File No. 7090-27 &
Form C28-6362-1 ¢

Systems Reference Library

IBM 7090/7094 IBSYS Operating System
IBJOB Processor Debugging Package

This publication describes the 18y0B Processor Debug-
ging Package. The debugging package is a program-
ming aid that enables the user to obtain dynamic
dumps of specified areas of core storage and machine
registers during program execution. The package con-
tains two separate facilities: Compile-Time Debugging
for cosoL programs and Load-Time Debugging for
FORTRAN Iv and MAP programs. Load-time debug re-
quests are processed by the yoB Debugging Processor
(moBL), #7090-PR-807. Compile-time debug requests
are associated with the cosoL compiler (18CBC).

Preface

The 1M 7090/7094 1ByoB Processor Debugging Pack-
age provides a means of taking highly selective dumps
of core storage areas and machine registers with a min-
imum of programming effort. By carefully selecting the
areas to be dumped and the time at which to dump
them, the user can obtain valuable information for lo-
cating and correcting program errors. The facilities de-
scribed in this publication pertain to FORTRAN 1V, COBOL,
and MaP program debugging.

As a prerequisite to understanding this publication,
the reader should be familiar with the 1ByoB Processor,
as described in the M publication IBM 7090/7094
IBSYS Operating System: IBJOB Processor, Form
C28-6275, and with at least one of the programming
languages accepted by the processor, as described in
the 18M publications:

IBM 7090/7094 Programming Systems: Macro As-

sembly Program (MAP) Language, Form C28-6311

IBM 7090/7094 Programming Systems: FORTRAN

IV Language, Form C28-6274
IBM 7090/7094 Programming Systems: COBOL
Language, Form J28-6260

The compile-time debugging language (for use with
coBoL programs) is based on cosoL, and the load-time
debugging language (for use with both FORTRAN 1v and
MAP programs) is based on FORTRAN 1v. The MAP pro-

ammer who is totally unfamiliar with FORTRAN
should be able to use all of the facilities described
herein with limited reference to the FORTRAN language
publication listed above.

The 7090/7094 mjoB Processor Debugging Package
requires the same minimum machine configuration as
the 7090/7094 18yoB Processor except that a unit speci-
fied as syscke is required for debugging output when
the load-time debugging facility is used.

The problem of locating errors in programs rapidly
and efficiently is of major concern to all computer users.
The 7090/7094 1BjoB Processor Debugging Package
meets this problem by allowing the programmer to ma-
nipulate data, control processing, or dump the contents

Major RevisioN (June, 1964)
This publication, Form C28-6362-1, makes the previous edition,
Form C28-68362-0, obsolete.

of any relevant areas by inserting debug requests at
key points in his program. To use the debugging pack-
age, the programmer writes a debug request in the ap-
propriate debugging language. Each request specifies
the point(s) in the program at which the specified ac-
tion is to be taken. Any reasonable number of requests
may be given for a single program.

The debugging package provides two types of de-
bugging. The first, compile-time debugging, is included
with 1BCBC at compilation to specify dumps at various
points in a coBoL source program. In this type, the text
of debug requests is similar to the cosor language. The
second type, load-time debugging, uses the capabilities
of MAP and IBLDR to provide debugging during the
execution of a FORTRAN IV or MAP program without re-
compilation or reassembly. In this type, the text of
debug requests is written in a form similar to the
FORTRAN Iv language.

This publication describes the debugging package in
two parts: Part 1 describes the compile-time facility for
coBoL programs; Part i describes the load-time facility
for rorTRAN 1v and MaP programs. These parts are in-
dependent of each other, so that reference to one is not
required when reading the other. The material in Part u
is divided into two sections, “Load-Time Debug Re-
quests” and “Additional Load-Time Debugging Fea-
tures.” The FORTRAN 1v programmer will generally use
only the facilities described in the first section, whereas
the MaP programmer will use the facilities described in
both sections.

The following conventions apply to all card formats
given in this publication:

1. Brackets [] indicate that the enclosed material
may be omitted.

2. Braces { } indicate that a choice of the enclosed
material is to be made by the user.

3. Upper-case words, if used, must be present in the
form indicated.

4. Lower-case words represent generic quantities
whose values must be supplied by the user.

Copies of this and other 18M publications can be obtained through 18m Branch Offices.

Address comments concerning the contents of this publication to:

IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N. Y. 12602

© 1964 by International Business Machines Corporation

Part I: Compile-Time Debugging for

COBOLPrograms 5
COMPILE-TIME DEBUGGING PACKET. 5
Compile-Time Debug Requests. L 5
Count-Conditional Statement. 5
A Compile-Time Debugging Packet.................. 6

Part ll: Load-Time Debugging for

FORTRAN IV and MAP Programs 7
LOAD-TIME DEBUGGING PACKET........................ 7
Load-Time Debug Requests.......................... 7
Debugging Control Statements. 8
SET (Arithmetic) Statement. 8
Logical IF Statement 8
ON Statement 8
DUMP Statement 9
LIST Statement......... 2
NAME Statement 10
Debugging Dictionary........................... .. 11
A FORTRAN 1V Load-Time Debugging Packet. 11
Additional Load-Time Debugging Features............. 12
Quantities Available for Use in Debug
Request Statements 12
Examples of the Logical IF Statement. 13
LIST Statement........................... 13
Redefining Symbols..... 13
General NAME Statement 13
KEEP Pseudo-Operation—For MAP Assemblies. 13
Supplying Modal Information to the
Debugging Dictionary. 13
Address Computation 14
Bit Extraction............ 14
A MAP Load-Time Debugging Packet............... 15

The compile-time facility of the debugging package
enables the cosoL programmer to specify debug re-
quests with his source-language program. The requests
are compiled with the source program and are exe-
cuted at object time. The text of the request is very
similar to the procedural text of coBor. In addition, a
special count-conditional statement is provided. Since
procedural capabilities of the cosoL compiler are avail-
able, a user can be highly selective in specifying what
is to be dumped. He can manipulate and test the val-
ues of data items in his program and dump only perti-
nent and meaningful information, without affecting
execution of the program itself.

Compile-Time Debugging Packet

All compile-time requests for a given program are
grouped together into a debugging packet. The com-
pile-time debugging packet is placed immediately
following the scBEND card of the associated source
program.

Compile-Time Debug Requests
Each compile-time debug request is headed by the

control card siepBc. The siBpBC card serves two func-
tions: it identifies individual requests, and it defines
the point at which the request is to be executed. The
general form of this card is

1 8 16-72
$IBDBC [name] "location [, FATAL]

where the parameters are described as follows:

An optional user-assigned control section name,
which permits deletion of the request at load
time. This name must be a unique control sec-
tion name consisting of up to six alphabetic
and/or numeric characters, at least one of which
must be alphabetic.

