File Number 7070-30
Form C28-6175-2

IBM Systems Reference Library

IBM 7070-Series Input/Output Control System for
IBM 729 Magnetic Tape Units
Unit Record Equipment (7070-10-904)

The Input/Output Control System (IOCS) described in
this publication was designed for users of IBM 7070-
Series Data Processing Systems with IBM 729 Mag-
netic Tape Units and unit record equipment. Part I
of this publication is devoted to a general explanation
of IOCS. Part II describes the method of supplying
IOCS with variables, and explains the provisions
made for tape errors and SPOOL programs. Part III
presents recommendations for writing and assembling
programs using IOCS.

MAJOR REVISION (December, 1963)

This publication is a major revision of the reference manual IBM 7070
Series Input/Output Control System, Form C28-6175-1, which is

now obsolete, The present edition should be reviewed in its en-
tirety.

The information in the technical newsletter N28-1104 is included in
this publication.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N. Y.

® 1959, 1960, 1961, 1962, 1963 by International Business Machines Corporation

INTRODUCTION
Purpose of This Publication, ., ,
Purposeof IOCS, . .

Tape Records

Unit Records S

Additional Functions of the IOCS [N
Prerequisites, ., . .
Machine Requirements .,, . .
Use of 729 IOCS and 7340 I0CS , . . .
Organization of This Publication. .

PART I: GENERAL PROGRAMMING METHODS .
System Elements

File Specifications, .

File Scheduler.

Channel Scheduler, . .
Subroutines.,
Principal Macro-Instructions.

OPEN Macro-Instruction
GET Macro-Instruction., . .
PUT and PUTX Macro-Instructions . , . .
CLOSE Macro-Instruction, . ., . ., . .
Examples of Macro-Instruction Use ., |,

Tape Record Blocking
Reading and Writing Time
Amount of Tape Used
Processing Blocked Records

Input/Output Areas
OneArea,
Two Areas . , , , e e e e
Three Areas for One Flle e e e
Three Areas for Two Files
Three-Area Rotating System, .
Processing Using Multiple Areas ,

.Record Processing , ., .,
RecordMove
RDW Exchange , . C e e e e e e
Processing Work Areas s s e s e s e

Tape Record Forms
Form1
Formz2 .,

Form3
Form4 v e e
Record Form Operatmg T1me e e e e e

Tape Labels
General Description. . . . P
Labeling Tapes Entering the System [P
Labeling Data Tapes. . . e e
Explanation of the Header Label e e
Trailer Label Format . .,

PART II: WRITING ENTRIES FOR THE IOCS . .
System Descriptive Entry (DIOCS) .,
DIOCS for Programs Using Only 729 Tape Units
DIOCS for Programs Using 7340 and 729 Units .
END DIOCS Statement, , . . .

Generation of Routines, . . .
Precompiled IOCS Package,
Obtaining Package

‘Branch List ., , . e e e
Using Precompiled IOCS Package Coe e e
Tile Specifications for Tape Records .,
Programmed Entries, . . .
File Specification Entries ., . .
Returns from IOCS Exits . . .,
Tape Record Areas

(S IR IS IS, NS IS, B B, IS I <]

Swwwwmwwmqqqmomammm@m

el e e e N N e o O g e e S
OB R BRBANDNNONNNNDNNDRS OO S O

16
16
16
17

18

18
18
18
19
19
19

20
.21
. 26

26

Defining Areas for Form 1 and Form 2

Input Records , .
Defining Areas for Form 1 and Form 2

Output Records . . . v e e e e
Defining Areas for Form 3 Input Records. . . .

Defining Areas for Form 3 Output Records
Defining Areas for Form 4 Input Records. .

4 RDWs for Form 4 Input Records

Defining Areas for Form 4 Output Records . . .
RDWs for Form 4 Output Records . ., .

Input/Output Macro-Instructions for Tape Files .

OPEN Macro-Instruction, . ., . .
CLOSE Macro-Instruction. .,
END Macro-Instruction, . ., P

GET Macro-Instruction,,
PUT Macro-Instruction., . .
PUTX Macro-Instruction . . . e

RLSE (Release) Macro- Instructwn .

RDLIN (Read Label Information) Macro- Instructlon
WTM (Write Tape Mark) Macro-Instruction , . .
WSM (Write Segment Mark) Macro-Instruction . .
BSP (Backspace) Macro-Instruction ,
RWD (Rewind) Macro-Instruction
RDSF (Read Segment Marks Forward)

Macro-Instruction . . , .
RDSB (Read Segment Marks Ba.ckward)
Macro-Instruction ., . . .o

FEORN (Force End-of-Reel on an Input Tape)
Macro-Instruction . .
FEOR (Force End-of-Reel for an Output Flle)

Macro-Instruction . . e e ..
DEOR (Delay End-of-Reel on an Output Flle)
Macro-Instruction . ., ., ., e e e e
Processing of Labels by the IOCS

Input/Output Label Area
DC Entry for Output File Labels.
Additional Output Label Processing . Coe e
DC Entry for Input File Labels, . . .
Additional Input Label Processing
Input Label Information Card , .
Termination Card

End-of-Reel Routine. . . e e e e

Operational Description of the Routine. . . . ,

Descriptive Entry for Unit Records (DUF).,
Input/Output Macro-Instructions for Unit Record Files

GET Macro-Instruction . . ., . . . ,
PUT Macro-Instruction e e e

Provisions for Tape Errors

Correction of Output Tape Errors
Correction of Input Tape Errors e e e e

Programmed Halts and Messages
Messages inIOCS

Message

Checkpoint Procedures e

Checkpoint Descriptive Entry (DCHPT) .
CHPT Macro-Instruction . , .

General Description of Checkpoint and Restart

Routines

Initialization and Assignment Routine
Use of Shared Files with Alternating Tape Umts .o

Additional Details About Checkpoint
Index Words 1 and 2 T,

Restart Initiator, .

Restart Procedure . . .

Restart Procedure When Usmg ‘Shared Flles thh
Alternating Tape Units

CONTENTS

.

Processing More than One Header Label During Restart.

. 30
.31
. 31
. 32
. 32
. 33

37

. 40
. 40
. 41
. 42
. 42
. 43
. 43
. 44

33

. 34

. 36
. 36

. 36

37

38

47

. 47

. 47
. 48

48

. 48
. 48

52
52
53

Restarting with SPOOL . . .
Provisions for SPOOL Programs

PART III: WRITING PROGRAMS USING THE 10CS .
Use of IOCS with Autocoder .
Quantity and Type of Entries . .
Positioning of Entries
Use of OPEN1 and OPENS e e e e e
Use of OPEN3 c e e e e
Use of EOR3 . . .
Use of BRANCH CNTRL Entrles .
Priority Mask e e e e e e e
Program Exits . . . e . .
Use of File Names in Autocoder Macro Instructlons .
Use of Tape Record Index Words
Use of Unit Record Index Word . .
Changing Record Length . .
Processing in Output Areas
Processing Long Records
Precompiled IOCS Subroutine Deck
Compiling Source Programs =«
Combining the Object Decks
Compiling the I0CS Subroutine Deck . . .
7072/7074 10CS for Additional Storage. .
10CS for IBM 7330 Magnetic Tape Units of the
7072 Data Processing System . .
Use of the Read Binary Feature with the IOCS
Use of the IOCS with Four-Tape Autocoder . .
Summary of Storage, Index Word, and Electronic
Switch Utilization . . .
IBM 7070-Series Input/Output Control System for
Tape and Unit Records e e e e e
IBM 7070 SPOOL System . . PR
IBM 7070 Condensed Card Load Program

APPENDIX: SCHEDULER OPERATION

INDEX . . .« + « « « « o «

PURPOSE OF THIS PUBLICATION

This publication describes the Input/Output Control
System (IOCS) designed for users of IBM 7070-
Series Data Processing Systems with IBM 729 Mag-
netic Tape Units and unit record equipment.

PURPOSE OF 10CS

I0CS provides users with routines for reading and
writing card and tape records. Since input and out-
put routines constitute nearly half of the average
program, use of IOCS results in substantial savings
in the cost of program writing and testing, and a
major reduction in programming time and effort, In
addition, IOCS produces input/output routines that
are efficient, free from programming errors, and
standardized.

Tape Records

IOCS macro-instructions enable the programmer to
process data records that are to be written on tape
or read from tape. The reading and writing of tape
records is controlled by IOCS and occurs simultane-
ously with processing. Blocking of output data rec-
ords and deblocking of input data records are
handled automatically by the Input/Output Control
System.

IOCS includes a tape reel control system that
checks the mounting of magnetic tapes for each run
of the program and aids in tape library maintenance.

Unit Records
IOCS macro-instructions enable the user to cause

unit records to be read, punched, and printed on on-
line equipment.

Additional Functions of the IOCS

I0CS includes checkpoint and restart routines that
make it possible to interrupt a pro'gram at any point,
and to continue from that point at another time.

10CS allows the running of SPOOL (Simultaneous
Peripheral Operations On-Line) programs during the
main program. See IBM 7070 SPOOL System, Form
J28-6047, for information on SPOOL programs.

IOCS contains error routines for tape records and
unit records. The error routines correct errors
automatically whenever it is possible to do so.

The functions provided by IOCS are incorporated
into the user's program during assembly by Auto-
coder. If Four-Tape Autocoder is used to assemble
a program, precautions regarding the use of certain

INTRODUCTION

macro-instructions must be observed (see '"Use of
IOCS with Four-Tape Autocoder' for details of these
precautions).

PREREQUISITES

The reader should be familiar with one of the 7070-
Series Autocoder programming systems. These are
described in the following publications:
IBM 7070/7074 Four-Tape Autocoder, Form
C28-6102
IBM 7070 Series Programming Systems, Auto-
coder, Form C28&-6121
A knowledge of the following publication is also
required:
IBM 7070-7074 Data Processing Systems,
Form A22-7003

MACHINE REQUIREMENTS

Programs using IOCS are assembled by the Autocoder
Processor, which requires the following machine
configuration:
1. IBM 7070-Series Data Processing System
2. Six to ten IBM 729 Magnetic Tape Units
3. IBM 7500 Card Reader or IBM 7501 Console
Card Reader, if any input is in punched card
form
4, IBM 7550 Card Punch, if on-line punching of
output is desired
5. IBM 7400 Printer, if on-line printing of output
is desired

USE OF 729 IOCS AND 7340 IOCS

A 7074 Program that will run using both IBM 7340
Hypertape Drives and IBM 729 Magnetic Tape Units
requires the use of both 7340 IOCS and 729 IOCS.
The 7074 user who plans to incorporate both IOCSs
into his program should be familiar with the publica-
tion IBM 7074 Input/Output Control System for IBM
7340 Hypertape Drives, Form C28-6315.

ORGANIZATION OF THIS PUBLICATION

This publication is divided into three parts. Partl
discusses the factors governing the programmer's
choice of processing and record-handling methods
when using IOCS. Part II describes the method of
supplying IOCS with variables, and explains the pro-
visions made for tape errors and SPOOL programs.
Part III presents recommendations for writing and
assembling programs using IOCS. An appendix is
included, in which the theory of scheduler operation
is presented.

Introduction 5

PART I: GENERAL PROGRAMMING METHODS

To aid the programmer in understanding and using
the IBM 7070-Series Input/Output Control System
for 729 tape units and unit record equipment, the
first part of this publication discusses the factors
governing the choice of record blocking, record
areas, processing methods and record format. An
understanding of these factors will enable the pro-
grammer to write an efficient program using all the
features provided through 10CS.

SYSTEM ELEMENTS

IOCS is incorporated into a user's program in
several different but closely integrated sections;
these sections are produced during Autocoder as-
sembly based on information supplied by the pro-
grammer,

File Specifications

Each file used in a program must be described by a
set of File Specifications. This is done through the
use of a DTF (Define Tape File) statement and its
subsequent entries. The DTF defines a number of
parameters related to the file and its records. In
conjunction with the File Specifications, the pro-
grammer must furnish one or more Autocoder DA
entries for the tape record area(s) and an Autocoder
DC entry for tape label information.

File Scheduler

A File Scheduler that controls the reading or writing
of the file is produced for each file during Autocoder
assembly. The precise arrangement of the File
Scheduler is based on parameters supplied by the
programmer in the DTF statement (see ""File Spec-
ifications"),

Channel Scheduler

A Channel Scheduler is used to regulate the use of
one tape channel by one or more File Schedulers.
During Autocoder assembly, a Channel Scheduler is
produced for each tape channel used in the program.

Subroutines

A number of subroutines that are used for the entire
program are incorporated into the program during
the Autocoder assembly. The most important of
these subroutines are:

1. The OPEN subroutine that is used by a macro-
instruction to prepare the first reel of a tape file for
processing.

2. The CLOSE subroutine that is used by a macro-

_ instruction to make a tape file unavailable for proc-

essing,

3. An end-of-reel subroutine that is used to change
from one reel of a file to the next. It is also used to
complete the processing of the last reel of a file and
then remove it from processing.

4, An error subroutine that is used to detect and
correct tape errors. This subroutine is also used to
handle any of the unusual condition codes that may
occur during the running of the program.

5. A checkpoint subroutine that enables the user
to record the contents of core storage at a specific
moment, to permit restarting the program later at
the same point.

6. A restart subroutine that allows the user to
interrupt a program at any time and to continue it
again at another time.

Each of the subroutines mentioned above is en-
tered, directly or indirectly, by means of a macro-
instruction that causes the generation of a linkage to
the subroutine.

PRINCIPAL MACRO-INSTRU CTIONS

The principal macro-instructions provided by the
I0OCS are OPEN, GET, PUT, and CLOSE. All of the
macro-instructions are described in detail later in
this publication, but a brief description of the four
principal macro-instructions is given here to assist
in understanding the use of I0CS.

OPEN Macro-Instruction

The OPEN macro-instruction prepares input and
output files for processing. To prepare a file for
use, the OPEN macro-instruction:

1. Initializes other IOCS routines for processing
the file.

2. Tests to see that the first reel of the file is
ready on the specified tape unit.

3. Processes the header label of the first reel of
a file.

GET Macro-Instruction

The GET macro-instruction makes one data record
available for processing; it may also be used to move
the data record to a work area. Many GET macro-
instructions may refer to the same file; each GET
macro-instruction obtains the next sequential record
in the file.

Deblocking of input record blocks is performed
by the GET macro-instruction. It also indicates to
the File Scheduler that all the records in an input
area have been processed and that the area is ready
for the next block of input records.

After the last record in an input file has been
processed, the next GET results in a branch to an
end-of-file subroutine rather than an attempt to ob-
tain another input record.

PUT and PUTX Macro-Instructions

The PUT and PUTX macro-instructions are used to
cause records to be included in an output file.

One form of the PUT macro-instruction moves
one record froma processingarea to the next avail-
able space in an output area, and causes the record
in the preceding space in the output area to be in-
cluded in a block of records waiting to be written.

A second form of the PUT macro-instruction is
used when processing is to be done in an output
area. It causes the record in the preceding space
in the output area to be included in a block of
records waiting to be written. It also changes the
index words for the output file to define the next
space in the output area.

The PUTX macro-instruction exchanges input
area RDWs with output area RDWs so that records
from input files can be included in output files with-
out actually moving the records.

Many PUT and PUTX macro-instructions may
refer to the same output file; each one causes a
record to be included in the file,

A function of the PUT and PUTX macro-instruc-
tions is to form the output records into blocks.
These macro-instructions also indicate to the File
Scheduler that all spaces in an output area have been
filled by processed records, and that the block is
ready to be written on tape.

CLOSE Macro-Instruction

The CLOSE macro-instruction makes the input and
output files named in its operand unavailable for
processing. It is normally used when all input files
in a program have reached end of file. When
executed, the CLOSE macro-instruction:

1. Writes any output records that may still be
in output areas.

2. Places the files in inactive status to make
them unavailable for processing.

The CLOSE macro-instruction allows the user to
specify which filesare to be made unavailable. (The

END macro-instruction can be used to perform
similar operations on all active files.)

Examples of Macro-Instruction Use

The following simplified programs illustrate the use
of the principal macro-instructions. These examples
show only the macro-instructions; since the instruc-
tions for processing the records are irrelevant, they
are represented only by dots.

Example 1. A program for reading one input
file, updating each record, and writing an output
file can be written as follows:

Sequence Name Oparotion OPERAND
J{ {Lin)

)g ¢ (Label) \she_Code ool 5 38 “ . zwc Alnot:ln
L | NIEERNIAN T FACARAAEN
- lof2] | : :' i IREREREENN] ;| ! ;
o) NNNRCHNRRBRNANNRUAN ! i
| [jolsi .‘ REINRD] AN]
1L H] il o h hui Al I]
ol7] REBED
ol STREONNNN! RN
Bhi { leiu,‘r e UmEL [ﬁuxﬁuTn 3
1N !E’ N TTTT]
B tiak Faaleet astatisad
e "'][E‘! R M |
L i i K
11 1 RRNANNRARARE,

NOTE A: One input record is made available for
processing. If all the records in the input file have
been processed, a branch to ENDOFJOB will occur,

NOTE B: The record made available by the GET
macro-instruction and processed in the input area
is moved to the output area.

Example 2. A programfor reading one input file,
updating each record, and placing it in an output file
by exchanging RDWs can be written as follows:

(p?""('ﬂﬁ? Name Operation OPERAND —I
h sl {Label) wglie_Code olp 28 30 3 40 ay
T R R PR R i HI [K] T i r'-
QL - {GET 1 NR T e et
o2 i [RSN I I N : |
el N N N NS ESER RN N PR R
oa | 1 [T ik l-NREc;IL&?_;a{JTRE - :
05, RN D . L

Example 3. A program for reading one input file,
moving each record to a work area for processing
and writing an output file can be written as follows:

(Psqiqu(.l?(ﬁ: Name szeronon OPERAND.)
%0 "sle _ (Laben 1shie_Co9 pol 28 Y - - LS
rov et TIGET | liNREQ) X L

o S B B -

o3 L. L 4 e} :
oall i byt RKAREA \N @uUTEEC | .
- as I |r R f 3 i I i ! i

= , AR T ;

General Programming Methods 7

Example 4. It may be desirable to delete a rec-
ord during the reading, updating, and writing of a
file. This can be accomplished by ignoring the rec-
ord when executing a PUT or PUTX macro-instruc-
tion. A program involving deletions can be written
as follows:

Sequence Name Operation OPERAND B
fp'}hm"‘)u‘ oot -eluvc“' T - ' 2 40 a 0
Lo ek Terw Thmelel © Ll il L]
ozl A RGN S DN N BOSA KA SE S ANN AOG

o sl L
—;~q$l Sk - ; il
i% T 1 lseel e

i 7, . | |

T 1 +
| o el 1N 1} Vs
Ly L il

RN h 1 ‘ I I

(BRI [EEREEE |

NOTE C: In this example, the record is deleted
whenever the comparison (Line 04) turns on the LOW
‘indicator. Any method may be used to determine
which records to delete.

Example 5. Records that do not appear in an in-
put file may_lbe assembled in storage for inclusion in
an output file. For example, heading lines or total
lines for a report could be assembled in storage and
inserted in an output file when necessary. A pro-
gram for this purpose can be written as follows:

Sequence Name Operation

OPERAND
{Pa|fLin) (Loven)

i o9 2ol 25 B 40 as

L O i : . . }

02! B : .

4

o3 |+ PUT |STeREDREC [IN ‘euiTREC
L 04 ; S i : I
IR . e C

TAPE RECORD BLOCKING

Tape reading and writing time and the amount of tape
used should be considered when planning a program
using magnetic tape input and/or output; it is usually
desirable to keep these items to a minimum. By
writing records in blocks (i.e., two or more data
records not separated by inter-record gaps), read-
ing and writing time per data record and the amount
of tape used can be reduced. The number of data
records in one block is called the "blocking factor."

Reading and Writing Time

The manner by which blocking reduces the reading
and writing time is easier to understand through a
comparison of blocked and unblocked records. For
comparison purposes, assume that 1.0 millisecond
is required to process one data record of a file in a
program that reads only one tape file from an IBM
729 IV Magnetic Tape Unit; each data record has 50

tape characters written at a density of 556 characters
per inch. The various times for unblocked records
and for blocks of 40 data records are as shown below:

Time per Data
Record in Milliseconds

40 Data Records
Tape Operation Unblocked per block
Read Record 0.8 0.8
Start/Stop 7.3 0.2*
Total 8.1 1.0

*Approximate quotient of 7.3 divided by 40

When the time to process one data record (1.0) is
compared with the total time for the tape operations
(8.1), it can be seen that about 87% (8.1/8.1-1.0) of
the total time is spent waiting for a tape operation to
be completed. Such a program is said to be "tape-
limited. ' The table shows that by writing 40 data
records in a block, the total tape operation ti}ne per
data record can be reduced to 1.0 millisecond. The
reduction is possible because the tape must be started
and stopped only once for the block of 40 data records,
rather than once for each unblocked data record.

From the example, it would seem that the highest
possible blocking factor should be used, but very high
blocking factors may create other problems. Ex-
tremely high blocking factors may require too many
storage locations, thereby limiting the space needed
by the program. Although the tape operation time
per data record can be reduced to a very small value
by using a very high blocking factor, the running
time of the program may remain the same. In the
example given above, the tape operating time could
be reduced below 1.0 millisecond by using a blocking
factor greater than 40, but the running time of the
program would remain 1. 0 millisecond per data rec-
ord; when the processing time determines the run-
ning time, the program is said to be "process-
limited. "

The blocking factor used should be a compromise
between tape operation time and storage required. A
blocking factor that produces a tape record of from
2,000 to 4,000 characters is suggested as a suitable
compromise. If tapes are to be prepared on, or
used with, an IBM 1401 Data Processing System, a
blocking factor to produce tape records of from 1,000
to 2, 000 characters may be more suitable.

Amount of Tape Used

Blocking data records on tape reduces the amount of
tape used by reducing the number of inter-record
gaps. If each tape record contains 50 characters

written at a density of 556 characters per inch,
about 33,000 records can be written on one reel of
tape in unblocked form. About 254, 000 of these rec-
ords can be written on one reel of tape if a blocking
factor of 40 is used. Blocking records reduces the
number of reels of tape required for a long file. An
added advantage of using fewer reels of tape for a
file is that the operator has fewer mounting and un-
mounting operations to perform; fewer manual oper-
ations reduce the likelihood of errors in tape
handling.

Processing Blocked Records

The blocking and deblocking of records is handled
entirely by I0OCS, and does not complicate the pro-
grammer's job. The records are made available in
sequence, so the programmer may write the pro-
gram as though each data record were a separate
tape record. In conjunction with blocking and de-
blocking data records, the reading and writing of
tape records are controlled by IOCS, so that tape
operations occur simultaneously with processing.

INPUT/OUTPUT AREAS

In order to read or write a block of records, a stor-
age area must be provided to contain the block after
it is read or before it is written. The storage area
must be large enough to contain a complete tape
block.

IOCS allows the user to specify one, two, or three
storage areas for each tape file. This means that
one, two, or three tape blocks from the correspond-

ing file may be contained in storage at the same time.

The number of areas used for each file can deter-
mine the efficiency of the program. When selecting
the number of areas to be used for a file, the pro-
grammer must consider:

1. The amount of storage that will be taken up by
one, two, and three tape blocks. The storage loca~
tions needed for other portions of the program, i.e.,
instructions, constants, etc., may limit the number
of areas that can be specified.

2. The number of tape files in the program. If
there are many files used in the program, the num-
ber of areas specified for some files may have to be
limited to conserve storage locations.

3. The activity of the file. When the storage
locations available for areas are limited, the most
active files should be given preference for multiple
areas.

4. Whether the program will be tape-limited or -
process-limited. If the program is tape-limited,
multiple areas may help to reduce the running time
of the program.

The various numbers of areas that may be used
with IOCS are described separately below, to aid the
user in selecting the most suitable number for each
file.

One Area

When one area is specified, the program must pause
for a tape operation (read for input files, write for
output files) after the processing of each block of
records. The pause follows the processing of the
last record of a block. Before the first record of the
next block can be processed, the next input block
must be read, or the output block just completed
must be written. The time taken by the tape opera-
tion will be equal to the start time (10. 8ms. for a
729 II or 7. 3ms. for a 729 IV) plus the time required
to read or write the entire block of records.

It can be seen that processing is suspended during
the tape operation when only one area is used for a
file; multiple areas allow processing to overlap tape
operations. Therefore, one area should be specified
only when storage locations are limited by other pro-
gram requirements. One area may be suitable for
files that have only a few records compared to other
files used in the program. In this case, and for low-
activity files, the occasional pauses for tape opera-
tions have little or no effect on the total running time
of the program.

Two Areas

The pause for tape operations can be eliminated by
using two areas for a file. After the last record in
a block has been processed, the program can advance
to the first record in the next block, which will be in
the other record area. While processing continues
in the second area, the first area can be used for a
tape read or write operation. The two areas are
used alternately for processing and tape operations.
For input files, this action obtains the next block

of records before the program calls for it; for
output files, this action enters the last block of rec-
ords into the file while the program is producing the
next block.

Considering the advantages of using two areas
rather than one, the use of two areas will probably
become the normal procedure; the use of one area
will be confined to programs that impose restrictions
as explained under "One Area." ’

Three Areas for One File

Three areas may be specified so that three blocks of
records from a file can be contained in storage at the
same time. The use of three areas for one file is

General Programming Methods 9

comparable to the use of two areas as described
above, except that another block of records is avail-
able. For input files, two blocks of records can be
read into storage while the program is processing
another block; for output files, the program may
prepare two blocks of records while the other is be-
ing written on tape.

Under most circumstances, the use of three areas
has no timing advantage over the use of two areas.

Three Areas for Two Files

When an input file is to be read, updated, and written
in an output file, the "normal' procedure is to use
two areasfor eachfile asdescribed above. The need
for four areas for this type of processing can be re-
duced to three under certain conditions. If no rec-
ords are to be added or deleted during the processing
of the files, IOCS allows the use of only three areas
for both files.

When two files are used with three areas, each
area is used in rotating sequence. This means that
each area functions successively as an input area,
as a processingarea and thenas an outputarea. For
example, when the first area isbeing written into the
output file, processing is being done in the second
area and the input file is being read into the third
area; after processing in the second area is com-
pleted, it will be used for writing into the output file,
and processing will then take place in the third area
while the first area is used for reading from the in-
put file.

Three-Area Rotating System

When an input file and an output file share three tape
record areas, as indicated by the digit 3 in Line 16
(IOMETHOD) of the File Specifications (see "File
Specifications Entries') for the two files, no PUT
macro-instructions that reference the output file
should be used. The writing of tape blocks on the
output file is controlled entirely by the use of GET
macro-instructions referencing the input file. As
the GET routine obtains the first record of a new
input block for processing, it also causes the pre-
vious input block (all records of which have been
processed) to be written.

Processing Using Multiple Areas

The use of more than one area for a file does not
complicate the programmer's job. All functions
governing the use of multiple areas are performed
by the IOCS and the programmer may write his pro-
gram as though only one area were being used.

RECORD PROCESSING

A very common data-processing operation requires
that data be read from an input file, processed, and
then written in an output file. Examples of this type

10

of operation are file maintenance (read a master
tape, update the records, write a new master tape)
and preparation of reports (read a tape, edit data
into proper form, write a tape for printing later).
The macro-instructions provided by IOCS allow two
methods of record processing; one method moves the
records, the second exchanges the RDWs that define
the records.

Record Move

The most obvious way of placing an input record in
an output file is to move the record from the input
area to the output area. This can be accomplished
through the use of the PUT macro-instruction, which
moves data by the use of the block transmission fea-
ture of the IBM 7070. When records are moved from
an input file to an output file, processing must be
done in the input area before the record is moved.
To facilitate processing in the input area, the GET
macro-instruction, which provides the input record,
places the address of the first word of the record in
the indexing portion of an index word. The record
may be processed by instructions that consider the
first word of the record as relative to 0000, and that
are indexed by that index word.

When all records contained in one input area have
been moved to an output area(s), IOCS will read a
new block of input records into the area. After an
output area hasbeen filled by moving records into it,
I0CS will write the contents of the area on tape; upon
completion of the tape write operation, the area will
be availabe to receive more records.

RDW Exchange

Another, and frequently superior, method of record
processing made possible by IOCS exchanges the
Record Definition Words that define the records in
the input and output areas. For most record forms,
reading and writing are controlled by lists of RDWs;
this allows a record to be ''sent'" from an input area
to an output area by exchanging RDWs in the lists.
Through the use of the PUTX macro-instruction, the
RDW that defines the input record is placed in a list
that will be used for writing, while the RDW that de-
fines the next available output space is placed in a
list to be used for reading. When records are "sent"
from an input file to an output file by exchanging
RDWs, processing must be done in the input area
before the RDWs are exchanged. The record may be
processed in the input area using indexed instructions
as described above for records to be moved.

To illustrate the exchange of RDWs, assume that
five RDWs of an input area are in List A, and those
for anoutput area in List B. Individual RDWs willbe
referred to by their listletter andnumber in the list;
e.g., the fifth RDW in List B will be called B5.

Figure 1A shows the status of each list of RDWs
before any RDWs are exchanged.

The RDWs in List A were used to control the
reading of the input records that are about to be
processed. Previously, the RDWs in List B were
used to control the writing of a block of output
records; they now represent available spaces.

List A List B List A List B List A List B
Al B1 B1 Al B1 Al
A2 B2 B2 A2 B2 A2
A3 B3 A3 B3 B3 A3
A4 B4 A4 B4 B4 A4
A5 BS A5 B5 B5 A5
Figure 1A Figure 1B Figure 1C

After two of the records have been processed, the
status of the lists would be as shown in Figure 1B.
The input records defined in RDWs Al and A2 have
been processed and the RDWs have been placed in
List B, while RDWs B1 and B2 have been placed in
List A to represent available spaces.

Figure 1C shows the status of both lists after all
records in the block have been processed. The
RDWs in List B will be used for writing a block of
output records defined by RDWs Al through A5, and
List A will be used to control the reading of the next
block of input records. It can be seen that List A
always controls reading and List B always controls
writing although the actual storage locations defined
by the RDWs change.

The advantage of RDW exchange over the record
move method is especially apparent when large rec-
ords are being processed; for although the time
needed to move a record depends on its length, the
exchange of RDWs is independent of record length.
The way the form of record affects the time needed
for the move and exchange method is explained under
"Record Form Operating Time."

Figures 1A, 1B, and 1C illustrate the exchange of
RDWs with a simple '"balanced' operation; i.e.,
having one input file and one output file with identical
blocking factors. These conditions were chosen to
simplify the description, but the RDW exchange is
not restricted to '"balanced' operations. As men-
tioned under '"System Elements'", each tape file has
an independent File Scheduler that allows RDWs to
be exchanged for practically any type of processing
operation., RDW exchange can be used to process
many input and output files that may have different
blocking factors. Records can be deleted from a
file by not referring to them with a PUTX macro-
instruction. To insert records into files that are
processed by RDW exchange at some point in the pro-
gram, it is only necessary to move the record into

the file using a PUT macro-instruction. The records
to be insertedneed not be obtained from an input file,
but may be created by the program in a work area.

Note that once an input record has been "sent'" to
an output file by RDW exchange, it can not be moved
or exchanged with any other output file. The record
move method allows a record to be placed in any
number of output files; therefore, if a combination of
the move and exchange methods are used, the ex-
change of RDWs must occur last. For example, if
an input file is to be used to produce four duplicate
files using both the record move and the RDW ex-
change methods, records must be placed into the
first three output files using the move method; the
exchange method may be used to produce the fourth
output file.

