Systems Reference Library

IBM 7090/7094 Programming Systems
FORTRAN II Assembly Program (FAP)

This publication describes the 7090/7094 FORTRAN II As-
sembly Program (FAP) in sufficient detail for the programmer
to code in the FAP language. FAP and 7090/7094 FORTRANII
may be used with either the IBM FORTRAN Monitor or the
7090/7094 Basic Monitor (IBSYS). FAP is a machine-oriented
symbolic language. The programmer can write the major part
of his program in FORTRAN, using FAP subroutines where
necessary to accomplish those parts of the job for which
FORTRAN is not suitable; or he could write the major part of
the program in FAP, using FORTRAN subroutines for certain
computational and input/output operations.

File No. 7090-21
GC28-6235-5

PREFACE

A 709/7090 machine language program is a sequence
of machine instructions in the form of binary numbers
that directs the computer in the performance of a
particular task. A symbolic language program is a
representation of a machine language program in a
form that is more convenient to the programmer.

For the most part, this involves the substitution of
mnemonic symbols for the binary instruction desired,
such as TRA for the binary unconditional transfer
instruction. Because of its close relation to machine
language, the symbolic language enables the program-
mer to use all the facilities of the computer that would
be available to him if he were to code his program
directly in machine language.

The translation of a programmer’'s symbolic
language program into a machine language program
is accomplished by an assembly program, or
assembler, which interprets the mnemonics and
substitutes the required binary instructions.

An assembler is similar to a compiler (such as
FORTRAN).in that it produces machine language
programs. However, the symbolic language used
with an assembler is closely related to the machine
language of the computer, while the source language
used with a compiler resembles a language in which
problems are commonly stated, such as mathematical
notation.

Compilers have several advantages over assem-
blers: the language used with a compiler is easier
to learn and to use; the programmer using a compiler
usually does not need an intimate knowledge of the
internal operations of the computer; programming is
faster; and the time required to produce a finished,
working program is greatly reduced, since there is

This edition, Form C28-6235-5, is a reprint of Form C28-6235-4,
incorporating changes released in the following Technical News-
letter:
Form No.
N28-0152-0

Dated
April 7, 1965

Pages

4,6, 6.1, 20, 30, 30.1,
53.1, 54, 65, 66, 71
Form C28-6235-4 and the Technical Newsletter are not obsolete,

less chance of programmer errors, and since most
errors which are made are detected by the compiler.

The assembler compensates for these disadvantages
by offering the programmer a degree of flexibility
not available with any present-day compiler.

FAP (FORTRAN Assembly Program) provides
a compromise between the convenience of a compiler
and the flexibility of an assembler. Using FAP and
709/7090 FORTRAN operating under either the IBM
FORTRAN Monitor or the 7090/7094 Basic Monitor
(IBSYS), a programmer may write the major part of
his program in FORTRAN, using FAP subroutines
where necessary to accomplish those parts of the job
for which FORTRAN is not suitable. Likewise, he
may write the major part of the program in FAP, using
FORTRAN subroutines for certain computational and
input/output operations. For those jobs which are
coded entirely in symbolic language, FAP may be used
to produce an "absolute' program which can be either
loaded by the Monitor or used indepéndently of the
Monitor.

Although the primary objective of FAP is the
translation of symbolic language programs into machine
language programs, it is also used for updating a
symbolic tape by changing, deleting, or adding
instructions.

A FAP program must be assembled on an IBM 709,
7090, or 7094, but can produce an object program
that can be executed on an IBM 704, 709, 7090, or
7094.

This manual describes the FAP language and the
programming facilities it affords. The reader is
assumed to be familiar with the IBM reference manual,
IBM 7090 Data Processing System, Form A22-6528.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.

Address comments concerning the contents of this publication to:

IBM Corporation, Programming Systems Publications, Dept. D39, 1271 Avenue of the Americas, New York, N.Y. 10020

© 1962, 1963 by International Business Machines Corporation

D

C CONTENTS

Part 1: The FAPLanguage« « + .

Chapter 1: Elements of the Language.

Symbolic Card Format

Sequence Checking.

Chapter 2: Typesof Assembly

Relocatable Assembly

Absolute Assembly

Chapter 3: The Assembly Listing

Flags . + « v v v v v o o 4 e e e e e .

Page Heading. + « . « .

Chapter4: Symbols« « « .+ .+ . .

Symbol Definition

Typesof Symbols+ . .

R Chapter 5: Symbolic Expressions
Elementsand Terms. « « « .«

The Characters * as an Element ,

Dataltems ¢« o o ¢« &+ o« o « o « &

. Literals. « +« « « « « « . .
EXpressions . o ¢ ¢ ¢« 4 e e e e e e o
Evaluation of Expressions
Types of Expressions. . .+ « « +« « « ¢« « « o
Boolean Expressions« « < .
Chapter 6: Symbolic Instructions
Location Field « « « « , « . .
Operation Field « . + « « « . .
Indirect Addressing« ¢ ¢ . . .
Variable Field « . « « .+ .« .
*(Remarks Card).« .« « « « .+ .

Chapter 13: Storage-Allocating Pseudo-Operations . . . 23
Location Counter and Program Counter 23
The BSS Pseudo-Operation 23

The BES Pseudo-Operation ., 24

The COMMON Pseudo-Operation 24

The ORG Pseudo-Operation 25

The LOC Pseudo-Operation 25

The EVEN Pseudo-Operation+ . . . 25
Chapter 14: Data-Generating Pseudo-Operations 26
The OCT Pseudo-Operation 26

The DEC Pseudo-Operation 26
The BCI Pseudo-Operation. . . . « « 27
The BCD Pseudo-Operation 27

The VFD Pseudo-Operation 28

The ETC Pseudo-Operation 29

The DUP Psuedo-Operation 30
Chapter 15: Program-Linking Psuedo-Operations 31
The ENTRY Pseudo-Operation. 31
The CALL Pseudo-Operatiom 32
Standard Error Procedure Option.. 32
Subroutine Reference Using the $ Character 33
The IFEOF Pseudo-Operation 34
The EXTERN Pseudo-Operation 35
Chapter 16: Operation Code-Defining Pseudo-Operations . 35
The 704 Pseudo-Operation. 35
The OPD Pseudo-Operation. 35
The OPVFD Pseudo-Operation, 35
The OPSYN Psuedo-Operation. 35
Machine Operation Code Definition. 36
Chapter 17: Card Format-Control Pseudo-Operations. . . 36
The ABS Pseudo-Operation. 37
The FUL Pseudo-Operation. 37
The 9LP Psuedo-Operation. 37
The TCD Pseudo-Operation 37
Chapter 18: List-Control Pseudo-Operations 37
~ The REM Pseudo-Operation 37

" The SPACE Pseudo-Operation. 38
The EJECT Pseudo-Operation 38
The UNLIST Pseudo-Operationn. 38
The LIST Pseudo-Operation 38
The TITLE Pseudo-Operation 38
The DETAIL Pseudo-Operation 38

-
= O W W W WO NNNOG U BB bbb B WNNDNRERE =R

C

Part 2: Operations and Pseudo-Operations 12
Chapter 7: Machine Operations 12
Chapter 8: Extended Machine Operations 12

Sense Operations. . .« « « « o+ o« « o o« o« o o« 12
Selected and Related Operations 14
Additional Mpemonics . « + + . o o+ 14
PrefixCodes « + + & + &+ o« « « o + + o« « o 14
Chapter 9: Variable-Channel Tape Operations. 16
IGhapter 10: Pseudo-Operations 18
First CardGroup. « + « + + o o « o o« + o+ o 18
Previously Defined Symbols 18
Phase RelocationError. « . « . . . 18

Chapter 11: Assembly Information Pseudo-Operations . . 18 The LBL Pseudo-Operation. 39

The COUNT Pseudo-Operation 18 The PCC Pseudo-Operation.« . 39

3 The END Pseudo-Operation 19 The REF Pseudo-Operation. 39
The IFF Pseudo-Operation 19 The TTL Pseudo-Operation. 39

Chapter 12: Symbol-Defining « . . 20 The INDEX Pseudo-Operation 39

The EQU and SYN Pseudo-Operation 20 The NULL Pseudo-Operation 40

d The BOOL Pseudo-Operation . e e e . 20 Chapter 19: Binary Output from the Assembler. . . 40
The SET Pseudo-Operation. 20 Relocatable Qutput 40

The TAPENO Pseudo-Operation 21 Absolute Output « + o . 40

The MAX Pseudo-Operation 21 The PMC Pseudo-Operation 40

The MIN Pseudo-Operation. . . . « . . . 21 FulOutput . . .+ . « ¢ « ¢ o o « & o 41

The SST Pseudo-Operation. 21 SLPOutput. . . + .+ + + + « ¢« o+ o . 41

The HEAD Pseudo-Operation & 21 Label and Serialization (FORTRAN Monitor) . . . 41

The HED Pseudo-Operation 23 FORTRAN Monitor Control Cards 41

Part 3: The Macro-Operation Processor
Chapter 20: General Description
Chapter 21: Macro-Definition Heading Card .

The MACRO Pseudo-Operation
Extending the Argument List
Alternative Format of MACRO

The MOP Psuedo-Operation

Chapter 22: The Prototype
The Location Field of a Prototype Instruction.
The Operation Field of a Prototype Instruction
The Variable Field of a Prototype Instruction.
Chapter 23: Nesting Macro-Definitions . . .

Chapter 24: Macro-Instructions
The MAC Pseudo-Operation
Punctuation in Macro-Instructions
Argument Strings.
Nested Macro-Instructions.

Chapter 25: The Generated Instructions . . .
Created Symbols.
The NOCRS Pseudo-Operation
The ORGCRS Pseudo-Operation . . .
Chapter 26: Additional Pseudo-Operations . .
The IRP Pseudo-Operation.

The RMT and RMT* Pseudo-Operations .

Part 4: Updating Symbolic Tapes.
Chapter 27: General Discussion.
Uses of the Update Facility
Blocked Update Output Tape
Sequence Checking and Serialization . . .
Tape Positioning.« .« .
Illegible Input Instructions.
Updating a FORTRAN Source Program Deck .
Listing Update Pseudo-Instructions
Restrictions on Deleting ETC Cards, .+ . &
Chapter 28: Update Pseudo-Operations . . .
The UPDATE Pseudo-Operation . .+ .

The NUMBER Pseudo-Operation « « « .

The DELETE Pseudo-Operation + .+ . .

The IGNORE Pseudo-Operation . « + o

The SKIPTO Pseudo-Operation + + « .

SBESNJRESSEEEGERRRRRBD

[]
OOO%%

52
52
52
S2
52
52
53
53
53
53
53
53
53.1
54
54
54

The ENDFIL Pseudo-Operation . . . + « &

The REWIND Pseudo-Operation « o+ o « o &

The UNLOAD Pseudo-Operation « « + o« .« o

The SKPFIL Pseudo-Operation« . .

The UMC Pseudo-Operation e e e e e e

The ENDUP Pseudo-Operation « + o + o .

The PRINT Pseudo-Operation .« « o« o o o
Chapter 29: Optional Serialization in Update Pseudo-
Instructions « « « o o ¢ o o o o

Chapter 30: Update Examples . « ¢« o o« o« o«

Part 5: General Information
Chapter 31: Subroutines
Open and Closed Subroutines

Linkages . + .« ¢« "¢ o ¢ o o « o o &
Calling Sequences . . . « « .« 4 ¢ « o o
FORTRAN Linkage and Calling Sequences . . .
Segmentation.+ . . o+ 4
Common Storage . « « « ¢« « o o+ e o+ .
Relocatable Binary«
Transfer Vector . . . « .+ « .+ e

Chapter 32: A Brief Description of the Assembly Process

Appendix A: Combined Operations Table
Pseudo-Operations . « « « o« & o o o o o« &
Machine and Extended Machine Instructions., . . .
Disk FileOrders . « « + ¢« « o« o « ¢ &
Hypertape Orders+ .+« « & & & o
Appendix B: The FAP BCD Character Code.

Appendix C: System Symbol Table, FORTRAN Monitor

Appendix D: The Assemble Only Mode of FAP Operating

Under The Basic Monitor+ . .
IBSFAPOperations « « « o o o o o » o o o
Control Cardse & &« & & ¢ ¢« & o o o o @
System Symbol Table . . . « « « « o« . .
Appendix E: Field Modifications to FAP.
Appendix F: Table Limits

54
55
55
55
55
56
56

56
56

58
58
58

8BBTL8&Es

70
70
70
70
71
72

CHAPTER 1: ELEMENTS OF THE LANGUAGE

FAP incorporates all 704, 709, 7090, and 7094
machine language and extended operation codes
described in the various machine reference manuals.
A list of all permissible operation codes is given in
Appendix A, '""Combined Operations Table,"

A symbolic instruction consists of five major
divisions: location field, operation field, variable
field, comments field, and identification field.

The location field may contain a name by which the
symbolic instruction may be referenced. The opera-
tion field contains the name of the operation to be
performed, and the variable field contains the loca-
tion of the operand or, in certain cases, the operand
itself (e.g., ARS 16). The comments field may
contain the programmer's comments, but has no
effect on the machine operation. The identification
field may be used to insure safety in card handling
and is useful in updating. Figure 1-1 illustrates the
various fields of a symbolic instruction. The instruc-

“tion in Figure 1-1 might be the first instruction of a

routine entered by a transfer instruction whose
variable field contains the symbolic address CASEB.
The machine operation here is '""Clear and Add," and
the address of the operand is a storage location that
is referred to as TMP. The comment "THIRD CASE"
is for the use of the programmer. The serialization
F0113750 indicates the relative position of this
instruction in the program deck.

Symbolic Card Format

Symbolic instructions are punched one per card in
the following format. The location field, which may
be blank, occupies card columns 1-6. Card column
7 is always blank, The operation field begins in
column 8 and is up to seven characters in length,

A blank column or a comma separates the opera-
tion field and the variable field. The variable field
may begin immediately following the operation field,
but must not begin after column 16. An open
parenthesis immediately following the operation
code terminates the operation field and is considered
part of the variable field. The variable field may not
extend beyond column 72 and must be followed by a
blank column to separate it from the comments field.
If the variable field includes column 72, the assem-
bler assumes that a terminating blank is present.

PART 1: THE FAP LANGUAGE

The comments field follows the variable field and
extends through column 72. In the absence of a
variable field, the comments field may not begin be-
fore column 17. Columns 73-80 are used for identi-
fication and serial numbering. Figure 1-2 illustrates
the several different ways of separating the operation
field and the variable field. See Chapter 3 for a de-
scription of the assembly listing.

Sequence Checking

If a BCD source deck is serialized in columns 73-80,
sequencing information will be checked, and any
card out of sequence will be listed both on- and off-
line. If a group of correctly sequenced cards is
inserted into a deck out of sequence, only the first
card of the group will be listed.

For purposes of sequencing, a blank is not con-
sidered to be zero; it is given the octal value 60. A
serialized card following a card with all blanks in
card columns 73-80 will not be sequence checked.

CHAPTER 2: TYPES OF ASSEMBLY

FAP permits two types of assembly: relocatable and
absolute.

Relocatable Assembly

Every relocatable program or subprogram produced
by the FORTRAN Monitor System nominally begins in
location zero. Since a job to be executed may con-
tain several subprograms, it is obvious that they
may not all be loaded into locations starting with
location zero. In fact, no program is ever loaded at
location zero; instead, each program is relocated.
The first program or subprogram is loaded into
lower core storage. Successive subprograms are
then loaded into successively higher locations of core
storage, each beginning with the location after the
last location of lower core storage used by the
preceding subprogram. When a particular program
has been loaded, the address of the first word is
called that program's load address, and the address-
plus-one, relative to zero, of the last word is called
that program's program break.

Thus, the address in core storage actually
occupied by an instruction of the program is the

CASEB CLA TMP THIRD CASE eess FO113750

Figure 1-1)

00000 0500 00 O 00004 CLA TEMP TEMP IS THE FIRST SUBFIELD

00001 0500 00 O 00004 CLA,TEMP TEMP IS THE FIRST SUBFIELD

00002 0500 00O 4 00000 CLA ,TEMP FIRST SUBFIELD VOID, TEMP IS SECOND SUBFIELD
00003 0500 00 O 00006 CLA(TEMP (TEMP IS THE FIRST SUBFIELD

Figure 1-2 ’

address assigned to that instruction during assembly
plus the load address of that program. To keep the
program self-consistent, the load address must be
added to the addresses and decrements of many (but
not all) of the instructions.

This process of conditionally adding the load
address is performed by the loading program prior
to execution and is called relocation. In relocating
instructions, the loading program is guided by re-
location indicator bits that are inserted into the
binary object program cards when the program is
compiled or assembled. References to common
storage are subject to a special type of relocation
that is controlled by control cards during loading.

A more extensive discussion of relocation is
given in Part 5.

Absolute Assembly

The binary object program resulting from an absolute
assembly is loaded into locations specified by the
programmer in his source. program by the use of the
ORG pseudo-operation. The loader makes no adjust-
ment to any field during loading.

CHAPTER 3: THE ASSEMBLY LISTING

The printed output of a FAP assembly is called the
assembly listing. This listing has three parts: the
pre-processor assembly listing; the assembled
program listing; and the post-processor assembly
listing.

A subheading is provided for the pre-processor
and post-processor listings, each part being
separately paginated. The programmer may provide
subheadings for the assembled program listing by
using the TTL pseudo-operation.

The pre-processor assembly listing is composed
of the results of the update pseudo-instructions used
in the program and an indication that no card count
estimate was given (if applicable).

The assembled program listing is essentially a
printout of the symbolic cards in the order in which
they appeared in the symbolic deck, together with
the octal representation of the binary words produced
by the assembler. A portion of a typical listing is
given in Figure 3-1.

00004 0500 00 O 00011 CASEB CLA T™P
00005 0774 00 4 00014 AXT 12,4
00006 0400 00 4 00031 ADD FUNC+12,4
00007 2 00001 4 00006 TIX ¥=1,4,1
00010 0020 00 O 00034 TRA CALC
00011 TMP BSS 4
00015 FUNC BSS 12
00031 0O 00000 0 00000 cos
00032 0760 00 O 00000 CASEC CLM
00033 0 00000 O 00000 “e
O 00034 00000 O 00015 CALC CLW FUNC
Figure 3-1

The left-hand portion of the listing is that pro-
duced by the assembler. The first column shows the
location of each instruction, in octal. The next
column shows, in octal, the binary word assigned to
that location; machine operations are broken up into
their appropriate parts. The right-hand portion of
the assembly listing is a listing of the symbolic deck.

Note that the last symbolic instruction contains
an error. The operation code was incorrectly
punched. The assembler has indicated this error by
placing the error flag O in the left margin opposite
the erroneous instruction, and it has left blank the
first (prefix) digit of the octal word.

The first item on an assembly listing is the transfer
vector and linkage director. Following this is a list
of the instructions in the symbolic deck, together with
the octal representation of the words generated. If
any literals are used in the program, a list of the
data words that are generated will follow.

The post-processor assembly listing is composed
of the program break (the first location, in octal, not
used by the program), the COMMON break (the first
location, in octal, below the common storage area
required by the program), the Symbolic Reference
Table, and an indication of whether or not the assembly
was in error. If there are errors in the program,
they will be flagged in the assembled program listing
(see description of flags, below). The Symbolic
Reference Table includes all symbols which appear
in the location field of an instruction and all program
counter references to each symbol. In addition, the
locations of definitions of symbols defined by BOOL,
COMMON, EQU, MAX, MIN, SYN, and TAPENO
will appear in this table. Multiply-defined symbols
will be flagged M. A table of references to undefined
symbols will follow the table of references to defined
symbols.

Flags

The FAP assembler indicates that it has detected an
error or inconsistency by placing a flag in the left
margin of the assembly listing opposite the instruction
containing the error. The left margin of the listing
is reserved for flags and will be left blank if no
errors are detected.

There are two types of flags: error flags that
cause printing of the message ERROR IN ABOVE
ASSEMBLY and suspension of relocatable binary
output; and warning flags that indicate a possible
inaccurate or incomplete instruction.

The following are error flags:

B This flag indicates that the flagged instruction
contains a relocatable or common symbol in a
Boolean expression, or a digit greater than 7
in an octal expression.

D

0

The

4,9

This flag indicates that a data-generating
pseudo-operation contains an error. If the
pseudo-operation is DEC, the field in error
will contain zeros; if the pseudo-operation is
BCD or BCI, the field in error will contain
blanks.

This flag indicates that the flagged instruction
contains an error in a literal.

This flag indicates that the operation code in
the flagged instruction is undefined or invalid.
Indirect addressing of a pseudo-operation will
result in an undefined operation code.

This flag indicates unbalanced parentheses in
a macro-definition or macro-instruction.

This flag indicates that the flagged pseudo-
operation either contains an invalid reference
to a symbol which has not been previously
defined (phase error), or it is a storage-
allocating pseudo-operation containing a
relocatable or common expression in its
variable field (phase relocation error).

This flag indicates that the flagged instruction
contains an expression which is a relocation
error.

This flag indicates that the flagged instruction
contains a reference to an undefined symbol;
the field in error will be blank. ‘
following are warning flags:

This flag indicates the use of an operation
code which is defined by the programmer
(through the use of the OPD or OPVFD pseudo-
operation) and for which the mode of assembly
is not specified.

If a 704 instruction appears in a 7090 assembly,
it will be flagged with a 4; if a 7090 instruction
appears in a 704 assembly, it will be flagged
with a 9.

This flag will appear whenever the address
field of a machine instruction or the variable
field of a pseudo-instruction is expected and
is missing.

This flag indicates that a tag field of a machine
instruction is expected and is missing.

This flag indicates that a decrement field of a
machine instruction is expected and is missing
or that a decrement field is provided for a
Type B or E instruction, or that a decrement
field longer than eight bits is provided for a
Type C instruction. Assembly of decrement
fields in Type B or E instructions is provided
for compatibility with existing FAP programs.
This flag indicates that a decrement field in a
Type B or Type C instruction appears to be an
indirect address, or that indirect addressing
has been specified by an asterisk for an
operation code which is not indirectly address-
able.

F This flag indicates either an excessive field
in a machine instruction or pseudo-instruction
or an improper field in a pseudo-instruction.
Excessive fields in Type D instructions will
be flagged with an F and will not result in
additional bits in the generated machine word.
Improper fields in symbol-defining pseudo-
instructions will be flagged with an F, but will
not cause relocatable binary output to be
deleted.

BETA SYN
Figure 3-2

If ALPHA has not been previously defined, the
instruction in Figure 3-2 will be flagged with
an F. BETA will remain undefined, and any
reference to BETA will be flagged with a U,
which will cause relocatable binary output to
be deleted.

The following flag may be either an error flag or

a warning flag:

M This flag indicates that the instruction con-
tains a reference to a symbol which has been
defined more than once (multiply). If a symbol
is multiply defined by its appearance in the
location field of more than one of the following
operations, the point of definition will be
given the warning flag M: BCD, BCI, BES,
BOOL, BSS, CALL, COMMON, DEC, DUP,
END, EQU, IFEOF, MAX, MIN, OCT, SYN,
TAPENO, VFD, or any machine instruction.
However, any reference to a multiply-defined
symbol in the variable field of a machine
operation or pseudo-operation will be given
the error flag M. It is possible ta have two
M flags in the left-hand margin opposite a
single instruction: one referring to the point
of definition (location field); the other, to the
point of use (variable field). The M flag also
indicates redefinition of an existing operation
code (see Chapter 20, "General Description').

ALPHA

Page Heading

The assembly listing tape is intended to be printed on
an off-line printer that utilizes programmed carriage
control. (Note: The number of lines per page is pre-
set; it may be changed by a modification to IOP.) A
page number appears at the top of each page; page
numbering starts anew with page 1 for each assembly.
The page numbering may be reset by a TTL pseudo-
instruction. By using a page title card, the programmer
may cause the assembler to write one line of infor-
mation at the top of every page. By using a TTL
pseudo-instruction, he may cause the assembler to
write a second line, or subheading.

The page title card is identified as the first card
with an * or $ in column 1 in the first card group (see

3

""First Card Group' in Chapter 10). If there is no
such card in the first card group, the page will be
headed by the page number and, if a date card has
appeared, the date. Any pseudo-instruction in the
first card group may precede the page title card.
The Monitor control cards that precede the symbolic
deck are not regarded as part of it. If a page title
card appears in the first card group, the contents of
columns 2-72 of this card appears at the top of every
page of the assembly listing with the page number.

CHAPTER 4: SYMBOLS

A symbol (also referred to by the terms "location
symbol' and ''symbolic address") is a string of one
to six non-blank alphabetic and numeric characters,
at least one of which is non-numeric. In addition, a
symbol may include the characters decimal point,
left parenthesis, and right parenthesis. A symbol
may not include the following set of special characters:

+ plus sign $ dollar sign

- minus sign = equal sign

* asterisk ' apostrophe

/ slash mark , comma
For example,

A Al

1234X (12

are all valid symbols. A symbol may be used as a
name for a storage location, a tape address, an oper-
ation code, or some other program parameter. A
symbol used as an operation code should not contain
trailing zeros because trailing zeros in operation
codes are ignored by the assembler. For example,
ABCO00 MACRO is equivalent to ABC MACRO. The
use of symbols that contain embedded parentheses

is restricted to macro-operations (see page 47).

Symbol Definition

A symbol is defined in one of three ways:

1.. By its appearance in the location field of an
instruction; or

2. By its use as the name of a subprogram; or

3. By its appearance in a System Symbol Table
(see SST pseudo-operation, page 21).

Every symbol used in the program must be de-
fined only once. A flag will be given by the assem-
bler if any symbol is used but never defined, or if
any symbol is defined more than once. The SET
pseudo-operation may be used to define symbols so
that they may be redefined (see page 20).

Types of Symbols

Each symbol encountered in the assembly process
will be classified according to type at the time it is
defined. In a relocatable assembly, FAP recognizes
three types of symbols. An absolute symbol refers

to a specific number, such as a tape address; it is
usually not used to refer to a location in core storage.
A common symbol refers to a location in common
storage (common storage is described on page 59).
Any symbol that is not either absolute or common is
classified as relocatable; in particular, a symbol that
occurs in the location field of an instruction is a re-
locatable symbol, except for symbols that occur in
the location field of a symbol-defining pseudo-
operation. In the case of the symbol-defining pseudo-
operation, the symbol in the location field is defined
to be of the same type as the symbol in the variable field.

When an absolute assembly has been specified by
the use of the ABS, FUL, or 9LP pseudo-operation,
all symbols are treated as absolute symbols.

CHAPTER 5: SYMBOLIC EXPRESSIONS

In writing symbolic instructions, the programmer is
concerned with the problem of building expressions
to represent, in the case of machine instructions, the
address, tag, and decrement or count portions of the
instructions. Expressions are also used in the var-
iable fields of channel commands, 1/0 device orders,
or pseudo-instructions, in accordance with the rules
set forth in each specific case.

Before discussing expressions, it is necessary to
describe their components: elements, terms, and
operators.

Elements and Terms

The smallest components of an expression are ele-
ments. An element is either a single symbol or a
single integer less than 236 (the asterisk may also be
used as an element; see below). Anabsolute, relocat-
able, or common symbol is regarded as an absolute,
relocatable, or common element, respectively. An
integer is always an absolute element.

A term is a string of elements and the operators:

* (multiplication)
/ (division)

A term may consist of a single element, of two
elements separated by * or /, of three elements
separated by two operators, etc. A term must begin
with an element and end with an element. It is not
permissible to write two operators in succession orto
write two elements in succession.

Examples of terms are given in Figure 5-1.

TMP*FUNC*TAXY
FIRST/SCND*THRD¥*4
3

6%4096

S5%X

OFICA

Figure 5-1
The Character * as an Element

In addition to being used as an operator, the asterisk

is also used as an element. When it is used in this
way, the asterisk is a relocatable element that stands
for the location of the instruction in which it appears.
Thus, the element * will have different values in
different instructions.

06313 0020 00 0 06315 ALPHA TRA *+2

06313 0020 00 O 06315
Figure 5-2

ALPHA TRA ALPHA+2

The instructions in Figure 5-2 are equivalent and
each represents a transfer to the second location
following the location containing the transfer instruc-
tion. There is no ambiguity between this use of the
asterisk and the use of the asterisk to denote multipli-
cation, since the position of the asterisk always
makes clear what is meant. Thus **10 means "'the
location of this instruction multiplied by 10."

The expressions

%k %k

and

%k %k
are commonly used for listing purposes to denote an
address or decrement which must be computed by the
program. Both are absolute expressions whose value
is zero.

Data Items

Data items may also be considered elements of ex-
pressions when used in the variable field of certain
pseudo-instructions. There are three types of data
items: octal, decimal, and alphameric.

Octal Data Items. An octal data item specifies, in
octal, a word, or part of a word, of data to be con-
verted to binary. An octal data item may be specified
in one of three ways:

1. It may be preceded by the characters = O to
form an octal literal; or

2. It may be a subfield of the variable field of a
BOOL,’ OCT, or VFD pseudo-instruction; or

3. It may be the variable field of a Type D machine
instruction.

One type of octal data item is recognized by FAP:
the octal integer. An octal integer is composed of a
string of not more than twelve digits, from 0 through
7, which may be preceded by a plus or minus sign.

Decimal Data Items. A decimal data item specifies,
in decimal, a word, or part of a word, of data to be
converted to binary. Decimal data items may be
specified in the following three ways:

1. It may be preceded by the character = to form
a decimal literal; or

2. It may be a subfield of the variable field of a
DEC pseudo-instruction; or

3. It may be a subfield of the variable field of
certain other pseudo-instructions (such as VFD)
which do not require an octal or Boolean subfield
(this use is restricted to decimal integers).

There are three types of decimal data items:
decimal integers, floating-point numbers, and fixed
point numbers.

1. Decimal integers. A decimal integer is com-
posed of a string of digits, from 0 through 9, which
may be preceded by a plus or minus sign. A decimal
integer is distinguished from other types of decimal
data items by the absence of the letter B, the letter E,
and the decimal point (the use of the letters B and E
is described below).

2. Floating-point numbers. A floating-point number
has two components:

a. The principal part is a signed or unsigned
decimal number written with or without a
decimal point. The decimal point may appear
at the beginning, at the end, or within the
principal part, or it may be omitted if the
exponent part is present. If the decimal point
is omitted, it is assumed to be located at
the right-hand end of the principal part.

b. The exponent part consists of the letter E
followed by a signed or unsigned decimal
integer. The exponent part must follow the
principal part; it may be omitted if the princi-
pal part contains a decimal point.

A floating-point number is distinguished from a deci-
mal integer by the presence of a decimal point or the
letter E, or both. It is distinguished from a fixed-
point number by the absence of the letter B.

3. Fixed-point numbers. A fixed-point number has
three components:

a. The principal part is a signed or unsigned
decimal number written with or without a
decimal point. The decimal point may appear
at the beginning, at the end, or within the
principal part, or it may be omitted if the
exponent part is present. If the decimal
point is omitted, it is assumed to be located
at the right-hand end of the principal part.

b. The exponent part consists of the letter E
followed by a signed or unsigned decimal
integer. The exponent part must follow the
principal part; it may be omitted if the princi-
pal part contains a decimal point.

c. The binary-place part consists of the letter
B followed by a signed or unsigned decimal
integer. The binary-place part must be
present in a fixed-point number and must
follow the principal part. If the number has
an exponent part, the binary-place part may
precede or follow the exponent part.

A fixed-point number is distinguished from other
types of decimal data items by.the presence of the
letter B.

A decimal integer may represent any positive or
negative binary number whose magnitude is less than
235, For example, the decimal integer -31 would be
converted to the 36 bit number whose octal repre~
sentation is

400000000037

A floating-point number will be converted to a
normalized floating-point binary word in the standard
floating-point binary format. If present, the exponent
part specifies a power of ten by which the principal
part will be multiplied during conversion. For
example, all of the following floating-point numbers
are equivalent and will be converted to the same
floating-point binary number:

3.14159
31.4159E-1
314159. E-5
314159E-5
. 314159E1

A fixed-point number is converted to a fixed-point
binary number which contains an understood binary
point. The purpose of the binary-place part of the
number is to specify the location of this understood
binary point within the word. The number that follows
the letter B specifies the number of binary places in
the word to the left of the binary point (that is, the
number of integral places in the word). The sign bit
is not counted. Thus, the binary-place part 0 specifies
a 35-bit binary fraction. B2 specifies two integral
places and 33 fractional places. B35 specifies a
binary integer. B-2 would specify a binary point
located two places to the left of the leftmost bit of
the word; that is, the word would contain the low~
order 35 bits of a 37-bit binary fraction. As with
floating-point numbers, the exponent part (if present)
specifies a power of ten by which the principal part
will be multiplied during conversion.

