Systems Reference Library

IBM 7080 Processor: Autocoder Language

This publication contains specifications for using
Autocoder, the basic symbolic language of the 7080
Processor. The types of statements that constitute
the Autocoder language include area definitions,
switch definitions, one-for-one instructions, macro-
instructions, address constants, and instructions to
the Processor. All statement types, except macro-
instructions, are described in detail. A general
discussion of macro-instructions is included. How-
ever, the detailed specifications for using them are
provided in the publication 7080 Processor:

General Purpose Macro-Instructions, Form
C28-6356.

The Introduction to this publication reviews some
basic aspects of programming, such as symbolic
programming systems and the IBM 7080 program-
ming systems. Other features of the manual include
descriptions of the following: The organization of
the object program deck, the format of the object
program card, and the standard and optional docu-
mentation produced during an Autocoder program
assembly. An extensive sample assembly is also
included to illustrate what the 7080 Processor pro-
duces. The assembly contains many examples of
correct and incorrect language usage.

File Number 7080-22
Form C28-6263-2

MINOR REVISION (September 1964)

This publication, Form C28-6263~2, is a minor revision of the
previous edition, Form C28-6263-1, and incorporates the contents
of the Technical Newsletter N28-1172, This revision does not
obsolete either the previous edition or the Technical Newsletter.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. 637, Neighborhood Road, Kingston, N.Y, 124

@ 1962 by International Business Machines Corporation

INTRODUCTION e

Basic Aspects of Programming .- . .

Symbolic Programming Systems . .
The Symbolic Language . . .

The Processor . . . PUEPN
The Basic 7080 Programmmg System e

The 7080 Processor

Autocoder Language
Input/Output Control Systems for Use with
Autocoder Programs « « « « + &

Higher Languages of the 7080 Processor . . .

STANDARD FORMAT OF AUTOCODER
STATEMENTS

Program Identification

Pglin

Tag . « ¢ v v o v v v e e e e e e e e e

Operation .,

Operand ¢ v ¢ v ¢ v o o o o o

Comments v v+ v o o v .

Flag

AREADEFINITIONS « ¢ o 4 .

Definition of a Record -- RCD

Definition of a Constant Factor -- CON , . . .

Definition of a Floating-Point

Number -- FPN . .,

Definition of a Report Format - RPT e e e

Definition of a Continuous Portion of

Memory-NAME

SWITCHDEFINITIONS

Data Switches
Character Code -- CHRCD
Bit Code -- BITCD.

Program Switches
Switch Set to Transfer -- SWT
Switch Set to No Operation -- SWN, . , . .

Console Switches
Alteration Switches -- ALTSW

ONE-FOR-ONE INSTRUCTIONS

One-for-One Instruction Format

BasicOperands « ¢+ ¢ « & .
TaAg « v ¢« v 4 e i e e e e e e e e e e
Literal
Actual .,
Location Counter

Blank . . . e .

Additions to Basic Operands e e e e e e e
Character Adjustment
Operand Modifier, ..
Indirect Address . . . e e e e

Multiple Additions to a Basic Operand

GENERAL PURPOSE MACRO-INSTRUCTIONS
General Purpose Macro-Header Format . . .

Types of Macro-Header Operands

Page

@@= oo

=
(=]

11
11
11
12
12
12
12
12
13

14
14
17

18
19

23

26
26
27
27
28
29
29
29
29

31
31
31
31

33
34
34
34
34
35
35
35

37
38
38

Tag Operands .
Literal Operands .
Types of Lozenges . .
Omitted Operands
Importance of Properly Defmed Data erlds .
Examples of Macro-Instructions and Their Use

ADDRESS CONSTANTS
ADCON Address Constant
ACON4 Address Constant . . ., .

ACON5 Address Constant . . e e e e
ACONG6 Address Constant
Address Constant Literal .

INSTRUCTIONS TO THE PROCESSOR

Instructions to the Processor-Standard Assembly

Procedures e e e
Location Assignment -- LASN e e e
Special Assignment -- SASN
Relative Assignment -- RASN ., . . .
Assignment of Subroutines within Macro-
Instructions -~ SUBRO
Assignment of Library Subroutmes --
SUBOR . . .

Assignment of Literals - LITOR
Transfer Card -- TCD
Instructions to the Processor- Object Program

Content
Include Subroutine -- INCL e e e
Translation -- TRANS,
Source Program Language -- MODE

Coding Generated in 7080 Mode

Instructions to the Processor-Program Listing
Skip to New Page -- EJECT
Title for Routine or Comment -- TITLE .
Instructions to the Processor—Multiple
Literal Tables
Literal Start -- LITST
Literal End -- LITND
Restrictions on Multiple Literals ..
Flag Characters and Their Meaning . . .

ASSEMBLYOUTPUT
Object Program Deck
Standard Assembly Documentatlon .
Program Listing.
Optional Documentation

Operator's Notebook

Symbolic Analyzer.
Details of the Program Listing
APPENDIX+ ¢ v+« v o .
SAMPLEASSEMBLY
GLOSSARYOF TERMS
INDEX ¢ v v v v v v v v v v e

CONTENTS

Page

.. 38
P 39
- 39
e 39
... 39
. . 40
. 42

. 43
43

43

. 44
44

. 46
46

PPN 46
P 48
. 48
. 49
49

[50
PN 50
PR 51
[N 51
PPN 52
e 53
e e e . 53
... 54
. 54
... 54
55

55

. 56
. 56
. 57
59

59

59

59

. 60
. 60
60

. 60
62

. 64
. 89
. 90

This manual contains detailed specifications for
coding programs using Autocoder, the basic sym-
bolic language of the 7080 Processor. All parts of
the language except macro-instructions are fully
described. A brief introduction to the general-
purpose macro-instructions provided by IBM for
7080 users is provided in this publication; a full
explanation may be found in the publication, 7080
Processor: General Purpose Macro-Instructions,
Form (C28-6356. Procedures for writing new
macro-instructions for incorporation into the lan-
guage are described in the publication, 7080 Proc-
essor: Preparation of Macro-Instructions, Form
C28-6264.

Just as the Autocoder language described in this
publication is the basic language of the 7080 Proc-
essor, so is Autocoder III the basic language of the
predecessor system, the 7058 Processor. The
over-all similarity of the two languages is such that
this manual has been modeled after the manual
describing Autocoder III. The major improvements
that distinguish 7080 Autocoder from Autocoder I
have been fully integrated into the following pages
and may not be apparent, even to long-time users
of Autocoder ITII. Despite this, no attempt has been
made in the body of the manual to call attention to
the differences; to do so might prove distracting,
particularly to readers without a background in
Autocoder III. However, significant differences
between the two languages have been summarized
in the Appendix for the convenience of experienced
programmers who want a rapid survey of 7080
Autocoder in the light of their knowledge of Auto-
coder ITI. But it is expected that every program-
mer, before writing programs in 7080 Autocoder,
will have become familiar with all sections of this
manual,

The background discussion that follows assumes
that the reader has had little programming experi-
ence. Readers already familiar with the IBM 7080
Data Processing System may wish to go directly to
the body of the publication. Further information on
the IBM 7080 may be found in the reference manual,
IBM 7080 Data Processing System, Form
A22-6560-2, and in 7080 Systems Summary, Form
A22-6775. Other publications that may be of
interest to 7080 users are abstracted in the publi-
cation, IBM 7080 Bibliography, Form A22-6774.

BASIC ASPECTS OF PROGRAMMING

This explanation is written for the inexperienced
programmer, The material is not detailed or
comprehensive in scope. It is an outline of basic

INTRODUCTION

program requirements, symbolic programming
languages, and the program assembly process.
These concepts are considered within the frame-
work of the IBM 7080 Data Processing and Program-
ming Systems.

A program is written in order to process data in
a specified manner. In commercial data processing,
most of the data is in the form of business records;
e.g., accounts receivable, sales records, inven-
tories, payrolls, etc. The main function of a pro-
gram is to process these records as specified, and
these record-processing routines may be considered
the body of the program. They are often called the
main-line routines or the main-line coding. How-
ever, the program does not consist solely of these
routines.

Any program must also include routines for
bringing the records to be processed into core
storage, and for taking the processed records out
of storage. The routines which handle this data
movement are called input/output routines. Although
records and programs may be stored on magnetic
tape or punched cards, magnetic tape is generally
used with large~-scale data processing systems.

A program must also contain actual storage loca-
tions for each instruction, and locations for the
storage area or areas that the records will occupy.
Records are usually grouped in blocks; consequently
an entire block enters storage at one time. Simi-
larly, the processed records are reblocked in stor-
age before being placed on tape. Programs dealing
with blocked records generally reserve space for
separate input and output areas, the areas being
equal to the size of the record block. In such a
case, a work area equal to the size of one record
must also be reserved, so that each record can be
taken from the input area, moved to the work area
for processing, and then placed in the output area.
The processing instructions can then be addressed
to the work area, and do not have to be modified.

If the records were to be processed in the input area,
the instructions would have to be modified to operate
on each record in turn. Consequently, most pro-
grams must reserve space for input, output, and
work areas.

A program must also provide routines for
detecting and handling error conditions resulting
from input/output operations. Such routines may
reread or rewrite the records in error, place the
invalid records on a special tape, attempt to
determine whether or not the error is in the tape
itself, etc. Error detection routines may include
the procedure to be executed when an error condition
prevents the continuation of processing.

Introduction 5

Finally, there are supplementary procedures
which must be performed by all programs but which
are not directly connected with the main-line proc-
essing. They fall into no specific category,
although they might be described as procedures
which implement the operation of the program.
Those which are executed before any main-line
processing begins are called housekeeping routines.
Those which are executed after all main~line proc-
essing is completed are called end-of-job routines.
Housekeeping operations include such procedures
as readying input/output units, setting ASUs,
checking and writing tape identifications, and bring-
ing the first block of records into storage. End-of-
job routines include such procedures as moving the
last block of records from storage to tape, writing
tape identifications, rewinding tapes, and writing
messages.

To sum up, a program must incorporate at
least the following procedures:

1. Data processing

2. Input/output

3. Storage assignment

4, Error detection and correction

5. Housekeeping and end-of-job

SYMBOLIC PROGRAMMING SYSTEMS

A program may be written in the actual (i.e.,
machine) language of the computer on which it will
run, or it may be written in a symbolic language.
If it is written in machine language, it can be
executed by the computer directly; but if it is
written in symbolic language, it must first be
translated into machine language before it can be
executed. The length and complexity of programs
today makes programming in machine language
extremely difficult, and results in programs which
are increasingly liable to error. However, power-
ful symbolic programming systems have been
developed to relieve the programmer of the many
burdens involved in machine-language program-
ming.

A symbolic programming system consists of a
symbolic language and a processor. The language
provides a method of representing program func-
tions as a series of meaningful statements rather
than as a collection of alphameric codes and actual
storage locations. The processor converts the
symbolic-language program into a machine-
language program, assigns storage locations to the
program, and performs various other functions.
The symbolic-language program is generally called
the source program; the machine-language program
is called the object program. In other words, the
source program is the input to the processor, and
the object program is the output of the processor.

6

Thus, processing the data for which a program
is written is the second of two data processing
applications. The first application is the processing
or assembly of the source program itself, with the
object program as output. The second application
is the processing of the actual data by the object
program; the output of the second is the solution of
the problem for which the program was written.
Once the object program is produced, it can be
used in subsequent data processing applications
until it is obsolete, or until it is modified to such
an extent that a reassembly is advisable.

Since the programs written in symbolic language
need not make location assignments, the order of
the statements that compose the program may be
changed and the program reassembled without
modification. For the same reason, it is easy to
insert or delete statements in a symbolic-language
program. When it is reassembled, a new object
program is produced.

The Symbolic Language

Instructions form a major portion of the statements
in a symbolic-language program just as they do in
a machine-language program. A symbolic one-for-
one instruction contains a mnemonic code represent-
ing a machine operation and a symbolic address
representing the storage location of data or an
instruction. Such instructions are called one-for-
one because the processor replaces each one with
one machine instruction. An important development
in symbolic programming is the macro-instruction,
which is a source-program statement that is
eventually replaced by a sequence of machine
instructions. Essentially, it is a request for
several one-for-one instructions, each of which is
subsequently replaced by one machine instruction.
A macro-instruction also contains a mnemonic
code, but the code does not represent any one
machine operation. A macro-instruction also con-
tains a mnemonic code, but the code does not repre-
sent any one machine operation. A macro-instruc-
tion usually contains more than one symbolic
address; each address represents the storage loca-
tion of data or of an instruction.

Symbolic languages enable the user to write pro-
gram statements describing the storage areas that
will be occupied by program data. On the basis of
the information the processor obtains from these
statements, it assigns actual storage locations to
the data areas. It also uses this information when
generating one-for-one instructions to replace
macro-instructions that reference these areas. If
the data is to be supplied to the area by input
records, the statement indicates the size of the
area and the type of data that will occupy it. If it is

not, the statement itself supplies the data, which
is placed in storage as a constant.

The programmer is also able to create a
symbolic address for each data area or instruction.
The symbolic address represents the actual storage
location to be assigned by the processor, and it
provides the means of referencing an area or an
instruction. This is done by using the symbolic
address as the operand of the instruction that
makes the reference. Usually, it is desirable to
create symbolic addresses that describe the areas
or instructions to which they are assigned. For
instance, an address such as "master file" might
be assigned to a data area which will be filled by
records from the master tape; an address such as
"start" might be assigned to the first instruction
to be executed; etc. In converting the source
program to machine language, the processor
replaces each symbolic address with an actual
storage location, just as it replaces each mnemonic
code with an actual operation code.

The Processor

The processor of a programming system is a
machine-language program that converts a
symbolic-language program into machine
language. The process of convertingis called
assembling the program. In other words, a proc-
essor assembles a source program into its object-
program form. During the assembly, the proc-
essor analyzes the source program, generates
one-for-one instructions to replace each macro-
instruction it encounters, inserts any subroutines
requested by the program, substitutes machine-
language instructions for all one-for-one instruc-
tions, and assigns storage locations to the object
program.

The processor contains a library of macro-
instructions and subroutines. Every macro-
instruction contains a set of incomplete one-for-
one instructions. When a source program
macro-instruction is encountered during assembly,
the processor determines which one-for-one
instructions are appropriate, completes those
which it selects, and inserts them into the object
program. Selection and completion of the appro-
priate instructions are done on the basis of infor-
mation from the program analysis made by the
processor. The same macro-instruction may be
used many times in a program, but the one-for-one
instructions generated from it will not necessarily
be the same each time. The variation results
from differences in program requirements or data
format.

Library subroutines differ substantially from
macro-instructions. A subroutine is a fixed set of
instructions. These may be one-for-one instruc-
tions or combinations of one-for-one instructions
and macro-instructions. When a request for a
subroutine is encountered during assembly, the
set of instructions is taken from the library and
inserted into the program. The instructions will
not vary from program to program unless the
subroutine itself contains macro-instructions. The
programmer can write macro-instructions and
subroutines and add them to the processor library.

The object program is not the only output of the
processor. A sequential listing of the source
program is also produced. Each program step in
the listing is assigned an index number for refer-
ence purposes. The one-for-one instructions in
the source program are shown with the correspond-
ing machine-language instructions and the storage
locations assigned to them. The source-program -
macro-instructions are followed by the one-for-one
instructions generated from them, the machine-
language instructions corresponding to the one-for-
one instructions, and the storage locations assigned
to the instructions. Location assignments are also
shown for all record areas and subroutines.

THE BASIC 7080 PROGRAMMING SYSTEM

A programming system has been defined as a
symbolic language and a processor. The basic
programming system for the 7080 Data Processing
System is composed of Autocoder language and the
7080 Processor.

The 7080 Processor

The 7080 Processor, hereafter called ''the Proc-
essor, " is a machine-language program that
assembles programs written in Autocoder for the
IBM 7080. The Processor operates on the 7080
when it is in 7080 mode. The Processor itself is
so large that it must operate through a number of
interrelated sections, or phases. Each phase is a
program which performs one or more of the
various assembly functions. The phase may be
classified as belonging to one of the two portions
of the Processor: the compiler and the assembler.
The compiler phases analyze the source program
in detail, generate Autocoder statements from
higher-language statements, and generate one-for-
one instructions from macro-instructions. The
assembler phases assign storage locations, replace
one-for-one instructions with machine-language
instructions, and create the Processor output.

Introduction 7

The output of the Processor consists of the
object program in card form, and the program
listing with related messages. Both are produced
on tape. The listing and messages are the mini-
mum assembly documentation. Additional docu-
mentation consisting of the Operator's Notebook
and/or the Symbolic Analyzer can be requested.

The Operator's Notebook lists various types of

information about the program, including the fol-
lowing:

1. Programmed halts and halt loops

2. Titles of, and comments on, the various
portions of the program

3. A list of special 7080 program statements

4. Specific location assignments requested by
the program : ,

5. Program switches set up by the Processor
at the request of the program

The Operator's Notebook is useful to the pro-
grammer in debugging the object program, and to
the console operator during the object-program
run.

The Symbolic Analyzer is an alphabetical list of
the symbolic addresses used in the program. Each
symbolic address is followed by a list of the
instructions which reference it. All may be easily
located in the listing because their index numbers
are shown. Referencing a field or an instruction
(as used in this publication) means specifying the
data to be operated on or specifying an instruction
to be executed. For example, an Autocoder
statement that calls for data movement to a work
area references the data and the work area; a
statement that causes the program to transfer to
an instruction references that instruction.

The Processor library contains a set of general
purpose macro-instructions which cover most
commercial data processing functions. Program-
mers may write their own macro-instructions and
subroutines and insert them in the library. How-
ever, the preparation of macro-instructions is a
complicated procedure, requiring a thorough
knowledge of Autocoder and the Processor.

Autocoder Language

Autocoder is the basic symbolic language for
programs to be assembled by the Processor.
Statements written in the higher languages may be
inserted in Autocoder programs. During the
assembly, certain phases of the Processor trans-
late these statements into a series of Autocoder
statements. Program steps written in Autocoder
language are called statements rather than instruc-
tions, because the language contains more than a
set of processing instructions. There are six
types of Autocoder statements:

N

Area definitions

Switch definitions
One-for-one instructions
Macro-instructions

Address constants

. Instructions to the Processor

.

AREA DEFINITIONS: Area definitions reserve
storage space for data supplied either by records
or by the programmer. If the space will be
occupied by data from records, the area definitions
also describe the nature of the data. In all other
cases, the area definitions specify the constant
data to be placed in storage. The storage space
reserved by each area definition is generally called
a data field. Area definitions may also be used to
indicate that a series of adjacent data fields are to
be treated as the interior portions of a single unit.

In defining input/output areas, it is usually
necessary to define a data field for a block of
records without making any attempt to distinguish
one record from another or to identify portions of
a record. However, in defining the work area, the
opposite is true. Since an individual record will be
moved into the work area, it is usually defined as
a series of data fields which correspond to the
various portions of the record.

Suppose that each record in a file contains the
name and yearly salary of an employee, and that
these records are on tape in blocks of ten. Proc-
essing consists of updating the yearly salary. The
input (and the output) area is defined as one data
field, although it will contain ten records. How-
ever, the work area to which each record is moved
for processing is defined as two data fields: one
for the employee's name, and one for the
employee's yearly salary. Only the salary field
is referenced by processing instructions, but the
entire record is referenced as a unit when it is
moved to or from the work area. Consequently,
the work area must actually be defined as a data
field consisting of two interior fields.

SWITCH DEFINITIONS: Switch definitions describe
three types of switches: data switches, program
switches, and console switches., All three may be
used to control the path of the program; e.g., to
determine whether or not all the routines in the
program will be executed, to determine the sequence
in which routines will be executed, etc.

Data Switch: A data switch is a data field in which
alphameric codes are placed. The definition of the
switch allows a meaning to be associated with each
code. When a data switch is defined as a portion
of a record area, the records supply the codes for
the switch.

When a data switch is defined independently of a
record area, the program itself supplies the codes.
Referring again to the employee records used

as an example in the section on area definitions,
suppose that each record consists of three fields:
name, yearly salary, and number of exemptions of
the employee. The work area is defined by area
definitions for the name and yearly salary fields,
and a switch definition for the exemption field. In
this case, the codes in the data switch would be
numerical characters. The manner in which each
record is processed depends on the number of
exemptions; the program therefore contains a
number of processing routines. As each record

is placed in the work area, the data switch becomes
the character contained in the exemption field of
the records. The program tests the switch to
determine what code is present, and then transfers
to the processing routine appropriate for that code.

Program Switch: A program switch is an instruc-
tion that causes the program either to continue
sequentially or to transfer. When a program
switch is ON, the program transfers to an out-of-
line instruction. When the switch is OFF, the
program executes the next in-line instruction.

Suppose that it is desired to type a message if a
certain error condition is detected. The program
switch is defined so that when it is OFF, the pro-
gram proceeds to the next instruction; and when it
is ON, the program transfers to the message-
writing routine. Initially, the switch is set OFF.
As long as it remains OFF, the program continues
through the switch to the following instruction. If
the error-detection routine encounters the error
condition, it sets the switch ON. Then, when the
program reaches the switch, it transfers to the
message-writing routine.

Console Switch: A console switch is one of the six
alteration switches on the console. They are
numbered 0911-0916. These switches must be set
manually by the console operator. Console
switches are useful when it is desired to execute a
routine only for certain object runs. For example,
a program that is run each week may include a
routine that should be executed only at the end of
the month., If a console switch is defined, the pro-
gram may test the switch and transfer to the end-
of-month routine when the switch is ON. The
console operator must, of course, set the switch
ON prior to each end-of-month run.

ONE-FOR-ONE INSTRUCTIONS: One-for-one
instructions are the symbolic equivalents of
machine instructions. Coding any portion of a
program in one-for-one instructions means much

more hand-coding for the programmer than coding
the same portion in macro-instructions. This also
increases the possibility of error. One-for-one
instructions should be used only when it is inad-
visable to use macro-instructions.

MACRO-INSTRUCTIONS: A macro-instruction is a
powerful programming device. Essentially, it is a
request for those one-for-one instructions that will
accomplish the function stated by the macro-instruc-
tion. These instructions are selected to suit the
characteristics of the data fields and/or the other
hand-coded instructions referenced by the macro-
instruction. The field characteristics are obtained
from the field definition analysis made by the Proc-
essor. Whenever a choice exists among the one-
for-one instructions to be generated, the Processor
selects the most efficient coding.

An illustration of macro-instruction scope is:
The basic coding generated from the ADDX macro-
instruction adds the contents of two numeric fields
and stores the result in a field designated as the
result field. But, if the result contains more
decimal positions than the number specified in the
result field definition, the generated coding includes
instructions either to round or to truncate the
excess positions before the result is stored. The
choice depends on which process the programmer
specifies in the macro-instruction. Also, if the
result contains more integer positions than the
number specified in the result field definition, the
generated coding includes instructions to truncate
the excess high-order positions before the result
is stored. However, the programmer may request
an option which generates instructions to do the
following: truncate the excess positions if they
contain zeros and store the result; transfer to a
routine designated by the programmer, if the excess
positions do not contain zeros. This entire pro-
cedure, which obviously involves many one-for-one
instructions, is generated from one macro-instruc-
tion.

ADDRESS CONSTANTS: An address constant con-
tains the symbolic address of a data field or an
instruction. During the program assembly, a con-
stant is created from the actual location assigned

to the field or instruction. Address constants are
used to initialize an instruction. Initialization is
the process of supplying a reference to an instruc-
tion that lacks one, or replacing the reference made
by an instruction. An instruction makes a reference
by designating the symbolic address of a data field
of another instruction. The symbolic address
designated by an address constant is used to
initialize the instruction.

Introduction 9 !

Suppose that an input area contains a block of
records, each of which must be moved from the
area in succession. The input area is given a
symbolic address so that the area can be referenced
by the instruction that moves the records. Initially,
the instruction has as its address portion the sym-
bolic address of the area, thus referencing the first
record in the area. However, the address portion
of the instruction must be modified before it can
reference successive records. The modification is
generally an increment equal to the size of one
record. Eventually, the input area is emptied, and
a new block of records is placed in it; but the
modified instruction no longer references the first
record. At this point it is necessary to initialize
the instruction (i.e., return the instruction to its
original form) by means of an address constant.
Assume that the address constant has been coded
and that it consists of the symbolic address of the
input area. Now the address constant can be placed
in the address portion of the modified instruction.
Once the instruction is initialized, it references
the first record in the area again.

INSTRUCTIONS TO THE PROCESSOR: Instructions
to the Processor allow the programmer to control
certain aspects of the assembly process and to take
advantage of the special features of the Processor.
The Processor instructions are written as Auto-
coder statements in the program. When they are
encountered during assembly, the Processor per-
forms the operations they request. Instructions to
the Processor concern the following aspects of the
assembly:
" 1. The listing of the program

2. Location assignments made by the Processor

3. Coding generated by the Processor

INPUT/OUTPUT CONTROL SYSTEMS FOR USE
WITH AUTOCODER PROGRAMS

Input/Output Control Systems (IOCS) have been
developed for the IBM 7080. IOCS consists of a

10

group of routines that handle all input/output func-
tions. IBM 7080 IOCS routines are made available
to an Autocoder program when IOCS macro-instruc-
tions in the Processor library are used in the
program.

Titles, form numbers, and abstracts of available
publications dealing with 7080 IOCS may be found in
the publication, IBM 7080 Bibliography, Form
A22-6T74.

HIGHER LANGUAGES OF THE 7080 PROCESSOR

As mentioned earlier, the 7080 Processor accepts
program statements written in several higher
languages. The languages are: Fortran; Report/
File language; Decision language; Arithmetic
language, and Table-Creating language. Various
Processor phases translate each of these statements
into one or more Autfocoder statements.

FORTRAN is the name for FORmula TRANslation
language. As the name implies, complex problems
can be stated in the form of mathematical formulas,
using FORTRAN. Both fixed point and floating
point calculations are possible.

Report/File language is a set of statements that
may be used to describe the format and contents of
a report or file. The routine generated from these
statements will create the report or file,

Decision language can be used to request a
logical decision to be made on the basis of a test of
the various conditions supplied in the statement.

Arithmetic language can be used to request that
a series of mathematical computations be per-
formed on the elements supplied in the statement.

Table-Creating language can be used to describe
tables suitable for data-searching, along with the
associated table entries.

Titles, form numbers, and abstracts of publica-
tions dealing with the higher languages of the 7080
Processor may be found in, IBM 7080 Bibliography,
Form A22-6774.

Autocoder programs are written on the IBM 7080
Processor Coding Form, Form X28-1636-1, shown
in Figure 1. One card is punched for each line of
the coding sheet. The card designed for 7080 Auto-
coder programs is the 7080 Processor Source
Card, Electro N14106. An Autocoder statement is
formed by filling out the appropriate fields on the
sheet according to the specifications for the type of
statement being written. Some statements may
occupy more than one line. The term 'field' ap-
plies to the character positions included under each
heading on the program sheet. The position num-
bers listed with the field headings correspond to the
columns on the card. The lower row of field head-
ings (including ""Flag") define the fields for source-
program statements. The upper headings list
special fields that are used in the preparation of
user-written macro-instructions.

S

TANDARD FORMAT OF AUTOCODER STATEMENTS

Note: Throughout this publication, the field headed
"SEQUENCE (PGLIN)" will be referred to as the
pglin field, the field headed "NAME (TAG)" will be
referred to as the tag field.

PROGRAM IDENTIFICATION (COLUMNS 75 - 80)

The identification is filled in at the top of the coding
sheet. It should appear in columns 75 - 80 of every
card punched for an Autocoder statement.

PGLIN (COLUMNS 1 ~5)

The sequence of the coding sheets and the state-
ments on the coding sheets is designated by the
five-position entry in these columns. Columns 1
and 2 designate a two-position page number that is
used to determine the sequence of the coding sheets.

Form X28-1636-1
Printed in U.S.A.

BN

Program [_] o Macro (]

7080 PROCESSOR CODING FORM

Punching Instructions Page of
Graphic Card Form ¥ - X
Programmer lbu'e Punch Coding on Bock D 7 80
v Field Designoti ly for Mocro Ce Onl, oot 1 lofF
Inclusion Test (Upper Field Dusignations Apply for Mocro i ME | M2 | M3 | ST sy
. 1t 1 igfe
Sequence Nome Operation | Num Operand Comments | 1 | [| R
(Pglin) ! (Tog) [T T S |
1003 Isle 8 o113 sl 18 zolnioles 25 2728 30 3233 35 37383940 4243 45 4748 50 5253 S5 5758 60 62163 |5 7 lev in izafn4
] T T
,| | | |] L, } | [T N N
— } +—+ + e
AL PRI I N PR P S R U A SIS AP NN N SR SOS B |
LAt o o o o B MM B e b ————+ T
1 | | 1 |] e —— [P PR AP B
])) N T T
! s RPN N] — |, - N !Al‘;.l.l
: A L o S o + } T
! - - PP I —— P U RPN PO U B S SO
T + L e B R s s
i | [| 1 Ly e — [LI B
- ettt +—+ + T T
| - R Ly N I I NN S SO SN B B
4 + ——+ e L e T
N |]] | | e LU HOPO I P B
,,,,,, — v [T A T
! ! . | ettt e ey e ! M SO N R
e e e e + bbbttt T
L | | N . ey A M P NP S SO IO B
i ottt t +—+ e T
! | ;] . s - N N P 1
— ——t + At ——+ et A
! | N A - | | | | i [A
I A L S R 1 A L e A B 2 e ! T T
- | + et N — s — " N - '
Y - T ——
—— l - ! s - o I RN S SRS S N
[[t
- - PR MR I - - s b L Ly g
| [[
— N R S EEFE U N - T EEPUPRIRVIN S P S N
O e e L L N B : R
e + — s s - e - s
+ —t - +—t s e
NP B | ey o —— N PRSI RTTRTIrI AT N
......... +——+ e — 1 —
| . N R | e Ly A S O S E
At ettt ———t + b+ + e —
! “‘Irr t ———+ t %##.!9 +—+ I-::!. .!....!. .v!..%ﬂlf IJ!‘I‘ ‘l'l
et + e R i T
U - PRIV IFSFEPINE IV SIS E— e:::!{#‘!:.‘la!#:::!'::l PR N P I W
[' R
NN B EVERE RN EVUTI RPN AP AT RS L.] | ST WPRFRPUN IV AN MU N B

* A standard card form, 1BM electro N14106, is available for punching source statements from this coding form.

Figure 1. IBM 7080 Processor Coding Form

Standard Format of Autocoder Statements 11

Any alphameric character may be used in the
entry. Normally, however, special characters are
not used. The IBM 7080 collating sequence, shown
in Figure 2, is used to determine the order of the
pages.

Columns 3 -5 designate a three-position line
number that is used to determine the sequence of
the statements on the coding sheets. Any alpha-
meric character may be used in these positions,
although special characters are not normally used.
Ordering should be done according to the 7080
collating sequence. It is recommended that column
5 be left blank except when designating the sequence
of insertions.

The back of each sheet may be used for inser-
tions. The insertion page number should be the
page number of the statement that the insertion is
to follow. The insertion line number should be
higher than that of the statement preceding the
insertion, and lower than that of the statement fol~
lowing the insertion. In the case of three-lines
inserted between two statements numbered 03b and
04b (b represents a blank), the insertions might be
numbered 031, 032, and 033; or they might be
numbered 03A, 03B, and 03C.

TAG (COLUMNS 6 - 15)

A tag is the symbolic address that represents the
actual location of a data field or an instruction.

The field is filled in starting in column 6. When an
Autocoder statement references a tag, it refers to
the data field or the instruction at the storage loca-
tion represented by the tag. During assembly, all
fields and instructions are assigned storage loca-
tions, and all references to tags are replaced with
the locations assigned to the tags.

A tag may contain up to ten characters; these
characters may be alphabetic, numerical, and
blanks. A tag may not contain special characters.
If composed of numerical characters only, a tag
must consist of five or more characters. It is
recommended that tags not start with one or more
blanks, because the Processor must left-justify
them, a time-consuming operation. It is also
recommended that pure numerical tags not be used.
It is best to create tags that describe the data

fields or the instructions to which they are assigned.

Tags should not be assigned unless they are refer-
enced by program statements; unnecessary tags
slow the assembly process and produce needless

messages. To avoid confusion and possible im-
proper macro generation, it is strongly recom-
mended that no tag begin with either of the follow-
ing three-letter prefixes: CSF, IBM.

OPERATION (COLUMNS 16 - 20)

The mnemonic code of the Autocoder statement is
placed in the operation field, starting in column 16,
No machine operation code can be used.

NUM (COLUMNS 21 -22)

The use of the NUM (numerical) field varies
according to the type of Autocoder statement
being written. A one-position entry is placed in
column 22.

OPERAND (COLUMNS 23 - 39)

The use of the operand field varies according to the
type of Autocoder statement being written. The
field is filled in starting in column 23, and the entry
may be continued into the comments field. Macro-
instruction operands may be continued from the
comments field of one line into the operand and
comments fields of succeeding lines of the coding
sheet.

COMMENTS (COLUMNS 40 - 73)

Additional information about an Autocoder state-
ment may be written in the comments field and will
appear in the program listing. Comments are use-
ful for explaining the purpose of program state-
ments. The field can begin before or after column
40. The comments may be continued in the com-
ments field on subsequent lines of the coding sheet;
there is no limitation on the number of comments
continuation lines,

The rules governing comments and comments
continuations vary according to whether or not the
comments accompany a macro-instruction. If they
accompany a macro-instruction, they must be
separated from the operand by a minimum of two
blank spaces, whether the operand terminates in
the operand field or continues into the comments
field. The comments continuation lines for macro-
instructions may not contain entries in any fields
except the pglin and comments fields.

If the comments do not accompany a macro-
instruction, they do not have to be separated from

Blank . D#& $* -/, %% @ 0 A through | O J through R # S through Z 0 through 9

Figure 2. IBM 7080 Collating Sequence

12

the operand by blank spaces, and comments con-
tinuation lines may contain entries in any columns
except 16 (first position of the operation field) and
21-22 (numerical field). However, to make the
comments easier to read, it is recommended that
the continuation lines be restricted to entries in the
pglin and comments fields.

FLAG (COLUMN 74)

Characters written in this column are used for
communicating with the Processor. The types of
characters that may be placed in this column (and
an explanation of their meanings) are described in
the section "Instructions to the Processor."

Standard Format of Autocoder Statements

13

AREA DEFINITIONS

Area~-definition statements describe data fields.
The data may be variable data supplied by records,
or constant data supplied by the area definition
statement. The programmer must know the length
and composition of the records, so that each field
may be defined correctly. The Processor uses the
information provided by area definitions when it
reserves storage space for the fields and when it
encounters instructions that reference the fields.

There are five types of area definitions:

1. Definition of a Record ~- RCD

2. Definition of a Constant Factor -- CON

3. Definition of a Floating Decimal Point
Number -~ FPN

4, Definition of a Report Format Field -- RPT

5., Definition of a Continuous Portion of
Memory -- NAME

An area-definition statement must contain a tag
if the field is to be referenced. The reference is
made by using this tag in the operand of the Auto-
coder statement making the reference. Since the
tag requirement applies to all area definitions, the
tag field will not be discussed separately in the
remainder of this chapter.

DEFINITION OF A RECORD -- RCD

The function of an RCD statement is to define a
data field in which a record block, an individual
record, or a portion of a record will be placed.
The definition specifies the size of the field and
the nature of data it will contain, The RCD state-
ment is written as follows:

OPERATION FIELD: The mnemonic code RCD is
placed here. In a continuous series of RCD state-
ments, only the first need contain the mnemonic
code. The Processor assumes that each immedi-
ately subsequent statement with a blank operation
field is an RCD, and treats it accordingly. This
assumption makes it possible in subsequent state-
ments to use columns 17 -20 of the operation field
as an expansion of the numerical field. (The
operation field is assumed to be blank if column 16
is blank.)

NUMERICAL FIELD: The size of the data field is
entered here. A one-digit entry is placed in col-
umn 22; it need not be preceded by a zero. When
the operation field contains the RCD code, the
numerical field is limited to a two-digit entry.
However, when the operation field is blank and the
statement has been preceded by another RCD

14

statement, columns 17 -20 of the operation field
may be used as an expansion of the numerical field.
Under these conditions, in effect, the numerical
field consists of six positions. Thus, data fields
which exceed 99 positions may be defined, but they
may not be the first in a series of RCD statements.

OPERAND FIELD: The operand field contains one
of the following:

1. A descriptive code. This is used to define
alphameric fields or numerical fields containing
integers only.

2. A description of an integer and decimal for-
mat. This is used to define numerical fields con-
taining mixed or pure decimals.

3. A layout of group marks and/or record
marks. This is used to describe the position of
group marks and/or record marks in a field.

Alphameric Fields and Numerical Fields of
Integers Only:

Code Contents of Field

+ Signed numerical data consisting of integers.

N Unsigned numerical data consisting of integers.

F Signed numerical data in floating-point form.
The field must consist of ten positions: a two-
character exponent, signed in the low-order posi-
tion, followed by an eight-character mantissa,
also signed in the low-order position. This is the
form in which a floating-point constant appears in

storage.
A Alphameric data which may or may not provide left
protection for the immediately subsequent field.
A+ Alphameric data which always provides left protec-

tion for the immediately subsequent field.

Left protection should be provided when the sub-
sequent field contains signed numerical data. The

low-order position of the field providing left protection

must be occupied by one of the following: an alpha-
betic character, a signed numerical character, a
blank, or any special character.

Figure 3 shows fields defined with descriptive
codes. Notice that the final field cannot be refer-
enced, because it is not tagged.

Numerical Fields Containing Mixed or Pure
Decimals: The operand must indicate the number
of integer and decimal positions in the field and
whether the field is signed or unsigned, This
may be done in either of the following ways.
(The first method is the preferred

use.)

Name Operation |Nom Oparand
s 8 "B 1w sl s 2Q|2| 22':3 B wm % 21 35 3738 3
NS 1 eNED RED Lo, |, S
ALLHBELELPL ., JRE8r |y L
SeNED, VB s
EL28T] b JOE e e

st + daeeld | ey

N | . |
Figure 3

1. Enumerating the number of integer and
decimal positions. Signed numerical fields are
represented as #+xx.yy, and unsigned numerical
fields as #bxx.yy, where xx and yy represent the
number of integer and decimal positions respec-
tively (b represents a blank position). If there are
no integer positions, xx is written as 00. If there
are less than ten positions on either side of the
decimal point, the numerical digit is preceded by
a zero. The sum of xx and yy must equal the entry
in the numerical field. The maximum size data
field that can be defined consists of 99 integer and
99 decimal positions.

2. Showing a layout of the integer and decimal
positions. Each integer and decimal position is
indicated by an X, with a decimal point placed in
the appropriate position. The layout of a pure
decimal starts with the decimal point, and is fol-
lowed by the necessary number of Xs to the right
of it. When signed numerical fields are being
defined, a plus sign is placed in the first position
of the operand, and is followed by the layout. The
operand defining an unsigned numerical field starts
with the layout itself. A blank position is not used
to indicate unsigned numerical data.

The total number of Xs must equal the entry in
the numerical field. Although both the decimal
point and the sign occupy positions in the layout,
neither is included in the count for the numerical
field entry. Neither the point nor the sign exists
in the record as a separate position. However, the
Processor needs this information for various pur-
poses, such as selecting the proper coding to re-
place macro-instructions.

The definitions in Figure 4 are paired, to show
how the same numerical fields would be defined by
each of these methods. Note that SIGNEDS3 is too
large to be defined by a layout.

Indicating the Position of Record Marks and/or
Group Marks: This information should be supplied
if the record that contains such characters is
referenced by a macro-instruction. The position
or positions the characters occupy must be defined

Name Operation | Num Operond
(Tag)
6 8 1011 13 is5lie 18 20§21 22§23 25 2728 30 3233 35 3738 39

sLenept . lred | sWros o3, |, ., |
S, L eNED D, |, IRCD Bl X X0, XXX

NN 20U b DoaaEE

/NS IGWEDL ReD |\ lialw .oy, |, |,
VNS LeWEDDL IRED, | 1/, X

Iff P VUSRS [P Wt
S LEeNED2 . IRCD | 327 XN VI R RN Y
S, LeMED2 ., RCD, J;ir' L

------ +—+

t +
| 5 2 I N I I

+-+—+——1—F]ttt

s 1 6NEP2 RCD . | 2% o0 .02 |, ., |,
Vst GlnED2 Re®, L ALXK L L
b A I I |

lreo | 7,3lg.+.4 2024 ||

™~
p<
b
X
X
3
p<
DX
X
P
X
|
|

.............

PR S WS S ' PR S
+—+——Ft-+—+—+—1+]t —t—t——tt—t+

o) caiEDa,
NN B

Figure 4

as one field of the record, unless no other informa-
tion is to be given about the record. The operand
must be a layout of the portion of the record that
contains the characters. The operand may indicate
one of the following: a terminal group mark, a
terminal record mark, or an internal group mark
followed by a terminal record mark. The operand
may contain the following symbols only:

record mark
#F group mark
b blank

Figure 5 shows two ways in which the position of
a terminal group mark could be indicated in defining
a record consisting of 31 positions of data, three
blanks, and a group mark.

Nome Operation Num Operand

{Tag)
é 8 1011 13 15116 18 20|21 22|23 25 2728 30 32 33 35 3738 39
LRSTWAY, lReD, 13418, ., |, ., e
=::=!¢::::4:==4::;’.!::: +

.........

!

