File No. 7090-48
Form C28-6386-1

BM Systems Reference Library

IBM 7090/7094 IBSYS Operating System
Version I3

Symbolic Update Program

This publication describes the capabilities
of the Symbolic Update Program (7090~
UT-978), the requirements for its implemen-
tation, and the pseudo-instructions it
uses. This program operates under control
of the IBM 7090/7094 IBSYS Operating
system, Version 13, and allows users to
modify serialized symbolic tapes, including
those for the operating system itself.

PREFACE

This publication describes the capa-
bilities of the IBM 7090/7094 Symbolic
Update Program, the requirements for its
implementation, and the pseudo-
instructions it uses.

Material in this publication is
intended for programmers experienced in
the use of the 1IBM 7090/7094 IBSYS
Operating System. Readers unfamiliar
with this system are referred to the
publication IBM 7090/7094 IBSYS Operat-
ing System, Version 13: System Monitor
{IBSYS), Form C28-6248. Other publica-
tions that may be helpful are listed in
the publication IBM 7090/7094 Bibliogra-
phy, Form A28-6306.

The Symbolic Update Program requires
the following machine configuration:

An IBM 7090 or 7094 Data Processing
System.

An IBM 716 Printer.

An IBM 729 Magnetic Tape Unit, an IBM
1307 Disk Storage Unit, or an IBM
7320 Drum Storage Unit, for system
residence.

Four IBM 729 Magnetic Tape Units, one
each for system input, system output,
update input, and update output.

MAJOR REVISION (January 1965)

This publication, Form C28-6386-1, is
a major revision of the previous
edition, Form C28-6386-0, and makes that
publication obsolete. The previous edi-
tion has been extensively revised and
rewritten. New material has been added.
Included in this new material are a new
pseudo-instruction, a new option for the
$TITLE card, and a new section on seri-
alizing unserialized decks.

This publication was prepared for production using an IBM computer to update
the text and to control the page and line format. Page impressions for photo-
offset printing were obtained from an IBM 1403 Printer using a special print
chain.

Copies of this and other IBM publications can be obtained through IBM Branch
Offices.

A form for readers' comments appears at the back of this publication. It may
be mailed directly to IBM. Address any additional comments concerning this
publication to the IBM Corporation, Programming Systems Publications, Department

D39, 1271 Avenue of the Americas, New York, N. Y., 10020

2 1965 by International Business Machines Corporation

GENERAL DESCRIPTION . . .
Capabilities . . . « « . «
Similarity to FAP Update .
Tapes Used .« « « ¢« « « « =
Control Cards . « « « « =
Required Control Card
Optional Control Cards
OPERATION OF UPDATE . . -

Inserting New Instructions

Using Update Pseudo-Instructions

Card Format « « « « < «

UPDATE Pseudo-Instruction
NUMBER Pseudo-Instruction
====== Pseudo-Instruction
DELETE Pseudo-Instruction
IGNORE Pseudo-Instruction
SKIPTO Pseudo-Instruction
ENDFIL Pseudo-Instruction
REWIND Pseudo-Instruction
UNLOAD Pseudo-Instruction
SKPFIL Pseudo-Instruction

PRINT Pseudo-Instruction
ENDUP Pseudo-Instruction

Serialization
Sequence Checking . . .
Optional Serialization

Serializing Unserialized Decks

Tape Positioning . . . « .

.

Illegible Input Instructions . .

PROGRAMMING EXAMPLES . . .

APPENDIX A:

APPENDIX B: BINARY COLLATING SEQUENCE

INDEX &« ¢« o o o o o o o =

.

TAPE UNIT ASSIGNMENTS

-

CONTENTS

21

22

FIGURES

Figure
Job .
Figure
Figure
Figure
Figure
Figure
Figure

1.

Tapes Used for an Update

Update Input Tape .
System Input Tape
System Output Tape
Update Output Tape
Unit Selection Guide

Binary Collating Sequence

o o a2

The IBM 7090/7094 Symbolic Update
Program (Update) is a subsystem of the
IBSYS Operating System and 1is used to
update symbolic tapes by changing,
deleting, or adding symbolic card images
and producing a new symbolic tape.

CAPABILITIES

Update may be used to modify any tape
written in BCD mode, provided columns
73-80 of card images are available for
serialization. The program recognizes
serialigation only in columns 73-80.
Tapes that are serialized in other
columns must also Dbe serialized in
columns 73-80 before updating. For
example, a COBOL program on tape which
is serialized in columns 1-6, must also
be serialized in columns 73-80 before it
is updated. Update can be used to
maintain multireel input and output
tapes; subdivide or extract card images
from input tape; space tape; and check
the sequence of serialization.* In addi-
tion, it can be used to maintain subsys-
tems of the IBSYS Operating System and
the operating system itself. For infor-

mation on updating the IBSYS Operating-

System, see IBM 7090/7094 IBSYS Operat-
ing System: System Monitor (IBSYS), Form
C28-6248.

The Symbolic Update Program can read
symbolic tapes containing 14 words per
card. either unblocked or blocked up to
16 cards per block. Normally, it produc-
es a Dblocked tape--l4 words per card,
10 cards per block--with System Monitor,
IBJOB Processor, and END cards
unblocked. A control-card option is
available to produce an unblocked output
tape.

SIMILARITY TO FAP UPDATE

The Symbolic Update Program is simi-
lar to the update-only mode of the IBM
7090/7094 FORTRAN II Assembly Program
(FAP) . Decks previously prepared for

*The IBM 7090/7094 Symbolic Update Pro-
gram uses the binary collating sequence,
shown in Appendix B.

GENERAL DESCRIPTION

the FAP update program may be used with
Update merely by specifying UPDATE in
the variable field of a $EXECUTE card
that precedes the update cards.

However, the UMC pseudo-operation of
FAP has no counterpart in Update and, if
used, will be ignored. An *FAP card
will also be 3ignored. Note also that
Update contains only updating
facilities. Thus, if compilation or
assembly of a changed program is
desired, it must be done after comple-
tion of updating, using a program such

as the IBJOB Macro Assembly Program
(IBMAP) , the FORTRAN v Compiler
(IBFTC) , or the COBOL Compiler (IBCBC).

