File Number 7090-25
Form C28-6054-5

Systems Reference Library

IBM 7080,/7094 Programming Systems
FORTRAN II Programming

This publication presents the FORTRAN I language and programming
rules. The IBM FORmula TRANslating System, 7090/7094 FORTRAN,
is an automatic coding system for the IBM 7090/7094 Data Processing
System. FORTRAN II statements may be translated into machine
language statements using either the FORTRAN II Processor operating
under the 7090/7094 IBSYS System Monitor or the independent FORTRAN
Monitor System. The FORTRAN language closely resembles the
ordinary language of mathematics.
In this publication, all properties attributed to FORTRAN apply to
the FORTRAN II System for the IBM 7090 and the IBM 7094,
Other publications covering the 7090/7094 FORTRAN II System
are as follows: '
IBM General Information Manual FORTRAN, Form F28-8074.-— 2.
IBM 7090/7094 Programming Systems: FORTRAN II Operations,
Form C28-6066.
IBM 709/7090 Programming Systems: FORTRAN Assembly
Program (FAP), Form C28-6235.
IBM 32K 709/7090 FORTRAN: Adding Built-In Functions,
Form J28-6135.
IBM 709/7090 Programming System: FORTRAN Input/Output
Package for the 32K Version, Form J28-6190.

THE FORTRAN SYSTEM

The IBM FORmula TRANslating System, 7090/7094
FORTRAN II, is an automatic coding system for the
IBM 7090/7094 Data Processing System. More pre-
cisely, it is a 7090/7094 program which accepts a
source program written in the FORTRAN II lan-
guage, a language that closely resembles the ordi-
nary language of mathematics, and which produces
a machine language object program ready to be run
on a 7090/7094.

7090/7094 FORTRAN II therefore, in effect,
transforms the IBM 7090/7094 into a machine with
which communication can be made in a language
more concise and more familiar to the programmer
than the machine language itself. The result is a
substantial reduction in the training required to
program, as well as in the time consumed in writ-
ing programs and eliminating errors from them.

FORTRAN II Processor

The FORTRAN II Processor is composed of a Com-
piler, an Agsembler (see the publication, FORTRAN
Assembly Program (FAP), Form C28-6235), and a
Monitor (see Part III of this publication) which oper-
ates under the System Monitor (IBSYS). Under the
System Monitor, compilations, assemblies, and bi-
nary object programs from compilations and assem-
blies may be executed as parts of a single job. In
addition, input to the System Monitor may include
jobs for other Processors (e.g., COBOL) as well as
FORTRAN.

The FORTRAN II Processor may also operate as
an independent system operating under the control
of its own Monitor.

Among the features which characterize the FOR-
TRAN II system are the following:

Object and Source Machines

7090/7094 FORTRAN II requires the following mini-
mum machine configuration: a 32K IBM 7090 or
IBM 7094 with a card reader, an on-line printer,
and either seven tapes or one disk (for the System)
and six tapes. One additional tape is required for
Chain jobs. The object machine requires only the
amount of core storage and I/0 devices required by
the object program. An IBM 709 may be used as the
source and object machine if it is equipped with the
data channel trap feature. Programs using READ

MAJOR REVISION (April, 1964)

DRUM and WRITE DRUM statements can be runonly
on a 709 equipped with 733 Magnetic Drums.

Efficiency of the Object Program

Object programs produced by FORTRAN will gen-
erally be as efficient as those written by experi-
enced programmers.

Scope of Applicability

The FORTRAN language provides facilities for ex-
pressing any problem of numeric computation. In
particular, problems containing large sets of formu-
las and many variables can be dealt with easily, and
any variable may have up to three independent sub-
scripts.

The language of FORTRAN may be expanded by
the use of subprograms. These subprograms may
be written in the FORTRAN or FAP language, and
may be called by other FORTRAN or FAP main
programs or subprograms.

Inclusion of Library Routines

Pre-written routines used to evaluate functions of
any number of arguments can be made available for
incorporation into object programs by the use of any
of several different facilities provided for this pur-
pose.

Provision for Input and Output

Certain statements in the FORTRAN language cause
the inclusion of necessary input and output routines
in the object program. Those routines that deal
with decimal information include conversion to or
from the internal machine language, and permit
considerable freedom of format in the input and out-
put of data.

Nature of FORTRAN Arithmetic

Arithmetic in an object program will generally be
performed with single-precision floating point num-
bers. These numbers provide about eight decimal
digits of precision, and may be zero or have mag-
nitudes between approximately 10-38 and 1038,
Fixed point arithmetic for integers is also provided.

Double-precision and complex arithmetic are
provided; see Chapter 9, Part II.

This publication, Form C28-6054-5, is a major revision of the previous edition,
Form C28-6054-4, and makes that edition and all prior editions obsolete. Appendix
C has been replaced with a description of input/output record lengths and format,
and the sections involving machine requirements, the END statement, order within

a hierarchy, and restrictions on the F Conversion have been revised.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.

Address comments concerning the contents of this publication to:

IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N.Y., 12602

© 1958, 1959, 1961, 1963 by International Business Machines Corporation

CONTENTS

PART I. GENERALCONCEPTS &« « « . 5 READ DRUM Statement o « o« & o o o « o« « o o 24
Chapter 1. General Properties of a FORTRAN Source PUNCH Statement « « « & &« +« o ¢« o o o - o« . 24
Program . . . « . « @« « & & o« &« « « « a . 5 PRINT Statement . . . « =« - . - : =« = - - . 24
Example of a FORTRANProgram « 5 WRITE OUTPUT TAPE Statement . . . « « « . o o« 25
Punching a Source Program 5 WRITE TAPE Statement « + o o o« + o o o o« o o 25
Types of FORTRAN Statements « « + « « + « « o o 6 WRITEDRUM Statement « o o « o o« o7 « o« o o 25

Chapter 2, Constants, Variables, Subscripts, and ENDFILE Statement « o + o o« o o o s s « o« & 25

EXpressions o+ « 4 o « o« 4 o o o + 4 o o« & . 6 REWIND Statement « + o+ « o o » o o« o « o o 25
Constants « o & & « 4 &+ + o + + e o 4 4 . . b BACKSPACE Statement + « « « o o o o o o o o 25
Variables « ¢ + o« &« ¢ o« « ¢« ¢« o ¢ o o & s . 6 Chapter 8. Specification Statements . « o o« « « « 26
Subscripts T 4 DIMENSION Statement .+ « <o o o« o o « » « « o« 26
Expressions . o &+ « « 4 v ¢ 4 ¢ o 4 e o & . 7 FREQUENCY Statement . « <« « o &+ « o« o o o+ o 26

Chapter 3. FORTRAN Subroutines. . . . o« o« 9 EQUIVALENCE Statement e o o s o o o e o & » 27
Calling « v ¢ o o o o o o o o o o o & « « 9 COMMON Statement « « « o« o o o o o o o o o 27
Naming « « « o o o o« o o o« o o o « « o« o 9 Arguments in Common Storage « + « + 4+ o « o« o o 28
Definition. o ¢ o o o « o o « o « « « » o o 10 Chapter 9. Double-Precision and Complex Arithmetic ., ., 28

Designating a Double-Precision or Complex

PART II. THE FORTRANII LANGUAGE 12 FORTRAN Statement o o o & o « o « o s o o« 28

Chapter 4, The Arithmetic Statement . ., 12 Constants, Variables, Subscripts, and Expressions e e o & 2
Arithmetic Statement « « o« o « o « o o o « o o 12 Functions and Subprograms o o .+ &« 2 + o o o o o 29

Chapter 5. Control Statements and End Statement 12 Arithmetic Statements . o« o« ¢« 4+ 4+ o o 30
Unconditional GO TO Statement . + . o « o+ . o o 12 Control Statements « + o o = o o + « « s o » o 30
Computed GO TO Statement .« o o « o o o o » o 12 Input/Qutput Statements « o « o o o « o « o o o 30
Assigned GO TO Statement o « o o & o o o o o o 1 Specification Statements « « « 4 ¢ o o & o o« o o 31
ASSIGN Statement « « o « « o o o » o o o o o 13 Limitations on Source Program Size .+ & &« o o« o+ . o 31
IF Statement « « « o o « o « o « & o o « o o 13 Available Functions . . & o « o s « s « o o o 31
SENSE LIGHT Statement « . .+ « & « « o o+ o o o 13
IF (SENSE LIGHT) Statement . « o« « + o« & « . o 13 PART IiII. PROGRAMMING FOR THE FORTRAN II
IF (SENSE SWITCH) Statement . . « . o+ o+ o « o« o 13 MONITOR . & ¢ & o o & « o o o o 2 « o » 32
IF ACCUMULATOR OVERFLOW Statement 13 Chapter 10. Introduction to the FORTRAN II
IF QUOTIENT OVERFLOW Statement . . » . + . . . 13 Monitor System .« < . . ¢ « « ¢ & s s s s s« 32
IF DIVIDE CHECK Statement « o« . . + o 14 FORTRAN I Monitor Operations « + « s o « o « o 32
DO Statement « .+ o o o o o o « o o o« o o o 14 FORTRANII Monitor Input = o « & o o « « o« o« .« 32
CONTINUE Statement « o « « « o« « o s« o « o o 15 Definition of Job ¢ v &« o o o s o s o o o o« « 32
PAUSE Statement + o o « o s o« s & o o o o« o 15 Chapter 11. FORTRAN II Monitor Features, . 33
STOP Statement e« e o + & s o e o s e s . 15 Ordering of JobInput Deck o o o o o « o o o « o 34
END Statement « o o + o o o « o o o o o o o 16 Chapter 12, The ChainjJob . .+ & « ¢« ¢« « « « « o 34

Chapter 6. Subprogram Statements e e s+ s s =2 s . 16 Chain Job Deck Ordering s s 5 o s a s e « « o 34
Section A: FUNCTION and SUBROUTINE Statements .. 17 Selection of Tapes for Link Stacking « « . . « o o . 34
Section B: CALL and RETURN Statements 18 Programming for Chain Problems . . . o + « o+ . . 34

Chapter 7. Input/Qutput Statements . . , . o . » » 19 Chapter 13, Limitations on Source Program Size.+ 3§
Specifying Lists of Quantities. . « « + « . . . + . 19 Alphameric Arquments. . + s » « o o s « a o« o 35
Input/Qutput inMatrix Form s« « « o o o o o+ » o . 19 Arithmetic Statements e o e o & s o e & o o o 35
Input/Qutput of EntireuMatrices e v e e e e+ s . . 20 Arithmetic Statements: Fixed Point Variables 35
FORMAT Statement o « o o o o « o o o« o o o 20 Arithmetic Statement Function « . . « « o« o « o o 35
Numeric Fields . . « . « « « ¢« . « o « o« o« . 20 CALL Statement . o .« o o o s o s o o s« o o 30
AlphamericFields . . . +. . « « +« « ¢« o« « . . 20 COMMON Statement o o o« o o+ s o s s« « o o o 36
Blank Fields v « o & ¢ o & « o o o +« o « » o 21 DIMENSION Statement +« o o s ¢ o s o o o « o 36
Repetition of Field Format . o . o &« « + o« a2 o o 21 DOStatement . o« + o o o s s o o o o « o o 36
Repetitionof Groups +« « o ¢ o o « &+ o o o o o 21 EQUIVALENCE Statement . « o« o« o o o s « o o« 36
Scale Factors « « « o o « o o o o o o o o o 21 Fixed Point Constants . o « o + o « o o o o o« o+ 36
Multiple-Record Formats o « o o o o o o« o + o o 22 Floating Point Constants o « « « o o o o o o o o 36
Format and Input/Output Statement Lists « o « « « . o 22 FORMAT Statement .+ o « o « o o o o o o « o 36
Ending a FORMAT Statement+ « « . o o 22 FREQUENCY Statement .+ . o« o« o o« « « « « « o+ 36
FORMAT Statements Read in at Object Time + o+ . « . 22 Non-Executable Statements « o« « o « o o o o « « 36
Carriage Control « ¢ & v 4« 4 4 4 4 e o o+ o o 22 Statement Numbers e 6 s e e o e o s s o o o 36
Data Input to the Object Program o . . . 23 STOPStatement « . « « o o « o s o o o« o o « 36
READ Statement « « & o « + o o o o o o o o 23 Subprogram Arguments . o+ . . « s o ¢ o s+ ¢ o 36
READ INPUT TAPE Statement . . . o« o+ « « o o o 23 Subprograms Functions and Input/Output Statements . . . 36
Symbolic Input/Output Unit Designation « . « 23 Subscripted Variables « « +« o « « « « o o o o o 37

READ TAPE Statement « « o« o o o o« « o« o« o« » 24 SUbSCIIPES « & o ¢ o o o o o o o o o o o« o 37

Transfer Statements o« o« « ¢« « o o« o o

37

Arrangement of the Object Program

Chapter 14, FORTRAN II Monitor Control Cards . & 37 Fixed Point Arithmetic . o o o « o o &
Governing the Entire Job: Type 1 Control Cards . . 37 Optimization of Arithmetic Expressions . . .
Governing Compilation of Individual Programs: Type 2 Subroutines on the System Tape o e P

ControlCards & o « o « o o o o o = s o 38 Input and Qutput of Arguments ¢ o o o« o o
Other Control Cards « ¢« o o o o s o o o =« 39 Relative Constants « = o « o o o o o =
Chapter 15, Programming FORTRAN Problems for Constants in Argument Lists . . o . - . .
the MONItOT « &« & o & o o o o o o o o 39 Further Details About DO Statements . o . o
Differences Concerning Tape Usage o ¢ o« o o o 39 The DOIndex =« +« &+ o o o o o o o o
Differences Concerning End of Program . . « « o 39 Parentheses in I/O Lists . o . o e o
Use of END Statement « « « « o o o o o o o 40
Dumping During Execution .« « « « ¢ o o o o 40 APPENDIXES
General Rules . . « . ¢ « o o« « o o o o 40 A. Source Program Statements and Sequencing .

42
42
42
43
43
43
44
44

44

45

B. Table of Source Program Characters .
C. Input/Output Record Lengths and Format for

7090/7094 FORTRANII
PART IV. GENERAL RULES FOR FORTRAN D. Using Hand-Coded Subroutines with 7090/7094

PROGRAMMING . « « « o o o o + o o o o o 42 FORTRAN Compiled Object Programs. . .
Chapter 16, Miscellaneous Details About 7090/7094
FORTRANII . . o 4 & o = o o o o o o o« o 42 INDEX ¢ & + o o s o o o s o o o o

CHAPTER 1. GENERAL PROPERTIES OF A FOR-
TRAN SOURCE PROGRAM

A FORTRAN source program consists of a sequence
of source gtatements, of which there are 38 differ-
ent types. These statement fypes are described in
detail in the chapters which follow.

Example of a FORTRAN Program

The brief program shown in Figure 1-1 will serve
to illustrate the general appearance and some of the
properties of a FORTRAN program. It is shown as
coded on a standard FORTRAN coding sheet.

The purpose of the program is to determine the
largest value attained b . set of numbers, Aj, rep-
resented by the notation A(I), and to print the num-
ber on the attached printer. The numbers exist on
punched cards, 12 to a card, each number occupy-
ing a field of six columns. The size of the set is
variable, not exceeding 999 numbers. The actual
size of the set is punched on the leading card and is
the only number on that card.

Punching a Source Program

Each statement of a FORTRAN source program is
punched into a separate card (the standard FORTRAN
card form is shown in Figure 1-2); however, if a
statement is too long to fit on one card, it can be
continued on as many as nine "continuation cards."
The order of the source statements is governed solely
by theorder of thenormal source program statement
sequencing given in Appendix A.

PART I, GENERAL CONCEPTS

—c FOR COMMENT \

ARl " FORTRAN STATEMENT (
1 5(6i7 10 15 20 25 30 35 40 45

4 PROGIRAM FIOR EINDIAG THE ARG &ST VALUE)
C ATLTAINEDR BY A SETI OF NUMBERS 1 \

IMENSTIOM A(399) 1 3 1 g 1 [

EREQUENL Y 30(2 1110) 5¢100) I L 1 \

READ 2., N, CALT), Ted)N 1 1 ' | l‘

1l FORMAT. (13/C1.2E6.2)0) 1 1 1 L

éBIGAF Al s 1 ' 1 I

5 Do 20 T2, N) L L 1 1 {

z0| 1 GBIGA'A(-D.)LLD_,_Z.QL,_Z_Q_._A_._._A___.#_._.__.___\
10 18 AzALT N L I L L 1 L

| .. 20 CONTZNUE. \ 1 T 1 I 1
PRINT .2' ”I’ BIGA . . ' s ' 1 ' I
QR
1124 NUMBERS. IS F7.2) s) 1 1
CALL EXIT 1 1 L I I) I
END_, P ! L) L 1) I/
‘1 L L L I L L I 1 (
Figure 1-1

Cards that contain a C in'column 1 are not proc-
essed by the FORTRAN program. Therefore, such
cards may be used to carry comments that will ap-
pear when the source program deck is listed.

Numbers less than 32, 768 may be punched in col-
umns 1-5 of the initial card of a statement. When
such a number appears in these columns, it becomes
the statement number of the statement. These state-
ment numbers permit cross references within a
source program and, when necessary, facilitate the
correlation of source and object programs.

Column 6 of the initial card of a statement must
be left blank or punched with a zero. Continuation
cards (other than for comments), however, must

/ con
Ceolilir

STATEMENT
NUMBER

FORTRAN STATEMENT

IDENTIFICATION

106900

Ii234§
ILRER
|
222212
3333
ﬁ4444
55555
46666
nN111

48888

99999
345

tl2

== o ¥ CONTIKUATION

2
3
1
5
6
1
8

gooooG00
78 910111213 14157 1718 192021222324 252627 26 2930 31 1233 34 35 3% 37 39 39 40 414243 44 4546 47 40 49 5051 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 63 69 10 11 12
N RE RERERER!
2222222222222227322212212
33
55655555555555
6666666666566
717171711 71117117717117117171171712101771171171707117171711117011717171711717111171711117171111
388888806858888808883888888883388888888888338838888888888888888888838

989
P83

00000G00
73747576 77 78 79 8
11111111
2222221212
33333333
44444444
55655555
66666666
117111111
88888888

989999999

T34 5TBT11879 80

Figure 1-2

General Concepts

5

have column 6 punched with some character other
than zero, and may be punched with numbers from
1 through 9. Continuation cards for comments need
not be punched in column 6; only the C in column 1
is necessary.

The statements themselves are punched in col-
umns 7-72, both on initial cards and on continuation
cards. Thus, a statement may consist of not more
than 660 characters (i.e., ten cards). A table of
the admissible characters for FORTRAN II is given
in Appendix B. Blank characters, except in column
6 and in certain fields of FORMAT statements, are
simply ignored by FORTRAN, and may be freely
used to improve the readability of the source pro-
gram listing.)

Columns 73-80 are not processed by FORTRAN;
therefore, they may be punched with any desired
identifying information.

The input to FORTRAN may be either the deck of
source statement cards or a BCD tape prepared on
off-line card-to-tape equipment. On such a tape,
an end-of-file mark is required after the last card.

Types of FORTRAN Statements

The 38 types of source statements that can be used
in a FORTRAN program may be classified as fol-
lows:

1. The arithmetic statement specifies a numeric
computation. Part I, Chapters 2and3, discusses the
symbols available for referring to constants, vari-
ables and functions; Part II, Chapter 4, discusses
the combining of these constants, variables, and
functions into arithmetic statements.

2. The 15 control statements govern the flow of
control in the program. These, plus the END state-
ment, are discussed in Part II, Chapter 5.

3. The four subprogram statements enable the
programmer to define and use subprograms. The
method for utilizing subprograms is discussed in
Part II, Chapter 6.

4. The 13 input/output statements provide the
necessary input and output routines. These state-
ments are discussed in Part II, Chapter 7.

5. The four specification statements provide
information required or desired to make the object
program efficient. These are discussed in Part II,
Chapter 8.

CHAPTER 2. CONSTANTS, VARIABLES, SUB-
SCRIPTS, AND EXPRESSIONS

As required of any programming language, FOR-
TRAN provides a means of expressing numeric con-
stants and variable quantities. In addition, a sub-
script notation is provided for expressing one-,
two-, or three-dimensional arrays of variables.

6

Constants

Two types of constants are defined in the FORTRAN
II source program language: fixed point (restricted
to integers) and floating point (characterized by be-
ing written with a decimal point).

Fixed Point Constants

GENERAL FORM EXAMPLES
A fixed point constant consists of 1 3
to 5 decimal digits, A preceding + +1
or - sign is optional. The magnitude, -28987
or absolute value, of the constant must
be less than 217,

Where a fixed point constant is used for the value
of a subscript, it is treated modulo the size of core
storage.

Floating Point Constants

GENERAL FORM EXAMPLES
A floating point constant consists of 17.
any number of decimal digits, with 5.0
a decimal point at the beginning, at -.0003

the end, or between two digits. A
preceding + or - sign is optional.

5,0E3 (5.0 x 103)
5.0E+3 (5.0 x 10%)
5.0E-7 (5.0 x 10-7)

A decimal exponent preceded by an
E may follow a floating point constant.

The magnitude of a floating point
constant must lie between the
approximate limits of 10-38 and
1038, or be zero.