+ bt}

SECOADWAY, \WReD tawld, L, Ly
}

|

+

......... +
.......

llllllllllllll —

If the three blanks had been data, the definition
for SECONDWAY would have been used. If the
blanks had been group marks, the definitions in
Figure 6 would have been used.

Area Definitions 15

Nome ‘Operation {Num ‘Operand [
(Tog)]
% 8 1N 18 a5ie 18 20§21 22/23 25 2728 30 3233 35 37.38 39§

If all the blanks had been group marks, the
record would have been defined as shown in Fig-

Wﬂy:::.p.’[’fmw3."’4::1;;::::4':,':.‘!.‘4 ure 10.
TP IPEFEENS S :q’::ﬁiitfa'g!‘:‘:':':‘:::.;5!%‘ »
;]] 1 . Name { Operation Operond
PR I]] | N 1 (Tog)]
N 16 8 1011 13 15116 18 30 32 33 35 3738 34
Figure 6 Fd RS TMWAY, , IRCD, s
’-::::1::':: NP
| . o
If one or more group marks appear within a
record, they may be made terminal by defining Figure 10

them as a seperate field and giving the field a tag.
Figure 7 shows how the four group marks within
a 90-position record may be made terminal by
being defined as a separate field.

‘Name]l'Operufian N Operond l

] {Tag)] |

6 8 10m 13 ishs 18 ol 25 728 3 3233 35 3738 3
ELRSTIPART, IRCD , Bolae, |, ., NI *1
RO L PIMARK L o A2 ed |, |
L.E.CO0NDPLART P <1 27, . N MM T £
RIS B o . I
Figure 7

Figure 8 shows two ways in which a record
terminated by three blanks and a record mark could
be defined.

e

Name Operation {Num | ‘Operand !
le 8 "B 15 ashe 1 @Juza 25 2728 30 3233 35 3738 39
(Ed RSTIWAY, IRCD, vl‘ﬂ| NN I NI B
PP SRR R y':::*:‘!:,:::“':e‘eesld.
N ? J —
S ECOoNPWRY, RED, . 29l | ., 1, .
PP LF, | —
sl] . L
Figure 8

If the final blank had been a group mark, the
record could have been defined in either of the ways
shown in Figure 9.

Operand
30 3233 35 37 333

Nome

{(Tag)

B8 ¥0mM 13

If a record of less than 51 positions is being
defined, and it is not desired to give any informa-
tion about the contents other than the location of
group marks and/or record marks, the entire
record may be defined by a layout operand. Fig-
ure 11 shows the definition of a 20-position record
which contains a group mark in the fifteenth position,
and a terminal record mark.

‘Name Operation {Num Operond ?
(Tag)
3 8 1011 13 15T 18 2082 22023 25 27 28 30 32 33 35 3738 3940 42

S Ly L2, 2ol . I A .t_i
| . TR . {

Attt

,,,,,,

16

Figure 11

COMMENTS FIELD: Comments may be started
here. If comments continuation lines are written,
columns 16, 21, and 22 of the continuation lines
must be blank. If the statement following the last
continuation line is blank in column 16 {but is not
blank in columns 21 and 22), the Processor assumes
that the line is another RCD statement.

USING AN RCD OF ZERO LENGTH: If the first
data field in a record exceeds 99 positions, its
RCD definition may be preceded by an RCD of zero
length. In this way, the definition becomes the
second in a series of RCD statements. The
mnemonic code RCD may be omitted in this second
statement. Columns 17 -20 of the operation field
may then be used as an extension of the numerical
field. No space will be reserved for an RCD of
zero length.

Restrictions on an RCD Statement

The size of a data field may not exceed mode mem-
ory size minus one. I a single RCD field specifies
a larger field size, the Processor will assume a
length of one for location and address assignment.
{The macro generator will use the actual size
specified unless it is greater than 159999. In
that case, a size of one will be assumed.)

Definitions of ore or more terminal group marks
may not indicate internal record marks or internal
group marks. Definitions of a terminal record
mark may not indicate internal record marks.

DEFINITION OF A CONSTANT FACTOR -- CON

The function of a CON statement is to define a data
field that will contain constant data, and to provide
the constant itself. The data may consist of any
combination of alphameric characters and/or
blanks. The CON statement is written as follows:

OPERATION FIELD: The mnemonic code CON is
placed here. In a continuous series of CON state-
ments, only the first need contain the code in the
operation field. The Processor assumes that each
immediately subsequent statement that is blank in
column 16 of the operation field is a CON, and
treats it accordingly. This assumption makes it
possible in subsequent statements to use columns
17 - 20 of the operation field as an expansion of the
numerical field.

NUMERICAL FIELD: The size of the constant is
entered here. A one-digit entry is placed in column
22, and need not be preceded by a zero. When the
operation field contains the CON code, the numeri-
cal field is limited to two positions. However, when
the operation field is blank and the statement has
been preceded by another CON statement, columns
17 - 20 of the operation field may be used as an ex-
pansion of the numerical field. Under these con-
ditions, in effect, the numerical field consists of
six positions. Thus, constants which exceed 99
positions may be defined, but they may not be the
first in a series of CON statements.

OPERAND FIELD: The constant is entered here.
If the entry in the numerical field is not equal to the
number of positions specified in the operand, the
Processor will do one of the following:

1. Truncate the excess low-order positions
when the numerical field entry specifies fewer
positions than those contained in the operand.

2. Supply low-order zeros or blanks when the
numerical field entry specifies more positions than
those contained in the operand. Blanks will be
supplied for alphamerie fields; zeros will be supplied
for signed numeric fields.

In Figure 12, the numerical field for TAG2 indi-
cates that the constant contains nine low-order
blanks.

Defining a Numerical Constant: A constant con-
sisting of signed numerical data must contain a

Name Qperation | Num Operand [{
o 8 B0 5 ushe s sl zgl_za 25 2728 30 3233 35 _ 3738 39
LAG1, - ton, | SIRBCDE L, ‘ +——t—+ k
TAEA |, |\, |20ITHE DATE, Jls, |
63, |t L 4B EZ | 1
| PR S | I
Figure 12

plus sign or a minus sign in column 23 of the oper-
and field. If the data is a mixed or pure decimal,
the decimal point should be placed in the appropriate
position. In storage, the low order position of the
field is signed accordingly. However, neither the
sign nor the decimal point is included in the count of
field positions for the numerical field entry. A
signed numerical constant that exceeds 99 integer
or 99 decimal positions should not be referenced by
a general-purpose macro-instruction.

Unsigned numerical data consisting of integers
only is written starting in column 23 of the operand
field. Unsigned numerical data consisting of mixed
or pure decimals should not be specified as a con-
stant if it is to be referenced by an Automatic
Decimal Point macro-instruction. I this is done,
the data will be treated as alphameric data contain-
ing a period.

In Figure 13, note the following: The TAG3 con-
stant will appear in storage as 8bbb, the TAG4 con-
stant will appear as 64000 with a plus sign over the
low-order zero, and the TAGS5 constant will appear
as 365 with a minus sign over the 5.

Name Operation [Num Operand

s 8 'Wn 19 ishe le__sza % wm w wwm a5 wmm
TAEL |, con | dt7s. s], ‘
L.V S NPT SPUPEENG S ¢ 7 ¥ U NN SN
7Ae3 |t L AR
7L A — bt Srdd, |, PRI "
TA65, | + A-3...65 |

| —— e b J
Figure 13

Defining a Constant of Record Marks and/or Group
Marks: It may be desired to supply a constant of
record marks and/or group marks as the terminal
field of a record. For example, to follow a 33—
position data field with a blank and a record mark,
the definition would be written as shown in Fig-
ure 14.

If a data field containing a 42-position record is to be
followed by a constant of two group marks and a record
mark, the definitions in Figure 15 would be used.

Area Definitions 17

Name Operation [Num Operand
o 8 'mu 1 asle e wlzls s wx w wmn % 373ﬂi
o RED, 338 | NN B
CONSTIBNT, JCop, L 28 F | by Ly
A R N O N I —
Figure 14

COMMENTS FIELD: Comments may be started
here. If comments continuation lines are written,
columns 16, 21, and 22 must be blank. If the state-
ment following the last continuation line is blank in
column 16 (but is not blank in columns 21 and 22),
the Processor assumes that the line is another CON
statement.

Name Operation |Num ' Operand
(Teg)
& 8 1011 13 15116 18 2021 22]23 25 2728 30 32 33 35 3738 3
[
|L!f|:¢£¢£5p§f‘/=‘2ﬂn1*=q~!nfnf nf||‘lv
CopsTIBNT, fcopy |\ SFgr | L, |
i I U B SN
Figure 15

Restrictions on a CON Statement

A one-position CON statement should be used to
supply a plus sign or a minus sign as an alphameric
constant. If an alphameric constant consisting of a
plus sign or a minus sign followed by numerical

- characters is desired, a one-position CON state-
ment should be used to define the sign; another CON
should be used to define the numerical characters
as an unsigned numerical constant.

The size of a CON statement may not exceed
mode memory size minus one. If a single CON field
specifies a larger field size, the Processor will
assume a length of one for location and address
assignment. (The macro generator will use the
actual size specified unless it is greater than 159999,
In that case, a size of one will be assumed.)

DEFINITION OF A FLOATING POINT NUMBER -~
FPN

The function of an FPN statement is to define a data
field for constant numerical data and to provide the
data in floating-point form. Numerical data should
be defined in floating-point form when there is a
possibility that the limits of the accumulator might
be exceeded during arithmetic operations with the
data if it were defined in fixed-point form.

Floating-point form consists of a mantissa and
an exponent. The mantissa is a pure decimal with
a non-zero high-order digit; the exponent is a

18

number specifying a power of ten. When the man-
tissa is multiplied by the power of ten that the ex-
ponent specifies, the data is produced in fixed-point
form. The following lists show the same data
expressed in both forms.

Fixed Floating
+9427,38 +.942738 x 104
-.3264 -.3264 x 100
+.,0035 +.35 x 1072
-623 -.623 x 103

The FPN statement is written as follows:

OPERATION FIELD: The mnemonic code FPN is
placed here. In a continuous series of FPN state-
ments, only the first need contain the code in the
operation field. The Processor assumes that each
immediately subsequent statement that is blank in
column 16 of the operation field is an FPN statement
and treats it accordingly.

NUMERICAL FIELD: This field is left blank. The
Processor assumes ten positions.

OPERAND FIELD: The exponent and the mantissa,
each preceded by a plus or minus sign, are placed
here in the following format: +EE+DDDDDDDD.

The exponent must be a two-position number, as
specified by EE. The sign which precedes the ex-
ponent indicates the direction in which the decimal
has been moved in order to convert the data from
fixed point to floating point form. A plus sign
indicates that the decimal has been moved to the
left; the minus sign indicates that the decimal has
been moved to the right.

As indicated by DDDDDDDD, the mantissa may
consist of up to eight digits, and is preceded by the
sign of the number itself. If fewer than eight digits
are specified, the Processor will supply low-order
zeros to complete the mantissa; if more than eight
are specified, the Processor will truncate the ex-
cess low-order digits. When the data is placed in
storage, the signs are placed over the low-order
positions of the exponent and the mantissa.

~ Figure 16 shows a list of fixed point numbers,
their corresponding FPN definitions, and the con-
stants that would be created from them.

COMMENTS FIELD: Comments may be started
here. Comments continuation lines are not allowed.
Any continuation line following an FPN is assumed
to be another FPN.

Restrictions on an FPN Statement

The absolute value of the exponent may not exceed
99. An exponent of 00 is signed +.

Fixed Point Form] ';::)‘ Operation {Num Operand 3 Constonts Placed in Storage
6 8 0N 13 shie 18 20021 22023 25 2728 30 3233 35 3738 39
1. +589.46782 Lo e | lsoarsesvszlea . | 1. 0358946783
2. +.0025 - soarals L, 2. 0225000000
3. -4327.9 R B A lrow-4z229 L 3. 0443279000
4. -.063 NI S e -kl N 4. 0763000000
5. -.4792 NN TN toe.- 912,92 PR 5. 0047920000
6. +17482.18936 RPN I A Aros o2y , 6. 0517482189
| | . 1.3
Figure 16

FPN definitions may not be referenced by any
Automatic Decimal Point macro-instructions. The -
programmer must provide his own macro-instruc-
tions and/or subroutines in order to calculate with
floating-point numbers, because the Automatic
Decimal Point macro-instructions calculate with
numerical data in fixed-point form only.

DEFINITION OF A REPORT FORMAT -- RPT

The function of an RPT statement is to define a
data field for numerical data which will be printed
in a report and to specify the print format for the
data. The RPT field maybe referenced by macro-
instructions that place the numerical data in the
field and supply the elements of the desired format.
The following elements may be specified in the
definition:

1. Commas and/or a decimal point

2. Fixed or floating dollar sign

3. The printing or suppressing of leading zeros

4. Asterisk protection

5. Indication of the numerical field sign

6. The blanking of a field of zeros

The RPT statement is written as follows:

OPERATION FIELD: The mnemonic code RPT is
placed here. In a continuous series of RPT defini-
tions, only the first need contain the code. The
Processor assumes that each immediately subse-
quent statement that is blank in column 16 of the
operation field is an RPT statement and treats it
accordingly.

NUMERICAL FIELD: The size of the RPT field is
entered here. All positions of the format, as shown
by alayout in the operand field, must be counted. The
count consists of the positions for the numerical data
and any commas, decimalpoints, dollar signs, or any
positions reserved for printing the sign of the field.

OPERAND FIELD: The layout of the report format
is started here; it consists of the symbols used to
define the numerical characters, and the symbols
for a dollar sign, a comma, and a decimal point if
any are used. The layout may also contain one or
two blank positions reserved for printing the sign

of the field. Usually, the layout is followed by a

set of indicators that provide the macro-instructions
with additional information about the desired print
format.

Three sets of data will be used as examples
throughout this section to explain the method of
laying out the format. The first consists of four
integer and two decimal positions. The second con-
sists of three decimal positions. The third consists
of five integer positions.

Indicating Numerical Characters, Commas, Decimal
Point: Xs and Zs are used to indicate the position of
each numerical character in the format. If commas
and/or a decimal point are desired, the symbols for
them are placed in the appropriate positions. The
numerical positions of the format are defined as
follows:

1. Decimal positions. Zs must be used to define
all decimal positions. Any trailing (i.e., significant)
zeros in the data entering these positions will be re-
tained and printed.

2. Integer positions. Xs and/or Zs may be used
to define integer positions. The treatment of any
leading (i.e., insignificant) zeros in the data enter-
ing these positions depends on whether the position
in which the zero occurs is defined by a Z or by an
X. If the position is defined by a Z, the zero will
be retained and printed. If the position is defined
by an X, the zero will be converted to a blank. Xs
may be used to the left of Zs, but not to the right
of them. If the format layout does not contain a
decimal point, the Processor assumes that a field
of integers is being defined.

Area Definitions 19

In Figure 17, the MIXED and INTEGER defini-
tions indicate that any leading zeros are to be re-
placed by blanks. Notice that no decimal point is
specified in the INTEGER field.

Nome Operation Num Operand
8 "LI,%)II 13 15416 ¥8 20§21 22123 25 2728 30 32 33 35 3738 39”
MLX.E’DI +———+ :P'T: + ,SX,’.:)QX:X! 2V - —p—t—t ! ~+
Ec e 222, | T KPS
INTESER |, | SXXXXX -
o | ol . o
Figure 17

If 004320 were placed in the MIXED field defined
in Figure 17, it would be printed as bbb43. 20 (the
comma having been replaced by a blank).

The MIXED and INTEGER fields are redefined in
Figure 18 so that leading zeros will be retained.
The MIXED definition requests that leading zeros
that occur in the two low-order integer positions be
printed. The INTEGER definition requests that
leading zeros be printed in all but the high-order
position.

Name Operation | Nom Operand
(Tag)
6 8 101 13 sle 18 zofarzafss 25 72 3 323 35 o738 aof
ML X ED| RPT, | g Xpxzzl.zz, 1, |
IMTECER, {2222 1, ., |
RS N SN N DT B B
Figure 18

If 000120 were placed in the MIXED field defined
in Figure 18, it would be printed as bbb01.20; and
if 00089 were placed in the INTEGER field, it
would be printed as b0089.

Leading zeros may also be replaced by asterisks.
This is called asterisk protection, It is requested
by an indicator, which is placed immediately after
the format layout. The indicator consists of a
lozenge, an asterisk, and a lozenge (I * 17); it
is not included in the count for the numerical col-
umn. In Figure 19, the INTEGER field is defined
for complete asterisk protection. The MIXED
field, however, is defined for asterisk protection
only in the positions defined by Xs.

'(‘IT:;; Operation |Num Operand
6 8 101 13 slie 18 2of2122§23 25 2728 30 3233 35 3738 39
LHNTECER, | (RPT, , | SIXXXXXiroemt , |, |,
Moxer| Ly] Bix, XX 22

el 1 - — L
Figure 19

20

The position of the decimal point can be indicated
to macro-instructions that handle numerical data
without having the point appear in the printed report.
This is done by placing the symbol D in the appro-
priate position of the layout. The D is not included
in the count of positions for the numerical field.
This may be seen in Figure 20.

Nome Operation | Nom Operand
(Tag)
6 8 1011 13 she 18 z02122§23 25 2728 30 3233 35 3738 30}
LAED RO, | 2, xxxpzz, |]
DEC mpL, i L3Pz | L] +~~-f
| . . J - |
Figure 20

Indicating the Position and Treatment of Dollar
Signs: If the dollar sign is desired in the printed
report, it is written to the left of the high-order
position of the format layout and is included in the
count for the numerical field. A fixed or floating
dollar sign can be specified as part of the print for-
mat through indicators, which are placed to the
right of the format layout. The indicators are
surrounded by lozenge symbols (H), and are not
included in the count for the numerical field because
they are not part of the format layout. A fixed
dollar sign is printed in the same position for each
use of the data in the report.

If a fixed dollar sign with asterisk protection is
desired, the format layout is immediately followed
by an indicator consisting of a lozenge, an asterisk,
and a lozenge (I1*M). If a fixed dollar sign without
asterisk protection is desired, the format layout is
not followed by any dollar sign indicators. If any
leading zeros occur in the data, they will be main-
tained or replaced by blanks, depending on whether
Zs or Xs are used in the integer positions of the
format layout.

A floating dollar sign is shifted so that it is
printed to the left of the first numerical character
in each set of data. It is requested by an indicator
consisting of a lozenge, a dollar sign, and a lozenge
($13) placed to the immediate right of the format
layout.

Figure 21 shows one field as it would be defined
to request each of the following:

1. A floating dollar sign.

2. A fixed dollar sign with asterisk protection.

3. A fixed dollar sign without asterisk protec-
tion and with leading zeros converted to blanks.

4. A fixed dollar sign without asterisk
protection and with up to three leading zeros
retained.

5. No dollar sign but asterisk protection.

Name Operation | Num Operand
(Yag)
6 8 o 13 15016 18 20§2) 22J23 25 2728 30 32 33 35 3738 39,

BT X, XXX, Z2 8 |
LXEDR, 1 L AEX XXX (2,20
L XED|3, . o N XXX 22 |]
L EDRY, + N x,22222 |]
Pe. L X E DS R1X, 5 XX \X| .2.2.”.“]5;—-»—4—0—‘—4--
| B TN |

Figure 21

Assume that 003418 and 000570 are placed in each
of the fields defined in Figure 21. The definitions
would cause the data to be printed as follows:

MIXED1 $34.18 $5.70
MIXED2 $*++*34.18 $HHXx5,70
MIXED3 $ 34,18 $ 5.70
MIXED4 $ 034.18 $ 005.70
MIXEDS **%x34 18 *ERX5 .70

Note that the commas in MIXED2 and MIXED3
are converted to an asterisk and a blank respec-
tively. In MIXED4, and MIXED5, the comma is
converted to a blank.

Indicating Field Signs and Zero Fields: Sets of
characters which occupy one or two positions are
available for printing either or both of the following
in the report:

1. An indication of the sign of the field that is
supplying data to be placed in the RPT field

2. An indication that the tield that is supplying
data consists of zeros
The requested characters will be printed to the
right of the data.

Depending on which set of characters is
requested, one or two blank positions must be
added to the low-order portion of the format layout.
These blank positions must be included in the count
for the numerical field entry, and are considered
part of the layout. The special characters, called
field sign indicators, are written to the right of the
dollar sign indicator and its accompanying lozenges.
Each character is also followed by a lozenge.

At this point, it is necessary to discuss the
lozenges that separate the indicators in the RPT
operand. Not only are the indicators significant
to the Processor, but the presence or absence of
the associated lozenges is also significant. When
an option is not desired, the indicator which re-
quests it must be omitted. If no subsequent options
are to be requested in the same operand, the
lozenge associated with the omitted indicator is
also omitted. However, the lozenge is retained
and placed back-to-back with the preceding lozenge

if subsequent options are requested in the operand.
The lozenge placement indicates to the Processor
which option or options are not desired. A lozenge
that may be omitted when its associated indicator
and all subsequent indicators are omitted is called
a conditional lozenge.

The lozenges associated with the dollar sign
indicator are conditional. When a dollar sign is
not included in the format layout or when a fixed
dollar sign without asterisk protection is desired,
no dollar sign indicator is required. The associated
lozenges may be omitted unless a field sign is being
requested. If a field sign is being requested, the
dollar sign lozenges must be placed back-to-back,
and must precede all field sign indicators and their
associated lozenges.

The field sign lozenges .are not conditional. If
any field sign indicators are used, the lozenge
associated with each indicator must be placed after
the indicator itself, or must be placed back-to-back
with the preceding lozenge when the indicator is
omitted.

The full dollar sign and field sign indicator
structure is:

i:lel:lX2 !:IX3:IX fu

4
where
X is the dollar sign indicator or is omitted.
1 cps
The lozenges are conditional.
X is the negative field sign indicator or is
2 .
omitted.
X is the zero field indicator or is
3 .
omitted.
X is the positive field sign indicator or is
4 .
omitted.

The field sign indicators are as follows (b desig-
nates a blank):

1. One-position indicators: b - * +

2. Two-position indicators: b - b* ** CR DR
DB
If indicators from the first set are used, one blank
position must appear as the final position of the
format layout. If indicators from the second set
are used, two blank positions must appear as the
final positions of the format layout.

The symbols CR, DB, -, and b- may be used
for the negative indicator only. The symbols DR
and + may be used for the positive indicator only.
The other symbols may be used for either. A blank
is generated in the sign position when the condition
associated with an omitted indicator is encountered.

It is possible to leave one blank position as the
final position of the format layout, use the dollar
sign indicator and its lozenges, but omit all field
sign indicators and their associated lozenges.

Area Definitions 21

In this case, a blank will be generated in the sign
position for both zero and positive fields, and a
minus sign will be generated for negative fields. If
a dollar sign indicator is not desired, the format
layout can be terminated with the blank position,
which must be included in the count for the numeri-
cal field entry.

The definition in Figure 22 requests a floating
dollar sign. It also specifies that a minus sign is to
be printed after a negative field, an asterisk after a
zero field, and a plus sign after a positive field.
One blank position for sign indication terminates
the layout.

Name Operation

Operand }
(Tag)
non

25 2728 30 3233 35 3738 39}40

12,858 - i3, v,
N P

-3 8

Wixedt , RAT]

13 15116

Figure 22

Assume that the definition in Figure 22 defines
the RPT field for the data shown below:

Data Entering RPT Field Printed

RPT Field
032570 $325. 70-
00000 $. 00*
45763 $4, 576, 38+

Figure 23 shows a request for a fixed dollar sign
with asterisk protection, with the symbol CR printed
after negative fields and the symbol DR printed
after positive fields. Two blank positions for sign
indication terminate the format layout.

indication are counted. The sign indicators specify
that the dollar sign is omitted and that a negative
field is to be indicated by two asterisks.

Name Operation | Num Operand)
(Tag)
6 8 10N 13 1she 18 20|21 2223 25 2728 30 3233 35 3738 39
15‘:*./."1.4:1-. —IREBT Sip222 |
PN |]
Figure 24

The definition in Figure 25 allows one position
for field sign indication but does not contain a
dollar sign or any sign indicators. Consequently,
a minus sign will be generated for a negative field,
and a blank will be generated for zero and positive
fields. The Zs specify that leading zeros are not
to be converted to blanks.

Nome Operation | Num Operand
2

] 8 101 13 1she 18

ENTEGERL RAT, . | 422222 . . f

(Tag)
21 22§23 25 2728 30 3233 35 3738 3

uuuuuuuuuuuuuuu

N PR RO —i

| Name Operation | Num Operand
(Tag)
6 8 nn 13 15016 18 20§21 22|23 25 2728 30 32 33 35 3738 3940 42 43
LX.ED|2 BT g X . Zzz | X

i ot . N ol

Figure 23

Assume that the definition in Figure 23 defines
the RPT field for the data shown below:

Data Entering RPT Field Printed
RPT Field
003955 $***39, 55CR
000000 Frrxkr, 00
413675 $4,136. 75DR

Note that the symbol D for the decimal point is not
included in the count of the format positions in Fig-
ure 24. Only the three numerical character posi-
tions and the two blank positions for field sign

22

Figure 25

Assume that the definition in Figure 25 defines
the RPT field for the data shown below:

Data Entering RPT Field Printed

RPT Field
00278 00278~
0000 00000
3462 34628

Figure 26 specifies a floating dollar sign and two
asterisks printed to the right of zero fields. All
positions of a zero field except the sign positions
will be converted to blanks. This includes the
dollar sign, comma, and decimal-point positions.

Name Operation [Num Operand
: (Tag)
6 8 10113 ashe 18 2olzi2ales 25 % 30 3233 35 3738 39l
NTEEERL, RALT, | .9 —— FU R 4L,
AR RNV R R S B R BN
Figure 26

Blank-If-Zero Option: If this is requested, any
defined commas, the decimal point, and floating or
fixed dollar signs will be converted to blanks along
with the numeric positions when the field contains
all zeros. To request the option, the symbol BZ

is used as the zero field indicator. All five lozenges
must be included, whether or not BZ is the only

indicator used. This option is independent of the
other sign options. Ceonsequently, when BZ is the
only indicator used, it is not necessary to terminate
the format layout with any blank positions.

The definition for MIXED1 in Figure 27 specifies
only that the field is to be blanked when it contains
all zeros. The definition for MIXED2 calls for a
fixed dollar sign with asterisk protection, a minus
sign following a negative field, and the Blank-if-
Zero option. A positive field will be printed without
any field sign indication.

Name Operation | Num Operand

b 8 “‘:%)II 13 506 18 20]2y 22|23 25 27 28 30 32 33 35 3738 39/40

Wi EDL, L IReT X XXX, |ZZ 82 e, | —+t

M EDP2 IRPT, 1 olfx XXX 22 S B (F:#3-4-4
1. I S N —l

Figure 27

COMMENTS FIELD: Comments may be started
here. If comments continuation lines are written,
columns 16, 21, and 22 must be blank. If the state-
ment following the last continuation line is blank in
column 16 (but is not blank in columns 21 and 22),
the Processor assumes that the line is another RPT
statement.

Restrictions on an RPT Statement

The format layout of an RPT operand may not exceed
five positions. One-position and two-position field
sign indicators may not be mixed in the same state-
ment.,

The numer of positions in the format layout must
be identical to the entry in the numerical field. If
blank positions for sign indication are included in
the layout, it is important to see that no more than
two blank positions are allocated. The number of
commas in the format layout should not exceed nine.

DEFINITION OF A CONTINUOUS PORTION OF
MEMORY - NAME

A NAME has two functions which may be used inde-
pendently of, or in conjunction with, each other:

1. to identify a series of adjacent data fields
as the interior fields of an area so that they may
be treated as a unit.

2. to specify the final digit or digits of the
starting location to which a data field is assigned.

ENCLOSING ADJACENT FIELDS: A NAME state-
ment which identifies fields as interior to an area
may be said to enclose the fields. The following
Autocoder statements define fields that may be
enclosed by a NAME statement:

1. Area definitions:
RCD, CON, FPN, RPT, NAME

2. Switch definitions:
CHRCD, BITCD
3. Address constants:
ACON4, ACON5, ACON6, ADCON
The interior fields of the NAME area may be
referenced individually by their tags, or referenced
as a unit by the tag of the NAME area. For exam-
ple, a work area may be defined as a NAME area
consisting of four interior fields. Each field may be
operated on individually, but the fields may also be
moved to and from the work area as a unit rather
than one at a time.

SPECIFYING A LOCATION: The location requested
by the NAME statement is assigned to the high~order
position of the immediately subsequent field. The
NAME statement specifies what the final digit or
digits of the address may be. The next available
location that ends in the requested digit or digits is
then assigned to the high-order position of the field
defined immediately after the NAME statement.
Suppose that a 4/9 location is requested: i.e.,
that the high-order position of the field should be
assigned a location ending in 4 or 9, whichever is
available first. If 00012 is the last location assigned
prior to the request, location 00014 will be assigned.
If 00017 is the last assignment, then 00019 will be
assigned. In either case, if a 00 assignment
had been requested, 00100 would have been assigned.
The NAME statement is written as follows:

OPERATION FIELD: The mnemonic code NAME is
placed here. If a subsequent entry to the NAME
contains a blank in columns 16, 21, and 22, the
entry is assumed to be another NAME statement.

NUMERICAL FIELD: This field is left blank if the
Processor is to assign the next available location to
the NAME. * If a specific address ending is desired
for the starting location, one of these codes is
placed in column 22:

Requests Location

Code Ending In
Oorb Oor5
loré loré
2or7 2o0r "7
dors8 3ors
4or9 4o0r9
A 0
B 00
C 000

*For purposes of location assignment, an X in column 22 has the
same effect as a blank. However, if an X is used, the Proces-
sor will not make the terminal location of the field available for
the macro generator. (The X is used for generation of higher

languages; preferably, it should not be used in Autocoder.)

Area Definitions 23

OPERAND FIELD: This field is left blank when
NAME is used only to request a location assignment.
When NAME is used to enclose a series of interior
fields, the tag of the interior data field that termin-
ates the NAME is placed in the operand field. If an
operand is used, the NAME statement itself must

be tagged.

The NAME statement in Figure 28 requests the
positioning of FIELD1 starting at the first available
address ending in 0. The statement also makes four
fields interior to STARTNAME by designating the
ENDNAME field as the terminal field.

Name Operation | Num Operand 3
s 5 'y ashe s ol 5 wm m mm s 37__3§43§
STARIWAME Wans, | Aenonome | . |
E LELDIL, y RCD | YA | SRR

LEepl2 L, tlasles, |, PR

lergep3, 1, | SWros.lor |, |,
ENDNAWE, , |con | NF |]

P — s]
Figure 28

Figure 29 shows NAME used to position the RPT
field ANYTAG in the next available address ending
in2or 7.

Naime Operation | Num Operand
(Tag)
6 8 101 13 ishe 18 2olov22f2s 25 72w 30 3233 35 3738 391
3
e WomE L 2 rﬁv.!.
pavTRlE | IRAT, ?r:zﬁz%za 7 & SN SN
I B - | . J
Figure 29

NAME is used in Figure 30 to identify the interior
fields of the area tagged BEGIN.

Name Operation | Num . Operand !
s 8 Bu 13 ashe e ylw_lzz 25 728 0 2B 3w 391
LLlB] o WomE | ENPALOHA | L |
PP SR (YN] NS U SN
APRLPHA, | 12345 b
U RV RUTEPEIGN RS R RSN B
Figure 31

Information Provided by the Processor

Name Operation | Num Operand

(Tag) J
68 101 13 1she 18 2ol21zazy 25 728 30 3233 35 3738 9
SECIN . WAME | END |, L -
L ELREL, | EPN, +o 3438 L1
77,7 NN ENPENS S toarLrgye L, |

N A NI N N N e
Figure 30

Figure 31 shows a way of creating the constant
+12345 in such a way that it will not appear in stor-

+
age as 1234E (12345).

COMMENTS FIELD: Comments may be started
here. Comments continuation lines are not allowed.

24

The Processor counts the total number of positions
occupied by the interior fields of a NAME area. A
message indicating the total will appear in the listing
immediately following the entry specified as the ter-
minal field definition.

Internal NAMEs

One or more NAME areas may be made internal to
another NAME. The operand of each internal and
outer NAME statement must contain the tag of the
field that terminates it. Internal NAMESs may be
terminated by the same field that terminates the
outer NAME, or they may be terminated by fields
that are internal to the outer NAME.

In Figure 32, the OUTERNAME is terminated by
the CON field ENDOUTER, while INNERNAME is
terminated by the RCD field ENDINNER.

Nome Operation Num Operand
(Tog)
é 8 101 13 15116 18 20f21 22123 25 2728 30 32 33 35 _ 3738 39,

louzeRWamEe, Wame, | dendopiTER, | |, |,
W7 1 U 7 - % N S . NN SN SN

FLELPR, (L Msoler, 1L

lLonERW Arre, WomE | | EnRTAVER | |, |
LELDE, o ReD | lralse, | L lf’
LELDY, oy | Zeghrod ded |
ALIAWER, | Lone | L L
ELPlSE, | RPT, Vo J:’Qx?:x!xﬁ&'fz.zmﬂﬁ—l—o—v
rEepld (Rep B3 | L

1

WD ou|TER, |, |CoN, ,

Bt

Figure 32

In Figure 33, both FIRSTNAME and SECOND-
NAME are terminated by the RCD field END-
FIRST.

Nome Operation | Num Operond :
o s "B ”QL-‘ 1w ool 25 ww 30 2w s 37aaa9wE
w&mtm.mm_%; RELIRST, - ‘
el ReD l2sW0e |, PR S

] ; NI B 5 NI
S ECONPNAMEWAME, | | \ENDFIRST, |, |, |,
e RAT, | f427 zlz2z | g cerD R,
'm&u&s:‘rz.::af:/ﬁ.,!:.......1:
i d e 4 N] |
Figure 33

Restrictions on a NAME Statement

The total number of positions enclosed in a NAME
may not exceed mode memory size minus one, If
this limit is exceeded, the Processor will assume
a length of one for address assignment. (The
macro generator will use the actual size specified
unless it is greater than 159999. In that case, a
size of one will be assumed.)

Internal NAME statements should not specify
location assignments. The operand (i.e., tag of
the termination field) of one NAME statement
cannot be the tag of another NAME entry.

The NAME statement itself must be tagged if
the operand contains a tag.

No more than 32 NAME areas may be defined
concurrently.

Area Definitions

25

SWITCH DEFINITIONS

Switches are programming or hardware devices that
are used to control the path of a program. Three
types of switches may be defined: data switches,
program switches, and console switches. The
statements used for each type are as follows:
1. Data Switches
a. Character Code -- CHRCD
b. Bit Code -- BITCD
2. Program Switches
a. Switch Set to Transfer -- SWT
b. Switch Set to No Operation -- SWN
3. Console Switches
a. Alteration Switch -- ALTSW
With one exception, the format of a switch defini-
tion statement varies according to the type of switch
being defined. The exception is the comments field.
Comments about any switch may be started in the
comments field of the definition statement. For
those switches which must be defined by a set of
statements, comments continuation lines may inter-
vene between the first statement and the remaining
statements, or the continuations may be placed in
the comments fields of the remaining statements.

DATA SWITCHES

A data switch is a data field. There are two types
of data switches: character code and bit code. The
character-code switch provides a method of relating
alphameric codes to various meanings or conditions.
The bit-code switch provides a method of relating
the bits that form a storage position to various
meanings or conditions.

Both character-code and bit-code switches are
described by a set of statements, the first, of which
is the switch-definition statement that indicates
whether a character code or a bit code is being de-
fined. The rest of the character-code switch state-
ments specify the alphameric codes which may oc-
cupy the switch and the condition that each code re-
presents. The rest of the bit-code switch state-
ments designate the various bits of the storage posi-
tion and the condition each bit represents. A char-
acter-code switch may occupy one or two positions;
a bit-code switch may occupy only one position.

A record field may be defined as a data switch,
and the switch may be interior to a record area de-
fined by a NAME statement. The switch will be set
each time a record is placed in the area. If the data
switch is not defined as part of a record area, the
program itself must set the switch. The way in
which the switch is initially set depends on its use
in the program.,

26

If the switch-definition statement follows an RCD,
the statement should not specify the initial setting.
The Processor reserves storage space for the
switch, but does not set it to any code. If an initial
setting has been specified, the Processor ignores it.
However, a switch-definition statement that does not
follow an RCD should specify an initial setting. The
Processor reserves space for the switch and sets it
as specified. If the initial setting has been omitted,
the Processor sets the switch to a blank.

Program Branch Control macro-instructions are
normally used to set the switches ON or OFF or to
test their settings. A character-code switch is set
ON by placing one of the defined codes in it; it is set
OFF by placing a blank in it. When a character-code
switch is tested, it is examined to see whether or not
a given code is present. If the code is present, the
switch is ON, If the switch contains anything other
than the designated code, the switch is OFF.

A bit-code switch is set ON by setting the desig-
nated bits ON; it is set OFF by setting the designated
bits OFF. When a bit-code switch is tested, it is
examined to see whether or not the bit designated in
the test is ON. If the designated bit is ON, the
switch is ON, otherwise, the switch is OFF,

Suppose that statements for a character-code
switch specify that code A represents the condition
of Surplus, and code B represents the condition of
Deficit. If the switch is tested for the Surplus condi-
tion and code A is present, the switch is ON, Alter-
natively, suppose the switch is tested for the Deficit
condition. Now if code B is present, the switch is
ON. In other words, the data switch must be tested
for a condition that has been specified in its definition.
If the code that represents the specified condition is
present, the switch is ON, Otherwise, it is OFF.

Suppose, in a similar example, that the switch is
a bit-code switch. Let the Surplus condition be re-
presented by turning ON the 1-bit, and let the Deficit
condition be represented by turning ON the 2-bit. In
this case, if the switch is tested for the Surplus con-
dition and the 1-bit is ON, the switch is ON. It does
not matter whether the 2-bit is ON or OFF, because
the test does not specify the Deficit condition. It is
possible, although not logical in this example, for
the switch to be ON for both the conditions of Surplus
and Deficit.

A character-code switch may represent only one
condition at any time, whereas a bit-code switch may
represent multiple conditions simultaneously. In
each case, the number of ON states for a data
switch is equal to the number of codes or bits spe-
cified in the switch definition.

-—=

Character Code -- CHRCD

A character-code switch is defined by a series of
statements. The first is the CHRCD statement; its
function is to define the switch as a character-code
switch and to specify the size and initial contents of
the switch. The statements which follow the CHRCD
statement specify the codes and the conditions they

represent. The format of the set of statements is

as follows:

Tag Operation | Num|Operand

CHRCD n Xy

Ty C1

Ty Ca

Tg Cy

ete, etc

n is blank when defining a one-
position switch, or is 2 when
defining a two-position
switch.

X1 is the initial contents of the
switch, or is blank.

T 1 T2, T3, are the tags of the codes. They
specify the conditions the
codes represent.

Cl’ Cz, C3, ... are the codes; any alphameric

characters may be used.
The codes may be composed
of one or two characters,
depending on what is spe-
cified in the numerical field.

If the CHRCD statement immediately follows an
RCD statement, the CHRCD operand should be left
blank. If the switch does not follow an RCD field,
the operand of the CHRCD statement should specify
the initial setting; otherwise, a blank will be placed
in the switch.

Figure 34 shows a one-position character-code
switch defined as a portion of a record area. Note
that the switch is enclosed by a NAME statement.
The NAME operand indicates that the statement
tagged CANCELED terminates the NAME.

In Figure 35, the operand of the CHRCD statement
specifies the initial switch setting; i.e., that the
switch contains the code 18.

Nome Operation | Nom Operand
s 8 B 15 sl 1 solnzmlz 2 mm s mm s wm
NEPNRFN RN VY- Y.5 BV V2F SN SN RN
LAAVA TN JENE SN E U S N EN——
pesroW, . |t tokr Ly L L
lethtedeo, 1, L Do L L L
VR VAV-Y.’ o7 NP PN P ¥ JN SN SN
NI SR MR S] |
Figure 35

During the program assembly, the tag of each
code is assigned to the storage position occupied by
the switch. Suppose that the switch defined in
Figure 34 is assigned location 000315, When instruc-
tions which reference NEW, REGULAR, and CAN-
CELED are translated into machine language,

000315 will appear as the address portion of each
one.

Figure 36 is part of a listing. Notice the machine
language portions for both the switch definitions and
the instructions that reference the switch.

Tog Operation |Num Operand)LOC INSTR SU ADDRESS

CHRCD 000343
BLUE A
REEN B
ED C

Instructions that reference the switch:

CAQAP 1 | GREEN 2129 403U3 01 000343
ICMP k 1 {RED 002624 403U3 01 000343
{
ICMP 1 | BLUE 002679 403U3 01 000343
Figure 36

Restrictions on a CHRCD Switch

A code should be represented not as a signed
numerical character but as the alphabetic character
equivalent to the signed numerical character. For
example, A should be used to represent +1, J
should be used to represent -1, etc.

The CHRCD statement should not be tagged, since
the switch is referenced by the tags of the codes.

