JLIBIM

Reference Manual
IBM 7080 Programming Systems

7080 Processor: Autocoder Language

TN
© 1962 Ny International Business Machines Corporation

Address comments regarding this manual to:
Programming Systems Publications, IBM Corporation, P.O. Box 390, Poughkeepsie, N,Y.

INTRODUCTION
Basic Aspects of Programming .
Symbolic Programming Systems .
The Symbolic Language .
The Processor
Basic 7080 Programming System
7080 Processor« .+« . . .
Autocoder Language .
Input/Output Systems for Use w1th Autocoder
Programs . . .
Higher Languages of the 7080 Processor for
Use with Autocoder Programs .

CHAPTER 1. STANDARD FORMAT OF AUTO-
CODER STATEMENTS

Program Identification e
Pglin o 000
Tag

Operation

Numeric . e e e e e e e
Operand « « « « « &
Comments . .
Flag . . « « « « o o« 00 e 00
CHAPTER 2. AREA DEFINITIONS

Definition of a Record -RCD
Definition of a Constant Factor - CON. . . .
Definition of a Floating Point Number - FPN .
Definition of a Report Format - RPT . .
Definition of a Continuous Portion of Memory -
NAME

CHAPTER 3. SWITCH DEFINITIONS
Data Switches .
Character Code - CHRCD
Bit Code - BITCD .
Program Switches .
Switch Set to Transfer - SWT
Switch Set to No Operation - SWN
Console Switches. .
Alteration Switches - ALTSW

CHAPTER 4. ONE-FOR-ONE INSTRUCTIONS

One-For-One Instruction Format.

Basic Operands
Tag .

Literal

Actual .

Location Counter.
Blank . .

Additions to Basic Operands
Character Adjustment.
Operand Modifier
Indirect Address.

Page

© W O oo o ~T

11

11

13
13
14
14
14
14
14
14

15
17
19
19

23

25
25
26
27
28
28
28
28

29
29
29
29
31
32
32
32
32
33
33

TABLE OF CONTENTS

Page
Multiple Additions to a Basic Operand. . 33
CHAPTER 5. GENERAL PURPOSE MACRO-
INSTRUCTIONS
General Purpose Macro-Header Format. 35
Types of Operands 35
Types of Lozenges 36
Omitted Operands 36
Importance of Properly Defined Data Fle]ds . 36
Examples of Macro-Instructions and Their Use 37
CHAPTER 6. ADDRESS CONSTANTS
ADCON Address Constant 39
ACON4 Address Constant 40
ACON5 Address Constant . eoe e .. 40
ACON6 Address Constant 41
Address Constant Literal 41
CHAPTER 7. INSTRUCTIONS TO THE
PROCESSOR
Instructions to the Processor that Concern
Standard Assembly Procedures . 43
Location Assignment - LASN. . . 43
Special Assignment - SASN . 45
Relative Assignment - RASN . 45
Assignment of Subroutines within Marco-
Instructions - SUBRO 46
Assignment of Library Subroutines - SUBOR 47
Assignment of Literals - LITOR . . 47
Transfer Card - TCD 48
Instructions to the Processor that Concern
Object Program Content 48
Include Subroutine - INCL 48
Translation - TRANS. 49
Source Program Language - MODE 50
Coding Generated in 7080 Mode 50
Instructions to the Processor that Concern the
Program Listing . . . e e 51
Skip to New Page - EJECT e 51
Title for Routine or Comment - TITLE 51
Flag Characters and their Meaning . . 52
CHAPTER 8. ASSEMBLY DOCUMENTATION
Object Program Deck. 54
Assembly Documentation 54
Program Listing 54
Operator's Notebook - Optional Documentanon 55
Symbolic Analyzer - Optional Documentation 55
Details of the Program Listing 55
GLOSSARY OF TERMS 57
APPENDIX 58
SAMPLE ASSEMBLY 59
INDEX . . .« .« 81

PREFACE

This manual contains detailed specifications that per-
mit program coding using Autocoder, the basic sym-
bolic language of the 7080 Processor. All parts of
the language, except macro-instructions, are fully
described in this publication. The IBM-distributed
general purpose macro-instructions, a brief intro-
duction to which is provided in this manual, are ex-
plained in the manual, '"7058 Processor: General
Purpose Macro-Instructions,' Form C28-6130, as
updated by the bulletin, '"7080 Processor: General
Purpose Macro-Instructions, ' Form J28-6266. The
method by which new macro-instructions can be
written for incorporation into the language is covered
in the manual, ""7080 Processor: Preparation of
Macro-Instructions,'" Form C28-6264.

Just as the Autocoder described in this manual is
the basic language of the 7080 Processor, so is Auto-
coder III the basic language of the predecessor sys-
tem, the 7058 Processor. The over-all similarity
of the two languages is such that this manual has
been modeled after the manual describing Autocoder
III. The major improvements in 7080 Autocoder
that distinguish it from Autocoder III have been
fully integrated into the following pages and may not
be apparent, even to longtime users of Autocoder III.
Despite this, no attempt has been made in the body
of the manual to call attention to the differences,
since to do so might prove distracting, particularly
to readers without a background in Autocoder III.
However, significant differences have been summa-
rized in the Appendix for the convenience of experi-
enced programmers who want to rapidly survey 7080
Autocoder in the light of their knowledge of Autoco-
der III. But it is expected that every programmer,
before writing programs in 7080 Autocoder, will
have become familiar with all sections of this man-
ual.

The introduction to this manual assumes that the
reader has had little experience in programming.
Readers already familiar with the IBM 7080 Data
Processing Systems may wish to go directly to Chap-
ter 1. Information on this system may be found in
the manuals listed below:

General Information Manual, '""7080 Data Process-

ing System,' Form D22-6512.

Reference Manual, ""7080 Data Processing Sys-

tem," Form A22-6560,

This explanation is written for the inexperienced
programmer. The material is not detailed and not
comprehensive in scope; it is an outline of basic
program requirements, symbolic programming
languages, and the program assembly process.
These concepts are considered within the framework
of the IBM 7080 Data Processing and Programming
Systems.

BASIC ASPECTS OF PROGRAMMING

A program is written in order to process data in a
specified manner. In commercial data processing,
most of the data is in the form of business records,
e.g., accounts receivable, sales records, inventor-
ies, payrolls, etc. Although the main function of a
program is to process these records as specified,
the program does not consist solely of record-proc-
essing routines. These may be considered the body
of the program and are often called the main-line
routines or the main-line coding.

Any program must include routines for bringing
the records to be processed into core storage and
for taking the processed records out of storage. The
routines which handle this data movement are called
input/output or 1/0 routines. Although records and
programs may be stored on magnetic tape or punched
cards, magnetic tape is generally used with large-
scale data processing systems.

A program must also contain actual storage loca-
tions for each instruction as well as locations for
the area or areas the records will occupy. Records
are usually grouped in blocks; consequently, an
entire block enters storage. Similarly, the proc-
essed records are reblocked in storage before being
placed on tape. Programs dealing with blocked
records generally reserve space for separate input
and output areas, the areas being equal to the size
of the record block. In this case, a work area equal
to the size of one record must also be reserved so
that each record can be taken from the input area,
moved to the work area for processing, and then
placed in the output area. The processing instruc-
tions can then be addressed to the work area and do
not have to be modified. If the records were to be
processed in the input area, the instructions would
have to be modified to operate on each record in
turn. Consequently, most programs must reserve
space for input, output, and work areas,

Certainly, a program must also provide routines
for detecting and handling error conditions resulting
from 1/0 operations. Such routines may reread or
rewrite the records in error, place the invalid
records on a special tape, attempt to determine

INTRODUCTION

whether or not the error is in the tape itself, etc.
Error detection routines may include the procedure
to be executed when an error condition prevents the
continuation of processing.

Finally, there are supplementary procedures
which must be performed by all programs but which
are not directly connected with the main-line proc-
essing. They fall into no specific category, although
they might be described as procedures which imple-
ment the operation of the program. Those which are
executed before any main-line processing begins are
called housekeeping routines; those which are exe-
cuted after all main-line processing is completed
are called end-of-job routines. Housekeeping opera-
tions include such procedures as readying input/
output units, setting ASUs, checking and writing
tape identifications, and bringing the first block of
records into storage. End-of-job routines include
such procedures as moving the last block of records
from storage to tape, writing tape identifications,
rewinding tapes, and writing messages.

To sum up, a program must incorporate at least
the following procedures:

Data processing

Input/output

Storage assignments

Error detection and correction
5. Housekeeping and end-of-job

B W N

SYMBOLIC PROGRAMMING SYSTEMS

A program may be written in the actual (i.e.,
machine) language of the computer on which it will
run, or it may be written in a symbolic language,

If it is written in machine language, it can be exe-
cuted by the computer directly, but if it is written

in symbolic language, it must first be translated

into machine language before it can be executed.

The length and complexity of programs today makes
programming in machine language extremely diffi-
cult and results in programs which are increasingly
liable to error. However, powerful symbolic
programming systems have been developed to relieve
the programmer of the many burdens involved in
machine language programming. A symbolic
programming system consists of a symbolic language
and a processor. The language provides a method

of representing program functions as a series of
meaningful statements rather than as a collection of
alphameric codes and actual storage locations. The
processor converts the symbolic language program
into a machine language program, assigns storage
locations to the program, and performs various other
functions. The symbolic language program is gener-

ally called the source program; the machine language
program is called the object program. In other
words, the source program is the input to the proc-
essor, and the object program is the output of the
processor.

Thus, processing the data for which a program
is written becomes the second of two data processing
applications. The first application is the processing
or conversion of the source program itself, with the
object program as output. The second application is
the processing of the actual data by the object pro-
gram; the output of the second is the solution of the
problem for which the program was written. Once
the object program is produced, it is used in sub-
sequent data processing applications until it is
obsolete or is modified to such an extent that a
reassembly is advisable.

Since the programs written in symbolic language
need not make location assignments, the order of the
statements which compose the program may be
changed and the program reassembled without
modification. For the same reason, it is easy to
insert or delete statements in a symbolic language
program. When it is reassembled, a new object
program is produced.

The Symbolic Language

Instructions form a major portion of the statements
in a symbolic language program just as they do in a
machine language program. A symbolic one-for-one
instruction contains a mnemonic code representing

a machine operation and a symbolic address repre~
senting the storage location of data or an instruction.
Such instructions are called one-for-one because

the processor replaces each one with one machine
instruction. An important development in symbolic
programming is the macro-instruction, a source
program statement which is eventually replaced by
more than one machine instruction,
is a request for several one-for-one instructions,
each of which is subsequently replaced by one
machine instruction. A macro-instruction also
contains a mnemonic code, but the code does not
represent any one machine operation. A macro-
instruction usually contains more than one symbolic
address; each address represents the storage loca-
tion of data or of an instruction.

Symbolic languages enable the user to write
program statements describing the storage areas
which will be occupied by program data. On the
basis of the information the processor obtains from
these statements, it assigns actual storage locations
to the data areas. It also uses this information when
generating one-for-one instructions to replace
macro-instructions which reference these areas. If
the data is to be supplied to the area by input records,

Essentiallv it
Essentially it

8

the statement indicates the size of the area and the
type of data which will occupy it. If not, the state-
ment itself supplies the data, which is placed in
storage as a constant,

The programmer is also able to create a symbolic
address for each data area or instruction. The
symbolic address represents the actual storage
location to be assigned by the processor, and it
provides the means of referencing an area or an
instruction. This is done by using the symbolic
address as the operand of the instruction which
makes the reference. Usually, it is desirable to
create symbolic addresses which describe the areas
or instructions to which they are assigned. For
instance, an address such as ""master file" might
be assigned to a data area which will be filled by
records from the master tape; an address such as
"start' might be assigned to the first instruction to
be executed, etc. In converting the source program
to machine language, the processor replaces each
symbolic address with an actual storage location,
just as it replaces each mnemonic code with an
actual operation code.

The Processor

The processor of a programming system is a machine
language program which converts a symbolic language
program into machine language. The process of
converting is called assembling the program. In
other words, a processor assembles a source pro-
gram into its object program form. During the
assembly, the processor makes an analysis of the
source program, generates one-for-one instructions
to replace each macro-instruction it encounters,
inserts any subroutines requested by the program,
substitutes machine language instructions for all one-
for-one instructions, and assigns storage locations

to the object program.

The processor contains a library of macro-~instruc-
tions and subroutines. Every macro-instruction
contains a set of incomplete one-for-one instructions.
When a source program macro-instruction is en-
countered during assembly, the processor determines
which of the one-for-one instructions are appropriate,
completes those which it selects, and inserts them
into the object program. Selection and completion
of the appropriate instructions are done on the basis
of information from the program analysis made by
the processor. The same macro-instruction may
be used many times in a program, but the one-for-
one instructions generated from it will not necessarily
be the same., The variation results from differences
in program requirements or data format.

Library subroutines differ substantially from
macro-instructions, A subroutine is a fixed set of
instructions; these may be one-for-one instructions

or one-for-one instructions and macro-instructions.
When a request for a subroutine is encountered
during assembly, the set of instructions is taken
from the library and inserted in the program. The
instructions will not vary from program to program
unless the subroutine itself contains macro-instruc-
tions. The programmer may write macro-instruc-
tions and subroutines and add them to the processor
library.

The object program is not the only output of the
processor. A sequential listing of the source pro-
gram is also produced. Each program step in the
listing is assigned an index number for reference
purposes. The one-for-one instructions in the
source program are shown with the corresponding
machine language instructions and the storage loca-
tions assigned to them. The source program macro-
instructions are followed by the one-for-one instruc-
tions generated from them, the machine language
instructions corresponding to the one-for-one
instructions, and the storage locations assigned to
the instructions. Location assignments are also
shown for all record areas and subroutines.

THE BASIC 7080 PROGRAMMING SYSTEM

A programming system has been defined as a
symbolic language and a processor. The basic
programming system for the 7080 Data Processing
System is composed of Autocoder language and the -
7080 Processor.

The 7080 Processor

The 7080 Processor, hereafter called "'the Proc-
essor,'' is a machine language program which as-
sembles programs written in Autocoder for the 7080.
The Processor operates on the 7080 when it is in
7080 mode. The Processor itself is so large that it
must operate through a number of inter-related
sections or phases. Each phase is a program which
performs one or more of the various assembly
functions. The phases may be classified as belong-
ing to one of the two portions of the Processor: the
compiler and the assembler. The compiler phases
analyze the source program in detail, generate
Autocoder statements from higher language state-
ments (explained on pages 11-12), and generate one-
for-one instructions from macro-instructions. The
assembler phases assign storage locations, replace
one-for-one instructions with machine language
instructions, and create the Processor output.

The output of the Processor consists of the object
program in card form and the program listing with
related messages. Both are produced on tape.

The listing and messages are the minimum assem-
bly documentation. Additional documentation con-
sisting of the Operator's Notebook and/or the Sym-
bolic Analyzer can be requested.

The Operator's Notebook lists the following:

1. Programmed halts and halt loops

2. Titles of and comments on the various por-
tions of the program

3. A list of special 7080 program statements

4. Specific location assignments requested by the
program

5. Program switches set up by the Processor at
the request of the program

The Notebook is useful to the programmer in de-
bugging the object program and to the console opera-
tor during the object program run. The Symbolic
Analyzer is an alphabetical list of the symbolic
addresses used in the program. Each symbolic
address is followed by a list of the instructions
which reference it. All may be easily located in the
listing because their index numbers are shown.
Referencing a field or an instruction, as used in this
manual, means specifying the data to be operated on
or specifying an instruction to be executed. An
Autocoder statement which calls for data move-
ment to a work area references the data and the work
area. A statement which causes the program to
transfer to an instruction references that instruction.
" The Processor library contains a set of general
purpose macro-instructions which cover most
commercial data processing functions. Programmers
may write their own macro-instructions and sub-
routines and may insert them in the library. How-
ever, the preparation of macro-instructions is a
complicated procedure requiring a thorough knowledge
of Autocoder and the Processor.

Autocoder Language

Autocoder is the basic symbolic language for pro-
grams to be assembled by the Processor. State-
ments written in the higher languages may be inserted
in Autocoder programs. During the assembly,
certain phases of the Processor translate these
statements into a series of Autocoder statements.
Program steps written in Autocoder language are
called statements rather than instructions, because
the language contains more than a set of processing
instructions. There are six types of Autocoder
statements:

1. Area definitions

2. Switch definitions

3. One-for-one instructions

4. Macro-instructions

5. Address constants

6. Instructions to the Processor

AREA DEFINITIONS. Area definitions reserve
storage space for data which is supplied either by
records or by the programmer. If the space will be
occupied by data from records, the area definitions
also describe the nature of the data. If not, the

area definitions specify the constant data to be placed
in storage. The storage space reserved by each
area definition is generally called a data field. Area
definitions may also be used to indicate that a series
of adjacent data fields are to be treated as the interior
portions of a single unit,

For input/output areas, it is usually necessary to
define a data field for a block of records without
making any attempt to distinguish one record from
another or to identify portions of a record. However,
in defining the work area, the opposite is true. Since
an individual record will be moved into the work area,
it is usually defined as a series of data fields which
correspond to the various portions of the record.

Suppose that each record in a file contains the
name and yearly salary of an employee and that these
records are on tape in blocks of ten. Processing
consists of updating the yearly salary. The input
(and the output) area is defined as one data field,
although it will contain ten records. However, the
work area to which each record is moved for proc-
essing is defined as two data fields, one for the
employee's name, and one for the employee's yearly
salary. Only the salary field is referenced by proc-
essing instructions, but the entire record is referenced
as a unit when it is moved to or from the work area.
Consequently, the work area must actually be de-
fined as a data field consisting of two interior fields.

SWITCH DEFINITIONS, Switch definitions describe
three types of switches: data, program, and console.
All three may be used to control the path of the pro-
gram, e.g., to determine whether or not all the
routines in the program will be executed, to determine
the sequence in which routines will be executed, etc.

Data Switch. A data switch is a data field in which
alphameric codes are placed. The definition of the
switch allows a meaning to be associated with each
code. When a data switch is defined as a portion of
a record area, the records supply the codes for the
switch.

When a data switch is defined independently of a
record area, the program itself supplies the codes.

In the employee records used as an example in
the section on area definitions, suppose now that each
record consists of three fields: name, yearly salary,
and number of exemptions of the employee. The work
area is defined by area definitions for the name and
yearly salary fields and a switch definition for the
exemption field. In this case, the codes in the data
switch would be numeric characters. The manner in

10

which each record is processed depends on the
number of exemptions; therefore, the program con-
tains a number of processing routines. As each
record is placed in the work area, the data switch
becomes whatever character the exemption field
contains. The program tests the switch to determine
what code is present and then transfers to the proc-
essing routine appropriate for that code.

Program Switch. A program switch is an instruction
which causes the program either to continue sequen-
tially or to transfer. When a program switch is ON,
the program transfers to an out-of-line instruction.
When a switch is OFF, the program executes the
next in-line instruction.

Suppose that it is desired to type a message if a
certain error condition is detected. The program
switch is defined so that when it is OFF, the program
proceeds to the next instruction, but when it is ON,
the program transfers to the message-writing routine.
Initially, the switch is set OFF; as long as it remains
OFF, the program continues through the switch to
the following instruction., If the error-detection
routine encounters the error condition, it sets the
switch ON; then, when the program reaches the
switch, it transfers to the message-writing routine,

Console Switch. A console switch is one of the six
alteration switches on the console. They are num-
bered 0911-0916, and they must be set manually by
the console operator. Console switches are useful
when it is desired to execute a routine only for
certain object runs, For example, a program which
is run each week may include a routine which should
be executed only at the end of the month, If a console
switch is defined, the program may test the switch
and transfer to the end-of-month routine when the
switch is ON. The console operator must, of course,
set the switch ON prior to each end-of-month run.

ONE-FOR-ONE INSTRUCTIONS., One-for-one instruc-
tions are the symbolic equivalents of machine instruc-
tions. Coding any portion of a program in one-for-
one instructions means much more hand-coding for

the programmer than coding the same portion in
macro-instructions. This also increases the
possibility of error. One-for-one instructions

should be used only when it is inadvisable to use
macro-instructions.

MACRO-INSTRUCTIONS. A macro-instruction is a
powerful programming device; essentially it is a
request for those one-for-one instructions which will
accomplish the function stated by the macro-instruc-
tion. These instructions are selected to suit the
characteristics of the data fields and/or the other
hand-coded instructions referenced by the macro-

instruction. The field characteristics are obtained
from the field definition analysis made by the Proc-
essor. Whenever a choice exists among the one-for-
one instructions to be generated, the Processor
selects the most efficient coding.

As an example of the scope of a macro-instruction,
the basic coding generated from the ADDX macro-
instruction adds the contents of two numeric fields
and stores the result in a field designated as the
result field, But, if the result contains more deci-
mal positions than the number specified in the result
field definition, the generated coding includes instruc-
tions either to round or to truncate the excess posi-
tions before the result is stored. The choice depends
on which process the programmer specifies in the
macro-instruction. Also, if the result contains
more integer positions than the number specified in
the result field definition, the generated coding in-
cludes instructions to truncate the excess high-order
positions before the result is stored. However, the
programmer may request an option which generates
instructions to do the following: truncate the excess
positions if they contain zeros and store the result;
transfer to a routine designated by the programmer
if they do not contain zeros. This entire procedure,
which obviously involves many one-for-one instruc-
tions, is generated from one macro-instruction.

ADDRESS CONSTANTS., An address constant con-
tains the symbolic address of a data field or an
instruction. During the program assembly, a con-
stant is created from the actual location assigned to
the field or instruction. Address constants are used
to initialize an instruction. Initialization is the
process of supplying a reference to an instruction
which lacks one or replacing the reference made by
an instruction. An instruction makes a reference by
designating the symbolic address of a data field or
an instruction, The symbolic address designated by
an address constant is used to initialize the instruc-
tion.

Suppose that an input area contains a block of
records, each of which must be moved from the area
in succession. The input area is given a symbolic
address so that the area can be referenced by the
instruction which moves the records. Initially, the
instruction has as its address portion the symbolic
address of the area, thus referencing the first
record in the area. However, the instruction's
address portion must be modified before it can ref-
erence successive records; the modification is
generally an increment equal to the size of one
record. Eventually, the input area is emptied, and
a new block of records is placed in it. But the modi-
fied instruction no longer references the first record.
At this point, it is necessary to initialize the instruc-

tion, that is, to return the instruction to its original
form, by means of an address constant. Assume

that the address constant has been coded and that it
consists of the symbolic address of the input area.
Now the address constant can be placed in the address
portion of the modified instruction. Once the instruc-
tion is initialized, it references the first record in
the area again,

INSTRUCTIONS TO THE PROCESSOR. Instructions
to the Processor allow the programmer to control
certain aspects of the assembly process and to take
advantage of the special features of the Processor.
The Processor instructions are written as Autocoder
statements in the program. When they are encount-
ered during assembly, the Processor performs the
operations they request. Instructions to the Proc-
essor concern the following aspects of the assembly:

1. The listing of the program
2. Location assignments made by the Processor
3. Coding generated by the Processor

INPUT/OUTPUT SYSTEMS FOR USE WITH
AUTOCODER PROGRAMS

Input/Output Control Systems (IOCS) have been
developed for the IBM 7080, IOCS consists of a
group of routines which handle all input/output func-
tions. These routines are made available to an
Autocoder program when IOCS macro-instructions in
the Processor library are used in the program. The
following IOCS publication is available:

17080 Input/Output Control System for use with
729 Magnetic Tape Units," Form C28-6237.

HIGHER LANGUAGES OF THE 7080 PROCESSOR
FOR USE WITH AUTOCODER PROGRAMS

As mentioned earlier, the 7080 Processor accepts
program statements written in several higher lan-
guages. The languages are: Report/File Writing;
Decision; Arithmetic; Table-Creating. Various
Processor phases translate each of these statements
into one or more Autocoder statements.

FORTRAN is the name for FORmula TRANslation
language. As the name implies, complex problems
can be stated in formula form using FORTRAN.

Both fixed point and floating point calculations are
possible.