Variables

Two types of variables are defined in FORTRAN II:
fixed point (restricted to integral values) and float-
ing point. References to variables are made in the
FORTRAN source language by symbolic names con-
sisting of alphabetic and, if desired, numeric char-
acters.

Fixed Point Variables

GENERAL FORM EXAMPLES
A fixed point variable consists of I
1 to 6 alphabetic or numeric char- M2
acters (not special characters); JOBNO
the first character must be an I, J,
K, L, M, or N,

A fixed point variable can assume any integral
value, provided the magnitude is less than 217,
Values used for subscripts, however, are treated
modulo the size of core storage.

To avoid the possibility of a variable being con-
sidered a function by FORTRAN, the following two
rules should be observed with respect to the naming
of variables:

1. A variable cannot be given a name that coin-
cides with the name of a function without its terminal
F. For example, if a function is named TIMEF, no
variable should be named TIME.

2. Unless their names are less than four char-
acters in length, subscripted variables (see below)
must not be given names ending with F, because
FORTRAN will consider variables so named to be
functions.

Floating Point Variables

GENERAL FORM EXAMPLES
A floating point variable consists of A
1 to 6 alphabetic or numeric char- B7
acters (not special characters); DELTA

the first character must be alphabetic
butnet I, J, K, L; M, or N,

A floating point variable can assume any value ex-
pressible as a normalized floating point number,
i.e., zero or any number whose magnitude lies be-

" tween approximately 1038 and 10“38.

The rules for naming fixed point variables also

apply to fleoating point variables.

Subscripts

A variable can be made to represent any element of
a one-, two-, or three-dimensional array of quan- .
tities by appending one, two, or three subscripts to
it, respectively. The variable is then a subscripted
variable. These subscripts are fixed point quantities
whose values determine the member of the array to
which reference is made.

GENERAL FORM EXAMPLES
Let v represent any fixed point I
variable and c or ¢' any unsigned 3
fixed point constant; then, a sub- MU+ 2
script is an expression in one of the MU -2
forms:

v 5%]

c S¥J+2

v+c or v-c 5%J-2

ckv

ckvie! or ckv-c'
(The symbol * denotes multiplication.) 3+K Invalid

The variable in a subscript must not itself be
subscripted.

Subscripted Variables

GENERAL FORM EXAMPLES
A subscripted variable is a fixed or Al
floating point variable, followed by K(3)

parentheses enclosing one, two, or BETA (5%]-2, K+2, 1)
three subscripts which are separated by

commas.

Each variable that appears in subscripted form
must have the size of its array, i.e., the maximum
values that its subscripts can attain specified in a
DIMENSION statement preceding the first appear-
ance of the variable in the source program.

The value of a subscript exclusive of its addend,
if any, must be greater than zero and not greater
than the corresponding array dimension.

Arrangement of Arrays in Storage

If an array, A, is two-dimensional, it will be stored
sequentially in the order A1 1,Ag Jlreees Am, 1»
Ay 95 Ag 9seens A 2,..., A, pe Arrays are
stored cofumnwise, with the first of their subscripts
varying most rapidly and the last varying least rap-
idly. The same is true of three-dimensional ar-
rays. Arrays that are one-dimensional are stored
sequentially.

All arrays are stored backwards, i.e., in the
order of decreasing absolute storage locations.

Expressions

A FORTRAN expression is any sequence of constants,
variables (subscripted or not subscripted), and func-
tions separated by operation symbols, commas, and
parentheses. The formation of expressions must
conform to the rules for constructing expressions.

The operation symbols +, -, *, /, and ** denote
addition, subtraction, multiplication, division, and
exponentiation, respectively, in arithmetic type op-
erations.

Rules for Constructing Expressions

1. Since constants, variables, and functions may
be fixed point or floating point, expressions may
also be fixed point or floating point; however,
these modes must not be mixed. This does not
mean that a floating point constant, variable, or
function cannot appear in a fixed point expression,
etc., but rather that a quantity of one mode can

General Concepts 7

appear in an expression of another mode only in the
following ways:

a. Fixed point expressions may centain floating
point quantities only as arguments of a func-
tion.

b. Floating point expressions may contain
fixed point quantities only as function argu-
ments, subscripts, and exponents.

2. Constants and variables are expressions of
the same mode as the constant or variable name.
For example, the fixed point variable name J53 is a
fixed point expression.

3. TFunctions are expressions of the same mode
as the function name, provided that the arguments
of the function are in the modes assumed in the
definition of the function. For example, if
SOMEF (A, B) isafunctionwith afloatingpoint name,
then SOMEF(C, D) is a floating point expression if
C and D are of the same modes as A and B, re-
spectively.

4. Exponentiation of an expression does not af-
fect the mode of the expression; however, a fixed
point expression may not be given a floating point
exponent.

Note: The expression A**B**C is not permitted.
It must be written as either A¥*(B**C) or
(A**B)**C, whichever is intended.

5. Preceding an expression by a + or - does not
affect the mode of the expression produced. For
example, E, +E, and -E are all expressions of the
same mode.

6. Enclosing an expression in parentheses does
not affect the mode of the expression. For example,
A, (A), ((A)), and (¢(A))) are all expressions of the
same mode.

7. Expressions may be connected by operators
to form more complex expressions, provided:

a. no two operators appear in sequence, and

b. items so connected are all of the same mode.

Hierarchy of Operations

When the hierarchy of operations in an expression
is not explicitly specified by the use of parentheses,
it is understood by FORTRAN to be in the following
order (from innermost operations to outermost

operations):
*x Exponentiation
* and / Multiplication and Division
+ and - Addition and Subtraction

For example, the expression
A+B/C+D**E*F -G

will be taken to mean
A+(B/C)+(DE*F)-G

Ordering Within a Hierarchy

If parentheses are omitted, a sequence of consecu-
tive multiplications, divisions, additions, or sub-
tractions will be understood to be grouped from the
left, Similarly, a combination of multiplications and
divisions or of additions and subtractions will be
grouped from the left. Thus, if ° represents * or /s
or represents +or -, the expression
A*B-C-D-E
will be taken by FORTRAN to mean
((((A-B) - C). D)+ E).

Optimization of Arithmetic Expressions

The efficiency of instructions compiled from arith-
metic expressions may also be influenced by the

way expressions are written. The section entitled
"Optimization of Arithmetic Expressions' in Part IV,
Chapter 16, mentions some of the considerations
which affect object program efficiency.

Rules for Constructing Boolean Expressions

FORTRAN arithmetic expressions may be inter-
preted as Boolean expressions in which the arith-
metic operators are treated as logical operators.
To obtain this interpretation, the character B must
appear in column 1 of the Boolean arithmetic state-
ment. The following rules apply:

1. The operation symbols +, *, and - denote the
operators or, and and complement, respectively.
(The symbols / and ** are not defined for Boolean
expressions.)

2. The operator * has greater binding strength
than the operator +. (It is higher in the hierarchy
of operations.) Because - is a unary operator it is
part of the expression or symbol to which it applies.
Thus, when a Boolean expression is to be comple-
mented it must be enclosed in parentheses if it is a
part of a larger expression. For example, A - B
is not permitted, whereas A+(-B) is permitted.

3. In accordance with the logical usage of the ex-
pression, and to simplify the construction of masks
and logical constants, constants in Boolean expres-
sions are considered to be octal numbers. Con-
stants must consist of no more than 12 octal digits;
if there are fewer than 12, then the number will be
right-adjusted. Blanks are ignored; they are not
treated as zero.

4. All variables used in arithmetic statements
that contain Boolean expressions must have floating
point names.

5. Variable names can be subscripted in the nor-
mal FORTRAN manner.

6. All Boolean operations are performed upon the
full 36-bit logical word.

CHAPTER 3. FORTRAN SUBROUTINES

A subroutine is considered to be any sequence of in-
structions which performs some desired operation.
Subroutines may be function-type or subprogram-—
type, each type being further subdivided. This chap-
ter contains a discussion of the four function-types
which may be utilized in FORTRAN. To clarify the
meaning and use of functions, they will be shown in
their relation to subroutine-types as a whole. The
interrelationship of the various subroutines is as
follows:

using the arguments that are supplied in the paren-
theses following the function name. Only one value
is produced by these four functions, whereas the
SUBROUTINE subprogram may produce many values.
A value is here defined to be a single numeric quan-
tity.

Naming
The following paragraphs describe the rules for
naming Library, Built-In, and Arithmetic Statement

functions, and FUNCTION subprograms:

Naming of Library, Built-In, and Arithmetic State-
ment Functions

Method Method Method

FORTRAN of Calling of Naming of Defining
Subroutines Subroutine Subroutine Subroutine
Library Functions]
Built-in Functions function /]
Arithmetic Statement type :l

Functions
FUNCTION Subprograms [subprogram
SUBROUTINE Subprograms —] type

Thus, from the way they are called, or used, there
are four subroutine-types (i.e., the functions) which
are alike. Whereas three of these are named ac-
cording to the same rules, each of the four is given
its meaning (i.e., it is defined) in a different man-
ner. The fifth subroutine-type, SUBROUTINE sub-
program, is called, or used, by means of a CALL
statement; however, it is named and defined in much
the same manner as the FUNCTION subprogram.

Calling

Ags indicated in the schematic, there are two distinct
ways of referencing subroutines. One type of refer-
ence is by means of an arithmetic expression. This
applies to the four functions: Library, Built-In,
Arithmetic Statement function, and FUNCTION subpro-
gram. The other type of reference, which applies
to SUBROUTINE subprograms, is by means of a
CALL statement (discussed later).

Following are examples of arithmetic expressions
that include function names:

Y = A - SINF(B-C)
C = MINOF (M, L)+ABC(B*FORTF(Z), E)

The names of Library, Built-In, and Arithmetic
Statement functions, and of FUNCTION subprograms
are all used in this way. The appearance of a func-
tion name in the arithmetic expression calls the
function; the value of the function is then computed,

GENERAL FORM EXAMPLES
The name of a function consists of 4 to 7 | ABSF (B)
alphabetic or numeric characters (not XMODF (M/N, K)
special characters); the last character COSF (A)

must be an F and the first must be
alphabetic. Further, the first must be
an X if, and only if, the value of the
function is to be fixed point. The

FIRSTF (Z+ B, Y)

name of the function is followed by
parentheses enclosing the arguments,

which are separated by commas.

Mode of a Function and Its Arguments: Consider a
function of a single argument. It may be desired to
state the argument either in fixed point or in floating
point; similarly, the function itself may be in either
of these modes. Thus, a function of a single argu-
ment has four possible mode configurations. In gen-
eral, a function of n arguments will have 20+ 1
mode configurations.

A separate name must be given and a separate
routine must be available for each of the mode
configurations that is used. Thus, a complete set

of names for a given function might be:
SOMEF Fixed argument, floating func-
tion
SOMEOF Floating argument, floating
function
XSOMEF Fixed argument, fixed function
XSOMEOF Floating argument, fixed

function
The Xs and Fs are mandatory, but the rest of the
naming is arbitrary.

Naming of FUNCTION Subprograms

Although these functions are referred to by arith-
metic expressions in the same manner as the previ-
ous three types, the rules for naming them are

General Concepts 9

different. Except for the fact that no name of a
FUNCTION subprogram which is four to six char-
acters long may end in F, these functions are named
in exactly the same way as ordinary variables of the
program. This means that the name of a fixed point
FUNCTION subprogram must have I, J, K, L, M,
or N for its first character.

Further details on naming FUNCTION subpro-
grams are given later.

Definition

Each of the four types of functions is defined in a
different way.

Built-In Functions

The FORTRAN II System, as distributed, contains
20 Built-In functions. It also has the capacity for
ten more Built-In functions. The additional functions
may be inserted into the system by the particular
installation.

Following are the 20 functions that are compiled as
Built-In functions into the arithmetic statement
which calls them. These functions are called
"open' since they appear in the object program each
time they are referred to in the source program.

No. of Mode of
Type of Function |Definition Args. Name Argument |Function
Absolute value |Arg‘ 1 ABSF Floating Floating
XABSF Fixed Fixed
Truncation Sign of Arg 1 INTF Floating Floating
times largest XINTF |Floating Fixed
integer <|Arg|
Remaindering Arg1 (mod 2 MODF Floating Floating
(see note below) Arg2 b) XMODF |Fixed Fixed
Choosing Max (Argy, =2 MAXOF |[Fixed Floating
largest value Argz, ves) MAXIF [Floating Floating
XMAXOF |Fixed Fixed
XMAXIF [Floating Fixed
Choosing Min (Argy, MINOF [Fixed Floating
smallest value Argz, ens) =2 MINIF Floating Floating
XMINOF |Fixed Fixed

XMINIF |Floating Fixed

Float Floating a 1 FLOATF (Fixed

fixed number|

Floating

Fix Same as 1 XFIXF Floating Fixed
XINTF

Transfer Sign of Argy 2 SIGNF Float'ing Floating

of sign times lArgd XSIGNF |Fixed Fixed

Positive Argq - Min 2 DIMF Floating Floating

difference (Argy, Argz) XDIMF |Fixed Fixed

NOTE: The function MODF (Argl, Argz) is defined as
- =i f x.
Argy El‘g1 / Argé] Argz, where[X] = integral part of x

10

Library Functions

The Library functions are pre-written and may exist
on the library tape or in prepared card decks.
These functions constitute '""closed" subroutines,
i.e., instead of appearing in the object program for
every reference that has been made to them in the
source program, they appear only once, regardless
of the number of references.

Hand-coded Library functions may be added to the
library. Rules for coding these subroutines are
given in Appendix D; those for adding them to the
library are included in the FORTRAN II Operations
Manual, Form C28-6066-4.

Seven Library functions are included in the FOR-

TRAN II System. These are:
Name Function
LOGF Natural Logarithm
SINF Trigonometric Sine
COSF Trigonometric Cosine
EXPF Exponential
SQRTF Square Root
ATANF Arctangent
TANHF Hyperbolic Tangent

Arithmetic Statement Functions

Arithmetic Statement functions are defined by a
single FORTRAN arithmetic statement and apply
only to the particular program or subprogram in
which their definition appears.

GENERAL FORM EXAMPLES

FIRSTF (X) = A*X+B
SECONDF (X, B) = A*X+B
THIRDF (D) = FIRSTF (E)/D
FOURTHF (F,G) = SECONDF
(F, THIRDF (G))
FIFTHF (I, A) = 3, GkA%K]
SIXTHF (J) =] + K
XSIXTHF (J)=J + K

"a=b", where a is a function name
followed by parentheses enclosing
its arguments; the arguments must
be distinct nonsubscripted variables
separated by commas. b is an ex-
pression which does not involve sub-
scripted variables. Any functions
appearing in b must be available to
the program or must have been de-
fined by preceding arithmetic
statements.

Just as with the other functions, the answer will
be expressed in fixed or floating point mode accord-
ing to whether the name does or does not begin with X.

The right-hand side of an Arithmetic Statement
function may be any expression, not involving sub-
scripted variables, that meets the requirements
specified for expressions.

In particular, it may involve functions freely, pro-
vided that any such function, if it is not built-in or

available on the master tape, has been defined in a
preceding function statement.

Of course, no function can be used as an argument
of itself.

As many as desired of the variables appearing
in the expression on the right-hand side of the Arith-
metic Statement function may appear on the lefi-
hand side as the arguments of the function. Since
the arguments are really only dummy variables,
their names are unimportant {except as indicating
fixed or floating point mode) and may even be the
same as names appearing elsewhere in the program.

Those variables on the right-hand side which are
not stated as arguments are treated as parameters.
Thus, if FIRSTF is defined in a function statement
as FIRSTF(X) = A*X+B, then based on the current
values of A,B, and Y, a later reference to
FIRSTF(Y) will cause AY+B to be computed. The
naming of parameters, therefore, must follow the
normal rules of uniqueness.

A function defined as an Arithmetic Statement
function may be used in the same manner as any
other function. In particular, its arguments may be
expressions and may involve subscripted variables;
thus, a reference to FIRSTF(Z + Y(I)), with the

auST

be computed on the basis of the current values of
a,b,yj, and z. Functions defined by arithmetic state-
ments are always compiled as closed subroutines.

ahove definition of FIRSTF, will cause a (z+y;) + b to

NOTE: All the arithmetic statements defining func-
tions to be used in a program must precede the first
executable statement of the program.

FUNCTION Subprograms

This class of functions covers those subroutines
which cannot be defined by only one arithmetic
statement but may not be utilized frequently enough
to warrant a place on the library tape; however,
they may be placed on the library tape.

They are called FUNCTION subprograms because
they may be conveniently defined by a conventional
FORTRAN program. In this instance, compiling a
FORTRAN program produces a FUNCTION subpro-
gram in exactly the form required for object pro-
gram execution.

Since FUNCTION and SUBROUTINE subprograms
are defined in the same way, a discussion of the def-
inition of FUNCTION subprograms is included in
Part II, Chapter 6.

General Concepts 11

PARTII. THE FORTRAN II LANGUAGE

CHAPTER 4. THE ARITHMETIC STATEMENT

Arithmetic Statement

GENERAL FORM EXAMPLES

Ql=K
A(I)=B(Iy+ SINF(C(I))

"a=b", where a is a variable
(subscripted or nonsubscripted)
and b is an expression.

The arithmetic statement defines a numeric cal-
culation. A FORTRAN arithmetic statement very
closely resembles a conventional arithmetic formula.
However, in a FORTRAN arithmetic statement, the
= sign specifies replacement rather than equivalence.
Thus, the arithmetic statement

Y = N-LIMIT (J-2)
means that the value of N-LIMIT (J-2) is to be stored
in Y. The result is stored in fixed point or floating
point form if the variable to the left of the = sign is
a fixed point or floating point variable, respectively.

If the variable on the left is fixed point and the
expression on the right is floating point, the result
will first be computed in floating point and then trun-
cated and converted to a fixed point integer. Thus,
if the result is +3.872, the fixed point number stored
will be +3, not +4. If the variable on the left is float-
ing point and the expression on the right is fixed
point, the latter will be computed in fixed point and
then converted to floating point.

Examples of Arithmetic Statements

Store the value of B in A,

=B Truncate B to an integer, convert it to fixed point,
and store it in I.

A= Convert I to floating point, and store it in A,

Add 1 to I and store it in I, This example illustrates

the fact that an arithmetic formula is not an equa-

tion but a command to replace a value,

Replace A by 3B.

Not permitted. The expression is mixed, i.e.,

contains both fixed point and floating point

variables.

Not permitted. The expression is mixed,

A =3,0%B
A = 3%B

A = I¥B

Examples of Boolean Arithmetic Statements

Col 1 Cols 7-72 Explanation

B D=A¥(-(B+C)) The inner pair of parentheses

is required to indicate the scope
of complementation. '
The outer pair of parentheses

is required because the expres-
sion -(B+C) is a part of a larger
expression,

B D=-IMPF(-B, -C) No additional parentheses are
required here because the func-
tion name, as well as the argu-
ment names, are not parts of

a larger expression,

The constant is being used here
to "mask out" the right half

of word X,

B X=X*777777000000

CHAPTER 5.
STATEMENT

CONTROL STATEMENTS AND END

The FORTRAN control statements enable the pro-
grammer to state the flow of his program.

Unconditional GO TO Statement

GENERAL FORM EXAMPLES

"GO TO n", where n is a statement | GO TO 3

number,

This statement causes transfer of control to the
statement with statement number n.

Computed GO TO Statement

GENERAL FORM EXAMPLES

"GO TO (ng, np,eee, Nyy), i", where |GO TO (30,42,50,9), 1
Ny, 025se0.., N, are statement
numbers and i is a nonsubscripted
fixed point variable.

A Boolean arithmetic statement is an arithmetic
statement in which b is a Boolean expression.

12

Control is transferred to the statement numbered
ni, g, Ng,...,0,, depending on whether the value

ofiis 1, 2, 3,..., m, respectively, at time of exe-
cution. Thus, in the example, if i is 3 at the time of
execution, a transfer to the third statement of the
list, namely statement 50, will occur.

This statement is used to obtain a computed many-
way fork.

Assigned GO TO Statement

GENERAL FORM EXAMPLES

"GO TO n, {nq;Np;:-+;5 1)", where GO TOK, (17,12,19)
n is a nonsubscripted fixed point
variable appearing in a previously
executed ASSIGN statement, and

nj,NDyeesy Oy are statement

numbers.

This statement causes transfer of control to the
statement whose statement number is equal to that
value of n which was last assigned by an ASSIGN
statement; ni, ng, ..., om are a list of the values
which n may have assigned.

The assigned GO TO is used to obtain a pre-set
many-way fork. When an assigned GO TO exists in
the range of a DO, thereis arestriction on the values

ofny, ng2,..., ny. (See the discussion of the DO

statement.)

ASSIGN Statement

GENERAL FORM EXAMPLES

"ASSIGN i TO n", where i is a ASSIGN 12 TOK

statement number and n is a non-
subscripted fixed point variable.
which appears in an assigned GO
TO statement.

This statement causes a subsequent GO TO n,
(ny,..., npy) to transfer control to statement number
i, where i is included in the series ny,... .y,

IF Statement

SENERAT FORM EXAMPLES

“IF (a) ny,np, n3", where aisan | IF(A(J, K)-B)10, 4,30

expression and nj, np, n3 are
statement numbers.

Control is transferred to the statement numbered
ni,n9, or ng if the value of a is less than, equal to,

~

or greater than zero, respectively.

