Systems Reference Library

IBM 7090/7094 Programming Systems

IBJOB Praocessor
Overlay Feature of IBLDR

This publication supplies the programmer with the
information necessary to use the Overlay feature of
the Loader, IBLDR, IBLDR is the component of the
IBJOB Processor that is responsible for loading
jobs. The material contained in this publication is
intended for the experienced programmer,

The Overlay feature of IBLDR answers the need
for an effective way to run jobs that exceed the ca-
pacity of a single core storage load. This is accom-
plished by having one or more links of a job in core
storage at any one time; these links may then be
overlaid with other links, as required.

It is assumed that the reader is familiar with the
contents of the following publications:

IBM 7090/7094 Programming Systems: IBJOB

Processor, Form C28-6275,
IBM 7090/7094 Operating Systems: Basic Monitor
(IBSYS), Form C28-6248,

The machine requirements necessary to use the
Overlay feature of the Loader are the same as those
specified for the 7090/7094 IBJOB Processor.

© 1963 by International Business Machines Corporation

File No. 7090-27
Form C28-6331

MAJOR REVISION (May, 1963)
This publication is a major revision of Form J28-6305,
It replaces the previous publication and obsoletes it.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the content of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N.Y.

INTRODUCTION TO OVERLAY

Overlay is a method of core storage utilization by
jobs that exceed the capacity of core storage., The
programmer divides the job to be executed by the
overlay method into links. A link is one or more
decks of a job. One of these links, called the main
link, is loaded directly into core storage and remains
in core storage throughout the execution of a job
along with the Overlay subroutine and the tables re-
quired for execution. The Loader writes the other
links, called dependent links, on some external file.
A dependent link is one that is usually in core stor-
age only at the time it is being used. It can be over-
laid by other dependent links.

Each deck within a link can be called, or referred
to, by the standard MAP CALL pseudo-operation.

All links, excebt the main link, are written on
external files in scatter-load format and have a
block size of 464 words.

The files available for link storage may be as-
signed to either disk storage or magnetic tape by
using the methods of system unit assignment de-
scribed in the publication, IBM 7090/7094 Operating
Systems: Basic Monitor (IBSYS), Form C28-6248.

THE OVERLAY STRUCTURE

The MAP CALL pseudo-operation is the only opera-
tion that will induce overlay. Therefore, FORTRAN
and COBOL statements which result in a MAP CALL
to another deck can be used to induce overlay.

An example of the structure of an overlay job is
illustrated in Figure 1.

In Figure 1, the vertical lines represent a link,
or links, into which the program has been divided.
Each link may contain one or more decks. The
horizontal lines indicate the logical origin of the
links. Link 0 is the main link, and remains in core
storage at all times; the other links are stored on
some external file,

Overlay can be induced only by the execution of a
CALL from a link that is presently in core storage
to a link that is not in core storage, When a CALL
statement is executed in a link to any of the decks
contained in another link, the incoming link replaces
the link in core storage that has the same logical
origin as the incoming link, and will also overlay
all deeper links in the same chain below that logical
origin, A chain is a sequence of links in core stor-

IBJOB PROCESSOR -- OVERLAY FEATURE OF IBLDR

age from the deepest link required, through what-
ever links precede it, to the main link. It is as-
sumed that the normal way of terminating the exe-
cution of a deck in a dependent link will be with the
RETURN statement.

T
Deck 1
7L Link 0
Deck 2
Origin A |
3 I
~N ~
Deck 9
Deck 6
Deck 3 Link 4
> Link 3
1+ plink 2 Deck 10|
4 Origin B
N
Deck 7 Deck 8
Deck 4
1 - Deck 11 Deck 13 > Link 6
T LL'n.k 1
' > Link 5
Deck 5 -+
1
Deck 12
4 -
s -
Figure 1

The CALL Statement

The primary rule regarding overlay-including CALL
statements is the following:

No deck may either directly or indirectly call for
itself to be overlaid.

The following types of CALL statements are valid:

1. A CALL towards a deeper link in the same
chain is permissible. This type of CALL may
or may not induce overlay, depending on
whether or not the link has already been loaded
into core storage,

2. A CALL within a link is always permissible;
this type of CALL does not induce overlay.

3. A CALL from a deeper link to decks within the
same chain of links toward the main link is
permissible, provided the called deck or decks
which it calls do not cause the originating deck
to be overlaid.

