Systems Reference Library

IBM 7080/7094 IBSYS Operating System
Version 13

FORTRAN IV Language

This publication describes the IBM 7090/7094 FORTRAN IV
language that is processed by the FORTRAN IV Compiler
(IBFTC), #7090-FO-805, a component of the IBM 7090/7094
IBJOB Processor, which, in turn, is a subset of the IBSYS
Operating System (Version 13). FORTRAN IV is a problem-
oriented programming language designed primarily for
scientific computations, and it clogely resembles the language
of mathematics. It includes various types of arithmetic,
control, input/output, and specification statements.

File No, 7090-25
Form C28-6390-3

PREFACE

This publication describes the FORTRAN IV language
for the IBM 7090/7094 FORTRAN IV Compiler (IBFTC),
a component of the IBM 7090/7094 IBJOB Processor.
The IBJOB Processor is described in the publication
IBM 7090/7094 IBSYS Operating System,, IBJOB
Processor, Form C28-6389. Minimum machine re-
quirements for FORTRAN IV are also described in
the IBJOB Processor publication.

The basic concepts of the FORTRAN language are
described in the publication General Information
Manual, FORTRAN, Form F28-8074, but the presen-
tation of material in this publication is such that no
previous knowledge of the FORTRAN language is re-
quired.

The information in Appendixes F and G permits a
FORTRAN programmer to write, punch, and run a
simple FORTRAN IV program without referring to
another publication for source program format, con-
trol cards, or deck setup.

MINOR REVISION (APRIL 1966)

This edition, Form C28-6390-3, is a reprint of Form C28-6390-2,
incorporating changes released in the following Technical News-
letter:

Form No, Pages Dated
N28-0179-0 7,8,9,17,23, March 1, 1966
25,31,34,36

Form C28-6903-2 and the Technical Newsletter are not obsolete,

CONTENTS

INTRODUCTION 4+ +« v &+ ¢ & & « &« + s« o o« o« « & CHAPTER 5. SUBROUTINES, FUNCTIONS, AND SUBPROGRAM
STATEMENTS X
CHAPTER 1. CONSTANTS, VARIABLES, SUBSCRIPTS, AND Naming Subroutines « o o s o o o o « & « + o o 23
EXPRESSIONS . . +« ¢ ¢« +v ¢« 4 &« 4 s« o o « « . 6 Defining Subroutines e o s s o s+ e = & o e o o 23
Constants + « + & ¢« ¢ « s « 4 s s 4+ s 4 . . 6 Arithmetic Statement Functions « « o « o o o o o 23
Integer Constants « « + o & & o« 2+ « o« o+ o« o« o+ 6 Built-In Functions o s o s s+ s s o s & & s & 25
Real Constants « « « « & o &+ &+ s o o « o & o 6 FUNCTION Subprogram . « « « « o s+ o o o« « o 25
Double-Precision Constants «+ « « « 4 & & s &+ + + 6 SUBROUTINE Subprogram . « + « « s o« s « » o 25
Complex Constants <« « « o o« s+ o o o o o o 6 Normal Returns from Subprograms « + + « o« o « o 26
Logical Constants s s s & 8 = o & s s 2 s . 6 Nonstandard Returns from SUBROUTINE Subprograms . ., 26
Variables . o + ¢ v ¢ o v+ v 4 4 4 e e o0 o. T Multiple Entry Points into a Subprogram . . + . . . 27
Variable Names « o o 4 o « « & & « o o 4 . 7 Subprogram Names as Arguments « o « « + « o o+ o 28
Variable Type Specification « « « 4 o « « o « o+ 7 CALL Statement o « « « o o « o o o o o o o o« 28
Implicit Type Assignment « « « « o« o« o« o o o« o 7 Subprograms Provided by FORTRAN . . « . . o . . . 28
Subscripts . v e 6 v 4 4 4 e e e e e e e . . T Mathematical Subroutines = « o « o« & 4+ o o . . 28
Form of Subscripts + . .+ « + ¢ « & & 4 4 o . 7 Machine Indicator Tests s o o s s e s o s s s 29
Subscripted Variables . «« + 7 EXIT, DUMP, and PDUMP« . « « o o+« .« « 30
Arrangement of Arrays in Storage « .« . o+ 4 . . . 7 BLOCK DATA Subprogram =« « « « o o s s+ o« o « o 30
EXpressions « « o + ¢« « + 4 4 s+ 4 4 4 o « o . 8
Arithmetic Expressions « « + « « 4 « & &+ o« o - 8 CHAPTER 6. THE SPECIFICATION STATEMENTS 31
" Logical Expressions +« « + &+ 4+ 4 4 « o o o+ o+ . 8 DIMENSION Statement « « & « s s s « s o o » 31
COMMON Statement « + « ¢ o o s o o o o o+ « 31
CHAPTER 2. THE ARITHMETIC STATEMENT 10 EQUIVALENCE Statement « « o o« o o o » o+ o o 32
Type Statements . « « & o 2 &« s o o o o & » 33
CHAPTER 3. THE CONTROL STATEMENTS 11 DATA Statement « o o = o« s o « s o o o o o+ 34
Unconditional GO TO Statement « + + « « o« . . o 11
Computed GO TO Statement +« + +« & « & & o o o 11 APPENDIXES o &« =« o o o« « s o o 2 o o o o o 35
Assigned GO TO Statement, . 11 Appendix A. Source Program Statements and Sequencing . . 35
ASSIGN Statement + o o « + o s o« 4 & o« . . 11 Appendix B. Table of Source Program Characters 37
Arithmetic IF Statement . . o « + . . o o . o 11 Appendix C. Differences Between FORTRAN II and
Logical IF Statement T & | FORTRANIV . o . .+ v o o o & « « « o« o+ 38
DO Statermnent « o « « « o« o o 4 4 4 4 . e o 12 Appendix D. Optimization of Arithmetic Expressions . . . 40
CONTINUE Statement .« « « o o o o o o o » o 12 Appendix E. Binary Record Format . .+ o« o o o o . . 40
PAUSE Statement o + o & o o o o o o o« o o o 13 Appendix F. General Properties of a FORTRAN
END Statement . +« + + + + 4 « 4 4 o+ . . . 13 Source Program . « « .« ¢ ¢ o + o o + . o 40
STOP Statement S) Writing the Source Program « <« ¢ 4« o o o o o o 40
Punching the Source Program o . .+ o+ o« . 41
CHAPTER 4. INPUT/OUTPUT STATEMENTS., 14 Appendix G. Deck Setup for a FORTRAN IV Job o e e . 41
List Specificationse o« s o « o o o o « o o o o o 14 Definitionof Terms « &« o « o o o o o o o o o 41
Input/Qutput of Entire Amrays « o o o« « « & o o o o 15 Control Card Notation .+ o« &« o o o o & o o« « o« 41
FORMAT Statement « « o o o o o o s « o o » o 15 $JOBCard o ¢« o o « o s o o o o o o o o o 42
Numeric Fieldss o« ¢« 4 &« o o o o ¢ o o o« o o 15 $EXECUTECard ¢ v o o o o o o s s o + « o+ 42
Complex Number Fields .« « « & ¢ o &« o o + o o 16 $IBJOBCard o & o o o o o s o o o o & o o 42
Alphameric Fields s s e 4 e e e s s e« e o . 16 $IBFTC Card ¢ o o o o o o o o s o o o« o o+ 43
Logical Fields = + o o ¢ ¢ v ¢ o o o & o & o 17 FORTRAN Main Program Deck . o + & o « + o o 44
Blank Fields - X-Conversion « ¢ ¢« « o o o o o« o 17 FORTRAN Subprograms « o« « « o o o o« o « o o 44
Repetition of Field Format T V4 $IBMAPCard ¢ o o o s o o o o o o o o« o o« 44
Repetition of Groups « « o ¢« o o o o & o« o o o 17 MAP Subprograms e e s s e e s e s e e . . 44
Scale Factors o« « o « o o s 2 o o o & o o o 17 Binary Decks 45
Multiple-Record Formats « o o o o o« o o o o+ o 18 $ENTRY Card C e e e e e e e e 4. 45
Carriage Control & ¢ ¢ ¢ o &+ o o o o &+ o o« o 18 $DATACard+ « +« .« .+ . + . . 45
FORMAT Statements Read in at Object Time o o . . 18 Data Deck S
Data Input Referring to a FORMAT Statement o + . , 19 End-of-FileCard+« « &« . < . . 45
NAMELIST Statement o« « « o o o o « o o« o o » 19 Sample Program and Qutput 45
Data Input Referring to a NAMELIST Statement 19 Appendix H. Machine Dependent Features 46
The General Input/Output Statements « +« o+ o o« o o o 20
Inmput « &« ¢ ¢« & v ¢ 4 4 4 4 e« o o o o o 20 INDEX & v v v v v e e e e e e e e e e e . 47

L -3
The Manipulative Input/Output Statements . . . o . . 21
Symbolic Input/Output Unit Designation o« o« « o« o+ o o 22

The FORTRAN IV language is a set of statements,

expressions, and operators, which are used to write
a source program. The FORTRAN IV Compiler con-
verts this source program into an object program in
machine language, ready to be run on the computer.

FORTRAN IV Language

The FORTRAN IV language is a programming code
designed primarily for mathematically oriented
computer applications. The language's close resem-
blance to algebraic notation facilitates the writing
and documentation of programs involving mathemat-
ical formulas. It provides users with an easy method
for writing efficient programs that will perform
scientific calculations and data handling.

The statements in the FORTRAN IV language may
be classified as follows:

1. The arithmetic statement specifies a numerical
or logical calculation.

2., The control statements govern the flow of
control in the program.

3. The input/output statements provide the neces-

sary input/output routines and the input/output format.

4. The subroutine statements enable the program-
mer to define and use subprograms.

5. The specification statements provide informa-
tion about the constants and variables used in the pro-
gram and about storage allocation.

INTRODUCTION

7090/7094 FORTRAN IV Compiler (IBFTC)

The IBM 7090/7094 FORTRAN IV Compiler is a
component of the IBM 7090/7094 IBJOB Processor,
which in turn is a component of the IBM 7090/7094
IBSYS Operating System. The compiler accepts
source programs written in the FORTRAN IV lang-
uage, analyzes the source program statements, and
transforms them into Loader text (relocatable binary).

The compiler operates in two passes: an instruc-
tion compilation pass and an assembly pass. The
output of the second pass is input to the Loader
(IBLDR) of the IBJOB Processor. Because assembly
is performed by the compiler, the Macro Assembly
Program (IBMAP) is not used.

The compiler uses a technique called "phasing,"
which is designed to save considerable time for
users, especially those with all-tape systems. With
this technique, the system is read in only once for
an entire job. Phasing is described in detail in the
publication IBM 7090/7094 IBSYS Operating System,
IBJOB Processor, Form C28-6389. Because the
compiler uses this technique, programmers are en-
couraged to code subroutines for their programs
where the same calculation must be performed more
than once with different data for each calculation. Sub-
routines cost little in compile-time, they facilitate
debugging, and, in FORTRAN programming shops,
they facilitate the breaking up of assignments.

Introduction 5

CHAPTER 1. CONSTANTS, VARIABLES, SUBSCRIPTS, AND EXPRESSIONS

FORTRAN provides a means of expressing constants
and variables, and provides subscript notations for
expressing arrays of variables with one to seven
dimensions.

CONSTANTS
Five types of constants are permitted in a FORTRAN
source program: integer, real or single-precision,

double-precision, complex, and logical.

Integer Constants

General Form

An integer constant consists of 1-11 decimal digits written
without a decimal point.

Examples:

3

528

8085

An integer constant may be as large as 235-1, ex~

cept when used for the value of a subscript or as an
index of a DO, or a DO parameter, in which case the
value of the integer is computed modulo 215.

Real Constants

General Form

A real constant consists of one of the following:

1. One to nine significant decimal digits written with a
decimal point, but not followed by a decimal exponent.

2. A sequence of decimal digits written with a decimal point,
followed by a decimal exponent, which is written as the

letter E followed by a signed or unsigned integer constant.

Examples:
21.
.203
8.0067
5.0 E3 (means 5.0 x 103, i.e., 5000.)
5.0 E-3 (means 5.0 x 1073, i.e., .005)

1. The magnitude of a real constant must be be-
tween the approximate limits of 1038 and 10738, or
must be zero.

2. A real constant has precision to eight digits.

Double-Precision Constarnts

General Form

A double-precision constant consists of one of the following:

1. Ten or more significant decimal digits written with a
decimal point, but not followed by a decimal exponent.

2. A sequence of decimal digits written with a decimal point,
followed by a decimal exponent, which is written as the
letter D followed by a signed or unsigned integer constant.

Examples:
21,987538294
21.9D0
.203D0
5.0D3 (means 5.0 x 103, i.e., 5000.)
5.0 D-3 (means 5.0 x 1073, i,e., .005)

1. The magnitude of a double-precision constant
must lie between the approximate limits of 10-29 and
1038, or must be zero. Numbers between 10-29 and
10-38 may be used, but only eight digits are signifi-
cant in this range.

2. Double-precision constants are floating-point
quantities that have precision to 16 digits.

Complex Constants

General Form

A complex constant consists of an ordered pair of signed or
unsigned real constantsseparated by a comma and enclosed

in parentheses.

Examples:
(3.2, 1.86) is equal to 3.2 + 1.86i.
(2.1, 0.0) is equal to 2.1 + 0. 01,
(5.0E3, 2.12) is equal to 5000. +2.121i.
where i is the square root of -1,

1. The first real constant represents the real
part of the complex number; the second real con-
stant represents the imaginary part of the complex
number.

2. The parentheses are required regardless of
the context in which the complex constant appears.

3. Each part of the complex constant may be pre-
ceded by a plus sign or a minus sign, or it may be
unsigned.

_Logical Constants

General Form

A logical constant may take either of the following forms:
.TRUE.
.FALSE.

VARIABLES
A variable is'specified by its name and its type.
There are five types of variables: integer, real,

double-precision, complex, and logical.

Variable Names

General Form

A variable name consists of one to six alphameric characters,
the first of which must be alphabetic.

Examples:
L5
JOB1
BETATS
COST
K
Subroutines are named in the same manner as
variables (see '""Naming Subroutines').

Variable Type Specification

The type of a real variable name or functionnameor an
integer variable name or function name may be
specified in one of two ways: implicitly by name,

or explicitly by a Type statement (see the sections
"Type Statements' and '""Naming Subroutines')., All
other variables must have their type specified by a
Type statement. The type of a function name that
appears in a FUNCTION statement is specified either
implicitly or by that FUNCTION statement.

Implicit Type Assignment

Implicit type assignment pertains only to integer
variable names and function names and real variable
names and function names:

1. If the first character of the symbol is I,J,K,
L,M, or N, it is an integer name; e.g., MAX, JOB,
IDIST, LESL.

2. If the first character of the symbol is not I, J,
K, L, M, or N, it is a real name; e.g., ALPHA,
BMAX, Q, WHIT.

Exception: If the symbol is used as a function
reference and is the same name as that of a built-in
or standard library function, it is implicitly typed
as shown in column 6 of Figures 8, 9, and 16.

SUBSCRIPTS

A variable may be made to represent any element of
a one-, two-, ..., or seven-dimensgional array of
quantities by appending one, two, ..., or seven
subscripts, respectively, to the variable name. The

variable is then a subscripted variable. The sub-
scripts are expressions of a special form whose
value determines the member of the array to which
reference is made.

Form of Subscripts

General Form

A subscript may take only one of the following forms, where
v represents any unsigned, nonsubscripted integer variable,
and ¢ and c' represent any unsigned integer constant having a
positive value:

v

c

v+c or v=c

ckv

ckv+c! or ckv-c'

Examples:

IMAS

J9

K2

N+3

8*IQUAN

5*L+7

4*M-3

7+2*K invalid

9+J invalid

Note: The value of a subscript expression must

be greater than zero and not greater than the corres-
ponding array dimension. The value of an integer
variable in a subscript expression must not be less
than zero.

Subscripted Variables

General Form

A subscripted variable consists of a variable name followed by
parentheses enclosing one to seven subscripts that are
separated by commas.

Examples:
A(I)
K(3)
BETA (8*J +2, K-2, L)
MAX (I, J, K, L, M, N)

1. During the execution, the subscript is evalu-
ated so that the subscripted variable refers to a
specific member of the array.

2. Each variable that appears in subscripted form
must have the size of the array specified preceding
the first appearance of the subscripted variable in
any executable, NAMELIST, or DATA statements.
This must be done by a DIMENSION statement or by
a COMMON or Type statement (EXCEPT EXTERNAL)
that contains dimension information.

Constants, Variables, Subscripts and Expressions 7

Arrangement of Arrays in Storage

Arrays are stored in column orderinincreasing stor—
age locations, with the first of their subscripts vary-
ing most rapidly and the lastvarying least rapidly.
For example, the two-dimensional array A(m,n)
is stored as follows, from the lowest core storage
location to the highest:
Al’l, A2,1, seey Am, 1> A1,2: Az’z, s e ey
Am,z, oo Am,n

EXPRESSIONS

The FORTRAN language includes two kinds of ex-
pressions: arithmetic and logical.