Report/File Writing language is a set of statements
which may be used to describe the format and contents
of a report or file. The routine generated from these

11

statements will create the report or file.

Decision language is one statement. It requests a
logical decision to be made on the basis of a test of
the various conditions supplied in the statement.

Arithmetic language, also one statement, requests
a series of mathematical computations to be per-
formed on the elements supplied in the statement.

Table-Creating language consists of a statement
which requests the creation of a table from a set of
data. The data itself must accompany the Table
statement.

12

The following higher language publications are
available:

1. "FORTRAN," General Information Manual,
F28-8074-1.

2. '"7058 Processor: Decision, Arithmetic, and
Table-Creating Languages," Reference Manual,
C28-6226.

3. ''7058 Processor: Report/File Language,"
Reference Manual, J28-6234.

CHAPTER 1.

An Autocoder program is written on the IBM 7080
Processor Coding Form, Form X28-1636, shown in
Figure 1. One card is punched for each line of the
coding sheet. The card designed for Autocoder pro-
grams is the IBM Autocoder System Card, Electro
623-111. An Autocoder statement is formed by fill-
ing out the appropriate fields on the sheet according
to the specifications for the type of statement being
written. Some statements may occupy more than one
line. The term ''field" applies to the character po-
sitions included under each heading on the program
sheet. The position numbers listed with the field
headings correspond to the columns on the card.
The lower row of field headings (including '"Flag'')
define the fields for source program statements.
The upper headings list special fields that are used
in the preparation of user-written macro-instruc-
tions.

STANDARD FORMAT OF AUTOCODER STATEMENTS

PROGRAM IDENTIFICATION (COLUMNS 75-80)

The identification is filled in at the top of the coding
sheet. It should appear in columns 75-80 of every
card punched for an Autocoder statement.

PGLIN (COLUMNS 1-5)

The sequence of the coding sheets and the statements
on the coding sheets is designated by the five-posi-
tion number in these columns. Columns 1 and 2
designate- a two-position page number that is used to
determine the sequence of the coding sheets. Any
alphameric character may be used in the number.
Normally, however, special characters are not used.
The IBM 7080 collating sequence, shown in Figure 2,
is used to determine the order of the pages.

JEIN

O

Program or Macro

Programmed by

INCLUSION TEST

7080 PROCESSOR
CODING FORM

IDENT o o 0
75

FORM X28-1636

Page

Date

CODING ON BACK

M1 M3 S2 |+
®

TAG OPERAND

PGLIN OPERATION NUM]
1] 516

15416 20§21 22/

o s

COMMENTS

39 63 63 67 69 2117317

E_;;_L_Lii__L___L_—__;;L__T}_T_

- - B ERFEFEFRFEFEEFEREEFERFERFEEFERERFEFEREREERER
L F b 3

l + bR EFRFRFFRFEAEREERERFERFEFEREEREEREERERFERE

|
I
I
!
1
I
1
!
|
1
I
I
I
|
I
i
1
|
|
i
]
1
1
1
1
]
|
1
I
|
|

- - -+ FFVFRFEFRERFERFREFRFERFREFEERERRER

Figure 1

13

+ -
Blank . 0 %&$*-/, %#@0 AthroughI 0 Jthrough R + S through Z 0 through 9

Figure 2, IBM 7080 Collating Sequence

Columns 3 to 5 designate a three-position line
number that is used to determine the sequence of the
statements on the coding sheets. On the front of
each sheet, the first two positions are pre-numbered,;
any alphameric character may be used in the last po-
sition, although special characters are not used
normally. Ordering should be done according to the
7080 collating sequence. It is recommended that
column 5 be left blank except when designating the
sequence of insertions.

The back of each sheet may be used for insertions.
The insertion page number should be the page num-
ber of the statement the insertion is to follow. The
insertion line number should be higher than that of
the statement preceding the insertion and lower than
that of the statement following the insertion. For
example, a three-line insertion may be required be-
tween two statements numbered 03b and 04b (b rep-
resents a blank). The insertions might be numbered
031, 032, and 033, or they might be numbered 03A,
03B, and 03C.

TAG (COLUMNS 6-15)

A tag is the symbolic address which represents the
actual location of a data field or an instruction. The
field is filled in starting in column 6. When an
Autocoder statement references a tag, it refers to
the data field or the instruction at the storage loca-
tion represented by the tag. During assembly, all
fields and instructions are assigned storage loca-
tions, and all references to tags are replaced with
the locations assigned to the tags.

A tag may contain up to ten characters; these may
be alphabetic and/or numeric and blanks. A tag may
not contain special characters. If composed of
numeric characters only, a tag must consist of five
or more characters. It is recommended that tags
not start with one or more blanks, because the
Processor must left-justify them, a time-consuming
operation. It is also recommended that pure numeric
tags not be used. It is best to create tags which
describe the data fields or the instructions to which
they are assigned. Tags should not be assigned
unless they are referenced by program statements;
because unnecessary tags slow the assembly process
and produce needless messages.

OPERATION (COLUMNS 16-20)

The mnemonic code of the Autocoder statement is
placed in the operation field, starting in column 16.
No machine operation code can be used.

14

NUMERIC (COLUMNS 21-22)

The use of the numeric field varies according to the
type of Autocoder statement being written. A one-
position entry is placed in column 22.

OPERAND (COLUMNS 23-39)

The use of the operand field varies according to the
type of Autocoder statement being written. The

field is filled in starting in column 23, and the entry
may be continued into the comments field. Macro-
instruction operands may be continued from the com-
ments field of one line into the operand and comments
fields of succeeding lines of the coding sheet.

COMMENTS (COLUMNS 40-73)

Additional information about an Autocoder statement
may be written in the comments field and will appear
in the program listing. Comments are useful for
explaining the purpose of program statements. The
field can begin before or after column 40. The com-
ments may be continued in the comments field on
subsequent lines of the coding sheet; there is no
limitation on the number of comments continuation
lines.

The rules governing comments and comments
continuations vary according to whether or not the
comments accompany a macro-instruction. If they
do, they must be separated from the operand by a
minimum of two blank spaces whether the operand
terminates in the operand field or continues into the
comments field. The comments continuation lines
for macro-instructions may not contain entries in
any fields except pglin and comments.

If the comments do not accompany a macro-in-
struction, they do not have to be separated from the
operand by blank spaces, and comments continuation
lines may contain entries in any columns except 16
(first position of the operation field) and 21-22
(numeric field). However, to make the comments
easier to read, it is recommended that the continu-
ation lines be restricted to entries in the pglin and
comments fields.

FLAG (COLUMN 74)

Characters written in this column are used for com-
municating with the Processor. The types of char-
acters that may be placed in this column (and an
explanation of their meanings) are described in
Chapter 7, "Instructions to the Processor."

Area definition statements describe data fields; the
data may be variable data supplied by records or
constant data supplied by the area definition state-
ment. The programmer must know the length and
composition of the records so that each field may be
defined correctly. The Processor uses the infor-
mation provided by area definitions when it reserves
storage space for the fields and when it encounters
instructions which reference the fields.

There are five types of area definitions:

1. Definition of a Record - RCD

2. Definition of a Constant Factor - CON

3. Definition of a Floating Decimal Point
Number - FPN

4. Definition of a Report Format Field - RPT

5. Definition of a Continuous Portion of
Memory - NAME

An area definition statement must contain a tag if
the field is to be referenced. The reference is made
by using this same tag in the operand of the Autocoder
statement making the reference. Since the tag re-
quirement applies to all area definitions, the tag
field will not be discussed separately in the remain-
der of this chapter.

DEFINITION OF A RECORD - RCD

The function of an RCD statement is to define a data
field in which a record block, an individual record,

or a portion of a record will be placed. The defini-
tion specifies the size of the field and the nature of

data it will contain. The RCD statement is written

as follows:

OPERATION FIELD, The mnemonic code RCD is
placed here. In a continuous series of RCD state-
ments, only the first need contain the mnemonic
code. The Processor assumes that each immediately
subsequent statement with a blank operation field is
an RCD and treats it accordingly. This assumption
makes it possible in subsequent statements to use
columns 17-20 of the operation field as an expansion
of the numeric field. (The operation field is assumed
to be blank if column 16 is blank.)

NUMERIC FIELD, The size of the data field is
entered here. A one-digit entry is placed in column
22 and need not be preceded by a zero. When the
operation field contains the RCD code, the numeric
field is limited to a two-digit entry. However, when
the operation field is blank and the statement has
been preceded by another RCD statement, columns
17-20 of the operation field may be used as an expan-
sion of the numeric field. Under these conditions,

CHAPTER 2. AREA DEFINITIONS

in effect, the numeric field consists of six positions.
Thus, data fields which exceed 99 positions may be
defined, but they may not be the first in a series of
RCD statements.

OPERAND FIELD. The operand field contains one
of the following:

1. A descriptive code. This is used to define
alphameric fields or numeric fields containing
integers only.

2. A description of an integer and decimal format.
This is used to define numeric fields containing
mixed or pure decimals.

3. A layout of group marks and/or record marks.
This is used to describe the position of group marks
and/or record marks in a field,

Alphameric Fields and Numeric Fields of Integers

Only.

Code Contents of Field

+ Signed numeric data consisting of integers.
The field may not exceed 99 positions
if it is to be referenced by a general
purpose macro-instruction,

N Unsigned numeric data consisting of
integers. The field may not exceed 99
positions if it is to be referenced by a
general purpose macro-~instruction.

F Signed numeric data in floating point
form. The field must consist of ten
positions: a two-character exponent,
signed in the low-order position, follow-
ed by an eight-character mantissa,
also signed in the low-order position,
This is the form in which a floating
decimal point constant appears in
storage. See page 19 for further
explanation.

A Alphameric data which may or may not
provide left protection for the immedi-
ately subsequent field.

A+ Alphameric data which always provides
left protection for the immediately sub-
sequent field.

Left protection must be provided when the subse-
quent field contains signed numeric data and is ref-
erenced by a macro-instruction having an arithmetic
function. The low-order position of the field provid-
ing left protection must be occupied by one of the
following: an alphabetic character, a signed numeric
character, a blank, or any special characler.

15

Figure 3 shows fields defined with descriptive
codes.
because it is not tagged.

. TAG OPERATION ':UM. OPERAND \

IUNS.| GNED RCD &[ﬁ

IALPHAF. 1 ELD 1[25/A+

S IGNED 1.3+

FLOAT. 1OF .)
1.2/00 %

Figure 3

Numeric Fields Containing Mixed or Pure Decimals.
The operand must indicate the number of integer and
decimal positions in the field and whether the field is
signed or unsigned. This may be done in either of
the following ways, although the first method is the
preferred use:

1. Enumerating the number of integer and deci-
mal positions.
as #+xx.yy, and unsigned numeric fields as #bxx.yy,
where xx and yy represent the number of integer and
decimal positions respectively (b represents a blank
position). If there are no integer positions, xx is
written as 00. If there are less than ten positions on
either side of the decimal point, the numeric digit
is preceded by a zero. The sum of xx and yy must
equal the entry in the numeric field. The maximum
size data field which can be defined consists of 99
integer and 99 decimal positions.

2. Showing a layout of the integer and decimal
positions. Each integer and decimal position is
indicated by an X, with a decimal point placed in the
appropriate position. The layout of a pure decimal
starts with the decimal point and is followed by the
necessary number of Xs to the right of it. When de-
fining signed numeric fields, a plus sign-is placed in
the first position of the operand and is followed by
the layout. The operand defining an unsigned numeric
field starts with the layout itself. A blank position is
not used to indicate unsigned numeric data.

The total number of Xs must equal the entry in the
numeric field. Although both the decimal point and
the sign occupy positions in the layout, neither is
included in the count for the numeric field entry. The
point itself does not exist in the record nor does the
sign exist in the record as a separate position. How-
ever, the Processor needs this information for vari-
ous purposes, such as selecting the proper coding to
replace macro-instructions.

The definitions in Figure 4 are paired to show how
the same numeric fields would be defined by each of
these methods. Note that SIGNED3 is too large to
be defined by a layout.

16

Notice that the final field cannot be referenced,

TAG OPERATION ({NUM. OPERAND
S1GNED1 RCD .
S LGNED. . Ch . X XXX X, XXX _)
UNS I.GNEDA. [RCD . [1.28F 1.1..01 S
UNS I GNED1 IRCD . [2)XO(XX XX XX XXX . X
S)IGNED2 . . RCD . |
SILGNEDR RCD . 134 o XXXXUXXAN XX XX,
e $ e s
UNSI.GNED2 RCD 28 0Q.02 _ud_._.__}
WUNS.I GNED2 RCD XX .
SIGNED3 RCD . \Z
. R |
Figure 4

Signed numeric fields are represented

Indicating the Position of Record Marks and/or Group
Marks. This information should be supplied if the

record which contains such characters is referenced
by a macro-instruction.
the characters occupy must be defined as one field

The position or positions

of the record, unless no other information is to be
given about the record. The operand must be a lay-
out of the record portion which contains the characters
and may indicate one of the following: a terminal
group mark, a terminal record mark, or an internal
group mark followed by a terminal record mark. The

operand may contain the following symbols only:

+
¥

b

record mark
group mark
blank

Figure 5 shows two ways in which the position of
a terminal group mark could be indicated in defining
a record consisting of 31 positions of data, three

blanks, and a group mark.
. TAG N uor:nnov:o :C'Ul:z, s OPERAND J
IFLRSTWAY. . RGD 1A
4. % s
3
RQECONDWAY RCD . 24 |
" .
Figure 5

If the three blanks had been data, the definition
for SECONDWAY would have been used. If the blanks
had been group marks, the definitions in Figure 6
would have been used.

TAG OPERATION
re

3

INUM.| OPERAND

20{21 22|23

NEWNWAY. . RCD

RS X X AN

I

LA

Figure 6

If one or more group marks appear within a record,

they may be made terminal by defining them as a
separate field and giving the field a tag. Figure 7
shows how the four group marks within a 90-position
record may be made terminal by being defined as a

separate field.

. TAG . I.()FERM’IO':° ':‘U':z s OPERAND 7
|RSTPART. RCD . Z0A+ {
GROUPMARK At$ss | s
ECONDPART A6 (
1

Figure 7

Figure 8 shows two ways in which a record termi-
nated by three blanks and a record mark could be

defined.
. TAG - “OPHAVIO':O :UP:I s OPERAND E
F1RSTWAY. _|RCD \ .
e £ |
12 B
SECONDWAY. RCD . 24 %
1+
2
Figure 8

If the final blank had been a group mark, the
record could have been defined in either of the ways

shown in Figure 9.

TAG OPERATION
slie 2

INUM,|

ol21 22l23

OPERAND

GD

P

4 ¥t

%

NN

i e
2’& ;
s

If all the blanks had been group marks, the record
would have been defined as shown in Figure 10.

Figure 9

TAG OPERATION |NUM,
s

sl 20|21 2223

F1RSTWAY Ch 1
LS A

5
]
l e

OPERAND

Figure 10

If a record of less than 51 positions is being defined
and it is not desired to give any information about the
contents other than the location of group marks and/
or record marks, the entire record may be defined
by a layout operand. Figure 11 shows the definition
of a 20-position record which contains a group mark

in the fifteenth position and a terminal record mark.

L TAG], oreration o] OPERAND J
MARKSONLY. [Rco . 20 £ | %3
: . e I S|
Figure 11

COMMENTS FIELD. Comments may be started
here. If comments continuation lines are written,
columns 16, 21, and 22 of the continuation lines
must be blank. If the statement following the last
continuation line is blank in column 16 (but is not
blank in columns 21 and 22), the Processor assumes
that the line is another RCD statement.

Using an RCD of Zero Length

If the first data field in a record exceeds 99 positions,
its RCD definition may be preceded by an RCD of
zero length. In this way, the definition becomes the
second in a series of RCD statements, and the
mnemonic code RCD may be omitted for the second.
Columns 17-20 of the operation field may then be
used as an extension of the numeric field. No space
will be reserved for an RCD of zero length,

Restrictions on RCD Statements

The size of a data field may not exceed 159,999 posi-
tions. If a single RCD statement specifies a larger
field size, the Processor will subtract 160,000 from
the specified size and use the remainder as the size
of the field when reserving storage space. A message
to this effect is provided at assembly time.

Definitions of one or more terminal group marks
may not indicate internal record marks or internal
group marks. Definitions of a terminal record mark
may not indicate internal record marks.

DEFINITION OF A CONSTANT FACTOR ~ CON

The function of a CON statement is to define a data
field which will contain constant data and to provide
the constant itself. The data may consist of any
combination of alphameric characters and/or blanks.
The CON statement is written as follows:

OPERATION FIELD. The mnemonic code CON is
placed here. In a continuous series of CON state-
ments, only the first need contain the code in the
operation field. The Processor assumes that each
immediately subsequent statement which is blank
in column 16 of the operation field is a CON and
treats it accordingly. This assumption makes it
possible in subsequent statements to use columns
17-20 of the operation field as an expansion of the
numeric field.

NUMERIC FIELD. The size of the constant is entered
here. A one-digit entry is placed in column 22 and

17

need not be preceded by a zero. When the operation
field contains the CON code, the numeric field is
limited to two positions. However, when the opera-
tion field is blank and the statement has been preceded
by another CON statement, columns 17-20 of the
operation field may be used as an expansion of the
numeric field. Under these conditions, in effect, the
numeric field consists of six positions. Thus, con-
stants which exceed 99 positions may be defined, but
they may not be the first in a series of CON state-
ments,

OPERAND FIELD., The constant is entered here.
If the entry in the numeric field is not equal to the
number of positions specified in the operand, the
Processor will do one of the following:

1. Truncate the excess low-order positions when
the numeric field entry specifies fewer positions than
those contained in the operand.

2. Supply low-order zeros or blanks when the
numeric field entry specifies more positions than
those contained in the operand. Blanks will be
supplied for alphameric fields; zeros will be supplied
for signed numeric fields.

In Figure 12, the numeric field for TAG2 indicates
that the constant contains nine low-order blanks.

. TAG N uOPElAYIO':O ;‘:":1 " OPERAND S
AG1 CON BCDE.
TAG2. 2OTHF. DATE 1S . ..
AG3 . qpafz. . {
. . . \
Figure 12

Defining a Numeric Constant. A constant consisting
of signed numeric data must contain a plus or minus
sign in column 23 of the operand field. If the data is
a mixed or pure decimal, the decimal point should be
placed in the appropriate position. In storage, the
low-order position of the field is signed accordingly.
However, neither the sign nor the decimal point is
included in the count of field positions for the num-
eric field entry. A signed numeric constant that
exceeds 99 integer or 99 decimal positions should
not be referenced by a general purpose macro-~-in-
struction.

Unsigned numeric data consisting of integers only
is written starting in column 23 of the operand field.
Unsigned numeric data consisting of mixed or pure
decimals should not be specified as a constant if it is
to be referenced by an Automatic Decimal Point
macro-instruction, because it will be treated as
alphameric data containing a period.

In Figure 13, note the following: the TAG3 con-
stant will appear in storage as 8bbb, the TAG4 con-

18

stant will appear as 64000 with a plus sign over the
low-order zero, and the TAG5 constant will appear

as 365 with a minus sign over the 5.

. TAG] .orsnnot:D T’U:(z B OPERAND "
TAG1 ON . | 4+75.25 !
AG2 . 3845 !
TAG3 4)
TAGS . St64 . . {
TAGS -3.65 S
{

Figure 13

Defining a Constant of Record Marks and/or Group
Marks. It may be desired to supply a constant of
record marks and/or group marks as the terminal
field of a record. For example, to follow a 33-posi-
tion data field with a blank and a record mark, the
definition would be written as shown in Figure 14.

TAG OPERATION |NUM.| OPERAND
(1))
ONSTANT. ON . | 2F
Figure 14

If a data field containing a 42-position record is to

be followed by a constant of two group marks and a
record mark, the definitions in Figure 15 would be
used:

TAG OPERATION N‘UM, s OPERAND
RCD s |
CONSTANT. . ICON %ﬁ*

Figure 15

COMMENTS FIELD. Comments may be started
here. If comments continuation lines are written,
columns 16, 21, and 22 must be blank. If the state-
ment following the last continuation line is blank in
column 16 (but is not blank in columns 21 and 22),
the Processor assumes that the line is another CON
statement.

Restrictions on CON Statements

A one-position CON statement should be used to
supply a plus sign or a minus sign as an alphameric
constant. If an alphameric constant consisting of a
plus or minus sign followed by numeric characters
is desired, a one-position CON statement should be
used to define the sign, and another CON should be

used to define the numeric characters as an unsigned
numeric constant.

DEFINITION OF A FLOATING POINT
NUMBER - FPN

The function of an FPN statement is to define a data
field for constant numeric data and to provide the
data in floating point form. Numeric data should be
defined in floating point form when there is a possi-
bility that the limits of the accumulator might be
exceeded during arithmetic operations with the data
if it were defined in fixed point form.

Floating point form consists of a mantissa and
an exponent. The mantissa is a pure decimal with
a non-zero high-order digit; the exponent is a num-
ber specifying a power of ten. When the mantissa is
multiplied by the power of ten that the exponent
specifies, the data is produced in fixed point form.
The following lists show the same data expressed in
both forms.

Fixed Floating
+9427, 38 +.942738 x 104
-.3264 -.3264 x 100
+,0035 +.35 x 10-2
-623 -.623 x 103

The FPN statement is written as follows:

OPERATION FIELD. The mnemonic code FPN is
placed here. In a continuous series of FPN state-
ments, only the first need contain the code in the
operation field. The Processor assumes that each
immediately subsequent statement which is blank in
column 16 of the operation field is an FPN statement
and treats it accordingly.

NUMERIC FIELD. This is left blank; the Processor
assumes 10 positions.

OPERAND FIELD, The exponent and the mantissa,
each preceded by a plus or minus sign, are placed
here in the following format: *EEXDDDDDDDD.
The exponent must be a two-position number, as
specified by EE. The sign which precedes the ex-

ponent indicates the direction in which the decimal
has been moved in order to convert the data from
fixed point to floating point form. The plus sign
indicates the decimal has been moved to the left; the
minus sign indicates the decimal has been moved to
the right.

As indicated by DDDDDDDD, the mantissa may
consist of up to eight digits and is preceded by the
sign of the number itself, If fewer than eight digits
are specified, the Processor will supply low-order
zeros to complete the mantissa; if more than eight
are specified, the Processor will truncate the excess
low-order digits., When the data is placed in storage,
the signs are placed over the low-order positions of
the exponent and the mantissa.

Figure 16 shows a list of fixed point numbers,
their corresponding FPN definitions, and the con-
stants that would be created from them.

COMMENTS FIEID. Comments may be started here.
Comments continuation lines are not allowed. Any
continuation line following an FPN is assumed to be
another FPN.

Restrictions on FPN Statements

The absolute value of the exponent may not exceed
99. An exponent of 00 is signed +.

FPN definitions may not be referenced by any
Automatic Decimal Point macro-instructions, The
programmer must provide his own macro-instructions
and/or subroutines in order to calculate with floating
point numbers, because the Automatic Decimal
Point macro-instructions calculate with numeric
data in fixed point form only.

DEFINITION OF A REPORT FORMAT - RPT

The function of an RPT statement is to define a data
field for numeric data which will be printed in a
report and to specify the print format for the data.
The RPT field may be referenced by macro-instruc-

Fixed Point Form R TAG] orexnion T OPERAND Constants Placed in Storage
1. +589.46782 EPN 403+ 58946782 1. 0358946783
2. +.0025 e -02+25 { 2. 022500000
3. -4327.9 L #04-43279 . { 3. 0443279000
4. -.063 | - - =01-63 j 4. 0163000000
5. —.4792 % +00-4792 l 5. 0§47920006
6. +17482.18036 .- FOStI748218936| 6. 0317452189
Figure 16

19

tions which place the numeric data in the field and

supply the elements of the desired format. The

following elements may be specified in the definition:
1. Commas and/or a decimal point

. Fixed or floating dollar sign

- The printing or suppressing of leading zeros

. Asterisk protection

Indication of the numeric field sign

. The blanking of a field of zeros

.