Processing in Work Areas

The record move method of record processing (see
"Record Move') requires that the input records be
processed in the input area. Records may be proc-
essed. by moving each record to a work area, and
then moving it to an output area. The record may be
moved to a work area either immediately by a GET
macro~-instruction or, after some initial processing,
by a MOVE macro-instruction. When processing in
the work area is completed, the record must be
moved to an output area. RDW exchange is not per-
mitted at any stage of this double-move method.

Although processing records in work areas re-
quires that the record be moved twice, the instruc-
tions that are used to process the data in the work
area need not be indexed.

For low-activity files, a combination of process-
ing using the MOVE and PUTX macro-instructions
can eliminate the time required to move an inactive
record twice, while permitting active records to be
processed in the work area without indexed instruc-
tions. This method of processing requires that each
record be checked for activity in the input area after
being obtained by a GET macro-instruction. If the
check indicates that the record is inactive, the rec-
ord is entered into an output file by using the PUTX
macro-instruction, thereby eliminating the time re-
quired to move the record to the work area and then
to the output file. When the check indicates an active
record, the record isplaced into the work area, using
the MOVE macro-instruction. The record is proc-
essed in the work area using non-indexed instruc-
tions, and then entered in the output file by using the
PUT macro-instruction. A simplified routine for
this method is shown below.

In this example, a record is considered active
when the part number in a detail record (DETAILNUM)
is equal to the part number in the master file
(MASTERNUM),

General Programming Methods 11

Sequenc
-"'ﬁs‘“'“.s 0 (r:::' | : 9‘.7"’6“'101 2 20 28 DPE:: " 4 ;o-
o T " R T T
a2 - :
03 INEXTHTEM . |GET |1 NF I -
odt 1 hosid(peTaiinui £ malsTERMUM) , UPDATE
os i) l.:u-rx INEiLE 1N louTELE :
oG I : EXTITEM
07 luppaTE [OVE INEILE TO WORKAREA. |~ . | 1]
R = hd :
09 P :
\O . ! :
1: Sl JPUT MWORKAREA 1M OUTEILE
1.2 : :
T R N IR AR : 1] L
7 EENRA R AR R DR AR B L RN EREE
[EENEEERNRNERA RRR I B EERERERNE R

TAPE RECORD FORMS

The factors that must be considered in selecting the
record form to be used for a program are:

1. The amount of storage required for a record,

2. The amount of tape used for a record,

3. The time required to execute the macro-
instructions that refer to the records,

4. The convenience of processing the data when it
is in a particular form.

IOCS has been designed to process four different
record forms. Programs may be written using
several tape files that have different record forms
provided all records in any one file are of the same
form.

Of the four forms processed by IOCS, one (Form
1) refers to blocks of data records having a fixed
number of words. The other three (Forms 2, 3, and
4) refer to various methods of controlling the block-
ing of data records having a variable number of
words. Each of these forms is described separately
below, together with an explanation regarding the ap-
plicability of each form to various situations. A
pictorial representation of the four forms of records
is shown in Figure 2.

Form 1

Records are referred to as Form 1 records when
there is-a fixed number of records in each block and
each record has a fixed number of words. Form 1
is the simplest, most straightforward of the four
forms and should be used whenever the amount of
data does not vary from record to record.

Processing of Form 1 records can be done either
by moving the records or by exchanging the RDWs
of the records.

Form 2
Records are referred to as Form 2 records when
there is a fixed number of records in each block and

each record has a variable number of words (i.e.,

12

any number of words up to a maximum selected by
the user). The last word in any Form 2 record
which does not contain the maximum number of words
must be alphameric, with a record mark in the low-
order position. It can be seen that Form 2 records
are very similar to Form 1 records, except that
records may vary in length under control of record
marks at the end of records. Form 2 is suggested
for files when the variation in length between records
is slight.

Processing of Form 2 records can be done either
by moving the records or by exchanging the RDWs of
the records.

Form 3

Records are referred to as Form 3 when each block
has a variable number of variable-length records;
the maximum number of words in a block is selected
by the user. A field must be included in a fixed posi-
tion in each Form 3 record to contain a count of the
number of words in the record.

The number of records in a block will not be fixed,
but will vary according to the length of the individual
records in the block. Records will be placed in a
block as long as the addition of a record does not ex-
ceed the maximum size of the block. When a record
is too long to be inserted into the remaining words of
one block, that block is written onto tape, and the
record becomes the first record in the next block.
For example, if the maximum block size is 100
words, and 96 words have been filled, a 7-word
record could not be inserted into this block. A tape
block of 96 words would be written, and the 7-word
record would become the first record of the next
block.

Form 3 is suggested for files consisting of a large
number of records that vary in length between wide
limits. Although the lengths of Form 3 records may
be very different, the block size will tend to be
constant as compared with Form 2 records; the block
size for Form 2 records can vary considerably if the
record lengths have wide variation,

Processing of Form 3 records must be done by
moving the records. Form 3 records can not be
processed by exchanging the RDWs because this form
of record is not read or written under control of
individual RDWs.

Form 4

Records are referred to as Form 4 when each block
has a fixed number of records, each of which is
divided into a fixed number of sections of variable
length. Each section of a record may have a differ-
ent maximum size; the maximum number of words
in each section is selected by the user. Whenever

Form 1 Records

IRG Record 1 - 30 Words Record 2 - 30 Words Record 3 - 30 Words Record 4 - 30 Words IRG
{
Blocking Factor = 4
Record Length = 30 Words
Form 2 Records
1
RG Record 1 Record 2 Record 3 Record 4 RG
20 Words ¥ 30 Words 15 Words 25 Words
¥ +
Blocking Factor = 4
Maximum Record Length= 30 Words
Form 3 Records
RG Record 1 Record 2 Record 3 Record 4 RG Record 5
|20| |40l |20| |15| |30'
Maximum Block Size = 120 Words
Form 4 Records
Record 1 Record 2
IRG Sec, 1 Section 2 Section 3 Section 1 Section 2 Sec, 3 IRG
10 Wci; 25 Words 15 Worci's: 30 Words 20 Words + 10 ng;

Figure 2

Blocking Factor =2

Subrecord Blocking Factor=3
Maximum Length of Section 1=30 Words
Maximum Length of Section 2 =25 Words
Maximum Length of Section 3 =20 Words

General Programming Methods

13

a section contains less than the maximum number of
words, the last word in the section must be alpha-
meric, with a record mark in the low-order position.

Form 4 is suggested for files having variable
length records that can be divided into a fixed num-
ber of sections of variable length. It can be seen
that one section of a Form 4 record is similar to an
entire Form 2 record. When records are less than
the maximum length, Form 2 can result in a saving
of time and tape at the end of each record while
Form 4 can result in a saving at the end of each sec-
tion that is not the maximum length.

Processing of Form 4 records can be performed
either by moving the records or by exchanging the
RDWs of the records. Exchanging RDWs is possible

because there is an RDW for each section of a record.

Record Form Operating Time

A factor that may enter into the selection of a record
form for a file is the time required by the macro-
instructions to process each record form.

The following table shows the approximate operat-
ing times for each record form for GET, PUT, and
PUTX macro-instructions.

Operating Time in Microseconds
Record Form GET PUT PUTX
1 156 300 +24W 300
2 156 300 +24W 300
3 252 396 +24W Not Used
4 180 360 +24W +36R 480+24R

The W in the table is equal to the number of words
moved into the output area; the R is equal to the num-
ber of sections in each record or the number of
RDWs for each record.

Each time a tape block is completed and IOCS
begins using an alternate area, 300 microseconds
are added to each of the operating times given in the
table. The additional 300 microseconds are required
to perform program housekeeping operations associ-
ated with the change to another record area.

TAPE LABELS

General Description

To insure the proper mounting of magnetic tapes for
each machine run, and to facilitate tape library
maintenance, a tape reel control system has been
included as an integral part of IOCS. Tape reel con-
trol is based on the use of eighty-character

14

alphameric "header' and "trailer" tape labels.
Header labels are the first records on each reel of
tape, and serve to identify the tape. Trailer labels
are (except for a tape mark) the last records on each
reel of tape, and indicate whether a reel is the last
reel of a file or is to be followed by other reels.

The discussion of header and trailer label formats
refers to the label information as it appears on mag-
netic tape or after being punched or printed. When
read into the IBM 7070 from tape, or when con-
structed within the IBM 7070 preparatory to being
written on tape, both header and trailer labels oc-
cupy sixteen alphameric words. All fields in the
labels are in double-digit form.

Provisions have been made for adding additional
label records following the first header label if
desired. These additional labels may have any de-
sired format, and need not be the same as header
and trailer labels (i.e., eighty alphameric char-
acters).

Labeling Tapes Entering the System

When new magnetic tapes are provided for use in the
7070 system, a temporary header tape label should
be written on each tape. The temporary label should.
remain on the tape until the tape is used in some pro-
gram. The format of the temporary header tape
label is as follows:

Field Number Positions | Contents | Description
1 1-5 1BLNK | Header Label Identifier
2 6-10 XXXXX | Tape Serial Number
11-80 Blank

Field 2, the tape serial number, is a five-digit num-
ber from 00001 to 99999 that is assigned consecutively
to the tapes as they enter the 7070 system. The
number 00000 may not be used.

In addition to the header label written on the tape,
a physical label should be attached to each reel of
tape. This label should indicate the tape serial num-
ber and the date that the tape entered the system.
Any other data the user requires may be added to this
label. The physical label may remain on the reel
until the tape is removed from the system. If at any
time the tape serial number is changed, the number
on the physical label should be changed accordingly.

Labeling Data Tapes

The header label for a data tape replaces the
temporary header label, and contains the following
information:

Field
Number | Positions { Contents Description Example
1 1-5 1HDR Label Identifier 1HDRb
2 6-19 XXXXXXXXXX-XXX | Tape Serial Number, | 0012302567-003

File Serial Number,
and Reel Sequence
Number

20 blank
3 21-30 XXXXXKXKKX File Identification PAYRLMASTR
4 31-39 XXXXX=XXX Creation Date- 58107-030
Retention Cycle
40 blank
5 41-80 miscellaneous These 40 positions

used for any infor-
mation desired for
inclusion

Explanation of the Header Label

Field 1, Label Identifier (1HDRb): The first five
positions serve to identify the record as a label. In
addition, the 1 causes skipping to carriage tape
channel one when writing the label on a printer with
its carriage under program control.

Field 2, Tape Serial Number, File Serial Number,
and Sequence Number (xxxxxxxxxx-xxx): The entries
within Field 2 are:

1. The five~-digit tape serial number is the num-
ber initially assigned to the tape when it enters the
system.

2. The five-digit file serial number is the tape
serial number of the first reel of a given file, For
example, if the tape serial number for the first
reel of a file is 12567, the label of each succeeding
reel in the file will contain 12567 in the file serial
number position.

3. The three-digit reel sequence number gives
the order of the reel within a given file.

Field 3, File Identification (xxxxxxxxxx): Field 3
is a ten-character name or number identifying
the file.

Field 4, Creation Date and Retention Cycle (xxxxx-
xxx): The entries within Field 4 are:

1. The first two digits of the five-digit number
contain the units and tens position of the year (00-99)

in which the file was created. The remaining three
digits contain the number (001-366) of the day of the
year on which the file was created.

2. The three-digit number following the hyphen
indicates the number of days the file is to be retained
after the creation date., The date on which a program
is being run must be supplied to the program by
placing it in location 0109. This date is used when
checking a tape label to determine whether the reel
of tape may be written upon; the date is also used
when writing header labels on output tapes.

Field 5, Miscellaneous: The remaining forty col-
umns may be used in any way desired by the pro-
grammer,

Trailer Label Format

A tape mark, a trailer label, and another tape mark
form the last three records of each tape. The func-
tion of the trailer label is to indicate whether the
current tape is the last tape of a file. The trailer
label has the following format:

Field
Number | Positions | Contents | Field Name |Explanation
1 1-5 1EORbor| Trailer Label| EOR (Endof Reel)
1EOQOFb Identifier and [EOF (Endof File)]
Termination
Code
2 6-10 XXXXX Block Count |A count of tape

blocks written

Programs written by the IBM Programming Sys-
tems Department insert record count and/or hash
totals into the proper positions of the trailer label,
if such figures are produced by the program. Posi-
tions 11 through 20 of the trailer label are used for
the record count; positions 21 through 30 are used
for the hash total.

The user may include other data in the trailer
label if necessary. Additional data may be inserted
into the proper positions of the trailer label through
the use of program exits, described under "DC
Entry for Output File Labels."

General Programming Methods 15

PART II: WRITING ENTRIES FOR THE 10CS

The second part of this publication describes the
method of supplying the program variables to IOCS.
The information that must be supplied pertains to the
machine configuration, checkpoints, data areas, and
label information. Both the method of writing the
macro-instructions provided by IOCS and their oper-
ation are explained. Information regarding the pro-
visions made for tape errors and SPOOL programs
is also included.

SYSTEM DESCRIPTIVE ENTRY (DIOCS)

When IOCS is to be included in a program, and tape
files are to be processed by the program, a DIOCS
statement must be written to select the major
methods of processing to be used. One form of
DIOCS statement is also used to specify system in-
dex words. Only the DIOCS statements that serve
the functions just described are referred to in the
following discussion as "DIOCS entries, " '""DIOCS
statements, ' or "DIOCS." Other statements in
which DIOCS is present in the operation column are
always written in this publication so that the required
label or operand is coupled with DIOCS, e.g., END
DIOCS or DIOCS LINKAGE, If both 729 and 7340
tape units are to be used in a program, there must
be a DIOCS entry for each type of unit. No DIOCS is
used in programs processing card files only.

Two DIOCS statements are described below. The
first DIOCS statement is used for programs process-
ing both card files and 729 tape files, and may be
used for programs processing only 729 tape files.

It is described under "DIOCS for Programs Using
Only 729 Tape Units." The second DIOCS statement
is used for programs processing both 7340 and 729
tape files, and may be used instead of the first state-
ment for programs processing only 729 tape files.

It is described under "DIOCS for Programs Using
7340 and 729 Units. "

DIOCS for Programs Using Only 729 Tape Units

When the only tape units to be used are 729 units,
only one DIOCS statement is required for each pro-
gram, regardless of the number of tape or card
files processed in the program. The DIOCS entry to

16

be used in this case is written on one or two lines of
the coding sheet as follows:

Saquence Nome perotion OPERAND Bos
(Pahltin)olg {Laber) e €090 zola 2 3 » Py 4 s0

o1 IANYLAREE bt ecsliecsixe, 1ecsixal, 1ace xu, cluann
i N

@PENN, EAR N, CHPT, | GENN
o3 [ANYLABEE \ AME , NN, CHANIN , OPEND , 8RN
o4 CHPT , 1GENN ;
OS5 IANY) ABEE. IDISCR, s, CHANR , OPENN , Ed HICHPT, 1L GEN

The letter DIOCS must be placed in the opera-
tion column to identify the system descriptive
entry.

The first item in the operand (IOCSIXF) is used to
specify the first system index word for programs
using tape files. An actual two-digit index word ad-
dress or a symbolic name may be used if the pro-
grammer wishes to specify the index word. The
symbolic name IOCSIXF will be assigned automati-
cally if the first item in the operand is omitted; the
comma following the first entry must be included to
indicate the omission. When an actual index word or
a symbolic address is specified, Autocoder will
equate it to IOCSIXF. (The symbolic name IOCSIXF
must not be used in the operand of a DIOCS entry.)

The second item in the operand (IOCSIXG) is used
to specify the second system index word for pro-
grams using tape files. An actual two-digit index
word address or a symbolic name may be used if the
programmer wishes to specify the index word. The
symbolic name IOCSIXG will be assigned automati-
cally if the second item in the operand is omitted;
the comma following the second entry must be in-
cluded to indicate the omission. When an actual in-
dex word or a symbolic address is specified, Auto-
coder will equate it to IOCSIXG. (The symbolic
name IOCSIXG must not be used in the operand of a
DIOCS entry.)

The third item in the operand (IOCSIXH) is used to
specify a system index word for programs using unit
record files. An actual two-digit index word address
or a symbolic name may be used if the programmer
wishes to specify the index word. The symbolic
name IOCSIXH will be assigned automatically if the
third item in the operand is omitted; the comma
following the third entry must be included to indicate
the omission. When an actual index word or a sym-
bolic address is specified, Autocoder will equate it
to IOCSIXH., (The symbolic name IOCSIXH must not
be used in the operand of a DIOCS entry.)

Under certain conditions, the programmer may
wish to use these index words. A typical use of these
index words is to return control to the proper point
in a program after a subroutine has been completed.
This use is explained in more detail under "Program
Exits. "

The fourth item in the operand (CHAND) is used to
specify the highest-numbered tape channel in the pro-
gram. The value of the final n in CHANn may be 1,
2, 3, or 4.

The fifth item in the operand (OPEN) is used to
specify the method of handling the OPEN macro-
instruction routine. The value of the final n in
OPENn may be 1, 2, 3, 4, 5, or 6, If OPENI is en-
tered in the operand, all tape files must be opened at
the same time because the OPEN macro-instruction
routine will not be preserved in storage after it is
used; other routines will be loaded into the locations
used by the OPEN routine. I OPEN2 is used, the
OPEN macro-instruction routine will be retained in
storage for use whenever needed. If OPENS is en-
tered in the operand, the OPEN routine will be writ-
ten on the tape provided for checkpoint records. It
will be read into storage whenever needed; the stor-
age locations required for the OPEN routine will be
used for other routines during the time the OPEN
routine is on tape. If OPEN4 is used, the OPEN
macro-instruction routine will be retained in storage
for use whenever needed, as described above for
OPEN2, except that Form 3 and Form 4 records can
not be processed nor can three input/output areas be
used for one file. When all active files consist of
Form 1 and/or Form 2 records and use one or two
input/output areas, the OPEN4 subroutines will oc-
cupy fewer storage locations than OPEN2 subroutines.

If any files in a program use the three-area rotat-
ing system, either the OPEN5 or OPEN6 subroutine
must -be specified. OPENS is identical to OPEN1
except for the inclusion of provisions for the three-
area rotating system. OPENS is identical to OPEN2,
except for the inclusion of provisions for the three-
area rotating system. OPEN1, OPEN2, OPENS3, and
OPEN4 must not be specified to open any files using
the three-area system.

The sixth item in the operand (EORn) is used to
specify tape label processing in the end-of-reel rou-
tine. The value of n in EORn may be 1, 2, or 3.

The use of EORL1 in the operand specifies that the
reading or writing of tape labels is to be determined
by Line 32 of the File Specifications for each input
and output file (see "File Specifications Entries").
The header labels written on each reel of the output
files will be typed automatically by the end-of-reel
routine. If EOR2 is used in the operand, none of the
input tapes may have labels, and no labels will be
written on output tapes. EORS3 is the same as EORI1,

except that the header labels written on each reel of
output files will not be typed automatically by the end-
of-reel routine. The programmer may use end-of-
reel exit 4 (see "DC Entry for Output File Labels")

to type any portion of an output file header label.

The seventh item in the operand (CHPT) is used to
specify whether checkpoint records are to be written.
If CHPT is entered in the operand, checkpoint records
will be written according to the DCHPT descriptive
entry (see "DCHPT Entry"). If CHPT is omitted
from the operand, no checkpoint records will be
written. If Line 31 of the DTF for an output file is 1

~ or 2 (see "CHPT Macro-Instruction') CHPT must not

be omitted.

The eighth item in the operand (IGENn) is used to
specify the use of SPOOL programs and illegal
double-digit character checking in the tape write
error routine (see "Correction of Output Tape
Errors'). The value of the final n in IGENn may be
1, 2, 3, 4, 5, or 6. Entering IGEN1 in the operand
indicates that one or more SPOOL programs may
operate with this main program, and that the tape
error routine is to check for illegal double-digit
characters. Use of IGEN2 indicates that one or
more SPOOL programs may operate with this main
program, but that the tape error routine will not
check for illegal double-digit characters. Use of
IGENS in the operand indicates that a SPOOL pro-
gram will never be run with this main program, but
that the tape error routine is to check for illegal
double-digit characters. If IGEN4 is used, no
SPOOL program can be run with this main program
and the tape error routine will not check for illegal
double-digit characters. IGENS and IGEN6 are pro-
vided for use with programs processing binary tape
files (see ""File Specifications Entries: Line 09
(FILETYPE)"). IGEN5 performs the same functions
as IGEN3. In addition, IGEN5 and IGEN6 treat short
character-length records as normal or short length
records when executing a binary tape read instruc-
tion. When Form 3 format is used, a short char-
acter-length record is treated as normal length.
When Form 1 format is used, a short character-
length record is treated as a normal-length record
or a short-length record, depending upon the length
of the record.

The operand of the DIOCS entry must contain the
following items for each program: CHANn, OPENn,
EORn, IGENn. . Other items in the operand must be
included only when required by the program.

DIOCS for Programs Using 7340 and 729 Units

When 729 tape files are to be used in conjunction
with 7340 files, the 729 DIOCS entry is written as
described above, with the following exceptions:

Writing Entries for the IOCS 17

1. Systems index words IOCSIXF, IOCSIXG, and
IOCSIXH are not written. These values may be es-
tablished, if desired, by using EQU statements.

2. The first item in the operand must be D729 to
indicate that a 729 IOCS is to be generated. This
form of 729 DIOCS may also be used for programs
processing only 729 tape files.

The operand of the DIOCS entry for 729 tape files
must contain the following items for each program:
D729, CHANn, OPENn, EORn, and IGENn. The
operand may contain CHPT before IGENn. If CHPT
is omitted, the comma that would have followed it
must be included (see the third line of the example
below). If CHPT is entered in the DIOCS for 729
tapes, it must not appear in the DIOCS for 7340
tapes, since the appearance of CHPT in a DIOCS en-
try indicates whether the checkpoint tape is to be
written on a 729 or a 7340 tape unit.

aauance Name Operation 1 OPERAND Basic Au

.P:'LI; sle (obed e Code golas 2 o0 3% 40 a8 50

oy AN alBEL i oy ecsn729; lcuan?], asen cogz cu‘pln- L GEjNG.

_ o2 hnviUalBEr | iDhiecSn729 cuanz, ePEN2 E0RlL CMPIT, LGEND

| o3 AL AmEL . D't :I 729, cuane apEN] EeRl, , ,,____%
, NN FEEE] I C P . | i

Note that for programs requiring IOCS for 729
files only, the programmer may use the DIOCS
statement format described under ""DIOCS for Pro-
grams Using Only 729 Tape Units, " provided no
other DIOCS statements of any kind are included in
the program.

END DIOCS Statement

The END DIOCS statement must be used to indicate
to the processor that: '

1. No more DIOCS statements follow.

2. IOCS routines should now be generated.

3. Precompiled IOCS routines should now be
generated in one block (see '"Precompiled IOCS
Package').

Note that the END DIOCS statement is not used
after the DIOCS statement described under '""DIOCS
for Programs Using Only 729 Tape Units. "

The END DIOCS statement is written as follows:

“’?f:"ﬂf‘". Nome Opsrotion OPE;AND . Bosic A
] dabiz] a1 T[T
_l_gﬂ e Eogl, cueh LGENS
i o [T
T olal rm ! R :
] T P T

Note that the END DIOCS statement is used to
indicate that no more DIOCS statements follow. Note
also that CHPT is entered in the operand of one
DIOCS. Because it appears in the DIOCS for 729
IOCS, it indicates that checkpoint records are to be
written on a 729 tape unit.

GENERATION OF ROUTINES

A number of routines are used by more than one
IOCS. For instance, the routine that checks for il-
legal double-digit characters is used for 729 and
7340 files. Other routines, however, are peculiar
to the IOCS for one input/output device. Both shared
and unique routines are compiled after the END
DIOCS statement is encountered. Only those rou-
tines are compiled that have been called for, either
explicitly or implicitly, in one or more DIOCS state-
ments.

PRECOMPILED IOCS PACKAGE

Obtaining Package

Autocoder can produce a precompiled I0CS package
at assembly time if the user so desires, provided
that the DIOCS used is the one described under
"DIOCS for Programs Using 7340 and 729 Units. "
If the DIOCS used is the one described under
"DIOCS for Programs Using Only 729 Tape Units, "
see "Precompiled IOCS Subroutine Deck. -

To obtain the precompiled package, place the
following card before the first DIOCS:

01

S

Sequence Name Operation OPERAND .
(Pq“ {Lin) l (Label) ig_Code oola 30 35 40 43
I EEREN PL T L] T 1 T TTT: 7 T
. . Do] i HEl IR i
t +——t T
t

Sequence

Nome Operation OPERAND
|(Pq (Lin} ¢

‘oz R IEEREE EEEREERE ;
R R RS BEEREEARE: !

(Lobel ishig Code poly 25 30) 0 as
O D XY ;

o2

|

The following example shows how DIOCS state-
ments are written for 7340 and 729 tape units to be
used in the same program:

18

Write the DIOCS statement(s) as explained above.
Then, after the last DIOCS, place an END DIOCS
card. This card indicates that:

1. No more DIOCS statements follow,

2. A branch list (see below) must be generated
immediately preceding the rest of the IOCS package.

3. All IOCS routines are now to be generated in
one block.

The following items must be included with the
DIOCS statements when compiling the IOCS package:

1. An ORIGIN CNTRL statement, to establish the
location for the start of generation of the Precom-
piled IOCS package.

2. An EQU statement to establish the location of
the first word of the first DTF entry. This location
must be common to all programs using the precom-
piled IOCS package. The label of the EQU entry
must be IOC, FTBLO1.

3. EQU statements to establish fixed locations
for the IOCS index words IOCSIXF and IOCSIXG.
IOCSIXF and IOCSIXG must also be assigned the
same fixed locations in programs using the pre-
compiled IOCS package.

4, An EQU statement to establish the location of
the DCHPT entry, if checkpoint routines are in-
cluded in the precompiled IOCS package.

After compilation, the final execute card and load
program should be removed from the condensed
deck.

Branch List

The branch list makes the addresses of certain sym-
bolic labels within each routine in the package avail~-
able to the source program. This list occupies a
number of fixed locations and consists wholly of
branch instructions. The operand of each branch in-
struction contains a symbolic label appearing in an
IOCS routine.

The compilation that uses the DIOCS PACKAGE
statement produces the precompiled package pre-
ceded by the branch list. The compilation that uses
the DIOCS LINKAGE statement (see below) produces
an assembled object program with linkages to the
branch list of the precompiled package.

The use of the branch list makes it possible to
make changes in IOCS routines without reassembling
source programs.

Using Precompiled IOCS Package

To use a precompiled IOCS package in a program,
place the following card before the first DIOCS
statement in the symbolic program:

Sequence Nome Operotion OPERAND
,(_P" (Lin} (Lobet} ,,J_., Code 5 13 a0
T HE] T T T T
g. I oleisl 1 F] il
I L IR BEEEE
T t 1 ‘ - e i
. IERERNENEE RN

The DIOCS LINKAGE card causes the generation
of linkages to the precompiled package branch list.

After the last DIOCS, place an END DIOCS card
with its origin at the same location as the END DIOCS
card used in compiling the IOCS package. This loca-
tion may be obtained from a listing of the precom-
piled package.

When this method is used, no routines are gener-
ated when the END DIOCS statement is encountered.
Instead, the END DIOCS statement causes the gener-
ation of EQU statements that equate symbolic labels
of IOCS routines with branch list locations. The
user must include his own EQU statements to insure
common assignment of IOCS index words IOCSIXF
and IOCSIXG in both his program and the IOCS rou-
tines.

It is recommended that the DIOCS statements be
positioned so that they follow the user's program.
However, if a segment of the user's program is to
be compiled after the DIOCS statements, an ORIGIN
CNTRL statement should be used to position this
segment at a point following the last location used by
the precompiled IOCS package.

To insure that the coding generated out of line by
the Autocoder Processor will not be assigned the
same locations as the precompiled IOCS package, a
LITORIGIN CNTRL statement should precede the
DIOCS statements.

If the programmer wishes to use the FEORN
macro-instruction, the following labels must be
equated to their respective locations:

I0C. EOR JOC. SEQILB
I0C. EOFEX IOC.TEF
I0C. RETEOR I0C, OPNSW2

If the programmer wishes to use the FEOR
macro-instruction, the following labels must be
equated to their respective locations:

IOC.ICHECK I0C. CELOOP
I0C. OPNSW2 IOC.RETRN
I10C.IPSLO I0C. CEBACK

A program cannot use both precompiled IOCS and
10CS compiled in the normal manner.

FILE SPECIFICATIONS FOR TAPE RECORDS

To be able to handle the large variety of input and
output tape files required by various programs, a
File Specifications Table is assembled from the File
Specifications supplied by the programmer. The
File Specifications describe the file, the location of
subroutines supplied by the user, and the location of
tape label information. A File Specifications Table
is generated from each set of File Specifications and

Writing Entries for the IOCS 19

the name of the file is treated as the name of the
table. Each time the name of a file is used in a
macro-instruction, the Autocoder assembly program
selects a sequence of instructions based on informa-
tion contained in the corresponding File Specifica-
tions. The File Specifications Table is used during
the running of the program; therefore it must not be
moved or erased from storage.

It may be desirable to change items in a File
Specifications Table between successive runs of a
program. A method of addressing the items in the
table is incorporated into the File Specifications to
allow changes in, or use of, the data in the table.

The File Specifications are punched into Auto-
coder cards from the coding sheet described below.
These cards are entered with the source program
when the program is assembled. The cards contain-
ing the File Specifications must be entered in the
same sequence as shown on the coding sheet. The
File Specifications for all files must be entered in
consecutive order when the program is assembled.

There are 36 entries in the File Specifications for
each tape file. Refer to Form X28-1366, 7070 File
Specifications Coding Sheet (Figure 3). Each line is
described separately below; line numbers are used
for reference purposes. Note that the line numbers
for File Specification entries do not have to be as
shown on the coding sheet, provided all entries are
made on consecutive lines in the order given.

The label of each entry on the 7070 File Specifica-
tions Coding Sheet is printed with recommended char-

_acters as the first eight characters of the label.
When using these recommended labels, the user
must add one or two alphameric characters so that
each label will be unique. By using the labels as
recommended, the user need not write or keep a
record of labels used in the File Specifications., If
desired, the user may substitute other labels for
those printed on the coding sheet. The label of each
entry need not be punched into cards unless the
entry will be referred to by the program; the labels
of entries not referred to may be blank.

Programmed Entries

The ability to modify data in the File Specifications
Table is provided for two purposes. One purpose is
to allow the programmer to set the initial value of
the operand without having to punch the value into a
card when the File Specifications are punched. The
other purpose is to allow operands to be changed
during the running of a program. Each purpose is.
described separately below. The description of each
entry under '"File Specifications Entries' indicates
whether the operand may be inserted and/or changed
through programming. Unless otherwise stated, all

20

entries that may be inserted through programming
may also be changed. The labels of entries to be in-
serted through programming must be punched into
the cards.

Initial Entries

Operands that are not punched into cards when the
File Specifications are punched must be entered
before the File Specifications Table is used. All
operands must be entered except in those entries that
specifically allow blank operands. The OPEN macro-
instruction initializes the tape files and the routines
based on the data in the File Specifications Table;
data to be entered must be inserted before the first
OPEN macro-instruction is executed. To illustrate
one method of programming an entry, assume that a
programmer wants to write both labels and records
of file 7B at 556 characters per inch (see "File Spec-
ifications Entries: Line 21 (TDENSITY)") for a cer-
tain run of the program. Using the recommended
labels, the label of Line 21 would be TDENSITY7B.

A 2, which specifies high density for labels and rec-
ords, can be inserted by the following steps:

Operation OPERAND
1s)1gC09¢ 2ol ET) » Yy 4s

Sequence Nome
{Pah ptLimd 1 (Label)

o1 | o lzax L2 -
02 R . STND3 TDENSIITVT.

o

The first step places a +2 in accumulator 3 and
the second step stores the +2 in the tape density en-
try of the File Specifications Table for file 7B.