SENSE LIGHT Statement

GENERAL FORM EXAMPLES

"SENSE LIGHT i", where i is 0,1, SENSE LIGHT 3

2, 3, or 4.

If i is 0, all Sense Lights will be turned Off; other-
wise, only Sense Light i will be turned On.

IF (SENSE LIGHT) Statement

GENERAL FORM EXAMPLES

“IF (SENSE LIGHT i) nl,nz", where| IF (SENSE LIGHT 3) 30, 40

ny and np are statement numbers
andiis 1, 2, 3, or 4.

Control is transferred to the statement numbered
nj or n, if Sense Light i is On or Off, respectively.
If the light is On, it will be turned Off.

IF (SENSE SWITCH) Statement

GENERAL FORM EXAMPLES

“IF (SENSE SWITCH i) ny, np", IF (SENSE SWITCH 3) 30, 108
where ny and np are statement

numbers and i is 1, 2, 3, 4, 5,

or 6.

Control is transferred to the statement numbered
ny or ny if Sense Switch i is Downor Up, respectively.

IF ACCUMULATOR OVERFLOW Statement

GENERAL FORM EXAMPLES

IF ACCUMULATOR
OVERFLOW 30, 49

"[F ACCUMULATOR OVERFLOW
ny, ny", where ny and nj are
statement numbers,

IF QUOTIENT OVERFLOW Statement

GENERAL FORM EXAMPLES

IF QUOTIENT OVERFLOW
30, 49

"[F QUOTIENT OVERFLOW ny4,
np", where ny and ny are state-

ment numbers,

Control is transferred to the statement numbered

The FORTRAN II Language 13

ny if an overflow condition is present in either the
Accumulator or the Multiplier-Quotient Register as
a result of floating point arithmetic, and to ng if no
overflow is present. That is, in 7090/7094 FOR-
TRAN II, programming either of these statements is
equivalent to programming a non-FORTRAN state-
ment, IF OVERFLOW nj, ng. In 7090/7094 FOR-
TRAN II, an internal indicator is used to denote the
overflow condition; it is reset to the no-overflow
condition after execution of either of these two
statements.

“‘When either the Accumulator or the Multiplier-
Quotient Register overflows, the register is set to
contain the highest possible quantity, i.e.,
37TTT7T7771777g, With the correct sign.

If an underflow occurs in either register, that reg-
ister is set to zero and the sign remains unchanged.
There is no test for the underflow condition.

IF DIVIDE CHECK Statement

GENERAL FORM EXAMPLES
"IF DIVIDE CHECK ny, ny", IF DIVIDE CHECK 84, 40
where ny and np are statement
numbers.

Control is transferred to the statement numbered

nj Or ng, if the Divide Check trigger is On or Off,
respectively. If it is On, it will be turned Off.

DO Statement

GENERAL FORM EXAMPLES
"DOni=m1,m“or"DO DO30I=1, 10
ni=mg, my, m3", where n DO30I=1, M, 3

is a statement number, iis a
nonsubscripted fixed point var-
iable, and my, m,, mj are

each either an unsigned fixed
point constant or a nonsubscripted
fixed point variable. If m3 is not
stated, it is assumed to be 1.

The DO statement is a command to execute repeat-
edly the statements which follow, up to and including
the statement with statement number n. The first
time, the statements are executed with i = my. For
each succeeding execution, i is increased by mg.
After they have been executed with i equal to the high-
est value in this sequence of values which does not
exceed my, control passes to the statement following
the last statement in the range of the DO,

The range of a DO is that set of statements which
will be executed repeatedly; i.e., it is the sequence
of consecutive statements immediately following the
DO, up to and including the statement numbered n.

14

The index of a DO is thefixedpoint variable i, which
is controlled by the DO in such a way that its value
begins at my and is increased each time by mgq until
it is about to exceed m,y. Throughout the range it is
available for computation, either as an ordinary
fixed point variable or as the variable of a subscript.
After the last execution of the range, the DO is said
to be satisfied.

Suppose, for example, that control has reached
statement 10 of the program

10DO111I=1, 10
11 AQD) =1 * N(@)
12

The range of the DO is statement 11, and the in-
dex is I. The DO sets I to 1 and control passes in-
to the range. The value of 1-N(1) is computed,
converted to floating point, and stored in location
A(1). Since statement 11 is thelast statement in the
range of the DO and the DO is unsatisfied, I is in-
creased to 2 and control returns to the beginning of
the range, statement 11. The value of 2-N(2) is
then computed and stored in location A(2). The proc-
ess continues until statement 11 has been executed
with I = 10. Since the DO is satisfied, control then
passes to statement 12.

DOs within DOs: Among the statements in the range
of a DO may be other DO statements. When this is
so, the following rule must be observed:

Rule 1: If the range of a DO includes another DO,
then all of the statements in the range of
the latter must also be in the range of the
former.

A set of DOs satisfying this rule is called a nest

of DOs.

Transfer of Control and DOs: Transfers of control
from and into the range of a DO are subject to the
following rule: ’

Rule 2: No transfer is permitted into the range of
any DO from outside its range. Thus, in
the configuration below, 1, 2, and3 are
permitted transfers, but 4, 5, and 6 are not.

DO

E

Y

|

U

Exception: There is one situation in which control
can be transferred into the range of a DO from out-
side its range. Suppose control is in the range of
the innermost DO of a nest of DOs which are com-
pletely nested {i.e., every pair of DOs in the nest
is such that one contains the other). Suppose also
that control is transferred to a section of the pro-
gram, completely outside the nest to which these
DOs belong, which makes no change in any of the
indexes or indexing parameters (m's) in the nest.
Then, after the execution of this latter section of
the program, control can be transferred back to the
range of the same innermost DO from which it origi-
nally came. This provision makes it possible to
exit temporarily from the range of some DOs to exe-
cute a subroutine. ’

Restriction on Assigned GO TOs in the Range of a
DO: When an assigned GO TO is in the range of a
DO, the statements tc which it may transfer must
all be in the exclusive range of a single DO or all
outside the DO nest.

Preservation of Index Values: When control leaves
the range of a DO in the ordinary way, i.e., when the
DO becomes satisfied and control passes on to the
next statement after the range, the exit is said to be
a normal exit. After a normal exit from a DO oc-
curs, the value of the index controlled by that DO is
not defined, and the index cannot be used again until
it is redefined. (In this connection, see ""Further
Details about DO Statements. ")

However, if exit occurs by a transfer out of the
range by an IF or GO TO statement, the current
value of the index remains available for any subse-
quent use. If exit occurs by a transfer which is in
the ranges of several DOs, the current values of all
the indexes controlled by those DOs arepreserved for
any subsequent use.

Restrictions on Statements in the Range of a DO:
Only one type of statement is not permitted in the
range of a DO, namely, any statement that redefines
the value of the index or of any of the indexing param-
eters (m's). In other words, the indexing of a DO
loop must be completely set before the range is en-
tered.

The first statement in the range of a DO must not
be one of the nonexecutable FORTRAN statements.
The range of a DO cannot end with a transfer.

Exits: When a subroutine reference is executed in
the range of a DO, care must be taken that the called
subprogram does not alter the DO index or indexing
parameters. Such an exit from a DO is not consid-
ered a transfer; thus, the current values of the in-
dexes are not available for computation.

CONTINUE Statement

GENERAL FORM EXAMPLES

"CONTINUE" CONTINUE ~.

CONTINUE is a dummy statement which gives rise
to no instructions in the object program. It is most
frequently used as the last statement in the range of
a DO to provide a transfer address for IF and GO TO
statements which are intended to begin another rep-
etition of the DO range.

As an example of a program which requires a
CONTINUE, consider the table search:

10 DO 12 I = 1, 100
IF (ARG - VALUE ())12, 20, 12
12 CONTINUE

This program will scan the 100-entry VALUE ta-
ble until it finds an entry which equals the value of
the variable ARG, whereupon it exits to statement
20 with the value of I available for fixed point use;
if no entry in the table equals the value of ARG, a
normal exit to the statement following the CONTINUE
will occur.

PAUSE Statement

GENERAL FORM EXAMPLES

"PAUSE" or "PAUSE n", where n is
an unsigned octal fixed point constant.

PAUSE
PAUSE 77777

The machine will halt with the octal number n in
the address field of the Storage Register. If n is not
specified, it is understood to be zero. Depressing
the Start key causes the program to resume execu-
tion of the object program with the next FORTRAN
statement.

The FORTRAN II Language 15

STOP Statement

GENERAL FORM EXAMPLES
"STOP" or "STOP n", where n is an STCP
unsigned octal fixed point constant. STOP 77777

Neither STOP nor PAUSE should be used in a
source program to be executed under the FORTRAN
Monitor or Basic Monitor (IBSYS).

This statement causes a halt in such a way that
depressing the Start key has no effect. Therefore,
in contrast to PAUSE, this statement is used where
a terminal, rather than a temporary stop, is desired.
The octal number n is positioned in the address field
of the Storage Register. If n is not specified, it is
understood to be zero.

END Statement

GENERAL FORM EXAMPLES

END
END (1,2,0,1,1)

"END.{Iy, I, I3, « .
1is 0, 1, or 2.

« s lgg) " where

This statement differs from the previous statements
discussed in this chapter in that it does not affect the
flow of control in the object program being compiled.
Instead, it marks the end of any given FORTRAN
source program, separating it from the program that
follows. The END statement must be the last state-
ment in the program.

The meaning of each I of the statement list is ex-
plained in the section '""Use of END Statement."

CHAPTER 6. SUBPROGRAM STATEMENTS

It is possible, in the FORTRAN language, to pro-
gram subroutines that are referred to by other pro-
grams. These subroutines may, in turn, refer to
still other lower level subroutines that may also be
coded in FORTRAN language. It is possible, there-
fore, by means of FORTRAN, to code problems using
several levels of subroutines. This configuration
may be thought of as a total problem consisting of
one main program and any number of subprograms.
Because of the interrelationship among several
different programs, it is possible to include a block
of hand-coded instructions in a sequence, including
instructions compiled from FORTRAN source pro-
grams. It is only necessary that hand-coded instruc-
tions conform to rules for subprogram formation,
since they will constitute a distinct subprogram.

16

This chapter presents a discussion of the two
types of FORTRAN coded subprograms: the FUNC-
TION subprogram and the SUBROUTINE subprogram.
Four statements, described subsequently, areneces-
sary for their definition and use. Two of these,
SUBROUTINE and FUNCTION, are discussed in Sec-
tion A; the other two, CALL and RETURN, are dis-
cussed in Section B.

Illustrations of, and the rules for, hand-coding
subprograms are given in Appendix D.

Although FUNCTION subprograms and SUBROU-
TINE subprograms are treated together and may be
viewed as similar, it must be remembered that they
differ in two fundamental respects.

1. The FUNCTION subprogram is always single-
valued, whereas the SUBROUTINE subpro-
gram may be multi-valued.

2. The FUNCTION subprogram is called or re-
ferred to by the arithmetic expression con-
taining its name; the SUBROUTINE subpro-
gram can only be referred to by a CALL
statement.

Each of these two types of subprograms, when
coded in FORTRAN language, must be regarded as
independent FORTRAN programs. They conform in
all respects to rules for FORTRAN prdgramming.
However, they may be compiled with the main pro-
gram, of which they are parts, by means of multiple
program compilation. Inthisway, the results of a
multiple program compilation will be a complete
main program-subprogram sequence, ready to be
executed.

Schematically, the relationship among nested main
programs and subprograms can be shown as follows.
This diagram also indicates the main division of the
internal structure of each program.

Main Program

Transfer to Subprogram Alg Subprogram A
Transfer to Subprogram B ‘1_] Subprogram B
. ENTRY POINT
START . 1
| ENTRY POINT |
I] |
| |
Pass Control to Instruc- |
tion which Transfers to |- Pass Control to Instruc~ I
Subprogram A tion which Transfers to :
Argument Addresses Subprogram B |
Return Point from Argument Addresses |
Subprogram A Return Point from i
| Subprogram B !
| | |
Y | |
STOP ¥ =
Return to Main Program eturn to
- Subprogram A

Section A: FUNCTION and SUBROUTINE Statements
FUNCTION Statement
GENERAL FORM EXAMPLES
"FUNCTION Name (a1, ap,..., ag)", | FUNCTION ARCSIN
where Name is the symbolic name of (RADIAN)
a single-valued function , and the FUNCTION ROOT
arguments a1, a3; ..., as of which (B,A,C)

there must be at least one, are non-

FUNCTION INTRST

subscripted variable names or the
dummy name of a SUBROUTINE or
FUNCTION subprogram.

The function name consists of 1 to
6 alphameric characters; the first
character must be alphabetic. The
first character must be I, J, K, L,
M, or N if, and only if, the value

(RATE, YEARS)

of the function is to be fixed point;
the final character must not be F if
there are more than three characters
in the name.

The FUNCTION statement must be the first state-
ment of a FUNCTION subprogram and defines it to
be such.

In a FUNCTION subprogram, the name of the func-
tion must appear at least once as the variable on the
left-hand side of an arithmetic statement, or alter-
nately in an input statement list, e.g.:

FUNCTION NAME (A, B)

NAME =Z + B

RETURN

By this means, the output value of the function is
returned to the calling program.

This type of program may be either compiled in-
dependently or.it may be multiple-compiled with
others. A FUNCTION subprogram must never be
inserted between two statements of any other single
program.

The arguments following thename in the FUNCTION
statement may be considered ""dummy'" variable
names. That is, during object program execution,
other actual arguments are substituted for them.
Therefore, the arguments which follow the function
reference in the calling program must agree with
those in the FUNCTION statement in the subprogram
in number, order, and mode. Furthermore, when a
dummy argument is an array name, the correspond-
ing actual argument must also be an array name.

Each of these array names must appear with the
same dimensions in DIMENSION statements of their
respective programs.

None of the dummy variables may appear in an
EQUIVALENCE statement in the FUNCTION sub-
program.

SUBROUTINE Statement

GENERAL FORM

EXAMPLES
"SUBROUTINE Name (ay, dnyeens SUBROUTINE
an)") where Name is the symbolic MATMPY

name of a subprogram, and each (A,N,M,B,L,C)
SUBROUTINE QDRTIC

(B,A,C, ROOT1,RO0T?2)

argument, if any, is a nonsubscripted
variable name or the dummy name of
a SUBROUTINE or FUNCTION sub-
program.

The name of the subprogram must
consist of 1 to 6 alphamerre char-
acters, The first character must be
alphabetic. The last character must
not be F if there are more than three
characters in the name,

This statement is used as the first statement of a
SUBROUTINE subprogram and defines it to be such.
A subprogram introduced by the SUBROUTINE state-
ment must be a FORTRAN program and may contain
any FORTRAN statements except FUNCTION or an-
other SUBROUTINE statement.

A SUBROUTINE subprogram must be referred to
by a CALL statement in the calling program. The
CALL statement specifies the name of the subpro-
gram and its arguments.

Unlike the FUNCTION subprogram which returns
only a single numeric value, the SUBROUTINE sub-
program uses one or more of its arguments to re-
turn output. The arguments so used must, therefore,
appear on the left side of an arithmetic statement or
in an input statement list within the program.

The arguments of the SUBROUTINE statement are
dummy names which are replaced, at the time of exe-
cution, by the actual arguments supplied in the CALL
statement. There must, therefore, be correspond-
ence in number, order, and mode, between the two
sets of arguments. Furthermore, when a dummy ar-
gument is an array name, the corresponding actual
argument must also be an array name. Each of
these array names must appear in DIMENSION state-
ments of their respective programs with the same
dimensions.

For example, the subprogram headed by
SUBROUTINE MATMPY (A,N,M,B,L,C)

The FORTRAN II Language 17

could be called by the main program through the
statement

CALL MATMPY (X,5,10,Y,7,7)
where the dummy variables A, B, C are the names of
matrices. A,B, and C must appear in a DIMENSION
statement in the subprogram, and X, Y, and Z must
appear in a DIMENSION statement in the calling pro-
gram. The dimensions assigned must be the same in
both statements.

None of the dummy variables may appear in an
EQUIVALENCE statement in the SUBROUTINE sub-
program. These subprograms may be compiled in-
dependently or they may be multiple-compiled with
others.

Subroutine Names as Arguments of Subprograms

FORTRAN will accept Library function, FUNCTION
subprogram, and SUBROUTINE subprogram names
as arguments in other SUBROUTINE and FUNCTION
subprograms. This permits the subroutine name
specified as an argument to be different, depending
upon the arguments specified in the subprogram ref-
erence.

The terminal F of a Library function name must
be dropped only when this name appears in the argu-
ment list of a CALL or SUBROUTINE statement or
FUNCTION subprogram reference. This terminal F,
however, must appear whenever the Library function
name appears within an arithmetic expression.

When a subroutine name appears in the argument
list of a SUBROUTINE or FUNCTION subprogram,
the corresponding subroutine name in the subprogram
reference must appear in an F card. The F card de-
fines a subprogram argument tobe a subroutinename,
and the F card may appear anywhere in the program
containing the subprogram reference.

The letter F must appear in column 1, and the sub-
routine name(s) must appear, separated by commas,
in columns 7-72. For example,

F SIN, COS, FUN, SUBP
where SIN and COS are Library function names, FUN
is a FUNCTION subprogram name, and SUBP is a
SUBROUTINE subprogram name.

This sample F card indicates that SIN, COS, FUN,
and SUBP are subroutine names appearing in argu-
ment lists of subprogram references. Note that the
terminal F required for the Library functions SIN
and COS is omitted when these names appear in a
F card. '

Consider the subprogram

SUBROUTINE BOB (DUMMY, Y, A)
A=DUMMYF (Y)

RETURN

END

18

and the calling program
F SIN, COS
CALL BOB (SIN, 8, X)
CALL BOB (COS, S, Z)

SUBROUTINE BOB permits the function DUMMYF
to vary, depending on the CALL statements of the
calling program.

The statement

CALL BOB (SIN, S, X)
causes the SINF (S) to be computed and placed in
storage location X. Similarly,

CALL BOB (COS, S, Z)
causes COSF(S) to be stored in location Z.

Section B: CALL and RETURN Statements

The CALL statement has reference only to the SUB-
ROUTINE subprogram, whereas the RETURN state-
ment is used by both the FUNCTION and SUBROU-
TINE subprograms.

CALL Statement

GENERAL FORM EXAMPLES

CALL MATMPY
(X,5,10, 7,7, 2)

"CALL Name (ag, 3p;,..., ap)",
where Name is the name of a
Subroutine subprogram, and ag,
a3,+4., dy are arguments which CALL QDRTIC
(P*9.732, Q/4.536,

R-$%%2.0, X1, X2)

take one of the forms described

below.

This statement is used to call SUBROUTINE sub-
programs; the CALL transfers controltothe subpro-
gram and presents it with the parenthesized argu-

ments. Each argument may be one of the following
types:
1. Fixed point constant.
Floating point constant.
3. Fixed point variable, with or without sub-
scripts.
4. Floating point variable, with or without sub-
scripts.

5. Arithmetic expression.
6. Alphameric characters. Such arguments
must be preceded by nH, where n is the count
of characters included in the argument, e.g.,
9HEND POINT. Note that blank spaces and
special characters are considered characters
when used in alphameric fields.
7. The name of 2 FUNCTION of SUBROUTINE
subprogram.
The arguments presented by the CALL statement
must agree in number, order, mode, and array
size with the corresponding arguments in the SUB-
ROUTINE statement of the called subprogram, and
none of the arguments may have the same name as
the SUBROUTINE subprogram being called.

RETURN Statement
GENERAL FORM EXAMPLES
"RETURN" RETURN

This statement terminates any subprogram,
whether of the type headed by a SUBROUTINE state-
ment or a FUNCTION statement, and returns control
to the calling program.

A RETURN statement must, therefore, be the
last executed statement of the subprogram. It
need not be the physically last statement of the sub-
program; it can be any point reached by a path of
control, and any number of RETURN statements may
be used.

CHAPTER 7. INPUT/OUTPUT STATEMEN’I“S

Thirteen FORTRAN statements are-available for
specifying the transmission of information between
storage and magnetic tapes, drums, card reader,
card punch, and printer. These input/output state-
ments can be grouped as follows:

1. Five statements, READ, READ INPUT TAPE,
PUNCH, PRINT, and WRITE OUTPUT TAPE, cause
transmission of a specified list of quantities between
storage and an external input/output medium: cards,
printed sheet, or magnetic tape, for which informa-
tion is expressedin alphameric punching, alphameric
print, or binary-coded-decimal (BCD) tape code, re-
spectively.

2. One statement, FORMAT, is a nonexecutable
statement that specifies the arrangement of the in-
formation in the external input/output medium with
respect to the five source statements of group 1
above.

3. TFour statements, READ TAPE, READ DRUM,
WRITE TAPE, and WRITE DRUM, causeinformation
to be transmitted in binary machine-language.

4. Three statements, END FILE, BACKSPACE,
and REWIND, manipulate magnetic tapes.

Specifying Lists of Quantities

Of the thirteen input/output statements, nine call
for the transmission of information and must, there-
fore, include a list of the quantities tobe transmitted.
This list is ordered and its order must be the same
as the order in which the words of information exist
(for input) or will exist (for output) in the input/out-
put medium.