O U v WD

The RPT statement is written as follows:

OPERATION FIELD. The mnemonic code RPT is
placed here. In a continuous series of RPT defini-
tions, only the first need contain the code. The
Processor assumes that each immediately subse-
quent statement which is blank in column 16 of

the operation field is an RPT statement and treats
it accordingly.

NUMERIC FIELD. The size of the RPT field is
entered here. All positions of the format, as shown
by a layout in the operand field, must be counted.
The count consists of the positions for the numeric
data and any commas, decimal points, dollar signs,
and positions reserved for printing the sign of the
field.

OPERAND FIELD. The layout of the report format
is started here; it consists of the symbols used to
define the numeric characters, and the symbols for
a dollar sign, a comma, and a decimal point if any
are used. The layout may also contain one or two
blank positions reserved for printing the sign of the
field. Usually, the layout is followed by a set of
indicators which provide the macro~instructions with
additional information about the desired print format,
In explaining the method of laying out the format,
three sets of data will be used as examples through-
out this section: the first consists of four integer
and twe decimal positions; the second consists of
three decimal positions; the third consists of five
integer positions,

Indicating Numeric Characters, Commas, Decimal
Point. Xs and Zs are used to indicate the position of
each numeric character in the format. If commas
and/or a decimal point are desired, the symbols for
them are placed in the appropriate positions. The
numeric positions of the format are defined as
follows:

1. Decimal positions. Zs must be used to define
all decimal positions. Any trailing, i.e., significant,
zeros in the data entering these positions will be
retained and printed.

2. Integer positions. Xs and/or Zs may be used
to define integer positions. The treatment of any

20

leading, i.e., insignificant, zeros in the data entering
these positions depends on whether the position in
which the zero occurs is defined by a Z or an X. If
the position is defined by a Z, the zero will be re-
tained and printed; if it is defined by an X, the zero
will be converted to a blank. Xs may be used to the
left of Zs but not to the right of them. If the format
layout does not contain a decimal point, the Proc-
essor assumes that a field of integers is being defined.

In Figure 17, the MIXED and INTEGER definitions
indicate that any leading zeros are to be replaced by
blanks. Notice that no decimal point is specified in
the INTEGER field,

i TAG " “ovsuno':o Num] | OPERAND 7
XED. RPT 3 XXX 2Z
ECI MAL A, 7227 .
&NTEGER XXX, ﬁs
Figure 17

If 004320 were placed in the MIXED field defined
in Figure 17, it would be printed as bbb43. 20 (the
comma having been replaced by a blank).

The MIXED and INTEGER fields are redefined in
Figure 18 so that leading zeros will be retained. The
MIXED definition requests that leading zeros which
occur in the two low-order integer positions be
printed. The INTEGER definition requests that
leading zeros be printed in all but the high-order
position.

TAG OPERATION |NUM OPERAND
s ;

. N 20|21 22023

MiXED. . RPT A,,BxdxzzL;;%_*{
INTEGER XzZZZ R j

Figure 18

If 000120 were placed in the MIXED field defined
in Figure 18, it would be printed as bbh01, 20, and if
00089 were placed in the INTEGER field, it would be
printed as b0089,

Leading zeros may also be replaced by asterisks.
This is called asterisk protection and is requested
by an indicator which is placed immediately after
the format layout. The indicator consists of a
lozenge, an asterisk, and a lozenge (2*O), In
Figure 19, the INTEGER field is defined for complete
asterisk protection. The MIXED field, however, is
defined for asterisk protection only in the positions
defined by Xs.

TAG R .oreunou NUM. OPERAND 7
NTEGER RPT. O XX >
LXED, B, XXX, ZZ

! 3
Figure 19

The position of the decimal point can be indicated to
macro-instructions which handle numeric data with-
out having the point appear in the printed report.
This is done by placing the symbol D in the appropri-
ate position of the layout. The D is not included in
the count of positions for the numeric field. This
may be seen in Figure 20,

. TAG s ‘or[nnov:o :uu B OPERAND j

IXED PT . | 7X,XXX0DZZ R
DEC.IMAL 3Dzzz j
Figure 20

Indicating the Position and Treatment of Dollar Signs.
The dollar sign, if desired in the printed report, is
written to the left of the high-order position of the
format layout and is included in the count for the
numeric field. A fixed or floating dollar sign can be

specified as part of the print format through indicators

which are placed to the right of the format layout.

The indicators are surrounded by lozenge symbols

(%) and are not included in the count for the numerical
column, because they are not part of the format lay-
out. A fixed dollar sign is printed in the same posi-
tion for each use of the data in the report.

If a fixed dollar sign with asterisk protection is
desired, the format layout is immediately followed
by an indicator consisting of a lozenge, an asterisk,
and a lozenge (H* 1), If a fixed dollar sign without
asterisk protection is desired, the format layout is
not followed by any dollar sign indicators. If any
leading zeros occur in the data, they will be main-
tained or replaced by blanks, depending on whether
Zs or Xs are used in the integer positions of the
format layout.

A floating dollar sign is shifted so that it is printed
to the left of the first numeric character in each set
of data. It is requested by an indicator consisting
of a lozenge, a dollar sign, and a lozenge (X$ 1)
placed to the immediate right of the format layout.

Figure 21 shows one field as it would be defined
to request each of the following: a floating dollar
sign; a fixed dollar sign with asterisk protection; a
fixed dollar sign without asterisk protection and with
leading zeros converted to blanks; a fixed dollar sign
without asterisk protection and with up to three
leading zeros retained; no dollar sign but asterisk
protection.

. TAG . }:Drsnnor:‘)[:w:z,” OPERAND)
IXED1 PT . 9 XXX . ZZR$K (
LXED2 L A8X, XXX 22
I XEDA _ X, XXX ZZ

MIXED4A . o WX, 2zz.zz .
1 XEDAS yXXX.ZZX

Figure 21

Assume that 003418 and 000570 are placed in each of
the fields defined in Figure 21. The definitions would
cause the data to be printed as follows:

MIXED1 $34.18 $5.70
MIXED2 $***34.18 $H*EX5, 70
MIXED3 $ 34.18 $ 5.70
MIXED4 $ 034.18 $ 005.70
MIXEDS **%34,18 **XX5.70

Note that the commas in MIXED2 and MIXED3 are
converted to an asterisk and a blank respectively.
In MIXED4, and MIXED5, the comma is converted
to a blank.

Indicating Field Signs and Zero Fields, Sets of char-
acters which occupy one or two positions are avail-
able for printing either or both of the following in
the report:

1. An indication of the sign of the field supplying
data to be placed in the RPT field.

2. An indication that the field supplying data con-
sists of zeros.

The requested characters will be printed to the
right of the data.

One or two blank positions, depending on which
set of characters is requested, must be added to the
low-order portion of the format layout and must be
included in the count for the numeric field entry.
These blank positions are considered part of the
layout. The special characters, called field sign
indicators, are written to the right of the dollar sign
indicator and its accompanying lozenges. Each
character is also followed by a lozenge.

At this point, it is necessary to discuss the loz-
enges which separate the indicators in the RPT
operand. Not only are the indicators significant to
the Processor, but the presence or absence of the
associated lozenges is also significant. When an
option is not desired, the indicator which requests
it must be omitted. If no subsequent options are to be
requested in the same operand, the lozenge associ~
ated with the omitted indicator is also omitted. How-
ever, the lozenge is retained and placed back-to-
back with the preceding lozenge if subsequent options
are requested in the operand. The lozenge placement
indicates to the Processor which option or options
are not desired. A lozenge which may be omitted
when its associated indicator and all subsequent indi-
cators are omitted is called a conditional lozenge.

The lozenges associated with the dollar sign
indicator are conditional. When a dollar sign is not
included in the format layout or when a fixed dollar
sign without asterisk protection is desired, no dollar
sign indicator is required. The associated lozenges
may be omitted unless a field sign is being requested.
In this case, the dollar sign lozenges must be placed
back-to-back and must precede all field sign indi-
cators and their associated lozenges.

The field sign lozenges are not conditional. If any
field sign indicators are used, the lozenge associ~
ated with each indicator must be placed after the
indicator itself, or must be placed back-to-back with
the preceding lozenge when the indicator is omitted.

The full dollar sign and field sign indicator
structure is: OXjHXoHOX3HX4H

X1 1is the dollar sign indicator or is omitted. The
lozenges are conditional.

X9 is the negative field sign indicator or is
omitted.

X3 is the zero field indicator or is omitted.

X4 is the positive field sign indicator or is
omitted.

The field sign indicators are as follows (b desig-
nates a blank):

1. One-position indicators: b - * +

2. Two-position indicators: b- b* ** CR DR DB
If indicators from the first set are used, one blank

position must appear as the final position of the for-
mat layout; if indicators from the second set are
used, two blank positions must appear as the final
positions of the format layout.

The symbols CR, DB, -, and b- may be used for
the negative indicator only. The symbols DR and +
may be used for the positive indicator only. The
other symbols are interchangeable. A blank is gen-
erated in the sign position when the condition associ-
ated with an omitted indicator is encountered.

It is possible to leave one blank position as the
final position of the format layout, use the dollar
sign indicator and its lozenges, but omit all field
sign indicators and their associated lozenges. In
this case, a blank will be generated in the sign posi-
tion for both zero and positive fields, and a minus
sign will be generated for negative fields, If a
dollar sign indicator is not desired, the format lay-
out can be terminated with the blank position, which
must be included in the count for the numeric field
entry.

The definition in Figure 22 requests a floating
dollar sign. It also specifies that the minus, asterisk,
and plus symbols are to be printed after negative,
zero, and positive fields, respectively. One blank
position for sign indication terminates the layout.

. TAG OPERATION (NUM.| OPERAND (
IXED]1 PT . 10$X, XXX.ZZ 03¢ 5. A §
Figure 22

Assume that the definition in Figure 22 defines the
RPT field for the data shown below:
Data Entering RPT Field RPT Field Printed

032570 $325,70~
000000 $. 00%
457638 $4,576. 38+

22

Figure 23 shows a request for a fixed dollar sign with
asterisk protection, with the symbol CR printed after
negative fields and the symbol DR printed after posi-
tive fields. Two blank positions for sign indication
terminate the format layout.

TAG . .omw»or:o :m:; N OPERAND l ‘
IXED2 PT . 11X, XxXX.ZZ mﬁaﬂ
Figure 23

Assume that the definition in Figure 23 defines the
RPT field for the data shown below:
Data Entering RPT Field RPT Field Printed

003955 $***39_ 55CR
000000 grorkkk_ 00
413675 $4,136. 75DR

Note that the symbol D for the decimal point is not
included in the count of the format positions in Fig-
ure 24. Only the three numeric character positions

‘and the two blank positions for field sign indication

are counted. The sign indicators specify that the
dollar sign is omitted and that a negative field is to
be indicated by two asterisks.

TAG OPERATION |NUM. OPERAND s
. ws]is 20fa1 22l23
ECIMAL RPT. R
Figure 24

The definition in Figure 25 allows one position for
field sign indication but does not contain a dollar
sign or any sign indicators. Consequently, a minus
sign will be generated for a negative field, and a
blank will be generated for zero and positive fields.
The Zs specify that leading zeros are not to be con-
verted to blanks.

TAG OPERATION [NUM.[OPERAND S
INTEGER1 T zZZzz %

Figure 25
Assume that the definition in Figure 25 defines the

RPT field for the data shown below:
Data Entering RPT Field RPT Field Printed

00278 00278~
+

00000 00000
+

34628 34628

Figure 26 specifies a floating dollar sign and two
asterisks printed to the right of zero fields. All
positions of a zero field except the sign positions will
be blanked; this includes the dollar sign, comma,
and decimal point positions.

TAG OPERATION [NUM.
s rslie 20[21 22

NIEGER1 _RPT E9$xxjxxx _ Sroa) 2

OPERAND

Figure 26

Blank-If-Zero Option. If this is requested, any
defined commas, the decimal point, and a floating
dollar sign will be blanked along with the numeric
positions when the field contains all zeros. Only a
fixed dollar sign will not be blanked. To request
the option, the symbol BZ is used as the zero field
indicator. All five lozenges must be included whether
or not BZ is the only indicator used. This option is
independent of the other sign options; consequently,
when BZ is the only indicator used, it is not neces-
sary to terminate the format layout with any blank
positions.

The definition for MIXED1 in Figure 27 specifies
only that the field is to be blanked when it contains
all zeros. The definition for MIXED2 calls for a
fixed dollar sign with asterisk protection, a minus
sign following a negative field, and the Blank-If-
Zero option. A positive field will be printed without
any field sign indication, and the fixed dollar sign
will be retained when a zero field is blanked.

i 1AG], rERaTION Tum,] OPERAND j

IXENL PT . | 7IXXXX.ZZXHARZHN . }
ﬁ IXED2 PT It $x_;xxx 22 mmazgg_,_z
Figure 27

COMMENTS FIELD. Comments may be started here.
If comments continuation lines are written, columns
16, 21, and 22 must be blank. If the statement fol-
lowing the last continuation line is blank in column 16
(but is not blank in columns 21 and 22), the Processor
assumes that the line is another RPT statement.

Restrictions on RPT Statements

The format layout of an RPT operand may not exceed
51 positions. One and two-position field sign indica-
tors may not be mixed in the same statement.

The number of positions in the format layout must
be identical to the entry in the numeric field. If
blank positions for sign indication are included in the
layout, it is important to see that no more than two
blank positions are allocated. The number of commas
in the format layout should not exceed nine.

DEFINITION OF A CONTINUOUS PORTION OF
MEMORY -~ NAME

A NAME has two functions which may be used inde-
pendently of or in conjunction with each other:

(1) To identify a series of adjacent data fields as the
interior fields of an area so that they may be treated
as a unit; and (2) to specify the final digit or digits
of the location to which a data field is assigned.

ENCLOSING ADJACENT FIELDS. A NAME state-
ment which identifies fields as interior to an area

may be said to enclose the fields. The following
Autocoder statements define fields that may be en-
closed by a NAME statement:

1. Area definitions: RCD, CON, FPN, RPT,
NAME

2. Switch definitions: CHRCD, BITCD

3. Address constants: ACON4, ACON5, ACONS,
ADCON

The interior fields of the NAME area may be
referenced individually by their tags or referenced
as a unit by the tag of the NAME area. For example,
a work area may be defined as a NAME area con-
sisting of four interior fields. Each field may be
operated on individually, but the fields may also be
moved to and from the work area as a unit rather
than one at a time.

SPECIFYING A LOCATION. The location requested
by the NAME statement is assigned to the high-order
position of the immediately subsequent field. The
NAME statement specifies what the final digit or
digits of the address may be. The next available
location which ends in the requested digit or digits is
then assigned to the high-order position of the field
defined immediately after the NAME statement.
Suppose that a 4/9 location is requested, i.e., that
the high-order position of the field should be assigned
a location ending in 4 or 9, whichever is available
first. If 00012 is the last location assigned prior to
the request, location 00014 will be assigned; and if
00017 is the last assignment, then 00019 will be
assigned. In either case, if a 00 assignment had
been requested, 00100 would have been assigned.
The NAME statement is written as follows:

OPERATION FIELD. The mnemonic code NAME is
placed here. If a subsequent entry to the NAME con-
tains a blank in column 16 and a valid numeric char-
acter (i.e., 0-4, A-C), the entry is assumed to be
another NAME statement.

NUMERIC FIELD. This field is left blank if the
Processor is to assign the next available location to
the NAME .* If a specific address ending is desired,
one of these codes is placed in column 22:

Code Requests Location Ending In
Oorsb
loré6
2or7
Jor8
4o0r9
0
00
000

*For purposes of location assignment, an X in column 22 has the same

QPR wnHO

effect as a blank. However, if an X is used, the Processor will not
make the terminal location of the field available for the macro gen-
eration phase. (The X is used for generation of higher languages;
preferably, it should not be used in Autocoder.)

23

OPERAND FIELD. This fieldis left blank when NAME
is used only to request a location assignment. When
NAME is used to enclose a series of interior fields,
the tag of the interior datafield which terminates the
NAME is placed in the operand field. If an operand
is used, the NAME statement itself must be tagged.

The NAME statement in Figure 28 requests the
positioning of FIELD1 starting at the first available
address ending in 0. The statement also makes four
fields interior to STARTNAME by designating the
ENDNAME field as the terminal field.

, TAG R "onnnor:o p:‘up:z . OPERAND)
TARTNAME INAMF |
FAELDL .. RCD . [4N
LELD2 1 25A+ N N S
LELD3
NDNAME CON \E
Figure 28

Figure 29 shows NAME used to position the RPT field
ANYTAG in the next available address endingin 2 or 7.

TAG OPERATION |NUM. OPERAND
AME | 2
ANYTAG T 7 .
Figure 29

NAME is used in Figure 30 to identify the interior
fields of the area tagged BEGIN.

.\ TAG L .o'tnnov:o s OPERAND j
EGIN AME. ?
LELDA, PN.|. +03+438)

D. t02+67845 .)

Figure 30

Figure 31 shows a way of creating the constant
+12345 in such a way that it will not appear in stor-
age as 1234E (12345).

, TAG |, OFERATION r:‘w:‘ B OPERAND ‘
HA N.DALE_MA_.“___é
i CON . | .1 . - R
DAL PHA S12245 {
Figure 31

COMMENTS FIELD. Comments may be started
here. If comments continuation lines are written,
columns 16, 21, and 22 must be blank. If the state-
ment following the last continuation line is blank in
column 16 (but is not blank in columns 21 and 22),
the Processor assumes that the line is another
NAME statement.

Information Provided by the Processor

The Processor counts the total number of positions
occupied by the interior fields of a NAME area. A

24

message indicating the total will appear in the listing
immediately following the entry specified as the
terminal field definition.

Internal NAMEs

One or more NAME areas may be made internal to
another NAME. The operand of each internal and
outer NAME statement must contain the tag of the
field which terminates it. Internal NAMEs may be
terminated by the same field which terminates the
outer NAME, or they may be terminated by fields
which are internal to the outer NAME.

In Figure 32, the OUTERNAME is terminated by
the CON field ENDOUTER, while INNERNAME is
terminated by the RCD field ENDINNER.

i TAG N "OPEIATIOP:O ';'U:lz Ja OPERAND (
DUTERNAME. |
LELO1 co .|l Aay .
LELD2 LI5dA+ . !
NDINNER . . j
Fieton lmen lizar ;
LELDA 74404, O3 A
ENDINNER. \#E {
LELDA . RPT__|1.O$Xx,XxX zgxg%
|LELDA& RCD 35| R N
NDOUTER . CON 5|[¥$.¥¥=F ‘\i
Figure 32

In Figure 33, both FIRSTNAME and SECONDNAME
are terminated by the RCD field ENDFIRST.

i TAG L ‘ornmor:o ';,UT, B OPERAND ‘
RSTNAME NAME | QFL.RST.) .
LELDYL. CD . R5At+ — NP BN

S . Aoy
NAME ST .
z L_g
CD . .
ENDE .| RST I} Rt
Figure 33

Restrictions on NAME Statements

The number of positions enclosed in a NAME may not
exceed 159, 999. If the cumulative limit is exceeded,
the Processor will subtract 160,000 from the total
and use the remainder when developing the message
which specifies the size of the NAME area.

Internal NAME statements should not specify
location assignments. The operand (i.e., tag of the
termination field) of one NAME statement cannot be
the tag of another NAME entry.

The NAME statement itself must be tagged if the
operand contains a tag.

No more than 32 NAME areas may be defined
concurrently.

Switches are programming or hardware devices used
to control the path of a program. Three types of
switches may be defined: data switches, program
switches, and console switches. The statements
used for each type are as follows:
1. Data Switches
a. Character Code - CHRCD
b. Bit Code - BITCD
2. Program Switches
a. Switch Set to Transfer - SWT
b. Switch Set to No Operation - SWN
3. Console Switches
a. Alteration Switch - ALTSW
With one exception, the format of switch definition
statements varies according to the type of switch
being defined. The exception is the comments field.
Comments about any switch may be started in the
comments field of the definition statement. For those
switches which must be defined by a set of statements,
comments continuation lines may intervene between
the first statement and the remaining statements, or
the continuations may be placed in the comments
fields of the remaining statements.

DATA SWITCHES

A data switch is a data field. There are two types of
data switches: character code and bit code. The
character code switch provides a method of relating
alphameric codes to various meanings or conditions.
The bit code switch provides a method of relating the
bits which form a storage position to various meanings
or conditions. Both character code and bit code
switches are described by a set of statements, the
first of which is the switch definition statement. It
indicates whether a character code or bit code is
being defined. The rest of the character code switch
statements specify the alphameric codes which may
occupy the switch and the condition which each code
represents. The rest of the bit code switch state-
ments designate the various bits of the storage posi-
tion and the condition each bit represents. A char-
acter code switch may occupy one or two positions;
a bit code switch may occupy only one position.

A record field may be defined as a data switch,
and the switch may be interior to a record area de-
fined by a NAME statement. The switch will be set
each time a record is placed in the area. If the data
switch is not defined as part of a record area, the
program itself must set the switch. The way in
which the switch is initially set depends on its use
in the program. If the switch definition statement
follows an RCD, the statement should not specify the
initial setting. The Processor reserves storage

CHAPTER 3. SWITCH DEFINITIONS

space for the switch but does not set it to any code.

If an initial setting has been specified, the Processor
ignores it. However, the switch definition statement
that does not follow an RCD should specify an initial
setting. The Processor reserves space for the
switch and sets it as specified. If the initial setting
has been omitted, the Processor sets the switch to

a blank.

Program Branch Control macro-instructions are
normally used to set the switches ON or OFF or to
test their settings. A character code switch is set
ON by placing one of the defined codes in it and is
set OFF by placing a blank in it. When a character
code switch is tested, it is examined to see whether
or not a given code is present. If it is, the switch is
ON. If the switch contains anything other than the
code designated in the test, the switch is OFF. A
bit code switch is set ON by setting the designated
bits ON and is set OFF by setting the designated bits
OFF. When a bit code switch is tested, it is examined
to see whether or not the bit designated in the test is
ON. If it is, the switch is ON; otherwise, the switch
is OFF,

Suppose that statements for a character code
switch specify that codes A and B represent the
conditions of Surplus and Deficit, respectively. If
the switch is tested for the Surplus condition and A
is present, the switch is ON. On the other hand,
suppose the switch is tested for the Deficit condition.
Now, if B is present, the switch is ON. In other
words, the data switch must be tested for a condition
which has been specified in its definition. If the
code which represents the specified condition is
present, the switch is ON. Otherwise, it is OFF.

Now suppose that the switch is a bit code switch
and that the Surplus condition is represented by
turning ON the 1-bit, while the Deficit condition is
represented by turning ON the 2-bit. If the switch
is tested for the Surplus condition and the 1-bit is
ON, the switch is ON. It does not matter whether
the 2-bit is ON or OFF, because the test does not
specify the Deficit condition. It is possible, although
not logical in this example, that the switch be ON
for both conditions.

A character code switch may represent only one
condition at any time, whereas a bit code switch may
represent multiple conditions simultaneously. In
each case, the number of ON states for a data switch
is equal to the number of codes or bits specified in
the switch definition.

Character Code - CHRCD

A character code switch is defined by a series of

statements. The first is the CHRCD statement; its
function is to define the switch as a character code
switch and to specify the size and initial contents of
the switch. The statements which follow the CHRCD
statement specify the codes and the conditions they

represent. The format of the set of statements is as
follows:
Tag Operation |Num|Operand
CHRCD n|Xy
Ty C1
To Co
T3 C3
etc. ete.
n is blank when defining a one-
position switch,
is 2 when defining a two-position
switch.
Xy is the initial contents of the

switch or is blank.

are the tags of the codes. They
specify the conditions the codes
represent,

are the codes; any alphameric
characters may be used. The
codes may be composed of one
or two characters, depending
on what is specified in the
numeric field.

If the CHRCD statement immediately follows an
RCD statement, the CHRCD operand should be left
blank. If the switch does not follow an RCD field,
the operand of the CHRCD statement should specify
the initial setting; otherwise, a blank will be placed
in the switch.

Figure 34 shows a one-position character code
switch defined as a portion of a record area. Notice
that the switch is enclosed by a NAME statement.
The NAME operand indicates that the statement tagged
CANCELED terminates the NAME,

Ty, Tgs Tgsee.

