORTRAN allows two levels of implied
DOs in the list of an input/output statement; Full
FORTRAN allows three levels.

4. Basic FORTRAN does not include Arithmetic
Statement Functions.

60

5. The lengths of names differ between Full
FORTRAN and Basic FORTRAN as shown in the
table below:

Number of Characters
Type of Name Full FORTRAN Basic FORTRAN
Fixed-point 1-6 1-5
Variable
Floating-point 1-6 1-5
Variable
Library Functions 4-7 1-6

6. The maximum sizes of source programs
differ in Full FORTRAN and Basic FORTRAN (see
discussions on '"Limitation on Source Program
Size').

Admissible Characters 46
Alphameric Field Conversion 17
Arguments, Library Functions 34
Multiple Argument 34
Single Argument 34
Arguments in Common Storage 24
Arithmetic Statement 12
Arithmetic Statement Functions 10
Calling 9
Naming 9
Arrays in Storage 7
ASSIGN Statement 14
Assign GO TO Statement 14
InaDO 14

BACKSPACE Statement 23
Basic Field Specifications 18
Basic FORTRAN 5

Error Messages 44

Size of Source Program 40
Blank Characters 48
Blank Fields 18
Branch List 34

CALL Statement 27
Carriage Control 22
Characters
Admissible 46
Blank 48
Special 47
Closed Subroutines 8
Coding Example 49
COMMON Statement 24
Assignment of Common Area 24
Using COMMON and EQUIVALENCE
Together 24
Compilation, Source Program 5
Basic FORTRAN 5
Full FORTRAN 5
Computed GO TO Statement 13
Condition Codes 60
Using 729 Tape Units 60
Using Hypertape Drives 60
Constants 6
Fixed-point 6
Floating-point 6
Relative 38
Continuation Cards 47
CONTINUE Statement 15
Control Statements 12
ASSIGN 14
Assigned GO TO 14
Computed GO TO 13
CONTINUE 15

DO 12
END 15
IF 14

IF ACCUMULATOR OVERFLOW 14

IF DIVIDE CHECK 14

IF QUOTIENT OVERFLOW 14

IF (SENSE LIGHT) 15

IF (SENSE SWITCH) 15

PAUSE 15

SENSE LIGHT 15

STOP 15

Unconditional GO TO 13
Conversion of Numeric Data 17

E-Type 17
F-Type 17
I-Type 17

Core Storage
Allocation, Common Area 24
Arrangement of Arrays 7

Data-Area Card 31

Actual Data-Area Card 31

Symbolic Data-Area Card 31
Data Input, Object Program 20
DIMENSION Statement 23
DO Statement 12

Assigned GO TO 14

DOs within DOs 13

Ending DO 13

Index of a DO 13

Range of a DO 13

Restrictions on Statements in DO Range

Transfer of Control 13

E-Type Conversion 17
Elements of the Language 5
END FILE Statement 22
End-of-File Card 30
END Statement 15
EQUIVALENCE Statement 23
Error Messages 41

Basic FORTRAN 44

Full FORTRAN 41
Execute Card 30
Expression 7

Rules for Constructing 8

F'~-Type Conversion 17
Field Specifications 18
Iixed-point
Arithmetic 38
Constants 6
Variables 6
Variables, I-Type Conversion 17
Floating-point
Constants 6
Variables 6
Variables, E-Type Conversion 17
Variables, F-Type Conversion 17
FORMAT Statement 16
Data Input Object Program 20
Ending 20
Lists 19
Read at Object Time 20
FORTRAN FUNCTION Subprograms 9
Calling 9
Naming 9
Writing 25
FORTRAN Package 33
Subroutines 33
Full FORTRAN 5
Error Messages 41
Size of Source Statement 40
Table Sizes 40
FUNCTION Statement 26
Functions g
Arguments 9
Arithmetic Statement 10
Library 10, 49
Mode of a 9

GO TO
Assigned 14
Computed 13
In a DO 14
Unconditional 13

INDEX

Hierarchy of Operations 8

I-Type Conversion 17
Index of DO 13

Index of Library Function Subroutines 49

IF Statement 14
IF ACCUMULATOR OVERFLOW 14
IF DIVIDE CHECK 14
IF QUOTIENT OVERF LOW 14
IF (SENSE LIGHT) 15
IF (SENSE SWITCH) 15
Indicators, Relocation 31
Basic & Four-Tape Autocoder 32
Full Autocoder 33
Input/ Output
Lists of Quantities 16
Matrix Form 16
Input/Output Statements 16
Alphameric Fields 17
BACKSPACE 23
Basic Field Specifications 18
Blank Fields 18
Data Input 20
END FILE 22
FORMAT 16
Multiple-Record Formats 19
PRINT 20
PUNCH 20
READ 20
READ INPUT TAPE 21
READ TAPE 22
Repetition of Groups 18
REWIND 22
Scale Factors 19
Tape Input and OQutput 21
TYPE 21
WRITE OUTPUT TAPE 22
WRITE TAPE 22 .

