Systems Reference Library

IBM 7090/7094 Programming Systems
FORTRAN IV Language

This publication contains a description of the 7090/
7094 FORTRAN IV language that is processed by

the FORTRAN IV Compiler, a 7090/7094 IBJOB
Processor Component. FORTRAN is an automatic
coding system designed primarily for scientific and
engineering computations. The language closely
resembles the language of mathematics, and includes
various types of arithmetic, control, input/output,
and specification statements.

File No. 7090-25
Form C28-6274-2

PREFACE

This publication is intended to provide a reference
to the language of 7090/7094 FORTRAN IV (IBFTC),
which is a part of the 7090/7094 IBJOB Processor.
The other parts of the IBJOB Processor are de-
scribed in IBM 7090/7094 Programming Systems:
IBJOB Processor, Form C28-6275, and MAP (Mac-
ro Assembly Program) Language, Form C28-6311.

7090/7094 FORTRAN IV (hereafter referred to as
FORTRAN) is a language component of IBJOB. The
basic concepts of a FORTRAN language are dis-
cussed in the FORTRAN general information manual,
Form F28-8074-1. The level of information on the
following pages is such that the reader must be
thoroughly familiar with the information in the FOR-
TRAN general information manual.

FORTRAN is under the control of the IBJOB Mon-
itor, See the IBJOB Processor publication, refer-
enced above, for a description of the minimum ma-
chine requirements for FORTRAN IV,

MINOR REVISION (February 1964)

This publication is a reprint of Form C28-6274-1, incorporating
changes released in Technical Newsletter N28-0069. Form
C28-6274-1 and Form N28-0069 are not obsolete.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N.Y,, 12602

©1963 by International Business Machines Corporation

Form C28-6274-2
Page Revised 6/10/64
by TNL N28-0107

CONTENTS
CHAPTER 1: GENERAL PROPERTIES OF A FORTRAN Scale Factors 4 . ¢« 4 « 4« o . . . 18
SOURCEPROGRAM 5 Multiple-Record Formats .+ 19
Writing the Source Program 5 Carriage Control« « 19
Punching the Source Program 5 FORMAT Statements Read In at Object Time. 19
The FORTRAN Statements 5 Data Input Referencing a FORMAT Statement., 19
NAMELIST Statement, . 20
ChnrTEn & ConsTANTS, varBss, s e Ml 4 AL St L B
AND EXPRESSIONS. 7 Input L 2 |
Comstants & v ¢ 4 4 .+ 4 4 4 e e e e e e .. T Outout 1.1
Variables . + o+ & o o o . . 4 v v e e ..o 8 P o L oot Tt T
. ! The Manipulative Input/Output Statements ., . , ., . , 21.1
SUBSCIIpES . . . e .o .o .. 8 | Symbolic Input/Output Unit Designation 21.2
Expressions 9
CHAPTER 6: SUBROUTINES, FUNCTIONS, AND
CHAPTER 3: THE ARITHMETIC STATEMENT 1ii SUBPROGRAM STATEMENTS e e e e . 22
Naming Subroutines 22
CHAPTER 4 THE CONTROL STATEMENTS 12 Defining Subroutines « 22
The Unconditional GO TO Statement . . ., . ., . . 12 Arithmetic Statement Functions, 22
The Computed GO TO Statement 12 Built-In Functions 22
The Assigned GO TO Statement 12 FUNCTION Subprogram . « « « & & & .+ « o« . . 24
The ASSIGN Statement « . . + . o « & & o . . 12 SUBROUTINE Subprogram . . . « 24
The Arithmetic IF Statement 12 Subprogram Names as Arguments 25
The Logical IF Statement 12 The CALL Statement o + . o+ . « « o o . 26
The DO Statement . « . & . & & 4 4 o . . . 13 Subprograms Provided by FORTRAN 26
The CONTINUE Statement «, , . 13 The BLOCK DATA Subprogram + .« « o . . o . . . 27

The PAUSE Statement. « o« o 14
The END Statement , ., o . . . 14
The STOP Statement . . . « +« « . o . o« . . . 14
The RETURN Statement + 14

CHAPTER 7: THE SPECIFICATION STATEMENTS 28
The DIMENSION Statement . . . + . o« o . o . 28
The COMMON Statement 28
The BQUIVALENCE Statement. 29
The TYPE Statements o . 30

CHAPTER 5: INPUT/OUTPUT STATEMENTS. 15
The DATA Statement « . . . « . 30

List Specifications 15

Input/Qutput of Entire Arrays . . + . . « 16 APPENDIXES o v o 4 v v w o v .. 32

| FORMAT Statement 16 Appendix A. Source Program Statements and Sequencing . . 32

Numeric Fields, 16 Appendix B. Table of Source Program Characters . , . . 33
Complex Number Fields., . . . 17 Appendix C. Differences Between FORTRAN II and

Alphameric Fields 17 FORTRANIV. 33

Logical Fields L LR Appendix D. Limitations on Source Program Size 35

Blank Fields - X-Conversion 18 Appendix E. Optimization of Arithmetic Expressions . , . 37

Repetition of Field Format 18
Repetitionof Groups , 18 y INDEX . . . 0 L 0 L L s . . e o 38

L PROPERTIES OF A FORTRAN SOURCE PROGRAM

WRITING THE SOURCE PROGRAM

The statements of a FORTRAN source program are
normally written on a standard FORTRAN coding
sheet. An example of a FORTRAN source program
is given in Figure 1-1; the purpose of this program
is to determine the largest value aitained by a set
of numbers, Aj.

1. Columns 1-5 of the first line of a statement
may contain a statement number that is less
than 32,768, to identify the statement.
Blanks and leading zeros are ignored inthese
columns.

2. Column 6 of the first line of a statement
must be a blank or a zero.

3. Columns 7-72 contain the actual FORTRAN
statement. Blanks are ignored except in an
H field of a FORMAT or alphameric argu-
ment or a DATA statement.,

4. A statement may be continued over as many
as nineteen continuation cards. Any card
with a non-blank, non-zero column 6 is con-
sidered a continuation card.

5. Cards witha Cincolumn 1 are not processed
by FORTRAN, and columns 2-72 may be used
for comments,

6. Columns 73-80 are not processed by FOR-
TRAN and may be used for identification.

7. The order of execution of the source state-
ments is governed by the normal source pro—

gram statement sequencing given in /

T3
o]
S D
;
jon
x
2>

PUNCHING THE SOURCE PROGRAM

The FORTRAN statements, prepared as above. are
punched into the standard FORTRAN card in Figure

1-2 for input to the computer.
THE FORTRAN STATEMENTS

The FORTRAN statements may be divided into the

following groups:

1. The arithmetic statement specifies a numer-
ical or logical calculation.

The control statements govern the flow of

control in the program.

3. The input/output statements provide the nec-
essary input/output routines and the input/
output format.

4. The subprogram statements enable the pro-
grammer to define and use subprograms.

[A]
.

5. The specification statements provide infor-
mation about the constants and variables Used
in the program and provide information about
storage allocation.

General Properties of a FORTRAN Source Program 5

€

FORTRAN CODING FORM

Form X28-7327-3
Printed in U.S.A.

Program
Coded By Date
Checked By Identification Page of
[C FOR COMMENT 73 &0
{;&ﬂﬁ§‘§ FORTRAN STATEMENT
] 5067 10 15 2 25 30 3s 40 45 50 55 60 65 70 72
C PROGIRAM FIOR F|INDING THE ILARGEIST Y.ALUE, | | 1 I 1 1 .
C ATTAINED BY 1A SET OF NUMBERS 1 1 1 1 ! I 1.
DIMENS I ON AC4494) 1 1 1 1 1 1 1 1 I 1
READ (5, 10N, (ACT) Ti=1,N.) ; L 1 L L . ;
1| FORMAT. (1.3/(1.2F6.2)) L . . ! ! . . ! s
BiGAi=A (L) | A ! i L L 1 L I
DO, 20 I:21,N 1 L L 1) L 1 1 L 1 I
IF. (BIGA-A(I))10,20,20 .\ ... 1. O S S L [L
.. 10/ B1GA=A(L), 1 R R SN UE R SIS S 1 1 1 1
20| CONTIUNUE, | i 1 1 1 1 1 1 L 1 1

WRI TE ié, Z!N Bl GA 1

1

STOPI 1 1 1 1 1 1 1 1 I

FORMAT. (22H1THE LARGEST OF THEEE,Iﬁ,ilﬁ NUMBERS, .S, 1.2) . .

ENPD | I] L 1 1 i 1

| 1 1 f 1 1 1 1 1 1

Figure 1-1

-

//Cﬁﬁﬂm

STATEMENT
NUMBER

FORTRAN STATEMENT

TDENTIFICATION

(010000

dz3as

ILEEE!
|
2222

sl3333
44444
55555
45666
{IRER]

48838

5lgg9g

12345

00006000000000000000000000000600000000000000000000000000000000600000

78 91011121314 1516 17 18 192021 22 23 24 25 26 27 23 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 53 64 65 66 67 68 69 70 71 72

IRRARE R AR R R R RN

=t o OCONTINUATION

2122
3133
4444444444444 484444444444444244444444444404444444444444444444444444
555
566
MI17171717711717171711711011717111717171717171111117171177711717117117171777717171171171177117
8688888885888888808388838823388838888083888888888388888888888888888888

EX=)

99 999999999999999999999999999999999999489909398§
78 FABHVNEBUBBTBY 1 a«ewuwmwxm 5455 56 57 58 53 80 61 62 63 64 65 €5 57 63 69 70 71 72
1

E
]
]
2
el
~

00000000
BUBHTI B K
IRRERRRR
22222222
33333333
44444444
55555558
66666666
117111111

88888888

98896989
BuBENBRE

”

Figure 1-2

TANTS, VARIABLES, SUBSCRIPTS, AND EXPRESSIONS

FORTRAN provides a means of expressing constants,
variables, and a subscript notation for expressing
one-, two-, and three-dimensicnal arrays of vari-
ables.

CONSTANTS

Five types of constants are permitted in a FOR-
TRAN source program: integer or fixed point, real
or single-precision floating point, double-precision
floating point, complex, and logical.

Integer Constants

General Form

An integer constant consists of 1-11 decimal digits written
without a decimal point.

Examples:

3

528

8085

An integer constant may be as large as 235-1, ex-

cept when used for the value of a subscript or as an
index of a DO, in which case the value of the integer
is computed modulo 215,

Real Constants

General Form

1. A real constant consists of 1-9 significant decimal digits
written with a decimal point.

2. A real constant may be followed by a decimal exponent,
which is written as the letter E followed by an integer
constant, The field following the letter E must not be
blank; it may be zero.

Examples:
21,

.203

8. 0067

5.0 E3 (means 5.0 x 103, i.e., 5000,)

5.0 E-3 (means 5.0 x 1073, i.e., .005)

The magnitude of a real constant must be be-
tween the approximate limits of 1038 and 10-38,
or be zero.

A real constant has precision to 8 digits.

Double-Precision Constants

1, A double-precision constant consists of 1-17 significant
decimal digits written with a decimal point.

2. If it is desired to specify a decimal exponent, or if the
constant contains fewer than 10 digits, the letter D,
followed by the exponent, must follow the number. The
exponent is an integer constant, The field following the
letter D must not be blank; it may be a zero.

Examples:
21.987538294
21.9D0
.203D0
5.0D3 (means 5,0x103, i.e.,5000.)
5,0D-3 (means 5.0x10-3, i.e.,.005)

1. The magnitude of a double-precision constant
must lie between the approximate limits of
10-29 and 1038, or be zero, Numbers be-
tween 10729 and 10-38 may be used, but only
eight digits are significant in this range.
Double-precision constants are floating point
quantities that have precision to 16 digits.

2.

Complex Constants

General Form

A complex constant consists of an ordered pair of real constants
separated by a comma and enclosed in parentheses.

Examples:

{(3.2,1,86) is equal to 3.2+1, 86i,

(2.1,0,0) is equal to 2,1 +0,0i.

(5.0E3, 2, 12) is equal to 5000, +2,12i,
The first real constant represents the real
part of the complex number, and the second
real constant represents the imaginary part
of the complex number.
The parentheses are required regardless of
the context in which the complex constant
appears.
Each part of the complex constant may be
preceded by a + or - sign,

1.

2,

3.

Logical Constants

General Form

A logical constant may take either of the following forms:
. TRUE.
.FALSE.

Constants, Variables, Subscripts, and Expressions 7

VARIABLES

A variable is specified by its name and its type.
There are five types of variables: integer, real,
double-precision, complex, and logical.

Variable Names

General Form

A variable name consists of 1-6 alphameric characters, the
first of which must be alphabetic.

Form of Subscripts

General Form

A subscript may take only one of the following forms, where
v represents any unsigned, non-subscripted integer variable,
and c and c' represent any unsigned integer constant:

v

c

v+e

v-c

ckv

ckv+c! or cky-c!

Examples:
L5
JOB1
BETATS
COST
K
Subroutines are named in the same manner as
variables (see '""Naming Subroutines').

Variable Type Specification

The type of a real or integer, variable or function
name may be specified in one of two ways: implic-
itly by name, or explicitly by a type statement (see
the sections, "Type Statements' and '"Naming Sub-
routines'). All other variables must have their type
specified by a type statement.

Implicit Type Assignment

Implicit type assignment pertains only to integer
and real, variable and function names, as follows:
1. If'the first character of the symbol is I, J, K,
L,M, or N, it is an integer name; e.g.,
MAX, JOB, IDIST, LESL.
2. If the first character of the symbol is not I,
J,K,L, M, or N, it is a real name; e.g.,
ALPHA, BMAX, Q, WHIT.

SUBSCRIPTS

A variable may be made to represent any element of
a one-, two-, or three-dimensional array of quan-
tities by appending one, two, or three subscripts,
respectively, tothe variable name. The variable

is then a subscripted variable. The subscripts are
expressions of a special form whose value determines
the member of the array to which reference is made,

Examples:
IMAS
J9
K2
N +3
8*¥*IQUAN
5*L +7
4*M-3
7+2*K invalid
9+J invalid

Subscripted Variables

General Form

A subscripted variable consists of a variable name followed by
parentheses enclosing one, two, or three subscripts that are
separated by commas.

