) File No. 7090-29
£ PN - Form C28-6345-2

Systems Reference Library

Input/Output Control System

This publication provides a description of the 7090/
7094 Input/Output Control System and includes de-
tailed programming information. 1ocs is a flexible
programming system that automatically controls trans-
mission of data to and from recording devices and
makes the data readily available for processing,

The publication contains discussions of basic con-
cepts and explains the use of 10cs commands and
routines. The techniques of sequential processing are
discussed in the main body of the manual, and a
separate section is provided on random processing.
Several sample programs are included.

Two forms of 10cs are accessible to the programmer.
Library 10cs is contained in the 1BjoB Subroutine
Library and is used in conjunction with the Macro
Assembly Program (mar). Full 10cs (7090-I/0-919)
is provided as an independent system for use with the
1BM 7090/7094 FORTRAN 1 Assembly Program (1BsraPp).
Differences in the two systems are made explicit in the
publication. A third form, FORTRAN 10cs, is used by
FORTRAN IV Object programs.

Preface

The 7090/7094 Input/Output Control System (10Cs)
described in this publication is designed for source
programs that are assembled and executed under
control of the M 7090/7094 1Bsys Operating System.

The two major forms of 10cs are discussed in detail.
Library 10cs is a relocatable form of 1ocs used in
conjunction with the 1BM 7090/7094 1BjOoB Processor
and the Macro Assembly Program. Full 10cs is an
independent subsystem used in conjunction with the
18M 7090/7094 FORTRAN 11 Assembly Program (IBSFAP).

Full 10cs can be used with an 18M 709 Data Proc-
essing System if it is equipped with the Data Channel
Trap feature.

Readers who intend to use Library 1ocs are assumed
to be familiar with the contents of the following pub-
lications:

IBM 7090 Data Processing System — Reference

Manual, Form A22-6528, or IBM 7094 Data Proc-

essing System—Reference Manual, Form A22-6703
IBM 7090/7094 IBSYS Operating System: IBJOB
Processor, Form C28-6275

IBM 7090/7094 Programming Systems: Macro
Assembly Program (MAP) Language, Form C28-
6311

Readers who intend to use Full 1ocs are assumed
to be familiar with either of the first two manuals cited
above, and with the contents of the following publica-
tions:

This publication is a reprint of Form C28-6345-1, incorpo-
rating changes released in the following Technical Newsletters:

FORM NO. PAGES DATED

N28-0105 27, 28, 42, 43, 6/10/64
62-64, 77,78

N28-0121 4,47, 61, 84.1 7/31/64

The original publication and applicable Newsletters are not
obsoleted.

IBM 7090/7094 IBSYS Operating System: System
Monitor (IBSYS), Form C28-6248

IBM 7090/7094 Programming Systems: FORTRAN
II Assembly Program (FAP), Form C28-6235

Readers who intend to use 1ocs with 1M 7340
Hypertape Drives should be familiar with the contents
of the following publication:

IBM 7340 Hypertape Drive, Model 1, Form G22-

6634

Readers who intend to use 10cs with 1M 1301 Disk
Storage should be familiar with the contents of the
following publications:

IBM 1301 Disk Storage, Form G22-6595

IBM 1301 and 1302 Disk Storage, Models 1 and 2,
with the IBM 7090, 7094, and 7094 Model II Data
Processing Systems, Form A22-6785

Also useful is the publication IBM 1301 Input/Out-
put Control System for 1410 and 7000 Series Data
Processing Systems, Form]28-8064.

Readers who intend to use 1ocs with 18M 7320 Drum
Storage should be familiar with the contents of the
following publication: IBM 7320 Drum Storage with
7090 and 7094 Systems, Form A22-6747.

The internal functioning of 10cs is explained in the
publication IBM 7090/7094 Input/Output Control
System, Programming Systems Analysis Guide, Form
C28-6773.

Copies of this and other 1BM publications can be obtained through 18m Branch Offices.

Address comments concerning the contents of this publication to:

M Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N. Y. 12602

©1963 by International Business Machines Corporation

Contents
Introduction 5
_Machine Requirements B 5
Forms of the Input/Qutput Contrel System {10cs) 5
Fulliocs 5
Library 10€s 6
FORTRAN 10cs 6
Levels of the Input/Output Control System (10cs) 6
Guide to Using This Publication 7
BasicConcepts P 9
Files 9
Labels 9
Movement of Data 10
Buffer Pools and Overlap 10
Buffer Cycles 11
Control Words 11
Unit Control Blocks 11
File Control Blocks 12
Pool Control Words 12
Buffer Control Words 12
How the Library 10CS Programmer Prepares for
Processing .. 13
File Description 13
File Types in Library 10cs 13
Functions of the 1sjos Loader 14
Establishes File Control Blocks 14
Assigns Space for Buffer Pools 14
Generates .DEFIN and .aTTAc Calling Sequences 14
Functions of the $roor and $crour Cards 14
Block Size and Activity Options 15
Block Size Option 15
Activity Option 15

Core Storage Assignment Without $roor and $croup Cards 15
Core Storage Assignment with $poor. and $croup Cards .. 15

$pooL Card 15
$crour Card 16
.DEFIN and .aT1TAC Routines 16

How the Full 10CS Programmer Prepares for

Processing 17
File Description 17
File Types in Full1ocs 17
File Subtypes in Fulltocs 18
Function of Reserve Groups 18
Preparations for Processing 18
Establishing Reference Locations to Full rocs Subroutines 19
Reserving Space for File Control Blocks 19
Reserving Space for Buffer Pools 19
Setting Up File Lists 19
Defining Buffer Pools (pEFINE) 20
Attaching Files to Buffer Pools (aTtacm) 21

Processing with Both Forms of the Input/Output

Control System (I0CS) 22
1ocs Routineso 22
Opening Files 22
Opening Reserve Files 23
Opening Internal Files 23

Opening Checkpoint Files 23

Contents

Data Movement Rountines 23
“Reading” Buffers 24
Locating with Retention and Releasing a Retained Buffer 24
“Writing” Buffers 24
Copying Input Buffers L 25 T
Stashing Data 26

Closing Files 26
Closing a List of Files e 27
Closing an Internal File 27
Closing a Checkpoint File 27

Taking a Checkpoint 27

Nondata Routines 27
Backspacing a Record 28
Backspacing a File 28
Writing a File Mark 28
Rewinding a File 28

Printing Messages On-Line and Off-Line 29

Input/Output Control System (IOCS) Commands . 30

File Processing P 30
Input Blocks and Buffers 30
Output Blocks and Buffers 30
Buffer Truncating 30
Format of a Command 30

Transmitting Commands 31
Count Control Commands 31
Buffer Control Commands 31
Special Count Control Commands 32
Transfer and Continue Command List 32
Examples of Other Usage 32

Nontransmitting Commands 33
End-of-Buffer Switch 33
Rules for Using Nontransmitting Commands 33
Count Control Nontransmitting Commands 34
Buffer Control Nontransmitting Commands 34
Special Count Control Nontransmitting Commands 35
Examples of Other Usage 3

History Records 36
Normal Exit 36
Error Exit 37

Programming Examples 38

Example 1 38

Example 2 39

Labels 40

BM Standard Labels 40
84-Character Header Labels 40
84-Character Trailer Labels 40
120-Character Header and Trailer Labels 41
Blank Reels 41

Labeling and Label Checking 42
Input File Header Labels 42
Additional Input File Header Labels 43
Input File Trailer Labels 43
Output File Header Labels 43
Output File Trailer Labels 43
Disk and Drum File Labels. 43

Nonstandard Labels 43
Nonstandard Labels for 729 Tape, 1301 Disk, and

7320 Drum Files 44
Provision for Additional Information in Hypertape Labels 45
Unlabeled File Procedures 46

Single-Reel Unlabeled Files
Multireel Unlabeled Files
Multifile Reels

Other Input/Output Control System (10CS)
Procedures
Density Considerations
Mode Considerations
Block Sequence Numbers and Check Sums
Checkpoints and Restarts
Interchanging Hypertape Cartridges with Other M

Data Processing Systems
Sequential Processing Using Disk and Drum Storage Units. .

Random Processing Using Disk and Drum
Storage Units
Structure of Random 1068
Use of Random 10Cs
Reserving Buffer Areas
Routines Added to Sequential 10cs
Locate with Retention (.READR)
Release Retained Buffer (.RELES)
Routines in Random 10cs
.RaNDE Calling Sequence
.RANRE Calling Sequence
Flag Words
Calling Sequence to Processing Routines
.RANRP Calling Sequence
.RaNCL Calling Sequence
Error Handling Procedures
Sample Program Using Random 10cs

Control Card Information for Library IOCS
Format of $1sjos Card
Formats of FiLE Pseudo-Operation and $rme Card
FILE Pseudo-Operation
$rFiLE Card
Formats of LaBeL Pseudo-Operation and $raBeL Card
LABEL Pseudo-Operation
$LaBeL Card
Formats of $rooL and $croup Cards
$pooL Card
$croup Card
Unit Assignment Under the 18joB Processor
Unit Assignment Specifications

48
48

Control and Loading Information for Full IOCS ... 66

Rules for Assembly 66
Program Inputc. it 67
Control Cards e 67
¥oB Card ... 67
*ribe Card ... 67
*patE Card 68
*roap Card 69
*RESTART Card 69
*esys Card 69
$j0B Card 69
$m Card 70
$msys Card 70
SExECUTE Card 70
$sTop Card 70
Program Loading 70
Sample of a Card Reader Load Program 70
Sample of a 729 Load Program 70
Sample of a Hypertape Load Program 71
Installation Modifications 71
Unit Assignment in Full1ocs 71
Unit Assignment Specifications 71
Appendix A: Key Words in the I0CS Communica-
tionRegion 73
Appendix B: Contents of File Control Block 75
Disk/Drum Flag Word 77

Appendix C: 10CS Command Execution Tables .. 78
Appendix D: Actions of IOCS Routines Under

Abnormal Conditions 80

Appendix E: IOCS Messages 81

Messages for Library and Fulltocs 81

Preprocessor Messages 0.0 82

Preprocessor Control Card Error List 83
Appendix F: Standard Look-Ahead Words for

Mixed-Mode Files 84.1

Glossary 85

Index 90

The 1M 7090/7094 Input/Output Control System
{10cs} is a flexible program that provides automatic
transmission of data to and from recording devices.

10cs aids the programmer by simplifying the input/
output aspects of his programs and by making data
readily available for processing. The system is adapt-
able to a variety of input/output unit configurations
and makes it easier to modify the coding in an existing
program to fit a new configuration. These features were
built into 10cs while retaining absolute reliability and
a high degree of efficiency.

Once properly initialized, 10cs maintains a full
supply of input data and records completed output
records. 10Cs also checks and prepares labels, detects
and attempts to correct transmission errors, reports on
the results of each transmission, allows checkpoints and
restarts, and permits printing of on-line messages.

By using 10cs, the programmer can disassociate him-
self almost completely from input/output problems
such as timing, overlap, and differences in the charac-
teristics of recording devices. This permits him to con-
centrate on his primary task — the processing of data
inside the computer.

10¢s also aids in the modification of existing programs
when additional equipment or new devices are added
to a system configuration. It requires considerably more
effort to revise individual input/output instructions to
fit a new configuration than it does to amend 10cs pro-
grams. Thus, if 10cs has been used, programs can be
changed more rapidly to fit an expanded data process-
ing system.

Machine Requirements

The minimum machine requirements for use of 10cs
are an 18M 7090/7094 Data Processing System with:

1. Three 1BM 729 Magnetic Tape Units or i8M 7340
Hypertape Drives.

2. Five other units, which may be any combination
of 1BM 729 Magnetic Tape Units, 18M 7340 Hypertape
Drives, selected cylinders of ma 1301 Disk Storage,
or 1M 7320 Drum Storage Units.

3. One 1BM 716 Printer.

4. One 1BM 711 Card Reader if the System Library
is on disk storage, drum storage, or Hypertape.

5. One 1BM 7909 Data Channel if either 1M 1301
Disk Storage Units, 18M 7320 Drum Storage Units, or
18M 7340 Hypertape Drives, or any combination of
these is used.

Introduction

6. One M 7631 File Control with the Cylinder
Mode feature if 1BM 1301 Disk Storage or 1M 7320
Drum Storage is used.

7. One 7640 Hypertape Control if 18m 7340 Hyper-
tape Drives are used.

These machine requirements are the same as those
specified for use of the 1BjoB Processor Monitor and the
System Monitor (1Bsys).

Forms of the Input/Ouiput Control System
(10CS)

Before a programmer can begin processing, he must
provide 1ocs with specific information in control cards
and/or within his source program, depending on the
form of 1ocs he intends to use.

This information is used to reserve needed storage
areas (buffers and buffer pools) and to set up control
words that guide 10cs in doing its work. The interpre-
tation of the programmer’s specifications and the gen-
eration of control words and buffer pools has been
designated as “preprocessing” and “initialization.”

The two forms of 10cs available to the programmer
(Full 10cs and Library 1ocs) differ principally in the
manner in which preprocessing and initialization are
accomplished.

Full 10CS

Full 10cs is a complete subsystem operating directly
under the 1Bsys System Monitor. This form contains the
following:

1. The Preprocessor, which handles the preparatory
functions,

2. Operating subroutines, which accomplish spec-
ified input/output functions during execution of the
object program,

3. A postprocessor, which handles housekeeping de-
tails at the end of a job.

Full 10cs is called directly by using a sexecuTE 10CS
control card. This control card causes the System Moni-
tor to initiate loading of the Preprocessor. The Pre-
processor then performs the housekeeping functions
needed to establish file control blocks, performs tape
assignments, sets up the configuration of 10cs requested
for a particular run, and prepares for loading the object
program.

Full 10cs is used in conjunction with the FORTRAN 11
Assembly Program (1Bsrap). It is sometimes called
“1ocs with Preprocessor” or “Independent 10cs.”

Introduction 5

SHARE 7090 opac and mm 709/7090 Commercial
Translator Processor both contain modified forms of the
Labels level of Full 10cs. The information on Full 10cs
in this publication also applies to these two systems, in-
cluding most calling sequences and error messages.

The 9pac programmer uses Full 10cs calling se-
quences to reach desired 10cs routines. A list of Full
1ocs routines that can be used with 9pac is provided in
the publication IBM 7090 Programming Systems,
SHARE 7090 9PAC, Part 3: The Reports Generator,
Form]J28-6168.

In order to use the modified Full 1ocs within Com-
mercial Translator, the programmer must provide the
necessary linkage through communication words in the
first four subroutines in Commercial Translator. Use of
rocs with Commercial Translator is discussed in the
publication IBM 709/7090 Commercial Translator Proc-
essor, Form]28-6169.

Library 10CS

Library 1ocs has been incorporated into the 18joB Sub-
routine Library and is used in conjunction with the
1BjoB Processor Monitor and the 1Bjos Loader.

Library 1ocs is a relocatable form of 1ocs that con-
tains operating subroutines that are identical to those
in Full tocs. However, in Library 10cs, the 18joB Loader
performs the preprocessing tasks that are accomplished
by the Preprocessor in Full 1ocs. The user of Library
10cs processes data records in the same manner as the
user of Full 10cs, except that he transfers to each 1ocs
routine by using a slightly different symbolic name.

The symbolic names of the routines in Library 10cs
are distinguished by the fact that each begins with a
period (.). The names of the routines in Full 1ocs do
not contain periods.

For example, there is a routine in both forms of 10cs
for initiating a checkpoint. A programmer using Full
1ocs initiates the checkpoint with the instruction:

TSX CKPT 4

whereas, a programmer using Library 1ocs would use
the instruction:
TSX CKPT 4
A full listing of the symbolic names of routines in
both forms of 10cs can be found at the beginning of the
section entitled “Processing with Both Forms of the
Input/Output Control System (10cs).”

FORTRAN 10CS

Within the 1sjos Library is an abbreviated form of iocs,
which is used by ForTRAN 1v object programs. This re-
stricted form is FORTRAN 10Cs. The FORTRAN 1v program-
mer has no direct access to these routines. They are
utilized by input/output sequences generated by the
rFORTRAN IV Compiler.

6

FORTRAN I0Cs contains the same routines as the
Minimum level of Library 1ocs, but many of the error-
checking features and error messages have been de-
leted. By specifying FORTRAN 10Cs, the FORTRAN IV
programmer can reduce the amount of core storage
occupied by 1ocs routines. Unless Fiocs is specified in
the siBjos control card, the Minimum level of Library
1ocs will be used.

The following list indicates the facilities in Mini-
mum 10cs that are not available in FORTRAN 10Cs:

1. No secondary unit can be specified.

9. The perER and DEFERi options in the file mounting
option of the sFiLE card and FiLE pseudo-operation
cannot be specified. If either is specified, the Mini-
mum level of Library rocs is loaded.

3. No block sequencing or check summing can be
used.

4. Most on-line operator and error messages have
been deleted.

5. A list of files cannot be closed in a calling se-
quence. Files must be closed individually.

6. The .READR and .RELES routines are not provided
even if FORTRAN 10cCs is assembled with disk or drum
storage capability.

7. No write checking can be performed on disk or
drum storage files.

Figure 1 shows the relationship of the forms of 1ocs
within a partial drawing of components of the 1BM
7090/7094 1Bsys Operating System.

Levels of the Input/Output Control System
(10CS)

Both forms of 10cs consist of a collection of generalized
routines.

The programmer can specify any of four distinct
packages of routines for sequential processing and
can add Random capability to any of the four packages.
Each of the four levels of 1ocs — Input/Output Ex-
ecutor, Minimum, Basic, and Labels — provides a
fixed number of 10cs routines.

The services and subroutines available at each level
of sequential processing are as follows:

Input/Output Executor (IOEX): This level is a part
of the System Monitor and provides trap supervision
for both the object program and the Operating System.
When the user specifies 10Ex, he elects to code all of
his input/output functions without using 10cs routines.

Minimum: This level provides trap supervision plus
the 10cs routines for defining buffer pools, attaching
files, opening and closing files, reading and writing of
data records, and backspacing a record. Internal files
cannot be used at this level.

Basic: This level includes all routines for sequential
processing, except the routines associated with labels.

System Monitor
(IBSYS)

!

T T]
; ! ! {
FORTRAN 11
BJOB Assembly FORTRAN I
Processor P ™ Processor Full 10CS
Monitor rogram oc!
ont (IBSFAP)
A 4 l
FOI}I/RAN COBOL
Compiler Compiter
1
»! Macro Assembly
Program
(MAP) Relocatable
Subroutine
Library
including:
1
1BJOB Library
Loader | 10Cs
FORTRAN
10Cs

Figure 1. Relationship of Library 1ocs, FORTRAN 10cs, and Full 1ocs Within the 1M 7090/7094

1Bsys Operating System

Labels: This level contains all the 1ocs sequential
routines as well as routines for checking, creating,
and writing standard 1BM labels. Provision is made for
processing nonstandard labels.

The 10¢s routines for sequential processing apply to
disk and drum storage as well as to magnetic tape
units and unit record devices.

In using Library 1ocs, the programmer can allow
the Loader to determine which level is needed. The
Loader examines the calling sequences written by the
programmer and loads only that level of 10Cs re-
quired to service the calling sequences.

Both forms of rocs contain a set of routines for
random processing of disk and drum storage files. 10Ex
must be in core storage when Random 10cs is used.
However, Random 1ocs does not use any of the other
parts of sequential 10cs. Thus, Random 10Cs can be
used solely with 10EX, or can be combined with the
Minimum, Basic, or Labels level of sequential 10cs.

The desired level of 10cs is specified in the siBjoB
control card (for Library 1ocs) or the *jos card (for
Full 10cs). The manner in which the desired level is
specified is discussed in sections of this publication on
control cards.

Guide to Using This Publication
This publication has been organized for use in pro-
gramming Library 10cs or Full 1ocs.

The two forms differ primarily in (1) the required
preparations for processing, and (2) control card
formats and control information. A different section
is provided in these two areas for the programmer
using each form of 1o0cs.

It is recommended that the programmer interested
in using Library 1ocs read the major sections in the
following order:

Basic Concepts

How the Library 1ocs Programmer Prepares for

Processing

1ocs Routines

1ocs Commands

Programming Examples

Any needed sections on labels, block sequence

numbers and check sums, density and mode, check-
points and restarts, and random processing

Control Card Information for Library 1ocs

The programmer interested in using Full 1ocs should
read the major sections in this order:

Basic Concepts

Introduction 7

How the Full 10cs Programmer Prepares for Process-
ing

1ocs Routines

1ocs Commands

Programming Examples

Any needed sections on labels, block sequence num-
bers and check sums, density and mode, check-
points and restarts, and random processing

a

Control and Loading Information for Full 1ocs

The appendixes contain detailed information that
will be helpful in gaining a more complete understand-
ing of the system and in programming complex appli-
cations.

The Glossary near the end of this manual provides
concise definitions of important terms used in this pub-
lication.

The following sections contain a discussion of terms
and concepts necessary for understanding input/output
activities and for grasping the full effect of subroutines
and commands used in 10cs. Although some of these
discussions are eletnetitary, it is recommended that the
sections be read to establish how each term is used in
this publication.

Files

A file is a collection of related information, no matter
where it is stored. It may be recorded on punched
cards, magnetic tape, disk storage, drum storage, or
some other recording medium.

The file does not consist of the input/output device
itself. The file exists independently of the device and
has its own logical beginning and end. It is important
to maintain a clear distinction between the file and the
input/output device.

Each device attached to a data processing system is
usually assigned to a unit function, and is often re-
ferred to as input/output unit.

On a recording medium, a file resides as a series of
blocks, or physical records. (This is shown in
Figure 2.)

A block of information may be segmented into sep-
arate records. For example, a physical record may
contain segments of information related to a number
of different employees. Each segment is logically as-
sociated with one employee and is called a logical
record. A block may consist of one or more logical
records.

When a physical record is read into storage, it is held
in a temporary storage area called a buffer. Output
records are also retained in buffers until they can be
recorded on an output unit. Each buffer contains ex-

Basic Concepts

actly one physical record, although the record may not
fill the buffer completely.

If the tape shown in Figure 2 were to be read into
buffers, each buffer would contain a block consisting
of three logical records. -

Many data processing applications require that
blocks of information be divided into separate logical
records. Each logical record, or a portion of that record,
is then processed individually. This method of break-
ing up blocks into logical records is called deblocking.

Once the information has been processed, the pro-
grammer may desire to conserve space on magnetic
tape, disk storage, or drum storage by regrouping
logical records into blocks before recording them. This
process of grouping records in an output buffer is
called blocking.

A file may extend beyond the physical limitations of
the medium on which it is recorded. For example, a
file may be contained on several reels of magnetic tape.
When there is no more usable tape on a reel, the con-
dition is called end of reel. However, the end of file
does not occur until the last physical record associated
with that file has been processed.

When a file extends beyond the recording capacity
of one reel of magnetic tape, it is advantageous to
switch from that unit to another unit without interrup-
tion. 10cs permits units to be coupled so that switching
can be accomplished automatically.

Labels

A label is a physical record that identifies a file, or part
of a file. Labels are recorded at the beginning and end
of each segment of a file. The first label of each seg-
ment is the header label, and the second is the trailer
label.

Logical Logical Logical Logical Logical Logical
Record Record Record Record Record Record
A A A A A A
/ \ % \
§ Record Record Record Record Record Record é
Concerning Concerning Concerning Concerning Concerning Concerning
Employee Employee Employee Employee Employee Employee
F E D C B A
\ N _
Y% Vv 2%
Block Interrecord Block
(Physical Record) Gap (Physical Record)

Figure 2. Logical Records Within Blocks on Magnetic Tape

Basic Concepts 9

If a file is contained on several reels, labels serve
additional functions. In this case, labels are used to
distinguish the various segments of the file. The header
labels indicate the order in which the reels should be
read, and the trailer label on each reel indicates
whether or not end of file has been reached.

The trailer label on each reel before the last one
is called an end-of-reel trailer label. The trailer label
on the last reel is an end-of-file trailer label.

Movement of Data

Although 10cs provides many other services, its
primary -function is to move data into and out of the
computer as specified by the programmer.

During processing, 1ocs accomplishes the actual
transmission of records from input unit to input buffer
and from output buffer to output unit. In some cases,
the data contained in an input buffer is processed
directly within that buffer. At other times, the data
may be moved from the input buffer to working stor-
age and then from working storage to an output buffer.

Note: Throughout this publication, the actual trans-
mission of data into and out of the computer is desig-
nated by the words read and write without quotation
marks.

The movement of data inside the computer (from
an input buffer to a work area, or from a work area
to an output buffer) is accomplished with 10cs com-
mands that are similar to 1By 7607 Data Channel
commands. In using 1ocs commands, a programmer
tends to visualize consecutive buffers in the same

manner in which he visualizes physical records on
tape. For this reason, the concept of “reading” and
“writing” to and from buffers is used.

Notge: Throughout this publication, the words “read”
and “write” in quotation marks are used to convey
the idea of moving data from an input buffer to work-
ing storage, or from working storage to an output
buffer.

Figure 3 is a schematic drawing that illustrates the
distinction between the two stages of data movement.
In Figure 3, stage A shows input data being read
into input buffers. At stage B, the program is “reading”
those records into a work area and processing them.
Each record is then “written” into available output
buffers at stage C, and finally written onto an output
unit at stage D.

1ocs commands that actually move the contents of
a buffer to a work area, or from a work area to a
buffer, are called transmitting commands. Commands
that provide information about contents of buffers,
without actually moving any data, are called non-
transmitting commands.

Buffer Pools and Overlap

In using 10Gs, portions of core storage are structured
as groups of buffers called buffer pools. The program-
mer can specify the number of buffers in each pool
and the size of the buffers, but the buffers within a
pool are always the same size.

Buffer pools are established in the following man-
ner:

CORE STORAGE
\ A\
4 \
VAN B BN
s 7y W\
s /// ! | W \\\
’
__t—-" Input Buffer 1 s 7y / \ \\\\\ Output Buffer 1 — —1_
- /
|7~ Input Buffer 2 /// [\ \ \\ Output Buffer2 [— —|—
— —
~ M lnput Buffer 3 / / \ Output Buffer 3 [~ |
S al - I ‘ \ -
| Input Buffer 4 | | Output Buffer 4 \
/ l | \
/ \

J JON NN

Reading from "Reading” "Writing"
Input Unit Within Within
into Core Core
Buffers Storage Storage

—
—

Writing
from Buffers
to

Output Unit

Figure 3. Stages of Data Movement When Transmitting Commands Are Used to Move Data

Within Core Storage

10

Space is reserved for each of them.
Each pool is defined.
Files are attached to each pool.
The size of a pool is determined by the size of the
buffers and by the number of buffers in the pool. In

addition, the pool contains two pool control words and
two control words for each buffer Thus if N aanals

control words for each buffer. Thus, if N equals
the maximum number of data words a buffer is to
hold, and M is the number of buffers in a pool, the
size of the pool is M(N+2) +2.

Figure 4 is a schematic drawing of a buffer pool.
The pool bears the symbolic name poor and each
buffer in the pool consists of N words. The first two
words in the pool are pool control words and each
buffer is preceded by two buffer control words.

W

POOL POOL CONTROL WORD 1
+1 POOL CONTROL WORD 2
+2 Conirol Word 1 for First Buffer
+3 Control Word 2 for First Buffer

POOL + 4 +N Control Word 1 for Second Buffer
Control Word 2 for Second Buffer
POOL + 6 +2N I Control Word 1 for Third Buffer)

—

Figure 4. Structure of a Buffer Poo!

The buffers in a buffer pool might be used by only
one file. Frequently, however, several files share the
buffers. This makes it possible for each buffer to be
in use by one file during one part of the program and
by another file at a different part of the program.
Also, while two or more files are using a pool simulta-
neously, the available buffers are allocated to the files
according to the frequency of physical transmission
by each file.

For example, if 5 files are sharing a pool of 20 buffers,
it is not necessarily true that 4 buffers would constantly
be in use by each file. 10cs would permit the 20 buffers
to be shared by the files according to increased or de-
creased demand by the individual files.

Buffer Cycles

A buffer within a pool may be used by 10cs to receive
and hold input data at one moment, then used to hold
output data at the next moment, then assigned again to
an input file, then perhaps an output file, and so on. In
this way, each buffer may be used at different times to
hold input or output data.

The buffer always starts a cycle as an available buffer
in the pool. As 1ocs needs buffers, it picks up the loca-
tion of each buffer and uses it to hold input or output
data for a file. When the buffer is used for an input file,
it can be thought of as an input buffer, although the
input status is only temporary. In the same way, when
the buffer is used for an output file, it can be thought of
as an output buffer. In each instance, the buffer passes
through several stages during processing.

Generally, the cycle for an input buffer includes the
following stages:

1. At first the buffer is empty and is waiting to be

filled with data.
. The buffer is filled with data from an input unit.
The buffer waits for its data to be processed.
Then it is in use while the data is being processed.
Finally, the buffer is released and waits to be filled
with new data.

The cycle for an output buffer includes similar stages,
but the stages occur in a different order, as follows:

1. At first the buffer is empty and is waiting to be

filied with data.

2. Then it is in use, being filled with processed in-

formation.

3. The buffer waits to have the data written on an

output unit.

4. The data is written from the buffer and the buffer

is released by 10Cs.
. The buffer waits to be filled with more data.

SIS

Ut

Control Words

Four types of control areas are used by 1ocs to keep
track of the status of buffers, buffer pools, files, and
input/output units.

A programmer has little to do in establishing these
areas or in changing any portion of them. 10cs provides
for the contents of these areas to be established and
maintained automatically.

The programmer should be aware of the control
areas described in the following text and their relation-
ship to each other.

Unit Control Blocks

A unit control block for each input/output unit at-
tached to a computer system is located in the Nucleus
of the System Monitor. Input/output activity for a file
is accomplished by using this block.

Basic Concepts 11

File Control Blocks

For each file used in a program a file control block,
consisting of 12 words, is established in core storage. It
links the buffer pool used by the file to a unit control
block.

For files on magnetic tape, the first six words in the
file control block contain information about the char-
acteristics of the file. Among other things, these six
words contain the location of the unit control blocks
associated with the file, the status of buffers in use by
the file, and the location of a buffer pool control word.
The other six words in the block contain labeling in-
formation.

For files on disk or drum storage, the first eight
words are used for file and unit information, leaving
only the last four words for labeling information.

The name assigned to the file by the programmer be-
comes the symbolic location of the first word of the file
control block.

Appendix B contains a detailed diagram of the file
control block.

Pool Control Words

The two pool control words at the beginning of each
buffer pool provide information about the status of
buffers for use by the file control blocks.

Buffer Control Words

The two buffer control words at the beginning of each
buffer provide information about the status of each
buffer while data is being processed.

During execution of a program, these control areas

are continuously updated to reflect the current status
of each unit and buffer area associated with a file.
Figure 5 shows the schematic relationship of these
control areas to each other. In Figure 5, two files (A
and B) are shown sharing a buffer pool. Four records
from file A have already been read into buffers 4, 7, 2,

“and 5 (in that sequence); they are indicated by rec-

ords Ay, A, 41, Anyo, and A,y s, respectively. Three rec-
ords are ready to be written out on file B; they are
situated in buffers 3, 9, and 1, and are indicated by B,
B.i1, and B, respectively. Buffers 6 and 8 are
empty.

The unit control block reflects the status of the unit
in use by each file. The file control block for file A
directs the program to the next buffer to be “read”
into a work area, while the control words for other
buffers being used by file A “chain” the buffers together
in proper sequence for subsequent “readings.” The file
control block for file B provides a similar service for
that file. Meanwhile, pool control words reflect the
status of buffers in the pool.

More detailed information on the functions of buffer
pool control words and buffer control words is con-
tained in the publication IBM 7090/7094 Input/Out-
put Control System, Programming Systems Analysis
Guide, Form C28-6773.

Note: The programmer who intends to use Library
1ocs should read the next section: “How the Library
10cs Programmer Prepares for Processing.” The pro-
grammer who intends to use Full 10cs should skip the
next section and should read the section: “How the
Full 1ocs Programmer Prepares for Processing.”

Unit |+ CORE STORAGE

Unit 1l

BUFFER POOL

Unit Control | Unit Control
Block Block
(Unit 1) (Unit 1)
e /
Ve ’
/
/
File Control /
Block 4
/ for File A //
/
— > File Control |,/
:_ Buffer 1 (Bnhs2) // _A Block
- ——/ for File B
_ \ r* Buffer 2 (Apso) P
I e /)
I : Buffer3 (B) [=— 1
by F o |
: | Buffer 4 (A) ko ' |
| L
| i
P 1| Buffers (Amd [€F~ |
! 1
[: Buffer 6 (Empty) 1 :
[I
]
Pl Buffer7 (A [€0
I |
: Buffer 8 (Empty) :
L —_
Buffer 9 (Bntl) [-

Figure 5. Schematic Relationship of Control Areas

12

How the Library 10CS Programmer Prepares for Processing

Tha nca of 100c invalvee the fallowine hagin ctonce
A LA LA vi AT ESR AVIS A WA] LA AWV iAv vV LY AN DLUPO)
divided into two major categories. These steps repre-

sent the broad phases of 10cs operation:
1. Preparation for Processing
a. Files are described.
b. Space in storage is assigned to buffer pools.
c. Buffer pools are defined.
d. Files are attached to each buffer pool.
2. Processing
a. Files are opened. This starts the physical read-
ing of records from an input unit and prepares
an output file for output activity.
b. Records are processed.
c. Files are closed, ending input/output activity.

The incorporation of rocs into the Relocatable Sub-
routine Library has reduced the amount of program-
ming required to prepare for processing. In using
Library 10cs, the programmer need only be concerned
with the first preparatory step — the description of
files. The 1BjoB Loader reserves space for buffer pools
and generates the calling sequences for defining pools
and attaching files to them.

The programmer can control the assignment of files
to buffer pools by using spoor and scrour control
cards. However, the use of these two cards is not re-
quired. The 18joB Loader can perform all preparations
for processing by using descriptions of files contained
in the source program or in sFiLE and SLABEL control
cards.

File Description

The Macro Assembly Program provides two pseudo-
operations that can be used to describe files within
source programs. These are the FiLE and LABEL pseudo-
operations. The assembly program converts these
pseudo-operations into sFILE and SLABEL control cards.
If the file is unlabeled, only the FiLE pseudo-operation
need be used. Each labeled file, however, requires that
a LABEL pseudo-operation for that file also be included
in the source program.

The programmer may choose to describe his files at
load time, rather than at assembly time. He may also
wish to change certain options that were specified by
FILE or LABEL pseudo-operations. In either case, he may
use the sFILE and sLABEL cards.

Bila Tunace ¢
che =

The Library 1ocs programmer can use three major
types. of files: reserve file, internal file, or checkpoint
file. Reserve and internal files can be designated as
INPUT, OUTPUT, or INOUT, Each type is equivalent to a
file type in Full 10cs, as shown in Figure 6.

The file types discussed in the following text are
specified in the MaP language FILE pseudo-operation
or in the sFILE control card.

RESERVE FILES

This type is not specified directly in a control card.
The Loader automatically establishes all files, except
internal and checkpoint files, as reserve-type files.
The designation of iNPUT, OUTPUT, or INOUT without
specifying that the file is internal causes the Loader to
classify the file as a reserve file. A reserve file must be
opened before it can be processed. The specifications
are as follows:

Input: This is an input file. Its characteristics are as
follows:

a. It can be opened and closed as many times as

desired.

b. It is neither rewound nor opened when attached. -

c. Portions of its buffers can be “read” separately.

Output: This is a partial block output file. Its char-
acteristics are as follows:

a. It can be opened and closed repeatedly during the

program.

b. It is neither rewound nor opened when attached.

c. Portions of its buffers can be “written” separately.

Inout: This file can be an input file and a partial
block output file at different times in a program. In-
itially, the file is set up as an input file. To change the
file to an output file, the programmer must alter the
configuration of bits 7 and 8 of Word 2 of the file con-
trol block for this file. The file type identification codes
are shown in the following chart:

FILE CONTROL BLOCK WORD 2

BIT 7 BIT 8 FILE TYPE
0 0 Input File
0 1 Output File

INTERNAL FILES (INT)

This is a file contained entirely within core storage. It
can be given the characteristics of an INPUT, OUTPUT, or
wour file, according to how it is to be used. An internal
file must be opened before it is processed.

How the Library IOCS Programmer Prepares for Processing 13

Types of Files
Library 1OCS Equivalent File Type
T
Type | How Specified In Full 1OCS
(Immediate Files cannot Immediate
be specified in Library
10Cs.)
Reserve (All files are reserve files Reserve
unless internal or
checkpoint is specified.)
INPUT File usage option in the a. Input
a. FILE pseudo-operation
INOUT
QUTPUT File usage option in the b. Partial block
b. 1 FILE pseudo-operation output
INOUT
INT Unit assignment option in Internal
the FILE pseudo-operation
INPUT File usage option in the a. Input
a. FILE pseudo-operation
INOUT
OUTPUT File usage option in the b. Partial block
b. FILE pseudo-operation output
INOUT t
CHECKPOINT File usage option in the Checkpoint
(or CKPT) FILE pseudo-operation

t See discussion of INOUT option.

Figure 6. File Types in Library 10cs

CHECKPOINT FILES (CHECKPOINT OR CKPT)

This is a checkpoint file used for recording checkpoint
information. A checkpoint file uses no buffers and is
not attached to any buffer pool. However, it must be
opened before it is used. A checkpoint file is not desig-
nated as input or output.

Functions of the IBJOB Loader

Using the descriptions provided in the control cards
the BjoB Loader performs the following preparatory
functions:

Establishes File Control Blocks

The Loader reserves 12 words and sets up a file control
block for each file described in a sFiLE card or FILE
pseudo-operation. The name of the file becomes the

symbolic location of the first word of the file control
block.

Assigns Space for Buffer Pools

The Loader assigns all core storage not used by the
object program or by system programs for use as buffer

14

pools. If sFiLE cards or FiLE pseudo-operations are not
present or if the trap supervisor (10Ex) is specified on
the siBjoB control card, the Loader does not assign any
storage as input/output buffers. Normally the size of
the object program leaves enough space for the Loader
to assign many buffers to each pool. Unless the spooL
card is used, all files with the same block size will be
assigned to the same pool.

Generates .DEFIN and .ATTAC Calling Sequences

The .pEFIN calling sequence causes transfer to an 10cs
routine that sets up the structure of a buffer pool. The
.ATTAC calling sequence causes transfer to a routine
that attaches a group of files to a specific pool. The
Loader generates all of the needed .pEFIN and .ATTAC
calling sequences and places them in front of the object
program. The form and specific effect of these two cal-
ling sequences are described in the section “How the
Full 10cs User Prepares for Processing.”

Functions of $POOL and $GROUP Cards

By using the spooL card, it is possible to assign files
with different block sizes to the same pool. In this case,

the size of all buffers in the pool will equal the largest
block size of a file in the pool. The spooL card contains
options that allow the programmer to specify block
size (BLock) and buffer count (Burcr). The buffer
count in this card establishes the number of buffers to
be assigned to the pool.

It may be desirable to group reserve-type files to-
gether into what are known as Reserve Groups. This is
accomplished by using the scroup card. By establishing
a Reserve Group, it is possible for a programmer to
make more efficient use of the number of buffers he has
available. Use of a scroup card allows a programmer to
specify:

1. The number of buffers in the pool that are to be
reserved for the use of the files in the Reserve Group
(BUFCT), and

2. The number of files in that group that will be
open at the same time (opncr). This allows the reserve
files to share buffers more efficiently.

For example, if ten buffers have been reserved for
two files in a Reserve Group and both files are open at
the same time, five buffers are always available for use
by each file. But if the programmer indicated that only
one file in the Reserve Group would be open at a given
time, each file would be allowed to use all ten buffers
whenever the file was open. This would make more
buffers available to each file when it was open and
would increase the potential overlap.

Using opNct and BuFcT, 10cs internally controls the
number of buffers it can allow each file in a Reserve
Group to use at any given time.

Block Size and Activity Options

Two options available in the FILE pseudo-operation and
the sFiLE card are discussed briefly here because of
their effect on the allocation of storage for buffer pools.

Block Size Option

The block size option is an integer (0000-9999) that
specifies the maximum size of the physical records for
a reserve or internal file. The block size can be omitted
if the file is included in a spooL or scrouP card that con-
tains a block size specification. If block size is not spec-
ified for a file in the FILE pseudo-operation, the Macro

Assembly Program assumes a block size of 14 for Bcp
or Mxered files and a block size of 258 for BIN or MYBIN

files.

Activity Option

The activity option is an integer (00-99) that specifies
relative activity of this file in comparison to other files.
The programmer chooses a number from a low of 00 to
a high of 99 to indicate the relative activity of the file.

If there is a shortage of core storage, this option can be
used to have a higher number of buffers assigned to the

most active files.

Core Storage Assignment Without $POOL and
$GROUP Cards

When spooL and sGrouP cards are not used, the Loader
makes input/output storage assignments as follows:

1. Creates-a separate pool for-each different block-
ing size encountered in the sFiLE cards and assigns
all files (input and output) that have the same
block size to the same pool.

2. Reserves storage for each pool, using the follow-
ing procedure:

a. Gives the pool one buffer for each file. If avail-
able storage does not allow this, the Loader
stops execution and prints an error message for
the operator.

b. Gives the pool one additional buffer for each
file. If available storage does not allow this, the
Loader forms a weighing factor for each pool.
This weighing factor is formed by multiplying
the desired number of additional buffers for
the pool by the total of activity numbers (ac-
tivity options in sFiLE card) of all files assigned
to the pool. The Loader then compares the pool
weighing factors. The pool with the largest
weighing factor then receives one additional
buffer, if possible. If this is not possible, the
weighing factor of that pool is made zero. If
the assignment is possible, the weighing factor
of the pool is reduced. The pool that now has
the largest weighing factor is given an addi-
tional buffer, and this process continues until
all weighing factors have been reduced to zero.

c. Gives remaining storage, if any, to the pools in
proportion to their output activity. The relative
output activity of a pool is the ratio of the sum
of output file activity numbers in the pool to
the total of file activity numbers of all output
files.

