File No. 7090-24
Form C28-6391-0

IBM Systems Reference Library

IBM 7090/7094 IBSYS Operating System
Version 13

COBOL Language

The cosoL language (Common Business Oriented Language) is a programming
language closely related to English. This publication describes the coBoL language
used with the 7090/7094 Data Processing System. Programs written in the coBoL
language are translated by the 7090/7094 cosoL Compiler (7090-CB-806), which
is a component of the 7090/7094 1BjoB Processor, a subset of the 1Bsys Operating
System (Version 13). i

Part 1 of this publication describes the 7090/7094 copoL language so that pro-
grammers with no prior knowledge of cosoL can plan and write programs in the
language. Part 1 of this publication contains examples, programming pointers,
control card information, and error messages.

Preface

This publication describes the 7090/7094 cogor lan-
guage for both experienced and inexperienced copoL
programmers. Part 1 of the publication explains the
rules of the 7090/7094 cosoL language. The four divi-
sions of a cosoL program are discussed in the order
in which they appear in a program: mENTIFICATION
DIVISION, ENVIRONMENT DIVISION, DATA DIVISION, and
PROCEDURE DIVISION. Part 11 contains supplemental in-
formation on the use of the language. It includes a
description of control cards needed to run a program,
explanation of error messages produced by the com-
piler, examples of some of the language statements,
and a list of programming pointers. Reference mate-
ria] that is frequently used has been put in the appen-
dixes. There is also a glossary of terms used in the
publication.

The cosor Comipiler is a component of the 1BjoB
Processor. The publication IBM 7090/7094 IBSYS Op-

imer Qriotomm TRIND Dannsoans v MoQ on
erating System, IBJOB Processor, Form C28-6389,

contains a description of the mjoB Processor and in-
cludes machine requirements.
The following publications contain useful supple-
mental material.
Common Business Oriented Language (COBOL)
General Information, Form F28-8053
IBM 7090/7094 IBSYS Operating System, Input/
Output Control System, Form C28-6345
IBM 7090/7094 IBSYS Operating System, IBJOB
Processor Debugging Package, Form C28-6393

This publication, Form C28-6391-0, updates the material in
Forms J28-6260-1 and J28-6260-2 and their associated technical
newsletters Forms N28-0040, N28-0052, N28-0070, N28-0092,
N28-0092-1, and N28-0103 for users of Version 13 of the IBSYS
Operating System.

A new section including control card information and pro-
gramming examples has been added. Most of the text has been
revised. New technical material, indicated by a vertical line in
the margin to the left of the change, updates the paragraph on
I-O-CONTROL under “Environment Division” and the descrip-
tion of the DISPLAY and ENTER verbs under “Procedure
Division.”

Copies of this and other 1BM publications can be obtained through 18M Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, 1271 Avenue of the Americas, New York 20, N. Y. 10020

© 1962 by International Business Machines Corporation

The material in this bulletin has been prepared by
altering the official coBoL-61 manual of the Department
of Defense. Many of the elective features and para-
graphs of general commentary have been eliminated;
and descriptions of certain adaptations of cosoL to the
M 7090 and 7094 computers have been added. In ac-
cordance with the requirements of that manual, the
following extract is presented for the information and
guidance of the user.
“This publication is based on the coBoL System
developed in 1959 by a committee composed of gov-
ernment users and computer manufacturers. The
organization participating in the original development
were:
Air Materiel Command, United States Air Force
Bureau of Standards, United States Department of
Commerce

Burroughs Corporation

David Taylor Model Basin, Bureau of Ships, United
States Navy

Electronic Data Processing Division, Minneapolis-
Honeywell Regulator Company

International Business Machines Corporation

Radio Corporation of America

Sylvania Electric Products, Inc.

uvN1vAc Division of Sperry Rand Corporation.

“In addition to the organizations listed above, the fol-
lowing other organizations participated in the work
of the Maintenance Group:

Allstate Insurance Company

The Bendix Corporation, Computer Division

Control Data Corporation

E. I. du Pont de Nemours and Company

General Electric Company

General Motors Corporation

Lockheed Aircraft Corporation

The National Cash Register Company

Philco Corporation

Standard Oil Company (New Jersey)

United States Steel Corporation

Acknowledgement

“This coBor-61 manual is the result of contributions
made by all of the above-mentioned organizations. No
warranty, expressed or implied, is made by any con-
tributor or by the committee as to the accuracy and
functioning of the programming system and language.
Moreover, no responsibility is assumed by any con-
tributor, or by the committee, in connection therewith.

“It is reasonable to expect that many improvements
and additions will be made to cosoL. Every effort will
be made to insure that improvements and corrections
will be made in an orderly fashion, with due recogni-
tion of existing users” investments in the programming.
However, this protection can be positively assured only
by individual implementors.

“Procedures have been established for the main-
tenance of cosoL. Inquiries concerning the procedure
and methods for proposing changes should be directed
to the Executive Committee of the Conference on Data
Systems Languages.

“The authors and copyright holders of the copy-
righted material used herein: FLow-maTic* (Trade-
mark of Sperry Rand Corporation) Programming for
the UNIVAC* I and II, Data Automation Systems®
1958, 1959, Sperry Rand Corporation; IBM Commer-
cial Translator, Form No. F28-8013, copyrighted 1959
by 1BM; FacT pst 27 A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell, have specifically authorized
the use of this material, in whole or in part, in the
COBOL-61 specifications. Such authorization extends to
the reproduction and use of cosoL specifications in
programming manuals or similar publications.