Examples:
A
K(3)
BETA (8*J + 2, K-2,L)
MAX (1,J,K)

1. During execution, the subscript is evaluated
so that the subscripted variable refers to a
specific member of the array.

2. Each variable that appears in subscripted
form must have the size of the array speci-
fied preceding the first appearance of the -
subscripted variable in an executable state-
ment or DATA statement. This must be done
by a DIMENSION or COMMON, with dimen-
sions, statement.

Arrangement of Arrays in Storage

Arrays are stored in column order in increasing
storage locations, with the first of their subscripts

varying most rapidly and the last varying least rap-
idly.

Example: The 2-dimensional array Amy , is stored
as follows, from lowest core storage location to
highest:

A1,1,A2 1, +-->Am, 1, 41,2, A2 25+ - -5
Am,z, u-,Am,n

EXPRESSIONS

The FORTRAN language includes two kinds of ex-
pressions: arithmetic and logical.

Arithmetic Expressions

An arithmetic expression consists of certain se-
quences of constants, subscripted and nonsub-
scripted variables, and arithmetic function refer-
ences separated by arithmetic operation symbols,
commas, and parentheses,

The arithmetic operation symbols +, -, *, /, **
denote addition, subtraction, multiplication, divi-
sion, and exponentiation, respectively.

The following are the rules for constructing arith-
metic expressions:

1. Figures 2-1 and 2-2 indicate which constants,
variables, and functions may be combined by the
arithmetic operators to form arithmetic expressions.
Figure 2-1 gives the valid combinations with respect
to the arithmetic operators +, -, *, and /. Figure
2-2 gives the valid combinations with respect to the
arithmetic operator **, In these figures, Y indicates
a valid combination and N indicates an invalid combi-
nation,

Double-
+, =%,/ Real | Integer | Complex | Precision | Logical
Real Y N Y Y N
Integer N Y N N N
Complex Y N Y N N
Double-
Precision Y N N Y N
Logical N N N N N
Figure 2-1
Exponent
Double-
*k Real | Integer | Complex | Precision | Logical
Real Y Y N Y N
Integer N Y N N N
Bas Complex N Y N N N
" Double-
Precision Y Y N Y N
Logical N N N N N
Figure 2-2

2. A real constant, variable, or function name
combined with a double-word quantity results in an
expression with the type of the double-word quantity;
e.g., areal variable plus a complex variable forms
a complex expression,

3. Any expression may be enclosed in parenthe-
ses.

4. Expressions may be connected by the arithme-
tic operation symbols to form other expressions,
provided that:

a. No two operators appear in sequence, and
b. No operation symbol is assumed to be pres-
ent. i
The expression A¥*B**C is not permitted; it must be
written as either A¥*(B**C) or (A**B)**C, whichever
is intended.

5. Preceding an expression by a +or - sign does
not affect the type of the expression.

6. Hierarchy of Operations. Parentheses may be
used in expressions to specify the order in which op~
erations are to be computed. Where parentheses
are omitted, the order is understood to be as fol-
lows (from innermost operations to outermost opera-

tions):
a. Function Reference
b, ** Exponentiation
c. *and / Multiplication and Division
d. +and - Addition and Subtraction

For example, the expression A+B/C-D**E*F-G
will be taken to mean A+ (B/C) - (DE*F)-G.

Logical Expressions

A logical expression consists of certain sequences of
logical constants, logical variables, references to
logical functions, and arithmetic expressions (ex-
cept complex expressions) separated by logical op-
eration symbols or relational operation symbols. A
logical expression always has the value . TRUE. or
. FALSE..
The logical operation symbols (where a and b are
logical expressions) are:)
Symbol Definition
.NOT.a This has the value . TRUE. only if
a is . FALSE. ; it has the value
. FALSE. only if a is ,TRUE.

This has the value . TRUE. only if
a and b are hoth . TRUIE

il 2Ol

a. AND.b
RUE.; it has
the value . FALSE. if either aor b
is . FALSE.
(Inclusive OR) This has the value
.TRUE, if either aor b is ,TRUE.;
it has the value . FALSE. only if
both a and b are . FALSE.

The logical operators NOT, AND, and OR must
always be preceded and followed by a period.

a.OR.b

Constants, Variables, Subscripts, and Expressions 9

The relational operation symbols are:

Symbol Definition

.GT. Greater than

.GE. Greater than or equal to
.LT. Less than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

The relational operators must always be pre-
ceded and followed by a period.

The following are the rules for constructing logi-
cal expressions:

1, Figure 2-3 indicates which constants, vari-
ables, and functions may be combined by the rela-
tional operators to form a logical expression. In
this figure, Y indicates a valid combination and N
indicates an invalid combination.

The logical expression will have the value . TRUE.
if the condition expressed by the relational operator
is met; otherwise, the logical expression will have
the value . FALSE..

2. A logical expression may consist of a single
logical constant, a logical variable, or a reference
to a logical function.

.GT.,.GE.,.LT., Double-

.LE.,.EQ.,.NE. Real | Integer | Complex | Precision | Logical
Real Y N N Y N
Integer N Y N N N
Complex N N N N N
Double -
Precision Y N N Y N
Logical N N N N N

Figure 2-3

10

3. The logical operator .NOT. must be followed
by a logical expression, and the logical operators
.AND. and .OR. must be preceded and followed by
logical expressions to form more complex logical
expressions.

4. Any logical expression may be enclosed in
parentheses; however, the logical expression to
which the . NOT. applies must be enclosed in paren-
theses if it contains two or more quantities.

5. Hierarchy of Operations. Parentheses may be
used in logical expressions to specify the order in
which operations are to be computed. Where paren-
theses are omitted, the order is understood to be
as follows (from innermost operation to outermost
operation):

Function Reference

*k Exponentiation

* and / Multiplication and Division
+ and - Addition and Subtraction
.LT.,.LE.,.EQ.,.NE.,.GT.,.GE.

.NOT.

.AND,

.OR.

The arithmetic statement defines a numerical or
logical calculation. A FORTRAN arithmetic state~
ment closely resembles a conventional arithmetic
formula; however, the equal sign of the FORTRAN
statement specifies replacement rather than equiva-
lence.

General Form

a=b

where:

1. aisareal, integer, double-precision, complex, or
logical, subscripted or non-subscripted variable, and

2. b is an expression.

A(D) = B(I) + ASIN(C(I))
V = .TRUE.
E=C.GT.D.AND.F.LE.G
Figure 3-1 indicates which type expressions may
be equated to which type of variable in an arithmetic
statement. In this figure, Y indicates a valid state-
ment and N indicates an invalid statement.

Right side of equal sign

€Xpression Double-

variable Real | Integer | Complex | Precision | Logical
Left [Real Y Y N Y N
side |Integer Y Y N Y N
of Complex N N Y N N
equal |Double -
sign {Precision Y Y N Y N

Logical N N N N Y

Figure 3-1

In the following examples of arithmetic state-
ments, Iis an integer variable, A and B are real
variables, C and D are double-precision variables,

CHAPTER 3: THE ARITHMETIC STATEMENT

E and F are complex variables, and G, H, and P
are logical variables.

A=B Replace A by the current value of B.

I=B Truncate B to an integer, convert it to
an integer constant, and store it in I,

A=1 Convert I to a real variable and store
it in A.

I=I+1 Add 1 to I and store it in I,

A = 3%B Not permitted. The expression is mixed
mﬁon, i.e., it contains
both a real variable and an integer
constant.

A =B¥C Multiply B by C using double-precision

arithmetic, and store the most significant

part of the result as a real number in A,
E=F¥(3.7,2.0) Multiply F by 3,7 + 2.0i using complex
arithmetic, and store the result in E as

a complex number.

G = .TRUE. Store the logical constant . TRUE, in G.
= ,NOT.G If Gis .TRUE., store the value .FALSE,
in H; if G is .FALSE., store the value
.TRUE, in H,
H=1LGE.A Not permitted. An integer and a real

variable may not be joined by a relational
operator, ’

G = H.OR..NOT.P

H | P |~P|Hv~P where:
T|{T|F T ~~ implies
T{F|T T +«NOT., and
FI!TI|F F v implies
FI{F T T .OR.

G=3..GT.B G is . TRUE, if 3, is greater than B; G is

.FALSE. otherwise,

The last two examples above illustrate the follow-

ing rules:

1. Two logical operators may appear in se-
quence, not separated by a comma or paren-
theses, only if the second logical operator
is .NOT. .

2. Two decimal points may appear in succession
as in item 1 or when one belongs to a con-
stant and the other to a relational operator.

The Arithmetic Statement 11

CHAPTER 4: THE CONTROL STATEMENTS

The control statements enable the programmer to
control and terminate the flow of his program.

The Unconditional GO TO Statement

General Form

GO TOn
where:
n is a statement number.

Example:
GO TO 25
This statement causes control to be transferred
to the statement numbered n.

The Computed GO TO Statement

General Form

GO TO (nl, nz,---,nm);i
where:

1. ny, np,...,ny are statement numbers, and

2. i is a non-subscripted integer variable.

Example:
GO TO (30, 45,50,9),K

This statement causes control to be transferred
to the statement numbered nj,ng, ..., Ny depending
on whether the value of i is 1,2,3,..,m, respec-
tively, at the time of execution. Thus, in the ex-
ample, if K is 3 at the time of execution, a transfer
to the third statement in the list, i.e., statement
50, will occur.

The Assigned GO TO Statement

General Form

GO TOn, (ny, np;e.«s0Nm)

where:

1. nis a non-subscripted integer variable appearing in a
previously executed ASSIGN statement, and

2, ng,n),...,0m are statement numbers.

Example:
GO TO J, (17,12,19)

This statement causes control to be transferred to
the statement number last assigned to n by an AS-
SIGN statement; ny,ng, ...,Ny is a list of the m
values that n may assume.

12

The ASSIGN Statement

General Form

ASSIGNi TOn

where:

1, i is a statement number, and

2. nis a non-subscripted integer variable that appears in
an assigned GO TO statement.

Examples:
ASSIGN 12 TO K
ASSIGN 37 TO JA
This statement causes a subsequent GO TO n, (n1,
ng,...,Nm) to transfer control to the statement num-
bered i, where i is one of the statement numbers in-
cluded in the series nj,ng,...,0m.

The Arithmetic IF Statement

General Form

IF (a) ny,np,n3

where:

1. a is an arithmetic expression (not complex), and
2, nj,np,ny are statement numbers,

Examples:
IF (A(J,K) - B) 10,4, 30
IF (D*E+BRN) 9, 9,15
This statement causes control to be transferred to
the statement numbered ny,ng, or ng if the value of
a is less than, equal to, or greater than zero, re-
spectively.

The Logical IF Statement

General Form

IF (t) s

where:

1. tis a logical expression, and

2. s is any executable statement except DO or another
logical IF.

Examples:
IF (A.AND.B) F =SIN (R)
IF (16.GT.L) GO TO 24
IF (D.OR.X.LE.Y) GO TO (18, 20),1
IF (Q) CALL SUB
1. If the logical expression t is true, statement
s is executed. Control is then transferred to

the next sequential statement unless s is an
arithmetic IF-or GO TO-type statement, in
which case, control is transferred as indicated.
2. If t is false, control is transferred to the next
sequential statement.
3. If t is true and s is a CALL statement, upon
return from the subprogram control is trans-

ferred to the next sequential statement.

The DO Statement

General Form

DOni= my, m,, m3

where:

1. n is a statement number,

2, 1iis a non-subscripted integer variable, and

3. mj,m,,m3 are each either an unsigned integer constant or a non-
subscripted integer variable; if m3 is not stated, itistakento be 1..

Examples:
DO30I=1, M,2
DO 241=1, 10

The DO statement is a command to execute re-
peatedly the statements that follow, up to and in-
cluding the statement numbered n. The statements
in the range of the DO are executed repeatedly with-
i equal to mj, theniequal to mj + mg, then i equal
to my + 2mg, etc., until i is equal to the highest
value in this sequence that does not exceed ms. The
statements in the range of the DO will be executed
at least once.

1. The range of a DO is that set of statements
that will be executed repeatedly; i.e., it is the se-
quence of consecutive statements immediately follow
ing the DO statement, up to and including the state-
ment numbered n. After the last execution of the
range, the DO is said to be satisfied.

2. The index of a DO is the integer variable i.
Throughout the range of the DO, the index is avail-
able for computation, either as an ordinary integer
variable or as the variable of a subscript. Upon
exiting from a DO by satisfying the DO, the index i
must be redefined before it is used in computation.
Upon exiting from a DO by transferring out of the
range of the DO, the index i is available for com-
putation and is equal to the last value it attained.

3. DOs within DOs. Among the statements in the
range of a DO may be other DO statements; such a
configuration is called a nest of DOs. If the range
of a DO includes another DO, then all of the state-
ments in the range of the latter must also be in the
range of the former.

4. Transfer of Control and DOs. Control may not
be transferred into the range of a DO from outside
its range. Thus, in the configuration below 1,2, and
3 are permitted transfers, but 4,5, and 6 are not.

DO

5. Restrictions on Statements in the Range of a

DO

a. Any statement that redefines the index or
any of the indexing parameters (m's) is
not permitted in the range of a DO.

b. The range of a DO cannot end with an arith-
metic IF or GO TO-type statement or with
a non-executable statement. The range of a
DO may end with a logical IF, in whichcase,
control is handled as follows: if the logical
expression t is false, the DO is reiterated;
if the logical expression t is true, statement
s is executed and then the DO is reiterated.
However, if t is true and s is an arithmetic
IF or transfer type statement, control is
transferred as indicated.

6. When a reference to a subprogram is executed
in the range of a DO, care must be taken that the
called subprogram does not alter the DO index or
the indexing parameters.

The CONTINUE Statement

General Form

CONTINUE

CONTINUE is a dummy statement that gives rise
to no instructions in the object program. It is most
frequently used as the last statement in the range of
a DO to provide a transfer address for IF and GO TO
statements that are intended to begin another repe-
tition of the DO range.

The Control Statements 13

The PAUSE Statement

General Form

PAUSE or PAUSE n
where n is an unsigned octal integer constant of 1-5 digits.

Examples:
- PAUSE
PAUSE 77777

The machine will halt with the octal number n in
the address field of the Storage Register. If n is not
specified, it is understood to be zero. Depressing
the START key causes the program to resume exe-
cution of the object program with the next executable
FORTRAN statement.

