File Number 7090-27
Form C28-6275-2

Systems Reference Library

IBM 7090,7094 IBSYS Operating System
IBJOB Processor \1 (.;:Kg(ON [l

This publication describes the 7090/7094 18joB Proces-
sor and its components. Included are descriptions of
the 1BjoB Processor, the functions that are performed
by the components of the Processor, and the require-
ments for use of the Processor and its components.

The 1BjoB Processor, 7090-PR-929, is a group of pro-
grams used to translate programming languages. It
consists of the following:

The Processor Monitor (1BjoB) — 7090-SV-801

The FORTRAN IV Compiler (18Frc) — 7090-FO-

805
The COBOL Compiler (1scsc)—7090-CB-806
The Macro Assembly Program (imBmar) — 7090-
SP-804

The Loader (18LDR) — 7090-SV-802

The Subroutine Library (1BLiB) — 7090-LM-803

This publication is divided into two parts. The first
part contains information for the applications pro-
grammer, and the second part contains information
for the systems programmer.

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

Preface

This publication provides procedural information re-
quired to compile, assemble, load, and execute a pro-
gram, using the 1BjoB Processor. Also included is in-
formation intended for the experienced 7090/7094
programmer and the systems programmer.

It is assumed that the reader is familiar with the
contents of the publication IBM 7090,/7094 IBSYS Op-
erating System: System Monitor (IBSYS), Form
C28-6248.

The reader should also be familiar with one or more
of the publications that describe the languages associ-
ated with the Assembler and the compilers that oper-
ate within the 18joB Processor. These publications are:

IBM 7090/7094 Programming Systems: FORTRAN
IV Language, Form C28-6274.

IBM 7090/7094 Programming Systems: COBOL
Language: Preliminary Specifications, Form
J28-6260.

IBM 7090/7094 Programming Systems: Macro As-
sembly Program (MAP) Language, Form
C28-6311.

The MaP programmer who uses the Input/Output
Control System should also read the publication IBM
7090/7094 IBSYS Operating System: Input/Output
Control System, Form C28-6345.

Major Revision (February, 1964)

This publication, Form C28-6275-2, supersedes the publication
IBM 7090/7094 Programming Systems: IBJOB Processor, Form
(C28-6275-1; the supplements IBM 7090/7094 Programming
Systems: IBJOB Processor: Overlay Feature of IBLDR, Form
(C28-6331 and IBM 7090/7094 Programming Systems: IBJOB
Processor—7090-PR-929: Supplement for 1301 Disk Capability,
Form C28-6325; and the Technical Newsletters Form N28-0056
and Form N28-0060.

The following machine configuration is required
for the operation of the 18joB Processor:

An 1BM 7090 or 7094 Data Processing System.
An 1BM 716 Printer.
An 1BM 711 Card Reader.

Required for Installations using only IBM 729 (11,
IV, V, or VI) Magnetic Tape Units and/or IBM 7340
Hypertape Drives:

Eight units. If an 1BM 1401 with its attached 1402
Card Read Punch and 1403 Printer is available
for processing System output, and a single tape
unit is assigned by the System Monitor to both
sysout and sysppi (list and punch functions),
then only seven units are required.

Required for installations using IBM 1301 Disk
Storage or IBM 7320 Drum Storage:

Four tape units. 18m 729 Magnetic Tape Units or
BM 7340 Hypertape Drives can be assigned in
any combination. If an 1BM 1401 with its attached
Card Read Punch and 1403 Printer is available
for processing System output and a single tape
unit is assigned by the System Monitor to both
sysoul and syspp1 (list and punch functions), only
three units are required.

Five units. BM 729 Magnetic Tape Units, 1BMm
7340 Hypertape Drives, or selected cylinders of
1BM 1301 Disk Storage or of 1M 7320 Drum
Storage can be assigned to the installation in any
combination.

Copies of this and other 1BM publications can be obtained through mm Branch Offices.

Address comments concerning the contents of this publication to:

IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N.Y.

© 1963 by International Business Machines Corporation

12602

Introduction ..o 5
Organization of This Publication 5
General Description of the 1BjoB Processor .. 5

Input/Output Control System (10cs) B

Core Storage Allocation ..., 5
Programmer’s Information................cccccooo 7
THE PROCESSOR MONITORc..cccooviiviiiiiiiiesisieaeeeseeseeine, 7
Control Card Notationccccooeeiimeeeeieeoeeeeernns 7
Processor Monitor Cards Required for an Application 7
Terminating Object Program Execution 8
Optional Processor Monitor Cards e 9
Input/Output Editor e 9
Altering an Input Deck ..o 12
Sample Deck Format U UURUURUPRPR 12
THE FORTRAN 1V COMPILER (IBFTC) .. o 13

$18FTC Card 13
Sample Deck Formats 14
THE COBOL COMPILER (IBCBC) 14

$mcBc Card ..ol ... 15

$cBEnD Card 16
Sample Deck Formats ..o, 16
THE MACRO ASSEMBLY PROGRAM (IBMAP)cccoevvei..., 16

$mMar Card ..o .. 16
Sample Deck Formats 17
THE LOADER (IBLDR) ..ocoooooiiiiiiioiiiisiesecieeeeeee e 18
Object Program Files 18
Loader Name Conventions ... 18
BBLDR Card ..o 20
Loader Control Cardsccocoooooovvoeeoiii 20
Input/Output Buffer Allocation .. 25
Unit Assignment 26
Overlay Feature of the Loader ... 28
THE SUBROUTINE LIBRARY (IBLIB)c..coocooivviiiiiiiin, 33
FORTRAN Mathematics Library 33
FORTRAN Utility Library 36
FORTRAN Files ... 37
Error Procedures ..., 37
Systems Programmer’s Information 38
IBJOB PROCESSOR INFORMATIONcco.cccoiimmmiiieneiiiiiil 38
Programming Analysis Aids ... 38
Additional Index Register Mode 38
Floating-Point Trap Modecccooooiioieoii 39
PROCESSOR MONITOR INFORMATION 39
Job Control ... 39
Process Control ..., 39
Input/Output Editor ..o, 39
Action Routine ... 41

Contents

System Record Formatcccooceveiiioneii, 41
Pre-Positioning Feature of the Processor Monitor 41
Control Card Search 42
1BJOB Processor Maintenance Cards ..., 43
Error Procedurescccocoovviiiioioiiieeiieeeeeeeeeeee 44
Error MeSSagescccoovoiiieiiieeeeeeeeeeeeeeee e 45
LOADER INFORMATIONco.cooiiiiiiiiieiiiiisieies ot eea e 46
Organization of the Loader 46
Relocatable Binary Program Deck ..., 47
Binary Card Format ... 47
Binary Card Sectionsc..cccccooeerooioeoncoeoe 47
Library Search ... 51
Even Storage Feature ..o 51
Error MeSSagesccoooeiei oo oo 52
ASSEMBLER INFORMATION cc.coccoiiiiiiiiiiiiiieeeieeces e 57
A Brief Discussion of the Assembly Process . 57
Error MeSsagescccccocooiiiiiiioiiieeicies oo 58
FORTRAN IV COMPILER INFORMATIONcccccooiiiiiiniiiinin. 60
Control 60
Diagnostic Routine 63
COBOL COMPILER INFORMATIONc..cccoiivaiiiiiinaeiieiinne 63
Segment I 64
Segment II ... 65
Environment I ... 65
Data T e 65
Data II .. e 66
Procedure I ... 66
Procedure Ic.cccoviiieiiiioioeeioeo e 66
Environment I ... 67
Data IIL ... e 67
Procedure TIIcccccoooiiiiimmioe e 67
Cleanupcc.ccocveeviinirn, 68
Diagnostic and Error Messagesc.ccccoovvveieiooon ., 68
Error MesSagescoooovvoiiiioeee oo 68
SUBROUTINE LIBRARY INFORMATIONccoccoooiviiviiii . 75
System Subroutines ... 76
FORTRAN 1v Subroutines ... 76
FORTRAN Library Error Messages ..o, 80
coBoL Object-Time Subroutinesc.cccccevii. . 83
THE LIBRARIANiiiiiiiiiiiiiiiiiiiiii it 91
Librarian Control Cardsc.c.ccccocoooiviiioieie 92
Appendixes
A. Control Card Format Indexccoccocoovveni . 94
B. Control Card Check List
C. 1BjoB Processor Output

Punched Output ..o,

Listing Output ...l

D. Sample Control Card Deck
Index e 103

Organization of This Publication

This publication is divided into two parts. The first
part contains information for the applications pro-
grammer, and the second part contains information
for the systems programmer.

A programmer who wishes to make full use of all the
features of the 1BjoB Processor would normally read
the section “Programmer’s Information” from begin-
ning to end.

However, the section “Programmer’s Information” is
organized so that the MAP, FORTRAN, or COBOL pro-
grammer, who requires only a basic knowledge of the
system to run a simple job, need only read the section
“The Processor Monitor” (omitting information per-
taining to the Input/Output Editor) and the sections
dealing with the control cards for the specific lan-
guage. When a programmer has familiarized himself
with the control card formats, he need only refer to
the control card checklist and the control card format
index in the appendixes to this publication.

General Description of the IBJOB Processor

The 1M 7090/7094 Operating System provides mon-
itored control for the systems programs written for the
7090 and the 7094. The overall control is provided by
the System Monitor (1Bsys), which contains the rou-
tines and data necessary for continuous system oper-
ation. In addition, the Processor Monitor provides a
second level of monitoring for the 1BjoB Processor,
which consists of a group of programs used to translate
programming languages and to permit the loading and
execution of the compiled and assembled programs.
The 1BjoB Processor consists of the following:

The Processor Monitor (18JoB)

The FoRTRAN 1v Compiler (1BFTC)

The cosoL. Compiler (1BcBC)

The Assembler — The Macro Assembly Program

(1BMAP)
A relocating loader — The Loader (1BLDR)
Preassembled subroutines to be used, if required, by
the object program — The Subroutine Library
(1BLIB)

These programs are interdependent, since the output
from each compiler is processed by the Macro Assem-
bly Program (the Assembler), and the output from
the Assembler is processed by the Loader.

The Processor Monitor reads control cards that spec-

Introduction

ify the action to be performed in a Processor applica-
tion. A Processor application is the basic unit of work
that can be performed by the 1BjoB Processor. An ap-
plication can consist of one or more compilations, as-
semblies, or the loading of relocatable programs that
were assembled previously. In this way, a single pro-
gram can be written, requiring the use of several 1BjoB
Processor components, The interdependency of the
1BjoB Processor components is shown in Figure 1.

Input/Output Control System (IOCS)

The input/output routines of 1ocs, which may be used
by an object program prepared by the 1BjoB Processor,
are located in the Subroutine Library. The input/out-
put routines are divided into groups of routines, i.e.,
each input/output routine is not a separate entity in
the Subroutine Library. These groups of routines are
defined as levels of 10cs. The levels of 10cs contained
in the Subroutine Library are: the Minimum level, the
Basic level, and the Labels level. In addition to the
levels of 10cs, Random 10cs is also located in the Sub-
routine Library. The routines contained in each level
of 10cs and in Random 1ocs are described in the pub-
lication IBM 7090/7094 IBSYS Operatifig System: In-
put/Output Conirol System, Form C28-6345.

The programmer need not specify the level of 1ocs
required by his object program. The calling sequences
that are written by the MAP programmer or generated
by the compilers and the specifications in Loader con-
trol cards supply sufficient information to the Loader
tc load the required level with the object program.
If more 10cs facilities are desired, the desired level may
be specified in a control card (further information may
be found in the section “s1BjoB Card”).

The Minimum level of 1ocs has been modified for
use by FORTRAN 1v object programs and placed in the
Subroutine Library. The routines for the Minimum
level and for the modified package (called ForTRAN
10cs) are the same, but many of the error-checking
features and messages present in the Minimum pack-
age have been deleted from FORTRAN 10CS, since they
are not required for FORTRAN 1v object programs.

Core Storage Allocation

Figure 2 shows the core storage arrangement of the
major components of the Operating System during a
Processor application. Also shown is the core storage
location of the object program during execution.

Introduction 5

Source Language Input

FORTRAN com-~- Subroutine
piler produces Library
FORTRAN Macro-Assembly
PROGRAM 1 Program input
COBOL compiler \ Macro Assembly The Loader combines
COBOL 5| produces Macro | Program assembles | relocatable binary
PROGRAM "1 Assembly Program input into P decks, loader control
input rel ocatable cards, and library
binary decks subroutines

Result

Single

MAP LANGUAGE
PROGRAM
Relocatable
LOADER decks from
CONTROL previous
‘CARDS assemblies
Figure 1. Operation of the 1BjoB Processor on Source Language
Programs
Machine-Oriented Locations 0
lBsys | —ine Communication Region, or Nuclews (IBNUQ)]
The Input/Output Executor (IOEX)
_____ 18JOB
Supervisor Object
(IBSUP) 10CS Used by the System | Program
_________________ Execution
IBJOB Monitor Utility Routines |
| _ _Job Control and Action Routine _ _ __ _ _ _ _ _ __ _ _ __ _ |
- — —— Input/Qutput Editor
Editr [~ T T T T T T T TS T T TSI TTA
(IBEDT) Process Control and Input/Output Buffers |
| _ _!BJOB and 1OCS Communications Areas _____ __ _________J= LT T T T
Overflow FORTRAN IV | COBOL Macro Assembly Loader ;“:‘"Y,
from Utility Compiler Compiler Program (IBLDR) ubroutines
Routines if (IBFTC) (IBCBC) (IBMAP)
1301 or 7340
coding exists 3 instructions remain at
in IOEX and end of loading
10CS
Space Available for Installation Accounting Routines, etc.
—~ 77777,
e U N N — (8
During During During During During During
IBSYS {BJOB FORTRAN COBOL MAP Object
Control Control Compilation Compilation Assembly Program
Loading

Figure 2. Core Storage Allocation of the Operating System
Components

> Executable
Program

The Processor Monitor

The Processor Monitor is the supervisory portion of
the 1BjoB Processor. It provides communication be-
tween the System Monitor and the components of the
BjoB Processor. The Processor Monitor is called into
core storage when the System Monitor reads a
sEXECUTE card with 1BjoB in the variable field. The
Processor Monitor then reads the next control card.

Control Card Notation

The following notation is used in the control card for-
mats throughout this publication:

1. Material in brackets [] represents an option that
may be omitted or included, at the programmer’s
choice.

2. Material in braces { } indicates that a choice of
the contents is to be made by the programmer. The
standard option, which is underlined, is assumed when
an option is not specified.

3. Upper-case specifications must be present in the
form specified, if used.

4. Lower-case specifications represent typical quan-
tities or terms whose value(s) must be supplied by the
programmer.

5. The order in which options are specified on the
various control cards is not critical, unless otherwise
specified.

6. Commas are used to separate options, when op-
tions are present. If no options are present, a string of
commas is not necessary to indicate the absence of
options, unless otherwise specified.

Processor Monitor Cards Required for

an Application

The following control cards are required for a Proces-
sor application.

$JOB Card

The Processor Monitor transfers to the System Monitor
when it reads this control card. If units have not been
reassigned or made unavailable during the last job and
a between-jobs interrupt condition does not exist, the
Processor Monitor regains control and transfers to the

Programmer’s Information

installation accounting routine. If there is no installa-
tion accounting routine, the sjoB card is printed on-
line. If units have been reassigned or made unavailable
during the last job or if a between-jobs interrupt con-
dition exists, the System Monitor processes the card
and retains control until a card is read that calls for a
subsystem to be loaded.

$EXECUTE Card

This card must precede a Processor application within
a job, if one of the following conditions is present:

1. The Processor application is the first unit of work
to be performed within the job.

2. The previous Processor application resulted in
execution of an object program.

3. Another subsystem was in control.

The Processor Monitor checks the system name in
column 16. If the name is 1BjoB, no action is taken. If
the name is anything other than 1BjoB, this information
is given to the System Monitor. The Processor Monitor
then transfers to the System Monitor.

$IBJOB Card

The siBjos card must be the first control card read by
the Processor Monitor for a given application. The op-
tions that can be specified in this control card describe
the manner in which an application is to be processed.
The format of the sBjoB card is:

1 16
$IBJOB GO NOLOGIC , INOMAP
[NOGO] [LOGIC [{MAP }]
DLOGIC
, {NOFILES)T [, fSOURCE]
[{FILES }] [{NOSOURCE}
I0EX , {FLOW :|
MINIMUM [NOFLOW
s < BASIC
LABELS
FIOCS

The options in the variable field, which starts in col-
umn 16, are described in the following text.

EXECUTION OPTIONS
The execution options are:
1. go — The object program is to be executed after
it is loaded.
2. Noco — The object program is not executed, even
if it is loaded.

Programmer’s Information 7

If Noco is specified, the object program is loaded
only when LocIc, pLOGIC, or MAP is specified in the
s1BJOB card.

If neither co nor Noco is specified, the object pro-
gram is to be executed.

LOGIC OPTIONS
The logic options are:

1. vocic — A cross-reference table of the program
sections and the system subroutines required for exe-
cution is generated. The origin and length of each
program section and subroutine and the buffer assign-
ments are also given.

2. pLocic — A cross-reference table of the program
sections and the origin and length of each prograrm
section is generated. The system subroutines and buff-
er assignments are not given.

_3. Norocic — A cross-reference table is not wanted.

If neither LocIC, DLOCIC, nor NoLogIC is specified, a
cross-reference table is not generated.

MAP OPTIONS

The MAP options are:

1. MAP — A core storage map, giving the origin and
the amount of storage used by the 1Bsys Operating Sys-
tem, the object program, and the input/output buffers,
is generated. The file list and buffer pool organization
are also given.

_2. NOMAP — A core storage map is not wanted.

If neither MAP nor NoMAP is specified, a storage map

is not generated.

FILE LIST OPTIONS

The file list options are:

1. ries — A list of the input/output unit assign-
ments and mounting instructions to the operator are
printed on-line and written off-line.

2. NoFiLES - The list is printed on-line, but is not
written off-line.

If neither FILEs nor NOFILEs is specified, the list is
only printed on-line.

INPUT DECK OPTIONS
The input deck options are:

_1. source — The application contains at least one
compilation or assembly.

2. Nosource — The application contains only relo-
catable binary program decks. These decks are loaded
from the System Input Unit.

If neither sOURCE nor NOSOURCE is specified, it is as-
sumed that a compilation or assembly is in the appli-
cation.

8

I0CS OPTIONS

The 10Cs options are:

1. 10Ex — The object program uses the Input/Out-
put Executor (10ex) only.

2. MINIMUM — The minimum-level package of 10cs
is to be loaded with the object program.

3. Basic — The basic-level package of 1ocs is to be
loaded with the object program.

4. vaBELs — The labels-level package of 10cs is to be
loaded with the object program.

5. F1ocs — The 1ocs package intended especially for
use by FORTRAN 1v object programs is loaded with the
object program.

If none of these options is specified, it is assumed
that the object program uses the Input/Output Exe-
cutor.

These specifications may be ignored by the Loader
at load time, if the object program requires a higher
level of 10cs than is specified.

OVERLAY OPTIONS

The overlay options are:

1. rrow — Execution of the object program is not
permitted if the rules concerning references between
links are violated. These rules are given in the section
“Overlay Feature of the Loader.”

2. NorLow — Execution is allowed even though the
rules governing references between links are violated.

If neither FLow nor NorFLow is specified, execution
of the object program is not permitted when the rules
governing references between links are violated.

Component Control Cards

Each component operating within the 1BjoB Processor
has a unique control card that causes the Processor
Monitor to call for the loading of the component. In
this way, the Processor Monitor controls the transition
from one type of Processor application to another (e.g.,
a FORTRAN compilation followed by a cosoL compi-
lation).

End-of-File Card

This card must be the last card in a Processor applica-
tion. Either a card with a 7 and 8 punch in column 1
or any control card that causes file mark to be written
by a peripheral program can be used as an end-of-file
card.

Terminating Object Program Execution

Execution of an object program can be terminated by
a transfer (TRA) to .LxRTN or to 1BEXIT, by a call to the
entry point EXIT, or by using the save and the RETURN
pseudo-operations. When execution is terminated, con-
trol is returned to the System Monitor.

Optional Processor Monitor Cards

$IBSYS Card

The Processor Monitor prints the message “RETURNING
TO 1BSYS on-line when the siBsys card is read, and
transfers to the System Monitor.

$ID Card

The Processor Monitor transfers to the installation ac-
counting routine. If this control card is read and there
is no installation accounting routine, the Processor
Monitor prints the sip card on-line.

$STOP Card

The Processor Monitor indicates to the System Monitor
that a sstop card has been read and transfers to the
System Monitor, which processes this control card.

$PAUSE Card

This control card causes the machine to stop, and the
contents of the card are printed on-line. The variable
field of the control card should contain a message that
explains to the operator why the machine has stopped.
Another control card must follow this control card.

$* Card

This control card is used as a comments card. It causes
no action, other than being printed on-line and listed
off-line.

$ENTRY Card

This control card specifies the location of the initial
transfer to the object program at execution time. The
variable field contains a literal, consisting of an exter-
nal name to which the initial transfer is to be made. If
the sENTRY card is omitted or if the variable field is
blank, the initial transfer is to either the standard entry
point of the first deck retained or to an entry point
whose name is * (the name compiled as the
standard entry point to FORTRAN 1v main programs).
The format of the sENTRY card is:

1 16
SENTRY Exname
Deckname

where the variable field contains either an external
name to which the initial transfer is to be made or a
deck name, in which case the initial transfer is to the
standard entry point of that deck.

A sENTRY card is not needed when one of the follow-
ing conditions exist:

1. The main program is a FORTRAN 1v program.

2. The main program is processed first, and the de-

sired entry point is the standard entry point of that
program.

When a sENTRY card is used, it must immediately fol-
low the source deck. The senTRY card precedes either
an end-of-file card or a spaTa card.

$DATA Card

This control card indicates the beginning of a data file
on the input unit. This card can be replaced by an end-
of-file card. The data file must also be followed by an
end-of-file card.

$ENDREEL Card

This control card causes a reel switch involving the
System Input Unit (sysiNt) and the secondary System
Input Unit (sysine). It must be preceded by an end-
of-file card. This control card cannot be placed in the
middle of a data file.

Input/Output Editor

The Input/Output Editor, which is a part of the Proc-
essor Monitor, regulates the input/output operations
of the 1BjoB Processor. The Input/Output Editor reads
from the System Input Unit (sysiNi) or from a unit
specified by the programmer on the sieprr card. Both
punched output (written on the System Peripheral
Punch Unit [syspp]) and listing output (written on the
System Output Unit [sysoui]) are prepared by the
Input/Output Editor. The programmer can specify a
temporary alternate unit for the System Output Unit
by using the soEprT card.

The Input/Output Editor also writes the output
from both compilers and reads the input for the As-
sembler and the Loader.

The 1BjoB Processor uses the following system units:

1. System Input Units (sysiNt and sysinN2)

2. System Output Units (sysout and sysou2)

3. System Peripheral Punch Units (syspp1 and
SYSPP2)

4. System Utility Units (sysuri, sysute, sysurs, and
SYSUT4)

Figure 3 illustrates the flow of control and the in-
put/output flow through the 18j0B Processor.

The control cards used to specify input/output con-
figurations and formats are the siepiT and soEpIT cards.
When these control cards are used, they must precede
the component control card of the deck that is affected
by them. The specifications on the control card remain
in effect either until the end of the application or until
another steprr or soepIT card changes the specifications.
The standard specifications are used until one or both
of these control cards change them. The formats of the

Programmer’s Information 9

108590014 gofdx
ySnory], mo[f mdinQ/mdu] pue [01U0) JO MO[] ‘¢ oInJL]

*saui| panjop Aq pajoubisep s mojy indino/induy spatsym ‘saut| pijos Aq PajouBissp si [OLUOD JO MO[y BY |

Mv ©
woiBoly
9l90
A
IE]
poo
ZUNSASN
\
AN PLNSAS A
\
inding snding
payounyg Ja)1dwo))
A
N N
ZddSAS/1ddSAS™ mu“wom__v L~ YiNsAS oo81) Y1NSAS > O%_m: aa)
saq1dwo> 00 Jo J3|iewor XXXGAG 40 0O
S A0S 10800 i AINVEROS e mosayinosas 4 R nsas
, LIV A ZNOSAS/LNOSAS lﬂ INISAS/INISAS P N S’ N
4 AN 7 N e ~N
[N N [h A
sy
pooy
XXXm>m 10 XXXm>m 10 Xxxm\/m 10 XXXmM/m 10
ZNOSAS/LNOSAS INISAS/ INISAS ZNOSAS/LNOSAS INISAS/INISAS
\
XXXGAG JO
ZLNSAS INISAS/INISAS
24
peoq
~ -
> @goral) |~
Jojiuopy
‘.Ommwuo‘i
_ 7
[
ZNOSAS/LNOSAS
(SAsal)
Jojiuoyy
woysg

10

stEpIT and soEDIT cards and explanations of their op-
tions are given in the following text.

$IEDIT Card

The contents of this control card set input specifica-
tions either for the remainder of the application or
until another steprt card is read. The format of the
s1EDIT card is:

16

SYSIN1 NOSRCH NOALTER
[XXX }jl { {SRCHn H [%ALTER }
The options in the variable field, which starts in col-
umn 16, are described in the following text.

1
$IEDIT

INPUT OPTIONS

The input options are:

1. sysint — The source, symbolic, or object program
immediately follows the component control card on the
System Input Unit (sysiNt).

2. sysxxx — The source, symbolic, or object program
is on the specified alternate input unit. Only those sys-
tem unit names not used by the 1BjoB Processor may be
used (SYSCK1, SYSCK2, SYSLB2, SYSLB3, sYSLB4). If neither
the System Input Unit nor an alternate input unit is
specified, the input is read from the System Input Unit.

SEARCH OPTIONS

The search options are:
) ~osrci — The specified alternate input unit is
positioned correctly.

2. srcHn — Search, through the designated number
of files (n files) on the specified alternate input unit,
for the source, symbolic, or object program whose deck
name is the same as the deck name in the component
control card.

3. scarn — Search the designated file (nth file) on
the specified alternate input for the source, symbolic,
or object program whose deck name is the same as the
deck name in the component control card. This option
cannot be used if the alternate input unit is disk
storage or drum storage.

The n may be a one- or two-digit decimal number.
If a comma or a blank immediately follows the srcu
or scHF portions of the options, the number is assumed
tobe 1l

If neither NOSRCH, SRCHN, nor scHFn is specified, the
alternate input unit is not searched.

ALTER OPTIONS

The alter options are:
1. NoaLTER — There are no Alter cards.

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

2. ALTER — There are Alter cards on the System In-
put Unit.

If neither NOALTER nor ALTER is specified, it is as-
sumed that there are no Alter cards.

$OEDIT Card

The contents of this control card set output specifica-
tions either for the remainder of the application or
until another soEpiT card is read. The format of the
$oEDIT card is:

16

SYSOU1 , (NOPRES , {NOCPR |
BﬁY"'sxxx }:] [%PBEST }][{CPRESTJ
The options in the variable field, which starts in col-
umn 16, are described in the following text.

1
$OEDIT

OUTPUT OPTIONS
The output options are:

1. sysout — The output listings for this deck are
placed in the System Output Unit.

2. sysxxx — The output listings for this deck are
placed on the specified alternate output unit. Only
those function names not used by the 18joB Processor
may be used (SYSCKi, SYSCK?, SYSLB2, SysLB3, and
SYSLB4).

If neither sysout nor an alternate output unit is spec-
ified, the output is written on the System Output Unit.

ASSEMBLER PREST OPTIONS
The Assembler Prest options are as follows:

1. rrEST — A compressed form of the symbolic input
to the Assembler is written on the System Peripheral
Punch Unit. The compressed deck is called a Prest
deck.

2. NOPREST,— A Prest symbolic deck is not wanted.

If neither PREST nor NOPREST is specified, the Prest
deck is not generated.

COMPILER PREST OPTIONS
The compiler Prest options are:

1. cerEsT — A Prest deck of the source input to
either compiler is written on the System Peripheral
Punch Unit. A srrenD card must follow the END state-
ment in a FORTRAN 1v deck if a Prest source deck is de-
sired. This control card is included in the Prest source
deck.

9. NocPR — A Prest source deck is not wanted.

If neither cprEST nor NoOCPR is specified, a Prest
source deck is not generated.

If both presT and cPREST are specified in the soEpIT
card that precedes a source deck, both compiler input
and output are written on the System Peripheral Punch
Unit in Prest form.

Programmer’s Information 11

IBM E1391 100n12x20 cal—ro-mark—9185—wb-3

Altering an Input Deck

Any symbolic, source, or Prest input deck can be modi-
fied, and a new Prest symbolic deck or Prest source
deck, which includes the changes, can be produced.
To change an input deck, ALTER must be specified on
the sieprt card, and Alter control cards must be used.
These control cards are described later in the text.

If an alternate input unit is not specified on the
sIEDIT card, it is assumed that the Alter control cards
must follow a component control card and precede the
input deck on the System Input Unit. Before the deck
can be altered, the Alter control cards are moved to
the System Utility Unit (sysut2). When the deck has
been altered, the System Utility Unit (sysut2) is re-
positioned, to be used for load file output.

If an alternate input unit is specified on the siepiT
card, the input deck must be on the alternate input unit
and the Alter control cards must be on the System In-
put Unit. The input deck must be preceded by a com-
ponent control card. The Alter control cards on the
System Input Unit must also be preceded by a com-
ponent control card of the same type and with the
same deck name.

Use of the Alter feature does not produce an up-
dated source or symbolic tape.

Alter Numbers

The contents of columns 73-80 of an input card are
used as Alter numbers. An Alter number is generated
before compilation or assembly when a Prest deck is
requested as output. This generated number appears
on the assembly or compilation listing, where columns
73-80 (label field) of a card are normally printed. The
numbers are right-justified, sequential digits with lead-
ing blanks, and consist of a maximum of eight digits.
If a source deck or a symbolic deck is to be altered,
the existing label fields are used as Alter numbers.
They are replaced on the listing with generated Al-
ter numbers if a Prest deck is requested as output.
This is necessary to enable alteration of the Prest deck.

Alter Control Cards
A source, symbolic, or Prest deck may be altered by
using the following control cards:

1. To insert cards into a deck, a control card with
the following format is used:
1 8 16
m *ALTER n
Fields m and n are the contents of the label field (col-
umns 73-80) of a control card in the input deck, if the
deck is a source or symbolic deck. If the input deck is
a Prest deck, fields m and n are the generated Alter
number. The first blank character appearing in the

12

label field indicates that all prior characters constitute
field m. The characters remaining after the blank or
blanks constitute field n. In the label field, field m is
left-justified and field n is right-justified. If the label
field contains no blank characters, then field m may be
omitted or may consist of no more than the first six
characters of the label field. Field n then consists of the
remaining chardcters that were not placed in field m.
Fields m and n must have a total number of characters
equal to the number of characters in the label, exclud-
ing leading or embedded blanks. For example, if the
label in columns 73-80 is LABEL090 then the format for
this label, on an Alter control card, could be in any of
the following forms:

1 8 16

LABEL *ALTER 090

LABELO *ALTER 90

LAB *ALTER EL090
*ALTER LABEL090

If the label in columns 73-80 is LABELbDY, the format
for this label is as follows:

1 8 16
LABEL *ALTER 9

If there are embedded blanks in the label, the Alter
control card must have the preceding format. Cards
following the Alter control card, up to but not includ-
ing the next Alter control card, are inserted immedi-
ately before card mn.

2. To delete and/or insert cards from a deck, a con-
trol card with the following format is used:

1 8 16
m *ALTER al, n2

Fields m and nl are defined in item 1. Fields m and
n2 are either the same as m and nl, in which case only
card mnl is deleted, or they identify a card following
card mnl, in which case cards mnl through mn2 are
deleted. In addition, any cards following this Alter con-
trol card, up to but not including the next Alter control
card, are inserted in place of the deleted cards.

3. To end the Alter deck, a control card with the fol-
lowing format is used:
1 8

*ENDAL

This control card denotes the end of the Alter deck,
and must be the last control card in every Alter deck.

Sample Deck Format

Figure 4 shows the control cards that are necessary for
the compilation and/or assembly and simultaneous
execution of program decks located on both the Sys-
tem Input Unit and an alternate input unit. After the
$JOB, $EXECUTE, and siBjoB cards have been read, the
sequence of operations is as follows:

$ENTRY DECK3 ‘

(MAP source deck)

$IBMAP DECK4
$IBFTC DECK3
$IBMAP DECK2
$IEDIT SYSLB4
[7
(MAP source deck) ‘
$1BMAP l
$1BJOB

$EXECUTE 1BJOB
$JOB

[7
(FORTRAN source deck)

$IBFTC DECK3 I
[7
(MAP source deck) "

$IBMAP DECK2
Figure 4. Sample Control Card Deck for Use of an Alternate
Input Unit

SYSINI SYsLB4

1. The siBmAP card is read from the System Input
Unit (sysiNi), and the mar language deck is assem-
bled.

2. The sieprr card, specifying the System Library
Unit (sysLB4) as the alternate input unit, is read. This
causes all input, except control cards, to be read from
the System Library Unit (sysLs4).

3. The siBMAP card, specifying pECk?, is read from
the System Input Unit (svysiNi). The corresponding
siBMAP card, specifying peckz, is read from the System
Library Unit (sysLB4), and the map language deck on
the System Library Unit (sysLB4) is assembled.

4. The siBrrC card, specifying pDECK3, is read from
the System Input Unit (svsiNi). The corresponding
sIBFTC card, specifying pEck3, is read from the System
Library Unit (sysLB4), and the FORTRAN v language
deck on the System Library Unit (sysLB4) is compiled
and assembled.

5. stepit card, specifying the System Input Unit
(sysiN1), is read. This causes the 1BjoB Processor to
resume the reading of input from the System Input
Unit (sysiNi).

6. The siBmaAP card, specifying pEck4, is read from
the System Input Unit (sysiNi), and the maP language
deck is assembled.

7. The sENTRY card, specifying pECk3, is read from
the System Input Unit (sysini). This indicates that
control is to be transferred to the standard entry point
of pEck3 when the object program is loaded.

8. The file mark is read on the System Input Unit
(sysin1). Since the Noco specification did not appear
in the siBjoB card, the reading of the file mark causes

. the loading and execution of all program decks com-

piled and/or assembled by the 1BjoB Processor during
the application.

The FORTRAN IV Compiler (IBFTC)

The rorTrAN 1v Compiler translates programs written
in the FORTRAN 1v language and produces input to the
Assembler. This input is processed by the Assembler
and, if required, by the Loader. The Loader is used
for processing and loading when 6o, LOGIC, DLOGIC, or
MAP is specified in the siBjos card. An explanation of
these options may be found in the section “1sjos Card.”
The object program, which is a result of compiling, as-
sembling, and loading, is composed of generated in-
structions and subroutines from the Subroutine Li-
brary.

The rorTRAN 1v Compiler is called into core storage
when the Processor Monitor reads a siBrrc card. This
control card contains the name of the deck that follows
it, specifications of output options (list and punch op-
tions), and machine-oriented options that increase the
efficiency of the object program.

$IBFTC Card
The format of the siBFrc card is:
1 8 16
$IBFTC deckname (NOLIST , {NOREF)
g [
FULIST
, (DECK M90
['ﬁ\f(ﬁCKﬂ { {W H
M94/2
- {x8a)
XRn{

where deckname identifies the deck that follows. A
deck name of six or fewer alphameric characters must
be punched in columns 8-13. Characters that cannot be
used in the deck name are: parentheses, commas,
slashes, quotation marks, equal signs, and blanks.

The variable field starts in column 16. The options in
the variable field are described in the following text.

LIST OPTIONS
The list options are:

1. List — A listing of the object program, three in-
structions per line, is generated. Only the relative lo-
cations and symbolic information are listed.

2. ruLisT — A listing of the object program is gen-
erated, one instruction per line. This listing includes
generated octal information.

3. nouist — A listing of the object program is not
wanted.

Programmer’s Information 13

-If neither List, FULIST, nor NoLisT is specified, a list-
ing is not generated.

SYMBOL TABLE OPTIONS

The symbol table options are:

1. reF — A cross-reference table of the symbols used
in the object program is generated for listing purposes.

2. NOREF — A cross-reference table is not wanted.

If neither REF nor NOREF is specified, the cross-refer-
ence table is not generated.

PUNCH OPTIONS

The punch options are:

1. peck — The object program deck is written on the
System Peripheral Punch Unit for off-line punching.

2. NopEck — A punched deck is not wanted.

If neither pECK nor NobEck is specified, the object
program deck is written on the System Peripheral
Punch Unit.

INSTRUCTION SET OPTIONS

The instruction set options are:

1. m90 — The object program uses only 7090 ma-
chine instructions. Any double-precision operations are
simulated by system macros, and EveEN pseudo-oper-
ations are treated as commentary.

2. M94 — The object program uses 7094 machine
instructions.

3. m94/2 — The object program uses 7094 machine
instructions, and EVEN pseudo-operations are treated as
commentary.

If neither M90, M94, nor M94/2 is specified, it is
assumed that the object program uses only 7090 ma-
chine instructions.

INDEX REGISTER OPTIONS

The index register options are:

1. xr3 — The object program uses three index regis-
ters (1,2, and 4).

2. xen — The object program can use up to n index
registers, if they are required (n is a number from 4
through 7).

If nothing is specified in this field, it is assumed that
the object program uses three index registers.

Sample Deck Formats

Figure 5 shows the control cards that are necessary for
the compilation and execution of a single FORTRAN 1v
language deck.

Figure 6 shows the control cards that are necessary
for the compilation and simultaneous execution of two
separate FORTRAN IV language decks. When execution
begins, control is transferred to the standard entry
point of the first deck.

14

End of File

FORTRAN source deck)

$IBFTC DECK1
$1BJOB
ECUTE IBJOB

$EX
$JOB

Figure 5. Sample Control Card Deck for One rorTRAN 1v Com-
pilation

A
(data file deck) ‘
$DATA |
[l 7
(FORTRAN source deck)
$IBFTC DECK2 '
[7
FORTRAN source deck) '

$IBFTC DECKI
$1BJOB
$EXECUTE IBJOB

$JOB

Figure 6. Sample Control Card Deck for Two FORTRAN 1v
Compilations

A data file for the object program follows the source
language decks. The spata card that precedes the data
file causes a file mark to be written when it is recog-
nized by the Peripheral Input/Output Program. The
reading of the file mark by the 1BjoB Processor causes
the loading and execution of the object program.

The COBOL Compiler (IBCBC)

The cosoL Compiler translates programs written in the
coBoL language and produces input to the Assembler.
This input is processed by the Assembler and, if re-
quired, by the Loader. The Loader is used for proc-
essing and loading when 6o, LOGIC, DLOGIC, or MAP is
specified in the siBjoB card. An explanation of these
options may be found in the section “siBjoB Card.” The
object program, which is a result of compiling, assem-
bling, and loading, is composed of generated instruc-
tions and subroutines from the Subroutine Library.
The coBor. Compiler is called into core storage when
the Processor Monitor reads a siBcec card. This con-
trol card contains the name of the deck that follows it,

specifications of output options (list and punch op-
tions), and machine-oriented options that increase the
efficiency of the object program.

$IBCBC Card
The format of the siBcsc card is:
1 8 16

NOLIST M90
$IBCBC deckname LIST [, M94
FULIST M94/2
,(DECK 17 [, {NOREF
NODECK(| | |REF
, {XR3 , {INLINE
XR7 TIGHT
, {fIOEND |7 [, fCOMSEQ :’
[READON(| BINSEQ
where deckname identifies the deck that follows. A
deck name of six or fewer alphameric characters must
be punched in columns 8-13. Characters that cannot be
used in the deck name are: parentheses, commas,
slashes, quotation marks, equal signs, and blanks.

The variable field starts in column 16. The options
in the variable field are described in the following text.

LIST OPTIONS

The list options are:

1. st — A listing of the object program, three in-
structions per line, is generated. Only the relative lo-
cations and symbolic information are listed.

2. ruuisT — A listing of the object program is gen-
erated, one instruction per line. This listing includes
generated octal information.

3. NoristT — A listing of the object program is not
wanted.

If neither LisT, FULIST, nor NoLIST is specified, a list-
ing is not written on the System Output Unit.

SYMBOL TABLE OPTIONS

The symbol table options are:

1. reF — A sorted dictionary of the source language
names and their associated EN (Equivalent Name)
numbers and a cross-reference table of the symbols
used in the object program are generated for listing
purposes.

2. NOREF — A sorted dictionary and a cross-reference
table are not wanted.

If neither REF nor NOREF is specified, the dictionary
and table are not generated.

PUNCH OPTIONS

The punch options are:

1. pEck — The object program deck is written on the
System Peripheral Punch Unit for off-line punching.

2. Nopbeck — A punched deck is not wanted.

If neither pEck nor Nobeck is specified, the object

program deck is written on the System Peripheral
Punch Unit.

INSTRUCTION SET OPTIONS
The instruction set options are:

1. m90 — The object program uses only 7090 ma-
chine instructions.

2. m94 — The object program uses 7094 machine
instructions. .

3. m94/2 — The object program uses 7094 machine
instructions, and EveEN pseudo-operations are treated
as commentary.

If neither m90, M94, nor M94/2 is specified, it is
assumed that the object program uses only 7090 ma-
chine instructions.

INDEX REGISTER OPTIONS
The index register options are:

1. xr3 — The object program uses three index regis-
ters (1,2, and 4).

2. xr7 — The object program can use up to seven
index registers, if they are required.

If neither xr3 nor xr7 is specified, the object program
uses three index registers.

CODE OPTIONS
The code options are:

1. ivLINE — The object program computational and
MOVE tasks are optimized for speed.

2. micur — The object program computational and
MOVE tasks that are generated are smaller, thereby
conserving object-time core storage.

If neither TicuT nor INLINE is specified, the INLINE
specification is assumed.

TAPE ERROR OPTIONS
The tape error options are:

1. 10EnD — Errors that occur while reading tape at
object time cause an irrecoverable error condition.

2. READON — Any errors that occur while reading
tape at object time are ignored. This specification al-
lows high-volume data processing to continue by ignor-
ing low-volume errors.

If neither 10END nor READON is specified, the 10END
specification is assumed.

COLLATING SEQUENCE OPTIONS
The collating sequence options are:

1. comseQ — The object program uses the commer-
cial collating sequence.

2. BINsEQ — The object program uses the binary col-
lating sequence.

If neither coMsEQ nor BINSEQ is specified, the coMsEQ
specification is assumed.

Programmer’s Information 15

$CBEND Card

Every copor source deck must be followed immedi-
ately by a scBEND card. The format of this control card
is:

1

$CBEND

Sample Deck Formats

Figure 7 shows the control cards that are necessary for
the compilation and execution of a single cosoL lan-
guage deck.

End of File -

$CBEND
(COBOL source deck)
$1BJOB
[SEXECUTE 18J0B ‘
[$j0B

Figure 7. Sample Control Card Deck for One cosoL Compi-
lation

Figure 8 shows the control cards that are necessary
for the compilation and simultaneous execution of two
separate cosoL language decks. When execution be-

gins, control is transferred to the standard entry point
of the first deck.

End of File
$CBEND

(COBOL source deck) ‘
$IBCBC DECK2

$CBEND
¢

ﬁ(COBOL source deck)
$1BCBC DECKI1
$1BJOB '
$EXECUTE IBJOB

$JOB

Figure 8. Sample Control Card Deck for Two coBorL Compi-
lations

16

The Macro Assembly Program (IBMAP)

The Macro Assembly Program (the Assembler) proc-
esses programs written in the Mar language and gen-
erated MAP programs that are output from the FORTRAN
v and cosoL compilers. The output from the Assem-
bler can be either in relocatable binary form or in ab-
solute binary form. The relocatable binary output is
processed if required, by the Loader. The Loader is
used for processing and loading when either co, LogcIc,
DLOGIC, or MAP is specified in the siBjoB card. An ex-
planation of these options may be found in the section
“sieJoB Card.” The object program, which is a result of
assembling and loading, is composed of machine in-
structions that are generated by the Assembler and
coincide with the MAP mnemonics, the input/output
routines that are part of the Subroutine Library, and
possibly the FoRTRAN 1v mathematical subroutines
from the Subroutine Library. The use of the mathe-
matical subroutines by the MAP programmer is de-
scribed in the section “The Subroutine Library
(1BLIB).”

The Assembler is called into core storage when the
Processor Monitor reads a siBMaP card. This control
card contains the name of the deck that follows it, the
type of assembly to be performed, output options (list
and punch options), and restrictions to the use of the
MAP language in the deck that follows.

$IBMAP Card
The format of the siBmMaAP card is:
1 8 16 LIST REF
$IBMAP deckname [count] [NOLISTJ[NOREF}'
DECK M90
[A NODECK] [M94 }
M94/2
RELMOD ,fNO ()
{, SYSMOD][() OK]
ABSMOD
j’NOMFTC)
|MFTC

where deckname identifies the deck that follows. A
deck name of six or fewer alphameric characters must
be punched in columns 8-13. Characters that cannot be
used in the deck name are: parentheses, commas,
slashes, quotation marks, equal signs, and blanks.

The variable field starts in column 16. The options in
the variable field are described in the following text.

CARD COUNT OPTION

The card count option designates the number of sym-
bolic-language cards in the deck. The number cannot
exceed five digits. If a number is not specified, a count
of 2,000 is assumed. ’

LIST OPTIONS
The list options are:

1. List — A listing of the object program is gen-
erated.

2. Norist — A listing of the object program is not
wanted.

If neither LisT nor Nowist is specified, a listing of the
object program is generated.

SYMBOL TABLE OPTIONS

The symbol table options are:

1. REF — A cross-reference table of the symbols used
in the object program is generated for listing purposes.

2. NOREF — A cross-reference table is not wanted.

If neither REF nor NOREF is specified, a cross-refer-
ence table is generated.

PUNCH OPTIONS

The punch options are:

1. pEck — The object program deck is written on the
System Peripheral Punch Unit for off-line punching.

2. Nopbeck — A punched deck is not wanted.

If neither pECK nor Nobeck is specified, the object
program is written on the System Peripheral Punch
Unit.

INSTRUCTION SET OPTIONS

The instruction set options are:

1. Mm90 — The object program uses only 7090 ma-
chine instructions. Any double-precision operations
are simulated, and EVEN pseudo-operations are treated
as commentary.

2. M94 — The object program uses 7094 machine in-
structions.

3. m94/2 — The object program uses 7094 machine
instructions, and EVEN pseudo-operations are treated as
commentary.

If neither M90, M94, nor M94/2 is specified, it is as-
sumed that the object program uses only 7090 machine
instructions.

ASSEMBLY MODE OPTIONS
The assembly mode options are:

1. reLmop — The object program is assembled in re-
locatable binary form.

2. sysmop — The object program is assembled in re-
locatable binary form, but it has an absolute origin.

3. aBsmop — The object program is assembled in ab-
solute binary form.

If neither RELMOD, sYsMOD, nor ABSMOD is specified,
the program is assembled in relocatable binary form.

PARENTHESES OPTIONS
The parentheses options are:

1. no ()} — Parentheses should not be used in mapr
symbols. If parentheses are used in a symbol in the lo-
cation field, a warning message is printed, but assem-
bly is permitted.

2. () ok — Parentheses can be used in MAP sym-
bols.

