File Number 705/7080-22
Form C28-6224-1

Systems Reference Library

IBM 705/7080 Programming Systems
70358 Processor: Autocoder III Language

Autocoder III is the basic programming language for
programs to be assembled by the 7058 Processor for
the IBM 705 I, II, III, and 7080. This manual is one
of two publications which describe Autocoder III. It
supplies detailed specifications for using all parts of
the language except the general-purpose macro-
instructions. This information is prerequisite to
the second manual, which supplies detailed in-
formation on using each general-purpose macro-
instruction in the 7058 Processor library. The
second manual is '"7058 Processor: General Purpose
Macro-Instructions," Form C28-6130.

© 1961, 1962 by International Business Machines Corporation

MAJOR REVISION (April, 1964)

This publication is a major revision of the reference
manual "IBM 705/7080 Programming Systems 7058
Processor: Autocoder III Language,' Form
C28-6224. The revision incorporates changes and
additions throughout the text, and the format is
changed from that of a Reference Manual to that of

a Systems Reference Library (SRL) publication.
Installations using the 705 Processor should continue
to use the publication "Programming the IBM 705
Using the Autocoder III System,'" Form C28-6057.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:

IBM Corporation, Programming Systems Publications, Dept. 637,

Neighborhood Road, Kingston, New York, 12401,

Page
NTRODUC TION
Basic Aspects of Programming 5
Symbolic Programming Systems 5
The Symbolic Language €
The Processor . . . e e 6
Basic 705/7080 Programming System 7
7058 Processor 7
Autocoder III Language 7
Input/Output Systems for Use with Autocoder Il Programs. 9
Higher Languages for Use with Autocoder Il Programs 9
CHAPTER 1. STANDARD FORMAT OF AUTOCODER III
STATEMENTS
Program Identification FE T |
Page L. L L0 tt
Line L ¥
Tag L]
Operation12
Numeric L 12
Operand 12
Comments.12
CHAPTER 2. AREA DEFINITIONS
Definition of a Record ~-RCD,13
Definition of a Constart Factor - CON A E
Definition of a Floating Point Number - FPN,, . , 17
Definition of 2 Report Format - RPT17
Definition of a Continuous Portion of Memory - NAME . . .21
CHAPTER 3. SWITCH DEFINITIONS
Data Switches . . L
Character Code - CHRCD.,23
Bit Code -BITCD, .24
Program Switches, . .,25
Switch Set to Transfer - SWT.,26
Switch Set to No Operation - SWN,26
Console Switches,26
Alteration Switches - ALTSW26
CHAPTER 4. ONE-FOR-ONE INSTRUCTIONS
One-For-One Instruction Format,27
Basic Operands27
Tag 2T
Literal27
Actual29
Location Counter, . .29
Blank29
Additions to Basic Operands30
Character Adjustment ,30
Operand Modifier,, .30
indirect Address30

Multiple Additions to a Basic Operand31

TABLE OF CONTENTS

Page

CHAPTER 5. GENERAL PURPOSE MACRO-INSTRUCTIONS

General Purpose Macro-Header Format 33

TypesofOperands,33
Typesof Lozenges34
Omitted Operands . . . Coe e34

Importance of Properly Defined Data Fields 34
Examples of Macro-Instructions and Their Use 35

CHAPTER 6. ADDRESS CONSTANTS

ADCON Address Constant37
ACON4 Address Constant38
ACONS Address Constant, .38
ACON6 Address Constant, . .,39
Address Constant Literal39

CHAPTER 7. INSTRUCTIONS TO THE PROCESSOR

Instructions to the Processor that Concern Standard Assembly

Procedures L - § |
Location Assignment - LASN F - § |
Special Assignment - SASN ., . |43
Assignment of Library Subroutines - SUBOR 43
Assignment of Literals - LITOR, . ., . | 44
Transfer Card -TCD, .44

Instructions to the Processor that Concern Object Program
Content L £
Include Subroutine - INCL.45
Translation - TRANS . . .,46

Source Program Language -MODE, . 46
Coding Generated in 7080 Mode.47
Instructions to the Processor that Concern the Program

Listing L 4

Skip to New Page - EJ'ECT L 4

Title for Routine or Comment - TITLE, . 48

CHAPTER 8. ASSEMBLY DOCUMENTATION
Object Program Deck,50

Assembly Documentation , .,

Program Listing50
Operator's Notebook - Optional Documentation. 50
Symbolic Analyzer - Optional Documentation 50
Details of the Program Listing51
CHAPTER 9. THE COMMUNICATION WORD, .52
GLOSSARY OF TERMS.s53
APPENDIX A, SAMPLE ASSEMBLY.54
INDEX L X

This introduction provides an outline of basic pro-
gram requirements, symbolic programming
languages, and the program assembly process for
the IBM 705/7080 Data Processing and Programming
Systems. Readers already familiar with these
systems may wish to go directly to Chapter 1. In-
formation on these systems may be found in the
publications '"7080 Data Processing System,' Form
A22-6775; "705 Data Processing System,'" Form
A22-6506: and ''7080 Data Processing System,"
Form A22-6560. Although the 7058 Processor
cannot operate on the 705 I, it can assemble 705 1
programs. All comments in this manual that
pertain to the 705 IT are also applicable to the 705 I.

BASIC ASPECTS OF PROGRAMMING

A program is written in order to process data in a
specified manner. In commercial data processing,
most of the data is in the form of business records,
e.g., accounts receivable, sales records, inventor-
ies, payrolls, etc. Although the main function of a
program is to process these records as specified,
the program does not consist solely of record-proc-
essing routines. These may be considered the body
of the program and are often called the main-line
routines or the main-~line coding.

Any program must include routines for bringing
the records to be processed into core storage and
for taking the processed records out of storage. The
routines which handle this data movement are called
input/output or 1/0 routines. Although records and
programs may be stored on magnetic tape or punched
cards, magnetic tape is generally used with large-
scale data processing systems.

A program must also contain actual storage loca-
tions for each instruction as well as locations for
the area or areas the records will occupy. Records
are usually grouped in blocks: consequently, an
entire block enters storage. Similarly, the proc-
essed records are reblocked in storage before being
placed on tape. Programs dealing with blocked
records generally reserve space for separate input
and output areas, the areas being equal to the size
of the record block. In this case, a work area equal
to the size of one record must also be reserved so
that each record can be taken from the input area,
moved to the work area for processing, and then
placed in the output area. The processing instruc-
tions can then be addressed to the work area and do
not have to be modified. If the records were to be
processed in the input area, the instructions would
have to be modified to operate on each record in
turn. Consequently, most programs must reserve
space for input, output, and work areas.

Certainly, a program must also provide routines

for detecting and handling error conditions resulting

INTRODUCTION

from I/0 operations. Such routines may reread or
rewrite the records in error, place the invalid
records on a special tape, attempt to determine
whether or not the error is in the tape itself, etc.
Error detection routines may include the procedure
to be executed when an error condition prevents the
continuation of processing.

Finally, there are supplementary procedures
which must be performed by all programs but which
are not directly connected with the main-line proc-
essing. They fall into no specific category, although
they might be described as procedures which imple-
ment the operation of the program. Those which are
executed before any main-line processing begins are
called housekeeping routines; those which are exe-
cuted after all main-line processing is completed
are called end-of-job routines. Housekeeping opera-
tions include such procedures as readying input/
output units, setting ASUs, checking and writing
tape identifications, and bringing the first block of
records into storage. End-of-job routines include
such procedures as moving the last block of records
from storage to tape, writing tape identifications,
rewinding tapes, and writing messages.

To sum up, a program must incorporate at least
the following procedures:

Data processing

Input/output

Storage assignments

Error detection and correction
Housekeeping and end-of-job

[S1 I SV VI

SYMBOLIC PROGRAMMING SYSTEMS

A program may be written in the actual, i.e.,
machine language of the computer on which it will
run, or it may be written in a symbolic language.

If it is written in machine language, it can be exe-
cuted by the computer directly, but if it is written

in symbolic language, it must first be translated

into machine language before it can be executed.

The length and complexity of programs today makes
programming in machine language extremely diffi-
cult and results in programs which are increasingly
liable to error. However, powerful symbolic
programming systems have been developed to relieve
the programmer of the many burdens invoived in
machine language programming. A symbolic
programming system consists of a symbolic language
and a processor, The language provides a method

of representing program functions as a series of
meaningful statements rather than as a collection of
alphameric codes and actual storage locations, The
processor converts the symbolic language program
into a machine language program, assigns storage
locations to the program, and performs various other
functions. The symbolic language program is gener-

Introduction 5

ally called the source program; the machine language
program is called the object program. In other
words, the source program is the input to the proc-
essor, and the object program is the output of the
processor.

Thus, processing the data for which a program
is written becomes the second of two data processing
applications. The first application is the processing
or conversion of the source program itself, with the
object program as output, The second application is
the processing of the actual data by the object pro-
gram; the output of the second is the solution of the
problem for which the program was written. Once
the object program is produced, it is used in sub-
sequent data processing applications until it is
obsolete or is modified to such an extent that a
reassembly is advisable,

Since the programs written in symbolic language
need not make location assignments, the order of the
statements which coinpose the program may be
changed and the program reassembled without
modification. For the same reason, it is easy to
insert or delete statements in a symbolic language
program. When it is reassembled, a new object
program is produced.

The Symbolic Language

Instructions form a major portion of the statements
in a symbolic language program just as they do in a
machine language program. A symbolic one-for-one
instruction contains a mnemonic code representing
a machine operation and a symbolic address repre-
senting the storage location of data or an instruction.
Such instructions are called one-for-one because

the processor replaces each one with one machine
instruction. An important development in symbolic
programming is the macro-instruction, a source
program statement which is eventually replaced by
more than one machine instruction, Essentially, it
is a request for several one-for-one instructions,
each of which is subsequently replaced by one
machine instruction. A macro-instruction also
contains a mnemonic code, but the code does not
represent any one machine operation. A macro-
instruction usually contains more than one symbolic
address; each address represents the storage loca-
tion of data or of an instruction.

Symbolic languages enable the user to write
program statements describing the storage areas
which will be occupied by program data. On the
basis of the information the processor obtains from
these statements, it assigns actual storage locations
to the data areas, It also uses this information when
generating one-for-one instructions to replace
macro-instructions which reference these areas. If
the data is to be supplied to the area by input records,

6

the statement indicates the size of the area and the
type of data which will occupy it. If not, the state~
ment itself supplies the data, which is placed in
storage as a constant,

The programmer is also able to create a symbolic
address for each data area or instruction., The
symbolic address represents the actual storage
location to be assigned by the processor, and it
provides the means of referencing an area or an
instruction. This is done by using the symbolic
address as the operand of the instruction which
makes the reference. Usually, it is desirable to
create symbolic addresses which describe the areas
or instructions to which they are assigned. For
instance, an address such as '""'master file' might
be assigned to a data area which will be filled by
records from the master tape; an address such as
"start' might be assigned to the first instruction to
be executed, ete. In converting the source program
to machine language, the processor replaces each
symbolic address with an actual storage location,
just as it replaces each mnemonic code with an
actual operation code,

The Processor

The processor of a programming system is a machine
language program which converts a symbolic language
program into machine language. The process of
converting is called assembling the program. In
other words, a processor assembles a source pro-
gram into its object program form. During the
assembly, the processor makes an analysis of the
source program, generates one-for-one instructions
to replace each macro-instruction it encounters,
inserts any subroutines requested by the program,
substitutes machine language instructions for all one-
for-one instructions, and assigns storage locations

to the object program.

The processor contains a library of macro-instruc-
tions and subroutines. Every macro-instruction
contains a set of incomplete one~for-one instructions.
When a source program macro-instruction is en-
countered during assembly, the processor determines
which of the one-for-one instructions are appropriate,
completes those which it selects, and inserts them
into the object program, Selection and completion
of the appropriate instructions are done on the basis
of information from the program analysis made by
the processor. The same macro-instruction may
be used many times in a program, but the one-for-
one instructions generated from it will not necessarily
be the same. The variation results from differences
in program requirements or data format.

Library subroutines differ substantially from
macro-instructions. A subroutine is a fixed set of
instructions; these may be one-for-one instructions

or one-for-one instructions and macro-instructions.
When a request for a subroutine is encountered
during assembly, the set of instructions is taken
from the library and inserted in the program. The
instructions will not vary from program to program
unless the subroutine itself contains macro-instruc-
tions. The programmer may write macro-instruc-
tions and subroutines and add them to the processor
library.

The object program is not the only output of the
processor. A sequential listing of the source pro-
gram is also produced. Each program step in the
listing is assigned an index number for reference
purposes. The one-for-one instructions in the
source program are shown with the corresponding
machine language instructions and the storage loca-
tions assigned to them. The source program macro-~
instructions are followed by the one-for-one instruc-
tions generated from them, the machine language
instructions corresponding to the one-for-one
instructions, and the storage locations assigned to
the instructions. Location assignments are also
shown for all record areas and subroutines.

THE BASIC 705/7080 PROGRAMMING SYSTEM

A programming system has been defined as a
symbolic language and a processor. The basic
programming system for the 705 and the 7080 Data
Processing Systems is composed of Autocoder III
language and the 7058 Processor.

The 7058 Processor

The 7058 Processor, hereafter called ''the Proc-
essor,'" is a machine language program which as-
sembles programs written in Autocoder III for the
705 1, II, II, and the 7080. The Processor operates
on the 705 II and III and the 7080 when it is in 705 II
or III mode. The Processor itself is so large that it
must operate through a number of inter-related
sections or phases. Each phase is a program which
performs one or more of the various assembly
functions. The phases may be classified as belonging
to one of the two portions of the Processor: the
compiler and the assembler. The compiler phases
analyze the source program in detail, generate
Autocoder III statements from higher language state-
ments (explained on pages 5-6), and generate one-
for-one instructions from macro-instructions. The
assembler phases assign storage locations, replace
one-for-one instructions with machine language
instructions, and create the Processor output.

The output of the Processor consists of the object
program in card form and the program listing with
related messages. Both are produced on tape, but
the Processor can be modified so that the object

program is produced on line as a punched card deck
and the program listing is printed by an on-line
printer. The listing and messages are the minimum
assembly documentation. Additional documentation
consisting of the Operator's Notebook and/or the
Symbolic Analyzer can be requested.

The Operator's Notebook lists the following:

1. Programmed halts

2. Titles of the various portions of the program

3. A list of special 7080 program statements

4. Specific location assignments requested by the
program

5. Program switches set up by the Processor at
the request of the program

The Notebook is useful to the programmer in de-
bugging the object program and to the console opera-
tor during the object program run. The Symbolic
Analyzer is an alphabetical list of the symbolic
addresses used in the program. Each symbolic
address is followed by a list of the instructions
which reference it. All may be easily located in the
listing because their index numbers are shown.
Referencing a field or an instruction, as used in this
manual, means specifying the data to be operated on
or specifying an instruction to be executed. An
Autocoder III statement which calls for data move-
ment to a work area references the data and the work
area. A statement which causes the program to
transfer to an instruction references that instruction.

The Processor library contains a set of general
purpose macro-instructions which cover most
commercial data processing functions. Programmers
may write their own macro-instructions and sub-
routines and may insert them in the library, How-
ever, the preparation of macro-instructions is a
complicated procedure requiring a thorough knowledge
of Autocoder III and the Processor.

Autocoder III Language

Autocoder 1III is the basic symbolic language for
programs to be assembled by the Processor. State-
ments written in the higher languages may be inserted
in Autocoder III programs. During the assembly,
certain phases of the Processor translate these
statements into a series of Autocoder III statements.
Program steps written in Autocoder III language are
called statements rather than instructions, because
the language contains more than a set of processing
instructions. There are six types of Autocoder 1II
statements:

1. Area definitions
. Switch definitions
. One-for-one instructions
. Macro-instructions
. Address constants
. Instructions to the Processor

S U W N

Introduction 7

AREA DEFINITIONS., Area definitions reserve
storage space for data which is supplied either by
records or by the programmer. If the space will be
occupied by data from records, the area definitions
also describe the nature of the data. If not, the

area definitions specify the constant data to be placed
in storage. The storage space reserved by each
area definition is generally called a data field. Area
definitions may also be used to indicate that a series
of adjacent data fields are to be treated as the interior
portions of a single unit.

For input/output areas, it is usually necessary to
define a data field for a block of records without
making any attempt to distinguish one record from
another or to identify portions of a record. However,
in defining the work area, the opposite is true. Since
an individual record will be moved into the work area,
it is usually defined as a series of data fields which
correspond to the various portions of the record.

Suppose that each record in a file contains the
name and yearly salary of an employee and that these
records are on tape in blocks of ten. Processing
consists of updating the yearly salary. The input
(and the output) area is defined as one data field,
although it will contain ten records. However, the
work area to which each record is moved for proc-
essing is defined as two data fields, one for the
employee's name, and one for the employee's yearly
salary. Only the salary field is referenced by proc-

essing instructions, but the entire record is referenced

as a unit when it is moved to or from the work area.
Consequently, the work area must actually be de-
fined as a data field consisting of two interior fields.

SWITCH DEFINITIONS. Switch definitions describe
three types of switches: data, program, and console.
All three may be used to control the path of the pro-
gram, e.g., to determine whether or not all the
routines in the program will be executed, to determine
the sequence in which routines will be executed, etc.

Data Switch. A data switch is a data field in which
alphameric codes are placed. The definition of the
switch allows a meaning to be associated with each
code. When a data switch is defined as a portion of
a record area, the records supply the codes for the
switch,

When a data switch is defined independently of a
record area, the program itself supplies the codes.

In the employee records used as an example in
the section on area definitions, suppose now that each
record consists of three fields: name, yearly salary,
and number of exemptions of the employee. The work
area is defined by area definitions for the name and
yearly salary fields and a switch definition for the
exemption field. In this case, the codes in the data
switch would be numeric characters. The manner in

8

which each record is processed depends on the
number of exemptions; therefore, the program con-
tains a number of processing routines. As each
record is placed in the work area, the data switch
becomes whatever character the exemption field
contains. The program tests the switch to determine
what code is present and then transfers to the proc-
essing routine appropriate for that code.

Program Switch. A program switch is an instruction
which causes the program either to continue sequen-
tially or to transfer. When a program switch is ON,
the program transfers to an out-of-line instruction.
When a switch is OFF, the program executes the
next in-line instruction.

Suppose that it is desired to type a message if a
certain error condition is detected. The program
switch is defined so that when it is OFF, the program
proceeds to the next instruction, but when it is ON,
the program transfers to the message-writing routine,
Initially, the switch is set OFF; as long as it remains
OFF, the program continues through the switch to
the following instruction. If the error-detection
routine encounters the error condition, it sets the
switch ON; then, when the program reaches the
switch, it transfers to the message-writing routine.

Console Switch. A console switch is one of the six
alteration switches on the console. They are num-
bered 0911-0916, and they must be set manually by
the console operator. Console switches are useful
when it is desired to execute a routine only for
certain object runs. For example, a program which
is run each week may include a routine which should
be executed only at the end of the month. If a console
switch is defined, the program may test the switch
and transfer to the end-of-month routine when the
switch is ON. The console operator must, of course,
set the switch ON prior to each end-of-month run.

ONE-FOR-ONE INSTRUCTIONS. One-for-one instruc-
tions are the symbolic equivalents of machine instruc-
tions, Coding any portion of a program in one-for-
one instructions means much more hand-coding for
the programmer than coding the same portion in
macro-instructions. This also increases the
possibility of error. One-for-one instructions

should be used only when it is inadvisable to use
macro-instructions.

MACRO-INSTRUCTIONS, A macro-instruction is a
powerful programming device; essentially it is a
request for those one-for-one instructions which will
accomplish the function stated by the macro-instruc-
tion. These instructions are selected to suit the
characteristics of the data fields and/or the other
hand-coded instructions referenced by the macro-

instruction. The field characteristics are obtained
from the field definition analysis made by the Proc-
essor. Whenever a choice exists among the one-for-
one instructions to be generated, the Processor
selects the most efficient coding.

As an example of the scope of a macro-instruction,
the basic coding generated from the ADDX macro-
instruction adds the contents of two numeric fields
and stores the result in a field designated as the
result field. But, if the result contains more deci-
mal positions than the number specified in the result
field definition, the generated coding includes instruc-
tions either to round or to truncate the excess posi-
tions before the result is stored. The choice depends
on which process the programmer specifies in the
macro-instruction. Also, if the result contains
more integer positions than the number specified in
the result field definition, the generated coding in-
cludes instructions to truncate the excess high-order
positions before the result is stored. However, the
programmer may request an option which generates
instructions to do the following: truncate the excess
positions if they contain zeros and store the result;
transfer to a routine designated by the programmer
if they do not contain zeros. This entire procedure,
which obviously involves many one-for-one instruc-
tions, is generated from one macro-instruction.

ADDRESS CONSTANTS. An address constant con-
tains the symbolic address of a data field or an
instruction. During the program assembly, a con-
stant is created from the actual location assigned to
‘the field or instruction. Address constants are used
to initialize an instruction. Initialization is the
process of supplying a reference to an instruction
which lacks one or replacing the reference made by
an instruction. An instruction makes a reference by
designating the symbolic address of a data field or
an instruction. The symbolic address designated by
an address constant is used to initialize the instruc-
tion,

Suppose that an input area contains a block of
records, each of which must be moved from the area
in succession. The input area is given a symbolic
address so that the area can be referenced by the
instruction which moves the records. Initially, the
instruction has as its address portion the symbolic
address of the area, thus referencing the first
record in the area. However, the instruction's
address portion must be modified before it can ref-
erence successive records; the modification is
generally an increment equal to the size of one
record. Eventually, the input area is emptied, and
a new block of records is placed in it. But the modi-
fied instruction no longer references the first record.
At this point, it is necessary to initialize the instruc-
tion, that is, to return the instruction to its original

form, by means of an address constant. Assume

that the address constant has been coded and that it
consists of the symbolic address of the input area.
Now the address constant can be placed in the address
portion of the modified instruction. Once the instruc-
tion is initialized, it references the first record in
the area again.

INSTRUCTIONS TO THE PROCESSOR. Instructions
to the Processor allow the programmer to control
certain aspects of the assembly process and to take
advantage of the special features of the Processor.
The Processor instructions are written as Autocoder
III statements in the program. When they are
encountered during assembly, the Processor performs
the operations they request. Instructions to the
Processor concern the following aspects of the
assembly:

1. The listing of the program

2. Location assignments made by the Processor

3. Coding generated by the Processor

INPUT/OUTPUT SYSTEMS FOR USE WITH
AUTOCODER III PROGRAMS

Input/Output Control Systems (IOCS) have been
developed for the IBM 705 III and 7080. 1OCS con-
sists of a group of routines which handle all input/
output functions. These routines are made available
to an Autocoder III program when IOCS macro-in-
structions in the Processor library are used in the
program. The following IOCS publications are avail-
able:

1. "Input/Output Control System for the IBM
705 III," Form C28-6109. Reference manual.

2, "IBM 7080 Input/Output Control System for
Use with 729 Magnetic Tape Units," Form
C28-6237. SRL publication.

HIGHER LANGUAGES FOR USE WITH AUTOCODER
III PROGRAMS

As mentioned earlier, the 7058 Processor accepts
program statements written in several higher lan-
guages. The languages are: FORTRAN; Report/File
Writing; Decision; Arithmetic; Table-Creating.
Various Processor phases translate each of these
statements into one or more Autocoder III state-
ments,

FORTRAN is the name for Formula Translation
language. As the name implies, complex problems
can be stated in formula form using FORTRAN,

Both fixed point and floating point calculations are
possible.

Report/File Writing language is a set of statements
which may be used to describe the format and contents

of a report or file. The routine generated from these

Introduction 9

statements will create the report or file.

Decision language is one statement. It requests a
logical decision to be made on the basis of a test of
the various conditions supplied in the statement.

Arithmetic language, also one statement, requests
a series of mathematical computations to be per-
formed on the elements supplied in the statement.

Table-Creating language consists of a statement
which requests the creation of a table from a set of
data. The data itself must accompany the Table
statement.

The following higher language publications are
available: .
~ 1. "FORTRAN," Form F28-8074. General
information manual.

2, "705 FORTRAN Programming System,"
Form J28-6122, Bulletin.

3. '"7058 Processor: Decision, Arithmetic, and
Table-Creating Languages," Form C28-6226.
Reference manual,

4. '"058 Processor: Report/File Language,"
Form J28-6234. Reference manual.

5. '"705/7080 Programming Systems: Cobol-
Additional Specifications,'" Form J28-6177.
Reference manual.

10

CHAPTER 1.

STANDARD FORMAT OF AUTOCODER III STATEMENTS

An Autocoder III program is written on the IBM
Autocoder Program Sheet, Form 22-6705-4, shown
in Figure 1. One card is punched for each line of
the coding sheet. The card designed for Autocoder
III programs is the IBM Autocoder System Card,
Electro 893094, An Autocoder III statement is
formed by filling out the appropriate fields on the
sheet according to the specifications for the type of
statement being written. Some statements may
occupy more than one line, The term ''field" applies
to the character positions included under each head-
ing on the program sheet. The position numbers
listed with the field headings correspond to the
columns on the card.

PROGRAM IDENTIFICATION (COLUMNS 75-80)

The identification is filled in at the top of the coding
sheet. It should appear in columns 75-80 of every
card punched for an Autocoder III statement.

PAGE (COLUMNS 1-2)

The sequence of the coding sheets is designated by a
two-position page number. Any alphameric character
may be used in the number. Normally, however,
special characters are not used. The IBM 705
collating sequence, shown in Figure 2, is used to
determine the order of the pages.

O

PROGRAM

IBM AUTOCODER PROGRAM SHEET

705 DATA PROCESSING SYSTEM

IDENT. | oy 4oy
7 60

PRINTED IN U 5.A

CODED BY

CHECKED BY

Inserts on back ... DATE .

PG

' 23

UNE TAG OPERATION |NUM. OPERAND
s 16 21 22

20 23

38

39

COMMENTS

AR
0A2A

03

04

05

06

07

.08

09

......