Arithmetic Expressions

An arithmetic expression consists of certain se-
quences of constants, subscripted and nonsubscripted
variables, and arithmetic function references separ-
ated by arithmetic operation symbols, commas, and
parentheses,

The following arithmetic operation symbols de-
note addition, subtraction, multiplication, division,
and exponentiations; respectively:

+ -k /0 k%

The following are the rules for constructing arith-
metic expressions:

1. Figures 1andZ2indicate which constants, vari-
ables, and functions may be combined by the arithmetic
operators to form arithmetic expressions. Figure 1
gives the valid combinations with respect to the arith-
metic operators +, —, *, and /. Figure 2 gives the
valid combinations with respect to the arithmetic
operator**. In these figures, Y indicates a valid
combination and N indicates an invalid combination.

2. A real constant, variable, or function name
combined with a double-word quantity results in an
expression with the type of the double-word quantity;
e.g., areal variable plus a complex variable forms
a complex expression. A real quantity combined
with a real quantity results in a double-precision
quantity if this result is in turn combined with, or
substituted for, a double-precision quantity.

3. Anyexpression maybe enclosedin parentheses.

4, Expressions may be connected by the arith—
metic operation symbols to form other expressions,
provided that:

a. No two operators appear in sequence.
b. No operation symbol is assumed to be
present. For example, (X)(Y) is invalid.
The expression A**B**C is not permitted; it must
be written as either A*¥(B**C) or (A**B)**C, which-
ever is intended.

5. Preceding an expression by a plus or minus

sign does not affect the type of the expression.

ISouble-
=%,/ Real | Integer | Complex | Precision | Logical
Real Y N Y Y N
Integer N Y N N N
Complex Y N Y N N
Double-
Precision Y N N Y N
Logical N N N N N
Figure 1
Exponent
Double-
*k Real | Integer | Complex | Precision | Logical
Real Y Y N Y N
Integer N Y N N N
Base Complex N Y N N N
Double-
Precision Y Y N Y N
Logical N N N N N
Figure 2

6. In the hierarchy of operations, parentheses
may be used in arithmetic expressions to specify
the order in which operations are to be computed.
Where parentheses are omitted, the order is under-
stood to be as follows (from innermost operations to
outermost operations):

a. Function Reference

h, kK Exponentiation
¢. *and/ Multiplication and Division
d. +and - Addition and Subtraction

(Even if operators are on the same level, parentheses
may be used if a particular order of computations is
required by the program.)

Logical Expressions

A logical expression consists of certain sequences
of logical constants, logical variables, references to
logical functions, and arithmetic expressions (ex-
cept complex expressions) separated by logical op-
eration symbols or relational operation symbols., A
logical expression always has the value:
TRUE. or . FALSE.

The logical operation symbols (where a and b are

logical expressions) are:

Symbol Definition

.NOT.a This has the value . TRUE. only if a is . FALSE.;
it has the value .FALSE. only if a is , TRUE.

a, AND.b This has the value . TRUE, only if a and b are
both . TRUE.; it has the value .FALSE, if either
a orb is LFALSE,

a.OR.b (Inclusive OR}) This has the value . TRUE. if

either a or b is . TRUE.; it has the value,
.FALSE. only if both a and b are .FALSE.

The logical operators NOT, AND, and OR must
always be preceded and followed by a period.
The relational operation symbols are:

Symbol Definition

.GT. Greater than

.GE. Greater than or equal to
LT, Less than

.LE. Less than or equal to
.EQ. Equal to

.NE, Not equal to

The relational operators must always be preceded
and followed by a period.

The following are the rules for constructing logi-
cal expressions:

1. Figure 3 indicates which constants, variables,
functions, and arithmetic expressions may be com-
bined by the relational operators to form a logical
expression. In Figure 3, Y indicates a valid combin-
ation and N indicates an invalid combination.

.GT.,.GE.,.LT., Double~

«LE., .EQ.,.NE, Real | Integer | Complex | Precision | Logical
Real Y N N Y N
Integer N Y N N N
Complex N N N N N
Double -
Precision Y N N Y N
Logical N N N N N

Figure 3

The logical expression will have the value . TRUE.
if the condition expressed by the relational operator
is met; otherwise, the logical expression will have
the value . FALSE. .

2. A logical expression may consist of a single
logical constant, a logical variable, or a reference
to a logical function.

3. The logical operator . NOT. must be followed
by a logical expression, and the logical operators
.AND. and ,OR. must be preceded and followed by
logical expressions to form more complex logical
expressions.

4. Any logical expression may be enclosed in
parentheses.

5. In the hierarchy of operations, parentheses
may be used in logical expressions to specify the
order in which operations are to be computed. Where
parentheses are omitted, the order is understood to
be as follows (from innermost operation to outermost
operation):

Function Reference
*k Exponentiation

a.

b.

c. *and/ Multiplication and Division
d. + and - Addition and Subtraction
e. .LT.,.LE.,.EQ.,.NE.,.GT.,.GE.

f. .NOT.

g. .AND,

h. .OR.

Constants, Variables, Subscripts and Expressions 9

CHAPTER 2. THE ARITHMETIC STATEMENT

The arithmetic statement defines a numerical or
logical calculation. A FORTRAN arithmetic state-
ment closely resembles a conventional arithmetic
formula; however, the equal sign of the FORTRAN
statement specifies replacement rather than equiva-
lence.

General Form

a=b
where:

1. a is a subscripted or nonsubscripted variable, and
2, b is an expression.

Examples:

QL =K

A = B(I) + ASIN(C(I))

V =.TRUE.

E=C.GT.D.AND.F.LE.G

Figure 4 indicates which type expressions may

be equated to which type of variable in an arithmetic
statement, In Figure 4, Y indicates a valid state-
ment and N indicates an invalid statement.

Right side of equal sign

expression Double—
variable Real | Integer | Complex | Precision | Logical
Left [Real Y Y N Y N
side [Integer Y Y N Y N
of Complex Y N Y N N
equal [Double -
sign [Precision Y Y N Y N
Logical N N N N Y

Figure 4

In the following examples of arithmetic statements,
I is an integer variable, A and B are real variables,
C and D are double-precision variables, E and F are
complex variables, and G, H, and P are logical
variables.

10

A =B
I=B
A=1
I=1+1
A = 3¥B
A = BxC

E = F¥(3,7,2.0)

G = . TRUE,
H=.NOT.G

H=I[.GE.A

G =H.OR..NOT.P

G =3..GT.B

Replace A by the current value of B,
Truncate B to an integer, convert it to an
integer constant, and store it in I,
Convert I to a real variable and store it
in A, .

Add 1 to I and store it in I.

Not permitted. The expression is mixed
for multiplication, i.e., it contains both
a real variable and an integer constant.
Multiply B by C using double-precision
arithmetic, and store the most significant
part of the result as a real number in A,
Multiply F by 3.7 + 2.0i using complex
arithmetic, and store the result in E as

a complex number.

Replace the real part of F by the current
value of B, and set the imaginary part of
F to zero.

Store the logical constant . TRUE. in G.
If G is . TRUE., store the value .FALSE.
in H; if G is .FALSE,, store the value

. TRUE. in H.

Not permitted. An integer and a real
variable may not be joined by a relational

operator.
H P | ~P | Hv~s P| where:
T T F T ~v implies
T F T T .NOT. and
F T F F v implies
F F T T .OR.

Two logical operators may appear in
sequence only if the second logical opera-
tor is . NOT..

G is . TRUE, if 3, is greater than 3; G is
.FALSE, otherwise.

The last two examples illustrate the following rule:

Two decimal points may appear in succession if
(1) two logical operators appear in sequence (the
second one must be .NOT.) or (2) a constant with
a decimal point precedes a relational operator.

The control statements enable the programmer to
control and terminate the flow of his program.

Unconditional GO TO Statement

General Form

GO TOn
where:
n is a statement number,

Example:
GO TO 25
This statement causes control to be transferred
to the statement numbered n.

Computed GO TO Statement

General Form

GO TO (nq;s np,eee,nm),i
where:
1. nq, ng,...,np, are statement numbers," and

2, 1iis a nonsubscripted integer variable.

Example:
GO TO (30, 45, 50,9),K

This statement causes control to be transferred
to the statement numbered nj,ng, ..., n,y,; depending
on whether the value of i is 1,2,3,..., m,respec-
tively, at the time of execution. Thus, in the ex-
ample, if K is 3 at the time of execution, a transfer
to the third statement in the list, i.e., statement
50, will occur,.

Assigned GO TO Statement

General Form

GO TO i, (ng, Ny, .-, nm)

where:

1. i is a nonsubscripted integer variable appearing in a
previously executed ASSIGN statement, and

2. nj,np,...,nm are statement numbers.

Example:
GO TO J, (17,12,19)

This statement causes control to be transferred to
the statement number last assigned to i by an AS-
SIGN statement; ny,ng,...,ny, is a list of the m
values that i may assume.

CHAPTER 3. THE CONTROL STATEMENTS

ASSIGN Statement

General Form

ASSIGNn TO i

where:

1. nis a statement number, and

2, 1is a nonsubscripted. integer variable that appears in
an assigned GO TO statement,

Examples:
ASSIGN 12 TO K
ASSIGN 37 TO JA
This statement causes a subsequent GO TO i, (np,
ng,...,ny) to transfer control to the statement num-
bered n, where nis one of the statement numbers in-
cluded in the series ny,ng,....0nm.

Arithmetic IF Statement

General Form

IF (a) nqy,np,n3

where:

L. ais an arithmetic expression (not complex), and
2. njy,np,n3 are statement numbers.

Examples:
IF (A(J,K) - B) 10, 4, 30
IF (D*E+BRN) 9,9, 15
This statement causes control to be transferred to
the statement numbered ny,ng, or ng if the value of
a is less than, equal to, or greater than zero, re-
spectively.

Logical IF Statement

General Form

IF(t)s

where:

1. tis alogical expression, and

2. s is any executable statement except DO or another

logical IF,

Examples:
IF (A.AND.B) F = SIN (R)
IF (16.GT.L) GO TO 24
IF (D.OR.X.LE.Y) GO TO (18, 20), I
IF (Q) CALL SUB
1. If the logical expression t is true. statement
s is executed. Control is then transferred to the next

The Control Statements 11

sequential statement unless s is a transfer state-
ment, in which case, control is transferred as in-
dicated.

2. If t is false, control is transferred to the next
sequential statement.

3. Ift is true and s is a CALL statement that
does not have any nonstandard returns, control is
transferred to the next sequential statement upon re-
turn from the subprogram.

DO Statement

General Form

DOni=mq,my,m3

where:

1. nis a statement number,

2, i is a nonsubscripted integer variable, and

3. mj,mp, m3 are each either an unsigned integer constant
or a nonsubscripted integer variable; if m3 is not stated,

is taken to be 1.

Examples:

DO30I=1I M,2

DO241=1, 10

The DO statement is a command to execute re-
peatedly the statements that follow, up to and including
the statement numbered n. The statements in the range
of the DO are executed repeatedly with i equal to mq,
then i equal to mj + mg, then i equal to mj +2mg, etc,,
until i is equal to the highest value in this sequence
that does not exceed my. The statements in the range
of the DO will be executed at least once. The value of
mi1, mo, and my must be greater than zero when the
DO statement is executed.

1. The range of a DO is that set of statements
that will be executed repeatedly; i.e., it is the se-
quence of consecutive statements immediately follow-
ing the DO statement, up to and including the state-
ment numbered n. After the last execution of the
range, the DO is said to be satisfied,

2. The index of a DO is the integer variable i.
Throughout the range of the DO, the index is avail-
able for computation, either as an ordinary integer
variable or as the variable of a subscript. Upon
exiting from a DO by satisfying the DO, the index i
must be redefined before it is used in computation.
Upon exiting from a DO by transferring out of the
range of the DO, the index i is available for com-
putation and is equal to the last value it attained.

3. Within the range of a DO statement may be
other DO statements; such a configuration is called
a DO nest. If the range of a DO includes another DO,
then all of the statements in the range of the latter
must also be in the range of the former.

4, Transfer of Control and DO Statements. Con-
trol may not be transferred into the range of a DO
from outside its range. Thus, in the configuration
following, 1,2, and 3 are permitted transfers, but
4,5,and 6 are not.

12

DO

5. Restrictions on Statements in the Range of a
DO.

a. Any statement that redefines the index or
any of the indexing parameters (m's) is
not permitted in the range of a DO.

b. The range of a DO cannot end with an
arithmetic IF or GO TO-type statement,
with a nonexecutable statement, or with
a RETURN or STOP statement. The range
of a DO may end with a logical IF, in
which case, control is handled as follows:
if the logical expression t is false, the DO
is reiterated; if the logical expression t is
true, statement s is executed and then the
DO is reiterated. However, if t is true and
s is an arithmetic IF or transfer type
statement, control is transferred as indi-
cated.

6. When a reference to a subprogram is executed
in the range of a DO, care must be taken that the
called subprogram does not alter the DO index or the
indexing parameters.

CONTINUE Statement

General Form

CONTINUE

CONTINUE is a dummy statement that gives rise
to no instructions in the object program. It is most
frequently used as the last statement in the range of
a DO to provide a transfer address for IF and GO TO
statements that are intended to begin another repe-
tition of the DO range.

PAUSE Statement

Géneral Form

PAUSE or PAUSE n

where:

n is an unsigned octal integer constant of one to five digits,

Examples:
PAUSE
PAUSE 77777
The machine will halt with the octal number n in

the address field of the Storage Register. If n is not

specified, it is understood to be zero. Depressing
the START key causes the program to resume exe-
cution of the object program with the next executable
FORTRAN statement.

END Statement

General Form

END

1. The END statement terminates compilation
of a program.

2. The END statement must be the physically
last statement of the program.

STOP Statement

General Form

STOP or STOP n
where:
n is an unsigned octal integer constant of one to five digits.

Examples:
STOP
STOP 77777
The STOP and STOP n statements terminate the
execution of any program by returning control to the
Monitor.

The Control Statements 13

CHAPTER 4. INPUT/OUTPUT STATEMENTS

The FORTRAN statements that specify transmission
of information to or from input/output devices may
be grouped as follows:

General Input/Output Statements: The statements
READ and WRITE cause the transmission of a speci-
fied list of quantities between core storage and an
input/output device. The statements PUNCH and
PRINT cause information to he transmitted from core
storage to the card punch and on-line printer, re-
spectively.

Manipulative Input/Output Statements: Statements
END FILE, REWIND, and BACKSPACE manipulate
input/output devices.

Nonexecutable Statements: Either of two nonexecut-
able statements (the FORMAT statement or the
NAMELIST statement) may he used with the general
input/output statements. The FORMAT statement,
which can be used with any general input/output
statement, specifies the arrangement of data in the
external input/output medium. If the FORMAT
statement is referred to hy a READ statement, the
input data must meet the specifications described in
the section '"Data Input Referring to a FORMAT
Statement.'" The NAMELIST statement specifies an
input/output list of variables and arrays. Input/
output of the values associated with the list is
effected by reference to the list in a READ or WRITE
statement. If the NAMELIST statement is referred
to by a READ statement, the input data must meet
the specifications described in the section ""Data
Input Referring to a NAMELIST Statement. "

LIST SPECIFICATIONS

If arrays or variables are transmitted by using a
FORMAT statement, an ordered list of the quantities
to be transmitted must be included in the general
input/output statement. The order of the input/
output list must be the same as the order in which
the information exists in the input/output medium.,

The following notes on the formation and meaning
of an input/output list are most clearly understood
by considering the following input/output list:

A,B(3), (C(), D({,K), I=1, 10),

(E@,d), I=1, 10,2), F(J,3), J=1,K)

This list implies that the information in the ex-
ternal input/output medium is arranged as follows:

A,B(3),C(1),D(1,K),C(2),D(2,K),...,

C(10), D(10,K), E(1,1), E(3,1),...,

E©,1), F(1,3), EQ,2), E3,2),...,

E@©,2), F2,3),..., F(K,3)

14

1. An input/output list is a string of list items

separated by commas. A list item may be:
a., A subscripted or nonsubscripted variable:
b. An implied DO.
An input/output list reads from left to right with repeti-
tion of variables enclosed in parentheses.

2. A constant may appear in an input/output list
only as a subscript or as an indexing parameter.

3. The execution of an input/output list is exactly
that of a DO loop, as though each left parenthesis
(except subscripting parentheses) were a DO, with
indexing given immediately before the matching right
parenthesis, and with the DO range extending up to
that indexing information. The order of the input/
output list above may he considered equivalent to the
following program statements:

A
B(3)
DO 51=1,10
ca (C(), D(,K),1=1,10)
5 D(,K)
DO 9 J=1,K
DO 8 I=1, 10,2
8 E(,J)
9 F(J,3)

(EI,J), 1=1,10,2),
F(J,3),J=1,K)

4. An implied DO is best defined by an example.
In the input/output list above, the list item (C(I),
D(I,K), I=1, 10) is an implied DO; it is evaluated as
in the above program.

The range of an implied DO must be clearly de-
fined by parentheses.

5. Tor a list of the form K, A(K), or K, (A(l),
I=1,K), where the definition of an index or an index-
ing parameter appears earlier in the list of an input
statement than its use, the indexing will be carried
out with the newly read in value.