The END Statement

General Form

END

1. The END statement terminates compilation
of a program.

14

2. The END statement must be the physically
last statement of the program.

The STOP Statement

General Form

STOP

The STOP statement terminates the execution of
any program by returning control to the Monitor.
Execution of a program may also be terminated by
a CALL to the EXIT and DUMP subroutines (see
the section, "EXIT, DUMP, and PDUMP").

The RETURN Statement

General Form

RETURN

The normal exit from any subprogram is the
RETURN statement, which returns control to the
calling program. The RETURN statement is the
logical end of the program; there may be any num-
ber of RETURN statements in the program.

The FORTRAN statements that specify transmission
of information to or from I/0O devices may be grouped
as follows: '

General 1/0 Statements: The statements READ and
WRITE cause the transmission of a specified list of
quantities between core storage and an input/output
device. The statements PUNCH and PRINT cause
information to be transmitted from core storage to
the card punch and on-line printer, respectively.
Manipulative I/O Statements: Statements END FILE,
REWIND, and BACKSPACE manipulate 1/0 devices.

Nonexecutable Statements: Either of two nonexecut-
able statements (the FORMAT statement or the
NAMELIST statement) may be used with the general
1/0 statements. The FORMAT statement, whichcan
be used with any general I/O statement, specifies
the arrangement of data in the external input/output
medium. If the FORMAT statement is referenced
by a READ statement, the input data must meet the
specifications described in the section "Data Input
Referencing a FORMAT Statement.' The NAMELIST
statement specifies an input/output list of variables
and arrays. Input/output of the values associated
with the list is effected by reference to the list in a
READ or WRITE statement. If the NAMELIST state-
ment is referenced by a READ statement, the input
data must meet the specifications described in the
section '""Data Input Referencing a NAMELIST State-
ment."

LIST SPECIFICATIONS

If transmission of arrays or variables is desired
using a FORMAT statement, an ordered list of the
quantities to be transmitted must be included in the
general I/0O statement. The order of the I/0O list
miust be the same as the order in which the informa-
tion exists in the input/output medium.

The following notes on the formation and meaning
of an 1/0 list are most clearly understood by con-

"sidering the following I/O list:

A,B(3), (C(I), D(,K), I=1, 10),

((E@,J), 1=1, 10,2), F(J,3), J=1,K)
which implies that the information in the external
I/0 medium is arranged as follows:

A, B(3),C(@1),D({1,K), C(2), D2,K),...,

C(10), D(10,K), E(1,1), E(3,1),...,

E(9,1), F(,3), EQ,2), EG,2),...,

E(9,2), F(2,3),..., F(K,3)

Form C28-6274-2
Page Revised 6/10/64
by TNL N28-0107

CHAPTER 5: INPUT/OUTPUT STATEMENTS

1. AnI/O list is a string of list items separated
by commas. A list ifem may be:
a. A subscripted or non-subscripted variable;
or
b. An implied DO,
An I/0 list reads from left to right, with repetition
of variables enclosed in parentheses.
2. A constant may appear in an I/O list only as a
subscript or as an indexing parameter.
3. The execution of an I/0C list is exactly that of
a DO-loop, as though each left parenthesis (except
subscripting parentheses) were a DO, with indexing
given immediately before the matching right paren-
thesis, and with the DO range extending up to that
indexing information. The order of the I/O list
above may be considered equivalent to the following
"program'':
A
B(3)
DO5I=1,1
(674))
5 D(I,K)
DO 9 J=1,K
DO 8 1=1,10,2
8 E(L,J)
9 F(J,3)

4. An implied DO is best defined by an example.
In the I/0 list above, the list item (C(I), D(I, K),

I=1, 10) is an implied DO; it is evaluated as in the
above program.

The range of an implied DO must be clearly de-
fined by parentheses.

5. For alist of the form K, A(K), or K, (A{T),
1=1, K), where the definition of an index or an index-
ing parameter appears earlier in the list of an input
statement than its use, the indexing will be carried
out with the newly read in value.

6. Any number of quantities may appear in a sin-
gle list. However, each quantity must have the cor-
rect format as specified in a corresponding FOR-
MAT statement. Essentially, it is the list which
controls the quantity of data read. If more quan-
tities are to be transmitted than are in the list, only
the number of quantities specified in the list are
transmitted, and remaining quantities are ignored.
Conversely, if a list contains more quantities than
are given on one BCD input record, more records
are read; if a list contains more quantities than are
given in one binary record, reading is terminated
as an object program error and control is trans-~
ferred to FXEM.

0} (C(1), D1, K), I=1, 10)

((E(L, J),I=1, 10, 2),
F(J, 3),J=1,K)

Input/Qutput Statements 15

Form C28-6274-2
Page Revised 6/10/64
by TNL N28-0107

INPUT/OUTPUT OF ENTIRE ARRAYS

By referencing the NAMELIST statement, an entire
array can be designated for transmission between
core storage and an input/output medium. Input of
an entire array using the NAMELIST statement is
described in the section ""Data Input Referencing a
NAMELIST Statement'; output of an entire array
using the NAMELIST statement is described in the
section "Output." If the FORMAT statement is
referenced and input/output of an entire array is
desired, an abbreviated notation may be used in the
list of the general I/O statement. Only the name of
the array need be given and the indexing information
may be omitted.

1. If A has previously been listed in a DIMEN-
SION or COMMON (with dimensions) state-
ment, the statement

READ (5, 10)A
is sufficient to read in all of the elements of
the array A (see the section, "Input').

2. The elements read in by this notation are
stored in accordance with the description of
the arrangement of arrays in storage (see
the section, "Arrangement of Arrays in
Storage'').

3. If A has not been previously dimensioned,
only the first element will be read in.

FORMAT STATEMENT

The BCD input/output statements require, in addition
to a list of quantities to be transmitted, reference to
a FORMAT statement which describes the type of
conversion to be performed between the internal ma-
chine language and the external notation for each
quantity in the list.

General Form

FORMAT (S1,53;¢++55,/5'1,8'2,+++,5'n/...) where each
field, S;, is a format specification.

cases, control in the object program switches back
and forth between the list (which specifies whether
data remains to be transmitted) and the FORMAT
statement (which gives the specifications for trans-
mission of that data).

3. Slashes are used to specify unit records,
which must be one of the following:

a. A tape record with a maximum length
corresponding to the printed line of the
off-line printer.

b. A punched card, to be read on-line, with
a maximum of 72 characters; a punched
card, to be read off-line, with a maxi-
mum of 80 characters.

c. A line to be printed on-line, with a maxi-
mum of 120 characters.

Thus, FORMAT (3F9. 2, 2F10,4/8E14.5) would speci-
fy records in which the first, third, fifth, etc., have
the format (3F9.2, 2F10.4), and the second, fourth,
sixth, etc., have the format (8E14.5).

4. During input/output of data, the object pro-
gram scans the FORMAT statement to which the
relevant input/output statement refers. When a
specification for a numerical field is found and list
items remain to be transmitted, input/output takes
place according to the specification, and scanning
of the FORMAT statement resumes. If no items
remain, transmission ceases and execution of that
particular input/output statement is terminated.
Thus, a decimal input/output operation will be
brought to an end when there are no items remaining
in the list.

Numeric Fields

Five types of conversion are available for numeric
data:

Internal

Conversion Code External

Floating point

Example:
FORMAT (12/ (E12.4,F10.2))

1. FORMAT statements are not executed; they
may be placed anywhere in the source program.
Each FORMAT statement must be given a statement
number.

2. The FORMAT statement indicates, among
other things, the maximum size of each record to
be transmitted. In this connection, it must be re-
membered that the FORMAT statement is used in
conjunction with the list of some particular input/
output statement, except when a FORMAT statement
consists entirely of alphameric fields. In all other

16

(double-precision) D Real with D exponent

Floating point E Real with E exponent

Floating point F Real without exponent
Integer 1 Integer

Integer [e) Octal Integer

These types of conversion are specified in the

forms Dw.d, Ew.d, Fw.d, Iw, Ow, where:

1. D,E,F,I, and O represent the type of con-
version;

2. w is an unsigned integer constant that repre-
sents the field width for converted data; this
field width may be greater than required in
order to provide spacing between numbers;

3. dis an unsigned integer or zero that repre-
sents the number of positions of the field that
appear to the right of the decimal point.

For example, the statement FORMAT (12,E12.4,
08, F10.4, D25.,16) might cause the following line to
be printed:
12E12,4 o8

F10.4 D25.16

27b-0.9321Eb02577 34276bbb-0. 0076bb-0, 7878977909500672Db03

where b indicates a blank space.

Notes on D-, E-, F-,I-, and O-Conversion

1. Specifications for successive fields are sep-
arated by commas.

2. No format specification that provides for more
characters than permitted for a relevant input/out-
put record should be given. Thus, a format for a
BCD record to be printed off-line should not provide
for more characters (including blanks) thanthe capa-
bilities of the printer.

3. Information to be transmitted with O-conversion
may be given any type of variable name; information
to be transmitted with E-, and F-conversion must
have real names; information to be transmitted with
I-conversion must have integer names; information
to be transmitted with D-conversion must have
double-precision names.

4. The field width w, for D-, E-, and F-conver-
sion, must include a space for the decimal point and
a space for the sign. Thus, for D- and E-conversion,
w=d+7, and for F-conversion, w=d+3.

5. The exponent, which may be used with D- and
E-conversion, is the power of 10 to which the num-
ber must be raised to obtain its true value. The ex-
ponent is written with an E (for E-conversion) or D
(for D-conversion) followed by a minus sign if the
exponent is negative, or a plus sign or a blank if the
exponent is positive, and then followed by two num-
bers which are the exponent. For example, the num-
ber . 002 is equivalent to the number .2E-02.

6. TFor input under D-conversion, up to 17 deci-
mal digits are converted and the result is stored so
that the most significant part and the least signifi-
cant part are in adjacent core storage locations.

For output under D-conversion, the two core stor-

age words renregentine the double-nrecigion gquan-
age WOIrGas represeniing tne Goupr:e—precision guan

tity are considered one piece of data and converted
as such.

7. I anumber converted by I-conversion re-
quires more spaces than are allowed by the field
width w, the excess on the high-order side is lost.

If the number requires fewer than w spaces, the
leftmost spaces are filled'with blanks. If the number
is negative, the space preceding the leftmost digit
will contain a minus sign if sufficient spaces have
been reserved.

Complex Number Fields

Since a complex quantity consists of two separate
and independent real numbers, a complex number
is transmitted by two successive real number speci-
fications or by one real number specification that is
repeated.

See Figure 5-1 for an example of a FORMAT
statement to transmit an array consisting of six
complex numbers.

FORMAT (2E10. 2, ES.3,1PE9, 4, Ei0.2, F8.4, 3(Ei0.2,F8.2))

Figure 5-1

Alphameric Fields

FORTRAN provides two ways by which alphameric
information may be transmitted; both specifications
result in storing the alphameric information inter-
nally in BCD.

1. The specification Aw causes w characters to
be read into, or written froth, a variable or
array name.

2. The specification nH introduces alphameric
information into a FORMAT statement.

The basic difference between A- and H-conversion
is that information handled by A-conversion is given
a variable name or array name and hence can be re-
ferred to by means of this name for processing and
modification, whereas, information handled by H-
conversion is not given a name and may not be re-
ferred to or manipulated in storage in any way.

A-Conversion

The variable name to be converted by A-conversion
must conform to the normal rules for naming FOR-
TRAN variables; it may be any type.

1. On input, nAw will be interpreted to mean
that the next n successive fields of w charac-
ters each are to be stored as BCD informa-
tion. If w is greater than 6, only the 6 right-

at ~l + a i1l 3 33 + TF ey iz
most characters will be significant. I w is

less than 6, the characters will be left-ad-
justed, and the word filled out with blanks.

2. On output, nAw will be interpreted to mean
that the next n successive fields of w char-
acters each are to be the result of transmis-
sion from storage without conversion. If w
exceeds 6, only 6 characters of output will
be transmitted, preceded by w-6 blanks. If
w is less than 6, the w leftmost characters
of the word will be transmitted.

Input/Qutput Statements 17

H-Conversion

The specification nH is followed in the FORMAT
statement by n alphameric characters. For example,
31H THIS IS ALPHAMERIC INFORMATION
Note that blanks are considered alphameric charac-
ters and must be included as part of the count n. The
effect of nH depends on whether it is used with input

or output.

1. On input, n characters are extracted from
the input record and replace the n characters
included with the source program FORMAT
specification..

2. On output, the n characters following the
specification, or the characters that replaced
them, are written as part of the output rec-
ord.

See Figure 5-2 for an example of A- and H-con-

version in 8 FORMAT statement.

The statement FORMAT (4HbXY=, F8.3, A8) might

produce the following lines, where b indicates a
blank character:

XY = b-93, 210bbbbbbbb

XY = 9999.999bbOVFLOW
XY = bb28.768bbbbbbbb

Figure 5-2

Figure 5-2 assumes that there are steps in the
source program that read the data OVFLOW, store
this data in the word to be printed in the format A8
when overflow occurs, and store six blanks in the
word when overflow does not occur.

Logical Fields

Logical variables may be read or written by means
of the specification Lw, where L represents the logi-
cal type of conversion and w is an integer constant
that represents the data field width.

1. On input, a value of either true or false will
be stored if the first non-blank character in
the field of w characters is a T or an F, re-
spectively. If all the w characters are blank,
a value of false will be stored.

2. On output, a value of true or false in storage
will cause w minus 1 blanks, followed by a T
or an F, respectively, to be written out.

Blank Fields - X-Conversion

The specification nX introduces n blank characters
into an input/output record where 0 = n_< 132.
1. On input, nX causes n characters in the input
record to be skipped, regardless of what they
actually are.

18

2. On output, nX causes n blanks to be intro-
duced into the output record.

Repetition of Field Format

It may be desired to print or read n successive fields
in the same format within one record. This may be
specified by giving n, an unsigned integer, before
D,E,F,1,L,0, or A. Thus, the field specification
3E12.4 is the same as writing E12.4, E12.4, E12.4.