“Any organization interested in reproducing the
coBoL report and initial specifications, in whole or in
part, using ideas taken from this report or utilizing this
report as the basis for an instruction manual or any
other purpose is free to do so. However, all such
organizations are requested to reproduce this section
as part of the introduction to the document. Those
using a short passage, as in a book review, are re-
quested to mention “coBoL” in acknowledgment of the

source, but need not quote the entire section.”
*Trademark of Sperry Rand Corporation

Contents

PART 1
Introduction 7
DIVISIONS OF A COBOL PROGRAM 7
NOTATION USED IN THE MANUAL 8
Identification Division 9
Environment Division 10
CONFIGURATION SECTION0 ... 10
SOURCE-COMPUTER Paragraph 10
OBJECT-COMPUTER Paragraph 11
SPECIAL-NAMES Paragraph 11
INPUT-OUTPUT SECTION 11
FILE-CONTROL Paragraph 11
I-O-CONTROL Paragraph 13
Data Division 16
ORGANIZATION OF DATA, 16
STRUCTURE OF THE DATA DIVISION 16
Data-Item Description Entry 16
Level-Number 17
Data-name, FILLER 17
REDEFINES Clause 18
PICTURE Clause 18
SIZEClause 20
CLASS Clause 21
USAGE Clause 21
Combined SIZE, CLASS, and USAGE Clause 21
SYNCHRONIZED Clause 22
SIGNED Clause 22
POINT LOCATION Clause. 22
BANKWHEN ZERO Clause 22
OCCURS Clause 22
VALUE Clause 23
FILE SECTION 24
File Description Entry 24
FD,Filename 24
DATA RECORDS Clause 24
RECORDING MODE Clause 25
BLOCK CONTAINS Clause 25
RECORD CONTAINS Clause 27
LABEL RECORDS Clause 27
VALUE Clause 29
Description of Logical Records 29
WORKING-STORAGE SECTION 30
CONSTANT SECTION 31
Procedure Division 32
STRUCTURE OF THE PROCEDURE DIVISION 32
Categories of Verbs 32
Conditional and Imperative Verbs 32
COBOL VERBS i ... 33
Declaratives 33
USE Verb 33
Input-Output Verbs 34
OPENVerb 34
READ Verb 34
WRITE Verb 35
CLOSE Verb 35
ACCEPT Verb 35
DISPLAY Verb 38
Arithmetic Verbs 38
COMPUTE Verb 38
ADD Verb 39

MULTIPLY Verb
DIVIDE Verb
Data Manipulation Verbs
MOVE Verb
EXAMINE Verb
Procedure Control Verbs
GOTO Verb
ALTER Verb

Compiler Directing Verbs
EXITVerb
NOTE Verb
STOP Verb
ENTER Verb

Tests — Conditional Expressions

Simple Conditional Tests
Relation Test
Sign Test
Class Test
Conditional Variable Test
Switch Status Test

Compound Conditions

Nested Conditionals

PART 1

Examples of Language Usage

ENTER VERB
FORTRAN 1V Library Subroutines
Typesof Data
Example of the Use of FORTRAN IV
Library Subroutines,
COBOL Linkage to MAP, FORTRAN IV, and
COBOL Subprograms
Dump Subroutine

BLOCKING AND DEBLOCKING RECORDS
Example of Deblocking Records Using COBOL

Programming Pointers

PARTIAL LIST OF COMPILER LIMITATIONS
Size

Formulas and Conditional Expressions
Miscellaneous
CHECKLIST
Order
Efficiency
Redundant Clauses
Input-Output
Level-Numbers
Size

CONTROL CARDS USED IN A COBOL PROGRAM
$JOB Card . .) . o
SEXECUTE Card
SIBJOB Card
$IBCBC Card
$CBEND Card,

Compile-Time Debugging 71

$IBDBC Card 71

Count-Conditional Statement 71
Load-Time Debugging 72
COBOL Compiler Error Messages 73
Appendix A 84
REFERENCE FORMAT \tittime e 84
Contents of Columns v, 84
MATGINS .. .\t 84
Punctuation 84
TYPES OF NAMES o o coee et e e e 84
NAME FORMATIONo oottt et e 85
LITERALS - o o o e e e e e e e e e e e e e e e 85
QUALIFIERS . . -« o« oooeeeee o oo et 85

SUBSCRIPTS -« « o« v e oo e e e e e e e e 86

FIGURATIVE CONSTANTS
ORGANIZATION OF SOURCE PROGRAM

AppendixB.

STANDARD LABEL FORMATt ..
Format of the IBM Standard 84-Character Header Label .
Format of the IBM Standard 84-Character Trailer Label .
Format of Required Labels in Blank Reels
IBM COBOL CHARACTER SETt
COLLATING SEQUENCEoooimmnimaeen. .
MAP BCD CHARACTER CODE
ALPHANUMERIC CHARACTERS CORRESPONDING TG DIiGITS
WITH A SIGN OVERPUNCHooimmn oo,
COMPLETE LIST OF 1BM 7090/7094 COBOL WORDS

List of Hlustrations

Figure
1

w

© o =~-1»

10

12
13
14
15

16

Title

Sample Entries in the IDENTIFICATION
DIVISION

Sample Coding in the ENVIRONMENT
DIVISION

Codes Used to Assign Files to Symbolic Units. . .

Codes Used to Assign Files to Symbolic
Intersystem Units

System Names Used to Assign Files to
System Units

File Assignment Table — $FILE Control Card. . .
Sample File Description Entry.
Logical Records in Blocks on Magnetic Tape. . . .

Effect of Synchronization on Allocation of
Core Storage

Determination of Buffer Size
File Characteristics
Label Information for Input Files.
Label Information for Output Files
Standard Information Provided for Output Files .