6. Any number of quantites may appear in a single
list. However, each quantity must have the correct
format as specified in a corresponding FORMAT
statement. Essentially, it is the list that controls
the quantity of data read. If more quantities are to
be transmitted than are in the list, only the number
of quantities specified in the list are transmitted, and
remaining quantities are ignored. Conversely, if a
list contains more quantities than are given on one
BCD input record, more records are read; if a list
contains more quantities than are given in one binary
record, reading is terminated as an object program
error and control is transferred to FXEM (an error
routine in the Subroutine Library).

INPUT/OUTPUT OF ENTIRE ARRAYS

By referring to the NAMELIST statement, an entire
array can be designated for transmission between
core storage and an input/output medium. Input of
an entire array using the NAMELIST statement is
described in the section "Data Input Referring to
NAMELIST Statement''; output of an entire array
using the NAMELIST statement is described in the
section "Output.' If the FORMAT statement is re-
ferred to and input/output of an entire array is de-
sired, an abbreviated notation may be used in the
list of the general input/output statement. Only the
name of the array need be given and the indexing
information may be omitted.

1. If A has previously been listed in a statement
containing dimension information, the following
statement is sufficient to read in all of the elements
of the array A (see the section "Input'):

READ (5,10)A

2. The elements read in by this notation are
stored in accordance with the description of the
arrangement of arrays in storage (see the section
"Arrangement of Arrays in Storage'').

3. If A has not been previously dimensioned,
only the first element will be read in.

FORMAT STATEMENT

The BCD input/output statements require, in addition
to a list of quantities to be transmitted, reference

to a FORMAT statement that describes the type of
conversion to be performed between the internal ma-
chine language and the external notation for each
quantity in the list.

and forth between the list, which specifies whether
data remains to be transmitted, and the FORMAT
statement, which gives the specifications for trans-
mission of that data.

3. BSlashes are used to specify unit records,
which must be one of the following:

a. A tape record with a maximum length
corresponding to the printed line of the
off-line printer.

b. A punched card, to be read on-line, with
a maximum of 72 characters; a punched
card, to be read off-line, with a maxi-
mum of 80 characters.

c. A line to be printed on-line, with a maxi-
mum of 120 characters.

Thus, FORMAT (3F9.2, 2F10.4/8E14.5) would
specify records in which the first, third, fifth, etc.,
have the format (3F9.2, 2F10.4), and the second,
fourth, sixth, etc., have the format (8E14.5).

4. During input/output of data, the object pro-
gram scans the FORMAT statement to which the
relevant input/output statement refers. When a
specification for a numerical field is found and list
items remain to be transmitted, input/output takes
place according to the specification, and scanning
of the FORMAT statement resumes. If no items
remain, transmission ceases and execution of that
particular input/output statement is terminated. Thus,
a decimal input/output operation is brought to an end
when there are no items remaining in the list.

Numeric TFields

Five types of conversion are available for numeric
data:

General Form

FORMAT (S1,S05++455,/S'1,8"25044,8"p/000)
where:
each field, Si, is a format specification.

Example:
FORMAT (I12/ (E12.4,F10.2))

1. FORMAT statements are not executed; they
may be placed anywhere in the source program. Each
FORMAT statement must be given a statement
number.

2. The FORMAT statement indicates, among
other things, the maximum size of each record to be
transmitted. In this connection, it must be remem-
bered that the FORMAT statement is used in conjunc-
tion with the list of some particular input/output
statement, except when a FORMAT statement con-
sists entirely of alphameric fields. In all other
cases, control in the object program switches back

Internal Conversion Code External

Floating point

(double ~precision) D Real with D exponent
Floating point E Real with E exponent
Floating point F Real without exponent
Integer I Decimal Integer
Integer o) Octal Integer

These types of conversion are specified in the
forms Dw.d, Ew.d, Fw.d, Iw, Ow, where:

1. D,E,F,I, and O represent the type of con-
version.

2. w is an unsigned integer constant that repre-
sents the field width for converted data; this field
width may be greater than required to provide
spacing between numbers.

3. dis an unsigned integer or zero that repre-
sents the number of positions of the field that appear

Input/OQutput Statements 15

to the right of the decimal point. For E- and F-con-
version, d is calculated modulo 10.

For example, the statement FORMAT (12, E12.4,
08, F10.4, D25,16) might cause the following line to
be printed:

12E12.4 o8

F10.4 D25.16

27b-0.9321Eb0257734276bbb -0, 0076bb-0. 787897790950067 2Db03

where b indicates a blank space.

The following are notes on D-, E-, F-, I-, and
O-conversion.

1. Specifications for successive fields are separ-
ated by commas and/or slashes. (See the section
"Multiple-Record Formats.")

2. No format specification should be given that
provides for more characters than permitted for a
relevant input/output record. Thus, a format for a
BCD record to be printed off-line should not provide
for more characters (including blanks) than the
capabilities of the printer.

3. Information to be transmitted with O-conver-
sion may be real or integer names; information to
be transmitted with E- and F-conversion must have
real names; information to be transmitted with I-
conversion must have integer names; information
to be transmitted with D-conversion must have
double-precision names.

4. The field width w, for D-, E-, and F-conver-
sion, must include a space for the decimal point
and a space for the sign. Thus, for D- and E-con-
version, w = d+7, and for F-conversion, w = d+3.

5. The exponent, which may be used with D- and
E-conversion, is the power of 10 to which the number
must be raised to obtain its true value. The exponent
is written with an E (for E-conversion) or D (for
D-conversion) followed by a minus sign if the expo-
nent is negative, or a plus sign or a blank if the
exponent is positive, and then followed by two num-
bers that are the exponent. For example, the number
. 002 is equivalent to the number .2E-02.

6. TFor input under D-conversion, up to 17 deci-
mal digits are converted and the result is stored so
that the most significant part and the least significant
part are in adjacent core storage locations.

For output under D-conversion, the two core stor-
age words representing the double-precision quantity
are considered one piece of data and converted as

such.
E- or F-conversion may be used for floating point

numbers whose absolute value is less than 227, E-
conversion must be used for numbers whose absolute
value is greater than or equal to 227,

7. If a number converted by I-conversion requires
more spaces than are allowed by the field width w,
the excess on the high-order side is lost. If the
number requires fewer than w spaces, the leftmost
spaces are filled with blanks. If the number is

16

negative, the space preceding the leftmost digit will con-
tain aminus sign if sufficient spaces have been reserved.

Note: If the optional 7094 library conversion routine
is used, output will differ from the standard described
above.

If an output number that is converted by D-, E-, F-,
or I-conversion requires more spaces than are allowed
by the field width w, the number is disregarded and the

field is filled with asterisks. Ifthe number requires fewer

than w spaces, the leftmost spaces are filled with blanks.,

Complex Number Fields

Since a complex quantity consists of two separate and
independent real numbers, a complex number is trans-
mitted either by two successive real number specifica-
tions or by one real number specification that is
repeated.

Figure 5 is an example of a FORMAT statement
that transmits an array consisting of six complex
numbers.

FORMAT (2E10. 2, ES.3,1PE9.4, E10.2, F8.4,3(EL0.2,F8.2))

Figure 5

Alphameric Fields

FORTRAN provides two ways by which alphameric
information may be transmitted; both specifications
result in storing the alphameric information intern-
ally in BCD.

1. The specification Aw causes w characters to
be read into, or written from, a variable or array
name.

2. The specification nH introduces alphameric
information into a FORMAT statement.

The basic difference between A- and H-conversion
is that information handled by A-conversion is given
a variable name or array name that can be referred
to for processing and modification, whereas, infor-
mation handled by H-conversion is not given a name
and may not be referred to or manipulated in storage
in any way.

A-Conversion

The variable name to be converted by A-conversion
must conform to the normal rules for naming FOR-
TRAN variables; it may be real or integer.

1. On input, nAw will be interpreted to mean
that the next n successive fields of w characters
each are to be stored as BCD information. If w is
greater than 6, only the 6 rightmost characters will
be significant. If w is less than 6, the characters
will be left-adjusted, and the word filled out with
blanks.

2. On output, nAw will be interpreted to mean
that the next n successive fields of w characters
each are to be the result of transmission from stor-
age without conversion, If w exceeds 6, only 6
characters of output will be transmitted, preceded
by w-6 blanks, If w is less than 6, the w leftmost
characters of the word will be transmitted.

H-Conversion

The specification nH is followed in the FORMAT

statement by n alphameric characters. For example:

31HbTHISbISbALPHAMERIChINFORMATION
Note that blanks are considered alphameric char-
acters and must be included as part of the count n.
The effect of nH depends on whether it is used with
input or output.

1. On input, n characters are extracted from
the input record and replace the n characters in-
cluded with the source program FORMAT specifica-
tion.

2. On output, the n characters following the
specification, or the characters that replaced them,
are written as part of the output record.

Figure 6 is an example of A- and H-conversion
in a FORMAT statement.

The statement FORMAT (4HbXY=, F8. 3, A8) might
produce the following lines, where b indicates a
blank character:

XY = b-93.210bbbbbbbb

XY =9999.999bbOVFLOW
XY = bb28.768bbbbbbbb

Figure 6

Figure 6 assumes that there are steps in the
source program that read the data OVFLOW, store
this data in the word to be printed in the format A8
when overflow occurs, and store six blanks in the
word when overflow does not occur.

Logical Fields

Logical variables may be read or written by means
of the specification Lw, where L represents the
logical type of conversion and w is an integer con-
stant that represents the data field width.
1. On input, a value of either true or false will
"be stored if the first nonblank character in the field
of w characters is a T or an F, respectively. If all
the w characters are blank, a value of false will be
stored.
2. On output, a value of true or false in storage
will cause w minus 1 blanks, followed by a T or an
I, respectively, to be written out.

Blank Fields -- X-Conversion

The specification nX introduces n blank characters
into an input/output record where 0 < n < 132,

1. On input, nX causes n characters in the input
record to be skipped, regardless of what they are.

2. On output, nX causes n blanks to be introduced
into the output record.

Repetition of Field Format

It may be desired to print or read n successive fields
in the same format within one record. This may be
specified by giving n, an unsigned integer, before
D,E,F,I,L,O, or A. Thus, the field specification
3E12,4 is the same as writing E12.4, E12.4, E12.4.

Repetition of Groups

A limited parenthetical expression is permitted to
enable repetition of data fields according to certain
format specifications within a longer FORMAT
statement. Thus, FORMAT (2(F10.6,E10.2),

I4) is equivalent to FORMAT (F10.6,E10.2,F10.6,
E10.2,14). (See the section "Multiple-Record For-
mats.'") Two levels of parentheses, in addition to the
parentheses required by the FORMAT statement, are
permitted. The second level of parentheses facilitates
the transmission of complex quantities.

Scale Factors

To permit more general use of D-, E-, and F-con-
version, a scale factor followed by the letter P may
precede the specification. The magnitude of the
scale factor must be between -8 and +8, inclusive.
The scale factor is defined for input as follows:
10 -scale factory external quantity = internal
quantity
The scale factor is defined for output as follows:
external quantity = internal quantity
x 10 scale factor
For input, scale factors have effect only on F-
conversion. For example, if input data is in the
form xx.xxxx and it is desired to use it internally in
the form .xxxxxx, then the FORMAT specification
to effect this change is 2PF7.4. For output, scale
factors may be used with D-, E~-, and F-conversion.
For example, the statement FORMAT (I12,3F11.3)
might give the following printed line:
27bbbb-93. 209bbbbb-0. 008bbbbbb0. 554
But the statement FORMAT (I2,1P3F11,3) used with
the same data would give the following line:
27bbb-932. 094 bbbbh-0. 076bbbbbb5. 536.
Whereas, the statement FORMAT (I2, -1P3F11.3)
would give the following line:
2Thbbbb-9. 321bbbbb-0. 001bbbbbb0. 055

Input/Output Statements 17

A positive scale factor used for output with D- and
E-conversion increases the number and decreases the
exponent. Thus, with the same data, FORMAT (12,
1P3E12,4) would produce the following line:

27b-9.3209Eb01b-7.5804E-03bb5. 5536 E~-01

The scale factor is assumed to be zero if no other
value has been given. However, once a value has
been given, it will hold for all D-, E-, and F-con-
versions following the scale factor within the same
FORMAT statement. This applies to both single-
record formats and multiple-record formats. (See
the next section.) Once the scale factor has been
given, a subsequent scale factor of zero in the same
FORMAT statement must be specified by 0P. For F-
type conversion,output may not include numbers whose
absolute value is greater than or equal to 227 after
scaling. Scale factors have no effect on I- and O-
conversion,

Multiple-Record Formats

To deal with a block of more than one line of print,

a FORMAT specification may have several different
one-line formats separated by a slash (/) to indicate
the beginning of a new blank line, Thus, FORMAT
(3F9.2,2F10.4/8E14. 5) would specify a multiline
block of print in which lines 1, 3, 5, ... have format
(3F9.2,2F10.4), and lines 2, 4, 6, ... have format
(8E14.5).

If a multiple-line format is desired in which the
first two lines are to be printed according to a special
format and all remaining lines according to another
format, the last line~specification should be enclosed
in a second pair of parentheses; e.g., FORMAT
(12,3E12.4/2F10.3,3F9.4/ (10F12.4)).If data items
remain to be transmitted after the format specifica-
tion has been completely "used,' the format repeats
from the last previous parenthesis, which is a zero
or a first level parenthesis. For example, consider
the FORMAT statement:

FORMAT (3E10.3, (12,2 (F12.4, F10.3)), D28.17)

0 1 2 21 0

The parentheses labeled 0 are 0 level parentheses;
those labeled 1 are first level parentheses; and, those
labeled 2 are second level parentheses. If more
items in the list are to be transmitted after the for-
mat statement has been completely used, the FORMAT
repeats from the last first-level left parenthesis;i.e.,
the parenthesis preceding I2.

As these examples show, both the slash and the

final right parenthesis of the FORMAT statement
indicate a termination of a record.

18

Blank lines may be introduced into a multiline
FTORMAT statement by listing consecutive slashes.
When n + 1 consecutive slashes appear at the end of
the FORMAT, they are treated as follows: for input,
n + 1 records are skipped; for output, n blank lines
are written. When n. + 1 consecutive slashes appear
in the middle of the FORMAT, n records will be
skipped for both input and output.

Carriage Control

The WRITE (i,n) list statement prepares a BCD tape
that can be used to obtain off-line printed output.

The PRINT n, list statement prints on-line during
execution. The off-line printer may be set manually
to operate in one of three modes: single space,
double space, or program control. Under program
control, the first character of each BCD record,

the control character, controls spacing of the printer;
this first character is not printed. Control characters
that produce standard effects, both on-line and off-
line, are:

Character Effect Off -line On-line:

Blank Single space
0 Double space
1 Eject

Before printing After printing

Before printing After printing

Before printing Before printing
followed by a
single space

after printing

Program control is usually obtained by beginning
a FORMAT specification, for a BCD record, with 1H
followed by the desired control character.

FORMAT Statements Read In at Object Time

FORTRAN accepts a variable FORMAT address. This
permits specifying a FORMAT for an input/output
list at object time.

DIMENSION FMT (12)

1 FORMAT (12A6)
READ (5, 1) (FMT(I), 1=, 12)
READ (5, FMT) A, B, (C(I), I=1,5)

Figure 7

In Figure 7, A,B, and the array C are converted
and stored according to the FORMAT specifications
read into the array FMT at object time.

1. The name of the variable FORMAT specifica-
tion must appear in a statement with dimension in-
formation, even if the array size is only 1.

2, The format read in at object time must take
the same form as a source program FORMAT state-
ment, except that the word FORMAT is omitted; i.e.,
the variable format begins with a left parenthesis.

Data Input Referring to a FORMAT Statement

Data input to the object program is punched into
cards according to the following specifications:

1. The data must correspond in order, type,
and field with the field specifications in the FORMAT
statement. Punching begins in card column 1.

2. Plus signs may be omitted or indicated by a +.
Minus signs are indicated by an 11-punch.

3. A blank in a numeric field is treated as a zero.
A numeric field containing all blanks is converted to
minus zero.

4. Numbers for E- and F-conversion may con-
tain any number of digits, but only the high-order 8
digits of precision will be retained. For D-conver-
sion, the high-order 16 digits of precision will be
retained. In both cases, the number is rounded to
8 or 16 digits of accuracy, as applicable.

5. Forinput, numeric data must be situated at the
extreme right of its field (right justified).

To permit economy in punching, certain relaxa-
tions in input data format are permitted.

1. Numbers for D- and E-conversionneednothave
four columns devoted to the exponent field. The start of
the exponent field must be marked byaD oran E or, if
that is omitted, by a plus or minus sign (not a blank).
Thus, E2, E+2, +2, +02, and D+02 are all permissible
exponent fields.

2. Numbers for D-, E-, and F-conversion need
not have their decimal point punched; the format
specification will supply it. For example, the num-
ber -09321+2 with the specification E12, 4 will be
treated as though the decimal point had been punched
between the 0 and the 9. If the decimal point is
punched in the card, its position overrides the posi-
tion indicated in the FORMAT specification.

NAMELIST STATEMENT

The NAMELIST statement and modified forms of the
READ and WRITE statements provide for reading,
writing, and converting data without the use of an
input/output list in the input/output statement and
without a reference to a FORMAT statement.

General Form

NAMELIST /X/A,B,...C/Y/D,E,...,F/Z/G,H,...,1I

where:
X,Y,Z,...are NAMELIST names, and
A,B,C,D,...are variable or array names.

