File Number 7090-25
Form C28-6376

Systems Reference Library

IBM 7080,/7094 FORTRAN IV Compiler (IBFTC) Replacement

Specifications and Language Additions

This publication provides the programmer
with the information needed to plan for
the use of the new and faster 7090/7094
FORTRAN IV Compiler (IBFTC) that will
replace the present FORTRAN IV compiler.
In almost every respect, the new compiler
will operate within the environment of the
present IBJUB Processor.

The 7090/7094 FORTKRAN IV language will
be enlarged to include the following four
language features: (1) inputfoutput
without an explicit input/output list and
FORMAT statement, (2) a maximum of seven
dimensions for arrays, (3) nonstandard
returns from subroutines, and (4) multi-
ple entry points to a subprogram.

PREFACE

The new 7090/7094 FORTRAN IV Compiler (IBFTC) is designed to
be a replacement for the present version of the FORTRAN IV
compiler. The new compiler will operate in two passes,
enabling it to be faster than the present version. These two
passes will be an instruction compilation pass and an assem-—
bly pass. The output of the second pass will be input to the
Loader (IBLDR). Because assembly will be performed by the
compiler, the Macro Assembly Program will not be used. The
new compiler will accept the same source program input as does
the present version of IBFTC and will produce mathematically
equivalent object program coding that is at least as efficient
as that produced by the present compiler.

The machine configuration for the new FORTRAN IV compiler
will remain the same as for the present version of the 7090/
7094 FORTRAN IV Compiler (IBFTC).

It is assumed that the reader is familiar with the
contents of the following publications:

IBM 7090/7094 IBSYS Operating System: IBJUB Processor,
Form C28-6275-2

IBM 7090/7094 Programming Systems: FORTRAN_IV_Language,
Form C28-6274-1

IBM 7090/7094 Programming Systems: _FORTRAN_IV_Language,
Addenda and Errata to Form C28-6274-1, Form N28-0069

The new language feature, input/output without an explicit
input/output list and FORMAT statement, is described in the
publication IBM_7090/7094 FORTRAN_IV_Language: Input/Output
Without Explicit List and FORMAT, Form C28-6377.

This publication is divided into two sections. The first
section contains descriptions of the changes to the IBJOB
environment; the second section contains descriptions of the
new language features.

Copies of this and other IBM publications can be
obtained through IBM Branch Offices.

Address comments concerning the contents of this
publication to:

IBM Corporation, Programming Systems Publications,
Dept. D91, PO Box 390, Poughkeepsie, N.Y. 12602

()1964 by International Business Machines Corporation

CONTENTS

IBJOB ENVIRONMENT'.Q.‘....Q....l‘....‘l.......Q."..

PI‘eSt De(:ks'.‘o.‘.Qo..too.Q....on.o..no.oocoo...co

TOOT/, Manwd
PLU LU LUA1l U e » 0000 00 090 50 0006000 0600 009 0066090000000 90900

List OptioONSeeceecscecscsccoscoscccoscocccosocccosscocsnses
Debug UptionSoo'ooooc.oc.nooaoocooo.o.-o.onooooc
Punch Options..........-..-............-........
Instruction Set OptiONSecsescccecscscsccscscccscscse

1) o o~

T‘dAu :—tnn N+ 3~ =
1fiUue A Nneyioster UPLIU“DOOOO....occo'ooooooo.ooo.o

NNNOOO OO,

NEW LANGUAGE FEATURESccecccescscossccscecsncscscccccnscs
Arrays with a Maximum of Seven DimensionSeecececsces
Nonstandard Returns from SubroutineSeceecceesceccsces
Multiple Entry Points into a Subprogrameeccecescesces 12

Additional Rules for Entry PointsSsecesccsccscesece 14

O o ®

This publication was prepared for production
using an IBM computer for automatic format con-
trol and updating. Page proofs for photo-offset
printing were produced on an IBM 1403 Printer
with an upper—lower case chain of 120 characters.

IBJOB_ENVIRONMENT

The new 7090/7094 FORTRAN IV Compiler will operate
under the IBJOB Processor as described in the publi-
cation IBM _7080/7094 IBSYS Operating System: IB.JOB
Processory, Form C28-6275-2. There will be two changes
to the IBJOB environment involving Prest decks and the
$IBFTC card. These changes are described in the

following text.

Prest_Decks

Since the new compiler will not produce symbolic input
to the Macro Assembly Program, a Prest deck of the
symbolic output from the compiler cannot be obtained
for a FORTRAN compilation. Therefore, if the option
PREST is specified on the $0EDIT card, it will be
ignored. However, the option CPREST will still be
operative. For further discussion of these options,
see the section "$GEDIT Card" in the publication IBM
7090/7094 IBSYS Uperating System: IBJOB Processor,
Form C28-6275-2.