TAPES USED

The Symbolic Update Program requires
five tape units: two for input, two for
output, and one for system residence
(see Figure 1) . A direct access storage
unit may be substituted for the last
tape unit. -

- The system input tape contains the
programmer's update job and its control
cards. This tape may also contain other
jobs for IBSYS subsystems.

The programmer's update job consists
of (1) the control cards that call and
control the operation of the Symbolic
Update Program, (2) pseudo-instructions
that specify the desired updating opera-
tions, and (3) any symbolic cards that
are to be inserted in the update output
tape.

The update input tape is the symbolic
tape that requires updating. Any card
image on this tape that is to be operat-
ed upon by Update must be serialized in
card columns 73-80, and the 1last card
image must be properly serialized. File
marks on this tape are ignored.

The update output tape is a blocked
or unblocked symbolic tape containing an
updated version of the contents of the
update input tape. It may be assembled
or compiled later if it contains the
necessary control cards.

The system output tape contains an
annotated list of deleted and inserted
instructions.

General Description

5

Symbolic Up-
date Program

on System

Library

UPDATE

[e e e i e e e i o e e i e e o . . v i, i i e e e s . e
b e o . et i o s e S i, i S oo i o e —” — — . 7. i s i s . cnsmms e

Figure 1. Tapes Used for an Update Job

System input is on the system input
unit (SYSINT) * and system output is on
the system output unit (SYSOU1). Other
functions may be on any available system
unit. (See "Appendix A.")

CONTROL CARDS

An update job requires a $JOB card
and a $EXECUTE card with UPDATE speci-
fied in the variable field. These cards
are described below under "Required Con-
trol Cards." Several other control
cards are recognized by Update and may
also be used. These cards are described
below under "Optional Control Cards."

Control cards are recognized any
place except between an UPDATE pseudo-
instruction and its matching ENDUP
pseudo-instruction. Control cards
appearing between the UPDATE and ENDUP
pseudo-instructions are treated as
insertion cards.

*The card reader may not be used as the
system input unit for the Symbolic
Update Program.

REQUIRED CONTROL CARDS

The following control cards are
required when using the Symbolic Update
Program:

JOB Card

The $J0B card defines the beginning
of a job. The format of the $JOB card
is:

1 16
$JOB any text

This control card causes control to be
transferred to an installation account-
ing routine if there is one and the
restoration of any units that were reas-
signed or made available during a pre-
vious job except:

Any unit logically detached by IBSYS.

Any unit assigned to a system unit
function in place of a detached unit.

Any unit that was assigned to a
system input, system output, or sys-
tem peripheral punch function.

If a $JOB card appears when the
Symbolic Update Program is in control,
the System Supervisor is called into
core storage if it is required either to
restore the status of a unit or to
control a manually initiated between-
jobs interrupt condition. Then control
is returned to Update.

A $JOB card is listed both on- and
off-line. Columns 16 through 72 are
normally used to identify the job and
may contain any combination of
alphameric characters and blanks.

$EXECUTE Card

The $EXECUTE card defines the begin-
ning of a job segment to be processed by
a subsystem, in this case the Symbolic
Update Program. The format of the
$EXECUTE card is:

1 16
$EXECUTE UPDATE

When this card is read by the System
Supervisor, it reads in the first record
of Update and transfers control to that
subsystem. If a $EXECUTE card spec-

ifying a subsystem other than UPDATE
appears while Update is in control,the
subsystem returns control to IBSYS.

OPTIONAL CONTROL CARDS

Update recognizes the following con-
trol cards:

$IBSYS Card

card returns control to
The format of the

The $IBSYS
the System Monitor.
$IBSYS card is:

1
$IBSYS

Update prints the message "RETURNING TO
IBSYS" on-line and relinquishes control
to the System Monitor.

$ID Card
Update transfers control to the
installation accounting routine when a

$ID card is read. If there 1is no
accounting routine, no action occurs and
the card is printed on-line. The format
of the $ID card is:

1 16
$1ID any text
$STOP Card
Update indicates to the System Moni-

tor that a $STOP card has been read and

transfers control to IBSYS to process
the card. The format of the $STOP card
is:

1

$STOP

$PAUSE Card

The $PAUSE card causes a machine
halt, and the contents of the card are
printed on-line. To resume processing,
the operator should press START. The
format of the $PAUSE card is:

16

1
$PAUSE instructions to operator

The variable field of this control card
should contain an explicit message to
the operator.

$* Card
The $* card is used as a comments
card. The format of the $* card is:

1 3
$*# any text

This card causes no action. It 1is
merely listed on- and off-line, and
Update continues.

$TITLE Card

The first line of each page of the
system output 1listing contains a page
number (starting with 1 for each update
job) and the date (from SYSDAT in the
IBSYS Monitor Nucleusj. A $TITLE card
may be used to suppress dating and to

insert a title in this line. The format
of the $TITLE card is:

1 8 16

$TITLE [NODAT] any text

If this card is used, it must appear

after the $EXECUTE UPDATE card. It may
not appear between UPDATE and ENDUP
pseudo-instructions. if it appears

between these pseudo-instructions, it is
treated as an insertion card.

If NODAT appears in columns 8-12, no
date appears in the system output 1list-
ing. If columns 8-12 are blank, the
date is listed.

The contents of columns 16-72 appear
at the top of each page of the system
output listing. A title may be changed
by using another $TITLE card. For exam-
ple, if +three card decks were to be
updated and a different title were
desired for the system output 1listing
for each deck, the following sequence
would be used:

General Description

7

$JOB

$ EXECUTE

$TITLE
UPDATE

ENDUP
$TITLE
UPDATE

ENDUP
$TITLE
UPDATE

ENDUP

UPDATE

TITLE FOR DECK 1
2,3

(deck 1 changes)
TITLE FOR DECK 2
2,3

(deck 2 changes)
TITLE FOR DECK 3
2,3

(deck 3 changes)

Except for $TITLE, all of the
preceding cards are IBSYS control cards
and are further described in the publi-~
cation IBM 7090/7094 IBSYS Operating

System: System Monitor (IBSYS), Form
C28-6248.