Examples.
DIMENSION A(10), I(5,5), L(10)
NAME LIST /NAM1/A,B,1,J,L/NAM2/A,C,J,K

In the preceding examples, the arrays A, I, and L
and the variables B and J belong to the NAMELIST
name, NAM1, and the array A and the variables C,d,
and K belong to the NAMELIST name, NAM2.

Each list that is mentioned in the NAMELIST
statement is given a NAMELIST name. Only the
NAMELIST name is needed in an input/output state-
ment to refer to that list thereafter in the program.
The following rules apply to assigning and using a
NAMELIST name:

1. A NAMELIST name consists of one to six
alphameric characters; the first character must be
alphabetic.

2. A NAMELIST name is enclosed in slashes.
The field of entries belonging to a NAMELIST name
ends either with a new NAMELIST name enclosed in
slashes or with the end of the NAMELIST statement.

3. A variable name or any array name may be-
long to one or more NAME LIST names.

4. A NAMELIST name must not be the same as
any other name in the program.

5. A NAMELIST name may be defined only once
by its appearance in a NAMELIST statement. After
it has been defined in the NAMELIST statement, the
NAMELIST name may appear only in READ or WRITE
statements thereafter in the program.

6. A NAMELIST statement defining a NAMELIST
name must precede any appearance of the name in
the program.

7. A dummy argument which appears in a
FUNCTION, SUBROUTINE, or ENTRY statement can-
not be used as a variable in a NAMELIST statement.

8. If a NAMELIST statement contains a dimen-
sioned variable, the statement that contains the
dimension information defining the variable must
precede the NAMELIST statement.

Data Input Referring to a NAMELIST Statement

When a READ statement refers to a NAME LIST
name, the designated input device is prepared and
input of data is begun. The first character on all
input data records is always ignored. The first input
data record is searched for a $ as the second char-
acter, immediately followed by the NAMELIST name,
immediately followed by one or more blank char-
acters. If the search fails, additional records are
examined consecutively until there is a successful
match. When a successful match is made of the
NAMELIST name on a data record and the NAME LIST
name referred to in a READ statement, data items
are converted and placed in storage.

Any combination of three types of data items,
described in the following text, may be usedinadata
record. The data items must be separated by

Input/Output Statements 19

commas; however, use of a comma following the last
item is optional. If more than one record is needed
for input data, the last item of each record, except
the last, must be a constant followed by a comma.
The end of a group of data is signaled by a $ either
in the same data record as the NAMELIST name or
anywhere in any succeeding records except in the
first character position.

Serialization should not be used on data cards
since all items on a data card may be scanned.

The form that data items may take is:

1. Variable name = constant
where variable name may be an array element name
or a simple variable name. Subscripts must be integer
constants.

2, Array name = set of constants (separated by
commas)
where k*constant may be included to represent k
constants (k must be an unsigned interger). The
number of constants must be equal to the number of
elements in the array.

3. Subscripted variable = set of constants (sep-
arated by commas)
where k*constant may be included to represent k
constants (k must be an unsigned integer). A data
item of this form results in the set of constants be-
ing placed in consecutive array elements, starting
with the element designated by the subscripted
variable. The number of constants given cannot ex-
ceed the number of elements in the array that are
included between the given element and the last ele-
ment in the array, inclusive.

Constants used in the data items may take any of
the following forms:

a. integers

b. real numbers

c. double-precision numbers

d. complex numbers, which must be written

in the usual form, (Cl, C2), where C1
and C2 are real numbers

e. logical constants, which must be written

as T or ,TRUE., and F or , FALSE.

Logical and complex constants may be associated
only with logical and complex variables, respectively.
The other types of constants may be associated with
integer, real, or double-precision variables and are
converted in accordance with the type of variable.
Blanks must not be embedded in a constant or repeat
constant field, but may be used freely elsewhere
within a data record.

Any selected set of variable or array names be-
longing to the NAMELIST name that is referred to
by the READ statement may be used as specified in
the preceding description of data items. Names that
are made equivalent to these names may not be used
unless they also belong to the NAMELIST name.

Example:
Col
2
First Data Card $NAM1 I(2,3)=5,.J=4.2, B4,
Second Data Card A(3) =7, 6.4, L.=2,3,8*%4,3$

If this data is input to be used with the NAMELIST
statement previously illustrated and with a READ
statement, the following actions take place. The in-
put unit designated in the READ statement is pre-
pared and the first record is read. The record is
searched for a $ in column 2, immediately followed
by the NAMELIST name, NAML. Since the search is
successful, data items are converted and placed in
core storage.

The integer constant 5 is placed in I(2,3), the
real constant 4.2 is converted to an integer and
placed in J, and the integer constant 4 is converted
to real and placed in B. Since no data items remain
in the record, the next input record is read. The
integer constant 7 is converted to real and placed in
A(3), and the real constant 6.4 is placed in the next
consecutive location of the array,A(4). Since L is
an array name not followed by a subscript, the entire
array is filled with the succeeding constants. There-
fore, the integer constants 2 and 3 are placed in L(1)
and L(2), respectively, and the real constant 4.3 is
converted to an integer and placed in L(3), L(4),

..., L(0). The $ signals termination of the input
for the READ operation.

THE GENERAL INPUT/OUTPUT STATEMENTS
Input

The READ statement designates input. The following
table gives the forms of the READ statement, where
i, an unsigned interger constant or an unsubscripted
integer variable, is a reference to an input device,
n is a FORMAT statement number, and x is a
NAMELIST name.

Type of Input General Form

Cards on-line READ n, list

BCD record READ (i, n) list

Binary record READ (i) list

BCD records READ (i, x)
Examples:

READ 10, (A1), I=1,5)

READ (5,10) A, B, (D(J),J=1,10)

READ (N,10) K, DC(J)

READ (3) (A(J), J=1,10)

READ (N) (A(J), J=1,10)

READ (5,NAM1)

1. The READ n, list statement causes cards to

be read from the card reader.

2. The READ (i,n) list statement causes BCD
information to be read from symbolic input device i
(except the card reader).

3. The READ (i) list statement causes binary
information to be read from symbolic input device i
(except the card reader).

4. The READ (i, x) statement causes BCD in-
formation relating to variables and arrays associ-
ated with the NAMELIST name x to be read from
symbolic input device i (except the card reader).

5. Under the first two forms of the READ state-
ment, successive records are read until the entire
input/output list has been satisfied; i.e., all data
items have been read, converted, and stored in the
locations specified by the input/output list.

Binary conversion of input numbers is identical,
whether the numhers are compiled into the program,
appear in a DATA statement, or are read in at ob-
ject time.

TFor information on the binary record format
used with the READ (i) list statement, see Appendix
L.

Output

The PRINT and PUNCH statements designate on-line
printing and punching of data and require both a
reference to a FORMAT statement and an output list
as part of the statement. All other output is desig-
nated by a WRITE statement, which can refer to
either a FORMAT statement or a NAMELIST state-
ment.

The following table gives the forms of the output
statement, where i, an unsigned integer constant or
an integer variable, is a reference to an output de-
vice, n is a FORMAT statement number, and x is a
NAMELIST name.

Type of Output General Form

Cards on-line PUNCH n, list
Print on-line PRINT n, list
BCD Record WRITE (i, n) list
BCD Record WRITE (i, x)

Binary Record WRITE (i) list

Examples:

PUNCH 20, (A(J), J=1,6)

PRINT 2, (A(J), J=1,6)

WRITE (6,10) A, B, (C(J),J=1,10)

WRITE (N, 11)K, D(J)

WRITE (2) (A(J), J=1, 10)

WRITE (M) A,B,C

WRITE (6, NAM1)

1. The PUNCH n, list statement causes alpha-

meric cards to be punched on-line.

2. The PRINT n, list statement causes data to
be .output on the on-line printer.

3. The WRITE (i,n) list statement causes BCD
information to be written on symbolic output device i
according to the format specified in statement n.

4. The WRITE (i, x) statement causes all variable
and array names (as well as their values) that belong
to NAMELIST name x to be written on symbolic out-
put device i.

5. The WRITE (i) list statement causes binary
inbrmation to be written on symbolic output device i.

The PUNCH, PRINT, and WRITE (i,n) statements
cause successive records to be written in accordance
with the FORMAT statement until the list has been
satisfied. The WRITE (i) list statement causes the
writing of one logical record consisting of all the
words specified in the list.

When a WRITE statement refers to a NAMELIST
name, the values and names of all variables and ar-
rays belonging to the NAME LIST name are written,
each according to its type. A complete array is
written out by columns. The output data is written
such that:

1. The fields for the data are large enough to
contain all the significant digits.

2. The output can be read by an input statement
referring to the NAMELIST name.

THE MANIPULATIVE INPUT/OUTPUT STATE-
MENTS

The statements END FILE, REWIND, and BACK-~
SPACE manipulate input/output devices. In the fol-
lowing table, i, an unsigned integer constant or
integer variable, is a reference to a symbolic input/
output device.

General Form

END FILE i
REWIND i
BACKSPACE i

Examples:
END FILE 3
END FILE N
REWIND 3
REWIND N
BACKSPACE 3
1. The END FILE i statement causes an end-of-
file mark to be written on symbolic tape i.
2. The REWIND i statement causes symbolic
tape unit i to be rewound.
3. A request to write an end of file or rewind the
following system files will be ignored: SYSIN1,

Input/Qutput Statements 21

SYSOU1, and SYSPP1, corresponding in the standard was specified or assumed on the $IBJOB card (see

FORTRAN I/0 package to symbolic units 5,6, and 7. appendix G).

4. The BACKSPACE i statement causes tape i to
be backspaced one physical record if i refers to an SYMBOLIC INPUT/OUTPUT DESIGNATION
input/output device in the BCD mode, or it causes
tape i to be backspaced one logical record if i refers Input/output devices are always referred to sym-
to an input/output device in the binary mode. If the bolically in FORTRAN input/output statements.
BACKSPACE statement is preceded by an ENDFILE 1. Object program input/output operates through
statement, the end-of-file mark is ignored and ex- either the standard FORTRAN input/output package
ecution of the BACKSPACE proceeds as above, How- (FIOCS) or the FORTRAN IV Alternate Input/Output

ever, if two consecutive ENDFILE statements precede Package (ALTIO). The correspondence between the
the BACKSPACE, execution will differ depending upon symbolic unit reference and the actual physical unit
which IOCS package was used. These can include the is established in the initialization of IOCS.

standard FORTRAN input/output package (FIOCS) or 2. Both FIOCS and ALTIO allow for symbolic
the FORTRAN IV alternate input/output package tape units 1 through 8. The normal unit designation

,) . n
(ALTIO). (See "Symbolic Input/Qutput Des'lg,'rnatlon for BCD input statements is 5; for BCD output
below.) Under FIOCS the tape will be positioned statements it is 6.

immediately before the first end-of-file mark andnot The symbolic unit references may be changed
before the record preceding it. Under ALTIO the by each installation in accordance with its own

tape will always be positioned before the last physical needs. See the publications IBM 7090/7094 IBSYS
record (for BCD files) or logical record (for binary Operating System, System Monitor (IBSYS), Form

files) of the preceding data files, regardless of the C28-6248, and IBM 7090,/7094 IBSYS Operating
number of consecutive ENDFILE statements that System, IBJOB Processor, Form C28- 6389,

precede the BACKSPACE statement. A request to
backspace SYSOU1 corresponding in the standard

FORTRAN input/output library to symbolic unit 6 will Mode
be ignored.

5. If a REWIND statement is preceded by either FORTRAN Tape Units | FIOCS ALTIO Function
a BACKSPACE or an ENDFILE statement, the tape 1 Binary Mixed Input or Output ,
redundancy history message will always treat the 5 Binary Mixed Input or Output
tape as an input file (see the publication IBM 7090/7094 3 Binary Mixed Input or Output
IBSYS Operating System, Version 13: Input/Output 4 Binary Mixed Input or Output
Control System, Form C28-6345). The tape 5 BCD Mixed Input
redundancy history message is printed for a rewound 6 BCD Mixed Output
tape that contained either retries while reading or 7 Binary Mixed Output
erases while writing, when neither FIOCS nor ALTIO 8 BCD — Mixed Input or Output

22

CHAPTER 5. SUBROUTINES, FUNCTIONS, AND SUBPROGRAM STATEMENTS

There are four classes of subroutines in FORTRAN:
arithmetic statement functions, built-in functions,
FUNCTION subprograms, and SUBROUTINE sub-
programs. The major differences among the four
classes of subroutines are as follows:

1. The first three classes may be grouped as
functions; they differ from the SUBROUTINE subpro-
gram in the following respects:

a. The functions are always single-valued
(that is, they return only a single result);
the SUBROUTINE subprogram may return
more than one value.

b. A function is referred to by an arithmetic
expression containing its name; a SUBROU-
TINE subprogram is referred to by a CALL
statement.,

2. The built-in function is an open subroutine;
i.e., a subroutine that is incorporated into the object
program each time it is referred to in the source
program, The three other FORTRAN subroutines
are closed; i.e., they appear only once in the object
program.

NAMING SUBROUTINES

In the following text, the terms calling program and
called program are used. The calling program is the
program in which a subroutine is referred to or
called. The called program is the subroutine that is
referred to or called by the calling program.

All four classes of subroutines are named in the
same manner as a FORTRAN variable (see the sec-
tion "Variables').

1. A subroutine name consists of one to six alpha-
meric characters, the first of which must be alpha-
betic.

2. The type of the function, which determines the
type of the result, may be defined as follows:

a. The type of an arithmetic statement func-
tion may be indicated by the name (if it is
real or integer) of the function or by plac-
ing the name in a Type statement.

b. The type of a FUNCTION subprogram may
be indicated by the name of the function (if
it is real or integer) or by writing the type
(REAL, INTEGER, COMPLEX, DOUBLE
PRECISION, LOGICAL) preceding the word
FUNCTION. In the latter case, the type,
implied by name is overridden. The type
of areference to a FUNCTION subprogram
in the Subroutine Library (the mathematics
subroutines)is automatically defined as shown
in column 6 of Figure 9. Therefore, the
subprogram need not be typed in the call-
ing program.

c. The type of a built-in function is indicated
within the FORTRAN Processor and need
not appear in a Typc statement (see column
6 of Figure 8).

3. The name of a SUBROUTINE subprogram has
no type and should not be defined, since the type of
results returned is dependent only on the type of the
variable names in the dummy argument list.

DEFINING SUBROUTINES

The method of defining each class of subroutine is
discussed below,

Arithmetic Statement Functions

Arithmetic statement functions are defined by a single
arithmetic statement and apply only to the source
program containing the definition.,

General Form

a=b

where:

1. a is a function name followed by parentheses enclosing
its arguments, which must be distinct, nonsubscripted
variables, separated by commas.

2. b is an expression that does not involve subscripted
variables. Any arithmetic statement function appearing

in b must have been previously defined.

Examples:
FIRST (X) = A*X+B
JOB (X, B) = C*X+B
THIRD F(D) = FIRST (E)/D
MAX (A, 1) = A**]-B - C
LOGFCT (A, C) = A**2,GE. C/D

1. As many as desired of the variables appearing
in b may be stated in a as the arguments of the func-
tion. Since the arguments are dummy variables,
their names, which indicate the type of the variable,
may be the same as names appearing elsewhere in
the program of the same type.

2. Those variables included in b that are not
stated as arguments are the parameters of the func-
tion. They are ordinary variables.

3. All arithmetic statement function definitions
must precede the first executable statement of the
source program,

4, The type of any arithmetic statement function
name or argument that differs from its implicit type
must be defined preceding its use in the arithmetic
statement function definition.

Subroutines, Functions and Subprogram Statements 23

Number of Type of

Function Definition Arguments Name Argument Function
Absolute value |Argi 1 ABS Real Real
IABS Integer Integer
Truncation Sign of Arg 1 AINT Real Real
times largest INT Real Integer
integer £ |Arg |
Remaindering Argy (mod Argp) 2 AMOD Real Real
(see note below) MOD Integer Integer
Choosing Max(Argy, 22 AMAXO Integer Real
largest value Argpyees) AMAX1 Real Real
MAXO Integer Integer
MAX1 Real Integer
Choosing Min(Argg, 22 AMINO Integer Real
smallest value Argpsess) AMIN1 Real Real
MINO Integer Integer
MIN1 Real Integer
Float Conversion from 1 FLOAT Integer Real
integer to real
Fix Convfmrealtoin- 1 IFIX Real Integer
teger with truncation
Transfer Sign of Argy 2 SIGN Real Real
of sign times] Argq | ISIGN Integer Integer
Positive Argy - Min 2 DIM Real Real
difference (Argy, Argp) IDIM Integer Integer
Obtain most 1 SNGL Double. Real
significant part
of double-
precision
argument
Obtain real 1 REAL Complex Real
part of complex
argument
Obtain 1 AIMAG Complex Real

imaginary part
of complex

argument
Absolute value |Axg| 1 DABS Double Double
Truncation Sign of Arg 1 IDINT Double Integer
times largest
integer < [Axg|
Choosing Max (Arg;;, >2 DMAX1 Double Double
largest Argpsees)
value
Choosing Min (Argy, 22 DMIN1 Double Double
smallest Argpyese)
value
Transfer Sign of Arg, 2 DSIGN Double Double
of sign times | Argy |
Express single- D=(Arg, 0) 1 DBLE Real Double
precision
argument
in double-

_precision form
Express two real C=Argy+iArgp 2 CMPLX Real Complex
arguments in

complex form

Obtain conjugate For Arg=X+Y, 1 CONJG Complex Complex
of a complex C=X-iY
argument

Note: The function MOD (Argy, Arg,) is defined as Argy - [Argl/Argz] Arg,, where [Argl/Argz] is the
truncated value of that quotient.