Repetition of Groups

A limited parenthetical expression is permitted in
order to enable repetition of data fields according

to certain format specifications within a longer FOR-
MAT statement. Thus, FORMAT (2(F10.6,E10.2),14)
is equivalent to FORMAT (F10.6, E10.2, F10.6,
E10.2,14). Two levels of parentheses, in addition

to the parentheses required by the FORMAT state-
ment, are permitted. The second level of paren-
theses facilitates the transmission of complex quan-
tities.

Scale Factors

To permit more general use of D-, E-, and F-con-
version, a scale factor followed by the letter P may
precede the specification. The magnitude of the
scale factor must be between -8 and +8, inclusive.
The scale factor is defined for input as follows:
10-scale factor x external quantity = internal
quantity
The scale factor is defined for output as follows:
external quantity=internal quantity
x 10 scale factor
For input, scale factors have effect only on F-
conversion. For example, if input data is in the
form xx.xxxx and it is desired to use it internally in
the form .xxxxxx, then the FORMAT specification
to effect this change is 2PF7.4. For output, scale
factors may be used with D-, E-, and F-conversion.
For example, the statement FORMAT (12, 3F11. 3)
might give the following printed line:
27bbbb-93. 209bbbbb-0. 008bbbbbb0, 554
But the statement FORMAT (12, 1P3F11. 3) used with
the same data would give the following line:
27bbb-932. 094bbbbb-0. 076bbbbbb5. 536
Whereas, the statement FORMAT (12, -1P3F11.3)
would give the following line:
27bbbbb-9. 321bbbbb-0. 001bbbbbb0. 055
A positive scale factor used for output with D-and
E-conversion increases the number and decreases the
exponent. Thus, FORMAT (12, 1P3E12.4) would
produce with the same data:

27b-9.3209Eb01b-7.5804E-03bb5. 5536 E-01

The scale factor is assumed to be zero if no other
value has been given. However, once a value has
been given, it will hold for all D-, E-, and F-con-
versions following the scale factor within the same
FORMAT statement. This applies to both single-
record formats and multiple-record formats (see
below). Once the scale factor has been given, a
subsequent scale factor of zero in the same FOR-
MAT statement must be specified by 0P. Scale fac-
tors have no effect on I- and O-conversion.

Multiple-Record Formats

To deal with a block of more than one line of print,
a FORMAT specification may have several different
one-line formats separated by a slash, /, to indicate
the beginning of a new blank line. Thus, FORMAT
(8F9.2,2F10.4/8E14.5) would specify a multi-line
block of print in which lines 1, 3, 5, ... have format
(3F9.2,2F10.4), and lines 2, 4, 6, ... have format
(8E14.5).

If a multiple-line format is desired in which the
first two lines are to be printed according to a spe-
cial format and all remaining lines according to an-
other format, the last line-specification should be
enclosed in a second pair of parentheses; e.g.,
FORMAT (I2,3E12.4/2¥F10.3,3F9.4/ (10F12.4)).

If data items remain to be transmitted after the for-
mat specification has been completely "used, ' the
format repeats from the last previous parenthesis

which is a zero or a first level parenthesis. For
example, consider the FORMAT statement:

FORMAT (3E10.3, (I2,2 (F12.4)), D28.17)
0 1 2 21 0

The parentheses labeled 0 are 0 level parentheses;
those labeled 1 are first level parentheses; and,
those labeled 2 are second level parentheses. If
more items in the list are to be transmitted after
the format statement has been completely used, the
FORMAT repeats from the last first level left paren-
thesis; i.e., the parenthesis preceding I2.

As these examples show, both the slash and the
right parenthesis of the FORMAT statement indicate
a termination of a record.

Blank lines may be introduced into a multi-line
FORMAT statement by listing consecutive slashes.
When n+1 consecutive slashes appear at the end of
the FORMAT, they are treated as follows: for input,
n+l records are skipped; for output, n blank lines
are written. When n+l consecutive slashes appear
in the middle of the FORMAT, n records will be
skipped for both input and output.

Form C28-6274-2
Page Revised 6/10/64
by TNL N28-0107

Carriage Control

The WRITE (i, n) list statement prepares a BCD tape
that can be used to obtain off-line printed output.
The PRINT n,
execution. The off-line printer may be set manually
to operate in one of three modes: single space,
double space, and program control. Under program
control, the first character of each BCD record,

the control character, controls spacing of the printer;
this first character is not printed. The control
characters and their effects, both on-line and off-
line, are:

list statement nrints on-line duringe

1= =SlaleliCUL PULALE CI=11110 QUIllg

Character Effect Off-line On-line
Blank Single space | before printing after printing
0 Double space | before printing after printing
1 Eject before printing | before printing

followed by a
single space
after printing

Program control is usually obtained by beginning
a FORMAT specification, for a BCD record, with
1H followed by the desired control eharacter,

FORMAT Statements Read In at Object Time

FORTRAN accepts a variable FORMAT address.
This permits specifying a FORMAT for an I/0 list
at object time.

DIMENSION FMT (12)
1 FORMAT (12A6)

READ (5, 1} (FMT(D), i=1, 12)

READ (5, FMT) A, B, (C(I), I=1,5)

Figure 5-3

In Figure 5-3, A, B, and the array C are converted
and stored according to the FORMAT specifications
read into the array FMT at object time.

1. The name of the variable FORMAT specifica-

tion must appear in a DIMENSION statement,
even if the array size is only 1.

2. The format read in at object time must take
the same form as a source program FORMAT
statement, except that the word FORMAT is
omitted, i.e., the variable format begins
with a left parenthesis.

| Data Input Referencing a FORMAT Statement

Data input to the object program is punched into
cards according to the following specifications:

Input/Qutput Statements 19

Form C28-6274-2
Page Revised 6/10/64
by TNL N28-0107

1. The data must correspond in order, ‘type,
and field with the field specifications in the
FORMAT statement. Punching begins in
card column 1.

2. Plus signs may be omitted or indicated by a
+. Minus signs are indicated by an 11-punch.

3. Blanks in numeric fields are regarded as
Zeros.

4., Numbers for E- and F-conversion may con-
tain any number of digits, but only the high-
order 8 digits of precision will be retained.
For D-conversion, the high-order 16 digits
of precision will be retained. In both cases,
the number is rounded to 8 or 16 digits of
accuracy, as applicable.

To permit economy in punching, certain relaxations

in input data format are permitted.

1. Numbers for D- and E-conversion need not
have four columns devoted to the exponent
field. The start of the exponent field must
be marked by a D or E or, if that is omitted,
by a + or - (not a blank). Thus, E2, E+2,
+2, +02, and D+02 are all permissible ex-
ponent fields.

2. Numbers for D-, E-, and F-conversion need
not have their decimal point punched; the for-
mat specification will supply it. For exam-
ple, the number -09321+2 with the specifica-
tion E12.4 will be treated as though the deci-
mal point had been punched between the 0 and
the 9. If the decimal point is punched in the
card, its position overrides the position in-~
dicated in the FORMAT specification.

NAMELIST STATEMENT

The NAMELIST statement and modified forms of the
READ and WRITE statements provide for reading,
writing, and converting data without the use of an
input/output list in the I/O statement and without a
reference to a FORMAT statement.

General Form

NAMELIST /X/A,B,...C/Y/D,E,...,F/Z/G,H,...,]

where:
X,Y,Z,...are NAMELIST names, and
A,B,C,D,..,are variable or array names.

NAMELIST /NAM1/ A,B,1,J,L/NAM2/A,C,J,K
In the preceding example, the arrays A,I, and L
and the variables B and J belong to the NAMELIST
name, NAMI1, and the array A and the variables C, J,
and K belong to the NAMELIST name, NAM2.
Each list that is mentioned in the NAMELIST
statement is given a NAMELIST name. Only the

20

NAMELIST name is needed in an input/output state-
ment to reference that list thereafter in the program.
The following rules apply to assigning and using a
NAMELIST name:

1. A NAMELIST name consists of 1-6 alphameric
characters; the first character must be alphabetic.

2. A NAMELIST name is enclosed in slashes.
The field of entries belonging to a NAMELIST name
ends either with a new NAMELIST name enclosed in
slashes or with the end of the NAMELIST statement.

3. A variable name or any array name may belong
to one or more NAMELIST names.

4. A NAMELIST name mustnot be the same as
any other name in the program.

5. A NAMELIST name may be defined only once
by its appearance in a NAMELIST statement. After
it has been defined in the NAMELIST statement, the
NAMELIST name may appear only in READ or WRITE
statements thereafter in the program.

6. A NAMELIST statement must precede any
appearance of a NAMELIST name in the program.

7. A variable that belongs to a NAMELIST state-
ment cannot be used as an argument of a subroutine.

8. If a NAMELIST statement contains a dimen-
sioned variable, .the DIMENSION statement defining
the variable must precede the NAMELIST statement.

Data Input Referencing a NAMELIST Statement

When a READ statement references a NAMELIST
name, the designated input device is prepared and
input of data is begun. The first character on all
input data records is always ignored. The first input
data record is searched for a $ as the second char-
acter, immediately followed by the NAMELIST name,
immediately followed by one or more blank charac-
ters. If the search fails, additional records are
examined consecutively until there is a successful
match. When a successful match is made of the
NAMELIST name on a data record and the NAMELIST
name referenced in a READ statement, data items
are converted and placed in storage. Any combina-
tion of three types of data items may be used in a
data record. The data items must be separated by
commas; however, use of a comma following the
last item is optional. If more than one record is
needed for input data, the last item of each record
must be a constant followed by a comma. The end of
a group of data is signaled by a $ either in the same
data record as the NAMELIST name or anywhere in
any succeeding records except in the first character
position.

The form that data items may take is:

1, Variable name = constant where variable
name may be an array element name or a simple
variable name. Subscripts must be integer con-
stants.

2. Array name = set of constants (separated by
commas) in which k*constant may be included to
represent k constants (k must be an unsigned inte-
ger). The number of constants must be egual to the
number of elements in the array.

3. Subscripted variable = set of constants (sep-
arated by commas) in which k*constant may be in-
cluded to represent k constants (k must be an un-
signed integer). A data item of this form results in
the set of constants being placed in consecutive
array elements, starting with the element designated
by the subscripted variable. The number of con-
stants given cannot exceed the number of elements
in the array that are included between the given ele~
ment and the last element in the array, inclusive.

Constants used in the data items may take any of
the following forms:

a. integers

b. real numbers

c. double-precision numbers

d. complex numbers, which must be written
in the usual form, (C1, C2), where C1
and C2 are real numbers

e. logical constants, which must be written
as Tor , TRUE., and F or . FALSE.

Logical and complex constants may be associated
only with logical and complex variables, respectively.
The other types of constants may be associated with
integer, real, or double-precision variables and are
converted in accordance with the type of variable.
Blanks must not be embedded in a constant or repeat
constant field, but may be used freely elsewhere
within a data record.

Any selected set of variable or array names be-
longing to the NAMELIST name which is referenced
by the READ statement may be used as specified in
the preceding description of data items. Names that
are made equivalent to these names may not be used
unless they also belong to the NAMELIST name.

Example:
P Col

2

First Data Card $NAMI1 I(2,3) =5, J=4.2, B=4,

Second Data Card A(3)=17, 6.4, L =2,3,8%4,3 §

If this data is input to be used with the NAMELIST
statement previously illustrated and with a READ
statement, the following actions take place. The in-
put unit designated in the READ statement is pre-
pared and the first record is read. The record is
searched for a $ in column 2, immediately followed
by the NAMELIST name, NAML1. Since the search is
successful, data items are converted and placed in
core storage.

The integer constant 5 is placed in I(2, 3), the
real constant 4.2 is converted to an integer and
placed in J, and the integer constant 4 is converted
to real and placed in B. Since no data items remain

Form C28-6274-2
Page Revised 6/10/64
by TNL N28-0107

in the record, the next input record is read. The
integer constant 7 is converted to real and placed in
A(3), and the real constant 6.4 is placed in the next
consecutive location of the array, A(4). Since L is
an array name not followed by a subscript, the entire
array is filled with the succeeding constants. There-
fore, the integer constants 2 and 3 are placed in L(1)
and L(2), respectively, and the real constant 4.3 is
converted to an integer and placed in L(3), L(4),

..., L{10). The $ signals termination of the input
for the READ operation.

THE GENERAL INPUT/OUTPUT STATEMENTS
Input

The READ statement designates input. The following
table gives the forms of the READ statement, where
i, an unsigned integer constant or an integer variable,
is a reference to an input device, n is a FORMAT
statement number, and X is a NAMELIST name.

Type of Input General Form

Cards on-line READ n, list

BCD record READ {i,n) hist

Binary record READ (i) list

BCD records READ (i, X)
Examples:

READ 10, (A(l),I=1,5)

READ (5,10) A, B, (D(J),J=1,10)

READ (N, 10) K, DC(J)

READ (3) (A(J),J=1,10)

READ (N) (A(J), J=1,10)

READ (5, NAM1)

1. The READ n, list statement causes cards to
be read from the card reader.

2. The READ (i,n) list statement causes BCD
information to be read from symbolic input de-
vice i (except the card reader).

3. The READ (i) list statement causes binary in-
formation to be read from symbolic input de-
vice i (except the card reader).

4, The READ (i, X) statement causes BCD infor-
mation relating to variables and arrays as-
sociated with the NAMELIST name X to be
read from symbolic input device i (except the
card reader).

5. Under the first two forms of the READ state-
ment, successive records are read until the
entire 1/0 list has been satisfied: i.e., all
data items have been read, converted, and
stored in the locations specified by the 1/0 list.

Under the form READ (i) list, a record is read

completely only if the list specifies as many words
as the record contains. Binary records to be read

Input/Output Statements 21

Form C28-6274-2
Page Revised 6/10/64
by TNL N28-0107

in by a FORTRAN program should be written by a
FORTRAN program or should be in the proper bi-
nary record format as follows:

Consider a logical record as being any sequence
of binary words to be read by any one input state-
ment. This logical record must be divided into
physical records, each of which is a maximum of
25619 words long. Of course, if a logical record
consists of fewer than 2561 words, it will com-
prise only one physical record. The first word of
each physical record is a "signal" word that is not
part of the list. This word contains zero for all but
the last physical record of a logical record. The
first word of the last physical record contains a
number designating the number of physical records
in this logical record.