10

...........

1

12

13

14

15

16

17

18

19

20

21

..............

22

2134

.......

24

25

P T S S T S .

Figure 1

Standard Format of Autocoder I1I Statements 11

+ -—
Blank . 3£ & $* -/, % # @0 A through I 0 J through R S through Z 0 through 9

Figure 2. [BM 705 Collating Sequence

LINE (COLUMNS 3-5)

The sequence of the statements on each coding sheet
is designated by a three-position line number. On
the front of each sheet, the first two positions are
pre-numbered; any alphameric character may be
used in the last position, although special characters
are not used normally. Ordering should be done
according to the 705 collating sequence. It is recom-
mended that column 5 be left blank except when
designating the sequence of insertions.

The back of each sheet may be used for insertions.
The insertion page number should be the page num-
ber of the statement the insertion is to follow. The
insertion line number should be higher than that of
the statement preceding the insertion and lower than
that of the statement following the insertion. For
example, a three-line insertion may be required
between two statements numbered 03b and 04b (b
represents a blank). The insertions might be
numbered 031, 032, and 033, or they might be num-
bered 03A, 03B, and 03C.

TAG (COLUMNS 6-15)

A tag is the symbolic address which represents the
actual location of a data field or an instruction. The
field is filled in starting in column 6. When an
Autocoder III statement references a tag, it refers
to the data field or the instruction at the storage
location represented by the tag. During assembly,
all fields and instructions are assigned storage loca-
tions, and all references to tags are replaced with
the locations assigned to the tags.

A tag may contain up to ten characters; these may
be alphabetic and/or numeric and blanks. A tag may
not contain special characters. If composed of
numeric characters only, a tag must consist of five
or more characters. It is recommended that tags
not start with one or more blanks, because the
Processor must left-justify them, a time-consuming
operation. It is also recommended that pure numeric
tags not be used. It is best to create tags which
describe the data fields or the instructions to which
they are assigned. Tags should not be assigned
unless they are referenced by program statements;
because unnecessary tags slow the assembly process
and produce needless messages.

12

OPERATION (COLUMNS 16-20)

The mnemonic code of the Autocoder III statement is
placed in the operation field, starting in column 16.
No machine operation code should be used.

NUMERIC (COLUMNS 21-22)

The use of the numeric field varies according to the
type of Autocoder III statement being written. A one-
position entry is placed in column 22.

OPERAND (COLUMNS 23-38)

The use of the operand field varies according to the
type of Autocoder III statement being written. The
field is filled in starting in column 23, and the entry
may be continued into the comments field. Macro-
instruction operands may be continued from the com-
ments field of one line into the operand and comments
fields of succeeding lines of the coding sheet.

COMMENTS (COLUMNS 39-74)

Additional information about an Autocoder III state-
ment may be written in the comments field and will
appear in the program listing. Comments are useful
for explaining the purpose of program statements.
The field does not have to be filled in starting in
column 39. The comments may be continued in the
comments field on subsequent lines of the coding
sheet; there is no limitation on the number of
comments continuation lines.

The rules governing comments and comments
continuations vary according to whether or not the
comments accompany a macro-instruction. If they
do, they must be separated from the operand by a
minimum of two blank spaces whether the operand
terminates in the operand field or continues into the
comments field. The comments continuation lines
for macro-instructions may not contain entries in any
fields except page, line, and comments.

If the comments do not accompany a macro-in-
struction, they do not have to be separated from the
operand by blank spaces, and comments continuation
lines may contain entries in any columns except
16-17 (first two positions of the operation field) and
21-22 (numeric field). However, to make the
comments easier to read, it is recommended that
the continuation lines be restricted to entries in the
page, line, and comments fields.

Area definition statements describe data fields; the
data may be variable data supplied by records or
constant data supplied by the area definition state-
ment. The programmer must know the length and
composition of the records so that each field may be
defined correctly. The Processor uses the infor-
mation provided by area definitions when it reserves
storage space for the fields and when it encounters
instructions which reference the fields.

There are five types of area definitions:

1. Definition of a Record - RCD

2. Definition of a Constant Factor - CON

3. Definition of a Floating Decimal Point
Number - FPN

4. Definition of a Report Format Field - RPT

5. Definition of a Continuous Portion of
Memory - NAME

An area definition statement must contain a tag if
the field is to be referenced. The reference is made
by using this same tag in the operand of the Autocoder
Il statement making the reference. Since the tag
requirement applies to all area definitions, the tag
field will not be discussed separately in the remainder
of this chapter.

DEFINITION OF A RECORD - RCD

The function of an RCD statement is to define a data
field in which a record block, an individual record,

or a portion of a record will be placed. The defini-
tion specifies the size of the field and the nature of

data it will contain., The RCD statement is written

as follows:

OPERATION FIELD. The mnemonic code RCD is
placed here. In a continuous series of RCD state-
ments, only the first need contain the mnemonic
code. The Processor assumes that each immediately
subsequent statement with a blank operation field is
an RCD and treats it accordingly. This assumption
makes it possible in subsequent statements to use
columns 18-20 of the operation field as an expansion
of the numeric field, (The operation field is assumed
to be blank if columns 16 and 17 are blank.)

NUMERIC FIELD. The size of the data field is
entered here, A one-digit entry is placed in column
22 and need not be preceded by a zero. When the
operation field contains the RCD code, the numeric
field is limited to a two-digit entry. However, when
the operation field is blank and the statement has

CHAPTER 2. AREA DEFINITIONS

been preceded by another RCD statement, columns
18-20 of the operation field may be used as an expan-

sion of the numeric field. Under these conditions,
in effect, the numeric field consists of five positions.

Thus, data fields which exceed 99 positions may be
defined, but they may not be the first in a series of
RCD statements.

OPERAND FIELD, The operand field contains one
of the following:

1. A descriptive code. This is used to define
alphameric fields or numeric fields containing
integers only.

2. A description of an integer and decimal format.
This is used to define numeric fields containing
mixed or pure decimals.

3. A layout of group marks and/or record marks.
This is used to describe the position of group marks
and/or record marks in a field.

The alphameric and numeric fields of integers
are:

Code Contents of Field

+ Signed numeric data consisting of integers.

N Unsigned numeric data consisting of
integers.

F Signed numeric data in floating point
form. The field must consist of ten
positions: a two-character exponent,
signed in the low-order position, follow-
ed by an eight-character mantissa,
also signed in the low-order position.
This is the form in which a floating
decimal point constant appears in
storage. See page 17 for further
explanation.

A Alphameric data which may or may not
provide left protection for the immedi-
ately subsequent field.

Alphameric data which always provides
left protection for the immediately sub-
sequent field.

Zoning in the low-order position of a field consti-
tutes left protection for the subsequent field, Left
protection must be provided when the subsequent field
contains signed numeric data and is referenced by an
instruction having an arithmetic function. The low-
order position of the field providing left protection
must be occupied by one of the following: an alpha-
betic character, a signed numeric character, a
blank, or any special character.

Area Definitions 13

Figure 3 shows fields defined with descriptive
codes.
because it is not tagged.

. TAG 's‘movsm!ow:o ?;U,‘:a B OPERAND ralas 7
UNS.| GNED.__RCD | 8N {
ALPHAF1ELD. 1,254+ .
SIGNED I H,é
FLOAT, , 1L.OF

1 2;QOA é

Figure 3

Numeric Fields Containing Mixed or Pure Decimals,
The operand must indicate the number of integer and
decimal positions in the field and whether the field is
signed or unsigned. This may be done in either of
the following ways, although the first method is the
preferred use:

1. Enumerating the number of integer and deci-
mal positions. Signed numeric fields are represented
as #+xx.yy, and unsigned numeric fields as #bxx. yy,
where xx and yy represent the number of integer and
decimal positions respectively (b represents a blank
position). If there are no integer positions, xx is
written as 00. If there are less than ten positions on
either side of the decimal point, the numeric digit
is preceded bv a zero. The sum of xx and vv must
equal the entry in the numeric field. The maximum
size data field which can be defined consists of 99
integer and 99 decimal positions.

2. Showing a layout of the integer and decimal
positions. Each integer and decimal position is
indicated by an X, with a decimal point placed in the
appropriate position. The layout of a pure decimal
starts with the decimal point and is followed by the
necessary number of Xs to the right of it. When de-
fining signed numeric fields, a plus sign is placed in
the first position of the operand and is followed by
the layout., The operand defining an unsigned numeric
field starts with the layout itself. A blank position is
not used to indicate unsigned numeric data.

The total number of Xs must equal the entry in the
numeric field. Although both the decimal point and
the sign occupy positions in the layout, neither is
included in the count for the numeric field entry. The
point itself does not exist in the record nor does the
sign exist in the record as a separate position. How-
ever, the Processor needs this information for vari-
ous purposes, such as selecting the proper coding to
replace macro-instructions.

The definitions in Figure 4 are paired to show how
the same numeric fields would be defined by each of
these methods. Note that SIGNED3 is too large to
be defined by a layout.

14

Notice that the final field cannot be referenced,

TAG OPERATION NUM.I OPERAND
s t3ite 20l21_a22j23 38]38

S1.GNED1 RCD 8#+05..03
ISMGMEJ)1 CD HEX XXX X 2 XXX, N

| .

UNS | GNED1
UNS1 GNED1

S1GNED2
SIGNED2

LL
A

RCD 124 11.01
RCD . | 2XUXXY XX XXX XX . X

Rcn . 1a3®+00.13
RCD ;I3+.xxxx¥xxyxxxxy
|

.

RCD 28 0Q.02
RCD . | 2.XX

UNS1.GNED2.
}Q&SL&&EDz

3 EW\ CIN W L\
i
’\LIL
\/’\\HAW\/\/"—

Indicating the Position of Record Marks and/or Group
Marks. This information should be supplied if the
record which contains such characters is referenced
by a macro-instruction. The position or positions

the characters occupy must be defined as one field

of the record, unless no other information is to be
given about the record. The operand must be a lay-
out of the record portion which contains the characters
and may indicate one of the following: a terminal
group mark, a terminal record mark, or an internal
group mark followed by a terminal record mark. The
operand may contain the following symbols only:

.1‘: record mark
group mark
b blank

Figure 5 shows two ways in which the position of
a terminal group mark could be indicated in defining
a record consisting of 31 positions of data, three
blanks, and a group mark.

. TAG ol :)Psamor:o Numd OPERAND R 1
F1RSTWAY. . RGD . 3| . (
. AL F . RO IR z
‘ . 3
SECONDWAY RCD %4 ¢
) \# é
Figure 5

If the three blanks had been data, the definition
for SECONDWAY would have been used. If the blanks
had been group marks, the definitions in Figure 6
would have been used.

. TAG . 'SO'EIA'IO’:O ':'UA:Z - OPERAND s }
NEWWAY RCD . 31A \
‘ LASEEE .. L)
L. [] . K
Figure 6

If one or more group marks appear within a record,
they may be made terminal by defining them as a
separate field and giving the field a tag. TFigure 7
shows how the four group marks within a 90-position
record may be made terminal by being defined as a
separate field.

in the fifteenth position and a terminal record mark.

L TAG " moveunov:ﬁ ?‘u»;«z B OPERAND BN j
MARKSONLY. [RCD . 20 £ % %
L " - S .
Figure 11

PN KoY 57 R N

LRSTPART. [RCD . |30A+ L <
GRO.LPMARK 43534 R B
ISECONDPART + ({
Figure 7

Figure 8 shows two ways in which a record termi-
nated by three blanks and a record mark could be

defined.

L TAG " |5°’E“A"°':a ';‘UM s OPERAND (

FIRSTWAY. _|RCD . 21 §
; 4 ¥ . N N I %

SECONDWAY. |RCD 'QT# %

l

L

\

Figure 8

if the final blank had been a group mark, the
record could have been defined in either of the ways
shown in Figure 9.

. TAG |, Operation Tnum] OPERAND NR }
FIRSTWAY. . RGD . 21 ‘)

, $) .
SECONDWAY. RCD . 4
L + {
Figure 9

If all the blanks had been group marks, the record

would have been defined as shown in Figure 10.

o TAG OPERATION INUM OPERAND j
FIRSTWAY. . RCD . 21)

. s - 4?*#%? . s %
Figure 10

If a record of less than 52 positions is being defined
and it is not desired to give any information about the
contents other than the location of group marks and/
or record marks, the entire record may be defined

bv a lavout onerand
Ry a layoui operand,

Ficurae 11 chowe
1gure 1L Snewse

tho dafinition

viiT UTiiiiavalii

of a 20-position record which contains a group mark

COMMENTS FIELD. Comments may be started here.
If comments continuation lines are written and the
statement following the last continuation is blank in
columns 16 and 17 of the operation field, the Proc-
essor will assume it is another RCD statement.

Using an RCD of Zero Length

If the first data field in a record exceeds 99 positions,
its RCD definition may be preceded by an RCD of
zero length. In this way, the definition becomes the
second in a series of RCD statements, and the
mnemonic code RCD may be omitted for the second.
Columns 18-20 of the operation field may then be
used as an extension of the numeric field. No space
will be reserved for an RCD of zero length.

Restrictions on RCD Statenients

The size of a data field may not exceed 80, 000 posi-
tions. If a single RCD statement specities a larger
field size, the Processor will subtract 80,000 from
the specified size and use the remainder as the size
of the field when reserving storage space. A message
to this effect is provided at assembly time.

Definitions of one or more terminal group marks
may not indicate internal record marks or internal
group marks, Definitions of a terminal record mark
may not indicate internal record marks.

DEFINITION OF A CONSTANT FACTOR - CON

The function of a CON statement is to define a data
field which will contain constant data and to provide
the constant itself. The data may consist of any
combination of alphameric characters and/or bianks.
The CON statement is written as follows:

OPERATION FIELD. The mnemonic code CON is
placed here. In a continuous series of CON state-
ments, only the first need contain the code in the
operation field. The Processor assumes that each
immediately subsequent statement which is blank

in columns 16-17 of the operation field is a CON and
treats it accordingly. This assumption makes it
possible in subsequent statements 1o uge coluinns
18-20 of the operation field as an expansion of the
numeric field,

of the congtant ig entered

The siz

avaaliXa il

here. A one-digit entry is placed in column 22 and

Area Definitions 15

need not be preceded by a zero. When the operation
field contains the CON code, the numeric field is
limited to two positions. However, when the opera-
tion field is blank and the statement has been preceded
by another CON statement, columns 18-20 of the
operation field may be used as an expansion of the
numeric field. Under these conditions, in effect, the
numeric field consists of five positions. Thus, con-
stants which exceed 99 positions may be defined, but
they may not be the first in a series of CON state-
ments,

OPERAND FIELD. The constant is entered here.
If the entry in the numeric field is not equal to the
number of positions specified in the operand, the

Processor will do one of the following:

1. Truncate the excess low-order positions when
the numeric field entry specifies fewer positions than
those contained in the operand.

2. Supply low-order zeros or blanks when the
numeric field entry specifies more positions than
those contained in the operand. Blanks will be
supplied for alphameric fields; zeros will be supplied
for signed numeric fields.

In Figure 12, the numeric field for TAG2 indicates
that the constant contains nine low-order blanks.

as 365 with a minus sign over the 5.

. TAG s oomunor:ﬂ r::u;z .. OPERAND e j
TAG1 CON . | 4+75.25) (
TAGZ. L 3B4K ¢
TAG3 4 S
TAGSY . 64 {
TAGS -3.65)
. . A
Figure 13

Defining a Constant of Record Marks and/or Group
Marks. It may be desired to supply a constant of
record marks and/or group marks as the terminal
field of a record. For example, to follow a 33-posi-
tion data field with a blank and a record mark, the
definition would be written as shown in Figure 14.

R TAG OPERATION Nu;llA OPERAND {
cp. 3 L . {
mm_mq * s .4%
| N .
Figure 14

If a data field containing a 42-position record is to
be followed by a constant of two group marks and a

: TAG] oreaiion Tnum. PERAND . { record mark, the definitions in Figure 15 would be

TAG1 CON ABCDE. | used:

TAG2. . OTHE. DATE. .\S . ¢

TAGS B 4 3*2) S . TAG . ‘!crsunor:o r:‘u;:zvz OPERAND salon j
D) RCD . 4 . S

Figure 12 CONSTANT. . (CON, 353.* . e ,#,LB,S

Defining a Numeric Constant. A constant consisting
of signed numeric data must contain a plus or minus
sign in column 23 of the operand field. I the data is
a mixed or pure decimal, the decimal point should be
placed in the appropriate position. In storage, the
low-order position of the field is signed accordingly.
However, neither the sign nor the decimal point is
included in the count of field positions for the num-
eric field entry. A signed numeric constant that
exceeds 99 integer or 99 decimal positions should
not be referenced by a general purpose macro-in-
struction.

Unsigned numeric data consisting of integers only
is written starting in column 23 of the operand field.
Unsigned numeric data consisting of mixed or pure
decimals should not be specified as a constant if it is
to be referenced by an Automatic Decimal Point
macro-~instruction, because it will be treated as
alphameric data containing a period.

In Figure 13, note the following: the TAG3 con-
stant will appear in storage as 8bbb, the TAG4 con-
stant will appear as 64000 with a plus sign over the
low-order zero, and the TAG5 constant will appear

16

Figure 15

COMMENTS FIELD. Comments may be started here.
If comments continuation lines are written and the
last continuation line is to be followed by another
CON statement, one of the following things must
also be done:

1. Place a zero in column 22 of each comments
continuation line,

2., Use the mnemonic code CON in the statement
which follows the last continuation line.

If neither is done, the Processor will interpret
the statement following the last comments continua-
tion as an RCD,

Restrictions on CON Statements

A one-position CON statement should be used to
supply a plus sign or a minus sign as an alphameric
constant. If an alphameric constant consisting of a
plus or minus sign followed by numeric characters
is desired, a one-position CON statement should be
used to define the sign, and another CON should be

used to define the numeric characters as an unsigned
numeric constant.

DEFINITION OF A FLOATING POINT
NUMBER - FPN

The function of an FPN statement is to define a data
field for constant numeric data and to provide the
data in floating point form. Numeric data should be
defined in floating point form when there is a possi-
bility that the limits of the accumulator might be
exceeded during arithmetic operations with the data
if it were defined in fixed point form.

Floating point form consists of a mantissa and
an exponent. The mantissa is a pure decimal with
a non-zero high-order digit; the exponent is a num-
ber specifying a power of ten. When the mantissa is
multiplied by the power of ten that the exponent
specifies, the data is produced in fixed point form.
The following lists show the same data expressed in
both forms.

Fixed Floating
+9427. 38 +. 942738 x 104
-.3264 -.3264 x 100
+,0035 +.35 x 10-2
-623 -. 623 x 103

The FPN statement is written as follows:

OPERATION FIELD., The munemonic code FPN is
placed here. In a continuous series of FPN state-
ments, only the first need contain the code in the
operation field. The Processor assumes that each
immediately subsequent statement which is blank in
columns 16-17 of the operation field is an FPN state-
ment and treats it accordingly.

NUMERIC FIELD. This is left blank; the Processor
assumes 10 positions,

OPERAND FIELD., The exponent and the mantissa,
each preceded by a plus or minus sign, are placed
here in the following format: *EEiDDDDDDDD.
The exponent must be a two-position number, as
specified by EE. The sign which precedes the ex-
ponent indicates the direction in which the decimal
has been moved in order to convert the data from
fixed point to floating point form. The plus sign

indicates the decimal has been moved to the left; the
minus sign indicates the decimal has been moved to
the right.

As indicated by DDDDDDDD, the mantissa may
consist of up to eight digits and is preceded by the
sign of the number itseif. If fewer than eight digits
are specified, the Processor will supply low-order
zeros to complete the mantissa; if more than eight
are specified, the Processor will truncate the excess
low-order digits. When the data is placed in storage,
the signs are placed over the low-order positions of
the exponent and the mantissa.

Figure 16 shows a list of fixed point numbers,
their corresponding FPN definitions, and the con-
stants that would be created from them.,

COMMENTS FIELD. Comments may be started here.
If comments continuation lines are written and the
last continuation line is to be followed by another
FPN definition, one of the following things must also
be done:

1. Place a zero in column 22 for each comments
continuation line.

2. Use the mnemonic code FPN in the statement
immediately following the final continuation line.

If neither is done, the Processor will interpret
the statement following the last continuation line as
an RCD.

Restrictions on FPN Statements

The absolute value of the exponent may not exceed
99. An exponent of 00 is signed +.

FPN definitions may not be referenced by any
Automatic Decimal Point macro-instructions. The
programmer must provide his own macro-instructions
and/or subroutines in order to calculate with floating
point numbers, because the Automatic Decimal
Point macro-instructions calculate with numeric
data in fixed point form only.

DEFINITION OF A REPORT FORMAT - RPT

The function of an RPT statement is to define a data
field for numeric data which will be printed in a
report and to specify the print format for the data.
The RPT field may be referenced by macro-instruc-

Fixed Point Form - TAG] oreRATIoN um T OPERAND N Constants Placed in Storage
1. +589.46782 e |[FPN .| 403+58946782 . .. | .. 1. 0§5894678§'
2. +.0025 e L. mO2425 . 2. 0225000000
3. -4327.9 . . 04435279 e 3. 0443279000
4. -.063 , ; . =01-63 . 4. 0163000000
5. -.4792 +00-4792 5. 0047920000
6. +17482.18936 — +05+1.748218936 6. 0517482189

Figure 16

Area Definitions 17

tions which place the numeric data in the field and

supply the elements of the desired format. The

following elements may be specified in the definition:
1. Commas and/or a decimal point

. Fixed or floating dollar sign

. The printing or suppressing of leading zeros

. Asterisk protection

. Indication of the numeric field sign

. The blanking of a field of zeros

U W

The RPT statement is written as follows:

OPERATION FIELD. The mnemonic code RPT is
placed here. In a continuous series of RPT defini-
tions, only the first need contain the code. The
Processor assumes that each immediately subse-
quent statement which is blank in columns 16-17 of
the operation field is an RPT statement and treats
it accordingly.

NUMERIC FIELD. The size of the RPT field is
entered here. All positions of the format, as shown
by a layout in the operand field, must be counted.
The count consists of the positions for the numeric
data and any commas, decimal points, dollar signs,
and positions reserved for printing the sign of the
field.

OPERAND FIELD. The layout of the report format
is started here; it consists of the symbols used to
define the numeric characters, and the symbols for
a dollar sign, a comma, and a decimal point if any
are used. The layout may also contain one or two
blank positions reserved for printing the sign of the
field., Usually, the layout is followed by a set of
indicators which provide the macro-instructions with
additional information about the desired print format.
In explaining the method of laying out the format,
three sets of data will be used as examples through-
out this section: the first consists of four integer
and two decimal positions; the second consists of
three decimal positions; the third consists of five
integer positions.

Indicating Numeric Characters, Commas, Decimal
Point. Xs and Zs are used to indicate the position of
each numeric character in the format. If commas
and/or a decimal point are desired, the symbols for
them are placed in the appropriate positions. The
numeric positions of the format are defined as
follows:

1. Decimal positions.
all decimal positions.
zeros in the data entering these positions will be
retained and printed.

2. Integer positions. Xs and/or Zs may be used
to define integer positions. The treatment of any

Zs must be used to define

18

Any trailing, i.e., significant,

leading, i.e., insignificant, zeros in the data entering
these positions depends on whether the position in
which the zero occurs is defined by a Z or an X, If
the position is defined by a Z, the zero will be re-
tained and printed; if it is defined by an X, the zero
will be converted to a blank., Xs may be used to the
left of Zs but not to the right of them. If the format
layout does not contain a decimal point, the Proc-
essor assumes that a field of integers is being defined.

In Figure 17, the MIXED and INTEGER definitions
indicate that any leading zeros are to be replaced by
blanks. Notice that no decimal point is specified in
the INTEGER field.

. TAG s Prsnmor:g :u»:: N OPERAND ’+’ (

IXED RPT XXX ZZ {
DEC.I MAL . A.ZzZ . R I %
ILNTEGER SXXXXX, !
Figure 17

If 004320 were placed in the MIXED field defined
in Figure 17, it would be printed as bbb43. 20 (the
comma having been replaced by a blank).

The MIXED and INTEGER fields are redefined in
Figure 18 so that leading zeros will be retained. The
MIXED definition requests that leading zeros which
occur in the two low-order integer positions be
printed. The INTEGER definition requests that
leading zeros be printed in all but the high-order
position.

. TAG . 'GOPERATIOV:G N'UM. OPERAND salas J

LXED PT_| 8X,XZZ.2Z)
INTEGER XZZZZ. . R B 2
Figure 18

If 000120 were placed in the MIXED field defined
in Figure 18, it would be printed as bbb01. 20, and if
00089 were placed in the INTEGER field, it would be
printed as b0089.

Leading zeros may also be replaced by asterisks.
This is called asterisk protection and is requested
by an indicator which is placed immediately after

the format layout. The indicator consists of a
lozenge, an asterisk, and a lozenge (m*m) and is

not included in the count for the numeric field. In
Figure 19, the INTEGER field is defined for com-
plete asterisk protection. The MIXED field, however,
is defined for asterisk protection only in the positions

defined by Xs.
I!. ;

TAG OPERATION [NUM.| OPERAND
I3

ILNTEGER RPT. OO XXX
F| XED Dy XXX, ZZIOEX

Figure 19

The position of the decimal point can be indicated to
macro-instructions which handle numeric data with-
out having the point appear in the printed report.
This is done by placing the symbol D in the appropri-
ate position of the layout., The D is not included in
the count of positions for the numeric field. This
may be seen in Figure 20.

OPERAND I (
28|39

TAG OPERATION r:w%
MIXED. PT L, XXXDZ2Z {
DEC.(MAL

&
. .ﬁpzzz.. el i
LLLLL . N DI

Indicating the Position and Treatment of Dollar Signs.
The dollar sign, if desired in the printed report, is
written to the left of the high-order position of the
format layout and is included in the count for the
numeric field. A fixed or floating dollar sign can be
specified as part of the print format through indicators
which are placed to the right of the format layout.
The indicators are surrounded by lozenge symbols
(9 and are not included in the count for the numeric
field, because they are not part of the format lay-
out. A fixed dollar sign is printed in the same posi-
tion for each use of the data in the report.