A bit-code switch is defined by a series of state-
ments, The first is the BITCD statement; its func-

Name Operation Num Operand

o 8 "Bu w3 ushe 18 olume 2 wm w wmm s 37&32{
|&gcord AREANAME, aNcEk gD, L,y |

ComPANY, | | \RCD, 5] P PSP

NP BN /-”'77-3-) S IS RPN SN

¥V R N I 7 AV N

VY7727 ¥ NAP G K7 SN PN S Bit Code -~ BITCD
comceler L Lde o L e e

e L ' l L

Figure 34

tion is to define the switch as a bit-code switch, and

Switch Definitions 27

to specify the initial setting of the switch. The
statements that follow the BITCD statement specify
the bits and the conditions they represent. The
format of the set of statements is as follows:

Name

(Tag)
68 101113 15

Operand
2728 30 3233 35 3738 39

i

—+

ReSsS | ToT pL

—
-ttt 4%1‘ﬁr£¢
L

(£, 7T 0T AL, -
Tag Operation|[Num [Operand o e o ﬁfl
BITCD X1 Figure 38
;‘; g; During the program assembly, the tag of each de-
T, B fined bit is assigned to the storage position occupied
T, B, by the switch. Suppose that the switch defined in
Figure 38 is assigned location 000100. When in-
Xl is the initial setting of the switch, or structions that reference GROSSTOTAL and NET-
is blank. TOTAL are translated into machine language,
T ... T are the tags of the bits. They specify 000100 will appear as the address portion of each
1 4 ops .
the conditions that the bits repre- . one.
sent when they are ON. Figure 39 is taken from a listing. Notice the
B 10" B 4 are the bit codes 1, 2, 4, and A. machine-language portions for both the switch def-

If the BITCD statement immediately follows an
RCD statement, the operand should be left blank, If
the switch does not follow an RCD field, the operand
of the BITCD statement should specify the initial
setting. The setting is indicated by the alphameric
character created when the desired bits are set ON.

A bit that contains zero (0) is defined as ON. A
bit that contains one (1) is defined as OFF. For in-
stance, if the 4-bit should be set ON initially, the
operand may be any character that contains a zero
in the 4-bit. If the 1-bit, 4-bit, and A-bit should be
ON, the operand may be any character that contains
zeros in those bits. It is recommended that the se-
lected character contain a zero in the 8-bit and a
one in the B-bit so that the character in the switch
will always be valid for printing purposes.

The bit-code switch in Figure 37 indicates
various types of payroll deductions, and is defined
as a portion of a record area. The maximum num-
ber of bits has been used.

inition and the instructions that reference the switch.

Tag Operation | Num Operand?LOC INSTR SU ADDRESS

BITCD 000237
EAST 1
WEST 2
NORTH 4

Instructions that reference the switch:

Name Operation [Num Operand)
6 8 "B o usle e solnmlm s ww s wwm o wwat
REcoRPAREAWAME, 0,7 4.£4 RN B
mlLelYeE | IRCP C,” RN -
NN B AR S] P - -
RS, |, ' L . ‘.,:!:‘
LE8, | 2y N E—— -
STATE - 2 SN -
o ThER A

Lo] |
Figure 37

The BITCD definition in Figure 38 specifies that
GROSSTOTAL is to be set ON initially. The switch
will contain B (12-2), thus setting the 1-bit to zero.

28

RCVS EAST 002319 U0237 000237

C§VS WEST 002464 U0237 000237

CVsS NORTH \002739 U0237 000237
Figure 39

Restrictions on a BITCD Switch

A bit-code switch may not be used in a program for
the 705 II portion of a 7080 program.

The BITCD statement should not be tagged, since
the switch is referenced by the tags of the bits.

PROGRAM SWITCHES

A program switch is an instruction. Each time the
switch is encountered, it causes the program to do
one of two things:

1. To transfer to a designated instruction when
the switch is ON.

2. To execute the next in-line instruction when
the switch is OFF.

A program switch is defined by a single statement
that specifies the initial switch setting. If the initial
setting is ON, the switch statement becomes a
Transfer instruction in the object program. If the
initial setting is OFF, the statement becomes a No
Operation instruction in the object program.

Program Branch Control macro-instructions are
used to set the switches ON or OFF, and to test
their settings. Setting the switch ON or OFF in-
volves modifying the operation portion of the gener-
ated instruction to Transfer or No Operation, re-
spectively. Testing the switch involves determining
whether or not it will cause the program to transfer.
All program-switch definition statements must be
tagged, so that the switches can be referenced by
macro-instructions.

Switch Set to Transfer -- SWT

The function of an SWT statement is to define a pro-
gram switch that will be ON initially. The format
of the SWT statement is as follows:

Tag Operation [Num [Operand

T, SWT X;

Tq is the tag of the switch.

X1 is the tag of the instruction to which a
transfer is to be made when the switch
is ON.

As long as the switch is ON, a transfer occurs
each time the switch is encountered. When the
switch is encountered after it is set OFF, the trans-
fer does not occur. The program proceeds instead
to the next in-line instruction.

The SWT statement in Figure 40 indicates that
LOOPSWITCH is to be set ON initially, and that the
transfer point is the instruction tagged STARTLOOP.

Name Operation Num Operand
(Tag)
[8 1011 13 15116 18 20121 22|23 25 27 28 30 32 33 35 37 38 34
00,5\ 1, Tic HSW.T reRTeo0 R | . . |,
TR PR NI R B R R
Figure 40

Restrictions on an SWT Switch

A hand-coded Transfer instruction may not be ref-
erenced as a program switch with Program Branch
Control macro-instructions. Since the hand-coded
instruction will not be recognized as a switch, the
proper coding will not be generated from any macro-
instructions referencing it.

Switch Set to No Operation -- SWN

The function of an SWN statement is to define a pro-
gram switch which will be OFF initially.” The
format of the SWN statement is as follows:

Tag Operation [Num [Operand

T1 SWN ,Xl

Ty is the tag of the switch.

X1 is the tag of the instruction to which a

transfer is to be made after the switch
is turned ON.

As long as the switch is OFF, no transfer occurs
when the switch is encountered. The program pro-
ceeds instead to the next in-line instruction. After
the switch is set ON, a transfer occurs each time
the switch is encountered.

The SWN statement in Figure 41 indicates that
LOOPSWITCH is to be set OFF initially; and that
when the switch is set ON, the transfer point is the
instruction tagged STARTLOOP, '

Nome Operation | Num Operand
(Tag) .
s 8 101 13 sle 18 0|2 22023 25 2728 30 3233 35 3738 3

toopslus e dlSps | ST ARTIL0 0L, |

Figure 41
Restrictions on an SWN Statement

A hand-coded No Operation instruction may not be
referenced as a program switch with Program
Branch Control macro-instructions. Since the hand-
coded instruction will not be recognized as a switch,
the proper coding will not be generated from any
macro-instructions referencing it.

CONSOLE SWITCHES

Console switches are the console alteration switches
0911-0916. Each is identified by one console-switch
statement. The switches themselves must be set
ON or OFF manually by the console operator, either
before or during the execution of the program. A
console-switch statement does not specify the initial
switch setting. It merely provides a method of as-
signing a tag to an alteration switch so that it can be
referenced by a Program Branch Control macro-
instruction. The switch statement is not translated
into a machine-language instruction.

Alteration Switches -- ALTSW

The function of the ALTSW statement is to designate
a console alteration switch. The format of the state-
ment is as follows:

Switch Definitions 29

Tag Operation|Num {Operand

Tl ALTSW Xl

Tl is the tag of the switch statement.

X1 is a code identifying the console switch.

The codes are as follows:

Switch Being
Code Identified
0911
0912
0913
0914
0915
0916

HMEOQW >

Figure 42 shows switches 0911 and 0912 being
identified.

Name Oparation | Nom Operand
(Tag)
6 8 w113 she 18 solnzofes 5 wxw 3 3238 35 3738
WEsKLIV RO, 2L TS1) a8l s e
VAL = 77 - | EN R S

f

‘M:O:”.T#”I,L:Y:‘:‘/W
L]

Figure 42

30

A one-for-one instruction is a symbolic instruction
which is replaced by one machine instruction. It
consists of a 7080 operation code and an Autocoder
operand. Figure 44 lists the 7080 operation codes.
The basic Autocoder operands are as follows:

1. Tag

2. Literal

3. Actual

4. Location counter
5. Blank

A prefix, a suffix, or both may be added to some
of the basic operands:

Prefix
operand modifier
indirect address

Suffix
character adjustment

The format of an Autocoder one-for-one instruc-
tion is summarized in the next section, '"One-for-
One Instruction Format.'" The balance of this
chapter describes the basic operands, and the
prefix and/or suffix that may be added to each
operand. The chapter entitled '""Address Constants, "
describes a specialized form of Autocoder operand
called an address constant literal.

The details of each 7080 operation are supplied
in the reference manual, IBM 7080 Data Process-
ing System, Form A22-6560.

ONE-FOR-ONE INSTRUCTION FORMAT

Like other Autocoder statements, a one-for-one
instruction is tagged if it is to he referenced. The
mnemonic operation code is placed in the operation
field. No actual operation codes may he used. If
the operation requires designation of the accumu-
lator, an ASU, or a bhit, the appropriate entry is
placed in the numerical field. A one-for-one
instruction has a single entry in the operand field;
if necessary, the operand may he continued from
the operand field into the comments field. The
operand may not, however, he continued onto the
next line of the coding sheet. Comments about the
instruction may be started in the comments field.

BASIC OPERANDS

A description of the basic Autocoder operands
follows:

ONE-FOR-ONE INSTRUCTIONS

Tag

The tag may be that of the data field or the source-
program instruction involved in the operation.

Nome Operation | Num Operand

3 8 1011 13 is|e 18 20]21 22123 25 2728 30 3233 35 3738 3‘1‘

PSR
.....

NS TR\ RAD,

A ol e b

Figure 43
Literal

A literal is actual data enclosed by literal signs (#).
It may be any combination of alphameric characters
and/or blanks; e. g., #A#, #bb3C#, #0500#, #GO
TO END#, #+345#, #-,67#, #1234#, #+9,876#. The
Processor creates a constant from a literal operand.
The term 'literal” is frequently used to refer to the
literal operand or to the constant created from the
literal.

An example of the use of a literal operand, it
may he necessary to calculate with a constant of
+30. The constant could be defined by a CON
statement, and the appropriate arithmetic instruc-
tion could reference the constant by having the tag
of the CON as an operand, On the other hand, it
might be desired to omit the CON and supply the
constant directly by writing it as the literal operand
of the arithmetic instruction. While a literal is a
convenient way of supplying an occasional constant,
those constants that are used repeatedly throughout
the program should be supplied by CON statements.

If a signed numerical constant is desired, the
first character following the literal sign must be a
plus sign or a minus sign. In storage, the low-
order position of the constant will he signed. If
the numerical data is a mixed or pure decimal, the
decimal point will not appear in the constant. If
an unsigned numerical constant is desired, the first
character following the literal sign must be the
first character of the numerical data. In storage,
the constant will appear exactly as it is written in
the literal. Thus, the constant created from an
unsigned mixed or pure decimal will contain a
decimal point. For this reason, unsigned mixed

One-For-One Instructions 31

or pure decimals should not be written as the A literal may also supply the floating point form of

literal operands of arithmetic instructions; e. g., a signednumerical constant. It mustbe written in the
ADD, SUB. format of an FPNoperand: #+EE+XXXXXXXX#.
Use In Programs For Use In Programs For
Mnemonic {Second'y Mode Mnemonic |Second'y Mode
Name of Instruction Code 70511 1705111 | 7080 Name of Instruction Code 70511 [705i11| 7080
St x x x

Add ADD x x x Stere ?TLT x x x
Add Address to Memory AAM x x Store for Print SPR x x x
Add to Memory ADM x x x Subtract SuB x x x
Backspace BSP x x x Suppress Print or Punch sup x x x
Backspace File BSF x x Ten Character Transmit TCT x
Blank Memory BLM x x Transfer TR x x x
Blank Memory Serial BLMS x x Transfer Any TRA x x x
Channel Reset CHR x Transfer Auto Restort TAR x
Comma, No Operation CNO x Transfer Echo Check TEC x x
Compare CMP2 x x x Transfer on Equal TRE x x x
Control Read (Read 04) CRD 2 x Transfer on High TRH x x x
Control Write (Write 04) CWR x Transfer to Interrupt Program TIP x
Divide DIV 2 x x x Transfer Instruction Check TiC x x
Dump Memory (Write 01) DMP x x x Transfer Machlne Check TMC x x
Enable Compare Backward ECB x Transfer Nonstop TNS x
Enable Indirect Address ElA x Transfer Overflow Check TOC x x
Enter Interrupt Mode EIM x Transfer on Plus TRP x x x
Enter 7080 Mode EEM x Transfer Read-Write Check TRC x x
Forward Space (Read 01) FSP2 x x x Transfer Ready TRR » <
Leave Interrupt Mode LIM x Tronsfer Sign Check TsC x x
Leave Interrupt Program LIp x Transfer on Signal TRS x x x
Leave 7080 Mode LEM x Transfer and Store Location TSL x x
Lengthen LNG x x x Transfer Switch A On (0911) TAA x x
Lood , LOD x x x Transfer Switch B On (0912) TAB x x
Load Address LDA, x x Transfer Swich C On (0913) TAC x x
Load Four Characters LFC x Transfer Switch D On (0914) TAD x x
Load Storage Bank LSB x Transfer Switch E On (0915) TAE x x
Multiply MpY x x x Transfer Switch F On (0916) TAF x x
No Operation NOP x . x Transfer Synchronizer Any TSA x x
No Operation, Comma CNO x Transfer Transmisslon Check T7C x x
Normalize and Transfer NTR x x x Transfer on Zero TRZ x x x
Read 00 RD 2 x x x Transfer on Zero Bit Tz81 x x
Read 01 (Forward Space) FSP x x x Transmit TMT x x x
Read 02 (Read Memory Address) RMA2 x x Transmit Serlal TMTS x x x
Read 03 (Sense Status Trigger) §5T12 x Tum off 1-O Indicator IOF x x x
Read 04 (Control Read) CRD% x Turn on -0 Indicator ION x x x
Read 05 (Read Memory Block) RMB x Unload UNL x x x
Read Memory Address (Read 02) RMA22 x x Unload Address ULA x x
Read Memory Block (Read 05) RMB x Unload Four Characters UFC3 x
Read While Writing RWVY‘ x x x Unload Storage Bank uss x
Receive RCV 4 x x x Write 00 WR x x x
Receive Serial RCVS4 x x x Write 01 (Dump Memory) DMP2 x x x
Receive Ten Characters RCVT x Write 02 (Set Record Counter) srRc? x x
Reset and Add RAD x x x Write 03 (Set Control Conditlon) ~ SCC2 x
Reset and Subtract RSU x x x Write 04 (Control Write) CWR2 x
Rewind RWD x x x Write 05 (Write Multiple Control) WMC2 x
Rewind and Unload RUN x Write and Erase 00 WRE x x x
Round RND x x x Write and Erase 01 WRE 01 x x x
Select SEL x x x Write Multiple Control (Write 05) WMC? x
Send SN% x x Write Tape Mark WTM x x x
Sense Status Trigger (Read 03) SST x
Set BIt Alternate SBA x x 1BM 760 Operations
Set Bit 1 seN! x x Read or Write Tape, Early Start RWT x x x
Set Bit Redundant SBR x x Read or Write Tape, Write on PrinterRWS x x x
Set Bit 0 87! x . Reset 760 Counter RST x x x
Set Control Condition (Write 03) scc2 x Write on Printer and Magnetic Tape PTW x x x
Set Denslty High SDH x

. IBM 777 Operatlons
Set Density Low SDL x Bypass TRC BPC x x x
Set Left SET x x x Prepare to Read While Writing PRW x x x
Set Record Counter (Write 02) SRC2 x x Read Tape to TRC RTS x x x
Set Starting Point Counter SPC x Write TRC to Tape WsT x x x
Shorten SHR x x x
Sign SGN x x x
Sklp Tape SKP N 3 See NOTES below.

Figure 44. Mnemonic Codes for One-for-One Instructions.

32

NOTES

1Place al, 2, 4, 8, A, or Bin column 22 to designate the bit
(TZB can also have a C). If column 21 is not blank, the Proc-
essor assumes that ASU zoning, valid or invalid, has been
designated.

2Preferred mnemonics; RD 01 to 05 and WR 01 to 05 are also ac-
ceptable.

3A blank or a 4 should be placed in column 22 if the Processor is
to perform a 4/9 check. K al, 2, 3, or 5 is written, a 1/6, 2/7,
3/8, or 0/5 check, respectively, results.

4The three different Autocoder mnemonics for the receive instruc-
tion (RCVS, RCV, and RCVT) indicate to the Processor the type
of address to be assigned. If the mnemonic is RCVS, the location
assigned is the high-order address of the field specified in the

operand of the instruction., For an RCV, four is added to the high-

order address of the field. Since an RCV is generally used when
a 4/9 ending is desired (as with a TMT or SND), the high-order
address of the field should end in a 0 or 2 5, An RCVT is as-
signed the high-order address of the field plus nine. Since RCVT
is used when a 9 ending is desired (i.e., with a TCT), the high-
order address of the field should end in a 0,

if the generated address does not end in a 4 or a 9 (RCV) or
9 (RCVT), a 4/9 check or a 9 check message is prepared.

An example of assembled machine-language coding for the
three forms of the receive instruction is shown below. The field
tagged WORKAREA, has a high-order address of 3750, Note that
the machine-language operation code (U) is the same for all three
statements:

oP Operand Op Address
RCVS WORKAREA U 3750
RCV WORKAREA U 3754
RCVT WORKAREA U 3759

The operands of all forms of the Receive instruction can be char-
acter adjusted. Thus, if the operands above were WORKAREA-3,
the actual addresses would be three less than shown.

Trailing zeros will be supplied when the literal
contains fewer than eight mantissa positions. For
examgle, the _literal #+03-7# will appear in storage
as 0370000000,

The length of a literal must be a multiple of
five when used with an operation which requires a
4 or 9 location. The literal must also contain a
record mark in the low-order position if it is used
with a TMT operation. Such literals are positioned
in the literal table so that the high-order character
occupies a 0 or 5 location.

If the liferal is used with a TCT instruction, its
length must be a multiple of ten with a record mark
in the low-order position. The Processor will
properly position the literal in a 9 location.

The Processor places all constants that it
creates from literal operands in storage areas
called literal tables. Literal constants may be
placed either in the main literal table or in

Name Operotion | Num Operand

b 8 ”‘I’?))H 13 15]16 18 20]21 22|23 25 27 28 30 32 33 35 3738 39
oNME | 2D, Rt S o3 272 W N
+——t—+ | +——t—t +———t + -ttt ottt ! —
PN I AP I "X I I
S f 5 PSS AP P NI I
THREE| AT, AR ElF 2k, t

a ADEISNenisotioneNTE
Figure 45

multiple literal tables (see "Multiple Literal
Tables.') A literal appears only once in a literal
table, even when it has been used in several dif-
ferent statements.

The Processor classifies literals and makes
literal-table assignments according to whether the
literals are signed or unsigned:

1. Any literal containing a sign in the first posi-
tion is automatically classified as signed. If the
signed literal supplies numerical data, it appears
in storage as previously described. If the literal
contains a non-numerical character in the low-
order position, the existing zoning in that character
is replaced by the sign.

2. Any literal that does not contain a sign in the
first position is automatically classified as unsigned.
As previously indicated, the constant appears in
storage in exactly the same form in which it is
written on the coding sheet.

3. A literal symbol may not appear within a
literal unless it is the first character of the literal.
However, the flag character B can be used to allow
literal symbols in any literal position (see "Flag
Characters and Their Meanings').

Actual

An actual operand is a set of numerical characters,
usually preceded by the actual address symbol (@),
which designates one of the following:

1. An actual storage location

2. A setting for the accumulator or an ASU

3. The size of a block of storage positions

The @ symbol need not be used when an operand
containing less than five numerical characters is
used with one of the following operations: BLM,
BLMS, CTL, HLT, LIP, LNG, RND, SEL, SET,
SHR, SPC, SRC, TRANS. Note in Figure 46 that
the SET and BLM instructions have been written
two ways.

Restrictions on an Actual Operand

An actual operand greater than the core~storage
size specified to the Processor should not be used.

One-For-One Instructions 33

Blank

A blank operand is one that has blanks in the first
ten columns of the operand field. Blank operands
should be used if the instruction is initialized by
the program, or if the operation itself does not
require an address. In the object program, a blank
operand is replaced by an appropriate address.

Nome Operation |Nam Operond
(Tag)
6 8 10m 13 sle 18 zolzizzfes 25 w2 30 323 35 3738 39
ens |, dsr | @res | 1L |,
::::!,..'f:gfeﬁ:-f:;i-:-k 1
ZTwo, |, IsE7 @Me- — |
e |
THAREE| , ls&7, P S -
ERENDEE A I DI DD
bbb
FodRr | 18cM |, Popode , | . . |,
TSI T :§:L= TN VI RO S by
ve i Bem | 2o | |
| P N B IR]
Figure 46

If such an operand is encountered during assembly,
the Processor subtracts the maximum core-
storage size from the actual and uses the difference
as the operand. A message to this effect is pro-
vided at assembly time.

For example, if an 80, 000 core-storage size
has been specified, any actual operand in excess of
79999 will have 80000 subtracted from it; the re-
mainder will be used as the operand. The list
below indicates the largest actual operand that may
be used with each available core-storage size:

Core-Storage Size Maximum Actual Operand

20,000 19999
40, 000 39999
80, 000 79999
160, 000 159999

Location Counter

A location counter is represented by the asterisk
(*) symbol, which designates the low-order position
of the instruction in which it appears. Since each
instruction occupies five positions in the object
program, an instruction containing a location
counter references its own low-order position. The
effect of the instruction in Figure 47 is to cause the
4 or 9 location assigned to the instruction to be
placed in ASU 14.

Name Operation Num Operand

Nome Operation [Num Operand
(Tag)
6 8 1011 13 she 18 2ol21 2223 25 2728 30 3233 35 3738 3
‘-!'::,L:oﬁIf—O—Lvlifv"f'w'i‘:'- bttt
A — |
Figure 47

NOTE: The versatility of a location counter is
more fully utilized when the counter is character-
adjusted. This use is explained in the following
section, '"Additions to Basic Operands. "

34

o 5 W 5 usle e mlnaln x ww w wwm s 373839]
1888 L e
:%::,L::.:f'?;f‘ — PN
NENENENE SNSRI 1772 NS V') S N .
b 1

Figure 48

ADDITIONS TO BASIC OPERANDS

A description of the suffix and the prefixes that may
be added to an Autocoder operand follows.

Character Adjustment

Character adjustment is designated by a suffix to
the basic operand. A reference to an untagged
field, an untagged instruction, or a particular
position within a field or an instruction can be made
by using character adjustment. The suffix consists
of an arithmetic operator that specifies the type of
operation, and one or more numerical characters
that specify the size of the adjustment. The oper-
ators are as follows:

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division

Character adjustment may be used with all basic
operands except the blank operand. The operator
should appear immediately after the operand. It
may not appear beyond column 33, unless the
operand itself continues into column 33 or beyond.

In Figure 49, the character-adjusted operand of
the RAD instruction references the field that follows

- EMPLOYEE.

A character-adjusted location counter may be
used to bypass in-line instructions. In Figure 50,
*+10 references the low-order (4 or 9) position of
the ST instruction.

6 8 1011 13 1shis 18 0]2) 22123 25 2728 30 3233 35 3738 39

Name Operation Num Operand
2

R (RS, e

| EEEENTEENN E 300 N EEEENNE BN

s

LR IR R

FPRIFES SN SV S N S TP
-

—_

e RAD, | oL oY EEF ST

..........

Figure 49

Restrictions on Character Adjustment

The numerical portion of a character adjustment
cannot exceed six positions, and its absolute value
cannot be greater than 159999, If it is greater,
160000 will be subtracted until the absolute value
is less than 160, 000. If the numeric portion of the
adjustment is less than six positions, the position
immediately following must be non-numerical.

Name Operation Num Operand

(Tog)
6 8 00 13 15{16 18 20§21 22|23 25 2728 30 32 33 35 3738 39,
I SV b 0. -2 e, |, I
....... —r
U E D, { r30H4 PR
bt ot S 2 A S e E e
IR SV K% A L&D RPN
..... v ' t et —{—+ .

N RETEN P N B ‘.J‘L}

Further restrictions apply to operands that are
a location counter, an actual, or a literal. These
operands can use only the + or - operators. If any
other operator is used, both the operator and the
adjustment will be ignored.

Literal operands, in addition to being restricted
to a + or a - operator, cannot have an adjustment
value of more than 99. If the adjustment is more
than 99, the Processor will use the two low-order
digits for the adjustment value. Thus, an adjust-
ment of -156 will be treated as if it were -56.

Operand Modifier

An operand modifier is a two-character prefix that
may be used with a tag or a literal operand. It
enables the user to reference a particular position
of a field or an instruction or to reference the size
of a field. The operand modifiers are as follows:

Modifier Modifier Designates
L, Left-hand position
R, Right-hand position
H, High-speed position
S, Size
T, High-speed nine position

In Figure 51, the LOD instruction references the
left-hand position of FIELD. When the instruction
is executed, the contents of that position, rather
than the entire contents of FIELD, are placed in
ASU 01.

Name Operation | Num Operond ’
s 8 B0 i3 ushs s zolorols 25w m a2 35 was
o gep , Rep o L]
P B :j,—:: A L
PN SN FA- % - S RE | /RO V- "X N S |
IR BTN ST I R ST R

Figure 51

NOTE: If the modifier "S, ' has been used in Fig-
ure 51, the LOD instruction would reference the
contents of location 00008.

Indirect Address

An indirect address is an indirect reference; that
is, it is a reference to an operand that references
some other operand. It is designated by a two-
character prefix to the basic operand. The prefix
consists of an I followed by a comma (I,). An indi-
rect address may be used with the following oper-
ands: tag, blank, actual, character-adjusted loca-
tion counter. In Figure 52, BEGIN is the effective
transfer point of the first instruction.

Name Operation [Num Operand
(Tag)
6 8 1011 13 1she 18 20l2122023 25 2728 30 3233 35 3738 39

M I DDLIE |, | (TR, . L, EXD] + |

——+— -+ttt 1Tttt

+ e:g—:‘.’ Nl ———t—

N U S I N S D

V7.7% N NS | oF N

+—+

e oo e b

Figure 52

When the Processor encounters an instruction
containing "I, ' in the 7080 mode portion of the
program, it generates two instructions: The first
is an EIA (Enable Indirect Address). If the one-
for-one instruction containing the indirect address
is tagged, the Processor transfers the tag to the
EIA instruction. The second instruction is the same
one-for-one instruction without the hand-coded "I, "
and without the hand-coded tag. I the first instruc-
tion in Figure 52 had been written in the 7080-mode
portion of the program, it would have been followed
by the generated instructions as shown in Figure 53.

MULTIPLE ADDITIONS TO A BASIC OPERAND

The following pairs of additions may be used with.
either a tag or a literal operand:

One-For-One Instructions 35

Tag Operation} Num | Operand

MIDDLE TR 1,END
MIDDLE EIA END
TR END
Figure 53

1. Operand modifier and character adjustment

2. Indirect address and character adjustment
The second pair may also be used with a location
counter.

In Figure 54, the operand of the LOD instruction
references the second position in FIELD; i.e., the
position to the right of the high-order position.

Name Operation jNum Operand
{Tag)
6 8 01 13 she 18 20j2122023 25 2728 30 3233 35 3738 3.
sg5ep L Red lrole 1]
L e P RSP 1008, | ESPIRFUSFREPN [V S
U PR A SN E NN IO R I
o L S S S I S
{
SN RV T30 S O VP2V % Tl S
S e o
Figure 54

In Figure 55, COMPUTE is the effective trans-
fer point of the first transfer instruction.

Name Operation Num Operand
(Tag)
6 8 ton 13 ashe 18 zol2iz2es 25 ww 3 23 3w wamw
oM |, RAD | REcoRDL |, . .|,
PR RPN | -7 NP SO © X" 1™ T R
ptmtrmtt ettt LB g AT M L0y e
rTwe |, RAD | WREFceRPa L. . . .|,
NP EEPRPRPIING § 7. P S - 7. V771 7 AN SN
}
. | PR N I NN NN R
Figure 55

36

A macro-instruction is a source-program statement
which represents multiple operations. When the
program is assembled, each macro-instruction is
replaced by a sequence of one-for-one instructions;
the number varies according to what the macro-
instruction is and how it is used. The general-
purpose macro-instructions in the 7080 Processor
library are shown in Figure 56. The purpose of
this chapter is to present them as a part of the
Autocoder language; consequently, the chapter is
limited to an explanation of their basic coding format
and a few examples of individual macro-instructions.
The specifications for using each general-purpose
macro-instruction are provided in the publication
7080 Processor: General Purpose Macro-Instruc-
tions, Form C28-6356. Procedures for writing new
macro-instructions for incorporation into the lan-
guage are described in the publication, 7080 Pro-
cessor: Preparation of Macro-Instructions, Form
C28-6264. Input/output macro-instructions are a
part of the 7080 Input/Output Control System, and
are described in the 7080 IOCS publications. The
titles, form numbers, and abstracts of references
to all publications dealing with macro-instructions
for the IBM 7080 may be found in IBM 7080 Bibli-
ography, Form A22-6774.

In addition to individual specifications and ex-
amples of generated coding, the macro-instruction
manual provides detailed explanations of the conven-
tions and restrictions governing the use of all the
general-purpose macro-instructions. It also ex-
plains restrictions that may apply to only one type
of macro-instruction. It has been necessary to
establish certain conventions and restrictions in
creating a macro-instruction library to serve a
large number of users with a variety of program
needs. However, it is possible for programmers
to prepare their own macro-instructions and insert
them into the library.

Because of the flexibility of the Processor, pro-
grammers need not observe most of the restrictions
described in the macro-instruction manual when
creating macro-instructions to meet their particular
requirements. Specifically, they may designate as
acceptable operands any of the basic operands and
additions to basic operands described in the chapter
"One-for-One Instructions." Programmers writing
their own macro-instructions may also designate an
entry in the numerical field as the method of supply-
ing an ASU reference or other special information.
The process of creating a macro-instruction re-
quires a thorough knowledge of a special language
which is described in the IBM publication on the pre-
paration of macro-instruction for the 7080 Processor.

GENERAL PURPOSE MACRO-INSTRUCTIONS

ADDRESS MODIFICATION
Add Address ‘
Compare Address
Decrement Address
Increment Address
Initialize Address
Move Address
Subtract Address

ASSEMBLY CONTROL
Enter Interrupt Program
Leave Interrupt Program
Leave 80 Mode
Enter 80 Mode
Speed or Space

AUTOMATIC DECIMAL POINT
Absolute Value
Add
Decrement
Diminish
Divide
Divide or Halt
Increment
Muliiply
Negative Absolute Value
Negative Divide
Negative Divide or Halt
Negative Multiply
Subtract
Sign and Zero Test

DATA TESTING
Compare
Test for Numeric Fleld
Test if In Range

DATA TRANSMISSION
Blank Memory
Define ASU
Move
Restore Decimal

Zero Memory
Define CASU

PROGRAM BRANCH CONTROL
Alternating NOP
Alternating Transfer
Flrst Time NOP
First Time NOP on a BIit
First Time Transfer
First Time Transfer on a BIt
Set Switches OFF
Set Switches ON
Test Switch

TABLE
Add an ltem
Delete an ltem
Replace an ltem
Search a Table
Table Control

MISCELLANEOUS
Dead-End Halt
Link to Subroutine
Transfer Indirect
Type a Message

(ADDA)
(COMPA)
(DECRA)
(INCRA)
(INITA)
(MOVEA)
(SUBA)

(ENTIP)
(LEVIP)

(LEVE0)
(ENT80)
(SPEED)

(ABSX)
(ADDX)
(DECRX)
(DIMX)
(DIVX)
(DVHX)
(INCRX)
(MPYX)
(NABSX)
(NDIVX)
(NDVHX)
(NMPYX)
(SUBX)
(TESTX)

(COMP)
(IFNUM)
(RANGE)

(BLANK)
(AsU)
{MOVE)
(DEC)
(ZERO)
(cAsu)

(ALTNP)
(ALTTR)
(FTNOP)
(FTNPB)
(FTTR)
(FTTRB)
(SETOF)
(SETON)
(IFON)

(ADITM)
(DLITM)
(RPITM)
(SERCH)
(TBCTL)

(STOP)
(LINK)
(TRIN)
(TYPE)

Figure 56. 7080 Processor General-Purpose Macro-Instructions

for Use in Autocoder Programs.

The remainder of this chapter is an introduction
to the general-purpose macro-instructions in the

General Purpose Macro-Instructions 37

7080 Processor library. The discussion is based on
the conventions and restrictions that apply to these
macro-instructions.

GENERAL-PURPOSE MACRO-HEADER FORMAT

The portion of a macro-instruction that is written as
a source-program statement is called a macro-
header. Like other Autocoder statements, a macro-
header is tagged if it is to be referenced. The
mnemonic code is placed in the operation field. En-
tries in the numerical field are rarely permitted.
Those entries which are permitted do not relate to
an ASU number or a bit as they do in a one-for-one
instruction. Most macro-headers have two or more
entries in the operand field; some may contain up to
fifty entries; and a few may have only one. The en-
tries will be called operands throughout this chapter
and in the macro-instruction manual. Each operand
is terminated by a lozenge (k), the same symbol that
was previously explained as part of an RPT state-
ment,

Operands may be placed in the operand and com-
ments fields of the line on which the macro-header
starts, and may be continued in the operand and
comments fields of the next 49 lines on the coding
sheet. However, an operand may not be written on
two lines; i.e., it may not be started in the com-
ments field of one line and continued in the operand
field of the next line. Similarly, the lozenge which
terminates an operand may not be separated from it.
If the positions at the end of a line are insufficient
for both an operand and its lozenge, the positions
must be left blank, and the operand started in col-
umn 23 of the next line on the coding sheet. Oper-
and continuation lines must be blank in the tag, oper-
ation, and numerical fields.

Comments may be started in the comments field
of the line on which the operands terminate, but the
comments must be separated from the final lozenge
by a minimum of two spaces. Comments may also
be continued in the comments field of succeeding
lines of the coding sheet.

TYPES OF MACRO-HEADER OPERANDS
The operands of a macro-header designate the data
and/or the instructions involved in the operations

the macro-instruction represents. Most operands
are either tags or literals.

Tag Operands
The tags may be those of defined data fields,

switches, source-program one-for-one instructions,
macro-instructions, and address constants. Other

38

tags that may be used as operands are those of
Class A subroutine items and generated descriptive
tags. Characteristics of items within Class B sub-
routines are not available to macro-instructions.
For instance, the function of the IFON macro-
instruction is to test a switch and to transfer to one
of two specified instructions, depending on the status
of the switch. The operands of the IFON macro-
header are the tags of the switch to be tested and the
tags of the transfer points; i.e., the instructions to
which the transfer is made if the switch is ON or
OFF. In the generated coding, the tags appear as
the operands of the appropriate one-for-one instruc-
tions.

In most cases, the tag of an instruction is used as
an operand in order to designate the instruction as a
transfer point. This is not true of the operands of
Address Modification macro-headers. Such oper-
ands designate the operands of other instructions,
rather than the instructions themselves. When an
Address Modification macro-header must designate
the operand of another macro-header, it may not
reference the macro-header by its tag alone. The
tag must be written as a special form of operand
called the macro suffix tag. This consists of a tag
to which a suffix is added. The suffix is of the form
#x or #xx where x or xx are numbers that designate
one of the operands of the macro-header being refer-
enced. For example, a macro suffix tag designating
the first operand of a macro-header tagged MACRO
would be written as MACRO#1 or MACRO#01.
Similarly, a macro suffix tag designating the third
operand would be written as MACRO#3 or MACRO#03.
The use of the macro suffix tag is illustrated at the
end of this chapter and in the macro-instruction
manual, No adjustments are permitted on a macro
suffix tag.

Secondary Field Definitions in Tag Operands

A secondary field definition is a description of the
characteristics of a data field. It is written as part
of a macro-header operand that references the field.
That is, the operand is the tag of the field; and it
causes the macro-instructions to treat the field as
having the characteristics that the secondary field
definition provides. Depending on the reason for
which a secondary definition is used, it may supply
characteristics identical to those previously defined
for the field, or it may supply a different set of
characteristics. A secondary definition must be
used in a macro-header operand that references a
data field indirectly, because the defined character-
istics of the data field are not available to the Pro-
cessor in such a situation.

The macro-header operand containing the defini-
tion is written in this order: the tag of the data field,
a comma, the secondary definition, A secondary
field definition may be supplied by the tag of a field,
a literal, or either of the RCD forms, #+xx.yy or
#bxXX.yy.

Using the Tag of a Field: A macro-header operand
containing the tag of a field as a secondary definition
would be one such as TAGA, TAGB . The field
specified by TAGA will be treated as having the
characteristics of the field specified by TAGB.

If a field with the desired characteristics has been
defined, its tag may be used to supply the secondary
field definition. Otherwise, two fields must be de-
fined with different tags and overlapped by use of a
location assignment (LASN). Reference to the field
should be made by using the tag of the definition
which is appropriate at the time the reference is
made.

A generated descriptive tag may not be used as a
secondary definition.

Using a Literal: A macro-header operand contain-
ing a literal secondary definition would be one such
as TAG, #+XXX.X# . Regardless of the defined
characteristics of the field TAG, it is now defined
as a signed fraction consisting of three integer posi-
tions and one decimal position. This method can be
used to define only numerical fields other than un-
signed fractions.

Note that the letter X is the only character that
can be used in defining integer and decimal posi-
tions.

Using the RCD Form: With the RCD form of se-
condary definition, the example given in item 2
above would be written as TAG, #+03,01 K. This
form is fully discussed earlier in this manual. This
method can be used to define signed or unsigned
fields only.

Literal Operands

A literal is actual data enclosed by pound signs (#)
(see "One-for-One Instructions"). In the coding
generated from macro-headers containing literal
operands, the literals appear as the operands of the
appropriate one-for-one instructions just as tags
appear as one-for-one operands. Whenever the
macro-instruction manual designates the tag of a
field as an operand, a literal may be used instead.

An unsigned numerical literal supplying a mixed
or pure decimal should not be used as the operand
of an Automatic Decimal Point macro-header, be-
cause the constant created from the literal will con-
tain a special character (the decimal point). Float-
ing point literals may not be used as the operands of
Automatic Decimal Point macro-headers for the

reason stated in the explanation of FPN. A literal
must not exceed 35 positions, exclusive of the pound
signs.

TYPES OF LOZENGES

Lozenges indicate to the Processor the termination
of each operand and the position which an omitted
operand would normally occupy in relation to the
other operands. There are two types of lozenges:

Fixed: A fixed lozenge must never be omitted, If
the operand it terminates is omitted, the fixed
lozenge is placed back to back with the lozenge that
terminates the preceding operand.

Conditional: A conditional lozenge may be omitted
only if the operand it terminates is omitted and no
additional operands are written. If other operands
follow an omitted operand, its conditional lozenge
must be placed back to back with the lozenge that
terminates the preceding operand.

OMITTED OPERANDS

The specifications in the macro-instruction manual
indicate that certain operands may be omitted. The
associated lozenge is assumed to be fixed, unless
the specifications state that it is conditional.

When the omitted operand is a transfer point, the
generated coding provides a transfer to the next in-
line source program instruction. This may be most
rapidly seen in those macro-instructions which make
some sort of test and then transfer according to the
results of the test. The IFON macro-header should
be written with two transfer points, one to be used if
a tested switch is ON, and the other if it is OFF.
The second transfer point may be omitted. If it is
omitted, the generated instruction for the OFF con-
dition is a transfer to the next in-line source pro-
gram instruction.

THE IMPORTANCE OF PROPERLY DEFINED DATA
FIELDS

A macro-header makes a field reference when it has
the tag of a field as an operand. In other words, it
references a field that is defined by either an area
definition or a switch definition. In order to gener-
ate coding that is proper for the field, the Processor
must know the characteristics of the data that will
occupy the field, Obviously, it is not possible for
the Processor to examine the actual data at assembly
time. Consequently, the Processor obtains the
characteristics from the definition and generates
coding that is proper for the field according to its
definition. If the data does not conform to these
characteristics, it may be improperly processed.
However, the generated coding itself is not improper.

General Purpose Macro-Instructions 39

The importance of field definitions may be seen
in a macro-instruction that is used to compare the
contents of two fields. The fields may be alphameric
or numerical. The one-for-one instructions which
should be used to compare alphameric data differ
from those which should beusedto compare numeri-
cal data. By using the macro-instruction, the pro-
grammer is relieved of having to select the proper
instructions, but the Processor cannot assume this
burden unless the characteristics of the field are
available to it. Similarly, if literals are used in-
stead of the tags of fields, the literals must be
written in accordance with the standards previously
specified. For instance, an unsigned decimal
written as a literal will not be treated as numerical
data but as alphameric data.

EXAMPLES OF MACRO-INSTRUCTIONS AND
THEIR USE

The balance of this chapter contains examples of
several general-purpose macro-instructions in the
Processor library. The function and coding format
of each macro-instruction is followed by an example
that illustrates how it might be used and what in-
structions would be generated for that use. In
Figures 57 through 60, the macro-headers are over-
laid with a band of gray to distinguish them from
generated instructions. The explanations should not
be considered as the specifications for the macro-
instructions. In some examples, certain available
options have been omitted entirely. Complete spe-
cifications are provided only by the macro-instruc-
tion manual.

Blank Memory -- BLANK
The function of BLANK is to place blanks in a field.