Output

The PRINT and PUNCH statements designate on-line
printing and punching of data and require both a refer-
ence to a FORMAT statement and an output list as
part of the statement. All other output is designated
by a WRITE statement which also references either a
FORMAT statement or a NAMELIST statement. The
following table gives the forms of the output state-
ments, where i, an unsigned integer constant or an
integer variable, is a reference to an output device,
n is a FORMAT statement number, and X is a
NAMELIST name,

Type of Output General Form

Cards on-line PUNCH n, list
Print on-line PRINT n, list
BCD Record WRITE (i, n) list
BCD Record WRITE (i, X)

Binary Record WRITE (i) list

Examples:
PUNCH 20, (A(J), J=1,6)
PRINT 2, (A(J), J=1,6)
WRITE (6,10) A, B, (C(J),J=1,10)
WRITE (N, 11) K, D(J)
WRITE (2) (A(J), J=1, 10)
WRITE (M) A,B,C
WRITE (6,NAM1)

1. The PUNCH statement causes alphameric
cards to be punched on-line.

2. The PRINT statement causes data to be out-
put on the on-line printer.

3. The WRITE (i,n) list statement causes BCD
information to be written on symbolic output
device i.

4. The WRITE (i) list statement causes binary
information to be written on symbolic output
device 1.

21,1

5. The WRITE (i, X) statement causes the names
and values of all variables and arrays that be-
long to the NAMELIST name, X, to be written
on symbolic output device i.

The PUNCH, PRINT, and WRITE (i,n) state-
ments cause successive records to be writteh in
accordance with the FORMAT statement until the
list has been satisfied. The WRITE (i) list state-
ment causes the writing of one logical record con-
sisting of all the words specified in the list.

When a WRITE statement references a NAMELIST
name, the values and names of all variables and ar-
rays belonging to the NAMELIST name are written,
each according to its type. A complete array is writ-
ten out by columns. The output data is written such
that:

1. The fields for the data are large enough to
contain all the significant digits.

2. The output can be read by an input statement
referencing the NAMELIST name.

THE MANIPULATIVE INPUT/OUTPUT STATE-
MENTS

The statements END FILE, REWIND, and BACK-
SPACE manipulate I/0 devices. In the following
table, i, an unsigned integer constant or integer
variable, is a reference to an input/output device.

General Form

END FILE i
REWIND i
BACKSPACE i

Examples:
END FILE 3
END FILE N
REWIND 3
REWIND N
BACKSPACE 3

1. The END FILE i statement causes an end-
of-file mark to be written on symbolic tape i.

2. The REWIND i statement causes symbolic
tape unit i to be rewound.

3. A request to write an end of file or rewind
system files SYSIN1, SYSOU1, and SYSPP1,
corresponding in the standard FORTRAN I/0
Library to symbolic units 5,6, and 7, will
be ignored.

4, The BACKSPACE i statement causes tape i
to be backspaced one physical record if i re-
fers to an I/O device in the BCD mode, or it
causes tape i to be backspaced one logical
record if i refers to an I/O device in the bi-
nary mode. A request to backspace SYSOUL

corresponding in the standard FORTRAN I/0
Library to symbolic unit 6, will be ignored.

SYMBOLIC INPUT/OUTPUT UNIT DESIGNATION

Input/output devices are always referred to sym-
bolically in FORTRAN input/output statements.

1.

Object program input/output operates through
the Minimum IOCS Buffering package. The
correspondence between the symbolic unit
reference and the actual physical unit is es-
tablished in the initialization of IOCS.

The standard FORTRAN I/0 configuration
allows for symbolic tape units 1 through 8.
The normal unit designation for BCD input
statements is 5; for BCD output statements

it is 6.

FORTRAN Tape Units Mode Function

1 Binary Input or Cutput
2 Binary | Input or Qutput
3 Binary : Input or Output
4 Binary Input or Output
5 BCD Input

6 BCD Output

7 Binary | Output

8 BCD Input or Output

The symbolic unit references may be changed by
each installation in accordance with its own needs.
See the reference manual IBM 7090/7094 Operating
Systems: Basic Monitor (IBSYS), Form C28-6248,

and the reference manual IBM 7090/7094 Program-
ming Systems, IBJOB Processor, Form C28-6275.

Input/Output Statements

21.2

CHAPTER 6: SUBROUTINES, FUNCTIONS, AND SUBPROGRAM STATEMENTS

There are four classes of subroutines in FORTRAN:
Arithmetic Statement Functions, Built-In Functions,
FUNCTION subprograms, and SUBROUTINE sub-
programs. The major differences among the four
classes of subroutines are as follows:

1.

The first three classes may be grouped as
functions; they differ from the SUBROUTINE
subprogram in the following respects:

a. The functions are always single-valued
(that is, they return a single result);
the SUBROUTINE subprogram may
return more than one value.

b. A function is referenced by an arithme-
tic expression containing its name; a
SUBROUTINE subprogram is refer-
enced by a CALL statement.

The built-in function is an open subroutine;

i.e., a subroutine that is incorporated into

the object program each time it is referred

to in the source program. The three other

FORTRAN subroutines are closed; i.e., they

appear only once in the object program.

NAMING SUBROUTINES

All four classes of subroutines are named in the
same manner as a FORTRAN variable (see the sec-
tion, '"Variables™).

1,

22

A subroutine name consists of 1 - 6 alpha-
meric characters, the first of which must be
alphabetic.

The type of the function, which determines
the type of the result, may be defined as
follows:

a. The type of an arithmetic statement func-

tion may be indicated by the name of the
function or by placing the name in a type
statement.

b. The type of a FUNCTION subprogram
may be indicated by the name of the
function (if it is real or integer) or by

writing the type (REAL, INTEGER, COM-
PLEX, DOUBLE PRECISION, LOGICAL)

preceding the word FUNCTION. In the
latter case, the type, implied by name,
is overridden.
¢. The type of a built-in function is indi-
cated within the FORTRAN Processor
and need not appear in a type statement
(see columns 5 and 6 of Figure 6-1).
The type of a SUBROUTINE subprogram is
unimportant and need not be defined, since
the type of results returned is dependent only

on the type of the variable names in the dum-
my argument list.

DEFINING SUBROUTINES

The method of defining each class of subroutines is
discussed below.

Arithmetic Statement Functions

Arithmetic statement functions are defined by a
single arithmetic statement and apply only to the
source program containing the definition.

General Form

a=b

where:

1. the letter a is a function name followed by parentheses
enclosing its arguments, which must be distinct, non-
subscripted variables, separated by commas.

2. the letter b is an expression that does not involve sub-
scripted variables. Any arithmetic statement function
appearing in b must have been previously defined.

Examples:

FIRST (X) = A*X+B
JOB (X,B) = C*X+B
THIRD F(D) = FIRST (E)/D
MAX (A,I) = A¥*I-B - C
LOGFCT (A, C) = A**2_ GE. C/D

1. As many as desired of the variables appear-

ing in b may be stated in a as the arguments

of the function. Since the arguments are dum-

my variables, their names, which indicate
the type of the variable, may be the same as
names appearing elsewhere in the program
of the same type.

2. Those variables included in b that are not
stated as arguments are the parameters of
the function. They are ordinary variables.

3. All arithmetic statement function definitions
must precede the first executable statement
of the source program.

4, The type of each argument must be defined
preceding its use in the arithmetic state-
ment function definition.

Built-In Functions

Built-in functions are pre-defined, open subroutines
that exist within the FORTRAN Processor. A list
of all the available built-in functions is given in Fig-
ure 6-1.

Number of Type of
Function Definition Arguments Name Argument Function
Absolute value IArgi 1 ABS Real Real
IABS Integer Integer
Truncation Sign of Arg 1 AINT Real Real
times largest INT Real Integer
integer < iArg :
Remaindering Argj (mod Argp) 2 AMOD Real Real
(see note below) MOD Integer Integer
Choosing Max(Arg,, =2 AMAXO0 Integer Real
largest value Argp,...) AMAX1 Real Real
MAXO0 Integer Integer
MAX1 Real Integer
Choosing Min(Argq, 22 AMINO Integer Real
smallest value Argssece) AMIN1 Real Resl
MINO Integer Integer
MIN1 Real Integer
Float Conversion from 1 FLOAT Integer Real
integer to real
Fix Conversion from 1 IFIX Real Integer
real to integer
Transfer Sign of Arg, 2 SIGN Real Real
of sign times | Argy | ISIGN Integer Integer
Positive Arg; - Min 2 DIM Real Real
difference (Argy, Argjp) IDIM Integer Integer
Obtain most 1 SNGL Double Real
significant part
of double-
precision
argument
Obtain real 1 REAL Complex Real
part of complex
argument
Obtain 1 AIMAG Complex Real
imaginary part
of complex
argument
Absolute value |Arg| 1 DABS Double Double
Truncation Sign of Arg 1 IDINT Double Integer
times largest
" integer < !Arg!
Choosing Max (Arg,, =2 DMAX1 Double Double
largest Argnyees)
value
Choosing Min (Argq, 22 DMIN1 Double Double
smallest Argosee.)
value)
Transfer Sign of Arg, 2 DSIGN Double Double
of sign times | Argy |
Express single- D=(Arg, 0). 1 DBLE Real Double
precision
argument
in double-
precision form
Express two real C=Argq+iArgp 2 CMPLX Real Complex
arguments in
complex form
Obtain conjugate For Arg=X+Y, 1 CONJG Complex Complex
of a complex C=X-iY
argument

Figure 6-1-

NOTE: The function MOD (Argy, Args) is defined as Arg, - [Argl/Argz] Argp, where [x]
is the integral part of x)

Built-In Functions

Subroutines, Functions, and Subprogram Statements

23

FUNCTION Subprogram 4, When a dummy argument is an array name,

a DIMENSION or COMMON (with dimensions)
statement must appear in the FUNCTION sub-
program; also, the corresponding actual ar-
gument must be a dimensioned array name.

5. None of the dummy arguments may appear in
an EQUIVALENCE statement in the FUNC-
TION subprogram.

The FUNCTION subprogram must be logic-
ally terminated by a RETURN statement (see

the section, "The RETURN Statement'").

FUNCTION subprograms are defined by a special
FORTRAN Source language program.

General Form

FUNCTION name (a1,3p;¢++,3p)
REAL FUNCTION name (1,3, « « 5 a5) ' 6.
INTEGER FUNCTION name (21;82;,000,3p)

| DOUBLE PRECISION FUNCTION name (a{;3p;««-;32p)

COMPLEX FUNCTION name (a1,3;+¢¢32n) 7. The FUNCTION subprogram may contain any
LOGICAL FUNCTION name (a1, 32, + -+ 2p) FORTRAN statements except SUBROUTINE
vlv.}‘eg:xﬁe is the symbolic name of a single-valued - or another FUNCTION stafement.

function, 8. The arguments of a FUNCTION subprogram
2, the arguments 34,85, ..s,3y,, of which there must be at may be any of the following:

least one, are non-subscripted variable names or the a. Any type of constant.

dummy name of a SUBROUTINE or FUNCTION subprogram, b. Any type of subscripted or non -subscripted

and variable.
3. the type of the function may be explicitly stated preceding c. An arithmetic or a logical expression.

the word FUNCTION. d. The name of a FUNCTION or SUBROU-

TINE subprogram.
9., A FUNCTION subprogram is referenced by

Examples: using its name as an operand in an arithmetic

FUNCTION ARCSIN(RADIAN)

REAL FUNCTION ROOT (A, B,C)

INTEGER FUNCTION CONST(ING, SG)

DOUBLE PRECISION FUNCTION DBLPRE(R,S, T)
COMPLEX FUNCTION CCOT(ABI)

LOGICAL FUNCTION IFTRU (D, E, F)

expression.

Those FUNCTION subprograms that are
available with FORTRAN are given in Fig-
ure 6-2,

SUBROUTINE Subprogram

SUBROUTINE subprograms are defined by a special
1. The FUNCTION statement must be the first FORTRAN source language program.
statement of a FUNCTION subprogram.
2. The name of the function must appear at
least once as a variable on the left side of an
arithmetic statement or in an input statement.
For example:

FUNCTION CALC (A, B)

General Form

SUBROUTINE name (21,a2,...,3pn)
where:
1. name is the symbolic name of a subprogram; and
2. each argument, if any, is a non-subscripted variable
name or the dummy name of a SUBROUTINE or FUNCTION

. subprogram,
CALC=Z+B
Examples:
SUBROUTINE MATMPY (A,N,M, B, L, d)
. SUBROUTINE QDRTIC (B,A,C, ROOT1,ROQT2)
RETURN
By this means the output value of the function 1. The SUBROUTINE statement must be the
is returned to the calling program. first statement of a SUBROUTINE subprogram.
3. The arguments may be considered dummy 2. The SUBROUTINE subprogram may use one
variable names that are replaced at the time or more of its arguments to return output.
of execution by the actual arguments supplied The arguments so used must appear on the
in the function reference in the calling pro- left side of an arithmetic statement or in an
gram., The actual arguments must corre- input list within the subprogram.
spond in number, order, and type with the 3. The arguments may be considered dummy

24

dummy arguments.

variable names that are replaced at the time

of execution by the actual arguments supplied
in the CALL statement, which refers to the
SUBROUTINE subprogram. The actual ar-
guments must correspond in number, order,
and type with the dummy arguments.

6. The SUBROUTINE subprogram must be logi-
cally terminated by a RETURN statement.
7. The SUBROUTINE subprogram may contain

any FORTRAN statements except FUNCTION
or another SUBROUTINE statement.