If a fixed dollar sign with asterisk protection is
desired, the format layout is immediately followed
by an indicator consisting of a lozenge, an asterisk,
and a lozenge (R* 1), If a fixed dollar sign without
asterisk protection is desired, the format layout is
not followed by any dollar sign indicators. If any
leading zeros occur in the data, they will be main-
tained or replaced by blanks, depending on whether
Zs or Xs are used in the integer positions of the
format layout.

A floating dollar sign is shifted so that it is printed
to the left of the first numeric character in each set
of data. It is requested by an indicator consisting
of a lozenge, a dollar sign, and a lozenge (T$)
placed to the immediate right of the format layout.

Figure 21 shows one field as it would be defined
to request each of the following: a floating dollar
sign; a fixed dollar sign with asterisk protection; a
fixed dollar sign without asterisk protection and with
leading zeros converted to blanks; a fixed dollar sign
without asterisk protection and with up to three
leading zeros retained; no dollar sign but asterisk
protection.

A Kol N b S S
IXED1 BT | 9$X, XXX .ZZxdx)

Elxsnz N I I, | xjyxx.zzm__u_gd,*#}
IXED3 . . A, XXX 2Z . . .

MLXEDS . . 94X, 222,22 .)
LXEDS X, XXX .. ZZ XX é

Figure 21

Assume that 003418 and 000570 are placed in each of
the fields defined in Figure 21, The definitions would
cause the data to be printed as follows:

MIXED1 $34.18 $5.70
MIXED2 $***34,18 $rHxx5,70
MIXEDS3 3 34.18 3 5.70
MIXED4 $ 034.18 $ 005.70
MIXED5 **%34, 18 **%%5,70

Note that the commas in MIXED2 and MIXED3 are
converted to an asterisk and a blank respectively,
In MIXED4, and MIXEDS, the comma is converted
to a blank.

Indicating Field Signs and Zero Fields. Sets of char-
acters which occupy one or two positions are avail-
able for printing either or both of the following in
the report:

1. An indication of the sign of the field supplying
data to be placed in the RPT field.

2. An indication that the field supplying data con-
sists of zeros.

The requested characters will be printed to the
right of the data.

One or two blank positions, depending on which
set of characters is requested, must be added to the
low=-order portion of the format layout and must be
included in the count for the numeric field entry.
These blank positions are considered part of the
The gpecial characters,

layout. called field sign
indicators, are written to the right of the dollar sign
indicator and its accompanying lozenges. Each
character is also followed by a lozenge.

At this point, it is necessary to discuss the loz-
enges which separate the indicators in the RPT
operand. Not only are the indicators significant to
the Processor, but the presence or absence of the
associated lozenges is also significant. When an
option is not desired, the indicator which requests
it must be omitted. If no subsequent options are to be
requested in the same operand, the lozenge associ-
ated with the omitted indicator is also omitted. How-
ever, the lozenge is retained and placed back-to-
back with the preceding lozenge if subsequent options
are requested in the operand. The lozenge placement
indicates to the Processor which option or options
are not desired. A lozenge which may be omitted
when its associated indicator and all subsequent indi-
cators are omitted is called a conditional lozenge.

The lozenges associated with the dollar sign
indicator are conditional. When a dollar sign is not
included in the format layout or when a fixed dollar
sign without asterisk protection is desired, no dollar
sign indicator is required. The associated lozenges
may be omitted unless a field sign is being requested.
In this case, the doliar sign iozenges must be placed
back-to-back and must precede all field sign indi-
cators and their associated lozenges.

Arca Deflivitions i

The field sign lozenges are not conditional. If any
field sign indicators are used, the lozenge associ-
ated with each indicator must be placed after the
indicator Rs—elf, or must be placed back-to-back with
the preceding lozenge when the indicator is omitted.

The full dollar sign and field sign indicator
structure is: HXjHXoHX3HX4q X

X1 is the dollar sign indicator or is omitted. The
lozenges are conditional.

X9 is the negative field sign indicator or is
omitted.

X3 is the zero field indicator or is omitted.

X4 1is the positive field sign indicator or is
omitted.

The field sign indicators are as follows (b desig-
nates a blank):

1. One-position indicators: b - * +

2, Two-position indicators: b- b* ** CR DR DB
If indicators from the first set are used, one blank
position must appear as the final position of the for-
mat layout; if indicators from the second set are
used, two blank positions must appear as the final
positions of the format layout.

The symbols CR, DB, -, and b-may be used for
the negative indicator only. The symbols DR and +
may be used for the positive indicator only. The other
symbols are interchangeable. A blank is generated
in the sign position when the condition associated
with an omitted indicator is encountered.

It is possible to leave one blank position as the
final position of the format layout, use the dollar
sign indicator and its lozenges, but omit all field
sign indicators and their associated lozenges. In
this case, a blank will be generated in the sign posi-
tion for both zero and positive fields, and a minus
sign will be generated for negative fields. If a
dollar sign indicator is not desired, the format lay-
out can be terminated with the biank position, which
must be included in the count for the numeric field
entry.

The definition in Figure 22 requests a floating
dollar sign. It also specifies that the minus, asterisk,
and plus symbols are to be printed after negative,
zero, and positive fields, respectively. One blank
position for sign indication terminates the layout.

I K wawe L ¢
MIXEDJ PT .\

Lt

Figure 22

Assume that the definition in Figure 22 defines the
RPT field for the data shown below:
Data Entering RPT Field RPT Field Printed

032570 $325,70-

000000 $. 00%
+

457638 $4,576. 38+

20

Figure 23 shows a request for a fixed dollar sign with
asterisk protection, with the symbol CR printed after
negative fields and the symbol DR printed after posi-
tive fields. Two blank positions for sign indication
terminate the format layout.

TAG 1. MOPERAYIO':O :\lM. s OPERAND e 1
lesnz PT . 11X, XXX.ZZ uxxgéFang{

Figure 23
Assume that the definition in Figure 23 defines the
RPT field for the data shown below:

Data Entering RPT Field RPT Field Printed

003955 $***39_55CR
000000 Frokkx_ 00
4136175 $4,136. 75DR

Note that the symbol D for the decimal point is not
included in the count of the format positions in Fig-
ure 24. Only the three numeric character positions
and the two blank positions for field sign indication
are counted. The sign indicators specify that the
dollar sign is omitted and that a negative field is to
be indicated by two asterisks.

. TAG s ‘orsunor:o r:lu::z OPERAND “Jﬂ 7
DECIMAL . [RPT. ﬁ?zzz,#luzxxnnu .

Figure 24
The definition in Figure 25 allows one position for
field sign indication but does not contain a dollar
sign or any sign indicators. Consequently, a minus
sign will be generated for a negative field, and a
blank will be generated for zero and positive fields.
The Zs specify that leading zeros are not to be con-
verted to blanks.

. TAG OPERATION [NUM. OPERAND }
INTEGER1. . RPT z2ZZZ C <
Figure 25

Assume that the definition in Figure 25 defines the
RPT field for the data shown below:
Data Entering RPT Field RPT Field Printed

00278 00278-
+

00000 00000
+

34628 34628

Figure 26 specifies a floating dollar sign and two
asterisks printed to the right of zero fields. All
positions of a zero field except the sign positions will
be blanked; this includes the dollar sign, comma,
and decimal point positions.

TAG OPERATION [NUM.: OPERAND
1s]ie 2.

o2y zalz

TEGER1 PT_. | XX, XXX . HMx e

L

PR N - L " " " L [

Figure 26

Blank-If-Zero Option. If this is requested, any

-defined commas, the decimal point, and a floating

dollar sign will be blanked along with the numeric

positions when the field contains all zeros. Only a

fixed dollar sign will not be blanked. To request

the option, the symbol BZ is used as the zero field

indicator. All five lozenges must be included whether

or not BZ is the only indicator used. This option is

independent of the other sign options; consequently,

when BZ is the only indicator used, it is not necessary

to terminate the format layout with any blank positions.
The definition for MIXED1 in Figure 27 specifies

only that the field is to be blanked when it contains

all zeros. The definition for MIXED2 calls for a

fixed dollar sign with asterisk protection, a minus

sign following a negative field, and the Blank-If-

Zero option. A positive field will be printed without

any field sign indication, and the fixed dollar sign

will be retained when a zero field is blanked.

TAG OPERATION NUM. OPERAND N 4(

MLXEDA RET .| 7, . ZZIH BZ I {

I XED2 PT . 1.09X,XXX.2Z2Z MZM
Figure 27

COMMENTS FIELD. Comments may be started here.
If comments continuation lines are written and the
last continuation line is to be followed by another
RPT definition, one of the following things must also
be done:

1. Place a zero in column 22 of each comments
continuation line.

2. Use the mnemonic code RPT in the statement
which follows the final comments continuation line,

If neither is done, the Processor will interpret
the statément following the last continuation line as
an RCD.

Restrictions on RPT Statements

The format layout of an RPT operand may not exceed
52 positions,
may not be mixed in the same statement.

The number of positions in the format layout must
be identical to the entry in the numeric field. If
blank positions for sign indication are included in the
layout, it is important to see that no more than two
blank positions are allocated. The number of
commas in the format layout may not exceed nine.

DEFINITION OF A CONTINUOUS PORTION OF
MEMORY - NAME

A NAME statement has two functions which may be
used independently of or in conjunction with each
other,

1. To identify a series of adjacent data fields as
the interior fields of an area so that they may be
treated as a unit.

One and two-position field sign indicators

2. To specify the final digit or digits of the
starting location to which a data field is assigned.

ENCLOSING ADJACENT FIELDS. A NAME state-
ment which identifies fields as interior to an area
may be said to enclose the fields. The following
Autocoder III statements define fields that may be
enclosed by a NAME statement:

1. Area definitions: RCD,CON,FPN,RPT,NAME

2. Switch definitions: CHRCD, BITCD

3. Address constants: ACON4,ACON5,ACONG,
ADCON

The interior fields of the NAME area may be
referenced individually by their tags or referenced
as a unit by the tag of the NAME area. For example,
a work area may be defined as a NAME area con-
sisting of four interior fields. Each field may be
operated on individually, but the fields may also be
moved to and from the work area as a unit rather
than one at a time.

SPECIFYING A LOCATION, The location requested
by the NAME statement is assigned to the high-order
position of the immediately subsequent field. The
NAME statement specifies what the final digit or
digits of the address may be. The next available
location which ends in the requested digit or digits is
then assigned to the high-order position of the field
defined immediately after the NAME statement.
Suppose that a 4/9 location is requested, i.e., that
the high-order position of the field should be assigned
a location ending in 4 or 9, whichever is available
first. If 00012 is the last location assigned prior to
the request, location 00014 will be assigned; and if
00017 is the last assignment, then 00019 will be
assigned. In either case, if a 00 assignment had
been requested, 00100 would have been assigned.
The NAME statement is written as follows:

OPERATION FIELD. The mnemonic code NAME is
placed here.

NUMERIC FIELD - This field is left blank if Processoris
to assign the next available location to the name. If a
specific address ending is desired for the starting lo-
cation, one of these codes is placed in column 22:

Requests Location Requests Location

Code Ending In Code Ending In
Qor5 Oor S 4or9 4o0r 9
loré6 lor6 A 0
2or7 2or7 B 00
3or8 3or8 C 000

For purposes of location assignment, an X in column
22 has the same effect as a blank. However, if an X
is used, the Processor will not make the terminal
location of the field available for the macro-generation
phase. (The X is used for generation of higher lan-

guages; preferably, it should not be used in Autocoder.)

Area Definitions 21

OPERAND FIELD. This field is left blank when
NAME is used only to request a location assignment.
When NAME is used to enclose a series of interior
fields, the tag of the interior data field which termi-
nates the NAME is placed in the operand field. If
an operand is used, the NAME statement itself must
be tagged.

The NAME statement in Figure 28 requests the
positioning of FIELD1 starting at the first available
address ending in 0. The statement also makes
four fields interior to STARTNAME by designating
the ENDNAME field as the terminal field.

. TAG ‘J' ‘orsunor:o um] OPERAND "113_' (
ME)
CD . N N Ly - S
LELD2 112 5A+ - . S
FLELD3 54+03. .02 K¢
ENDNAME _ . ICON . | 1% 2
S

Figure 28

Figure 29 shows NAME used to position the RPT
field ANYTAG in the next available address ending
in2or 7.

. TAG ‘orzemor:o NUM. OPERAND ;

AME | 2 <
ANYTAG . .. RPT . | 7$22z.z2 E
Figure 29

NAME is used in Figure 30 to identify the interior
fields of the area tagged BEGIN.

R TAG " I.O'EIATIO':D ':‘U'a‘z - ‘OPERAND 2‘2 1
EGIN AME. D (
1ELDY EPN +02+4.38 2
ND._ . +02+67845 . %
Figure 30

Figure 31 shows a way of creating the constant
+12345 in such a way that it will not appear in storage
as 1234E (12345).

i TAG ls .orsunor:o v:‘u:«‘ B OPERAND j :LA]
HA NAME. ENDALPHA 7
e con . | (H .{
ENDALPHA 512245 {
L e A 7
Figure 31

COMMENTS FIELD. Comments may be started here.
Information Provided by the Processor

The Processor counts the total number of positions
occupied by the interior fields of a NAME area. A

22

message indicating the total will appear in the listing
immediately following the entry specified as the
terminal field definition.

Internal NAMEs

One or more NAME areas may be made internal to
another NAME. The operand of each internal and
outer NAME statement must contain the tag of the
field which terminates it. Internal NAMEs may be
terminated by the same field which terminates the
outer NAME, or they may be terminated by fields
which are internal to the outer NAME.

In Figure 32, the OUTERNAME is terminated by
the CON field ENDOUTER, while INNERNAME is
terminated by the RCD field ENDINNER.

TAG OPERATION |NUM. OPERAND [
QIE NDAQUTER

gn 25%; lgcn " .)

LELD2 \SdAE ... K4

E | . ENDINNER . .)

M 12/A+ \

LEL D4 7 .03 . Wi

ENDINNER \HE \)

T . 1l $xx_,xyy ZZI0aT . . (

FLELDA gc.n R AN

ENDOUTER . CON ﬁ[asin*. . , . {7
Figure 32

In Figure 33, both FIRSTNAME and SECONDNAME
are terminated by the RCD field ENDFIRST.

TAG OPERATION [NUM. OPERAND
15lie

n
.

20|21 22]23 £
T

[::LEiINAMLNAME_Zﬁ,Q:lANnm RST.

[T
'\‘/.E\"""w

E T . . .
, PT_. 1 9 (CRM)
Ccn e

%
e

Figure 33

3
|
~

Restrictions on NAME Statements

The number of positions enclosed in a NAME may not
exceed 80,000. If the cumulative limit is exceeded,
the Processor will subtract 80,000 from the total
and use the remainder when developing the message
which specifies the size of the NAME area.

Internal NAME statements should not specify
location assignments. The operand of one NAME
statement, i.e., the tag of the termination field,
cannot be the tag of another NAME entry.

The NAME statement itself must be tagged if the
operand contains a tag.

No more than 32 NAME areas may be defined
concurrently.

Switches are programming or hardware devices used
to control the path of a program. Three types of
switches may be defined: data switches, program
switches, and console switches, The statements
used for each type are as follows:
1. Data Switches
a. Character Code - CHRCD
b. Bit Code - BITCD
2. Program Switches
a. Switch Set to Transfer - SWT
b. Switch Set to No Operation - SWN
3. Console Switches
a. Alteration Switch - ALTSW
With one exception, the format of switch definition
statements varies according to the type of switch
being defined. The exception is the comments field.
Comments about any switch may be started in the
comments field of the definition statement. For those
switches which must be defined by a set of statements,
comments continuation lines may intervene between
the first statement and the remaining statements, or
the continuations may be placed in the comments
fields of the remaining statements.

DATA SWITCHES

A data switch is a data field. There are two types of
data switches: character code and bit code. The
character code switch provides a method of relating
alphameric codes to various meanings or conditions.
The bit code switch provides a method of relating the
bits which form a storage position to various meanings
or conditions. Both character code and bit code
switches are described by a set of statements, the
first of which is the switch definition statement. It
indicates whether a character code or bit code is
being defined. The rest of the character code switch
statements specify the alphameric codes which may
occupy the switch and the condition which each code
represents, The rest of the bit code switch state-
ments designate the various bits of the storage posi-
tion and the condition each bit represents. A char-
acter code switch may occupy one or two positions;
a bit code switch may occupy only one position.

A record field may be defined as a data switch,
and the switch may be interior to a record area de-
fined by a NAME statement. The switch will be set
each time a record is placed in the area. If the data
switch is not defined as part of a record area, the
program ijtself must set the switch. The way in
which the switch is initially set depends on its use
in the program. If the switch definition statement
follows an RCD, the statement should not gpecify the
initial setting. The Processor reserves storage

CHAPTER 3. SWITCH DEFINITIONS

space for the switch but does not set it to any code.
If an initial setting has been specified, the Processor
ignores it. However, the switch definition statement
that does not follow an RCD should specify an initial
setting. The Processor reserves space for the
switch and sets it as specified. If the initial setting
has been omitted, the Processor sets the switch to

a blank,

Program Branch Control macro-instructions are
normally used to set the switches ON or OFF or to
test their settings. A character code switch is set
ON by placing one of the defined codes in it and is
set OFF by placing a blank in it. When a character
code switch is tested, it is examined to see whether
or not a given code is present. If it is, the switch is
ON. If the switch contains anything other than the
code designated in the test, the switch is OFF, A
bit code switch is set ON by setting the designated
bits ON and is set OFF by setting the designated bits
OFF. When a bit code switch is tested, it is examined
to see whether or not the bit designated in the test is
ON. Ifit is, the switch is ON; otherwise, the switch
is OFF.

Suppose that statements for a character code
switch specify that codes A and B represent the
conditions of Surplus and Deficit, respectively. If
the switch is tested for the Surplus condition and A
is present, the switch is ON, On the other hand,
suppose the switch is tested for the Deficit condition.
Now, if B is present, the switch is ON. In other
words, the data switch must be tested for a condition
which has been specified in its definition. If the
code which represents the specified condition is
present, the switch is ON. Otherwise, it is OFF.

Now suppose that the switch is a bit code switch
and that the Surplus condition is represented by
turning ON the 1-bit, while the Deficit condition is
represented by turning ON the 2-bit. If the switch
is tested for the Surplus condition and the 1-bit is
ON, the switch is ON. It does not matter whether
the 2-bit is ON or OFF, because the test does not
specify the Deficit condition. It is possible, although
not logical in this example, that the switch be ON
for both conditions.

A character code switch may represent only one
condition at any time, whereas a bit code switch may
represent multiple conditions simultaneously. In
each case, the number of ON states for a data switch
is equal to the number of codes or bits specified in
the switch definition.

Character Code - CHRCD

A character code switch is defined by a series of

Switch Definitions 23

statements. The first is the CHRCD statement; its
function is to define the switch as a character code
switch and to specify the size and initial contents of
the switch. The statements which follow the CHRCD
statement specify the codes and the conditions they

represent. The format of the set of statements is as
follows:
Tag Operation|Num |Operand
CHRCD n|Xq1
T1 C1
To Cy
Tg Cs
ete. ete.
n is blank when defining a one-
position switch.
is 2 when defining a two-position
switch,
X4 is the initial contents of the

switch or is blank,

are the tags of the codes. They
specify the conditions the codes
represent.

are the codes; any alphameric
characters may be used. The
codes may be composed of one
or two characters, depending
on what is specified in the
numeric field.

If the CHRCD statement immediately follows an
RCD statement, the CHRCD operand should be left
blank. If the switch does not follow an RCD field,
the operand of the CHRCD statement should specify
the initial setting; otherwise, a blank will be placed
in the switch.

Figure 34 shows a one-position character code
switch defined as a portion of a record area. Notice
that the switch is enclosed by a NAME statement.
The NAME operand indicates that the statement tagged
CANCELED terminates the NAME,

Ty, Ty, Tg,. ..

Cy» Cy, Cg,.en

. TAG 1. ‘:JPERA"O':O :U':z s OPERAND s0lss (
CHRCD| 2118)

NEWYORK. . BEIT- DO . ?

BOSTON L 06 .

CHICAGQ 18 P,

ATLANTA 27 . %

Figure 35

During the program assembly, the tag of each
code is assigned to the storage position occupied by
the switch. Suppose that the switch defined in Figure
34 is assigned location 000315. When instructions
which reference NEW, REGULAR, and CANCELED
are translated into machine language, 000315 will
appear as the address portion of each one.

Figure 36 is part of a listing. Notice the machine
language portions for both the switch definitions and
the instructions which reference the switch.

Tag Oper. |Nu OperandSLoc Op Su Address
CHRCD| 000343

BLUE A 000343

GREEN B 000343

RED C 000343

Instructions that reference the switch:

CMP 1 {GREEN)002129 4 1 000343
CMP 1 |RED 002624 4 1 000343
CMP 1 |[BLUE 002679 4 1 000343

Figure 36

RESTRICTIONS ON A CHRCD SWITCH. A code
should not be represented as a signed numeric char-
acter but as the alphabetic character equivalent to the
signed numeric character. For example, A should

be used to represent +1, J should be used to represent

The CHRCD statement should not be tagged, since
the switch is referenced by the tags of the codes.

A bit code switch is defined by a series of statements.

CHRCD) . | . —
NE;, LAR N ‘ : } Bit Code - BITCD
CANCELED. c (}

In Figure 35, the operand of the CHRCD statement
specifies the initial switch setting, i.e., that the
switch contains the code 18.

24

The first is the BITCD statement; its function is to
define the switch as a bit code switch and to specify
the initial setting of the switch. The statements which
follow the BITCD statement specify the bits and the
conditions they represent. The format of the set of
statements is as follows:

Tag Operation{ Num|Operand
BITCD X1

T1 B1

Ty Bo

Tg Bg

Ty By

Xy is the initial setting of the switch or is
blank.

T1...T4 are the tags of the bits. They specify the

conditions which the bits represent when
they are ON.
Bl' ..By are the bit codes 1, 2, 4, and A.

If the BITCD statement immediately follows an
RCD statement, the operand should be left blank. If
the switch does not follow an RCD field, the operand
of the BITCD statement should specify the initial
setting. The setting is indicated by the alphameric
character created when the desired bits are set ON.

A bit that contains zero (0) is defined as ON; a
bit that contains one (1) is defined as OFF. For
instance, if the 4-bit should be set ON initially, the
operand may be any character that contains a zero in
the 4-bit. If the 1, 4, and A bits should be ON, the
operand may be any character that contains zeros in
those bits. It is recommended that the selected
character contain a zero in the 8-bit and a one in
the B-bit so that the character in the switch will
always be valid for printing purposes.

The bit code switch in Figure 37 indicates various
types of payroll deductions and is defined as a portion
of a record area. The maximum number of bits has

been used.
R TAG . “OPERAYIO':O P:‘U:A: s OPERAND alse {
ECORDAREANAME THER. ¢
EMPLOYEE. . |RCO . +)
. LTCD S
1RS I o
LCA 2 {
TATE. 4 . <.
HER, {
Figure 37

The BITCD definition in Figure 38 specifies that
GROSSTOTAL is to be set ON initially. The switch
will contain B (12-2), thus setting the 1-bit to zero.

. TAG omunor:a r:‘unz. R OPERAND 7
BRITCD <
ROSSTOTAL]| | [_L_‘_A E
TTAQTAL N
1 . A . . d
Figure 38

During the program assembly, the tag of each
defined bit is assigned to the storage position occupied
by the switch. Suppose that the switch defined in
Figure 38 is assigned location 000100. When instruc-
tions which reference GROSSTOTAL and NETTOTAL
are translated into machine language, 000100 will
appear as the address portion of each one.

Figure 39 is taken from a listing. Notice the
machine language portions for both the switch defini-
tion and the instructions which reference the switch,

Tag Oper. | Nu|Operand 2 Loc Op Su Address
BITCD 000237

EAST 1 000237

WEST 2 000237

NORTH 4 000237

Instructions that reference the switch:

RCVS EAST 002319 U 000237
RCVS WEST 002464 U 000237
RCVS NORTH | 002739 U 000237

Figure 39

RESTRICTIONS ON A BITCD SWITCH, A bit code
switch may not be used in a program for a 705 II or
the 705 II portion of a 7080 program.

The BITCD statement should not be tagged, since
the switch is referenced by the tags of the bits.

PROGRAM SWITCHES

A program switch is an instruction, Each time the
switch is encountered, it causes the program to do
one of two things:

1. To transfer to a designated instruction when
the switch is ON.

2., To execute the next in-line instruction when
the switch is OFF,

A program switch is defined by a single statement
which specifies the initial switch setting., If the
initial setting is ON, the switch statement becomes a
Transfer instruction in the object program. If the
initial setting is OFF, the statement becomes a No-
Operation instruction in the object program.

Program Branch Control macro-instructions are
used to set the switches ON or OFF and to test their
settings. Setting the switch ON or OFF involves
modifying the operation portion of the generated
instruction to Transfer or No-Operation, respectively.
Testing the switch involves determining whether or
not it will cause the program to transfer. All program
switch definition statements must be tagged so that

Switch Definitions 25

the switches can be referenced by macro-instructions.

Switch Set to Transfer - SWT

The function of an SWT statement is to define a pro-

gram switch which will be ON initially. The format

of the SWT statement is as follows:

Tag Operation|Num |Operand

Ty SWT X4

Tl is the tag of the switch.

X1 is the tag of the instruction to which a
transfer is to be made when the switch

is ON,

As long as the switch is ON, a transfer occurs.
each time the switch is encountered. When the switch
is encountered after it is set OFF, the transfer does
not occur; the program proceeds instead to the next
in-line instruction.

The SWT statement in Figure 40 indicates that
LOOPSWITCH is to be set ON initially and that the
transfer point is the instruction tagged STARTLOOP.