The COBOL section-name or paragraph-name
(qualified, if necessary) indicating the point in
the program at which the request is to be ex-
ecuted. Effectively, debug request statements
are performed as if they were physically placed
in the source program following the section- or
paragraph-name, but preceding the text associ-
ated with the name.

If this option is exercised, loading and execution
of the object program will be prevented when-
ever an error of level E or greater occurs within
a debug request statement. If FATAL is not
specified, a COBOL error of level E or less,
when encountered in the procedural text of a
debug request, will not prevent loading and

name

location

FATAL

ime Debugging for COBOL Programs

execution of the object program. Instead, an
attempt will be made to interpret the statement.
If interpretation is impossible, the erroneous
statement (but not the entire request i it con-
sists of more than one statement) will be dis-
carded.

The text of the debug request follows immediately
after the smBpBC card. The text may consist of any valid
procedural statements conforming to the requirements
of the cosoL language and format and of the count-
conditional statement described in the following text.
The only restriction on these statements is that they
may not transter control outside of the debug request
itself. A procedure-name in a debug request must be
unique to the request in which it appears, to all other
debug requests, and to the source program. Display
statements in a debug request write on sysou1.

A compile-time debug request is terminated by an
end-of-file card, another smpsc card, or a $-control
card.

Count-Conditional Statement

A count-conditional statement, available for use only
in debug requests, provides the programmer with a
means of qualifying the time when a debugging action
should be taken. The count-conditional statement has
the same structure as the coBoL 1F statement (condi-
tional, true option, false option) and may be used in
the same manner; ie., it may be nested within other
count-conditional or 1 statements and may have other
count-conditional or 1F statements nested within it. The
general form of the count-conditional statement is
ON m [AND EVERY n;] [UNTIL ns] statement-1
[ggl'i%%RWISE % statement-Z:'
where n,, n,, and nj are positive integers. If the anp
EVERY np option is not specified, but the uNTm. ns
option is specified, n, is assumed to be one. The uNTIL
option means up to but not including the nsth time.
Some examples of the count-conditional statement
follow:
ON 3 DISPLAY A.
On the third time through the count-conditional state-
ment, A is displayed. No action is taken at any other
ON 4 Itl}llr\}'eI:IL 8 DISPLAY A.
On the fourth time through the seventh time, A is dis-
played. No action is taken at any other time. (This
example implies, and has the same effect as, the state-
ment ON 4 AND EVERY 1 UNTIL 8 DISPLAY A.)

ON 5 AND EVERY 3 UNTIL 12 DISPLAY A.
On the fifth, eighth, and eleventh times through the

Compile-Time Debugging for COBOL Programs 5

count-conditional statement, A is displayed. No action
is taken at any other time.
ON 3 AND EVERY 2 DISPLAY A.
A is displayed on the third, fifth, seventh, ninth, etc.,
times. On the first, second, fourth, sixth, etc., times, no
action is taken.
ON 2 AND EVERY 2 UNTIL 10 DISPLAY A ELSE
DISPLAY B.
On the second, fourth, sixth, and eighth times, A is dis-
played. B is displayed at all other times.

A Compile-Time Debugging Packet

The numbers given in the left-hand column of the
example in Figure 1 are for purposes of reference in
the explanations that follow; they are not part of the
requests themselves. The numbers in the first line

1 8 12 16

$1BDBC A
ON 1 AND EVERY 3 UNTIL 8 DISPLAY
12=1 7.

$IBDBC CNTRL B OF C
IF S UNEQUAL TO T DISPLAY *S=' §,
MOVE T TO S. DISPLAY *'T=' T.
$18D8BC D, FATAL
IF V GREATER THAN VMAX ON 1 UNTIL
10 DISPLAY 'V OUT OF RANGE, V=' V
ELSE STOP RUN.

Figure 1. Example of a Compile-Time Debugging Packet

across indicate the card columns in which the various
fields begin.

In the first request, on the first, fourth, and seventh
time that control passes through point A in the pro-
gram, Z is displayed (in its own format) with the iden-
tifying heading Z =.

In the second request, the value of T (with the iden-
tifying heading T =) is displayed at the point in the
program identified as B oF c. Also, if S is unequal to T,
S is also displayed and its value is adjusted to the value
of T. If desired, this debug request may be deleted
during this and/or subsequent runs by using a somMrr
control card, which is described in the publication IBM
7090/7094 IBSYS Operating System: IBJOB Processor,
Form C28-6275.

Execution of the third request causes both the mes-
sage V OUT OF RANGE, v = and the value of V to be dis-
played the first nine times that V is greater than vmax
when program control passes through point D. On the
tenth time, this request causes an exit from the program
(i.e., ELSE STOP RUN). The FATAL option on the siBDBC
card heading this request prohibits loading of the
source program if the compiler encounters an error of
level E or greater in the text of this request.

The load-time facility of the debugging package pro-
vides FORTRAN 1v and MaP programmers with the means
to insert debug requests at load time to be executed
with the object program. map object programs in-
clude those generated by 1BceC and 1BFTC, as well as
those written in MaP itself. Thus, the coBoL program-
mer may, if desired, take advantage of the load-time
facility and debug from an assembly listing of his pro-
gram; the FORTRAN Iv programmer may also use the
load-time facility at the MaPp level.

The debugging language used with the load-time
facility is derived from the FORTRAN 1v language, with
changes and additions made for debugging purposes.
The statements available in the debugging language
permit the programmer a high degree of flexibility in
obtaining meaningful data in his dumps. It is possible
to perform arithmetic operations on object time and
debug packet values, to test and manipulate results,
and to select the quantities to be dumped. Also, the
programmer can reference symbols appearing in the
source program by selecting the appropriate dictionary
option in his source program.

In the discussions that follow, the term “integer” is to
be interpreted as follows: if it is prefixed with a leading
zero and does not contain any invalid octal characters
(i.e., 8 or 9), it will be considered octal. Otherwise, it
will be considered decimal.

Load-Time Debugging Packet

All of the load-time debug requests for a particular
job run (which may consist of any configuration of
FORTRAN, COBOL, Or MAP scurce and/or object decks)
are grouped together into what is called the debugging
packet. The packet is headed by a s1BpBL card and ter-
minated by an *pEND card. These control cards are de-
scribed in the publication IBM 7090/7094 IBSYS Oper-
ating System: IBJOB Processor, Form C28-6275.:The
load-time debugging packet is placed at the beginning
of the job deck, preceding the source and/or object

Ji DR,
UCCRD,

Load-Time Debug Requests

A debug request is a set of actions to be performed at
an indicated point in the program called the insertion
point. Each load-time debug request is headed by the
*pEBUG card, which identifies individual requests and
specifies the insertion point(s) of the request in the

program.