If neither No () nor () ok is specified, parentheses
should not be used in MAP symbols.

BUILT-IN FUNCTION OPTIONS
The built-in function options are:

1. Mrrc — The built-in functions of the FORTRAN 1v
Compiler are used by the object program. These func-
tions are described in the section “Built-In Functions,”
in the publication IBM 7090/7094 Programming Sys-
tems FORTRAN IV Language, Form C28-6274-1.

2. NoMF1C — The built-in functions are not used by
the object program.

If neither MFTC nor NOMFTC is specified, it is as-
sumed that the object program does not use the built-
in functions.

Sample Deck Formats

Figure 9 shows the control cards that are necessary for
the assembly and execution of a single MaP language

deck.

End of File

(MAP source deck)

$1BMAP DECK1
$1BJOB
$EXECUTE IBJOB

B

Figure 9. Sample Control Card Deck for One MAP Assembly

Figure 10 shows the control cards that are necessary
for the assembly and simultaneous execution of two
separate MaP language decks. When execution begins,

control is transferred to the standard entry point of
the first deck.

Programmer’s Information 17

End of File v

(M.;X_-P source deck)
$1BMAP DECK2

(MAP source deck)
$IBMAP DECK1
$18JOB

$EXECUTE 1BJOB

$JOB

Figure 10. Sample Control Card Deck for Two map Assemblies

The Loader (IBLDR)

The Loader processes relocatable binary program decks
produced by the Assembler and combines any required
subroutines from the Subroutine Library with the pro-
gram decks. The program decks produced by the As-
sembler contain control information as well as the re-
locatable binary text of the program. This control in-
formation is of two types: information describing the
file(s) to be used by the object program and informa-
tion that enables the Loader to resolve cross-referenc-
ing between sections of the program.

In addition to assigning absolute core storage lo-
cations to the relocatable binary text of the program
and resolving cross-references, the Loader also allo-
cates core storage for pools of input/output buffers and
attaches files to the buffer pools. This is done auto-
matically by the Loader, but a programmer can modify
this procedure by using control cards.

The Loader processes one or more relocatable binary
program decks, prepares one executable object pro-
gram from these decks, and transfers control to the ob-
ject program. In a tape-oriented system, a program
deck consists of a series of card images on tape. Any
number of program decks can be run at one time. All
of these decks constitute a Processor application when
they are executed together. A Processor application can
consist of one program deck or many, some of which
may operate similarly to closed subroutines or subpro-
grams.

A program deck may contain external names that
refer to areas of coding or data within the program
decks. These areas, called control sections, are acces-
sible to other programs. The Loader recognizes that
control sections are equivalent to one another by their
identical names. Only one of each named reference
item is included by the Loader, which adjusts all cross-
referencing to the retained item. Therefore, the pro-

18

grammer may refer symbolically in one program to the
name of a control section in another program, and
the Loader will perform the desired cross-referencing.
External names may be designated using the mar
pseudo-operations CONTRL, ENTRY, and EXTERN; and
they may be renamed, replaced, or deleted at load
time, using the Loader control cards.

Object Program Files

Object program file control blocks are constructed by
the Loader from information contained in sFiLE cards
and from information supplied by the source program.
The user of the MaP language codes FiLE pseudo-oper-
ations for his file descriptions, whereas the FORTRAN
user relies on the FILE routines that establish the rela-
tion between rorTRAN logical units and system units.
The coBoL user describes a file by making a file de-
scription entry in the Data Division, and assigns units
in the File-Control Paragraph of the Environment
Division.

Loader Name Conventions

The use of alphameric literals as external identifiers of
object program quantities is basic to the design and
mechanization of the Loader. Three types of names
are used in the Loader.

Deck Names: Identify decks and may be used to
identify or qualify control section names within a deck.

Control Section Names: Identify data and procedure
sections within the program. When using Loader con-
trol cards, named sections in one deck may be replaced
by a section with the same name in another deck.
These sections may also be renamed or deleted from
the program.

File Names: Identify files within the program.

Deck Name Rules

The use of deck names and the rules for forming deck
names are:

1. A deck name is composed of six or fewer alpha-
meric characters, excluding parentheses, commas,
slashes, quotation marks, equal signs, and blanks.

2. In producing the binary deck, the Assembler
places the contents of the deckname field of the Com-
piler and Assembler cards (siBmAP, siBCBC, and sIBFTC)
in the deckname field (columns 8-13) of the Bcp cards
that delimit the major sections of a program deck. The
names of the Bcp cards are: siBLDR card, sFpicT card,
sTEXT card, scpict card, and spkEND card.

3. The deck name may be punched in columns 8-13
of any other Loader control card, but is ignored by the
Loader.

OK harvnes

4. The deck name defines a control section that en-
compasses the entire deck. Therefore, the entire deck
is a control section.

5. The deck name may be punched in the variable
field of the sNAME, sUSE, and soMmrT cards to qualify a
control section name. Action taken on the named con-
trol section is thus restricted to the deck named.

6. The deck names of routines in the Subroutine Li-
brary may not be used as control section name quali-
fiers.

7. A deck name may not be changed by a sNAME
card. However, the control section with that name may
be renamed by a sNAME card.

Control Section Rules

The use of control sections and the rules for forming
control section names are:

1. A control section name is composed of six or few-
er alphameric characters, excluding parentheses, com-
mas, slashes, quotation marks, equal signs, and blanks.
It is always left-justified before processing or compar-
ison, and unused trailing positions are filled with
blanks.

2. A control section is a bounded section of coding;
its length is the difference between the relative loca-
tion of the first word within it and the relative location
of the last word within it plus 1.

3. A real control section is any control section that
has a relative location assigned within the deck that
refers to it.

4. A virtual control section is any control section
that has no known origin or length in the deck that
refers to it. A virtual control section must be supple-
mented by a real control section with the same exter-
nal reference name in either another input deck or in
a deck in the Subroutine Library. If a virtual control
section is not supplemented by a real control section,
an error message is written on the System Output Unit.

5. Normally, if the six-character external reference
names of two or more control sections are identical,
the Loader retains the first control section encountered
and deletes the control sections with duplicate names.

6. In the absence of explicit inclusion through suse
cards, the first real section with a given name that is
physically encountered while loading is retained and
all succeeding occurrences of it are deleted. All refer-
ences to the given name are adjusted to refer to the
storage assigned to the retained section.

7. Explicit inclusion of two control sections with
the same name (by using deck name qualification on
a sUSE card) results in a multiple definition of that sec-
tion. Consequently, an error message is written on the
System Output Unit.

+ —. Fox

8. Each control section that is referred to by text
must be defined (assigned an absolute location by the
Loader), or execution will not be allowed. For exam-
ple, if a reference is made to a section mentioned on
a soMiT card and no other section with the same name
is encountered, an error message is written on the Sys-
tem Output Unit.

9. Control sections can be nested (i.e., control sec-
tions can be placed within the boundaries of other
control sections), but each inner nest must be entirely
within the next outer level of nesting. If an outer level
of nesting is deleted, all control sections within the
boundaries of this nest are deleted. Deletion of an
inner level of nesting does not affect the next outer
level of nesting.

10. Explicit inclusion of a control section through
specification on a suse card does not necessarily force
the inclusion of all embedded control sections.

11. A subroutine in the Subroutine Library is called
automatically if a control section name in a Library
subroutine is identical to that of a virtual control sec-
tion and no real control section with that name is con-
tained in any input program deck.

12. Control sections of routines in the Subroutine
Library may not be renamed.

13. A control section name specified by an ENTRY or
conNTRL pseudo-operation should not be the same as
the name of the deck that contains it.

File Name Rules

The following list defines the rules for the formation
and usage of file names:

1. A file name is composed of up to 18 alphameric
characters, excluding parentheses and quotation
marks.

2. Whenever a file name appears on a Loader con-
trol card, it must be enclosed in quotation marks. If
the file name is qualified by a deck name, the entire
expression is enclosed in quotation marks and the file
name is enclosed in parentheses.

3. A file may be renamed through specification on a
sNAME card. If the new name that the programmer
specifies on the $NAME card does not already exist, the
programmer must insert a sFILE card containing this
name.

4. File names cannot be specified on suse or somrT
cards.

5. If a file is renamed, any control card that refers
to the old name is ignored.

6. If the 18-character names of two or more files
are identical within a program, the Loader retains the
information contained in the first sFiLE card encoun-
tered and ignores any subsequent sFiLE cards with the
same file name.

Programmer’s Information 19

$IBLDR Card

The first card in a relocatable binary deck is the
$1BLDR card. This card is generated by the Assembler.
The format of the siBLDR card is:

1 8 16
$IBLDR deckname NOLIBE)T [, {TEXT)
LIBE § NOTEXT]

where deckname identifies the deck to be processed.
A deck name of six or fewer alphameric characters
must be punched in columns 8-13. Characters that
cannot be used in the deck name are: parentheses,
commas, slashes, quotation marks, equal signs, and
blanks.

The variable field begins in the column 16. The op-
tions of the variable field are described in the follow-
ing text.

Input Options
The input options are:

1. NoLiBE — The object program is in the current
input file.

2. 11BE — The object program is in the Subroutine
Library.

When LiBE is specified, the application must consist
entirely of object programs from the Subroutine Li-
brary. L1BE and NOLIBE specifications cannot be used
within the same application. If neither LIBE nor NOLIBE
is specified, it is assumed that the object program is
in the current input file.

Text Options
The text options are:
1. TEXT — The text section of the deck is loaded.
2. NoTEXT — The control information in the deck is
loaded, but the text section is not loaded.

Loader Control Cards

This section provides the format specifications for the
control cards that the Loader processes. These con-
trol cards describe file and program loading modifica-
tions for an entire object program and therefore, not
required for most Processor applications. The Loader
control cards may be used to:

1. Override file or label descriptions that appear in
the object program.

2. Modify the control section retention scheme used
by the Loader. (In the control section retention
scheme, the Loader uses the first control section that
it encounters with a given name.)

3. Depart from the standard buffer assignment. The
section “Input/Output Buffer Allocation” contains
further information.

20

4. Modify control section names or file names.
5. Delete control sections.

$FILE Card

The specifications in this card override the file de-
scription that appears in the program to be loaded. A
sETC card can be used to extend the variable field of a
sFILE card. The format of this control card is:

1 16
$FILE ‘filename’ [,

where the ‘filename’ is an alphameric name of 18 or
fewer characters that identifies the file; it must be en-
closed by quotation marks. The specifications for the
options may be entered in any order. Specifications
are separated from the file name and from each other
by commas.

options,]

UNIT ASSIGNMENT OPTIONS
Two units may be specified for each file:

[, unitl, unit2]
The unit 1 specification is the primary unit, and the
unit 2 specification is the secondary unit used for reel
switching. Unit specifications are described in the sec-
tion “Unit Assignment.”

MOUNTING OPTIONS
The mounting options are:

MOUNT

DEFER

READY

’ or

MOUNTi

DEFERi

READYi
The operator is notified by an on-line message of the
impending use of an input/output unit. These options
refer to both Unit 1 and Unit 2. They govern the type
of message to be printed and the operator action re-
quired when an input/output unit is to be put into
use.

1. mounT — The message is printed before execu-
tion, and a stop occurs for the required operator ac-
tion.

2. DEFER — The operator message and stop are de-
ferred until the file is opened.

3. READY — The message is printed before execu-
tion, but a stop does not occur. System units are nor-
mally given the READY option, if a mounting option is
not specified.

The operation for the alternate options is the same
as the MOUNT, DEFER, or READY options, except that i
vefers to a particular unit, as follows:

i=1 Unit 1
i=2 Unit 2

IBM E1391 100n12x20 cal. ro-mark 9185 mac 1

If one of these units is specified, it supersedes any

general mounting option specified for Unit i. The fol-

lowing example causes the MOUNT operation for Unit

1 and the DEFER operation for Unit 2:
MOUNT,DEFER2

FILE LIST OPTIONS
The file list options are:

[’ {IL\‘I%SEIST}]

1. 1isT — The file appears in the operator’s mount-
ing instructions.

2. norisT — The file does not appear in the oper-
ator’s mounting instructions.

FILE USAGE OPTIONS
The file usage options are:

INPUT
OUTPUT
INOUT
’} CHECKPOINT
or
CKPT

1. ixpur — The file is an input file.

2. ourput — The file is an output file.

3. wout — The file may be either an input file or an
output file. The object program is responsible for set-
ting the appropriate bits in the file block. Initially,
the file is set up as an input file.

4. cHECKPOINT or cGkPT — The file is a checkpoint
file.

BLOCK SIZE OPTION
The block size option is:
[’ {g}:gCK} = XXXX |

xxxx is a number (0000-9999) that specifies the block
size for this file. The field may be omitted, providing
the file is included in a pool or group where the block
size can be determined.

If sEQ, SEQUENCE, or CKSUM are specified in the sFILE
card, the block size number must include the count
for the one-word check sum and block sequence word.

ACTIVITY OPTION
The activity option is:

[LACT = XX]
xx is a number (00-99) that specifies the relative ac-
tivity of this file with respect to other files. If this field
is omitted, the activity is assumed to be 1. This value
is used in determining the number of input/output
buffers to assign to each buffer pool in the object pro-
gram.

REEL SWITCHING OPTIONS FOR UNLABELED FILES
The reel switching options for unlabeled files are:

ONEREEL
MULTIREEL
or

REELS

1. oNEREEL — Reel switching should not occur.

2. MULTIREEL or REELS — Reel switching should oc-
cur. The publication IBM 7090/7094 IBSYS Operating
System: Input/Output Conirol System, Form
(C28-6345, contains a discussion of reel switching fa-
cilities. Every output file switches reels if an end-of-
tape condition occurs.

REEL SEARCHING OPTIONS FOR LABELED FILES
The reel searching options for labeled files are:

, INOSEARCH
SEARCH

1. NosearcH — If an incorrect label is detected
when opening an input file, 10cs stops for operator
action.

2. SEARCH — 10Gs initiates a multi-reel searching pro-
cedure for the file with the desired label.

FILE DENSITY OPTIONS
The file density options are:

HIGH
LOW
» < 200
556
800

This field specifies the density at which the file is to
be read or written. The file density options are:

1. mocn — The tape density switch is assumed to be
set so that the execution of an spH instruction will re-
sult in the correct density being used.

2. Low — The tape density switch is assumed to be
set so that execution of an spL instruction will result
in the correct density being used.

3. 200 — The file recording density is 200 cpi.

4. 556 — The file recording density is 556 cpi.

5. 800 — The file recording density is 800 cpi.

If a system unit is assigned to this file, the specifica-
tions for these units supersede any of the preceding
specifications.

MODE OPTIONS

The mode options are:
BCD
BIN

MXBCD
MXBIN

1. Bcp — The file is in Bcp mode.
2. BIN — The file is in binary mode.

Programmer’s Information 21

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

3. MmxBcp — The file is in mixed mode, and the first
record is BCD.

4. mxBIN — The file is in mixed mode, and the first
record is binary.

LABEL DENSITY OPTIONS
The label density options are:

SLABEL

HILABEL
’y LOLABEL

FLABEL

1. sLaBEL — All label operations are performed in
the installation standard label specification.

2. HILABEL — All label operations are performed in
high density.

3. LoLaBEL — All label operations are performed in
low density.

4. FLABEL — All label operations are performed in
the same density as that of the file.

If neither SLABEL, HILABEL, LOLABEL, nor FLABEL is
specified, the standard label density specification, de-
fined by the assembly parameter sLABEL, is used to
process labels. As distributed, the standard specifica-
tion is high density. An installation can change the
standard specification by changing the assembly par-
ameter SLABEL.

Only the use of a sLABEL card denotes a labeled file,
whether one of the label density options is specified,
or not.

BLOCK SEQUENCE OPTIONS
The block sequence options are:

NOSEQ
SEQ

I

or
SEQUENCE

1. NoseQ — This specifies that the block sequence
number is not written or checked.

2. sEQ or SEQUENCE — If reading, check the block se-
quence number. If writing, form and write a block
sequence number,

CHECK SUM OPTIONS
The check sum options are:
[, gNOCKSUM}]
CKSUM

1. nocksum — This specifies that the check sum is
not written or checked.

2. cxsuM — If reading, check the check sum. If writ-
ing, form and write the check sum. cksuM can only be

specified when sEQ or SEQUENCE has been specified in
the sFiLE card.

CHECKPOINT OPTIONS
The checkpoint options are:

22

, {NOCKPTS
CKPTS
1. NockpTs — This specifies that no checkpoints are

initiated by this file.
2. ckp1s — Checkpoints are initiated by this file.

CHECKPOINT LOCATION OPTION
The checkpoint location option is:
[LAFTERLABEL] .

AFTERLABEL — Checkpoints are written following the
label when a reel switch occurs. This option can only
be used when the file is labeled.

If the ckprs option is specified and this field is
blank, checkpoints are written on the checkpoint file
when a reel switch occurs.

FILE CLOSE OPTIONS
The file close options are:

SCRATCH
PRINT

’ PUNCH
HOLD

1. scraTcu — The file is rewound upon termination
of the application.

2. prINT — The file is to be printed. It is rewound
and unloaded upon termination of the application.
PRINT appears in the removal message that is printed
on-line at the end of execution.

3. puncH — The file is to be punched. It is rewound
and unloaded upon termination of the application.
PUNCH appears in the removal message that is printed
on-line at the end of execution.

4. moLp — The file is to be saved. It is rewound and
unloaded upon termination of the application. HOLD
appears in the removal message that is printed on-
line at the end of execution.

If the unit assigned is the System Input Unit, the
System Output Unit, or the System Peripheral Punch
Unit, there is no rewind and no message is printed.

STARTING CYLINDER NUMBER OPTION
The starting cylinder number option is:
, (CYL l (X

[{CYLINDER)’ = IXXX}]
x is the number (0-9) of the starting cylinder num-
ber of this file if it is on drum storage. If the file is on
disk storage, xxx is the number (000-249) of the start-
ing cylinder number. The equal sign is required. The
programmer must specify the starting cylinder number
when disk storage or drum storage is specified for the
file. This field does not apply if a system unit function
that is assigned to disk storage or drum storage is
specified for the file.

CYLINDER COUNT OPTION
The cylinder count option is:

, fCYLCOUNT XX
[{CYLCT } = {XXX}]

xx is the number (00-10) of consecutive cylinders
used by this file if it is on drum storage. If the file is
on disk storage, xxx is the number (000-250) of con-
secutive cylinders used by this file. The equal sign is
required. The programmer must specify the cylinder
count when disk storage or drum storage is specified
for the file. This field does not apply if a system unit
function that is assigned to disk storage or drum stor-
age is specified for the file.

DISK AND DRUM WRITE CHECKING OPTION

The disk and drum write checking option is:
[, WRITECK]

| Write checking is performed after each disk and drum
write sequence for this file,

HYPERTAPE REEL SWITCHING OPTIONS
The Hypertape reel switching options are:

HRFP
HRNFP

> | HNRFP
HNRNFP

For reel switching to occur, the programmer should
specify whether or not the Hypertape is to be re-
wound and/or file protected.

1. urrp — Designates Hypertape rewind and file
protection.

2. meNFP — Designates Hypertape rewind, but no
file protection.

3. aNRFP — Designates that the Hypertape is not to
be rewound, but is to be file protected.

4. aneNFP — Designates that the Hypertape is not
to be rewound or file protected.

$LABEL Card

This control card provides label information for the
file. Omission of this control card indicates that the
file is unlabeled. The fields that are present must ap-
pear in the order shown in the format. However, all
fields except the first and last may be omitted by using
adjacent commas (,,). The last field is considered to
be 18 characters long, with embedded blanks allowed.
All pertinent information must be on this control card.
$ETC cards are not allowed. The format of the sLABEL
card is:

1 ‘16 ,

$LABEL ‘filename [{ﬁgal}] [’ reel] \:, {g:;e;}

[, name

where filename is an alphameric literal of 18 or fewer
characters that identifies the file. It must be enclosed
by quotation marks.

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

SERIAL NUMBER OPTION
The serial number option is:

]

Serial — If a tape label is desired, this is an alphameric
field of five or fewer characters. Standard input labels
are checked -against this serial number, if it is present.
Standard output labels for this file will contain this
serial number only if a reel number greater than 1 is
specified in the reel sequence number field. Qutput
serial numbers are normally taken from the label al-
ready present on the tape on which the first reel of
the file is written.

na — If a labeled disk file or drum file is desired,
this field must contain two Bcp characters that specify
the Home Address-2.

REEL SEQUENCE NUMBER OPTION

The reel sequence number option is:
[reel]

This is a numeric field of four or fewer characters. It
specifies the reel sequence number of the first reel of
a file. When the field is omitted, the sequence number
is assumed to be 1 for an output file or 0 for an input
file. The reel sequence number is adjusted at object
time to reflect reel switching, and it is checked in
standard input labels. If a disk label or drum label is
desired, this field must be omitted by using two ad-
jacent commas.

RETENTION CYCLE OPTIONS
The retention cycle options are:

, {date
[{days}]

1. Days — This is a numeric field of four or fewer
characters. It specifies the number of days a tape is to
be retained from the date it is written. An attempt to
write a labeled file on this tape before the end of the
retention period results in an error message. If the
field is omitted, a value of zero is assumed.

2. Date — This is the creation date of the file. The
format is Y/p, where Y is a one- or two-digit number
indicating the year, and D is a number of three or
fewer digits indicating the day of the year. This spec-
ification is used for additional label information.

FILE IDENTIFICATION OPTION
The file identification option is:
[name]

This is an alphameric literal of 18 or fewer characters
that specifies the file identification name in the label.
This name is checked with the name in the input
label. This field must follow the last comma on the
card. If this field is omitted for an input file, the file

Programmer’s Information 23

identification is not checked. For an output file, this
name is placed in the output label. If this field is
omitted for an output file, the file identification on the
existing output label is set to zeros.

$POOL Card

This control card designates the files that are to share
common buffer areas. A sETc card can be used to ex-
tend the variable field for a spoor card. The format of
the spooL card is:

1 16
$POOL BLOCK o
[{BLK } = XXXX | [BUFCT = xxx}

{ , ‘filename,’, . . .

[

BLOCK SIZE OPTION
The block size option is:

(BLOCK| _
BIK | = xxxx]

xxxx is a number (0000-9999) that specifies the block
size for this pool. If this field is omitted, the pool
block size used is the same as the largest block size of
a file in the pool.

BUFFER COUNT OPTION
The buffer count option is:

[BUFCT = XXX]
xxx is a number (001-999) that specifies the number
of buffers to be assigned to the pool. It must be equal
to or larger than the open count of the pool. If this
field is omitted, the Loader attempts to assign at
least two buffers to each file.

FILE NAME SPECIFICATION
The file name specification is:

{, ‘filename’, . . }

The remaining data required on the card are the
names of the files that are to be included in the pool.
Each file name is an alphameric literal of 18 or fewer
characters and is enclosed in quotation marks. Deck
name qualification is meaningless, since the Loader
assigns only one file block for each unique file name
in the application.

$GROUP Card

This control card is used to allocate buffer areas and
to specify how the buffers are to be shared by a group

of files. A sETC card can be used to extend the variable

field of the scroup card. If the scrour card is not
used, the Loader attempts to assign at least two buff-
ers to each file. The format of the scroup card is:

1 16

$GROUP [OPNCT = XX] [, BUFCT = XXX]

{ , ‘filename’’, . . }

24

OPEN COUNT OPTION
The open count option is:

[OPNCT = XX]
xx is a number (01-99) that specifies the number of
files within the group that are open concurrently dur-
ing the execution of the program. This count deter-
mines the minimum buffer count necessary for proc-
essing the group of files. If this field is omitted, the
count is assumed to be equal to the number of files in
the group.

BUFFER COUNT OPTION

The buffer count is:

[BUFCT = XXX]
xxx is a number (001-999) that specifies the number
of buffers to be assigned to this group. It must be
equal to or larger than the open count of the group.
If this field is omitted, the Loader attempts to assign
at least two buffers to each file.

FILE NAME SPECIFICATIONS
The file name specification is:

{ , ‘filename’, . . }

The remaining data required on the card are the
names of the files that are to be included in the group.
Each file name is an alphameric literal of 18 or fewer
characters and is enclosed in quotation marks. Deck
name qualification is meaningless, since the Loader
assigns only one file block for each unique file name in
the application.

$USE Card

This control card provides a method of specifying a
particular control section that is to be used with the
object program at execution time. Normally, the first
occurrence of a control section is retained, and sec-
tions with the same name in other decks are deleted.
The susk card causes the control section in a specified
deck to be retained and all control sections with the
same name in other decks to be deleted. A sErc card
can be used to extend the variable field of the suse
card. The format of the susk card is:

1 16

$USE {deckname (exname), . . }

where the fields in the variable field consist of alpha-
meric literals. The first six or fewer characters of the
field are the deck name. Following the deck name is
the external name of the control section consisting of
six or fewer characters enclosed in parentheses.

$OMIT Card

This control card provides a method of deleting a
control section from a specific deck or from all decks

in which it appears. To delete the control section from
a single deck, the external name for the control sec-
tion must be preceded by the name of the deck. To
delete the control section from all decks in which it
occurs, it is only necessary to specify the external
name for the control section. A serc card can be used
to extend the variable field of the somir card. The
format of the somrr card is:

1 16

$OMIT f{exname }

\deckname (exname), . . .
where the fields in the variable field consist of alpha-
meric literals. A literal may contain just the external
name (six or fewer characters) of a control section, or
it may contain a deck name of six or fewer characters
followed by the external name of a control section
enclosed in parentheses.

$NAME Card

This control card may be used to change the name of
a file or control section. A name change is required
when the same name has been used in different decks
for two or more distinct files or control sections, in
which case one of them must be renamed with a dis-
tinct name. This control card may also be used when
two different names are used to refer to the same file
or control sections, in which case one name is replaced
by the other. A sETc card can be used to extend the
variable field of the snaME card. The format of the
$NAME card is:

1 16

$NAME deckname (exname) = exname
exname — exname
‘deckname (filename)’ = ‘filename’
‘filename’ = ‘filename’

where the entry in the variable field consists of two
alphameric names separated by an equal sign. The
name on the left consists of an external name that
may be qualified by a deck name. This external name
is replaced by the name to the right of the equal sign.
If files are to be renamed, then the name and the
qualifier must be enclosed by quotation marks.

If the external name on the left is not qualified, it is
replaced by the name on the right wherever it occurs.
If the name is qualified by a deck name, it is replaced
by the name on the right only in the deck named.

$SIZE Card

This control card allows the programmer to specify
the size of blank common. The format of the ssize

card is:
1 16
$SIZE // =n

where n is a decimal number that specifies the size of
blank common. The double slash and the equal sign

are required. If n is less than the largest blank com-
mon required by an object program and its subrou-
tines, this specification is ignored by the Loader.

$ETC CARD

This control card may be used to extend the variable
field of a SFILE, SPOOL, SGROUP, $USE, SOMIT, $SNAME, Or
another serc card. It may not be used to extend the
variable field of a sLaBeL card. The presence of a
seTC card indicates that more information is associated
with the control card immediately preceding the sETc
card. Therefore, the order in which serc cards occur
is very important, and all serc cards for a particular
control card must immediately follow that control
card. Information appearing in the variable field may
be any information allowed on the control card that
the serc card is extending, but an individual field
cannot be split between two cards. The format of the
serc card is as follows:

1 16
$ETC variable field information

Input/Output Buffer Allocation

The rules of storage allocation pertaining to input/
output buffer pools and the effect of spoor and scrouP
cards on such allocation procedures are described in
this section.

The Loader normally assigns as input/output buff-
ers, the core storage not used by an object program.
Storage allocation is not performed by the Loader
when the programmer is programming at the Input/

- Output Executor (10Ex) level or when the program-

mer generates his own file control blocks. Since each
object program is entirely relocatable and the amount
of usable core storage can only be determined by the
Loader, the Loader does the following:

1. The storage not assigned to the system or to the
object program is apportioned as input/output buff-
ers for the files of the object program.

2. The 10Cs initialization sequences of DEFINE and
ATTACH are generated and loaded in front of the
object program. At the end of these calling sequences,
a transfer instruction is generated to the first instruc-
tion to be executed.

3. 10cs is coded in such a way that any rocs-de-
tected error that would have resulted in a machine
stop causes the calling of an error routine that closes
all files in use and proceeds to the next job segment
or Processor application.

General Buffer Assignment

In the absence of spoor and scroup cards, the rules of
input/output buffer storage allocation are:

Programmer’s Information 25

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

1. Each file is a separate reserve group, and its con-
trol word is equal to sv~ 1, , L.

2. A different buffer pool is created for each dis-
tinct blocking size encountered. All files that have the
same blocking size are assigned to the same pool, re-
gardless of whether they are input or output files.

3. Storage is assigned to each pool in three steps,
as follows:

a. The pool is given one buffer for each file. If
available storage does not allow this, execu-
tion is terminated and an appropriate error
message is printed.

b. An additional buffer for each file is allocated
to the pool. If available storage does not per-
mit this, a weighing factor is formed from the
number of additional buffers that are desired
multiplied by the total activity of the files in
that pool. The pool with the largest weighing
factor is then assigned one buffer, if possible.
If this assignment is not possible, the weigh-
ing factor of the pool is set to zero. If this as-
signment is possible, it is made and the weigh-
ing factor of the pool is reduced. The pool that
now has the largest weighing factor is given
a buffer. This continues until all the weighing
factors are reduced to zero.

c. The remainder of storage, if any, is appor-
tioned by the ratio of the output activity of
each pool; i.e., the sum of the activity of each
output file in that pool compared with the
sum of the total output file activity.

Storage is allocated first to the pool with the great-
est buffer size, so that the remainder may be assigned
to a smaller pool.

4. The amount of storage used by each buffer pool
is:

BUFCT*(BUFSIZ+2) +2

Buffer Assignment with $POOL and $GROUP Cards
spooL and sGroOUP cards may be used to direct the as-
signment of input/output buffers to certain files,
pools, or groups. Normally, because each program re-
quires a relatively small amount of the total core stor-
age, sufficient storage is available to assign many buff-
ers to each pool. However, if the program is large or
the number of files is great, the programmer may, by
using spooL and scroup cards, specify a more efficient
assignment of buffers. The use of spoor and scroup
cards is not considered the normal case.

1. spooL cards cause all files mentioned on the con-
trol card to be assigned to the same buffer pool. If
any of the files are also specified on scrour cards, all
files specified in that group are automatically associ-
ated with the pool. No other files, not even those

26

with block size(s) equal to that of the pool, are as-
signed to the specified pool.

2. If a buffer count is specified on a spooL card,
that pool is given exactly that number of buffers.
Checks are made to assure that the specified count is
sufficient. A sufficient count is defined as the sum of the
number of nongrouped files in the pool plus the buffer
counts of all groups of that pool. If a buffer count is
not specified, the pool is allocated buffers as described
in the section “General Buffer Assignment.”

3. If block size is not specified on a spooL card, the
size is the maximum block size of the files assigned
to that pool.

4. scrouP cards cause the specified files to be
grouped under a single reserve group control word
(svNopncr, , Burct). If a buffer count is specified, this
count is used and must be at least equal to the open
count of those files that are open concurrently. If the
open count is not specified, it is equal to the number
of files in the group. If the buffer count is not spec-
ified, extra buffers are allocated to the pool to which
that group is assigned. This is described in item 3c of
the section “General Buffer Assignment.”

5. Groups can be created within specified pools by
naming at least one of the files in the group on a
spooL card, as well as on the scrour card.

Unit Assignment

This section describes the unit assignment specifica-
tions for the sFiLE card, the use of intersystem unit
assignment, and the order in which files are assigned
to units.

Unit Assignment Notation

The following notation is used to explain unit assign-
ment specifications:

X denotes a real channel (A through H).

P denotes a symbolic channel (S through Z).

1 denotes an intersystem channel (J through
Q).

denotes a unit number (0 through 9).

denotes the access mechanism number (0).

denotes the module number (0 through 9).

denotes the Data Channel Switch (also
called interface) (0 or 1).

denotes the model number of a 729 Mag-
netic Tape Unit (II, IV, V, or VI).

designates 1301 Disk Storage.

designates a 7340 Hypertape Drive.

designates 7320 Drum Storage.

wyg e

Zmo 2

Unit Assignment Specifications

DESIGNATION EXPLANATION

blank Use any available unit.

M Use any available model M 729 Magnetic
Tape Unit, where M is either a II, IV, V, or

VI

X(k)
PM

P(k)M

M

I(k)

I(k)M

IR

I(k)R

XDam/s

XNam/s

XHk/s

IN, IN1, IN2
0U, OU1, OU2
PP, PP1, PP2
UTk

RDX

PRX

PUX

INT
NONE

Use any available unit on channel X.
Use any available unit on channel P.

Use the kth available unit on channel X.
The parentheses are required.

Use any available 729 Magnetic Tape Unit,
model M, on channel P.

Use the kth available 729 Magnetic Tape
Unit, model M, on channel P. The paren-
theses are required.

Use any available unit on channel I. This
specification can be used for input and out-
put units.

Use any available 729 Magnetic Tape Unit,
model M, on channel I. This specification
can be used only for output units.

Use the kth available unit on channel 1. The
parentheses are required. This specification
can be used for input and output units.

Use the kth available 729 Magnetic Tape
Unit, model M, on channel 1. The paren-
theses are required. This specification can be
used ‘only for output units.

Use any available unit on channel I, and re-
lease the unit from reserve status after the
application has been completed.

Use the kth available unit on channel I, and
release the unit from reserve status after the
application has been completed. The paren-
theses are required.

Use 1301 Disk Storage on channel X, access
mechanism number a, module number m,
and Data Channel Switch s,

Use 7320 Drum Storage on channel X, ac-
cess mechanism number a (0), module
number m(0, 2, 4, 6, or 8), and Data Chan-
nel Switches.

Use a 7340 Hypertape Drive on channel X,
unit number k, and Data Channel Switch s.

Use the System Input Unit.

Use the System Output Unit.

Use the System Peripheral Punch Unit.
Use the System Utility Unit, number k.

Use the card reader on channel X. If a card
reader is specified, OPTHCV or REQHCV
must be specified in the FILE pseudo-opera-
tion.

Use the printer on channel X.

Use the card punch on channel X.

An asterisk in the Unit 2 field indicates that
the secondary unit for a file is to be a unit
on the same channel and of the same model
type as the primary unit. This unit, if avail-
able, is assigned after all other unit assign-
ments have been made.

The file is an internal file.

No units are assigned. A file control block is
generated but does not refer to a unit con-
trol block.

Intersystem Unit Assignment

To provide for the passage of data through a series
of related applications, intersystem unit assignments
are made. The use of this specification allows an ob-

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

ject program to write an intermediate output file on a
unit and to reserve that unit for later use as input or
output for an object program in a different application.
This is done by using symbolic channels] through Q.

When a srFiLE card for an input file is encountered
by the Loader, the primary intersystem channel and
relative unit, if present, are used for scanning the unit
control blocks to find a matching intersystem unit; i.e.,
a unit in reserve status that has the same intersystem
channel designation and relative unit. If a match is
found, the input file from the sFiLE card is assigned to
that physical unit. If a match is not found, a tape as-
signment error is noted and execution is not allowed.

For an intersystem unit designated as output, the
same scanning of the unit control blocks is performed.
However, unlike the input file processing, if a match
is not found, the intersystem channel is treated as a
symbolic channel (S through Z), and a reserve flag
and indicative data are placed in the unit control
block.

If an error occurs, either prior to or during execu-
tion of a program that uses intersystem output units,
these units are removed from reserve status and are
returned to the availability chain. Subsequent refer-
ences to these intersystem units as input causes a tape
assignment error, and an error message is written on
the System Output Unit.

Order of Assignment

Files are assigned to units in the following order:

1. All files on system units or card units are as-
signed first.

2. Input files on intersystem channels are assigned.
If the designated unit does not already exist in re-
serve status, a tape assignment error is noted and ex-
ecution is not allowed.

3. Files on specified (real) channels are assigned.

If during steps 1, 2, and 3, there are insufficient
units on the requested channels, a message is printed
indicating that the object time tape assignment could
not be completed because of insufficient units on the
specified channels.

4. Output files on intersystem channels are assigned.
Those intersystem channels with the largest require-
ment are processed first. Starting with the highest
real channel, the channels are processed to determine
whether the intersystem channel requirements can be
met. When a real channel is found that contains suffi-
cient available units for the intersystem channel, that
real channel is chosen. If there is no real channel
that can meet the intersystem channel requirements,
a real channel is chosen to assign as many of the in-
tersystem units to the channel as possible. The re-

Programmer’s Information 27

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

maining intersystem units are now assigned by re-
peating the same process, i.e., finding the intersystem
channel with the greatest requirement and matching
it with a real channel.

5. Files on symbolic channels are assigned. The
procedure is the same as that described under inter-
system assignment. _

6. Files with model specifications only are assigned.
Units are chosen, starting at the highest unit number
of the first available channel.

7. Files with omitted specifications are assigned. If,
during steps 4, 5, 6, or 7, there are insufficient units
available for assignment, a message is printed indicat-
ing that object time tape assignment could not be
completed because of insufficient units on the system.

8. Secondary units are assigned with the primary
units and on the same channel as the primary units.
When the Unit 2 specification is omitted, the second-
ary unit is the same as the primary unit. If the pri-
mary unit is a Hypertape drive, the secondary unit
must also be a Hypertape drive.

Overlay Feature of the Loader

The Overlay feature provides a method for processing
programs that exceed the capacity of core storage. The
programmer divides the program to be executed into
links. A link can contain one or more program decks.
One of the links (called the main link) is loaded into
core storage with the Overlay subroutine and the
tables required for program execution, and it remains
in core storage throughout the execution of the pro-
gram. The Loader writes the other links (called de-
pendent links) on an external storage unit. The
external storage unit can be disk storage, drum storage,
or magnetic tape. The dependent links are written in a
scatter-load format and have a block size of 464
words.

The Overlay Structure

Figure 11 is an example of the structure of an over-
lay application. In Figure 11, the vertical lines repre-
sent links into which the program is divided. The
horizontal lines, from which the vertical lines proceed,
indicate the logical origins of the links.

The loading of a link is caused by the execution.of
a call from a link that is presently in core storage to
a link that is not in core storage. When a link ‘s
loaded, it overlays the link in core storage with the
same logical origin, and it overlays any links in core
storage with deeper logical origins.

Each deck within a link is called, or referred to, by
the map pseudo-operation carr. The caLL pseudo-op-
eration is the only operation that causes overlay.

28

Deck 1
Link 0 (Main Link)
Deck 2
Origin A
N | N
Deck ¢
Deck 6
Deck 3 -+ plink4
> Link 3
4 ? Link 2
Deck 10
T Origin B
Deck 7 \
Deck 8
Deck 4
/
Deck 11 Deck 13> Link 6
4 >link1
> Link 5
Deck 5 4
1. /7 Deck12
L/ J_ 7

Figure 11. Example of Overlay Structure

FORTRAN and COBOL statements that are translated into
a carl pseudo-operation that refers to another deck
can be used to cause overlay.

THE: CALL STATEMENT

The primary rule regarding cALL statements that cause
links to be loaded is the following:
Normally, no deck may either directly or in-
directly call for itself to be overlaid.

The following types of caLL statements are valid:

1. A call towards a deeper link in the same chain
is permissible. This type of call may or may not cause
a link to be loaded, depending on whether or not the
link is already in core storage.

2. A call within a link is always permissible. This
type of call does not cause a link to be loaded.

3. A call from a deeper link to decks within the
same chain of links toward the main link is permis-
sible, provided the deck that it calls does not cause
the originating deck to be overlaid.

If an invalid cALL statement is used, the program is
not executed, unless NoFLow is specified in the vari-
able field of the siBjoB card.

Since the overlay structure is defined at load time,

all cALL statements that cause overlay must be defined
at load time. A caLL statement of the form:
CALL R

where the address is.supplied at execution time, can-
not initiate overlay.

Referring to the overlay structure in Figure 11, the
following examples may be given:

1. A call from Deck 3 to Deck 4. — This call is
permitted. A call within the same link never causes a
link to be loaded.

2. A call from Deck 2 to Deck 12. — This call is
permitted. This call from Link O to Link 5 initiates
the loading of Links 4 and 5.

3. A call from Deck 12 to Deck 9. — This call is
permitted. This call is in the chain of links toward
the main link.

4. A call from Deck 13 to Deck 3. — This call is
not permitted. This call causes the loading of Link
1, thereby overlaying Link 6, which contains the deck
in which the caLL statement originated.

5. A call from Deck 11 to Deck 9, followed by a
call from Deck 9 to Deck 13. This call is not per-
mitted. The call from Deck 11 to Deck 9 is valid, but
since Deck 9 contains a call to Deck 13, Link 6 would
overlay Link 5, which contains the deck in which the
CALL statement originated.

VIRTUAL CONTROL SECTIONS

During the analysis of virtual control sections, virtual
control sections other than the caLL type are also
checked for validity. This type of virtual reference
cannot cause a link to be loaded, but may cause an
error if reference is made to a section that is not in
core storage. The following rules should be consid-
ered:

1. A reference to a control section in a deeper link
in the same chain is permissible, but it may be in er-
ror if the deeper link has not been loaded into core
storage. If Locic or procic has been specified on the
s1BjoB card, a warning message is printed.

2. A reference within a link is always permissible.

3. A reference from a deeper link to a control sec-
tion within the same chain of links toward the main
link is always permissible.

4. A reference to a section that is not in the allow-
able chain of links is not permitted, since, by the defi-
nition of overlay structure, the section referred to
would not be in core storage. If NoFLow is specified
in the variable field of the siBjoB card, this type of
reference is permitted.

STORAGE ALLOCATION DURING EXECUTION

Figure 12 illustrates how the overlay structure in Fig-
ure 11 would be assigned to core storage. Links hav-

ing the same logical origin are loaded starting at the
same absolute location, unless the programmer has
specified an absolute loading address for one or more
links.

Library subroutines in the main link are loaded
following the input decks that constitute the main
link. Library subroutines can be included in deeper
links by using a siNcLUDE card. The input/output buff-
ers occupy the unused core storage area between the
longest possible link configuration and the highest
available core storage location. The FORTRAN COMMON
area, if used, is assigned following the Library sub-
routines.

In Figure 12, the possible configuration of links in
core storage at any one time is:

Links 0 (main link) only
Links 0 and 1

Links 0 and 2

Links 0 and 3

Links 0 and 4

Links 0, 4, and 5

Links 0, 4, and 6

System

Link O

Library Subroutines

FORTRAN COMMON

Link 4
Link 2

Link 3

Link 1

Link 5 Link 6

Unused Core Unused Core

Storage Storage

Input/Output Buffers

Figurc 12. Overlay Core Storage Allocation

Overlay Control Cards

Two control cards are used with the Overlay feature
of the Loader. The soricin card is used to specify the

Programmer’s Information 29

logical origin of links. The siNcLubE card is used to
specify that a deck (or.any control section) be loaded
with a link other than the one with which it would
normally be loaded.

The order in which options are specified on the con-
trol cards is not significant, unless otherwise specified.

$3ORIGIN CARD

The logical origins that are specified on soriGIN cards
govern the structure of an overlay deck. The decks
appearing first in the program are assigned to the
main link and are usually not preceded by a soriciN
card. A sorIGIN card must precede the main link if the
overlay link-loading subroutine Lovry is included in
the input program rather than being read from the
Subroutine Library. When a soriciN card is used to
designate the main link, the logical origin specificd
by this card cannot be used on succeeding soRricIN
cards or an error condition occurs, since this specifies
more than one main link. The format of the soriciv
card is:

1 16
$ORIGIN logical ", absolute] [, {SYSUT2)
origin _ origin] [ISYSxxx {
[, (NOREW)
L [REW

This control card initiates an overlay link for the
decks that follow. Decks following the soriciN card
are assigned to the same link until the occurrence of
another soriGIN card, a sENTRY card, or an end of file.

All pertinent information must be on this control
card. The seTc card may not be used to extend the
variable field information.

The following text indicates the options that may
be specified on the soriGIN card:

Logical Origin: This field must be the first subfield
in the variable field, and it must be specified. The field
contains an alphameric literal of six or fewer charac-
ters, one of which must be nonnumeric. Characters
that cannot be used are: parentheses, equal signs,
commas, slashes, quotation marks, periods, and blanks.

Absolute Origin Option: The absolute origin option
is:

["absolute

|origin :l
This field contains five or fewer numeric characters
specifying an absolute location at which the link is to
be loaded. If the number is expressed in octal, an al-
phabetic O must precede the number. This field is
used only if a program requires a link be loaded at a
specific location. It has no effect on the overlay struc-
ture. It merely determines the loading point for this
particular link and all links proceeding from it, if their
sORIGIN cards do not specify an absolute origin.

30

Unit Specification Options: The unit specification
options are:
[, {SYSUTQ]
SYSxxx §
This field specifies the input/output unit on which the
dependent links are written. Any of the following sev-
en system units may be specified:

SYSUT2 (or UT2) SYSLB4 (or LB4)
SYSUTS3 (or UT3) SYSCK1 (or CK1)
SYSLB2 (or LB2) SYSCK2 (or CK2)
SYSLB3 (or LB3)

If the System Library Unit sysLB2, SYSLB3, or SYSLB4
is specified and is also used for System residence, an
error message is written on the System Output Unit
and execution is not allowed.

If the field is omitted, the System Utility Unit
(sysut2) is assigned. Tt is assumed that the unit cho-
sen is in ready status and that it is not used for any
purpose other than loading links during execution.

Rewind Options: The rewind options are:

[{NOREW?]
|REW f

1. NoreEw — The input/output unit containing the
link is not to be rewound after the link is loaded.

2. REW -~ The unit is to be rewound.
If this field is omitted, the unit is not rewound.

SINCLUDE CARD
The format of the siNcLUDE card is:

1 16
$INCLUDE {Deckname], ...
| Exname

This control card specifies that the decks and/or the
control sections named in the variable field be includ-
ed in the link in which this control card appears,
rather than in the link to which they would normally
be assigned.

The subfields of the variable field contain alpha-
meric literals which specify either a deck name (usu-
ally a library subroutine) or a real control section
name of non-zero length (usually a block of data or
coding) to be included in this link.

If a library subroutine is specified, the deck name
of the subroutine (and not one of its entry points)
must be given. Library subroutines are placed auto-
matically in the main link, so that they are available
to all subsequent links. A library subroutine may,
however, be assigned to a dependent link by means of
a $INCLUDE card. A subroutine or control section can-
not be loaded in more than one link. If it is called
from more than one link, it must be loaded in a link
that is available to all calling links.

The following subroutines must always be in the
main link and, therefore, may not be specified on a
SINCLUDE card.

1. .Ferre — Floating Point Trap Subroutine.

2. .1LxcoN — Execution Control Subroutine.

3. .LovRY — Overlay Link Loading Subroutine.

4. The subroutine(s) designating the level of 1ocs
used by the object program.

The variable field of a sincLupE card may be ex-
tended over more than one card, using either the serc
card or another siNcLUDE card. The sINCLUDE card may
appear immediately following the soricIN card speci-
fying the link, between the decks within the link, or
immediately following the last deck of the link.

Control Card Usage

Figure 13 illustrates how a deck would be set up to
produce the program structure given in Figure 14.