TAG OPERATION |NUM. OPERAND +
isie 2021 z2]23 salas ;

OOPSWITCHSWT STARTLQQP]_

Figure 40.

RESTRICTIONS ON AN SWT SWITCH. A hand-coded
Transfer instruction may not be referenced as a pro-
gram switch with Program Branch Control macro-
instructions. Since the hand-coded instruction will
not be recognized as a switch, the proper coding will
not be generated from any macro-instructions refer-
encing it.

Switch Set to No Operation - SWN

The function of an SWN statement is to define a pro-
gram switch which will be OFF initially. The format
of the SWN statement is as follows:

Tag Operation |Num|Operand

T, SWN X,

Tq is the tag of the switch.

X1 is the tag of the instruction to which a

transfer is to be made after the switch
is turned ON.

LOOPSWITCH is to be set OFF initially and that
when the switch is set ON, the transfer point is the
instruction tagged STARTLOOP.

. TAG uls ‘ornAnor:D T‘w: . OPERAND "‘.'_' 5
LOOPSWI TCHSHA TART.LQQP)
[R R
Figure 41

RESTRICTIONS ON AN SWN STATEMENT. A hand-
coded No-Operation instruction may not be referenced
as a program switch with Program Branch Control
macro-instructions. Since the hand-coded instruction
will not be recognized as a switch, the proper coding
will not be generated from any macro-instructions
referencing it.

CONSOLE SWITCHES

Console switches are the console alteration switches
0911-0916. Each is identified by one console switch
statement. The switches themselves must be set
ON or OFF manually by the console operator, either
before or during the execution of the program., A
console switch statement does not specify the initial
switch setting. It merely provides a method of
assigning a tag to an alteration switch so that it can
be referenced by a Program Branch Control macro-
instruction. The switch statement is not translated
into a machine language instruction.

Alteration Switches ~ ALTSW

The function of the ALTSW statement is to designate
a console alteration switch. The format of the state-
ment is as follows:

Tag Operation|Num |Operand
T1 ALTSW Xy
Ty is the tag of the switch statement.
X1 is a code identifying the console switch.
The codes are as follows:
Code Switch Being Identified
A 0911
B 0912
Cc 0913
D 0914
E 0915
F 0916

Figure 42 shows switches 0911 and 0912 being

As long as the switch is OFF, no transfer occurs identified.
when the switch is encountered. The program proceeds L T e | oreration Tnum] OPERAND "l"f S
instead to the next in-line instruction. After the [
switch is set ON, a transfer occurs each time the)
switch is encountered.)) ' e
The SWN statement in Figure 41 indicates that Figure 42

26

A one-for-one instruction is a symbolic instruction
which is replaced by one machine instruction. It
consists of a 705 or 7080 operation code and an
Autocoder III operand. Figure 44 lists the 705 and
7080 operation codes. The basic Autocoder III
operands are as follows:
1. tag
2. literal
3. actual
4. location counter
5. blank
A prefix, a suffix, or both may be added to some
of the basic operands:
Prefix
operand modifier
indirect address
The format of an Autocoder III one-for-one instruc-
tion is summarized in the next section, '"One-For-One
Instruction Format.' The balance of the chapter
describes the basic operands and the prefix and/or
suffix that may be added to each operand. Chapter 6,
entitled "Address Constants,' describes a special-
ized form of Autocoder III operand called an address
constant literal.
The details of each 705 or 7080 operation are
supplied in the following reference manuals:
1. '705 Data Processing System', Form A22-
6506
2. "17080 Data Processing System'', Form A22-
6560

Suffix
character adjustment

ONE-FOR-ONE INSTRUCTION FORMAT

Like other Autocoder III statements, a one~for-one
instruction is tagged if it is to be referenced. The
mnemonic operation code is placed in the operation
field. No actual operation codes may be used. If
the operation requires designation of the accumulator,
an ASU, or a bit, the appropriate entry is placed in
the numeric field. A one-for-one instruction has a
single entry in the operand field; if necessary, the
operand may be continued from the operand field into
the comments field. The operand may not, however,
be continued onto the next line of the coding sheet.
Comments about the instruction may be started in
the comments field.

BASIC OPERANDS

A description of the basic Autocoder III operands
follows.

CHAPTER 4. ONE-FOR-ONE INSTRUCTIONS

Tag

The tag may be that of the data field or the source
program instruction involved in the operation.

. TAG ol ‘orsnnor:o r:‘ur;z. B OPERAND "l& (
LELD RCD l:{ttfomoa . (
INSTR FLELD A N
<
Figure 43.
Literal

A literal is actual data enclosed by literal signs (#).
It may be any combination of alphameric characters
and/or blanks, e.g., #A#, #bb3C#, #0500#,

#GO TO END#, #+345#, #-, 67#, #1234#, #+9. 876#.
The Processor creates a constant from a literal
operand. The term 'literal" is frequently used to
refer to the literal operand or to the constant created
from the literal.

As an example of the use of a literal operand, it
may be necessary to calculate with a constant of +30.
The constant could be defined by a CON statement,
and the appropriate arithmetic instruction could
reference the constant by having the tag of the CON
as an operand, On the other hand, it might be desired
to omit the CON and supply the constant directly by
writing it as the literal operand of the arithmetic
instruction. While a literal is a convenient way of
supplying an occasional constant, those constants
that are used repeatedly throughout the program
should be supplied by CON statements.

If a signed numeric constant is desired, the first
character following the literal sign must be a plus
or minus sign. In storage, the low-order position
of the constant will be signed. If the numeric data
is a mixed or pure decimal, the decimal point will not
appear in the constant. If an unsigned numeric con-
stant is desired, the first character following the
literal sign must be the first character of the numeric
data. In storage, the constant will appear exactly as
it is written in the literal. Thus, the constant created
from an unsigned mixed or pure decimal will contain
a decimal point. For this reason, unsigned mixed or
pure decimals should not be written as the literal
operands of arithmetic instructions, e.g., ADD, SUB,

A literal may also supply the floating point form
of a signed numeric constant. It must be written in
the format of an FPN operand: #IEEIXXXXXXXX#.

One-~For-One Instructions 27

message is prepared .

$The 7058 Processor will not accept the mnemonics CRD, CWR, ECB, RMB, TNS, and WMC.

* Placea 1, 2, 4, 8, A, or B in column 22 to designate the bit (TZB can have a C also). If column 21 is not blank, the Processor
assumes that ASU zoning, valid or invalid, has been designated .

**The three different mnemonics for the receive instruction (RCVS, RCV, and RCVT) indicate to the Processor the type of address
to be assigned. If the mnemonic is RCV, the location assigned is the high-order address of the field specified in the operand
of the instruction. For an RCV, 4 is added to the high-order address of the field. Since an RCV is generally used when a
4/9 ending is desired (as with a TMT or SND), the high-order address of the field should end ina O or 5. An RCVT is assigned
the high-order address of the field plus 9. Since RCVT is used when a 9 ending is desired (as with a TCT), the high-order
address of the field should end in 0. If the generated address does not end in a 4 or 9 (RCV) or 9 (RCVT), a 4/9 check

Mnemonic | Use in Programs For Mnemonic | Use in Programs For
Name of Instruction Code 70511 705111f 7080] Name of Instruction Code 70511 [705 1] 7080
Add ADD x x x Stop HLT x x x
Add Address to Memory AAM x x Store ST x x x
Add to Memory ADM x x x Store for Print SPR x x X
Backspace BSP x x x Subtract SuB x x x
Backspace File BSF x x Suppress Print ar Punch SUP x x x
Blank Memory BLM x x Ten Character Transmit TCT x
Blank Memory Serial BLMS x x Transfer TR x x
Channel Reset CHR x Transfer Any TRA x x
Comma, No Operation CNO x Transfer Auto Restart TAR x
Compare CMP x x x Transfer Echo Check TEC x x
Control Read (Read 04 -CRD) RD 041¢ x Transfer on Equal TRE x x x
Control Write (Write 04~CWR) WR 04% x Transfer on High TRH x x x
Divide Div x x x Transfer to Interrupt Program Tip x
Dump Memory (Write O1) DMP x x x Transfer instruction Check TiIC x x
Enable Compare Backward (ECB) CTL 128 x Transfer Machine Check T™MC x x
Enable Indirect Address EiA x Transfer Nonstop (Transfer 07 - TNS) TRAO7% x
Enter Interrupt Mode EIM x Transfer Overflow Check TOC x x
Enter 7080 Mode EEM x Transfer on Plus TRP x x x
Forward Space (Read 01) FSP x x x Transfer Read -Write Check TRC X x
Leave Interrupt Mode LM x Transfer Ready TRR x x
Leave Interrupt Program LIP x Transfer Sign Check TSC x x
Leave 7080 Mode LEM x Transfer on Signal TRS x x x
Lengthen LNG X x x Transfer and Store Location TSL x x
Load LOD x x x Transfer Switch A On (0911) TAA x x
Load Address LDA x x Transfer Switch B On (0912) TAB x x
Load Four Characters LFC x Transfer Switch C On (0913) TAC x x
Load Store Bank LS8 x Transfer Switch D On (0914) TAD x x
Multiply MPY x x x Transfer Switch E On (0915) TAE x x
No Operation NOP x x x Transfer Switch F On (0916) TAF x x
No Operation, Comma CNO x Transfer Synchronizer Any TSA x x
Normalize and Transfer NTR x x x Transfer Transmission Check T7C x x
Read 00 RD x x x Transfer on Zero TRZ x x x
Read 01 (Forward Space) FSP x x x Transfer on Zero Bit TZB* x x
Read 02 (Read Memory Address) RMA x x Transmit TMT X x x
Read 03 (Sense Status Trigger) SST x Transmit Serial TMTS x x x
Read 04 (Control Read - CRD) RD 043 x Turn off 1-O Indicator IOF x x x
Read 05 (Read Memory Block -RMB) RD 05t x Turn on 1-O Indicator ION x x x
Read Memory Address (Read 02) RMA x x Unload UNL x x x
Read Memory Block (Read 05 - RMB) RD 053 x Unload Address ULA x x
Read While Writing Rww x x x Unload Four Characters UFC x
Receive RCV** x x x Unload Storage Bank USB x
Receive Serial RCVS** x x x Write 00 WR x x x
Receive Ten Characters RCVT** x Write O1 (Dump Memory) DMP x x x
Reset and Add RAD x x x Write 02(Set Record Counter) SRC x x
Reset and Subtract RSU x x x Write 03 (Set Control Condition) SCC x
Rewind RWD X % X Write 04 (Control Write - CWR) WR 0414 x
Rewind and Unload RUN x Write 05 (Write Multiple Control -WMC) WR 05¢ x
Round RND x x x Write and Erase 0O WRE x x x
Select SEL x x x Write and Erase 01 WRE 01 x x x
Send SND x x Write Multiple Control (Write 05-WM Q) WR 051 x
Sense Status Trigger (Read 03) SST x Write Tape Mark WTM x x x
Set Bit Alternate SBA x x
Set Bit 1 SBN* x x IBM 760 Operations
Set Bit Redundant SBR x x Read or Write Tape, Early Start RWT x x x
Set Bit O SBZ* x x Read or Write Tape, Write on Printer RWS x x x
Set Control Condition (Write 03) SCC x Reset 760 Counter RST x x x
Set Density High SDH x Write on Printerand Magnetic Tape PTW x x x
Set Density Low SDL x
Set Left SET x x x IBM 777 Operations
Set Record Counter (Write 02) SRC x x Bypass TRC BPC x x x
Set Starting Point Counter SPC x Prepare to Read While Writing PRW x x x
Shorten SHR x x x Read Tape to TRC RTS x x x
Sign SGN x x x Write TRC to Tape WST x x x
Skip Tape SKP x x
NOTES:

Figure 44.

28

705 and 7080 Mnemonic Codes for One-For-One Instructions.

Trailing zeros will be supplied when the literal
contains fewer than eight mantissa positions. For
example, the literal #+03-7# will appear in storage
as 0370000000.

The length of a literal must be a multiple of five
when used with an operation which requires a 4 or 9
location. The literal must also contain a record mark
in the low-order position if it is used with a TMT
operation. Such literals are positioned in the literal
table so that the high-order character occupies a 0
or 5 location.

. TAG - wOPEkAHO?:Q :I‘U:Az; " OPERAND solos 7
NE, gn +5034..27% (
TWO. LOD 7984 ,] \ 2
. s . £
HREE. TMT. #.L_AQJAEEO G < SN I
[[. . E
Figure 45

The Processor places all constants that it creates
from literal operands in an area of storage called the
literal table. Although the same literal may be used
in several statements, it will appear only once in the
table. The Processor classifies literals and assigns
them to the table according to whether they are signed
or unsigned:

1. Any literal containing a sign in the first posi-
tion is automatically classified as signed. If the
signed literal supplies numeric data, it appears in
storage as previously described. If the literal
supplies alphameric data, the sign is placed in the
low-order position of the constant if it is occupied by
a numeric character. Otherwise, the sign is ignored.

2. Any literal that does not contain a sign in the
first position is automatically classified as unsigned.
As previously indicated, the constant appears in
storage in exactly the same form in which it is
written on the coding sheet.

3. A literal symbol may not appear within a
literal unless it is the first character of the literal,

Actual

An actual operand is a set of numeric characters,
usually preceded by the actual address symbol (@),
which designates one of the following:

1. An actual storage location

2. A setting for the accumulator or an ASU

3. The size of a block of storage positions

The @ symbol need not be used when the operand
contains less than five numeric characters and is
used with one of the following operations: BLM,
BLMS, CTL, HLT, LIP, LNG, RND, SEL, SET,
SHR ,SPC SRC,TRANS, Notice in Figure 468 that the
SET and BLM instructions have been written two ways,

R TAG " .‘O'EIAHOP:O :UTZ " OPERAND olse (

ONE. S? T @224 §

Two SET 00005 . 3

) B ¢

THREE ET 5 D)

. 3 e/

EQUR 00020 . \

2) _§

LVE. . LM . . i
Figure 46

RESTRICTIONS, If the program is operating in 7080
mode with 160K memory, the highest actual operand
that may be used is 159999. Otherwise, 79999 is the
highest that may be used. (This includes 7080 mode
with 80K memory.) If a higher one is encountered,
80000 will be subtracted from it and the remainder
used as the operand. A message to this effect is pro-
vided at assembly time. If a six-position actual
operand is encountered outside the 7080 mode portion,
the low-order digit will be ignored. (See Chapter 7
for a further definition of the '"7080 mode portion of a
program.')

Location Counter

A location counter is represented by the asterisk sym-
bol (*), which designates the low-order position of the
instruction in which it appears. Since each instruc-
tion occupies five positions in the object program, an
instruction containing a location counter references

its own low-order position. The effect of the instruc-
tion in Figure 47 is to cause the 4 or 9 location
assigned to the instruction to be placed in ASU 14.

sl $
Lop i B

TAG QOPERATION [NUM.! OPERAND
slie

20]21 2223

Figure 47

Note: The versatility of a location counter is more
fully utilized when the counter is character-adjusted.
This use is explained in the following section,
""Additions to Basic Operands. "

Blank

A blank operand is one which has blanks in the first
10 columns of the operand field. Blank operands
should be used if the instruction is initialized by the
program or if the operation itself does not require
an address. In the object program, a blank operand
is replaced by zeros.

TAG OPERATION |NUM.| OPERAND ‘(

1s)ie zola1 22l23 s8l3e &

ULA . 14 - . §

P

. N A\
Figure 48

One~for-One Instructions 29

ADDITIONS TO BASIC OPERANDS

A description of the suffix and the prefixes that may
be added to an Autocoder III operand follows.

Character Adjustment

Character adjustment is designated by a suffix to the
basic operand. A reference to an untagged field, an
untagged instruction, or a particular position within

a field or an instruction can be made by using char-
acter adjustment. The suffix consists of an arithmetic
operator that specifies the type of operation and one
or more numeric characters that specify the size of
the adjustment. The operators are as follows:

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division

Character adjustment may be used with all basic
operands except the blank operand. The operator
should appear immediately after the operand; it may
not appear beyond column 33 unless the operand itself
continues into column 33 or beyond.

In Figure 49, the character-adjusted operand of
the RAD instruection references the field that follows
EMPLOYEE.

TAG . OPERAHO':‘ NU'VA. . OPERAND olss (
MPLOYEE. _RGD + Lé
I 5+ R
s | (
RAD | OYEE+S‘..%

Figure 49

A character-adjusted location counter may be used
to bypass in-line instructions. In Figure 50, *+10
references the low-order (4 or 9) position of the ST
instruction.

. TAG :)PEIAVIOND ?l\m . OPERAND solae 7
TRP Xt10 S
LLLLL DD A+ 30HE . R {
. ST . FLELD . . 5
i

Figure 50

RESTRICTIONS. The numeric portion of a character
adjustment cannot exceed five positions nor may its
absolute value be greater than 79,999, If it is greater,
80,000 will be subtracted until the absolute value is
less than 80,000, If the numeric portion of the ad-
justment is less than five positions, the position
immediately following must be nonnumeric.

30

Further restrictions apply to location-counter
operands and actual operands. These operands can
have only + and - operators, If any other is used, it
will be treated as the + operator.

Operand Modifier

An operand modifier is a two-character prefix which
may be used with a tag or a literal operand. It
enables the user to reference a particular position
of a field or an instruction or to reference the size
of a field. The operand modifiers are as follows:

Modifier Modifier Designates
L, Left-hand position
R, Right-hand position
H, High speed position

S, Size
In Figure 51, the LOD instruction references the
left-hand position of FIELD. When the instruction
is executed, the contents of that position, rather than
the entire contents of FIELD, are placed in ASU 01.

R TAG X “OPEﬂA"O':D ':‘UA; s OPERAND solss ;
LELD. RCD . | 8 3
§ —— %
LOD . | AL,FILELD -
. R ¢
Figure 51

Note: If the modifier ""S", had been used in the
preceding example, the LOD instruction would
reference the contents of storage location 00008.

Indirect Address

An indirect address is an indirect reference; that is,
it is a reference to an operand that references some
other operand. It is designated by a two-character
prefix to the basic operand. The prefix consists of
an I followed by a comma (I,). An indirect address
may be used with the following operands: tag, blank,
actual, character-adjusted location counter. In
Figure 52, BEGIN is the effective transfer point of
the first instruction.

. TAG . NOP(IA"O':O ?‘Urz s OPERAND solse {
LDDLE TR I, END 5
$ S T ¢
END TR EGIN. N {
.]

Figure 52

When the Processor encounters an instruction
containing ""I," in the 7080 mode portion of the
program, it generates two instructions: The first

is an EIA (Enable Indirect Address). If the one-for-
one instruction containing the indirect address is
tagged, the Processor transfers the tag to the EIA
instruction. The second instruction is the same one-
for-one instruction without the hand-coded "1, ' and
without the hand-coded tag. If the first instruction
in Figure 52 had been written in the 7080 portion of
the program, it would have been followed by the
generated instructions, as shown in Figure 53.

Tag Operation|{Num |Operand
MIDDLE | TR I, END
MIDDLE | EIA END

TR END
Figure 53

MULTIPLE ADDITIONS TO A BASIC OPERAND

The following pairs of additions may be used with
either a tag or a literal operand:
1. Operand modifier and character adjustment.
2. Indirect address and character adjustment.

The second pair may also be used with a location
counter,

In Figure 54, the operand of the LOD instruction
references the second position in FIELD, i.e., the
position to the right of the high-order position.

B TAG 1 NOPElAﬂoigo ?‘U:A;L: OPERAND salse J
FLELD . |RcD . O)
‘ B s o1 , <
. ob . | UL, FIELDHL . .
. I ¢

Figure 54

In Figure 55, COMPUTE is the effective transfer
point of the first transfer instruction.

. TAG [it e N OPERAND salos {
NE AD ECORD1
R TR .. S+ 10 I
WO RAD RECORD2 _ ., ., .
TR COMPUTE . {
Figure 55

One-for-One Instructions 31

CHAPTER 5. GENERAL PURPOSE MACRO-
INSTRUCTIONS

A macro-instruction is a source program statement
which represents multiple operations. When the
program is assembled, each macro-instruction is
replaced by a number of one-for-one instructions;
the number varies according to what the macro-in-
struction is and how it is used. The general purpose
macro-instructions in the 7058 Processor library
are shown in Figure 56. The purpose of this chapter
is to present them as a part of the Autocoder III
language; consequently, the chapter is limited to an
explanation of their basic coding format and a few
examples of individual macro-instructions. The
specifications for using each general purpose macro-
instruction are provided in the reference manual,
"7058 Processor: General Purpose Macro-Instruc-
tions, ' Form C28-6130. Hereafter, the afore-
mentioned will be called the macro-instruction
manual. (Input/output macro-instructions are a
part of the Input/Output Control System, IOCS, and
are described in the IOCS reference manuals for

the 705 III and 7080.)

In addition to individual specifications and examples
of generated coding, the macro-instruction manual
provides detailed explanations of the conventions and
restrictions governing the use of all the general
purpose macro-instructions, It also explains
restrictions that may apply to only one type of macro-
instruction. It has been necessary to establish
certain conventions and restrictions in creating a
macro-instruction library to serve a large number of
users with a variety of program needs. However, it
is possible for programmers to prepare their own
macro-instructions and insert them into the library.

Because of the flexibility of the Processor,
programmers need not observe most of the restrictions
described in the macro-instruction manual when
creating macro-instructions to meet their particular
requirements. Specifically, they may designate as
acceptable operands any of the basic operands and
additions to basic operands described in Chapter 4.
Programmers writing their own macro-instructions
may also designate an entry in the numeric field as
the method of supplying an ASU reference or other
special information. The process of creating a
macro-instruction requires a thorough knowledge of
a special language which is described in the reference
manual, "Preparation of Macro-Instructions for Use
with Autocoder III, " Form C28-6056-1.

The remainder of this chapter is an introduction
to the general purpose macro-instructions in the
7058 Processor library; the discussion is based on
the conventions and restrictions that apply to these
macro-instructions.

32

ADDRESS MODIFICATION
Add Address
Compare Address
Decrement Address
Increment Address
Initialize Address
Move Address
Subtract Address

ASSEMBLY CONTROL
Enter 80 Mode
Leave 80 Mode
Speed or Space

AUTOMATIC DECIMAL POINT
Absolute Value
Add
Decrement
Diminish
Divide
Divide or Halt
Increment
Multiply
Negative Absolute Value
Negative Divide
Negative Divide or Halt
Negative Multiply
Subtract
Sign and Zero Test

DATA TESTING
Compare
Test for Numeric Field
Test if in Range

DATA TRANSMISSION
Blank Memory
Define ASU
Move
Restore Decimal
Zero Memory

PROGRAM BRANCH CONTROL
Alternating NOP
Alternating Transfer
First Time NOP
First Time NOP on a Bit
First Time Transfer
First Time Transfer on a Bit
Set Switches OFF
Set Switches ON
Test Switch

TABLE
Add an Item
Delete an Item
Replace an Item
Search a Table
Table Control

MISCELLANEOUS
Address Modification Diagnostic
Dead-End Halt
Link to Subroutine
Non-Address-Modification Diagnostic
Transfer Indirect
Type a Message

(ADDA)
(COMPA)
(DECRA)
(INCRA)
(INITA)
(MOVEA)
(SUBA)

(EN'TS0)
(LEVS0)
(SPEED)

(ABSX)
(ADDX)
(DECRX)
(DIMX)
(DIVX)
(DVHX)
(INCRX)
(MPYX)
(NABSX)
(NDIVX)
(NDVHX)
(NMPYX)
(SUBX)
(TESTX)

(COMP)
(IFNUM)
(RANGE)

(BLANK)
(ASU)
(MOVE)
(DEC)
(ZERO)

(ALTNP)
(ALTTR)
(FTNOP)
(FTNPB)
(FTTR)
(FTTRB)
(SETOF)
(SETON)
(IFON)

(ADITM)
(DLITM)
(RPITM)
(SERCH)
(TBCTL)

(DIAGM)
(STOP)
(LINK)
(DIAG)
(TRIN)
(TYPE)

Figure 56. 7058 Processor General Purpose Macro-Instructions for

Use in Autocoder III Programs

GENERAL PURPOSE MACRO-HEADER FORMAT

The portion of a macro-instruction that is written as
a source program statement is called a macro-
header. As with other Autocoder III statements, a
macro-header is tagged if it is to be referenced.
The mnemonic code is placed in the operation field.
Entries in the numeric field are rarely permitted;
those which are permitted do not relate to an ASU
number or a bit as they do in a one-for-one instruc-
tion. Most macro-headers have two or more entries
in the operand field; some may contain up to twenty
entries, and a few may have only one. The entries
will be called operands throughout this chapter and
in the macro-instruction manual. Each operand is
terminated by a lozenge (X), the same symbol which
was previously explained as part of an RPT state-
ment.

Operands may be placed in the operand and com-
ments fields of the line on which the macro-header
starts and may be continued in the operand and
comments fields of the next five lines on the coding
sheet, However, an operand may not be written on
two lines, i.e., it may not be started in the comments
field of one line and continued in the operand field of
the next line. Similarly, the lozenge which terminates
an operand may not be separated from it. If the
positions at the end of a line are insufficient for both
an operand and its lozenge, the positions must be
left blank and the operand started in column 23 of
the next line on the coding sheet. Operand continu-
ation lines must be blank in the tag, operation, and
numeric fields.

Comments may be started in the comments field
of the line on which the operands terminate, but the
comments must be separated from the final lozenge
by a minimum of two spaces. Comments may also
be continued in the comments field of succeeding
lines of the coding sheet.

TYPES OF OPERANDS

The operands of a macro-header designate the data
and/or the instructions involved in the operations
the macro-instruction represents. Most operands
are either tags or literals.

Tag Operands

The tags may bethose of defined data fields, switches,
source program instructions, macro-instructions,
and address constants. Other tags that may be used
as operands are those of Class A subroutine items.
Characteristics of items within Class B subroutines
are not available to macro-instructions.