Figure 8. Built-In Functions

24

Built-In Functions

Built-in functions are pre-defined, open subroutines
that exist within the FORTRAN Processor. A list of
all the available built-in functions is given in Figure

8. Appendix H lists the machine-dependent built-in

functions.

FUNCTION Subprogram

FUNCTION subprograms are defined by a special
FORTRAN source language program.

General Form

FUNCTION name (aj;dp;ess,dp)
REAL FUNCTION name (a1, ap++,2ap)
INTEGER FUNCTION name (a1,a2,¢00,ap)

DOUBLE PRECISION FUNCTION name (a1, 2p,++s,2y)
COMPLEX FUNCTION name (21,8550, 4y)

LOGICAL FUNCTION name (ay,85,+++,3y)

where:

1. name is the symbolic name of a single-valued
function,

2. the arguments aq, 85,000, 8y, of which there must be at
least one, are nonsubscripted variable names or the
dummy name of a SUBROUTINE or FUNCTION subprogram,
and

3, the type of the function may be explicitly stated preceding
the word FUNCTION.

Examples:
FUNCTION ARCSIN(RADIAN)
REAL FUNCTION ROOT (A, B, C)
INTEGER FUNCTION CONST(ING, SG)
DOUBLE PRECISION FUNCTION DBLPRE(R, S, T)
COMPLEX FUNCTION CCOT(ABI)
LOGICAL FUNCTION IFTRU (D, E, F)

1. The FUNCTION statement must be the first
statement of a FUNCTION subprogram.

2. The name of the function must appear at least
once as a variable on the left side of an arithmetic
statement or in an input statement. This name can-
not be used in a NAMELIST statement.

For example:
FUNCTION CALC (A, B)

CALC=Z+B

RETURN

By this means the output value of the function is re-
turned to the calling program.

3. The arguments may be considered dummy
variable names that are replaced at the time of exe-
cution by the actual arguments supplied in the func-
tion reference in the calling program. The actual
arguments must correspond in number, order, and
type with the dummy arguments.

4, When a dummy argument is an array name, a
statement with dimension information must appear in
the FUNCTION subprogram; also, the corresponding
actual argument must be a dimensioned array name.

5. None of the dummy arguments may appear in
an EQUIVALENCE statement in the FUNCTION sub-
program,

6. The FUNCTION subprogram must be.logically
terminated by a RETURN statement (see the section
"Normal Returns from Subprograms').

7. The FUNCTION subprogram may contain any
FORTRAN statements except SUBROUTINE or an-
other FUNCTION statement.

8. The actual arguments of a FUNCTION sub-
program may be any of the following:

a. Any type of constant.

b. Any type of subscripted or nonsubscripted
variable.

c. An arithmetic or a logical expression,

d. The name of a FUNCTION or SUBROUTINE
subprogram.

9. A FUNCTION subprogram is referred to by
using its name as an operand in an arithmetic ex-
pression.

10. If the type of a FUNCTION subprogram is
other than its implicit type, the type must be de-
fined in the calling program as well as in the called
FUNCTION subprogram.

11. If the name of a FUNCTION is the same as
one of the built-in functions listed in Figures 8 and
16, it must be explicitly typed as EXTERNAL in the
calling program in order to prevent use of the built-
in function.

Those FUNCTION subprograms tliat are supplied
with FORTRAN are given in Figure 9.

SUBROUTINE Subprogram

SUBROUTINE subprograms are defined by a special
FORTRAN source language program.

General Form

SUBROUTINE name (a4, ap, ..
where:
1. name is the symbolic name of a subprogram; and

. an) or SUBROUTINE name

2. each argument, a, if any, is a nonsubscripted variable
name or the dummy name of a SUBROUTINE or FUNCTION
subprogram.

Subroutines, Functions and Subprogram Statements 25

3. The arguments may be considered dummy
variable names that are replaced at the time of exe-
cution by the actual arguments supplied in the CALL
statement, which refers to the SUBROUTINE sub-
program. The actual arguments must correspond
in number, order, and type with the dummy argu-
ments.

4. When a dummy argument is an array name, a
statement containing dimension information must
appear in the SUBROUTINE subprogram; also, the
corresponding actual argument in the CALL state-
ment be a dimensioned array name.

5. None of the dummy arguments may appear in
an EQUIVALENCE statement in the SUBROUTINE
subprogram.

6. The SUBROUTINE subprogram must be logi-
cally terminated by a RETURN statement.

7. The SUBROUTINE subprogram may contain
any FORTRAN statements except FUNCTION, an-
other SUBROUTINE statement, or BLOCK DATA.

Normal Returns from Subprograms

The normal exit from any subprogram is the RETURN
statement, which returns control to the calling pro-
gram. The RETURN statement is the logical end of
the program; there may be any number of RETURN
statements in the program.

General Form

The following text describes the form of the
FORTRAN statements that is required to return
from the subroutine to a statement other than the
next executable statement following the CALL.

The general form of the CALL statement in the
calling program is:

General Form

CALL subr (ay, dpy8gyeets an)

where:

1. subr is the name of the SUBROUTINE subprogram beingcalled,
and e

2. g is:a dummy? argument of the form described in the section
"CALL Statement, " or is of the form:
$n

where n is a statement number $ is the character $.

The general form of the SUBROUTINE statement
in the called program is:

General Form

SUBROUTINE subr (ay, ap, ag, .-
where:
1. subr is the name of the subprogram, and
2. a; is a dummy argument of the form described in the section
"SUBROUTINE Subprogram, " or is of the form:
sk

»ag)

where * is the character asterisk (¥) and denotes a nonstandard

return.

RETURN

Nonstandard Returns from SUBROUTINE Subprograms

The normal sequence of execution following the
RETURN statement of a SUBROUTINE subprogram
is to the next executable statement following the
CALL statement in the calling program. It is also
possible to return to any numbered executable state-
ment in the calling program by using a special re-
turn from the called subprogram. This return may
not violate the transfer rules for DO loops.

26

The general form of the RETURN statement in the
called program is:

General Form

RETURN i

where:

i is an integer constant or variable which denotes the

ith nonstandard return in the argument list, reading from
left to right.

Example:

Called Program

Calling Program
. SUBROUTINE SUB(X, Y, Z, *, *)

10 CALL SUB (A, B, C, $30, $40) .
20 --- 100 IF (R) 200, 300, 400
200 RETURN
300 RETURN 1
. 400 RETURN 2
30 --- END

40 -
END

In the preceding example, execution of statement
10 in the calling program causes entry into subpro-
gram SUB. If statement 100 is executed, the return
to the calling program will be to statement 20, 30,
or 40, if R is less than, equal to, or greater than
zero, respectively.

Nonstandard returns may be best understood by
considering that a CALL statement that uses the non-
standard return is equivalent to a CALL and a com-
puted GO TO statement in sequence. For example,

CALL NAME (P, $20,Q, $35, R, $22)
is equivalent to

CALL NAME (P,Q, R)

GO TO (20, 35,22),1
where I is set to the value of the integer in the
RETURN statement executed in the called subpro-
gram. If the RETURN is blank or zero, a normal
(rather than nonstandard) return is made to the state-
ment immediately following the GO TO,

Similarly, the arguments in the associated SUB-
ROUTINE statement correspond to the arguments in
the CALL statement as follows:

SUBROUTINE NAME (S, *, T, *, U, %)

Multiple Entry Points Into a Subprogram

The normal entry into a SUBROUTINE subprogram
from the calling program is by a CALL statement
that refers to subprogram name, The normal entry
into a FUNCTION subprogram is made by a function
reference in an arithmetic expression., Entry is
made at the first executable statement following the
SUBROUTINE or FUNCTION statement.,

It is also possible to enter a subprogram by a
CALL statement or a function reference that refers
to an ENTRY statement in the subprogram. Entry is

made at the first executable statement following the
ENTRY statement.

ENTRY statements are nonexecutable and, there-
fore, do not affect control sequencing during normal
execution of a subprogram. The order, type, and
number of arguments need not agree between the
SUBROUTINE or FUNCTION statement and the
ENTRY statements, nor do the ENTRY statements
have to agree among themselves in these respects.
Each CALL or function reference, however, must
agree in order, type, and number with the SUBROU-
TINE, FUNCTION, or ENTRY statement that it re-
fers to. No subprogram may refer to itself directly
or through any of its entry points, nor may it refer
to any other subprogram whose RETURN statement
has not been satisfied.

The general form of the ENTRY statement in the
called subprogram is:

General Form

ENTRY name (bq, by, eeaby)

where:

1. name is the symbolic name of an entry point, and

2. each bjis a dummy argument corresponding to an actual
argument in a CALL statement or in a function reference.

Example:

Calling Program Called Program

SUBROUTINE SUBL(U, V, W, X, Y, Z)

1 CALL SUBL (A, B,C,D,E,F)
. 10U=V

2 CALL SUB2 (G, H, P) .
ENTRY SUB2 (T, U, V)

GO TO 10
3 CALL .SUB3
ENTRY SU;33
END
EI:ID

In the preceding example, the execution of state-
ment 1 causes entry into SUBL, starting with the
first executable statement of the subroutine. Execu-
tion of statements 2 and 3 also cause entry into the
called program, starting with the first executable

Subroutines, Functions and Subprogram Statements 27

statement following the ENTRY SUB2 (T, U, V) and
ENTRY SUB3 statements, respectively.

Additional Rules for Entry Points

The following rules also apply to entry points:

1. If an adjustable array name or any of its
adjustable dimensions appears in an argument list
for a FUNCTION, SUBROUTINE, or ENTRY state-
ment, that array name and all its adjustable dimen~-
sions must appear in that argument list.

2. A dummy argument may not appear in any
statement unless it previously appeared in an argu-
ment list of a FUNCTION, SUBROUTINE, or
ENTRY statement.

3. In a FUNCTION subprogram, only the FUNC-
TION name may be used as the variable to carry a
result back to the calling program. The ENTRY
name may not be used for this purpose.

4. An ENTRY name may appear in an EXTER-
NAL statement in the same manner as a FUNCTION
or SUBROUTINE name.

5. Entry into a subprogram initializes all refer-
ences in the entire called subprogram from items
in the argument list of the CALL or function refer-
ence. (For instance, if, in the example that appeared
in the section "Multiple Entry Points Into a Sub-
program, ' entry is made at SUB2, the variables
in statement 10 will refer to the argument list of

SUB2.)
6. ENTRY statements may appear only in sub-

programs.

7. The appearance of an ENTRY statement does
not alter the rules regarding the placement of arith-
metic statement functions in subroutines. Arithmetic
statement functions may follow an ENTRY statement
only if they precede the first executable statement
following the SUBROUTINE or FUNCTION statement.

Subprogram Names as Arguments

FUNCTION and SUBROUTINE subprogram names
may be the actual arguments of subprograms. To dis-
tinguish these subprogram names from ordinary
variables when they appear in an argument list, they
must appear in an EXTERNAL statement.

EXTERNAL SIN

CALL SUBR (A, SIN, B)

CALL STATEMENT

The CALL statement is used to refer to a SUBROU-
TINE Subprogram.

28

General Form

CALL Subr (2,35, ++,2n)
where:
1. Subr is the name of a SUBROUTINE subprogram, and

2. ays82ye4,3y are the n arguments.

Examples:

CALL MATMPY (X,5,10,Y,7,2)

CALL QDRTIC (9.732,Q/4.536, R-8**2, 0, X1, X2)

CALL OUTPUT

The CALL statement transfers control to the sub-
program and presents it with the actual arguments.
The arguments may be any of the following:

1. Any type of constant.

2. Any type of subscripted or nonsubscripted
variable.

3. An arithmetic or a logical expression.

4, Alphameric characters. Such arguments must
be preceded by nH where n is the count of characters
included in the argument, e.g., 9HEND POINT. Note
that blank spaces and special characters are consid-
ered in the character count when used in alphameric
fields.

5. The name of a FUNCTION or SUBROUTINE
subprogram.

The arguments presented by the CALL statement
must agree in number, order, type, and array size
(except as explained under the DIMENSION statement)
with the corresponding arguments in the SUBROUTINE
or ENTRY statement of the called subprogram.

SUBPROGRAMS PROVIDED BY FORTRAN

FORTRAN includes several commonly used subrou-
tines that are available to the programmer. The
mathematical subroutines that are provided are de-
fined as FUNCTION subprograms; the subroutines
provided to test the status of the machine indicators
(the sensé switches and the sense lights) are defined
as SUBROUTINE subprograms. In addition, FORTRAN
includes the SUBROUTINE subprograms EXIT, DUMP,
and PDUMP. EXIT terminates job execution; DUMP
dumps core storage and then terminates job execution;
PDUMP dumps core storage and then continues exe-
cution.

Mathematical Subroutines

FORTRAN provides various commonly used mathe-
matical subroutines, defined as FUNCTION subpro-
grams. The names of all of these subprograms are
automatically typed by the FORTRAN IV Compiler;

therefore, they need not appear in Type statements.

Variables used as arguments of mathematical sub-
routines must be typed, either explicitly or implic—
itly, in accordance with the function in which they ap-
pear. The mathematical subroutines are listed in
Figure 9. '

Machine Indicator Tests

In the following list of machine indicator test sub-
routines, assume that i is an integer expression and
that j is an integer variable. These subroutines are
referred to by CALL statements.

SLITE (i): If i =0, all sense lights will be turned
off. Ifi=1,2,3, or 4, the corresponding sense light
will be turned on.

SLITET (i,j): Sense light i will be tested and turned
off. The variable j will be set to 1 if i was on, or j
will be set to 2 if i was off.

SSWTCH (i, j): Sense switch i is tested and j is set
to 1 if i was down, or j is set to 2 if i was up.

OVERFL (j): jissettol if a floating point overflow
condition exists, or j is set to 2 if no overflow con~
dition exists. The machine is left in a no overflow
condition.

DVCHK (j): If the divide check indicator is om, j is
set to 1 and the divide check indicator is turned off;
if the divide check indicator is off, j is set to 2.

Subroutines, Functions and Subprogram Statements 29

Number of Type of
Function Definition Arguments Name Argument Function
- : Arg
Exponential e 1 EXP Real Real
Natural
logarithm log (Arg) 1 ALOG Real Real
Common
logarithm logqo(Arg) 1 ALOG10 Real Real
Trignometric
sine sin{Arg) 1 SIN Real Real
Trigonometric
cosine cos(Arg) 1 COos Real Real
Trigonometric
tangent tan(Arg) 1 TAN Real Real
Trigonometric
cotangent cot(Arg) 1 COTAN Real Real
Arctangent arctan{Arg) 1 ATAN Real Real
arctan(Argq/Argyp) 2 ATAN2 Real Real
Arcsine arcsine(Arg) 1 ARSIN Real Real
Arccosine arccosine(Arg) 1 ARCOS Real Real
Hyperbolic
sine sinh(Arg) 1 SINH Real Real
Hyperbolic
cosine cosh(Arg) 1 COSH Real Real
Hyperbolic
tangent tanh(Arg) 1 TANH Real Real
Square 1/2
root (Arg) 1 SQRT Real Real
Error Function error function(Arg) 1 ERF Real Real
Gamma gamma(Arg) 1 GAMMA Real Real
Log gamma log gamma(Arg) 1 ALGAMA | Real Real
Natural
logarithm log,(Arg) 1 DLOG Double Double
Common
logarithm log1g(Arg) 1 DLOG10 Double Double
Trigonometric
sine sin(Arg) 1 DSIN Double Double
Trigonometric
cosine cos(Arg) 1 DCOS Double Double
Remaindering Arg (mod Argp) 2 DMOD Double Double
Exponential <AT9 1 DEXP Double Double
Arctangent arctan(Arg) 1 DATAN Double Double
arctan{Arg 1/Ar92) 2 DATANZ2 Double Double
Square 1/2
root (Arg) 1 DSQRT Double Double
Exponential eArg 1 CEXP Complex Complex
Natural
logarithm log . (Arg) 1 CLOG Complex Complex
Trigonometric
sine sin(Arg) 1 CSIN Complex Complex
Trigonometric
cosine cos(Arg) 1 CCOos Complex Complex
Absolute
value | Arg | 1 CABS Complex Real
Square root (Arg)l/2 1 CSQRT Complex Complex

Figure 9. Mathematical subroutines

Note: The above mathematical subroutines are described in the publication IBM 7090/7094 IBSYS

Operating System IBJOB Processor, Form C28-6389-0,

Subroutines, Functions, and Subprogram Statements

EXIT, DUMP, and PDUMP

EXIT

A CALL to the EXIT subprogram terminates the exe-
cution of any program by returning control to the
Monitor.

DUMP

A CALL to the DUMP subprogram by the statement

CALL DUMP (A1, By, Fy,..., Ap, By, Fp)
causes the indicated limits of core storage to be
dumped and execution to be terminated by returning
control to the Monitor.

1. A and B are variable data names that indicate
the limits of core storage to be dumped; either A or
B may represent upper or lower limits.