$

$1BLDR DECK3 ||

$ORIGIN ALPHA

$IBLDR DECK11 ||

$ORIGIN BETA

$IBLDR DECK10 il

$IBLDR
$ORIGIN

DECK?
BETA

$1BLDR DECKS8
$ORIGIN ALPHA

$IBLDR DECK2

$IBLDR DECK1
$1BJOB feee

$EXECUTE 1BJOB
$JOB

Figure 13. Sample Control Card Deck

$ ECKé

$1BLDR DECK5 ||
$ORIGIN GAMMA

IBLDR DECK7 |||
$ORIGIN AMMA
$IBLDR DECK4 ||

)

In Figure 13, the soriciN card, which first uses logi-
cal origin ALPHA, immediately follows the main link
(Decks 1 and 2). All links using logical origin ALPHA,
therefore, proceed from the main link. Every new log-
ical origin encountered on a soRIGIN card specifies that
all links using this logical origin will proceed from the
previous link. The soRIGIN cards containing the logical
origins BETA and caMMa are placed after the links
from which they proceed. In this manner, the soricIN
cards are used to form the Overlay structure.

The following examples are given to aid the pro-
grammer in the use of Overlay control cards. To in-
clude the subroutine FLoc and the control section xvz
in the link which contains Deck 1, the following se-
quence could be used:

Programmer’s Information 31

1 16
$ORIGIN - ALPHA
$INCLUDE FLOG, XYZ

Deck 1

When a deck or section is assigned to a link by
means of a sINCLUDE card, care must be taken that the
link incorporating the deck or control section be avail-
able to all other links that refer to or call the deck or
section.

If a siNcLUDE card is used to move a block of in-
structions or data from a deck to some other link, it is
possible to cause the external link file to be written in
a format which cannot be used efficiently during exe-
cution.

For example, in the following sequence:

1 16
$ORIGIN ASYSUT3 (Link A)
$INCLUDE XYZ

$ORIGIN B,SYSUT3 (Link B)
$TBL.DR DECK 1

$IBLDR DECK 2

(contains section XYZ)

Deck 1
Deck 2
ALPHA
Deck 8 Deck 3
Deck 4
BETA GAMMA
L Deck 11 ; Deck 5
Deck 9 J Deck 7
Deck 10 Deck 6

Figure 14. Overlay Program Structure

32

the instructions or data in section xyz which are to
become part of link A will not be encountered by the
Loader for processing until after link A and a portion
of link B have been written onto the System Utility
Unit (svysur3). Therefore, on sysurs, the information
in section xyz will be isolated from the main portion
of link A. If sysut3 is a tape file, some tape will have
to be spaced over when loading link A in order to load
the xyz portion. This situation can usually be avoided
by specifying a unique unit for the storing of the link
which contains the siNCcLUDE card.

It should be noted that the previously mentioned
condition occurs only when the section specified on
the siNcLUDE card is internal to some deck and con-
tains text. This condition does not occur when assign-
ing library subroutines or control sections that do not
contain text to other links by means of the siNcLuDE
card.

The CALL Transfer Vector _

During loading, an analysis is made of all caLL state-
ments in the program. If a cALL statement causes
overlay, the transfer address of the cALL statement is
modified to refer to a transfer vector of the form:

pfx entry point , , link number
TXI .LOVRY

For example, the statement:

CALL .SUBPR
may be modified by the Loader to:
CALL .TV001

and, starting at location .TV001, the Loader generates
the following two words:
pfx SUBPR, link number
TXI .LOVRY
This transfer vector is constructed by the Loader
and is stored with the object program in a generated
control section called .Lvec. During execution, if the
called deck was loaded into core storage, pfx was set
to TXL and a transfer would now be made to the entry
point. If the called deck was not loaded into core stor-
age, pfx is set to Txu and a transfer is made to the
link loading subroutine .Lovry. This subroutine loads
the required links and resets all the transfer vector
words involved to properly indicate the load status of
the links.
If rocic is specified on the 1BJjOB card, the absolute
location of .LvEC will be indicated in the logic listing.

The Subroutine Library (IBLIB)

The Subroutine Library contains a collection of relo-
catable subroutines for system and programmer use.
These subroutines are available to the programmer
through the Loader, which incorporates them, as re-
quired, into the object program at load time.

Subroutines may be added to or deleted from the
Subroutine Library by using the Librarian. Informa-
tion regarding modification of the Subroutine Library
may be found in the section “The Librarian.” All sub-
routines included in the Subroutine Library must be
assembled by the Assembler. ‘

The Subroutine Library is composed of system sub-
routines, coBoL subroutines, and FORTRAN 1v subrou-
tines. The FORTRAN section of the Subroutine Library
is subdivided into the rorTRAN Mathematics Library,
the FORTRAN Input/Output Library, and the FORTRAN
Utility Library.

The rForTRAN mathematics subroutines and the
FORTRAN utility subroutines for testing machine indi-
cators and for recording the status of the console and
selected portions of core storage are described in this
section.

The other subroutines are not of general concern to
the application’s programmer and, for this reason, are
described in the section “Subroutine Library Informa-
tion.”

FORTRAN Mathematics Library

The rorTRAN Mathematics Library consists of three
types of subroutines: single-precision, double-preci-
sion, and complex. These subroutines are described in

this section. Subroutines that are marked with an as-

terisk have entry points that cannot be used in the
FORTRAN 1v language. These entry points can, how-
ever, be used in a MAP language program.

Single-Precision Subroutines

The single-precision subroutines are described in the
following text.

THE FXP1 SUBROUTINE

A call to this subroutine is compiled for a source pro-
gram exponential term such as 1%*7J.

Entry Point: xp1. is the entry point to this subrou-
tine for an exponential expression with a fixed-point
base and a fixed-point exponent. The output is a fixed-
point number in the ac.

MAP Call: The maP language call to this subroutine
is:

CALL XP1.(L])

THE FXP2 SUBROUTINE

A call to this subroutine is compiled for a source pro-
gram exponential term such as A**J.

Entry Point: .xp2. is the entry point to this subrou-
tine for an exponential expression with a floating-point
base and a fixed-point exponent. The output is a nor-
malized floating-point number in the ac.

MAP Call: The map language call to this subrou-
tine is:

CALL .XP2.(AJ)

THE FXP3 SUBROUTINE

A call to this subroutine is compiled for a source pro-
gram exponential term such as A**s.

Entry Point: xp3. is the entry point to this subrou-
tine for an exponential expression with a floating-point
base and a floating-point exponent. The output is a
normalized floating-point number in the ac.

MAP Call: The map language call to this subrou-
tine is:

CALL XP3.(A,B)

THE FXPF SUBROUTINE

A call to this subroutine is compiled for a source pro-
gram expression such as Y = Exp(A). It computes (A,
the natural antilogarithm of the number A.

Entry Point: Exp is the entry point to this subrou-
tine for natural antilogarithm expressions. The output
is a normalized floating-point number in the ac.

MAP Call: The MaP language call to this subrou-
tine is:

CALL EXP(A)

THE FLOG SUBROUTINE

A call to this subroutine is compiled for source
program expressions such as Y= Aroc(a) and
Y = ArLoc10(a). It computes the natural logarithm or
common logarithm of the number A.

Entry Points: The following entry points are con-
tained in the FLOG subroutine:

1. ALog is the entry point for the computation of the
natural logarithm of the number A. The output is a
normalized floating-point number in the Ac.

The mar language call is:

CALL ALOG(A)

2. aLoc10 is the entry point for the computation of
the common logarithm of the number A. The output
is a normalized floating-point number in the Ac.

The map language call is:

CALL ALOGI10(A)

Programmer’s Information 33

THE FATN SUBROUTINE

A call to this subroutine is compiled for source
program expressions such as y=aArtan(A) and
Y = ATAN2(A,B). It computes the arctangent, in radi-
ans, of one or two arguments.

Entry Points: The following entry points are con-
tained in the FATN subroutine:

1. aran is the entry point for the computations of
the arctangent argument A. The output is a normal-
ized floating-point number in the ac.

The MaP language call is:

CALL ATAN(A)

2. ATAN? is the entry point for the computation of
the arctangent of a/B. The output is a normalized
floating-point number in the ac.

The MaP language call is:

CALL ATAN2(A,B)

THE FSCN SUBROUTINE

A call to this subroutine is compiled for source
language expressions such as y=sin(a) and
Y == cos(a). It computes the sine or cosine of an an-
gle expressed in radians.

Entry Points: The following entry points are con-
tained in the FsoN subroutine.

1. siN is the entry point for the computation of the
sine of argument A. The output is a normalized float-
ing-point number in the Ac.

The MAP language call is:

CALL SIN(A)

2. cos is the entry point for the computation of the
cosine of argument A. The output is a normalized
floating-point number in the ac. '

The MaP language call is:

CALL COS(A)

THE FTNH SUBROUTINE

A call to this subroutine is compiled for a source lan-
guage expression such as Y = TaNH(4). It computes
the hyperbolic tangent of the number A.

Entry Point: TANH is the entry point for the compu-
tation of the hyperbolic tangent of argument A, The
output is a normalized floating-point number in the
AC.

MAP Call: The map language call to this subrou-
tine is:

CALL TANH(A)

THE FSQR SUBROUTINE

A call tc this subroutine is . smpiled for a source lan-
guage expression such as 3 —=sQRT(A). It computes
the positive square root of {. 2 number A.

Entry Point: sQRT is the e: 'ry point for the compu-
tation of the square root of 'irgument A. The output

34

is a normalized floating-point number in the ac.
MAP Call: The maP language call to this subroutine
is:

CALL SQRT(A)

Double-Precision Subroutines

The double-precision subroutines are described in the
following text. '

THE FDMD SUBROUTINE

A call to this subroutine is compiled for a source lan-
guage expression such as v =pomop(D,E). It com-
putes D modulo E (defined as D — [D/E] *E, where
the brackets indicate that only the integer portion of
the expression within them is to be used in evaluating
the equation).

Entry Point: pmop is the entry point for the com-
putation of D modulo E. The output is a normalized
double-precision floating-point number in the Ac and
MQ.

MAP Call: The MaP language call to this subrou-
tine is:

CALL DMOD(D,E)

!

THE FDX1 SUBROUTINE

A call to this subroutine is compiled for source lan-
guage expressions such as p**1 and c**1.

Entry Points: The following entry points are con-
tained in the Fpx1 subroutine:

1. .oxp1. is the entry point to this subroutine for an
exponential expression with a double-precision float-
ing-point base and a fixed-point exponent. The output
is a normalized double-precision floating-point num-
ber in the Ac and Mo.

The mar language call is:

CALL .DXP1.(D,I)

2. .cxp1. is the entry point to this subroutine for an
exponential expression with a complex base and a
fixed-point exponent. The output is a complex number
with the real portion in the ac and the imaginary por-
tion in the Mo.

The MaP language call is:

CALL .CXPL.(C,[)

THE FDX2 SUBROUTINE

A call to this subroutine is compiled for source lan-
guage expressions such as p**a and p**E.

Entry Point: pxp2. is the entry point to this subrou-
tine for the following exponential expressions:

1. An exponential expression with a double-preci-
sion floating-point base and a single-precision floating-
point exponent. The output is a normalized double-
precision floating-point number in the ac and M.

The MAP language call is:
CALL .DXFP2.(D,A)

2. An exponential expression with a double-preci-
sion floating-point base and a double-precision float-
ing-point exponent. The output is a normalized dou-
ble-precision floating-point number in the Ac and MQ.

The maP language call is:

CALL DXP2.(D,E)

THE FDXP SUBROUTINE

A call to this subroutine is compiled for a source lan-
guage expression such as Y = DEXP(D).

Entry Point: pExp is the entry point for the compu-
tation of the natural antilogarithm of the double-pre-
cision number D. The output is a normalized double-
precision floating-point number in the ac and MQ.

MAP Call: The map language call to this subrou-
tine is:

CALL DEXP(D)

THE FDLG SUBROUTINE

A call to this subroutine is compiled for source
language expressions such as Y =bpLoc(p) and
Y = proc10(p). It computes the natural logarithm or
common logarithm of the double-precision argu-
ment D.

Entry Points: The following entry points are con-
tained in the FpLG subroutine:

1. pLoG is the entry point for the computation of
the natural logarithm of the number D. The output is
a normalized double-precision floating-point number
in the ac and MQ.

The MAP language call is:

CALL. DLOG(D)

2. pLocG10 is the entry point for the computation of
the common logarithm of the number D. The output
is a normalized double-precision floating-point num-
ber in the Ac and Mg. ‘

The MaP language call is:

CALL DLOGL0(D)

THE FDSQ SUBROUTINE

A call to this subroutine is compiled for source lan-
guage expression such as Y = psQrT(D). It computes
the positive square root of the double-precision argu-
ment D.

Entry Point: psQrr is the entry point for the compu-
tation of the square root of the number D. The output
is a normalized double-precision floating-point num-
ber in the Ac and MQ.

MAP Call: The mapr language call to this subrou-
tine is:

CALL DSQRT(D)

THE FDSC SUBROUTINE

A call to this subroutine is compiled for source
language expressions such as vy =mpsiN(D) and
v = pcos(p). It computes the sine or cosine of an
angle expressed in radians.

Entry Points: The following entry points are con-
tained in the Fpsc subroutine:

1. psiN is the entry point for the computation of
the sine of the double-precision argument D. The out-
put is a normalized double-precision floating-point
number in the Ac and MQ.

The MAP language call is:

_CALL DSIN(D)

2. pcos is the entry point for the computation of
the cosine of the double-precision argument D. The
output is a normalized double-precision floating-point
number in the ac and MQ.

The MAP language call is:

CALL DCOS(D)

THE FDAT SUBROUTINE
A call to this subroutine is compiled for source lan-

* guage expressions such as Y — DATAN(D) and Y =

DATAN2(D,E). It computes the arctangent, in radians,
of one or two double-precision arguments.

Entry Points: The following entry points are con-
tained in the FpAT subroutine:

1. paTAN is the entry point for the computation of
the arctangent of argument D. The output is a nor-
malized double-precision floating number in the ac
and MQ.

The Mar language call is:

CALL DATAN(D)

2. DATAN? is the entry point for the computation of
the arctangent of p/E. The output is a normalized
double-precision floating-point number in the ac and
MQ.

The MaP language call is:

CALL DATAN2(D,E)

Complex Subroutines

The complex subroutines are described in the follow-
ing text.

THE FCAS SUBROUTINE

A call to this subroutine is compiled for source lan-
guage expressions such as c*r and c/F. It performs
multiplication and division of complex numbers.
Entry Points: The following entry points are con-
tained in the Fcas subroutine:
1. .crmp. is the entry for complex multiplication.
The output is a complex number in the ac and MQ.

Programmer’s Information 35

The MaAP language call is:
CALL .CFMP.(CJF)

2. .cFpP. is the entry point for complex division.
The output is a complex number in the Ac and MgQ.
The MaP language call is:
CALL .CFDP.(CF)

THE FCAB SUBROUTINE

A call to this subroutine is compiled for a source
language expression such as Y = cass(c).

Entry Point: casps is the entry point for the compu-
tation of the absolute value of the argument C. The
output is a complex number in the ac and Mo.

MAP Call: The Mar language call to this subrou-
tine is:

CALL CABS(C)

THE FCXP SUBROUTINE

A call to this subroutine is compiled for a source
language expression such as Yy = cexp(c).

Entry Point: cexp is the entry point to this subrou-
tine for the computation of the natural antilogarithm
of the argument C. The output is a complex number
in the ac and Mo.

MAP Call: The MaP language call to this subrou-
tine is:

CALL CEXP(C)

THE FCLG SUBROUTINE

A call to this subroutine is compiled for a source
language expression such as Y = crog(c).

Entry Point: cLoc is the entry point to this subrou-
tine for the computation of the natural logarithm of
the argument C. The output is a complex number in
the ac and MoQ.

MAP Call: The MaP language call to this subrou-
tine is:

CALL CLOG(C)

THE FCSQ SUBROUTINE

A call to this subroutine is compiled for a source
language expression such as Y = rcso(c).

Entry Point: csQRT is the entry point to this subrou-
tine for the computation of the principal square root
of the argument C. The output is a complex number
in the ac and Mo.

MAP Call: The Mar language call to this subrou-
tine is:

CALL CSQRT(C)

THE FCSC SUBROUTINE
A call to this subroutine is compiled for source lan-
guage expressions such as v = csiNv(c¢) and v =
ccos(c).

Entry Points: The following entry points are con-
tained in the Fcsc subroutine:

36

1. csiN is the entry point for the computation of
the sine of argument C. The output is a complex num-
ber in the ac and MQ.

The MAP language call is:

CALL CSIN(C)

2. ccos is the entry point for the computation of
the cosine of the argument C. The output is a com-
plex number in the ac and Mo.

The Map language call is:

CALL CCOS(C)

FORTRAN Utility Library

The rForTRAN utility subroutines for testing machine
indicators and for recording the status of the console
and selected portions of core storage are described in
this section. Other FORTRAN utility subroutines are
described in the section “Subroutine Library Infor-
mation.”

Machine Indicator Test Subroutines

The following subroutines are referred to by caLL
statements in the FORTRAN 1v language. An I is used to
specify any integer expression, and a J is used to spec-
ify any integer variable in the descriptions of the sub-
routines.

THE FSLITE SUBROUTINE

This subroutine is used to test sense lights. The source
program statements are:

1. caiL suTe(1) — If T == 0, all sense lights are
set oFr. If I = 1, 2, 3, or 4, the corresponding sense
light is set on.

2. caLL sLITET(LJ) — Sense light I (1, 2, 3, or 4) is
tested and set orr. If the sense light was on, the
variable J is set to 1; if it was off, the J is set to 2.

THE FSSWTH SUBROUTINE
This subroutine is used to test sense switches, The
source program statement is:

CALL SSWTCH(LJ)
Sense switch I (1, 2, 3, 4, 5, or 68) is tested. If the
sense switch was down, J is set to 1; if it was up, J is
set to 2.

THE FOVERF SUBROUTINE

This subroutine is used to test the Overflow Indicator.
The source program statement is:
CALL OVERFL(])

If an overflow condition exists, the variable J is set
to 1; if a nonoverflow condition exists, J is set to 2.
The machine is always left in a nonoverflow condition
after execution.

THE FDVCHK SUBROUTINE

This subroutine is used to test the Divide Check In-
dicator. The source program statement is:

CALL DVCHK(])
If the Divide Check Indicator was on, the variable
J is set to 1; if it was off, J is set to 2. The Divide
Check Indicator is always left in OFF status after ex-
ecution.

Dump Subroutine

The following subroutine can be referred to by caLL
statements in either the FORTRAN 1v or MAP language.

THE FDMP SUBROUTINE

This subroutine causes the dumping of selected por-
tions of core storage. The limits of the dump and the
format of the dump are specified following the entry
point specifications.

Entry Points: pump is the entry point for a post-
mortem dump. After the dump has been taken, core
storage is restored and control is returned to the sub-
routine .LXCON.

PDUMP is the entry point for a snapshot of selected
portions of core storage. After the dump has been
taken, core storage is restored and execution of the
program resumes. :

CALL Statements: The following carL statements
are used in both the FORTRAN 1v and MAP languages:

CALL DUMP(A,, By, Fy, ... Ay, By, Fi)

CALL PDUMP(A,, B, F,,... Ay By, Fi)
where A and B are variable data names and F is an
integer indicating the dump format.

The integers that specify the dump format are:

0 — octal
1 — floating-point
2 — integer

3 — octal and mnemonics
If an integer is not specified, the dump format is
octal. When more than one set of arguments is spec-
ified, the format for the last set can be omitted, e.g.:
CALL DUMP(AB,1,CD3EF).
If no arguments are specified following the entry
point, all of core storage is dumped in octal.

FORTRAN Files

Constant Units

Any FORTRAN IV source program input/output state-
ment that refers to a constant unit (for example,
READ(1,10)A, where: the reference is to the constant
FORTRAN logical unit 01) causes the Library File rou-
tine corresponding to that unit to be loaded with the
object program. A File routine contains a MaAP lan-
guage FILE pseudo-operation that determines various

file specifications, such as unit assignment, block size,
and file type. The unit assignment specification estab-
lishes correspondence between FORTRAN logical units
and symbolic units, as shown in Figure 15.

FORTRAN
Logical System
Unit File Mode Function
o1 SYSUTI Binary Input or output
02 SYSUT2 Binary Input or output
03 SYSUT3 Binary Input or output
04 SYSUT4 Binary Input or output
05 SYSIN1 BCD Input
06 SYSOU1 BCD Output
07 SYSPP1 Binary Output
08 System BCD Input or output
Availability
Chain

Figure 15. Correspondence Between roRTRAN Logical Units
and System Files

If additional logical units are desired, a File rou-
tine, in the following format, must be inserted into
the user’s program.

ENTRY .UNzxx.
.UNxx. PZE UNITn
UNITn FILE specifications

where n is a two-digit FORTRAN logical unit number.
If the additional logical units are to be permanent,
a File routine must be inserted in the Subroutine Li-
brary and an entry must be made in the table that
describes these routines in the Fvio subroutine.

Variable Units

Any FORTRAN IV source program input/output state-
ment that refers to a variable unit causes the Fvio
subroutine and all File routines to be loaded with
the object program. The following is an example of
such an input/output statement:

WRITE (L10)A
In this example, the FORTRAN input/output logical
unit I varies during execution of the program. The
Fvio subroutine takes the value of the variable unit
at the time the variable input/output statement is
to be executed, and refers to a table to determine
which File routine is required.

Error Procedures

When an object program error is detected by the Sub-
routine Library, a message stating the error condition
is written on the System Output Unit. The execution
of the mathematical subroutines can be resumed by
using an optional exit, even though an error condi-
tion has occurred. A complete description of the error
conditions and the optional exits is contained in the
section “Subroutine Library Information.”

Programmer’s Information 37

Systems Programmer’s Information

IBJOB Processor Information

This section contains information which is mainly in-
tended for the systems programmer. It is not neces-
sary for the programmer to have an understanding of
this material in order to use the mjoB Processor, but
such an understanding may be useful.

Programming Analysis Aids

The 1BJOB Processor incorporates the following facil-
ities to assist the systems programmer:

1. A standard storage location (sysraz). This loca-
tion indicates the name of the phase currently in core
storage.

2. A standard storage location (sysroc). This is the
location in which the location counter is stored on
each call to a subprogram. This makes it easier tc
determine the section of coding that is responsible if
an unlisted stop or endless-loop condition occurs.

The 18joB Processor uses system macros in place of
the standard carL, save, and RETURN pseudo-opera-
tions. The linkage produced by the macro

labell SAVE n, [1]
is as follows:

labell AXT “4n44[+11,0
SXA "4n+3[+1].4
SXA *4n43[+1],2
SXA *4n-3[+1]1,1
[STI .LDIR. +2]

CLA SYSLOC
STA .LDIR.

TRA *fnt2[+1]
AXT #o4

AXT #%9

AXT #%1

LDI .LDIR. 42
XEC .LDIR.

The information within brackets is used only when
an I is specified in the save macro.

A remote sequence of coding (called the linkage
director) consists of the following coding:

LDIR. TRA® *%
BCI 1,labell
BSS 1
The linkage produced by the macro
label2 CALL name,arg;,args, . .., argi
is as follows:
lIabel2 STL SYSLOC
TXH *4+3+4n,,n

TXI name, , .LDIR.

38

BCI 1,Jabel2

PZE arg,
PZE args
PiE argi
TRA* labell

The standard linkage produced by the Macro As-
sembly Program from the pseudo-operations CALL,
save, and RETURN is used with object programs. This
is described in the publication IBM 7090/7094 Pro-
gramming Systems: Macro Assembly Program (MAP)
Language, Form C28-6311.

sysLoc and similar system symbols designate words
in a communication region. If a system symbol that is
defined in a Library subroutine is referred to in an
object program, the Loader assigns addresses for sys-
tem references and thus permits instructions which
cannot use indirect addresses to refer to these com-
munication words.

3. Correct and up-to-date comments on systems
listings.

4. Well-defined and appropriately labeled storage
areas for variable information.

5. Heading lines and extra spacing at appropriate
places to facilitate use of listings.

6. Standard stop options for error conditions.

7. If the Overlay feature is being used, checking is
performed to prevent a calling sequence program
from being overlaid by the program it calls.

Additional Index Register Mode

The 1BjOB Processor operates in the additional index
register mode at all times. It enters this mode when it
receives control from the System Monitor. The 1BjOB
Processor leaves the additional index register mode
before returning control to the System Monitor.

The additional index register mode is also the
normal mode for the execution of object programs
under the control of the 1BjoB Processor. Compiled
programs do not use the multiple tag mode. If a pro-
gram using the multiple tag mode, coded by the pro-
grammer in the MaAP language, is called by a compiled
program, the MaP language program must not have
destroyed any index registers or the additional index
register mode when control is returned to the calling
program. If a MaP language program that uses the

multiple tag mode calls a compiled program, the com-
piled program enters the additional index register
mode automatically. Thus, the instruction in the MaP
language program, immediately following the call,
should be to re-enter multiple tag mode.

Floating-Point Trap Mode

All programs compiled by the 1BjoB Processor operate
in floating-point trap mode. The floating-point trap
routine is loaded with every object program.

Processor Monitor Information

The monitor of the 1BjoB Processor consists of the fol-
lowing components:

1. Job Control. This section of the Processor Moni-
tor receives control from and returns control to the
System Monitor, and calls the Loader, if necessary,
for a particular Processor application. 4

2. Process Control. This section of the Processor
Monitor receives control from Job Control. It deter-
mines the phases of the 1BjoB Processor that are re-
quired for the application, and calls them into core
storage in the proper order.

Job Control

Job Control contains routines to call Process Control
and the Loader when an object program is to be
loaded.

When Job Control receives control from the System
Monitor, it initializes the System Unit Position Table
and calls Process Control. When Process Control is
finished, it transmits a word to Job Control. By test-
ing this word, Job Control determines whether to
transfer to location sysrer in the Nucleus (1BNUC) or
to call the Loader into core storage. If the object
program is loaded, but not executed, the Loader re-
turns control to Job Control, which again calls Proc-
ess Control.

Process Control

Process Control manipulates the Input/Output Editor
(the program that performs all input/output for the
Processor) by means of its entry point (1oEDIT), and
contains a control card search, an option scan, error
procedures, and routines to call subsystems.

Initialization

After being called by Job Control, Process Control
checks to make sure that necessary input/output units
have been assigned by scanning the System Unit
Function Table. Files to be used by Process Control
are then attached and opened, and the Input/Output
Editor is initialized. Initialization of the Input/Out-
put Editor is accomplished by calling 10EDIT and giv-
ing the locations of file control blocks and a control
location containing flags. Process Control opens and
closes all Input/Output Editor files and positions
them when necessary. All file control blocks used by
the Input/Output Editor are located in Process Con-
trol. Process Control and the Input/Output Editor use
system units for the following files:

System Input Unié (SYSINI): mjoB Processor input.

System Output Unit (SYSOU1): 1BjoB Processor list-
ing output.

System Peripheral Punch (SYSPPI1): 18joB Processor
punched output.

System Utility Unit 1 (SYSUT1): Unused by Process
Control and the Input/Output Editor.

System Utility Unit 2 (SYSUTZ2): 1BjoB Processor
load file.

System Utility Unit 3 (SYSUT3): Unused by Process
Control and the Input/Output Editor.

System Utility Unit 4 (SYSUT4): FortRAN Compiler
or copoL. Compiler output and Macro Assembly Pro-
gram input from the FORTRAN Compiler or the cosoL
Compiler.

After initialization, Process Control starts its con-
trol card search. Control is relinquished to a com-
piler or to the Marco Assembly Program when a
SIBFTC, $IBCBC, or IBMAP card is encountered. Control
is transferred to the Loader when NOSOURCE is speci-
fied on the siBjoB card or when a file mark or spaTa
card has been read and the program must be loaded.
Control is returned to the System Monitor after execu-
tion of an object program or when a sIBSYS, $JOB,
SEXECUTE, or ssTop card is read. -

Input/Output Editor

The Input/Output Editor is the section of the Proc-
essor Monitor that regulates the input/output func-
tions of the 1BjoB Processor. All system input/output
is performed by the Input/Output Editor, which pro-
vides a line of input or accepts punch or listing out-
put upon request. The Input/Output Editor writes
the compiler output and reads it for the Assembler
and then writes the load file and reads it for the

Systems Programmer’s Information 39

Loader. Intermediate input/output and on-line print-
ing are not performed through the Input/Output
Editor.

Initialization

An entry point (I10EDIT) is used to transfer to the In-
put/Output Editor, causing initialization of control
information, buffer truncation, and release. All in-
formation taken from siepit, soEpit, or siBjoB cards
that affects the Input/Output Editor is transmitted
through this entry point. Process Control calls to
IOEDIT to truncate and release output buffers and to
transmit control information.

Input

The Input Editor (joBiN) is the input phase of the
Input/Output Editor. It contains two reading routines
that use the Input/Output Control System (10Cs).
The primary routine reads only the input file on the
System Input Unit (sysiN1). The secondary one reads
an input file on an alternate unit. This file may be
the Assembler input file (output from a compiler), the
load file input to the Loader (Assembler output), an
input file on an optional unit specified on a siEDpIT
card, or the Alter deck that is moved to the System
Utility Unit (sysurz). Only one secondary file can be
open at a time. Primary files and secondary files may
consist of Bcp card images, binary card images, or
Prest input. Bcp card images must be recorded in the
BCD mode.

After being called with a request for a line of input,
the Input Editor determines, from a control location
set by Process Control, whether input is to be read
from the primary file or from the secondary file. It
then locates the next line and returns control to the
calling program, leaving the location of this line and
its word count in the accumulator. To ensure that a
line is saved, the calling program must move it before
requesting another line.

If an error condition is sensed, the Input Editor
returns control to the calling program with the ac-

cumulator negative and a 1 in the address portion of .

the accumulator. If an end-of-file condition is sensed,
the Input Editor returns control to the calling pro-
gram with the accumulator negative and a 0 in the
address portion of the accumulator.

Files used by the Input Editor are opened, posi-
tioned if necessary, and closed by Process Control.
Process Control transmits the locations of the file con-
trol blocks to the Input Editor to allow their initializa-
tion. This transmission is performed through roeprt,
the entry point to the Input/Output Editor.

40

Listing Output

The Output Editor (joBou) is the listing phase of the
Input/Output Editor. It can list on more than one
output unit. Normally, the listing file is on the Sys-
tem Output Unit (sysoui). If an alternate output
unit has been specified on a soEpIT card, listing out-
put from all components of the 1BjoB Processor except
the Processor Monitor is placed on the alternate unit.
The Output Editor places the listing output of the
Processor Monitor on the System Output Unit, but
reverts to the alternate output unit for all 1BjoB Proc-
essor component listing output until the end of the
application, or until a soEDIT card specifying the Sys-
tem Output Unit is encountered.

The Output Editor keeps page counts and line
counts, and ejects pages and inserts page headings
when necessary. The page heading is given to the
Output Editor by Process Control through 1oEpIT.

The Output Editor generates two types of output.
The status of the word at location TYPoU determines
the type of output to be generated. When location
TYPOU is zero, the output is in Bcp mode, blocked up
to five lines per block. This output can be printed on
the 1BM 720 Printer. When location TYPou is nonzero,
the output is in binary mode, blocked up to five lines
per block. This output can be printed off-line, using
the 1M 1401 Peripheral Input/Output Program. The
first word of each output block is a block control
word. This word contains (7600000000xx)s, where xx
is the number of records (in Bcp mode) contained in
the block. The first word of each record within the
block is a record control word. This word contains
(5xxxxx200460)5, where xxxxx is the number of char-
acters (in Bcp mode) contained in the record.

A call to the Output Editor initiates a new line
when this is requested by the calling sequence and
when the last line has already been filled.

Process Control opens and closes files used by the
Output Editor and transmits the locations of the file
control blocks to the Output Editor by means of
IOEDIT,

Other Output

The Punch Editor (jospr) accepts 80-column card
images for three types of output. Card images may
be either column binary or Bcp, and the three types
of output are as follows:

Punch file

Load file

Compiler output file

All Punch Editor output files are binary. Bcp card

images for the punch file are recorded in column
binary form, without column binary bits, when they

are placed in the punch file. Bco card images for the
other files are placed in the file as Bcp and are written
in binary. siBjoB control cards, with NOSOURCE spec-
ified starting in column 16 and the date specified
starting in column 61, are punched when they are
read.

If the Punch Editor determines that output is not
from a compiler, the card image is placed in the
punch file and is recorded properly if it is Bcp. The
card is also placed in the load file if the proper bit in
the control word has been set.

File control blocks for the Punch Editor files are
kept in Process Control. Their locations, along with
the location of control flags, are transmitted to the
Punch Editor through the entry point 10EDIT.

Action Routine

The Action routine can be used to position the System
Library to a particular system record, or to position
to, and read, one or more system records. It is not
necessary for the calling program to know the order or
format of the records on the System Library. All that
the calling program need supply to the Action routine
is the label of the required action. The Action routine
consults three tables and performs the desired action.
These tables and their formats are:

Action Table: This table is used to identify the
Action label supplied by the caller. Each entry con-
sists of two words, the first of which is:

BCI 1,LABEL

The second word is either:

) PZE a
where a is the location of the Action list, or:
MZE n

in which case, the second word is the Action list, and
n is as specified for the Action list. The list is limited
to one word in this case, and the Mon prefix is. also
allowed.

Action List: This list is located at a, specified in the
Action table, or follows the first word of an Action
table entry. It may consist of any number of one-
word entries, the last of which must have a negative
prefix code. Each word is of the form:

“pfx - n
where n is an entry in the unit position table and pfx
is one of the following:

1. rzE or mzE, which causes positioning of the sys-
tem unit to the indicated position.

2. poN or MoN, which causes positioning of the sys-
tem unit to the indicated position and reading of
the record at that position.

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

Unit Position Table: This table consists of a one-
word entry for each record on the system unit(s).
An entry is designated in the address of an Action list
entry. This table can have two formats, depending
on whether the system is on one or more magnetic
tape units or on disk storage.

1. Tape(s) — The format for an entry is:

pfx rcent, , flent

where pfx is the library tape number on which the
record exists, and rcent and flent indicate the posi-
tion of the record on that unit. If pfx is ron, indicat-
ing System Library Unit 1 (sysLs1), the file position
is relative to the position of System Library Unit 1
when 1BjoB Processor operation begins. The 1BjoB
Processor converts this relative position table to actual
positions during its initialization. If pfx is other than
poN, flent must be the actual file position.

2. Disk Storage and Drum Storage — The Unit
Position Table is automatically converted to a track
position table. The decrement portion of each entry
contains the starting track address of the address of
the record. These track addresses are obtained by
scanning the table of record names and track addresses
contained in the Supervisor (1Bsup).

System Record Format

Each system record must be preceded by the follow-
ing instruction sequence:

IOCP SYSFAZ,,K1
BCI 1, RECNM

This may be followed by a command to read a
transfer to an entry point into the appropriate trans-
fer location in Job Control or elsewhere.

The rest of the record may be scatter-loaded, each
section being preceded by the proper 10cx command,
the last of which must be an 1ocT.

Pre-Positioning Feature of the
Processor Monitor

The Action routine in the Processor Monitor is used
to pre-position a library tape, when this is possible.
If the system is assembled for disk, drum, or Hyper-
tape, the pre-positioning feature is inoperative.

Using One Library Unit for the IBJOB Processor

If the System tape is on an BM 729 Magnetic Tape
Unit, the pre-positioning feature performs the follow-
ing actions. After the last record of the Assembler is
read into core storage, the next control card is read.
If this control card is a sIBFCT, $IBCBC, or $SIBMAP card,

Systems Programmer’s Information 41

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

a backspace file operation is performed. If the next
control card is not one of these three cards, no action
is performed.

If the System tape is on either an 1BM 729 Magnetic
Tape Unit or an 18M 7340 Hypertape Drive, the Sys-
tem tape is rewound after the last record of the Load-
er is read into core storage.

Using Multiple Library Units for the IBJOB Processor

Several configurations are possible when multiple li-
brary units are used to split the 1BjoB Processor. These
configurations are as follows:

Two IBM 729 Magnetic Tape Units: Full use of the
pre-positioning feature can be made using this config-
uration. Rules governing this configuration are:

1. Both units must be on the same channel.

2. All records of a component of the 1BjoB Proces-
sor must be on the same tape.

3. If more than two units are used, the pre-position-
ing feature applies only to the unit that contains the
Processor Monitor. Any other units are not rewound,
but only positioned, when a record is required.

After the last record of the Assembler is read into
core storage, the next control card is read. If this con-
trol card is a sIBFTC, $sIBCBG, or siBMAP card, a back-
space file operation is initiated for the tape that con-
tains the Processor Monitor and the other System tape
is rewound. The backspace file operation is not initi-
ated if neither of the compilers nor the Assembler is
on the tape that contains the Processor Monitor.

After the last record of the Loader is read into core
storage, both System tapes are rewound.

System on Disk Storage or Drum Storage and the
Subroutine Library on Tape: If the System is on disk
storage or drum storage, only the files for the Sub-
routine Library may be on tape. The tape for the
Subroutine Library must be on an M 729 Magnetic
"Tape Unit.

After the last record of the Loader is read into core
storage, the Library tape is rewound.

Control Card Search

The Control Card Search routine (ccs) calls the Input
Editor to get the next line of input. If the current job
is to be loaded, any card that contains a dollar sign in
column 1 and is not recognized as an 18joB Processor
control card is added to the load file. An unrecognized
card is ignored if the program is not to be loaded.
Each recognized card is listed and may be printed
on-line, and any necessary action, which may include
a scan for options, is taken.

Cards that do not have a dollar sign in column 1
are not sent to the Loader by the Processor Monitor.

42

Binary cards that are not within an object deck cause
an error message to be written. Programs that are as-
sembled using the aBsmop option on the siBMAP card
are not sent to the Loader.

The occurrence of a seprt card, indicating that a
Subroutine Library edit is to be performed, causes the
Processor Monitor to call the Loader without regard
for the requirements of the current application.

Mandatory Card Controlling an Application

SIBJOB CARD

This must be the first card of every 1BjoB Processor
application. If the co, MAP, LOGIC, or DLOGIC specifica-
tion is present on this control card, a load file is start-
ed and the siBjoB card is the first card placed in it,
unless the NoSOURCE specification is used. Any cards
that do not contain a dollar sign in column 1 and are
not recognized by Process Control, and any object
decks and Assembler output, are placed in the load
file. If the NOSOURCE specification is present, signify-
ing that there is no compilation or assembly in this
application, Process Control returns to Job Control,
which calls the Loader to load from the System Input
Unit. If the co, MAP, LoGIC, or DLOGIC specifications
are not present, no loading is to be performed, so no
load file is created.

Component Control Cards

$IBFTC CARD

Process Control sets the Input/Output Editor controls
for FORTRAN 1v compilation and calls the FORTRAN IV
Compiler (1Brrc). The ForTRAN 1Iv Compiler must call
the Input Editor to get this control card, which must
immediately precede every FORTRAN 1v source deck.
Process Control automatically calls the Assembler to
assemble FORTRAN 1v Compiler output, if the error
level permits assembly. '

$IBCBC CARD

Process Control sets the Input/Output Editor controls
for a coBoL compilation and calls the coBor. Compiler
(1BcBc). The cosoL. Compiler must call the Input Edi-
tor to get this card, which must immediately precede
every coBoL source deck. Process Control automatical-
ly calls the Assembler to assemble coBor Compiler
output, if the error level permits assembly.

SIBMAP CARD

Process Control sets the Input/Output Editor controls
for a MaP assembly and calls the Macro Assembly
Program (1BMAP). The Assembler must call the Input
Editor to get this control card, which must immedi-
ately precede every symbolic deck.

SIBLDR CARD

Process Control adds this control card and either the
object deck following this control card or its com-
plement object deck (on an alternate input unit) to
the load file, if the program is to be loaded. If the
LIBE specification is found on this control card, only
the srBLDR card is added to the load file. A siBLDR card
is the first card in the output deck of the Assembler.

Optional Cards

$ID CARD

This control card causes Process Control to transfer
to the installation accounting routine (sysmr) for ac-
counting purposes.

$IEDIT CARD

Process Control uses the variable field of this control
card to set input specifications for the application. It
may appear in any group of control cards, and the
specifications remain in effect for the remainder of the
application unless reset by another stEpIT card.

$OEDIT CARD

Process Control uses the variable field of this control
card to set output specifications for the application.
It may appear in any group of control cards, and the
specifications remain in effect for the remainder of the
application unless reset by another soEprT card.

$* CARD

No action besides printing on-line is taken for this
control card. It may appear in any group of control
cards.

SPAUSE CARD

Processing halts. The Start button must be pressed to
proceed.

SENDREEL CARD

A reel switch is performed between System Input
Units sysiNt and sysing. This control card must be pre-
ceded by a file mark. This control card is recognized
only by the Input/Output Editor and the Minimum,
Basic, and Labels levels of 10cs.

Specification Scan

A specification scan may take place if a recognized
control card has options that can be specified. Process
Control looks for specifications only on sIBJOB, $IBLDR,
steprt, and soEpIT cards. Specifications on SIBFTC,
siecBc, and stBMAP cards are scanned by the compo-
nent program. Scanning begins in column 16, and ends
when a blank character is encountered. Each set of
characters terminated with a comma, or a blank in

the case of the last set, is treated as a specification.
The specification is matched against a dictionary, and
the proper bit or location is set if a matching entry is
found. Unrecognized specifications are ignored in all
cards but the smEprt and soepit cards. If an unrecog-
nized specification is found on either of these cards,
an error message is given. If specifications are not
found on a control card, the standard of the installa-
tion is assumed.

IBJOB Processor Maintenance Cards

$DUMP Card

The spump card causes specified portions of system
records to be dumped. The format of this control card
is as follows:

1 6 8 16

$DUMP n cxxxxx locl/loc2, loc3/loc4, . ..

where n is a digit that designates whether the output
is to be single-spaced or double-spaced. A 1 in column
6 designates single-space output. Any digit greater
than 1 designates double-spaced output. If this field
is omitted, the output is single-spaced.

The field starting in column 8 contains an alpha-
meric character (c¢) and a five-digit number in octal
notation (xxxxx) that specifies an absolute location.
The alphameric character is the sixth character of the
name of the system record whose loading causes a
dump request to be inserted. The dump occurs imme-
diately before the instruction at location xxxxx is
executed.

The field starting in column 16 contains the limits
of those portions of core storage to be dumped. Each
portion of core storage is specified by two five-digit
numbers in octal notation. The lower limit is specified
first, and is separated from the upper limit by a slash.
Consecutive sets of limits must be separated by com-
mas. The first blank encountered in the variable field
designates the end of the control card. If it is desired
to extend the variable field, another spump card that
specifies the same system record character and loca-
tion may be used. The portions of core storage are
dumped in the reverse order of their appearance on
the card. The spump card specifications are effective
only for the application in which they occur.

The first spump card that is read causes the dump
routine (jpump) to be loaded into core storage start-
ing at (76237)s. If an accounting routine is in core
storage, it is overlaid by the dump routine, and loca-
tions sysir and syspm in the communications region
of the Nucleus are reset. The upper core limit in lo-
cation 1BJjcoR in the Processor Monitor is set to
(76236)s.

Systems Programmer’s Information 43

RESTRICTIONS ON DUMP REQUESTS

Dump requests have the following restrictions:

1. Certain system records (1BjoB, JpUMP, IBJOBSB,
and 1BJoBC) are in core storage when dump requests
are made. A spump card specifying any of these rec-
ords has no effect. A dump request may, however, be
inserted into any location in core storage, including
the areas occupied by these records. For example,
when the system record 1mBMaPy is called into core
storage, a dump request may be inserted in IBJOB
Processor coding by specifying J11526, starting in
column 8 on the spump card.

If system record 1BMAP] were called into core stor-
age more than once after the soump card is read, a
loop would occur. This is due to the method used for
inserting dump requests. This method is described in
item 4.

2. Dump requests may not be inserted in 10cs cod-
ing or in Output Editor coding, since the dump rou-
tine uses 10cs and the Output Editor for processing
output. If dump requests are inserted in these areas,
a loop occurs.

3. The system record IBLDRQ cannot be dumped,
since this record occupies the same area of core stor-
age as the dump routine.

4. Dump requests may not replace Tsx instructions
that are followed by parameters; they may not replace
instructions that are modified in any way; and they
may not be inserted within caLL macros. These re-
strictions are due to the method used for inserting
dump requests. The method is as follows:

a. The instruction at the location (xxxxx)s speci-
fied on the spump card is saved in a table con-
tained in the dump routine.

b. A transfer to the dump routine is placed in the
specified location.

c. When the transfer is executed, the specified
portions of core storage are dumped.

d. The instruction that was saved is placed in the
following sequence:

Loc instruction

Loc+1 TRA xxxxx -1
Loc+2 TRA xxxxx+2
Loc+3 TRA xxxxx-+3

e. When the dump is completed, control is trans-
ferred to location Loc.

$PATCH Card

This control card is used to insert temporary patches
in system records, thereby eliminating an unnecessary
system edit run. The format of this card is as follows:

1 8 16
$PATCH CXXXXX instrl, instr2, . . .

44

where the field starting in column 8 contains an alpha-
meric character (c¢) and a five-digit number in octal
notation (xxxxx) that specifies an absolute location.
The alphameric character is the sixth character of the
name of the system record whose loading causes a
patch to be inserted. The patch is inserted starting at
location xxxxx.

The field starting in column 16 contains twelve-digit
octal instructions that are to be loaded into core stor-
age starting at location xxxxx. Consecutive instructions
must be separated by commas. The first blank encoun-
tered in the variable field designates the end of the
control card. Only four octal instructions may be
placed on one spaTcH card.

RESTRICTIONS ON PATCH REQUESTS

Patch requests have the following restrictions:

1. System records 1BjoB, jpumP, 10CSB, 1BjOBB, and
1BjoBC cannot be patched directly. Another system
record must be called, using the sixth character of the
system record name. Location xxxxx can then be in the
area occupied by one of these records.

2. System record 1BLDRQ cannot be patched, since it
occupies the same area of core storage as the dump
routine, which contains the patch routines.

Error Procedures

When the ForTRAN Compiler, the cosor. Compiler, or
the Assembler returns to Process Control, an error
word must be left in the accumulator. If no error was
detected by the subsystem, the accumulator address
and decrement are zero. A suspected machine error
is indicated by a nonzero decrement, and a source
error is indicated by an error level number in the ad-
dress. This error level number determines the error
procedure used by Process Control, as follows:

LEVEL PROCEDURE
1 Assemble, if the return is from the FORTRAN or
cosoL Compiler, and allow loading if requested.
2 Assemble, if the return is from the FORTRAN or

cosoL Compiler, but do not allow loading.

3 or greater Do not allow assembly or loading.

If no source errors are indicated, a machine error
indication causes Process Control to print a message
on-line specifying the possible operator options and
then to pause.

The options are to retry the application, to go on
to the next application, or to go on to the next job.
The operator must specify one of the options and
press START. If the retry option is chosen, the System
Input, System Output, and System Peripheral Punch
Units are returned to the positions that they were at
at the beginning of the application and control is re-

turned to the control card search routine. No alternate
input or output units are repositioned by Process Con-
trol.

If a source error of level 2 or greater is indicated,
Process Control does not allow execution of the pro-
gram or retry options, but goes on to the next control
card, regardless of whether or not a machine error
accompanied the source error.