The update input tape is scanned
once. puring this scan, new instruc-
tions can be inserted, instructions can
be deleted, tape can be manipulated, and
serial numbers can be changed using
update pseudo-instructions. Update
scans the entire card image on the
update input tape. If an update pseudo-
instruction appears in columns 8-13 of a
card image on the update input tape, the
corresponding pseudo-instruction is
performed.

tach card on the system input tape is
matched with the first card on the
update input tape with the same serial
number. Tf there is no match, the
update input tape is positioned before
the first instruction of higher seriali-
zation. If there is a matching card on
the update input tape, it is deleted.
Then the card on the system input tape
is interpreted. If it contains an
update pseudo-instruction, the pseudo-
operation 1is performed. If it contains
anything else, its contents are
substituted for the update input tape
card image having the same serial
number. If there is no match, the card
image will be inserted at that point.
The modified program, reserialized if
requested, 1is written out on the update
output tape.

INSERTING NEW INSTRUCTIONS

To insert new card images, serialize
them and place them on the system input
tape.

A serialized instruction on the sSys-
tem input tape replaces an instruction
with matching serialization on the
update input tape; an instruction with
nonmatching serialization is inserted in
sequence. Unserialized instructions are
inserted immediately upon being encoun-
tered.

if only the first card of a group of
instructions on the system input tape is

serialized, the entire group 1is
inserted. The inserted group can be
numbered with the NUMBER pseudo-

instruction.

card images that are inserted or
replaced appear, SO labeled, on the
system output tape.

OPERATION OF UPDATE

USING UPDATE PSEUDO-INSTRUCTIONS

Update pseudo-instructions differ
from many other pseudo-instructions,
such as those in the MAP language, in

that they are not assembled and,
therefore, do not generate any new cod-
ing. They cause updating operations to
be performed by providing parameters for
the portions of the Symbolic Update
Program that actually manipulate tapes,
delete card images, etc.

The section "Programming Examples"”

illustrates the use of some update
pseudo-instructions.
CARD FORMAT

Update pseudo-instructions are
punched, one per card, in the following
format: the nawe field, which may be
blank, occupies card columns 1-6.
Update ignores the name field of all

pseudo-instructions except the NUMBER
pseudo-instruction. card column 7 is
always blank. The operation field
begins in column 8 and is five or six
characters 1long. The variable field
starts at column 16 and may extend
through column 72. The variable field
should be followed by a blank to separ-
ate it from the comments field. The
comments field extends to column 72 and,
in the absence of a variable field, may
begin in column 17. Columns 73-80 are
used for identification and serial num-
bering. Serialization is required with
the DELETE, IGNORE, and SKIPTO pseudo-
instructions. Serialization is optional
with all other pseudo-instructions. The
programmer should read "Optional
Serialization™ before serializing these
other pseudo-instructions.

UPDATE PSEUDO-INSTRUCTION

The UPDATE pseudo-instruction assigns
update input and update output tapes,
and specifies whether blocking is
required. The first pseudo-instruction
of any update program must be UPDATE,
and all other update pseudo-instructions
must be used within the range of an
UPDATE pseudo-instruction (i.e., between

Operation of Update

9

UPDATE and ENDUP pseudo-instructions) .
The format of the UPDATE pseudo-
instruction card is:

r———-— 1
| Name Field | blank |
|- + |
| Operation Field | UPDATE |
I + I
Variable Field	one or two logical
	tape numbers and a
	blocking subfield,
{ all separated by	
	commas
I 1 I	
Serialization	optional]
L i

The first subfield of the variable
field is the logical tape number of the
update input tape, i.e., the tape
containing the program to be updated.
If there 1is no update input tape, this
subfield should be null or zero. The
second subfield is the 1logical tape
number of the update output tape, i.e.,
the tape that is to contain the updated
program. Tapes 1, 5, 6, and 7 may not
be used as update tapes. (See “"Appendix
A" for information on tape unit assign-
ments.) If the update output tape is to
be unblocked, the +third subfield must
contain a character other than zeroc or
10. If this subfield is null, zero, or
10, the update output tape is blocked 10
cards per block. END cards and any card
with a $ in column 1 (control cards) are
unblocked. If the third subfield is
null, the second subfield need not be
followed by a comma.

If a fourth subfield is present, as
was possible in the FORTRAN II Assembly
Program (FAP), this subfield is ignored.

NUMBER PSEUDO-INSTRUCTION

The NUMBER pseudo-instruction is used
to reserialize columns 73-80 of the card
images on the update output tape. The
format of the NUMBER pseudo-instruction
card is:

10

-

Name Field

1
up to six alpha- |
meric characters |
or blank |

-— — —|

Operation Field NUMBER

|

Variable Field a number in the
first subfield
and, optionally, a
number in the
second subfield

Serialization

|
I
I
1
1
|
il
}
|
I
I
|
|
1
1
I

optional

[s e e e o " — A it . . oot
o s s i s e s e et e

!

The serialization that this pseudo-
operation generates in columns 73-80
consists of two parts: an alphameric
constant and a numeric variable. The
name field specifies the alphameric
constant and the variable field speci-
fies the numeric variable.

The alphameric constant may have from
one to six alphameric characters, which
are left-justified in columns 73-78. If
no alphameric constant is specified
(name field blank}, the columns from 73
to the first digit of the numeric varia-
ble are filled with numeric zeros.

The product of the first and second
subfields of the variable field speci-
fies the first number in the sequence of
numeric variables. The second subfield
specifies the serializing increment,
i.e., the number added to each numeric
variable to produce the next numeric
variable. Numeric variables are right-
justified in columns 75-80. Unused
columns between the alphameric constant
and the numeric variable are filled with
numeric zeros. For example,

AR NUMBER 10,5

produces the following serialization in
columns 73-80 on the update output tape:

AR000050
ARQ00055
AR000060
etc.

If the second subfield of the variable
field is omitted, a serializing incre-
ment of 10 is assumed and the first
subfield of the variable field is multi-
plied by 10 to produce the first numeric
variable. For example,

AL NUMBER 1

produces the following serialization:

AL000010
AL00G020
ALQ00030
etc.

To serialize from zero an explicit zero
must be placed in the first subfield so
that the product of the first and second

subfields is zero. If a zero is placed
in the second subfield, serialization
starts at zero but no incrementing

serialization on all

Ser1allZAL 0 QO 42L-2

cccurs, i.e., card

images on the update output tape are the
same. If the variable field is omitted,
serialization is suspended regardless of
the contents of the name field.