The basic format of the BLANK macro-header is as
follows:

Tag Operation|Num [Operand
T1 BLANK Xlﬂ X2EI Xa. cene .X50EI
T is the tag of the macro-header, or
1 . .
is omitted.
X1 e X5 0 are the tags of the fields in which

blanks are to be placed. The
lozenges are conditional.
In Figure 57, TAG1 indicates that the contents of
fields ONE and TWO are to be replaced by blanks.

40

Tag Operation{Num| Operand
0
ONE S|+
™WO 8 | XXXX. ZZ

Figure 57
Test Switch -- IFON
The function of IFON is to test a switch and to trans-

fer according to the results of the test. The basic
format of the IFON macro-header is as follows:

Tag Operation [Num {Operand
T, IFON X, ox,0x.n
T is the tag of the macro-header, or is
1 .
omitted.
Xl is the tag of the switch to be tested.
Xz is the tag of the ON transfer point; i.e.,

the instruction to which a transfer should
be made if the switch is ON.

X is the tag of the OFF transfer point. The
operand may be omitted, in which case a
transfer will be made to the next in-line
instruction. The lozenge is conditional.

In Figure 58, ON and OFF must be assumed to be
the tags of instructions. If OFF and its associated
lozenge had been omitted, the final instruction would
not have been generated.

Tag Operation|Num{ Operand
CHRCD

NEW YORK A

CHICAGO s B

TAG2 LOD 117A

CMP 1 | NEWYORK
TRE ON
TR OFF
Figure 58
Add -- ADDX

The function of ADDX is to add the data in two
numerical fields and place the result in a numerical
field or an RPT field. The numerical fields may be
signed or unsigned. The basic format of the ADDX
macro-header is as follows:

Tag OperationrNum Operand

T, ADDX 1| XOXAx.n

T 1 is the tag of the macro-header or is omitted.

X 1 is the tag of one numerical source field;
i.e., the field that is the source of one
set of data to be added.

X2 is the tag of the other numerical source
field.

X 3 is the tag of the numerical or RPT result
field; i.e., the field in which the result
is to be placed.

Tag Operation{Num{ Operand
NINE RCD 5 | #402.03
TEN 6 | #403.03
NINE
SET @00006
ADD #+75,000#
ST TEN

Figure 59

Increment Address -- INCRA

INCRA is an Address Modification macro-instruc-
tion. The function of this type of macro-instruction
is to modify other instructions, either macro-in-
structions or one-for-one instructions. The func-
tion of INCRA is to increment a field reference
made by another instruction, thus modifying the in-
struction so that it makes a different field reference.
An instruction makes a field reference by having the
tag of a field as an operand. INCRA designates the
instruction which makes the field reference and the

amount by which the reference is to be increased.
The basic format of the INCRA macro-header is as
follows:

Tag Operation {Num [Operand

T, INCRA X mx,n

T is the tag of the macro-header, or is

1 .

omitted.

X 1 is the tag of an instruction that makes the
field reference to be incremented.

X is the increment.

In Figure 60, the first operand of INCRA is a
macro suffix tag, designating the second operand of
MACRO. Initially, MACRO references FIELD,
However, INCRA modifies MACRO so that it sub-
sequently references whatever is located 500 posi-
tions above FIELD. For instance, assume that
FIELD occupies locations 001000-001002. When
MACRO is executed initially, it will cause these
locations to be blanked. Once modified by INCRA,
it will cause locations 001500-001502 to be blanked.
(M00017#02 is a tag generated by the Processor).

Tag Operation{Num| Operand
OTHER RCD 8 |A
FIELD 3]A

§
TAG4 INCRA MACRO20 #+500#00
TAG4 RAD 15 | #+500#
AAM 15 | M00017#02
Figure 60

General Purpose Macro-Instructions 41

ADDRESS CONSTANTS

An address constant is a numerical constant consist-
ing of a storage location. An address constant
statement designates the storage location by specify-
ing one of four operands: tag, literal, actual, l_c_>_g§—
tion counter. At assemblfTim'éTThe location as—
PRSI e

signed to the tag, the literal, or the location counter,
or the location desig‘natéd by the actual operand is
used to create the constant. In effect, the function
of an address constant statement is to define a data
field that will contain a constant and to designate the
constant to be placed in the field. The actual
constant is generated by the Processor and placed

in the field created for it. Thus, an address
constant enables the user to reference a constant
that is not created until the program is assembled.,

Address constants are used to initialize instruc-
tions, a procedure that alters the reference made
by an instruction or supplies a reference to an in-
struction that lacks one. For example, suppose
that an instruction must reference two record areas .
alternately, areas tagged FIRST and SECOND. This
means that the operand of the instruction must con-
tain FIRST at certain points in the program, and
SECOND at other points. To initialize the instruc-
tion (i.e., to modify the reference) address
constants must be created from each of these tags
so that one or the other of them can be placed in the
instruction as required. In the assembled program,
the address portion of the instruction will alternate
between the actual locations assigned to FIRST and
SECOND. Note the difference between an instruc-
tion that references FIRST and an instruction that
- references an address constant created from FIRST.
In the former case, the instruction references the
contents of a record area; in the latter case, the in-
struction references a constant consisting of the
storage location of the record area.

The basic operand of an address constant state-
ment may be a tag, a literal, an actual, or a loca-
tion counter. Operand modifiers may be used with
a tag or a literal to request a generated constant:

Address Constant

Modifier Generated From

Right-hand Storage location of the low-
order position of a field,
instruction, or literal

Left-hand Storage location of the high-
order position of a field,
instruction, or literal

High speed A left-hand address plus

four

42

Address Constant

Modifier Generated From

High-speed nine A left-hand address plus nine
Size The number of positions oc-
cupied by a field or literal

If no operand modifier is used, a right-hand address
will be generated as the constant. As the preceding
list indicates, a right-hand operand modifier may be
written, but it is not necessary.

Character adjustments to the basic operand cause
numerical adjustment of the address constant. Ad-
dition, subtraction, multiplication, or division by a
specified amount may be requested. For example,

a character adjustment of plus five would cause the
constant to be five greater than the storage location
referenced.

An address constant may be both operand-
modified and character-adjusted. (Such an operand
may have to continue into the comments field.) The
operand modifier is a prefix to the basic operand; it
consists of the appropriate modifier symbol followed
by a comma. The character adjustment is a suffix
to the basic operand; it consists of the arithmetic
operator followed by a number designating the
amount of adjustment. The amount may not exceed
160,000. The symbols are as follows:

Operand Modifier Character Adjustment

R, Right-hand + Add

L, Left-hand - Subtract
H, High speed N Multiply
S, Size / Divide
T, High-speed nine

Assume that FIELD, a data field, is assigned to
locations 001300-001309. An address constant
statement having L, FIELD as its operand will cause
001300 to be created as the address constant. The
operand R, FIELD+6 will cause 001315 to be created
as an address constant. The same constant would
be created from FIELD+6. Since the field occupies
ten positions, the operand S, FIELD will cause a
constant of 10 to be created; the operand S, FIELD*5
will create a constant of 50.

Comments about an address constant may be
started in the comments field of the address constant
statement.

ADCON Address Constant

The function of an ADCON statement is to create an
instruction which consists of a four-character, un-
signed address constant preceded by the actual code
for No Operation. The instruction is positioned in a
4 or 9 location., The ADCON statement is written as
follows:

Tag Operation |Num jOperand
T, ADCON nn|X
Ty is the tag of the address constant.
nn is ASU zoning or is blank.
Xl is a tag, literal, actual, or location
counter.

The ADCON statement creates an instruction of
the form Axxxx. A is the actual code for No Opera-
tion; xxxx is the address constant. The instruction
Axxxx will be positioned so that the low-order char-
acter occupies a 4 or 9 location. Any ASU zoning
will be properly generated as part of the constant.

The ADCON statement in Figure 61 will cause an
address constant to consist of the storage location
of the right-hand position of the RECORDONE data
field. Instructions referencing the constant do so by
referencing its tag, FIRST.

Name Operation [Num Operand
(Tag)
-3 8 1011

13 sl 18 20|23 25 272 30 323 s 3739393
RECORDPONE R laslar |

PR PRI 4 e n
-ttt -4ttt +—+—+

R&c oRDone

........

|,

N R R I A

Figure 61

Figure 62 specifies that the left-hand address
constant consisting of the location of INSTRCTION
is to be zoned for ASU 15.

Name Operation |Num Operand
(Tag)
6 8 10U__13 15he 18 20l2122023 25 2728 30 3233 35 3738 39,
7R | IsTtART . . . |, ., . |,
VIF. ‘—LI +|
861, | —BRCOML S, T SlTRC T 1O, |, |,
| | |
Figure 62

ACON4 Address Constant

The function of an ACON4 statement is to create a
four-character, unsigned address constant. The
constant is placed in the next four available storage

locations without regard to the positioning of its
low-order character. ASU zoning, if specified, is
properly generated as part of the constant. The
format of the ACON4 statement is as follows:

Tag Operationb Num |Operand
T 1 ACON4 nn|X 1
T is the tag of the address constant.
nn is an ASU number or is blank.
X1 is a tag, literal, actual, or location
counter.

In Figure 63, the ACON4 statement is a request
for an address constant consisting of the storage
location assigned to FIELD1. Since no operand
modifier is specified, the right-hand address will
be generated. The constant may be referenced by
its tag, TAGI.

Name Operation Num Operand
6 8 (T(:%)H 13 1516 18 20021 22§23 25 27 28 30 32 33 35 3738 3‘,1
F=VN-' IF MRV A NN V. - SN - N -
N '.,?: N P SN S |
racl, | |AcoNyl | |F) ELDONE, RN B
| IV]
Figure 63

Figure 64 shows that the constant will consist of
the location assigned to the RECORDAREA field.
Since the operand modifier "H, " is used, the high
speed address will be generated.

Name Operation | Num Operand
(Tog)
6 8 1011 13 15H6 18 20)2t 22|23 25 2728 30 32 33 35 3738 39

P P /7.7~ Y-, S G R B
EcerParREARCD BB, |ty |y
llll!'l:l ?-: + }1::! Lo ‘nfff-l*
TA&2, | —acoNd W, RECO RDARER | |

A VI T N S N S
Figure 64

ACON5 Address Constant

The function of an ACON5 statement is to create a
five-character address constant, either signed or
unsigned. The constant is placed in the next five
available storage locations without regard to the
positioning of its low-order character. The sign,

if specified, is placed over the low-order character.
The format of the ACON5 statement is as follows:

Address Constants 43

Tag Operation |[NumjOperand

T, ACON5 s|X,

Tl is the tag of the address -constant.

s is + for a positive constant, or is - for a
negative constant, or is blank for an un-
signed constant.

Xy is a tag, literal, actual, or location

counter.

The ACON5 statement in Figure 65 specifies that
the location of the literal is to be made an address
constant. Note that the address constant will be
signed. The sign of the address constant is not re-
lated to the sign of the literal.

without regard to the positioning of its low-order

character. The format of the ACONG6 statement is
as follows:

Tag Operation|Num|Operand

T, ACONB6 s|X,

T1 is the tag of the address constant.

s is + for a positive constant, or

is - for a negative constant, or

is blank for an unsigned constant.
is a tag, literal, actual, or location
counter.

X1

In Figure 67, the ACONG6 statement requests that
5000 be generated as a constant.

Name

(Tag)

é 8 101

1315

Operation

16 18 20

Num

2] 22

Operand

23 25 2728 30 32 33

35

37 38 39

Name
(Tag)
b 8 1011

Oparation

13 1516 18

Num

2122123 25 2728

Operand

30 3233 35

!

3738 39

||||||

+—+—+

Acons

-

||||||

racd, |,
A S

+

Figure 65

Figure 66 shows a request for an unsigned con-

stant twice the size of FIELD2.

will be generated.

The constant 00012

Figure 67

Restrictions on an ACONG6 Statement

ASU zoning may not be specified in an ACON6 state-

ment.

ADDRESS CONSTANT LITERAL

An address constant literal is an operand with a
double function; it is a request for an address con-
stant and for an operand that references the constant.

Name Operation | Num Operand
(Tag)
6 8 1011 13 she 18 olznizles 25 22w 30 3233 35 3738 39
LEaRl2 RAT, | 4222 .22 L
R TN B N L,
......... ¢ t ottt et
TRCR, | BLONS, IS FrEleDax |,
L - S |
Figure 66

Restrictions on an ACON5 Statement

ASU zoning may not be specified in an ACON5 state-
ment.

Any ACON5 should not be specified if there is a
possibility that the address from which the constant
is created will exceed 79999. In the event that a
constant is requested for such an address, 80, 000 is
subtracted from the address. A message to the
effect that the constant exceeds the address limit is
provided at assembly time.

ACON6 Address Constant

The function of an ACONG6 statement is to create a
six-character address constant. The constant is
placed in the next six available storage locations

44

The generated address constant is placed in the
literal table. For example, when an instruction
references a tag as part of an address constant
literal, a constant consisting of the location assigned
to the tag will be created and placed in the literal
table. When the program is assembled, the operand
(address constant literal) of the instruction will be
replaced by the location assigned to the generated
constant. If a program requires many address con-
stants, they should be created with address constant
statements. The address constant literal operand

is useful in a program that requires an occasional
address constant.

Writing an Address Constant Literal Operand

The operand may contain a tag or a literal. Operand
modifiers must be used with either one, to specify
the type of address being requested. If ASU zoning
is to be generated as part of the constant, the ASU

number is placed directly after the operand modifier
and is followed by a comma. The basic format of
the entire operand is either of the following:

1. Operand modifier, plus a tag or a literal

2. Operand modifier, plus ASU zoning plus a tag
or a literal

The symbols for the operand modifiers and ASU
zoning are shown in the following list (nn represents
an ASU number):

Operand Modifier and
Address Type Modifier ASU Zoning
Right-hand R@ R@nn,
Left-hand L@ L@nn,
High speed H@ H@nn,
Size sS@ S@nn,
High speed nine T@ T@nn,

NOTE: The modifier and ASU zoning may also be
written in the form R@n, L@n, etc., when specifying
ASUs 1 through 9.

In Figure 68, an address constant is requested
for the right-hand address of FIELD. The instruc-
tion specifies that the address constant is to be
loaded into ASU 15. When the instruction is exe-
cuted, the right-hand address of FIELD rather than
the contents of FIELD will be placed in ASU 15.

Name Operation | Num Operand
3 8 m:%)!! 13__i5he 18 nLl 22|23 25 2728 30 3233 35 3738 3¢
LELR o lecp 3B |, L]
:::;.l:'.f::g:::e::tl::‘ra:4::J:
DeoNL T, | |toD, '.L LEIR®LE, £ D | | |, |
- [| |
Figure 68

Figure 69 specifies that the address constant con-
sisting of the right-hand address of FIELD be zoned
for ASU 5. As in the preceding example, when the
instruction is executed, the address constant will be
placed in ASU 15.

Name Operation | Num Operand)
(Tog) 4
68 1011 13 slhe 18 zolnzolzn 25 2728 30 3233 35 37383
152 leedr 2.9 4 | |,

L E LR 2, I T B
] A N I N I
it it et ‘
2LoMes T, Jeod 1@ es |y £ Ly
! P B N

Figure 69

Arithmetic instructions, such as ADD, SUB, etc.,
cause a six~position signed constant to be created;
the constant is signed plus. In a secondary mode, a
five-position constant, signed plus, is created. All
instructions requiring a 4 or 9 address, such as
LDA, AAM, TR, TMT, etc., cause a four-position
unsigned constant to be created and properly posi-
tioned in a 4 or 9 location regardless of the mode.
All other instructions cause a four-position unsigned
constant, positioned in a 4 or 9 location, to be
created for 705 II mode; a five-position unsigned
constant to be created for 705 III mode; and a six-
position, unsigned constant to be created for 7080
mode. In each case the maximum constant allowed
is dependent on mode memory size.

Restrictions on an Address Constant Literal Operand

Character adjustment may be used for the purpose
of modifying the constant itself. If character adjust-
ment is written in an address constant literal oper-
and, it will not be applied to the location of the
constant.

If an address constant literal operand is used in a
macro-header, it may not designate ASU zoning.

Address Constants 45

INSTRUCTIONS TO THE PROCESSOR

"~ Imstructions to the Processor concern the assembly
process. They are executed by the Processor at
assembly time. Consequently, these instructions
do not appear in object programs, although they are
written in the source program wherever they are
required. Through these statements, the program-
mer is able to communicate with the Processor.
The instructions to the Processor are listed below
according to the aspect of the assembly process that
they concern:
1. Standard Assembly Procedures
Location Assignment - LASN
Special Assignment - SASN
Relative Assignment - RASN
Assignment of Macro-Instruction Subroutines
- SUBRO
Assignment of Library Subroutines - SUBOR
Assignment of Literals - LITOR
Transfer Card - TCD
2. Object Program Content
Include Subroutine - INCL
Translation - TRANS
Source-Program Language - MODE
3. Object Program Listing
Skip to New Page - EJECT
Title for Routine or Comment - TITLE
4. Multiple Literal Tables
Literal Start - LITST
Literal End - LITND
5. Flags

INSTRUCTIONS TO THE PROCESSOR - STANDARD
ASSEMBLY PROCEDURES

Certain instructions to the Processor may be used
to alter standard assembly procedures. To under-
stand how these instructions may be used, it is
first necessary to know what the procedures are:

Location assignments: The Processor assigns
storage locations-in ascending order to the object
program. In making the assignments, it uses a
location counter that is set initially to location
00500. The parts of the object program are as-
signed in the following sequence: the machine-
language equivalent of the source program, the
library subroutines, the main literal table. If no
subroutines have been requested by either the
source program or the Processor itself, the main
literal table is placed after the source program.
Standard "00" transfer control card: The Pro-
cessor produces this as the terminal card of the :i}>
object program deck. (The next chapter contains @\
additional information on the object deck.) The

46

A
S

standard 00" card contains instructions to set
various ASUs. The final instruction on the card is

a transfer to the first instruction in the object pro-
gram. At the time the object program is to be exe-
cuted (object time), it is placed in storage by a load-
ing program. When the loading program encounters
the standard "00" transfer card, it executes the in-
structions the card contains, thereby transferring
control to the object program itself.

The instructions to the Processor explained in
this section enable the programmer to direct the
Processor to do one or more of the following:

1. To use more than one location counter in mak-
ing assignments

2. To assign specific locations designated by the
programmer

3. To alter the order of the parts of the object
program

4. To provide additional "00'" cards, and to place
them within the object program

It is often necessary to modify the standard as-
sembly procedure. For example, it must be done
when using I0CS (Input/Output Control System), be-
cause the IOCS routines occupy a large storage area
starting in location 00500. The object program,
therefore, must be positioned beyond the IOCS area.
The positioning is accomplished by starting the
source program with an instruction to the Processor
to set the location counter to a location above the
IOCS area.

The ability to specify storage assignments allows
the programmer to conserve storage space by over-
lapping assignments; i.e., by assigning the same
area of storage to more than one routine or block of
data. A housekeeping routine is frequently over-
lapped with another routine, since the housekeeping
routine is only executed once. By the use of in-
structions to the Processor, the programmer is able
to cause the housekeeping routine to be placed in
storage and executed before the other routine is
placed in the same area.

Another example of overlapping is the assignment
of two or more NAME definitions to the same area.
This is often desirable when the program is to proc-
ess sets of records that possess different char-
acteristics but require the same amount of storage
space. As long as all the records need not be in
storage simultaneously, the same location assign-
ment may be specified for the various NAMEs.

Location Assignment -- LASN

The function of a LASN statement is to set a loca-
tion counter to a specified location; 10 counters are

available. A LASN statement may set the designated
counter to one of the following:

1. An actual location specified by the program-
mer

2. An actual location, unknown to the program-
mer, that has already been assigned by the Pro-
cessor to a field or an instruction

3. One location beyond the highest location as-
signed from the counter at any point in the assign-
ment process

4, Location 00500, the initial location assignment

5. One location beyond the highest location as-
signed from a point in the assignment process spe-
cified by the programmer

Each time the Processor encounters a LASN, it
sets the designated counter and makes subsequent
assignments from that counter. This continues
until another LASN is encountered, or until the as-
signment process is completed. Multiple counters
are useful when specifying location assignments in a
program of many sections, because one counter can
be allocated to each section.

The LASN is written as follows:

TAG FIELD: This field must be left blank.
OPERATION FIELD: The mnemonic code LASN is
placed here.

NUMERICAL FIELD: The counter to be set is de-
signated in column 22 of this field. The column is
left blank when designating the Blank counter; each
of the other counters is designated by one of the
digits 1 to 9. The Blank counter may be considered
the primary counter, since it is used by the Pro-
cessor in the absence of any LASN statements. Ad-
ditional information on the Blank counter is supplied
in the section '""Location Assignments from the Blank
Counter. "

OPERAND FIELD: To set the counter designated in
the numerical field, the entry in this field may be
one of the following:

1. An actual operand. The counter is set to the
location specified by the operand.

2. The tag of a statement appearing anywhere in
the program before the LASN. The counter is set
to the location previously assigned to the instruction
or field identified by the tag. The tag may be char-
acter-adjusted.

3. A blank operand. The counter is set to one
location beyond the highest location previously as-
signed from it. -

4. A location counter, with or without adjustment.
If there is no adjustment the assignment continues;
i.e., it starts in the next available location.

To reset the counter to location 00500, from
which the standard assignment process starts, leave
columns 23-73 blank, and place the character R in

column 74. When used in column 74 of a LASN
statement, this character may be considered the
Reset character. (For additional information on the
Reset character see the section entitled '"Flag Char-
acters and Their Meanings. '")

COMMENTS FIELD: When a tag or an actual oper-
and is used, comments about the statement may be
placed in this field. When writing comments, col-
umn 74 should be examined to make sure it does not
contain R. I it does, subsequent use of the counter
is affected as described in the section, "Flag Char-
acters and Their Meanings. "

In Figure 70, storage assignments are shown to
the right of the hand-coded Autocoder statements.
Note that the assignments made after the LASN
statements are consistent with the requirement of a
4 or 9 location for instructions and with NAME state-
ments that specify a location through an entry in the
numerical field.

Tag Operation | Num OperandéASSlGNMENTS
LASN @2000 (002000
$
} 003007
START NAME 0 |END 003010
ONE RCD 4|+ 003013
TWO 7 | #+04.03) 003020
END CON 4 ¥ 002;024
i
LASN 1 |@50000 \ 050000
TAG ADCON START (050004
? 069994
LASN 1 [TWO 003014
EXTRA RCD 7 | #+05.02) 003020
§
i 004000
LASN 1 069995
{
LASN 1 R (000500
{ §
LASN 003025
Figure 70

LOCATION ASSIGNMENTS FROM THE BLANK
COUNTER: The Processor uses the Blank counter
unless directed by a LASN statement to do otherwise.
When the assignment of the machine-language ver-
sion of the source program is completed, the library
subroutines must be assigned. The Processor uses
the Blank counter to make the assignments. It first
sets the Blank counter to one location beyond the
highest location previously assigned, no matter what
counter was used to make assignment. After it com-
pletes the subroutine assignments, it repeats the
same process in assigning the main literal table;
i.e., it sets the Blank counter to one location beyond

Instructions to the Processor 47

the highest location previously assigned. If no
LASNs have been encountered within a subroutine,
the Blank counter itself contains the highest location
previously assigned at the time the main literal
table is to be positioned. The programmer should
keep this use of the Blank counter in mind when
placing LASN statements in subroutines. (The en-
tire assignment of library subroutines and the main
literal table may be altered by LITOR and SUBOR.
These are instructions to the Processor and are ex-
plained on subsequent pages. The assignment of
multiple literal tables is controlled by LITST and
LITND, as explained under "Multiple Literal
Tables. ')

Restrictions on a LLASN Statement

A LASN statement may not be referred to by another
Autocoder statement.

Specijal Assignment -- SASN

The function of a SASN statement is to set the Blank
counter as follows:

1. To an actual assignment specified by the pro-
grammer]

2. To an actual location, unknown to the pro-
grammer, that has already been assigned by the
Processor to a field or an instruction .

SASN is a limited form of LASN. Like LASN, it
may be used in library subroutines as well as in
programs. However, it differs substantially from
LASN in the following respect: The highest location
assignment resulting from a SASN is ignored when
the Processor sets the Blank counter to one location
beyond the highest location previously assigned from

the counter. (Such a setting is specified by a LASN

with a blank operand.)
In effect, location assignments resulting from a
SASN are no longer significant once the SASN is

terminated. Termination of a SASN results when a
LASN j tered, no matte counter the

' SN designates, 0 at type of operan n-

tains.

Because the SASN is a limited form of LASN, it
does not require a detailed explanation. It is written
as follows:

Tag Operation{NumjOperand
SASN X 1
X1 is an actual operand, or

is the tag of a statement appearing anywhere
in the program before the SASN, or
is a location counter.

48

The tag or location counter may be char-
acter-adjusted.
Note that the tag and numerical fields must be left
blank. Comments may be placed in the comments
field.
Figure 71 illustrates the fact that SASN assign~
ments are ignored during subsequent LASN assign-
ments.

Tag Operation | Num| Operand | ASSIGNMENTS
LASN @2000 | 002000
E 002499
SASN @3000 | 003000
§ 004000
LASN 002500
Figure 71

Restrictions on a SASN Statement

A SASN statement may not be referred to by another
Autocoder statement.

Relative Assignment -- RASN

This instruction allows a program or portion of a
program to be assembled at one location and to cause
all references to or within the program to be treated
as if they were assembled at a different location.
Various subroutines therefore, can be assembled
relative to the same location, and at object time one
of them can be moved for actual execution.

Locations will be assigned in the normal manner
to the entries following a RASN, but references to
them or any one of them will effectively be to their
relative address.

A relative assignment will be terminated by any
LASN, SASN, or TCD.,

In Figure 72, the routine beginning with TAGA
will be assembled starting at location 2000, but all
references to the routine will be assembled as if the
routine started at location 0300. The instruction
used to move the routine should reference actual
location 2000.

In Figure 73, the routine beginning with TAGA
will be assembled starting at location 5005, but all
references to the routine will be assembled as if the
routine started at location 0300. The LASN is used
to terminate the RASN, The instruction used to
move the routine should reference REFTAG + 5.,

There are certain limitations to be observed when
using a RASN:

1. As with SASN, a RASN has no effect on the high
assignment counters.

2. If location assignment is under control of a
LASN or SASN at the time a RASN is encountered,
it continues under eontrol of the LASN or SASN.

3. At the time a RASN is encountered, the fol-
lowing (in effect) occurs: The location counter is
incremented by one, and the high-order location of
the operand of the RASN is obtained. The difference
between these two must be a multiple of five, or in-
consistent results will occur. Therefore, it is re-
commended that a RASN always be preceded by a
LASN or a SASN; and that both have as operands
actual addresses or tags that are similarly posi-
tioned with respect to the low-order location.

Tag Operation | Num Operandf LOC INSTR SU ADDRESS
TR 18004 008004
LASN
RASN
TAGA | CMP 40343 000343
TRE - L0334 000334
SHR C0001 000001
TRZ NO0329 000329
TR 10304 000304
TAGB | HLT J9999 009999
LOD 803U4 01 000344
TR 10349. 000349
CON 1| CON
CON 2| CON
LASN
LOD 803U4 01 000344
Figure 72
Tag | Operation | Num|Operand } LOC INSTR SU ADDRESS
REFTAG| TR out 5004 18004 008004
RASN TAGAT300/0300
TAGA |[CMP CON 1 5009 40343 000343
TRE *+25 5014 L0334 000334
SHR 1 5019 C0001 000001
TRZ TAGB 5024 N0329 000329
TR TAGA 5029 10304 000304
TAGB |HLT 9999 5034 19999 009999
LOD 01|CON 2 5039 803U4 01 000344
TR *+10 5044 10349 000349
CON 1 |CON 04 } XXXX 5048
CON 2 |CON o}y 5049
LASN _ 5050
LOD 01 |{CON 2 5054 803U4 01 000344
Figure 73

A RASN statement is written in the format shown
below.

Tag Operation |[Num|Operand
RASN X
Xl is an actual operand, or

is the tag of a statement appearing anywhere
in the program before the RASN, or

is a location counter.
A tag or location counter may be character-
adjusted.
The tag and numerical fields must be left blank,
Comments may be placed in the comments field.

Restrictions on a RASN Statement

A RASN statement may not be referred to by another
Autocoder statement,

Assignment of Subroutines Within Macro-Instruc-
tions - SUBRO :

The function of a SUBRO statement is to cause the
Processor to treat the coding that follows it as a
subroutine and to locate it out of line. The Pro-
cessor assigns storage locations to SUBRO routines
after it has assigned locations to Class A subrou-
tines. The storage location at which the Processor
is to begin assigning addresses is designated in the
operand of the SUBRO statement.

NOTE: A SUBRO statement must not be written in a
source program. It is designed to be used with
user-written macro-instructions. A complete ex-
planation of the usage of a SUBRO is given in the
publication on the preparation of macro-instructions.

Assignment of Library Subroutines —- SUBOR

The function of a SUBOR statement is to specify the
starting location for the assignment of library sub-
routines. The SUBOR assignment supersedes

the standard subroutine placement; i.e., after the
last instruction in the program. SUBOR enables the
user to position the block of subroutines anywhere in
storage, and the statement itself may be written at
any point in the program. For a program written in
two modes, it may be necessary to place the sub-
routines below the storage limit of the secondary
mode. For example, the primary mode of a program
is 7080, and the secondary mode may be 705 III, If
the 705 III portion of the program must have access
to the subroutines, and it is anticipated that the final
instruction will occupy a location close to or beyond
the storage size of the 705 III, a SUBOR must be
used to position the subroutines in the lower portion
of storage. This would alter the order of the object-
program parts so that the block of subroutines would
be placed within the machine-language equivalent of
the source program. It may even be desirable to
place the subroutines at the beginning of the object
program.

Instructions to the Processor 49

The SUBOR statement is written as follows:

Tag Operation|Num|Operand
SUBOR X,
X1 is an actual operand, or

is the tag of an Autocoder statement, or
is a location counter.
The tag or location counter may be char-
acter for consistency adjusted. The tagged
statement must precede the SUBOR state-
ment.
Comments may be placed in the commends field.
Figure 74 indicates that the programmer assumes
the subroutines cannot possibly occupy more than
5, 000 positions.

Name Operation | Nom Operand
s 5 M v3 ushe 18 olnazls 2 mwm w wm 3 wmw
NN R K Y7 - Y- > Y- NP SN
PPN RS 127 19,72 W 'C.Y 727 Y] A A
EcoRD, . |wame, | |euppbcosn | . |,
N I I S | I
I ettt]
L] L3
Figure 74

Restrictions on a SUBOR Statement

A SUBOR statement may not be referred to by an-
other Autocoder statement.

Assignment of Literals -- LITOR

The function of a LITOR statement is to specify the
starting location for the assignment of the main
literal table. The LITOR assignment supersedes
the standard main literal table placement, which is
after the subroutine block or after the last instruc-
tion of the program if no subroutines are used.
LITOR enables the user to position the main literal
table anywhere in storage, and the statement itself
may be written at any point in the program. (The
previous discussion on the use of SUBOR also ap-
plies to LITOR.)

The LITOR statement is written as follows:

Tag Operation{Num{Operand
LITOR X 1
X is an actual operand, or

is the tag of an Autocoder statement, or
is a location counter.

50

The tag or location counter may be char-
acter-adjusted. The tagged statement must
precede the LITOR statement.

Comments may be placed in the comments field.

In Figure 75, the Processor is instructed to start
the main literal table assignment at the same loca-
tion already assigned to TAG. It must be assumed
either that the contents of TAG are no longer needed
when the main literal table is actually placed in
storage or that the contents of TAG are placed in
storage after the main literal table is no longer
needed. '

Name Operotion Num Operand
(Tag)
6 8 1011 13 15016 18. 20021 22§23 25 2728 30 32 33 35 3738 3

7l‘f§;+y +—t +—+ nJ
AR SN 2V 1. B 7Y~ SN S
NP I R 5 |

N L

Figure 75
Restrictions on a LITOR Statement

A LITOR statement may not be referred to by an-
other Autocoder statement.

A LITOR statement cannot be used to position
multiple literal tables. The LITST and LITND
statements must be used for this purpose.

Transfer Card -— TCD

The function of a TCD statement is to create a '"00"
transfer control card in addition to the standard 00"
card that terminates the object-program deck. The
additional "00" card will be internal to the object
program, occupying the same relative position in it
that the TCD statement occupies in the source pro-
gram. If a Z character is placed in column 74 of
the TCD statement, the generated TCD 00" trans-
fer control card will be produced at the end of the
object program and will replace the standard "00"
card (see the section "Flag Characters and Their
Meanings'). '

The TCD statement must be followed by Autocoder
statements that specify the contents of the card; i.e.,
by the instructions or the instructions and data the
card will contain. The last of these Autocoder state-
ments must be a transfer back to the loading pro-
gram or to another object-program instruction that
is already in storage. A LASN (or SASN) statement
must be used after the final statement supplying the
contents of the '"00" card. A program may contain
more than one TCD statement. Multiple TCDs may
be written consecutively, or interspersed throughout
the program.

The format of the TCD statement is as follows:

Tag Operation [Num|Operand

TCD

Comments about the ""00" card may be written in the
comments field. A tag is not needed.

THE EFFECT OF THE "00'" CARD ON THE LOAD-
ING PROCESS: As previously explained, as soon
as a '"00" card is loaded into storage, it causes the
loading program to interrupt the loading procedure
and to execute the instructions on the card. The
area of storage assigned to the contents of any 00"
card is the input area used by the loading program;
i.e., locations 000080-000159. On the standard
00" card that the Processor automatically produces,
the final instruction is a transfer to the first instruc-
tion in the object program. A return is not made to
the loading program, because the standard ''00'" card
is the final card of the object-program deck. In
contrast, the '"00" card created by a TCD statement
is followed by additional object-program cards.
Consequently, this '"00" card must contain as its
final instruction a transfer back to the loading pro-
gram, or to some other routine already in storage,
that will ultimately return control to the loading
program.

A 00" card is often used to execute an overlap-
ped routine, as shown in Figure 76. As soon as the
00" card is placed in the loading input area, a
transfer is made to the HOUSEKEEP routine, which
is already in storage. The last instruction of the
routine is a transfer back to the 00" card, which
transfers in turn to the loading program. When
loading is resumed, the HOUSEKEEP routine will be
overlapped by the CALCULATE routine.

Restrictions on a TCD Statement

The machine-language version of the Autocoder
statement specifying the 00" card content may not
exceed 65 positions. (A machine-language instruc-
tion occupies five positions.)

If an object program contains 00" cards created
from TCD statements, the input area of the loading
program used with the object program must start at
location 000080.

INSTRUCTIONS TO THE PROCESSOR THAT CON-
CERN OBJECT-PROGRAM CONTENT

Include Subroutine - INCL

The function of an INCL statement is to designate a
library subroutine that the Processor is to insert in
the object program. The source program must also
contain an instruction or a routine that supplies the
linkage to the subroutine designated by an INCL
statement.

The format of the INCL statement is as follows:

Tag Operation {NumjOperand
INCL X,
X is the five-character mnemonic identification

code of the subroutine to be included.
Comments about the subroutine may be written in the
comments field. ,
The function of the macro-instruction LINK, used
in Figure 77, is to provide linkage to a subroutine.
The subroutine is ROOTS; the tag of its entry point
is STEP 1.

Nome Operation |Num Operand
(Tag)
3 8 101113 slie 18 20|21 22]23 25 2728 30 3233 35 3738 3%

Figure 76

Bome Operation [Num Operand p NN BN "V Y. 7. 4l M T % o7 /.7 | AP SN
6 sm;%)n 13 5l 18 20f21 22023 25 2728 30 3233 35 3738 39 RN R ? , ,‘,:'!:::; ===’=!'
Wous K EEP, ISEL, | o500 | 1, .., L, NENENENS NSRRI » 7. 2.7 208\ iy -
v...!vu-rf :5}:!:€H:}#:1%‘ l 'I‘ ‘1
]t BOEREDE Ne
END SOV S ERATR, | | | l2E D, NEFII Figure 77
NETFEN (O 2NN N I B I '
o I A R B M | R TYPES OF LIBRARY SUBROUTINES: Programmers
s L e B may write subroutines in Autocoder language and add
et DR MO SEIRELL | L them to the standard Processor library. Such a sub-
ZEROCIHRD, , TR . |, FQQ.QMV; N SN | routine will be included in a program assembly only
e Bs || HowsElxEER] if it is designated by an INCL statement. The
C.oLCILRTE, |ADDX, standard library also contains subroutines that are
e f : SR I B :4%‘ required by macro-instructions, but the Processor
i] | automatically supplies these subroutines, and the

details of their inclusion are not relevant to the use
of INCL.

Instructions to the Processor 61

Two types of subroutines may be written in Auto-

coder language:

1. Class A. These may contain any Autocoder
statement.

2. Class B. These may contain any Autocoder
statement, including NAME entries,
except the following: a macro-in-
struction other than ENT80 or
LEV80; an INCL that designates a
Class A subroutine; a TRANS entry
having the tag of another location
as an operand.

Restrictions on an INCL Statement

An INCL statement may not be referenced by an~
other Autocoder Statement.

Translation -—- TRANS

The function of a TRANS statement is to equate the
operand of a one-for-one instruction into an actual
location derived from the operand of the TRANS,
The TRANS statement designates an actual loca-
tion and equates it to the reference made by the
operand of a one-for-one instruction. More than
one instruction may reference the same TRANS
statement. In this case, all references will be
equated to the location designated by the TRANS.
The TRANS statement is written as follows:

TAG FIELD: The entry in this field must be the tag
that appears as the operand of the one-for-one in-
struction making the reference. ,
OPERATION FIELD: The mnemonic code TRANS is
placed here.

NUMERICAL FIELD: This field must be left blank,
OPERAND FIELD: The entry in this field may be
one of the following operands:

1. An actual operand. This location will appear
as the operand of an object program requesting in-
struction, regardless of the memory orientation of
the operation.

2. A location counter without character adjust-
ment (*). The location of the instruction following
the TRANS will appear in an object-program in-
struction wherever the tag of the TRANS appears as
a source-program operand.

3. A location counter with any character adjust-
ment, The location of the instruction immediately
following the TRANS with character adjustment ap-
plied will appear in an object-program instruction
wherever the tag of the TRANS appears as a source
program operand.

4. A tag of another location, including the loca-
tion of another TRANS. The operand may have a
character adjustment and/or an operand modifier

52

other than an address constant literal; such an oper-
and will be treated as an actual operand. The
maximum number of TRANS statements with symbolic
operands is 50 per Processor run. This operand
may not be used in Class B subroutines.

COMMENTS FIELD: Comments may be placed here.

In Figure 78, the TRANS statement equates
MASTERTAPE to an actual tape address. In the ob-
ject-program listing, the machine-language version
of the SEL instruction will contain the address 0200.

Name Operation | Num Operand

b 8 1011 13 15016 18 20§21 22|23 25 27 28 30 32 33 35 3738 34

| IS8, 2sTERTALE ., |

..............

|H"=:§::'::¢:,l::::""‘

.....
vvvvvvvvvvvvvvv

MBS TERTAPEITRANS

vvvvvvvvv

oo |]
L

P PRI A P A N

Figure 78

Assume that location 05009 is assigned to the
first instruction generated from the ADDX macro-
instruction in Figure 79. The operand of the TR
instruction is also translated to 05009, because the
TRANS statement does not exist in the object pro-
gram. The * operand of a TRANS statement is, in
effect, *+5,

Name Operation [Num Operand
(Tag)

6 8 ton 13 sl 18 ol zfes 25 22w a0 323 35 3738 3
.,:L¢<‘.7-.'€,.. WX T | + |
N IS U NN N S D AN L,
......... ettt
Eexr | \TRANS - U |
bttt AP DX, on e X Thuio BT HIR E £ 1T, |

| N !

Figure 79

If the RD instruction in Figure 80 is assigned to
location 03059, the operand of the TR instruction
will be translated to 03054. This results from the
fact that the TRANS statement does not appear in the
object program. Consequently the BSP instruction
is the instruction actually preceding the RD instruc-
tion and is assigned to location 03054.

Name Operation | Num Operand

6 8 "Bu 13 wshe 18 slnzls 3 wm n mm 3 37@_4
MU PSS - 7 - ReoR 1]
':::!14:??5::¥.'::!€%¢ NEEAIN
NEPEFRNCS RPN |- X 7 B SN S |
RRoR| ., \TRANSl , =5 , | , . | |
PP 2 REA, | -
—_ J .]]
Figure 80

Restrictions on a TRANS Statement

If a TRANS statement has a location counter, an
actual operand, an operand modifier, or character
adjustment, the statement that references the tag of
the TRANS cannot have an operand modifier. In any
of these cases, an operand modifier would have no
significance.

Source~Program Language -- MODE

An Autocoder program may contain statements
written in the following languages:

1. FORTRAN

2. Report/File

3. Decision

4. Arithmetic

5. Table-Creating

The term "higher languages of the 7080 Pro~
cessor' includes all of the above-listed languages
except FORTRAN, MODE statements are instruc-
tions to the Processor that indicate a change in the
language of the source program, and they must be
used in Autocoder programs that contain Report/
File statements and/or FORTRAN statements.
MODE statements may not be tagged, but com-
ments may be written in the comments field.

FORTRAN MODE STATEMENT: The statement in
Figure 81 must precede each FORTRAN portion of
an Autocoder program.

File or FORTRAN statements. The statement is
used whether or not the Autocoder portion also con-
tains Decision, Arithmetic, and Table statements.