Error Messages

ILLEGAL BCD DATE IN BASIC MONITOR DATE CELL.
ENTER CURRENT DATE IN KEYS (MMDDYY) AND
HIT START.
This message occurs in IBJOB initialization if location
SYSDAT in the System Monitor does not contain a legiti-
mate date. The operator should enter the current date,
in BCD, into the keys and press START.

ACTION LABEL INCORRECT.
This message will occur if an argument to action, sent
by some part of the system to cause positioning or read-
ing of the system unit, does not match any action table
entries.

PATCH TABLE HAS OVERFLOWED.
This message occurs if more than 50 table words have
been gencrated because of $SPATCH cards. Table words
are generated as follows: one word is necessary for each
$PATCH card and an additional word is necessary for
each patch word on the card.

DUMP TABLE HAS OVERFLOWED.
This message occurs if more than 29 table words have
been generated because of $DUMP cards. Table words
are gencrated as follows: one word for each $DUMP
card, plus an additional word for each set of dump
limits on the card.

EOT ON INTERMEDIATE UNIT OR EOB EXIT. ERROR

CONDITION.
This message occurs if the system Input/Output Editor,
while trying to write an input/output unit, receives a
signal from IOCS that an end-of-buffer condition exists.
If the unit is 1301 Disk Storage the condition is caused
by exceeding the cylinder limits specified for the system
function.

PREST CARD CKSUM ERROR. SEQUENCE NUMBER N.
This message occurs if, while processing a Prest deck, a
check sum error is detected. Processing will continue.

PREST CARD SEQ ERROR. SEQUENCE NUMBER N.
This message occurs if, while processing a Prest deck,
an error in the sequence of cards is detected. Processing
will continue.

PREST CARD FIELD ERROR, SEQUENCE NUMBER N.
This message occurs if, while processing a Prest deck,
an crror is detected in the field or string count.

XXXXXX HAS NO UNIT ASSIGNED. CANNOT PROCEED.
This message occurs if the system output unit or the
system input unit has no unit assigned when the IBJOB
Processor gains control.

XXXXXX HAS NO UNIT ASSIGNED. RESTRICTED USAGE
OF IBJOB IS POSSIBLE.
This message occurs if the system peripheral punch or
one of the system utility units (SYSUTI1, SYSUT2,

SYSUTS, or SYSUT4) has no unit assigned when the
IBJOB Processor gains control.

IBJOB VERSION N HAS CONTROL.
This message occurs each time the IBJOB Processor
gains control from the System Monitor.

ON-LINE PRINTER AND PUNCH MAY NOT BE AT-

TACHED AS SYSOU1 AND SYSPP1. CANNOT PROCEED.
This message occurs if either the system output unit or
the system peripheral punch has been assigned to on-
line equipment.

LINES OUTPUT.
This message occurs following each Processor applica-
tion. Machine or system failure has occurred. To retry
this p/a, press START. To continue this p/a, press
START with key ‘S’ down. To delete this p/a, press
START with key " down.

ONLY SYSIN1, SYSOUl, AND SYSPP1 WILL BE RE-
POSITIONED FOR RETRY.
This message occurs if machine or system failure is
detected by some portion of the IBJOB Processor.

MACHINE OR SYSTEM FAILURE HAS OCCURRED. RE-

TRY IS IMPOSSIBLE. THIS JOB WILL BE CONTINUED.
This message occurs when machine or system failure is
detected and if the system input unit is a card reader
or if end-of-tape was encountered during the job.

THS JOB WILL BE CONTINUED.
This message occurs if the option to continue is chosen.

REMAINDER OF JOB DELETED.
This message occurs if the option to delete the re-
mainder of the job is chosen.

ASSEMBLY DELETED.
This message occurs if an error in compilation has oc-
curred such that assembly cannot be attempted.

ERROR IN ALTER DECK.
This message occurs when a deck has been altered and
an error detected (unused Alter cards, end of file or re-
dundancy while reading Alter cards, or a scan error in
an alter card).

BINARY RECORDS (S) ENCOUNTERED WHILE
SEARCHING FOR CARDS.
This message occurs when binary records are encoun-
tered by the IBJOB Monitor outside of the limits of an
object deck.

UNRECOGNIZED OPTION ON ABOVE CARD.
This message occurs when an unrecognized option is
encountered on a control card.

SYSXXX IN USE. PROCEEDING TO NEXT P/A.
This message occurs when SYSXXX has been requested
on either a $IEDIT or $OEDIT card, and it is currently
in use due to a previous $OEDIT or $IEDIT card.

SYSXXX NOT ASSIGNED. PROCEEDING TO NEXT P/A.
This message occurs when SYSXXX has been requested
on either a $IEDIT or $OEDIT card, and no unit is
assigned to the function.

ABSMOD ASSEMBLIES CANNOT BE LOADED.
This message occurs when the ABSMOD option is en-
countered on a $IBFTC, $IBCBC, or $IBMAP card,
and loading is requested.

THIS DECK CONTROL CARD CANNOT BE PROCESSED.
IT MUST APPEAR IN TABLE SSTAB.
This message occurs when a recognized subsystem con-

Systems Programmer’s Information 45

trol card is encountered and the ‘SYSTM’ routine is not
set up properly for the subsystem.

ERROR READING OBJECT DECK.
This message occurs when a redundancy on the system
input unit occurs while transferring an object deck to

the load file.

LOADING HAS BEEN SUPPRESSED.
This message occurs when loading has been requested
and cannot be performed.

NO PROCESSING THIS P/A.
) This message occurs when a processor application con-
tains no deck or $IBLDR card with the LIBE option.

RETURNING TO IBSYS.
This message occurs when the IBJOB Processor is re-
turning control to the System Monitor.

SCHF OPTION INVALID IF SYSINX IS DISK. PROCEED-
ING TO NEXT P/A.
This message occurs when SCHF is requested on a
$IEDIT card and the system unit function requested for
the search is a disk.

PERMANENT REDUNDANCY WHILE READING CON-
TROL CARDS. THIS P/A CANNOT BE CONTINUED.

#aawas CARD WITH CORRECT DECK NAME NOT
FOUND.
This message occurs when alternate input is requested
and the deck requested cannot be found.

PERMANENT REDUNDANCY OR EOT WHILE READING
ALTERNATE UNIT.

INCORRECT DECK SET UP. EOF ENCOUNTERED BE-
FFORE *ENDAL.
This message occurs when Alter cards on the system
. input unit are being transferred to (SYSUT2), and an
end of file is encountered before an *ENDAL card.

REDUNDANCY WHILE READING ALTER CARDS. THIS
DECK CANNOT BE PROCESSED.
This message occurs when a read redundancy occurs

while moving Alter cards to the system utility unit
(SYSUT2).

EOB OR EOT CONDITION., DECK CANNOT BE PRO-
CESSED.
This message occurs when an indication of end of
buffer or end of tape occurs while transferring Alter
cards to the system utility unit (SYSUT2).

$IBJOB CARD MISSING.
This message occurs when any control card is en-
countered before the $IBJOB card for the processor
application is encountered.

ALTER FIELD ERROR, COMMA TREATED AS BLANK.
This message occurs when a comma is encountered in
columns 1-6 or when a field is written (A*ALTER B.

C,). In the latter case, the last comma is treated as a
blank.

ALTER FIELD ERROR, CARD AND INSERTIONS IG-
NORED.
This message occurs when comma or blank is en-

countered in column 16 or when a field is written
(A*ALTER B, ,) or (A*ALTER B,).

EOF OR REDUNDANCY IN ALTER FILE.
This message occurs when end of file or redundancy is
encountered by the alter routine while trying to read
Alter cards from the system input unit or the system
utility unit (SYSUT2).

46

IBJOB SYSTEM SPLIT BETWEEN TWO CHANNELS IS
ILLEGAL PROCEED TO NEXT JOB.
This message occurs when the IBJOB Processor is split
into two units, and they are mounted on two different
channels.

Loader Information

The information contained in this chapter consists of
additional reference material pertaining to the Loader.
The material can be helpful for a complete under-
standing of the Loader; nevertheless, this material
only supplements the information on the Loader in the
section “Programmer’s Information.”

Organization of the Loader

The Loader is composed of an Initialization section
and of five other sections which perform operations
necessary to load an object program. These sections
are controlled by a load supervisor. The load super-
visor is an internal supervisor that is an integral part
of the Loader. The initialization section of the Loader
receives control from the load supervisor and is respon-
sible for the following:

1. Transferring to the installation accounting rou-
tine to record the fact that the Loader is in control.

2. Obtaining units for the Loader to use, defining
buffer pools, attaching files to these pools, and opening
the files.

3. Scanning the siBjoB card and storing parameters
obtained from it into its communication region.

At the conclusion of the above operations, cortrol is
transferred to the load supervisor, which loads Section
1 of the Loader.

The principal task of Section 1 is the processing of
control information (control cards, control dictionary,
and file dictionary). Section 1 converts this information
into a form which is more easily handled by Sections
2 through 5.

Input to Section 1 consists of a file containing a mix-
ture of control information and relative binary text.
This file may be on the System Input Unit, or it may
be the load file if compiler or Assembler source input
is part of the job. The load file, prepared by the Input/
Output Editor of the Processor Monitor on the System
Utility Unit (sysut2) from the deck outputs of com-
pilations or assemblies performed in the job, is merged,
by the Processor Monitor, with any binary decks pro-
vided as part of the job.

After the processing of Section 1 is completed, con-
trol is relinquished to the load supervisor, which ini-
tializes the next section of the Loader.

Section 2 of the Loader is concerned with the logical

cross-referencing problems of multiple source decks
and their required subroutines from the Subroutine Li-
brary, and with overlay analysis. It processes the con-
trol information tables that are built by Section 1 and
builds up the object program file blocks from the sFILE
cards stored in that control information storage block.

The principal task of Section 3 is to provide unit as-
signment for the object program; to give absolute lo-
cation assignments to each program deck, each sub-
routine, and the control sections of both; to apportion
the unused part of core storage as input/output buffers
for the object program; to generate the 10cs calling se-
quences to define those buffer pools; and to provide a
map of the complete object program core storage use.
(The map feature of the Loader provides an outline-
like picture of the assignment of core storage to the
object program).

The input/output unit assignment provides for ab-
solute channel, symbolic channel, and between-appli-
cation symbolic or reserve channel specification of in-
put/output devices. Provision is also made for absolute
assignment of disk areas, drum areas, and Hypertape
drives. If necessary, file mounting instructions to the
operator are printed by Section 3.

Section 4 of the Loader is read into the core storage
area occupied by Section 2. Its main function is to form
the final, absolute instructions from the relocatable bi-
nary text of the input program and from any subrou-
tine on the library unit which is required by the pro-
gram,

The input to Section 4 consists of the relocatable bi-
nary text of both the input program and subroutines.
Input program text may appear as follows:

1. In an internal file.

2. In an internal file and on the System Utility Unit
(sysuts) — the source text overflow tape, or

3. On the System Utility Units (sysuT3 and sysuT4)
— the internal text overflow.

Subroutine texts are read from the Subroutine Li-
brary tape and are processed in the same manner as
program texts. Subroutines are called as determined by
their appearance in the required Subroutine Name Ta-
ble that was formed by Section 2 of the Loader.

The final text is put into an internal file, and onto
the System Utility Unit (sysuri) if necessary, for pre-
execution loading by Section 5 of the Loader. For over-
lay applications, output can also be on one of the Sys-
tem Library Units. A call to the program to be exe-
cuted first is generated according to the sEnTRY card
or, in its absence, to the section whose name is
o > or, in its absence, to the first program deck
encountered.

Section 5, the final phase of the Loader, loads the
processed absolute program text into its proper core

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

storage locations and prepares for its execution. The
lower half of the program area is set to strs, and the
absolute text contained in the internal file in the upper
portion of core storage is scatter-loaded into this lower
half. The internal file area is then set to strs. Absolute
text will not be loaded above the locations required by
Section 5 for loading the overflow text appearing on
the System Utility Unit (sysuri). At the completion
of the program load, the function of the Loader ends
and control is transferred to the generated initialization
instructions.

Relocatable Binary Program Deck

A relocatable binary program deck consists of relocat-
able binary text, the control dictionary, and the file
dictionary. This section defines the deck order and for-
mat of the relocatable binary text, the control diction-
ary, and the file dictionary.

Binary Card Format
The following column binary card form is used:

Word 1 S, 1 11 (examine bit 3)
2 check sum control bit
0 = verify check sum
1 = do not verify check sum
3 0 (standard IBJOB Processor deck)
4 0 (Loader or relocatable deck, not
Prest)
5-7 deck type
8-12 01010
13-17 word count (beginning with word 3)
21-35 card sequence number
Word 2 S, 1-35 logical check sum of word 1 and all

data words on the card

Words 3-24 S, 1-35 data

Binary Card Sections

A binary program deck is composed of three sections,
each prefaced by an alphameric source card identify-
ing the section type. The deck format, exclusive of con-
trol cards, is as follows:

COLUMN 1 COLUMN 8
$FDICT DECKNM

Binary File Dictionary

$TEXT DECKNM

Relocatable Binary Text
$CDICT DECKNM

Binary Control Dictionary
$DKEND DECKNM

Each section of the binary deck (e.g., the control
dictionary) and text is sequenced independently, be-
ginning with sequence number 0. Within any section,
the cards must be in proper sequence and the sections

Systems Programmer’s Information 47

IBM E1391 100n12x20 cal—ro-mark—9185—wb-3

themselves, if present, must be in order by deck type.
The deck type codes, which appear in word 1, bits 5-7,
are:

File Dictionary 001

Text 010

Control Dictionary 011

The entire binary portion of the program deck is

limited by the sFpict and spkEND cards.

Relocatable Binary Text

Words 3, 4, and 5 of the text card are used for up to
nineteen 5-bit control groups, one for each subsequent
data word on the card. The sign bits of these control
words are not used, and the control groups are given
in sequence, up to 7 groups per word. Although the
card form is column binary, a row binary example is
shown for clarity in Figure 16.

12 Data Word 18 Data Word 19
1

5

6 Data Word 2 Data Word 3

7
7 15[. | . [R18]R19ococo Data Word 1
7%

3%!21;22... A7 L L2 A I A 3V
9| 9.=Card Controls 9g=Check Sum

Figure 16. Relocatable Binary Card

The first bit of each control group is used to dis-
tinguish between two basic word types:
1 standard data word
0 special entry

STANDARD DATA WORD

The 5-bit control group is of the form 1 aB cp, where:
AB = 00 constant decrement
= 01 relocatable decrement
= 10 the decrement is a dictionary refer-
ence (the decrement further defines
which type)
= 11 the decrement is represented by a
complex expression
cp has the corresponding code values describing the
address. The prefix and tag of a standard data word
are constant.
Constant and Simple Relative: The codes 00 and 01
indicate that the field is constant or relative to the pro-

48

gram origin, respectively. If the field is constant, no al-
teration occurs. If the field is relative, a scan is made
for its value in the Control Break Table which is
formed from the control dictionary of this deck. If that
relative location is found, the control dictionary will
assign the base to be added; if that relative location is
not found, the origin assigned to this deck will be used
as the addend. As an example, consider the following
instructions, where:

A is relative 100

B is relative 163

SYMBOLIC RELOCATION BITS DATA WORD
CLA A 10001 0 50000 0 00100
ADD A+1 10001 040000 0 00101
TXH B, 4, A 10101 3 00100 4 00163

Dictionary References: Dictionary references are de-
noted by a relocation code of 10. The data field of each
of these references is a 15-bit code. The high-order bits
of the 15-bit code are used to distinguish between
types of reference, whereas the low-order part of the
field gives the reference number. The reference type
codes are:

0000° Control dictionary reference, followed by 11 bits giv-

ing the relative location of an entry in the deck
control dictionary.

0001 File reference, followed by an 11-bit file index num-
ber.

0011 These codes are not assigned.

10

11

As an example, consider the following instructions,
where the symbol A is the sixth entry in the control

dictionary and the file AFiLE is the eleventh file of this
deck:

SYMBOLIC RELOCATION BITS DATA WORD
CLA A, 4 10010 0 50000 4 00006
PZE AFILE 10010 0 00000 0 04013

Complex Fields: The decrement or the address, or
both, of a data word can be represented as a coriplex
expression requiring evaluation at load time. A field re-
quiring such evaluation is given a relocation code of
11. The expression to be evaluated may then be ex-
pressed in one of two ways:

1. The field equals zero (Long Form Complex).
This expression form consists of a string of one or more
words, each with a corresponding control group, fol-
lowing the data word. If both the decrement and ad-
dress are complex, the decrement occurs first.

Each word of a complex expression has the following
form:

OP A,B,C
where:
OP = PZE+
= PON-—
= PTW®
= PTH/

The relocation bits within the expression have the
same format as that of a standard word except that the
11 code is changed to designate a result storage lo-
cation. Seven such result storages (0, 1,. ..., 6) are
used for intermediate results during the evaluation of
a complex expression. A word in a complex expression
is interpreted as follows:

A (6)3

C—— B

where B is the result storage location into which the
result is to be placed, The complex expression is ter-
minated by a word for which B=7. As an example,
consider the following instruction:

CLA 6°TABLE-+2°TABLE+3

where TABLE is a control section whose location is to
be assigned by the Loader.

Assume that the control dictionary name for TABLE
is “TaBLE” and that it is the fifth entry in the control
dictionary. The instruction would appear as follows:

RELOCATION
BITS DATA WORD
10011 0 50000 0 00000
10010 2 00006 1 00005 TABLE*6 —R:
10010 2 00002 2 00005 TABLE*2 —>R.
11111 000001 1 00002 R:4+Ri — R,
11100 000001 7 00003 3+R; ————Address

of data

2. The field is not equal to zero (Short Form Com-
plex). This form may be used to express complex fields
of the following form:

NAME =+ C

where NAME is the external name of the control section.
The 15-bit field is formed as follows:

Bit 1 O, C is added.
1, C is subtracted.

relative location of NAME in this deck’s control
dictionary. As many bits are used as are required to
express the total length of the control dictionary;
e.g., if CDICT contains 16 entries, then 5 bits would
be used, i.e., bits 2-6.

Bitsn-15 A (15—n-1)—bit constant to be added to, or sub-
tracted from, the location assigned to the referenced
name. Note that the Long Form Complex may have
to be used if the length of the control dictionary
plus the length of the addend exceeds 14 bits.

As an example, consider the following instruction:

CLA COMMON + 50, 1
where coMMoN is a control section whose length is 50.

coMMON is the control dictionary name and is the
eighth entry in a 26 entry control dictionary.

Bits 2-n

RELOCATION BITS
10011

The field 10062 is interpreted as follows:
12 67 15

0 01000 000110010
+ 8 50

DATA WORD
050000 1 10062

Special Entry Word

Special entries are used to specify origins, Bss’s, VFD’s,
and other Loader controls. All special entry codes are
of the following form:

0 SSSS
where the four bits ssss specify the type of special
entry:
00000 End of card; no data word is associated with this
entry.
00001 Location counter control; the data is of the following
form:
OP A, , relative location (NOTE 1)
where:
OP = PZE A is an absolute origin (NOTE 2)
OP — PON A is relative origin (NOTE 2)
OP = PTW BSS of length A
OP = PTH EVEN pseudo operation
OP = MZE A is a dictionary origin in complex format

(NOTE 1)
NOTE 1: Relative location of this instruction as it ap-
pears in the listing (op = MzE).
NOTE 2: Origins are an integral part of text; each card
does not carry its relative load address.

CALL expansion follows; the data word is of the
form PZE 0. This text code and its data word are
required for the overlay mechanism of the Loader.

0 0010

0 0011—
0 0111

0 10VV

are left open for expansion.

VFD expression; the Loader assembles a string of
bits or words which contain constants, relative lo-
cations, dictionary references, and complex ex-
pressions which do not necessarily fall in the nor-
mal boundaries of address or decrement.

Each data word which corresponds to a VFD
control group specifies one field of the VFD ex-
pression and specifies whether a word should be
terminated. The data word general format is:

S 1 56 35

T bit count Data
=n

24
N Bits

The assembly continues in the same machine word
or words (across machine word boundaries).
The current machine word is terminated and filled
with zeros in the unused right positions.

Specifies that the rightmost n bits of this word are
to be inserted into the generated string (sce VV
codes 00 — 11).

VFD, n bits are absolute and are to be inserted
into the string.

VFD, the address of a data word, is a relative lo-
cation. It is relocated as any other relative (01)
field and is substituted for a 15-bit address. Right-
most n bits are then inserted into the VFD string.
VFD, the address of a data word, is a dictionary
reference. It is evaluated as any dictionary refer-
ence (10) field. The action is the same as with
VFD type O1.

VFD, the address of a data word, conforms to the
rules for complex expressions; after evaluation, the
substitutional action is the same as with VFD type
01.

0 10 10

010 11

Systems Programmer’s Information 49

RELOCATION
VFD EXAMPLES BITS DATA WORD
VFD H30/ABCDE 01000 76 2122232425
VFD H36/ABCDEF 01000 36 2122232425
01000 46 0000000026
VFD 15/A, 06/47, 15/B+2 01001 17 0000000103
01000 06 0000000047
01011 57 0000003002

assume relative location A = 103
assume dictionary location B = 3
assume dictionary size = 25

01100 are left open for possible expansion.
01110
01111 end of text; the address of the corresponding data

word contains the relative location of the first
instruction to be executed if this deck is named
on a $ENTRY card.

Control Dictionary

The control dictionary defines, in a deck, procedure
and/or data areas which may be deleted, replaced, or
referred to by other program segments which have
been separately assembled or compiled. Each entry in
the control dictionary supplies an external reference
name, its relative location to the origin of the program,
and its length. The control dictionary format is:

word 1 = BCI 1, EXNAME
word 2 = PFX L,,N
PFX = PZE The section is a real section (it exists in
this deck).
= PON The section is an EVEN pseudo-opera-
tion; the length always equals 0; EX-
NAME is zeros.
= PTW The section is a virtual section (only ref-
erences to the section appear); hence,
the section must be defined at load time.
L= The relative location of the beginning of

a control section. It is equal to zero if
PFX is equal to PTW.

N = The length of a control section. It may
be equal to zero.
All cards except the last must be full.
Control dictionary entries are ordered by increasing
relative location and, within this, by decreasing length.

FORMAT PREFACE ENTRY

The first entry in the control dictionary is a special
entry giving the location of the first executable instruc-
tion, the program length, the machine to be assembled
on, and the size of the control dictionary (power of 2
is given). The contents of the two words are:

PFX X,,N
PZE P,, MACH

X = The relative location of the first executable
instruction.

N = The program length.

P — The power of 2, which includes the number

of entries in this control dictionary.

50

MACH = 0, assembled for 7090.
= 4, assembled for 7094 (may not be run on
7090).
PFX = PZE Normal relocatable deck.
= MON Deck contains no relative origin.

X is taken as the absolute location of this
deck.

File Dictionary

The file dictionary, if present, is used to validate the
contents of the Loader-generated file block and the as-
signment of each file to a buffer pool; to transmit the
name of a nonstandard label section to 10cs; and to pass
the 18-character file name through to the Loader, so
that correspondence can be determined between the
file index numbers used in text and the file names used
by the programmer. File type, mode, allowable in-
put/output units, and blocking requirements are those
items which are unchanged by the generated object
program; hence, they are recorded in the file dictionary
to ensure that the programmer does not change these
through modification of sFILE cards.

CARD FORMAT
Five words of text are required for each file referred
to in a program.

Word 1 standard 9L format, deck type 001
Word 2 check sum
Words 3-7 file check entry i
Words 8-12 file check entry i-+1
etc.
etc.
etc.
Words 23-24 not used
One card contains 20 data words located in words 3
through 22.

File Dictionary Entry Specifications: The format of
the five words is:

WORDS BITS CONTENTS
1 S If = 1, mixed mode file
1 If = 1, last FDICT entry
2-5 0
6 If = 1, binary mode, if = 0, BCD mode
7-8 If = 00, input
If = 01, output
If = 10, input or output
If = 11, checkpoint
9-14 0
15-17 If = 001, card equipment only
If = 010, 729 magnetic tape, disk, or
Hypertape
If = 011, any input/output device
If = 100, Hypertape only
18-20 If = 000, n = block size
If = 001, n = block size
If = 010, block size is a multiple of n
21-35 n
2 If = 0, standard labels (if any)
If £ 0, external reference name of non-
standard label routine
3-5 18-character file name

Library Search

A Subroutine Library search procedure is initiated by
the Loader if any virtual control section has not been
defined after all object program control dictionaries
have been processed.

The Subroutine Library consists of two files on a
specified System Library Unit (it may be the same
unit as the Loader). The first file contains two lists and
the control part of each subroutine.

List 1: This is a list of all real control section names
appearing in the Subroutine Library. Each control sec-
tion name appearing in the list is unique. Associated
with each entry in this list is a position in the second
list (dependence list) and the name of the subroutine
in which this control section appears. Each entry also
contains the record number giving the subroutine’s po-
sition in the control information and text files.

List 2: The dependence list contains, for each entry
in the control section name list, a table showing the
control] sections which must be loaded for execution of
this control section. Therefore, a given control section
is said to be dependent upon those control sections
whose names appear in the corresponding dependence
list portion. Multilevel dependency is allowed (i.e., the
dependent sections of each item in the dependence list
are called with the original dependent subroutine).

Because equal names of control sections cause de-
letion of all but one of the control sections in the ob-
ject program, it is possible for an object program to in-
clude a control section which will be used by a library
subroutine. This is done by specifying, in the object
program, a control section name that is the same as
the name which appears in the dependence list. Con-
versely, care must be taken in specifying control sec-
tion names, both in object programs and in library sub-
routines, to avoid inadvertently causing this replace-
ment. As a means of expressing dependency, this string
of control section names is written using the following
conventions:

1. One half-word (18 bits) is used for each entry.

2. Each dependency list is punctuated by a 3-bit
operation code (prefix and/or tag).

OCTAL
0 [Beginning of dependency list
4] End of list
2 , Separator

3. Each dependency list contains 15-bit index ref-
erences to the real section name list (List 1) for each
required name. Each 15-bit index reference appears in
either the decrement portion or the address portion
of a word, with an operation code (3 bits) preceding
it in the prefix or tag, respectively.

The first library subroutine file also contains the con-
trol dictionaries for all the subroutines. It may also

contain Loader control cards and the file dictionaries.
A sBLDR card must precede each control dictionary.
Any of the following control cards may appear after
the siBLDR card if a subroutine requires their use: sFILE,
SLABEL, $POOL, OT $GROUP cards.

If a file dictionary is included, it must appear after
these control cards and must be immediately preceded
by a sFpicT card.

List 1, containing the subroutine name and its asso-
ciated record numbers, is used to locate a particular
subroutine on tape, and is used to compute a track ad-
dress when the Library is on disk.

The second library subroutine file contains the rela-
tive binary text for all library subroutines. Each rela-
tive binary text deck is preceded by a sTEXT card and
followed by a spkEND card.

The use of the above format for the Subroutine Li-
brary permits rapid acquisition of needed subroutines
without multipass searching of the library unit.

Even Storage Feature

Because of the 7094 machine requirements for the
storage of double-precision floating-point operands in
successive locations (the first part of the number hav-
ing an even machine location) and because of the in-
creased efficiency which may be gained by placing cer-
tain instruction sequences in even or odd locations, the
Loader provides a technique to ensure that an even
storage location is assigned to specified data or instruc-
tions. The specification of even storage for data or in-
structions is accomplished by the use of the BMaP
EVEN pseudo-operation.

The EVEN pseudo-operation causes the generation of
an entry in the control dictionary, specifying a control
section of zero length that has the special name of all
zeros. Except in an absolute assembly, the assembly
process should not generate any data to force an even
relative location counter.

Since each EVEN control dictionary entry now repre-
sents a point where an even absolute location must be
assigned, the Loader may now expand that control sec-
tion to length 1 if it is necessary to force an even lo-
cation. In addition to the generation of a zero length
control section, the EveN pseudo-operation causes the
placement of an EVEN entry in the binary text.

Upon encountering this text entry, the Loader gen-
erates an axt 0, 0 instruction if the current absolute
location is odd. Since no reference in text can ever ap-
pear in the EVEN control section, generation of the axt
does not affect the execution of the program. Since the
AXT instruction, if generated, always occupies odd stor-
age, its execution is normally free.

Systems Programmer’s Information 51

There are certain instances in which the programmer
may encounter difficulty when using the EveN storage
pseudo-operation. The most frequent usages are: in-
dexing through an array containing an EvenN pseudo-
operation; and not computing the length of a block of
data containing EvEN pseudo-operations by subtracting
the symbolic location of the first item from the location
of the last. Since the Loader may generate AXT instruc-
tions, the length of blocks of data and/or instructions
may change, being dependent on the origin assigned
to the program and on the actions taken upon the con-
trol sections preceding the EvEn pseudo-operations.

Format EVEN Control Dictionary Entry

word 1 BCI 1, 000000
2 PON R,,0

R is the relative location which must be assigned an
even absolute location.

Format EVEN Text Entry
RELOCATION BITS DATA WORD
0 0001 PTH A
A conforms with the 15-bit code for control diction-
ary references (such as 10) and refers to the correct
EVEN control section.

EVEN Program Example

REL LOC RELOCATION

CTR

BITS

OCTAL

SYMBOLIC

100 0 00 01 3 00000 0 00004 EVEN

100 1 00 01 0 60000 O 00026 STZ A4
101 1 00 01 2 00001 4 00100 TIX ®1,4,1
102 1 00 00 0 00000 0 00000 HTR O

103 0 00 01 3 00000 O 00005 EVEN

103 0 00 01 2 00000 0 00002 BSS 2

If the program origin assigned by the Loader is even,
the second EVEN text entry at 103 causes the generation
of an axT instruction that moves the Bss to relative 104.
If the origin assigned is odd, the first EVEN text entry
generates an AXT instruction, moving the stz instruc-
tion to relative location 101.

ORG = 10000 ORG = 20001

10100 0 60000 0 10026 20101 0 77400 0 00000
10101 2 00001 4 10100 20102 0 60000 0 20027
10102 0 00000 O 00000 20103 2 00001 4 20102
10103 0 77400 0 00000 20104 0 00000 0 00000
10104 5 00000 0 00000 20105 0 77400 0 00000
10105 5 00000 0 00000 20106 5 00000 0 00000

20107 5 00000 0 00000

Error Messages

ABS.PROG.LD.FAILS.NO.EXEC.
Permanent redundancy occurred in loading final text
overflow tape.

A SUBROUTINE TO BE INSERTED HAS THE SAME
NAME AS AN EXISTING SUBROUTINE WHICH HAS
NOT BEEN DELETED.

52

CALL TO OBJECT PROGRAM UNDEFINED.

g*###2 CARD ENCOUNTERED, RETURNING TO
MONITOR FOR PROCESSING OF THIS CARD.
$JOB,$IBSYS,$EXECUTE,$STOP card has been read.

CONTROL DICTIONARY CONTAINS UNDEFINED
VIRTUAL.
Printed only if LOGIC is specified and the Control
Dictionary contains an undefined virtual.

CONTROL SECTION ‘###### 1§ AN UNDEFINED ENTRY
POINT.

CONTROL SECTION “#*#*##*#% REQUIRED BY
SUBROUTINE “####*#** IS VIRTUAL IN THE
SUBROUTINE LIBRARY.

CONTROL SECTION ‘“#*#*#### SpPECIFIED ON $USE CARD
WAS DELETED. TEXT ERRORS MAY OCCUR.

CYLINDER COUNT SPECIFIED EXCEEDS 250.
A maximum of 250 cylinders is permitted on a $FILE
card.

DECK “####=## DOES NOT EXIST IN SOURCE INPUT.
$OMIT ENTRY IS IGNORED.

A specification on a $OMIT card is in error.

DECK “#=###¥ DHOES NOT EXIST IN SOURCE INPUT.
SECTION RENAME IS IGNORED.
A specification on a $NAME card is in error.

DECK “*#*=### DOES NOT EXIST IN SOURCE INPUT.
$USE ENTRY IS IGNORED.
A specification on a $USE card is in error,

DECK FORMAT ERROR — PROCESSING DECK ‘#####x
A CARD SEQUENCE BREAK IN ‘®###%#® SEOQUENCE
NUMBEP\ RS E-1-2

Input deck contains an error in sequence numbers.

DECK FORMAT ERROR — PROCESSING DECK ‘##### %’

A CARD SEQUENCE BREAK IN ®*##*#* __ SEQUENCE
NUMBER LR]
THE LAST CORRECT CARD IS ®**#*#** _ SEQUENCE

NUMBER TR AR KA

DECK FORMAT ERROR — PROCESSING DECK *#®####
#usss BINARY CARD IS NOT IN PROPER PLACE.
CANNOT FOLLOW #*##%&% CARD,

DECK FORMAT ERROR — PROCESSING DECK ‘¥#####’
#ases BINARY CARD IS NOT IN PROPER PLACE. THE
LAST CORRECT CARD IS ##*##** _ SEQUENCE NUMBER

L0220

DECK FORMAT — PROCESSING DECK ‘#*##### CARD
IS NOT IN PROPER PLACE. THIS CARD IGNORED.

DECK FORMAT ERROR — PROCESSING DECK ‘##wese’
CARD IS NOT IN PROPER PLACE. THE LAST CORRECT
CARD IS *#### _ SEQUENCE NUMBER #¢¥#%#

DECK FORMAT ERROR — PROCESSING DECK ‘®#®##®
CHECKSUM ERROR — DOES NOT COMPARE IN BITS
seesssssssss THE LAST CORRECT CARD IS **®®® _
SEQUENCE NUMBER *®###%%

DECK FORMAT ERROR — PROCESSING DECK ######
pEauspsanser IS AN ILLEGAL 9L FORMAT THE LAST
CORRECT CARD IS *#**** _ SEQUENCE NUMBER

LT 22 1]

DECK FORMAT ERROR — PROCESSING DECK ‘######
TEXT ENCOUNTERED IN READING CONTROL
INFORMATION.
Subroutine library format error-text in middle of control
information part of a subroutine.

DECK **#*#** I§ ASSEMBLED FOR IBM 7094 AND
CANNOT BE RUN ON IBM 7090.

DECK NAME APPEARING ON THE ABOVE CARD DOES
NOT AGREE WITH NAME FROM $IBLDR CARD.

DECKNAME CONTAINS ILLEGAL CHARACTER OR
BLANK. A DECKNAME OF ALL BLANKS WILL BE USED.
Deck name on $IBLDR card is missing or in error.

DECK FORMAT ERROR — PROCESSING DECK (#%##%#)
DECK NAME “#####%> QN $GROUP CARD IS IGNORED.
DECK NAME “####*#% QN $POOL CARD IS IGNORED.

DECK NAME ON S$TEXT OR $DKEND CARD
UNRECOGNIZABLE.
No $IBLDR card appeared with the above name.

DISREGARD MOUNTING INSTRUCTIONS.
Printed on-line when nogo is set after file list has been
printed on-line.

END OF FILE NOT PERMITTED AT THIS POINT.

END OF TAPE CONDITION OCCURRED IN WRITING
‘SUBROUTINE LIBRARY’.
Retry subroutine edit.

ENTRY POINT SPECIFIED IS NOT IN MAIN LINK.

ERROR IN COMPLEX OPERATOR AT REL LOC XXXXX,
TEXT FOLLOWING MAY BE IN ERROR. (DECK
‘DECKNM’).

ERROR IN COMPLEX RESULT STORAGE REF AT REL
LOC XXXXX, TEXT FOLLOWING MAY BE IN ERROR.
(DECK ‘DECKNM’).

ERROR IN FILE NAME ENCOUNTERED ON A $LABEL
CARD. THE CARD WILL BE IGNORED.

ERROR IN VARIABLE FIELD OF ABOVE CARD. THE
FIELD IS IGNORED.

$ETC CARD NOT FOLLOWING S$FILE CARD WHEN
REQUIRED. ERRORS MAY OCCUR.

$FILE CARD ACTIVITY SPECIFIED EXCEEDS 99. THIS
MAXIMUM WILL BE USED.

$FILE CARD BLOCK SIZE SPECIFIED EXCEEDS 9999.
THIS MAXIMUM WILL BE USED.

FILE ‘#####azsauxs suiuss’ BAGE OF ‘BLOCK SIZE A
MULTIPLE OF IS INCONSISTENTLY SPECIFIED.
File Dictionaries from different decks (for same file)
do not agree.

FILE #####asenanasnswss CHANNEL IS ILLEGITIMATE
(EXECUTION IS NOT ALLOWED)

FILE CHECK — FILE LR -2-2-2-2-F -0 2-R-2-2:3-5:3-2-2 14
DEVIATION FROM BASE OF ‘BLOCK SIZE A
MULTIPLE OF’.
File Dictionary does not agree with $FILE card for the
same file.

FILE CHECK — FILE AE-2-2-2- 0 3-2-2-2-2-3-2-2-2-2-3-3-2 -3
DEVIATION FROM ‘EXACT BLOCK SIZE'.
File Dictionary does not agree with $FILE card for
the same file.

FILE CHECK — FILE 222202220 2022323 1 14
DEVIATION FROM FILE TYPE.
File Dictionary does not agree with $FILE card for
the same file.

FILE CHECK —_— FILE -2 2-2-2-2-R-2-3-2-3-3-1-2-3-3: 2114
DEVIATION FROM ‘MINIMUM BLOCK SIZE’.
File Dictionary does not agree with $FILE card for
the same file.

FILE CHECK _ FILE BT ERE-E-2 2208222 14
DEVIATION FROM MIXED MODE.
File Dictionary does not agree with $FILE card for
the same file.

FILE CHECK _ FILE 2222 2-R-0- 11 -2 10 A
DEVIATION FROM MODE.
File Dictionary docs not agree with $FILE card for
the same file.

FILE CHECK — FILE ‘tw#usessanancssansas
DEVIATION FROM UNIT ASSIGNMENT (CARD UNIT
NOT ALLOWED).

FILE CHECK — FILE t##eesannsepesnans
DEVIATION FROM UNIT ASSIGNMENT (TAPE UNIT
NOT ALLOWED).

FILE “###swsnsrasssassns EYXACT BLOCKSIZE’ IS
INCONSISTENTLY SPECIFIED.
File Dictionaries from different decks (for same file)
do not agree.

FILE ####ssassanssasass I1] EGAL SECONDARY UNIT
(REQUEST IS IGNORED), SECOND UNIT ASSIGNED
SAME AS FIRST.

FILE ###sesssasuswavwsy JLLEGAL SYSUNI CODE-
REPORT

FILE ®##w#wesaussusvasse INTERSYSTEM INPUT FILE
HAS NOT BEEN RESERVED (EXECUTION IS NOT
ALLOWED)

FILE E-2-2-2-2-2-8-3-F-X:-0-3:2.2-F-2:-3-3-24 I/O UNIT TYPE
REQUIREMENT IS INCONSISTENTLY SPECIFIED.
File Dictionaries from different decks (for same file)
do not agree.

FILE ‘###ssweaxxaasaness MODE OR FILE I/0 TYPE

IS INCONSISTENTLY SPECIFIED
File Dictionaries from different decks (for same file)
do not agree.

FILE ####usrursenruiass PRINTER ILLEGAL AS INPUT
(EXECUTION IS NOT ALLOWED)

FILE ####wunaanwsenesss pROCESSING ERROR (TIG)
Machine or system error during unit assignment.

FILE ##xswsxsuasusansass pPUNCH ILLEGAL AS INPUT
(EXECUTION IS NOT ALLOWED)

FILE ####exasruusnsnses READER ILLEGAL AS
OUTPUT (EXECUTION IS NOT ALLOWED)

FILE RENAME FOR FILE *®###rununuraeanss’ 1§
IGNORED. DECK “*#**#*# DOES NOT EXIST.

FILE RENAME FOR FILE ‘#####saassassusssn g
IGNORED. FILE DOES NOT EXIST IN ANY FILE
DICTIONARIES.

FILE RENAME FOR FILE ‘#####usaanganaesse Ig
IGNORED. FILE DOES NOT EXIST IN DECK *#####’

FILE #¥###szsunuswwsass RESERVE UNIT NAME IS
ILLEGAL (EXECUTION IS NOT ALLOWED)

FILE ‘*###wssiasurenssew GpECIFIED ON $GROUP
CARD DOES NOT EXIST.

FILE ‘####wxsaxsswrssnsus’ GPECIFIED ON $LABEL
CARD DOES NOT EXIST.

FILE “*###usrasssnsesies SPECIFIED ON $POOL
CARD DOES NOT EXIST.

FILE ERR LR AL UNIT wunxen T T EGAL AS
INPUT (EXECUTION IS NOT ALLOWED)

FILE #v#ssassssurssssss UNIT #*##2% [LLEGAL AS
OUTPUT (EXECUTION IS NOT ALLOWED)

Systems Programmer’s Information 53

FILE A2 222202 2-2-22-2-2-3-%-F- UNIT LE-E-E-F-3- ILLECAL FOR
BCD MODE USE (STANDARD OPTION IS ASSUMED)
File mode is set binary.

FILE ###ssgaanutatenonn UNIT #nzsex ILLEGAL FOR
BINARY MODE USE (STANDARD OPTION IS
ASSUMED)

File mode is set BCD.
FILE B2 21 2222 R-2 222 1] UNIT L2202 2] IS AN ILLEGAL
SECONDARY UNIT (REQUEST IS IGNORED), SECOND
UNIT ASSIGNED SAME AS FIRST.

FILE #®##ssasssssssssss UNIT #****2 NOT ALLOWED
FOR LABELLED FILE USE. (EXECUTION IS NOT
ALLOWED)

FILE ####ewsaassansasss UNIT REQUESTED IS NOT
AVAILABLE (EXECUTION IS NOT ALLOWED)

FILE ®#¢#=essvsssssssss UNIT2 CHANNEL IS
ILLEGITIMATE (REQUEST IS IGNORED)

FILE #####seaswermensss UNIT2 REQUESTED IS NOT
AVAILABLE (REQUEST IS IGNORED)

FIRST CARD READ FROM ‘INPUT/‘GO TAPE’ IS NOT
A S$IBJOB CARD.

FORMAT ERROR ENCOUNTERED ON A $LABEL CARD.
THE CARD WILL BE IGNORED.

FORMAT ERROR ENCOUNTERED ON A $SIZE CARD.
THE CARD WILL BE IGNORED.

FORMAT ERROR FOR FIELD “**#**%* OF $NAME CARD.
THE REMAINDER OF THIS CARD AND ASSOCIATED
$ETC CARDS WHICH FOLLOW WILL BE IGNORED.

FORMAT ERROR FOR FIELD “*###*%# OF $OMIT CARD.
THE REMAINDER OF THIS CARD AND ASSOCIATED
$ETC CARDS WHICH FOLLOW WILL BE IGNORED.

FORMAT ERROR FOR FIELD ‘“*#*#**# OF $USE CARD.
THE REMAINDER OF THIS CARD AND ASSOCIATED
$ETC CARDS WHICH FOLLOW WILL BE IGNORED.

$GROUP CARD BUFFER COUNT SPECIFIED EXCEEDS
999. THE FIELD WILL BE OMITTED.

$GROUP CARD OPEN FILE COUNT SPECIFIED
EXCEEDS 99. THE FIELD WILL BE OMITTED.

$IBLDR CARD ENCOUNTERED WHICH SPECIFIES
‘LIBE’ DURING PROCESSING OF ‘NOLIBE’ OPTION
CARDS ONLY. THE CARD WILL BE IGNORED.

$IBLDR CARD ENCOUNTERED WHICH SPECIFIES
‘NOLIBE’ DURING PROCESSING OF ‘LIBE’ OPTION
CARDS ONLY. THE CARD WILL BE IGNORED.

$IBLDR CARD ENCOUNTERED WHILE PROCESSING
SUBROUTINE WHICH HAS THE SAME NAME AS
$IBLDR CARD FROM SOURCE INPUT WHERE °‘LIBE’
OPTION WAS NOT SPECIFIED.

$IBLDR CARD WITH DUPLICATE NAME
ENCOUNTERED WHILE PROCESSING SOURCE INPUT.

ILLEGAL BCD VALUE ENCOUNTERED ON A $ETC
CARD FOLLOWING A $FILE CARD. THE $FILE CARD
AND ASSOCIATED $ETC CARDS WILL BE IGNORED.

ILLEGAL BCD VALUE ENCOUNTERED ON A $ETC
CARD FOLLOWING A $GROUP CARD. THE $GROUP
CARD AND ASSOCIATED $ETC CARDS WILL BE
IGNORED.

ILLEGAL BCD VALUE ENCOUNTERED ON A $ETC
CARD FOLLOWING A $POOL CARD. THE $POOL CARD
AND ASSOCIATED $ETC CARDS WILL BE IGNORED.

54

JLLEGAL BCD VALUE ENCOUNTERED ON A S$FILE
CARD. THIS CARD AND ASSOCIATED $ETC CARDS
WILL BE IGNORED.

ILLEGAL BCD VALUE ENCOUNTERED ON A $GROUP
CARD. THIS CARD AND ASSOCIATED $ETC WILL BE
IGNORED.

ILLEGAL BCD VALUE ENCOUNTERED ON A $POOL
CARD. THIS CARD AND ASSOCIATED $ETC CARDS
WILL BE IGNORED.

ILLEGAL CHARACTER ENCOUNTERED ON A $ETC
CARD FOLLOWING A $FILE CARD. THE $FILE CARD
AND ASSOCIATED $ETC CARDS WILL BE IGNORED.

ILLEGAL CHARACTER ENCOUNTERED ON A $ETC
CARD FOLLOWING A $GROUP CARD. THE $GROUP
CARD AND ASSOCIATED $ETC CARDS WILL BE
IGNORED.

ILLEGAL CHARACTER ENCOUNTERED ON A $ETC
CARD FOLLOWING A $POOL CARD. THE $POOL CARD
AND ASSOCIATED $ETC CARDS WILL BE IGNORED.

ILLEGAL CHARACTER ENCOUNTERED ON A $FILE
CARD. THIS CARD AND ASSOCIATED $ETC WILL BE
IGNORED.

ILLEGAL CHARACTER ENCOUNTERED ON A $GROUP
CARD. THIS CARD AND ASSOCIATED $ETC CARDS
WILL BE IGNORED.

ILLEGAL CHARACTER ENCOUNTERED ON A $POOL
CARD. THIS CARD AND ASSOCIATED $ETC CARDS
WILL BE IGNORED.

ILLEGAL CHARACTER. REMAINDER OF CARD
IGNORED
$ORIGIN or $INCLUDE card contains illegal character
or a blank in column 16.

ILLEGAL FILE NAME ENCOUNTERED ON A $ETC
FOLLOWING A $FILE CARD. THE $FILE CARD AND
ASSOCIATED $ETC CARDS WILL BE IGNORED.

ILLEGAL FILE NAME ENCOUNTERED ON A $ETC
CARD FOLLOWING A $GROUP CARD. THE $GROUP
CARD AND ASSOCIATED $ETC CARDS WILL BE
IGNORED.

ILLEGAL FILE NAME ENCOUNTERED ON A $ETC
CARD FOLLOWING A $POOL CARD. THE $POOL CARD
AND ASSOCIATED $ETC CARDS WILL BE IGNORED.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE

FAILURE AND PERMANENT REDUNDANCY

OCCURRED IN READING LIBRARY TEXT FILE
Machine or system error.