The amount of storage used by each buffer pool is:

BUFCT*(BUFSIZ+2) + 2

Core Storage Assignment with $POOL and
$GROUP Cards

The spoor and scrour cards override the normal
Loader input/output storage assignments. The effect
of these control cards is discussed in the following
sections.

$POOL Card

A spoor card causes all files mentioned on the card to
be assigned to the same buffer pool. No other files (not

How the Library IOCS Programmer Prepares for Processing 15

even those with block sizes equal to pool block size)
will be assigned to the pool. If any of the files in the
spoOL card also appear in a scrouP card, all files in the
scROUP card are automatically assigned to the spooL
card pool.

If a buffer count (BUFcT) appears in the spooL card,
the pool will have exactly that number of buffers. The
Loader checks the buffer count to ensure that it is at
least as large as the number of nongrouped files in the
pool, plus the buffer counts of all groups in the pool.
If no buffer count appears in the spooL cards, the
Loader allocates buffers in the same manner as it
would if no spooL card were present.

If no block size (BLock) appears in the spooL card,
the pool block size will be equal to the largest block
size found among the files assigned to that pool. The
block size check option in the FiLE pseudo-operation
must have been used if files of different block size are
specified in the spooL card.

$GROUP Card

A scrouP card causes the files mentioned in the card to
be formed into a Reserve Group. If a buffer count

16

(BuFcT) is specified, this count is used, and it must be
at least equal to the open count (op~cr). If Burct does
not appear in the card, the Loader will assign extra
buffers to the pool with which the group is associated
in the manner described in step 2¢ of the section “Core
Storage Assignment Without spoor and scroup
Cards.” If opncrt does not appear in the scrouP card,
the Loader assumes that the count is equal to the num-
ber of files in the group.

.DEFIN and .ATTAC Routines
Exceptional circumstances may prompt the Library
10cs programmer to define buffer pools and attach files
to them in the same manner as the Full 10cs pro-
grammer. Library 10cs contains a .DEFIN routine and
an .ATTAC routine that can be used for this purpose.
These routines are equivalent to the pEFINE and AT-
TACH routines discussed in the next section. It is em-
phasized that use of .DEFIN and .ATTAC is exceptional.
Note: The Library 1ocs programmer should skip
the next section and should read the section “Processing
with Both Forms of the Input/Output Control System
(10cCs).”

How the Full IOCS Programmer Prepares for Processing

Each step in the preparations for processing serves
a specific function in setting up file control blocks
and buffer pools and in linking them to input/output
units,

In generalized form, the preparations for processing
involve the following:

1. Files are described.

2. During assembly, space is reserved for each

buffer pool.

3. Buffer pools are defined.

4. Files are attached to buffer pools.

Once these preparations have been completed, the
programmer can open files and process data. Open-
ing a file actually starts the physical reading of
records from an input unit or prepares an output file
for output activity. When a programmer is finished
using a file, he closes it, ending input/ output activity.

File Description

The Full 10cs programmer is required to describe each
file in an *FiLE control card. In addition, he must
provide a list, or lists, of files within his source
program.

The *riLE card allows such specifications as input/
output units, file type, mode, density, and labeling
conventions. This information is used to establish
portions of the file control block.

Detailed information regarding the options in the
*FILE card is provided in the section entitled “Con-
trol and Loading Information for Full 10cs.”

File Types in Full 1OCS

Four types of files can be specified by the Full 10cs
programmer according to the manner in which each
file will be used in the program. They are: Imme-
diate, Reserve, Internal, and Checkpoint.

In addition, Full 1ocs permits three subclassifica-
tions according to how data in each buffer are to be
processed. They are: Input, Partial Block Output, and
Total Block Output.

The file types and the manner in which they are
specified are indicated in Figure 7. The restrictions
on using each file type are described in the follow-
ing text.

IMMEDIATE FILES

An immediate file is an input/output file that can be
processed only once during the course of a program.

File Types in Full 10CS

Type How Specified

Immediate PZE entry in file list

preceding Reserve files

[in column 28 of *FILE
card

a. Input

b. Partiai Biock P in column 28 of *FILE

Output card
c. Total Block T in column 28 of *FILE
Output card
Reserve SVN entry in file list

I in column 28 of *FILE
card

a. Input

b. Partial Block P in column 28 of *FILE
Output card

Internal SIX entry in file list and
INT entry in columns 18-20

of *FILE card

! in column 28 of *FILE
card

a. Input

b. Partial Block P in column 28 of *FILE
Output card

C in column 28 of *FILE
card

Checkpoint

Figure 7. Types of Files in Full 10cs

It is automatically rewound and opened when at-
tached. Once this type of file has been closed, it can-
not be reopened.

RESERVE FILES

A reserve file is an input/output file that can be
opened and closed as many times as desired. It is
neither rewound nor opened when attached.

A reserve file can be designated in the file list in
Slj(‘.h a way that a S?prﬂ'ﬁnr’ niimhor af hiffans W";H

always be available for that file. The file list is pro-
vided by the programer within his source program.

It is described in the section “Setting Up File Lists.”

INTERNAL FILES

An internal file is a file that is kept entirely within
core storage and has no input/output unit associated
with it. Internal files have much the same character-

How the Full IOCS Programmer Prepares for Processing 17

istics as reserve files, and the programmer processes
them in a similar manner. An internal file must be
opened before it is processed.

CHECKPOINT FILES

A checkpoint file uses no buffers and, consequently,
is not attached to any buffer pool. It must, however,
be opened before it is used.

A checkpoint is a point in a program at which the
full contents of storage and the status of registers and
indicators are recorded. This information is used later
to restart the program from the point at which it
was stopped. A full discussion of checkpoints and
restarts is provided in the section “Checkpoints and
Restarts.”

File Subtypes in Full IOCS

The designation of a file as immediate, reserve, or
internal provides only a partial description of how
the file will be processed. One of the following sub-
types must also be designated in Full 10cs in order
to establish how 1ocs will permit “reading” and
“writing” to and from its buffers.

The buffer requirements cited in the descriptions
of the subtypes are the absolute minimum and will not
permit overlap. At least two buffers for each file are
required to achieve overlap with input and partial
block output files. At least three buffers for each input
and partial block ouput file must be provided if one
buffer is to be processed with a nontransmitting com-
mand. No overlap is possible with total block out-
put files.

The three subtypes and their minimum buffer re-
quirements are as follows:

INPUT FILES

This is the category for all input files. Each file re-
quires at least one buffer. At least two buffers are
required if a nontransmitting command is used to
locate or skip words within a buffer.

PARTIAL BLOCK OUTPUT FILES

This type of output file permits the “writing” of any
number of machine words, regardless of buffer size.
The programmer can fill buffers in a piecemeal fashion,
thus blocking his output records. Every partial block
output fle requires at least one buffer. At least two
buffers are required if a nontransmitting command is
used to locate or skip words within a buffer.

TOTAL BLOCK OUTPUT FILES
The total block output files are allowable with im-
mediate files only. This type of output file requires that
all words to be placed in a buffer be “written” using
one command sequence.

Since this type of file does not withhold a buffer
from the pool, except when the file is in use, all files

18

of this type could use the same buffer at different
times. Thus, all total block output files attached to
the same buffer pool could have one buffer to serve
all of them.

The total block output file is used infrequently. It
can best be used for files in which records are “written”
intermittently. For example, a total block output file
might be used to record obsolete records encountered
occasionally in a master file update run.

Functions of Reserve Groups

Full 10cs allows the programmer to group reserve files
together into what are known as Reserve Groups. By
establishing such a group, it is possible for a pro-
grammer to make more efficient use of the number of
buffers he has available.

The distinguishing characteristic of a reserve file
is that it can be opened and closed repeatedly during
the program. When a reserve file is closed, that file
uses no buffers because there is no input/output -ac-
tivity. The only time the file needs buffers is when
it is open.

In designating a Reserve Group, the programmer
specifies (1) the number of buffers in the pool that
are to be reserved for the exclusive use of the files
in the Reserve Group (bufct), and (2) the number of
files in that group that will be open at the same
time (opnct). This allows the reserve files to share
buffers.

For example, if ten buffers have been reserved for
two files in a Reserve Group and both files are open
at the same time, five buffers are always available for
use by each file. However, if the programmer indi-
cated that only one file in the Reserve Group would
be open at a given time, each file would be allowed
to use all ten buffers whenever it was open. This would
make more buffers available to each file when it was
open and would increase the potential overlap.

Using opnct and bufct, 10cs internally controls the
number of buffers it can allow each file in a Reserve
Group to use at any given time.

A second function of the Reserve Group is to pro-
vide the programmer with a method of ensuring that
a given number of buffers will always be available for
a file. This is especially important if the program in-
cludes nontransmitting 1ocs commands that withhold
several buffers from a pool at the same time.

The use of the Reserve Group can help conserve
storage and maximize overlap.

Preparations for Processing
The full 10cs programmer must program each of the
steps in the following text before he opens files and
begins processing data records.

Establishing Reference Locations to Full 10CS

10Cs consists of a set of subroutines to which the pro-
grammer establishes linkage in calling sequences.
Within his source program, the Full 1ocs programmer
must define the transfer point to each routine. A full
listing of the relative locations of 10cs subroutines is
provided in the section “Control Information for
Full 10cs.”

Reserving Space for File Control Blocks

Twelve consecutive words in storage must be reserved
for the file control block for each file. The 12 words
may be reserved with Bss pseudo-operations such as
the following:

1 8 16
MASFIL BSS 12 MASTER FILE
DETFIL BSS 12 DETAIL FILE

where MASFIL and DETFIL are the names of the files.
During assembly, they become the symbolic location
of the first word of each file control block. The file
control blocks for all files used in the program must
be contiguous. The number of file control blocks to
be generated by the Preprocessor must be specified
in the *joB card. The origin (in octal) of the first file
control block can also be specified in the *joB card.

Reserving Space for Buffer Pools

The formula used in determining the number of words
required for each buffer pool is:

M(N+2)+2
where M is the number of buffers to be included in

the pool, and N is the number of data words in each
buffer. The formula includes space for the two pool
control words for the pool and the two buffer control
words for each buffer. If each physical record is to
include a check sum/block sequence word, the value
of N must be increased by 1.

To reserve space for a pool of eight buffers in
which each buffer will contain 30 words, the follow-
ing BSS pseudo-operation can be used:

1 8 16
POOL BSS 8*30+8*2+2

The programmer can provide any number of buffers
in the pool, but that number must be sufficient to
meet the minimum requirements of the list of files
to be attached to the pool.

Setting Up File Lists

Within his source program, the programmer must pro-
vide a list of files that will use the buffers in each
buffer pool. The format of a file list is shown in Fig-
ure 8, where:
filist

is the symbolic name of the list.

imfill through imfilx
represent the names of immediate files.

rsfill through rsfilx
represent the names of reserve files.

infill through infilx

represent the names of internal files.

The rules for composing a file list are as follows:

1. The operation field preceding the name of each
file must contain PZE.

NAME OPERATION VARIABLE FIELD
(Location) (Address, Tag, Decrement
Counf)
1 6 7 8 14 15 16 3§
\
filist PZE imfill
PZE imfil2 Immediate
. . Files
PZE imfilx ’
SVN openct, ,bufct ~¢— Reserve Group
PZE rsfiil Control Werd
PZE rsfil2
i . ; Reserve
! A .) Files
i PZE rsfilx
SIX openct, bufct Internal Group
i PZE infill Control Word
| PZE infil2
| . . Internal
. . Files
‘;\ PZE infilx).
|

Figure 8. File List Format

How the Full IOCS Programmer Prepares for Processing 19

2. All immediate files must be listed before reserve
files and internal files. Immediate files have no control
word, and they are listed consecutively before re-
serve files.

3. Reserve files are listed in groups which must be
preceded by a Reserve Group Control Word in the
following format:

1 8 16

SVN openct,,bufct
where:
SVN

is the prefix that distinguishes a Reserve Group Control Word
(sometimes called the Seven Word).

openct
is the maximum number of files that will be open at the same
time in the Reserve Group.

buifsc tthe number of buffers to be reserved within the pool for
the use of these reserve files.
A Reserve Group may contain only one reserve file.
4. Internal files are listed in groups which must be
preceded by an Internal Group Control Word in the
following format:

1 8 16

SIX openct,,bufct
where:
SIX

is the prefix that distinguishes an Internal Group Control
Word (sometimes called the Six Word).

openct
is the maximum number of files that will be open at the same
time in the Internal Group.

bllf;: tthe number of buffers to be reserved within the pool for
the use of these internal files.

A file list used to attach several files to a pool
simultaneously is usually preserved, since the same
list can be used later when the files are closed.

Any file list that contains one or more Internal or
Reserve Groups must be preserved until all such
groups in the list have been closed. This is necessary
because 10Gs reflects the status of a group during
processing by modifying the open count and buffer
count portions of the group control words.

USE OF RESERVE GROUPS

Buffer count and open count allow the programmer
to specify the exact number of buffers that will be
withheld from the pool at any given time. With these
specifications, 10cs automatically allows files to use a
maximum number of buffers at all times during ex-
ecution of the program.

Two examples of how these characters can benefit
the program are discussed below.

Deferred Opening of a File: It might be known that
a file will not be used until late in the program or
might not be used at all if abnormal conditions are

20

not encountered. By placing this file in a Reserve
Group, buffers would remain free for use by other files
in the group until such time as the special file were
opened.

For example, assume that FiLEA and FILEB are the
respective names of two files that will never be open
at the same time. They could be specified in a Reserve
Group, as follows:

1 8 16
SVN 1,1
PZE FILEA
PZE FILEB

This signifies that only one file will be open at any
time and that one buffer is to be reserved for both files.

Using a File for Both Input and Output: In some
instances, a file is used for both input and output. It
is not unusual, for example, to create an intermediate
tape as output from one phase of a problem, and then
to use this tape as input during a later phase.

One way to program this is to create separate file
control blocks: one for the input phase, and the other
for the output phase. The contents of the two file
control blocks will be identical, except that one file
is described as an input file and the other is described
as an output file. If the input file were named 1N
and the output file were named our, they could be
specified in the file list as a Reserve Group, as follows:

1 8 16
SVN 1,1
PZE IN
PZE ouT

Only one buffer will be withheld from the pool
because 10cs recognizes that only one file at a time
can be open. The file can be manipulated logically
as two files because separate file control blocks have
been established.

The our file would be opened and used during any
output phase, while the v file would be closed. The
reverse would apply during an input phase.

Defining Buffer Pools (DEFINE)
The pEFINE routine in Full 10cs is used to set up the
structure of each buffer pool. The form of the pEFINE
calling sequence is as follows:

TSX DEFINE 4
PZE pool
PZE m,,n
where:
pool

is the symbolic location of the first word of the space reserved
for this buffer pool.

m

is the number of buffers in the pool.
n

is the size of each buffer.

Norte: The letters m and n should be the values that
were used when space was reserved for the pool. This

is described in the section “Reserving Space for
Buffer Pools.”

Each buffer pool for which space has been reserved
must be defined before the pool is to be used in the
program. However, the pool may be defined at any
point in a program.

JOINING POOLS (jOIN)

Two previously defined buffer pools can be joined at
any point in the program by using the joiN routine.
The pools need not be at continguous locations.
The form of the join calling sequence is:
TSX JOIN,4
PZE pooll,,pool2
This sequence causes the previously defined pools
at symbolic locations pooll and pool2 to be treated
as one pool. Pooll becomes the symbolic location of
the first control word of the enlarged pool.
The rules for using the joiv calling sequence are:
1. The buffers of both pools must be the same size.
2. If pooi2 has been used by any 10cs routine other
than DEFINE, pool2 must be redefined before it is joined
to pooll.
3. Pooll may have files attached to it when the
pools are joined.
4. Pool2 cannot subsequently appear in a calling
sequence.

Attaching Files to Buffer Pools (ATTACH)

Every file, except a checkpoint file, must be attached
to a buffer pool before it can be opened. Attaching
files to pools and opening them is called file initializa-
tion. The calling sequence for opening files is dis-

cussed in the next section. The requirements for
different file types are as follows:

1. Immediate files are opened automatically by 1ocs
when the programmer attaches them. An attempt to
open an immediate file will be ignored.

2. Reserve and internal files must be attached and

3. Checkpoint files are not attached, but they must
be opened.

Files are attached to a pool on the basis of the file
list that was established for that pool. All files in a
list must be attached in one ArracH calling sequence.
The form of the calling sequence is:

TSX ATTACH,4
PZE pool
PZE filist, number
where:
pool

is the symbolic location of the first pool control word. (The
symbolic name is the same as that used to reserve space and to
define the buffer pool.)

filist
is the symbolic location of the first word of the list of files
that is to be attached to the pool.

number
is the number of files (in decimal) contained in the list, not
counting the group control words.

RE-USING A BUFFER POOL

When all of the files attached to a buffer pool have
been closed, the structure of the pool is essentially
the same as it was when first defined. A new list of
files can then be attached to it. Any Reserve or In-
ternal Groups attached to the pool must also have
been closed before a new list is attached.

How the Full IOCS Programmer Prepares for Processing 21

Processing with Both Forms of the Input/Output Control System (10CS)

JOCS Routines

The processing routines discussed in this section serve
the same functions in Library 1ocs and Full 10cs. For
simplicity, the name of the Library 1ocs is used in the
text. The explanations, however, are equally applica-
ble to Full 10cs. Figure 9 shows the symbolic names
of the routines in both forms of 10cs and indicates
the level at which they are available.

The formats of the calling sequences are displayed
side-by-side. These formats are the same, except for
the name of ‘the routine. The format for Library 1ocs

appears on the left side of the column, and the format
for Full 10cs appears on the right.

The forms of the calling sequences for files on M
729 Magnetic Tape Units, 1M 7340 Hypertape Drives,
M 1301 Disk Storage Units, and 1M 7320 Drum
Storage Units are identical, except where differences
are stated in the explanations.

Opening Files

All files, except immediate files, must be opened be-
fore they can be processed. Opening a file prepares
it for input/output activity.

SYMBOLIC NAMES OF 1OCS ROUTINES
Level At Which
Available Library 10OCS Full 1OCS Function
10EX .MWR . MWR Printing on-line
Minimum LATTAC (Loader ATTACH Attaching files to buffer pools
generates
the calling
.DEFIN sequences DEFINE Defining buffer pools
to these two
routines.)
.OPEN OPEN Opening files
.CLOSE CLOSE Closing files
.READ READ "Reading" data words
.WRITE WRITE "Writing" data words
.BSR BSR Backspacing a record
(These two .READR READR Retaining a buffer
routines are
available at the .RELES RELESE Releasing a retained buffer
minimum level if
10CS has been
assembled for disk
storage.)
Basic .BSF BSF Backspacing over one or
more files
.CKPT CKPT Initiating a checkpoint
.COPY COPY Copying buffers
.JOIN (Normally JOIN Joining buffer pools
not used)
.REW REW Rewinding a unit
.STASH STASH Transferring buffers
WEF WEF Writing a file mark
Labels (All automatic label checking and preparation routines)
Random .RANCL RANCLS (These routines are dis—
.RANDE RANDEF cussed in the section
.RANRE RANREQ "Routines in Random
. _.RANRP | _ RANRPL | 10CS.") _ ________
RANCA RANCAV (These flag words also are
RANFL RANFLG discussed in the section
"Routines in Random 10CS.")

Figure 9. Symbolic Names of 1ocs Routines

22

The .0PEN routine accomplishes the following

1. Positions the unit to be used oy the Ille as spem-
fied in the calling sequence

2. Performs label checking and preparation, if labels
are specified

3. Initiates readm records from an input unit

4. Prepares an outpu t file for outp t activity

Opening Reserve Files

Each reserve file must be opened individually with
the following calling sequence:

LIBRARY IOCS FULL IOCS

TSX .OPEN4 TSX OPEN,4
pix file pfx file
where:

file

is the name of the file (the symbolic location of the first word
of the file control block for this file).

pfx
controls rewind, label action, and file protection. The options
are:

= PZE Rewind before opening

= MZE No rewind

= MON No rewind and no label action

= PTW (Hypertape) Rewind and file protect before
opening

= SIX (Hypertape) File protect but no rewind

= SVN (Hypertape) File proiect but no rewind or

label action

Care should be taken in specifying rewind for a
System Input Unit, System Output Unit, or System
Peripheral Punch Unit because of the possibility of
processing the wrong input file or of destroying an
output file.

On opening an input file on an 1BM 7340 Hypertape
Drive, 10cs checks the decrement of the parameter
statement of the calling sequence to determine
whether the file should be read forward or backward.
If reading backward is desired, a 1 must be placed in
the decrement of the calling sequence, as follows:

LIBRARY 10CS FULL IOCS
TSX .OPEN 4 TSX OPEN 4
pfx file,,1 pfx file,,1

The records obtained by reading backward can be
processed in the same manner as the records obtained
by reading forward. The presence of the 1 in the call-
ing sequence for a file on an 1M 729 Magnetic Tape
Unit causes the tape to be rewound before processing
is begun.

Opening Internal Files

Each internal file also must be opened before it is
“read” or “written.” The calling sequence for opening
an internal file differs from the sequence used for
opening a reserve file, in that the prefix of the param-
eter statement indicates the type of processing desired.

Thus, in the following sequence:

LIBRARY IOCS FULL IOCS

TSX .OPEN4 TSX OPEN,4
pfx file pfx file

the prefix specifies processing as follows:

pfx

= PZE The file is prepared for “writing,” and any
information in the file is discarded. This is
analogous to opening a partial block output

file with rewind.)

The file is prepared for © wntmg, and any
information within it is retained. This is analo-
gous to opening a partial block output file
without rewind.

The file is prepared for “reading,” making any
mformatlon within it available. When the file
is “read,” buffers that have been processed
are released to the pool exactly as they are for
reserve files. The ‘contents of the buffers can
no longer be secured. This mode of operation
can be thought of as “destructive reading.”
The file is prepared for “reading,” making any
information within it available for processing.
When this prefix is used, buffers that have
been processed are retained and can be proc-
essed again. This mode of operation can be
thought of as “regenerative reading.”

= MZE

= PON

= MON

Opening Checkpoint Files

A checkpoint file must be opened, even though it is
never attached to a buffer pool. 10cs keeps track of
which checkpoint file was last opened and always
uses that as the current checkpoint file. The calling
sequence is as follows:

LIBRARY I0CS FULL 10CS
TSX .OPEN 4 TSX OPEN,4
pfx ckfil pfx ckfil
where:

ckfil

is the name of the file (the symbolic location of the first word
of the file control block).

pfx
has the same meaning as for reserve files.

Data Movement Routines

Data is moved within storage by using the .REap,
.WRITE, .copy, and .STASH routines. 10cs provides two
methods of processing data contained in input buffers.
One method is to transmit the data from the buffers
to working storage; the other is to process the data
within the buffer by determining the position of the
desired data.

The Reap and .writE calling sequences contain a
list of one or more 10cs commands that control the
“reading” and “writing” of data.

In the following explanations, 10cs commands are
represented by:

I10xy A,n

Processing with Both Forms of the Input/Output Control System (IOCS) 23

The x and y represent parameters that control the
manner in which the command is executed, and deter-
mine the action 10cs will take when it has completed
executing the commands; A is an address at which the
command starts operating; and n is the number of
words involved in the operation. The exact effect of
individual commands will be discussed in the section
“Input/Output Control System (10cs) Commands.”

"Reading’’ Buffers

A Reap calling sequence can be used to do the follow-
ing:

1. Transmit words sequentially from input buffers
to working storage

2. Locate the address of the next word within an
input buffer

3. Skip words in an input buffer

The form of the calling sequence is as follows:

LIBRARY IOCS FULL I0OCS

TSX .READ4 TSX READ4
PZE file,,ecb PZE file,,ecb
PZE eof err - PZE eof,,err
IOxy A,n 10CS I0xy A,n

. v commands T
where:
file

is the name of the file (the symbolic location of the first word
of the file control block).

eob

is the end-of-buffer switch, This may be 0 or an address. The
effect of this switch is discussed in the section “Nontransmitting
Commands.”

eof

is the symbolic location to which the program should trans-
fer when the end of this file is encountered.

Labeled File — For a labeled file, end of file is recognized
from a 1eoF trailer label.

Unlabeled File — For an unlabeled file, any file mark is rec-
ognized as end of file.

Internal File — End of file occurs on an internal file when all
the buffers reserved for the Internal Group, as specified by
BUFCT in the group control word, have been “read.”

Disk or Drum File — For the end-of-file exit to function prop-
erly with a disk or drum storage file, the file must have been
previously created by using 10cs or the System Editor.

err

is the location to which transfer will be made if any one of
the following error conditions occurs:

Parity error that cannot be corrected

Check sum error (binary file)

Sequence error

Parity or cyclic check (disk or drum file)

Data compare check (disk or drum file)

Data check (Hypertape file)

"The error condition is recognized at the first reference in an
10cs command to a buffer in which it occurs. If the error exit is
taken, no words are “read” by the command at which the error

is detected. The record can be processed as read by continuing
to “read” the file.

The command list in a .READ calling sequence is
terminated by the first 10cs terminating command

24

(1oxt, 10xTN) or disconnecting command (10CD,
10CDN) encountered.

At the completion of a .REap or .wrITE calling
sequence, the ac and MQ contain a report, called a
“history record,” on the results of the sequence. This
is discussed in the section “History Records.” Appendix
A indicates the words in the 10cs communication
region from which history record information can
also be secured.

Locating with Retention and Releasing a Retained
Buffer
These two routines can be used only if 10cs has been
assembled for 1BM 1301 Disk Storage Unit— or M
7320 Drum Storage Unit — capability. These routines
are used primarily for random processing with disk
or drum storage. However, they can be used to locate
and retain buffers during sequential processing. This
might be desirable if a programmer intends to refer
to the contents of a buffer repeatedly during process-
ing.

To locate a buffer and retain it, the calling sequence
is as follows:

LIBRARY IOCS FULL I0CS

TSX .READR 4 TSX READR,4
PZE file,,eob PZE file,,eob
PZE eof ,err PZE eof,.err

IORTN e IORTN Y

where file, eob, eof, and err have the same meanings
as in the .READ calling sequence. When using this rou-
tine, the file from which the buffer is retained must be
the only file attached to a buffer pool.

This routine allows retention of a buffer until it is
released by the user’s program, overriding the normal
process whereby the buffer is returned to the pool after
the next reference to the file.

A buffer located with retention must be released by
using the following calling sequence:

LIBRARY 1I0CS FULL IOCS

TSX .RELES,4 TSX RELESE 4
PZE 1buff, file PZE 1buff, file
where:

file

is the name of the file (the symbolic location of the first word
of the file control block for this file).

Ibuff

is the starting location of the buffer inserted into the 1orTN
command when the buffer was located and retained with a
.READR calling sequence.

The use of these commands in random processing is
discussed in the section “Routines in Random 10cs.”

““Writing’’ Buffers
A .wrrte calling sequence can be used to do the
following:

1. Transmit words from working storage to output

buffers

2. Locate empty words within an output buffer
into which processed data can be placed.
The form of the calling sequence is as follows:

LIBRARY IOCS FULL IOCS

TSX WRITE 4 TSX WRITE,4

PZE file,,eob PZE file,,eob

10xy A,n (I0xy A,n

. o | 1w0cs | -
R J commandsl . -

where:

file

is the name of the file (the symbolic location of the first word
of the file control block).

eob

is the end-of-buffer switch. This may be 0 or an address. The
effect of this switch is discussed in the section “Nontransmitting
Commands.”

Internal Files — For an internal file, the end-of-buffer exit is
taken when all the buffers indicated by bufct in the Internal
Group Control Word have been filled.

The command list in a .wriTE calling sequence is
terminated by the first 1ocs terminating command
(10xT, 10xTN) Or disconnecting command (I10CD, TOCDN)
encountered.

At the completion of a .wrrTE or .READ calling
sequence, the Ac and MQ contain a history record as
explained in the section entitled “History Records.”
Appendix A indicates the words in the 10cs com-
munications region from which history record in-
formation can also be secured.

Copying Input Buffers

The .copy calling sequence can be used to transfer

data from input file buffer(s) to output file buffer(s).

Before words can be copied, they must have been

located by using an 1ocs nontransmitting command.

No actual word transmission occurs. Instead, the input

buffer(s) is appended to the output file buffer chain.
The form of the calling sequence is as follows:

LIBRARY 10CS FULL 10CS
TSX .COPY/4 TSX COPY,4
PZE filel, file2 PZE filel, file2

where:

filel and file2
are the names of the files (the symbolic locations of the first
words of their respective file control blocks).

The rules for information trans
are:

1. Both must be in the same buffer pool.

2. All words in the same buffer with and preceding
the first word located by a nontransmitting command
are included in the output.

3. All words in the same buffer with, and subse-

quent to, the last word located are not included in the

output. Furthermore, they will behave as if skipped
when filel is “read” again.

4. If more than two buffers are involved, an inter-
mediate buffer is included in the output, provided at
least one word in it has been located by a nontrans-
mitting command.

PROGRAM EXAMPLE USING .COPY

The programs shown in Figures 10 and 11 illustrate the
use of the .copy(copy) routine. The programs copy
the physical records from an input file (1n1) onto an
output file (our1). The block size for both files is the
same and both files use the same buffer pool.

The program is illustrated first as it would be pro-
grammed by a user of Library 1ocs and then as it
would be programmed in Full 10cs.

Library I0CS: The first two steps in this program
are FILE pseudo-operations that describe the files.
(This pseudo-operation is discussed in the section
entitled “Control Card Information for Library 10cs.”)

The .READ calling sequence ends with a nontrans-
mitting command (IORTN ** **) that secures the ad-
dress of the first word in each input buffer and locates
all words in that buffer. Each buffer is then copied
onto the output file by the .copy calling sequence.
(Nontransmitting commands are described in the sec-
tion entitled “Input/Output Control System (10cs)
Commands.”)

When end of file is detected on N1, the program
transfers to location EoF where both files are closed.
If an uncorrectable error occurs, the program transfers
to ERR where a dump is taken.

Full IOCS: Note that space is reserved for file con-
trol blocks and the buffer pool. The buffer pool is de-
fined and a list of two immediate files is attached to
the pool. Processing is the same as in the program
shown in Figure 10.

1 8 16
INL FILE INPUTFILE,UT1, INPUT,BLK=14
CUT1l FILE OUTPUTFILE,UT2,CUTPUT,BLK=14
SAM TSX <OPEN, 4
PLE IN1 (OPEN BOTH FILES
TSX +OPEN, 4 WITH REWIND)
PZE ouT1
IN TSX +READ, 4 (LOCATE ONE RECORD
PZE INl,,EOB FROM FILE IN1)
PZE EOF, y ERR
IORTN w#,,ua
TSX .COPY, 4 (COPY RECORD FROM
PZE INL,.0UT1 IN1 TO 0OUT1)
TRA IN (GO READ NEXT RECORD)
EOF TSX +«CLOSE, 4
PZE IN (CLOSE WITH
TSX -CLOSE, 4 REWIND AND UNLOAD
PZE ouT1 OF BOTH FILES)
CALL EXIT
€08 PZE . [THIS EXIT CANNOT BE TAKEN)
ERR TRA SYSDMP [BAD INPUT DATA)
END

Figure 10. Use of .copy Routine

Processing with Both Forms of the Input/Output Control System (IOCS) 25

1 8 16

START TSX DEFINE, 4 (DEFINE THE POOL TO HAVE
PZE BUF 8 BUFFERS OF 14 WORDS)
PIE Beelé
TSX ATTACH,4 {ATTACH TO THE POOL AND
PIE BUF OPEN THE TWO FILES IN THE
PLE LISTey2 LIST)
IN TSX READy 4 (LOCATE ONE RECORD
PZE IN1,,EOB FROM FILE IN1)
PZE EQF, ¢ ERR
IORTN "y 0w
TSX COPYs4 {COPY RECORD FROM
PLE IN1,,0UTL INl TO OUTL)
TRA IN (GO READ NEXT RECORD)
EQF TSX CLOSE»4 (CLOSE BOTH FILES)
PLE LISTys2 WITH REWIND AND UNLOAD}
TRA 10CS
EOB PZE . (THIS EXIT CANNOT BE TAKEN)
ERR TRA SYSDMP (BAD INPUT DATA)
IN1 8ss 12 (FILE CONTROL BLOCK FOR INPUT FILE
cuTl BSS 12 (FILE CONTROL BLOCK FOR OUTPUT FIL
BUF BSS 8214484242 (SPACE FOR POOL)
LIST P2E INL (IMMEDIATE FILES)
PZE ouTl
END START

Figure 11. Use of copy Routine

Stashing Data

"The .sTasH routine is used to transfer data between
an internal file and some other file.
The form of the calling sequence is as follows:

LIBRARY IOCS FULL IOCS

TSX STASH 4 TSX STASH,4
PZE filel,,fle2 PZE filel, file2
PZE nts PZE nts
where:

fileland file2

are the symbolic locations of the file control blocks for an
internal file and some other file.

nts

is a location to which the program will transfer if IOC§
determines there is “Nothing to Stash™ or “No Place to Stash,
under circumstances described below.

The rules for using this routine are:

1. Both files must be in the same buffer pool.

2. All words in the same buffer with and preceding
the first word located are included in the output.

3. All words in the same buffer with and subsequent
to the last word located are not included in the out-
put. Furthermore, they will behave as if skipped when
filel reading is resumed.

4. If more than two buffers are involved, an inter-
mediate buffer is included in the output, provided at
least one word within it has been located by a non-
transmitting command.

Four cases are permitted in the use of the .sTasn
routine, In the following discussions of these cases,
the word “external” is used to mean “not an internal
file.”

1. filel is an internal output; file2 is an external
output.

The initial buffer is deleted from the chain of filel
buffers, and is appended to the chain of file2 buffers.
The nts return is taken if there is no buffer in the filel
chain that has been completely processed. This usage
allows the programmer to “write” into an external file

26

from the buffers in an internal file. For example, if all
the buffers associated with the internal file are filled,
the programmer can use this technique to spill one
buffer at a time into an output file.

2. filel is external input; file2 is an internal output.

As in the case of the .copy routine, the buffer(s)
that contains information located by the last read
sequence on filel is appended to the file2 buffer chain.
The nts return occurs if, during the reassignment, the
Internal Group is about to overflow its full quota of
buffers (as indicated by bufct in the Internal Group
control word). This usage allows the programmer, for
example, to set aside some data from filel for later
processing, without the necessity of again processing
the entire file.

3. filel is an internal input; file2 is an external out-
put.

For this usage, the .stasH routine behaves exactly
like the .copy routine. It should be noted that buffers
will be removed from the filel chain and thereby are
lost to filel, even if the “regenerative” read mode is in
use. The nis return cannot occur.

4. filel is an internal input; file2 is an internal out-
put.

This functions exactly as in item 2. However, buffers
will be removed from the filel chain even if the “re-
generative” read mode is in use. The nts return occurs
if, during the reassignment, the Internal Group to
which file2 belongs is about to overflow its full quota
of buffers (as indicated by bufct in the Internal Group
Control Word). Note that even though filel and file2
must be attached to the same pool, they need not be-
long to the same Internal Group.

Closing Files

When activity on an immediate or reserve file is to be
terminated, it must be closed by means of the crosE
routine. Closing a file ensures that the buffer or buffers
associated with it are not unnecessarily withheld from
use by other files in the buffer pool during the re-
mainder of the program. At closing, all input/output
activity on a file ceases.
One form of the calling sequence is as follows:

LIBRARY IOCS FULL IOCS

TSX .CLOSE 4 TSX CLOSE 4
pfx file pfx file
where:

file

is the name of the file (the symbolic location of the first word
of the file control block).

pfx
controls closing action. The options are:

= PZE Close with rewind and unload (note that a
file that has been rewound and unloaded can-
not be referred to again)

= PTW Close with rewind

= MZE Close with no rewind

= MON Close with no rewind, and without writing a
flc mark or a trailer label

= PON (Hypertape) Close with rewind, unload, and
file protection

= PTH {Hypertape) Close with rewind and file pro-
tection

= SIX (Hypertape) Close with unload, but no
rewind

= SVN (Hypertape) Close with unload and file pro-

tection, but no rewind

Any output buffer currently in use is truncated, and
the file is unbuffered and written out. All buffers in
use by an input file are released to the pool. (If the
file is an immediate file, the number of available
buffers in the pool is increased. If the file is a reserve
file, the count is not increased until the Reserve
Group in which the file is included is closed.)

For an output file, a close with a prefix other than
MoN causes the following:

1. Labeled file — A file mark, a trailer label, and
another end-of-file mark to be written

2. Unlabeled file — A file mark to be written

When a file is closed, whether at the end-of-file posi-
tion or not, it is always unbuffered, so that its physical
position corresponds to the last logical usage of the file.
However, in the case of an input file, information in a
partially processed buffer may be lost if the file is
closed and then reopened, because the tape will be
positioned beyond the block that occupied this buffer.

Care should be taken in specifying rewind for a
System Input Unit, System Output Unit, or System
Peripheral Punch Unit because of the possibility of
later processing the wrong input file or destroying an
output file.

Closing a List of Files
A list of files or part of a list can be closed in the same
calling sequence as follows:

LIBRARY IOCS FULL IOCS

TSX .CLOSE 4 TSX CLOSE 4
pfx filist,,numfil pfx filist,,numfil
where:

filist

s the symbolic location of a list of files. (This list may be a
different list from any list used to attach the files, or the same
list may be used.)
numfil

is the number of files to be closed.
pfx

specifies the same options as listed above, The same option is
used for all files in the list being closed.

If a Reserve Group Control Word appears in the
list, the entire group of files which it controls must also

appear in the list and be closed in the same calling
sequence. The number of files in the group is included
in numfil. When a Reserve Group is closed, the num- .
ber of available buffers in the pool is increased by the
number of buffers that had been reserved for the
group. (These files cannot be referred to again.)

Files of more than one pool may appear in the clos-
ing list. A file that is rewound and unloaded may never
be referred to again.

Closing an Internal File
The following calling sequence is used to terminate
the current processing of an internal file:

LIBRARY I0CS FULL IOCS

TSX .CLOSE 4 TSX CLOSE 4
pfx file pfx file
where:

file

is the name of the internal file (the symbolic location of the
first word of the file control block).

pfx
has the following meanings:

= PZE All buffers in use by the file are released to
the pool, and the file may not be referred to
again, This is a “destructive” close, analogous
to a rewind and unload for a regular file.

= MZE Reorganizes the structure of the file, causing

it to appear as if it had just been written. The
file may be opened again (with any of the
available options). This may be thought of as
a “regenerative” close.

Closing a Checkpoint File

No close is necessary for a checkpoint file. However,
if the programmer wants to close the file, all of the
previously stated options for reserve files are available
for checkpoint files.

Taking a Checkpoint
A checkpoint is a reference point which can be used
later to restart a program from exactly that point. A
checkpoint can be taken by using the following call-
ing sequence:
LIBRARY I0CS FULL IOCS
TSX .CKPT 4 TSX CKPT,4

Checkpoints and restarts are discussed in the section
“Checkpoints and Restarts.”

Nondata Routines

The four routines described in the following text pro-
vide for backspacing records and files, rewinding, and
writing an end of file. 10cs performs the routines in
a manner that automatically positions the input/output
unit so that the operation is performed on the desig-
nated physical record or file. The operations as they
apply to 1BM 729 Magnetic Tape Units are simulated

Processing with Both Forms of the Input/Output Control System (10cs) 27

on 1BM 1301 Disk Storage Units and 1z 7320 Drum
Storage Units. Specific information on how they apply
to the read backward mode on 7340 Hypertape Drives
is included in the explanations.

The term fruncated applies in some of the explana-
tions. When an output buffer is truncated, no further
words can be “written” into it.

Backspacing a Record

The .Bsr routine can be used to backspace a physical
record. The form of the calling sequence is:

LIBRAY I0CS FULL 10CS
TSX .BSR,4 TSX BSR4
PZE file,,bof PZE file,,bof
where:

file

is the name of the file (the symbolic location of the first word
of the file control block).

bof
is the location to which transfer will be made if beginning of
file is encountered.

For an output file, the current buffer is truncated,
and the file is unbuffered and written out. The unit
is then backspaced over the last record “written.”
The block count is reduced by 1.

For an input file, the file is first unbuffered and the
unit assigned to the file is backspaced over the last
record “read.” The block count is reduced by 1. (In
read backward mode, the unit is physically forward-
spaced one record.)

If the backspace passes over a file mark, the be-
ginning-of-file exit (bof) is taken.

Backspacing a File

The .BsF routine can be used to backspace a specified
number of physical files. The form of the calling se-
quence is as follows:

LIBRARY IOCS FULL 10CS

TSX .BSF,4 TSX BSF,4
PZE file,,count PZE file,,count
where:

file

is the name of the file (the symbolic location of the ﬁrstrword
of the file control block for this file).

count
is the number of files over which the programmer intends to
backspace.

The file is first unbuffered, and count machine back-
space file instructions are executed, followed by a
forward space over the last file mark encountered.
However, the forward space is suppressed if the tape
reaches the beginning-of-tape position. A count of zero
can be used to unbuffer the file.