Changing Entries: It may be desirable to change data
in one or several entries in the File Specifications
Table during the running of a program. A typical
situation that requires a change in the File Specifica-
tions Table arises when a program produces an out-
put file that must be used as input later in the pro-
gram. For this type of situation, the program is
usually considered to be divided into "phases.' In
this example, the production of the output file would
be regarded as one phase and the use of that file as
input would be another phase.

Unless stated otherwise under "File Specification
Entries, " changes in the tables should be made be-
tween phases of the program because they require
that an OPEN macro-instruction be executed in order
to incorporate the changes into the tape files and
routines. When data in the File Specification Table
of a file is to be changed, the file must be named in
a CLOSE macro-instruction before the change is
made. After all changes have been made, an OPEN
macro-instruction naming all files that have been
changed must be given.

The programming of changes is the same as the
programming of initial entries. The method de~
scribed under 'Initial Entries' can be used between
the phases of a program as well as at the beginning
of the program.

File Specifications Entries

Line 01 (TAPEFILE): The label of the DTF entry
may be as shown or may be any other symbolic label
the user desires. When using the recommended
labels, the user must fill in the last two characters
of the label with two characters identifying the tape
file. This insures that there will be no duplicate
labels among the tape files used in the program.
When using other than the recommended labels, the
user must establish a procedure to avoid duplicate
labels.

The operand of the DTF entry contains the name
of the tape file described by the File Specifications.
This name will be used in the operands of macro-
instructions that refer to this tape file. The operand
of the DTF header line must not be blank,

Line 02 (FCHANNEL) -- File Channel: The operand
may be a one-digit number to indicate the channel to
which the tape units specified on Lines 03, 04, and
05 are connected, or it may be blank, If the operand
is blank, the channel number must be inserted by
programming before the file is named in an OPEN
macro-instruction.

The assignment of channel numbers to the files in
a program should be made so that each channel will
be in use for approximately the same time. When .
reading and writing times are nearly equal, it is
usually advisable to use separate channels for read-
ing and writing.

Line 03 (BASETAPE) -- First Tape in File: The
operand may be a one-digit number to specify the
tape unit that will contain the first tape of the file,

or it may be blank. If the operand is blank, the tape
unit number must be inserted by programming before
the file is named in an OPEN macro-instruction.

Line 04 (ALT1TAPE) -- First Alternate Tape Unit:
The operand may be a one-digit number to specify
the first alternate tape unit to be used in conjunction
with the base unit specified on Line 03, or it may be
blank. This operand must be different from the
operand of Line 03. The tape unit number may be
inserted by programming before the file is named in
an OPEN macro-instruction. If no alternate tape
unit is to be used, the operand must be blank.

Line 05 (ALT2TAPE) —- Second Alternate Tape Unit:

it may be blank., This operand must be different
from those used for Lines 03 and 04. The tape unit
number may be inserted by programming before the
file is named in an OPEN macro-instruction. If a
second alternate tape unit will not be used, this
operand must be blank,

Line 06 (ACTIVITY): The operand of this line must
be blank. The macro-instructions OPEN, CLOSE,
and END will automatically insert a 0 or a 1 into this
entry for all files named in their operands. An OPEN
macro-instruction will insert a 1 to indicate that the
tape file is to be active (used). A CLOSE or END
macro-instruction will insert a 0 to indicate that the
file is to be inactive (not used).

Line 07 (BLOCKCNT) -~ Block Count: The operand
of this line must be blank, IOCS will insert a count
of the number of tape record blocks read from, or
written into, the file.

Line 08 (FILEFORM): The operand is a one-digit

number from 1 to 4 to indicate the form of records
in the tape file. Form 1, 2, 3, and 4 records are

described under "Tape Record Forms." The oper-
and of this line must never be blank and must never
be changed during the running of a program. If the
operand is changed, reassembly may be necessary.

Line 09 (FILETYPE): The operand is a one-digit
number from O to 6 to indicate the type of operation
to be executed with the tape file. The type of opera-
tion specified by each number is as follows:

0 -- a read binary operation

1 -- a read operation

2 -~ a read operation under record mark
control

3 -- a write operation

4 -- a write operation under record mark
control

5 -- a write operation with zero elimination

6 -- a write operation with zero elimination

under record mark control

The operand of this line must never be blank. A
change in this operand necessitates reassembly if a
change in record form is involved. Note that even in
that case, if a change from Form 1 to Form 2 records
or from Form 2 to Form 1 records is involved, re-
assembly is not necessary. When reassembly is not
required, changes in this operand during the running
of a program are possible only at the end of one
phase and before the start of the next phase; i.e.,
after the CLOSE macro-instruction for the first phase
is executed, but before the OPEN macro-instruction
for the second phase is executed.

Line 10 (RECLNGTH) -- Record Length: The oper-

The operand may be a one-digit number to specify
the second alternate tape unit to be used in conjunc-
tion with the units specified on Lines 03 and 04, or

and must be a four-digit number specifying the rec-
ord length. If the operand is blank, the record
length must be inserted through programming. The

Writing Entries for the 10CS 21

record length will be either the number of words in
Form 1 records or the maximum number of words
in Form 2, 3, or 4 records. In order to change this
operand, reassembly is necessary.

Line 11 (BLOCKING): The operand must be a four-
digit number specifying the tape record blocking, If
the operand is blank, the number must be inserted
through programming. The record blocking will be
either the number of records in a tape block for
Form 1, 2, or 4 records, or the maximum number
of words in a tape block for Form 3 records. In or-
der to change this operand, reassembly is necessary.

Line 12 (OPENPROC) -- Open Procedure: The oper-
and may be 0 or 2 to specify the rewind procedure to
be used when an OPEN macro-instruction is exe-
cuted, or it may be blank. The digit may be inserted
through programming. A 0 indicates that the tape is
not to be rewound. A 2 indicates that the tape is to
be rewound when the OPEN macro-instruction is
executed. Unless a 0 or 2 is inserted, the blank

will be regarded as a 0. This operand may be
changed at any time.

Line 13 (CLSEPROC) -- Close Procedure: The oper-
and may be 0, 2, or 3 to specify the rewind proce-
dure to be used when a CLOSE macro~-instruction is
executed, or it may be blank. The digit may be in-
serted through programming. A 0 indicates that the
tape is not to be rewound, a 2 indicates that the tape
is to be rewound, and a 3 indicates that the tape is to
be rewound and unloaded when the CLOSE macro-in-
struction is executed. Unless a 0, 2, or 3 is in-
serted, the blank will be regarded as a 0. This
operand may be changed at any time.

Line 14 (TPERROPT) -- Tape Error Option: The
operand may be 00, 10-50, or 60, to specify the
procedure to be used if uncorrected tape errors oc-
cur when reading an input file. The operand can also
be blank. This operand may be inserted through
programming. It specifies the error correction
procedure to be followed whenever a tape reading
error for this file occurs. An explanation of each
error correction procedure that may be selected by
this entry is given under "Correction of Input Tape
Errors.' Note that this operand must be blank for
output files,

Line 15 (IORDWLST) -- Input/Output RDW List:
The operand may be an actual, symbolic, or blank
address. If blank, the address must be inserted
through programming. The operand must contain
the address of the first of the RDWs for the tape
record area. The RDWs may be generated by either
a DA or a DRDW operation as deseribed under "Tape
Record Areas,"

If this file is to share input/output areas with an-
other file (see Line 16), the address that is used in

22

this operand must also be used as the operand of the
IORDWLST entry of the File Specifications for the
other file, The same RDWs must be used for both
the input and the output file. The RDWs may be
generated either by a DA entry or by a DRDW opera-
tion (see "Tape Record Areas").

Line 16 (IOMETHOD) -~ Input/Output Method: The
operand is either 3 or blank. A 3 indicates that an
input file and an output file will share the same three
areas for both input and output in rotating sequence.
The operand of this line must never be changed dur-
ing the running of a program.

If the operand is changed, reassembly may be
necessary,

Whenever a 3 is placed in the operand, the fol-
lowing restrictions must be observed:

1. Records may not be added to, or deleted from
the file.

2. Input and output record form must be identical.

3. Record length and blocking factor must be the
same for both files.

4. The number of areas used must be 3 (see Line
17). .

5. Both files must use the same RDWs (see Line 15).

Line 17 (TIOAREAS) -- Tape Input/Output Areas:
The operand is a one-digit number from 1 to 3 to
specify the number of areas to be used by the corre-
sponding file. The selection of the number of areas
to be used for a file is described under "Input/ Output
Areas," If the method of handling tape records uses
record areas in rotating sequence (see Line 16), a 3
must be placed in the operand of this line. The
operand of this line must never be changed during
the running of a program, If the operand is changed,
reassembly may be necessary,

Line 18 (PRIORITY): The operand is either a one-
digit number from 1 to 9 to specify the relative
priority of the tape file, or it is blank, The use of
""priority" in this entry does not refer to the Priority
Processing feature of the IBM 7070; as used here,
"priority" refers to the relative importance of the
preferred order of the tape files. A 1 indicates the
file with the highest priority and a 9 the lowest pri-
ority. The number may be inserted through pro-
gramming. A priority number may be assigned to a
maximum of nine tape files. This number will be
used to determine which tape record area is to be
read into or written from whenever two or more
areas become available at the same time. If the
user does not wish to specify a priority number or
if numbers 1 through 9 have already been assigned,
the operand must be blank. Note that no two files
should be assigned the same values (1-9) at the
same time,

IBM,
Program
Progrc
Date

d by

7070 AUTOCODER CODING SHEET
7070 INPUT/OUTPUT CONTROL SYSTEM
TAPE FILE SPECIFICATIONS

X28-13668

Identification Li1 1 L)
76 80

Page No. lTn_zJ of

Line Label eratiol
"% 15] %P 25 30

65

20j21
o, ITAREF TLEL, DT F

[

0,2, [F.CHA NNEL,

0,3, 1BASETAPE

04, |ALT, L TAPE

05, |ALT.2 TAPE

0,6, ACT, I VI TY,

0,7, {BL,OCKCNT,

0,8, |FILEF

09, [FLLETYPE

101 |RECILINGTiH

i1, 18.L.6,C K I NG

1,2, |0PENPROC

L3y

14, |TPERRBPT

1.5 |16ROW,LST

1.6, {1 OME,THBD,

L7, [T 1eAREAS

18, PRIBGRITY,

19 {1 INIDIXMRIDIAI

2,0, |IND X WIRIDIB,

2.0, |[TDENSILTY,

212 S|LxR|P|RJQC|D|

1
1
1
i
1
1
1
CLSEPRBC |,
1
L
i
Il
1
I
{

2,3, ILLRPR,OCD,

2.4, |SCLP,ROCD: , |)

2,5, |TPERRFLD

2,6 |TPSKPFLD

2,7

2,8, |EQRP R,ECD

!
EQSPROCD Ly
!

2,9, [EOGFPROCD

3.0, RWDP ROCD ,

3,1, |CHECKPNT, ,

32 WABELJINF | R

3,3, {SRBF ORMS 11t

3.4, IRL,IFO,RM3

3,5, |SPARE TNF |

L1 L1t
A [
| Lt
11 Ly
Ld L4l
1 TR
1y L1t
Lt L4t
Lt I
) T
1t 111
a1 L1t
Ll Lt
1 TR
Lt Lot
1l TR
11 L1t
Lt |
14 1)
L1 Tt
ot L1t
Ll (11
Ll 11
i T
41 [
1 I
11 TR
[I |
41 Ll
11 [
11 L
Ll Ll
1l Lt
1l 11
Ll (R |
. L1

3.6, ISCHEDINF, 11

:
1
1
1
1
1
1
1
3
1
1
L
1
1
1
1
!
1
1
!
I
1
1
1
L
L
i
Il
L
'
\
1
L
I
L

1
i !
1 1
1 1
1 1
L L
i 1
1 1
1 1
1 1
L \
1 L
1 1
1 L
L L
1 1
1 L
1 1
1 I
1 1
1 i
Il L
| 1
I I
1 I
1 L
L 1
1 L
1 1
1 I
1 L
1 L
1 I
1 1
1 I
2 I

I Il
1 1
1 1
I [l
1 1
1 Il
1 1
1 1
1 1
1 1
1 1
1 1
1 [l
Il 1
1 1
1 I
1 Il
Il 1
1 1
1 Il
1 1
1 1
i 1
1 1
1 1
1 1
1 i
1 1
1 L
1 1
1 L
1 L
1 !
] 1
1 1
1 1

L 1
| | L Il
1 L 1 !
L 1 1 i
1] 1 1
{ I L 1
1 L L L
1 ! 1 L
1 1 L \
L I 1 !
L 1 L L
L 1 L 1
s 1 L L
I 1 L 1
1 ! L 1
1 ! L {
! 1 1 1
L L 1 L
1 1 1 1
I 1 Il 1
1 1 1 1
) 1 | 1
! ! 1 X
L 1 { 1
i 1 i 1
1 1 1 i
L 'l 1 i
1 1 1 1
I 1 1 1
L i i 1
L 1 1 1
1 1 1 1
1 1 1 1
i 1 1 1
i 1 i 4
L I} i s

L
L

!

1

L
L

!

1
1

!

1

!

1
L

1
i
1
L
1
L
1
1
1
.
i
1
1
1
1
1
1
Il
L
1
L
I

I N R =

Figure 3

Line 19 (INDXWRDA) -- Index Word A: The operand,
which specifies the index word to be used as Index
Word A (XA) for the file, may be actual or symbolic,
If actual, the operand must be a two-digit index word
address. When using an actual address, the selec-
tion of the index word may be affected by other pro-
grams as mentioned under "Summary of Storage,
Index Word, and Electronic Switch Utilization." The
operand should not be changed. The contents of XA
are described under "Use of Tape Record Index
Words. "

Line 20 (INDXWRDB) -- Index Word B: The operand,
which specifies the index word to be used as Index
Word B (XB) for the file, may be actual or symbolic.
If actual, the operand must be a two-digit index word
address. When using an actual address, the selec-
tion of the index word may be affected by other pro-
grams as mentioned under '"Summary of Storage,
Index Word, and Electronic Switch Utilization. " The
operand should not be changed. The contents of XB
are described under "Use of Tape Index Words, "

Line 21 (TDENSITY) -- Tape Density: The operand
is a one-digit number from 0 to 2 to specify the tape
character density of the tape file, or it is blank, A

0 specifies that both the labels and the records on a
tape are written, or are to be written, at a low char-
acter density (normally 200 characters per inch). A
1 specifies that the labels use a low character densi-
ty (normally 200 characters per inch) while the rec-
ords in the file use a high character density (nor-
mally 556 characters per inch). A 2 specifies that
both the labels and the records use a high character
density (normally 556 characters per inch)., This
entry will not be effective for tape files on IBM 7330
Magnetic Tape Units. When model 729 V or 729 VI
Magnetic Tape Units are used, the Tape Adapter Unit
associated with a 729 V or 729 VI can be manually
set to any one of the following combinations of high
and low density: 800cpi/556¢pi, 800cpi/200cpi, or
556¢pi/200cpi. When the switch is set to 800cpi/
556¢pi, a 1 inserted in the TDENSITY entry will
specify that the labels use a character density of 556
characters per inch while the records in thefileusea
character density of 800 characters per inch. The
setting of the Tape Adapter Unit may not be changed
during the program.

Line 22 (SLRPROCD) -- Short Length Record Pro-
cedure: The operand is an address that may be

Writing Entries for the IOCS 23

actual, symbolic, blank, or 9999. The address
should specify the location of a Short Length Record
routine for an input file; the routine must end with 2
Branch to 0+IOCSIXG if the user wishes to return to
IOCS. The address may be inserted through pro-
gramming., If no address is inserted, a short length
record will cause a message to be typed and then
halt the machine to allow the operator to decide what
action must be taken. If the user expects to return
to IOCS from the Short Length Record exit, he may
give IOCS macro-instructions for other files, pro-
vided he saves the contents of IOCSIXG before giving
these instructions and then restores the contents
after the execution of the instructions.

No IOCS macro-instruction should be given for
this file if the user expects to return from the exit
to IOCS. If the user does not wish to return to I0CS,
any macro-instruction may be given, If 9999 is in-
serted in the operand, a short length record will be
regarded as a correct length record, and processing
will continue. The operand may be changed at any
time. This entry will not be effective for output
files or input files having Form 3 records.

Line 23 (LLRPROCD) -~ Long Length Record Pro-
cedure: The operand is an address that may be ac-
tual, symbolic, blank, or 9999. The address should
specify the location of a Long Length Record routine
for an input file; the routine must end with a Branch
to 0+IOCSIXG if the user wishes to return to IOCS,
The address may be inserted through programming.
If no address is inserted, a long length record will
cause a message to be typed and then halt the
machine to allow the operator to decide what action
must be taken. If 9999 is inserted into the operand,
a long length record will be regarded as a correct
length record and processing will continue. The
operand may be changed at any time. This entry
will not be effective for output files.

For this exit, IOCS macro-instructions for other
files may be given provided the user saves the con-
tents of IOCSIXG before giving these instructions and
then restores the contents after the execution of the
instructions,

No IOCS macro-instruction should be given for
this file if the user expects to return from the exit
to IOCS. If the user does not wish to return to I0CS,
he may give any macro-instruction with the excep-
tion that if this file contains Form 3 records, a
GET macro-instruction must not be given.

Line 24 (SCLPROCD) -- Short Character Length
Procedure: The operand is an address that may be
actual, symbolic, blank, or 9999. The address
should specify the location of a Short Character
Length Record routine for an input file; the routine
must end with a Branch to 0+IOCSIXG instruction if
the user wishes to return to IOCS. The address

24

may be inserted through programming, If no ad-
dress is inserted, a short character-length record
will cause a message to be typed and then halt the
machine to allow the operator to decide what action
must be taken. If 9999 is inserted in the operand, a
short character-length record will be regarded as a
correct length record, and processing will continue.
The operand may be changed at any time. This entry
will not be effective for output files.

For this exit, IOCS macro-instructions for other
files may be given provided the user saves the con-
tents of IOCSIXG before giving these instructions and
then restores the contents after the execution of the
instructions.

No IOCS macro-instruction should be given for
this file if the user expects to return from the exit to
IOCS. If the user does not wish to return to 10CSs,
he may give any macro-instruction with the excep-
tion of the case that if this file contains Form 3 rec-
ords, a GET macro-instruction must not be given.

Line 25 (TPERRFLD) -~ Tape Error Field: The
operand of this line must be blank, IOCS will insert
a count of the input tape errors that were not cor-
rected in nine attempts made in the error correction
routine.

Line 26 (TPSKPFLD) -- Tape Skip Field: The oper-
and of this line must be blank. IOCS will insert a
count of the number of times that the Tape Skip (TSK)
instruction was executed during the writing of an
output file.

Line 27 (EOSPROCD) -- End-of-Segment Procedure:
The operand is an address that may be actual, sym-
bolic, blank, or 9999. The address. should specify
the location of an end-of-segment routine for an input
file; the routine must end with a Branch to 0+IOCSIXG
instruction if the user wishes to return to IOCS,

The address may be inserted through programming,
If no address is inserted, an end-of-segment indica-
tion will cause a message to be typed and then halt
the machine to allow the operator to decide what ac-
tion must be taken. If 9999 is inserted in the oper-
and, an end-of-segment indication will be ignored
and processing will continue. The operand may be
changed at any time. This entry will not be effective
for output files.

No IOCS macro-instructions should be given on
this file if the user expects to return from the exit to
IOCS. If the user does not wish to return to I0CS,
any macro-instruction may be given.

Line 28 (EORPROCD) -~ End-of-Reel Procedure:
The operand is an address that may be actual, sym-
bolic, or blank. The address may specify the start-
ing location of additional instructions that are to be
executed when an end-of-reel condition occurs.
These instructions will be executed in addition to the

routine provided for an end-of-reel condition by the
I0CS. The return from this exit must be a Branch
to 0+IOCSIXF. The address may be inserted through
programming. If no additional instructions are to
be executed, the operand must be blank. The oper-
and may be changed at any time.

Line 29 (EOFPROCD) -- End-of-File Procedure:
The operand is an address that may be actual, sym-
bolic, or blank. The address must specify the loca-
tion of the user's end-of-file routine. If blank, the
address must be inserted through programming.
When the trailer record of an input file indicates that
the end of the file has been reached, the end-of-file
routine will be entered. The end-of-file condition
will be detected when the trailer record is read and
checked during the end-of-reel routine provided by
the IOCS. The operand may be changed at any time.

An end-of-file routine must be provided by the
programmer. The operations to be performed dur-
ing this routine are determined by the programmer.
Typical operations for an end-of-file routine would
be checks to determine:

1. If the end-of-file has been reached for all input
files of a multifile program.

2. If the end of a phase has been reached.

3. If the end of the job has been reached.

Depending on the results of the checks and the re-
quirements of the program, the end-of-file routine
can perform the required function. For example, if
a check indicated an end-of-job condition, the pro-
grammer would want to execute at least a CLOSE or
an END macro-instruction.

No IOCS macro-instructions may be given in the
EOFPROCD routine if the user intends to return to
I0CS. IOCS macro-instructions may be given if the
user does not wish to return to IOCS.

If the input file does not have tape labels, the end-
of-file routine specified by this address will be en-
tered each time a tape mark is read. The user's
end-of-file routine must determine whether the tape
just read is the last reel of the file, because I0CS
depends on a trailer label to differentiate between
the end of a reel and the end of a file. Other checks
to be made in the end-of-file routine are the same
as stated above. When the user's end-of-file routine
determines that the reel of tape just read is not the
last reel of a file, processing is continued by branch-
ing to 0+IOCSIXG.

Line 30 (RWDPROCD) -- Rewind Procedure: The
operand may be 0, 2, 3, 4, 6, 7 to specify rewind
procedures to be followed after a trailer label has
been read or written, or it may be blank. This
operand specifies the rewind procedure for both the
current reel of a file and the next reel of the file,
if there is one. The rewind procedures that may
be used are as follows:

Action for Action for Next
Operand Current Reel Reel, if any
0 No Rewind Rewind
2 Rewind Rewind
3 Rewind and Unload Rewind
4 No Rewind No Rewind
6 Rewind No Rewind
7 Rewind and Unload No Rewind

The operand may be inserted through programming.
If a digit is not inserted, the blank will be regarded
as a 0. The operand may be changed at any time.

Line 31 (CHECKPNT) -- Checkpoint: The operand
may be 2, 1, or blank. A 2 indicates that this file

is an output file that will also be used as the check-
point tape, and that this output file will have alternate
reels.

For an output file, a 1 indicates that this file will
also be used as the checkpoint tape. Alternating of
tapes will not be allowed. For an input file, a 1
indicates that checkpoint records are contained be-
tween data records of this file.

If this is an output file and the operand is 1 or 2,
CHPT must be included in the DIOCS statement.

For an output file, a blank signifies that this file
will not be used as a shared checkpoint tape. Ior an
input file, a blank signifies that no checkpoint rec-
ords have been written on tapes of this file.

Line 32 (LABELINF) -- Label Information: The
operand is an address that may be actual, symbolic,
or blank. This address must specify the location of
the DC entry that defines data and procedures as-
sociated with tape header and trailer labels for the
file. The address may be inserted through program-
ming. A blank operand indicates that this is either
an unlabeled input file or an output file that is not to
be labeled. If this operand is changed, reassembly
of the program may be necessary. This entry will
be ignored if the sixth item in the operand of the
DIOCS entry is EOR2. When this file is being used
as a shared checkpoint tape, the LABELINF entry
must be restored by the user after the file is opened.

Line 33 (SRBFORM4) —- Subrecord Blocking Form 4
Records: The operand is either a four-digit number
to specify the subrecord blocking for Form 4 records
or blank, A four-digit entry is used for Form 4 rec-
ords only. The operand must be blank for all other
record forms. When Form 4 records are used, the

Writing Entries for the IOCS 25

operand must not be blank and must never be changed
during the running of a program. For Form 4 rec-
ords, the operand must contain the number of sec-
tions (subrecords) that make up one record. If the
operand is changed, the program must be reas-
sembled.

Line 34 (RLIFORMS3) -- Record Length Indicator
Form 3 Records: This entry is used for Form 3
records only and the operand must be blank for all
other record forms. When Form 3 records are used,
the operand must not be blank and must never be
changed during the running of a program. For Form
3 records, the operand must contain the position of
the record length field within the record. The posi-
tion of the record length field is specified by giving
the first and last digit positions of the field as is
done when defining a field under a DA entry. (Field
definition is described in IBM 7070 Series Program-
ming Systems: Autocoder, Form C28-6121.)

The record length field must be positioned so that
it is contained in one word of the record, i.e., the
field may not begin in one word and end in the next.
If the position of the record length field is changed,
reassembly will be necessary.

Line 35 (SPAREINF) -- Spare Information: This en-
try represents a two-digit field that is available to
the programmer for any desired purpose, This field
may not be used for programs compiled in the ad-
ditional storage mode.

Line 36 (SCHEDINF) -- Schedule Information: The
operand of this entry must be blank. This entry re-
serves an area for use by I0CS.

RETURNS FROM IOCS EXITS

The following list indicates the returns from the
IOCS exits.

I0CS Exit Return
All Label Exits (No macro-instruc-

tions may be given in these routines) 0+IOCSIXF
End-of-File Exit (For an unlabeled

file) 0+IOCSIXG
End-of-Reel Exit 0+IOCSIXF
End-of-Segment Exit 0+IOCSIXG
Long Length Record Exit 0+IOCSIXG
Short Character Length Record Exit 0+IOCSIXG
Short Length Record Exit 0+IOCSIXG

TAPE RECORD AREAS

An area must be defined for each tape input and
output file used in the program. Each area must be
defined to indicate the blocking and the arrangement
of the fields within a tape record. The area is de-
fined by a DA entry as described in the Autocoder

26

reference manual. The IOCS requires that RDWs be
created for each of the tape record areas. The user
has the option of creating RDWs by either a DA or a
DRDW operation; both methods are described below.
The various tape record forms require slightly differ-
ent methods of defining the tape record areas; each
method of definition will be described separately
below.

Defining Areas for Form 1 and Form 2 Input Records

If the RDWs are to be generated using the DA oper-
ation, the DA entry may be written as follows:

Operation

p Stquence Namse OPERAND

(Lin)]"(Lml) — c’gn , 0 » a0 .

s el i {9 S R
j J o T) +‘NID H i)
. \ 001, | i i i
Lo 102 L halh [
T !;ﬂ]‘,|7' T
l‘ﬂi L‘ | I ,34% — B
i o ; L e %| ! !
o [T[T i NERRERN ! |
T f B EARREE ™ j

bk . 1 H H ; I

If the RDWs are to be generated using the DRDW
operation, the DA entry and the DRDW entry may be
written as follows:

(Piequ(':iﬁ; Name Operation OPERAND }

I Hal sle {Label) 1glis Code oola 28 3 3 a0 a3
Ol DANMAME ~ ba N, Os/iNDXWRDA |)
az Fiernl o0, 0o . ! LA
03 F1ELD2 10,1 /
04 FIELDS 17,34 \
O5 F1ELDS 35,42)
oc FiEIDS 43 59 2
S

o7 i . !

Sequence
{Pg) (Lln)

Name
(Lobel)

Operation OPERAND

49 A5
T HEP

o
'l‘lIllil=ili'-'11§|,:;;~

The use of the label of the DA entry will depend
on the method used for generating the RDWs. If the
RDWs are to be generated by the DA entry, the label
must be entered on Line 15 in the File Specifications
for the corresponding input tape file. If the RDWs
are to be generated by a DRDW operation, the label
of the DA entry must be used in the operand of the
DRDW entry, and the label of the DRDW entry must
be entered on Line 15 in the File Specifications.

The value of N in the operand is equal to the num-
ber of records in a tape block multiplied by the num-
ber of areas to be used for the file.

The next item in the operand depends on the
method to be used for generating the RDWs; see the
example above. IOCS will assign plus and minus
signs to the RDWs as required by the tape file, based
on data supplied in the File Specifications.

The next item in the operand is a zero so that
fields within the record will be defined relative to
zero and can be referred to using index word XA for
the file.

The last item in the operand is +INDXWRDA,
which automatically assigns indexing to instructions
that refer to fields defined in the subsequent entries.
The symbolic name must be the same as the operand
used for index word XA of the File Specifications
(see Line 19). Use of an index word in a DA entry is
described in the Autocoder reference manual. If the
program is to be assembled with Four-Tape Auto-
coder, the index word cannot be included in the
operand of the DA entry; to refer to fields defined
relative to zero, the user must specify the index
word in each instruction that refers to those fields.

Subsequent entries under the DA are used to des-
cribe one record in the block. These entries name
the fields, specify the location of the fields within
the record, and specify the form of data in the field.
A detailed description of the subsequent entries may
be found in the reference manual IBM 7070 Series
Programming Systems: Autocoder, Form C28-6121.

Defining Areas for Form 1 and Form 2 Output
Records

If the RDWs are to be generated using the DA opera-
tion, the DA entry may be written as follows:

appear in the operand of the DRDW entry and must
be the same as the label of the DRDW entry already
entered on Line 15 in the File Specifications.

The value of N in the operand is equal to the num-
ber of records in a tape block multiplied by the num-
ber of areas to be used for the file,

The operand of the DA entry may include the
letters RDW if the DA operation is to generate the
necessary RDWs. If the letters RDW are omitted, a
DRDW operation must be included in the program;
see the examples above., IOCS will assign plus and
minus signs to the RDWs as required by the tape {file,
based on data supplied in the File Specifications.

One subsequent entry under the DA is necessary
to specify the area required for one record.

Defining Areas for Form 3 Input Records

If the RDWs are to be generated using the DA opera-
tion, the DA entry may be written as follows:

S N
(Pg.qu(.L“lf\: ‘ (L::\:n ' Oper‘!lm 7 w OPE:,AND L .—‘
Lo L isTNaME] | ! N, 2ol oL o | L]y
B AELDu il do.l JERRER Ll T‘t
3 EELD? | NI BN -H PR RS RN
|| odl el D3 ; -1 - R Fogd
o5 FIELDA e ~3,7~—;‘|'—41H ! iL_;.*..‘.1
OG FIE DS L, I3s 4s s L L
oz | Tl il ase (i e ;
Y. iy ;’ P ' H - | H
L B EEEE i

If the RDWs are to be generated using the DRDW
operation, the DA entry and the DRDW entry may be
written as follows:

‘PS‘oqu(an.:; ‘::::r' IOpa;;t‘lon I " N OPER:ND
H"T“T'HL‘. e e ¢ | bl T BERER
Lol bustnibde DAL _ I E N % } bt
o2l LILTL AL Too, NERRENE IREEE
= ERERN DR ERE N RN AEEAEN SRR EENRA oo
: RN NN RRREA RERRA! IREERRERERINEREAN ahg €088 wolas OPERAND
DA | I, o noxwiRDA | !
If the RDWs are to be generated using the DRDW R o - ST N P e
: SR [VY ISR N ISET N AN R R
operation, the DA entry and the DRDW entry may be 1 e 20l | 5 7
written as follows: IEEEYSET! [0 NN
I - 07T | KON IO O RO A
| i 4;.,_ ; ; .M‘_._i,__
] L - — T
e L T T e D
oz | | i!ﬂ oo s | : | !‘w][?
i N I ! 1 [C Lo T i H ol
o3, e e T l i T) T ; | : T :‘ T — Sequence Nome Operation OPERAND
ol 1] : : } i : .(P? (""")go (Label) 1slis Code . ’5 . 30 35 : Py
L] 'saqgmﬁamimizf T
Lo | 1] Ly HESY IS EFE S -
Sequence Nome Operatian OPERAND ISR EEEERERE NN DRERI RRENAEE i :
(PgL) (Lin) (Lobel) 1slig Code 28 30 R L1
| ‘[O\ Mk";gg _.D"R:DJ!A NN ! Il : .L I : .
a2 { I { 1 R i | 1 P ' j The use of the label of the DA entry will depend
(i ENiEEEENEE N I

The use of the label of the DA entry will depend
on the method used for generating the RDWs. If the
RDWs are to be generated by the DA entry, the label
must be entered on Line 15 in the File Specifications
for the corresponding input tape file. If a DRDW
operation is used, the label of the DA entry must

on the method used for generating the RDWs. If the
RDWs are to be generated by the DA entry, the label
must be entered on Line 15 in the File Specifications
for the corresponding input tape file. If a DRDW
operation is used, the label of the DA entry must be
used as the operand of the DRDW entry and must be
the same as the label of the DRDW entry already en-
tered on Line 15 in the File Specifications.