If an invalid CALL statement is used, the job will
be prevented from execution, unless the NOFLOW
option is specified in the variable field of the $IBJOB
card.

Since Overlay structure is defined at load time, all
overlay-inducing CALL statements must be defined
at load time, Therefore, a CALL statement of the
form

CALL *k
where the address is supplied at execution time,
cannot be expected to initiate overlay.

Referring to the Overlay structure in Figure 1,
the following examples may be given:

1. A CALL from Deck 3 to Deck 4.

Permitted: A CALL within the same link will
never induce overlay.

2. A CALL from Deck 2 to Deck 12,

Permitted: This CALL from Link 0 to Link 5
will initiate the loading of Links 4 and 5.

3. A CALL from Deck 12 to Deck 9.

Permitted: This CALL is in the chain of links
toward the main link.

4, A CALL from Deck 13 to Deck 3.

Not Permitted: This CALL would induce the
loading of Link 1, thereby overlaying Link 6,
which contains the deck in which the CALL
statement originated,

5. A CALL from Deck 11 to Deck 9, followed by
a CALL from Deck 9 to Deck 13,

Not Permitted: The CALL from Deck 11 to
Deck 9 is valid, but, since Deck 9 contains a
CALL to Deck 13, Link 6 would overlay Link
5, which contains the calling deck.

Virtual Control Sections

During the analysis of virtual CALL control sections,
virtual control sections other than the CALL type are
also checked for validity. Since this type of virtual
reference cannot induce overlay of a link but may
cause an error if a section that is not in core storage
is referenced, the following rules should be con-
sidered:

1. A reference to a control section in a deeper
link in the same chain is permissible, but may be in
error if the deeper link has not been loaded into core
storage. If the LOGIC option has been specified on
the $IBJOB card, a warning message will be printed.

2. A reference within a link is always permissible.

3. A reference from a deeper link to a control
section within the same chain of links toward the
main link is always permissible.

4

4. A reference to a section that isnot in the allow-
able chain of links is not permitted since, by the
definition of overlay structure, the section referenced
would not be in core storage. The NOFLOW option
will permit this type of reference, if desired.

Storage Allocation During Execution

Figure 2 illustrates how the Overlay structure in
Figure 1 would be assigned to core storage. Links
having the same logical origin will be loaded starting
at the same absolute location, unless the programmer
has specified an absolute loading address for one or
more links,

Library subroutines in the main link will be loaded
following the input decks which constitute the main
link. The input/output buffers will occupy the un-
used core storage area between the longest possible
link configuration and the highest available core stor-
age location, The FORTRAN COMMON area, if
used, will be assigned following the library sub-

" routines.

In Figure 2, the possible configuration of links in
core storage at any one time is:
Link 0 (main link) only.
Link 0 and Link 1,
Link 0 and Link 2,
Link 0 and Link 3.
. Link 0 and Link 4.
Link 0, Link 4, and Link 5,
Link 0, Link 4, and Link 6.

B

1O U W

System, including 10CS

Link O
Library Subroutines
FORTRAN COMMON

Link 4
Link
2

/

Link 3
Link 1

Link 5 Link 6

=

Figute 2

7
used C

Storage

CONTROL CARDS

The Overlay feature of IBLDR primarily involves two
control cards: $ORIGIN and $INCLUDE, The
$ORIGIN control card is used to specify the logical
origin of links, thereby indicating which links can
overlay another. The $INCLUDE control card is
used to specify that a deck (or any control section)
be loaded in some link other than one in which it
would normally be assigned.

The order in which options specified on control
cards are exercised is not significant, unless other-
wise specified.

$ORIGIN Control Card

The logical origins that are specified on $ORIGIN
control cards govern the structure of an Overlay
deck. The decks appearing first in the program are
assigned to the main link, and are usually not pre-
ceded by a $ORIGIN control card. However, if a
$ORIGIN control card is used to designate the main
link, the logical origin speoified by this card cannot
be used on succeeding $ORIGIN control cards or an
error condition will result, since this specifies more
than one main link.