The formation and meaning of a list is best de~
scribed by the following example:

A, B(3), (C(I), D{I,K), I=1, 10), ((E(L,]),
I=1, 10, 2), FJ,3), J=1,K)

Qarsnnnee s Fhndt +4hio Tict 1o 1vand ssrith am Avidesad cdbada

ou_p_pupc Llital LD 1LiDL LD udTU Wil all uubpu.b sLatc—
ment. Then the information will be written on the
input/output medium in this order:

A, B(3), C(1), (1, K), C{2), D(2, K);..... » €(10), D(10,K),
E1, 1), E(3, 1) ... » E(9,1), F(1, 3),
B, 2), B3, 2)peraes , B9, 2}, B2, 3)yennnns , KX, 3.

Similarly, if this list is used with an input state-
ment, the successive words, as they are read from
the external medium, would be placed into the se-
quence of storage locations just given.

Thus, the list reads from left to right, with rep-
etition for variabies enclosed within parentheses.
Only variables, and not constants, may be listed.
The execution is exactly that of a DO-loop, as
though each opening parenthesis (except subscript-
ing parentheses) were a DO, with indexing given
immediately before the matching closing parenthe-
sis, and with the DO range extending up to that in-
dexing information. The order of the above list
can thus be considered the equivalent of the "pro-
gram''; :
A
B(3)

DO51=1, 10
co
D(, K)
DO9J=1,K
DO8I=1, 10, 2
E@J)

9 F(J,3)

Note that indexing information, as in DOs, con-
sists of three constants or fixed point variables,
and that the last of these may be omitted, in which
case it is taken to be 1.

For alistoftheform K, (A(K))orK, (A(@), I=1, K)
where an index or indexing parameter itself appears
earlier in the list of an input statement, the index-
ing will be carried out with the newly read in value.

O ~1I O U H» W N

Input/Output in Matrix Form

As outlined previously, FORTRAN treats variables
according to conventional matrix practice. Thus,
the input/output statement
READ 1, ((A(,d),I1=1, 2), J=1,3)

causes the reading of I x J (in this case 2 x 3) items
of information. The data items will be read into
storage in the same order as they are found on the
input medium.

For example, if the data is punched on a card in
the form

I ! I I [

! | |
2, 181, 282, 281, 32, 3
| ! | | |

The FORTRAN II Language 19

the data will be stored in locations N, N-1, N-2,..,
N-5, respectively, where N is the highest absolute
locationused forthe array of informationto be read in.

Input/Output of Entire Matrices

When input/output of an entire matrix is desired, an
abbreviated notation may be used for the list of the
- input/output statement; only the name of the array
need be given, and the indexing information may be
omitted.
Thus, if A has previously been listed in a DIMEN-
SION statement, the statement,
READ 1, A

is sufficient to read in all of the elements of the
array A. In 7090/7094 FORTRANII, the elements
read in by this notation are stored in their natural
order, i.e., in order of decreasing storage locations.
If A has not previously appeared in a DIMENSION
statement, only the first element will be read in.

NOTE: Certain restrictions to these rules exist
with respect to lists for the statements READ DRUM
and WRITE DRUM, for which the abbreviated nota~
tion mentioned immediately above is the only one
permitted.

FORMAT Statement

GENERAL FORM EXAMPLES

FORMAT
(12/ (E12. 4,F10.4))

"FORMAT (s¢; ..
s is a format specification as
described below.

+55,)"y where each

In addition to the list of quantities to be transmitted,
the five input/output statements of group 1 contain
the statement number of a FORMAT statement de-
scribing the information format to be used. It alsc
specifies the type of conversion to be performed be-
tween the internal machine language and external
notation. FORMAT statements are not executed;
their function is merely to supply information to the
object program. Therefore, they may be placed any-
where in the source program, except as the first
statement in the range of a DO.

For the sake of clarity, examples are given below
for printing., However, the description is valid for
any case simply by generalizing the concept of
"printed line" to that-of unit record in the input/out-
put medium., Maximum unit record lengths for a
printed line, punched card, and tape record are
given in Appendix C.

20

Numeric Fields

Four forms of conversion for numeric data are
available:

INTERNAL EXTERNAL

Floating point variable
Floating point variable
Fixed point variable
Binary representation
of the octal integer

Floating point decimal
Fixed point decimal
Decimal integer

Octal integer

O+ mm ljl
]

These types of conversion are specified in the

forms:
Ew.d, Fw.d, Iw, and Ow
where w and d are unsigned fixed point constants.

Format specifications are used to describe the
format of input and output. The format is specified
by giving, from left to right, beginning with the
first character of the record:

1. The control character (E, F, I, or O) for

the field.

2. The width (w) of the field. The width speci-
fied may be greater than required, to pro-
vide spacing between numbers.

3. For E- and F-type conversions, the number
of positions (d) of the field which appear to
the right of the decimal point. (Note: d is
treated modulo 10.)

Specifications for successive fields are separated
by commas. No format specification that provides
for more characters than the input/output unit rec-
ord should be given. Thus, a format statement for
printed output should not provide for more than 120
characters per line, including blanks.

Information to be converted by O-type formatspec-
ifications may be given fixed point or floating point
variable names.

Example: The statement FORMAT (12, E12.4,. 08,
F10.4) might cause printing of the line:

2 E12.4 08 F10.4

27b-0. 9321Eb0257734276bbb-0, 0076
(b is included here to indicate blank spaces.)

Alphameric Fields

FORTRAN provides two ways by which alphameric
information may be read or written; the specifica-
tions for this purpose are Aw and wH. Both result
in storing the alphameric information internally in
BCD form. The basic difference is that information

handled with the A specification is given a variable
array name and hence can be referred to by means
of this name for processing and/or modification.
Information handled with the H specification is not
given a name and may not be referred to or manip-

ulated in storage in any way.

The specification Aw causes w characters to be
read into, or written from, a variable or array
name. The name must be constructed in the same
manner as a fixed point or floating point variable
name.

The effect of nAw depends on whether it is used
for input or output.

1. Input -- The next n successive fields of w
characters each are to be stored as BCD in-
formation., If w>6, only the six rightmost
characters will be significant; if w< 6, the
characters will be left-adjusted and the word
filled out with blanks.

2. Output -- The next n successive fields of w
characters each of output are to be the re-
sult of transmission from storage without
conversion. If w>6, only six characters will
be transmitted, preceded by w-6 blanks; if
w< 6, the w leftmost characters of the word
will be transmitted.

The specification wH is followed in the FORMAT

statement by w alphameric characters; for example
24H THIS IS ALPHAMERIC DATA

Note that blanks are considered alphameric char-

acters and must be included as part of the count w.

The effect of wH depends on whether it is used for

input or output.

1. Input -- w characters are extracted from the
mrecord and replace the w characters
included with the specification.

2. Output -~ The w characters following the
specification, or the characters which re-
placed them, are written as part of the out-
put record.

Example: The statement FORMAT (3HXY=F8.3,A8)
might produce the following lines:

XY =b-93. 210bbbbbbbb

XY=9999. 999bbOVFLOW

XY=bb28. 768bbbbbbbb
(b is used to indicate blank characters.)

This example assumes that there are steps in the
source program which read the data "OVFLOW, '
store this data in the word to be printed in the for-
mat A8 when overflow occurs, and store six blanks
in the word when overflow does not occur.

Blank Fields

Blank characters may be provided in an output rec-
ord, and characters of an input record may be

skipped by means of the specification wX, where
0<w<120 (w is the number of blanks provided or
characters skipped). When the specification is used
with an input record, w characters are considered
to be blank, regardless of what they actually are,

and these w characters are skipped over. {The

control character X need not be separated by a
comma from the specification of the next field.)

Repetition of Field Format

It may be desired to print n successive fields within
one record, in the same fashion. This may be speci-
fied by giving n, where n is an unsigned fixed point
constant, before E, F, I, O, or A. Thus, the state-
ment FORMAT (I2, 3E12.4) would give the printed
line

27b-0.9321Eb02b-0. 7580E-02bb0. 5536 Eb00

Repetition of Groups

A limited parenthetical expression is permitted in
order to enable repetition of data fields according

to certain format specifications within a longer FOR-
MAT statement specification. Thus, FORMAT
(2(F10.6, E10.2), I4) is equivalent to FORMAT
(F10.6, E10.2, F10.6, E10.2, I4).

Scale Faétors

To permit more general use of F-type conversion, a
scale factor followed by the letter P may precede
the specification. The scale factor is defined so
that:
Printer number = Internal number x10
Thus, the statement FORMAT (12, 1P3F11.3) used
with the data of the preceding example, would give
27bbb-932. 096bbbbb-0. 076bbbbbb5. 536
whereas FORMAT (12, -1P3F11. 3) would give
2Tbbbbb~-9. 321bbbbb-0. 001bbbbbb0. 055
A positive scale factor may also be used with E-
type conversion to increase the number and decrease
the exponent. Thus, with the same data, FORMAT
(12, 1P3E12.4) would produce
2'Tb-9.3210Eb01b-7.5804E-03bb5.5361E-01
The scale factor is assumed to be zero if no other
value has been given. However, once a value has
been given, it will hold for all E- and F-type con-
versions following the scale factor within the same
FORMAT statement. This applies to both single-
record and multiple-record formats (see below).
Once a scale factor has been given, a subsequent
scale factor of zero in the same FORMAT statement
must be specified by 0P. Scale factors have no ef-
fect on I-conversion.

scale factor

The FORTRAN II Language 21

Multiple-Record Formats

To deal with a block of more than one line of print,
a FORMAT specification may have several different
one-line formats, separated by a slash (/) to indi-
cate the beginning of a new line. Thus, FORMAT
(3F9. 2, 2F10.4/8E14.5) would specify a multi-line

block of print in which lines 1, 3, 5,....have for-
mat (3F9.2, 2F10.4), and lines 2, 4, 6,... .have
format (8E14. 5).

If a multiple-line format is desired such that the
first two lines will be printed according to a special
format and all remaining lines according to another
format, the last line-specification should be enclosed
in a second pair of parentheses; e.g., FORMAT
(12, 3E12.4/2F10.3, 3F9.4/ (10F12.4)). If data
items remain to be transmitted after the format
specification has been completely ""used," the
format repeats from the last open parenthesis.

As these examples show, both the slash and the
closing parenthesis of the FORMAT statement in~
dicate the termination of a record.

Blank lines may be introdiuced into a multi-line
FORMAT statement by listing consecutive slashes.
N + 1 consecutive slashes produce N blank lines.

Format and Input/Output Statement Lists

The FORMAT statement indicates, among other
things, the maximum size of each record to be
transmitted. In this connection, it must be remem-
bered that the FORMAT statement is used in con-
junction with the list of some particular input/out-
put statement, except when a FORMAT statement
consists entirely of alphameric fields. In all other
cases, control in the object program switches back
and forth between the list (which specifies whether
data remains to be transmitted) and the FORMAT
statement (which gives the specifications for trans-
mission of that data).

Ending 2 FORMAT Statement

During input/output of data, the object program scans
the FORMAT statement to which the relevant input/
output statement refers. When a specification for

a numeric field is found and list items remain to be
transmitted, input/output takes place according to
the specification, and scanning of the FORMAT
statement resumes. If no items remain, transmis-
sion ceases and execution of that particular input/
output statement is terminated. Thus, a decimal
input/output operation will be brought to an end
when a specification for a numeric field or the end
of the FORMAT statement is encountered, and there
are no items remaining in the list.

22

FORMAT Statements Read in at Object Time

FORTRAN accepts a variable FORMAT address. This
provides the facility of specifying a list at objecttime.

Example:
DIMENSION FMT (12)
1 FORMAT (12A6)
READ 1 (FMT(D), I=1,12)

READ FMT, A, B, (C(@), I=1,5)

Thus, at object time, A, B, andthe array Cwould
be converted and stored according to the FORMAT
specification read into the array FMT.

The name of the variable FORMAT specification
must appear in a DIMENSION statement even if the
array size is only 1. The FORMAT name must con-
sist of one to six alphameric characters and the
first character must be aiphabetic.

The format read in at object time must take the
same form as a source program FORMAT state-
ment, except that the word FORMAT is omitted, i.e.,
the variable format begins with a left parenthesis.

Carriage Control

The WRITE OUTPUT TAPE statement prepares a
decimal tape which can later be used to obtain off-
line printed output. The off-line printer is manually
set to operate in one of the three modes: single
space, double space, and Program Control. Under
Program Control, which gives the greatest flexibility,
the first character of each BCD record controls
spacing of the off-line printer; the first character of
a BCD record is not printed.

The control characters and their effects are:

Blank Single space before printing

0 Double space before printing

+ No space before printing

1-9 Skip to printer control chan-
nels 1-9*

J~-R Short skip to printer control

channels 1-9*

Thus, a FORMAT specification for WRITE OUT-
PUT TAPE for off-line printing with Program Con-
trol will usually begin with 1H followed by the appro-
priate control character. This is required for the
PRINT statement since on-line printing simulates
off-line printing under Program Control.

* See the section entitled "Carriage Control" in the IBM
Reference Manual, IBM 709 Data Processing System, Form
A22-6536.

Data Input to the Object Program

Decimal input data to be read by means of a READ or
READ INPUT TAPE when the object program is exe-
cuted must bein essentially the same formatas given
in the previous examples. Thus, a card to be read
according to FORMAT (12, E12.4, F10.4) might be
punched

27 -0.9321E 02 -0.007

Within each field, all information must appear at
the extreme right. Plus signs may be omitted or in-
dicated by a blank or +. Minus signs may be punched
withan 11-punchor an 8-4 punch. Blanks in numeric
fields are regarded as zeros. Numbers for E~ and
F-type conversion may contain any number of digits,
but only the high-order 8 digits of accuracy will be
retained. For numbers whose magnitude is greater
than 227, it is preferable to use E, rather than F
conversion. Numbers for I-type conversion will be
treated modulo 217.

To permit economy in punching, certain relaxations
in input data format are permitted.

1. Numbers of E-type conversion need not have 4
columns devoted to the exponent field. The start of
the exponent field must be marked by an E, or if that
is omitted, by a + or - (not a blank). Thus E2, E02,
+2, +02, E 02, and E+02 are all permissible expo-
nent fields.

2. Numbers for E- or F-type conversionneed not
havetheir decimal point punched. Ifitisnot punched,
the FORMAT specification will supply it; for exam-
ple, the number -09321+2 with the specification
E12.4 will be treated as though the decimal point

had been punched between the 0 and the 9. If the
decimal point is punched in the card, its position
~ overrides the indicated position in the FORMAT
specification.

READ Statement

GENERAL FORM EXAMPLES

"READ n, List", where n is the
statement number of a FORMAT
statement, and List is as described
in Chapter 7.

READ 1, ((ARRAY (1,]),
I=1, 3),J=1, 5)

The READ statement causes the reading of cards
from the card reader. For 7090 FORTRAN, the
Data Synchronizer Channel to which the card reader
is attached must be specified by the installation (see

" "Symbolic Input/Output Unit Designation'). Suc-
cessive cards are read until the complete list has
been "satisfied,’ i.e., all data items have been

. FORTRAN II System.

read, converted, and stored in the locations speci-
fied by thelist of the READ statement. The FORMAT
statement to which the READ refers describes the
arrangement of information on the cards and the
type of conversion to be made.

READ INPUT TAPE Statement

GENERAL FORM EXAMPLES

"READ INPUT TAPE i, n, List",
where i is an unsigned fixed point

READ INPUT TAPE
24, 30, K, A())
constant or a fixed point variable;
n is the statement number of a
FORMAT statement, and List is

as described in Chapter 7,

READ INPUT TAPE
N, 30, K, A())

The READ INPUT TAPE statement causes the
object program to read BCD information from sym-
bolic tape unit (0<i<81), Record after record is
brought in, in accordance with the FORMAT state-
ment, until the complete list has been satisfied.

The object program tests for the proper function-
ing of the tape reading process. In the event that
the tape cannot be read properly, the object program
halts.

Symbolic Input/Output Unit Designation

Tape Units: In order to enable 7090/7094 FORTRAN
II to accept source programs written in connection
with other programming systems, a distinction is
made between the logical tape unit numbers speci-
fied in the source program, and the actual tape units
which will be affected by the resulting object pro-
gram. Logical/actual equivalences for the 7090/
7094 FORTRAN II System are specified in the sys-
tem as distributed, but these may be changed by the
installation in accordance with its own needs. The
equivalences are established by the insertion of an
IOU subroutine into the edit deck of the 7090/7094
(See ' The FORTRAN II
Editing Program,' in the 7090/7094 FORTRAN II
Operations manual.)

Card Reader, On-Line Printer, and Card Punch:
One each of these input/output units can be attached
to Data Synchronizer Channels A, C, or E of the
7090. The card reader, on-line printer, or card
punch which will actually be involved in the execution
of READ, PRINT, or PUNCH, respectively, is
specified by the system as distributed and may be

changed by the installation. At the time that the

The FORTRAN II Language 23

1 7090/7094 FORTRAN II object program is executed,
the equivalence between the logical and actual input/
output units must be known.

READ TAPE Statement

GENERAL FORM EXAMPLES

WREAD TAPE i, List", where i is an | READ TAPE 24, (A()),

unsigned fixed point constant or a Jj=1, 10)
fixed point variable, and List is as READ TAPE K, (A()),
described in Chapter 7. J=1, 10)

The READ TAPE statement causes the object pro-
gram to read binary information from symbolic tape
unit i (0<i<81), into locations specified in the list.
A record is read completely only if the list specifies
as many words as the tape record contains; no more
than one record will be read. The tape, however,
always moves to the beginning of the next record.

Binary tapes read by a 7090/7094 FORTRAN I
Compiled program should have been written by a
7090/7094 FORTRAN II object program. However,
it is possible to use a non-FORTRAN written binary
tape, provided the tape records are in the proper
format. A description of this record format is given
in Appendix C.

FORTRAN handles binary tape operations accord-
ing to the following rules:

1. Binary records are read under logical record

control and written under count control.

2. The list for binary tape operations may be
less than or equal to, but not greater than, the
length of the logical record.

The object program checks tape reading. In the

event that a record cannot be read properly, the ob-
ject program halts.

READ DRUM Statement

GENERAL FORM EXAMPLES

READ DRUM 2, 1000,
A, B, C, D(3)

"READ DRUM i, j, List", where i
and j are each either an unsigned
fixed point constant or a fixed point
variable, with the value of i between
1 and 8 inclusive, and List is as
described below.

READ DRUMK, J,
A, B, C, D(3)

24

The READ DRUM statement causes the object pro-
gram to read words of binary information from con-
secutive locations on drum i, beginning with the
word in drum location j, where 0<j£2048. (If j>
2047, it is interpreted modulo 2048.) Reading con-
tinues until all words specified by the list have been
read in. If the list specifies an array, the array is
stored in inverse order.

The list for the READ DRUM and WRITE DRUM
statements can consist only of variables without sub-
scripts or with only constant subscripts, such as A,
B(5), C, D. Variables consisting of only one ele-
ment of data will be read into storage in the ordinary
way; those which are arrays will be read with in-
dexing obtained from their DIMENSION statements.
Thus, the statement READ DRUM, i, j, A, where A
is an array, causes the complete array to be read.
The array A is stored in inverse order.

PUNCH Statement

GENERAL FORM EXAMPLES

PUNCH 30, (A(j)
J=1, 10)

"PUNCH n, List", where n is the
statement number of a FORMAT
statement, and List is as described
in Chapter 7.

The PUNCH statement causes the object program
to punch alphameric cards. Cards are punched in
accordance with the FORMAT statement until the
complete list has been satisfied.

PRINT Statement

GENERAL FORM EXAMPLES
"PRINT n, List", where n is the PRINT 2, (A(]);
statement number of a FORMAT J=1, 10)

statement, and List is as described
in Chapter 7.

The PRINT statement causes the object program
to print output data on an on-line printer. Succes-
sive lines are printed in accordance with the FOR-
MAT statement until the complete list has been sat-
isfied.

WRITE QUTPUT TAPE Statement

GENERAL FORM EXAMPLES

WRITE OUTPUT TAPE
42,30, (A(J), J=1, 10)

"WRITE OUTPUT TAPE i, n,

List", where i is an unsigned fixed
point constant or a fixed point
variable, n is the statement number
of a FORMAT statement, and List
is as described in Chapter 7.

WRITE OUTPUT TAPE
L, 30, (A(), J =1, 10)

The WRITE OUTPUT TAPE statement causes the
object program to write BCD information on sym-
bolic tape unit i (0<i<81). Successive records
are written in accordance with the FORMAT state-
ment until the complete list has been satisfied. An
end of file is not written after the last record.

WRITE TAPE Statement

GENERAL FORM EXAMPLES

"WRITE TAPE i, List", where i is WRITE TAPE 24,
an unsigned fixed point constant (A, I=1, 10)
or a'fixed point variable, and List
WRITE TAPE K,
ag), j=1, 109

is as described in Chapter 7.

The WRITE TAPE statement causes the object
program to write binary information on the tape
unit with symbolic tape number i (0<i<81). One
logical record is Written consisting of all the words
specified in the list.

The object program checks tape writing. In the
event that a record cannot be written properly, the
object program halts. When the object program is
operating under the Monitor, the EXEM subroutine
handles the error (see the 7090/7094 FORTRAN I
Operations manual).