Library Functions 34
Arguments 34

Calling 9
Naming 9
Subroutines 49
Writing 34

Limitations on Source Program Size ’
Basic FORTRAN 41
Full FORTRAN 40
Single Statement 39

Lists
Argument 38
FORMAT Statement 19
Input/Output Statements 16

Messages, Error 41
Basic FORTRAN 44
Full FORTRAN 41
Mixed Expressions 7
Mode of a Function 9
Multiple-Record Formats 19

Object Program, Data Input 20
Open Subroutines 8

Package, FORTRAN 33
PAUSE Statement 15
PRINT Statement 20
PUNCH Statement 20

Index 61

39

READ Statement 20
READ INPUT TAPE 21
READ TAPE 22
Relative Constants 38
in Argument List 39
in COMMON Statements 39
Relocatability 28
Data-Area Card 31
End-of-File Card 30
Execute Card 30
FORTRAN LOADER 28
Requirements of Relocatable Routines 28
Relocatable Program Cards 31
Relocation Indicators 32
Title Card 29
Transfer Entry Card 29
Relocation Indicators 32 .
Basic & Four-Tape Autocoder 32
Full Autocoder 33
Repetition of Groups 18
RETURN Statement 27
REWIND Statement 22

Scale Factors 19
Size of Source Program 39
Basic FORTRAN 39
Full FORTRAN 41
Single Statement 40
Source Program
Admissible Characters 46
Compilation 5

62

Preparing and Punching 47
Sample Problem 4s
Sequencing 45
Special Characters 47
Special Characters in FORTRAN 47
Specification Statements 23
Arguments in Common Storage 24
COMMON 24
COMMON & EQUIVALENCE Together 24
DIMENSION 23
EQUIVALENCE 23
Statement Number 48
STOP Statement 15
Subprogram Statements 25
CALL 27
FUNCTION 26
RETURN 27
SUBROUTINE 27
SUBROUTINE Subprogram

Writing 25
Subroutines 8
Calling 9
Chart 11
Closed 8

FORTRAN Package 33
Function and Subprogram Subroutines g
Library Functions 10, 49
Open g
Subscripted Variables 7
Subscripts 6
EQUIVALENCE Statement 23
Summary of Differences 60

Table Sizes 40
Tape Input and Output 21
Title Card 28
Actual 29
Symbolic 28
Transfer Entry Cards 29
Actual 30
Symbolic 29
Transfer of a Control in a DO 13
Truncation During Computation 38
TYPE Statement 21

Unconditional GO TO Statement 13
Using COMMON and EQUIVALENCE
Together 24

Variables 6
Conversion 17
Fixed-point 6
Floating-point 6
Restriction on Variables 6
Subscripted 7

WRITE OUTPUT TAPE Statement 22
WRITE TAPE Statement 22
Writing
FORTRAN Function Subprogram 25
Library Functions 34
Subroutine Subprogram = 25

Reader's Comments

IBM 7070-Series Programming Systems
FORTRAN

C28-6170-1

From

Name

Address

Your comments regarding the completeness, clarity, and accuracy of this publication

will help us improve future editions. Please check the appropriate items below, add

your comments, and mail.

YES NO
Does this publication meet the needs of you and your staff? - J—
Is this publication clearly written?

Is the material properly arranged?
If the answer to any of these questions is "NO, " be
sure to elaborate.

How can we improve this publication? Please answer below.

D Suggested Addition (Page , Timing Chart, Drawing, Procedure, etc.)

l—__l Suggested Deletion (Page)

D Error (Page)

COMMENTS:

No Postage Necessary if Mailed in U.S.A,

—~ e b

C28-6170-1

FIRST CLASS
PERMIT NO, 8I

POUGHKEEPSIE, N. Y.
]
BUSINESS REPLY MAIL ——
NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,

.]
]
POSTAGE WILL BE PAID BY E—
IBM CORPORATION —
P.O. BOX 390 —
]

POUGHKEEPSIE, N.Y. '
]
]
]
ATTN. PROGRAMMING SYSTEMS PUBLICATIONS —
DEPARTMENT DOl S——
]
L]

o T el

B

International Business Machines Corporation

Data Processing Division, 112 East Post Road, White Plains, N. Y.
STAPLE

" e o o o s o o

CUT ALONG LINE

T-0LT9-82D 'V 'S ‘N1 ul pajuldd

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64