$IBFTC Card
The format of the $IBFTC card will be:

1 8 16

r Var ¢
$IBFTC deckname | JNOLIST
LIST ,

M0 s) XR3
»{ M94 XRn
M94 /2

where deckname identifies the deck that follows. A
deck name of six or fewer alphameric characters must be
punched in columns 8-13. Characters that cannot be
used in the deck name are: parentheses, commas,
slashes, quotation marks, equal signs, and blanks.

IBJOB Environment

The variable field starts in column 16+ The

options

in the variable field are described in the

following text.

List Options

The list options are:

1.

2

If

is not

LIST--A listing of the object program, three
instructions per line, is generated. Only the
relative locations and symbolic information are
listed.

NOLIST--A listing of the object program is not
wanted.

neither LIST nor NOLIST is specified, a listing
generated.

Debug Options

The debug options are as follows:

1.

2e

NODD--The debugging dictionary is not generated.

DD--The full debugging dictionary is generated.
All the symbols in the compiled program will
appear in the debugging dictionary. For a
FORTRAN IV program, this includes all statement
numbers, all programmer-specified symbols, and
all symbols generated by IBFTC.

SDD--The short debugging dictionary is gener-
ated. It will contain only the programmer-—
specified symbols and the statement numbers
used in the FORTRAN IV program.

If neither NODD, DD, nor SDD is specified, the
debugging dictionary is not generated.

Punch Options

The punch options are as follows:

1.

2.

If neither DECK nor NODECK

DECK--The object program deck is written on
the system peripheral punch unit for off-line
punching.

NODECK--A punched deck is not wanted.

s specified, the object

i
program deck is written on the system peripheral punch

unite.

Instruction Set Options

The instruction set options are as follows:

1.

3.

M90--The object program uses only 7090 machine
instructions. Any double-precision operations
are simulated by system macros, and EVEN
pseudo-operations are treated as commentary.

M94--The object program uses 7094 machine
instructions.

M94/2--The object program uses 7094 machine
instructions, and EVEN pseudo-operations are
treated as commentary.

If neither M90, M94, nor M94/2 is specified, it is
assumed that the object program uses only 7090 machine
instructions.

Index Register Options

The index register options are as follows:

1.

2.

XR3--The object program uses three index
registers (1, 2, and 4).

XRn--The object program can use up to n index
registers, if they are required (n is a number
from 4 through 7).

If neither XR3 nor XRn is specified, it is assumed
that the object program uses three index registers.

New Language Features

NEW_LANGUAGE_FEATURES

The 7090/7094 FORTRAN IV language will be enlarged to
include four new language features. These are:

1.

Input/output and conversion without an ex-
plicit input/output list and FORMAT statement.
This feature is described in the publication
IBM 7090/7094 FORTRAN_IV Language: Input/Output

Without Explicit_List and FORMAT, Form C28-6377

A maximum of seven dimensions for arrayse.
Nonstandard returns from subroutinese.

Multiple entry points to a subprogram.

Items 2, 3, and 4 are described in the following

text.

Arrays with a Maximum_of Seven_Dimensions

An array may be declared to have a maximum of seven
dimensions by placing it in a DIMENSION statement with
the appropriate number of subscripts appended to the
variable.

General Form

DIMENSION Vl(ll),vz(iz),...

where:

1. Each V, is an array variable, and

2. Each i, is composed of 1, 2, 3, 4, S5, 6,

or 7 unsigned integer constants and/or integer
variables, separated by commas. (Integer vari-
ables may be a component of ip only when the
DIMENSION statement appears in a subprogram.)

Examples:

DIMENSION A(1,2,344), B(10)
DIMENSION C(24243434444,45)

In the preceding examples, A, B, and C are declared
to be array variables with 4, 1, and 7 dimensions,
respectively.

The COMMON statement or one of the Type statements
(except EXTERNAL) may also be used to declare arrays
with a maximum of seven dimensions.

Nonstandard Returns_from_Subroutines

The normal sequence of execution following the RETURN
statement of a SUBROUTINE subprogram is to the next
executable statement following the CALL statement in
the calling programe. It will also be possible to
return to any executable numbered statement in the
calling program by using a special return from the
called subprogram. This return may not violate DO
loop rules.

The following text describes the changes in coding
that will be required to return from the subroutine to
a statement other than the next executable statement
following the CALL.

New Language Features

9

10

The general form of the CALL statement in the
calling program is:

General Form

CALL SUBR (al'a2’33'°°"an)
where:

1. SUBR is the name of the SUBROUTINE
subprogram being called, and

2. & is a dummy argument of the form
described in the publication IBM 7090/7094
Programming Systems: FORTRAN_IV_Language,
Form C28-6274-1, or is of the form:

nS

where n is a statement number and S is the
character S.

The general form of the SUBROUTINE statement in
called program is:

the

General Form

SUBROUTINE SUBR (al,az,aS,...,an)
where:
1. SUBR is the name of the subprogram, and
2. ajis a dummy argument of the form
described in the publication IBM 7090/7094

Programming Systems: FORTRAN_IV_Language, Form
C28-6274-1, or is of the form:

*

where * is the character asterisk (*) and denotes
a nonstandard returne.