2, Ty is an integer indicating the dump format
desired:

F = 0 dump in octal
1 dump as real
2 dump as integer
3 dump in octal with mnemonics

3. If no arguments are given, all of core storage
is dumped in octal.

4, 1If the last argument Fy is omitted, it is as-
sumed to be equal to 0 and the dump will be octal.

PDUMP

A CALL to the PDUMP subprogram by the statement
CALL PDUMP (Ay,Bq,F1,..., Ay, By, Fp)
causes the indicated limits of core storage to be
dumped and execution to be continued. The PDUMP
arguments are the same as the DUMP arguments.
The DUMP and PDUMP subprograms use SYSUT4
as an intermediate unit (corresponding to symbolic
unit 4 in the standard FORTRAN Input/Output pack-
age). Since the unit is restored to its prior position
before execution is resumed, information stored on
SYSUT4 can be destroyed by these subprograms
after the core storage dump.

30

BLOCK DATA SUBPROGRAM

The only way to enter data into a labeled COMMON
block during compilation is by using a BLOCK DATA
subprogram. (Data may not be entered into blank
COMMON by the use of a DATA statement in any pro-
gram or subprogram.) This subprogram may con-
tain only the DATA, COMMON, DIMENSION, and
Type statements associated with the data being defined.

General Form

BLOCK DATA

1. The BLOCK DATA subprogram may not con-
tain any executable statements.

2. The first statement of this subprogram must
be the BLOCK DATA statement.

3. All elements of a COMMON block must be
listed in the COMMON statement even though they do
not all appear in the DATA statement; for example,
the variable A in the COMMON statement in Figure
10 does not appear in the DATA statement.

4. Data may be entered into more than one COM-
MON block in a single BLOCK DATA subprogram.

5. If two or more BLOCK DATA subprograms
occur for the same application, the data specified
by each of them is entered into the appropriate COM~
MON blocks. Data may not be entered into a COM~
MON block which is initialized by another DATA
statement.

BLOCK DATA

COMMON /ELN/C,A,B/RMG/Z,Y

DIMENSION B(4), Z(3)

DOUBLE PRECISION Z

COMPLEX C

DATA (B(I),I=1,4)/1,1,1,2,2¢1,3/,C/(2. 4, 3.769)/,
Z(1)77.6498085D0/

END

Figure 10

The specification statements provide information
about storage allocation and about the constants and
variables used in the program.

DIMENSION Statement

General Form

DIMENSION vi(i1), v (ip), . - -

where:

1. each vy is an array variable, and

2. each iy is composed of from one to seven unsigned integer
constants and/or integer variables, separated by commas.
(Integer variables may be a component of iy only when the
DIMENSION statement appears in a subprogram.)

Examples:
DIMENSION A (1, 2,3,4), B(10)
DIMENSION C(2,2,3,3,4,4,5)

In the preceding examples, A, B, and C are de-
clared to be array variables with 4, 1, and 7 dimen-
sions, respectively.

The DIMENSION statement provides the informa-
tion necessary to allocate storage for arrays in the
object program, The DIMENSION statement defines
the maximum size of arrays. An array may be
declared to have from one to seven dimensions by
placing it in a DIMENSION statement with the ap-
propriate number of subscripts appended to the vari-
able.

1. The DIME NSION statement must precede the
first appearance of the variable(s) to which it refers
in any executable, NAMELIST, or DATA state-
ment in the.program., For exceptions, see
"Appendix A,"

2. A single DIMENSION statement may specify
the dimensions of any number of arrays.

3. If a variable is dimensioned in a DIMENSION
statement, it must not be dimensioned elsewhere.

4. Dimensions may also be declared in a COM-
MON or a Type statement. If this is done, then
these statements are subject to all the rules for the
DIMENSION statement.

Adjustable Dimensions

The name of an array and the constants that are its
dimensions may be passed as arguments in a sub-
program call. In this way, a subprogram may per-
form calculations on arrays whose sizes are not de-
termined until the subprogram is called. Figure 11
illustrates the use of adjustable dimensions.

1. Variables may be used as dimensions of an
array only in the DIMENSION statement of a

CHAPTER 6. THE SPECIFICATION STATEMENTS

FUNCTION or SUBROUTINE subprogram. For any
such array, the array name and all the variables used
as dimensions must appear as arguments in the
FUNCTION, SUBROUTINE, or ENTRY statement.

SUBROUTINE MAYMY (...,R,L,M,...)

DIMENSION. .., R(L, M), ...

DO 100 I=1,L

Figure 11

2. A FUNCTION, SUBROUTINE, or ENTRY argu-
ment must be explicitly declared as INTEGER prior
to its appearance as a DIMENSION variable, unless
it is implicitly of integer type.

3. The adjustable dimensions may not be altered
within the subprogram.

4. The absolute dimensions must be specified in
a DIMENSION statement of the calling program.

5. The calling program passes the specific di-
mensions to the subprogram. These specific dimen-
sions are those that appear in the DIMENSION state-
ment of the calling program. Variable dimension
size may be passed through more than one level of
subprogram.

COMMON Statement

General Form

COMMON 1,b,c,.../r/d,e,f,.../5/g,hy...

where:
1. a,b,...are variables that may be dimensioned,
and
2. /r/ ,/s/,...are variables that are block names.
Examples:

COMMON A, B, C/X/Q,R/YY/M, P
COMMON /Z/G,H,J//D, F

Variables, including array names, appearing in a
COMMON statement are assigned locations relative
to the beginning of a particular common block. This
COMMON area may be shared by a program and its
subprograms.

1. The COMMON statement must precede any ex-
ecutable, any NAMELIST, and any DATA statements
in the program. (For exceptions, see ""Appendix A'".)
If the variables appearing in a COMMON statement
contain dimension information, they must not be di-
mensioned elsewhere.

The Specification Statements 31

2. The locations in the COMMON area are as-
signed in the sequence in which the variables appear
in the COMMON statement, beginning with the first
COMMON statement of the program.

3. Elements placed in COMMON may be placed
in separate blocks. These separate blocks may share
space in core storage at object time. Blocks are
given names and those with the same name occupy the
same space.

4, COMMON Block Names. The symbolic name
of a block, which is one to six alphameric characters
the first of which is alphabetic, precedes the variable
names belonging tothe block. The block name is al-
ways embedded in slashes, e.g., /BB/. It must not
be the same as the name of any other subroutine that
is part of the same job. There are two types of
COMM ON blocks: blank and labeled.

a. Blank COMMON is indicated either by
omitting the block name if it appears at the
beginning of the COMMON statement or by
preceding the blank COMMON variable by
two consecutive slashes.

b. Labeled COMMON is indicated by pre-
ceding the labeled COMMON variables by
the block name embedded in slashes.

5. The field of entries pertaining to a block name
ends with a new block name, the end of the COMMON
statement, or a blank COMMON designation.

6. Block name entries are cumulative throughout
the program. For example, the COMMON statements

COMMON A, B, C/R/D,E/S/F

COMMON G,H/R/1/S/P

have the same effect as the statement

COMMON A4, B, C, G,H/R/D, E,1/S/F, P

7. Blank COMMON may be any length. Labeled
COMMON must conform to the following size re-
quirement: All COMMON blocks of a given name
must have the same length in all the programs that
are executed together.

8. Variables brought into a COMMON block
through EQUIVALENCE statements may increase the
size of the block.

9, Two variables in COMMON may not be made
equivalent to each other, directly or indirectly.

10. A double-word variable in COMMON must be
placed such that its high-order part is an even num-
ber of words away from the first elementin COMMON.

EQUIVALENCE Statement

General Form

EQUIVALENCE (a,b,cye04),(dyeyf,00e)yene

where:

a,b,c,d, e, f,...are variablesthat may be subscripted; these
subscripts must be integer constants. The number of sub-
scripts appendedto a variable must be either equalto the

number of dimensions of the variable or must be equal to one.

32

Examples:
DIMENSION B(5), C(10, 10), D(5, 10, 15)
EQUIVALENCE (A, B(1), C(5, 4)), (D(1, 4, 3), E)

The EQUIVALENCE statement controls the alloca-
tion of data storage by causing two or more variables
to share the same core storage location.

1. An EQUIVALENCE statement must precede
any executable, any NAMELIST, and any DATA
statements in the program, (For exceptions, see
"Appendix C." Each pair of parentheses in the
statement list encloses the names of two or more
variables that are to be stored in the same location
during execution of the object program; any number
of equivalences (sets of parentheses) may be given.

2. In an EQUIVALENCE statement, the meaning
of D(5) is "the fourth array element following the
first array element, (D(1,1,1))." In general, D(p) is
defined for p> 0 to mean the (p-1)th element following
the first element of the D array, i.e., the pth ele-
ment of the array.

In the preceding example, the EQUIVALENCE
statement indicates that A and the B and C arrays
are to be assigned storage locations so that the ele-
ments A, B(1l), and C(5,4) are to occupy the same
location. In addition, it also specifies that D(1, 4, 3)
and E are to share the same location.

3. Quantities or arrays that are not mentioned in
an EQUIVALENCE statement will be assigned unique
locations.

4, Locations can be shared only among variables,
not among constants.

5. The sharing of storage locations requires a
knowledge of which FORTRAN statements will cause
a new value to be stored in a location, There are
four such statements:

a. Execution of an arithmetic statement stores
a new value in the variable on the left side
of the equal sign.

b. Execution of an ASSIGN i TO n statement
stores a new value in n.

c. Execution of a DO statement or an implied
DO in an input/output list sometimes stores
a new indexing value,

d. Execution of a READ statement stores new
values in the variables mentioned in the
input list.

6. Variables brought into a COMMON block
through EQUIVALENCE statements may increase the
size of the block indicated by the COMMON state-
ments, as in the following example:

COMMON /X/A, B, C

DIMENSION D(3)

EQUIVALENCE (B, D(1))

The layout of core storagé indicated by this ex-
ample (extending from the lowest location of the block
to the highest location of the block) is:

A

B, D(1)

c, D(2)
D(3)

7. Since arrays must be stored in consecutive
forward locations, a variable may not be made equiv-
alent to an element of an array in such a way as to
cause the array to extend beyond the beginning of the
COMMON block. For example, the following coding
is invalid:

COMMON/X/A, B, C

DIMENSION D(3)

EQUIVALENCE (B, D(3))
The previous example would force D(1) to precede A,
as follows:

D(1)

A, D(2)

B, D(3)

C

8. The rule for making double-word variables
equivalent to single-word variables is:

In COMMON, the effect of the EQUIVALENCE
statements must be such that the high-order word of
any double-word variable is an even number of loca-
tions away from the start of the COMMON block.

In non-COMMON, the effect of the EQUIVALENCE
statements must be such that the high-order word of
any double-word variable is an even number of words
away from the start of any other double-word vari-
able linked to it through EQUIVALENCE statements.

9. Two variables in one COMMON block or in two
different COMMON blocks may not be made equiv-
alent.

10, The EQUIVALENCE statement should not be
used to make two or more elements mathematically
equivalent.

Type Statements

The type of a variable or function may be specified
by means of one of the six Type statements:

General Form

INTEGER a(iy), b(ip), c(iz), -

REAL a(i1), b(ip), c(iz), ...

DOUBLE PRECISION a(ig), b(iz), c(iz)y---

COMPLEX a(i1), b(ip), c(iz),-- -

LOGICAL a(i1), b(ip), c(ig),-- -

EXTERNAL X,V,2, .. -

where:

1. a,byc,...
within the program.

are variable or function names appearing

2. X,Y,% ... are function names appearing within the
program.

3. each i, is composed of from one to seven integer
constants and/or integer variables., Subscripts may
be appended only to variable names appearing within
the program, not to function names.

Examples:

INTEGER BIXF, X, QF, LSL

REAL IMIN, LOG, GRN, KLW
DOUBLE PRECISION Q, J, DSIN
EXTERNAL SIN, MATMPY, INVTRY
INTEGER A(10,10), B

COMPLEX C(4,5,3), D

The variable or function names following the type
(INTEGER, REAL, etc.) in the Type statement are
defined to be of that type, and remain so throughout
the program; the type may not be changed.

Note that LSL and GRN need not appear in their
respective Type statements since their type is im-
plied by their first characters. Note also that DSIN
need not appear in its statement if it is used as a
function inthe program, since mathematical sub-
routines are automatically typed by the FORTRANIV
Compiler.

1. The appearance of a name in any Type state-
ment, except EXTERNAL, overrides the implicit
type assignment.

2. Variables that appear in EXTERNAL statements
are subprogram names. Subprogram names must
appear in an EXTERNAL statement if they are the

The Specification Statements 33

arguments of other subprograms or if they are the
name of a built-in function that is used as the name
of a FUNCTION or SUBROUTINE subprogram.

3. A name may appear in two Type statements
only if one of the statements is EXTERNAL.

4. The type statements (except EXTERNAL) must
precede the first appearance of the variable(s) to
which they refer in any executable, NAMELIST, or
DATA statements in the program. The EXTERNAL
statement must precede the first appearance of the
subprogram or ENTRY name to which it refers in
any executable statement in the program. For ex-
ceptions, see ""Appendix A: Source Program State-
ments and Sequencing."

5. A name declared to be of a given type may
assume only the values of a constant of the same type.

6. The arguments of an ENTRY statement cannot
appear in a Type statement that appears earlier in
the program, unless they are also arguments in a
SUBROUTINE or FUNCTION statement.

7. Any variable that is dimensioned by a Type
statement may not be dimensioned elsewhere, i.e.,
it may not appear in a DIMENSION statement or in a
COMMON statement that contains dimension infor-
mation.

DATA Statement

Data may be compiled into the object program by
means of the DATA statement.

General Form

DATA list/dq,dg, e se,dn/,list/di, d2,lkd3, eaeydm/sees

where:
1. list contains the names of the variables being
defined,

2. d is the data literal, and
3. kis an integer constant.

Examples:
DATA R, Q/14.2,3HEND/, Z/O777777700001/
DATA (B(I), C(I), I=1,40,2)/2.0,3.0,38*%100.0/
LOGICAL LA, LB, LC, LD
DATA LA, LB, LC, LD/F, .TRUE., .FALSE., T/
1. List. Subscripted variables may appear in the
list. Where a subscript symbol is used, it must be
under control of DO-implying parentheses and as-
sociated parameters. Subscripts not so controlled
must be integer constants. The DO-defining param-
eters must be integer constants.
2. k. The letter k may appear before a d-field
to indicate that the field is to be repeated k times.

34

An asterisk (¥) must follow the letter k to separate it
from the field to be repeated.

3. d. The data literals may take any of the four
following forms:

a. Integer, real, double-precision, and com-
plex constants. They may be signed or
unsigned.

b. Alphameric characters. The alphameric
field is written as nH followed by n alpha-
meric characters. Each group of six al-
phameric characters forms a word. If nis
not a multiple of six, the remaining char-
acters are left justified in the word, and
the word is filled out with BCD blanks.
Blanks are significant in alphameric fields.

c. Octal digits. The octal field is written as
0O, followed by 1-12 signed or unsigned
octal digits.

d. Logical constants. The logical field may
be written as either . TRUE., .FALSE., T,
or F.

4. There must be a one-to-one correspondence
between the list items and the data literals. Each
data literal (integer constant, real constant, alpha-
meric constant, complex constant, logical constant,
double-precision constant, or octal constant) corre-
sponds to one undimensioned variable or subscripted
array reference.

Note: If it is desired to define 16 alphameric char-
acters, say 16HDATAbTObBEbREADbD starting at
G(1), then G must be dimensioned to cover at least
three locations and the entire literal corresponds to
G(1).

5, The BLOCK DATA subprogram, whichincludes
a DATA statement, compiles data into the common
area of the program,

6. DATA defined variables that are redefined
during execution will assume their new values regard-
less of the DATA statement.

7. Where data is to be compiled into an entire
array, the name of the array (with indexing informa-
tion emitted) can be placed in the list. The number
of data literals must be equal to the size of the
array.

For example, the statements

DIMENSION B(25)
DATA A, B, C/24*4.0,3.0,2.0,1.0/

define the values of A, B(1),..., B(23) to be 4.0, and
the values of B(24), B(25), and C to be 3.0, 2.0, and
1.0, respectively.

8. The DATA statement may not be used to enter
data into unlabeled COMMON,

APPENDIX A: SOURCE PROGRAM STATEMENTS
AND SEQUENCING

The following is a complete list of the 7090/7094
FORTRAN IV source program statements, their

sequence of execution, and their order in the source

program,
Normal Executable or
Statement Sequencing Nonexecutable
a=b Next statement Executable
ASSIGN n to i Next statement Executable
BACKSPACE i Next statement Executable
BLOCK DATA Next statement Nonexecutable
CALL First statement of Executable
called program
COMMON Next statement Nonexecutable
COMPLEX Next statement Nonexecutable
CONTINUE Next statement Executable
DATA Next statement Nonexecutable
DIMENSION Next statement Nonexecutable
DO Normal DO sequencing, Executable
then the next statement
DOUBLE PRECISION Next statement Nonexecutable
END Terminates compilation Nonexecutable
of the program
END FILE Next statement Executable
ENTRY Next statement Nonexecutable
EQUIVALENCE Next statement Nonexecutable

APPENDIXES

Order in the
Source Program1

May be placed anywhere.
May be placed anywhere.
May be placed anywhere.

Must be the first statement of a BLOCK DATA
subprogram.