4, When a dummy argument is an array name, Subprogram Names as Arguments
a DIMENSION or COMMON (with dimensions)
statement must appear in the SUBROUTINE FUNCTION and SUBROUTINE subprogram names
subprogram; also, the corresponding actual may be the actual arguments of subprograms. In
argument in the CALL statement must be a order to distinguish these subprogram names from
dimensioned, array name, ordinary variables when they appear in ar. argument
. list, they must appear in an EXTERNAI statement,
5. None of the dummy arguments may appear in
an EQUIVALENCE statement in the SUBROU- EXTERNAL SIN
TINE subprogram. CALL SUER (A, SIN, B)
Number of Type of
Function Definition Arguments Name Argument Function
Exponential eATg 1 EXP Real Real
Natural log(Arg) 1 ALOG Real Real
logarithm
Common logqfArg) 1 ALOG10 Real Real
logarithm
Arctangent arctan (Arg) 1 ATAN Real Real
arctan (Argl/ 2 ATAN2 Real Real
Argp)
Trigonometric sin (Arg) 1 SIN Real Real
sine
Trigonometric cos (Arg) 1 COs Real Real
cosine
Hyperbolic tanh (Arg) 1 "TANH Real Real
tangent 12
Square root (Arg) 1 SQRT Real Real
Remaindering Argq (mod Argp) 2 DMOD Double Double
Exponential eArg 1 DEXP Double Double
Natural log, (Arg) 1 DLOG Double Double
logarithm
Common logyq (Arg) i DLOG10 Double Double
logarithm
Arctangent arctan (Arg) 1 DATAN Double Double
arctan (Argq/ 2 DATAN2| Double Double
Argp)
Trigonometric sin (Arg) 1 DSIN Double Double
sine
Trigonometric cos (Arg) 1 DCOS Double Double
cosine
Square root (Arg)t/2 1 DSORT | Double Double
For Arg=X+iY
Absolute value C= 1 CABS Complex Comiplex
(XZ +Y2)1/ 2
Exponential Arg i CEXP Compiex Cémpiex
Natural log(Arg) 1 CLOG Complex Complex
logarithm
Trigonometric sin (Arg) 1 CSIN Complex Complex
sine
Trigonometric cos(Arg) 1 CCOs Complex Complex
cosine
Square root (Arg)]'/ 2 1 CSQRT Complex Complex

Figure 6-2. Mathematical Subroutines

Subroutines, Functions, and Subprogram Statements

25

THE CALL STATEMENT

The CALL statement is used to refer to a SUBROU-
TINE subprogram.

General Form

CALL SUBR (24,35, ++53p)

where:

1, SUBR is the name of a SUBROUTINE subprogram, and
2, 24;32,..,8y are the n arguments,

Examples:
CALL MATMPY (X,5,10,Y,7,2) _
CALL QDRTIC (9.732,Q/4.536, R-5**2,0,X1,
X2)

The CALL statement transfers control to the sub-
program and presents it with the actual arguments.
The arguments may be any of the following:

1. Any type of constant.

2. Any type of subscripted or non-subscripted
variable,

An arithmetic or a logical expression.

4. Alphameric characters. Such arguments
must be preceded by nH, where n is the count
of characters included in the argument, e.g.,
9HEND POINT. Note that blank spaces and
special characters are considered in the
character count when used in alphameric
fields. :

5. The name of a FUNCTION or SUBROUTINE

subprogram.

The arguments presented by the CALL statement
must agree in number, order, type, and array size
(except as explained under the DIMENSION state-
ment) with the corresponding arguments in the SUB-
ROUTINE statement of the called subprogram.

(3]

SUBPROGRAMS PROVIDED BY FORTRAN

FORTRAN includes several commonly used subrou-
tines that are available to the programmer. The
mathematical subroutines that are provided are de-
fined as FUNCTION subprograms; the subroutines
provided to test the status of the machine indicators
(the sense switches and the sense lights) are de-
fined as SUBROUTINE subprograms. In addition,
FORTRAN includes the SUBROUTINE subprograms
EXIT, DUMP, and PDUMP. EXIT terminates job
execution; DUMP dumps core storage and then ter-
minates job execution; PDUMP dumps core storage
and then continues execution.

26

Mathematical Subroutines

FORTRAN provides various commonly used mathe-
matical subroutines; these are defined as FUNCTION
subprograms. The names of all of these subprograms
are automatically typed by the FORTRAN IV Compiler;
therefore, they need not appear in Type statements.
Variables used as arguments of mathematical subrou-
tines must be typed, either explicity or implicitly, in

accordance with the function in which they appear.
The mathematical subroutines are listed in Figure 6-2.

Machine Indicator Tests

In the following list of machine indicator test sub-
routines, assume that i is an integer expression
and that j is an integer variable, These subroutines
are referenced by CALL statements.

SLITE (i): Ifi=0, all sense lights will be turned
off. Ifi =1,2,3, or 4, the corresponding sense
light will be turned on.

SLITET (i,j): Sense light i will be tested and turn-
ed off. The variable j will be set to 1 if i was on,
or j will be set to 2 if i was off,

SSWTCH (i, j): Sense switch i is tested and j is set
to 1if { was down and j is set to 2 if i was up.

OVERFL (j): jis set to 1 if a floating point overflow
condition exists, or j is set to 2 if no overflow con-
dition exists. The machine is left in a no overflow
condition.

DVCHK (j): If the divide check indicator is on, j is
set to 1 and the divide check indicator is turned off;

if the divide check indicator is off, j is set to 2,

EXIT, DUMP, and PDUMP

EXIT

A CALL to the EXIT subprogram terminates the
execution of any program by returning control to the
Monitor.

DUMP

A CALL to the DUMP subprogram by the statement

CALL DUMP (Aq,B1,F1,...,An, By, Fp)
causes the indicated limits of core storage to be
dumped and execution to be terminated by returning
control to the Monitor.

1. A and B are variable data names that indi-
cate the limits of core storage to be dumped;
either A or B may represent upper or lower
limits.

2. Fj is an integer indicating the dump format
desired:
F =0 dump in octal
1 dump as real
2 dump as integer
3 dump in octal with mnemoniecs
3. If no arguments are given, all of core storage
is dumped in octal.
4, If the last argument Fp is omitted, it is as-
sumed to be equal to 0 and the dump will be
octal.

PDUMP

A CALL to the PDUMP subprogram by the statement
CALL PDUMP (A1,B1, F1,..., An, By Fy)
causes the indicated limits of core storage to be
dumped and execution to be continued, The PDUMP
arguments are the same as the DUMP arguments.

THE BLOCK DATA SUBPROGRAM

In order to enter data into a COMMON block during
compilation, a special subprogram must be written.
This special subprogram contains only the DATA,
COMMON, DIMENSION, and Type statements asso-=
ciated with the data being defined. Data may be
entered into labeled, but not unlabeled, COMMON
by the BLOCK DATA subprogram.

General Form

BLOCK DATA

1. The BLOCK DATA subprogram may not con-
tain any executable statements.

2. The first statement of this subprogram must
be the BLOCK DATA statement.

3. All elements of a COMMON block must be
listed in the COMMON statement even though
they do not all appear in the DATA statement;
for example, the variable A in the COMMON
statement in Figure 6-3 does not appear in
the DATA statement.

4., ~ Data may be entered into more than one
COMMON block in a single BLOCK DATA
subprogram.

BLOCK DATA

COMMON /ELN/C,A,B/RMG/Z,Y

DIMENSION B(4), Z(3)

DOUBLE PRECISION Z

COMPLEX C

DATA (B(I), I=1, 4)/1.1,1.2,2%1,3/,C/(2.4, 3.769)/,
7(1)/7.6498085D0/

END

Figure 6-3

Subroutines, Functions, and Subprogram Statements 27

CHAPTER 7: THE SPECIFICATION STATEMENTS

The specification statements perform the following
functions: they provide information about storage
allocation and about the constants and variables used
in the program.

The DIMENSION Statement

General Form

DIMENSION vi(i1), v2(i2), v3(i3); . - -

where:

1. each vy is a subscripted variable, and

2. each iy, is composed of 1, 2, or 3 unsigned integer
constants and/or integer variables (i may be a variable only
when the DIMENSION statement -appears in a subprogram).

Examples:
DIMENSION A(10), B(5,15), C(L,M)
DIMENSION S(10), K(5,5,5), G(100)

The DIMENSION statement provides the informa-
tion necessary to allocate storage for arrays in the
object program. The DIMENSION statement defines
the maximum size of arrays.

1. Each variable that appears in subscripted form
in the source program must appear in a)
DIMENSION statement contained in the source
program; however, if the dimension informa-
tion for a variable is included in a COMMON
or a Type statement in the source program, it
must not be included in a DIMENSION statement.
The DIMENSION statement must precede the
first appearance of each subscripted variable
in an executable or DATA statement for which
it specified the size.

3. A single DIMENSION statement.may specify
the dimensions of any number of arrays.

4. Dimensions specified in a COMMON or a Type
statement are subject to all the rules for the
DIMENSION statement.

[\V]

Adjustable Dimensions

The name of an array and the constants that are its
dimensions may be passed as arguments in a sub-
program call. In this way, a subprogram may per-
form calculations on arrays whose size is not deter-
mined until the subprogram is called. Figure 7-1
illustrates the use of adjustable dimensions.

1. Variables may be used as dimensions of an
array only in the DIMENSION statement of a
FUNCTION or SUBROUTINE subprogram, For
any such array, the array name and all the
variables used as dimensions must appear as
arguments in the FUNCTION or SUBROUTINE
statement, :

28

SUBROUTINE MAYMY (...,R,L,M,...)

DIMENSION. ..,R(L,M),...

DO 100 I=1,L

Figure 7-1

2. The adjustable dimensions may not be altered
within the subprogram.

3. The absolute dimensions must be specified
in a DIMENSION statement of the calling pro-
gram.

4. The calling program passes the specific di-
mensions to the subprogram. These specific
dimensions are those that appear in the DI-
MENSION statement of the calling program.
Variable dimension size may be passed
through more than one level of subprogram,

The COMMON Statement

General Form

COMMON a,b,¢,.../1/d, e, ;... /5/gyh, ...

where:
1. a,b,...are variables that may be dimensioned,
and
2. /t/ ,/s/,...are variables that are block names.
Examples:

COMMON A, B,C/X/Q,R/YY/M,P,Q
COMMON /Z/G,H,J//D,F

Variables, including array names, appearing in a
COMMON statement are assigned locations relative
to the beginning of a particular common block. This
COMMON area may be shared by a program and its
subprograms.

1. If the variables appearing in a COMMON state-
ment contain dimension information, they must not
appear in a DIMENSION statement or in a Type state-
ment that contains dimension information.

2. The locations in the COMMON area are as-
signed in the sequence in which the variables appear
in the COMMON statement, beginning with the first
COMMON statement of the program.

3. Elements placed in COMMON may be placed
in separate blocks. These separate blocks may
share space in core storage at object time. Blocks

i e Bl
are given names and

cupy the same space.

4. COMMON Block Names. The symbolic name
of a block, which is 1-6 alphameric characters the
first of which is alphabetic, precedes the variable
names belonging to the block. The block name is
always embedded in slashes, e.g., /BB/. It must
not be the same as the name of any other subroutine
which is part of the same job. There are two types
of COMMON blocks: blank and Iabeled.

a. Blank COMMON is indicated either by omit-
ting the block name if it appears at the be-
ginning of the COMMON statement, or by
preceding the blank COMMON variable by
two consecutive slashes,

b. Labeled COMMON is indicated by preceding
the labeled COMMON-: variables by the block
name embedded in slashes.

5, The field of entries pertaining to a block name
ends with a new block name or with the end of the
COMMON statement or with a blank COMMON des-
ignation.

6. Block name entries are cumulative throughout
the program. For example, the COMMON state-
ments

COMMON A,B,C /R/D,E/S/F

COMMON G,H/R/1/S/P
have the same effect as the statement

COMMON A,B,C,G,H/R/D,E,I/S/F, P

7. Blank COMMON may be any length. Labeled
COMMON must conform to the following size re-
quirement: all COMMON blocks of a given name
must have the same length in all the programs that
are executed together.

8. Variables brought into a COMMON block
through EQUIVALENCE statements may increase
the size of the block (see the section, "The Equiva-
lence Statement').

9. Two variables in COMMON may not be made
equivalent to each other, directly or indirectly.

10. A double-word variable in COMMON must
be placed such that its high-order part is an even
number of words away from the first element in
COMMON.

The EQUIVALENCE Statement

General Form

EQUIVALENCE (a,b,¢,...),(d,e,f,0c0)yeen
where:
a,b,c,d,e,f,... are variables that may be subscripted;

these subscripts must be integer constants. The number
of subscripts appended to a variable must be equal to the
number of dimensions of the variable.

Tvamnlag.
LXampies:

DIMENSION B(5), C(10,10), D(5,10,15)
EQUIVALENCE (A, B(1), C(5,4)), (D(1,4,3),E)

The EQUIVALENCE statement controls the alloca-
tion of data storage by causing two or more variables
to share the same core storage location.

1. An EQUIVALENCE statement may be placed
anywhere in the source program. Each pair of paren-
theses in the statement list encloses the names of
two or more variables that are to be stored in the
same location during execution of the object program;
any number of equivalences (i.e., sets of parentheses)
may be given.

2. In the preceding example, the EQUIVALENCE
statement indicates that A, and the B and C arrays
are to be assigned storage locations so that the ele-
ments A, B(1), and C(5,4) are to occupy the same
location. In addition, it also specifies that D(1,4, 3)
and E are to share the same location.

3. Quantities or arrays that are not mentioned in
an EQUIVALENCE statement will be assigned unique
locations.

4. Locations can be shared only among variables,
not among constants.

5. The sharing of storage locations requires a
knowledge of which FORTRAN statements will cause
a new value to be stored in a location. There are
four such statements:

a. Execution of an arithmetic statement stores
a new value in the variable on the left side
of the equal sign.

b. Execution of an ASSIGN i TO n statement
stores a new value in n.

c. Execution of a DO statement or an implied
DO in an input/output list sometimes stores
a new indexing value.

d. Execution of a READ statement stores new
values in the variables mentioned in the
input list.

6. Variables brought into a COMMON block through
EQUIVALENCE statements may increase the size of
the block indicated by the COMMON statements, as in
the following example:

COMMON /X/A,B,C
DIMENSION D(3)
EQUIVALENCE (B, D(1))

The layout of core storage indicated by this ex-
ample (extending from the lowest location of the block
to the highest location of the block) is: -

A

B, D()

C, D(2)
D(3)

7. Since arrays must be stored in consecutive for-
ward locations, a variable may not be made equivalent
to an element of an array in such a way as to cause

The Specification Statements 29

the array to extend beyond the beginning of the
COMMON block. For example, the following coding
is invalid:

COMMON /X/A,B,C

DIMENSION D(3)

EQUIVALENCE (B, D(3))
because it would force D(1) to precede A, as follows:

D(1)

A, DQ)

B, D(3)

C

8. The rule for making double-word variables
equivalent to single-word variables is:

In COMMON, the effect of the EQUIVALENCE
statements must be such that the high-order word of
any double-word variable is an even number of loca-
tions away from the start of the COMMON block.

