
Systems Reference Library

IBM 7080 Processor: Autocoder Language

This publication contains specifications for using
Autocoder, the basic symbolic language of the 7080
Processor. The types of statements that constitute
the Autocoder language include area definitions,
switch definitions, one-for-one instructions, macro­
instructions, address constants, and instructions to
the Processor. All statement types, except macro­
instructions, are described in detail. A general
discussion of macro-instructions is included. How­
ever, the detailed specifications for using them are
provided in the publication 7080 Processor:
General Purpose Macro-Instructions, Form
C28-6356.

The Introduction to this publication reviews some
basic aspects of programming, such as symbolic
programming sys·tems and the IBM 7080 program­
ming systems. Other features of the manual include
descriptions of the following: The organization of
the object program deck, the format of the object
program card, and the standard and optional docu­
mentation produced during an Autocoder program
assembly. An extensive sample assembly is also
included to illustrate what the 7080 Processor pro­
duces. The assembly contains many examples of
correct and incorrect langu~ge usage.

File Number 7080-22
Form C28-6263-2

MINOR REVISION (September 1964)

This publication, Form C28-6263-2, is a minor revision of the
previous edition, Form C28-6263.,;;1, and incorporates the contents
of the Technical Newsletter N28-1l72. This revision does not
obsolete either the previous edition or the Technical Newsletter.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. 637, Neighborhood Road, Kingston, N. Y. 124

@ 1962 by International Business Machines Corporation

INTRODUCTION • . •
Basic Aspects of Programming
Symbolic Programming Systems

The Symbolic Language
The Processor

The Basic 7080 Programming System.
The 7080 Processor
Autocoder Language •....•.

Input/Output Control Systems for Use with
Autocoder Programs • . .
Higher Languages of the 7080 Processor

STANDARD FORMAT OF AUTOCODER
STATEMENTS .•..
Program Identification
Pglin ..
Tag ...
Operation .
Num
Operand.
Comments.
Flag .•.

AREA DEFINITIONS
Definition of a Record -- RCD
Definition of a Constant Factor -- CON •
Definition of a Floating-Point
Number -- FPN . • • • . .
Definition of a Report Format -- RPT
Definition of a Continuous Portion of
Memory-NAME

SWITCH DEFINITIONS
Data Switches . . . •

Character Code -- CHRCD
Bit Code -- BITCD. . . .

Program Switches . • • . .
Switch Set to Transfer -- SWT
Switch Set to No Operation -- SWN. •

Console Switches.
Alteration Switches -- AL TSW

ONE-FOR-ONE INSTRUCTIONS
One-for-One Instruction Format
Basic Operands

Tag
Literal. . •
Actual ...
Location Counter
Blank •....

Additions to Basic Operands .
Character Adjustment
Operand Modifier . • . .
Indirect Address

Multiple Additions to a Basic Operand

GENERAL PURPOSE MACRO-INSTRUCTIONS
General Purpose,Macro-Header Format
Types of Macro-Header Operands ...•.•.

Page

5
5
6
6
7
7
7
8

10
10

11
11
11
12
12
12
12
12
13

14
14
17

18
19

23

26
26
27
27
28
29
29
29
29

31
31
31
31
31
33
34
34
34
34
35
35
35

37
38
38

Tag Operands . .
Literal Operands

Types of Lozenges .
Omitted Operands
Importance of Properly Defined Data Fields .
Examples of Macro-Instructions and Their Use

ADDRESS CONSTANTS.
ADCON Address Constant
ACON4 Address Constant
ACON5 Address Constant
ACON6 Address Constant
Address Constant Literal

INSTRUCTIONS TO THE PROCESSOR
Instructions to the Processor-Standard Assembly

Procedures
Location Assignment -- LASN
Special Assignment -- SASN .
Relative Assignment -- RASN
Assignment of Subroutines within Macro-
Instructions -- SUBRO
Assignment of Library Subroutines --
SUBOR
Assignment of Literals -- LITOR. . .
Transfer Card -- TCD ...•...

Instructions to the Processor-Object Program
Content

Include Subroutine -- INC L.
Translation -- TRANS.
Source Program Language -- MODE

Coding Generated in 7080 Mode
Instructions to the Processor-Program Listing

Skip to New Page -- EJECT
Title for Routine or Comment -- TITLE .

Instructions to the Processor-Multiple
Literal Tables • . •

Literal Start -- LITST.
Literal End -- LITND
Restrictions on Multiple Literals

Flag Characters and Their Meaning

ASSEMBLY OUTPUT . •
Object Program Deck .•....
Standard Assembly Documentation

Program Listing •.•
Optional Documentation

Operator's Notebook.
Symbolic Analyzer. •

Details of the Program Listing

APPENDIX ...•

SAMPLE ASSEMBLY

GLOSSARY OF TERMS

INDEX

CONTENTS

Page

38
39
39
39
39
40

42
43
43
43
44
44

46

46
46
48
48

49

49
50
50

51
51
52
53
53
54
54
54

55
55
56
56
57

59
59
59
59
60
60
60
60

62

64

89

90

This manual contains detailed specifications for
coding programs using Autocoder, the basic sym­
bolic language of the 7080 Processor. All parts of
the language except macro-instructions are fully
described. A brief introduction to the general­
purpose macro-instructions provided by IBM for
7080 users is provided in this publication; a full
explanation may be found in the publication, 7080
Processor: General Purpose Macro-Instructions,
Form C28-6356. Procedures for writing new
macro-instructions for incorporation into the lan­
guage are described in the publication, ,7080 Proc­
e ssor: Preparation of Macro-Instructions, Form
C28-6264.

Just as the Autocoder language described in this
publication is the basic language of the 7080 Proc­
essor, so is Autocoder III the basic language of the
predecessor system, the 7058 Processor. The
over-all similarity of the two languages is such that
this manual has been modeled after the manual
describing Autocoder III. The major improvements
that distinguish 7080 Autocoder from Autocoder III
have been fully integrated into the following pages
and may not be apparent, even to long-time users
of Autocoder III. Despite this, no attempt has been
made in the body of the manual to call attention to
the differences; to do so might prove distracting,
particularly to readers without a background in
Autocoder III. However, significant differences
between the two languages have been summarized
in the Appendix for the convenience of experienced
programmers who want a rapid survey of 7080
Autocoder in the light of their knowledge of Auto­
coder III. But it is expected that every program­
mer, before writing programs in 7080 Autocoder,
will have become familiar with all sections of this
manual.

The background discussion that follows assumes
that the reader has had little programming experi­
ence. Readers already familiar with the IBM 7080
Data Processing System may wish to go directly to
the b,ody of the publication. Further information on
the IBM 7080 may be found in the reference manual,
IBM 7080 Data Processing Syste~ Form
A22-6560-2, and in 7080 Systems Summary, Form
A22-6775. Other publications that may be of
interest to 7080 users are abstracted in the publi­
cation, IBM 7080 Bibliography, Form A22-6774.

BASIC ASPECTS OF PROGRAMMING

This explanation is written for the inexperienced
programmer. The material is not detailed or
comprehensive in scope. It is an outline of basic

INTRODUCTION

program requirements, symbolic programming
languages, and the program assembly process.
These concepts are considered within the frame­
work of the IBM 7080 Data Processing and Program­
ming Systems.

A program is written in order to process data in
a specified manner. In commercial data processing,
most of the data is in the form of business records;
e. g., accounts receivable, sales records, inven­
tories, payrolls, etc. The main function of a pro­
gram is to process these records as specified, and
these record-processing routines may be considered
the body of the program. They are often called the
main-line routines or the main-line coding. How­
ever, the program does not consist solely of these
routines.

Any program must also include routines for
bringing the records to be processed into core
storage, and for taking the processed records out
of storage. The routines which handle this data
movement are called input/output routines. Although
records and programs may be stored on magnetic
tape or punched cards, magnetic tape is generally
used with large-scale data processing systems.

A program must also contain actual storage loca­
tions for each instruction, and locations for the
storage area or areas that the records will occupy.
Records are usually grouped in blocks; consequently
an entire block enters storage at one time. Simi­
larly, the processed records are reblocked in stor­
age before being placed on tape. Programs dealing
with blocked records generally reserve space for
separate input and output areas, the areas being
equal to the size of the record block. In such a
case, a work area equal to the size of one record
must also be reserved, so that each record can be
taken from the input area, moved to the work area
for processing, and then placed in the output area.
The processing instructions can then be addressed
to the work area, and do not have to be modified.
If the records were to be processed in the input area,
the instructions would have to be modified to operate
on each record in turn. Consequently, most pro­
grams must reserve space for input, output, and
work areas.

A program must also provide routines for
detecting and handling error conditions resulting
from input/output operations. Such routines may
reread or rewrite the records in error, place the
invalid records on a special tape, attempt to
determine whether or not the error is in the tape
itself, etc. Error detection routines may include
the procedure to be executed when an error condition
prevents the continuation of processing.

Introduction 5

Finally, there are supplementary procedures
which must be performed by all programs but which
are not directly connected with the main-line proc­
essing. They fall into no specific category,
although they might be described as procedures
which implement the operation of the program.
Those which are executed before any main-line
processing begins are called housekeeping routines.
Those which are executed after all main-line proc­
essing is completed are called end-of-job routines.
Housekeeping operations include such procedures
as readying input/output units, setting ASUs,
checking and writing tape identifications, and bring­
ing the first block of records into storage. End-of­
job routines include such procedures as moving the
last block of records from storage to tape, writing
tape identifications, rewinding tapes, and writing
messages.

To sum up, a program must incorporate at
least the following procedures:

1. Data processing
2. Input/output
3. Storage assignment
4. Error detection and correction
5. Housekeeping and end-of-job

SYMBOLIC PROGRAMMING SYSTEMS

A program may be written in the actual (i. e. ,
machine) language of the computer on which it will
run, or it may be written in a symbolic language.
If it is written in machine language, it can be
executed by the computer directly; but if it is
written in symbolic language, it must first be
translated into machine language before it can be
executed. The length and complexity of programs
today makes programming in machine language
extremely difficult, and results in programs which
are increasingly liable to error. However, power­
ful symbolic programming systems have been
developed to relieve the_programmer of the many
burdens involved in machine-language program­
ming.

A symbolic programming system consists of a
symbolic language and a processor. The language
provides a method of representing program func­
tions as a series of meaningful statements rather
than as a collection of alphameric codes and actual
storage locations. The processor converts the
symbolic-language program into a machine­
language program, assigns storage locations to the
program, and performs various other functions.
The symbolic-language program is generally called
the source program; the machine-language program
is called the object program. In other words, the
source program is the input to the processor, and
the object program is the output of the processor.

6

Thus, processing the data for which a program
is written is the second of two data processing
applications. The first application is the processing
or assembly of the source program itself, with the
object program as output. The second application
is the processing of the actual data by the object
program; the output of the second is the solution of
the problem for which the program was written.
Once the object program is produced, it can be
used in subsequent data processing applications
until it is obsolete, or until it is modified to such
an extent that a reassembly is advisable.

Since the programs written in symbolic language
need not make location assignments, the order of
the statements that compose the program may be
changed and the program reassembled without
modification. For the same reason, it is easy to
insert or delete statements in a symbolic-language
program. When it is reassembled, a new object
program is produced.

The Symbolic Language

Instructions form a major portion of the statements
in a symbolic-language program just as they do in
a machine-language program. A symbolic one-for­
one instruction contains a mnemonic code represent­
ing a machine operation and a symbolic address
representing the storage location of data or an
instruction. Such instructions are called one-for­
one because the processor replaces each one with
one machine instruction. An important development
in symbolic programming is the macro-instruction,
which is a source-program statement that is
eventually replaced by a sequence of machine
instructions. Essentially, it is a request for
several one-for-one instructions, each of which is
subsequently replaced by one machine instruction.
A macro-instruction also contains a mnemonic
code, but the code does not represent any one
machine operation. A macro-instruction also con­
tains a mnemonic code, but the code does not repre­
sent anyone machine operation. A macro-instruc­
tion usually contains more than one symbolic
address; each address represents the storage loca­
tion of data or of an instruction.

Symbolic languages enable the user to write pro­
gram statements describing the storage areas that
will be occupied by program data. On the basis of
the information the processor obtains from these
statements, it assigns actual storage locations to
the data areas. It also uses this information when
generating one-for-one instructions to replace
macro-instructions that reference these areas. If
the data is to be supplied to the area by input
records, the statement indicates the size of the
area and the type of data that will occupy it. If it is

not, the statement itself supplies the data, which
is placed in storage as a constant.

The programmer is also able to create a
symbolic address for each data area or instruction.
The symbolic address represents the actual storage
location to be assigned by the processor, and it
provides the means of referencing an area or an
instruction. This is done by using the symbolic
address as the operand of the instruction that
makes the reference. Usually, it is desirable to
create symbolic addresses that describe the areas
or instructions to which they are assigned. For
instance, an address such as "master file" might
be assigned to a data area which will be filled by
records from the master tape; an address such as
"start" might be assigned to the first instruction
to be executed; etc. In converting the source
program to machine language, the processor
replaces each symbolic address with an actual
storage location, just as it replaces each mnemonic
code with an actual operation code.

The Processor

The processor of a programming system is a
machine-language program that converts a
symbolic-language program into machine
language. The process of converting is called
assembling the program. In other words, a proc­
essor assembles a source program into its object­
program form. During the assembly, the proc­
essor analyzes the source program, generates
one-for-one instructions to replace each macro­
instruction it encounters, inserts any subroutines
requested by the program, substitutes machine­
language instructions for all one-for-one instruc­
tions, and assigns storage locations to the object
program.

The processor contains a library of macro­
instructions and subroutines. Every macro­
instruction contains a set of incomplete one-for­
one instructions. When a source program
macro-instruction is encountered during assembly,
the processor determines which one-for-one
instructions are appropriate, completes those
which it selects, and inserts them into the object
program. Selection and completion of the appro­
priate instructions are done on the basis of infor­
mation from the program analysis made by the
processor. The same macro-instruction may be
used many times in a program, but the one-for-one
instructions generated from it will not necessarily
be the same each time. The variation results
from differences in program requirements or data
format.

Library subroutines differ substantially from
macro-instructions. A subroutine is a fixed set of
instructions. These may be one-for-one instruc­
tions or combination!!! of one-for-one instructions
and macro-instructions. When a request for a
subroutine is encountered during assembly, the
set of instructions is taken from the library and
inserted into the program. The instructions will
not vary from program to program unless the
subroutine itself contains macro-instructions. The
programmer can write macro-instructions and
subroutines and add them to the processor library.

The object program is not the only output of the
processor. A sequential listing of the source
program is also produced. Each program step in
the listing is assigned an index number for refer­
ence purposes. The one-for-one instructions in
the source program are shown with the correspond­
ing machine-language instructions and the storage
locations assigned to them. The source-program
macro-instructions are followed by the one-for-one
instructions generated from them, the machine­
language instructions corresponding to the one-for­
one instructions, and the storage locations assigned
to the instructions. Location assignments are also
shown for all record areas and subroutines.

THE BASIC 7080 PROGRAMMING SYSTEM

A programming system has been defined as a
symbolic language and a processor. The basic
programming system for the 7080 Data Processing
System is composed of Autocoder language and the
7080 Processor.

The 7080 Processor

The 7080 Processor, hereafter called "the Proc­
essor," is a machine-language program that
assembles programs written in Autocoder for the
IBM 7080. The Processor operates on the 7080
when it is in 7080 mode. The Processor itself is
so large that it must operate through a number of
interrelated sections, or phases. Each phase is a
program which performs one or more of the
various assembly functions. The phase may be
classified as belonging to one of the two portions
of the Processor: the compiler and the assembler.
The compiler phases analyze the source program
in detail, generate Autocoder statements from
higher-language statements, and generate one-for­
one instructions from macro-instructions. The
assembler phases assign storage locations, replace
one-for-one instructions with machine-language
instructions, and create the Processor output.

Introduction 7

The output of the Processor consists of the
object program in card form, and the program
listing with related messages. Both are produced
on tape. The listing and messages are the mini­
mum assembly documentation. Additional docu­
mentation consisting of the Operator's Notebook
and/or the Symbolic Analyzer can be requested.

The Operator's Notebook lists various types of
information about the program, including the fol~
lowing:

1. Programmed halts and halt loops
2. Titles of, and comments on, the various

portions of the program
3. A list of special 7080 program statements
4. Specific location assignments requested by

the program
5. Program switches set up by the Processor

at the request of the program
The Operator's Notebook is useful to the pro­

grammer in debugging the object program, and to
the console operator during the object-program
run.

The Symbolic Analyzer is an alphabetical list of
the symbolic addresses used in the program. Each
symbolic address is followed by a list of the
instructions which reference it. All may be easily
located in the listing because their index numbers
are shown. Referencing a field or an instruction
(as used in this publication) means specifying the
data to be operated on or specifying an instruction
to be executed. For example, an Autocoder
statement that calls for data movement to a work
area references the data and the work area; a
statement that causes the program to transfer to
an instruction references that instruction.

The Processor library contains a set of general
purpose macro-instructions which cover most
commercial data processing functions. Program­
mers may write their own macro-instructions and
subroutines and insert them in the library. How­
ever, the preparation of macro-instructions is a
complicated procedure, requiring a thorough
knowledge of Autocoder and the Processor.

Autocoder Language

Autocoder is the basic symbolic language for
programs' to be assembled by the Processor.
Statements written in the higher languages may be
inserted in Autocoder programs. During the
assembly, certain phases of the Processor trans­
late these statements into a series of Autocoder
statements. Program steps written in Autocoder
language are called statements rather than instruc­
tions, because the language contains more than a
set of processing instructions. There are six
types of Autocoder statements:

8

1. Area definitions
2. Switch definitions
3. One-for-one instructions
4. Macro-instructions
5. Address constants
6. Instructions to the Processor

AREA DEFINITIONS: Area definitions reserve
storage space for data supplied either by records
or by the programmer. If the space will be
occupied by data from records, the area definitions
also describe the nature of the data. In all other
cases, the area definitions specify the constant
data to be placed in storage. The storage space
reserved by each area definition is generally called
a data field. Area definitions may also be used to
indicate that a series of adjacent data fields are to
be treated as the interior portions of a single unit.

In defining input/output areas, it is usually
necessary to define a data field for a block of
records without making any attempt to distinguish
one record from another or to identify portions of
a record. However, in defining the work area, the
opposite is true. Since an individual record will be
moved into the work area, it is usually defined as
a series of data fields which correspond to the
various portions of the record.

Suppose that each record in a file contains the
name and yearly salary of an employee, and that
these records are on tape in blocks of ten. Proc­
essing consists of updating the yearly salary. The
input (and the output) area is defined as one data
field, although it will contain ten records. How­
ever, the work area to which each record is moved
for processing is defined as two data fields: one
for the employee's name, and one for the
employee's yearly salary. Only the salary field
is referenced by processing instructions, but the
entire record is referenced as a unit when it is
moved to or from the work area. Consequently,
the work area must actually be defined as a data
field conSisting of two interior fields.

SWITCH DEFINITIONS: Switch definitions describe
three types of switches: data switches, program
switches, and console switches. All three may be
used to control the path of the program; e. g., to
determine whether or not all the routines in the
program will be executed, to determine the sequence
in which routines will be executed, etc.

Data Switch: A data switch is a data field in which
alphameric codes are placed. The definition of the
switch allows a meaning to be associated with each
code. When a data switch is defined as a portion
of a record area, the records supply the codes for
the switch.

When a data switch is defined independently of a
record area, the program itself supplies the codes.

Referring again to the employee records used
as an example in the section on area definitions,
suppose that each record consists of three fields:
name, yearly salary, and number of exemptions of
the employee. The work area is defined by area
definitions for the name and yearly salary fields,
and a switch definition for the exemption field. In
this case, the codes in the data switch would be
numerical characters. The manner in which each
record is processed depends on the number of
exemptions; the program therefore contains a
number of processing routines. As each record
is placed in the work area, the data switch becomes
the character contained in the exemption field of
the records. The program tests the switch to
determine what code is present, and then transfers
to the processing routine appropriate for that code.

Program Switch: A program switch is an instruc­
tion that causes the program either to continue
sequentially or to transfer. When a program
switch is ON, the program transfers to an out-of­
line instruction. When the switch is OFF, the
program executes the next in-line instruction.

Suppose that it is desired to type a message if a
certain error condition is detected. The program
switch is defined so that when it is OFF, the pro­
gram proceeds to the next instruction; and when it
is ON, the program transfers to the message­
writing routine. Initially, the switch is set OFF.
As long as it remains OFF, the program continues
through the switch to the following instruction. If
the error-detection routine encounters the error
condition, it sets the switch ON. Then, when the
program reaches the switch, it transfers to the
message-writing routine.

Console Switch: A console switch is one of the six
alteration switches on the console. They are
numbered 0911-0916. These switches must be set
manually by the console operator. Console
switches are useful when it is desired to execute a
routine only for certain object runs. For example,
a program that is run each week may include a
routine that should be executed only at the end of
the month. If a console switch is defined, the pro­
gram may test the switch and transfer to the end­
of-month routine when the switch is ON. The
console operator must, of course, set the switch
ON prior to each end-of-month run.

ONE-FOR-ONE INSTRUCTIONS: One-for-one
instructions are the symbolic equivalents of
machine instructions. Coding any :portion of a
program in one-for-one instructions means much

more hand-coding f<;>r the programmer than coding
the same portion in macro-instructions. This also
increases the possibility of error. One-for-one
instructions should be used only when it is inad­
visable to use macro-instructions.

MACRO-INSTRUCTIONS: A macro-instruction is a
powerful programming device. Essentially, it is a
request for those one-for-one instructions that will
accomplish the function stated by the macro-instruc­
tion. These instructions are selected to suit the
characteristics of the data fields and/or the other
hand-coded instructions referenced by the macro­
instruction. The field characteristics are obtained
from the field definition analysis made by the Proc­
essor. Whenever a choice exists among the one­
for-one instructions to be generated, the Processor
selects the most efficient coding.

An illustration of macro-instruction scope is:
The basic coding generated from the ADDX macro­
instruction adds the contents of two numeric fields
and stores the result in a field designated as the
result field. But, if the result contains more
decimal positions than the number specified in the
result field definition, the generated coding includes
instructions either to round or to truncate the
excess positions before the result is stored. The
choice depends on which process the programmer
specifies in the macro-instruction. Also, if the
result contains more integer positions than the
number specified in the result field definition, the
generated coding includes instructions to truncate
the excess high-order positions before the result
is stored. However, the programmer may request
an option which generates instructions to do the
following: truncate the excess positions if they
contain zeros and store the result; transfer to a
routine designated by the programmer, if the excess
positions do not contain zeros. This entire pro­
cedure, which obviously involves many one-for-one
instructions, is generated from one macro-instruc­
tion.

ADDRESS CONSTANTS:- An address constant con­
tains the symbolic address of a data field or an
instruction. During the program assembly, a con­
stant is created from the actual location assigned
to the field or instruction. Address constants are
used to initialize an instruction. Initialization is
the process of supplying a reference to an instruc­
tion that lacks one, or replaCing the reference made
by an instruction. An instruction makes a reference
by designating the symbolic address of a data field
of another instruction. The symbolic address
designated by an address constant is used to
initialize the instruction.

Introduction 9

Suppose that an input area contains a block of
records, each of which must be moved from the
area in succession. The input area is given a
symbolic address so that the area can be referenced
by the instruction that moves the records. Initially,
the instruction has as its address portion the sym­
bolic address of the area, thus referencing the first
record in the area. However, the address portion
of the ins~ruction must be modified before it can
reference successive records. The modification is
generally an increment equal to the size of one
record. Eventually, the input area is emptied, and
a new block of records is placed in it; but the
modified instruction no longer references the first
record. At this point it is necessary to initialize
the instruction (i. e., return the instruction to its
original form) by means of an address constant.
Assume that the address constant has been coded
and that it consists of the symbolic address of the
input area. Now the address constant can be placed
in the address portion of the modified instruction.
Once the instruction is initialized, it references
the first record in the area again.

INSTRUCTIONS TO THE PROCESSOR: Instructions
to the Processor allow the programmer to control
certain aspects of the assembly process and to take
advantage of the special features of the Processor.
The Processor instructions are written as Auto­
coder statements in the program. When they are
encountered during assembly, the Processor per­
forms the operations they request. Instructions to
the Processor concern the following aspects of the
assembly:

1. The listing of the program
2. Location assignments made by the Processor
3. Coding generated by the Processor

INPUT/OUTPUT CONTROL SYSTEMS FOR USE
WITH AUTOCODER PROGRAMS

Input/Output Control Systems (IOCS) have been
developed for the IBM 7080. IOCS consists of a

10

group of routines that handle all input/output func­
tions. IBM 7080 IOCS routines are made available
to an Autocoder program when IOCS macro-instruc­
tions in the Processor library are used in the
program.

Titles, form numbers, and abstracts of available
publications dealing with 7080 IOCS may be found in
the publication, IBM 7080 Bibliography, Form
A22-6774.

HIGHER LANGUAGES OF THE 7080 PROCESSOR

As mentioned earlier, the 7080 Processor accepts
program statements written in several higher
languages. The languages are: Fortran; Report/
File language; Decision language; Arithmetic
language, and Table-Creating language. Various
Processor phases translate each of these statements
into one or more Autocoder statements.

FORTRAN is the name for FORmula TRANslation
language. As the name implies, complex problems
can be stated in the form of mathematical formulas,
using FORTRAN. Both fixed point and floating
point calculations are possible.

Report/File language is a set of statements that
may be used to describe the format and contents of
a report or file. The routine generated from these
statements will create the report or file.

Decision language can be used to request a
logical decision to be made on the basis of a test of
the various conditions supplied in the statement.

Arithmetic language can be used to request that
a series of mathematical computations be per­
formed on the elements supplied in the statement.

Table-Creating language can be used to describe
tables suitable for data-searching, along with the
associated table entries.

Titles, form numbers, and abstracts of publica­
tions dealing with the higher languages of the 7080
Processor may be found in, IBM 7080 Bibliography,
Form A22-6774.

STANDARD FORMAT OF AUTOCODER STATEMENTS

Autocoder programs are written on the IBM 70S0
Processor Coding Form, Form X2S-1636-1, shown
in Figure 1. One card is punched for each line of
the coding sheet. The card desigD.ed for 70S0 Auto­
coder programs is the 70S0 Processor Source
Card, Electro N14106. An Autocoder statement is
formed by filling out the appropriate fields on the
sheet according to the specifications for the type of
statement being written. Some statements may
occupy more than one line. The term "field" ap­
plies to the character positions included under each
heading on the program sheet. The position num­
bers listed with the field headings correspond to the
columns on the card. The lower row of field head­
ings (including "Flag") define the fields for source­
program statements. The upper headings list
special fields that are used in th(3 preparation of
user-written macro-instructions.

Note: Throughout this publication, the field headed
"SEQUENCE (PGLIN)" will be referred to as the
pglin field, the field headed "NAME (TAG)" will be
referred to as the tag field.

PROGRAM IDENTIFICATION (COLUMNS 75 - SO)

The identification is filled in at the top of the coding
sheet. It should appear in columns 75 - SO of every
card punched for an Autocoder statement.

PGLIN (COLUMNS 1-5)

The sequence of the coding sheets and the state­
ments on the coding sheets is designated by the
five-position entry in these columns. Columns 1
and 2 designate a two-position page number that is
used to determine the sequence of the coding sheets.

7080 PROCESSOR CODING FORM

Form X28-1636-1
Printed In U.S.A.

Program 0 or.vocroD Punching Instructions Pa9" af

Graphic [[[[1 T [I Cord Form'
Identification

[Dote I I I I I I I i Coding on Bock 0 175 1 I I I Iso I
Programmer Pooch

(Upper Field Designations Apply for Macro Components Only) I , I I '0 F
Inclusion Test ·1 MI ,M2 1 M3 , S1 , S2 'I I

I , , I I R a

Sequence I Name Operation Num Operand Comments , , , , ,
I 9

(Pglin)
,

(Tog) I I I , I I
1 3 '5 6 8 1011 13 15 16 18 20 21 22 23 2S 2728 30 3233 35 3738 3940 4243 45 47 48 50 5253 55 57 58 60 62163 165 167 169 71 173 74

I
I I I I I I I

I I I
I , I I
I

I I I I I I I
, I I , , I I

I
I I I I I I I

, I I
I I , I
I
I I I I I I I I

I I I
I I , ,

I I I I I I L
I I I I

I I I I
I

I I I I I I I
I , I

I I I I
I

I I I I I I I
I I I , I I I

I I I I
I I I I I I I I I I , I
I

I I I I I I I
I , I I

I I I I ,
I

I I I I I I I
I I I

I I I I ,
I I I I I I

I , I , I I I I ,
I I I I , I I

, , I
I I , I
I

I I I I I I I
I I I I

I I I I I
I I I I I
I I I I I I I I I I I I I

I I I I I I I
I I I , I
I I I I I
I I I I I

I I I I I I I I I I , I

I I r I , I I
, I I
I I I ,

I I I I I I I
I I , , I I I ,

I I I I I I I i I ,
I I I
I

I I I I I
I I I I

I I 1 , I I I

I
I I I I I I I

I . I I I
I , , I I
I

I I I I I I I : , I I
I i I I I

• A standard card fcnw, IBM .Iectro N14106, is available for punching source statements from this cadi,.., form.

~ Figure 1. IBM 7080 Processor Coding Form

Standard Format of Autocoder Statements 11

Any alphameric character may be used in the
entry. Normally, however, special characters are
not used. The IBM 7080 collating sequence, shown
in Figure 2, is used to determine the order of the
pages.

Columns 3 - 5 designate a three-position line
number that is used to determine the sequence of
the statements on the coding sheets. Any alpha­
meric character may be used in these positions,
although special characters are not normally used.
Ordering should be done according to the 7080
collating sequence. It is recommended that column
5 be left blank except when designating the sequence
of insertions.

The back of each sheet may be used for inser­
tions. The insertion page number should be the
page number of the statement that the insertion is
to follow. The insertion line number should be
higher than that of the statement preceding the
insertion, and lower than that of the statement fol­
lowing the insertion. In the case of three-lines
inserted between two statements numbered 03b and
04b (b represents a blank), the insertions might be
numbered 031, 032, and 033; or they might be
numbered 03A, 03B, and 03C.

TAG (COLUMNS 6 - 15)

A tag is the symbolic address that represents the
actual location of a data field or an instruction.
The field is filled in starting in column 6. When an
Autocoder statement references a tag, it refers to
the data field or the instruction at the storage loca­
tion represented by the tag. During assembly, all
fields and instructions are assigned storage loca­
tions, and all references to tags are replaced with
the locations assigned to the tags.

A tag may contain up to ten characters; these
characters may be alphabetic, numerical, and
blanks. A tag may not contain special characters.
If composed of numerical characters only, a tag
must consist of five or more characters. It is
recommended that tags not start with one or more
blanks, because the Processor must left-justify
them, a time-consuming operation. It is also
recommended that pure numerical tags not be used.
It is best to create tags that describe the data
fields or the instructions to which they are assigned.
Tags should not be assigned unless they are refer­
enced by program statements; unnecessary tags
slow the assembly process and produce needless

messages. To avoid confusion and possible im­
proper macro generation, it is strongly recom­
mended that no tag begin with either of the follow­
ing three-letter prefixes: CSF, IBM.

OPERATION (COLUMNS 16 - 20)

The mnemonic code of the Autocoder statement is
placed in the operation field, starting in column 16.
No machine operation code can be used.

NUM (COLUMNS 21 - 22)

The use of the NUM (numerical) field varies
according to the type of Autocoder statement
being written. A one-position entry is placed in
column 22.

OPERAND (COLUMNS 23 - 39)

The use of the operand field varie s according to the
type of Autocoder statement being written. The
field is filled in starting in column 23, and the entry
may be continued into the comments field. Macro­
instruction operands may be continued from the
comments field of one line into the operand and
comments fields of succeeding lines of the coding
sheet.

COMMENTS (COLUMNS 40 - 73)

Additional information about an Autocoder state­
ment may be written in the comments field and will
appear in the program listing. Comments are use­
ful for explaining the purpose of program state­
ments. The field can begin before or after column
40. The comments may be continued in the com­
ments field on subsequent lines of the coding sheet;
there is no limitation on the number of comments
continuation lines.

The rules governing comments and comments
continuations vary according to whether or not the
comments accompany a macro-instruction. If they
accompany a macro-instruction, they must be
separated from the operand by a minimum of two
blank spaces, whether the operand termin'ates in
the operand field or continues into the comments
field. The comments continuation lines for macro­
instructions may not contain entries in any fields
except the pglin and comments fields.

If the comments do not accompany a macro­
instruction, they do not have to be separated from

Blank . tl*& $ * - / I % # @ '0 A through I 6 J through R =f S through Z 0 through 9

Figure 2. IBM 7080 Collating Sequence

12

the operand by blank spaces, and comments con­
tinuation lines may contain entries in any columns
except 16 (first position of the operation field) and
21- 22 (numerical field). However, to make the
comments easier to read, it is recommended that
the continuation lines be restricted to entries in the
pglin and comments fields.

FLAG (COLUMN 74)

Characters written in this column are used for
communicating with the Processor. The types of
characters that may be placed in this column (and
an explanation of their meanings) are described in
the section "Instructions to the Processor. "

Standard Format of Autocoder Statements 13

AREA DEFINITIONS

Area-definition statements describe data fields.
The data may be variable data supplied by records,
or constant data supplied by the area definition
statement. The programmer must know the length
and composition of the records, so that each field
may be defined correctly. The Processor uses the
information provided by area definitions when it
reserves storage space for the fields and when it
encounters instructions that reference the fields.

There are five types of area definitions:
1. Definition of a Record -- RCD
2. Definition of a Constant Factor -- CON
3. Definition of a Floating Decimal Point

Number -- FPN
4. Definition of a Report Format Field -- RPT
5. Definition of a Continuous Portion of

Memory -- NAME
An area-definition statement must contain a tag

if the field is to be referenced. The reference is
made by using this tag in the operand of the Auto­
coder statement making the reference. Since the
tag requirement applies to all area definitions, the
tag field will not be discussed separately in the
remainder of this chapter.

DEFINITION OF A RECORD -- RCD

The function of an RCD statement is to define a
data field in which a record block, an individual
record, or a portion of a record will be placed.
The definition speCifies the size of the field and
the nature of data it will contain. The RCD state­
ment is written as follows:

OPERATION FIELD: The mnemonic code RCD is
placed here. In a continuous series of RCD state­
ments, only the first need contain the mnemonic
code. The Processor assumes that each immedi­
ately subsequent statement with a blank operation
field is an RCD, and treats it accordingly. This
assumption makes it possible in subsequent state­
ments to use columns 17 - 20 of the operation field
as an expansion of the numerical field. (The
operation field is assumed to be blank if column 16
is blank.)

NUMERICAL FIELD: The size of the data field is
entered here. A one-digit entry is placed in col­
umn 22; it need not be preceded by a zero. When
the operation field contains the RCD code, the
numerical field is limited to a two-digit entry.
However, when the operation field is blank and the
statement has been preceded by another RCD

14

statement, columns 17 - 20 of the operation field
may be used as an expansion of the numerical field.
Under these conditions, in effect, the numerical
field consists of six positions. Thus, data fields
which exceed 99 positions may be defined, but they
may not be the first in a series of RCD statements.

OPERAND FIELD: The operand field contains one
of the follOWing:

1. A descriptive code. This is used to define
alphameric fields or numerical fields containing
integers only.

2. A description of an integer and decimal for­
mat. This is used to define numerical fields con­
taining mixed or pure decimals.

3. A layout of group marks and/or record
marks. This is used to describe the position of
group marks and/or record marks in a field.

Alphameric Fields and Numerical Fields of
Integers Only:

+
N
F

A

A+

Contents of Field

Signed numerical data conSisting of integers.
Unsigned numerical data consisting of integers.
Signed numerical data in floating-point form.

The field must consist of ten positions: a two­
character exponent, signed in the low-order posi­
tion, followed by an eight-character mantissa,
also signed in the low-order position. This is the
form in which a floating-point constant appears in
storage.

Alphameric data which mayor may not provide left
protection for the immediately subsequent field.

Alphameric data which always provides left protec­
tion for the immediately subsequent field.

Left protection should be provided when the sub­
sequent field contains signed numerical data. The
low-order position of the field providing left protection
must be occupied by one of the following: an alpha­
betic character, a signed numerical character, a
blank, or any special character.

Figure 3 shows fields defined with descriptive
codes. Notice that the final field cannot be refer­
enced, because it is not tagged.

Numerical Fields Containing Mixed or Pure
Decimals: The operand must indicate the number
of integer and decimal positions in the field and
whether the field is signed or unsigned. This
may be done in either of the following ways.
(The first method is the preferred
use.)

Operand

30 32 33 35 37 38 39

Figure 3

1. Enumerating the number of integer and
decimal positions. Signed numerical fields are
represented as #+xx. yy, and unsigned numerical
fields as #bxx. yy, where xx and yy represent the
number of integer and decimal positions respec­
tively (b represents a blank position). If there are
no integer positions, xx is written as 00. If there
are less than ten positions on either side of the
decimal point, the numerical digit is preceded by
a zero. The sum of xx and yy must equal the entry
in the numerical field. The maximum size data
field that can be defined consists of 99 integer and
99 decimal positions.

2. Showing a layout of the integer and decimal
positions. Each integer and decimal position is
indicated by an X, with a decimal point placed in
the appropriate position. The layout of a pure
decimal starts with the decimal point, and is fol­
lowed by the necessary number of Xs to the right
of it. When signed numerical fields are being
defined, a plus sign is placed in the first position
of the operand, and is followed by the layout. The
operand defining an unsigned numerical field starts
with the layout itself. A blank position is not used
to indicate unsigned numerical data.

The total number of Xs must equal the entry in
the numerical field. Although both the decimal
point and the sign occupy positions in the layout,
neither is included in the count for the numerical
field entry. Neither the point nor the sign exists
in the record as a separate position. However, the
Processor needs this information for various pur­
poses, such as selecting the proper coding to re­
place macro-instructions.

The definitions in Figure 4 are paired, to show
how the same numerical fields would be defined by
each of these methods. Note that SIGNED3 is too
large to be defined by a layout.

Indicating the Position of Record Marks and/or
Group Marks: This information should be supplied
if the record that contains such characters is
referenced by a macro-instruction. The position
or pOSitions the characters occupy must be defined

Figure 4

as one field of the record, unless no other informa­
tion is to be given about the record. The operand
must be a layout of the portion of the record that
contains the characters. The operand may indicate
one of the following: a terminal group mark, a
terminal record mark, or an internal group mark
followed by a terminal record mark. The operand
may contain the following symbols only:

t record mark
$ group mark
b blank

Figure 5 shows two ways in which the position of
a terminal group mark could be indicated in defining
a record conSisting of 31 positions of data, three
blanks, and a group mark.

Name Operation Num Operand
(Tag)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 3233 35 3738 39

IF: I.R . .t!. 7iLJ..4. y. R.. C.]). 13 J IA. I I
I .4 ~ I I

I ~ I I
l <'.E: I' IJ AlI7l1..1 L1 Y IR.t!...1>. l1.11 IA. I I

I 1 ~ I I
I I I

Figure 5

If the three blanks had been data, the definition
for SECONDWAY would have been used. If the
blanks had been group marks, the definitions in
Figure 6 would have been used.

Area Definitions 15

IName rQperot.ion ~ Mum 'Operand

'('1'09)
1> 8 HI n ra ns il6 1'820:21 22 ~325 '27 ,2830 32 33 '33 3738 :39 '

:1 1 1

Figure ·6

If one or more group marks ,appear within a
record" they may be made terminal by defining
them as a seperate field and giving the field a tag..
Figure '1 shows how the .four group marks within
a 90-position record maybe: made terminal by
being defined as a separate field.

;Neme 'Operalion Num ' Operand

'cr"g)
1011 .1'3 1$']6 ,18 20 21 22 23 2S YJ 28 30 3233 3S 3738 3\1

Figure '1

Fi:gure '8 shows two ways in which .a record
terminated by three blanks and a record mark could
be defined.