Writing Entries for the IOCS 27

The value of N in the operand is 1, 2, or 3 to
specify the number of areas to be used for the file.

The next item in the operand depends on the meth-
od to be used for generating the RDWs; see the ex-
amples above. One RDW will be generated for each
area. Only one RDW is used for each area because
the number of records in each block will be differ-
ent; this prevents the generation of an RDW for each
record in advance as for Form 1 and 2 records.

The remainder of the operand of the DA entry is
the same as described above for Form 1 and 2 input
records.

Subsequent entries under the DA are the same as
described for Form 1 and 2 input records with one
addition. One entry under the DA must specify the
maximum permissible number of words in a block.
This additional entry is illustrated by the last entry
in the examples above; the entry may have a label
if the user desires.

Defining Areas for Form 3 Output Records

If the RDWs are to be generated using the DA opera-
tion, the DA entry may be written as follows:

Sequence Nome Operation OPERAND

{Paly (Lin) (Lobel} whis Cod polyy 8 45
Sismishinin E%I
[111

If the RDWs are to be generated using the DRDW
operation, the DA entry and the DRDW entry may be
written as follows:

Opérotion OPERAND
1sfis_Code 2ola 28 30 40 a
N I RN T ™ T T T :
. Do ‘ i ' i . i H
: o H i :

OPERAND

2 a3

H 2 I R EREE

I ; . L
i i

f
i1
L

Sequence Nome Operation
'(El {Lin) (Labal) 1shie Code .
T T T T H

; E°!‘ L LSTNAME . DRDW, D
opll il
111 Ll

|
T
i

i
IR EEEEE S RN L

The use of the label of the DA entry will depend
on the method used for generating the RDWs. If the
RDWs are to be generated by the DA entry, the label
must be entered on Line 15 in the File Specifications
for the corresponding output tape file. If a DRDW
operation is used, the label of the DA entry must be

28

used as the operand of the DRDW entry and must be
the same as the label of the DRDW entry already en-
tered on Line 15 in the File Specifications.

The value of N in the operand is 1, 2, or 3 to
specify the number of areas to be used for the file.

The operand of the DA entry may include the
letters RDW if the DA operation is to generate the
necessary RDWs. If the letters RDW are omitted,
a DRDW operation must be included in the program;
see the examples above.

One subsequent entry under the DA is necessary
to specify the maximum number of words in one
block of output records.

Defining Areas for Form 4 Input Records

Form 4 records require that a DA entry be written
for each part (section) of each input record in each
record area. To illustrate the writing of these DA
entries, the following example assumes input rec-
ords divided into three parts with two records con-
tained in each block; two tape record areas are used.
The label of each DA identifies the area, record,
and part. For example, AR2RD1PTS3 is the label of
part 3 of record 1 in area 2.

Each DA entry for a Form 4 record must have a
unique label, which will be used when creating the
RDWs to handle these records.

The first DA entry for each part of a record has
an operand intheform 1,, ADDR (see Lines 01, 06,
and 08). The 1 indicates that one area is to be es-
tablished for each part of the record. The two suc-
cessive commas specify that no RDW is to be created
by the DA entry. The RDWs for Form 4 records are
specified as described under "RDWs for Form 4 In-
put Records." The ADDR specifies the relative ad-
dress of the first position of each part of the record.
In the example, part 1 is relative to location 0; part
2 is relative to 19, i.e., the first word following the
end of part 1. Part 3 is specified relative to word 24,
which is the first word following the end of part 2.
The DA entries can be written as shown below.

The fields within each part of the record are de-
fined once by subsequent entries under the first DA
entry for each part. In the example, part 1 has
fields 1 through 4, part 2 has field 5, and part 3 has
field 6.

When using Form 4, the last field in each part
usually will be variable in length and under record
mark control; the maximum field length of such
variable fields must be used when defining them.

Sequence Name Operation OPERAND Sequence Name Operation OPERAND]
(P} (Lin) (Label) iglie €09 ol : s | {Pohlsglg toben oo €% gols 26 0 3 a0 .
:;]\ et [ola| RN _ot i'sTMAME | R arigpieTal L el L j_;
e \ 1 \ s : ‘nz!"‘;_fiii~.tgg‘ ; BN
e 1 S R : i i [sl
guE ey SO L peow tARL S e
4 P 04 | henow A ISR : it
- :Pﬁ; L, Los Ll Ll i pROW AR et
- ®R1RO1 P12 D TR I oG | . .RDM’—'—'AP X :
7] el lola, ! ‘ FOT L pieow WARZRDIP i i
T . . e E ‘ ow {ARZRDIPT2 il Ll
[lob! | L 09 || L bppw HAReRo TS oo (L]
\o Tl 1 ' Ve N | ppow HAReRn2eTY Lo Ll Ll il
in A i prow larahzerzl LD
RARARRBRNHA ‘ HLZ ol mAR2@D2ex L L
1 o 4}9% 3 i I L i A sl
“FHLHBZ{P N BRI RSN HENES BN EEEAEIEEE
1 (o3
|1 L‘pf L
LT A= T Defining Areas for Form 4 Output Records
ue I] oo
120 I P30, A The DA entries required for Form 4 output records
21 Y . .
l N Bl are similar to those required for input records. The
2;3 : , neF major difference is that the limits of the fields within
—“ﬂ: o ZH' | ; ! 7] each part of the record need not be entered.
j «zia: R2le le’{rn ANEERAEREERERERERE : To show the similarity between input and output
o T :] T il . s :
rr] . l ool ol - i1 - ‘ DA entries, the example used to illustrate DA entries

The DA entries for other records in the block and
in other tape record areas contain a 1 in the operand.
There will be one subsequent entry under each DA
entry to specify the area required by the correspond-
ing part of the record. Lines 10 through 27 of the
coding sheet show the DA entries and the subsequent
entries required by the example.

RDWs for Form 4 Input Records

IOCS requires that the RDWs for the tape record
areas be in consecutive storage locations, When
RDWs are created by a DA entry, the RDWs are
located immediately preceding the fields defined by
the subsequent entries. The requirement of one DA
entry for each part of a Form 4 record would result
in RDWs separated by the fields they define. To pro-
vide the RDWs in the order required by IOCS, Form
4 RDWs are created by using the Define Record
Definition Word (DRDW) operation as described in
the Autocoder reference manual. The DRDW entries
required by the example given for Form 4 input rec-
ords would be written as shown below.

The label of the first DRDW must be the same as
the operand of Line 15 in the File Specifications for
the corresponding input tape file.

The first character of the operand of each DRDW
entry must be either a plus or minus sign. All oper-
ands will be plus except the one for the last DRDW
in each tape record area. Lines 06 and 12 show the
last DRDW entries for the two areas of the example.
The remaining portion of the operands must be the
same as the labels of the DA entries for each part of
the Form 4 input records.

for output records will assume the same arrange-
ment of records (three parts per period, two records
per block, and two areas). The DA entries for this
example would be written as follows:

o | 1

2OTA b -

(Psqoqn(eﬂf" (toml Operotion OPERAND
h abel) 1slig Code 49 4!
Lo [AR1RDhPTA L ERRENINE ‘
o2l [REE i BN _'
{03 [Ae1eplipTe DA | Tl i
o4l Lot i [
05 hRirpipTC DA ¢ | EEREEEI
EES N IS R I
;

L O7T AR [;

" oa L o
. oo ARIRDZOTA DN . i S
vl L BANEN »
L AR einePre ma ot b
- R N ' : g
13 |ARPRDIPTA DA : ‘_.q.__-Y—
17 N S |
"IS\Ahzh}nj_ipFH NE [| ‘
—_{ :i' i;i: 1\5 I ‘1_
L7 |apeneTc, pA S
Lg |l . o
19 j 2 i ! ':

o |]! ; L Lo
211 ole lolal | IREEEL EEEEM
22 [1]1] B BRNEEN T
ViR A ‘;;;Ei i i
24 | | | pal]

25 | : IS i i
RN i e ifi

Each DA entry for a Form 4 record must have a
unique label. This label will be used when creating
the RDWs to handle these records.

The operand of each DA entry contains a 1 to es-
tablish one area for each part of the output record.
There will be one subsequent entry under each DA to
specify the area required by the corresponding part
of the record.

Writing Entries for the I0CS 29

RDWs for Form 4 Output Records

The RDWs for output records are specified in the
same manner as those described for input records.
The DRDW entries required by the example given for
Form 4 output records would be written as follows:

(;equ(enp; Nome Operation OPERAND
PRI g (Labet) 1shig ©098 golo) 28 0 38 no{ as
: .

O1_li | STNAME _IDROW HARIRDIPTA !
0z ; DR OW d-_AR_LaP_LE'.‘[&
o3 ; ROW HARIRN1PTC
04 ; ROW +Ag4gbzgtg S S
os e DRow HARIRDPETE
oG ROW ~AR1RD2ETC : !
07 ROowW pARPROIETAN L)
o8 RDW_|+ARZRDIPTH ! .
09 ROW H-ARZRDIDTC : .
10 ' HARZRDZPT A i _
L1 +ARZRDZOTR. L |
12 DrRpwW —~ARPZRDZPTC i
1.3 . i

| | J Lo

The label of the first DRDW must be the same as
the operand of Line 15 in the File Specifications for
the corresponding output tape file.

The first character of each operand must be either
a plus or minus sign. All operands will be plus ex-
cept the one for the last DRDW in each tape recaard
area. The remaining portion of the operands must
be the same as the labels of the DA entries for each
part of the Form 4 output records.

INPUT/OUTPUT MACRO-INSTRUCTIONS FOR
TAPE FILES

The input/output macro-instructions are written as
Autocoder instructions with the operand containing
the symbolic location(s) of the information to be proc-
essed. The symbolic location may be either the
name of a tape file defined by File Specifications or
the name of an area in storage defined by a DA or
DC entry. The operation portion of the macro-in-
struction is the mnemonic representation of one of
the functions to be performed by the IOCS, Each of
these functions is described separately below.

Each macro-instruction causes a sequence of in-
structions to be selected; the number of instructions
required depends on the function and on the informa-
tion given in the File Specifications. These instruc-
tions are selected and inserted into the object pro-
gram during Autocoder assembly.

OPEN Macro-Instruction

Before beginning to use an input or output file, the
file must be initialized for processing by use of the
macro-instruction OPEN. The OPEN macro-in-
struction should be written as follows:

30

(Slqu(tnpt Nome Operation OPERAND

.Po“ Lm),. (Label) 1shi Cod.l 2002t 5) 35 . 40 43
I THI XYW Y EN FILE] ’FILFZ'F\+3
o2 N IS i :

[1

The items entered in the operand depend on the
OPENn item in the operand of the DIOCS entry as
follows:

1. If the operand of the DIOCS macro-instruction
contains OPEN1 or OPENS5, the operand of the OPEN
macro-instruction must name all tape files used by
the program. When OPEN1 or OPENS is used, the
programmer must use the OPEN macro-instruction
in accordance with the procedures described under
"System Descriptive Entry (DIOCS). "

2. If OPEN2, OPEN3, OPEN4, or OPENS is
placed in the operand of the DIOCS macro-instruc-
tion, the operand of the OPEN macro-instruction
must contain the names of all new (not already opened)
tape files to be used in the portion of the program
which follows the OPEN. The names in the operand
must be the same as the names used as the operand
of the DTF entry of the File Specifications for those
files.

An OPEN macro-instruction is always used near
the beginning of a program, to initialize the tape files
prior to processing data. The OPEN macro-instruc-
tion is also used when data in the File Specifications
Table must be changed during a program. (The use
of OPEN for this purpose is described under '"Pro-
grammed Entries, ")

When an OPEN macro-instruction is encountered
during the execution of the object program, the
following operations will occur for the first reel of
each file named in the operand:

1. Variables pertaining to the file will be inserted
into the file scheduler routines that were selected
during Autocoder assembly. The variables are taken
from the File Specifications Table of the tape file.
For example, tape unit and channel numbers will be
inserted into tape instructions that are included in
the selected routines.

2. A 1 will be inserted into the ACTIVITY entry of
the File Specifications Table (see Line 06 under
"File Specification Entries'").

3. A check will be made to determine if a reel of
tape and the tape unit specified in the File Specifica-
tions Table are available to the program.

4. The tape will be rewound according to the digit
inserted on Line 12 of the File Specifications.

5. The tape label will be processed as inF ~ated
below.

Label Processing, Input Files: The OPEN macro-
instruction will read and check the header tape label;

the items checked are under control of a label mask
(see "The DC Entry for Input File Labels').

Label Processing, Output Files;: The OPEN macro-
instruction will check the retention code of the
mounted reel and write a header tape label if the re-
tention code indicates that the tape may be used for
writing. The checking of the retention code and the
writing of the label are under control of a label mask
(see "The DC Entry for Output File Labels").

Other Label Processing: During the running of a
program, similar operations are performed for sub-
sequent reels of a multi-reel file after an end-of-
reel condition has been detected. An end-of-reel
condition is indicated by reading an end-of-reel
trailer label for input files or sensing a reflective
spot on tape for output files, The operations that
occur when an end-of-reel condition is detected de-
pend on whether the file is an input or an output file.

For input files, the operations are as follows:

1. The tape will be rewound according to the digit
inserted on Line 30 of the File Specifications. (Re-
wind does not occur after an end-of-file trailer label
is read.)

2. A check will be made to determine if the next
reel of the file and its tape unit are available to the
program,

3. The tape label of the next reel will be proc-
essed as described above for the first reel of an
input file.

For output files, the operations that occur when
an end-of-reel condition is detected are as follows:

1, A tape mark will be written following the last
record on the output tape.

2. The end-of-reel trailer label will be written
on the output tape. A tape mark will be written
following the trailer label,

3. The tape will be rewound according to the
digit inserted on Line 30 of the File Specifications.

4, The tape label of the next reel will be proc-
essed as described above for the first reel of an
output file.

CLOSE Macro-Instruction

Upon completion of an output file, the tape is re-
moved from use by giving the macro-instruction
CLOSE. The CLOSE macro-instruction should be
written as follows:

(PS:uu(enci I Name Operotion OPERAND
{Pabfaind ol (Label} wslie Code g0z 28 30 38 40 a8

ICLOSEFILEA, FILEB, FILEC]
[[

o2

The operand contains the name of the output file
that is no longer to be used; more than one file may
be named in the operand provided the file names are
separated by commas. These names must be the

same as the names used as the operand of the DTF
entry of the File Specifications for those files.
When a CLOSE macro-instruction is encountered
during the execution of the object program, certain
operations will occur for the last reel of each file
named in the operand. The operations depend on
whether the file is an input file or an output file.

Input Files

1. The tape will be rewound according to the digit
inserted on Line 13 of the File Specifications.

2. A 0 will be inserted into the ACTIVITY entry
of the File Specifications Table (see Line 06 under
"File Specifications Entries').

Output Files

1. Any records which remain in the output areas
(i.e., a partly filled block) will be written on the
output tape.

2. A tape mark will be written following the last
output record.

3. The end-of-file trailer label will be written on
the output tape. A tape mark will be written follow-
ing the trailer tape label.

4. The tape will be rewound according to the digit
inserted on Line 13 of the File Specifications.

5. A 0 will be inserted into the ACTIVITY entry
of the File Specifications Table (see Line 06 under
"File Specifications Entries').

The CLOSE macro-instruction may be used at the
end of a program and also whenever data within the
File Specifications Table must be changed during the
running of a program; the use of the CLOSE macro-
instruction when changes are made is described un-
der "Programmed Entries."

END Macro-Instruction

Upon completion of a job, all tapes are removed
from use by giving the macro-instruction END. The
END macro-instruction should be written as follows:

Sequence

X Nome Operation
'(qub(Lm) 5

6 (Label}

OPERAND
islig €098 polar 25 30 38 9 as

BEL _|[Eno _lmAppRESS 0.l L oL
o2 i i |

e

| T T T

The operand may contain an actual or symbolic
address or it may be blank. If an address is placed
in the operand, the program will branch to that ad-
dress after the END macro-instruction has been
executed. If the operand is blank, the program will
enter a loop, so that SPOOL programs (if any) can
continue to operate after the END macro-instruction
is executed.

Writing Entries for the 10CS 31

When an END macro-instruction is encountered
during the execution of the object program, it will
perform the same operations as the CLOSE macro-
instruction for all files that are still OPEN and will
cause an end-of-job message to be typed. The func-
tion of the END macro-instruction, after the mes-
sage has been typed, depends on what is entered in
its operand and whether SPOOL programs are to
operate in conjunction with the program, One of the
following procedures will be followed after the end-
of-job message is typed:

1. If an address has been entered in the operand
of the END macro-instruction, the program will
branch to the instruction located at that address.

2. If the operand of the END macro-instruction is
blank and either IGEN3 or IGEN4 is specified in the
DIOCS line, the program will type an end-of-job
message and come o a programmed halt.

3. If the operand of the END macro-instruction is
blank and either IGEN1 or IGEN2 is specified in the
DIOCS line, the program will enter a loop to permit
SPOOL programs to continue. Within the program
loop, a test of a specific word in the SPOOL routine
will be made to determine if a new main program is
to be loaded from tape. As long as the specific word
indicates that no new main program is to be loaded,
execution of the program loop will continue to allow
operation of the SPOOL program(s). If the word in
the SPOOL routine indicates that a new main pro-
gram is to be loaded from tape, a branch to the load
program will occur to load the new main program.
The loading of SPOOL programs and main programs
is described in the publication IBM 7070 SPOOL
System, Form J28-6047-1,

By using the END macro-instruction in place of
the final CLOSE, programming is simplified because
the programmer need not name the files to be closed.
The ability to branch to a specified address or enter
a loop provides a means for either initiating the next
program or continuing SPOOL programs.

GET Macro-Instruction

To locate a record to be processed, the macro-in-
struction GET is used. The macro-instruction
should be written as follows:

(Pslliqu(el."if!: Name Opero"cl;gL OPERAND
{95 5le (Lobe islis_Code aolp 25 30 > 49, 4s|
oL |anviaBEL |eET . [inpurEiLe . L 1
02 YLABEL IGET. leL_JI'[F.u__E. TO JALBRKAR.E]A e
o3 1 d ; , [P |

the name of a work area for the input file named in
the first item of the operand. WORKAREA must be
defined by a DA or RDW or DRDW entry. The word
TO must be preceded and followed by a single blank
character.

The first form of the GET macro-instruction will
place the address of the first word of the record into
the indexing portion of index word XA specified on
Line 19 of the File Specifications for the file named
in the operand. Processing of the record may be
done using instructions that are indexed by index
word XA and that refer to fields within the record as
defined by a DA entry relative to 0000. The contents
of index words are described under '"Use of Tape
Index Words. " If indexed instructions are to be used
and the program is to be assembled with 7070 Auto-
coder, index word XA may be assigned to the in-
structions through the DA entry that defines the tape
record area (see "Tape Record Areas').

Processing, when using non-indexed instructions,
may be done by moving all or part of the record to a
work area through the use of a MOVE macro-instruc-
tion, The MOVE macro-instruction is described in
the Autocoder reference manual. If the program is
to be assembled using Four-Tape Autocoder, re-
strictions stated under '"Using I0CS with Four-Tape
Autocoder' must be observed.

The second form of the GET macro-instruction
will place the address of the first word of the record
into the indexing portion of index word XA and will
also move the entire record into the area named in
the operand (WORKAREA). Processing in the work
area may be executed by using non-indexed instruc-
tions.

It is imperative that the contents of the index word
not be changed, so that subsequent MOVE and PUT
operations will operate properly.

An automatic function of the GET macro-instruc-
tion is to read a block of records from tape whenever
all the records in an input area have been processed.
Tape reading is a function of the information supplied
in the File Specifications and will occur, as required,
when GET macro-instructions are executed.

PUT Macro-Instruction

To cause a processed record to be included in an
output file, the macro-instruction PUT is used. The
macro-instruction should be written as follows:

The operand indicates the name of the input file
containing the desired record; this name must be the
name used as the operand of the DTF entry of the
File Specifications for that file. In the second form,
the portion of the operand following the word TO is

32

(psgewfﬂf\: Name Operation OPERAND

P gl (L.abet) islie €098 polp 28 30 35 0 as
o) ANYLABEL |PUT . [INPUTFILE 1IN @UTPUTFILE |

.02 JANYLABEL |PUT |[AREANAME 1N OUTPUTFILE |
O3 ANYLABEL [PUT [F\{ ELDNA :
04 JANYL ABEY [PUT IQUTPUTF‘H_E

| _os| : ; ‘
l : i !

The operand may name a record from another file,
an area, or a field that is to be included in an output
file; the operand may also indicate that an output rec-
ord has been assembled in the record area of the
output file. Whenever the name of an input file, a
field, or an area appears in the operand, the name
of the output file must be used following the word IN;
the word IN must be preceded and followed by a sin-
gle blank character. File names used in the operand
must be the same as the names used as the operand
of the DTT entry of the File Specifications for the
corresponding files.

When an entire record from an input file is to be
included in an output file, the name of the input file
may be used preceding the word IN. Only one input
file may be named in each PUT macro-instruction.

An area or a field may form an output record by
using the name of the area or field preceding the
word IN. The name may be the label of one DRDW
that defines the area, or it may be the name of a
field defined by a subsequent entry under a DA or
DC entry.

The last example shows the type of PUT macro-
instruction to be used when processing is to be done
in an output area. The index words for the output
file will be changed to define the next space in the
output area. Processing of the various record
forms in an output area is described under '"Process-
ing in Output Areas."

The PUT macro-instruction causes data in an
input area or a storage area to be moved to the next
available space in an output area. When using this
macro-instruction, the programmer must be sure
that the data moved into the output area will result
in the same record form as specified in the File
Specifications (Line 08) for the output file.

An automatic function of the PUT macro-instruc-
tion is to write a block of records onto tape whenever
enough records have been processed to make up an
output block. Tape writing is a function of the in-
formation supplied in the File Specifications and will
occur as required.

PUTX Macro-Instruction

When records are to be placed in an output file by
exchanging RDWs rather than by moving the record,
the PUTX macro-instruction must be used. The
operation code PUTX is derived from the words Put
and Exchange. The macro-instruction should be
written as follows:

Sequence Nome Operation OPERAND "
{PaL5L g {Label} 1s)is . C0de olp 28 30 35 a0 as

O) ANYLABEL UTX [INPUTFILE IN QUTPUYFWULE | 2

02

The first name in the operand is the name of the
input file; the second is the name of the output file.
The names used in the operand must be the same as
the names used as the operand of the DTF entry of
the File Specifications for the corresponding files.
The word IN must be preceded and followed by a
single blank character.

The form of the records in the files places the
following restrictions on the use of the PUTX macro-
instruction:

1. Form 3 records can not be processed with a
PUTX macro-instruction.

2. The combination of input record form and out-
put record form must be one of the following:

Output File
Record Form

Input File
Record Form

NN ==
N = N

4 4

3. The length of fixed-length records or the
maximum length of variable-length records must be
identical for both the input and output files.

4, For Form 4 records, the number of sections
in input and output records must be the same and the
maximum number of words in the corresponding
sections of each input and output record must be
identical.

There is no restriction on the blocking factor of
the input and output files. The blocking factor (the
number of records in one block) may be different for
each of the files provided that the other restrictions
listed above are observed.

After RDWs have been exchanged by a PUTX
macro-instruction, the input record is no longer
available for processing; the programmer must be
certain that all processing that requires the input
data is completed before issuing the command.

When PUTX is to be used, processing should be
performed in the input area using indexed instruc-
tions that refer to fields within the record as defined
by a DA entry relative to 0000. If input data is
moved to a work area for processing, do not use
PUTX, If the PUTX macro-instruction is used, the
original input data rather than the results of pro-
cessing will appear in the output file.

The automatic function of writing blocks of rec-
ords on tape is the same for the PUTX macro-in-
struction as for the PUT macro-instruction.

RLSE (Release) Macro-Instruction

To begin using a new record block, the macro-
instruction RLSE can be used. The macro-instruc-
tion should be written as follows:

Writing Entries for the IOCS 33

Sequence Nome Operation OPERAND

(pSeuu(tﬁc§ Nome Operation OPERAND
bk FAmi 1 1 (Label) islig C09® g0l 2 30 3 40 as
' t H

T ; R
O1_|ANYI_ABREL LSE IF1UENAME

‘(Pq;h(Lin) sle “T““"
o1

1slis C09® oolp 3 49 a8

| . L
1 1 B RN B

oz ! : : i

[1 [] l

The operand contains the name of the tape file in
which a new block of records is to be started; this
name must be the same as the name used as the
operand of the DTF entry of the File Specifications
for that file.

If the file named in the operand is an input file,
no records will be taken from the current block after
the RLSE macro-instruction is executed. The next
GET macro-instruction that refers to the file will
obtain the first record in the next tape block. When
used with input files, RLSE allows the programmer
to bypass or delete the records remaining in a block
of records.

If the file named in the operand of a RLSE macro-
instruction is an output file, no more records will
be entered into the current block after the RLSE in-
struction is executed. The next PUT macro-instruc-
tion causes a record to be entered as the first rec-
ord in a new block. If a block is partially filled
when the RLSE is executed, the block will be in-
cluded in the output file as a short-length block. By
using the RLSE macro-instruction with output files,
the programmer may select the record which is to
be the first record in a tape block. Except in cer-
tain cases, the RLSE macro-instruction must be
executed prior to executing any of the following
macro-instructions:

WIM WSM BSP RWD RDSF RDSB

A RLSE instruction should not be given if either
of these conditions is present:

1. No GET, PUT, or PUTX macro-instructions
have been given on the file.

2. The file is an input file that has a blocking
factor of 1 and uses one area.

The operand of the RLSE macro-instruction must
name the same file as the macro-instruction to be
executed. For example, RLSE FILEA must be exe-
cuted before WSM FILEA can be executed. Several
macro-instructions in the above list, which refer to
the same file, may be executed following a single
RLSE, provided that no other macro-instructions
(not in the list) referring to that file intervene be-
tween the RLSE and the listed macro-instructions.

RDLIN (Read Label Information) Macro-Instruction

Data against which labels of input files are to be
checked can be entered into storage by using the
RDLIN macro-instruction. The macro-instruction
should be written as follows:

34

The S in the operand is a digit from 1 through 4 to
specify the card reader synchronizer to be used to
read the Input Label Information Cards (see '"Input
Label Information Card'"). If an IBM 7500 Card
Reader is to be used, 1, 2, or 3 must be placed in
the operand to specify the unit record synchronizer
to which the card reader is connected. If an IBM
7501 Console Card Reader is to be used, the operand
must contain a 4.

The RDLIN macro-instruction will read data that
has been punched into Input Label Information Cards
and store it in the alphameric portion of the input
label DC entry (see "The DC Entry for Input File
Labels'") of the respective input files.

Only non-zero fields in an Input Label Information
Card will be stored in the DC entry; zero fields will
have no effect on the corresponding portion of the DC
entry. Reading of Input Label Information Cards will
continue until the RDLIN macro-instruction reads a
Termination Card and then execution of the next in-
struction in the program will occur.

Before the RDLIN macro-instruction is executed,
the tape channel and tape unit number of the first
reel of the input file(s) must have been established
in the DTF entry of the file(s). At the time the
RDLIN macro-instruction is executed, an Input Label
Information Card must be the next card to be read
from the card reader specified in the operand.

WTM (Write Tape Mark) Macro-Instruction

To write one or more tape marks on an output file,
the macro-instruction WI'M can be used. The
macro-instruction should be written as follows:

(PS:qu(en_c? Name Qperotion OPERAND
{Pa,fLinl (Label) islie Code op 28 30 38 0 48

o1 _|ANYLABEL M__F11LENAME N, : ;
oz YLABE(M __[F 1L ENAME ; :
03

The first item in the operand is the name of the
output file on which one or more tape marks are to
be written; this name must be the same as the name
used as the operand of the DTF entry of the File
Specifications for that file.

The second item (N) in the operand may have any
value from 1 to 9999 to specify the number of tape
marks that are to be written. If the operand of this
macro-instruction contains only the name of an out-
put file (i.e., if the comma and the value of N are
omitted), one tape mark will be written on the out-
put file.

The WTM macro-instruction may require that a
RLSE macro-instruction that refers to the same file
be written immediately preceding the WITM. Use of
the RLSE macro-instruction is explained under
"RLSE (Release) Macro-Instruction. '

WSM (Write Segment Mark) Macro-Instruction

To write one or more segment marks on an output
file, the macro-instruction WSM is used. The
macro-instruction should be written as follows:

The BSP macro-instruction may require that a
RLSE macro-instruction that refers to the same file
be written immediately preceding the BSP; use of the
RLSE macro-instruction is explained under "RLSE
(Release) Macro-Instruction, "

RWD (Rewind) Macro-Instruction

To rewind either an input or an output file, the
macro-instruction RWD is used. The macro-instruc-
tion should be written as follows:

Sequence Name Operation OPERAND PSequmco Nome Operotion OPERAND I
(Lobel) wslis Code pola 28 30 38 40 as ! 9“_;(“");. (Labe) 1glis_Code polp 28 30 3 a a5
: i o At R T ’ i IREEEE A
EL WaMm | LENAME N Loy |aNy W i eNaMe L]

L sM_IF) L ENAME |

ozl I RNERI RRER] NN = NN

T T

The first item in the operand is the name of the
output file on which segment marks are to be written;
this name must be the same as the name used as the
operand of the DTF entry of the File Specifications
for that file.

The second item (N) in the operand may have any
value from 1 to 9999 to specify the number of seg-
ment marks that are to be written. If the operand of
this macro-instruction contains only the name of an
output file (i.e., if the comma and the value of N are
omitted), one segment mark will be written on the
output file.

The WSM macro-instruction may require that a
RLSE macro-instruction that refers to the same file
be written immediately preceding the WSM; use of
the RLSE macro-instruction is explained under
"RLSE (Release) Macro-Instruction. "

BSP (Backspace) Macro-Instruction

To backspace over one or more tape records in
either an input or an output file, the macro-instruc-
tion BSP can be used. The macro-instruction should
be written as follows:

Operation OPERAND

Sequence [Name
6 30 35 40 A3

(Pa) | (Lint {Labet)

©2 IANYI ARE]L
fo ¥}

The first item in the operand is the name of the
tape file that is to be backspaced. This name must
be the same as the name used as the operand of the
DTF entry of the File Specifications for that file.

The second item (N) in the operand may have any
value from 1 to 9999 to specify the number of tape
records to be backspaced over. If the operand of this
macro-instruction contains only the name of a file
(i. e., if the comma and the value of N are omitted),
the tape will be backspaced over one tape record.

The first item in the operand is the name of the
tape file that is to be rewound; this name must be the
same as the name used as the operand of the DTF en-
try of the File Specifications for the file.