For instance; the function of the IFON macro-

instruction is to test a switch and to transfer to one

of two specified instructions, depending on the status
of the switch. The operands of the IFON macro-
header are the tags of the switch to be tested and the
tags of the transfer points, i.e., the instructions to
which the transfer is made if the switch is ON or
OFF, In the generated coding, the tags appear as the
operands of the appropriate one-for-one instructions.
In most cases, the tag of an instruction is used as
an operand in order to designate the instruction as a
transfer point. This is not true of the operands of
Address Modification macro-headers. Such operands
designate the operands or other instructions rather
than the instructions themselves. When an Address
Modification macro~header must designate the
operand of another macro-header, it may not
reference the macro-header by its tag alone. The
tag must be written as a special form of operand
called the macro suffix tag. This consists of a tag
to which a suffix is added. The suffix is of the form
#x or#xX where x or xx are numbers that designate
one of the operands of the macro-header being re-
ferenced. For example, a macro suffix tag
designating the first operand of a macro-header
tagged MACRO would be written as MACRO#1 or
MACRO#01. Similarly, a macro suffixtag designating
the third operand would be written as MACRO #3
or MACRO#03. The use of the macro suffix tag is
illustrated at the end of this chapter and in the macro-
instruction manual. No adjustments are permitted
on a macro suffix tag.

Secondary Field Definitions in Tag Operands

A secondary field definition is a description of the
characteristics of a data field. It is written as

part of a macro-header operand that references the
field, i.e., the operand is the tag of the field, and

it causes the macro-instructions to treat the field

as having the characteristics that the secondary field
definition provides. Depending on the reason for
which a secondary definition is used, it may supply
characteristics identical with those previously defined
for the field or it may supply a different set of char-
acteristics. When a data field is referenced in-
directly in a macro-header operand, the char-
acteristics of the data field are not available to the
Processor. Therefore, a secondary definition must
be supplied in the operand that contains the indirect
reference.

A secondary field definition may be supplied by
the tag of a field, a literal, or either of the RCD
forms, #+xx. vv or #bxx. vv. The macro-header
operand containing the definition is written as
follows: the tag of the data field, a comma, the
secondary delinition.

Tlgina +
wvioilig wal 4

containing the tag of a field as a secondary definition

q manre has A]
he rrag of a Ficld, A macro-header operana

~
a 10

General Purpose Macro-Instructions 33

would be one such as TAGA, TAGB x. The field
specified by TAGA will be treated as having the
characteristics of the field specified by TAGB.

If a field with the desired characteristics has been
defined, its tag may be used to supply the secondary
field definition. Otherwise, two fields must be de-
fined with different tags and overlapped by use of a
location assignment (LASN). Reference to the field

should be made by using the tag of the definition which

is appropriate at the time the reference is made.

Using a Literal. A macro-header operand containing
literal secondary definition would be one such as
TAG, #+XXXX# 0. Regardless of the defined char-
acteristics of the field TAG, it is now defined as a
signed fraction consisting of three integer positions
and one decimal position, This method can be used
to define only numeric fields other than unsigned
fractions.

Note that the letter X is the only character that
can be used in defining integer and decimal positions.

Using the RCD Form. With the RCD form of
secondary definition, the example given above would
be written as TAG, #+03,01x, This form is fully
discussed in Chapter 2 of this manual. This method
can be used to define signed or unsigned numeric
fields only.

Literal Operands

A literal is actual data enclosed by literal signs

(#) and is explained in Chapter 4. In the coding
generated from macro-headers containing literal
operands, the literals appear as the operands of the
appropriate one-for-one instructions, just as tags
appear as one-for-one operands. Whenever the
macro-instruction manual designates the tag of a
field as an operand, a literal may be used instead.
An unsigned numeric literal supplying a mixed or
pure decimal should not be used as the operand of
an Automatic Decimal Point macro-header, because
the constant created from the literal will contain a
special character (the decimal point). Floating point
literals may not be used as the operands of Auto-
matic Decimal Point macro-headers for the reason
given in the explanation of FPN (Chapter 2).

TYPES OF LOZENGES

Lozenges indicate to the Processor the termination
of each operand and the position which an omitted
operand would normally occupy in relation to the
other operands. There are two types of lozenges:

Fixed. A fixed lozenge may never be omitted. If

the operand it terminates is omitted, the fixed lozenge

34

is placed back-to-back with the lozenge which termi-
nates the preceding operand.

Conditional. A conditional lozenge may be

omitted only if the operand it terminates is omitted
and no additional operands are written. If other
operands follow an omitted operand, its conditional
lozenge must be placed back-to-back with the lozenge
which terminates the preceding operand.

OMITTED OPERANDS

The specifications in the macro-instruction manual
indicate that certain operands may be omitted. The
associated lozenge is assumed to be fixed unless the
specifications state that it is conditional.

When the omitted operand is a transfer point, the
generated coding provides a transfer to the next in-
line source program instruction. This may be most
readily seen in those macro-instructions which make
some sort of test and then transfer according to the
results of the test. The IFON macro-header should
be written with two transfer points, one to be used if
a tested switch is ON, and the other if it is OFF,
The second transfer point may be omitted; if it is,
the generated instruction for the OFF condition is a
transfer to the next in-line source program instruction.

THE IMPORTANCE OF PROPERLY DEFINED
DATA FIELDS

A macro-header makes a field reference when it has
the tag of a field as an operand. In other words, it
references a field which is defined by either an area
definition or a switch definition. In order to generate
coding which is proper for the field, the Processor
must know the characteristics of the data which will
occupy the field. Obviously, it is not possible for
the Processor to examine the actual data at assembly
time. Consequently, the Processor obtains the
characteristics from the definition and generates
coding which is proper for the field according to its
definition. If the data does not conform to these
characteristics, it may be improperly processed.
However, the generated coding itself is not improper.
The importance of field definitions may be seen
in a macro-instruction which is used to compare the
contents of two fields. The fields may be alphameric
or numeric. The one-for-one instructions which
should be used to compare alphameric data differ
from those which should be used to compare numeric
data. By using the macro-instruction, the pro-
grammer is relieved of having to select the proper
instructions, but the Processor cannot assume this
burden unless the characteristics of the field are
available to it. Similarly, if literals are used
instead of the tags of fields, the literals must be

written in accordance with the standards previously
specified. For instance, an unsigned decimal written
as a literal will not be treated as numeric data but

as alphameric data.

EXAMPLES OF MACRO-INSTRUCTIONS AND
THEIR USE

The balance of this chapter contains examples of a
few general purpose macro-instructions in the
Processor library. The function and coding format
of each macro-instruction is followed by an example
which illustrates how it might be used and what in-
structions would be generated for that usage. In
Figures 57-60, the macro-headers are overlaid with
a band of grey to distinguish them from generated
instructions. The explanations should not be con-
sidered as the specifications for the macro-instruc-
tions. In some examples, certain options which are
available have been omitted entirely. Complete
specifications are provided only by the macro-instruc-
tion manual.

1. Blank Memory: BLANK

The function of BLANK is to place blanks in a field.
The basic format of the BLANK macro-header is as
follows:

Tag Operation [Num |Operand

Ty BLANK X1EXonXgH..... X9

Ty is the tag of the macro-header or is
omitted.

Xj..+.Xgp are the tags of the field in which

blanks are to be placed. The lozenges
are conditional.
In Figure 57, TAGI1 indicates that the contents of
fields ONE and TWO are to be replaced by blanks.

Tag Operation {Num [Operand
NAME 0

ONE RCD 5[+

TWO RPT 8|XXXX.ZZ

ONE

BLM @00001
RCVS TWO
BLMS @00008

Figure 57

2. Test Switch: IFON

The function of IFON is to test a switch and to transfer
according to the results of the test. The basic for-
mat of the IFON macro-header is as follows:

Tag Operation |Num|Operand

T1 is the tag of the macro-header or is
omitted.

X is the tag of the switch to be tested.

X is the tag of the ON transfer point, i.e.,

the instruction to which a transfer should
be made if the switch is ON.

X3 is the tag of the OFF transfer point.
The operand may be omitted, in which
case a transfer will be made to the next
in-line instruction. The lozenge is
conditional.

In Figure 58, ONPOINT and OFFPOINT must be
assumed to be the tags of instructions. If OFFPOINT
and its associated lozenge had been omitted, the final
instruction would not have been generated.

3. Add: ADDX

The function of ADDX is to add the data in two numeric
fields and place the result in a numeric field or an
RPT field. The numeric fields may be signed or
unsigned. The basic format of the ADDX macro-
header is as follows:

Tag Operation |Num|Operand

Ty ADDX X1HXoH XgHt

T is the tag of the macro-header or is
omitted.

Xy is the tag of one numeric source field,
i.e., the field which is the source of
one set of data to be added.

X9 is the tag of the other numeric source
field.

X3 is the tag of the numeric or RPT result

field, i.e., the field in which the result
is to be placed.

4, Increment Address: INCRA

INCRA is an Address Modification macro-instruction;
the function of this type of macro-instruction is to
modify other instructions, either macro-instructions
or one-for-one instructions. The function of INCRA

General Purpose Macro-Instructions 35

Tag Operation| Num|Operand
CHRCD
NEWYORK A
CHICAGO § B
TAG2 LOD 1I#A#
CMP 1|NEWYORK
TRE ONPOINT
TR OFFPOINT
Figure 58.
Tag Operation|Num|Operand
SOURCE RCD 5|#+02, 03
RESULT #+03. 03

MW
(2]

TAG3 RAD SOURCE
SET @00006
ADD #+75, 000#
ST RESULT

Figure 59

is to increment a field reference made by another
instruction, thus modifying the instruction so that it
makes a different field reference. An instruction
makes a field reference by having the tag of a field
as an operand. INCRA designates the instruction
which makes the field reference and the amount by
which the reference is to be increased. The basic
format of the INCRA macro-header is as follows:

Tag Operation [Num |Operand

Tl INCRA Xlﬂ le:l

Ty is the tag of the macro-header or is
omitted.

Xy is the tag of an instruction which makes
the field reference to be incremented.

X5 is the increment.

In Figure 60, the first operand of INCRA is a
macro suffix tag, designating the second operand of
MACRO. Initially, MACRO references FIELD.
However, INCRA modifies MACRO so that it sub-
sequently references whatever is located 500 positions

36

above FIELD. For instance, assume that FIELD

occupies locations 001000-001002.

When MACRO is

executed initially, it will cause these locations to be

blanked.

Once modified by INCRA, it will cause
locations 001500-001502 to be blanked.

(Note:

MACO0017#02 is a tag generated by the Processor.)

Tag Operation{Num|Operand
OTHER RCD 8]A
FIELD > 3jA
MACRO = |BLANK | ~ |OTHER
MACRO RCVS OTHER

BLMS @00008
MACO0017#02 | RCVS FIELD

@00003

TAG3 RAD 15|#+500#

AAM 15| MACO0017#02
Figure 60

An address constant is a numeric constant consisting
of a storage location. An address constant statement
designates the storage location by specifying one of
four operands: tag, literal, actual, location counter.
At assembly time, the location assigned to the tag,
literal, or location counter or the location designated
by the actual operand is used to create the constant.
In effect, the function of an address constant state-
ment is to define a data field that will contain a con-
stant and to designate the constant to be placed in the
field. The actual constant is generated by the Proc-
essor and placed in the field created for it. Thus,
an address constant enables the user to reference a
constant which is not created until the program is
assembled.

Address constants are used to initialize instruc-
tions, a procedure which alters the reference made
by an instruction or supplies a reference to an in-
struction which lacks one. For example, suppose
that an instruction must reference two record areas
alternately, areas tagged FIRST and SECOND. This
means that the operand of the instruction must contain
FIRST at certain points in the program and SECOND
at other points. To initialize the instruction, i.e.,
to modify the reference, address constants must be
created from each of these tags so that one or the
other of them can be placed in the instruction as
required. In the assembled program, the address
portion of the instruction will alternate between the
actual locations assigned to FIRST and SECOND.
Note the difference between an instruction which
references FIRST and an instruction which references
an address constant created from FIRST. In the
former case, the instruction references the contents
of a record area; in the latter case, the instruction
references a constant consisting of the storage loca-
tion of the record area.

The basic operand of an address constant state-

ment may be a tag, literal, actual, or location counter.

Operand modifiers may be used with a tag or literal
to request a generated constant:

Modifier Address Constant Generated From
Right-hand storage location of the low-order
position of a field, instruction,
or literal.
Left-hand storage location of the high-order
position of a field, instruction,
or literal.
High speed a left-hand address plus four.
Size the number of positions occupied

by a field or literal.
If no operand modifier is used, a right-hand address
will be generated as the constant. As the preceding
list indicates, a right-hand operand modifier may be

CHAPTER 6., ADDRESS CONSTANTS

written, but it is not necessary.

Character adjustments to the basic operand cause
numerical adjustment of the address constant. Addi-
tion, subtraction, multiplication, or division by a
specified amount may be requested. For example,

a character adjustment of plus five would cause the
constant to be five greater than the storage location
referenced.

An address constant may be both operand-modified
and character-adjusted. (Such an operand may have
to continue into the comments field.) The operand
modifier is a prefix to the basic operand; it consists
of the appropriate modifier symbol followed by a
comma. The character adjustment is a suffix to the
basic operand; it consists of the arithmetic operator
followed by a number designating the amount of
adjustment. The amount may not exceed 80000,

The symbols are as follows:
Operand Modifier Character Adjustment

R, Right-hand + Add

L, Left-hand - Subtract
H, High speed * Multiply
S, Size / Divide

Assume that FIELD, a data field, is assigned to
locations 001300-001309. An address constant
statement having L, FIELD as its operand will cause
001300 to be created as the address constant. The
operand R, FIELD+6 will cause 001315 to be created
as an address constant. The same constant would be
created from FIELD+6. Since the field occupies
10 positions, the operand S, FIELD will cause a
constant of 10 to be created; the operand S, FIELD*5
will create a constant of 50.

Comments about an address constant may be
started in the comments field of the address constant
statement.

ADCON Address Constant

The function of an ADCON statement is to create an
instruction which consists of a four-character, un~
signed address constant preceded by the actual code
for No Operation. The instruction is positioned in a
4 or 9 location. The ADCON statement is written as

follows:

Tag Operation {Num [Operand

T ADCON nn|X;

T is the tag of the address constant.
nn is ASU zoning or is blank.

Xy is a tag, literal, actual, or location

counter.

Address Constants 37

The ADCON statement creates an instruction of
the form Axxxx. A is the actual code for No Opera-
tion; xxxx is the address constant. The instruction
Axxxx will be positioned so that the low-order char-
acter occupies a 4 or 9 location. Any ASU zoning
will be properly generated as part of the constant.

The ADCON statement in Figure 61 will cause an
address constant to consist of the storage location of
the right-hand position of the RECORDONE data field.
Instructions referencing the constant do so by refer-
encing its tag, FIRST,

B TAG o, .or:unov:o r:‘w:a N OPERAND "L_. (
co + §

,E L.RST. ADCON ECOQRDAONE. . N

E . -)

Figure 61

Figure 62 specifies that the left-hand address con-
stant consisting of the location of INSTRCTION is
to be zoned for ASU 15,

TAG OPERATION [NUM. OPERAND j
O 15]18 20]2) 22/23 3e]3

TNSTRCT T; TART. \
ADCONLSL , INSTRCT.1ON g;

Figure 62

ACON4 Address Constant

The function of an ACON4 statement is to create a
four-character, unsigned address constant. The con-
stant is placed in the next four available storage
locations without regard to the positioning of its low-
order character. ASU zoning, if specified, is
properly generated as part of the constant. The for-
mat of the ACON4 statement is as follows:

B TAG Wl ?nnnor:o T‘uﬂﬁ’ OPERAND ”J;_' (
LELD1 RCD . 1O \
TAGL . coNd| FLEWDONE |.. .. ¢
P __—— 7

Figure 63

Figure 64 shows that the constant will consist of
the location assigned to the RECORDAREA field.
Since the operand modifier ""H, " is used, the high
speed address will be generated.

. TAG Al ‘ortnnor:o ?luu N OPERAND solsn {
AME | O 3
RECORDAREARCD . 135A+ NN N —
¥ A
TAG2 . CON4| . H.,RECORDAREA . .. |.]
S i S = —_——
Figure 64

ACONS5 Address Constant

The function of an ACON5 statement is to create a
five-character address constant, either signed or un-
signed. The constant is placed in the next five avail-
able storage locations without regard to the positioning
of its low-order character. The sign, if specified,

is placed over the low-order character. The format
of the ACONS5 statement is as follows:

Tag Operation|Num|Operand
Ty ACON5 5|Xy
T4 is the tag of the address constant.
s is + for a positive constant.
is - for a negative constant.
is blank for an unsigned constant.
X3 is a tag, literal, actual, or location

counter.
The ACON5 statement in Figure 65 specifies that
the location of the literal is to be made an address

Tag Operation {Num [Operand constant, Notice that the address constant will be
signed. The sign of the address constant is not re~
Ty ACON4 mn|X, lated to the sign of the literal.
Tq is the tag of the address constant. . B it i+ 1 oreae sejze {
nn is an ASU number or is blank, AGl 5 +H#+5000% 0
s . il Lﬂ_,__/
Xy is a tag, literal, actual, or location Figure 65

counter,

In Figure 63, the ACON4 statement is a request
for an address constant consisting of the storage
location assigned to FIELD1. Since no operand
modifier is specified, the right-hand address will
be generated. The constant may be referenced by
its tag, TAGI1.

Figure 66 shows a request for an unsigned constant
twice the size of FIELD2, The constant 00012 will
be generated.

TAG OPERATION [NUM. OPERAND
T z222.22 }
TAG2. ACONS ,FLELD2x2 N
: ——
Figure 66

Restrictions on an ACON5 Statement. ASU zoning
may not be specified in an ACON5 statement.

A signed constant should not be specified if there
is a possibility that the address from which the con-
stant is created will exceed 79999. In the event that
a signed constant is requested for such an address,
the constant is developed without a sign. A message
to the effect that the constant exceeds the address
limit is provided at assembly time,

ACONG6 Address Constant

The function of an ACON6 statement is to create a
six-character, unsigned address constant. The con-
stant is placed in the next six available storage
locations without regard to the positioning of its low-
order character. The format of the ACONG6 state-
ment is as follows:

Tag Operation |Num [Operand

Ty ACONG6 Xy

Ty is the tag of the address constant.
X1 is a tag, literal, actual, or location

counter.
In Figure 67, the ACON6 statement requests that
5000 be generated as a constant.

TAG OPERATION |NUM. OPERAND
'e 20{21 22|23 38]39

R N {
CoNé. . @5000 T{

AGL

Figure 67

Restrictions on an ACON6 Statement. ASU zoning
may not be specified in an ACON6 statement.

ADDRESS CONSTANT LITERAL

An address constant literal is an operand with a
double function; it is a request for an address constant
and an operand that references the constant. The
generated address constant is placed in the literal
table. For example, when an instruction references
a tag as part of an address constant literal, a con~
stant consisting of the location assigned to the tag

will be created and placed in the literal table. When
the program is assembled, the operand (address
constant literal) of the instruction will be replaced by
the location assigned to the generated constant. If

a program requires many address constants, they
should be created with address constant statements.
The address constant literal operand is useful in a
program that requires an occasional address constant.

Writing an Address Constant Literal Operand

The operand may contain a tag or a literal; operand
modifiers must be used with either one to specify the
type of address being requested. If ASU zoning is

to be generated as part of the constant, the ASU num-
ber is placed directly after the operand modifier and
is followed by a comma. The basic format of the
entire operand is either of the following:

1. Operand modifier plus a tag or literal.

2. Operand modifier plus ASU zoning plus a tag
or literal,

The symbols for the operand modifiers and ASU
zoning are shown in the following list (nn represents
an ASU number):

Address Type Operand Modifier Modifier and
ASU Zoning

Right-hand R@ R@nn,
Left-hand L@ L@nn,
High speed H@ H@nn,
Size s@ S@nn,

In Figure 68, an address constant is requested for
the right-hand address of FIELD. The instruction
specifies that the address constant is to be loaded
into ASU 15. When the instruction is executed, the
right-hand address of FIELD rather than the contents
of FIELD will be placed in ASU 15.

. TAG] operation Tnum [OPERAND :J“ 7
FLELD RCD . 35A+ I g

e z . e .4,;_%
ADCONLIT . LOD . || 5R@FIELD . . 2
Figure 68

Figure 69 specifies that the address constant con-
sisting of the right-hand address of FIELD be zoned
for ASU 5. As in the preceding example, when the
instruction is executed, the address constant will be
placed in ASU 15.

. JAG , ﬁOPEIA"OP:Q ':'W:z ' OPERAND olso 7
FLELD RCD . 25A+ (
DCONLIT LOD 15R605J ELELD %

Figure 69

Arithmetic instructions, such as ADD, SUB, etc.,
cause a five-position signed constant to be created;
the constant is signed plus. In the 7080 mode, the
maximum constant is 79999. Instructions requiring
a 4 or 9 address, such as LDA, AAM, etc., cause a
four-position unsigned constant to be created and
properly positioned in a 4 or 9 location. In 7080 mode,
the maximum constant is 159999. All other instruc-
tions cause a four-position unsigned constant to be

Address Constants 39

created for a 705 II program and a five-position un-
signed constant to be created for 705 III and 7080 pro-
grams. (See Chapter 7 for further definition of '"7080
mode. ")

Restrictions on an Address Constant Literal Operand.
Character adjustment may not be used for the purpose
of modifying the constant itself. If character adjust-
ment is written in an address constant literal operand,
it will be applied to the location of the constant.

If an address constant literal operand is used in a
macro-header, it may not designate ASU zoning.

40

Instructions to the Processor concern the assembly
process; they are executed by the Processor at
assembly time. Consequently, they do not appear in
the object programs, although they are written in
the source program wherever they are required.
Through these statements, the programmer is able
to communicate with the Processor. The instructions
to the Processor are listed below according to the
aspect of the assembly process that they concern:
1. Standard Assembly Procedures
Location Assignment - LASN
Special Assignment ~ SASN
Assignment of Library Subroutines - SUBOR
Assignment of Literals - LITOR
Transfer Card - TCD
2. Object Program Content
Include Subroutine - INCL
Translation - TRANS
Source Program Language - MODE
3. Object Program Listing
Skip to New Page - EJECT
Title for Routine or Comment - TITLE

INSTRUCTIONS TO THE PROCESSOR THAT CONCERN
STANDARD ASSEMBLY PROCEDURES

Certain instructions to the Processor may be used to
alter standard assembly procedures. To understand
how these instructions may be used, it is first neces-
sary to know what the procedures are:

1. Location assignments. The Processor assigns
storage locations in ascending order to the object
program. In making the assignments, it uses a
location counter that is set initially to location 00160.
The parts of the object program are assigned in the
following sequence: the machine language equivalent
of the source program, the library subroutines, the
literal table. If no subroutines have been requested
by either the source program or the Processor itself,
the literal table is placed after the source program,

2. Standard ''00" transfer control card. The
Processor produces this as the terminal card of the
object program deck. (Chapter 8 contains additional
information on the object deck.) The standard "00"
card contains instructions to set various ASUs. The
final instruction on the card is a transfer to the first
instruction in the object program. At the time the
object program is to be executed (object time), it is
placed in storage by a loading program. When the
loading program encounters the standard "00" transfer
card, it executes the instructious the card contains,
thereby transferring control to the object program
itself.

The instructions to the Processor explained in this

CHAPTER 7. INSTRUCTIONS TO THE PROCESSOR

section enable the programmer to direct the Proc-
essor to do one or more of the following:

1. To use more than one location counter in
making assignments.

2. To assign specific locations designated by the
programmer.

3. To alter the order of the object program parts.

4. To provide additional ""00" cards and to place
them within the object program.

It is often necessary to modify the standard
assembly procedure. For example, it must be done
when using IOCS (Input/Output Control System),
because the IOCS routines occupy a large storage
area starting in location 00160. The object program,
therefore, must be positioned beyond the IOCS area.
The positioning is accomplished by starting the source
program with an instruction to the Processor to set
the location counter to a location above the I0CS
area,

The ability to specify storage assignments allows
the programmer to conserve storage space by over-
lapping assignments, i.e., by assigning the same
area of storage to more than one routine or block of
data. A housekeeping routine is frequently overiapped
with another routine, since the housekeeping routine
is only executed once.

With the use of instructions to the Processor, the
programmer is able to cause the housekeeping routine
to be placed in storage and executed before the other
routine is placed in the same area. Another example
of overlapping is the assignment of two or more
NAME definitions to the same area. This is often
desirable when the program is to process sets of
records that possess different characteristics but
require the same amount of storage space. As long
as all the records need not be in storage simultaneously,
the same location assignment may be specified for
the various NAMEs.

Location Assignment - LASN

The function of a LASN statement is to set a location
counter to a specified location; 10 counters are
available. A LASN statement may set the designated
counter to one of the following:

1. An actual location specified by the programmer.

2. An actual location, unknown to the programmer,
that has already been assigned by the Processor to
a field or an instruction.

3. One location beyond the highest location
assigned from the counter at any point in the assign-
ment process.

4. Lecation 00160, the initial location assignment.

5. One location beyond the highest location

Instructions to Processor 41

assigned from a point in the assignment process
specified by the programmer.

Each time the Processor encounters a LASN, it
sets the designated counter and makes subsequent
assignments from that counter. This continues until
another LASN is encountered or until the assignment
process is completed. Multiple counters are useful
when specifying location assignments in a program
of many sections, because one counter can be allo-
cated to each section.

The LASN is written as follows:

TAG FIELD. This field must be left blank.

OPERATION FIELD. The mnemonic code LASN is
placed here.

NUMERIC FIELD. The counter to be set is designated
in column 22 of this field, The column is left blank
when designating the Blank counter: each of the other
counters is designated by one of the digits 1-9. The
Blank counter may be considered the primary counter,
since it is used by the Processor in the absence of any
LASN statements., Additional information on the
Blank counter is supplied in the section ''Location
Assignments from the Blank Counter."