Sample Data-Item Descriptions in the
FILE SECTION

Sample Data-Item Descriptions in the
WORKING-STORAGE SECTION

al
Sample Data-Item Descriptions in the

CONSTANT SECTION

e ol ong

12

13

13
14
24

26
27
28
29
29
29

Figure
18

19

20
21
22

23
24

26
27

29

31

32

[¥3]
W

Title

Operations Initiated by Input-Output Verbs
onlnputFiles.

Operations Initiated by Input Qutput Verbs
on Output Files.

Example of ADD CORRESPONDING.
Effect of MOVE Statements.

Permissible Source and Receiving Fields in
MOVE Statements

Effect of MOVE CORRESPONDING Statement .
PERFORM Statement with One Subscript.
PERFORM Statement with Two Subscripts.
PERFORM Statement with Three Subscripts . . .
Logical Connectives

Evaluation of a Nested Conditional Statement . .

FORTRAN IV Mathematical Subroutines.

Statements Used in COBOL, MAP, and
FORTRAN IV to Enter the Linkage Mode

Organization of an Array Described with Nested
OCCURS Clauses

The IBSYS Operating System.

Sample Control Card Deck for One COBOL
Compilation

Sample Control Card Deck for Two COBOL
Compilations

A coBoL programming system consists of the coBoL
language (or a subset) and a compiler. The coBoL
language was designed for use with computers that
differ in size and logical structure. A cosoL compiler
is a program that adapts the language to the computer
on which the object program is to be run. The 7090/
7094 cooL compiler translates a 7090/7094 cosoL lan-
guage source program into a mnemonic programming
language that is closer to machine language than cosoL.
This language is, in turn, translated into the machine
language that can be executed on the 7090/7094 com-
puters. These operations are directed by control cards
(explained in Part 11 of this publication).

Many detailed operations, which are difficult or
lengthy to program in machine language or a language
that is close to machine language, can be generated
by several instructions written in the cosor language.
For instance, if externally stored information is to be
used in a program, it is necessary to determine when
to bring it into the computer, where to put it, and what
to do in the event of an error or malfunction in trans-
mission. One procedure statement takes care of all of
this in a coBoL program.

The cosoL language is very much like English. The
restrictions imposed on the language are necessary to
ensure efficient compilation and assembly. Since the
language is so much like English, a cooL program is
self-documenting; the logic of the program can be
understood from the program and additional docu-
mentation is unnecessary.

Divisions of a COBOL Program

There are four divisions of a coBoL program: the
IDENTIFICATION DIVISION, the ENVIRONMENT DIVISION,
the pata pivisioN, and the PROCEDURE DivisioN. The
statements to solve the problem are given in the pro-
cepURE Division. The other divisions provide informa-
tion so that the statements in the PROCEDURE DIVISION
can be executed.

PART |

Introduction

The mENTIFICATION DIvisION identifies the program

a1 e)
with Iinftormai:

1 1 £ | I |
Wiul 1IN0 n such as the name 01 the program ang

tion such as the name of the program and
the programmer, the date, and general remarks.

The ENVIRONMENT DIVISION relates the physical ma-
chine configuration to the program. Information that
is peculiar to a given computer or that is associated
with the physical machine configuration is given in
this division. One of the major functions of the ENVIRON-
MENT DIVISION is to specify the input-output units
(magnetic tape units, card reader, card punch, printer,
etc.) to be used by the program. Therefore, if a pro-
gram written for a computer with one configuration is
to be run on a computer with a different configuration,
this is the division that is changed.

The pATA DIVISION contains a description of data
used in the program. The familiar concept of files and
records is retained in the coBoL data organization. An
organization of data related to a particular subject is
called a logical record. A file is a group of logical
records stored outside the computer. For example, an
employee file can be composed of a payroll record and
a personnel record for each employee in the company.

A description of the physical characteristics of each
file used in the program must be given in this division.
Some of the information that can be provided is record-
ing mode, density, and block size.

Each logical record in the file must also be described
in the paTa prvision. The programmer describes the
type of logical record rather than each individual rec-
ord. For example, for the employee file, only the two
types of logical records, payroll records and personnel
records, are described. The entries form a dummy
description of an area of storage that is filled with the
values in the record when it is moved to the area.

In addition to the descriptions of files and records,
the DATA DIVISION must contain a detailed description
of information used in the program that is not organ-
ized into files, for example, tables and constants.

The PROCEDURE DIVISION contains instructions or
statements for solving the problem. Two types of
statements can be used in this division: imperative
statements to transmit data, perform arithmetic oper-
ations, direct the compiler, etc.; and conditional state-
ments to test the sign of a number, the on or off status
of an entry key, etc.

Introduction 7

Notation Used in this Publication

Throughout this publication, basic formats for entries
are given as they should appear on a cosoL program
sheet. The rules for using the program sheet are given
in “Appendix A.” The following notation is used in the
formats:

1. All upper case words that are underlined are re-
quired.

2. All upper case words that are not underlined are
used for readability only and may be omitted.

3. All lower case words represent information that
must be supplied by the programmer. The nature of
the information required is indicated in each case.

4. When material is enclosed in braces { 1}, one,
and only one, of the enclosed items is required; the
others are to be omitted. The choice is made by the
programmer.

5. Material enclosed in brackets [] represents an
option and may be included or omitted.

6. Sometimes part of a format may be repeated.
This is indicated by three dots (an ellipsis) following
the part to be repeated. The dots apply to the last
complete element preceding them. For example, if a
group of items is enclosed in brackets and three dots
precede the right bracket, everything in the brackets
must be repeated.