In the process of shifting the converted word to
position the binary point, significant bits may be
shifted past the right-hand end of the word and lost;
no error will be indicated. However, if nonzero
bits must be shifted past the left-hand end of the word,
an error will be indicated by the assembler. Thus,
the integral part of a fixed-point number must be
small enough to fit in the number of integral places
allowed. Also, if the binary-place part is zero or
negative, the number must be an appropriately small .
fraction.

For example, the following fixed-point numbers
specify the same configuration of bits; but not all of
them specify the same location for the understood
binary point:

22.5B5
11.25B4
1125B4E-2
1125E-2B4
9B7E1

All of these fixed-point numbers will be converted
to the binary configuration whose octal representation
is 264000000000.

With certain fixed-point numbers, however, there
is a limitation on accuracy beyond the first 27 sig-
nificant bits.

If the absolute value of the difference of the deci-~
mal scaling factor and the number of digits to the
right of the decimal point (before consideration of the
E scaling factor) is greater than 11, precision be-
yond 27 significant bits is lost.

For example, if the fixed-point decimal number
is 2.1234567E-8B-15, the absolute value of the dif-
ference between the scaling factor (-8) and the num-
ber of digits to the right of the decimal point (7) is
15. Since this figure is greater than 11, accuracy
beyond 27 significant bits cannot be expected. Leading
zeros are not considered significant bits.

Alphameric Data Items. An alphameric data item is
a string of alphabetic and numeric characters. In
certain cases, the alphameric string may contain the
special characters. An alphameric data item may be
specified in the following two ways:

1. Preceded by the characters =H to form an
alphameric literal; or

2. As a subfield of the variable field of a BCD,
BCI, or VFD pseudo-instruction.

Literals

Often a programmer wishes to refer to a location
containing a constant. For example, if he wishes to
add the number 1 to the contents of the accumulator,
somewhere in core storage he must have a location
containing the number 1. Pseudo-operations are
provided to allow the introduction of data words and
constants into the program, but often this introduction
is more easily accomplished by the use of a literal.

In contrast to other types of subfields, the content
of a literal subfield is itself the data to be operated
upon. The appearance of a literal directs the assem-~
bler to prepare a constant that is equivalent in "value"
to the contents of the literal subfield, to store this
constant in a location at the end of the program, and
to replace the address field of the instruction con-
taining the literal with the address of the constant
thus generated. Three types of literals are permitted:
decimal, octal, and alphameric.

A decimal literal consists of the character =
followed by a decimal data item (see page 5). Thus,
the instruction in Figure 5-3 means "multiply the
contents of the MQ by the number -3.'" (That is,
multiply the contents of the MQ by the contents of a
location which contains the number 400000000003g.)

==3

MPY
Figure 5-3

An octal literal consists of the character =,
followed by the letter O, and then followed by a signed
or unsigned octal integer. Thus, the instruction in
Figure 5-4 means 'perform the operation 'And to
Accumulator' with an operand word whose leftmost
31 bits are zeros and whose rightmost five bits are
ones.

ANA =037
Figure 5-4

An alphameric literal consists of the character =,
followed by the letter H, and then followed by six
characters of alphameric data. Thus, after the
execution of the instruction in Figure 5-5, the contents

Y

W,

of the MQ would be 010221226060g. The six char-
acters following the letter H are taken as data even
if one or more of them is a comma or a blank.

LDQ =H12AB

Figure 5-5

A literal may occur only as the address subfield
of the variable field of a machine instruction. This
subfield must consist solely of that literal. A literal
may not appear as a tag or decrement, or in the
variable field of a pseudo-instruction. Furthermore,
a literal may not appear in the variable field of a
Type D machine operation. '

Other subfields may be present following an
address subfield containing a literal. In this case,
the separating comma is used in the usual manner,
except that,when an alphameric literal is used, the
separating comma must be the eighth character
following the equal sign.

A decimal literal may not contain anything other
than a legitimate decimal data item. An octal
literal may not contain any characters other than

+-01234567

If this rule is violated, the address field of the
octal portion of the listing of that instruction will be
left blank, and the error flag will be given.

The data words generated by literals are sorted
according to their magnitudes when regarded as 36-
bit positive numbers, and then they are assigned to
consecutively higher locations following the highest
location which the assembler has assigned to an
instruction word, a data word, or a block of storage
other than common. Many literals referring to the
same binary data word cause only one data word to
be generated.

Expressions

An expression is a string of terms separated by the
operators:
+ (addition)
- (subtraction)
An expression may consist of a single term, of

two terms separated by + or -, of three terms separated

by two operators, etc. It is not permissible to write
two operators in succession or to write two terms in
succession, but an expression may begin with + or -.
Examples of expressions are given in Figure 5-6.

3
OF ICA

TMP—4

-77
~TMP*FUNC/X~=7%H+13759601% YMNG* ZWTY / 4+3

Figure 5-6

Evaluation of Expressions

An expression is evaluated as follows. First, each
element is replaced by its numerical value. Second,
each term is evaluated by performing the indicated
multiplications and divisions from left to right, in

the order in which they occur. In division, the
integral part of the quotient is retained, and the
remainder (which has the same sign as the dividend)
is immediately discarded. In multiplication, the low-
order 35 bits are retained.

For example, the value of the term 5/2*2 is 4. In
the evaluation of an expression, division by zero is
equivalent to division by one and is not regarded as an
error; thus, an expression that reduces to 0/0 can be
evaluated, and is equal to 0. Third, the terms are
combined from left to right, in the order in which
they occur. If the result is negative, it is replaced
by its 2's complement (that is, the number 236 is
added to a negative result). Finally, this result is
reduced modulo 213 (except in the variable field of
a VFD or BOOL pseudo~-operation); that is, only the
rightmost 15 bits are retained, and the preceding
bits are dropped. Grouping of terms, by parentheses
or otherwise, is not permitted, but this restriction
may often be circumvented. For instance, the product
of A with the quantity B+C may be expressed as

A*B+A*C

Types of Expressions

In addition to evaluating expressions, the assembler
must decide whether each expression is absolute,
common, or relocatable. Without this decision the
assembler would be unable to assign the proper re-
location indicator bits for the information of the
loading routine (see '"Relocatable Binary,' in Chapter
31). The rules by which the type of expression is
determined are as follows:

A relocatable element is a relocatable expression.

A relocatable element plus or minus an absolute
element is a relocatable expression.

An absolute element is an absolute expression.

Any expression containing only absolute elements
is an absolute expression.

The difference of two relocatable elements is an
absolute expression.

A common element is a common expression.

A common element plus or minus an absolute
element is a common expression.

The difference of two common elements is an
absolute expression.

A relocatable element plus a common element minus
another common element is a relocatable expression.

These rules may be clarified by examples.

Assume that a programmer wishes to incorporate
a table into his program, and he knows that later

he may wish to add or delete items in the table with-
out changing program references to it. His first
step is to assign symbols to the low-order word in
the table and to the location immediately after the
high-order word of the table; these symbols could be
BGTBL and ENTBL, respectively. Regardless of the
number of items in the table or of the number of later
additions or deletions, the number of words in the
table will always be equivalent to the value of the
expression ENTBL-BGTBL.

This illustrates the rule that the difference of two
relocatable elements is an absolute expression.

As another example, assume that the same
programmer wishes to employ a second table of the
same length as the first, He may indicate the low-
order word of the second table by the symbol STBL.
Then, the location following the high-order word of
the second table may be indicated by the expression

STBL+ENTBL-BGTBL

This address is subject to relocation; hence, the
expression must be a relocatable expression.

The following expressions are examples of re-
location errors. If such an expression appears in the
source program, it will be flagged.

The negative (complement) of a relocatable
element.

The negative (complement) of a common element.

An absolute element minus a relocatable element.

An absolute element minus a common element.

The sum of two relocatable elements.

The sum of two common elements.

The sum of a relocatable element and a common
element.

A product or quotient involving a relocatable or
common element.,

The discussion that follows describes a procedure
for determining the type of an expression. First,

discard any term that contains only absolute elements.

Next, examine each term of the expression. If any
term contains more than one relocatable element,
more than one common element, or one common
element and one relocatable element, the expression
is a relocation error. Also, if in any term the
character / follows a relocatable or common element,
the expression is a relocation error. For example,
if TRANS and FUNC are relocatable (or common)
symbols, then the expression

TRANS*FUNC+TRANS*2/2
violates both the above rules.

If the expression passes these tests, replace each
relocatable element by the symbol r, each common
element by the symbol k, and each absolute element
by its value. This yields a new expression which
involves only numbers and the symbols r and k.
Evaluate this expression using the rules given in the
section above. If the result is a number, including
zero, then the original expression is absolute. If the

result is r, then the original expression is relocatable.
If the result is k, then the original expression is
common. If the result is anything else, the original
expression is a relocation error.

The following examples illustrate this procedure.

Example 1.

Consider the expression

4+3*TRANS~-2*FUNC+COMX-COMY+COUNT
where TRANS and FUNC are relocatable symbols,
COMX and COMY are common symbols, and COUNT
is an absolute symbol.

Discarding the terms involving only absolute
elements leaves

3*TRANS-2*FUNC+COMX-COMY
This does not contain any illegal terms, so replacing
each symbol by the letter r or k results in
3*r-2*r+k-k
Evaluating this gives r, so the original expression is
relocatable.
Example 2.
Consider the expression
4/2*3*TRANS-FUNC+COMX
This reduces to
4/2%3*r-r+k
or
5r+k
This is not r, k, or a number, so the expression is
a relocation error.
Example 3.
Consider the expression
N*2*F-N*N*F+N/2*N*K~-N/2*K+5
where N is an absolute symbol, F is a relocatable
symbol, and K is a common symbol.

It is an absolute expression if the value of N is
zero, a relocatable expression if the value of Nis 1,
a common expression if the value of N is 2, or a
relocation error if the value of N is anything else.

In an absolute assembly, all symbols are treated
as absolute symbols; hence, all non-Boolean expressions
are absolute expressions, and a relocation error is
impossible.

Boolean Expressions

An expression is Boolean if:

1. It forms the variable field of a BOOL pseudo-
instruction; or

2. It forms an octal subfield of the variable field
of a VFD pseudo-instruction; or

3. It forms the variable field of a Type D machine
instruction. (The Type D machine instructions are
SIL, SIR, RIL, IIL, IIR, LNT, RNT, LFT, and RFT.)

In most cases a Boolean expression is simply an
octal integer. The two instructions in Figure 5-7 are
equivalent, but the first is more convenient since it
has the octal representation of tape A1. Most pro-
grammers will not use Boolean expressions other

»

I
\\
/
C//

than octal integers, and may ignore the remainder
of this section.

01201 TAPEX BOOL 1201
01201 TAPEX EQU 641
Figure 5-7

In a Boolean expression, the four operators +, -,
* and / have Boolean meanings rather than their
usual arithmetical meanings, as given in Figure 5-8.

—(exclusive or symmetric

+ (or, inclusive or, union) difference)
0+0=0 0-0=0
0+1=1 0-1=1
1+0=1 1-0=1
1+1=1 1-1=0

/ (complement, ones

* (and, intersection) complement, not)

0*0=0 /0=1
0*1=0 /1=0
1*0=0
1*1=1

Figure 5-8

Although / is usually an operation involving only
one term, by convention A/B is taken to mean A*/B.
Thus, the table for / as a two-term operation is
given in Figure 5-9.

0/0=0
0/1=0
1/0=1
1/1=0

Figure 5-9

Other conventions are given in Figure 5-10

+A=A+=A
-A=A-=A
A=A=(
A/ =A
+=0

-=0 } both operands missing

one operand missing

*=()

Figure 5-10

The tables in Figures 5-8, 5-9, and 5-10
define the four Boolean operations for one-bit
quantities. The operations are extended to 36-bit
quantities since each bit-position is treated independ-
ently. The Boolean operator /, with one operand

missing, is made equivalent to 777777777777g. A
Boolean expression is evaluated as follows: First,

all integers are taken as octal and must be less than
236, The operations * and / are carried out from
left to right, all operands being regarded as having
36 bits, and then the operations + and - are carried
out from left to right, all quantities being regarded
as having 36 bits. The rightmost 18 bits are pre-

served and the remaining bits discarded, except in the
variable field of a VFD pseudo-instruction, in which
case the number of bits preserved may vary from 1

to 36. Any use of a relocatable or common symbol

in an octal or Boolean expression will be flagged as

a Boolean error.

CHAPTER 6: SYMBOLIC INSTRUCTIONS

Symbolic instructions are composed of a location

field, an operation field, and a variable field. Instruc-
tions are punched one per card in the format described
on page 1.

Location Field

The location field of a symbolic instruction should
either be blank or contain a single symbol,

possibly preceded or followed by blanks. Blanks

that are embedded in a location symbol are ignored.
The purpose of using a location symbol is to give a
name to the instruction with which the location symbol
is associated, so that the instruction may be referred
to by this name in other instructions of the program.
Except in the case of the symbol-defining pseudo-
operations, a symbol in the location field of an instruc-
tion has as its value the address assigned to that
instruction.

Operation Field

The operation field of a symbolic instruction will
normally contain an alphabetic code representing a
machine operation, an extended machine operation,
a variable-channel operation, a macro-operation,
or a pseudo-operation. A blank operation field will
be interpreted in the same manner as the extended
operation PZE; that is, a word will be assembled
whose prefix is zero. In this connection, note that
a blank card in the program deck causes a word of
zeros to be generated in the program.

Anything appearing in the operation field that is
not among the set of recognized instructions (see
Appendix A: Combined Operations Table) is an invalid
operation code and will be given the error flag O.

Indirect Addressing

The character * may appear in the operation field of
a symbolic instruction immediately to the right of the
last character of the operation code. The presence of
this character indicates indirect addressing and
specifies that the assembler is to insert the appropri-
ate bit or bits into the binary word that corresponds
to the symbolic instruction. Bits 12 and 13 are used
for machine instructions; bit 18 is used for channel
commands. If an instruction so designated is not

indirectly addressable, the warning flag I will be
given. The appearance of *** in the operation field
does not indicate indirect addressing. This configura-
tion of characters is equivalent to the extended ma-
chine instruction PZE.

Variable Field

When writing a machine instruction in symbolic form,
the programmer may, and sometimes must, specify
certain combinations of address, tag, decrement (or
count), and mask. For example, a TIX instruction
requires an address, tag, and decrement; CLM
should not have an address, tag, or decrement; and
TCM should have an address, decrement, and mask,
but should not have a tag. (The requirements for
each machine instruction are explained in detail in
the machine reference manuals and are tabulated in
Appendix A.)

The address, tag, decrement (or count), and mask
subfields of an instruction are specified in that in-
struction's variable field, in that order. Note that
this is the reverse of the internal machine order,
which is mask, decrement (or count), tag, and ad-
dress. Any subfields may be absent, provided that
the subfields following it are also absent. Any subfield
that is present consists of one symbolic expression
(but, see below for zero subfields). Adjacent sub-
fields are separated by commas as illustrated in
Figure 6-1.

TIX
Figure 6-1

GAMMA 9441

Figure 6-1 specifies an address GAMMA, a tag of 4,
and a decrement of 1.

The variable field begins with the first non-blank
character if a blank terminates the operation field;
with the character or blank immediately following the
comma if a comma terminates the operation field;
and with the left parenthesis if a left parenthesis
terminates the operation field. The first character of
the variable field may not appear before column 9
or after column 16. When a left parenthesis immed-
iately follows the operation code, it is considered
part of the variable field. The end of the variable field
is indicated by the appearance of a blank character
(except in the case of BCI, BCD, and alphameric
literals or certain subfields in macro-definitions and
macro-instructions). There may be no blanks between
subfields or within any subfield of the variable field,
except in the cases listed above.

A subfield that is irrelevant may not be absent if
it precedes a subfield that is required. Such a subfield
may contain a zero, be void, or contain ** to indi-
cate a field that is to be initialized. The equivalent
instruction in Figure 6-2 illustrates that when the

10

contents of a subfield are to be zero, the character

0 may be omitted, leaving the subfield void, of course,
the separating comma(s) must be present. Also, if
one or more subfields at the right-hand end of the
variable field are to be zero, these subfields may be
omitted entirely, together with their separating
commas. However, omitting subfields may cause a
warning flag to be given. As an example, the members
within each of the three sets of symbolic instructions
in Figure 6-3 are equivalent.

PXA Os4

PXA v 4

Figure 6-2
00000 0634 00 0 00011 SXA BETA,0

T 00001 0634 00 0 00011 SXA BETA
00002 0634 00 0 00011 ZSA BETA
00003 3 00000 O 77775 TXH GAMMA, 0,0

TD 00004 3 00000 O 77775 TXH GAMMA
00005 3 00000 O 77775 BRN GAMMA
00006 -0754 00 O 00000 PX0 0,0

T 00007 ~-0754 00 O 00000 PXD
00010 -0754 00 O 00000 ZAC

Figure 6-3

However, the second member of each triplet is
flagged to indicate the omitted field. The third
member of each triplet has the same meaning as the
first and the second, but is not flagged.

Any valid expression that appears in a subfield of
the variable field will be evaluated according to the
rules given in the section '"Evaluation of Expressions, "
page 7. However, after the expression in the tag
subfield has been evaluated, only the rightmost three
bits will be used; that is, the tag is reduced modulo
eight. If an instruction is not permitted a decrement,
or if a Type C instruction has a decrement larger
than eight bits, the entire field will be used, and the
warning flag D will be given. In general, if a required
address, tag, or decrement of an instruction is
omitted, the instruction will be givenan A, T, or D
warning flag, respectively.

If an expression in a subfield of the variable field
contains an undefined symbol, the corresponding field
will be left blank in the assembly listing, and the error
flag U will be given. If an expression in the variable
field of an instruction contains a symbol which is
defined more than once, the error flag M will be
given. If an instruction has too many fields, the
warning flag F will be given and the extra field(s)
will be ignored. ‘

The variable field of a disk order consists of
three subfields: access and module, track, and
record. If a required subfield is omitted, the warning
flag A will be given. If a subfield is not required,
but is coded, the subfield is assembled, but the warning

flag F will be given.
If a required variable field of a pseudo-instruction
is omitted, the warning flag A will be given.

*(Remarks Card)

Any card with an * in column 1 is called a remarks
card. When such a card is encountered, columns 2
through 72 are treated as commentary. This
commentary is printed out as a single line on the
assembly listing, exactly as it is written. A remarks
card has no other effect on the processing of the
source program,

Any card with a § in column 1 is also treated as a
remarks card.

11

PART 2: OPERATIONS AND PSEUDO-OPERATIONS

CHAPTER 7: MACHINE OPERATIONS

The FAP language includes all standard 704, 709,
7090, and 7094 machine operations described in the
machine reference manuals. A machine instruction,
channel command, or order consists of the following:

1. A symbol or blanks in the location field;

2. The operation code in the operation field; and

3. The address, tag, decrement (or count), and
mask subfields of an instruction or command, or the
various subfields of an order in the variable field.

The assembly of such an instruction, command,
or order involves the following functions:

1. If there is a symbol in the location field, this
symbol is defined to be the next location to be as-
signed by the assembler when the instruction,
command, or order is encountered.

2. The operation code of an instruction or
command is translated into a 36-bit binary word,
which is called the instruction word. The bits which
determine the operation may occupy positions in the
prefix, decrement, address, and, in the case of
certain channel commands, even the tag portions of
the binary word. The operation code of a disk or
Hypertape order is translated into the first 12 bits
(bits S-11) of the first binary word of the order.

3. If indirect addressing has been specified, the
appropriate flag bits are inserted.

4. The expression in the first subfield of the
variable field is evaluated; if the operation is Type D,
this expression is evaluated as a Boolean expression.
In the case of a Type D operation, this result is
taken as the final binary word; any extraneous sub-
fields are ignored, but they cause the warning flag
F to be given. The first subfield of a disk or Hyper-
tape order occupies the second 12 bits (bits 12-23) of
the first binary word of the order.

5. If the operation is not Type D, and if a second

subfield of the variable field is present, the expression

in this subfield is evaluated, reduced modulo 8, and
the resulting 3 bits are combined with the tag portion
of the instruction word in a ''logical or" operation.
The second subfield of a disk order occupies the
third 12 bits (bits 24-35) of the first binary word of
the order and the first 12 bits (S-11) of the second
binary word of the order.

6. If the operation is not Type D, and if a third

subfield of the variable field is present, the expression

in this subfield is evaluated, and the resulting 15
bits are combined with the decrement portion of the
instruction word in a "logical or'" operation. The
third subfield of a disk order occupies the second
12 bits (12-23) of the second binary word of the
order.

12

7. If the operation is ICC or TCM, the mask sub-
field is evaluated and positioned in the low order three
bits of the six-bit operation code in a ''logical or"
operation.

8. In the case of an order, uncoded subfields are
converted to 12g.

9. The 36-bit instruction which results is assigned
to the next location to be assigned by the assembler.
A disk order is assigned to the next two available
locations.

In general, successive instructions are assigned
to successively higher storage locations; a disk order
requires two consecutive locations. The assembler
has a location counter to keep track of the next loca-
tion to be assigned to an instruction. At the beginning
of the assembly, if there is no transfer vector or
linkage director, the next location to be assigned is
00000, If there is a transfer vector, its words are
assigned to consecutive locations beginning with loca-
tion 00000. The linkage director follows the last
word of the transfer vector (see '"Standard Error Pro-
cedure Option,'" page 15). When the first instruction
is encountered, the ''next location to be assigned" is
the location after the last location assigned to the
transfer vector and/or linkage director. The ORG
and LOC pseudo-operations may be used to set the
"next location to be assigned' to any desired value.

CHAPTER 8: EXTENDED MACHINE OPERATIONS

FAP provides (1) operation codes to enable the pro-
grammer to specify both select and sense instructions
more conveniently, (2) additional mnemonics to more
accurately describe the function of certain machine
instructions, and (3) numerical prefix codes for use

in forming constants or in subroutine calling sequences.

Sense Operations

The machine operations PSE (Plus Sense) and MSE
(Minus Sense) are used to perform a variety of opera-
tions ranging from advancing the film on the CRT
recorder to testing the status of a sense light. The
specific operation performed is determined by the
address portion of the binary instruction. The
addresses are given in the machine manual in octal;

however, FAP assumes that the number in the variable

field of a PSE instruction is in decimal form. For
example, the instruction that causes the film to be
advanced in the CRT recorder is a PSE instruction
with an octal address of 00030. This may be indi-
cated to the assembler by converting the address to
decimal as in Figure 8-1. To free the programmer
from looking up octal addresses and converting them

to decimal, FAP incorporates the extended operation
CFF (Change Film Frame). When this code appears
in the operation field of an instruction, the appropri-
ate operation and address bit are assembled; see the
instruction in Figure 8-2. Note that the variable field
of the symbolic instruction is left blank, since the
entire address is implied by the operation code.

In a similar manner, the instruction which tests
the status of Sense Switch 3 has the octal address
00163; see Figure 8-3. This instruction is represented
in the FAP language by the operation code SWT
(Sense Switch Test) and the number of the sense
switch to be interrogated in the address subfield of
the variable field. The SWT instruction is evaluated
as follows:

1. The assembler translates the operation code
SWT into the 36-bit binary word whose octal equiva-
lent is 076000000160.

2. The expression in the address subfield of the

00012 0760 00 O 00030 PSE 24
Figure 8-1

00013 0760 00 0 00030 CFF

Figure 8-2

00014 0760 00 O 00163 PSE 115
Figure 8-3

00015 0760 00 O 00163 SWT 3
Figure 8-4

variable field is evaluated, and the result is combined
with the address portion of the instruction word in a
"logical or' operation. (More than one subfield
would not normally be present in the variable field

of a sense operation, but, if present, they will be
evaluated as tag and decrement as with a machine
operation.)

The instruction which interrogates Sense Switch 3
is given in Figure 8-4.

Figure 8-5 gives the extended operation codes and
octal equivalents for those PSE and MSE instructions
which are not entirely defined by the operation code.
The letter x indicates a digit to be specified in the
variable field, and the letter n indicates either a
channel designation to be specified in the operation
field or its corresponding octal designation in the
instruction.

Note that the 704 operation ETT will assemble in a
different manner from the 709/7090 operation ETTn.

Operation Code Meaning

Octal Instruction

BTTn Beginning of Tape Test, +0760..0000e0e....0n000
Channel n

SLF Turn Sense Light Off +0760.c000ssesesss 0140

SLN Turn Sense Light On +0760.0000eeeessss 014x

SWT Sense Switch Test H+07600ceceeceeesas 016x

SPUn Sense Punch, Channel n F07600c0eeeeeeesss N34X

SPTn Sense Printer Test +0760¢ceeeeseeeeses N360
Channel n

SPRn Sense Printer, Channeln +0760.............036x

ETTn End of Tape Test, ~0760...0c0eeesss.n000
Channel n :

SLT Sense Light Test -0760...c000ueses. 014x

RDCn Reset Data Channel n +0760.000e0seeeees N352

CFF Change Film Frame +0760....0000.....0030

Figure 8-5

13

Select and Related Operations

The Read Select instruction that selects tape unit A3
in the BCD mode may be obtained from the assembler
by converting the octal tape address to decimal and
writing the instruction in Figure 8-6.

The FAP language includes extended operations
which greatly simplify the construction of Read Select
and Write Select instructions. An extended instruction
that selects a tape for reading or writing has a four-
letter operation code in which each letter has a mean-
ing, as follows:

1. The first letter of the operation code is R for a
read select or W for a write select,

2. The second letter of the operation code is T for
tape, and P for printer,

3. The third letter of the operation code is B for
a binary-mode select, or D for a decimal-mode
(BCD-mode) select, and

4. The fourth letter of the operation code is the
data synchronizer channel letter A-H.

The number of the unit, if any, is given in the
variable field. The card reader, card punch, or
printer in the decimal mode may be specified by the
letters CD, PU, or PR, respectively, and may
appear as the second and third letters of the operation
code.

Thus, a more convenient way to write a Read
Select instruction addressing tape A3 in the decimal
(BCD) mode is given in Figure 8-7.

Note that, since the value of the expression in the
variable field is combined with the address generated
by the operation code by means of a '"logical or"
operation, the instruction could be written as in
Figure 8-8. This would not normally be done, how-
ever, and is mentioned here merely to illustrate the
effect of the "logical or' operation.

Figure 8-9 contains the FAP language extended
operations that perform functions related to input or
output. For the sake of brevity, the list includes
only the extended operations which refer to data syn-
chronizer channel A; extended operations for other
channels are formed by replacing the fourth letter of
the operations by the appropriate channel letter.

The letter x indicates a number to be specified in the
variable field (this number may be 8, 9, or 10, since
the part of the instruction which designates the tape
unit number, printer hubs, etc., actually consists of
four bits). Those marked * exist on the 704 with the
channel designation omitted.

Additional Mnemonics

FAP provides the mnemonics given in Figure 8-10
for certain machine instructions. The mnemonics
more closely describe a possible function of the
instruction.

The BRA and BRN instructions are useful for un-
conditional switching.

Prefix Codes

In writing subroutine calling sequences, it is often
necessary to specify parameters in each of the four
sections of the binary word: prefix, decrement, tag,
and address. The decrement, tag, and address may
be specified in the variable field. (Of course, they
must be given in the order: address, tag, decrement.)
To enable programmers to specify the value of the
prefix bits, the extended operation codes in Figure
8-11 have been included in the FAP language.

The operations in Figure 8-12 are regarded by
the assembler as being identical, except for the sub-
fields which are required.

00016 0762 00 0 01203 RDS 6Lu3
Figure 8-6

00017 0762 00 0 01203 RTDA 3
Figure 8-7

00020 0762 00 O 01203 RTDA 643
Figure 8-8

14

709/7090/7094 Instructions

Assembled Required

Operation Mnemonic Function As Field
Code Meanin, Octal Instruction BRA Branch TXL Address
BSFA Backspace File -0764......120x BRN Branch No-Op TXH Address
BSRA Backspace Record +0764......120x ZAC Zero Accumulator PXD None
BTTA Beginning of Tape Test +0760......1000 7ZSA Zero Storage SXA Address
ETTA End of Tape Test -0760......1000%* Address
PSLA Present Sense Lines +0664...... 0000 7ZSD Zero Storage SXD Address
RCDA Read Card Reader +0762...... 1321* Decrement
RDCA Reset Data Channel +0760......1352 Figure 8-10
REWA Rewind Tape +0772. ..., 120x*
RPRA Read Printer +762..... .1361*
RTBA Read Tape Binary +0762......122x*
RTDA Read Tape Decimal +0762......120x* Operation Code Meaning Octal Prefix
RUNA Rewind and Unload -0772......120x *okok Zero 0
SDHA Set Density High +0776......122x blank Zero 0
SDLA Set Density Low +H776......120x . Zero 0
SPRA Sense Printer +0760......136x PZE Plus Zero 0
SPTA Sense Printer Test +0760......1360 PON or ONE Plus One 1
SPUA Sense Punch +0760......1340 PTW or TWO Plus Two 2
SSLA Store Sense Lines +0660......0000 PTH or THREE Plus Three 3
WEFA Write End of File +0770......120x* MZE Minus Zero 4
WPBA Write Printer Binary +0766......1362% FOR or FOUR Four 4
WPDA Write Printer Decimal +0766...... 1361* MON Minus One 5
WPRA Write Printer (Decimal) +0766......1361* FVE or FIVE Five 5
WPUA Write Punch +0766......1341% MTW Minus Two 6
WTBA Write Tape Binary +0766...... 122x* SIX Six 6
WTDA Write Tape Decimal +0766...... 120x* MTH Minus Three 7
SVN or SEVEN Seven 7

704 Instructions - 11
Operation rgure
Code Meanin Octal Instruction
BST Backspace Tape +H764...... 020x
10D Input/Output Delay +0766......0333 BRA
RDR Read Drum +0762......0300 IOST
WDR Write Drum +0766......0300 MTH
WTS Write Tape Simulta- +766...... 0320 SEVEN

neously SVN

WTV Write Cathode Ray Tube +0766......0030 TXL
Figure 8-9 Figure 8-12

15

CHAPTER 9: VARIABLE-CHANNEL TAPE
OPERATIONS

It is often desirable to refer to a tape unit symboli-
cally. The instruction in Figure 9-1 defines the
symbol X as an absolute symbol whose value is the
octal number 3204; this number being the address
of tape unit C4 in the decimal (BCD) mode (see
TAPENO, page 21).

X TAPENO (&

Figure 9-1

The programmer may then write the instructions
in Figure 9-2 to write information on tape C4.

WTDX

RCHX 10COM
TCOX *
Figure 9-2

If the programmer wishes to change his program
to write this information on tape C6 instead of on
tape C4, he may do so by changing only the TAPENO
instruction that defines the symbol X and then re-
assembling his program.

Variable-channel tape instructions enable a
programmer to change either the tape number or the
channel or both, simply by changing one card and
reassembling his program.

A variable-channel tape instruction is an instruc-
tion in which the channel letter of the operation code
has been replaced by a one-letter symbol referring
to a particular channel and tape number. The opera-
tion codes in Figure 9-3 are those which may be so
used.

BTTA TRCA
ETTA BSFA
LCHA BSRA
PSLA REWA
RCHA RTBA
RDCA RTDA
RICA RUNA
RSCA SDHA
SCDA SDLA
SCHA WEFA
SSLA WTBA
STCA WTDA
TCNA

TCOA

TEFA

Figure 9-3

The following restrictions must be observed:
1. A variable-channel operation code is formed

16

by replacing the letter A by a symbol in one of the
operation codes listed above.

2. The symbol must consist of a single letter of the
alphabet from I through Z. It must not be one of the
letters from A through H.

3. The symbol must be defined as an absolute
symbol whose octal value contains a '"thousands"
digit (the channel number) from 1 through 10 (octal).
This digit determines the channel to which the symbol
refers.