Name Operation | Num Operand
(Tag)
6 8 100 13 1she 18 20021 2223 25 2728 30 3233 35 3738 39

| — Wop s, Vrocloper | |

.

Nome Operation | Num Operand
(Tag)
(] 8 101 13 15416 18 20§2t 2223 25 2728 30 32 33 35 3738 3A

v MODE | IFORTRAN, .)

''''''

Figure 81

The operand FORTRAN indicates that the subsequent
statements are in standard FORTRAN format.

REPORT/FILE MODE STATEMENT: The statement
shown in Figure 82 must precede each Report/File
portion of an Autocoder program.

Nome Operation {Num Operand
(Teg)
6 8 101 13 she 18 2ol2122023 25 2728 30 3233 35 3738 39
-—4—9—0——0—1—v—r—r—¢1@°:”.5. jrEpoRlr, |, . |,
— e) —
Figure 82

AUTOCODER MODE STATEMENT: The statement
shown in Figure 83 must precede each Autocoder
portion of a program if that portion follows Report/

Figure 83

NOTE: This MODE statement is not used when the
entire program consists of Autocoder statements
alone or Autocoder statements in combination with
Decision, Arithmetic, and/or Table statements.

CODING GENERATED IN 7080 MODE

The terms '"7080 mode' and "secondary mode' are
used throughout this manual. They refer to the ob-
ject machine for which the Processor produces cod-
ing, makes location assignments, etc. The program
mode is communicated to the Processor by using the
macro-instructions Leave Eighty Mode (LEV30) and
Enter Eighty Mode (ENT80), both of which are des-
cribed in the macro-instruction manual. The 7080
mode is assumed until a LEV80 is encountered. Of
course, if the entire program is in 7080 mode, the
LEV80 and ENT80 are not necessary. Since these
macro-instructions are Assembly Control macro-
instructions, they should be considered along with
other instructions to the Processor.

LEV80 and ENTS80 affect the coding generated
from the statements in the portion of the program
that each of them precedes. The Processor gener-
ates 7080 instructions until it encounters a LEV80.,
It then generates 705 II or 705 III coding (depending
on which is designated as the secondary mode for the
assembly) until ENT80 is encountered.

The Processor then resumes generation in 7080
mode. The program mode is a consideration in
using address constants, macro-instructions, one-
for-one instructions, and instructions to the Pro-
cessor. For example, the Processor generates an
EIA instruction when it encounters an indirect ad-
dress in the operand of an instruction in the 7080
mode portion of a program. This is true whether
the indirect address appears in a hand-coded one-for-
one instruction or a generated instruction. As an-
other example, an ACONG6 should not be referenced
by an instruction outside the 7080 mode portion of a
program.

Instructions to the Processor 53

INSTRUCTIONS TO THE PROCESSOR THAT CON-
CERN THE PROGRAM LISTING

Skip to New Page -- EJECT

The function of an EJECT statement is to advance
the listing to a new page. The program statement
that follows EJECT will be the first statement on
the new page. Unless the listing is controlled by
EJECT statements, each page will contain 55 lines
of print. The statement is written as shown in
Figure 84. It may not be tagged, and it may con-
tain only one line of comments.

Operation Num Operond

101113 1516 18 20§21 22|23 25 2728 30 3233 35 3738 39,

| iy et 4L o

MY 4
........ +—+ 1

Figure 84

EJECT does not appear on the listing page. How-
ever, it is assigned an index number, and the num-
ber is one greater than the index number of the
statement that precedes the EJECT. (Index numbers
are explained in the section, "Details of the Pro-
gram Listing.')

Title for Routine or Comment -- TITLE

The function of a TITLE statement is to place lines
or paragraphs of descriptive information in the pro-
gram listing. TITLE may be used in any way the
programmer desires. Some of the more common
uses will be discussed following the specifications
for writing the statement.

The TITLE statement is written as follows:

OPERATION FIELD: The mnemonic code TITLE is
placed here (Figure 85). If the information is con-
tinued into subsequent lines of the coding sheet (i.e.,
is written as a paragraph) only the first line must
contain TITLE. If a series of paragraphs is
written, and each is separated by one or more blank

lines on the coding sheet, the lines of the paragraphs
will be treated as TITLE continuation lines.
NUMERICAL FIELD: This field may contain an
entry in the first TITLE line. However, it must be
left blank in the continuation lines. It is recom-
mended that the numerical field be left blank at all
times.

TAG FIELD, OPERAND FIELD, COMMENTS FIELD:
Any or all of these fields may be used for the des-
criptive information. The commentary does not have
to start in the first column of any of the fields, and
it does not have to extend to the end of the comments
field before a continuation line is started.

Common Uses Of Title

Describing the function of each program portion,
summarizing program procedures, and providing a
table of contents for the program listing are some of
the uses for TITLE, In addition to appearing in the
program listing, all TITLEs are also printed in a
special section of the Operator's Notebook, an op-
tional feature of the assembly documentation pro-
vided by the Processor. This special page shows
each TITLE and its location in the listing. The
TITLE page of the Operator's Notebook is useful as
an index for the program listing., It is often desir-
able to have information about the program at the
start of the listing and/or before each major pro-
gram portion. TITLE can be combined with EJECT,
as in Figures 86 and 87, to provide a page of com-
mentary only.

When planning pages of commentary or describing
program parts, it should be remembered that an
EJECT statement before each part will cause that
part to appear on a new page of the listing. Thus,
EJECT and TITLE may be used to separate each
part of the program, to describe it, and to provide
a table of contents or an index. The standard listing
page contains 55 lines unless EJECT is used. In
Figure 86, it must be assumed that TITLEs designat-
ing the four program parts have been used elsewhere
in the program, and that this TITLE page is to be the
introductory page of the listing.

Name Operand

Operation | Num
10H 13 15Jis 18 20)21 22023 25 2728 30

3 8 3233 35 3738 39]40 4243

Comments |

|
45 47 48 50 5253 55 57 58 60 42163

(Tog)
N b N W 5 TS,

v TRVc oM T.5 s EFUL For, | 1,

PP EPPUFISES ' PlRo VI 22 NE Clom

1
EMT ARY, |48.00 T A .p.glo.:;,nén,n:.,

BEDEIEN IO el L

|
|
I
[
|
]
|
1
!

O DR PN R

Figure 85

54

Name Operation |Num Operand Comments | | | | [>| 9
o o "B e ushe &llﬂ B B Tm o wn » vuwk 00 6 o6 0 nn 5 55 o ow ks o ke n kb
+ by vy Anz 7w e |, 48lc pPoYRoLL PRosRAM - |FouRr lparrs| . . . | , E . E , E . } , |
ettt e e e e :‘.L::A,—Fl=+4—#!::zJ.—,Lw"J—‘:l'ie%:‘.i'i
M T L ART, A, \COoNTRINS THE HoltsEXEELINE , P U S : -
] e b RO TIWE, NI CH, LS, oMY |, L i + :LI} ! }
I R L N I N DDA EN IO SO0 I AN L I
"""" 0 I DTSN R DU RN IR D R
NP ST S S PURFEUNES SN W - :.L]r::ﬁ:!%4:##4:f4‘f4=.—:+|+| B
b L E ST N SN AN !..:#J—%:#%!:.*g:#azu: ! {+:ﬁ‘:=:
e l | A I P B I A A
Figure 86
Name Opecation [Num Operand Comments { | | | | P]e

b 8 mﬁ))n 13 _ishe 18 QL‘ 22123 25 2728 30 3233 35 3738 39|40 4243 45 47 48 50 5253 55 57 58 40 62:63 165 Ile7 :69 l?l :73 74

SN ATz TLEl | 0B, Playrel, LPRokRBM. | THiIls ProlerAM | . u , !4 | . ll ; |

SR + ——t CoONTAINS, .j’:".‘f Lhers .| Tss peTaTls oF l i + i 'LE#'E

R et F oo K |0RE Supps TIED BT T e |PoInTls, LISTeD BELop,. | |), |
v*v—rJr?_f*“—f*%—fl.va]rnrv: 5v‘¢1|5P:!‘FLAV_Ql?‘f‘?!l*‘%%’lv—:*‘e"l':ilnlllv}

T % 2% LEA—— e s e EELING |\ | e b Pe T 2004, : E : l' . I ; L
\Parza it REELMET ToN s, 4P| CoNsSITAMTS| |Ped,IM 219 L1 ; : + 24:
H‘f:@!in’:*: v‘{|§ r‘v—vfl_f‘vfrl t—t+—t——+ nnLn nnln'fnnnlfx“v‘_f*!?‘v‘_"" : ?{1:f:

RN ﬁ,i,; —_t -t e e | 'lﬁ.l;,:%:‘lgg.:,l

MU Esfent e e e .:1:':9.14,—%:4.4—#.‘%.;!4%#:: ::':= |

L. - " I O N N D S B I D B T

Figure 87

In Figure 87, it must be assumed that the listing
page containing each of the parts is headed by a
TITLE describing that part of the program.

INSTRUCTIONS TO THE PROCESSOR - MULTIPLE
LITERAL TABLES

The Processor can build more than one table of
literals and locate these tables in a program at any
points requested. When literals are thus inserted
into a program, the location counter is incremented
by the length of the table of literals. The counter
will then contain the location assignment for the
entry immediately following the termination of the
table. This feature is especially valuable when used
with routines that can be overlaid. It makes it
possible for a routine to be accompanied by its own
literal table, so that both can then be overlaid by
another routine.

A multiple literal table is requested by using
LITST (Literal Start) and LITND (Literal End) state-
ments. (These instructions to the Processor are
described in detail later in this section.) Within the
size restrictions noted in the section '"Restrictions
on Multiple Literals, ' all literal operands and ad-
dress constant literal operands that fall between a

LITST and a LITND will be placed in one multiple
literal table by the Processor. Literals that are not
assigned to a multiple literal table will be placed in
the main literal table.

Each multiple literal table will normally follow
the instruction preceding the LITND statement. If
the last instruction is an assignment, the table will
be placed at the location specified, as in Figure 88.
The assignment of a multiple literal table cannot be
changed by a LITOR statement.

Literal Start —- LITST

A LITST statement informs the Processor that all
literal and address constant literal operands between
it and the next LITND statement are to be placed in
one multiple literal table. The format of the LITST
statement is as follows:

Tag Operation {Num|Operand

LITST

Comments may be placed in the comments field.

Instructions to the Processor 556

Naine Operation | Num Operand Comments I ! | I | [E]
6 8 "ol?)\ll 13 15016 8 _Qlulzs 25 2728 30 3233 35 3738 32]40 42 43 45 47 48 50 5253 55 57 58 &0 62:63 165 Elﬂ l'b‘? Il7l 173(74
NP SBSN, A Y.L 0lc | «‘zfﬁaild!HEeA&EMm_ﬁm.ﬂ-fM E""E :riﬂ.tihfi
PP PRI VN 4 7.7 . S SNPRPURURT EENS SIS S S 'Lv‘%"!‘44—'1::::":::::::‘,;
i Lasn ettt | Eslume pResoLsr A.s.slta-!vlmé:ﬂ.q 4 :ATi :A:
L NP PO N B ——l U TV TNV SO AUUVEUTE AU NV SO RO
Figure 88
Restrictions on a LITST Statement where
A LITST statement may not be referred to by an- X1 is the memory size of the first literal fol-
other Autocoder statement. lowing a LITST.
Xn is the memory size of the last literal before
Literal End -- LITND a LITND.
Y - is the number of address constant literals
A LITND statement informs the Processor that all requested.

the literals that refer to the same multiple literal
table have been processed. The Processor will not
locate the table either at the location following the
entry that precedes the LITND, or at the location
indicated by an assignment instruction. The format
of the LITND statement is as follows:

Tag Operation |[Num|Operand

LITND

Comments may be placed in the comments field,
Restrictions on a LITND Statement

A LITND statement may not be referred to by an-
other Autocoder statement.

Restrictions on Multiple Literal Tables

A program may request as many as 9, 999 multiple
literal tables. The allowable size of a given table
will depend on the type of literals specified. If no
address constant literals are specified, the guaran-
teed minimum size of a multiple literal table is 200
literal positions. The guaranteed minimum size of
a table that contains address constant literals is 150
positions.

In actual practice, a multiple literal table will
probably hold more entries than these minimums.
To determine whether all the literals between a
LITST and a LITND will fit into a given table, the
following formula can be used:

X, +3)ees +(X_+3)+17Y = Z

56

Duplicate literal operands should be counted only
once, since they will appear only once in a multiple
literal table.

If Z is greater than 650, not all the literals will
fit into the table. The maximum size of an internal
table used by the Processor when building multiple
literal tables is 650. - As each literal is encountered,
it is placed in the internal table, preceded by a
three-position control field. Each address constant
literal requires 17 positions in the table. Thus, in
Figure 89, the address constant literal and the
literal operand will require 24 internal-table posi-
tions: 17 positions for the address constant, and 7
positions for the literal operand. (The sign of a
literal is not counted.)

Nome Operation | Num Operand
(Tag) 9]
-3 8 1011 13 15116 18 20§21 22j23 25 27 28 30 32 33 35 3738 3R
o {ROD L L @B#r39.9 98 N

.........

+
N SRS BTN S IR N S

Figure 89

When the internal table overflows, the literal
causing the overflow will be assigned to the main
literal table, not to a multiple literal table. Any
smaller literals that follow the literal causing the
overflow will be placed in the internal table, as long
as there is room. I both an address constant literal
and its literal operand cannot be located in the
internal table (as in Figure 89), both will be included
in the main literal table.

It is sometimes desirable to place a literal in the
main literal table instead of in a multiple literal

table. This can be effected by placing an L flag in
column 74 (see "Flag Characters and Their Mean-

ings").
FLAG CHARACTERS AND THEIR MEANINGS

Flags are a means of communicating with the Pro-
cessor, Specific single-character flags, explained
below, have been defined for use in column 74 of all
input to the Processor except FORTRAN and

COBOL statements. Additional flags may be al-
located in the future, and they will be made available
as soon as they are completely defined. Should any
character be encountered in column 74 when its use
is unintentional, inconsistencies may occur in the
assembled program.

@ -~ Force Program Card

This flag will cause the output produced from the
entry containing the flag to begin on a new program
card.

A -- Reduce Location Assignment Phase Assembly
Time

This flag is for use within Class B subroutines. It
is placed in column 74 of statements which have tags
that will be the operands of assignment statements
(e.g., LASN, SASN, RASN).

All entries bearing this flag will be placed in a
table that is used when assignment statements are
encountered. This reduces the assembly time for
Class B subroutines (which are processed in the
location-assignment phase).

B ~- Scan Entry from Right to Left

This flag will cause the Processor to scan the oper-
and of the entry containing it from right to left,
rather than from left to right.

On encountering a left literal symbol in the oper-
and of a one-for-one instruction that contains the
B flag, the Processor will then scan from column 73
left to a literal symbol. Everything between the two
literal symbols will be considered an unsigned
literal. Valid modifiers and character adjustments
will be honored.

The B flag with an operand of a macro-header
will cause a scan from column 73 left to a lozenge.
Everything from column 24 through the column two
positions to the left of the lozenge will be treated as
an unsigned literal of that length. (The characters
in column 23 and the column to the left of the lozenge
will be assumed to be literal symbols, and will be
dropped.) The operand to be so treated, with this

flag, must be on a line (card) that does not contain
any other operand.

C -- Entire Card is a Comment

Columns 6 through 73 of an entry containing this flag
will be considered a comment. Entries so flagged
will also be printed, single spaced, on a separate
page of the Operator's Notebook. Entries with this
flag that are contained in the input to a librarian run
will not be treated as components of macro-instruc-
tions, and will be removed. Their function in this
case is solely for the purpose of listing on an IBM
407.

D -- Delete All Messages Created for This Entry

An entry containing this flag will be processed
normally but diagnostic messages (if any) will not
be produced for it.

F -- Processor Chain Indicator

This flag indicates the beginning and end of a macro-
instruction chain. It is used when the chain contains
macro suffix tags and/or generated descriptive tag
operands. (Its use is explained in the macro-in-
struction manual.)

G -- Treat Change Entry as Generated Entry

This flag is provided for use with change entries
introduced in a high-speed assembly run. It will
cause the entries containing it to be considered as
generated entries during a subsequent reassembly.
That is, during a subsequent reassembly the entries
will be deleted, and during a subsequent high-speed
assembly the entries will be retained. '

H -- Halt Loop

This flag, intended for use in entries that constitute
the error-indication portions of a program, will
cause entries containing it to be listed on a separate
page of the Operator's Notebook., The H flag is valid
only on one-for-one instructions.

L -- Main Table Literal

This flag is intended for use with statements that
have literal or address constant literal operands,
and occur between a LITST and a LITND. When the
Processor finds such a statement containing an L
flag, it will treat the operand as a main-table literal
rather than as one belonging in a multiple literal
table. The L flag provides a convenient means of

Instructions to the Processor 57

preventing repeated geherations of the same literal
in a program that uses multiple literal tables.

M -~ Operand is to be Modified

This character may be used to flag all entries hav-
ing operands that are not blank, but are to be initi-
alized and/or modified, and will cause these entries
to be printed on the page of the Operator's Notebook
containing entries with blank operands. The M flag
is valid only on one-for-one instructions. When a
generated instruction is referenced by another
macro-instruction by means of a macro suffix tag,
the macro generator automatically places an M flag
on the referenced instruction, unless another flag is
already present on it.

R -- Reset Location Counter

Placing the Reset character (R) in column 74 of a
LASN statement containing an actual or a tag oper-
and does not modify the setting designated by the
operand. However, it may affect a subsequent set-
ting designated by a blank operand for the same
counter, because the Processor will ignore any as-
signments it made before encountering the statement
containing the Reset character.

This may best be seen with an illustration, Sup-
pose that the highest assignment made from counter
1 is location 59999. The Processor then encounters
a LASN for counter 1 to location 2000. After setting
the counter, the Processor assigns a block of 500
positions, bringing counter 1 to 2499. Now a LASN
with a blank operand is encountered for counter 1.
The counter is set to location 60000, one location
beyond the highest assignment made from the counter
up to this point in the assignment process. To re-
turn to the beginning of this example: Suppose that
when location counter 1 contains 59999, the Pro-
cessor encounters a LASN for counter 1 to location
2000, but the statement also contains R in column
74. As before, the counter is set to 2000, a block
of 500 positions is assigned, and the counter is
again at 2499, Now a LASN with a blank operand is
encountered for counter 1. Because the Reset char-
acter destroyed the previous high location (59999),
the counter is set to 2500. This is one location

68

beyond the highest assignment made by the Pro-
cessor after it encountered the Reset character.

S —- Suppress Program Cards

An Autocoder entry containing this flag will indicate
the beginning of program card suppression. This
entry and all following entries will be processed
normally, except that program cards will not be
produced. A second entry containing this flag will
indicate that program card suppression is to end
after this entry is processed.

T -- Test-Assembly Entry

Entries containing this flag will be retained during
an assembly when the run-type control card so indi-
cates. Otherwise, all entries containing this flag
will be deleted automatically. Statements may
therefore be assembled for testing purposes, and
easily removed.

Z —- Relocate '"00" Transfer Control Card

This flag is only used with a TCD statement. It
causes the TCD '"00" transfer control card to be
placed at the end of the program in place of the
standard "00" card. If more than one TCD state-
ment contains this flag, the last one encountered
prevails.

1 -- Weight Inner Macro-Instruction as One

This flag may be used with macro-headers when they
are used as components of macro-instructions. It
specifies that regardless of how frequently the
macro-instruction containing it is used, the inner
macro-instruction will be called by it very infre-
quently; therefore, the Processor is to consider that
the inner macro-instruction is called one time as a
component of the particular outer macro-instruction.
Effective use of the flag will cause the Frequency
Count Table to more accurately reflect the frequency
with which each macro-instruction is used, so that
the assignment of memory macro-instructions will
be more efficient.

One card is punched for each line of the coding sheet,
as explained in the section on statement format. A
card-image tape produced from the source-program
deck is the input to the Processor. The assembly
output consists of the object-program deck and pro-
gram documentation. Although the object-program
deck is produced on a card-image tape, it will be
referred to as a deck.

OBJECT PROGRAM DECK

The sequence and contents of the deck is shown in
the following list:

1. Load program (LD7080)

2. Main literal table

3. Machine-language equivalent of source pro-
gram

4. Class A subroutines

5. Subroutines portions of macro-instructions

6. Class B subroutines

7. Standard "00" transfer control card
Note that the main literal table, although assigned
to storage locations above those of the object-pro-
gram instructions, precedes the instructions into
storage.

The format of the object-program card is as
follows:

Program Identification: Six positions. This is the
source program identification (ident field on coding
sheet).

Serial number: Three positions. This is the num-
ber of the object program card. It is assigned by
the Processor and bears no relation to the number
of a source program statement (Pglin field on cod-
ing sheet).

Initial address: Four positions. This indicates the
storage location at which the first character on the
card is to be placed.

Number of columns: Two positions. This is the
amount of data being supplied by the card. A
maximum of 65 positions may be indicated; this is
the space required by 13 instructions, The "00"
card contains zeros in these positions.

Instructions and/or constants: One to sixty-five
positions. This is the actual portion of the object
program being supplied by the card. It is placed at
the storage location specified as the initial address
(see above).

STANDARD ASSEMBLY DOCUMENTATION

A listing of the object program itself and diagnostic
messages is the minimum assembly documentation;

ASSEMBLY OUTPUT

optional documentation consisting of the Operator's
Notebook and the Symbolic Analyzer may be re-
quested as additions to the listing. A column-by-
column explanation of the listing format appears
below in the section, '"Details of the Listing."

Program Listing

The program listing is provided only on tape. The
contents of the listing are as follows:

First Page: This page is blank except for a heading
line and a notation of the highest memory position
used not resulting from a RASN or SASN.

Main Literal Table: The main literal table is divided
into seven parts. (A signed literal is a literal in
which the first position after the pound sign (#) is
occupied by a plus or a minus sign.)

1. Signed literals, length not a multiple of 5 or 10

2. Signed literals, length a multiple of 5

3. Signed literals, length a multiple of 10

4. Unsigned literals, length a multiple of 10

5. Unsigned literals, length a multiple of 5

6. Unsigned literals, lengthnot a multiple of 5 or 10.

7. Address constant literals, broken down in the
following order:

a. unsigned, length of 6

b. signed, length of 6

c. signed, length of 5

d. unsigned, length of 5

e. all lengths of 4 ending in a 4 or 9 location
Source Program with Generated Coding: This may
be considered the main portion of the program list-
ing. The source-program statements appear in
their original sequence. Any generated coding ap-
pears directly after the statement(s) that caused the
generation,

Multiple literal tables are also included in the
source program, if they are requested. They are
divided into seven parts corresponding to those in
the main literal table. However, within the groups
of signed and unsigned literals, individual literals
are not sorted according to size. Each multiple
literal table will begin on a new page of the program
listing.

Class A Subroutines: The subroutines are inserted
alphabetically; i.e., according to the mnemonic
identification code of each subroutine. Any generated
coding appears directly after the statement that
caused the generation.

Subroutine Portions of Macro-Instructions: The
order of subroutines is the same as that of the
macro-headers causing their generation.

Assembly Output 59

Class B Subroutines: The subroutines are inserted
alphabetically.

Diagnostic Messages: These messages are produced
by the Processor and indicate errors, or possible
errors, in source program statements. When the
Processor detects a possible error condition, it
often makes certain assumptions and generates
coding based on them. It also supplies a warning
message on the nature of the possible error or the
action taken to correct an error. Diagnostic mes-
sages are described in the publication on 7080 Pro-
cessor system operation.

Unreferenced Tags (NO REQS): On a separate page,
hand-coded tags that are not referred to elsewhere
in the program are listed.

OPTIONAL DOCUMENTATION

Operator's Notebook

This is an index to the location of certain types of
Autocoder statements, both hand-coded and gener-
ated, that appear in the program listing. The pages
that make up the Notebook are as follows:

TITLES -- All TITLE statements

C FLAG -- Comment statements with a C flag

H FLAG -- Statements with an H flag; all
halts

80 SP OP -- All ENT80, LEV80, ENTIP,
LEVIP, SPC, TIP, and LIP
statements

80SP1 -~ All statements in 7080 mode con-
taining indirect address; i.e.,
the "I, " prefix

ASSGNS -- All LASN, SASN, RASN, and
SUBRO statements

SWITCHES -- All SWN and SWT statements

TRANS -~ All TRANS statements with des-
criptive operands; i.e., oper-
ands that are tags

M FLAG -- All statements with an M flag;

all statements with blank oper-
ands

Symbolic Analyzer

This is an index of every hand-coded and generated
tag in the program. The tags are listed in collating
sequence. Each tag is followed by a list of every
instruction, hand-coded or generated, that refer-
ences the tag. Tags that are used incorrectly are
flagged with an error indicator appearing as *ERR¥*,

Each program entry that defines a tag will be
listed. All entries having operands that reference
the tag will be listed, three per line, following the
tag definition. Any operand modifier and/or

60

character adjustment in a referencing entry will be
included, but comments, and ASU zoning in-address
constant literals will not. Entries that refer to un-
defined tags will be listed separately. When multiple
literal tables occur in a program, the symbolic
analyzer will contain a section on them preceding the
index to descriptive tags.

DETAILS OF THE PROGRAM LISTING

The heading of each page in the listing contains the
program identification, revision number (if any),
and the date (from the date control card), and page
number.

The listing page contains 16 fields. The entries
in the PGLIN through the FLAG fields comprise an
Autocoder statement. The machine-language trans-
lation of the statement (i.e., an object-program in-
struction or constant) appears in the INSTR field.
Other fields contain information on storage locations,
statement sequence, and references to other state-
ments. The fields of the listing are as follows:

INDEX: This is a number that the Processor creates
for each line of the listing. A hand-coded statement
is assigned a number of the form xxbyy; a generated
statement is assigned a number of the form bxxyy.
In each case, xx is the listing page number, and yy
is the line number. On a reassembly, a number of
the form xx*yy is assigned to a statement that has
been replaced or added, or one that follows a deleted
statement. The INDEX number is not identical to
the pglin number on the coding sheet.

S: Origin of entry (i.e., whether it is a source-
program statement or a Processor-generated entry)
and type of entry. Both items of information are
conveyed by a single-character code, as follows:

Code Origin Type of Statement
A Source Program One-for-One
B Source Program Macro-Header
E Source Program Decision, Arithmetic, Table
F Source Program Report/File
G Source Program FORTRAN
I Source Program TITLE, C flag, and COBOL
J Generated One-for-One
K Generated Macro-Header
N Generated Decision, Arithmetic, Table
0 Generated Report/File
P Generated FORTRAN
R Generated TITLE and C Flag
* Generated EIA and Related Instruction,

and Multiple Literal Tables

NOTE: All subroutine entries are generated.

PGLIN: The entry in this field corresponds to the
pglin entry on the coding sheet.

TAG: Any hand-coded or generated tag appears in
this field, which corresponds to the tag field on the
coding sheet.

OP: Any mnemonic code appears in this field,
which corresponds to the operation field on the cod-
ing sheet.

NU: The entry in this field varies just as it does
when hand-coded. The field corresponds to the
numerical field on the coding sheet.

AT: An entry in the AT (address type) field is
either an operand modifier or an indirect address.
On the coding sheet, such entries are written in
columns 23-24 of the operand field

OPERAND: The entry of this field varies just as it
does when hand-coded. The field corresponds to
the operand field on the coding sheet with the excep-
tion of the placement of a prefix to the basic oper-
and. The prefix appears in the AT field explained
in the preceding paragraph.

COMMENTS: Any source-program comments ap-
pear in this field, which corresponds to the com-
ments field on the coding sheet.

F: Flag code.

LOC: The entry in this field is a six-character
number designating the location assigned to the
object-program instruction or constant.

INSTR: The entry is a five-position field containing
the actual operation code of the instruction followed
by the actual address with ASU zoning.

SU: The entry in this field is an ASU number. It
does not necessarily correspond to the NU field,
which is used for other purposes besides ASU as-
signments.

ADDR: This field contains the actual address por-
tion of an instruction as six positions.

SER: An entry in this field is the three-character
serial number of an object-program card. The
number appears only in the line containing the first
character on the object-program card. Subsequent
lines with blanks in the SER field contain data that
appear on the same card.

REF: An entry in this field is the INDEX number of
the operand, and serves as a cross-reference.
(Within a NAME, the number in this column is the
cumulative length of the NAME.)

Assembly Output 61

APPENDIX

The more significant features that have been
incorporated into Autocoder for the 7080 Processor
are summarized below, by section headings. The
reader can consult the appropriate sections of this
manual for details on the changes.

Source programs that could be assembled by the
7058 Processor can also be assembled by the 7080
Processor. However, certain mnemonics which
were accepted by the previous processor will not
be accepted by the 7080 Processor. These invalid
mnemonics are listed below:

1. DRCD, DCON, or DFPN

2. AACON, LACON, or RACON

3. AASN, OASN, or CASN

4. *ASUnn

5. Actual operation codes

In addition, CTL, while it may be used and will
be accepted, will cause a warning message to be
produced; it will be assumed that the programmer
has indicated the proper operand.

Certain differences between 7058 Autocoder and
7080 Autocoder result from expansion of the lan-
guage and the incorporation of new features. Those
differences are listed below.

1. A character in column 74 of a source state-
ment, except one in FORTRAN or COBOL, will be
considered a flag having specific significance to
the 7080 Processor. The flag codes are described
in the section on flags.

2. A character adjustment following an address
constant literal request (e.g., L@TAG+5) will
cause an increment to the assembled location of the
address constant.

3. A literal may not be followed by a multiply
or divide character adjustment, nor may the
amount of the character adjustment be outside the
range +99; i.e., be stated in more than two signifi-
cant numbers. However, an increment or decre-
ment can be written with leading zeros; e.g., +1
and +001 will cause the same increment, and -55
and -000055 will cause the same decrement.

4. No operand of a macro-header may exceed
10 positions unless it is surrounded by literal
symbols. No literal used as a macro-header
operand or in a macro-instruction component may
exceed 35 positions including the sign and decimal
point, but not including the literal symbols.

5. If the numeric portion of a character adjust-
ment is less than six positions, the position
immediately following the adjustment must be non-
numerical.

62

Standard Format of Autocoder Statements: A new
multipurpose coding form has been developed for
use with the 7080 Processor. Column headings
have been changed to accommodate certain new
features of the Processor.

Area Definitions: Area-definition length may be
specified by a six-digit number written in columns
17 -22, Restrictions on comments continuation
lines with area definitions have been altered to
reflect the new meaning of the columns. RPT
statements are restricted to nine commas in the
layout format.

One-for-One Instructions: The list of acceptable
mnemonics has been expanded and provision has
been made for additional numerical codes to
accompany various operation codes. The changes
are detailed in Figure 44. Restrictions on char-
acter adjustment have been expanded, particularly
with respect to literal operands. A new operand
modifier (T,) has been provided for both one-for-
one instructions and address constants.

General Purpose Macro-Instructions: Up to 50
operands can be written in the macro-header. As
many as 50 lines in the coding form can be used for
the operands of one macro-instruction. Literal
operands must not exceed 35 characters excluding
the literal (#) signs.

Address Constants: An ACON6 can have a sign

associated with it. Address constant literal
requests of arithmetic operations will be six posi-
tions long with a signed plus. Formerly, such
address constant literals were five positions.
Character adjustment may be used for the purpose
of modifying the constant itself.

Instructions to the Processor: The initial setting

of the location counter is now 00500. Restrictions
on LASN, SASN, SUBOR, and LITOR statements
have been eased. The location counter, with or
without adjustment, is now a valid operand for these
statements. Two new assignment statements
(RASN and SUBRO) have been added. Two state-
ments (LITST and LITND) have been provided for
creating multiple literal tables. A TRANS state-
ment can have the tag of another location as its
operand. A TCD statement can now occupy 65 posi-
tions. 7080 mode is assumed until a LEV80 is

encountered. To return to 7080 mode following a
LEV80, the ENT80 macro-instruction is given.
Additional instructions to the Processor in the
form of Flag characters have been added to the
Autocoder language. The use of Flags,
particularly the F Flag, should be carefully
considered.

Assembly Output: The listings that are provided
have been expanded considerably. This entire
sectiol should be reviewed.

Appendix

83

-

SAMPLE ASSEMBLY

INDEX S PGLIN TAG ce NU AT CPERAND 80SMPL-001 08-28-63 PATCHES PG 001 F LOC INSTR SU ADDR - SER REF
005449
—

INDEX § PGLIN TAG cp NU AT CPERAND 80SMPL-00]1 08-28-63 COMMENTS PG 002 F LOC INSTR SU ADDR SER REF
[-2103 § SIGNED LITERAL 1 005175 001
"AQ2 SIGNED LITERAL 1 A .005176

aA03 SIGNED LITERAL 2 1& 005178

RAG4 SIGNED LITERAL 4 123D 005182

oAQS SIGNED LITERAL 4 3956 005186

nAOG SIGNED LITERAL 7 BALANCN 005193

aAQ? SIGNED LITERAL 7 987654C 005200

BAO8 SIGNED LITERAL 5 0000A 005209

BAQ9 SIGNED LITERAL 5 0000D 005214

aAl10 SIGNED LITERAL 5 0021€ 005219

oAll SIGNED LITERAL 10 0M5678000& 005229

nAL2 UNSIGNED LITERAL 50 AGE CLOSING LIT SYMBOL OMITTED 005279 002

OAl3 UNSIGNED LITERAL 50 THIS LITERAL OVERFLOWS INTO THE NEXT CARD WHICH IS 005329 003
OAl4 UNSIGNED LITERAL S ABCDE 005334

uAlS UNSIGNED LITERAL 5 APPLE 005339

BAl6 UNSIGNED LITERAL . 1 F 005340

BnAl7 UNSIGNED LITERAL 1 G 005341

oAl8 UNSIGNED LITERAL 1 J 005342

BAl9 UNSIGNED LITERAL 1 1 005343

oA20 UNSIGNED LITERAL 2 005345

oA21 UNSIGNED LITERAL 2 60 005347

nA22 UNSIGNED LITERAL 3 300 005350

GA23 UNSIGNED LITERAL 4 ABLE 005354

nA24 UNSIGNED LITERAL 4 DuUPE 005358

nA25 UNSIGNED LITERAL 4 0010 005362

oA26 UNSIGNED LITERAL 7 1234567 005369 004
nA27 UNSIGNED LITERAL 8 ~BALANCE 005377

nA28 UNSIGNED LITERAL 9 LOCATIONA 005386

oA29 UNSIGNED LITERAL 14 NOT AVAILABLER 005400

&AO1 NAMEA RIGHT & 001099 005406 ACS1
$A01 NAMEA SIZE 6 000048 005413 ACS1
*A01 NAMEA SI1ZE 5 0004¢& 605419 ACS51
-A01 NAMEA RIGHT & 01099 005424 AC51
/A01 123D RIGHT 4 5182 005429 uA04
/A02 #£000025 RIGHT 4 2C14 005434 005

/A03 EXIT RIGHT 4 1599 005439 AF5S
7A04 NAMEA H1-SP 4 1074 005444 ACS51
/A05 NAMEA RIGHT 4 1A03 005449 AC51

~—

64

AA
AA

INDEX

01
02
03
04
05
06
07

09
10

12
13
14
15
16

17

—~

PP BRI BRI DP R EDPEPRPRPEDPEBEEDDEEED DD D

PR PERBIDIRPDREIDD> DD

PGLIN
AAQL
AAO2

AAQ3
AAO4
AACS
AAQ6
AAO7
AAOS
AACS
AAlO
AAll
AA12

AA13

AAl4
AALS
AAl6

AALT

AAL8
AAL9
AA20
AA21
AA22
AA23
AA24
AA25
AA26
AA27
AA28
AA29
AA30
AA31
AA32
AA33
AA34
AA3S
AA36
AA3T
AA38
AA3S
AA4O
AA4L
AA42
AA43
AA44
AR4S
AA46
AA4T
AA48
AA4ST
AAS0

AASL
AAS52
AAS3
AASS
AASS
AASE
AAST
AAS8
AASS
AAGO
AA6l
AA62
AA63
AR64
AA6S
AA6S
AA6T
AAr6B
AA69
AATO
AATY
AAT2

TAG ce NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 003
TITLE 7080 PROCESSCR — SAMPLE ASSEMBLY
INTRODUCTION
THIS ASSEMBLY ILLUSTRATES CORRECT ANC INCGRRECT USAGES OF THE 7080
PROCESSCR., SHCRT CODING EXAMPLES ARE USED TO SHOW WHAT THE
PRCCESSCR PRCOUCES, INCLUDING ERROR AND CAUTIONARY MESSAGES, FOR
TYPICAL VALIC AND INVALID STATEMENTS. COMMENY AND TITLE STATEMENTS
ANC THE COMMENTS F1ELD OF TLLUSTRATIVE STATEMENTS, HAVE BEEN USED TO
DESCRIBE THE USAGES. THIS ASSEMBLY IS FOR ILLUSTRATIVE PURPOSES ONLY
AND DOES NOT REPRESENT AN EXECUTABLE PROGRAM. YHE OBJECT MACHINE IS
ASSUMED TO BE AN 80K 7080, ASUS 1-6 ARE ASSUMED SET TO LENGTHS OF
1-6 RESPECTIVELY, AND THE OTHER ASUS AND ACC ARE AT SOME RANDOM
LENGTH.
TITLE NCRMAL ORIGIN
SINCE NC STARTING LOCATION IS SPECIFIED, THE ORIGIN OF THE
PROGRAM IS ASSUMED TO BE AT LOCATICN 0500.
RED 1 TO SHOW STARTING LOCATION.
TITLE AREA DEFINITIONS
DEFINITION OF A RECORD FIELD = RCD
RCDA RCD 10 TEN DIGIT UNSIGNED NUMERIC FIELD
17 A SEVENTEEN POSITION ALPHA-NUMERIC
FI1ELD WHCSE LOW ORDER POSITICN MAY NOT PROVIDE
LEFT PROTECTION FOR ANY SIGNED NUMERIC FIELD IT
PRECEDES.
2 00 AL TWO HUNCRED POSITION ALPHA-NUMERIC
FIELC WHCSE LOW ORDER POSITION WILL ALWAYS SUPPLY
LEFT PROTECTION. NOTE THAT THE LENGTH INDICATION
CVERFLOWS INTO THE OPERATION FIELD. THIS IS
PERMISSIBLE CN A CONTINUATICN ENTRY AS LONG AS
COLUMN 16 IS BLANK. .
10 € TEN DIGIT SIGNED INTEGER. DECIMAL
POINT 1S ASSUMED TO RIGHT OF FYHE LOW ORDER DIGIT.
LEFT PROTECTION S PROVIDED FOR THE FOLLOWING FIELDC
RCDS5X3 8 EXXXXXa XXX TWO ALTERNATE DEFINITIONS CF AN
RCDSS5X3A 8 #£805.03 EIGHT DIGITY SIGNED NUMERIC FIELD
HAVING FIVE INTEGER AND THREE DECIMAL POSITIONS.
RCDSOX3 3 o XXX TWO ALTERNATE DEFINITIONS OF A
3 #£00.03 THREE DIGIT SIGNED DECIMAL.
RCEN2X34A 5 XXo XXX TWO ALTERNATE DEFINITIONS OF A
05 # 02.03 FIVE DIGIT UNSIGNED NUMERIC FIELD
WITH TWO INTEGER AND THREE DECIMAL POSITIONS.
1 # RECORD MARK INDICATION.
10 F TEN POSITICN FLOATING POINT RCD.
INVALID USAGES
RCD 0
1000 o0 A ALTHOUGH IT IS VALID TO SPECIFY A
SIX DIGIT LENGTH IN YHIS FASHION, THE SIZE OF
OBJECT MEMORY IS SPECIFIED AS 80K FOR THIS PROGRAM.
THES STATEMENT WOULD BE VALID IF MEMORY SIZE WAS
SPECIFIED AS 160K.
RCD 4 THIS will RESERVE FOUR PLACES BUT
WILL BE TREATED AS AN UNDEFINED RCD AREA BECAUSE
€s Ny Ay OR AE ARE NOT INDICATED IN THE OPERAND
FIELD . THE WORD FIELD, INTENDED AS A
COMMENT CONTINUATION, WAS TREATED AS A NOP BECAUSE
1T WAS IN THE OPERATION FIELD AND WAS NOY A VALID
OPERATION.
2 N THIS STATEMENT, INTENDED AS A RCD

CONTINUATION, WILL COMPILE AS A CON BECAUSE IT HAS
A BLANK CPERATION AND FOLLOWS A STATEMENT WHOSE
CPERATION IS NOT A CATA DEFINITION. IT WILL COMPILE
AS N FOLLOWED BY A BLANK.