Care must be exercised to avoid over-
lapping of the alphameric constant and
the numeric variable. Unpredictable
serialization may result if such over-
lapping occurs. A carry from the numer-
ic variable into the alphameric constant
may also result in unpredictable serial-
ization. Overlapping and carries can be
avoided by allowing enough columns for
the numeric variable to accommodate the
anticipated serialization.

====== PSEUDO-INSTRUCTION

The (Equal Sign) pseudo-
instruction is used to change the
spelling of update pseudo-instructions

in order +to avoid conflict with inser-

tion cards having update pseudo-
instructions to be inserted. The
format of the ====== pseudo-instruction
card is:

r h)
| Name Field | blank |
| + |
| Operation Field | ====== |
R + 1
| Variable Field | blank; or an |
| | update pseudo- |
i j instruction i
| | (except DELETE, |
| | IGNORE, SKIPTO, I
| | and ======) and]
	an alternate
	spelling separated
	by a comma
- pommm e	
Serialization	optional
L 3

The first subfield of the variable
field specifies the update pseudo-
instruction to be changed. The second
subfield specifies the alternate
spelling to be inserted in the update
pseudo-instruction dictionary. An

alternate spelling is a string of one to
six alphabetic or numeric characters, at
least one of which is alphabetic. No
special characters are permitted except

periods. When Update encounters the
specified alternate spelling, the
appropriate pseudo-operation is
executed. When the standard spelling
for that pseudo-instruction is encoun-

tered, it is not recognized and the card
is treated as an insertion card.

An equal sign pseudo-instruction with
a blank variable field cancels the
effect of all previous egual sign
pseudo-instructions. If not cancelled
in this way, equal sign pseudo-
instructions remain in effect until the
next $IBSYS or $EXECUTE UPDATE card is
encountered (outside the range of an
UPDATE pseudo-instruction).

Following are the restrictions on
using the equal sign pseudo-instruction:

1. It may not be used to change the
spelling of itself or the DELETE,
IGNORE, or SKIPTO pseudo-instructions.

2. Only one alternate spelling for a
pseudo-instruction can be active at a
given time. For example, the following
sequence is not permitted:

PRINT, PRYNT
—===== PRINT,WRITE

If this sequence is used, an off-line
error message is printed for the second
equal sign card and a card with WRITE in
the operation field is treated as an
insertion card. However, an alternate
spelling may be redefined. For example,
the following sequence is permitted:

PRINT,PRYNT

PRYNT ,WRITE

====== WRITE,PRINT

In this example, the second equal
sign card cancels the PRYNT spelling and
establishes WRITE as the pseudo-
instruction for the PRINT pseudo-
operation. The third equal sign card
cancels the WRITE spelling and re-
establishes the standard spelling,
PRINT.

3. A maximum of eight equal sign
pseudo-operations may be used. This
includes both original definitions and

Operation of Update

-

i

1

redefinitions. If a ninth equal sign
pseudo-instruction (except with a blank
variable field) appears, it is not
executed and processing continues.

4, Care must be exercised in chang-

ing the spelling of the UPLATE pseudo-
instruction. The spelling of the UPDATE
pseudo-instruction may be changed;
however, if additional UPDATE pseudo-
instructions are to follow the ENDUP
pseudo-instruction, the standard
spelling must be restored before the
next ENDUP pseudo-instruction.

DELETE PSEUDO~-INSTRUCTION

The DELETE pseudo-instruction causes
deletion of one or more card images on
the wupdate input tape. Deleted cards
will appear on the system output tape,
labeled as deleted. The format of the
DELETE pseudo-instruction card is:

Name Field blank

Operation Field DELETE

Variable Field blank or THRU

Serialization required for a

delete operation

[o e e o e e e e
——— e —
RS S U SN S S ——

If the variable field is blank, the
card image with matching serialization
is deleted; if the variable field con-
tains THRU, all card images starting at
the current position of the update input
tape, up to and including the card image
with matching serialization, are
deleted. In the latter case, if match-
ing serialization does not exist, dele-
tions are made up to, but not including,
the next card image of higher serializa-
tion.

If the variable field is blank and no
matching serialization exists, the
update input tape is positioned at the
next card image of higher serialization,
but no deletion occurs.

Serialization is required in order to
perform a delete operation. A DELETE
card with blank serialization has no
effect except to inhibit sequence check-
ing of the next serialized card image.

12

IGNORE PSEUDO-INSTRUCTION

The effect of the IGNORE pseudo-
instruction is identical to the effect
of the DELETE pseudo-instruction, except
that the cards it causes to be deleted
do not appear on the system output tape.

The format of the IGNORE pseudo-
instruction card is:

r—— - -
| Name Field | blank |
- t -
| Operation Field | IGNORE |
I + I
| Variable Field | blank or THRU |
| t |
| Serialization | required for an |
| | ignore operation |
b J

If the variable field is blank, the
card image with matching serialization
will be deleted; if the variable field
contains THRU, all card images starting
at the current position of the update
input tape, up to and including the card
image with matching serialization, are
deleted. In the latter case, if
matching serialization does not exist,
deletions are made up to, but not
including, the next card image of higher
serialization.

If the variable field is blank and no
matching serialization exists, the
update input tape is positioned at the
next card image of higher serialization,
but no deletion occurs.

Serialization is required for an
ignore operation. An IGNORE card with
blank serialization has no effect except
to inhibit sequence checking of the next
serialized card image.

SKIPTO PSEUDO-INSTRUCTION

The SKIPTO pseudo-instruction causes
deletion of one or more card images on
the update input tape up tu, but not
including, a card with matching seriali-
zation. Deleted cards will not appear
on the system output tape. The format
of the SKIPTO pseudo-instruction card
is:

{ Name Field ! blank }
!_aggration Field ? SKIPTO :
I—Variable Field I blank :
E—Serialization { required for a :
l— | skipping operation }

All card images, starting at the

current position of the update input
tape, up to but not including the card
image with matching serialization, are
deleted. If no matching serialization
exists, deletion continues indefinitely.

At the end of a SKIPTO, the update
input tape is positioned at the card
image with matching serialization.

This pseudo-operation differs in two
ways from the IGNORE pseudo-operation
with THRU in the variable field: the
card with matching serialization is not
deleted, and a card image with higher
serialization does not terminate the
operation.

Serialization is required for a skip-
ping operation. A SKIPTO card with
blank serialization has no effect except
to inhibit sequence checking of the next
serialized card image.