'Nlome Operation 'Num 'Operand

(Tag)
is '10 q 1 13 ,15' 16 r820 21 n 23 25 '2728 30 32 33 33 3738 39

;F,1 "R,$.,T1I·w',4, Y. .lIte J) .~ l' iJ. :1

1 Ii

:1

I

Flgure8

if the fmal blank had been a group mark, the
record could have been defined in either of the ways
sbown in Figure 9.

Qpera't,i.on : :Num 'Operand

Figure 9

16

If all the blanks had been group marks, the
record would have been defined as shown in Fig­
ure 1.0.

!Nome :Operofi'on Num
'(Tog)

1> .a 10 11 13 15 '1'618 ,2021 2223 25 27",,2,8,--.=30_=32r-33,-_-=35_--=37_~.

~ilp~.I~.R~ ... S~.~T·I~~~p·¥ .. Y++.~~~.C~.~~.~I~~./~a~ ... ~~++l~~~~~j_~_
I .~~.~.~./:. II
I J 1

Figure 10

If a record of less than 51 poSitions is being
defined, and it is not desired to give any informa­
tion about the contents other than the location of
group marks and/or record marks, the entire
record may be defined by a layout operand.Fig­
ure 11 shows the definition of a 20-position record
which contains .a group mark in the fifteenth position,
and a terminal re'cord mark.

Nome Operation Num Operclrrd

W!/,fi}.R,.K.sIO,N.L y ·IR"C.l> :1 .. '0 1
I .1 .1 l

Figure 11

COMMENTS FIELD: Comments may be started
here.. If comments continuation lines are written,
columns 16, 21, ,and ·22 of the continuation lines
must be blank. If the statement following the last
continuation line is blank in ·column 16 (but is not
blank in columns 21 and 22)., the Processor assumes
that the line is another ReD statement.

USING AN ReD OF ZERO LENGTH: If the first
data field ina record exceeds 99 positions, its
ReD definition may be preceded by an RCD of zero
length.. In this way, the definition becomes the
seeondin a series of RCD statemen.ts. The
mnemonic code RGDmay be omitted in this seeon.d
statement. Columns 17 - 20 'Of the operation field
may then be used as an extension of the numerical
field. No space will be reserved for an ReD of
zero length.

Restrictions on an ReD Statement

The size of a data fieldma.y not exceed mode mem­
ory size minus one. If a single RCD field specifies
a larger field size~ the Processor will assume a
length of one for location and address assignment.
(The macro generator will use the actual size
spe'cified unless it is greater than 159999. In
that case, a size of 'One will be assumed.)

Definitions of one or more terminal group marks
may not indicate internal record marks or internal
group marks. Definitions of a terminal record
mark may not indicate internal record marks.

DEFINITION OF A CONSTANT FACTOR -- CON

The function of a CON statement is to define a data
field that will contain constant data, and to provide
the constant itself. The data may consist of any
combination of alphameric characters and/or
blanks. The CON statement is written as follows:

OPERATION FIELD: The mnemonic: code CON is
placed here. In a continuous series of CON state­
ments, only the first need contain the code in the
operation field. The Processor assumes that each
immediately subsequent statement that is blank in
column 16 of the operation field is a CON, and
treats it accordingly. This assumption makes it
possible in subsequent statements to use columns
17 - 2.0 of the operation field as an expansion of the
numerical field.

NUMERICAL FIELD: The size of the constant is
entered here. A one-digit entry is placed in column
22, and need not be preceded by a zero. When the
operation field contains the CON cadet the numeri­
cal field is limited to two positions. However, when
the operation field is blank and the statement has
been preceded by another CON statement, columns
17 - 20 of the operation field may be used as an ex­
pansion of the numerical field. Under these con­
ditions:t in effect,. the numerical field consists of
six positions. Thus, constants which exceed 99
positions may be defined, but they may not be the
first in a series of CON statements ..

OPERAND FIELD: The constant is entered here.
If the entry in the numerical field is not equal to the
number of positions specified in the operand, the
Processor will do one of the following:

1. Truncate the excess low-order pOSitions
when the numerical field entry specifies fewer
positions than those contained in the operand.

2. Supply low-order zeros. or blanks when the
numerical field entry specifies more positions than
those contained in the operand. Blanks will be
supplied for alphameric fields; zeros will be supplied
for signed numeric fields.

In Figure 12, the numerical field for TAG2 indi­
cates that the constant contains nine low-order
blanks.

Defining a Numerical Constant: A constant con­
sisting of signed numerical data must contain a

Name ,Operation Num Ope.rand

(Tag)
1.0: 11 13 3233

Figure 12

plus sign or a minus sign in column 23 of the oper­
and field. If the data is a mixed or pure decimal,
the decimal point should be placed in the appropriate
position. In storage, the low order position of the
field is signed accordingly. However, neither the
sign nor the decimal point is included in the count of
field positions for the numerical field entry. A
signed numerical constant that exceeds 99 integer
or 99 decimal positions should not be referenced by
a general-purpose macro-instruction.

Unsigned numerical data consisting of integers
only is written starting in column 23 of the operand
field. Unsigned numerical data consisting of mixed
or pure decimals should not be specified as a con­
stant if it is to be referenced by an Automatic
Decimal Point macro-instruction. If this is done,
the data will be treated as alphameric data contain­
ing a period.

In Figure 13, note the following: The TAG3 con­
stant will appear in storage as 8bbb, the TAG4 con­
stant will appear as 64000 with a plus sign over the
low-order zero, and the TAG5 constant will appear
as 365 with a minus sign over the 5.

Name

(Tog)
1011 13

Figure 13

Operation Num Operand

25 27 2a 3Q, 32 33:

Defining a Constant of Record Marks and/or Group
Marks: It may be desired to supply a constant of
record marks and/or group marks as the terminal
field of a record. For example~ to follow a 33-
position data field with a blank and a. record mark,
the definition would be written as shown in Fig.­
ure 14.

If a data field containing a 42-position record is to be
followed by a constant of two group marks and a record
mark, the definitions in Figure 15 would be used.

Area DefinItions 1'1

Name Operation Num Operand

(Tag)
6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 3738 3\\ .

I l!l.c 1> 133 II. I 1
I~, () ,N..s rilLA!, I. 1~.t)./tI. :l :/= I I

I I I

Figure 14

COMMENTS FIELD: Comments may be started
here. If comments continuation lines are written,
columns 16, 21, and 22 must be blank. If the state­
ment following the last continuation line is blank in
column 16 (but is not blank in columns 21 and 22),
the Processor assumes that the line is another CON
statement.

Name Operation Num Operand
(Tog)

6 8 10 II 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 37 38 3~

I II?,C~, 14 . .2 /J. I I
c_ 0 ,IJ/,S, TIA,III, r, Ic O.IV. j 1:t.~.1:. I I

I I I

Figure 15

Restrictions on a CON Statement

A one-position CON statement should be used to
supply a plus sign or a minus sign as an alphameric
constant. If an alphameric constant consisting of a
plus sign or a minus sign followed by numerical
characters is desired, a one-position CON state­
ment should be used to define the sign; another CON
should be used to define the numerical characters
as an unsigned numerical constant.

The size of a CON statement may not exceed
mode memory size minus one. If a single CON field
specifies a larger field size, the Processor will
assume a length of one for location and address
assignment. (The macro generator will use the
actual size specified unless it is greater than 159999.
In that case, a size of one will be assumed.)

DEFINITION OF A FLOATING POINT NUMBER -­
FPN

The function of an FPN statement is to define a data
field for constant numerical data and to provide the
data in floating-point form. Numerical data should
be defined in floating-point form when there is a
possibility that the limits of the accumulator might
be exceeded during arithmetic operations with the
data if it were defined in fixed-point form.

Floating-point form consists of a mantissa and
an exponent. The mantissa is a pure decimal with
a non-zero high-order digit; the exponent is a

18

number specifying a power of ten. When the man­
tissa is multiplied by the power of ten that the ex­
ponent specifies, the data is produced in fixed-point
form. The following lists show the same data
expressed in both forms.

Fixed

+9427.38 +.942738 x 104

-.3264 -.3264 x 100

+.0035 +.35 x 10-2

-623 -.623 x 103

The FPN statement is written as follows:

OPERA TION FIELD: The mnemonic code FPN is
placed here. In a continuous series of FPN state­
ments, only the first need contain the code in the
operation field. The Processor assumes that each
immediately subsequent statement that is blank in
column 16 of the operation field is an FPN statement
and treats it accordingly.

NUMERICAL FIELD: This field is left blank. The
Processor assumes ten positions.

OPERAND FIELD: The exponent and the mantissa,
each preceded by a plus or minus sign, are placed
here in the following format: ±EE±DDDDDDDD.

The exponent must be a two-position number, as
specified by EE. The sign which precedes the ex­
ponent indicates the direction in which the decimal
has been moved in order to convert the data from
fixed point to floating point form. A plus sign
indicates that the decimal has been moved to the
left; the minus sign indicates that the decimal has
been moved to the right.

As indicated by DDDDDDDD, the mantissa ma.y
consist of up to eight digits, and is preceded by the
sign of the number itself. If fewer than eight digits
are specified, the Processor will supply low-order
zeros to complete the mantissa; if more than eight
are specified, the Processor will truncate the ex­
cess low-order digits. When the data is placed in
storage, the signs are placed over the low-order
positions of the exponent and the mantissa.

Figure 16 shows a list of fixed point numbers,
their corresponding FPN definitions, and the con­
stants that would be created from them.

COMMENTS FIELD: Comments may be started
here. Comments continuation lines are not allowed.
Any continuation line following an FPN is assumed
to be another FPN.

Restrictions on an FPN Statement

The absolute value of the exponent may not exceed
99. An exponent of '00 is signed +.

Fixed Point Form Name Operation Num Operand Constants Placed in Storage
(Tag)

1011 13 15 16 18 20 21 2223 25 2728 30 32 33 35 3738 39

1. +589.46782

2. +.0025

3. -4327.9

4. -.063

5. -.4792

6. +17482.18936

Figure 16

FPN definitions may not be referenced. by any
Automatic Decimal Point macro-instructions. The
programmer must provide his own macro-instruc­
tions and/or subroutines in order to calculate with
floating-point numbers, because the Automatic
Decimal Point macro-instructions calculate with
numerical data in fixed-point form only.

DEFINITION OF A REPORT FORMAT -- RPT

The function of an RPT statement is to define a
data field for numerical data which will be printed
in a report and to specify the print format for the
data. The RPT field may be referenced by macro­
instructions that place the numerical data in the
field and supply the elements of the desired format.
The following elements may be specified in the
definition:

1. Commas and/or a decimal point
2. Fixed or floating dollar sign
3. The printing or suppressing of leading zeros
4. Asterisk protection
5. Indication of the numerical field sign
6. The blanking of a field of zeros
The RPT statement is written as follows:

OPERA TION FIELD: The mnemonic code RPT is
placed here. In a continuous series of RPT defini­
tions, only the first need contain the code. The
Processor assumes that each immediately subse­
quent statement that is blank in column 16 of the
operation field is an RPT statement and treats it
accordingly.

NUMERICAL FIELD: The size of the RPT field is
entered here. All positions of the format, as shown
by a layout in the operand field, must be counted. The
count consists of the positions for the numerical data
andanycommas, decimalpoints, dollar signs, orany
positions reserved for printing the sign of the field.

+ +
1. 0358946782

+
2. 0225000000

+
3. 0443279000

4. 0163000000
+ -

5. 0047920000
+ +

6. 0517482189

OPERAND FIELD: The layout of the report format
is started here; it consists of the symbols used to
define the numerical characters, and the symbols
for a dollar Sign, a comma, and a decimal point if
any are used. The layout may also contain one or
two blank positions reserved for printing the sign
of the field. Usually, the layout is followed by a
set of indicators that provide the macro-instructions
with additional information about the desired print
format.

Three sets of data will be used as examples
throughout this section to explain the method of
laying out the format. The first consists of four
integer and two decimal positions. The second con­
sists of three decimal positions. The third consists
of five integer positions.

Indicating Numerical Characters, Commas, Decimal
Point: Xs and Zs are used to indicate the position of
each numerical character in the format. If commas
and/or a decimal point are desired, the symbols for
them are placed in the appropriate positions. The
numerical positions of the format are defined as
follows:

1. Decimal pOSitions. Zs must be used to define
all decimal positions. Any trailing (i. e., Significant)
zeros in the data entering these positions will be re­
tained and printed.

2. Integer positions. Xs and/or Zs may be used
to define integer positions. The treatment of any
leading (i. e., insignificant) zeros in the data enter­
ing these pOSitions depends on whether the position
in which the zero occurs is defined by a Z or by an
X. If the position is defined by a Z, the zero will
be retained and printed. If the position is defined
by an X, the zero will be converted to a blank. Xs
may be used to the left of Zs, but not to the right
of them. If the format layout does not contain a
decimal point, the Processor assumes that a field
of integers is being defined.

Area Definitions 19

In Figure 17, the MIXED and INTEGER defini­
tions indicate that any leading zeros are to be re­
placed by blanks. Notice that no decimal point is
specified in the INTEGER field.

Figure 17

If 004320 were placed in the MIXED field defined
in Figure 17, it would be printed as bbb43. 20 (the
comma having been replaced by a blank).

The MIXED and INTEGER fields are redefined in
Figure 18 so that leading zeros will be retained.
The MIXED definition requests that leading zeros
that occur in the two low-order integer positions be
printed. The INTEGER definition requests that
leading zeros be printed in all but the high-order
position.

Name
(Tag)

Operation Num Operand

p---,,-----:1.::...o ~11----'-13"__~~~~~~~~~.~-.:::30~~32:..,.::3~ 38 39.

Figure 18

If 000120 were placed in the MIXED field defined
in Figure 18, it would be printed as bbbOl. 20; and
if 00089 were placed in the INTEGER field, it
would be printed as b0089.

Leading zeros may also be replaced by asterisks.
This is called asterisk protection. It is requested
by an indicator, which is placed immediately after
the format layout. The indicator consists of a
lozenge, an asterisk, and a lozenge (0 * 0); it
is not included in the count for the numerical col­
umn. In Figure 19, the INTEGER field is defined
for complete· asterisk protection. The MIXED
field, however, is defined for asterisk protection
only in the positions defined- by Xs.

Name
(Tag)

Operation Num Operand

1011 13

Figure 19

20

The position of the decimal point can be indicated
to macro-instructions that handle numerical data
without having the point appear in the printed report.
This is done by placing the symbol D in the appro­
priate position of the layout. The D is not included
in the count of positions for the numerical field.
This may be seen in Figure 20.

Noone
(Tog)

1011

Operotion Num Ope/ond

p!q---I--1I-+--+-tL"-t'-..p_+-+-t-+~~~~~-- ---t-+-t---t-.L+-­

I I -t~~--t-+-t-+-+-+-++--t-+-+-

Figure 20

Indicating the Position and Treatment of Dollar
~: If the dollar sign is desired in the printed
report, it is written to the left of the high-order
position of the format layout and is included in the
count for the numerical field. A fixed or floating
dollar sign can be specified as part of the print for­
mat through indicators, which are placed to the
right of the format layout. The indicators are
surrounded by lozenge symbols (to, and are not
included in the count for the numerical field because
they are not part of the format layout. A fixed
dollar sign is printed in the same pOSition for each
use of the data in the report.

If a fixed dollar sign with asterisk protection is
desired, the format layout is immediately followed
by an indicator consisting of a lozenge, an asterisk,
and a lozenge (0 * 0). If a fixed dollar sign without
asterisk protection is deSired, the format layout is
not followed by any dollar sign indicators. If any
leading zeros occur in the data, they will be main­
tained or replaced by blanks, depending on whether
Zs or Xs are used in the integer positions of the
format layout.

A floating dollar sign is shifted so that it is
printed to the left of the first numerical character
in each set of data. It is requested by an indicator
conSisting of a lozenge, a dollar sign, and a lozenge
(0 $ t:I) placed to the immediate right of the format
layout.

Figure 21 shows one field as it would be defined
to request each of the following:

1. A floating dollar sign.
2. A fixed dollar sign with asterisk protection.
3. A fixed dollar sign without asterisk protec­

tion and with leading zeros converted to blanks.
4. A fixed dollar sign without asterisk

protection and with up to three leading zeros
retained.

5. No dollar sign but asterisk protection.

Name
(Tag)

Operation Num Operand

1011 13 25 27 28 30 32 33 35 37 38 39

Figure 21

Assume that 003418 and 000570 are placed in each
of the fields defined in Figure 21. The definitions
would cause the data to be printed as follows:

MIXED1 $34.18 $5.70
MIXED2 $***34.18 $****5.70
MIXED3 $ 34.18 $ 5.70
MIXED4 $ 034.18 $ 005.70
MIXED5 ***34.18 ****5.70

Note that the commas in MIXED2 and MIXED3
are converted to an asterisk and a 1:;>lank respec­
tively. In MIXED4, and MIXED5, the comma is
converted to a blank.

Indicating Field Signs and Zero Fields: Sets of
characters which occupy one or two positions are
available for printing either or both of the following
in the report:

1. An indication of the sign of the field that is
supplying data to be placed in the RPT field

2. An indication that the field that is supplying
data consists of zeros
The requested characters will be printed to the
right of the data.

Depending on which set of characters is
requested, one or two blank positions must be
added to the low-order portion of the format layout.
These blank positions must be included in the count
for the numerical field entry, and are considered
part of the layout. The special characters, called
field Sign indicators, are written to the right of the
dollar sign indicator and its accompanying lozenges.
Each character is also followed by a lozenge.

At this point, it is necessary to discuss the
lozenges that separate the indicators in the RPT
operand. Not only are the indicators significant
to the Processor, but the presence or absence of
the associated lozenges is also significant. When
an option is not desired, the indicator which re­
quests it must be omitted. If no subsequent options
are to be requested in the same operand, the
lozenge associated with the omitted indicator is
also omitted. However, the lozenge is retained
and placed back-to-back with the preceding lozenge

if subsequent options are requested in the operand.
The lozenge placement indicates to the Processor
which option or options are not desired. A lozenge
that may be omitted when its associated indicator
and all subsequent indicators are omitted is called
a conditional lozenge.

The lozenges associated with the dollar sign
indicator are conditional. When a dollar sign is
not included in the format layout or when a fixed
dollar Sign without asterisk protection is desired,
no dollar sign indicator is required. The associated
lozenges may be omitted unless a field sign is being
requested. If a field Sign is being requested, the
dollar sign lozenges must be placed back-to-back,
and must precede all field sign indicators and their
associated lozenges.

The field sign lozenges ·are not conditional. If
any field sign indicators are used, the lozenge
associated with each indicator must be placed after
the indicator itself, or must be placed back-to-back
with the preceding lozenge when the indicator is
omitted.

The full dollar sign and field sign indicator
structure is:

tlX
1

tlX
2

tlX
3

t:lX
4

1l

where

Xl is the dollar sign indicator or is omitted.
The lozenges are conditional.

is the negative field sign indicator or is
omitted.

is the zero field indicator or is
omitted.

X 4 is the positive field sign indicator or is
omitted.

The field sign indicators are as follows (b desig­
nates a blank):

1. One-position indicators: b - * +
2. Two-pOSition indicators: b - b* ** CR DR

DB
If indicators from the first set are used, one blank
position must appear as the final position of the
format layout. If indicators from the second set
are used, two blank positions must appear as the
final positions of the format layout.

The symbols CR, DB, -, and b- may be used
for the negative indicator only. The symbols DR

and + may be used for the positive indicator only.
The other symbols may be used for either. A blank

is generated in the sign position when the condition

associated with an omitted indicator is encountered.
It is possible to leave one blank position as the

final position of the format layout, use the dollar
sign indicator and its lozenges, but omit all field
sign indicators and their associated lozenges.

Area Definitions 21

In this case, a blank will be generated in the sign
position for both zero and positive fields, and a
minus sign will be generated for negative fields. If
a dollar sign indicator is not desired, the format
layout can be terminated with the blank position,
which must be included in the count for the numeri­
cal field entry.

The definition in Figure 22 requests a floating
dollar sign. It also specifies that a minus sign is to
be printed after a negative field, an asterisk after a
zero field, and a plus sign after a positive field.
One blank position for sign indication terminates
the layout.

Figure 22

Assume that the definition in: Figure 22 defines
the RPT field for the data shown below:

Data Entering
RPT Field

032571-
00000
45763

RPT Field Printed

$325.70-
$.00*

$4,576.38+

Figure 23 shows a request for a fixed dollar sign
with asterisk protection, with the symbol CR printed
after negative fields and the symbol DR printed
after positive fields. Two blank positions for sign
indication terminate the format layout.

Name Operation Num Operand
(Tag)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 3738 3940 4243

1M. I Y. s: »1.:1 I~o-r , , ~)(v >ll)l .. "Lz I W.
_ .1 ...

'-olw

1 1 I 1

Figure 23

Assume that the definition in Figure 23 defines
the RPT field for the data shown below:

Data Entering
RPT Field

00395~
000000
413675

RPT Field Printed

$***39. 55CR
$*****.00
$4, 136. 75DR

1

Note that the symbol D for the decimal point is not
included in the count of the format positions in Fig­
ure 24. Only the three numerical character posi­
tions and the two blank positions for field sign

22

indication are counted. The sign indicators specify
that the dollar sign is omitted and that a negative
field is to be indicated by two asterisks.

Nome
(Tag)

1011 13

Figure 24

Operation Num Operand

3233

The definition in Figure 25 allows one position
for field sign indication but does not contain a
dollar sign or any sign indicators. Consequently,
a minus sign will be generated for a negative field,
and a blank will be generated for zero andpositive
fields. The Zs specify that leading zeros are not
to be converted to blanks.

Figure 25

Assume that the definition in Figure 25 defines
the RPT field for the data shown below:

Data Entering
RPT Field

0027
1-0000

3462

RPT Field Printed

00278-
00000
34628

Figure 26 specifies a floating dollar sign and two
asterisks printed to the right of zero fields. All
positions of a zero field except the sign positions
will be converted to blanks. This includes the
dollar sign, comma, and decimal-poin,t positions.

Figure 26

Blank-If-Zero Option: If this is requested, any
defined commas, the decimal point, and floating or
fixed dollar signs will be converted to blanks along
with the numeric positions when the field contains
all zeros. To request the option, the symbol BZ
is used as the zero field indicator. All five lozenges
must be included, whether or not BZ is the only

indicator used. This option is independent of the
other sign options. Consequently, when BZ is the
only indicator used, it is not necessary to terminate
the format layout with any blank positions.

The definition for MIXEDI in Figure 27 specifies
only that the field is to be blanked when it contains
all zeros. The definition for MIXED2 calls for a
fixed dollar sign with asterisk protection, a minus
sign following a negative field, and the Blank-if­
Zero option. A positive field will be printed without
any field sign indication.

Figure 27

COMMENTS FIELD: Comments may be started
here. If comments continuation lines are written,
columns 16, 21, and 22 must be blank. If the state­
ment following the last continuation line is blank in
column 16 (but is not blank in columns 21 and 22),
the Processor assumes that the line is another RPT
statement.

Restrictions on an RPT Statement

The format layout of an RPT operand may not exceed
five positions. One-position and two-position field
sign indicators may not be mixed in the same state­
ment.

The numer of positions in the format layout must
be identical to the entry in the numerical field. If
blank positions for sign indication are included in
the layout, it is important to see that no more than
two blank positions are allocated. The number of
commas in the format layout should not exceed nine.

DEFINITION OF A CONTINUOUS PORTION OF
MEMORY - NAME

A NAME has two functions which may be used inde­
pendently of, or in conjunction with, each other:

1. to identify a series of adjacent data fields
as the interior fields of an area so that they may
be treated as a unit.

2. to specify the final digit or digits of the
starting location to which a data field is assigned.

ENCLOSING ADJACENT FIELDS: A NAME state­
ment which identifies fields as interior to an area
may be said to enclose the fields. The follOWing
Autocoder statements define fields that may be
enclosed by a NAME statement:

1. Area definitions:
RCD, CON, FPN, RPT, NAME

2. Switch definitions:
CHRCD, BITCD

3. Address constants:
ACON4, ACON5, ACON6, ADCON

The interior fields of the NAME area may be
referenced individually by their tags, or referenced
as a unit by the tag of the NAME area. For exam­
ple, a work area may be defined as a NAME area
consisting of four interior fields. Each field may be
operated on individually, but the fields may also be
moved to and from the work area as a unit rather
than one at a time.

SPECIFYING A LOCATION: The location requested
by the NAME statement is assigned to the high-order
position of the immediately subsequent field. The
NAME statement specifies what the final digit or
digits of the address may be. The next available
location that ends in the requested digit or digits is
then assigned to the high-order position of the field
defined immediately after the NAME statement.

Suppose that a 4/9 location is requested: i. e. ,
that the high-order position of the field should be
assigned a location ending in 4 or 9, whichever is
available first. If 00012 is the last location assigned
prior to the request, location 00014 will be assigned.
If 00017 is the last assignment, then 00019 will be
assigned. In either case, if a 00 assignment
had been requested, 00100 would have been assigned.
The NAME statement is written as follows:

OPERA TION FIE LD: The mnemonic code NAME is
placed here. If a subsequent entry to the NAME
contains a blank in columns 16, 21, and 22, the
entry is assumed to be another NAME statement.

NUMERICAL FIELD: This field is left blank if the
Processor is to assign the next available location to
the NAME. * If a specific address ending is desired
for the starting location, one of these codes is
placed in column 22:

Requests Location
Code Ending In

o or 5 o or 5
lor 6 lor 6
2 or 7 2 or 7
3 or 8 3 or 8
4 or 9 4 or 9
A 0
B 00
C 000

*For purposes of location assignment, an X in column 22 has the
same effect as a blank. However, if an X is used, the Proces­
sor will not make the terminal location of the field available for
the macro generator. (The X is used for generation of higher

languages; preferably, it should not be used in Autocoder.)

Area Definitions 23

OPERAND FIELD: This field is left blank when
NAME is used only to request a location assignment.
When NAME is used to enclose a series of interior
fields, the tag of the interior data field that termin­
ates the NAME is placed in the operand field. If an
operand is used, the NAME statement itself must
be tagged.

The NAME statement in Figure 28 requests the
positioning of FIELD1 starting at the first available
address ending in O. The statement also makes four
fields interior to STARTNAME by designating the
ENDNAME field as the terminal field.

Nome Operation Num
(Tag)

1011 13 15 16_._Jil __ .10 21 22 23

~,B-tR,TIMel"'V',

~letL~111 I

IE'iL~I:Z1 I

Figure 28

Operand

Figure 29 shows NAME used to position the RPT
field ANYTAG in the next available address ending
in 2 or 7.

Nome Operation Num Operand

(Tag)
1011 13 15 16 Jil ___ .20 212223 25 _.E.3~ ___)~ 32 ~_ . .25_3.?.}8 39

Figure 29

NAME is used in Figure 30 to identify the interior
fields of the area tagged BEGIN.

Figure 30

Figure 31 shows a way of creating the constant
+12345 in such a way that it will not appear in stor­

+
age as 1234E (12345).

COMMENTS FIELD: Comments may be started
here. Comments continuation lines are not allowed.

24

Nome Operation Num • Operand
(Tag)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 3233 35 3738 39

AI DUAl
I AI. A,"".E". IENJ) LJ , ID U IJ I

I CoN. I .,.. I I

l!F.1II.DIJ.J Ip.u IJ .< 1.2 _~,,.._~ I

I I I

Figure 31

Information Provided by the Processor

The Processor counts the total number of positions
occupied by the interior fields of a NAME area. A
message indicating the total will appear in the listing
immediately following the entry specified as the ter­
minal field definition.

Internal NAME s

One or more NAME areas may be made internal to
another NAME. The operand of each internal and
outer NAME statement must contain the tag of the
field that terminates it. Internal NAMEs may be
terminated by the same field that terminates the
outer NAME, or they may be terminated by fields
that are internal to the outer NAME.

In Figure 32, the OUTERNAME is terminated by
the CON field ENDOUTER, while INNERNAME is
terminated by the RCD field ENDINNER.

Figure 32

In Figure .33, both FIRSTNAME and SECOND­
NAME are terminated by the RCD field END­
FIRST.

Figure 33

Restrictions on a NAME Statement

The total number of positions enclosed in a NAME
may not exceed mode memory size minus one. If
this limit is exceeded, the Processor will assume
a length of one for address assignment. (The
macro generator will use the actual size specified
unless it is greater than 159999. In that case, a
size of one will be assumed.)

Internal NAME statements should not specify
location assignments. The operand (i. e. , tag of
the termination field) of one NAME statement
cannot be the tag of another NAME entry.

The NAME statement itself must be tagged if
the operand contains a tag.

No more than 32 NAME areas may be defined
concurrently.

Area Definitions 25

SWITCH DEFINITIONS

Switches are programming or hardware devices that
are used to control the path of a program. Three
types of switches may be defined: data switches,
program switches, and console switches. The
statements used for each type are as follows:

1. Data Switches
a. Character Code -- CHRCD
b. Bit Code -- BITCD

2. Program Switches
a. Switch Set to Transfer -- SWT
b. Switch Set to No Operation -- SWN

3. Console Switches
a. Alteration Switch -- ALTSW

With one exception, the format of a switch defini­
tion statement varies according to the type of switch
being defined. The exception is the comments field.
Comments about any switch may be started in the
comments field of the definition statement. For
those switches which must be defined by a set of
statements, comments continuation lines may inter­
vene between the first statement and the remaining
statements, or the continuations may be placed in
the comments fields of the remaining statements.

DATA SWITCHES

A data switch is a data field. There are two types
of data switches: character code and bit code. The
character-code switch provides a method of relating
alphameric codes to various meanings or conditions.
The bit-code switch provides a method of relating
the bits that form a storage position to various
meanings or conditions.

Both character-code and bit-code switches are
described by a set of statements, the first, of which
is the switch-definition statement that indicates
whether a character code or a bit code is being de­
fined. The rest of the character-code switch state­
ments specify the alphameric codes which may oc­
cupy the switch and the condition that each code re­
presents. The rest of the bit-code switch state­
ments designate the various bits of the storage posi­
tion and the condition each bit represents. A char­
acter-code switch may occupy one or two positions;
a bit-code switch may occupy only one position.

A record field may be defined as a data switch,
and the switch may be interior to a record area de­
fined by a NAME statement. The switch will be set
each time a record is placed in the area. If the data
switch is not defined as part of a record area, the
program itself must set the switch. The way in
which the switch is initially set depends on its use
in the program.

26

If the switch-definition statement follows an RCD,
the statement should not specify the initial setting.
The Processor reserves storage space for the
switch, but does not set it to any code. If an initial
setting has been specified, the Processor ignores it.
However, a switch-definition statement that does not
follow an RCD should specify an initial setting. The
Processor reserves space for the switch and sets it
as specified. If the initial setting has been omitted,
the Processor sets the switch to a blank.

Program Branch Control macro-instructions are
normally used to set the switches ON or OFF or to
test their settings. A character-code switch is set
ON by placing one of the defined codes in it; it is set
OF Fby placing a blank in it. When a character-code
switch is tested, it is examined to see whether or not
a given code is present. If the code is present, the
switch is ON. If the switch contains anything other
than the designated code, the switch is OFF.

A bit-code switch is set ON by setting the desig­
nated bits ON; it is set OFF by setting the designated
bits OFF. When a bit-code switch is tested, it is
examined to see whether or not the bit designated in
the test is ON. If the designated bit is ON, the
switch is ON, otherwise, the switch is OFF.

Suppose that statements for a character-code
switch specify that code A represents the condition
of Surplus, and code B represents the condition of
Deficit. If the switch is tested for the Surplus condi­
tion and code A is present, the switch is ON. Alter­
natively, suppose the switch is tested for the Deficit
condition. Now if code B is present, the switch is
ON. In other words, the data switch must be tested
for a condition that has been specified in its definition.
If the code that represents the specified condition is
present, the switch is ON. Otherwise, it is OFF.

Suppose, in a similar example, that the switch is
a bit-code switch. Let the Surplus condition be re­
presented by turning ON the I-bit, and let the Deficit
condition be represented by turning ON the 2-bit. In
this case, if the switch is tested for the Surplus con­
dition and the I-bit is ON, the switch is ON. It does
not matter whether the 2-bit is ON or OFF, because
the test does not specify the Deficit condition. It is
possible, although not logical in this example, for
the switch to be ON for both the conditions of Surplus
and Deficit.

A character-code switch may represent only one
condition at any time, whereas a bit-code switch may
represent multiple conditions simultaneously. In
each case, the number of ON states for a data
switch is equal to the number of codes or bits spe­
cified in the switch definition.

Character Code -- CRRCD

A character-code switch is defined by a series of
statements. The first is the CRRCD statement; its
function is to define the switch as a character-code
switch and to specify the size and initial contents of
the switch. The statements which follow the CRRCD
statement specify the codes and the conditions they
represent. The format of the set of statements is
as follows:

Tag Operation

CHRCD

Tl

T2

T3
etc.

n

Num Operand

n Xl
Cl

C2

C3
etc.

is blank when defining a one­
position switch, or is 2 when
defining a two-position
switch.

is the initial contents of the
switch, or is blank.

are the tags of the codes. They
specify the conditions the
codes represent.

are the codes; any alphameric
characters may be used.
The codes may be composed
of one or two characters,
depending on what is spe­
cified in the numerical field.

If the CRRCD statement immediately follows an
RCD statement, the CRRCD operand should be left
blank. If the switch does not follow an RCD field,
the operand of the CHRCD statement should specify
the initial setting; otherwise, a blank will be placed
in the switch.

Figure 34 shows a one-position character-code
switch defined as a portion of a record area. Note
that the switch is enclosed by a NAME statement.
The NAME operand indicates that the statement
tagged CANCELED terminates the NAME.

Name Operation Num Operand
(Tag)

8 10 11 13 15 16 18 20 21 22 23 25 2728 30 32 33

Figure 34

In Figure 35, the operand of the CRRCD statement
specifies the initial switch setting; i. e., that the
switch contains the code 18.

Nome Operation Num Operand
(Tag)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 3738 39·

I II'.. II. J(l e.:JJ :1 J Il. l I
N.E,&./. Y.b 1A,j(, j,<!:I I I

1La . .s. T. .oW, Ib.~ I I

C,M J ,~,4.tI=,O, J ~, I I
~,7".L ,A..NiT..4. :1.,7 I I

I I I

Figure 35

During the program assembly, the tag of each
code is assigned to the storage position occupied by
the switch. Suppose that the switch defined in
Figure 34 is assigned location 000315. When instruc­
tions which reference NEW, REGULAR, and CAN­
CELED are translated into machine language,
000315 will appear as the address portion of each
one.

Figure 36 is part of a listing. Notice the machine
language portions for both the switch definitions and
the instructions that reference the switch.

~ag Operation Num Operand ILOC INSTR SU ADDRESS

CHRCD 000343

BLUE A
I IGREEN B

~ED C

Instructions that reference the switch:

CMP 1 GREEN 2129 -403U3 01 000343
I

~MP 1 RED 002624 -i03U3 01 000343
f

tMP 1 BLUE 002679 .-403U3 01 000343

Figure 36

Restrictions on a CRRCD Switch

A code should be represented not as a signed
numerical character but as the alphabetic character
equivalent to the signed numerical character. For
example, A should be used to represent +1, J
should be used to represent -1, etc.

The CRRCD statement should not be tagged, since
the switch is referenced by the tags of the codes.

Bit Code -- BITCD

A bit-code switch is defined by a series of state­
ments. The first is the BITCD statement; its func­
tion is to define the switch as a bit-code switch, and

Switch Definitions 27

to specify the initial setting of the switch. The
statements that follow the BITCD statement specify
the bits and the conditions they represent. The
format of the set of statements is as follows:

Tag

TI
T2
T3
T4

Operation Num pperand

BITCD Xl
BI
B2
B3
B4

is the initial setting of the switch, or
is blank.

are the tags of the bits. They specify
the conditions that the bits repre­
sent when they are ON.

are the bit codes 1, 2, 4, and A.

If the BITCD statement immediately follows an
RCD statement, the operand should be left blank. If
the switch does not follow an RCD field, the operand
of the BITCD statement should specify the initial
setting. The setting is indicated by the alphameric
character created when the desired bits are set ON.

A bit that contains zero (0) is defined as ON. A
bit that contains one (1) is defined as OFF. For in­
stance, if the 4-bit should be set ON initially, the
operand may be any character that contains a zero
in the 4-bit. If the I-bit, 4-bit, and A-bit should be
ON, the operand may be any character that contains
zeros in those bits. It is recommended that the se­
lected character contain a zero in the 8-bit and a
one in the B-bit so that the character in the switch
will always be valid for printing purposes.

The bit-code switch in Figure 37 indicates
various types of payroll deductions, and is defined
as a portion of a record area. The maximum num­
ber of bits has been used.

Name Operation Num Operand
(Tag)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 3233 35 3738 39·

i,e,!:.,. .n 01 D ~ ~ E LJ .I'Ll_I: o,r,jJ,E..Al1 I
IL-_~' ,.Iv ~r A..c,:p, :2..5 /f1,+, . I I

I IJ.I.T.C:::D I I

lx,~,s, I I I I

'::,I,e'" I .:J I I

5,1..4. ToE! .'1 1 I

.1>. T.H,F.~ ,/9 I I

I 1 1

Figure 37

The BITCD definition in Figure 38 specifies that
GROSSTOTAL is to be set ON initially. The switch
will contain B (12-2), thus setting the I-bit to zero.

28

Nome Operation Num Operand
(Tag)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 3738 39

I B. J.I.C:J) B, I I
~ .1,D,~~IT.D,r ,A,1. I I I
'N,E, r."rolr,A,L ,~ I L

I I I

Figure 38

During the program assembly, the tag of each de­
fined bit is assigned to the storage position occupied
by the switch. Suppose that the switch defined in
Figure 38 is assigned location 000100. When in­
structions that reference GROSSTOTAL and NET­
TOTAL are translated into machine language,
000100 will appear as the address portion of each
one.

Figure 39 is taken from a listing. Notice the
machine-language portions for both the switch def­
inition and the instructions that reference the switch.

Tag Operation Num Operand)LOC INSTR SU ADDRESS

SITeD 000237
EAST 1
WEST 2
NORTH 4

I I I
Instructions that reference the switch:

ReVS EAST 002319 U0237 000237

f
Revs WEST 002464 U0237 000237

~
Revs NORTH 002739 U0237 000237

Figure 39

Restrictions on a BITCD Switch

A bit-code switch may not be used in a program for
the 705 II portion of a 7080 program.

The BITCD statement should not be tagged, since
the switch is referenced by the tags of the bits.

PROGRAM SWITCHES

A program switch is an instruction. Each time the
switch is encountered, it causes the program to do
one of two things:

1. To transfer to a designated instruction when
the switch is ON.

2. To execute the next in-line instruction when
the switch is OFF.

A program switch is defined by a single statement
that specifies the initial switch setting. If the initial
setting is ON, the switch statement becomes a
Transfer instruction in the object program. If the
initial setting is OFF, the statement becomes a No
Operation instruction in the object program.

Program Branch Control macro-instructions are
used to set the switches ON or OFF, and to test
their settings. Setting the switch ON or OFF in­
volves modifying the operation portion of the gener­
ated instruction to Transfer or No Operation, re­
spectively. Testing the switch involves determining
whether or not it will cause the program to transfer.
All program-switch definition statements must be
tagged, so that the switches can be referenced by
macro-instructions.

Switch Set to Transfer -- SWT

The function of an SWT statement is to define a pro­
gram switch that will be ON initially. The format
of the SWT statement is as follows:

Tag Operation Num Operand

Tl SWT Xl

T1 is the tag of the switch.
Xl is the tag of the instruction to which a

transfer is to be made when the switch
is ON.