The general form of the *pEBUG card is:

1 8 16-72
*DEBUG [deckname] locl [, loc2, loc3, . .-]

Blanks may be included in the variable field for legi-
bility but they may not be imbedded. The parameters
of the *pEBUG card are as follows:

deckname The name of the object deck to which this de-
bug request applies. If this field is blank, the
last deckname specified on the preceding *DE-
BUG or *REDEF card is assumed; if a deck-
name was not previously specified, the request
is deleted.

The location(s) of the executable instruction(s)
at which this debug request is to be inserted. A
location may be specified in any of the following
ways:

1. A statement number (FORTRAN only).

2. A symbol. Symbols used in debug requests
may not contain parentheses.”

3. A symbol = an unsigned decimal integer.

4. =R followed by an unsigned octal integer
for a relative location (i.e., relative to the
load address of the deck).

5. =A followed by an unsigned octal integer
for an absolute location.

6. An internal formula number of a FOR-
TRAN statement with the suffix A (e.g,,
10A).2

Because of the method by which insertions are
made in the program (i.e., the STR instruction),
the programmer should take care not to specify
insertion points at instructions whose prefix
might be modified during execution. This is pri-
marily of concern to the MAP programmer.
Violation of this rule may result in unpredict-
able results and/or actions. No check is made
for this condition.

The debug request is executed as if it had been phys-
ically inserted in the deck at the specified location(s).
The debug request action occurs before the execution
of any action indicated by the statement or instruction
at that location.

The variable field of an *pEBUG card may be extended
over more than one card by punching cards following
the first as shown:

1 8 16-72

*ETC extension of variable field

Immediately following the *pEBUG card is the text of
the request itself. If an invalid or erroneous action is
specified in the text, that action is deleted. The text
consists of procedural statements written in the rFor-
TRAN format. At least one blank should follow each

locl, . ..

1This restriction applies only to symbols that are explicitly given in a
request. Symbols of this type may appear in the debugging dictionary,
and the *REDEF card (discussed later) provides a means of renaming
them so that they may be used in requests.

2The internal formula number can be referenced only when the full
debugging dictionary has been requested.

Load-Time Debugging for FORTRAN IV and MAP Programs 7

statement verb (e.g., pbumpbx).? These statements are
derived from the ForTRAN 1v language, with additions
and changes made for debugging purposes. The per-
missible statements are:

STOP statements

PAUSE statements

CALL statements

RETURN statements

Unconditional GO TO statements

SET (arithmetic) statements

Logical IF statements

ON statements

DUMP statements

LIST statements

NAME statements

Comment cards having a C in column 1 are allowed.

The operator **(exponentiation) and functions are
not allowed, nor are references to the dummy variables
of functions and subroutines.

Debugging Control Statements

The stop statement terminates execution.

The pAUSE statement prints the message “DEBUG RE-
QUEST PAUSE and then the machine halts; pushing
START restarts processing at the next debug statement.

The caLL statement is used in calling subroutines. It
has the form:

CALL SUBR

CALL 0SrUBR (args, args, .. .)

The caLL cannot induce overlay. Machine registers
are saved upon entry to the carLL and restored upon
exit from the caLL. Machine registers that are initially
available in the caLL differ from those that are saved.

The RETURN statement causes a return to the inter-
rupted program; there is an implicit RETURN at the end
of each debug request.

The statement o To n, where n is a decimal integer,
is an unconditional transfer to the debugging statement
having the corresponding integer (statement number)
n in columns 1-5. Statement numbers used in an uncon-
ditional co To statement must refer to statements within
the debugging packet, not to statement numbers in the
deck being debugged.

SET (Arithmetic) Statement

The seT statement provides the programmer with arith-
metic capabilities within a debug request. The general
form of this statement is

SETs

where s is any valid FORTRAN 1v arithmetic statement
not containing functions, the **(exponentiation) opera-
tor, nor the logical constants .TRUE. and .FALSE.. Be-
cause FORTRAN IV conventions override MAP notation,
those MaP symbols that would be incorrectly treated in

3However, unlike FORTRAN 1V, the debugging routine treats blanks in
a statement as terminators. Therefore, no blanks may be imbedded in a
character string that is to be treated as a single symbol.

8

an arithmetic statement (e.g., 1.2) should be redefined
prior to use. See the explanation of the *RepEr card for
details of the redefining facility.

Logical IF Statement

The debugging logical 1¥ statement is similar to that of
FORTRAN 1v, with certain additions and restrictions. The
general form of this statement is:

IF (t) s

or

IFbtbs

where b represents one or more blanks, t is any logical
expression not containing function calls or the ** oper-
ator, and s is an unconditional executable statement or
an oN statement followed by an unconditional execut-
able statement.

The permissible logical operators (where b repre-
sents a blank and x and y are logical expressions) are:

bNOTbx or b .NOT.bx
xbANDby or xb.AND. by
xbORby or xb.OR.by
The permissible relational operators are:
RELATION DEFINITION
bGTh or b.GT.b Greater than
bGEDb or b.GE.b Greater than or equal to
bLTb or b.LT.Db Less than
bLEb or b.LE.b Less than or equal to
bEQb or b.EQ.bDb Equal to
bNEDb or b.NE.b Not equal to
bLGTb or b.LGT.b Logically greater than
bBLGEb or b.LGE.b Logically greater than or equal to
bLLTb or b.LLT.b Logically less than
bLLEb or b.LLE.b Logically less than or equal to
bLEQb or b.LEQ.b Logically equal to
bLNEb or b.LNE.b Logically not equal to
The permissible arithmetic operators are:
+ addition
— subtraction
* multiplication
/ division

Where parentheses are omitted, the hierarchy of
operations is as follows: * and /; + and —; relational
operations; NOT; AND; OR.

Following are some examples of the 1F statement:

IF (BEQ A*3.5) DUMP X, Y, Z
IF A(, I-]) EQ 3.4E2*QSUM DUMP X
IF (X .EQ. 3.AND. Z .LT. 24) GO TO 3

IF LOGVAR .AND.
(ALPHA+-6 LE BETA OR LGVARI1) RETURN

ON Statement

The on statement is a count-conditional statement that
permits the programmer to control the time when a
debugging action is to be taken. It is similar to the
FORTRAN v logical 1r statement and is of the general
form

ON [(x)] ayasas s

where the a; are any arithmetic expressions (if they are
not integral, they will be truncated); x is a unique sym-

bol, which should not be contained in the debugging
dictionary, that represents a counter name; and s is a
unconditional executable statement or an 1F statement
followed by an unconditional executable statement.
Additional information about the debugging diction-
ary is provided in the publication IBM 7090/7094
IBSYS Operating System: IBJOB Processor, Form C28-
6275.

The ox statement is defined as true the a;th time it is
executed and every asth time thereafter until a, is ex-
ceeded. If a is null, the statement is true the a;th time
and every asth time thereafter. If a; is omitted, it is as-
sumed to be one. If both a; and a3 are omitted, the
statement is true only the a;th time.