In the read backward mode, the file is unbuffered,
and count machine forward-space file orders are ex-
ecuted, followed by a backward space over the last

28

file mark encountered. The backward space is sup-
pressed if the Hypertape reaches the Ewa position.

When the backspace file routine is used to back-
space over one or more labeled files, the structure
of such files must be kept clearly in mind. For example,
after an end-of-file exit has been taken for a labeled
input file, use of the backspace file routine will pro-
duce the results indicated in the following chart, de-
pending on the count specified.

TAPE POSITION ON EXIT

COUNT
1 Beyond file mark following the trailer label.
2 In front of the trailer label.
3 In front of the first data block of the file.
4 a. In front of the first header label for the file, if

it is a single-reel file.

b. In front of the label of the current reel of a
multi-reel file without checkpoints.

c. In front of the checkpoint record of a multi-
reel file with checkpoints.

5 In front of the header label for the file, if a
checkpoint was written on the file.

Writing a File Mark

The .WEF routine can be used to write a file mark on
an unlabeled output file. The form of the calling se-
quence is as follows:

LIBRARY IOCS FULL IOCS

TSX .WEF 4 TSX WEF 4
PZE file,,eot PZE file,,eot
where:

file

is the name of the file (the symbolic location of the first word
of the file control block).

eOtis the location to which transfer will be made if end of tape
is encountered.

For an output file, any buffer connected is truncated,
the file is unbuffered and written out, and a file mark
is written following it. If end of tape is encountered
while writing the tape mark, the end-of-tape exit (eot)
is taken.

The .WEF routine is ignored for an input file. Further-
more, the .wer routine will not be executed on a
labeled file, because it would result in an incorrect
end-of-file condition for the file. For a labeled file,
the .cLose routine should be used, because this rou-
tine will automatically ensure that the file is labeled

properly.

Rewinding a File
The .REW routine can be used to rewind the current

unit in use by an unlabeled file. The calling sequence
is as follows:

LIBRARY I0CS FULL IOCS
TSX REW 4 TSX REW 4
PZE file,,x PZE file,,x

where:

file .
is the name of the file (the symbolic location of the file con-
trol block for the file).

x =0 for 729 magnetic tape, 1301 disk storage, and
7320 drum storage files.
=1 (Hypertape only) If the 1 is present, the unit

D B I T, — e PR PSP PN P ig
will be rewound and file-protected. If the 1 is not

~ present, the unit will be rewound only.

Any output buffer currently in use is truncated, the
file is unbufféred and written out, and a rewind occurs.
If reel switching has occurred, only the current reel
is rewound. Any attempt to rewind a labeled file will
be ignored.

For an input file, an end of file that has been de-
tected by 10cs, but not yet logically reached in process-
ing, is canceled before the rewind is issued.

Printing Messages On-Line and Off-Line

The Input/Output Executor (10EX) contains a system

routine for printing messages on the channel A -

printer or on the System Output Unit. The name of
this 10Ex routine is (ProuT. Off-line messages are
actually printed by a separate routine, spout, which
is called by (Prout when an off-line message is speci-
fied.

spouT is stored in core storage locations SYSEND-199
through sysexp. Therefore, if off-line messages are
specified, sysexp-200 is the end of usable core storage.

The programmer can reach the (ProUT routine by
using the .MWR routine in 10cs. The calling sequence is
as follows:

LIBRARY 10CS FULL 1I0CS
TSX .MWR,4 TSX MWR,4
PZE n pfx n
pre locLt,m+512%sprl pre locl,t,m+512%sprl
pre loc2,t,m+512%spr2 pre loc2,t,m+512*spr2
.;.).re locx,t,,m +51 2¥sprx 'p;.re locx:t:m +5 12"‘.‘.slprx
where:
pfx
indicates where the message is tc be printed.
= PZE The message is to be printed on-line only.
This is the only option that can be used with
Library IOCS.
= MZE (In Full IOCS only) The message is to be
printed on-line and recorded off-line.
= MON (In Full I0CS only) The message is to be

recorded off-line only.

n
is the number of subsequent parameters in the calling
sequence.

loc
is the symbolic location of the first word of the block of data to
be printed.

t
is the index register tag, if any.

m
is the number of words to be printed starting at loc,t.

512*spr

controls page ejection and spacing between print lines.

The m consecutive words (of six Bcp characters
each) starting at location loc,t are placed in the line
image for printing. Note that the maximum number
of characters per line is 72 (m=12).

The pre is a prefix controlling the formation of the
print lines, as follows:

pre
= PZE The image is taken to be compiete and the
line is printed.
= MZE This line is considered incomplete, and the

loc,t;m of the next entry in the calling se-
quence is used to continue building the image,
beginning with the next print position to the
right.

If pre=rzE, the sense exit spr is activated after the
line is printed. (spr appearing in a word with pre
= MzE is ignored).

To activate an exit hub before printing the first line,
an entry should be made in the calling sequence, in
the following form:

PZE ** B512*spr
This will print a blank line, followed by activation of
the hub spr.

For off-line printing, spr is interpreted as follows:

=0 Normal (single) space.

=1 Eject to a new page.

=4 Double space.
These interpretations also apply for on-line printing
if the saARE standard sense exit hubs are used.

Example: Suppose two consecutive words at Loc1
contain the Bcp text:

THIS IS ONE
and in the word at location Loc2 is the Bcp text:
SAMPLE

The following calling sequence:

LIBRARY LOCS FULL 10CS

TSX MWR,4 TSX MWR 4
PZE 2 PZE 2

PZE LOCl1,,2 PZE LOC1,,2

PZE LOC2,,1+512*1 PZE LOC2,,14+512*1

would result in printing of the two lines:

THIS IS ONE
SAMPLE

followed by a page eject.

Further information on the (ProuT routine is con-
tained in the publication IBM 7090/7094 IBSYS
Operating System, System Monitor (IBSYS), Form
C28-6248.

Processing with Both Forms of the Input/Output Control System (IOCS) 29

Input/Output Control System (I0OCS) Commands

All text references to 10cs routines in this section are
made to the name of the routine in Library 1ocs. The
text applies equally to the same routines in Full 10cs.

File Processing

10cs commands are an integral part of the .Reap and
-wrrtE calling sequences. The format of 1ocs com-
mands is identical to the format of commands used
with the 1BM 7607 Data Channel, and their interpreta-
tion is quite similar.

10cs provides two methods of processing data within
the computer. One method is actually to transmit the
data between buffers and working storage by using
transmitting commands. The other method is to use
nontransmitting commands to determine the location
of desired data in an input buffer, locate space in an
output buffer, or skip over data words in a buffer.

The programmer may find it easier logically to use
transmitting commands, but these commands require
computer time to transmit data. Nontransmitting com-
mands offer the speed advantage of processing data
directly within the buffer,

Input Blocks and Buffers

It should be noted that the size of the buﬁers in a pool
determines the size of blocks to be processed. If the
size of a physical input record on a recording medium
is larger than the buffers provided for that file, the
physical record is truncated to buffer size. When a
record is read from the input device into a buffer, data
is read until the buffer is filled and the rest of the
record is lost.

Output Blocks and Buffers

Each physical record recorded on an output unit con-
sists only of the number of words “written” into a
~ buffer before it is released for external transmission.

Buffer Truncating

In the following discussions, the term truncate is used.
Certain 10cs commands will cause a buffer to be trun-
cated, meaning that the remaining words in the buffer
are disregarded.

When an input buffer is truncated the buffer is
disconnected from use and returns to the chain of
available buffers in the buffer pool. It remains as a
usable buffer in the pool, but its immediate contents

30

are no longer accessible to the programmer. Any un-
processed words that remain in the buffer are dis-
carded.

When an output buffer is truncated, it is disengaged
and joins a chain of output buffers waiting to have
their contents written on an output unit. Only the
number of words inserted into the buffer before it
was truncated will be written as an output record.

Thus, in the following explanations, disconnecting
commands (D) indicate to 10cs that the programmer
no longer wants the last buffer in use, and that the
buffer should be truncated.

Appendix C contains a detailed description of the
execution of each 1ocs “read” and “write” command.

Format of a Command

The format of an 10cs command is as follows:

5 23 1718 19 20 21 35
OP
CODE n "IN A

This is represented symbolically as follows:

1 8 16
IOxy(N)(*) A,n

where:

X
designates the type of control. It may be one of the following:
C — Count control. The count supplied by the program-
mer in these commands specifies the number of words
to be processed.
R — Buffer (record) control. These commands process all
(or the remainder) of a buffer.
S — Special count control. These commands process under
count control, except that special action is taken at
the end of a buffer.

indicates the function to be performed at the completion of
the command. It may be one of the following:

P — Proceed to the next command in the command list.
T — Terminate the command list.

D — Terminate the command list and truncate the attached
buffer.
N
if used, specifies that the command is nontransmitting. A
nontransmitting command causes IOCS to provide an address
within a buffer.
Note: N is assembled as index register 2.
*
is used to specify that the address, A, is indirect.
Note: The effective address is determined as though all the
index registers contained zero.

A

is the address of the first word processed. In a transmitting
command (not an IOxyN type), the address A is supplied by
the programmer. It indicates the location to which input data
should be transmitted, or the location of output data to be
transmitted to one or more buffers.

If the command is a nontransmitting command (N is used),
IOCS supplies the location of the next available word in the
buffer. Normally, IOCS inserts the location of that word into
the address portion of the ‘command. However, if the non-
transmitting command is indirectly addressed, the location of
the next available word is inserted into the address of the word
specified in the address of the IOCS command.

n
is the number of words to be processed. This is normally
supplied by the programmer. However, if a buffer control
command (R) is used for “reading” input data, the count of
the number of words “read” by the command is inserted into
the decrement of the command.
Norte: In the discussions that follow, ** is used to indi-
cate that the address or count in a command is inserted
by 1ocs during processing, rather than being provided

by the programmer.

Transmitting Commands

The transmitting commands move data words either
(1) from an input buffer (or buffers) to working
storage, or {2) from working storage to an output
buffer (or buffers). During processing, buffers associ-
ated with one file are chained together and presented
in sequence for processing. This permits the pro-
grammer to treat each file, in general, as a continuous
string of words, with the string extending from one
buffer to the next.

Thus, by using count control commands (except
10CD), a programmer can process across buffers as if
there were no division between them. If 15-word
buffers were in use by one file, a series of count control
commands could process 10 words each., The second
command would start with the eleventh word in the
first buffer and precess through the fifth word in the
next buffer. 1ocs would connect and disconnect the
buffers automatically.

A command list in a .READ or .wriTE calling sequence
can consist of one or more commands. The effect of
each 10ocs command depends in part on the number of
words “read” or “written” by preceding commands in
the command list.

Count Control Commands

The count control transmitting commands are as fol-
lows:

I0CP

I0CT

I0CD
FORMAT AND EFFECT

The format of a count control transmitting command is
as follows:

1 8 16
I0Cy A,n

“Reading”: n words are transmitted from one or more
buffers connected to the file into consecutive locations
starting with A. Transition from buffer to buffer is
automatic. 10cp, in addition, truncates the buffer in use
when the n count is fulfilled.

“Writing”: n words are transmitted from consecutive
locations beginning with A into one or more buffers
connected to the file. Transition from buffer to buffer
is automatic. 10cp, in addition, truncates the buffer in
use when the n count is fulfilled.

EXAMPLES

1. Using the command:
10CP AREA,,10

“Reading”: Ten words are transmitted from an input
buffer (or buffers) into aAreA through area +9, and 10cs
proceeds to the next command.

“Writing”: Ten words are transmitted to an output
buffer (or buffers) from Iocations ARea through
AREA+9.

2. Using the command:

10CD AREA, 20

“Reading”: Suppose each input buffer contained 30
words. The first 20 words would be transmitted into
AREA through AReA +19. The buffer would be truncated,
and any unprocessed words in it would be lost.

If each buffer contained six words, the contents of
three buffers and two words from the fourth buffer
would be transmitted. The fourth buffer would be
truncated.

Buffer Control Commands
The buffer control transmitting commands are as fol-
lows:
IORP
IORT
FORMAT AND EFFECT

“Reading”: When “reading,” the format of a buffer
control command is as follows:
1 8 16

IORy A ¥*

Words are transmitted from the input buffer to con-
secutive locations starting with A, until either the end
of the buffer or the end of the physical record in the
buffer is reached (whichever occurs first). iocs inserts
the count of the number of words transmitted into
the decrement portion of the 1ory command.

“Writing”: The format when “writing” is as follows:
1 8 16

IORy A,n

Words are transmitted from consecutive locations

starting with A until the count n is reduced to zero or

Input/Output Control System (IOCS) Commands 31

the end of a buffer is reached (whichever occurs first).
If the count is satisfied before reaching end of buffer,
only a partial buffer will be written.

EXAMPLES
1. Using the command:
IORT AREA, **

“Reading”: If 10 words had previously been “read”
from a 20-word input buffer, the remaining 10 words
would be “read” and a count of 10 would replace the
**_If no words had been read from the 20-word buffer,
all 20 words would be “read” and a count of 20 would
replace the **,

In both cases, the buffer would be released.

2. Using the command:

IORT AREA,,15

“Writing”: If 5 words had been placed in a 20-word
buffer by a previous command, 15 words would be
“written” into the buffer. If 10 words had been placed
in the buffer by a previous command, only 10 words
would be transmitted, thus filling the buffer, and the
buffer would be released for transmission to an output
unit.

In both cases, the command list would be terminated.

Special Count Control Commands

The special count control commands are as follows:

I0SpP
10ST

FORMAT AND EFFECT

The form of a special count control transmitting com-
mand is as follows:
1 8 16

10Sy A,.n

“Reading”: n words are transmitted from the input
buffer to consecutive locations starting at A, until the
end of buffer is reached or the count n is reduced to
zero (whichever occurs first). A buffer is never re-
leased by an 1osy command.

“Writing”: 1f the buffer being used is capable of
holding n additional words, the n words are transmitted
to this buffer. If the buffer cannot hold n additional
words, the buffer is truncated and the n words are
placed in the next buffer.

EXAMPLES
Using the command:

10SP AREA,,10

“Reading”: If there are 10 words remaining in the
buffer, the 10 words are transmitted into aArea through
AREA+9.

32

If only 5 words are left in the buffer, only 5 words are
transmitted because end of buffer is reached. The fact
that only 5 words were transmitted could be deter-
mined by examining the “history record.”

“Writing”: Assume the file is using 15-word buffers,
and no words have been transmitted to the current
buffer by a previous command. In this case, the 10
words are transmitted into the current buffer.

Assume 15-word buffers and 8 words have already
been transmitted to the current buffer. In this case, the
current buffer is truncated, and the 10 words are trans-
mitted to the next buffer. The remaining 5 words could
be filled by a later 10cs command.

Transfer and Continue Command List
The form of this command is:

1 8 16
TCH A

The command list continues at A. The normal exit
from an 10cs routine is the location after the first Tcu
command in the list.

EXAMPLE

Assume the following command list had been used to
“read” 40 words from a buffer into four areas in working
storage:

IOLIST 10CP AREAL,I0
IoCP AREA2,,10
I0CP AREAS,, 10
I0CT AREA4,,10

Later in the program, the programmer could “write”
the 40 words from the same areas by using the se-
quence:

TSX WRITE, 4
PZE file,,eob
TCH IOLIST

Ten words would be “written” from each area into
a buffer. The exit from the command list would be at
the instruction following the Tca command.

Examples of Other Usage

1. An input file is attached to a buffer pool containing
buffers of 20 words and the following command is used:
10CD WKAREA, 24
Twenty-four words are ‘read” into wkarea through
WKAREA +23, and both buffers are released. The history
record in the ac would be PZE WKAREA +24,,16.
Suppose the command were as follows:

I0CT WKAREA,,24
In this case, 24 words would be ‘read” into the same
locations, but only the first buffer would be released.
The history record in the ac would be pzE
WKAREA +24,,16, The next reference to the file in a .READ

calling sequence would begin operation on the fifth
word in the second buffer.

2. The following command could be used to “read”
variable-length records from an input file:

IORT RECORD,,**

This command would transmit the next record from
an input buffer into locations starting at RECOED. The
actual length of the record that was transmitted would
be inserted into the decrement portion of the command.

The area in storage beginning with rReEcorp would
have to be as large as the input buffer. Otherwise,
storage locations beyond that area might be destroyed
when the record was transmitted.

3. Some records are written as “self-loading” vari-
able-length records. The first word of each self-loading
record is itself an 10cs command that can be used to
read properly the record as input.

The following sequence could be used to process an
input file containing self-loading records:

10CP *+1,1
PZE **”**

The first entry in the sequence tells 10cs to pick up
the first word in the record and to place it in the loca-
tion following the 1ocP command. By the time 10Cs
reaches the next location, the command from the record
has been inserted there and 10cs proceeds to execute it.

Nontransmitting Commands

Nontransmitting commands provide the 10cs program-
mer with a means of finding desired locations within
input or output buffers, or a means of skipping over
words in a buffer. Use of these commands make it
possible to process input data directly within a buffer
or to form an output record within a buffer.

The nontransmitting commands are distinguished by
the presence of the N following the usual form of a
transmitting command.

I0CP
IOCPN

The nontransmitting commands can be used to per-
form two functions: locating and skipping.

Locating: This is the process of using nontransmitting
commands to find an address in an input or output
buffer. 1ocs inserts that address into the address portion
of the command itseif. Or, if indirect addressing is
used, the located address is inserted into the effective
address. Locating can be used to do the following:

1. Determine the location of the first word or the
next unprocessed word in an input buffer.

2. Determine the location of the next available word
in an output buffer or find space for a specified number
of words in an output buffer.

A,,10 is a transmitting command
** 10 is a nontransmitting command

Skipping: This is the process of using nontransmit-
ting commands to do the following:

1. Skip over any number of words in an input buffer

2. Inform 10cs of the actual number of words already
placed in an output buffer by using an 108y~ type
command.

End-of-Buffer Switch

The eob.entry in each .reap and .writE. calling se-
quence is called the end-of-buffer switch. This switch
is interrogated by 1ocs each time the end of buffer is
reached, regardless of whether a transmitting or non-
transmitting command is being executed. The eob
switch indicates to 10cs whether the buffer should be
retained until the next reference to the file is made
in an 10cs routine, or whether it should be immediately
truncated and released for input/output activity.

If eob =0, the buffer is truncated and 10cs automati-
cally positions another buffer for use. Command exe-
cution continues without interruption.

If eob==0, all information located by the nontrans-
mitting command will be retained until the next ref-
erence to the file is made in any 10cs routine.

The eob switch also indicates to 10cs whether a non-
transmitting command is intended to locate or skip
information. The programmer uses the eob switch to
specify either locating or skipping, as follows:

Skipping: If eob=0, the nontransmitting command is
executed as a skip.

Locating: If eob==0, the command is interpreted as
an attempt to locate information.

Rules for Using Nontransmitting Commands

The rules governing the use of nontransmitting com-
mands are as follows:

1. No single nontransmitting command can locate
words in more than one buffer.

2. Input data or output buffer space located by a
single 10cs command must be in sequential words.
Therefore, when locating with a count control non-
transmitting command, the execution of the command
is discontinued when end of buffer is encountered.
Transfer is made to the location specified in eob and
no further commands in the command list are executed.
An end-of-buffer condition occurs when all words in
a buffer have been used and the command word count
has not been satisfied.

3. If “reading” and eob==0, words located are avail-
able for processing until the file is next referenced by
an 10cs routine. Hence, the buffer in which the words
were located is retained until then.

4. If “writing” and eob=0, the space located for out-
put words is considered filled when the file is next

Input/Output Control System (IOCS) Commands 33

referred to by any 10Gs routine, Hence, it is not written
until then.

5. A sequence of commands can be used to locate
words in more than one buffer if sufficient buffers have
been reserved for the file by defining a Reserve Group
which consists of that file only. '

6. Nontransmitting commands may be freely inter-
mixed with transmitting commands in any command
sequence. However, since the eob switch is set on or off
by each entry into the .READ or .WRITE routines, skipping
and locating cannot be done by the same sequence.

Count Control Nontransmitting Commands

The count control nontransmitting commands are as
follows:
IOCPN

IOCTN
IOCDN

FORMAT AND EFFECT

The form of a count control nontransmitting command
is as follows:
1 8 16

IOCyN **on

“Reading”: The next n words of the file are located
or skipped, and the location of the first of these is in-
serted into the address portion of the command (re-
places the **). In addition, and 10coN command will
cause the buffer to be truncated.

“Writing”: The ** is replaced by the location of the
next available word in an output buffer in use by the
file. 10cs will assume that n words have been placed
into the n locations before the next reference to that
file. In addition, 10con will cause the buffer to be
written upon the next reference to that file.

EXAMPLES

1. Suppose the buffers for an input file contained 20
words, and no words had been located or skipped by
a previous command.

In this example, the following command list is used:

IOCPN **,10 (eob < 0)
IOCTN 5

The location of the first word in the buffer replaces
the ** in the first command, and the location of the
eleventh word is inserted in the second command. The
buffer is retained so that the remaining five words,
which have not been located, could be used by another
command.

2. Suppose the buffers in use by an output file are
defined as having only 10 words each, and the follow-
ing command list is used in a .wRITE calling sequence:

34

IOCPN **.5
IOCTN **,10

Five words are located by the first command and
five words are located by the second command. Ex-
ecution of the second command is interrupted by end
of buffer and exit would be made to the address indi-
cated by the eob entry. (One command cannot locate
words in more than one buffer.) The buffer is not
released until the next reference is made to the file.
Since the eob exit was taken, the history record in
the AC would contain the following:

buffer
address

(eob 5 0)

the location following

PZE the IOCTN command

) +10,, —

Buffer Control Nontransmitting Commands

The buffer control nontransmitting commands are as
follows:

IORPN
IORTN

FORMAT AND EFFECT

“Reading”: When “reading,” the format is as follows:

IORyN **”**

The location of the next unprocessed data word in
an input buffer replaces the ** in the command, and
the count (n) of the remaining words in that buffer
is inserted into the decrement portion of the command.
The next reference to the command will cause the n
located words to be bypassed.

“Writing”: When “writing,” the format is as follows:

IORyN ¥ on

The location of the next available word in an out-
put buffer replaces the ** in the address of the com-
mand. 10cs reduces the number of available words in
the buffer by n words, unless the end of buffer is
reached first. The next reference to the file causes the
contents of the buffer to be written as an output
record. The programmer can examine the history
record to determine if less than n words were located
or skipped.

EXAMPLES

1. Suppose an entire record from a given input file is
to be located (that is, a programmer wants to obtain
the address of the first word of that record). The fol-
lowing command could be used to find that address
and to determine the number of words in the record.

IORTN

Assume that the first word in the record is at an

address that can be represented by the word RecorD,

and that the record contains 60 words. When an exit

is taken from the read routine, the preceding com-
mand is changed to the following:

*k Kk
»

IORTN RECORD,,60

2. The buffer pool to which a file is attached con-
tains 14-word buffers. This example uses the following
~ command:

IORTN ** .20 (eob = 0)

Fourteen words are skipped and the buffer is re-
leased. The history record in the ac is as follows:

buffer

PZE (address

) +14,0

3. Consider Example 2 when each of the following
commands is used:

IOCTN ** 20 (eob = 0)
Twenty words are skipped and the first buffer is
released.
IOCDN ** 90 (eob = 0)

Twenty words are skipped and both buffers are
released.

Special Count Control Nontransmitting Commands

The special count control nontransmitting commands
are as follows:

IOSPN
IOSTN

FORMAT AND EFFECT

The format of a special count control nontransmitting
command is as follows:
1I0SyN **on

“Reading”: Unprocessed words in the input buffer
are bypassed until either n words have been skipped
or located or the end of the buffer is reached (which-
ever occurs first), The location of the first word located
is inserted into the address portion of the command.
The actual number of words skipped or located is
reflected in the history record. The 10cs record of the
number of available words in the buffer (the available
word locator) is reduced by the mumber of words
skipped or located.

If end of buffer is encountered first, the end-of-
buffer exit is not taken. In addition, an 10syN com-
mand will never release a buffer.

“Writing”: If the output buffer is capable of holding
n additional words, the location of the first available
word replaces the ** in the address of the command.
Otherwise, that buffer is truncated and the location
of the first available word in the next buffer replaces
the **,
Note: When used for “writing,” an 10syN command
never adjusts the available word locator (a portion of
buffer control word 1 which reflects the number of
available words in the buffer while the buffer is in

use). Hence, when an 1osyn command is used for
“writing,” an 10CyN or 10RyN command must be ex-
ecuted afterward to adjust the available word locator
by the actual number of words placed in the buffer.

EXAMPLES

1. If the input buffers for a file contain 15 words and
the following sequence is used:

IOSTN ** 20 (eob = 0)
Fifteen words are skipped and the buffers are not
released.
2. Suppose a programmer desires to locate space in

an output buffer in which to place n words. The pro-
grammer can use the following command:

IOSTN **n (eob =4 0)

10cs checks the buffer currently in use to determine
whether enough space remains in the buffer to accept
n words. If not, 1ocs truncates that buffer and proceeds
to the next buffer.

The address of the first word of the next available
buffer is inserted into the 1ocs command. The pro-
grammer could then use this address to transmit the n
number of words into the located space. Because the
command was an 10syN (the only command type which
does not advance the available word locator), the pro-
grammer must subsequently inform 1ocs of the actual
number of words placed in the located area by means
of a skipping command such as:

IOCTN **.n (eob = 0)
where n is the actual number of words placed in the

buffer. The above technique can be used to create a
variable length output record.

Examples of Other Usage

1. Suppose the next word of a file is to be placed into
the accumulator. Then, the following command could
be given:
IOCTN* CLAIL,1

where cra1 is the symbolic location of a particular cLa
instruction.

1ocs locates the address of the next word. Then,
under control of the indirect addressing specified in
the 1ocs command, it places that address in the address
portion of the cLa instruction.

The cLa instruction is modified as follows:

Before the read sequence, it would be:

CLAI CLA **
After the read sequence, it would be:
CLAI CLA ADDR

Input/Qutput Control System (IOCS) Commands 35

where ADDR is the location of the desired word. Note
that the effective address computation is performed as
though all of the index registers contain zero.

2. If a file is being used in such a way as to with-
hold more than one buffer at a time from a pool, it must
be treated as a Reserve Group (by itself) and the
buffer count (Burcr) must be equal to at least the
number of buffers that will be held in use at one time.

For example, suppose that a file whose file control
block is located at FILE has been produced by a card-
to-tape operation. Suppose, further, that five physical
records (five card images on tape) are to be processed
at one time, and that five input buffers containing this
information must be retained during the processing.
The location of the first word in each buffer is to be
transmitted indirectly by using the following .REaD
calling sequence and command list:

TSX .READ4
PZE FILE, EOB
PZE EOF,,ERR
IORPN* RCD1,,**
JORPN* RCD2,,**
IORPN* RCD3,,**
IORPN* RCD4,,**
IORTN* RCD5,**

Since eob==0, the nontransmitting commands locate
the initial address of each card buffer. Since indirect
addressing is used, the address of the first word in each
buffer is inserted into the address portions of locations
RCD1, RCD2, RCD3, RCD4, and Rcps, respectively. If the in-
structions at each of these effective addresses were
as follows:

RCDx AXC **4

then, the nth word in any of the buffers could be refer-
enced by first executing the instruction at location rcopx
and then executing an instruction such as:

CLA n4

This procedure will require the use of no fewer than
five buffers by the file at all times. Actually, 1ocs would
try to use at least ten buffers. At each entry to the
READ routine, when the five buffers just processed are
released to the pool, maximum overlap occurs if the
next five buffers have already been filled and are wait-
ing to be located. If, however, ten buffers are not
available (either because there are not ten in the pool,
or because other files are using them), the system can
still operate properly as long as there are at least five
buffers available to the file. This condition can be
guaranteed only by the following methods:

In Library I0CS: By making this file the only file
named in a scroup card and by specifying that BurcT
is five, the programmer can assure that at least five
buffers are always available for this file. Burct should
be ten or more to achieve overlap.

36 N

In Full IOCS: The file can be established as a Reserve
Group of one file by making the following entry in
the file list:

SVN 1,m
PZE FILE

with m (the buffer count) not less than five.
It should be noted that if the programmer has erred
and specified only three buffers, as follows:

SVN 1,3
PZE FILE

then the end-of-buffer exit would have been taken after
execution of the third 1orpn*. This would occur even if,
at that particular time, a buffer were available in the
pool for use by another file. 10cs control forces this ac-
tion, since otherwise some file might later be unable
to obtain a buffer. In this usage, eob is to be interpreted
as “end of available buffers.”

History Records

When the last 10cs command in a .READ or .WRITE call-
ing sequence is completed, or when an error condition
interrupts the execution of a command sequence, a
record of action is produced in the ac and MQ.

This record of action is called the history record. It
provides the programmer with information about the
last 1ocs command that was executed.

The count of the remaining words in the buffer can
be used to create future 1ocs commands or to make
other logical decisions. The investigation of the last
word “read” or “written” may be necessary to deter-
mine what the command actually did, as in the case
of an 10sT command when “reading,” where the count
specified may not have been satisfied because the end
of buffer was encountered. Similarly, an 10rRy command,
when used for “writing,” may not “write” the specified
number of words if it encounters an end-of-buffer con-
dition. The command list can also be interrupted by
encountering an end of file on an input file.

The history records are as follows:

Normal Exit

At each normal exit from a .READ OR .WRITE routine, the
record is in the Ac. '

S 23 17 21 35

Number of usable words remaining in
the buffer that contained the last word
"read", or the number of unused words "read" or "written",
in the buffer containing the last word if in the transmitting
"written" mode

1 plus the location
of the fast word

Error Exit

An unexpected exit from the routine will be taken if
any of the following conditions are encountered: |

1. “Reading” — End of buffer, end of file, block
sequence error, check sum error, or a parity error

which cannot be corrected
2. “Writing” — End of buffer

YV iaiiidid

= auaala UL wsuaaisr

The history record provides the following informa-
tion in the Ac and MQ:

S 23

17 18 20 21 35

quantity: 1

The 2s complement of the following
plus the location of the
command being executed when the

condition was encountered

1 plus the location of
the last word "read"
or "written", if inthe
transmitting mode

MQ
S 1 2 3 17 21 35
Parity Check Block The 25 complement The 2s comple-
error or | sum error | sequence | of the location of ment of the loca-
end of or end- | error the TSX to the IOCS| |tion of the normal
available | of-buffer routine return from the
buffers error 1OCS routine

When a parity, check sum, or block sequence error
occurs during “reading,” the prefix of the mq will
contain the following:

BITS MEANINGS

110 check sum and parity errors have occurred

101 sequence and parity errors have occurred

100 a parity error occurred which could not be corrected
010 a check sum error has occurred

001 a sequence error has occurred

The order in which these errors is detected is: check
sum, block sequence, and parity. If all three checks
are being made on a file, the occurrence of only a
parity error is probably a false parity error, because
the check sum is correct. However, the user must
realize that check sums are not a foolproof check.

When an end-of-buffer exit occurs during either
“reading” or “writing,” the prefix of the MQ is one of
the following:

BITS MEANINGS
100 all available buffers are in use
010 the end-of-buffer condition was encountered during

execution of an 1ocyN command

Input/Output Control System (IOCS) Commands 37

Programming Examples

Each of the two sample programs in this section is
illustrated first as it would be programmed in Library
1ocs and then as it would be programmed in Full 10Gs.
The comments fields explain the effects of the
instructions.

Example 1

In this example, an output file (ouT1) is generated by
writing 100 records from the same storage area
(recorp). The first word of each record is a record
number that is increased by 1 before the next record
is written. out! is then read back as iN1 and duplicated
to another output file (ouTs).

An unusual deblocking and blocking technique is
employed in the command sequences to illustrate the
effects of 10cs commands and indirect addressing.

On “reading” from 1~1, 10-word segments are alter-
nately transmitted or located. On “writing” to ouTs,

indirect addressing is used to “write” the first 40 words
1 8 16

SEXECUTE 18J08B

s18308 GO, MINIMUM

$1BMAP DKNAM 100

iNL FILE GENERATEDFILE,UT1, INPUT,BLK=50

ouTl FILE
QurT3 FILE

GENERATEFILE,UT1,0UTPUT,BLK=50
DUPLICATEFILE,UT2,0UTPUT,BLK=50

SAM TSX LOPEN, 4 (OPEN OUTL}
PIE ouTt
AXT 100,1 (SET INDEX REGISTER FOR LOOP)
18X CWRITE 4 (WRITE A RECORD OF 50 WORDS
PZE ouTl Y0 oUT1)
IORT RECORDy,50

104 cLA =1 {CHANGE VALUE OF FIRST WORD
ADD RECORD OF RECORD BY ONE)
sT0 RECORD
Tix *=6,1,1
TSX .CLOSE, % (CLOSE OUT1 WITH REWIND
PTW ouTL AND WEF)
15X +OPEN, 4
PZE INL
TSX .OPEN, & {OPEN IN1 AND OUT3)
PZE ouT3

LEC TSX .READ,% {READ FROM IN1)
PZE IN1,,EOB (IF €08, GO TO EOB)
PZE EOF , ,ERR

10 1ocp ZOLEC,, 10 (TRANSMIT FIRST 10 WORDS TO ZOLEC)
ICCPN =e,,10 [LOCATE NEXT LO WORDS)
10CP IOLEC+10,,10 (TRANSMIT 10 MORE WORODS)
10CPN »%,,10 (LOCATE NEXT 10 WORDS)
10RT ZOLEC+20,,10 (TRANSMIT LAST 10 WORDS)
TSX LWRITE, 4
PLE our3
10CP* 10,,10 (WRITE 10 WORDS AT A TIME
10CPs 10+1,,10 INDIRECTLY)
10CP* 10#2,,10
[0CPs 10+3,,10
10CT 20LEC+204, 10 (LAST 10 WORDS DIRECTLY)
TRA LEC (G0 YO LEC)

EOF TSX .CLOSE,4 (CLOSE IN1 AND OUT3)
PTW INL
TSX .CLOSE, 4
PTW ouT3
CALL EXIT

EOB TRA SYSDMP (CALL DUMP)

ERR TRA SYSDMP

RECORD PZE 0 {RECORD=50 WORDS)
oup 1,49
8CI 1,

20LEC BSS 30
END

(END-OF-FILE CARD)
$1BSYS

Figure 12. Example 1 Using Library 1ocs

38

of each record and the last 10 words are transmitted
directly from ZoLEG+20.

In the example, encountering end of buffer or an
uncorrectible error would cause a transfer to a system
dump. The programs are shown in Figure 12 and 13.

1 a 16
SEXECUTE IBSFAP
*FAP
COUNT 100
ABS
SST (SYMBOL TABLE)
DEBUT B0OOL 13000
ORG DEBUT
10CS €Qu SYSORG
CEFINE EQU 10CS+4 (ESTABLISH RELATIVE LOCATIONS
ATTACH EQU 10CS+8 OF I0CS TRANSFER VECTORS)
GOPEN EQu 10CS+12
READ EQU 10CS+14
WRITE EQU 10CS+16
CLOSE EQU 10CS+10
IN1 BSS 12 (FILE CONTROL BLOCKS)
curl B8SS 12
€uT3 BSS 12
BEGIN TSX DEFINE, 4 (NDEFINE POOL AS A BUFFER
PZE POOL POOL CONTAINING 10 BUFFERS,
PIZE 10,¢50 EACH BUFFER=50 WORDS)
TSXx ATTACH, 4 {ATTACH 3 FILES
PLE POOL IN LOCATION LIST
PZE LIST,y3 T0 POOL)
TSX OPENs 4 (OPEN DOUT1)
PZE ouTl
AXT 100,1 (SET INDEX REGISTER FOR LOOP)
TSX WRITE 4 (WRITE A RECORD
PZE ouTt OF 50 WORDS FROM
I0RT RECORD,,50 AREA RECORD)
10A CLA =1
ADD RECORD
STO RECORD (RECORD=RECORD+1)
TIX #-6,1,1
T$X CLOSE 4
PTW ouTl (EOF AND REWIND ON OUT1)
TSX OPEN,4 (OPEN IN1 AND OUT3)
PZE IN1
TSXx OPEN, 4
PLE ouT3
LEC TSX READ+4 (READ AND LOCATE FROM INl)
PlE IN1,,E08 (IF ECB, GO YO EO0B)
PZE EOF, s ERR
10 1oce ZOLEC,+410 (TRANSMIT 10 WORDS TO ZOLEC)
10CPN *8,,10 {LOCATE NEXT 10 WORDS)
1oce ZOLEC+10,4,10 [TRANSMIT 10 MORE WORDS)
10CPN “s,,10 [LOCATE NEXT 10 WORDS)
10CD Z0LEC+20,,410 (TRANSMIT LAST 10 WORDS)
TSX WRITE:4
PLZE ouT3
10CP» 104,10 (WRITE 10 WORDS
10CP» 10+1,,10 AT A TIME INDIRECTLY)
1oces 1042,,10
1oce= 10+3,,10
1acT IOLEC+20,,10 (LAST 10 WORDS DIRECTLY)
TRA LEC (GO 7O LEC)
ECF TSX CLOSE. 4 (CLOSE IN1 AND 0UT3)
PTW INL
TSx CLOSE,4
PTW ouT3
TRA 10CS {60 YO 10CS)
EOB TRA SYSDMP {CALL DUMP}
ERR TRA SYSome
LIST SVN 2¢¢3 (FILE LIST OF ONE
PLE INL RESERVE GROUP)
PIE QuTl
PZE ouT3
RECORD PZE 0 (RECORD=50 WORDS)
oup 1449
[-1v9 § 1,
ZOLEC BSS 30
POOL BSS 602 (RESERVE 502 WORDS FOR POOL)
END BEGIN
$1BSYS

Figure 13. Example 1 Using Full incs

EXECUTION DECK

Figure 14 shows the *joB card and the *FiLE cards
that would be included in the deck for execution of the
assembled program shown in Figure 13.

7 13 35 44 55

*JOB MIN I0CS PROGRAM 3 13000 MINIMUM

7 15 17 28 30 - 55

#FILE 1 #UT1 I HO GENERATED FILE
*FILE 2 suUT1 P HD GENERATE FILE
#FILE 3 =UT2 P HD OUPLICATE FILE

Figure 14. Execution Deck

Example 2

The following example illustrates use of an internal
file and the .sTasH routine.

An output file (ouT1) is generated in the same man-
ner as in the preceding example. This file is then con-
verted to an input file by changing the configuration
of bits 7 and 8 of Word 2 of the file control block.
Records from this file are stashed into an internal file
(1~T2) until the 20 buffers provided for that file are
full.

When the internal file is full, the remaining records
on ouT1 are duplicated onto another output file (ours).
Fic

The programs are shown in Figures 15 and 16.