F

COO0O0OOO00OO00

oo

Loc

000500

000510

000527

coor27

000737

000745
000753

000756
000759
000764
000769

000770

000780

000780
000781

000785

000794

000796

f—~"_—__““‘\————_‘——‘_*"“*—~—‘______—_~—————~_._‘;__________‘_.~——~______________~_,_———‘““‘*—~—*_;_____‘__—-ﬂ"‘*—_—ﬂ-““‘~

INSTR SU ADDR SER REF

A0COO 000000 006

65

66

DO PPPDDIIDDD I e

PRI D

PP DIIID DD

> -

T Db DB b bt et e et

I bt et bt bt ft et et

PGLIN

ABOL
ABO2
ABC3
ABC4
ABOS
ABO6
ABO7
ABOS
ABO9
AB10
AB11
AB12
AB13
ABl4
AB1S5
ABl6

AB17
AB18
AB19
AB20
AB21
AB22
AB23
AB24
AB25
AB26
AB27
AB28
AB29
AB30
AB31
AB32
AB33
AB34
AB35
AB36

AB37
AB38
AB39
AB4O
AB41
AB42
AB43
AB44
AB4S5
AB46
AB47
AB48B
AB49
ABSO
ABS1
ABS2
AB53
ABS4
ABSS5
ABS56
ABS7

AB58
ABS59

AB6O
AB61
AB62
AB63
AB64
AB6S
AB66
AB67
AB68
AB69

AB70
AB71
AB72
ABT3
AB74
AB75
AB76
ABT7
AB78

AB79
ABS8O
AB81

TAG ce NU AT CPERAND B80OSMPL-001 08-28-63 COMMENTS PG 004 F

THE FOLLOWING THREE INVALID RCD ENTRIES PRODUCE INCONSISTENT C

DATA DEFINITICNS.
RCD 3

TITLE
CONA CCN
CONNSX0
CONMIXED

o wuw

WORSTCASES CCN 2

62

14

TITLE
FPN

NOTE THAT THE NUMERIC FIELD IS BLANK AND THAT THE MANTISSA IS ONLY
SIX DIGITS. A LENGTH OF TEN WILL BE ASSUMED AND TRAILING ZEROS ADDED
TO MAKE AN EIGHT DIGIT MANTISSA. THE FPN APPEARS IN MEMORY AS
0012345600 WITH THE UNITS DIGIT SIGNED PLUS. THE LISTING DOES NOT
SHOW THE ADDED ZERCS OR ASSUMEC LENGTH.

FPN

THE TWO ENTRIES IMMEDIATELY ABOVE WERE INTENDED AS COMMENTS
COUTINUATIONS. THIS IS INVALID ON A FPN AND TWO FPNS WERE GENERATED
FRCM THE OPERAND FIELOS. THE LISTING ONLY SHOWS THE MEMORY ALLOCATED
BUT THE CARDS SHOW SE38103850 AND 3077519201.

THIS FPN WAS INTENDED TC REPRESENT 123.456. OMITYING THE LEADING
ZERO OF THE CHARACTERISTIC CAUSED IT TO REPRESENT THE NUMBER
234560000000000000000000000000.

FPN

THIS OPERAND WAS INTENCED TO REPRESENT 123.456. OMITTING THE SECOND
PLUS SIGN CAUSED IT TO REPRESENT 234.56

FPN

[
£00.03 THIS OPERAND SHOULD HAVE BEEN
#800.03., OMITTING VTHE # SIGN CAUSED IT TO COMPILE
AS A THREE DIGIT SIGNED INTEGER WITH NO INTEGER AND
NC DECIMAL PCSITIONS.

#60.3 THIS OPERAND SHOULD HAVE BEEN
#800.03. OMITTING THE ZEROS CAUSED IT YO COMPILE

AS A THREE PCSITION SIGNED INTEGER WITH ONE INTEGER
AND NO DECIMAL POSITIONS.

#02.02 THIS OPERAND SHOULD HAVE BEEN

02.02. OMITTING THE BLANK CAUSED IT TO COMPILE
AS A FOUR POSITION UNSIGNED FRACTION WITH 21
INTEGER PLACES AND 20 DECIMAL PLACES.

DEFINITION OF A CONSTANT FIELD - CON
ABCOE FIVE POSITION ALPHABETICs UNSIGNED
00003 NUMERIC, AND MIXED CONSTANTS. WILL
4JK9* APPEAR IN MEMORY AS WRITTEN.

~123499 SIX POSIflON SIGNED INTEGER
CONSTANT. WILL APPEAR AS 12349R IN MEMORY.

£1234,99 SIX POSITION SIGNED CONSTANT WITH
FOUR INTEGER AND TWO DECIMAL POSITIONS. WILL
APPEAR AS 123491 IN MEMORY.

123.45 SIX POSITION CONSTANT WHICH WILL
APPEAR AS 123.45 IN MEMORY.

A THREE POSITION CONSTANT OF WHICH
THE FINAL TWC POSITIONS ARE BLANKS.

ok TWO POSITICN CONSTANT CONSISTING
CF A GROUP MARK AND A RECORC MARK.

INVALID USAGES c
ABCDE CON WITH OPERAND OF GREATER LENGTH
THAN NUMERIC FIELD STATES. WILL COMPILE AS AB WITH
NC MESSAGE.

£120 SIGNED CONSTANT WITH OPERAND
SHORTER THAN NUMERIC FIELD STATES. IT WAS PUNCHED
£12 BUT WILL COMPILE AS 120 WITH THE LAST DIGIT
SIGNED PLUS. HERE THE LISTING SHOWS THE ZERO.

123 THIS WILL NOT COMPILE BECAUSE THE
NUMERIC FIELC STATES A LENGTH OF ZERO POSITVIONS.

THE NUMERIC FIELD STATES A LENGTH WHICH INCLUDES A
SECOND CARD. THE FIRST LINE WILL COMPILE, FOLLOWED
BY 12 BLANKS. THE REST IS TREATED AS A COMMENT.

-59969096439550 THIS CON, INTENDED AS PART OF A
MESSAGE AND PUNCHED —~ERROR ROUTINE, WAS STRIPPED OF
ZONING AND TREATED AS A SIGNED NUMERIC CON BECAUSE
THE LEADING DASH WAS INTERPRETED AS A MINUS SIGN.

DEFINTTION OF A FLOATING POINT CONSTANT - FON
£€038123456 REPRESENTS £123.456

[sNsXeXalsNaNal

. INVALID USAGES
€0489876543210 THIS OPERAND EXCEEDS THE MAXIMUM
LENGTHe THE MANTISSA IS TRUNCATED TO EIGHT DIGITS.
IT APPEARS IN MEMORY AS 0098765438B.

OO OOO0

£38123456

o0

£0312345¢

Loc

000799

000802

000806

000811
000816
000821

000827

000833

000839

000842

000844

000846

000849

000849

000911

000925

000935

000945
000955
000965

000975

000985

INSTR Su

ADCR SER REF

007

008

009

INDEX
AC 01

AC 02
AC 03

S

-

Io ot ettt b D2 33 D> e b et ot bt

- N

] PP IPIDD > o v et

> >

PP LDDP>D>

PGLIN
ACOlL

ACO2
ACO3

ACO4

ACO5
ACO6
ACO7
ACO8
ACO9
AC10
ACll
ACl2
AC13

ACl4
AC15
ACl6
ACL7
AC18
AC19
AC20
AC21

AC22
AC23
AC24
AC25
AC26
AC27

AC28
AC29
AC30
AC31

AC32
AC33

AC34
AC35

AC36
AC37
AC38
AC39
AC40
AC41
AC42
AC43
AC44
AC4S
AC46
AC47
AC48
AC49
ACSO

ACS1
ACS52
ACS3
ACS54

AC55
ACS56
ACS7

AC58
ACS9

AC60
AC61
ACé2

AC63
AC64
AC65

AC66
ACe67

TAG op NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 005

TITLE DEFINITION OF A REPORT FORMAT - RPT

THESE ILLUSTRATIONS ALL SHOW EIGHT NUMERIC POSITIONS WITH VARIOUS
PUNCTUATION AND SIGN INDICATIONS.

IN THIS SERIES NO COMMAS, DECIMAL POINTS, DOLLAR SIGNS, OR ASTERISKS
ARE SPECIFIEC. ONE POSITICON IS RESERVED FOR A BLANK OR MINUS SIGN.
IN THE FIRST FORMAT ALL EIGHT POSITIONS WILL PRINTV, LEADING ZERODS
INCLUDED. IN THE SECONC FORMAT LEACING ZERQOS IN ANY OF THE FIVE HIGH
ORDER POSITICNS ARE NOT PRINTEC. IN THE THIRD FORMAT, NO LEADING
ZEROS WILL PRINT,.
RPT 9 L17117212
9 XXXXX22Z
9 XXXXXXXX

IN THIS FORMAT VARIOUS EDIT PUNCTUATION IS ADDED. THE DOLLAR SIGN
WILL ALWAYS PRINT EIGHT POSITICNS TO THE LEFT OF THE DECIMAL POINT.
THE COMMA WILL PRINT IF THERE ARE ANY SIGNIFICANT FIGURES TO THE
LEFT OF 1T. THE CECIMAL POINT AND THE POSITIONS TO THE RIGHT OF IT
WILL ALWAYS PRINT, EVEN FOR A ZERO AMOUNT. A TWO POSITION SIGN
INDICATOR IS SPECIFIED AS CR, ®#, CR DR FOR MINUS, ZERO, OR PLUS
AMCUNTS, RESPECTIVELY.

RPT 13 $XXXyXXXe2Z wooCRD#saDRO

THESE TWC EXAMPLES ILLUSTRATE AMOUNT PROTECTION IN A RPT FORMAT. IN
THE FIRST, THE $ SIGN IS FIXED BUT « WILL PRINT IN ALL SPACES
BETWEEN IT AND THE HI-ORDER DIGIT PRINTED. IN THE SECOND, THE $ SIGN
WILL PRINT IMMEDIATELY TO THE LEFT OF THE HI-ORDER DIGIT PRINTED.
RPT 12 $XXXyXXZ.2Z Den
12 $XXXyXXZ.1Z ©s$n

THE OPERAND BZ IN THIS EXAMPLE INCICATES THAT THE ENTIRE FIELD,
INCLUDING THE DECIMAL PCINT ANC POSITIONS TO THE RIGHT OF IT, IS TO
BE BLANKED IF THE RESULT IS ZERO.

RPT 07 XXXX.ZZoooBzon

INVALID USAGES
IS AND XS REVERSED

RPT 9 ZZIXXXXX
TITLE COLLECTIVE AREA DEFINITION ~ NAME
NORMAL USE

NAMEA NAME NAMEAEND THIS ENTRY CONSISTS OF THIRTY
RCD N

CCN

RFT
RCD
CCN

XXXXeZ2Z SEGMENTS OF THE ENTRY ARE
4

W oW N D

NUMERIC FIELD OF THE NAME

8ITCD 2 STATEMENT POSITIONS THE ENTRY TO

COND1
COND2

START AT A 0 LOCATION. THE

>N

CHRCD TAG OF THE LAST SEGMENT OF THE
CONDP P
CONDQ Q

NAMEAEND CCN 3 -1 COLLECTIVE ENTRY. NOTE THAT A

NAMEA THIS DEFINITICN OCCUPIES 30 CHARACTER POSITIONS

COMMENT CONTINUATICN IS BROKEN B8Y THE GENERATED

NAME TRAILER. NOTE ALSO THE USE OF THE REF FIELD
OF THE LISTING TO DISPLAY A CUMULATIVE TOTAL OF THE

POSITIONS USED WITHIN THE NAME.

THE FOLLOWING SERIES ILLUSTRATES THE USE OF CONCURRENT NAME
DEFINITIONS. NAMEC IS ENTIRELY WITHIN NAMEB. NAMED IS ONLY PARTLY
WITHIN NAMEB. BOTH USAGES ARE VALIC.
NAMEB NAME NAMEBEND
RCDSEX0 RCD 6 &
NAMEC NAME NAMECEND
RCD 2 N
NAMECEND 6 A
NAMEC THIS DEFINITION OCCUPIES 8 CHARACTER POSITIONS
NAMED NAME NAMEDEND
RCD 4 A
NAMEBEND 12 A
NAMEB THIS DEFINITION OCCUPIES 30 CHARACTER POSITIONS
3 N
NAMEDEND 4 At
NAMED THIS DEFINITION OCCUPIES 23 CHARACTER POSITIONS

CONSECUTIVE POSITIONS, THE LAST
A TWO BEING A GROUP MARK AND RECORD
XXX MARK. THE CHRCD AND THE BITCD EACH
OCCUPY ONE MEMORY POSITION. SOME

SEPARATELY TAGGED. THE A IN THE

OPERAND OF THE NAME HEADER IS THE

NAME ENTRY. THE TAG OF THE NAME
STATEMENT IS USED TO REFER TD THE

F

[sN ol

(sl NeNeXaNel

o000 OO0 OO0OO0

[aNeXel

[aNaNal

Loc

000994
001003
001012

001025

001037
001049

001056

001065

001070
001071
001075
001078
001079
001087
001091
001094
001095

001096

001099
001099

001100
001105

001106
001107
001113
001113

001114
001117
001129
001129
001132
001136
001136

INSTR SU

ADDR SER REF

ol10

011

001099 ACS0

012 9
10
18

013 25
26

27

30

001129 AC6T
6

0C1113 AC63

14

001136 AC70
18
30

]

67

INDEX
01
02
04
05
06
07

08
09

68

-

»> > P>

> > > D> P> P> P> > >

DL >

- .

b B BB B b b b 3]

B B B B B B B N J

> P>

PGLIN
ADOL

ADO2
ADO3
ADO4
ADOS
ADC6

ADO7
ADOB
ADO9

AD10O

AD11
AD12
AD13

AD14

AD1S
ADl6
AD17

AD18
AD19

AD20
AD21
AD22

AD23
AD24
AD25

AD26
AD27
AD28
AD29
AD30

AD31
AD32
AD33

AD34
AD3S
AD36

‘AD37

AD38
AD39

AD40
AD41
AD42
AD43
AD44
AD4S5
AD46
AD4T
AD48
AD49
ADSO

ADSL
ADS2
AD53
ADS4
ADSS
ADS6
ADS7
ADS58
ADS9

AD60
AD61
AD62
AD63
ADG4

TAG

NAMEE

NAMEE
NAMEEEND

cp
TITLR
NAME 0
CON 6
NAME B
RCO 01
NAME

RCD 2
CcNe 2
RCD 1

NU AT OPERAND 80SMPL-001

08~28-63 COMMENTS PG 006

SPECIAL USES OF NAME STATEMENTS

£246807

ALTHOUGH THIS NAME STATEMENT HAS A
BLANK TAG AND OPERAND, THE ZERO

IN THE NUMERIC FIELD WILL CAUSE THE CON DEFINITION
WHICH FOLLOWS IT TO BEGIN IN THE NEXT 0/5 MEMORY

LOCATION RATHER

THAN THE NEXT SEQUENTIAL LOCATION.

THE B IN THE NUMERIC FIELD OF
THIS NAME STATEMENT CAUSES THE RCD

WHICH FOLLOWS IT TO BEGIN IN THE NEXT 100 LOCATION.

INVALID USAGES

NAMEEEND
A

RH
THIS DEFINITION

THIS NAME IS INVALID BECAUSE IT.
CONTAINS AN ITEM WHICH IS NOT AN
AREA DEFINITION, CON MISSPELLED.
OCCUPIES CHARACTER POSITIONS

THIS NAME ENTRY WILL NCT COMPILE CCRRECTLY BECAUSE THE NUMERIC
FIELD OF THE INTERNAL NAME ENTRY SPECIFIES A STARTING LOCATION NOT
IMMEDIATELY FCLLOWING THE PORTION OF THE NAME ENTRY ALREADY DEFINED.

NAMEF

NAMEG

NAMEFEND
NAMEF
NAMEG

NAMEF1

NAMEFLEND
NAMEF1

NAMEH

NOWEND
NAMEH

NAMEL

NAMEJ

NAMEJEND
NAMEJ

NAMEY

AGE
TWENTY
FORTY
SIXTY

SEX
MALE
FEMALE

PAYTYPE
HOURLY
WEEKLY
BIWEEKLY
MONTHLY
COMMISSION
FLAT FEE

SPLIT TAG

8AD1
BAD2

NAME 0
RCO 2
NAME 4
RCO 3
1
NAME
RCD 4
ADCON
NAME
RCD 4
ccN 2
3
NCP
NAME
RCD 2
3
NAME
RCC 05
1
NCP
TITLE
CHRCD 2
RCD 1
CHRCD
TITLE
BITCD
1
2
&4
8
A
8
RCDO 1
BITCD
1
2

NAMEFEND
A

NAMEFEND

N
THIS DEFINITION
THIS DEFINITION

NAMEF 1ENC
A

CONTINUE
THIS DEFINITION

NOTEND
A

XXX

THIS DEFINITICN

NAMEJ
At
4

NAMEJEND
€

o
THIS DEFINITICN
-

THIS DEFINITICN

OCCUPIES
OCCUPIES

8 CHARACTER POSITIONS
4 CHARACTER POSITIONS

THIS IS INVALID FOR A SIMILAR
REASON, THE ADCON BREAKS THE
CONTINUITY OF ASSIGNMENT.
OCCUPIES 12 CHARACTER POSITIONS

THIS WILL NOT COMPILE CORRECTLY

BECAUSE THE OPERAND OF THE NAME

DOES NOTV SPECIFY THE TAG OF THE

ENDING SEGMENT.

FORCE TERMINATION OF NAMEH
OCCUPIES CHARACTER POSITIONS

NAMEI IS INVALID BECAUSE IT ENDS
AT THE SAME TAG AT WHICH NAMEJ
BEGINS.

OCCUPIES & CHARACTER POSITIONS
FORCE TERMINATION OF NAMEI
OCCUPIES CHARACTER POSITIONS

SWITCH DEFINITIONS

DATA SWITCHES

CHARACTER CODE - CHRCD

ANY INTERVENING

A TWO DIGIT CODE WHOSE INITIAL
VALUE 1S 40, AS SPECIFIED BY
THE NUMERIC AND OPERAND FIELOS
OF THE CHRCD STATEMENT.

A ONE POSITION CODE WILL BE SET UP

WETHOUT INITIALIZATION SINCE A

CHRCD WHICH FOLLOWS A RCD WITHOUT
STATEMENTS CAN NOT SPECIFY AN

INITIAL VALUE. IT IS CONSIDERED PART OF THE RCD.

BIT CODE - BITCD

A ONE POSITION BIT CODE FIELD WILL
BE DEFINED. THE TITLE ENTRY CAUSES
THE INITIAL VALUE TO BE VALID.
ALTHOUGH ALL SIX OF THE SPECIFIED
CODES WILL BE SET UP AND CAN BE
TESTED, THE USE OF THE B OR 8 BIT
1S QUESTIONABLE SINCE IT MAY

RESULT IN CREATING INVALID CHARACTERS IN MEMORY.

INVALID USAGES

o>

THIS BITCD DEFINITION WILL GENERATE
AND CAN BE REFERENCED BUT WILL NOT
BE INITIALIZED TO THE VALUE SHOWN.

F

c

(gKaNal

c

Loc

001140
001145

001200
001200

001201
001202
001209
001209
001210

001215
001216

001219
001221
001222
001222
001222

001223
001226
001234
001234

001235
001238
001240
001243
001249
001249

001250
001251
001254

001255
001259
001260
001260
001269
001269

001271

001272
001273

001274

001275
001276

INSTR - SU

»0-£0 11

Al674

Al1249

Al269

ADDR

001210
000000

001222

001222

001234

001674

001249

001260

001260

001269

SER REF

0l4

AD15
2
015

AD23

AD23
7

AD28
4

016 AG33

017

0o p

018
AD42
2
AD41

11
019

020

e — e —— e —————————— ———————— e ———pporororno

INDEX

AES3
AES4
AESS
AE S6
AE 57
AE 58
AE 59
AE60

AE61
AE62

S

] > eI» DD o e B I» I e

NI SN Sy Ry SN A -]

[-] e e K Cn = R Lo P - [A Sy

(SRS] bty

—

o e

PGLIN

AEOL
AEO02

AEO3
AEQ4
AEOS
AEOQ6
AEQ7
AEOS
AEQ9
AELOQ

AE1l

AE12
AE13
AEl4
AE1S
AE1l6
AE17
AE18
AE19

AE20

AE21

AE22

AE23

AE24

AE25
AE26
AE27
AE28

AE29

AE30
AE31
AE32

AE33

TAG

SWA

SWB

SHC

ALTSKWI11
ALTSWI12
ALTSWI13
ALTSWI14
ALTSWI15
ALTSWIl6

TESTSK
TESTSW

ce

TITLE
ShT

ShN

NCP

SETCF
RCVS
TMTS

TITLE
ALTSHW

TITLE

SETCN
LCD
UNL
UNL
RCVS
TPTS
SBZ
b1:¥4

I1FCN
RCVS
128
TR

1FON
Lcoe
cvp
TRE
TR

SETOF
RCVS
THTS
SBN
SBN
S8N

IFON
TAB
TR

TYPE SWITCHES.

SETCN
LGD
UNL

NU AT CPERAND 80SMPL-001 08-28-¢3 COMMENTS PG 007

ol

TMoOoOO®P>

ol
ol
¢33

2
2
A

01
01

QN e -

01
01

*£15

«£10

*-10

PROGRAM SWITCHES
PROGRAM SWITCHy INITIALLY ONe.

PROGRAM SWITCHs INITIALLY OFF.

INVALID USAGES
WHILE THIS GENERATES A SWITCH IT

CANNCT BE REFERENCED 'BY THE BRANCH CONTROL MACROS
AND WILL NOT APPEAR IN THE SWITCH LISTING IN THE
OPERATORS NOTEBOOK. IF IT IS REFERENCED BY THE
BRANCH CCNTRCL MACROS IT WILL BE TREATED AS AN A-J
SWITCH AS SHCWN BELOW.

SkCu
SWC
LRI

CONSOLE SWITCHES
THE SYMBOLIC VALUE IN THE TAG WILL
BE ASSIGNED TO THE HARDWARE SWITCH
REPRESENTED BY THE CODE IN THE
NUMERIC FIELD. NOTE THAT
CONTINUATIONS ARE VALID.

BRANCH CCNTROL MACRO~-INSTRUCTIONS

SWARSWBuS IXTYOWEEKLYTGCOMMISS IONT

#1#
SWA
SWB

SIXTY

#60#

—-000004
-000004

WEEKLY
COMMISSIGCN

SWBOTESTSWoEXITa

SWB

TESTSHW

EXIT

FEMALEnTESTSWaEXITn

AF#

FEMALE
TESTSW

EXIT

SWBOHOURLYDWEEKLYOMONTHLY D

SWB
#E1¥

HOURLY
WEEKLY
MONTHLY

ALTSW912aTESTSWOEXITn
TESTSHW

EXIT

INVALID USAGES
THE FOLLOWING MACRO ATTEMPTS TO SET ON TWO UNDEFINED SWITCHES WHICH
ARE THE TAGS CF CHRCD AND BITCD HEADERS. THEY ARE TREATED AS A-J
SEXDPAYTYPED
#E1#
SEX
PAYTYPE

UNL

01

THE NEXT MACRO ATTEMPTS TO SET ON AN ALTSW.

SETCN

ALTSW91l60

THE FOLLOWING MACRO ATTEMPTS TO INITIALIZE A BITCD USING MOVE MACRO.

MCVE

HLT
ACCCN
ACCCN

#G#OBADLD A BITCD IS NOT VALID AS A MOVE OPERAND.

229000

#G#
BAD1

[2XsKaX el

c

Loc

001284

001289

001294

001299
001304

001309
001314
001319
001324
001329
001334
001339

001344
001349
001354

001359
001364
001369
001374

001379
001384
001389
001394
001399

001404
001409

001414
001419
001424

001429
001434
001439

INSTR SU

11299

A1299

Al284

u1290
953U2

853u3
712Y0
712Y5
1270
953Mé
£12P4
%15X%4

U1285
«17-9
11599

853U0
412X3
L1309
11599

u1285
351X6
ELKX4
TLKP4
174

112-9
11599

851X6
712X3
712X4

JRCOO
A5341
AL276

cl

01
cl
02

c2
c5

Gé

01
(2%

ol
c9
10
12

02

C1

Ccl

ADLR

001299

001299

001284

001290
005342

005343
001280
001285
001270
005346
001274
001274

001285
0Cc1309
001599

005340
001273
001309
001599

001285
005176
001274
001274
001274

001309
001599

005176
001273
001274

029000
005341
001276

SER

021

022

023

REF

AEOS
oAls

BAl9
AEO2
AEO3
AD51
aA21
AD61
ADé64

AEO3
AE23
AF55

aAlé
ADSS
AE23
AF5S

AEO03
oA02
AD60
AD61
AD63

AE23
AF55

aAQ2
ADS53
AD59

oAl?
AD70

W’—\/,/W

69

70

INDEX S PGLIN
AF 01 I AFOlL
AF 02 t AF02
AF 03 I AF03
AF 04 A AFO04
AF 05 1 AFO0S
AF 06 I AF06
AF 07 A AFO7
AF 08 A AFO8
AF 09 1 AF09
AF 10 A AF10
AF 11 A AFl1l
AF 12 A AF12
AF 13 A AF13
AF 14 A AFl4
AF 15 I AF15
AF 16 A AF16
AF 17 A AF17
AF 18 A AFl18
AF 19 A AF19
AF 20 A AF20
AF 21 I AF21
AF 22 A AF22
AF 23 A AF23
AF 24 A AF24
AF 25 A AF25
AF 26 A AF26
AF 27 A AF27
AF 28 A AF28
AF 29 A AF29
AF 30 A AF30
AF 31 A AF31
AF 32 A AF32
AF 33 1 AF33
AF 34 A AF34
AF 35 A AF35
AF 36 1 AF36
AF 37 A AF37
AF 38 A AF38°
AF 39 A AF39
AF 40 A AF40
AF 41 A AF41
AF 42 A AF42
AF 43 A AF43
AF 44 A AF44
AF 45 1 AF45
AF 46 A AF46
AF 47 A AF4&7
AF 48 I AF48
AF 49 1 AF49
AF 50 A AF50
AF 51 A AFS1
AF 52 A AFS2
AF 53 A AFS3
AF 54 A AF54
AF 55 A AF55
AF 56 1 AFS56

TAG ce NU AT OPERAND B8OSMPL-001 08-28-63 COMMENTS PG 008 F
TITLE ONE~-FOR-ONE INSTRUCTIONS
BASIC OPERANDS
TAG OPERANDS
NCP SPLIT TAG SINGLE BLANKS ARE VALID IN TAGS.
THE MEANING CF A TAG OPERAND DEPENDS ON THE INSTRUCTION AS WELL AS c
THE DATA DEFINITION FOR THE TAG. c
) SET RCDSOX3 SET ACC TO SIZE OF RCDSOX3.
- Lco RCDSOX3 LOD ACC WITH VALUE OF RCDSOX3.
INVALID USAGES c
SND 04 WORST CASES TAG OPERAND TOO LONG
TR RD/WR SPECIAL CHARACTERS ARE INVALID
GAP NCP - HEREs GAP HAS A LEADING BLANK.
GAP NOP * HEREs GAP HAS NO LEADING BLANK.
RD/WR SGN L. GAP LEADING BLANK ON GAP IS IGNORED.
TITLE LITERAL OPERANDS
RAD #E00215# A FIVE DIGIT SIGNED LITERAL
LGD RAPPLE# A FIVE PLACE UNSIGNED LITERAL
WR #NOT AVAILABLED# A FOURTEEN PLACE LITERAL MESSAGE
CHpP LR TWO BLANKS
LGD 10 #-04E5678# FPN LITERAL §£.00005678
INVALID USAGES c
ADD 814# OPENING LIT SYMBOL OMITTED
[Wals] ¥LOCATIONA# LITERAL INDICATED WITH TAG OPERAND
INTENDED.
TRE HOUPE# TRANSFER TO A LITERAL
ADD #0010# ADD REQUIRES A SIGNED OPERAND
LOD #AGE CLOSING LIT SyMBOL OMITYED
WR #THIS LITERAL OVERFLOWS INYO THE NEXT CARD WHICH IS
INVALIDo# NOTE THAT ONLY THE FIRST LINE COMPILES.
LCOD #-BALANCE# BECAUSE OF THE DASH THIS LIT WILL
COMPILE AS BALANCN.
TITLE ACTUAL OPERANDS
SET a00005 TWO ALTERNATE WAYS OF WRITING AN
SET 5 INSTRUCTION TO SET ACC YO FIVE.
INVALID USAGES c
ST 995 ST REQUIRES THE @ SIGN FOR ACTUALS
WR 482500 82500 IS OUTSIDE THE MEMORY SIZE
SPECIFIED FOR THE OBJECT PROGRAM.
TR 30001234 ACTUAL EXCEEDS SIX DIGITS
LGD TAPPLES AN ACTUAL IS INDICATED WHEN A
LITERAL IS INTENDED.
TITLE LOCATION COUNTER OPERANDS
LoD 04 . THE LOCATION OF THE LOD IS PLACED
IN ASU 0O4.
FURTHUR EXAMPLES WILL BE SHOWN UNDER CHARACTER ADJUSTMENT. c

TITLE
LOCATIONA BSP

EIM

CNC

ULA
EXIT TR

06

BLANK OPERANDS
NO ADDRESS IS REQUIRED FOR THESE
INSTRUCTIONS. IT IS EITHER IGNORED
OR IS INSERTED BY THE PROCESSORe.

EXIT HERE THE ADDRESS OF THE TR WILL BE
INITIALIZED BY UNLOADING ASU 0é.

A SPECIAL CASE OF A LASN WITH BLANK OPERAND WILL BE SHOWN LATER.

c

Loc

001444

001449
001454

001459
001464

001469
001474
001479

001484
001489
001494
001499
001504

001509
001514
001519
001524

001529
001534

001539

001544
001549
001554
001559

001564
001569

001574

001579
001584
001589

001594
001599

INSTR SU ADDR

Al127S

80003
80756

/0400
10co0

A1469
Al4T4
T1470

H5219
85339
R5387
45345
85KK9

60000
85386
L5358
65362

85279
R5280

85193

80005
BOGOS
FO000

R2500

10123
80C00

81V74

30004
20#-0
+0-80

#1VR9
10000

04

10

P23

06
1

06

001275

000003
000756

000000
000000

001469
001474
001470

005219
005339
005387
005345
005229

000000
005386
005358
005362

005279
005280

005193

000005
000005
000000
002500

000123
000000

001574

000004
000000
000000

001599
000000

SER

024

025

REF

AD68

AA41
AA4lL

AF13

BAlo
nAlS
nA29
aA20
oAll

nA28
aA24
nA2s

oAl2
oAl3

aAl06

AFS55

-

AG 78 AG76

INDEX S PGLIN TAG cep NU AT OPERAND 80SMPL-001 08-28-¢€3 COMMENTS PG 009
AG 01 I AGOl TITLE ADDITIONS TO BASIC OPERANDS
AG 02 I AGO2 CHARACTER ADJUSTMENT
AG 03 A AGO3 LoD 3 RCDSOX3¢&3 THESE TWO STATEMENTS REFER TO THE
AG 0% A AGO4 TMTS 3 RCON2X3A-4 SAME DATA FIELD. THE ADJUSTMENTS
AG 05 A AGOS ARE BASED ON THE POSITION WITHIN THE TAGGED FIELD
AG 06 A AGO6 WHICH EACH INSTRUCTION TYPE NORMALLY ADDRESSES.
AG 07 A AGO7
AG 08 A AGOS Lco 1 CONA-2 THESE STATEMENTS USE ADJUSTMENTS
AG 09 A AGO9 cup 1 #12345674#-2 TO ADDRESS A POSITION WITHIN A
AG 10 A AG10 DEFINED FIELC OR WITHIN A LITERAL.
AG 11 A AGl1

AG 12 A AG12 TR CONTINUEE20 TO 4TH INSTR FOLLOWING CONTINUE.
AG 13 A AG13 RCVS “86 RCVS AT OP CODE OF 2ND INSTRUCTION
AG 14 A AGl4 FOLLOWING.
AG 15 A AG1S
AG 16 A AGl6 SET 6 NAMEA/S DIVIDE OPERATOR & ADJUSTMENT USED
AG 17 A AG17 SND 6 NAMEA TO GET SET TO MOVE NAMEA BY SND.
AG 18 I AGLI8 CHARACTER ADJUSTMENT TC ADDRESS CONSTANT LITERALS IS A SPECIAL
AG 19 1 AGL9 CASE AND WILL BE ILLUSTRATED LATER.
AG 20 1 AG20 INVALID USAGES

AG 21 A AG21 L0D *#£80005 EXCEEDS SPECIFIED MEMORY SIZE.

AG 22 A AG22

AG 23 A AG23 LoA 83 GIVES INVALID ADDRESS FOR LDA.
AG 24 A AG24

AG 25 A AG2S TMTS 1 NAMEA-0000030 AN ADJUSTMENT CAN NOT HAVE JORE
AG 26 A AG26 THAN SIX DIGITS. THIS WILL BE TRUNCATED TO 000003.
AG 27 A AG27

AG 28 A AG28 TRE *£10 THE GENERATED EIA UPSETS THIS ADJUSTMENT
AG 29 A AG29 CALCULATICN. TRE CONTINUE WCULD BE CORRECT.

AG 30 A AG30 TR I1LEXIT TO EXIT LINKAGE ON UNEQUAL

AG3]1 # EIA EXIT TO EXIT LINKAGE ON UNEQUAL

AG32 # TR EXIT TO EXIT LINKAGE ON UNEQUAL

AG 33 A AG31l CONTINUE NCP A

AG 34 A AG32

AG 35 A AG33 LCOo #300#£100 ADJUSTMENTS TO A LITERAL MAY NOT BE
AG 36 A AG34 MCRE THAN TWC DIGITS. THIS WILL BE TRUNCATED TO 00.
AG 37 A AG35

AG 38 A AG36 SET [} HE12344»5 ONLY & AND - ARE VALID ADJUSTMENT
AG 39 A AG37 OPERATORS FOR ADJUSTMENTS TO LITERALS.
AG 40 1 AG38 TITLE OPERAND MODIFIERS

AG 41 I AG39 THIS SERIES SHOWS THE USE OF MCDIFIERS TO CHANGE THE NORMAL ADDRESS

AG 42 I AG40 ORIENTATION OF AN INSTRUCTICN. NAMEA IS 30 POSITIONS FROM 1070-1099.

AG 43 A AG41 CHp 1 NAMEA CMP NORMALLY REFERENCES THE RIGHT
AG 44 A AG42 cHp 1 L,NAMEA HAND CHARACTER.

AG 45 A AG43 CcKp 1 RyNAMEA REDUNDANT MOCIFIER
AG 46 A AG44
AG 47 A AG4S TMTS 1 NAMEA TMTS NORMALLY REFERENCES THE LEFT
AG 48 A AG46 TMTS 1 RyNAMEA HAND CHARACTER.

AG 49 A AG4T TMTS 1 LsNAMEA REDUNDANT MODIFIER
AG S0 A AG48
AG 51 A AG49 RCV NAMEA RCV NORMALLY REFERENCES THE LEFT
AG 52 A AGS0 RCVS Hy NAMEA HAND &4 CHARACTER, RCVS THE LEFT.
AG 53 A AG51 RCV HsNAMEA REDUNDANT MODIFIER
AG 54 A AGS2

AG 55 A AGS3 RCVT NAMEA RCVT NORMALLY REFERENCES THE LEFT
AG S6 A AGS4 RCVS Ty NAMEA HAND &9 CHARACTER, RCVS THE LEFT,
AG 57 A AGS5S5 RCV Ty NAMEA AND RCV THE LEFT E4.
AG 58 A AGS6 RCVTY TsNAMEA REDUNDANT MODIFIER
AG 59 A AGS7

AG 60 A AGS8 SET NAMEA SET NORMALLY REFERENCES SIZE.

AG 61 A AGS9 SET S+ NAMEA REDUNDANT MOCIFIER

AG 62 A AG6O NOP S+NAMEA CREATE CONSTANT OF LENGYH OF NAMEA
AG 63 I AG61 OPERAND MODIFIERS MAY BE COMBINED WITH CHARACTER ADJUSTMENT.

AG 64 A AG62 LOD 1 L,¥APPLE#E3 LOAD ASU 1 WITH L.
AG 65 1 AG63 INVALIO USAGES

AG 66 A AG64 TNT TsNAMEA THE FIRST FIVE POSITIONS OF NAMEA
AG &7 A AG6S WILL NOT BE MOVED.

AG 68 A AG66

AG 69 A AG67 LCo 05 L,#ABCDE# THE LOAD WILL EXTEND INTO THE NEXT
AG TO A AG68 LITERAL WHICH IS NOT USUALLY PREDICTASBLE.
AG 71 A AG69

AG 72 A AG70 RAD S+ NAMEA THIS IS THE SAME AS RAD 330 WHEN

AG 73 A AG71 WHAT WAS INTENDED WAS RAD #E£304#4.
AG T4 A AG72

AG 75 A AGT3 ™Y RyNAMEA THIS MOVES ONLY THE LAST FIVE

AG 76 A AG74 POSTITIONS COF NAMEA.

AG 77 A AG7S

A TCcTY HyNAMEA Hs, INCONSISTENT WITH RCVT AND TCT.