7. Punctuation, where shown, is obligatory.

8. When items are written in a series, they may be
separated by a space, by a comma followed by a space,
by the word AnD, or by a comma followed by the word
AND,

9. In some cases where many choices are available,
the formats are separated into numbered options.

The ENTIFICATION DIvisioN is used to identify or
label the program and to provide comments about it.
The information becomes a part of the listing, but has
no effect on the program. The format for the mENTIFI-

A TTAAT TTTTQTANT 1Qe
UATIUIN ULVIDIUIN 1D,

IDENTIFICATION DIVISION. z‘
%ID DIVISION.
PROGRAM-ID. program-name.
AUTHOR. author-name.]
[INSTALLATION. any sentence or group of sentences.]
[DATE-WRITTEN. any sentence or group of sentences.]
[DATE-COMPILED. any sentence or group of sentences.]

Identification Division

[SECURITY. any sentence or group of sentences.]
[REMARKS. any sentence or group of sentences.]

The PROGRAM-ID appears at the beginning of the out-
put listing. Program-name is the identifying name of
the program. It may be composed of from 1 to 30
characters chosen from the letters A through Z, the
numbers 0 through 9, and the hyphen. It may not con-
tain embedded blanks and may neither begin nor end
with a hyphen.

Figure 1 shows sample entries in the IDENTIFICATION
DIVISION.

IBEM CoBOL PROGRAM SHEET Fm
§>AGE3 PROGRAM TEST PROGRAM SYSTEM TBM- 7094 [SHEET/ oF ¢

o[/lo PROGRAMMER A. F A 3 DATE f/’zf IDENT. ;’73|E|5|Tl 0,1 80
SERIALIL ! =

8IA '8

4 678 :IZ 6 20 24 28 32 36 40 44 48 52 56 60 64 68 72
oillo! I|D|E|N:7-lsz|IlclﬁlTuzyolﬂn lplrlvlzlslrlolﬂl'v TN T T N T T T O T O T O O S YN OO N N S T T AN T OO0 A B B A AR B O |
o\'zvo P|R1016:R1A\M1'JIQDI'L LTlflslrn-lplktolelkxAlmw.l YT N T N T N S Y 0 U O T W T N T N Y MOV O
01310; Aﬂ.T,H:O'R|" 1 |A1MDIR|EIM lFOl/lLlL'EIRu |‘|s|T|0|N|" IS TN T T T N T T T T T T OO O T 0 20 Y 0 000 SO OO B M
olylo‘ IINISIT}AILILIAITIIIOIM : (] Jm‘lslﬂlzlﬂlslrlolﬂl Ic10|RlP|olklA.l7;I|ol”| .l NS T T U S TN N N N N T T T T T Y Y I B
anflo; {Dﬂ|7:£:=|ullklzlrl"rl£|ﬂ’l.l #:A|Y1 faI,I;I |'I:"|‘151'J O Y S T T T O T N T N T O Y0 T U W O A A B O
0|‘|0j]RIEﬂIA:RIK]sl.I) ITI”IIISK |I|s| ‘7-IEI5I7-I 1’1 |0|F| |‘| lrnEl‘slTlsn T T T Y T T WY O N T T O U0 Y Y B B A O O

Figure 1. Sample Entries in the IDENTIFICATION DIVISION

Identification Division 9

Environment Division

One of the major advantages of the copoL language is
that a program written for one computer can be run
on a different computer with only a few changes in the
program. Information about the physical character-
istics of the computer is given in the ENVIRONMENT
DIVISION, so that a change in computers entails major
changes in the ENVIRONMENT DIVISION only.

The ENVIRONMENT DIVISION is composed of two sec-
tions: the conriGURATION SECTION and the INPUT-
oUTPUT SECTION. Entries in these sections are optional.
There are three paragraphs in the CONFIGURATION
sEctioN. The SOURCE-coMPUTER paragraph identifies
the computer on which the program is to be compiled.
The oBjECT-COMPUTER paragraph identifies the com-
puter on which the compiled program is to be run.
The SPECIAL-NAMES paragraph assigns names to the
entry keys on the computer so they can be referred
to in the program.

Configuration Section

The CONFIGURATION SECTION specifies the computer on
which the program is to be compiled and the com-
puter on which the program is to be run. Names may
also be assigned to the entry keys on the computer in
this section.

There are two paragraphs in the INPUT-OUTPUT
secTION. The FILE-cONTROL paragraph assigns files to
input-output devices, and the 1-0-CONTROL paragraph
provides for taking checkpoints for rerun purposes and
causes block sequence numbers or checksums to be
written or checked.

The following list shows the order of the entries in
the ENVIRONMENT DIvisiON. Entries may be omitted if
they are not needed in the program.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
1-O-CONTROL.

Figure 2 shows sample coding in the ENVIRONMENT
pvisioN. Detailed explanations are given under the
names of the entries.

SOURCE-COMPUTER Paragraph

This entry identifies the computer on which the pro-
gram is to be compiled. The format is:

/]

IBM-7090.
IBM-7094.