1 8 16

$EXECUTE isJoe

$IBJCB G0,BASIC

$PCOL *GENERATEDFILE®,* INTERNALFILE®
SGROUP BUFCT=20,* INTERNALFILE"

SIBMAP DKNAM 150

CuTi FILE GENERATEDFILE,UT1,0UTPUT,BLK=50

CuT4 FILE SPILLFILE,UT2,0UTPUT,BLK=50
INT2 FILE INTERNALFILE, INT,0UTPUT,BLK=50
RB TSX -0PEN, 4 (OPEN FILE TC BE GENERATED)
PZE ouT1
AXT 100,1
TsX -WRITE,4
PLE ouT1 {WRITE 50-WORD RECORDS)
10RT RECORD, ,50
cLA =1
ADD RECORD {INCREASE RECORD NUMBER)
sT0 RECORD
TIX *#=641le1 (WRITE 100 RECORDS)
TSX +CLOSE, 4
PTw ouTl (CLOSE GENERATED FILE}
LoI CuTL+1
RIL 001000 (SET TO INPUT)
STI quTl+l
TSX +OPEN, 4 (OPEN GENERATED FILE)
PLE QuTl
TSX <OPEN, 4 (OPEN INTERNAL FILE)
PLE INT2
LESE TSX «READ, 4
PZE 0UTl,,I0X {LOCATE NEXT RECORD
PIE EOF,,S1 FROM GENERATED FILE)
IC IORTN *%,,50
NTS2 TRA 4] (NTS+1, IF NTS EXIT TAKEN}
TsX «STASH, 4
PIE 0UT1,,INT2
PIE NTS
TRA LESE (CONTINUE READING)
NTS STL NTS2
TRA #+] {TRA #+4 IF FILE OPENED)
TSX +OPEN, 4
PIE ouT4 {OPEN SPILL FILE)
STL -3
TSX <WRITE,4
PZE 0uT4 (WRITE SPILL FILE)
ICCD» 10,,50
TRA LESE (CONTINUE READING)
ECF TSX <CLOSE,4 {CLNSE IMNTERNAL FILE)
PZE INT2
TSX «CLOSE,% {CLOSE SPILL FILE)
PLE QuTe
TSX +CLOSE, 4 {CLOSE GENERATED FILE)
PLE ouTl
CALL EXIT
S1 TRA SYSDMP {FILE READ ERROR)
Icx TRA SYSOMP (EOB EXIT CANNOT OCCUR}
RECCRC PZE o] (RECORD NUMBER)
oup 1,49
8CI 1, (49 BLANK WORDS}
END
(END-CF~-FILE CARD)
$1BSYS

Figure 15. Example 2 Using Library 10cs

1 8 16
$EXECUTE IBSFAP
=EAD
COUNT 150
ABS
SST
10Cs EQU SYSORG
CEFINE EQU I0CS+4
ATTACH EQU 10CS+8 (DEFINE ENTRY POINTS
CLCSE EQU 10CS+10 TO IDCS SUBRCUTINES)
CPEN EQU I0CS+12
READ EQU I0CS+14
WRITE EQU i0Cs+16
STASH EQU i0CS5+30
BJ B80OL 14000
ORG B8J
CuTl BSS 12 (FCB - GENERATED FILE)
INT2 8s5s 12 (FCB ~ INTERNAL FILE}
CuT4 BSS 12 - (FCB - SPILL FILE)

START 7TSX DEFINE, 4 {SET UP BUFFER POOL
PZE POOL OF 30 BUFFERS,
PZE 30,450 50 WORDS PER BUFFER)
TSX ATTACH,4
PZE POOL {ATTACH FILES TO POCL)
PZE LIST,,3
TSX OPEN, & {OPEN FILE TO BE GENERATED)
PLE gutl
AXT 100,41
TSX WRITE,4
PZE ouTl {WRITE S0-WORD RECORDS)
10RT RECORD, 50
cLa =1
ADD RECORD (INCREASE RECORD NUMBER}
sTO RECORD
TIX #=641,1 (WRITE 100 RECORDS)
TSX CLOSE, 4
PTw auTl (CLOSE GENERATED FILE)
Lol OUT1+1 .
RIL 001000 {SET TO INPUT)
STI CUT1+1
TSx OPEN, 4 (OPEN GENERATED FILE
PZE QuTl AS INPUT})
TSX OPEN,4
PLE INT2 (OPEN INTERNAL FILE)
LESE TSX READ, 4
PZE OUT1,,I0X (READ GENERATED FILE)
PZE EOF,,S1
10 IORTN *%,,50 (LOCATE 50 WCRDS)
NTS2 TRA 241 INTS+1 [F NTS EXIT TAKEN)
TSX STASH,4 {STASH GENERATED FILE
PLE OUT1,,INT2 TO INTERNAL FILE)
PZE NTS
TRA LESE (CONTINUE TO STASH)
NTS STL NTS2
TRA *+1 {=+4 AFTER FILE OPENEC)
TSX OPEN, 4 (CPEN SPILL FILE)
PZE ouT4
STL =3
TSX WRITE, 4
PLE CuT4 {WRITE SPILL FILE}
1GCD= 10,,50
TRA LESE (CCNTINUE READING)
ECF TSX CLOSE, 4 (CLOSE INTERNAL FILE)
P1E INT2
TSX CLCSE, 4 (CLOSE SPILL FILE)
PZE ouT4
TSX CLOSE,4 (CLOSE GENERATED FILE)
PZE ouTlL
TRA 10cs (ECJ)
St TRA SYSDOMP (READ ERROR EXIT)}
10x TRA SYSDMP (ECB CANNOT CCCUR}
PCCL BSS 1562
RECCRC PZE 0
cup 1,49
BCI 1, {(RECORD+2 == RECORD+49)
LIST SVN 2492 (FILE LIST)
PZE ouTlL
PZE QuT4
SIX 1,,20 (20 BUFFERS FOR
PZE INT2 INTERNAL FILE)
END START
$18SYS

Figure 16. Assembly Deck

EXECUTION DECK

Figure 17 shows the *joB card and the *friLE cards
that would be included in the deck for execution of the
assembled program shown in Figure 16:

7 13 35 44 55

«J0B BASIC [0CS PROGRAM 3 14000 RASIC

T 15 17 28 30 55

*FILE 1 =yt1l P HD GENERATED FILE
#FILE 2 +INT P INTERNAL FILE
*FILE 3 =y72 P HD SPILL FILE

Figure 17. Execution Deck

Programming Examples 39

Labels

The LaBeLs level of 10cs contains the internal routines
for processing tape, disk, and drum labels. When 1M
standard labels are used, these routines require no
programming in the source program. They will func-
tion automatically when labeling action is required.

If nonstandard labels are used, or if files are un-
labeled, the programmer must follow procedures out-
lined later in this section.

If labeled files are specified, 10cs will automatically
provide for tape reel switching (except for backward
reading), and will provide file identification messages
as the file is prepared for processing.

Figure 18 shows the format of a labeled file on mag-
netic tape. The header label is followed by a file mark.
The file may contain an optional checkpoint record. If
it does, this record is followed by another file mark and
then by the actual blocks of data. A file mark separates
the last data block from the trailer label, and another
file mark follows the trailer label.

Labels are subject to the following conditions:

1. Labeling is not available for files processed on
any on-line card equipment.

2. Header and trailer labels are always written in the
BCD mode.

3. Tape density requirements, applicable only to 729
magnetic tape unit files, are as follows:

a. Header and trailer labels may be high or low
density.

b. The file mark following a header label is in the
same density as the header label.

c. The optional checkpoint record and the file
mark that follows it are in the same density as
the file.

d. The file itself may be either high or low density.

BEGINNING
OF TAPE
REFLECTIVE
SPOT

HEADER E
LABEL O
F

CHECK POINT

x> % % = x x
mom|[X x X X X x X _|

OPTIONAL
Figure 18. Format of a Labeled Tape File
40

e. The file mark preceding a trailer label, the
trailer label, and the file mark following the
trailer label are in the same density as the file.

IBM Standard Labels

The label routines in 10cs are designed to process 1BM
standard label formats. Special programming is re-
quired when nonstandard labels are used.

The 18M standard label formats are described in the
following text.

84-Character Header Labels

This is the standard format for header labels on 1M
729 Magnetic Tape Unit files, 1M 1301 Disk Storage
Unit files, and 18M 7320 Drum Storage Unit files. The
format for the 84-character standard header label is
shown in Figure 19.

In this standard header label, creation date is the
date the file was written, and retention days is the num-
ber of days the file is to be retained. If an attempt is
made to use this reel before creation date plus retention
days has been reached, 1ocs signals the error by print-
ing a message.

Positions 7-24 and 42 in the standard 84-character
header label are not applicable to disk —or drum —
storage files.

84-Character Trailer Labels

This is the standard format for trailer labels on 1BM
729 Magnetic Tape Unit files, 1M 1301 Disk Storage
Unit files, and 18M 7320 Drum Storage Unit files. The
format for the 84-character standard trailer label is
shown in Figure 20.

TRAILER
LABEL

mom[X X X X X X X
X X X X X X X

mom

N,
vescription

THDRb to indicate a

header label .

Blank,

Blank.

A five-character
identification code assigned
to the reel when it enters

the instaiiation. This
number normally appears on
the outer surface of the reel
for visual identification.
Blank.

This field is the same as the
reel serial number of the
first or only reel of the file.
Blank.

A four-digit number
(0000-9999) that is the order
of this reel within the file.
24 Blank.

5 25-30 Creation Date* The year and day of the year
on which the file was
created. The year occupies
the first two positions (00-99)
and the day occupies the

last three positions; e.g.,
December 30, 1963 would

be entered as 63b364.

Blank.

The number of days after the
creation date (0000-9999)
that this file is to be retainedd
Blank.

This character indicates the
density of the file as:

0 - Low Density

1 - High Density

This character indicates the
mode of the file as:

0 -BCD

1 - Binary

2 - Mixed Mode

This character indicates the
presence (1) or absence (0)
of check sums.

This character indicates the
presence (1) or absence (0)
of block sequencing.

This character indicates the
presence (1) or absence (0)
of a checkpoint following
the label on the file.

An 18-character field that
identifies the file.

Not used, but reserved for
709/7090,/7094 sori com-
patibility.

Positions 73-84 may be
employed as an area for
nonstandard label data at
the programmer's option.

\ et Namo
\S) ri€ia INaGme

]
5 Label ldentifier*

m
bl 1)
Q.
nd
[}

-12 Reel Serial Number

14-18 File Serial
Number*

20-23 Reel Sequence

Number*

-] 31-32
33-36 Refention Days*

38 Density Indicator

File Mode**

Check Sum

Indicator**

Block Sequence
Indicator**

Checkpoint
Indicator**

12 43-60 File
Identification*
For Optional
Use***

13 61-72

14 73-84 For Optional

Use***

* This field is verified by !OCS.
** This field overrides file control block specifications.
*** This field is not interpreted by 10CS.

Figure 19. Format of the M Standard 84-Character Header
Label

In the 84-character standard trailer label, the follow-
ing actions will be taken for the indicated fields:

Label Identifier: 1EORD causes reel-switching to occur
automatically during reading. No end-of-file indication
is given the programmer when an end-of-reel trailer

o ~ BCD . o Description
Field | Position(s) Field Name
1 1-5 Label Identifier* 1EORb to indicate an
end-of-reel trailer label
or 1EOFb to indicate an
end-of-file trailer label.
2 6-7 Blank.

8-12 Block Count* This field specifies the
number of blocks written on
this reel of the file {excluding
labels, checkpoints, and file
marks). The block count is
given in trailer labels only.
Blank.

This is the location in storage
of the first word of the unit
control block which specifies
the unit on which this file
was prepared.

For Optionai Use*** | Positions 19-84 may be
employed as an area for non-
standard label data at the
programmer's option.

14-18 Unit Control Word

* This field is verified by 10OCS.
*** This field is not interpreted by 10CS.

Figure 20. Format of the 1BM Standard 84-Character Trailer
Label

label is encountered. 1eorb causes an end-of-file exit
from the routine. If the file is referred to again, another
end-of-file indication is given.

Block Count: The block count is checked for every
segment of an input file (reel, disk, or drum). If it
differs from the number of blocks actually read in, 10cs
reports a sequence error. In this case, it should be
noted that a sequence error for the reel can occur
even though each block is not being checked for se-
quence, During writing, an end-of-reel trailer label is
prepared by 10cs when the end of reel is encountered.
An end-of-file trailer label is prepared when the file
is closed.

120-Character Header and Trailer Labels

This is the standard format for both header and trailer
labels for files on M 7340 Hypertape Drives. The
format of the standard 120-character header ar trailer
label is shown in Figure 21. The actions indicated
above for Label Identifier and Block Count are also
taken for these trailer labels.

Blank Reels
Use of the LaBELS level of 10cs requires that all files on
magnetic tape be labeled before processing is begun.
A temporary header label should be placed on each
otherwise blank reel by a utility program or by a card-
to-tape operation. The format of required header labels
on blank reels is shown in Figure 22.

Note: Blank labels are not required for disk and
drum output files.

Labels 41

positions; e.g.,
December 30, 1963 would
be entered as 63364.

4 16-25 File A 10-character field that
Identification* identifies the file uniquely.
5 26-30 File Serial This field is the same as
Number* the reel serial number of
the first or only reel of the
file.
6 31-35 Reel Serial Number | A 5-character identifica-

tion code assigned to the
reel when it enters the
installation. This number
normally appears on the
outer surface of the reel
for visual identification.

BCD BCD
Field | Position(s) Field Name Description Field Position(s) Field Name Description
1 1-5 Label Identifier* THDRb to indicate a1 12 48 Recording Mode This character indicates
header label, 1EORb to Indicator** mode:
indicate an end-of-reel 1 - Binary
trailer label, or 1TEOFb 2 - BCD
to indicate an end-of-file 4 - Mixed Mode
trailer label. 13 49 Recording This field specifies the
6 Blank. Technique number of bits recorded as
2 7-10 Retention Period* Number of days (0001- Indicator*** one byte: 8 (but only six of
9999) this file is to be the eight bits are used as
rdefainef*o;rerlgh;ecaﬁéon data to be processed.)
ore: shev . 14 50 ° Data Processing This field specifies the
for files where the expira- R .
N . A Technigue number of bits to be
tion date is not applicable. Indi .k d b 6
3 11-15 Creation Date* The year and the day of ndicator processed as one byte: o
the year on which the file 15 51-54 Creating System This field specifies the
was created. The year s?/srem that created the
occupies the First two file (e.g., 7090 or 7094).
positions (00-99), and 16 55 Record Format*** This character indicates the
the day of the year record format of this file.
occupies the last three 17 56-60 Record Length*** For fixed-length records,

this field specifies the
number of charactersineach
data record; for variable-
length records, it specifies
the number of characters in
the largest possible data
record in this file.

18 61-65 Block Size*** For fixed-length records,
this field specifies the
number of logical data
records in each block; for
variable-length records,
it specifies the number of
characters in the largest
possible block in the file.

of block sequencing.

19 66 Checkpoint This character indicates the
36 Blank. Indicator** presence (1) or absence (0)
7 37-40 Reel Sequence A four-digit number (0001- of checkpoints in the file.
. .
Number 99.99)71‘hct‘|s t:he ord?r of 20 67-72 Block Count* This field specifies the
this reel within the file. N
number of blocks written
41 Blank. on this reel of the file
8 42-44 Reserved This field is reserved for (excluding labels, check-
future IBM use. points, and file marks).
9 45 Density indicator*** | This indicator is 0 for The block count is given
Hypertape labels. in trailer labels only.
10 46 Check Sum This character indicates 21-26 73-100 Reserved These fields are reserved
Indicator** the presence (1) or absence for future IBM use.
(0) of check sums. 27 101-120 | For Optional Positions 101-120 may be
" 47 Block Sequence This character. indicates the Use*** employed as an area for
Indicator** presence (1) or absence'(0) additional label data, at

the programmer's option.

* This field is verified by IOCS.
** This field overrides file control block specifications.
*** This field is not interpreted by 10CS.

Figure 21. Format of the 1BMm Standard 120-Character Header and Trailer Labels

Labeling and Label Checking

Input File Header Labels

When the file is opened, and at the beginning of each
new reel, if it is a multireel file, the label is checked
to ensure that the correct reel is being processed. The
following conditions must be met for an input label to
be valid:

1. The file serial number given in a control card or
pseudo-operation must agree with the file serial num-

42

ber in the label. If the file serial number is omitted
from the sLaBEL card, the *riLE card, or the LABEL
pseudo-operation, this test is not performed.

2. The reel sequence number in the label must agree
with the reel sequence number given in a control card
or pseudo-operation, unless reel-switching has occurred.
If reel-switching has occurred, 1ocs will have advanced
the reel sequence number stored in the file control
block. In Library 1ocs, if the reel sequence number is
omitted from the sLaBEL card or the LABEL pseudo-
operation, this test is not performed.

n

ion{s) Field Name Description
-6 Label Identifier 1BLANK to identify the
reel as a blank reel
available for use.
Blank.
A five-character
identification code
assigned fo the reel
when it enfers the
installation. This
number normally
appears on the outer
surface of the reel for
visual identification.
3 13-84 {729,130, or 7360} Arbitrary = IOCS does
or | not use these fields on
13—120(734(?) a 1BLANK header label.

[<%

7
§-12 Reel Serial Number

Figure 22. Format of Required Labels on Blank Reels

3. The file identification given in a control card or
pseudo-operation must agree with the file identification
in the label. If no file identification is given, this test
is bypassed.

If any of the above checks fail, and the label search
option has not been specified, a message is printed
indicating that a label error has occurred and the label
in error is printed. A halt will then occur. By sense
switch control, the operator may accept the reel as
valid, in which case he may proceed. Otherwise, he
must mount the correct reel to be processed.

If the label search option has been specified, a mes-
sage containing the file name and a search skip list is
printed. Searching occurs until the correct label is
found or the operator intervenes by using a sense
switch.

Additional Input File Header Labels

The system will automatically bypass all records be-
tween the header label and the next file mark. The
system provides no automatic way to create these
records, and this feature is provided for compatibility
with existing labeling schemes. If these records are to
be processed, the file should be treated as an unlabeled
multireel file. The programmer can then process the
label records with his own routines.

Input File Trailer Labels

Each labeled file is assumed to be a multireel file. The
occurrence of an end-of-reel trailer label causes tape
switching to the next reel, which is checked before
processing is continued. The occurrence of an end-of-
file trailer label or, in fact, any record other than an
end-of-reel trailer where a trailer label is expected,
will cause an end-of-file exit to be taken from the read
routine. The block count, which appears in every
trailer written by the system, is checked. A sequence

error exit is taken if the block count does not agree
with the number of blocks read.

Output File Header Labels

Every reel upon which a labeled output file is to be
prepared must have a label written on it. This label.
may be a 1BLANK type or a 1HDR type on which creation
date plus retention days has been reached. If these
conditions are not found, a message is printed indi-
cating that a label error has occurred. The label is
then printed and a stop occurs. The condition may be
ignored by the operator, in which case a dummy label
is generated. The file serial number is set to ***** for
a reel that does not contain a 1BLANK or 1HDR header

label.

Output File Trailer Labels

If, during the course of writing an output reel, the end-
of-tape reflective spot is sensed, a file mark, end-of-reel
trailer label, and another file mark will be written. The
reel will then be rewound and unloaded, and a mes-
sage will be printed advising the operator to remove
that reel.

If the file is assigned two different units, reel-switch-
ing occurs and processing continues. Otherwise, a delay
will occur until the present reel is removed and a new
blank reel with a temporary label is mounted.

Disk and Drum File Labels

It is emphasized that protection cannot be guaranteed
to files located on a disk or drum by signifying a re-
tention period. The ua2 identifier should be written
on those cylinders which are to contain the rocs-writ-
ten file, before 10cs is used. This identifier can be
written by using the System Editor or a utility pro-
gram. The specifications for disk and drum editing
can be found in the publication IBM 7090/7094 IBSYS
Operating System: System Monitor (IBSYS), Form
C28-6248.

The functions and procedures of label facilities will
be simulated. Blank labels are not required for new
output files.

Nonstandard Labels

Nonstandard labels are those that do not conform to
the 1BM standard formats.

Nonstandard labels on 18M 729 Magnetic Tape Unit
files, 1301 Disk Storage files, and 7320 Drum Storage
files can be processed either by treating the labels as
files consisting of a single record and processing each
label individually within the main program, or by
using 10Cs to transfer to a monstandard label routine
provided by the programmer.

Labels 43

~ 10cs does not permit nonstandard label formats or
labeling procedures to be used with files on Hyper-
tape.

Nonstandard Labels for 729 Tape, 1301 Disk, and
7320 Drum Files

If the nonstandard labels on 1M 729 Magnetic Tape
Unit files, disk storage files, or drum storage files dif-
fer radically from the standard format, the program-
mer must replace the 1ocs labeling procedures with
routines of his own. For instance, 10cs is unable to
handle labels in which the first field (label identifier)
is not in the standard form to indicate whether the
label is a header label , an end-of-reel trailer label,
or an end-of-file trailer label.

When such nonstandard labels are used, the pro-
grammer must specify that the files are unlabeled and
must treat labels, as well as data segments, as separate
files. Each header label would be treated as a separate
file, data records would be a file, and each trailer label
would be a file. The programmer must provide routines
within his main program to process the labels in the
manner he desires. 10cs would not be able to dis-
tinguish labels from data records, and 1ocs label pro-
cedures would not apply.

If, however, the nonstandard labels do not differ
significantly from the standard format, they can be
handled within 10cs by using a nonstandard label rou-
tine provided by the programmer. When 1ocs is to
check or prepare a label, it transfers to the program-
mer’s nonstandard label routine to accomplish the re-
quired labeling action.

In this case, the programmer must provide 10cs
with the location of the first word of his nonstandard
label routine. This routine would actually consist of
five routines for checking and preparing header and
trailer labels. The first instructions in the nonstandard
label routine would be a set of transfer instructions
that would direct 10cs to the programmer’s own label-
ing routines when label action is required.

The set of transfer instructions should be set up
as follows:

mylbls TRA Ibrtnl
(+1) TRA Ibrtn2
(+2) TRA Ibrtn3
(+3) TRA Ibrtn4
(+4) TRA Ibrtn5
where:

mylbls

is the symbolic location of the first word of the programmer’s
nonstandard label package.

Ibrtnl

is the symbolic location of the programmer’s routine to check
input file header labels,

Ibrtn2

is the symbolic location of the programmer’s routine to check
input file trailer labels.

44

Ibrin3
is the symbolic location of the programmer’s routine to check
the label on tape to be used for output.

Ibrtn4
is the symbolic location of the programmer’s routine to pre-
pare output header labels.

Ibrtn5

is the symbolic location of the programmer’s routine to pre-
pare output trailer labels.

The programmer must provide 10cs with the loca-
tion of the first word of the nonstandard label routine
according to the form of 10cs he is using, as follows:

1. In Library 1ocs—The external name of the first
word of the nonstandard label routine is specified in
the nonstandard label option field (nsLBL) of the FILE
pseudo-operation.

2. In Full 1ocs—The location of the first word of
the nonstandard label routine is specified in the decre-
ment field of the entry for that file in the list of files
attached to a buffer pool. It is done in the following
manner:

filist SVN 1,4

PZE filel

PZE file2,,mylbls
where:
filel

is the symbolic name of a file for which IOCS standard label
routines are to be used.

file2
is the symbolic name of a file with nonstandard labels.

mylbls
is the symbolic location of the first word of the nonstandard
label routine for that file.

When filist is attached to a buffer pool with a
.ATTAC routine, 10cs automatically handles placement
of mylbls for proper transfer to the nonstandard routine.

When nonstandard label routines are provided, the
following label procedures occur:

1. Header and trailer labels are read and written
by 10cs.

2. All file marks associated with the labels are read
and written by 1ocs.

3. The standard 14-word area at symbolic location
LAREA (LAREA in Full 1ocs), within the 1ocs com-
munications region, will be used for holding, check-
ing, and forming label images. (Appendix A contains
the relative location of .LAREA and LAREA to the origin
of 10cs.)

4. All system messages and actions will apply.

5. At each 1sx to the nonstandard routine, index
register 2 will contain the 2s complement of the loca-
tion of the first word of the file control block for the
file being processed.

In his nonstandard routine the programmer must
save and restore the contents of all index registers
and sense indicators.

Assume that the programmer has chosen MYLBLs as
+l1o cym‘*\nhn In(\a}won n’: f]ﬁn ﬁvci' urnrr] n; blc non-

[& 4] 110

standard labels routine. 10cs makes the following Tsx
transfers when labeling action is needed and the routine
must contain the indicated return transfer for the
specified condition:

1. Checking input file header label

a. 10cs starts this function by means of T1sx
MYLBLS,1.

b. The routine must return to 1ocs by means of
the following:
TRA 1,1 if the label is correct.
TRA 2,1 if the label is invalid.

Bit 35 of the seventh word of the label area must
be 1 upon either return if a checkpoint record is to
be skipped.

2. Checking input file trailer label

a. 10cs starts this function by means of Tsx
MYLBLS +1,1.

b. The routine must return to 1ocs by means of
TRA 1,1
Upon return, the sign of the M@ must be:

+ if the label is an end-of-reel trailer label.
Reel switching will occur.
— if the label is an end-of-file trailer label.
The end-of-file will occur.

3. Checking label on tape to be used for output

a. 1ocs starts this function by means of Tsx
MYLBLS+2,1.

b. The routine returns to 10cs by means of the
following:
TRA 1,1
TRA 2,1

if the reel may be used.
if creation date plus retention days
has not been reached.
TRA 3,1 if the reel cannot be used.
4. Preparing output header label
a. 10cs starts this function by means of Tsx
MYLBLS +3,1.
b. The routine must return to 10cs by means of
TRA 1,1,
5. Preparing output trailer label
a. 10cs starts this function by means of Tsx
MYLBLS+4,1. Upon entry to this routine, the
location .LAREA will contain the following:

1EORbD if an end-of-reel trailer label is to be
prepared.
1EoFbb if an end-of-file trailer label is to be
prepared.
b. The routine must return to 10cs by means of
TRA 1,1

Provision for Additional Information in Hypertape
Labels

Note: In the following discussion, the Full 10cs
programmer should substitute LAREA wherever .LAREA

appears and LARea1 wherever .AREA1 appears. The

relative locations of these words are indicated in

Appendix A.

10ocs makes no provision for nonstandard 120-
character labels.

However, label field 27 (Bcp positions 101-120) may

Lo owrced for n A ann PR Py A s T T

e uacd iU auuu.luual LllfUlllldLlUll If Lhc Plucldllllllcl
wants to use this label field for additional informa-
tion, he must provide his own routine for processing
the information.

After checking or creating a label, 1ocs transfers
to the programmer’s routine, which can then check
or insert the additional information into the last two
BCD positions of .AREA1+2 and into .AREA1+3 through
.AREA1+5. In addition, if the tape being created is to
be used on a different computer (e.g., the ™M 7074),
the appropriate information may be placed into
LAREA+9 and into the first five Bcp positions of
LAREA+10. The sixth Bcp position of .LAREA+10 must

not be destroyed.

The programmer notifies 10cs of the location of his
Hypertape additional information routine, as follows:

1. In Library 10cs—By providing the external name
of the first word of the routine in the ~suBL field of
the riLE pseudo-operation.

2. In Full rocs—By providing the symbolic location
of the first word of the routine in the decrement of
the appropriate file entry in the list of files attached
to a buffer pool. The symbolic location of the routine
is specified in the same manner as the symbolic loca-
tion of the first word of a nonstandard label routine.

The following functions will be performed if the
additional information routine is specified:

1. All header and trailer labels will be read, written,
and checked by 10cs.

2. All file marks associated with labels will also be
read and written by 10CSs.

3. Two label areas within the 10cs communications
region will be used. They are the 14-word area at
.LAREA and the six-word area at .AREA1,

4. At each 1sx to the programmer’s additional label
information routine, index register 2 will contain the
2s complement of the location of the file control
block for the file on which the label action is being
performed.

The programmer need not save the contents of

Figtare nr canan Iantnma Lia adian

nda A TL ~
Lxl\le L 651.5 LOLD Ul DUTILT uu.u\,a [RVIE) .ll.l ll.lD .l U uuuc 4 11T

return from the routine must be TRA 1,4.

Assume that the programmer has designated the
first word of his additional label information routine
as AppLBL. 10cs would make the following transfers
for the indicated label actions:

1. Checking input file header label —10cs starts this
function by means of Tsx ADDLBL,4.

Labels 45

2. Checking input file trailer label — 10cs starts this
function by means of TSX ADDLBL+1,4.

3. Preparing output file header label —10cs starts
this function by means of Tsx ADDLBL+2,4.

4. Preparing output file trailer label —10cs starts
this function by means of Tsx ADDLBL +3,4,

Unlabeled File Procedures

Although the handling of labeled files is entirely auto-
matic, 10Cs is equally capable of processing unlabeled
files. The difference is that multireel file handling is
only semiautomatic for unlabeled files, because the
occurrence of the file mark can have several meanings.

Single Reel Unlabeled Files

An unlabeled file that is contained on one reel of tape
may have any number of file marks. During reading,
the detection of each file mark temporarily suspends
buffering on that reel. When a file mark is detected by
the read routine, the end-of-file exit is taken. If the
file is again referred to by a .Reap calling sequence,
buffering will continue until the next file mark is
encountered. It is the programmer’s responsibility, in
this case, to determine which file mark signifies the
actual end of the file. No reel switching is possible
for input files of this type.

If end of tape is encountered while writing a sup-
posedly single reel unlabeled file, a reel switch occurs
and processing continues. For some files, such as pe-
ripheral output files, no harm occurs from this action.
However, if the file is to be processed by 10cs at a
later time, the file is not describable. (It is a multireel

46

file with more than one file mark on a reel, a situation
which is not allowable.)

Multireel Unlabeled Files

A multireel unlabeled file may have only one file mark
——the one that signifies the end of the reel. This file
mark is written automatically when the end-of-tape
reflective spot is sensed while writing. Reel switching
occurs after the file mark is written.

When a file mark is detected while reading a multi-
reel unlabeled file, all buffering is suspended until the
end of file is reached. An end-of-file exit is taken once
per reel for each file mark encountered and, if the file
is again referred to by a read operation, reel switch-
ing occurs and buffering is resumed. For this type of
file, the programmer must have a recognizable data
record to indicate that the end of file has been reached.

Multifile Reels

Several files that appear on the same reel may be
processed automatically by closing each processed file
without rewinding and then opening the subsequent
file. 10cs does not automatically rewind any reel, ex-
cept at reel switching. Hence, a single reel may con-
tain several complete files and the first portion of a
multireel file. Labeled and unlabeled files may be
mixed upon the reel, provided some precautions are
observed in the usage of 10cs routines. For example,
the backspace file routine with a count greater than 1
may not result in positioning the read-write head at
the beginning of data of a given file, because of the
occurrence of file marks for labels, trailers, and check-
point records. It is also unlikely that the open routine
with label search would find the correct file.

Other Input/Output Control System (IOCS) Procedures

Density Considerations
Density can only be changed on 729 tapes. If a reel

is to be involved in a restart, 10cs allows a tape density
change, if any, only after the first file mark on the reel.
The reason for this restriction is that the restart routine
must know the density of every block and file mark
to be skipped over in the process of tape positioning.
Arbitrary changes in density are not permitted because
there is no way 10cs can detect the changes.

Tape densities of a file and its header label are
specified in a control card or pseudo-operation and are
stored in the file control block. The density of a check-
point record on a labeled file is the same as that of the
main body of the file. In the case of a mult-file reel, a
density change is permitted only after the header label
of the first file and the remainder of the reel must be
the same density.

A standard density option is provided for labeled
files. If this option is indicated in a control card or
pseudo-operation, the density of the label will be that
specified for the file. Furthermore, when an output file
is prepared, the density of the label on the reel to be
checked for validity is always the same, low or high,
according to installation choice. It should be empha-
sized that if the standard option is not used, the density
of the header label of the blank reel must agree with
the density specified for the label of the file to be
written.

The backspace file routine cannot be used on a reel
with mixed densities because difficulty will be encoun-
tered in backspacing over files of different densities.
The backspace file routine also cannot be used to re-
position the read-write head in front of the data of a
labeled file when the label and the body of the file
are in different densities.

Note: It is strongly recommended that density
changes be avoided.

Mode Considerations

The body of a file normally contains information re-
corded in only one mode: binary or Bcp. However,
10Cs is capable of processing a mixed-mode file if

1. The file is described as being a mixed-mode file
in a control card or pseudo-operation, and

2. One of the standard look-ahead words, described
in Appendix F, is attached to the end of each physical
record of the file.

When reading a mixed-mode file which satisfies these
two conditions, 10cs examines each look-ahead word

to determine the mode of the next physical record. No

indication is given to the programmer as to what that
mode is.

In order to enable 10cs to write a mixed-mode fle,
the user must place the proper look-ahead words in the
output buffer. Since these words cannot be properly
placed by programs written in thie FORTRAN IV or COBOL

languages, mixed-mode files can be written with com-

piled programs only when output is handled by sub-

routines written in the Map language. 10cs will always
write the first physical record of a file in the mode
specified on the sFiLE or *FILE card.

Block Sequence Numbers and Check Sums

Every file control block carries a block sequence num-
ber for the current reel of the file. For a labeled file,
this sequence number is always written in the trailer
label at the end of each reel and is checked later, when
the trailer label is read.

For a binary file, a block sequence word can be
appended to the end of each block, regardless of
whether the file is labeled or unlabeled. This word
contains the sequence number of the block in its ad-
dress and may also contain an 18-bit folded check sum
for the block in the left half of the word.

The check sum is formed by computing a logical
sum of the entire data in a block, excluding its block
sequence word, and then logically adding the left and
right halves of this sum. This computation requires
the execution of at least two instructions for each data
word, and hence may be costly to the program. On the
other hand, forming and checking a block sequence
number is accomplished automatically by 10cs in a few
programming steps for each block, and it is quite help-
ful in detecting certain machine malfunctions, such as
tape shift-register trouble.

The proper entries must be made in control cards
if the programmer desires formation of block sequence
words and examination of check sums. Block sequenc-
ing must be specified if the check sum option is to be
used.

In order for a block sequence word to be generated
and checked, each buffer requires an additional word.
The programmer must be sure that this additional
word is available, as follows:

In Library IOCS: By including the additional word
when block size is specified in a control card or pseudo-
operation.

In Full IOCS: By including the additional word
when space is reserved for buffer pools and when the
pools are defined with the pEFINE routine.

Other Input/Output Control System (IOCS) Procedures 47

However, generation and checking of this word is
accomplished internally, and the extra word is not
evident during processing of data.

Checkpoints and Restarts
A checkpoint may be initiated by one of three con-
ditions:

1. Beginning of reel on a labeled file.

2. Transfer to the checkpoint routine (.ckpT or
ckpr) within a program.

3. Operator intervention by use of the sense switch
assigned to checkpoint control. Sense switch 2 is the
standard sense switch for checkpoint control.

In the first condition, a checkpoint is written either
after the label on an output file or on the checkpoint
file, depending on which file has been specified in a
control card or pseudo-operation. In the second and
third conditions, the checkpoint is always written on
the checkpoint file.

The checkpoint written by 10cs contains all of the
information necessary to restart the program from the
point at which the checkpoint was taken.

When a checkpoint is executed, a checkpoint iden-
tification and restart code is printed and all input/
output activity ceases. The checkpoint identification
code is a sequence number that is increased by 1 each
time a checkpoint record is written. The contents of
all index registers, the condition of sense indicators and
sense lights, the settings of sense switches, and the
contents of core storage are recorded.

A checkpoint record of two blocks is written, fol-
lowed by a file mark. The first block contains informa-
tion later used by 10Ccs to provide mounting instruc-
tions and to reposition tapes. The status of sense
switches is also recorded in this block. The second
block contains the contents of core storage and the
conditions of registers and indicators.

If a checkpoint is initiated by use of the checkpoint
routine, and either a checkpoint file was not specified
earlier in a control card or pseudo-operation or the
checkpoint file was not opened, a transfer back to the
main program will occur immediately.

Restarting a program from a checkpoint must be
initiated by the operator. It cannot be initiated by the
stored program. Once initiated, the restart routine uses
the information in the checkpoint record to print
messages to assist the operator in mounting tapes and
setting sense switches. The information is also used to
restore core storage and all indicators and registers
to their status when the checkpoint was taken.

The execution of the program is resumed from the
point in the program at which the checkpoint record
was written.

Restarts can be initiated by using the sEXECUTE RE-
START control card. This card passes control to the

48

Restart Program described in the publication IBM
7090/7094 IBSYS Operating System, Operator’s Guide,
Form C28-6355.

In Full 10cs, restarts can also be initiated by using
the *REsTART Preprocessor control card described in
the section “Control and Loading Information for
Full 10cs.”

Interchanging Hypertape Cartridges with Other
IBM Data Processing Systems

If the programmer is concerned with the need for
interchanging 7340 Hypertape cartridges with other
M data processing systems (7074, 7080, or another
7090/7094) the following tape formats should be used:

1. Fixed-length records with fixed blocking factor
— Tape records as well as logical data records must be
a multiple of 30 characters in length. All data records
must have a terminating record mark. The multiple of
30 characters includes the terminating record mark.

2. Variable-length records with variable blocking
factor — Every logical data record must be a multiple
of 30 characters in length. The multiple of 30 characters
includes a terminating record mark and a five-char-
acter field, located at the immediate start of each data
record. This length field is right-justified, with leading
zeros included when necessary.

Further requirements for Hypertape exchange among
7000 series systems are:

1. All tape information must be in Bcp form

2. The delta character must not be written on tape.

3. All data must be in the unpacked mode.

Sequential Processing Using Disk and Drum
Storage Units

Sequential processing of a file on 1301 Disk Storage
or 7320 Drum Storage requires several special con-
siderations.

The format track must be written so that each track
contains one physical record of 465 words for disk or
524 words for drum. The Hat for each track must be
the same as the seek address, the HA2 must be one
word, and the record address must be one word.

1ocs will read or write one full track for every physi-
cal buffer less than or equal to 465 words for disk or
524 words for drum. Additional tracks will be used
in sequence if the physical buffer is greater than 465
(disk) or 524 (drum) words. 10cs will not pack or
block physical records on a track. Therefore it is sug-
gested that a buffer size of 465 (disk) or 524 (drum)
be used with output files for maximum efficiency.

If the disk or drum storage file is an input file, it
must have been created by 10cs. This is required be-
cause 10cs simulates logical definitions, such as files,
records, load point, and end of tape, by placing special

flags in the record address of each track when the file
is created. Hence, the record address of each track is
reserved for use by 10cs.

All operations will be in six-bit made.

Checkpoints will not be recorded on a disk or drum
even if they are specified in a control card or on a
Iahel

1A LCy,

Before a disk or drum unit can be used for output,

the HA2 addresses must previously have been written
using the System Editor or a utility program for those
cylinders to be used by the file, This ma2 identifier
must be specified in the LABLE pseudo-operation,
sLABEL card, or *FiLE card. A no-record-found indica-
tion by the 1M 7631 File Control unit because of im-
proper matching of Ha2 will terminate a job with a
core storage dump.

Other Input/Output Control System (IOCS) Procedures 49

Random Processing Using Disk and Drum Storage Units

For simplicity, Library 1ocs names for the random
processing routines are used in the following text. The
explanations, however, are equally applicable to the
same routines in Full rocs. Calling sequences are
illustrated side-by-side.

For reference purposes, the symbolic names of the
routines in both forms of 10cs are as follows:

LIBRARY IOCS FULL I0CS
.RANCL RANCLS

.RANDE RANDEF
.RANRE RANREQ
.RANRP RANRPL

RANCA Flag { RANCAV
.RANFL Words RANFLG

The Library 1ocs programmer does not specify
Random 10cs in a control card. The 1BjoB Loader de-
termines whether the random routines are needed and
loads them if they are required.

The Full 10cs programmer must specify Random
10cs by punching the characters RAND in columns
63-66 of the *joB card.

Random 10cs is a modular program that uses I0EX
to make it compatible with the System Monitor, under
which it operates. Random 10cs does not use any of
the parts of sequential 10cs, and the sequential rou-
tines need .not be in core storage while Random 10Cs
is being used. The programmer using 10cs may want
to use sequential 10cs for other purposes; it is there-
fore possible to combine Random 1ocs with any one
of the configurations of sequential 10cs (except F1ocs)
when choosing the 10cs routines to be loaded with
the object program.

Random 10cs is designed to facilitate random proc-
essing. In random processing, the data files being
processed are not necessarily in sequence with re-
spect to one another. One file is read sequentially,
and the records of this file indicate the locations of
the records of the other files which must be processed
at the same time. All of the files that are in a different
order from the file which is being read sequentially
must be on either an 1M 1301 Disk Storage unit or
BM 7320 Drum Storage unit.

In order to simplify terminology, records from the
file being read sequentially will be referred to as
alpha records. Records from disk or drum storage will
be referred to as beta records. Alpha records may be
obtained by the use of sequential 10cs, or they may be
read through 10Ex by a routine written by the pro-
grammer. The order in which alpha records are read
and the method by which they are obtained do not
affect the operations of Random 10Cs.

50

The beta records usually form some type of master
file and have a permanent arrangement on disk
or drum storage. Random 10cs is not affected by the
way in which the beta file was originally written.
Most beta files can be loaded by a utility routine, and
are essentially sequential.

A FILE card is not needed in either Library 10cs or
Full 10cs for the file containing the beta records.

Structure of Random IOCS

Random 10cs is designed to obtain the set of one or
more beta records which correspond to a given alpha
record, and to schedule the execution of the routine,
written by the programmer, which processes these
records. The programmer’s main program reads an
alpha record and informs 10cs of its location, the loca-
tions of the beta records to which it corresponds, and
the location of the routine (or routines) to process
them. 10cs then reads in the beta records and releases
control to the processing routine when a read opera-
tion is complete. There is ordinarily a lapse of time
between the request for a beta record and its delivery.
Random 1ocs allows this time to be used by the main
program for computation, including further requests
for beta records.

In order to allow several requests to be made while
1ocs is reading beta records, a file (queue) of such
requests is maintained. Whenever trapping occurs after
the reading of a beta record, Random 10cs performs
only the necessary updating of the queue. The pro-
grammer’s processing routine is not executed at trap
time.

When the main program makes a request, Random
10cs records the request and examines the queue to
determine whether or not a beta record has been
read since the previous request. If a beta record has
been read, a processing routine for this beta record
is entered. If there is no beta record waiting to be
processed, Random 10cs returns control to the main
program. It does not retain control and wait for the
completion of a beta activity unless specifically re-
quested to do so.

The order in which processing takes place depends
on the order in which alpha records are obtained, on
the constraints imposed on processing by the various
types of beta records and alpha records, and on the
time necessary to read a given beta record.

Alpha records may specify either of two types of
processing. If the alpha records are independent of one
another, processing is said to be full-random. However,
an alpha record may force processing of all alpha
records which have preceded it. This is called force-
sequential processing.

Beta records are of two types: mutually independent
and mutually dependent. If the records are mutually
independent, processing can occur as each record of
a set becomes available. If a group of beta records
within a set are designated mutually dependent, proc-
essing can occur only when all of the group is present.
Only one group of mutually dependent beta records is
allowed within the set of beta records corresponding
to a given alpha record, but the group may include the
entire set.

By inspecting information sent from the processing
routine, Random 1ocs determines whether to release
the buffer in which a beta record is held, or, first, to
write it back on the unit from which it came, subse-
quently releasing the buffer.

Use of

In order to make use of the facilities of Random 10cs,
the programmer must do-the following: -

1. Reserve space for both the disk or drum record
holding area (drha) and the request entry queue
(queue); they will be defined. by Random 10cCs.

2. Write a main program which reads alpha records,
derives from them the addresses of the beta records
required, and requests that Random 10cs read them.

3. Write one or more processing routines which use
the information supplied by Random 10cs to process
the alpha and beta records.

4. Write an error routine to take action in case
the beta record requested cannot be found.

Process Routine Status

USER'S PROGRAM RANDOM 10CS
From User's Enter Record
Main Pr I > of Request
|
T T T T __Scheduling Routine " Seek Complete Traj
' P
L, To .User s ! —E Issue Read
Main Program | | Return to Trap Point or Write
| Write <
| Waiting |
R |
| |
| l ! End Operation Recc'l
i | Trap or Write
| |
I I
i I Release
| Buffer
! '
| |
| |
i Issue Seek |
i | Return to Update
L " Trap Point Request
I | Status
h | Update |
| - N Request .
| Complete |
l Status
. To User's I Y ‘
Process Routine l - -]
From User's g:::ef:t

Figure 23. Diagram of the Structure of Random 10cs

Random Processing Using Disk and Drum Storage Units 51

Reserving Buffer Areas

To use Random 1ocs, the Library 1ocs and Full 1ocs
programmers must reserve a disk/drum record holding
area (drha) of N(R+1) +1 words. R is the length of
a single beta record, and N is the number of beta
record buffers to be used. Thus, if the programmer
wants five beta record buffers, and the beta records
with which he will be working are each ten words
long, he must reserve a disk/drum record holding area
56 words long.