Cy» Cgy Cgyee.

TAG I,L ‘onnmov:o om. OPERAND L

CHRCD D

NEW . .) N)

REGULAR)

CANCELED C g
Figure 34

In Figure 35, the operand of the CHRCD statement
specifies the initial switch setting, i.e., that the
switch contains the code 18.

26

. “o [ormmon Tl o}
CHRCD 18

INEWYORK, R 1Q

BOSTON 06, .

CH.IC AGO 18 .

IATLANTA z

Figure 35

During the program assembly, the tag of each
code is assigned to the storage position occupied by
the switch. Suppose that the switch defined in Figure
34 is assigned location 000315. When instructions
which reference NEW, REGULAR, and CANCELED
are translated into machine language, 000315 will
appear as the address portion of each one.

Figure 36 is part of a listing. Notice the machine
language portions for both the switch definitions and
the instructions which reference the switch.

Tag Oper. [Nu OperandSIoc

CHRCD; 000343
BLUE A
GREEN| B

C

RED
Instructions that reference the switch:

CMP 1 |GREEN }002129 4 1 000343
CMP 1 |RED 002624 4 1 000343

CMP 1 |BLUE 002679 4 1 000343

Figure 36

RESTRICTIONS ON A CHRCD SWITCH. A code
should not be represented as a signed numeriec char-
acter but as the alphabetic character equivalent to the
signed numeric character. For example, A should
be used to represent +1, J should be used to represent
-1, etc.

The CHRCD statement should not be tagged, since
the switch is referenced by the tags of the codes.

Bit Code - BITCD

A bit code switch is defined by a series of statements.
The first is the BITCD statement; its function is to
define the switch as a bit code switch and to specify
the initial setting of the switch. The statements which
follow the BITCD statement specify the bits and the
conditions they represent. The format of the set of
statements is as follows:

Tag Operation| Num|Operand
BITCD X1

T1 By

Ty By

T3 Bg

Ty B4

Xy is the initial setting of the switch or is
blank.

Tj1...T4 are the tags of the bits. They specify the

conditions which the bits represent when
they are ON,
By...By are the bit codes 1, 2, 4, and A.

If the BITCD statement immediately follows an
RCD statement, the operand should be left blank, If
the switch does not follow an RCD field, the operand
of the BITCD statement should specify the initial
setting. The setting is indicated by the alphameric
character created when the desired bits are set ON.

A bit that contains zero (0) is defined as ON; a
bit that contains one (1) is defined as OFF. For
instance, if the 4-bit should be set ON initially, the
operand may be any character that contains a zero in
the 4-bit. If the 1, 4, and A bits should be ON, the
operand may be any character that contains zeros in
those bits. It is recommended that the selected
character contain a zero in the 8-bit and a one in
the B-bit so that the character in the switch will
always be valid for printing purposes.

The bit code switch in Figure 37 indicates various
types of payroll deductions and is defined as a portion
of a record area. The maximum number of bits has

been used.
. TAG vl .or:nnov:o r:‘w:z. s OPERAND (
C. AME. THER)
o) R5lA+ .
LTCD.
1RS 1
LCA 2)
TATE 4)
QTHER. j
Figure 37

The BITCD definition in Figure 38 specifies that
GROSSTOTAL is to be set ON initially. The switch
will contain B (12-2), thus setting the 1-bit to zero.

. TAG ol -oreunor:a T.m:, B OPERAND s
LTCD (
QOSSTOTA 1 . e 7
ETTQOTAL)
(

Figure 38

During the program assembly, the tag of each
defined bit is assigned to the storage position occupied
by the switch. Suppose that the switch defined in
Figure 38 is assigned location 000100. When instruc-
tions which reference GROSSTOTAL and NETTOTAL
are translated into machine language, 000100 will
appear as the address portion of each one.

Figure 39 is taken from a listing. Notice the
machine language portions for both the switch defini-
tion and the instructions which reference the switch.

Tag Oper. | Nu|Operand eLoc
BITCD 000237

EAST 1

WEST 2

NORTH 4

Instructions that reference the switch:

RCVS EAST 002319 U 000237

RCVS WEST 002464 U 000237

RCVS NORTH | 002739 U 000237
Figure 39

RESTRICTIONS ON A BITCD SWITCH, A bit code
switch may not be used in a program for the 705 I
portion of a 7080 program.

The BITCD statement should not be tagged, since
the switch is referenced by the tags of the bits.

PROGRAM SWITCHES

A program switch is an instruction. Each time the
switch is encountered, it causes the program to do
one of two things:

1. To transfer to a designated instruction when
the switch is ON.

2. To execute the next in-line instruction when
the switch is OFF,

A program switch is defined by a single statement
which specifies the initial switch setting., If the
initial setting is ON, the switch statement becomes a
Transfer instruction in the object program, If the
initial setting is OFF, the statement becomes a No-
Operation instruction in the object program.

Program Branch Control macro-instructions are
used to set the switches ON or OFF and to test their
settings. Setting the switch ON or OFF involves
modifying the operation portion of the generated
instruction to Transfer or No-Operation, respectively.
Testing the switch involves determining whether or
not it will cause the program to transfer. All program
switch definition statements must be tagged so that

27

the switches can be referenced by macro-instructions.

Switch Set to Transfer - SWT

The function of an SWT statement is to define a pro-

gram switch which will be ON initially. The format

of the SWT statement is as follows:

Tag Operation|Num |Operand

Tl SWT X1

Ty is the tag of the switch.

X1 is the tag of the instruction to which a
transfer is to be made when the switch

is ON,

As long as the switch is ON, a transfer occurs
each time the switch is encountered. When the switch
is encountered after it is set OFF, the transfer does
not occur; the program proceeds instead to the next
in-line instruction.

The SWT statement in Figure 40 indicates that
LOOPSWITCH is to be set ON initially and that the
transfer point is the instruction tagged STARTLOOP.

TAG OPERATION |NUM.:
0 1slie 20|21 22l23

OOPSWITCHSWT STARTLQOP

OPERAND {

Figure 40

RESTRICTIONS ON AN SWT SWITCH. A hand-coded
Transfer instruction may not be referenced as a pro-
gram switch with Program Branch Control macro-
instructions. Since the hand-coded instruction will
not be recognized as a switch, the proper coding will
not be generated from any macro-instructions refer-
encing it.

Switch Set to No Operation - SWN

The function of an SWN statement is to define a pro-
gram switch which will be OFF initially. The format
of the SWN statement is as follows:

Tag Operation {Num|Operand

Tq SWN X1

Tq is the tag of the switch.

X1 is the tag of the instruction to which a

transfer is to be made after the switch
is turned ON.
As long as the switch is OFF, no transfer occurs

when the switch is encountered. The program proceeds [TAG

instead to the next in-line instruction. After the
switch is set ON, a transfer occurs each time the
switch is encountered.

The SWN statement in Figure 41 indicates that

28

LOOPSWITCH is to be set OFF initially and that
when the switch is set ON, the transfer point is the
instruction tagged STARTLOOP,

TAG OPERATION [NUM. OPERAND)
LOOPSWI TCHSWN TARTLOQP E
Figure 41

RESTRICTIONS ON AN SWN STATEMENT. A hand-
coded No-Operation instruction may not be referenced
as a program switch with Program Branch Control
macro-instructions. Since the hand-coded instruction
will not be recognized as a switch, the proper coding
will not be generated from any macro-instructions
referencing it.

CONSOLE SWITCHES

Console switches are the console alteration switches
0911-0916. Each is identified by one console switch
statement., The switches themselves must be set
ON or OFF manually by the console operator, either
before or during the execution of the program. A
console switch statement does not specify the initial
switch setting. It merely provides a method of
assigning a tag to an alteration switch so that it can
be referenced by a Program Branch Control macro-~
instruction. The switch statement is not translated
into a machine language instruction.

Alteration Switches - ALTSW

The function of the ALTSW statement is to designate
a console alteration switch. The format of the state-
ment is as follows:

Tag Operation|Num |Operand

T1 ALTSW | X

Ty is the tag of the switch statement.

X1 is a code identifying the console switch.

The codes are as follows:
Code Switch Being Identified
0911
0912
0913
0914
0915
0916
Figure 42 shows switches 0911 and 0912 being
identified.

HEOQw >

OPERATION |NUM. OPERAND
ALT.SW e

Figure 42

A one-for-one instruction is a symbolic instruction
which is replaced by one machine instruction. It
consists of a 7080 operation code and an Autocoder
operand. Figure 44 lists the 7080 operation codes.
The basic Autocoder operands are as follows:

tag

literal

actual

location counter
blank

[IS SNVUR VA

A prefix, a suffix, or both may be added to some
of the basic operands:
Prefix
operand modifier
indirect address
The format of an Autocoder one-for-one instruc-
tion is summarized in the next section, '""One-For-
One Instruction Format." The balance of the chapter
describes the basic operands and the prefix and/or
suffix that may be added to each operand. Chapter 6,
entitled '""Address Constants," describes a special-
ized form of Autocoder operand called an address
constant literal.
The details of each 7080 operation are supplied in
the reference manual, "7080 Data Processing Sys-
tem," Form A22-6560.

Suffix
character adjustment

ONE-FOR-ONE INSTRUCTION FORMAT

Like other Autocoder statements, a one-for-one in-
struction is tagged if it is to be referenced. The
mnemonic operation code is placed in the operation
field. No actual operation codes may be used. If
the operation requires designation of the accumula-
tor, an ASU, or a bit, the appropriate entry is placed
in the numeric field. A one-for-one instruction has
a single entry in the operand field; if necessary, the
operand may be continued from the operand field into
the comments field. The operand may not, however,
be continued onto the next line of the coding sheet.
Comments about the instruction may be started in
the comments field.

BASIC OPERANDS

A description of the basic Autocoder operands
follows:

CHAPTER 4. ONE-FOR-ONE INSTRUCTIONS

Tag

The tag may be that of the data field or the source
program instruction involved in the operation.

™ Jowmesle] o 4
LELD RCD . I

INSTRV AD F.I.FAIID‘ ~ N _5

Figure 43 T

Literal

A literal is actual data enclosed by literal signs (#).
It may be any combination of alphameric characters
and/or blanks, e.g., #A#, #bb3C#, #0500#,

#GO TO END#, #+345#, #-, 67#, #1234#, #+9. 876#,
The Processor creates a constant from a literal
operand. The term '"literal" is frequently used to
refer to the literal operand or to the constant created
from the literal.

As an example of the use of a literal operand, it
may be necessary to calculate with a constant of +30.
The constant could be defined by a CON statement,
and the appropriate arithmetic instruction could
reference the constant by having the tag of the CON
as an operand. On the other hand, it might be desired
to omit the CON and supply the constant directly by
writing it as the literal operand of the arithmetic
instruction. While a literal is a convenient way of
supplying an occasional constant, those constants
that are used repeatedly throughout the program
should be supplied by CON statements.

If a signed numeric constant is desired, the first
character following the literal sign must be a plus
or minus sign. In storage, the low-order position
of the constant will be signed. If the numeric data
is a mixed or pure decimal, the decimal point will not
appear in the constant, If an unsigned numeric con-
stant is desired, the first character following the
literal sign must be the first character of the numeric
data. In storage, the constant will appear exactly as
it is written in the literal. Thus, the constant created
from an unsigned mixed or pure decimal will contain
a decimal point, For this reason, unsigned mixed or
pure decimals should not be written as the literal
operands of arithmetic instructions, e.g., ADD, SUB.

A literal may also supply the floating point form
of a signed numeric constant. It must be written in
the format of an FPN operand: #IEEIXXXXXXXX#.

29

Use in Programs For

l Use in Programs For
Second'y Mode

Mnemonic [Second'y Mode Mnemonic
Name of Instruction Code 705 II| 705 TI{7080] Name of Instruction Code 705 II{ 705 II1{7080,

Add ADD x x x | Stop HLT x x x
Add Address to Memory AAM x x Store ST % x x
Add to Memory ADM X x x Store for Print SPR x x x
Backspace BSP x X x Subtract SUB x x x
Backspace File BSF x x Suppress Print or Punch SUP x x x
Blank Memory BLM x x Ten Character Transmit TCT x
Blank Memory Serial BLMS X x Transfer TR X x x
Channel Reset CHR x Transfer Any TRA x x x
Comma, No Operation CNO x Transfer Auto Restart TAR x
Compare CMP x x x Transfer Echo Check TEC x x
Control Read (Read 04) CRD 2 x Transfer on Equal TRE x x x
Control Write (Write 04) CWR?2 X Transfer on High TRH x x x
Divide DIV x X x Transfer to Interrupt Program TIP x
Dump Memory (Write 01) DMP 2 x x x Transfer Instruction Check TIC x x
Enable Compare Backward ECB X Transfer Machine Check T™C X x
Enable Indirect Address FIA x Transfer Nonstop TNS x
Enter Interrupt Mode FIM X Transfer Overflow Check TOC x x
Enter 7080 Mode EEM X Transfer on Plus TRP x x x
Forward Space (Read 01) FSpP2 x x x Transfer Read-Write Check TRC x x
Leave Interrupt Mode LIM x Transfer Ready TRR x x
Leave Interrupt Program LIP X Transfer Sign Check TSC x x
Leave 7080 Mode LEM x Transfer on Signal TRS x x x
Lengthen LNG x X X Transfer and Store Location TSL x x
Load LOD x x x Transfer Switch A On (0911) TAA x x
Load Address LDA X X Transfer Switch B On (0912) TAB x x
Load Four Characters LFC3 x Transfer Switch C On (0913) TAC x x
Load Storage Bank LSB X Transfer Switch D On (0914) TAD x x
Multiply MPY x x x Transfer Switch E On (0915) TAE x x
No Operation NOP bd X x Transfer Switch F On (0916) TAF X x
No Operation, Comma CNO x Transfer Synchronizer Any TSA x x
Normalize and Transfer NTR x x x Transfer Transmission Check TTC x x
Read 00 RD x x x Transfer on Zero TRZ X X X
Read 01 (Forward Space) FSP 2 x x x Transfer on Zero Bit TZB1 x x
Read 02 (Read Memory Address) RMA 2 x x | Transmit T™MT x x x
Read 03 (Sense Status Trigger) SST 2 X Transmit Serial TMTS X x x
Read 04 (Control Read) CRD?2 x Turn off I-O Indicator IOF x x X
Read 05 (Read Memory Block) RMB 2 x Turn on I-O Indicator ION x x X
Read Memory Address (Read 02) RMA?Z x x Unload UNL x x x
Read Memory Block (Read 05) RMB 2 x Unload Address ULA x x
Read While Writing RWW x x x Unload Four Characters urc?3 X
Receive Rcv 4 x x x | Unload Storage Bank USB x
Receive Serial RCVs 4 X x x Write 00 WR X x x
Receive Ten Characters rRcvT4 x Write 01 (Dump Memory) DMP2 x x x
Reset and Add RAD x x x | Write 02 (Set Record Counter) SRC g x x
Reset and Subtract RSU x x X Write 03 (Set Control Condition) SCC x
Rewind RWD x x x | Write 04 (Control Write) CWR 2 x
Rewind and Unload RUN x | Write 05 (Write Multiple Control) WMC 2 x
Round RND x x x Write and Frase 00 WRE x x x
Select SEL x x x Write and Frase 01 WRE 01 % x x
Send SND x x | Write Multiple Control (Write 05) wMC 2 x
Sense Status Trigger (Read 03) SST 2 x | Write Tape Mark WTM x x x
Set Bit Alternate SBA x x

Set Bit 1 spN 1 x x | IBM 760 Operations

Set Bit Redundant SBR x x Read or Write Tape, Early Start RWT x X x
Set Bit 0 spz 1 x x | Read or Write Tape, Write on Printer ~ RWS x x x
Set Control Condition (Write 03) scc? x | Reset 760 Counter RST x x x
Set Density High SDH x Write on Printer and Magnetic Tape PTW x x x
Set Density Low SDL x

Set Left SET X x x IBM 777 Operations

Set Record Counter (Write 02) SRC? x x | Bypass TRC BPC x x x
Set Starting Point Counter SPC x Prepare to Read While Writing PRW x x x
Shorten SHR x x x Read Tape to TRC RTS x x x
Sign SGN x x x Write TRC to Tape WST x x x
Skip Tape SKP x x

See Notes on page 31

Figure 44.

30

Mnemonic Codes for One-for-One Instructions

NOTES for Figure 44

! place a 1, 2, 4, 8, A, or B in column 22 to designate the bit (TZB

Note: If columns 21 and 22 are not blank, the
Processor assumes that an ASU, valid or invalid, has been designated.

2 Preferred mnemonics; RD 01 to 05 and WR 01 to 05 are also
acceptable,

can also have a C).

A blank or 4 should be placed in column 22 if the Processor is to
Ifal, 2, 3, or 5 is written, a 1/6, 2/7,
3/8, or 0/5 check, respectively, results.

perform a 4/9 check.

4 The three different Autocoder mnemonics for the receive instruction
(RCVS, RCV, and RCVT) indicate to the Processor the type of ad-
dress to be assigned. If the mnemonic is RCVS, the location assigned

is the high-order address of the field specified in the operand of the

instruction. For an RCV, 4 is added to the high-order address of the
field. Since an RCV is generally used when a 4/9 ending is desired

(as with a TMT or SND), the high-order address of the field should

end in a O or 5. An RCVT is assigned the high-order address of the

field plus 9, Since RCVT is used when a 9 ending is desired (i.e.,

with a TCT), the high~order address of the field should end in O,

If the generated address does not end in a 4 or 9 (RCV) or 9
(RCVT), a 4/9 check or 9 check message is prepared.

An example of assembled machine language coding for the three
forms of the receive instruction is shown below. The field, tagged
WORKAREA, has a high-order address of 3750, Note that the machine
language operation code (U) is the same for all three statements:

Op Operand Op Address
RCVS WORKAREA U 3750
RCV WORKAREA u 3754
RCVT WORKAREA u 3759

The operands of all forms of the receive instruction can be character

adjusted. Thus, if the operands above were WORKAREA -3, the actual

addresses would be three less than shown.

Trailing zeros will be supplied when the literal
contains fewer than eight mantissa positions. For
example, the literal #+03-7# will appear in storage
as 0370000008.

The length of a literal must be a multiple of five
when used with an operation which requires a 4 or 9
location, The literal must also contain a record mark
in the low-order position if it is used with a TMT
operation. Such literals are positioned in the literal
table so that the high-order character occupies a 0

or 5 location.
If the literal is used with a TCT instruction, its

length must be a multiple of ten with a record mark
in the low-order position. The Processor will prop-
erly position the literal in a 9 location.

TAG OPERATION |NUM. OPERAND (
. A m 20{21 22)23
NE AD

LoD

13 #m%

Figure 45

The Processor places all constants that it creates
from literal operands in an area of storage called the
literal table, Although the same literal may be used
in several statements, it will appear only once in the
table. The Processor classifies literals and assigns
them to the table according to whether they are signed
or unsigned:

1. Any literal containing a sign in the first posi-
tion is automatically classified as signed. If the
signed literal supplies numeric data, it appears in
storage as previously described. If the literal
contains a non-numeric character in the low-order
position, the existing zoning in that character is re-
placed by the sign.

2. Any literal that does not contain a sign in the
first position is automatically classified as unsigned.
As previously indicated, the constant appears in
storage in exactly the same form in which it is
written on the coding sheet.

Actual

An actual operand is a set of numeric characters,
usually preceded by the actual address symbol (@),
which designates one of the following:

1. An actual storage location

2. A setting for the accumulator or an ASU

3. The size of a block of storage positions

The @ symbol need not be used when the operand
contains less than five numeric characters and is
used with one of the following operations: BLM,
BLMS, CTL, HLT, LIP, LNG, RND, SEL, SET,
SHR, SPC, SRC. Notice in Figure 46 that the SET
and BLM instructions have been written two ways.

. TAG ol .onunov:o :u: ., OPERAND)
ONE SgT 5 .
Two ET .
. L \
"HREE. ET 5 |
3)
FQUR BLM
2
{VE .. LM . L j
e R
Figure 46

RESTRICTIONS. An actual -operand greater than the
core-memory size specified to the Processor should
not be used. If such an operand is encountered dur-
ing assembly, the Processor subtracts the maximum
core-memory size from the actual and uses the dif-
ference as the operand. A message to this effect is
provided at assembly time.

For example, if an 80, 000 core-memory size has
been specified, any actual operand in excess of

31

79, 999 will have 80, 000 subtracted from it and the
remainder used as the operand. The list below indi-
cates the largest actual operand that may be used
with the various core-memory sizes that are
available:

Core-Memory Size Maximum Actual Operand

20,000 19,999
40, 000 39, 999
80, 000 79,999
160,000 159, 999

Location Counter

A location counter is represented by the asterisk sym-
bol (*), which designates the low-order position of the
instruction in which it appears. Since each instruc-
tion occupies five positions in the object program, an
instruction containing a location counter references

its own low-order position. The effect of the instruc-
tion in Figure 47 is to cause the 4 or 9 location
assigned to the instruction to be placed in ASU 14.

. TAG WL .orzuuor:o v:'uo:‘ . OPERAND 5
Lap i AF %

Figure 47

Note: The versatility of a location counter is more
fully utilized when the counter is character-adjusted.
This use is explained in the following section,
"*Additions to Basic Operands. "

Blank

A blank operand is one which has blanks in the first
10 columns of the operand field. Blank operands
should be used if the instruction is initialized by the
program or if the operation itself does not require

an address. In the object program, a blank operand
is replaced by an appropriate address.
. hind AT, e ortme Y
t
N N 1
LA |1)
s] !
Figure 48

ADDITIONS TO BASIC OPERANDS

A description of the suffix and the prefixes that may
be added to an Autocoder operand follows.

Character Adjustment

Character adjustment is designated by a suffix to the
basic operand. A reference to an untagged field, an
untagged instruction, or a particular position within
a field or an instruction can be made by using char-

32

acter adjustment. The suffix consists of an arithmetic
operator that specifies the type of operation and one
or more numeric characters that specify the size of
the adjustment. The operators are as follows:

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division

Character adjustment may be used with all basic
operands except the blank operand. The operator
should appear immediately after the operand; it may
not appear beyond column 33 unless the operand itself
continues into column 33 or beyond.

In Figure 49, the character-adjusted operand of
the RAD instruction references the field that follows
EMPLOYEE,

. TAG s .or:nnor:o ?‘ul«a.l“ OPERAND }
EMPLOYEE _RCD + {
- St ... S

3)

RAD MM

Figure 49

A character-adjusted location counter may be used
to bypass in-line instructions. In Figure 50, *+10
references the low-order (4 or 9) position of the ST
instruction.

TAG OPERATION (NUM.| OPERAND
TRP 10
ST FILELD —
Figure 50

RESTRICTIONS. The numeric portion of a charac-
ter adjustment cannot exceed six positions, nor may
the value of the adjustment be greater than 159999.
In any event, if the value of the adjustment is greater
than the core-memory size specified to the Proces-
sor, the core-memory size will be subtracted from
the overstated adjustment and the difference will be
the adjustment.

Further restrictions apply to operands that are a
location counter, actual, or literal. These operands
can only have a + and - operator. If any other opera-
tor is used, both the operator and the adjustment will
be ignored.

Literal operands, in addition to being restricted to
a + or - operator, cannot have an adjustment value
of more than 99. If the adjustment is more than 99,
the Processor will use the two low-order digits for
the adjustment value. Thus, an adjustment of -156
will be treated as if it were -56.

Operand Modifier

An operand modifier is a two-character prefix which
may be used with a tag or a literal operand. It
enables the user to reference a particular position
of a field or an instruction or to reference the size
of a field. The operand modifiers are as follows:

Modifier Modifier Designates
L, Left-hand position
R, Right-hand position
H, High-speed position
S, Size
T, High-speed nine position

In Figure 51, the LOD instruction references the
left-hand position of FIELD. When the instruction
is executed, the contents of that position, rather than
the entire contents of FIELD, are placed in ASU 01.