4. The symbol is affected by the current heading
character. If a variable-channel operation appears
in a headed region, the symbol must be defined within
the same region or within a similarly headed region.

5. The character $ may not be used in the channel
designation of an operation code. However, it may
be used to reference a symbol, defined in an alien-
headed region, appearing in the variable field of an
instruction. For example, RTB Y$X is allowed;
RTBY$X is meaningless.

Note that the list of operations in Figure 9-3 is
divided into two categories: those in the left-hand
column refer to a channel but do not involve a tape
number; those in the right-hand column refer to a
channel and also require a tape number. An instruc-
tion containing a variable-channel tape operation is
assembled as follows:

1. If the operation code is one which does not
involve a tape number (that is, it is derived from a
member of the left-hand column of Figure 9-3), then
the instruction is assembled just as if the fourth
character in the operation code were replaced by the
channel-letter implied by the symbol.

2. If the operation code is one which requires a
tape number (that is, it is derived from a member
of the right~hand column of Figure 9-3), then the
instruction is assembled as if the fourth character
of the operation code were replaced by the implied
channel-letter, and then the value of the symbol is
combined with the address portion of the resulting
binary instruction word in a "logical or'" operation.

3. In either case, the contents of the variable
field are evaluated and combined with the binary
instruction word in a "logical or" operation.

For example, if the symbol X has been defined
by any one of the instructions in Figure 9-4, then the
instructions within the sets in Figure 9-5 are equiva-
lent.

If a tape unit is to be read or written in the BCD
mode, both the tape address and the select instruction
must be of the '"decimal' variety. If it is desired to
read or write a tape in the binary mode, either the
tape address or the select instruction (or both) should
be of the '"binary' variety. Thus, if all the select
instructions in a program are variable-channel
instructions of the ""decimal'' variety, the programmer
may change any tape from BCD to binary, or vice

versa, by changing the card which defines the one-
letter tape unit symbol. Variable-channel tape opera-
tions other than Read Select and Write Select have

the same effect in either mode. Thus, the binary
mode, specified in either the operation code or the
TAPENO definition, overrides the decimal mode.

X TAPENO (4
X TAPENO (C4D
X TAPENO C4L

Similarly, the high density mode overrides the low
density mode. For example, if the symbol X has
been defined as in Figure'9-4, and the symbol Y has
been defined by the instruction in Figure 9-6, then
the four instructions in Figure 9-7 are equivalent.

Figure 9-4

03204 X TAPEND C4
00000 0766 00 0 03204 WTDX
00001 0766 00 0O 03204 WTDC 4
00002 0766 00 0 03204 WTDX 4
00003 0766 00 O 03204 WRS X
00004 0766 00 0 03204 WwiD X
00005 0541 00 Q 00021 RCHX 10COM
00006 0541 00 0 00021 RCHC 10COM
00007 0062 00 O 00007 TCOX *
00010 0062 00 O 00010 TCOC *
00011 0772 00 O 03204 REWX
00012 0772 00 O 03204 REWC 4
00013 0772 00 O 03204 REW X
00014 0772 00 0 03204 REWX 4
00015 0776 00 O 03204 SDN 1668
00016 0776 00 O 03204 SDN X
00017 0776 00 O 03204 SDLX
00020 0776 00 0 03204 sSoLC 4
Figure 9-5
03224 Y TAPENO (C48
Figure 9-6
00022 0766 00 0 03224 WTDY
00023 0766 00 0 03224 wiBY
00024 0766 00 O 03224 WTHBX
C0025 0766 00 O 03224 wTBC 4
Figure 9-7

17

CHAPTER 10: PSEUDO-OPERATIONS

In addition to recognizing all the standard 704, 709,
7090, and 7094 machine instructions, and the 709
and 7090 extended machine instructions described in
the various machine manuals, the FAP language
recognizes many pseudo-operations. These pseudo-
operations are described in detail in the succeeding
chapters and are listed in Appendix A: '"Combined
Operations Table'" along with a list of all the instruc-
tions allowed in FAP.

First Card Group

Certain pseudo-operations set the mode of assembly
and provide the assembler with required information;
these pseudo-operations constitute the first card
group and must appear at the beginning of the symbolic
deck. The first card group includes all list-control
and mode-defining pseudo-operations and is termi-
nated by the appearance of either a machine instruc-
tion or a symbol-defining, storage-allocating, or
data-generating pseudo-operation. ‘

The following pseudo-operations must appear only
in the first card group: page title card, COUNT,
ENTRY, SST. An absolute assembly must be speci-
fied in the first group by the ABS, FUL, or 9LP
pseudo-operation.

In addition to list-control and update pseudo-
operations, the following pseudo-operations may ap-
pear in the first card group: 704, 7090, EXTERN,
HEAD, HED, IFF, MACRO (and associated macro
definition), MOP, NOCRS, NULL, OPD, OPSYN,
OPVFD, ORGCRS, REM, RMT, and TCD.

Previously Defined Symbols

In most cases, it is permissible to refer to a symbol
either before or after that symbol is defined. The
exceptions to this rule are the symbol-defining and
storage-allocating pseudo-operations and the DUP
and IFF pseudo-operations. A symbol that appears
in the variable field of any of these pseudo-
instructions, except IFF (see page 19), must have
been defined by a preceding instruction. That is, the
symbolic instruction card that defines the symbol
must appear nearer the beginning of the symbolic
deck than any symbolic instruction card in which the
symbol appears in the variable field of one of the
above pseudo-instructions.

If a symbol that has not been previously defined *
appears in the variable field of any of the symbol-
defining or storage-allocating pseudo-instructions

- or in the variable field of a DUP pseudo-instruction,
a phase error will be indicated by either the P, U,
or F warning flags.

Any symbol that appears in the location field of
the symbol-defining or storage-allocating pseudo-

18

instructions will remain undefined if it has not been
previously defined. If this undefined symbol appears
in the variable field of another instruction, the error
flag U will be given.

D

Phase Relocation Error

The variable field of a storage-allocating pseudo-
instruction specifies the number of words of storage
to be reserved. This number must be fixed at the
time the program is assembled and may not depend
on how the program is subsequently relocated. All
of the words reserved do not have to be used by the
program each time it is executed; typically, the
number of words that are reserved is the maximum .
number which may be required for a given block of
information. Hence, the expression in the variable
field of a storage-allocating pseudo-instruction must

be an absolute expression, that is, an expression
whose value is independent of the relocation process.

If a relocatable or common expression appears in
the variable field of a storage-allocating pseudo-
instruction, the assembler signals a phase relocation
error by the R error flag. -

When an absolute assembly has been specified by
the use of the ABS, FUL, or 9LP pseudo-operations,
all symbols are treated as absolute symbols; therefore,
a phase relocation error is impossible.

CHAPTER 11: ASSEMBLY INFORMATION PSEUDO-
OPERATIONS

The COUNT Pseudo-Operation

The FAP assembly program owes some of its speed
of assembly to the fact that it does not keep the
computer waiting while a tape rewinds. The inter-
mediate information produced and used during the
assembly process is written on two tapes with half of
the information on each, so that one of these tapes is
in use while the other tape is rewinding. In order to
know when half of the information has been processed, .
the assembler must be given an estimate of the num-
ber of cards in the symbolic deck. This estimate
must be given at the beginning of the symbolic deck.

The COUNT card gives this estimate. This card
must be in the first card group. The constituents of
the COUNT card are as follows:

1. Blanks in the location field;

2. The operation code COUNT in the operation
field; and

3. A single decimal integer, which is an estimate
of the number of cards in the symbolic deck, in the
variable field.

The estimated card count is neither a minimum
nor a maximum, and if it is grossly inaccurate, the

only result will be wasted computer time during the
assembly. If the COUNT card is missing or contains
anything but a decimal integer in the variable field,
the assembler will assume that the card count is
2000, and the message "CARD COUNT ESTIMATE
MISSING" will appear in the pre-processor assembly
listing.

The END Pseudo-Operation

The END pseudo-operation is used to signal the end
of the symbolic deck. The constituents of the END
pseudo-instruction are:

1. A symbol or blanks in the location field;

2. The operation code END in the operation field;
and

3. An expression or blanks in the variable field.

The END pseudo-operation performs the following
functions:

1. Any unassembled remote sequences (see '"The
RMT and RMT* Pseudo-Operations,' page 50) are
inserted into the program;

3. Any binary output waiting in the punch buffer is
written out;

4. In an absolute assembly, if there is a variable
field, a binary transfer card is produced whose trans-
fer address is the value of the expression in the
variable field;

5. If there is a symbol in the location field, it

will be defined as the last location used by the program,

one location below the program break;

6. The assembly is terminated.

The END pseudo-instruction must be the last card
in the symbolic deck. If the variable field is blank,
the transfer card will not be produced. An END
pseudo-instruction containing a transfer address may
be used only in an absolute assembly.

The IFF Pseudo-Operation

The IFF (If and Only If) pseudo-operation controls
the assembly of the instruction immediately fol-
lowing the IFF pseudo-operation. The constituents
of the IFF pseudo-instruction are:

1. Blanks in the location field;

2. The operation code IFF in the operation field;
and

3. An expression and two symbols, separated by
commas, in the variable field.

The pseudo-operation IFF with P, A,B in the
variable field provides conditional assembly of
program segments according to the value of the

parameters P, A, and B. P is a FAP expression, and

A and B are BCD symbols. The IFF pseudo-operation
causes assembly of the next instruction (and all as-
sociated ETC cards) only if:

1. P is not 0, and A is identical to B.
2. P is 0, and A is not identical to B.

P will be zero if it has not been previously defined;
P will be nonzero if it is relocatable. It is not a
serious restriction that IFF controls only one card
(and all ETC cards), since the following card may
be a macro-instruction which will expand to a se-
quence of any length, or it may be another IFF. IFF
may be used as the last instruction in a macro defi-
nition to control assembly of the instruction following
the corresponding macro call or macro-instruction.
Remarks cards with an * in column 1 following an
IFF will be ignored; the instruction immediately
following a block of such cards will be conditionally
assembled.

An IFF pseudo-instruction, and all cards under its
control, will be copied onto the Update Output tape
(see Chapter 27, "General Discussion'),

The CALLIO macro-operation in Figure 24-1 can
be used to demonstrate IFF, Since P =0, the proto-
type instruction following IFF will be generated only
if field A, which replaces the dummy argument
ERRET, is not identical with field B, which is void.
Since in the macro-instruction argument list field
A is void as well as field B, the prototype instruc-
tion following IFF will not be generated.

Consider the macro-definition in Figure 11-1,

ADD3 MACRO A,B8,C
CLA A
ADD B
IFF 0
STO c

ADD3 END

2CoAC

Figure 11-1

Figure 11-2 illustrates how a macro-instruction
could be used to store the result of an operation,
whereas, Figure 11-3 illustrates how a macro-
instruction can be used to leave the result in the
Accumulator.

00000 ADD3 XaYsl
00000 0500 00 O 00003 CLA X
00001 0400 00 O 00004 ADD Y

1FF 0s2Z5AC
00002 0601 00 0 00005 STO 4
Figure 11-2
00006 ADD3 XoYsAC
00006 0500 00 O 00003 CLA X
00007 0400 00 O 00004 ADD Y

IFF 0,AC,AC

Figure 11-3

19

CHAPTER 12: SYMBOL-DEFINING PSEUDO-
OPERATIONS

With the exception of a few pseudo-operations, any
operation may be used to define a symbol simply by
placing the symbol to be defined in the location field.
The pseudo-operations used to define symbols are
BOOL, EQU and SYN, MAX and MIN, SET, and
TAPENO. Also included in this group, but not
actually used to define symbols, are HEAD, HED,
and SST pseudo-operations.

These pseudo-operations may be used to equate
two symbols, e.g., when sections written by two
different programmers must be combined. Another
use of these pseudo-operations is in the definition of
program parameters. If a program parameter is
referred to symbolically throughout a program, this
parameter may be changed by changing one card in
the symbolic deck. Thus, the programmer is spared
the task of searching through the program to find all
the places where the parameter is used. Of course,
reassembly is required to change the definition of
any symbol.

The EQU and SYN Pseudo-Operations

The pseudo-operations EQU and SYN (Synonymous)
are identical; hence, the discussion below applies to
both. The constituents of an EQU or SYN pseudo-
instruction are:

1. A symbol in the location field;

2. The operation code EQU or SYN in the operation
field; and

3. An expression in the variable field.

The purpose of the EQU or SYN pseudo-instruction
is to define the symbol in the location field to have
the value of the expression in the variable field. The
symbol will be absolute, relocatable, or common
according as the expression in the variable field is
absolute, relocatable, or common. All symbols that

are used in the variable field of an EQU or SYN pseudo-

instruction must have been previously defined (see
Previously-Defined Symbols, page 18). Reference
may not be made, however, to external symbols
(transfer vector entries), even if they have been de-
fined previously.

If the asterisk is used as an element in the variable
field of an EQU or SYN pseudo-instruction to denote
"the location of this instruction,' the value of the ele-
ment * is the next sequential location not yet assigned
by the assembler. Consider the instructions in Fig-
ure 12-1. If the CLA instruction is assigned to loca-
tion 00102, the symbol FSTL would be defined as a
relocatable symbol (since * is always a relocatable
element) whose value is 00103, and the ADD instruc-
tion would be assigned to location 00103. Figure 12-1
also illustrates the fact that the occurrence of an EQU
pseudo-instruction between two instructions does not
alter the sequence of locations assigned by the assembler.

20

CLA TMP1
FSTL EQU *

ADD TMP2
Figure 12-1

The BOOL Pseudo-Operation

The BOOL pseudo-operation is similar to EQU, ex-
cept that the defining expression is evaluated as a
Boolean expression (see "The VFD Pseudo-Operation, "
page 28). The principal use of the BOOL pseudo-
operation is to equate a symbol with an octal number.
The constituents of a BOOL pseudo-instruction are:

1. A symbol in the location field;

2, The operation code BOOL in the operation field;

3. A Boolean expression in the variable field.

The result of the BOOL pseudo-instruction is to
define the symbol in the location field to be an absolute
symbol having the value of the expression in the vari-
able field. No relocatable symbol or common symbol
may appear in the variable field of a BOOL pseudo-
instruction, or a Boolean error will be signaled by
the assembler; in this case, the error-flag B or F
will appear in the left margin of the assembly listing
opposite the BOOL pseudo-instruction. All symbols
that are used in the variable field of a BOOL pseudo-
instruction must have been previously defined (see
Previously-Defined Symbols, page 18). Reference
may not be made, however, to external symbols
(transfer vector entries), even if they have been de-
fined previously.

The SET Pseudo-Operation

In order to define a symbol and yet permit it to be

redefined later, the pseudo-operation SET may be used.

The constituents of the SET pseudo-instruction are:

1. A symbol in the location field;

2. The operation code SET in the operation field;

3. An expression in the variable field.

The symbol in the location field is assigned the
value of the expression in the variable field. If the
symbol had been previously defined by the SET pseudo-~
operation, it will be redefined. If the symbol had
been previously defined, but not by a SET pseudo-
operation, the symbol will be redefined, but a warning
flag will be given. The SET pseudo-operation will
override any prier means of definition. This pseudo-
operation is useful for providing, within a macro-
operation, a value for a parameter which is not
accessible through the argument list.

If the expression in the variable field of a SET
pseudo-instruction is a number, it is considered an
absolute expression in the decimal mode.

All symbols used in the variable field must have
been previously defined. In a multiply-headed region,
only the symbol with the first heading character is
defined.

The TAPENO Pseudo-Operation

The TAPENO pseudo-operation is used to equate a
symbol with a tape address. Its primary use is with
the variable-channel tape operations described in
Chapter 9, "Variable-Channel Tape Operations.' The
constituents of the TAPENO pseudo-instruction are:

1. A symbol in the location field; this symbol may
consist of from one to six characters but will usually
be a single letter;

2. The operation code TAPENO in the operation
field;

3. A tape unit designator in the variable field.

The variable field of the TAPENO pseudo-
instruction contains a special type of expression called
a "tape unit designator." The designator consists of
a channel letter, followed by a tape unit number, and
optionally followed by one of the following characters
that may be used to set the mode in a TAPENO
pseudo-instruction.

B Binary

D Decimal

H High Density
L Low Density

The purpose of the TAPENO pseudo-operation is to
define the symbol in the location field to be an abso-
lute symbol whose value is the address of a designated
tape unit. The address will be that of the designated
unit in the decimal low density mode unless the letter
B or H is present following the tape unit number.

Figure 12-2 illustrates the TAPENO pseudo-
instruction.

01203 T TAPENO A3L
01203 U TAPENO A3D
01203 V TAPENO A3
01223 W TAPENO A3H
01223 X TAPENO A3B
02210 Y TAPENO B8
03212 Z TAPENO C10
Figure 12-2

The MAX Pseudo-Operation

The MAX (Maximum) pseudo-operation defines the
symbol in the location field to have the value of the
maximum of the expressions in the variable field.
The constituents of the MAX pseudo-instruction are:
1. A symbol in the location field;
2. The operation code MAX in the operation field;
3. A series of expressions, separated by commas,
in the variable field.

The MIN Pseudo-Operation

The MIN (Minimum) pseudo-operation defines the
symbol in the location field to have the value of the

minimum of the expressions in the variable field.
The constituents of the MIN pseudo-instruction are:
1. A symbol in the location field;
2, The operation code MIN in the operation field;
3. A series of expressions, separated by commas,
in the variable field.
The expressions in the variable field must be all
absolute, all relocatable, or all common.

The SST Pseudo-Operation

The SST pseudo-operation causes the System Symbol
Table to be included in the assembly. The constituents
of the SST pseudo-instruction are:

1. Blanks in the location field;

2. The operation code SST in the operation field;

3. Blanks in the variable field.

The System Symbol Table includes definitions of
the system. See Appendix C. For the FORTRAN
Assembly Program, which is a part of the FORTRAN
Monitor operating under IBSYS, also see "'System
Symbol Table'" in Appendix D. If these definitiras
are to be used, SST must appear in the first card
group; otherwise, the System Symbol Table will be
made unavailable.

When FAP is used under the Basic Monitor (IBSYS),
a nonblank variable field may be used with the SST
pseudo-operation. The variable field may contain the
symbol FORTRAN, which causes the symbols listed in
both Appendix C and Appendix D to be defined, or it
may contain the symbol IBSYS, which causes only the
symbols listed in Appendix D to be defined. If the vari-
able field is blank, symbol definition will be determined
by the assembly mode (see Appendix D).

The HEAD Pseudo-Operation

It is sometimes desirable to combine two or more
programs which use the same symbols for different
purposes. The HEAD pseudo-operation makes such
a combination possible, by prefixing each symbol (of
five or fewer characters) by a heading character.
Using different heading characters in the sections to
be combined removes any ambiguity as to the defini-
tion of a symbol. References from one headed region
to a differently-headed region may be made by the use
of six character symbols or by the use of the char--
acter $ as described later in this section. ,
It is possible to multiply head symbols in a section
of a program by prefixing each symbol by more than
one heading factor. Such a section of the program is
called a multiply-headed region.
The constituents of the HEAD pseudo-instruction ate:
1. Blanks in the location field; .
2. The operation code HEAD in the operation field;
3. A series of up to ten single characters (a letter
or digit, but not a special character), separated by
commas, in the variable field.

21

The character in the first subfield of the variable
field of the HEAD pseudo-instruction is considered
the prime heading character and will be prefixed to
any symbol appearing in the variable field and location
field of the instructions that follow, until a subsequent
HEAD or HED is given. The heading characters in
the second, third, ... subfields of the variable field
are prefixed to symbols appearing in the location
field of the instructions that follow, for convenience
in referencing instructions in this headed region from
an alien-headed region. Each symbol in the location
field of a headed region is entered in the Symbolic
Reference Table prefixed by each heading character.
Six character symbols are not headed.

Figure 12-3 illustrates multiple heading.

HEAD AsBsC
BETA CLA ALPHA
Figure 12-3

In the multiply headed region, AOBETA, BOBETA,
and COBETA are entered in the Symbolic Reference
Table and have the same definition. ALPHA is headed
by A and must be defined elsewhere in the program.

To understand the operation of the heading function,
it is necessary to know that every symbol is converted
by FAP into a six-character symbol by the addition of
zeros to the left. Thus, the pairs of symbols in
Figure 12-4 are equivalent.

TMPX
00TMPX

yA
00000Z

FUNCT
OFUNCT

Figure 12-4

When the assembler encounters a symbol in a
headed region, it examines the leftmost character of
the symbol, and if this character is zero, the
assembler replaces it with the heading character.
Thus, in a region headed by the character A, the
pairs of symbols in Figure 12-5 are equivalent.

TMPX
AOTMPX

Z
A0000Z

FUNCT
AFUNCT

Figure 12-5

22

Observe that a five-character headed symbol is
equivalent to a six-character symbol. For example,
the following two elements are equivalent:

COMMON
C$OMMON

From the above discussion, it should be clear that
an unheaded region is the same as a region headed by
the character zero. Hence, to discontinue heading,
the instruction in Figure 12-6 should be used.

HEAD 0]

Figure 12-6

By convention, a HEAD pseudo-instruction with a
blank variable field is taken to mean heading by the
character zero.

Since six-character symbols may not be headed,
they may be used conveniently for reference between
differently-headed regions.

In order to allow the programmer more freedom
in cross-referencing, the character $ may be used to
denote alien heading. For example, suppose that,
in a region headed by the character B, it is desired
to refer to the symbol TMPX that is located in a region
headed by the character A. The instruction in Figure
12-7 will accomplish this.

ALPHA AXC ASTMPX 92

Figure 12-7

The rules for the use of the character $ in heading
are as follows:

1. An element containing the character $ consists
of a single character (a letter or digit, but not a
special character), followed by the character $,
followed by a single symbol.

2. Such an element is taken to refer to the symbol
headed by the heading character preceding the $§. In
an absolute assembly, if no character precedes the
$, the element refers to the symbol headed by the
character zero (that is, not headed at all). The head-
ing character specified in this way is used regardless
of the heading character applied to the region in which
the element appears. In a relocatable assembly, if
a $ is the first character in the variable field of a
machine instruction and is followed by a symbol, this
symbol is unheaded and is considered to be a name in
the transfer vector.

3. In order to unhead a symbol in a relocatable
assembly, a zero must explicitly precede the dollar
sign.

4. If an ENTRY is headed (e.g., ENTRY X$ABC),
the subroutine may be referred to by means of a
headed CALL (e.g., CALL X$ABC, ARGn), or by a
doubly-headed machine operation code (e. g.,

CLA XABC); either will cause a proper entry into
the transfer vector.

The HED Pseudo-Operation

The HED pseudo-operation is a 704 SAP pseudo-
operation which has been included in the FAP language
to make it easier to change 704 symbolic programs
into 709/7090 symbolic programs. In FAP this
pseudo-operation has been supplanted by HEAD.

The constituents of the HED pseudo-instruction are:

1. A single character or letter or digit, but not
a special character, in column 1, the first column
of the location field;

2. The operation code HED in the operation field;
and

3. Up to nine single characters (letters or digits,
but not a special character), separated by commas,
in the variable field.

The effect of HED is the same as HEAD, except
that the symbol in the location field is considered to
be the heading character for symbols in the variable
field of the following instructions, and the symbols
in both the location field and the variable field of the
HED pseudo-instruction are used to define symbols
in the location fields of the following instructions.

A blank in column 1 of the symbolic card indicates
heading by the character zero; that is, suspension
of heading.

CHAPTER 13: STORAGE-ALLOCATING PSEUDO-
OPERATIONS

The BES, BSS, and COMMON pseudo-operations are
used to reserve blocks of core storage for data
storage or for working space. The ORG and LOC
pseudo-operations are used to set the program and
location counters for storage assignment.

Location Counter and Program Counter

During assembly, the location counter keeps track

of the next location to be assigned to an instruction;
the program counter keeps track of the next location
to be assigned to a symbol. The program and location
counters operate in the same manner. The program
counter may be set separately from the location
counter by means of the LOC pseudo-operation. The
ORG pseudo-operation sets both the location counter

and the program counter. The load address on a
binary card is taken from the location counter, where-
as symbol definitions are taken from the program
counter.

The BSS Pseudo-Operation

The BSS (Block Started by Symbol) pseudo-operation
is used to reserve an area of core storage within a
program for data storage or for working space.

The constituents of a BSS pseudo-instruction are:

1. A symbol or blanks in the location field;

2. The operation code BSS in the operation field;
and

3. An absolute expression in the variable field.

The BSS pseudo-operation performs the following
two functions:

1. A symbol in the location field is defined to have
the value of the next location to be assigned by the
assembler at the time the BSS pseudo-operation is
encountered;

2. A block of consecutive storage locations is
reserved; the number of locations reserved is the
value of the expression in the variable field.

Thus, the BSS pseudo-operation reserves a block
of storage whose length is given in the variable field,
and if there is a symbol in the location field, this
symbol refers to the first location of the block. The
location of the block within the program is determined
by the location of the BSS card within the program
deck.

The BSS pseudo-operation causes an area to be
skipped, not cleared; therefore, it may not be assumed
that an area reserved by a BSS pseudo-operation
contains zeros. Words of zero may be generated by
DEC or OCT in such cases.

The effect of a BSS pseudo-instruction on the
binary output of the assembler is to cause any binary
words in the punch buffer to be written out, and to
cause the next output to start with a new card origin.
A BSS with a count of zero has no effect on the binary
output.

Any symbols in the variable field of a BSS pseudo-
instruction must have been previously defined. The
expression in the variable field must be an absolute
expression (see Previously-Defined Symbols, page
18, and Phase Relocation Error, page 18).

Figure 13-1 illustrates the manner in which BSS
affects storage allocation.

¢0000 0 00Uu4 0 00001 ALPHA ICCD BETA, 4
€000l BETA BSS 4

€C0005 O 00004 G 00006 GAMMA JCGCD DELTA, 4
Figure 13-1

23

The BES Pseudo-Operation

The BES (Block Ended by Symbol) pseudo-operation
is used to reserve an area of core storage within a
program for data storage or for working space. The
constituents of the BES pseudo-instruction are:

1. A symbol or blanks in the location field;

2. The operation code BES in the operation field;
and '

3. An absolute expression in the variable field.

The BES pseudo-operation performs the following
two functions:

1. A block of consecutive storage locations is
reserved; the number of locations reserved is the
value of the expression in the variable field;

2. A symbol in the location field is defined to
have the value of the next location to be assigned by
the assembler after the block has been reserved.

Thus, the BES pseudo-instruction reserves a
block of storage whose length is given in the variable
field; if there is a symbol in the location field, this
symbol refers to the location after the last location
in the block. The locations of the block within the
program are determined by the location of the BES
card within the program deck. BSS and BES have
the same effect if their location fields are blank.

The BES pseudo-instruction causes an area to be
skipped, not cleared; therefore, it may not be
assumed that an area reserved by a BES pseudo-
operation contains zeros. Words of zero may be
generated by DEC or OCT in such cases.

The effect of a BES pseudo-instruction on the
binary output of the assembler is to cause any binary
words in the punch buffer to be written out, and to
cause the next output to start with a new card origin.
A BES with a count of zero has no effect on the binary
output.

All symbols appearing in the variable field of a
BES pseudo-operation must have been previously
defined. The expression in the variable field must
be an absolute expression, (see Previously-Defined
Symbols, page 18, and Phase Relocation Error,
page 18).

Figure 13-2 illustrates the manner in which BES
affects storage allocation.

The COMMON Pseudo-Operation
The COMMON pseudo-operation is used to reserve an

area of upper core storage for data storage or for
working space. Typically, this pseundo-operation is

used when two or more subprograms operate on the
same block of information (see the discussion of
FORTRAN COMMON usage in "Common Storage,"
page 59). The constituents of the COMMON pseudo-
instruction are:

1. A symbol or blanks in the location field;

2.. The operation code COMMON in the operation
field;

3. An absolute expression in the variable field.

The COMMON pseudo~operation may be used only
in a relocatable assembly. The COMMON pseudo-
instruction operates in conjunction with a counter,
called the common counter. This counter keeps track
of the location of the next block of common storage to
be assigned.

The COMMON pseudo-operation performs the
following two functions:

1. A symbol in the location field is defined to be
the current value of the common counter; and

2. The common counter is decreased by the value
of the expression in the variable field.

Thus, the COMMON pseudo-operation reserves a
block of storage in upper core storage. The length of
the block is given in the variable field; if there is a
symbol in the location field, this symbol is a common
symbol which refers to the last location of the block
(not the location after the last location, as with BES).
This usage coincides with the FORTRAN rule that
the name of an array refers to the logically first word
of the array, since the first word is stored in the
highest core storage location required by the array.

All symbols appearing in the variable field of a
COMMON pseudo-instruction must have been pre-
viously defined. The expression in the variable field
must be an absolute expression (see Previously-
Defined Symbols, page 18, and Phase Relocation Error,
page 18). If the COMMON pseudo-instruction is used
in an absolute assembly, it will be flagged as an un-
defined operation; an invalid instruction will be
generated with the prefix digit of the octal portion of
the listing left blank.

The address portion of the fourth word of the
program card that precedes the binary output will
contain the address of the last piece of data assigned
downward in common storage, that is, one more than
the final contents of the common counter; this is the
common break. However, if no COMMON pseudo-
instructions occur in the program, this portion of the
program card will be blank. In an assembly with
COMMON, the common break will be listed as it
appears on the program card.

00000 O© 00000 4 00005 ALPHA PLZE BETA,4
00005 BETA BES 4

00005 O 00000 4 00006 GAMMA PZE DELTA,4
Figure 13-2

24

The ORG Pseudo-Operation

In the FAP language, the ORG (Origin) pseudo-
operation is used to set the '"'next location to be as-
signed by the assembler' to a desired value. In
the absence of an ORG pseudo-instruction, the as-
sembler will assign locations beginning with 00000,
The constituents of the ORG pseudo-instruction are

1. A symbol or blanks in the location field;

2. The operation code ORG in the operation field;
and

3. An expression in the variable field.

The ORG pseudo-operation performs the following
two functions:

1. The symbol in the location field is defined to
have the value of the expression in the variable field;
and

2. The value of the expression in the variable field
is taken by the-assembler to be the next location to
be assigned. "

All symbols appearing in the variable field of an
ORG pseudo-instruction must have been previously
defined (see Previously-Defined Symbols, page 18).

The effect of an ORG on the binary output of the
assembler is to cause any words in the punch buffer
to be written out, and to cause the next output to
start at the new card origin. This occurs even if
the new origin is the location immediately following
the last location used, in contrast to a BSS or BES
with a count of zero.

The ORG pseudo-operation causes the next instruc-
tion to be assembled at the origin given, and, if there
is a symbol in the location field, it has the value of
the new origin.

01750 ALPHA ORG 1000
01750 0500 00 0 01751 CLA BETA
01751 BETA BSS 1

Figure 13-3

BINARY CARD NC. TEST0000
PROGRAM CARD

10000 ORG 4096
BINARY CARD NC. TESTOOO1

10000 0020 00 0 40001 TRA ALPHA

40001 LoC 16385
40001 0500 00 O 40004 ALPHA CLA BETA
40002 0601 00 O 40005 sTO DELTA
40003 0020 00 O 40006 TRA GAMMA
40004 BETA BSS 1
40005 CELTA BSS 1

BINARY CARD NC. TESTO0002
40006 0056 00 000012

CARD ORIGIN 10006
GAMMA RNT 12

Figure 13-4

Figure 13-3 illustrates the manner in which ORG
affects storage allocation.

The LOC Pseudo-Operation

The LOC (Location) pseudo-operation is used to set
the program counter. The constituents of the LOC
pseudo-instruction are:

1. A symbol or blanks in the location field;

2. The operation code LOC in the operation field;
and

3. An expression in the variable field.

All symbols appearing in the variable field of a
LOC pseudo-instruction must have been previously
defined (see Previously Defined Symbols). The effect
of a previous LOC is terminated by the appearance
of an ORG pseudo-operation or by the appearance of
a LOC pseudo-operation with a blank variable field.

LOC will not cause any binary words in the punch
buffer to be written out.