OPERAND FIELD. To set the counter designated in
the numeric field, the entry in this field may be one
of the following:

1. An actual operand. The counter is set to the
location specified by the operand.

2. The tag of a statement appearing anywhere in
the program before the LASN. The counter is set
to the location previously assigned to the instruction
or field identified by the tag. The tag may be
character-adjusted.

3. A blank operand, The counter is set to one
location beyond the highest location previously
assigned from it.

To reset the counter to location 00160, from which
the standard assignment process starts, leave columns
23-73 blank and place the character R in column 74,
When used in column 74 of a LASN statement, this
character may be considered the Reset character.
(For additional information on the Reset character
see the section entitled ""Special Uses of the Reset
Character. ')

COMMENTS FIELD. When a tag or an actual operand
is used, comments about the statement may be placed
in this field. When writing comments, column 74
should be examined to make sure it does not contain
R. If it does, subsequent use of the counter is
affected as described in the section entitled '"Special

42

Uses of the Reset Character. "

In Figure 70, storage assignments are shown to
the right of the hand-coded Autocoder IIl statements.
Notice that the assignments made after the LASN
statements are consistent with the requirement of
a 4 or 9 location for instructions and with NAME
statements that specify a location through an entry
in the numeric field.

Tag Operation|Num|Operand ’ Assignments
LASN @2000 002000
003007
START NAME 0{END 003010
ONE RCD 4|+ 003013
TWO 7|#+04. 03 003020
END CON 4 F 003024
L§SN 1{@50000 050000
TAG ADCON START 050004
g 069994
LASN 1|TWO 003014
EXTRA|RCD 7(#+05.02 003020
é 004000
LASN 1 069995
LASN 1 R | 000160
LASN 003025

Figure 70

SPECIAL USES OF THE RESET CHARACTER.
Placing the Reset character (R) in column 74 of a
LASN statement containing an actual or a tag operand
does not modify the setting designated by the operand.
However, it may affect a subsequent setting designated
by a blank operand for the same counter, because

the Processor will ignore any assignments it made
before encountering the statement containing the

Reset character.

This may best be seen with an illustration. Suppose
that the highest assignment made from counter 1 is
location 59999. The Processor then encounters a
LASN for counter 1 to location 2000. After setting
the counter, the Processor assigns a block of 500
positions, bringing counter 1 to 2499. Now a LASN
with a blank operand is encountered for counter 1.
The counter is set to 16cation 60000, one location
beyond the highest assignment made from the counter
up to this point in the assignment process. To return
to the beginning of this example, when location
counter 1 contains 59999, suppose that the Processor
encounters a LASN for counter 1 to location 2000, but

the statement also contains R in column 74. As
before, the counter is set to 2000, a block of 500
positions is assigned, and the counter is again at
2499. Now a LASN with a blank operand is encounter-
ed for counter 1. Because the Reset character
destroyed the previous high location (59999), the
counter is set to 2500, This is one location beyond
the highest assignment made by the Processor after

it encountered the Reset character.

LOCATION ASSIGNMENTS FROM THE BLANK
COUNTER. The Processor uses the Blank counter
unless directed by a LASN statement to do otherwise.
When the assignment of the machine language version
of the source program is completed, the library sub-
routines must be assigned. The Processor uses the
Blank counter to make the assignments. It first sets
the Blank counter to one location beyond the highest
location previously assigned, no matter what counter
was used to make assignment. After it completes

the subroutine assignments, it repeats the same
process in assigning the literal table, i.e., it sets
the Blank counter to one location beyond the highest
location previously assigned. If no LASNs have been
encountered within a subroutine, the Blank counter
itself contains the highest location previously assigned
at the time the literal table is to be positioned. The
programmer should keep this use of the Blank counter
in mind when placing LASN statements in subroutines.
(The entire assignment of library subroutines and

the literal table may be altered by LITOR and SUBOR.
Both are instructions to the Processor and are
explained on subsequent pages.)

RESTRICTIONS ON A LASN STATEMENT. The
operand may not be the tag of a field or an instruction
if its high~-order position occupies location 000000,
A LASN may, however, contain an actual operand of
zero (@000000).

A LASN statement may not be referenced by
another Autocoder III statement.

Special Assignment - SASN

The function of a SASN statement is to set the Blank
counter as follows:

1. To an actual assignment specified by the
programmer.

2. To an actual location, unknown to the pro-
grammer, that has already been assigned by the
Processor to a field or an instruction.

SASN is a limited form of LASN. Like LASN, it
may be used in library subroutines as well as in
programs., However, it differs substantially from
LASN in the following respect. The highest location
assignment resulting from a SASN is ignored when
the Processor sets the Blank counter to one location

beyond the highest location previously assigned from
the counter. (Such a setting is specified by a LASN
with a blank operand.) In effect, location assign-
ments resulting from a SASN are no longer signifi-
cant once the SASN is terminated. Termination of
a SASN results when a LASN is encountered, no
matter what counter the LASN designates or what
type of operand it contains.

Because the SASN is a limited form of LASN, it
does not require a detailed explanation. It is written

as follows:

Tag Operation|Num|Operand
SASN Xy

X1 is an actual operand.

is the tag of a statement appearing any-
where in the program before the SASN.
The tag may be character-adjusted.
Notice that the tag and numeric fields must be
left blank. Comments may be placed in the comments
field, and the character R in column 74 has no effect.
Figure 71 illustrates the fact that SASN assign-
ments are ignored during subsequent LASN assign-
ments.,

Tag |Operation|Num |Operand "1 Location Assigned
(!
LASN @2000 002000
g 002499
SASN @3000 003000
004000
LASN 002500
Figure 71

RESTRICTIONS ON A SASN STATEMENT. The
operand may not be the tag of a field or an instruction
if location 000000 is occupied by the high-order
position of the field or instruction. A SASN may,
however, contain an actual operand of zero (@000000).

A SASN statement may not be referenced by another
Autocoder III statement.

Assignment of Library Subroutines - SUBOR

The function of a SUBOR statement is to specify the
starting location for the assignment of library sub-
routines. The SUBOR assignment supersedes the
standard subroutine placement, i,e,, after the last
instruction in the program., SUBOR enables the user
to position the block of subroutines anywhere in
storage, and the statement itself may be written at

Instructions to Processor 43

any point in the program. For a program written in
two modes, it may be necessary to place the sub-
routines below the storage limit of the secondary
mode. For example, the primary mode of a program
may be 7080, and the secondary mode 705 III. If the
705 1II portion of the program must have access to
the subroutines, and it is anticipated that the final
instruction will occupy a location close to or beyond
the storage size of the 705 I1I, a SUBOR must be
used to position the subroutines in the lower portion
of storage. This would alter the order of the object
program parts so that the block of subroutines would
be placed within the machine language equivalent of
the source program. It may even be desirable to
place the subroutines at the beginning of the object
program,

The SUBOR statement is written as follows:

Tag Operation|NumOperand
SUBOR X1
X1 is an actual operand.

is the tag of an Autocoder III statement,
The tag may be character-adjusted. The

tagged statement must precede the SUBOR

statement.
Comments may be placed in the comments field.
Figure 72 indicates that the programmer assumes
the subroutines cannot possibly occupy more than
5,000 positions.

. TAG . XSCJFERA]'VOI':O ':‘U:AZ,{“ OPERAND salss 7
UBOR . @160|. ..
. ASN . . B516Q . A I
RECORD NAME %ENDRECORD o
14 1
‘ .
L J S U Paow oo g

Figure 72

RESTRICTIONS ON THE SUBOR STATEMENT. The
operand may not be the tag of a field or an instruction
if location 000000 is occupied by the high-order
position of the field or the instruction. A SUBOR
may, however, contain an actual operand of zero
(@000000).

A SUBOR statement may not be referenced by
another Autocoder III statement.

Assignment of Literals - LITOR

The function of a LITOR statement is to specify the
starting location for the assignment of the literal
table. The LITOR assignment supersedes the

44

standard literal table placement, i.e., after the
subroutine block or after the last instruction of the
program if no subroutines are used. LITOR enables
the user to position the literal table anywhere in
storage, and the statement itself may be written at
any point in the program. (The previous discussion
on the use of SUBOR applies as well to LITOR.)
The LITOR statement is written as follows:

Tag Operation|Num|Operand
LITOR Xy
X1 is an actual operand.

is the tag of an Autocoder III statement.
The tag may be character-adjusted. The
tagged statement must precede the SUBOR
statement.

Comments may be placed in the comments field.

In Figure 73, the Processor is instructed to start
the literal table assignment at the same location
already assigned to TAG. It must be assumed either
that the contents of TAG are no longer needed when
the literal table is actually placed in storage or that
the contents of TAG are placed in storage after the
literal table is no longer needed.

L TAG ul‘sovsnnor:ol?‘u»;. . OPERAND e (
e “A;L%Q& TAG . . . ug
Figure 73

RESTRICTIONS ON THE LITOR STATEMENT. The
operand may not be the tag of a field or an instruction
if location 000000 is occupied by the high-order
position of the field or instruction. A LITOR may,
however, contain an actual operand of zero (€000000).

A LITOR statement may not be referenced by
another Autocoder III statement.

Transfer Card - TCD

The function of a TCD statement is to create a '"'00"
transfer control card in addition to the standard 00"
card that terminates the object program deck. The
additional '"00" card will be internal to the object
program, occupying the same relative position in it
that the TCD statement occupies in the source
program.

The TCD statement must be followed by Autocoder
11 statements that specify the contents of the card,
i.e., the instructions or the instructions and data the
card will contain, The last of these Autocoder III
statements must be a transfer back to the loading

program or to another object program instruction
that is already in storage. A LASN (or SASN) state-
ment must be used after the final statement supplying
the contents of the 00" card. A program may contain
more than one TCD statement. Multiple TCDs may
be written consecutively or interspersed throughout
the program.

The format of the TCD statement is as follows:

Tag Operation |Num |Operand
Ty TCD
T is the tag of the statement or is omitted.

C(l)mments about the "'00" card may be written in
the comments field.

THE EFFECT OF THE "00" CARD ON THE LOADING
PROCESS. As previously explained, a '"00" card
causes the loading program to interrupt the loading
procedure and to execute the instructions on the card
as soon as it is loaded into storage. The area of
storage assigned to the contents of any ""00" card is
the input area used by the loading program, i.e,,
locations 000080-000159, On the standard 00" card
that the Processor automatically produces, the final
instruction is a transfer to the first instruction in

the object program. A return is not made to the
loading program, because the standard ""00' card is
the final card of the object program deck. In contrast,
the ""00" card created by a TCD statement is followed
by additional object program cards. Consequently,
this "00" card must contain as its final instruction a
transfer back to the loading program or to some

other routine, already in storage, that will ultimately
return control to the loading program.

A 00" card is often used to execute an overlapped
routine, as shown in Figure 74. As soon as the "00"
card is placed in the loading input area, a transfer
is made to the HOUSEKEEP routine, which is already
in storage. The last instruction of the routine is a
transfer back to the '"00" card, which transfers in
turn to the loading program. When loading is
resumed, the HOUSEKEEP routine will be overlapped
by the CALCULATE routine.

. TAG s .omunov:a ?u':z. B OPERAND L:li’ S
QUSEXKEEP SEL 500, N . \
ENDHOUSEXPTR ERAQCARD. N
2 §
TCD
R HOUSE KEEP ‘)
ZEROCARD TR .. 0004 ({
e ASN. | . MOUSEKEEP RS
ALCULATE ADDX . ONENTWONTHREEX . | . ,u(
. . % /Wm
Figure 74

RESTRICTIONS ON THE TCD STATEMENT. The
machine language version of the Autocoder III state-
ment specifying the ""00" card content may not

exceed 60 positions. (A machine language instruction
occupies five positions.)

If an object program contains '""00" cards created
from TCD statements, the input area of the loading
program used with the object program must start
at location 000080.

INSTRUCTIONS TO THE PROCESSOR THAT
CONCERN OBJECT PROGRAM CONTENT

Include Subroutine - INCL

The function of an INCL statement is to designate a
library subroutine that the Processor is to insert in
the object program. The source program must also
contain an instruction or a routine that supplies the
linkage to the subroutine designated by an INCL

statement. The format of the INCL statement is as
follows:
Tag Operation{Num|Operand
INCL X1
Xy is the five-character mnemonic identifi~
cation code of the subroutine to be
included.

Comments about the subroutine may be written in
the comments field.

The function of the macro-instruction LINK, used
in Figure 75, is to provide linkage to a subroutine.
The subroutine is ROOTS; the tag of its entry point
is STEPL.

., TAG ol ‘omuno»:o T‘w:z ., OPERAND ":L_’]
LINK | STEP1X R
H e .4#4%
. INCL RQOT.S, - .
. A . L §
Figure 75

TYPES OF LIBRARY SUBROUTINES. Programmers
may write subroutines in Autocoder III language and
add them to the standard Processor library. Such
a subroutine will be included in a program assembly
only if it is designated by an INCL statement. The
standard library also contains subroutines that are
required by macro-instructions, but the Processor
automatically supplies these subroutines, and the
details of their inclusion are not relevant to the use
of INCL.

Two types of subroutines may be written in
Autocoder III language:

Instructions to Processor 45

1. Class A, These may contain any Autocoder III
statement.

2. Class B. These may contain any Autocoder
III statement except the following: NAME used to
enclose fields, macro-instructions other than ENTS80
and LEV80, an INCL that designates a Class A sub-
routine.

RESTRICTIONS ON THE INCL STATEMENT. An
INCL statement may not be referenced by another
Autocoder IIT statement,

Translation - TRANS

The function of a TRANS statement is to translate
the operand of a one-for-one instruction into an
actual location.

The TRANS statement designates an actual location
and equates it to the reference made by the operand
of a one-for-one instruction. More than one instruc-
tion may reference the same TRANS statement. In
this case, each reference will be equated to the
location designated by the TRANS.

The TRANS statement is written as follows:

TAG FIELD. The entry in this field must be the tag
that appears as the operand of the one-for-one in-
struction making the reference.

OPERATION FIELD. The mnemonic code TRANS
is placed here.

NUMERIC FIELD. This field must be left blank.

OPERAND FIELD. The entry in this field may be
one of the following operands:

1. An actual operand. This location will appear
in an object program instruction wherever the tag of
the TRANS appears as a source program operand.

2. A location counter without character adjust-
ment (*). The location of the instruction following
the TRANS will appear in an object program instruc-
tion wherever the tag of the TRANS appears as a
source program operand.

3. A location counter with a character adjustment
of minus five (*-~5). The location of the instruction
immediately preceding the TRANS will appear in an
object program instruction wherever the tag of the
TRANS appears as a source program operand.

COMMENTS FIELD. Comments may be placed here.

In Figure 76, the TRANS statement equates
MASTERTAPE to an actual tape address. In the
object program listing, the machine language version
of the SEL instruction will contain the address 0200.

. TAG OPERATION iN‘UM. OPERAND waloe]
SEL . MASTERTAPE 3
- 2 — 5
STERTAPETRANS 200 .
| L)
Figure 76

Assume that location 05009 is assigned to the first
instruction generated from the ADDX macro-instruction
in Figure 77. The operand of the TR instruction is
also translated to 05009, because the TRANS state-
ment does not exist in the object program. The *
operand of a TRANS statement is, in effect, *+5.

. TAG O?QRATIOz‘o P:IUM s OPERAND salse ‘
TR EXT. I
e z ué_%
NEXT TRANS . N
DDX . X _.A_J_ugé
Figure 77

If the RD instruction in Figure 78 is assigned to
location 03059, the operand of the TR instruction will
be translated to 03054, This results from the fact
that the TRANS statement does not appear in the
object program. Consequently the BSP instruction
is the instruction actually preceding the RD instruc-
tion and is assigned to location 03054.

. TAG s uOPElAYIOP:o ':‘U'ZAZ s OPERAND solse {
TR . ERROR . 3
D 2. . . e %
| SP. .
ERROR. TRANS . -5 ¢
RD___ | EA 3
! o7
Figure 78

RESTRICTIONS ON THE TRANS STATEMENT. The
only character adjustment that may be used with
a location counter operand is minus five (*-5)., If
other adjustments appear, they will be ignored.

The TRANS statement must be tagged, because it
is always referenced.

Source Program Language - MODE

An Autocoder III program may contain statements
written in the following languages:

1. FORTRAN

2. Report/File Writing

3. Decision

4, Arithmetic

5. Table-Creating

The term "higher languages of the 7058 Processor"

includes all of the above-listed languages except
FORTRAN. MODE statements are instructions to the
Processor that indicate a change in the language of
the source program, and they must be used in Auto-
coder III programs that contain Report/File Writing
statements and/or FORTRAN statements. MODE
statements may not be tagged, but comments may be
written in the comments field.

FORTRAN MODE STATEMENT. The statement in
Figure 79 must precede each Fortran portion of an
Autocoder III program.

TAG OPERATION [NUM. OPERAND
site 20l21 22[23 38]39

FORTRAN4

MODE

NN

Figure 79
The operand FORTRAN4 indicates that the sub-
sequent statements are in standard FORTRAN format,
i.e., 704 FORTRAN format. For further information
on mixing FORTRAN and Autocoder III, see the IBM

bulletin, '"705 FORTRAN Programming System, "
Form J28-6122.

REPORT/FILE WRITING MODE STATEMENT. The
statement shown in Figure 80 must precede each
Report/File Writing portion of an Autocoder III
program.

QDE. REPORT.

TAG OPERATION |NUM OPERAND
3 1s)e 20|21 22/23 38]39 }‘

U VISP S S S S PR

Figure 80

AUTOCODER MODE STATEMENT. The statement
shown in Figure 81 must precede each Autocoder Il
portion of a program if that portion follows Report/
File Writing or FORTRAN statements. The state-
ment is used whether or not the Autocoder III portion
also contains Decision, Arithmetic, and Table-
Creating statements.

j TAG 15‘%5()?5&‘1'0':(: v:‘ur:é B OPERAND b J
g____A__‘*ﬂD.DL__IAUTO(‘ODER .

. S . S
Figure 81

NOTE: This MODE statement is not used when the
entire program consists of Autocoder III statements
alone or in combination with Decision, Arithmetic,
and/or Table-Creating statements.

CODING GENERATED IN 7080 MODE

The terms "7080 mode'" and ''"7080 mode portion of
the program' are used throughout this manual. They
refer to the object machine for which the Processor
produces coding, makes location assignments, etc.

The program mode is communicated to the Processor
by using the macro-instructions Enter Eighty Mode
(ENT80) and Leave Eighty Mode (LEV80), both of
which are described in the macro-instruction manual.
The 7080 mode portion of a program consists of any
set of statements preceded by an ENT80 and followed
by a LEV80. Of course, if the entire program is in
7080 mode, the LEVS80 is not necessary. Since these
macro-instructions are Assembly Control macro-
instructions, they should be considered along with
other instructions to the Processor.

ENTS80 and LEV80 affect the coding generated from
the statements in the portion of the program that each
of them precedes. After encountering an ENTS80, the
Processor subsequently generates 7080 instructions
whenever a choice exists in the type of coding to be
generated. This continues until the Processor en-
counters a LEV80. It then generates 705 Il or 705 III
coding, depending on which is designated as the
secondary mode for the assembly. The program mode
is a consideration in using address constants, macro-
instructions, one-for-one instructions, and instruc-
tions to the Processor. For example, the Processor
generates an FIA instruction when it encounters an
indirect address in the operand of an instruction in
the 7080 mode portion of a program, This is true
whether the indirect address appears in a hand-coded
one-for-one instruction or a generated instruction.
As another example, an ACUNG6 should not be reier-
enced by an instruction outside the 7080 mode portion
of a program.

INSTRUCTIONS TO THE PROCESSOR THAT
CONCERN THE PROGRAM LISTING

Skip to New Page - EJECT

The function of an EJECT statement is to advance the
listing to a new page. The program statement that
follows EJECT will be the first statement on the new
page. Unless the listing is controlled by EJECT
statements, each page will contain 55 lines of print.
The statement is written as shown in Figure 82. It
may not be tagged, and it may contain only one line
of comments.

TAG OPERATION [NUM.! OPERAND T
i !
e EJECT, | E—
!
b 1 i . A I
Figure 82
FIFQT dncs not appear on the listing page However,

it is assigned an index number, and the number is one
greater than the index number of the statement that
precedes the EJECT. (Index numbers are explained
in Chapter 8.)

Instructions to Processor +7

Title for Routine or Comment - TITLE

The function of a TITLE statement is to place lines
or paragraphs of descriptive information in the
program listing, TITLE may be used in any way the
programmer desires; some of the more common
uses will be discussed following the specifications
for writing the statement.

The TITLE statement is written as follows:

TAG FIELD, OPERAND FIELD, COMMENTS FIELD.
Any or all of these fields may be used for the
descriptive information. The commentary does not
have to start in the first column of any of the fields,
and it does not have to extend to the end of the
comments field before a continuation line is started.

OPERATION FIELD. The mnemonic code TITLE

is placed here. If the information is continued into
subsequent lines of the coding sheet, i.e., is written
as a paragraph, only the first line must contain
TITLE. If a series of paragraphs is written, and
each is separated by one or more blank lines on the
coding sheet, the lines of the paragraphs will be
treated as TITLE continuation lines.

NUMERIC FIELD. This field may contain an entry
in the first TITLE line. However, it must be left
blank in the continuation lines. It is recommended
that the numeric field be left blank at all times.

TAG OPERATION |NUM. OPERAND
16

20021 22[23 38|39

COMMENTS

TITLE

THI1IS INSTRUCTION IS USEFUL FOR

P&QMLQI.N.G:_QQFMENIARI._ABQMLAHERQ&RAM.

Figure 83

COMMON USES OF TITLE. Describing the function
of each program portion, summarizing program
procedures, and providing a table of contents for the
program listing are a few of the uses for TITLE. In
addition to appearing in the program listing, all
TITLES are also printed in a special section of the
Operator's Notebook, an optional feature of the
assembly documentation provided by the Processor.
This special page shows each TITLE and its location
in the listing. This TITLE page is useful as an
index for the program listing. It is often desirable
to have information about the program at the start of
the listing and/or before each major program portion.
TITLE can be combined with EJECT, as in Figures
84 and 85, to provide a page of commentary only.

When planning pages of commentary or describing
program parts, it should be remembered that an
EJECT statement before each part will cause that
part to appear on a new page of the listing. Thus,

EJECT and TITLE may be used to separate each
program portion, to describe it, and to provide a
table of contents or an index. The standard listing
page contains 55 lines unless EJECT is used. In
Figure 84, it must be assumed that TITLEs desig~
nating the four program parts have been used else-
where in the program and that this TITLE page is
to be the introductory page of the listing.

In Figure 85, it must be assumed that the listing
page containing each of the parts is headed by a TITLE
describing that part of the program.

TAG OPERATION |NUM. OPERAND olae COMMENTS
TITLE ABC. PAYROLL. .PROGRAM - FOUR PARTIS .
. PART A CONTATNS. THE HOUSEKEEPING
. , , ROUTINE, WHICH IS ONLY.
P
?
- JECT|

Figure 84

48

R TAG . “OPERATIOI:O):‘U}:z Ls OPERAND ”J¥ COMMENTS
TITLE BC. PAYROLL PROGRAM... THIS PROGRAM
- CONTAINS FOUR PARTS. THE DETAILS OF
. EACH ARE. SUPPLIED AT THE POINTS LISTED BELOW..
ARTA . . _PGLIN 201 \
PART 2. . DEFINITIONS AND ICONSTANTS PGLIN 219 . R
EJECT e N .

Figure 85

Instructions to Processor

CHAPTER 8. ASSEMBLY DOCUMENTATION

One card is punched for each line of the coding sheet,
as explained in Chapter 1.
from the source program deck is the input to the
Processor. The assembly output consists of the
object program deck and program documentation.

Although the object program deck is normally produced

on a card-image tape, it will be referred to as a deck.
OBJECT PROGRAM DECK

The sequence and contents of the deck is shown in the
following list:

1. load card

2, literal table

3. machine language equivalent of source program

4, Class A subroutines

5. Class B subroutines

6. standard "'00'" transfer control card.

Note that the literal table, although assigned to
storage locations above those of the object program
instructions, precedes the instructions into storage.

The format of the object program card is as
follows:

1. Program identification (6 positions). This is
the source program identification (ident field on coding
sheet).

2. Serial number (3 positions). This is the num-
ber of the object program card. It is assigned by
the Processor and bears no relation to the number
of a source program statement (pg/line fields on
coding sheet).

3. Initial address (4 positions). This indicates
the storage location at which the first instruction or
the first constant on the card is to be placed.

4. Number of columns (2 positions). This is the
amount of data being supplied by the card. A maxi-
mum of 60 positions may be indicated; this is the
space required by 12 instructions. The '"00" card
contains zeros in these positions.

5. Instructions and/or constants (1-60 positions).
This is the actual portion of the object program being
supplied by the card. It is placed at the storage
location specified by number 3 above.

ASSEMBLY DOCUMENTATION

A listing of the object program itself and diagnostic
messages is the minimum assembly documentation;
optional documentation consisting of the Operator's
Notebook and the Symbolic Analyzer may be requeste
as additions to the listing. A column-by-column
explanation of the listing format appears in a sub-
sequent section of this chapter, ""Details of the

Listing. "

A
103

50

A card-image tape produced

Program Listing

The contents of the listing are as follows:

1. Literal Table, The Processor classifies a
literal as signed when the first position after the
literal symbol (#) is occupied by a plus or minus sign.
The literal table is separated into five parts: signed
literals, length not a multiple of five; signed literals,
length a multiple of five; unsigned literals, length a
multiple of five; unsigned literals, length not a
multiple of five; address constant literals,

2. Source Program With Generated Coding. This
may be considered the main portion of the program
listing. The source program statements appear in
their original sequence; any generated coding appears
directly after the statement that caused the generation.

3. Class A Subroutines. The subroutines are
inserted alphabetically, i.e., according to the
mnemonic identification code of each subroutine,

Any generated coding appears directly after the
statement that caused the generation.