WRITE DRUM Statement

The WRITE DRUM statement causes the object
program to write words of binary information onto
consecutive locations on drum i, beginning with
drum location j. (If j> 2047, it is interpreted mod-
ulo 2048.) Writing continues until all the words
specified by the list have been written.

The list of the WRITE DRUM statement is subject
to the same restrictions that apply to READ DRUM.

END FILE Statement

GENERAL FORM EXAMPLES

WRITE DRUM 2, 1000,
A, B, C, D6)

YWRITE DRUM i, j, List", where

i and j are each either an unsigned
fixed point constant or a fixed point
variable, with the value of i between
1 and 8 inclusive, and List is as
described for READ DRUM.

WRITE DRUM K, J,
A, B, C, 1)6)

GENERAL FORM EXAMPLES
"END FILE i", where i is an unsigned END FILE 29
fixed point constant or a fixed point END FILE K

variable,

The END FILE statement causes the object pro-
gram to write an end-of-file mark on symbolic tape
unit i (0 <i<81).

REWIND Statement

GENERAL FORM EXAMPLES
"REWIND i", where i is an unsigned REWIND 3
fixed point constant or a fixed point
variable, REWIND K

The REWIND statement causes the object program
to rewind symbolic tape unit i (0<1i<81).

BACKSPACE Statement

GENERAL FORM EXAMPLES

"BACKSPACE i", where i is an
unsigned fixed point constant or a

BACKSPACE 18

fixed point variable. BACKSPACE K

The FORTRAN II Language 25

The BACKSPACE statement causes the object
program to backspace symbolic tape unit i (0< i<81).

CHAPTER 8. SPECIFICATION STATEMENTS

The final type of FORTRAN statement consists of
the four specification statements: DIMENSION, FRE-
QUENCY, EQUIVALENCE, and COMMON. These
are nonexecutable statements that supply necessary
information or information to increase object pro-
gram efficiency.

DIMENSION Statement

GENERAL FORM EXAMPLES

"DIMENSION VisVpsVgse.. ", where
each v is the name of a variable,

DIMENSION A(10),
B(5, 15), CVAL(3,4,5)
subscripted with 1, 2, or 3 unsigned
fixed point constants. Any number
of v's may be given, '

The DIMENSION statement provides the informa-
tion necessary to allocate storage for arrays in the
object program.

Each variable which appears in subscripted form
in a program or subprogram must appear in a DI-
MENSION statement of that program or subprogram;
the DIMENSION statement must precede the first
appearance of that variable. The DIMENSION state-
ment lists the maximum dimensions of arrays; in
the object program, references to these arrays must
never exceed the specified dimensions.

The above example indicates that B is a two~
dimensional array for which the subscripts never
exceed 5 and 15. The DIMENSION statement, there-
fore, causes 75 (i.e., 5 x 15) storage locations to
be set aside for the array B.

A single DIMENSION statement may specify the
dimensions of any number of arrays. A program
must not contain a DIMENSION statement that in-
cludes the name of the program itself, or any pro-
gram that it calls.

FREQUENCY Statement

GENERAL FORM EXAMPLES

"FREQUENCY n (i, j,...), FREQUENCY 30(1,2, 1),

m(k, 1,...),...", where n, 40 (11), 50(1, 7, 1, 1),
m,... are statement numbers, 10(1,7,1, 1)
and i, j, k, 1, ... are unsigned

fixed point constants,

The FREQUENCY statement has no direct effect
upon the execution of the object program. Its pur-
pose is to inform FORTRAN of the number of times
that the programmer believes that each branch of
one or more specified control branchings will be
executed.

The purpose of the statement is to make the object
program as efficient as possible in terms of execu-
tion time and storage locations required. In no case
will the logical flow of an object program be altered
by a FREQUENCY statement.

A FREQUENCY statement can be placed anywhere
in the FORTRAN source program, except as the first
statement in the range of a DO, and it may be used
to give frequency estimates for any number of
branch-points. For each branch-point, the informa-
tion consists of the statement number of the state-
ment causing the branch, followed by parentheses
enclosing the estimated frequencies which are sepa-
rated by commas.

In a program including the above example, state-
ment 30 might be an IF, and statement 50, a com-
puted GO TO. In these cases, the probability of
going to each of the three or four branch-points in
statements 30 and 50, respectively, is given by the
corresponding entry of the FREQUENCY statement.
Statement 40 must be a DO, in which at least one of
the parameters is variable and the value of the vari-
able parameter is not known in advance. An estimate
is made that the DO range will be executed 11 times
before the DO is satisfied.

All frequency estimates, except those about DOs,
are relative. Thus, the example given above could
have been FREQUENCY 30(2,4,2), 40(11), 50(3,21,
3,3), with equivalent results. A frequency can be
estimated as 0; this will be taken to mean that the
expected frequency is very small.

Applicable Statements

The following table lists the seven FORTRAN state-
ments about which frequency information may be
given.

No. of

STATEMENT Branches REMARKS
(Computed) GOTO | = 2 Frequencies must appear in the
IF 3 same order as the branches.
IF (SENSE SWITCH) 2 If no frequencies are given,
IF ACCUMULATOR they are assumed to be equal

OVERFLOW 2 for all branches.
IF QUOTIENT

OVERFLOW 2
IF DIVIDE CHECK J
DO 1 The frequency need be given

only when my, My, or my
is variable,

26

A frequency estimate concerning a DO is ignored
unless at least one of the indexing parameters of
that DO is variable. Moreover, such frequency
estimates should be based onlyon the expected values
of those variable parameters; in other words, even
if the range of a DO were to contain transfer exits,
the frequency estimate should specify the number of
times the range must be executed to cause a normal
exit. A DO with variable indexing parameters, and
for which no FREQUENCY statement is given, will
be treated by FORTRAN as though a frequency of 5
has been estimated.

EQUIVALENCE Statement

GENERAL FORM EXAMPLES

"EQUIVALENCE (a,b,c,...), EQUIVALENCE (A, B(1),
(dye,fy.c0)y...", where a, b, C(5)), (D(17), E(3))
c, d, e, f,,., are varigbles
optionally followed by a single
unsigned fixed point constant in

parentheses.

The EQUIVALENCE statement provides the option
of controlling the allocation of data storage in the ob-
ject program. In particular, when the logic of the
program permits it, the number of storage locations
used can be reduced by causing locations to be shared
by two or more variables.
ment should not be used to equate mathematically two
or more elements.

An EQUIVALENCE statement may be placed any-
where in the source program, except as the first
statement of the range of a DO. Each pair of paren-
theses of the statement list encloses the names of
two or more quantities which are to be stored in the
same locations during execution of the object pro-
gram; any number of equivalences, i.e., sets of
parentheses, may be given.

Inan EQUIVALENCE statement, the meaning of
C(5) would be "the fourth storage location following
the one that contains C or, if C is an array, the
fourth storage location following the location that
contains Cq, Cl 1> or Cl 1, 1- " In general, C(p)
is defined for p >O to mean the (p-1)th location af-
ter C or after the beginning of the C-array, i.e.,
the pth location in the array. If p is not specified,
it is taken to be 1.

Thus, the above sample statement indicates that
the A, B, and C arrays are to be assigned storage
locations such that the elements A, B(1), and C(5) are
to occupy the same location. In addition, it speci-
fies that D(17) and E(3) are to share the same loca-
tion.

Quantities or arrays which are not mentioned in
an EQUIVALENCE statement will be assigned unique
locations.

Locations can be shared only among variables, not
among constants.

The sharing of storage locations cannot be planned
safely without a knowledge of which FORTRAN state-
ments, when executed in the object program, will
cause a new value to be stored in a location. There
are seven such statements:

1. Execution of an arithmetic statement stores

a new value in the variable on the left-hand
side of the statement.

2. Execution of an ASSIGN i TO n stores a new
value in n.

3. Execution of a DO will, usually, store a new
indexing value. - (It will not always do so,
however; see the section entitled ' Further
Details about DO Statements. ')

Execution of 2a READ, READ INPUT TAPE,

READ TAPE, or READ DRUM will store new
values for the variables mentioned in the
statement list.

M

COMMON Statement

The EQUIVALENCE state-

GENERAL FORM EXAMPLES

COMMON X, ANGLE,
MATA, MATB

"COMMON A, B,...", where A,
B, ... are the names of variables
and nonsubscripted array names.

Variables, including array names, appearing in
COMMON statements are assigned to upper storage.
They are stored in locations completely separate
from the block of program instructions, constants,
and data. This area is assigned separately for
each program compiled. For 7090/7094 FORTRAN
I, the area is assigned beginning at location 774518
and continuing downwards. This separate COMMON
area may be shared by a program and its subpro-
grams. In this way, COMMON enables data storage
area to be shared between programs in a way analo-
gous to that by which EQUIVALENCE permits data
storage sharing within a single program. Where
the logic of the programs permits, this can result
in a large saving of storage space.

NOTE: When a FORTRAN II program is executed
under control of IBSYS, COMMON is relocated to
start at 77361g. Array names appearing in a COM-
MON statement must also appear in a DIMENSION
statement in the same program.

The FORTRAN II Language 27

The programmer has complete control over the
locations assigned to the variables appearing in
COMMON. The locations are assigned in the se-
quence in which the variables appear in the COM-
MON statements, beginning with the first COMMON
statement of the program.

Arguments in Common Storage

Because of the above, COMMON statements may be
used to serve another important function. They may
be used to transmit arguments from the calling pro-
gram to the called FUNCTION or SUBROUTINE sub-
program. In this way, they are transmitted implicitly
rather than explicitly by being listed in the paren-
theses following the subroutine name.

To obtain implicit arguments, it is necessary
only to have the corresponding variables in the two
programs occupy the same location. This can be
obtained by having them occupy corresponding
positions in COMMON statements of the two pro-
grams.

Notes:

1. In order to force correspondence in storage
locations between two variables which other-
wise will occupy different relative positions
in COMMON storage, it is valid to place
dummy variable names in a COMMON
statement. These dummy names, which may
be dimensioned, will cause reservation of the
space necessary to cause correspondence.

2. While implicit arguments can take the place
of all arguments in CALL-type subroutines,
there must be at least one explicit argument
in a FUNCTION subprogram. Here, too, a
dummy variable may be used for convenience.

The entire COMMON area may be relocated down-

ward for any one problem by means of a control card
(see the 7090/7094 FORTRAN II Operations manual),

When a variable is made equivalent to a variable
that appears in a COMMON statement, the equiva-

lenced variable will also be located in COMMON stor-
age. When COMMON variables also appear in EQUIV-
ALENCE statements, the ordinary sequence of
COMMON variables is changed. Priority is given to
those variables in EQUIVALENCE statements in the
order in which they appear in EQUIVALENCE state-
ments. For example,

COMMON A, B, C, D

EQUIVALENCE (C, G), (E, B)

28

will cause storage to be assigned in the following
way:

174614 C and G
77460 B and E
17457 A
774564 D

CHAPTER 9. DOUBLE-PRECISION AND COMPLEX
ARITHMETIC

Double-precision arithmetic is a technique for carry-
ing out floating point calculations with twice the nor-
mal number of significant decimal places. Only
single-precision floating point numbers may be input/
output; however, output data may be more accurate
as a result of using double-precision operations in-
ternally. Provision is made for program constants
of up to 16 digits; this permits increased accuracy
when dealing with a critical value such as m.

Complex arithmetic is a technique for carrying
out floating point calculations with the real and
imaginary parts of complex numbers. Noprovision
is made for the input/output of complex numbers;
however, since each part is represented internally
as a separate single-precision floating point number,
each part may be input/output separately.

Designating a Double-Precision or Complex FOR-
TRAN Statement

A statement will be interpreted as double-precision
arithmetic if the indicator D is placed in column 1

of the statement card; a statement will be interpreted
as complex arithmetic if the indicator I is placed

in column 1 of the statement card.

Generally, in statements in which the indicator
(D or I) has no meaning, such as input/output state-
ments, the indicator will be ignored. Such usage,
however, may result in a less efficient object pro-
gram or in error messages.

Constants, Variables, Subscripts, and Expressions

Constants

Double-precision floating point constants are defined
in the same way as are single-precision constants
and may contain up to 16 decimal digits. The magni-
tude of such a number must be between 1038 and
10738, or be zero. In the range 1038 to 10729, 16
decimal places are significant. Due to the way these
numbers are represented internally by the computer,
only 8 decimal places are significant in the range
10729 to 10738,

Complex numbers are written as two single-pre-
cision floating point numbers, separated by a comma
and enclosed in parentheses. The first number is
the real part, the second is the imaginary part; each
part may include up to eight significant digits and
mav have a2 ma itude hetween 1(\38 and 10 38 or

ilay il ildgiiivulT UCLY SOl 2V

be zero.)

For example the complex number 2. 0+7. 61 would
be written in a complex arithmetic statement as
(2.0, 7.6).

The sine of this number could be written in a com-
plex arithmetic statement as SINF ((2.0,7. 6)).

Note that the complex constant must have its own
set of parentheses in addition to the usual set that
encloses the argument.

Variables

Double-precision and complex variables must have
floating names. Amny floating point variable name
that appears in a D or I statement will be considered
to be a double-precision or complex variable name,
respectively.

Subscripted Variables

Subscripts are written according to the normal rules,
with the following differences:

1. All nonsubscripted floating point variables
that appear in double-precision or complex state-
ments are treated by 709/7090 FORTRAN II as one-
dimensional arrays consisting of two elements: the
first element contains the most significant part of
a double-precision number or the real part of a com-
plex number, and the second element contains the
least significant part of the double-precision number
or the imaginary part of the complex number. Ref-
erence to the variable name in a D or I statement
will give both parts of the number.

Reference to the variable name in a statement
which is not a D or I statement will give only the
most significant (or real) part. The least significant
(or imaginary) part may be referenced in a non-D
or I statement by subscripting, but only if the vari-
able appears in a double-precision or complex
DIMENSION statement (input/output lists are an ex-
ception).

An ~r e] Pk~ + - &1
For example, assume that B has been defined as
follows:

I B=(3.4,2.1)
Then, the statement
I A=B
would give A the value (3.4,2.1), whereas the state-
ments
A=Bor A=B(1)
would give A the value 3.4, and the statement

A =B(2)
would give A the value 2.1.
2. Each array of double-precision or complex
numbers is stored in two blocks. The most signifi-
cant (or real) parts are stored in the first block; the

least significant (or imaginarvy) narts are stored in

1€aStL S1gNUICAL (VL ULGRMIAl Y, Pal e aiC Sl

the second block.

As with nonsubscripted variables, the appearance
of a subscripted variable in a D or I statement auto-
matically refers to both parts of the number.

If desired, it is possible to refer to each part of
a double-precision or complex number in non-D or
I statements. The first part may be obtained by con~
ventional subscript notation; the second part may be
obtained by including an addend in the last subscript
of the variable. The addend is the dimension of the
last subscript of the variable.

For example, assume that Ais a three-dimensional
complex array with dimensions of 5 x5 x 5. The
arithmetic yrvdu\,b of these dimensions is 125; how-
ever, 250 locations will be set aside to contain both
parts of the number.

The statement

I B=A(2,3,4

would refer to both parts of the number. The state-
ment
B=A(2,3,4)

would refer to the realpart of the samenumber. The
statement

B=A(,3,9)
would refer to the imaginary part of the same num-
ber.

Expressions

The rules for forming double-precision and complex
arithmetic expressions are the same as those for
forming single-precision floating point expressions,
except that a complex quantity may only be given a
fixed point exponent.

Functions and Subprograms

The normal rules for functions and subprograms are
valid, with the following exceptions:

1. TFixed-Point Library, Built-In, and Arithmetic
Statement functions may not be used in double-
precision or complex statements.

2 The names of double-nrecision or nnmp]e

= 4110 JIQITN Ui WWunrie L CCioair L CRiL

Library or Built-In functions must contain fou
six alphameric characters, ending with F.

3. The names of double-precision and complex
Library and Built-In functions must appear in the
FORTRAN system and on the symbolic object pro-
gram listing prefaced with a D or I, respectively;
this prefix must not be used in source program ref-
erences.

The FORTRAN II Language 29

For example, the name of the Library function
to compute the square root of X, using double-
precision arithmetic, appears on the library program
card as

DSQRT

This function might be used in the source program
in the following manner:

D AREAT (R) = SQRTTF (PI*R**2)

Note that the D prefacing SQRT is not written, but
the following F is written.

4. When a subroutine name appears as an argu-
ment of a subprogram reference, and thus on an F
card, the terminal F of the subroutine name must be
omitted; in addition, if the subroutine is a Library
or Built-In function, the name must be prefaced with
a D or I exactly as it appears in the FORTRAN sys-
tem. For example:

Called Program
FUNCTION BOB (FUNC, X)
D BOB = FUNCF(X)

Calling Program
D Z = BOBF(DSIN,S)
F DSIN

5, All floating point arguments in a subroutineref-
erence are considered to be double-precision or
complex if there is a D or I in column 1 of the state-
ment containing the arguments.

6. If a double-precision or complex subscripted
variable appears in an argument list of a subprogram
reference, the corresponding dummy variable appear-
ing in the subprogram definition must have identical
dimensions.

However, where the dummy argument of a subpro-
gram is not dimensioned and it is desired to use a
subscripted variable as the corresponding argument,
a statement may appear in the calling program set-
ting the subscripted variable equal to a nonsubscripted
variable. This non-subscripted variable may then
be used in the argument list. For example:

Called Program

SUBROUTINE NAME
&, Y)

D DIMENSION Y(5, 5)

Calling Program
D DIMENSION A(10), B(5,5)

D C = A(5)
D CALL NAME (C, B(1, 3))

D RETURN

Note that A may not be subscripted in the CALL
statement because the corresponding dummy vari-
able, X, does not have identical dimensions. B,
however, may be subscripted in the CALL statement
since the corresponding dummy variable, Y, does
have identical dimensions.

7. To ensure a true double-precision or complex
result in a FUNCTION subprogram, punch a D or an

30

1 in column 1 of the RETURN statement. Modal
punches in RETURN statements of SUBROUTINE sub-
programs have no effect.

Arithmetic Statements

Arithmetic statement usage is unchanged. The fol-
lowing rules apply when afixed point quantity appears
on either side of the equal sign in a D or I statement:

1. If the variable on the left is fixed point and the
expression on the right is double-precision or com-
plex, the expression will be evaluated in the manner
indicated and the most significant (or real) part will
be truncated to an integer, converted to fixed point,
and stored as the value of the variable on the left.

2. 1If the variable on the left is double-precision
or complex and the expression on the right is fixed
point, the expression will be evaluated in fixed point,
converted to a single-precision floating pointnumber,
and stored as the value of the most significant (or
real) part of the variable on the left. The least sig-
nificant (or imaginary) part of the variable on the
left will be set equal to zero.

Control Statements

The arithmetic expression in an IF statement may be
given double-precision or complex significance by
placing a D or I in column 1. The expression will
be evaluated in the manner indicated; however, the
test will be made only on the most significant (or
real) part of the quantity produced as a result of the
computations. If it is desired to test the least signif-
icant (or imaginary) part or to test the relationship
between the two parts, this can be accomplished
with single-precision IF statements, using the sub-
scripting techniques discussed in Chapter 9.

Input/Output Statements

Input/output statements are not given any double-
precision or complex arithmetic significance; a D
or I in column 1 is ignored. Reference to a double-
precision or complex arithmetic variable in an in-
put/output list is interpreted to mean the most signif-
icant (or real) part only. The least significant (or
imaginary) part may be obtained by using the sub-
scripting technique.

Since each part of a complex number is a separate
single-precision floating point number, each part
may be input/output using E- or F-conversion. In
the case of double-precision numbers, the least sig-
nificant part only has meaning with respect to the
most significant part. Since the most significant
part undergoes rounding during input/output, the

least significant part may no longer be related to it.
However, the two parts of adouble-precision number
may be input/output in octal or binary. This is of
particular importance in dealing with a large block
of data that may have to be moved to an intermedi-
ate tape, and then later brought back; no precision
is lost by the operation.

Example: Assume that A is a double-precision
variable; then A may be written out as follows:

10 FORMAT (2012)
WRITE OUTPUT TAPE 6, 10, A(1),A(2)
or
WRITE TAPE 7, A(1),A(2)

The abbreviated notation for input/output of com-
plete arrays may be used with double-precision and
complex numbers; however, only the most signifi~-
cant (or real) parts will be read/written.

Specification Statements

’

DIMENSION Statement: Names for double-precision
or complex arrays must appear in DIMENSION
statements with either a D or I in column 1. The
stated dimensions must refer to the most significant
(or real) parts of the numbers only. FORTRAN will
double the storage allotment.

EQUIVALENCE and COMMON Statements: The var-
iables in EQUIVALENCE and COMMON statements
may be single-precision, double-precision, or
complex; an indicator in column 1 will be ignored.
Generally, single-precision variables should not be
made equivalent to double-precision or complex
variables, nor should they be given the same loca-
tion in COMMON.

Limitations on Source Program Size

All FORTRAN tables remain the same, with the
following additions:

1. DLIST 1 Table. The maximum number of
unigue, double-precision or complex
array names is 150.

2. DLIST 2 Table. The maximum number of
unique, double-precision or complex non-
subscripted variables is 400.

Note also that available core storage may be re-
duced by the additional compiled instructions and
added subroutines required for double-precision and
complex arithmetic. :

Available Functions

The following table summarizes the Library and
Buili-In functions available for use in double-pre-
cision and complex arithmetic expressions and
their single-precision counterparts.