If x is specified, it creates a named counter for the
oN statement and x may be used in any computation
or test, the same as any other variable, and may be
named in other oN statements. If the same counter is
used by several oN statements, it is incremented for
each one of the o~ statements that is executed. Thus,
the counter can be set and reset to any desired value.
Effectively, the statement oN(CTR) a;, ag, as s is the
same as the statements

NAME CTR/ = NEW(X)

SET CTR = CTR + 1
IF (CTR GE a; AND CTR LE a,
AND ((CTR—a,)/as) *a; EQ CTR—ay) s
All references to x are taken as references to this
counter. Therefore, if x is duplicated by a symbol in
-the debugging dictionary, it will not be possible to
refer to that object program symbol in a request.
If x is not specified, an unnamed counter is created

internally. This counter is distinct from any other
counter.

DUMP Statement

The pump statement causes the dump of the quantities
which are to be printed as debugging output. It is simi-
lar in structure to the FORTRAN v WRITE statement and
is of general form

DUMP List

where list is a series of items that are either direct ref-
erences to the data to be dumped or the statement
number(s) of LIST statements specifying the data to be
dumped. The acceptable data specifications for either
direct references or LIST statements are itemized under
the discussion of the LIsT statement.

The pump statement causes information to be written
on sysck2. The postprocessor edits the data on syscke
and writes it on svsou1. The formats supplied for the
items of the puMp statements are as follows:

1. The symbolic reference of the item along with its

relative and absolute locations and deck name is writ-
ten to identify the debugging output.

2. The value(s) of the item is written. The format,
which is based upon the number of elements in the

item and the mode of the item, is derived as follows:

TYPE NO./LINE FORMAT
Octal 4 Op* XXXXXX XXXXXX
Symbolic 2 =X XXXXX X XXXXX 0p a,t,d*
Instruction
Symbolic 2 X XXXxX X xxxxx op(n*) a,,d*
Command
Floating- 6 T XXXXXXXX XX
Point
Fixed-Point 6 <. (leading zeros dropped)
Double- 4 . xxxxxxxxxxxxxxxxD+xx
Precision
Complex 3 L XXXXXXXX = XX = XXXXXXXX XX]
Logical 8 .TRUE. or .FALSE.
Alphameric 72 char xxxx...xxx

LiST Statement
The LisT statement specifies the storage areas and/or
registers that are to be dumped,; it is of the general form

statement number LIST item 1, item 2, . . .
where the statement number is a standard ForTRAN
statement number of up to five numeric characters
(punched in columns 1-5) and the items denote the
addresses of the quantities to be dumped. Any reason-
able number of items may be specified; they are sepa-
rated by commas. The permissible items are detailed in
the following text. Except where otherwise indicated,
the term “symbol” in the following items refers to a
symbol that either appears in the debugging dictionary
or is defined in a NaME statement. The mode of the
data dumped is determined from the debugging dic-
tionary or from the NAME statement; if this information
is not available, the dumps will be octal except where
the mode is specified as in item 2 in the following text.

The permissible items are:

1. quantity—This may be one of the following:

symbol This causes the array, the double-precision float-
ing-point number, the complex number, or the
single word denoted by this symbol to be
dumped.

symbol This causes the array element, the double-pre-

cision floating-point number, the complex num-
ber, or the single word denoted by this sub-
scripted symbol to be dumped. Any symbol may
be singly subscripted, but only those symbols
that have been dimensioned may have more
than one subscript. The subscripts may be any
arithmetic expressions. The mode of the dump
is the same as the mode of the symbol. If
ALPHA(S6) is specified, the contents of the loca-
tion ALPHA4-5 is dumped except where
ALPHA is double precision or complex, in
which case ALPHA410 and ALPHA+11 are
dumped.

4op (n*) a, t, d refers to the symbolic representation of a machine langu-
age instruction. This is primarily of interest to the MAP programmer.

Load-Time Debugging for FORTRAN 1V and MAP Programs 9

(subscript(s))

This causes the single word denoted by this
quantity to be dumped. Symbol is as defined
in the preceding text and n is an unsigned deci-
mal integer. The mode of the dump is deter-
mined from the referenced location and is not
necessarily the same mode as the symbol.
=Rn This causes the word at relative location n,
where n is an unsigned octal integer, to be
dumped. Only one word is dumped, even though
it may be part of a double-precision or a com-
plex number.
—An This causes the word at absolute location n,
where n is an unsigned octal integer, to be
dumped. Only one word is dumped, even though
it may be part of a double-precision or a com-
plex number.

symbol = n

The map programmer is referred to the sections
“Quantities Available for Use in Debug Request State-
ments” and “Address Computation” for more complex
ways of addressing quantities.

2. (locl, loc2 [, m])—This causes the region from
locl through loc2 to be dumped in the format m. Loc is
any of the quantities previously defined or a statement
number within the source program. If m is specified, it
overrides any other mode designations given for the
quantities involved. If m is not specified, the region is
dumped in the mode(s) of the item(s) in the region.
These modes are supplied in the debugging dictionary

or NAME statement. The permissible values of m are:

Octal

Symbeolic instruction

Symbolic command

Floating-point number

Fixed-point number

Double-precision floating-point number
Complex number

Logical

Alphameric

mrgmMEQ©o

Thus, (vocs(s), rocs(ss), F) causes Locs + 10
through Locs+11 to be dumped in floating-point mode
if Locs is a double-precision array and rocs is a float-
ing point array with dimensions of (s, 10). (6, =R127)
causes the region from statement number 6 through
relative location 1275 to be dumped in the mode(s)
supplied by the debugging dictionary or NAME state-
ment. (ARRAY1,ARRAY2,X) causes all of ArRravi, all in-
tervening locations, if any, and all of arrav2 to be
dumped in the fixed-point decimal mode.

3. (data list, range)—This causes selected elements
of arrays to be dumped. Data list may be one of the
following:

symbol (subscript(s)) eg, (AD),I=1,4)
(data list, range) eg, (BI]),1=14),]=13)
data list, data list, . .. eg, (A, (C(J,D,]=1,9,2),

D(I),I=1,4)

Any arithmetic expression may be used as a sub-
script. If the expression is not integral, it will be trun-
cated.

10

Range is of the form
v=as,al,al
where v is any symbol and the a; are arithmetic expres-
sions. If the same symbol appears elsewhere in the pro-
gram or in another debug request, that use(s) will be
ignored for this statement. The dumps specified by the
data list are taken for the value of v, namely a, through
a, in increments of as, or increments of one if a; is
omitted. The maximum depth to which ranges may be
nested is three. The following example of element spec-
ification is invalid because it contains four nested

ranges:
((A@, T,K), B(L,], L), I1=1,2),]=1,2),K=1,2),L=1,2)
The following are valid examples of this element
specification:
(A(LD,1=173)
dumps Au, Az, As.
(B(I: B_I)’ I= 11 5’ 2)
dumps B15, Bss, le.
(A@, 1), 1=1,3),]=6,8,2)
dumps Am, Am, Axs, A1s, Azs, Aas
(C(2*]—4, 10—-3*D), I=1, 3),]=3,4)
dumps sz, ng, sz, Cu, Cu, Ca.
(A, I), (C(2*]—4, 10—3*1),1=1, 3),] =3, 4)
dumps Ass, C?:, Cu, C21, Au, C47, Cu, Cu-

The statement
DUMP (AL,]), I=1,4)
dumps a(1,7), a(2,5), A(8,7), and a(4,3), where y is a
variable previously defined either in the source pro-
gram or in a NAME statement.