. TAG " ‘.O'EIAHD?‘, ?‘“T‘. s OPERAND }
LELD. RCO . (
. 3 {

LOD . | AL, FIELD . .. 1

Note: If the modifier ''S,' had been used in the
preceding example, the LOD instruction would
reference the contents of storage location 00008.

Figure 51

Indirect Address

An indirect address is an indirect reference; that is,
it is a reference to an operand that references some
other operand., It is designated by a two-character
prefix to the basic operand. The prefix consists of
an I followed by a comma (I,). An indirect address
may be used with the following operands: tag, blank,
actual, character-adjusted location counter. In
Figure 52, BEGIN is the effective transfer point of
the first instruction.

. TAG Al .ovsunov:o :‘”:A: s OPERAND j
LDDLE TR ,-END. . 3
ND . . TR EG.1 N__‘_A_‘_A_‘_‘_.__i
Figure 52

When the Processor encounters an instruction
containing "I, in the 7080 mode portion of the
program, it generates two instructions: The first
is an EIA (Enable Indirect Address). If the one-for-
one instruction containing the indirect address is
tagged, the Processor transfers the tag to the EIA
instruction. The second instruction is the same one-
for-one instruction without the hand-coded "I, " and
without the hand-coded tag. If the first instruction
in Figure 52 had been written in the 7080 portion of
the program, it would have been followed by the
generated instructions, as shown in Figure 53.

Tag Operation|Num|Operand
MIDDLE | TR I,END
MIDDLE | EIA END

TR END
Figure 53

MULTIPLE ADDITIONS TO A BASIC OPERAND

The following pairs of additions may be used with
either a tag or a literal operand:
1. Operand modifier and character adjustment.
2. Indirect address and character adjustment.
The second pair may also be used with a location
counter.,
In Figure 54, the operand of the LOD instruction

references the second position in FIELD, i.e., the
position to the right of the high-order position.

R TAG ol ‘OfllA'IOO:O P:‘U:Ax s OPERAND
FLELD RCD . 10|)
. $.)
. oD)FI ELDEL . j
. R
Figure 54

In Figure 55, COMPUTE is the effective transfer
point of the first transfer instruction.

TAG " .or:nnor:o NUM. OPERAND ‘(
NE. RAD ECAORD1.)
s TR Nl
TWOo. AD CORD.
. TR ICOMP.U,
Figure 55

33

CHAPTER 5. GENERAL PURPOSE MACRO-INSTRUCTIONS

A macro-instruction is a source program statement
which represents multiple operations. When the
program is assembled, each macro-instruction is
replaced by a number of one-for-one instructions;
the number varies according to what the macro-in-
struction is and how it is used. The general purpose
macro-instructions in the 7080 Processor library
are shown in Figure 56. The purpose of this chapter
is to present them as a part of the Autocoder lan-
guage; consequently, the chapter is limited to an ex-
planation of their basic coding format and a few
examples of individual macro-instructions. The
specifications for using each general purpose macro-
instruction are provided in the reference manual,
""7058 Processor: General Purpose Macro-Instruc-
tions," Form C28-6130 as updated by the IBM bulle-
tin '"7080 Processor: General Purpose Macro-In-
structions," Form J28-6266. Hereafter, the afore-
mentioned will be called the macro-instruction
manual. (Input/output macro-instructions are a

~ part of the Input/Output Control System, I0CS, and
are described in the IOCS reference manual for the
7080.)

In addition to individual specifications and exam-
ples of generated coding, the macro-instruction
manual provides detailed explanations of the conven-
tions and restrictions governing the use of all the
general purpose macro-instructions. It also ex-
plains restrictions that may apply to only one type
of macro-instruction. It has been necessary to es-
tablish certain conventions and restrictions in creat-
ing a macro-instruction library to serve a large
number of users with a variety of program needs.
However, it is possible for programmers to prepare
their own macro-instructions and insert them into
the library.

Because of the flexibility of the Processor, pro-
grammers need not observe most of the restrictions
described in the macro-instruction manual when
creating macro-instructions to meet their particular
requirements. Specifically, they may designate as
acceptable operands any of the basic operands and
additions to basic operands described in Chapter 4.
Programmers writing their own macro-instructions
may also designate an entry in the numeric field as
the method of supplying an ASU reference or other
special information. The process of creating a
macro-instruction requires a thorough knowledge of
a special language which is described in the reference
manual, ''7080 Processor: Preparation of Macro-
Instructions,' Form C28-6264.

The remainder of this chapter is an introduction
to the general purpose macro-instructions in the
7080 Processor library; the discussion is based on
the conventions and restrictions that apply to these
macro-instructions.

34

ADDRESS MODIFICATION
Add Address

Compare Address
Decrement Address
Increment Address
Initialize Address
Move Address
Subtract Address

ASSEMBLY CONTROL
Enter Interrupt Program
Leave Interrupt Program
Leave 80 Mode
Enter 80 Mode
Speed or Space

AUTOMATIC DECIMAL POINT
Absolute Value
Add
Decrement
Diminish
Divide
Divide or Halt
Increment
Multiply
Negative Absolute Value
Negative Divide
Negative Divide or Halt
Negative Multiply
Subtract
Sign and Zero Test

DATA TESTING
Compare
Test for Numeric Field
Test if in Range

DATA TRANSMISSION
Blank Memory
Define ASU
Move
Restore Decimal
Zero Memory
Define CASU

PROGRAM BRANCH CONTROL
Alternating NOP
Alternating Transfer
First Time NOP
First Time NOP on a Bit
First Time Transfer
First Time Transfer on a Bit
Set Switches OFF
Set Switches ON
Test Switch

TABLE
Add an Item
Delete an Item
Replace an Item
Search a Table
Table Control

MISCELLANEOUS
Dead-End Halt
Link to Subroutine
Transfer Indirect
Type a Message

(ADDA)
(COMPA)
(DECRA)
(INCRA)
(INITA)
(MOVEA)
(SUBA)

(ENTIP)
(LEVIP)

(LEV80)
(ENT80)
(SPEED)

(ABSX)
(ADDX)
(DECRX)
(DIMX)
(DIVX)
(DVHX)
(INCRX)
(MPYX)
(NABSX)
(NDIVX)
(NDVHX)
(NMPYX)
(SUBX)
(TESTX)

(COMP)
(IFNUM)
(RANGE)

(BLANK)
(ASU)
(MOVE)
(DEC)
(ZERO)
(CASU)

(ALTNP)
(ALTTR)
(FTNOP)
(FTNPB)
(FTTR)
(FTTRB)
(SETOF)
(SETON)
(IFON)

(ADITM)
(DLITM)
(RPITM)
(SERCH)
(TBCTL)

(STOP)
(LINK)
(TRIN)
(TYPE)

Figure 56. 7080 Processor General Purpose Macro-Instructions for

Use in Autocoder Programs

GENERAL PURPOSE MACRO-HEADER FORMAT

The portion of 2 macro-instruction that is written as
a source program statement is called a macro-
header. As with other Autocoder statements, a
macro-header is tagged if it is to be referenced.
The mnemonic code is placed in the operation field.
Entries in the numeric field are rarely permitted;
those which are permitted do not relate to an ASU
number or a bit as they do in a one-for-one instruc-
tion. Most macro-headers have two or more entries
in the operand field; some may contain up to fifty
entries, and a few may have only one. The entries
will be called operands throughout this chapter and
in the macro-instruction manual. Each operand is
terminated by a lozenge (1), the same symbol which
was previously explained as part of an RPT state-
ment.

Operands may be placed in the operand and com-
ments fields of the line on which the macro-header
starts and may be continued in the operand and com-
ments fields of the next 49 lines on the coding sheet.
However, an operand may not be written on two
lines, i.e., it may not be started in the comments
field of one line and continued in the operand field of
the next line. Similarly, the lozenge which termi-
nates an operand may not be separated from it. If
the positions at the end of a line are insufficient for
both an operand and its lozenge, the positions must
be left blank and the operand started in column 23 of
the next line on the coding sheet. Operand continu-
ation lines must be blank in the tag, operation, and
numeric fields.

Comments may be started in the comments field
of the line on which the operands terminate, but the
comments must be separated from the final lozenge
by a minimum of two spaces. Comments may also
be continued in the comments field of succeeding
lines of the coding sheet.

TYPES OF OPERANDS

The operands of a macro-header designate the data
and/or the instructions involved in the operations the
macro-instruction represents. Most operands are
either tags or literals.

Tags. The tags may be those of defined data fields
and source program one-for-one and macro-instruc-
tions. (Note: In Chapter 3, a data switch was de-
fined as a field and a program switch as an instruc-
tion.) For instance, the function of the IFON macro-
instruction is to test a switch and to transfer to one
of two specified instructions, depending on the status
of the switch. The operands of the IFON macro-
header are the tags of the switch to be tested and the
tags of the transfer points, i.e., the instructions to

which the transfer is made if the switch is ON or OFF.
In the generated coding, the tags appear as the op-
erands of the appropriate one-for-one instructions.

In most cases, the tag of an instruction is used as
an operand in order to designate the instruction as a
transfer point. This is not true of the operands of
Address Modification macro-headers. Such operands
designate the operands of other instructions rather
than the instructions themselves. When an Address
Modification macro-header must designate the op-
erand of another macro-header, it may not reference
the macro-header by its tag alone. The tag must be
written as a special form of operand called the macro
suffix tag. This consists of a tag to which a suffix
is added. The suffix is of the form #x or #xx where
X or xx are numbers that designate one of the operands
of the macro-header being referenced. For example,
a macro suffix tag designating the first operand of a
macro-header tagged MACRO would be written as
MACRO#1 or MACRO#01. Similarly, a macro suffix
tag designating the third operand would be written as
MACRO#3 or MACRO#03. The use of the macro
suffix tag is illustrated at the end of this chapter and
in the macro-instruction manual. No adjustments
are permitted on a macro suffix tag.

Secondary Field Definitions

A secondary field definition is adescription of the char-
acteristics of adatafield. It is written as part of amacro-
header operand that references the field,i.e. , the oper-
and is the tag of the field, and it causes the macro-
instructions to treat the field as having the charac-
teristics that the secondary field definition provides.
Depending on the reason for which a secondary defi-
nition is used, it may supply characteristics identical
to those previously defined for the field, or it may
supply a different set of characteristics. A secondary
definition must be used in a macro-header operand
that references a data field indirectly, because the
defined characteristics of the data field are not avail-
able to the Processor in such a situation. (See Ex-
ample 3.) A generated descriptive tag may not be
given a secondary definition.

A secondary field definition may be supplied by the
tag of a field, a literal, or either of the RCD forms,
#+xx.yy or #xx.yy. The macro-header operand con-
taining the definition is written as follows: the tag
of the data field, a comma, the secondary definition:

1. Using the Tag of a Field

A macro-header operand containing the tag of a field
as a secondary definition would be one such as TAGA,
TAGB O . The field specified by TAGA will be treated
as having the characteristics of the field specified by
TAGB.

35

If a field with the desired characteristics has been
defined, its tag may be used to supply the secondary
field definition. Otherwise, two fields must be defined
with different tags and overlapped by use of a location
assignment (LASN). Reference to the field should be
made by using the tag of the definition which is appro-
priate at the time the reference is made.

2. Using a Literal

A macro-header operand containing a literal secondary
definition would be one such as TAG, #XXX.X# O.
Regardless of the defined characteristics of the field
TAG, it is now defined as a signed fraction consisting
of three integer positions and one decimal position.
This method can be used to define signed numeric
fields only.

3. Using the RCD Form

With the RCD form of secondary definition, the ex-
ample given in item 2 above would be written as TAG,
#+03.01 o . This form is fully discussed on page 16
of this manual. This method can be used to define
signed or unsigned numeric fields only.

Other tags that may be used as operands are those
of Class A subroutines items and generated descrip-
tive tags. Characteristics of items within Class B
subroutines are not available to macro-instructions.

Literals. A literal is actual data enclosed by pound
signs (#) and is explained in Chapter 4. In the cod-
ing generated from macro-headers containing literal
operands, the literals appear as the operands of the
appropriate one-for-one instructions just as tags ap-
pear as one-for-one operands. Whenever the macro-
instruction manual designates the tag of a field as an
operand, a literal may be used instead.

An unsigned numeric literal supplying a mixed or
pure decimal should not be used as the operand of an
Automatic Decimal Point macro-header, because the
constant created from the literal will contain a spe-
cial character (the decimal point). Floating point
literals may not be used as the operands of Automatic
Decimal Point macro-headers for the reason stated
in the explanation of FPN (Chapter 2). A literal
must not exceed 35 positions, exclusive of the pound

signs.
TYPES OF LOZENGES

Lozenges indicate to the Processor the termination
of each operand and the position which an omitted
operand would normally occupy in relation to the
other operands. There are two types of lozenges:

36

Fixed. A fixed lozenge may never be omitted. If
the operand it terminates is omitted, the fixed loz-
enge is placed back-to-back with the lozenge which
terminates the preceding operand.

Conditional. A conditional lozenge may be

omitted only if the operand it terminates is omitted
and no additional operands are written. If other
operands follow an omitted operand, its conditional
lozenge must be placed back-to-back with the lozenge
which terminates the preceding operand.

OMITTED OPERANDS

The specifications in the macro-instruction manual
indicate that certain operands may be omitted, The
associated lozenge is assumed to be fixed unless the
specifications state that it is conditional,

When the omitted operand is a transfer point, the
generated coding provides a transfer to the next in-
line source program instruction. This may be most
readily seen in those macro-instructions which make
some sort of test and then transfer according to the
results of the test, The IFON macro-header should
be written with two transfer points, one to be used if
a tested switch is ON, and the other if it is OFF.
The second transfer point may be omitted; if it is,
the generated instruction for the OFF condition is a
transfer to the next in-line source program instruction

THE IMPORTANCE OF PROPERLY DEFINED
DATA FIELDS

A macro-header makes a field reference when it has
the tag of a field as an operand. In other words, it
references a field which is defined by either an area
definition or a switch definition. In order to generate
coding which is proper for the field, the Processor
must know the characteristics of the data which will
occupy the field, Obviously, it is not possible for
the Processor to examine the actual data at assembly
time. Consequently, the Processor obtains the
characteristics from the definition and generates
coding which is proper for the field according to its
definition. If the data does not conform to these
characteristics, it may be improperly processed.
However, the generated coding itself is not improper.
The importance of field definitions may be seen
in a macro-instruction which is used to compare the
contents of two fields. The fields may be alphameric
or numeric., The one-for-one instructions which
should be used to compare alphameric data differ
from those which should be used to compare numeric
data. By using the macro-instruction, the pro-
grammer is relieved of having to select the proper
instructions, but the Processor cannot assume this

burden unless the characteristics of the field are
available to it. Similarly, if literals are used
instead of the tags of fields, the literals must be
written in accordance with the standards previously
specified. For instance, an unsigned decimal written

as a literal will not be treated as numeric data but
as alphameric data.

EXAMPLES OF MACRO-INSTRUCTIONS AND
THEIR USE

The balance of this chapter contains examples of a
few general purpose macro-instructions in the
Processor library. The function and coding format
of each macro-instruction is followed by an example
which illustrates how it might be used and what in-
structions would be generated for that usage. In
Figures 57-60, the macro-headers are overlaid with
a band of gray to distinguish them from generated
instructions. The explanations should not be con-
sidered as the specifications for the macro-instruc-
tions. In some examples, certain options which are
available have been omitted entirely. Complete
specifications are provided only by the macro-instruc-
tion manual.

1. Blank Memory: BLANK

The function of BLANK is to place blanks in a field.
The basic format of the BLANK macro-header is as
follows:

Tag Operation [Num |Operand

Ty BLANK X aXpHXgH. XoqO

Ty is the tag of the macro-header or is
omitted.

Xj...X9g are the tags of the fields in which blanks

are to be placed. The lozenges are
conditional.
In Figure 57, TAGI indicates that the contents of
fields ONE and TWO are to be replaced by blanks.

TAG1

2. Test Switch: IFON

The function of IFON is to test a switch and to transfer
according to the results of the test. The basic for-
mat of the IFON macro-header is as follows:

Tag Operation [Num|Operand

Tq IFON X1HXoaXgn

T1 is the tag of the macro-header or is
omitted.

Xy is the tag of the switch to be tested.

Xo is the tag of the ON transfer point, i.e.,
the instruction to which a transfer should
be made if the switch is ON.

X3 is the tag of the OFF transfer point.

The operand may be omitted, in which
case a transfer will be made to the next
in-line instruction. The lozenge is
conditional.

In Figure 58, ON and OFF must be assumed to be
the tags of instructions. If OFF and its associated
lozenge had been omitted, the final instruction would
not have been generated.

Tag Operation{Num |Operand
CHRCD

NEWYORK A

CHICAGO B

LOD Y #A

CMP 1l NEWYORK
TRE ON

TR OFF

Figure 58

3. Add: ADDX

The function of ADDX is to add the data in two numeric
fields and place the result in a numeric field or an
RPT field. The numeric fields may be signed or
unsigned. The basic format of the ADDX macro-
header is as follows:

Tag Operation [Num |Operand
NAME 0

ONE RCD 5[+

TWO RPT 8|XXXX.ZZ

RCV ONE

BLM @00001

RCVS TWO

BLMS @00008
Figure 57

Tag Operation |Num|Operand

Tq ADDX X1 Xon Xgo

Ty is the tag of the macro-header or is
omitted.

X3 is the tag of one numeric source field,

i.e., the field which is the source of
one set of data to be added.

37

X9 is the tag of the other numeric source
field.
X3 is the tag of the numeric or RPT result

field, i.e., the field in which the result
is to be placed.

Tag Operation |[Num|Operand
NINE RCD 5|#+02.03
TEN 6|#+03.03

NINE

TAG3 RAD
SET @00006
ADD #+75.000#
ST TEN

Figure 59
4, Increment Address: INCRA

INCRA is an Address Modification macro-instruction;
the function of this type of macro-instruction is to
modify other instructions, either macro-instructions
or one-for-one instructions. The function of INCRA
is to increment a field reference made by another
instruction, thus modifying the instruction so that it
makes a different field reference. An instruction
makes a field reference by having the tag of a field
as an operand. INCRA designates the instruction
which makes the field reference and the amount by
which the reference is to be increased. The basic
format of the INCRA macro-header is as follows:

Tag Operation {Num |Operand

Ty INCRA XqHXoH

38

Ty is the tag of the macro-header or is

omitted.
Xy is the tag of an instruction which makes
the field reference to be incremented.
Xy is the increment.

In Figure 60, the first operand of INCRA is a
macro suffix tag, designating the second operand of
MACRO. Initially, MACRO references FIELD.
However, INCRA modifies MACRO so that it sub-
sequently references whatever is located 500 positions
above FIELD. For instance, assume that FIELD
occupies locations 001000-001002. When MACRO is
executed initially, it will cause these locations to be
blanked. Once modified by INCRA, it will cause
locations 001500-001502 to be blanked. (Note:
MO00017#02 is a tag generated by the Processor.)

Tag Operation|Num|Operand
OTHER RCD 8|A
FIELD § 3|A
MACRO RCVS OTHER
BLMS @00008
M00017#02 |RCVS FIELD
BLMS @00003

TAG4 #+5004#
L AAM 15|M000174#02
Figure 60

An address constant is a numeric constant consisting
of a storage location. An address constant statement
designates the storage location by specifying one of
four operands: tag, literal, actual, location counter.
At assembly time, the location assigned to the tag,
literal, or location counter or the location designated
by the actual operand is used to create the constant.
In effect, the function of an address constant state-
ment is to define a data field that will contain a con-
stant and to designate the constant to be placed in the
field. The actual constant is generated by the Proc-
essor and placed in the field created for it. Thus,
an address constant enables the user to reference a
constant which is not created until the program is
assembled.

Address constants are used to initialize instruc-
tions, a procedure which alters the reference made
by an instruction or supplies a reference to an in-
struction which lacks one. For example, suppose
that an instruction must reference two record areas
alternately, areas tagged FIRST and SECOND. This
means that the operand of the instruction must contain
FIRST at certain points in the program and SECOND
at other points. To initialize the instruction, i.e.,
to modify the reference, address constants must be
created from each of these tags so that one or the
other of them can be placed in the instruction as
required. In the assembled program, the address
portion of the instruction will alternate between the
actual locations assigned to FIRST and SECOND.
Note the difference between an instruction which
references FIRST and an instruction which references
an address constant created from FIRST. In the
former case, the instruction references the contents
of a record area; in the latter case, the instruction
references a constant consisting of the storage loca-
tion of the record area.

The basic operand of an address constant state-
ment may be a tag, literal, actual, or location counter.
Operand modifiers may be used with a tag or literal
to request a generated constant:

Modifier Address Constant Generated From

Right-hand storage location of the low-order
position of a field, instruction,
or literal.

Left-hand storage location of the high-order
position of a field, instruction,
or literal.

High speed a left-hand address plus four.

High-speed nine a left-hand address plus nine.

Size the number of positions occupied

by a field or literal.
If no operand modifier is used, a right-hand address
will be generated as the constant. As the preceding
list indicates, a right-hand operand modifier may be

CHAPTER 6. ADDRESS CONSTANTS

written, but it is not necessary.

Character adjustments to the basic operand cause
numerical adjustment of the address constant. Addi-
tion, subtraction, multiplication, or division by a
specified amount may be requested. For example,

a character adjustment of plus five would cause the
constant to be five greater than the storage location
referenced.

An address constant may be both operand-modified
and character-adjusted. (Such an operand may have
to continue into the comments field.) The operand
modifier is a prefix to the basic operand; it consists
of the appropriate modifier symbol followed by a
comma. The character adjustment is a suffix to the
basic operand; it consists of the arithmetic operator
followed by a number designating the amount of
adjustment. The amount may not exceed 160000.

The symbols are as follows:
Operand Modifier Character Adjustment

R, Right-hand + Add

L, Left-hand - Subtract
H, High speed * Multiply
S, Size / Divide
T, High-speed nine

Assume that FIELD, a data field, is assigned to
locations 001300-001309. An address constant
statement having L, FIELD as its operand will cause
001300 to be created as the address constant. The
operand R, FIELD+6 will cause 001315 to be created
as an address constant. The same constant would be
created from FIELD+6. Since the field occupies
10 positions, the operand S, FIELD will cause a
constant of 10 to be created; the operand S, FIELD*5
will create a constant of 50.

Comments about an address constant may be
started in the comments field of the address constant
statement.

ADCON Address Constant

The function of an ADCON statement is to create an
instruction which consists of a four-character, un-
signed address constant preceded by the actual code
for No Operation. The instruction is positioned in a
4 or 9 location. The ADCON statement is written as

follows:

Tag Operation |Num |Operand

Tq1 ADCON nn Xy

Ty is the tag of the address constant,
nn is ASU zoning or is blank.

X1 is a tag, literal, actual, or location

counter.
39

The ADCON statement creates an instruction of
the form Axxxx. A is the actual code for No Opera-
tion; xxxx is the address constant. The instruction
Axxxx will be positioned so that the low-order char-
acter occupies a 4 or 9 location. Any ASU zoning
will be properly generated as part of the constant.

The ADCON statement in Figure 61 will cause an
address constant to consist of the storage location of
the right-hand position of the RECORDONE data field,
Instructions referencing the constant do so by refer-
encing its tag, FIRST.

TAG OPERATION jNUM. OPERAND (
ECORDONE. RCD SA+ ’
. 5. .)
FE1RST. DCON ECAORDANE. . %
Figure 61

Figure 62 specifies that the left-hand address con-
stant consisting of the location of INSTRCTION is
to be zoned for ASU 15.

| TAG Al .omuno»:o um] OPERAND 7
INSTRCT1 ONTE TART.)
TAGL DCON14L, INSTRCT.1.ON

Figure 62

ACON4 Address Constant

The function of an ACON4 statement is to create a
four-character, unsigned address constant. The con-
stant is placed in the next four available storage
locations without regard to the positioning of its low~
order character. ASU zoning, if specified, is

TAG s .omunor:o r:‘m:2 B OPERAND j
JELDA RCD . 10+
TAG1 CON4 . FLELDO
e ———— o
Figure 63

Figure 64 shows that the constant will consist of
the location assigned to the RECORDAREA field.
Since the operand modifier '"H, " is used, the high
speed address will be generated.