F

coo

[
c

Ltoc

001604
001609

001614
001619

s

001624
001629

001634
001639

001644
001649

001654

001659

001664
001669

001674

001679

001684

001689
001694
001699

001704
001709
001714

001719
001724
001729

001734
001739
001744
001749

001754

001759
001764

001769

c
001774

001779

001784

001789

001794

INSTR

807E9
907E6

80849
45367
11694
Ul635

BO#-6
/1#P4

81649
#1652

910W7

L1669

2 1AR9
11599

Al6T4

85350

BO#-4

41C29
41CX0
41629

91CX0
91029
910X0
Ul1cC74
uLc?4
L1074
ulc79
ulo79
U1c79
L1c79
80C30

BOC30
AQC30

85378

91C79

85170

HO030

91C99

Su

c3
03

0l
(2]

cé
06

¢

10

c6

[
0l
(13

Cl
()3
o1

o1

¢5

ADDR SER REF

000759
000756

000809

005367

001694

061635

000006
001074

001649
001652

001067

001669

001599
001599

001674

005350

0C0004

001099
001070
001099

001070
001099
001070
001074
001074
001074
001079
001079
001079
001079
000030

000030
000030

005338

001079

005330

000030

001099

»1-74 08 001074

026

027

028

AA41
AA44

ABl8
DA26

AG33

ACS1
ACS1

AC51

AF55
AF55

BA22

oAO4

ACS1
ACS51
ACS1

ACS1
AC51
AC51
ACS1
AC51
AC51
ACS51
AC51
ACS1
AC51
AC51

AC51
AC51

BAL1S

AC51

nAl4

ACS51

AC51

ACS51

71

AH

AH
AH
AH
AH
AH

AH

AH

AH

AH
AH
AH
AH
AH
AH
AH

AH

72

INDEX

o1

02
03
04
05
06

o7
o8

AHO9
AH10

S

-~ * x> > >PPpP>>

> PP D> D>

*® % B > -

(=

P> >3-

DD >

DI - -

P

PGLIN
AHO1

AHO2
AHO3
AHO4
AHOS
ARO6

AHO7

AHO8

AHO9

AHLO
AH11
AH12
AH13
AHl4
AH15
AH16

AH17

AHLS8
AH19
AH20
AH21

AH22

AH23

AH24
AH25
AH26
AH27T
AH28

AH29
AH30
AH31
AH32
AH33
AH34
AH35
AH36
AH37

AH38
AH39
AH40
AH41
AH42

AH43

AH44
AH45
AH46
AH4T
AH48
AH49
AHS50
AHS51
AH52
AHS53
AHS4
AHSS

AHS56
AHS7
AH58
AH59
AH60

TAG ce NU AT OPERAND BOSMPL-001 08-28-63 COMMENTS PG 010 F
TITLE INDIRECT ADDRESSING
LEV8O
INDEX1 ACCCN NAMEA AN ADDRESS CONSTANT
Lao 6 1,INDEX1 LOAD ASU 6 AT THE ADDRESS NOW IN
INDEX1.
ENTBO SAME INSTRUCTION IN 80 MODE
LCD 6 I,INDEX1 OPERAND AND COMMENTS REPEAT.
EIA INDEX1 OPERAND AND COMMENTS REPEAT.
LGD [INDEX1 OPERAND AND COMMENTS REPEAT.
INVALID USAGES c
LEVSO
INDEX3 CON 06 001234
RAD 1, INDEX3 INDEX3 IS NOT IN A 4/9 LOCATICON.
Lco 1,2110234 THE LOCATION OF THE REFERENCED
ADDRESS IS ABOVE OBJECT MEMORY LIMITS.
ENT80
IN 80 MODE THE TAG OF AN I, WILL BE PUT ON THE GENERATED EJlA. ANY C
ADDRESS MODIFICATION MUST TAKE THIS INTO ACCOUNT. C
Lca 6 EXIT THIS LDA-ULA IS INTENDED TO MCDIFY
uLa 6 TAGZ THE ADDRESS PORTION OF THE LOD.
TAGZ LOD I,INDEX1
TAGZ ETA INDEX1
LGCD INDEX1
TITLE SPECIAL MNEMONICS
ADDRESS CHECK ON LFC-UFC
LFC LASNTAGA ON A LFC OR UFC WITH BLANK NUM THE
LFC LASNTAGAE2 ADDRESS IS 4/9 CHECKED.
LFC 1 LASNTAGAE2 WITH A NUM OF 1 IT IS 1/6 CHECKED
LFC 1 LASNTAGA ETC. SEE MESSAGES.
TITLE NUM ON SET BIT INSTRUCTIONS
S8z 4 220000 NORMAL §8BZ 4 WITH 4 IN COL 22.
174 4 220000 S8 4 WITH 4 IN COL 22.
sBZ 4 220000 s8 4 WITH 4 IN COL 21.
Sez 04 220000 SB 04 REFERENCES 8 BIT
SBA 320000 SB 7 BECOMES SBA
SBN 4 2320000 SBN 04 REFERENCES 4 BIT
SBR 10 220000 SBRy NUM 1S IGNORED
SBA 10 220000 SBA, NUM IS IGNORED
INVALID USAGES c
SBZ 3 320000 S8 3
SB2 5 320000 SB S
S$Bz 6 @20000 S8 6
SBN 9 a20000 s8 9
TITLE FLAG CODES
THE FLAG CODES Cy Ry AND Z, ARE SHCWN ELSEWHERE. CODES 1, Ay F, [
Ty AND G ARE NCT SHOWN SINCE THEIR EFFECT IS NOT APPARENT HERE. C
c
RAD RCDA GIVES CAUTIONARY MESSAGE
RAD RCDA FLAG D SUPPRESSES THE MESSAGE D
RCD 1 A
NeP L THIS 1S THE ONLY INSTR. ON A CARD
NCP * FLAG @ FORCES THIS ONTO THE NEXT 3
NOP EXIT THIS SPIN LOOP IS EQUIVALENT TO A M
TR *=5 HLT. AN INTERRUPT CAN CHANGE THE H
NOP TO TR. FLAG M PUTS THE NOP ON THE M FLAG PAGE c
OF THE NCTEBOCK, FLAG H PUTS THE TR ON THE H FLAG c
PAGE OF THE NCTEBCOK. c
C
Lco #-BALANCE# R-L SCAN TREATS — AS DASH NOT NEG.B

Loc

001799

001804

001809
001814

001820
001829

001834

001839
001844

001849
001854

001859
001864
001869
001874

001879
001884
001889
001894
001899
001904
001909
001914

001919
001924
001929
001934

001939
001944

001945
001954
001959

001964
001969

001974

INSTR

A1C99

81XRZ

»1PRY
81XR9

H1l82#

8823V

#1VR9
#1YM9

+1PR9Y
81799

+51K9
»S1LL
151L1
+51K9

-0&0
2-06&0
2-C&0
%-400
2-#80
2--£0
--00
2-480

2~000
%000
2~C00
2~000

HO510
HO510

Al954
A1959

A1599
11564

85377

sU

c6

10
cé6

06
06

10

ADDR

001099

001799

001799
001799

001820

030234

001599
001849

001799
001799

005129
005131
0C5131
005129

020000
020000
020000
020000
020000
020000
020000
020000

020000
020000
020000
020000

000510
000510

001954
001959

001599
0C1964

005377

SER REF

ACS51

029 AHO3

AHO3
AHO3

030 AH13

AF55
AH25

AHO3
AHO3

AKO9
AKO9
AKO9
AKQO9

031

AA19
AAl9

032
033

AF55

nA27

————————_——~A"—————*“————_______——‘—”-"_‘—-—————————————"————___—-"-~—____________—’—"-__—_~—‘-—~—~___________J

INDEX
Al 01
Al 02
Al 04

Al 05
A106
AIO7
AIO08

Al 09
AIlO
Alll
A112
AT13
All4
AlIlS

Al 16
A117
All8
A11S
Al120
A121
AI22
A123

Al 24
Al125
A126
A127
Al28
A129

Al 30
A131
AI32
AI33

Al 34
A135
A136

Al 37
Al3s
A139

Al 40
A4l
Al42
A143
Al44

Al 45

Al 46
Al47
Al48
Al49

Al 50
A151
AIS2

Al 53

Al 54
AI55
AIS6

Al 57
AIS58
A159

Al 60
Alsl
Al62

Al 63

[N S CebttLLm - e G [SN S5

- @

[y

[3y Sy) . G G G e D e w

e e BB

—

LD b Ce & G G OO

PGLEIN
AlO1

AlC2
ATI03
Al04

AIOS

AlIO6

AlIO7

Alos

AICQ9

AIlQ

Alll

Atl12

All3

All4

AlLl5

Allé
AIl7

All8

AIlS

Af20

TAG

ce

TITLE

NU AT CPERAND 80SMPL-001 08-28-63 COMMENTS PG O1l1

MACRO INSTRUCTIONS

THE INSTRUCTICONS GENERATED BY A MACRO DEPEND ON THE DATA
CHARACTERISTICS OF THE FIELDS REFERENCED BY THE OPERANDS. THE FIRST

CASE, BELOW,

MOVEL
MOVEL
MO0019#01

TAGA
TAGA
T00022#02
100022401

TAGB

TAGB
T00023#01

TAGC

ACDX
RAD
ACD
ST

ABDX
RAD
SHR
SET
ACD
RND
ST

ADDX
RAD
SET
ADD
Crp
TRH
SET
ST

ADDX
RAD
SET
ADD
RND
ST

MCVE
RCV
SET
SND

MCVE
RCV
™7

INCRA
RAD
AAM

MCVE
SET
LCD
SET
ST

TITLE

MCVE
TRANS
RCVS
TMTS

MGVE
RCVS
TMTS

TITLE

MCOVEA
LCA
ULA

MOVEA
ACD
ULA

ADCA
ADD
ULA
TR

15
15

05

05

15

15

15
15

15
15

ADDS TWO SIMILAR FIELDS AND PLACES THE RESULT IN ONE.

RCDS5X3DRCLSOX3ARCDSSX3n SIMPLE ADD
RCDSOX3
RCDSS5X3
RCOSS5X3

RCDSSX3AD#EIBT65.43#0RCDS6X00 WITH RND AND LNG
RCDS5X3A

3000001

2000008

#£898765.43%

3000002

RCDS6X0

RCDS5X3aRCDS5X3A0RCDSSX30EXITGTRUNCATED OVFLC PROY
RCDS5X3A

3000009

RCDS5X3

XACA §000008

EXIT

2000008

RCDSSX3

RCDSSX3DRCDSOX3uXACL,#606.020 SECONDARY FIELD DEF
RCDSOX3

1000009

RCDS5X3

a000001

XAC1

NAMEBONAMEAT ALPHA TO ALPHA
NAMEA

2000006

NAMES

NAMEAONAMEBT ALPHA TO ALPHA HS
NAMESB
NAMEA

MOVEL1#1oO#E610#n ADDRESS MODIFICATION
HEL1O#
MO0019#01

CONNSXOORCDS6X02 5 DIG UNSIGNED TO 6 DIG SIGNED
2000005
CONNSX0
2000006
RCDS6X0

PROGRAM CARD SUPPRESSION WITH S FLAGS

CONAOCONNSXO0D
-

CONNS5 X0

CONA

CONNS5X0uCCONMIXEDR
CONMIXED
CONNS X0

MACROS WITH F FLAGS

TAGA#10TAGB#1nD
100022#01
T00023#01

XACCDTAGCH
#800004#
TAGC

XACCoSuTAGA#2n
#E800001#
T00022#02

F

o000

3 4

Loc

001979
001984
001989

001994
001999
002004
002009
002014
002019

002024
002029
002034
002039
002044
002049
002054

002059
002064
002069
002074
002079

002084
002089
002094

002099
002104

002109
002114

002119
002124
002129
002134

002139
002139
002144

002149
002154

002159
002164

002169
002174

002179
002184
002189

INSTR

HO756
GO745
FO745

HO0753
coo001
BOCO8
65200
£0¢02
F1105

HO753
BOCO9
G045
44030
K1599
80CO8
F0745

HO756
80609
G0745
€0CO1L
Fac21l

U1C74
BOOOG
/1104

L1104
91CT4

H5AG8
T2AE4

BOGCOS
80816
B0OOO6
F1105

uog12
SOY#T

UOE8LT
90Y/2

#2AD4
#2)0E4

G5BA4
=2 AH9

G5BE9
*2AC9
10c00

MY

15
15

05

cs

15

15

15
15

15
15

ADDR SER REF

000756
000745
000745

000753
[elo]e]e] §
000008
005200
000002
001105

000753
000009
000745
004030
001599
000008
000745

000756
000009
000745
000001
004021

001074
000006
0C1104

001104
001074

005178
002104

000005
000816
000006
001105

000812
000807

000817
000812

002144
002154

005214
002189

005209
002139
000000

034

036

AA4Y
AA37
AA3T

AA38

QAQ7

AC60

AA38
AA37
AQl2
AF5S

AA3T

AA4L
AA37

AQl1l

ACS51
ACé8

AC68
ACS1

oAQ3
Al36

AB19

AC60

AB19
ABl18

AB20

AB19

Al49

Al52

nAQ9
Al63

oA08
Al 48

—]

73

INDEX S PGLIN TAG cp NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 012 F LOC INSTR SU ADDR SER REF
AJ 01 I AJOL TITLE ADDRESS CONSTANTS

AJ 02 T AJO2 ADCON

AJ 03 A AJC3 DUMMYTAG RCD 8 A 002197

AJ 04 A AJO4

AJ 05 A AJOS ADCON DUMMYTAG TAG OPERANC 002204 A2197 002197 037 AJO3
AJ 06 A AJO6 ADCCN 13 DUMMYTAG ADCON WITH ASU ZONING. 002209 A2AZT 13 002197 AJO3
AJ 07 A AJO7 ACCCN DUMMYTAGE 4 TAG OPERAND WITH CHARACTER ADJ. 002214 A2201 002201 AJO3
AJ 08 A AJOS ADCON L9OUMMYTAG WITH OPERAND MODIFIER 002219 A2190 002190 AJO3
AJ 09 A AJO9 ADCON YABLE# LITERAL OPERAND 002224 A5354 005354 aA23
AJ 10 A AJ1O ADCCN 343155 ACTUAL OPERAND 002229 A315N 043155

AJ 11 A A11 ACCON 55 ADJUSTED LOCAT ION COUNTER OPERAND 002234 A2179 002179

AJ 12 1 AJ12 INVALID USAGES c

AJ 13 A AJ13 ADCCN LASNTAGA#35 VALUE OF OPERAND EXCEEDS 160K. 002239 A2515 019515 AKO9
AJ 14 A AJL4 ADCCN & 243424 THE & INTERFERES WITH THE ADDRESS 002244 A342M 043424

AJ 15 1 AJ1S TITLE ACON4, ACON5, AND ACONé

AJ 16 A AJL6 ACON4 DUMMYTAG TAG OPERAND 002248 2197 002197 AJo3
AJ 17 A AULT ACONS DUMMYTAG TAG OPERAND 002253 002197 AJO3
AJ 18 A AJ18 ACON6 DUMMYTAG TAG OPERAND 002259 002197 AJO3
AJ 19 A AJL9 ACON4 12 CUMMYTAG ACON4 WITH ASU ZONING 002263 2A97 12 002197 AJO3
AJ 20 A AJ20 ACON5 & DUMMYTAG ACON5 SIGNED PLUS 002268 002197 038 AJO3
AJ 21 A AJ21 ACON6 - DUMMYTAG ACON6 SIGNED MINUS 002274 002197 AJO3
AJ 22 A AJ22 ACONS DUMMYTAGES WITH CHARACTER ADJUSTMENT 002278 2205 002205 AJO3
AJ 23 A AJ23 ACONS L+DUMMYTAG WITH OPERAND MODIFIER 002283 002190 AJO3
AJ 24 A AJ24 ACON6 LsDUMMYTAGE2 WITH MODIFIER AND ADJUSTMENT 002289 002192 AJO3
AJ 25 A AJ2S ACON4 S+DUMMYTAGEL WITH SIZE MODIFIER AND ADJUSTMENT 002293 0009 000009 AJO3
AJ 26 A AJ26 ACONS -~ #€3957# SIGNED ACON OF LITERAL. NOTE THAT 002298 005186 oA0S
AJ 27 A AJ27 THE SIGN OF THE ACON IS OPPOSIT TO THE LIT SIGN.

AJ 28 A AJ28

AJ 29 A AJ29 ACON6 *£10 ACON OF ADJUSTED LOCATION CTR 002304 002314

AJ 30 A AJ30 ACONS @12345 UNSIGNED WITH ACTUAL OPERAND 002309 012345

AJ 31 I AJ31 INVALID USAGES c

AJ 32 A AJ32 ACON4 S9DUMMYTAG-10 ADJUSTMENT IS LARGER THAN S, 002313 0002 000002 AJ03
AJ 33 A AJ33 ACONG & 840100 & SIGN INTERFERES WITH ADDRESS 002317 010~ 040100

AJ 34 A AJ34 ACONS 15 DUMMYTAG AN ACONS CANNOT HAVE ASU ZONING 002322 002197 AJO3
AJ 35 A AJ3S ACCNS 384324 OPERAND TOO LARGE FOR ACONS 002327 004324

AJ 36 I AJ36 TITLE ADDRESS CONSTANT LITERAL

AJ 37 A AJ37 LCo O4 RINAMEA NON-ARITH, NON-4/9 OPERATION IN 80 002334 85L06 C4 005406 039 EAO1L
AJ 38 A AJ38 MODE GIVES 6 DIGITS UNSIGNED.

AJ 39 A AJ39 ADD SaNAMEAE10 80 MODE ARITH GIVES 6 DIG SIGNED 002339 65413 005413 $A01
AJ 40 I AJ40 ON THE STATEMENT ABOVE NOTE THE WAY THE ADJUSTMENT 1S APPLIED. THE c

AJ 41 1 AJ41 VALUE OF S,NAMEA IS 30. THE ADJUSTMENT IS ADOED TO THIS VALUE C

AJ 42 A AJ42 LEV8O REPEAT SERIES IN 705111 MODE.

AJ 43 A AJ43 LCD 04 RINAMEA GIVES 5 DIGITS UNSIGNED 002344 85U24 04 005424 -AO1
AJ 44 A AJ44 ADD SANAMEAELO GIVES 5 DIGITS SIGNED 002349 65419 005419 *AC1
AJ 45 A AJ4S

AJ 46 A AJ4b EIA 4/9 OPERATIONS IN ANY MODE GIVE 4 002354 ,0--0 10 000000

AS 47 A AJ4T ULA 06 RIAEXIT DIGIT UNSIGNED MACHINE ADDRESSES. 002359 =*SUL9 C6 005439 /7A03
AJ 48 A AJ4B LDA 05 Ral2,NAMEAE4 ASU ZONING CAN BE SPECIFIED 002364 #5LU9 05 005449 /A0S
AJ 49 A AJ49 LA 05 Ral5,2£25 AN ADCON LIT OF A LOCATION COUNTER 002369 #5UT4 0S5 005434 /7A02
AJ 50 A AJSO LoA 06 RAKEL234# ADDRESS OR OF A LITERAL IS VALID. 002374 #5UK9 06 005429 /7A01
AJ S1 1 AJS1 INVALID USAGES c

AJ 52 A AJS52 ™T HaNAMEA THE TMT 1S FROM THE ADCON LITERAL 002379 95445 005445 /A04
AJ 53 A AJS53 RATHER THAN FROM H,NAMEA. ALSO A 4/9 INSTR WITH

AJ 54 A AJS4 Hy OR Ty ORIENTATION GIVES INCONSISTENT ADDRESSING

AJ 55 A AJSS WHEN USED WITH AN ADCON LIT OPERAND.

,/_/__’W

74

AK
AK
AK
AK
AK
AK
AK

AK
AK

AK
AK

AK
AK

AK
AK

AK
AK

AK
AK

AK
AK

AK
AK

AK
AK

AK

AK
AK

AK
AK

AK
AK

AK
AK

AK
AK

AK

AK
AK

AK

AK
AK

AK

AK
AK
AK
AK
AK

AK
AK
AK

INDEX

01
02
03

14
15

16
17

18
19

20
21

22
23

24
25

26

27
28

29
30

31
32

33
34

35
36

37

38
39

40

41
42

43

44
45
46
47
48

49
50
51

S

> > » > b) »» I ..

> > > = > > > >

> >

—

> > > > > > > > > >

PGLIN

AKO1
AKO2
AKO3
AKO4
AKOS
AKO6
AKOT

AKO8
AKQ9

AK1l0
AK11

AK12
AK13

AK14
AK1S

AK16
AKL7

AK18
AK19

AK20
AK21

AK22
AK23

AK24
AK25

AK26

AK27
AK28

AK29
AK30

AK31
AK32

AK33
AK34

AK35
AK36

AK37

AK38
AK39

AK40

AK41
AK42

AK43

AK44
AK4S
AK46
AK&4T
AK48

AK49
AK50
AKS51

TAG ce NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 013 F
TITLE INSTRUCTICNS TO THE PROCESSOR
ASSIGNMENT STATEMENTS
LASN
THE FOLLOWING EXAMPLES SHOW THE INDEPENDENCE OF THE LASN COUNTERS OF C
EACH OTHER AND THEIR RELATION TO THEIR HIGH ASSIGNMENT COUNTERS AND [4
TO THE LOCATION COUNTER. c
RCD 1 A TO SHOW THE CURRENT VALUE OF THE ASSIGNMENT CTR.
LASN 35123 SET BLANK CTR TO 5123
LASNTAGA NCP . ASSIGN. NEXT INSTR LOCATION IS 5129
LASN 1 LASNTAGAE20 SET CTR 1 TO 5145
NCP . ASSIGN UNDER CTR 1 CONTROL
LASN . SET BLANK CTR TO LOCATION CTR
NCP . ASSIGN UNDER BLANK CTR CONTROL
LASN 1 LASNTAGAEL0 SET CTR 1 TO LOWER VALUE
NCP - ASSIGN UNDER CTR 1 CONTROL
LASN 1 SET CTR 1 TO PREVIOUS HI ASSIGNMENT
NCP L] ASSIGN UNDER CTR 1 CONTROL
LASN 1 LASNTAGA RESET CTR 1 HI ASSIGNMENT & CTR 1 R
NCP L] ASSIGN UNDER CTR 1 CONTROL
LASN 25100 SET BLANK CTR TO LOWER VALUE
NCP . ASSIGN UNDER BLANK CTR CONTROL
LASN 1 SET CTR 1 TO NEw HI ASSIGNMENT
NCP * ASSIGN UNDER CTR 1 CONTROL
LASN SET BLNK CTR TO BLNK CTR HI ASSIGNMENT
NGP L ASSIGN UNDER BLANK CTR CONTROL
TITLE SASN
SASN LASNTAGAE100 SET TO HIGHER THAN LASN BLANK CTR
NCP - ASSIGN
LASN RETURN TO BLANK CTR HI ASSIGNMENT
NCP * ASSIGN UNDER BLANK CTR CONTROL
SASN 35000 SET BELOW LASN BLANK CTR
NCP . ASSIGN
LASN RETURN TO BLANK CTR HI ASSIGNMENT
NCP L] ASSIGN UNDER BLANK CTR CONTROL
SASN 38000
NCP »
INVALID USAGES [
LASN LASNTAGB A LASN TO A TAG NOY YET DEFINED IS
LASNTAGSB NeP » EQUIVALENT TO LASN BLANK.
SASN SASN BLANK 1S IGNORED.
TITLE RASN
QUTSIDE ADCON NAMEA PROVIDE TAG CUTSIDE RASN RANGE
LASN 35000 ASSEMBLE ROUTINE AT 5000
RASN al15000 AS IF 1T WAS AT 15000
RASNA LLcA 06 CUTSIDE NO EFFECT OUTSIDE RASN RANGE
uLa 06 RASNSB NOTE ADDRESS IS SHIFYTED 10K
RASNB 100 0s BLANK OPERAND NOT AFFECTED
UNL 05 =825 LOCATION CTR ADS IS AFFECTED
LASN 33000 END RASN RANGE
LCD RASNA REF TO TAG IN RASN RANGE IS

AFFECTED.

Lec

002380

005123
005129

005145
005149

005150
005154

005135
005139

005150
005154

005125
005129

005100
005104

005130
005134

005155
005159

005225
005229

005160
0051 64

005000
005004

005165
005169

008000
008004

005170
005174

005175

005179
005000

015000
005004
005009
005014
005019

003000
003004

INSTR

A5129

AS5149

A5154

A5139

A5154

A5129

AS5104

A5134

A5159

A5229

A5164

A5C04

A5169

ABCO4

A5174

A1099

#5/P9
*Vitd4
80##0
AL

8vV004

SU

06
06
cs
cs

ADDR

005129

005149

005154

005139

0C5154

005129

005104

005134

005159

005229

005164

005004

005169

008004

005174

001099

005179
015014
000000
015044

015004

SER

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

REF

AKO9

AKO9

AKO9

AKO9%

AK39

AC51

AK42
AK4T

AK4S

———"_‘—-—-_________—————"'—‘——_—‘*———______————"_ﬂ_—__‘""——————————"—'”—_—-"‘~—________———————————_________———-———-————-___———-———-__J

75

AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL

AL
AL

At
AL
AL
AL
AL

AL

76

INDEX

01
02
03
04

05

> B

)

P> > > > D>

1

PP DID DPDPDOPIIPDIDDDI M

P DD e

PGLIN
ALOl
ALO2
ALO3
ALO4
ALOS
ALOS
ALO7

ALO8
ALO9
ALl0
AL1l

AL12
AL13

AL1l4

ALLS
AL1lé6
AL17?
AL18
AL19
AL20
AL21
AL22

AL23
AL24
AL2S
AL26
AL27
AL28
AL29
AL30
AL31

AL32
AL33
AL34
AL3S
AL36
AL37
AL38
AL39
AL4O
AL4l
AL42

AL43
AL44
AL4S
AL4s
AL47
AL48
AL49
ALS0
ALS1
AL52
ALS53
ALS4
ALS5S

ALS56
ALST
ALS8
AL59
AL6O
AL61
AL62

TAG

TRANSA

TRANSC

TRANSB

TRANSD

TRANSE

cep
TITLE
SUBCR
SuBCR
SUBOR
LITOR
LITOR
TITLE
TCD
SEL
RD
TR

CON

LASN
TC0
SET
SET
SET
SET
SET
SET
TR
LASN
TITLE
INCL
INCL
INCL
INCL

INCL

INCL

TITLE
TRANS

SEL
LGo
SET

TRANS
NOP

TR
HLT
TRANS
NOP
TRANS
TRANS
RCVS
SET

LeD
Lgo

NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 014 F

OUTSIDE
228704
#£1000
435000
QUTSIDE

SUBOR AND LITOR

THESE STATEMENTS ILLUSTRATE WAYS OF

STATING A STARTING LOCATION FOR
SUBROUTINES AND LITERALS. NOTE

THAT THE LAST ASSIGNMENT IS THE ONE

WHICH 1S EFFECTIVE.

GENERATE 00 CARD - TCD

3100
21000
a0004

TCO 7O BE GENERATED IN MIDDLE OF
THE PROGRAM. IT READS A CONTROL
CARD AND THEN CONTINUES LOADING.

17 READ CONTROL CARD COMMENT TC GO ON TCD CARD

OB WN
OOV D WN -~

ONTINUE

TERMINATE TCD
TERMINAL TCD TO REPLACE STANDARD

TERMINATE TCD

SUBROUTINE CALLS-INCL

9HEAD
BHEAD
9HEAD
BHEAD

SHEAD

NOTIN

EACH OF THESE STATEMENTS CALLS
FOR A SUBROUTINE FROM THE LIBRARY
NOTE THAT £ACH SUBROUTINE ONLY
APPEARS ONCE IN THE PROGRAM, NO

MATTER HOW OFTEN IT IS CALLED.

INVALID USAGES

SUBROGUTINE NOT IN LIBRARY

DEFINE A TAG — TRANS

TRANS A
TRANSA
TRANSA

*£10
TRANSC

TRANSB
»

[
-

NAMEA
L,NAMEAES
05 TRANSD
S+ TRANSD

TRANSD
1 L. TRANSDE4

THE TRANS DEFINES A TAG, WITH AN
ACTUAL, IN THIS CASE.

REFERENCES TO THE TAG WILL GET
THIS DEFINITION AS THE TAG VALUE.

A TRANS TO A LOCATION COUNTER
ADDRESS IS VALID.

THIS SERIES ILLUSTRATES A USEFUL
TECHNIQUE FOR WRITING MACRO
COMPONENTS, OF USING A TAGGED
TRANS = TO REFERENCE THE NEXT

IN LINE INSTRUCTION.

TRANS TO TAG OPERAND IS VALID.

MODIFICATION AND ADJUSTMENT

THESE FOUR INSTRUCTIONS SHOW THAT

BOTH LENGTH AND LOCATION ARE

OBTAINED WITH A TRANS TO A TAG.

UNMODIFIED, UNADJUSTED TAG.
INVALID USAGES

TAGS DEFINED BY TRANS #, TRANS @, OR A TRANS TO A MODIFIED OR
ADJUSTED TAG, SHOW A FIELD LENGVH OF ZERO. MODIFICATION OF SUCH TAGS

THT
TCT
RD

LDA

TRANS A
TRANS A
TRANSC
1 Ry TRANSE

IS MEANINGLESS. USE OF SUCH TAGS
WITH Hy Ty OR L, ORIENTED

INSTRUCTIONS MAY GIVE INCONSISTENT
ADDRESSING.

(¥ zNel]

LoC

005175
028704
004005
035000
005175

000095
000099
000104
000109

000114
000131

005175

000098
000099
000104
000109
000114
000119
000124
000129

005175

000500

005179
005184
005189

005204
005194

005199

005204
005209
005209

001099
001076

005214
005219
005224
005229

005234
005239
005244
005249

INSTR

20100
Y1€00
10004

BOC#1
BOC-2
80CE3
BO#04
BO##5
BO#-6
11674

20500
80500
80500

AS5204

15209

J5204

A5209

U1#X0
80030
81099
81CX4

90500
10NOO
Y5204

Su

[

01

o8

ADDR SER

000100 056
001000
000004

000001
000002
000003
000004
000005
000006
001674

000500 057
000500
000500

005204

005209

005204

005209

001070
000030
001099
001074

000500
000500
005204 058

#10x6 O1 001076

REF

AK42

AK42

AG33

AL33
AL33
AL33
AL39

AL44

AC51
ACS1
ACS51

ACS51
ACS51

'ACS1

AL33
AL33
AL39
AC51

-

AM

AM
AM
AM
AM
AM
AM
AM
AM
AM
AM

AM

INDEX

0l

02
03
04
05
06
a7
08
09
10
11

12

-

PP PBDPPD>E>

>

PGLIN
AL64

AL65
AL66
AL67
AL68
AL69
AL70
ALT1
ALT2
AL73
AL T4

ALTS

TAG cp NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 015
TITLE MULTIPLE LITERALS ~ LITST, LITND
LITST
RAC HELH

LCD 05 #ABCDE#
LCA 06 RA#EL2345#

LCD LO#WJRLLLA

LDA 15 SaCUTSIDE

RAD #E244

RAD Ha#£2468013579#
iLCo TA#ABCDEFGHIJ#
LDA R201,#ABCH
LITND

Loc

005254
005259
005264
005269
005274
005279
nN5284
005289
005294

INSTR

H5296
85174
#5704
85354
#5CF9
H5298
H5349
85359
#5374

Su

05
c6

15

ADDR

005296
005334
005364
0C5354
005369
005298
005349
005359
005374

SER REF

ANO3
AN1O
AN18
AN15
AN20
ANC4
ANl4
AN16
AN22

-]

INDEX
ANO1

ANO2
ANG3
ANO4
ANOS
ANO6
ANO7
ANG8

ANO9
AN1O
AN11
AN12

AN13
AN14

AN15
AN16

AN17
AN18
AN19
AN20
AN21
AN22

e ey

S PGLIN

»

* % % k% uE

L d * % %%

-

L B 3 O)

TAG cp NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 0Olé6

MULTIPLE LITERAL TABLE NUMBER 0001
SIGNED LITERAL oLy A
SIGNED LITERAL 02 20
SIGNED LITERAL 0s 1234E
SIGNED LITERAL 10 2468013571
UNSIGNED LITERAL 10 ABCDEFGHIJ
UNSIGNED LITERAL 05 ABCDE

UNSIGNEC LITYERAL 06 WJR11l
UNSIGNED LITERAL 03 ABC

01

2468013 HI-SP 05 05310

WJR111 LEFT 05 05335

ABCDEFG HISPY 05 05329
01

1234E RIGHT 04 5304
01

QUTSIDE SIZE 04 0005
01

ABC RIGHT 04 53u3

F

Loc

005295
005296
005298
005299
005304
005309
005319

005329
005334
005340
005343

005344
005343

005354
005359

005360
005364
005365
005369
005370
005374

INSTR Su

ADCR

SER REF

059

ANOB
AN11
ANO9
ANOS
060 AK42

AN12

AC

AD
AQ
AC
AO

AO

AD
AQ
AQ
AD

AQ

AC
AD
AO
AO

INDEX

o1

02
03
04
0s

06

07
08
09
10

11

12
13
14
15

PGLIN
AMOL

AM0O2
AMO3
AMO4
AMOS

AMC6

AMO7
AMOB
AMO9
AM10

AM11

AM12
AM13
AM14
AM15

TAG a4 NU AT OPERAND B80SMPL-001 08-28-63 COMMENTS PG 017 F L0OC

TITLE ASSEMBLY DOCUMENTATION

THE COMMENTARY ILLUSTRATES THE USE OF TITLE AND COMMENT STATEMENTS
TO ENHANCE PROGRAM DOCUMENTATION. NOTE THAT TITLE STATEMENTS WHICH
EXTEND BEYOND THE LIMITS OF COL 23 TO COL 73 WILL BE DIVIDED INTO
FIELDS AS IN THE EXAMPLE BELOW WHICH WAS ONE WORD, ENTITLED.

EN TITLE D

THE COMMENT STATEMENT, A NEW FEATURE OF THE 7080 PROCESSOR, IS
DESIGNATED BY A CODE OF C IN THE FLAG FIELD, COL 74. IT MAY EXTEND
FROM COL 6 YO COL 73 AND IS NOT OVERPRINTED. AN EXTRA SPACE IS GIVEN
BEFORE A COMMENT STATEMENT UNLESS IT FCLLOWS ANOTHER COMMENT ENTRY.

TITLE ~ OVERFLOW CONTROL

PAGE-TO-PAGE OVERFLOW IS NORMALLY UNDER THE CONTROL OF A LINE COUNT
WHICH INCLUDES BLANK LINES. IT 1S COMPARED TO A MAXIMUM LINE COUNT
SPECIFIED IN THE COMMUNICATION WORD AND WHEN THIS MAXIMUM IS REACHED
AN OVERFLOW CCCURS.

[gRsKaX3] [sXsXaNe)

o000 m

INSTR SU

ADDR

SER REF

_ e

™

S PGLIN TAG cep NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 018 F LOC INSTR SU ADDR SER REF

1 ANOL TITLE EJECT ENTRY

I ANO2 THE STATEMENT IMMEDIATELY PRECECING THE TITLE EJECT ENTRY HAD THE c

I ANO3 WORD EJECT IN THE OPERATION FIELD. YHIS PRODUCED AN IMMEDIATE PAGE [4

I ANO4 BREAK REGARDLESS OF THE LINE COUNT. c
INDEX S PGLIN TAG cp NU AT OPERAND BOSMPL-001 08-28-63 COMMENTS PG 019 F LOC INSTR SU ADDR SER REF
AQOl K THE FOLLCWING ARE CLASS A SUBROUTINES
AQO2 R AAQ1 9HEAD TITLE THE CLASS A SUBROUTINE WHICH FOLLOWS IS CALLED BY
AQO3 R AAO2 THE PROCESSOR. IT CONSISTS OF MACRO INSTRUCTIONS
AQO4 R AAO3 WHICH ARE ONLY GENERATED IF THEY ARE NEEDED.
AQOS5S K 001 XXPRTSTY PRTST XXPRTSTO1oXXPRTSTO20XXPRTSTO3uXXPRYSTO4RuXXPRTSTOSD
AQOé6 K 002 XXPRTSTO6uXXPRTSTFLSaXXPRTS TWRKRXXPRTSTHLDOD
AQO7 K 003 XXPRTSTENDOIBM9999999n
AQO8 K 005 XXACC XACoXAC1oXAC20XAC3nXACLBXACBOXACARIBM9999999n
AQ09 J CCN 13 004005 061
AQl0 J XAC 8 £00000000 D 004013
AQLll J XAC1 8 £00000000 D 004021
AQ12 U XACA CCN 1 00 004022
AQl3 J CCN 8 99 004030
AQl4 K 006 XXACOD XACCBXACC1nIBM9999999n
AQ15 K 007 XXBSRCH BSRCH XXBSRCHORaXXBSRCHO2nXXBSRCHO30XXB SRCHO4BXXBSRCHOS5n
AQl6 K 008 XXBSRCHO6LXXBSRCHOTOXXBSRCHOBuXXBSRCHO9OXXBSRCH1ON
AQ17 K 009 XXBSRCHEXTDIBM9999999a
AQl8 K 010 XXSSRCH SSRCH XXSSRCHO 1uXXSSRCHO2eXXSSRCHO3nXXSSRCHO4BXXSSRCHOSH
AQl9 K 011 XXSSRCHO6BXXSSRCHEXTRIBM9999999n
AQ20 K 012 XXFIX FIX XXFIX01a18M9999999u
AQ21 K 013 XXFLOAT FLOAT XXFLOATO1n1IBM9999999n
AQ22 K 014 IOTYPENTRY TYPIO 10TYPEXITRIBM99999990
AQ23 K 015 XXADDENTRY AITEM XXADDEXITOXXDELETO2uXXDELETO40XXDELETO3nXXDELETO7
AQ24 K 016 XXDELETOSuXXDELET06n18M9999999n
AQ25 K 017 XXDELENTRY DITEM XXDELEXITOXXDELETO20XXDELETO3uXXDELETO4aXXDELETOS5n
AQ26 K 018 XXDELETO60XXCELETO7aIBM9999999n
AQ27 K 019 ACONMP XXACOMPTWOaXXACOMPONEUXXACOMPWRKE1BM99999991

]

aop NU AT OPERAND 80SMPL-001 08-28-63 COMMENTS PG 020 F LOC INSTR SU ADDR SER REF
13 THE FOLLCWING ENTRIES ARE CLASS B8 SUBROUTINES

R AAOL BHEAD TITLE THIS TITLE BLOCK APPEARS IN LIEU OF A CLASS B

R AAO2 SUBROUTINE.

78

AA53
AAG63
AA63
AA63
AA68
ABO8
ABO8
AB13
AB13
AB13
AB42
ABS4
AC33
AC42
ADO3
AD13
ADl4
AD35
AD4&4
AE1ll
AES2
AES52
AEST
AESS
AE59
AF10
AF11
AF1l1
AF12
AF13
AF18
AF22
AF25
AF25
AF26
AF27
AF28
AF31
AF37
AF39
AF 42
AF43
AG21
AG23
AG35
AG35
AG38
AG72
AGT78
AH14
AH17
AH30
AH32
AH36
AH37
AH43
AH43
AH44
AH45
AH46
AHS51
Al46
AJl3
AJdl4
AS32
AJ33
AJ34
AJ34
AJ35
AJS52
AK38
AK40
AL31
AL59
AL60
AL61
AL62

INDEX S PGLIN

AAS53
AA63
AA63
AA63
AA68
ABO8
ABO8
AB13
AB13
AB13
AB42
ABS4
AC33
AC42
ADO3
AD13

AF10
AF11l
AF1l
AFl2
AF13
AF18
AF22
AF25
AF25
AF26
AF27
AF28
AF31
AF37
AF39
AF42
AF43
AG21
AG23
AG33
AG33
AG36
AG70
AG76
AH12
AH15
AH26
AH28
AH32
AH33
AH39
AH39
AH40
AH41
AH42
AH4T

AJ13
AJl4
AJ32
AJ33
AJ34
AJ34
AJ35
AJS52
AK38
AK40
AL31
ALS59
AL60
ALé61l
AL62

TAG

NAMEE
NAMEH
NAMEIL

GAP
GAP

ce

1000
FIELD
FIELD
FIELD

RPT
RCD
CCN
CNC

SETCF
SETCN
SETCN
SETCN
MCVE
MCVE
SND
TR

TR
NCP
NCP
WR
ACD
TRE
TRE
ATC
LCD

LCC
ST

WR

TR
Lce
LCo
LCA
LCD
LG
SET
RAD
TCT
RAD
LCD
LFC
LFC
SBZ
Sez
S8z
s8Z
SBZ
sBZ
SBN
RAD
MCVE
ACCCN
ACCCN
ACON4
ACGON4
ACCNS
ACCNS
ACGONS
THT
LASN
SASN
INCL
TMT
TCT
RC
LDA

NU AT CPERAND B80SMPL-001

00

—
NOIOPIPWSHIPIWWNG ¢

04

o

OO W WSS

15
15

08-28-63 MESSAGES PG GO1 F LOC INSTR SU ADDR

AREA OVER MCDE MEM

JUST NUM

OP NOT FD

IMPR NUM IGNRD

ASSUME CON

STRIPPED CATA

NUM NCT EQ TO DESIG

STRIPPED DATA

STRIPPED CATA"

NUM NCT EC TO DESIG

STRIPPED CON

STRIPPED CON

IMPR RPT

CHK LEFT PROTECTION

CHK LEFT PROTECTION
RH NO TAG RH

INVAL NAME BEG AD1l

INVAL NAME BEG AD26

INVAL NAME BEG AD31
CPERND O1 SWITCH TYPE UNKNOWN ASSUME A-J TYPE
CPERND 01 SWITCH TYPE UNKNOWN ASSUME A-J TYPE
CPERND 02 SWITCH TYPE UNKNOWN ASSUME A-J TYPE
CPERND Ol SETOF ALTSW NO GENERATION
IMPRCPER DATA DEFINITION NO GEN.

IMPROPERLY WRITTEN
WORST CASES

NO TAG WORST CASE

RD/HWR NC TAG RD

ACJ O

JUST TAG
4 DUPL TAG AF12
#NOT AVAILABLE # 0/5 CHECK
Ela# NO TAG El4#
#DUPE# 4/9 CHECK
#OUPEH# LIT OPND IMPROPER
#0010# SGN CHK L

NO RT LIT

NC RT LIT

IMPR SGND LIV
995 NO TAG 995
282500 ADDR OVR 079999
30001234 4/9 CHECK

IMPR CPND
#£80005 ADDR OVR 079999
*£3 4/9 CHECK

IMPR ADJ TRUNC

ADJ O

INVAL ACJ OP
S»NAMEA SGN CHK
HyeNAMEA 9 CHECK
Ty INDEX3 4/9 CHECK
1,3110234 ADDR OVR 079999
LASNTAGAE2 4/9 CHECK
LASNTAGA 176 CHECK

JUST NUM

PCSS IMPR NUM

JUST NUM

IMPR BIT

IMPR BIT

IMPR BIT

IMPR BIT
RCDA SGN CHK
MOVING ALPHA TO NUMERIC
LASNTAGA#35 ADDR OBVR 079999
043424 SIGNED ADDR QVER 40K
S +DUMMYTAG-10 LOWER WRAP ARND
340100 SIGNED ADDR OVER 40K
DUMMYTAG ZONE ON ACONS-6

IMPR NUM IGNRD
384324 ADDR OVR 079999
HaNAMEA 479 CHECK

ASSIGN OPND NOT DEFINED

INVL CPND

NOT IN CLASS B NAME TABLE
TRANS A 4/9 CHECK
TRANS A 9 CHECK
TRANSC 0/5 CHECK
Ry TRANSE 4/9 CHECK

REF

22

oA29

0A24
oA24
nA2S
aAl2
DAl3
aA06

aA22
oA22
0AQ4
ACSY
ACS1
AH13

AKO9
AK09

AA19
AKO9
AS03

AJO3
AJO3

/7A04
AK39

AL33
AL33
AL39
ACS1

—— e —]

79

INDEX S PGLIN TAG cp NU AT OPERAND BOSMPL-001 08-28-63 NO REQS PG 002 F LOC INSTR SU ADDR REF

AB38 AB38 WORSTCASES CCN 2 ABCDE TAG NOT REQUIRED
AC45 AC45 CONDL 2 TAG NOT REQUIRED
AC46 AC46 COND2 A TAG NOT REQUIRED
AC48 AC48 CONDP P TAG NOT REQUIRED
AC49 AC49 CONDQ Q TAG NOT REQUIRED
AD33 AD29 NOWEND 3 XXX TAG NOT REQUIRED 9
AD48 AD41 AGE CHRCD 2 40 TAG NOT REQUIRED
AD49 AD42 TWENTY 20 TAG NOT REQUIRED
AD50° AD43 FORTY 40 TAG NOT REQUIRED
ADS4 AD47 MALE M TAG NOT REQUIRED
AD62 AD55 BIWEEKLY 4 TAG NOT REQUIRED
AD65 AD58 FLAT FEE B TAG NOT REQUIRED
AD71 AD64 BAD2 2 TAG NOT REQUIRED
AF14 AF14 RD/WR SGN Ly GAP TAG NOT REQUIRED AF13
AF50 AF50 LOCATIONA BSP TAG NOT REQUIRED

INDEX S PGLIN TAG ap NU AT COPERAND 80SMPL-001 08-28-63 TITLES PG 003 F LOC INSTR SU ADDR REF
AA 01 I AAO1L TITLE 7080 PROCESSOR — SAMPLE ASSEMBLY

AA 02 T AAQ2 INTRODUCTION

AA 13 1 AAl3 TITLE NORMAL ORIGIN

AA 17 1 AALY TITLE AREA DEFINITIONS

AA 18 1 AA1l8 DEFINITION OF A RECORD FIELD -~ RCD

AB 17 1 AB17 TITLE DEFINITION CF A CONSTANT FIELD - CON
AB 58 I ABS8 TITLE DEFINITION OF A FLOATING POINT .CONSTANT - FPN
AC 01 I ACOl TITLE DEFINITION OF A REPORT FORMAT - RPT
AC 04 I ACO4

AC 34 1 AC34 TITLE COLLECTIVE AREA DEFINITICON — NAME

AC 35 1 AC35 NORMAL USE

AD 01 1 ADO1 TITLE SPECIAL USES OF NAME STATEMENTS
AD 45 1 AD38 TITLE SWITCH DEFINITIONS

AD 46 1 AD39 DATA SWITCHES

AD 47 1 AD4O CHARACTER CODE -~ CHRCD

AD 58 I ADS1 TITLE 81T CODE - BITCD

AE 01 I AEOl TITLE PROGRAM SWITCHES

AE 14 1 AEl2 TITLE CONSOLE SWITCHES

AE 21 1 AE19 TITLE BRANCH CONTROL MACRO-INSTRUCTIONS

AF 01 I AFO1 TITLE CNE~-FOR-CNE- INSTRUCTIONS

AF 02 1 AFO02 BASIC OPERANDS

AF 03 1 AFOQ3 TAG OPERANDS

AF 15 I AF15 TITLE LITERAL OPERANDS

AF 33 I AF33 TITLE ACTUAL OPERANDS

AF 45 1 AF45 TITLE LOCATION COUNTER OPERANDS

AF 49 I AF49 TITLE BLANK OPERANDS

AG 01 I AGOl TITLE ADDITIONS TO BASIC OPERANDS

AG 02 I AGO2 CHARACTER ADJUSTMENT

AG 40 1 AG38 TITLE OPERAND MODIFIERS

AH 01 I AHOl TITLE INDIRECT ADDRESSING

AH 27 1 AH23 TITLE SPECIAL MNEMONICS

AR 28 1 AH24 ADDRESS CHECK ON LFC-UFC
AH 33 I AH29 TITLE NUM ON SET BIT INSTRUCTIONS
AH 47 1 AHA43 TITLE FLAG CODES

AI 01 I AIO1 TITLE MACRO INSTRUCTIONS

Al 45 1 AIl3 TITLE PROGRAM CARD SUPPRESSION WITH S FLAGS

Al 53 I AIl6 TITLE MACROS WITH F FLAGS

AJ 01 1 Ag0l TITLE ADDRESS CONSTANTS

AJ 02 I AJ02 ADCON

AJ 15 1 AJ1S TITLE ACON4, ACONS5, AND ACONG

Ad 36 1 AJ36 TITLE ADDRESS CONSTANT LITERAL

AK 01 1 AKO1 TITLE INSTRUCTIONS TO THE PROCESSCR

AK 02 I AKO2 ASS IGNMENT STATEMENTS

AK 03 I AKO3 LASN

AK 26 I AK26 TITLE - SASN

AK 41 1 AK41 TITLE RASN

AL 01 I ALOl TITLE SUBOR AND LITOR

AL 07 U ALO7 TITLE GENERATE 00 CARD - TCD

AL 24 1 AL24 TITLE SUBROUTINE CALLS-INCL

AL 32 1 AL32 TITLE DEFINE A TAG - TRANS

AM 01 I ALG4 TITLE MULTIPLE LITERALS - LITST, LITND

ANOL = MULTIPLE LITERAL TABLE NUMBER 0001

AD 01 I aMO1 TITLE ASSEMBLY DOCUMENTATION

AD 06 I AMO6 EN TITLE D

AD 11 I AM11 TITLE OVERFLOW CONTROL

AP 01 1 ANO1L TITLE EJECT ENTRY

AQ02 R AAOL 9HEAD TITLE THE CLASS A SUBROUTINE WHICH FOLLOWS IS CALLED BY
AQO3 R AA02 THE PROCESSOR. IT CONSISTS OF MACRO INSTRUCTIONS
AQO4 R AAO3 WHICH ARE ONLY GENERATED IF THEY ARE NEEDED.
ARO2 R AAQ1 BHEAD TITLE THIS TITLE BLOCK APPEARS IN LIEU OF A CLASS B8
ARO3 R AAQ2 SUBRCUTINE.