In non-COMMON, the effect of the EQUIVALENCE
statements must be such that the high-order word of
any double-word variable is an even number of words
away from the start of any other double-word variable
linked to it through EQUIVALENCE statements.

9. Two variables in one COMMON block or in two
different COMMON blocks may not be made equiv-
alent.

The Type Statements

The type of a variable or function may be specified
by means of one of the six Type statements:

General Form

INTEGER a{iq), blip), c(iz), ...

REAL a(i), b(ip), c(iz),...

DOUBLE PRECISION a(if), b(ip), c(i3);...

COMPLEX a(iy), b(i2), c(i3),.-.

LOGICAL a(iq), b(ip), c{iz)y...

EXTERNAL a,b,c,...

where:

1. a,b,c,...are variable or function names appearing within
the program,

2. eachiy’is composed of 1, 2, or 3 integer constants and/or
integer variables. Subscripts may only be appended to
variable names appearing within the program, not function
names.

Examples:

INTEGER BIXF, X, QF, LSL

REAL IMIN, LOG, GRN, KLW

DOUBLE PRECISION Q, J, DSIN

EXTERNAL SIN, MATMPY, INVTRY

INTEGER A(10,10), B

COMPLEX C(4,5,3), D

The variable or function names following the type

(INTEGER, REAL, etc.) in the Type statement are
defined to be of that type, and remain that type

30

throughout the program; the type may not be
changed.

Note that LSL and GRN need not appear in their
respective Type statements, since their type is im-
plied by their first characters. Note also that DSIN
need not appear in its statement if it is used as a
function in the program, since mathematical sub-
routines are automatically typed by the FORTRAN IV
Compiler.

1. The appearance of a name in any Type state-
ment, except EXTERNAL, overrides the implicit
type assignment.

2, Variables that appear in EXTERNAL state-
ments are subprogram names that are arguments of
other subprograms.

3. A name may appear in two Type statements
only if one of them is EXTERNAL.

4. The Type statement must precede the first
use of a name in any executable statement or DATA
statement in the program.

5. A name declared to be of a given type may
assume only the values of a constant of the same type.

6. The EXTERNAL statement may not be used
to dimension variables.

7. Any variable that is dimensioned by a Type
statement may noc be dimensioned elsewhere, i.e.,
it may not appear in a DIMENSION statement or in
a COMMON statement that contains dimension infor-
mation.

The DATA Statement

Data may be compiled into the object program by
means of the DATA statement.

General Form

DATA list/dj,dp, e «.,dy/, list/d1,d2,k*d3, .ce,dm/ a0

where:

1. list contains the names of the variables being
defined,

2. dis the information literal, and

3. kis an integer constant,

Examples:

DATA R.Q/14.2,3HEND/,Z/O777777700001/

DATA (B(I).C()), 1=1,40,2)/2.0,3.0,38%100.0/

LOGICAL LA, LB, LC, LD

DATA LA, LB, LC, LD/F,.TRUE.,.FALSE., T/

1. List. Subscripted variables may appear in
the list. Where a subscript symbol is used, it must
be under control of DO-implying parentheses and
associated parameters. Subscripts not so controlled
must be integer constants. The DO-defining param-
eters must be integer constants.

2. k. k may appear before a d-field to indicate
that the field is to be repeated k times. k must be

followed by an * to separate it from the field to be
repeated.

3. d. The d-literals may take any of the four
following forms:

a. Integer, real, double-

plex constants.

b. Alphameric characters. The alphameric
field is written as nH followed by n alpha-
meric characters, Each group of six alpha-
meric characters forms a word. Ifn is
not a multiple of six, the remaining char-
acters are left justified in the word, and
the word is filled out with BCD blanks.
Blanks are significant in alphameric fields.

c. Octal digits. The octal field is written as
O, followed by 1-12 signed or unsigned
octal digits.

d. Logical constants, The logical field may be
written as either . TRUE., .FALSE., T,
or F,

4. There must be a one-to-one correspondence
between the list items and the data literals. Each
data literal {(integer constant, real constant, alpha-
meric constant, complex constant, logical constant,
double-precision constant, or octal constant) corre-

sponds to one element (undimensioned variable or
subscripted array reference). Caution: If it is de-
sired to define 16 alphameric characters, say
16HDATAbLTObBEbREADD starting at G(1), then G

muat ha divianainnea ~anver

A 3 £ T am ot dlacan
must 02 QIMEensionea o0 CoOvVer at isast ir

iree loca-
tions and the entire literal corresponds to G(1).

5. The BLOCK DATA subprogram (see page 27),
which includes a DATA statement, compiles data
into the common area of the program.

6. When DATA defined variables are redefined
during execution, these variables will assume their
new values regardless of the DATA statement,

7. Where data is to be compiled into an entire
array, the name of the array (with indexing informa-
tion omitted) can be placed in the list. The number
of data literals must be equal to the size of the
array.

For example, the statements

DIMENSION B(25)

DATA A,B,C/24%4.0,3.0,2.0,1.0/
define the values of A, B(1),..., B(23) to be 4.0, and
the values of B(24), B(25), and C to be 3.0, 2.0, and
1.0, respectively.

8. The DATA statement may not be used to enter
data into unlabeled COMMON.

The Specification Statements 31

Form C28-6274-2
Page Revised 6/10/64
by TNL N28-0107

APPENDIXES

APPENDIX A: SOURCE PROGRAM STATEMENTS
AND SEQUENCING

The order in which the source program statements
of a FORTRAN program are executed follows these
rules:

1. Control originates at the first executable
statement. The specification statements and
the FORMAT, FUNCTION, SUBROUTINE,
NAMELIST, and BLOCK DATA statement, are
non-executable; in questions of sequencing,
they can be ignored.

2. If control was with statement S, then control
will pass to the statement indicated by the
normal sequencing properties of S. If, how-
ever, S is the last statement in the range of
one or more DOs that are not yet satisfied,
then the normal sequencing of S is ignored
and DO-sequencing occurs.

Every executable statement in a FORTRAN source
program, except the first, should have some path of
control leading to it.

The normal sequencing properties of each FOR-
TRAN statement follow.

Statement Normal Sequencing

a=b Next executable statement
ASSIGNi TOn Next executable statement

BACKSPACE i Next executable statement

BLOCK DATA Non-executable

CALL First statement of called sub-
program

COMMON Non-executable

32

Statement

COMPLEX
CONTINUE
DATA
DIMENSION
DO

DOUBLE PRECISION
END

END FILE
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION

GO TOn

GO TOn, (B4,12;404,0m)
GO TO (n1,03, 0045 0m), 1

IF (a) ny, ny, ngy

IF (t) s

INTEGER
LOGICAL
NAMELIST
PAUSE

PUNCH
READ
REAL
RETURN

REWIND
STOP
SUBROUTINE
WRITE

Normal Sequencing

Non-executable

Next executable statement
Non-executable
Non-executable
DO-sequencing, then the next
executable statement
Non-executable

Terminates program

Next executable statement
Non-executable
Non-executable
Non-executable
Non-executable

Statement n

Statement last assigned to n
Statement nj

Statement n1,np,n3 ifa O,
a=0, or if a > 0, respectively
Statement s or next executable
statement if t is true or false,
respectively

Non-executable
Non-executable
Non-executable

Next executable statement
Next executable statement
Next executable statement
Next executable statement
Non-executable

The first statement, or part of a

statement, following the reference

to this program

Next executable statement
Terminates the program
Non-executable

Next executable statement

APPENDIX B:
CHARACTERS
~ Y]
8 8
g B
5 = A
£ 3 0
S O A
1 1 01
2 2 02
3 3 03
4 4 04
5 5 05
6 6 06
T T 07
8 8 10
9 9 11
blank blank 20
=8-3 13
184 14

The characters $ and ' (8-4) can be used in FORTRAN only as alphameric

02

03

04

05

06

07

10

11

60

13

14

text in an H field.

APPENDIX C: DIFFE

II and FORTRAN IV

1.

[

2

Q
s _
bl ~
8 05
= «
O O
12
A 1
12
B 2
12
Cc 3
12
D 4
12
E b5
12
F 6
12
G 7
12
H 8
12
1 9
+ 12
12
8-3
12
) 8-4

BCD Tape

o]
-

62 -

63

64

65

66

67

71

60

73

74

Storage

o
=

22

23

24

25

26

27

30

31

20

33

34

Character
Card

11

ey
[

11

[u—y

@)
o k=

11

11

11

- 11

11
$ 8-3

11
* 8-4

All language items distinguished by a column

BCD Tape

NN
e

42

43

44

45

46

47

50

51

40

53

54

1 modal punch, except B, in FORTRAN II have been

incorporated into FORTRAN IV by the Type state-

ments as follows:

=
)
= S S
] = <
O O
0
41 /1
0
42 S 2
0
43 T 3
0
4 U 4
0
45 V 5
0
46 W 6
0
47 X 7
0
50 Y 8
0
51 V4 9
40 0 0
0
53 , 8-3
0
54 (8-4

FORTRAN II Modal Punch

BCD Tape

DO
ot

22

23

24

25

26

27

30

31

12

33

34

Storage

2]
-

62

63

64

65

66

67

70

71

00

73

74

FORTRAN IV Type Statement

(See the section, "The
Type Statements")

Double-precision arithmetic - D

DOUBLE PRECISION

Complex arithmetic -~ I

COMPLEX

F-card - F

EXTERNAL

Appendix

33

The DATA statement may be used to enter octal
constants into a FORTRAN IV program; the pro-
grammer may write subroutines, using these con-
stants, to handle Boolean arithmetic.

2. Function Naming.

a. Where the initial character of a function
name is used to denote the type as float-
ing point (real) or fixed point (integer) in
FORTRAN II, incompatibilities may arise.
In FORTRAN 1V, this difficulty is han-
dled by the TYPE statements REAL and
INTEGER, which define a variable name
or function name as floating point or fixed
point, respectively (see the section, '"The
Type Statements'’).

b. The number of characters in an open, a
closed, or an arithmetic statement function
name in FORTRAN 1 is 4 through 7. ending
in F; whereas, in FORTRAN IV, the num-
ber of characters is 1 through 6 and the
final F has no meaning. In both cases, the
first character of the function name must
be alphabetic (see chapter 6).

c. Built-in and arithmetic statement functions
are not identified by a terminal F in FOR-
TRAN IV; they are named in FORTRAN
IV as described in b, above. The FOR-
TRAN II library function is a FORTRAN
IV FUNCTION subprogram which is in-
ternal to the Processor.

3. COMMON and EQUIVALENCE.

a. In FORTRAN IV, EQUIVALENCE does
not effect the ordering within COMMON,
and it does not create a gap in COMMON
storage; the only effect it can have on a
COMMON block is to make its size greater
than that indicated by the COMMON
statements of the program (see the sec-
tion, '""The COMMON Statement'").

b. The FORTRAN IV COMMON statement
may contain dimension information.

4, In FORTRAN IV, if an explicit type is given to
a variable name which is used throughout the pro-
gram as an ordinary variable and also as a dummy
argument of an arithmetic statement function, the ex-
plicit type applies in both contexts.

5. Implicit multiplication, which occurs in FOR-
TRAN 1I as a by-product of the arithmetic translator
techniques, is not permitted in FORTRAN IV. Thus,
the following combinations are not permitted in FOR-
TRAN IV:

K()

(v

(K

where V is a variable, K is a constant, and () is
any arithmetic expression within parentheses.

34

6. The FORTRAN II statements in column 1 are

changed to the FORTRAN IV statements in column 2,

FORTRAN IV Statement
CALL OVERFL (j)

CALL OVERFL (j)

CALL DVCHK (j)

CALL SSWTCH (i, j)
CALL SLITE (i)

CALL SLITET (i, j)

FORTRAN II Statement
IF ACCUMULATOR OVERFLOW n,n»
IF QUOTIENT OVERFLOW ny,ny
IF DIVIDE CHECK n, np
IF (SENSE SWITCH i) ny,np
SENSE LIGHT i
IF (SENSE LIGHT i) ny,ny

READ TAPE 1, list READ (i) list Binary record
READ INPUT TAPE i, u, list READ (i,n) list BCD record
WRITE TAPE 1, list WRITE (1) list Binary record
WRITE OUTPUT TAPE i, n, list WRITE (i,n) list__ BCD record

The FREQUENCY, READ DRUM, WRITE DRUM statements
of FORTRAN II are not part of the FORTRAN IV language.

7. Additional FORTRAN IV statements.

a. DATA (see the section, ""The DATA
Statement'’).

b. BLOCK DATA (see the section, "The
Block Data Subprogram'™).

c. LOGICAL, an additional Type statement
which defines variables to be used in logi-
cal computation (see the section''The
Type Statement'),

8. Differences in Output Produced by FORTRAN
IV and FORTRAN II.

Programmers will find that the output produced by
a source program in FORTRAN IV may not be the
same as that provided by the identical program in
FORTRAN II. Where differences do occur, they are
attributed exclusively to the following differences
which exist between FORTRAN IV and FORTRAN II.

a. The logarithm subroutine of FORTRAN IV
employs a new algorithm which yields more
accurate results for most arguments than
does the logarithm subroutine of FORTRAN
II.

b. Floating point constants which are written
into the source program are converted by
FORTRAN IV by a somewhat different
algorithm than that used by FORTRAN II.
The result is that more significance tends
to be preserved and a more accurate con-
version is achieved by FORTRAN IV as
compared to its predecessor.

c¢. The mathematical subroutines in FORTRAN
IV are assembled by MAP, and those in
FORTRAN 1I are assembled by FAP. The
conversion routines in MAP provide more
precise conversions for constants than do
those in FAP. As a consequence, FOR-
TRAN IV tends to produce more precise
results than FORTRAN II for those sub-
routines which use the same algorithm

(and its associated constants). The SIN/

COS subroutine is a very good example of
this effect.

d. The order in which a sequence of multi-
plications (or of multiplications and
divisions) is executed by the object pro-
gram in FORTRAN IV may be different
from that in FORTRAN II. If such a dif-
ference in ordering should occur, neither
method may be considered superior to the
other from the standpoint of computational
accuracy.