1 16
$ORIGIN Logical ; Absolute ,{SYSUT?2 ,(NOREW
Origin Origin Unit REW
Specifi-
cation

This control card initiates an Overlay link for the
decks that follow. Decks following the $ORIGIN con-
trol card will be assigned to the same link until the
occurrence of another $ORIGIN control card, a
$ENTRY control card, and/or an end of file.

All pertinent information must be on this card; the
$ETC control card may not be used to extend the
variable field information.

The following list indicates the options that may be
specified on the SORIGIN control card:

Logical This field must be the first subfield in

Origin the variable field, and must be assigned
a value. The value assigned is any
arbitrary string of up to six characters,
at least one of which is non-numeric
and none of which is blank or among the
following six special characters:
O=,/".

This field contains from one to five
numeric characters specifying an ab-
solute location at which the link is to be
loaded. If the number is expressed in
octal, an alphabetic O must precede the
number, This field is used only if a
program requires that a link be loaded

Absolute
Origin

at a specific location; it has no effect on
the Overlay structure. It merely deter-
mines the loading point for this particu-
lar link and all links proceeding from it,
if their $ORIGIN control cards do not
specify an absolute origin.

Unit This field specifies the input/output de-
Specifica- vice on which the link is to be written.

tion Any of the following seven system units
Option may be specified:

SYSUT2 (or UT2)
SYSUT3 (or UT3)
SYSLB2 (or LB2)
SYSLB3 (or LB3)
If the field is omitted, SYSUT?2 is as-
signed. It is assumed that the unit
chosen is in READY status and that it
will not be used for any purpose other
than loading links during job execution.
NOREW specifies that the input/output
unit containing the link is not to be re-
wound after the link is loaded; REW
specifies that it is to be rewound. If
this field is omitted, the unit will not
be rewound.

SYSLB4 (or LB4)
SYSCK1 (or CK1)
SYSCK2 (or CK2)

Rewind
Option

$INCLUDE Control Card

1 16
$SINCLUDE Decknm

Exname

This card specifies that the decks and/or the con-
trol sections named in the variable field are to be
included in the link in which this card appears rather
than in the link to which they would normally be as-
signed.

The subfields of the variable field contain alpha-
meric literals which specify either a deck name
(usually a library subroutine) or a real control
section name of non-zero length (usually a block of
data or coding) to be included in this link.

If a library subroutine is specified, the deck name
of the subroutine (and not one of its entry points)
must be given. Library subroutines will be automat-
ically placed in the main link so that they will be
available to all subsequent links. A library sub-
routine may, however, be assigned to a dependent
link by means of a SINCLUDE control card. A sub-
routine or control section cannot be loaded in more

than one link, If it is called from more than one

link, it must be loaded in a link that is available to
all calling links.

The following library subroutines may not be
specified on a $INCLUDE control card. These sub-
routines must always be in the main link:

.FPTRP Floating Point Trap Subroutine

.LXCON Execution Control Subroutine

.LOVRY Overlay Link Loading Subroutine

The variable field of a $INCLUDE control card
may be extended over more than one card, using
either the $ETC control card or another $INCLUDE
control card. The $INCLUDE control card may
appear immediately following the $ORIGIN control
card specifying the link, between the decks within
the link, or immediately following the last deck of
the link; the only restriction is that it may not appear
within a deck in a link.

$IBJOB Control Card

An additional Overlay option, FLOW/NOFLOW,
may appear on the $IBJOB control card. FLOW
(the standard case) specifies that the program will
not be executed if a CALL statement exists in a link
that will cause itself to be overlaid or if a reference

is made to a control section not in the permissible
chains of links. NOFLOW specifies that execution
will be permitted in this case.

CONTROL CARD USAGE

Figure 3 illustrates how a deck would be set up to
produce the program structure given in Figure 4.

In Figure 3, the $ORIGIN control card which first
uses logical origin ALPHA immediately follows the
main link (decks 1 and 2). All links using logical
origin ALPHA, therefore, proceed from the main
link. Every new logical origin encountered on a
SORIGIN control card specifies that all links using
this logical origin will proceed from the previous
link, The $ORIGIN control cards containing the
logical origins BETA and GAMMA are placed after
the links from which they proceed. In this manner,
the $ORIGIN control cards are used to form the
Overlay structure.