4. // or /control section name/—This causes blank
common or the control section named to be dumped.

// =n or /control section name/ *=n—This causes
the location at the beginning of blank comMoN *n or
the location at the control section =n to be dumped.
FORTRAN labeled coMMoN names are control section
names.

5. procRaM—This causes the entire object program
exclusive of library subroutines to be dumped.

6. ‘msg'—This causes the message to be printed as it
appears. msg is any message not containing a quotation
mark; however, the external quotation marks are re-
quired.

To allow for interdeck communication, any item or
set of items may be qualified with an associated deck
name by preceding it with the deck name and two con-
necting dollar signs, as follows:

deckname$$item

or
deckname$$(item, item,)

For example, assB refers to symbol B in deck a and
the statement DUMP AB$$(BB,CB,(RB,SB,0)) dumps items
BB, cB, and the octal region rB through s in deck as.

NAME Statement

The NAME statement permits the programmer to define
symbols for use within debug requests and to supply

modal and/or dimensional information for the symbols.
This definition overrides any other definition or any
other associated information for the symbol within de-
bugging text. The form of the NAME statement used
primarily by the FORTRAN programmer is

NAME symbol,/ =NEW [(mode r[ri"'nnnclnnc])] E

ANAGLVAD SYINIO0L/ — 4 LIROGC [\ CLUNENSIOnS)

where the parameters are defined as follows:

~
I
¢
s
5

symbol, Any valid FORTRAN symbol.

=NEW =NEW specifies that a location of octal format
or an area corresponding to the specified mode
and dimensions is generated for the symbol.

mode Mode can be either X, F, D,], H, or L. These

(dimensions) are defined in the section “The List Statement.”

The dimensions are the same as the dimensions
specified by a DIMENSION statement.
The NaME statement in the request must precede any
references to the symbols it defines.

Debugging Dictionary

The debugging dictionary is a communication device
between the program that is being debugged and the
debug package. This dictionary contains symbols and
pertinent data about the symbols, such as their relative
locations, their modes, and their dimensions. It also
contains FORTRAN statement numbers and their relative
locations. If requested by the programmer on a srsMar
or a $1BFTC control card, the debugging dictionary is
produced by 1Bmap. Further information about the de-
bugging dictionary is contained in the publication IBM
7090/7094 IBSYS Operatmg System IBJOB Processor,
Form C28-6275. ~ ¢) \f £ e

A FORTRAN |V Load-Time Debugging Packet
Figure 2 is the program Ma1N, and Figure 3 is the sub-

routine SUBR.

CIMENSICN ARRAYA(S)

BETA=1.2

CC 25 I=1,3
25 CCNTINUE

DC 26 1=1,5

K=1

CALL SUBR{ARRAYA,K)
26 CCNTINUE

STCP

ENC

Figure 2. Program MAIN

SUERCUTINE SUBR(D,K)
CIMENSICN C(5)
2=15
1 CC 30 I=1,2
C(K)=K+1#10
30 CCNTINUE
RETURN
ENC

Figure 3. Subroutine SUBR

bugging packet. The smpBL card heading the packet
calls in the debugging compiler. Also, it specifies that
all debugging activity is to cease when 450 debug re-
quests have been executed at object time and that a
maximum of 500 lines of debugging output is to be
printed.

F‘1gnrp 4 is an psmmp]p of a ForTRAN 1V load-time de-

1 678 16-72

$1BEBL TRAP MAX =450, LINE MAX = 500
*DEBUG MAIN 25

NAME A/=NEW(F)

CN 1 SET A=l.4

IF BETA GE A RETURN

DUMP BETA, 'BETA TCO SMALL.®

SET A=A-0.1
*DEBUG SUBR 1

NAME X/=NEW(X)

SET X=C
*DEBUG SUBR 3C
CNI(X} 1+2,3 CUMP MAINSSARRAYA

*DEND

Figuare 4. Example of a FORTRAN IV Load-Time Debugging
Packet

The first debug request is executed at statement 25
in deck main. The floating-point variable A is defined
for use in the debugging request for deck maix. The
first time that statement 25 is executed, A is set to 1.4.
BETA (in program MAIN) is tested each time prior to
the execution of statement 25. If BETA is less than A,
BETA is dumped, the message “BETA TOO SMALL” is
printed, and A is decreased by 0.1. If BETA is greater
than or equal to A, return is made to the interrupted
program. Then, statement 25 is executed.

The second and third debug requests are executed
at statements 1 and 30, respectively, in deck susr. Sup-
pose that deck MaN calls subprogram susr several
times and that statement 1 is the first executable state-
ment in susr. Further suppose that suBr contains a po
loop that causes statement 30 to be executed many
times. Under these conditions, the second request sets
the counter X to 0 each time that susr is called, and
the third request dumps the array, ARRAYA, in program
MAIN, the first, fourth, seventh, etc., time that state-

ment 30 in SUBR ig nvnnni-nr‘ 'r"'\nc {-1«:- canond and ﬂ-rn-d

requests trace the initial action of SUBR each time it is
called.

The *pEND card terminates the action of the debug-
ging compiler.

Figure 5 is the output from the debugging postproc-
essor that was obtained from the programs in Figures
2,3, and 4.

5Logical accumulator may not be altered in a SET statement.