Single-Precision Double-Precision Complex
*ABSF *ABSF ABSF
*INTF INTF -=-
*MODF MODF —-
*FLOATF *FLOATF *FLOATF
*SIGNF *SIGNF *SIGNF
ATANF ATANF ---

—— *kATANZF -

EXPF EXPF EXPF
LOGF LOGF LOGF
*¥*LOG10F *¥¥L OG10F ===
SINF SINF SINF
COSF COSF COSF
SQRTF SQRTF SQRTF

* Built-In functions.

¥k ATANZF evaluates the arctangent of (arg 1, arg 2).
¥k LOG10 F evaluates the log (x) to the base 10,

The FORTRAN II Language

31

PART III. PROGRAMMING FOR THE FORTRAN
I MONITOR
CHAPTER 10, INTRODUCTION TO THE FORTRAN

II MONITOR SYSTEM

The 7090/7094 FORTRAN II Processor consists of
three basic programs: a Monitor, a Compiler, and
an Assembler, The Compiler accepts a source pro-
gram written in the FORTRAN II language and pro-
duces a machine language object program. The As-
sembler accepts symbolic machine language and pro-
duces a machine language object program. The func-
tion of the Monitor is to coordinate compiler and as-
sembler processing and simultaneously to provide
means for initiating execution of object programs,
Thus, continuous machine operation is possible re-
gardless of what combinations of source and object
programs the machine encounters.

A series of 7090/7094 FORTRAN or FAP (FOR-
TRAN Assembly Program for the IBM 709/7090)
source programs can be continuously compiled and
assembled without halts between processing individ-
ual programs. Also, a series of object programs
may be continuously executed, again without halting
between programs. A third possibility, allowing
continuous machine operation, is a mixture of
source programs for compiling/assembling and of
object programs for execution. Still a fourth possi-
bility exists: a single source program can be com-
piled/assembled and executed with no machine halts
between compiling/assembling and execution. From
the programmer's point of view, this is equivalent
to entering a source program into the machine as an
object program. A fifth possibility allows continuous
execution of a program too large to fit into core
storage as a series of subsections, called links.

Thus, the Monitor is a supervisory program for
7090/7094 FORTRAN II, FAP, and object programs.
It calls in the various Processor programs as needed.
It is necessary only to inform the Monitor what type
of processing is to be expected.

The FORTRAN II Processor may operate under
the control of the System Monitor (IBSYS) or independ-
ently under the control of the FORTRAN Monitor.

See Part II of the 7090/7094 FORTRAN II Operations
manual. Under the System Monitor, FORTRAN II jobs
may be stacked as input along with jobs for other proc-
essors.

The FORTRAN II Processor may reside on tape or
disk. Substantial savings in setup time are achieved
when the processor operates under the System Monitor
and resides on disk.

32

FORTRAN II Monitor Operations

The FORTRAN II Monitor permits the following op-
erations:

1. FORTRAN compilation.

2. FAP (FORTRAN Assembly Program) assembly.

3. Execution of object programs.

4. Execution of programs in links, a procedure
necessary where the total program is too large
to fit into-storage and a link is a section of it
that does fit into storage.

FORTRAN II Monitor Input

Input to the FORTRAN II Processor consists not only
of the source program, but may include the following
as well:

1. FAP symbolic cards.

2. Object program cards.

3. Data cards.

4. FORTRAN II Monitor control cards.

With one exception, the relative order of a series
of different types of input does not matter, provided
that each separate deck, whether source program,
object program, etc., is preceded by appropriate
control cards., This exception is described below
under "Ordering of Job Input Deck."

The 7090/7094 FORTRAN II Compiler proper may
be considered a subsection of the Monitor, Under
FORTRAN control a single source program may be
compiled. Nothing further, including execution, can
be done. If multiple compilation of a series of
FORTRAN source programs is desired, Monitor con-
trol is required.

Definition of Job

A job may be considered as the basicunitbeingproc-
essed by the Monitor at any one time; it consists of
one or more programs. A job is either an Execute
job or a Non-Execute job. As an Execute job, it is to
be executed immediately after whatever processing is
required. This means that the programs of the job
arerelated toeach other. A Non-Execute job contains
programs whichneednotbe dependent. Eachprogram

is processed as the control cards for the job specify.
The "processing'' that is given a program is one of
the following:

Execute Non-Execute

i. FORTRAN Compilation 1. FORTRAN Compilation {object

2, FAP Assembly 2. FAP Assembly program

3. Relocation of object input is
program input ignored)

4, For jobs divided into

links, treatment of

chain links

A job may be considered to be one of the following
five types:

Non-Execute Jobs

1. One or more FORTRAN source programs to be
compiled. This is simply multiple compilation. The
programs may be main programs or subprograms.

2. One or more FAP symbolic programs to be
assembled. These may be main programs or sub-
programs,

3. An intermixture of job types 1 and 2. This
results in multiple compilation and assembly ot
FORTRAN and FAP source programs, with object
program output for each source program input.
There may be any combinationot main programs and
subprograms.

Execute Jobs

4. A sequence of input programs for immediate
execution. The input programs may be of job types
1 and 2, together with relocatable column binary ob-
ject program cards. Data cards, to be used during
execution, follow the input programs. Input pro-
grams each consist of a single main program-
subprogram sequence not larger than the available
core storage. This sequence constitutes a '"machine
load.”

5. A sequence of input programs meant for exe-
cution where each input program is a job of type 4.
The data cards are placed at the end of all the input
programs. This is called a chain job and each of
the jobs of type 4 is a chain link, This permits a
single object program execution to consist of more
than one "machine load."

CHAPTER 11, FORTRAN II MONITOR FEATURES

1. The first logical record of the FORTRAN II
Monitor is the ""Sign-On'" record. This may be pro-
grammed by the installation to process identifying
information pertaining to a job. It reads and inter-
prets the I.D. card, which is the first card for any
given job. In addition, it recognizes the END TAPE
card which signals that no more jobs follow., The
IBM version of the Sign-On record prints the I. D.

card on-line, writes it on tape for 6ff-line printing,
and signals the beginning of a job. It also prints
and writes on tape the total number of lines of out-
put of a job., This number includes output from
both compilation and execution of the job, If an in-
stallation elects to program this record, it will be
useful to have certain locations left undisturbed at
all times in which to save desired information.

For this purpose, the Monitor leaves available lo-
cations 3-7 and 11—1378when operating independ-
ently under the FORTRAN II Monitor and the top
6419 locations when operating under IBSYS,

2. There is a complete set of control cards for
the FORTRAN II Monitor. These are distinguished
by an asterisk (*) in column one. In general, they
are of two types: one type governs the job as a
whole, telling what it consists of, and the other
type governs output options. In addition to this set
of control cards, there are the DUMP card, the
START card, and the RESTART card, all of which
are self-loading binary cards. Each of these three
card types permits processing to be restarted when
an unexpected stop occurs. They are discussed in
detail in the 7090,/7094 FORTRAN II Operations man-
ual,

3. The FORTRAN II Processor uses eight tapes
on two channels. These tapes are Al, A2, A3, A4,
B1, B2, B3, B4. A2 is the input tape and A3 is the
output tape. It should be noted that the correspond-
ence between logical tape designations used in
FORTRAN source program input/output statements
and the actual tape assignments at object time is set
in the Unit table (IOU) in the FORTRAN library. In
the Unit table distributed with the IBM System, the
correspondence is as given below. For your infor-
mation, the actual unit when operating under IBSYS

is also included:
Actual Unit when

Actual Unit

Logical Operating as an when Operating
Designation Independent System Under IBSYS *

1 Al SYSLBx

2 B2 SYSUT3

3 B3 SYSUT4

4 A4 SYSUT1

5 A2 SYSIN1

6 A3 SYSOU1

7 B4 SYSPP1

8 B1 SYSUT2

* This unit designation is standard for IBSYS.

Each installation may alter the logical correspond-
ences. For compatibility purposes an installation may
allow more than one logical tape designation to apply
to each of the input and output tapes. This is done
through the Unit table (IOU) in the FORTRAN Library:
(See "Description of DSU Channel-Unit Table for FOR-
TRAN" in the 7090/7094 FORTRAN II Operations
manual.)

Programming for the FORTRAN II Monitor 33

If a job is not a chain job, fewer tapes are required
by the FORTRAN Monitor.

4. FORTRAN programs written for use under
Monitor control should adhere to the following con-
ventions:

a. The instructions for reading input tape and
writing output tape should refer to the Mon-
itor input and output tapes, respectively.

b. The STOP and PAUSE statements should not
be used. Programs must be terminated by
a CALL EXIT or CALL DUMP statement, or
by a READ INPUT TAPE statement when
there is no more input data.

c. The END card program option controls may
be superseded by Monitor control cards.

The END card itself is still necessary.

5. Monitor control card information and diagnostic
information are written on tape and printed on-line,

6. Object programs in column binary form (and
row binary if the *ROW control card is used) are
stacked on tape B4 for peripheral punching. The
binary output for each job is contained in one file
which is preceded by a file containing the contents of
the I.D, card for that job. In a chain job, the com-
piled binary output for each link of the job is contained
in a separate file. After the binary output file, a file
is written containing an END TAPE card.

\

Ordering of Job Input Deck

All program decks containing symbolic cards or con-
trol cards (except DATA) must precede all binary
decks that are part of the job. Once a binary card
has appeared in the job input deck, a symbolic card,
with the exception of the DATA card, may not subse-
quently appear. In a chain job, this ordering refers
to each link of the chain separately.

CHAPTER 12. THE CHAIN JOB

In the chain job, a program that is too large to fit
into core storage is executed as a sequence of
smaller programs. Each smaller program, called
a link, consists of a main program together with

all its subprograms and constitutes a""machineload."

For execution, the links are stacked on any of
three possible tapes. The first link in the input deck
is called 1in first for execution by the Monitor execu-
tive routine. The other links are executed as they
are called by a preceding link.

There are two requirements for distinguishing in-
dividual links: (a) The start of each link must be
distinguished when preparing the input deck; (b) Each
link must make provision for calling the following
link during execution of the chain job.

34

1. The control card CHAIN (R, T) must precede
the physically first program (or subprogram) of each
chain link, regardless of whether the link is com-
posed of source or object programs. In the card
CHAIN (R, T), T specifies the tape on which the chain
link is to be kept at execution time. It should be 2, 3,
or 4. If it is B2, B3, or A4, the A or B will be
deleted; if it is a reference to any other tape, it will
be changed to 4. Previously written FORTRAN
source programs which refer to B1 will be accepted
and the tape reference changed to A4, R is a fixed
point number greater than 0 butless than 32,768 which
denotes an identifying label for that link by which it
is called. (Note: The sequence in which links are
stored is in no way determined by the number R,

The sequence follows from the relative position in
the input deck.) Under IBSYS, although the program-
mer refers to tape B2, B3, and A4, as CHAIN tapes,
the actual unit assignment is altered.

2. The last executable statement of a link which
is to call a succeeding link for execution must be of
the form:

CALL CHAIN (R, T)
This will then cause the link, which at compilation
time had been specified by the control card:
CHAIN (R, T)
to be read into core storage and executed.

Chain Job Deck Ordering

The rule gi\}en in the previous chapter for ordering
within a job applies separately to each link of a
chain job.

Selection of Tapes for Link Stacking

Chain links may be stacked on tapes B2, B3, and/or
A4 for object time execution. If PDUMP is called in
a link, succeeding links should not be stacked on B2.
The selection of tapes may be a function of object
time needs to minimize tape reading time. For ex-
ample, if it is desired to execute the links only once
and in succession, they may be placed in that order
on one tape. If, however, one of these links is to
be executed repeatedly while the others are executed
only once, then it should be on a separate tape to
minimize tape backspace and search time.

Programming for Chain Problems

Data and Common: Data may be passed from one
link to another by means of COMMON, Therefore,
when it is intended that data be used by the programs
of two or more links, the appropriate COMMON and
EQUIVALENCE statements must be written. If a

link, A, in storage is overwritten by the next link

in sequence, the next time link A is read in for exe-
cution, it will be in the same form as before its first
execution. This means that any program modifica-
tion or storage of non-COMMON data resulting from
the first execution will not exist for the second exe-
cution, In this connection, it should be mentioned
that FORTRAN compiled programs do not cause pro-
gram modifications.

Relative Constants: Asin the case of main programs
and subprograms within a link, relative constant
values may be passed on from one link to another
merely by placing them in COMMON statements.
This means that if I is used as a subscript in one

link and its value is defined in another, the appro-
priate COMMON entries will ensure the proper sub-
script values at the time the subscript is used.

CHAPTER 13.
GRAM SIZE

LIMITATIONS ON SOURCE PRO-

In translating a source program into an object pro-
gram, FORTRAN internally forms and utilizes vari-
ous tables containing certain items of information
about the source program. These tables are of
finite size and thus place restrictions on the volume
of certain kinds of information which the source pro-
gram may contain. If a table size is exceeded, a
diagnostic message is issued and compilation is
terminated.

A description of the relevant tables is given below.
The term '"literal appearance' means that if the same
item appears more than once, it must be counted
each time it appears. Table size limitations are
given following the table descriptions. (See the
DLIST table sizes in Chapter 9. The table sizes
given are for the independent version of the FORTRAN
II Processor. For FORTRAN operating under IBSYS,
most tables are reduced one-eighth in size.)

7

Alphameric Arguments

HOLARG Table: Entries are made in this table when
a CALL statement lists alphameric arguments. For
every nH in a CALL statement, divide n by 6. Add 1
to the quotient if there is a remainder. Add 1 tothis.
The maximum number of entries is 3,600,

Arithmetic Statements

ALPHA Table: This table is computed for eacharith-
metic statement as follows:
Set the initial value of a counter to 3.
Scanning the right-hand side of the statement in
question, add 4 to the value of this counter for

each left parenthesis encountered and subtract
4 for each right parenthesis encountered.
Compilation will stop if overflow occurs.
The maximum table size is 556,

BETA Table: This table limits the size of arithmetic
expressions which appear both on the right-hand side
of arithmetic statements and as the arguments of IF
and CALL statements. Using the values computed
for the LAMBDA Table (below):

B =\+1-n-f

The maximum table size is 1,200,
LAMBDA Tsgble; This table limits the size of arith-
metic expressions which appear on both the right-hand
side of arithmetic statements and as the arguments
of IF and CALL statements, For each expression:

A = n+4b+4a-3f+3p+2t+et3

where:

n = the number of literal appearances of variables and
constants, except those in subscripts.

b = the number of open parentheses, except those in-
troducing subscripts.

p = the number of appearances of + or -, except in
subscripts or as unary operators (the + in A*(+B)
is a unary operator). :

t = the number of appearances of * or /, except in
subscripts.

e = the number of appearances of **,

f = the number of literal appearances of function
names.

a = the number of arguments of functions (for
SINF SINF (X)), a = 2).

The maximum table size is 4,800.

Arithmetic Statements: Fixed Point Variables

FORVAL Table: An entry is made for each literal
appearance of nonsubscripted fixed point variables
on the left-hand side of arithmetic statements, in
input lists, in COMMON statements, and in the ar-
gument list for FUNCTION and SUBROUTINE sub-
programs. The maximum number of entries is
2,000.

FORVAR Table: An entry is made for each literal
appearance of nonsubscripted fixed point variables
on the right-hand side of arithmetic statements and
in the arguments of IF and CALL statements. The
maximum number of entries is 3,000.

Arithmetic Statement Function

FORSUB Table: An entry is made for each distinct
Arithmetic Statement function. The maximum num-
ber of entries is 200.

Programming for the FORTRAN Il Monitor 35

CALL Statement

CALLFN Table: An entry is made for each CALL
statement appearing in the source program. The
maximum number of entries is 2,400.

COMMON Statement

COMMON Table: An entry is made for each literal
appearance of variables in COMMON statements.
The maximum number of entries is 6,000,

DIMENSION Statement

DIM Tables: An entry is made for each one-, two-,
and three-dimensional variable mentioned in
DIMENSION statements. The maximum number of
entries for each is as follows:

one-dimensional 400
two-dimensional 400
three-dimensional 360

DO Statement

DOTAG Table: An entry is made for each DO in a
nest of DOs. The maximum number of entries is 200,

TDO Table: An entry is made for each DO, (A DO-

implying parenthesis counts as a DO,) The maximum
number of entries is 600,

EQUIVALENCE Statement

EQUIT Table: An entry is made for each literal ap-
pearance of variables in EQUIVALENCE statements.
The maximum number of entries is 3, 000,

Fixed Point Constants

FIXCON Table: An entry is made for each different
fixed point constant. For this purpose, constants
differing only in sign are not considered different.
The maximum number of entries is 400.

Floating Point Constants

FLOCON Table: An entry is made for each different
floating point constant in any one arithmetic statement
and in any one source program. For this purpose,
constants differing only.in sign or format (e.g., 4.,
4, 0, 40.E-1) are not considered different. The
maximum number of entries is 1,800,

FORMAT Statement

FMTEFN Table: An entry is made for each literal
appearance of a FORMAT statement number in an

36

input/output statement. The maximum number of

entries is 2,000,

FORMAT Table: For each FORMAT statement in-
cluded in the source program, compute as follows:
Count all characters, including blanks, follow-
ing the word FORMAT, up to and including the
final right parenthesis., Divide this count by 6
Add 1 to the quotient if there is a remainder.
All values thus computed are entered in the table,
The maximum number of entries is 6, 000.

FREQUENCY Statement

FRET Table: An entry is made for each number
mentioned in FREQUENCY statements. The maxi-
mum number of entries is 3, 000.

Non-Executable Statements

NONEXC Table: An entry is made for each non-exe-
cutable statement in the source program. The maxi-
mum numbers of entries is 1,200.

Statement Numbers

TEIFNQO Table: An entry is made for each source
statement that has a statement number. (An input/
output statement that has a statement number and
whose list contains controlling parentheses counts as
2.) The maximum number of entries is 3, 000.

STOP Statement

TSTOPS Table: An entry is made for each STOP
and RETURN statement in the sourceprogram. The
maximum number of entries is 1,200,

Subprogram Arguments

SUBDEF Table: The SUBDEF Table arises from the
SUBROUTINE and FUNCTION statements. An entry
is made for the name of the subprogram being de-
fined and for each "dummy" argument contained in
the argument lists, The maximum number of en-
tries is 180,

Subprograms Functions and Input/Output Statements

CLOSUB Table: One entry is made in this table for
each closed subroutine, FUNCTION, and SUBROU-
TINE subprogram called in the source program. In
addition, as many as three entries may be made for
each input/output statement. The maximum sizes
are as follows:

Total entries

Total different entries

Subscripted Variables

FORTAG Table: An entry is made in this table for
each literal appearance of subscripted variables.
The maximum number of entries is 6, 000.

Subscripts

SIGMA Table: An entry is made for each literal ap-
pearance of variables whose subscripts contain one
or more unique addends in any one arithmetic ex-
pression. The maximum number of entries is 120.

TAU Tables: An entry is made for each different
one-, two-, and three-dimensional subscript combi-
nation. Subscript combinations are considered dif-
ferent if corresponding subscripts, exclusive of
addends, or corresponding "leading dimensions" of
the subscripted arrays differ. '"Leading dimensions'""
are the first dimension of a two-dimensional array,
and the first and second dimensions of a three-
dimensional array. The maximum number of entries
for each is as follows:

one-dimensional 400
two-dimensional 360
three-dimensional 300

Transfer Statements

NLIST Table: An entry is made in this table for
each different fixed point variable in an assigned
GO TO statement. The maximum number of entries
is 200.

[TFGO Table: An entry is made in this table for
each ASSIGN, IF, and GO TO-type statement in the
source program. The maximum number of entries
is 1,200.

TRAD Table: An entry is made for each literal ap-
pearance of statement numbers mentioned in as-
signed GO TO and computed GO TO statements.
The maximum number of entries is 1,000.

CHAPTER 14. FORTRAN II MONITOR CONTROL
CARDS

All Monitor control cards must have an * in column
1. With the exception of the I. D. card, the specific
control instruction of the card is punched in col-
umns 7-72. Punching may be done according to
normal FORTRAN rules, which means that blanks
are ignored. Nothing may follow the control word on
the control card unless separated from it by a left
parenthesis; e.g., ¥*PAUSE (MOUNT TAPE X ON A5).

Governing the Entire Job: Type 1 Control Cards

1. I.D. Card. This card must be present for
every job, and, if there is no DATE card, it must
be the first card for the job. If there is a DATE
card, it is first and the 1. D. card immediately suc-
ceeds it. Columns 2-72 may contain anything that
the installation's Sign-On record is prepared to
process.

2. XEQ. This card must follow the 1.D. card of
a job which is to be executed.

3. DATA. This card must immediately precede
the data, if any, for jobs that are to be executed.

It is not needed for jobs that do not require data.

4, CHAIN (R, T). This card is used to separate
links within a single chain job and specifies the
tape on which the link object program is to be stored
for execution. It must precede the physically first
program (or subprogram) of each chain link, re-
gardless of whether the program is a source pro-
gram or an object program. R is a fixed point
number greater than 0 but less than 32, 768 which
denotes an identifying label for the tape record
which contains the link, and T is the actual unit
designation of the tape on which the link is to be -
stored at execution time.