[SOURCE-COMPUTER. {

IBM COBOL PROGRAM SHEET kg vl
|PA653 ::22:::“EZ'£S TA 'DROGRAM SYSTEM IBM - 70 7¢ SHEETl OF/

030 F.A. DATE IDENT. 7 80|
20— AL S Zesm o]

SA 's

4 6 (7}8 :lZ 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72]
olllo! ELNIVII:RIOINI“IEINIrll DIVISION: | 00, TR O NN S A S T N A N A A WY 00 YA RO
0..7.'0% CONFIGURATION SECTION® \ O T YTO H N T T H T TO Y O AA AN
OELO% s|o|U|R:clfl-[C10|M|P|Ux7—|E|R:'| |I|B|M|_|7501?|4|'1 IS T S O T N N O T I S T T S 00 Y AN A ST W0 M A A A
ol4I0§ 0BIECT-COMPUTER - IBM-7094- | TS S YO W T O T T O Y S N U Y B S WY W M Y
050 SPECIAL-NAMES - KEY 3 I8 INTERRUPT ON_STATUS LS MESSACE S L
ol‘loi L OFF STATYS, IS MESSAG2: KEY 22 0N, STATYS, IS CONTINUATION- | |
070 INPUT-OVTPYUT SECTION: IS T S S A S A S S SR S A A WY S A Y A N S AN A A
080 |FILE-CONTROL - SELECT EMPLOYEE-FILE ASSIGN TO TAPE-UNITS FOR ,
990 |, MULTIPLE REEL SELECT MASTER-INPUT ASSIGN 7.9 lrlAlPlEl-l‘/I”IIIn Ll
Ilolo | :$|ELL|EICIT1 lolulTlPIU|T|-|F|I|L|E| IRIEIN1A|M|I|N|(;| |E|M|P|L|OIY|EIEI-II'.|IIL|EI r‘lsl‘srrncn’ll lTlal I T T O T T |
/./.0 |||:T|A|P1£|'|U|N|IIT;'||||||||||||.||l||1||||1||||||lll|||||||1|1||||1|||
/R0 I-0-CONTROL- APPLY CHECKSUM ON Ié-IMlPIL\oIYIEIEI-I,:IIILIEI |l'1|'4|‘s|7:E|R|-|I|MP|Ux Ll
1390 1, :RlElRlUIIvl ON, |c|”|Enc|K|P|o|I|N|T1-|U[N.IITI EVERY, |B|E|¢|I|”|~n[;/vnqx |O|F| |R|E|E:L| OF | 1, I
/,‘/|0?|||:AILJ".F;I|L|E1$|'|11111111|||wnllln||r||:|1:||g|x.;

Figure 2. Sample Coding in the ENVIRONMENT DIVISION

10

OBJECT-COMPUTER Paragraph

This entry identifies the computer on which the com-
piled program is to be executed. The format is:

IBM-7090.
. R, ST
[OBJ ECT-COMPUTE {IBM-7094. }]

SPECIAL-NAMES Paragraph

This entry is used to assign names to the ox and/or
ofF status of the entry keys on the computer. The
switch status test in the PROCEDURE DIVISION can be
used to determine whether an entry key is oN or oFF
during the program. The machine operator sets the
entry keys when the program is to be run; by definition,
an entry key is o if it is down and oFF if it is up. An
installation may have restrictions as to which, if any,
of the entry keys may be used by the program. The
format of the SPECIAL-NAMEs paragraph is:

r s
1

SPECIAL-NAMES. KEY [l§ mnemonic-name]

35
ON STATUS IS switch-status-name-1
OFF STATUS IS switch-status-name-2

OFF STATUS 1 IS switch-status-name-4
l

ON STATUS IS switch-status-name-3 }:'

l?‘x‘

\35/

The 36 entry keys that may be tested are numbered
S, 1 through 35. A key may be designated only once in
the paragraph but the ox and oFF positions can each
be assigned two switch-status-names. The order of the
on and oFF clauses is not significant.

The optional clause, 1s mnemonic-name, is used for
readability only. This name cannot be referred to in the
PROCEDURE DIVISION.

Input-Output Section

The INPUT-OUTPUT SECTION specifies the peripheral de-
vices that are to be used in the program to provide data
to the computer and to receive processed data from
the computer. This section is also used to specify the
places in the program where checkpoints are to be
taken if the program is to be rerun and to request the
formation and checking of block sequence numbers
and checksums.

'FILE-CONTROL Paragraph

Information that is used or developed by the program
may be stored externally. File description entries in
the paTA pIvisioN name the files into which the in-
formation is arranged and specify their physical char-
acteristics. The FILE-cONTROL paragraph assigns the
files (by the name given in the file description entries)
to input-output devices.

There are three forms of the FILE-CONTROL para-
graph. Option 1 is the general form. Options 2 and 3
assign files to specific input-output devices.

The three formats of the FILE-CONTROL paragraph
are:

Option 1.
[FILE-CONTROL. SELECT file-name-1

[RENAMING file-name-2]
1 TAPE-UNIT
1 TAPE-UNIT FOR MULTIPLE REEL
2 TAPE-UNITS FOR MULTIPLE REE
CARD-READER
PRINTER
(CARD-PUNCH

ASSIGN TO

[SELECT...].

Option 2.
I:FILE-CONTROL. SELECT file-name-1

[RENAMING file-name-2]
symbolic-tape-unit-name
[FOR MULTIPLE REEL]
symbolic-tape-unit-name-1
symbolic-tape-unit-name-2
FOR MULTIPLE REEL

ASSIGN TO ¢ symbolic-card-unit-name
system-unit-name
[FOR MULTIPLE REEL]
system-unit-name-1 system-unit-name-2
FOR MULTIPLE REEL

NONE

[SELECT...] . :I

Option 3.
I:FILE—CONTP\OL. SELECT file-name-1

[RENAMING file-name-2]
hypertape-unit-name
[FOR MULTIPLE REEL]

ASSIGN TO hypertape-unit-name-1
HYPERTAPE hypertape-unit-name-2

FOR MULTIPLE REEL

[SELECT...]. :I

Each file must be assigned to an input-output device
with a SELECT entry in the FILE-CONTROL paragraph.
The word seLect identifies the beginning of informa-
tion for each file. If a file is used for both input and
output, there must be two seLECT entries for it.