The RWD macro-instruction may require that a
RLSE macro-instruction that refers to the same file
be written immediately preceding the RWD; use of
the RLSE macro-instruction is explained under
"RLSE (Release) Macro-Instruction. '

RDSF (Read Segment Marks Forward) Macro-

Instruction

To space an input tape forward over a specific num-

ber of segment marks, the macro-instruction RDSF

is used. The macro-instruction should be written as
follows:

Sequence

(F’g! (Lin)

Tk T

Lo ANy L
02| ANy inlaler; |
oxl 1

OPERAND n
30 38 40 - AS

Nome Operation

2 Ledey g
BENEE

The first item in the operand is the name of the
input file that is to be spaced forward; this name
must be the same as the name used as the operand
of the DTF entry of the File Specifications for the
file.

The second item (N) in the operand may have any
value from 1 to 9999 to specify the number of seg-
ment marks to be spaced over. If the operand of this
macro-instruction contains only the name of an input
file (i.e., if the comma and the value of N are
omitted), the tape will be spaced forward to the next
segment mark. The RDSF macro-instruction will
not change the block count.

The RDSF macro-instruction may require that a
RLSE macro-instruction which refers to the same
file be written immediately preceding the RDSF; use
of the RLSE macro-instruction is explained under
"RLSE (Release) Macro-Instruction. "

Writing Entries for the IOCS 35

RDSB (Read Segment Marks Backward) Macro-
Instruction

To space an input tape backward over a specific num-
ber of segment marks, the macro-instruction RDSB
can be used. The macro-instruction should be writ-
ten as follows:

Sequence Name Operation ' OPERAND
021

I(POLIS(U“);‘ (Laber) 1slis Code ooly

IZG 30 35 40 L1

ME. I

If an alternate tape unit is specified, the program
flips to the new unit for the next reel of the file and
the flip-flop message is typed. If labels are spec-
ified, the header label is read and checked accord-
ing to specifications, It is necessary, prior to the
use of this macro-instruction, to give a RLSE macro-
instruction in which the operand contains the name of
the input file.

FEOR (Force End-of-Reel for an Output File)
Macro-Instruction

Lol ANYLAREL -
02! IANVL AR
03]

T
1

| L »

The first item in the operand is the name of the
input file that is to be spaced backward; this name
must be the same as the name used as the operand
of the DTF entry of the File Specifications for that
file.

The second item (N) in the operand may have any
value from 1 to 9999 to specify the number of seg-
ment marks to be spaced over., If the operand of
this macro-instruction contains only the name of an
input file (i.e., if the comma and the value of N are
omitted), the tape will be spaced backward to the
next segment mark.

The RDSB macro-instruction will not change the
current block count. The RDSB macro-instruction
may require that a RLSE macro-instruction that re-
fers to the same file be written immediately preced-
ing the RDSB; use of the RLSE macro-instruction is
explained under "RLSE (Release) Macro-Instruction."

FEORN (Force End-of-Reel on an Input Tape)
Macro-Instruction

To force end of reel on an input tape, the macro-
instruction FEORN is used. This statement is use-
ful if it is desired to read only a part of a reel of an
input file and then to begin reading the next reel of
the file.

The macro-instruction should be written as fol-
lows:

Sequence Nare Operation OPERAND

|(P° (L'“),,. {Labal} 1she Code 1 5 20 a5 a0 a3
T T T T ! T

Lioh ! |anivialmel || ez Mebie) RERRE S b]

H i i 1 A i . ! : H !
i I . : |

i i

To force end of reel for an output file, the macro-
instruction FEOR is used. This statement is es-
pecially useful when it is desired to write on only
part of a reel and then continue writing on the next
reel.

The macro-instruction should be written as fol-
lows:

Sequence Nome

Operation
(Pg)y (Lin) (Label)

g Code
T

OPERAND
30 35 40 45

oSl BAREARSRERRERRL

. L lv:I N
1 IREEE DN ERTE AR EN R R ERE

The operand contains the name of an output file.
This name must be the same as the name used as the
operand of the DTF entry of the File Specifications
for that file. The macro-instruction causes the end-
of-reel routine to be entered for this output file. A
trailer label (if l1abels are specified) and a tape mark
are written starting at the point in the tape at which
end of reel is forced. The current output reel and
the new reel (if any) are rewound according to the
rewind procedure specifications. If an alternate
tape unit is specified, the program flips to the new
unit for the next reel of the file and the flip-flop
message is typed. If labels are specified, the header
label is read and checked according to specifications.

A RLSE OUTPUTFILE instruction should not be
given after this instruction until another PUT or
PUTX statement has been executed. A RLSE
OUTPUTFILE should not be given before a
FEOR statement.

DEOR (Delay End-of-Reel on an Output File)

. i
t Fr— Ft———t T
REEEREERAREERINRRRR N RN R L

Macro-Instruction

The operand contains the name of the input file
which must be the same as the name used as the
operand of the DTF entry of the File Specifications
for that file. When the FEORN macro-instruction
is given, the end-of-reel routine is entered for the
input file. There is no trailer label checking and the
user's end-of-file exit and trailer label exits are by-
passed. The user's end-of-reel exit and header
label exits will be entered if specified. The tape is
rewound according to the rewind procedure specified.

36

The DEOR macro-instruction is used to delay end of
reel on an output file when the reflective spot has
been reached, and to continue writing on the output
tape. The DEOR macro-instruction should be writ-
ten as follows:

Sequence Name Operotion OPERAND
(Pol,(Lin {Label) 1slie €998 zola 5 30 3 40 43
DEOR CRUTFLLE,, SWNAME
o2 | : ; ; i
| I | .

The first item in the operand is the name of the
output file. This name must be the same as the name
used as the operand of the DTF entry of the File
Specifications for that file.

The second item in the operand is the name of an
electronic switch and can be actual or symbolic.
This macro-instruction can be used in conjunction
with the FEOR macro-instruction so that once the
desired information has been written after the re-
flective spot, the end-of-reel condition can be forced
on the output tape. This macro-instruction should

be given in the initialization or housekeeping routines.

When the macro-instruction is given, the elec-

tronic switch specified in the instruction is turned off.

Then the file scheduler is adjusted so that the end-
of-reel routine will not be entered when the reflective
spot is reached. Instead, a routine will be entered
that will treat the unusual condition as a normal con-
dition and turn on the electronic switch. At the point
where the programmer wishes to stop writing on the
tape, he can force an end of reel on the tape. This
is done through the use of a BSF instruction, as il-
lustrated below:

(Psuu(,r@; Name | Operation OPERAND
{Pobfsied g (Lobeit I P 28 30 9 *

o1 S il prag TRUTELLE], SWNAME

e SN SN &I I T A :
Lo | T :
Cod N P i .
A ™ =] Craarg

oG N I ‘i . ; —

o RN EE . L :

o8 FORCE, [FEOR BUTPUTE) L
- 09 - : il :

T | o, !

The user must be certain that he does not attempt
to write too much after the reflective spot. An
earlier positioning of the reflective spot is suggested
to correct any difficulty that may arise in this con-
nection.

PROCESSING OF LABELS BY IOCS

The reading, checking, preparing, and writing of the
standard header and trailer labels described under
"Tape Labels'" are performed by IOCS using informa-
tion contained in the File Specifications and in the
DC entry (see below) for the file. These operations
are performed for each reel of a multireel file.
Discrepancies encountered while checking labels
will be indicated by typewriter messages that show

what label data was expected and what label data was
read. After a label error message has been typed,
a halt will occur to allow the operator to decide what
is to be done. The operator may elect to use the
reel of tape with the discrepancies or to replace the
reel with another reel and repeat the label checking.
Before writing on a reel of tape, a check of the
header label can be made to determine whether a
specified number of days (the retention cycle) has
elapsed since the date the header label was written
(the creation date). To perform this check, the
date on which the program is being run (the current
date) must be available to IOCS. The current date
must be placed in storage location 0109 in the form
+YYDDDO00000 where YY is the tens and units posi-
tion of the year and DDD is the number of the day
within the year. Any method of storing the current
date into location 0109 may be used. The two meth-
ods that will probably be used most frequently are
(1) manually storing the date from the console and
(2) punching the date into a load card. If location

0109 is not used by programs, the current date can

be stored once at the beginning of a day and left
there for use by all programs.

The current date is also used as the creation date
in header labels written on output files. Therefore,
when tape labels are written, location 0109 must con-
tain the current date even though the user chooses
not to check the retention cycle of input file labels.

Input/Output Label Area

IOCS establishes one label area that is used for read-
ing and writing all tape labels. This area, called the
Input/Output Label Area, occupies a total of seventeen
storage locations. The first word of the area is the
RDW for the Input/Output Label Area. The symbolic
location of the RDW is IOCSLBAREA.

To refer to fields within a label record, the pro-
grammer may use address arithmetic. For example,
the last word in the Input/Output Label Area can be
referred to as IOCSLBAREA+16, The location of
label fields in the Input/Output Label Area is listed
below for the standard header and trailer records.
Additional header or trailer records may be arranged
as required by the programmer.,

Header Label: When in the Input/Output Label Area,
the label fields will be located in the following words.
The description of these fields is given under "Ex-
planation of the Header Label. "

Writing Entries for the IOCS 37

Word
Number Contents Data Format
1 The RDW for the Input/Output
Label Area
2 Field 1, Label Identifier 1HDRb
3 Field 2, Tape Serial Number XXKKX
4 Field 2, File Serial Number XXXXX
5 Field 2, Reel Sequence Number -xxxb
6 and 7 Field 3, File Identification AAAAAAAAAA
8 Field ‘i, Creation Date KXXXX
9 Field 4, Retention Cycle -xxxb
10 through 17| These words are not used for
standard label information and
may be used by the programmer.

Trailer Label: When in the Input/Output Label
Area, the label fields will be located in the following

words. The description of these fields is given under

"Format for the Trailer Label."

Word
Number Contents Data Format
1 The RDW for the Input/Output
Label Area :
2 Field 1, Label Identifier 1 EORb or
1EOFb
3 Field 2, Block Count KXXXX
4through17 | These words are not used for

standard label information and
may be used by the program-
mer. Some programs written
by the IBM Programming Sys-
tems Department use words
4-5 and/or 6-7 for record
count and hash total,
respectively.

DC Entry for Output File Labels

Each output file to be produced requires a DC entry
to specify the label data and optional program exits
to be used. The form of the DC entry is as follows:

Sequence Nomo Operation OPERAND
{PabfyLindg (Lodel) 1ekig ©998 ol 2 30 s o .
7

e

T
L om : ey [

ol b s L z
os | T ebdis |

oa | 1. a1
o7 T T e |
ORa B |EER BN
'm B R i |
L e o =x-i’

J

38

Each line is described separately below using the
line numbers shown for reference purposes. Note
that the line numbers for the entries do not have to
be as shown on the coding sheet, provided entries
are made on consecutive lines in the order given.
Not all of the lines shown may be required for each
DC entry. For example, if only exit 3 is to be used,
the other exits may be omitted and the DC entry
written on five consecutive lines.

Line 01: The label of the DC entry may be any label
that the programmer desires. This label is to be
entered into the operand of Line 32 of the File Spec-
ifications for the corresponding tape file.

The operand of the DC entry must be blank.

Line 02: The operand consists of a plus sign followed
by a ten-digit label mask that specifies the label
items to be written and the. label routine program
exits to be used. The significance of each digit of
the label mask is as follows:

Digit 0. A 0 in this position indicates that (1)
header labels, if any, on reels to be used
for output are not to be read and (2) labels
will be written using data in this DC entry
(see Line 08). Digits 1 to 4 of the label
mask will be ignored when this digit is a
zero. A 1 in this position indicates that
writing and checking of tape labels is to be
determined by digits 1 to 4 of the label
mask.

Digit 1. A 1 in this position indicates that (1) the
header labels on reels to be used for out-
put will be read (2) the tape serial num-
ber (word 3) will be stored in the tape
serial number portion of this DC entry
(see Line 08) and (3) the creation DATE
and retention cycle will be checked to see
if the tape may be used for output. A 0 1in
this position indicates that none of these
actions are to be performed. If digit 0 is
a 0, digit 1 is ignored.

Digit 2. The function of a 1 in this position depends
on the value of digit 1 as follows:

If digit 1 is a 1, the file serial number
of the output file will be determined by
the tape serial number of the header
label of the reel to be used for output.

If digit 1 is a 0, the file serial number
of the output file will be taken from the
tape serial number portion of this DC
entry (see Line 08).

Digit 3.

Digit 4.,

Digit 5.

Digit 6.

Digit 7.

Digit 8.

Digit 9.

A 0 in this position indicates that the file
serial number placed in the file serial
number portion of this DC entry will not
be affected by the header label read. If
digit 0 is a 0, digit 2 is ignored.

A 1 in this position indicates that reel
sequence numbers for reels of the output
file will be 001, 002, 003, etc. A 0 indi-
cates that the reel sequence number for
all reels of the output file will be taken
from the reel sequence number portion of
this DC entry (see Line 08), If digit 0 is
a 0, digit 3 is ignored.

‘A 1 in this position indicates that the crea-

tion date for the output file is to be taken
from storage location 0109 and stored in
the creation date portion of this DC entry
(see Line 08), A 0 indicates that the
creation date in this DC entry is not to
be changed. If digit 0 is a 0, digit 4 is
ignored.

A 1 in this position indicates that label
routine program exit 5 (see Line 07 below)
can be used during the program. A 0 in-
dicates that exit 5 will not be used.

A 1 indicates that label routine program
exit 4 (see Line 06 below) can be used
during the program. A 0 indicates that
exit 4 will not be used.

A 1 indicates that label routine program
exit 3 (see Line 05 below) can be used
during the program. A 0 indicates that
exit 3 will not be used.

A 1 indicates that label routine program
exit 2 (see Line 04 below) can be used
during the program. A 0 in this position
indicates that exit 2 will not be used.

A 1 indicates that label routine program
exit 1 (see Line 03 below) can be used
during the program. A 0 indicates that
exit 1 will not be used.

Line 03: The operand consists of a plus sign fol-
lowed by an actual or symbolic address that speci-
fies the location of a routine to be entered after
IOCS has processed the standard trailer label of

the output tape.

This exit occurs after the end-of-

reel indicator and the block count (Fields 1 and 2)

~an output tape.

have been placed in the Input/Output Label Area.
The user's routine may insert additional data into
the unused fields of the standard trailer record by
placing the data in the Input/Output Label Area.

If a symbolic address is used in the operand,
the symbol must be the same as the label of the
first instruction in the routine that performs the
additional processing. If digit 9 in the label mask
is a 0, this line must be omitted.

Line 04: The operand consists of a plus sign fol-

lowed by an actual or symbolic address that
specifies the location of a routine to be entered to
process any additional trailer records that the
user intends to write on the output tapes. This
exit occurs after the standard trailer record has
been written. The user's routine may be used to
assemble and write additional trailer records.

If a symbolic address is used, the symbol must
be the same as the label of the first instruction
in the routine for processing the additional trailer
records. If digit 8 in the label mask is a 0, this
line must be omitted.

Line 05: The operand consists of a plus sign fol-
lowed by an actual or symbolic address that speci-~
fies the location of a routine to be entered after
IOCS has read the standard header label written on
This header label would have been
written previously (e.g., by another program).
The exit occurs after the header label has been
read into the Input/Output Label Area. The user's
routine may obtain data from that area to do any
processing that is required.

If the location of the routine is specified by a
symbolic address, the symbol must be the same
as the label of the first instruction in the routine
that performs the additional processing. If digit 7
in the label mask is a 0, this line may be omitted,

Line 06: The operand consists of a plus sign fol-
lowed by an actual or symbolic address that speci-
fies the location of a routine to be entered to per-
form additional processing on a standard header
label that is to be written. This exit occurs after
the retention code has been checked, the tape has
been rewound and the standard header label infor-
mation has been placed in the Input/Output Label
Area, The user's routine may insert additional
data into unused fields of the standard header label
by placing the data in the Input/Output Label Area.
When EORS3 has been specified in the DIOCS oper-
and, the user's routine may also type any portion
of the output file header label.

If a symbolic address is used, the symbol must
be the same as the label of the first instruction in
the routine that performs the additional processing.

Writing Entries for the IOCS 39

If digit 6 in the label mask is 0, this line must be
omitted.

Line 07: The operand consists of a plus sign fol-
lowed by an actual or symbolic address that
specifies the location of a routine to be entered to
process any additional header records that the user
intends to write on the output tapes. This exit
occurs after the standard header label has been
written. The user's routine may be used to assem-
ble and write additional header labels.

If a symbolic address is used, the symbol must
be the same as the label of the first instruction in
the routine that processes the additional header
records., If digit 5 in the label mask is a 0, this
line must be omitted.

Line 08: Beginning with this line, from 35 through
75 alphameric positions must be defined. Although
the coding sheet on page 35 shows the minimum
number of positions defined on two lines, the num-
ber of positions per line and the number of lines
used is irrelevant. The positions that must be de-
fined correspond to words 3 through 9 of a header
label as it appears in the Input/Output Label Area;
optional positions (words 10 through 17) need be
defined only when they are to be included in the
header label. Data entered on these lines must
conform to the format listed under "Header Label."
For example, the retention cycle in the form -xxxb
would be entered in word 9. Using the coding sheet
on page 35, this would appear in columns 27 through
31 of Line 09.

The last word of the DC entry to be included in a
header label must be followed by a numeric word
because IOCS forms an output header label by
moving words into the Input/Output Label Area.
Movement of data begins with the first alpha word
and continues until a numeric word occurs; the
unused words in the header label will be set to
blanks automatically. The need for a numeric word
after the data for the tape label may be satisfied in
any manner the programmer chooses. For ex-
ample, the next item in the program may be:

1. The DC entry for label data of another file.

2. A numerical constant.

3. A DA entry which generates RDWs.

4. An instruction.

Additional Output Label Processing

When additional header or trailer labels are re-
quired on output files, the IOCS label-writing
routine may be used as a very simple method for
writing the additional labels, with the following
restrictions:

40

1. All additional labels must be 16 words in
length; alpha, numeric, or a combination of both.

2. If checkpoint is used by the program, all
additional header labels must have xHDRx as the
first word. The letter x represents any character.

The coding for writing one additional label is
illustrated below.

Sequence Name Operation OPERAND
{Pah|(Lim | (Lobel) islis €098 2ol 28 0 B 40 a3
T AR T H T
. C)tI 0Dl OLTLBLIXZA xx,An‘m _AH!L B N !

Q2; N I b, 1 EA |

fol) - LX PO lacSwWRLABL.

04’ i <F sraclsi xF
05 :

| !

The first two instructions are used to move the
additional label to the IOCS label area. Any set of
instructions may be used to accomplish the data
movement., The third instruction is required to
branch, and return from, the label-writing routine.
Index word 99 must be used for this purpose. The
last instruction is the return to IOCS. Any number
of additional labels may be written by repeating
the first three instructions, one set for each addi-
tional label, with thefinal instruction being a Branch
to 0+IOCSIXF to return to I0CS.

DC Entry for Input File Labels

Each input file to be read requires a DC entry to
specify the label data to be checked and the optional
program exits to be used. The form of the DC
entry is as follows:

Syaance Nome Operation OPERAND
(PO oy {Labsl} aohie €09% golz 28 » 3 Yy

o1 [AnvialEr fpe [L
02 ML A MA SK
L3 HEX1TG : ' ¥,
o4 HEXIT? .
[o1.3 AAAAAAAA FEFF-RRRA CCOoc®
o T . BE ’ LT
: . I i ot T

Each line is described separately below, using
the line number shown for reference purposes. Note
that the line numbers for the entries do not have to
be as shown on the coding sheet provided entries
are made on consecutive lines in the order given.
All of the lines shown may not be required for each
DC entry. For example, if no exits are to be used,
they may be omitted, and the DC entry written on
three consecutive lines.

Line 01: The label of the DC entry may be any label
that the programmer desires. This label is to be
entered in the operand of Line 32 of the File Speci-
fications for the corresponding tape file.

The operand of the DC entry must be blank.

Line 02: The operand consists of a plus sign fol-
lowed by a ten-digit label mask that specifies the
label items to be checked and the label routine pro-
gram exits to be used. The significance of each
digit of the label mask is as follows:

Digit 0. A 1 in this position indicates that tape

labels for the input file are to be checked.

A 0 indicates that no tape labels are to
be checked.

Digit 1. A 0 indicates that the identification por-
tion of the tape label is not to be checked.
A 1 indicates that the identification por-
tion of the tape label is to be checked.

If digit 0 is a 0, digit 1 is ignored.

Digit 2. A 0 in this position indicates that the file
serial number portion of the tape label is
not to be checked. A 1 indicates that the
serial number is to be checked. If digit

0 is a 0, digit 2 is ignored.

Digit 3. A 0 indicates that the reel sequence num-
ber portion of the tape label is not to be

checked. A 1 indicates that the reel se-
quence number is to be checked. If digit

0 is a 0, digit 3 is ignored.

Digit 4. A 0 in this position indicates that the

creation date portion of the tape label is
not to be checked. A 1 indicates that the
creation date is to be checked. If digit 0

is a 0, digit 4 is ignored.

Digit 5-7. These digits must contain zeros.

Digit 8. A 1 in this position indicates that label
routine program exit 7 (see Line 04
below) can be used during the program,

A 0 indicates that exit 7 will not be used.

Digit 9. A 1 indicates that label routine program
exit 6 (see Line 03 below) can be used
during the program, A 0 indicates that

exit 6 will not be used.

Line 03: The operand consists of a plus sign fol-
lowed by an actual or symbolic address. This
address specifies the location of a routine to perform
additional processing of data read from the trailer
record of the input file. This exit occurs after the
block count in the trailer record has been compared
with the block count maintained by IOCS; the block
count or a message that the counts do not agree will
have been typed. The user's routine may be used
for processing additional data in the standard

trailer record, which is located in the Input/Output
Label Area. The routine may also be used to read
and process additional trailer records that may be
on the tape.

If a symbolic address is used in the operand, the
symbol must be the same as the label of the first
instruction in the routine for the additional process-
ing. If digit 9 in the label mask is a 0, this line
must be omitted.

Line 04; The operand consists of a plus sign fol-
lowed by an actual or symbolic address that speci-
fies the location of a routine to perform additional
processing of data read from the input file header
label. This exit occurs after the end-of-reel exit
(see Line 28 under "File Specification Entries'") and
after the data in the standard header label has been
checked as controlled by the label mask on Line 02,
The user's routine may be used for processing ad-
ditional data in the standard header label.

If a symbolic address is used in the operand, the
symbol must be the same as the label of the first
instruction in the routine for the additional process-
ing. If digit 8 in the label mask is 0, this line must
be omitted.

Line 05: Beginning with this line, 25 alphameric
positions must be defined, Although the coding
sheet on page 37 shows these positions defined on
one line, the number of positions defined per line
and the number of lines used is irrelevant provided
that the total of 25 is defined. These positions cor-
respond to fields in the header label as follows:

AAAAAAAAAA is the file identification
FFFFF is the file serial number
-RRRbD is the reel sequence number
CCCCC is the creation date

Information that is to be checked against all header
labels of this input file must either be entered on
this line(s) when the DC entry is written or entered
from an Input Label Information Card (see below) by
using the RDLIN macro-instruction. Data entered
on this line(s) must conform to the format listed
under "Header Label.' Fields that are not to be
checked against the tape labels may be blank. For
example, if digit 0 of the label mask is a zero, the
@ characters may be placed to indicate 25 blank
characters; using one line, this would require a

@ character in columns 21 and 47.

Additional Input Label Processing

When additional header or trailer labels are present
on input files, the IOCS label read-in routine may
be used as a very simple method for reading in the
additional labels, with the following restrictions:

1. All additional labels must be 16 words in
length; alpha, numeric, or a combination of both.

Writing Entries for the I0CS 41

2. If checkpoint is used by the program, all
additional header labels must have xHDRx as the
first word. The x represents any character.

The coding for reading one additional label is
illustrated below. For simplicity, the instructions
for processing data within the labels are represented
by a series of dots.

The first instruction is used to branch to the
label read-in routine in order to read one label
and return. Index word 99 must be used for this
purpose.

The instructions for processing the label would
follow the BLX instruction. The last instruction is
the return to I0CS.

Sequence Name Operation
I(Pg!'(Liﬂ)ll “:__""‘_"T sl Code. \ 20 35 OPE‘ROAND)
; ; I\; A’DdLVI LCABRLIB! : o it I ! : T
oA T e T T BNNSNBNRNENEN
'b | LY I M | L] !
oal | i o1 P EREREENE
od" | "' “'i ;lixri‘ L Ji]
a [AAENRA BRRRRRRRRRR A,

Any number of additional labels may be read by
repeating the BLX instruction and processing in-
structions for each additional label, with the final
instruction being a Branch to 0+IOCSIXF.

Input Label Information Card

To change or insert data in the alphameric portion
of the label DC entry of an input file, an Input Label
Information Card may be prepared and read by the
RDLIN macro-instruction. The Input Label Informa-
tion Card need specify only those fields that are to
be inserted or changed; fields that contain all zeros
will have no effect on the DC entry. These cards
will be loaded from the card reader indicated in the
RDLIN macro-ihstruction, and must be followed by
a Termination Card (see below).

An Input Label Information Card is to be punched
as follows and must conform to the Load Card
Format:
Column(s) Contents
1-5 The current date in the form

YYDDD where YY is the units and
tens position of the year and DDD
is the number of the day within the
year. This date is checked against
the date stored in location 0109; if
the dates do not agree, a pro-
grammed halt will occur.

6 The tape channel number to be used
for reading the input file.

42

7 The number of the tape unit number
on which the first reel of the file
is mounted; this number will be the
same as the operand of Line 03 of
the File Specifications for the file.

8-10 The reel sequence number to be
used for the first reel of the input
file. If these columns contain 000,
the reel sequence number portion
of the label DC entry will not be
changed.
11-15 The creation date of the input file.
If these columns contain 00000, the
creation date portion of the label
DC entry will not be changed.
16-20 The file serial number of the input
file. If these columns contain
00000, the file serial number
portion of the label DC entry will
not be changed.
21-40 The file identification of the input
file punched in double-digit form.
If this field contains all zeros, the
file identification portion of the
label DC entry will not be changed.
41-80 The contents of these columns is
irrelevant but all columns must be
punched to conform to the Load
Card Format.

Termination Card

To indicate that all Input Label Information Cards
have been read, a Termination Card must follow
the last Input Label Information Card. The Ter-
mination Card must be punched as follows and must
conform to the Load Card Format:

Column(s) Contents
1-5 The current date in the form YYDDD;
see columns 1-5 under Input Label
Information Card for an explanation
of YYDDD.
6-7 Zeros.
8-80 The contents of these columns is

irrelevant but all columns must be
punched to conform to the Load
Card Format.

END-OF-REEL ROUTINE

The function of the end-of-reel routine is to proc-
ess all header and trailer labels and to write end-of-
file records (tape marks). It will read and check all
header and trailer labels written on output tapes (if
the user specifies), read and check header labels
written on output tapes (if the user specifies), and
write new header and trailer labels on output tapes
(when specified)., Label processing is important.
For example, it can prevent the destruction of valu-
able information stored on tapes. Also, information
in the labels can be checked to make certain that all
tape records have been read., The following is a
description, including flow charts, of the EOR
routine.

Operational Description of the Routine

Block 225: The DTF address of the file being proc-
ossed is set into the indexing position of index

work 97. The non-indexing position of word 97 is
set to 0000 for an input file or 9999 for an output
file. This information will be used to obtain speci-
fications from the DTFs and act as a switch to dif-
ferentiate between input or output files in the EOR
procedure, This block also sets up the user's exits
for special EOR.procedures by determining whether
these exits (NOP) will be set to branches. This is
done by checking the exit mask in the label DC entry.
The user, on completion of his routine, after using
any exit, may return to the EOR routine with a
Branch to 0+IOCSIXF.

Block 226, IOCSOPNSW1: A branch around trailer
operations and between-reel functions will be made
to block 244 if the EOR routine was entered from
the OPEN routine to process a header label.

Block 227: This block starts the processing of a
trailer. It turns off the EOF indicator and deter-
mines if the file is an input or output file. If it is
an output file, a branch is made to block 233.

Block 228: The block counter is reduced by 1 to
prevent the tape mark from being counted as a
block. The statistics are typed for the tape. The
LABELINF of the DTF is then tested. If itis
0000, indicating no label, a BZ1 is made to block
232,

Block 229: This block reads the label and com-
pares the block count in the DTF to that in the
trailer. If they are equal, a branch is made to
block 231.

Block 230: A message indicating an incorrect block
count is made, followed by a halt.

Block 231, IOCSEX6: This block is an exit available
to the user so that he may perform additional check-
ing of the trailer.

Block 232, IOCSEOFEX: The trailer record is tested
for EOF. I EOF is indicated (label word 2 contains
EOF), a branch is made to the user's EOF routine

at the address he has specified in EOFPROCD of the
DTF. If no labels are specified, this exit is used for
all end-of-reel conditions for input files.

Block 233, IOCSLBTM: This block starts output
trailer procedures by writing a tape mark, typing
trailer stafistics, and checking for a trailer.

Block 234, IOCSEX1: This block completes the
trailer record and provides an exit for the user to
add additional information to other trailers.

Block 235: The trailer is written on the tape.

Block 236, IOCSEX2: This block provides an exit
to allow the user to write additional trailers.

Block 237: A tape mark is written after the trailer
or trailers,

Block 238, IOCSICEST: An exit to the close routine
is made if the EOR routine was entered on a close
operation.

Block 240: This block is entered only as a result of
an end-of-reel condition, It will restore the
BLOCKCNT field of the DTF to zero and rewind the
tape as directed by the RWDPROCD digit of the DTF.

Block 241: The tape unit addresses are rotated in
BASETAPE, ALTITAPE, and ALT2TAPE, of the
DTF for the file.

Block 242, IOCSEOREX: This block provides an
exit for the user to alter the tape addresses in the
DTF if he desires other than normal operation, such
as using two files for three tape units. A check is
made to determine whether an end-of-reel exit is
specified. If not, this block is bypassed.

Block 243: The appropriate message concerning
the tape address changes is typed and a halt is made
if a manual tape change is necessary.

Block 244: The proper channel and tape addresses
for this file are placed in the remaining EOR in-
structions,

Writing Entries for the IOCS 43

Block 245, IOCSERSEL: The tape is tested for
ready. A Branch is made to block 246 if not ready.

Block 246: The not-ready message is typed and a
return is made to block 245, where the machine will
hang until the tape is readied.

Block 247, IOCSOPNSW3: This block is a switch
that returns control to the OPEN routine (during

an OPEN operation) to rewind the tape according
to OPENPROC in the DTF. After this operation,
a return is made to the EOR routine to block 249,

Block 248, IOCSRWNRL: The tape is rewound as
specified by the normal EOR specification code
located in RWDPROCD of the DTF.

Block 249: The header density is set as specified
by the TDENSITY in the DTF for the file.

Block 255: A BCX determines if labels are to be
processed and, if not, a branch is made to block 270,

Block 256: The file is tested for input or output and,
if output, a branch is made to block 262.

Block 257: The header label for the input file is read.

Block 258, IODCSCKLOOP: The label mask is tested
and the header is checked against specifications.

Block 259: The label is tested for error and, if in
error, control passes to block 260.

Block 260: This block types the error message and
halts,

Block 261, IOCSEX7: A user's exit is provided so
that additional input header information may be
processed.

Block 262, IOCSLOPRO: The header of this output
file is read, if desired. If it is not desired, control
passes to block 266,

Block 263: The retention cycle is tested to determine
if this tape may be written on. If the current date
stored in word 109 is within the retention cycle, a
branch is made to block 264.