5. DATE. This card permits the programmer
to obtain the date as an additional part of the head-
ing for each printed page of output. Following are
examples of the date field, which is specified after
the DATE word of the control card: 4/2/61;
11/4/61; 3/19/61. There must be two slashes 1)
in the date field pius two characiers for the year.
(As usual, blanks are ignored.) The DATE card
may appear in two places:

a. Preceding the I.D. card for a job. The DATE

card is the only card which may precede the
I.D. card.,

b. Following the Monitor START card read on-
line. The date specified in this manner will
be used throughout the Monitor run. How-
ever, a DATE card appearing with a job, as
in a., takes precedence over the DATE card
read on-line for that job only.

The date may also be specified by an IBSYS DATE

card.

6. DEBUG. This card follows the last source
program, if any, of a job and precedes the Debug
cards for each job or each link of a chain job. See
the IBM 7090/7094 FORTRAN II Operations manual
for a description of FORTRAN's debugging facility.

7. IOP. This card prevents the zeroing out of the
FORTRAN Common Input/Output Package (IOP) by the
FORTRAN Monitor just prior to execution, thus mak-
ing it available to object programs. COMMON stor-
age is relocated downwards to prevent overlap with

Programming for the FORTRAN II Monitor 37

IOP. For a description of the use of IOP, see the
reference manual, FORTRAN: Input/Output Package
for the 32K Version, Form J28-6190.

Governing Compilation of Individual Programs:
Type 2 Control Cards

Under Monitor control, there are two ways by
which the programmer may specify his output op-
tions for FORTRAN compilations. These are the
END card and the type 2 Monitor control cards. If
specifications are given by both means, the Monitor
control cards take precedence. In fact, the END
card specifications will then be overwritten, and the
END statement which appears in the source pro-
gram listing will be that fabricated by the Monitor
from the control cards. Another result of the prec-
edence of type 2 control cards over the END card is
that the END statement for programs to be compiled
by the Monitor need not have options specified fol-
lowing the word END.

If no specifications are given in the END state-
ment or in Monitor control cards for a FORTRAN
compilation, a standard output is produced.

This consists of the following:

1. The output tape, A3 or SYSOU1, when oper-
ating under IBSYS, contains a listing of the
source program and the map of object pro-
gram storage. Page headings are printed
on each page of FORTRAN output. This
heading is derived from the information
punched in"columns 2-72 of the first card of
the source deck that does not have an * in
Column 1. In addition, each page of out-
put is numbered.

2. The object program in relocatable binary
form is stacked on tape B4(IBSYS SYSPP1) for
peripheral punching without the required li-
brary subroutines. The binary output of
each job is contained in one file which is
preceded by a file containing the contents of
the I. D. card for that job. In a chain job
the binary output for each link is contained
in a separate file.

The type 2 Monitor control cards and their effects

are:

1. CARDS ROW. This card causes the Proces-
sor to punch on-line standard FORTRAN relocatable
row binary cards, preceded by a BSS loader for a
main program.

2. CARDS COLUMN. Thiscardcauses the Proc--
essor to punch on-line column binary relocatable
cards (no loader).

Note that CARDS COLUMN supersedes CARDS
ROW when used with the same source program.

38

3. LIST or LIST8. Each of these cards causes
the Processor to write the object program in FAP-
type language following the storage map. Both ap-
pear on the output tape. The LIST card produces
listings in three columns without octal instruction
representation; the LIST8 card produces listings in
two columns with octal representation of each in-
struction and its relocation bits. If both cards are
used, the LIST8 card takes precedence. The LIST
card option corresponds to END card setting 2; the
LIST8, to END card setting 8.
4. LIBE. This card causes the Processor to
search the FORTRAN library for subroutines and
includes them with the object program.
5. LABEL. This card causes labeling and
serialization of the off-line output cards. The
contents of columns 2 through 7 of a card in the
input deck are taken as the label if:
a. Itis the first card of the program that does
not have an asterisk (*) in column 1;

b. It has a C punch in column 1; and

c. At least one of the columns 2 through 7 is
not blank. This label, with blanks treated
as zero, is then placed in columns 73
through 80 of the off-line output cards, with
columns 79 and 80 used for serialization.
Serialization begins with 00 and recycles
when 99 is reached. If, however, the label
does not require all of columns 73-78,
serialization begins with zero and increases
to 99...9, filling all remaining columns,
through column 80, before it recycles. The
Symbol Table and all subroutines obtained
with the program are serialized and labeled
with their own names.

If conditions a., b., and c. are not met, the la-
beling is applied as follows: for a subprogram, the
name of the subprogram is used; for a main pro-
gram, 000000 is used.

The LABEL card option corresponds to END card
setting 7. Labeling may be obtained on the off-line
output cards of a FAP assembly. The information
in columns 2 through 7 of the page title card will
appear as the label. Serialization will occur as in
the FORTRAN compilation. See also a description
of the LBL pseudo-operation in the reference man-
ual, FORTRAN Assembly Program (FAP), Form
C28-6235.

6, PACK. This card causes FORTRAN to pack
records on the off-line listing tape. There will be
up to five 120-character lines per record.

7. PRINT, This card causes the Processor to
print on-line the information on the BCD output tape
(see the 7090/7094 FORTRAN II Operations manual).

8. ROW. This card causes the Processor to
stack row binary cards on the Monitor punch tape for

peripheral punching. This option may not be used in
an EXECUTE job;the Monitor will delete execution
if a ROW card appears.

9. SYMBOL TABLE. This card causes the Proc-
essor to punch the Symbol Table., The Symbol Table
is used only for object time debugging. See the

7090/7094 FORTRAN II Operations manual.

Other Control Cards

There are three other Monitor control cards: FAP,
END TAPE, and PAUSE.
1. FAP, This card is placed immediately be-
fore the FAD program cavrda that are L“pnf

to the Monitor, It specifies that those cards
are to be assembled by FAP. The FAP card
follows any type 2 Monitor control cards
that may be used.

2. END TAPE. This card designates the end
of the last Monitor job. It must be a sep-
arate file on the input tape.

3. PAUSE. This card is placed in the job in-
put deck at any point(s) at which the pro-
grammer wishes the machine to halt during
the reading of the input tape. In this way,

a pause for such purposes as tape reel
mounting may be obtained. Processing may
be restarted by depressing the START key.

Other cards, not strictly control cards, may be

used as input to the Monitor.

1. Cards with an asterisk in column 1 may be
included with the control cards, but their
information field will be treated in the man-
ner of comments. When read, they will be
printed on-line and written on tape for off-
line printing.

2. End of File -- This is not a Monitor control
card. When input is on-line, this card is
necessary to signal the FORTRAN card-to-
tape simulator to write an end-of-file mark .
to separate jobs on the input tape. An end-of-
file card is specified by a 7- and 8-punch in
column 1. All other columns are ignored.

CHAPTER 15. PROGRAMMING FORTRAN PROB-
LEMS FOR THE MONITOR

This chapter deals with programming in the FOR-
‘TRAN II language. However, the same require-
ments, as reflected in machine language, apply to
FAP assembly programs and to input object pro-
grams resulting from a previous symbolic assem-
bly program.

Further details on arrangement of input decks
- for Monitor operations are given in the 7090/7094
FORTRAN II Operations manual. In general, all

ordinary FORTRAN problems may be used with the
Monitor. - There are, however, three ways in which
FORTRAN Monitor programs must differ: tape
usage, terminating execution, and the END state-
ment.

Differences Concerning Tape Usage

1. BCD Tape: All input BCD data must be called
by the statement READ INPUT TAPE A, n, List,
Output is effected by a WRITE OUTPUT TAPE B,
n, List statement, where A and B are the proper
logical tape designations for the Monitor input and
output tapes, respectively.

If BCD information is to be written for inter-
mediate storage during program execution, a tape
not used by the Monitor must be used.

2. Binary Information: READ TAPE and
WRITE TAPE statements must address tapes not
used by the Monitor system. However, when the
programmer knows the complete disposition of the
various tapes used during Monitor operation, those
tapes not being used may also be addressed. For
example, if a binary tape is to be used for inter-
mediate storage during execution of the program,

a Monitor tape may be available for that particular
object program run.

Differences Concerning End of Program

The STOP and PAUSE statements should not be used.
Instead, the last executable source program state-
ment must be one of the following:

1. CALL EXIT. This statement causes immedi-
ate termination of the job. IOP is restored and con-
trol goes to the Sign-On record to process the next
job.

2. CALL DUMP (Ay, B3, Fi1,,..,An, Bn, Fpn),
where A and B are variable data names indicating
limits of core storage to be dumped. Either Aj or
Bj may represent upper or lower limits. Fjis a
fixed point number indicating the format desired, as
follows:

F = 0 dump in octal
= 1 dump in floating point
= 2 interpret decrement as decimal in-
teger
= 3 octal with mnemonics

The storage dump is effected as specified, and then
a CALL EXIT is executed. If no arguments are given,
all of core storage is dumped in octal. The last
format indication, Fp, may be omitted, in which case
it will be assumed to be octal.
Example: Consider the FORTRAN source program
DIMENSION A(100), C(100), B(100),N(100)

Programming for the FORTRAN II Monitor 39

COMMON B
DO 221=1, 100
A(I) = FLOATF ()
B(D = A(D)
N@ =1
22 C(@) =N()
CALL DUMP ?
END

a. To dump the array A in floating point, the

CALL DUMP statement would be
CALL DUMP (A, A(100), 1)

b. To dump in octal that portion of core storage
which contains the arrays A, C, B, and N,
the CALL DUMP statement would be

CALL DUMP (N(100), A, 0) or CALL DUMP
(A, N(100))

c. To dump both 1 and 2, the CALL DUMP state-

ment would be
CALL DUMP (4, A(100), 1, N(100), A,0)

d. To dump in octal with mnemonics from abso-
lute location 100, up to, but not including,
the array N, another statement is required:

L = XLOCF(N) - 100

CALL DUMP (N(L), N(101), 3)
The library function XLOCF(N) returns the
location of N to the accumulator as a fixed
point constant.

3. CALL CHAIN (R, T). This statement can be
used only as the last executable statement of a chain
link. It calls the next chain link into core storage
to be executed. Thus, each link or job runs to its
conclusion without stopping and progresses to the
next link or job without operator intervention.

4. READ INPUT TAPE. This statement termi-
nates execution if all data on the input tape has
been previously read. Thus, a programmer may
utilize the technique of reiterating the reading and
processing of data until all the data is exhausted.

Use of END Statement

The END statement may be used without any of the
indicated program options following it. Thus, END,
which must be the physically last statement of every
FORTRAN source program, may appear in either
of the two following forms:

1. END -- If this form is used, indicators for
the actual program options will be inserted by
the Monitor according to the type 2 Monitor
control cards used or according to the stand-
ard FORTRAN output.

2. END (I, I,,..., I15) where I; may have the
values 0, I, or 2. There are two possibili-
ties with respect to each option indicator.

a. No Monitor control card is present to
control the Sense Switch Ij. The setting

prescribed by "standard" FORTRAN out-
put is inserted.
Where Ij = 2, FORTRAN is instructed
to interrogate the actual sense switch set-
ting. Physical sense switch settings, how-
ever, are not available under Monitor con-
trol. The setting of 2, therefore, will in-
struct the Monitor to make its setting rep-
resent that given on the control card or
that given by the standard setting, as
above. ‘
b. A Monitor control card for the indicator
is present, in which case the setting pre-
scribed by this card is inserted.
The END card switch settings correspond to the
type 2 Monitor control cards as follows:

Control Card END Card Setting

CARDS ROW Switches 1 and 4 UP

CARDS COLUMN Switch 1 UP and Switch 4 DOWN
LIST Switch 2 DOWN

LIBE Switch 5 DOWN

LABEL Switch 7 DOWN

LISTS Switches 2 and 8 DOWN

PRINT Switch 3 DOWN

PACK Switch 10 DOWN

ROW Switch 9 DOWN

SYMBOL TABLE Switch 6 DOWN

Dumping During Execution

The following statement may be used anywhere in
the source program. CALL PDUMP (Aj, By, Fl’
.««» Ap, By, Fp). The argument formats for A,
B, and F are the same as those given for the CALL
DUMP statement.

The difference between PDUMP and DUMP is that
after PDUMP is executed, the machine is restored
to its condition upon entry, and control is returned
to the next executable statement. The storage dumps
appear on tape A3 with other output from the job.

PDUMP is a primary name appearing on the pro-
gram card of the library subprogram, DUMP.

Restriction on use of PDUMP, The CALL PDUMP
statement should not be used when there is a chain
link on tape B2 to be executed subsequently. Tape
B2 is used by the PDUMP program for intermediate
storage of the contents of core storage where
PDUMP is loaded.

General Rules

" Monitor Operations

Under Monitor control, a FORTRAN compilation may
produce row binary cards; however, the only cards

acceptable for Monitor execution are column binary
cards. All non-Monitor hand-coded subprograms to
be used must have correct associated program cards
in proper column binary form.

If an error occurs during any of the nonexecution
phases of the Monitor, the Monitor will continue to
process as much as possible of the remainder of the
current job.

1. If the error is in the source program (whether
FORTRAN or FAP), an on-line printout occurs.

This particular program of the job will be skipped
and the next program of the job will be brought in
via the Source Program Error Record.

Note: Where a nonexecution phase error occurs
in any program of a job, there is the danger that
succeeding programs of the job will be compiled
needlessly. If the job is an XEQ job and object pro-
grams of succeeding compiled/assembled programs
are not called for by the control cards, there is no
purpose in continuing to these programs. Therefore,
the operator, in this case, at the time of the source
program error diagnostic, should be prepared to con-
tinue to the next job by means of the appropriate
RESTART card.

2. If the stop is a machine error stop, the ordi-

nary diagnostic option will be presented by the Machine

Error Record. The option of continuing will enable
the next program of the job to be brought in. If the
job is an XEQ job, the warning given above applies
here also.

3. When operations are independent of IBSYS and
an unlisted stop occurs, RESTART cards and a
DUMP card may be used. These cards are described
in the 7090/7094 FORTRAN II Operations manual.

4. TFor unexpected stops occurring during object
the NDITMD ar RESTART cardg

v s/unnay OF DNl inann.: Ualus

program axvacution
program gxecuuion,

may be used when operating independently of IBSYS;
IBSYS provides its own cards for these functions.

Program Limitations

1. Care must be exercised on jobs involving both
compilation/assembly and execution to avoid the over-
lapping of program and COMMON data and to avoid
the overlapping of program and BSS control. If
either occurs, execution will be omitted. COMMON
data may overlap BSS control and the Generalized
1/0 package.

2. A list of missing subroutines is accumulated
during a job or during each chain Iink of a job. If
more than 50 are missing, a diagnostic printout oc-
curs and the job is deleted.

3. Corrections. and patches to binary programs
can be made in the usual way when under Monitor
control. That is, the necessary control and relo-
catable correction cards can be added to the binary
deck if patches are desired.

Programming for the FORTRAN II Monitor 41

PART IV. GENERAL RULES FOR FORTRAN PROGRAMMING

CHAPTER 16. MISCELLANEOUS DETAILS ABOUT
7090/7094 FORTRAN II

Arrangement of the Object Program

A main object program and its associated subpro-
grams may each be considered as a separate, but
complete block, containing everything, except
COMMON data, necessary for execution of the pro-
gram. These blocks are placed continuously in
lower core storage, with a variable-length area
separating them from COMMON in upper core stor-
age.

Each program block consists of a transfer list,
program instructions, constants, formats, erasable
storage, and data, which are stored in that order in
ascending storage locations. The data is separated

into nondimensioned variables, dimensioned variables,
and variables appearing in EQUIVALENCE statements.

COMMON data starts at 77461g, and continues
downward in storage. The area above 77461g is
available for erasable storage for library and hand-
coded subroutines. When a FORTRAN program is
to be executed under the control of IBSYS, COMMON
is relocated to 77361g during loading.

When a source program is compiled, FORTRAN
produces a printed "storage map' of the arrange-
ment of storage locations in the object program.

Fixed Point Arithmetic

The use of fixed point arithmetic is governed by the
following cotisiderations:

1. Fixed point constants specitied in the source
program must have magnitudes < 217,

2., Fixed point data read in by the object pro-
gram itself is treated modulo 217,

3. The output from fixed point arithmetic in the
object program is modulo 217, However, if
during computation of a fixed point arithmetic
expression, an intermediate value occurs which
is 2218, it is possible that the final result
will be inaccurate.

4, Indexing in the object program is modulo the

size of core storage and never greater than
215,

Optimization of Arithmetic Expressions

Considerable attention is given by FORTRAN to the
efficiency of the object program instructions arising
from an arithmetic expression, regardless of how

42

the expression is written.

FORTRAN assumes that mathematically equivalent
expressions are computationally equivalent. Hence,
a sequence of consecutive multiplications, consecu-
tive divisions, consecutive additions, or consecutive
subtractions, not grouped by parentheses will be
reordered, if necessary, to minimize the number of
storage accesses in the object program.

Although the assumption concerning mathematical
and computational equivalence is virtually true for
floating point expressions, special care must be
taken to indicate the order of fixed point multiplica-
tion and division, since fixed point arithmetic in
FORTRAN is "greatest integer' arithmetic (i.e..
truncated or remainderless.) Thus, the expression

5%4/2
which by convention is taken to mean [(5 X 4)/2], is
computed in 2 FORTRAN object program as
((5/2)*4)
i.e., it is computed from left to right after permu-
tation of the operands to minimize storage accesses.

The result of a FORTRAN computation in this case
would be 8. On the other hand, the result of the ex-
pression (5 x 4)/2 is 10. Therefore, to insure ac-
curacy of fixed point multiplication and division, it
is suggested that parentheses be inserted into the
expression involved.

One important type of optimization, involving com-
mon subexpressions, takes place only if the expres-
sion is suitably written. For example, the arithme-
tic statement

Y = A*B*C + SINF (A*B)
will cause the object program to compute the product
A*B twice. An efficient object program would com-
pute the product A*B only once. The statement is
correctly written

Y = (A*B) * C + SINF (A*B)

By parenthesizing the common subexpression,

A*B will be computed only once in the object pro-
gram.

In general, when common subexpressions occur
within an expression, they should be parenthesized.

There is one case in which it is not necessary to
write the parentheses, because FORTRAN will as-
sume them to be present. These are the type dis-
cussed in "Hierarchy of Operations,' and need not
be given. Thus

Y = A*B+C+SINF (A*B)

is, for optimization purposes, as suitable as

Y = (A*B)+C+SINF (A*B)
However, the parentheses discussed in ""Ordering
with a Hierarchy," must be supplied if optimization
of common subexpressions is to occur.

Subroutines on the System Tape

Various library subroutines in relocatable binary
form are available on the FORTRAN master tape.
As mentioned previously, further subroutines can be
placed on the tape by each installation in accordance
with its own requirements. To do so, the following
steps are necessary:

1. Produce the subroutine in the form of relo-
catable binary cards.
2. Produce a program card in accordance with

specifications outlined in the 7090/7094 FOR-
TRAN II Operations manual.

3. Edit in accordance with instructions in the
7090/7094 FORTRAN II Operations manual.

Tape subroutines may include FUNCTION and
SUBROUTINE subprograms. The program card
compiled by FORTRAN with these programs will be
in the format required for tape subroutines.

If the name of a function defined by a library tape
subroutine is encountered while FORTRAN is proc-
essing a source program, that subroutine will be in-
cluded in the object program. Only one such inclu-
sion will be made for a particular function, regard-
less of how many times that function occurs in the
source program.

Input and Output of Arguments

When control is transferred to a library subroutine
other than a FORTRAN FUNCTION or SUBROUTINE sub-
program, the argument(s) will be located as follows:
Arg, will be locatea in the AC, Arg2 (if any) in the
MQ, Argg (if any) in relocatable location 77775g,
Argy in relocatable location 77774g, etc. Locations
down through 77463g are available for common
erasable storage for library subroutines.

The output of any function, which is a single value,
must be in the accumulator when control is returned
to the calling program. All index registers that were
stored at the beginning of the subroutine must be re-
stored prior to returning control.

The arguments for FUNCTION and SUBROUTINE
subprograms are listed in the object program after
the transfer to the subroutine (see Appendix D).

Relative Constants

A relative constant is defined as a subscript variable
which is not under control of a DO or a DO-implying
parentheses in a list. For example, in the sequence:

A = BK)

DO10I=1, 10

X = B(I) + C(I, 3*J+2)
K and J are relative constants, but I is not.

The appearance of a relative constant in any of the

following ways will be called a relative constant defi-

1. On the left side of an arithmetic statement.
2. In the list of an input statement.
3. As an argument for a FUNCTION or SUB-

ROUTINE subprogram.
4. In a COMMON statement.
The following paragraphs describe methods for
assuring that the computation for relative constants

the use of the relative constant. A relative constant
must be explicitly defined for each logical path to a
program.

The variable in a Computed GO TO is treated as
a relative constant.

Relative Constants in an Input List

In the object program, some computation will take
place at each relative constant definition in an input
list. In the case of READ, READ TAPE, and READ
INPUT TAPE lists, the computation may not precede
the use of a relative constant in the list unless the
relative constant appearance is handled properly.