. TAG L .orsunor:o r:‘uu OPERAND j

AME_| O |

ECORDARE D%n 35A+ . N j)

TAG2 CON4| . H,RECORDAREA,)

_—-—-’—__J_/_'NM,——_____;
Figure 64

ACONS5 Address Constant

The function of an ACONS5 statement is to create a
five-character address constant, either signed or un-
signed. The constant is placed in the next five avail-
able storage locations without regard to the positioning
of its low-order character. The sign, if specified,

is placed over the low-order character. The format
of the ACONS5 statement is as follows:
Tag Operation|Num|Operand
Tl ACONS5 S Xl
T4 is the tag of the address constant.
s is + for a positive constant, or
is - for a negative constant, or
is blank for an unsigned constant.
X3 is a tag, literal, actual, or location

counter,

roperly generated as part of the constant. The for-
fnatpof 31,'15 ACON4 stat:ment is as follows: The ACONS5 statement in Figure 65 specifies that
) the location of the literal is to be made an address
. constant, Notice that the address constant will be
T tion [N d
28 Operation Num Operan signed. The sign of the address constant is not re-
T, ACON4 nn|X, lated to the sign of the literal.
. TAG " “opsuuor:o ':'UT: B OPERAND ‘(
AG1 CONS +++/m’n&;i§
Ty is the tag of the address constant. :
nn is an ASU number or is blank. Figure 65
X1 is a tag, literal, actual, or location Figure 66 shows a request for an unsigned constant

counter.

In Figure 63, the ACON4 statement is a request
for an address constant consisting of the storage
location assigned to FIELD1. Since no operand
modifier is specified, the right-hand address will
be generated. The constant may be referenced by
its tag, TAGI.

40

twice the size of FIELD2.
be generated.

The constant 00012 will

i TAG | Orerarion Tnum i OPERAND l
LEL D2 RPT
. ...
TAG2. CONS| |
|
Figure 66

Restrictions on an ACON5 Statement. ASU zoning
may not be specified in an ACON5 statement.
Any ACONS5 should not be specified if there

is a possibility that the address from which the con-
stant is created will exceed 79999. In the event that
a signed constant is requested for such an address,
80,000 is subtracted from the address. A message
to the effect that the constant exceeds the address
limit is provided at assembly time.

ACON6 Address Constant

The function of an ACONG6 statement is to create a
six-character, address constant., The constant is
placed in the next six available storage locations
without regard to the positioning of its low-order

character. The format of the ACONG6 statement is
as follows:

Tag Operation |Num|Operand

Ty ACON6 | s |X;

Tq is the tag of the address constant.

s is + for a positive constant, or

is - for a negative constant, or
is blank for an unsigned constant.
X1 is a tag, literal, actual, or location
counter.
In Figure 67, the ACONG6 statement requests that
5000 be generated as a constant.

TAG OPERATION NUM.I OPERAND
1o

20[21 22§23

anel@s00a .

ai

Figure 67

Restrictions on an ACON6 Statement. ASU zoning
may not be specified in an ACON6 statement.

ADDRESS CONSTANT LITERAL

An address constant literal is an operand with a
double function; it is a request for an address constant
and an operand that references the constant. The
generated address constant is placed in the literal
table. For example, when an instruction references
a tag as part of an address constant literal, a con-
stant consisting of the location assigned to the tag
will be created and placed in the literal table. When
the program is assembled, the operand (address
constant literal) of the instruction will be replaced by
the location assigned to the generated constant, If

a program requires many address constants, they

should be created with address constant statements.
The address constant literal operand is useful in a
program that requires an occasional address constant.

Writing an Address Constant Literal Operand

The operand may contain a tag or a literal; operand
modifiers must be used with either one to specify the
type of address being requested. If ASU zoning is
to be generated as part of the constant, the ASU num-
ber is placed directly after the operand modifier and
is followed by a comma. The basic format of the
entire operand is either of the following:

1. Operand modifier plus a tag or literal.

2. Operand modifier plus ASU zoning plus a tag
or literal.

The symbols for the operand modifiers and ASU
zoning are shown in the following list (nn represents
an ASU number):

Address Type Operand Modifier Modifier and

ASU Zoning
Right-hand R@ R@nn,
Left-hand L@ L@nn,
High speed H@ H@nn,
Size S@ S @nn,
High speed nine T@ T@nn

In Figure 68, an address constant is requested for
the right-hand address of FIELD. The instruction
specifies that the address constant is to be loaded
into ASU 15. When the instruction is executed, the
right-hand address of FIELD rather than the contents
of FIELD will be placed in ASU 15.

. TAG N I.OPEIA"OO:G ?‘UI:2 s OPERAND S
LELD. RCD {
e 1% D

ADCONLIT. . LOD 15@51 ELD jﬁ

Figure 68

Figure 69 specifies that the address constant con-
sisting of the right-hand address of FIELD be zoned
for ASU 5. Asin the preceding example, when the
instruction is executed, the address constant will be
placed in ASU 15.

TAG Wl .orn:mo':o y:lun; N OPERAND ‘
LELD RCD . 25A+ {
N |
ADCONLIT. . |LOD
Figure 69

Arithmetic instructions, such as ADD, SUB, etc.,
cause a six-position signed constant to be created;
the constant is signed plus. In a secondary mode,

a five-position constant, signed plus, is created.

41

All instructions requiring a 4 or 9 address, such as constant allowed is dependent on mode memory size.

LDA, AAM, TR, TMT, etc., cause a four-position

unsigned constant to be created and properly positioned Restrictions on an Address Constant Literal Operand.
in a 4 or 9 location regardless of the mode. All other Character adjustment may be used for the purpose of

instructions cause a four-position unsigned constant, modifying the constant itself. If character adjustment
position in a 4 or 9 location, to be created for 705 1I is written in an address constant literal operand, it
mode, a five-position unsigned constant to be created will not be applied to the location of the constant.

for 705 Il mode, and a six-position, unsigned constant If an address constant literal operand is used in a

to be created for 7080 mode. In each case the maximum macro-header, it may not designate ASU zoning.

42

Instructions to the Processor concern the assembly
process; they are executed by the Processor at
assembly time. Consequently, they do not appear in
the object programs, although they are written in
the source program wherever they are required.
Through these statements, the programmer is able
to communicate with the Processor. The instructions
to the Processor are listed below according to the
aspect of the assembly process that they concern:
1. Standard Assembly Procedures
Location Assignment - LASN
Special Assignment - SASN
Relative Assignment - RASN
Assignment of Macro-Instruction Subroutines-
SUBRO
Assignment of Library Subroutines - SUBOR
Assignment of Literals - LITOR
Transfer Card - TCD
2. Object Program Content
Include Subroutine - INCL
Translation - TRANS
Source Program Language - MODE
3. Object Program Listing
Skip to New Page - EJECT
Title for Routine or Comment - TIT LE
4. Flags

INSTRUCTIONS TO THE PROCESSOR THAT CONCERN
STANDARD ASSEMBLY PROCEDURES

Certain instructions to the Processor may be used to
alter standard assembly procedures. To understand
how these instructions may be used, it is first neces-
sary to know what the procedures are:

1. Location assignments. The Processor assigns
storage locations in ascending order to the object
program. In making the assignments, it uses a
location counter that is set initially to location 00500.
The parts of the object program are assigned in the
following sequence: the machine language equivalent
of the source program, the library subroutines, the
literal table. If no subroutines have been requested
by either the source program or the Processor itself,
the literal table is placed after the source program.

2. Standard 00" transfer control card. The
Processor produces this as the terminal card of the
object program deck. (Chapter 8 contains additional
information on the object deck.) The standard 00"
card contains instructions to set various ASUs. The
final instruction on the card is a transfer to the first
instruction in the object program. At the time the
object program is to be executed (object time), it is
placed in storage by a loading program. When the

CHAPTER 7. INSTRUCTIONS TO THE PROCESSOR

loading program encounters the standard ''00" transfer
card, it executes the instructions the card contains,
thereby transferring control to the object program
itself.

The instructions to the Processor explained in this
section enable the programmer to direct the Proc-
essor to do one or more of the following:

1. To use more than one location counter in
making assignments.

2. To assign specific locations designated by the
programmer.

3. To alter the order of the object program parts.

4. To provide additional ''00" cards and to place
them within the object program.

It is often necessary to modify the standard
assembly procedure. For example, it must be done
when using IOCS (Input/Output Control System),
because the IOCS routines occupy a large storage
area starting in location 00500. The object program,
therefore, must be positioned beyond the IOCS area.
The positioning is acgomplished by starting the source
program with an instruction to the Processor to set
the location counter to a location above the IOCS
area.

The ability to specify storage assignments allows
the programmer to conserve storage space by over-
lapping assignments, i.e., by assigning the same
area of storage to more than one routine or block of
data. A housekeeping routine is frequently overlapped
with another routine, since the housekeeping routine
is only executed once.

With the use of instructions to the Processor, the
programmer is able to cause the housekeeping routine
to be placed in storage and executed before the other
routine is placed in the same area. Another example
of overlapping is the assignment of two or more
NAME definitions to the same area. This is often
desirable when the program is to process sets of
records that possess different characteristics but
require the same amount of storage space. As long
as all the records need not be in storage simultane-
ously, the same location assignment may be specified
for the various NAMEs.

Location Assignment - LASN

The function of a LASN statement is to set a location
counter to a specified location; 10 counters are
available. A LASN statement may set the designated
counter to one of the following:
1. An actual location specified by the programmer.
2. An actual location, unknown to the programmer,
that has already been assigned by the Processor to a

43

field or an instruction.

3. One location beyond the highest location as-
signed from the counter at any point in the assignment
process.

4. Location 00500, the initial location assignment.

5. One location beyond the highest location as-
signed from a point in the assignment process
specified by the programmer.

Each time the Processor encounters a LASN, it
sets the designated counter and makes subsequent
assignments from that counter. This continues until
another LASN is encountered or until the assignment
process is completed. Multiple counters are useful
when specifying location assignments in a program
of many sections, because one counter can be allo-
cated to each section.

The LASN is written as follows:

TAG FIELD. This field must be left blank.

OPERATION FIELD. The mnemonic code LASN is
placed here.

NUMERIC FIELD. The counter to be set is designated
in column 22 of this field. The column is left blank
when designating the Blank counter; each of the other
counters is designated by one of the digits 1-9. The
Blank counter may be considered the primary counter,
since it is used by the Processor in the absence of any
LASN statements. Additional information on the
Blank counter is supplied in the section ""Location
Assignments from the Blank Counter."

OPERAND FIELD. To set the counter designated in
the numeric field, the entry in this tield may be one
of the following:

1. An actual operand. The counter is set to the
location specified by the operand.

2. The tag of a statement appearing anywhere in
the program before the LASN. In other words, the
tagged statement must have a lower page and line
number than that of the LASN. The counter is set
to the location previously assigned to the instruction
or field identified by the tag. The tag may be
character-adjusted.

3. A blank operand. The counter is set to one
location beyond the highest location previously
assigned from it.

4. Alocation counter, with or without adjustment.
If there is no adjustment the assignment continues,
i.e., starts in the next available location.

To reset the counter to location 00500, from which
the standard assignment process starts, leave columns
23-173 blank and place the character R in column 74.
When used in column 74 of a LASN statement, this
character may be considered the Reset character.

44

(For additional information on the Reset character
see the section entitled '"Flag Characters and Their
Meanings.'")

COMMENTS FIELD. When a tag or an actual operand
is used, comments about the statement may be placed
in this field. When writing comments, column 74
should be examined to make sure it does not contain
R. If it does, subsequent use of the counter is
affected as described in the section entitled "Flag
Characters and Their Meanings."

In Figure 70, storage assignments are shown to
the right of the hand-coded Autocoder statements.
Notice that the assignments made after the LASN
statements are consistent with the requirement of
a 4 or 9 location for instructions and with NAME
statements that specify a location through an entry
in the numeric field. '

4

Tag Operation|Num|Operand Assignments
LASN @2000 002000
003007
START |[NAME 0|END 003010
ONE RCD 4|+ 003013
TWO 7|#+04. 03 003020
END C(gN 4 F 003024
LASN 1|/@50000 050000
TAG |[ADCON START 050004
g 069994
LASN 1{TWO 003014
EXTRA|RCD 7|#+05. 02 003020
i 004000
LASN 1 069995
LASN 1 R|[000500
LASN 003025

Figure 70

LOCATION ASSIGNMENTS FROM THE BLANK
COUNTER. The Processor uses the Blank counter
unless directed by a LASN statement to do otherwise.
When the assignment of the machine language version
of the source program is completed, the library sub-
routines must be assigned. The Processor uses the
Blank counter to make the assignments. It first sets
the Blank counter to one location beyond the highest
location previously assigned, no matter what counter
was used to make assignment. After it completes
the subroutine assignments, it repeats the same

process in assigning the literal table, i.e., it sets
the Blank counter to one location beyond the highest
location previously assigned. If no LASNs have been
encountered within a subroutine, the Blank counter
itself contains the highest location previously assigned
at the time the literal table is to be positioned. The
programmer should keep this use of the Blank counter
in mind when placing LASN statements in subroutines.
(The entire assignment of library subroutines and

the literal table may be altered by LITOR and

SUBOR. Both are instructions to the Processor and
are explained on subsequent pages.)

RESTRICTIONS. A LASN statement may not be
referred to by another Autocoder statement.

Special Assignment - SASN

The function of a SASN statement is to set the Blank
counter as follows:

1. To an actual assignment specified by the
programmer.

2. To an actual location, unknown to the pro-
grammer, that has already been assigned by the
Processor to a field or an instruction.

SASN is a limited form of LASN. Like LASN, it
may be used in library subroutines as well as in
programs. However, it differs substantially from
LASN in the following respect. The highest location
assignment resulting from a SASN is ignored when
the Processor sets the Blank counter to one location
beyond the highest location previously assigned from
the counter. (Such a setting is specified by a LASN
with a blank operand.) In effect, location assign-
ments resulting from a SASN are no longer signifi-
cant once the SASN is terminated. Termination of
a SASN results when a LASN is encountered, no
matter what counter the LASN designates or what
type of operand it contains.

Because the SASN is a limited form of LASN, it
does not require a detailed explanation. It is written
as follows:

Tag Operation |Num| Operand
SASN Xy
X3 is an actual operand, or

is the tag of a statement appearing any-

where in the program before the SASN, or

is a location counter.

The tag or location counter may be charac-

ter-adjusted.
Notice that the tag and numeric fields must be

left blank. Comments may be placed in the comments

field.

Figure 71 illustrates the fact that SASN assign-
ments are ignored during subsequent LASN assign-
ments.

74
Tag [Operation|Num|Operand |Location Assigned
()
LASN @2000 002000
002499
SASN @3000 003000
g 004000
LASN 002500
Figure 71

RESTRICTIONS. A SASN statement may not be
referred to by another Autocoder statement.

Relative Assignment - RASN

This instruction allows a program or portion of a
program to be assembled at one location and to

treat all references to or within the program as if
they were assembled at a different location. Various
subroutines therefore, can be assembled relative

to the same location, and at object time one of them
can be moved for actual execution.

Locations will be assigned in the normal manner
to the entries following a RASN, but references to
them or any one of them will effectively be to their
relative address.

A relative assignmeant will be terminated by any
LASN, SASN, or TCD.

In Figure 72, the routine beginning with TAGA
will be assembled starting at location 2000, but all
references to the routine will be assembled as if
the routine started at location 0300. The instruction
used to move the routine should reference actual
location 2000.

In Figure 73, the routine beginning with TAGA
will be assembled starting at location 5005, but all
references to the routine will be assembled as if
the routine started at location 0300. The LASN is
used to terminate the RASN. The instruction used
to move the routine should reference REFTAG+5.

There are certain limitations to be observed
when using a RASN:

1. As with a SASN, a RASN has no effect on the
high assignment counters.

2. If location assignment is under control of a
LASN or SASN at the time a RASN is encountered,
it continues under control of the LASN or SASN.

3. At the time a RASN is encountered, the fol-
lowing, in effect, occurs: The location counter is

45

TAG OoP NU OPERAND LoC oP NU ADDRESS
TR OouT 5004 1 8004
LASN @2000 2000
RASN @300 0300
TAGA CMP CON 1 2004 4 0343
TRE *+25 2009 L 0334
SHR 1 2014 C 0001
TRZ TAGB 2019 N 0329
TR TAGA 2024 1 0304
TAGB HLT 9999 2029 J 9999
LOD 01 CON 2 2034 8 01 0344
TR *+10 2039 1 0349
CON 1 CON 04 XXXX 2043
CON 2 CON 01 Y 2044
LASN 5005
LOD 01 CON 2 5009 8 01 0344
Figure 72
TAG opP NU OPERAND LOC op NU ADDRESS
REFTAG TR ouT 5004 1 8004
RASN TAGAT300 0300
TAGA CMP CON 1 5009 4 0343
TRE *+25 5014 L 0334
SHR 1 5019 C 0001
TRZ TAGB 5024 N 0329
TR TAGA 5029 1 0304
TAGB HLT 9999 5034 J 9999
LOD 01 CON 2 5039 8 01 0344
TR *+10 5044 1 0349
CON 1 CON 04 XXXX 5048
CON 2 CON 01 Y 5049
LASN 5050
LOD 01 CON 2 5054 8 01 0344
Figure 73
incremented by one, and the high-order location of X1 is an actual operand, or
the operand of the RASN is obtained. The difference is the tag of a statement appearing any-
between these two must be a multiple of five, or where in the program before the RASN, or
inconsistent results will occur. Therefore, it is is a location counter.
recommended that a RASN always be preceded by A tag or location counter may be charac-
a LASN or SASN, and both have as operands actual ter adjusted.
addresses or tags that are similarly positioned The tag and numeric fields must be left blank.
with respect to the low-order location. Comments may be placed in the comments field.
A RASN statement is written in the format shown RESTRICTIONS. A RASN statement may not be
below. referred to by another Autocoder statement.
Tag Operation |Num| Operand Assignment of Subroutines Within Macro-Instructions -

SUBRO

RASN Xy

The function of a SUBRO statement is to cause the

46

Processor to treat the coding that follows it as a
subroutine and to locate it out of line. The Proc-
essor assigns storage locations to SUBRO routines
after it has assigned locations to Class A subroutines.
The user designates in the operand of the SUBRO
statement the storage location at which the Processor
is to begin assigning addresses.

A SUBRO statement must pot be written in a
source program. It is designed to be used with
user-written macro-instructions. A complete ex-
planation of the usage of a SUBRO is given in the
IBM manual, '"7080 Processor: Preparation of
Macro-Instructions,'" Form C28-6264.

Assignment of Library Subroutines - SUBOR

The function of a SUBOR statement is to specify the
starting location for the assignment of library sub-
routines. The SUBOR assignment supersedes the
standard subroutine placement, i.e., after the last
instruction in the program. SUBOR enables the user
to position the block of subroutines anywhere in
storage, and the statement itself may be written at
any point in the program. For a program written in
two modes, it may be necessary to place the sub-
routines below the storage limit of the secondary
mode. For example, the primary mode of a program
is 7080, and the secondary mode may be 705 II. If
the 705 III portion of the program must have access
to the subroutines, and it is anticipated that the final
instruction will occupy a location close to or beyond
the storage size of the 705 III, a SUBOR must be
used to position the subroutines in the lower portion
of storage. This would alter the order of the object
program parts so that the block of subroutines would
be placed within the machine language equivalent of
the source program. It may even be desirable to
place the subroutines at the beginning of the object
program.

The SUBOR statement is written as follows:

Tag Operation |Num|Operand
SUBOR X1
X1 is an actual operand, or

is the tag of an Autocoder statement, or
is a location counter.
The tag or location counter may be char-
acter-adjusted. The tagged statement
must precede the SUBOR statement.
Comments may be placed in the comments field.
Figure 74 indicates that the programmer assumes
the subroutines cannot possibly occupy more than
5,000 positions.

TAG OPERATION [NUM,| OPERAND
slie

20

et

UBOR!
R ASN | .
ECORD A%L
i]
Figure 74

RESTRICTIONS ON THE SUBOR STATEMENT.
A SUBOR statement may not be referred to by an-
other Autocoder statement.

Assignment of Literals - LITOR

The function of a LITOR statement is to specify the
starting location for the assignment of the literal
table. The LITOR assignment supersedes the
standard literal table placement, i.e., after the
subroutine block or after the last instruction of the
program if no subroutines are used. LITOR enables
the user to position the literal table anywhere in
storage, and the statement itself may be written at
any point in the program. (The previous discussion
on the use of SUBOR applies as well to LITOR.)
The LITOR statement is written as follows:

Tag Operation|Num |Operand
LITOR X1
X1 is an actual operand, or

is the tag of an Autocoder statement, or
is a location counter.
The tag or location counter may be
character-adjusted. The tagged state-
ment must precede the LITOR state-
ment,
Comments may be placed in the comments field.
In Figure 75, the Processor is instructed to start
the literal table assignment at the same location
already assigned to TAG. It must be assumed either
that the contents of TAG are no longer needed when
the literal table is actually placed in storage or that
the contents of TAG are placed in storage after the
literal table is no longer needed.

. TAG Al .ommor:o N[OPERAND J
IToR| . TAG
. |

Figure 75

RESTRICTIONS. A LITOR statement may not be re-
ferred to by another Autocoder statement.

47

Transfer Card - TCD

The function of a TCD statement is to create a '"00"
transfer control card in addition to the standard ''00"
card that terminates the object program deck. The
additional 00" card will be internal to the object
program, occupying the same relative position in it
that the TCD statement occupies in the source
program . If a Z character is placed in column 74
of the TCD statement, the generated TCD '"00"
transfer control card will be produced at the end of
the object program and will replace the standard 00"
card (see section '""Flag Characters and Their Mean-
ings').

The TCD statement must be followed by Autocoder
statements that specify the contents of the card,
i.e., the instructions or the instructions and data
the card will contain. The last of these Autocoder
statements must be a transfer back to the loading
program or to another object program instruction
that is already in storage. A LASN (or SASN) state-
ment must be used after the final statement supplying
the contents of the '""00" card. A program may con-
tain more thanone TCD statement. Multiple TCDs
may be written consecutively or interspersed through-
out the program.

The format of the TCD statement is as follows:

Tag Operation|{Num |Operand

TCD

Comments about the '""00" card may be written in
the comments field. A tag is not needed.

THE EFFECT OF THE "00" CARD ON THE LOADING
PROCESS. As previously explained, a 00" card
causes the loading program to interrupt the loading
procedure and to execute the instructions on the card
as soon as it is loaded into storage. The area of
storage assigned to the contents of any "00'' card is
the input area used by the loading program, i.e. .
locations 000080-000159. On the standard '00" card
that the Processor automatically produces, the final
instruction is a transfer to the first instruction in

the object program. A return is not made to the
loading program, because the standard "00" card is
the final card of the object program deck. In contrast,
the '"00" card created by a TCD statement is followed
by additional object program cards. Consequently,
this '"00'" card must contain as its final instruction a
transfer back to the loading program or to some
other routine, already in storage, that will ultimately
return control to the loading program.

48

A 00" card is often used to execute an overlapped
routine, as shown in Figure 76. As soon as the 00"
card is placed in the loading input area, a transfer
is made to the HOUSEKEEP routine, which is already
in storage. The last instruction of the routine is a
transfer back to the '"'00" card, which transfers in
turn to the loading program. When loading is
resumed, the HOUSEKEEP routine will be overlapped
by the CALCULATE routine.

. TAG N ‘:)rnmo»:o :ur:’ B OPERAND]
HOUSEXEEP |SEL 0500 R
|
ENDHOUSEKPTR ERQCARD)
2)

TCD)

. TR HOUSE.KEEP \
ZEROCARD . TR 00004 A
. , LASMN. | . HOUSEKEEP
CALCULATE ADDX |. ONEXTWOXTHREEX

Figure 76

RESTRICTIONS ON THE TCD STATEMENT. The
machine language version of the Autocoder state-
ment specifying the "00" card content may not

exceed 65 positions. (A machine language instruction
occupies five positions.)