ENDFIL PSEUDO-INSTRUCTION

The ENDFIL (End of File) pseudo-
instruction is used to write a file mark
on the addressed wupdate tape. Update
will not transfer file marks from the
update input tape to the update output
tape. File marks on the update input
tape must be inserted at the proper
location on the update output tape with
an ENDFIL pseudo-instruction. The

format of the ENDFIL pseudo-instruction
card is:

r 1
| Name Field | blank |
- L |
| Operation Field | ENDFIL |
|- 4 -
| Variable Field | blank or logical |
| | tape number |
|- } - |
| Serialization | optional |
L 7]

If the variable field is blank,
Update assumes that a file mark is to be
written on the update output tape; how-
ever, the 1logical tape number of the
update output tape may be placed in the
variable field if desired. 1In either
case any partial block of instructions
in the output buffer is written on the
update output tape before the file mark
is written. No data is moved from the
output buffer if a logical tape number
other than that of the update output
tape is used. ILogical tapes 1, 5, 6,

ada;e;sed'

and 7 may not Dbe by this
pseudo-instruction.
Care should be exercised to assure

that the file mark is written in the
desired location. For example, assume
that a 500-card deck is being updated

and the last insertion is card 250. If
the ENDFIL pseudo-instruction were
placed immediately after the last inser-
tion card, the f£file mark would appear

after card 250 on the update output
tape. To assure that the file mark
appears after card 500 on the update

output tape, a spacer card which is a
duplicate of card 500 should be placed
before the ENDFIL card.

REWIND PSEUDO-INSTRUCTION

The REWIND pseudo-instruction causes
the addressed update tape to be rewound.
The format of the REWIND pseudo-
instruction card is:

T 1
| Name Field | blank |
| ¥ —-1
| Operation Field | REWIND |
|-— fommmmmme —-
| variable Field | blank or logical |
| | tape number |
T St
| Serialization | optiomal |
Lo 4

If the variable field is blank,
Update assumes that the current update
output tape is to be rewound. If the

variable field is blank or contains the
logical tape number of the current
update output tape, any partial block of
instructions in the output buffer is
written on the update output tape before
the tape 1is rewound. If any other
logical tape number appears in the vari-
able field, no data is transferred from
the output buffer before the tape is
rewound. Any tape that is rewound is
logically disconnected, and no Update
operation referring to it can be execut-
ed unless the tape is reassigned by a
subsequent UPDATE pseudo-instruction.

Operation of Update

13

Tapes 1, 5, 6, and 7 may not be
addressed by this pseudo-instruction.

UNLOAD PSEUDO-INSTRUCTION

The UNLOAD pseudo-instruction causes
the addressed update tape to be rewound
and unloaded. The format of the UNLOAD
pseudo-instruction card is:

r 1
| Name Field | blank]
| + |
| Operation Field | UNLOAD |
| t |
| Variable Field | blank or logical {
i | tape number |
I + I
| Serialization | optional i
L]

This pseudo-operation operates in the
same way as the REWIND pseudo-operation
except that the tape is unloaded after
being rewound. The operator should be
notified (use the PRINT pseudo-
instruction) to mount a tape before the
unit is reassigned by a subsequent
UPDATE pseudo-instruction.

Tapes 1, 5, 6, and 7 may not be
addressed by this pseudo-instruction.

SKPFIL PSEUDO-INSTRUCTION

The SKPFIL (Skip File) pseudo-
instruction causes the addressed update
tape to be spaced forward until a file
mark is passed. The format of the
SKIPFIL pseudo-instruction card is:

{_Name Field ! blank }
} Operation Field E SKPFIL {
} Variable Field i blank or logical }
| l tape number |
i Serialization { optional i

If the variable field is blank, the
update input tape is spaced forward past
the next file mark. If the logical tape
number of the current update output tape
is placed in the variable field, any
partial block of instructions in the
output buffer is written on the update
output tape before an attempt is made to
space forward beyond the next file mark.

14

Tapes 1, 5, 6, and 7 may not be
addressed by this pseudo-instruction.

If an update input tape contains a
binary file to be skipped, the SKPFIL
pseudo-instruction should appear outside
the range of the UPDATE pseudo-
instruction that pertains to that tape.

This will prevent a redundancy error
message from occurring, because an
UPDATE pseudo-instruction initiates
reading of the update input tape into
the input buffer.

For example, to skip over a binary
file on logical tape 8, use the follow-
ing sequences:

UPDATE ,9
SKPFIL 8
UPDATE 8,9

PRINT PSEUDO-INSTRUCTION

The PRINT pseudo-instruction first
causes columns 14-72 to be printed on-
line; then it causes a machine halt.

The format of the PRINT pseudo-
instruction card is:

r B 1
| Name Field | blank |
I- f |
| Operation Field | PRINT |
! t I
Variable Field	any alphameric
	characters (may
	start in col. 14)
I 1	
Serialization	optional
L J

The operator should press START to
continue the job.

ENDUP PSEUDO-INSTRUCTION

The ENDUP (End Update) pseudo-
instruction terminates an update job.

The format of the ENDUP pseudo-
instruction card is:

F . 1
| Name Field | blank |
I ¢ -
| Operation Field | ENDUP]
| t |
| Variable Field | blank |
|- t |
| Serialization | optional]
L 1

Any card images in the output buffer
are written on the update output tape
before the job is terminated. A spacer
card may be required before the ENDUP
card to assure that the job is
terminated at the proper location (see
*Tape Positioning”).

SERIALIZATION

This section describes sequence
checking of serialized card images on
the system input tape and the effects of
providing optional serialization on cer-
tain pseudo-instruction cards. In addi-
tion, a method for serializing unserial-
ized decks is described.

SEQUENCE CHECKING

Card images on the system input and
update input tapes are checked for pro-
per segquencing based on the serial num-
bers in card columns 73-80. If the
cards are out of sequence, an error
message is printed on-line and off-line
and processing continues.

If columns 75-80 are blank, seriali-
zation in 73-80 is taken to be all zeros
for sequencing. In this case, no warn-
ing is given for a sequence error, even

though the card is taken as lower seri-
alization than the one preceding it.
Also, no matter what the serialization

of the next serialized card, no sequence
error occurs, because that card is
necessarily higher than the one with
zero serialization.