As long as the switch is ON, a transfer occurs
each time the switch is encountered. When the
switch is encountered after it is set OFF, the trans­
fer does not occur. The program proceeds instead
to the next in-line instruction.

The SWT statement in Figure 40 indicates that
LOOPSWITCH is to be set ON initially, and that the
transfer point is the instruction tagged STARTLOOP.

Figure 40

Restrictions on an SWT Switch

A hand,...coded Transfer instruction may not be ref­
erenced as a program switch with Program Branch
Control macro-instructions. Since the hand-coded
instruction will not be recognized as a switch, the
proper coding will not be generated from any macro­
instructions referencing it.

Switch Set to No Operation -- SWN

The function of an SWN statement is to define a pro­
gram switch which will be OFF initially.' The
format of the SWN statement is as follows:

Tag

Tl

Operation Num Operand

SWN Xl

is the tag of the switch.
is the tag of the instruction to which a

transfer is to be made after the switch
is turned ON.

As long as the switch is OFF, no transfer occurs
when the switch is encountered. The program pro­
ceeds instead to the next in-line instruction. After
the switch is set ON, a transfer occurs each time
the switch is encountered.

The SWN statement in Figure 41 indicates that
LOOPSWITCH is to be set OFF initially; and that
when the switch is set ON, the transfer point is the
instruction tagged STARTLOOP.

Figure 41

Restrictions on an SWN Statement

A hand-coded No Operation instruction may not be
referenced as a program switch with Program
Branch Control macro-instructions. Since the hand­
coded instruction will not be recognized as a switch,
the proper coding will not be generated from any
macro-instructions referencing it.

CONSOLE SWITCHES

Console switches are the console alteration switches
0911-0916. Each is identified by one console-switch
statement. The switches themselves must be set
ON or OFF manually by the console operator, either
before or during the execution of the program. A
console-switch statement does not specify the initial
switch setting. It merely provides a method of as­
signing a tag to an alteration switch so that it can be
referenced by a Program Branch Control macro­
instruction. The switch statement is not translated
into a machine-language instruction.

Alteration Switches -- ALTSW

The function of the AL TSW statement is to designate
a console alteration switch. The format of the state­
ment is as follows:

Switch Definitions 29

Tag Operation Num Operand

Tl ALTSW Xl

T 1 is the tag of the switch statement.
Xl is a code identifying the console switch.

The codes are as follows:

Switch Being

~ Identified

A 0911
B 0912
C 0913
D 0914
E 0915
F 0916

Figure 42 shows switches 0911 and 0912 being
identified.

Name Operation Num Operand
(Tag)

1011 13 15 16 18 20 21 2223 25 2728 30 32 33 35 3738 39

Figure 42

30

A one-for-one instruction is a symbolic instruction
which is replaced by one machine instruction. It
consists of a 7080 operation code and an Autocoder
operand. Figure 44 lists the 7080 operation codes.
The basic Autocoder operands are as follows:

1. Tag
2. Literal
3. Actual
4. Location counter
5. Blank
A prefix, a suffix, or both may be added to some

of the basic operands:

Prefix
operand modifier
indirect address

Suffix
character adjustment

The format of an Autocoder one-for-one instruc­
tion is summarized in the next section, "One-for­
One Instruction Format." The balance of this
chapter describes the basic operands, and the
prefix and/or suffix that may be added to each
operand. The chapter entitled "Address Constants, "
describes a specialized form of Autocoder operand
called an address constant literal.

The details of each 7080 operation are supplied
in the reference manual, IBM 7080 Data Process­
ing System, Form A22-6560.

ONE-FOR-ONE INSTRUCTION FORMAT

Like other Autocoder statements, a one-for-one
instruction is tagged if it is to be referenced. The
mnemonic operation code is placed in the operation
field. No actual operation codes may be used. If
the operation requires designation of the accumu­
lator, an ASU, or a bit, the appropriate entry is
placed in the numerical field. A one-for-one
instruction has a single entry in the operand field;
if necessary, the operand may be continued from
the operand field into the comments field. The
operand may not, however, be continued onto the
next line of the coding sheet. Comments about the
instruction may be started in the comments field.

BASIC OPERANDS

A description of the basic Autocoder operands
follows:

ONE-FOR-ONE INSTRUCTIONS

The tag may be that of the data field or the source­
program instruction involved in the operation.

Name Operotion Num Operand
ITag)

6 8 1011 13 15 16 18 20 21 22 23 25 27 28 30 3233 35 3738 39

F.I E.L.DI 'il.I!J1. 11.3 iJI..+.d.'7 Ie.,,-. J
I ~ I 1

.r.MS.rAI Il.A.IJ. iF.1 E ".1>1 I
1 I I

Figure 43

Literal

A literal is actual data enclosed by literal signs (#).
It may be any combination of alphameric characters
and/or blanks; e. g., #A#, #bb3C#, #0500#, #GO
TO END#, #+345#, #-.67#, #1234#, #+9.876#. The
Processor creates a constant from a literal operand.
The term "literal" is frequently used to refer to the
literal operand or to the constant created from the
literal.

An example of the use of a literal operand, it
may be necessary to calculate with a constant of
+30. The constant could be defined by a CON
statement, and the appropriate arithmetic instruc­
tion could reference the constant by having the tag
of the CON as an operand. On the other hand, it
might be desired to omit the CON and supply the
constant directly by writing it as the literal operand
of the arithmetic instruction. While a literal is a
convenient way of supplying an occasional constant,
those constants that are used repeatedly throughout
the program should be supplied by CON statements.

If a signed numerical constant is desired, the
first character following the literal sign must be a
plus sign or a minus sign. In storage, the low­
order position of the constant will be signed. If
the numerical data is a mixed or pure decimal, the
decimal point will not appear in the constant. If
an unsigned numerical constant is desired, the first
character following the literal sign must be the
first character of the numerical data. In storage,
the constant will appear exactly as it is written in
the literal. Thus, the constant created from an
unsigned mixed or pure decimal will contain a
decimal point. For this reason, unsigned mixed

One-For-One Instructions 31

or pure decimals should not be written as the
literal operands of arithmetic instructions; e. g. ,
ADD, SUB.

Use In Programs For
Mnemonic Second', Mode

Name of Instruction Code 70511 705111 7080

Add ADD x x x

Add Address to Memory AAM x x

Add to Memory ADM x x x

Backspace BSP x x x

Backspace File BSF x x

Blank Memory BLM x x

Blank Memory Serial BLMS x x

Channel Reset CHR x

Comma, No Operation CNO x

Compare CMP x x x

Control Read (Read 04) CRD2 x

Control Write (Write 04) CWR2 x

Divide DIV x x x

Dump Memory (Write 01) DMP2 x x x

Enable Compare Backward ECB x

Enable Indirect Address EIA x

Enter Interrupt Mode ElM x

Enter 7080 Mode EEM x

Forward Space (Read 01) FSP2 x x x

Leave Interrupt Mode LIM x

Leave Interrupt Program LIP x

Leave 7080 Mode LEM x

Lengthen LNG x x x

Load LOD x x x

Load Address LOA x x

Load Four Characters LFC3 x
Load Storage Bank LSB x
Multiply MPY x x x
No Operation NOP x x x

No Operation, Comma CNO x
Normalize and Transfer NTR x x x
Read 00 RD x x x
Read 01 (Forward Space) FSp2 x x x
Read 02 (Read Memory Address) RMA2 x x
Read 03 (Sense Status Trigger) SST2 x

Read 04 (Control Read) CRD2 x

Read 05 (Read Memory Block) RMB2 x

Read Memory Address (Read 02) R/M2 x x

Read Memory Block (Read 05) RMB2 x

Read While Writing RWW x x x

Receive RCV4 x x x

Receive Serial RCVS
4 x x x

Receive Ten Characters RCvr4 x

Reset and Add RAD x x x
Reset and Subtract RSU x x x
Rewind RWD x x x
Rewind and Unload RUN x
Round RND x x x
Select SEL x x x
Send SND x x
Sense Status Trigger (Read 03) SST2 x
Set Bit Alternate SBA

1
x x

Set Bit 1 SBN x x
Set Bit Redundant SBR x x
Set Bit 0 SBZl x x
Set Control Condition (Write 03) SCC2 x
Set Density High SOH x
Set Density Low SOL x

Set Left SET x x x
Set Record Counter (Write 02) SRC2 x x

Set Starting Point Counter SPC x

Shorten SHR x x x

Sign SGN x x x

Skip Tape SKP x x

Figure 44. Mnemonic Codes for One-for-One Instructions.

32

A Ii teral may also supply the floating point form of
a signed numerical constant. It must be written in the
format of an FPN operand: #±EE±XXXXXXXX#.

Use In Programs For
Mnemonic Second'y Mode

Name of Instruction Code 70511 705111 7980

Stop HLT x x x
Store ST x x x
Store for Print SPR x x x
Subtract SUB)(x x
Suppress Print or Punch SUP x x x
Ten Character Transmit TCT x
Transfer TR x x x
Transfer Any TRA x x x
Transfer Auto Restart TAR x
Transfer Echo Check TEC x x
Transfer on Equal TRE x x x
Transfer on High TRH x x x
Transfer to Interrupt Program TIP x
Transfer Instruction Check TIC x x
Transfer Machine Check TMC x x
Transfer Nonstop TNS x
Transfer Overflow Check TOC x x
Transfer on Plus TRP x x x
Transfer Read-Write Check TRC x x
Transfer Ready TRR x x
Transfer Sign Check TSC x x
Transfer on Signal TRS x x x
Transfer and Store Location TSL x x
Transfer Switch A On (0911) TAA x x
Transfei SwItch B On (0912) TAB x x
Transfer Switch C On (0913) TAC x x
Transfer Switch 0 On (0914) TAD x x
Transfer Switch E On (0915) TAE x x
Transfer Switch F On (0916) TAF x x
Transfer Synchronizer Any TSA x x
Transfer Transmission Check TTC x x
Transfer on Zero TRZ x x x
Transfer on Zero Bit TZB 1 x x
Transmit TMT x x x
Transmit Serial TMTS x x x
Tum off 1-0 Indicator 10F x x x
Tum on 1-0 Indicator ION x x x
Unload UNL x x x
Unload Address ULA x x
Unload Four Characters UFC3 x
Unload Storage Bank USB x
Write 00 WR x x x
Write 01 (Dump Memory) DMP2 x x x
Write 02 (Set Record Counter) SRC2 x x
Write 03 (Set Control Condition) SCC2 x
Write 04 (Control Write) CWR2 x
Write 05 (Write Multiple Control) WMC2 x
Write and Erase 00 WRE x x x
Write and Erase 01 WRE 01 x x x

Write Multiple Control (Write 05) WMC2 x
Write Tape Mark WTM x x x

IBM 760 Operations
Read or Write Tape, Early Start RWT x x x
Read or Write Tape, Write on PrlnterRWS x x x
Reset 760 Counter RST x x x
Write on Printer and Magnetic Tape PTW x x x

IBM 777 Operations
Bypass TRC BPC x x x
Prepare to Read While Writing PRW x x x
Read Tape to TRC RTS x x x
Write TRC to Tape WST x x x

See NOTES below.

NOTES

1
Place a I, 2, 4, 8, A, or B in column 22 to designate the bit

(TZB can also have a C). If column 21 is not blank, the Proc­
essor assumes that ASU zoning, valid or invalid, has been
designated.

2preferred mnemonics; RD 01 to 05 and WR 01 to 05 are also ac­
ceptable.

3
A blank or a 4 should be placed in column 22 if the Processor is
to perform a 4/9 check. If a 1. 2. 3. or 5 is written. a 1/6. 2/7.
3/8. or 0/5 check. respectively. results.

4The three different Autocoder mnemonics for the receive instruc­
tion (RCVS. RCV. and RCVT) indicate to the Processor the type
of address to be assigned. If the mnemonic is RCVS. the location
assigned is the high-order address of the field specified in the
operand of the instruction. For an RCV. four is added to the high­
order address of the field. Since an RCV is generally used when
a 4/9 ending is desired (as with a TMT or SND). the high-order
address of the field should end in a 0 or a 5. An RCVT is as­
signed the high-order address of the field plus nine. Since RCVT
is used when a 9 ending is desired (1. e.. with a TCT). the high­
order address of the field should end in a O.

if the generated address does not end in a 4 or a 9 (RCV) or
9 (RCVT). a 4/9 check or a 9 check message is prepared.

An example of assembled machine-language coding for the
three forms of the receive instruction is shown below. The field
tagged WORKAREA. has a high-order address of 3750. Note that
the machine-language operation code (U) is the same for all three
statements:

OP
RCVS
RCV
RCVT

Operand
WORKAREA
WORKAREA
WORKAREA

Op
U
U
U

Address
3750
3754
3759

The operands of all forms of the Receive instruction can be char­
acter adjusted. Thus, if the operands above were WORKAREA-3,
the actual addresses would be three less than shown.

Trailing zeros will be supplied when the literal
contains fewer than eight mantissa positions. For
example, the literal #+03-7# will appear in storage

-+' -
as 0370000000.

The length of a literal must be a multiple of
five when used with an operation which requires a
4 or 9 location. The literal must also contain a
record mark in the low-order position if it is used
with a TMT operation. Such literals are positioned
in the literal table so that the high-order character
occupies a 0 or 5 location.

If the literal is used with a TCT instruction, its
length must be a multiple of ten with a record mark
in the low-order position. The Processor will
properly position the literal in a 9 location.

The Processor places all constants that it
creates from literal operands in storage areas
called literal tables. Literal constants may be
placed either in the main literal table or in

Name Operation Num Operand
(Tag)

10 II 13 15 16

Figure 45

multiple literal tables (see "Multiple Literal
Tables. ") A literal appears only once in a literal
table, even when it has been used in several dif­
ferent statements.

The Processor classifies literals and makes
literal-table assignments according to whether the
literals are signed or unsigned:

1. Any literal containing a sign in the first posi­
tion is automatically classified as Signed. If the
signed literal supplies numerical data, it appears
in storage as previously described. If the literal
contains a non-numerical character in the low­
order position, the existing zoning in that character
is replaced by the sign.

2. Any literal that does not contain a Sign in the
first position is automatically classified as unsigned.
As previously indicated, the constant appears in
storage in exactly the same form in which it is
written on the coding sheet.

3. A literal symbol may not appear within a
literal unless it is the first character of the literal.
However, the flag character B can be used to allow
literal symbols in any literal position (see ffFlag
Characters and Their Meanings").

Actual

An actual operand is a set of numerical characters,
usually preceded by the actual address symbol (@),
which deSignates one of the following:

1. An actual storage location
2. A setting for the accumulator or an ASU
3. The size of a block of storage positions
The @ symbol need not be used when an operand

containing less than five numerical characters is
used with one of the follOWing operations: BLM,
BLMS, CTL, HLT, LIP, LNG, RND, SEL, SET,
SHR, SPC, SRe, TRANS. Note in Figure 46 that
the SET and BLM instructions have been written
two ways.

Restrictions on an Actual Operand

An actual operand greater than the core-storage
size specified to the Processor should not be used.

One-For-One Instructions 33

Name Operation Num Operand
(Tag)

6 8 1011 13 15 16 18 20 21 2223 25 2728 30 32 33 35 3738 39

·_ME. I Sr. ~~,9G, I I
I ~ I I

r:W-b, I SF-To I~QQ~IQ~£j I I I I
I 1. I I

I T:H.fl.E,EI S,E.T. ~ I I
I f. I I

/=;110,1.1.8, I B.L,M, ~D,.-'>,D . .:lIQ I
I ~ I I

I;:. I , V,E, I j:l,L.M, ;[,/10, I I
I I I

Figure 46

If such an operand is encountered during assembly,
the Processor subtracts the maximum core­
storage size from the actual and uses the difference
as the operand. A message to this effect is pro­
vided at assembly time.

For example, if an 80,000 core-storage size
has been specified, any actual operand in excess of
79999 will have 80000 subtracted from it; the re­
mainder will be used as the operand. The list
below indicates the largest actual operand that may
be used with each available core-storage size:

Core-Storage Size
20,000
40,000
80,000

160,000

Location Counter

Maximum Actual Operand
19999
39999
79999

159999

A location counter is represented by the asterisk
(*) symbol, which designates the low-order position
of the instruction in which it appears. Since each
instruction occupies five positions in the object
program, an instruction containing a location
counter references its own low-order position. The
effect of the instruction in Figure 47 is to cause the
4 or 9 location assigned to the instruction to be
placed in ASU 14.

Nome Operation Num Operand
(Tag)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 3233 35 3738 ~

I ILn.:». III ~. I I I
I I I I

Figure 47

NOTE: The versatility of a location counter is
more fully utilized when the counter is character­
adjusted. This use is explained in the following
section, "Additions to Basic Operands. "

34

Blank

A blank operand is one that has blanks in the first
ten columns of the operand field. Blank operands
should be used if the instruction is initialized by
the program, or if the operation itself does not
require an address. In the object program, a blank
operand is replaced by an appropriate address.

Name Operation Num Operand ,
(Tag)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 37 38 3~

I /3,s P- I I

1 ~ I I

I v.L.A. f." I I

I 1 I

Figure 48

ADDITIONS TO BASIC OPERANDS

A description of the suffix and the prefixes that may
be added to an Autocoder operand follows.

Character Adjustment

Character adjustment is designated by a suffix to
the basic operand. A reference to an untagged
field, an untagged instruction, or a particular
position within a field or an instruction can be made
by using character adjustment. The suffix consists
of an arithmetic operator that specifies the type of
operation, and one or more numerical characters
that .specify the size of the adjustment. The oper­
ators are as follows:

Operator
+

*
/

Meaning
Addition
Subtraction
Multiplication
Division

Character adjustment may be used with all basic
operands except the blank operand. The operator
should appear immediately after the operand. It
may not appear beyond column 33, unless the
operand itself continues into column 33 or beyond.

In Figure 49, the character-adjusted operand of
the RAD instruction references the field that follows
EMPLOYEE.

A character-adjusted location counter may be
used to bypass in-line instructions. In Figure 50,
*+10 references the low-order (4 or 9) position of
the ST instruction.

Name Operation Num Operand
(Tag)

6 8 1011 13 15 16 18 20 21 2223 25 2728 30 32 33 35 3738 39

IFM.P.I .,.Iy E.E'. I J:I. t!.J. ~".~ A.+ I I

I ~~ I I

I 1 J I

I 1A'.a~ G":iI1J.P,I...A II'" E I!" .,...; I

I I I

Figure 49

Restrictions on Character Adjustment

The numerical portion of a character adjustment
cannot exceed six positions, and its absolute value
cannot be greater than 159999. If it is greater,
160000 will be subtracted until the absolute value
is less than 160,000. If the numeric portion of the
adjustment is less than six positions, the position
immediately follOWing must be non -numerical.

Name Operation Nvm Operand
(Tog)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 3738 39

I Ir.R.P. ~.+./,O I I
I A,;P:J). #.+,30,#/ /

I S,." I;:; I £'L.»I I
I I I

Figure 50

Further restrictions apply to operands that are
a location counter, an actual, or a literal. These
operands can use only the + or - operators. If any
other operator is used, both the operator and the
adjustment will be ignored.

Literal operands, in addition to being restricted
to a + or a - operator, cannot have an adjustment
value of more than 99. If the adjustment is more
than 99, the Processor will use the two low-order
digits for the adjustment value. Thus, an adjust­
ment of -156 will be treated as if it were -56.

Oper'and Modifier

An operand modifier is a two-character prefix that
may be used with a tag or a literal operand. It
enables the user to reference a particular position
of a field or an instruction or to reference the size
of a field. The operand modifiers are as follows:

Modifier
L,
R,
H,
S,
T,

Modifier Designates
Left-hand position
Right-hand position
High-speed position
Size
High-speed nine position

~

)

In Figure 51, the LOD instruction references the
left-hand position of FIELD. When the instruction
is executed, the contents of that position, rather
than the entire contents of FIELD, are placed in
ASU 01.

Name Operation Num Operand
(Tog)

6 8 1011 13 15 16 18 20 21 22 23 25 27J~_. 30 32 33 35 37}~

IF, I Eo ,",.171 I.<?~..'D. .flAl, I -t-~
I 1 I I

I IL.~.~ .t L];p ,Elll~L~1 1-1- -+---+----+-+--h--<
/ I J

Figure 51

NOTE: If the modifier "S, " has been used in Fig­
ure 51, the LOD instruction would reference the
contents of location 00008.

Indirect Address

An indirect address is an indirect reference; that
is, it is a reference to an operand that references
some other operand. It is designated by a two­
character prefix to the basic operand. The prefix
consists of an I followed by a comma (I,). An indi­
rect address may be used with the following oper­
ands: tag, blank, actual, character-adjusted loca­
tion counter. In Figure 52, BEGIN is the effective
transfer point of the first instruction.

Nome Operotion Num Operand
(Tog)

6 8 1011 13 15 16 18 ___ 20 21 22 23 25 2728 _~,l~-~L3~

ftI/, J 1>1> L: IE 11':.R. :z: E"Nl>J I
I (I I

I#:N_D. I Ir.A. 8,;-'~ I 1111 I

I / I

Figure 52

When the Processor encounters an instruction
containing "I, " in the 7080 mode portion of the
program, it generates two instructions: The first

~

)

~

is an EIA (Enable Indirect Address). If the one­
for-one instruction containing the indirect address
is tagged, the Processor transfers the tag to the
EIA instruction. The second instruction is the same
one-for-one instruction without the hand-coded "I, "
and without the hand-coded tag. If the first instruc­
tion in Figure 52 had been written in the 7080-mode
portion of the program, it would have been followed
by the generated instructions as shown in Figure 53.

MULTIPLE ADDITIONS TO A BASIC OPERAND

The follOWing pair s of additions may be used with
either a tag or a literal operand:

One-For-One Instructions 35

Tag Operation Num Operand

MIDDLE TR I,END
MIDDLE EIA END

TR END

Figure 53

1. Operand modifier and character adjustment
2. Indirect address and character adjustment

The second pair may also be used with a location
counter.

In Figure 54, the operand of the LOD instruction
references the second position in FIELD; i. e., the
position to the right of the high-order position.

Nome Operation Num Operond

(Tag)
6 8 10 II 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 37 38 3~·

11=. / E.' L..J>I n...C.:J1. /.0 A. I I
I f I I

I L O.D. L ... F./ c1L..J). +.1 I

I I I

Figure 54

In Figure 55, COMPUTE is the effective trans­
fer point of the first transfer instruction.

Name Operation Num Operand
(Tog)

6 8 10 II 13 15 16 18 20 21 2223 25 2728 30 32 33 35 3738 39

D.N.I'. I A.A.:D. IR ... t! D.~l7> . .1. I
I T'.R. l..r . . iI.."" lie I

T'.W.D I Jfi.~.1). iI2.r.C c:>.RIJ . .2. I

J r..& ;t ~ .Ir.c I
I I I

Figure 55

36

A macro-instruction is a source-program statement
which represents multiple operations. When the
program is assembled, each macro-instruction is
replaced by a sequence of one-for-one instructions;
the number varies according to what the macro­
instruction is and how it is used. The general­
purpose macro-instructions in the 70S0 Processor
library are shown in Figure 56. The purpose of
this chapter is to present them as a part of the
Autocoder language; consequently, the chapter is
limited to an explanation of their basic coding format
and a few examples of individual macro-instructions.
The specifications for using each general-purpose
macro-instruction are provided in the publication
70S0 Processor: General Purpose Macro-Instruc­
tions, Form C2S-6356. Procedures for writing new
~o-instructions for incorporation into the lan­
guage are described in the publication~ 70S0 Pro­
cessor: Preparation of Macro-Instructions, Form
C2S-6264. Input/output macro-instructions are a
part of the 70S0 Input/Output Control System, and
are described in the 70S0 IOCS publications. The
titles, form numbers, and abstracts of references
to all publications dealing with macro-instructions
for the IBM 70S0 may be found in IBM 70S0 Bibli­
ography, Form A22-6774.

In addition to individual specifications and ex­
amples of generated coding, the macro-instruction
manual provides detailed explanations of the conven­
tions and restrictions governing the use of all the
general-purpose macro-instructions. It also ex­
plains restrictions that may apply to only one type
of macro-instruction. It has been necessary to
establish certain conventions and restrictions in
creating a macro-instruction library to serve a
large number of users with a variety of program
needs. However, it is possible for programmers
to prepare their own macro-instructions and insert
them into the library.

Because of the flexibility of the Processor, pro­
grammers need not observe most of the restrictions
described in the macro-instruction manual when
creating macro-instructions to meet their particular
requirements. Specifically, they may designate as
acceptable operands any of the basic operands and
additions to basic operands described in the chapter
"One-for-One Instructions." Programmers writing
their own macro-instructions may also designate an
entry in the numerical field as the method of supply­
ing an ASU reference or other special information.
The process of creating a macro-instruction re­
quires a thorough know ledge of a special language
which is described in the IBM publication on the pre­
paration of macro-instruction for the 7080 Processor.

GENERAL PURPOSE MACRO-INSTRUCTIONS

ADDRESS MODIFICATION
Add Address (ADDA)
Compare Address (COMPA)
Decrement Address (DECRA)
Increment Address (lNCRA)
Inltlallze Address (IN ITA)
Move Address (MOVEA)
Subtract Address (SUBA)

ASSEMBLY CONTROL
Enter Interrupt Program (ENTIP)
Leave Interrupt Program (LEVIP)
Leave 80 Made (LEV80)
Enter 80 Mode (ENT80)
Speed or Space (SPEED)

AUTOMATIC DECIMAL POINT
Absolute Value (ABSX)
Add (ADDX)
Decrement (DECRX)
Diminish (DIMX)
Divide (DIVX)
Divide or Halt (DVHX)
Increment (INCRX)
Multiply (MPYX)
Negative Absolute Value (NABSX)
Negative Divide (NDIVX)
Negative Divide or Halt (NDVHX)
Negative Multiply (NMPYX)
Subtract (SUBX)
Sign and Zero Test (TESTX)

DATA TESTING
Compare (CaMP)
Test for Numeric Field (IFNUM)
Test If In Range (RANGE)

DATA TRANSMISSION
Blank Memory (BLANK)
Define ASU (ASU)
Move (MOVE)
Restore Decimal (DEC)
Zero Memory (ZERO)
Define CASU (CASU)

PROGRAM BRANCH CONTROL
Alternating Nap (ALTNP)
Alternating Transfer (ALTTR)
First Time NOP (FTNOP)
First Time Nap on a Bit (FTNPB)
First Time Transfer (FTTR)
First Time Transfer on a BIt (FTTRB)
Set Switches OFF (SETOF)
Set Switches ON (SETON)
Test Switch (IFON)

TABLE
Add an Item (ADITM)
Delete an Item (DLlTM)
Replace an Item (RPITM)
Search a Table (SERCH)
T able Control (TBCTL)

MISCELLANEOUS
Dead-End Halt (STOP)
Link to Subroutine (LINK)
Transfer Indirect (TRIN)
Type a Message (TYPE)

Figure 56. 7080 Processor General-Purpose Macro-Instructions
for Use in Autocoder Programs.

The remainder of this chapter is an introduction
to the general-purpose macro-instructions in the

General Purpose Macro-Instructions 37

7080 Processor library.,. The discussion is based on
the conventions and restrictions that apply to these
macro-instructions.

GENERAL-PURPOSE MACRO-HEADER FORMAT

The portion of a macro-instruction that is written as
a source-program statement is called a macro­
header. Like other Autocoder statements, a macro­
header is tagged if it is to be referenced. The
mnemonic code is placed in the operation field. En­
tries in the numerical field are rarely permitted.
Those entries which are permitted do not relate to
an ASU number or a bit as they do in a one-for-one
instruction. Most macro-headers have two or more
entries in the operand field; some may contain up to
fifty entries; and a few may have only one. The en­
tries will be called operands throughout this chapter
and in the macro-instruction manual. Each operand
is terminated by a lozenge (0), the same symbol that
was previously explained as part of an RPT state­
ment.

Operands may be placed in the operand and com­
ments fields of the line on which the macro-header
starts, and may be continued in the operand and
comments fields of the next 49 lines on the coding
sheet. However, an operand may not be written on
two lines; i .. e., it may not be started in the com­
ments field of one line and continued in the operand
field of the next line. Similarly, the lozenge which
terminates an operand may not be separated from it.
If the positions at the end of a line are insufficient
for both an operand and its lozenge, the positions
must be left blank, and the operand started in col­
umn 23 of the next line on the coding sheet. Oper­
and continuation lines must be blank in the tag, oper­
ation, and numerical fields.

Comments may be started in the comments field
of the line on which the operands terminate, but the
comments must be separated from the final lozenge
by a minimum of two spaces. Comments may also
be continued in the comments field of succeeding
lines of the coding sheet.

TYPES OF MACRO-HEADER OPERANDS

The operands of a macro-header designate the data
and/or the instructions involved in the operations
the macro-instruction represents. Most operands
are either tags or literals.

Tag Operands

The tags may be those of defined data fields,
switches, source-program one-for-one instructions,
macro-instructions, and address constants. Other

38

tags that may be used as operands are those of
Class A subroutine items and generated descriptive
tags. Characteristics of items within Class B sub­
routines are not available to macro-instructions.
For instance, the function of the IFON macro­
instruction is to test a switch and to transfer to one
of two specified instructions, depending on the status
of the switch. The operands of the IFON macro­
header are the tags of the switch to be tested and the
tags of the transfer points; i. e., the instructions to
which the transfer is made if the switch is ON or
OFF. In the generated coding, the tags appear as
the operands of the appropriate one-for-one instruc­
tions.

In most cases, the tag of an instruction is used as
an operand in order to designate the instruction as a
transfer point. This is not true of the operands of
Address Modification macro-headers. Such oper­
ands designate the operands of other instructions,
rather than the instructions themselves. When an
Address Modification macro-header must designate
the operand of another macro-header, it may not
reference the macro-header by its tag alone. The
tag must be written as a special form of operand
called the macro suffix tag. This consists of a tag
to which a suffix is added. The suffix is of the form
#x or #xx where x or xx are numbers that designate
one of the operands of the macro-header being refer­
enced. For example, a macro suffix tag designating
the first operand of a macro-header tagged MACRO
would be written as MACRO#l or MACRO#Ol.
Similarly, a macro suffix tag designating the third
operand would be written as MACRO#3 or MACRO#03.
The use of the macro suffix tag is illustrated at the
end of this chapter and in the macro-instruction
manual. No adjustments are permitted on a macro
suffix tag.

Secondary Field Definitions in Tag Operands

A secondary field definition is a description of the
characteristics of a data field. It is written as part
of a macro-header operand that references the field.
That is, the operand is the tag of the field; and it
causes the macro-instructions to treat the field as
having the characteristics that the secondary field
definition provides. Depending on the reason for
which a secondary definition is used, it may supply
characteristics identical to those previously defined
for the field~ or it may supply a different set of
characteristic's. A secondary definition must be
used in a macro-header operand that references a
data field indirectly, because the defined character­
istics of the data field are not available to the Pro­
cessor in such a situation.

The macro-header operand containing the defini­
tion is written in this order: the tag of the data field,
a comma, the secondary definition. A secondary
field definition may be supplied by the tag of a field,
a literal, or either of the RCD forms, #+xx. yy or
#bxx.yy.

Using the Tag of a Field: A macro-header operand
containing the tag of a field as a secondary definition
would be one such as TAGA, TAGB 0. The field
specified by TAGA will be treated as having the
characteristics of the field specified by TAGB.

If a field with the desired characteristics has been
defined, its tag may be used to supply the secondary
field definition. Otherwise, two fields must be de­
fined with different tags and overlapped by use of a
location aS$ignment (LASN). Reference to the field
should be made by using the tag of the definition
which is appropriate at the time the reference is
made.

A generated descriptive tag may not be used as a
secondary definition.
Using a Literal: A macro-header operand contain­
ing a literal secondary definition would be one such
as TAG, #+XXX. X # 0. Regardless of the defined
characteristics of the field TAG, it is now defined
as a signed fraction consisting of three integer posi­
tions and one decimal position. This method can be
used to define only numerical fields other than un­
signed fractions.

Note that the letter X is the only character that
can be used in defining integer and decimal posi­
tions.
Using the RCD Form: With the RCD form of se­
condary definition, the example given in item 2
above would be written as TAG, #+03.01 0. This
form is fully discussed earlier in this manual. This
method can be used to define signed or unsigned
fields only.

Literal Operands

A literal is actual data enclosed by pound signs (#)
(see "One-for-One Instructions"). In the coding
generated from macro-headers containing literal
operands, the literals appear as the operands of the
appropriate one-for-one instructions just as tags
appear as one-for-one operands. Whenever the
macro-instruction manual designates the tag of a
field as an operand, a literal may be used instead.

An unsigned numerical literal supplying a mixed
or pure decimal should not be used as the operand
of an Automatic Decimal Point macro-header, be­
cause the constant created from the literal will con­
tain a special character (the decimal point). Float­
ing point literals may not be used as the operands of
Automatic Decimal Point macro-headers for the

reason stated in the explanation of FPN. A literal
must not exceed 35 positions, exclusive of the pound
signs.

TYPES OF LOZENGES

Lozenges indicate to the Processor the termination
of each operand and the position which an omitted
operand would normally occupy in relation to the
other operands. There are two types of lozenges:

Fixed: A fixed lozenge must never be omitted. If
the operand it terminates is omitted, the fixed
lozenge is placed back to back with the lozenge that
terminates the preceding operand.
Conditional: A conditional lozenge may be omitted
only if the operand it terminates is omitted an.d no
additional operands are written. If other operands
follow an omitted operand, its conditional lozenge
must be placed back to back with the lozenge that
terminates the preceding operand.

OMITTED OPERANDS

The specifications in the macro-instruction manual
indicate that certain operands may be omitted. The
associated lozenge is assumed to be fixed, unless
the speCifications state that it is conditional.

When the omitted operand is a transfer point, the
generated coding provides a transfer to the next in­
line source program instruction. This may be most
rapidly seen in those macro-instructions which make
some sort of test and then transfer accordi11g to the
results of the test. The IFON macro-header should
be written with two transfer pOints, one to be used if
a tested switch is ON, and the other if it is OFF.
The second transfer point may be omitted. If it is
omitted, the generated instruction for the OFF con­
dition is a transfer to the next in-line source pro­
gram instruction.

THE IMPORTANCE OF PROPERLY DEFINED DATA
FIELDS

A macro-header makes a field reference when it has
the tag of a field as an operand. In other words, it
references a field that is defined by either an area
definition or a switch definition. In order to gener­
ate coding that is proper for the field, the Processor
must know the characteristics of the data that will
occupy the field. Obviously, it is not possible for
the Processor to examine the actual data at assembly
time. Consequently, the Processor obtains the
characteristics from the definition and generates
coding that is proper for the field according to its
definition. If the data does not conform to these
characteristics, it may be improperly processed.
Howevrer, the generated coding itself is not improper.

General Purpose Macro-Instructions 39

The importance of field definitions may be seen
in a macro-instruction that is used to compare the
contents of two fields. The fields may be alphameric
or numerical. The one-for-one instructions which
should be used to compare alphameric data differ
from those which should be used to compare numeri­
cal data. By using the macro-instruction, the pro­
grammer is relieved of having to select the proper
instructions, but the Processor cannot assume this
burden unless the characteristics of the field are
available to it. Similarly, if literals are used in­
stead of the tags of fields, the literals must be
written in accordance with the standards previously
specified. For instance, an unsigned decimal
written as a literal will not be treated as numerical
data but as alphameric data.

EXAMPLES OF MACRO-INSTRUCTIONS AND
THEIR USE

The balance of this chapter contains examples of
several general-purpose macro-instructions in the
Processor library. The function and coding format
of each macro-instruction is followed by an example
that illustrates how it might be used and what in­
structions would be generated for that use. In
Figures 57 through 60, the macro-headers are over­
laid with a band of gray to distinguish them from
generated instructions. The explanations should not
be considered as the specifications for the macr~
instructions. In some examples, certain available
options have been omitted entirely. Complete spe­
cifications are provided only by the macro-instruc­
tion manual.

13lank Memory -- BLANK

The function of BLANK is to place blanks in a field.
The baSic format of the BLANK macro-header is as
follows:

Tag

Tl

Operation Num Operand

BLANK X10 X 20X3••••• .X50D

is the tag of the macro-header, or
is omitted.

are the tags of the fields in which
blanks are to be plac~d. The
lozenges are conditional.

In Figure 57, TAGl indicates that the contents of
fields ONE and TWO are to be replaced by blanks.

40

Tag Operation Num Operand

NAME 0
ONE RCD 5 +
TWO RPT 8 XXXX. ZZ

~

TAGl RCV ONE
BLM @OOOOl
RCVS. TWO
BLMS @OOOO8

Figure 57

Test Switch -- IFON

The function of IFON is to test a switch and to trans­
fer according to the results of the test. The basic
format of the IFON macro-header is as follows:

Tag Operation Num Operand

Tl IFON X1D X
2
DX

3
t:1

T 1 is the tag of the macro-header, or is
omitted.

Xl
X~

2

is the tag of the switch to be tested.
is the tag of the ON transfer point; i. e. ,

the instruction to which a transfer should
be made if the switch is ON.

is the tag of the OFF transfer point. The
operand may be omitted, in which case a
transfer will be made to the next in-line
instruction. The lozenge is conditional.

In Figure 58, ON and OFF must be assumed to be
the tags of instructions. If OFF and its associated
lozenge had been omitted, the final instruction would
not have been generated.

Tag Operation Num Operand

CHRCD
NEWYORK A
CHICAGO

~
B

TAG2 LOD 1 /IAN
CMP 1 NEWYORK
TRE ON
TR OFF

Figure 58

Add -- ADDX

The function of ADDX is to add the data in two
numerical fields and place the result in a numerical
field or an RPT field. The numerical fields may be
signed or unsigned. The basic format of the ADDX
macro-header is as follows:

Tag

Tl

Tag

NINE
TEN

TAG3

Figure 59

Operation Num Operand

ADDX 1 X1D X 2DX3D

is the tag of the macro-header or is omitted.
is the tag of one numerical source field;

i. e., the field that is the source of one
set of data to be added.

is the tag of the other numerical source
field.

is the tag of the numerical or RPT re sult
field; i. e., the field in which the result
is to be placed.

Operation Num Operand

RCD 5 #t{)2.03
6 #t{)3.03

5

RAD NINE
SET @X)OOO6
ADD #+75.000#
ST TEN

Increment Address -- INCRA

INCRA is an Address Modification macro-instruc­
tion. The function of this type of macro-instruction
is to modify other instructions, either macro-in­
structions or one-for-one instructions. The func­
tion of INCRA is to increment a field reference
made by another instruction, thus modifying the in­
struction so that it makes a different field reference.
An instruction makes a field reference by having the
tag of a field as an operand. INCRA designates the
instruction which makes the field reference and the

amount by which the reference is to be increased.
The basic format of the INCRA macro-header is as
follows!

Tag

Tl

Operation Num Operand

INCRA X
1
DX

2
D

is the tag of the macro-header, or is
omitted.

Xl is the tag of an instruction that makes the
field reference to be incremented.

X
2

is the increment.
In Figure 60, the first operand of INCRA is a

macro suffix tag,. designating the second operand of
MACRO. Initially, MACRO references FIELD,
However, INCRA modifies MACRO so that it sub­
sequently references whatever is located 500 pOSi­
tions above FIELD. For instanceT assume that
FIELD occupies locations 001000-001002. When
MACRO is executed initially,.. it will cause these
locations to be blanked. Once modified by INCRA,
it will cause locations 001500-001502 to be blanked.
(M00017#02 is a tag generated by the Processor).