Block 264: The error message is typed to direct
the operator to check the retention date, and a halt
occurs.

Block 265, IOCSEXS3: This block provides an exit
for the user to perform any other header checks
he may want.

Block 266: The label mask is tested, the tape is
backspaced, and a new label is set up if specified.

Block 267, IOCSEX4: This block provides an exit
for the user to add label information if he wishes.

Block 268: The new label is written and the label
statistics are typed.

44

Block 269: A user's exit is provided to write other
labels if he desires.

Block 270, IOCSFLDN: The file density is set ac-
cording to the control digit of the file's TDENSITY
in the DTF.

Block 271: This block represents a NOP operation
that is initialized by the initialization and assignment
section of the checkpoint routine., The instruction is
altered into a Branch to IOCSCPEOR where a deci-
sion to take a checkpoint is made.

Block 272, IOCSOPNSW2: A return to the OPEN
routine is made if the EOR routine was entered
during an OPEN operation.

Block 273: A test is made to determine if the file
is input or output, to enable a return to the proper
place in the condition code routine.

DESCRIPTIVE ENTRY FOR UNIT RECORDS (DUF)

When unit record files are to be handled by the
IOCS, the programmer must supply a DUF (Define
Unit Record File) entry that describes the type of
file and the unit record equipment to be used. The
DUF entry also supplies the locations of subroutines
written by the user and unique to the file. A
routine will be generated from the DUF descriptive
entry for each unit record file; the routine will be
used during processing of records from the cor-
responding file.

The DUF entries are to be punched into Auto-
coder cards from the coding sheet. These cards
are to be entered with the source program when the
program is assembled. The items in the DUF
entry must be entered in the same sequence as
shown on the coding sheet.

From five through seven items may be named in
the operand of each entry. The DUF entry is written
on one or more lines of the coding sheet as follows:

Sequence Nome

i Operation OPERAND
{Pahj,Lind o (Label)

ihe Code .o, 5 30 35 40 a3
IRENREY T i ’!F—;fa'pli:f!"élf

BU)

B SEEEN

lom 1], RN N I D
[y C i ;
‘ L ' l

. 1
T

The letters DUF must be placed in the operation
column as shown to identify the unit record de-
scriptive entry.

Each item in the operand is described separately
below. The first five items must always appear in
the operand of a DUF entry. The last two items
need be included only when they are required.

The first item in the operand (FILENAME) is
the name of the unit record file to be described
by the DUF entry. This name will be used in the
operand of macro-instructions that refer to this
unit record file.

From Fig 6a
@ Fig 9a

or Fig 10

(225

Set Up X97,
Tape Msg, and
User's Exits

locsopnswiy_ %

en
Sw% (Set

by OPENI Rin)

Fig. 8b

(227) 1OCSLBTM

Tum ECF ™ Tape Mk
Off and Chk

for /O

10CSEX1

Reduce
Blkent & Chk
LABELINF

No Label

Trir Info
(235)

Reod
Label Type
Statistics and Compare
DTF to Trir
Bikcnt

Equal

User Writes|
More Trlrs

Unequal

(230)

Type Error Msg
and Halt

1OCSEX6

User's
Exit &6 On

User does
other trlr |1OCSICEST
Checks Exit (Set
by CLOSE) Yes
IOCSEOFEX (232)
Label Info Not EOF

To CLOSE
Routine
Fig 10

Fig 8b

Determines
if EOF

Figure 4

The flow charts shown in Figures 4 and 5 are taken
from from Programming Systems Analysis Guide,
7070/7074 I0CS, Form C28-6119. All figure num-
bers on these charts refer to that publication.

(240)

Zero Blkent
and Rewind
Per DTF Spec

¢ (241)

All Tape Addr
in Alt (Base
and Alt Tapes)

IOCSEOREX

User's EOR
exit On?%

To User's
Routine

Modify & Type Flip-
Flop or Halt & Change
Msg After Flip-Flop

of Tapes
_@ From
Fig 8a
(244) s
Initialize Re-
maining EOR
Instruction

IOCSERSEL (245)

(246)
Tape Not
Ready
Message

| SOPNSW3
oc (247)

Open
Switch 3 On

R

|_ OPEN Rtn-Rwd Tape _-l

IOCSRWNRL
(248) | per DTF Entry OPEN- |
Rwd Tape per DTF 1 PROC !dentical to |
RWDPROCD Bik 283 Fig 9a
Specificction I_ —_ __l_ —_— __l

|OCSALLD (249)
Set Density per .
wr L@
TDENSITY Fig 8¢

Specification

Figure 5

Writing Entries for the JOCS 45

The second item in the operand (FILETYPE) is
a one-digit number from 1 to 4 to specify the type
of unit record file and the operating conditions.

A 1 indicates that the unit record file is an
input file, and that the input unit used by the
file will never be shared with a SPOOL pro-
gram.,

A 2 indicates that the unit record file is an out-
put file, and that the output unit used by the
file will never be shared with a SPOOL pro-
gram.

A 3 indicates that the unit record file is an input
file, and that the input unit may be shared
with a SPOOL program.

A 4 indicates that the unit record file is an out-
put file, and that the output unit may be
shared with a SPOOL program.

Whenever a 3 or a 4 is used, the programmer must
observe the SPOOL conventions; specifically, the
main program must not use index words 95 and 96
or electronic switches 29 and 30.

The third item in the operand (CARDSYNC) is a
one-digit number to specify the synchronizer to be
used for the unit record file. To read an input file
through an IBM 7501 Console Card Reader, a 4
must be used for this item.

The fourth item in the operand (LISTADDR) is
the actual or symbolic address of the RDW(s) for
the unit record area. The RDWs may be generated
by the DA entry that describes the unit record area,
or by DRDW operations that use the labels of the
DA entries in the operands of the DRDW entries,

The fifth item in the operand (INDXWORD) is
either a two-digit number from 03 to 94 or a
symbolic name that specifies the index word to be
associated with the unit record file. The indexing
portion (positions 2 to 5) of the index word will con-
tain the location of the first word of the current
unit record. The contents of the index word may be
used by the programmer as necessary, provided
that the contents are not changed. For example, if
the program is to be assembled using Autocoder,
the index word may be associated with the instruc-
tions that refer to fields within a unit record by
adding the index word to the operand of the DA entry
that defines the record. This method of assigning
index words is described in the publicationllgyl_
7070 Series Programming Systems: Autocoder,
Form C28-6121.

The sixth item in the operand (EOFADDRS) is
an optional address that may be either actual or
symbolic. The address specifies the location of a
card reader end-of-file routine or a printer
carriage, tape channel 9 routine.

46

From
Fig 8b

(255)
Check
for Label
Label

(256)

Input/Qutput Output

10CSLORO

(262)

Read Label

(263)
No Retention
Cycle OK
Err msg & halt
Yes

Read Label

10CSCKLOOP 258)
Check label
Mask in DC
1OCSEX3 (265)
(259) (260)
User Performs Other
Error Yes Type Error h
in Label Msg and Halt , Header Checking
(266)
Backspace and
No Set up New
Start Key Label per DC
10CSEX? 10CSEX4
(261
User's Yes User Performs
i Other Head
Exdt 7.On Che:lr(in:a ° User Adds Label
Info
No (26g)
No Write
And Type
<+ Labe!
1OCSFLDN @70)

Set File
Density

User Writes
Other Labels

To Condition
Code Routine
(TOCSRETEOR)

To Condition
Code Routine
{IOCSRETRN-1}

To OPEN
Routine
Block 285

Figure 6

The flow chart shown in figure 6 is taken from Pro-
gramming Systems Analysis Guide, 7070/7074 I0CS,

Form C28-6119. All figure numbers on this chart
refer to that publication.

When a card reader end-of-file condition occurs,
the program will enter the routine specified by this
address. If this item is omitted from the operand,
the procedure followed by the IOCS depends on wheth-
er SPOOL programs may operate in conjunction
with the main program. Either of two procedures
will be followed; these procedures are the same as
those described for the END macro-instruction (see
procedures 2 and 3 under "END Macro-Instruction").

The program will enter the routine specified by
this address if a carriage, tape channel 9, condition
occurs during the printing of a unit record file. If
this item is omitted from the operand, the channel 9
condition will have no effect and the program will
continue normally.

Whenever the sixth item is omitted and the
seventh item is included, the omission must be indi-
cated by a comma; i.e., two commas will appear
between the fifth and the seventh items.

The seventh item in the operand (ERRADDRS) is
an optional address that may be either actual or
symbolic. The address specifies the location of an
error routine that will be entered when an error oc-
curs during the execution of a macro-instruction that
refers to the file named in the first item of the DUF
entry. If this item is omitted and the file is an input
file, an error in reading a card will cause the error
record to be typed on the console typewriter. After
typing the error record, the machine will halt to
allow the operator to correct the error card im-
mediately. If the error card can be corrected later,
the operator may press the Start key to read the next
card and resume processing. Errors that must be

- corrected before continuing the program require that
the corrected card be fed into the card reader before
pressing the Start key. If this item is omitted and
the file is an output file, an error in printing or
punching a record will cause the error record to be
typed on the console typewriter. The error record
will also be printed or punched. After typing and
printing or punching the error record, processing
will resume automatically.

INPUT/OUTPUT MACRO-INSTRUCTIONS FOR
UNIT RECORD FILES

The input/output macro-instructions are written as
Autocoder instructions with the operand containing
the symbolic location(s) of the information to be
processed. The symbolic location may be either the
name of a unit record file defined by File Specifica-
tions or the name of an area in storage defined by a
DA entry. The operation portion of the macro-
instruction will be the mnemonic representation of
one of the functions to be performed by IOCS. Each
of these functions will be described separately below.

Each macro-instruction will cause a sequence of
instructions to be selected; the number of instruc-
tions required will depend on the function and on the
information given in the File Specifications. These
instructions will be selected and inserted into the ob-
ject program during Autocoder assembly.

GET Macro-Instruction

To read in a record to be processed, the GET
macro-instruction can be used. The GET macro-
instruction should be written as follows:

Sequence Nome Operation OPERAND

{Pg} | {Lin) (Lobel} 1slig Code
3
J_‘,.u.;_ - A l‘.%g% ,r!_’] ; 1] .‘u
(@] | | | lcappnELLE L L5

o2 [anxiABEL | *CAR_&EJLE.I&AB.%&A.ZEA g
el R . : S |

RN SEREE RERE] N RN 1

The operand contains the name of a unit record
file that contains the card to be read; this name must
be the same as the name used as the first item in the
operand of the DUF entry for that file.

The contents of the card will be read into the area
defined by an RDW(s) that is located at the address
specified in the fourth item of the operand of the DUF
entry for the input file named by the GET.

PUT Macro-Instruction

To punch one card or print one line, the macro-
instruction PUT can be used. The PUT macro-
instruction should be written as follows:

Sequence Name

" Operation
{Paj it (Lobel)

1ghie Code |

OPERAND

30 40 i
R !

ICARD N L

; _ieuT : e
k : ITAPEFILE, . WE
we |

: : L L PuT AN L
; AREL. . IPUT ﬂﬁkimj_[_ ; ;

The operand contains the name of the record that
is to be printed or punched, and the name of the unit
record output file. The name of the record to be in-
cluded in an output file may be either the name of an
area or the name of another file. The examples shown
above illustrate how the various types of records are
placed into output files. The name of an output file
is to be used following the word IN, which must be
preceded and followed by a single blank character.
The unit record output file name used in the PUT
macro-instruction must be the same as the name
used as the first item in the operand of the DUF en-
try for that file. Names of tape files must be the
same as the operand of the first entry of the File
Specifications for the corresponding tape file. Stor-
age areas used in a PUT macro-instruction must be
named in a DA entry.

Writing Entries for the I0CS 47

Before being printed or punched, the records to
be included in the unit record output file will be
moved to an output area defined by an RDW(s) that is
located at the address specified in the fourth item of
the operand of the DUF macro-instruction for the
output file named by the PUT. Records to be printed
or punched may consist of a maximum of 16 words.

PROVISIONS FOR TAPE ERRORS

If a tape operation results in an error, the error
correction routines incorporated in I0CS will repeat
the operation several times. Different correction
procedures are used for input and output files when
repeating the tape operation; these procedures are
described separately below. Repetition of the tape
operation will correct most errors; normal process-
ing of the program will be resumed after the error
has been eliminated. Errors that are not corrected
automatically may be handled in various ways de-
pending on whether the error occurs while proc-
essing an input or an output file.

Correction of Output Tape Errors

The error correction routine used when an error in
writing an output file occurs will repeat the writing
operation up to 25 times. If the first rewriting at-
tempt does not eliminate the error, each of the last
24 rewriting attempts will be preceded by a Tape
Skip operation.

When errors are not eliminated by the repeated
tape operation, the error correction routines scan
the storage area concerned with the tape operation.
These routines check for correct double-digit codes
in alphameric words and for valid characters (i.e.,
each digit must be represented by a 2-out-of-5-bit
code). These error correction procedures cover
three conditions that are normally responsible for
an error in writing an output file, namely:

1. Faulty tape. If a section of tape has been
damaged by improper handling or has become dirty,
the Tape Skip operations in the rewriting procedure

will usually pass over the unusable section and allow

the program to continue.

2. Invalid digits. These errors are usually the
result of a failure to correct read errors that oc-
curred previously (i. e., invalid digits have been al-
lowed to enter storage).

3. Incorrect double-digit characters. Alpha-
meric words containing double-digit combinations
that do not represent valid 7070 characters cannot
be entered into 7070 storage by a read operation.
Therefore, any such characters in an alphameric
word are usually caused by a programming error
that creates the invalid double-digit combinations in
storage.

48

Records containing invalid digits or incorrect
double-digit characters can be corrected manually
from the console through the procedure explained
under "Programmed Halts and Messages. "

Correction of Input Tape Errors

When an error in reading an input file occurs, an
error correction routine will repeat the reading
operation and return to the main program after the
record has been read correctly. The error pro-
cedure consists of nine reading attempts plus a tape
cleaner routine. This procedure is executed up to
ten times. Errors that are not corrected in ten at-
tempts will be handled according to the procedure
specified by Line 14 of the File Specifications. The
operand of Line 14 determines the error correction
procedure as follows:

If the operand is 00 or blank, a message will be
typed and the machine will halt. The operator then
locates the word(s) containing the error. To correct
an error, the operator may manually store the cor-
rect data in the word. Operation of the program is
resumed after the error(s) has been corrected.

If the operand is a number from 10 to 49, the pro-
gram will scan the record area to locate words con-
taining invalid characters. Any word that contains
one or more invalid characters will have its sign set
to alpha and the contents of the word will be changed
to five asterisks. After all words containing an in-
valid digit(s) have been changed to five asterisks, the
block of records will be written on a "dump tape
designated by the number in the operand. The first
digit of the number specifies the tape channel to
which the tape unit containing the dump tape is con-
nected; the second digit specifies the number of the
tape unit that contains the dump tape.

If the operand is 50, the block of records that
contains the error(s) will be typed on the console
typewriter and the machine will halt. The operator
may then proceed to correct the error(s) manually
as explained above for a blank operand.

If the operand is 60, the program will continue
rereading the block of records until either the error
is eliminated or the operator intervenes. The oper-
ator may manually enter any of the above procedures
to allow correction of the error or to write the block
of records on the dump tape.

PROGRAMMED HALTS AND MESSAGES

All IOCS programmed halts are Halt and Proceed
(HP) instructions. The halts are listed according to
the halt number (digit positions 6 through 9 of the
program register typeout). Thus the typeout

1542 -0000002911

would refer to Halt 2911. If an associated message
is typed, the text appears in capital letters to the
right of the halt number. In the list below, each halt
number is accompanied by an explanation and the ac-
tion to be taken by the operator.

Each halt number is unique. The first digit is
either a 2 to indicate that the running of the program
may continue after the halt, or a 0 to indicate that
no corrective action may be taken at the console.
The second digit is a 9 and has no special signifi-
cance.

The third digit is a number that denotes the sub-
routine in which the halt occurred: 1 denotes the
end-of-reel routine, 2 denotes the checkpoint rou-
tine, 3 denotes the restart routine, and 6 denotes any
other macro-instruction or subroutine in IOCS. The
fourth digit denotes the number of the halt in the
subroutine.

Halt

Number Message

2910 TPZZ COUNT DTF-XXXXX TRL~-
YYYYY

Explanation: The block count, XXXXX,
in the DTF does not agree with the
count, YYYYY, on the trailer of input
tape ZZ.

Action: The operator may press
START to ignore the discrepancy.

2911 TPZZ CK RET DT-XXXXX HDR-YYYYY
Explanation: The current date, XXXXX,
in location 109 indicates that the reten-
tion cycle, YYYYY, for output tape ZZ
has not elapsed.

TPZZ DT ERR LI-XXXXX HDR-YYYYY
Explanation: The date, XXXXX, in the
label information DC for input tape ZZ
does not agree with the creation date,
YYYYY, in the label of tape ZZ.

TPZZ RN ERR LI-XXXXX HDR-YYYYY
Explanation: The reel sequence num-
ber, XXXXX, in the label information
DC for input tape ZZ does not agree
with the reel sequence number, YYYYY,
in the label of tape Z7Z.

TPZZ FS ERR LI-XXXXX HDR-YYYYY
Explanation: The file serial number,
XXXXX, in the label information DC
for input tape ZZ does not agree with
file serial numker, YYYYY, in the
label of tape ZZ.

Halt

Number

2912

2920

2921

2930

2931

Message

TPZ7Z ID ERR LI-XXXXX HDR-YYYYY
Explanation: The file identification,

XXXXX, in the label information DC

for input tape ZZ does not agree with
the file identification, YYYYY, in the
label of tape ZZ.

Action: When any of these messages

are received, the operator may press
START to ignore the indicated check
or remount the correct reel on the
indicated tape and press PROGRAM
RESET and START.

TPXX LAB ERR CY

Explanation: An unusual condition oc-
curred when reading a label on tape XX.
Y denotes the condition code at the time.
Probably there is no label on the tape.
Action: The operator may replace the
tape and then press START, or press
START to repeat the reading.

TPXX TM ERR CY

Explanation: An unusual condition
occurred when writing a tape mark on
tape XX. Y denotes the condition code.
Action: The operator may press START
to retry.

Explanation: The tape on which the

checkpoint record is being written has

reached the end of reel.
Action: The operator should change
the checkpoint reel and press START.

Explanation: An error in writing the
checkpoint record has failed to clear =
after 25 retries.

Action: The operator may press

START to retry 25 more times.

Explanation: An error in reading the
checkpoint tape has failed to clear
after nine retries.

Action: The operator may press
START to use the next checkpoint rec-
ord for restarting.

Explanation: The correct checkpoint
record was not found.

Action: The operator should begin the
restart procedure again.

Writing Entries for the IOCS 49

Number

50

Halt

2932

2933

2934

2935

2936

2937

Message

Explanation: The tape from which the
checkpoint record is being read has
reached end of reel.

Action: The operator should change
the checkpoint reel and press START,

LABEL, ERROR, START TO BYPASS
LABEL

Explanation: The existing header tape
label on the tape to be used as the
checkpoint tape cannot be read cor-
rectly.

Action: Press START to bypass the
existing label.

Explanation: A header label has not
been written correctly on the check-
point tape in five attempts.

Action: Press START to try five more
times.

RESTORE CONSOLE ETC. FOR RE-
START

Explanation: At this point the restart
routine is ready to restore memory
and restart the program,

Action: The operator should set the
alteration switches and overflow
switches as they are to be set for the
running of the program.

Explanation: The restart program
record has not been written correctly
in five attempts.

Action: Press START to try five more
times.

TPXX LABEL

Explanation: The contents of the label
will be typed on this line.

Action: In restarting, the label on
tape XX is typed. If the tape is un-
labeled, or if label typing has not been
selected, the message will be merely
TPXX. If the tape reel known or
ascertained to be mounted on this tape
unit is the correct one, press START.
If an incorrect tape reel is mounted,

mount the correct reel on the tape unit.

Then, if SPOOL programs are to be
executed, store the word +0000000000
into accumulator 1 (9991) and press
PROGRAM RESET and START.

If SPOOL programs are not being exe-
cuted, press COMPUTER RESET and
START. If multiple tape files are

Halt

Number

2938

2939

2960

2961

2962

2963

_Message

written on the tape reel and the tape
is not positioned at the desired tape
file, press PROGRAM RESET and
START; the tape will be spaced for-
ward to the next tape file, at which
point the message and halt will be re-
peated.

Explanation: A tape mark has been
read on a data tape before the proper
number of records were read to posi-
tion the tape for restarting.

Action: The operator should mount the
correct data file tapes, load the Re-
start Initiator, and press START.

Explanation: Shared files with alternat-
Ing tape units are being used. The
same unit number applies to both the
first reel of the shared checkpoint file
and the reel of the shared checkpoint
file that contains the checkpoint record
to be used for restarting. The first
reel of the shared file has been mounted.
The processor now needs the reel con-
taining the checkpoint record for re-
starting.

Action: Remove the first reel of the
shared checkpoint file, and mount the
reel containing the checkpoint record
for restarting on the same tape unit.

Explanation: There has been a failure
to write a segment mark or a tape mark.
Action: Press START to retry five
times.

TPXX RDSM ERRY

Explanation: There is an error in
reading a segment mark on tape XX.

Y denotes the condition code at the
time.

Action: The operator may press START
to continue as if the operation had been
completed correctly.

Explanation: An error was detected
after the execution of a unit record read
instruction in the DUF1 macro. (The
contents of the card in error are typed.)
Action: Have the card in error re-
punched, put the new card in its proper
place, and press START.

DATE ERROR CARD
Explanation: The RDLIN macro-

Number

Halt
Message

instruction is being executed. The date
in the card against which labels are to
be checked does not agree with the date
in location 0109,

Action: Press START to ignore this
card and read the next card.

ERROR CARD

Explanation: The RDLIN macro-
instruction is being executed. There is
an error in a card against which labels
are to be checked.

Action: The operator may press START
to ignore this card and read the next
card.

CH DR ERR

Explanation: The message is typed
during execution of the RDLIN macro-
instruction. The channel and unit in
the DTF is in error.

Action: The operator may press
START to ignore this card and read the
next card.

2964 Explanation: An error was detected
after the execution of a unit record
read instruction in the DUF3 macro-
instruction. (The contents of the card
in error are typed.)

Action: Have the card in error re-
punched, put the new card in its proper
place, and press START.

2965 EOJ

Action: The operator should change reels on the

indicated unit, and then press START.

CHK DISABLE ON

Explanation: A search of the area is about to be
made for invalid words.

Action: The operator should press the CHECK
DISABLE switch on the CE console and then press
START.

CHK DISABLE OFF

Explanation: The search for invalid words has
been completed. All invalid words have been cor-
rected.

Action: The operator should return the CHECK
DISABLE switch on the CE console to its normal
position and then press START,

bCHPT+cULDUOONNN

Explanation: This is the checkpoint identification.
In this message:

¢ is the channel of the checkpoint tape.

U is the unit of the checkpoint tape.

L is "0'" if the tape is unlabeled, or '"1" if the
tape is labeled.

D is a code describing the density of the check-
point tape: '"0" is low density label, low
density file; "1" is low label, high file; '"2"
is high label, high file; and NNN is the num-
ber of the checkpoint record to be written and
is assigned consecutively starting with "001."

ERR+NNNNYYYYY

Explanation: NNNN is the location containing a
read or write error. YYYYY is the typeout of
that location as it has been found by the IOCS
error routine. A halt will occur following this
message.

Explanation: This message is typed at
the conclusion of the END macro-
instruction to indicate the end of job.
The message will not be typed when
SPOOL is used.

Action: The operator may then correct the in-
formation and press START to proceed.

INVALPHA+XY0000ZZZ7Z
Explanation: Positions X-Y of word ZZZZ con-

MESSAGES IN IOCS tain an invalid double-digit alpha code.

TPXX NOT READY
Explanation: Tape XX is not in ready status.
This may happen if XX is rewinding as well as if
there is no tape mounted on XX.
Action: The operator should ready tape XX if it
is not ready.

The following messages may be typed during a run
that uses IOCS. ' After some of the messages are
typed, a programmed halt will occur. In these
cases, the halt is merely procedural, halting the
computer to allow a manual action to be performed,
and the halt number has no significance.

Message

- TPXX READ FAIL
Explanation: An error in reading tape XX failed
to clear after ten sets of nine retries.
The error is treated as specified in Line 14 of the
DTF for that file.

CHGE TP XX
quglahatigg_: The old reel on tape XX has been
finished and the next reel is to be mounted on the
same unit.

Writing Entries for the IOCS 51

TPXX READ FAIL TP WD ERR
Explanation: The preceding error was a tape
word error.
The error is treated as specified in Line 14 of
the DTF for that file.

TPXX SCLR

TPXX SLR

TPXX EOS

TPXX LLR
Explanation: A short character length record,
short length record, segment mark, or long
length record has been read from tape XX.
Action: The operator may press START to ignore
the unusual condition.

TPXY TO XZ
Explanation: The old reel on tape XY has been
finished. The program has flipped to tape XZ
for the next reel of the file.

TPXX WRITE FAIL
Explanation: The preceding write error re-
mained after 25 retries, 24 of which were pre-
ceded by skips.
Action: The operator may press START for 25
more tries and 25 more skips.

TP YY XXXXX EZZ NQQ PWW
Explanation: The statistics are typed for input
tape YY. XXXXX is the block count. ZZ is the
number of times during the last reading of the
tape reel that the IOCS tape error routine has
been entered. QQ is the number of noise errors
encountered during the last reading of the tape
reel. Noise errors are patches of extraneous
magnetism found in the inter-record gaps. WW
is the number of permanent errors (errors that
were not cleared in nine attempts to read).

TP YY XXXXX EZZ SK QQQ
Explanation: The statistics are typed for output
tape YY. XXXXX is the block count. ZZ is the
number of times the IOCS tape error routine was
entered during the last time the reel was written.
QQRQ is the number of the skip instruction given
by IOCS during the last writing of the reel.

(The contents of a card will be typed.)
Explanation: An error was detected after the
execution of a unit record read instruction.
The contents of the card in error are typed. This
message may occur in either a DUF2 or a DUF4
macro.

(The contents of the 16 word label are typed here.)
Explanation: Contents of the label are typed due
to an error in information in the label area.

52

(The contents of a card will be typed.)
Explanation: An error was detected after the exe-
cution of a unit record punch instruction. The
contents of the card in error are typed. This
message may occur in either a DUF2 or a DUF4
macro. The card is also punched invalid.

CHECKPOINT PROCEDURES

The term ''checkpoint' denotes a point in the execu-
tion of a program at which previous operations are
known to be correct and a record of the status of
the system has been made. Checkpoint also refers
to the procedure of recording the status at that
point in the program. To indicate the status of the
system at the time a checkpoint is reached, the
checkpoint routine records:

1. The contents of all accumulators.

2. The positions of all tape files.

3. The contents of a storage area(s) specified by
the programmer.

Writing of checkpoint records enables an operator
to restart a program that has been stopped before
the normal end of the job was reached. The oper-
ator may restart the program at any checkpoint in-
stead of returning to the beginning of the job.

To incorporate checkpoint and restart routines
into programs using IOCS, CHPT must be included
in the DIOCS entry. In addition to this indication in
the DIOCS entry, a DCHPT descriptive entry (see
below) and (if necessary) one or more CHPT macro-
instructions must be included.

Checkpoint Descriptive Entry (DCHPT)

When checkpoint records are to be written, one
DCHPT descriptive entry must be included in the
program. The DCHPT entry should be written as
follows:

(PSoqu(eli\‘c: Name Operotion OPERAND
I " ale (Lobel} 1shie_Code Holn) 25 20 35 40 s

[P H T L. B i J T H
el andvi e | bicw REA, TAPE , FRER, TTv e
oz | . il il L i i :

T+ T T k- st * +
IR N R NN RN R RN N NI PR B

The first item in the operand (AREA) is used to
specify the storage area(s) that are to be written in
the checkpoint record. The area may be specified
by:

An address, either actual or symbolic, that spec-

ifies a list of RDWs defining the storage areas to

be written. All RDWs must be plus except the last
which must be minus.

The address 4999 to indicate that the storage
area from 0000 through 4999 is to be written.

The address 9989 to indicate that the storage
area from 0000 through 9989 is to be written.

Omission of the entry. This causes the storage
area from 0000 through 4999 to be written. When
this item is omitted, the comma must be entered
to indicate the omission; i. e., column 21 will
contain a comma.

In programs compiled for use on an additional
storage machine, the area may be specified by:

An address, either actual or symbolic, that spec-
ifies a list of RDWs that define the storage areas
to be written. All RDWs rnust be plus except the
last which must be minus.

The address 14999 to indicate that the storage
area from Q000 through 14999 is to be written.

The address 19999 to indicate that the storage
area from 0000 through 19999 is to be written.

The address 24999 to indicate that the storage
area from 0000 through 24999 is to be written.

The address 29999 to indicate that the storage
area from 0000 through 29999 is to be written.

This entry may not be omitted for programs to be
compiled for use on an additional storage machine.
All other items are the same for both normal and
additional storage use.

The second item in the operand (TAPE) is used to
specify the tape channel and tape unit to be used for
writing the checkpoint records. This item must be
a two-digit number in the form cu, where c is the
tape channel and U is the tape unit number. When
checkpoint records are to be written on a tape of an
output file (see below), the tape channel and tape unit
used in this entry must be the same as the operands
of Lines 02 and 03 (FCHANNEL and BASETAPE) of
the File Specifications for the output file.

The third item in the operand (FREQ) is used to
specify the frequency of writing checkpoint records.
A one-digit number from 0 to 3 must be used to se-
lect the frequency. The one-digit number specifies
the writing of a checkpoint record as follows:

The digit 0 indicates that a checkpoint record is
to be written before the processing of each input
or output reel is begun.

The digit 1 indicates that a checkpoint record is
to be written before the processing of each input
reel is begun.

The digit 2 indicates that a checkpoint record is
to be written before the processing of each output
reel is begun.

The digit 3 indicates that a checkpoint record is
to be written only when CHPT macro-instructions
(see below) occur in the program.

To begin processing the first reel of any file, the
file must appear in the operand of an OPEN macro-
instruction. If digits 0, 1, or 2 are used to specify
the frequency of checkpoints, it is undesirable to
write a checkpoint before beginning processing of
each file named in the OPEN macro-instruction be-
cause processing of those files begins at the same
point in the program. Therefore, whenever one or
more tape files named in an OPEN macro-instruction
satisfy the frequency conditions 0, 1, or 2, only one
checkpoint record will be written.

The fourth item in the operand (TTYPE) is used
to specify the type of tape on which the checkpoint
records are to be written. A one-digit number from
0 to 2 must be used to specify the type of tape as
follows:

The digit 0 indicates that the unit specified in the
second item (TAPE) is to be used only for the
writing of checkpoints and that the checkpoint
tape is not to be labeled.

The digit 1 indicates that the tape unit specified
in the second item (TAPE) is to be used only for
the writing of checkpoints and that the checkpoint
tape is to be labeled.

The digit 2 indicates that the tape unit specified
in the second item (TAPE) is used by one of the
output files of the program; both output data and
checkpoint records will be written on one tape.

When checkpoints are written on the tape of an
output file (TTYPE equals 2), the programmer
must be sure that no checkpoints occur before the
execution of the OPEN macro-instruction that names
the output file in its operand. This precaution must
be observed to ensure that the header label of the
output file has been processed before the first check-
point record is written,

CHPT Macro-Instruction

Writing of checkpoint records may be specified by
use of the macro-instruction CHPT. The CHPT
macro-instruction should be written as follows:

Sequence Nome Operation OPERAND 3

(Paallind oo (Labed) ishe Code oo 2330) s as
LAy, ANV ABEL HET |, I ﬂL L_{_fTL IR
. i ! :
i

o2) N

Writing Entries for the IOCS 53

The operand must be blank.