INPUT/OUTPUT ERROR — UNEXPECTED END OF FILE
IN READING INTERMEDIATE TEXT.

INPUT/OUTPUT ERROR — UNEXPECTED END OF FILE
IN READING LIBRARY CTRL FILE

INPUT/OUTPUT ERROR — UNEXPECTED END OF
FILE IN READING LIBRARY TEXT FILE

INSUFFICIENT STORAGE FOR CONTROL
DICTIONARIES AND CONTROL INFORMATION
DETECTED BY ######
If not a machine error, this is the most serious error
possible.

PROGRAM IS TOO LARGE FOR THE LOADER TO
HANDLE.

INSUFFICIENT STORAGE TO GENERATE SUBROUTINE

SECTION NAME TABLE AND SUBROUTINE

DEPENDANCE TABLE.

1I/0 ERROR — EOB IN WRITING FINAL TEXT.
Machine or system error.

1/0 ERROR - TEXT — EOB.
Machine or system error.

I/0 ERROR — TEXT — PERM. REDUNDANCY.
Machine or system error.

LIBRARIAN CONTROL CARD WITH BLANK VARIABLE
FIELD.
Only $INSERT card may have blank variable field.

LOADING TERMINATED DUE TO HASH TABLE
OVERFLOW. THERE IS AN EXCESSIVE NUMBER OF
UNIQUE CONTROL SECTION NAMES.

Only 1000 unique control section names are allowed.

LOADING TERMINATED DUE TO IMPROPERLY
DEFINED OVERLAY STRUCTURE.

ILLEGAL FILE NAME ENCOUNTERED ON A S$FILE
CARD. THIS CARD AND ASSOCIATED $ETC CARDS
WILL BE IGNORED.

ILLEGAL FILE NAME ENCOUNTERED ON A $GROUP
CARD. THIS CARD AND ASSOCIATED $ETC WILL BE
IGNORED.

ILLEGAL FILE NAME ENCOUNTERED ON A $POOL
CARD. THIS CARD AND ASSOCIATED $ETC CARDS
WILL BE IGNORED.

ILLEGAL SECTION NAME ENCOUNTERED ON A
$ENTRY CARD. THE CARD WILI, BE IGNORED.
IMPROPER FORMAT
Leading, trailing, or multiple field separators in the
variable field of $ORIGIN or $INCLUDE card.

IMPROPER SYMBOLIC ORIGIN
The symbolic origin on a $ORIGIN card is all numeric
or greater than six characters.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE

FAILURE AND PERMANENT REDUNDANCY

OCCURRED IN READING GENERATED CIF
Machine or system error.

INFUT/OUTPUT ERROR — BLOCK SEQUENCE

FAILURE AND PERMANENT REDUNDANCY

OCCURRED IN READING GENERATED TIF
Machine or system error.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE

FAILURE AND PERMANENT REDUNDANCY

OCCURRED IN READING INTERMEDIATE TEXT
Machine or system error.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE

FAILURE AND PERMANENT REDUNDANCY

OCCURRED IN READING LIBRARY CTRL FILE
Machine or system error.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE FAILURE
AND PERMANENT REDUNDANCY OCCURRED IN
READING LIBRARY SRNT/SRDT

Machine or system error.

LOADING TERMINATED DUE TO TOO MANY VIRTUAL
SECTIONS.
If not a system or machine error, must be reassembled.
Current limit is 350.

NO DECKNAME IN SPECIFICATION ON $USE CARD.
axxzes’ ENTRY IS IGNORED.

NONSTANDARD LABEL ROUTINE FOR FILE
CHUBBABUBAAB B HGBBRE WAS DELETED BY 1.LOAD
CONTROL CARDS.

NO SYMBOLIC ORIGIN SPECIFIED.
Symbolic origin is not first in variable field of $ORIGIN
card.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE FAILURE
IN READING GENERATED CIF

Machine or system error.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE
FAILURE IN READING GENERATED TIF
Machine or system error.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE FAILURE
IN READING INTERMEDIATE TEXT.
Machine or system error.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE FAILURE
IN READING LIBRARY CTRL FILE
Machine or system error.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE FAILURE
IN READING LIBRARY SRNT/SRDT
Machine or system error.

INPUT/OUTPUT ERROR — BLOCK SEQUENCE FAILURE
IN READING LIBRARY TEXT FILE.
Machine or system error.

INPUT/OUTPUT ERROR — END OF BUFFERS
CONDITION OCCURRED IN READING GENERATED CIF
Machine or system error.

INPUT/OUTPUT ERROR — END OF BUFFERS
CONDITION OCCURRED IN READING GENERATED TIF
Machine or system error.

INPUT/OUTPUT ERROR — END OF BUFFERS
CONDITION OCCURRED IN READING ‘INPUT/‘CO
TAPE’

Machine or system error.
INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING GENERATED CIF

Machine or system error.

INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING GENERATED TIF.
Machine or system error.

INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING (‘INPUT/‘GO TAPE’
Machine or system error.,

INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING INTERMEDIATE TEXT.
Machine or system error.

INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING LIBRARY CTRL FILE.
Machine or system error.

INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING LIBRARY SRNT/SRDT
Machine or system error.

INPUT/OUTPUT ERROR — PERMANENT REDUNDANCY
OCCURRED IN READING LIBRARY TEXT FILE
Machine or system error.

INPUT/OUTPUT ERROR — UNEXPECTED END OF
FILE IN READING (INPUT’/‘GO TAPE’). NOT ENOUGH
UNITS AVAILABLE
General error message if not enough units to complete
total unit assignment requests.

‘NOTEXT” IGNORED BECAUSE ‘LIBE’ OPTION IS
SPECIFIED.

NOT IBLOADER CONTROL CARD. CARD -IGNORED.
OBJECT PROGRAM EXCEEDS AVAILABLE STORAGE.

OPTIONS OTHER THAN ABSOLUTE ORIGIN IGNORED
ON MAIN LINK $ORIGIN CARD

ORIGIN IS INCORRECTLY SPECIFIED. ORIGIN
IS IGNORED.

Systems Programmer’s Information 55

ORIGIN MUST BE SPECIFIED ON $ASSIGN CARD.
OVERLAY SUBROUTINE LOVRY NOT DEFINED.

PARAMETER ‘“####2%## NO RECOCNIZED. IGNORED
Unrecognizable parameter found on $ORIGIN card.

$POOL CARD BLOCK SIZE SPECIFIED EXCEEDS 9999.
THE FIELD WILL BE OMITTED.

$POOL CARD BUFFER COUNT SPECIFIED EXCEEDS
999. THE FIELD WILL BE OMITTED.

POOLING ERROR GROUPING FILE ‘#####swanuusanssnn
assas’ PREVIOUSLY SPECIFIED, IGNORED
Section or deck appears more than once on $INCLUDE
cards for the same link.

PROCESSING ERROR - LNSC FOR CONTROL SECTION
‘waumwss’ CONTAINS INVALID ADDRESS.
Machine or system error.

PROGRAM EXCEEDS ABSOLUTE LOCATION ###sws
Program may use but not load above specified value.

RELATIVE LOCATION OF TEXT CONTAINING
ILLEGAL CONTROL GROUP. (DECK ‘*v#asw)
A list of relative locations follows.

RELATIVE LOCATION OF TEXT CONTAINING
ILLEGAL LOCATION COUNTER CONTROL.
(DECK ‘#####ﬁ’)'

RELATIVE LOCATION OF TEXT CONTAINING
UNDEFINABLE FIELD. (DECK ‘#####%)
A list of relative locations follows.

#rwwes REQUIRED AS A LOAD-TIME DEPENDENCY
BY ROUTINE, IS VIRTUAL IN IBLIB.

LIBRARIAN PROCESSING CONTINUES WITH THIS
DEPENDENCY IGNORED.

SECONDARY $ENTRY CARD ENCOUNTERED AND
IGNORED.

SECTION *#####% I AN UNDEFINED SYSTEM SYMBOL.

Faulty system subroutines or machine error.

SECTION “*####&* DOES NOT EXIST IN DECK ‘#####n,
$OMIT ENTRY IS IGNORED.
A specification on a $OMIT card is in error.

SECTION “*###%%> DOES NOT EXIST IN DECK ‘#####n,
SECTION RENAME IS IGNORED.
A specification on a $NAME card is in error.

SECTION “®##*## DOES NOT EXIST IN DECK (¢#®#e%
$USE ENTRY IS IGNORED.

SECTION “*####% DOES NOT EXIST IN SOURCE INPUT.
$OMIT ENTRY IS IGNORED.
A specification on a $OMIT card is in error.

SECTION ‘###*### DOES NOT EXIST IN SOURCE INPUT.
SECTION RENAME IS IGNORED.
A specification on a $NAME card is in error.

SECTION “###### IN DECK “****## HAS BEEN MARKED
FOR DELETION AND CANNOT BE SPECIFIED ON $USE
CARD.

A specification on a $USE card is in error.

SECTION — 2 I70 ERROR EOB IN SRDICT.
SECTION — 2 I/0 ERROR EOF IN SRDICT.

SECTION NAME OF 000000" OR ‘//° CANNOT BE
SPECIFIED. $NAME ENTRY IS IGNORED.

SECTION NAME OF ‘000000’ OR ‘//* CANNOT BE
SPECIFIED. $OMIT ENTRY IS IGNORED.

SECTION NAME OF ‘000000’ OR ‘//” CANNOT BE
SPECIFIED. $USE ENTRY IS IGNORED.

56

SECTION OR DECK “#####> HAS BEEN SPECIFIED TO
BE ASSIGNED TO MORE THAN ONE LINK.
Section or deck appears on more than one $INCLUDE
card in different links.

SEQUENCE FAILURE IN ORDERING OF SR LIBRARY
STARTING CYLINDER POSITION IS GREATER THAN
249. ZERO WILL BE USED.

STORAGE ALLOCATION ERROR — BUFFER COUNT
SPECIFIED ON A POOL CARD IS INSUFFICIENT.

STORAGE ALLOCATION ERROR — INSUFFICIENT
INPUT/OUTPUT BUFFER STORAGE.

SUBROUTINE DICTIONARY FORMAT ERROR.
. End of file in middle of subroutine section name table.
. No subroutine section name table.
. Subroutine section name table not complete.
. Subroutine section name table has invalid format.
a. Invalid operation.
b. Comma encountered when bracket count is not
greater than zero.
¢. Too many right brackets,

SUBROUTINE NAME IS INCORRECTLY SPECIFIED.
Invalid format of deck name on Librarian Control Card.

SYSTEM ERROR OR CPU MAINFRAME FAILURE. ENTRY
IN SUBROUTINE SECTION NAME TABLE DOES NOT
APPEAR AS REAL RETAINED SECTION IN ANY
CONTROL DICTIONARY.

THE ABOVE CARD IS NOT A LIBRARIAN CONTROL
CARD.

THE ABOVE CARD IS NOT PERMITTED IN THE
LIBRARY. IT IS IGNORED.
Subroutines may not contain $USE, $OMIT, or $NAME
cards.

TOO MANY LEVELS SUBROUTINE DEPENDENCE.
More than 25 dependent subroutines detected due to
calling some subroutine.

TOO MANY REQUIRED SUBROUTINES.
Machinc or system error.

UNDEFINED CONTROL DICTIONARY ENTRIES
REFERENCED.
A list of control section names always follows.

UNDEFINED FILE ®###saasspasannswn s R E CARD
IS MISSING.

UNDEFINED SECTION OR DECK NAME ###ss3
Section or deck name on $INCLUDE card is undefined.

UNDEFINED VIRTUAL CONTROL SECTION ‘###a#w
Not printed if logic requested.

UNEXPECTED END OF BUFFERS CONDITION
ENCOUNTERED IN WRITING OF INTERMEDIATE
TEXT FILE.

UNIT SYSXXX NOT ATTACHED AND READY
Unit specified for overlay links has not been attached
to a physical drive.
UNRECOGNIZABLE PARAMETER ENCOUNTERED ON A
$FILE CARD. “*##**#** WILL BE IGNORED.

UNRECOGNIZABLE PARAMETER ENCOUNTERED ON A
$GROUP CARD. “##*#**** WILL BE IGNORED.

UNRECOGNIZABLE PARAMETER ENCOUNTERED ON A
$IBLDR CARD. “*#*##%* WILL BE IGNORED.

UNRECOGNIZABLE PARAMETER ENCOUNTERED ON A
$LABEL CARD. THE FIELD IS STORED AS ZERO.

UNRECOGNIZABLE PARAMETER ENCOUNTERED ON A
$POOL CARD. ###*** WILI, BE IGNORED.

b=

UNRECOGNIZABLE PARAMETER ON $IBJOB CARD.
wrxess IS IGNORED.

VALUE SPECIFIED ON $SIZE CARD EXCEEDS FIELD
SIZE. THE CARD WILL BE IGNORED.

VIRTUAL SECTION NAME LIST IS FULL.
If not system or machine error, the loader must be re-
assembled. Current limit is 350.

Assembler Information

A Brief Discussion of the Assembly Process

The information in this section is provided to give the
reader an understanding of the basic structure of the
Assembler. The core storage layout diagram, shown in
Figure 17, should be used in conjunction with the fol-
lowing paragraphs.

The Assembler is divided into two major phases:
Phase 1 performs a pass over the source input to form
the dictionary; Phase 2 performs a pass to form the
assembled instructions.

The time between passes is used to determine the
values assigned to the various symbols. The second
pass is made over an internal form of binary informa-
tion, rather than over the Bcp information of the origi-
nal source.

System Monifor
Processor Monitor

10Cs

Communication Words
Constants

Primary Supervisor
File Blocks

Input/Output Buffers

Common Subroutines

Phase 1 Supervisor Phase 2 Supervisor

Interlude Routines

First Pass Processor
Second Assembly Pass

Macro Processor Error Message Routines

Macro Skeleton Table Pseudo-Operation Dictionary

Hash Table

Name Table

Internal Dictionary

Figure 17. Core Storage Layout

Initialization

The initialization routine receives control directly
from the 1BjoB Monitor. It performs the following
three functions:

1. The System Unit Assignment Table in the Sys-
tem Monitor is examined to find the physical units to
be used by the 1BjoB Processor.

9. The siBMaP Card is scanned, and modal switches
are set according to the information in the variable
field.

3. The operation codes are placed into the Main
Dictionary. Operations are not included into their
final location in the Main Dictionary because:

a. Alteration of the algorithm used for symbol
storage and retrieval alters the dictionary lo-
cation of the operations.

'b. Additions, deletions, and insertions of individ-
ual operations in the assembled operation table
do not affect the entire table; nor does the
table need to be in any particular order.

Upon completion of these operations, control is
passed to the Primary Supervisor, which, in turn,
passes control to the Phase 1 Supervisor. The initiali-
zation routines are loaded with Phase 1, but are sub-
sequently overlaid by the Main Dictionary.

Phase 1

In this phase, a pass over the source deck is made and
the following functions are performed:

1. The Main Dictionary is constructed. Items en-
tered into this dictionary are: symbols in the location
field, qualification symbols, location counter symbols,
and any new operations which may be defined.

The Main Dictionary, which is the Assembler’s main
information table, consists of the following three
parts:

a. The Name Table, n words in length, which
contains the Bcp representation for every sym-
bol in the program referred to by internal text.

b. The Internal Dictionary, n words in length,
which contains explicit information about the
symbol that is necessary for processing.

c. The Hash Table, n/2 words in length, which
provides the necessary link between the scat-
tered information of the Name Table and the
linear information of the Internal Dictionary.

2. The pseudo-operation dictionary is constructed.
Items in this dictionary consist essentially of the vari-
able fields of any pseudo-operation that may affect a
focation counter.

3. Literals are converted to binary and stored in the
literal pool.

4. Macro-definitions are placed in the Macro Skel-
eton Table. Card images required by the expansion of
a macro-instruction are produced.

5. Card images required by a puP sequence are pro-
duced.

Systems Programmer’s Information 57

6. The truth value of an 1FF or IFT statement is
evaluated to determine whether or not to scan the
following card.

7. The internal text corresponding to each card is
produced. The original card images are retained only
for listing purposes. They are deleted in any situation
for which listing is not required.

Processing in this phase is parallel, i.e., more than
one of the previously described functions may occur
for any given card.

Input to Phase 1 consists of the source text card
images.

Output from Phase 1 consists of the internal text
file (on tape), and the following internal files: error
message, constant pool, pseudo-operation dictionary,
FILE cards, and CONTRL cards.

At the completion of Phase 1, the Interlude and
Phase 2 routines (which are assembled together) are
brought into core storage, and control passes to the
Phase 2 Supervisor.

Phase 2

Interlude processing occurs in the following order:

1. The FLE card file is examined. From this, the file
dictionary is constructed. Any necessary sFILE cards
are written at this time, and the file dictionary is print-
ed and punched.

2. The pseudo-operation dictionary is brought into
storage. It overlays the area occupied in Phase 1 by
the Macro Skeleton Table. The definitions of all sym-
bols are determined.

3. The conTRL card file is examined. The control
dictionary is constructed. It is complete, except for the
inclusion of virtual symbols.

The input to Interlude routines is the pseudo-opera-
tion dictionary, FiLE cards, and coNTRL cards.

Output, if any, consists of error messages.

Pass 2

Pass 2 of Phase 2 performs the final assembly pass
over the internal text. Functions performed during
this pass are:

1. The machine instruction corresponding to each
text item is assembled.

2. The assembly listing is prepared for the Input/
Output Editor.

3. The binary deck image is prepared for the In-
put/Output Editor.

4. The virtual symbols are determined and the con-
trol dictionary is completed.

5. The Cross-Reference Usage Table is prepared
for the Input/Output Editor.

Following this pass, the control dictionary is proc-

58

essed to produce binary cards and list information, as
required. Next, the error message file is examined.
Skeletons of any messages issued are interpreted, and
the appropriate text is sent to the listing. Finally, if
called for, the cross-reference usage list is prepared.

Input to Phase 2 is the internal text file and the
error message file.

Output from Phase 2 is the assembly listing and the
binary deck, if specified.

Control is returned to the Processor Monitor upon
completion of Phase 2.

Error Messages

If the Assembler encounters a card in error, it will be

flagged with a number. At the end of the assembly

listing, the number is printed with an error message

explaining the error, and a severity indication is given.
The severity indication is a numerical code:

LEVEL MEANING

1 Trivial error. Does not affect assembly or
execution

2 Definite error. Assembly supplies probable
interpretation. Execution is not permitted.

3 Serious error. Assembly supplies guess inter-
pretation. Execution is not permitted.

4 Unrecoverable error. No interpretation at-
tempted. Assembly continues. Execution is
not permitted.

5 Useless to continue assembly. Return to
Processor Monitor after printing of all errors
detected.

In a normal assembly, messages are printed just
after the assembly listing. All messages for a given
card are printed together, and the card groups are
printed in ascending sequence. Correlation with the
listing is accomplished by printing the card number
assigned by the assembly, in the left margin of the
listing, for each card that requires a message. Mes-
sages printed when the NoLisT option is in effect will
have no listing for visual correlation. However, since
the card numbers are assigned sequentially for every
card processed (including duplicate sequences and
macro-generated cards) correlation can be made,
though perhaps with difficulty.

Following is a list of Assembler error messages in
alphabetical order. The severity indication that ac-
companies a message in the listing of error messages
varies with the nature of the error.

NAME TABLE FULL. ASSEMBLE PROGRAM IN SMALLER
PARTS.

INTERNAL DICTIONARY FULL. ASSEMBLE PROGRAM
IN SMALLER PARTS.

ILLEGAL BCD CHARACTER TREATED AS IF BLANK.
LOCATION FIELD FORMAT ERROR.

ILLEGAL SCAN CONDITION. ASSEMBLER OR
MACHINE ERROR.

OPERATION FIELD FORMAT ERROR.

INCORRECT DUPLICATE SEQUENCE. POSSIBLE
ASSEMBLER OR MACHINE ERROR.

VARIABLE FIELD TOO LONG.

INDIRECT ADDRESS NOT ALLOWED ON THIS
INSTRUCTION.

SYMBOL TOO LONG. FIRST SIX CHARACTERS USED.

ILLEGAL INTERNAL CONDITION. ASSEMBLER OR
MACHINE ERROR.

FLOATING-POINT OVERFLOW IN CONVERTING
LITERAL OR CONSTANT.

FLOATING-POINT UNDERFLOW IN CONVERTING
LITERAL OR CONSTANT.

SIGNIFICANT DIGITS LOST IN SHIFTING FIXED-POINT
LITERAL OR CONSTANT.

MORE THAN ONE SIGN FOR PRINCIPAL PART OF
LITERAL OR CONSTANT.

MORE THAN ONE DECIMAL POINT FOR LITERAL OR
CONSTANT. ALL BUT FIRST IGNORED.

MORE THAN ONE SIGN FOR EXPONENTIAL OR
BINARY-PLACE PART OF LITERAL OR CONSTANT.

MISUSE OF E OR B IN LITERAL OR CONSTANT.

DECIMAL POINT CAN OCCUR ONLY IN PRINCIPAL
PART OF LITERAL OR CONSTANT.

FIELD TRUNCATED TO MAXIMUM DIGIT SIZE.
TOO MANY SUBFIELDS ON THIS CARD.
QUALIFICATION ILLEGAL ON THIS CARD.

S-VALUE INDETERMINATE. ASSEMBLER OR MACHINE
ERROR.

LOCATION FIELD REQUIRED ON THIS CARD.

PRINCIPAL PSEUDO-OPERATION CANNOT BE
DEFINED.

MIXED BOOLEAN EXPRESSION. LEFT BOOL USED.
‘NAME.1’ IS AN IMPROPERLY QUALIFIED NAME.
MACRO DEFINITION NESTING ERROR.

MACRO DEFINITION TERMINATED BY —ENOM— CARD.
WITH BLANK VARIABLE FIELD.

MACRO DEFINITION TERMINATED BY —ENOM— CARD
WITH WRONG NAME.

MACRO DEFINITION CARD WITHOUT NAME
IGNORED.

MACRO DEFINITION CANNOT HAVE MORE THAN 63
PARAMETERS.

MISUSE OF PARENTHESES IN MACRO DEFINITION.
—ETC— CARD SHOULD FOLLOW.

PERMANENT READ ERROR ON SECOND PASS TEXT
INPUT. :

MACRO PARAMETER EXPANSION TABLE OVERFLOW.
MACRO PARAMETER PUSH DOWN TABLE OVERFLOW.
MACRO CALL HAS TOO MANY PARAMETERS.

END OF FILE WHILE PROCESSING SOURCE INPUT.
OPERATION CODE NOT IN DICTIONARY.

DUBIOUS USE OF * ASSUMED TO BE LOCATION
COUNTER.

—CALL— OPERATION WITH BLANK VARIABLE FIELD
IGNORED.

—CAILL— OPERATION REQUIRES UNQUALIFIED
LEGITIMATE SYMBOL AS TRANSFER POINT NAME.

MACRO GENERATION SYNCHRONIZATION FAILURE.
ASSEMBLER OR MACHINE ERROR.

ILLEGAL VARIABLE FIELD CONDITION AT START OF
—ETC— CARD.

QUALIFICATION SECTION TERMINATED BY —ENOQ-
CARD WITH WRONG NAME.

QUALIFICATION SECTION NESTING ERROR.

QUALIFICATION SECTION TERMINATED BY —ENCQ-
CARD WITH BLANK VARIABLE FIELD.

MACRO PARAMETER SUBSTITUTION CANNOT HAVE
MORE THAN 61 CHARACTERS.

EXTERNAL NAME ‘NAME.1’ SUPPLIED FOR THIS CDICT
ENTRY.

INCORRECT FORM OF VARIABLE FIELD ON
—CONTRL— OR —FILE— CARD.

—FILE— CARD MUST HAVE SYMBOL IN LOCATION
FIELD.

EXTERNAL LABEL FOR FILE TOO LONG. FIRST 18
CHARACTERS USED.

FORMAT ERROR FOLLOWING = SIGN ON —FILE—
CARD.

ADDRESS REQUIRED.
ADDRESS NOT EXPECTED.
ADDRESS NOT ALLOWED.
TAG REQUIRED.

TAG NOT EXPECTED.

TAG NOT ALLOWED.
DECREMENT NOT EXPECTED.
DECREMENT REQUIRED.

DECREMENT NOT ALLOWED.

NUMERIC FIELD CONTAINS NONNUMERIC
CHARACTER. FIELD IGNORED.

INCORRECT FORM OF VARIABLE FIELD ON
—DRGCRS— CARD.

THIS CARD NOT EFFECTIVE UNLESS WITHIN A
MACRO DEFINITION.

INTERNAL DICTIONARY OVERFLOW WHILE
PROCESSING CONTROL DICTIONARY.

CONTROL DICTIONARY ENTRY FOR ‘NAME.I’
ELIMINATED. IMPROPER REFERENCE.

CONTROL DICTIONARY NOT CORRECTLY PROCESSED.
ASSEMBLER OR MACHINE ERROR.

THIS CARD NOT EFFECTIVE IN AN ABSMOD
ASSEMBLY.

OCTAL CONSTANT CANNOT EXCEED 12 DIGITS.

OCTAL CONSTANT CONTAINS NON-OCTAL
CHARACTER.

ILLEGAL USE OF —ETC— CARD.

IMPROPER PUNCTUATION FOLLOWING HOLLERITH
LITERAL.

COUNT FIELD ON —BCI- CARD CANNOT EXCEED
SIX DIGITS.

Systems Programmer’s Information 59

COUNT FIELD ON —BCI- CARD IMPROPERLY
TERMINATED. COUNT OF ONE USED.

THIS CARD NOT EFFECTIVE IN A RELMOD ASSEMBLY.

SERIALIZATION GROUP ON —LEL— CARD TOO LARGE.
FIRST EIGHT CHARACTERS USED.

INDEX SPECIFIED MORE THAN ONCE FOR —SAVE—
OPN.

SUBFIELD IGNORED BECAUSE OF FORMAT ERROR.

INTERNAL TEXT SYNCHRONIZATION FAILURE.
ASSEMBLER OR MACHINE ERROR.

ONLY FIRST —LORG— EFFECTIVE,
ONLY FIRST —LDIR— EFFECTIVE.

VARIABLE FIELD TOO COMPLEX. SIMPLIFY AND
REASSEMBLE.

COUNT FIELD ON —VFD— CANNOT EXCEED SIX
DIGITS.

NO PREVIOUS LOCATION COUNTER. BLANK
COUNTER USED.

—IRP— IGNORED. VARIABLE FIELD ERROR.
ZERO SUPPLIED FOR REQUIRED OPERAND.

TOO MANY SUBFIELDS ON —DUP— CARD. FIRST TWO
USED.

LTERATION COUNT ZERO. ‘NAME.1’ CARDS SKIPPED.
END OF FILE WHILE PROCESSING —DUP— CARD.

—~DUP— CARD PUSH DOWN TABLE OVERFLOW.
QUALIFICATION SECTION NESTING CAPACITY
EXCEEDED.

BIT COUNT TOO LARGE FOR —VFD— OR —OPVFD-—
SUBFIELD.

VARIABLE FIELD FORMAT ERROR FOR —IFF— OR
—IFT— CARD.

ONE OR MORE QUALIFICATION SECTIONS NOT
CLOSED.

ILLEGAL COUNT FIELD ON —BCI-— CARD.
DECIMAL CONSTANT TOO LARGE.
BOOLEAN CONSTANT TRUNCATED TO SIX DIGITS.

TOTAL BIT COUNT FOR —OPVFD— MUST NOT
EXCEED 36.

PSEUDO—OPERATION DICTIONARY FULL. ASSEMBLE
PROGRAM IN SMALLER PARTS.

‘NAME.1’ IS AN UNDEFINED SYMBOL.

BAD ADJECTIVE CODE USED FOR —OPD— OR
—OPVFD-—.

MACRO SKELETON TABLE OVERFLOW. NO MORE
DEFINITIONS ACCEPTED.

VIRTUAL CANNOT APPEAR IN TAG.
ILLEGAL OPERAND IN THE VARIABLE FIELD.

THIS INSTRUCTION CANNOT HAVE AN ASSOCIATED
SYMBOL.

ILLEGAL TERMINATOR FOR DECIMAL CONSTANT.
ILLEGAL SUBFIELD IGNORED FOR —-SAVE— OPN.
NAME SUPPLIED FOR —SAVE— CPN.

INVALID INDEX SPECIFIED FOR —SAVE— OPN.

LD OR E OCCURRED MORE THAN ONCE FOR —SAVE--
OPN.

60

ILLEGAL OPERAND IN BOCLEAN FIELD.
ILLEGAL QUALIFICATION USAGE ON THIS CARD.
—END- SHOULD NOT OCCUR IN RANGE OF A —DUP—.

DECREMENT MUST BE CONSTANT AND CANNOT
EXCEED ‘NAME. 1’ BITS.

~END- SHOULD NOT OCCUR IN MACRO DEFINITION.

NON-NUMERIC CHARACTER IN ‘ID’ FIELD OF
—CALL—.

SUBFIELD ‘NAME. I’ FORMAT ERROR.

5 SUBFIELDS REQUIRED ON THIS CARD. COMMAS
SUPPLIED.

THIS INSTRUCTION IS NOT EXPANDED AS A MACRO.

“*” COMMENTS CARD IGNORED WITHIN MACRO
DEFINITION.

LOCATION FIELD FORMAT ERROR. FIELD IGNORED.
OPERATION CODE REDEFINED.

DUBIOUS USE OF ‘NAME. I’ ON —FILE— CARD.
MISUSE OF PARENTHESES ON —CALL— OPERATION.
CONTROL DICTIONARY TABLE OVERFLOW,

~END— CARD SHOULD FOLLOW.

VIRTUAL CANNOT APPEAR IN —END- CARD.

FORTRAN IV Compiler Information

The 7090/7094 rorTRAN 1v Compiler (1BFTC) is a
group of subroutines arranged in a hierarchy of con-
trol. Together, these subroutines are to be used as a
single closed subroutine by the Processor Monitor.
The function of the FortraN 1v Compiler is to trans-
late a 7090/7094 FORTRAN 1v source program into MAP
language.

Input/output functions are provided outside of
the scope of the ForTRAN 1v Compiler. The following
subroutines are required by the rortrRaAN Compiler: a
subroutine to furnish the source program statements
one line at a time; a subroutine to accept the output
of the ForTRAN 1v Compiler one line at a time and
to accept diagnostic messages concerning compilation;
a subroutine to provide for input/output handling of
one work file during compilation.

Control

A compilation may be effected by the Processor Moni-
tor by executing a call to ForrraN Compiler Control
(Fcc). rortrRAN Compiler Control performs the com-
pilation by calling the following in succession:

1. ru1 (Phase 1), which reduces the source pro-
gram into tabular form and analyzes mathematical ex-
pressions.

2. sa (Storage Allocator), which compiles storage
allocation pseudo-operations for the object program.

3. aLT (Alternator), which completes the compila-
tion of the object program by alternately calling in-
dexing and procedural compiling routines.

Phase One

Phase One is the first section of the ForTRAN 1v Com-
piler to be called by rorTrRaAN Compiler Control. The
function of Phase One is to translate the source pro-
gram into a series of correlated table entries. Phase
One control initiates processing for each source state-
ment until the end of the source program is reached.
After the END statement has been processed, control is
returned to ForTRAN Compiler Control. Figure 18 il-
lustrates Phase One.

ORGANIZATION

Phase One comprises a set of closed subroutines. Each
subroutine is called to process a specific source state-
ment. In addition, one processor may call upon an-
other to accomplish its designated function. If control
is passed from one routine to another, it must be
passed back through the same chain to the originally
called processor.

Initialize

All
Processors

O—

Obtain Next
(or First)
Statement

Arithmetic Nonarithmetic

GENERAL PROCESSING PROCEDURE

Initially, a source statement, with all of its continua-
tion cards (if any), is collected. The aggregate source
statement is then scanned to determine its type: arith-
metic or nonarithmetic. Control is passed to the arith-
metic processor if it has been determined that the
statement is arithmetic. Otherwise, further analysis
must be performed in order to determine which of
the nonarithmetic statement processors should be
called.

Once a specific statement processor has been
called, it retains control until the end of the statement
is encountered. Control is returned to Phase One Con-
trol when the end of statement is reached through
the Classification routine. However, if the end-of-seg-
ment flag is recognized, control is returned to the
Classification routine so that the next segment can
be classified and processed. The individual routines
assign internal formula numbers whenever it is
deemed necessary.

The entire processing procedure continues until
Phase One Control either determines that there are
no more source statements to be processed or that a

_IF or CALL

r -

Executable

Non
Executable
Statement
Processors

Figure 18. Phase One Flow Chart

. . Executable
Arithmetic Statement
Processor Processors
U
End of
Statement
Close
Y End of N
Out Program A .
Phase 1 *Qr, if entry is from B,

classify current segment
of statement

Systems Programmer’s Information 61

condition has arisen that precludes further processing.
When either terminal condition occurs, control will
be returned to FortrRaAN Compiler Control,

Storage Allocation

1. The Storage Allocator (sA) generates Map
pseudo-operations to reserve storage in the object for
formats and all variables, in accordance with FORMAT,
COMMON, EQUIVALENCE, and TYPE statements in the
source program.

2. The Storage Allocator generates constants, which
are loaded into reserved storage locations, in accord-
ance with DATA statements in the source program.

3. The Storage Allocator generates EQu pseudo-op-
erations to equate external formula numbers with in-
ternal formula numbers in the object program,
replaces external formula numbers with internal form-
ula numbers in the BRANCH table, and produces the
BRADD table, a reordered version of the BrancH table,

The following two routines are required to use the
Storage Allocator:

MAP Code Generator
Fcc Table Routines

ORGANIZATION

The Storage Allocator is divided into six main execu-
tive sections under the control of Storage Allocation
Control (sac). This is shown in Figure 19,

sac: Performs necessary initialization, puts out
standard location-counter control pseudo-operations,
calls subsidiary sections as necessary, and performs
general control operations.

FORMAT: Reduces FORMAT Table entries to Bcr
pseudo-operations for assembly.

coMMON: Reduces common Table entries to Bss
pseudo-operations under appropriate control sections
for assembly. Preserves information for use by Equrr,
if necessary.

EQuIT: Performs the following functions:

1. Produces independent, nonredundant strings of
equivalent variables (and associated addends) in the
REQUIT Table, from the lists of equivalent variables
(and addends) in the EQurr Table.

2. Processes the rReQuIT Table, string by string. De-
termines the base of each string; assigns an appropri-
ately-sized storage block to the base for assembly;
assigns all other members of the string relative to the
base (using EQu) for assembly.

pLisT: Generates constants, which are loaded into
assigned storage, according to the pList, prIT, and ppo
Tables.

TEIFNO: Equates external formula numbers to in-
ternal formula numbers for assembly. Replaces ex-
ternal formula numbers in Brancm Table by internal

62

Place
FORMAT
Table

Is there
a FORMAT

v Process
COMMON
Table

Process
Y

EQUIT
Table

NAMTAB
Processing

Process
DLIST
Table

Is there

v Process
TEIFNO
Table

Figure 19. Storage Allocation Flow Chart

formula numbers. Generates the reordered BRANCH
Table, BrADD.

NAMTAB: Allocates storage to variables not appear-
ing in COMMON Or EQUIVALENCE statements.

Alternator (ALT)

The Alternator is the controlling routine for compila-
tion of the executable portion of the object program.,
The Alternator requires TABLE x entries one at a time,
It is determined whether or not indexing conditions
are met for each TABLE x entry; if so, the Indexer
(np) is called to compile indexing instructions. It
is then determined whether Main Compiling condi-
tions are met; if so, the Main Compiler (mc) is
called to compile instructions for an executable state-
ment.

Indexing conditions are:

1. The beginning of a non-po basic block, eg., a
stretch of program containing neither pos nor trans-
fers into its range.

2. The beginning of a po nest, e.g., the po state-
ment corresponding to the outermost po of a nest.

Main Compiling conditions occur at every TABLE X
entry except DO, DO END, and END.

When the Indexer is called for an indexing condi-
tion, it immediately compiles all the indexing instruc-
tions for the appropriate range of program. Since
these instructions are not normally contiguous in the
object program, i.e., they are to be interspersed with
main compiling instructions, IND compiles them under
the control of unique symbolic location counters. By
means of the BEGIN Table, aLT compiles BEGIN pseudo-
operation codes at appropriate points to effectively
insert these instructions in their proper positions at
loading time.

Other functions performed by the Alternator are
described in the following text.

CHECKING OF TRANSFERS INTO THE RANGE OF DOS

Before the TABLE x scan is begun, the Alternator
passes over the TDO, BRANCH, and BrapD Tables to
check for valid and invalid transfers into the ranges
of pos. Special cases of these are allowed, and index
register loading and saving counters are compiled for
this purpose.

PROLOGUE COMPILATION

When the END statement is encountered in TABLE X,
the proroc Table (compiled by the Main Compiler)
is scanned against the suBarc Table, and instructions
are compiled in the prologue to initialize object pro-
gram references to program arguments.

GENERATED ERASABLE WORDS

After the prologue has been compiled, the Alternator
scans the Eras Table (compiled by the Main Com-
piler) and compiles allocation of erasable words used
by object program arithmetic (and other) instruc-
tions.

Diagnostic Routine

All source program, machine, and logic errors, detected
during compilation call the Diagnostic routine, which
prints a message describing the error. If the diagnos-
tic call is caused by a source program etror, the mes-
sage appears off-line, either following the source pro-
gram statement which contained the error or after
the source program, depending upon the phase of
compilation in which the error was detected.

The diagnostic message consists of two parts for
a source program error and three parts for a machine
or logic error.

1. The first part of the message contains a descrip-
tion of the error, which is provided by that part of
the rorTRAN 1v Compiler which detected the error.

2. The Diagnostic routine provides the second part
of the message which contains the type of error
(source or logic), the permissiveness level value as-
sociated with the error and a description of the level
of the error.

The permissiveness level value of the error is defin-
ed as follows:

LEVEL DESCRIPTION OR PROCEDURE

1 Warning only

2 Loading suppressed

3 Assembly suppressed

4 Compilation suppressed, error scan continues
5 Compilation abandoned

In addition to the permissiveness level number, the
second part of the diagnostic message contains a
unique number assigned to each diagnostic.

A typical diagnostic message follows:

SOURCE ERROR 4, LEVEL 4, COMPILATION
SUPPRESSED, ERROR SCAN CONTINUES.

or
LOGIC ERROR 2, LEVEL 1, WARNING ONLY.
3. The third part of the message is provided by the
Diagnostic routine and is printed only for a machine
error or a logic error. It has the following form:

DIACNOSTIC CALL FROM (symbol) AT (location) IN
(prognm:)
(prognm,) CALLED BY (prognm:)
(prognm:) CALLED BY (prognm;) etc.
where symbol is the Bcp symbolic location of the call
in the FORTRAN 1v Compiler:
location is the octal location of the call in storage,
prognm, is the name of the program in the For-
TRAN 1v Compiler which is called the Diagnostic;
prognm, is the name of the program in the For-
TrAN v Compiler that called prognm,; etc.
The flow trace is continued back until FORTRAN
Compiler Control becomes the calling program.

COBOL Compiler Information

The 7090,/7094 cosor. Compiler (1BcBC) is the com-
ponent of the 1BjoB Processor that translates a cosoL
source program into the map language. The cosoL
language was developed for business applications by
a committee of the Conference on Data Systems
Language (copasyL), as a cooperative effort of com-
puter users in industry, the Department of Defense,
and other Federal Government agencies and com-
puter manufacturers.

The 7090/7094 cosor Compiler (1BCBC) operates

Systems Programmer’s Information 63

under the control of the Processor Monitor, which is
under the control of the System Monitor (1Bsys).

Input to the coBor. Compiler is a coBoL source pro-
gram which has been put onto the System Input Unit
(sysiNt). Output from the copor Compiler consists
of the following:

1. An augmented replica of the source program on
the System Output Unit (svsou1)

2. A list of messages describing errors detected dur-
ing compilation (also on the System Output Unit)

3. A tape of generated symbolic instructions

At the conclusion of a compilation, control is re-
turned to the Processor Monitor, which calls upon
the Assembler to assemble the generated symbolic in-
structions in a form acceptable to the Loader.

The cosor. Compiler consists of 11 program seg-
ments, which are shown in Figure 20. The first of
these remains in core storage throughout the com-
pilation process. The other 10 segments are loaded
into core storage successively, with each new segment
replacing all or most of the preceding segment. Load-
ing of the 11 segments occurs once for each compila-
tion of a source program.

These 11 segments are discussed in the order in
which they are brought into core storage. The dis-
cussion is quite general, and highly important sub-
routines are mentioned briefly.

00000 | Nucleus (IBNUC)

I1BSYS

Input/Output Executor (IOEX)

Input/Output Buffer System (10BS)

Monitor (IBJOB)
COBOL Compiler (IBCBC)

Permanent Segment (Segment 1)

Compiler General Table Area :] Note 1

Compiler, Current Phase (Note 2)
(Segment 11, Environment |, Data I,
Data 11, Procedure I, Procedure |1,
Data 1, Environment 11, Procedure Ill,
or Cleanup)

Compiler Input/Output Buffers

Customer Accounting Subroutines

77777

Notes:
1. Boundaries indicated by arrows fluctuate dynamically
during compilation, according to need,
2. The various segments listed are placed in-this portion
of core storage consecutively, no segment being re-
placed until it has completely finished its assignment.

Figure 20. Core Storage MaPp for the 7090/7094 cosor Com-
piler (1BCcBC)

64

Segment |

Segment 1 of the coBor Compiler is loaded first and
remains in core storage throughout the compilation
process. The program portions of this segment are
described in the following text.

The COBOL Supervisor

This portion of the coBor Compiler has three primary
functions:

1. It prepares all lines of communication with the
1BJoB Processor and initializes all copoL Compiler in-
put/output operations.

2. It controls the processing flow for all major
phases of the cosor. Compiler,

3. It returns program control to the 18JoB Processor
and indicates whether or not a call is to be made to
the Assembler.

General Purpose Subroutines

COLAG (Collection Agency): This subroutine re-
ceives generated code from various portions of the
coBoL Compiler and converts it to symbolic form for
the Assembler.

CITRUS (Coalesced Indirect Table Reference Un-
ification Scheme): Most of the tables used within the
cosoL Compiler are under control of the general table
handling crrrus subroutine.

ERPR (Error Print): As source program errors are
detected by various portions of the cosor Compiler,
requests for generation of the related error messages
are directed to this subroutine.

GETBUF and PUTBUF (Internal File Handler):
Certain files, notably those for intermediate forms of
error messages and of procedure text, are handled so
that automatic overflow onto tape occurs when the
capacity of an assigned core storage area is exceeded.

DICTI1 (Dictionary Lookup Subroutine 1): This
subroutine is used during the first scan pass (for each
source program division) to determine whether a
name has occurred before. It is also used to enter
newly defined names in the External Dictionary.
(Corresponding to each External Dictionary entry
there is an Internal Dictionary entry containing in-
formation about the item.)

DICT2 (Dictionary Lookup Subroutine 2): This
subroutine is used during the second scan pass (for
each source program division) to determine whether
a previously undefined name can now be defined. The
picT2 subroutine is closely related to the prcr1 subrou-
tine, and the two share many instructions.

ULSC (Unit Level Scan): This subroutine is used
extensively during the first scan pass (for each source

program division) to isolate and classify the word
units of the source program text.

GLSC (Group Level Scan): This subroutine calls
upon the vrsc subroutine and classifies groups of
units.

GRIN (Group Interpreter): This interpretive sub-
routine compares encoded main program questions
against classified answers from the cLsc subroutine
and chooses main program instructions to be executed
based on the test results. The uLsc, cLsc, and GRIN
subroutines are used only for first pass scanning.

PUTCP and PUTCPM (Constant Pool Handler):
This subroutine saves generated numeric constants
(avoiding redundant generation) for actual genera-
tion by the Cleanup segment of the cosor. Compiler.

PUTSPM (Symbolic Constant Pool Handler): This
subroutine performs the same kind of function as
puTcPM subroutine, except the constants are symbolic
(represented by an encoded word-logic form called
T2 text).

GETBL (Get a Base Locator), GETGN (Get a Gen-
erated Name), and GETTS (Get a Temporary Storage
Word): These three subroutines perform the function
of assisting the various portions of the cosor. Compiler
in generation of instructions by supplying unique
words of the desired type and by keeping count of the
total number supplied.

File and Table Control Blocks

Each file using 1ocs and each table using the crrrus
subroutine requires a control block. The control blocks
for all of the files and the crrrus Tables used by the
coBoL Compiler are defined in Segment 1.

Transfer Table

A table of simple transfers to the various general pur-
pose subroutines appears in Segment 1. Its purpose is
to permit rearrangement of the subroutines without
having to reassemble each segment of the cosoL Com-
piler to correct the subroutine references.

Communication Words

A region of communication words is maintained in
Segment 1 to maintain communication between two
segments of the coBor Compiler not simultaneously
in core storage.

Segment Il

The second segment of the cosoL Compiler generates
initialization instructions on the Assembler tape. It
then proceeds through the Identification Division of
the source program, recognizing the various entries

of this division. The contents of each entry are moved
unaltered to the output area. During a scan of the
Identification Division, Segment 1u looks for the A-
margin appearance of any other division header.
When a valid division header is detected, or when a
scBEND card or an end-of-file is found. Segment 11 re-
turns control to the cosoL Supervisor. If the source
program has no Identification Division, control passes
immediately from Segment 1t to the coBoL Supervisor.

Environment |

The Environment 1 phase is called by the cosoL Su-
pervisor to perform the scan of the source program’s
Environment Division.

The primary functions of the Environment 1 scan
are:

1. During the scan of the SPECIAL-NAMES paragraph,
dictionary entries are made to relate the cooL hard-
ware names to the mnemonic-names and switch-sta-
tus-names in the source program.

2. During the scan of the FILE-CONTROL paragraph,
a four-word entry is made into the dictionary for each
file named in a seLECT clause. The type of equipment
(card or tape) to which the file is assigned is noted
by setting particular bits in the dictionary entry.
Other information concerning each file is obtained
during the scan of the Data Division File Description
paragraph.

3. For each file named in a seLeEcT clause, text is
created. This text is used by Environment 11 to create
FILE and LABEL cards which are sent to the Assembler.
The information pertaining to file-names, the unit or
units to which the files are assigned, and the rRERUN
options specified are considered to be text and are
placed into an internal file for subsequent processing
by Environment 11. _

4. Upon encountering the source program DATA
pvisION card, control is returned to the coBor Super-
visor.,

Data |

The Data 1 segment of the coBor. Compiler is loaded
as soon as the key words DATA DIVISION are encoun-
tered in the source program. The principal functions
of Data 1 are:

1. To scan the Data Division of the source program.

2. To build the Data Dictionary.

3. To prepare text (in core storage) for Data 11 that
reflects the postponed problems of OCCURS, REDEFINES,
and vaLUE. The constants associated with VALUE are
also preserved in text.

Systems Programmer’s Information 65

4. To prepare text for Environment 1. This text con-
sists of the File Description information concerning
RECORDING MODE, BLOCK CONTAINS, RECORD CONTAINS,
LABEL RECORD clauses, and the list of all data record
names in each file.

Upon encountering the Procedure Division, Data 1
returns control to the coBor Supervisor.