May be placed anywhere.

Must precede any executable, any NAMELIST,

and any DATA statements in the program.

Must precede the first appearance of the variable(s)
to which it refers in any executable, NAMELIST,

or DATA statement in the program.

May be placed anywhere, but it is most often used
as the last statement in the range of a DO,

May be placed anywhere, but it must appear in every
every BLOCK DATA subprogram.

Must precede the first appearance of the variable(s)
to which it refers in any executable, NAMELIST,
or DATA statement in the program.

May be placed anywhere,

Must precede the first appearance of the variable(s)
to which it refers in any executable, NAMELIST,

or DATA statement in the program.

Must be the physically last statement of the
program.

May be placed anywhere.

May appear only in a subprogram, but not as the
first statement or in the range of a DO.

Must precede any executable, any NAMELIST,
and any DATA statements in the program.

Appendixes 35

Statement

FORMAT

FUNCTION

GO TOn

GO TO 1, (ng,ny,...

GO TO (ng,np, ..

IF (a)ny, np, n3

IF (t) s

INTEGER

LOGICAL

NAMELIST

PAUSE
PRINT
PUNCH
READ V

REAL

RETURN

RETURN i

REWIND

STOP

36

Normal
Sequencing

Next statement

Next statement

Statement n

Statement last
assigned to i

Statement n;

Statement nq, np, ng if
a€0, a=0, or a>0,

respectively

Statement s if t is true;
next statement if t is

false

Next statement

Next statement

Next statement

Next statement

Next statement

Next statement

Next statement

Next statement

The first statement, or
part of a statement,
following the reference
to the subprogram

The executable state-
ment i in the calling

program

Next statement

Terminates the execution

of the program

Executable or

Nonexecutable

Nonexecutable

Nonexecutable -

Executable

Executable

Executable

Executable

Executable

Nonexecutable

Nonexecutable

Nonexecutable

Executable
Executable
Executable
Executable

Nonexecutable

Executable

Executable

Executable

Executable

Order in the
Source Program1

May be placed anywhere.

Must be used only as the first statement of a
FUNCTION subprogram.

May be placed anywhere.

May be placed anywhere.

May be placed anywhere.

May be placed anywhere.

May be placed anywhere.

Must precede the first appearance of the variable(s)
to which it refers in any executable, NAMELIST,

or DATA statement in the program.
Must also precede the first appearance of the vari-

able(s) to which it refers in a DIMENSION statement
in a subprogram when the variable(s) is used as an
adjustable dimension.

Must precede the first appearance of the variable(s)
to which it refers in any executable, NAMELIST,
or DATA statement in the program.

Must precede any appearance of a NAMELIST name
in the program.

Should be placed where a temporary halt is desired.
May be placed anywhere.
May be placed anywhere.
May be placed anywhere.
Must precede the first appearance of the variable(s)
to which it refers in any executable, NAMELIST, or

DATA statement in the program.

Must be placed in a subprogram where a return to -
the calling program is desired.

Must appear in a SUBROUTINE subprogram where a
nonstandard return is desired.
May be placed anywhere.

Should be placed where the termination of the
program is desired.

Normal Executable or Order in the

Statement Sequencing Nonexecutable . Source Program
— s ki~ —_—
SUBROUTINE Next statement Nonexecutable Must be used only as the first statement of a-

SUBROUTINE subprogram,

WRITE Next statement Executable May be placed anywhere.

1M:‘my of the FORTRAN source statements may not end the range of 2 DO. See the section "DO Statement" for restrictions on statements
in the range of a DO.

APPENDIX B: TABLE OF SOURCE PROGRAM

CHARACTERS

8 2 8 2 3 2 8 g

+ 3] + [PN (] b3

3 B & 8 Bl 3 Bl R Bl &
8 T A Eir =] B (o) 5 BT [o] B (] N
Sl0o® @] 9 = « Q Ll <= o Q Q S« Q Q
ol ol @l @l Ol o amal &l ol ol |l &l o o & &

12) 11 0
1 1 01 01 A 1 61 21" J 1 41 41 / 1 21 61

*y

~
[
’
[y
[
o

N

7T 7 0% 07T G 7 67 27 P 17 47 47 X 7 27 67

12 11 - 0

_ A 12 11 v 0
9 9 11 11 I 9 71 3 R 9 51 51 Z 9 31 71

blank blank /20 60 + 12 60 20 - 11 40 40 0 0 12 00——
12 11 0

¢ =83 13 13 .83 73 33 $83 53 53 , 83 33 73
12 11 0

' 8-4 14 14) 8-4 74 34 * 8-4 54 54 (8-4 34 174

The character $ can be used in FORTRAN IV only as alphameric text in an H
field or as a prefix to the address argument in a CALL statement to a subroutine
with nonstandard returns. The character ' (8-4) can be used only as alphameric
text in an H field.)

Appendixes 37

APPENDIX C! DIFFERENCES BETWEEN FORTRAN
II AND FORTRAN IV

This section contains a summary of the differences
between the FORTRAN II and FORTRAN IV languages.
1. All language items distinguished by a column

1 modal punch, except B, in FORTRAN II have been

incorporated into FORTRAN IV by the Type state-
ments as follows:
FORTRAN IV Type Statement
(See the section,

FORTRAN II Modal Punches "Type Statements")

DOUBLE PRECISION
COMPLEX
EXTERNAL

Double-precision arithmetic - D

Complex arithmetic - I
F-card - F

The DATA statement may be used to enter octal
constants into a FORTRAN IV program; the pro-
grammer may use certain built~in functions (see
Appendix H) to handle Boolean Arithmetic. Column 1
Modal punches should not be used in FORTRAN IV,

2. The following are the differences in function
naming:

a. Where the initial character of a function
name is used to denote the type as floating
point (real) or fixed point (integer) in
FORTRAN II, incompatibilities may arise.
In FORTRAN IV, this difficulty is handled
by the Type statements REAL and IN-
TEGER, which define a variable name or
function name as floating point or fixed
point, respectively (see the section ""The
Type Statements').

b. The number of characters in an open, a
closed, or an arithmetic statement func-
tion name in FORTRAN II is four to seven,
ending in F; whereas, in FORTRAN IV,
the number of characters is one to six and
the final F has no meaning. In both cases,
the first character of the function name
must be alphabetic (see the section "Naming
Subroutines').

c. Built-in and arithmetic statement functions
are not identified by a terminal I in FOR-
TRAN IV; they are named in FORTRAN IV
as described in item b above. The FOR-
TRAN II library function is a FOR-

TRAN IV FUNCTION subprogram,

3. The following are the differences between the
COMMON and EQUIVALENCE statements.

a. In FORTRAN IV, EQUIVALENCE does not
affect the ordering within COMMON, and it
does not create a gap in COMMON storage;
the only effect it can have on a COMMON
block is to make its size greater than that

38

indicated by the COMMON statements of the
program (see the section "COMMON State-
ment").

b. The FORTRAN IV COMMON and Type State-
ments may contain dimengion information.

c. In FORTRAN IV, EQUIVALENCE and COM-
MON statements must precede any executable,
NAMELIST, and DATA statements in the pro-
gram., In FORTRAN II, EQUIVALENCE and
COMMON statements may be placed anywhere
in the program.

4, In FORTRAN IV, if an explicit type is given
to a variable name that is used throughout the pro-
gram as an ordinary variable and also as a dummy
argument of an arithmetic statement function, the
explicit type applies in both contexts.

5. Implicit multiplication, which occurs in FOR-
TRAN II as a by-product of the arithmetic translator
techniques, is not permitted in FORTRAN IV, Thus,
the following combinations are not permitted in FOR-
TRAN IV:

K ()
(Vv
(K

where V is a variable, K is a constant, and () is
any arithmetic expression within parentheses.

6. The FORTRAN II statements in column 1 are
changed to the FORTRAN IV statements in column 2.

FORTRAN II Statements FORTRAN IV Statements
IF ACCUMULATOR OVERFLOW ny, ny| CALL OVERFL (j)
IF QUOTIENT OVERFLOW ny,np CALL OVERFL (j)
IF DIVIDE CHECK ng, np CALL DVCHK (j)
IF (SENSE SWITCH i) ny, 13 CALL SSWTCH (i, j)
SENSE LIGHT i CALL SLITE (i)
IF (SENSE LIGHT i) nq,nyp CALL SLITET (i, j)

READ TAPE i, list READ (i) list Binary record
READ INPUT TAPE i, n,list READ (i, n) list BCD record
WRITE TAPE i, list WRITE (i) list Binary record
WRITE OUTPUT TAPE i, n, list WRITE (i, n) list BCD record

The FREQUENCY, READ DRUM, and WRITE DRUM statements
of FORTRAN II are not part of the FORTRAN IV language.

7. Additional FORTRAN IV statements.

a. DATA (see the section "DATA Statement'’).

b. BLOCK DATA (see the section "BLOCK
DATA Subprogram'),

c. LOGICAL, an additional Type statement
that defines variables to be used in logical
computation (see the section "The Type
Statement').

d. NAMELIST (see the section "NAMELIST
statement"). '

e. ENTRY (see the section "Multiple Entry
Points into a Subprogram').

8. The following are differences in output pro-
duced by FORTRAN IV and FORTRAN II:

Programmers will find that the output produced
by a source program in FORTRAN IV may not be the
same as that provided by the identical program in
FORTRAN II. Differences that do occur are attrib-
uted exclusively to the following differences that
exist between FORTRAN IV and FORTRAN II.

a. The logarithm subroutine of FORTRAN IV
employs a new algorithm that yields more
accurate results for most arguments than
does the logarithm subroutine of FORTRAN
II.

b. Floating point constants that are written
into the source program are converted by
FORTRAN IV by a somewhat different
algorithm than that used by FORTRAN II.
The result is that FORTRAN IV achieves a
more accurate conversion and preserves
more significance than does FORTRAN II,

c. The mathematical subroutines in FORTRAN
IV are assembled by MAP, and those in
FORTRAN II are assembled by FAP. The
conversion routines in MAP provide more
precise conversions for constants than do
those in FAP. As a consequence, FOR-
TRAN IV tends to produce more precise
results than FORTRAN II for those sub-
routines that use the same algorithm (and
its associated constants). The SIN/COS
subroutine is a very good example of this
effect.

d. The order in which a sequence of multi-
plications (or of multiplications and divi-
sions) is executed by the object program
in FORTRAN IV may be different from that
in FORTRAN II. If such a difference in
ordering should occur, neither method may
be considered superior to the other from
the standpoint of computational accuracy.

e. The arrangement of arrays in core storage
should be noted by programmers who are
converting FORTRAN II programs to FOR-
TRAN IV. In FORTRAN Ii, arrays are ar-
ranged in decreasing absolute storage lo-
cations, whereas in FORTRAN IV, arrays
are stored in increasing absolute storage
locations.

9. In FORTRAN IV, EQUIVALENCE and COM-
MON statements must precede any executable,
NAMELIST, and DATA statements in the program.

The rule that COMMON and EQUIVALENCE state-
ments precede the first executable statement of the
program is a precautionary rule. It does notinhibit
compilation and execution of the object program. It
can, however, cause an incorrect object program
to be generated in one combination of circumstances.

This is shown in the following examples.

Example 1.

COMMON]

DO I
CALL SUBRTN
C L AK)

EQUIVALENCE (K, J)
Example 2.

DO I
CALL SUBRTN
o AK)...

COMMON K

If, as in these examples, it is the case that:

a. The COMMON and/or EQUIVALENCE state-
ment(s) follow the first executable statement in the
program, and '

b. These statements bring the relevant subscript
symbol (K) into COMMON, and

c¢. Subroutine SUBRTN changes the value of K
in COMMON, then the subscript reference A (K) will
not utilize the newly-defined value. The order of the
CALL statement and the subscript reference A (K) in
the DO loop do not affect these restrictions.

Except in this combination, no error will result
from having the COMMON and EQUIVALENCE state-
ments follow the first executable statement of the
program.

10. In FORTRAN II, the sequence ENDFILE i,
BACKSPACE i, positions the tape immediately before
the end-of-file mark. In FORTRAN IV, this se-
quence positions the tape immediately before the
last physical or logical record of the precedingfile.
For a more complete description of the FORTRANIV
BACKSPACE handling, see the section "The Manipula-
tive Input/Output Statements. "

Appendixes 39

APPENDIX D: OPTIMIZATION OF ARITHMETIC

EXPRESSIONS

To optimize the object program, a sequence of op-
erations on the multiply-divide (*, /) level may be
reordered by the compiler. The reordering tends to
alternate the multiply and divide operations. It oc-
curs where all elements of the expression are of the
real type. This is done on the assumption that
mathematically equivalent expressions are compu-
tationally equivalent.

Where the multiply-divide expression involves
mixed real and complex types, the operations on the
real types occur first and are alternated.

Where the order of operations is considered sig-
nificant, the programmer may use nested parenthe-
ses in the expression to specify explicitly the order-
ing he desires.

APPENDIX E: BINARY RECORD FORMAT

Under the form READ (i) list, an entire logical
record is read. However, only as many words as
are specified in the list will be transmitted to the
object program. Binary records to be read in by a
FORTRAN program using the standard FORTRAN
input/output package (FIOCS) should be written by a
FORTRAN program or should be in the proper
binary record format as follows:

-

Program
Coded By
Checked By

FORTRAN CODING FORM

Identification

IR SRR |
73 80

—— C FOR COMMENT

Consider a logical record as being any sequence
of binary words to be read by any one input statement.
This logical record must be divided into physical
records, each of which is a maximum of 2561y words
long. Of course, if a logical record consists of
fewer than 2561 words, it will comprise only one
physical record.

The first word of each physical record is a
"signal' word that is not part of the list. The decre-
ment portion of this word contains a count of the
number of words in the physical record, exclusive
of the signal word. If the count is zero, the number
of words is assumed to be 127,3. The address por-
tion of the signal word is zero unless it is in the last
physical record of the logical record, in which case
it contains a count of the number of physical records
contained in the logical record.

APPENDIX F: GENERAL PROPERTIES OF A
FORTRAN SOURCE PROGRAM

Writing the Source Program

The statements of a FORTRAN source program are
normally written on a standard FORTRAN coding
sheet as shown in Figure 12.

Form X28-7327-3
intad in U.S.A.

Date
Page

{sw‘}fafgswr H AN STATEMENT
3 4

G
6

FORTR
30

] 5 45

ki

- - -

Figure 12. Standard FORTRAN Coding Sheet

40

1. Columns 1-5 of the first line of a statement
may contain a statement number that is less than
32,768 (but not zero) to identify the statement. Blanks
and leading zeros are ignored in these columns.

2. Column 6 of the first line of a statement must
be left blank or punched with a zero.

3. Columns 7-72 contain the actual FORTRAN
statement. Blanks are ignored except in an alpha-
meric field, which may appear in a FORMAT state-
ment, a DATA statement, or as the argument of a
CALL.

4. A statement may be continued over as many
as nineteen continuation cards. Any card with a
nonblank, nonzero column 6 is a continuation card.

5. Cards with a C in column 1 are not processed
by FORTRAN, and columns 2-72 may be used for
comments.

6. Columns 73-80 are not processed by FOR-
TRAN and may be used for identification.

7. The order of execution of the source state-
ments is governed by the normal sequencing of source
program statements given in""Appendix A, "

A sample FORTRAN IV source program, complete
with control cards, is given in "Appendix G."

Punching the Source Program

Each line of the coding sheet is used to prepare a
punched card. The information in column 1 of a line
on the coding sheet is punched into card column 1,
column 2 into card column 2, and so forth. Cards
should be verified after being punched to prevent
clerical errors from causing source and object pro-
gram errors.

APPENDIXG: DECKSETUP FOR A FORTRANIV JOB
Figure 13 shows the deck setup for a FORTRAN IV
job. The control cards and the decks used in this

figure are described in the following text.

Definitions of Terms

The following are definitions of terms used in this
appendix.

Processor Monitor: The Processor Monitor is the
supervisory portion of the IBJOB Processor. It
provides communication between the System Monitor
(IBSYS) and the components of the IBJOB Processor.

Processor Application: A processor application is

the basic unit of work that can be performed by the
processor. An application can consist of one or

more compilations, assemblies, or the loading of
relocatable programs that were assembled previously.

(I-Tnd—of-«Filc Card
/Bata Deck
/?sDATA

$ENTRY

/Binary Decks

/MAP Subprogram

/$IBMAP

(}ORTRAN Subprogram

/%IBFTC

FORTRAN Main Program
Deck

/ $IBFTC
/;IBJOB

/$EXECUTE

$JOB

Figure 13. Deck Setup for a FORTRAN IV Job

Job: A job is one or more applications that are speci-
fied by the programmer to be executed as a logical
unit. A job is delimited by a $JOB card.

IBJOB Debugging Processor: The IBJOB Debugging

Processor provides a means for the user to take
highly selective "snapshots' of core storage during
execution of FORTRAN IV and MAP programs.
Specifications for these core dumps are incorporated
into the user's program at load-time,

Control Card Notation

The following notation is used in the control card
formats in this appendix:

1. Brackets[]represent an option that may be
omitted or included, at the programmer's choice.

2. Braces { |} indicate that a choice of the con-
tents is to be made by the programmer. The standard
option, which is underlined, is assumed when no
option is specified.