APPENDIX D: LIMITATIONS ON SOURCE PRO-
GRAM SIZE

In translating a source program into an object pro-
gram, FORTRAN forms and utilizes various tables
containing information about the source program.
These tables are divided into two categories.

First Category Tables

The first category of tables consists of those tables
for which space is allocated only when a table is
actually required.

Storage of First Category Tables

At such time as a first category table is required, a
buffer is assigned by the Table Routine in the TR
buffer area, which begins immediately after the
FORTRAN compiler in core storage and extends
toward the top of storage. The top of the TR buffer
area is determined by the NAME table.

The NAME table is the only first category table
that is not stored in the TR buffer area, Rather,
the NAME table storage begins near the end of core
storage and extends downward toward the TR buffer

rea.

The following map of core storage indicates the
location and direction of the TR buffer area and the
NAME table.

77777
Beginning of NAME Table

TR Buffer Area

Beginning of TR Buffer Area

FORTRAN Compiler

Essentially, the TR buffers and the NAME table
share the same space but start filling the space
from opposite ends. When they meet an overflow
occurs,

Overflow of TR Buffer Area and NAME Table Storage

It is unlikely that the TR buffers and the NAME table
would overflow each other; however, if they did, a
failure to compile would result.

If such an overflow occurs, it would be possible
to recompile the program only after reducing the
size of the TR buffers or by modifying the program
so that excessive table entries will be eliminated.

v O SHLVO vduiC Ciiti il il OO Ciiidi

First Category Tables

The following tables belong to the first category.
With the following description of what causes entries
to be made in the tables, the programmer ghould be
able to reduce the size of tables if an overflow occurs.

The following comments and definitions apply to
the tables:

1., The phrase "literal appearance' means that
each item must be counted each time it
appears.

2. The BETA, LAMBDA, ASFD, and RANGE2
tables are used for one statement only and
are released immediately upon completion of
processing of that statement.

3. In computing the table size of BETA, LAMBDA,
and RANGE 2, all subscripts are ignored.

4. A subexpression is any term or expression
within parentheses: a function argument is a
subexpression.

5. Each of the FORTRAN operators is given a
value when computing the size of the BETA
and LAMBDA tables. The operator .NOT.

is ignored.

Operator Value
.OR. 1
.AND, 2
Relational
Operators 3
+, - 4
*,/ 5
*k 6
Function
Reference, @ 7

The symbol @ for a function reference is used as
follows: MAX (X,Y) in a FORTRAN statement is
interpreted by the compiler as if it had been written
MAX ® X @ Y; of course, the programmer does
not use the function symbol @ .
6. (x]is the greatest integer less than or equal
to x.

Appendix 35

ASFD: A one word entry is made for each argument
of an arithmetic statement function definition.

BETA Table: The size of the BETA table is com-
puted by the following procedure:

1. Ignoring all subexpressions:

a. Scan the right side of the arithmetic
statement for the first operator; add the
value of this operator to a counter.

b. Scan for the next operator; if the value
of this operator is less than or equal to
the value of the immediately preceding
operator, continue scanning; if the value
of this operator is greater than the im-
mediately preceding operator, add the
difference to the counter; continue scan-
ning and totaling until the entire expres-
sion has been processed.

2. For each subexpression not an argument,
add to the counter the difference between 7 and the
value of the operator which immediately precedes
the left parenthesis of the subexpression.

3. For each subexpression, previously ignored,
perform the processing described under item 1.
above, keeping a continuous total in the counter,

4. The value in the counter is the table size.

BRADD Table: The number of entries is equal to
the number of entries in the BRANCH table.

BRANCH Tabie: An eniry is made for each state-
ment that may result in a transfer of control. The
number of words in each entry is found in the fol-

lowing table:

Statement Number of Words in Entry
Logical IF 1
Arithmetic IF 3

Unconditional GOTO | 1
Assigned GO TO number of statement numbers in list

Computed GO TO number of statement numbers in list

COMMON Table: A one word entry is made for
each literal appearance of variables in a COMMON
statement. A one word entry is also made for each
specification of blank or labeled COMMON,

CONST Table: An entry is made for each literal
appearance of a constant. The number of words in
each entry is 2 + Q‘—l], where n is the number of
non-blank characters used for the representation of
the constant in the program,

DDO Table: A two word entry is made for each im-
plied DO in a DATA statement.

36

DELTA Table; An entry is made for each assigned
and computed GO TO. The number of words in
each entry is 1+ [n/Z] , where n is the number of
statement numbers in the list,

DIM Table: An entry is made for each assignment
of a dimension to an array. The number of words
in each entry is 1+ [g] , where n is the number of
dimensions.

DLIST Table: An entry is made for each DATA
statement. The entry size isn+d + v + 2d where n
is the number of lists in the DATA statement, v is
the number of variables, and d is the number of
implied DOs.

DLIT Table: A one word entry is made for each
list in a DATA statement. An entry is also made
for each literal (constant) appearing in a DATA
statement. The size of this latter entry is 2+ [ﬂ_:_lj,
where n is the number of non-blank characters in
the literal,

EQUIT Table: A one word entry is made for each
literal appearance of variables in an EQUIVALENCE
statement,

FORMAT Table: An entry is made for each FOR-
MAT statement. The number of words in each en-
try is 2 + [""?_1] , where n is the number of charac-

ters following the word FORMAT and blanks are re-
tained in an alphameric field, but deleted elsewhere,

FORTAG Table: A two word entry is made for each
literal appearance of a subscripted variable in any
statement except a DATA statement.

FORVAL Table: A one word entry is made for each
literal appearance of a non-subscripted integer vari-
able on the left side of an arithmetic statement, in
an I/0 list, in COMMON statements, and in the
argument list of a SUBROUTINE subprogram.

INCDO Table: A one word entry is made for each
left parenthesis that is not used for subscripts in a
DATA statement. This table lasts for one statement
only.

LAMBDA Table: The size of the LAMBDA table is
computed by the following procedure.

1. Set a counter equal to the number of constants,
variables, and functions in the arithmetic
expression.

2. Ignoring all subexpressions, scan the expres-
sion for the first operator: if the next opera-
tor-has the same value as the immediately

preceding operator, continue scanning; if the
value of the next operator is less than the
immediately preceding operator, add one to
the counter and continue scanning; if the val-
ue of the next operator is greater than the
immediately preceding operator, add the dif-
ference in values to the counter and continue
scanning and totaling until the entire expres-
sion has been processed.

3. TFor each subexpression, perform the pro-
cessing described under item 2, keeping a
cumulative value in the counter.

4, The value in the counter is the table size.

NAME Table: A two word entry is made for each
variable, function name, and subroutine name (other
than the name of the program being compiled) in the
source program.

RANGE2 Table: A one word entry is made for each
function argument that i an expression,

SUBARG Table: An entry is made for each FUNC-
TION or SUBROUTINE subprogram. The number of
words in each entry is 1 + [n/z] , where n is the
number of subprogram arguments.

TAU Table: A one word entry is made for each ap-
pearance of a unique subscript combination. Sub-
script combinations that are actually the same as
others are considered unique if there is a difference
in the size of the dimensions of the subscripts.

TDO Table: A three word entry is made for each DO
or implied DO,

TDOB Table: A one word entry is made for each
DO or implied DO,

TEIFNO Table: A one word entry is made for each
executable statement which has a statement number.

Second Category Tables

The second category of tables consists of those
tables for which space is specifically allocated in
the Compiler program. The space allocated for
each of these tables remains assigned even though
the table may not be required.

It is unlikely that g compilation failure will re-
sult from an overflow of one of these tables.

For a complete description of these tables and
their limitations, see the FORTRAN section of the
7090/7094 IBJOB Processor publication.

APPENDIX E: OPTIMIZATION OF ARITHMETIC
EXPRESSIONS

In order to optimize the object program, a sequence
of operations on the multiply-divide (¥, /) level may
be reordered. The reordering tends to an alterna-

tion of the multiply and divide operations. It occurs
where all elements of the expression are real type,

This is done on the assumption that mathematically

equivalent expressions are computationally equiva-

lent.

Where the multiply-divide expression involves
mixed real and complex types, the operations on the
real types occur first and are alternated.

Where the order of operations is considered sig-
nificant, the programmer may use nested parenthe-
ses in the expression.

There are two distinct ways a given floating point
constant may enter computation within a FORTRAN
program. It may be

1., written into the FORTRAN source program, or

2. read in as data during execution.

In the first version of the 7090/7094 FORTRAN
Compiler (IBFTC) and its Library (IBLIB), there
may be a difference in the low-order binary bit of
the same constant arising from these two sources.

Appendix 37

Form C28-6274-2
Page Added 6/10/64
by TNL N28-0107

INDEX

Addition 9,10
Adjustable dimensions 28
Alphameric fields 17
Arithmetic expression 9
Arithmetic GO TO 13,32
Arithmetic IF 12,13,32
Arithmetic operations 9
Arithmetic operators 9
Arithmetic statement 5, 11
Arithmetic statement function 22
Arrays 7,16,28,29
input/output of 16
storage arrangement 8
ASFD Table 36
ASSIGN 12,32
Assigned GO TO 12,32
ASSIGNTO 12,32

BACKSPACE 15,21.1,32
BETA Table 36

Blank COMMON 29
Blank Fields 18

Blanks 5

BLOCK DATA 27,32
BRADD Table 36
BRANCH Table 36
Built-in function 22,23

CALL 14,26,32
Carriage control 19
Coding sheet 5,6
Comments card 5
COMMON 8,28,32,36
COMPLEX 30,32
Complex constants 7
Complex number fields 17
Complex variables 8
Computed GO TO 12,32
Constants 7,9

complex 7

double-precision 7

integer 7
logical 7
real 7

CONST Table 36

Continuation card 5

CONTINUE 13,32

Control statements 5,12,13,14

Conversion of data 16,17,18,19, 20
A-Conversion 17
D-Conversion 16,17,18,19,20
E-Conversion 16,17,18,19,20
F-Conversion 16,17,18,19,20
H-Conversion 18
I-Conversion 16,17
O-Conversion 16,17
X-Conversion 18

DATA 5,8,30,31,32
Data conversion 16,17,18,19,20
alphameric 17

blank 18
numeric 16

38

Data fields 16,17,18,19
alphameric 17
blank 18
complex numbers 17
logical 18
numeric 16
Data literal 30,31
DDO Table 36
Defining subroutines 22
DELTA Table 36
DIMENSION 8,28,32
DIM Table 36
D-literals 9,10
DLIST Table 36
DLIT Table 36
DO 13,32
indexing 13
loops 13
nested 13
range of 13
restrictions 13
subprograms 13
DOUBLE PRECISION 30,32
constants 7
variables 7
DUMP Subprogram 14, 26

END 14,32
END FILE 15,21,1,32
EQUIT Table 36
EQUIVALENCE 29,32
EXIT subprogram 14,26
Exponentiation 9,10
Expressions 7,9
arithmetic 9
logical 9
EXTERNAL 25,30,32

Field format 18
First category table 35
FORMAT 5,15,16-20, 32
FORMAT Table 36
FORTAG Table 36
FORTRAN I 33,34
FORTRAN IV

coding sheet 5

source program 5

statement 5
FORTRAN statements 5,6

arithmetic 5

control 5

input/output 5

subprogram 5

specification 5
FORVAL Table 36
Functions name 9
Functions 10,20

arithmetic statement 22

built-in 22
FUNCTION subprogram 22,24

General input/output statements
GOTO 12,32

15, 21

H-Conversion 5
Hierarchy of operations 9,10
H-field 5

Identification 5
IF 12,13,32
arithmetic 12
logical 12,13
Implicit variable 8
INCDO Table 36
Indexing DOs 13
Integer constants 7
Integer variables 8
Information literal 30
Input data 19,20
Input/output devices 21
Input/output of arrays 12,20
Input/output statements 5,15-21,32
general 15,21,32
manipulative 15,21.1, 32
non-executable 15,16,32
Input/output unit designation 21,2
INTEGER 30,32

LAMBDA Table 36
Limitations of size 35
List specification 15
LOGICAL 30,32

Logical constant 9,10
Logical expression 9,10
Logical fields 9

Logical function 10
Logical IF 12,32
Logical operations 9
Logical operators 9,10
Logical variable §,9,10

Machine indicator tests 26
Manipulative input/output 15,20
Mathematical subroutines 25,26
Multiple record format 19
Multiplication 9,10

NAME 35

NAMELIST 15,20,21,32

NAME Table 37

Naming subroutines 22

Nested DO loops 13

Non-executable input/output statements 15, 16,32
Non-subscripted variable 9

Normal sequencing 32

Numeric fields 16

Operators 9
Order of execution 32

Form C28-6274-2

Page Added 6/10/64

by TNL N28-0107

Parenthesis in expressions 9
PAUSE 14,32

PDUMP subprogram 14,27
PUNCH 15,21.1,32
PRINT 15,19,21.1,32

Range of DO 13
RANGE2 Table 37
READ 15,21,32»
REAL 30,32

Real Constants 7

Real variables 8
Relational operations 10
Relational operators 10
Repetition of fields 18
Restriction on DO 13
RETURN 14,32
REWIND 15,21.1,32

Scale factor 18

Second category table 37
Sequencing 3

Source program coding 5,6
Source program size 35
Specification statement §5,28-31
START key 14

Statements 5,6

STOP 14,32

SUBARG Table 37

Subprograms 22

Subprogram statement 5
Subroutine 22

SUBROUTINE Subprogram 22, 24, 32
Subscripted variables 8,9
Subscripts 7,8

Subtraction 9, 10

Symbolic input/output units 21

Table Routine 35
TAU Table 37
TDO Table 37
TDOB Table 37
TEIFNO Table 37
Type statements 30

Unconditional GO TO 12, 32

Variable name 8

Variables 7, 8, 9, 10
subscripted 8, 9
non-subscripted 9

Variable type specification 8§

WRITE 15,19,21.1,32

Index

39

C28-6274-2

B

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y., 10601

V'S () Ul paung

2-¥.29-82D,

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21.0
	21.1
	21.2
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