Tag Operation Num Operand

OTHER RCD 8 A
FIELD 3 A

f
MACRO RCVS OTHER

BLMS @X)00,98

BLMS @X)OOO3 ,
MACR 0#20 #+SOOHO TAG4 INCRA

TAG4 RAD 15 #+500#
AAM 15 MOOO17#02

Figure 60

General Purpose Macro-Instructions 41

ADDRESS CONSTANTS

An address constant is a numerical constant consist­
ing of a storage location. An address constant
statement designates the storage location by specify­
ing one of four operands: tag, literal, actual, loca­
tion counter. At assembly time, the locati(;~ as'=-­
signedto the tag, the literal, or the location counter,
or the location designated by the actual operand is
used to create the constant. ill effect, the function
of an address constant statement is to define a data
field that will contain a constant and to designate the
constant to be placed in the field. The actual
constant is generated by the Processor and placed
in the field created for it. Thus, an address
constant enables the user to reference a constant
that is not created until the program is assembled.

Address constants are used to initialize instruc­
tions, a procedure that alters the reference made
by an instruction or supplies a reference to an in­
struction that lacks one. For example, suppose
that an instruction must reference two record areas
alternately, areas tagged FIRST and SECOND. This
means that the operand of the instruction must con­
tain FIRST at certain pOints in the program, and
SECOND at other pOints. To initialize the instruc­
tion (i.e., to modify the reference) address
constants must be created from each of these tags
so that one or the other of them can be placed in the
instruction as required. ill 'the assembled program,
the address portion of the instruction will alternate
between the actual locations assigned to FIRST and
SECOND. Note the difference between an instruc­
tion that references FIRST and an instruction that
references an address constant created from FIRST.
ill the former case, the instruction references the
contents of a record area; in the latter case, the in­
struction references a constant conSisting of the
storage location of the record area.

The basic operand of an address constant state­
ment may be a tag, a literal, an actual, or a loca­
tion counter. Operand modifiers may be used with
a tag or a literal to request a generated constant:

Modifier

Right-hand

Left-hand

High speed

42

Address Constant
Generated From

Storage location of the low­
order position of a field,
instruction, or literal

Storage location of the high­
order position of a field,
instruction, or literal

A left-hand address plus
four

Modifier
Address Constant
Generated From

High-speed nine A left-hand address plus nine
Size The number of positions oc-

cupied by a field or literal

If no operand modifier is used, a right-hand address
will be generated as the constant. As the preceding
list indicates, a right-hand operand modifier may be
written, but it is not necessary.

Character adjustments to the basic operand cause
numerical adjustment of the address constant. Ad­
dition, subtraction, multiplication, or division by a
specified amount may be requested. For example,
a character adjustment of plus five would cause the
constant to be five greater than the storage location
referenced.

An address constant may be both operand­
modified and character-adjusted. (Such an operand
may have to continue into the comments field.) The
operand modifier is a prefix to the basic operand; it
consists of the appropriate modifier symbol followed
by a comma. The character adjustment is a suffix
to the basic operand; it consists of the arithmetic
operator followed by a number designating the
amount of adjustment. The amount may not exceed
160,000. The symbols are as follows:

Operand Modifier Character Adjustment

R, Right-hand + Add
L, Left-hand Subtract
H, High speed * Multiply
S, Size / Divide
T, High-speed nine

Assume that FIELD, a data field, is assigned to
locations 001300-001309. An address constant
statement having L, FIELD as its operand will cause
001300 to be created as the address constant. The
operand R, FIELD+6 will cause 001315 to be created
as an address constant. The same constant would
be created from FIELD+6. Since the field occupies
ten positions, the operand S, FIELD will cause a
constant of 10 to be created; the operand S, FIELD*5
will create a constant of 50.

Comments about an address constant may be
started in the comments field of the address constant
statement.

ADCON Address Constant

The function of an ADCON statement is to create an
instruction which consists of a four-character, un­
signed address constant preceded by the actual code
for No Operation. The instruction is positioned in a
4 or 9 location. The ADCON statement is written as
follows:

Tag Operation Num Operand

Tl ADCON nn Xl

T 1 is the tag of the address constant.
nn is ASU zoning or is blank.
Xl is a tag, literal, actual, or location

counter.

The ADCON statement creates an instruction of
the form Axxxx. A is the actual code for No Opera­
tion; xxxx is the address constant. The instruction
Axxxx will be pOSitioned so that the low-order char­
acter occupies a 4 or 9 location. Any ASU zoning
will be properly generated as part of the constant.

The ADCON statement in Figure 61 will cause an
address constant to consist of the storage location
of the right-hand position of the RECORDONE data
field. Instructions referencing the constant do so by
referencing its tag, FIRST.

Name Operation Num Operond
(Tog)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 3233 35 3738 39

R.F.e DA.i.».O.MF. /l~.~, .1.~ A.'" I I
I i. I I

F.1.~.s.TI .4"».&.0""" Il.&:t! D,czI.D,O,N,£ I
1 I I

Figure 61

Figure 62 specifies that the left-hand address
constant consisting of the location of INSTRC TION
is to be zoned for ASU 15.

Nome Operation Num Operond
(Tog)

~

1011 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 3738 39

Figure 62

ACON4 Address Constant

The function of an ACON4 statement is to create a
four-character, unsigned address constant. The
constant is placed in the next four available storage

P

I

locations without regard to the positioning of its
low-order character. ASU zoning, if specified, is
properly generated as part of the constant. The
format of the ACON4 statement is as follows:

Tag Operation Num Operand

Tl ACON4 nn Xl

T 1 is the tag of the address constant.
nn is an ASU number or is blank.
Xl is a tag, literal, actual, or location

counter.

In Figure 63, the ACON4 statement is a request
for an address constant conSisting of the storage
location assigned to FIELD1. Since no operand
modifier is specified, the right-hand address will
be generated. The constant may be referenced by
its tag, TAG 1.

Name Operation Num Operond

(Tog)
6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 37 38 3~

I~ I.E:"L.DIJ IR.C.:!), 10+ I I

I 1 I I

Ir.t).~,1 I ~c. 0#.1.1 ~, J E.L.1>I('),A/,/E" I

I 1 I

Figure 63

Figure 64 shows that the constant will consist of
the location assigned to the RECORDAREA field.
Since the operand modifier "H, " is used, the high
speed address will be generated.

Name Operation Num Operond

(Tog)
1011 13 15 16 18 20 21 22 23 30 32 33 35 37 38 39

Figure 64

ACON5 Address Constant

The function of an ACON5 statement is' to create a
five-character address constant, either signed or
unSigned. The constant is placed in the next five
available storage locations without regard to the
positioning of its low-order character.' The sign,

~

if specified, is placed over the low-order character.
The format of the ACON5 statement is as follows:

Address Constants 43

Tag Operation Num Operand

TI ACON5 S Xl

T 1 is the tag of the address ·constant.
s is + for a positive constant, or is - for a

negative constant, or is blank for an un­
signed constant.

Xl is a tag, literal, actual, or location
counter.

The ACON5 statement in Figure 65 specifies that
the location of the literal is to be made an address
constant. Note that the address constant will be
signed. The sign of the address constant is not re­
lated to the sign of the literal.

Name
(Tag)

1011

Figure 65

Operation Num Operand

Figure 66 shows a request for an unsigned con­
stant twice the size of FIELD2. The constant 00012
will be generated.

Nome Operation Num Operand
~

(Tag)
6 8 1011 13 15 16 18 20 21 2223 25 2728 30 32 33 35 3738 39

J=. / ,Eo L . .DI.1, 1JE',p'T. ,~Z.z z .21z I

I f' I I

-r~,&.~. I IA,t!.oNS S, F. /.G1L-.b-,..w.!7 I
I

"

I I I

Figure 66

Restrictions on an ACON5 Statement

ASU zoning may not be specified in an ACON5 state­
ment.

Any ACON5 should not be specified if there is a
possibility that the address from which the constant
is created will exceed 79999. In the event that a
constant is requested for such an address, 80,000 is
subtracted from the address. A message to the
effect that the constant exceeds the address limit is
provided at assembly time.

ACON6 Address Constant

The function of an ACON6 statement is to create a
six-character address constant. The constant is
placed in the next six available storage locations

44

without regard to the positioning of its low-order
character. The format of the ACON6 statement is
as follows:

Tag

TI

Operation Num Operand

ACON6 S Xl

is the tag of the address constant.
is + for a positive constant, or
is - for a negative constant, or
is blank for an unsigned constant.
is a tag, literal, actual, or location
counter.

In Figure 67, the ACON6 statement requests that
5000 be generated as a constant.

Name Operation Num Operand

(Tag)
6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 3233 35 3738 39

-r.~,;C.,~ I 1A.1!.,b.ll/,t. ~ .. C n.nl I I

I I I I

Figure 67

Restrictions on an ACON6 Statement

~

ASU zoning may not be speCified in an ACON6 state­
ment.

ADDRESS CONSTANT LITERAL

An address constant literal is an operand with a
double function; it is a request for an address con­
stant and for an operand that references the constant.
The generated address constant is placed in the
literal table. For example, when an instruction
references a tag as part of an address constant
literal, a constant conSisting of the location assigned
to the tag will be created and placed in the literal
table. When the program is assembled, the operand
(address constant literal) of the instruction will be
replaced by the location assigned to the generated
constant. If a program requires many address con­
stants, they should be created with address constant
statements. The address constant literal operand
is useful in a program that requires an occasional
address constant.

Writing an Address Constant Literal Operand

The operand may contain a tag or a literal. Operand
modifiers must be used with either one, to specify
the type of address being requested. If ASU zoning
is to be generated as part of the constant, the ASU

number is placed directly after the operand modifier
and is followed by a comma. The basic format of
the entire operand is either of the following:

1. Operand modifier, plus a tag or a literal
2. Operand modifier, plus ASU zoning plus a tag

or a literal
The symbols for the operand modifiers and ASU

zoning are shown in the following list (nn represents
an ASU number):

Operand Modifier and
Address Type Modifier ASU Zoning

Right-hand R@ R@nn,
Left-hand L@ L@nn,
High speed H@ H@nn,
Size S@ S@nn,
High speed nine T@ T@nn,

NOTE: The modifier and ASU zoning may also be
written in the form R@n, L@n, etc., when specifying
ASUs 1 through 9.

In Figure 68, an address constant is requested
for the right-hand address of FIELD. The instruc­
tion specifies that the address constant is to be
loaded into ASU 15. When the instruction is exe­
cuted, the right-hand address of FIELD rather than
the contents of FIELD will be placed in ASU 15.

Figure 68

Figure 69 specifies that the address constant con­
sisting of the right-hand address of FIELD be zoned
for ASU 5. As in the preceding example, when the
instruction is executed, the address constant will be
placed in ASU 15.

Name Operation Num Operand
(Tog)

6 8 1011 13 15 16 18 20 21 222" 25 2728 30 3233 35 37 38 ~~

I~ ~.E."L..7)1 .ri>.t!!..31. .2~.c tAo ~ I I

I f I I
..a DJ"n.AlIL J .T. L.O . .11. /. .ildQ" C" I~.~ E.L.:D I .-

I I I

Figure 69

Arithmetic instructions, such as ADD, SUB, etc.,
cause a six-position signed constant to be created;
the constant is signed plus. In a secondary mode, a
five-pOSition constan,t, signed plus, is created. All
instructions requiring a 4 or 9 address, such as
LDA, AAM, TR, TMT, etc., cause a four-position
unsigned constant to be created and properly posi­
tioned in a 4 or 9 location regardless of the mode.
All other instructions cause a four-position unsigned
constant, positioned in a 4 or 9 location, to be
created for 705 II mode; a five-position unsigned
constant to be created for 705 III mode; and a six­
position, unsigned constant to be created for 7080
mode. In each case the maximum constant allowed
is dependent on mode memory size.

Restrictions on an Address Constant Literal Operand

Character adjustment may be used for the purpose
of modifying the constant itself. If character adjust­
ment is written in an address constant literal oper­
and, it will not be applied to the location of the
constant.

If an address constant literal operand is used in a
macro-header, it may not designate ASU zoning.

Address Constants 45

INSTRUCTIONS TO THE PROCESSOR

Instructions to the Processor concern the assembly
process. They are executed by the Processor at
assembly time. Consequently, these instructions
do not appear in object programs, although they are
written in the source program wherever they are
required. Through these statements, the program­
mer is able to communicate with the Processor.
The instructions to the Processor are listed below
according to the aspect of the assembly process that
they concern:

1. Standard Assembly Procedures
Location Assignment - LASN
Special Assignment - SASN
Relative Assignment - RASN
Assignment of Macro-Instruction Subroutines

- SUBRO
Assignment of Library Subroutines - SUBOR
Assignment of Literals - LITOR
Transfer Card - TCD

2. Object Program Content
Include Subroutine - INCL
Translation - TRANS
Source-Program Language - MODE

3. Object Program Listing
Skip to New Page - EJECT
Title for Routine or Comment - TITLE

4. Multiple Literal Tables
Literal Start - LITST
Literal End - LITND

5. Flags

INSTRUCTIONS TO THE PROCESSOR - STANDARD
ASSEMBLY PROCEDURES

Certain instructions to the Processor may be used
to alter standard assembly procedures. To under­
stand how these instructions may be used, it is
first necessary to know what the procedures are:

Location assignments: The Processor assigns
storage locations in ascending order to the object
program. In making the assignments, it uses a
location counter that is set initially to location
00500. The parts of the object program are as­
signed in the following sequence: the machine­
language equivalent of the source program, the
library subroutines, the main literal table. If no
subroutines have been requested by either the
source program or the Processor itself, the main
literal table is placed after the source program.
Standard "00" transfer control card: The Pro­
cessor produces this as the terminal card of the
object program deck. (The next chapter contains
additional information on the object deck.) The

46

standard "00" card contains instructions to set
various ASUs. The final instruction on the card is
a transfer to the first instruction in the object pro­
gram. At the time the object program is to be exe­
cuted (object time), it is placed in storage by a load­
ing program. When the loading program encounters
the standard "00" transfer card, it executes the in­
structions the card contains, thereby transferring
control to the object program itself.

The instructions to the Processor explained in
this section enable the programmer to direct the
Processor to do one or more of the following:

1. To use more than one location counter in mak­
ing assignments

2. To assign specific locations designated by the
programmer

3. To alter the order of the parts of the object
program

4. To provide additional "00" cards, and to place
them within the object program

It is often necessary to modify the standard as­
sembly procedure. For example, it must be done
when using IOCS (Input/Output Control System), be­
cause the IOCS routines occupy a large storage area
starting in location 00500. The object program,
therefore, must be positioned beyond the IOCS area.
The positioning is accomplished by starting the
source program with an instruction to the Processor
to set the location counter to a location above the
IOCS area.

The ability to specify storage assignments allows
the programmer to conserve storage space by over­
lapping assignments; i. e., by assigning the same
area of storage to more than one routine or block of
data. A housekeeping routine is frequently over­
lapped with another routine, since the housekeeping
routine is only executed once. By the use of in­
structions to the Processor, the programmer is able
to cause the housekeeping routine to be placed in
storage and executed before the other routine is
placed in the same area.

Another example of overlapping is the assignment
of two or more NAME definitions to the same area.
This is often desirable when the program is to proc­
ess sets of records that possess different char­
acteristics but require the same amount of storage
space. As long as all the records need not be in
storage simUltaneously, the same location assign­
ment may be specified for the various NAMEs.

Location Assignment -- LASN

The function of a LASN statement is to set a loca­
tion counter to a specified . location; 10 counters are

available. A LASN statement may set the designated
counter to one of the following:

1. An actual location specified by the program­
mer

2. An actual location, unknown to the program­
mer, that has already been assigned by the Pro­
cessor to a field or an instruction

3. One location beyond the highest location as­
signed from the counter at any point in the assign­
ment process

4. Location 00500, the initial location assignment
5. One location beyond the highest location as­

signed from a point in the assignment process spe­
cified by the programmer

Each time the Processor encounters a LASN, it
sets the designated counter and makes subsequent
assignments from that counter. This continues
until another LASN is encountered, or until the as­
signment process is completed. Multiple counters
are useful when specifying location assignments in a
program of many sections, because one counter can
be allocated to each section.

The LASN is written as follows:

TAG FIELD: This field must be left blank.
OPERATION FIELD: The mnemonic code LASN is
placed here.
NUMERICAL FIELD: The counter to be set is de­
signated in column 22 of this field. The column is
left blank when designating the Blank counter; each
of the other counters is designated by one of the
digits 1 to 9. The Blank counter may be considered
the primary counter, since it is used by the Pro­
cessor in the absence of any LASN statements. Ad­
ditional information on the Blank counter is supplied
in the section "Location Assignments from the Blank
Counter. "
OPERAND FIELD: To set the counter designated in
the numerical field, the entry in this field may be
one of the following:

1. An actual operand. The counter is set to the
location specified by the operand.

2. The tag of a statement appearing anywhere in
the program before the LASN. The counter is set
to the location previously assigned to the instruction
or field identified by the tag. The tag may be char­
acter-adjusted.

3. A blank operand. The counter is set to one
location beyond the highest location previously as­
signed from it.

4. A location counter, with or without adjustment.
If there is no adjustment the assignment continues;
i. e., it starts in the next available location.

To reset the counter to location 00500, from
which the standard assignment process starts, leave
columns 23-73 blank, and place the character R in

column 74.. When used in column 74 of a LASN
statement, this character may be considered the
Reset character. (For additional information on the
Reset character see the section entitled "Flag Char­
acters and Their Meanings. ")

COMMENTS FIELD: When a tag or an actual oper­
and is used, comments about the statement may be
placed in this field. When writing comments, col­
umn 74 should be examined to make sure it does not
contain R. If it does, subsequent use of the counter
is affected as described in the section, "Flag Char­
acters and Their Meanings. "

In Figure 70, storage assignments are shown to
the right of the hand-coded Autocoder statements.
Note that the assignments made after the LASN
statements are consistent with the requirement of a
4 or 9 location for instructions and with NAME state­
ments that specify a location through an entry in the
numerical field.

Tag

START
ONE
TWO
END

TAG

EXTRA

Figure 70

Operation

LASN

f
NAME
RCD

CON
t

LASN
ADCON

LASN
RCD

\
LASN ,
LASN ,
LASN

Num o.perand) ASSIGNMENTS

@2oo0 ~ 002000
~

003007
o END (003010
4 + 003013
7 '+04.03) 003020

4 *) 00f24

1 @500oo (050000
START (050004

) ~
069994

1 TWO 003014
7 #4()5.02 003020

) 001000
1 ~ 069995

r
1 R 000500

J ~
) 003025

LOCATION ASSIGNMENTS FROM THE BLANK
COUNTER: The Processor uses the Blank counter
unless directed by a LASN statement to do otherwise.
When the assignment of the machine-language ver­
sion of the source program is completed, the library
subroutines must be aSSigned. The Processor uses
the Blank counter to make the assignments. It first
sets the Blank counter to one location beyond the
highest location previously assigned, no matter what
counter was used to make assignment. After it com­
pletes the subroutine assignments, it repeats the
same process in assigning the main literal table;
i. e., it sets the Blank counter to one location beyond

Instructions to the Proceasor 47

the highest location previously assigned. If no
LASNs have been encountered within a subroutine,
the Blank counter itself contains the highest location
previously assigned at the time the main literal
table is to be positioned. The programmer should
keep this use of the Blank counter in mind when
placing LASN statements in subroutines. (The en­
tire assignment of library subroutines and the main
literal table may be altered by LITOR and SUBOR.
These are instructions to the Processor and are ex­
plained on subsequent pages. The assignment of
multiple literal tables is controlled by LITST and
LITND, as explained under "Multiple Literal
Tables. If)

Restrictions on a LASN Statement

A LASN statement may not be referred to by another
Autocoder statement.

Special Assignment -- SASN

The function of a SASN statement is to set the Blank
counter as follows:

1. To an actual assignment specified by the pro­
grammer

2. To an actual location, unknown to the pro­
grammer, that has already been assigned by the
Processor to a field or an instruction

SASN is a limited form of LASN~ Like LASN, it
may be used in library subroutines as well as in
programs. However, it differs substantially from
LASN in the following respect: The highest location
assignment resulting from a SASN is ignored when
the Processor sets the Blank counter to one location
beyond the highest location previously assigned from
the counter. (Such a setting is specified by a LASN
with a blank operand.)

In effect, location aSSignments resulting from a
SASN are no longer significant once the SASN is

terminated. r~.~~!!!~~<;?_~_.2!..~A!:a~es~ wh31 a
LASN . tered, no matte counter the

" \~, () a ypeofoperan n-
'i. tains. .,

Because the SASN is a limited form of LASN, it
does not require a detailed explanation. It is written
as follows:

Tag

48

Operation Num Operand

SASN Xl

is an actual operand, or
is the tag of a statement appearing anywhere
in the program before the SASN, or
is a location counter.

The tag or location counter may be char­
acter-adjusted.

Note that the tag and numerical fields must be left
blank. Comments may be placed in the comments
field.

Figure 71 illustrates the fact that SASN assign­
ments are ignored during subsequent LASN aSSign­
ments.

Tag Operation Num Operand ASSIGNMENTS

~ ~
LASN @2000 002000

~ \
002499

SASN @3000 003000

~ ~
004000

LASN 002500

Figure 71

Restrictions on a SASN Statement

A SASN statement may not be referred to by another
Autocoder statement.

Relative Assignment -- RASN

This instruction allows a program or portion of a
program to be assembled at one location and to cause
all references to or within the program to be treated
as if they were assembled at a different location.
Various subroutines therefore, can be assembled
relative to the same location, and at object time one
of them can be moved for actual execution.

Locations will be assigned in the normal manner
to the entries following a RASN, but references to
them or anyone of them will effectively be to their
relative address.

A relative assignment will be terminated by any
LASN, SASN, or TCD.

In Figure 72, the routine beginning with TAGA
will be assembled starting at location 2000, but all
references to the routine will be assembled as if the
routine started at location 0300. The instruction
used to move the routine should reference actual
location 2000.

In Figure 73, the routine beginning with TAGA
will be assembled starting at location 5005, but all
references to the routine will be assembled as if the
routine started at location 0300. The LASN is used
to terminate the RASN. The instruction used to
move the routine should reference REFTAG + 5.

There are certain limitations to be observed when
using a RASN:

1. As with SASN, a RASN has no effect on the high
assignment counters.

2. If location assignment is under control of a
LASN or SASN at the time a RASN is encounte"red,
it continues under control of the LASN or SASN.

3. At the time a RASN is encountered, the fol­
lowing (in effect) occurs: The location counter is
incremented by one, and the high-order location of
the operand of the RASN is obtained. The difference
between these two must be a multiple of five, or in­
consistent results will occur. Therefore, it is re­
commended that a RASN always be preceded by a
LASN or a SASN; and that both have as operands
actual addresses or tags that are similarly posi­
tioned with respect to the low-order location.

Tag Operation Num Operand) LOC INSTR SU ADDRESS

TR
LASN
RASN

TAGA CMP
TRE
SHR
TRZ
TR

TAGB HLT
LaD
TR

CON 1 CON
CON2 CON

LASN
LaD

Figure 72

Tag Operation

REFTAG TR
RASN

TAGA CMP
TRE
SHR
TRZ
TR

TAGB HLT
LaD
TR

CON 1 CON
CON 2 CON

LASN
LaD

Figure 73

OUT (5004 18004 000004
@2000 ~ 2000
@300 ,0300
CON 1 2004 40343
*+25) 2009 L0334
1 2014 COO01
TAGB 2019 N0329
TAGA 2024 10304
9999 (2029 J9999

01 CON 2 (2034 803U4 01

*+ 10 ~) 2039 10349.

000343
000334
000001
000329
000304
009999
000344
000349

04 XXXX 2043
01 Y 2044

5005
01 CON 2 5009 803U4 01 000344

Num Operand ~ LOC INSTR SU ADDRESS

OUT (500418004 000004
TAGAT3000300
CON 1 500940343 000343
*+25 5014 L0334 000334
1 5019 C0001 000001
TAGB 5024 N0329 000329
TAGA 5029 10304 000304
9999 5034 J9999 009999

01 CON2 r~OO3~ 01 000344
*+10 5044 10349 000349

04 XXXX 5048
01 Y 5049

5050
01 CON 2 5054 803U4 01 000344

A RASN statement is written in the format shown
below.

is an actual operand, or
is the tag of a statement appearing anywhere
in the program before the RASN, or

is a location counter.
A tag or location counter may be character­
adjusted.

The tag and numerical fields must be left blank.
Comments may be placed in the comments field.

Restrictions on a RASN Statement

A RASN statement may not be referred to by another
Autocoder statement.

Assignment of Subroutines Within Macro-Instruc­
tions - SUBRO

The function of a SUBRO statement is to cause the
Processor to treat the coding that follows it as a
subroutine and to locate it out of line. The Pro­
cessor assigns storage locations to SUBRO routines
after it has assigned locations to Class A subrou­
tines. The storage location at which the Processor
is to begin assigning. addresses is designated in the
operand of the SUBRO statement.

NOTE: A SUBRO statement must not be written in a
source program. It is designed to be used with
user-written macro-instructions. A complete ex­
planation of the usage of a SUBRO is given in the
pUblication on the preparation of macro-instructions.

Assignment of Library Subroutines -- SUBOR

The function of a SUBOR statement is to specify the
starting location for the assignment of library sub­
routines. The SUBOR assignment supersedes
the standard subroutine placement; i. e., after the
last instruction in the program. SUBOR enables the
user to position the block of subroutines anywhere in
storage, and the statement itself may be written at
any point in the program. For a program written in
two modes, it may be necessary to place the sub­
routines below the storage limit of the secondary
mode. For example, the primary mode of a program
is 7080, and the secondary mode may be 705 III. If
the 705 ill portion of the program must have access
to the subroutines, and it is anticipated that the final
instruction will occupy a location close to or beyond
the storage size of the 705 III, a SUBOR must be
used to position the subroutines in the lower portion
of storage. This would alter the order of the object­
program parts so that the block of subroutines would
be placed within the machine-language equivalent of
the source program. It may even be desirable to
place the subroutines at the beginning of the object
program.

Instructions to the Processor 49

The SUBOR statement is written as follows:

Tag Operation Num Operand

SUBOR Xl

Xl is an actual operand, or
is the tag of an Autocoder statement, or
is a location counter.
The tag or location counter may be char­
acter for consistency adjusted. The tagged
statement must precede the SUBOR state­
ment.

Comments may be placed in the commends field.
Figure 74 indicates that the programmer assumes

the subroutines cannot possibly occupy more than
5,000 positions.

Operation Num Operand

30323335373839.

I : : : : ; : :.: : I : : : : I : I : : : : : : : : : I : : : : : : t
Figure 74

Restrictions on a SUBOR Statement

A SUBOR statement may not be referred to by an­
other Autocoder statement.

Assignment of Literals -- LITOR

The function of a LITOR statement is to specify the
starting location for the assignment of the main
literal table. The LITOR assignment supersedes
the standard main literal table placement, which is
after the subroutine block or after the last instruc­
tion of the program if no subroutines are used.
LITOR enables the user to position the main literal
table anywhere in storage, and the statement itself
may be written at any point in the program. (The
previous discussion on the use of SUBOR also ap­
plies to LITOR.)

The LITOR statement is written as follows:

Tag

50

Operation Num Operand

LITOR Xl

is an actual operand, or
is the tag of an Autocoder statement, or
is a location counter.

The tag or location counter may be char­
acter-adjusted. The tagged statement must
precede the LITOR statement.

Comments may be placed in the comments field.
In Figure 75, the Processor is instructed to start

the main literal table assignment at the same loca­
tion already assigned to TAG. It must be assumed
either that the contents of TAG are no longer needed
when the main literal table is actually placed in
storage or that the contents of TAG are placed in
storage after the main literal table is no longer
needed.

Nome Operation Num Operand
(Tog)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 37 38 3~

I ? I I
I t.. J.T.I'l.~ IrA.t:.. I I

I :1 I I

I I I

Figure 75

Restrictions on a LITOR Statement

A LITOR statement may not be referred to by an­
other Autocoder statement.

A LITOR statement cannot be used to position
multiple literal tables. The LITST and LITND
statements must be used for this purpose.

Transfer Card -- TCD

The function of a TCD statement is to create a "00"
transfer control card in addition to the standard "00"
card that terminates the object-program deck. The
additional "00" card will be internal to the object
program, occupying the same relative position in it
that the TCD statement occupies in the source pro­
gram. If a Z character is placed in column 74 of
the TCD statement, the generated TCD "00" trans­
fer control card will be produced at the end of the
object program and will replace the standard "00"
card (see the section "Flag Characters and Their
Meanings"). .

The TCD statement must be followed by Autocoder
statements that specify the contents of the card; i. e. ,
by the instructions or the instructions and data the
card will contain. The last of these Autocoder state­
ments must be a transfer back to the loading pro­
gram or to another object-program instruction that
is already in storage. A LASN (or SASN) statement
must be used after the final statement supplying the
contents of the "00" card. A program may contain
more than one TCD statement. Multiple TCDs may
be written consecutively, or interspersed throughout
the program.

The format of the TCD statement is as follows:

Comments about the "00" card may be written in the
comments field. A tag is not needed.

THE EFFECT OF THE "00" CARD ON THE LOAD­
ING PROCESS: As previously explained, as soon
as a "00" card is loaded into storage, it causes the
loading program to interrupt the loading procedure
and to execute the instructions on the card. The
area of storage assigned to the contents of any "00"
card is the input area used by the loading program;
i. e., locations 000080-000159. On the standard
"00" card that the Processor automatically produces,
the final instruction is a transfer to the first instruc­
tion in the object program. A return is not made to
the loading program, because the standard "00" card
is the final card of the object-program deck. In
contrast, the "00" card created by a TCD statement
is followed by additional object-program cards.
Consequently, this "00" card must contain as its
final instruction a transfer back to the loading pro­
gram, or to some other routine already in storage,
that will ultimately return control to the loading
program.

A "00" card is often used to execute an overlap­
ped routine, as shown in Figure 76. As soon as the
"00" card is placed in the loading input area, a
transfer is made to the HOUSEKEEP routine, which
is already in storage. The last instruction of the
routine is a transfer back to the "00" card, which
transfers in turn to the loading program. When
loading is resumed, the HOUSEKEEP routine will be
overlapped by the CALCULATE routine.

Name Operation Num Operand
(Tag)

1011 13 15 16 18 2728 30 32 33

Figure 76

Restrictions on a TCD Statement

The machine-language version of the Autocoder
statement specifying the "00" card content may not
exceed 65 positions. (A machine-language instruc­
tion occupies five positions.)

If an object program contains "00" cards created
from TeD statements, the input area of the loading
program used with the object program must start at
location 000080.

INSTRUCTIONS TO THE PROCESSOR THAT CON­
CERN OBJECT-PROGRAM CONTENT

Include Subroutine -- INCL

The function of an INCL statement is to designate a
library subroutine that the Processor is to insert in
the object program. The source program must also
contain an instruction or a routine that supplies the
linkage to the subroutine designated by an INCL
statement.

The format of the INCL statement is as follows:

Tag Operation Num Operand

INCL Xl

is the five-character mnemonic identification
code of the subroutine to be included.

Comments about the subroutine may be written in the
comments field.

The function of the macro-instruction LINK, used
in Figure 77, is to provide linkage to a subroutine.
The subroutine is ROOTS; the tag of its entry point
is STEP 1.

Name Operation Num Operand

(Tag)
25 2728 30 32 33 35 3738 39; 6 8 1011 13 15 16 18 20 21 2223

I Ii. I.N.K hs.T.FP1~ I

I :~ I I

I l.r.N.~.L IA.D . .D.T.~I I

I I I

Figure 77

TYPES OF LIBRARY SUBROUTINES: Programmers
may write subroutines in Autocoder language and add
them to the standard Processor library. Such a sub­
routine will be included in a program assembly only
if it is designated by an INC L statement. The
standard library also contains subroutines that are
required by macro-instructions, but the Processor
automatically supplies these subroutines, and the
details of their inclusion are not relevant to the use
of INCL.

Instructions to the Processor 51

Two types of subroutines may be written in Auto­
coder language:

1. Class A. These may contain any Autocoder
statement.

2. Class B. These may contain any Autocoder
statement, including NAME entries,
except the following: a macro-in­
struction other than ENT80 or
LEV80; an INCL that designates a
Class A subroutine; a TRANS entry
having the tag of another location
as an operand.

Restrictions on an INC L Statement

An INCL statement may not be referenced by an­
other Autocoder Statement.

Translation -- TRANS

The function of a TRANS statement is to equate the
operand of a one-for-one instruction into an actual
location derived from the operand of the TRANS.

The TRANS statement designates an actual loca­
tion and equates it to the reference made by the
operand of a one-for-one instruction. More than
one instruction may reference the same TRANS
statement. In this case, all references will be
equated to the location designated by the TRANS.

The TRANS statement is written as follows:

TAG FIELD: The entry in this field must be the tag
that appears as the operand of the one-for-one in­
struction making the reference.
OPERATION FIELD: The mnemonic code TRANS is
placed here.
NUMERICAL FIELD: This field must be left blank.
OPERAND FIELD: The entry in this field may be
one of the following operands:

1. An actual operand. This location will appear
as the operand of an object program requesting in­
struction, regardless of the memory orientation of
the operation.

2. A location counter without character adjust­
ment (*). The location of the instruction following
the TRANS will appear in an object-program in­
struction wherever the tag of the TRANS appears as
a source-program operand.

3. A location counter with any character adjust­
ment. The location of the instruction immediately
following the TRANS with character adjustment ap­
plied will appear in an object-program instruction
wherever the tag of the TRANS appears as a source
program operand.

4. A tag of another location, including the loca­
tion of another TRANS. The operand may have a
character adjustment and/or an operand modifier

52

other than an address constant literal; such an oper­
and will be treated as an actual operand. The
maximum number of TRANS statements with symbolic
operands is 50 per Processor run. This operand
may not be used in Class B subroutines.
COMMENTS FIELD: Comments may be placed here.

In Figure 78, the TRANS statement equates
MASTERTAPE to an actual tape address. In the ob­
ject-program listing, the machine-language version
of the SEL instruction will contain the address 0200.

Name Operation Num Operand

(Tog)
25 2728 30 32 33 35 37_~ 6 8 1011 13 15 16 18 20 21 22 23

I s'E:L 1M AS. T.E1~. T.A.P.E I
I ~ I I

,., . .(I..So. T.EIAz .r. A.P.E ITA.A.N.~ ib . .200 I I
I I I

Figure 78

Assume that location 05009 is assigned to the
first instruction generated from the ADDX macro­
instruction in Figure 79. The operand of the TR
instruction is also translated to 05009~ because the
TRANS statement does not exist in the object pro­
gram. The * operand of a TRANS statement is, in
effect, *+5.

Name Operation Num Operand
(Tog)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 _37~~

I I-r.R. IN: &:- X. 'T. I I

I ~ I I
I

IN:E.X.T. I 1r.~ . .4.N.S' I~. I I

1 A.D.J).X t:> N.t:: .l:t.11L.1.":rI. r. # IR£".E.tr. I

I I I

Figure 79

If the RD instruction in Figure 80 is assigned to
location 03059, the operand of the TR instruction
will be translated to 03054. This results from the
fact that the TRANS statement does not appear in the
object program. Consequently the BSP instruction
is the instruction actually preceding the RD instruc­
tion and is assigned to location 03054.

Name Operation Num Operand

(Tog)
6 8 1011 13 15 16 18 20 21 22 23 25 27 28 30 32 33 3S 3738311·

I -r:Jfl. I&Rg~JI:'I I

I 1 I I

I 18.SP. I I
~4 41 1-r.R...oJtl.s ,*, -S': J I

I IR" 1.-24ril I I

I I I

Figure 80

Restrictions on a TRANS Statement

If a TRANS statement has a location counter, an
actual operand, an operand modifier, or character
adjustment, the statement that references the tag of
the TRANS cannot have an operand modifier. In any
of these cases, an operand modifier would have no
significance.

Source-Program Language -- MODE

An Autocoder program may contain statements
written in the following languages:

1. FORTRAN
2. Report/File
3. Decision
4. Arithmetic
5. Table-Creating
The term "higher languages of the 7080 Pro

cessor" includes all of the above-listed languages
except FORTRAN. MODE statements are instruc­
tions to the Processor that indicate a change in the
language of the source program, and they must be
used in Autocoder programs that contain Report/
File statements and/or FORTRAN statements.
MODE statements may not be tagged, but com­
ments may be written in the comments field.

FORTRAN MODE STATEMENT: The statement in
Figure 81 must precede each FORTRAN portion of
an Autocoder program.

Name Operation Num Operand
(Tog)

6 8 10.\1 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 3738 39.

I M.lJ:J).E. I=, OR.T.AIA..N. I I

I I I I

Figure 81

The operand FORTRAN indicates that the subsequent
statements are in standard FORTRAN format.

REPORT/FILE MODE STATEMENT: The statement
shown in Figure 82 must precede each Report/File
portion of an Autocoder program.

Nome Operation Num Operand
(Tog)

6 8 1011 13 15 16 18 ..20 21 2223 25 2728 30 32 33 35 3738 39

I M.,,:r>.#. ~ IIrD"II-r I I

I I I I

Figure 82

AUTOCODER MODE STATEMENT: The statement
shown in Figure 83 must precede each Autocoder
portion of a program if that portion follows Report/

File or FORTRAN statements. The statement is
used whether or not the Autocoder portion also con­
tains DeCision, Arithmetic, and Table statements.

Nome Operation Num Operand
(Tog)

6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 32 33 35 3738 39

I M.b.:JJ.£. 1..4.u. 7.(') .l'!in.V . ¥Oil. I I
I I I I

Figure 83

NOTE: This MODE statement is not used when the
entire program consists of Autocoder statements
alone or Autocoder statements in combination with
Decision, Arithmetic, and/or Table statements.

CODING GENERA TED IN 7080 MODE

The terms "7080 mode" and "secondary mode" are
used throughout this manual. They refer to the ob­
ject machine for which the Processor produces cod­
ing, makes location assignments, etc. The program
mode is communicated to the Processor by using the
macro-instructions Leave Eighty Mode (LEVSO) and
Enter Eighty Mode (ENT80), both of which are des­
cribed in the macro-instruction manual. The 7080
mode is assumed until a LEV80 is encountered.. Of
course, if the entire program is in 7080 mode, the
LEV80 and ENT80 are not necessary. Since these
macro-instructions are Assembly Control macro­
instructions, they should be considered along with
other instructions to the Processor.

LEV80 and ENT80 affect the coding generated
fronl the statements in the portion of the program
that each of them precedes. The Processor gener­
ates 7080 instructions until it encounters a LEV80.
It then generates 705 II or 705 III coding (depending
on which is designated as the secondary mode for the
assembly) until ENT80 is encountered.

The Processor then resumes generation in 7080
mode. The program mode is a consideration in
using address constants, macro-instructions, one­
for-one instructions, and instructions to the Pro­
cessor. For example, the Processor generates an
EIA instruction when it encounters an indirect ad­
dress in the operand of an instruction in the 7080
mode portion of a program. This is true whether
the indirect address appears in a hand-coded one-for­
one instruction or a generated instruction. As an­
other example, an ACON6 should not be referenced
by an instruction outside the 7080 mode portion of a
program.

Instructions to the Processor 53

INSTRUCTIONS TO THE PROCESSOR THAT CON­
CERN THE PROGRAM LISTING

Skip to New Page -- EJECT

The function of an EJECT statement is to advance
the listing to a new page. The program statement
that follows EJECT will be the first statement on
the new page. Unless the listing is controlled by
EJECT statements, each page will contain 55 lines
of print. The statement is written as shown in
Figure 84. It may not be tagged, and it may con­
tain only one line of comments.

Nome Operation Num Operand
(Tog)

6 8 1011 13 15 16 18 20 21 2223 25 2728 30 32 33 35 37 38 39

I E.JE.c.T I I I
I I I I

Figure 84

EJECT does not appear on the listing page. How­
ever, it is assigned an index number, and the num­
ber is one greater than the index number of the
statement that precedes the EJECT. (Index numbers
are explained in the section, "Details of the Pro­
gram Listing. ")

Title for Routine or Comment -- TITLE

The function of a TITLE statement is to place lines
or paragraphs of descriptive information in the pro­
gram listing. TITLE may be used in any way the
programmer desires. Some of the more common
uses will be discussed following the specifications
for writing the statement.