EOF
/ $ENTRY ceoo
[$IBLDR DECK6
P S
/ $IBLDR DECKS5
/iorucm GAMMA
[$IBLDR DECK7
$ORIGIN GAMMA
/@IBLDR DECK4
[$IBLDR DECK3
/ $ORIGIN ALPHA
/ $BLDR DECK11
/ $ORIGIN BETA
/ $1BLDR DECK10
/ $BLDR DECK9
[$ORIGIN BETA
/ $IBLDR
/ $ORIGIN
/SIBLDR
/ $IBLDR DECK1
$IBJOB
Figure 3

DECK 1
DECK 2
ALPHA
DECK 8 DECK 3
DECK 4
BETA GAMMA
DECK 11 DECK 5
DECK 9 lDECK 7
DECK 10 DECK 6
Figure 4

The following examples are given to aid the pro-
grammer in the use of Overlay control cards. To
include the subroutine FLOG and the control section
XYZ in the link which contains Deck 1, the following
sequence could be used:

$ORIGIN ALPHA
$INCLUDE FLOG, XYZ
Deck 1

.
.
.

When a deck or section is assigned to a link by
means of a $INCLUDE control card, care must be
taken that the link incorporating the deck or control
section be available to all other links that refer to
or call the deck or section.

If a $INCLUDE control card is used to move a
block of instructions or data from a deck to some
other link, it is possible to cause the external link
file to be written in a format which cannot be used
efficiently during execution.

For example in the following sequence:

$ORIGIN A,SYSUT3 Link A
$INCLUDE XYZ

$ORIGIN B,SYSUT3

$IBLDR DECK 1 Link B
$IBLDR DECK 2

(contains section XYZ)

the instructions or data in section XYZ which are to
become part of link A will not be encountered by the
Loader for processing until after link A and a por-
tion on link B have been written onto SYSUT3. There-
fore, on SYSUT3, the information in s(ection XYZ

will be isolated from the main portion of link A, If
SYSUTS3 is a tape file, some tape will have to be
spaced over when loading link A in order to load the
XYZ portion. This situation can usually be avoided
by specifying a unique unit for the storing of the link
which contains the $INCLUDE control card.

It should be noted that the condition above occurs
only in the special case where the section of the
$INCLUDE control card is internal to some deck
and contains text. This condition will not occur
when assigning library subroutines or control sec-
tions which do not contain text to other links by
means of the $INCLUDE control card.

Overlay Logic Messages

If the LOGIC option has been specified on the $IBJOB
control card, all CALLS and references to sections
or entry points in different links are tabulated. The
following are examples of this tabulation:"

LINK 5 DECK 'XXXXXX' CALLS TO LINK 4 DECK 'YYYYYY'

SECTION 'ENTRY1' UPWARD CALL.

This message specifies a CALL exists up the chain of links toward
the main link.

LINK 3 DECK 'A' CALLS TO LINK 7 DECK 'B' SECTION 'ENT"

DOWNWARD CALL (VIA TRANSFER VECTOR)

This message specifies that the CALL may induce the loading of
a link.

LEVEL =3

LINK 4 DECK 'C' CALLS TO LINK 5 DECK 'G' SECTION 'START'

IMPROPER CALL .

This message specifies that the CALL is not within the allowable
chain of links.

LINK 7 DECK 'CALIF' CALLS TO LINK 8 DECK 'K' SECTION

'ENTRY?2' IMPROPER CALL (NOFLOW OPTION ALLOWS)

This message is the same as message 3 but execution will be
allowed,

LINK 0 DECK 'MNP' REFERS TO LINK 3 DECK 'CK2' SECTION

*TABLE'. (MAY CAUSE ERROR IF LINK 3 NOT LOADED.)

This message warns of a possible error condition.

CALLS and references to and fram decks within
the same link are not tabulated.

Messages pertaining to improper calls and refer-
ences are always printed if the FLOW option has
been specified. If NOFLOW has been specified, the
message will not be printed (unless LOGIC is re-
quested as explained above).

For CALL errors of a more serious nature, a
message such as the following may be printed.