80

INDEX S PGLIN
AA 03 1 AAO3
AA 04 1 AAQ4
AA 05 I AACS
AA 06 1 AAO6
AA 07 1 AAO7
AA 08 1 AAOS8
AA 09 1 AAC9
AA 10 1 AALO
AA 11 1 AAll
AA 12 T AA12
AA 14 1 AAl4
AA 15 1 AALS
AA 51 1 AAS1
AB 01 1 ABO1
AB 02 1 ABO2
AB 37 1 AB37
AB 60 1 AB60
AB 61 1 AB61
AB 62 1 AB62
AB 63 T AB63
AB 64 1 AB64
AB 65 1 AB65
AB 66 I AB66
AB 70 t AB70
AB 71 1 AB71
AB 72 1 AB72
AB 73 1 AB73
AB 74 1 AB74
AB 75 I AB7S
AB 76 1 AB76
AB 77 1 ABT7
AB 79 I AB79
AB 80 I ABSO
AC 02 1 ACO2
AC 03 1 ACC3
AC 05 1 ACOS5
AC 06 1 ACO6
AC 07 1 ACO7
AC 08 1 ACO8
AC 09 1 ACO9
AC 10 1 AC10
AC 14 1 AC14
AC 15 1 AC15
AC 16 1 ACl6
AC 17 1 AC17
AC 18 I AC18
AC 19 1 AC19
AC 20 1 AC20
AC 22 1 AC22
AC 23 1 AC23
AC 24 1 AC24
AC 25 I AC25
AC 28 1 AC28
AC 29 1 AC29
AC 30 I AC30
AC 32 I AC32
AC 56 1 AC55
AC 57 I AC56
AC 58 1 ACS7
AD 10 1 AD1O
AD 16 1 AD15
AD 17 I AD16
AD 18 I AD17
AD 67 1 AD6O
AE 04 1 AEO4
AE 48 1 AE25
AE 49 1 AE26
AE 50 1 Ag27
AE 51 I AE28
AE 56 I AE30
AE 58 I AE32
AF 05 1 AF0S
AF 06 1 AF06
AF 09 1 AFO09
AF 21 1 AF21
AF 36 1 AF36
AF 48 1 AF48
AF 56 1 AF56
AG 18 I AG18
AG 19 I AGl9
AG 20 1 AG20
AG 41 I AG39
AG 42 I AG40
AG 63 1 AG61
AG 65 1 AG63
AH 11 I AHO9
AH 20 1 AH18
AH 21 T AH19

TAG ap NU AT CPERAND 80SMPL-001 08-28-63 C FLAG PG 004 F

THIS ASSEMBLY ILLUSTRATES CORRECT AND INCORRECT USAGES OF THE 7080
PRCCESSCR. SHORT CODING EXAMPLES ARE USEC TO SHOW WHAT THE
PROCESSCR PRCCUCES, INCLUDING ERROR AND CAUTIONARY MESSAGES, FOR
TYPICAL VALIC AND INVALID STATEMENTS. COMMENY AND TITLE STATEMENTS
ANC THE COMMENTS FIELD OF ILLUSTRATIVE STATEMENTS, HAVE BEEN USED TO
DESCRIBE THE USAGES. THIS ASSEMBLY IS FOR ILLUSTRATIVE PURPOSES ONLY
AND DOES NOT REPRESENT AN EXECUTABLE PROGRAM. THE OBJECT MACHINE IS
ASSUMED TQ BE AN 80K 7080, ASUS 1-6 ARE ASSUMED SET TO LENGTHS OF
1-6 RESPECTIVELY, AND THE OTHER ASUS AND ACC ARE AT SOME RANDOM
LENGTH.
SINCE NO STARTING LOCATION IS SPECIFIEC, THE ORIGIN OF THE
PROGRAM IS ASSUMED TO BE AT LOCATICN 0500.

INVALID USAGES
THE FOLLOWING THREE INVALIC RCLC ENTRIES PRODUCE INCONSISTENT
DATA DEFINITICNS.

INVALID USAGES
NOTE THAT THE NUMERIC FIELD IS BLANK AND THAT THE MANTISSA IS ONLY
SIX DIGITS. A LENGTH OF TEN WILL BE ASSUMED AND TRAILING ZERQS ADDED
TO MAKE AN EIGHT DIGIT MANTISSA. THE FPN APPEARS [N MEMORY AS
0012345600 WITH THE UNITS DIGIT SIGNED PLUS. THE LISTING DOES NOT
SHOW THE ADDED ZEROS OR ASSUMED LENGTH.

INVALID USAGES
THE TwO ENTRIES IMMEDIATELY ABOVE WERE INTENDED AS COMMENTS
COUTINUATIONS. THIS IS INVALID ON A FPN AND TWO FPNS WERE GENERATED
FROM THE OPERAND FIELDS. THE LISTING ONLY SHOWS THE MEMORY ALLOCATED
BUT THE CARDS SHOW SE38103850 AND 3077519201.

THIS FPN WAS INTENDED TO REPRESENT 123.456. OMITTING THE LEADING
ZERO OF THE CHARACTERISTIC CAUSED IT TO REPRESENT THE NUMBER
234560000000000000000000000000.
THIS OPERAND WAS INTENDED TO REPRESENT 123.456. OMIYTING THE SECOND
PLUS SIGN CAUSED IT TO REPRESENT 234.56
THESE ILLUSTRATIONS ALL SHCW EIGHT NUMERIC POSITIONS WITH VARIOUS
PUNCTUATION AND SIGN INDICATIONS.
IN THIS SERIES NO COMMAS, DECIMAL POINTS, DOLLAR SIGNS, OR ASTERISKS
ARE SPECIFIEC. GNE POSITION IS RESERVED FOR A BLANK OR MINUS SIGN.
IN THE FIRST FCRMAT ALL EIGHT POSITIONS WILL PRINT, LEADING ZEROS
INCLUDED« IN THE SECOND FCRMAT LEACING ZERGCS IN ANY OF THE FIVE HIGH
ORDER PCSITICNS ARE NOT PRINTED. IN THE THIRD FORMAT, NO LEADING
ZERQS WILL PRINT,
IN THIS FORMAY VARIOUS EDIT PUNCTUATION IS ADDED. THE DOLLAR SIGN
WILL ALWAYS PRINT EIGHT POSITICNS TO THE LEFT OF THE DECIMAL POINT.
THE COMMA WILL PRINT IF THERE ARE ANY SIGNIFICANT FIGURES TO THE
LEFT OF IT. THE DECIMAL PCINT AND THE POSITIONS TC THE RIGHT OF IT
WILL ALWAYS PRINT, EVEN FOR A ZERO AMOUNT. A TWO POSITION SIGN
INDICATOR IS SPECIFIED AS CR, #», CR DR FOR MINUS, ZERO, OR PLUS
AMOUNTS, RESPECTIVELY.
THESE TWO EXAMPLES ITLLUSTRATE AMCUNT PROTECTION IN A RPT FORMAT. IN
THE FIRST, THE $ SIGN IS FIXED BUT » WILL PRINT IN ALL SPACES
BETWEEN 1T AND THE HI-GRDER DIGIT PRINTED. IN THE SECONDs THE $ SIGN
WILL PRINT IMMEDIATELY TO THE LEFT OF THE HI-ORDER DIGIT PRINTED.
THE OPERAND BZ IN THIS EXAMPLE INDICATES THAT THE ENTIRE FIELD,
INCLUDING THE CECIMAL POINT ANC POSITIONS TO THE RIGHT OF IT, IS 70O
BE BLANKED IF THE RESULT IS ZERO.

INVALID USAGES
THE FCLLGWING SERIES ILLUSTRATES THE USE OF CONCURRENT NAME
DEFINITIONS. NAMEC IS ENTIRELY WITHIN NAMEB. NAMEDC IS ONLY PARTLY
WITHIN NAMEB. BCTH USAGES ARE VALID.

INVALID USAGES
THIS NAME ENTRY WILL NOT COMPILE CCRRECTLY BECAUSE THE NUMERIC
FIELD OF THE INTERNAL NAME ENTRY SPECIFIES A STARTING LOCATION NOT
IMMEDIATELY FGLLGWING THE PCORTICN OF THE NAME ENTRY ALREADY DEFINED.

INVALID USAGES

INVALID USAGES

INVALID USAGES
THE FOLLOWING MACRO ATTEMPTS TO SET ON TWO UNDEFINED SWIYCHES WHICH
ARE THE TAGS OF CHRCD AND BITCD HEADERS. THEY ARE TREATED AS A-J
TYPE SWITCHES.
THE NEXT MACRO ATTEMPTS TO SET ON AN ALTSW.
THE FOLLOWING MACRC ATTEMPTS TC INITIALIZE A BITCD USING MOVE MACRG.
THE MEANING OF A TAG OPERAND DEPENCS ON THE INSTRUCTION AS WELL AS
THE DATA DEFINITION FOR THE TAG.

INVALID USAGES

INVALID USAGES

INVALID USAGES
FURTHUR EXAMPLES WILL BE SHOWN UNDER CHARACTER ADJUSTMENT.
A SPECIAL CASE OF A LASN WITH BLANK OPERAND WILL BE SHOWN LATER.
CHARACTER ADJUSTMENT TO ADDRESS CONSTANT LITERALS IS A SPECIAL
CASE AND WILL BE ILLUSTRATED LATER.

INVALID USAGES
THIS SERIES SHCWS THE USE OF MCDIFIERS TO CHANGE THE NORMAL ADDRESS
ORIENTATION CF AN INSTRUCTION. NAMEA IS 30 POSITIONS FROM 1070-1099.
OPERAND MODIFIERS MAY BE COMBINED WITH CHARACTER ADJUSTMENT.

INVALID USAGES

INVALID USAGES
IN 80 MODE THE TAG OF AN I, WILL BE PUT ON THE GENERATED EIA. ANY
ADDRESS MODIFICATION MUST TAKE THIS INTO ACCOUNT.

[s¥sNeisNsNsloleNalaloeNeXaNaNolslalalaaReNakaeNelaXeNaNaeRsNalaoNalsNeNalaNaNaeReNaleNalalaNeNelaNaisNaalakeRasNasiaNatsaisNatolalalsNe ol aNeRela ool NeeaRelaReRaNakaNaKe)

Loc

INSTR SU

ADDR

REF

-]

81

S

e e e I R R e e e

PGLIN

AH38
AH44
AH45
AH46
AH56
AHS5T
AH58
AH59
AlIO2
AIO3
Al04
AJl2
AJ31
AJ40
A4l
AJS51
AKO4
AKOS
AKO6
AK37
AL30
ALS6
ALS7
AL58
AMO2
AMO3
AMO4
AMOS
AMO7
AMO8
AMO9
AM10
AM12
AM13
AM14
AM15
ANO2
ANO3
ANO4

TAG cp NU AT OPERAND 80SMPL-001 08-28-63 C FLAG
INVALID USAGES
THE FLAG CODES C,» Ry AND Zo ARE SHOWN ELSEWHERE. CODES 1, Ay F,

Ty AND G ARE NOT SHOWN SINCE THEIR EFFECT IS NOT APPARENT HERE.

NOP TO TR. FLAG M PUTS THE NOP ON THE M FLAG PAGE
OF THE NOTEBOOK, FLAG H PUTS THE TR ON THE H FLAG
PAGE OF THE NCTEBCOK.

THE INSTRUCTIONS GENERATED BY A MACRO DEPEND ON THE DATA
CHARACTERISTICS OF THE FIELDS REFERENCED BY THE OPERANDS. THE FIRST
CASE, BELOW, ADDS TWO SIMILAR FIELDS AND PLACES THE RESULT IN ONE.
INVALID USAGES
INVALID USAGES
ON THE STATEMENT ABOVE NOTE THE WAY THE ADJUSTMENT 1S APPLIED.
VALUE OF S,NAMEA IS 30. VTHE ADJUSTMENT IS ADDED TO THIS VALUE
INVALID USAGES
THE FOLLOWING EXAMPLES SHOW THE INDEPENDENCE OF THE LASN COUNTERS OF
EACH OTHER AND THEIR RELATION TO THEIR HIGH ASSIGNMENT COUNTERS AND
TO THE LOCATION COUNTER.

THE

INVALID USAGES

INVALID USAGES

INVALID USAGES
TAGS DEFINED BY TRANS #, TRANS 3, CR A TRANS TO A MODIFIED CR
ADJUSTED TAG, SHOW A FIELD LENGTH OF ZERO. MODIFICATION OF SUCH TAGS
THE COMMENTARY ILLUSTRATES THE USE OF TITLE AND COMMENT STATEMENTS
TO ENHANCE PROGRAM DOCUMENTATION. NOTE THAT TITLE STATEMENTS WHICH
EXTEND BEYOND THE LIMITS OF COL 23 To COL 73 WILL BE DIVIDED INTO
FIELDOS AS IN THE EXAMPLE BELOW WHICH WAS ONE WORD, ENTITLED.
THE COMMENT STATEMENT, A NEW FEATURE OF THE 7080 PROCESSOR, IS
DESIGNATED BY A CODE OF C IN THE FLAG FIELD, COL 74. IT MAY EXTEND
FROM COL 6 TC COL 73 AND IS NOT OVERPRINTED. AN EXTRA SPACE IS GIVEN
BEFORE A COMMENT STATEMENT UNLESS IT FOLLOWS ANOTHER COMMENT ENTRY.
PAGE-TO-PAGE OVERFLOW 1S NCRMALLY UNDER THE CONTROL OF A LINE COUNT
WHICH INCLUDES BLANK LINES. IT IS COMPARED TO A MAXIMUM LINE COUNT
SPECIFIED IN THE COMMUNICATION WORD AND WHEN THIS MAXIMUM IS REACHED
AN OVERFLOW GCCURS.
THE STATEMENT IMMEDIATELY PRECEDING THE TITLE EJECT ENTRY HAD THE
WORD EJECY IN THE OPERATION FIELD. THIS PRODUCED AN IMMEDIATE PAGE
BREAK REGARDLESS OF THE LINE COUNT.

r— T T ——]

PG 005 F

Ltoc INSTR SU ACDR REF

[gXsXeXaNaRalaNelaRaNalo el aeNaNalaRsNa e aNeaNeNaleNelsiaNaalaNaNe a o a2l

NU AT OPERAND 80SMPL-001 08-28-63 H FLAG
@29000

*#=5

- TECHNIQUE FOR WRITING MACRO

PG 006

HLT. AN INTERRUPT CAN CHANGE THE

F LOC INSTR SU ADDR
001429 J
H 001969 1

005204 J

029000
001964
005204

NU AT OPERAND 80SMPL-001 08-28-63 80 Sp apP
SAME INSTRUCTION IN 80 MODE

REPEAT SERIES IN 705111 MODE.

PG 007

F L0C INSTR SU ADDR

INDEX

AG 30
AH 08
AH 24

82

PGLIN

AG30
AHO8
AH22

TAG ce NU AT COPERAND BOSMPL-001 08-28-63 80 SP I
TR [+ EXIT TO EXIT LINKAGE ON UNEQUAL
LoD 6 1,INDEX1 OPERAND AND COMMENTS REPEAT.
TAGZ Loo 15 INDEX1

PG 008

F LOC INSTR SU ADOR REF

INDEX S PGLIN TAG P NU AT CPERAND 80SMPL-001 08-28-63 ASSGNS PG 009 F LOC INSTR SU ADDR REF
AK 08 A AKO08 LASN a5123 SET BLANK CTR TO 5123 005123 005129
AK 10 A AK1O0 LASN 1 LASNTAGAE20 SET CTR 1 TO 5145 005145 005149 AKO9
AK 12 A AK12 LASN i SET BLANK CTR TO LOCATION CTR 005150 005154
AK 14 A AKl4 LASN 1 LASNTAGAEL0 SET CTR 1 YO LOWER VALUE 005135 005139 AKO9
AK 16 A AK1é6 LASN 1 SET CTR 1 TO PREVIOUS HI ASSIGNMENT 005150 005154
AK 18 A AK18 LASN 1 LASNTAGA RESET CTR 1 HI ASSIGNMENT &€ CYR 1 R 005125 005129 AKO9
AK 20 A AK20 LASN 35100 SET BLANK CTR TO LOWER VALUE 005100 005104
AK 22 A AK22 LASN 1 SET CTR 1 TO NEW HI ASSIGNMENT 005130 005134
AK 24 A AK24 LASN SET BLNK CTR TO BLNK CTR HI ASSIGNMENT 005155 005159
AK 27 A AK27 SASN LASNTAGAE100 SET TO HIGHER THAN LASN BLANK CTR 005225 005229 AKO9
AK 29 A AK29 LASN RETURN YO BLANK CTR HI ASSIGNMENT 005160 005164
AK 31 A AK31 SASN 35000 SET BELOW LASN BLANK CTR 005000 005004
AK 33 A AK33 LASN RETURN TO BLANK CTR HI ASSIGNMENT 005165 005169
AK 35 A AK35 SASN 28000 008000 008004
AK 38 A AK38 LASN LASNTAGB A LASN TO A TAG NOT YET DEFINED IS 005170 005174 AK39
AK 40 A AK4O SASN SASN BLANK 1S IGNORED. 005175 005179
AK 43 A AK43 LASN @5000 ASSEMBLE RCUTINE AT 5000 005000 - 005000
AK 44 A AK44 RASN 415000 AS IF IT WAS AT 15000 015000 005019
AK 49 A AK49 LASN a3000 END RASN RANGE 003000 000131
AL 14 A ALY4 LASN TERMINATE TCD 005175 000129
AL 23 A AL23 LASN TERMINATE TCD 005175 004030

INDEX S PGLIN TAG ceP NU AT OPERAND 80SMPL-001 08-28-63 SWITCHES PG 010 F LOC INSTR SU AQDR REF
AE 02 A AE02 SWA SWT *£15 PROGRAM SWITCHs INITIALLY ON. 001284 1 001299
AE 03 A AEO3 swB SWN #£10 PROGRAM SWITCH, INITIALLY OFF. 001289 A 0C1299

INDEX 'S PGLIN TAG ce NU AT OPERAND B80SMPL-001 08-28-63 TRANS PG Ol1 F LOC INSTR SU 2DDR REF
AL 48 A AL48 TRANSD TRANS NAMEA TRANS TO TAG OPERAND IS VALID. 001099 ACS1
AL SO A AL50 TRANSE TRANS L+ NAMEAES MODIFICATION AND ADJUSTMENT 01076 ACS1

INDEX S PGLIN TAG cp NU AT OPERAND B80SMPL-001 08-28-63 M FLAG PG 012 F LOC INSTR SU ADCR REF
AA 63 A AA63 FIELD . THE WORD FIELD, INTENDED AS A 000794 A 000000
AF 55 A AF55 EXIT TR INITIALIZED BY UNLOADING ASU 06. 001599 1 000000
AH 58 A AHS54 NCP EXIT THIS SPIN LOOP IS EQUIVALENT TO A M 001964 A 001599 AF55
AI36 J MOOO019#01 TKT NAMEA M 002104 S 001074 ACS1
AT48 J . T00022#02 RCVS CONNS X0 M 002139 L 000812 AB19
Al149 J T00022#01 TMTS 05 CONA M 002144 9 05 0€0807 AB18
AI52 J T00023#01 TMTS 05 CONNS X0 M 002154 9 €5 000812 AB19
Al 63 A A120 TAGC TR 002189 1 000000
AK 4T A AK4T RASNB Leo 05 BLANK OPERAND NOT AFFECTED 005014 g C5 000000
—_— Y~ ., e —— |

83

A

18

123D
3956
BALANCN
987654C
0000A
0000D
0021E

0M56780

AGE
THIS LI
ABCDE
APPLE
F

60

300
ABLE
DUPE
0010
1234567
~BALANC
LOCATIO

NOT AVA

ACTUALS
#002394
2000000
3000001
2000002
2000003
3000004
@000005
2000006
2000008
2000009

2000100

84

01
02
04
04
07
07
05
05
05

10

50
50
05
05
o1
o1
o1
01
02
02
03
04
04
04
07
08
09

14

DEFINITIONS

SIGNED LITERALS

AE41
Al 38
AJ50
AJ26
AF31
ATl3
Afé6l
AlS58
AF16

AF20

UNSIGNED LIYERALS

AF27
AF28
AG69
AG64
AE35
AE61
AE13
AE23
AF19
AE27
AG3S5
AJO9
AF25
AF26
AGO9
AH64
AF23

AF18

AJ49
AF43
Alll
Alls
AL18
AL1l
AF34
Al32
All2
AlIl8
ALO9

REQUESTS

AE53

AG38

AF17

LDA
Lao
SHR
RND
SET
TR

SET
SET
SET
SET

SEL

05

Al28
ALLT

AL19
AF35
Al43
Al22
Al26

80SMPL-001

08-28-63

RND

SET 2

SET 4
SET
SET
SET
SET

ALl6

Al4l
AL21

M’/’____/’_____"

PG 013 SYMBOLIC ANALYZER

SET 1
SET AL20 SET 5
SET 6

DEFINITIONS
2000123 AF42
3000500 AL33
2001000 AL10
2003000 AK49
2005000 AK31
2005100 AK20
3005123 AK08
3008000 AK35
a012345 AJ30
3015000 AK44
2020000 AH34

AH38

AH43
2028704 ALO3
2029000 AE60
2035000 ALOS
2040100 AJ33
2043155 AJ10
2043424 AJlae
3082500 AF39
3084324 AJ35
@110234 AHL17

REQUESTS

TRANSA

TR
TRANS
RD
LASN
SASN
LASN
LASN
SASN
ACCNS

RASN

S81 4

SBA
SBZ

SUBOR
HLT
LITOR
ACON4
ADCON
ADCON
WR
ACCNS
LoD

80SMPL~001

AK43

AH35
AH39
AH44

08-28-63
LASN
b1:74 4 AH36
SBN 4 AH40
SBZ S AH4S

PG 0l4a

SBZ
SBR
pY:24

SYMBOLIC ANALYZER

4 AH3T
10 AH41
6 AH46

/—\——//__,/’/___,//_J

SBZ 04
SBA 10
S8N 9

ANO3 A

DEFINITICNS

MULTIPLE LITERALS

AN10O
ANO6
AN18
AN11
AN1S
AN20
ANO4
ANOB
AN14
ANG9
AN16
AN12
AN22

ABCDE
1234E
1234E
WJR111
WJR111
OQUTSIDE
2D
2468013
2468013
ABCDEFG
ABCDEFG
ABC

ABC

REQUESTS
AMO3 RAD
AMO4 LoD
AN18 LITERAL
AMOS LDA
AN1S LITERAL
AMO6 LOD
AMOT LDA
AMO8 RAD
AN14 LITERAL
AMQ9 RAD
AN16 LITERAL
AM10 LoD
AN22 LITERAL
AM1L LDA

05

06

15

80SMPL-001

Ry

Ty

Ry

08-28-¢€3

PG 015

SYMBOLIC ANALYZER

W/M

85

DEFINTTIONS
DESCRIPTIVES
«ERR#E144

AD4B AGE
ADTO BADL
ADTY BAD2
AD62 BIWEEKLY
AD64 COMMISSION
AB18 CONA
AC48 CONDP
AC49 CONDQ
AC4S CONDL
AC46 COND2
AB20 CONMIXED
AB19 CONNSXO
AG33 CONTINUE

AJO3 DUMMYTAG

AF55 EXIT

AD55 FEMALE

ADé65 FLAT FEE
ADSO FORTY
AF12 GAP
AF13 GAP
AD60 HOURLY

AHO3 INDEX1

AH13 INDEX3

AKO9 LASNTAGA
AK39 LASNTAGB
AFSO LOCATIONA
ADS4 MALE
AD63 MONTHLY
AI35 MOVEl
Al36 MOOO19#01

AC51 NAMEA

86

REQUESTS

AF22

AE62

AE29

AGO8

AI51 TAGB

Al42
AG12

AJ24
AJ32
AJ22
AJl6
AJ19
AJ34

AJ47
AE4T
AG32
Al21

" AE36

AF14 RD/HWR

AE42

AHOS
AH25 TAGZ
AH14

AJ13
AK14
AH29

AK38

AE44

Al39

AJ39
AJ43
AG45
ALSO
AG52
AGS56
AG66
AG72
AG17
AGS51
AHO3 INDEX1
AK42 QUTSIDE

TRANSE

80SMPL-001

08-28-63

ADD

ADCON

SBZ A

Loo 1 -000002 AI49 T00022#01 TMTS 05
RCVS

LOD Al148 T00022#02 RCVS

TR £000020 AD28 NAMEFLEND ADCON
ACON6 L, 8000002 AJOB ADCON
ACON4 $,~-000010 AJ25 ACON4
ACON4 £000008 AJOS ADCON
ACCON4 AJL17 ACONS
ACONG 12 AJ20 ACON5 &
ACONS5 15

ULA 06 R3 AE33 R

TR AF54 UL A 06
TR AH22 LoA 6
TRH

cMp - O1

SGN Ly

SBN 1

LoD 6 1, AHO9 EIA

EIA AH26 LoD

RAD Iy

ADCON #000035 AH30 LFC

LASN 1 £000010 AK10 LASN 1
LFC AH32 LFC 1
LASN

S8N 8

AAM 15

ADD S@£000010 AJ437 LoD 04
LoD 04 R3 AJ4S52 TMT

(4,4 1 R, AG48 T™MTS 1
TRANS L, £000006 AG44 CcMp 1
RCVS Hy AGS3 RCV

RCVS Ty AGS7 RCV

MY Ty AG61 SET

RAD Sy AGlé SET]
SND 6 AG43 cup 1
RCV AG55 RCVT
ADCON Al3l RCY
ADCON AL48 TRANSD TRANS

PG 016

Ly
$+£000001

£000002
£000020

’
/000005

SYMBOLIC ANALYZER

AI52 T00023#C1 TMTS
AL22 TR
AJ23 ACONS
AJO7 ADCON
AJO6 ADCON
AJl8 ACON6
AJ21 ACGON6
AE38 TR
AG31 ElA
AHSS8 NOP
AH10 LoD
AH31 LFC
AK27 SASN
AKk18 LASN
AJ44h ADD
AJ48 LDA
AGT5 ™Y
AG49 TMTS
AGT8 TcT
AGS8 RCVT
AG62 NOP
AG25 TMTS
AG47 TMTS
AG60 SET

Al36 MOOOL9#01 TMT

05

Ly
13

1
1

&000004

£000002
£000100

$a&000010

05
Ry

R3E000004

~000003

ACS0
ACé8
AC67
AC64
AC63
AC71
AC70
AD14
AD1S
AD24
AD23
AD29
AD28
AD2S
AD3S
AD4&4
AD42

AD4l

AD33

AK42

AD59
AK4S
AK4T
AAL9
AM%4

AA4]

AA37

AA38

AC60

AFlée

ADS3
AD51
AD68
AEO2
AEO3
AEOS
Al47
AIS1
Al63

AH25

DEFINITIONS

NAMEAEND
NAMEB
NAMEBEND
NAMEC
NAMECEND
NAMED
NAMEDEND
NAMEE
NAMEEEND
NAMEF
NAMEFEND
NAMEF 1
NAMEF1END
NAMEG
NAMEH
NAMEI
NAMEJ

NAME JENO

*ERR#NOTENC

NOWEND

GUTSIDE

PAYTYPE
RASNA
RASNB
RCDA
RCDN2Xx3A
RCDSOX3

RCDSSX3

RCDS5X3A
RCDS6X0

+ERR#RD

RD/WR

«ERR*RH

SEX

SIXTY
SPLIT TAG
SHA

SWB

SWC

TAGA

TAGS

TAGC

TAGZ

REQUESTS

AC36
A133

AC59

AC61

AC65

AD11

AD19

AD26

AD36
AD39

AD30

AN20
ALO6

AESS
AKS0
AK46
AHS51
AGO4

AGO3
AlO6

AlQ7
Al23

All0
AlIl5

AF11l

AD13

AES4

. AE26

AF04
AE24
AE25

AE12

A159

AH23

NAMEA

NAMESB

NAMEC

NAMED

NAMEE

NAMEF

NAMEF1

NAMEL
NAMEJ

NAMEH

LITERAL

NAME
SND
NAME

NAME

NAME

NAME

NAME

NAME

NAME
NAME

NAME

LITOR
UNL
LoD
ULA
RAD
TMTS

LoD
RAD

ADD
ST

RAD
ST

TR

CNE
UNL
RCVS
NOP
UNL
UNL
RCVS

ULA

ULA

o1

06

3

o1

ol
01

15

6

Sy

80SMPL-001 08-28-63

Al135 MOVEL

AD21 NAMEG

AK45 RASNA

AH52
-000004

6000003 AFO7
Al25

AlIQ8
AlL27

AlIl7
Al44

-000004
-000004 AE3l

RCV

NAME

LDA

RAD

SET
RAD

ST
ADD

RAD

ST

RCVS

PG 017 SYMBOLIC ANALYZER

4

06 ALO2

AF08

AIl9

AE4O

,—’_—‘——*—————____————‘——-——_____"—-‘“__________—-—’“"_—‘__—___*_—~—‘____________ﬂ_,,,—————————~__‘~_

SUBOR

Loc

20D

RCVS

87

DEFINITICNS REQUESTS 80SMPL-001 08-28-63 PG 018 SYMBOLIC ANALYZER

AE23 TESTSW AE32 T8 B AE37 TRE AE46 TAB

AL33 TRANSA AL35 SEL AL36 LOD AL37 SET
ALSS TMT AL60 TCcT

AL44 TRANSB AL42 TR

AL39 TRANSC AL40C NOP AL6l RD

AL48 TRANSD ALSS Loo 1 L,&000004 ALS53 SET Sy ALS2 RCVS 05
ALS4 LOD

AL50 TRANSE AL62 LDA 1 Ry

AD49 THWENTY

A149 T00022#01 AISS LDA 15
Al48 T00022#02 Al62 ULA 15
AlI52 T0O0023#01 AIS6 uLa 15
AD61 WEEKLY AE28 SBZ 2 AE43 SBN 2
#ERR*WORST CASE AF1Q SND 04

AB38 WORSTCASES

AQ10 XAC

AQl2 XACA Al20 CMmp £000008
AQ1l1l XACt Al29 ST

*ERR#395 AF37 ST

N/W

88

GLOSSARY OF TERMS

The terms that follow are explained in relation to
their use in this manual. No attempt has been
made to supply a glossary of basic programming
terms. Definitions that appear in the text of the
manual are not repeated on this page. The Index
supplies page references to such definitions.

Address: Something that designates a storage loca-
tion. The term "address of an instruction'' and the
term "address portion'' both refer to the portion

of a machine-language instruction that identifies

a storage location.

Alphabetic Characters: The letters A-Z. Alpha-
betic data consists of alphabetic characters.

Alphameric Characters: A set of characters com-
prising the following: alphabetic, numerical, special,
blank. Alphameric data consists of any of these
characters or any combination of them.

Blank Character: The absence of a character.
May be designated on the coding sheet by the sym-
bol b,

Coding: Program statements that may or may not
form a routine.

Data field: A unit of information consisting of an
alphameric character or a set of adjacent alpha-
meric characters.

Decimal positions: The positions to the right of the
decimal point in numeric data.

Format layout: A graphic representation on the
coding sheet of a specific arrangement of char-
acters. Also referred to as a 'layout. "

Generated: An adjective describing coding provided
by the Processor.

Hand-coded: An adjective describing coding written
by the programmer.

Integer positions: The positions to the left of the
decimal point in numeric data.

Initialization: A procedure that places an instruc-
tion or a switch in an initial condition, or restores
either one to a previously defined condition.
Initialization is a type of modification.

Location: A place in storage. The term may refer
to one storage position or the positions occupied by
a field or an instruction. Also referred to as
""'storage location, "

Machine language: A language that is intelligible
to the computer. Also referred to as "actual
language."

Machine-language instruction: A 7080 machine
instruction consisting of an actual operation code
and an address portion.

Mixed decimal: A term used to designate a number
containing integer and decimal positions.

Modification: A procedure that alters an instruction
or a switch setting. Address modification is the
procedure of altering the address portion of an
instruction.

Numerical characters: The digits 0-9. Numerical
data consists of a combination of digits representing
a signed or unsigned integer, pure decimal, or
mixed decimal.

Processor library: The portion of the 7080 Proc-
essor System tape that contains the elements of
each macro-instruction and subroutine.

Pure decimal: A term used to designate a number
containing decimal positions only.

Record: A set of adjacent data fields.

Secondary mode: Any mode other than 7080 mode.

Special characters: The following group of char-
acters: . I ¥ &$*-/, P#Q@+%

Glossary of Terms 89

ACON4 Statement 43

ACONS5 Statement 43

ACONG6 Statement 44

Actual Operand, Defined 33

Actual Language - See Machine Language

ADCON Statement 42

Address, Defined 62

Address Constant, Defined & 9, 42

Address Constant Literal 44

Alphabetic Character, Defined 62

Alphameric Character, Defined 62

ALTSW Statement 29

Area-Definition Statement 8, 14

Arithmetic Operator 91, 34, 42

Assembly Documentation 59

Assembly Input 59

Assembly Output 59

Asterisk Protection, Defined 20

Autocoder MODE Statement 53

Autocoder Operands, Defined 31
additions to, multiple additions to 34

Autocoder Statements, How to Write 11

Basic Programming System for 7080 7
Bit-Code Switch, Defined 26
see also BITCD
BITCD Statement 27
Blank Character, Defined 62
Blank Counter 47
Blank Operand, Defined 34
Blank-if-Zero Option 22

Character Adjustment 34, 42
Character Code Switch, Defined 26
CHRCD Statement 27
Class A and B Subroutines 51
Coding Sheet, How To Use 11
Collating Sequence, 7080 11
Comments in Autocoder Statements 12
Comments Continuation Lines, Rules for Writing
in CON 15
in RPT 23
in switch-definition statements 26
Comments Flag 57
CON Statement 17
Conditional Lozenges 39
Console Switch, Defined 8, 29
see also ALTSW
Constant 17, 31

Data Field, Defined 62
Data Switch, Defined 8, 26
see also BITCD, CHRCD

EJECT Statement 54
ENT80 53
Exponent, Defined 19

Field-Sign Indicators 21
Fixed Dollar Sign 20
Flag Characters 13, 57
Floating Dollar Sign 20
Floating-Point Number, Defined 18
by a literal 32
calculations with 18

FPN 18
RCD 14

Format Layout, Defined 62
RPT 19

90

INDEX
FORTRAN MODE Statement 53

General-Purpose Macro-Instructions 37
Generated, Defined 62

Generated Coding, 7080 Mode 53

Group Marks 15,17

Hand-Coded, Defined 62
Higher Languages of 7080 Processor 10,53

INCL Statement 51
Indirect Address 35,53
Initialization, Defined 62

by address constant 42
Insertions on Coding Sheet 12
Insignificant Zeros, Defined 19
Instructions to the Processor 10,46
Integer Positions, Defined 62
Interior Fields of NAME 23
Internal NAME 24

LASN Statement 48

Leading Zeros, Defined 19

Left Protection, Defined 14

LEV80 53

Library Subroutine - See Subroutine

Literal - See Literal Operand

Literal Constant - See Literal Operand

Literal Operand, Defined 31,39

Literal Sign 31

Literal Tables 31,48, 50,55, 59
see also Main Literal Table, Multiple Literal Tables

LITND Statement 56

LITOR Statement 50

LITST Statement 56

Location, Defined 62

Location Assignment, by Processor 48
see also LASN, RASN, SASN

Location Counter, Used by Processor 46
see also LASN

Location Counter Operand, Defined

Lozenges 39

Machine Language, Defined 62

Macro-Header, Defined 38

Macro-Instruction, Defined 9
general purpose, list of 37

Macro Suffix Tag

Main Literal Table 31,48,50,59

Mantissa, Defined 19

Mnemonic Codes, 7080 Operations 32

Mode, Coding for 7080 53

MODE Statements 53

Modification, Defined 62

Multiple Literal Tables 31,50,55,59

NAME Statement 24

Non-Printing Decimal Point 20
Numerical Characters, Defined 62
Numerical Constant 17, 18,38

Object Program, Defined 6
Object-Program Card 59
Object-Program Contents 7,51,59
Object-Program Deck 59
ON/OFF Statue

of a bit 27

of a bit code switch 27

of a character code switch 27

of a program switch 28

One-for-One Instruction, Defined 9,31
mnemonic codes for 32
additions to basic operand 21,34
Operand Modifier 35,42
Operation Codes, 7080 32
Operator's Notebook 8,60
Overlapping, Defined 46

Processor, 7080 7
Processor Library, Defined 62
Program Listing, Contents and Details of
Program Switch, Defined 9,28

see also SWN, SWT
Pure Decimal, Defined 62

RASN Statement 49

RCD Statement 14

Record, Defined 62

Record Mark 15,17
Referencing, Defined 8
Report/File Mode Statement 53
Reset Character 58

RPT Statement 19

SASN Statement 48
Secondary Mode, Definition 62

1064/01P

Secondary Field Definition, Use of
Significant Zeros, Defined 19
Source Program, Defined 6
Special Characters, Defined 62
SUBOR Statement 49
SUBRO Statement 49
Subroutine

assignment of 49,51

Class Aand B 52

inclusion in program 51
Switch Definitions 8,26
SWN Statement 29
SWT Statement 29
Symbolic Analyzer 8,60

Tag, Rules for Writing 12
Tag Operand 31,38
TCD Statement 50
TITLE Statement 54
Trailing Zeros, Defined 19
TRANS Statement 52
Transfer Card 46,50

see also TCD

"00" Transfer Card 46,50

38

Index

91

C28-6263-2

LB

®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