The TITLE statement is written as follows:

OPERATION FIELD: The mnemonic code TITLE is
placed here (Figure 85). If the information is con­
tinued into subsequent lines of the coding sheet (i. e. ,
is written as a paragraph) only the first line must
contain TITLE. If a series of paragraphs is
written, and each is separated by one or more blank

Nome Operation No", Operand

(Tog)
6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 __ E ~_3 _3_5 _~? }11...}~ ~43 45

lines on the coding sheet, the lines of the paragraphs
will be treated as TITLE continuation lines.
NUMERICAL FIELD: This field may contain an
entry in the first TITLE line. However, it must be
left blank in the continuation lines. It is recom­
mended that the numerical field be left blank at all
times.
TAG FIELD, OPERAND FIELD, COMMENTS FIELD:
Any or all of these fields may be used for the des­
criptive information. The commentary does not have
to start in the first column of any of the fields, and
it does not have to extend to the end of the comments
field before a continuation line is started.

Common Uses Of Title

Describing the function of each program portion,
summarizing program procedures, and providing a
table of contents for the program listing are some of
the uses for TITLE. In addition to appearing in the
program listing, all TITLEs are also printed in a
special section of the Operator's Notebook, an op­
tional feature of the assembly documentation pro­
vided by the Processor. This special page shows
each TITLE and its location in the listing. The
TITLE page of the Operator's Notebook is useful as
an index for the program listing. It is often desir­
able to have information about the program at the
start of the listing and/or before each major pro­
gram portion. TITLE can be combined with EJEC T,
as in Figures 86 and 87, to provide a page of com­
mentary only.

When planning pages of commentary or describing
program parts, it should be remembered that an
EJECT statement before each part will cause that
part to appear on a new page of the listing. Thus,
EJECT and TITLE may be used to separate each
part of the program, to describe it, and to provide
a table of contents or an index. The standard listing
page contains 55 lines unless EJECT is used. In
Figure 86, it must be assumed that TITLEs designat­
ing the four program parts have been used elsewhere
in the program, and that this TITLE page is to be the
introductory page of the listing.

Comments I I I 1 1 1 " I I I 1 I I
47 48 50 5253 55 57 58 60 62163 165 167 169 171 173 7·'

I I I I I I

I r.1.7"L £" .. r1JJ.t1. S • TN._C.T.II! tljc.+r ~.t!4-~~-+~Etv#-LFlole, I I I I I
1

I
1

I
1

1
I

I 1 I
I

I I 1 I I I

I ~~P-tV~-.l? 1Z-tA\.£'- .l:.~ oM ~.E04rti'¥tr+-W~~~o Icf-IRIAIMI· 1
1

1
I

1
I

1
1

1
I ..

I I' I I I 1 I I I I

I I 1 I I I I I

Figure 85

54

Name Operation Num Operand Comments I 1 I I I I g

(Tag) I I I I I I
6 8 1011 13 15 16 18 20 21 22 23 25 2728 30 3233 35 3738 3940 4243 45 47 48 50 5253 55 57 58 60 62163 165 167 169 171 173 74

I I
I AAle ID.D L.L I~ ~ "L- .. I ... _ - ICI>"",,# IJO . .D.R.~.s"1

I I I I
1T:"7"."T:L .# .JO.A.l' I I I I I I

I I I I I I
1 I I I I 1

I I I I I I I

I .P.~JII.T. ,~ .0 .N, r..oI.1: ,JIj ,Ti»,£', LI. ... 1. ~ # ~. d&:,p.I.AI.&1
I I I I I I

.1 IS, I I I I I I

I I JII.D.U.T..z~ .I.IIN ~,C, II, 11:. s, .D,Ah,y. I
I I I I I I
I I I I I I

:(I
1"-

I I I
I I I T I I

I I I I I I I I I

I :? I I
I I I I I I

I I I I I I I I I I

I I I
I I I I 1 I

I 'J#'". 1.1r.L!..7 I I I I I I I I I
I 1 I I I 1

1 I I I 1 I I I I I I I I

Figure 86

Name Operation Num Operand Comments I I I I I I 9

(Tag) I I I 1 I I
6 6 10 \I 13 15 16 16 20 21 2223 25 2726 30 32 33 35 3736 39 40 4243 45 47 46 50 5253 55 57 56 60 62163 165 167 169 171 173 74

I . .PIA. Y.JP.n.L IL ~JP"L,._~ I ... "", ,I T.'/,u:ls ,P,JP~ L.... tI1 AM I
I I I I I I

IT.~,TJ.I! I~R,~ 1 I I I I
I I I

I~.().N.T,A.I.N,S ,}:IO,I,).Je ,p\.Q JI2 Ir,s ,I ,r,)JtE, !:D,E,r,A,rl, .S, .D.~I
I

1 1 I I I
I I I

I 1F...o.l!,/J, 1~ . .t'.E. .,
L> '" ,rlr.JI . .4,11 .r.JJ.£' Ip,D,IAI,Tls L .r:sl"r,r~ ,Ri.E',LI ,lJi I I I

I I I I I I I
I I 1 I

I 1

IAA.R.'T.11 .~,AtjM',~r.P,.:r IAI& I I I IDr-, T .. J! ,2,D,i : I
ILl.D, I

I
1~L1JP ..,..,1 17J,J:'":':, r,Alir, r, T ,"',AlI.~ ,4,A/,.l) I ,/". 1£l.Al.sl"'-,.4.N. T,sl In '" .,. .. 11 .:1..111

I
I I

I (I I I
I ~ I +- I J

I IFJ.£C.7 I I I
I I I I

Figure 87

In Figure 87, it must be assumed that the listing
page containing each of the parts is headed by a
TITLE describing that part of the program.

INSTRUCTIONS TO THE PROCESSOR - MULTIPLE
LITERAL TABLES

The Processor can build more than one table of
literals and locate these tables in a program at any
pOints requested. When literals are thus inserted
into a program, the location counter is incremented
by the length of the table of literals. The counter
will then contain the location assignment for the
entry immediately following the termination of the
table. This feature is especially valuable when used
with routines that can be overlaid. It makes it
possible for a routine to be accompanied by its own
literal table, so that both can then be overlaid by
another routine.

A multiple literal table is requested by using
LITST (Literal Start) and LITND (Literal End) state­
ments. (These instructions to the Processor are
described in detail later in this section.) Within the
size restrictions noted in the section "Restrictions
on Multiple Literals, " all literal operands and ad­
dress constant literal operands that fall between a

I I I
I I
I I

1 I I
I I I I I I

1 I I
I I 1 I I I

I I 1
I I I
I I I

LITST and a LITND will be placed in one multiple
literal table by the Processor. Literals that are not
assigned to a multiple literal table will be placed in
the main literal table.

Each multiple literal table will normally follow
the instruction preceding the LITND statement. If
the last instruction is an assignment, the table will
be placed at the location specified, as in Figure 880
The assignment of a multiple literal table cannot be
changed by a LITOR statement.

Literal Start -- LITST

A LITST statement informs the Processor that all
literal and address constant literal operands between
it and the next LITND statement are to be placed in
one multiple literal table. The format of the LITST
statement is as follows:

Comments may be placed in the comments field.

Inl3tructions to the Processor 55

Name Operation Num Operand Comments I I 9

(Togl I I
6 8 10 II 13 15 16 18 ___ fQ.~ll.. __ ~ __ E?8 ___ ~2......_...E 3~ ____ F3!!_E~ 4243 45 4748 50 5253 55 5,58 60 62:63 :65 :67 :69 :71 :73 74

I S1J.S./tJ. A.N. Y.L~+-+_+- --+-+--+--+--h- f,s..A..sj..t+--+r_+t:t~_~E~~_--;-L-~ __
I I I I I I

--,---+-+-+--l-+-+--+--+- L.r. ToIII. 'D --+--_ ---t-t-+-+++-+-+--+-- -+-+-~--t--!--+- -+--+---+-+-+--+--+-+-+_+_+_+---l---._+-+-I-1 I I I I I I _
. I I I I I I

-+-+-1 1 I III-+-- L .R.S N. --t-+--t--t-h-+-+-t---+--+-+-+--L+-~~4.N~#~.j...f~_~~·M iliA!. T1 I I I I

I I I I I I I ::::::

Figure 88

Restrictions on a LITST Statement

A LITST statement may not be referred to by an­
other Autocoder statement.

Literal End -- LITND

A LITND statement informs the Processor that all
the literals that refer to the same multiple literal
table have been processed. The Processor will not
locate the table either at the location following the
entry that precedes the LITND, or at the location
indicated by an assignment instruction. The format
of the LITND statement is as follows:

Comments may be placed in the comments field.

Restrictions on a LITND Statement

A LITND statement may not be referred to by an­
other Autocoder statement.

Restrictions on Multiple Literal Tables

A program may request as many as 9,999 multiple
literal tables. The allowable size of a given table
will depend on the type of literals specified. If no
address constant literals are specified, the guaran­
teed minimum size of a multiple literal table is 200
literal positions. The guaranteed minimum size of
a table that contains address constant literals is 150
pOSitions.

In actual practice, a multiple literal table will
probably hold more entries than these minimums.
To determine whether all the literals between a
LITST and a LITND will fit into a given table, the
following formula can be used:

(X + 3) ••• + (X + 3) + 17Y
1 n

z

56

where

Y

is the memory size of the first literal fol­
lowing a LITST.

is the memory size of the last literal before
a LITND.

is the number of address constant literals
requested.

Duplicate literal operands should be counted only
once, since they will appear only once in a multiple
literal table.

If Z is greater than 650, not all the literals will
fit into the table. The maximum size of an internal
table used by the Processor when building multiple
literal tables is 650. As each literal is encountered,
it is placed in the internal table, preceded by a
three-position control field. Each address constant
literal requires 17 positions in the table. Thus, in
Figure 89, the address constant literal and the
literal operand will require 24 internal-table posi­
tions: 17 positions for the address constant, and 7
positions for the literal operand. (The sign of a
literal is not counted.)

Figure 89

When the internal table overflows, the literal
causing the overflow will be assigned to the main
literal table, not to a multiple literal table. Any
smaller literals that follow the literal causing the
overflow will be placed in the internal table, as long
as there is room. If both an address constant literal
and its literal operand cannot be located in the
internal table (as in Figure 89), both will be included
in the main literal table.

It is sometimes desirable to place a literal in the
main literal table instead of in a multiple literal

table. This can be effected by placing an L flag in
column 74 (see "Flag Characters and Their Mean­
ings").

FLAG CHARACTERS AND THEIR MEANINGS

Flags are a means. of communicating with the Pro­
cessor. Specific single-character flags, explained
below, have been defined for use in column 74 of all
input to the Processor except FORTRAN and
COBOL statements. Additional flags may be al­
located in the future, and they will be made available
as soon as they are completely defined. Should any
character be encountered in column 74 when its use
is unintentional, inconsistencies may occur in the
assembled program.

@ -- Force Program Card

This flag will cause the output produced from the
entry containing the flag to begin on a new program
card.

A -- Reduce Location Assignment Phase Assembly
~

This flag is for use within Class B subroutines. It
is placed in column 74 of statements which have tags
that will be the operands of assignment statements
(e.g., LASN, SASN, RASN).

All entries bearing this flag will be placed in a
table that is used when assignment statements are
encountered. This reduces the assembly time for
Class B subroutines (which are processed in the
location-assignment phase).

B -- Scan Entry from Right to Left

This flag will cause the Processor to scan the oper­
and of the entry containing it from right to left,
rather than from left to right.

On encountering a left literal symbol in the oper­
and of a one-for-one instruction that contains the
B flag, the Processor will then scan from column 73
left to a literal symbol. Everything between the two
literal symbols will be considered an unsigned
literal. Valid modifiers and character adjustments
will be honored.

The B flag with an operand of a macro-header
will cause a scan from column 73 left to a lozenge.
Everything from column 24 through the column two
positions to the left of the lozenge will be treated as
an unsigned literal of that length. (The characters
in column 23 and the column to the left of the lozenge
will be assumed to be literal symbols, and will be
dropped.) The operand to be so treated, with this

flag, must be on a line (card) that does not contain
any other operand.

C -- Entire Card is a Comment

Columns 6 through 73 of an entry containing this flag
will be considered a comment. Entries so flagged
will also be printed, single spaced, ona separate
page of the Operator's Notebook. Entries with this
flag that are contained in the input to a librarian run
will not be treated as components of macro-instruc­
tions, and will be removed. Their function in this
case is solely for the purpose of listing on an IBM
407.

D -- Delete All Messages Created for This Entry

An entry containing this flag will be processed
normally but diagnostic messages (if any) will not
be produced for it.

F -- Processor Chain Indicator

This flag indicates the beginning and end of a macro­
instruction chain. It is used when the chain contains
macro suffix tags and/or generated descriptive tag
operands. (Its use is explained in the macro-in­
struction manual.)

G -- Treat Change Entry as Generated Entry

This flag is provided for use with change entries
introduced in a high-speed assembly run. It will
cause the entries containing it to be considered as
generated entries during a subsequent reassembly.
That is, during a subsequent reassembly the entries
will be deleted, and during a subsequent high-speed
assembly the entries will be retained.

H -- Halt Loop

This flag, intended for use in entries that constitute
the error-indication portions of a program, will
cause entries containing it to be listed on a separate
page of the Operator's Notebook. The H flag is valid
only on one-for-one instructions.

L -- Main Table Literal

This flag is intended for use with statements that
have literal or address constant literal operands,
and occur between a LITST and a LITND. When the
Processor finds such a statement containing an L
flag, it will treat the operand as a main-table literal
rather than as one belonging in a multiple literal
table. The L flag provides a convenient means of

Instructions to the Processor 57

preventing repeated generations of the same literal
in a program that uses multiple literal tables.

M -- Operand is to be Modified

This character may be used to flag all entries hav­
ing operands that are not blank, but are to be initi­
alized and/or modified, and will cause these entries
to be printed on the page of the Operator's Notebook
containing entries with blank operands. The M flag
is valid only on one-for-one instructions. When a
generated instruction is referenced by another
macro-instruction by means of a macro suffix tag,
the macro generator automatically places an M flag
on the referenced instruction, unless another flag is
already present on it.

R -- Reset Location Counter

Placing the Reset character (R) in column 74 of a
LASN statement containing an actual or a tag oper­
and does not modify the setting designated by the
operand. However, it may affect a subsequent set­
ting designated by a blank operand for the same
counter, because the Processor will ignore any as­
signments it made before encountering the statement
containing the Reset character.

This may best be seen with an illustration. Sup­
pose that the highest assignment made from counter
1 is location 59999. The Processor then encounters
a LASN for counter 1 to location 2000. After setting
the counter, the Processor assigns a block of 500
positions, bringing counter 1 to 2499. Now a LASN
with a blank operand is encountered for counter 1.
The counter is set to location 60000, one location
beyond the highest assignment made from the counter
up to this point in the assignment process. To re­
turn to the beginning of this example: Suppose that
when location counter 1 contains 59999, the Pro­
cessor encounters a LASN for counter 1 to location
2000, but the statement also contains R in column
74. As before, the counter is set to 2000, a block
of 500 pOSitions is assigned, and the counter is
again at 2499. Now a LASN with a blank operand is
encountered for counter 1. Because the Reset char­
acter destroyed the previous high location (59999)>>
the counter is set to 2500. This is one location '

58

beyond the highest assignment made by the Pro­
cessor after it encountered the Reset character.

S -- Suppress Program Cards

An Autocoder entry containing this flag will indicate
the beginning of program card suppression. This
entry and all following entries will be processed
normally, except that program cards will not be
produced. A second entry containing this flag will
indicate that program card suppression is to end
after this entry is processed.

T -- Test-Assembly Entry

Entries containing this flag will be retained during
an assembly when the run-type control card so indi­
cates. Otherwise, all entries containing this flag
will be deleted automatically. Statements may
therefore be assembled for testing purposes, and
easily removed.

Z -- Relocate "00" Transfer Control Card

This flag is only used with a TCD statement. It
causes the TCD "00" transfer control card to be
placed at the end of the program in place of the
standard "00" card. If more than one TCD state­
ment contains this flag, the last one encountered
prevails.

1 -- Weight Inner Macro-Instruction as One

This flag may be used with macro-headers when they
are used as components of macro-instructions. It
speCifies that regardless of how frequently the
macro-instruction containing it is used, the inner
macro-instruction will be called by it very infre­
quently; therefore, the Processor is to consider that
the inner macro-instruction is called one time as a
component of the particular outer macro-instruction.
Effective use of the flag will cause the Frequency
Count Table to more accurately reflect the frequency
with which each macro-instruction is used, so that
the assignment of memory macro-instructions will
be more efficient.

One card is punched for each line of the coding sheet,
as explained in the section on statement format. A
card-image tape produced from the source-program
deck is the input to the Processor. The assembly
output consists of the object-program deck and pro­
gram documentation. Although the object-program
deck is produced on a card-image tape, it will be
referred to as a deck.

OBJECT PROGRAM DECK

The sequence and contents of the deck is shown in
the following list:

1. Load program (LD7080)
2. Main literal table
3. Machine-language equivalent of source pro-

gram
4. Class A subroutines
5. Subroutines portions of macro-instructions
6. Class B subroutines
7. Standard "00" transfer control card

Note that the main literal table, although assigned
to storage locations above those of the object-pro­
gram instructions, precedes the instructions into
storage.

The format of the object-program card is as
follows:

Program Identification: Six positions. This is the
source program identification (ident field on coding
sheet).
Serial number: Three positions. This is the num­
ber of the object program card. It is assigned by
the Processor and bears no relation to the number
of a source program statement (Pglin field on cod­
ing sheet).
Initial address: Four positions. This indicates the
storage location at which the first character on the
card is to be placed.
Number of columns: Two positions. This is the
amount of data being supplied by the card. A
maximum of 65 positions may be indicated; this is
the space required by 13 instructions. The "00"
card contains zeros in these positions.
Instructions and/or constants: One to sixty-five
positions. This is the actual portion of the object
program being supplied by the card. It is placed at
the storage location specified as the initial address
(see above).

STANDARD ASSEMBLY DOCUMENTATION

A listing of the object program itself and diagnostic
messages is the minimum assembly documentation;

ASSEMBLY OUTPUT

optional documentation consisting of the Operator's
Notebook and the Symbolic Analyzer may be re­
questedas additions to the listing. A column-by­
column explanation of the listing format appears
below in the section, "Details of the Listing. "

Program Listing

The program listing is provided only on tape. The
contents of the listing are as follows:

First Page: This page is blank except for a heading
line and a notation of the highest memory position
used not resulting from a RASN or SASN.
Main Literal Table: The main literal table is divided
into seven parts. (A signed literal is a literal in
which the first position after the pound sign (#) is
occupied by a plus or a minus sign.)

1. Signed literals, length not a multiple of 5 or 10
2. Signed literals, length a multiple of 5
3 .. Signed literals, length a multiple of 10
4. Unsigned literals, length a multiple of 10
5. Unsigned literals, length a multiple of 5
6. Unsigned literals, length not a multiple of 5 or 10.
70 Address constant literals, broken down in the

following order:
a. unsigned, length of 6
b. signed, length of 6
c. signed, length of 5
d. unsigned, length of 5
e. all lengths of 4 ending in a 4 or 9 location

Source Program with Generated Coding: This may
be considered the main portion of the program list­
ing. The source-program statements appear in
their original sequence. Any generated coding ap­
pears directly after the statement(s) that caused the
generation.

Multiple literal tables are also included in the
source program, if they are requested. They are
divided into seven parts corresponding to those in
the main literal table. However, within the groups
of signed and unsigned literals, individual literals
are not sorted according to size. Each multiple
literal table will begin on a new page of the program
listing.
Class A Subroutines: The subroutines are inserted
alphabetically; i. e., according to the mnemonic
identification code of each subroutine. Any generated
coding appears directly after the statement that
caused the generation.
Subroutine Portions of Macro-Instructions: The
order of subroutines is the same as that of the
macro-headers causing their generation.

Assembly Output 59

Class B Subroutines: The subroutines are inserted
alphabetically.
Diagnostic Messages: These messages are produced
by the Processor and indicate errors, or possible
errors, in source program statements. When the
Processor detects a possible error condition, it
often makes certain assumptions and generates
coding based on them. It also supplies a warning
message on the nature of the possible error or the
action taken to correct an error. Diagnostic mes­
sages are described in the publication on 7080 Pro­
cessor system operation.
Unreferenced Tags (NO REQS): On a separate page,
hand-coded tags that are not referred to elsewhere
in the program are listed.

OPTIONAL DOCUMENTATION

Operator's Notebook

This is an index to the location of certain types of
Autocoder statements, both hand-coded and gener­
ated, that appear in the program listing. The pages
that make up the Notebook are as follows:

TITLES
C FLAG
HFLAG

80 SP OP

80 SP 1

ASSGNS

SWITCHES
TRANS

MFLAG

-- All TITLE statements
-- Comment statements with a C flag
-- Statements with an H flag; all

halts
-- All ENT80, LEV80, ENTIP,

LEVIP, SPC, TIP, and LIP
statements

-- All statements in 7080 mode con­
taining indirect address; i. e.,
the "I, " prefix

-- All LASN, SASN, RASN, and
SUBRO statements

-- All SWN and SWT statements
-- All TRANS statements with des-

criptive operands; i. e., oper­
ands that are tags

- - All statements with an M flag;
all statements with blank oper­
ands

Symbolic Analyzer

This is an index of every hand-coded and generated
tag in the program. The tags are listed in collating
sequence. Each tag is followed by a list of every
instruction, hand-coded or generated, that refer­
ences the tag. Tags that are used incorrectly are
flagged with an error indicator appearing as *ERR*.

Each program entry that defines a tag will be
listed. All entries having operands that reference
the tag will be listed, three per line, following the
tag definition. Any operand modifier and/or

60

character adjustment in a referenCing entry will be
included, but comments, and ASU zoning in address
constant literals will not. Entries that refer to un­
defined tags will be listed separately. When multiple
literal tables occur in a program, the symbolic
analyzer will contain a section on them preceding the
index to descriptive tags.

DETAILS OF THE PROGRAM LISTING

The heading of each page in the listing contains the
program identification, revision number (if any),
and the date (from the date control card), and page
number.

The listing page contains 16 fields. The entries
in the PGLIN through the FLAG fields comprise an
Autocoder statement. The machine-language trans­
lation of the statement (i. e., an object-program in­
struction or constant) appears in the INSTR field.
Other fields contain information on storage locations,
statement sequence, and references to other state­
ments. The fields of the listing are as follows:

INDEX: This is a number that the Processor creates
for each line of the listing. A hand-coded statement
is assigned a number of the form xxbyy; a generated
statement is assigned a number of the form bxxyy.
In each case, xx is the listing page number, and yy
is the line number. On a reassembly, a number of
the form xx*yy is assigned to a statement that has
been replaced or added, or one that follows a deleted
statement. The INDEX number is not identical to
the pglin number on the coding sheet.
S: Origin of entry (i. e., whether it is a source­
program statement or a Processor-generated entry)
and type of entry. Both items of information are
conveyed by a Single-character code, as follows:

Code Origin Type of Statement

A Source Program One-for-One
B Source Program Macro-Header
E Source Program Decision, Arithmetic, Table
F Source Program Report/File
G Source Program FORTRAN
I Source Program TITLE, C flag, and COBOL
J Generated One-for-One
K Generated Macro-Header
N Generated Decision, Arithmetic, Table
0 Generated Report/File
P Generated FORTRAN
R Generated TITLE and CFlag

* Generated EIA and Related Instruction,
and Multiple Literal Tables

NOTE: All subroutine entries are generated.

PGLIN: The entry in this field corresponds to the
pglin entry on the coding sheet.

TAG: Any hand-coded or generated tag appears in
this field, which corresponds to the tag field on the
coding sheet.

OP: Any mnemonic code appears in this field,
which corresponds to the operation field on the cod­
ing sheet.

NU: The entry in this field varies just as it does
when hand-coded. The field corresponds to the
numerical field on the coding sheet.

AT: An entry in the AT (address type) field is
either an operand modifier or an indirect address.
On the coding sheet, such entries are written in
columns 23-24 of the operand field

OPERAND: The entry of this field varies just as it
does when hand-coded. The field corresponds to
the operand field on the coding sheet with the excep­
tion of the placement of a prefix to the basic oper­
and. The prefix appears in the AT field explained
in the preceding paragraph.

COMMENTS: Any source-program comments ap­
pear in this field, which corresponds to the com­
ments field on the coding sheet.

F: Flag code.

LOC: The entry in this field is a six-character
number designating the location assigned to the
object-program instruction or constant.

INSTR: The entry is a five-position field containing
the actual operation code of the instruction followed
by the actual address with ASU zoning.

SU: The entry in this field is an ASU number. It
does not necessarily correspond to the NU field,
which is used for other purposes besides ASU as­
signments.

ADDR: This field contains the actual address por­
tion of an instruction as six positions.

SER: An entry in this field is the three-character
serial number of an object-program card. The
number appears only in the line containing the first
character on the object-program card. Subsequent
lines with blanks in the SER field contain data that
appear on the same card.

REF: An entry in this field is the INDEX number of
the operand, and serves as a cross-reference.
(Within a NAME, the number in this column is the
cumulative length of the NAME.)

Assembly Output 61

APPENDIX

The more significant features that have been
incorporated into Autocoder for the 7080 Processor
are summarized below, by section headings. The
reader can consult the appropriate sections of this
manual for details on the changes.

Source programs that could be assembled by the
7058 Processor can also be assembled by the 7080
Processor. However, certain mnemonics which
were accepted by the previous processor will not
be accepted by the 7080 Processor. These invalid
mnemonics are listed below:

1. DRCD, DCON, or DFPN
2. AACON, LACON, or RACON
3. AASN, OASN, or CASN
4. *ASUnn
5. Actual operation codes
In addition, CTL, while it may be used and will

be accepted, will cause a warning message to be
produced; it will be assumed that the programmer
has indicated the proper operand.

Certain differences between 7058 Autocoder and
7080 Autocoder result from expansion of the lan­
guage and the incorporation of new features. Those
difference s are listed below.

1. A character in column 74 of a source state­
ment, except one in FORTRAN or COBOL, will be
considered a flag having specific significance to
the 7080 Processor. The flag codes are described
in the section on flags.

2. A character adjustment following an address
constant literal request (e. g., L@TAG+5) will
cause an increment to the assembled location of the
address constant.

3. A literal may not be followed by a multiply
or divide character adjustment, nor may the
amount of the character adjustment be outside the
range ±99; i. e., be stated in more than two signifi­
cant numbers. However, an increment or decre­
ment can be written with leading zeros; e. g., +1
and +001 will cause the same increment, and -55
and -000055 will cause the same decrement.

4. No operand of a macro-header may exceed
10 positions unless it is surrounded by literal
symbols. No literal used as a macro-header
operand or in a macro-instruction component may
exceed 35 positions including the sign and decimal
point, but not including the literal symbols.

5. If the numeric portion of a character adjust­
ment is less than six positions, the position
immediately following the adjustment must be non­
numerical.

62

Standard Format of Autocoder Statements: A new
multipurpose coding form has been developed for
use with the 7080 Processor. Column headings
have been changed to accommodate certain new
features of the Processor.

Area Definitions: Area-definition length may be
specified by a six-digit number written in columns
17 -22. Restrictions on comments continuation
lines with area definitions have been altered to
reflect the new meaning of the columns. RPT
statements are restricted to nine commas in the
layout format.

One-for-One Instructions: The list of acceptable
mnemonics has been expanded and provision has
been made for additional numerical codes to
accompany various operation codes. The changes
are detailed in Figure 44. Restrictions on char­
acter adjustment have been expanded, particularly
with respect to literal operands. A new operand
modifier (T,) has been provided for both one-for­
one instructions and address constants.

General Purpose Macro-Instructions: Up to 50
operands can be written in the macro-header. As
many as 50 lines in the coding form can be used for
the operands of one macro-instruction. Literal
operands must not exceed 35 characters excluding
the literal (#) signs.

Address Constants: An ACON6 can have a sign
associated with it. Address constant literal
requests of arithmetic operations will be six posi­
tions long with a signed plus. Formerly, such
address constant literals were five positions.
Character adjustment may be used for the purpose
of modifying the constant itself.

Instructions to the Processor: The initial setting
of the location counter is now 00500. Restrictions
on LASN, SASN, SUBOR, and LITOR statements
have been eased. The location counter, with or
without adjustment, is now a valid operand for these
statements. Two new assignment statements
(RASN and SUBRO) have been added. Two state­
ments (LITST and LITND) have been provided for
creating multiple literal tables. A TRANS state­
ment can have the tag of another location as its
operand. A TCD statement can now occupy 65 posi­
tions. 7080 mode is assumed until a LEV80 is

encountered. To return to 7080 mode following a
LEV80, the ENT80 macro-instruction is given.
Additional instructions to the Processor in the
form of Flag characters have been added to the
Autocoder language. The use of Flags,

particularly the F Flag, should be carefully
considered.

Assembly Output: The listings that are provided
have been expanded considerably. This entire
sectioH should be reviewed.

Appendix 63

SAMPLE ASSEMBLY

INDEX S PGlIN TAG CP NU AT OPERAND 80SMPL-001 08-28-63 PATCHES PG 001 FLOC INSTR SU ADDR SER REF

005449

INDEX S PGlIN TAG QP NU AT OPERAND 80S~PL-001 08-28-63 COMMENTS PG 002 F LOC tNSTR SU ADDR SER REF

DA01 SIGNED LITERAL 1 005175 001
DA02 SIGNED LITERAL 1 A ,005176
DA03 SIGNED LITERAL 2 1& 005178
PA04 SIGNED LI TERAL 4 1230 005182
DA05 SIGNED LITERAL 4 395G 005186
PA06 SIGNED LITERAL 7 BALANCN 005193
DA01 SIGNED LITERAL 7 981654C 005200
aAoa SIGNED LI TERAL 5 OOOOA 005209
aA09 SIGNED LITERAL 5 00000 005214
aAlO SIGNED LI TERAL 5 002lE 005219
PAll SIGNED LITERAL 10 0145678000& 005229

PA12 UNSIGNEO LITERAL 50 AGE CLOSING LIT SYMBOL OM ITTED 005279 002
PA13 UNSIGNED LITERAL 50 THIS LITERAL OVERflOWS INTO THE NEXT CARD WHICH IS 005329 003
PA 14 UNSIGNED LITERAL 5 ABCDE 005334
CAl5 UNSIGNED LITERAL 5 APPLE 005339
PA16 UNSIGNED LITERAl 1 F 005340
DAn UNSIGNED LITERAL 1 G 005341
DA1B UNSIGNED 11 TERAL 1 J 005342
DA19 UNSIGNED LITERAL 1 1 005343
DA20 UNSIGNED Ll TERAL 2 005345
aA21 UNSIGNEO LITERAL 2 60 005347
PA22 UNSIGNED LITERAL 3 300 005350
aA23 UNSIGNED LITERAL 4 ABLE 005354
PA24 UNSIGNED LITERAL 4 DUPE 005358
aA25 UNSIGNED LlTERAL 4 0010 005362
aA26 UNSIGNED LITERAL 1 1234567 005369 004
aA27 UNSIGNED LITERAL 8 -BALANCE 005377
DA28 UNSIGNED LITERAL 9 LOCAT IONA 005386
aA29 UNSIGNED LITERAL 14 NOT AVAIlABLEc 005400

&AOI NAMEA RIGHT 6 001099 005406 AC51

$A01 NAMEA SIZE 6 00004& 005413 AC51

*A01 NAME A SIZE 5 0004& 005419 AC51

-A01 NAMEA RIGHT 5 01099 005424 At51

lAO 1 1230 RIGHT 4 5182 005429 aA04
IA02 -&000025 RIGHT 4 2CI4 005434 005
IA03 EXIT RIGHT 4 1599 005439 AF55
IAOIt NAMEA HI-SP 4 1074 005444 AC51
IA05 NAMEA RIGHT 4 lA03 005449 AC51

64

INDEX

AA 01

AA 02

AA 03
AA 04
A.A 05
AA 06
AA 01
AA 08
AA 09
AA 10
AA 11
AA 12

AA 13

AA 14
AA 15
AA 16

AA 17

PGLIN

AAOI

AA02

AA03
AA04
AAC5
AA06
AA07
AA08
AAC9
AAI0
AAll
AA12

A.A 13

AA14
AA15
AA16

AA17

AA 18 I AA18

TAG CP NU AT OPERAND 80S~PL-OOl 08-28-63 COMMENTS PG 003

TITLE 7080 PROCESSOR - SAMPLE ASSE~BLY

INTRODUCTION

THIS ASSEMBLY ILLUSTRATES CORRECT AND INCORRECT USAGES OF THE 7080
PROCESSOR. SHCRT CODING EXAMPLES ARE USED TO SHOW WHAT THE
PROCESSCR PRCDUCES, INCLUDING ERROR AND CAUTIONARY MESSAGES, FOR
TYPICAL VALIC AND INVALID STATEMENTS. COMMENT AND TITLE STATEMENTS
ANC THE COMMENTS fIELD OF ILLUSTRATIVE STATEMENTS, HAVE BEEN USED TO
DESCRIBE THE USAGES. THIS ASSE~BLY IS FOR ILLUSTRATIVE PURPOSES ONLY
AND DOES NOT REPRESENT AN EXECUTABLE PROGRAM. THE OBJECT MACHINE IS
ASSUMED TO BE AN 80K 1080, ASUS 1-6 ARE ASSUMED seT TO LENGTHS OF
1-6 RESPECTIVELY, AND THE OTHER ASUS AND ACC ARE AT SOME RANDOM
LENGTH.

TITLE rlCRMAL ORIGIN

SINCE NC STARTING LOCATION IS SPECIFIED, THE ORIGIN OF THE
PROGRAM IS ASSUMED TO BE AT LOCATICN 0500.

RCD 1 TO SHOW STARTING LOCATION.

TITLE AREA DEFINITIONS

DEFINITION OF A RECORD FIELD - RCD
AA 19 A AA19 RCDA
AA 20 A AA20

Reo 10 N TEN DIGIT UNSIGNED NUMERIC FIELD

AA 21 A AA21
AA 22 A AA22
AA 23 A AA23
AA 24 A AA24
AA 25 A AA25
AA 26 A AA26
AA 21 A AA27
AA 28 A AA28
AA 29 A AA29
AA 30 A AA30
AA 31 A AA31
AA 32 A AA32
AA 33 A AA33
AA 34 A A434
AA 35 A AA35
AA 36 A AA36
A4 31 A AA37 RCDS5X3
AA 38 A AA38 RCDS5X3A
AA 39 A AA39
AA 40 A 4A40
AA 41 A AA41 RCDSOX3
AA 42 A AM2
AA 43 A AA43
AA 44 A AA44 RCDN2X3A
AA 45 A AA45
AA 46 A AA46
AA 41 A AA41
AA 48 A AA48
AA 49 A AA49
AA 50 A U50

17

2 00

10

8
8

3
3

5
05

10

A SEVENTEEN POSITION ALPHA-NUMERIC
FIELD WHCSE lOW ORDER POSITION MAY NOT PROVIOE
LEfT PROTECTION FOR ANY SIGNED NUMERIC FIELD IT
PRECEDES.

A& TWO HUNDRED POSITION ALPHA-NUMERIC
fIELD WHCSE LOW ORDER POSITION WILL ALWAYS SUPPLY
LEfT PROTECTION. NOTE THAT THE LENGTH INDICATION
CVERFLOWS INTO THE OPERATION FIELD. THIS IS
PERMISSIBLE eN A CONTINUATICN ENTRY AS LONG AS
COLU~N 16 IS BLANK.

& TEN DIGIT SIGNEO INTEGER. DECIMAL
POINT IS ASSUMED TO RIGHT OF THE LOW ORDER DIGIT.
LEfT PROTECTION IS PROVIDED fOR THE FOLLOWING FIELD

&XXXXx.xxx TWO ALTERNATE DEFINITIONS OF AN
'&05.03 EIGHT DIGIT SIGNEO NUMERIC FIELD
HAVING FIVE INTEGER AND THREE DECIMAL POSITIONS.

&.XXX
• &00.03

TWO ALTERNATE DEFINITIONS OF A
THREE DIGIT SIGNED DECIMAL •

XX.XXX TWO ALTERNATE OEFINITIONS OF A
, 02.03 FIVE DIGIT UNSIGNED NUMERIC FIELD
WITH TWO INTEGER AND THREE DECIMAL POSITIONS.

II

F

RECORD MARK INDICATION.

TEN POSITION FLOATING POINT RCO.

C
C
C
C
C
C
C
C
C
C

C
C

INVALID USAGES C
RCD 0

LOC

000500

000510

000521

000121

000131

000745
000753

000756
000159

000164
000169

000170

000780

000780
1000 00 A ALTHOUGH IT IS VALID TO SPEC IFY A 000781

RCD 4

SIX DIGIT LENGTH IN THIS FASHION, THE SIZE OF
OBJECT MEMORY IS SPECIfIED AS 80K FOR THIS PROGRAM.
THiS STATEMENT WOULD BE VALID IF MEMORY SIZE WAS
SPECIFIED AS 160K.

THIS WILL RESERVE FOUR PLACES BUT 000185
WILL BE TREATED AS AN UNDEFINED RCO AREA BECAUSE
&, N~ A, OR A& ARE NOT INDICATED IN THE OPERAND

INSTR SU ADDR SER REF

AA 51 I AA51
AA 52 A AA52
AA 53 A AA53
AA 54 4 AA54
A4 55 A AA55
AA 56 4 AA56
AA 51 A AA51
AA 58 A AA58
AA 59 4 AA59
AA 60 A AA60
AA 61 A U61
AA 62 A AA62
AA 63 A AA63
AA 64 A AA64
AA 65 A A465
AA 66 A A466
AA 61 A AA61
AA 68 A AA68
AA 69 A AA69
AA 10 A 4A10
AA 11 4 U11
AA 12 A AA72

fIELD THE WORD FIELD. INTE~OED AS A 000194 AOOOO 000000 006
COf'MENT CONTINUATION. WAS TREATED AS /!. /(OP BECAUSE

IT WAS IN THE OPERATION fIELD AND WAS NOT A VALID
OPERATION.

2 N THIS STATE~ENT, INTENDED AS A RCD 000196
CONTINUATION, WIlL COMPILE AS A CON BECAUSE IT HAS
A BLANK CPERATION AND FOLLOWS A STATEMENT WHOSE
OPERATION IS /(OT A OATA DEFINItION. IT WILL COMPILE
AS N FOLLOwED BY A BLANK.

65

INDEX S PGLIN TAG CP NU AT OPERAND 80S~PL-00l 08-28-63 COMMENTS PG 004 F LOC INSTR SU ADOR SER REF

A8 01 I ABOl THE FOLLOWING THREE INVALIO RCO ENTRIES PRODUCE INCONSISTENT C
A8 02 I AB02 DATA DEFINITIONS. C
A8 03 A A803 RCD 3 tOO.03 THIS OPERAND SHOULD HAVE 8EEN 000199
A8 04 A ABC4 .tOO.03. OMITTING THE ., SIGN CAUSED IT TO COMPILE
A8 05 A A805 AS A THREE DIGIT SIGNED INTEGER WITH NO INTEGER ANO
A8 06 A A806 NO DECIMAL POSITIONS.
A8 01 A A807
A8 08 A A808 3 .to.3 THIS OPERAND SHOULD HAVE 8EEN 000802
A8 09 A A809 .tOO.03. OMITTING THE ZEROS CAUSED IT TO COMPILE
A8 10 A A810 AS A THREE POSITION SIGNED INTEGER WITH ONE INTEGER
A8 11 A A811 AND NO DECIMAL POSITIONS.
A8 12 A A812
AB 13 A A813 4 '02.02 THIS OPERAND SHOULD HAVE 8EEN 000806
AB 14 A AB14 II 02.02. OMITTING THE 8LANK CAUSED IT TO COMPILE
AB 15 A AB15 AS A FOUR POSITION UNSIGNED FRACTION WITH 21
liB 16 A A816 INTEGER PLACES AND 20 DECIMAL PLACES.