4. Class B Subroutines. The subroutines are
inserted alphabetically.

5. Diagnostic Messages. These messages are
produced by the Processor and indicate errors, or
possible errors, in source program statements.
When the Processor detects a possible error
conditiol , it often makes certain assumptions and
generates coding based on them. It also supplies
a warning message on the nature of the possible
error or the action taken to correct an error. The
reference manual, "Autocoder III - System Operation, "
Form C28-6062, describes such messages.

Operator's Notebook - Optional Documentation

This is an index to the location of certain types of
Autocoder III statements, both hand-coded and
generated, that appear in the program listing. The
pages that comprise the Notebook are as follows:

1. HALTS

2, TITLES

3. 80 SPEC

4. ASSGNS (LASN and SASN)

5. SWITCHES (SWN and SWT)

The TITLE page also lists all ENT80 and LEV80
macro-instructions, The 80 SPEC page lists each
statement containing an "I," prefix (indirect
address) in the 7080 mode portion of the program

Symbolic Analyzer - Optional Documentation

This is an index of every hand-coded and generated
tag in the program. The tags are listed in alpha-

betical order, and each is followed by a list of every
instruction, either hand-coded or generated, that
references the tag.

DETAILS OF THE PROGRAM LISTING

The listing page consists of 14 fields. The entries

in the TAG through the COMMENTS fields comprise
an Autocoder III statement. The machine language
translation of the statement, i.e., an object program
instruction or constant, appears in the OP through
the ADDRESS fields. Other fields contain information
on storage locations, statement sequence, and
references to other statements. The fields of the
listing are as follows:

INDEX, This is a number that the Processor creates
for each line of the listing. A hand-coded statement
is assigned a number of the form xxbyy; a generated
statement is assigned a number of the form bxxyy.

In each case, xx is the listing page number and yy is
the line number. On a reassembly, a number of the
form xx*yy is assigned to a statement that has been
replaced, added, or that follows a deleted statement.
The INDEX number is not identical to the pg/line
number on the coding sheet.

TAG. Any hand-coded or generated tag appears in
this field, which corresponds to the tag field on the
coding sheet.

OP. Any mnemonic code appears in this field, which
corresponds to the operation field on the coding sheet.

NU. The entry in this field varies just as it does
when hand-coded. The field corresponds to the num
field on the coding sheet.

AT, An entry in this field is either an operand
modifier or an indirect address. On the coding sheet,
such entries are written in columns 23-24 of the
operand field.

OPERAND. The entry in this field varies just as it
does when hand-coded. The field corresponds to the
operand field on the coding sheet with two exceptions.
The first is the placement of a prefix to the basic
operand; this appears in the AT field explained in

the preceding paragraph. The second is the place-
ment of generated character adjustment; in the listing,
hand-coded character adjustment appears as it was
written, but generated character adjustment appears
in the right-hand portion of the COMMENTS field.

COMMENTS. Any source program comments appear
in this field, which corresponds to the comments
field on the coding sheet.

LOC. The entry in this field is a six-character
number designating the location assigned to the
object program instruction or constant.

OP. The entry in this field is the actual operation
code of the instruction.

SU. The entry in this field is an ASU number. It
does not necessarily correspond to the num field,
which is used for other purposes besides ASU assign-
ments.

ADDRESS. This field contains two entries. One
shows the actual address portion of an instruction
as six positions, and the other shows it as four
positions with ASU zoning included. The latter,
when combined with the operation code, forms the
machine language instruction.

PGLIN, The entry in this field corresponds to the
pg/line entry on the coding sheet.

SER. An entry in this field is the three-character
serial number of an object program card. The num-
ber appears only in the line containing the first
insiruction on the object program card. Subsequent
lines with blanks in the SER field contain instructions
that appear on the same card.

REF. An entry in this field is the INDEX number
of some other line in the listing and serves as a
cross-reference. The entry appears when the in-
struction references a field or another instruction.

Assembly Documentation 51

CHAPTER 9. THE COMMUNICATION WORD

A portion of the Processor called the communication
word is described in the system operation manual
previously mentioned. The Processor obtains certain
information from the communication word during the
assembly. The purpose of this chapter is to indicate
those Autocoder III symbols which are defined in the
communication word of the standard 7058 Processor
as distributed by IBM. If the communication word
has been modified to suit the needs of an individual
705 or 7080 installation, the modifications may
affect the detailed information on the use of the
symbols that this manual supplies.

The following are defined in the communication
word as Autocoder III symbols:

1. plus sign (+)
minus sign (-)
multiplication sign (*)
division sign (/)
decimal point and period (.)
left literal (#)
right literal @)
actual address (@)
location counter (*)

10. macro break ()

Another portion of the communication word supplies
information about each ASU, i.e., how it is set and
whether the Processor may assign it to coding that
the Processor is generating. ASU settings and
availability are described in the macro-instruction
manual. It is sufficient here to note that certain
ASUs are selected by the Processor for assignment
to a generated instruction, and the programmer
should be aware of this when writing one-for-one
instructions that require an ASU assignment.

« ¢ e

.

cooo«l_c':m.p-wm

.

52

The terms that follow are explained in relation to
their use in this manual. No attempt has been made
to supply a glossary of basic programming terms.
Definitions that appear in the text of the manual are
not repeated on this page. The Index supplies page
references to such definitions.

Address. Something that designates a storage loca-
tion. The term "address of an instruction' and the
term "address portion' both refer to the portion of
a machine language instruction that identifies a
storage location.

Alphabetic characters. The letters A-Z. Alphabetic
data consists of alphabetic characters.

Alphameric characters. A set of characters com-
prising the following: alphabetic, numeric, special,
blank, Alphameric data consists of any of these
characters or any combination of them.

Blank character. The absence of a character. May
be designated on the coding sheet by the symbol b.

Coding. Program statements that may or may not
form a routine.

Data field. A unit of information consisting of an
alphameric character or a set of adjacent alphameric
characters.

Decimal positions. The positions to the right of the
decimal point in numeric data.

Format layout. A graphic representation on the
coding sheet of a specific arrangement of characters.
Also referred to as a "layout."

Generated. An adjective describing coding provided
by the Processor.

Hand-coded. An adjective describing coding written
by the programmer.

Integer positions. The positions to the left of the

GLOSSARY OF TERMS

decimal point in numeric data.

Initialization. A procedure that places an instruction
or a switch in an initial condition or restores either
one to a previously defined condition. Initialization
is a type of modification.

Location. A place in storage. The term may refer
to one storage position or the positions occupied by
a field or an instruction. Also referred to as
"'storage location. "

Machine language. A language that is intelligible to
the computer. Also referred to as "actual language."

Machine language instruction. A 705 or 7080 machine
instruction consisting of an actual operation code and
an address portion.

Mixed decimal. A term used to designate a number
containing integer and decimal positions.

Modification. A procedure that alters an instruction
or a switch setting. Address modification is the
procedure of altering the address portion of an
instruction.

Numeric characters. The digits 0-9. Numeric data
consists of a combination of digits representing a
signed or unsigned integer, pure decimal, or mixed
decimal.

Processor library. The portion of the 7058 Processor
System tape that contains the elements of each macro-
instruction and each subroutine.

Pure decimal. A term used to designate a number
containing decimal positions only.

Record. A set of adjacent data fields.

Special characters. The following group of char-
acters: . HF&$* -/, p#@+F

Glossary of Terms 53

APPENDIX A. SAMPLE ASSEMBLY

INDEX

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
- AA

AA

AA
AA
AA
AA

AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

54

01
02

04
L]
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
n
32
33
34
35

QP

TITLE

OPERAND PROGRAM SAMPLE 05-22-62 COMMENTS

THIS SAMPLE ASSEMBLY HAS BEEN PROVIDED AS AN
EXAMPLE OF THE ASSEMBLY DOCUMENTATION DESCRIBED
IN CHAPTER 8 AND THE ASSEMBLING OF SOURCE
PROGRAM STATEMENTSs THE OPERATORS NOTEBOOK

AND THE SYMBOLIC ANALYZERs WHICH COMPRISE THE
OPTIONAL DOCUMENTATIONs APPEAR AFTER THE
ASSEMBLY LISTINGe TITLES AND COMMENTS INDICATE
THE FUNCTIONS OF THE VARIOUS STATEMENTSe SINCE
THIS ASSEMBLY IS NOT INTENDED TO ILLUSTRATE

A PROGRAMs THE SOURCE STATEMENTS DO NOT FORM

A ROUTINE.

THIS PAGE CONTAINS THE INITIAL SOURCE
STATEMENT»A TITLE STATEMENTs AND 1T WOULD
NORMALLY APPEAR AFTER THE PAGE CONTAINING

THE LITERAL TABLEs IT HAS BEEN TAKEN OUT

OF SEQUENCE TO ILLUSTRATE TITLE AS A CONVENIENT
MEANS OF SUPPLYING INTRODUCTORY COMMENTS TO

PRECEDE A PROGRAM LISTINGe

IN THE LISTINGs THE HAND=CODED STATEMENTS ARE
DISTINGUISHED FROM GENERATED STATEMENTS BY THE
POSITION OF THE INDEX NUMBERSe THOSE OF THE
HAND=CODED STATEMENTS ARE LEFT=JUSTIFIED»

WHILE THOSE OF THE GENERATED STATEMENTS ARE
INDENTED ONE POSITIONes MACRO=HEADERS ARE
DISTINGUISHED FROM THE GENERATED CODING

BY OVER=PRINTINGe BECAUSE THIS ASSEMBLY IS
SHORT AND CONSISTS MAINLY OF SOURCE STATEMENTS»
A SEPARATE LISTING OF THE SOURCE PROGRAM

DOES NOT APPEARs

THE SUBROUTINE THAT APPEARS AT THE END OF
THE PROGRAM IS AN 1BM SUBROUTINEe IT IS

AUTOMATICALLY PROVIDED ON EVERY ASSEMBLYs

LOC OP su

ADDRESS

PGLIN SER REF
0101
0102
0li03
0104
0105
0106
0107
0lo8
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
ol22
0123
0124
0123
0201

INDEX

nA00
A0l
8A02
gA03
aACk
BAOS

DAQb6
BAO7
aa08
aAo09
oAl
taAll
oAl2
gAl3
aAlé

TAG

SIGNED
SIGNED
SIGNED
SIGNED
SIGNED
SIGNED

op

LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL

UNSIGNED LITERAL
UNSIGNED LITERAL
UNSIGNED LITERAL
UNSIGNED LITERAL
UNSIGNED LITERAL
UNSIGNED LITERAL
UNSIGNED LITERAL
UNSIGNED LITERAL
UNSIGNED LITERAL

*A01 TAG2
#A02 TAG2
#A03 XXPRTSTHLD RIGHT

INDEX
A8 01

AB 03
A8 04
A 05
A8 06

AB 08
AB 09

AB 10
AB 11
AB 12
AB 13
AB 14
AB 15

ABl16

A8 17

AB 18
AB19
AB20

A8 21
A8 22

A 29
AB24
AB25
AB26
AB27
AB28

AB29

AB30
AB31
AB32
AB33
AB34
AB35
AB36
AB37
AB38
AB39
AB40
AB41
AB42
AB43
AB44
AB45
AB46

TAG

HI=SP
HI=SP

op

SECTION 1 TITLE

LASN
RECORD NAME
FIELD1 RCD
FIELD2
FIELD3 RPT
RECORDEND CON
RECORD
ROUTINEL MOVE

ROUTINEL RCVS

™TS

ROUTINE2 ADDX

ROUTINE2 RAD

LNG
ADD
RQVS
TSL

TR
CON

ACON4
CON

NU

PWN -

N N

5

NU

~oN

02

[

e e e e e NN N R D

AT OPERAND PROGRAM SAMPLE 05=22=62 COMMENTS

ocC
12¢C
000A

AT OPERAND PROGRAM SAMPLE 05-22-62 COMMENTS
THIS SECTION CONTAINS THE OEFINITION OF A RECORD
AREA AND MACRO=HEADERS THAT REFERENCE INTERIOR
FIELDS OF THE AREAes THE GENERATED CODING FOR EACH
MACRO= INSTRUCTION CONTAINS LINKAGE TO CODING
GENERATED FROM THE SUBROUTINE AT THE END OF TNE

PROGRAM
@500
RECORDEND TO DEFINE THE INTERIOR FIELDS AND TO
POSITION FIELD1 TO START IN A 0/5
LOCATION
Ab LEFT PROTECTION FOR FOLLOWING FIELD
#503402 SIGNED NUMERIC FIELD
ZZZ42Z no=-ontn LOW=ORDER POSITION OF LAYQUT IS A
BLANK FOR SIGN INDICATION
TO SUPPLY TERMINAL RECORD MARK
THIS DEFINITION OCCUPIES 15 CHARACTER POSITIONS
#AB#BFIELODLR TO PLACE THE LITERAL ABsWHICH
PROVIDES LEFT PROTECTION» IN FIELDL
FIELD1
#AB¥
FIELD2u#6123#aF IELD3n TO ADD THE CONTENTS OF FIELD1
TO THE LITERAL 6123 AND PLACE
THE SUM IN FIELDS
#6123#
€00002
FIELD2
XXPRTST &00006
XXPRTST
*§500030
9
LsFIELD3
&00
&§03
&05
603
§02
&1
&1
&
#

LOC OP Su

001350
001351
001352
001354
001357
001361

001362
001363
001364
001365
001366
001367
001369
001371
001375

001384
001389
001394

LOC OP su

000500

000500

000501
000506
000513

000514
000514

000519
000524

000529
000534
000539
000544
000549

000554

000555
000559
000560
000562
000564
000566
000568
000570
000571
000572
000573
000574
000375
000576
000577
000578
000579

= COOIX

ADDRESS

ADDRESS

000500
001368

001357
000002
000506
000771
000769

000584

000507

0500
1308

1357
0002
0506
0771
07w9

0584

0507

Appendix

PGLIN SER REF

001

PGLIN SER REF

0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0315
0316

0317

0218
0319
0320

002

AB15

ES BN

15

ABll
oAl2

aAQ4

ABl2
AEOQ5
AEOQS

AB13

55

INDEX TAG OP Nu AT OPERAND PROGRAM SAMPLE 05-22-62 COMMENTS
AB 47 SECTION 2 TITLE THIS SECTION CONTAINS DEFINITIONS OF SWITCHES AND
AB 48 MACRO=-HEADERS THAT REFERENCE THE SWITCHESs
AB 49 RCD 0 TO CAUSE THE PROCESSOR TO ASSUME
AB 50 THE SUBSEQUENT SWITCH 1S PART OF
AB 51 A RECORD AREA
AB 52 CHRCD ONE~POSITION CHARACTER CODE SWITCHe
AB 53 CHICAGO A IT WILL NOT BE SET INITIALLY, SINCE
AB 54 NEWYORK 8 THE DEFINITION FOLLOWS AN RCDs
AB 55 LOSANGELES <
AB 56 SWITCHOFF SWN ROUTINEL PROGRAM SWITCH THAT IS A
AB 57 NO-OPERATION INSTRUCTION INITIALLY
AB 58 SWITCHON SWT ROUTINE?2 PROGRAM SWITCH THAT IS A TRANSFER
AB 59 INSTRUCTION INITIALLYs ROUTINEZ IS
AB 60 THE TRANSFER POINT
AB 61 BITCD 5 ONE=POSITION BIT CODE SWITCHs THE
AB 62 DAILY 1 INITIAL SETTING IS DESIGNATEDs
AC 01 WEEKLY 2 BECAUSE THE SWITCH DOES NOT FOLLOW
AC 02 MONTHLY 4 AN RCDs SINCE THE 2=B1T 1S TO BE SET
AC 03 TO ZEROSWEEKLY IS SET ON INITIALLYs
AC 04 IFON CHICAGOREOUTE TO DETERMINE 1F THE CHARACTER CODE
AC 08 SWITCH CONTAINS THE CODE AsTO
AC 06 TRANSFER TO THE NEXT IN=LINE
Ac 07 INSTRUCTION IF IT DOESs AND TO
Ac 08 TRANSFER TO OUT IF IT DOES NOTe
ACO9 LOD 01 #A#
AC10 CMP 01 CHICAGO
AC11 TRE NEXTZ00004
AC12 R out
AC13 NEXTRO00O4 TRANS *
AC 14 SETON DAILYBSWITCHOFFE TO SET THE 1=B8IT OF THE 81T CODE
Ac 15 SWITCH ON AND TO MODIFY SWITCHOFF
AC 16 SO THAT IT BECOMES A TRANSFER
Ac 17 TO ROUTINEL
ACl8 S8Z 1 DAILY
AC19 RCVS SWITCHOFF
AC20 TMTS 1 #1#
AC 21 ouT HLT s TO PROVIDE A TRANSFER POINT
AD 01 SECTION 3 TITLE THIS SECTION CONTAINS AREA DEFINITIONSsONE=FOR=ONE
AD 02 INSTRUCTIONSsAND ADDRESS CONSTANTSe ASSUME THAT
AD 03 ASU 01 IS SET TO ONE POSITIONs
AD 04 NAME 4 TO POSITION THE SUBSEQUENT FIELD TO
AD 05 START IN A 4/9 LOCATION
AD 06 CoN 1 TO PROVIDE LEFT=PROTECTION FOR THE
AD 07 FOLLOWING FIELD
AD 08 TAGl RCD 10 & SIGNED NUMERIC FIELD
AD 09 TAG2 10 & SIGNED NUMERIC FIELD
AD 10 5 ¢ SIGNED NUMERIC FIELD
AD 11 TR *515 TO BYPASS TWO INSTRUCTIONS
AD 12 STEPL RAD TAG1 TO PLACE CONTENTS OF TAG1 IN
AD 13 ACCUMULATOR
AD 14 LOD 1 LsTAGL TO PLACE CONTENTS OF HIGH=ORDER
AD 15 POSITION OF TAGL IN ASU 01
AD 16 LOD 1 LsTAGlLE1 TO PLACE CONTENTS OF POSITION TO
AD 17 RIGHT OF HIGH=ORDER POSITION OF
AD 18 TAGL IN ASU 01
AD 19 RCVS TAG1 TO RECEIVE INTO HIGH=ORDER POSITION
AD 20 OF TAGl
AD 21 TMTS 1 TAG2 TO TRANSMIT CONTENTS OF HIGH=ORDER
ap 22 POSITION OF TAGZ THROUGH ASU 01 INTO
AD 23 TAG1
AD 24 RAD TAG265 TO PLACE THE CONTENTS OF THE FIELD
AD 25 FOLLOWING TAGZ IN THE ACCUMULATOR
AD 26 RAD 1+STEPL THE INDIRECT ADORESS DESIGNATES THE
AD 27 OPERAND OF THE INSTRUCTION TAGGED
AD 28 STEPL

56

LOC OP su

000579

000580
000580
000580
000580
000589

000594

000595
000595

000595
000595

000604
000609
000614
000619

000624
000629
000634
000639

000644

000644
000654
000664
000669
000674
000679
000684

000689

000694

000699

000704

000709

A

1

s

o Cw

—

1
1

e

ADDRESS

000519

000529

001366
000580
000624
000639

000595
000585
001367
000009

000689
000654
000645

000646

000645

000655

000669

000679

0519

0529

13We
05Y0
0624
0639

0525
0585
13w7
0009

0689
0654
06U5

06Ub

0645

06V5

0669

0672

PGLIN SER REF

0321

0322
0323
0324
0325
0301
0302
2303
0304
0305

0306
0307
0308
0309

0310
0311

0312
0313
0314

0315
0316
0317
0318
0319

0320
0321
0322
0323

0324

0401
0402
0403
0404

0405
0406
0407
0408
0409
0410
0411

0412
0413
o414
0415
0416
0417
0418
0419
0420
0421
o422
0423
0624
0425
0501
0502
0503

004ABLY

AB24

005aAl0

006

007

AB53
AC13
AC21

AB62
AB56
BAll

ADOS
ADOB

ADQ8

ADOS

ADOS

ADOS
AD12

INDEX

AD

AD
AD

AD
AD
AD
AD
AD
AD
AD
AD
AD
AD
AD
AD
AD
AD
AD
AD
AD
AD
AD
AD

AD
AD
AD
AD

29

30
31
32

33
34
35
36
37
38
39

41
42
43
44
45
46
47
48
49
50
51

53
54
55
56
57

AEO1

TAG

STEP2

STEP3

AEB02 XXPRTST

AEO3

AEOQ4
AEOS
AEOQ6
AEQ7
AEOB
AEO9
AELO
AEll
AEL12
AEL3
AEl4
AE1S
AEl6
AE17
AEl8
AEL9
AE20
AE21
AE22
AE23
AE24
AE25
AE26
AE27
AE28
AE29

AE30
AE31
AE32
AE33
AE34

AE35
AE36

AE37
AE38
AE39
AE40
AE4]
AE&42
AE43
AE44 XXPRTSTO02

XXPRTST

XXPRTSTO6

oP
ENTSO

RAD
EIA
RAD

LEVS8O
ADCON

CON
ACON4

ACON4
ACONS

ACONS

ACONG

RAD

LDA

LDA

PRTST

RQV
ADCON
SET
SND
RCVS
SGN
ADM
ADM
ADM
ADM
ADM
UNL
LDA
sus
ULA
UNL
UNL
RAD
RAD
LOD
RAD
RAD
CMP
TRH
TR

T™™TS
CMP
TRE
sUB
TR

RAD
TR

suB
suB
CMP
TRE
CMP
TRE
AAM
SWN

NU AT OPERAND

15

15

15

—
LAVEL SRR)

—
w

PROGRAM SAMPLE 05-22-62 COMMENTS

I+STEP1 SAME INSTRUCTION IN 7080 MODE
STEP1 SAME INSTRUCTION IN 7080 MODE
STEP1 SAME INSTRUCTION IN 7080 MODE
TAG1 TO MAKE THE LOCATION OF THE LOW=

ORDER POSITION OF TAGl A CONS

TO POSITION THE FOLLOWING ACON4 IN A

4/9 LOCATION BY INSERTING A BLANK
LsTAG1 TO MAKE THE LOCATION OF THE HIGH=
ORDER POSITION OF TAGL A CONSTANT
LeTAGL TO ZONE THE SAME CONSTANT FOR ASU 03
@1000 TO MAKE LOCATION 1000 A 5-POSITION
CONSTANT»SIGNED PLUS
SeTAGL TO MAKE THE SIZE OF TAGl A

5=POSITION UNSIGNED CONSTANT

TAG1L TO MAKE THE LOCATION OCCUPIED BY THE

LOW=ORDER POSITION OF TAGl A
6=POSITION CONSTANT
STEP3 TO PLACE THE CONSTANT TAGGED
IN THE ACCUMULATOR
HeTAG2 TO MAKE THE HIGH SPEED ADDRES
TAG2 A CONSTANTs TO PLACE THE
CONSTANT IN THE LITERAL TABLE

TO MAKE THE LOCATION OF THE CONSTANT

THE ADDRESS PORTION OF THE LD

INSTRUCTIONs AT OBJECT TIMEs

LOCATION OF TAG2 IS PLACED IN
H@TAG2 TO ZONE THE SAME CONSTANT,

THE FOLLOWING ENTRIES ARE CLASS A SUBROUTINES
XXPRTSTOIaxXXPRTSTO2aXXPRTSTOIBXXPRTSTO4BXXPRTS
XXPRTSTO6RXXPRTSTFLSTXXPRTSTWRKaXXPRTSTHLDR

XXPRTSTEND®
XXPRTSTWRK

@00006

ToXXPRTST

Is XXPRTSTWRK
XXPRTSTO1
XXPRTSTO1
XXPRTSTO2
XXPRTSTO3
XXPRTSTO4
XXPRTSTO5
XXPRTSTHLD

R@XXPRTSTHLD
XXPRTSTWRK
XXPRTST02
XXPRTSTHLD
XXPRTSTHLD
#50#
A&0001#
se#
XXPRTSTWRK
XXPRTSTWRK
XXPRTSTWRK
*600010
*£00050

XXPRTSTWRK
#00¥
*500015
#o1H#
*§00025

#&03#
*§00015

({284
#E1H

#OO0#
XXPRTSTO1
#00#
XXPRTSTC4
*500010
*500025

TANT»

STEP3
s OF
s AND

A

THE
ASU15
ASU Q2

1053

&00005
-00020
=00004
=00004
=00004
=00004
~00004
=00004

~00013
&00005
=00053
=00050

=-00017
~00015
=00024

§00005

LoC OP su ADDRESS
000714 s 10 000679 O0OP9
000719 H 000679 0679
000724 A 000654 0654
000725
000729 000645 0645
000733 3 000645 06D5
000738 001000
000743 000010
000749 000654
000754 H 000738 0738
000759 # 15 001384 1CH4
000764 # 15 001389 1CHS

000769 U 001244 1244
000774 A 0000
000779 B 15 000006 0&&6
000784 / 15 000774 0OGGU
000789 U 001249 1242
000794 T 1 001055 10V5
000799 6 1 001055 10V>
000804 6 1 000960 0Q9WO
000809 6 \% 001105 11#5
000814 6 I 001025 1085
000819 6 1 001080 10YO
000824 7 001324 1324
000829 # 14 001394 1CR4
000834 P 14 001256 1BN&
000839 * 14 000969 0109
000844 7 2 001271 12P1
000849 7 3 001274 1264
000854 H 3 001351 13El
000859 H 14 001361 1CO1
000864 8 1 001365 135
000869 H 2 001252 12N2
000874 H 15 001254 1BE4
000879 4 1 001245 12U5
000884 K 000394 0894
000889 1 000939 0939
000894 9 1 001245 12U5
000899 4 15 001371 1CG1
000904 L 000919 0919
000909 P 15 001352 1CEz
000914 1 000939 0939
000919 H 15 001354 1CE4
000924 1 000939 0939
000929 P 15 001352 1CE2
000934 P 2 001352 13Nz
000939 4 2 001371 13P1
000944 L 001059 1059
000949 4 15 001371 1CG1
000954 L 001029 1029
000959 @ 14 000969 0107
000964 A 000989 0989