Environment Division 11

File-name-1 is the name of the file being assigned to
a peripheral device. If the RENAMING clause is not used,
this is the name given to the file in the file description
entry in the pata pvision. If the RENaAMING clause is
used, file-name-1 is the name of a file that has the same
description as file-name-2. There is no separate file
description entry for file-name-1; however, file-name-2
must have a separate seLEct entry. Two files that
share a file description entry share a storage area;
therefore, they must not be in OPEN status at the same
time. That is, if, in the PROCEDURE DIVISION, an OPEN
statement is executed for one of the files, a cLOSE
statement must be executed for that file before an
OPEN statement is executed for the other file.

File-name-1 and file-name-2 are formed according
to the rules for names; that is, they must consist of
from 1 to 30 characters chosen from the letters
A through Z, the numbers 0 through 9, and the hyphen.
At least one of the characters must be alphabetic. The
names must not contain embedded blanks and must
neither begin nor end with a hyphen.

Only the assioN clause differs in the three options.
MULTIPLE REEL must be specified in the assion clause
in all three options if the file is on two or more reels
of magnetic tape. A file may be assigned to one or
two, but not more than two, tape units. If a file is
assigned to two tape units, the units are used alter-
nately for successive reels.

When option 1 is used, the programmer has no con-
trol over which physical unit is to be assigned; for
example, if TapPE-UNIT is specified, any one of the tape
units on any one of the channels may be assigned by
the operating system.

Option 2 is used to assign files to specific magnetic
tape units and unit record equipment. If AssiGN TO
NONE is specified in option 2, the file is assumed to be
unavailable during the running of the program. Option
3 is used to assign files to specific Hypertape units.

Files may be assigned to specific magnetic tape
units, unit record equipment, or Hypertape units by
specifying the device to be used after the words
ASSIGN TO Or ASSIGN TO HYPERTAPE. The device may be
specified as a symbolic unit, an intersystem unit, or a
system unit.

Symbolic Units: Files may be assigned to symbolic
units with a code that specifies the device and/or
channel and/or unit. Figure 3 shows the codes that
are used, the range of values of the codes, and their
interpretation.

Intersystem Units: Intersystem units arc used for
files that provide data to related programs. The unit
used for an output file in one program may be re-
served for an input or an output file in a different pro-
gram. Figure 4 shows the codes used for symbolic

12

Symbolic Tape Units

Codes

Range of Values

Interpretation

M=1lorlV
(Denotes an IBM 729 I or
IV Magnetic Tape Unit.)

Any available tape unit of
model number M is assigned
to the file.

H denotes Hypertape.

K denotes one of the unit
numbers 0, 1, . . ., 9.
| denotes interface 0 or 1.)

X X=AB,...,H Any available tape unit on
(Denotes one of the real physical channel X is as-
channels A, B, . . ., H) signed to the file.

P P=ST...,Z All files in the program hav-
(Denotes a symbolic, i.e., ing symbolic channel P desig-
unspecified, physical chan- nation are assigned to the
nelS, T,...,Z) same channel, if possible.

Xk X=A,B, ..., H The kth available tape unit
k=01...,9 on the specified channel X is
(k denotes one of the unit assigned to the file. Note
numbers 0, 1, . . ., 9. X that the parentheses are re-
denotes one of the real quired.
channels.)

PM P =S,T...,2 Any available tape unit of
M=1Morliv model type M on the speci-
(P denotes the symbolic chan- fied symbolic channel P is
nel, and M denotes the assigned to the file.
model of the tape unit.)

PkM P =S, T,...,Z Any available tape unit on
k=01...,9 the symbolic channel P hav-
M=1llorlV ing model number M is as-
(P denotes the symbolic signed to the file. The (k) in
channei, k denofes the unit this usage indicates the order
number, and M denotes the of preference for the chan-
model.) nel so that if the number of

available tape units on the
channel is less than the total
requested for the channel,
those with lower numbers are
assigned to the same chan-
nel. Note that the paren-
theses are required.
Symbolic Unit Record Equipment

Code Range of Values Interpretation

RDX X=A,B,...,H The card reader on channel
(Denotes the real channels.) X is assigned to the file.

PRX X=A,B,...,H The printer on channel X is
(Denotes the real ch Is.) d to the file.

PUX X=A,B,...,H The card punch on channel X
(Denotes the real channels.) is assigned to the file.
Symbolic Hypertape Units

Codes Range of Values Interpretation

XHK/I X=A,B,...,H The Kth available Hypertape
H=H unit on channel X with inter-
K=01...,9 face 1 is assigned to the file.
1 =0o0rl. If the interface is to be O,
(X denotes one of the real the designation /1 may be
channels A, B, . . ., H. omitted.

Figure 3. Codes Used to Assign Files to Symbolic Units

Code Range of Values Interpretation
! 1=K ..., Q The file is assigned to inter-

(I denotes a symbolic inter- system channel I.
system, i.e., unspecified,
physical channel J, K, . . .,
Q.)

M 1 =LK...,Q The file is assigned to inter-
M= IllorlVv system channel |, model M.
(I denotes an intersystem The model must not be given
channel, and M denotes the for an intersystem input unit.
model of the magnetic tape
unit.)

k) | =JK...,Q The file is assigned to the kth
k=0,1,...,9 available unit on intersystem
{i denotes an intersystem channe! 1. Note that the pa-
channel, and k denotes the rentheses are required.
unit.)

NOTE: An R may be added to any of the codes to indicate to the

operating system that reserve status for the unit ends after the

current job is complete.

Figure 4. Codes Used to Assign Files to Symbolic Intersystem
Units

intersystem units, their range of values, and their in-
terpretation.

System Units: System names have been given to de-
vices that have special functions within the BsYs
Operating System. For example, the system input unit
has the name sysiNi. When the system tape is dis-
tributed to the installation, sysixi is the name for
channel A, unit 2. Although the installation may
change the machine configuration, the system input
unit is still named sysiNi. Files can be assigned to
peripheral devices by system names. Figure 5 shows
the system name, the physical device to which the
system unit was assigned when the system tape was
distributed to the installation, and the interpretation
of the system name.