AB 17 I A811 TITLE OfF INIT ION OF A CONSTANT FIELD - CON
A8 18 A A818 CONA ceN 5 AeCOE FIVE POSITION ALPHABETIC. UNSIGNED 000811 007
AB 19 A A819 CONN5XO 5 00003 NUMERIC, ANO MIXEO CONSTANTS. WILL 000816
A8 20 A A820 CONMIXEO .5 4JK9* APPEAR IN MEMORY AS WRITTEN. 000821
A8 21 A A821
AB 22 A AB22 6 -123499 SIX POSITION SIGNED INTEGER 000821
A8 23 A AB23 CONSTANT. WILL APPEAR AS 12349R IN MEMORY.
AB 24 A AB24
AB 25 A AB25 6 tl234.99 SIX POSITION SIGNED CONSTANT WITH 000833
AB 26 A AB26 FOUR INTEGER AND TWO DECIMAL POSITIONS. WILL
AB 27 A AB27 APPEAR AS 123491 IN MEMORY.
AB 28 A A828
A8 29 A AB29 6 123.45 SIX POSITION CONSTANT WHICH WILL 000839
AB 30 A AB30 APPEAR AS 123.45 IN MEMORY.
AB 31 II AB31
A8 32 A A832 3 A THREE POSITION CONSTANT OF WHICH 000842
A8 33 A AB33 THE FINAL TWO POSITIONS ARE 8LANKS.
AB 34 A AB34
AB 35 A AB35 2 D' TWO POSITION CONSTANT CONSISTING 000844
AB 36 A A836 OF A GROUP ~ARK ANO A RECORt MARK.

AB 31 I A837 INVALIO USAGES C
AB 38 A A838 WORSTCASES ceN 2 ,aecoF. CON WITH OPERAND OF GREATER LENGTH 000846
A8 39 A A839 THAN NUMERIC FIELD STATES. ~ILL COMPILE AS AS WITH
A8 40 A A840 NO ~ESSAGE.
A8 41 A AB41
AB 42 A A842 &120 SIGNED CONSTANT WITH OPERAND 000849
A8 43 A A843 SHORTER THAN NUMERIC FIELD STATES. IT WAS PUNCHED
A8 44 A A844 &12 BUT WILL COMPILE AS 120 WITH THE LAST DIGIT
A8 45 A A845 SIGNED PLUS. HERE THE LISTING SHOWS THE ZERO.
AB 46 A AB46
AB 47 A A847 0 123 THIS WILL NOT COMPILE BECAUSE THE 000849
A8 48 A AB48 NUMERIC FIELt STATES A LENGTH OF ZERO POSITIONS.
A8 49 A AB49
AB 50 A AB50 62 THE NUMERIC FIELD STATES A LENGTH WHICH INCLUDES A 000911 008
A8 51 A AB51 SECOND CARD. THE FIRST LINE WILL COMPILE, FOLLOWED
A8 52 A A8'l2 BY 12 BLANKS. THE REST IS TREATED AS A COMMENT.
A8 53 A AB53
A8 54 A AB'l4 14 -599690961139550 THIS CON, INTENDED AS PART OF A 000925
A8 55 A AB55 MESSAGE AND PUNCHED -ERROR ROUTINE, WAS STRIPPED OF
A8 56 A A856 lONING A~D T~EATED AS A SIGNED NUMERIC CON 8ECAUSE
AB 51 A A851 THE LEADING CASH WAS INTERPRETED AS A MINUS SIGN.

AB 58 I A858 Tl TLE CEFINITION OF A FLOATING POINT CONSTANT - FPN
AB 59 A A859 FPN t03&123456 REPRESENTS &123.456 000935

A8 60 I A860 NOTE THAT THE NU~ERIC FIELD IS 8LANK AND THAT THE MANTISSA IS ONLY C
A8 61 I A861 SIX DIGITS. A LENGTH OF TEN WILL 8E ASSUMED AND TRAILING ZEROS ADDED C
AB 62 J A862 TO MAKE AN EIGHT DIGIT MANTISSA. THE FPN APPEARS IN MEMORY AS C
AB 63 1 A863 OC12345600 WITH THE UNITS DIGIT SIGNED PLUS. THE LISTING DOES NOT C
AB 64 I A864 SHOW THE ADDEO ZEROS OR ASSUMEt LENGTH. C
AB 65 I AB65 C
A8 66 I A866 INVALID USAGES C
AB 61 A AB61 FPN t04&9816543210 THIS OPERAND EXCEEDS THE MAXIMUM 000945 009
A8 68 A ABt.8 LENGTH. THE ~ANTISSA IS TRUNCATED TO EIGHT DIGITS. 000955
AB 69 A AB69 IT APPEA~S IN MEMORY AS 0098165438. 000965

A8 70 I AB70 THE TWO ENTRIES IMMEDIATELY ABOVE WERE INTENDED AS COMMENTS C
AB 71 I A871 COUTINUATIONS. THIS IS INVALID ON ,a FPN AND TWO FPNS WERE GENERATED C
A8 72 I A872 FROM THE OPERAND FIELDS. THE LISTING ONLY SHOWS THE MEMORY ALLOCATED C
AB 13 I A813 BUT THE CARDS SHOW 5E38103850 AND 3071519201. C
AB 74 I AB14 C
A8 15 I A875 THIS FPN WAS INTENDED TO REPRESENT 123.456. OMITTING THE LEADING C
A8 76 I A876 ZERO OF THE CHARACTERISTIC CAUSED IT TO REPRESENT THE NUM8ER C
AB 17 I A611 234560000000000000000000000000. C
AB 18 A AB78 FPN &3&123456 000915

AB 19 I AB19 THIS OPERAND WAS INTENCED TO REPRESENT 123.456. OMITTING THE SECOND C
AB 80 I A880 PLUS SIGN CAUSED IT TO REPRESENT 234.56 C
A8 81 A AB81 FPN &03123456 000985

66

INDEX S PGLIN TAG OP NU AT OPERAND 80SMPL-001 08-2B-63 COMMENTS PG 005 F LOC INSTR SU ADDR SER REF

AC 01 AC01 TITLE DEF INITION OF A REPORT FORMAT - RPT

AC 02 AC02 THESE ILLUSTRATIONS ALL SHOW EIGHT NUMERIC POSITIONS WITH VARIOUS C
AC 03 AC03 PUNCTUATION AND SIGN INDICATIONS. C

AC 04 AC04

AC 05 I AC05 IN THIS SERIES NO COMMAS, DECIMAL POINTS, DOLLAR SIGNS, OR ASTERISKS C
AC 06 I AC06 ARE SPECIFIEC. ONE POSITION IS RESERVED FOR A BLA~K OR MINUS SIGN. C
AC 07 I AC07 IN THE FIRST FORMAT ALL EIGHT POSITIONS WILL PRINT, LEADING ZEROS C
AC 08 I AC08 INCLUDED. IN THE SECOND FORMAT LEArlNG ZEROS IN ANY OF THE FIVE HIGH C
AC 09 I AC09 ORDER POSITICNS ARE NOT PRINTED. IN THE THIRD FORMAT, NO LEADING C
AC 10 I AC10 ZEROS wILL PRINT. C
AC 11 A ACll RPT 9 llZZlZZZ 000994
AC 12 A AC12 9 XXXXXZZZ 001003 010
AC 13 A AC13 9 XXXXXXXX 001012

AC 14 I AC14 IN THIS FORMAT VARIOUS EDIT PUNCTUATION IS ADDEO. THE DOLLAR SIGN C
AC 15 I AC15 WILL ALWAYS PRINT EIGHT POSITICNS TO THE LEFT OF THE DECIMAL POINT. C
AC 16 I AC16 THE COMMA WILL PRINT IF THERE ARE ANY SIGNIFICANT FIGURES TO THE C
AC 11 I AC17 LEFT OF IT. THE DECIMAL POINT AND THE POSITIONS TO THE RIGHT OF IT C
AC 18 I AC18 WILL ALwAYS PRINT, EVEN FOR A ZERO AMOUNT. A TWO POSITION SIGN C
AC 19 I AC19 INDICATOR IS SPECIFIED AS CR, **, CR DR FOR MINUS, ZERO, OR PLUS C
AC 20 I AC20 AMCUNTS, RESPECTIVELY. C
AC 21 A AC21 RPT 13 SXXX. XXX.ZZ aaCRa**aDRa 001025

AC 22 I AC22 THESE TWO EXAMPLES ILLUSTRATE AMOUNT PROTECTION IN A RPT FORMAT. IN C
AC 23 I AC23 THE FIRST, T~E S SIGN IS FIXED BUT. WILL PRINT IN ALL SPACES C
AC 24 I AC24 BETWEEN IT AND THE HI-ORDER DIGIT PRINTED. IN THE SECOND. THE $ SIGN C
AC 25 I AC25 WILL PRINT I~MEDIATElY TO THE LEFT OF THE HI-ORDER DIGIT PRINTED. C
AC 26 A AC26 RPT 12 SXXX.XXZ.ZZ a.a 001037
AC 27 A AC27 12 $XXX,XXZ.lZ DSD 001049

AC 2B I AC2B THE OPERAND ez IN THIS EXAMPLE INDICATES THAT THE ENTIRE FIELD. C
AC 29 I AC29 INCLUDING THE DECIMAL POINT AND POSITIONS TO THE RIGHT OF IT. IS TO C
AC 30 I AC30 BE BLANKED IF THE RESULT IS ZERO. C
AC 31 A AC31 RPT 07 XXXX.ZZcacBzac 001056

AC 32 I AC32 INVALID USAGES C
AC 33 A AC33 RPT 9 ZZZXXXXX ZS AND XS REVERSED 001065 011

AC 34 AC34 TITLE COLLECT IVE AREA DEFINITION - NAME

AC 35 AC35 NORMAL USE

AC 36 A AC36 NAMEA NAME A NAMEAEND THIS ENTRY CONSISTS OF THIRTY 001010 001099 AC50
AC 37 A AC37 RCD 2 N CONSECUTIVE POSITIONS, THE LAST 001071 2
AC 38 A AC3B 4 A TWO BEING A GROUP MARK AND RECORD 001015 6
AC 39 A A09 CCN 3 XXX MARK. THE CHRCD AND THE BITCD EACH 001018 012 9
AC 40 A AC40 1 OCCUpy ONE MEMORY POSITION. SOME 001019 10
AC 41 A AC41 RFT B XXXX.lZ SEGMENTS OF THE ENTRY ARE 001087 18
AC 42 A AC42 RCO 4 & SEPARATELY TAGGED~ THE A IN THE 001091 22
AC 43 A AC43 CCN 3 NUMERIC FIELD OF THE NAME 001094 013 25
AC 44 A AC44 BITCD 2 STATEMENT POSITIONS THE ENTRY TO 001095 26
AC 45 A AC45 CONOl 2 START AT A 0 LOCATION. THE
AC 46 A AC46 COND2 A OPERAND OF THE NAME HEADER IS THE
AC 41 A AC47 CHRCD TAG OF THE LAST SEGMENT OF THE 001096 27
AC 48 A AC48 CONDP P NAME ENTRY. THE TAG OF THE NAME
AC 49 A AC49 CONDQ Q STATEMENT IS USED TO REFER TO THE
AC 50 A AC50 NAMEAEND CON 3 at COLLECTIVE ENTRY. NOTE THAT A 001099 30

AC51 J NAMEA THIS DEFINITION OCCUPIES 30 CHARACTER POSITIONS 001099
AC 52 A AC51 COMMENT CONTINUATION IS BROKEN BY THE GENERATED
AC 53 A AC52 ~AME TRAILER. NOTE ALSO THE USE OF THE REF FIELD
AC 54 A AC53 OF THE LISTING TO DISPLAY A CUMULATIVE TOTAL OF THE
AC 55 A AC54 POSITIONS USED WITHIN THE NAME.

AC 56 AC55 THE FOLLOWING SERIES ILLUSTRATES T~E USE OF CONCURRENT NAME C
AC 57 AC56 DEFINITIONS. NAMEC IS ENTIRELY WITHIN NAMEB. NAMED IS ONLY PARTLY C
AC 5B AC57 WITHIN NAMEB. BOTH USAGES ARE VAlIC. C

AC 59 A AC58 NAMES NAME NAME BEND 001100 001129 AC67
AC 60 A AC59 RCDS6XO RCD 6 & 001105 6

AC 61 A AC60 NAMEC NAME NAMECEND 001106 001113 AC63
AC 62 A AC61 RCO 2 N 001107 B
AC 63 A AC62 NAMECEND 6 A 001113 14

AC64 J NAMEC THIS DEFINIT ION OCCUPIES 8 CHARACTER POSITIONS 001113

AC 65 A AC63 NAMED NAME NAMED END 001114 001136 Ae70
AC 66 A AC64 RCO 4 A 001117 18
AC 67 A AC65 NAMEBEND 12 A 001129 30

AC6B J NAMEB THIS DEfINIT ION OCCUPIES 30 CHARACTER POS ITIONS 001129
AC 69 A AC66 3 N 001132
AC 10 A AC67 NAMEDEND 4 A& 001136
AC7l J NAMED THIS DEFINITION OCCUPIES 23 CHARACTER POS tTIONS 001136

67

INDEX S PGLIN TAG OP NU AT OPERAND 80SMPL-00 1 08-28-63 COMMENTS PG 006 F LOC INSTR SU AD DR SER REF

AD 01 A001 TlTLt SPECIAL USES OF NAME STATEMENTS

AD 02 A A002 NAME 0 ALTHOUGH THIS NAME STA TEMENT HAS A 001140
AD 03 A AD03 CON 6 £246807 BLANK TAG AND OPERAND. THE lERO 001145 014
AD 04 A A004 IN THE NUMERIC FIELD WILL CAUSE THE CON DEFINITION
AD 05 A AD05 WHICH FOLLOWS IT TO BEGIN IN THE NEXT 0/5 MEMORY
AD 06 A AD06 LOCATION RAT~ER THAN THE NEXT SEQUENTIAL LOCATION.

AD 07 A AD07 NAME B THE B IN THE NUMERIC FIELD OF 001200
AD 08 A AOOB RCO 01 THIS NAME STATEMENT CAUSES THE RCD 001200
AD 09 A AD09 WHICH FOLLOWS IT TO BEGIN IN THE NEXT 100 LOCATION.

AD 10 A010 INVALID USAGES C

AD 11 A AOll NAMEE NAME NAMEEEND THIS NAME IS INVALID BECAUSE IT 001201 001210 AD15
AD 12 A A012 RCD 2 A CONTAINS AN ITEM WHICH IS NOT AN 001202 2
AD 13 A AD13 CHO 2 RH AREA DEFINITION, CON MISSPELLED. 001209 .0-&.0 11 000000 015

AD14 J NAMEE THIS DEFINITION OCCUPIES CHARACTER POSITIONS 001209
AD 15 A AD14 NA~EEEND RCD 001210

AD 16 A015 THIS NAME ENTRY kILL NOT COMPILE CORRECTLY BECAUSE THE NUMERIC C
AD 17 A016 FIELD OF THE INTERNAL NAME ENTRY SPECIFIES A STARTING LOCATION NOT C
AD 18 AOl7 IMMEDIATELY FOLLOWING THE PORTION OF THE NAME ENTRY ALREADY DEFINED. C

AD 19 A AD18 NAMEF NAME 0 NAME FEND 001215 001222 AD23
AD 20 A AD19 RCD 2 A 001216 2

AD 21 A A020 NAMEG NAME 4 NAMEF END 001219 001222 AD23
AD 22 A AD21 RCO 3 001221 7
AD 23 A AD22 NAI':EFEND 1 N 001222 8

A024 J NAMEF THIS DEFINITION OCCUPIES 8 CHARACTER POSITIONS 001222
A025 J NAMEG THIS DEFINITION OCCUPIES 4 CHARACTER POSITIONS 001222

AD 26 A A023 NAMEFI NAME tlAMEF lEi'll: THIS IS INVALID FOR A SIMILAR 001223 001234 A028
AD 27 A A024 RCD 4 A REASON, THE ADCON BREAKS THE 001226 4
AD 28 A A025 NAMEF1END ADCON CONTINUE CONTINUITY OF ASSIGNMENT. 001234 A1674 001674 016 AG33

AD29 J NAMEFI THIS DEFINITION OCCUPIES 12 CHARACTER POSITIONS 001234

AD 30 A A026 NAMEH NAME NOTEND THIS WILL NOT COMPILE CORRECTLY 001235
AD 31 A Ao27 RCD 4 A BECAUS'E THE OPERAND OF THE NAME 001238 4
AD 32 A AD28 ceN 2 DOES NOT SPECIFY THE TAG OF THE 001240 017 6
AD 33 A A029 NOWENO 3 XXX ENDING SEGMENT. 001243 9
AD 34 A AD30 Nep FORCE TERMINATION OF NAMEH 001249 A1249 001249 018

AD35 J NAMEH THIS DEFINITION OCCUPIES CHARACTER POSITIONS 001249

AD 36 A AD31 NAMEI NAME NAMEJ NAMEI IS INVALID BECAUSE IT ENDS 001250 001260 A042
AD 37 A AD32 RCD 2 At; AT THE SAME TAG AT WHICH NAMEJ 001251 2
AD 38 A AD33 3 £ BEGINS. 001254 5

AD 39 A A034 NAMEJ NAME NAMEJEND 001255 001260 AD41
AD 40 A A035 RCO 05 & 001259 10
AD 41 A A036 NAMEJEND 1 D 001260 11

AD42 J NAMEJ THIS DEFINIT ION OCCUPIES 6 CHARACTER POSITIONS 001260
AD 43 A AD37 NCP • FORCE TERMINATION OF NAMEI 001269 Al269 001269 019

AD44 J NAMEI THIS DEFINITION OCCUPIES CHARACTER POSITIONS 001269

AD 45 AD38 TITLE SWITCH DEFINITIONS

AD 46 A039 DATA SW ITCHES

AD 47 I AD40 CHARACTER CODE - CHRCD
AD 48 A A041 AGE CHRCD 2 40 A TWO DIGIT CODE WHOSE INITIAL 001271
AD 49 A A042 TWENTY 20 VALUE IS 40, AS SPECIFIED BY
AD 50 A A043 FORTY 40 THE NUMERIC AND OPERAND FIELDS
AD 51 A A044 SI XTY 60 OF THE CHRCD STATEMENT.
AD 52 A A045 RCO N 001272
AD 53 A A046 SEX CHRCO A ONE POSITION CODE WILL BE SET UP 001273
AD 54 A AD47 MALE M WITHOUT INITIALIZATION SINCE A
AD 55 A A048 FEMALE F CHReD WHICH FOLLOWS A RCO WITHOUT
AD 56 A A049 ANY INTERVENING STATEMENTS CAN NOT SPECIFY AN
AD 57 A A050 INIT IAL VALUE. IT IS CONSIDERED PART OF THE RCD.

AD 58 I A051 TITLe BIT coDe - BITCO
AD 59 A AD 52 PAYTYPE BITCD G A ONE POSITION BIT CODE FIELD WILL 001274 020
AD 60 A A053 HOURLY 1 BE DEFINED. THE TITLE ENTRY CAUSES
AD 61 A A054 WEEKLY 2 THE INITIAL VALUE TO BE VALID.
AD 62 A A055 BI WEEKL Y 4 ALTHOUGH ALL SIX OF THE SPECIFIED
AD 63 A A056 MONTHLY 8 CODES WILL BE SET UP INO CAN BE
AD 64 A A057 COMMISSION A TESTED, THE USE OF THE B OR 8 BIT
AD 65 A A058 FLAT FEE B IS QUESTIONABLE SINCE IT MAY
AD 66 A A059 RESULT IN CREATING INVALID CHARACTERS IN MEMORY.

AD 61 I A060 INVALID USAGES C
AD 68 A A061 SPLIT TAG RCD A 001275
AD 69 A A062 BITCD G THIS BITCD DEFINITION WILL GENERATE 001276
AD 70 A A063 BAD1 1 AND CAN BE REFERENCED BUT WILL NUT
AD 71 A A064 BA02 2 BE INITIALIZED TO THE VALUE SHOWN.

68

69

INDEX S PGlIN TAG CP NU AT OPERAND 80SMPl-001 08-28-63 COMMENTS PG 008 F lOC INSTR SU ADDR SER REF

AF 01 AF01 TITlE ONE-FOR-ONE INSTRUCTIONS

AF 02 AF02 BASIC OPERANDS

AF 03 I AF03 TAG OPERANDS
AF 04 A AF04 NGP SPl IT TAG SINGLE BLANKS ARE VALID IN TAGS. 001444 A1275 001275 AD68

AF 05 I AF05 THE MEANING OF A TAG OPERAND DEPENDS ON THE INSTRUCTION AS WELL AS C
AF 06 I AF06 THE DATA DEFINITION FOR THE TAG. C
AF 07 A AF07 SET RCDSOX3 SET ACC TO SIZE OF RCDSOX3. 001449 BOO03 000003 AA41
AF 08 A AF08 ~~:. LOD RCDSOX3 LOD ACC WITH VALUE OF RCDSOX3. 001454 80156 000756 AA41

AF 09 I AF09 INVALID USAGES C
AF 10 A AF10 SND 04 WORST CASES TAG OPERAND T.oO LONG 001459 10/100 04 000000
AF 11 A AF11 TR RD/WR SPECIAL CHARACTERS ARE INVALID 001464 10000 000000

AF 12 A AF12 GAP NOP HERE. GAP HAS A LEADING BLANK. 001469 A1469 001469
AF 13 A AF13 GAP NOP HERE. GAP HAS NO LEADING BLANK. 001474 A1474 001471t
AF 14 A AF14 RD/WR SGN L, GAP LEADING BLANK ON GAP IS IGNORED. 001479 Tl470 001410 024 AF13

AF 15 I AF15 TITLE LITERAL OPERANDS
AF 16 A AF16 RAD 1t00215# A FIVE DIGIT SIGNED LITERAL 001484 H5219 005219 OA10
AF 17 A AF17 LOD IlAPPLE# A FIVE PLACE UNSIGNED LITERAL 001489 85339 005339 OA15
AF 18 A AF18 WR IINOT AVAILABLEall A FOURTEEN PLACE LITERAL MESSAGE 001494 R5387 005387 OA29
AF 19 A AF19 CMP II II TWO BLANKS 001499 45345 005345 oA20
AF 20 A AF20 LOD 10 11-04&567811 FPN LITERAL &.00005618 001504 851<K9 10 005229 OAll

AF 21 I AF21 INVALID USAGES C
AF 22 A AF22 ADD &1411 OPENING LIT SYMBOL OMITTED 001509 GOOOO 000000
AF 23 A AF23 LOD IILOCA TI ONA. LITERAL INDICATED WITH TAG OPERAND 001514 85.386 005386 OA28
AF 24 A AF24 INTENDED.
AF 25 A AF25 TRE "DUPEII TRANSFER TO A LITERAL 001519 L5358 005358 oA24
AF 26 A AF26 ADD "001011 ADD REQUIRES A SIGNED OPERANO 001524 G5362 005362 oA25
AF 27 A AF27 LOD IlAGE CLOSING LIT SYMBOL OMITTED 001529 85279 005279 OA12
AF 28 A AF28 WR IITHIS LITERAL OVERFLOWS INTO THE NEXT CARD WHICH IS 001534 R5280 005280 DAB
AF 29 A AF29 INVALIDa# NOTE THAT ONLY THE FIRST LINE COMPILES.
AF 30 A AF30
AF 31 A AF31 LCD II-BALANCEII BECAUSE OF THE DASH THIS LIT WILL 001539 85193 005193 oA06
AF 32 A AF32 COMPILE AS BALANCN.

AF 33 I AF33 TITLE ACTUAL OPERANDS
AF 34 A AF34 SET iOOO05 TWO ALTERNATE WAYS OF WR I TING AN 001544 BOO05 000005 025
AF 35 A AF35 SET 5 INSTRUCTION TO SET ACC TO FIVE. 001549 BOO05 000005

AF 36 I AF36 INVALID USAGES C
AF 37 A AF31 ST 995 ST REQUIRES THE iil SIGN FOR ACTUALS 001554 FOOOO 000000
Af 38 A AF38
AF 39 A AF39 WR i82500 82500 IS OUTSIDE THE MEMORY SIZE 001559 R2500 002500
AF 40 A AF40 SPECIFIED FOR THE OBJECT PROGRAM.
AF 41 A AF41
AF 42 A AF42 TR iilOOO1234 ACTUAL EXCEEOS SIX DIGITS 001564 10123 000123

AF 43 A AF43 LOD 4lAPPLES AN ACTUAL IS INDICATED WHEN A 001569 80COO 000000
AF 44 A AF44 LITERAL IS INTENOED.

AF 45 I AF45 TITLE LOCATION'COUNTER OPERANDS
AF 46 A AF46 LOD 04 THE LOCATION OF THE LOD IS PLACED 001574 81V14 C4 001574
AF 41 A AF47 IN ASU 04.

AF 48 AF48 FURTHUR EXAMPLES WILL 8E SHOWN UNDER CHARACTER ADJUSTMENT. C

AF 49 I AF49 TITLE BLANK OPERANDS
AF 50 A AF50 LOCATIONA BSP NO ADDRESS IS REQUIRED FOR THESE 001579 30004 000004
Af 51 A AF51 ElM INSTRUCTIONS. IT IS EITHER IGNORED 001584 ,011-0 06 000000
AF 52 A AF52 eNO OR IS INSERTED BY THE PROCESSOR. 001589 .0-tO 11 000000
AF 53 A AF53
Af 54 A AF54 ULA 06 EXIT HERE THE ADDRESS OF THE TR WILL BE 001594 *1 VR9 06 001599 AF55
AF 55 A AF55 EXIT TR INITIALIZED BY UNLOADING ASU 06. 001599 10000 000000

AF 56 AF56 A SPECIAL CASE OF A LASN WITH BLANK OPERAND W III BE SHOWN LATER. C

70

INDEX S PGLlN TAG CP NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 009 FLOC INSTR SU ADDR SER REF

AG 01 AG01

AG 02 I AG02
AG 03 A AG03
AG 04 A AG04
AG 05 A AG05
AG 06 A AG06
AG 07 A AG07
AG 08 A AG08
AG 09 A AG09
AG 10 A AGIO
AG 11 A AG11
AG 12 A AG12

AG 13 A AGl3
AG 14 A AG14
AG 15 A AG15
AG 16 A AG16
AG 17 A AG17

AG 18 I
AG 19 I
AG 20 I
AG 21 A
AG 22 A
AG 23 A
AG 24 A
AG 25 A
AG 26 A
AG 27 A
AG 28 A
AG 29 A

AG18
AG19
AG20
AG21
AG22
AG23
AG24
AG25
AG26
AG27
AG28
AG29

AG 30 A AG30
AG31 *
AG32 *

AG 33 A AG31
AG 34 A AG"32
AG 35 A AG33
AG 36 A AG34
AG 37 A AG35
AG 38 A AG36
AG 39 A AG37

AG 40 AG38

AG 41 I AG39
AG 42 I AG40
AG 43 A AG41
AG 44 A AG42
AG 45 A AG43
AG 46 A AG44
AG 47 A AG45
AG 48 A AG46
AG 49 A AG47
AG 50 A AG48
AG 51 A AG49
AG 52 A AG50
AG 53 A AG51
AG 54 A AG52
AG 55 A AG53
AG 56 A AG54
AG 57 A AG55
AG 58 A AG56
AG 59 A AG57
AG 60 A AG58
AG 61 A AG59
AG 62 A AG60

TITLE

LOD
THTS

lce
CHP

TR

RCVS

SET
SND

3
3

6
6

ADDITIONS TO BASIC OPERANDS

CHARACTER ADJUSTMENT
RCDSOX3&3 THESE TWO STATEMENTS REFER TO THE
RCDN2X3A-4 SAME DATA FIELD. THE ADJUSTMENTS
ARE BASED ON THE POSITION WITHIN THE TAGGED FIELD
WHICH EACH INSTRUCTION TYPE NORMALLY ADDRESSES.

CONA-2 THESE STATEMENTS USE ADJUSTMENTS
'1234567'-2 TO ADDRESS A POSITION WITHIN A
DEFINED FIELt OR WITHIN A LITERAL.

CONTI NUE &20

NAMEA/5
NAMEA

TO 4TH INSTR FOLLOWING CONTINUE.

RCVS AT OP CODE OF 2ND INSTRUCTIDN
FOLLOWING.

DIVIDE OPERATOR & ADJUSTMENT USED
TO GET SET TO MOVE NAMEA 8Y SND.

CHARACTER ADJUSTMENT Te ADDRESS CONSTANT LITERALS IS A SPECIAL
CASE AND WILL BE ILLUSTRATED LATER.

CONTINUE

INVALID USAGES
LOD *&80005 EXCEEDS SPECIFIED MEMORY SIlEo

LOA GIVES INVALID ADDRESS FOR LOA.

THTS NAMEA-0000030 AN ADJUSTMENT CAN NOT HAVE ~ORE
THAN SIX DIGITS. THIS WILL BE TRUNCATED TO 000003.

TRE *&10 THE GENERATED EIA UPSETS THIS ADJUSTMENT
CALCULATION. TRE CONTINUE WCUlO BE CORRECT.

TR
EIA
TR

NOP

LCD

SET

TITLE

6

I, EXIT
EXIT
EXIT

TO EXIT LINKAGE ON UNEQUAL
TO EXIT LINKAGE ON UNEQUAL
TO EXIT LINKAGE ON UNEQUAL

'300.&100 ADJUSTMENTS TO A LITERAL MAY NOT BE
MORE THAN TWC DIGITS. THIS WILL BE TRUNCATED TO 00.

.&1234'*5 ONLY & AND - ARE VALID ADJUSTMENT
OPERATORS FOR ADJUSTMENTS TO LITERALS.

OPERAND MODIFIERS

THIS SERIES SHOWS THE USE OF MODIFIERS TO CHANGE THE NORMAL ADDRESS
ORIENTATION OF AN INSTRUCTION. NAMEA IS 30 POSITIONS FROM 1070-1099.

CMP 1 NAMEA CMP NORMALLY REFERENCES THE RIGHT
CMP 1 l,NAMEA HAND CHARACTER.
CMP 1 R,NAMEA REDUNDANT MODIFIER

nTS
TMTS
nITS

RCV
RCVS
RCV

RCVT
RCVS
RCV
RCVT

SET
SET
NOP

NAMEl
R,NAMEA
L,NAMEA

NlMEA
H,NAMEA
H,NAMEA

NAMEA
T,NAMEA
T,NAMEA
T,NAMEA

NAMEA
S,NAMEA
S.NAMEA

TMTS NORMALLY REFERENCES THE LEFT
HAND CHARACTER.
REDUNDANT MODIFIER

RCV NORMALLY REFERENCES THE LEFT
HAND &4 CHARACTER, Revs THE lEFT.
REDUNDANT MODIFIER

RCVT NORMALLY REFERENCES THE LEFT
HAND &9 CHARACTER, Revs THE LEFT,
AND Rev THE LEFT &4.
REDUNDANT MODIFIER

SET NORMALLY REFERENCES SIZE.
REDUNDANT MODIFIER
CREATE CONSTANT OF LENGTH OF NAMEA

AG 63 I AG61 OPERAND MODIFIERS MAY BE COMBINED WITH CHARACTER ADJUSTMENT.
AG 64 A AG62 LOD 1 l,.APPLE.&3 LOAD ASU 1 WITH L.

AG 65 I AG63
AG 66 A AG64
AG 67 A AGb5
AG 68 A AG66
AG 69 A AG67
AG 10 A AG68
AG 71 A AG69
AG 72 A AG70
AG 73 A AG71
AG 74 A AG72
AG 75 A AG73
AG 76 A AG74
AG 77 A AG75
AG 78 A AG76

TMT

LCD

RAO

T.,T

TCT

INVALID USAGES
T,NAMEA THE FIRST FIVE POSITIONS OF NAMEA

WILL NOT BE MOVED.

05 L,.ABCCE. THE LOAD WILL EXTEND INTO THE NEXT
LITERAL WHICH IS NOT USUALLY PREDICTABLE.

S,NAMEA THIS IS THE SAME AS RAD @30 WHEN
WHAT WAS INTENDED WAS RAD .&30 ••

R,NAMEA THIS MOVES ONLY THE LAST fIVE
POSITIONS OF NAMEA.

H,NAMEA H, INCONSISTENT WITH RCVT AND TCT.

C
C
C

C
C

C

C

001604 807E9 03 000759 AA41
001609 907E6 03 000756 026 AA44

001614 808'9 01 000809 AB18
001619 45)W7 01 005367 cA26

001624 11694 001694

001629 U1635 001635

001634 BON-6 06 000006
001639 11HP4 06 001074

001644 81649 001649

001649 'H:52 001652

001654 91CW7 01 001067

001659 11669 001669

001664 ,l~R9 10 001599
001669 11599 001599

001674 A1674 001674 027

001679 85350 005350

001684 BON-4 06 000004

AG33

AC51
AC51

AC51

AF55
AF55

cA22

cA04

001689 41Cl9 01 001099 AC51
001694 41CXO 01 001070 AC51
001699 41Gl9 01 001099 AC51

001704 91CXO 01 001070 AC51
001709 910Z9 01 001099 AC51
001714 910XO 01 001070 AC51

001719 U1C74
001724 UIC74
001729 L1074

001734 lJ1C79
001739 U1079
001744 U1079
001749 Ll079

001754 B0030
001759 B0030
001764 A0030

001074
001074
001074

AC51
AC51
AC51

001079 ACS1
001079 028 AC51
001079 AC51
001079 AC51

000030
000030
000030

AC51
AC51
AC51

001769 853T8 01 005338 eA15

001774 91079 001019 AC51

001779 85TTO 05 005330 cA14

001784 H0030 000030 AC51

001789 91C99 001099 ACS1

001794 ,1-74 08 001074 AC51

71

INDEX S PGLIN TAG CP NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 010 F LOC INSTR SU ADOR SER REF

AH 01 AHOI TITLE INDIRECT ADDRESSING

AH 02 A AH02 LEV80
AH 03 A AH03 INDEXI AOCCN NAMEA AN ADDRESS CONSTANT 001799 AIC99 001099 AC51
AH 04 A AH04
AH 05 A AH05 LOD 6 I,INDEXl LOAD ASU 6 AT THE ADDRESS NOW IN 001804 81XRl 06 001799 029 AH03
AH 06 A AH06 INDEX1.

AH 01 A AH01 ENT80 SAME INSTRUCTION IN 80 MODE

AH 08 A AHOa LOD 6 I,INDEXI OPERAND AND COMMENTS REPEAT.
AH09 * EIA INDEXI OPERAND AND COMMENTS REPEAT. 001809 ,IPR9 10 001199 AH03
AHIO • LOD 6 INDEXI OPERAND AND COMMENTS REPEAT. 001814 81XR9 C6 001799 AH03

AH 11 AH09 INVALID USAGES C

AH 12 A AHlO LEVaO
AH 13 A AHll INDEX3 CON 06 001234 001820
AH 14 A AH12 RAD 1,INDEX3 INDEX3 IS NOT IN A 4/9 LOCATION. 001829 Hl112# 001820 030 AH13
AH 15 A AH13
AH 16 A AH14
AH 11 A AH15 LCD 1,41110234 THE LOCA TI ON OF THE RefERENCED 001834 8t23U 030234
AH 18 A AH16 ADDRESS IS ABOVE OBJECT MEMORY LIMITS.