If a portion of the object program is to be loaded
at (ORG) 10001g but is to be executed from (LOC)
40001g, the sequence of instructions in Figure 13-4
may be used to permit symbolic addressing.

A LOC or ORG pseudo-instruction may be used in
a relocatable assembly in accordance with the follow-
ing rules. If the expression in the variable field is
absolute or relocatable, the new origin, and any symbol
in the location field of a LOC or ORG pseudo-
instruction is assumed to be relocatable above the
transfer vector and the linkage director. If the
expression in the variable field is common or is un-
defined, an assembly error will result.

The EVEN Pseudo-Operation

The EVEN pseudo-operation is used to ensure an
even value of the program counter for the data or in-
struction that follows. It is used primarily with 7094
double-precision instructions. The constituents of the
EVEN pseudo-instruction are:

1. Blanks in the location field;

2. The operation code EVEN in the operation

field; and
3. Blanks in the variable field,

If the program counter is odd when an EVEN op-
eration is given, a binary word containing the instruc-
tion AXT 0,0 is generated. In a relocatable assembly,
the program card indicates that the program is to be
relocated to an even location., An extra AXT 0,0 is added,
if needed, following the transfer vector, and preceding
the linkage director, if present,

The load address (instruction counter) may be
made odd by an EVEN pseudo-operation if LOC is
in effect.

25

CHAPTER 14: DATA-GENERATING PSEUDO-
OPERATIONS

The FAP language provides five pseudo-operations
(OCT,DEC,BCI,BCD, and VFD) which may be used

to infroduce words of data into a program during
assembly. Numbers introduced in this way are often
referred to as "constants.' A sixth pseudo-operation,
DUP, causes a sequence of symbolic instructions to
be duplicated a specified number of times. DUP is
often used in conjunction with VFD to generate tables
of data.

The OCT Pseudo-Operation

The OCT (Octal Data) pseudo~operation is used to
generate data expressed in octal form. The con-
stituents of the OCT pseudo-instruction are:

1. A symbol or blanks in the location field;

2. The operation code OCT in the operation field;
and

3. One or more subfields, each containing a signed
or unsigned octal integer, in the variable field.

The subfields of the variable field are separated
by commas; the number of subfields permissible is
limited only by the restrictions that the last subfield
must be terminated by a blank, and that the entire
instruction must fit on one symbolic card. If the
variable field includes column 72, a terminating
blank is assumed by the assembler. Of course,
several OCT instructions may appear in succession.

The OCT pseudo-operation performs the following
two functions:

1. If there is a symbol in the location field, this
symbol is defined to be the next location to be as-
signed by the assembler when the OCT pseudo-
instruction is encountered; and

2. Each subfield of the variable field is converted
to a binary word; these words are assigned to
successively higher core storage locations as the
variable field is processed from left to right.

Thus, the OCT pseudo-instruction introduces data
words into consecutive core storage locations, and
if there is a symbol in the location field, this symbol
refers to the first of these locations. Consecutive
commas in the variable field cause the number zero
to be generated, as does a comma followed by a blank;
hence, the number of words of data generated is

always one more than the number of commas in the
variable field.

A subfield may contain any signed or unsigned
octal integer less than 2°°. If any subfield of the
variable field exceeds these limits, or if any char-
acter other than

+-0123456717
appears in any subfield, the error flag B will be given.

Figure 14-1 illustrates the manner in which the

OCT pseudo-instruction generates data.

The DEC Pseudo-Operation

The DEC (Decimal Data) pseudo-operation is used to
generate words of data expressed as decimal numbers.
DEC is identical to OCT, except that the subfields of
the variable field are taken to be decimal data items
(see Decimal Data Items, page 5). The constituents
of the DEC pseudo-instruction are:

1. A symbol or blanks in the location field;

2. The operation code DEC in the operation field;
and

3. One or more subfields, each containing a decimal
data item, in the variable field.

The subfields of the variable field are separated by
commas; the nnmber of subfields permissible is
limited only by the restrictions that the last subfield
must be terminated by a blank, and that the entire
instruction must fit on one symbolic card. Of course,
several DEC instructions may appear in succession.

The DEC pseudo-instruction performs the following
two functions:

1. If there is a symbol in the location field, this
symbol is defined to be the next location to be as-
signed by the assembler when the DEC pseudo-
operation is encountered; and

2. Each subfield of the variable field is converted
to a binary word; these words are assigned to
successively higher storage locations as the variable
field is processed from left to right.

Thus, the DEC pseudo-instruction introduces data
words into consecutive core storage locations, and if
there is a symbol in the location field, this symbol
refers to the first of these locations. Consecutive
commas in the variable field cause the number zero
to be generated, as does a comma followed by a blank.
Thus, the number of words of data generated is
always one more than the number of commas in the

00000 O 00007 0 00006
00001 -377777777777
00002 +000000000000
00003 +000000000077
00004 +000000000066
00005 +000000000000
00006

ALPHA 10CD
DATA OCT

GAMMA BSS 7

GAMMA, ,7
TTTTTTITTTTTT 99 T1466,

Figure 14-1

26

/

8

variable field.

If the variable field of a DEC instruction contains
anything other than valid decimal data items, the
error flag E will be given.

Figure 14-2 illustrates the manner in which the
DEC pseudo-instruction generates data.

The BCI Pseudo-Operation

The BCI (Binary Coded Information) pseudo-operation
is used to generate BCD data into a program. Each
data word generated by this pseudo-operation consists
of six 6-bit characters in the standard BCD character
code (see BCD Character Code, page 68). The con-

stituents of the BCI pseudo-operation are:

1. A symbol or blank in the location field;

2. The operation code BCI in the operation field;
and

3. Two subfields in the variable field:

a. The count subfield, which consists of a single
digit, followed by a comma (a comma in
column 12 specifies a count of ten);

b, The data subfield, whose length is deter-
mined by the count subfield.

The number in the count subfield specifies the
number of six-character words to be generated; the
number of characters in the data subfield is the num-
ber in the count subfield multiplied by six. Since
the count subfield determines the total length of the
variable field, the comments field begins immediately
following the end of the data subfield, and no blank
character is needed to separate the comments field
from the variable field.

The data subfield may contain any combination of
valid characters, including comma and blank. Thus,
the BCI pseudo-operation is an exception to the rule
that the variable field is terminated by a blank.

The BCI pseudo-operation performs the following
two functions:

1. If there is a symbol in the location field, this
symbo! is defined to be the next location to be as-

signed by the assembler when the BCI pseudo-
operation is encountered; and

2. The first six characters of the data subfield
are converted to BCD, and the resulting binary word
is assigned to the next storage location to be assigned
by the assembler. If the number in the count sub-
field is greater than one, the next six characters are
converted and assigned to the next storage location,
and so on, until the number of words specified by
the count subfield have been generated.

Thus, the BCI pseudo-instruction introduces data
words into consecutive core storage locations, the
number of words generated being equal to the number
in the count subfield. If there is a symbol in the loca-
tion field, it refers to the first word of data generated.

If the count subfield is not 0-9 or a comma in
column 12, one word of blanks is generated and the
error flag E is given.

Figure 14-3 illustrates the manner in which the
BCI pseudo-instruction generates data.

The BCD Pseudo-Operation

The BCD (Binary Coded Decimal) pseudo-operation

is a 704 SAP pseudo-operation which has been included
in the FAP language for compatibility. This pseudo-
operation has been supplanted by BCI in FAP. The
BCD pseudo-operation is like BCI, with the following
exceptions:

1. The operation code BCD appears in the opera-
tion field;)

2. The count digit must appear in column 12;

3. No comma separates the count digit from the
data subfield; the data subfield always begins in
column 13; and

4. A blank or zero in column 12 is used to indicate
ten words of data.

If card column 12 does not contain a blank or the
digits 0-9, one word of blanks is generated and the
error flag E is given.

00000 0© 00007 O 00007
00001 +000000000015
00002 -000000000026
00003 +050000000000
00004 +000000000001
00005 +000000000000
00006 +000000000000

ALPHA 10CD
DATA DEC

GAMMA, ,7
13,-22,5B55 1y,

00007 GAMMA BSS 7
Figure 14-2

00000 O 00007 O 00003 ALPHA 10CD GAMMA,,7

00001 22232604425 DATA BCI 2,BCD MESSAGE COMMENT
00002 626221272560

00003 GAMMA BSS 7

Figure 14-3

27

The VFD Pseudo-Operation

The VFD (Variable Field Definition) pseudo-operation
is used primarily for the generation of tables for use
with the "convert' operations. The constituents of the
VFD pseudo-instruction are:

1. A symbol or blank in the location field;

2. The operation code VFD in the operation field;
and

3. One or more subfields (described below) in
the variable field.

Each VFD pseudo-instruction generates one or
more binary words of data. Each subfield of the
variable field generates one or more bits of this data;
thus, the unit of information for this pseudo-operation
is the single bit. Each subfield is one of three types:

Symbolic
Octal (or Boolean)
Alphameric

The constituents of a VFD subfield are:

1. The type-letter:

The letter O signifies that the subfield is octal
(Boolean).

The letter H signifies that the subfield is alpha-
meric,

The absence of a type-letter signifies that the
subfield is symbolic.

2. The bit count:

An unsigned decimal integer, which specifies
how many bits of the data word will be generated by
this subfield.

3. The separation character / (slash).

4. The data item.

The form of the data item depends on the type of
subfield:

1. In a symbolic subfield the data consists of one
expression;

2. In an octal subfield the data item consists of one
octal integer or one Boolean expression; and

3. In an alphameric subfield the data consists of a
string of characters, none of which is a comma or
a blank. ;

The subfields are separated by commas. Any
number of subfields may be used, but the length of
each subfield must be 63 bits or legs.

The VFD pseudo-operation performs the following
two functions:

1. If there is a symbol in the location field, this
symbol is defined to be the next location to be as-
signed by the assembler when the VFD pseudo-
instruction is encountered.

2. Successive subfields of the variable field are
converted and packed to the left to form generated
data words. If n is the bit count of the first subfield,
then the data item in that subfield is converted to an
n-bit binary number. This n-bit binary number is
placed in the leftmost n bit positions of the first data

28

- most n bits of the converted item are used.

word to be generated; the sign position is here re-
garded as the first bit position. If n exceeds 36, the
leftmost 36 bits of the converted data item form the
first generated data word, and the remaining bits are
placed in the first n-minus-36 bit positions of the
second generated data word. Each succeeding sub-
field is converted and placed in the leftmost bit
positions remaining after the preceding subfields
have been processed. The data words generated in
this way are assigned to successively higher storage
locations. If the total number of bit positions used
is not a multiple of 36, then the unused bit positions
at the right of the last generated data word will be
filled with zeros.

The data item in a symbolic subfield is converted
in the same manner as a symbolic expression. Let
n be the bit count of the subfield. If the data item, as
converted, occupies more than n bits, only the right-
most n bits of the converted data item are used. If
the data item, as converted, occupies less than n bits,
sufficient zero bits are placed at the left of the con-
verted data item to form an n-bit binary number.
Neither condition is regarded as an error by the
assembler. If the data item is a relocatable expression
or a common expression, then the subfield must be
so situated in relation to preceding fields that its
rightmost bit coincides with the rightmost bit of a
generated data word, or with the rightmost bit of the
decrement portion of a generated data word. A viola-
tion of this rule will be flagged as a relocation error
by the assembler.

The data item in an octal subfield may be an un-
signed octal integer of any length. If the bit count
of the subfield is 36 or less, the data item may
be any valid Boolean expression. Note that an unsigned
octal integer is one type of valid Boolean expression.
If the bit count of the subfield exceeds 36, then the
data item must be an unsigned octal integer. Letn
be the bit count of the subfield. If the data item, as
converted, occupies more than n bits, only the right-
If the
data item, as converted, occupies less than n bits,
sufficient zero bits are placed at the left of the con-
verted data item to form an n-bit binary number.
Neither condition is regarded as an error by the
assembler. '

The data item in an alphameric subfield may con-
sist of any combination of characters other than comma
or blank. Each character is converted to its six-bit
binary code equivalent. Let n be the bit count of the
subfield. If the data item, as converted, occupies
more than n bits, only the rightmost n bits are used.
If the data item, as converted, occupies less than n
bits, sufficient six-bit groups of the form 110000 (the
BCD code for blank) are placed at the left of the con-
verted data item to form an n-bit binary number; if
n is not a multiple of six, the appropriate right-hand

D

portion of this group will appear at the extreme left
of the n-bit result. In other words, the data item is
converted as if the leftmost character were preceded
by an unlimited number of blanks. If the bit count of
the subfield is not a multiple of six, the leftmost
character used, or the leftmost blank used, is trun-
cated. None of the conditions discussed in this para-
graph is regarded as an error by the assembler.

The bit count of each subfield must be 63 or less.
If the bit count of a subfield exceeds 63, it will be
taken as 63, and the erroneous instruction will be
given the flag E.

The pseudo-operation ETC, described below, may
be used to extend the variable field of a VFD pseudo-
instruction. Any number of ETC pseudo-instructions
may follow a VFD to give an effective variable field
of unlimited length. If there is a symbol in the loca-
tion field of the VFD pseudo-instruction, this symbol
refers to the first generated data word.

The asterisk may be used as an element in the
variable field of a VFD pseudo-instruction. When so
used, the value of this element is the next location
to be assigned by the assembler when the subfield
containing the asterisk is about to be processed.
That is, the value of the asterisk will be the location
assigned to the generated data word which contains
the leftmost bit of the subfield in which the asterisk
appears. Failure to keep this fact in mind may lead
to confusion, since the bits generated by one subfield
may occupy as many as three different generated
data words.

As an example, suppose the programmer would
like to break up a single 36-bit word into four parts
as follows:

1. Positions S, 1-9: the binary equivalent of the
decimal integer 895
the binary equivalent of the
octal integer 37
the binary code for the
character C
the binary value of the sym-
bol ALPHA
He may proceed as in Figure 14-4.

2. Positions 10-14:

3. Positions 15-20:

4. Positions 21-35:

Figure 14-5 is an additional illustration of the VFD
pseudo-instruction.

The ETC Pseudo-Operation

The ETC (Etcetera) pseudo-operation is used to ex-
tend the variable fields of the VFD and CALL pseudo-
instructions and certain macro-instructions. The
constituents of the ETC pseudo-instruction are:

1. Blanks in the location field;

2. The operation code ETC in the operation field;
and

3. One or more subfields in the variable field.

An ETC pseudo-instruction may appear only in
one of the following positions in the symbolic deck:

1. Immediately following a VFD pseudo-
instruction;

2. Immediately following a CALL pseudo-
instruction;

3. Immediately following another ETC pseudo-
instruction;

4. Immediately following certain macro-
instructions;

5. Anywhere within a macro-definition.

An additional restriction is that an ETC pseudo-
instruction may not appear immediately after the last
instruction in the range of a DUP.

The variable field of the VFD, CALL, or ETC
pseudo-instruction preceding an ETC pseudo-
instruction must contain a number of complete subfields
and must be terminated by a comma followed by a blank.
That is, if the variable field of a VFD or CALL
instruction is divided among several symbolic cards,
the divisions must take place between subfields, with
the separating comma at the point of division going
with the subfield that precedes it.

If a VFD, CALL, or ETC pseudo-instruction is
followed by an ETC pseudo-instruction, but does not
have a comma immediately preceding the blank which
terminates its variable field, or an ETC occurs
immediately following the last instruction in the range
of a DUP or immediately following any instruction
except a VFD, a CALL, or a valid ETC pseudo-
instruction, then the assembler will fail to recognize
the operation code, and the error flag O will be

VFD 10/895405/379H6/C915/ALPHA given.
Figure 14-4 Each subfield of the variable field of an ETC pseudo-
01750 ORG 1000
01750 0O 00007 O 01756 ALPHA 10CD GAMMA,,7
DATA VFD 1/1917/409/77,
01751 400000077212 ETC H18/ABCyH18/D,
01752 223606024000 ETC 45/ALPHA, 5 /%
01753 000000001750
01754 000000000000
01755 001754000000
01756 GAMMA BSS 7
Figure 14-5

29

instruction will be processed in the same way as sub-
fields of the immediately-preceding VFD, CALL, or
ETC pseudo-instruction. Thus, for example, the
first instruction in Figure 14-6 is equivalent to the
set of three instructions which follow it.

The ETC pseudo-instruction may also be used to
extend the variable field of a macro-definition heading
card, a macro-instruction, or an instruction within
a macro-definition prototype. The ETC convention in
the Macro-Operation Processor differs from the ETC
convention to extend the variable field of a VFD,
CALL, or ETC pseudo-instruction. In the Macro-
Operation Processor, it is necessary that the variable
field of the instruction preceding the ETC conform
to the following conventions:

1. An unmatched left parenthesis exists in the
variable field; or

2. The variable field is terminated by a $ immedi-
ately followed by the character blank or card column
73. This will not be confused with the use of the
character $ to signal a heading character or transfer
vector name, since, in neither of these cases will
the $ be immediately followed by a blank; or

3. The variable field extends to card column 72.

If the variable field of a card with an unmatched
left parenthesis is terminated before column 72, the
blank spaces between the end of the variable field
and column 72 are treated as text by the macro
processor. The $ convention must be used if the
trailing blanks are not desired as part of the text or
substitutable argument in a macro prototype card or
macro instruction.

If a card with an unmatched left parenthesis is not
immediately followed by an ETC card, an assembly
error will be flagged. If a card with a terminal § is
not followed by an ETC, the terminal $ is deleted
from the macro-definition and ignored.

If the preceding card does not follow these con-
ventions, an ETC card will be treated as the first
card in the prototype and an assembly error will
usually result.

Within the macro-definition prototype the variable
field of any instruction may be extended by an ETC,
following the ETC convention in the Macro-Operation
Processor. However, if the variable field of a VFD
or CALL is to be extended by ETC, it must follow
the ETC convention for VFD or CALL.

The macro-operation compiler will generate ETC
cards, recognized by the macro-operation processor
only, to follow any generated instruction whose vari-
able field extends beyond card column 72.

The DUP Pseudo-Operation

The DUP (Duplicate) pseudo-operation causes an
instruction or sequence of instructions to be dupli-

30

cated. Its primary use is in the generation of tables.
The constituents of the DUP pseudo-operation are:

1. A symbol or blanks in the location field;

2. The operation code DUP in the operation field;
and

3. Two subfields, the instruction count and the
iteration count, in that order, in the variable field.
Each subfield contains one symbolic expression.

The DUP pseudo-instruction performs the follow~
ing functions:

1. If there is a symbol in the location field, this
symbol is the next location to be assigned by the
assembler when the DUP pseudo-operation is en-
countered.

2. The instruction count and iteration count sub-
fields are evaluated.

3. Duplication is performed, as described below,
under control of the instruction count and iteration
count.

All symbols that appear in the variable field of
a DUP pseudo-instruction must have been previously
defined.

Let the letter m stand for the instruction count
and the letter n for the iteration count. Then the
meaning of the DUP pseudo-instruction is ""Duplicate

the next m instruction n times." The set of m instruc-

tions immediately following the DUP pseudo-
instruction is called the range of the DUP. The effect
of the DUP pseudo-instruction is as if the set of m
symbolic instructions making up the range of the DUP
were copied n-1 times (except for the location fields),
and these n-1 copies placed in the symbolic deck
behind the original set.

The duplication process consists of n iterations.
During the first iteration, the instructions in the
range of the DUP are assembled normally, just as
if the DUP had not occurred. Symbols that are defined
within the range of the DUP are defined during the
first iteration. Each subsequent iteration is performed
by assembling all of the instructions of the range in
order, but without defining any symbols except a
symbol defined by the SET pseudo-operation. The
number of binary words generated by the duplication
process is n times the number of words generated by
the instructions in the range of the DUP. Any machine
operation or pseudo-operation may appear in the range
of a DUP except a macro-instruction and the pseudo-
operations ABS, COMMON, COUNT, DUP, END,
ENTRY, FUL, IRP, IFF, LOC, MAC, ORG, RMT,
SST, and 9LP. The update pseudo-instructions may
not appear in the range of a DUP. The EVEN pseudo-
operation may be used within the range of a DUP only
if the total number of words generated by each itera-
tion is even.

The asterisk may be used as an element within
the range of a DUP, in which case the value of this

«

00000 677772300002

()

00001 6777172300002

DATA

VFD
VFD
ETC
ETC

10/895,05/37,H6/C,15/ALPHA
107895,

05/37,H6/C,

15/ALPHA

Figure 14-6

30.1

C

element differs during different iterations of the DUP.

This provides a very powerful method for generating
tables.

Figures 14-7, 14-8, and 14-9 are equivalent; the
first two figures illustrate how the asterisk may be
used to reduce the amount of coding required.

Tl DUP 1910

VFD 20/%#100-T1*100s16/T1
Figure 14-7

DUP 1,10
Tl VFD 20/#%100~T1%#100916/71
Figure 14-8
Tl VFD 20/0916/T71

VFD 20/100416/T1

VFD 20/200916/71

VFD 20/30016/T1

VFD 20/400916/T1

VFD 20/500916/T71

VFD 2C/600916/T71

VFD 20/700916/71

VFD 20/800916/T1

VFD 20/900+16/T1
Figure 14-9

The uses of DUP in Figure 14-10 are meaningless;
they will be given the warning flag F and will be
ignored by the assembler.

DUP OsN
DUP My O
DUP Msl
Figure 14-10

CHAPTER 15: PROGRAM-LINKING PSEUDO-
OPERATIONS

The ENTRY, CALL, IFEOF, and EXTERN pseudo-
operations are used within a program to provide
communication links between that program and other
programs. The character $ may also be used for this
purpose. The descriptions that follow assume that
the reader is familiar with the use of the program

card and transfer vector in FORTRAN; a thorough
discussion of these and related subjects appears in
Part V of this manual.

The ENTRY Pseudo-Operation

The ENTRY pseudo-operation is used to define an
entry point to a relocatable subprogram. A main
program is distinguished by the fact that it contains
no ENTRY pseudo-instructions or that it contains an
ENTRY with an explicit zero in the variable field.
The ENTRY pseudo-operation must appear in the
first card group. The constituents of the ENTRY
pseudo-instruction are:

1. Blanks in the location field;

2. The operation code ENTRY in the operation
field; and

3. A single symbol in the variable field.

The symbol in the variable field that must be
defined subsequently as a relocatable symbol is a
name of the subprogram. The first character of the
subprogram name may not be numeric.

The ENTRY pseudo-instruction performs the
following two functions:

1. The symbol in the variable field (followed by
sufficient blanks to make six characters) is placed
in the program card. An explicit zero in the variable
field of an ENTRY pseudo-instruction will cause the
program card to indicate that the entry point to the
main program is the first instruction following the
transfer vector and the linkage director.

2. The value of the symbol, which is defined in
the program, is placed in the program card following
the symbol itself.

Thus, the ENTRY pseudo-instruction establishes
the symbol as a name of the program and identifies
the associated entry point with it. There may be
more than one ENTRY in a subprogram.

For example, a subroutine to compute sines and
cosines begins as in Figure 15-1.

The ENTRY pseudo-instruction may also be used
to provide secondary entries for subroutines. If the
symbol in the variable field of the ENTRY instruction
is preceded by a minus sign, the word on the program
card which contains the address of this entry point
will have a 1 in the sign position. This will cause
the loader to ignore the subroutine unless one of its
primary entries has also been called. This feature

SINE-COSINE ROUTINE

00001 ENTRY SIN

00000 ENTRY cos
00000 0300 00 O 00072 COS FAD =1.57079632679
00001 0601 00 O 00071 SIN STO ARG
Figure 15-1

31

of FAP is useful when assembling subroutines for
inclusion in the library tape.

The ENTRY pseudo-operation is undefined in an
absolute assembly.

The CALL Pseudo-Operation

The CALL pseudo-operation is used to produce a
subroutine calling sequence of the type generated by
the CALL statement in FORTRAN (see Part 5 of
this manual). The constituents of the CALL pseudo-
instruction are:

1. A symbol or blanks in the location field;

2. The operation code CALL in the operation
field; and

3. One or more subfields in the variable field:

a. The first subfield of the variable field must
contain a single symbol that is the name of
a subroutine. :

b. Each subsequent subfield (if any) may contain
any symbolic expression; these are the argu-
ments of the subroutine.

The subfields are separated by commas; the num-
ber of subfields permissible is unlimited, since the
ETC pseudo-operation may be used to extend the
variable field to any desired length.

The CALL pseudo-instruction performs the follow-
ing functions in a relocatable assembly:

1. If there is a symbol in the location field, this
symbol is the next location to be assigned by the
assembler when the CALL pseudo-instruction is
encountered.

2. The first subfield of the variable field contains
the name of the subroutine called.

a. If this name is not already present in the
transfer vector, it is placed there (followed
by sufficient blanks to make six characters),
and the name is defined to be a relocatable
symbol whose value is the corresponding
location in the transfer vector.

b. A TSX instruction, having a tag of 4 and an
address that is the transfer vector location
containing the subroutine name, is as-
sembled and assigned to the next location
to be assigned by the assembler.

3. Each subsequent subfield of the variable field
contains an argument and is assembled as the address

of a TSX instruction whose tag is zero. These TSX
instructions are assigned to successively higher
locations.

4. A CALL pseudo-instruction (or any valid ETC
following it) followed by a comma and then a blank,
but not followed by an ETC instruction, will generate
an additional argument of TSX 0, corresponding to
the void field.

5. If there is a symbol in the location field, this

symbol refers to the first instruction of the calling
sequence,

Caution must be observed when using constants in
a calling sequence to a FORTRAN subprogram. A
FORTRAN subprogram always regards a calling-
sequence argument as the address of the location
where the operand is stored. Thus, if it is necessary
to communicate the number 3 to a FORTRAN subpro-
gram as an integer, the argument in the CALL pseudo-
instruction must be a symbol assigned to a location
whose decrement contains the number 3. Note that
certain FAP-coded subprograms, notably DUMP,
are written to accept either the operand or its address
in the calling sequence.

If a CALL pseudo-instruction is used in an absolute
assembly, no transfer vector entry will be made, and
the name of the subprogram in the first subfield of the
variable field must be defined in the same manner as
any other symbol.

Figure 15-2 illustrates the assembly of a CALL
pseudo-instruction.

Standard Error Procedure Option

The standard error procedure provides information
which will enable an error-tracing routine to tabulate
the sequence of subroutine calls which led to a given
error. The use of the standard error procedure is
optional. When used with a FORTRAN program, the
error-tracing routine will give the name of the sub-
program in which the error occurred, the name of
the higher-level subprogram which called it, the
external and internal formula numbers of the
FORTRAN statement which called the error-producing
subprogram, the name of the still-higher-level sub-
program which called the higher-level subprogram,
and so on, back to a statement in the main program.
The standard error procedure in FAP will make it

TRANSFLR VECTOR

CO0000 2464444176060 DUMP

C0001 0074 00 4 00000 CALL DUMP,A,A+100,,R,S5,3
C0002 0074 00 0 77461

C0063 0074 00 O 77625

C0004 0074 00 O 00000

C0005 0074 00 0O 177460

C0006 0074 00 0 17457

00007 0074 00 O 00003

Figure 15-2

32

possible for the error-tracing routine to give similar
information about FAP-assembled programs, and to
continue tracing through FAP and FORTRAN programs.
Instead of providing the error-tracing routine with
external and internal formula numbers, the standard
error procedure in FAP gives the octal location of the
calling sequence involved.

The standard error procedure will add two binary
words to the beginning of each assembled subprogram.
These two words will be introduced immediately
following the last word of the transfer vector, or at
the very beginning if the subprogram has no transfer
vector. The first of these words is called the linkage
director, because the information it contains when
an error occurs will enable the error-tracing routine
to find the statement which called the subprogram.
Initially the linkage director will contain the number
zero. The subprogram should store index register 4
in the decrement of the linkage director every time
the subprogram is entered. Note that FAP does not
automatically produce the necessary SXD instructions
to save index register 4. If the first location of the
program proper is assigned a location symbol, then
the address of the linkage director may be obtained
by subtracting 2 from the symbol.

Immediately following the linkage director in each
subprogram, the standard error procedure will intro-
duce a word containing the BCD name of the sub-
program; this name is given in the variable field of
the first entry instruction. The error-tracing routine
will refer to this location to find the name of the sub-
program. A symbolic subprogram using the standard
error procedure might begin as in Figure 15-3. In
this case the linkage director would occupy SYMB-2;
SYMB-1 would contain the number 627044226060,
which is the BCD equivalent of SYMB.

*SYMBOLIC SUBPROGRAM
ENTRY SYMB
, ENTRY SUBP
SYMB FAD =3,14159
SUBP SXD SYMB-2,4
STO SYMT
Figure 15-3

The standard error procedure will lengthen each
calling sequence produced by the CALL pseudo-instruc-
tion by introducing the two instructions in Figure
15-4 at the end of the calling sequence:

NTR *+2909A
PZE Cs09B
Figure 15-4

where A and B together give the octal location,
relative to the beginning of the program, of the first
word of the calling sequence, and C gives the loca-
tion of the linkage director in a subprogram. Ina
main program C is zero. If the location of the first
word of the calling sequence is less than 32770g,
relative to the beginning of the program, then A will
be zero, and B will be a binary number which, when
converted to decimal, will give the correct octal
location; otherwise, A will contain the high-order
octal digit of the location, and B, when converted to
decimal, will give the low-order four octal digits.

An installation desiring to use the standard error
detection procedure may do so by removing the card
labeled 9F04FLOW from the Editor Deck; any instal-
lation not wanting the facility may leave the Editor
Deck intact to omit the additional assembled instruc-
tions. Subroutine references made by use of the
character $ will not be affected.

Subroutine Reference Using the $ Character

In FAP, preceding a symbol that appears in the vari-
able field of a machine instruction by the character $
has the effect of defining that symbol as the name of
a subroutine. When such a symbol is encountered,
FAP will do the following:

1. If the symbol is not already present in the
transfer vector, the symbol is unheaded, is placed
in the transfer vector (followed by sufficient blanks
to make six characters), and the symbol is defined
to be a relocatable symbol whose value is the corre-
sponding location in the transfer vector.

2. The instruction is assembled in the normal
manner, as if the character $ were not present.

Since a symbeol need be so identified only onece in
a program, the use of the $ is necessary only when
the subroutine name does not appear as the first sub-
field of the variable field of a CALL instruction, and
then it is necessary to prefix the character $ to just
one appearance of the subroutine name. No harm is
done, however, if the $ is used more than once with
the same symbol.

The use of the $ for subroutine reference is subject
to the following restrictions:

1. In an absolute assembly, the character $ will
not cause a transfer vector entry to be made.

2. No symbol that has been defined as the name of
a subroutine (either by use of the $ or by a CALL
pseudo-operation) may be used in the variable field

33

of any pseudo-instruction except CALL. If the char-

4. A subroutine name may be headed if the heading

acter $ is used in the variable field of any other pseudo- character is not the first character in the variable

instruction, it will be considered a heading character.
If a symbol which has been defined as a subroutine
name appears in the variable field of a symbol-
defining or storage-allocating pseudo-instruction,

the instruction will be given the error flag P.

3. When the character $ is used to define a sub-
routine name, this character must be the first char-
acter of the variable field. That is, the character $
may be used only in the address subfield of an instruc-
tion. If the subroutine name is established in the
transfer vector by its appearance elsewhere in the
program (as the first subfield of the variable field
of a CALL pseudo-operation, or, preceded by a $,
as an address of a machine operation), then ex-
pressions involving the subroutine name, but not
including the character $, may be used in the address,
tag, or decrement subfield of an instruction.

field of the instruction; see Figure 15-5. D
Suppose several tables have been assembled as \

subroutines to avoid having to reassemble the tables

each time the program is reassembled. The "'table"

subroutine might begin as in Figure 15-6. The

program that uses these tables might contain the

sequence of instructions in Figure 15-7.

The IFEOF Pseudo-Operation

The IFEOF (If End of File) pseudo-operation is used
to communicate with a library subroutine (EOF),
which must be provided by the individual installation.
Figure 15-8 illustrates the assembly of the IFEOF
pseudo-instruction.
The IFEOF pseudo-operation is undefined in an
absolute assembly.