The update output tape may be reseri-

alized by using the NUMBER pseudo-
instruction. This provides proper
serialization for subsequent assembly,

compilation, or updating.

OPTIONAL SERIALIZATION

Only the DELETE, IGNORE, and SKIPTO
pseudo-instructions require serializa-
tion in card columns 73-80 for normal
operation. Without serialization, they
have no effect except to inhibit
sequence checking of the next serialized
card image.

The UPDATE, NUMBER, ======, ENDFIL,
REWIND, UNLOAD, PRINT, ENDUP, and SKPFIL
pseudo-instructions may also be serial-

ized. If
occurs:

they are, the following

1. The update input tape is posi-
tioned either at a card image with
matching serialization or, if there is
no matching serialization, between a
card image with lower serialization and
one with higher serialization.

. If there is a card image on the
te input tape with matching seriali-

e ot A e o
it is deleted.

3. The
preted.

pseudo-instruction is inter-

if the pseudo-instruction is not
serialized, it is interpreted and exe-
cuted at the current position of the
update input tape.

SERIALIZING UNSERIALIZED DECKS

An unserialized deck (or a deck seri-
alized in columns other than 73-80) may
be serialized by using the NUMBER
pseudo-instruction. The deck to be
serialized is placed on the system input
tape with the appropriate control cards
and update pseudo-instructions. No
update input tape 1is required. The
serialized deck will be written on the
update output tape.

Caution: File mark (7-8 punched in
column 1) cards should not appear in the
deck to be serialized. When Update
encounters a file mark card on the

system input tape, an error message is

printed on-line and off-line, and the
update job is terminated. Any file mark
cards in the deck to be serialized

should be replaced with ENDFIL pseudo-
instruction cards.

Following 1is an example of how
unserialized decks may be serialized
using the NUMBER pseudo-instruction:

1 8 16

$JOB

$EXECUTE UPDATE
UPDATE ,9

AR NUMBER 1
. (unserialized deck)
ENDFIL (replaces file mark card)
. (unserialized deck)
ENDFIL (replaces file mark card)
UNLOAD
ENDUP

Operation of Update

15

The two unserialized decks would be
written on the wupdate output tape
(Logical tape number 9 in this example) .
They would be blocked 10 cards per block
(except for control and END cards) and
numbered consecutively in increments of
10 starting with AR000010.

TAPE POSITIONING

To insert card images without serial
numbers, the programmer should use a
"spacer card" to position the update
input tape at the point whexre the
unserialized cards are to be inserted.
The spacer card is a duplicate of the
card preceding the point at which the
unserialized cards are to be inserted.
The spacer card replaces the correspond-
ing card on the update input tape. The
update input tape is then in the proper
position for inserting the unserialized
cards which follow the spacer card.
Spacer cards may also be used to posi-
tion tapes before using the ENDFIL or
ENDUP pseudo-instructions.

16

Unserjialized cards on an update input
tape can only be changed or deleted by
deleting the 1last serialized card in
front of the unserialized cards, then
deleting all cards up to and including
the first serialized card following the
unserialized cards, and then reinserting
the cards involved. However, if the
NUMBER pseudo-instruction is used to
serialize insertions when they are made,
this cumbersome process can be avoided
in future update jobs.

ILLEGIBLE INPUT INSTRUCTIONS

Card images that cause a validity
check when read are considered
illegible. Such instructions on the
system input tape terminate the update
job. Illegible instructions on the
update input tape are omitted and a
message is printed on-line and off-line,
but updating continues. Lost instruc-
tions may be inserted during a later
update job.

The following examples illustrate some
uses of the Symbolic Update Program.

The pseudo-instruction
UPDATE 9,10
merges the correction cards that feollow

it on the system input tape with those
on logical tape 9, the update input

tape. A blocked symbolic tape is writ-
ten on logical tape 10, the update
output tape.
The seguence
$ EXECUTE UPDATE
UPDATE 9,10
CLA =10 F0007770
END START F0007990
ENDFIL
REWIND
UNLOAD 9
ENDUP

deletes the card image numbered F0007770
on the update input tape and insert the
card image

CLA =10 F0007770
in its place on the update output tape.
If no matching serialization exists on
the update input tape, this card will be
inserted between cards of lower and
higher serialization. Then the spacer
card

END START
at the

Next, a
update

positions the update input tape
end of the program it contains.
file mark is written on the

PROGRAMMING EXAMPLES

output tape, and that tape is rewound.
Finally, logical tape 9, the update
input tape, is rewound and unloaded, and
updating terminates.

The seguence
UPDATE ,10
$STOP e
ENDFIL
REWIND
ENDUP

at the end of an update job places a
$STOP card with serialization of all
left parentheses (the highest possible
serialization in the binary collating
sequence) on the wupdate output tape.
The presence of this card prevents tape

runaway if, in a later wupdate job, a
keypunch or some other error causes
Update to search for a serial number

higher than any that
update input tape.

exists on the

Figures 2-5 show the four parts of an
update job. Figure 2 is a 1listing of
the program on the update input tape,
containing a program to wupdate the
update input tape. When the update job
is completed, deletions and insertions
are listed on the system output tape,
Figure 4, and the modified program is on
the wupdate output tape, Figure 5. DNote
that instructions deleted with the
IGNORE or SKIPTO pseudo-operations do
not appear on the system output tape.

Programming Examples

17

-

1

8

1
] 16 73 |
|

| $IBMAP READ M94,NODD :
| START RTDA 5 MOV00010 |
| RCHA READ MOV00020 |
| AXT 9,1 MOV00030 |
| TEST LDQ INPUT+2,1 MOVOO0O40 |
| AXT 36,2 MOV00050 |
| SHIFT PXD .0 MOV00060 |
| LGL 1 MOV00070 |
| TZE ZERO MOV00080 |
| CLA = MOV00020 |
| sSTO OUTPUT+9, 1 MOV00100 |
| TRA *+2 MOV0O0110 |
| ZERO STZ OUTPUT+9, 1 MOV00120 |
| TIX SHIFT, 2,1 MOV00130 |
| TIX TEST, 1,1 MOVOO0140 |
| CALL PDUMP(INPUT,OUTPUT+9,0,START,READ,3) MOV00150 |
| INPUT BSS 20 MOV00160 |
| OUTPUT BSS 9 MOV0OG170 |
| READ IORT INPUT, ,20 MOV00180 |
| END START MOV00190 |
Lo i
Figure 2. Update Input Tape