AH 19 A AH11 ENTaO

AH 20 I AHIR IN ao MODE THE TAG OF AN I, WILL BE PUT ON THE GENERATED EIA. ANY C
AH 21 I AH19 ADDRESS MODIFICATION MUST TAKE THIS INTO ACCOUNT. C
AH 22 A AH20 LOA 6 EXIT THIS LDA-ULA IS INTENDED TO MODIFY 001839 III VR9 06 001599 AF55
AH 23 A AHZl ULA 6 TAGZ THE ADDRESS PORTION OF THE LOD. 001844 *1'1149 06 001849 AH25

AH Z4 A AHZ2 TAGl LOD I,INDEXI
AH25 * TAGl EIA INDEXI 001849 ,lPR9 10 001199 AH03
AH26 * LOD INDEXI 001854 81799 001199 AH03

AH 21 AH23 TITLE SPECIAL MNEMONICS

AH 2a I AH24 ADDRESS CHECK ON LFC-UFC
AH 29 A AH25 LFC LASNT AGA ON A LFC OR UFC WITH BLANK NUM THE 001859 .51K9 02 005129 AK09
AH 30 A AH26 LFC LASNT AGA&2 ADDRESS IS 4/9 CHECKED. 001864 ,51Ll 02 005131 AK09
AH 31 A AH27 LFC LASNTAGA&2 WITH A NUM OF 1 IT IS 1/6 CHECKED 001869 .51Ll 02 005131 AK09
AH 32 A AH28 LFC LASNT AGA ETC. SEE MESSAGES. 001814 ,51K9 C2 005129 AK09

AH 33 I AH29 TITLE NUM ON SET BIT INSTRUCTIONS
AH 34 A AH30 SBZ 4 4120000 NORMAL S8Z 4 WITH 4 IN COL 22. 001819 !I-oto 03 020000
AH 35 A AH31 SBZ 4 "'20000 S8 4 WITH 4 IN COL 22. 001884 %-oto 03 020000
AH 36 A AH32 SBZ 4 4120000 S6 4 WITH 4 IN COL 21. 001889 :(-0&0 03 020000
AH 31 A AH33 Sill 04 ..,20000 SB 04 REfERENCES 8 BIT 001894 ~-IIOO 04 020000 031
AH 38 A AH34 SBA iil20000 S8 1 BECOMES SBA 001899 %-#&0 01 020000
AH 39 A AH35 SBN 4 0120000 S8N 04 REFERENCE S 4 BIT 001904 '--&0 11 020000
AH 40 A AH36 SBR 10 4120000 SBR, NUM IS IGNORED 001909 '--00 08 020000
AH 41 A AH31 SIlA 10 a20000 S8A, NUM IS IGNORED 001914 ~-lItO 01 020000

AH 42 I AH38 INVALID USAGES C
AH 43 A AH39 SBl 3 ..,20000 S8 3 001919 !I-OOO 020000
AH 44 A AH40 Sal 5 iil20000 SB 5 001924 ~-OOO 020000
AH 45 A AH41 S8l 6 iil20000 SB 6 001929 1-000 020000
AH 46 A AH42 saN 9 iil20000 S6 9 001934 ~-OOO 020000

AH 41 AH43 TITLE FLAG CODES

AH 48 I AH44 THE FLAG CODES C, R, AND Z. ARE SHOWN ELSEWHERE. COOES I, A. F t C
AH 49 I AH45 T t AND G ARE NCT SHOWN SINCE THEIR EFFECT IS NOT APPARENT HERE. C
AH 50 I AH46 C
AH 51 A AH41 RAD RCDA GIVES CAUTIONARY MESSAGE 001939 H0510 000510 AA19
AH 52 A AH48 RAD Reo A FLAG 0 SUPPRESSES THE MESSAGE 0 001944 HOt;10 000510 AA19
AH 53 A AH49
AH 54 A AH50 KCD A 001945
AH 55 A AH51 NOP THIS IS THE ONLY INSTR. ON A CARD 001954 A1954 001954 032
AH 56 A AH52 NCP FLAG a FORCES THIS ONTO THE NEXT .., 001959 A1959 001959 033
AH 51 A AH53
AH 58 A AH54 NOP EXIT THIS SPIN LOOP IS EQUIVALENT TO A M 001964 A1599 001599 AF55
AH 59 A AH55 TR .-5 HLT. AN INTERRUPT CAN CHANGE THE H 001969 11964 001964

AH 60 I AH56 Nap TO TR. FLAG M PUTS THE Nap ON THE M FLAG PAGE C
AH 61 I AH51 Of THE NOTEBOOK, FLAG H PUTS THE TR ON THE H FLAG C
AH 62 I AH58 PAGE OF THE NOTEBOOK. C
AH 63 I AH59 C
AH 64 A AH60 LCD '-8ALANCEI R-L SCAN TREATS - AS DASH NOT NEG.B 001914 85371 005371 oA21

- -

72

INDEX S PGLlN TAG OP NU AT OPERAND 80S~PL-001 08-28-63 COMMENTS PG 011 LOC INSTR SU ADDR SER REF

AI 01 AIOI TITLE MACRO INSTRUCTIONS

Al 02 AI02 THE INSTRUCTIO~S GENERATED BY A MACRO DEPEND ON HE DATA C
AI 03 AI03 CHARACTERISTICS OF THE FIELDS REFERENCED BY THE OPERANDS. THE FIRST C
AI 04 AI04 CASE. BELOW. ADDS TWO SIMILAR FIELDS AND PLACES THE RESULT IN ONE. C

AI 05 B AI05 ACDX RCDS5X)CRCCSOX3cRCDS5X3c SIMPLE AOD
AI06 J RAD RCDSOX3 001979 H0756 000756 AA41
AI07 J AeD RCDS5X3 001984 G0745 000745 AA31
AI08 J ST RCDS5X3 001989 F0745 000745 AA31

AI 09 B AI06 AODX RCOS5X3Ac,t98765.43,cRCDS6XOc WITH RND AND LNG
AIlO J RAD RCDS5X3A 001994 H0753 000753 AA38
Aill J SHR GlOOOOOI 001999 COOOI 000001
AIl2 J SET @000008 002004 BOO08 000008
AlB J ACO '&98765.43' 002009 G5200 005200 cA07
AIl4 J RND ;000002 002014 [0002 000002
AIl5 J ST RCDS6XO 002019 Fl10S 001105 AC60

AI 16 B AI07 ACDX RCDS5X3cRCDS5X3AcRCDS5X3cEXITcTRUNCATEc OVFLO PROT
AI11 J RAD RCDS5X3A 002024 H0753 000753 034 AA38
AIl8 J SET ;000009 002029 80009 000009
A1l9 J ADD RCDS5X3 002034 G0745 000745 AA37
AI20 J C.,P XACA &000008 002039 44030 004030 AQ12
AI21 J TRH EXIT 002044 1<l599 001599 AF55
AI22 J SET ;000008 002049 80008 000008
AI23 J ST RCDS5X3 002054 F074S 000745 AA37

AI 24 8 Al08 ADD X ReOS5X3cRCOSOX3cXAel •• &06.02c SECONDARY fIELD OEf
AI25 J RAD ReDSO X3 002059 H0756 000756 AA41
AI26 J SET iOOOO09 002064 80009 000009
AI27 J ADD RCDS5X3 002069 G0745 000745 AA37
AI28 J RND ;000001 002074 EOGOI 000001
AI29 J ST XACI 002019 F4C21 004021 AQll

AI 30 8 AI09 MCVE NAMEBcNAMEAc ALPHA TO ALPHA
AI31 J Rev NAMEA 002084 UIC74 001074 AC51
AI32 J SET iOOO.006 002089 80006 000006 035
AlB J SND NAME8 002094 11104 001104 AC68

AI 34 B AIlO MOVEI MeVE NAMEAcNAMEBc ALPHA TO ALPHA HS
AI35 J MOVEI RCV NAMEB 002099 L1104 001104 AC68
AI36 J 11,00019#01 HIT NAMEA M 002104 91C14 001074 AC51

Al 31 B AI11 INCRA MOVEl*lc'&10/#c ADDRESS MODIFICATION
AI3e J RAD 15 '&10' 002109 H5AG8 15 005178 cA03
A139 J AAM 15 1400019'01 002114 @2A&4 15 002104 AI36

AI 40 B AIl2 MOVE CONN5XOcRCOS6XOD 5 DIG UNSIGNED TO 6 DIG SIGNED
AI41 J SET @000005 002119 BOC05 000005
AI42 J LOD CONN5XO 002124 80816 000816 AB19
AI43 J SET ;000006 002129 80006 000006
AI44 J ST RCDS6XO 002134 FlI05 001105 AC60

AI 45 AI13 TITLE PROGRAM CARD SUPPRESSION WITH S fLAGS

AI 46 B AIl4 TAGA MOVE CONAcCONN5XOD S
AIlt7 J TAGA TRANS 002139
Al48 J TOO022/102 RCVS CONN5XO M 002139 uoa12 000812 AB19
Al49 J TOO022/101 TMTS 05 CDNA M 002144 90'1117 05 000807 AB18

AI 50 8 AIl5 TAGB MOVE eDNN5XOcCONMIXEDD
AI51 J TAGB RCVS CONMIXED 002149 U0817 000817 036 AB20
Al52 J TOO023##01 T~TS 05 CONN5XO M 002154 90H2 C5 000812 AB19

Al 53 AI16 TITLE ~ACROS WITH F fLAGS

AI 54 B All7 MOVEA TAGAlHcTAGBNl c f
AI55 J LOA 15 TOO022#01 002159 flVD4 15 002144 AI49
AI56 J ULA 15 TOO023##01 002164 *2~E4 15 002154 AI52

AI 57 B AI18 MOVEA XACCcTAGCc
AI5a J ACD 15 #&00004# 002169 G58A4 15 005214 cA09
AI59 J ULA 15 TAGC 002114 *2AH9 15 002189 AI63

AI 60 B AIl9 AOOA XACCc5cTAGA.2c F
AI61 J ACD 15 .tOOOOlfl 002119 G5B&9 15 005209 cA08
AI62 J ULA 15 TOO022#02 002184 *2AC9 15 002139 AI48

AI 63 A AI20 TAGC TR 002189 10COO 000000

73

INDEX S PGLIN TAG CP NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 012 F Loe INSTR SU ADDR SER REF

AJ 01 AJ01 TITLE ADDRESS CONSTANTS

AJ 02 I AJ02 ADeON
AJ 03 A AJ03 DUMMYTAG RCD 8 002197
AJ 04 A AJ04
AJ 05 A AJ05 ADeON DUMMYTAG TAG OPERANC 002204 A2191 002191 031 AJ03
AJ 06 A AJ06 AceCN 13 OUMMYTAG AceON WITH ASU ZONING. 002209 A2H1 13 002191 AJ03
AJ 01 A AJ01 ACCCN DUMMYTAG&4 TAG OPERAND WITH CHARACTER ADJ. 002214 A2201 002201 AJ03
AJ 08 A AJ08 ADCON L,DUMMYTAG WITH OPERAND MODIFIER 002219 A2190 002190 AJ03
AJ 09 A AJ09 AOCON UBLE# LITERAl OPERAND 002224 A5354 005354 aA23
AJ 10 A AJ10 AoeCN ii43155 ACTUAL OPERAND 002229 A315N 0431.55
AJ 11 A AJll ACCON --55 ADJUSTED LOCATION COUNTER OPERAND 002234 A2l19 002119

AJ 12 I AJ12 INVAlIC USAGES e
AJ 13 A AJ13 AceCN LASNTAGA-35 VALUE OF OPERAND EXCEEDS 160K. 002239 AZ515 019515 AK09
AJ 14 A AJ14 AceCN & iil43424 THE & INTERFERES WITH THE ADDRESS 002244 A342M 043424

AJ 15 I AJ15 TITLE AeON4, AeONS, AND ACON6
AJ 16 A AJ16 AeDN4 DUMMY TAG TAG OPERAND 002248 2191 002197 AJ03
AJ 17 A AJl1 AeDN5 DUMMYTAG TAG OPERAND 002253 002191 AJ03
AJ 18 A AJ18 AeOl';6 OUMMYTAG TAG OPERAND 002259 002197 AJ03
AJ 19 A AJ19 AeON4 12 ~UMMY TAG ACON4 WITH ASU ZONING 002263 2A97 12 002197 AJ03
AJ 20 A AJ20 AeON5 & DUMMY TAG AeONS SIGNED PLUS 002268 002191 038 AJ03
AJ 21 A AJ21 ACON6 - DUMMYTAG ACON6 SIGNED MINUS 002274 002197 AJ03
AJ 22 A AJ22 AeON4 OUMMYTAG&8 WITH CHARACTER ADJUSTMENT 002278 2205 002205 AJ03
AJ 23 A AJ23 AeON5 L,DUMMYTAG WITH OPERAND MODIFIER 002283 002190 AJ03
AJ 24 A AJ24 AeON6 L,DUMMYTAG&2 WITH MODIFIER AND ADJUSTMENT 002289 002192 AJ03
AJ 25 A AJ25 AeON4 S ,DUMMY TAG & 1 WITH SIZE MODIFIER AND ADJUSTMENT 002293 0009 000009 AJ03
AJ 26 A AJ26 ACON5 - U3951f1 SIGNED AeON OF LITERAL. NOTE THAT 002298 005186 aA05
AJ 27 A AJ21 THE SIGN OF THE AeON IS OPPOSIT TO THE LIT SIGN.
AJ 28 A AJ28
AJ 29 A AJ29 ACON6 -&10 ACON OF ADJUSTED LOCATION eTR 002304 002314
AJ 30 A AJ30 AeON5 cH2345 UNSIGNED WITH ACTUAL OPERAND 002309 012345

AJ 31 I AJ31 INVALID USAGES e
AJ 32 A AJ32 ACON4 S ,DUMMYTAG-10 ADJUSTMENT IS LARGER THAN S, 002313 0002 000002 AJ03
AJ 33 A AJ33 AeON4 & ii40100 & SIGN INTERfERES WITH ADDRESS 002317 010- 040100
AJ 34 A AH4 AeON5 15 DUMMYTAG AN ACON5 CANNOT HAVE ASU ZONING 002322 002191 AJ03
AJ 35 A AJ35 ACON5 ii84324 OPERAND TOO LARGE FOR AeON5 002327 004324

AJ 36 I AJ36 TITLE ADDRESS CONSTANT LITERAL
AJ 31 A AJ37 LCD 04 RiNAMEA NON-ARITH, NON-4/9 OPERATION IN 80 002334 85106 C4 005406 039 tAOl
AJ 38 A AJ38 MODE GIVES 6 DIGITS UNSIGNED.
AJ 39 A AJ39 ACD SiiNAMEA&10 80 MODE ARITH GIVES 6 DIG SIGNED 002339 G5413 005413 SAO 1

AJ 40 AJ40 ON THE STATEMENT ABOVE NOTE THE WAY THE ADJUSTMENT IS APPLIED. THE C
AJ 41 AJ41 VALUE OF S.NAMEA IS 30. THE ADJUSTMENT IS ADDED TO THIS VALUE C

AJ 42 A AJ42 LEV80 REPEAT SERIES IN 705111 MODE.
AJ 43 A AJ43 LOD 04 RiNAMEA GIVES 5 DIGITS UNSIGNED 002344 85U24 04 005424 -AOI
AJ 44 A AJ44 ADD SiilNAMEA&lO GIVES 5 DIGITS SIGNED 002349 G5419 005419 -AOI
AJ 45 A AJ45
AJ 46 A AJ46 EIA 4/9 OPERATIONS IN ANY MODE GIVE 4 002354 ,0--0 10 000000
AJ 41 A AJ41 ULA 06 RiilEXIT DIGIT UNSIGNED MACHINE ADDRESSES. 002359 *5UL9 06 005439 IA03
AJ 48 A AJ48 LOA 05 Riil12,NAMEA&4 ASU ZONING CAN BE SPECIFIED 002364 '5LU9 05 005449 IA05
AJ 49 A AJ49 LOA 05 RiI5,-&25 AN ADCON LIT OF A LOCATION COUNTER 002369 nUT4 05 005434 IA02
AJ 50 A AJ50 LOA 06 Ri"&l234N ADDRESS OR OF A LITERAL IS VALID. 002314 .5UK9 06 005429 IAOI

AJ 51 I AJ51 INVALID USAGES e
AJ 52 A AJ52 THT HCilNAMEA THE TMT IS FROM THE ADCON LITERAL 002379 95445 005445 IA04
AJ 53 A AJ53 RATHER THAN FROM H,NAMEA. ALSO A 4/9 INSTR WITH
AJ 54 A AJ54 H, OR T, ORIENTATION GIVES INCONSISTENT ADDRESSING
AJ 55 A AJ55 WHEN USED WITH AN ADCON LIT OPERAND.

74

INDEX

AK 01

AK 02

AK 03

PGlIN

AKOI

AK02

AK03

TAG CP

TITLE

NU AT OPERAND 80S~PL-OOI 08-28-63

INSTRUCTICNS TO T~E PROCESSOR

ASSIGNMENT STATEMENTS

LASN

COMMENTS PG 013 FLOC INSTR SU ADDR SER REF

AK 04 I AK04
AK 05 I AK05
AK 06 I AK06
AK 01 A AK01

THE FOLLOWING EXAMPLES SHOW THE INOEPENDENCE OF THE LASN COUNTERS OF C
EACH OTHER AND THEIR RELATION TO T~EIR HIGH ASSIGNMENT COUNTERS AND C
TO THE LOCATION COUNTER. C

AK 08 A AK08
AK 09 A AK09 lASNTAGA

AK 10 A AKI0
AK 11 A AKll

AK 12 A AK12
AK 13 A AK13

AK 14 A AK14
AK 15 A AK15

AK 16 A AK16
AK 11 A AK11

AK 18 A AK18
AK 19 A AK19

AK 20 A AK20
AK 21 A AK21

AK 22 A AK22
AK 23 A AK23

AK 24 A AK24
AK 25 A AK25

AK 26 AK26

AK 21 A AK27
AK 28 A AK28

AK 29 A AK29
AK 30 A AK30

AK 31 A AK31
AK 32 A AK32

AK 33 A AKH
AK 34 A AK34

AK 35 A AK35
AK 36 A AK36

AK 31 AK31

AK 38 A AK38
AK 39 A AK39 LASNTAGB

AK 40 A AK40

AK 41
AK 42

AK41
AK42 OUTSIDE

AK 43 A AK43

AK 44 A AK44
AK 45 A AK45 RASNA
AK 46 A AK46
AK 41 A AK41 RASNB
AK 48 A AK48

AK 49 A AK49
AK 50 A AK50
AK 51 A AK51

Reo 1 A TO SHOW THE CURRENT VALUE OF THE ASSIGNMENT CTR. 002380

LASN
NCP

LASN
NCP

LASN
NCP

LASN
NCP

LASN
NOP

LASN
NOP

LASN
NOP

LASN
NCP

LASN
NOP

TITLE

SASN
NOP

LASH
NOP

SASN
NOP

LASN
NCP

SASN
NCP

LASN
NOP

SASN

TITlE
ADCON

LASN

RASN
LeA 06
ULA 06
lOD 05
UNL 05

LASN
LOD

a5123 SET BLANK eTR TO 5123
ASSIGN. NEXT INSTR LOCATION IS 5129

005123
005129 A5129

LASNTAGA&20 SET CTR 1 TO 5145 005145
005149 A5149 ASSIGN UNDER CTR 1 CONTROL

SET BLANK CTR TO LOCATION CTR
ASSIGN UNDER BLANK CTR CONTROL

005150
005154 4-5154

LASNTAGA&lO SET eTR 1 TO LOWER VALUE
ASSIGN UNDER CTR 1 CONTROL

005135
005139 A5139

LASNT AGA

iil5100

SET CTR 1 TO PREVIOUS HI ASSIGNMENT
ASSIGN UNDER eTR 1 CONTROL

RESET CTR 1 HI ASSIGNMENT & CTR
ASSIGN UNDER CTR 1 CONTROL

SET BLANK CTR TO LOWER VALUE
ASSIGN UNDER BLANK CTR CONTROL

005150
005154 A5154

R 005125
005129 A5129

005100
005104 A5104

SET eTR 1 TO NEW HI ASSIGNMENT 005130
ASSIGN UNDER eTR 1 CONTROL 005134 A5134

seT BLNK eTR TO BLNK CTR HI ASSIGNMENT 005155
ASSIGN UNDER BLANK CTR CONTROL 005159 A5159

SASN

LASNTAGA&100 SET TO HIGHER THAN LASN BLANK CTR
ASSIGN

005225
005229 A5229

*
a5000

a8000

LASNTAGB

NAMEA

RETURN TO BLANK CTR HI ASSIGNMENT
ASSIGN UNDER BLANK CTR CONTROL

SET BELOW LASN BLANK CTR
ASSIGN

RETURN TO BLANK CTR HI ASSIGNMENT
ASSIGN UNDER BLANK CTR CONTROL

005160
005164 A5164

005000
005004 A5C04

005165
005169 A5169

008000
008004 A8004

INVALID USAGES C

RASN

A LASN TO A TAG NOT YET DEFINED IS 005110
EQUIVALENT TO LASN BLANK. 005114 A5114

SASN BLANk IS IGNORED.

PROVIDE TAG OUTSIDE RASN RANGE

ASSEMBLE ROUTINE AT 5000

AS IF IT WAS AT 15000

005115

005119 AI099

005000

015000

005129 040

AK09
005149 041

005154

AK09
005139 042

OC5154 043

AK09
005129 044

005104 045

005134 046

005159 041

AK09
005229 04B

0051&4 049

005004 050

0051&9 051

008004 052

AK39
005114 053

001099 AC51

i5000

i15000
OUTSIDE
RASNB

NO EFFECT OUTSIDE RASH RANGE
NOTE ADDRESS IS SHIFTED 10K
BLANK OPERAND NOT AFFECTED
LOCATION eTR ADS IS AFFECTED

005004 '5/P9 06 005119 054 AK42
005009 *V#J4 06 015014 AK41
005014 80N.0 05 000000

i3000
RASNA

END RASN RANGE
REF TO TAG IN RASN RANGE IS
AFFECTED.

005019 lVNU4 05 015044

003000
003004 8V004 015004 055 AK45

75

76

INDEX S PGLI N

AL 01 ALOI

AL 0_2 A AL02

AL 03 A AL03

AL 04 A AL04

AL 05 A AL05

AL 06 A AL06

AL 07 AL07

AL 08 A AL08
AL 09 A AL09
AL 10 A ALIO
AL 11 A AL 11

AL 12 A AL12
AL 13 A A1l3

AL 14 A AL14

AL 15 A A1l5
AL 16 A ALl6
AL 17 A ALl7
AL 18 A ALt8
AL 19 A ALt9
AL 20 A AL20
AL 21 A AL21
AL 22 A AL22

AL 23 A ALB

AL 24 AL24

Al 25 A Al25

AL 26 A AL26

AL 27 A AL27

AL 28 A Al28

Al 29 A AL29

AL 30 AL30

AL 31 A Al31

AL 32 I AL32

TAG

AL 33 A AL33 TRANSA
AL 34 A AL34
AL 35 A Al35
At 36 A AL36
AL 31 A AL37
AL 38 A AL38
Al 39 A AL39 TRANSC
At 40 A Al40
AL 41 A AL41
AL 42 A AL42

AL 43 A Al43
Al 44 A Al44
Al 45 A AL45
AL 46 A Al46
AL 41 A AL41
AL 48 A Al48
AL 49 A AL49
AL 50 A AL50
Al 51 A AL51
AL 52 A AL52
AL 53 A AL53
AL 54 A AL54
AL 55 A AL55

TRANSB

TRANSD

TRANSE

CP

TITLE

SUBOR

SUBOR

SUBOR

LITOR

LITOR

TITLE

TCO
SEL
RD
TR

CON

LASN

TCD
SET
SET
SET
SET
SET
SET
TR

LASN

TITLE

INCL

INCl

INCl

INCL

INCL

INCl

TITLE
TRANS

SEl
LOD
SET

TRANS
NOP

TR

HlT
TRANS
NOP

TRANS

TRANS

RCVS
SET
LOD
LOD

NU AT OPERAND 80S~PL-001 08-28-63 COMMENTS PG 014 FLOC INSTR SU ADDR SER REF

SUBOR AND llTOR

OUTSIDE THESE STATEMENTS ILLUSTRATE WAYS OF 005175 AK42

.28704 STATING A STARTING LOCATION FOR 028704

-&1000 SUBROUTINES AND LITERALS. NOTE 004005

.35000

OUTSIDE

THAT THe LAST ASSIGNMENT IS THE ONE 035000

WHICH IS EFFECTIVE.

GENERATE 00 CARD - TCD

alOO
Gl1000
a0004

TCD TO BE GENERATED IN MIDDLE OF
THE PROGRAM. IT READS A CONTROL
CARD AND THEN CONTINUES LOADING.

5
17 READ CONTROL CARD COMMENT TO GO ON TCD CARD

1
2
3
4
5
6

1
2
3
4
5
6
CONTINUE

TERMINATE TCD

TERMINAL TCD TO REPLACE STANDARD

TERMINATE TCD

SUBROUTINE CALLS-INCL

9HEAO

SHEAD

9HEAD

BHEAD

9HEAO

NOlIN

EACH OF THESE STATEMENTS CALLS

FOR A SUBROUTINE FROM THE LIBRARY

NOTE THAT EACH SUBROUTINE ONLY

APPEARS ONCE IN THE PROGRAM, NO

MATTER HOW OFTEN IT IS CALLED.

INVALID USAGES

SUBROUTINE NOT IN LIBRARY

DEFINE A TAG - TRANS
500

TRANS A
TRANS A
TRANS A

-&10
TRANSC

TRANSB

-
HAMEA

L,NAMEA&6

05 TRANSD
S,TRANSD

TRANSD
L,TRANSD&4

THE TRANS DEFINES A TAG, WITH AN
ACTUAL, IN THIS CASE.
REFERENCES TO THE TAG WILL GET
THIS DEFINITION AS THE TAG VALUE.

A TRANS TO A LOCATION COUNTER
ADDRESS IS VALID.

THIS SERIES ILLUSTRATES A USEFUL

TECHNIQUE FOR WRITING MACRO
COMPONENTS, OF USING A TAGGED
TRANS - TO REFERENCE THE NEXT
IN LINE INSTRUCTION.

TRANS TO TAG OPERAND IS VALID.

MODIFICATION AND ADJUSTMENT

THESE FOUR INSTRUCTIONS SHOW THAT
80TH LENGTH AND LOCATION ARE

OBTAINED WITH A TRANS TO A TAG.
UNMODIFIED, UNADJUSTED TAG.

005115

000095
000099 20100
000104 ncoo
000109 10004

000114
000131

005115

Z 00009.5
000099 8001#1
000104 BOC-2
000109 BOC&3
000114 BON04
000119 80lltl5
000124 BO/l-6
000129 11(:74

C

005115

000500

005179 20500
005184 80500
005189 B0500

005204
005194 A5204

005199 15209

005204 J5204
005209
005209 A5209

001099

001016

000100 056
001000
000004

C1 000001
02 000002
03 000003
04 000004
05 000005
06 000006

001674

AK42

AG33

000500 057 AL33
000500 AL33
000500 AL33

005204 AL39

005209 AL44

005204

005209

005214 U11/XO 05 001070

AC51

AC51

AC51
AC51
AC51
AC5l

005219 B0030 000030
005224 81099 001099
005229 810X4 01 001074

INVALID USAGES C AL 56 I AL56
Al 57 I Al57
AL 58 I AL58
AL 59 A AL59
AL 60 A AL60
AL 61 A AL61
AL 62 A AL62

TAGS DEFINED BY TRANS -, TRANS i, OR A TRANS TO A MODIFIED OR C.
ADJUSTED TAG, SHOW A FIELD LENGTH OF ZERO. MODIFICATION OF SUCH TAGS C

TMT TRANSA IS MEANINGLESS. USE OF SUCH TAGS
TCT TRANS A WITH H, T, OR L, ORIENTED
RO TRANSC INSTRUCTIONS MAY GIVE INCONSISTENT
LOA R,TRANSE ADDRESSING.

005234 90500 000500 AL33
005239 ,o~oo 08 000500 AL33
005244 Y5204 005204 058 AL39
005249 .lOX6 01 001076 AC51

INDEX PGLlN TAG CP NU AT OPERAND aOS,",PL-OOI 08-28-63 COMMENTS PG 015 F LOC INSTR SU JlDDR SER REF

AM 01 AL64 TITLE MUL TI PLE LITERALS - LITST, LITND

AM 02 A AL65 L ITST
AM 03 A AL66 RAG 1#&111 005254 H5296 005296 AN03
AM 04 A AL61 LCD 05 IlABCDEII 005259 85TT4 05 005334 ANI0
AM 05 A AL68 LDA 06 RGJII&l234511 005264 ,5T04 06 005364 AN18
AM 06 A AL69 LCD lGJIIWJRll 111 005269 85354 005354 AN15
AM 07 A AL10 LOA 15 SiilOUTSIDE 00527't 115CF9 15 005369 AN20
AM 08 A AL 11 RAD 11&2411 005279 h5298 005298 AN04
AM 09 A AL 72 RAD H@'&246801351911 N)5284 H5349 005349 AN14
AM 10 A AL 13 LCD T@flABCOEFGI..JJIl 005289 85359 005359 AN16
AM 11 A AL14 LOA R@OI,IIABCf# 005294 1/5314 005374 AN22

AM 12 A AL15 LITND

INDEX PGLlN TAG CP NU AT OPERAND 80S,",PL-001 08-28-63 COMMENTS PG 016 F LOC IN5TR SU JlODR SER REF

ANOI .. MULTIPLE LITERAL TABLE NUMBER 0001

AN02 .. 01 005295
AN03 .. SIGNED LI TERAL 01 ' A 005296
AN04 .. SIGNED LITERAL 02 20 005298
AN05 .. 01 005299
AN06 .. SIGNED LITERAL 05 1234E 005304 059
AN07 .. 05 005309
AN08 .. SI GNED LI TERAL 10 2468013511 005319

AN09 .. UNSIGNED LITERAL 10 ABCDEFGHIJ 005329
ANIO .. UNSIGNED L ITERJ!L 05 A8CDE 005334
AN11 .. UNSIGNED LITERAL 06 WJR111 005340
AN12 .. UNSIGNED LITERAL 03 ABC 005343

ANl3 .. 01 005344
AN14 .. 2468013 HI-SP 05 05310 005349 AN08

AN15 .. WJRl11 LEFT 05 05335 005354 ANll
AN16 .. A8CDEFG HISP9 05 05329 005359 AN09

AN17 .. 01 005360
AN IS .. 1234E RIGHT 04 5304 005364 AN06
AN19 .. 01 005365
AN20 .. OUTSIDE SIZE 04 0005 005369 060 AK42
AN21 .. 01 005370
AN22 .. ABC RIGHT 04 53U3 005374 AN12

INDEX S PGLIN TAG OP NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 011 F LOC INSTR SU ADDR SER REF

AO 01 AMOI TITLE ASSEIoIBLY DOCUMENTATION

AO 02 AM02 THE COMIoIENTARY ILLUSTRATES THE USE OF TITLE AND COMMENT STATEMENTS C
AD 03 AM03 TO ENHANCE PROGRAM DOCUMENTATION. NOTE THAT TITLE STATEMENTS WHICH C
AO 04 AM04 EXTEND BEYOND THE LIMITS OF COL 23 TO COL 73 WILL BE DIVIDED INTO C
AD 05 AMOS FIELDS AS IN THE EXAMPLE BELOW WHICH WAS ONE WORD, ENTITLED. C

AD 06 AM06 EN TITLE 0

AD 07 AM07 THE COMMENT STATEMENT, A NEW FEATURE OF THE 7080 PROCESSOR, IS C
AD 08 AM08 DESIGNATED BY A CODE Of C IN THE fLAG fIELD, COL 74. IT MAY EXTEND C
AD 09 AM09 fROM COL 6 TO COL 73 AND IS NOT OVERPRINTED. AN EXTRA SPACE IS GIVEN C
AD 10 AMI0 BEFORE A COMMENT STATEMENT UNLESS IT fOllOWS ANOTHER COMMENT ENTRY. C

AO 11 AMll TITLE OVERFLOW CONTROL

AO 12 AM12 PAGE-TO-PAGE OVERFLOW IS NORMALLY UNDER THE CONTROL OF A LINE COUNT C
AO 13 AM13 WHICH INCLUDES BLANK LINES. IT IS COMPARED TO A MAXIMUM LINE COUNT C
AD 14 AM14 SPECIfiED IN THE COMMUNICATION WORD AND WHEN THIS MAXIMUM IS REACHED C
AO 15 AM15 AN OVERfLOW OCCURS. C

77

INDEX S PGLIN

liP 01

AP 02
AP 03
AP 04

INDEX

AOOI

A002

A003

A004

A005

A006

A007

AOOB
A009
A010
AOll
A012
AQ13

S

K

R

R

R

K

K

K

K
J
J
J
J
J

AQ14 K

AQ15 K

A016 K

AQl1 K

A018 K

AOl9 K

A020 K

A021 K

A022 K

AQ23 K

A024 K

A025 K

AQ26 K

AQ27 K

ANOI

AN02
AN03
AN04

PGLIN

AAOI

AA02

AA03

001

002

003

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

INDEX S PGLI N

AR01 K

TAG CP

TITLE

NU AT OPERAND 80SMPL-001 08-28-63

EJECT ENTRY

COMMENTS PG 018

THE STATEMENT I~MEDIATELY PRECEDING THE TITLE EJECT 'ENTRY HAD THE
WORD EJECT t~ THE OPERATION FIELD. THIS PRODUCED AN IMMEDIATE PAGE
BREAK REGARDLESS OF THE LINE COUNT.

TAG CP NU AT OPERAND 80S~PL-001 08-28-63 COMMENTS PG 019

THE FOLLOWING ARE CLASS A SUBROUTINES

9HEAD TITLE THE CLASS A SUBROUTINE WHICH FOLLOWS IS CAllED BY

THE PROCESSOR. IT CONSISTS OF MACRO INSTRUCTIONS

WHICH ARE ONLY GENERATED IF THEY ARE NEEDED.

XXPRTST PRTST XXPRTSTOlaXXPRTST02aXXPRTST03aXXPRTST04aXXPRTST05a

XXPRTST06aXXPRTSTFl$aXXPRTSTWRKaXXPRTSTHlDa

XXPRTSTENDaIBM9999999a

XXACC XACaXAClaXAC2aXAC3aXAC4aXACBaXACAaIBM9999999a
CON 1

XAC 8 &00000000
XACI 8 &00000000
XACA CON 1 00

CON 8 99

XXACD XACCDXACCIDIBM9999999a

XXBSRCH BSRCH XXBSRCHOlaXXBSRCH02DXXBSRCH03aXXBSRCH04aXXBSRCH05a

XXBSRCH06DXXBSRCH07aXXBSRCH08aXXBSRCH09aXXBSRCHIOD

XXBSRCHEXTDIBM9999999D

XXSSRCH SSRCH XXSSRCHOlaXXSSRCH02aXXSSRCH03aXXSSRCH04aXXSSRCH05D

XXSSRCH06aXXSSRCHEXTDIBM9999999a

XXFIX FIX XXFIXOIDIBM9999999a

XX FLOAT FLOAT XXFlOATOIDIB~9999999a

IOTYPENTRY TYPIO IOTYPEXITDIBM9999999a

XXADDENTRY AITEM XXADDEXITDXXDElET02aXXDELET04aXXDELET03aXXDELET07a

XXDElET05aXXDELET06DIBM9999999D

XXDELENTRY DITEM XXDELEXITaXXDElET02aXXDElET03aXXDELET04aXXDELET05D

XXDELET06aXXOELET07alBM9999999a

ACO~P XXACOMPTWOaXXACOMPONEaXXACOMPWRKalBM9999999a

c
C
C

D
D

LOC

LOC

004005
004013
004021
004022
004030

TAG DP NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 020 Fi LOC

THE FOLLOWING ENTRIES ARE CLASS B SUBROUTINES

AR02 R AAOI BHEAD TITLE THIS TITLE 8LOCK APPEARS IN lIEU OF A CLASS B

AR03 R AA02 SUBROUTINE.

78

INSTR SU ADDR SER REF

INSTR SU ADDR SER REF

061

INSTR SU ADDR SER REF

INDEX PGLlN TAG CP NU AT OPERAND 80S~PL-001 08-28-63 MESS"GES PC 001 F LOC INSTR SU AODR REF

AAS3 AA53 1000 00 AREA OVER MODE MEM
AA63 AA63 FIELD JUST ~U~
AA63 AA63 FIELD OP NOT FO
AA63 AA63 FIELD IfoIPR NUM IGNRD
AA68 AA68 2 ASSUME CON
AB08 AB08 3 STRIPPED DATA
AB08 AB08 3 NUM NCT EQ TO OESIG
ABB ABB 4 STRIPPED DATA
ABB ABl3 4 STRIPPED DATA'
AB13 ABl3 4 NUM NCT EQ TO OESIG
AB42 AB42 3 STRIPPED CON
AB54 ABS4 14 STRIPPED CON
ACB ACH RPT 9 I~PR RPT
AC42 AC42 RCD 4 CHK LEFT PROTECTION 22
AD03 AD03 CCN 6 CHK LEFT PROTECTION
ADl3 ADB CNe 2 RH NO TAG RH
A014 NAMEE INVAL NAME BEG AOll
AD35 NAMEH INVAL NAME BEG AD26
AD44 NA~El INVAL NAME BEG AD31
AEll SETCF OPERNO 01 SWITCH TYPE UNKNOWN ASSUME A-J TYPE
AE52 SETON OPERND 01 SWITCH TYPE UNKNOWN ASSUME A-J TYPE
AE52 SETON OPERND 02 SwITCH TYPE UNKNOWN ASSUME A-J TYPE
AE51 SETCN OPERNO 01 SETOF ALTSW NO GENERA TI ON
AE59 M(VE I~PROPER DATA DEFINITION NO GEN.
AES9 MCVE I~PROPERLY WRITTEN
AFlO AFI0 SND 04 WORST CASES NO TAG WORST CASE
AFll AF 11 TR RD/WR NO TAG RD
AF 11 AFll TR AOJ 0
AF12 AFlZ GAP NOP JUST TAG
AFl3 AF13 GAP NCP DUPL TAG AF12
AFiB AFl8 WR IIINOT AVAILABLE 0/5 CHECK cA29
AF22 AF22 ACD t141t NO TAG t141t
AF25 AF25 TRE .DUPEIII 4/9 CHECK cA24
AF25 AF2S TRE IIIDUPEIil LIT OPND IMPROPER cA24
AF26 AF26 ACD .00101t SGN CHK L cA25
AF21 AF21 LCD NO RT LIT cA12
AF28 AF28 WR NO RT LIT cAB
AF3l AF31 Lca I~PR SGND LIT cA06
AF31 AF31 ST 995 NO TAG 995
AF39 AF39 WR ;82S00 ADDR OVR 019999
AF42 AF42 TR iiOOO1234 4/9 CHECK
AF43 AF43 LCD IMPR CPND
AG21 AG21 LCD -&8000S ADDR OVR 019999
AG23 AG23 LCA -&3 4/9 CHECK
AG35 AG33 LCD IfoIPR AOJ TRUNC cA22
AC35 AG33 LOO AOJ 0 oA22
AG38 AG36 SET 6 INVAL AOJ OP cA04
AG72 AG10 RAD S,NAMEA SGN CHK AC51
AG18 AG16 TCT H,NA~EA 9 CHECK ACSI
AH14 AH12 RAD 1,INOEX3 4/9 C'HECK AH13
AHl1 AH15 LCD l.i110234 AOOR OVR 019999
AH30 AH26 LFC LASNTAGA&2 4/9 CHECK AK09
AH32 AH28 LFe 1 LASNTAGA 116 CHECK AK09
AH36 AH32 Sal 4 JUST NUM
AH37 AH33 sal 04 POSS IMPR NUM
AH43 AH39 SBl 3 JUST NUM
AH43 AH39 SBl 3 IMPR BIT
AH44 AH40 SBl 5 I~PR BIT
AH4S AH41 S8l 6 IMPR BIT
AH46 AH42 S8N 9 IMPR BIT
AHSI AH41 RAD RCDA SGN CHK AA19
AI 46 MOVE "'OVING ALPHA TO NUMERIC
AJB AJ13 ACCCN LASNT AGA*35 AOOR OVR 079999 AK09
AJ14 AJ14 AcceN .43424 SIGNED AOOR OVER 40K
AJ32 AJ32 ACON4 S,DUMMYTAG-10 LOWER WRAP ARNO AJ03
AJ33 AJ33 AeON4 & Ci40100 SIGNED ADOR OVER 40K
AJ34 AJ34 AeON5 15 DUMMY TAG ZONE ON ACONS-6 AJ03
AJ34 AJ34 ACONS 1S IMPR NU~ IGNRD AJ03
AJ35 AJ35 ACONS lil84324 AODR OVR 019,99
AJ52 AJ52 HT HiNAMEA 4/9 CHECK IA04
AK38 AK38 LASN ASSIGN OPND NOT DEFINED AK39
AK40 AK40 SASN INVL OPNO
AL31 AL31 INCL NOT IN CLASS B NAME TABLE
AL59 ALS9 TMT TRANSA 4/9 CHECK AL33
Al60 AL60 TCT TRANSA 9 CHECK ALB
Al61 AL61 RC TRANSC 0/5 CHECK AL39
AL62 AL62 LOA R.TRANSE 4/9 CHECK AC51

79

INDEX S PGLIN TAG GP NU AT OPERAND 80SMPL-OOl 08-28-63 NO REQS PG 002 F LOC INSTR SU ADDR REF

AB38 A838 WORSTCASES CON 2 ABCDE TAG NOT REQUIRED
AC45 AC45 CONDI 2 TAG NOT REQUIRED
AC46 AC46 COND2 A TAG NOT REQUIRED
AC48 AC48 CONDP P TAG NOT REQUIRED
AC49 AC49 CONDQ Q TAG NOT REQUIRED
AD33 AD29 NOWEND 3 XXX TAG NOT REQUIRED 9
AD48 AD41 AGE CHRCD 2 40 TAG NOT REQUIRED
AD49 AD42 TWENTY 20 TAG NOT REQUIRED
AD50 AD43 FORTY 40 TAG NOT REQUIRED
AD54 AD47 MALE M TAG NOT REQUIRED
AD62 AD55 BIWEEKLY 4 TAG NOT REQUIRED
AD65 AD58 flAT FEE B TAG NOT REQUIRED
AD71 AD64 BAD2 2 TAG NOT REQUIRED
AFl4 AF14 RD/WR SGN L, GAP TAG NOT REQUIRED AF13
AF50 AF50 LOCA TI ONA BSP TAG NOT REQUIRED

INDEX S PGLIN TAG OP NU AT OPERAND 80SMPL-00I 08-28-63 TITLES PG 003 F LOC INSTR SU ADDR REF

AA 01 I MOl TITlE 7080 PROCESSOR - SAMPLE ASSEMBLY
AA 02 I AA02 INTRODUCTION
AA 13 I AA13 TITLE NORMAL ORIGIN
AA 17 I AA17 TITLE AREA DEFINITIONS
AA IB I AA18 DEFINITION OF A RECORD F IHD - RCD
AS 17 I ABl7 TITLE DEFINITION OF A CONSTANT FIelD - CON
AS 58 I AB58 TITlE DEFINITION OF A FLOATING POINT ,CONSTANT - FPN
AC 01 I ACOI TITlE DEF INITION OF A REPORT FORMAT - RPT
AC 04 I AC04
AC 34 1 AC34 TITLE COLLECT IVE AREA DEFINITION - NAME
AC 35 I AC35 NORMAL USE
AO 01 1 ADOI TITLE SPECIAL USES OF NAME STATEMENTS
AD 45 I A038 TITLE SWITCH DEFINITIONS
AD 46 I AD39 DATA SW ITCHES
AD 47 I AD40 CHARACTER CODE - CHRCD
AD 58 I AD51 TITLE BIT CODE - BITCD
AE 01 I AEOI TITlE PROGRAM SWITCHES
AE 14 I AE12 TITLE CONSOLE SWITCHES
AE 21 I AE19 TITlE BRANCH CONTROL MACRO-INSTRUCTIONS
AF 01 I AFOI TITLE eNE-FOR-ONE INSTRUCTIONS
AF 02 I AF02 BASIC OPERANDS
AF 03 I AF03 TAG OPERANDS
AF 15 I AF15 TITLE 11 T ERAL OPERANDS
AF 33 I AF33 TITLE ACTUAL OPERANDS
AF 45 I AF45 TITLE LOCATION COUNTER OPERANDS
AF 49 I AF49 TITlE BL A NK OPERANDS
AG 01 I AGOI TITLE ADDITIONS TO BASIC OPERANDS
AG 02 I AG02 CHARACTER ~DJUSTMENT
AG 40 I AG38 TITLE OPERAND MODIFIERS
AH 01 [AHOI TITLE INDIRECT ADDRESSING
AH 27 I AH23 TITLE SPECIAL MNEMONICS
AH 28 I AH24 ADDRESS CHECK ON LFC-UFC
AH 33 I AH29 TITLE NUM ON SET BIT INSTRUCTIONS
AH 47 I AH43 TITlE flAG CODES
Al 01 I AI01 TITlE MACRO INSTRUCTIONS
AI 45 I AIl3 TITLE PROGRAM CARD SUPPRESSION WITH S flAGS
AI 53 I AIl6 TITLE MACROS WITH F FLAGS
AJ 01 I AJ01 TITlE ADDRESS CONSTANTS
AJ 02 I AJ02 ADCON
AJ 15 I AJl5 TITLE ACON4, ACON5. AND ACON6
AJ 36 1 AJ36 TITlE ADDRESS CONSTANT LITERAL
AK 01 I AK01 TITLE INSTRUCTIONS TO THE PROCESSOR
AK 02 I AK02 ASSIGNMENT STATEMENTS
AK 03 I AK03 LASN
AK 26 I AK26 TITlE SASN
AK Itl I AK41 TITLE RASN
AL 01 I AL01 TITLE SUBOR AND LITOR
Al 07 I Al07 TITLE GENERATE 00 CARD - TCD
Al 24 I Al24 TITlE SUBROUTINE CAllS-INCL
At 32 I AL32 TITLE DEFINE A TAG - TRANS
AM 01 I AL64 TITLE MULTIPLE LITERALS - lITST, LITND

AN01 • ~ULTIPLE LITERAL TABLE NUMBER 0001
AD 01 I AH01 TITLE ASSEMBLY DOCUMENTATION
AD 06 I AM06 EN TITLE 0
AD 11 I AMll TITLE OVERFLOW CONTROL
AP 01 I AN01 TITLE EJECT ENTRY

AQ02 R AAOI 9HEAD TITLE THE CLASS A SUBROUTINE WHICH FOLLOWS IS CALLED BY
AC03 R AA02 THE PROCESSOR. IT CONSISTS OF MACRO INSTRUCTIONS
AQ04 R AA03 WHICH ARE ONLY GENERATED IF THEY ARE NEEDED.
AR02 R AA01 BHEAD TITLE THIS TITLE BLOCK APPEARS IN LIEU OF A CLASS B
AR03 R AA02 SU8ROUTINE.