When the third item in the DCHPT entry (FREQ)
is 3 (see ""Checkpoint Descriptive Entry (DCHPT)"),
checkpoint records are only written when a CHPT
macro-instruction is executed. When FREQ is 0, 1,
or 2, this macro-instruction may be used to specify
additional checkpoints; a checkpoint record will be
written each time a CHPT macro-instruction is exe-
cuted in addition to the points indicated by the 0, 1,
or 2.

GENERAL DESCRIPTION OF CHECKPOINT AND
RESTART ROUTINES

The four IOCS routines that write checkpoints and
perform restarts may be described as follows:

1. An initialization and assignment routine
initializes the checkpoint routine and the restart
routine according to the entries in the DCHPT state-
ment. It processes the header label (if any) of the
checkpoint tape, and writes the restart program as
the first record on the checkpoint tape. It is exe-
cuted during an interruption in the loading of the
user's program.

2. The checkpoint routine writes the contents of
storage on the checkpoint tape at intervals regulated
by the DCHPT statement,

3. The restart routine is loaded into storage
from the checkpoint tape. It then repositions tape
files through use of the block count in the DTF en-
tries and initializes storage by reading the check-
point record specified by the user.

4. The Restart Initiator is a routine that reads the
restart routine from the checkpoint tape and then
transfers control to the restart routine. In contrast
to the first three routines, the Restart Initiator is
not one of the subroutines generated from the DIOCS
statement. Before a restart, the Restart Initiator
must be loaded separately from the deck of cards
(see "Restart Initiator"),

INITIALIZATION AND ASSIGNMENT ROUTINE

The initialization and assignment routine is executed
during an interruption in the loading of the program.
Because loading is always interrupted when using
checkpoint, the DIOCS statement must always be
positioned in the same manner as described under
"Use of OPEN1."

To make the load program available to the in-
itialization and assignment routine, a Branch and
Load Location in Index Word (BLX) instruction must
be executed immediately before the DIOCS statement
is loaded. This BLX instruction must load index
word IOCSIXG and branch to the first executable

54

instruction of the load program. The following
typical coding example illustrates the use of the
BLX instruction and would be proper for any
OPEN except OPEN1 or OPENS5.

Sequence Nome eroti
{P“L|:(Ll"?|n (Loben) I : pc“"wxo 21 B S 3 opszmn 4 E}
Lol MeuselkEFp R P ! 1)
o2 1. N . i : ! 1
o3 o ey . ;]
04 : L LeCS1XG, | DPROGADDR. D
E1L B M FILEA FILEN F1LER edle]
o6 : S BN A
or | .t T : : i}
- ; R R]
ool . [:i} A L NPRGG! {
| RANCH . CNTR Haugxip A

11
12
By
L4 hd
15 ND - CNT R PENFILFS
4G :

g
19C . N, [CHPT

0
m
4
B

=2

L rmdom Lt

Coding suitable for use with OPEN1 or OPENS5
would be identical to the above example except for
the following changes:

1. When using OPEN1 or OPENS, all files must
be opened with a single OPEN statement.

2. When using OPEN1 or OPENS5, the operand of
the END CNTRL statement must not refer to the
label of the OPEN statement.

USE OF SHARED FILES WITH ALTERNATING TAPE
UNITS

Users of checkpoint may specify an output tape with
alternating units as a shared checkpoint tape. The
labels of the reels on this shared file will be handled
by the IOCS label-handling procedure. (The
LABELINF for this file must be restored by the
user after the file has been opened.)

When using an output file with alternating tape
units as a shared checkpoint file, a 2 must be placed
in the CHECKPNT field of the DTF for that file. For
all other cases, the CHECKPNT field of the DTF
should be 1 or blank.

ADDITIONAL DETAILS ABOUT CHECKPOINT

Before a checkpoint record is written, the following
message is typed:

bCHPT+cU1DUOONNN

where
¢ is the channel of the checkpoint tape

U is the unit of the checkpoint tape

1 is 0 if the tape is unlabeled, or 1 if the tape
is labeled.

D is a code describing the density of the check-
point tape: 0 is low density label, low
density file; 1 is low density label, high
density file; and 2 is high density label and
high density file

NNN is the number of the checkpoint recbrd to be
written and is assigned consecutively start-
ing with 001

The two words contained in this message are also
the first two words of the checkpoint record. The
first two words of the restart routine are "bCHPT"
and +0000000000.

For shared files with alternating tape units the
checkpoint message is as follows:

cULDARFNNN
where

¢ is the channel of the checkpoint tape

U is the unit of the first reel of this output file
(on which the restart record is written)

L is the label code
D is the density code

A is the unit number of the reel on which the
current checkpoint record will be written
(This digit may be the same as or different
from digit 1.)

R is the RWDPROC of the DTF for the shared
checkpoint file

T is a 0 if this checkpoint record will be writ-
ten on the first reel of the file, or a 1 if this
checkpoint record will be written on a reel
that is not the first reel of the file

NNN is the number of the checkpoint record to be

written

NOTE: If a restart is necessary, the second word
of the checkpoint message must be saved and in-
serted into the machine prior to the restart.

Index Words 1 and 2

Index words used by the load program (index words
1 and 2 in the case of the 7070 Condensed Card Load
Program) may not be used as IOCSIXG when the
DIOCS statement specifies either OPEN1 or CHPT.
Index word 10 may not be used as IOCSIXG when
running in the additional storage mode, using the
Condensed Card Load Program.

RESTART INITIATOR

The Restart Initiator is a completely separate routine
not generated by the DIOCS statement, which loads
the restart routine from the checkpoint tape. The
initiator should be loaded by the IBM 7070/7074
Condensed Card Load Program prior to the restart.
The restart routine is then read from the checkpoint
tape by the initiator and is placed in the 375 storage
locations immediately following the initiator.

The initiator may be obtained by assembling a
program consisting of the following three cards:

Sequence
(Pg}y (Lin)

Name Operation
(Label) C
T .17

OPERAND

T I T 17 T T
i H Iy
I

e ; |

R ERE Pl L [! i
SN EESRNNERNINEAEA | SARNNERSS BUSNY NRARN AN

The operand portion of the ORIGIN CNTRL entry
must be selected so that the Restart Initiator (which
occupies about 82 locations) will not be placed in a
storage area that is used for subroutines generated
by the DIOCS entry in the program to be restarted.
When used on an additional storage machine, the
Restart Initiator should be assembled in lower core
storage,

It is suggested that a convention be established
whereby a given block of 82 locations will never be
occupied by IOCS subroutines in programs written at
an installation. Observing this convention will in-
sure that one Restart Initiator condensed card deck
will be suitable for restarting the program.

RESTART PROCEDURE

1. Load the Restart Initiator program. If SPOOL
programs are not being executed, this may be ac-
complished by first loading the 7 070/7074 Condensed
Card Load Program and then the Restart Initiator.

If SPOOL programs are being executed, preface the
Restart Initiator with a CONLCARDMAIN card and
follow the SPOOL loading procedure described in
IBM 7070 SPOOL System, Form J28-6047.

2. Programmed Halt 0050 (Program Register
typeout-0000000050) will occur. At this point, store
into storage location 0050 the second word of the
message that was typed before the checkpoint record
(which is to be used for restarting) was written.

Note that the form of this word differs when running
in the additional storage mode.

If it is desired to cause the restart routine to type
the labels of data tapes, set alteration switch 1 OFF;
if not, set alteration switch 1 ON. Then press
START.

3. Before the repositioning of tapes is started, a
message and halt will occur for each tape to be posi-
tioned. If label typing has been selected, the

Writing Entries for the IOCS 55

message will be TPxx LABL, followed by the label.
If the tape is unlabeled, or if label typing has not
been selected, the message will be merely TPxx. If
the tape reel known or ascertained to be mounted on
this tape unit is the correct one, press START.

If an incorrect tape reel is detected, mount the
correct reel on the tape unit. Then, if SPOOL pro-
grams are being executed, store the word
+0000000000 into accumulator 1(9991) and press
PROGRAM RESET and START. If SPOOL programs
are not being executed, press COMPUTER RESET
and START.

If multiple tape files are written on the tape reel
and the tape is not positioned at the desired tape file,
press PROGRAM RESET and START; the tape will
be spaced forward to the next tape file, at which
point the message and halt will be repeated.

4. When all tape reels have been positioned, the
message RESTORE CONSOLE ETC. FOR RESTART
will be typed, and the computer will halt. At this
time set all console switches and dials, ready unit
record devices, and so forth, as appropriate to the
program that is being restarted, and then press
START. Execution of the program will resume.

NOTE: At this point the Load Program is set to

read from the input unit used for the Restart Initiator.

If the Load Program is to be used by the restarted
program, it must be changed to refer to the correct
input device.

Restart Procedure when Using Shared Files with
Alternating Tape Units

Before loading the Restart Initiator program, the
user should make sure that the first reel of the
shared checkpoint file is mounted on the proper tape
unit. The reel of the shared checkpoint file contain-
ing the checkpoint record desired for restarting
should also be mounted on the proper unit. If these
tapes have the same unit number, then the first reel
of the shared files should be mounted. (Halt 2939
will occur later and the user will then mount the reel
containing the desired checkpoint record on this unit.)

After the Restart Initiator has been loaded, the
halt -0000000050 will occur. The user should store
into location 50 a word of the form:

cULDARFNNN

(See the checkpoint message under "Additional
Details About Checkpoint').

where

U is the unit of the first reel of the checkpoint
tape

56

A is the unit on which the tape containing the
desired checkpoint record is located (A may
be the same as U)

F is a 0 if the desired checkpoint record is
located on the first reel of file, or
a 1 if the desired checkpoint record is
located on a reel which is not the first reel
of file.

Please note that if the desired checkpoint record
is on the first reel of file, the user must place the
number of this unit in position 4 of the above word.

If the desired checkpoint record is located on a
reel that is not the first reel of the shared file but
has the same unit number as the first reel of the file,
halt 2939 will occur. The user will then change the
checkpoint reel and mount the tape containing the
desired checkpoint record on this reel.

With these exceptions, the restart procedure will
be the same as that used for shared checkpoint files
that do not have alternating tape units.

Processing More than One Header Label During
Restart

If a file that is involved in restarting has additional
header labels other than the standard single header
label, the first word of each label must be xHDRx,
where x represents any character.

Restarting with SPOOL

If SPOOL is running during a restart, the DCHPT
entry of the program to be restarted must have a
fifth operand of 1.

Sequence Nome

X Operation OPERAND
{Pq) (Lin) sls (Labal)
— T

slig Code | 30 40 A5

T 1] [T ! T

- ! 2\ = TAPE!, | _T"TlYPv S ER
ozl |,]| N

i
i ARYREENMERRNIEE
(il 1 1 []]

1 T T
1 Lol N

The user must also provide an RDW list for the
writing of checkpoint records. Locations 0095-
0096, 0104-0105, the Initial and Final Status Words
of the tapes being used for SPOOL, and the locations
occupied by the SPOOL programs themselves must
not be described in the RDW list as part of the check-
point record. As many as fifteen RDWs may be spec-
ified.
PROVISIONS FOR SPOOIL PROGRAMS
IOCS has been designed to accommodate one or two
SPOOL programs. A SPOOLprogram may be initi-

ated during the running of the main program without
any interruption to the main program. Similarly,

a new main program can be iritiated during the run-
ning of one or two SPOOL programs without any in-
terruption to the SPOOL function. ‘

The SPOOL programs are described in IBM 7070
SPOOL System, Form J28-6047-1. So that these
SPOOL programs can be used with any main program,
conventions regarding the allocation of index words
and storage locations must be observed. These con-
ventions are explained in detail in the publication
describing the SPOOL System.

If SPOOL programs are to be run on an additional
storage machine, the machine must be in the normal
mode.,

10CS observes the conventions required by the

SPOOL System. The programmer may proceed to
write programs using the macro-instructions de-
scribed in this manual with no special regard for
SPOOL programs if index words are specified in
symbolic form. If they are specified in actual form,
the programmer must avoid using the index words
required by the SPOOL programs.

The DIOCS entry of main programs that are to
be run with SPOOL programs must include provi-
sions for tape channels needed by the SPOOL pro-
gram(s). For example, if a SPOOL program uses
tape channel 2, the DIOCS entry must specify at
least 2 channels; e.g., CHAN2 would appear in the
operand.

Writing Entries for the IOCS 57

PART III: WRITING PROGRAMS USING THE IOCS

The last part of this publication is devoted to pro-
grams using [OCS. Recommendations for writing
and assembling programs are presented, and limita-
tions of certain options are given, so that unusual
situations may be avoided. Additional methods of
processing are mentioned to aid programmers who
must handle records that cannot be processed in the
normal manner.

USE OF I0CS WITH AUTOCODER

Although IOCS is presented in a separate publication,
it is actually a part of IBM 7070 Autocoder and IBM
7070 Four-Tape Autocoder. It can be included in a
program by compiling the program with either of
these Autocoder systems. Programs written using
IOCS must satisfy minimum requirements regarding
certain input and output entries, as explained below.
Other information concerning the positioning of input
and output entries and the use of the various input
and output features is described below for programs
to be processed using IBM 7070 Autocoder. This
data applies to programs to be processed using IBM
7070 Four-Tape Autocoder, except for the minor
restrictions specified under "Use of IOCS with Four-
Tape Autocoder. "

Quantity and Type of Entries

Each program using IOCS must include the following
entries:

1. One DIOCS entry for programs using tape files.

2. One DCHPT entry if checkpoint records are to
be written.

3. For each tape file:

a. One DTF entry.

b. One DA entry to define storage areas for the
record. The areas must have RDWs which
may be created through the DA entry or by
a separate DRDW entry; areas for Form 4
records must always use a DRDW entry to
create RDWs.

¢. The use of an OPEN macro-instruction that
refers to the file. If the DIOCS entry spec-
ifies OPEN1, only one OPEN macro-in-
struction may be used in the program.

d. At least one processing macro-instruction
(e.g., GET, PUT) that refers to the file.

e. If the file is an input file, a routine to be
entered when an end-of-file condition oc-
curs.

f. A CLOSE or an END macro-instruction that
refers to the file.

58

g. One DC entry specifying label information

if tape labels are to be processed.
4. For each unit record file:

a. One DUF entry. ,

b. One DA entry to define storage areas for
the record. The areas must have RDWs
that may be created through the DA entry
or by a separate DRDW entry.

c. At least one GET or PUT macro-instruction
that refers to the file.

Positioning of Entries

The positioning of various elements of IOCS is de-
scribed separately below. In general, the entries
may be positioned in any 7070 storage locations,
provided that Autocoder rules are observed. For
example, declarative operations should be separated
from the program instruction area, or the program
must branch around declarative operations that are
in the instruction area. The order of the source
program cards for assembly by the Autocoder system
is not critical except when certain processing pro-
cedures are used by the program being assembled.
These exceptions are explained in the following de-
scriptions of the positioning of the elements of IOCS:

Macro-Instructions: All IOCS macro-instructions
generate a series of 7070 instructions that are posi-
tioned at the point in the source program where the
macro-instruction was written. In addition, coding
generated out of line by IOCS macro-instructions
will be positioned after the first LITORIGIN CNTRL
statement in the source program,

File Schedulers: Each DTF entry generate a File
Scheduler consisting of a group of 7070 instructions
for reading or writing a tape file. As mentioned in
the explanation of the File Specifications, all DTF
entries (36 cards each) must be loaded consecutively.
The File Schedulers will be generated in the same
order and positioned under control of the next
LITORIGIN CNTRL entry.

(When IBM 7070 Four-Tape Autocoder is used,
the File Schedulers will be positioned immediately
following the last DTF entry.)

Descriptive Entries; The various descriptive en-
tries required by IOCS should be positioned in the
same manner as declarative entries. That is, de-
scriptive entries should be separated from the pro-
gram instruction area, or the program must branch
around them so that the program will not attempt

to execute descriptive data as instructions.

Subroutines: All IOCS subroutines are positioned
immediately following the DIOCS entry. If the pro-
grammer wishes to have the subroutines positioned
in a specific storage area, an ORIGIN CNTRL entry
may be used preceding the DIOCS entry as in the
following example:

Sequence Nome ‘Operation OPERAND

(Pg) | (Lin) (Label) 1shig Code | k] — B 40 4!
i I . R i H] ;

e L T L

L
02| el o riaTod copnTiec, | AR
’ 1] csliaca ke . ate N
! a t
|

e 3 I

|| L i L .%!
los |l L BRI SRR R A
;

{ [
.'41 j i

|
|

|
BEIRERRI N REEEEREEE |

The subroutines are positioned beginning at 7070
storage location 3704,

Use of OPEN1 and OPEN5

Programs written using a DIOCS entry with OPEN1
or OPENS in its operand require that the loading of
the program be interrupted to execute the OPEN
macro-instruction. The DIOCS entry must be posi-
tioned in the program so that all the IOCS entries
listed under "Quantity and Type of Entries' (except,
of course, the DIOCS entry) will have been loaded
when the DIOCS entry is reached.

When OPEN1 or OPENS5 is specified in the DIOCS
entry, the program must be written so that IOCS
subroutines will be loaded immediately after the
OPEN macro-instruction is executed. This requires
that a Branch and Load Location in the Index Word
(BLX) instruction be executed immediately before
the OPEN macro-instruction. The BLX instruction
must load index word IOCSIXG and branch to the
load program; the index word and the location of the
load program may be specified in either actual or
symbolic form. Normally, the OPEN macro-
instruction will be written in a section of the pro-
gram devoted to ""housekeeping" and is executed
during a brief interruption of the loading procedure.
One of several methods of insuring that the sub-
routines will be loaded immediately after the OPEN
macro-instruction is executed is shown in the follow-
ing example:

Sequence Name Coerotion PERA

(Pab)fLind g (Lobel) e "Coas zolz1 28 a0 38 ‘o E4o ") o
ot : . N
02 meusekees | " ol

L O i L i
PRI AR N B !
om | it ¥ liecaixa, Lt aone Ll ;

G | 1 i : LLEA, ElLER EILEC Knasna aiil IRAR
O MNEXT |l " e i IR BN AR
on SR SERE RO RSN N D o i
Q9 ; ™ [W D EE R

Lo NTRUMoUSEKEED | il Lb Ll .
Sl Riecs) e, PN e o, Jepprr, L g
T 12 lconrinE 1Y I i [E ; :
T L e T[] [ERER RN
A e reuneXY | L EEEE R

I [i R M ERESERE T R

'V;SJI“H;" Lihygoiti! SR T
T T RN ISR NN NN

The symbol LDPROGADDR on line 4 of the coding
sheet is the address of the first executable instruc-
tion in the load program.

The BRANCH CNTRL entry will interrupt the
loading procedure and branch to the instruction in
symbolic location HOUSEKEEP. Instructions in the
housekeeping section of the program will be exe-
cuted, and the BLX instruction will branch to the
load program to load the OPEN subroutine generated
from data in the DIOCS entry during assembly of the
program, (If the IBM 7070 Condensed Card Load
Program is being used, and if the branch instruction
inserted into location 0000 has not been changed or
destroyed, the address LDPROGADDR in the BLX
instruction may be 0000.) A BRANCH CNTRL at the
end of the OPEN subroutine will interrupt the loading
and the OPEN subroutine will be executed to open all
tape files named in the operand of the OPEN macro-
instruction. Loading of other subroutines generated
from the DIOCS entry will occur next., After all sub-
routines have been loaded, loading of the program
will resume at the point following the DIOCS entry.
Tnitialization of accumulator 1, and index words 1
and 2, for use by the main program must not be exe-
cuted during the housekeeping section of the pro-
gram. The housekeeping section is executed before
the OPEN subroutine is loaded because the IBM 7070
Condensed Card Load Program uses these locations

and would destroy the initial settings. Loading will
continue until the END CNTRL entry begins executing
the program by branching to symbolic location NEXT.

When using OPEN1, OPEN5, or checkpoint,
where the loading procedure is interrupted, certain
IOCS entries must be loaded before the IOCS sub-
routines are loaded. IOCS macro-instructions may
be loaded after the DIOCS entry. However, the
following entries must be loaded before the DIOCS
entry:

1. The DCHPT entry, if checkpoint records are
to be written.

2. The DTF entry for each file.

3. The RDWs for the tape record area of each
file.

4. The DC label information entry for each
labeled file.

Therefore, when using Autocoder, a LITORIGIN
CNTRL statement should be given before the
BRANCH CNTRL statement.

If the programmer wishes to position the sub-
routines in specific storage locations, an ORIGIN
CNTRL entry may be inserted immediately preced-
ing the DIOCS entry.

Use of OPEN3

Programs written using a DIOCS entry with OPEN3
in its operand require that the branch instruction

Writing Programs Using the 10CS 59

placed in location 0000 by the IBM 7070 Condensed
Card Load Program not be changed or destroyed
during the running of the program. The DIOCS en-
try must be positioned in the program so that all the
IOCS entries listed under "Quantity and Type of
Entries' (except the DIOCS entry) will have been
loaded when the DIOCS entry is reached. The pro-
gram must contain a DCHPT entry that specifies a
separate tape unit to be used for checkpoint records.
The OPEN subroutine will be written on the check-
point tape, and read into storage whenever an OPEN
macro-instruction is executed.

Use of E013§

When a program contains a DIOCS entry with EOR3
in its operand, the header labels written on output
reels will not be typed automatically. This pro-
cedure reduces typing time in the end-of-reel rou-
tine. If the programmer wants some portion of the
header labels of a certain output file typed, he
should (1) specify EOR3 in the DIOCS, and (2) spec-
ify, in the label information DC for the file, that
end-of-reel exit 4 is to be taken. In his exit 4
routine, the programmer should specify the parts
of the label to be typed by giving a type instruction
and RDW(s).

The coding in the following example will cause
only 1HDR and the file identification to be typed:

Sequance Name Oparation OPERAND

Lol (Loba] 1ol Co%e goly 2 » 3 4

1 Y- y ARG |
nl nus

" A mm_ha

[Tl 111 NNRAE 1
EE R ARERNNNNNA RN ARA RN,

7 L hBEl ae I
B SERRRRREN

1 a h

th el lehios

| My ‘

M 7-loa i

\ -
1] l

1 T M =i Ch

I
1

};1
H

1]
T

20 2Y

Use of BRANCH CNTRL Entries

Whenever BRANCH CNTRL entries occur in a pro-
gram, the loading of the program is interrupted to
execute some instructions and then the loading pro-
cedure resumes. The loading of the various ele-
ments of IOCS must be considered when writing

60

BRANCH CNTRL entries into a program. If a
BRANCH CNTRL entry causes the execution of a
section of a program that includes an IOCS macro-
instruction, the programmer must be sure that the
system elements needed for the macro-instruction
have been loaded. For example, an OPEN macro-
instruction could not be executed if the DTF entries
and the related File Schedulers are not in 7070 stor-
age.

A typical use of a BRANCH CNTRL entry in a
program using the IOCS is described in detail under
""Use of OPENI. " When using 7070 Autocoder, a
LITORIGIN CNTRL statement should be given before
the BRANCH CNTRL statement.

Priority Mask

Programs that use IOCS must not use the following
instructions:

1. Priority Control (+55)

2, Stacking Latch Set (-61)

3. Stacking Latch Reset (-62)

In order for IOCS to function properly, priority
conditions must be under the control of the system
at all times. This control is accomplished through
the use of priority masks. By avoiding the three
instructions listed above, the programmer will pre-
vent interference with IOCS,

Program Exits

Throughout the IOCS, program exits have been pro-
vided to allow branching to the user's routines for
processing that is peculiar to the program being exe-
cuted. Exits are available for end-of-file routines,
label routines, etc. (see the File Specifications).
After the user's routine has been executed, it is
necessary to return to the instruction that follows the
program exit. The user can accomplish this by
ending each of the routines with a branch instruction.
If the routine was entered from a program exit pro-
vided through the File Specifications for tape files,
the routine should end with a branch instruction as
specifically stated in the description of the program
exit. Routines entered from a program exit pro-
vided by the descriptive entry for unit record files
should end with a Branch to 0+IOCSIXH. In order
that control will return to the proper point in the
program, no IOCS macro-instructions may appear

in a routine entered from a program exit.

Use of File Names in Autocoder Macro-Instructions

Most Autocoder macro-instructions (e.g., ZERO
and MOVE) may refer to input and output files. When

the name of an input or output file is used in an Auto-
coder macro-instruction, the name used must satisfy
the following requirements:

1. The name of the file used in the operand of the
DTT entry must be identical to the name of the DA
entry that defines the areas for the input or output
records. Depending on the method of generating
RDWSs, this name may or may not be the same as the
operand of the IORDWLIST entry of the File Spec-
ifications.

2. The operand of the DA entry that defines the
areas must specify an index word and that index word
must be the same as the operand of the INDXWRDA
entry of the File Specifications.

Use of Tape Record Index Words

The contents of the index words assigned to each
tape file in the File Specifications may be used by
the programmer as necessary provided that the con-
tents are not changed. The data that is contained in
these index words depends on the form of record and
on whether the file is for input or output., The con-
tents of the index words for each form of record are
described separately below. The index words for
each file are referred to as XA and XB, and are
assigned to a file as explained under "File Specifica-
tions Entries, " Lines 19 and 20.

Form 1 and Form 2: XA for both input and output

files using these forms of records will contain the

RDW of the current record. Positions 2 -5 of XB
contain the location of the RDW of the current rec-
ord; positions 6 - 9 of XB will contain the location
of the last RDW of the currernt record block.

Form 3 -- Input Files: Positions 2 - 5 of XA contain
the location of the first word in the current record;
positions 6 -~ 9 of XA contain the location of the last
word in the current record block. XB contains the
length of the current record in positions 2 - 5, and
positions 6 ~ 9 contain zeros.

Form 3 -- Ouiput Files: Positions 2 - 5 of XA con-
tain the location of the last word in an output area
that has been filled with output data. Positions 6 - 9
of XA contain the location of the last word of the out-
put area. XB contains the RDW of the last record
moved into the output area.

Form 4: XA for both input and output files using this
form of record will contain the RDW of the first part
of the current record. Positions 2 - 5 of XB will
contain the location of the RDW of the first part of the
current record; positions 6 - 9 of XB will contain the
location of the last RDW of the current record block.

Use of Unit Record Index Word

The contents of the index word assigned to each unit
record file in the File Specifications may be used by

the programmer as necessary provided that the con-
tents are not changed. Positions 2 - 5 of the index
word will contain the location of the first word of the
current unit record.

Changing Record Length

Form 2, 3, and 4 records are each variable in
length. The method of changing each form is de-
scribed below.

Form 2: The length of a Form 2 record is changed
by placing the record mark at the desired place in

the record. The changes in the record length may

be made in an input, output, or work area.

Form 3: When the length of Form 3 records is
changed, the contents of XA, XB, and the record
length indicator in the record must also be changed.
The following precautions must be observed when
changing the length of a Form 3 record.

When processing in an input area, records may
be shortened but should not be lengthened. Lengthen-
ing a record will destroy the first part of the next
input record.

Form 3 records processed in a work area may be
shortened or lengthened as desired. When process-
ing in a work area, it is only necessary for the user
to change the contents of the record length indicator;
the contents of the index words will be adjusted by
1I0CS when the record is moved to the output area.

When processing in an output area, records may
be shortened without complications. If records are
lengthened, the user must be sure that lengthening
does not require more words than remain in the out-
put area for that record block.

Form 4: The length of each section of a Form 4
record is changed by placing the record mark at the
desired place in each section of the record. The
changes in the record length may be made in an
input, output, or work area,

Processing in Output Areas

Records may be processed or assembled in an out-
put area if necessary. For example, records to be
inserted into a file may be assembled in the output
area rather than in a work area.

To process records in an output area, the next
space in the output area is made available to the
user by issuing a PUT macro-instruction that names
only the output file in its operand; see the last ex~
ample under '""PUT Macro-Instruction. " Processing
a record in the output area requires that the PUT

Writing Programs Using the IOCS 61

macro-instruction be given before data can be

placed into the output area. When using this pro-
cedure, the programmer must not use a PUT macro-
instruction after the last output record has been
placed in the output area, since an extra PUT used at
this time will add another output record containing
unwanted and unknown data to the output file. This
procedure of issuing the PUT before processing the
record is the reverse of the normal processing pro-
cedure. (The record is normally processed in an
input or work area, and entered into the output file
by a PUT or PUTX macro-instruction after process-
ing has been completed.)

When this type of PUT macro-instruction is used
with Form 3 records, the PUT entry must have a
label, and the number of words in the record must be
placed in positions 6 - 9 of the first instruction of the
PUT macro-instruction. One method of inserting
the record length is shown by the following routines,
where FORM3LNGTH is the label of a field that con-
tains the number of words for the record:

Ps«wqcn Noime Operation OPERAND
{Pq (L'")sc (Label) islis €09 zolo 2 E%) 3 49
ol ZA) [Feem3l NGTH -
o2 STD1 ForRM3PUT !
o3 - i i
i B i T
o4 ;
g T
OS5 FeRM3IPUT. __[PUT _©UTELLE .
o7 !

The PUT macro-instruction will alter the index
words associated with the output file to refer to the
next space in the output area. The RDW that defines
the next space will be in XA for Form 1,2, and 4
records or XB for Form 3 records. Processing in
the output area may be done using instructions in-
dexed by the appropriate index word for the record
form being processed.

Occasionally, it may be desired to process a rec-
ord in the output area using the same routine that is
designed for processing in an input area; that is, us-
ing XA of the input file. The programmer may do
this by writing a routine that:

1. Saves the contents of XA of the input file.

2. Moves the contents of XA of the output file (XB
for Form 3 records) to XA of the input file.

3. Executes the routine which processes the rec-
ord in the output area.

4. Restores the original contents of XA of the
input file.

Processing Long Records

If very long records must be processed, and storage
space is not available for input and output areas
large enough for the maximum length records, a
combination of processing in the input and output

62

areas may be used. The input and output areas must
each be capable of holding at least one half the
maximum length record, and records that can not fit
into the input area must be written as two tape rec-
ords.

A GET macro-instruction places the first half of
the record in an input area which is then moved to an
output area by a PUT macro-instruction. The next
GET macro-instruction will place the second half of
the record in an input area. Both halves of the rec-
ord may then be processed. The first half may be
processed using instructions indexed by index word
XA of the output file (XB for Form 3 records), and
the second half using instructions indexed by index
word XA of the input file.

PRECOMPILED IOCS SUBROUTINE DECK

Considerable interest has been expressed by IOCS
users in a precompiled, or "prepunched," condensed
card deck of the IOCS subroutines. Instead of includ-
ing a DIOCS statement in a source program to cause
generation of IOCS subroutines by compilation, the
precompiled IOCS subroutine deck would be added to
the program after compilation. The goal of this
procedure is a considerable reduction of compilation
time.

The procedure requires that certain conventions
be followed in order to obtain proper communication
between the IOCS subroutines and the IOCS elements
contained in the source program (e.g., DTF entries,
the DCHPT entry, and IOCS macro-instructions).
The required conventions are:

1. The programmer should reserve index words
1 and 2 for programs to be used with the precompiled
IOCS subroutines.

2. The programmer should reserve index words
1, 2, and 10 for programs to be run in the additional
storage mode; only one configuration of the IOCS
subroutines may be used.

3. The DCHPT entry, the first word of the first
DTF entry, and the IOCS index words must occupy
the same storage locations in all source programs
to use the precompiled IOCS subroutine deck.