Load-Time Debugging for FORTRAN IV and MAP Programs 11

1, sssssses CUMP REQUEST AT A-754, REL LCC 0001&, ABS LOC 02751, IN DECK MAIN

(A~T724,A-T24,4F)

MAIN A
00054 03007 724
BETA TCC SMALL.

essssethl
+.12C00000+01

2y ssxxwsax DUNP REQUEST AT SUBR+4€, REL LCC COCC56, ABS LOC 03C73, IN DECK SUBR

{ARRAY A, ARRAYA+4,F)
MAIN A eseeset39
00047 02002 -129 +.11C00000+02 —.618334C5~19

-.61833405-19

—+61833405-19 -.61823405-19

3, ssxsswxs CUMP REQUEST AT SUBR#46, REL LCC 00056, ABS LOC 03073, IN DECK SUBR

(ARRAYA, ARRAYA+4,F)
FAIN A eeessst39
00047 03002 =729 +.21CC0000+#02 +.12C0C000+02

-.61833405-19

-.61833405-19 -.61833405~1S

by sxsssxax CUNP REQUEST AT SuUBR+46, REL LOC 0CCS56, ABS LOC 03073, IN DECK SUBR

(ARRAYA, ARRAYA44,F)

csesaat39
+.21000000+02

MAIN A

00047 03C02 -729 +.2200000C+02

+.13000000+02

-.61833405-19 -.61833405-19

St ssxswsane CUMP REQUEST AT SUBR+4€&, REL LCC 00056, ABS LCC 03073, IN DECK SUBR

(ARRAYA,ARRAYA+4,F)
MAIN A seessat3s
00047 03002 =729 +.21CCCCO0+02 +.22C0CCCC+02

+.23000000+02

+.14000000+02 -.61823405-16

6y snxsnasa CUMP REQUEST AT SUBR+46&, REL LOC 0CCS56, ABS LOC 03073, IN DECK SUBR

(ARRAYA, ARRAYA#4,F)

seseaat39
+.21C0G0G00+02

MAIN A

00047 03CC2 -729 +.22C000CCeC2

+.230000CC#L02

+.24000000+C2 4+.15C000CC+C2

Figure 5. Example of the Output of the Debugging Postprocessor

Additional Load-Time Debugging Features

The following sections contain descriptions of addi-
tional debugging facilities that are of interest mainly
to the MaP programmer. They may also be used by the
FORTRAN O COBOL programmer.

Quantities Available for Use in Debug Request Statements

The quantities in Table 1 are available for use in the
statements that make up the text of the debug request.

Numerical constants may be used in arithmetic ex-
pressions. A constant may be decimal floating point,
decimal integer, or octal integer. If a number n con-
tains a period, it is a floating point number; in this
case, an E, EE, or D, followed by an exponent may be
present. EE or p is used to indicate double precision
floating point. If the first character of n (other than
+ or —) is a zero and n does not contain a period, an
eight, or a nine, n is an octal integer and may be up to
13 digits in length. Otherwise, n is a decimal integer.

12

Complex constants are written in the form (m;, np),
where n, is the real part and n, is the imaginary part.
Although the machine representation is floating point,
n; and np can be octal, decimal, or floating point.

Table I. Additional Quantities Available for Use in Statements

QUANTITY MEANING
=AC Accumulator (S, 1,2, ..., 35)
=AC (ii —i») Accumulator bits i; through is;
0=1i =i, = 35; bit 0 = S — bit
=LAC? Logical accumulator (P, 1,2, ..., 35)

=LAC® (i — i) Logical accumulator bits i through is;
0=i,=i:=35bit0 =P — bit

=MQ Multiplier-quotient register (S, 1, 2, .. ., 35)

=MQ (i — iz) Multiplier-quotient bits i, through is;
0=i=1=35bit0 =S — bit

=SI Sense indicator register (0-35)

=SI (i1 — i2) Sense indicator bits i; through i»;
0=i=i= 35

=XRk Index register k;
1=k=7

The following are examples of numerical constants:
0120 octal integer
129 decimal integer
0129 decimal integer
0.120E3 floating point
(0120, —129) complex, having true value

{180 ﬂ’ —129 (\)

v el ALTN

Examples of the Logical IF Statement

The following examples of the logical ¥ clause make
use of some of the quantities that refer to internal
registers,

IF (=SI1(17) OR=SI (21))

IF (=SI (3-7) EQ 021)
IF =XR4—8 EQ 3*=XR2)

LIST Statement

One additional item that can be used in the LisT state-
ment is available:

consoLE—This causes the contents of the accumula-
tor, the multiplier-quotient register, the sense indica-
tors, and the index registers, as well as the trapping
and overflow indicators, to be written.

Redefining Symbols

The *repEF card allows the user to change the names
of symbols used in source decks to make them accept-
able for use in debug requests. Included are symbols
containing parentheses and maPp symbols that would be
interpreted as numbers (e.g., 0.1ES, 4.6EE2, 633.D4, 1.2).
The general form of the *repEF card is

1 8 16-72
*REDEF deckname old:bASbnew: [,0ld:bASbnew,, . . .1

where deckname is the deck in which the symbol to be
redefined appears; b represents one or more blanks; the
old; are the symbols to be redefined; and the new; are
the new names of the symbols.

The variable field (columns 16-72) of a *REpEF card
may be extended over more than one card by using the
*Erc card which is described in the section “Load-Time
Debug Requests.”

*REDEF cards, redefining symbols, must precede any
use of the symbol new;.

General NAME Statement

The form of the general NaME statement is

NAME symboly/ glglﬁtE“\%} [(mode [(dimensions)])]

[, symbol. . . .]
where the parameters are defined as follows:

symbol; Any valid MAP symbol not containing paren-
theses. ‘
location A location designation as follows:

1. A nonsubscripted symbol (plus or minus an
integer, if desired).

2. =Rn, a relative location where n is an un-
signed octal integer.

3. =An, an absolute location where n is an un-
signed octal integer.

=NEW specifies that a location of octal format
or an area corresponding to the specified mode
and dimensions is to be generated for the symbol.
Identical to those given in the section “Supply-
ing Modal Information to the Debugging Dic-
tionary.”

(dimensions)

The general form of the NAME statement may be
used not only to define symbols for use within debug
requests but also to allow the use of symbols within
the source program where no debugging dictionary, or
an insufficient one, has been supplied. In addition, this
form of the NAME statement supplies alternate modal
and/or dimensional information to a symbol.

KEEP Pseudo-Operation—For MAP Assemblies

The xeeP pseudo-operation permits the programmer to
specify a debugging dictionary that contains only those
symbols he wishes to use in debug requests. The for-
mat of the keEp pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks KEEP One or more symbols,

separated by commas

The symbols in the variable field are entered into the
debugging dictionary along with any modal and di-
mensional information that was supplied in Bss, BEs,
EQU, and syN, pseudo-operations. Any number of xeEp
pseudo-operations may appear in a program. If the
NODD option was specified on the st6MAaP card, the xeEr
pseudo-operation is ignored.

Qualified symbols may not be used in the variable
field. If they occur, an error message is issued and the
innermost name is used (e.g., asBsC, C is used). If the
same name appears in several qualification sections,
the first encountered in the deck is used.

Supplying Modal Information to the Debugging Dictionary

BFTC supplies modal and dimensional information to
BMAP and thence to the debugging dictionary auto-
matically. However, the MaP programmer must supply
this information himself in certain cases, i.e., when
using Bss, BES, .EQU, and syN. (Only modal information
may be given with a Brs; dimensional data is ignored.)