The programmer must also reserve a request entry
queue (queue) of s*7+1 words. S is the maximum
number of beta record requests which random rocs
can be processing at any given time. These areas
need not be contiguous. If M is the number of alpha
record buffers defined by the programmer and m is
the maximum number of beta records called by one
alpha record, the recommended relationship between
the variables N,S,M, and m is as follows:

S =N =m*M

Random 10cs can operate if S is smaller than m*M,
or if N is smaller than S (or both), but at decreased
efficiency. S and N must be at least equal to m. The
number M should be at least twice as large as the
number of 1301 and 7320 modules referred to by the
alpha file, preferably more.

Routines Added to Sequential IOCS

Since the programmer may want to use sequential 10cs
to read alpha records, two subroutines are provided
in sequential 10cs.

Locate with Retention (.READR)

Alpha records may be read with a locate-with-retention
routine, using the following calling sequence:

LIBRARY IOCS FULL IOCS

TSX .READR,4 TSX READR,4
PZE file,,eob PZE file,,eob
PZE eof ,err PZE eof,.err
IORTN ** ** IORTN ** **
where:

file

is the symbolic name of the alpha file (the symbolic location
of the first word of the file control block).
eof

is the location of the programmer’s end-of-file routine.

eob

is the location of the programmer’s end-of-available-buffers
routine,
err

is the location of the programmer’s routine for unrecoverable
input/output errors.

52

This routine allows retention of a buffer until it
is released by the programmer’s program, overriding
the normal process whereby the buffer is returned to
the pool after the next reference to the file. This feature
is necessary to allow retention of the alpha record until
it can be processed. The alpha file or files should be
the only files attached to their buffer pool.

Release Retained Buffer (.RELES)

After the alpha record which it holds has been proc-
essed, a buffer can be released by using the following
calling sequence:

LIBRARY IOCS FULL 10CS

TSX .RELES,4 TSX RELESE 4
PZE locbuf file PZE locbuf,,file
where:

locbuf

is the location of the buffer. This location is inserted into the
address portion of the IORTN command during execution of
the locate-with-retention routine.

file
is the symbolic name of the alpha file (the symbolic location
of the first word of the file control block).

Routines in Random IOCS

.RANDE Calling Sequence

The first entry to Random 10cs defines the buffer and
queue areas in the locations reserved by the program-
mer for that purpose. The .RaNDE calling sequence de- -
fines both N beta record buffers, of effective size R,
in the drha; and S entry request buffers in the queue
area. The format of the calling sequence is as follows:

LIBRARY IOCS FULL IOCS

TSX .RANDE 4 TSX RANDEF.4
PZE queue,,drha PZE queue,,drha
PZE S PZE 29

PZE R,,N PZE R, N
where:

queue

is the location of the first word in the request entry queue
area reserved by the programmer.

drha
is the location of the first word in the disk/drum record hold-
ing area reserved by the programmer.

-RANRE Calling Sequence

For each alpha record, the programmer enters 1ocs
to obtain the necessary beta records. In the calling
sequence for this entry, the programmer specifies the
operation and gives the address of each beta record
that corresponds to the alpha record. The following
calling sequence causes a buffer to be reserved for
each beta record being requested. Unless otherwise
specified, the beta record is read into the reserved

buffer.

LIBRARY 10CS FULL IOCS
TSX .RANRE4 TSX RANREQ.4
pfx alpha,tl,m pfx alpha,tl,m
pfx erret pfx erret

1 These three
pfx a,t2,proces | words are pfx a,t2,proces
pfx physaddr } supplied pfx phys addr
verif addr | for each verif addr

} beta record.

...............

Word 1:
pfx = PZE

for full-random processing.
pfx = MZE

for force-sequential processing.
alpha

is the alpha record buffer address.
t1s£0

to retain control if .RANCA is set.
m

is the number of beta records requested in this calling se-
quence.

Word 2:
pfx = PZE

for no write check when writing.
pfx = MZE

for write check when writing.
erret

Random IOCS will transfer to this location when a beta rec-
ord address fails to be verified (no record found). (See the
section “Error Handling Procedures.”)

Word 3:
sign bit
=0 if a read is requested.
=1 if the user intends to write a new record; the reserva-
tion of a buffer is necessary, but no read is needed.
bit 2
=0 for an independent beta record.
=1 for a mutually dependent beta record.
process
is the location of the user’s processing routine for this beta
record.
t2: bit 18
=0 for a binary beta record.
=1 for a BCD beta record.
bit 19
=0 for single record mode.
=1 for full track with addresses.
a
is the location of a word (possibly a System Unit Function
Table entry) which contains in its address portion the location
of the unit control block of the module addressed.

Word 4:
pix = PZE

if the beta record physical address is in binary.
pfx = MZE

if the beta record physical address is in BCD (four char-
acters).

phys addr
is the record physical address, right-justified.
Word 5:

verif addr
is the record verification address in BCD (six characters).

Analogous information to that given in words 3, 4,

and 5 must be given for each beta record requested.

Although alpha is normally the alpha record buffer
address, it is used to identify a given entry through
RANRE. Therefore, if the programmer finds it neces-
sary to distinguish several entries to .RANRE for a given
alpha record, alpha must identify the different entries
for him. Alpha is not interpreted by Random r1ocs. It is
sent directly to the processing routine upon completion
of the necessary read operation.

Flag Words

(Two flag words in Random 10cs are discussed in the
following text. .RanFL and .RANCA are the names of
these words in Library 1ocs. The discussion applies
equally to the flag words rRanFLG and Rancav in Full
10CS.)

Upon completion of a read, if the beta record just
read is independent or completes a group of mutually
dependent beta records, 10cs sets a flag in a Iocation
indicated by the word .RaN¥L, making it nonzero, and
control is then returned through 10Ex to the point at
which the machine was trapped. The programmer’s
processing routine is not executed at trap time.

RANFL indicates to the main program whether or
not 10cs has a beta record, or records, ready for proc-
essing. This allows 1ocs to return control to the main
program after a .RANRE entry, without waiting for the
completion of the read operation. As soon as the flag
is set, the main program can detect it by testing .RANFL.
RANFL must be indirectly addressed. When the flag is
set, the main program can re-enter .RaNRE to have the
processing routine executed. A regular entry through
RANRE may not be possible, as indicated later in text.
In this case, the programmer can enter through .RANRE
with m=0, using the short calling sequence. With
either entry, the word pointed to by .RaNFL is cleared.

An entry to .RANRE with m=0 is made using a short
version of the .ranzE calling sequence. Only the trans-
fer instruction and word 1 are used. No error return,
no processing routine entry address, and no reference
to beta records are expected. After such an entry has
been made, .RANRE returns to the main program by
TRA 2,4

When Random 10cs lacks spaces in which to record
the information provided in the .RaNRE calling se-
quence, the information is left within the calling
sequence. If this occurs, the location pointed to by
RANCA is made nonzero. The programmer should
always test .RANcA before entering .RANRE to request
another beta record.

If the programmer can perform no useful computa-
tion while .RaANCA is nonzero, he can avoid the necessity
of testing .RaNca by using a calling sequence in which

Random Processing Using Disk and Drum Storage Units 53

the tag of word 1 is nonzero. This causes Random 10cs
to retain control until .ranca becomes zero.

Calling Sequence to Processing Routine

When the main program has entered Random 10cCs,
and 10cs finds that either an independent record or a
group of mutually dependent records has been read
since the last call, it enters the programmer’s proces-
sing routine through the following calling sequence:

TSX proces,4
PZE req,alpha
PZE diskbi,,i
PZE diskbi,,i
MZE diskbi,,i
where:
Word 1:
req
is the request identification.
alpha

is the alpha record buffer address.
Word 2 and succeeding words:
diskbi

is the address of the buffer holding the it beta record of
the set.

i
is the order within the set of the beta record being delivered.

The prefix MzE on the last word indicates the end

of the calling sequence.

If the programmer wishes to suppress the normal
process of writing the beta records back on disk or
drum, he should make nonzero the tag portion of the
words (in the calling sequence to the processing rou-
tine) that correspond to the records which are not to
be written. The programmer must return to Random
10cs by TRA 1,2. 10Cs then releases the buffers of the
beta records which are not to be returned to disk or
drum storage and begins rewriting the others. Each
buffer is released after the beta record which it con-
tains has been written.

On entry to the processing routine, the calling se-
quence might be the following:

TSX proces,4
PZE req,,alpha
PZE diskb3,,3
MZE diskb5,,5

To prevent the writing of record 5, the processing
routine could modify the calling sequence to the fol-
lowing form:

TSX proces,4
PZE req,,alpha
PZE diskb3,,3
MZE diskb5.4,5

.RANRP Calling Sequence

It is possible for the programmer to obtain a beta
record which is not the one he needs. (This is de-
scribed in the discussion of “Chaining Method” in the

54

publication IBM 1301 IOCS for 1410 and 7000 Series
Data Processing Systems, Form]J28-8064-1.) The
algorithm used to derive the physical and verification
addresses of the beta records may yield the same
results for two or more different inputs. Since only
one such record can be written in the space designated,
the other records are linked in a chain in which the
record in the actual physical address location points
to another record with the same derived physical
address, and this points to another, until all of the
records have been included. If the first record given
is not the one required, the programmer should extract
from the record the link address pointing to the next
record in the chain and re-enter Random 10cs through
the following calling sequence:

LIBRARY IOCS FULL IOCS

TSX .RANRP,4 TSX RANRPL,4
PZE req,,i PZE req,,i
PZE a PZE a
pfx phys addr pfx phys addr
verif addr verif addr
where:

Word 1:
req

is the request identifier.
i
is the order within the set of the beta record being replaced.

Word 2:
a

is the location of a word (possibly a System Unit Function
Table entry) which contains in its address portion the location
of the unit control block of the module addressed.

Word 3:
pfx = PZE

if the physical address is in binary.
pfx = MZE

if the physical address is in BCD.

phys addr
is the beta record physical address, right-justified.

Word 4:
verif addr

is the beta record verification address in BCD (six char-
acters).

Random 10cs replaces the old beta record disk or
drum address with the new address. Later, when the
new record is received, 10cs goes back to the process-
ing routine, ignoring the earlier entry for that record
(or group).

The .RANRP routine may be entered only by the pro-
grammer’s processing and error routines. When the
entry is made by the processing routine, .RANRP notes
that a beta record is being replaced, changes the re-
quest to agree with the information in the calling
sequence, and returns to the processing routine. Sev-
eral beta records may be replaced before the process-
ing routine returns control to Random 1ocs. Since the
records have not been processed, their buffers are not
released.

When .ranrp is entered by the error routine (this
is discussed in the section “Error Handling Pro-
cedures”), it modifies the request and then gives control
either to the main program or to a processing routine,
depending on the status of the various read operations
in progress.

.RANCL Cailing Sequence

The final entry to Random 10cs is made to the closing
sequence, .RANCL, using the following calling sequence:
LIBRARY IOCS FULL IOCS

TSX .RANCL,4 TSX RANCLS 4

The programmer enters the random close routine when
he reaches an end of file on his input alpha file, when
he wants to complete the processing of a group of
alpha records, or when he wants to change the param-
eters of the process by an entry to .RANDE. 10Cs retains
control, continually scanning the queue for completed
beta requests, until all pending requests have been
processed. When all activity has ceased, 10cs returns
to the main program by TRA 1,4. After this, the pro-
grammer can enter 10Cs again at any time to process
a new collection of alpha records. It is not necessary
to repeat the entry to .RaNDE unless different param-
eters are to be provided.

Error Handling Procedures

If no beta record is found, Random 1ocs transfers to
the programmer’s error routine by using the following
calling sequence:

TSX erret,4
PZE alpha
PZE req,,i
Return 1
Return 2

The programmer can then take one of three courses
of action:

1. He can replace the record address in the request,
using an entry to .RaNrp. No return t0 3, 4 or to 4, 4
is necessary in this case.

2. He can reject the unobtained beta record, and ask
Random 1ocs to go to the processing routine with the
rest of the request, if any. For this action, the error
routine should use Return 1 (TRa 3,4).

3. He can nullify the complete alpha request. This
is done by using Return 2 (TRA 4,4).

If an error other than the no-record-found type
occurs, the following message will be printed out:

PERSISTENT ERROR — BETA (verif addr)

indicating the request which resulted in the failure.

drum, the following message will also be printed:
DATA CHECK WHILE WRITING ON DISK

In any case, the entire contents of the request queue
will be printed in the following format:

STATUS OF REQUESTS FOLLOWS
ALPHA STATUS
(octal location) (verif addr) (status code)

Under staTus, Random 1ocs will print one of the
following six code words:

1. rowart — The request was just entered.

2. roissp — The beta record is in the process of
being read.

3. PrwarT — The beta record is in core storage, wait-
ing to be processed.

4. prissp — The beta record is being processed.

5. wawarr — The beta record is waiting to be
written out.

6. wrissp — The beta record is in the process of
being written out. :

If there are no requests in the queue, the following
message will be printed:

NO REQUESTS WAITING

If the main program requests beta records by way
of .RaNrE while the word pointed to by .ranca is non-
zero, the following message is printed:

BETA REQUESTS UNSERVICED
If the process routine returns to Random 1ocs with

a request identifier that 1ocs does not recognize, the
following message is printed:
INVALID REQ IDENTIFIER
All error messages will be written on the on-line
printer (sysprT). If any error other than the no-beta-
record-found type occurs, the job will be terminated
with a core storage dump.

Sampie Program Using Random 10CS

In the sample program shown in Figures 24 and 25,
the third word of each alpha record is placed into the
first word of the corresponding beta buffer that is not
616161616161.

If an error exit from .RANRE is taken, the alpha
record is written out onto another file.

The first word of the alpha record is the desired disk
(or drum) verification address. (The first four Bcp
characters are the track address.)

Random Processing Using Disk and Drum Storage Units 55

8

$EXECUTE

$18J08B
$PCOL
SIBMAP
ABSS
ABS6
SAM

ABO1

ABO2

ABO3

AB22

AB6L

*
AERRET

ABOS

DKNAM
FILE
FILE
SAVE
TSX
PIE
TSX
PZE
PZE
PZE
CLA
ADM
STA
AXT
TSX
PZE
PZE
I0RTN
CAL
PAC
STA
STA
CLA
SSM
STO
CLA
sT0
TSX
PZE
PLE
PON
MZE
PZE
NiTs
TRA
NZT=
TRA
TSX
PZE
AXT
NZT
TRA
TiX
TRA
TSX
PTW
TSX

RETURN

SXA
1ET
TRA
STL
TSX
PZE
XEC
CcLA
STA
STA
TSX
PZE

16

18J08

GOy MINIMUM
ERRORFILE
150

INPUTFILE,UT], INPUT,BLK=14
ERRORFILE,UT2,0UTPUT,BLK=14

<OPEN: &

ABSS

-RANDE, 4
AQUEUE, y ADRHA
114

lays4

SYSUNI

Aglo

ABO3-1

442
«READRy 4
ABS5531ABS8
AB61,yAB6O
ey, 14

-1

0,1

ABO2
ATEST+4,2
0ol

ABO3

1.1

ABO3+1
+RANREs 4
eyl
AERRET
=%,4,APROCS
[T

«RANRE, &
04740

492
ATEST#+4,2
ABOL
-242,1
AB22+4
«CLOSE 4
ABSS
+RANCL &
ABO4

SAM
-CLOSE+4
ABS56

SAM

(GO TO
RANDOM 10CS
PREPROCESSOR)

{ALPHA,,E0B)
{EOF,, ERR)

(PICK UP ADDRESS OF ALPHA BUFFER)
({-L(BUFFER))

(FIRST WORD OF ALPHA RECORD)
{BETA RECORD IN BCD)

(TTTTRR)

(ALPHA RECORD ADDRESS)

{PHYSICAL ADDRESS)

(VERIFY ADDRESS)

(BETA BUFFER QUEUE FILLED?)

{NO}

(YES, ANY ACTIVITY TO BE PROCESSED?)
(NO, WAIT HERE)

{YES, MAKE SHORT ENTRY

7O RANDOM)

(CLOSE ALPHA FILE}

ERROR EXIT FROM RANREQ

AB41.:4
ABO4
ABOS
ABO4
+OPEN, 4
ABS6
AB41

1e%

44

45
+WRITE, 4
AB56,,4B59

{NOT FIRST ERROR!

(ADDRESS OF ALPHA}

{MRITE ALPHA RECORD}

Figure 24. Library rocs Random Example

56

AB41

*

10CD
TSX
PZE
AXT
caL
LAS*
TRA
TRA
TIX
STz
AXT
TRA

ey, 14
<RELESy+4
*%,,ABSS
492
ATEST+4,2
*-3

2

42
#-3,2,1
ATEST#4,2
4

(RELEASE ALPHA BUFFER)

(IGNORE REQUEST)

PROCESSING ROUTINE

-
*THE ALPHA RECORD NUMBER IS PLACED IN THE FIRST AVAILABLE WORD
«0F THE BETA RECORD

APROCS

ABO6

ABO7

AB29

»
AMASK2
ADRHA
AQUEUE
ABO4
ATEST

AB1O
AB17
ABS8
ABS9
AB&O

SXA AB29,2

™1 #+lyb,y—-1

PXA 0:4

PAC 0,2

SXA ABO7,2

AXT 0,1

CLA 1,4

STA (23}

cLa %, 1

CAS AB17

TRA =42

TRA ABO7

TXI *4+1,1.-1

TXH ABO6yle-14

AXT -2,1

cLA L

PDC 0,2

CLA 342

STO= ABO6

CLA= ABO7

ARS 18

ANA AMASK2

AXT 492

CAS ATEST+4,2

TRA 42

TRA "2

TIX *-3,2,1

STA "2

TSX «RELES+4

PZE w#,y4,ABS5

STZ ATEST+4,2

AXT 2,2

TRA 142
CONSTANTS

ocT 777

BSS Lelbdhe]

BSS 4u7+1

PZE L

PZE Ll

PZE -

PZE L3

PZE L

PZE SYSUT3

ocT 616161616161

TRA SYSDMF

TRA SYSDMP

TRA SYSDMP

END

(END-OF-FILE CARD)

$IBSYS

{SAVE LOCATICON CONTAINING
ALPHA BUFFER ADDRESS)

(DISKBI,oI)

(ADDRESS OF BETA BUFFER)

(FOUND UNUSED DATA WORD)

(PLACE IN THIRD WORD FAIL OTHERWISE
REQ, s ALPHA)

{PICK UP THIRD WORD OF ALPHA RECORD)
(ALPHA BUFFER ADDRESS TG 21-35)
{ADDRESS OF BUFFER WE HAVE PROCESSED)

{FIND CURRENT ALPHA BUFFER}

(RELEASE ALPKA BUFFER)

(ERROR ENTRY SWITCH}

(EOB EXIY)
(ERROR EXIT)

1 8 16

$EXECUTE IBSFAP
*FAP
COUNT 200

= SAMPLE PROBLEM TO DEMCNSTRATE 7090/94 RANDOM 10CS
ABS

55T
10Cs EQU SYSORG
DEFINE EQU I0CS+4 (LOCATIONS
ATTACH EQU 10CS+8 QF I0CS
CLOSE EQU 10CsS+10 ROUTINES)
CTPEN EQU iaCs+iz2
WRITE EQU I0CS+18
READR EQU 10CS+32
RELESE EQU 10CS+34
RANDEF EQU I0C5+76
RANREQ EQU 10CS+77 (LOCATION OF
RANCLS EQU 10CS+78 RANDOM [OCS
RANFLG EQU 10CS+80 ROUTINES)
RANCAY EQU 10CS+81
START 800L 15000
ORG START
=
ABSS BSS 12 (FILE CONTROL BLOCK ORIGIN)
ABS6 BSS 12
ABOO TSX DEFINEs4
PZE ABS1 {NEFINE; ATTACH AND QPEN
PZE byt THE INPUT FILE
TSX ATTACH, 4 CONTAINING
PZE ABS1 ALPHA RECORDS)
PLE AB53441
TSX OPEN,4
PIZE ABSS
TSX RANDEF, 4
PLE AQUEUE, y ADRHA (G0 TO
PZE 1eh RANDOM I0CS
PZE L4y e4 PREPROCESSOR)
AXT 442
ABO1 TSX READR: 4
PZE AB55,,AB58 (ALPHA, ,E0B)
PZE AB61,,AB60 {EQF,. . ERR)
IORTN ey .14
CAL =1 (PICK UP ADDRESS OF ALPHA BUFFER)
PAC 0s1 {-L{BUFFER}}
STA ABO2
STA | ATEST+4,2
CLA 0+l (FIRST WORD CF ALPHA RECORD]
SSM (BETA RECORD IN BCD)
STO ABO3
CLA 1,1 (TTTTRR)
STO ABO3+1
TSX RANREQ, 4
ABQ2 PZE #%y,1 {ALPHA RECORD ADDRESS)
PZE AERRET
PON SYSUT3,4,APROCS
ABO3 MZE = (PHYSICAL ADDRESS)
PZE == {VERIFY ADDRESS)
AB22 NZT#® RANCAV (BETA BUFFER QUEUES FILLED?
TRA 245 (ND)
NZT=» RANFLG (YES, ANY ACTIVITY TO BE PROCESSED?)
TRA =1 (NO, WAIT HERE)
TSX RANREQ, 4 (YES, MAKE SHORT ENTRY
PIE 0:7,0 TO RANDOM)
AXT 492
NZT ATEST#4,2
TRA ABO1
TI1X #=2,2,1
TRA AB22+4
AB6L TSX CLOSE, 4 {CLOSE ALPHA FILE)
PTW ABSS
TSX RANCLS 4
NZT ABO4
TRA Iacs
TSX CLOSE,4
PTHW AB56
TRA 1acs (END OF JOB)
A ERRCR EXIT FROM RANREQ
AERRET SXA ABi4ly4
ZET ABO4
TRA ABOS (NOT FIRST ERROR)
STL ABO4
TSX DEFINE, 4
PZE ABOS

Figure 25. Full 1ocs Random Example

ABO5

AB41

=

PZE
TSX
P1E
PZE
TSX
PLE
XEC
CLA
STA
STA
TSX
PIE
10co
TSX
PZE
AXT
CAL
LAS«
TRA
TRA
TIX
sTZ
AXT
TRA

31914
ATTACH, 4
ABO8
AB09,»1
OPEN.4
AB56

AB41

1,4

(22

+5
WRITE:4
AB56,,AB59
"%y, 14
RELESE,4
=%, 4 AB55
4y2
ATEST+4,2
*~3

42

42
*#=3,2,1
ATEST+4,2
a4

t
PROCESSING ROUTINE

(INITIALIZE CUTPUT)
{ERROR FILE)

[ADDRESS OF ALPHA)
(WRITE ALPHA)

(RELEASE ALPHA BUFFER)

IGNORE REQUEST)

-
+THE ALPHA RECORD NUMBER IS PLACED IN THE FIRST AVAILABLE WORD
*0F THE BETA RECORD
-

APROCS

ABO&

ABO7

AB29

=
AMASK2
ADRHA
AQUEUE
ABO4
ATEST

ABLl7
ABOS
ABS1
ABC9

ABS3
ABS58

AB59
AB6O

SXA
TX1
PXA
PAC
SXA
AXT
CLA
STA
cLa
CAS
TRA
TRA
TXI
TXH
AXT
CLA
PoC
CLA
STO=
CLA»
ARS
ANA
AXT
CAS
TRA
TRA
TIX
S5TA
TSX
P2E
STz
AXT

ocT
BSS
BSS
PZE
PZE
PZE
PZE
PZE
ocT
BSS
BSS
SVN
PZE
SYN
PZE
TRA
TRA
TRA

END
$1BSYS

AB29,2
#41,4,-1
054

0,2
ABO7,2
0,1

1.4

w41

*e1
AB17

42

ABO7
#+1y1,-1
ABOG,1,-14
=241

s

0,2

3,2

ABO6
ABO7

442
ATEST+4,2
#e2

"2
*=3,2,1
42

RELESEs4

#%,,ABSS

ATEST+4,2

e, 2
CCNSTANTS

77

4elb+ss]

4uT+l

s

s

e

s

e

616161616161

3814432242

4ulba+an242

Random Processing Using Disk and Drum Storage Units

[SAVE LOCATION CONTAINING
ALPHA BUFFER ADDRESS)

(DISKBI,,1)

{ADDRESS OF BETA BUFFER)

(FOUND UNUSED DATA WORD)

(PLACE IN THIRD WORD IF FAIL OTHERWISE
REQ» s ALPHA)

{(PICK UP THIRD WORD OF ALPHA RECCRD}
(ALPHA BUFFER ADDRESS TO 21-35)
(ADDRESS OF BUFFERS WE HAVE PROCESSED)

(FIND CURRENT ALPHA BUFFER)

{RELEASE ALPHA BUFFER)

(ERROR ENTRY SWITCH)

{ERROR FILE POOL)
LINPUT POOL)

(INPUT TAPE}
(EOB EXIT)

(ERROR EXIT)

57

Control Card Information for Library 10CS

This section contains detailed descriptions of the
options and formats of control cards-used with Library
10Cs.

The level of 10cs desired by the Library 1ocs pro-
grammer can be specified in the siBjoB card. If the
programmer fails to specify a level, or fails to specify
a high enough level, the 1BjoB loader loads the level
of 10cs needed to service the routines used in the
program.

The other control cards and pseudo-operations de-
scribed in this section are used for file and label speci-
fications and for grouping files within buffer pools.
The following notations are used to describe the fields
of control cards and pseudo-operations:

1. Information enclosed by brackets [] may be
included or omitted, by choice of the programmer. If
the programmer does not indicate a choice, the 18j0B
Processor Monitor or the Macro Assembly Program
assumes the underlined standard option.

2. Information enclosed by braces { } within
brackets gives the field options from which the pro-
grammer can choose.

3. Upper-case (all capitals) terms must be present
in that form, if used.

4. Lower-case terms represent typical quantities or
expressions whose values must be supplied by the
programmer.

5. Options may be specified in the variable field in
any sequence, unless otherwise stated.

6. Commas are used to separate options when
options are present. If options are absent, it is not
necessary to indicate their absence by using a string
of commas, unless otherwise stated.

Format of $IBJOB Card

The siBjoB card must be the first control card read by
the 1BjoB Processor Monitor for a given application.
The options that can be specified in this card describe
the manner in which an application is to be processed.

Of special interest to the Library 1ocs programmer
is the 10cs options field of the sBjoB card. In this field,
the programmer can specify the 10ocs configuration
(TOEX, FORTRAN, Minimum, Basic, or Labels) to be
used with his program.

The format of the siBjoB card is as follows:

1 16
$IBJOB options, ...,......

58

Columns 1-6 must contain the identifying name of
the control card: siBjoB ;

The options in the variable field (columns 16-72)
are as follows:

Execution Options:

[{%20}]

co specifies that the object program is to be executed
after it is loaded.

NoGo specifies that the object program is not to be
executed, even if it is loaded. If Noco is specified, the
object program is loaded only when LocIc, pLoOGIC. Or
MaP is specified in the siBjoB card.

Logic Options:

NOLOGIC

DLOGIC
LOGIC

>

LocIc specifies that a cross-reference table of the pro-
gram sections and the system subroutines required for
execution be written on the System Output Unit. The
origin and length of each program section and sub-
routine and the buffer assignments are also given.

pLocIC specifies that a cross-reference table of the
program sections and the origin and length of each
program section is to be written on the System Output
Unit. The system subroutines and buffer assignments
are not given.

NoLocIC specifies that a cross-reference table is not
wanted.

MAP Options:

[]

MAP specifies that a core storage map, giving the
origin and amount of storage used by the msys Op-
erating System, the object program, and the input/
output buffers, is written on the System Output Unit.
The file list and buffer pool organization are also given.

NoMmaP specifies that a core storage map is not
wanted.

File List Options:

» § NOFILES
FILES

FILES specifies that a list of input/output unit assign-
ments and mounting instructions to the operator are to

be printed on-line and written off-line on the System
Output Unit.
NOFILEs specifies that the list is to be printed on-line,
but is not to be written on the System Output Unit.
IOCS Options:

RE=
FIOCS |
’ MINIMUMi

BASIC
LABELS

The 10Cs options are as follows:

10EX specifies that the Input/Output Executor is to
be used for trap supervision. The only 10cs routine
available is the .MwR routine for on-line printing.

The rFiocs specification should be used only by the
FORTRAN 1v programmer. It specifies that the reduced
form of Minimum 10Cs is to be loaded for use by the
FORTRAN Iv object program: If the FORTRAN 1v pro-
grammer does not specify F1ocs, the Minimum level of
1ocs will be loaded.

MiNiMUM specifies that the Minimum level of 10cs
is to be loaded with the object program. Internal files
cannot be used at the Minimum level. This level con-
tains the .ATTAC and .DEFIN routines utilized by calling
sequences generated by the Loader. This level also
contains the following 10cs routines:

.OPEN
.CLOSE
READ
WRITE
.BSR

If 10cs has been assembled for disk and/or drum
storage capability, this level also contains the following
two routines:

.READR
.RELES

BasIC specifies that the Basic level of 1ocs is to be
loaded with the object program. Besides the routines
in Minimum 10cs, this level contains the following
routines:

.BSF

.CKPT

.COPY

JOIN (not normally used)
REW

STASH

.WEF

LABELs specifies that the Labels level of 10cs is to be
loaded with the object program. This level contains
all of the routines in the Minimum and Basic levels

plus all label checking and label preparation routines.

The above specifications may be ignored by the
Loader at load time. If the object program requires a
higher level of 10cs than is specified, the higher level
will be loaded.

Random 10cs is loaded with the object program if
the program contains a reference to a Random 10cs
routine.

Loading Options:

[-jsource ']
l_{ NOSOURCE U

SOURCE specifies that this application involves at least
one compilation or assembly.

NOSOURCE specifies that this application involves only
relocatable binary object program decks which will
be loaded from System Input Unit 1. If neither co,
MAP, nor LogiC has been specified in the siBjoB card,
the decks will not be loaded.

Overlay Options:

r, (NOFLOW
| \Fow

FLOW specifies that execution of the object program is
to be terminated when a link contains a call that causes
it to be overlaid or when reference is made to a control
section that is not in core storage at the time.

NorFLow specifies that execution is to be allowed
when the conditions mentioned in FLOow occur.

Formats of FILE Pseudo-Operation and $FILE
Card

FILE Pseudo-Operation

The rie pseudo-operation is written in the marp
language source program. It provides detailed speci-
fications about a file for use by 10cs. :

The Macro Assembly Program converts the FiLE
pseudo-operation into a sFILE card, which is later in-
cluded with the object deck when that deck becomes
input for the 18j08B Loader.

The fields of the rFmwe pseudo-operation are as
follows:

The name field (positions 1-6) must contain the in-
ternal name of the file. This is the name the program-
mer has used to refer to the file within his source pro-
gram. This name becomes the symbolic location of the
first word of the file control block.

The operation field (positions 8-11) must contain the
four letters FILE.

The variable field (positions 16-72) contains one or
more options that describe the file.

If the variable field is too long for a single line of
the program coding sheet, it can be continued on the
next line by using the Erc pseudo-operation in the
operation field of the next line.

The options are as follows:

External Name of the File: The external name is an
alphameric literal of up to 18 Bcp characters excluding
blank, comma, slash, quotation mark, and asterisk.
The external name is the name used by other programs

Control Card Information for Library IOCS 59

to refer to this file. The external name, if present, must
be the first subfield in the variable field. If an external
file name is not present, the variable field must begin
with a comma in column 16. When no external name
is entered, the six-character name field (left-justified
with trailing blanks) is regarded as the external name.
If the name field in positions 1-6 is also absent, Map
issues a level 4 error message.

The external name is also the name that is printed
out whenever 1ocs prints a message concerning this
file.

The order of subsequent entries in the variable field
is arbitrary.

Unit Assignment Options: Two symbolic units may
be specified for each file. For tape units, the primary
unit is the first one to be used and the secondary unit
is to be used as a reel-switching alternate. Unit assign-
ment specifications are described in the section “Unit
Assignment Under the 18j0B Processor.”

File Mounting Options:

MOUNT MOUNTi
’<{READY and/or | >{READYi
DEFER DEFERi

These options govern the on-line message to the op-
erator indicating the impending use of an input/output
unit. The first form of the option (MOUNT, READY,
DEFER) applies to both the primary unit and secondary
unit assigned to a file. The second form applies to the
primary unit when i=1 and to the secondary unit
when i=2.

Note that two standard options are indicated. One
is for units assigned to system unit functions (READY),
and the other is for nonsystem units (MoUNT).

The effects of the file mounting options are as
follows:

MOUNT A message is printed before execution, and a
stop occurs for the required operator action.

This is the standard option for nonsystem units,
A message is printed before execution, but no
stop occurs. System units are normally given the
READY option if a mounting option is not
specified.

A message and operator stop are deferred until
the file is opened.

READY

DEFER

If both a primary unit and secondary unit are speci-
fied for a file, and only one file mounting option of
the first form is entered, this option applies to both
units. For example,

MOUNT

will cause the MouNT action for both units.
If the i form of the option is used, it will override
any general option specified for the unit i. For example,
MOUNT,DEFER2
will cause the MouUNT action for the primary unit and
the DEFER action for the secondary unit.

60

Operator File List Options:

R

LIST This file will appear in the operator’s mounting
instructions.)
NOLIST No message will be printed, unless the DEFER

option has been specified.

File Usage Options:

INPUT
» JOUTPUT
INOUT
CHECKPOINT (or CKPT)

INPUT The file is an input file.

OUTPUT The file is an output file.

INOUT The file may be either an input or an output
file. Initially, the file is set up as an input file.
The programmer is responsible for altering the
appropriate bits in the file control block before
he uses the file as an output file.

CHECK- The file is a checkpoint file.

POINT

(or CKPT)

Block-Size Option:
[,LBLOCK =xxxx (or BLK =xxxx)]

xxxx is an integer (0000-9999) that specifies the block
size for this file. The block size may be omitted from
the FILE pseudo-operation if the file is included in a
pool or group where the block size can be determined.
If block sequence and/or check sum options are speci-
fied, the block size number must be increased by 1 to
allow for the block sequence/check sum word. If the
block size option is omitted, the Macro Assembly Pro-
gram assumes a block size of 14 for Bcp or MxBCD
files and a block size of 256 for BN or MxBIN files.

Activity Option:
[LACT=xx]

xx is an integer (00-99) that specifies the relative
activity of this file with respect to other files. If this
field is omitted, the Loader assumes an activity value
of 1 for the file. The activity value is used in determin-
ing the number of input/output buffers assigned to
each buffer pool in the object program. The highest
activity value is 99.

Reel-Switching Options for Unlabeled Files:

MULTIREEL
(or REELS)

ONEREEL Reel switching should not occur.

MULTIREEL Reel switching will occur. Every output file will
(or REELS) switch reels if an end-of-tape condition occurs.

Reel-Switching Options for Labeled Files:

» § NOSEARCH
SEARCH

gONEREEL %

If an incorrect label is detected when opening
an input file, IOCS will stop for operator action.

e M

NOSEARCH

SEARCH If an incorrect label is detected, IOCS enters
a multireel searching procedure for the file with
the desired label.

File Density Options:
[HIGH) 7]
LOW
7 {200
556
800

This option specifies the density at which the file is to
be read or written on tape. The options are as follows:

HIGH The tape density switch is assumed to be set

- so that the execution of an SDH will result in
the use of the correct density.

LOW The tape density switch is assumed to be set
so that the execution of an SDL will result in
the use of the correct density.

200 The file recording density is 200 cpi.

556 The file recording density is 556 cpi.

800 The file recording density is 800 cpi.

If a system unit is assigned to this file, the system-
set density supersedes the density set by these options.

Mode Options:

BCD
A
MXBCD
MXBIN
BCD The file is in BCD mode.
BIN The file is in binary mode.
MXBCD The file is in mixed mode, and the first record
is BCD.
MXBIN The file is in mixed mode, and the first record
is binary.

The mxBcp and MXBIN options may not be specified
for a file unless one of the lock-ahead words, described
in Appendix F, is attached to the end of each physical
record of the file. Since these words cannot be properly
placed by programs written in the FORTRAN 1v or COBOL
languages, the MxBcp and MxBIN options can be used
with compiled programs only when output is handled
by subroutines written in the Map language.

Label Density Options:

SLABEL

HILABEL
LOLABEL|

I_ \FLABEL) _I

SLABEL

3

All header label operations are performed in the
installation standard label density specification.

HILABEL All header label operations are performed in
high density.

LOLABEL All header label operations are performed in
low density.

FLABEL All header label operations are performed in the

same density .as that of the file.

If neither HILABEL, LOLABEL, nor FLABEL is specified,
the standard label density specification, defined by the
assembly parameter SLABEL, is used to process labels.
As distributed, the standard specification is high
density. An installation can change the standard speci-

fication by changing the assembly parameter SLABEL,
which ic in the T.oader

VYaialda 45 xai Wil aLvUalats.

Trailer label operations are always performed in the
same density as that of the file.

Note: Only the use of a LABEL pseudo-operation or
sLaBEL card denotes a labeled file, whether one of the
label density options is specified or not.

Block Sequence Options:
NOSEQ %

>

SEQUENCE

(or SEQ)
Block sequence word is neither checked if
reading, nor formed and written if writing,

Block sequence word is checked if reading, or
formed and written if writing.

NOSEQ

SEQUENCE
(or SEQ)

Check Sum Options:

, { NOCKSUM
CKSUM

NOCKSUM The check sum is neither checked if reading,
nor formed and written if writing.
CKSUM The check sum is checked if reading, or formed

and written if writing.

A check sum option may be specified only if the
block sequence option has been specified.

Checkpoint Options:

. { NOCKPTS
{CKPTS

NOCKPTS No checkpoints are initiated by this file.
CKPTS Checkpoints are initiated by this file.

Checkpoint Location Option:
[, AFTERLABEL]

Checkpoints are written following the label on this file
when a reel switch occurs. If cxprs is specified and
this field is omitted, the checkpoints are written on the
checkpoint file when a reel switch occurs.

File Close Options:

SCRATCH
» (PRINT

PUNCH

HOLD

SCRATCH The file is rewound upon termination of the
application.

The file is to be printed. It is rewound and un-
loaded upon termination of the application.
PRINT will appear in the removal message that
is printed on-line at the end of execution.

The file is to be punched. It is rewound and
unloaded upon termination of the application.
PUNCH will appear in the removal message
that is printed on-line at the end of execution.

PRINT

PUNCH

Control Card Information for Library IOCS 61

HOLD The file is to be saved. It is rewound and un-
loaded upon termination of the application.
HOLD will appear in the removal message that
is printed on-line at the end of execution.

If the unit assigned is the System Input Unit, the
System Output Unit, or the System Peripheral Punch,

there is no rewind, nor is a message printed.
Starting Cylinder Number Option:

[LCYLINDER =xxx (or CYL =xxx)]
xxx is the number (000-249 for disk, 000-009 for drum)

61.1

of the starting cylinder of this file. The equal sign is
required. The programmer must specify the starting
cylinder number when disk or drum storage is specified
for the file. This does not apply if a system unit function
is specified for a file that is on disk or drum storage.
Cylinder Count Option:
[,CYLCOUNT=xxx(or CYLCT=xxx)]

xxx is the number (000-250 for disk, 000-010 for drum)
of consecutive cylinders to be used by this file. The
equal sign is required. The programmer must specify
the cylinder count when disk or drum storage is spec-
ified for the file. This does not apply if a system unit
function is specified for a file that is on disk or drum
storage.
Disk and Drum Write-Checking Option:
[, WRITECK]

Write checking is performed after each disk or drum
write sequence for this file.
Hypertape Reel-Switching Options:
HRFP
, VHRNFP

HNRFP
HNRNFP

These options may be used in conjunction with the
Hypertape option (HyPER) where reel switching is
likely to occur. For reel switching to occur, the pro-
grammer specifies whether or not the Hypertape is to
be rewound and/or file-protected. If any of these
options are used, but HYPER is not specified, a warning
message is issued.

HRFP Designates Hypertape rewind and file protec-
tion.

HRNFP Designates Hypertape rewind, but no file pro-
tection,

HNRFP Designates that the Hypertape is not to be
rewound, but is to be file protected.

HNRNFP Designates that the Hypertape is not to be

rewound or file protected.

The five subfields that follow are used to provide
information for cross-checking by the 1BjoB Loader.
These five subfields, which are not placed in the sFiLE
card, are as follows:

Hypertape Option:

[LHYPER]

HYPER must be specified if a program requires Hyper-
tape for a particular file. If reel switching may occur,
the Hypertape reel-switching options may be used in
conjunction with Hyper. However, use of the Hyper-
tape reel-switching options without specifying HYPER
results in a warning message.

Conversion Options:

NOHCVN

REQHCV
OPTHCV

>

62

An alphameric-to-BCD conversion routine is
not necessary. The file may not be assigned to
card equipment.

An alphameric-to-BCD conversion routine is
required. The file must be assigned to card
equipment.

An alphameric-to-BCD conversion routine is
optional. The file may be assigned to any input/
output device.