Altering Unit Assignments: When a coBOL program

hrr\\'n'r]c\ll in
PLVYiuTU 1

is compiled, the information about the files
the FILE-CONTROL paragraph in the ENVIRONMENT DIVI-
siox and in the file description entries in the DATA DIVI-
s1oN is combined to form a complete description of the
files. When the program is loaded, this information can
be altered by a sriLE loader control card. The sFILE
control card is placed after the siBLDR control card in
the binary deck, which is output from the compilation
if requested on the siBcBC control card. The rules for
altering unit assignments are:

1. Files assigned to tape units (including files desig-
nated AssIGN TO NONE) cannot be reassigned to unit
record equipment.

2. Files assigned to unit record equipment cannot
be reassigned to tape units.

3. Files assigned to peripheral equipment by system
names that allow either tape or unit record equipment
(sysiNt, sysoul, and syspp1) may be changed to any
other tape or unit record equipment. The description
of the file must, however, conform to the type of equip-
ment being used.

Assignments in
System the Distributed
Name Version Only Interprefation

SYSINI A2 The file is assigned fo the cur-
rent system inpui unit. The
physical unit may be deter-
mined by the machine opera-
tor and may be a card reader
or a tape unit.

SYSOU1 B1 The file is assigned to the cur-
rent system output unit. The
physical unit may be a printer
or a tape unit.

SYSPP1 B2 The file is assigned to the cur-
rent system peripheral punch
unit. The physical unit may be
a card punch or a tape unif.

SYSUTk k=1 A3 The file is assigned to system

=2 B3 utility tape k where k=1
=3 A4 through 9.
=4 B4
5.9 not assigned
SYSLBk k=1 Al ~ The file is assigned to system
2-4 not assigned library tape k where k =1,
2, 3 or 4.

SYSCRD on-line card reader The file is assigned to the sys-
tem card reader.

SYSPRT on-line printer The file is assigned to the sys-
tem printer.

SYSPCH on-line card punch The file is assigned to the sys-
tem card punch.

SYSCKk not assigned The file is assigned to the sys-
tem checkpoint unit k where
k=1or 2.

NOTE: The $FILE loader card must be used to assign files by system

name to 7340 Hypertape units. When this is done, the density speci-

fication in the RECORDING MODE clause in the file description entry
is ignored. If a file is assigned fo two units and the first is a Hyper-
tape unit, the second must also be a Hypertape unit.

Figure 5. System Names Used to Assign Files to System Units

Figure 6 shows the relationship between the forms
of the assioN 1O clause in the FILE-CONTROL paragraph
and the unit assignment fields on the sFiLe card. The
sFILE control card is described in IBM 7090/7094 IBSYS
Operating System; IBJOB Processor, Form C28-6389.

1-O-CONTROL Paragraph

This optional paragraph has two clauses. The first clause
(the rerUN clause) specifies that checkpoints are to be
taken. A checkpoint is a reference point in the program.
The contents of core storage are recorded on magnetic
tape, which can be read back into core storage to
restart the program from an intermediate point.

The second clause (the appLy clause) is used to re-
quest the formation and checking of the block sequence
number or of the checksum of a block of logical rec-
ords on a file. The block sequence number shows the
number of the block on the current reel of the file,
that is, the first block on the current reel, the second
block on the current reel, etc. The checksum, formed
by logical addition of the data in the block, is used to
check that the data has been transmitted accurately.
The block sequence number and/or the checksum is

Environment Division 13

Contents of Associated $FILE Card Fields

Form of ASSIGN TO Clause Primary Unit Secondary Unit Multireel Field
1 TAPE-UNIT omitted omitted omitted
1 TAPE-UNIT MULTIPLE REEL omitted omitted REELS
2 TAPE-UNITS MULTIPLE REEL omitted omitted REELS
CARD-READER CRD omitted omitted
CARD-PUNCH PCH omitted omitted
PRINTER PRT omitted omitted
symbolic-tape-unit-name symbolic-tape- omitted omitted
e e umitname —_]
Example: A A omlﬂ‘ed omitted
symbolic-tape-unit-name symbolic-tape- omitted REELS
———_ _FOR MULTIPLE REEL ___ o unitname]
Example: TIV MULTIPLE REEL TIvV omitted REELS
symbolic-tape-unit-name-1 symbolic-tape- symbolic-tape- REELS
symbolic-tape-unit-name-2 unit-name-1 unit-name-2
| FOR MULTIPLE REEL ___ S — —_—
Example: C(3), C(4) MULTIPLE REEL C(3) C(4) REELS
symbolic-card-unit-name symbolic-card- omitted omitted
e ———|—_unitname ————— -
Example RDA RDA omitted ommed
system-unit-name abbreviated omitted or may be filled
system-unit- in automatically
——— e e M s e e e s e i e e e S S S —_—
Example: SYSINT* IN1 IN2 REELS
system-unit-name abbreviated omitted or may REELS
FOR MULTIPLE REEL system-unit- be filled in
e —_)—mame L _ guomafelly _
Example: SYSUT'I MULTIPLE REEL UT1 omitted REELS
system-unit-name-1 abbreviated abbreviated REELS
system-unit-name-2 system-unit- system-unit-
name-1 name-2
Example: SYSUT2, SYSUT3 uT2 uT3 REELS
FOR MULTIPLE REEL
NONE NONE omitted omitted
*In the example, this particular file automatically takes on the MULTIREEL characteristic of the system unit.

This is also true for SYSOU1 and SYSPP1 which are system MULTIREEL files.