The general form of the RETURN statement in the
called program is:

General Form

RETURN or RETURN i
where:
i is an integer constant or variable whose

valuey ny denotes the nth nonstandard return in
the argument listy, reading from left to right.

10
20

30

40

Example:
Calling Program Called Program
. SUBROUTINE SUB (XyYyZy¥,%x)

CALL SUB (A,B,C,305,403) .
_— 100 IF (R) 200,300,400

. 200 RETURN

. 300 RETURN 1

. 400 RETURN 2
—-— END
END

In the preceding example, execution of statement 10
in the calling program causes entry into subprogram
SUB. If statement 100 is executed, the return to the
calling program will be to statement 20, 30, or 40, if
R is less thany equal toy or greater than zero,
respectively.

Nonstandard returns may be best understood by
showing that a CALL statement that uses the nonstand-
ard return is equivalent to a CALL and a computed GO TO
statement in sequence. For example,

New Languzge Features 11

12

CALL NAME (P420S4Q405S4Ry228)
is equivalent to

CALL NAME (P,Q,R)
GO TO (20435,22),1

where the index I is set according to the value of the
integer in the RETURN statement executed in the called
subprcgram. If the RETURN is blank or zero, a normal
(rather than nonstandard) return is made to the state-
ment immediately following the GO TO.

Similarly,y the arguments in the associated
SUBROUTINE statement will correspond to the arguments
in the CALL statement as follows:

SUBROUTINE NAME (Sy*,Ty¥,U,s%)

Multiple Entry Points_into_a_ Subprogram

The normal entry into a SUBROUTINE subprogram from the
calling program is by a CALL statement that references
the subprogram name. The normal entry into a FUNCTIUN
subprogram is made by a function reference in an
arithmetic expression. Entry is made at the first
executable statement following the SUBROUTINE or
FUNCTICON statement.

It will also be possible to enter a subprogram by a
CALL statement or a function reference that references
an ENTRY statement in the subprogram. Entry is made at
the first executable statement following the ENTRY
statement.

ENTRY statements are nonexecutable and, therefore,
do not affect control sequencing during normal execu-
tion of a subprogram. The order, type, ana number of
arguments need not agree between the SUBROUTINE or
FUNCTICON statement and the ENTRY statements, nor do the
ENTRY statements have to agree among themselves in
these respects. Each CALL or function reference, how-
ever, must agree in order, type, and number with the
SUBROUTINE, FUNCTION, or ENTRY statement that it refer-
ences. No subprogram may reference itself directly or
through any of its entry points.

n

neral form of the ENTRY statement in the
rogram is:

General Form

ENTRY Name (B _ 4B _yece9B)
1 2 n
where:

l. Name is the symbolic name of an entry
point, and

2. Each Bj is a dummy argument correspond-
ing to an actual argument in a CALL statement or
in a function reference.

Example:
Calling Program Called Program

. SUBROUTINE SUB1 (U,VaWyeX4Y,42Z)
CALL SUB1 (A4B4CyDyE,F) .

e lOU:V

CALL SUB2 (G,H,P)

. E§T§2.§EBZ (TyU,V)
. GO TG 10
CALL ;UBS :
: ENTRY.SUB3
END)
END

In the preceding example, the execution of state-
ment 1 causes entry into SUBl, starting with the first
executable statement of the subroutine. Execution of
statements 2 and 3 also causes entry into the called
program, starting with the first executable statement
following the ENTRY SUB2 (T,UsV) and ENTRY SUB3 state-
ments, respectively.

New Language Features

13

14

Additional Rules for Entry Points

The following rules also apply to entry points:

1.

If an adjustable array name or any of its
adjustable dimensions appears in an argument
list for a FUNCTION, SUBROUTINE, or ENTRY
statement, that array name and all its
adjustable dimensions must appear in that
argument list.

A dummy argument may not appear in any state-
ment unless it previously appeared in an
argument list of a FUNCTION, SUBROUTINE, or
ENTRY statement.

In a FUNCTION subprogramy only the FUNCTION
name may be used as the variable to carry a
result back to the calling program. The ENTRY
name may not be used for this purpose.

An ENTRY name may appear in an EXTERNAL
statement in the same manner as a FUNCTION
or SUBROUTINE name.

Entry into a subprogram initializes all refer-
ences in the entire called subprogram from
items in the argument list of the CALL or func-
tion reference. (For instance, if, in the
example that appeared in the preceding text in
this section, entry is made at SUB2, the
variables in statement 10 will reference the
argument list of SUB2.)

ENTRY statements may appear only in subprograms.

The appearance of an ENTRY statement does not
alter the rules regarding the placement of
Arithmetic Statement Functions in subroutines.
Arithmetic Statement Functions may follow an
ENTRY statement only if they precede the first
executable statement following the SUBROUTINE
or FUNCTION statement.

C28-6376

JIBINE

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

pajutdd

*y*s°n ut

94€9-8720

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16