If an object program contains '"00" cards created
from TCD statements, the input area of the loading
program used with the object program must start
at location 000080.

INSTRUCTIONS TO THE PROCESSOR THAT
CONCERN OBJECT PROGRAM CONTENT

Include Subroutine - INCL

The function of an INCL statement is to designate a
library subroutine that the Processor is to insert in
the object program. The source program must also
contain an instruction or a routine that supplies the
linkage to the subroutine designated by an INCL

statement. The format of the INCL statement is as
follows:
Tag Operation |Num|Operand
INCL X1
Xy is the five-character mnemonic identifi-
cation code of the subroutine to be
included.

Comments about the subroutine may be written in
the comments field.

The function of the macro-instruction LINK, used
in Figure 77, is to provide linkage to a subroutine,

The subroutine is ROOTS; the tag of its entry point
is STEPI1.

TAG OPERATION N‘UM. OPERAND
o LINK STEPIX
. : Ll)
. INCL ROOT.S e 12
Figure 77

TYPES OF LIBRARY SUBROUTINES. Programmers
may write subroutines in Autocoder language and add
them to the standard Processor library. Such a sub-
routine will be included in a program assembly only
if it is designated by an INCL statement. The stand-
ard library also contains subroutines that are re-
quired by macro-instructions, but the Processor
automatically supplies these subroutines, and the
details of their inclusion are not relevant to the use
of INCL.

Two types of subroutines may be written in Auto~
coder language:

1. Class A. These may contain any Autocoder
statement.

2. Class B. These may contain any Autocoder
statement, including NAME entries, except the fol-
lowing: macro-instructions other than ENT80 and
LEV80, an INCL that designates a Class A subrou-
tine.

RESTRICTIONS ON THE INCL STATEMENT. An
INCL statement may not be referenced by another
Autocoder statement.

Translation - TRANS

The function of a TRANS statement is to equate the
operand of a one-for-one instruction into an actual
location derived from the operand of the TRANS.

The TRANS statement designates an actual loca-
tion and equates it to the reference made by the oper-
and of a one-for-one instruction. More than one
instruction may reference the same TRANS state-
ment. In this case, all references will be equated
to the location designated by the TRANS.

The TRANS statement is written as follows:

TAG FIELD. The entry in this field must be the tag
that appears as the operand of the one~for-one in-
struction making the reference.

OPERATION FIELD. The mnemonic code TRANS is
placed here.

NUMERIC FIELD. This field must be left blank.

OPERAND FIELD. The entry in this field may be
one of the following operands:

1. An actual operand. This location will appear
as the operand of an object program requesting in-
struction regardless of the memory orientation of
the operation.

2. A location counter without character adjust-
ment (*). The location of the instruction following
the TRANS will appear in an object program instruc-
tion wherever the tag of the TRANS appears as a
source program operand.

3. A location counter with any character adjust-
ment. The location of the instruction immediately
following the TRANS with character adjustment ap-
plied will appear in an object program instruction
wherever the tag of the TRANS appears as a source
program operand.

4. A tag of another location including the location
of another TRANS. The operand may have a char-
acter adjustment and/or an operand modifier other
than an address constant literal; such an operand
will be treated as an actual operand. The maximum
number of TRANS statements with symbolic oper-
ands is 50 per Processor run. N

COMMENTS FIELD. Comments may be placed here.
In Figure 78, the TRANS statement equates
MASTERTAPE to an actual tape address. In the ob-
ject program listing, the machine language version
of the SEL instruction will contain the address 0200.

R TAG N “O’flA"O?O ;"UTR. s OPERAND S
SE% MASTERTAPE)

ASTERTAPETRANS 200

Figure 78

Assume that location 05009 is assigned to the first

instruction generated from the ADDX macro-instruction

in Figure 79. The operand of the TR instruction is
also translated to 05009, because the TRANS state-
ment does not exist in the object program. The *
operand of a TRANS statement is, in effect, *+5.

. TAG s .O'EIAYIOP: :UM OPERAND “
TR T {
...l 5
EXT TRANS| ¢ ~
. DDX X
Figure 79

If the RD instruction in Figure 80 is assigned to
location 03059, the operand of the TR instruction will
be translated to 03054. This results from the fact
that the TRANS statement does not appear in the
object program. Consequently the BSP instruction
is the instruction actually preceding the RD instruc-
tion and is assigned to location 03054,

49

. TAG " "O’QIAI'IOP:° U:'IJ:A’ s OPERAND
TR RROR \
. sp {
RROR. TRANS| . -5 {
RD EA {
) f
Figure 80

RESTRICTIONS ON THE TRANS STATEMENT. I a
TRANS statement has a location counter, actual
operand, operand modifier, or adjustment, the state-
ment that references the tag of the TRANS cannot
have an operand modifier since it has no significance.

Source Program Language - MODE

An Autocoder program may contain statements
written in the following languages:

1. FORTRAN

2. Report/File Writing

3. Decision

4. Arithmetic

5. Table-Creating

The term '"higher languages of the 7080 Processor"
includes all of the above-listed languages except
FORTRAN. MODE statements are instructions to the
Processor that indicate a change in the language of
the source program, and they must be used in Auto-
coder programs that contain Report/File Writing
statements and/or FORTRAN statements. MODE
statements may not be tagged, but comments may be
written in the comments field.

FORTRAN MODE STATEMENT. The statement in
Figure 81 must precede each Fortran portion of an
Autocoder program.

TAG OPERATION [NUM.| OPERAND
18 20]21 22l23

ODE. FORTRAN4: J

Figure 81

The operand FORTRAN indicates that the subse-
quent statements are in standard FORTRAN format.

REPORT/FILE WRITING MODE STATEMENT. The
statement shown in Figure 82 must precede each
Report/File Writing portion of an Autocoder program.

TAG [OPERATION [NUM.
slie 20|21 azlas

REPQRT

OPERAND

;JAN

Figure 82

50

AUTOCODER MODE STATEMENT. The statement
shown in Figure 83 must precede each Autocoder
portion of a program if that portion follows Report/
File Writing or FORTRAN statements. The state-
ment is used whether or not the Autocoder portion
also contains Decision, Arithmetic, and Table~
Creating statements.

TAG I OPERATION |NUM.| OPERAND 5
Cl 1518 20]21 22]23
,Mo.nz ODER, %

Figure 83

NOTE: This MODE statement is not used when the
entire program consists of Autocoder statements
alone or in combination with Decision, Arithmetic,
and/or Table-Creating statements.

CODING GENERATED IN 7080 MODE

The terms ""7080 mode'" and '"'secondary mode' are
used throughout this manual. They refer to the
object machine for which the Processor produces
coding, makes location assignments, etc.
The program mode is communicated to the Proc-
essor by using the macro-instructions Leave Eighty
Mode (LEV80) and Enter Eighty Mode (ENT80), both
of which are described in the macro-instruction
manual. The 7080 mode is assumed until a LEV80
is encountered. Of course, if the entire program is
in 7080 mode, the LEV80 and ENT80 are not neces-
sary. Since these macro-instructions are Assembly
Control macro-instructions, they should be consid-
ered along with other instructions to the Processor.
LEV80 and ENT80 affect the coding generated from
the statements in the portion of the program that each
of them precedes. The Processor generates 7080
instructions until it encounters a LEV80. It then
generates 705 II or 705 IIT coding, depending on
which is designated as the secondary mode for the
assembly, until ENT80 is encountered. The Proc-
essor then resumes generation in 7080 mode. The
program mode is a consideration in using address
constants, macro-instructions, one-for-one instruc-
tions, and instructions to the Processor. For ex-
ample, the Processor generates an EIA instruction
when it encounters an indirect address in the operand
of an instruction in the 7080 mode portion of a pro-
gram. This is true whether the indirect address
appears in a hand-coded one-for-one instruction or
a generated instruction. As another example, an
ACONS6 should not be referenced by an instruction
outside the 7080 mode portion of a program.

INSTRUCTIONS TO THE PROCESSOR THAT
CONCERN THE PROGRAM LISTING

Skip to New Page - EJECT

The function of an EJECT statement is to advance the
listing to a new page. The program statement that
follows EJECT will be the first statement on the new
page. Unless the listing is controlled by EJECT
statements, each page will contain 55 lines of print.
The statement is written as shown in Figure 84. It
may not be tagged, and it may contain only one line
of comments.

TAG OPERATION |NUM.
16 20{21

22,

‘OPERAND
23

JECT|
| i

Figure 84

EJECT does not appear on the listing page. However,
it is assigned an index number, and the number is one
greater than the index number of the statement that
precedes the EJECT. (Index numbers are explained
in Chapter 8.)

Title for Routine or Comment - TITLE

The function of a TITLE statement is to place lines
or paragraphs of descriptive information in the
program listing. TITLE may be used in any way the
programmer desires; some of the more common
uses will be discussed following the specifications
for writing the statement.

The TITLE statement is written as follows:

OPERATION FIELD. The mnemonic code TITLE
is placed here (see Figure 85). If the information
is continued into subsequent lines of the coding
sheet, i.e., is written as a paragraph, only the
first line must contain TITLE. 1f a series of para-

graphs is written, and each is separated by one or
more blank lines on the coding sheet, the lines of
the paragraphs will be treated as TIT LE continua-
tion lines.

NUMERIC FIELD. This field may contain an entry
in the first TITLE line. However, it must be left
blank in the continuation lines. It is recommended
that the numeric field be left blank at all times.

TAG FIELD, OPERAND FIELD, COMMENTS FIELD.
Any or all of these fields may be used for the
descriptive information. The commentary does not
have to start in the first column of any of the fields,
and it does not have to extend to the end of the
comments field before a continuation line is started.

COMMON USES OF TITLE. Describing the function
of each program portion, summarizing program
procedures, and providing a table of contents for the
program listing are a few of the uses for TITLE. In
addition to appearing in the program listing, all
TITLEs are also printed in a special section of the
Operator?s Notebook, an optional feature of the
assembly documentation provided by the Processor.
This special page shows each TITLE and its location
in the listing. This TITLE page is useful as an
index for the program listing. It is often desirable
to have information about the program at the start of
the listing and/or before each major program portion.
TITLE can be combined with EJECT, as in Figures
86 and 87, to provide a page of commentary only.
When planning pages of commentary or describing
program parts, it should be remembered that an
EJECT statement before each part will cause that
part to appear on a new page of the listing. Thus,
EJECT and TITLE may be used to separate each
program portion, to describe it, and to provide a
table of contents or an index. The standard listing

TAG OPERATION JNUM OPERAND CO l
é 15116 20021 22323 39]40 MMENTS 62]63 65 |67 9 171 1737,
| TIT.LE THIS 1INt .RUcTr.omM .I.6 USEFULI FOR | \
e . PIROV.IDIING, CIOMME Mle
| | 1 f | PP RN | "
Figure 85
OPERATION JNUM
TAG OPERAND I l I I
& 15016 20]21 2223 39140 COMMENTS 62163 65 67 917117317,
| T IT.L.E ABe. PAYIRo.L.. IPRIQERIAM — FOUR IPART.SI
! 1] I ! i]
| PART 1 |CO, N EX.E|E 1 .
i | - | ROU T.IINE] E_.,.._.MH.L.&.H._ILS.._.Q.NILY]
- 5 A P TR B PPN P | L
c | L2 ol I el L L1 1
| EJECT | | ot]] |
L | . s . i] |, [1
Figure 86

TAG OPERATION [NUM OPERAND COMMENTS L
6 15016 20121 22123 39140 62]63 65 67 9 71 _§73[7.
| TIT.LE ABC., PIAY.RO.L|L, PROGRIAM. I, THI, PROIGRAM, |
1 K oONTAILNS, .Elov.Rr, PIAKIT.S..1 THE 1ID.6TAL|LS, OF]
| AcH, ARE . FluretLIEDP] AT THE, 1POINTI5 . SIT.E, E L0 wWle
. i . |] 1 1 L]
PAR TN | , Howvs ek EEPLI NG, 1. L { PGLIN 203
ARTZ . PEPT MITLONIS, AND| €lO.NSITANTSI PGL LN 2,19
il s] 1 ! I 1]
| F | | | ! | |
1 EJEcT] | N 1 | 1. J !
i PP | AU 1 1 1 1

Figure 87

page contains 55 lines unless EJECT is used. In
Figure 86, it must be assumed that TIT LEs desig-
nating the four program parts have been used else-
where in the program and that this TITLE page is
to be the introductory page of the listing.

In Figure 87, it must be assumed that the listing
page containing each of the parts is headed by a
TITLE describing that part of the program.

FLAG CHARACTERS AND THEIR MEANINGS

Flags are a means of communicating with the Proces-
sor. Specific single-character flags, explained be-
low, have been defined for use in column 74 of all
input to the Processor except FORTRAN and COBOL
statements. Additional flags may be allocated in the
future, and they will be made available as soon as
completely defined. Should any character be en-
countered in column 74 when its use is unintentional,
inconsistencies may occur in the assembled program.

@ - Force Program Card

This flag will cause the output produced from the en-
try containing the flag to begin on a new program
card.

A - Reduce Location Assignment Phase Assembly
Time

This flag is for use within Class B subroutines. It
is placed in column 74 of statements which have tags
that will be the operands of assignment statements
(e.g., LASN, SASN, RASN).

All entries bearing this flag will be placed in a
table that is used when assignment statements are en-
countered. This reduces the assembly time for
Class B subroutines (which are processed in the lo-
cation assignment phase).

B - Scan Entry from Right to Left

This flag will cause the Processor to scan the entry

52

containing it from right to left rather than from left
to right, and has two specific uses:

1. To allow the literal operand of a one-for-one
statement to contain a literal symbol within it. The
literal operand of a statement so flagged will be in-
terpreted as being unsigned, having no decimal posi-
tions, and having no character adjustment.

2. To allow the lozenge terminating an operand
of a macro-header to be contained within the operand.
The specific operand with the flag must be on a sep-
arate card; otherwise, all operands on the card will
be considered as one, with a length equal to the cu-
mulative lengths of all. The flagged operand will be
interpreted as being an unsigned literal, having no
decimal positions, and having no character adjustment.
The first and last characters in the operand will be
assumed to be literal signs and will be dropped even
if they are not literal signs.

C - Entire Card is a Comment

Columns 6 through 73 of an entry containing this flag
will be considered a comment, and entries so flagged
will also be printed, single spaced, on a separate
page of the Operator's Notebook. Entries with this
flag that are contained in the input to a librarian run
will not be treated as components of macro-instruc-
tions, and will be removed. Their function in this
case is solely for the purpose of listing on an IBM
407.

D - Delete All Messages Created for this Entry

An entry containing this flag will be processed nor-
mally but diagnostic messages, if any, will not be
produced for it.

F - End of a Chain of Family Macro-Instructions

This flag enables a family macro-header in one chain
to contain macro suffix tags or generated descriptive
tags that refer to a family macro-instruction in an-

other chain, when both chains are not separated by a

nonfamily macro-header. (The use of the F flag is
explained in "7080 Processor: General Purpose
Macro-Instructions,” Form J28-6266.)

G - Treat Change Entry as Generated Entry

This flag is provided for use with change entries in-
troduced in a high-speed reassembly run. and will
cause the entries containing it to be considered as
generated entries during a subsequent reassembly.
That is, during a subsequent reassembly with macro-
generation, the entries will be deleted; and, during

a subsequent high~speed reassembly, the entries

will be retained.

H - Halt Loop

This flag, intended for use in entries that constitute
the error-indication portions of a program, will
cause entries containing it to be listed on the Halts

page of the Operator's Notebook.

M - Operand is to be Modified

This character may be used to flag all entries having
operands that are not blank, but are to be initialized
and/or modified, and will cause these entries to be
printed on the page of the Operator's Notebook con-
taining entries with blank operands.

R - Reset Location Counter

Placing the Reset character (R) in column 74 of a
LASN statement containing an actual or a tag operand
does not modify the setting designated by the operand.
However, it may affect a subsequent setting desig-
nated by a blank operand for the same counter, be-
cause the Processor will ignore any assignments it
made before encountering the statement containing
the Reset character.

This may best be seen with an illustration. Sup-
pose that the highest assignment made from counter 1
is location 59999. The Processor then encounters a
LASN for counter 1 to location 2000. After setting
the counter, the Processor assigns a block of 500
positions, bringing counter 1 to 2499. Now a LASN
with a blank operand is encountered for counter 1.
The counter is set to location 60000, one location

beyond the highest assignment made from the counter
up to this point in the assignment process. To return
to the beginning of this example, when location coun-
ter 1 contains 59999, suppose that the Processor en-
counters a LASN for counter 1 to location 2000, but
the statement also contains R in column 74. As be-
fore, the counter is set to 2000, a block of 500 posi-
tions is assigned, and the counter is again at 2499.
Now a LASN with a blank operand is encountered for
counter 1. Because the Reset character destroyed
the previous high location (59999), the counter is set
to 2500. This is one location beyond the highest as-
signment made by the Processor after it encountered
the Reset character.

T - Test-Assembly Entry

Entries containing this flag will be retained during an
assembly when the run-type control card so indicates.
If not so indicated, all entries containing this flag
will be deleted automatically. Statements, there-
fore. may be assembled for testing purposes, and
easily removed.

7 - Relocate '""00" Transfer Control Card

This flag is only used with a TCD statement. It
causes the TCD "00" transfer control card to be
placed at the end of the program in place of the stand-
ard '""00" card. If more than one TCD statement con-
tains this flag, the last one encountered prevails.

1 - Weight Inner Macro-Instruction as One

This flag may be used only with macro-headers when
they are used as components of macro-instructions.
It specifies that regardless of how frequently the
macro-instruction containing it is used, the inner
macro-instruction will be called so infrequently by
it that, as a component of the particular outer macro-
instruction, the Processor is to consider that the
inner macro-instruction is called one time. Effec-
tive use of the flag will cause the Frequency Count
Table to more accurately reflect the frequency with
which each macro-instruction is used, so that the
assignment of memory macro-instructions will be
more efficient.

CHAPTER 8. ASSEMBLY DOCUMENTATION

One card is punched for each line of the coding sheet,
as explained in Chapter 1. A card-image tape pro-
duced from the source program deck is the input to
the Processor. The assembly output consists of the
object program deck and program documentation.
Although the object program deck is produced on a
card-image tape, it will be referred to as a deck.

OBJECT PROGRAM DECK

The sequence and contents of the deck is shown in the
following list:

1. seven-card load program (LD7080)
literal table
machine language equivalent of source program
Class A subroutines
subroutines portions of macro-instructions
Class B subroutines
. standard '""00" transfer control card

Note that the literal table, although assigned to
storage locations above those of the object program
instructions, precedes the instructions into storage.

The format of the object program card is as
follows:

1. Program identification (6 positions). This is
the source program identification (ident field on cod-
ing sheet).

2. Serial number (3 positions). This is the num-
ber of the object program card. It is assigned by the
Processor and bears no relation to the number of a
source program statement (Pglin field on coding
sheet).

3. Initial address (4 positions). This indicates
the storage location at which the first character on
the card is to be placed.

4. Number of columns (2 positions). This is the
amount of data being supplied by the card. A maxi-
mum of 65 positions may be indicated; this is the
space required by 13 instructions. The "00" card
contains zeros in these positions.

5. Instructions and/or constants (1-65 positions).
This is the actual portion of the object program being
supplied by the card. It is placed at the storage lo-
cation specified by number 3 above.

NG W N

ASSEMBLY DOCUMENTATION

A listing of the object program itself and diagnostic
messages is the minimum assembly documentation;
optional documentation consisting of the Operator's
Notebook and the Symbolic Analyzer may be re-
quested as additions to the listing. A column-by-
column explanation of the listing format appears in a

54

subsequent section of this chapter, "Details of the
Listing."

Program Listing

The program listing is provided only on tape. The
contents of the listing are as follows:

1. First Page. This page is blank except for a
heading line and a notation of the highest memory po-
sition used, not resulting from a RASN or SASN.

2. Literal Table. The literal table is divided
into seven parts. (A signed literal is a literal in
which the first position after the pound sign (#) is
occupied by a plus or minus sign.)

a. signed literals, length not a multiple of 5

or 10.

b. signed literals, length a multiple of 5.

c. signed literals, length a multiple of 10.

d. unsigned literals, length a multiple of 10.

e. unsigned literals, length a multiple of 5.

f. unsigned literals, length not a multiple of
5 or 10.

g. address constant literals.

The address constant literals are broken down in
the following order: unsigned, length of 6; signed,
length of 6; signed, length of 5; unsigned, length of 5;
and all lengths of 4 ending in a 4 or 9 location.

3. Source Program with Generated Coding. This
may be considered the main portion of the program
listing. The source program statements appear in
their original sequence; any generated coding appears
directly after the statement(s) that caused the genera-
tion.

4. Class A Subroutines. The subroutines are in-
serted alphabetically, i.e., according to the mne-
monic identification code of each subroutine. Any
generated coding appears directly after the statement
that caused the generation.

5. Subroutine Portions of Macro-Instructions.
The order of subroutines is the same as that of the
macro-headers causing their generation.

6. Class B Subroutines.
serted alphabetically.

The subroutines are in-

7. Diagnostic Messages. These messages are
produced by the Processor and indicate errors, or
possible errors, in source program statements.
When the Processor detects a possible error condi-
tion, it often makes certain assumptions and gener-
ates coding based on them. It also supplies a warning
message on the nature of the possible error or the

action taken to correct an error. The reference
manual, "7080 Processor-System Operation,' Form
J28-6265, describes such messages.

8. Unreferenced Tags (NO REQS). On a separate
page, hand-coded tags that are not referred to else-
where in the program are listed.

OPTIONAL DOCUMENTATION
Operator's Notebook

This is an index to the location of certain types of
Autocoder statements, both hand-coded and gener-
ated, that appear in the program listing. The pages
that make up the Notebook are as follows:

1. TITLES

2. C FLAGS -- Comment statements with a C
flag

3. 80 SPEC I -- All generated EIA resulting from
an ''I," prefix (indirect address)

4, TRANS -- All TRANS statements with de-
scriptive operands

5. 80 SPEC OP -- All LEV80, ENT80, ENTIP,
LEVIP, SPC, TIP, and LIP statements

6. SWITCHES -- (SWN and SWT)

7. H FLAGS AND HALTS

8. M FLAG and source-program blank operands

9. ASSGNS -- (LASN, SASN, RASN, SUBRO)

Symbolic Analyzer

This is an index of every hand-coded and generated
tag in the program. The tags are listed in collating
sequence, and each is followed by a list of every
instruction, either hand-coded or generated, that
references the tag. Tags that are used incorrectly
are flagged with an error indicator appearing as
ERR. .

Each program entry that defines a tag will be
listed. All entries having operands that reference
the tag will be listed, three per line, following the
tag definition. Any operand modifier and/or char-
acter adjustment in a referencing entry will be in-
cluded, but ASU zoning in address constant literals,
and comments, will not. Entries that refer to unde-
fined tags will be listed separately.

DETAILS OF THE PROGRAM LISTING

The heading of each page in the listing contains the
program identification, revision number (if any) and

the date (from the date control card) and page number.

The listing page consists of 16 fields. The entries
in the PGLIN through the FLAG fields comprise an
Autocoder statement. The machine language trans-
lation of the statement (i.e., an object program in-
struction or constant) appears in the INSTR field.
Other fields contain information on storage locations,

statement sequence, and references to other state-
ments. The fields of the listing are as follows:

INDEX. This is a number that the Processor creates
for each line of the listing. A hand-coded statement
is assigned a number of the form xxbyy; a generated
statement is assigned a number of the form bxxyy.

In each case, xx is the listing page number and yy

is the line number. On a reassembly, a number of
the form xx*yy is assigned to a statement that has
been replaced, added, or that follows a deleted state-
ment. The INDEX number is not identical to the
pglin number on the coding sheet.