-

80

INDEX S PGlIN

AA 03 I AA03
AA 04 I AA04
AA 05 I AAC5
AA 06 I AA06
AA 01 I AA01
AA 08 I AA08
AA 09 I AAC9
AA 10 I AA10
AA 11 I AAll
AA 12 I AA12
AA 14 I AA14
AA 15 I AA15
AA 51 I AA51
AB 01 I ABOI
AB 02 I ABC2
AB 31 I AB31
AB 60 I AB60
AB 61 I AB61
AB 62 I AB62
AB 63 I AB63
A8 64 I AB64
A8 65 I AB65
AB 66 I AB66
AB 10 t AB70
AB 11 I ABll
AS 72 I AB12
AB 13 I ABH
AS 74 I AB14
AS 75 t AB75
AB 16 I AB16
AB 17 t AB17
AB 79 I AB79
AS 80 I AB80
AC 02 I AC02
AC 03 I AC03
AC 05 I AC05
AC 06 t AC06
AC 07 I AC07
AC 08 I AC08
AC 09 I AC09
AC 10 I AC10
AC 14 I AC14
AC 15 I AC15
AC 16 I AC16
AC 11 I AC17
AC 18 I AC18
AC 19 I AC19
AC 20 I AC20
AC 22 I AC22
AC 23 I AC23
AC 24 I AC24
AC 25 I AC25
AC 28 I AC28
AC 29 I AC29
AC 30 I AC30
AC 32 I AC32
AC 56 I AC55
AC 57 I AC56
AC 58 I AC51
AD 10 I ADI0
AD 16 I AD15
AD 17 I A016
AD 18 I A017
AD 67 I AD60
AE 04 I AE04
AE 48 I AE25
AE 49 I AE26
AE 50 I AE21
AE 51 I AE28
AE 56 I AE30
AE 58 I AE32
AF 05 I AF05
AF 06 I AF06
AF 09 I AF09
AF 21 I AF21
AF 36 I AF36
AF 48 I AF48
AF 56 I AF56
AG 18 I AG18
AG 19 I AG19
AG 20 I A620
AG 41 I AG39
AG 42 I AG40
AG 63 I AG61
AG 65 t AG63
AH 11 I AH09
AH 20 I AH18
AH 21 I AH19

-

TAG OP NU AT OPERAND 80S~PL-001 08-28-63 C FLAG PG 004 FLOC

THIS ASSEM8LY ILLUSTRATES CORRECT AND INCORRECT USAGES OF THE 1080
PROCESSOR. SHORT CODING EXAMPLES ARE USED TO SHOW WHAT THE
PROCESSCR PRODUCES, INCLUDING ERROR AND CAUTIONARY MESSAGES, FOR
TYPICAL VALID AND INVALID STATEMENTS. COMMENT AND TITLE STATEMENTS
AND THE CO~MENTS FIELD OF ILLUSTRATIVE STATEMENTS. HAVE BEEN USED TO
DESCRIBE THE USAGES. THIS ASSEMBLY IS FOR ILLUSTRATIVE PURPOSES ONLY
AND DOES NOT REPRESENT AN EXECUTABLE PROGRAM. THE OBJECT MACHINE IS
ASSU~ED TO BE AN SOK 7080, ASUS 1-6 ARE ASSUMED SET TO LENGTHS DF
1-6 RESPECTIVELY. AND THE OTHER ASUS AND ACC ARE AT SOME RANDOM
LENGTH.
SINCE NO STARTING LOCATION IS SPECIFIED, THE ORIGIN OF THE
PROGRAM IS ASSUMED TO BE AT LOCATION 0500.

INVALID USAGES
THE FOLLOWING THREE INVALID RCD ENTRIES PRODUCE INCONSISTENT
DATA DEFINITIC~S.

INVAL(D USAGES
NOTE THAT THE NU~ERIC FIELD IS BLANK AND THAT THE MANTISSA IS ONLY
SIX DIGITS. A LENGTH OF TEN WILL BE ASSUMED AND TRAILING ZEROS ADDED
TO MAKE AN EIGHT DIGIT ~ANTISSA. T~E FPN APPEARS IN MEMORY AS
OC12345600 WITH THE UNITS DIGIT SIGNED PLUS. THE LISTING DOES NOT
SHOW THE ADDED lEROS OR ASSUMED LENGTH.

INVAL(0 USAGES
THE TWO ENTRIES IMMEDIATELY ABOVE WERE INTENDED AS COMMENTS
COUTINUATIONS. THIS IS INVALID ON A FPN AND TWO FPNS WERE GENERATED
FROM THE OPERAND FIELDS. THE LISTING ONLY SHOWS TrE MEMORY ALLOCATED
BUT THE CARDS SHOW 5E38103850 AND 3071519201.

THIS FP~ WAS INTENDED TO REPRESENT 123.456. OMITTING THE LEADING
ZERO OF THE CHARACTERISTIC CAUSED IT TO REPRESENT THE NUMBER
234560000000000000000000000000.
THIS OPERAND wAS INTE~DED TO REPRESENT 123.456. OMITTING THE SECOND
PLUS SIGN CAUSED IT TO REPRESENT 234.56
THESE ILLUSTRATIONS ALL SHOW EIGHT NUMERIC POSITIONS WITH VARIOUS
PUNCTUATION AND SIGN INDICATIONS.
IN THIS SERIES NO COMMAS, DECIMAL POINTS, DOLLAR SIGNS, OR ASTERISKS
ARE SPECIFIED. ONE POSITION IS RESERVED FOR A BLANK OR MINUS SIGN.
IN THE FIRST FORMAT ALL EIGHT POSITIONS WILL PRINT, LEADING lEROS
INCLUDED. IN THE SECOND FORMAT LEADING ZEROS IN ANY OF THE FIVE HIGH
ORDER POSITICNS ARE NOT PRINTED. IN THE THIRD FORMAT. NO LEADING
ZEROS WILL PRINT.
IN THIS FORMAT VARIOUS EDIT PUNCTUATION IS ADDED. THE DOLLAR SIGN
WILL ALwAYS PRINT EIGHT POSITICNS TO THE LEFT OF THE DECIMAL POINT.
THE COM~A WILL PRINT IF THERE ARE ANY SIGNIFICANT FIGURES TO THE
LEFT OF IT. THE DECIMAL POINT AND THE POSITIONS TO THE RIGHT OF IT
WILL ALwAYS PRINT, EVEN FOR A ZERO AMOUNT. A TWO POSITION SIGN
INDICATOR IS SPECIFIED AS CR, •• , OR DR FOR MINUS, ZERO. OR PLUS
AMOUNTS, RESPECTIVELY.
THESE TWO EXAMPLES ILLUSTRATE AMCUNT PROTECTION IN A RPT FORMAT. IN
THE FIRST, THE S SIGN IS FIXED BUT. WILL PRINT IN ALL SPACES
BETWEEN IT AND THE HI-ORDER DIGIT PRINTED. IN THE SECOND, THE $ SIGN
WILL PRINT IMMEDIATELY TO THE LEFT OF THE HI-ORDER DIGIT PRINTED.
THE OPERAND BZ IN THIS EXAMPLE INDICATES THAT THE ENTIRE FIELD,
INCLUDING THE DECIMAL POINT AND POSITIONS TO THE RIGHT OF IT, IS TO
BE BLANKED IF THE RESULT IS ZERO.

INVALID USAGES
THE FOLLOWING SERIES ILLUSTRATES THE USE OF CONCURRENT NAME
DEFINITIONS. NAMEC IS ENTIRELY WIT~IN NAMEB. NAMED IS ONLY PARTLY
WITHIN NAMEB. BOTH USAGES ARE VALID.

INVALID USAGES
THIS NAME ENTRY WILL NOT COMPILE CORRECTLY BECAUSE THE NUMERIC
FIELD OF THE INTERNAL NAME ENTRY SPECIFIES A STARTING LOCATION NOT
IMMEDIATELY FOLLOWING THE PORTION OF THE NAME ENTRY ALREADY DEFINED.

INVALID USAGES
INVALID USAGES
INVALI 0 USAGE S

THE FOLLOWING MACRO ATTEMPTS TO SET ON TWO UNDEFINED SWITCHES WHICH
ARE THE TAGS OF CHRCD AND BITCD HEADERS. THEY ARE TREATED AS A-J
TYPE SWITCHES.
THE NEXT MACRO ATTEMPTS TO SET ON AN ALTSW.
THE FOLLOWING MACRO ATTEMPTS TC INITIALIZE A BITCD USING MOVE MACRO.
THE MEANING OF A TAG OPERAND DEPENDS ON THE INSTRUCTION AS WELL AS
THE DATA DEFINITION FOR THE TAG.

INVALID USAGES
INVALID USAGES
INVALID USAGES

FURTHUR EXAMPLES WILL BE SHOWN UNDER CHARACTER ADJUSTMENT.
A SPECIAL CASE OF A LASN WITH BLANK OPERAND WILL BE SHOWN LATER.
CHARACTER ADJUSTMENT TO ADDRESS CONSTANT LITERALS IS A SPECIAL
CASE AND WILL BE ILLUSTRATED LATER.

INVALID USAGES
THIS SERIES SHOWS THE USE OF MODIFIERS TO CHANGE THE NORMAL AODRESS
ORIENTATION OF AN INSTRUCTION. NAMEA IS 30 POSITIONS FROM 1010-1099.
OPERAND MODIFIERS MAY BE COMBINED WITH CHARACTER ADJUSTMENT.

INVALID USAGES
INVALID USAGES

IN 80 MODE THE TAG OF AN I. WILL BE PUT ON THE GENERATED EIA. ANY
ADDRESS MODIFICATION MUST TAKE THIS INTO ACCOUNT.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

INSTR SU ADDR REF

81

82

INDEX S PGLIN

AH 42 I AH38
AH 48 I AH44
AH 49 I AH45
AH 50 I AH46
AH 60 I AH56
AH 61 I AH57
AH 62 I AH58
AH 63 I AH59
AI 02 I AI02
Al 03 I AI03
AI 04 I Al04
AJ 12 I AJ12
AJ 31 I AJ31
AJ 40 I AJ40
AJ 41 I AJ41
AJ 51 I AJ51
AK 04 I AK04
AK 05 I AK05
AK 06 I AK06
AK 37 I AK37
AL 30 I AL30
AL 56 I AL56
AL 57 I AL57
AL 58 I AL58
AD 02 I AM02
AD 03 I AM03
AD 04 I AM04
AD 05 I AM05
AD 07 I AM07
AD 08 I AM08
AO 09 I AM09
AO 10 I AMI0
AD 12 I AM12
AO 13 I AM13
AO 14 I AM14
AO 15 I AM15
AP 02 I AN02
AP 03 I AN03
AP 04 I AN04

INDEX S PGLI N

AE60 J
AH 59 A AH55
AL 43 A AL43

INDEX S PGlIN

AH 02 A AH02
AH 01 A AH01
AH 12 A AHI0
AH 19 A AH17
AJ 42 A AJ42

INDEX S PGLIN

AG 30 A AG30
AH 08 A AH08

TAG OP NU AT OPERAND 80SMPL-001 08-28-63 C flAG PG 005 FLOC

INVAlI 0 USAGES
THE FLAG CODES C, R, AND Z, ARE SHOWN ELSEWHERE. CODES 1, A, F,
T, AND G ARE NOT SHOWN SINCE THEIR EFFECT IS NOT APPARENT HERE.

NOP TO TR. FLAG M PUTS THE NOP ON THE M FLAG PAGE
OF THE NOTEBOOK, FLAG H PUTS THE TR ON THE H FLAG
PAGE OF THE NOTEBOOK.

THE INSTRUCTIONS GENERATED BY A MACRO DEPEND ON THE DATA
CHARACTERISTICS OF THE FIELDS REFERENCED BY THE OPERANDS. THE FIRST
CASE, BELOW, ADDS TWO SIMILAR FIELDS AND PLACES THE RESULT IN ONE.

INVALID USAGES
INVALID USAGES

ON THE STATEMENT ABOVE NOTE THE WAY THE ADJUSTMENT IS APPLIED. THE
VALUE OF S,NAMEA IS 30. THE ADJUST~ENT IS ADDEO TO THIS VALUE

INVALID USAGES
THE FOLLOWING EXAMPLES SHOW THE INDEPENDENCE OF THE LASN COUNTERS OF
EACH OTHER AND THEIR RELATION TO THEIR HIGH ASSIGNMENT COUNTERS AND
TO THE LOCATION COUNTER.

INVALID USAGES
INVALID USAGES
INVALID USAGES

TAGS DEFINED BY TRANS -, TRANS ~, OR A TRANS TO A MODIFIED OR
ADJUSTED TAG, SHOW A FIELD LENGTH OF ZERO. MODIFICATION OF SUCH TAGS
THE COM~ENTARY ILLUSTRATES THE USE OF TITLE AND COMMENT STATEMENTS
TO ENHANCE PROGRAM DOCUMENTATION. NOTE THAT TITLE STATEMENTS WHICH
EXTEND BEYOND THE LIMITS OF COL 23 TO COL 73 WILL BE DIVIDED INTO
FIELDS AS IN THE EXAMPLE BELOW WHICH WAS ONE WORD, ENTITLED.
THE COMMENT STATEMENT, A NEW FEATURE OF THE 7080 PROCESSOR, IS
DESIGNATED BY A CODE OF C IN THE FLAG FIELD, COL 74. IT MAY EXTEND
FROM COL 6 TO COL 73 AND IS NOT OVERPRINTED. AN EXTRA SPACE IS GIVEN
BEFORE A COMMENT STATEMENT UNLESS IT FOLLOWS ANOTHER COMMENT ENTRY.
PAGE-TO-PAGE OVERFLOW IS NORMALLY UNDER THE CONTROL OF A LINE COUNT
WHICH INCLUDES BLANK LINES. IT IS COMPARED TO A MAXIMUM LINE COUNT
SPECIFIED IN THE COMMUNICATION WORD AND WHEN THIS MAXIMUM IS REACHED
AN OVERFLOW OCCURS.
THE STATEMENT IMMEDIATELY PRECEDING THE TITLE EJECT ENTRY HAD THE
WORD EJECT IN THE OPERATION FIELD. THIS PRODUCED AN IMMEDIATE PAGE
BREAK REGARDLESS OF THE LINE COUNT.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

TAG CP NU AT OPERAND 80SMPL-001 08-28-63 H FLAG PG 006 FLOC

INSTR SU AODR

INSTR SU ADDR

HLT
TR
HLT

0)29000
--5

001429 J
HLT. AN INTERRUPT CAN CHANGE THE H 001969 1
TECHNIQUE FOR WRITING MACRO 005204 J

029000
001964
005204

TAG

TAG

CP NU AT OPER AND 80SMPL-00l 08-28-63 80 SP OP PG 001 F lOC

LEV80
ENT80 SAME INSTRUCTION IN 80 MODE
LEV80
ENT80
LEvao REPEAT SERIES IN 7051tJ MODE.

CP NU AT OPERAND 80SMPL-001 08-28-63 80 SP I PG 008 FLOC

I, EXIT TO EXIT LINKAGE ON UNEQUAL
OPERAND AND COMMENTS REPEAT.

INSTR SU ADOR

INSTR SU ADDR

AH 24 A AH22 TAGZ

T~
LOD
LCD

6 t,lNDEXI
I.INDEXI

-

REF

-

REF

REF

REF

INDEX S PGLlN TAG

AK 08 A AK08
AK 10 A AK10
AK 12 A AK12
AK 14 A AK14
AK 16 A AK16
AK 18 A AK 18
AK 20 A AK20
AK 22 A AK22
AK 24 A AK24
AK 27 A AK27
AK 29 A AK29
AK 31 A AK31
AK 33 A AK33
AK 35 A AK35
AK 38 A AK38
AK 40 A AK40
AK 43 A AK43
AK 44 A AK44
AK 49 A AK49
AL 14 A AL14
AL 23 A AL23

'---

-

INDEX PGlIN TAG

AE 02 A AE02 SWA
AE 03 A AE03 SWB

INDEX'S PGlIN TAG

Al 48 A Al48 TRANSD
AL 50 A ALSO TRANSE

INDEX S PGLlN TAG

AA 63 A AA63
AF 55 A AF55 EXIT
AH 58 A AH54

AI36 J MOOOI9.01
AI48 J TOO022.02
AI49 J TOO022.01
AI52 J TOO023.01

AI 63 A A120 TAGe
AK 47 A AK41 RASNB

CP

USN
LASN
LASN
LASN
LASN
LASN
LASN
LAS'"
LASN
SASN
LASN
SASN
USN
SASN
LASN
SASN
LASN
RASN
LASN
LASN
LASN

CP

SliT
SWN

CP

TRANS
TRANS

OP

FIelD
TR
NCP
TMT
Revs
T~TS
TMTS
TR
LOD

NU At OPERAND 80S~PL-001 08-28-63 ASSGNS PG 009 F LOC

Gl5123 SET BLANK CTR TO 5123 005123
1 LASNT AGA&20 SET CTR 1 TO 5145 005145 . SET BLANK CTR TO LOCATION CTR 005150
1 LASNT AGAUO SET eTR 1 TO LOWER VALUE 005135
1 SET CTR 1 TO PREVIOUS HI ASSIGNMENT 005150
1 LASNT AGA RESET CTR 1 HI ASSIGNMENT & CTR 1 R 005125

i5100 SET BLANK CTR TO LOWER VALUE 005100
1 SET CTR 1 TO NEW HI ASSIGNMENT 005130

SET B~NK CTR TO BLNK CTR HI ASSIGNMENT 005155
LASNTAGA&100 SET TO HIGHER THAN LASN BLANK CTR 005225

RETURN TO BLANK CTR HI ASSIGNMENT 005160
015000 SET BELOW LASN BLANK eTR 005000

RETURN TO BLANK CTR HI ASSIGN~ENT 005165
i8000 008000
LASNTAGB A LASN TO A TAG NOT YET DEFINED IS 005170

SASN BLANK IS IGNORED. 005175
i5000 ASSEMBLE ROUTINE AT 5000 005000
i15000 AS IF IT WAS AT 15000 015000
i3000 END RASN RANGE 003000

TERMINATE TCD 005175
TERMINATE TCD 005175·

NU AT OPERAND 80S~PL-OOI 08-28-63 SWITCHES PG 010 FLOC

PROGRAM SWITCH, INITIALLY ON.
PROGRAM SWITCH, INITIALLY OFF.

NU AT OPERAND 80SMPL-001 08-28-63 TRANS PG 011

NU

.

05
05

05

NAMEA
L,NAMEA&6

AT OPERAND

EXIT
NAMEA
CONN5XO
eONA
CONN5XO

TRANS' TO TAG OPERAND IS VAllO.
MODIFICATION AND ADJUSTMENT

80SMPl-001 08-28-63 M FLAG PG 012

THE WORD FIELD, INTENDED AS A
INITIALIZED BY UNLOADING ASU 06.
THIS SPIN LOOP IS EQUIVALENT TO A

BLANK OPERAND NOT AFFECTED

F

M
M
M
M
M

001284
001289

LOC

001099
001076

lOC

000794
001599
001964
002104
002139
002144
002154
002189
005014

-

INSTR SU ADDR

005129
005149
005154
005139
005154
005129
005104
005134
005159
005229
005164
005004
005169
008004
005114
005119
005000
005019
000131
000129
004030

IN$TR SU ADDR

001299
OC1299

INSTR SU ADOR

INSTR SU AD OR

A 000000
1 000000
ft 001599
<; 001014
L 000812
9 05 000801
9 C5 000812
1 000000
e C5 000000

REF

AK09

AK09

AK09

AK09

AK39

REF

REF

Ae51
AC51

REF

AF55
AC51
AB19
AB18
AB19

-

83

DEFINITIONS REQUESTS 80SMPL-001 08-28-63 PG 013 SYMBOLIC ~NALYZER

SIGNED LITERALS

A 01 AE41 AE53

1& 02 AI38

1230 04 AJ50 AG38

395G 04 AJ26

BALANCN 01 AF31

987654C 01 AI13

OOOOA 05 AI61

00000 05 AI58

002lE 05 AF16

OM56780 10 AF20

UNSIGNED LITERALS

AGE 50 AF27

THIS Ll 50 AF28

A8CDE 05 AG69

APPLE 05 AG64 AF17

F 01 AE35

G 01 AE61

01 AE13

01 AE23

02 AF19

60 02 AE21

300 03 AG35

ABLE 04 AJ09

DUPE 04 AF25

0010 04 AF26

1234561 07 AG09

-BALANC 08 AH64

LOCATIO 09 AF23

NOT AVA 14 AFl8

."<

ACTUALS

-002394 AJ49 LOA 05

ilOOOOOO AF43 LOD

ilOOOOOl AIll SHR AI28 RNO A1l6 SET

iilOOOO02 A 114 RNO All1 SET 2

ilOOOO03 Alla SET 3

ilOOOOOIt ALll TR All9 SET It

ilOOOO05 AF34 SET AF35 SET AI41 SET AL20 SET 5

01000006 A132 SET AI43 SET AL2l SET 6

iloooooa AIl2 SET AI22 SET

01000009 AIl8 SET AI26 SET

iOO0100 AL09 SEl

84

DEFINITIONS REQUESTS 80S~PL-OOI 08-28-63 PG 014 SYMBOLIC ~NALYlER

QJOOO123 AF42 TR

iilOO0500 ALB TRANSA TRANS

iilOOlOOO AllO RD

QJ003000 AK49 LASN

QJ005000 AK31 SASN AK43 LASN

@005100 AK20 LASN

@O05123 AK08 LASN

@008000 AK35 SASN

@012345 AJ30 ACCN5

@015000 AK44 RASN

QJ020000 AH34 SBl 4 AH35 SBl 4 AH36 SBZ 4 AH37 SBZ 04
AH38 SBA AH39 SBN 4 AH40 SBR 10 ~H41 SBA 10
AH43 SBZ 3 AH44 SBl 5 AH45 SBl 6 AH46 SBN 9

@028704 AL03 SUBOR

41029000 AE60 !-tLT

41035000 AL05 LITOR

@040100 AJ33 ACON4

@043155 AJIO ADCON

@043424 AJ14 ADCON

QJ082500 AF39 hR

@084324 AJ35 ACCN5

QJll0234 AHl1 LOD

DEFINITIONS REQUESTS 80SIIPL-001 08-28-t:) PG 015 SYMBOLIC ANALYZER

MULTIPLE LITERALS

ANOl A AM03 RAD

ANI0 ABCDE AM04 LOD 05

AN06 1234E AN18 LI TERAl R,

AN18 1234E AMOS LOA 06

ANll WJR III AN15 LI TERAl L,

AN15 WJR III AM06 LOD

AN20 OUTSIDE AM01 LOA 15

AN04 20 AM08 RAO

AN08 2468013 AN14 LITERAL H,

AN14 2468013 AM09 RAD

AN09 ABCDEFG AN16 LITERAL Tt

AN16 ABCOEFG AMI0 LOD

AN12 ABC AN22 LI TERAL Rt

AN22 ABC AMll LOA

85

DEFINITIONS REQUESTS 80SMPL-001 08-28-63 PG 016 SYMBOLIC ~NALYZER

OESCRIPTIVES

-ERR-&l4. AF22 ADD

A048 AGE

A010 8AOl AE62 AoeON

AOll BA02

AD62 BIWEEKLY

A064 COMMISSION AE29 SBl A

AB18 CONA AG08 LOO -000002 AI49 TOO022.01 TMTS OS

Ae48 CONOP

Ae49 eONOQ

Ae4S eONOI

AC46 CON02

AB20 CONMIXEO AISI TAGB Revs

AB19 CONNSXO AI42 LOD AI48 TOO022.02 Revs AIS2 TOO023tOl TMTS OS

AG33 CONTINUE AG12 TR &000020 AD28 NAMEFIEND AoeON AL22 TR

AJ03 OUMMYTAG AJ24 AeON6 L,&000002 AJ08 AoeON L, AJ23 AeONS L,
AJ32 AeON4 5,-000010 AJ2S AeON4 S,&OOOOOI AJ01 .aDCON &000004
AJ22 AeON4 &000008 AJOS AoeON AJ06 ADCON 13
AJ16 AeON4 AJl1 AeONS AJl8 AeON6
AJ19 AeON4 12 AJ20 Ae.ONS & AJ21 AeON6 -
AJ34 AeONS IS

AFSS EXIT AJ41 ULA 06 RCil AE33 TR AE38 TR
AE41 TR AFS4 ULA 06 AG31 EIA
AG32 TR AH22 LOA 6 AHS8 NOP
AI21 TRH

ADSS FEMALE . AE36 eMP 01

AD6S FLAT FEE

AOSO FORTY

AF12 GAP

AFl3 GAP AFl4 ROIWR SGN L,

A060 HOURLY AE42 SBN

AH03 INOEXl AHOS LOO 6 1, AH09 EtA AHI0 LOD 6
AH2S TAGZ EIA AH26 LOO

AHI3 INOEX3 AH14 RAD I,

AK09 LASN TAG A AJ13 AoeON -00003S AH30 LFe &000002 AH31 LFe &000002
AK14 LASN &000010 AKIO LASN 1 &000020 AK21 SASN &000100
AH29 LFe AH32 LFe I AK18 LASN

AK39 LASNTAGB AK38 LASN

AFSO loeATIONA

AOS4 MALE

AD63 MONTHLY AE44 SBN 8

AI3S MOVEI

AI36 MOOOI9.01 AI39 AAM IS

AeSI NAMEA AJ39 ADD Si&000010 AJ31 LOO 04 Riil AJ44 ADO Si&OaOOIO
AJ43 LOO 04 Riil AJS2 TMT Hi) AJ48 LOA OS Riil&OOOO04
AG4S eMP I R, AG4B TMTS R, AG1S TM1 R,
ALSO TRANSE TRANS L,&OOOOO6 AG44 eMP L, AG49 TMTS L,
AGS2 Revs H, AGS3 Rev H, AG18 TeT H,
AGS6 Revs T, AGS1 Rev T, AG58 ReVT T.
AG66 TMT T, AG61 SET S. AG62 NOP S,
AG12 RAD S, AG16 SET 6 1000005 A&25 TMTS -000003
AGl1 SND 6 AG43 eMP 1 AG41 TMTS
AG51 Rev AGSS ReVT AG60 SET
AH03 INDEXl ADeON AI31 Rev Al36 MOOOI9.01 TM1
AK42 OUTSICE ADeON Al48 TRANSO TRANS

86

DEFINITIONS REQUESTS 80SHPL-001 08-28-63 PG 011 SYMBOLIC ~NALYZER

AC50 NAMEAENO AC36 NAMEA NAME A

AC68 NAMEB AI33 SNo AI35 MOVEl RCV

AC61 NAMEBENo AC59 NAMEB NAME

AC64 NAMEC

AC63 NAMECEND AC61 NAMEC NAME

ACll NAMED

AC10 NAMED END AC65 NAMED NAME

A014 NAMEE

A015 NAMEEENO AOll NAMEE NAME

A024 NAMEF

A023 NAMEFENO A019 NAMEF NAME 0 A021 NAMEG NAME 4

A029 NAMEFI

A02B NAMEFIENo A026 NAMEF1 NAME

A025 NAMEG

A035 NAMEH

A044 NAMEI

A042 NAMEJ A036 NAMEI NAME

A041 NAMEJEND A039 NAMEJ NAME

"ERR"NOTENC A030 NAMEH NAME

A033 NOWENo

AK42 OUTSIDE AN20 LITERAl S. AK45 RASNA LOA 06 AL02 SUBOR
AL06 LITOR

A059 PAYTYPE AE55 UNL 01

AK45 RASNA AK50 LOD

AK41 RASNB AK46 ULA 06

AA19 RCoA AH51 RAO AH52 RAO

AA44 RCDN2X3A AG04 THTS 3 -000004

AA41 RCoSOX3 AG03 LOO 3 &000003 AF01 SET AF08 LOD
AI06 RAO AI25 RAD

AA31 RCOS5X3 AI01 ADO AI08 ST A119 ADD
AI23 ST AI21 ADD

AA38 RCDS5X3A AIlO RAO A 111 RAO

AC60 RCOS6XO AIl5 ST A144 ST

*ERR*RO AFll TR

AF14 ROIWR

*ERR*RH AD13 CNO 2

AD53 SEX AE54 UNL 01

A051 SIXTY AE26 Revs

A068 SPLIT TAG AF04 NOP

AE02 SWA AE24 UNL 01 -000004

AE03 SWB AE25 UNL 01 -000004 AE31 Revs AE40 RCVS

AE05 swe AE12 Revs

AI47 TAGA

AI 51 TAGB

AI63 TAGC AI59 ULA 15

AH25 TAGZ AH23 ULA 6

87

DEFINITIONS REQUESTS 80S"PL-OOl 08-28-63 PG 018 SYMBOLIC ANALYZER

AE23 TESTSW AE32 TZB AE37 TRE AE46 TAB

ALB TRANSA Al35 SEL AL36 LOD AL37 SE T
AL59 TMT AL60 TCT

AL44 TRANSB AL42 TR

Al39 TRANSC AL40 NO? AL61 RD

AL48 TRANSD AL55 LOD L.&000004 AL53 SET S. AL52 RCVS 05
AL54 LOD

AL50 TRANSE AL62 LOA R.

AD49 TWENTY

AI49 TOO0221101 AI55 LOA 15

AI48 TOO0221102 AI62 ULA 15

AI52 TOO023#01 AI56 ULA 15

AD61 WEEKLY AE28 5BZ 2 AE43 SBN

*ERR*WOR5T CASE AFlO 5ND 04

AB38 WORSTCA5ES

AQIO XAC

AQ12 XACA AI20 CM? &000008

AOll XACI AI29 5T

*ERR*995 AF37 5T

88

GLOSSARY OF TERMS

The terms that follow are explained in relation to
their use in this manual. No attempt has been
made to supply a glossary of basic programming
terms. Definitions that appear in the text of the
manual are not repeated on this page. The Index
supplies page references to such definitions.

Address: Something that designates a storage loca­
tion. The term "address of an instruction" and the
term "address portion" both refer to the portion
of a machine-language instruction that identifies
a storage location.

Alphabetic Characters: The letters A - Z. Alpha­
betic data consists of alphabetic characters.

Alphameric Characters: A set of characters com­
prising the following: alphabetic, numerical, special,
blank. Alphameric data consists of any of these
characters or any combination of them.

Blank Character: The absence of a character.
May be designated on the coding sheet by the sym­
bol b.

Coding: Program statements that mayor may not
form a routine.

Data field: A unit of information consisting of an
alphameric character or a set of adjacent alpha­
meric characters.

Decimal positions: The positions to the right of the
decimal point in numeric data.

Format layout: A graphic representation on the
coding sheet of a specific arrangement of char­
acters. Also referred to as a "layout. "

Generated: An adjective describing coding provided
by the Processor.

Hand-coded: An adjective describing coding written
by the programmer.

Integer positions: The positions to the left of the
decimal point in numeric data.

Initialization: A procedure that places an instruc­
tion or a switch in an initial condition, or restores
either one to a previously defined condition.
Initialization is a type of modification.

Location: A place in storage. The term may refer
to one storage position or the positions occupied by
a field or an instruction. Also referred to as
"storage location. "

Machine language: A language that is intelligible
to the computer. Also referred to as "actual
language. "

Machine-language instruction: A 7080 machine
instruction conSisting of an actual operation code
and an address portion.

Mixed decimal: A term used to designate a number
containing integer and decimal positions.

Modification: A procedure that alters an instruction
or a switch setting. Address modification is the
procedure of altering the address portion of an
instruction.

Numerical characters: The digits 0 - 9. Numerical
data consists of a combination of digits representing
a signed or unsigned integer, pure decimal, or
mixed decimal.

Processor library: The portion of the 7080 Proc­
essor System tape that contains the elements of
each macro-instruction and subroutine.

Pure decimal: A term used to designate a number
containing decimal positions only.

Record: A set of adjacent data fields.

Secondary mode: Any mode other than 7080 mode.

Special characters: The follOWing group of char­
acter s: • IJ * & $ * - / , % # @ + T

Glossary of Terms 89

ACON4 Statement 43
ACON5 Statement 43
ACON6 Statement 44
Actual Operand, Defined 33
Actual Language - See Machine Language
ADCON Statement 42
Address, Defined 62
Address Constant, Defined 9, 42
Address Constant Literal 44
Alphabetic Character, Defined 62
Alphameric Character, Defined 62
ALTSW Statement 29
Area-Definition Statement 8, 14
Arithmetic Operator 91, 34, 42
Assembly Documentation 59
Assembly Input 59
Assembly Output 59
Asterisk Protection, Defined 20
Autocoder MODE Statement 53
Autocoder Operands, Defined 31

additions to, mult~ple additions to 34
Autocoder Statements, How to Write 11

Basic Programming System for 7080 7
Bit-Code Switch, Defined 26

see also BITCD
BITCD Statement 27
Blank Character, Defined 62
Blank Counter 47
Blank Operand, Defined 34
Blank-if-Zero Option 22

Character Adjustment 34, 42
Character Code Switch, Defined 26
CHRCD Statement 27
Class A and B Subroutines 51
Coding Sheet, How To Use 11
Collating Sequence, 7080 11
Comments in Autocoder Statements 12
Comments Continuation Lines, Rules for Writing

in CON 15
in RPT 23
in switch-definition statements 26

Comments Flag 57
CON Statement 17
Conditional Lozenges 39
Console Switch, Defined 8, 29

see also ALTSW
Constant 17, 31

Data Field, Defined 62
Data Switch, Defined 8, 26

see also BITCD, CHRCD

EJECT Statement 54
ENT80 53
Exponent, Defined 19

Field-Sign Indicators 21
Fixed Dollar Sign 20
Flag Characters 13, 57
Floating Doll~r Sign 20
Floating-Point Number, Defined

by a literal 32
calculations with 18
FPN 18
RCD 14

Format Layout, Defined 62
RPT 19

90

18

FORTRAN MODE Statement 53

General-Purpose Macro-Instructions
Generated, Defined 62
Generated Coding, 7080 Mode 53
Group Marks 15, 17

Hand-Coded, Defined 62

37

Higher Languages of 7080 Processor 10,53

INCL Statement 51
Indirect Address 35,53
Initialization, Defined 62

by address constant 42
Insertions on Coding Sheet 12
Insignificant Zeros, Defined 19
Instructions to the Processor 10,46
Integer Positions, Defined 62
Interior Fields of NAME 23
Internal NAME 24

LASN Statement 48
Leading Zeros, Defined 19
Left Protection, Defined 14
LEV80 53
Library Subroutine - See Subroutine
Literal - See Literal Operand
Literal Constant - See Literal Operand
Literal Operand, Defined 31,39
Literal Sign 31
Literal Tables 31,48,50,55,59

INDEX

see also Main Literal Table, Multiple Literal Tables
LITND Statement 56
LITOR Statement 50
LITST Statement 56
Location, Defined 62
Location Assignment, by Processor 48

see also LASN, RASN, SASN
Location Counter, Used by Processor 46

see also LASN
Location Counter Operand, Defined
Lozenges 39

Machine Language, Defined 62
Macro-Header, Defined 38
Macro-Instruction, Defined 9

gener-al purpose, list of 37
Macro Suffix Tag
Main Literal Table 31,48,50,59
Mantissa, Defined 19
Mnemonic Codes, 7080 Operations 32
Mode, Coding for 7080 53
MODE Statements 53
Modification, Defined 62
Multiple Literal Tables 31,50,55,59

NAME Statement 24
Non-Printing Decimal Point 20
Numerical Characters, Defined 62
Numerical Constant 17, 18,38

Object Program, Defined 6
Object-Program Card 59
Object-Program Contents 7,51,59
Object-Program Deck 59
ON/OFF Statue

of a bit 27
of a bit code switch 27
of a character code switch 27
of a program switch 28

One-for-One Instruction, Defined 9,31
mnemonic codes for 32
additions to basic operand 21,34

Operand Modifier 35,42
Operation Codes, 7080 32
Operator's Notebook 8,60
Overlapping, Defined 46

Processor, 7080 7
Processor Library, Defined 62
Program Listing, Contents and Details of
Program Switch, Defined 9,28

see also S~, S~
Pure Decimal, Defined 62

RASN Statement 49
RCD Statement 14
Record, Defined 62
Record Mark 15,17
Referencing, Defined 8
Report/File Mode Statement 53
Reset Character 58
RPT Statement 19

SASN Statement 48
Secondary Mode, Definition 62

l064/01P

59

Secondary Field Definition,
Significant Zeros, Defined
Source Program, Defined
Special Characters, Defined
SUBOR Statement 49
SUBRO Statement 49
Subroutine

assignment of
Class A and B

49,51
52

Use of
19
6

62

inclusion in program
Switch Definitions 8,26
S~ Statement 29

51

S~ Statement 29
Symbolic Analyzer 8, 60

Tag, Rules for Writing
Tag Operand 31,38
TCD Statement 50
TITLE Statement 54

12

Trailing· Zeros, Defined 19
TRANS Statement 52
Transfer Card 46,50

see also TCD

"00" Transfer Card 46,50

38

Index 91

C28-6263-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