TSX SALPHA»4 ALPHA IS A SUBROUTINE NAME

TSX ASBETA»4 ASBETA IS NOT DEFINED HERE
AS A SUBROUTINE NAME

TSX $BSPSI s 4 B3PSI IS A SUBROUTINE NAME

TSX $08PSI 4 PSI IS A SUBROUTINE NAME

Figure 15-5

COUNT 200

—_—

TABLES FOR CONVERSION
ENTRY TBLP
ENTRY TBLQ
ENTRY TBLR
ENTRY TBLS
ENTRY TBLT
TBLP CAQ Assb
A DUP 1510
VFD 20/%#%#100000-A%100000+16/8B
B DuUP 1s10
VFD 20/%%#10000-B*10000+16/C
C DUP 1510
VFD 20/%#%1000-C*1000+16/D
D DUP 1s10
VFD, 20/%%100~D*100916/E
E DUP 1410
VFD 20/#%10-E*10916/F
F DUP 1,10
VFD 20/ %#=F
TBLQ CVR Gosb
G DUP 1,10
VFD 6/%=G930/G
DuUP 1,10
VFD 6/%~G=10930/GH
Figure 15-6
LDQ BCDWD
LM
XECH* TBLP
ARS 16
SLW BINWD
Figure 15-7

34

N

TRANSFER VECTUR
CO000 742546263460 (ECF)
0001 -0625% 60 0 00000
C0002 0761 00 G 00003

A IFEOF B

Figure 15-8

The EXTERN Pseudo-Operation

The EXTERN (External Symbol) pseudo-operation is
used to insert symbols into the transfer vector. The
constituents of the EXTERN pseudo-instruction are:

1. Blanks in the location field;

2. The operation code EXTERN in the operation
field; and

3. A list of FAP symbols, of one through six
BCD characters, separated by commas, in the
variable field.

Each symbol in the EXTERN variable field will
be inserted into the transfer vector. If a symbol is
already in the transfer vector, it will be ignored. If
a symbol has been previously defined in the location
field of a machine instruction or a symbol defining
pseudo-operation, it will be multiply defined.
EXTERN is undefined in an absolute assembly.

CHAPTER 16: OPERATION CODE-DEFINING
PSEUDO-OPERATIONS

In setting the mode of an assembly, the 704 and 7090
pseudo-operations define which operation codes in the
Combined Operations Table are to be allowed in a
program that is to be executed on an IBM 704 or 7090,
respectively. The OPD, OPVFD, and OPSYN pseudo-
operations define and rename operation codes.

These pseudo-operations may appear in the first

card group.

The 704 Pseudo-Operation

The 704 pseudo-operation sets the mode of assembly
to 704. Instructions unique to 7090 are given the
warning flag 9. The constituents of the 704 pseudo-
instruction are:

1. Blanks in the location field;

2. The operation code 704 in the operation field;
and

3. Blanks in the variable field.

The 7090 Pseudo-Operation

The 7090 pseudo-operation sets the mode of
assembly to 7090. Instructions unique to the 704 are
given the warning flag 4. Except for the 709 drum
instructions, which are in the 704 mode, all 709

instructions are included in the 7090 mode. The
constituents of the 7090 pseudo~instruction are:

1. Blanks in the location field;

2. The operation code 7090 in the operation field;
and

3. Blanks in the variable field.

7090 is the initial mode of assembly, that is, it is
automatically in effect unless the 704 pseudo-
instruction is given.

The OPD Pseudo-Operation

The OPD (Operation Definition) pseudo-operation
defines a machine operation code. The constituents
of the OPD pseudo-instruction are:

1. A symbol in the location field;

2. The operation code OPD in the operation field;
and

3. An octal machine operation code definition (see
below) in the variable field.

The OPD pseudo-instruction assembles the variable
field as an octal number and assigns this number as
the machine operation code definition of the symbol in
the location field (see ""Machine Operation Code Defini-
tion," page 36).

The OPVFD Pseudo-Operation

The OPVFD (Operation Variable Field Definition)
pseudo-operation defines a machine operation code.
The constituents of the OPVFD pseudo-instruction
are:

1. A symbol in the location field;

2. The operation code OPVFD in the operation
field; and

3. One or more subfields as described for the
VFD pseudo-instruction (see page 28), with a bit
count of exactly 36, in the variable field.

The OPVFD pseudo-instruction assembles the
variable field as an octal number and assigns this
number as the machine operation code definition of
the symbol in the location field (see Machine Opera-
tion Code Definition below).

The OPSYN Pseudo-Operation
The OPSYN (Operation Synonym) pseudo-operation

renames machine operation codes and pseudo-
operations. The constituents of the OPSYN pseudo-

35

instruction are:

1. A symbol in the location field;

2. The operation code OPSYN in the operation
field; and

3. A machine operation code, which may have
been defined by a prior OPD, OPVFD, or OPSYN,
in the variable field.

The OPSYN pseudo-instruction obtains from the
Combined Operations Table the octal number to be
used for definition of the operation code symbol in
the location field.

Machine Operation Code Definition
In order to establish an operation code word for OPD

or OPVFD, an octal number must be created in
accordance with the table in Figure 16-1.

Position

Meaning
S Sign
1,2 Type A operation code
3-11 Type B,C,D, or E operation code

12,13 Indirect address permitted (for Type B
operation codes only)

14 Address required

15 Tag required

16 Decrement required

17 Low-order thirteen bits may contain flags, not
a portion of the operation code (Type E or
Type B 1/O instruction)

18 Indirect address permitted (Type A instruction)

19 Non-transmit bit (Type A instruction)

20 Instruction is machine instruction, not
pseudo-instruction (bit automatically
provided for OPD or OPVFD)

21 Instruction permitted in 704 mode

22 Instruction permitted in 7090 mode. Note:
An instruction must have either or both of
the above bits or an N waming flag will
appear when the instruction is used.

23-35 Part of operation code if bit 17 is zero

33 Type K disk command

34 Type C instruction or type K disk command
with a low order (mask) field

35 Type D instruction

Figure 16-1

In order to define XYZ as an operation that is
synonymous with CLA, it is possible to write either
of the instructions in Figure 16-2.

XYZ OPSYN CLA

XYz oPD
Figure 16-2

050071160000

36

The variable field of the second instruction in
Figure 16-2 may be analyzed as follows:

050071160000

[Additional flags, not used for this
instruction

Permissible in 704, 7090 modes

Machine operation
(automatically provided)

Low-order thirteen bits are not
part of the operation code

Address required; indirect address
permitted

Machine operation code

CHAPTER 17: CARD FORMAT-CONTROL PSEUDO-
OPERATIONS

In addition to assembling relocatable programs for
use within the Monitor system, the FAP assembler
will also assemble absolute programs. The deck of
binary cards produced by an absolute FAP assembly
may be loaded and executed with or without the use of
the Monitor system. The pseudo-operations used to
specify card formats are ABS, FUL, TCD, END,
and 9LP. If ABS, FUL, or 9LP are to be used to
establish the mode of assembly, the pseudo-operation
must appear in the first card group. If an ENTRY
pseudo-instruction appears before an ABS, FUL, or
9LP pseudo-instruction, indicating a relocatable
assembly, the error flag O will be given for all
appearances of ABS, FUL, 9LP, or TCD.

In an absolute assembly:

1. The following pseudo-operations may not be
used (and will be regarded as undefined operations):
COMMON, ENTRY, IFEOF, and EXTERN.

2. The following pseudo-operations, not otherwise
permissible, may be used: 9LP, FUL, ABS, and TCD.

3. A variable field is permitted in an END pseudo-
operation.

4. The character $ may not be used for subroutine
reference, but it may be used for heading reference
(see the description of HEAD, page 21).

5. All symbols (and hence all expressions) are
taken as absolute symbols; therefore, relocation
errors and phase relocation errors are impossible.

6. Binary output format will depend on the Monitor
control cards used. Both row and column binary
output, on- and off-line, will be in 22 instructions-per-
card format.

7. Binary output will be produced even if errors
are detected by the assembler.

W,

The ABS Pseudo-Operation

The ABS (Absolute) pseudo-operation is used to
specify an absolute assembly and, within an absolute
assembly, to discontinue the FUL or 9LP mode of
binary output. The constituents of the ABS pseudo-
instruction are:

1. Blanks in the location field;

2. The operation code ABS in the operation field;
and

3. Blanks in the variable field.

The ABS pseudo-operation may be used within an
absolute assembly, except in the first card
group, to cause discontinuance of the FUL or 9LP
mode of binary output. When so used, the ABS
pseudo-instruction will appear somewhere after the
appearance of a FUL or 9LP pseudo-instruction. It
effects the binary output by causing any words in the
punch buffer to be written out and the next output to
start on a new binary card in the appropriate absolute
mode of punching. The next location assigned by the
assembler becomes the new card origin. If an ABS
card is encountered in an absolute assembly when
the FUL or 9LP mode is not in force, it is ignored.

The FUL Pseudo-Operation

The FUL pseudo-operation is used to specify absolute
assembly and to cause binary output to be in the 24-
words-per-card FUL mode (see Chapter 19 for a de-
scription of this mode). The constituents of the FUL
pseudo-instruction are:

1. Blanks in the location field;

2. The operation code FUL in the operation field;
and

3. Blanks in the variable field.

When the FUL pseudo-operation appears within an
absolute assembly, any words remaining in the punch
buffer are written out and the next output is started at
the beginning of a FUL card. Binary output will there-
after be in the FUL mode until the end of the assembly
or until an ABS or 9LP pseudo-instruction is encount-
ered.

The 9LP Pseudo-Operation

The 9LP (9 Left Prefix) pseudo-operation specifies
an absolute assembly and causes a prefix punch in

- the 9-left word of an absolute binary card. The con-

stituents of the 9LP pseudo-instruction are:

1. Blanks in the location field;

2. The operation code 9LP in the operation field;
and

3. An expression in the variable field.

When 9LP appears within an absolute assembly,
any words remaining in the punch buffer are written

out and the next output is started at the beginning of
a 9LP card. The prefix punch in the first word is
based on the low-order three binary digits of the
expression in the variable field. In other respects
the binary output is identical to that produced by ABS
(see above). Binary output will thereafter be in

the 9LP mode until the end of the assembly or until
an ABS or FUL is encountered.

The TCD Pseudo-Operation

In an absolute program, a binary transfer card directs
the loading program to stop loading cards and to
transfer control to a designated location. In most
cases, a transfer card is required only at the end of
the binary deck; in absolute assemblies, the END
pseudo-operation may cause a binary transfer card
to be punched (see the description of END, page 19).
However, it is occasionally desirable to cause a
transfer card to be punched before the end of the
binary deck; in this case, the TCD pseudo-operation
is used.

The constituents of the TCD pseudo-instruction are:

1. Blanks in the location field;

2. The operation code TCD in the operation field;
and

3. A symbolic expression in the variable field.

The TCD pseudo-operation performs the following
functions:

1. Any binary output waiting in the punch buffer is
written out.

2. A binary transfer card is produced whose
transfer address is the value of the expression in the
variable field.

CHAPTER 18: LIST-CONTROL PSEUDO-OPERATIONS

The list-control pseudo-operations affect the assembly
listing but have no effect whatever on the binary
program produced by the assembler.

The REM Pseudo-Operation

The REM (Remarks) pseudo-operation is used to enter
remarks into the assembly listing. The constituents
of the REM pseudo-instruction are:

1. Blanks in the location field;

2. The operation code REM in the operation field;
and

3. Remarks in the variable field, starting after
column 11.

The contents of columns 8-10 of the operation
field will be replaced by blanks, and the contents of
the remainder of the card will be copied onto the
assembly listing. Otherwise, the remarks card is
ignored by the assembler.

37

The SPACE Pseudo-Operation

The SPACE pseudo-operation is used to generate one
or more blank lines onto the assembly listing. The
constituents of the SPACE pseudo-instruction are:

1. Blanks in the location field;

2. The operation code SPACE in the operation
field; and

3. A symbolic expression in the variable field.

The value of the expression in the variable field
is the number of blank lines which will appear in the
assembly listing; however, if the value of the ex-
pression is zero, one blank line will appear. Also,
if the spacing operation would result in the next line
being printed within five lines of the bottom of the
page, no spacing will occur; instead, the next line of
the listing will appear at the top of a new page.

Listing of the SPACE pseudo-instruction is controlled

by PCC.
The EJECT Pseudo-Operation

The EJECT pseudo-operation causes the next line of
the listing to appear at the top of a new page. The
constituents of the EJECT pseudo-instruction are:

1. Blanks in the location field;

2. The operation code EJECT in the operation field;

and

3. Blanks in the variable field.

Listing of the EJECT pseudo-instruction is con-
trolled by PCC.

The UNLIST Pseudo-Operation

The UNLIST pseudo-operation causes all listing,
except instructions that are flagged, to be suspended.
The constituents of the UNLIST pseudo-instruction
are: :
1. Blanks in the location field;

2. The operation code UNLIST in the operation
field; and

3. Blanks or comments after column 17. :

The UNLIST pseudo-instruction itself is listed
(unless a previous UNLIST is in effect), but there-
after only those instructions that are flagged will be
listed by the assembler until a LIST pseudo-
instruction is encountered. List-control pseudo-
operations, other than LIST, will be ignored by the
assembler when UNLIST is in effect.

The LIST Pseudo-Operation

The LIST pseudo-operation causes listing that was
previously suspended by an UNLIST pseudo-instruc-
tion to be resumed. The constituents of the LIST
pseudo-instruction are:

1. Blanks in the location field;

38

2. The operation code LIST in the operation field;
and .
3. Blanks in the variable field.

Listing of the LIST pseudo-instruction is controlled

by PCC. The LIST pseudo-instruction will cause one
blank line on the assembly listing whether or not
UNLIST is in effect,

The TITLE Pseudo-Operation

Most symbolic instructions generate one binary word;
some pseudo-operations generate no binary words;
the generative pseudo-operations generate several
binary words. The generative pseudo-operations are
OCT, DEC, BCI, BCD, DUP, CALL, ETC, VFD,

and IFEOF. Initially the assembly listing will contain

all the binary words generated by the generative
pseudo-operations.

The TITLE pseudo-operation causes the assembly
listing to be abbreviated by eliminating all but the

first word generated by a generative pseudo-operation.

In the case of DUP, iterations after the first are
eliminated from the listing. The constituents of the
TITLE pseudo-instruction are:

1. Blanks in the location field;

2. The operation code TITLE in the operation
field; and)

3. Blanks in the variable field.

Listing of the TITLE pseudo-instruction is con-
trolled by PCC.

Following the appearance of TITLE pseudo-
instruction and until the appearance of a DETAIL
pseudo-instruction, the assembler will exclude from
the assembly listing any line that meets the following
conditions: the line contains octal information and
does not contain the symbolic instruction that gener-
ated the octal information, unless this line has been
flagged by the assembler.

If TITLE is in effect at the end of the assembly,
the literals will not be listed.

The DETAIL Pseudo-Operation

The DETAIL pseudo-operation causes the listing of
generated data, that was previously suspended by a
TITLE pseudo-instruction, to be resumed. The con-
stituents of the DETAIL pseudo-instruction are:

1. Blanks in the location field;

2. The operation code DETAIL in the operation
field; and

3. Blanks in the variable field.

The sole effect of the DETAIL pseudo-operation is
to cancel the effect of a previous TITLE pseudo~
instruction. If TITLE is not in effect, the DETAIL
pseudo-instruction is ignored by the assembler.

Listing of the DETAIL pseudo-instruction is
controlled by PCC.

U

The LBL Pseudo-Operation

The LBL (Label) pseudo-operation causes binary
cards to be serialized in card columns 73-80. The
constituents of the LBL pseudo-instruction are:

1. Blanks in the location field;

2. The operation code LBL in the operation field;

3. Two subfields, separated by commas, in the
variable field: the first subfield contains up to eight
alphabetic and numeric characters; the second sub-
field may contain any nonzero, nonblank character,
or the number one.

Serialization begins with the characters appearing
in the first subfield of the variable field; the char-
acters are left-justified and filled with terminating
zeros. Serialization is incremented until the right-
most non-numeric character is reached, at which
time the numeric portion recycles to zero. This sub-
field may not contain any special characters.

If the variable field of a LBL pseudo-instruction
is blank, serialization of binary cards will be dis-
continued. In order to serialize from 0, an explicit
zero must appear in the variable field.

A transfer card will be labeled TRAn, where n
is a five octal digit transfer address.

A nonblank, nonzero second subfield of the variable
field, if it exists, will cause serialization to be listed.
If this second subfield consists of the number one,
only the first use of the label will be listed.

If LBL with listing is requested in a relocatable
assembly with no ENTRY cards, the message
PROGRAM CARD will identify the card so serialized.

If LBL with listing is included for a card governed
by LOC, the actual card origin (which may differ
from the location on the listing) will be listed. Listing
of the LBL pseudo-instruction is controlled by PCC.
LBL takes precedence over LABEL (see ''Label and
Serialization (FORTRAN Monitor),' Chapter 19).

The PCC Pseudo-Operation

The PCC (Print Control Card) pseudo-operation causes
the following pseudo-operations to be listed: COUNT,
DETAIL, EJECT, IFF (and cards deleted by IFF),
INDEX, IRP, LBL, LIST, NOCRS, ORGCRS, PMC,
REF, SPACE, TITLE, and TTL. The constituents of
the PCC pseudo-instruction are:

1. Blanks in the location field;

2. The operation code PCC in the operation field;

3. Blanks, ON, or OFF in the variable field.

If any field of the pseudo-operations, whose listing
is controlled by PCC, is in error and is flagged, the
pseudo-operation will always be listed. PCC will
always be listed. Alternate appearances of PCC turn
this feature on and off. The initial mode, prior to
the appearance of PCC, is off.

The use of ON or OFF in the variable field gives
absolute control of the PCC pseudo-operation.

The REF Pseudo-Operation

The REF (Reference Table) pseudo-operation causes
the deletion of the Symbolic Reference Table listing.
The constituents of the REF pseudo-instruction are:

1. Blanks in the location field;

2. The operation code in the operation field; and

3. Blanks in the variable field.

Multiply~-defined and undefined symbols are always
listed. REF may occur at any point in the program.
Listing of the REF pseudo-instruction is controlled
by PCC.

The TTL Pseudo-Operation

The TTL (Subtitle) pseudo-operation generates a
subtitle on the listing. The constituents of the TTL
pseudo-instruction are:

1. Blanks or a decimal integer in the location field;

2. The operation code TTL in the operation field;
and

3. A string of alphameric characters starting in
card column 12,

Card columns 11-72 are used in words 4-14 of a
subtitle which will appear on each page. The subtitle
may be overwritten by another TTL. The subtitle may
be deleted by TTL 0.

A decimal integer (from 1-32, 767) in the location
field will cause a renumbering of pages beginning with
that integer. Listing of the TTL pseudo-instruction
is controlled by PCC.

The INDEX Pseudo-Operation

The INDEX pseudo-operation is used to list a table of
contents of important locations within the assembly.
The constituents of the INDEX pseudo-instruction are:

1. Blanks in the location field;

2. The operation code INDEX in the operation field;
and

3. A list of FAP symbols, separated by commas,
in the variable field.

The first appearance of an INDEX card will cause
the message

TABLE OF CONTENTS
to be listed. Each subfield of an INDEX pseudo-
instruction will cause the symbol, and its definition,
to be listed. The listing of the INDEX pseudo-
instruction is controlled by PCC.

INDEX pseudo~instructions may appear anywhere
in the source program and need not be grouped. The
listing generated by INDEX pseudo-instructions will
be inserted where the pseudo-instructions appear.
However, the message TABLE OF CONTENTS will
appear only once, and, for the most meaningful
commentary, INDEX pseudo-instructions should be
grouped at the beginning of the source program,

39

interspersed with appropriate remarks cards.
The PMC Pseudo-Operation

The PMC (Prini Macro-Generated Cards) pseudo-

operation causes the card images generated by macro-

instructions or remote sequences to be listed. The
constituents of the PMC pseudo-instruction are:

1. Blanks in the location field;

2. The operation code PMC in the operation field;
and

3. Blanks, ON, or OFF in the variable field.

Alternate appearances of PMC turn this feature
on and off. The use of ON or OFF in the variable
field gives absolute control of the PMC pseudo-
operation. Initially, instructions generated through
the use of a macro-instruction are not listed, except
for those instructions which are flagged by the
assembler. In order to cause such instructions and
their octal equivalent to be listed, the PMC pseudo-
operation can be used.

Control cards generated by macro-instructions
are listed only if both PMC and PCC modes are ON.
The nesting level of macro-generated cards (see page
46) appears in card columns 81 through 84 of the
listing, If, at the end of the assembly, the PMC
mode is off and remote sequences exist, literals will
not be listed.

The NULL Pseudo-Operation

The NULL pseudo-operation is used to cause an
instruction to be listed in full, but has no effect
upon assembly.

The constituents of the NULL pseudo-instruction
are:

1. Any BCD characters in the location field;

2. The operation code NULL in the operation field;

3. Any BCD characters in the variable field.

A possible use of the NULL pseudo-instruction
is given in Figure 18-1 where CODE is a machine
operation or pseudo-operation which is not defined
in the assembler, the effect of which may be omitted
from the assembly.

CODE OPSYN NULL

Figure 18-1

The instruction in Figure 18-2 will enable.a proper
absolute assembly of a subprogram, with ENTRY
pseudo-instructions listed, but not affecting the
program.

ENTRY OPSYN

Figure 18-2

NULL

40

CHAPTER 19: BINARY OUTPUT FROM THE
ASSEMBLER

The FAP assembler produces several different forms
of binary output, depending upon whether an assembly
is relocatable or absolute, and upon whether Monitor
control cards appeared before the symbolic deck.

Relocatable Output

In a relocatable assembly (that is, a non-absolute as-
sembly), the binary output form is the same as that
produced by the FORTRAN compiler. The binary deck
consists of a program card followed by relocatable
cards containing the program. If there are more than
ten entry names, additional program cards will be
punched. Either row binary cards or column binary
cards may be specified for either on- or off-line
punching. The format of the row binary output is
exactly that described in the publication, IBM 7090/
7094 Programming Systems, FORTRAN II Operations,
Form C28-6066. The column binary output is the
columnar image of the row binary card format, with
the addition of 7-9 punches in column 1; that is, the
9-left word of the row form occupies columns 1-3, the
9-right word occupies columns 4-6, the 8-left word
occupies columns 7-9, etc,

The FORTRAN column binary transfer card (12-7-9
punches in column 1, the remainder of the card blank)
is not used when operating in the Monitor system.
Therefore, FAP produces no transfer card for a re-
locatable assembly when column binary cards are
specified. When on-line row binary cards are speci-
fied for the relocatable assembly of a main program,
FAP will produce a FORTRAN row binary transfer
card (9 punch in column 1, the remainder of the
card blank) as the last card of the binary output. If
an error is detected during a relocatable assembly,
no binary output will be produced.

Absolute Output

In an absolute assembly, binary output is produced
even if errors are detected. The binary output is in
one of six card formats, depending upon whether the
output is in row binary or column binary form, and
upon whether 9LP, ABS, or FUL mode is in force.
Row binary output is in the standard 704 row binary
card format described in the publication, IBM 7090/
7094 Programming Systems, FORTRAN Il Operations,
Form C28-6066. ' The column binary output is the
columnar image of the row binary card format, with
the addition of 7-9 punches in column 1; that is, the
9-left word of the row form occupies columns 1-3, the
9-right word occupies columns 4-6, etc.

r\\
(}
{]

Full Output

When the full mode has been established in an absolute
assembly by the use of a FUL pseudo-instruction,
binary output will be in one of two formats, depending
upon whether row binary or column binary output has
been specified. The first word of output occupies
columns 1-36 of the 9-row, the second word occupies
columns 37-72 of the 9-row, the third word occupies
columns 1-36 of the 8-row, and so on, to a maximum
of 24 words per card. No control words or check
sums are produced by the assembler in full mode.
Column binary full cards contain the first word
of output in columns 1-3, the second in columns 4-6,
and so on, to a maximum of 24 words per card. No
control words or check sums are produced by the
assembler in the full mode. There will be 7-9 punches
in column 1 only if the programmer arranges for the
first word on the card to confain 1's in bit-positions
9 and 11. If these bits are missing, they will not be
supplied by the assembler in the '"full" mode.

9LP Output

When the 9LP mode has been established in an
absolute assembly by the use of a 9LP pseudo-
instruction, binary output will be the same as abso-

lute output, with the following addition: on a row
binary card, columns 1,2, and 3 of row 9 are punched;
on a column binary card, column 1 of rows 12, 11,
and 0 is punched with the appropriate prefix bits.

Label and Serialization (FORTRAN Monitor)

The off-line binary cards may be labeled and serial-
ized by using the FORTRAN Monitor Control Card
LABEL. The information in card columns 2-7 of the
FAP page title card (see Chapter 3) will appear as
the label. This label, with blanks treated as zero,
is then placed in columns 73-78 of the binary cards,
with columns 79 and 80 used for serialization.
Serialization begins with 00 and recycles when
99 is reached. If, however, the label does not use
all of columns 73-78, serialization begins with zero
and increases to 99...9, filling all remaining
columns through column 80 before it recycles. LBL
(see "The LBL Pseudo-Operation," in Chapter 18)
takes precedence over LABEL.

FORTRAN Monitor Control Cards

The following FORTRAN Monitor Control Cards
affect the FAP assembler: DATE; CARDS ROW;
CARDS COLUMN; ROW; PACK; PRINT; and LABEL.

41

PART 3: THE MACRO-OPERATION PROCESSOR

CHAPTER 20: GENERAL DESCRIPTION

A FAP macro-operation is a type of pseudo-operation
created by the programmer. The most significant
property of an instruction specifying a macro-
operation, a macro-instruction, is that it can generate
no, one, or more card images. The contents of the
generated instructions are virtually unrestricted and
may include any machine operation, any pseudo-
operation not restricted to the first card group (e.g.,
COUNT, ENTRY), any macro-operation, and any
field permitted on a FAP source card.

A macro-instruction can be regarded as an
abbreviation for a sequence of instructions. The
sequence of instructions generated by the macro-
instruction is determined by the particular macro-
definition corresponding to the macro-instruction
code. Each macro-operation has its own definition,
which consists of a heading card, a sequence of
prototype instructions, and an END card.

A prototype instruction has a standard FAP
symbolic card format with location field, operation
code, and variable field. Remarks may appear on a
prototype card; however, the remarks will not
normally appear following the variable field on the
macro-generated instruction. The fields of a prototype
card may consist of the following: text, which will be
reproduced as written; substitutable arguments; and
(special) punctuation characters, which delimit
arguments and, like text, are reproduced.

A field or subfield is text if it is longer than six
characters or if it is a string of one through six
characters, delimited by punctuation marks, which
does not appear in the argument list of the macro-
definition heading card. A field or subfield is a
substitutable argument if it is a string of one through
six characters which appears in the argument list of
the macro-definition heading card.

A macro-generated sequence of instructions consists
of each of the prototype instructions, with text and
punctuation characters as on the prototype, but with
substitutable arguments replaced by specific argument
strings (of unrestricted length) whose position in the
argument list of the macro-instruction corresponds
to that in the argument list of the macro-definition
heading card.

As an example of a programmer macro-operation,
suppose that the programmer has written a source
program that includes the sequences of instructions
in Figure 20-1.

The pattern of these instructions might be desig-
nated by some BCD name, say QSUM, which could
then be defined as in Figure 20-2.

42

CLA FEDTAX

ADD STATAX

STO TOTTAX

LN

CLA XsuBl

ADD YSUB1

STO 25uUB1

stoo

CLA PART1

ADD PART?2

STO TOTAL

LN

Figure 20-1

QsSUM MACRO V1sV2eV3
CLA Vi
ADD ve
STO V3

QSUM END

Figure 20-2

The sequence of five source cards in Figure 20-2
generates no binary words in the object program, but
constitutes the definition of the macro-operation which
the programmer has chosen to call QSUM. The first
card is the macro-definition heading card. It includes
the name of the macro-operation in the location field
and the argument list in the variable field. The next
three cards are the prototype, in which V1, V2, and
V3 are substitutable arguments identified in the
heading card argument list. All of the other fields,
CLA, ADD, STO, are text, since they do not appear
in the argument list. . The fifth card (END) marks the
end of the range of the macro-definition. It will not
terminate assembly.

Once the macro-operation QSUM has been defined
in the source program, the sequence of CLA, ADD,
STO, instructions need no longer be written. These
instructions may be replaced by a macro-instruction
card which generates them with their substitutable
arguments replaced by the arguments in the variable
field of the macro-instruction QSUM as in Figure
20-3.

see
QSUM FEDTAXsSTATAX s TOTTAX
see

SUBCOM QSUM XSUBlsYSUBLlsZSUBL
[N X]
QSUM PART1sPARTZ2sTOTAL
see

Figure 20-3

_

In Figure 20-3, note the following points:

1. The string QSUM that appears in the location
field of the pseudo-operation MACRO is not a symbol,
but a code for the macro-operation being defined, and
as such is entered into the Combined Operations
Table. It may be the same as a location symbol
appearing anywhere in the assembly, including
symbols within the macro-definition.

2. The substitutable arguments V1, V2, and V3,
which appear in the variable field of the macro-
definition heading card and also in various fields
within the prototype, merely characterize the order
of the expressions and character strings that may
appear in the variable field of a later macro-
instruction which uses the given macro-operation. If
the order on the macro-operation heading card were
changed to V3, V1, V2, then the macro-instruction
in Figure 20-4 would generate the same instruction.

QSUM TOTTAX,FEDTAX, STATAX

Figure 20-4

Because the substitutable arguments are dummy
names, they may be identical to strings used as
symbols or operation codes for this or any other
macro-operation appearing in location, operation,
or variable fields in the program. The programmer
should exercise caution in constructing the prototype
so that the text will not be confused with substitutable
arguments, since every string of six or fewer
characters in any field is compared with the argu-
ment list. Special care should be taken with alpha-
meric text, or with fields of VFD, DEC, or OCT
pseudo-operations.

3. The macro-operation QSUM may be considered
an open subroutine, since the generated instructions
are inserted into the program at each appearance of
the macro-operation QSUM.,

In the simple example of the macro-definition
given above, the substitutable arguments appeared in
address fields in the prototype and were replaced by
symbols on the macro-generated cards. In general,

substitutable arguments may appear in the location
field, the operation field, in any of the subfields of
the variable field, or as a heading character in any
subfield. The substitutable arguments may be re-
placed by any valid FAP expression or appropriate
alphameric character strings.

If a substitutable argument appears in an operation
field, it may be a string of one through six characters;
however, the code which replaces it must be a stand-
ard FAP operation code of three through six char-
acters. Consider Figure 20-5. In this macro-

QPOLY MACRO COEFF,LOOP,DEG,T,0P

AXT DEG, T
LDG COEFF
LOOP FMP GAMMA
opP COEFF+DEG+]1,1
XCA
Tix LOOP,T,1
GPOLY END
Figure 20-5

definition, mnemonic character strings have been
chosen to represent the substitutable arguments.
Notice that LOOP appears in a location field, that OP
appears in an operation field, and that COEFF and
DEG appear as symbols within expressions in address
subfields. Notice also that GAMMA is text, i.e., a
symbol, and not a substitutable dummy argument,
and must be defined elsewhere in the program. Any
use of the code QPOLY in a macro-instruction should
be accompanied by an argument list of appropriate
substitutions for the substitutable arguments. In
particular, LOOP should be replaced by a symbol,
which should not be multiply-defined, and OP should
be replaced by a valid operation code.

A QPOLY macro-instruction would assemble as
in Figure 20-6. The symbol X015 is defined as the
location in which the first instruction (AXT) appears;
each of the substitutable arguments is replaced by
the corresponding argument in the macro-instruction
argument list. The expression arising from the
prototype address COEFF+DEG+1 is equivalent to
C1l+2.

00000 XQa15 QPOLY Cl-4,FIRST,5,4,FAD
00000 0774 00 4 00005 AXT 514

Q0001 0560 00 0 00002 LDQ Cl-4

00002 0260 00 O 00007 FIRST FMP GAMMA

00003 0300 00 4 00010 FAD Cl-4+5+1,4

00004 0131 00 O 000QOO XCa

00005 2 00001 4 00002 TIX FIRST 4,1

Figure 20-6 I

43

The use of the macro-operation processor permits
simulating the machine instructions of another
computer, or extending the machine operation vocabu~
lary of the 709/7090.