Data ll

Using text from Data 1 and the partially formed inter-
nal Dictionary as core-located input, Data 1 does the
following:

1. Assigns object-time base locators and builds a
table to record the assignment. A base locator is a
location which normally points to the beginning of a
logical record within an input or output buffer. A base
locator is also a location assigned to serve as a pointer
to the beginning of data after a variable length array.

2. Calculates the length and byte of each data
item. If the length of a data item is not known at
compile time, because a suborganization contains
OCCURS . . . DEPENDING ON. . ., Data 11 generates a
length calculation subroutine which also performs the
function of updating the dependent base locator. Data
It builds tables to record which of the subroutines
needs to be executed when the value of a given quan-
tity is altered. A quantity item is a data item whose
name appears after DEPENDING ON in an OCCURS clause.

3. Generates the core storage reservation for all
fixed-location data items. This task is complex in that
allowance is made for loading of the proper initial
values of data items.

4. Builds a table giving the object-time displace-
ment of each data item.

If a data item’s location is dependent upon the con-
tents of a base locator, as is the case with input or out-
put logical records, the displacement of the item is
defined to be its distance, in words, from the first data
word whose location is determined by the same base
locator. For other data items, displacement is the dis-
tance from the first data word in the area for Working
Storage items.

When there are no more dictionary entries to be
processed, the Data 11 segment returns control to the
CcOBOL Supervisor.

Procedure |

Procedure 1 is called upon by the coBoL Supervisor to
perform the first scan of the Procedure Division text.
The major functions of the Procedure 1 phase are:
1. Each procedure-name at point of definition in the

66

Procedure Division is entered into the dictionary, and
a text word is created which refers to that dictionary
entry.

2. Text words are created in an encoded form for
each of the coBoL words found in the source program.

3. All references to source language names are
looked up in the dictionary. If the name being proc-
essed is a data-name, a text word is created which re-
fers to the dictionary entry of that data-name. If the
reference cannot be found, an error message is given.
This case arises when the data-name is insufficiently
or incorrectly qualified, or cannot be found. If the
name being processed is a procedure-name, the text
created for the procedure-name is in Bcp form. Before
this phase is completed, all source-language proce-
dure-names are defined and entered into the diction-
ary. During the Procedure 1 phase, Bcp procedure-
name references are looked up and encoded text is
generated for them.

4. Structural analyses are made of all source lan-
guage statements to ensure that all source language
verb structures conform to the prescribed coBoL rules
of composition.

5. When the scBEND card is encountered, Procedure
1 returns control to the coBor Supervisor.

The output of the Procedure 1 phase is a prelimi-
nary form of word-logic text called T1 text.

Procedure Il

Procedure 11 is called upon by the coBoL Supervisor to
perform the second pass evaluation of the Procedure
Division text. The input to Procedure 11 is the partially
developed T1 text generated by Procedure 1. The ma-
jor functions of Procedure 1 are:

1. To supply final dictionary references for the
name definitions deferred by Procedure 1. If the ref-
erence cannot be made, an appropriate error message
is printed. This happens when a name is either insuffi-
ciently or incorrectly qualified, or is not defined at all.

2. To arrange, augment, or convert certain verb
structures, MOVE CORRESPONDING is converted to sever-
al individual MovE sentences. The PERFORM structure
is converted to MOVE and cCOMPUTE statements having
embedded instructions which are to be sent to the
coLAG subroutine during Procedure 1. The AT END
clause of the READ verb is changed to an 1 structure.
stoP verbs are changed to pispLAY verbs, followed by
instructions which perform the object-time stop.

3. To convert arithmetic and logical phrases to a
form of Polish notation which is easily processed by
the Procedure m code generators.

The output of Procedure 1t is the completed form of
T1 text with all dictionary references in the correct

form. The text string is a series of T1 text words rep-
resenting procedure-names at point of definition and
verb clauses.

Environment Il

The Environment 1t phase is called by the cosoL Su-
pervisor to perform the following functions:

1. For each file named in a sELEcT entry, the file-
characteristics are summarized. This summation con-
sists of the following:

a. A comparison of each block size specification
to the calculated lengths of the records in the
associated file.

b. A determination of whether or not all records
in the file are the same fixed length. The in-
formation is used by the rReap and WRITE in-
struction generators in Procedure .

c. A check to determine that at least one orPEN
and at least one cLose have been issued for
each file.

d. A check to determine that a file has not been
specified as being both input and output.

2. Certain initialization instructions are sent to the
instruction collection agency (corac). These instruc-
tions pertain to the opening of the checkpoint file and
the determination at object-time of the type of unit
(card or tape) assigned to a particular file.

3. An 1BMAP FILE card is generated onto the As-
sembler tape for each file named in a seLecr clause.
For each labeled file, a LABEL card, which contains
the information from the vALUE oF clauses in the as-
sociated File Dictionary description, is generated.

Upon completion of the processing of all files in the
source program, Environment 11 returns control to the
coBOL Supervisor.

Data Il

The Data 1 phase is entered by the cosoL Supervisor
to perform the following functions:

1. The Data 11 phase generates object-time subrou-
tines which set pointer words, known as positional in-
dicators, so that they address given array elements.

Each subscripted data item in the source program
is located at object time through a positional indica-
tor (PI). A different position indicator is used for
each unique subscripted reference in the Procedure
Division of the source program. For example:

MOVE A (L], K) TO X.
MOVE B (L,],K) TO X.
MOVE A (L], M) TO X.
MOVE ALY TO X.
MOVE A (L], K) TO X.

causes four position indicators to be generated. The
last subscript reference does not create a new position
indicator because it is identical to the first reference.

For each position indicator generated in the object
program, there is also a subroutine generated to set the
contents of that position indicator. It is the function of
Data 111 to extract from the Internal Dictionary the in-
formation concerning the base of the array and the dis-
tance between the elements within the array. Data
also generates the object-time subroutines that set the
position indicators. Calls upon these subroutines are
generated by the Procedure mr Supervisor when they
are needed.

2. The Data 11 phase forms a table of all data items
that contain a quantity item (including with each of
the data items the subroutines called upon when the
quantity changes). This table is used by the quantity
item analyzer in Procedure 1.

3. The Data 1 phase places the base locator num-
ber in the Internal Dictionary in the place of level-
number for those data items which are located by a
base locator.

4. A list is compiled of all variable-length records
and also of all fixed-length records that contain a data-
item described by an occuss. . . pEPENDING ON clause.
This list is used by the ReAD instruction generator in
Procedure 111 to call upon the appropriate length cal-
culation subroutines to adjust the lengths and base
locations of data items affected by a reaD statement.

Upon completion of these functions, Data u1 returns
control to the cosoL Supervisor.

Procedure Il

At the time the procedure text becomes input to Pro-
cedure m1, sentences have been reduced to statement
segments. Each such statement consists of a verb, or
its equivalent, and its related operands. The supervi-
sory program for Procedure 1 gives these statements,
one at a time, to specific instruction generator pro-
grams, the program chosen depending upon the verb
under consideration. These instruction-generating pro-
grams produce the appropriate object-time instructions
in an encoded form called T2 Text.

Subscript Calculations

Prior to routing each statement, the supervisory pro-
gram examines the statement operands to find all oc-
currences of T1 Text words that indicate subscripted
data operands. For the first occurrence of each word
within a statement, the supervisory program generates
a call to the appropriate position indicator (array
pointer) calculation subroutine. These subroutines

Systems Programmer’s Information 67

were generated during Data 11, and the supervisory
program is able to determine which one to use by con-
sulting the Position Indicator Table.

Treatment of Incoming Procedure-Names at

Point of Definition

The supervisory program gives incoming procedure-
names directly to the instruction collection agency
(corac) rather than allowing them to reach the in-
struction generators.

If the procedure-name is a paragraph name or a sec-
tion name, i.e., not a generated name, and if the
scope of a PERFORM verb terminates with the pre-
ceding paragraph, the supervisory program generates
an instruction immediately preceding the procedure-
name. This generated instruction has the following
form:

TRA 41
It is modified to provide the PERFORM return linkage.

Computation of Variable Lengths

A data item that appears as a data-name after the pE-
PENDING ON portion of an occurs clause is known as a
quantity item. If any of the instructions generated for
a statement alter the object-time contents of any quan-
tity item, each generator potentially involved (Move
and READ, at present) adds these data items to a list
which it builds throughout its functioning. When such
a generator’s functions are concluded, but before it re-
turns control to the coBoL Supervisor, it gives its list
to the quantity item analyzer. This, in turn, issues the
proper calls to the base locator and length calculation
subroutines generated in Data 11.

Instruction Generators

The source language statements OPEN, CLOSE, READ,
WRITE, MOVE, DISPLAY, ALTER, GO TO . . . DEPENDING ON
and 1r and 1F NoT are converted to machine language
by means of a set of subroutines known as instruction
generators. Certain other verbs are also handled by the
same generators, having been changed to one of the
above verbs before Procedure 11 is entered.

After the procedure text has been completely proc-
essed, program control is returned to the cosoL Su-
pervisor.

Cleanup

The Cleanup phase is called by the cosorL Supervisor
as the last major segment of the compilation process.
The primary functions of the Cleanup phase are:
1. The symbolic constants that were placed into the
Symbolic Constant Pool are sent to the instruction col-

68

lection agency (corac) in regular instruction format.

2. All error message references that were sent to the
ERPR subroutine are arranged in ascending order,
according to the associated source language card num-
bers. Each error message reference is expanded to a
full error message form that is sent to the Input/Out-
put Editor to be placed on the System Output Unit
(sysout1).

3. Bss instructions are sent to the instruction collec-
tion agency (coLac) to reserve storage for base lo-
cators, position indicators, and temporary storage and
result storage locations.

4. The constants placed into the Numeric Constant
Pool are sent to the instruction collection agency
(corac) and placed on the Assembler tape in the form
of octal constants.

Upon completion of these cleanup functions, control
returns to the coBoL Supervisor.

Diagnostic and Error Messages

Following is a list of the coor Compiler diagnostic
and error messages which may appear on the system
output tape following the listing of the source pro-
gram. There are three degrees of severity that these
messages may have: W, E, and D. The severity level
of the messages may be more easily remembered if the
indicator characters are considered as the initial letters
of the words Warning, Error, and Disaster.

A message with severity W will inhibit neither as-
sembly nor immediate loading of the object program.
A message of severity E will inhibit the immediate
loading of the object program. A message of severity
D will cause compilation to terminate and assembly to
be inhibited.

Error Messages

Severity code (W=warning, E=error, D=disaster)
and a related source program card number precede
each message.

0000 ERROR MESSAGE NOT YET IN FILE.

0001 ALTER REFERENCE INCORRECT - ----- IS NOT
A -—-- NOTHING DONE.

0002 ----- IS STRUCTURALLY INCORRECT AT THIS
POINT. RERUN CLAUSE IGNORED.

0003 -—--- IS NOT A FILE-NAME. RERUN CLAUSE
IGNORED.

0004 INVALID LITERAL USED IN EXAMINE
STATEMENT.

0005 CLOSE REEL FOR ----- IS ILLEGAL SINCE FILE
IS ASSIGNED TO A CARD OR SYSTEM UNIT.
REEL OPTION IGNORED.

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

USE OF ----- IN ----- STATEMENTS PREFERRED
OVER ----- OR ‘EQUALS’. COMPLIANCE WITH
STANDARD IBM COBOL RECOMMENDED.

INTEGER MUST NOT EXCEED 32767. INTEGER
1 ASSUMED.

----- CAN NOT HAVE MORE THAN 49
QUALIFIERS. EXTRA ONES DELETED.

MAXIMUM NUMBER -<-- OF DIFFERENT
NAMES IN A SOURCE. PROGRAM EXCEEDED.
COMPILATION TERMINATED.

----- IS IMPROPERLY QUALIFIED. DEFINITION
FORCED.

----- SHOULD NOT BE IN THE A MARGIN. B
MARGIN ASSUMED.

----- IS A NAME DEFINITION AND MUST NOT
BE QUALIFIED. DEFINITON FORCED.

----- IS NOT DEFINED. DEFINITION FORCED
UNLESS A QUALIFIER.

----- IS IMPROPERLY QUALIFIED. NAME IS
NOT UNIQUE. DEFINITION FORCED.

COMPILER TABLE CAPACITY EXCEEDED. TRY
SUBDIVIDING INTO SMALLER PROGRAMS FOR
SEPARATE COMPILATION WITH
COMBINATION AT OBJECT TIME.

----- USED AS A SUBSCRIPT IS A SIGNED
EXTERNAL DECIMAL ITEM. NEGATIVE
VALUES CAUSE ERRORS.

USED AS A SUBSCRIPT HAS AN ALPHABETIC
PICTURE. INVALID SUBSCRIPT. OBJECT
PROGRAM USES SUBSCRIPT VALUE OF 1.

----- USED AS A SUBSCRIPT IS IN BCD.
OBJECT-TIME CONVERSION AND/OR
UNPACKING IS REQUIRED FOR SUBSCRIPTS
NOT COMPUTATIONAL, SYNCHRONIZED
RIGHT.

IS A TYPE OF ELEMENTARY DATA ITEM THAT
MAY NOT BE USED AS A SUBSCRIPT. OBJECT
PROGRAM USES SUBSCRIPT VALUE OF 1.

----- USED AS A SUBSCRIPT HAS AN
ALPHANUMERIC PICTURE, BUT VALUES
MUST BE RESTRICTED TO INTEGERS.

GROUP ITEM ----- USED AS A SUBSCRIPT.
OBJECT PROGRAM USES SUBSCRIPT VALUE
OF 1.

----- USED AS A SUBSCRIPT IS NOT
SYNCHRONIZED RIGHT. OBJECT-TIME
UNPACKING IS REQUIRED.

----- USED AS A SUBSCRIPT IS INVALID DUE
TO NON-ZERO SCALING. OBJECT PROGRAM
USES SUBSCRIPT VALUE OF 1.

COMPILER THWARTED IN SEARCHING DATA
STRUCTURE FOR GROUP(S) CONTAINING
ARRAY ----- — PROBABLY DUE TO TOO MANY
SUBSCRIPTS GIVEN. OBJECT PROGRAM USES
FIRST ELEMENT OF THE ARRAY.

DISPLAY OF VARIABLE LENGTH ITEM -----
NOT PERMITTED.

----- HAS AN ILLEGAL LEVEL NUMBER.
ASSUMED LEVEL NUMBER IS 49.

SECTION-HEADER ----- SECTION’ NOT
FOLLOWED BY ----- DESCRIPTION ENTRY.

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038
003
0040

0041

0042
0043

0044

0045

0046

0047

0048

0049

0050

0051

SCAN RESUMED AT NEXT ------ DESCRIPTION
ENTRY, SECTION, OR DIVISION.

SECTIONS IN THE DATA DIVISION MUST -----
SCAN RESUMED AT NEXT SECTION, OR
DIVISION.

COBOL WORD ‘SECTION’ MISSING. BEGINNING
OF ----- SECTION ASSUMED BY COMPILER.

----- DESCRIPTION ENTRY ENCOUNTERED.
BEGINNING OF ----- SECTION ASSUMED BY
COMPILER.

----- IS UNRECOGNIZABLE. SCAN RESUMED AT
NEXT DATA DESCRIPTION ENTRY, SECTION,
OR DIVISION.

ENVIRONMENT ----- NOT FOLLOWED BY -----
SCAN RESUMED AT NEXT PARAGRAPH,
SECTION, OR DIVISION.

I-O-CONTROL PARAGRAPH NOT FOLLOWING
FILE-CONTROL PARAGRAPH IS IGNORED.

----- IS UNRECOGNIZABLE. SCAN RESUMED AT
NEXT PARAGRAPH, SECTION, OR DIVISION.

ENVIRONMENT PARAGRAPH-NAME
ENCOUNTERED. BEGINNING OF ----- SECTION
ASSUMED BY COMPILER.

----- IN THE ENVIRONMENT DIVISION MUST
NOT BE REPEATED. SCAN RESUMED AT NEXT
PARAGRAPH, SECTION, OR DIVISION.

----- PARAGRAPH APPEARS ILLEGALLY IN -----
SECTION. SCAN RESUMED AT NEXT
PARAGRAPH, SECTION, OR DIVISION.

COBOL WORD ‘SECTION’ MISSING. BEGINNING
OF ----- SECTION ASSUMED BY COMPILER.

----- IS NOT A FILE-NAME. FD ENTRY
IGNORED.

‘FILLER® NOT PERMITTED AS FILE-NAME.
FD ENTRY IGNORED.

----- HAS NOT APPEARED IN A SELECT ENTRY
IN ENVIRONMENT DIVISION. FD ENTRY
IGNORED.

REDUNDANT FD ENTRY ----- IGNORED.

REDUNDANT FD ENTRY ----- IGNORED. ONLY
ONE FD ENTRY MAY DESCRIBE A SET OF
RENAMED SELECT ENTRIES.

----- IS UNIDENTIFIABLE. REMAINDER OF
CLAUSE IS IGNORED.

MULTIPLE ----- CLAUSES IN FD ENTRY -----.
FIRST ONE RETAINED.

FILE ----- IS ASSIGNED TO A CARD OR SYSTEM
UNIT. OPTIONS SPECIFIED IN CLOSE
STATEMENT ARE IGNORED.

FD ENTRY ----- NOT TERMINATED BY A
PERIOD. CONDITION IGNORED.

COPY OPTION NOT IMPLEMENTED. FD ENTRY
IGNORED.

----- SPECIFICATION IN ----- CLAUSE IS NOT
AN UNSIGNED INTEGER. CLAUSE IGNORED.
----- SPECIFICATION IN ----- CLAUSE IS NOT

AN UNSIGNED INTEGER. REMAINDER OF
CLAUSE RETAINED.

----- IS GREATER THAN -----. FIRST VALUE
USED IN DETERMINING MAXIMUM ----- SIZE.

Systems Programmer’s Information 69

0052

0053

0054

0055

0056

0057

0058

0059

0060

0061

0062

0063

0064

0065

0066

0067

0068

0069

0070

0071

0072

0073

0074

0075

70

DISPLAY OF ----- TRUNCATED AFTER FIRST
72 CHARACTERS.

IMPROPER LABEL CLAUSE IGNORED.
COMPILER ASSUMES LABEL RECORD(S)
OMITTED UNLESS VALUE CLAUSE PRESENT.

----- NOT A LABEL-DATA-NAME. REMAINDER
OF VALUE CLAUSE IGNORED.

----- SPECIFICATION --- REMAINDER OF
VALUE CLAUSE IGNORED.

----- LITERAL IS TOO LONG. FIRST ----
CHARACTERS WILL BE USED.

----- IS NOT A NUMERIC LITERAL AND IS
IGNORED.

IMPROPER RECORDING CLAUSE IGNORED.
BCD, HIGH DENSITY ASSUMED.

----- IS UNIDENTIFIABLE. CLAUSE IGNORED.
COMPILER ASSUMES FILE(S) ASSOCIATED
WITH FD ENTRY ----- HAS LABEL RECORD
SINCE VALUE OF LABEL GIVEN.

LABEL CLAUSE OMITTED IN FD ENTRY ----- .
COMPILER ASSUMES LABEL RECORD(S)
OMITTED.

VALUE CLAUSE OMITTED IN FD ENTRY ----- .
LEGAL BUT UNUSUAL.

DATA RECORDS CLAUSE OMITTED IN FD
ENTRY ----- . CONDITION IGNORED.

----- HAS NO FILE DESCRIPTION,
INPUT/OUTPUT STATEMENT IGNORED.

FILE ----- HAS NO RECORDS. INPUT/OUTPUT
STATEMENT IGNORED.

DATA ITEM ----- INVALID AS AN ARGUMENT
IN ‘EXAMINE’ STATEMENT OR CLASS TEST.
STATEMENT DELETED.

FILE ----- RETENTION-PERIOD SPECIFICATION
IGNORED SINCE ALLOWED ONLY FOR
OUTPUT FILE.

NO RECORD DESCRIPTION ENTRIES FOLLOW
FD ENTRY ----- .

RECORD ----- LISTED IN THE FD DATA
RECORD(S) CLAUSE DOES NOT APPEAR IN
A RECORD DESCRIPTION ENTRY. CONDITION
IGNORED.

RECORD ----- APPEARS IN RECORD
DESCRIPTION ENTRY BUT WAS NOT LISTED
IN THE FD DATA RECORD(S) CLAUSE.
CONDITION IGNORED AND RECORD
DESCRIPTION RETAINED.

FILE ----- HAS NO ASSOCIATED FD ENTRY.
ARBITRARY SPECIFICATIONS ASSUMED.

FILE ----- IS ASSIGNED TO ----- AND FILE
RECORDING MODE IS BINARY. UNIT NOT
PERMITTED TO BE CARD AT OBJECT-TIME.

CHECKPOINTS DESIGNATED TO BE WRITTEN
ON FILE ----- BUT FILE IS NOT LABELED

OUTPUT. CHECKPOINTS WILL BE WRITTEN
ON STANDARD CHECKPOINT UNIT INSTEAD.

DESIGNATION OF ‘OPTIONAL’ FILE,
ALTHOUGH NOT STANDARD IBM COBOL,
ALLOWED.

FILE ----- SPECIFIED AS ----- INPUT -----
OUTPUT. ----- USAGE ASSUMED.

0076

0077

0078

0079

0080

0081

0082

0083

0084

0085

0086

0087

0088

0089

0090

0091
0092

0093

0094

0095

0096

PROCEDURE STATEMENT TO ----- FILE -----
NOT GIVEN.

MAXIMUM RECORD SIZE (----- COMPUTER
WORDS) SPECIFIED IN FD ENTRY
ASSOCIATED WITH FILE ----- IS NOT EQUAL

TO SIZE OF MAXIMUM RECORD (-----
COMPUTER WORDS). FD RECORD CLAUSE
IGNORED.

----- FILE ----- IS ASSIGNED TO -----. UNIT NOT
PERMITTED TO BE CARD AT OBJECT-TIME.

FILE ----- ASSIGNED TO CARD UNIT HAS
RECORD CONTAINING MORE THAN 72
CHARACTERS. MAXIMUM RECORD SIZE
PROCESSED IS 72 CHARACTERS.

FILE --e-- IS ASSIGNED TO ----- AND MAXIMUM
RECORD SIZE EXCEEDS 72 CHARACTERS.
UNIT NOT PERMITTED TO BE CARD AT
OBJECT-TIME.

BLOCKING OF DISTINCT RECORD TYPES OF
DIFFERING SIZES, WITHOUT COUNT

CONTROL, IN FILE ----- IS NOT PERMITTED.
FILE IS SET UNBLOCKED.

BLOCK SIZE (----- COMPUTER WORDS)
SPECIFIED FOR FILE ----. IS NOT A MULTIPLE
OF RECORD SIZE (----- COMPUTER WORDS).
BLOCK SIZE CHANGED TO ----- COMPUTER
WORDS.

EXCESSIVE BLOCK SIZE SPECIFIED FOR FILE
----- . FILE IS SET UNBLOCKED.

MAXIMUM RECORD SIZE (----- COMPUTER
WORDS) EXCEEDS SPECIFIED BLOCK SIZE
(----- COMPUTER WORDS) OF FILE ----- . FILE
IS SET UNBLOCKED.

FILE ----- ASSIGNED TO SYSOU1, BUT
RECORDING MODE GIVEN AS BINARY.
RECORDING MODE CHANGED TO BCD.

FIGURATIVE CONSTANT OR NON-NUMERIC
LITERAL MUST FOLLOW °‘ALL’. ALL ZERO
ASSUMED IF COBOL WORD NEXT.

LITERAL FOLLOWING ALL IS LIMITED TO
ONE CHARACTER. THE FIRST LITERAL
CHARACTER IS USED.

----- SHOULD BE FOLLOWED BY A SPACE.
SPACE IS ASSUMED.

----- SHOULD NOT BE IN THE A MARCIN. B
MARGIN ASSUMED.

----- SHOULD NOT BE FOLLOWED BY A
SPACE. CONDITION IGNORED.

INPUT/OUTPUT STATEMENT IGNORED.

DOUBLE ASTERISKS (INDICATING
EXPONENTIATION) SHOULD NOT BE
SEPARATED BY SPACE(S). SPACE(S)
IGNORED.

$ IS A LEGAL CHARACTER ONLY IN THE
PICTURE CLAUSE. $ DELETED.

----- IS NOT A PROCEDURE NAME. TRANSFER
BYPASSING THIS STATEMENT INSERTED.

----- , USED TO CONTROL A GO TO, IS NOT AN
INTEGER. INTEGER PART USED.

----- , USED TO CONTROL A GO TO, HAS
ILLEGAL FORMAT. GO TO STATEMENT
IGNORED.

0097

0098

0099

0100

0101

0102

0103

0104

0105

0106

0107

0108

0109

0110

0111

0112

0113

0114

0115

COMPILER BASE LOCATOR CAPACITY
EXCEEDED. TRY SUBDIVIDING INTO
SMALLER PROGRAMS FOR SEPARATE
COMPILATION WITH COMBINATION AT
OBJECT TIME.

CONDITIONAL VARIABLE ----- IMPROPERLY
DESCRIBED AS A REPORT, SCIENTIFIC
DECIMAL, OR FLOATING POINT ITEM. X IS
ASSUMED PICTURE.

OCCURS CLAUSE IGNORED FOR
CONDITIONAL VARIABLE ----- .

NOT IN ‘DECLARATIVES’ MODE, STATEMENT
DELETED.

ITEM ----- HAS NO SPECIFIED LENGTH.
CONDITION IGNORED.

VALUE CLAUSE OF ITEM ----- IGNORED SINCE
IT IS EITHER REDEFINED, PRECEDED BY A
VARIABLE LENGTH ITEM, OR IS IN THE
FILE SECTION.

----- , ASSOCIATED WITH REDEFINES OR
OCCURS . . . DEPENDING ON . .., IS AN
IMPROPER DATA ITEM. CLAUSE IGNORED.

----- , ASSOCIATED WITH OCCURS. ..
DEPENDING ON..., IS AN IMPROPER
DATA ITEM. CLAUSE IGNORED.

LENGTH OF NON-NUMERIC LITERAL
EXCEEDS LENGTH SPECIFIED BY SIZE OR

PICTURE CLAUSE FOR ----- . LOW ORDER
TRUNCATION DONE.
SYNCHRONIZED ITEM ----- HAS REDEFINES

CLAUSE. STORAGE ASSIGNMENT MIGHT NOT
BEGIN WITH THE FIRST CHARACTER
POSITION OF THE REDEFINED AREA.
CONDITION IGNORED.

DISCREPANCY BETWEEN LEVELS OF ----- AND
THE REDEFINED ITEM. DISCREPANCY
IGNORED AT THIS POINT OF ANALYSIS.

DATA ITEM ---—-- WITH REDEFINES CLAUSE
NOT PRECEDED BY AN ELEMENTARY ITEM.
REDEFINES IGNORED.

NUMBER OF OCCURRENCES OF ITEM -----
DEPENDS ON A FOLLOWING ITEM IN THE
SAME DATA GROUP. ‘DEPENDING ON’
CLAUSE IGNORED.

NESTED REDEFINES ILLEGAL. REDEFINES
CLAUSE IGNORED FOR ----- .

----- WITH REDEFINES CLAUSE NOT
IMMEDIATELY PRECEDED BY THE
RDEFINED AREA. REDEFINES IGNORED.

NON-ALPHABETIC LITERAL GIVEN FOR
ALPHABETIC ITEM ----- . CONDITION IGNORED.

LENGTH (----- CHARACTERS) OF REDEFINING
DATA FIELD HEADED BY DATA-NAME ----- IS
GREATER THAN LENGTH (----- CHARACTERS)
OF DATA FIELD BEING REDEFINED.
DANGEROUS CONDITION IGNORED.

SUBORGANIZATION OF ITEM ----- WITH
OCCURS CLAUSE CONTAINS A VALUE CLAUSE.
VALUE GIVEN TO FIRST ELEMENT ONLY.

RECORD HEADED BY DATA ITEM -----
EXCEEDS 32767 WORDS. LENGTH MODULO
32768 USED.

0116

0117

0118

0119

0120

0121

0122
0123

0124

0125

0126

0127

0128

0129

0130
0131

0132

0133

0134

0135

0136

0137

0138

0139

0140

LIMIT (15 BITS) OF SIZE FIELD IN
DICTIONARY NECESSITATES TREATING
LENGTH OF ----- AS MODULO 32768.

NUMBER OF DIGITS IN FIELD OF LITERAL
EXCEEDS LIMIT OF 18. 18 DIGITS USED.

MISUSE OF PERIOD, SIGN, OR E IN LITERAL.
ILLEGAL CHARACTER(S) IGNORED.

ILLEGAL CHARACTER IN LITERAL.
CHARACTER IGNORED.

FLOATING POINT OVERFLOW IN CONVERTING
LITERAL. MAXIMUM VALUE USED.

FLOATING POINT UNDERFLOW CONVERTING
LITERAL. ZERO USED.

---------- - FROM ---m =ooez TO o ommom momem oo

MOVE FROM A FIGURATIVE CONSTANT TO A
VARIABLE LENGTH GROUP ITEM NOT
ALLOWED.

MOVE FROM A FIGURATIVE CONSTANT TO AN
ITEM LONGER THAN 32767 CHARACTERS NOT
ALLOWED.

CAUTION, GROUP LEVEL MOVE FROM ----- TO

CAUTION. MOVE FROM ----- TO ----- CAUSES
TRUNCATION.

CHARACTER LOGIC MOVE INVOLVING AN
ITEM LONGER THAN 32767 CHARACTERS.
NOTHING GENERATED.

HYPHENATED FORM OF -—-- DESIGNATION
PREFERRED.

OBJECT-COMPUTER DESIGNATION
OVERRIDDEN BY ----- OPTION ON $IBCBC
CARD.

CAUTION, GROUP ITEM ----- TESTED.

----- IS STRUCTURALLY INCORRECT AT THIS
POINT. SCAN RESUMED AT NEXT VERB,
PERIOD, OR INFORMATION IN THE MARGIN.

TOO FEW OPERANDS IN ADD STATEMENT.
STATEMENT DELETED.

STATEMENT REQUIRES A PROCEDURE NAME,
NOT ----- , AS AN ARGUMENT. STATEMENT
DELETED.

COBOL WORDS ‘TO PROCEED TO’ NOT FOUND
WHERE REQUIRED IN ALTER STATEMENT.
STATEMENT DELETED.

DATA-NAME, NOT ----- , EXPECTED AS
ARGUMENT IN THIS STATEMENT.
STATEMENT DELETED.

COBOL WORD ----- WAS NOT FOUND WHERE
REQUIRED IN THIS STATEMENT. STATEMENT
DELETED.

SATEMENT REQUIRES A DATA-NAME,
LITERAL, OR FIGURATIVE CONSTANT, NOT
----- , AS AN ARGUMENT. STATEMENT
DELETED.

CROSS-REFERENCE NAME TOO LONG. FIRST
6 CHARACTERS USED.

STATEMENT CONTAINS TOO MANY RIGHT
PARENTHESES. EXTRA PARENTHESES
IGNORED.

STATEMENT CONTAINS TOO FEW RIGHT
PARENTHESES. COMPENSATING

Systems Programmer’s Information 71

0141

0142

0143

0144

0145

0146

0147

0148

0149

0150
0151

0152

0153

0154

0155

0156

0157

0158

0159
0160

0161

0162

0163

0164

72

PARENTHESES ADDED AT END OF
STATEMENT.

EXTRANEOUS ‘ELSE’ FOUND. ‘ELSE’ IGNORED.
FOLLOWING TEXT TREATED AS IF ‘ELSE’ DID
NOT EXIST.

NO PARAGRAPH NAME FOUND PRECEDING
‘EXIT’ STATEMENT. CONDITION IGNORED.

ONLY FILE-NAMES MAY BE USED AS
ARGUMENTS IN INPUT’ OR ‘OUTPUT’
STATEMENTS. STATEMENT DELETED.

INPUT” OR ‘OUTPUT” MUST FOLLOW VERB IN
AN ‘OPEN’ SATEMENT. STATEMENT DELETED.

NUMBER OF FILES NAMED IN FILE-CONTROL
EXCEEDS MAXIMUM OF 63. COMPILATION
TERMINATED.

----- IS NOT -----. INPUT/OUTPUT STATEMENT
IGNORED.

----- IS NOT -----. INPUT/OUTPUT STATEMENT
IGNORED.

----- IS STRUCTURALLY INCORRECT AT THIS
POINT. SCAN RESUMED AT BEGINNING OF
NEXT SWITCH-NAME ENTRY, PERIOD, OR
PROPER INFORMATION IN THE A MARGIN.

----- IS NOT A LEGAL FILE-NAME. SELECT
ENTRY IGNORED.

REDUNDANT SELECT ENTRY ----- IGNORED.

INELIGIBLE DATA-NAME CANNOT BE USED
AS AN ARGUMENT FOR THE CORRESPONDING
OPTION.

‘RENAMING” MAY ONLY BE FOLLOWED BY A
FILE-NAME. REMAINDER OF SELECT ENTRY
IGNORED. ASSUMED UNIT ASSIGNMENT I3
‘1 TAPE-UNIT".

COBOL WORDS ‘ASSIGN TO’ OMITTED IN
SELECT ENTRY ----- . ASSUMED UNIT
ASSIGNMENT IS ‘1 TAPE-UNIT’. -

----- HAS NOT BEEN DEFINED IN A SELECT
ENTRY AND IS IGNORED.

OPERATION IGNORED BECAUSE ----- HAS
IMPROPER DATA FORMAT.

TRANSFER BYPASSED BECAUSE ----- IS NOT A
STATEMENT OR SECTION NAME.

ILLEGAL SENTENCE STRUCTURE. NOTHING
DONE.

OPERATION IGNORED BECAUSE ILLEGAL USE
OF FIGURATIVE CONSTANT.

INCOMPLETE STATEMENT DELETED.

CONDITIONAL EXPRESSION TEST CAPACITY
EXCEEDED. REWRITE AS TWO OR MORE
SEPARATE EXPRESSIONS WITH A MAXIMUM
OF 18 OPERATORS. ILLEGAL SENTENCE
STRUCTURE. NOTHING DONE.

ATTEMPTED DIVISION BY ZERO BYPASSED.
RESULT TAKEN TO BE ZERO.

CANNOT USE VARIABLE LENGTH ITEMS FOR
COMPARISON. NOTHING DONE.

DOWNSCALE GENERATED WHICH LOSES ALL
SIGNIFICANT DIGITS.

UPSCALE MAY CAUSE HIGH ORDER
TRUNCATION FOR STORE INTO ----- .

0165

0166

0167

0168

0169

0170

0171

0172

0173

0174

0175

0176

0177

0178

0179

0180

0181

0182

0183

0184

0185

0186

0187

----- IS STRUCTURALLY INCORRECT AT THIS
POINT. SCAN RESUMED AT BEGINNING OF
NEXT SELECT ENTRY, PERIOD, OR PROPER
INFORMATION IN THE A MARGIN.

----- IS STRUCTURALLY INCORRECT AT THIS
POINT. REMAINDER OF SWITCH-NAME ENTRY
IGNORED.

----- IS NOT A LEGAL MNEMONIC-NAME.
REMAINDER OF SWITCH-NAME ENTRY
IGNORED.

----- IS NOT A LEGAL CONDITION-NAME.
REMAINDER OF SWITCH-NAME ENTRY
IGNORED.

TERMINATION OF LITERAL FORCED AT END
OF CARD.

MNEMONIC ----- NOT UNIQUE. CONDITION
IGNORED.

REDUNDANT SWITCH-NAME ENTRY FOR KEY
----- IGNORED.

A SPACE SHOULD SEPARATE A SUBSCRIPTED
NAME FROM THE FOLLOWING LEFT
PARENTHESIS. SPACE IS ASSUMED.

ILLEGAL SUBSCRIPT STRUCTURE. SCAN
RESUMED AT NEXT VERB, PERIOD, OR
INFORMATION IN THE A MARGIN.

SUBSCRIPT INTEGER MUST NOT EXCEED
32767. INTEGER 1 ASSUMED.

SUBSCRIPT COUNT EXCEEDS 3. SCAN
RESUMED AT NEXT VERB, PERIOD, OR
INFORMATION IN THE A MARGIN.

SUBSCRIPT MISSING AFTER LEFT
PARENTHESIS. SCAN RESUMED AT NEXT
VERB, PERIOD, OR INFORMATION IN THE A
MARGIN.

DIVISION NAME SHOULD BE FOLLOWED BY
THE WORD DIVISION AND A PERIOD.
CONDITION IGNORED.

$CBEND CARD IS MISSING ON SOURCE DECK.
CONDITION IGNORED.

----- IS AN UNRECOGNIZABLE ITEM ON CARD.
COMPILER SKIPS TO NEXT DIVISION.

DIVISIONS MUST BE IN ORDER AND NOT
DUPLICATED. COMPILER SKIPS TO NEXT
DIVISION.

COBOL COMPILER DOES NOT OBEY THE USE
OF XR4, XR5, OR XR6 ON $IBCBC CARD. XR3
IS ASSUMED.

----- IS ILLEGAL ITEM ON $IBCBC CARD.
CONDITION IGNORED.

DECK NAME IS MISSING ON $IBCBC CARD.
CONDITION IGNORED.

ILLEGAL CHARACTER IN COLUMN 7. SPACE
IS ASSUMED.

CONTINUATION CHARACTER MUST NOT BE
USED WITH AN OCCUPIED A MARGIN.
CONTINUATION CHARACTER IGNORED.

NON-NUMERIC LITERAL CONTINUATION
MUST BEGIN WITH A QUOTE. QUOTE
ASSUMED PRECEDING FIRST NON-SPACE
CHARACTER.

CARD SEQUENCE ERROR IN COLUMNS 1-6.
CONDITION IGNORED.

0188

0189

0190

0191
0192

0193

0194

0195

0196

0197

0198

0199

0200

0201

0202

0203

0204

0205

0206

0207

0208

0209

0210

REDUNDANCY ON SYSTEM INPUT UNIT.
CONDITION IGNORED.

21 PERMANENT READ REDUNDANCIES ON
SYSTEM INPUT UNIT. COMPILATION
TERMINATED.

NON-NUMERIC LITERAL LONGER THAN 120
CHARACTERS OR NAME LONGER THAN 30
CHARACTERS TRUNCATED.

ILLEGAL CHARACTER ON CARD DELETED.

PRIMARY AND SECONDARY UNITS ASSIGNED
TO FILE ----- CONFLICT. SECONDARY UNIT
ASSIGNMENT IGNORED.

ILLEGAL ----- UNIT ASSIGNED TO FILE -----,

MULTIPLE REEL OPTION FOR FILE -----
OMITTED WHERE REQUIRED BUT IS
ASSUMED.

----- IS STRUCTURALLY INCORRECT AT THIS
POINT. SCAN RESUMED AT BEGINNING OF
NEXT RERUN CLAUSE, PERIOD, OR PROPLR
INFORMATION IN THE A MARGIN.

----- IS UNRECOGNIZABLE IN PROBABLE
MULTIPLE REEL OPTION. MULTIPLE REELS
ASSUMED.

CARD UNIT NOT ALLOWED AS SECONDARY
UNIT ASSIGNED TO FILE ----- . SECONDARY
UNIT ASSIGNMENT IGNORED.

----- IS NOT -----. INPUT/OUTPUT STATEMENT
IGNORED.

ARGUMENT NUMBER ----- MAY NOT APPEAR
IN A DISPLAY STATEMENT. SPACE ASSUMED
INSTEAD.

----- IS NOT -----. INPUT/OUTPUT STATEMENT
IGNORED.)

----- DEFINED IN MORE THAN ONE OUTPUT
FILE. INPUT/OUTPUT STATEMENT IGNORED.

----- HAS AN ILLEGAL PICTURE. ----- IS
ASSUMED PICTURE.

UNIDENTIFIABLE WORD ----- IN DATA
DESCRIPTION. WORD OR CLAUSE IGNORED.

PREVIOUS DATA DESCRIPTION NOT
TERMINATED BY A PERIOD. PERIOD ASSUMED
AND PROCESSING OF ----- BEGUN.

SIZE, POINT, SIGNED, OR EDITING CLAUSES
IGNORED IN FAVOR OF PICTURE IN ----- .

MULTIPLE ----- CLAUSES IN ----- DATA
DESCRIPTION. FIRST ONE RETAINED.

JUSTIFIED CLAUSE IN DESCRIPTION OF -----
IGNORED. THIS FEATURE NOT
IMPLEMENTED.

COMPILER FORCED TO ASSUME ----- ISA
GROUP ITEM DUE TO ERROR IN SUBSEQUENT
LEVEL NUMBER.

ELEMENTARY LEVEL CLAUSES IN
DESCRIPTION OF GROUP ITEM ----- IGNORED
(L.E. VALUE, SIGNED, POINT, SYNCHRONIZED,
EDITING, OR PICTURE).

BINARY COMPUTATIONAL USAGE OF -----
INCOMPATIBLE WITH BCD RECORDING MODE
FOR THIS FILE.

0211

0212

0213

0214

0215

0216

0217

0218

0219

0220

0221

0222

0223
0224

0226

0227

0228

0229

0230

0231

----- OF GROUP ITEM ----- IGNORED DUE TO
CONFLICT WITH A HIGHER ORDER GROUP.

LEVEL OF ----- CONFLICTS WITH THE
PRECEDING LEVEL NUMBER. CONDITION
IGNORED.

ILLEGAL CLAUSE(S) IN DESCRIPTION OF
FLOATING POINT ITEM ----- IGNORED.

ILLEGAL CLAUSE(S) IN DESCRIPTION OF
SCIENTIFIC DECIMAL ITEM ----- IGNORED.

ILLEGAL PICTURE OF SCIENTIFIC DECIMAL
ITEM ----- . +99999999E+99 IS ASSUMED
PICTURE.

ILLEGAL PICTURE (OR NEITHER PICTURE
NOR LEGAL SIZE GIVEN) FOR ----- DECIMAL
ITEM ----- . 999999 IS ASSUMED PICTURE.

ALPHABETIC OR ALPHANUMERIC CLASS
SPECIFIED FOR ----- IGNORED SINCE ITEM IS
INTERNAL DECIMAL.

PICTURE OF ALPHANUMERIC ITEM -----
CONTAINS A MIXTURE OF A’S AND 9§ —
TREATED AS ALL X’S.

ILLEGAL USAGE OR CLASS CLAUSE (OR
BLANK WHEN ZERO) IN DESCRIPTION OF
ALPHANUMERIC ITEM ----- . CLAUSE IGNORED
IN FAVOR OF PICTURE.

NEITHER PICTURE NOR SIZE CLAUSE GIVEN
FOR NON-REPORT DISPLAY ITEM ----- . X IS
ASSUMED PICTURE.

ALPHABETIC CLASS SPECIFIED FOR -----
IGNORED SINCE ITEM IS EXTERNAL
DECIMAL.

MULTIPLE CONTIGUOUS COMMAS IN
PICTURE REPORT OF ITEM ----- CHANGED TO
A SINGLE COMMA.

LEVEL 77 ITEM ----- MAY NOT HAVE OCCURS.

PICTURE OF REPORT ITEM ---- HAS ILLEGAL
USE OF SCALING CHARACTER P.
+ 4444 4+ IS ASSUMED PICTURE.

PICTURE OF REPORT ITEM ----- HAS SCALING
CHARACTER P EMBEDDED ILLEGALLY
BETWEEN NUMERIC CHARACTER POSITIONS.
+++++ 4+ IS ASSUMED PICTURE.

ILLEGAL USE OF V OR POINT IN PICTURE OF
REPORT ITEM ----- . +4+++++-+ IS ASSUMED
PICTURE.

IMPROPER CHARACTER INTERRUPTS STRING
OF + OR — OR $ IN PICTURE OF REPORT
ITEM -=-. 4+ + + + + 4+ IS ASSUMED
PICTURE.

NO DIGIT POSITIONS IN PICTURE OF REPORT
ITEM -, ++ 4+ +++ IS ASSUMED
PICTURE.

ILLEGAL USAGE OR CLASS CLAUSE(S)
IGNORED IN FAVOR OF PICTURE OF REPORT
ITEM ----- .

COMMA ILLEGALLY TO RIGHT OF POINT IN
PICTURE OF REPORT ITEM ---. +++++++
IS ASSUMED PICTURE.

ILLLEGAL MIXTURE OF DIGIT POSITION
CHARACTERS (9 Z *) AFTER POINT IN
PICTURE OF REPORT ITEM ----- B i nl ol o o
IS ASSUMED PICTURE.

Systems Programmer’s Information 73

0232

0233

0234

0235

0236

0237

0238

0239

0240

0241

0242

0243

0244

0245

0246

0247

0248

0249

0250

0251

0252

74

ILLEGAL USE OF COMMA IN PICTURE OF
REPORT ITEM ----- . +++++++ IS ASSUMED
PICTURE.

ILLEGAL USE OF $ IN PICTURE OF REPORT
ITEM ----- . 4-+4+++++ 1S ASSUMED
PICTURE.

ILLEGAL MIXTURE OR ORDER OF DIGIT
POSITION CHARACTERS IN PICTURE OF
REPORT ITEM ----- . +++++++ IS ASSUMED
PICTURE.

LEVEL NUMBER OF ----. FOLLOWING FD
ENTRY CHANGED TO 01 TO DESCRIBE
RECORD.

DATA ITEM ----- IS UNDER INFLUENCE OF
INCONSISTENT USAGE AND CLASS CLAUSES.
DETERMINING HIERARCHY IS PICTURE,
USAGE, CLASS.

REDEFINES DESCRIBING ----- NOT FOLLOWED
BY A PREVIOUSLY DEFINED DATA-NAME.
CLAUSE IGNORED.

ILLEGAL REDEFINITION IGNORED FOR FILE
RECORD (01 LEVEL) NAMED ----- .

NUMBER OF OCCURRENCES OF ----- IS
ILLEGAL. COMPILER ASSUMES OCCURS
EXACTLY 100 TIMES.

MAXIMUM NUMBER OF OCCURRENCES OF
----- IS ILLEGAL. COMPILER ASSUMES OCCURS
AT MOST ----- TIMES.

ERROR IN OCCURS ... DEPENDING ON
CLAUSE IN DESCRIPTION OF ----- . COMFILER
ASSUMES OCCURS EXACTLY 100 TIMES,
IGNORING QUANTITY ITEM.

COMPILER IGNORES ILLEGAL CLAUSES IN
DESCRIPTION OF LEVEL 88 CONDITION -----
(ONLY VALUE IS ALLOWED).

LEVEL 88 CONDITION ----- LACKS
MANDATORY VALUE CLAUSE.

LEVEL 88 CONDITION ----- APPEARS
ILLEGALLY IN CONSTANT SECTION,

LEVEL 88 CONDITION ----- NOT PRECEDED BY
VALID ELEMENTARY ITEM.

ILLEGAL POINT OR SIGNED CLAUSE CLAUSE
IN DESCRIPTION OF NON-REPORT DISPLAY
ITEM ---m-.

NEITHER PICTURE NOR SIZE CLAUSE GIVEN
FOR REPORT ITEM ----- , #Rewars 1§ ASSUMED
PICTURE.

LEAVING OPTION OF EDIT CLAUSE EXCEEDS
SIZE OF REPORT ITEM ----- . CLAUSE IGNORED.