S. Origin of entry (i.e., whether it is a source pro-
gram statement or a Processor-generated entry) and
type of entry. Both items of information are con-
veyed by a single-character code, as follows:

Code Origin Type
A Source Program One-for-One
B Source Program Macro-Header
E Source Program Decision, Arithmetic,
Table

F Source Program Report/File
G Source Program FORTRAN

1 Source Program TITLE, C flag, and
COBOL Statements

J Generated One-for-One

K Generated Macro-Header

N Generated Decision, Arithmetic,
Table

o] Generated Report/File

P Generated FORTRAN

R Generated TITLE and C flag
Statements

* Generated EIA and Related
Instruction

Note: All subroutine entries are generated.

PGLIN. The entry in this field corresponds to the
PGLIN entry on the coding sheet.

TAG. Any hand-coded or generated tag appears in
this field, which corresponds to the tag field on the
coding sheet.

OP. Any mnemonic code appears in this field, which
corresponds to the operation field on the coding sheet.

NU. The entry in this field varies just as it does
when hand-coded. The field corresponds to the Num
field on the coding sheet.

AT (Address type). An entry in this field is either
an operand modifier or an indirect address. On the
coding sheet, such entries are written in columns
23-24 of the operand field.

55

OPERAND. The entry of this field varies just as it
does when hand-coded. The field corresponds to the
operand field on the coding sheet with this exception:
The placement of a prefix to the basic operand; this
appears in the AT field explained in the preceding
paragraph.

COMMENTS. Any source program comments appear
in this field, which corresponds to the comments
field on the coding sheet.

F. Flag code.

LOC. The entry in this field is a six-character num-
ber designating the location assigned to the object
program instruction or constant.

INSTR. The entry is a five-position field containing

the actual operation code of the instruction followed
by the actual address with ASU zoning.

56

SU. The entry in this field is an ASU number. It
does not necessarily correspond to the num field,
which is used for other purposes besides ASU as-
signments.

ADDR. This field contains the actual address por-
tion of an instruction as six positions.

SER. An entry in this field is the three-character
serial number of an object program card. The num-
ber appears only in the line containing the first
character on the object program card. Subsequent
lines with blanks in the SER field contain data that
appear on the same card.

REF. An entry in this field is the INDEX number
of the operand and serves as a cross-reference.
(Within a NAME, the number in this column is the
cumulative length of the NAME.)

GLOSSARY OF TERMS

The terms that follow are explained in relation to
their use in this manual. No attempt has been made
to supply a glossary of basic programming terms.
Definitions that appear in the text of the manual are
not repeated on this page. The Index supplies page
references to such definitions.

Address. Something that designates a storage loca-
tion. The term "address of an instruction' and the
term ''address portion' both refer to the portion of
a machine language instruction that identifies a
storage location.

Alphabetic characters. The letters A~Z. Alphabetic
data consists of alphabetic characters.

Alphameric characters. A set of characters com-
prising the following: alphabetic, numeric, special,
blank, Alphameric data consists of any of these
characters or any combination of them.

Blank character. The absence of a character. May
be designated on the coding sheet by the symbol b.

Coding. Program statements that may or may not
form a routine.

Data field. A unit of information consisting of an
alphameric character or a set of adjacent alphameric
characters.

Decimal positions. The positions to the right of the
decimal point in numeric data.

Format layout. A graphic representation on the
coding sheet of a specific arrangement of characters.
Also referred to as a "layout. "

Generated. An adjective describing coding provided
by the Processor.

Hand-coded. An adjective describing coding written
by the programmer.

Integer positions. The positions to the left of the
decimal point in numeric data.

Initialization. A procedure that places an instruction
or a switch in an initial condition or restores either
one to a previously defined condition. Initialization
is a type of modification.

Location. A place in storage. The term may refer
to one storage position or the positions occupied by
a field or an instruction. Also referred to as
""'storage location. "

Machine language. A language that is intelligible to
the computer. Also referred to as "actual language. "

Machine language instruction. A 7080 machine in-
struction consisting of an actual operation code and
an address portion.

Mixed decimal. A term used to designate a number
containing integer and decimal positions.

Modification. A procedure that alters an instruction
or a switch setting. Address modification is the
procedure of altering the address portion of an
instruction.

Numeric characters. The digits 0-9. Numeric data
consists of a combination of digits representing a
signed or unsigned integer, pure decimal, or mixed
decimal.

Processor library. The portion of the 7080 Processor
System tape that contains the elements of each macro-
instruction and each subroutine.

Pure decimal. A term used to designate a number
containing decimal positions only.

Record. A set of adjacent data fields.

Secondary mode. Any mode other than 7080 mode.

Special characters. The following group of char-

acters: .D&$*-/, G#@+F

57

APPENDIX

The more significant features that have been incor-
porated into Autocoder for the 7080 Processor are
summarized below, by chapter headings. The
reader can consult the appropriate sections of this
manual for details on the changes.

Source programs that could be assembled by the
7058 Processor can also be assembled by the 7080
Processor. However, certain mnemonics which
were accepted by the previous processor will not be
accepted by the 7080 Processor. These invalid
mnemonics are listed below:

1. DRCD, DCON, or DFPN

2. AACON, LACON, or RACON

3. AASN, OASN, or CASN

4. *ASUnn

5. Actual operation codes
In addition, CTL, while it may be used and will be
accepted, will cause a warning message to be pro-
duced, and it will be assumed that the programmer
has indicated the proper operand.

Certain differences between 7058 Autocoder and
7080 Autocoder result from expansion of the language
and the incorporation of new features. Those dif-
ferences are listed below.

1. A character in column 74 of a source statement,
except one in FORTRAN or COBOL, will be considered
a flag having specific significance to the 7080 Processor.

The flag codes are described in the section on flags.
2. A character adjustment following an address
constant literal request (e.g., L@TAG+5) will cause

an increment to the assembled location of TAG rather
than to the assembled location of the address constant.

3. A literal may not be followed by a multiply or
divide character adjustment, nor may the amount of
the character adjustment be outside the range +99,
i.e., be stated in more than two significant numbers.
However, an increment or decrement can be written

same increment, and -55 and -000055 will cause
the same decrement.

4. No operand of a macro-header may exceed 35
positions unless it is surrounded by literal symbols;
and no literal used as a macro-header operand or in
a macro-instruction component may exceed 35 posi-
tions including the sign and decimal point, but not in-
cluding the literal symbols.

Standard Format of Autocoder Statements: A new
multipurpose coding form has been developed for
use with the 7080 Processor. Column headings have
been changed to accommodate certain new features of
the Processor.

Area definitions: Area definition length may be
specified by a six-digit number, which can be writ-

58

ten in columns 17-22. Restrictions on comments
continuation lines with area definitions have been

altered to reflect the new meaning of the columns.
RPT statements are restricted to nine commas in
the layout format.

One-for-one instructions: The list of acceptable
mnemonics has been expanded and provision has
been made for additional numeric codes to accom-
pany various operation codes. The changes are de-
tailed in Figure 44. Restrictions on character ad-
justment have been expanded, particularly with re-
spect to literal operands. A new operand modifier
(T,) has been provided for both one-for-one instruc-
tions and address constants.

General Purpose Macro-Instructions: Up to 50
operands can be written in the macro-header. As
many as 50 lines in the coding form can be used for
the operands of one macro-instruction. Literal
operands must not exceed 35 characters excluding
the literal (#) signs.

Address constants: An ACONG6 can have a sign as-
sociated with it, Address constant literal requests
of arithmetic operations will be six positions long
with a signed plus. Formerly, such address con-
stant literals were five positions. Character adjust-
ment may be used for the purpose of modifying the
constant itself.

Instructions to the Processor: The initial setting of
the location counter is now 00500. Restrictions on
LASN, SASN, SUBOR, and LITOR statements have
been eased. The location counter, with or without
adjustment, is now a valid operand for these state-
ments. Two new assignment statements (RASN and
SUBRO) have been added. A TRANS statement can
have the tag of another location as its operand. A
TCD statement can now occupy 65 positions. 7080
mode is assumed until a LEVS80 is encountered. To
return to 7080 mode following a LEV80, the ENT80
macro-instruction is given. Additional instruc-
tions to the Processor in the form of Flag char-
acters have been added to the Autocoder language.
The use of Flags, particularly the F Flag, should
be carefully considered.

Assembly Documentation: The listings that are
provided have been expanded considerably. This
entire section should be reviewed.

SAMPLE ASSEMBLY

INDEX S PGLIN

TAG

oP

NU AT OPERAND 80SMPL=001 10-20-62 PATCHES PG 001

F

LocC

INSTR SU

ADDR

005439

SER REF

INDEX S PGLIN

nAOl
oAQ2
aAO3
nAO4
oAQS
nAQ6
nAQ7
nAO8
nA0S

oAlo
oAll
oAl2
oAl3
aoAl4
aAlS
nAlé
oAl7
oAl8
oAlS
nA20
oA21
nA22
nA23
nA24
0A25
nA26
oA27

&6A01
$A01
*#A01
-A01
/A01
/A02
/A03

/A04
/A05

TAG

opP

SIGNED LITERAL
SIGNED LITERAL
SIGNED LITERAL
SIGNED LITERAL
SIGNED LITERAL
SIGNED LITERAL
SIGNED LITERAL
SIGNED LITERAL
SIGNED LITERAL

UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED
UNSIGNED

NAMEA
NAMEA
NAMEA
NAMEA
123D
*£000025
EXIT

NAMEA
NAMEA

LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL
LITERAL

RIGHT
SIZE

SIZE

RIGHT
RIGHT
RIGHT
RIGHT

HI-SP
RIGHT

NU AT OPERAND 80SMPL-001 10-20~62 COMMENTS PG 002

OV NN FNH

—

50
50

-
o £ OO AL P DWNNE DY)

AC LB -)

w

FEP PP

A

16

123D

3956
BALANCN
987654C
0021E
OM5678000&

AGE CLOSING LIT SYMBOL OMITTED

THIS LITERAL OVERFLOWS INTO THE NEXT CARD WHICH IS
ABCDE

APPLE

= oam

0010

1234567
-BALANCE
LOCATIONA

NOT AVAILABLER

001089
000048
00046
01089
5182
0660
1604

1064
1693

F

LoC

005175
005176
005178
005182
005186
005193
005200
005209
005219

005269
005319
005324
005329
005330
005331
005332
005333
005335
005337
005340
005344
005348
005352
005359
005367
005376
005390

005396
005403
005409
005414
005419
005424
005429

005434
005439

INSTR SU

ADDR

SER REF

001

002
003

004

AC51
ACS1
AC51
AC51
oAO4
AF55

005 ACS51
AC51

_________————__________"‘_*_‘-_-_-_’——___,_____——————_______________‘__________~______,_———-"'——__"““‘““‘—~——-___./

59

INDEX

AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA

AA
AA
AA

AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

60

01
02

03
04
05
06
07
08
09
10
11
12

13
14
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
T2
73
74
75
16
77
78
79

-~

PP P> PP>PPPrP>>PP>PPPPIEPPRPIERBPIPD D

>PPPPP>PIPP>PPPDPDODPDDDD

P> >P D

PGLIN
AAO1
AAO2

AAO03
AAO4
AAO5
AAO6
AAO7
AAOS8
AAQ9
AA1O
AAll
AA12

AAl13

AAl4
AAl5
AAlé

AA17

AAl8
AAl1S
AA20
AA21
AA22
AA23
AA24
AA25
AA26
AA27
AA28
AA29
AA30
AA31
AA32
AA33
AA34
AA35
AA36
AA37
AA38
AA39
AA4O
AA4L
AA42
AA43
AALY
AA4S5
AA4E
AALT
AA4S8
AA4S
AAS50

AAS1
AAS52
AAS53
AAS4
AAS5
AA56
AAST
AAS8
AA59
AA60
AAG1
AA62
AA63
AA64
AA6S
AAGE
AAGT
AA68
AB16

AB17
AB18
AB19
AB20
AB21
AB22
AB23
AB24
AB25
AB26

TAG oP NU AT OPERAND 80SMPL=~001 10=-20-62 COMMENTS PG 003
TITLE 7080 PROCESSOR = SAMPLE ASSEMBLY
INTRODUCTION
THIS ASSEMBLY ILLUSTRATES CORRECT AND INCORRECT USAGES OF THE 7080
PROCESSORe SHORT CODING EXAMPLES ARE USED TO SHOW WHAT THE
PROCESSOR PRODUCESs INCLUDING ERROR AND CAUTIONARY MESSAGESs FOR
TYPICAL VALID AND INVALID STATEMENTSe COMMENT AND TITLE STATEMENTS
AND THE COMMENTS FIELD OF ILLUSTRATIVE STATEMENTSs HAVE BEEN USED TO
DESCRIBE THE USAGES. THIS ASSEMBLY IS FOR ILLUSTRATIVE PURPOSES ONLY
AND DOES NOT REPRESENT AN EXECUTABLE PROGRAMe THE OBJECT MACHINE IS
ASSUMED TO BE AN 80K 7080s ASUS 1-6 ARE ASSUMED SET TO LENGTHS OF
1-6 RESPECTIVELYs AND THE OTHER ASUS AND ACC ARE AT SOME RANDOM
LENGTHe
TITLE NORMAL ORIGIN
SINCE NO STARTING LOCATION IS SPECIFIEDs THE ORIGIN OF THE
PROGRAM 1S ASSUMED TO BE AT LOCATION 0500
RCD 1 TO SHOW STARTING LOCATION.
TITLE AREA DEFINITIONS
DEFINITION OF A RECORD FIELD - RCD
RCDA RCD 10 TEN DIGIT UNSIGNED NUMERIC FIELD
17 A SEVENTEEN POSITION ALPHA~NUMERIC
FIELD WHOSE LOW ORDER POSITION MAY NOT PROVIDE
LEFT PROTECTION FOR ANY SIGNED NUMERIC FIELD IT
PRECEDES.
2 00 A& TWO HUNDRED POSITION ALPHA-NUMERIC
FIELD WHOSE LOW ORDER POSITION WILL ALWAYS SUPPLY
LEFT PROTECTIONs NOTE THAT THE LENGTH INDICATION
OVERFLOWS INTO THE OPERATION FIELDe THIS IS
PERMISSIBLE ON A CONTINUATION ENTRY AS LONG AS
COLUMN 16 IS BLANK.
10 & TEN DIGIT SIGNED INTEGERe DECIMAL
POINT IS ASSUMED TO RIGHT OF THE LOW ORDER DIGITs
LEFT PROTECTION IS PROVIDED FOR THE FOLLOWING FIELD
RCDS5X3 8 EXXXXX e XXX TWO ALTERNATE DEFINITIONS OF AN
RCDS5X3A 8 #605.03 EIGHT DIGIT SIGNED NUMERIC FIELD
HAVING FIVE INTEGER AND THREE DECIMAL POSITIONS.
RCDSOX3 3 & o XXX TWO ALTERNATE DEFINITIONS OF A
3 #600403 THREE DIGIT SIGNED DECIMAL.
RCDN2X3A 5 XX e XXX TWO ALTERNATE DEFINITIONS OF A
05 # 02403 FIVE DIGIT UNSIGNED NUMERIC FIELD
WITH TWO INTEGER AND THREE DECIMAL POSITIONS,
1 # RECORD MARK INDICATION
10 F TEN POSITION FLOATING POINT RCDs
INVALID USAGES
RCD 0
1000 00 A ALTHOUGH IT IS VALID TO SPECIFY A
SIX DIGIT LENGTH IN THIS FASHION; THE SIZE OF
OBJECT MEMORY IS SPECIFIED AS 80K FOR THIS PROGRAM,.
THIS STATEMENT WOULD BE VALID IF MEMORY SIZE WAS
SPECIFIED AS 160K,
RCD 4 THIS WILL RESERVE FOUR PLACES BUT
WILL BE TREATED AS AN UNDEFINED RCD AREA BECAUSE
&s Ns As OR A& ARE NOT INDICATED IN THE OPERAND
FIELD THE WORD FIELD»> INTENDED AS A
COMMENT CONTINUATIONs WAS TREATED AS A NOP BECAUSE
IT WAS IN THE OPERATION FIELD AND WAS NOT A VALID
OPERATION,
2 N THIS STATEMENT, INTENDED AS A RCD
INTEGER PLACES AND 20 DECIMAL PLACES.
TITLE DEFINITION OF A CONSTANT FIELD = CON
CONA CON 5 ABCDE FIVE POSITION ALPHABETICs UNSIGNED
CONN5X0 5 00003 NUMERICs AND MIXED CONSTANTS. WILL
5 4JK9* APPEAR IN MEMORY AS WRITTEN,
6 =123499 SIX POSITION SIGNED INTEGER
CONSTANT. WILL APPEAR AS 12349R IN MEMORY.
6 61234499 SIX POSITION SIGNED CONSTANT WITH

FOUR INTEGER AND TWO DECIMAL POSITIONS. WILL

F

NONOOAONNANON

[a¥a]

LoC

000500

000510

000527

000727

000737

000745
000753

000756
000759
000764
000769

000770

000780

000780
000781

000785

000794

000796

000801
000806
000811

000817

000823

INSTR SU

A000O

ADDR SER

000000 006

REF

INDEX S PGLIN TAG oP NU AT OPERAND 80SMPL-001 10-20-62 COMMENTS PG 004 F LOC INSTR SU ADDR SER REF
AB 01 A AB27 APPEAR AS 123491 IN MEMORY.

AB 02 A AB28

AB 03 A AB29 6 123445 SIX POSITION CONSTANT WHICH WILL 000829
AB 04 A AB30 APPEAR AS 123445 IN MEMORY.

AB 05 A AB31

AB 06 A AB32 3 A THREE POSITION CONSTANT OF WHICH 000832
AB 07 A AB33 THE FINAL TWO POSITIONS ARE BLANKS.

AB 08 A AB34

AB 09 A AB35 2 o# TWO POSITION CONSTANT CONSISTING 000834
AB 10 A AB36 OF A GROUP MARK AND A RECORD MARK.

AB 11 I AB37 INVALID USAGES C

AB 12 A AB38 WORSTCASES CON 2 ABCDE CON WITH OPERAND OF GREATER LENGTH 000836
AB 13 A AB39 THAN NUMERIC FIELD STATES. WILL COMPILE AS AB WITH

AB 14 A AB4O NO MESSAGE.

AB 15 A AB4l

AB 16 A AB&42 3 §120 SIGNED CONSTANT WITH OPERAND 000839
AB 17 A AB43 SHORTER THAN NUMERIC FIELD STATESe IT WAS PUNCHED

AB 18 A AB&44 §12 BUT WILL COMPILE AS 120 WITH THE LAST DIGIT

AB 19 A AB45 SIGNED PLUS. HERE THE LISTING SHOWS THE ZERO.

AB 20 A AB46

AB 21 A AB47 0 123 THIS WILL NOT COMPILE BECAUSE THE 000839
AB 22 A AB48 NUMERIC FIELD STATES A LENGTH OF ZERO POSITIONS.

AB 23 A AB49S

AB 24 A ABSO 62 THE NUMERIC FIELD STATES A LENGTH WHICH INCLUDES A 0009501 007
AB 25 A ABS1 SECOND CARDe THE FIRST LINE WILL COMPILE» FOLLOWED

AB 26 A AB52 BY 12 BLANKS. THE REST IS TREATED AS A COMMENT.

AB 27 A ABS53

AB 28 A AB54 14 -59969096439550 THIS CONs INTENDED AS PART OF A 000915
AB 29 A AB55 MESSAGE AND PUNCHED -ERROR ROUTINE» WAS STRIPPED OF

AB 30 A ABS5S6 ZONING AND TREATED AS A SIGNED NUMERIC CON BECAUSE

AB 31 A ABS57 THE LEADING DASH WAS INTERPRETED AS A MINUS SIGN.

AB 32 1 AB58 TITLE DEFINITION OF A FLOATING POINT CONSTANT ~ FPN

AB 33 A AB59 FPN 6036123456 REPRESENTS &123.456 000925 008
AB 34 I AB60 NOTE THAT THE NUMERIC FIELD IS BLANK AND THAT THE MANTISSA IS ONLY C

AB 35 I AB61 SIX DIGITSe A LENGTH OF TEN WILL BE ASSUMED AND TRAILING. ZEROS ADDED C

AB 36 1 AB62 TO MAKE AN EIGHT DIGIT MANTISSA. THE FPN APPEARS IN MEMORY AS C

AB 37 1 AB63 0C12345600 WITH THE UNITS DIGIT SIGNED PLUSe THE LISTING DOES NOT C

AB 38 1 AB64 SHOW THE ADDED ZEROS OR ASSUMED LENGTH. C

AB 39 1 AB65 C

AB 40 1 AB66 INVALID USAGES C

AB 41 A AB67 FPN 60469876543210 THIS OPERAND EXCEEDS THE MAXIMUM 000935
AB 42 A AB68 LENGTHs THE MANTISSA IS TRUNCATED TO EIGHT DIGITSs 000945
AB 43 A AB69 IT APPEARS IN MEMORY AS 0D9876543B. 000955
AB 44 I AB70 THE TWO ENTRIES IMMEDIATELY ABOVE WERE INTENDED AS COMMENTS C

AB 45 I AB71 COUTINUATIONSe THIS IS INVALID ON A FPN AND TWO FPNS WERE GENERATED C

AB 46 1 AB72 FROM THE OPERAND FIELDSe THE LISTING ONLY SHOWS THE MEMORY ALLOCATED C

AB 47 I AB73 BUT THE CARDS SHOW 5E38103850 AND 3077519201 C

AB 48 1 AB74 C

AB 49 I AB75 THIS FPN WAS INTENDED TO REPRESENT 123.456« OMITTING THE LEADING C

AB 50 I AB76 ZERO OF THE CHARACTERISTIC CAUSED IT TO REPRESENT THE NUMBER C

AB 51 I AB77 23456000000000000000000000000C, C

AB 52 A AB78 FPN 636123456 000965
AB 53 I AB79 THIS OPERAND WAS INTENDED TO REPRESENT 123.456¢ OMITTING THE SECOND C

AB 54 I AB80 PLUS SIGN CAUSED IT TO REPRESENT 234456 C

AB 55 A ABS1 FPN £03123456 000975

61

INDEX
AC 01

AC 02
AC 03

AC 04

AC 05
AC 06
AC 07
AC 08
AC 09
AC 10
AC 11
AC 12
AC 13

AC 14
AC 15
AC 16
AC 17
AC 18
AC 19
AC 20
AC 21

AC 22
AC 23
AC 24
AC 25
AC 26
AC 27

AC 28
AC 29
AC 30
AC 31

AC 32
AC 33

AC 34
AC 35

AC 36
AC 37
AC 38
AC 39
AC 40
AC 41
AC 42
AC 43
AC 44
AC 45
AC 46
AC 47
AC 48
AC 49
AC 50

arca
AL

AC 52
AC 53
AC 54
AC 55

AC 56
AC 57
AC 58

AC 59
AC 60

AC 61
AC 62
AC 63

AC64

AC 65
AC 66
AC 67

AC68
AC 69
AC 70

ACT1

62

T bt bt bt bt bt bt o B B B et bt bt bt bt et e

BB e

B

>PPP2>L>>P>P>>>P>PP>P>D>>P>

——

CrP>r» >

CEPP>CPPD>

PGLIN
ACO1

ACO2
ACO3

ACO4

ACO5
ACO6
ACO7
ACO8
ACO9
AC10
AC11
AC12
AC13

ACl4
AC15
AClé
AC17
AC18
AC1l9
AC20
AC21

AC22
AC23
AC24
AC25
AC26
AC27

AC28
AC29
AC30
AC31

AC32
AC33

AC34
AC3S

AC36
AC37
AC38
AC39
AC40
AC41
AC42
AC43
AC44
AC45
AC46
AC47
AC48
AC49
AC50

AC51
AC52
AC53
AC54

AC55
AC56
AC57

AC58
AC59

AC60
AC61
AC62

ACS3
AC64
AC65

AC66
AC67

TAG oP NU AT OPERAND 80SMPL-001 10-20-62 COMMENTS PG 005
TITLE DEFINITION OF A REPORT FORMAT = RPT
THESE ILLUSTRATIONS ALL SHOW EIGHT NUMERIC POSITIONS WITH VARIOUS
PUNCTUATION AND SIGN INDICATIONS.
IN THIS SERIES NO COMMASs DECIMAL POINTSs DOLLAR SIGNSs OR ASTERISKS