[~ 1
| 1 8 16 73 |
| |
| $IBSYS |
| $JoB FIGURE 2 1
| $EXECUTE UPDATE |
| UPDATE 9,3,U]
| MOV NUMBER 1, 100 |
| *THIS ROUTINE WILL READ RCDS OF UP TO 20 WDS AND WRITE MOV00000

| *OUT THE FIRST 9 WDS OF EACH RCD. MOV00001 |
| START REWA 5 MOV00010 |
| RTDA 5 MOV00011 |
| TCOA * MOV00021 |
| DELETE MOV00050 |
| SKIPTO MOVQ0100 |
| STQ OUTPUT+9, 1 MOV00100 |
| IGNORE MOV00110 |
| IGNORE THRU MOV00130 |
| WTDA 3 MOVOO141 |
| RCHA WRITE Movootu2 |
| TCOA * MOvV00143 |
| HTR * MOV00150 |
| WRITE 1IOCD ourpUT,,9 MOV00181 |
| END START MOVO0190 |
i ENDFIL 3 |
| REWIND 3 I
| UNLOAD 9 |
| ENDUP |
| $IBSYS |
| $STOP |
I]
L J

Figure 3.

18

System Input Tape

r 1
] UPDATE 9.3,U |
| MOV NUMBER 1,100 |
{ *THIS ROUTINE WILI READ RCDS OF UP TO 20 WDS AND WRITE MOV00000 INSERTED |
| *OUT THE FIRST 9 WDS OF EACH RCD. MOV000Q01 INSERTED |
| START RTDA 5 MOV00010 DELETED |
| START REWA 5 MOV00010 INSERTED |
| RTDA 5 MOV00011 INSERTED |
| TCOA * MOV00021 INSERTED |
| AXT 36,2 MOV0O0050 DELETED |
| STO ouTPUT 9,1 MOV00100 DELETED |
| STQ ouTPUT 9,1 MOV00100 INSERTED |
| WTDA 3 MOV0OO141 INSERTED]
| RCHA WRITE MOVO0142 INSERTED i
| TCOA * MOV00143 INSERTED |
| CALL PDUMP (INPUT, OUTPUT, 0, START,READ, 3) MOV00150 DELETED |
| HTR * MOV00150 INSERTED |
| WRITE I0CD ouTpPUT,,9 MOV00181 INSERTED |
| END START MOV00190 DELETED |
| END START MOV00190 INSERTED |
[J
Figure 4. System Output Tape

r— 1
| 1 8 16 73 |
| |
| $IBMAP READ M9L4 ,NODD |
| *THIS ROUTINE WILL READ RCDS OF UP TO 20 WDS AND WRITE MOvV00100 |
| *OUT THE FIRST 9 WDS OF EACH RCD. MOV00200 |
| START REWA 5 MOV00300 |
| RTDA 5 MOVOO0400 |
| RCHA READ MOV00500 |
| TCOA * MOV00600 |
| AXT 9,1 MOV00700 |
{ TEST LDQ INPUT+9,1 MOV00800 |
i STQ QUTPUT+9, 1 MOV00900 |
| TIX TEST,1,1 MOV01000 |
I WTDA 3 MOVO1100 |
| RCHA WRITE MOV01200 |
| TCOA * MOV01300 |
| HTR * MOV0O1400 |
| INPUT BSS 20 MOV01500 |
| OUTPUT BSS 9 MOV01600 |
| KEAD IORT INPUT,,20 MOV01700 |
| WRITE IOCD ouTPUT,, 9 MOV01800 |
i END START MOV01900 |
HE J

Figure 5. Update Output Tape

Programming Examples

19

APPENDIX A: TAPE UNIT ASSIGNMENTS

Figure 6 may be used as a guide in
selecting units for wupdate input and
update output functions.

Tapes 11-16 are selected from the
IBSYS Unit Availability Table. In the
distributed system, when none of the
tapes has been removed from the unit
availability chain, the following units
are used if requested by Update:

UPDATE Logical Units Physical Units

1 A6
12 B6
13 A7
14 B7
15 A8
16 B8

The following information is supplied
so that Update users may determine which
tape units are used when units have been

removed from the unit availability
chain.
In the distributed system, 1logical

units 11, 13, and 15 select their physi-

cal units from Channel A tapes in
ascending order in the unit availability
chain. Logical units 12, 14, and 16
select their physical units from channel
B tapes in ascending order in the unit
availability chain.

For example, if unit A6 were removed
from the unit availability chain, the
following correspondence would exist in
the distributed system: .

UPDATE Logical Units Physical Units

11 a7

12 B6

13 A8

14 B7

15 -

16 B8
The user may attach any referable
tape units by wusing $ATTACH and $AS

IBSYS control cards. The publication
IBM 7090,/7094 1IBSYS Operating System:
System Monitor (IBSYS), Form C28-6248,
gives information about these cards.

—— —]

i o e e e . et S e, et . e e

r - -
] UPDATE | SYSUNI | Physical Units on |

[Logical Units | Functions | Distributed Tape | Functions

I + + t -
| | | |

| 1 | SYSLB1 | A1 | System Library

| 2 | SYsSuT3 | Al | Available for updating

| 3 | SYSUT4 | B4 | Available for updating

| 4 | SYSUT1 | A3 | Available for updating

| 5 | SYSIN' | A2 | System Input

| 6 | SYSOuU1 | B1 | System Output

| 7 | SYSPP1 | B2 | System Peripheral Punch

| 8 | SYSUT2 | B3 | Available for updating

] 9 | SYSCK 1 | NONE | Available for updating

| 10 | SYSCK2 l A5] Available for updating

| 11-16 | * | * | Available for updating

| I | |

L

Figure 6. Unit Selection Guide

20

The binary collating sequence places

numbers, letters, and special characters code
third columne.

in the following order. The octal equi-
valent of each character is shown in the

APPENDIX B:

BINARY COLIATING SEQUENCE

second column;

the

corresponding

card

for each character is shown in the

r
| Character | BCD Code (Octal) | Card Code
| + +

| 0 | 00 | 0
| 1 i 01 | 1
| 2 | 02] 2
| 3 | 03 | 3
| 4 { ou | 4
| 5 | 05 | 5
| 6 | 06 I 6
| 7 | 07 i 7
| 8 | 10 | 8
| 9] 11 | 9
| = (equals) | 13 i 8-3
| ' (apostrophe)] 14 | 8-4
| + (plus) | 20 | 12
| A | 21 | 12-1
| B | 22 | 12-2
I C | 23 | 12-3
| D | 24 | 12-4
| E | 25 | 12-5
| F | 26 | 12-6
| G | 27 | 12-7
| H i 30 i 12-8
| I | 31 | 12-9
| . (period) | 33 | 12-8-3
|)y (right parenthesis) | 34 | 12-8-4
| - (minus) | 40 | 11
| J | 41 | 11-1
| K | 42 | 11-2
| L | 43 i 11-3
| M | 44 1 11-4
| N | 45 | 11-5
| 0 | 46 | 11-6
| P | u7] 11-7
I Q | 50 I 11-8
| R i 51 | 11-9
| $ (dollar sign) | 53] 11-8-3
| * (asterisk) i 54 i 11-8-4
| {blank) | 60 | {blank)
| / (slash) | 61 | 0-1
| S | 62 | 0-2
| T | 63 | 0-3
| U | 64 | 0-u
| v | 65 | 0-5
i W i 66 ! 0-6
| X i 67 | 0-7
| Y | 70 | 0-8
| Z | 71 | 0-9
| ., {(comma) | 73 | 0-8-3
| ((left parenthesis)] 74 | 0-8-04
L

b———————————_.—-——-—-—_.-——-——.——-_.————-—.——_.—-———-—_—-—.————_————_——-_-————d

Figure 7. Binary Collating Sequence

Appendix B

21

INDEX

ASSEMDlY ..oevrrsscccncnanncncocnsonsss O
$% CAYd veeeeeeoccsssccssssssssacnnnas 1

Blocking, update output tape

5,9,10

Compilation ceecesacecescscsccsacsccscasces 5

DELETE pseudo-instruction ecceecs.

ENDFIL pseudo-instruction eeceeceee
ENDUP pseudo-instruction ...c.....
Equal sign pseudo-instruction

12,15

13,15
14,15
11,15

$EXECUTE Card ceeecececcscccccsccsaass 6

¥FAP CAYd eeececccscssscsacsccsnsccsccace 5
FAP Update ceececececcccnccccccacacaces 5

$IBSYS Card ececeeececcscccscscsaccasccccae 7
$ID CaArd ceeececesccccacasnanacaccncasces 7

IGNORE pseudo-instruction .ceceeeeee.

12,15

Insert cards ceecececcccccccacaccans 5,9

$TOB CAYd eceeccscecsccccssscscscacccccan 6

NODAT OptiOn eeecececsscccccccascacaneas 7

NUMBER pseudo-instruction ...cece.

10,15

Operation of update, description 9
Operation of update, examples seceee.. 17

$PAUSE CArd eeeeececececcccaccccccocacs 7

PRINT pseudo-instruction eceesceecee

14,15

Programming eXampleS .ceesececaccccaecce 17

22

Reserialization «ieeeeee... 5,9,10,15,16
REWIND pseudo-instruction s.cee... 13,15
Serialization
Insert CardS eceeeceecceccascssccsees 9,16
Optional, of pseudo~-operation
CAYAS ceecceccceccsanssasacacasass 15
Unserialized deckS eceececcaceces 15,16
Update input tape ceeeececcccceecs 5,9
Update output tape .cceeece... 10,15,16
Spacer card ceecececcccscseees 13,14,15,16
$STOP CaA¥d cececscccesccsaccccsnccaace 7
System input tape cceeececccecccacess 5,9
System output tape eieecccececccss 5,7,9

THRU OPtiON ceeeescccccscccccccccccaas 12

$TITLE CArd ceeecececcescccscccncnannas 7

UMC pseudo-operation ...::s:ccs::0:222 5
Unit availability ccceceececccccceass 20
UNLOAD pseudo-operation eseeeeceee-.. 14,15
Update input tape eececececceccccaccees 5,9
Update logical tape UnitsS e.eeeceee.. 20
Update output tape eeececececsceacsscss 5
Update pseudo-instructions
Card FOIMAt «<veeceiecccsscacencnceae 9
DELETE ceececcacccscccscncaccasas 12,15
ENDFIL cccececcccccccccaaccanass 13,15
ENDUP ceececececccncccccccnccaaes 14,15
IGNORE cecevancccccccccencncenae 12,15
NUMBER ¢cceecccecocccccccansasasa 10,15
PRINT cecececceccccncncncacncass 14,15
REWIND ccecececcccncesncasaasses 13,15
SKIPFIL ceeecececccanscasscsaaes 14,15
SKIPTO cecececccccsnacacancsssss 12,15
UNLOAD ¢ececoccccccccanscnccnses 14,15
UPDATE ceccececcccccconscsscsaaass 9,15

USING eeeeesccccccnsescsaacnasccccaea 9

ccececsscsccesccsscesases 11,15

====== pseudo-instruction 11,15

CUT ALONG LINE

- —————

FOLD

FOLD

COMMENT SHEET

IBM 7090/7094 IBSYS OPERATING SYSTEM, VERSION I3
SYMBOLIC UPDATE PROGRAM
FORM C28—6386—1

FROM

NAME

OFFICE NO,

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED

D SUGGESTED ADDITION (PAGE)
D SUGGESTED DELETION (PAGE)

(0 error (PAGE)

EXPLANATION

NO POSTAGE NECESSARY IF MAILED IN U.S.A,

FOLD ON TWO LINES, STAPLE, AND MAIL

FOLD

FOLD

STAPLE

C28-6386-1

FIRST CLASS
PERMIT NO, 8l

POUGHKEEPSIE, N, Y,
TR
BUSINESS REPLY MAIL —
NO POSTAGE STAMP NECESSARY IF MAILED IN U, S. A,
e —
]
POSTAGE WILL BE PAID BY —
IBM CORPORATION —
P.O. BOX 390 —
]
POUGHKEEPSIE, N.Y. 12602 —
]
]
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS —
DEPARTMENT D39 S—
|]
|]
foLe T ol

TSI

o)

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N. Y. 10601
STAPLE

CUT ALONG LINE

V'S'Q Ut pajug

1-98€9-820

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	replyA
	replyB