----- HAS VALUE CLAUSE TOGETHER
ILLEGALLY WITH OCCURS OR REDEFINES.
VALUE ACCEPTED IF OCCURS—-APPLIED TO
FIRST ELEMENT.

PICTURE OF REPORT ITEM ----- IS ILLEGAL.
+4++++4+++ IS ASSUMED PICTURE.

LEVEL 77 ITEM ----- APPEARS IN FILE
SECTION. INVALID DATA ORGANIZATION
RESULTS.

ILLEGAL CLAUSE(S) DESCRIBING -----
IGNORED. LENGTH 1, VALUE OF R.M.
ASSIGNED BY COMPILER. ONLY
SYNCHRONIZATION, IF ANY, RETAINED.

0253

0254

0255

0256

0257

0258

0259

0260

0261

0262

0263

0264

0265

0266

0267

0268

0269

0270

0271

0272

0273

0274

0275

0276

SIZE OF ----- GIVEN AS O. COMPILER ASSUMES
SIZE 1S 6.

----- CAN NOT BE SUBSCRIPTED. SCAN
RESUMED AT NEXT VERB, PERIOD, OR
INFORMATION IN THE A MARGIN.

ILLEGAL DESIGNATION OF SIGN
CONVENTION IN PICTURE OF REPORT ITEM
..... . +++++++ IS ASSUMED PICTURE.

NON-NUMERIC LITERAL VALUE OF NUMERIC
ITEM ----- IGNORED.

----- IS NOT A LITERAL. CLAUSE IGNORED.

BINARY RECORDING MODE SPECIFICATION
OF FILE ----- ASSSIGNED TO CARD UNIT IS
NOT PERMITTED.

PERMANENT READ ERROR DURING
PROCEDURE INSTRUCTION GENERATION
PHASE. COMPILATION IS SUSPECT.

SENTENCE LENGTH EXCEEDS COMPILER
CAPACITY. SUGGEST SUBDIVIDING SENTENCE
INTO SMALLER COMPONENTS.

----- FILE ----- NOT PERMITTED AS ARGUMENT
IN ‘USE’ OPTION ----- STATEMENT.

----- AND ----- HAVE NO CORRESPONDING
SUBFIELDS. NO ACTION STATEMENTS
GENERATED FOR THIS PAIR.

ILLEGAL CONDITIONAL EXPRESSION IN TEXT.
EXPRESSION IGNORED.

----- CANNOT BE USED AS AN ARGUMENT FOR
THE CORRESPONDING OPTION.

CORRESPONDING FIELDS OF ----- AND -----
OVERLAP.

ILLEGAL ARITHMETIC PHRASE , ENDING
WITH AN OPERATOR OTHER THAN RIGHT
PARENTHESIS. PHRASE DELETED.

ALTER AT ----- DISALLOWED SINCE IT IS NOT
A SINGLE GO TO SENTENCE.

OPERAND TABLE OVERFLOW TRANSLATING
EXPRESSION. STATEMENT DELETED.

ERRONEOUS PARENTHESIZATION IGNORED.
TRANSLATION CONTINUES ARBITRARILY.

COMPILER ALLOWS ONLY 20 CONSECUTIVE
IMPLIED BOOLEAN OPERATORS.
CONDITIONAL EXPRESSION DELETED SINCE
MAXIMUM EXCEEDED.

ARITHMETIC PHRASES IN CONDITIONAL
EXPRESSIONS MAY NOT CONSIST OF MORE
THAN 500 OPERATORS AND OPERANDS.
EXPRESSION DELETED SINCE LIMIT
EXCEEDED.

PERFORM STATEMENT STRUCTURALLY
INCORRECT. STATEMENT DELETED.

‘USING’” MUST BE FOLLOWED BY THE NAME
OF A FIXED-LOCATION DATA-ITEM.
STATEMENT DELETED.

----- IS UNIDENTIFIABLE. REMAINDER OF
CLAUSE IGNORED.

DECK NAME IN ‘CALL’ STATEMENT MUST BE
ENCLOSED IN QUOTES. STATEMENT
DELETED.

OCCURS CLAUSE DESCRIBING RECORD ----- IN
THE FILE SECTION IGNORED.

0277

0278

0279

0280

0281

0282

0283

0284

0285
0286

0287

0288

0289

0290

0291

0292

0293

0294

0295

0296

0297

0298

0299

----- OF FILE ----- ASSIGN TO ----- NOT
PERMITTED.

ILLEGAL USE OF UNALTERABLE ‘GO TO’
STATEMENT. ‘GO TO’ STATEMENT DELETED.

MACHINE OR COMPILER ERROR.
COMPILATION IS INCOMPLETE.

NOTE ... FILE-NAME CHANGED FOR
INTERNAL PURPOSES TO ----- .

TOO FEW SUBSCRIPTS GIVEN FOR ----- .
COMPILER ASSUMES MISSING LEFTMOST
SUBSCRIPTS TO BE 1.

FIRST REPETITION OF SUBSCRIPTING ERROR.
SUBSEQUENTLY, MESSAGES REFERRING TO
SUBSCRIPTS APPEAR ONLY ONCE
CORRESPONDING TO THE FIRST
APPEARANCE OF EACH UNIQUE SUBSCRIPT
DATA-NAME OR EXPRESSION.

FILE ----- ASSIGNED TO ----- , BUT FILE IS NOT
----- . ----- USAGE ASSUMED.

729-MODEL NO. ----- ASSIGNED TO FILE ----- ,
NOT ACCEPTABLE TO LOADER, CHANGED BY
COMPILER TO ----- .

‘USE’ NOT PRECEDED BY SECTION-NAME.

‘UPON’ MAY ONLY BE FOLLLOWED BY IBJOB
STANDARD MNEMONIC-NAME ‘SYSOUT’.
SYSOU1 ASSUMED.

‘COLLATE-COMMERCIAL’ SHOULD NOT
APPEAR IN ENVIRONMENT DIVISION.
COLLATING SEQUENCE ASSUMED
COMMERCIAL UNLESS ‘BINSEQ" APPEARS ON
ON $IBCBC CARD.

STANDARD IBM COBOL WORDING ‘EVERY
BEGINNING OF REEL’ PREFERRED IN RERUN
CLAUSE AND IS ASSUMED.

COMPILER ----- COUNT CONTROL
CONVENTION ---- FILE ----- .

COMPILER ----- COUNT CONTROL
CONVENTION ----- FILE ----- UNLESS ----- IS
ASSIGNED TO A CARD UNIT OBJECT-TIME.

‘ACCEPT” MAY ONLY BE FOLLOWED BY A
DATA-NAME. NOTHING DONE.

DATA-NAME - REQUIRING CONVERSION,
EDITING, OR DEFINITION MAY NOT APPEAR
IN AN ACCEPT STATEMENT. NOTHING DONE.

ALL CHARACTERS ACCEPTED FOR --—--- MUST
BE NUMERIC.

LENGTH OF ----- NOT BOTH CONSTANT AND
LESS THAN 73 CHARACTERS. NOTHING DONE.

SOURCE-COMPUTER 1S IMPROPERLY
SPECIFIED. IBM-7090 ASSUMED.

‘WITHOUT MUST BE FOLLOWED BY COBOL
WORDS ‘COUNT CONTROL’ IN RECORDING
CLAUSE. NOTHING DONE.

DATA DIVISION-HEADER NOT FOLLOWED BY
SECTION-NAME. SCAN RESUMED AT NEXT
DATA DESCRIPTION ENTRY, SECTION, OR
DIVISION.

LEVEL FD SHOULD APPEAR IN THE A
MARGIN. A MARGIN ASSUMED.

‘FROM’ MAY ONLY BE FOLLOWED BY IBJOB
STANDARD MNEMONIC-NAME ‘SYSINT’.
SYSIN1 ASSUMED.

0300 PICTURE SHOULD BE USED TO DESCRIBE
REPORT ITEMS INSTEAD OF EDITING
CLAUSES (ZERO SUPPRESS, CHECK PROTECT,
OR FLOAT DOLLAR SIGN) IN ORDER TO
COMPLY WITH STANDARD IBM COBOL.

0301 ‘DECLARATIVES’ MUST BE AT BEGINNING OF
PROCEDURE DIVISION. STATEMENT
DELETED.

0302 FILE ----- ASSOCIATED WITH REDUNDANT
‘USE’ STATEMENT. FIRST ONE RETAINED.

0303 REDUNDANT ‘USE’ STATEMENT. FIRST ONE
RETAINED.

0304 QUANTITY ITEM ----- SHOULD NOT BE USED
WITH ‘REPLACING’ OPTION IN ‘EXAMINE’
STATEMENT. CONDITION IGNORED.

0305 ILLEGAL ARGUMENT IN ‘ON’ STATEMENT.
STATEMENT DELETED.

0306 CONTROL CARD ENCOUNTERED PRECEDING
$CBEND CARD. END OF COBOL TEXT
ASSUMED.

0307 END OF COBOL MESSAGES.

0308 ILLEGAL CONTROL SECTION NAME FOR
DEBUG REQUEST. NAME IGNORED.

0309 ILLEGAL INSERTION POINT SPECIFICATION
FOR DEBUG REQUEST. REQUEST WILL NOT
BE EXECUTED.

0310 ----- IS AN OUT-OF-RANGE REFERENCE.

0311 ILLEGAL FORM OF VALUE FOR ----- ----- .
VALUE IGNORED.

0312 - ORDER TRUNCATION OCCURS IN
GENERATION OF INITIAL VALUE FOR ----- .

0313 INELIGIBLE DATA-NAME ----- IN RECEIVE OR
PROVIDE STATEMENT. NOTHING GENERATED.

0314 ----- IS A TYPE OF ELEMENTARY DATA ITEM
THAT MAY NOT BE USED IN ‘RETURN’.
STATEMENT DELETED.

Subroutine Library Information

The Subroutine Library contains a collection of relo-
catable subroutines for system and programmer use.
These subroutines are available to the programmer
through the Loader, which incorporates them, as re-
quired, into the object program at load time.
Subroutines may be added to or deleted from the
Subroutine Library by using the Librarian. Informa-
tion regarding modification of the Subroutine Library
may be found in the section “The Librarian.” All sub-
routines included in the Subroutine Library must be
assembled by the Assembler.
The Subroutine Library is composed of the follow-
ing types of subroutines:
System subroutines
FORTRAN Iv subroutines
coBoL subroutines

Systems Programmer’s Information 75

The system subroutines, the coBoL subroutines, the
FORTRAN IV input/output subroutines, and some
FORTRAN 1v utility subroutines are described in the fol-
lowing text. All other subroutines are described in the
section “The Subroutine Library (1BLis).”

System Subroutines

The following chart contains a list and descriptions of
the system subroutines. Subroutines marked with an
asterisk are called automatically for every object pro-
gram.

SUBROUTINE
* IBSYS

DESCRIPTION

Defines the indices of the system units and
the location of the System Monitor (IBSYS)
communication region.

Defines the location of the Input/Output
Executor (IOEX) entry points.

Relocates Processor Monitor communication
words, used during object program execu-
tion, to an area immediately above IOEX.

Postexecution subroutine required for all ob-
ject program executions. It is normally en-
tered at the termination of an object program
execution, but it is also entered if execution
is terminated by a system stop or an STR
instruction. Files used by the object pro-
gram are closed, thereby stopping all input/
output activity. Return is made to the Sys-
tem Monitor.

Contains the primary Input/Output Control
System (IOCS) communication region. Gen-
eral entry and exit routines used by all
IOCS packages are contained in this sub-
routine. The actual communication region
required for a given level of IOCS is initial-
ized by: .IOCSF for FORTRAN IOCS:
JIOCSM for minimum IOCS; JIOCSM and
JOCSB for Basic IOCS; and .IOCSM,
JOCSB, and .IOCSL for Label IOCS.
Contains the text for the special IOCS used
by FORTRAN IV object programs and ini-
tializes the communication region required

for FORTRAN IOCS.

Contains the text for all levels of relocatable
10CS.

Initializes the communication region re-
quired for Minimum IOCS.

Initializes the communication region (in ad-
dition to that initialized by .IOCSM) re-
quired for Basic IOCS.

Initializes the communication region (in ad-
dition to those initialized by JOCSM and
JOCSB) required for LABEL IOCS.

Loads overlay links. It is required for all
object programs using the overlay feature.

Read/write select routine.

Floating-point trap subroutine. It determines
the condition that caused the trap, sets ap-
propriate registers accordingly, and writes a
message on the System Output Unit, giving
the cause of the trap and the octal location
at which it occurred. Location COUNT con-

* IOEX

¢ JBCON

* LXCON

JODEF

IOCSF

IOCS
JOCSM

JOCSB

JOCSL

.LOVRY

LXSL
* FPTRP

76

SUBROUTINE DESCRIPTION

tains the maximum number of times (plus
1) that messages will be written for each
execution. This number is set at five (plus
1), but it can be changed by the program-
mer. The number in location COUNT, which
is in the control section .COUNT, may be
changed by addressing this control section
to a MAP language subroutine of the follow-
ing form:

ENTRY .COUNT
DEC n

END

where n is a decimal number. Messages are
then written n-1 times. The value set by this
procedure applies only for one execution.
Provides for processing of random records
on 1301 Disk Storage.

The subroutines pertaining to 10cs must be in the
following order in the Subroutine Library:

JODEF
JOCSF
IOCS
JOCSM
.JOCSB
JOCSL

COUNT

.RAND

FORTRAN IV Subroutines

FORTRAN Object-Time Subroutines

This section contains a description of subroutines used
by FORTRAN 1v object programs. The FORTRAN 1Iv Com-
piler generates instructions that call the appropriate
object-time subroutines from the Subroutine Library.
The following types of subroutines are available in
the FORTRAN section of the Subroutine Library:
1. ForTRAN Mathematics Library
a. Single-precision subroutines
b. Double-precision subroutines
¢. Complex subroutines
2. ForTRAN Input/Output Library
3. rorTRAN Utility Library
The FORTRAN Mathematics Library is described in
the section “The Subroutine Library (18LIB).”

FORTRAN Input/Output Library

The FORTRAN input/output library provides subrou-
tines that are necessary to implement the source lan-
guage input/output statements. These subroutines are
described in the following chart:

SUB- ENTRY '
ROUTINE DESCRIPTION POINT DESCRIPTION

FOUT Writes blocked .FOUT. Entry point for subroutine
records on the FOUT. If subroutine
System Output FOUT is loaded with an
Unit. object program, the calls to

SUB-

ROUTINE DESCRIPTION

FRWD

FRWB

FSLDI

Controls the
input and
output of BCD
records and the
conversion of
alphameric
data.

Controls the in-
put and output
of binary data.

Controls proc-
essing of lists
containing non-
subscripted
BCD array
names for input.

ENTRY
POINT

.FRDD.

FWRD.

.CDIN.

.FCNV.

JFPRN.

FPUN.

JFRTN.

FFIL.

TOUT.

FILL.

JFRDB.

FWRB.

JFBLT

.FBDT.

.FRLR.

FWLR.

JFSLI

JFSDI.

DESCRIPTION

entry point .LXSL in sub-
routines .LXCON, .FPTRP,
and FXEM are overlaid by
a call to subroutine FOUT.

Entry point for BCD read;
called for source program
statement READ (unit, for-
mat) list.

Entry point for BCD write;
called for source program
statement WRITE (unit,
format) list.

Entry point called by sub-
routine FRCD.

Entry point for input/out-
put list; effects the neces-
sary conversion for input or
output list items.

Entry point for source pro-
gram statement PRINT for-
mat, list.

Entry point for source pro-
gram statement PUNCH
format, list.

Entry point for end of list
for BCD input.

Entry point for end of list
for BCD output.

Entry point at which the
call to entry point .FOUT.
is loaded if subroutine
UNO06 is used by the ob-
ject program.

Argument for the call to
entry point .FOUT.

Entry point for binary read;
called for source program
statement READ (unit) list.

Entry point for binary
write; called for source pro-
gram statement WRITE
(unit) list.

Entry point for single-pre-
cision binary input/output
list.

Entry point for double-
precision binary input/out-
put list.

Entry point for end of list
for binary input.

Entry point for end of list
for binary output.

Entry point for input of
nonsubscripted BCD arrays
consisting of single-preci-
sion or complex data.

Entry point for input of
nonsubscripted double-pre-
cision BCD arrays.

SUB-

ROUTINE DESCRIPTION

FSLBI

FSLI

Controls proc-
essing of lists
containing non-
subscripted bin-
ary array names
for input.

Sets up index-
ing for input of
nonsubscripted
arrays.

FSLDO Controls proc-

FSLBO

FSLO

essing of lists
containing non-
subscripted
BCD array
names for
output.

Controls proc-
essing of lists
containing non-
subscripted ar-
ray names for
output.

Sets up index-
ing for output
of nonsub-
scripted arrays.

ENTRY
POINT

.FBLI.

.FBDL

SLL

SLIL.

.SDI.

.SDI1.

FSLO.

JFSDO.

JFBLO.

.FBDO.

.SLO.

SLOL.

.SDO.

.SDO1.

DESCRIPTION

Entry point for input of
nonsubscripted binary ar-
rays consisting of single-
precision or complex data.

Entry point for input of
nonsubscripted double-pre-
cision binary arrays.

Entry point for input of
single-precision arrays.

Set by subroutine FSLDI
or FSLBI to contain appro-
priate entry point to sub-
routine FRWD or FRWB,
depending upon whether a
single-precision array is
BCD or binary.

Entry point for input of
double-precision arrays.

Set by subroutine FSLDI
or FSLBI to contain appro-
priate entry point to sub-
routine FRWD or FRWB,
depending upon whether a
double-precision array is
BCD or binary.

Entry point for output of
nonsubscripted BCD arrays
consisting of single-preci-
sion of complex data.

Fntry point for output of
nonsubscripted double-pre-
cision BCD arrays.

Entry point for output of
nonsubscripted binary ar-
rays consisting of single-
precision or complex data.

Entry point for output of
nonsubscripted double-pre-
cision binary arrays.

Entry point for output of
single-precision arrays.

Set by subroutine FSLDO
or FSLBO to contain ap-
propriate entry point to
subroutine FRWD or
FRWB, depending upon
whether a single-precision
array is BCD or binary.
Entry for output of double-
precision array.

Set by subroutine FSLDO
or FSLBO to contain ap-
propriate entry point to
subroutine FRWD or

Systems Programmer’s Information 77

SUB- ENTRY
ROUTINE DESCRIPTION POINT DESCRIPTION
FRWB, depending upon
whether a double-precision
array is BCD or binary.

FVIO Establishes .FVIO. Entry point called for any
identification FORTRAN input/output
between a source statement that spe-
variable logical cifies a variable unit.
unit and the
corresponding
FORTRAN file.

FRCD Controlsread- .FRCD. Entry point for the source
ing of cards on program statement READ
line and conver- format, list.
sion of alpha-
meric card code
to BCD.

.CARD. Entry point called by sub-
routine FRWD for the
reading of an input record
when the input device is
the on-line card reader.

FRWT Rewinds desig- .FRWT. Entry point for the source
nated unit. program statement RE-

WIND unit.

FEFT Writes a file .FEFT. Entry point for the source
mark on the program statement END
designated unit. FILE unit.

FBST Backspacesthe .FBST. Entry point for the source

program statement BACK-
SPACE unit.

Subroutines .LxcoN, .FPTRP, and FXEM must precede
subroutine FouT in the Subroutine Library. If subrou-
tine Fout is called, it overlays the calls to entry point
.LXSEL, in these three subroutines, with calls to itself.

In addition, the FORTRAN input/output library con-
tains the routines that produce the sriLe cards needed
by the Loader for the initialization of rocs files used
by the object program.

Eight library routines, in the following form, are
provided:

designated unit
one record.

ENTRY .UNxx.
UNxx. PZE .UNITn
UNITn FILE specifications

where n is a two-digit ForTrAN logical unit number,
and the file specifications are as follows:

UNITO1 FILE , UTI, READY, INOUT, BLK = 256,
BIN, NOLIST

UNIT02 FILE , UT2, READY, INOUT, BLK = 256,
BIN, NOLIST

UNITO3 FILE , UT3, READY, INOUT, BLK = 256,
BIN, NOLIST

UNITO4 FILE , UT4, READY, INOUT, BLK = 256,
BIN, NOLIST

UNITO5 FILE , IN, READY, INPUT, BLK = 14,
MULTIREEL, BCD, NOLIST

UNIT06 FILE , OU, READY, OUTPUT, BLK = 110,
MULTIREEL, BCD, NOLIST

UNITO7 TFILE , PP, READY, OUTPUT, BLK = 28,
MULTIREEL, BIN, NOLIST

UNIT08 FILE ,, MOUNT, INOUT, BLK = 22, BCD

78

Subroutine UN06 contains an additional entry point,
.BU¥sz, which is in the following form:

.BUFSZ PZE BUFSIZ
BUFSIZ EQU 22

The variable field of Bursiz contains the maximum
Bep logical record size. The loading of subroutine unos
forces subroutine FRWD to use subroutine Four when
the System Output Unit is to be written. Subroutine
FRWD must precede subroutine unos in the Subroutine
Library, so that the call to subroutine rour is inserted
in subroutine FRWD.

The assembly of a library routine of this form pro-
duces a sFILE card with the given specifications, there-
by enabling the Loader to establish correspondence
between the FORTRAN logical unit n and the system file
associated with it. Symbolic location .unxx. is entered
into the control dictionary as an external symbol by the
ENTRY operation. File unttn is entered into the file dic-
tionary for this library subroutine. By virtue of the FILE
operation code, whenever uNitn occurs in the variable
field of any instruction, the relocatable reference is to
the file dictionary entry for file unitn. The sFiLE card
makes the correspondence between file name unrTn
and the related system unit, as specified in the variable
field of the FiLE operation code. Thus, at execution
time, the address field of symbolic location .uNxx. is
set by the Loader to be the absolute address of the
file control block of the corresponding unit.

CORRESPONDENCE BETWEEN FORTRAN LOGICAL UNITS AND
SYSTEM FILES

Input/output devices are always referred to symboli-
cally in FORTRAN input/output statements. Object pro-
gram input/output operates through the rorTRAN 10CS
buffering package. The correspondence between the
symbolic unit reference and the actual physical unit is
established in the initialization of 10cs by the Loader.
As shown in the following chart, the standard ForTRAN
input/output configuration allows for symbolic units 1
through 8. The normal unit designation for Bcp input
statements is unit 5; for Bcp output statements, it is
unit 6.

FORTRAN
LOGICAL SYSTEM FILE MODE FUNCTION
UNIT
01 SYSUTI1 Binary Input or output
02 SYSUT2 Binary Input or output
03 SYSUT3 Binary Input or output
04 SYSUT4 Binary Input or output
05 SYSIN1 BCD Input
06 SYSOU1 BCD Output
07 SYSPP1 Binary Output
08 System BCD Input or output
Availability
Chain

The symbolic unit references may be changed by the
installation in accordance with its own needs.

The actual specifications for the file corresponding
to each symbolic unit are made through the sFILE cards
in the rorTRAN Input/Output Library. However, an
installation may change the file specifications for any
given unit(s) by reassembling the library routine,
which generates the sFiLE card for the corresponding
unit(s), with whatever options may be desired in the
variable field of the FiLE pseudo-operation. The pub-
lication IBM 7090/7094 Programming Systems: Macro
Assembly Program (MAP) Language, Form C28-6311,
contains further information on the FiLE pseudo-oper-
ation. The standard rortraN file specifications have
been listed previously. Since the density is not speci-
fied, high-density is assumed. If a system unit is as-
signed to a file, the file specifications for the system
unit function override any density and file-closing
specifications set by the generated sFILE card.

SUBROUTINE LIBRARY LISTING OUTPUT

The subroutine FouT generates two types of output.
The status of bit 2 in the word at location .Fppos de-
termines the type of output to be generated. When bit
2 is on, the output is in Bco mode, blocked up to five
lines per block. When bit 2 is off, the output is in bi-
nary mode. The blocking factor, i.e., the number of
logical records per block, is a function of the buffer
size and maximum record size specified in sub-
routine uNo6. The first word of each binary output
binary block is a block control word. This word con-
tains (76xxxxxxxxxx)s, where x...x is the number of
records contained in the block. The first word of each
record within the block is a record control word. This
word contains (5xxxxx200460)s, where xxxxx is the
number of characters in the logical record.

If output is to be printed on the IBM 720 Printer or
listed off-line by a 1401 utility program that simulates
this type of output, symbolic card 3r5UN650 must con-
tain the following:

UNIT0O6 FILE , OU, READY, OUTPUT, BLK = 110,

MULTIREEL, BCD, NOLIST
When the M 720 is used for output, the following
changes must also be made:
1. Card 3r318850 in the FRWD subroutine must con-
tain the following:
LIMIT EQU 20

9. Card 3r5un652 in the unos subroutine must con-
tain the following:
BUFSIZ EQU 20

If the System Output Unit (sysoul) is to be printed
using the 18M 1401 Peripheral Input/Output Program,
symbolic card 3r5uN650 must contain the following:

UNIT06 FILE , OU, READY, OUTPUT, BLK = 116,
MULTIREEL, BIN, NOLIST

FORTRAN Utility Library

Some of the subroutines in the rorTran Utility Library
are described in the following text. Other subroutines
in this library are described in the section “The Sub-
routine Library (1BLIB).”

SUB~- ENTRY
ROUTINE DESCRIPTION POINT DESCRIPTION
ERAS, Erasable words E.1,E.2, Erasable words
used by object E.3, E4 used by object
program. program.

FPARST Used by SIFT to PART Entry point to deter-
determine, for mine address or
FORTRAN 1V, quantity to be
address of desired obtained.
part Of double- STORE Entry point for ob-
precision or .comp-]ex taining address into
pair, as specified in which a quantity is
FORTRAN II to be stored.
program.

FXEM Controls object .FXEM Entry point for exe-
program error cution error diag-
procedure. nostics.

.FXOUT Entry point at which
the call to entry
point LXSEL is
overlaid by a call to
subroutine FOUT, if
FOUT is loaded with
an object program.

.FXARG Argument for the call
to subroutine FOUT.

XIT Returns control to EXIT Entry point for term-
subroutine ination of object pro-
.LXCON gram execution.

Object program errors found by the Subroutine Li-
brary call subroutine FxeM, which controls object pro-
gram error procedures. A message stating the error
condition is written on the System Output Unit. Nor-
mally, execution is terminated and control is given to
subroutine .Lxcon. However, the execution of the
mathematical subroutines and some input/output sub-
routines can be resumed by using optional exits. These
optional exits are controlled by bits in location
optwpi and oprwp2. Error conditions 1-35 are con-
trolled by bits 1-35 of oprwpi, and error conditions
36-57 are controlled by bits 1-22 of oprwpe. (The error
lists are shown in Figures 21 through 25.) To use an
optional exit, the bit associated with the relevant error
condition must be set to 1. This can be done by chang-
ing locations opTwpi and/or opTwp2, which are in
control section .opTW. of subroutine ¥xem. The follow-
ing MAP subroutine sets each relevant bit to 1, thereby
allowing the use of all permissable optional exits:

ENTRY .OPTW,

.OPTW OCT 377771777777
OCT 076222420000
END

Systems Programmer’s Information 79

The exits set by this procedure apply only for one Subroutine
application. The use of optional exits may be made in Which .
. . . rror is rror
standard by reassembling subroutine rxem with the Encountered | Code | Error Condition Optional Exit
bits set as desired. 1 L ror 1 where 120 320 set) =0
ey e or IV where | = = e =
In addition to the error conditions found by the Sub- ’
routine Library, an object program calls subroutine FXP1
FXEM when an invalid value for a computed co TO 2 | For 1Y where 1 =0, J<0 set14=0
statement is found. This error condition has the error p--—--- -1 ______ 1 _________
code 55 and has no optional exit. If subroutine Fxem 3 | For 89 where B=0, J =0 Set B9 =
is called by a programmer’s routine and a nonstandard o2
error code argument is used, the error code is written 4 | For 8’ where B =0, J<0 sor BJ =
on the standard output unit, execution is terminated, }--—--—-4 -4 _____ 1 ________|
and control is given to subroutine .LxCON. 5| For 8C where B<0, C £0 Evaluate for [B]
An error-flow trace is given each time subroutine c
. : . FXP3 6 =0,C= =
FXEM is called. The trace lists the sequence of calls, in For B~ where B =0, C =0 SetB=0
reverse order, through any number of levels of subpro- 7 | For 8C where B=0, C<0 Set B=0
grams out of the main program.
Three pieces of information are given for every caLL FXPF 8 | For eB where B> 88.028 Set €8 =
statement in the sequence: the name of the routine in
which the caLL statement occurs; the absolute location 9 | For log B where B = 0 Set log B=0
of the call in core storage; and the line or identification FLOG
number of the caLL statement as it appears in a listing
of the given routine. 10 For log B where B<0 Evaluate for [B|
A complete error-flow trace is not possible if, in a
MAP routine, a call is made to an entry point within FATAN 1T | For arctan (A,B) Set angle =0
the same routine. This cannot occur in a routine writ- where A=0, B =0
ten in FORTRAN or in a subroutine in the Subroutine
Library. FSCN 12 For sin(A) or cos(A) Set result = 0
where [A|= 227
1/2
FSQR 13 For A where a <0 Evaluate for|A|

FORTRAN Library Error Messages

The following list gives the subroutine in which the
error was encountered, the error code, the error mes-
sage, and the optional exit.

Figure 21. Single-Precision Mathematical Subroutines

FXP1 1 EXPONENTIATION Set result = 0
ERROR 0%%0

FXP1 2 EXPONENTIATION Set result = 0
ERROR 0%*(—J) FATN 11 ATAN2(0,0) NOT Set result = 0

FXP2 3 EXPONENTIATION Set result = 0 ALLOWED
ERROR 0°*0 FSCN 12 SIN OR COS ARG GRT Set result = 0

FXP2 4 EXPONENTIATION Set result = 0 TH 2°%27 NOT
ERROR 0**(—J) ALLOWED

FXP3 5 EXPONENTIATION Evaluate for 4 B FDX1 14 EXPONENTIATION Set result = 0
ERROR (—B)**C ERROR 0%%0

FXP3 6 EXPONENTIATION Set result = 0 FDX1 15 EXPONENTIATION Set result = 0
ERROR 0%°0 ERROR 0°%(—J)

FXP3 7 EXPONENTIATION Set result = 0 FDX2 16 EXPONENTIATION Evaluate for + B
ERROR 0%**(—C) ERROR (—B)**C

FXPF 8 EXP(B),BGRT THAN Set result == FDX2 17 EXPONENTIATION Set result = 0
88.028, NOT ALLOWED argument ERROR 0%%0

FLOG 9 LOG(0) NOT ALLOWED Set result = 0 FDX2 18 EXPONENTIATION Set result = 0
ALLOWED ERROR 0**(—C)

FLOG 10 LOG(—B) NOT Evaluate for + B FDXP 19 EXP(B),B GRT TH Set result =
ALLOWED 88.028, NOT ALLOWED argument

80

Figure 22. Double-Precision Mathematical Subroutines

FDLG
FDLG
FDSQ

FDSC

FDAT
FCAS

FCXP

FCXP
FCLG

FCSC

FCSC

20

21

22

23

24

25

26

27

28

29

30

DLOG(0) NOT
ALLOWED
DLOG(—B) NOT
ALLOWED
SQRT(—B) NOT
ALLOWED

DSIN OR DCOS ARG GRT

TH 2¥%*54 NOT

Set result = 0

Evaluate for -+ B

Evaluate for + B
Set result = 0

ALLOWED
DATAN2(0,0) NOT
ALLOWED
COMPLEX Z/0 NOT
ALLOWED

EXP(Z)REAL PART
GRT88.028, NOT
ALLOWED

EXP(Z),IMAG PART GRT
2%¥27, NOT ALLOWED

CLOG(0) NOT
ALLOWED

CSIN OR CCOS ARG

WITH REAL PART GRT

2##27 NOT ALLOWED
CSIN OR CCOS ARG

WITH IMAG PART GRT

88.028 NOT ALLOWED

Set result = 0

Set result = 0

Set result =
argument

Set result =
argument

Set result = 0

Set result = 0

Set result = 0

FRWD

FRWD

FRWD

FRWD

FRWD

FRWD

31

32

33

34

35

36

FORMAT AT XXXXX,
FIRST WORD HAS
ILLEGAL CONTROL
CHARACTER OR

Py([tlegce otgfﬂwh(ex iz are stommda o
i Adskrbaled pessiom of Sqsfen /!Zi/fmf‘ﬁ}zx %0 owva, -
Subroutine Subroutine
in Which in Which
Error is Error Etror is Error
Encountered | Code | Error Condition Optional Exit Encountered | Code | Error Condition Optional Exit
14 For D! where Set result =0 FCAS 25 For Z-{/Z2 where Set result = 0
FDX1 D=0and I =0 Zp=0
15 D=0and I<0 Set result = 0
14 For Z! where Set result = 0
16 For Dy Dg where Z=0and 1=0
FDX1
FDX2 D1 <0, Dy #0 Evaluate for |D1I 15 Z=0and 1 <0 Set result = 0
17 Dy =0, Dp=0 Set DyDy =0
1 1¥2
2 26 For eZ where Set el =7
18 D'| =0, D2<0 Set D]D2=0
X> 88.928
FCXP 7
FDXP 19 For eD where SeteP =D 27 For eZ where Set e~ =7
D> 88.028 v=2%
20 For log D where D =0 Set log D=0 FCLG 28 For log (Z) where SetlogZ =0
FDLG Z=0
21 For log D where D <0 Evaluate for |D|
29 For sin(Z) or cos(Z) Set result = 0
FDSQ 22 For D1/ where D < 0 Evaluate for|D| where X = 2%
FCSC
30 For sin(Z) or cos(Z) Set result = 0
FDSC 23 For sin(D) or cos(D) Set result = 0
54 where Y > 88,028
where D = 2
FDAT 24 For arctan (D7, D2) Set angle = 0 .
Figure 23. Complex Mathematical Subroutines, Where Zz=X+-iy
where Dy =0, Dy =0

Treat as end of
format

SPECIFIES TOO LONG A

LINE
ILLEGAL CHAR IN

DATA BELOW OR BAD

FORMAT (RECORD

Treat illegal
character as zero

CONTAINING ILLEGAL
CHARACTER WRITTEN
ON LINE FOLLOWING

MESSAGE)

ILLEGAL CHAR IN
DATA BELOW
FORMAT (RECORD

OR BAD

Treat illegal
character as zero

CONTAINING ILLEGAL
CHARACTER WRITTEN
ON LINE FOLLOWING

MESSAGE)

END OF FILE READING

UNITXX
PERMANENT READ

REDUNDANCY UNITXX
END-OF-BUFFER EXIT

READING UNITXX

Systems Programmer’s Information

Read next file

Record used as
read the 100th time

No optional
exit-execution
terminated

81

G Fotmm A . ol

“lhege opioel et ase
To ohlbaa. Py the @nca bos L LT
perr S g e waRa 5@ i Ceew ‘ c,.f b ?9 .
Subroutine Subroutine
in Which in Which
Error is Error Error is Error
Encountered | Code | Error Condition Optional Exit Encountered | Code | Error Condition Optional Exit
FRWD 31 Invalid character in Treat as end of FRWB' 39 Internal label word Process record
FORMAT statement, FORMAT statement. (cont'd) count does not agree read.
with 10CS word count.
32 Invalid characters in Treat invalid
BCD Input data, character as zero. 40 List exceeds logical Stare zeros in re-
record length. maining list items.
33 Invalid character in Treat invalid i
octal input data. character as zero. 41 End of file reading. Read next file.
34 End of file (not on Read next file. 42 Permanent read Record used as read
System Input Unit). redundancy . the 100th time.
35 Permanent read Record used as read 43 End-of-buffer exit No optional e)fii'.
redundancy. the 100th time. reading. Execution terminated.
36 End-of-buffer exit No optional exit. 44 End-of-buffer exit No opt.Ioncll e)fif.
reading« Execution terminated, writing. Execution terminated.
37 End-of-buffer exit No optional exit. FRCD 45 Invalid card character, Ignore card, Read
writing. Execution terminated, next card,
54 Write request on unit No optional exit. 46 End-of-file card No optional exit,
defined as System Input Execution reader. Execution terminated,
Unit. terminated,
FVIO 47 Logical unit nof No optional exit.
56 Read request on unit No optional exit, defined. Execution terminated.
defined as System Output Execution
Unit. terminated.
FBST 48 Permanent read Record used as read
57 Invalid character in Treat invalid redundancy . the 100th time.
logical input data, character as blank.
FRWB 38 Physical record size Process portion of 49 E”d'_°f'b"’ffer exit :E\Io °pt.i°"°| e’f“'f J
exceeds buffer size. record in buffer. reading. xecution terminated.

Figure 24. Error Conditions Recognized by rorTrRAN Input/Output Library

Subroutine
in Which
Error is Error
Encountered | Code | Error Condition Optional Exit
FDMP 50 Tape redundancy on System | No optional exit.
Utility File (SYSUT4) Execution
when attempting to write. terminated.
FSLITE 51 For | larger than 4 when No action is taken,
setting the sense fight.
For I equal to 0 or Set J equal to 2
larger than 4 when (OFF).
testing the sense light.
FSSWTH 53 For | larger than 6. Set J equal to 2
(OFF).

Figure 25. Error Conditions Recognized by the System Monitor

82

FRWD

FRWB

FRWB 39
FRWB 40
FRWB 41
FRWB 42
FRWB 43

37 END-OF-BUFFER EXIT

WRITING UNITXX

38 PHYSICAL RECORD SIZE
EXCEEDS BUFFER SIZE

INTERNAL LABEL
WORD COUNT DOES
NOT MATCH I0CS
WORD COUNT

LIST EXCEEDS LOGICAL

RECORD LENGTH

END OF FILE READING

UNITXX
PERMANENT READ

REDUNDANCY UNITXX
END-OF-BUFFER EXIT

READING UNITXX

No optional
exit — execution
terminated

Process portion of
record in buffer

Process record read

Store zeros in
remaining list items

Read next file

Record used as
read the 100th time

No optional
exit — execution
terminated

FRWB

FRCD

FRCD

FVIO

FBST

FBST

FDMP

FSLITE

FSSWTH

FRWD

FRWD

FRWD

FRWD

44 END-OF-BUFFER EXIT

45

46

47

48

49

50

56

57

WRITING UNITXX

ILLEGAL CARD
CHARACTER

END-OF-FILE CARD
READER

LOGICAL UNIT NOT
DEFINED FOR VALUE
XX

PERMANENT READ
REDUNDANCY UNITXX

END-OF-BUFFER EXIT
READING UNITXX

TAPE REDUNDANCY ON

SYSUT4 ATTEMPTING
TO WRITE MEMORY
SAVE"

REFERENCE TO
NONEXISTENT SENSE
LIGHT

NONEXISTENT SENSE
SWITCH TESTED

WRITE REQUEST ON
UNIT DEFINED AS
SYSIN1 ILLEGAL

ILLEGAL VALUE FOR
COMPUTED GO TO AT
IFN XXXXX

READ REQUEST ON
UNIT DEFINED AS
SYSOU1 ILLECAL

ILLEGAL CHAR FOR L

CONVERSION IN DATA
BELOW

(RECORD CONTAINING
ILLEGAL CHARACTER
WRITTEN ON LINE

FOLLOWING MESSAGE)

No optional
exit — execution
terminated

Ignore card. Read
next card

No optional
exit — execution
terminated

No optional
exit — execution
terminated

Record used as
read

No optional
exit — execution
terminated

No optional
exit — execution
terminated -

Declared ‘off’ if
testing

Ignored if setting
Switch declared
“ap’

No optional

exit — execution
terminated

Execution
terminated

No optional
exit — execution
terminated

Treat illegal char
as blank

In addition to the preceding messages, resulting
from the recognition of an FXEM error condition, the
following messages are also written by the Subroutine

Library.
FPTRP

FXEM

UNDRFLOW AT XXXXX IN AC
UNDRFLOW AT XXXXX IN AC AN MQ
UNDRFLOW AT X XXXX IN MQ
OVERFLOW AT XXXXX IN AC
OVERFLOW AT XXXXX IN AC AN MQ
OVERFLOW AT XXXXX IN MQ
ADDRESS AT XXXXX ODD
ERROR TRACE. CALLS IN REVERSE ORDER.
CALLING IFN OR ABSOLUTE

ROUTINE LINE NO. LOCATION

XXXXXX XXXXX XXXXX

XXXXXX XXXXX XXXXX
. L] .

XXXXXX XXXXX XXXXX

ERROR MESSAGE OR ERROR CODE XXXXX
NOT A STANDARD CODE

DATA CONTAINING ILLEGAL CHARACTER IF
PERTINENT

EXECUTION TERMINATED

OPTIONAL EXIT MESSAGE

END-OF-BUFFER EXIT WRITING SYSOUTL.
EXECUTION TERMINATED

BACKSPACE REQUEST IGNORED ON UNITXX
REQUEST TO WRITE EOF ON LIMIT
ASSIGNED AS SYSIN1, SYSOU1, OR SYSPP1
HAS BEEN IGNORED

REQUEST TO REWIND UNIT ASSIGNED AS
SYSIN1, SYSOU1, OR SYSPP1 HAS BEEN
IGNORED

EXECUTION TERMINATED BY DUMP — DISK
ERROR

EXECUTION TERMINATED BY DUMP —
UNUSUAL END SYSUT4

EXECUTION TERMINATED BY DUMP — EWA
FLAG ON — SYSUT4

EXECUTION TERMINATED BY DUMP — LESS
THAN 12 TRACKS ATTACHED TO SYSUT4
PLEASE SUPPLY CORRECT CALLING
SEQUENCE FOR DUMP

EXECUTION TERMINATED BY DUMP —
SYSUT4 REDUNDANCY

EXECUTION TERMINATED BY DUMP —
UNUSUAL END — SYSUTA

EXECUTION TERMINATED BY DUMP — DISK
ERROR

EXECUTION TERMINATED BY DUMP — EWA
FLAG ON — SYSUT4

EXECUTION TERMINATED BY DUMP —
SYSOU1 REDUNDANCY.

EXECUTION TERMINATED BY DUMP —
UNUSUAL END — SYSOU1

SYSOU1 IS NOW XHK/S
MOUNT NEW TAPE ON XHK/S

FOUT

FBST
FEFT

FRWT

FDMP

DMPR

COBOL Object-Time Subroutines

This section contains a description of object time sub-
routines that are pertinent to cosor. The copor. Com-
piler generates instructions that call the appropriate
object time subroutines from the System Library. The
Loader completes the generated program by loading
the desired subroutines and adjusts all instructions that
refer to the subroutines so as to reflect the assigned
subroutine locations.

The following types of subroutines are contained in
this section:

1. Movpax subroutines — A group of cosoL subrou-
tines concerned with the movement, conversion, and
editing of data.

2. Additional coBoL subroutines — A group of arith-
metic, conversion, and comparison subroutines.

3. 10Cs subroutines — A group of pertinent 10cs sub-
routines.

Systems Programmer’s Information 83

MOVPAK Subroutine Special Locations

The following special locations are used by MOvPAK.
. CAREF PZE

This location indicates the first-word address and the
first-byte position of the source field involved in a
move. A byte is defined as a group of consecutive bi-
nary digits. The first-byte position consists of digits 0
to 5. The preceding location is set in one of the follow-
ing ways:

1. It is set automatically by calls to MmovrAk cntry
points .cMPAK and .cmPxke. This is described in the sec-
tion “movrax Major Entry Points,” in items 1 and 3.

2. It is set by in-line coding preceding calls to
.cMpKk1 or .cMPk3. This is described in the section
“mMovpPak Major Entry Points,” in items 2 and 4. The
in-line coding which sets the location is in one of the
following three forms:

a. The following coding is used when the data
item is in working storage. SP+nnn contains
the location and the byte of the data item.

LDI SP+4nnn
STI . CAREF

b. The following coding is used when the data
item is located by means of a simple base lo-
cator. A simple base locator is defined as one
that always has a byte equal to zero.

CAL BL+4nnn

location, , byte

TZE . CBLER
ACL SP+nnn
SLW . CAREF

SP-+nnn is a constant of the following form:
PZE displacement, , byte

.CBLER is the name of an error subroutine to
which control is transferred if the base locator
has not been properly set.

c. The following coding is used when the data
item is located by means of a complex base lo-
cator. A complex base locator may have a byte
value other than zero.

CAL BL +4nnn

TZE . CBLER
ACL SP+4-nnn displacement constant
PDX 0,4

TXL — *+245
ACL SP4mmm OCT 777772000000
SLW .CAREF

. CBREF PZE location , , byte

This location indicates the first word address and the
first byte of the target field involved in a move. The
location is set by calls to MOVPAK entry points. .CMPAK
or .cMpPK1 or by in-line coding of the same general
form as that described for the setting of .CAREF.

. COFLO PZE o

This location is set to nonzero whenever any one of

84

the numeric move or convert MovPAK subroutines de-
tects the truncation of significant high-order digits. The
location is tested to determine whether a size ERROR
has occurred.

. CUFLO PZE R

This location is set to nonzero whenever a floating-
point underflow results from a move. At present, no
generated instructions test the status of the location.

MOVPAK Maijor Entry Points

The following discussion describes the four major entry
points to MovPAK subroutines:
TSX . CMPAK, 4
source address reference
target address reference.
(begin specific move call)
This entry uses the source and target address reference
information to set the contents of the .CAREF and .CBREF
locations. Control is then transferred to the subsequent
string of instructions to perform the move. The address
reference word is in one of the following forms:
1. The following coding is used when the data item
is in working storage.
PZE location,, byte
2. The following coding is used when the data item
is located by a base locator.
MZE BL +nnn,,SP+nnn
BL4-nnn gives the base locator reference and
sp-+-nnn contains the item’s displacement from the base
locator (with the word displacement in the address
of the constant and the byte displacement, if any, in
the decrement).
3. The following coding is used when the data item
is located by a positional indicator.
MON PI+4nnn

pi+-nnn is the reference to the particular position
indicator.

TSX .CMPK14
target address reference
(begin specific move call)

This is the entry to Movpak that is used when no
source address is necessary or when the source field is
in an arithmetic register.

TSX . CMPK2,4

source address reference
(begin specific move call)

This is an entry to Movpak that is used when the re-
sultant field is to be left in an arithmetic register.

TSX .CMPK34
(begin specific move call)

This is an entry to mMovrak that is used when the
source field is in an arithmetic register and the result
is to be left in an arithmetic register or when any nec-
essary field address references have been previously

stored in locations .carer and/or .cBREF. This entry is
also used when any necessary address references have
previously been stored by in-line instructions into lo-
cations .CAREF and/or .CBREF.

General Form of MOVPAK Subroutine Calls

Calls upon specific subroutines within Movpak begin
with a Txr instruction which transfers control to the
entry point of the particular subroutine. The Tx1 in-
struction appears after a Tsx instruction which has
transferred control to one of the four major Mmovrax
entry points. Some of the calls are fixed length; other
calls are terminated by a Tx1 instruction which trans-
fers control to a particular location.

Field Types

The following abbreviations are used in the discussions
of the types of fields involved in move operations:

AA Alphabetic field (The PICTURE clause contains
only As.)

AN Alphameric field (The group item or PICTURE
clause contains Xs.)

RP Report field (The PICTURE clause contains edit-
ing characters.)