This information is specified in additional subfields of
the variable field of these operations, as follows:

NAME OPERATION VARIABLE FIELD
FIELD FIELD
Symbol BSS Value
BES [, mode [(d1, dz, da)]]
EQU
SYN

Load-Time Debugging for FORTRAN IV and MAP Programs 13

where symbol and value are the standard forms for
these operations; mode is one of o, F, X, », J, L, s, G, or
H, as described in the discussion of the LisT statement;
and di, d, and d; are the dimensions®, if any, of the
array denoted by the symbol. The following are exam-
ples of these statements:

A BSS 25, F(5, 5)
B EQU A+10, F(5, 3, 2)
C SYN A+6, X

Address Computation

Address computation is a generalized form of indirect
addressing. It is of special importance when complex
tables or buffer chains must be manipulated. The nota-
tion for address computation is:
=C (base address, opl, op2, . . .)

Address computation is essentially a set of chaining op-
erations. Each operation acts on the result (called the
effective address) of the preceding operation. Any
address (e.g., a statement number, X, sym(1+s), =R1o,
=A708, but not x+3) can be used as a base address, and
any machine register can be used as a base address if
an extraction operation follows. The extraction opera-
tions are (i;—iz), ADDR, and DECR, where 0=i;=i;=35.
The operation (i;—iz) extracts bits i; through i, of the
word located at the address specified by the preceding
operation; the bits thus extracted become the address
used by the next operation. If i,—i;+1>15, only the
rightmost 15 bits are used. Appbr and DECR are short
forms of (21-35) and (3-17), respectively. Thus,
=c(a,sppR) denotes the address portion of .

The operation compL complements the current ef-
fective address to form the next effective address.

The operators +, —, *, and /, have special meanings
as shown in the following examples using the opera-
tor +:

+A means “add the address of A.”

+A,+B means “add theaddress of A,
then add the address of B.”

+A+B means “add the value found by

adding the contents of A to the
contents of B.”

+n (where n is an integer) means
“add the value n.”

Thus, =c(a, +B) is the address of A plus the address of
B, while =c(a, + B+0) or =c(a, +=c(8)) is the address
of a plus the contents of B. Subtraction, multiplication,
and division work similarly.

The following are examples of address computation:

=C (A) the address of A

DUMP =C(A) same as DUMP A

SET =C(A) = =C(B)+2 same as SET A = B+2

=C(A, ADDR) the address portion of the word
at address A

The statement
DUMP =C(A, ADDR)
6 Arrays are structured and referenced as in FORTRAN.

14

dumps (in octal) the word whose location is specified
in the address portion of the word at location A.
Suppose that A contains
PZE B,, 12
then the statement
DUMP (=C(A, ADDR),
—C(A, ADDR, +=C(A, DECR), —1))
dumps B through B+11.
The statement
DUMP =C(A, +B)
dumps the contents of the location computed by add-
ing the address of 4 to the address of B. This is usually
only meaningful if one of these addresses is absolute
(i.e., not a relative value that is adjusted by the Loader).
The statement

DUMP =C (=A3, —=XR4)
or the statement
DUMP =C(=AT77775, +=XR4, COMPL)

dumps the contents of the word at three plus the com-
plement of index register 4.
The statement

DUMP =C(3, —=XR4)

dumps the contents of statement number 3 plus the
complement of index register 4.

Bif Extraction

In arithmetic expressions (e.g., in SET, IF, CALL, and oN
statements and also in address computation and in sub-
scripts), it is convenient to be able to handle partial
word operations. The notation to be used is

=C(address computation) (bit specification)

or

=mr(bit specification)
where the bit specification is i;—iz, ADDR, Or DECR, with
0=i,<i,=35. mr denotes Ac, LAC?, MQ, s1, or xrk. The
notation

=mr(i)
where 0=i=35 is also permitted.

The following are examples of partial word opera-
tions:

—C(AXDECR) the decrement portion of A
=C(A)(18-20) the tag of A

=AC(0) the sign of the accumulator
=SI(17) bit 17 of the sense indicators

=C(=AC)(18-20)
The statement
SET —C(A)(DECR) = =C(B)(18-20)+6
replaces the decrement of the word at o with the sum

of 6 and the tag of B.
The statement

IF =S1(4-7) EQ 012 SET =AC(ADDR)=Q

invalid

7The logical accumulator may not be altered in a SET statement.

replaces the address portion of the accumulator with
the address portion of the word at Q (the rest of the
accumulator is not affected) if sense indicator bits 4
and B are 1, and bits 5and 7 are 0.
The statement
DUMP A{=C{B)(10-17})

dumps the j* element of the array a, where j is the
number found in bits 10 through 17 in the word at loca-
tion B.

A MAP Load-Time Debugging Packet

The numbers in the left-hand column of the example
in Figure 6 are for purposes of reference in the explana-
tions that follow; they are not part of the requests
themselves. The numbers in the first line across indi-
cate the card columns in which the various fields begin.

The s18pBL card heading the packet specifies that all
debugging activity is to cease when 1,000 requests have
been executed and that a maximum of 500 lines of de-
bugging output is to be printed.

The first request is executed the first time and each
time thereafter up to but not including the eleventh
time that statement number 34 in DECKA is to be exe-
cuted. This request specifies that the elements in LisT
statement numbers 2 and 3 (which appear later in the
packet) are to be dumped.

The second request is executed prior to each execu-
tion of statement number 42 in DECKA. It tests the value
of A-B*C against s.5*p and returns to the interrupted
program if they are not equal. If they are equal, it
dumps the range (in complex number format) from
U through 'V (if V is an array, the whole array will be
dumped), DARRAY;, 7, 3, and the message A-B-C EQ 85D
CAUSED PROGRAM STOP. Program execution then stops
and the postprocessor is called.

The second request also contains LiST statement
number 3, which, when used in a pump statement,
causes the following information to be dumped:
ALPHAg 1, ALPHAg 9, ALPHAg 1, ALPHAg 2,..., ALPHAj1, 9
all of the elements of BARRAY; and vaH of blank
COMMON.

The third request is executed prior to each execution
of the instruction at sTaART+17 in pECKB. On the third,
sixth, ninth, twelfth, fifteenth, and eighteenth times
that variable LoGvaR is true (i.e., nonzero) the follow-
i_‘ﬁg will be dumpeu A cuI]uu} section CNTRLA; the
region from relative locations 6 through 1035, in octal

b 2o mhor

format, and the elements in LisT statement number 4,
which is contained in another debug request.

The fourth request is executed on the hundredth time
that statement number 34 in DECKA is to be executed: at

all other times, it simply returns control to the inter-
rupted program. The information r‘mmppﬂ congists of

upteQ prograin. mrormacion qaum COMNESISLS

the console registers and indicators (LisT statement
number 2) and the elements specified in LIsT statement
number 3, which is contained in the second request.

The fourth request also contains LIsT statement num-
ber 4, which, when used in a puMmp statement, causes
the principal diagonal of the matrix CARRAY (in DECKA)
to be dumped.