Figure 20-7 illustrates how STO can be modified
to dump the information that is stored at each exe-
cution of STO.

«STO OPSYN STO
STO MACRO A
«STO A
SXA #4244
TSX DUMP, 4
AXT "%, 4
STO END
Figure 20-7

In this case, the flag M will be given to the macro-
definition heading cards (STO MACRO A) to indicate
redefinition of an existing operation code. An operation
that has been redefined by the macro-operation proc-
essor may not be indirectly addressed. In the example
in Figure 20-7, if STO* is used in the program, itwill
be flagged as an error because STO is now a macro-
instruction.

CHAPTER 21: MACRO-DEFINITION HEADING CARD
The MACRO Pseudo-Operation

The MACRO pseudo-operation is used in the macro-
definition heading card to name a macro-operation
and to identify the arguments in the prototype that
follows. The constituents of the MACRO pseudo-
instruction are:

1. A FAP symbol of 3-6 characters (not all zeros)
in the location field;

2. The operation code MACRO in the operation
field; and

3. A list of substitutable arguments in the variable
field.

The character string in the location field is the
macro-operation code and not a location symbol. If
it is the same as any other machine operation, pseudo-
operation, or macro-operation, the pseudo-operation
will be flagged, the code will be redefined within the
Combined Operations Table, and the former definition
will be lost.

The substitutable arguments in the variable field
of the macro-definition heading card argument list
may be any valid FAP symbols, or may consist of
all numeric characters (excluding all zeros). The
substitutable arguments in a macro-definition may
be separated by any one of the following punctuation
characters:

=+"*/() $1'

The argument list is terminated by the character
blank. After a punctuation character, succeeding
punctuation characters or an explicit zero are

ignored and do not result in a substitutable argument
of zero.

Meaningful notation may be used in the argument
list of a macro-definition heading card. For example,
the two macro-definition heading cards in Figure 21-1
are identical.

ALPHA MACRO A(B+C)~DSE

ALPHA MACRO A9sBsCoeDyE

Figure 21-1

Extending the Argument List

The argument list of a macro-definition heading card
may be extended by the use of the ETC pseudo-
operation. See page 29 for a description of the ETC
convention in the Macro-Operation Processor.

Alternative Format of MACRO

An alternative format of the MACRO pseudo-
instruction has the following constituents:

1. Blanks in the location field;

2. The operation code MACRO in the operation
field; and

3. Blanks in the variable field.

This pseudo-instruction must be immediately
followed by an instruction with these constituents:

1. A FAP symbol in the location field;

2. A FAP symbol of 3-6 characters, which is the
macro-operation code in the operation field; and

3. A list of substitutable arguments in the variable
field.

The symbol that appears in the location field of the
second instruction is a substitutable argument and not
a location symbol. It is replaced by the corresponding
argument in the location field of the macro-instruction
card. If it appears in the variable field of an instruc-
tion, it must be defined elsewhere in the program.

The MOP Pseudo-Operation

The MOP pseudo-operation is also used in the macro-
definition heading card to name a macro-operation.
The constituents of the MOP pseudo-instruction are:

1. Blanks in the location field;

2. The operation code MOP in the operation field;
and

3. The macro-operation code, followed by the
argument list, in the variable field.

MOP is identical to MACRO except that the macro-
operation code being defined appears as the first sub-
field in the variable field, followed by a punctuation
character and the argument list.

U

CHAPTER 22: THE PROTOTYPE

The prototype consists of a sequence of FAP instruc-
tions that use the substitutable arguments listed in the
variable field of the preceding macro-definition
heading card. The prototype must be followed by an
END card with the macro-operation code in its loca-
tion field or variable field, or with both the location
field and the variable field blank.

To lend greater flexibility to macro-operations,
parentheses and the apostrophe have been included
in the list of special characters that may be used
within the various fields of the macro-definitions.
However, neither character may be used as part of
a substitutable argument.

Remarks cards, with an asterisk in column 1,
appearing within a macro-definition, will not appear
in the expansions.

Heading characters in effect within the region in
which the macro-definition appears do not apply to
the definition. '

The Location Field of a Prototype Instruction

A substitutable argument or any FAP symbol may
appear in the location field of a prototype instruction.

The Operation Field of a Prototype Instruction

The operation field of a prototype instruction may

contain any substitutable argument, any machine opera-

tion, any pseudo-operation not restricted to the first
card group, or any macro-operation code.

The Variable Field of a Prototype Instruction

A blank that is encountered before card column 72

on a prototype card (except the cards BCD, BCI,
REM, TTL, and those instructions whose variable
fields begin with an equal sign) is considered to
terminate the variable field, and any information or
commentary to the right of the bkank will not be in-
cluded in the macro-definition. If the blank follows
an unmatched left parenthesis, however, the blank
does not terminate the scan; blanks within paren-
theses are considered to be punctuation. If a match-
ing right parenthesis is not encountered before card
column 73, an ETC card must follow. Unmatched
parentheses cause an assembly error. If a $ followed
by a blank is desired as text in the variable field of

a prototype, the $ must be followed by an apostrophe.
The remainder of the text, if any, follows the
apostrophe.

Alphameric cards are scanned in full for sub-
stitutable arguments. If the variable field of either
a BCD card (beginning in card column 12) or a BCI
card (beginning in card column 12-16) begins with
a non-blank, non-numeric character, the first sub-
field should be a substitutable argument for which a
count will be substituted in the macro-instruction
argument list.

The apostrophe (8-4 punch) may be used to con-
catenate (link) partial subfields in the operation field
or in the variable field. It is possible to create a
single subfield from a combination of arguments and
text, since the apostrophe delimits an argument in the
macro-definition prototype, but is itself not included
in the macro-definition. The character apostrophe
cannot be used to concatenate subfields of lower level
nested macro-definitions. For example, to delimit
the count on a BCD prototype card, the coding in
Figure 22-1 may be used. Figure 22-2 illustrates
how a BETA macro-instruction will assemble.

BETA MACRO A,8,C
BCD A'0 'B' ERROR. CONDITION®'C® IGNORED.
BETA END
Figure 22-1
C0000 BETA T+FIELD,,
00000 006060263125 BCD 70 FIELD ERROR. CONDITIGCN IGNORED.
00001 432460255151
0002 465133602346
00003 452431633146
00004 456031274546
CO0005 512524336060
00006 606060606060
Figure 22-2

45

01226 J TAPENO Aé6B
02201 K TAPENOC BIL
NAME4 MACRU AyByCyDyE,F,G
A B*T*'C*D E
SD'F (]
NAME4 END
C0000 NAME4 AXsWsDygdyyl,ne
CO000 01766 00 0 01226 AX WTCJ 001
€000l 0776 00 0O 00200 SDL LA .001
C0o002 NAME4 AYsR3Bys59NyK
C0002 0762 00 0 00225 AY RTB S .001
€0003 0776 00 0 02201 SON K .001
Figure 22-3

Figure 22-3 illustrates the macro-generation of
an operation code by concatenation.

If parentheses are to be used as part of text, the
enclosed string must not appear in the macro-
definition heading argument list, or the string will be
considered a substitutable argument.

If a heading character of the form A$B is required,
either A or B, or both may be substitutable arguments.

If a transfer vector name of the form $NAME is
required, NAME may be a substitutable argument.

If a literal of the form =A is required, A may be
a substitutable argument for which a valid form of
a literal must be substituted.

The variable field of any card in the prototype may
be extended by the use of the ETC pseudo-operation.
In order that a following ETC card be recognized, it
is necessary to follow the conventions stated for
extending a variable field in the Macro-Operation
Processor (page 30). The programmer should
exercise caution so that a macro-generated card
image which overflows column 72 has a variable
field which is properly extended by an ETC card.
Such variable fields are limited to those of a macro-
instruction card, or a nested macro-definition head-
ing card, or the second and third subfields of an IFF
pseudo-operation.

The macro-operation compiler will generate ETC
cards, recognized by the macro-operation processor
only, to follow any generated instruction whose vari-
able field overflows card column 72,

CHAPTER 23: NESTING MACRO-DEFINITIONS

Macro-definitions may be nested by including a macro-
definition heading card within a macro-definition
prototype. A macro-instruction using the outer-

most code will generate the nested macro-definition
heading cards and prototypes of each of the macro-
operations nested one level below, with all outer

level arguments properly substituted. Lower level
macro-operations will not be defined until all higher
level macro-operations within which they are nested

46

have been expanded. Thus the expansion of a nested
macro-definition may be affected by the use of SET
to redefine an argument.

If macro-definitions are nested, the ends of the
lower level prototypes must be marked with END
cards bearing the name of the macro-operation in
the location field or the variable field. If no name
appears in either field of the END card, the outer-
most macro-definition is terminated.

An example of nested macro-definitions is given
in Figure 23-1.

MACRO
MACRO
MACRO

NEST1
NEST2
NEST3

AsByC
AsDsE
BsDyF

oo
END
END
END

NEST3
NEST2
NEST1

Figure 23-1

The prototype of a macro-definition may include
macro-instructions, the macro-operations of which
have not yet been defined; however, such lower level
macro-operations must be defined prior to an appear-
ance of the higher level macro-instruction. Circular
definitions that will result in a loop within the macro-
operation processor must be avoided by the program-
mer.

CHAPTER 24: MACRO-INSTRUCTIONS

A macro-instruction is used to generate, in line, the
sequence of instructions given by the prototype, with
substitutions for the arguments. The constituents of
a macro-instruction are:

1. A FAP symbol in the location field;

2. A previously defined macro-operation in the
operation field; and

3. A list of FAP symbols, expressions, alpha-
meric character strings, or operation codes in the
variable field.

The symbol in the location field of the macro-
instruction will be defined as the location of the next
instruction. A macro-instruction should not appear
within the range of a DUP.

The variable field contains the specific arguments
to be substituted for the substitutable arguments in
the prototype.

The MAC Pseudo-Operation

The MAC pseudo-operation may be used for a macro-
instruction. The constituents of the MAC pseudo-
instruction are:

1. A symbol in the location field;

2. The operation code MAC in the operation field;
and

3. The name of the macro-operation, followed by
the argument list, in the variable field.

The only difference between the MAC pseudo-
instruction and a macro~instruction is that the macro-
operatian code appears in the first subfield of the
variable field in the MAC pseudo-instruction, whereas
the macro-operation code appears in the operation
field of a macro-instruction.

In a MAC pseudo-instruction, a comma or left
parenthesis must separate the operation code from
the argument list.

Punctuation in Macro-Instructions

Only commas and parentheses may be used to sep-
arate arguments in the macro-instruction argument
list. A single comma following a right parenthesis,
or a single comma preceding a left parenthesis, is
redundant and may be omitted. Consecutive commas
define a null argument string; an explicit zero, if
desired, must appear in the argument list. A blank
not within parentheses terminates the argument list.

Parentheses surrounding a string of characters in
a macro-instruction argument string signify that
everything within the parentheses is to be substituted
for the corresponding argument in the macro-~
definition prototype. Within such parentheses, nested
parentheses, commas, and blanks are considered to
be part of the argument string to be substituted. If
a matching right parenthesis is not encountered
before card column 73, an ETC card must follow.
Unmatched parentheses cause an assembly error.
Parentheses that are to be included as part of an
argument string to be substituted in a prototype must
be enclosed within an outer pair of parentheses that
will be deleted in the macro-instruction expansion.
Figure 24-1 illustrates the definition of the
CALLIO macro-operation and an example of its use.
Note that TAPE should not be a substitutable
argument; that (RBEP) must be enclosed in an outer
pair of parentheses; and that, in the macro-instruction
argument list, an explicit null argument bounded
by a comma appears corresponding in position to the
substitutable argument ERRET in the macro-definition
argument list. This will cause the fourth word of the
calling sequence to be omitted (see IFF on page 19).
Since the character $ does not delimit an argument
in the macro-instruction argument list, it may be used
freely to indicate a heading character or a transfer
vector symbol that is to replace a substitutable argu-
ment. If the character $ is at the end of the argument
list, a comma must be used to distinguish this from
the character used to flag a following ETC card.
If a $ followed by a blank is desired as part of an
argument of a macro-instruction, the $ must be fol-
lowed by another $, i.e., $$. An ETC card must
follow the macro-instruction card, with the desired
blank in column 16, followed by the remainder of the
argument. The entire argument must be enclosed in
parentheses, Since the character = does not delimit
an argument in the macro-instruction argument list,
it may be used freely to indicate a literal that is to
replace a substitutable argument.

CALL IO MACRO

IOCOM, T1,0P,LABEL,T2,UNITPFX,ERRET

TSX {TAPE) 4

PZE 10COM, 71,0P

PLE LABEL,T2,UNIT

IFF 0,ERRET

PFX ERRET

CALL IO END

00000 CALLIO CITIO2,((RBEP))CITLB:s,CITTAP,,,
C0000 0074 00 4 73406 TSX (TAPE) 44 <001
C0001 O 40004 2 01204 PZE CITIO0,2,(RBEP) .001
00002 O 01205 0 01203 PZE CITLB, .CITTAP .001

IFF 0, .001
Figure 24-1

47

Argument Strings

The specific argument strings to be substituted must
be given in the same order in the macro-instruction
argument list as the substitutable arguments that
appear in the macro-definition heading argument list.
It is not necessary to restrict to six characters
the length of an argument string to be substituted into
a location field or to seven characters the length of
an argument string to be substituted into an operation
field. An entire card image may be inserted into any
field. No blank will be inserted following a location
field longer than six characters, and the operation
field, if any, will follow immediately. See Figure 24-2.

Nested Macro-Instructions

It is possible to nest macro-instructions by including
either a macro-operation code or a substitutable
argument that will be replaced by a macro-operation
within an operation field in the prototype. See

Figure 24-3.

The null macro-operation XXX in Figure 24-3
does not cause any instructions to be generated.

The assembler will assume that a comma or a
left parenthesis immediately following the operation
code, as early as card column 9, is the end of the
operation field or the beginning of the variable field,
respectively. Hence, meaningful notation, such as
that given in Figure 24-4, may be used as a string to
replace a substituable argument.

The argument list and subargumerit list (see
page 50) of a macro-instruction may be extended by

the use of the ETC pseudo-operation. In order that
a following ETC pseudo-instruction be recognized,
it is necessary that the preceding instruction follow
the conventions stated for extending a macro-
definition heading card argument list (page 44).

COS(ALPHA)
Figure 24-4

CHAPTER 25: THE GENERATED INSTRUCTIONS

The generated instructions are similar to the proto-
type instructions, except that the substitutable argu-
ments in the prototype will be replaced with the argu-
ment appearing in the macro-instruction argument
list, The heading characters in effect within the
region in which the macro-instruction appears will
prefix all symbols of less than six characters in the
location and variable fields.

When a comma or left parenthesis separates the
operation field of a prototype card from the variable
field, the fields on the generated card are separated
in the same way. When a blank terminates the oper-
ation field of a prototype card, the variable field, if
any, of the generated card begins in the same column
as the variable field of the prototype card. If the
expanded operation field extends beyond the first
column of the variable field, the beginning of the
variable field is adjusted accordingly. If necessary,
an ETC card is generated. Variable fields of gener-
ated ETC cards begin in column 12 in 704 mode, and
in column 16 in 709/7090 mode.

NAME9 MACRO XXX
XXX REMARK
NAME9 END
ooo0u NAME9 (CLA B)
00004 0500 00 0 77ué61 CLA B REMARK
77461 B COMMON 1
Figure 24-2
XXX MACRO
XXX END
Ccos MACRO oP
oP
TSX $CO0Ss 4
cos END
00005 COS(COS(XXX))
00005 COS{XXX)
XXX
00005 0074 00 4 00000 TSX $CO0Ss» 4
00006 0074 00 4 00000 TSX $C0S. 4
00007 ggi(xxx)
00007 0074 00 4 00000 TSX $C0S» 4
XXX
Figure 24-3

48

Created Symbols

If arguments are missing from the end of the argu-
ment list of a macro-instruction, symbols will be
created to fill the vacancies. These symbols take
the form of ..001, ..002, to ..nnn, throughout the
program. An explicitly null argument terminated
by a comma will be treated as null; created symbols
will be supplied only at the end of the argument
string.

For example, given the macro-definition heading
card and the macro-instruction card in Figure 25-1,
each appearance of the substitutable argument A will
be replaced by X; each appearance of the substitutable
argument B will be omitted, since the argument is
explicitly void; and each appearance of the substitut-
able arguments C and D will be replaced by the
symbols ..nnn that are created to replace the omitted
arguments at the end.

ALPHA MACRO A9BsCoeD
ALPHA X

Figure 25-1

If more than 9999 symbols are to be created, the
programmer must define a new origin for created
symbols using the ORGCRS pseudo-operation, or
the assembly will be terminated.

The ORGCRS Pseudo-Operation

In order to alter the form of created symbols, the
ORGCRS (Origin Created Symbols) pseudo-operation
may be used. This pseudo-operation also reinstates
the creation of symbols, if they have been suppressed
by NOCRS. The constituents of the ORGCRS pseudo-
instruction are:

1. Blanks in the location field;

2. The operation code ORGCRS in the operation
field; and

3. Blanks or one BCD character, followed by
three digits, in the variable field.

The BCD character in the variable field will
replace the second dot (e.g., . Annn); the digits, if
any, will be the origin of a new set of created symbols.
This origin will be one number lower than the first
symbol actually created. If the BCD character is
desired, the three digits must also be stated
explicitly; if it is not desired, the three digits are
sufficient.

In the macro-definition in Figure 25-2, the transfer
address S and the storage address R must be unique
for each appearance of the macro-operation in a
macro-instruction. However, neither address is
required outside of the resulting expansion. Hence,
the assembler may be permitted to assign a location
symbol by omitting the corresponding arguments in
the macro-instruction argument list. The ORGCRS
pseudo-instruction may be used to change the format
of the created symbol to . Nnnn as in Figure 25-3.

The NOCRS Pseudo-Operation MNC MACRO DyAsR,S
CAL D
The NOCRS (No Created Symbols) pseudo-operation T?i ;
is used to suppress the creation of symbols that ZL S 18
replace specific argument strings missing from the ORA R
end of a macro-instruction argument list. The S SLW A
constituents of the NOCRS pseudo-instruction are: RMT
1. Blanks in the location field; R BSS 1
2. The operation code NOCRS in the operation RMT
field; and MNO END
3. Blanks in the variable field. Figure 25-2
ORGCRS N150
c0000 MNO My H
C0000 -0500 00 O 77461 CAL M .001
C0001 0l00 00 O 0000% TZlE «N152 .001
C0002 0621 00 O 00006 STA +N151 .001
C0003 0767 00 0 00022 ALS 18 .001
0004 -0501 00 O 00006 ORA +N151 «001
C000% 0602 00 O 77460 .N152 SLw H .001
RMT «001
+N151 BSS 1 «001
’RMT .001

Figure 25-3

49

The pseudo-operation BSS will be assembled later
in the program (see '"The RMT and RMT* Pseudo-
Operations'' below) as in Figure 25-4.

00006 RMT *
C0006 «N151 BSS 1
Figure 25-4

CHAPTER 26: ADDITIONAL PSEUDO-OPERATIONS

The IRP Pseudo-Operation

The IRP (Indefinite Repeat) pseudo-operation is used
within a prototype to iterate a series of instructions
within the set of generated instructions. The con-
stituents of the IRP pseudo-instruction are:

1. Blanks in the location field; .

2. The operation code IRP in the operation field;
and

3. A symbol in the variable field.

The symbol in the variable field must be the name
of a single substitutable argument appearing in the
macro-definition argument list. An IRP pseudo-
instruction must precede the instructions to be
iterated, and another IRP pseudo-instruction, with
blank location and variable fields, must follow the
instructions. Both IRP cards must be within the
range of the prototype. '

The argument to be substituted may be any legal .
macro-instruction argument, including an explicitly
null argument, However, it will normally be a series
of subarguments enclosed in parentheses. The sub-
arguments are punctuated according to the same
rules for punctuating a macro-instruction argument
list. The number of these subargument strings will
be the number of iterations of the enclosed instruc-
tions, and each iteration will be made with the cor-
responding subargument string substituted for the
dummy argument. If no argument was given in the
variable field of the first IRP, no iterations will be
made; one argument causes one iteration, two argu-
ments cause two iterations, etc.

For example, to compute the sum of squares,
the SUMSQ macro-definition in Figure 26-1 can be
written. The four instructions between IRPs are
to be iterated. Figure 26-2 illustrates the compu-
tation A=X2+Y2+Z2, using the SUMSQ macro-
operation.

An IRP pseudo-instruction cannot occur explicitly
within the range of an IRP; the first nested IRP will
cause the termination of the range, and the second
nested IRP will cause the reopening of another
range. However, a macro-instruction within the
range of IRP pseudo-instructions may itself cause
pairs of IRP pseudo-instructions to be generated at
a lower level.

SUMSQ MACRO T
STZ T
IRP 8
LDQ B
FMP 8
FAD T
STO T
IRP
SUMSQ END

Figure 26-1

The macro-compiler will not generate an ETC
card for an IRP pseudo-instruction whose subargu-
ment string does not fit on one card, but will process
the string internally.

The IRP pseudo-operation is undefined outside of a
macro-operation; hence, it should not occur explicitly
in the range of a RMT pseudo-operation. If it should
appear in this way, it will not be flagged, but will be
treated as if it had no argument, i.e., it will cause
omission of the following cards, until the matching
IRP is encountered.

The RMT and RMT* Pseudo-Operations

Macro—instructions may require assignment of
temporary storage, definitions of constants, closed

¢0007 SUMSQ Ayg(XyY,yZ)
C0007 0600 00 O 77777 STZ A
IRP XyYol

00010 0560 00 0 777176 LDQ X
00011 0260 00 O 77776 FMP X
co012 0300 00 O 77777 FAD A
00013 0601 00 0 77777 STO A
00014 0560 00 0O 77775 LDQ Y
00015 0260 00 O 77775 FMP Y
Co0l6 0300 00 O 77777 FAD A
CO0017 0601 00 O 77777 STO A
00020 0560 00 O 77774 LOQ 2
C0021 0260 00 O 77774 FMP z
00022 0300 00 O 77777 FAD A
C0023 0601 00 O 77777 STO A
Figure 26-2

50

subroutines, or other allocations of memory. If
such storage is assigned within the macro-operation,
either it must be bypassed by transfer instructions or

the programmer can keep track of the storage require-

ments and define the necessary symbols whenever
convenient. The pseudo-operation RMT (Remote
Sequence) provides a means by which such storage
may be automatically assigned later in the assembly,
at any point the programmer may specify by a RMT*
pseudo-operation. The constituents of the RMT
pseudo-instruction are: ‘

1. Blanks in the location field;

2. The operation code RMT in the operation field;
and

3. Blanks in the variable field.

A remote sequence is defined as all the source
instructions, or macro-generated instructions,
bracketed by a pair of RMT pseudo-instructions.
Remarks cards with an * in column 1 appearing
within a remote sequence will not appear in the
expansion. An RMT pseudo-instruction cannot appear
explicitly within the range of a remote sequence; the
nested pair will cause the termination of the range,
and the reopening of another range. However, a
macro-instruction within the range of a remote
sequence may itself cause pairs of RMT pseudo-
instructions to be generated at a lower level. A
remote sequence can be nested in a macro-operation.
and macro-operation prototypes not including remote
sequences may be nested to any desired depth within
a remote sequence. When the remote sequence is
assembled, any macro-definitions nested within will
be defined and any macro-instructions nested within
will be expanded.

Remote sequences may be defined outside of
macro-operations, but should be used sparingly,

since they may result in termination of assembly
owing to macro-definition table overflow. Little is
gained by the use of this pseudo-operation outside
of macro-operations.

Figure 26-3 illustrates a typical remote sequence.

RMT
CLA #*
XX DEC 1E1
YY DUP 1,2
PZE
27 BSS 10
PZE 7
RMT
Figure 26-3

Subsequently, an RMT* pseudo-instruction will
cause all waiting remote sequences to be assembled.
The constituents of an RMT* pseudo-instruction are:

1. Blanks in the location field;

2. The operation code RMT in the operation field;

3. An asterisk in the variable field.

If the remote sequence in Figure 26-3 has been
defined, the coding in Figure 26~4 would be
assembled following an RMT*,

If any remote sequences remain at the end of an
assembly, they will be assembled following the pro-
gram END card. Since remote sequences may include
macro~-definitions, and macro-definitions may gener-
ate remote sequences, a significant amount of coding
may follow the END card. This generated coding will
precede any literals.

Heading characters for remote sequences are
those in effect at the time of definition, and not at
the time-of assembly. A remote sequence, defined
or assembled in a multiply-headed region, may be
improperly headed, and caution should be exercised.

00000 : RMT * .001

00000 0500 00 O 00000 CLA # .001

00001 +204500000000- XX DEC 1E1 .001
00002 YY DUP 192 .001

00002 0 00000 O 00000 PZE

00003 0 00000 O 0OOOC .001

oooou 2z BSS 10 .001

00016 0O 00000 G 00007 PZE 7

Figure 26-4

51

PART 4: UPDATING SYMBOLIC TAPES

CHAPTER 27: GENERAL DISCUSSION

The FAP assembler has two objectives: the first is
translating symbolic language to machine language,
assigning storage locations, and performing other op-
erations necessary to produce the final object pro-
gram - this is known as assembly; the second is up-
dating a symbolic tape by changing, deleting, or add-
ing instructions. The update may occur concurrently
with the assembly of the updated symbolic language
program.

Updating involves up to three tapes: one tape, the
System Input tape, is used by all assemblies, com-
pilations, and executions; and two tapes, the Update
Input tape and the Update Output tape, are used only
for updating.

The System Input tape contains all the jobs to be
processed by a monitored system. A job may have
many elements: compilations, assemblies, and exe-
cutions. In the case of an update, the corrections to
be made to-a specified symbolic tape constitute a
job element and are contained in a job on the System
Input tape.

The Update Input tape is a blocked or unblocked
symbolic tape which requires updating. All additions,
changes, and deletions are made on the basis of the
serialization in card columns 73-80. Thus, instruc-
tions on the Update Input tape must be properly
serialized. An end of file on the Update Input tape is
ignored. The operation field of cards on the update
input tape is scanned. If an Update pseudo-instruc-
tion other than DELETE, IGNORE, or SKIPTO is
found on the update input tape, the corresponding
pseudo-operation will be performed.

The Update Output tape is an updated, blocked or
unblocked, symbolic tape which includes all the re-
quested corrections. This tape may be assembled
at a later date; if it includes the necessary control
cards, it may be a System Input tape.

The monitored system requires two tapes which
deserve note. The System Listing tape contains the
listing output for all successful elements of all jobs
on the System Input tape. The System Punch tape
contains row or column binary card images for the
processed jobs.

Uses of the Update Facility

FAP's Update facility may be used for: maintaining
the 709/7090 FORTRAN System; multi-reel input
and output; subdividing of, or extracting from, an
input tape; spacing tape; and sequence checking. See
examples of some of these uses below (Figures 30-1
through 30-5).

52

Blocked Update Output Tape

If the programmer requests a blocked Update Output
tape, the symbolic tape is normally blocked 14 words
per card, 16 cards per block. In order to facilitate
updating of blocked tapes not intended for input to
FAP, provision is made for resetting this blocking
factor to 10 cards per block. Control cards and END
cards are always unblocked.

Cards with an * or $ in column 1 are considered
to be control cards and are unblocked if they follow
another such card, or any update pseudo-operation,
or an END card. They are considered to be remarks
cards and are blocked if they follow any other card.

Sequence Checking and Serialization

Card images on the System Input and Update Input
tapes will be checked for proper sequencing by the
serialization in card columns 73-80. If the cards
are determined to be out of sequence, an error
message is printed on- and off-line, and assembly
continues.

The Update Output tape and the System Listing
tape may be reserialized by using the NUMBER
pseudo-operation (see description below). In the
case of the Update Output tape, this provides for
proper serialization for a subsequent assembly.

Corrections to the Update Input tape are made on
the basis of the serialization in card columns 73-80
of the instructions on the System Input and Update
Input tapes. A serialized instruction on the System
Input tape will replace an instruction with matching
serialization on the Update Input tape; an instruction
with nonmatching serialization will be inserted in
sequence. In the instruction serialization, a BCD
blank is sequenced following the character * and pre-
ceding the character /. If colunns 75-80 of a card
image on the System Input or System Update tapes
are all blank, the serialization is taken to be all
zeros for sequencing, and the instruction is used
immediately. Instructions that are inserted or
replaced appear, so labeled, on the pre-processor
assembly listing.

Serialization on an update pseudo-instruction
causes an instruction on the Update Input tape with
identical serialization to be deleted before the pseudo-
operation is interpreted. Thus, there will not be an
instruction with this serialization on the Update Out-
put tape or on the System Listing tape. An update
pseudo-operation may be serialized to indicate at what
point the pseudo-operation should be interpreted.

5

e

e

N
()

Tape Positioning

Update pseudo-instructions, except SKIPTO, do not
require matching serialization. To ensure proper
spacing of tapes, it is necessary to have symbolic
instructions on the System Input tape whose seriali-
zation matches those on the Update Input tape. These
"spacer' cards will position the Update Input tape to
the next instruction to be updated.

It is also necessary for the System Input tape to
include a serialized END or ENDUP pseudo-instruc-
tion to properly position the Update Input tape at the
end of the update. The END pseudo-instruction
serialization must match that of the END pseudo-
instruction on the Update Input tape.

The ENDUP pseudo-instruction is used for an up-
date without assembly. If used, it must immediately
follow an instruction (usually an END) whose seriali-
zation indicates where the Update Input tape is to be
positioned. The ENDUP pseudo-instruction must be
properly serialized or have no serialization.

If a multi-reel update has been terminated be-
cause of source program or machine error, the Up-
date Input and Update Output tapes may be positioned
incorrectly. Exercise caution in restarting or contin-
uing. The Source and Machine Error Records will
attempt to reposition a single input tape or single
output tape correctly.

Illegible Input Instructions

All instructions on an input tape which are either re-
dundant or in the wrong mode are considered illegible.
If there are illegible instructions on the System Input
tape, the assembly is terminated. If an instruction
or block of instructions on the Update Input tape is
illegible, the instruction(s) is omitted, a message is
printed on- and off-line, and the job is continued. It
is possible to insert lost instructions during a later
update. The omission of such instructions will usu-
ally result in an assembly error, but the Update In-
put tape will be properly positioned for the next as-
sembly, unless the illegible instruction.is an END
pseudo-instruction or spacer card.

Updating a FORTRAN Source Program Deck

In order to update a FORTRAN source program deck,
the Update Output tape must be unblocked and as-
sembly must be deleted. The ENDUP pseudo-opera-
tion is used to terminate the job. When updating a
FORTRAN or other source program deck, care must
be exercised to avoid using insert cards with Update
pseudo-instructions in columns 8-13. If an attempt
is made to insert such a card, the pseudo-operation
may be performed instead.

Listing Update Pseudo-Instructions

Update pseudo-instructions are listed in the pre-
processor assembly listing and normally do not ap-
pear on the Update Output and System Listing tapes.
However, if the pseudo-instruction is in error and
is flagged, it is written on these tapes.

Restrictions on Deleting ETC Cards

When updating with an assembly, if one or more ETC
cards are deleted by Update pseudo-operations, any
ETC cards immediately following those deleted are
not recognized and cause assembly errors. Since

the Update Output tape, if any, is correct, this
restriction may be avoided by first updating without
assembly, and then assembling the Update Output
tape.

CHAPTER 28: UPDATE PSEUDO-OPERATIONS
The UPDATE Pseudo-Operation

The UPDATE pseudo-operation is used to initiate the
updating mode, to assign Update Input and Update
Output tapes, and to specify whether or not blocking
and assembly are required. The constituents of the
UPDATE pseudo-instruction are:

1. Blanks in the location field:

2. The operation code UPDATE in the operation
field:

3. Two symbolic expressions and two strings of
characters, all separated by commas, in the variable
field; and

4, Serialization, which is optional, in card
columns 73-80.

The first subfield of the variable field is an ex-
pression designating the logical system tape number
of the Update Input tape. This subfield may be void
or zero, implying that there is no Update Input tape,
or it may be the logical number of the tape containing
the symbolic input to be updated. If the FORTRAN
Monitor System is used, tapes 1 through 8 may not
be used as update tapes.