NOHCVN
REQHCV

OPTHCV

Regardless of these options, the programmer must
provide any required conversion routines.
Block-Size Check Options:

3 MULTI=xxxx §

MIN =xxxx

MULTI=xxxx The block size is a multiple of xxxx.
MIN =xxxx The minimum block size is xxxx.

Only one of the above options may appear. The
quantity specified is used by the Loader to check the
block size indicated by the BLock option. If neither
option appears, the block size is assumed to be exactly
that specified by the BLock option. If the BLoCK option
is also omitted, the assembly program assumes a block
size of 14 for Bcp or mxsep files and 256 for BIN or
MxBIN files.

Nonstandard Label Routine Option:

[,NSLBL =symbol]

The symbol is the external name of a nonstandard
label routine. If the nonstandard label routine is part
of the program segment being assembled, this routine
must be made a control section with the symbol used
as its external name. If the nonstandard label routine
is not part of this program segment, the symbol must
be a virtual symbol.
Pool-Attachment Option:

POOL
[{REEGOL}]
POOL This file is to be attached to a pool.
NOPOOL A file control block is to be generated, but this
file is not to be attached to a pool.

If cuEckPOINT (or ckPT) is specified for the file-usage
option, NOPOOL is automatically assumed.

If the NoPoOL option is specified for a reserve or in-
ternal file, it is assumed that the 10cs initialization se-
quences of .DEFIN and .aTtAac will be executed in the
object program for this file.

$FILE Card

The specifications in this card override the file descrip-
tion that appears in the source program or relocatable
object program to be loaded.

The format of the card is as follows:

1 16
$FILE ‘filename’, [options,...]

The format of the sriLe card differs from the FILE
pseudo-operation in that card columns 1 through 5
contain sFiLE and the file name (alphameric name of
18 or fewer characters) begins in column 16 and must
be enclosed in quotation marks (4-8 punch).

The options in the variable field are the same as
those available in the FILE pseudo-operation except for
the five exceptions cited previously. The file name
must be the first entry in the variable field. The other
options may be entered in the variable field in any
order. The options are separated from the file name
and from each other by commas.

Formats of LABEL Pseudo-Operation and
$LABEL Card

LABEL Pseudo-Operation

The LaBEL pseudo-operation is used in conjunction
with its associated FILE pseudo-operation when the file
is labeled. The LaBeL pseudo-operation provides label
information for the file. At assembly time, the LABEL
pseudo-operation causes the Macro Assembly Program
to generate a corresponding sLaBEL card, which later
becomes input to the 1BjoB Loader. Whereas the FiLE
pseudo-operation describes the file characteristics and
supplies information for the File Dictionary, the LABEL
pseudo-operation gives only labeling information to
" 10cs and supplies no information for the dictionary.
The fields of the LABEL pseudo-operation are as follows:

1. The name field (positions 1-6) contains the in-
ternal name of file (same as in FiLE pseudo-operation),
or blanks.

2. The operation field (positions 8-12) must contain
the five letters LABEL.

3. The varible field (positions 16-72) contains
options that must be entered in the following order
(left to right): external name, file serial number (or
1a2), reel sequence number, retention date or days,
and file identification name. The variable field must
contain the equivalent of five subfields. The external
name can be omitted by using a comma in position 16.
The omission of the other subfields, except the last one,
should be indicated by using adjacent commas (,,).
The variable field of the LABEL pseudo-operation must
not extend beyond position 72 (i.e., no ETC pseudo-
operations can be used continue the LABEL variable
field).

The options in the variable field are as follows:

External Name of File (Same as in FiLE Pseudo-
Operation): An alphameric literal of up to 18 BCD
characters excluding blank, comma, slash, quotation
mark, and asterisk. If this field is omitted (the variable
field begins with a comma), the symbol in the name

field is inserted as the external name. If the name field
is also blank, 000000 is inserted as the external name.
The contents of this subfield become the ‘file name’ in
the sLABEL card.

File Serial Number: An alphameric field of five or
fewer characters. Standard input labels will be checked
against this serial number if it is present. Standard
output labels for this file will contain this serial number
only if the reel sequence option specifies a reel number
greater than 1. Output serial numbers are normally
taken from the label already present on the tape on
which the first reel of the file is written.

If a disk or drum label is desired, this field must
contain two Bcp characters that specify the home add-
ress-2 (HA?2).

Reel Sequence Number: A numeric field of four or
fewer digits.

This option specifies the reel sequence number of
the first reel of a magnetic tape file. When the field
is omitted, the sequence number is assumed to be 1
for an output file or 0 for an input file and this fieid
is not checked. The reel sequence number is adjusted
at object time to reflect reel switching, and it is
checked in standard output labels.

If a disk or drum label is desired, this field must
be omitted by using two adjacent commas.

Retention Days or Date:

This is a numeric field of four or fewer characters.
It specifies the number of days a tape is to be re-
tained from the date it is written. An attempt to
write a labeled file on this tape before the end of

the retention period results in an error message. If
the field is omitted, a value of zero is assumed.

Date A date can be entered in this field. The format is
Y/D where Y is a one-digit or two-digit number
indicating the year, and D is a number of three or
fewer digits indicating the day of the year. The
slash is used to separate the two entries. This entry
is not checked and can be used merely to provide
additional information in the label.

File Identification Name: This subfield must follow
the last comma in the variable field. This name is
checked with the name in the input label and a mis-
match results in an 1ocs warning message. If this field
is omitted for an input file, the file identification name
is not checked. For an output file, this file identifica-
tion name is placed in the output label. The file identi-
fication name may contain embedded blanks but not
commas.

The Macro Assembl

Days

ssembly Program checks the variable

field of the LaBEL pseudo-operation. If there are more
than five subfields, the variable field is truncated and
only the first five subfields are used. In this case, a
warning message is printed. If there are fewer than
five subfields, an appropriate number of commas is
supplied so that the sLaBeL card will have the sub-
fields, and a warning message is printed.

Control Card Information for Library IOCS 63

Each subfield is then checked for length. Subfields
that are longer than the maximum previously specified
are truncated to the maximum number of characters
allowed for each, and a format error message is
printed. Numeric subfields are also checked for validity
and the presence of any nonnumeric characters in one
of these subfields will cause the printing of a format
€error message.

The assembler inserts quotation marks around the
external file name and transfers the five subfields to
the sLABEL card. (The deck name for the sLABEL card
is taken from the stBMaP card.)

$LABEL Card

The sLABEL card is generated automatically by the
Macro Assembly Program from the vraBEL pseudo-
operation in the source program. Thé subfields in the
variable field of the card (columns 16-72) correspond
exactly to the subfields in the LABEL pseudo-operation,
except that card columns 1-6 contain the term sLABEL
and the file name beginning in column 16 is in quota-
tion marks. The ‘file name’ may be either the internal
or external name of the file.

The format of the sLABEL card is as follows:

1 16
SLABEL ‘filename’, serial , [reell,
HA2

z days , [fileidenname]
date

Formats of $POOL and $GROUP Cards

$POOL Card

This card designates which files are to share common

buffer areas and can be used to assign files with dif-

ferent block sizes to the same buffer pool. The card

may be extended by the use of serc cards. It should

be noted that the deck name is optional and may be

omitted. If present, it does not qualify any file names.
The format of the spooL card is as follows:

1 16
$POOL BLOCK =xxxx, BUFCT =xxx,
or BLK
‘filenamey’,...
The options in the variable field are as follows:
Block Size Option:
16

BLOCK or BLK =xxxx
xxxx is a number (0000-9999) that specifies the block
size for this pool. The field may be omitted. If the field
is omitted, the pool block size will be the same as the
largest block size of a file in the pool.

Buffer Count Option:

» BUFCT =xxx

xxx is a number (001-999) that specifies the number

64

of buffers to be assigned to the pool. It must be equal
to, or larger than, the open count of the pool. If this
field is omitted, the 1BjoB Loader attempts to assign
at least two buffers to each file.

File Names:

, ‘filenamey’,...

The remaining data required on the control card are
the names of the files which are to be included in the
pool. Each file name is an alphameric literal of up to
18 characters and is enclosed in quotation marks. Deck
name qualification is meaningless, since the IBJOB
Loader assigns only one file block for each unique file
name in the entire application.

If the name of a file appears both on a spooL card
and in a FILE pseudo-operation with the NopooL op-
tion, an error message is issued and the NopooL option
is ignored.

$GROUP Card

This card is used to allocate buffer areas and to specify
how the buffers are to be shared by the various files.
All files named in a scrour card are formed into a
Reserve Group. If group specifications are not made,
the 1BjoB Loader attempts to assign at least two buffers
to each file. It should be noted that the deck name is
optional and may be omitted, if desired. If it is present,
it does not qualify any file names. serc cards may be
used.

The format of the scroup card is as follows:

1 16
$GROUP OPNCT =xx, BUFCT =xxx,
‘filename’,...
The options in the variable field are as follows:
Open Count Option:
16
OPNCT =xxx

xx is a number (01-99) which specifies the number of
files within the group that are to be open concurrently
during the execution of the program. This count deter-
mines the minimum buffer count necessary for proc-
essing the group of files. If this field is omitted, the
open count is assumed to be equal to the number of
files in the group.
Buffer Count Options:
, BUFCT=xxx
xxx is a number (001-999) which specifies the number
of buffers to be assigned to this group. It must be equal
to, or larger than, the open count of the group. If this
field is omitted, the 1BjoB Loader attempts to assign
at least two buffers to each file.
File Names:
, ‘filenamey’,...
The remaining items of data required on the control
card are the names of the files which are to be included
in the group. Each file name is an alphameric literal

of up to 18 characters and is enclosed in quotation
marks. Deck name qualification is meaningless, since
the 1BjoB Loader assigns only one file block for each
unique file name in the entire application.

If the name of a file appears both on a scroup card
and in a FILE pseudo-operation with the NorooL op-
tion, an error message is issued and the NorooL option
is ignored.

Unit Assignment Under the IBJOB Processor
The following text indicates the manner in which

primary and secondary units are specified for files in
Library 1ocs. These specifications are entered in the
unit assignment option of the FILE pseudo-operation
or sFILE card.

The following notation is used in later explanations
to indicate the formats in which actual symbols are
entered in the unit assignment options:

X denotes a real channel (A through H).

P denotes a symbolic (unspecified physical) channel (S
through Z).
I denotes a symbolic (specially-flagged) channel for

intersystem use (J through Q).

Control Card Information for Library IOCS 64.1

denotes the model number of an IBM 729 Magnetic
Tape Unit (II, IV, V, or VI).

designates IBM 1301 Disk Storage.

designates IBM 7320 Drum Storage.

designates an IBM 7340 Hypertape Drive.

denotes a unit number (0 through 9).

denotes an access mechanism number (0

denotes the module number (0 through 9).

denotes the data channel switch (also nauvd L.uer.ace)

cenotes 1N data channgl swilel | alse ¢

(0 or1).

mgermAY Z

Unit Assignment Specifications
Unit specification may be made in any of the following
formats:

DESIGNATION EXPLANATION

blank Any available unit is to be assigned to the file.

M Any available IBM 729 Magnetic Tape- Unit
of this model is to be assigned to the file.

X Any available unit on this real channel is to be

~ assigned to the file.

P All files in the job having this symbolic chan-
nel designation are to be assigned to the same
channel.

X(k) The kth available unit on the specified real

channel is to be assigned to the file. The paren-

theses are required for IBJOB applications.
PM Any available unit of the model indicated by M
on the symbolic channel specified by P is to be
assigned to the file.
An available unit on the symbolic channel indi-
cated by P, having the model number indicated
by M, is to be assigned to the file. In this case,
k indicates the order of preference in assign-
ment to the channel. If the number of available
units on the channel is less than the total re-
quested for the channel, those files with lower
numbers are to be 3551gned to the same chan-
nel. The parentheses are required in IBJOB
Processor applications.
The disk storage unit on channel X; with ac-
cess mechanism number a, module number m,
and data channel switch s, is to be assigned
to the file.
The drum storage unit on channel X, with access
mechanism number ¢ (0), module m (0, 2, 4, 6,
8), and data channel switch s (0, 1), is to be
assigned to the file.
The 7340 Hypertape Drive that is unit number
k on channel X with data channel switch s is
to be assigned to the file.
This entry can be used in IBJOB Processor ap-
plications to indicate that a file is not to have
a unit assigned to it. The entry is made in the
primary unit field. No secondary unit specifica-
tion should be made. When the NONE entry
is made, a file control block is generated, but
no unit is assigned. The first word of the file
control block, which normally contains the loca-
tions of unit control blocks, is set to zero. This
may be tested by the object program.
The characters INT chould be ontered 3 1o

- 2T vazGsadaiivav Al -’.llv\—l‘lu WU vl Tu lll wic
primary unit field to specifiy that a file is an
internal file.

XDam/s

XNam/s

XHk/s

NONE

[
Z
-3

System units may be assigned as follows:

IN,IN1,IN2 The file is to be read from the current System
Input Unit.

OU,0U1,0U2 The file is to be written on the current System
Output Unit.

The current System Peripheral Punch Unit is

to be used for a punch output file.

PP,PP1,PP2

UTk The system utility unit specified by k is to be
£

used for the file. kcan be 1, 2, 3, or 4.

CKk The System Checkpoint Unit specified by k is
to be used by the file. k can be 1 or 2. When
using the distributed version of IBSYS, these
functions must be attached before they can be
used.

ard equipment is assigned for a file as follows:
RDX Card reader on channel X.
PRX Printer on channel X.
PUX Card punch on channel X.

The oprHCV Or REQHCV option in the FILE pseudo-
operation must be specified if a card reader is re-
quested. The rREQHCV option can only be used for a
card reader.

As a special option, an asterisk (*) in the secondary
unit field indicates that the secondary unit of a file is
to be any unit on the same channel and of the same
model as the primary unit. This unit, if available, is
assigned after all other unit assignments have been
made. At load time, if units of a different model are
available, one of them will be assigned to the file. If no
units are available on the channel, the secondary unit is
the same as the primary unit.

Relative unit specification is not the same as the
physical setting of a unit. The designation of A, for
example, will result in the assignment of the third
available unit on channel A, and not necessarily in the
assignment of the physical unit a3. (An available unit
is one presently attached to the computer and not as-
signed for system use.)

INTERSYSTEM UNIT ASSIGNMENT
Intersystem unit assignments allow an object program
to write an intermediate output file on 2 unit and then
reserve that unit for later use as input or output in a
different phase of a job. This is done by using the
symbolic channels J through Q.

An intersystem output unit may be designated by
using one of the following formats:

DESIGNATION EXPLANATION

1 Intersystem channel

™M Intersystem channel and model

1(k) Intersystem channel and relative unit

I(k)M Intersystem channel, relative unit, and model

The same formats may be used to designate an
intersystem input unit, with the exception that the
model specification should not be made. If a relative
unit is specified, the parentheses are required.

In specifying an intersystem input unit, an addi-
tional parameter may be specified. This is an R which
indicates to the Loader that the reserve status for the
unit is to end after the current job segment is com-
plete. For example, if unit (1) is to be used as input
for this job and then removed from reserve status, it
would be specified as j(1)r in the sFiLE card or FILE
pseudo-operation.

Control Card Information for Library IOCS 65

Control and Loading Information for Full IOCS

Full 10cs consists of three files on the System Library
Unit. The first file contains the communication words,
which will be used by the object program when it
must call any of the 10cs subroutines. It also contains
a loader, which is first used to load in the Preprocessor
and is later used by the Preprocessor to load in the
number of overlays required to reduce the LABELS
package to the level of 10cs specified by the pro-
grammer.

The second file contains the Preprocessor, a post-
processor, the full LaBELs package of 10cs, and the
overlays which are used to change the 10cs configura-
tion for a particular run. The postprocessor performs
housekeeping operations at the end of a job.

The third file contains the routines in Random 10cs.

Full 1ocs functions in the following general manner:

1. The sexEcuTE 10Cs card is used to call Full 10cs.
The System Monitor then initiates loading of the first
10¢s file from the System Library Unit.

2. The Preprocessor reads a set of control cards
from the System Input Unit and creates a group of con-
tiguous file control blocks in storage. Unless otherwise
specified, the Preprocessor prints a list of files which
the program is to use. The following information is
given for each file:

a. File Number

b. Physical input/output unit assigned to the file

c. Starting reel sequence number

d. If an output file, a statement on the type of tape

to be mounted (labeled or unlabeled reel)

Note: A file that is to be mounted immediately is
indicated by an asterisk (*) to the left of the printed
line in the file list.

The Preprocessor also prints an error list if an error
is detected while the control cards are being processed.
If any errors have been found in the control cards, a
single halt occurs just prior to program loading.

3. Upon recognition of the *Loap card, the Pre-
processor initiates execution of a load sequence that
loads the object program. The load program must be
supplied by the programmer. The unit on which the
load program is located may be specified in the *LoAD
card. Examples of such load programs are provided
later in this section.

4. The object program is loaded and executed.

5. The programmer normally ends his program by
transferring to the symbolic location 10cs. The system
will then print a message indicating that the job has
been completed, will set any reserve unit status for

66

intersystem use, and will resume scanning for 1ocs
control cards on the System Input Unit.

Rules for Assembly

The 10Cs subroutines are assembled as a group and are
located in core storage immediately following the 10Ex
portion of the System Monitor. All storage beyond the
10cs routines is available for an object program, file
control blocks, and buffer pools.

1. Source program origin — The source program
should be written to be assembled at an origin above
the level of 10cs used. To make the most efficient use
of core storage, it is advisable to consult an 10cs listing
for the last location used by each level of 10Cs.

2. File control blocks — The file control blocks for
the files used in the program must be reserved in con-
tiguous locations. The blocks thus occupy a single
storage area consisting of a succession of 12-word
blocks. The entire area is referred to as the file block.

In making entries in the file number field (columns
13-15) of the *FILE card the file whose file control block
is first in the file block is designated by 1; the file rep-
resented by the second block is designated by 2; the
third is designated by 3, etc.

In no case should the load program place any part
of the object program in the file block, since the file
control blocks are used by the Preprocessor to store
information generated from the *FILE cards.

3. Buffer pools — The space reserved for buffer pools
need not be contiguous with the file block.

4. Reference to system subroutines — Within his
source program, the Full 1ocs programmer must define
the transfer point to the 10cs subroutines that he uses.
These transfer points are located relative to the origin
of 10cs itself, as shown in Figure 26.

The actual location corresponding to symbolic loca-
tion 10cs may vary from installation to installation. For
any installation, however, this location and those de-
fined relative to it, as shown above, can be expected to
remain fixed, even when modifications are made to
10Cs itself.

The sst pseudo-operation in the FORTRAN 11 Assem-
bly Program (1BsFaP) can be used to define sYSorG.

In addition to the subroutine transfer points shown
in Figure 26, there are other relative locations within
the 10cs communication region that might be of in-
terest to the Full 1ocs programmer. These additional
relative locations are provided in Appendix A.

Location Operation | Address, Tag, Decrement/Count
1 8 16

10Cs EQU SYSORG
DEFINE EQU 10CS+4
JOIN EQuU IOCS+6
ATTACH EQU 10CS+8
CLOSE EQU 10CS+10
OPEN EQU iOCS+12
READ EQU 10CS+14
WRITE EQU |OCS+16
COPY EQU 10OCS+18
REW EQU 10CS+20
WEF EQU 10CS+22
BSR EQU 10CS+24
BSF EQU 1OCS+26
CKPT EQU 10CS+28
STASH EQU 10CS+30
READR “EQU iOCS+32
RELESE EQU 1OCS+34
MWR EQU 1OCS+38
RANDEF EQU 10CS+76
RANREQ EQU 10CS+77
RANCLS EQU IOCS+78
RANRPL EQU 10CS+79
RANFLG EQU 10CS+80 N
RANCAY | EQU 10Cs+81f Mote

Note: These words are pointers, and are indirectly addressed.
See the section entitled "Random Processing Using
Disk and Drum Storage Units."

Figure 26. Transfer Points to 1ocs Subroutines

Program Input
Figure 27 shows a sample input deck for execution of
a Full 10cs program.

$1BSYS (or* IBSYS)

' Binary Cards Containing
*LOAD ‘ fhe Obiject Program
*DATE (Optional)) 11 praa o ining Load
*FILE ’

*JOB _/7

$ID (Optional)
$JOB (Optional)

*FILE Cards

J

Figure 27. Input for Full 10cs

Control Cards

Eleven control cards are recognized by the Preproces-
sor. They are the *JOB, *FILE, *DATE, *LOAD, *RESTART,
*IBSYS, $JOB, $ID, SIBSYS, SEXECUTE, and ssTop cards. The

dpcnnnhnnc of thege ocontral narde

o oive H
s A AAS wa TRAAVOU LWLIMA UL LAk D ar\/ 6]. VULl i1k wire

following text.

*JOB Card

The *joB card supplies the name of the job, defines
the length of the file block and its origin in core stor-
age, and specifies the 1ocs configuration to be used
by the program. If no file block origin is given, the
file block is located beginning at the standard origin.

The standard origin is defined as the next location fol-
lowing the end of the 10cs configuration specified. The
origin of the file block is contained in the address por-
tion of symbolic location LFBLK (10cs+57) in the 10Cs
communication region.

The format of the *joB card is shown in Figure 28.
The contents of the card are as follows:

COLUMNS CONTENTS
7-10 *JOB
13-30 Job Name — This is the name assigned to the

job by the programmer.

33-35 The number of file control blocks {decimal) to
be generated by the Preprocessor is entered in
this field (right-justified).
File Block Origin (octal) — If this field is blank,
the file block is located at the standard origin.
Desired IOCS configuration for this job:
LABELS — This configuration provides the
complete IOCS, including all sequential, label-
ing, and Iabel-checklng routines.
BASIC — This configuration contains all sequen-
tial IOCS features, except the labeling routines.
MINIMUM — This configuration deletes the
use of internal files and deletes the following
routines from Basic IOCS:

BSF

CKPT

COPY

JOIN

REW

STASH

WEF
EXECUTOR — This option consists of only the
trap supervisor and the IOCS communication
region.
Random IOCS Designation — The characters
RAND in these columns specify Random IOCS
for this job.

44-48
55-61

63-66

*FILE Card

Each file used in the program must be described in an
*FILE card. This control card contains all of the infor-
mation needed by the Preprocessor to generate a file
control block. Space is provided on the card for a file
number, which defines the relative location of the file
control block within the file block. The order of *riLE

~ cards in the control card set is immaterial.

The format of the *riLE card is shown in Figure 28.
The contents of the card are as follows:

COLUMNS CONTENTS

7-11 *FILE

13-15 This number indicates the relative position
(decimal) of the file control block within the
file block. It must not be greater than the
number punched in columns 33-35 of the *JOB

e
cara.

17 Tape mounting indicator:

— This specifies that the file is to be mounted
before processing is begun.
blank — This specifies that it is not necessary
for the file to be mounted when processing is
begun.
Primary unit designation: This is the symbolic
designation of the primary input/output device
for the file. Entries in this field are right-
justified. Unit assignment notations are ex-

18-21

Control and Loading Information for Full IOCS 67

COLUMNS

22-25

27

28

29

30

31

32

33

34

68

CONTENTS

plained in the section “Unit Assignment in Full
10CS.”

Secondary unit designation: For magnetic tape
files, this is the symbolic designation of the
secondary input/output device. Entries in this
field are right-justified. Unit assignment desig-
nations are explained in the section “Unit
Assignment in Full I0CS.”

For disk files, this field designates the number
of consecutive cylinders that make up the file.
The number must be right-justified in the card
field and must not exceed 250.

For drum files, this field designates the number
of consecutive cylinders that make up the file.
The number must be right-justified in the card
field and must not exceed 10.

List control:

N — This specifies that this file is not to be
included in the Preprocessor file list.

blank — The file is to be included in the file list.

File type:
C — Checkpoint
I — Input

T — Total block output

P — Partial block output

Reel control flag:

M — This designates an unlabeled, multireel file.

L (Labeled files only) — This specifies that a
label search is to be made when the file is
opened.

blank — This specifies that the file is an un-
labeled single-reel file, or that no label search
is to be made when this labeled input file is
opened.

For IBM 729 Magnetic Tape Units, this field
specifies tape density:

H — High density

L — Low density

For IBM 7340 Hypertape Drives, this field
specifies rewind and file protection at reel-
switching time:

blank— No rewind, no file protection

1 — Rewind, no file protection

2 — No rewind, file protection

3 — Rewind, file protection

File mode:
D —-BCD
B — Binary

M — Mixed mode, first record BCD
N — Mixed mode, first record binary

Labeling conventions:

H — High density 729 header labels

L — Low density 729 header labels

S — Standard density 729 header labels

1 — Hypertape labels

blank — No labels

Block sequence numbering flag (significant for
binary files only):

S — This specifies that IOCS should perform
block sequencing on this file.

N — No block sequencing should be performed.
Check sum flag (available for binary sequence
numbered files only):

C — This specifies that I0CS should perform
check sum operations.

blank — Perform no check sum operations.

COLUMNS
35

36

37

38-41

44-48

50-53

55-72

*DATE Card

CONTENTS

Checkpoint conventions:

F — This specifies that IOCS should write a
checkpoint on this labeled file at each reel
switch.

C — This specifies that IOCS should write a
checkpoint on the checkpoint file at each reel
switch of this labeled file.

blank — No checkpoints are to be initiated by
this file.

Restart positioning flag:

N — This specifies that this file should not be
repositioned at restart.

blank — This specifies that the file is to be re-
positioned at restart.

(Disk or drum storage unit) — Write check op-
tion flag:

W — This specifies that IOCS should perform
write checking on this output file.

blank — No write checking is to be performed.
Reel sequence number field:

For a labeled tape file — This specifies the reel
sequence number of the first reel of this file.
For a disk file — This field denotes the numeric
starting cylinder number (0-249). It must be
right-justified. The starting cylinder number is
designated as “load point” (beginning-of-tape)
for this file. IOCS computes the valid head and
track limits for this file by using the secondary
unit designation and the designation in this
field. This number (the head and track limit)
must not exceed 250 cylinders.

For a drum file, this field denotes the numeric
starting cylinder number (0-9). It must be right-
justified. The sum of the entries in columns
22-25 and columns 38-41 may not exceed 10.
File serial number field:

For a labeled tape file — This field contains the
file serial number.

For a labeled disk or drum file—Columns 44 and
45 may contain the home address identifier
(HA2) for this file. This is given only if the file
is labeled. This means that the System Editor has
previously written this HA2 in those cylinders
that are designated by the secondary unit field
and the reel sequence number field.

Number of days this labeled file is to be re-
tained (0000-9999). This field must not con-
tain any leading blanks.

An arbitrary name assigned to the file for exter-
nal recognition. This is the name of the file that
will appear in file listings on the printer, It may
or may not be the name of the file used in the
program coding.

The *paTE card provides 10cs with a creation date for
any labeled output files produced by the program. If
this control card is absent, the date is taken from the
System Monitor.

The format of the *paTE card is as follows:

COLUMNS
7-11
13-14
15-16
17-18

CONTENTS

*DATE

Month (e.g., 06, 11)
Day (e.g., 03,21)
Year (e.g., 64,65)

*LOAD Card
This card initiates loading of th
must be the last control card before 10cs is to initiate
loading of the object program. This control card desig-
nates the unit on which the loading program is located.
The loading program itself must be supplied by the
programmer.

The format of the *Loap card is shown in Figure 28.

The format of the *ResTART card is as follows:
CONTENTS

*RESTART

*IBSYS Card
This control card transfers control to the System
Monitor.

The format of the card is as follows:

The contents of the card are as follows: COLUMNS CONTENTS
%
COLUMNS CONTENTS 7-12 IBSYS
7-11 *LOAD
18-21 System unit designation: (e.g, SYSIN2). If $JOR Cord
this field is blank, System Input Unit 1 s Thjs control card defines the beginning of a job. It
assumed. This System Input Unit cannot be a ; .
disk or drum storage unit. causes 10Cs to return control to the System Monitor.
The format of the card is as follows:
*RESTART Card COLUMNS CONTENTS
This control card initiates a restart from some previous 1-4 $JOB
checkpoint. 16-72 Name assigned to the job
3 Y
*JOB Card E
o
o
o w o Z
z JOB NAME .'z'g 2 8=z
o . w ol x g 2;
o Oop 8 Se =<
[} @ (5l o © w 32
Ew B oz cx ||og
Za =9 wo s 22
3z 23] %4 ©° ||x°
0y | T T T T
R N
LT I : | I | [
000000'0000'00'000000000000000"00'IIIIGOIIIGODGBHBIEBUBGIOD.GODU ﬂ00I)lll)loﬂl‘)ﬂﬂﬂﬂﬂﬂﬂﬂl”ﬂﬂﬂﬂﬂﬂ
I1:!3"1',IlllI?IlluliliIlVlIl?ll‘llﬂ)‘?}ﬁ”?l'ﬂJll)}]l)‘ 1% 37 4 W wat 0 45‘"“4!5051525]”&“5)“””“ WHORIUBNNINREINERTTIINN
VU e g it h e e
Z
*EILE Card g
Vi i<
Z P
4. = w
o ?:-‘: — 2 < g a
z & gg 2 |2 e FILE NAME
o Z8/Es iz Ml EEE
il = 9 < O @ =4
o] 22 % |o fx zo0 we A
I3 z ?E T |z > W ol 4=z
¥ Pupe=c|3: a-us gry
o > = rZ2lwuz = [ITRTS =2 wg
OF Au Y= a> CEN/= = WOz paeay
/ TERET G0 1 qfiii 11 i
/ | 88 & 111 | (ERRRRARRRERR 1 I I |
[N IIIIIIIIIIIII | 1l I
OINBOH]UDllﬂﬂlﬂloDﬂlﬂiﬂlﬂU00'000UiﬂlﬂiﬂIUIUIUIUIUIUIOIOIUIUOﬂﬂlﬂﬂlﬂﬂﬂﬂolﬂl unulnlnuununuonaauuuunnulnuunouun
12348 '|7 "s ’ll'l‘?ll! " !*li’"lll |!nzvl7;nzt ?SII‘IH'?ll?JHJl'nInlkth”L!QH"? lJl“lSlbﬂ Ml‘!ﬂ 5182 ﬂlﬂkiiﬁi!sls?muﬂi]“i&iﬁs)ﬁi!)ﬂ" ﬂln MISEN BN
1111 Il'l 111 Illll 1 ||l|1|| 11 l|l 11 1'||1|||l|||I|I|l|||l|l|||l 11 I[l I|l AR l|l|l 11 ||l|1 R REREERRRRRE] I|l 11t
b4
*LOAD Card g
4 5
g Z z
Fow =
Zxa 0w n
33¢& $§3'
}“LDQDI] !
n | |
! (I !
am !

Mnnulhlaon'nunuluunnuu'nuuonnuuunnnunnnnunonunononuonunununuunuouuununnnouonaonnu

t23458|789my uuuuﬂunu!’nﬂ[ﬂnz‘annnnnuzzu;«:s;s:?:n!lunzu«ssuucscuszusssnnuunnuasssvu-nnnnu!snnnnl

Illl||||Il|||llll|llIIII|I‘HI||IIIIlllIllllllIlllllllllllIIIIIIHIHlH]IIIHIII]I”

Figure 28. Formats of *joB, *F11 ¢, and *Loap Control Cards

Control and Loading Information for Full IOCS 69

$ID Card
This control card causes transfer of control to the
installation accounting routine.

The format of the card is as follows:

COLUMNS CONTENTS

1-3 $ID

7-72 Any combination of alphameric characters or
blanks

$IBSYS Card

This control card transfers control to the System
Monitor. '
The format of the card is as follows:

COLUMNS CONTENTS
1-6 $IBSYS
7-72 blank

Note: The siBsys and the *mBsys cards perform the
same function: *1Bsys is a Preprocessor control card;
sIBSYS is a System Monitor control card.

$EXECUTE Card

This control card causes control to be returned to the
System Monitor. The System Supervisor is then brought
into core storage. The System Supervisor positions the
System Library Unit to the subsystem specified in the
variable field of the sexecutE card, reads in the first
record, and relinquishes control to it.

The format of the control card is as follows:

COLUMNS CONTENTS
1-8 SEXECUTE
16-72 Name of the subsystem to which control should

be relinquished.
Note: Upon recognition of a $EXECUTE 10CS card,

10cs retains control without returning to the System
Monitor. ‘

$STOP Card

This control card causes the System Monitor to print
a message and halt. The message indicates the physical
unit assignment and tape positions (record and file
count) of the System Input Unit, System Output Unit,
and System Peripheral Punch Unit.

The format of the card is as follows:

COLUMNS CONTENTS
1-5 $STOP

Program Loading

Full 10cs does not contain a load program to load the
object program. This permits the installation to retain
complete flexibility in loading.

The Preprocessor initiates execution of a load pro-
gram from the unit designated in the *Loap control
card. The loader must not destroy any portion of the
System Monitor, 10cs, or the file block.

70

The following are sample loaders for card reader,
729 tape units, and 7340 Hypertape.

Sample of o Card Reader Load Program

The sample load program listed below loads an object
program into core storage from the on-line card reader
on channel A. The object program must be in standard
row binary card format.

PCC
REF
COUNT 20
ABS
SST
ORG SYSEND-12
FUL
10CD LOAD,,13
TCOA 1
TTR LOAD
LOAD RCDA READ CARD
READER
RCHA LOADI1
LCHA LOAD2
CLM
STP LOAD3
LXD LOADS,1
TXL LOAD3+1,1,0 TRANSFER
CARD
LCHA LOAD3
TTR LOAD
LOAD1 IOCT LOAD3,1
LOAD2 IOCT **9,1
LOAD3 PZE ok 9ROW LEFT
TTR* LOAD3 ’
END

Sample of a 729 Load Program

The sample load program listed below loads an object
program into core storage from 729 magnetic tape.
The object program must be in standard column binary
card format. In the sample program, the object pro-
gram is loaded from unit B2.

PCC
REF
COUNT 20
ABS
SST
ORG SYSEND-16
FUL
IORT LOAD,,320
TCOB 1
TRA LOAD
LOAD RTBB 2 B—2(SYSPP1)
RCHB LOAD1
LCHB LOAD2
CAL LOAD3
ERA =0300500000000
SLW LOAD3
ANA =037000000
TZE* LOAD3 TRANSFER
CARD
TRA LOAD
LOAD1 10CT LOAD3S,,1
LOAD2 I0CP LOAD3+1,,1 9ROW LEFT
LOAD3 IORT xR
PZE
END

Sample of a Hypertape Load Program

The sample Load program listed below loads an object
program into core storage from a 7340 Hypertape,
where the object program resides in column binary
card format. In the sample program, the Hypertape
drive is attached to channel C.

PCC
REF
COUNT 20
ABS
BEGIN BOGL 77715
ORG BEGIN
FUL
CPYD *+3,,320
WTR *+2
TRA LOAD
LOAD1 OCT 220000200000 CTLRN
CPYP LOAD2+25,2
CPYD LOAD2+1,,24
WTR LOAD2
LOAD STCC
TCOC * WAIT
AXT 0,2
CAL LOAD2+25
STA LOAD2 STARTING
LOCATION
ANA LOAD2-1
STD LOAD2 COUNT OF WORDS
ON THIS CARD
TZE* LOADZ EXIT IF THIS IS
END CARD
ADD LOAD2-2
ARS 18
STA *+2
CAL *+3
SLW *¥ ENDING LOCATION &1
TRA LOAD
ONE LOAD1, LOAD2+1 TCH
LOAD1
OCT 37000000
LOAD2 XMT A
END

When the Preprocessor routine of 10cs reads the
*LoAD card, it causes the card containing the sample
Hypertape load program to be read into storage. The
Preprocessor then transfers control to the load pro-
gram in the following manner:

RSCc *+3 ¢ = channel
TCOc *

TRA 2

SMS- 2¥s4+10 s = setting of data

channel switch
CTLR *+3

CPYP 0,,3

TCH 0

HSEL u u = unit
HEOS

The Preprocessor determines the values of c, s, and
u from the information in the *Loap card.

Installation Modifications

Each installation may change the 10cs records on the
system tape to reflect its machine configuration. 10cs

must be reassembled if it is to be used with 1301 Disk
Storage, 7320 Drum Storage, or 7340 Hypertape.

The released system tape contains the following
symbolic EQuU cards:

NOCH EQU 0 (No 1301 or 7320 modules)
NOHYP EQU 0 (No Hypertape channels)

The 0 onerand for NocH canses all 1201 and 7390

A pPriciie 10D AL CaUdTs an adva alll G4y

coding to be overlaid. Similarly, the 0 operand for
NoHYP causes all 7340 coding to be overlaid. The
number of Hypertape units or 1301 and/or 7320 mod-
ules to be used with 10cs must be specified in the
operands of these two pseudo-operations.

The released system tape contains the following
sense switch assignments:

SWTCP EQU 2 (Checkpoint Control)
LERIG EQU 3 (Label Control)

These operands may be changed to reflect non-
standard sense switch assignments.

The released 10cs tape uses a sysorc of 37205 (or
2000,). This origin can be changed by reassembly of
10Cs.

Procedures for assembling 1ocs are discussed in the
publication IBM IBSYS Operating System, System
Monitor (IBSYS), Form C28-6248.

Unit Assignment in Full IOCS

The following text indicates the manner in which
primary and secondary units are specified for files in
Full 1ocs. These specifications are entered in the pri-
mary and secondary unit fields of the *rLE control
card. The entry in each unit assignment field must be
right-justified.

The following notation is used in later explanations
to indicate the formats in which actual symbols are
entered into the unit assignment fields:

X denotes a real channel (A through H).

P denotes a symbolic (unspecified physical) channel (S
through Z).

I denotes a symholic (specially-flagged) channel for inter-
system use (J through Q).

M denotes the model number of an IBM 729 Magnetic Tape

Unit (1T or IV), Only 1I or IV can be specified. Model V

units are also signified by entering II, and Model VI units

are signified by entering IV.

designates IBM 1301 Disk Storage.

designates IBM 7320 Drum Storage.

designates an IBM 7340 Hypertape Drive.

denotes a unit number (0 through 9).

denotes an access mechanism number (0).

denotes a module number (0 through 9).

denotes a data channel switch (also called interface).

“BrPrm2Y

Unit Assignment Specifications
Unit assignment specifications may be made in any
of the following formats:

DESIGNATION
blank

EXPLANATION

(For secondary units only) Any available unit
is assigned to the file.

Control and Loading Information for FullIOCS 71

DESIGNATION EXPLANATION

M Any available IBM 729 Magnetic Tape Unit of
this model is assigned to the file.

X Any available unit on this real channel is as-
signed to the file.

P All files in a job having the same channel desig-
nation are assigned to the same channel.

Xk The kth relative unit (a unit not assigned to a

system unit function) of this channel is assigned
if available. If not available, the first relative
unit is assigned.

PM Any available unit of the model indicated by
M and on the symbolic channel specified by P
is assigned to the file.

An available unit on the symbolic channel indi-
cated by P, having the model number indicated
by M, is to be assigned to the file. In this case, k
indicates the relative unit.

This designation is made in the primary unit
field for disk assignment. The format XDsm
represents the only assignment available, where
X is any real channel, D designates disk, s is the
data channel switch, and m is the module
number.

For data channel switch 1, s = 0

For data channel switch 2,s = 2

When a disk unit is specified in the primary
unit field, the programmer must use the sec-
ondary unit field to enter a numeric value indi-
cating the number of consecutive cylinders
given to IOCS for this file. The number cannot
exceed 250 and must be right-justified.

This designation is made in the primary unit
field for drum assignment. The format XNsm
represents the only assignment available, where
X is any real channel, N designates drum, s is
the data channel switch (0, 2), and m is the
module number (0, 2, 4, 6, 8).

The 7340 Hypertape Drive that is unit k on
channel X with data channel switch s is to be
assigned to the file. No symbolic or intersystem

" assignments (P or I) are allowed. A Hypertape
entry in the secondary unit field is made in the
same format,

For data channel switch 1, s = 0

For data channel switch 2,s = 1

An asterisk can be entered into the secondary
unit field only. It indicates that the secondary
unit for the file is to be any unit on the same
channel and of the same model as the primary
unit. This unit, if available, is assigned after all
other unit assignments have been made. If units
of a different model are available, one of them
is assigned. If no units are available on the
channel, the secondary unit is the same as the
primary unit.

INT If the file is an internal file, the characters INT

should be placed in the primary unit field of the
*FILE card.

System units can be designated as follows:

PkM

XDsm

XNsm

XHks

72

DESIGNATION EXPLANATION

IN, IN1,IN2 The file is to be read from the current System
Input Unit.

OoU, OUl, The file is to be written on the current System

ouU2 Output Unit.

PP, PP1,PP2 The current System Peripheral Punch Unit is
to be used for a punch output file.

UTk The System Utility Unit specified by k is to be
used for the file. k can be 1, 2, 3, or 4.

CKk The System Checkpoint Unit specified by k is

to be used by the file. k can be 1 or 2. When
using the distributed version of IBSYS, these
functions must be attached before they can be
used.

Card equipment is assigned.for the file as follows:
RDX Card reader on channel X.

PRX Printer on channel X.
PUX Card punch on channel X.

INTERSYSTEM UNIT ASSIGNMENT

Intersystem unit assignments allow an object program
to write an intermediate output file on a unit and then
reserve that unit for later use as input or output by an
object program in a different phase of the job. This is
done by using the symbolic channels J through Q.

These symbolic channels have two meanings. For
output assignments, they are equivalent to using sym-
bolic channels S through Z, but they signal the System
Monitor to place a reserve flag and indicative data
into the unit control block for the unit. For input, the
designations are used to make comparisons against
data in unit control blocks to find the proper reserve
unit.