LEVEL = 3
IMPROPER CALL STRUCTURE WILL CAUSE A CALLING DECK
“ABC" LINK 9 TO BE OVERLAID BY LINK 7 BEFORE RETURN IS
MADE FROM A CALL TO ENTRY POINT "BEGIN"., THE CALL
FLOW, IN REVERSE ORDER IS:

DECK 'SCAN!' LINK 7, IS CALLED BY

DECK 'MAS' LINK 2, IS CALLED BY

DECK 'ABC' LINK 9

C28-6331

This message tabulates the flow of CALLS, in re-
verse order, from the deck which would actually
cause the improper overlay back to the original

calling deck. In this example, the CALL flow is from

link 9 to link 2 to link 7. This message is printed
only if the FLOW option is specified on the $IBJOB
control card.

$ORIGIN Control Card Error Messages

The messages are preceded by the offending control
card.
Error Severity = 1, Minor errors
1. OPTIONS OTHER THAN ABSOLUTE ORIGIN IGNORED ON
MAIN LINK $ORIGIN CARD. Unit specification and NOREW

or REW options have no meaning for the main link,
2. PARAMETER 'XXXXXX' NOT RECOGNIZED, IGNORED

Error Severity = 3, NOGO errors

1. ILLEGAL CHARACTER. REMAINDER CF CARD IGNORED
The card contains one of the characters () =/ '

2. IMPROPER FORMAT. Leading, trailing or multiple field
separators in variable field.

3. NO SYMBOLIC ORIGIN SPECIFIED. Blank variable field or
unit specification or REW/NOREW option appears starting in
col, 16,

4., IMPROPER SYMBOLIC ORIGIN, Logical Origin is all numeric
or greater than 6 characters.

SINCLUDE Control Card Error Messages

The messages are preceded by the offending control
card.
Error Severity = 3, NOGO errors

1, ILLEGAL CHARACTER, REMAINDER OF CARD IGNORED
The card contains one of the characters() =/ "'

2, IMPROPER FORMAT, Leading, trailing or multiple field
separators in the variable field.

3, SECTION OR DECK 'XXXXXX' HAS BEEN SPECIFIED TO BE
ASSIGNED TO MORE THAN ONE LINK, Section or deck
appears on more than one $INCLUDE card,

4, UNDEFINED SECTION OR DECK NAME 'XXXXXX', Section
or deck is not defined in object deck or subroutine library.

5. LEVEL=3
SECTION NAME BEGINNING "fkx¥x*' IS GREATER THAN 6
CHARACTERS,

IGNORED

If the entry point specified on a $ENTRY control
card is not in the main link, the message ENTRY
POINT SPECIFIED NOT IN MAIN LINK is printed.

Termination of Loading

If an error of severity level 3 on a $ORIGIN or
$INCLUDE card is detected, loading will be termi-
nated after all control cards are examined.

Level =4 LOADING TERMINATED DUE TO IMPROPERLY
DEFINED OVERLAY STRUCTURE,

APPENDIX: THE CALL TRANSFER VECTOR

During loading, an analysis is made of all CALL
statements in the program. If a CALL statement
will induce overlay, the transfer address of the
CALL statement is modified to refer to a transfer
vector of the form

PFX entry point, , link number

TXI . LOVRY
For example, the statement

CALL . SUBPR
may be modified by the Loader to

CALL .TV001
and, at location . TV001, the Loader will generate
the two words

PFX SUBPR , link number

TXI1 .LOVRY

This transfer vector is constructed by IBLDR and
is stored with the object program in a generated
control section called . LVEC. During execution, if
the called deck has been loaded into core storage,
PFX was set to TSL and a transfer would now be
made to the entry point. If the called deck has not
been loaded into core storage, PFX would be set to
TXH, and a transfer made to the linkloading sub-
routine, . LOVRY. This subroutine will load the
required links and reset all the transfer vector
words involved to properly indicate the load status of
the links.
If LOGIC is specified on the IBJOB card, the ab-

solute location of . LVEC will be indicated in the
logic listing.

"V S ut pajutyg

T1€€9-8¢D

BNV

International Business Machines Corporation
Data Processing Division, 112 East Post Road, White Plains, New York

	1
	2
	3
	4
	5
	6
	7
	8