The second subfield of the variable field is an ex-
pression designating the logical tape number of the
Update Output tape. This subfield may be void or
zero, implying that there is no Update Output tape,
or may be the logical number of the tape that is to
contain the updated symbolic output.

The third subfield of the variable field is a string
of characters that indicate whether or not the Update
Output tape is to be blocked. This subfield may also
specify the blocking factor. If this subfield is void
or zero and if the blocking factor has not been pre-
viously reset to ten, the Update Output tape is

53

U

blocked 16 cards per block. If this subfield has a
value of ten, the blocking factor for the current
Update Output tape and for any blocking requests in
the same assembly is 10 cards per block. If this
subfield is not void, zero or ten, the Update Output
tape is not blocked.

The fourth subfield is a string of characters which
indicates whether or not assembly is required. If
this subfield is void or zero, assembly is required;
otherwise, assembly is not required. The UPDATE
pseudo-instruction containing this subfield must
appear in the first card group. If assembly is not
required, FAP is reduced to an updating or blocking
routine, or both, since no table entries are made and

Pass 2 is omitted; the only instructions that are rec-
ognized are Update pseudo-instructions, END
pseudo-instructions, and those instructions with an
*or a $ in card column 1.

Serialization in card columns 73-80 of the UPDATE
pseudo-instruction may be useful for multi-reel
input and output.

The. NUMBER Pseudo-Operation

The NUMBER pseudo-operation is used to reserialize
columns 73-80 of the symbolic instructions that are
output on the System Listing and Update Output tapes.

53.1

The constituents of the NUMBER pseudo-instruction
are:

1. Up to six alphameric characters in the loca-
tion field;

2. The operation code NUMBER in the operation
field;

3. Two numbers, each taken modulo 32768,
separated by a comma, in the variable field; and

4. Serialization, which is optional, in card
columns 73-80,

The location field and the variable field define the
serialization to be inserted in the instructions on the
output tapes. The first card written contains the
contents of the location field left-justified in columns
73-178 with blanks omitted, and the product of the
numbers in the variable field right-justified in card
columns 75-80. The serialization of subsequent cards
is incremented by the value of the number in the sec-
ond subfield of the variable field. If no second sub-
field is supplied, the value is assumed to be 10.

The programmer must ensure that the alphameric
and numeric fields do not overlap in the program.
Reserialization begins with the serial indicated in the
location and variable fields of the NUMBER pseudo-
instruction. Regardless of the contents of the loca-
tion field, if the variable field is omitted, reseriali-
zation is suspended and old serial numbers (if any),
in card columns 73-80, will be maintained. In order
to reserialize from zero, an explicit zero must ap-
pear in the variable field, in addition to any char-
acters which may appear in the location field.

The DELETE Pseudo-Operation

The DELETE pseudo-operation causes the deletions
of one or more instructions on the Update Input tape.
Deleted cards will appear on the pre-processor
assembly listing labeled as deleted. The constituents
of the DELETE pseudo-instruction are:

1. Blanks in the location field;

2. The operation code DELETE in the operation
field;

3. THRU, when required, in the variable field;
and

4. A serialization number of eight characters in
card columns 73-80.

If the variable field is blank, the instruction with
matching serialization will be deleted; if the variable
field contains THRU, all instructions starting at the
current position of the Update Input tape, up to and
including the instruction with matching serialization,
will be deleted. In the latter case, if matching
serialization does not exist, deletions will be made
up to, but not including, the next instruction of
higher serialization.

54

The IGNORE Pseudo-Operation

The IGNORE pseudo-operation causes the deletion of
one or more instructions on the Update Input Tape.
Deleted cards will not appear on the pre-processor
assembly listing. The constituents of the IGNORE
pseudo-instruction are:

1. Blanks in the location field;

2. The operation code IGNORE in the operation
field;

3. THRU, when required, in the variable field;
and :

4. A serialization number of eight characters in
card columns 73-80.

If the variable field is blank, the instruction with
matching serialization is deleted; if the variable
field contains THRU, all instructions, starting at
the current position of the Update Input tape, up to
and including the instruction with matching seriali-
zation, will be deleted. In the latter case, if matching
serialization does not exist, deletions will be made up
to, but not including, the next instruction of higher
serialization.

The SKIPTO Pseudo-Operation

The SKIPTO pseudo-operation will cause the deletion
of one or more instructions up to, but not including,
an instruction with matching serialization. The con-
stituents of the SKIPTO pseudo-instruction are:

1. Blanks in the location field;

2. The operation code SKIPTO in the operation
field;

3. Blanks in the variable field; and

4. A serialization number of eight characters in
card columns 73-80.

Instructions deleted will not appear on the pre-
processor assembly listing. Instructions of higher
serialization will not cause this operation to be
terminated.

The ENDFIL Pseudo-Operation

The ENDFIL (End of File) pseudo-operation will cause
an end of file to be written on the addressed update
tape. The constituents of the ENDFIL pseudo-
instruction are:

1. Blanks in the location field;

2. The operation code ENDFIL in the operation
field;

3. A FAP expression or logical tape number in
the variable field; and

4, Serialization, which is optional, in card columns
73-80.

If the logical tape number in the variable field is
that of the current Update Output tape, assigned by
an UPDATE pseudo-instruction, the last partial

block of instructions waiting to be written will be writ-
ten on the Update Output tape. The end of file will then
be written. If the variable field is blank, the end of
file is written on the Update Output tape after the last
partial block of instructions waiting to be written has
been written.

The REWIND Pseudo-Operation

The REWIND pseudo-operation causes the addressed
update tape to be rewound. The constituents of the
REWIND pseudo-instructions are:

1. Blanks in the location field;

2. The operation code REWIND in the operation
field;

3. A FAP expression or logical tape number in
the variable field; and

4. Serialization, which is optional, in card
columns 73-80.

If the logical tape number in the variable field is
that of the current Update Output tape assigned by an
UPDATE pseudo-instruction, the last partial block
of instructions waiting to be output will be written on
the Update Output tape before it is rewound. If the
variable field is blank, the Update Output tape is
rewound. If the Update Input or Update Output tape is
rewound, it is logically disconnected. No update
operation referring to it will be executed unless it is
reassigned by a subsequent UPDATE pseudo-
instruction.

The UNLOAD Pseudo-Operation

The UNLOAD pseudo-operation causes the addressed
update tape to be rewound and unloaded. The con-
stituents of the UNLOAD pseudo-instruction are:

1. Blanks in the location field;

2. The operation code UNLOAD in the operation
field;

3. A FAP expression or logical tape number in
the variable field; and

4. Serialization, which is optional, in card columns
73-80.

If the logical tape number in the variable field is
the current Update Output tape assigned by an
UPDATE pseudo-instruction, the last partial block
of instructions waiting to be output will be written
on the Update Output tape before it is rewound and
unloaded. If the variable field is blank, the Update
Output tape is rewound and unloaded. If either the
Update Input or Update Output tape is rewound and
unloaded, it is logically disconnected. It may be
reassigned by a subsequent UPDATE pseudo-
instruction; however, the operator should be in-
formed to ready the tape by a PRINT pseudo-
instruction sufficiently in advance to avoid delaying
the assembler.

The SKPFIL Pseudo-Operation

The SKPFIL (Skip File) pseudo-operation causes the
addressed update tape to be spaced forward until an
end of file is passed. The constituents of the SKPFIL
pseudo-instruction are:

1. Blanks in the location field;

2. The operation code SKPFIL in the operation
field;

3. A FAP expression or logical tape number in
the variable field; and

4. Serialization, which is optional, in card
column 73-80.

If the logical tape number in the variable field is
the current Update Output tape assigned by an UPDATE
pseudo-instruction, the last partial block of instruc-
tions waiting to be output will be written on the
Update Output tape before it is spaced. If the variable
field is blank, the Update Input tape is spaced forward
past an end of file.

If an Update Input tape contains a binary file to be
skipped over, the SKPFIL pseudo-operation should
appear outside the range of an UPDATE pseudo-
operation which pertains to that tape. This will pre-
vent a redundancy error message from occurring
because of look-ahead reading initiated by an UPDATE

_pseudo-operation,

The UMC Pseudo-Operation

The UMC (Updated Macro-Instruction Cards) pseudo-
operation is used to write the instructions generated
by a macro-instruction on the Update Output tape and
to delete macro-definitions and macro-instructions.
The constituents of the UMC pseudo-instruction are:

1. Blanks in the location field;

2. The operation code UMC in the operation field;

3. Blanks in the variable field; and

4. Serialization, which is optional, in card
columns 73-80.

Initially, macro-definitions and macro-instructions
are written on the Update Output tape, but macro-
generated instructions are not written. The UMC
pseudo-operation reverses this procedure. Successive
‘appearances of UMC cause switching from writing to
not writing macro-generated instructions and, there-
fore, from deleting to writing macro-definitions and
macro-instructions. The programmer should exercise
caution in the use of this pseudo-operation, since,
under alternate modes, a macro-definition may be
deleted, while a macro-instruction for the same code
may remain. An IRP pseudo-instruction in a macro-
generated sequence is never written on the Update
Output tape.

The serial numbers associated with deleted macro-
definitions will be deleted. All instructions generated
by the macro-instruction will be serialized with the

55

serial number associated with the macro-instruction.

Since remaining remote sequences (see RMT,
page 50) will be expanded after the END card is
written, when UMC is in effect, they must be in-
serted before the END card by the use of the RMT*
pseudo-operation,

If UMC is to be used, all macro-definitions for the
program should be written in the alternate form. In .
this form, the location field is an argument and is
defined within the macro-definition.

The ENDUP Pseudo-Operat ion

The ENDUP (End Update) pseudo-operation signals the
termination of an update with assembly deleted. The
constituents of the ENDUP pseudo-instruction are:

1. Blanks in the location field:

2. The operation code ENDUP in the operation
field;

3. Blanks in the variable field; and

4. Serialization, which is optional, in card
columns 73-80.

If assembly is deleted, END cards will be un-
blocked, but will not terminate the update. This
makes it possible to update more than one program
at a time. If assembly is not deleted, ENDUP will
be undefined. Blank serialization on the ENDUP
card will cause immediate termination of the update.

The PRINT Pseudo-Operation

The PRINT pseudo-operation first causes card
columns 14-72 of the PRINT card to be printed on-
line during the first pass over the input deck; then
it causes a machine halt. The constituents of the
PRINT pseudo-instruction are:

1. Blanks in the location field;

2. The operation code PRINT in the operation
field; and

3. A string of alphameric characters starting in
card column 14.

CHAPTER 29: OPTIONAL SERIALIZATION IN
UPDATE PSEUDO-INSTRUCTIONS

Only the DELETE, IGNORE, and SKIPTO pseudo-
instructions require serialization in card columns
73-80, Without serialization they have no effect ex-
cept that of inhibiting sequence checking (see
Chapter 1).

UPDATE, NUMBER, ENDFIL, REWIND,
UNLOAD, SKPFIL, UMC, and ENDUP may have
serialization in card columns 73-80. If these pseudo-
instructions are serialized on the System Input tape
the following occurs:

56

1. Either the previously defined Update Input tape
is positioned at an instruction with matching seriali-
zation or, if there is no instruction with matching
serialization, the Update Input tape is positioned after
the instruction of lower serialization and before the
instruction of higher serialization. In either case, if
there is an Update Output tape, all intermediate cards
on the Update Input tape are copied onto the Update
Output tape. The terminology 'positioning the Up-
date Input tape' implies the above.

2. The instruction on the Update Input tape with
matching serialization is deleted; and

3. The pseudo-instruction is interpreted.

If the pseudo-instruction is not serialized, steps 1
and 2 are omitted; thus, the pseudo-instruction is
interpreted at the current position of the Update
Input tape.

CHAPTER 30: UPDATE EXAMPLES

Figures 30-1 through 30-5 illustrate the use of some
of the update pseudo-operations.

UPDATE
Figure 30-1

9,10

The instruction in Figure 30-1 may be used to
merge the correction cards that appear on the System
Input tape after the UPDATE pseudo-instruction, with
those on logical tape 9, the Update Input tape; then
assemble.

UPDATE 9
Figure 30-2

The instructions in Figure 30-2 may be used to
position logical tape 9, the Update Input tape, to an
instruction with serialization F0213750; delete
F0213750; merge the correction cards on the System
Input tape with those on logical tape 9, the Update
Input tape, write a blocked symbolic tape on logical
tape 10, the Update Output tape; then assemble.

* FAP
UPDATE
ENDFIL

» END TAPE
ENDFIL
REWIND
UNLOAD 9
ENDUP

Figure 30-3

110440

The instructions in Figure 30-3 may be used to
write an end of file, an END TAPE card, another
end of file, rewind logical tape 10, the Update
Output tape; and unload logical tape 9.

D

3¢ DATE 6/18/62
* JOB IDENTIFICATION
* PACK

3* FAP

* PAGE TITLE CARD

UPDATE ,10
FO1 NUMBER 0
* DATE 6/18/62
* JOB IDENTIFICATION
* PACK
* FAP
* PAGE TITLE CARD
COUNT 5000
ABS
3636
33¢63¢
3¢
END
* FAP
UPDATE ,10
ENDF IL
* END TAPE
ENDF IL
UNLOAD
END
(END OF FILE)
END TAPE
(END OF FILE)

*

Figure 30-4

The instructions in Figure 30-4 may be used to as-
semble the cards on the system input unit while simul-
taneously generating a blocked, serialized Update
Output tape, logical tape 10, for a later assembly.

#* FAP
UPDATE 9,104,4D
FO1 NUMBER O
CAL ERASE
DELETE
NZT SYMBL
TRA ERROR
FO2 NUMBER O
DELETE
DELETE THRU
DELETE

IGNORE THRU
FC3 NUMBER O

END

ENDUP

FO101010
FO101200
FO101u461

F0199999
F0201730
F0201840
F0202040
FO204170
F0299999
F0302880

Figure 30-5

The instructions in Figure 30-5 may be used to
update and reserialize the instructions on the Update
Input tape, logical tape 9; to delete assembly; and to
write the updated symbolic output on logical tape 10,
the Update Output tape.

57

PART 5: GENERAL INFORMATION

CHAPTER 31: SUBROUTINES

A subroutine is a set of program steps, taken as a
unit, which performs a task and which forms part of
a program. Subroutines are useful in many applica-
tions and for many reasons. One reason for using a
subroutine is to utilize existing coding. Another
reason is that the effort of debugging a program is
substantially reduced if subroutines are used which
have been debugged previously. Finally, by entering
a subroutine from several points in a program, one
set of instructions can do the work of many, thus
saving core storage space.

Open and Closed Subroutines

Two types of subroutines are used: open subroutines
and closed subroutines. An open subroutine is a set
of instructions inserted into the body of a program
and encountered in the normal path of flow. An

open subroutine is most effectively embedded in
coding by use of the macro-operation. Open sub-
routines require no special linkage. A closed sub-
routine is, in a sense, a separate program. The
main routine using a closed subroutine transfers
control to it, and when the subroutine has accomplish-
ed its functions, it returns control to the appropri-
ate point in the main routine. Closed subroutines
require special communication facilities and offer
flexibility and economy of storage. The remainder
of this discussion will be devoted to closed sub-
routines.

Linkages

Since a closed subroutine may be entered from
different points in the main routine, the main routine
must enter the subroutine in such a way that the
subroutine will be able to return to the correct point.
The instruction or instructions which make this
possible form what is called the "linkage'" between
the main routine and the subroutine. In the 704, 709,
7090, and 7094 the standard linkage is a Transfer
and Set Index instruction which uses Index Register 4.
The instruction in Figure 31-1 transfers control to
the subroutine SUBR and places the 2's complement
of the location of the TSX instruction in Index
Register 4. In order to return to the location follow-
ing the TSX, the subroutine may use the instruction
in Figure 31-2.

TsSX SUBR 4

Figure 31-1

58

TRA les&

Figure 31-2

Calling Sequences

Often it is necessary for a main routine and a sub-
routine to communicate with one another. The main
routine may have to furnish the subroutine with
numbers on which to operate; these numbers are
called arguments. Also, the subroutine may produce
one or more numbers which are needed by the main
routine. For example, a mathematical routine such
as SIN will have one argument and will produce one
number as its result. In such a case, it is usual for
the main routine to place its argument in various
registers of the computer, and also for the subroutine
to leave its results in one or more of the registers.
However, often there are more arguments, or more
results, than there are registers. In this case, the
subroutine will usually be written so that the argu-
ment may appear in successive locations in the main
routine following the location of the linkage. Then the
beginning and ending instructions of the subroutine
might appear as in Figure 31-3.

00000 0500 00 4 00001 SUBR CLA ly4
00001 0601 00 O 77461 STO ARGA
00002 0500 00 4 00002 CLA 244
00003 0601 00 O 77460 STO ARGB
00004 0500 00 4 00003 CLA 3,4
00005 0601 00 O 77457 STO ARGC
00006 0634 00 4 00012 SXA END, 4
00007 0 00000 O 00000 LA

00010 O 00000 O 00000 LA

00011 O 00000 O 00000 LA

00012 0774 00 4 00000 END AXT 0r4
00013 0020 00 4 00004 TRA 4494
Figure 31-3

The linkage and the locations containing para-
meters together form what is called the calling
sequence. Typically, the subroutine returns control
to the location following the last word of the calling
sequence. In FORTRAN, an argument appears in
the address portion of each location of the calling
sequence; the argument is usually the address of a
location containing the argument needed by the syb-
routine. The operation code of a FORTRAN calling-
sequence word contains a TSX instruction; the tag
bits are zeros. Thus, a FORTRAN calling sequence
appears as in Figure 31-4.

D

TSX SUBR &

TSX ARGX
TSX ARGY
TSX ARGZ
Figure 31-4

The number of tagless TSX instructions in the
calling sequence is determined by the subroutine.
For some subroutines, the length of the calling
sequence is variable. The end of the calling sequence
is signaled by the occurrence of something other than
a tagless TSX. The use of the calling sequence is
a powerful tool; the parameters may be the locations
of entire arrays, some used by the subroutine, and
some produced by it.

FORTRAN Linkage and Calling Sequences

Five types of subroutines may be used in FORTRAN.
These are built-in functions, arithmetic statement
functions, library functions, FUNCTION subprograms,
and SUBROUTINE subprograms. The built-in func-
tions are compiled as open subroutines. Arithmetic
statement functions are closed subroutines that are
compiled as an integral part of the program in which
they appear. A further discussion of built-in func-
tions and arithmetic statement functions is given

in the IBM Reference Manual, 709/7090 FORTRAN
Programming System, Form C28-6054 .

The argument of a library function is placed in the
Accumulator by the main routine before control is
transferred to the subroutine: If there is a second
argument, it is placed in the MQ register. The
calling sequence for a library function consists solely
of the linking TSX, which has a tag of 4. A library
function produces a single number as its result. This
number is left in the Accumulator, and control is
returned to the instruction following the one-word
calling sequence. The FORTRAN compiler is directed
to use this calling procedure by the presence of the
letter F at the end of the function's name. The com-
piler refmoves this terminal F, since it is not present
in the corresponding routine in the library.

A FUNCTION subprogram is compiled or assembled
separately from the program which calls it. The

calling program utilizes the FORTRAN calling sequence

described in the preceding section. Thus, the number
of arguments is practically unlimited. Like a library
function, the FUNCTION subprogram produces a
single number as its result. This number is left

in the Accumulator, and control is returned to the
instruction following the last word of the calling
sequence. The FORTRAN compiler is directed to
use this calling procedure by the absence of the letter
F at the end of the function's name. Further infor-
mation regarding FUNCTION subprograms is given
in the 709/7090 FORTRAN reference manual refer-
enced above.

Each of the four types of function subroutines
discussed above is called in the same manner in
a FORTRAN source program. The name of the
function is used implicitly to form a part of some
statement, and the compiler automatically constructs
the required open subroutine or calling sequence,
A SUBROUTINE subprogram is called explicitly from
a FORTRAN source program by the use of the CALL
statement. The CALL statement produces a FORTRAN
calling sequence. In this way, a SUBROUTINE sub-
program is like a FUNCTION subprogram. Unlike the
FUNCTION subprogram, the SUBROUTINE subprogram
does not leave a result in the Accumulator. Instead
one or more arguments in the calling sequence are
used to specify where the results should be stored.

Segmentation

It is often advantageous for a programmer to divide

a program into segments, one segment being the

main program and other segments being subprograms.
The segments are linked together by CALL statements
in FORTRAN and the CALL pseudo-instructions in
FAP. The segment may be compiled separately, and,
by supplying each segment in turn with test data, each
segment may be debugged separately.

Common Storage

Often a subprogram or segment will require the
values of a large number of variables computed by
another subprogram or segment. If the names of all
these variables are placed in their respective calling
sequences, the task of writing these calling sequences
becomes difficult, and time is lost interpreting these
calling sequences in the execution of the resulting
program.

By using the COMMON statement in FORTRAN
programs and the COMMON pseudo-instruction in
FAP programs, the programmer may reserve loca-
tions.in upper core storage for the storage of certain
variables that are used in more than one subprogram
or segment. If the assignment of common storage is
performed identically in all subprograms or segments,
then references to a given variable in different sub-
programs or segments will result in reference being
made to the same location in core storage.

In FORTRAN, the COMMON statement is used in
conjunction with the DIMENSION statement to deter-
mine storage assignments. The first variable named
in a COMMON statement is assigned to a block of
storage whose highest location is the octal address
77461. In FORTRAN, arrays are stored backward
in core storage, and the name of the array refers to
the highest address in the block of storage allocated.
The size of the block is determined by a DIMENSION
statement; if the variable does not appear in a

59

DIMENSION statement, one location is reserved.

The location assigned to the second variable in a
COMMON statement is computed by subtracting the
length of the first block from the octal number 77461.
Assignment proceeds by the allocation of successively
lower addresses to successive variables in common
storage.

Assignment of common storage in FAP is accomp-
lished by the use of the COMMON pseudo-operation
(see page 24). The length of the block to be reserved
is given in the variable field of each COMMON
instruction, while the order of these instructions
determines the order of the locations assigned.

Relocatable Binary

The various subprograms or segments which make
up a complete job are compiled or assembled indi-
vidually. The library subroutines are present on the
library tape in binary form. In order to execute a
job, all the component programs must be loaded into
the computer in binary form. The loading operation
is performed by BSS (Binary Symbolic Subroutine)
Control, which requires that all programs to be
loaded be in the relocatable binary format. This
format is so named because it enables the loader to
relocate the program, that is, to place the program
into whatever area of core storage is available for it,

The process of relocation involves three opera-
tions:

1. Each word of the program is moved to a new
location.

2. A number, the relocation constant, is added
to the address portion of certain words of the program.

3. The relocation constant is added to the decre-
ment portions of certain words of the program.

Occasionally, a program requires some other
form of modification for relocation. For instance,
use of complemented locations may require that the
relocation constant be subtracted from the address
or decrement portion of some words. BSS Control
is not capable of performing this sort of modification,
thus, such a program must be recoded before being
used with FORTRAN programs. If the FAP assembler
is instructed to produce coding which cannot be
relocated by the BSS Control, a relocation error will
be indicated.

A program will consist of a sequence of card images
on tape, each card image being the tape equivalent
of one binary card. The unique feature of the relocat~
able binary format is that each card image contains
within it a sequence of relocation indicator bits. These
bits indicate to BSS Control which of the address and
decrement portions of words on the card are to be
modified. A discussion of the relocation indicator
bits and of the relocatable binary card format is given
in the IBM Reference Manual, 709/7090 FORTRAN
Operations, Form C28-6066.,

60

Transfer Vector

In addition to performing relocation, BSS Control
makes possible references between different sub-
programs. The mechanism by which this reference
is made is called the transfer vector. The BCD
representation of the name of each subprogram
referenced in the program is placed in the transfer
vector, which appears at the beginning of the program.

When the programs are loaded, BSS Control
determines the location of the first instruction to be
executed in the subprogram and replaces the transfer
vector word by a transfer to this location. Thus, the
linking TSX in the main program transfers control
to the transfer vector word, which is also located in
the main program, and the transfer vector word
transfers control to the subprogram. Since Index
Register 4 is set by the linking TSX and is not altered
by the transfer vector instruction, the subprogram
may use Index Register 4 to locate its arguments
and return point.

In general, there will be as many words in the
transfer vector as there are different subroutine
names referenced in the program. Each transfer
vector name will be replaced by an appropriate trans-
fer instruction during loading.

BSS Control is guided in this replacement process
by program cards. Each binary deck begins with a
program card. The program card gives the number
of locations in the transfer vector, the number of
locations in the program, the number of locations of
common storage used by the program, and every
entry-point name used by the program together with
the corresponding entry address. A detailed descrip-
tion of the program card is given in the IBM Refer-
ence Manual, 709/7090 FORTRAN Operations, Form

C28-6066.

The FAP assembler, guided by the ENTRY instruc-
tion in the symbolic program, produces a program
card. The transfer vector is also produced auto-
matically by FAP and contains every subroutine
name used in a CALL statement or referenced by use
of the character $.

CHAPTER 32: A BRIEF DESCRIPTION OF THE
ASSEMBLY PROCESS

The user of FAP will be better able to keep in mind
the capabilities and limitations of the assembler if
he is familiar with the basic structure of the assembly
program. However, Parts 1 through 4 of this manual
are complete, and the programmer need not be
familiar with the material covered here in order to
make full use of FAP,

The assembly process consists of two passes.

D

-

During the first pass, the symbolic cards are read
from the input tape and are copied onto the inter-
mediate tape, and values are assigned to all location
symbols. These values are tabulated in a dictionary
called the "'symbol table." If a BCD source deck is
serialized, it will be checked for cards out of se-
quence. Updating occurs during Pass 1. During the
second pass, the symbolic cards are read from the
intermediate tape, values are substituted for opera-
tion codes and symbols, the assembly listing is
written on the output tape, and off-line row or column
binary output is written on the output tape. Only if
on-line cards are requested will a binary intermediate
tape be written.

The first pass is devoted to the construction of the
symbol table, to updating, to the definition of remote
sequences and macro-definitions, and to the defini-
tion of operations defined by OPD, OPSYN, and
OPVFD. In addition, macro-instructions are
expanded and remote sequences are generated in
Pass 1. The assembler uses two counters called
the "location counter' and "program counter' to
keep track of the "next location to be assigned."
Initially, both counters are set to zero. When an
instruction, which is not a pseudo-operation, is
processed, its location symbol, if any, is entered into
the symbol table together with the current value of the
program counter. Then both counters are increaged
by one or, for certain orders, by two. Pseudo-
operations affect both counters in different ways.
ORG sets both counters to the given value; LOC sets
only the program counter. BSS and BES increase
the contents of both counters by the given value.

EQU, BOOL, and several other pseudo-operations
have no effect on either counter. Whenever a symbol
is encountered in the location field of an instruction,
it is defined. Some pseudo-operations require
reference to be made to the symbol table in Pass 1.
When such reference must be made, the symbol
referred to must already have been entered in the
symbol table. This is the reason for the statement
that symbols must have been previously defined. In
most instructions, the symbols in the variable field
are not evaluated until Pass 2, and hence need not
have been previously defined.

Macro-definitions and remote sequences are
reduced to skeleton form and inserted into the macro-
definition table. Each macro-operation code and a
pointer to its definition in the macro-definition table
is inserted into the combined operations table. Remote
sequences are chained.

When a macro~instruction is encountered, its
arguments are tabulated. When a macro-definition
is encountered, the arguments are tabulated, and
each appearance of an argument is replaced by a flag
indicating the position of the argument in the argu-
ment list.

The macro-definition skeleton is expanded, and
each appearance of a flag is replaced by a specific
argument. If an RMT* is encountered, each remote
sequence in the chain is expanded.

Halfway through Pass 1 (as decided on the basis
of the COUNT card) the assembler rewinds the first
intermediate tape and begins writing on the second
intermediate tape. If the assembler used only one
intermediate tape, time would be lost while the
assembler waited for this tape to rewind. Using two
intermediate tapes, FAP works with each intermediate
tape in turn while the other is rewinding.

The intermediate tapes contain 16 words per card
image, 16 card images per block. The first 80
characters are the symbolic instruction being proc-
essed. Certain flags are transmitted from Pass 1 to
Pass 2 in the last 24 bits of the fourteenth word. The
fifteenth word contains either a literal or a pseudo-
operation definition, which was evaluated in Pass 1.
The sixteenth word contains either the operation code
or the pseudo-operation transfer address; if an opera-
tion is undefined, this word is all zeros. The inter-
mediate tapes are written and read in binary because
of the information in the fifteenth and sixteenth words.

At the end of Pass 1, the assembler sorts the
symbol table to make searching more efficient in
Pass 2. During this sort, any symbols which have
been defined more than once are detected and flagged
in the symbol table. The assembler then begins the
second pass. The assembler reads the first inter-
mediate tape, which is now rewound, and fully proc-
esses all instructions, usingthe symbol table con-
structed in Pass 1. By the time the assembler has
finished processing the instructions on the first
intermediate tape, the second intermediate tape
should be rewound.

The symbol-defining pseudo-operations are inter-
preted in the first pass in order to make entries to
the symbol table. The definitions are saved as the
fifteenth word of the intermediate record. They are
interpreted again in the second pass in order to verify
the value in the symbol table.

The storage-allocating pseudo-operations are
interpreted in the first pass to define the symbol in
the location field and to alter the location and pro-
gram counters in the case of BSS and BES, or common
counter in the case of COMMON. In the second pass,
the effect of these pseudo-operations is recorded in
the assembly listing, and, in the case of BSS and
BES, the binary output is also affected.

The data-generating pseudo-operations are inter-
preted in the first pass to the extent necessary -
to define the symbol in the location field and to deter-
mine the number of words generated (which number
is added to the location and program counters). The
generated data words are developed when the pseudo-
operations are interpreted in the second pass.

61

Instructions which are not pseudo-operations are
not interpreted in the first pass, except to define the
symbol, if any, in the location field, and to increase
the location and program counter by one or two. The
operation, address, tag, and decrement bits are all
assembled in the second pass.

Subroutine names defined by CALL or EXTERN in-
structions or by use of the character $ are tabulated
in the first pass. The number of different subroutine
names so tabulated gives the length of the program's
transfer vector. At the end of the first pass the length
of the transfer vector is added to the value of every
relocatable symbol in the symbol table except those
symbols which are themselves subroutine names. The
length of the transfer vector, the length of the program,
and the lowest address of common storage used are
placed in the program card image at the beginning of
the second pass. Then the ENTRY instructions are
processed to produce the completed program card
(or program cards).

When a DUP pseudo-operation is encountered in
the first pass, the assembler processes each instruc-
tion in the range of the DUP just once, computes the
amount by which the program counter has been in-
creased, multiplies this amount by the DUP count,
and uses this product to compute the new values of
the location and program counters. In the second
pass, the assembler backspaces the intermediate
tape and reprocesses the range of the DUP the

62

correct number of times.

Literals are processed in the first pass. Each
literal is evaluated to yield a 36-bit data item; these
data items are tabulated to form the literal table.

As each literal is encountered in the first pass, the
literal table is searched to see if it already contains
the corresponding data item. If the data item is not
present, the literal table is expanded and the data
item is added. The literal table is kept in sorted
order at all times. When a symbolic instruction
containing a literal is written on the intermediate
tape, the data item generated by the literal is written
on the intermediate tape as an extra word in the
record. In the second pass, the data item is retrieved
from the intermediate tape, and the literal table is
then used to compute the address to be assigned to the
data item. At the end of the second pass, the data
items in the literal table are published in the assembly
listing and in the binary output. This rather elaborate
procedure for handling literals is used because, at
the beginning of the second pass, the assembler must
have already determined how many different literal
data items are used in the program in order to com-
pute the total length of the program; this length

must be entered into the program card image.

Following the occurrence of a relocatable assembly
in error, the binary instructions are erased from the
Monitor binary output, and a labeled "FAILED" card
is inserted in their place.

D

VR

APPENDIX A: COMBINED OPERATIONS TABLE

PSEUDO-OPERATIONS

The following is a list of pseudo—operations in the

combined operations table.