An intersystem output unit may be designated in
one of the following formats:

DESIGNATION EXPLANATION

1 Intersystem channel

M Intersystem channel and model

Ik Intersystem channel and relative unit

IkM Intersystem channel, relative unit, and model

The same designations may be used to designate an
intersystem input unit except that the model specifi-
cation should not be made. If an intersystem unit has
been reserved, an additional parameter may be used
when the unit is specified as input. This is an R which
indicates to the System Monitor that the reserve status
for the unit is to end after the current job is complete.
For example, if unit J1 is to be used for input and then
removed from reserve status, it would be specified as
1R in the control card.

origin of 10cs.

LIBRARY IOCS
LOCATION
SYMBOL

.LAREA

.LFBLK

RELATIVE
POSITION IN
LIBRARY IOCS

(Use .JDATE)

.LAREA-3

.LAREA
to
.LAREA+13

.LFBLK

.LFBLK+1
.LFBLK+2

.LFBLK+3

.LFBLK+4
.LFBLK+5
.LFBLK+6

.LFBLK+7

Appendix A: Key Words in the IOCS Communication Region

FULL IOCS
LOCATION
SYMBOL

DATE

JOBID

LAREA

LFBLK

CPFILE
CPSEQ

LTSX

XEOB
XEOF
XERR

LTRAD

The following is a list of words and information-holding { The preceding section e
areas within the communication region at the begin-

ning of 1ocs. The words are defined relative to the

£3
-+

L CLCRRalig SCCULU ©

the Full 1ocs user only.)

RELATIVE
POSITION IN
FULL IOCS

IOCS+39

I0CS+40)
to
I0CS+42 |

I0CS+43)
to ¢
10CS+56 |

IOCS +57

IOCS+58
IOCS+59

I0CS+60

I0CS+61

CONTENTS

System date. The internal mode is BCD, and
the word is of the form
YYbXXX,
where
YY=Year
XXX =Day of the year (001-365)

Job name

Label area (14 words)

This word defines the origin and length of
the File Block prepared by the IBJOB
Loader or by the Preprocessor. It is of the
form:
MZE a,,b

where

a=File Block origin

b=File Block length

Address:
Current checkpoint file in use

1+sequence number of last checkpoint
written

Decrement:

2s complement of the quantity: (1+the loca-
tion of the IOCS command on which the
error, if any, cccurred)

Tag:

0 — No error

1 — Block sequencing error

2 — Check sum error

4 — End of buffer and/or parity error
Address:

2s complement of the location of the TSX
instruction which last entered I0CS

Decrement:
Location of the end-of-buffer exit

Address:
Location of the end-of-file exit

Decrement

Location of the error exit

The last history word loaded into the AC:
Prefix:

PZE
Decrement:
Count of the number of words remaining in
the last buffer used

Address:
1+the location of the last word processed

Appendix A: Key Words in the IOCS Communication Region

Load-
ing Information for Full 10cs” contains a listing of
relative locations of routines which are of interest to

73

74

LIBRARY 10CS
LOCATION
SYMBOL

.AREA1

RELATIVE
POSITION IN
LIBRARY IOCS

.LFBLK+8

.LFBLK+9

.LFBLK+10

.LFBLK+11

.LFBLK+12

.AREA1

to

.AREA1+5

FULL IOCS
LOCATION
SYMBOL

TRANS

WDCT

IRS

SENSE

FCW

LAREA1L

RELATIVE
POSITION IN
FULL IOCS

I0CS +65
I0CS +66

IOCS+67

I0CS+68

I0CS+69

10CS+70)
to
10CS+75

CONTENTS

Address:
Location of the first word processed by the
last IOCS command

Decrement:
Word count of last IOCS command executed
Address:

Contents of index register 2 at last entry to
10CS

Decrement:
Contents of index register 1 at last entry to
10CS

Contents of sense indicators at last entry to
I0CS

Address:
If=0, IOCS is not in control
If-£0, this is the current file being used

Additional label area (6 words)

igure 29 is a detailed diagram of the contents of the
12 words in each file control block.
In the diagram, each word is divided horizontally
to indicate the different contents of the bit positions
when the file is on 729 magnetic tape, 7340 Hypertape,
or 1301 Disk Storage and 7320 Drum Storage.

Shaded areas in the diagram indicate positions that
are not used. However, these bit positions must not be
used by the object program.

The detailed explanations of the 12 words are given
below. Items marked with an asterisk are generated in
the file control block by (1) the Loader when using
Library 10cs, or (2) the Preprocessor when using Full
1ocs. The remaining positions are initially zero.

WORD BITS
1 §*

CONTENTS
729, 7340: Mounting flag for secondary
unit { The operator has been instructed to
mount a reel on the secondary unit.)
1301/7320: Write-check flag.
0 — Ignore write-check on output file
1 — Perform write-checking
1-2 Not used.

3-17 729, 7340: Location of unit control block
of secondary unit. If no secondary unit is
used, this location is the same as the one
in positions 21-35.

1301/7320: Beginning-of-file locator. For
multi-file applications, this locator indi-
cates the last “file mark” location written
by IOCS by a closing or write end-of-file
operation in this file. Initially the locator
is the same as positions 3-17 of word 8.

18% 729, 7340: Mounting flag primary unit
(The operator has been instructed to
mount a reel in the primary unit.)

18 1301/7320: Not used.

19-20 Not used.

21-35* Location of unit control block of primary
unit. Note that if the file is an internal
file, this word takes the form:

PZE chain,,0
where
chain = L(0) if no chain exists.
2 S$* Mixed mode file,

0 — Single mode
1 — Mixed mode
Note that for a file that uses 7340 Hyper-

tape, mived mode is not permissible for

aps, IMIXeC mMoeQe 18 noU Ppermissio:e ior

reading backward.
1-2* Checkpoint control.

00 — No checkpoints are to be initiated by
this file.

01 — Checkpoints are to be written on the
checkpoint file at the beginning of
every reel of this file.

10 — Checkpoints are to be written on
this file at the beginning of every reel
of the file (labeled output files only).

Appendix B: Contents of File Control Block

CONTENTS

3 File open.
0 — File is not open
1 —File is open
4 Reserve file.
0 — Not a reserve file
1 — Reserve file
5 File inhibit.
0 — File is inhibited
1 — File is not inhibited
6* File mode.

0 — BCD mode
1 — Binary mode
7-8% File type.

00 — Input file
01 — Partial block output file
10 — Total block output file
11 — Checkpoint file

9* Labeling.
0 — File is unlabeled.
1 — File is labeled.

Block sequence and check sums.

00 — No block sequence words.

10 — Block sequence word is present, no
checks sums are present.

11 — Block sequence word is present,
check sums are present (input) or
are to be computed (output).

12* 729, 7340: Reel control flag.

0 — Single reel file, if unlabeled; no label
search, if labeled

1 — Multireel file, if unlabeled; if labeled,
search for label when file is opened.

1301/7320: Not used.

13 Buffer release.

0 — Buffer has not been released.

1 — Buffer has been released.

14 Buffer rush.

0 — A rush has not occurred for this buffer.

1 — A rush has occurred for this buffer.

15 End-of-tape.

10-11*

1—No.
0 — Yes.
18 File permanently closed.
0 — No.
1 — Yes.
17 Rush on buffers during this calling
sequence.

0 — Rush has not occurred in this sequence.

1 — Rush has occurred in this sequence.
18* 729: Density of label to be read.

0 — Low density.

1 — High density.

7340: Read backward mode.

0 — No.

1 —Yes.

1301/7320: Not used.
19* 729: Label density to be written.

0 — Low density.

1 — High density.

7340: Rewind at reel switch.

Appendix B: Contents of File Control Block 75

WORD

76

BITS

20*

21-27
28-35
21-35

3-17

18-20
21-35

S*

1-2
3-17
18-20
21-35

S*

1-2

3-17

18-20
21-35*

3-17

18-20
21-35

CONTENTS
0 — No.
1 — Yes.
1301/7320: Not used.
729: File density.
0 — Low density.
1 — High density.
7340: File protect at reel switch (input
file only).
0 — No.
1 — Yes.
1301/7320: Not used.
(Input) Number of buffers in logical use.
(Input) Number of buffers ahead.
(Output) Output file chain.
A regenerative internal file if S is a 1.
A system unit if this position contains a 1.

SYSIN1 or SYSIN2 if this position con-
tains a 1.

729, 1301, 7320: Location of entry point
for nonstandard label image routines.

7340: Location of transfer vector for label
field 27.

Not used.

Location of control word of buffer or
buffer pool to be used with this file.
Regular or internal file.

0 — Regular file.

1 — Internal file.

Not used.

Counter for block sequence checking.

Not used.

Location of Reserve Group or Internal
Group control word, if this is a reserve or
internal file.

FILE card list control.

0 — List this FILE card.

1 — Do not list this FILE card.
Not used.

Location of buffer pool.

Not used.

Buffer synchronization chain, or location
of zero word (end of chain); or buffer
request chain at end-of-tape condition.

Device flag.

00 — 729

10 —1301 ;
11 — 7320

01 — 7340

Not used.

729, 7340: Count of permanent parity
errors on current input reel or count of
erase areas on current output reel.
1301/7320: Number of retries for current
file.

Not used.

729, 7340: Number of erase areas written
for current output reel, or number of re-
tries for current input reel.

1301/7320: Number of retries for current
file.

1301/7320: If the S position contains a 1,
1I0CS will, during the open routine, put

‘WORD

8

10
11

12

BITS CONTENTS

positions 3-17 of word 1 of the file control
block in positions 21-35 of this word.

729, 7340: File serial number in the form
bXXXXX.

1-5 1301/7320: Number of tracks (in binary)
for this record.

S-35

6-17 1301/7320: These bits comprise the HA2
for the Verify Track order obtained from
the file serial number field of the FILE
card.

18-20 1301/7320: Not used.
21-35 1301/7320: Binary head and track loca-

tions of ‘current position of the file.
S-2 1301/7320: Not used.

S-35 729, 7340: Reel sequence number in the
form bXXXXb. If this file uses a 7340
Hypertape, the S position will contain a 1
during Loader time or Preprocessor time
only.

3-17 1301/7320: The first binary head and track
number for this file. This is the logical
“load point” for this disk file.

18-20 1301/7320: Not used.

21-35 1301/7320: The last binary head and track
address for this file. This is the logical “end
of tape” for this disk or drum file.

S-35 Retention days in the form bbXXXX.

$-35 First six characters of file name.

S-23 7340: Characters 7 through 10 of the file
name.

S-35 729, 1301, 7320: Second six characters of
file name.

24-35 7340; Characters 11 and 12 of the file
name.

S-35 7340: Last six characters of file name if

file is unlabeled. Reel serial number if the
file is labeled.

7929, 1301, 7320: Last six characters of file
name.

Disk/Drum Flag Word

Files defined for disk or drum storage units are pro-
vided with one 10cs flag word per track, as described

below:

BIT

S

3-17

21-35

CONTENTS
Record flag:
0 — Indicates record not complete on this track.
1 — Indicates all of the record is on this track.
End-of-file flag.
0 — Indicates no end of file on this track.
1 — Indicates an end of file.
Not used.
Chain address.

This is the binary head and track location of the
next sequential track in the “tape” file. If bit 1 is
on (is a 1), bits 3-17 are the binary head and track
location of the preceding “file mark” in the reel. At
the time the file mark is written, bits 3-17 are set
from bits 3-17 of word 1 of the file control block.

Track count.

The address contains the number of actual words
of the “tape record.” It is a substitute for the Store
Channel instruction which IOCS computes.

S 3 4 5 6 7 8 9 10 11 i2 i3 14 i5 16 17 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
729
_ MF2 Location of Unit Control Block of Secondary Unit
2 7340 Location of Unit Control Block of Primary Unit -
55— — ——
= 1301 7320 WCF Beginning-of-File Locator ey ’
Wr Label | File
729 BCD or Block File Rush | Density| Density | Density
~ T T T T 71 Mixed Checkpoint Reserve | File Binary Sequence End of | Perm This E—= Rew and File Pro
) i (G K Wiy - - .
2 7340 Mode Control File Inhibit Mode File Type Label and Tape |[Closed |Sequence Rd Mode |tect at Reel Switch Number of Buffers in Logical Use Number of Buffers Ahead
== ? ? ? ? ? Check Sums ? ? ?
Sh
1301 i
7320 i - N _ _]
729 Location of Entry Point for Nonstandard Label Image Routine
@ j= — — — — —j Regen A 1 SYSINY .) o
.xg 7340 Int System or Location of Transfer Vector for Label Field 27 . Location of Control Word of Buffer or Buffer Pool to be Used by this File
Ele—————1 Fle | Unit |SYSIN2 - gk;w:@
; e
1301 7990 ? ? I ? Location of Entry Point for Nonstandard Label Image Routine §’*‘ “;%:%sgxx
729 Reg
i 7340 or
g 1301 é?lfe Counter for Block Sequence Checking Location of the Group Control Word if this is a Reserve or Internal File
7320 ? L
<me
729 File S
© 7340 Card g“*‘?;::gz z;::‘;‘::gz*z*w‘fi?s;; j)‘
T List o i i
4 1301 Locati £ Buffer Pool W‘xd’;q{:;:x; o T Buffer Synchronization Chain or Location of Zero Cell (End of Chain);
£ ? ocation of Butier Foo lf“:@“ xil”ﬁtw g:,zf;;&w i or Buffer Request Chain at End-of-Tape Condition
7320 AlEnrse
e
A
35 e
729 Device Flag ‘:N S Number of Erase Areas Written for Current Output Reel, or Number of Retries for Current Input Reel
© 00 - 729 Count of Erase Areas on Current Output Reel, or Count of Permanent Parity Errors on Current Input Reel
% 7340 01 - 7340 e m
T T~ [1301 —
1301 7320 10 17320 Number of Reiries for Current Input File Number of Retries for Current Input Reel
~ 729
el
B _me_
1301 7320 Number of Tracks (in Binary) For this Record HA2 Binary Head and Track Location of Current File Position
729
®
-
S
2
Binary Head-Track Number of "Load Point" Last Binary Head and Track Address
o
2
30 Retention Days in the Form bbXXXX
7320
729
=
% 7340 First Six Characters of File Name
o 1301
=
7320
729 Second Six Characters of File Name
;S 7340 Characters 7-10 of File Name Characters 11 and 12 of File Name
1301
7320 Second Six Characters of File Name
«~ 729 Last Six Characters of File Name
'g 7340 Last Six Characters of File Name, or Reel Serial Number
l-———=-
1301 7320 Last Six Characters of File Name

Figure 29. Format of the File Control Block Appendix B: Contents of File Control Block 77

EOB=0 Execution of IOCS Read Commands EOB#0
10Cs Buffer 10CS
10CS Command History Record Words Re~- Command History Record Words Buffer Release EOB
Command changed o in AC "Read" | leased changed to in AC "Read" Action Exit
10Cy A, ,n
n<m PZE Atn,,m-n n No PZE A+n,,m-n n No No
n>m PZE A+n,,s-ntm n First PZE A+n, ,s-mtm n Conditional Hold First No
IOCD A, ,n
n<m PZE Atn, .m-n n Yes PZE Atn, ,m-n n Conditional Hold No
o >m PZE Atn,,s-ntm n All PZE Atn, ,s-ntm n Conditional Hold Both No
10Sy A, ,n
n<m PZE A+n,,m-n n No PZE A+n,,m-n n No No
n>m PZE Atm,,0 m No PZE Atm,,0 m No No
IORy A, ** ICRy A, ,m PZE Atm,,0 m Yes ICRy A,,m PZE Atm,,0 m Conditional Hold Ne
SKIP LOCATE
IOCyN **,.n
n<m 1OCyN B, ,n PZE B+n,,m-n n No IOCyN B, ,n PZE B+n, ,m-n n No No
n>m ICCyN C, ,n PZE C+n-m, ,s-ntm n First IOCyN B, ,n PZE B+m,,0 m Hold Yes
IOCDN **, n
n<m IOCDN B, ,n PZE B+n,,m-n n Yes IOCDN B, ,n PZE B+n, ,m-n n Hold No
n>m IOCDN C, ,n PZE C+n-m, ,s-ntm n All IOCDN B, ,n PZE B+m,,0 m Hold Yes
IOSyN 22 .n
n<m IOSyN B, ,n PZE B+n, ,m-n n No IOSyN B, ,n PZE B+n, ,m-n n No No
n>m| |IOSyNB,,n PZE B+m,,0 m No iOSyN B, ,n PZE B+m,,0 m No No
{ORyN ** xx IORyN B, 'm PZE 8m,,0 m Yes IORyN B, ,m PZE B+m,,0 m Hold No
Execution of IOCS Write Commands
EOB =0 EOB#0
10Cs 10Cs
10Cs Command History Record Words Buffer Command History Record | Words Buffer Release EOB
Command changed to in AC “Written" | "Written® changed to in AC "Written" Action Exit
I0Cy A, ,n
n<m PZE A+n,,m-n n No PZE A+n,,m-n n No No
n>m PZE Atn,,s-n+m n First PZE A+n, s-n+m n Conditional Hold First No
I0CD A, ,n
n<m PZE A*n,,m-n n Yes PZE A+n, ,m-n n Conditional Hold No
n>m PZE A+n,,s-ntm n Al PZE Atn, ,s-ntm n Conditional Hold Both No
105y A,,n
n<m PZE A+n,,m-n n No PZE Atn,,m-n n No No
n>m PZE Atn, ,s-n n First PZE Atn,,s-n n Conditional Hold First No
IORy A, ,n
n<m PZE Atn,,m-n n Yes PZE A+n,,m-n n Conditional Hold No
n>m PZE A+m,,0 m Yes PZE Atm,,0 m Conditional Hold No
SKIP LOCATE
IOCyN ** .n
n<m IOCyN B, ,n PZE B+n,,m-n n No IOCyN B, ,n PZE B+n, ,m-n n No No
n>m I0CyNC, ,n PZE C+n-m,,s-ntm n First IOCyN B, ,n PZE B+m,,0 m Hold Yes
IOCDN ** o
<m IOCDN B, . n PZE B+a,,m-n n Yes IOCDN B, ,n PZE B+n, ,m-n n Hold No
m IOCDN C, ,n PZE C+n-m, ,s-ntm n All IOCDN B, ,n PZE B+m,,0 m Hold Yes
IOSyN ** n
n<m IOSyN B, ,n PZE B+n,,m 0 No IOSyN B, ,n PZE B+n, ,m 0 No No
n>m I0SyN C, ,n PZE C+n,,s 0 First IOSyN C, ,n PZE C+n,,s 0 Conditional Hold First No
IORyN ** .n
n<m IORyN B, ,n PZE B+n, ,m-n n Yes IORyN B, ,n PZE B+n, ,m-n n Hold No
n >m IORyN B, ,n PZE B+m,,0 m Yes IORyN B, ,n PZE B+m,,0 m Hold No

Figure 31. Execution of 1ocs Commands

Appendix C

79

Appendix D: Actions of 10CS Routines Under Abnormal Conditions

80

LIBRARY IOCS
ROUTINE

.DEFIN

JOIN

ATTAC

.OPEN
.CLOSE

.READ

.WRITE

.COPY

.REW

WEF

.BSF

.BSR

.STASH

FULL IOCS
ROUTINE

DEFINE

JOIN

ATTACH

OPEN
CLOSE

READ

WRITE

COPY

REW

WEF

BSF

BSR

STASH

CONDITION

Attempt to define a buffer pool inside the system
boundaries

Pool 2 in use (or already joined to a different
pool)

Pool 1 joined to any buffer pool

Attempt to attach a closed file that has been re-
wound and unloaded

Attempt to attach to pool in use

Not enough buffers in a buffer pool

Attempt to open a file that is already open
Attempt to open a file that was rewound and
unloaded

Attempt to close a file that has been rewound
and unloaded

File never opened

File already closed

File is an output file

Block sequence error

Check sum error

Parity error

Sequence and parity errors

Check sum and parity errors

Attempt to locate information in two buffers with
one command ‘
Attempt to locate in more buffers than are avail-
able

Attempt to transmit a word into the system
File never opened

File already closed

File in an input file

Attempt to locate information in two buffers with
one command

Attempt to locate in more buffers than are avail-
able

Either file not open

No buffer(s) connected to the input file

Files not using same pool

File never opened

File already closed

File is labeled

File never opened

File already closed

File is input file

File is labeled

File not opened

File already closed

BSF one file after end-of-file exit

File not opened

File already closed

Following end-of-file exit

Tape positioned in front of the first record of a
file

Either file not open

Case 1: No buffer in FILE1 chain

Case 2: FILE2 group full

Case 3: No buffer in FILEI chain

Case 4: FILE2 group full

ACTION
Pool error

Pool error

Pool error
Initialization error

Unrealiable results
Attach error
NOP

Initialization error
NOP

End-of-file exit
End-of-file exit

NOP

Exrror exit; MQs—2=1
Error exit; MQs—2=2
Error exit; MQs—2=4
Error exit; MQs—2=5
Error exit; MQs—2=6
End-of-buffer exit;
MQs-2=2
End-of-buffer exit;
MQs-2=4

Hlegal transmit

NOP

NOP

NOP

End-of-buffer exit;
MQs-2=2
End-of-buffer exit;
MQs-2=4

NOP

NOP

Invalid file use

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP
Beginning-of-file exit
Beginning-of-file exit

NOP
NTS exit
NTS exit
NOP
NTS exit

This appendix contains listings of on-line messages
produced by both forms of 10cs. The messages that
apply to both forms are listed first. A list of Preproc-
essor messages applicable only to Full 1ocs-is presented
afterward.

In the lists, the form of the message is given first in
capital letters, followed by an explanation of the
message. If 1ocs transfers control to a System Monitor
routine after printing the message, the name of that
routine is indicated at the beginning of the explanation.

Error messages produced by Random 1ocs are ex-
plained at the end of the section “Random Processing
Using Disk and Drum Storage Units” and are not in-
cluded in this section.

Messages for Library and Full IOCS

ATTACH ERROR AT XXXXX
The System Monitor routine (STOPX is entered.
There are not enough buffers in the required pool to at-
tach the specified files. XXXXX is the location of the
TSX ATTACH, 4 instriiction that caused the error.

BASIC I0CS NECESSARY XXXXX
A dump is taken.
Minimum IOCS was specified in the *JOB control card.
However, a call has been made to internal files or to one
of the following routines: JOIN, COPY, REW, WEF,
BSF, or CKPT.

CHECKPOINT INVALID, MOUNT NEW REEL TO
CONTINUE UNIT XXXXX CHECKPOINT XXXXXX CODE
YYYYYY
An attempt to write a checkpoint on the specified tape
has failed because of bad tape or because end of tape
was encountered.

(File Identification) CYL. LIMITS XCEDED
The allotted number of cylinders specified in the sec-
ondary unit field of the control card or pseudo-operation
has been exceeded. The end-of-buffer exit will be taken.

(File Identification) INPUT REEL, NO LABEL
The record read as the label of an input file was not
the required length. A 1BLANK image will be created
in the label area. This will result in a subsequent error
message. There is no stop associated with this error.

(File Identification) NO TRAILER
A dump is taken if IOCS cannot continue. The record
read as the trailer label of an input file was not the
required length. The end-of-file condition is assumed.
There is no stop associated with this error.

(File Identification) OPEN COUNT EXCEEDED-OPEN
NOT POSSIBLE
The System Monitor routine {PAWSX is entered.
An attempt has been made to open too many files in
a Reserve or Internal Group. If the Start key is de-
pressed, the program continues without opening the file.

Appendix E: IOCS Messages

(File Identification) SEARCH SKIP LIST FOLLOWS IF
SSWX DOWN REMOUNT
(label of file skipped)

(File Identification) FOUND

A search is made for the header label on the current
reel. If the desired header label is not found on this
reel, reel switching will occur. If the specified sense
switch is depressed, the reel currently being searched
is rewound and unloaded. If another reel is mounted on
that unit, the search will continue on that reel. The
FOUND portion of the message is printed when the
specified label is found. '

ILLEGAL FILE USE
A dump is taken.
This message indicates that a file designated as a total
block output file has been used for partial block output,
or an attempt has been made to copy buffers when both
files are not in the same pool.

(READ)
ILLEGAL TRANSMIT 4 L XXXXX
| WRITE |

The System Monitor routine (STOPX is entered.

An attempt has been made to read a word from or to
write a word into the area occupied by IOCS. XXXXX
is the octal location of the IOCS command that caused
the error. .

IOBS NECESSARY XXXXX
A dump is taken.
EXECUTOR was specified in the *JOB card as the de-
sired IOCS configuration. However, the object program
has requested a routine in Minimum or Basic IOCS at
octal location XXXXX.

I/0 CHECK
The System Monitor routine (PAWSX is entered.
A machine error has probably occurred. No recovery
by IOCS is possible.

LABEL IOCS NECESSARY XXXXX
A dump is taken.
A reference has been made to Label IOCS at octal loca-
tion XXXXX. Labels were specified in an *FILE card
but not on the *JOB control card.

NEED RANDOM
A dump is taken.
An attempt to TSX RANDEF, 4 has been made by the
object program. The IOCS configuration in core storage
does not contain Random IOCS.

POOL ERROR TSX AT XXXXX
The System Monitor routine (STOPX is entered.
An attempt has been made to do one of the following:
(1) to define a buffer pool using the storage area oc-
cupied by IOCS; (2) to join a buffer pool to a non-
existent pool; (3) to join a pool to two different pools;
or (4) to join two pools of different buffer sizes.

UNIT XXXXX
CHECKPOINT XXXXX CODE YYYYYYZZZZZZ
This message is printed immediately before a checkpoint

Appendix E: IOCS Messages 81

is written. The checkpoint identification number is
XXXXX, and the restart code for this checkpoint is
YYYYYYZZZZZZ. The physical tape address of the unit
on which the checkpoint is taken is YYYYYY.

UNIT XXXXXX
EOT ON ERASE

The System Monitor routine (STOPX is entered.

End of tape was encountered while trying to erase tape
on which a parity error occurred. No recovery by IOCS
is possible.

UNIT XXXXXX (File Identification)
(LABEL HIGH DENSITY)
J LABEL LOW DENSITY L
1 DISK FILE LABEL
(HYPERTAPE LABEL
(followed by entire label image)
This message is printed to indicate the contents of the
label on the specified unit.

UNIT XXXXXX (File Identification)

[MOUNT)

{ MOUNT BLANK + REEL XXXX

| MOUNT LAB. BLANK |
The System Monitor routine (PAUSE is entered if
IOCS needs the new reel immediately. Otherwise, no
pause occurs.
A tape should be mounted on the specified unit. If
MOUNT BLANK is printed, a work tape should be
mounted. If MOUNT LAB. BLANK is printed, a
IBLANK tape or a labeled tape on which the reten-
tion period has expired should be mounted. When reel
switching occurs for multireel files, and only one input/
output unit is assigned for the file, IOCS halts to permit
the reels to be changed. If two units are assigned, IOCS
does not halt. It automatically begins processing the
second unit.

UNIT XXXXXX (File Identification) NOT AVAILABLE
FOR INITIALIZATION
The System Monitor routine (PAWSX is entered.
An attempt has been made to attach a file which has
already been attached to. another pool or previously
closed with a rewind and unload. If the Start key is
depressed, the program continues but the file is not
attached.

UNIT XXXXXX (File Identification) REEL XXXX-XXXX

RECORDS REDUNDANCY HISTORY Xxxxxx / RETRYS 1

1 ERASES |
XXXX PERM

This message shows the number of permanent parity
errors (PERM.) when reading or writing, and also
shows the number of parity errors corrected (RETRYS)
when reading, or the number of erased areas (ERASES)
when writing. The message is printed only if the error
count (address portion of word 6 of the file control
block) is nonzero.

UNIT XXXXXX (File Identification) REMOVE REEL XXXX

The specified reel has been unloaded. It may be re-
moved from the tape drive.

UNIT XXXXXX (File Identification) LABEL ERROR
(Entire Label Image)

{ INPUT REEL INVALID]

| OUTPUT REEL INVALID |

{ RETENTION NOT EXPIRED '

| NO LABEL, BLANK CREATED

| IF SSWX DOWN IGNORED J

The System Monitor routine (PAUSE is entered.
Causes of the error:

82

a. INPUT REEL INVALID

Either the file serial number, the reel sequence number,
or the file name is incorrect. If the label control sense
switch is down when the Start key is depressed, the reel
is accepted as correct. If the sense switch is up, the
tape is rewound and unloaded. When a new tape is
mounted, it will be checked.

b. OUTPUT REEL INVALID

The reel is not labeled (i.e., the label does not begin
with 1HDR or 1BLANK). If the label control sense
switch is down when the Start key is depressed, the
dummy file serial number ***** is used for the label.
If the sense switch is up, the reel is rewound and un-
loaded. When a new reel is mounted, the label will be
checked.

c. RETENTION NOT EXPIRED

For the tape on the specified unit, (creation date + re-
tention days) is greater than (current date). If the label
control sense switch is down when the Start key is de-
pressed, the reel is used for output. If the sense switch
is up, the tape is rewound and unloaded. When a new
reel is mounted, it will be checked.

d. NO LABEL, BLANK CREATED

The record read from an output file as the label was not
the required length. If the label control sense switch is
up, the tape is rewound when the Start key is depressed.
When a new tape is mounted, it will be checked. If the
sense switch is down, the system will proceed. A
1BLANK-type label is placed on the reel and process-
ing continues, (Care should be used since the 1BLANK-
type label may cause a subsequent error message.)

Preprocessor Messages

The following messages are applicable to Full
10cs only.

BASIC MONITOR HAS ENTERED
CONTROL SYSTEM
IOCS has received control from the System Monitor.

CYL LIMIT ERROR — MAX SIZE GIVEN PRESS START
TO CONTINUE
The System Monitor routine (PAUSE is entered.
The *FILE card contains an error in the number of
cylinders defined for the file. The upper limit is as-
sumed to be the end of the disk or drum file.

ERROR IN RELOCATABLE CARD TYPE
The System Monitor routine (PAWSX is entered.
An error in card type has been detected in the Random
IOCS record. This probably indicates a bad system tape.

END OF JOB
A dump is taken only if an error has occurred.

I0CS LOOKING FOR CONTROL CARDS
IOCS is looking for one of the following control cards:
$ID, $JOB, $EXECUTE, $STOP, *IBSYS, *JOB,
*RESTART.

IOCS RETURNING TO BASIC MONITOR
1OCS is returning control to the System Monitor.

JOB DISCONTINUED
This message indicates that execution of a job has been
suppressed.

JOB — (Job Identification) DATE XX/XX/XX PAGE XXX
This is the format of the heading for the file list pro-
duced by the Preprocessor at the beginning of a job.

JOB-RESTART PAGE XXX
This is the format of the heading for the file list pro-
duced at restart.

The following is the format of the file list produced at
either beginning of job or restart.

INPUT/OUTPUT

NO. FILE NAME UNIT

XXX (File Identification) XN
XDAM/S TRKS XXXX-XXXX
BLANK LO DEN LAB
XNAM/S TRKS XXXX-XXXX
BLANK LO DEN LAB

MOUNT TAPES

XHK/S REEL XXXX

HI DEN LAB
PRX UNLABELLED
PUX LABELLED
RDX
+
CORE

MOUNT INDICATED TAPES
The System Monitor routine (PAUSE is entered.
All files marked with an asterisk (*) to the left of the
file number should be mounted immediately. Figure 32
is a sample of the file list produced at the beginning of
a job.

REDUNDANCY ON SYSTEM TAPE
The System Monitor routine (PAWSX is entered.
A redundancy has occurred during reading of the System
Tape.
IOCS may not be in core storage properly.

RESTART XXXXXX

SET SENSE SWITCHES

(UP ([UP fup [UP (UP [UP
{24 34 44 54 61
{DN [DN (DN [DN [DN | DN

This message is printed during restart. XXXXXX is the
checkpoint number that is being restarted. The sense
switches should be set as indicated.

SET KEYS TO RESTART CODE
The System Monitor routine (PAUSE is entered,
The panel entry keys should be set to the restart code
corresponding to the checkpoint record with which the
Testart is to begin (usually the last one written). The
Start key should then be depressed.

THERE IS NO XXX UNIT
A dump is taken.
SYSXXX was requested in an *FILE card but was not
attached in IBSYS.

UNIT XXXXXX

INCORRECT CHECKPOINT TAPE ADDRESS
A dump is taken.

An illegal unit address for the checkpoint tape has been
specified in the panel keys during restart.

JOB~- TEST 6 DATE 03/01/64

FILE DESCRIPTIONS (MOUNT FILES MARKED WITH *)--—

NO. FILE NAME UNIT MOUNT TAPES--

* 1 FILE A BS REEL 0001
2 FILE B Bé REEL 0001
AS REEL 0002
3 FILE C A3 REEL 0001
5 FILE D B1 REEL 0002
7 FILE E B2 REEL 0004

10 FILE F EDOO/O TRKS 8000 - 8399
11 FILE G DHOs1 REEL 0001

DH1/1 REEL 0002

UNIT XXXXXX
NOISE RECORDS MAY CAUSE
POSITIONING

Noise records detected while positioning unit XXXXXX

may cause the restart to position the specified unit in-
correctly.

UNIT XXXXXX
POSITIONING FAILED
A dump is taken.

The restart program has been unable to position unit
XXXXXX properly. -

XXXXXX UNITS NOT ASSIGNED. NONE AVAILABLE.
A dump is taken.
XXXXXX more input/output units were requested in
*FILE cards than were attached in IBSYS.

INTER SYSTEM RESERVE INPUT NOT AVAILABLE.
IF SENSE SWITCH 4 DOWN, ANOTHER UNIT WILL
BE ASSIGNED.
IF SENSE SWITCH 4 UP, JOB WILL BE SKIPPED.
The System Monitor routine (PAWSX is entered.
A reserve input file specified as J-Q in an *FILE card
is not being held in reserve status as requested.

INCORRECT

Preprocessor Control Card Error List

The following messages concern errors detected in
Full 10cs control cards:

I0OCS PREPROCESSOR ERROR LIST. JOB — (Job Identi-
fication) PAGE XX

This is the header line for the error messages which
follow. This message is not printed unless an error, or
errors, have been detected.

CARD XXX ILLEGAL OPERATION — (XXXXXX)
Columns 7-12 of the control card contain XXXXXX,
which is not *JOB, *FILE, *DATE, *LOAD, *RE-
START, or *IBSYS. The card is ignored.

CARD XXX FILE BLOCK ORIGIN NOT OCTAL

The origin specified in the *JOB card is not in octal
form. The specified origin is ignored and the standard
origin is used for the file block,

CARD XXX FILE CONTROL BLOCK COUNT ERROR

No count of the number of file control blocks to be
generated by IOCS was provided in the *JOB card. An
arbitrary count of 50 is used.

PAGE 1

BLANK-HI DEN LAB
BLANK-HI DEN LAB
BLANK-LO DEN LAB
BLANK~LO DEN LAB
BLANK~HI DEN LAB

BLANK-LABELLED
BLANK-LABELLED
BLANK-HI DEN LAS

* 12 FILE H A6 REEL 0002
21 FILE K PRA
22 FILE L B6 REEL 0001
A5 REEL 0002
25 FILE M EDO1/0 TRKS 0000 - 0999 BLANK-LABELLED

® 26 FILE N CHO/1 REEL 0003

CH1/1 REEL 0004

Figure 32. Sample of Preprocessor File List

Appendix E: IOCS Messages 83

CARD XXX FILE BLOCK WILL NOT FIT
The count of the number of file control blocks, as en-
tered in the *JOB card, is less than the number of
*FILE cards. A dump is taken.

CARD XXX JOB CARD OUT OF PLACE
The *JOB card has been placed incorrectly in the input
deck. The card is ignored.

CARD XXX FCB OVERLAPS 10CS
The file block origin has been specified at a location
within IOCS. The standard origin is used for the file
block.

CARD XXX FILE CONTROL BLOCK NUMBER ERROR
The file number specified in columns 13-15 of the *FILE
card is either nonnumeric or greater than the count
given in the *JOB card. No file control block is gen-
erated for this file.

CARD XXX UNIT 1 ILLEGAL
The primary unit field of the *FILE card does not con-
tain a proper designation. No unit control block loca-
tion is stored, and any reference to the file will cause
an error halt.

CARD XXX UNIT 2 ILLEGAL
The secondary unit field of the *FILE card does not
contain a proper designation. If the primary unit was
correct, that designation is used for the secondary unit.

CARD XXX REEL SEQUENCE NUMBER NOT NUMERIC
The sequence number in the *FILE card is nonnumeric.
The number is assumed to be 1.

CARD XXX HYPER UNIT NOT AVAILABLE
There is no unit control block for the Hypertape unit
designated in the *FILE card. No unit control block
location is stored in the first word of the file control
block. Any reference to the file will cause an error halt.

84

CARD XXX NO SUCH ACCESS — MUST CORRECT
The *FILE card has asked for a nonexisting access
mechanism. No unit control block location is stored in
the first word of the file control block. Any reference
to the file will cause an ‘error halt.

CARD XXX DATE ERROR
The date specified in the *DATE card is not in a valid
form. The date from the System Monitor is used.

CARD XXX SOME UNIT 1 IS (*)
The notation (*) has been specified in the primary unit
field of the *FILE card. This is an invalid designation
in a primary unit field. No unit control block location
is stored in the first word of the file control block. Any
reference to the file will cause an error halt.

CARD XXX CYLINDER START NON-NUMERIC
Alphabetic characters instead of numeric characters have
been used in columns 38-41 of the *FILE card to specify
cylinder number. The highest cylinder is assumed to
be the starting cylinder.

CARD XXX CONTROL CARD EOF
The System Monitor routine (PAWSX is entered. More
control cards are needed in System Input Unit 1. If
none can be provided, the operator should take a dump.

CARD XXX CONTROL CARD REDUNDANCY
A redundancy has been detected while reading control
cards from tape. The card is processed as read.

CONTINUE IF CONTROL CARD ERRORS CAN BE
IGNORED
This message is printed at the end of the Preprocessor
control card error list. The System Monitor routine
(PAWSKX is entered. '
The operator should continue only if so instructed by
the programmer. Otherwise, a dump (TRA 115) should
be taken.

When processing a mixed-mode file, 10cs examines the
last word of each physical record (look-ahead word)
to determine the mode in which the next physical rec-
ord is to be read or written. The octal representations
of the standard look-ahead words are shown in Fig-

Appendix F: Standard Look-Ahead Words for Mixed-Mode Files

ure 33.
Standard Look-Ahead Mode of Record Mode of Next
Word Just Written Record
XX XX 00 00 00 00 BCD BCD
00 01 00 05 00 04 Binary Binary
XX XX 11 11 07 07 BCD Binary
00 00 00 01 OC 00 Binary BCD

Figure 33. Standard Look-Ahead Words

Actually 1ocs uses only bits 21-23 of a look-ahead
word in the determination of the mode. Therefore, if
a mixed-mode file is not intended for the use of any
system other than 1ocs, look-ahead words of the form
shown in Figure 34 may be used in place of the stand-
ard look-ahead words.

Mode of Record Mode of Next
Look-Ahead Word Just Written Record
XX XX XX X0 XX XX BCD BCD
XX XX XX X5 XX XX Binary Binary
XX XX XX X1 XX XX BCD Binary
XX XX XX X1 XX XX Binary BCD

Figure 34. Look-Ahead Words For IOCS

Appendix F: Standard Look-Ahead Words

84.1

The following glossary contains definitions of terms as
used in this manual. The definitions do not necessarily
apply to other systems.

Additional Label Information
Information that can be placed in BCD positions 101
through 120 of the IBM standard 120-character label.

Alpha Record
This term is used in the discussion of Random IOCS to
describe the record that is taken from a sequential file.
This record usually contains information used to update
one or more beta records taken from a random access file.

ATTAC (ATTACH)
The IOCS routine that attaches a list of files to a buffer
pool.

Available Buffer
A buffer not presently in use, nor reserved for later use.
For each buffer pool, there is a chain of available buffers.

Available Word Locator
The first word of each buffer (the first buffer control
word) which is used to keep track of the location of the
next available word and the number of available words
remaining in the buffer.

Available Words
Those words in an input buffer that have not yet been
“read,” or those words in an output buffer that have not
yet been filled with data.

Beta Record
This term is used in the discussion of Random IOCS to
describe the record secured from a random access file.

Block
A physical record, i.e., a punched card, line of print, or
the data contained between twe interrecord gaps on
magnetic tape, disk storage, or drum storage.

Block Count
The count of the number of blocks { physical records) that
have been processed on the current reel of a tape file,
or the number of records processed on a disk or drum
storage file or unit record file. The count is kept in the file
control block for the file.

Blocking
The process of combining more than one logical record
into a block,

Block Sequence Word
A word that can be appended to each block of a binary
file in order to provide additional checking information.
It contains the block sequence number and may also con-
tain a folded check sum.

.BSF (BSF)
The IOCS routine that backspaces a tape, disk, or drum
over a specified number of files.

.BSR (BSR)
The IOCS routine that backspaces over one data block
of a file.

Buffer
An intermediate storage area in which a block of input
data is held until it is processed, or in which a block of
output data is stored before transmission to an output unit.

Glossary

Buffer Count
In the $POOL control card, buffer count specifies the num-
ber of buffers to be assigned to a pool. In the $GROUP
card, or in a Reserve or Internal Group Control Word,
buffer count specifies the number of buffers to be reserved-
for use by the files in the group.

Buffer Control :
The control used by those IOCS commands that operate
on all the words, or the remaining words, in a buffer.

Buffer Control Words
The two words at the beginning of each buffer. Buffer
Control Word 1 serves a dual purpose by chaining buffers
together and keeping track of the contents of a buffer.
Buffer Control Word 2 is a data channel command used
to fill-or empty the buffer.