Appendix

PGLIN SER REF

0504

0505
0505
0505

0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0601
0602
0603
0604
0606

001
002

AD12
AD12

ADOS8

ADOS

ADOS8

ADOB

ADOS

AD41

*A01

*A02

AF29

AEQS
AF29
009AESS3
AE63
AE44
AFQ2
AEST
AES8
AF30
*AQ03
AF29
AE44
AF30
AF30
0100A01
oAQS
gAQ9
AF29
AF29
AF29

AF29
oAl3

oAQZ

oAQ3

gAQ2
nAQ2
oAl3
AE63
oAl3
AEST

57

INDEX

AE45
AE46
AE<
AE4S8
AE49
AESO
AES51
AES52

AES53
AES4

AE55
AES6

AES7

AES58
AES9
AE6O

AES]
AE62

AE63

AE64
AE65S
AES6
AE67
AES8

AE69

AET0
AE71

AFO1
AFQ2

AFO3
AFO4
AFO5
AFO6

AFOQ7
AF08
AFOS
AFl0

AFl1
AFlz
AF13
AFl4
AF15
AF1l6
AF17
AF18
AF1l9
AF20
AF21
AF22
AF23
AF24
AF25
AF26
AF27
AF28
AF29
AF30

AF31
AF32
AF33
AF34
AF35
AF36
AF37
AF38
AF30
AF40
AFa1
AFa2

AF43

58

TAG

XXPRTSTO4

XXPRTSTO1

XXPRTSTOS

XXPRTSTO3

XXPRTSTEND

XXPRTSTWRK
XXPRTSTHLD

108AS

XAC

XACC

XACC1
XXBSRCH

oP

CMP
TRE
SGN
SGN
TMTS
cMp
TRE
TR

SGN
TR

TMTS
TR

SWN

T™MTS
RAD:
TR

TMTS
TR

SWN

RAD
SGN
SGN
UNL
SWN

TR

RAD
cMP

TRE
SwWN

RAD
RAD
SGN
TR

T™MTS
ADD
ST
TR

RAD
TRZ
LoD
ADCON
UNL
CHP
TRE
LoD
ADHM
Lot
TRZ
TRP
AAM
AAM
TMTS
LOD
SET
LOD
CON
CON

IORAS
XXACC
CON

XXACD

NAME
CON

BSRCH

NU AT OPERAND PROGRAM SAMPLE 05-22-62 COMMENTS

N

W e R

1
1
14
01
14

N -

[SN W ¥

*§00045

XXPRTSTO2 =00004

XXPRTSTO4 =00004
1+ XXPRTSTO2 §00005

#00#

*600010

XXPRTSTO6

XXPRTSTOS -00004

XXPRTSTO1 &00005

XXPRTSTWRK &00010

XXPRTSTO&

*§00020

XXPRTSTWRK &00010

#503#

XXPRTSTO6 &00005

Ko

*~00015

XXPRTSTO3 =00015

XXPRTSTWRK =00011

XXPRTSTO1 ~00004

XXPRTSTOG =00004

XXPRTSTWRK ~00019

XXPRTSTO6

XXPRTSTO6 &00010

XXPRTSTWRK ~00008

#LH¥

*500030

*500045

XXPRTSTWRK ~00009

XXPRTSTWRK =00009

XXPRTSTO3 ~00004

XXPRTSTCS &00010

Ko #

4234

AXPRTSTWRK =00008

XXPRTSTO3

XXPRTSTWRK -00007

XXPRTSTEND

*500005

XXPRTSTWRK =00006

*#500050

AL1#

%615

#

*#600029

#0002

*500015

*§00015

*6£00010

*£00005

XXPRTSTHLD =00053

3

XXPRTSTHLD =00050

XACOXACLBXAC2BXACIBXACABXACBRXACAR
&00000

XACCEXACC1m

&000000

&000000
XXBSRCHO1uXXBSRCHO2aXXBSRCHO3BXXBSRCHO4RXXBSRCHO St
XXBSRCHOSEXXBSRCHOTaXXBSRCHOSAXXBSRCHOIRXXBSRCH1OR
XXBSRCHEXTn

LOC OP su

000969
000974
000979
000984
000989
000994
000999
001004

001009
001014

001019
001024

001029

001034
001039
001044

001049
001054

001059

001064
001069
001074
001079
001084

001089

001094
001099

001104
001109

001114
001119
001124
001129

001134
001139
001144
001149

001154
001159
001164
001169
001174
001179
001184
001189
001194
001199
001204
001209
001214
001219
001224
001229
001234
001239
001269
001324

001325
001330

001333
001333
001339

001343
001349

— - e -

=0 =IOV » =0

- PP - - >»

»r £ X

Mo 0 = —4II

WOV IZOOCET S IPO®ZI

N e

- [

—
RN

=

-

ADDRESS

001019
000960
001025
000969
001371
001009
000929

001080
001064

001250
000929

001049

001250
001354
000934

001364
001039

001094

001258
001055
001025
001250
000929

000939

001261
001367

001134
001154

001260
001260
001105
000939

001363
001352
001261
001109

001262
001229
001169
001263
001224
001367
001199
001362
001223
001375
001219
001224
001224
001224

001271
000003
001274

0060
1019
09W0
1055
09wz
13P1
1009
0929

10v0
1064

12vo
0929

1049

12vo
1CE4
0934

13w4
1039

1094

12N8
1ovs
1085
120
0929

0939

12W1
13w7

1134
1154

1200
1BFO
11#5
093¢

13wW3
13v2
12wl
1109

12w2
1289
1A09
12wW3
1BK4
13wW7
1199
13w2
1283
1CP5
1219
1224
1BK4
1BK4
00#0
12P1
0063
1264

PGLIN SER REF

004
005

006

007
008
009

012
AE44
AEST
AE44
nAl3
AE37

AE68
AES63

AF29
AE37

C13AF29
2A03
AE3T

oAQ8

AF02
AF29
AE63
AES?
AF29
AE37
AE37

014AF29
oAll

AF 29
AF29
AFQ2
AE37
nAQ?
zAQ2
AF29
AFQ2

015AF29
AF26

AF29
oAll
oAQs

OAl4

olé

AF30
AF30

017

ol8

019

INDEX TAG oP NU AT OPERAND PROGRAM SAMPLE 05-22-62 COMMENTS LOC OP su ADDRESS PGLIN SER REF

AF&44 XXSSRCH SSRCH XXSSRCHO1BXXSSRCHO2aXXSSRCHOIBXXSSRCHOARXXSSRCHO 3 010
AF45 XXSSRCHO6BXXSSRCHEX TR 011
AFL6 XXFIX Fix XXFIxo1im 012
AF4T7 XXFLOAT FLOAT XXFLOATOle 013
AF48 IOTYPENTRY TYPIO IOTYPEXITm 0l4
AF49 XXADDENTRY AITEM XXADDEXITaxXXDELETO2ZRXXDELETO4XXDELETO3aXXDELETOTR 015
AFS50 XXDELETOSaxXXDELETO6D 016
AF51 XXDELENTRY DITEM XXDELEXITuXXDELETO2RXXDELETO38XXDELETO4BXXDELETOS 017
AF52 XXDELETO6aXXDELETOT® 018
INDEX TAG oP NU AT OPERAND PROGRAM SAMPLE 05-22-62 MESSAGES LOC OP su ADDRESS PGLIN SER REF
AB52 CHRCD AFTER 0325 0301
AB 54 NEWYORK TAG NOT REQUIRED 0303
AR 55 LOSANGELES TAG NOT REQUIRED 0304
AB 58 SWITCHON SWT TAG NOT REQUIRED 0307
AC 01 WEEKLY 2 TAG NOT REQUIRED 0312
AC 02 MONTHLY “ TAG NOT REQUIRED 0313
AD 32 RAD SGN CHK 0505
AD 34 STEP2 ADCON TAG NOT REQUIRED 0507
"’—\V’N\—/——_—N
INDEX TAG oP NU AT OPERAND PROGRAM SAMPLE 05-22-62 HALTS LoC OP su ADDRESS PGLIN SER REF
AC 21 OUT HLT 9 TO PROVIDE A TRANSFER POINT 000639 J 000009 0009 0324
#_____————“—-‘_____________—-——‘-____‘“_~_______‘___“___—————-___________d,————-—.________‘_______
INDEX TAG oP NU AT GPERAND PROGRAM SAMPLE 05=22-62 TITLES LOC OP sV ADDRESS PGLIN SER REF
AA 01 TITLE THIS SAMPLE ASSEMBLY HAS BEEN PROVIDED AS AN 1 0101
AA 02 EXAMPLE OF THE ASSEMBLY DOCUMENTATION DESCRIBED T 0102
AA 03 IN CHAPTER 8 AND THE ASSEMBLING OF SOURCE T 0103
AA C4 PROGRAM STATEMENTSe THE OPERATORS NCTEBOOK T 0104
AA 05 AND THE SYMBOLIC ANALYZERs WHICH COMPRISE THE T 0105
AA 06 OPT1ONAL DOCUMENTATIONs APPEAR AFTER THE T 0106
AA 07 ASSEMBLY LISTINGe TITLES ANP COMMENTS INDICATE T 0107
AA 08 THE FUNCTIONS OF THE VARIOUS STATEMENTSe SINCE T 0lo8
AA 09 THIS ASSEMBLY 1S NOT INTENDED TO ILLUSTRATE T 0109
AA 10 A PROGRAMs THE SOURCE STATEMENTS DO NOT FORM T 01llo0 .
AA 11 A ROUTINE T 0111
AA 12 T 0112
AA 13 THIS PAGE CONTAINS THE INITIAL SOURCE T 0113
AA 14 STATEMENTsA TITLE STATEMENTs ANO IT wOULD T 0114
AA 15 NORMALLY APPEAR AFTER THE PAGE CONTAINING T 0115
AA 16 THE LITERAL TABLEs IT HAS BEEN TAKEN OUT T 0l1é
AA 17 OF SEQUENCE TO ILLUSTRATE TITLE AS A CONVENIENT T 0117
AA 18 MEANS OF SUPPLYING INTRODUCTORY COMMENTS TO T olls
AA 19 PRECEDE A PROGRAM LISTINGe T 0119
AA 20 T 0120
Ap 21 IN THE LISTINGs THE HAND=CODED STATEMENTS ARE T 0121
AA 22 DISTINGUISHED FROM GENERATED STATEMENTS BY THE T 0122
AA 23 POSITION OF THE INDEX NUMBERSe THUSE OF THE T 0123
AA 24 HANO=CODED STATEMENTS ARE LEFT=JUSTIFIEDSs T 0124
AA 25 WHILE THOSE OF THE GENERATED STATEMENTS ARE T 0125
AA 26 INDENTED ONE POSITIONe MACRO=HEADERS ARE T 0201
AA 27 DISTINGUISHED FROM THE GENERATED CODING T 0202
AA 28 BY OVER=PRINTINGe BECAUSE THIS ASSEMSLY 1S T 0203
AA 29 SHORT AND CONSISTS MAINLY OF SOURCE STATEMENTS T 0204
AA 30 A SEPARATE LISTING OF THE SOURCE PROGRAM T 0205
AA 31 DOES NOT APPEAR. T 0206
Ap 32 T 0207
Ap 33 THE SUBROUTINE THAT APPEARS AT THE END OF T 0208
AA 34 THE PROGRAM IS AN IBM SUBROUTINEs IT IS T 0209
AA 35 AUTOMATICALLY PROVIDED ON EVERY ASSEMBLYe T 0210
AB 01 SECTION 1 TITLE THIS SECTION CONTAINS THE DEFINITION OF A RECORD T 0301
AB 02 AREA AND MACRO=-HEADERS THAT REFERENCE INTERIOR T 0302
AB 03 FIELDS OF THE AREAs THE GENERATED CODING FOR EACH T 0303
AB 04 MACRO= INSTRUCTION CONTAINS {INKAGE TO CODING T 0304
AB 05 GENERATED FROM THE SUBROUTINE AT THE END OF THE T 0305
AB 06 PROGRAM T 0306
A3 47 SECTION 2 TITLE THIS SECTION CONTAINS DEFINITIONS OF SWITCHES AND T 0321
AB 48 MACRO=HEADERS THAT REFERENCE THE SWITCHESS T 0322
AD C1 SECTICN 3 TITLE THIS SECTION CONTAINS AREA DEFINITIONS»ONE=~FOR=~ONE T 0401
AD G2 INSTRUCTIONSsAND ADDRESS CONSTANTSe ASSUME THAT T 0402
AD 03 ASU Q1 IS SET TO ONE POSITIONe T 0403
AD 29 ENT80 T 0504
AD 33 LEVSO T 0506

Appendix 59

INDEX

AD 30

TAG

cP

RAD

NU AT

OPERAND

I[sSTEP1

PROGRAM SAMPLE 05-22-62

80 SPEC

SAME INSTRUCTION IN 7080 MODE

LOC OP SU

T

ADDRESS

PGLIN SER REF

0505

opP

LASN

NU AT

OPERAND

@500

PROGRAM SAMPLE 05-22-62

ASSGNS

LOC OP Su

000500 L

ADDRESS

001349

PGLIN SER RE

0307

INDEX

AB 56
AB 58
AE44
AES57
AE63
AE68
AF02

INDEX

AE22
AE32
AE37
AE38
AFOB
AE35
AESY
AR24
AE23
AF18
AFCT
Ag6l
AE24
ACCY
AC20
AET1
AFl6
AB20
AE31
AE39
AE41
AES0Q
AF20
AB25
AF27
AEO7
AC21
ABO7
AD41

AB53
AC10

AB62
AC18

AB11
AB19

ABl2
AB26

AB13
AB31

ABSS

ACO2

60

TAG op
SWITCHOFF SWN
SWITCHON SWT
XXPRTSTQ2 SWN
XXPRTSTO4 SWN
XXPRTSTO1l SWN
XXPRTSTOS SWN
XXPRTSTO03 SwN

TAG

SIGNED
SIGMED
SIGNED
SIGNED
SIGNED
SIGNED
SIGNEC
SIGNED
SIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNS IGNED
UNSIGNED

ouT
STEP3
CHICAGO
DAILY
FIELD1
ROUTINE1

FIELD2

FIELD3

oP

LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL

LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LNG
SET
SET
HLT
LASN
ACON5

CMP

582

RCVS

ADD

ACON4

LOSANGELES

MONTHLY

NU AT

NU AT

01
01
01
01
0l
02
02
e3
04
01
01
01
01
01
o1
0l
01
02
02
02
02
02
Ca

3
15

01

OPERAND

ROUTINEL
ROUTINE2
*§00025
#500020
XXPRTSTO3
XXPRTSTO6
*#§00045

OPERAND

- —D>® e e

AB

00

00

00

00

0002
@000002
@00000C3
@000006
@0000C9
@000500
@001000

CHICAGO

DAILY

FIELD1

FIELDZ

FIELD3

PROGRAM SAMPLE 05-22-62

SWITCHES

PROGRAM SWITCH THAT IS A
PROGRAM SWITCH THAT IS A TRANSFER

PROGRAM SAMPLE 05-22-62 LOCATION LENGTH

=00015

000580 00001
000595 00001
000501 00002
000506 00005
000513 00007
000580 00001
000595 00001

LOC 0P Su

000589
000594
000964
001029
001059
001084
001109

P> Pr >

ADDRESS

000519
000529
000989
001049
001094
000929
001154

0519
0529
0989
1049
1094
0929
1154

SYMBOLIC ANALYZER

PGLIN SER REF

0305 004AB19
0307 AB24
AF02
AE37

_,—~—‘-—'*‘*—*————______________——"'——""—‘—‘—~—____——————"'——__“——.\‘--__________,a"“-“——‘~\\~________,—d

INDEX
ABS4

AC13
ACl1

Ac21
ACl2

ABl6

AB1S
ABCS

AB19
AB56

AB24
AB38

AD12
AD26
AD31
AD32

AD34

AD41
AD4E

AB56
AC19

AB58

ADO&
ADl4
AD16
AD38

AD40O
AD43
AD12
AD19
AD34
AD45

ADO9
AD50
ADS7
AD21
AD24

ACO1
AF36
AF38
AF40

AEO5
AEO8
AB27
AB28

AF26
AF12

AF30
AE17
AE16
AE20
AE21
AF26
AF28

TAG

NEWYORK

NEXTaJC004

ouT

RECORD

RECORDEND
RECORD

ROUTINEL
SWITCHOFF

ROUTINE2
SWITCHON

STEPL

STEP2
STEP3

SWITCHOFF

SWITCHON
TAG]

STEP1
STEP2

TAG2

WEEKLY
XAC
XACC
XACC1
XXPRTST

XXPRTSTEND

XXPRTSTHLD

XXPRTSTEND

opP

TRE

TR

NAME

S¥N

SWT

RAD
EIA
RAD

RAD

RCVS

LoD
LOD
ACON4

ACON&
ACONS
RAD
RCVS
ADCON
ACON6

LDA
LDA
TMTS
RAD

SND
RCVS
TSL

TRZ

LDA
UNL
UNL
UNL
LOD
Loo

NU AT OPERAND

NEXTa00004

ouTt

[] RECORDEND

ROUTINEL

ROUTINE2

STEP1
STEP]
STEP1

STEP3

SWITCHOFF

1 TAG1
1 TAG1 &
TAG1

3 TAGY
TAG1
TAG1
TAG]
TAGL
TAG1

15 HeTAG2
15 HeTAG2
1 TAG2
TAG2 &

15 XXPRTST &
XXPRTST &
XXPRTST

1 XXPRTSTEND

14 RE@XXPRTSTHLD
XXPRTSTHLD
XXPRTSTHLD=
XXPRTSTHLO-
XXPRTSTHLD=~
XXPRTSTHLD=

wNw N

PROGRAM SAMPLE 05-22~62 LOCATION LENGTH

000580
000624

000639

000514

000514

000519

000529

000679

000724

000738

000589

000594

000654

000664

ASU 00
ASU 02

ASU 00

000595
001330
001339
001349
000769

001229

001324

00001
00000

00005

00015

00001

00005

00005

00005

00005

00005

00005

00005

00010

00010

00001
00005
00006
00006
00005

00005

00055

SYMBOLIC ANALYZER

Appendix

61

INDEX

AF29
AECY
AEOS
AE18
AE25
AE26
AE27
AE30
AES5
AES8
AE64
AE6T
AET0
AFO03
AF04
AF09
AF11
AFlé4

AE63
AEL10
AEll
AE40
AE54
AES65

AE44
AE4S
AE12
AE19
AE4T

AFO02
AE13
AE63
AFO05
AF10

AEST
AElé
AE42
AE48
AE66

AE68
AE15
AE53

AE37
AE52

AES6
AE60
AE68
AE69
AF06

62

TAG

XXPRTSTWRK

XXPRTST

XXPRTSTO1

XXPRTSTO02

XXPRTSTO3

XXPRTSTO1

XXPRTSTO4

XXPRTSTO5

XXPRTSTO6

XXPRTSTO5

oP

RCVS
RCV
suB
RAD
RAD
cMP
TMTS
TMTS
T™MTS
RAD
UNL
RAD
RAD
RAD
ST
RAD
ADCON

SGN
ADM
TRE
TR

SGN

TMTS
ADM
ULA
SGN

ADM
SWN
SGN
TR

ADM
TRE
SGN
SGN

ADM
SGN

TR

TR
TR
SWN
TR
TR

NU AT

-
wN e

-
e Y N R T N e e

0

01

01

OPERAND

XXPRTSTWRK~-
XXPRTSTWRK

XXPRTSTWRK=
XXPRTSTWRK=
XXPRTSTWRK=
XXPRTSTWRK=
XXPRTSTWRKE
XXPRTSTWRKE
XXPRTSTWRKE
XXPRTSTWRK=
XXPRTSTWRK=
XXPRTSTWRK=
XXPRTSTWRK=
XXPRTSTWRK=
XXPRTSTWRK=
XXPRTSTWRK=
XXPRTSTWRK=~

XXPRTSTO1l =
XXPRTSTO1 =
XXPRTSTO1
XXPRTSTO1
XXPRTSTO1

e

XXPRTSTO02
XXPRTSTO2
XXPRTSTQ2
XXPRTSTO2

te 1 e

XXPRTSTO03
XXPRTSTO3 -
XXPRTHTO3 =
XXPRTSTO3

XXPRTSTO04 -
XXPRTSTO4

XXPRTSTO4 =
XXPRTSTO4 =

XXPRTSTOS5 =
XXPRTSTO5 =

XXPRTSTO06

XXPRTSTO6
XXPRTSTO06
XXPRTSTO&
XXPRTSTO06 &
XXPRTSTO6 &

ol

PROGRAM SAMPLE 05-22-62 LOCATION LENGTH

001269

001059

000964

001109

001029

001084

000929

00030

00005

00005

00005

00005

00005

00005

SYMBOLIC ANALYZER

ADCON4 statement 38 floating pdint number, defined 17 object program card 50
ADCONS statement 38 by a literal 27 object program contents 50
ADCONG statement 39 calculations with 17 object program deck 50
actual operand defined 29 FPN 17 ON, OFF status
actual language - see machine language RCD 13 of a bit 25
ADCON statement 37 format layout, defined 53 of a bit code switch 23, 25
address, defined 53 RPT 18 of a character code switch 23, 24
address constant, defined 37 FORTRAN MODE statement 47 of a program switch 25
address constant literal 39 general purpose macro-instructions 32 one-for-one instruction, defined 27
alphabetic character, defined 53 generated, defined 53 mnemonic codes for 28
alphameric character, defined 53 generated coding, 7080 mode 47 additions to basic operand 30, 31
ALTSW statement 26 group marks 14, 16 operand modifier 30, 31, 37
area definition statement 13 hand-coded, defined 53 operation codes, 705/7080 28
arithmetic operator 30, 37 higher languages of 7058 Processor 46 Operator's Notebook 50
assembly documentation 50 INCL statement 45 overlapping, defined 41
assembly input, output S0 indirect address 30, 47 Processor, 7058 7
asterisk protection, defined 18, 19 initialization, defined 53 Processor library, defined 53
Autocoder MODE statement 47 by address constant 37 program listing, contents and details of 50, 51
Autocoder I1I symbols in communication word 52 insertions on coding sheet 12 program switch, defined 25
Autocoder 111 operands, defined 27 insignificant zeros, defined 18 see also SWN, SWT

additions to, multiple additions to 30, 31 instructions to the Processor 41 pure decimal, defined 53
Autocoder III statements, how to write 11 integer positions, defined 53 RCD statement 13
basic programming system for 705/7080 7 interior fields of NAME 21 record, defined 53
bit code switch, defined 23 internal NAME 22 record mark 14, 16, 29

see also BITCD LASN statement 41 referencing, defined 7
BITCD statement 24 leading zeros, defined 18 Report/File Writing Mode statement 47
Blank-If Zero option 21 left protection, defined 13 Reset character 42
blank character, defined 53 LEV80 47 RPT statement 17
Blank counter 42 library subroutine - see subroutine SASN statement 43
blank operand, defined 29 literal - see literal operand significant zeros, defined 18
character adjustment 30, 31, 37 literal constant - see literal operand source program, defined 6
character code switch, defined 23 literal operand, defined 27, 34 special characters, defined 53

see also CHRCD literal sign 27 SUBOR statement 43
Class A and B subroutines 45 literal table 27, 39, 44 subroutine
coding sheet, how to use 11 LITOR statement 44 assignment of 41, 43
collating sequence, 705 12 location, defined 53 Class Aand B 46
comments in Autocoder III statements 12 location assignment, by Processor 41 inclusion in program 45
comments continuation lines, rules for writing 12 see also LASN, SASN switch definitions 23

inCON 16 location counter, used by Processor 41, 43 SWN statement 26

in FPN 17 see also LASN SWT statement 26

in RPFT 21 location counter operand, defined 29 Symbolic Analyzer 50

in switch definition statements 23 lozenges 19, 23 tag, rules for writing 12
communication word 52 machine language, defined 53 tag operand 27, 33
CON statement 15) macro-header, defined 33 TCD statement 44
conditional lozenges 19 macro-instruction, defined 32 TITLE statement 48
console switch, defined 26 general purpose, list of 32 trailing zeros, defined 18

see also ALTSW macro suffix tag 33 TRANS statement 46
constant 15, 27 mantissa, defined 17 transfer card 41
data field, defined 53 menmonic codes, 705/7080 operations 28 see also TCD
data switch, defined 23 mode, coding for 7080 47 "00" transfer card 41

see also BITCD, CHRCD MODE statements 46
EJECT statement 47 modification, defined 53
ENTS80 47 NAME statement 21
exponent, defined 17 non-printing decimal point 19
field sign indicators 20 numeric characters, defined 53
fixed dollar sign 19 numeric constant 16, 17, 27
floating dollar sign 19 object program, defined 6

Index 63

Reader's Comments
IBM 705/7080 DATA PROCESSING SYSTEM

Programming Systems Publications, Form C28-6224~1

FROM

Name

Address

Your comments regarding the completeness, clarity, and accuracy of this publication

will help us improve future editions. Please check the appropriate items below, add

your comments , and mail.

YES NO
Does this publication meet the needs of you and your staff?
Is this publication clearly written?
Is the material properly arranged?

If the answer to any of these questions is "NO, " be

sure to elaborate.

How can we improve this publication? Please answer below.

D Suggested Addition (Page , Timing Chart, Drawing, Procedure, etc.)

D Suggested Deletion (Page)

D Error (Page)

COMMENTS:

FOLD FOLD
FIRST CLASS
PERMIT NO. 116
KINGSTON, N. Y.
SEEEE—
BUSINESS REPLY MAIL ———
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A. a—
——
POSTAGE WILL BE PAID BY _——
IBM CORPORATION
E——
NEIGHBORHOOD ROAD ——
KINGSTON, N. Y. 12401 EE—
—
—
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS —
DEPARTMENT 637
——
E——
ote T e

BN

@

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

CUT ALONG LINE

V'S N ul pajunlyg

C28-6224-1

JISIME

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

1-¥229-82D "V°S°N Ul pauly

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	replyA
	replyB
	xBack