The fifth request is executed the first time and every
second time thereafter through the ninth time that the
instruction at RESTRT in DECKB is to be executed. It tests
variable Q and, if Q is negative, dumps the elements
in L1ST statement number 2 (which is contained in the
fourth request); the message Q LEss THAN 0; and the
elements in LIST statement number 6, which specifies
the region from RESTRT through RESTRT + 100 in sym-
bolic format.

The sixth request is executed prior to each execution
of statement numbers 37 and 42 in pEcka. If A is less
than B, it simply returns control to the interrupted pro-
gram; otherwise it dumps A, B, Ey, Es, and E;.

i 678 16-72

$1BDBL TRAP MAX=1000, LINE MAX =500
=DEBUG DECKA 34
ON 1,10 DUMP 2,3
#*DEBUG DECKA 42
IF A-B82C NE 3.5%D RETURN
DUMP {U,V,J),JARRAY{1,7,3),
X YA-B+C EQ 3.5#D CAUSED PROGRAM STOP?
sTOP
3 LIST ({ALPHA(I,J)sd%1,2),1=84+11),
X BARRAY,//
+DEBUG DECKS START+17
IF (LOGVAR) ON 3,18,3 DUMP X,/CNTRLA/,
X (=R6,=R103,0),4
*DEBUG DECKA 34
ON 100 60 TO 10

RETURN
10 DUMP 2,3
sTOP
2 LIST CONSOLE
& LIST (CARRAY{I,I),I=1,10)

+DEBUG DECKB RESTRT

ON 1,102 IF 3 LT 0.0 DUMP 2,

X *Q LESS THAN 0°%,6
6 LIST {RESTRT,RESTRT+100,5S)
*DEBUG DECKA 37,42

IF (A .LT. B) RETURN

DUMP A,B,(ElJ),J=1,3)
*DEND

Figure 6. Example of a MAP Load-Time Debugging Packet

Load-Time Debugging for FORTRAN IV and MAP Programs 15

C28-6362-1

Index
absolute location 7,9
ADDRo i 14
address
base 14
effective 14
address computation 14
arithmetic expressions...............9,10,12
arithmetic operators.................... 8
AITAYS . oo 9,14
baseaddress 14
BES pseudo-operation. 13
bit extraction 14
blanks 7,8
blank COMMON. 10
BSS pseudo-operation 13
buffer chains. 14
CALL statement B -
$CBEND card 5
COBOL 5
COBOL compiler. 5
COBOL programmer 12
comment cards. 8
COMMON
blank 10
labeled 10
compile-time debugging 5
compile-time debugging packet 5,6
compile-time debug request... 5
headed by 5
terminated by.... 5
text of ... 5
$-control card. 5
control section name 10
count-conditional statement... 5,8
general form. 5
DUIPOSEo 5
counter 9
NAMEe 9
data jtems............... ... 5
data list................. 10
*DEBUG card 7
parameters 7
text of. P 7
debugging dictionary. 9,11,13
modal informationto....... 13
option i 7
debugging language 7
load-time 7
debugging packet 5,6,7,11,15
compile-time 5,6
load-time 7,11,15
debug request 7,12
quantities available or use in. 12
text of L 7
decimal 7
DECR 14
*DEND card 7
display statements 5
DUMP statement. 8,9
absolute location 9
format 9
general form. 9
item ... 9
LIST statement 9
mode 9
POStProcessor 9
relative location 9
statement numbers. 9
SYSCK2 9
SYSOUL................. 9
effective address. 14
element specification. 10
end-offile card. 5
EQU pseudo-operation 13
expressions

TSI

®

arithmetic 9,10,12
logical 8
*ETC card e 13
extraction operation.......... 14
FORTRAN IV e 11
FORTRAN 1V language. 4
FORTRAN 1V programmer. 7,12
GO TO statement 8
IBCBC 4
SIBDBC card................ b
general form. 5
PUIPOSE . .. ovviei e 5
$IBDBL card.......... 7
$IBFTC card. oo.....11L,13
IBLDR.. ... 4
IBMAP 4,11,13
SIBMAP card. 11
IF statement................ 8,13
general form. 8
indirect addressing., .. 14
insertion point 7
integer
octal ...l 10
interdeck communication 10
internal formula number. 7
internal registers. 13
items ... Lo 9,10
KEEP pseudo-operation 13
BES pseudo-operation...... o013
BSS pseudo-operation 13
EQU pseudo-operation13
format 13
SYN pseudo-operation 13
labeled COMMON 10
LIST statement 8,9,13
absolute location 10
addressing quantities. 10
arithmetic expressions 9,10
ATAY .. s 9
blank COMMON.......... 10
CONSOLE 13
control section name 10
data list............ e 10
element specification. 10
interdeck communication 10
items e 9,10
labeled COMMON 10
mode of dump . . . e ... 9
multiplier-quotient register 13
object program 10
octal integer. 10
quantity L ... 9
TADZE ... 10
registers 9,13
relative location 10
sense indicators 13
subseripts 9
symbol 9,10
“symbol” R 9
trapping and overflow indicators. 13
load-time debugging 7
load-time debugging packet...7,11,15
load-time facility 7
location 7,9,10,11
absolute 7,9,10
relative 7,9,11
logical IF statement..........8,13
arithmetic operator 8
general form..... 8
hierarchy of operation ... 8
internal registers. 13
logical expressions 8
logical operations 8
ON statement. 8
parentheses 8

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N. Y. 10601

relational operator 8
logical operators. 8
machine registers..........
MAP

object program.... o
MAP programmer.......

MAP symbols.........
TNESSAZES
mode
NAME statement.......... .. .8,9,10,11, 13

absolute location 13

debug request. 11,13

debugging dictionary....... 11

dimensional information 11

dimensions 11

form e 11,13

FORTRAN programmer . A § §

modal 11,13

mode 11,13

symbols 11,13

text ... L 11
notation conventions 4
numerical constants. 12
octal ... -7

characters 7

integer 10
ON statement. 8,9

count-conditional statement 8

counter 9

counter name 9

debugging dictionary 9

general form........... 8
operations

extraction 14

hierarchy of. P -

logical 8
operators

arithmetic 8

logical, 8

relational 8
overlay 8
parentheses 8
PAUSE statement e . 8
postprocessor 9
procedure name 5
quantities for use in debug request

statements, . o012
range P .. 10
*REDEF card 7,8,13

general form.... 13

variable field of 13
registers 9

internal PR, 13

machine 8
relational operators
relative location.......7,9,10,11
RETURN statement
SET (arithmetic) statement. 8

exponentiation 8

functions 8

logical constants........... 8
statement number 7,8,9
STOP statement..............
STR instruction 7
subseripts L. 9
symbols 7,9,10,11

MAP ... 7,8,13

redefining A 13
SYN pseudo-operation. 13
SYSCK2 9
sysoul e 5,9
tables 14

unconditional GO TO statement 8

‘V'S'N Ut pajulid

L-29€9-82D

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16