Where the relative constant definition appears in
the same READ, READ TAPE, or READ INPUT
TAPE list with its relative constant and precedes it,
extra parentheses may be required in the list. In
such a list, it is necessary that there be a left pa-
renthesis, other than the left parenthesis of a sub-
script combination, between the relative constant
definition and its relative constant. If the list does
not contain the parenthesis, it should be obtained by
placing parentheses around the symbol subscripted
by the relative constant.

Examples:

A,B,K,M, (C{J), J=1, 10), GK)
A,B,K,M, G(K)

The first of these two input lists is correct. The
second is incorrect, but may be made correct with
extra parentheses; i.e.,

A,B,K, M, (G(K))

A relative constant definition must not appear to
the left of the name of an array in the list of a
READ DRUM statement.

General Rules for FORTRAN Programming 43

Relative Constants in an Argument List

A variable defined in one program may have its

value transmitted to another program, where it is a
relative constant and where the value is used by
placing it in an argument list. Thus, the appearance
of a relative constant in an argument list is sufficient
to provide the necessary computation for the relative
constant definition.

Relative Constants in Common Statements

A relative constant value may be transmitted from
one program to another by placing it in a COMMON
statement only if it is being transmitted from the
calling to the called subprogram. In the example
below, note that K in the calling program and I in
the called program share the same location.
Example:
Calling Program

Called Program

.
.

. SUBROUTINE ABC
COMMON K

COMMON I
DIMENSION B(10)
K=5 A =B()
CALL ABC .
C = A(K) .

Constants in Argument Lists

A constant may not appear as an argument in the
call to a SUBROUTINE or FUNCTION subprogram if
the corresponding dummy variable in the definition
of the subprogram appeared either on the left side
of an arithmetic statement or in an input list.

Further Details About DO Statements

Triangular Indexing

Indexing such as

DO I=1,10

DO J=1,10
or

DO 1=1,10

DO J=1,1

is permitted in a source program and simplifies
work with triangular arrays. These are special
cases of an index under control of a DO and avail-
able for general use as a fixed point variable.

The diagonal elements of an array may be picked
out by the following type of indexing:

DO I1=1,10
A1, L I) = (some expression)
A DO nest of the form:

DO ng K =1,Dg
DO n, J =1,D,
DO n3 I= l’Dl

for a three-dimensional array A (D;, Dg, Dg), where
A(l,J,K) is referred to within the inner DO, must be
tested against the following criterion:
The expression (D1 * Dg) + (D7 *D2 * D3) must
be less than or equal to 32,767; otherwise, im-
proper indexing will result.

The DO Index

A DO loop with index I does not affect the contents of
the object program storage location for I, except
under the following circumstances:

1. An IF-type or GO TO-type transfer exit occurs

from the range of the DO.

2, Tis used as a variable in the range of the DO.

3. Iis used as a subscript in combination with a

relative constant whose value changes withinthe
range of the DO.

Therefore, if a normal exit occurs from a DO to
which cases 2 and 3 do not apply, the I cell contains
what it did before the DO was encountered, After
normal exit, where 2 or 3 do apply, the I cell con-
tains the current value of I.

What has just been said applies only when I is re-
ferred to as a variable. When it is referred to as a
subscript, I is undefined after any normal exit and is
the current value after any transfer exit.

Restriction on F Conversion

For F-type conversion, output may not include
numbers that exceed 227 after scaling.

APPENDIX A. SOURCE PROGRAM STATEMENTS
AND SEQUENCING

The precise rules which govern the order in which
the source program statements of a FORTRAN pro-
gram will be executed can be stated as follows:
1. Control originates at the first executable
statement.
2. If control has been with statement S, then
control will pass to the statement indicated
by the normal seguencing properties of S,
(The normal sequencing properties of each
FORTRAN statement are given below. If,
however, S is the last statement in the range
of one or more DOs which are not yet satis-
fied, then the normal sequencing of Sis ig-
nored and DO-sequencing occurs.)

Nonexecutable Statements

The statements FORMAT, DIMENSION, EQUIVA-
LENCE, FREQUENCY, and COMMON are nonexe-
cutable statements. In questions of sequencing they
can simply be ignored.

If the last executable statement in the source pro-
gram is.not a STOP, RETURN, IF-type, or GO TO-
type statement, then the object program is compiled
to give the effect of depressing the Load Cards key
following the last executable statement.

Every executable statement in a FORTRAN source
program, except the first, must have some path of
control leading to it.

APPENDIXES

Statement

Normal Sequencing

Table of Source Program Statement

Sequencing
Statement Normal Sequencin
a=b Next executable statement.
GG TOn Statement n.

GO TO n, (nl, Noyeas ,nm)
ASSIGN i TO n

GO TO (nl,nz,...,nm),i
IF (a) ny,np,n3

Statement last assigned to n.

Next executable statement.
Statement nj.

Statement ny, ny, or n3 if (a) <0,
(a) = 0, or (a)>0, respectively.

SENSE LIGHT i
IF (SENSE LIGHT i) ng, np

IF (SENSE SWITCH i) ng, 1,

IF ACCUMULATOR OVER-
FLOW n;, n,

IF QUOTIENT OVERFLOW
ny, np

IF DIVIDE CHECK njy, ny

PAUSE or PAUSE n
STOP or STOP n
DO ni=my, m, or

DOni=m1, m,, m3
CONTINUE
END (I3, I3, I3,...,]145)

CALL Name (aq, 8py.0.,8y)
SUBROUTINE Name ’
(a1, apy+eeyap)

FUNCTION Name

(21, 8p5..052p)

RETURN

READ n, List
READ INPUT TAPE i, n, List
PUNCH n, List

PRINT n, List

WRITE QUTPUT TAPE

i, n, List

FORMAT (Specification)
READ TAPE i, List

READ DRUM i, j, List
WRITE TAPE i, List

WRITE DRUM i, j, List
END FILE i

REWIND i

BACKSPACE i

DIMENSION vy,Vp,V3, .0
EQUIVALENCE (a, b, c, ...),
(dyeyfyenadynnee
FREQUENCY n (i, j, ...),
mk, L...)yeennn
COMMON 4, B,...

Next executable statement.
Statement ny, nj if Sense Light i is
On or Off, respectively.

Statement ny, ny if Sense Switch i
is Down or Up, respectively,
Statement nq, n, if the 7090/7094
FORTRAN II internal overflow indi-
cator is On or Off, respectively.
Statement ny, njp if the 7090/7094
FORTRAN II internal overflow indi-
cator is On or Off, respectively.
Statement nq, n, if the Divide
Check indicator is On or Off, re-
spectively.

Next executable statement.
Terminates program.
Do-sequencing, then next exe-
cutable statement.

Next executable statement.

No sequencing; this statement ter-
minates a problem.

First statement of subroutine Name.
Next executablé statement.

Next executable statement,

The statement or part of statement
following the call to the subprogram .
Next executable statement,

Next executable statement.,

Next executable statement.

Next executable statement.

Next executable statement.

Not executed.

Next executable statement.
Next executable statement.
Next executable statement,
Next executable statement.
Next executable statement.
Next executable statement.
Next executable statement,
Not executed.

Not executed.

Not executed.

Not executed.

Appendixes 45

APPENDIX B. TABLE OF SOURCE PROGRAM

CHARACTERS
Char- BCD Char- BCD Char- BCD Char- BCD
acter | Card | Tape | Storage||acter | Card | Tape | Storage||acter | Card | Tape | Storage||acter |Card | Tape | Storage
12 11 0
1 1 01 01 A 1 61 21 J 1 41 41 / 1 21 61
12 11 0
2 2 02 02 B 2 62 22 K 2 42 42 N 2 22 62
12 11 0
3 3 03 03 (e} 3 63 23 L 3 43 43 T 3 23 63
12 11 0
4 4 04 04 D 4 64 24 M 4 44 44 U 4 24 64
12 11 0
5 5 05 05 E 5 65 25 N 5 45 45 v 5 25 65
12 11 0
6 6 06 06 F 6 66 26 o 6 46 46 w 6 26 66
12 11 0
7 7 07 07 G 7 67 27 P 7 47 47 X 7 27 67
12 11 0
8 8 10 10 H 8 70 30 Q 8 50 50 Y 8 30 70
12 11 o]
9 9 11 11 I 9 71 31 R 9 51 51 z 9 31 71
blank |blank | 20 60 + 12 60 20 - 11 40 40 0 0 12 00
12 11 0
= 8-3 13 13 . 8-3 73 33 $ 8-3 53 53 , 8-3 33 73
12 11 0
! 8-4 14 14) 8-4 74 34 * 8-4 54 54 (8-4 34 74
NOTE: The character $ can be used in FORTRAN only as alphameric text in a FORMAT statement.

APPENDIX C. INPUT/OUTPUT RECORD LENGTHS
AND FORMAT FOR 7090/7094 FORTRAN II

Record Lengths
_— e

acters.

2. A punched card read or punched on-line with
a maximum of 72 B characters.

3. A BCD tape record with a maximum of 132
characters.

Record Format

Consider a logical record to be any sequence of binary
words to be read by any one input statement. This
logical record must be broken into physical records,
each of which is a maximum of 2567 words long.

If a logical record consists of fewer than 2561g words,
it will constitute only one physical record unless the
programmer specifies differently. The first word of
each physical record is a control word, which is not
part of the list. The decrement portion of this word
contains a count of the number of words, exclusive

of the control word itself, in the physical record. If
this number is 0, the word count is assumed to be
12719. The address portion of this control word is

0 unless it is in the last physical record of the logical
record. In the latter case, it contains a count of the
number of physical records contained in the logical
record.

APPENDIX D. USING HAND-CODED SUBROUTINES
WITH 7090/7094 FORTRAN COMPILED OBJECT
PROGRAMS

FUNCTION and SUBROUTINE subprograms coded by
hand or by a system other than FORTRAN can also
be linked to FORTRAN programs. If coded in FAP
and assembled through the FORTRAN Monitor, the
linkage instructions will occur automatically. For

hand-coding other than by FAP, rules for providing
this linkage are given below.

It is necessary for hand-coded subprograms to
conform to FORTRAN programs with regard to the
following five conditions:

1. Transfer lists to called subroutines, if any.

2. Method of obtaining the variables (arguments)

given in the calling sequence.

3. Saving and restoring index registers.

4. Storing resulis.

5. Method of returning to the calling program.

Calling Sequence

A calling sequence for a subprogram produced by
FORTRAN consists of the following:

TSX NAME, 4
TSX LOCX1
TSX LOCX2
TSX LOCXn

The calling sequence consists of n+1 words. The
first is an instruction which causes transfer of con-
trol to the subprogram. The remaining n words in-
clude one for each argument. The TSX in these
words is never executed. In case an argument con-
sists of an array, one instruction determines the
entire array; the address of that instruction specifies
the location of the first element of the array, i.e.,
element Ay 1 1. If the argument is alphameric data,
the location given is that of the first word of the
block containing the data.

Transfer List Prologue, and Index Register Saving

The first group of instructions in a subprogram is
the transfer list and the prologue, in that order.
The transfer list contains the symbolic names of the
lower level subprograms and functions, if any, that
the subprogram calls. The prologue obtains and
stores the locations given in the calling sequence.

It will consist of the CLA and STA instructions nec-
essary for each argument. If it is desired, index
registers may be saved.

Appendixes 47

The instructions below show a typical transfer
list and prologue.

SUBP1 BCD 1SUBP1
SUBP2 BCD 1SUBP2 Transfer List

SUBPN BCD 1SUBPN

HTR Storage for contents of IR4
HTR . Storage for contents of IR2
HTR Storage for contents of IR1

NAME SXD NAME-3,4 Save IR4 contents in (NAME-3)
SXD NAME-2,2 Save IR2 contents in (NAME-2)
SXD NAME-1,1 Save IR1 contents in (NAME-1)

CLA 1,4

STA X1 Location of 1st argument—»X121_35

CLA 2,4

STA X2 Location of 2nd argument—X251_3g

CLA N, 4

STA Xn Location of nth argument—sXny1_35
Results

A FUNCTION subprogram must place its (single) re-
sult in the accumulator prior to returning control to
the calling program. ‘

A SUBROUTINE subprogram must place each of
its results in a storage location. (Such a subpro-
gram need not return results.) A result represented
by the nth argument of a CALL statement is stored
in the location specified by the address field of lo-
cation (n, 4).

Return

Transfer of control to the calling program is effected
by:

1. restoring the Index Registers to their condi-
tion prior to transfer of control to the sub-
program, and

2. transferring to the calling program.

The required steps are as follows:

LXD NAME-3,4 RESTORE CONTENTS OF XR4
LXD NAME-2,2 RESTORE CONTENTS OF XR2
LXD NAME-1,1 RESTORE CONTENTS OF XR1
TRA N+1,4 RETURN, N=NUMBER OF ARGUMENTS

Entry

Unlike a FORTRAN compiled subprogram, a hand-
coded subprogram may have more than one entry
point. A hand-coded subprogram used with a FOR-~
TRAN calling program may be entered at any desired
point, provided that a subprogram name acceptable
to FORTRAN is assigned to each selected entry
point. All the above mentioned conditions must, of
course, be satisfied at each entry point.

System Tape Subroutines

As discussed previously, hand-coded subprograms
as well as Library functions may be placed on the
System tape of the FORTRAN System. When a
FORTRAN source program mentions the name of
such a subprogram, it is handled in exactly the
same way as a library function.

Alphameric Information

Hand-coded subprograms may handle alphameric
information. This information is supplied as an
argument of a CALL statement. The form of an al-
phameric argument is:

onlxz. <o Xp
The following example illustrates the method of
storing alphameric information.
CALL TRMLPH (8, C, 13HFINAL RESULTS)
The characters 13H are dropped and the remaining
information stored as follows:

Location Contents
X FINALD
X+1 RESULT
X+2 Sbbbbb (b represents a blank,
60g)
X+3 T g

The address X is given in the calling sequence
for the CALL statement.

ALPHA Table 35
Alphameric Arguments 35
Alphameric Fields 20
Arquments
of a function 9
in Common Storage 28
input and output 43
Arithmetic, Double-Precision and Complex
(see "Double-Precision and Complex Arithmetic")
Arithmetic Expressions, Optimization 8,42
Arithmetic Statements 6,12, 30, 35
Boolean arithmetic expressions 12
fixed point variables 35
Arithmetic Statement Functions 9,10, 35
calling 9
definition 10
naming 9
Arrays, arrangement in storage 7
Assembler 2,32
ASSIGN 13,45
Assigned GO TO
(see "GO TO, Assigned")

BACKSPACE 19,25,45
BCD Tape 39
BETA Table 35
Binary Information 39
Blank Fields 21
Boolean Expressions 8,12
rules for constructing 8
Built-In Function 9,10
calling 9
definition 10
naming 9

CALL 16,18,35,45
CALL CHAIN (R, T) 34,40
CALL DUMP 34, 39,40
CALL EXIT 34,39
CALL PDUMP 40
CALLFN Table 36
Calling 9
Card Form, FORTRAN
(See "FORTRAN, Card Form")
CARDS COLUMN Card 38
CARDS ROW Card 38
Carriage Control 22
Chain Job Deck Ordering 34
Chain Problems, Programming 34
data and common 34
relative constants 35
CHAIN (R, T) Card 37
CLCSUB Table 36
Coding Form, FORTRAN
(see "FORTRAN, Coding Form")
COMMON 26, 31,36, 42,45
COMMON Table 36
Compiler 2,32
Computed GO TO
(see "GO TO, Computed")
Constants 6
double-precision and complex 28,29

fixed point 6

floating point 6

in argument lists 44
Continuation Cards S
CONTINUE 15,45
Control Cards 37
Control Statements 6,30

DATA Card 37
Data Input to the Object Program 23
DATE Card 37
DEBUG Card 37
Definition of Function Types 10
Designating a Double-Precision or
Complex FORTRAN Statement 28
DIM Table 36
DIMENSION Statement 7,17, 20,22, 26, 31, 36,45
DO Statements 14,26, 36, 44,45
exits 15
index 14,44
preservation of index values 15
range 14
restrictions 15
satisfied 14
transfer of control 14
DOs Within DOs 14
DOTAG Table 36
Double-Precision and Complex Arithmetic 28
arithmetic statements 30
available functions 31
control statements 30
functions and subprograms 29
input/output statements 30
limitations on source program size 31
specification statements 31

END 16,30,34,45 <& T L
END FILE 19,25,45
End of Program 39
END TAPE Card 33,39
Ending a FORMAT Statement 22
EQUIT Table 36
‘EQUIVALENCE 17,26, 31, 36, 42, 45
Execute Job 32,33
Expressions 7,8
Boolean 8
definition 7
double-precision or complex 29
fixed point 7,8
floating point 7,8
rules for constructing 7
F Conversion, restrictionon 44
FAP Card 39
FIXCON Table 36
Fixed Point 2,6,7,8,12,36,42
arithmetic 42
constants 6, 36
expressions 7,8
variables 6
Floating point 2,6,7,8, 12,28, 36
constants 6, 36
expressions 7,8

Index

variables 7
FLOCON Table 36
FMTEFN Table 36
Format, record 47
FORMAT Statement 6, 19,20, 36,45
ending 22
read in at object time 22
statement lists 22
FORMAT Table 36
FORSUB Table 35
FORTAG Table 37
FORTRAN
card form 5
coding form 5
programming, general rules 42
types of statements 6
FORTRAN II, System Definition 2
FORVAL Table 35)
FORVAR Table 35
FREQUENCY 26, 36,45
FRET Table 36
FUNCTION 9,11,16,17,45
statement 16
(see also "Subprograms, FUNCTION-type'")
subprograms 9
naming 9
definition 11
Functions
arguments of 9
available 31
calling 9
definition of types 10
modes of 9
naming 9
Functions and Subprograms, Double-Precision or Complex 29

GO TO 12,13,15,26,45
assigned 13
restrictions 15
computed 12,26
unconditional 12

Hand-Coded Subroutines 47
Hierarchy of Operations 8,42
HOLARG Table 35
I.D, Card 37
IF 13,26,45
IF ACCUMULATOR OVERFLOW 13,26,45
IF DIVIDE CHECK 14,26,45
IF (SENSE LIGHT) 13,45
IF (SENSE SWITCH) 13,26,45
Input/Output Statements 2,6,19
double-precision or complex 30
in matrix form 19
of entire matrices 20
statement lists 22

unit designation 23
IOP Card 37

Job 32
Job Input Deck Ordering 34

LABEL Card 38
LAMBDA Table 35

50

LIBE Card

38

Library Functions 9,10

calling

9

definition 10

naming

9

Library Routines 2
Link Stacking 34

LIST or LIST8 Card 38
Lists of Quantities, Specifying 19

Modes of a Function 9

Monitor
control ¢

2,32
ards 37

definition of job 32

features

33

input 32

operations 32,40

programming problems for the Monitor

Multiple-Record Formats

Naming

9

NLIST Table 37
NONEXC Table, 36
NonyExecutable Statements
Non-Execute Job 32,33
Numeric Fields 20

Object Machines 2
Object Program

arrangement 42

data input 23

Optimization of Arithmetic Expressions

Ordering of Chain Job Deck
Ordering of Job Input Deck

Ordering Within a Hierarchy

PACK Card 38
PAUSE 15,34,39,45

PDUMP

40

PRINT 19,24,45
PRINT Card 38

Processor

2,32

Program Control 22

Programming
for chain problems 34
general rules 42

PUNCH

19, 24,45

READ 19,23,45
READ DRUM 19,24,45

READ INPUT TAPE

READ TAPE 19, 24,39,45
Record format 47
Record lengths 47
Relative Constants 43,44

in argum

ent lists 44

in COMMON statements
in input lists 43

Repetition of Field Format

Repetition
RESTART
RETURN
REWIND
ROW Card

of Groups 21
Card 33,41
16,19,45
19,25,45
38

22

36,45

34
34
8

19, 23, 34, 40, 45

35,44

21

8

39

Selection of Tapes for Link Stacking 34
Sense Switch Settings 16
Sequencing of Statements 45
SIGMA Table 37
Source Machines 2
Source Program 5
characters 46
size limitation 31, 35
statements 45

Source Statements 5
Specification Statements 6,26, 31
START Card 33

Statement
mumbers 5, 36
types of 6

STOP 15,34,36,39,45
SUBDEF Table 36
Subprograms 9
arguments 36
FUNCTION 36
functions and input/output statements 36
SUBROUTINE, type 36
statements 6,16
SUBROUTINE
statement 16,17
(see also "Subprograms, SUBROUTINE-type")
subprograms 9, 16
Subroutine Names as Arguments of Subprograms
Subroutines on System Tape 43

18

Subscripted Variables 7,37
double-precision or complex 29

Subscripts 6,7,37

SYMBOL TABLE Card 39

Symbolic Input/OQutput Unit Designation

System Tape Subroutines 43

Tape Usage 39

TAU Table 37

TDO Table 36

TEIFNO Table 36
TIFGO Table 37
TRAD Table 37
Transfer Statements 37
Triangular Indexing 44

TCTADS T 17 2
191Uro 1aoie 36

Unconditional GO TO
(see "GO TO, Unconditional")

Variables 6
double-precision or complex . 29
fixed point 6
floating point 7
subscripted 7

WRITE DRUM 19,25
WRITE OUTPUT TAPE 19, 22,25
WRITE TAPE 19,25, 39

XEQ Card 37

23

Index

51

C28-6054-5

JISIM

®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York 10601

‘V°S°N ur pajurig

S-¥S09-820

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52