3. Upper-case specifications, if used, must be
present in the form specified.

Appendixes 41

4. Lower-case specifications represent typical
quantities or terms whose values must be supplied
by the programmer.

5. The order in which options are specified on
the various control cards is not critical unless other-
wise specified.

6. Commas are used to separate options when
options are present. If no options are present, a
string of commas is not necessary to indicate the
absence of options, unless otherwise specified.

7. Options must be punched on the control card
without any blanks between words or around the
punctuation,

$JOB Card

This card defines the beginning of a job. The format
of the $JOB card is:

1 16
$JOB any text

A detailed explanation of this card is in the pub-
lication IBM 7090/7094 IBSYS Operating System,
System Monitor (IBSYS), Form C28-6248.

$EXECUTE Card

This card must precede a processor application
within a job, if one of the following conditions is
present:

1. The processor application is the first unit of
work to be performed for an object program.

2. The previous processor application resulted
in execution of an object program.

3. Another subsystem was in control.
The format of the $EXECUTE card is:

1 16
$EXECUTE subsystem name

When using this card for a FORTRAN IV job, the
subsystem name is IBJOB. If the name in column
16 is IBJOB, control is transferred to the IBJOB
Processor unless it already has control, in which
case no action is taken. If the name is anything
other than IBJOB, this information is given to the
System Monitor.

A more detailed explanation of the $EXECUTE
card is in the publication IBM 7090/7094 IBSYS
Operating System, System Monitor (IBSYS), Form
C28-6248,

$IBJOB Card

The $IBJOB card must be the first control card read
by the Processor Monitor for a given application,

42

The options that can be specified in this control de-
scribe the manner in which an application is to be
processed. The format of the $IBJOB card is:

1 16
$IBJOB [{ GO }] NOLOGIC , { NOMAP}
NOGOJ] |, { LOGIC MAP
DLOGIC

, {NOFILES} ,{ SOURCE }
FILES NOSOURCE

TOEX ELOW]

MINIMUM [’{NOPLOW}
,J BAsIC

LABELS

FIOCS

ALTIO

The options in the variable field, which start in
column 16, are described in the following text.

Execution Options

The execution options are:

1. GO -- The object program is to be executed
after it is loaded.

2. NOGO -- The object program is not executed
even if it is loaded.

If NOGO is specified, the object program is loaded
only when LOGIC, DLOGIC, or MAP is specified in
the $IBJOB card.

If neither GO nor NOGO is specified, the object
program is to be executed.

Logic Options

The logic options are:

1. NOLOGIC -~ A cross-refercnce table is not
wanted.

2. LOGIC -- A cross-reference table of the pro-
gram sections and the system subroutines required
for exccution is generated. The origin and length of
each program section and subroutine and the buffer
assignments are also given.

3. DLOGIC -- A cross-reference table of the
program sections and the origin and length of each
program section is generated. The system subrou-
tines and buffer assignments are not given,

If neither LOGIC, DLOGIC, nor NOLOGIC is
specified, a cross-reference table is not generated.

MAP Options

The MAP options are:

1. NOMAP -- A core storage map is not generated.

2. MAP -- A core storage map is generated,
giving the origin and the amount of storage used by
the IBSYS Operating System, the object program,
and the input/output buffers. The file list and buffer
pool organization are also given.

If neither MAP nor NOMAP is specified, a storage
map is not generated.

File List Options

The file list options are:

1. NOFILES -- A list of the input/output unit
assignments and mounting instructions to the operator
are printed on-line.

2. FILES -- The list and mounting instructions
are printed on-line and written off-line.

If neither FILES nor NOFILES is specified, the
list is only printed on-line.

Input Deck Options

The input deck options are:

1. SOURCE -- The application contains at least
one compilation or assembly.

2. NOSOURCE -- The application contains only
relocatable binary program decks. These decks are
loaded from the System Input Unit.

If neither SOURCE nor NOSOURCE is specified,
it is assumed that a compilation or assembly is re-
quired in the application,

Input/Output Options

The IOCS options are:

1. IOEX -- The object program uses the Input/
Output Executor (IOEX).

2. MINIMUM -- The minimum-level package of
I10CS is to be loaded with the object program.

3. BASIC -- The basic-level package of IOCS is
to be loaded with the object program.

4. LABELS -- The labels-level package of I0OCS
is to be loaded with the object program.

5. FIOCS -- The standard FORTRAN 1V input/

output package is to be loaded with the object program.

(This package calls in one of the levels of IOCS.)

If none of these options are specified, IBLDR will
determine the level of IOCS to be used with the ob-
ject program. If the object program requires a
higher level of IOCS than is specified, the specifi -
cation is ignored by the Loader. The levels of
IOCS are described in detail in the publication IBM
7090/7094 IBSYS Operating System, Input/Output
Control System, Form C28-6345,

6. ALTIO - The alternate FORTRAN IV input/
output package is to be loaded with the object pro-
gram. (Since this package communicates directly
with IOEX rather than calling one one of the levels
of IOCS, core storage locations are saved by speci~
fying ALTIO.)

If neither FIOCS nor ALTIO is specified for a
FORTRAN IV program, the minimum-level package
of IOCS is usually loaded with the object program.
However, if IBLDR determines that one of the other
levels of I0CS is required, it is loaded rather than
the minimum package.

The two FORTRAN IV input/output packages are

-described in the section '"The Subroutine Library"

of the publication IBM 7090/7094 IBSYS Operating
System, IBJOB Processor, Form C28-6389.

Overlay Options

The overlay options are:

1. Flow - Execution of the object program is
not permitted if the rules concerning references be-
tween links are violated.

2. NOFLOW - Execution is permitted even
though the rules governing references between links
are violated,

If neither FLOW nor NOIFLOW is specified, exe-
cution of the object program is not permitted when
the rules governing references hetween links are
violated.

A detailed explanation of this card is in the pub-
lication IBM 7090/7094 IBSYS Operating System,
IBJOB Processor, Form C28-6389.

$IBFTC Card

The format of the $IBFTC card is:

1 8

16
$IBFTC deckname| | NOLIST NODD DECK
LIST ’4DD *{NODECK
FULIST SDD
M90 XR3
Y M94 1XRn
M94/2

where deck name identifies the deck that follows. A
deck name of six or fewer alphameric characters
must be punched in columns 8-13. Characters that
cannot be used in the deck name are parentheses,
commas, slashes, quotation marks, equal signs,
and blanks. The deck name of a program that con-
tains a subprogram or entry points may not be the
same as the subprogram name or entry name.

The variable field starts in column 16. The op-
tions in the variable field are described in the fol-
lowing text.

Appendixes 43

List Options

The list options are:

1. NOLIST -~ A listing of the object program is
not wanted.

2. LIST - A listing of the object program, three
instructions per line, is generated. Only the rela-
tive locations and symbolic information are listed.

3. FULIST - A listing of the object program,
one instruction per line, is generated. This listing
includes generated octal information.

If neither NOLIST, LIST, nor FULIST is speci-
fied, a listing is not generated.

Debug Options

The debug options are:

1. NODD - The debugging dictionary is not
generated.

2. DD - The full debugging dictionary is gener-
ated. = All the symbols inthe compiled program
will appear in the debugging dictionary. For a
FORTRAN IV program, this includes all statements
numbers, all programmer-specified symbols, and
all symbols generated by IBFTC.

3. SDD - The short debugging dictionary is
generated. It will contain only the programmer-
specified symbols and the statement numbers used
in the FORTRAN IV program.

If NODD, DD, or SDD is not specified, the debug-
ging dictionary is not generated.

Punch Options

The punch options are:

1. DECK - The object program deck is written
on the system peripheral punch unit for off-line
punching.

2. NODECK - A punched deck is not wanted.

If neither DECK nor NODECK is specified, the
object program deck is written on the system
peripheral punch unit.

Instruction Set Options

The instruction set options are:

1. M90 - The object program uses only 7090
machine instructions. Any double-precision op-
erations are simulated by system macros, and
EVEN pseudo-operations are treated as commen-
tary.

2. M94 - The object program uses 7094 machine
instructions.

3. M94/2 - The object program uses 7094 ma-
chine instructions, and EVEN pseudo-~operations
are treated as commentary.

44

If neither M90, M94, nor M94/2 is specified, it
is assumed that the object program uses only 7090
machine instructions.

Index Register Options

The index register options are:

1. XR3 - The object program uses three index
registers (1, 2, and 4).

2. XRn - The object program can use up to n
index registers if they are required (n is a number
from 4 through 7).

If neither XR3 nor XRn is specified, it is assum-
ed that the object program uses three index
registers.

A detailed explanation of the $IBFTC card is in
the publication IBM 7090/7094 IBSYS Operating
System, IBJOB Processor, Form C28-6389,

FORTRAN Main Program Deck

This deck consists of the sequence of FORTRAN IV
source statements that constitute the main program;
it does not include any subprograms or data to be
read in at object time.

FORTRAN Subprograms

These are the FUNCTION or SUBROUTINE subpro-
grams; coded by the programmer, that are referred
to or called by the main program or another suh-
program.

$IBMAP Card

The $IBMAP card is used in a FORTRAN job only if
one or more of the subprograms referred to by the
main program are coded by the programmer in the
MAP language. When the Processor Monitor rec-
ognizes this card, it calls the Macro Assembly Pro-
gram (IBMAP) to assemble the MAP subprogram/(s)-
A description of the $IBMAP card is in the publica-
tion IBM 7090/7094 IBSYS Operating S’ystem , IBJOB
Processor, Form C28-6389.

MAP Subprograms

The MAP subprograms are routines that are coded
by the programmer in the MAP language and are re-
ferred to in either the FORTRAN main program or a
FORTRAN subprogram. There are a number of ways
that the programmer can get from a FORTRAN pro-
gram to the MAP subprogram and then return. One
method is to use an ENTRY pseudo-operation in the
MAP program to establish an entry point and a SAVE

pseudo-operation with an associated RETURN to re-
turn to the FORTRAN program. This method is ex-
plained in detail in the publication IBM 7090/7094
IBSYS Operating System, IBJOB Processor,

Form C28-6389.

Binary Decks

Binary decks are output from previous compilations
or assemblies. Since the decks are in binary, they
need only be loaded. Two situations where they
might occur in a FORTRAN IV job are:

1. If the programmer wants to run a previously
compiled main program with different data.

2. If the programmer wants to use previously
compiled subprogram(s) with his main program.

$ENTRY Card

The $ENTRY card specifies the location of the init-
ial transfer to the object program at execution time.
The variable field contains a literal, consisting of an
external name to which the initial transfer is to be
made. If the SENTRY card is omitted or if the vari-
able field is blank, the initial transfer is to either
the standard entry point of the first deck retained or
to an entry point whose name is '...... ' (the name
compiled as the standard entry point to FORTRAN IV
main programs).

The format of the $ENTRY card is:

1 16
$ENTRY { Exname '
Deckname

where the variable field contains either an external
name to which the initial transfer is to be made or a
deck name, in which case the initial transfer is to
the standard entry point of that deck.

A $ENTRY card is not needed when one of the fol-
lowing conditions exists:

1. The main program is a FORTRAN IV program.

2. The main program is processed first, and the
desired entry point is the standard entry point of that
program.

When a $ENTRY card is used, it must immedi-
ately follow the source deck. The $ENTRY card
precedes either an end-of-file card or a $DATA
card.

$DATA Card
The $DATA card indicates the beginning of the data

deck. This card may be replaced by an end-of-file
card with a 7-8 punch in column 1. One case where

an end-of-file card must be used is if a (READ n,
list) statement appears in the main program.

Data Deck

This deck contains the data to be used by the main
program or any of the subprograms.

End-of-File Card

The end-of-file card must be the last card of a Pro-
cessor application. The format for an end-of-file
card is:

1

7 D

8 EOF

This card can be replaced with any other control

card that causes a file mark to be written by a peri-
pheral program.

Sample Program and Output

Figure 14 is a sample FORTRAN IV program that
computes the real roots of a set of 50 or fewer
quadratic equations of the form ax2 +bx +c¢ =0,

Figure 15 is the output that was obtained from
the program in Figure 14.

~HOoQ

6 8 16
$J0B
SEXECUTE 1BJOR
$IRJOR MA
$IBFTC DECK1 LIST+SODsNODECK
C PROGRAM FOR COMPUTING THE REAL ROOTS OF A SET OF 50 OR FEWER
C QUADRATIC EQUATIONS OF THE FORM AX*¥2 + BX + C = O
DIMENSTON A{S50)sR(50)sC(50)
WRITE(64103)
RFAD(54100) Ks(A(T)sR(I19CLTIIaT=14K)
DO 50 I=1,K
DISC = BI}**2 = 440%A(II*CITY
IF(DISC) 293394+49
29 WRITF{64101) ALT}sRIIVCOI)
GO To 50
39 ROOT1 = =R{11/(240%A(1}}
ROOT2 = ROOT1
GO TO 45
49 RAD = SORT(DISC)
ROOT1 = (=B(I) + RAD)/(2.0%A(I))
ROOT2 = (=R(1) = RAD)/(240%A(I}}
45 WRITF{6+102) ALE14R(I)+CII)sROOT14ROOT2
50 CONTINUF
100 FORMAT(I5y/(3F12441})
101 FORMAT{3(E124495X)»19HROOTS ARE IMAGINARY)
102 FORMAT{3(F124435X)sF124496X9F1244)
103 FORMAT(1H192X91HA»16X+1HB 916X »1HC 318X 95HRO0T1913Xs5HROOT2s//)
STOP
END
$DATA
00005

Figure 14. Sample FORTRAN IV Program
A i} L ROOTL ROOT2

0.1000E 01 -0.2000f OL 0.1000£ 01 lL.0000 1.0000
0.1000E 01 0.20000 01 =0.1500E 02 3.0000 =44 0000
0.1000E 01 0. 0.1000€ 01 O TS ake IMAGIIARY

~0.2050E 02 -0. 1130k 02 0.4009€ O =.7963 0.2450
0.7100€ O1 0.5300E O} 0. =~V G000 ~0.746%
Figure 15. Sample Program Output

Appendixes 45

APPENDIX H: MACHINE-DEPENDENT FEATURES

The built-in functions shown in Figure 16 are in-
cluded only to allow the user of FORTRAN to make
use of the special logical operations of the 7090/
7094 Data Processing System. They do not form
a part of the standard FORTRAN language since
their function cannot be exactly duplicated on
other machines.

Function Function No. of Type of
Definition Name Arguments Argument Function
Logical inter- AND 2 Real or Real
section of two Integer

36-~bit arqu-

ments

Logical union OR 2 Real or Real
of two 36-bit Integer
arguments

Logical 1's COMPL 1 Real or Real
complement of Integer

the 36-bit

argument

Logical 36-bit BOOL 1 Real or Real
argument from | (see note) Integer

signed 35-bit

argument

Note: The function BOOL is used to get results similar to those
of the FORTRAN II Boolean IF statements.

Figure 16. Built-In Functions

46

A-conversion 16

alphameric fields 16

ALTIO 22

arithmetic expressions 8,40
arithmetic statement functions
arithmetic statement 5,10
arrays 7,15

ASSIGN 11

BACKSPACE 14,21

binary record format 40
blank fields 17

BLOCK DATA subprogram 30
built-in functions 23,25

CALL 27

called program 23
calling program 23
carriage control 18
characters 37
COMMON 30,31
compiler 5

complex constants 6
complex number fields 16
constants 6
CONTINUE 12

control cards 41
control statement 5,11
conversion 15

D-conversion 15

$DATA card 45

DATA statement 34
Debugging Processor 41
deck setup 41

DIMENSION 31

DO 12,14

DO nest 12
double-precision constants 6
DUMP 30

E-conversion 15
ENTRY 27
$ENTRY card 45
END 13

END FILE 14,21

23

EOF 45
EQUIVALENCE 32
executable 35
$EXECUTE card 42
EXIT 30
expressions 8

F-conversion 15

FIOCS 22

FORMAT 14,15,18

FORTRANII 38

FUNCTION subprograms 23, 25, 27

GO TO 11
H-conversion 17

I-conversion 15

$IBFTC card 43

$IBJOB card 42

$IBMAP card 44

IF 11

implicit type assignment 7
index 12

input/output statement 5, 14
input statements 20

integer constants 6

Job 41
$JOB card 42

list specifications 14
logical constants 6
logical expressions 8
logical fields 17

machine indicator 29
mathematical subroutines 28
multiple-record formats 18

NAMELIST 14,19
nonexecutable 35
nonexecutable statements 14
normal returns 26
numeric fields 15

INDEX

O-conversion 15
order 8,35
output statements 21

PAUSE 13

PDUMP 30

PRINT 14,21

Processor Application 41
Processor Monitor 41
PUNCH 14,21

range 12

READ 14,20

real constants 6

relational expressions 9
repetition of field format 17
repetition of groups 17
RETURN 26

returns 26

REWIND 14,21

scale factors 17

sequence 35

source program statement 35
specification statement 5,7
specification statements 31
subroutine name 23

subroutine statement 5
SUBROUTINE subprograms 23,25
subroutines 23

subscripts 7

STOP 13

symbolic input/output designation 22

type specification 7
Type statement 33
variable names 7
variable type 7

variables 7

WRITE 14,21

X-conversion 17

47

C28-6390-3

BBV

®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

V'S ‘N ut pajutd

€-06£9-820

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29.0
	29.1
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	xBack