Operation Code

704
7090
9LP
ABS
BCD
BCI
BES
BOOL
BSS
CALL
COMMON
COUNT
DEC
DETAIL
DUP
EJECT
END
ENDFIL
ENDUP
ENTRY
EQU
EVEN
EXTERN
FUL
HEAD
HED
IFEOF
IFF
INDEX
IRP
LBL
LIST
LOC
MAC
MACRO
MAX
MIN
MOP
NOCRS
NULL
NUMBER
OCT
OPD
OPSYN
OPVFD
ORG
ORGCRS
PCC
PMC

Purpose
Set mode of assembly
Set mode of assembly
Set card format
Set card format
Generate data
Generate data
Allocate storage
Define symbols
Allocate storage
Link programs
Allocate storage
Assembly information
Generate data
Control listing
Generate data
Control listing
Assembly information
Update information
Update information
Link programs
Define symbols
Allocate storage
Link programs
Set card format
Define symbols
Define symbols
Link programs
Assembly information
Control listing

Control macro-operations

Label binary cards
Control listing
Allocate storage
Macro-instruction
Macro-definition
Define symbols
Define symbols
Macro-definition

Control macro~operations

Control listing
Update information
Generate data

Define operation code
Define operation code
Define operation code
Allocate storage

Control macro-operations

Control listing
Control listing

Operation Code Purpose
PRINT Update information
REF Control listing
REM Control listing
REWIND Update information
RMT Defer assembly
SET Define symbols
SKPFIL Update information
SPACE Control listing
SST Define symbols
SYN Define symbols
TAPENO Define symbols
TCD Set card format
TITLE Control listing
TTL Control listing
UMC Update information
UNLIST Control listing

UNLOAD Update information
UPDATE Update information
VFD Generate data

The following pseudo-operations are recognized
by FAP, but do not appear in the combined operations
table.

DELETE Update information
ETC Continue variable field
IGNORE Update information
SKIPTO Update information

MACHINE AND EXTENDED MACHINE INSTRUCTIONS

The following is a list of machine instructions and
extended machine instructions, type, and permissible
fields in the combined operations table.

Each is described in detail in the various machine
manuals.

In the machine instruction list, the description of
the machine instruction, the fields permitted and/or
machine required, the mode of assembly, and other
information is coded as follows:

Instructions
Type Instruction Format Usage

A 0 00000 0 00000 15-bit decrement field
B 0000 xx 0 00000 No decrement field

C 0000 00 0 00000 8-bit decrement field
D 0000 xx 000000 -18-bit address field

E 0760 xx 0 x0000 13-bit address field
K 00 0000 0 00000 4-bit prefix field

63

Other Codes
Code Interpretation
T Operation code defined or required address
satisfied by use of TAPENO character
(I/0) 1/0 unit address defined by operation

mnemonic

4 Permissible in 704 mode only

9 Permissible in 7090 mode only

94 Permissible in 7090 mode only; no flag
given for a 7094 instruction in a 7090
program

8 Decrement field not longer than 8 bits
required

An x as the fourth character of an operation code
indicates a variable channel operation; the channel
designation A to H, or a properly defined TAPENO
character, must be substituted for this character.
This character should not be used with unit record
equipment.

Violation of these rules will cause the instruction
to be flagged. No 709 mode exists; hence, while
assembling in the 7090 mode, drum instructions will
be flagged, but indirect addressing I/0 commands
will not.

Operation codes which are on a "Request Price
Quotation' basis are indicated by RPQ in the mode
column.

The following notes pertain to the combined
operations table:

(1) A count field in the low-order subfield position
of the operation code is assembled from the fourth
subfield of the variable field; for example,

ICC ,.,4
(2) The following extended machine operations are
included in the combined operations table. They dif-
fer from the assembled machine operation codes
only in that no flag appears in the left margin of the
listing for certain uncoded tag and decrement fields.

Mnemonic As Assembled Unfl. Omitted Fields

BRA TXL T,D
BRN TXH T,D
NTR TXI T.D
XIT TTR

ZAC PXD T
ZSA SXA T
ZSD SXD T

(3) Alternate forms for PZE

Op Code Type Addr Tag Dec Ind Addr Mode

ACL B R P P
ADD B R P P
ADM B R P P
ALS B R P P
ANA B R P P
ANS B R P P
ARS B R P

64

Op Code

>
[}
=%
=

Tag

AXC
AXT
BRA
BRN
BSF
BSFx
BSR
BSRx
BST
BTT
BTTx
CAD
CAL
CAQ
CAS
CFF
CHS
CLA
CLM
CLS
COM
CPY
CPYD
CPYP
CRQ
CTL
CTLN
CTLR
CTLRN
CTLW
CTLWN
CVR
DCT
DFAD
DFAM
DFDH
DFDP
DFMP
DFSB
DFSM
DLD
DRS
DST
DUAM
DUFA
DUFM
DUFS
DUSM
DVH
DVP
EAD
EAXM
ECA
ECQ
ECTM

B(1/0)
B(1/0)
B(1/0)
B(1/0)

=
—
S~
e

BRI WO EQORRARRAARCCP PRI IO O MM

mwawwwww

-

zwwzwwwwwwwwwwwwwwwwwwz:uw;c:nww:uwwmwzwzmzzmwwmgww

(2)

Z"U"UZ'U"U’U’U*U*U*U*d'ﬂ“U’U*U'U'U'U’U*U’UZ*UZZZZZZ"UZZ"UZ"UZ"UZZ"U'U"O"UZ’U’U’U"U"U"U@

Dec

(@)
@

© @

Ind
Addr

ot

oY diudd g

e o BB o B o B o By v B o v

v Bl v)

Mode

9
9

B O O O WO

O W WWOWWWO OO

94
94
94
94
94
94
94
RPQ
94
94
94
94
94
94

RPQ
RPQ
RPQ
RPQ

D

Op Code
EDP

EFTM
ELD
EMP
EMTM
ENB
ENK
ERA
ESB
ESM
ESNT
EST
ESTM
ETM
ETT
ETTx
EUA
FAD
FAM
FDH
FDP
FIVE
FMP
FOR
FOUR
FRN
FSB
FSM
FVE
HPR
HTR
ICC
IIA
IL
IR
s
10D
IOT

*IOXY(N)
.ea(3)
LAC

LAS
LAXM
LBT
LCC
LCHx
LDA
LDC
LDI
LDQ
LFT
LFTM
LGL
LGR
LIP

wucwﬁuw>wwm>>w>wwwwwmmmmwwmwwmwmmmmws
=
(]

B(1/0) .

:&‘wwmcmmwwswmmwuw»»m

&
&

ZZ“UZ’U'U"UZ'U'd'U’U'U'U'ﬂ*d’U'UZZZ*U"UZ’U’UZ’UZ'U'UZ’UL;:

ZAOWZOdDOENIWITZZT0 0V ZZ00NZZ2T 20T ZU0vD OO Z

ZZZ?UFUZ:UNZ!:UZ:U:UZ.’:U‘

H

oYY ZZZYZ00uZZN

2z Z

i

Ind
Addr

Mode

Op Code Type

)

)
P

Y- YW

-l

RPQ
9
RPQ
RPQ
94

9

9

9
RPQ
RPQ
9
RPQ
9

4
9
RPQ

W WO WS

W w0

RPQ

[J-J (< A [V<

©

LIPT
LLS
LMTM
LNT
LRS
LSNM
LTM
LXA
LXD
MON
MPR
MPY
MSE
MTH
MTW
MZE
Nop
NTR
NZT
OAI
OFT
ONE
ONT
ORA
ORS
OS1
PAC
PAI
PAX
PBT
PCA
PCD
PDC
PDX
PIA
PON
PSE
PSLx
PTH
PTW
PXA
PXD
PZE
RCD
RCDx
RCHx
RCT
RDC
RDCx
RDR
RDS
REW
REWx
RFT
RIA

(o~ v B e B v~ B o= B B v R o v B o o B oo e o - B o - e v e el o Bl v e Tl v e e B o B o B e Bl w I ol o < I

Wwe>>w
|

»>

B(1/0)

B(1/0)
B
B(1/0)
B(1/0)
D
B

Ind

Addr Tag Dec Addr Mode
R N N p 9
R P

N N 94
R 9
R P

N N 9
N N

R R

R R

P P P

R P P

R P P

P P

P P P

P P P

P P P

N N

R P P

R P P 9
N N 9
R P P 9
P P P

R P P 9
R P P

R P P

R P P 9
N R 9
N N 9
N R

N N

N R 94
N R 94
N R 9
N R

N N 9
P P P

R P

R P P RPQ
P P P

P P P

N R 9
N R

P P P

P)4

N N 9
R p P 9
N N 9
R P 9
NT P 9
R P 4
R P

R P

RT P 9
R 9
N N 9

*[OXY(N) symbolizes all I/0 commands.

65

Ind Ind
Op Code Type Addr Tag Dec Addr Mode Op Code Type Addr Tag Dec Addr Mode

RICx E NT P 9 STP B R P P

RIL D R 9 STQ B R P P : D
RIR D R 9 STR A N N N 9 “
RIS B R P P 9 STT B R P P 9

RND E N N STZ B R P P

RNT D R 9 SUB B R P P

RPR B(I/0) P P SVN A P P P

RPRx B(I/0) N N 9 SWT E R P

RQL B R P SXA B R R 9

RSCx BT R P P 9 SXD B R R

RTB B(I/0) R P TCH A R P N P 9

RTBx B(I/O) RT P 9 TCM K(1) R N R P 9

RTD B(I/0) R P TCNx BT R P P 9

RTDx B(I/0) RT P 9 TCOx BT R P P 9

RTT E N N 4 TDC K R N N 2 9 .
RUN B(I/0) R P 9 TEFx BT R P P 9

RUNx B(I/0O) RT P 9 THREE A P P P 9

kX (3) A P P P TIF B R P P 9

bbb(3) A P P P TIO B R P P 9 s
SAR K R N N P 9 TIX A R R R

SBM B R P P TLQ B R P P

SCA B R R 94 TMI B R P P

SCD B R R 94 TNO B R P P

SCDx BT R P P 9 TNX A R R R

SCHx BT R P P 9 TNZ B R P P

SDH B(I/O) R P 9 TOV B R P P

SDHx B(I/0) RT P 9 TPL B R P P

SDL B(I/0) R P 9 TQO B R P P

SDLx B(I/0) RT P 9 TQP B R P P | J
SDN B(I/0) R P 9 TRA B R P P ’
SEVEN A P P P 9 TRCx BT R P P 9

SIL D R 9 TRS B R P RPQ

SIR D R 9 TSM E N N RPQ

SIX A P P P TSX B R R

SLF E N N TTR B R P P

SLN E R P TWO A P P P

SLQ B R P P TWT K R N N P 9

SLT E R P TXH A R R R

SLW B R P P TXI A R R R

SMS K R N P 9 TXL A R R R

SNS K N N 9 TZE B R P P

SPR E R P UAM B R P P 9

SPRx E R P 9 UFA B R P P

SPT E N N UFM B R P P

SPTx E N N 9 UFS B R P P

SPU E R P USM B R P P 9 .
SPUx E R P 9 VDH c R P 8 9

SSLx BT R P P RPQ VDP o) R P 8 9

SSM E N N VLM o] R P 8 9

Ssp E N N WDR B(I/0) R P 4

STA B R P P WEF B(I/0) R P

STCx BT N N 9 WEFx B(I/0O) RT P 9

STD B R P P WPB B(I/0) P P

STI B R P P 9 WPBx B(I/0) N N 9 v
STL B R P P 9 WPD B(I/0) P P D
STO B R P P WPDx B(I/0) N N 9

66

Ind
Op Code Type Addr Tag Dec Addr Mode

Order Access
Mnemonic Code Module Track Record Definition

WPR B(I/0) P 3

WPRx B(I/0) N N 9
WPU B(I/0) P P

WPUx B(I/0) N N 9
WRS B R P

WTB B(I/0) R P

WTBx B(I/0) RT P 9
WTD B(I/0) R P

WIDx B(I/0) RT P 9
WTR A R N N P 9
WTS B(I/0) N N 4
WTV B(I/0) N N

XCA B N N 9
XCL B N N 9
XEC B R P P 9
XIT B R P P

XMT A R N R P 9
ZAC B N (2)

ZET B R P P 9
7ZSA B R 2 9
ZSD B R (2

Disk File Orders

The following disk file orders are included in the
combined operations table. The symbolic order
should be written as follows:

LOC DORD A,T,R

The constituents of the symbolic disk order are:

1. A symbol or blanks in the location field;

2. The disk order code in the operation field;

3. One through three subfields in the variable field.

The first subfield of the variable field is a two-digit
number representing the access and module (4).

The second subfield of the variable field is a four-
digit number representing the track (T).

The third subfield of the variable field is two
alphabetic or numeric characters representing the
record (R).

The variable field will assemble as two, six, or
eight consecutive BCD characters. The operation
code is two BCD characters. Thus, -the disk order
consists of up to ten BCD characters. Since each
BCD character consists of six-bits, a disk order
requires two consecutive binary words in core
storage. Unused portions of the binary words will
contain 12g, the disk BCD representation for zero.

Order Access
Mnemonic Code Module Track Record Definition

DNOP 00 No Operation
DREL 04 Release
DEBM 08 Eight-Bit Mode

DSBM 09 Six-Bit Mode

DSEK 80 R R Seek

DVSR 82 R R R Prepare to Verify Single
Record

DWRF 83 R R Prepare to Write Format

DVTN 84 R R R Prepare to Verify Track,
No Address

DVCY 85 R R R Prepare to Verify Cylinder
Operation

DWRC 86 R R R Prepare to Write Check

DSAI 87 R Set Access Inoperative

DVTA 88 R R R Prepare to Verify Track
With Address

DVHA 89 R R Prepare to Verify Home

' Address

Hypertape Orders

The following Hypertape orders are included in the
combined operations table. The symbolic order
should be written as follows:

LOC HORD A

The constituents of the symbolic Hypertape order
are:

1. A symbol or blanks in the location field;

2. The Hypertape order code in the operation
field; and

3. The Hypertape drive number in the variable
field.

The variable field will be blank in all orders except
HSBR and HSEL.

FAP assembles Hypertape orders as two (or three
for HSBR and HSEL) BCD characters, left justified in
the word. Locations containing two-character orders
are filled with trailing HNOP (1212g) codes. Three-
character orders are repeated as the three remaining
characters.

Order
Mnemonic Code Drive Definition

HNOP 00 No Operation

HEOS 01 End of Sequence

HSEL 06 R Select

HSBR 07 R Select for Backward Reading
HCCR 28 Change Cartridge and Rewind
HRWD 30 Rewind

HRUN 31 Rewind and Unload Cartridge
HERG 32 Erase Long Gap

HWTM 33 Write Tape Mark

HBSR 34 Backspace

HBSF 35 Backspace File

HSKR 36 Space

HSKF 37 Space File

HCHC 38 Change Cartridge

HUNL 39 Unload Cartridge

HFPN 42 File Protect On

67

APPENDIX B: THE FAP BCD CHARACTER CODE

The FAP BCD character code is identical to the
FORTRAN character code except that the FAP

apostrophe is replaced by a redundant minus sign, or
dash, in the FORTRAN character code.

Character
(blank)

68

ST OMEOQE P © 0GR =o

BCD Code (Octal)
60
00
01
02
03
04
05
06
07
10
11
21
22
23
24
25
26
27
30
31

Card Code
(blank)
0

Character

+

i [N |

* A~

NHKMS<CHNIOYWOZZHRS

(plus)

(minus)

(slash)

(equals)
(apostrophe)
(period)

(right parenthesis)
(dollar sign)
(asterisk)
(comma)

(left parenthesis)

BCD Code (Octal)

41
42
43
44
45
46
47
50
51
62
63
64
65
66
67
70
71
20
40
61
13
14
33
34
53
54
73
74

Card Code
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8

T 11 T 1 01 4
LW HHNOWINU K WD

[
OOOO[OOOO!—'

e

D

N

/ﬁ ‘\i

5

The following is a list of symbols that can be defined
with the use of the SST pseudo-operation for the
assembler operating under the FORTRAN Monitor.

Since the octal location of the following symbols
will change when FAP is reassembled, these loca-
tions will not be included here. Other symbols which
may be included in the System Symbol Table are

given in Appendix D.

TOPMEM
BOTIOP
BOTTOM
(PCBK)
DATEBX
LINECT

FLAGBX

SYSTAP
FINTAP
SINTAP
TINTAP
MINTAP
MLSTAP
MBNTAP
MCHTAP
SNPTAP
LIBTAP

(LOAD)
(DIAG)

(TAPE)
(PRNT)
(PNCH)
(READy*
(STAT)
(REST)
(STDN)
(SECL)
(MECL)

(ESISy*

(ES2S)y*

Core Allocation Symbols

Top of available core storage

Bottom of 1/O package

Bottom of available core storage

COMMON break, , object program program break
Monitor date cell

Monitor job line count, , FORTRAN page
number, label flag in prefix

Monitor flag cell

Tape Assignment Symbols

00001
00002
00003
00004
00005
00006
00007
00010
00011
00001

System tape

First intermediate tape

Second intermediate tape

Third intermediate tape
Monitor input tape

Monitor listing tape

Monitor punch tape

Monitor intermediate chain tape
Snap tape

System library tape

Entry Points to 1/O Package

Call next record on system tape
Call diagnostic record, source or machine
error

Initiate tape operation

Initiate on-line print

Initiate on-line punch

Initiate on-line card read
Locate tape statistic tables
Restore console

Set tape density

Call source program error record
Call machine error record

Parameters Variable at Edit Time

Physical sense switch corresponding to END
Card Setting 1
Physical sense switch corresponding to END
Card Setting 2

APPENDIX C: SYSTEM SYMBOL TABLE, FORTRAN

(ES3Sp
(ES4Syx
(ESSSp
(ES6Sp*

(PGCT)
(LIBT)

(FGBX)
(LNCT)
(DATE)
(SNCT)
(MSLN)
(ENDS)
(SCHU)
(LODRy#*

(LBLDy#*

(WROW)
(RDEC)
(WEFC)
(RBEC)
(WDNC)
(RDNC)
{WBNC)
(RBNC)
(RDEP)
(WEFP)
(RBEP)
(WDNP)
(RDNP)
(WBNP)
(RBNP)
(SKDC)
(SKBC)

(SKDP)
(SKBP)

(CHKU)
(TPER)

(SNAP)

(SUAV phk
(SUNV pkk

MONITOR

Physical sense switch corresponding to END
Card Setting 3

Physical sense switch comresponding to END

Card Setting 4

Physical sense switch corresponding to END
Card Setting S

Physical sense switch unassigned (See FORTRAN
Reference Manual)

Listing page dimensions

System library tape assignment

Common Communications Region

Location of Monitor flag cell

Location of Monitor line count

Job date

Snapshot tape file count

Flag for diagnostic record

End card setting

Data transmission error information
Entry point and record number of current
record

Load address for relocatable library

Definitions of Operation Mnemonics

to Initiate Tape Operation

Defipition Operation Information End File Check

40031
40016
40015
40014
40013
40012
40011

40010,

40006
40005
40004
40003
40002
40001
40000
20012
20010

20002
20000

10000
04000

01000

Write Row Binary Immediate
Read Decimal Permitted Immediate
Write End File Immediate
Read Binary Permitted Immediate
Write Decimal Immediate
Read Decimal Prohibited Immediate
Write Binary Immediate
Read Binary Prohibited Immediate
Read Decimal Permitted Later

Write End File Later
Read Binary Permitted Later
Write Decimal Later

Read Decimal Prohibited Later
Write Binary Later

Read Binary Prohibited Later

Skip Decimal Immediate
Skip Binary Immediate
Backspace for BTT
Skip Decimal Later

Skip Binary Later
Backspace Not significant

Delay and check last information transmitted
Error return for transmitted information found
improper

Dump panel and core storage selectively on
SNPTAP

Set unit(s) available
Set unit(s) unavailable

* FAP under the independent FORTRAN Monitor only.
%k FAP under the FORTRAN Monitor operating under
IBSYS only.

69

APPENDIX D: THE ASSEMBLE ONLY MODE OF
FAP OPERATING UNDER THE BASIC MONITOR

The FORTRAN Assembly Program (FAP) is avail-
able in two modes when operating under the Basic
Monitor (IBSYS). In addition to the normal FORTRAN
Monitor mode, a special mode called IBSFAP is
available which permits assembly and updating, but
not execution. Complete IBSYS specifications are
given in the reference manual IBM 7090/7094 Oper-
ating Systems, Basic Monitor (IBSYS), Form
C28-6248,

IBSFAP OPERATIONS
Control Cards

The following Basic Monitor card sets the IBSFAP
mode of the FORTRAN Monitor:

1 16
$EXECUTE IBSFAP

The FORTRAN Monitor operating in the IBSFAP
mode recognizes all standard Monitor control cards
except those pertaining to execution. The asterisk,
which defines a card as being a Monitor control
card, may be in card column 1 or card column 7
when the FORTRAN Monitor is in the IBSFAP mode.

70

Complete details regarding FORTRAN Monitor
operations are in the publication IBM 7090/7094
Programming Systems: FORTRAN II Operations,

Form C28-6066.

System Symbol Table

When FAP is operating under the Basic Monitor,
the SST pseudo-operation provides the symbols
listed in items 1, 2, and 3 in the following text. In
the FORTRAN Monitor mode, these symbols are
provided in addition to those symbols given in
Appendix C; in the IBSFAP mode, they are pro-
vided instead of those symbols in Appendix C. The
exception, which overrides this rule, is when SST
has a variable field (see the section entitled '"The
SST Pseudo-Operation' in Chapter 12). The addi-
tional symbols provided are the IBNUC and IOEX
symbolic definition entries, mentioned in the refer-
ence manual IBM 7090/7094 Operating Systems,
Basic Monitor (IBSYS), Form C28-6248, as follows:

1. All the one-word entry points starting with
SYSTRA through SYSTWT in IBNUC, plus the cur-
rent value of SYSEND and SYSORG.

2. All the SYSUNI functions.

3. The communication region to IOEX, from
ACTIV to TRPSW.

/’ ™~

o~

Certain modifications to FAP as distributed may be
desired at individual installations. The following are
among those which may be useful. While these are
indicated for the convenience of installations, it
should be emphasized that there is no assurance
that the ability to make such modifications will be
continued. If at any time Programming Systems
finds it necessary to make modifications to FAP
as distributed which will prevent these modifications,
it will do so with no prior notice.

Since the octal locations of the following symbols
will change when FAP is reassembled, these loca-
tions will not be included here.

1. To permit on-line monitoring of the off-line
listing tape:

ORG WRITS
SWT X

Sense Switch X may be toggled.

2. To permit operator termination, rather than
continuation of assembly, following an on-line non-
critical error message and programmed pause:

ORG SPACS
SWT Y

The machine error record will be called. Sense
Switch Y may be toggled.

3. To avoid printing sequence error messages
on-line:

ORG ORDRS
PZE ORDBF»s918

4. To permit HTR to be assembled as a Type A
instruction:

ORG IFLO1+1
LFT 077700

5. To force binary output for relocatable assembly
in error:

APPENDIX E: FIELD MODIFICATIONS TO FAP

ORG ERRRS
NOP

6. To add to or amend the Combined Operations
Table:

Reassemble source card numbers F0D70000-
FOD82900 to obtain. binary card numbers 9F040P00-
9F040P56. Note that definition cards for pseudo-
operation transfer cards and ORG will have to be
provided. Replace the distributed binary cards so
serialized.

An alternate method would be to insert the re-
quired correction cards using an update and assemble
run of the entire FAP assembler.

7. To add to or amend the System Symbol Table:

Reassemble all source cards serialized with
FOD?9 in columns 73-76 to obtain binary cards with
serialization beginning with 9F04SS00. Note that
definition cards and ORG will have to be provided.
Replace the distributed binary cards so serialized.

An alternate method would be to insert the re-
quired correction cards using an update and assemble
run of the entire FAP assembler.

8. To provide Flow Trace Facility:

If FORTRAN II is operating under IBSYS, symbolic
location SEPFLG in record 9F¥0400 must contain
TIN5

If FORTRAN II is operating independently, remove
binary card 9F04FLOW. See Standard Error Pro-
cedure, page 32.

9. With regard to available tape units and channels,
the following are assembly parameters:

T - The maximum number of logical tapes in
the system.,

C - The maximum number of data channels in
the system.

T and C are contained in the addresses of SYSAST
and CHANS, respectively.

The number of tapes reserved for the Monitor is
contained in the address of symbolic location SYSTPS.

10. Currently an on-line message is given if there
are more than 40 sequence errors (card columns
73-80). To increase the allowable limit, change the
addresses of ORDR2 and ORDR3-1 from 40 to the
desired limit.

71

APPENDIX F: TABLE LIMITS

The tables used by the FAP assembler are subject to
the following limitations:

1. The number of different data words generated
by literals may not exceed 1, 000.

2. The number of transfer vector names may not
exceed 250.

3. The number of symbol names permitted is
approximately 10, 000.

4. Only 150 undefined symbols will be accumulated
in the symbolic reference table.

An overflow of the undefined symbol table, or of
the symbolic reference table, will cause the cessation
of collection of such symbols or references.

5. The length of the Combined Operations Table
must not exceed 1,024 operation codes. Approximately

72

400 names are available to the programmer to insert
macro-operation codes, or codes defined by OPD,
OPSYN, or OPVFD pseudo-operations.

6. Macro-~definitions share core storage with the
symbol table; entries in one reduce the space available
for the other.

7. There may be no more than 63 arguments in
a macro-definition heading card argument list.

8. The depth of nesting of remote sequences is
limited as follows: each macro-instruction within a
remote sequence, or conversely, each remote se-
quence generated by a macro-instruction, requires
three locations in the Level Table. The total length
of this table is 112 locations, and the most severe
use of this table, an alternate nesting of macro-
instructions and remote sequences, will terminate
assembly if there are more than 37 such nestings.

U

ABS 37
Absolute

assembly 2

output 40

symbols 4
Additional mnemonics 14
Additional pseudo-operations 50
Alphameric

data items 6

literals 6
Apostrophe (') 45
Argument list 42

extending the 44
Argument strings 47
Assembly

absolute 2

listing 2, 61

process 60

relocatable 1
Assembly information pseudo-operations 18
Asterisk (*)

as an element 4, 29

in indirect addressing 9

remarks 11

BCD 27

BCI 27

BES 24

Binary-place part of a fixed-point number
Binary output from the assembler 40
Blocked update output tape 52

BOOL 8, 20

Boolean expressions 8, 28

BSS 23

BSS Control 31, 60

CALL 32,59,62
Card format-control pseudo-operations 36
Closed subroutines 58
Column binary

output 40

transfer card 40
Combined operations table 63
Comments field 1
COMMON 24

statement 59
Common

break 24

counter 24

storage 59

symbols 4
COUNT 18
Created symbols 49

Data-generating pseudo-operations 26, 61
Data items 5, 28
alphameric 6
decimal 5, 26
octal 5
DEC 26
Decimal data items 5, 26
Decimal literals 6
Decimal integers 5
fixed-point S5
floating-point 5

5

INDEX

DELETE 54

DETAIL 38

Disk file orders 67

_ variable field of 10

Dollar sign ($) 21, 22, 30, 31, 33, 34, 47
DUP 30

EJECT 38
Elements 4
of the language 1
END 19
ENDFIL 54
ENDUP 56
ENTRY 31
EQU 20
Equal sign (=) 6, 47
Error-tracing routine 32
ETC 29
EVEN 25
Excessive fields 3
Exponent part
of a fixed-point number 5
of a floating-point number 5
Expressions 7
Boolean 8
evaluation of 7
symbolic 4
typesof 7
Extending the argument list 44
EXTERN 35,62

FAP BCD character code 68
FAP operating under Basic Monitor (IBSFAP) 70
Field modifications to FAP 71
Fields
comments 1
excessive 3
identification 1
location 1, 9
operation 1, 9
variable 1, 10
First card group 3, 18
Fixed-point numbers 5
Flags 2
Floating-point numbers 5
FORTRAN linkages and calling sequences 59
FORTRAN Monitor control cards 41
FUL 37
Full output 41
FUNCTION subprograms 59

Generated instructions 48

HEAD 21
HED 23
Heading character 21
Hypertape orders 67

IBSFAP 70

Identification field 1

IFEOF 34

IFF 19

IGNORE 54

Illegible input instructions 53

73

INDEX 39
Indirect addressing 9
IRP 50

LABEL 39,41
Label (FORTRAN Monitor) 41
LBL 39
Linkage director 2, 12, 33
Linkages 58
LIST 38
List-control pseudo-operations 37
Listing

assembly 2

update pseudo-instructions 53
Literals 62

alphameric 6

decimal 6

octal 6

table 62
Load address 1
LOC 25
Location counter 12, 23, 61
Location field 1, 9

of a prototype 45

MAC 47

Machine instructions 12, 63
extended 12, 63

Machine operation code definition 36

MACRO 44
alternative form of 44

Macro-definition 42
heading card 42,44
nesting 46

Macro-instruction 42, 46
punctuation in 47
nested 48

Macro-operation 42

MAX 21

MIN 21

MOP 44

Multiply-defined symbols 3

Multiply-headed region 21

Nesting
macro-definitions 46
macro-instructions 48

9LP 37

9LP output 41

NOCRS 49

NULL 40

NUMBER 54

OCT 26

Octal data items 5
Octal literals 6
OPD 35

Open subroutines 58

Operation code-defining pseudo-operations

Operation field 1, 9
of a prototype 45
Operators 4, 7
Boolean 9
OPSYN 35

Optional serialization in update pseudo-instructions 56

74

OPVID 35
ORG 25
ORGCRS 49
Output

column binary 40

full 41
9LP 41

row binary 40

Page
heading 3
title card 3
PCC 39

Phase error 3, 18

Phase relocation error 3, 18

PMC 40
Prefix codes 14

Previously defined symbols 18

Principle part

of a fixed-point number
of a floating-point number

PRINT 56
Program
break 1, 2
card 31, 61
counter 23,
Prototype 45

60

instruction 42

location field

of 45

operation field of 45

variable field

of 45

Pseudo-operations 18
additional 50

assembly information 18
card format-control 36

data-generating 26

list-control

37

5

operation code-defining 35
program-linking 31
storage-allocating 23
symbol-defining 20

update 53

Read Select 14
REF 39
Relocatable
assembly 1
binary format
output 40
symbols 4
Relocation
constant 60
error 3
indicator bits
REM 37
Remarks card 1

‘60

2, 7, 60

1

Remote sequence 40, 51

REWIND 55

RMT and RMT*

Row binary
output 40
transfer card

50

40

Segmentation 59

Select and related operations

5

14

N

Read Select 14
Write Select 14
Sense operations 12
Sequence checking 1,52,56
Serialization 39, 52
FORTRAN Monitor 41
in update pseudo-instructions 56
SET 20,30
704 35
7090 35
SKIPTO 54
SKIPFIL 55
SPACE 38
SST 21
Standard error procedure option 32
Storage-allocating pseudo-operations 23, 61
Subroutine reference using the $ character 33
SUBROUTINE subprograms 59
Subroutines 58
Symbolic
expressions 4
instructions 1, 9
Symbolic card format 1
Symbolic Reference Table 2, 61
S}'Imbol-defining pseudo-operations 20, 61
Symbols 4
absolute 4
common 4
created 49
definition 4
multiply-defined 3
relocatable 4
types of 4
SYN 20
System Symbol Table 4, 21
FORTRAN Monitor 69

Table limits 72

TAPENO 21

Tape positioning 52

Tape unit designator 21

TCD 37

Terms 4, 7

TITLE 38

Transfer card 40

Transfer vector 2,12, 31, 60
TTL 39

UMC 55
Undefined
operation code 3
symbol 3
UNLIST 38
UNLOAD 55
UPDATE 53,55
Update examples 56
Update pseudo-operations 53,1
optional serialization in 56
Updating a FORTRAN source program deck
Updating symbolic tapes 52
Uses of the update facility 52

Variable-channel tape operations 16
Variable field 1, 10

of a disk order 10

of a prototype 45
VFD 28

Write Select 14

XXX 48

53

75

~

GC28-6235-5

EN

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

(dV) "wsig ‘wessy II NVYLNOA 'sAS 'wiid v60L/060L

‘V's'n ut paaulg

§-€<79-8T0D