Buffer Pool
A group of equal-sized buffers that are related to the same
two pooi control words. The buifers in a pool are con-
nected to permit sharing of buffers among a group of files.

Buffer Pool Control Words
The two words at the beginning of each buffer pool that
provide information about the status of buffers for use
by the file control blocks.

Buffer Size
The maximum number of data words that a buffer can
hold. Buffer size determines the maximum number of
words that can be read from an input block, and limits
output blocks to that size,

Calling Sequence
A sequence beginning with an instruction that transfers
to an IOCS routine. The calling sequence contains one
or more parameter statements that define the scope of the
operation to be performed by the routine.

Checkpoint
A reference point taken during execution of a program.
Disk unit, drum unit, and tape positions, the status of ma-
chine registers and switches, and the contents of storage
are recorded for the purpose of later restarting the program
from exactly that point in execution.

Checkpoint File
The file on which checkpoint records may be written.
The checkpoint file should not be attached to a buffer
pool, but must be opened. The file cannot be labeled.

Checkpoint Records
Records written at periodic intervals by a program. The
records contain the complete contents of core storage and
all the machine registers and machine status conditions.
These records may be used later to restart a program
without requiring a complete rerun of the program.

CKPT (CKPT)
The IOCS routine that prepares a checkpoint on the cur-
rent checkpoint file.

Check Sum (folded)
An 18-bit folded sum of the data words in a block. The
check sum appears in positions S-17 of the block sequence
word.

.CLOSE (CLOSE)
The IOCS routine that terminates input/output activity
on a file,

Glossary 85

Command (IOCS)
Instructions used in IOCS to control “reading” and “writ-
ing” of data words from and to buffers. Their form is
identical to IBM 7607 Data Channel Commands and
their interpretation is similar.

Communications Region
A region at the beginning of IOCS in which transfer
vectors to IOCS routines and a number of information-
holding words are located.

Connected Buffer
A buffer currently in use by a file.

.COPY (COPY)
The IOCS routine that transfers data from an input file
to an output file by appending a processed input buffer
or buffers to the output file buffer chain.

Count Control
The control used by those IOCS commands that “read”
or “write” a specified number of words.

Creation Date
The year and the day of the year on which a file was
created. The creation date is contained within the label
of a labeled file.

Current Buffer
The buffer in which words are already being “read” or
“written,” or are about to be “read” or “written.” The
connected buffer is the current buffer for a file.

Deblocking
The separation of a block of data into logical records or
other segments.

DEFIN (DEFINE)
The IOCS routine that is used to impose the structure of
a buffer pool upon a specified area in storage.

Disconnect (a buffer)
The removal of a buffer from further immediate access
by the programmer. The current buffer is truncated and
no further words can be “read” from or “written” into it.

Disk/Drum Limit
The ending track address on disk or drum.

Disk/Drum Record Holding Area
A buffer pool whose buffers contain the beta records taken
from a disk or drum storage file.

End of Available Buffers
A condition under which IOCS is unable to provide a
buffer for use by a file.

End-of-Buffer (eob) Switch
A programmed switch, specified in the .READ (READ)
and .WRITE (WRITE) calling sequence, that controls
the interpretation of nontransmitting IOCS commands.

Under certain circumstances, eob' is an address to which-

the program transfers when it reaches the end of a buffer.

End of File (eof) .
The end of all records related to the same file. In a
READ (READ) calling sequence, an eof address is
specified as the address to which the program will trans-
fer when end of file is recognized.

End of Tape (eot)
The physical end of available tape on a reel. In a .WEF
(WEF) calling sequence, eot is an address to which the

program will transfer if an end-of-tape condition is
recognized.

End of Reel Trailer Label
A label at the end of one reel of a multireel file.

End of File Trailer Label
The trailer label at the end of a file.

86

Error Exit (err)
An address specified in a .READ (READ) calling sequence
to which the program will transfer upon recognition of an
uncorrectable parity error, or a block sequence or check
sum error.

External File
A file on an input/output unit, as contrasted with an inter-
nal file which is contained within core storage.

File
A collection of related information having its own logical
beginning and end. IOCS routines are used to process
records from or to specified files.

File Block
The area in storage that contains all of the file control
blocks for a program.

File Block Origin
The location of the first word of the file block.

File Control Block
Twelve words in storage containing the control informa-
tion and characteristics of a file to be processed by IOCS.

File List
A list of files included by the Full IOCS programmer in
his source program.

Force-Sequential Processing
The condition in random processing in which each request
for a beta record forces the processing of all such requests
that have preceded it.

Full-Random Processing
The condition in random processing in which each request
for a beta record is independent of other such requests.
Group (of beta records)
Mutually dependent beta records within a set.

Header Label
The label at the beginning of a file, or at the beginning of
a segment of a file, that contains identifying information
about the file and indicates the order in which the reels
of a multireel file should be read.

History Record
A record of action present in the AC and MQ when an exit
is taken from a .READ (READ) or .WRITE (WRITE)
calling sequence. It provides the programmer with informa-
tion about the effect of the last IOCS command executed.

IBJOB Processor
An integrated processor that consists of a group of pro-
grams. The components of the Processor can be used to
translate programming languages, to assemble programs,
and to load and execute compiled and assembled programs.

IBJOB Monitor
This is the supervisory portion of the IBJOB Processor.
It provides communication between the System Monitor
(IBSYS) and the components of the IBJOB Processor.

IBJOB Loader
This is the Loader that is a component of the IBJOB
Processor. It loads program decks produced by the Macro
Assembly Program and combines any required subroutines
from the Subroutine Library with the program decks.

IBSYS
The symbolic name for the System Monitor.

Immediate File
" A type of file in Full IOCS that is opened automatically
when the file is attached to a buffer pool. When an immedi-
ate file is closed, it cannot be reopened.

Initialization
The term applied in Full IOCS to the two steps of attach-
ing a file to a pool and opening the file.

Initialize
To set up an area in storage or to prepare key locations or

status indicators prior to the actual beginning of a routine
or subroutine. :

Input/Output Unit
The physical device on which a recording medium is
mounted. Allowable units in IOCS are magnetic tape,
disk, drum, card reader, punch, or printer.

Internal File
A file that is contained entirely within a chain of buffers
in core storage. Such a file has no external input/output
unit associated with it.

Internal Group
A group of internal files. The group is preceded in the file
list by an Internal Group Control Word (the SIX Word).

Internal Group Control Word
A word, with the prefix SIX, that precedes a group of
internal files in a file list. It specifies the minimum number
of buffers that must be available for the group, and the
number of files in the group that will be open at the same
time.

Intersystem Channel
A symbolic channel designation (] through Q) used to
assign a file to a unit and then reserve that unit for later
use in a different phase of a job.

Intersystem Reserve Unit
A logical input/output device that is given a reserve desig-
nation by one subsystem to indicate that the unit may not
be returned to the availability chain until the reserve status
is ended. It may be referenced later by another subsystem
when called for, using the same reserve designation.

JOIN (JOIN)
The IOCS routine that connects two separately defined
buffer pools, thus forming a larger pool whose buffers are
not necessarily contiguous.

Labels
Records at the beginning and end of a tape, disk, or drum
file that contain control information for that file. Labels also
identify segments of a file.

Labeled File
A tape, disk, or drum file, each segment of which begins
_ with a header label and ends with a trailer label.

Label Identifier
The first field of a label which identifies it as a header
label, or an end-of-reel or end-of-file trailer label.

Loader
See IBJOB Loader.

Locating
The use of IOCS nontransmitting commands to determine
the location of data in an input buffer or to find space
within an output buffer.

Logical Record
A record that is logically self-contained. The term is used in
this publication to distinguish a data word from a physical
record (block) which may contain several logical records.

Macro Assembly Program (MAP)
This is the assembly program within the IBJOB Processor.
It assembles source programs written in the MAP language
and assembles the generated MAP programs that are out-
put from the FORTRAN IV and COBOL Compilers.

Mode
The form in which information is recorded; either binary
or BCD.

Module Number
The number (0-9 for disk; 0, 2, 4, 6, or 8 for drum) used
to designate a module within a disk or drum storage unit.

Multifile Reel
A reel of magnetic tape containing more than one file.

Multireel File
A magnetic tape file that is contained on more than one
reel. IOCS can process labeled multireel files, and unlabeled
multireel files that contain only one file mark on each reel.

Mutually Dependent Records
A group of beta records that must be delivered to the
user’s processing routine as a group.

Mutually Independent Records
Beta records that can be processed as each record of a set
becomes available,

MWR (MWR)
The IOCS entry point that gives control to (PROUT, the
IOEX routine that prints messages on the System Printer.

Nondata Operation
An input/output operation that does not cause movement
of data. These operations include: Rewind, Unload, Back-
space Record, Backspace File, and Write End-of-File.
Nonstandard Label
A label that varies from the IBM standard label formats.

Nontransmitting Commands
10CS commands that do not transmit data. Instead, they
provide the location of data in an input buffer, locate space
for data in an output buffer, or skip over data words in a
buffer.

.OPEN (OPEN)
The IOCS routine that prepares a file for input/output
activity.

Open Count
The number of files in a Reserve Group or Internal Group
that will be open at the same time.

Parity Error
An error in transmission. It probably indicates that the file
is being read in the wrong mode.

Partial Block Output File
A file subtype in Full IOCS that allows the “writing” of
any number of machine words, regardless of buffer size.

Physical Record
A block of data; that is, a card, a line of print, or the data
contained between two interrecord gaps on disk, drum, or
magnetic tape.

Preparations for Processing
As used in this manual, this phrase encompasses all pre-
paratory steps required or accomplished before a program-
mer can open files and begin processing data.

Preprocessor
That portion of Full IOCS that creates the file control
blocks required by a program. It interprets control cards
and serves as the IOCS monitor.

Proceed
The function performed at the completion of an IOCS
command that allows the program to proceed to the next
command in the command list.

Pseudo-Operation
A symbolic representation of information to an assembler
or compiier.

Queue

A line of core storage words holding control information
for beta record requests.

Random Processing
Processing using records taken from a random access stor-
age device.

.RANCA (RANCAV)
A flag word used in Random IOCS.

Glossary 87

.RANCL (RANCLS)
The close routine used in Random IOCS.

.RANDE (RANDEF)
The routine in Random IOCS used to be define disk/drum
record holding areas and queue areas.

RANFL (RANFLG)
A flag word in Random IOCS that indicates to the main
program whether or not Random IOCS has a beta record,
or records, ready for processing.

.RANRE (RANREQ)
The routine in Random IOCS used to secure desired beta
records.

.RANRP (RANRPL)
The routine in Random IOCS used to replace the old beta
record disk (or drum) address in a request with a new
address. Its primary use is for chaining beta records.

Read
To transmit data from an input unit to an input buffer.

“Read”
To transmit data from an input buffer to working storage
by using IOCS transmitting commands, or to locate or
skip over data in an input buffer by using nontransmitting
commands.

READ (READ)
The I0CS routine that “reads” input data in the manner
specified by IOCS commands.

Recording Medium
The medium on which a file is recorded, such as magnetic
tape or disk storage.

Reel Sequence Number
A four-digit number (0000-9999) that indicates the order
of this reel within a file.

Reel Serial Number
A five-character identification code assigned to a reel when
it enters an installation. This number normally appears
on the outer surface of a reel for visual identification.

Reserve File
A file that can be opened and closed repeatedly during a
program. The file is listed within a Reserve Group in the
file list.

Reserve Group
A group of reserve files. The group is preceded in the file
list by a Reserve Group Control Word (the SVN Word).

Reserve Group Control Word
A word with the prefix SVN that precedes a group of
reserve files in a file list. It specifies the minimum number
of buffers that must be available for the group, and the
number of files in the group that will be open at the same
time.

Restart
To resume execution of a program from a reference point
established by taking a checkpoint.

Retain (a buffer)
To keep a buffer connected for “reading” or “writing.”
Retention Days
The number of days (0000-9999) after the creation date
that a file is to be retained.
REW (REW)
The TIOCS routine that can be used to rewind an unlabeled
file.
Self-Loading Record
An input record in which the first word contains an IOCS
command that can be used to read the record properly.
Set (of beta records)

All beta records requested by an alpha record in a single
entry to Random IOCS.

88

Single-Reel File
An unlabeled file that is contained on a single reel of tape.
Skip
The process of bypassing data words in a buffer while
“reading” or “writing.” Skipping is accomplished by using
nontransmitting IOCS commands.

Special Count Control
The control used by those IOCS commands that process
by count unless terminated by an end-of-buffer condition.

Standard Origin
The next location following the end of the IOCS configura-
tion specified.

Standard Label
A label that adheres to an IBM standard label format.

.STASH (STASH)
The IOCS routine that transfers data between an internal
file and an external file or between internal files by recon-
necting buffers from one file to another.

Subsystem
A system operating under the IBSYS System Monitor.

Symbolic Channel
A symbolic designation (S through Z) for a channel.

System Monitor
The over-all monitor for the IBSYS Operating System. It
contains the routines and control information necessary
for continuous system operation.

Terminate
To cease executing commands in a command list.

Total Block Output File
A file subtype in Full IOCS that requires that all words
to be placed in a buffer be “written” using one command
sequence,

Trailer Label
A record at the end of a labeled file, or at the end of each
reel of a multireel labeled file.

Transmitting Commands
IOCS commands that move data between buffers and
working storage.

Trap Supervisor, IOEX
That portion of the System Monitor that remains in storage
at all times and receives control from each data channel
trap or interrupt.

Truncate (a buffer)
To disconnect a buffer from use even though there are
unused words in the buffer. When an input buffer is
truncated, it returns to a chain of available buffers in the
buffer pool. When an output buffer is truncated, it joins a
chain of output buffers waiting to be written on an output
unit.

Unbuffer

The process of adjusting the physical position of a tape to
correspond to its logical position. For an output file, all
buffers in use are truncated and a delay occurs until all
writing ceases. For an input file, all buffers in use are re-
turned to the pool and the tape is positioned to a point
following the block corresponding to the buffer which con-
tained the last word “read.”

Unit Control Block (UCB)
A series of four-word blocks in IOEX. There is a unit con-
trol block for every input/output unit attached to the
system.

Variable-Length Records
A series of records varying in length,

.WEF (WEF)
The IOCS routine that is used to write a file mark on an
unlabeled output file.

WRITE space in an output buffer by using nontransmitting

To transmit data from an output buffer to an input/output commands,
unit.
“WRITE” WRITE (WRITE)
To transmit data from working storage to an output buffer The IOCS routine that “writes” output data in the manner
by using IOCS transmitting commands, or to locate empty specified by IOCS commands.

Glossary 89

Index

Access mechanism number

specification in Full tocs 72
specification under 1BjoB Processor 65
Activity option in FILE pseudo-operation 15, 60
Additional input file header labels 43
Additional label information
in Hypertape labels 45
programming for 45
specification in Full 1ocs, 45
specification in Library rocs0 0L 45
Alpha record (in random processing)
definitionof 50
independent 51
interdependent 51
.READR and READR routines 52
releasing al 52
.RELES and RELESE routines 52
retention of 52
AREAL 45,74
.ATTAC routine e 14,16
ATTACH routineoiuiiiiinon.. 21
Attaching file to buffer pools 14, 16, 21
Backspacing afile L. 28
Backspacing arecord 28
Backward reading _
effect on backspacing arecord 28
specified at opening 23
Basic Concepts 9
Basis 10CS 6, 59, 67
Beginning-of-file exit (bof) 28
Beta record (in random processing) '
chaining of 54
definitionof L. 50
forming master file 50
mutually dependent 51,53
mutually independent 51,53
physical address of 54
.RANRE and RANREQ routines 53
requests for 50, 55
routine to obtain them 53, 54
verification addresses of 54
Blank reels
density of headeron 47
labels on 41,43
Block
definition of 9
diagramof 9
relation of input block to buffers .-.............. 30
relation of output block to buffers 30
sequence number, 47
size of ... L. 30
Blockcount, 41, 42
Block sequence 47
Block sequence error
effect on historyrecord L 37
Block sequence indicator in labels 41, 42
Block sequence numberl 47
Block sequence options ’
in FILE pseudo-operation 61
in*ricecard 68
Blocking, definition of 9
Block-size check option
in FILE pseudo-operation 62
Block-size option
in FILE pseudo-operation 15, 60

90

in$pooL card 64
in standard 120-character labels 42
BSF and BSF routines 28
Buffer
control words 12
definition of 9
input ... 11, 30
IMUSE . .. 11
locating with retention of 24, 52
released by 10cs 11
releasing retained buffer 24, 52
truncation of 28, 30
Buffer control commands
nontransmitting 36
transmitting 31
Buffer count
in Internal Group Control Word 20
in Reserve Group Control Word20
option in $croup cardl 15, 64
option in $pooL cardl 15, 64
Buffer cycles
Buffer pool
attaching filesto 41,21
control words, 11,12
defining 14, 20
description of 11
diagramof 11
how 1BjoB Loader assigns storageto 14
joining pools 21
manner of establishing 11
reserving storage for (Full tocs) 19
re-use of . .. L 21
size of 11,19
Buffer size)
effectoninput blocks 30
effect on output blocks 30
fordiskordrumfile 48
Calling sequences (see list of routines under
10cs routines) 14, 20, 22
Card equipment
conversion options in FILE pseudo-operation 62
unit assignment of L. 65, 72
Card reader load program
Channels
intersystem 65,71
real (physical) L 48,71
symbolic 48,71
Checkpoint
contents of checkpoint records 48
definition of 48
initiated by 48
not written on disk or drum 49
options in FILE pseudo-operation 61
options in *FiLE card Ll 68
senseswitch 48
taking a 27
Checkpoint file
closingof 27
inFull1ocs 18
in Library 1068o 14
opening of 23
specifying in control cards 14,17
Checkpoint indicator, 42
Checkpoint location option
in FILE pseudo-operation oo 61

Checkpoint records
contentsof 40
densityof 47
positionof 40
where written 48
Checkpoint sequence number 48
Check sums
computing ofl 47
definitiomof 47
indicator in labels 41, 42
option in FILE pseudo-operation 61
option in *FiLE card el 61
specification of 47
.CkPT and CKPT routin€s 27, 48
.cLosE and cLOSE routines 27
Closing a file 27
closing checkpoint file 27
closing Hypertape file 27
closing immediate file 27
closing internal file 27
closing reserve file 27
Closingalistof files 27
cosoL Compiler 7
Commands (see 1ocs Commands) 30
Commercial Translator Processor,using Full 1ocs with. 6
Communication region in 1068 73
Control card errors {(Fullzocs) 86
Control cards
for Full 1ocs
*DATE card 68
*FILE cardo 67
*esys card ... 69
*roBoeoard 87
*roap card 69
*RESTART cardo 69
for Library 1ocs
FILE pseudo-operation 59
$FILE card 62
$GROUP card 64
$mjoB card 58
LABEL pseudo-operation 63
$raBEL card 64
$spooL card 64
System Control cards
$ExEcUTE card 70
$wsys card 70
$mp card ... 69
$yoB card 69
$sToP card 70
Control words
buffer control words 12
buffer pool control words 12
file control blocks I 12
schematic relationship of 12
unit control blocks 11
Conversion options in FILE pseudo-operation 62
.copy and CcOPY routines 25
Copying buffers
inputtooutput 25
programming example 25
rules for using routine 25
Core storage assignment (by 18joB Loader)
with $pooL and $erovp cards 15
without $poor and $crovp cards. 15
Count control 10cs commands
nontransmitting 34
transmitting L 31
Creating system 42
Creation date
in header label 40
in 84-character header label 41
in 120-character labels 42
Cylinder count option in FiLE pseudo-operation 62

Cylinder number option in FILE pseudo-operation 61, 62

Cylinders
specifying consecutive cylinders in *riLe card 191 68
Data channel switch (interface))
specifying in Full 1ocs 71
specifying under 18joB Processor 65
Data movement, 10
diagram of 10
TOULINIES . . . oot i i 23
*pATE card 68
Deblockingl 9
.DEFINE TOUEINEottt 20
Defining a buffer pool oo 14, 20
Delta character in Hypertape cartridge 48
Density
changes to be avoided 47
considerations 47
options in FiLE pseudo-operation 60
specification of 47
standard 47
Density indicator in labels 41, 42
Disk file
end-of-file condition on 24
format track forrocs 48
labels 44
nonstandard labelson L. . 43
random processing with 7,50
sequential processing with 48
specifying cylinders 62, 68
standard header label for 40
standard trailer label for 40
write-checking option in FILE pseudo-operation 62
write-checking option in *riLE card 68
84-character labels 40
Disk/drum flag word 48, 77
Disk/drum record holding area
definition of 52
.RANDE and RANDEF routines 52
reserving space for, 51,52
size of 52
Disk storage
random processing with oL 50
sequential processing with 48
specifying disk or drum unit in Full 1ocs 71, 72
specifying disk or drum unit under mBjoB Processor. 65
used for random access files 50
Drum file (see Disk file)
Drum storage (see Disk storage)
End of buffer
effect on buffer control nontransmitting
commands 34
effect on buffer control transmitting commands 31
effect on history record 37
effect on special count control nontransmitting
commands L. 35
effect on special count control transmitting
commands 32
End-of-buffer switch (eob)
functions of T 33
in a .READ or READ calling sequence 24
in a .WRITE or WRITE calling sequence 25
indicators locating a3
indicators skipping 33
End of file
definition of 9
effect on history record 37
in :READ calling sequence 24
End-of-file trailer label 10
Endofreel, 9
End-of-reel trailer label 10
Error exit
conditions causing exit 24

in .READ Or READ routine 24
Error list (Preprocessor)c..oo.. 66, 83
Error messages

for Full 10cs control cards 83

for Library and Fulltocs 81-84

in Random IOCSo oo 55
Error routine

in Random I0CSot 51, 54, 55

anSFEr T0 . . oo 55
External file name

in FILE pseudo-operation 59

in LABEL pseudo-operation 63
$EXECUTE cardo 70
$EXECUTE X0CS €ard.oovoinie i 5, 66, 67
$EXECUTE RESTART cardcoooeneoooo. - 48
File

backspacing @ 28

closing @ ... i 27

deferred opening of 20

definition ofot .9

opening &c.... S 30

DPrOCESSINE . . oo oooeeeeeeeeiea e 30

TeWinding @ 28

using a file for both input and output 13,20
File block

definition of 66

origin in Full ocs 67
*EILE CATA . . o ottt 67
SFILE card ... 62
File close option in FILE pseudo-operation 61
File control block

description of 12

detailed contents of 75

detailed diagram of 75

flletype bitsin 13

how 1BjoB Loader reserves space for 14

location of 66

relative location of 67

reserving space for (in Fulltocs) 19

symbolic location of 12
File control unit (mB™M 7631) 48
File density option in ¥iLE pseudo-operation e 61
File description

at load time 13

FILE pseudo-operation 13,59

FEILE CATA . . o o oottt 17

SFILE card 13, 62

InFull10CS 17

in Library 1065 13

LABEL pseudo-operation 13,63

$LABEL card 13, 64
File identification name

agreement of 43

in LABEL pseudo-operation 64

in labels I 41, 42

in*ricE card ... 68
File list

attaching file with 21

closing file with 27

control option in *rFILE card 68

format of 19

option in FILE pseudo-operation 60

optionin *FILE card 68

Preprocessor file list 66, 82, 83

programming of 19
File mark

after header label 40, 43

density of 40

on magnetic tape, ... L 40

written by tocs 44 45
File mode

inlabels 41

92

File mounting option

in FiLE pseudo-operation 60
in *FILE card 68
File names
checking in label e 42
extermal 59, 63
in$crouP card 64
in $poorL card 64
intermal 59, 63
File processing 30
File serial number
agreement of 42
checking in label 42
in label formats 41, 42
specified in *rE card 68
specified in LABEL pseudo-operation 63
File subtypes in Full 10cs
input P 18
partial block output 18
total block output 18
File types
checkpoint R 14,18
diskand drum 48
immediate 17
in Full 1ocs (with chart) 17,18
in Library 1ocs (with chart) 13,14
internal 13,17
multireel unlabeled 46
TESEIVE . . oottt 13,17
single-reel unlabeled 46
specifying in FILE pseudo-operation 14, 59
specifying in *FiLE card L 17,68
Fixed-length records in Hypertape files 48
Flag words
in Random 10CSovoiiiii 50, 53
ondiskordrum 77
Force-sequential processing C. 51,53
Format track for disk and drum files 48
Forms of 10GS 5
FORTRAN I0CS
characteristics of 6
contained in 1BjoB Subroutine Library 7
reduced facilities 6
specifying 59
FORTRAN II Assembly Program (imBsrap) 5,7
FORTRAN II Processor 7
FORTRAN v Compiler 6,7
Full 10cs)
characteristics of [P 5
control cards for 67
description of execution 66
installation modifications 71
loading 70
program input deck oL 67
TOUINESot 22
rules forassembly oL 66
sample load programs I 70
unit assignment for Tl
Full-random processingo..... 51,53
GlOSSATY . .o oo 85
$GrouP card
functions of 15, 16, 64
Guide to using this publication 7
ual for sequential processing 48
HA2 for sequential processing 49
Header label
definition of S 10
density option in FILE pseudo-operation 61
density specification 47
onblank reels 41
POSItION 0N tAPEt 40

standard 84-character header label 40,41 10Cs

standard 120-character header label 41,42 Basiclevel 6,59, 67
History records 36 commMAands 30
Hypertape file communication region 73

additional label information for 41 Executor (I0EX) 6, 59, 67

backward reading of 23 FIOCS . o oot 59

closing of 27 formsof 5

HYPER option in FILE pseudo-operation 62 FORTRAN IOCSottt 6,7

Interchanging Hypertape cartridge with other 18M data IOEX 6, 50, 59

, bprl;)cessing systems, 48 Labelslevel 7,59, 67

abels 41 levelsof 6,7, 59

opening of 23 MESSAZES . . . o oo 81

reel-switching option in FILE pseudo-operation 62 Minimum level Lo L 6, 59, 67

rewind and fle protect at opening 23 Random i i 59, 67

rewind and file protect option in *F1LE card 48 routines 22

rewind, file protect, or unload at close 27 with Commercial Translator Processor 6

unit assignment in Full 1ocs 71,72 with Preprocessor 5

unit assignment in 1BjoB Processor 65 with 9pac Processor 6

standard 120-character label 41 10Cs commands
1joB Loader, functions of 14 completion of oL 30
1BJoB Processor Monitor 7 control 30
S1BjoB card e, 58 elements of 30, 31
IBSAP . .\t 6 end-of-buffer switch 24, 25, 33
*BSYS card 69 endoffile 24
$1BSYS card 70 error exit L ... 24
810 card ... 70 fexecuti{:on tables 38
. X N ormof O ¢
immediate files indirect addressingof 30

cgaract?nitxcs of ... R 17 TOCY . oo oo 31

eftectof closing27

in file list ... 0 e

opening of 21 JOOYN o oo e 34
Independent rocs 5 IORYN o oo 34
;NOU: bﬁlftfe ------------------------------------- 13 TOSYN © oo 35

nput bufrer nontransmitting 33

copyi'n.g data from ... 25 termination ofg 30

d.eﬁmtlon of L. 11 transmitting 31
I Slzte ﬁ?f """""""""""""""""""""""""" 30 typesof control 30

nput i'e IOCS TIESSALES . . . oo 81-84

additional header !abels 43 OC:)ntrol Cgaerd OITOTS - o v v oo 83

block count chea.skmg 41 for both Full and Library 10Cso\ oooeee. .. 81

heaFgluarl label action 42 Preprocessor only 82

in Fulltocs 18 L T

restrictions for disk and drum 48, 49 10cs routines o

trailer label action 43 actu;)nsl‘under abnformal conditions 22
NPUT file symbolic names of

type in Library 10cs 13 ATTAC - o oo 14, 16
Input/output configurations 5 ATTACH .. 21
Input/output device 9 BSF .. 28
Input/Output Executor (I0EX) o 50, 59, 60 R 22
Input/output unit £
Interchanging Hypertape cartridges with other BSR 28

18M data processing systems 48 GEPT - 28
Interface (see data channel switch) CKPT . oot 28

specification in Full toes 71,72 COBY 2Z

specification under 18108 Processor 65 COBY oo 2
Internal fle DEFIIV\' .. 14,16

closingof 27 DEFINE v 3(1)

end-of-file condition for 24 R 9

inFulltocs 17 JON >

s Ts MWR - .o 29

in Library tocs 13

opening of . .. 25 AMWER . 29

L T I e OPEN . ..o 23
prog?'farpmlpg;x?lmpleusmg 39 OPEN . om

specitying in Fulltocs 34,72 y

specifying in Library 10cs 14: 65 e gg

stashing data into orout of 27 RAiFLS 52
Internal Group 19, 20 ;(T‘;D);EF """"""""""""""""""""""""""" 59
%n:ernal Gdroup Control Word 19, 20 RANBE o 52,53

OEEITECOrd gap coe.9,40 RANREQ o 53
Intersystem channels 65,71 RANEP - oo e 54
Intersystem units RANBPL . . . oo ooe 54

inFulliocs 71 READ .« o o oot e 24

under 18j0B Processor 65 READot 24

READRot 24, 52
READRot 24, 52
RELES oot 24, 52,138
RELESE 24,52, 138
REW . o 28
BEW .. .ot 28
STASH .. .o oot 26
STASH . . o oot 26
WEF . 28
WEF .. o 28
WRITE . .« o oo et e e e e 25
CWERITE . oo oottt e e 24
10Cs with Preprocessor 5
TOEX - oo e 6, 59

with Randomiocs 7,50
JDATE o o oo 73
Jobmame 67
*oBeard ... 67
$joBcard 69
JOIN TOULINEo oot ittt 21
JOIN routine 21
Joining buffer pools 21
Label actions

for additional input file header labels 43

for disk and drum storage file labels 43

for input file header labels 42
for input file trailer labels 43
for output file header labels 43
for output file trailer labels 43

$LABEL card 64
Label density

options in FILE pseudo-operation 61

options in *FiLE card 68
standard density 61

Label error actions 43
Label identifier 40, 41, 42, 43
Labeled file

effect of prefix at closing 27
end-of-file condition for 24

formatof 40

reel-switching option in FILE pseudo-operation 60

Label search

for input filelabels L. 43

option in FiLE pseudo-operation 60

optionin *FiILE card 68

Labeling and label checking 42
Labels

definition of 9, 40

densities of 40, 47

density considerations 47

density different from body of file 47

functions of 10

1BM standard formats (see standard labels) 40-42

nonstandard labels 43

onblank reels 41

on disk or drum files 43

on Hypertape files. 41
on729tapefiles 41

positioning of 41

pseudo-operation 63

sequence number in trailer label 47

specifying density 47

specifying density of headers in FILE

pseudo-operation 61

standard 84-character header label 40

standard 84-character trailer label 40

standard 120-character header and trailer

label 41
LAREA . o . e 45,73
LAREAL 45,74
WFBLK . ..o 73
Library 1ocs
calling sequences 6

94

characteristics of 6

contained in 1BjoB Subroutine Library 7
control card information 58
core storage assignment15
.DEFIN and .ATTAC routines 14,16
file description 13, 59, 63
file types 13
functions of the Bjos Loader 13
levelsof 6,7,58,59
preparations for processing with o 13
printing on-lineonly L. 29
processing with oo o L 22
programming examples 25, 38, 39, 35
symbolic names of routines in 6, 22, 47
unit assignment in 65
*Loap card ... 69, 70
card reader load program, 70
Hypertape load program 71
729 magnetic tape load program 70
Load programs
Loader (1BjoB)
assigns space to buffer pools 14
control cards 59-64
establishes file control blocks 14
functions of 14, 58
generates .aTTac and .DEFIN calling sequences14
loads required level of tocs L. 58
Locating
definition of 33
effect of end-of-buffer switch 33
restrictions on 33
using nontransmitting commands 33-36
Locating a buffer with retention 24,52, 137
Logical record
definition of 9
diagram of L 9
Look-ahead words 47
Machine requirements 5
Macro Assembly Program (MAP) 7
description of filesin 13,59, 63
pseudo-operations 59, 63
Magnetic tape files (729)
density changes 47
format of 40
labels for 40
nonstandard labels for 44
specifying density in *rFiLE card L. 68
specifying unit in Full tocs 71
specifying unit under 18joB Processor 64
standard header label for 40
standard trailer label for 40
729 magnetic tape load program 70
Mixed-mode files, processing of 47
Mode
considerations 47
indicator in labels 41, 42
of header and trailer labels 40
options in FILE pseudo-operation 61
options in *rFiLE card 68
unpacked mode for Hypertape 48
Modules
relation to alpha file 52
specifying number in Fulltocs 71
specifying number under 1BjoB Processor. 65
Multifile reels 46
density changes in, 47
Multireel unlabeled files 46
Mutually dependent beta records 51
effect on random processing 54
Mutually independent beta records 51
effect on random processing 54

MWR TOUHNE -« oo oo e oo
AMWER TOULIDE . . oo oo v e eie o 29
Nondata TOUtIneS o oo o 27
BSF TOULTIE . o o v o oo oo e e e e 28
BSF TOUHNE . o o o o oo oot e e e 28
BSR FOUHNE .. o oo 28
BSR TOULIME . . o oo ot oo e 28
REW TOULIMIE . . o o o oot oo et e e 28
REW routine 28
WEF TOUHNE . . . o oot ot e 28
CWEF .« o o e e 28
Nonstandard label routine
option in FiLE pseudo-operation 62
programming foro 44
specifying in Full10Cs 44
Nonstandard labels
allowance fOro 43
1ocs procedures witho 44
specifying in FiLE pseudo-operation 44
specifying in Full 1ocs 44
Nontransmitting commands
buffer control 34
count control 34
functions of 33
locating with 33
rules for using 33
skipping with 33
special count control 35
Open count
entry in Reserve and Internal Group Control Words 2
functions of 15,18
option in $croup card 15, 64
OPEN routineo 23
JOPEN TOUHIME . . .o 23
Opening files
checkpoint 23
Hypertapeouoiiaiiiiiii 23
immediate 21
internal 23
TESEIVE . . oottt 23
Output buffer
size of ... 31
truncation of 31, 28
Qutput file
header label action 43
restrictions for disk output file, 49
trailer label action 43
writing file mark onl 28
outrput file 13
Overlap
buffer pools and, 10
effect of filetypein Fulltocs 18
Parity errors
count of 76
effect on history record 37
MMESSALES - - -« e et 82
Partial block output file 18
Physical record
backspacing a 28
definition of 9
diagram of 9
Pool control words 12
$pooL card
format of 64
function of 14
Postprocessor (in Full tocs) 5,66
Preparations for processing
inFulltocs 17
in Library 10Cs 13
Preprocessor (in Fulltocs) 73,5
Print lines 29
Printing on-line and off-line 29

Processing
file . 23
randOm 50
sequential 6
Processing routine in Random 1ocs 54
Programming examples
using Basic 10cs and internal file 38
using .cOPY (COPY) routine 25
uging Minimum 10C8 L L 39
using Random 1ocs 55
(PROUT routineoiiiiiiiiii 29
Pseudo-operations (MaP)
FILE . .o oottt 59
LABEL . .. 63
Queues
definition of 52
in Random IOCSo 50
TESErving Space for 51
size Of 52
RaNca flag word ... 53
rancav flag word 54
RANCL TOULINE i 55
RANCLS TOUINE i 55
RANDE Toutine 52
RANDEF TOUHINE i 52
Random 1ocs
description of 50
diagram of 51
loading by 1j0B Loader 59
programming requirements for 51
TOULINES Io 52
specification in *riE card L 50
structure of 50
use of . e 51
Random processing
force-sequential 51
full-random 51
RANFL flag wordl 53
ranFLG flag word 53
RANRE TOULINE 52
RANREQ Toutineo i i, 53
RANRP TOULINE . . . oot i e e 54
RANRPL TOUHINE oottt e 54
READ TOULIN® oot i e e e s 24
READ routine 24
“reading” buffers 24
reading data 10
“reading” data 10
READR routine 24,52
READR TOUINEot 24, 52
Record address
for disk or drum files 48
Record formato 42
Record length 42
Reel control flagl 68
Reel sequence number
agreement of 42
checking of 42
in label formats 41,42
specification in *rrLE card L 68
specification in LaBEL pseudo-operation 63
Reel serial number
in *FILE card 68
in LABEL pseudo-operation 63
inlabels 41,42, 43
Reel switching 43
Reel switching options
for Hypertape in FiLE pseudo-operation 62
for labeled files 60
for unlabeled files 60
Reference locations to Full 1ocs subroutines 66, 67, 19
Releasing a retained buffer 24, 52

Index 95

.RELES routine 24, 52

RELESE routine 24,52
Relocatable Subroutine Library (18j08B)
CFORTRAN IOCS Ino i 6
Libraryrocs in13
Request entry queue 51
Reserve files
effect on closing L. 26
inFulltoCs 17
in Library 10cs 13
opening of 23
Reserve Group
deferred opening of file 20
functions of 18
Reserve Group Control Word
deferred opening of afile 20
effect at closing 27
form of 19, 20
uses of 20
using a file for both input and output 20
Reserve status for intersystem units
inFulltocs 72
under 1BJOB Processor, 65
Restart
definition of 48
effect of density changes on 47
$EXECUTE RESTART 48
initiated by 48
positioning option in *riLE card 68
*RESTART card 48, 69
Restart Program 48
Retention days
in *PILE card ... 68
in LABEL pseudo-operation 63
inlabels 41, 42
in 84-character header label 41
Routines (see 10cs routines)
list of symbolic names of 22
Self-loading variable-length records 33
Sense exit hubs o oo 29
Sequence number (block) 47
Sequential 1ocs
routines added to 52
routines in 22
used alone 7
used with Random 1ocs 7,50
Sequential processing 7
SHARE standard sense exit hubs 29
SHARE 7090/94 9pac, using tocs with. .., 6
Single reel unlabeled file 46
Six-bit mode on disk and drum 42
six Word ... 20
Skipping
definitionof 33
effect of end-of-buffer switch 33
restrictions on L L 33
using nontransmitting commands 33-36
Special count control commands
examples of use of 32,35
failure to release buffer 32
nontransmitting 35
transmitting 32
SPOUT routine 29
Standard density 61
Standard label formats
onblankreels 41
84-character header label 40, 41
84-character trailer label 40, 41
120-character header and trailer labels 41
Standard look-ahead words 47

96

Standard origin

of fileblock 67
Starting cylinder number
option in FILE pseudo-operation 61
STASH routine 26
STASH routine L 26
Stashing data 26
$sTopcard
syN Word ... 20
Symbolic channel 64,71
SYSEND . ..ot it 29
SYSORG . -« oottt 67, 66
System Library Unit 66
System units
specification in Full jocs 72
specification under 1BjoB Processor................... 65
Total block output file 18
Trailer labels
definition of 9
input file trailer labels 43
output file trailer labels 43
positioning of 40
standard 84-character trailer 40
standard 120-character trailer 41
Transfer and continue command list 32
Transmitting commands
buffer control 31
count control 31
functions of, 31
special count control 32
Truncating a buffer 30, 28
Types of files (see file types)
inFulltocs 17
in Library 10cs 13-14
Unit assignment
in FILE pseudo-operation 59
in*ricE card ... 68
inFalocs 71
under 1BJOB Processor 65
Unit control block 7,12
Unit control word o A 41
Unlabeled files
designation of in Full tocs 68
effect of prefix at closing 26
end-offile conditions for 24
rocs actions with o 46
multifile reel 46
multireel 46
reel-switching option in FILE 46
pseudo-operation 60
rewinding a 28
single-reel 46
User’s processing routine
in Random IOCS 50, 52, 54
Variable-length records
in Hypertape cartridges 48
self-loading 33
WEF routine 28
JWER TOutine ... 28
Write check
options in FILE pseudo-operation 62
options in *fFILE card 68
specifying in .RANRE (RANREQ) calling sequence 53
WRITE routine 25
WRITE TOutineo 24
Writing a filemark 28
“Writing” buffers 25
Writing data 10
“Writing” data 10

IBM 7090/7094 IBSYS OPERATING SYSTEM
INPUT OCUTPUT CONTROL SYSTEM

Form C28-6345-2

From

Name

Address

Your comments regarding the completeness, clarity, and accuracy of this publication

will help us improve future editions. Please check the appropriate items below, add

your comments, and mail.

YES NO
Does this publication meet the needs of you and your staff? —— -_—
Is this publication clearly written?

Is the material properly arranged?

If the answer to any of these questions is "NO, " be
sure to elaborate,

How can we improve this publication? Please answer below,

D Suggested Addition (Page , Timing Chart, Drawing, Procedure, etc.)

D Suggested Deletion (Page)

D Error {Page)}

COMMENTS:

No Postage Necessary if Mailed in U.S. A,

FOLD
FIRST CLASS
PERMIT NO, 81
POUGHKEEPSIE, N.Y,
]
BUSINESS REPLY MAIL ——
NO POSTAGE STAMP NECESSARY IF MAILED IN U, S. A,
L]
— z
o
POSTAGE WILL BE PAID BY — (zb
1BM CORPORATION — 19
P.O. BOX 390 —
S :3
POUGHKEEPSIE, N.Y. 12602 o
I
]
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS, —
DEPARTMENT D9l —
|
]
foo T T TS T T T T T T TT T T T T T T T T AL

C28-6345-2

STAPLE STAPLE

BNV

International Business Machines Corporation 9/64:5M-C
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
STAPLE

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61.0
	61.1
	62
	63
	64.0
	64.1
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	79
	80
	81
	82
	83
	84.0
	84.1
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	replyA
	replyB