4. The addresses of certain symbolic labels within
each subroutine must be made available to the source
program. This convention may be achieved in two
different ways. One way is to include EQU state-
ments to fix the locations of all symbolic labels in
the IOCS subroutines to which the IOCS macro-
instructions refer. This method is limited, because
any changes in the IOCS which would produce changes
in the locations of the symbolic labels would necessi-
tate reassembling the source program. The other
method is to include a branch list. This list would
occupy a number of fixed locations, and would be
included in the precompiled IOCS subroutine deck.

It would contain a list of branch instructions. The
operand of each branch instruction would contain a
symbolic label appearing in the IOCS subroutines.
All the symbolic labels to which IOCS macro-in-
structions refer would be in the list. The source
program would then include EQU statements which
would equate each symbolic label in the IOCS sub-
routines to a fixed branch list location. In this way,
changes in the IOCS subroutines would not necessi-
tate reassembly of source programs.

In programs to be used with precompiled IOCS
subroutines, certain labels must be equated to their
actual locations.

The user should equate the label IOCSIGEN to its
actual location in the IOCS subroutine. IOCSCI1S,
10CSC2S, IOCSC3S, and IOCSC4S should be equated
to their actual locations in the IOCS subroutines.

IOCSRLSMOD should be equated to a branch list
location. This branch list location should contain:

B IOCSRLSMOD + 1
If the programmer wishes to use the FEORN

macro-instruction, the following labels must be
equated to their respective locations:

Autocoder Four-Tape Autocoder
I1I0C. EOR . IOCSEOR .

I1I0C. TEF IOCSTEF

I0C. EOFEX IOCSEOFEX

I0C. OPNSW2 IOCSOPNSW2

I0C. RETEOR IOCSRETEOR

I0C. MASKA

I0C. MASKP

I0C. SEQILB

If the programmer wishes to use the FEOR macro-~
instruction, the following labels must be equated to
their respective locations:

Autocoder Four-Tape Autocoder
I0C. ICHECK IOCBICHECK

I0C. CELOOP IOC3CELOOP

I0C. OPNSW2 IOCSOPNSW2

I0C. RETRN IOCSRETRN

I0C. IPSLO I0CSIPSLO

IOC. CEBACK IOCSCEBACK

I0C. MASKA

I0C. MASKP

Autocoder source programs that include the CHPT
macro-instruction must equate the IOCS label
10C. MASKA to its actual location, If the IOCS
macro-instructions WTM, WSM, BSP, RWD, RDSF,

or RDSB are used in the source programs, the
10CS labels I0C. MASKA and IOC. MASKP must be
equated to their actual locations.

Compiling Source Programs

Normal programming and compiling procedures ap-
ply to any source program that uses the condensed
10CS subroutine deck, with these exceptions:

1. The program must not contain a DIOCS state-
ment.

2. In order to locate the symbolic labels in the
10CS subroutines to which IOCS macro-instructions
refer, a branch list is used. The following labels
must be equated to their respective absolute branch
list locations:

fl

Autocoder Four-Tape Autocoder

I0C. ICLOSE IOCSICLOSE

10C. IEND IOCSIEND

10C. IOPEN IOCSIOPEN

I0C. IRTAIN IOCSIRTAIN

10C. EJLOOP IOCSEJLOOP

I0C. RLSMOD IOCSRLSMOD (see above
explanation)

I0C. CNBTST IOCSCNBTST

3. The following index words must be equated to
the locations they occupy. These locations are indi-
cated in the program listing of the IOCS subroutines.

Autocoder Four-Tape Autocoder
IOCSIXF IOCSIXF
I0CSIXG IOCSIXG
IOCSIXH IOCSIXH

4. Care must be taken that the DTF entries and
the DCHPT entry satisfy the conventions established
for the IOCS subroutines.

Combining the Object Decks

The condensed IOCS subroutine deck and the con-
densed deck of a program that is to use these IOCS
subroutines may be combined in one of two ways. If
the IOCS subroutines include OPEN1, OPEN5, or
CHPT, the IOCS subroutine deck must be inserted
in the condensed program deck immediately follow-
ing the execute card generated from the BRANCH
CNTRL statement that interrupts the loading
process to prepare for the execution of certain
IOCS subroutines. If the IOCS subroutines include
OPEN2, OPEN4, or OPENG6, and do not include

Writing Programs Using the IOCS 63

CHPT, the IOCS subroutine deck may be inserted at
any point within the condensed program deck such
that the subroutines will have been loaded before
being executed.

The extent of these conventions makes it un-
feasible for the IBM Programming Systems Depart-
ment to supply a precompiled IOCS subroutine deck
on a general basis. Any 7070 or 7074 user may,
however, establish these conventions for his own
programs, and very easily obtain the IOCS sub-
routine deck.

Compiling the IOCS Subroutine Deck

The condensed card IOCS subroutine deck may be
obtained by compiling a small program. The pro-
gram should contain the following entries:

1. An ORIGIN CNTRL to establish the beginning
location for the IOCS subroutines.

2. An EQU statement to fix the location of the
first word of the first DTF entry. This location
must be common to all programs to use this IOCS
subroutine deck. The label of the EQU entry is
I0C. FTBL01, if using Autocoder, or IOCSFTBLO01,
if using Four-Tape Autocoder.

3. An EQU statement to fix the location of the
DCHPT entry. This location must be common to all
programs that use this IOCS subroutine deck. The
label of the EQU entry is IOC. DCHPT, if using
Autocoder, or IOCSDCHPT, if using Four-Tape
Autocoder.

4. A branch list.

5. A DIOCS statement that specifies the desired
configuration of the IOCS subroutines. The DIOCS
statement must also fix the index word locations to
be used for index words IOCSIXF and IOCSIXG.
These index words must be reserved for IOCS use in
all programs that use this IOCS subroutine deck.

After compilation, the final execute card and the
load program should be removed from the condensed
card deck and destroyed.

7072/7074 IOCS FOR ADDITIONAL STORAGE

Autocoder generates IOCS routines for use in the
Additional Storage mode when the ADDSTORAGE
OBJCT YES operating option control card is used.

IOCS macro~instructions, subroutines, and File
Specification entries for the 7072/7074 system with
additional storage are similar to the corresponding
elements of the normal package. Therefore, they
are used in exactly the same manner. When writing
programs in the Additional Storage mode, the user
should comply with all the requirements and speci-
fications of IOCS in the normal mode. Whenever a
different entry or procedure is required for the
Additional Storage mode, it will be described along
with the procedure for the normal case.

64

The following rules must be considered when us-
ing 7072/7074 10CS for additional storage:

Block Size: The maximum number of storage words
allowable in a Form 3 tape block is 9998. Existing
regulations on maximum record and block length for
use with the Sort 90, Merge 91, Tape Duplication,
and Tape Compare programs must also be observed.

DIOCS Entry: The DIOCS entry may appear anywhere
in card sequence, provided that the requirements for
the use of overlaid OPEN subroutines and checkpoint

routines are met.

SPOOL: SPOOL will not be provided. Therefore,

neither IGEN1 nor IGEN2 should be used in the

DIOCS statement. ’

DTF Entries: DTF entries must be placed in stor-
age locations below 10000. Symbolic operands of
the following DTF entries must refer to locations
below 10000.

SLRPROCD EOSPROCD
LLRPROCD EORPROCD
SCLPROCD EOFPROCD
LABELINF

The locations referenced may contain branch in-
structions to routines located at or above 10000,
Note that locations 0000 and 9999 may not be used as
IOCS exits when these values are used to denote
special options that are described for the entry.

The File Schedulers generated for each DTF en-
try must be placed in module zero. This is ac-
complished by proper use of the Litorigin Control
statement(s) to force assignment of generated ma-
terial to previously reserved locations below 10000.

The SPAREINTF field in the File Specifications
Table must not be used at any time during execution
of the program.

Record Definition Words: All RDWs used by IOCS
must be below location 10000. The assignment of
RDWs generated for use with macro-instructions
must be controlled by the use of a LITORIGIN CNTRL
statement (see above). RDWs defining input or out-
put areas must not be positioned above location 9998,

Label Information DC Entries: The final entry under
any LABELINF DC entry must not be above location
9998, Also, any symbolic addresses for label exits
given under a LABELINF DC entry must refer to
actual locations below 10000. The referenced ad-
dresses may contain branch instructions to routines
at or above location 10000.

The Restart Initiator must be assembled below
location 10000,

IOCS FOR IBM 7330 MAGNETIC TAPE UNITS OF
THE 7072 DATA PROCESSING SYSTEM

The File Specifications and rnacro-instructions that
are applicable to files on 729 II and IV Magnetic
Tape Units are also applicable to files on 7330
Magnetic Tape Units.

It is important to note the following when using
7330 Magnetic Tape Units:

1. Set density instructions are treated as NOPs.
Therefore, Line 21 of the DTF specifications will be
ineffective for files on 7330 Magnetic Tape Units.

2. If a read instruction of any type is followed
(without an intervening BSP or RWD instruction) by
a write instruction, an imperfectly erased inter-
record gap may be produced. Therefore, a RDSF
or RDSB macro-instruction on an output file will
cause difficulty if any write commands are sub-
sequently given. Under these conditions, the follow-
ing two instructions should be given after the RDSF
or RDSB macro-instruction:

BSP
WSM

OuUTPUT
OUTPUT

USE OF THE READ BINARY FEATURE WITH 10CS

The 7072 and 7074 Data Processing Systems have

an optional feature that permits them to read odd-
parity binary tapes prepared by IBM 704, 709, or
7090 systems or by analog-digital converters for
these systems. The File Specifications for the tape
files consisting of odd-parity binary tapes are the
same as those for other files with one exception:

the user should insert a 0 on Line 09 (FILETYPE)
under the DTF for that file. When reading binary
tape, modifications to the condition code routine will
provide for the overlapping of input/output operations
when encountering tape records with short character
length characteristics. If modifications are desired,
the user should specify in the DIOCS line either
IGENS5 or IGEN6 which provides for the above-men-
tioned overlapping when encountering short char-
acter length binary records. IGENS5 contains all the
features of IGEN1 in addition to this feature. IGENG6
contains all the features of IGEN3, In this case,
Line 24 (SCLPROCD) in the hinary File Specifica-
tions will not be effective.

USE OF THE IOCS WITH FOUR-TAPE AUTOCODER

Programs using IOCS that are to be processed with
IBM 7070 Four-Tape Autocoder must observe
several restrictions regarding fields, areas, index
words, and DA entries. Except for the following
restrictions, the remarks given under '""Use of IOCS

with Autocoder'" also apply to programs to be proc~
essed with IBM 7070 Four-Tape Autocoder.

When using PUT macro-instructions with Four-
Tape Autocoder, the name preceding the word IN
must be the name of either an RDW that defines one
area or a tape input file. The use of a field name is
not allowed (unless, of course, the field name is the
label of an RDW that defines the field). The name
of a card input file may not be used in the PUT
macro-instruction if the output file is a tape file. A
record from a card input file may be included in a
tape output file if the unit record area is defined by
one RDW; the PUT would then be written using the
name of the RDW (i. e., the name preceding the
word IN would be the same as the fourth item in the
DUF entry of the card input file).

Index words may not be associated with fields de-
fined by subsequent entries under a DA by entering
the index word in the operand of the DA entry. To
use indexing with instructions referring to fields de-
fined under a DA, the user must enter the index
word in the operand of each instruction that is to be
indexed.

SUMMARY OF STORAGE, INDEX WORD, AND
ELECTRONIC SWITCH UTILIZATION

The programs developed by the IBM Programming
Systems Department use certain index words, elec-
tronic switches, and storage areas that must be
avoided by the user when writing his own programs.
The items to be avoided will depend on which of the
IBM programs are to be used with the user's pro-
gram,. The utilization restrictions of these pro-
grams are described separately below.

IBM 7070-Series Input/Output Control System for
Tape and Unit Records

The IOCS uses two index words for each tape file
and one for each card file. In addition to the index
words associated with the files, the IOCS uses two
index words for control of the system regardless of
the number of tape files; if one or more card files
are included in the program, one additional index
word is used by the system.

The number of words of storage will depend on
the files and on use of macro-instructions in the
program. The actual locations of storage words

- used will be assigned during Autocoder assembly.

From 20 to 41 words of storage will be used for
reading and writing routines for each tape file.
Each GET or PUT macro-instruction will use from
3 to 8 words. Nine words will be used for the File
Specifications of each tape file.

Writing Programs Using the IOCS 65

IBM 7070 SPOOL System

The SPOOL System uses index words 95 and 96. It
also uses electronic switches 29 and 30.

Each SPOOL program uses 200 words of storage.
The SPOOL programs will be located in the upper
400 words of storage. When using the IBM 7070
SPOOL System, the load program must be in stor-
age locations 0300 through 0323.

IBM 7070 Condensed Card Load Program

This program uses index words 01 and 02 during
the loading of a program; these index words may be
used by the programmer after loading has been
completed.

The program uses storage location 0000 for an
instruction to branch to the load program. Nor-
mally, the program occupies storage locations 0300
through 0323, but it may be relocated to any 24
consecutive storage locations. If the IBM 7070
SPOOL System is to be used, the load program
must use locations 0300 through 0323.

66

APPENDIX: SCHEDULER OPERATION

The most important elements of IOCS are the File
Schedulers and the Channel Schedulers, This ap-
pendix has been included for those programmers
who are interested in the theory of operation of these
elements. File Schedulers and Channel Schedulers
are described because they have complete control
over the reading and writing of records and the
scheduling of tape operations among tape files using
a common tape channel. Other elements of the IOCS
are used only at the beginning and end of tape reels,
and when tape errors or unusual conditions occur.

As explained in Part I of this manual, one Chan-
nel Scheduler is required for each tape channel used
in the program and one File Scheduler is required
for each tape file processed by the program. All
File Schedulers for files which share a tape channel
operate in conjunction with the Channel Scheduler for
that channel; control passes back and forth among
the elements that share the same tape channel, but
there is no communication with corresponding ele-
ments of files using other tape channels.

OPERATION OF SCHEDULERS

Figure 7 is a simplified flow diagram of one File
Scheduler and one Channel 3cheduler. The two types
of schedulers will be described together because
control passes from one to the other so frequently
that the operation of each would be vague if they
were described separately. It is recommended that
the flow diagram be used in conjunction with the
description of the schedulers.

The Channel Scheduler is always entered from
one of the File Schedulers. A File Scheduler may
be entered in one of the following modes:

1. In the priority mode, after a tape operation
has been completed and a priority condition has been
indicated.

2. In the normal (non-priority) mode, when an
10CS macro-instruction (e.g., PUT) refers to an
unavailable area. This condition occurs when all
records in an input block have been processed, or
when all spaces in an output block have been filled
with output records.

The operation of the schedulers when entered in
each of these modes is described separately below.
Operation in both modes is effected by two counters
and two program switches in each File Scheduler.
Frequent references to these items occur in the
descriptions which follow. Therefore, they are ex-
plained here rather than as part of the operation in
each mode. The counters and switches are:

This counter indicates the number of
tape record areas that are ready for
use. For an input file, it is the num-
ber of areas that contain input rec-
ords to be processed; for an output
file, it is the number of "empty"
areas that are ready to receive output
records.

Availability
Counter

Availability
Switch

This switch is turned ON whenever at
least one area is available. It is
turned OFF when no area is available;
i.e., when the Availability Counter is
Z€ero.

Pending
Counter

This counter keeps a record of the
number of tape operations that are
waiting to be started. For an input
file, it is the number of areas which
contain records that have already been
processed. New input blocks must be
read into this number of areas. For
an output file, it is the number of
areas filled with output records that
have not yet been written on the output
tape.

This switch is turned ON whenever at
least one area requires a #ape opera-
tion. It is turned OFF when all areas
! are ready for use; i. e., when the

: Pending Counter is zero.

Pending
Switch

The two switches appear on the flow diagram
(Figure 7); the two counters do not. Although the
counters are not shown, incrementing and decre-
menting them is a function of the File Scheduler, and
is indicated on the flow diagram.

Priority Mode

When a priority condition signals the end of a tape
operation, the appropriate File Scheduler is entered
in the priority mode. A check is made to determinc
that the tape operation just completed is correct;
i.e., no unusual conditions or tape errors have oc-
cured. If the tape operation is correct, the Channel
Scheduler will be entered; if not, the error routines
will be executed.

The Channel Scheduler saves the contents of ac-
cumulator 1 so that the schedulers may use the ac-
cumulator. Next, the SPOOL Switch determines
whether control should pass to a SPOOL program or
continue in the Channel Scheduler. The SPOOL

Scheduler Operation 67

From
Priority
Branch
Addresses

From Preceding

Pending Switch

FILE SCHEDULER

Correct YES

CHANNEL SCHEDULER

Return to

Macro-Instruction €~

From Macro-
Instruction (GET,
PUT, PUTX)

—

- Save Contents ON
Length of Accumulator 1 To SPOOL Program
Record

OFF
To Error Routines
Turn Force ON OFF To First Pending
Switch OFF Switch
I;en'dir;‘g 1‘3 ﬁ“‘L —_— From Last - Set Free Switch
wite Pending Pending 7 to Free (OFF)
Switch Switch
Start Tape
Operation
Set Up for
Next Tape
Operation
Decrement
Pend. Counter Set Free Switch
Tumn Pend. Sw. to Busy (ON)
OFF if Count. is 0
Increment Avail - /
ability Counter OFF Bypass
Turn Availability Switch
Switch ON ON
Increment Restore Accum= Turn Byposs
Block Count ulator 1. Switch OFF.
Release Priority. Allow Priority.
OFF
Test OFF
N
y o Availability
Switch
ON
Availability
Switch
Allow Priority
4 Aliow Priority
Turn Cross
Set I.W. for Switch OFF.
New Area Turn Force
Set up next area Switch ON
Make last RDW
t Set Pending
Decrement Avail - . Sv':nch ::dnu
ability Counter in Force Routine
Turn Availability
Switch OFF if
counter is zero
Make Last RDW-
increment Pend- Turn Cross Turn B
ing Counter » i Switch ON | Swifchwoc::.
Turn Pend. Sw. ON

Figure 7

68

A
Prohibit
Priority

Switch is located at this point in the Channel Sched-
uler so that a tape-limited main program cannot slow
down or stop a SPOOL operation by dominating the
tape channel. An electronic switch is used for the
SPOOL Switch; IOCS uses electronic switch 30 for
SPOOL programs operating with a tape unit on tape
channel 1, and electronic switch 29 for SPOOL pro-
grams using tapé channel 2. The SPOOL Switch de-
termines the action as follows:

ON A SPOOL tape operation is waiting or is in pro-
gress. Control will be passed to the SPOOL
program.

OFF The SPOOL program does not need the use of
the tape channel, Control will remain in the
Channel Scheduler.

If the SPOOL Switch is OFF, the Force Switch
determines the method of returning to a File Sched-
uler. The Force Switch indicates that the Pending
Switch of each File Scheduler is to be checked in
sequence or that control is to pass to a specific
Pending Switch. A program switch (i.e., an instruc-
tion that is changed between NOP and B) is used as
the Force Switch and determines the action as
follows:

ON (NOP) A specific File Scheduler requires the
use of the tape channel. Control passes
to the Pending Switch of that File Sched-
uler after turning the Force Switch OFF.

OFF (B) The Pending Switches of files using this

channel are to be tested in the order
specified by the PRIORITY entry (Line
18) of the File Specifications. Control
will pass to the Pending Switch of the
File Scheduler for the file having the
highest priority on this channel.

Upon reaching a Pending Switch that is ON, either
as a result of testing the Pending Switches in se-
quence or as a result of the Force Switch being ON,
a tape operation for the corresponding tape file is
initiated, and the next area is set up for subsequent
tape operations. The Pending Counter is decre-
mented to indicate that a pending operation has been
started. If the Pending Counter is zero, the Pending
Switch will be turned OFF, and control returned to
the Channel Scheduler.

The Free Switch is turned ON to indicate that the
tape channel is busy; i.e., it is being used by the*
tape operation started in the File Scheduler. The
function of the Free Switch will be described in de-
tail later as it is encountered in the Channel Sched-
uler. If the Pending Switch of each File Scheduler
is OFF, control will pass to the Channel Scheduler

which turns the Free Switch OFF. After the Free
Switch has been turned either ON or OFF, the action
taken depends on the Bypass Switch. The Bypass
Switch is a program switch that indicates the action
as follows:

ON (NOP) The schedulers were entered in the
normal (non-priority) mode. Opera-
tion in this mode is described under
"Normal Mode" below,

OFF (B) The schedulers were entered in the

priority mode. Control will return to
the File Scheduler which started the
last tape operation on this channel.

When the File Scheduler is entered from the By-
pass Switch, the Availability Counter will be incre-
mented and the Availability Switch will be turned ON.
The block count for the corresponding tape file will
be incremented and control will be returned to the
Channel Scheduler.

The Channel Scheduler will then restore the con-
tents of accumulator 1; the contents were saved when
the Channel Scheduler was first entered in the priority
mode. After accumulator 1 has been restored, the
Channel Scheduler will execute a Priority Release
instruction and return control to the main program.
This sequence of operations will occur each time a
Tile Scheduler is entered in the priority mode as the
result of a completed tape operation.

Normal Mode -

A File Scheduler is entered in the normal (non-
priority) mode whenever a macro-instruction refers
to a Tape Record Area that has already been used;
i.e., all records in an input block have been proc-
essed or all spaces in an output block have been
filled. The entry in the normal mode is shown at the
lower left-hand corner of the flow diagram. After
entering the File Scheduler, the sign of the last RDW
that defines the used Tape Record Area is set to
minus; the Pending Counter is incremented, the
Pending Switch is turned ON, and control passes to
the Channel Scheduler.

Upon entering the Channel Scheduler, the Cross
Switch is turned ON, The function of the Cross
Switch will be described in detail later, when it is
used. The next action to be followed depends on the
setting of the Free Switch. The Free Switch is a
program switch that indicates the action as follows:
ON (B) The tape channel is busy. A tape
operation may not be started at this
time so the scheduler branches to
the Cross Switch.

Scheduler Operation 69

OFF (NOP) The tape channel is free. A tape oper-
ation for the tape file named in the

macro-instruction can be started.

If the Free Switch is ON, the action to be taken
depends on the Cross Switch., The Oross Switch is
a program switch that indicates the action as follows:

ON (B) No tape operation can be started. The
Availability Switch will be checked to
see if a Tape Record Area is ready for
use by the main program.

OFF (NOP) No tape operation can be started and no

Tape Record Area is available to the
main program. The Channel Scheduler
will be conditioned to force a tape oper-
ation for the tape file named in the
macro-instruction.

As stated above, the Cross Switch is turned ON
as soon as the Channel Scheduler is entered. If the
tape channel is busy (Free Switch ON), the Cross
Switch will return control to the File Scheduler after
turning the Cross Switch OFF. The action occurring
in the File Scheduler depends on the Availability
Switch.

If the Availability Switch is ON, the index word is
set for the available area and the next area is set up
for subsequent operations. The sign of the last RDW
in the available area to be used is changed to plus.
Next the Availability Counter is decremented and, if
it becomes zero, the Availability Switch will be
turned OFF. Control then returns to the macro-
instruction in the main program that sent control to
the File Scheduler. If the Availability Switch is
OFF, control returns to the Free Switch in the
Channel Scheduler, If the tape channel is still busy,
the Cross Switch (which is now OFF) will set up the
force routine to indicate the tape file that has no
area available. The Force Switch is then turned ON
so that the next tape operation to be started will be
for the appropriate tape file. The function of the
Force Switch is described under "Priority Mode. "'
The Channel Scheduler then tests the status of the

70

Availability Switch and, if OFF, repeats the test.
(The Availability Switch will remain OFF until the
forced tape operation is completed.) The test must
be repeated to form a program loop so that a pri-
ority condition can cause an entry into a File Sched-
uler and allow the Force Switch to take effect. As
soon as the test indicates that the Availability Switch
is ON, control will pass to the Availability Switch in
the File Scheduler. Subsequent operations are the
same as explained in the preceding paragraph.

The Free Switch determines the action to be taken
if the Availability Switch is OFF, as well as the ac-
tion just after the macro-instruction transfers con-
trol to the File Scheduler. The action occurring if
the Free Switch is ON (BUSY) is described above; if
the Free Switch is OFF (FREE), the Channel Sched-
uler will turn the Bypass Switch ON and set a priority
mask to prohibit priority conditions. Control then
passes to the Pending Switch in the File Scheduler
that was entered from the macro-instruction. The
operations performed in the File Scheduler at this
time are the same as those that occur when in the
priority mode. These operations are described un-
der '"Priority Mode. "

Control is then returned to the Channel Scheduler,
where the Free Switch is turned ON. The Bypass
Switch, which was turned ON before leaving the
Channel Scheduler, indicates that control is to re-
main in the Channel Scheduler. A priority mask to
allow priority conditions is set and the Bypass Switch
is turned OFF. The status of the Cross Switch is
tested to determine the next operation. If the text
indicates that the Cross Switch is OFF, repeated
tests of the Availability Switch will be made until it
is turned ON; the Cross Switch being OFF indicates
that previously the channel had been busy and the
Availability Switch had been OFF. If the test indi-
cates that the Cross Switch is ON, it will be turned
OFF and control will pass to the Availability Switch
in the File Scheduler; the Cross Switch being ON in-
dicates that the channel was free when the Channel
Scheduler was first entered. Operations occurring
after the Availability Switch is reached are the same
as those described previously.

ACTIVITY 21

Additional Input Label Processing 42
Additional Output Label Processing 40
ALTITAPE 21

ALT2TAPE 21

Autocoder, Use of IOCS with 58
Availability Counter 67

Availability Switch 67

BASETAPE 21

Block Count 21

BLOCKCNT 21

Blocked Records, Processing 9
BLOCKING 22

Blocking, Tape Record 8
BRANCH CNTEL 60

Branch List 19

BSP (Backspace) 35

CARDSYNC 46

Changing Entries 20

CHANn 17

Channel Scheduler 6

CHECKPNT 25

Checkpoint 25

Checkpoint, Additional Details 54
Checkpoint Procedure 52
Checkpoint Routines 54

CHPT 53

CLOSE 17, 31

CLOSE Procedure 22

CLSEPROC 22

Condensed Card Load Program 66
Correction of Input Tape Errors 48
Correction of Output Tape Errors 48

DC Entry for Input File Labels 40

DC Entry for Output File Labels 3¢&

DCHPT 53

Defining Input Areas’ 26, 27, 28

Defining Output Areas 27, 28, 29

DEOR (Delay End of Reel on Output FFile) 36
DIOCS 16

for Programs Using Only 729 Tape Units 16

for Programs Using 7340 and 729 Units 17
DIOCS LINKAGE 19
DIOCS PACKAGE 18
DUF Descriptive Entry 44

Electronic Switch Utilization 65
END 31

END DIOCS 18 :
End-of-File Procedure 25
End-of-Reel Procedure 24
End-of-Reel Routine 43
End-of-Segment Procedure 24
EOFADDRS 46

EOFPROCD 25

EOR Flow Diagrams 45, 46
EOR3 60

EORn 17

EORPROCD 24

EOSPROCD 24

ERRADDRS 47

Examples of Macro-Instruction Use 7

FCHANNEL 21
FEOR (Force End of Reel on Output File) 36
FEORN (Force End of Reel on Input Tape) 36

File Channel 21

File Scheduler 6, 58
File Specifications 6, 19
File Specifications Entries 21
File Type 21, 46
FILEFORM 21
FILETYPE 21, 46
Form 1 Record 12
Form 2 Record 12
Form 3 Record 12
Form 4 Record 12
Four-Tape Autocoder 65

Generation of Routines 18
GET 6, 32, 47

Halts and Messages 48
Header Label 37
Header Labels, Format of 15

IGENn 17

Index Word A 23

Index Word B 23

INDXWORD 46

INDXWRDA 23

INDXWRDB 23

Initial Entries 20

Initialization and Assignment Routines 54
Input Label Information Card 42
Input Tape Errors, Correction of 48
1I/0 Areas 9

I/0O Label Area 37

1/O Method 22

I/O RDW List 22

IOCS, Additional Storage 64

IOCS for 7330 Tape Units 65
IOCSIXF 16

IOCSIXG 16

IOCSIXH 16

I0CS Programs, Writing of 58
I0CS with Four-Tape Autocoder 65
IOMETHOD 22

Label Area, Input/Output 37

Label Information 14, 25

Label Processing 37

Label Processing, Additional Input 41
Label Processing, Additional Output 40
LABELINF 25

LISTADDR 46

LLRPROCD 24

Long Length Record Procedure 24
Long Records, Processing 62

Machine Requirements 5
Macro-Instructions 6
Tape Files 30
Unit Records 47
Usage Examples 7
Messages 48
Multiple Areas 10

Normal Mode 69

One Area 9
OPEN 6, 30

Open Procedure 22
OPENn- 17
OPENPROC 22

INDEX

71

C28-6175-2

Operational Description of EOR Routine 43

Pending Counter 67
Pending Switch 67
Precompiled IOCS Package 18
Precompiled IOCS Subroutine Deck 62
PRIORITY 22
Priority Mask 60
Priority Mode 67
Processing Blocked Records 9
Processing in Output Areas 61
Processing in Work Areas 11
Processing of Labels 37
Processing of Records 10
Processing Using Multiple Areas 10
Program Exits 60
Programmed Entries 20
Programmed Halts 48
PUT 7

Tape 32

Unit Records 47
PUTX 17, 33

RDLIN (Read Label Information) 34

RDSB (Read Segment Marks Backward) 36
RDSF (Read Segment Marks Forward) 35

RDW Exchange 10

RDWs for Form 4 Input Records 29
RDWs for Forrm 4 Output Records 30
Read Binary Feature 65
RECLNGTH 21

Record Form Operating Time 14
Record Length 21

Record Length, Changing 61
Record Length Indicator 26

Record Move 10

Record Processing 10

Restart Initiator 55

Restart Procedure 55

Restart Procedure Using Shared Files
Restart Procedure with SPOOL 56
Restart Routines 54

Returns from IOCS Exits 26

Rewind Procedure 25

RLIFORM3 26

RLSE (Release) 33

Routines, Generation of 18

RWD (Rewind) 35

RWDPROCD 25

SCHEDINF 26
Schedule Information 26

HEN

International Business Machines Corporation

Data Processing Division, 112 East Post Road, White Plains, N.Y.

56

Scheduler Operation 67

SCLPROCD 24

Shared Files 54

Short Character Length Procedure 24, 61
Short Length Record Procedure 23, 61
SLRPROCD 23

Spare Information 26

SPAREINF 26

SPOOL 66

SPOOL Programs 56

SRBFORM4 25

Subrecord Blocking 25

Subroutines 62

System Descriptive Entry (DIOCS) 16
System Elements 6

Tape Density 23

Tape Error Field 24

Tape Error Option 22

Tape Errors, Correction of 48
Tape I/0O Areas 22

Tape Labels 14

Tape Record Blocking 8

Tape Record Forms 12

Tape Record Index Words 61
Tape Skip Field 24

Tape Units, 7330 65
TAPEFILE 21

TDENSITY 23

Termination Card 42

Three Area Rotation System 10
Three Areas for One File 9
Three Areas for Two Files 10
TIOAREAS 22

TPERRFLD 24

TPERROPT 22

TPSKPFLD 24

Trailer Label 38

Trailer Labels, Format of 15
Two Areas 9

Unit Records 44

Unit Record Index Word 61

Use of OPEN1 and OPEN5 59

Use of OPEN3 59

Use of Tape Record Index Words 61
Using Precompiled IOCS Package 19

Work Areas, Processing in 11
WSM (Write Segment Mark) 35
WTM (Write Tape Mark) 34

10601

'V'S°n ut paulig

G-GL19-820

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72