XD External decimal (fixed-point BCD)

1D Internal decimal (fixed-point binary, scaled deci-
mal)

IN Internal decimal not SYNCHRONIZED RIGHT

SD Scientific decimal (floating-point BCD)

FP Floating point (floating binary)

The following are figurative constants:

SP SPACES

ZE ZEROS

CH Characters (this category includes all one-charac-
ter-literal, QUOTE, and HIGH-VALUE constants)

Literals are classed as AN, Ip, or FP, as appropriate.

MOVPAK SUBROUTINE CALLS

The following calls are given in alphabetical order by
the abbreviated representations for the source and tar-
get fields. The order is AA, AN, CH, FP, ID, IN, RP, SD, SP,
xp, and zE. For example, the move from internal deci-
mal to external decimal is designated by the letters
mxp. Combinations other than those shown are not
permitted.

AAAA, AAAN, ANAA, ANAN

Moves of most simple Bcp, AN, or AaA fields are han-
dled by generated in-line instructions if the fields are
short enough, but other cases are handled by one of
the following calls:

Noncomplex move

TXI .CANA1, 1, number. of. characters. to.
move

Noncomplex move and trailing spaces

TXI .CANA2, 1, number. of. characters. to.
move

TXI .CANA3, 1, number. of. spaces. to.
insert
Complex Move — The length and/or initial byte po-
sition of the source field and/or the target field was not
known at compilation time.

TXI .CANAA4, 1, control. 0
PZE control. 1, , control. 2

1. control. 1 is the length of the source field or the
location of the word containing that information.

9. control. 2 is the length of the target field or the
location of the word containing that information.

The precise nature of control. 1 and control. 2 is de-
fined by control. 0 as follows:

CONTROL. 0 VALUE EXPLANATION

1 Target field length is in words (not
characters).

2 Source field length is in words (not
characters).

4 Control. 2 is the target length loca-
tion (not the length itself).

8 Control. 1 is the source length loca-

tion (not the length itself).

The preceding conditions may exist in combination,
giving control. 0 a maximum value of 15.
ANFP, ANID, ANIN, ANRP, ANSD, and ANXD

Substitute xp for aN; then see the equivalent section.

.CEXAM

TSX .CMPK2, 4

data-item reference

TXI entpt, 1, length of data item parameter

word
This subroutine is called by .cmpk?, and it processes

text strings created by the ExaMINE and 1F (CLASS) an-
alyzers. The data-item reference word conforms to nor-
mal MovPAK specifications. The entpt is .cExam for true
EXAMINE statements;

.CXAMA for IF . . . ALPHABETIC; and
.CXAMN for IF ... NUMERIC.

CHAN
TXI .CCHAN, 1, number. of. characters. to.
insert
OCT characters

The second word contains six characters of the type
to be inserted.
FPAN

Substitute xp for aN; then see the equivalent section.
FPFP

In-line instructions are used. MOVPAK is not involved.
FPID
TSX CF1ID, 4
target. control. word. type. ID
This Movpax subroutine converts the floating-point
value in the accumulator to internal decimal and leaves
the result in the accumulator or the ac-mq. This is a
direct entry to moveax and is not preceded by the
normal Tsx instruction to one of the four major entry

Systems Programmer’s Information 85

points. An alternate form of the call (Tsx [T3.cF2m, 4)
is used if the floating-point number is double pre-
cision and appears in the ac-mo.

Target. control. word. type. m contains the follow-
ing information:

1. Prefix Portion — The sign of the scale is plus if
the prefix is pzE and minus if the prefix is MzE.

2. Address Portion — The scale applied in the pic-
TURE clause of the internal decimal item.

3. Decrement Portion — The number of nines in
the PrcTUrE clause of the internal decimal item. If the
number is greater than ten, double-precision treat-
ment is required.

FPIN

See rFpip; then see mIN.

FPRP

See —rPID; then see IDRP (omitting the I step).
FPSD
TXI .CF1SD, 1,0
target. control. word. type. SD
This Movpak subroutine converts the floating-point
value in the accumulator to scientific decimal. An alter-
nate form of the call (Tx1 .cFesp, 1, 0) is used if the
floating-point number is double precision and appears
in the Ac-MQ.
Target. control. word. type. sp contains the follow-
ing information:
1. Prefix Portion — Mz, if a decimal point appears
in the pIcTURE clause; otherwise, it is PzE.
2. Address Portion — Scale, applied to the mantissa
in the picTURE clause,
3. Tag Portion — The sign convention code based on
the picTuURE clause.
0 mantissa and exponent sign conventions
are —.
1 mantissa — and exponent .
2 mantissa +- and exponent —,
3 mantissa 4 and exponent 4.
4. Decrement Portion — The total length of the field,
in characters.
FPXD

See Frip; then see 1pxp.
IDAN

Substitute xp for an; then see the equivalent section.

IDFP

TSX .CIDF1, 4

source. control. word. type. ID

This Moveak subroutine converts the internal deci-

mal value in the accumulator or ac-mqQ to floating-
point and leaves the result in the accumulator. Note
that this is a direct entry to Moveak and is not pre-
ceded by the normal Tsx instruction to one of the four
major entry points. An alternate form of the call

86

(15X .coF, 4) is used to develop double-precision
floating-point results in the ac-MQ.

See Fp for the form of source. control. word. type.
ID.

IDID

MOVPAK is not used. In-line scaling instructions are
generated as appropriate, unless b is being used as
an intermediate stage of a multistage move, where the
scaling function is performed by a Movpak subroutine;
e.g., see XDsD.

IDIN (See IDID first.)
TXI .CIDIN, 1, character. length. of .target

The source field is in the accumulator or in the
Ac-MQ. Character. length. of. target is the least mul-
tiple of six bits that is sufficient to contain the defined
internal decimal field and its sign.

IDRP (See IDID first.)
TXI .CIDRP, 1, number. of. digits. to. con-
vert

This instruction is followed by one or more instruc-
tions from the Report Field Tx1 instruction set. The
particular instructions used reflect the characters that
form the pPicTURE of the field.

The members of the set are as follows:

TXI .CR999, 1, number. of. consecutive. 9.
occurrences
TXI .CRZZZ, 1, number. of. consecutive. Z.
occurrences
TXI .CRAAA, 1, number. of. consecutive. *.
occurrences
TXI .CRO00, 1, number. of. consecutive. O.
occurrences
TXI .CRBBB, 1, number. of. consecutive. B.
occurrences
TXI .CRSIN, 1, C14-64*C2

The character C1 is inserted if the sign of the field
is plus; the character C2 is inserted if the sign of the
field is minus.

TXI .CRSIG, 1, C3+64*C4

The character C4 is inserted if no preceding signifi-
cant digit has been inserted; the character C3 is in-
serted if a preceding significant digit has been inserted.
If a (Txx crrLs) instruction (described next) has
been executed and the floating sign has not yet been
inserted, the character actually inserted is C4, C5, or
C6.

TXI .CRFLS, 1, C5464*C6

C5 is the floating-sign character that is ultimately in-
serted if the sign of the field is plus, and C6 is ulti-
mately inserted if the sign of the field is minus. If the
first digit value is zero, a blank or the appropriate
choice of C5 or C6 is immediately inserted as a result
of this Tx1 instruction. Note that the first floating-sign
position is traversed by this Tx1 instruction.

The following coding is used when other floating-
sign positions are to follow.
TXI .CRFFF, 1, number. of. consecutive.
floating. sign. occurrernces
The following coding is used when no other float-
ing-sign positions are to follow.
TXI .CRFFQ, 1, number. of. consecutive.
floating. sign. occurrences
The following coding is used when no other float-
ing-sign occurrences are to follow but there is a com-
ma before the next digit.

TXI .CRFFC, 1, number. of. consecutive.
floating. sign. occurrences

Values which C1-C2, C3-C4, and C5-C6 can assume
as character pairs are as follows:

Cl +space space space space space .$
c2 - - C R D B
G, >)

C4 , space #

C5 4-space $

cée — - $

The report image TXI string is terminated by the fol-

lowing:
TXI .CRQT, 1, value

where value=0 unless the field is to be blank when
zero, in which case value is equal to the total length
of the target field.

Example 1: PICTURE 1s $s5, 88, 99 is handled by the
following:

TXI .CRFLS, 1,43464%43 C5=C6=%

TXI .CRFFF, 1,2

TXI .CRSIG, 1, 59+ 64%48 C3=, and
C4=space

TXI .CRFFQ, 1,3

TXI .CRSIN, 1 ,27-464%27 Cl=C2=.

TXI .CR999,1,2
TXI .CRQIT, 1,0

Example 2: piICTURE 18 7zz,277.7z-}- is handled by
the following:

TXI .CRZ7Z,1,3

TXI .CRSIG, 1, 59-4-64*48 C3=, and
C4=space

TXI .CRZZZ1,3

TXI .CRSIN, 1, 27464%27 Cl=C2=.

TXI .CR999, 1, 2 note choice
of. CR999

TXI .CRSIN, 1, 164-64%32 Cl=+ and
C2=—

TXI .CRQIT, 1, 11 note blank
when zero
option

IDSD

TXI .CIDSD, 1,0

source. control. word. type. ID

target. control. word. type. SD

The internal decimal contents of the accumulator or
the ac-M0 are converted to scientific decimal form.
Source. control. word. type. 1p:
(See rprip for the form.)

Target. control. word. type. sp:
(See ¥psp for the form.)
IDXD (See IDID first.)

The internal decimal contents of the accumulator or
the ac-MQ are converted to external decimal by one of
the following three calls.

The following coding is used when the target field
has no sign provision.

TXI .CIDX1, 1, number. of. characters. to.
develop

The following coding is used when the target field
has a sign over the low-order digit.

TXI .CIDX2, 1, number. of. characters. to.
develop

The following coding is used when the target field
always has a sign over the low-order digit.

TXI .CIDX3, 1, number. of. characters. to.
develop

INAN
See 1NID; then see IDAN.
INFP
See 1NID; then see IDFP.
INID (See IDID afterwards.)
TXI .CINID, 1, character. length. of. source

The results are left in the accumulator or in the
AC-MQ.

Character. length. of. source is the least multiple of
six bits that is sufficient to contain the defined internal
decimal field and its sign.

ININ

See 1N1Ip; then see IDIN.
INRP

See 1NID; then see IDRP.
INSD

See 1NID; then see 1DSD.
INXD

See 1N1D; then see IDXD.
RPAN

See ANAN,

SDAN

Substitute xp for aN; then see the equivalent section.

SDFP
TXI .CSDF1, 1,0
source. control. word. type. SD

This subroutine converts the free-form contents of
the scientific decimal field to single-precision floating-
point in the accumulator. An alternate form of the call
(Tx1 .CSDF2, 1, 0) is used to develop double-pre-
cision results in the ac-MQ.

Source. control. word. type. sp:
(See Fpsp for the form.)
SDID
TXI .CSDID, 1,0

source. control. word. type. SD
target. control. word. type. ID

Systems Programmer’s Information 87

This subroutine converts the free-form contents of
the scientific decimal field to internal decimal and
leaves the results in the accumulator or in the ac-Mq.

Source. control. word. type. sp:
(See Fpsp for the form.)
Target. control. word. type. m:
(See ¥rip for the form.)
SDIN
See spip; then see IDIN.
SDRP
See spip; then see RP.

SDSD
TXI .CSDSD, 1, 0
source. control. word. type. SD
target. control. word. type. SD
This subroutine converts the free-form contents of
the source scientific decimal field to the form dictated
by the target scientific decimal field.
Source. control. word. type. sp:
Target. control. word. type. sp:
(See Frsp for the form.)
SDXD
See spip; then see xp.

SPAA, SPAN, SPRP, SPSD, SPXD
TXI .CSPAN, 1, number. of. spaces. to. in-
sert
XDAN
See ANAN.
XDFP
See xpIp; then see IDFP.

XDID (See IDID afterwards.)
TXI .CXDID, 1, number. of. characters. to.
convert
This subroutine converts data from external decimal
to internal decimal data and leaves the results in the
accumulator or in the ac-mMqQ. The sign of the source
field is assumed to be over the low-order digit. The
absence of a sign is treated as denoting plus. Leading
spaces appearing in the source field are treated as
Zeros,
XDIN
See xpip; then see DIN.
XDRP
TXI .CXDRP, 1,0
This instruction is followed by one or more instruc-
tions from the external decimal Txr instruction set (see
xpxp for a definition of this set). The next instruction
thereafter is of the following form:
TXI .CXDRQ, 1, number. or. digits. devel-
oped. for. target
This instruction is then followed by one or more in-
structions from the report field Tx1 instruction set (see
RP for a definition of this set). As with re, the call-
ing sequence is terminated by the following:

TXI .CROIT, 1, value

88

where value=0 unless the field is to be blank when
zero, in which case value is equal to the total length of

the target field.
XDSD
See xpip; then see 1sD.
XDXD
TXI .CXDXD, 1, target. sign. convention

Target. sign. convention is zero if the target field has
no sign provision; it is one if the target field has a sign
over the low-order digit when minus, and is two if the
target field always has a sign over the low-order digit.

This instruction is followed by one or more instruc-
tions from the external decimal Tx1 instruction set. The
particular instructions used represent a procedural
method of construction of the proper string of digits
for the target field. The members of the set are:

TXI .CXMOV, 1, number. of. digits. to.
move

TXI .CXNZT, 1, number. of. digits. to. test.
for. nonzero

TXI .CXBYP, 1, number. of. digits. to.
bypass

TXI .CXINZ, 1, number. of. digits. to.
insert

TXI .CXRND, 1,0

If nonzero significance is encountered under control
of .cxnzT, it causes .cOFLO to be set nonzero. .CXRND
is used when rounding is desired at the current po-
sition.

Three alternate subroutine entry points .cxmvs,
.cxNzs, and .cxBYs) corresponding to .CXMOV, .CXNZT,
and .cxByp are used instead when there may be a sign
over the last digit traversed under control of the in-
struction.

The instruction string is terminated for xpxp moves
by the following:

TXI .CXDXQ, 1, number. of. digits.
developed. for. target

Example 1: The statement COMPUTE A ROUNDED — B,
ON SIZE ERROR . . . (where As PICTURE Is $999v999 and
BS PICTURE IS s9v9) results in the following:

TXI .CXDXD, 1, 2
TXI .CXNZT, 1, 2
TXI .CXMOV, 1, 2
TXI .CXRND, 1, 0
TXI .CXBYS, 1, 2

TXI .CXDXQ, 1, 2

Example 2: The statement MOvE A To B (where As
PICTURE 1S $9v99 and BS PICTURE IS V9999) results in the
following:

TXI .CXDXD, 1,0
TXI .CXBYP, 1, 1
TXI CXMVS, 1, 2
TXI .CXINZ, 1, 2
TXI .CXDXQ, 1, 4

ZEAN
TXI1 .CZEAN, 1, number. of. zeros. to. insert

ZEFP, ZEID
MovPAK is not used. The value zero is stored by one

or more in-line instructions.
ZEIN

See zZEAN.
ZERP

A sufficient number of zero digits is provided by gen-
erated in-line instructions which insert zeros in one or
more temporary storage words. The move is then per-
formed as if it were XDpRP.
ZESD

The accumulator is cleared to zero by a generated
in-line instruction. The move is then performed as if
it were FPsD.

ZEXD
See ZEAN,

Additional COBOL Subroutines

In the discussions that follow, the symbol for the
subroutine or the communication location is given at
the left. The calling sequence of the subroutine or the
communication location is indicated. An explanation
then follows this coding.

.CARS1

.CARS2

These two locations serve as storage for multipreci-

sion arithmetic operations.

.CARO1
TSX .CAROL, 4
PZE CP+nnn
This subroutine raises the double-precision floating-
point number in the ac-MQ to the single-precision
power stored in .carsi. The double-precision result is
left in the Ac-Mmo.
cp--nnn contains a constant which is the source lan-
guage card number at which the original computation
was specified. It is used only for an error message.

.CARO2
TSX .CAR02, 4
PZE CP+nnn
This routine raises the double-precision floating-
point number in the ac-MQ to the double-precision
power stored in .carst and .cars2. The double-preci-
sion result is left in the Ac-MQ.
cp-Fnnn is the same as for .caro1.
.CARO3
TSX .CARO3, 4
This is the subroutine for sign adjustment of double-
precision, fixed-point numbers. The routine is entered
with the number in the aAc-MQ, and the result is left in
the Ac-MQ.
.CAR04

TSX .CAR04, 4
PZE CP+nnn

This routine scales up the single-precision number
in the accumulator by 10**10 and then scales it up by
the constant located at cp-Fnnn.

.CARO5
TSX .CARO5, 4
PZE CP+nnn
This routine scales up the number in the MmQ by
10**10 and then scales it up by the constant located
at cr-}-nnn.

.CARO6
TSX .CARO0G6, 4
PZE CP+nnn
This routine scales up the double-precision number
in the ac-MQ by the constant located at cp—nnn.

.CARO7

TSX .CARO07, 4

PZE CP+nnn

This routine scales up the double-precision number

in the ac-MQ by the constant located at cp4-nnn. On
entry to the routine, the high-order part of the number
is in the M@ and the low-order part of the number is
in the accumulator.

.CARO8
TSX .CAROS, 4
PZE CP+-nnn
This routine scales down the double-precision num-
ber in the ac-MQ by the constant located at cp+nnn
and leaves the result in the Ac-MQ.

.CAR09
TSX .CARO09, 4
PZE CP+-nnn
This routine scales down the double-precision num-
ber in the ac-MQ 10%¥10 and then scales it down by
the constant located at cp+nnn, leaving the result in
the MmQ.
.CARI10
TSX .CAR10, 4
This routine divides the double-precision, fixed-
point number in .carst and .carsz by the contents of
the ac-mQ. The result is left in the ac-MQ.
.CAR11
TSX .CAR1], 4
PZE CP+nnn
This routine multiplies the double-precision contents
of the ac-MQ by the double-precision value in .cARs1
and .carsg, scales down the product by the constant lo-
cated at cp4nnn, and leaves the result in the ac-MQ.
.CAR12
TSX .CAR12, 4
PZE CP+nnn
This routine multiplies the double-precision contents
ot the ac-MQ by the double-precision value in .CARs1
and .carse, scales the product down by 10*#10, and
then scales it down by the constant located at cp-{-nnn.
The result is left in the Ac-MQ.

Systems Programmer’s Information 89

.CAR13
TSX .CARIS3, 4
PZE CP+4nnn

This floating-point exponential routine raises the
single-precision number in the accumulator to the sin-
gle-precision number located in .cars1. The number in
the accumulator may be a positive real number or a
negative integer. The exponent may have any value.
The single-precision result is left in the accumulator.
.car13 calls .CEXPR and, in the event of an error, calls
.CEXNG.

cp-+nnn is the source language card number.

.CAR14
TSX .CAR14, 4
PZE CP~+nnn

This floating-point exponential routine raises the sin-
gle-precision number in the accumulator to the double-
precision power located in .cars1 and .cars2. The num-
ber in the accumulator may be a positive real number
or a negative integer. The exponent may have any
value. The double-precision result is left in the ac-Mo.
The deck .cari4 contains the entry points .CAR14, .CARO1,
and .caro2. A call is made to .cexpr and, in the event
of an error, to .CEXNG.

.CBDCV
TSX .CBDCV, 4
(Return)

This subroutine converts the Bcp control word that
precedes each variable-length record to binary form.
Upon entry to this subroutine, the control word is in
MQ. The word count of the record is contained in the
first five characters, and the sixth character is a periph-
eral code. After conversion, the actual record length is
in binary form in the decrement of the ac.

.CBNCV
TSX .CBNCV, 4
(Return)

This subroutine converts the binary record length to
Bcp form and adds a word at the beginning of every
variable-length record. Upon entry to this subroutine,
the record length in number of words is in the mQ. The
length is converted to Bcp and placed in the first five
characters of the control word. The sixth character of
the control word is zero. After conversion, the control
word is in the logical accumulator.

.CCTAB

This is a conversion table used in converting from
the 7090 collating sequence to the COLLATE-COMMER-
cIAL collating sequence.

.CCOMP
TSX .CCOMP, 4
op .CCTAB, , 6
PZE LOC(1), T(1), LOCATOR(1)
PZE LENGTH(1), , 6*BYTE(1)
PZE LOC(2), T(2), LOCATOR(2)
PZE LENGTH(2), , 6"BYTE(2)

90

HIGH RETURN from comparison
EQUAL RETURN from comparison
LOW RETURN from comparison

This subroutine performs an alphabetic comparison
on two fields.

oP is a cvR or a Nop, depending on the need to ad-
just the collating sequence before the comparison.

roc(N) is the displacement from the base, if there is
a base. If there is no base, it is the location of the field.

LOCATOR(N) is the location of the base locator. It is
zero if there is no base locator, in which case T(~) is
meaningless and must also be zero.

T(N) is nonzero if the base locator is complex.

LENGTH(N) is the length of the field in characters.

BYTE(N) is the nominal byte position.

.CHBCD
TSX .CHBCD, 4
PZE BL+4nnn, ,, TS+8
(Return)

This subroutine converts a card image to a Bcp
image. The card image is located in an area located by
the base locator, and the Bcp image is placed into the
twelve-word temporary storage area beginning at

TS--8.
.CBCDH
TSX .CBCDH, 4
PZE BL+nnn, , TS4+8
(Return)
This subroutine converts a Bcp image to a card
image.

The Bcp image is located in the twelve-word tem-
porary storage area beginning at Ts 4 8, and the card
image is placed into the area located by the base lo-
cator.

Input/Output Subroytines

.CIOHS
PZE 0,0, **

This is a communication location which contains in
its decrement the source language card number of the
most recent input/output action. This location is set
by every OPEN, CLOSE, READ, and WRITE in the source
program and is therefore an input/output history lo-
cation.

.CEOBP

This subroutine is associated with an 10Bs .READ or
.wRITE calling sequence. Control is transferred to
.cEoBP when the 10Bs end-of-buffer error condition is
encountered during a .READ or .wRITE calling sequence.
The subroutine displays an error message and causes
object-time processing to terminate. The following is a
typical calling sequence which contains a reference to

.CEOBP:
TSX .WRITE, 4
PZE file-name, , . CEOBP
IOSTN* BL+nnn, , integer

IBM E1391 100n12x20 cal —ro-mark—9185—wb-3

.CERRP

This subroutine is associated with an 10Bs .READ call-
ing sequence. Control is transferred to .CERRP when the
10Bs error condition is encountered during a .READ call-
ing sequence. This subroutine displays an error mes-
sage and causes object-time processing to terminate.
The following is a typical calling sequence which con-
tains a reference to .CERRP:

TSX .READ, 4 g
PZE file-name, , CEOBP

PZE ENnnnn, , .CERRP
IOSTN* BL--nnn, , integer

.CEXNG

TSX .CEXNG, 4

PZE CP+nnn

This error routine, entered only by .CAR01, .CAROZ,

.CAR13, and .CAR14, prints an off-line message indicating
an out-of-range condition in the factors of an exponen-
tiation. Subroutine .cprLy is called. cp4nnn is the
same as for .CEXPR.

.CEXPR
TSX .CEXPR, 4
PZE CP+nnn
This subroutine, entered only by .caRro1, .CAR02, .CAR13
and .cari4, checks for out-of-range conditions and
overflow. Deck .cEXPR contains the entry point .CEXNG.
cp-+nnn is the source card number.
This subroutine determines if a file is attached to
card equipment.

.COPEN
TSX .COPEN, 4
ROP file-name, , OPT

This subroutine opens a file. rop is the rewind op-
tion, according to the following convention:

PZE Rewind
MZE No Rewind
MON No Rewind, No Label Action

opt equals 1 if the file name refers to an optional file.

.CCLOS
TSX .CCLOS, 4
ROP file-name, , OPT
(Return)

This subroutine closes a file. The following con-

ventions are used with the rewind option (RroP).

PZE Rewind and Unload
PTW Rewind
MZE No Rewind
MON No Rewind, No End-of-File Mark
OPT =0 if the file name does not refer
to an optional file and the
CLOSE REEL option is not
wanted.
=1 if ‘the file name refers to an op-
tional file.
=2 if the CLOSE REEL option is
desired.
=3 if the file name refers to an op-
tional file and the CLOSE
REEL option is desired.

. CDPLY
TSX . CDPLY, 4
PZE IMAGE, , DEVICE
(Return)

This is a subroutine used to display a twelve-word
BCD image. IMAGE is the location of a twelve-word Bcp
area which is to be displayed, and pEvVICE is an actual
bit configuration within which:

Bit 15 =1 if the area is to be displayed upon the
PRINTER.

Bit 14 =1 if the area is to be displayed upon the
SYSTEM-OUTPUT-UNIT.

Bit13 =1 if the area is to be displayed upon the
CARD-PUNCH. This option is not currently
implemented.

. CKEYS

TSX .CKEYS, 4
(Return)

This subroutine places the panel key setting in the
MQ register.

. CBLER .

This subroutine prints an error message and causes
processing to terminate whenever a reference is made
to a base locator which has not been set. It is normally
reached by the following:

LAC BL+4nnn, N
TXL . CBLER, N, 0

. CCDTY
TSX . CCDTY, 4
PZE file-name
(return if file is attached to card equipment)
(return if file is not attached to card equipment)

The Librarian

The Librarian is a section of the Loader that main-
tains the Subroutine Library. It is composed largely of
routines from sections 1 and 2 of the Loader. The Li-
brarian is called by the Loader upon encountering a
seprt card following the siBjoB card. A specification on
the seprT card allows the programmer to obtain a list-
ing of pertinent information about the Subroutine Li-
brary.

Operation of the Librarian is governed by the fol-
lowing control cards:

1 16

$REPLACE srname [, ORG = nnnnn]
$INSERT [srname] [, ORG = nnnnn]
$AFTER srname

$DELETE srname

$ASSIGN srname, ORG = nnnnn

The field represented as srname is the name of a sub-
routine existing in the Subroutine Library on which
the indicated operation is to be performed. It is option-
al on the sinserT card and mandatory on all the others.

The field represented as orc = nnnnn is the absolute
origin to be assigned to the subroutine. It is manda-
tory only on the sassieN card.

Systems Programmer’s Information 91

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

The Subroutine Library consists of the following two
files of information:

1. The Control Information File, consisting of the
Subroutine Section Name Table (sent), the Subrou-
tine Dependence Table (srot), and the Loader control
cards, control dictionaries, and file dictionaries, if they
exist.

2. The relocatable binary text file, consisting of the
text portions of those library subroutines which have
text.

The library maintenance operation is essentially a
four-phase process. sRNT and sroT are spaced over and
not used by the Librarian. Librarian control cards and
subroutine decks are obtained from the input file. Ap-
propriate positioning, replacements, insertions, or de-
letions are made to the control information file and the
new control information file is formed and written on a
work file.

The relocatable binary text portions of the subrou-
tine decks obtained from the input file are written on a
second work file. The operation and subroutine name
from each Librarian control card is preserved in the
Librarian Action Table to be used in processing the re-
locatable binary text file. At the completion of phase 1,
the complete control information file has been formed.

In phase 2, the relocatable binary text portions of the
subroutines obtained from the input file are merged
with the existing text file, and the new relocatable bi-
nary text file is written behind the new control in-
formation file.

In phase 3, the combined control dictionaries of the
library subroutines are used to generate the new Sub-
routine Section Name Table and the Subroutine Sec-
tion Dependence Table. If the programmer so specified

on the seEprT card, a listing is prepared showing the sub-.

routine name, the origin, if fixed, the length, and the
starting record number of each subroutine. A listing
showing all real control sections and their dependen-
cies is also produced.

Phase 4 consists of writing the Subroutine Sec-
tion Name Table and Subroutine Section Dependence
Table on the System Utility Unit (sysut4), followed by
the control information and text files.

Subroutine library maintenance is now complete and
the Librarian returns control to the Loader. A system
edit is performed to replace the existing library files by
the two new library files generated by the Librarian on
the System Utility Unit (sysuts). If the System Utility
Unit (sysur4) is attached to disk, the maximum block
size is 464 words. If sysurs is attached to any other
device, the maximum block size is 524 words.

The Librarian is called by the Load Supervisor upon
encountering the following card immediately after the
$1BJOB card.

92

1 16
$EDIT [LOGIC]

The LogcIC option, if specified, instructs the Librarian
to provide information showing the cross-referencing
of subroutines in the Library.

Restrictions Using Drum Storage

If the Subroutine Library is to reside on disk storage,
the System Utility Unit (sysur4) must be attached to
disk to obtain the proper block size. If sysurs is not
attached to disk, sysur3 may not be attached to disk.

Librarian Control Cards

$REPLACE Card

The format of this control card is:

1 16

$REPLACE smame[, ORG =: nnnnn]

The srePLACE card causes the Librarian to copy the
current library up to, but not including, the subroutine
named srname. The named subroutine is then skipped
over in the current library and the subroutine deck fol-
lowing the sREPLACE card is inserted in the output li-
brary files. The name for the new subroutine is ob-
tained from the siBLDR card of the deck.

The optional field orRG=nnnnn is used to assign an
absolute origin to the subroutine which is being in-
serted or to change its assembled absolute origin. The
five-digit field nnnnn is the absolute origin, in octal.

$ASSIGN Card
The format of this control card is:

1 16
$ASSIGN srname, ORG = nnnnn

The sassioN card causes the Librarian to copy the
current library up to, but not including, the subroutine
name srname. The named subroutine is then assigned
the absolute origin specified by the octal number
nnnnn and the subroutine is placed in the output li-
brary files.

Both the subroutine named and the origin to be as-
signed are mandatory on this control card.

Another control card or an end of file must follow
the sassioN card.

$INSERT Card
The format of this control card is:

1 16
$INSERT [smmame] [, ORG = nnnnn]

The siNserT card causes the Librarian to place the
subroutine deck that follows into the library at its cur-
rent position. The field srname is optional on this con-
trol card and will not be used by the Librarian. The

optional field orc=nnnnn is used to assign an absolute
origin to the subroutine being inserted.

It should be noted that positioning is not performed
with the siNsgrT card, the insertion being made at the
current position of the output library file.

$AFTER Card
The format of this control card is:

1 16
$AFTER srname

The sarter card causes the Librarian to copy the
library from its current position through the subroutine
named srname. The subroutine name is mandatory on
this control card.

The sarTER card is used in conjunction with the
siNseRT card to position the file before inserting.

$DELETE Card
The format of this control card is:
16

srname

1
$DELETE

The spELETE card causes the Librarian to copy the
library from its current position up to, but not includ-
ing, the subroutine named srname. The named subrou-
tine is then skipped over on the current library. The
subroutine name is mandatory on this control card.

Another control card or an end of file must follow
the spELETE card.

Systems Programmer’s Information 93

Appendix A: Control Card Format Index

Refer to the given page reference for a description of each card.

CARD FORMAT

1 8 16
(g any text
1 8 16
f $AFTER srname
1 3 16
r m *ALTER n
1 8 16
(m *ALTER nl n2
1 8 16
($ASSIGN ’ srname, ORG=nnnnn
1 8 16
f $CBEND l
1 8 16
($SDELETE srname
1 8 16
($DUMP[n] |cxxxxx loc1/loc2, loc3/loc4, . . .

94

PAGE
REFERENCE

94

12

12

93

16

94

44

CARD FORMAT
1 8

PAGE
REFERENCE

16

:

*ENDAL ’ 12

16

$ENTRY

1 8

exname 9
deckname

16

($ETC I

| .

1 8 16
($EXECUTE subsystem name 7
1 8 16
. . . . LIST
$FILE filename’ [,unitl, unit2] [{_—NOLIST:' 20
1 8 16
g
MOUNT INPUT
DEFER OUTPUT
$ETC READY _JINOUT BLOCK
"1 MOUNTi CHECKPOINT [{BLK :XXXX]
DEFERi or
READYi CKPT
1 8 16
ONEREEL [1
_ MULTIREEL | | -[[NOSEARCH
$ETC [, ACT=XX] o [’1SEAR cH |
' REELS

Appendix A 95

CARD FORMAT

REFERENCE
PAGE
16

1
/

%é_%vﬂ BCD SLABEL
BIN HILABEL
SETC 200 *{ MXBCD "4 LOLABEL
556 MXBIN FLABEL
800
1 8 16
NOSEQ
SETC SEQ NOCKSUM) NOCKPTS
' 1 or '{CKSUM [| |*|CKPTS
SEQUENCE
1 8 16
SCRATCH
, PRINT CYLINDER) _
$ETC [, AFTERLABEL] |4 PRIVT [,{CYL _XXX]
HOLD
1 8 16
HRFP
CYLCOUNT) HRNFP
ET -
$ETC [,{CYLCT | XXXi| [WRITECK] | .4 jros™
HNENFP
1 8 16
($FTEND 11
1 8 16
f $GROUP [OPNCT=XX] [, BUFCT=XXX] , lename ;" , ... 24

16

$IBCBC

96

deckname

NOLIST NOREF\] [fDECK 17| [M% 15
i) R85 [fhs

| fxaf] [(et} [{reapon}] [-fSeo’)

REFERENCE

CARD FORMAT PAGE

1 8 16
4 LIST M90
NOLI M90
$IBFTC |deckname LIST [%%'EEH [{gg—gé—CK}] . Mo4 13
FULIST 1 M94/2

]

/
$IBJOB [{co H poLoSIC HNOMAP}H{NOFILESH 7
NOGO DLOGIC MAP FILES
MINIMUM
SOURCE BASIC FLOW
>\ NOSOURCE } LABELS »{NOFLOW
IOEX
FIOCS
1 8 16
/NOLIBE [TEXT
$IBLDR deckname ‘:, {LIBE \NOTEXT 20

1 8 16

($IBMAP deckname [count] {fhﬂ H [f REF }] [jDECK }]

\NOLIST[| |’\NOREF[| | |NODECK

M90
B R | [fotod) [e

ot

6

/
$IBSYS 0
1 8 16
/
$ID 9
1 8 16
NOSRCH
IEDIT [SYSINI\ |) eremn [NOALTER 11
$ 3
ISYSXXXI " Lscrrm IALTER

Appendix A 97

CARD FORMAT
1

16

j exname e
$INCLUDE 1deckname
1 16
r $INSERT [srname] [, ORG=nnnnn]

16

o= l
1 16
$LABEL ‘file name’ serfal [, reel] date [, name]
T\ HA ’ >\ days ’ '
1 16
deckname (exname)=exname
exname==exname
$NAME ‘deckname (filename)’="filename’
‘filename’="filename’
1 16
SYSOUL\| [(NOPREST|7 [[NOCPR
($OEDIT Hsysxxx j] [\PREST ﬂ [{CPRESTH
1 16
exname
($OMIT | deckname (exname) [>°""
1 16
logical [absolute’ SYSUT2 NOREW
$ORIGIN origin {’ origin] [’ {SYSxxx }] l:’ {REW }:'

98

REFERENCE
PAGE

30

93

23

25

11

24

30

REFERENCE

CARD FORMAT PAGE
1 8 16
($PATCH CXXXXX instr. 1, instr. 2, ... 45
N 1 8 16
($PAUSE | l 9
1 8 16
$POOL [{gigCK}ZXXXX] [, BUFCT=XXX], filename’, ... 24
1 8 16
($REPLACE srname[, ORG=nnnnn] 93
1 8 16
[$SIZE ‘]/ /=n 25
1 8 16
(e — 9
1 8 16

deckname (exname) , ... 24

Appendix A 99

Appendix B: Control Card Check List

SOURCE LANGUAGE PROGRAMS RELOCATABLE
BINARY
COBOL FORTRAN MAP PROGRAMS COMMENTS

$JOB x x x x One required at the beginning of each job

$1D o o o o Transfers control to installation accounting routine

$EXECUTE X X x b’ Causes the loading of the Processor Monitor

$* o o o o Comments card

$PAUSE o o o o Permits operator action

$STOP o [o o Transfers control to the System Monitor for processing

$IBSYS o o o o Next job segment will not be processed by the IBJOB Pro-
cessor; control is transferred to the System Monitor

$IBJOB X x X b Initiates an IBJOB Processor application; one required for each
Processor application

$IBFTC X Precedes each FORTRAN deck

$FTEND o Required after each FORTRAN deck to be compressed into
Prest form :

$IBCBC X Precedes each COBOL deck

$CBEND X Follows each COBOL deck

$IBMAP X Precedes each MAP deck

$IBLDR X Precedes each relocatable program to be loaded

$ENTRY o o o o Specifies the location to which the initial transfer to the object
program will be made

$IEDIT o o o o Sets input specifications other than standard

$OEDIT o o o ¢} Sets output specifications other than standard

$FILE o o [} o Provides file specification; supersedes some assembled specifi-
cations

$LABEL o o o o Provides label information for files

$POOL o o o o Designates files to share common buffer areas

$GROUP o o o o Designates how buffers are to be shared by a group of files

$NAME o o o o Used to change control section names or file names

$USE o [o o Specifies that a particular control section is to be used

$OMIT o o o o Specifies that a particular control section is to be deleted

$SIZE o o o o Specifies the size of blank common

$ETC o o o o Extends the variable field of a $FILE, $POOL, $GROUP,
$USE, $OMIT, $NAME, or $ETC card.

$ORIGIN o o Used to define the structure of an overlay deck

$INCLUDE o o Specifies the decks or control section to be included in a link

*ALTER o o o o Used to alter a source, symbolic, or Prest deck

*ENDAL o [J o o Required to end an alter deck

$DUMP Causes portions of system records to be dumped

$PATCH Used to insert temporary patches in system records

Notation: x—necessary; o—optional; blank—does not apply.

100

Specifications on the siBjoB card. Component control
cards and the soEprT card cause punched output and
listing output.

Punched Output
The following punched output can be produced:

1. Binary object program deck, unless NODECK is
specified.

2. Compiler Prest deck, if cPResT is specified.

3. Symbolic Prest deck, if PREST is specified.

Appendix C: IBJOB Processor Output

Listing Output
The following listing output can be produced:

1. Source program listing.

2. Diagnostic and on-line messages.

3. Assembly listing, if LisT or FULIST is specified.

4. Core storage map, if MaP is specified.

5. Cross-reference table of object program symbols,
if rEF is specified.

6. Cross-reference table of program sections, if
LOGIC or DLOGIC is specified.

7. Listing of input/output unit assignments and
mounting instructions, if FILES is specified.

Appendix C 101

Appendix D: Sample Control Card Deck

End of File Card

(MAP Deck)

(MAP Deck)
$IBMAP DECK2

(FORTRAN Deck) ,

$IBFTC DECKI1
$IBJOB GO
$EXECUTE IBJOB
$JOB
End of File Card
$ENTRY DECK2
$CBEND

(COBOL Deck) '
$1BCBC DECK2
l
ﬂ(COBOL Deck) ,
$IBCBC DECKI
$1BJOB GO

$EXECUTE 1BJOB

(Sort Deck)
$EXECUTE SORT

End of File Card

(Relocatable
Binary Deck)

$IBLDR_DECK3

$IBFTC DECKI
$IBJOB GO
$EXECUTE IBJOB
End of File Card

(Data Deck) ,

(FORTRAN Deck)
$IBFTC_DECK1
$1BJOB GO

$EXECUTE 1BJOB
$JOB

102

B% CATd ..o

ACTION routine

additional index register mode

SAFTER CArd ...cocooiiiveiiiiieneeie et

ALTER control cards ...

alter numbers

alter options

altering input deck

assembler information
initialization
phase 2

BASSIGN CATA ..ot ie et

binary card
format e 48

sections

binary text, relocatable

block control Wordccoccoiiiiii 41

CALL statement
use In OVerlay ... 28
valid statements 28
when defined ... 29

cALL transfer vector 32

SCBEND CArdooooiiiiieieciee et 16

coboL compiler, the (1BcBC)
ClEANUD .i.iiviviieiieie et 69
communication words .. ST U U TRUURRUR 66
control cards ... 15
QAR oo 66-68
description of ... 14, 64-69
environment USSR PPROTOR 66-68
options ofc.e..... ST 15
procedurec.......... creen..06-69
sample deck formats ... s 16
SEEMENEovviiiiceiie e 65, 66
subroutines 65, 66, 84-92
SUPEIVISOT .oeiiiiiieieiiiiie et 65, 66

computation of variable lengths ... 69

constant UNIESo.oooiiiiiiiiiiii 37

control card search ... 43

control card sequence (see sample deck formats)

control card USALEcociiiiiiii 31

control cards librarian (see librarian control cards)

control diCtONArYccoooviiiiiiiiieice e

control section rules (I1BLDR)

$pATA card ...

deck name rules (IBLDR)

SDELETE €aTd ...oooooviiiiiiiiii et

diagnostic MESSAZESovvoverrierieiriceries e

diagnostic routine

$pkEND card ...

$pump card ...

dump restrictions
dump subroutine

end-of-ile cardcccooiiiii
end-of-file condition ...

$ENDREEL card ...
$ENTRY card
entry word, special ...
EITOT IMESSAZES «..vcvvvovierveciereeerieneiieeereneaieieie s

€ITOr PrOCEAUTEScocoiiirieeiririeiiciiie s
$ETC card ...
even storage feature

Index

EVEN program example
EVEN pseudo-operations ...
$ExECUTE card

$FILE card ... 18, 20, 21, 22, 23,
26, 27, 48, 52
file dICHONALYovovieiriieieiie e, 49, 51, 52
file name rules (1BLDR) ...
floating-point dump
floating-point trap mode .
format preface entry ...
FORTRAN FIlESooiiiiiiiiiiiiice e
FORTRAN 1v compiler, the (1BFTC)
ALEEINIATOT ..ottt
control cards
description of ...
diagnostic routine
FORTAN compiler control
options of ...
phase 1 ...
sample deck formats ...
storage allocation
FORTRAN Input/Output library ...
FORTRAN Mathematics library ...
FORTRAN subroutines TSP 33-37, 77-81
FORTRAN utility library ... 33, 36, 37, 80, 81
SFTEND CATAoiooiiiiiieoieieiee ettt ee et 11
$croup card ... OO TP PR PO PTOPPPRPRRON 24, 26, 52
1BcBC (see coBoL compiler, the)
SIBCBC Cardoovoviiiiiii 13, 14, 15,43
IBFTG (see FORTRAN Iv compiler, the)
SIBFTC CArdovivieiiiiiieeieee e 13, 14,43
$BjoB card 5,7,13,43
1BJoB Processor
components Of ...
core storage allocation of
core storage arrangement of ...
general description of
$IBLDR cardccooooeieriiie e
IBLDR OPtioNSoccoooviiiiiiiiiiiiiiins
$1BMAP card ...,
$1Bsys card ...
$m card
$1EDIT card

$mncLUpE card ...
initialization
input ...
input, cosoL

$insERT card ...
instruction generators
integer dumpccooooieiine,
intersystem unit assignment
input/output buffer allocation
input/output buffer pools
TOEDIT ...oooooviiiiveenieieveseeeannaee
input/output editor ...
Input/Output Control System (10CS)

BJOB CAPA ... e

JOD CONEIOL ..ot
joBPP (see punch editor)

SLABEL CATdooiiiiiiiiireecieeicoee ettt 23, 52
librarian control cards
library search
linkcccooee .
LSting OUPUL ...ovovioiiiiiiiiiicie e .41

Index 103

Loader (1BLDR)
control €ards ..o 20-25
control information
control section rules
deck NAMES ..ot 18

description of .. 18
file name rules 19
function of 18
name conventions 18
OPHONS O ...oovi it 20-25
organization of ... 47,48
overlay feature ..o 28
SUDTOUHINES ..ot 33-37
Loader Overlay Feature (see Overlay Feature, Loader)
machine indicator test subroutines ... 36, 37
Macro Assembly Program, the (1BMAP)
control Cards ...t 16
description ofc.c.coiiviiie 16
OPHONS Of ...oviiiiiiiii
output from ...
sample deck formats ..
MONItOr OPHONS ...oviiiiiiiiiiii e
SNAME CATd ..ot
nesting
octal dump ...
octal and mnemonics dUmMP ..o
$0EDIT card
SOMIT €ard ..ot 19, 24, 25
$oricIN card 30, 31, 32
OUEDUL ..ottt 16, 41, 42, 65
Overlay Feature, Loader ..., 28-32
SPATCH CArd ..o 45
SPAUSE €ard ... 9,44
PDUMP .ottt oot ettt e e 37
phase 1, assembler58, 59
phase I, FORTRAN IVccooiiiiiiiiiiiin e 62, 63
phase 2, assembler ... 59
SPOOL €ard ... 24, 26, 52
procedure (see cosoL. Compiler, the)
Process CONIOlccccoiiiiiiciiiieiiiine i, 40
Processor Monitor
calling of ..o 7
components of ... 40
control cards ... 7
execution options 7

104

file list options s 8
functions of ..o 7
10CS OPHOMS .oiveeiviiiiiieiiiiiiie et 8
LOGIC OPLONS ...ooviiiiiiiiiiiiiiniea et 8
MAP OPHOIIS .ooiviiiiieiiiiiiiei e 8
overlay OPLONScocooioieiiiiieiiiii i 8
programming analysis aids ... 39
punch editor ..o 41,42
real control Section ... 19
relocatable binary text (see binary text, relocatable)
relocatable subroutines ... 33
SREPLACE CATd ...t 93
restrictions on dump requests ... 45
sample deck formats ... 12, 14, 16, 17
SEEIMENEo.oerioriiitiasie et 65, 66
$SIZE CATA .oovovooiee e 25
special entry word (see entry word, special)
BSTOP CATA oottt 9
storage allocation 63
subscription calculations ... 68, 69

supervisor (see coBoL compiler, the)
SYSFAZ (see programming analysis aids)
sYSLOC (see programming analysis aids)
system input unit
system output unit
system peripheral punch ... 9, 40
system record format 42
system subroutines

system utility unit 1 ...

system utility unit 2
system utility unit 3 ...
system utility unit 4 ...
Subroutine Library ...

subroutine library information

STEXT CATA oo
transfer table ...

unit assignment, $FiLE card
unit assignment, intersystem
unit assignment notation ...
unit assignment specifications
unit position table ...
BUSE CArd ..ot

variable units
virtual control section ...

C28-6275-2

JBIME

@
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

'V'S'n Ul pajuiyd

T-§429-820

Reader's Comments

IBM 7090/7094 IBSYS OPERATING SYSTEM: IBJOB PROCESSOR
Form C28-6275-2

From

Name

Address

Your comments regarding the completeness, clarity, and accuracy of this publication

will help us improve future editions. Please check the appropriate items below, add

your comments, and mail,

YES NO
Does this publication meet the needs of you and your staff? R —
Is this publication clearly written?

Is the material properly arranged?

If the answer to any of these questions is "NO, " be
sure to elaborate.

How can we improve this publication? Please answer below.

D Suggested Addition (Page , Timing Chart, Drawing, Procedure, etc.)

E] Suggested Deletion (Page)

D Error (Page)

COMMENTS:

No Postage Necessary if Mailed in U.S.A.

STAPLE STAPLE

FOLD FOLD
FIRST CLASS
PERMIT NO, 8l
POUGHKEEFSIE. N. Y.
|]
BUSINESS REPLY MAIL ——
NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,
[]
N 2
o
POSTAGE WILL BE PAID BY EE—— g
IBM CORPORATION — °
P.O. BOX 390 — <
] 3
POUGHKEEPSIE, N.Y. — 0
R
[]
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS —
DEPARTMENT D9l E—
.]
L]
Foo T T T T T T T T T T T T T T T T T T o

2/64:10M-EP-108

STAPLE STAPLE

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	replyA
	replyB