Figure 6. File Assignment Table — $FILE Control Card

written in a block sequence word, which is appended
by the compiler to each block of logical records.
The format of the 1-0-coNTROL paragraph is:

I-O-CONTROL.
RERUN [ON CHECKPOINT-UNIT]
EVERY BEGINNING\

ALL FILES

INPUT FILES

OUTPUT FILES ‘
file-name-1 [file-name-2 . . .]

APPLY {SEQUENCE—CHECK} gﬁ

OF REEL OF

CHECK-SUM
ALL FILES
INPUT FILES
OUTPUT FILES
\ file-name-1 [file-name-2 . . .]

[{RERUN ...}
| \APPLY... f |

The reEruN clause, which requests the taking of
checkpoints, may be given for all input and/or output

14

files or for only those specified by file-name-1, file-
name-2, etc. If ON CHECKPOINT-UNIT is specified, check-
points are written on the unit provided as the standard
checkpoint unit each time a real switch occurs. If on
CHECKPOINT-UNIT is not specified, checkpoints are
written, each time a reel switch occurs, following the
header label on the new reel of tape for labeled output
files. If the file is not a labeled output file, oN CHECK-
POINT-UNIT must be specified.

The aPpLY clause is used to request the checking of
block sequence numbers (SEQUENCE-CHECK) or the
checksums (cHECk-sum) for input files and the writing
of the block sequence numbers or checksums for out-
put files. The formation or checking of block sequence
numbers or checksums may be requested for all input
and/or output files or for only those specified by
file-name-1, file-name-2, etc. The following rules apply
to the use of the appLY clause:

1. The clause may be used only for files recorded in
the binary mode.

2. If cHECKk-sUM is specified, SEQUENCE-CHECK must
also be specified.

3. If an input file contains block sequence words,
they must be accounted for in determining the size of
the blocks in the file. When the appLY clause is used,
the compiler automatically adds one word to the block
size. If the appLY clause is not used and there are block
sequence words on the file, the user must add one
word to the block size specified in the BLOCK CONTAINS
clause of the file description entry.

If the input-output system detects an error in the

checksum or block sequence number, a message indi-
cating the type of error is written, a core-storage dump
is taken, and execution of the program is terminated.
It is possible to avoid taking the dump and terminating
execution by specifying alternate procedures in the
declaratives section of the PROCEDURE DIVISION. An
example is given in Part i1 of this publication.

The 1-0-cONTROL paragraph is optional, but it must
follow the FILE-CONTROL paragraph when it is used.

Environment Division 15

Data Division

Organization of Data

A file is the largest body of related information in a
coBoL program. A file may consist of any number of
logical records composed of group items and elemen-
tary items.

An elementary item is a piece of data that is never
further divided. For example, INTEREST-RATE can be
the name of an elementary item if it contains no sub-
divisions. Several elementary items that are logically
connected can be subdivisions of a group item. For
example, DATE can be the name of a group item con-
taining elementary items YEAR, MONTH, and pay. The
term data-item as used in this publication refers to
both group items and elementary items.

Elementary items and group items can be organized
to form logical records. For example, a payroll record
can contain data-items such as the name of an em-
ployee, his rate of pay, and the number of his de-
pendents. The series of records, one for each employee,
form a file. All of the records have the same format,
that is, contain the same data-items, but the items have
different values for each employee. One file might
contain a series of payroll records and a series of per-
sonnel records, or there might be two separate files
with only one type of record on each file.

Structure of the Data Division

The paTA pIvISION contains descriptions of data used
in a program. It is divided into three sections: the
FILE SECTION, the WORKING-STORAGE SECTION, and the
CONSTANT SECTION.

All data that is stored externally in files, for example,
on magnetic tape, is described in the FILE SECTION.
Information that is developed and stored in the com-
puter is described in the WORKING-STORAGE SECTION and
CONSTANT SECTION,

There are two types of entries in the DATA DIVISION:
file description entries and data-item description en-
tries. File description entries appear only in the FILE
secTioN. They describe the physical characteristics of
the files. Data-item description entries are used in all
three sections. They describe data as it appears in core
storage.

Since data-item descriptions appear in all three sec-
tions, the general information about them is given
before the specific rules pertaining to their use in each
section. The file description entry explanation and re-

16

strictions for data-item description entries are given
under the name of the section to which they apply.

The following list shows the required order of en-
tries in the paTa pivisioN. If a section is omitted, its
name need not appear in the source program.

DATA DIVISION.

FILE SECTION.

file description entry.
data-item description entries.
file description entry.
data-item description entries.

WORKING-STORAGE SECTION.
independent working-storage data-item description entries.
organized working-storage data-item description entries.

CONSTANT SECTION.
independent constant data-item description entries.
organized constant data-item description entries.

Data-ltem Description Entry

Data-item descriptions are used in all three sections of
the paTa pivision to describe data as it appears in core
storage. In the FILE sEcTION they are used to describe
logical records which are stored externally in files.

Data-item descriptions of internally stored data are
in the WORKING-STORAGE SECTION and the CONSTANT
secTioN. For example, if a record is to be moved to a
work area for processing, the work area can be de-
scribed in the WORKING-STORAGE SECTION. Independent
items are also described in these two sections. For
example, a constant that is not logically related to a
data organization, such as an interest rate, can be
described in the CONSTANT SECTION.

Information such as the size of an item of data, its
usage, and its value can be provided in the data-item
description. There is one basic format, but not all of
the clauses are necessary to describe each item of data.
The basic format is:

level-number {:‘?;agg;{n e-l} [REDEFINES data-name-2]

r numeric form
alphabetic form
alphanumeric form

PICTURE IS report form

scientific decimal form

record mark
CHARACTER [S] }:I

DIGIT [S]

SIZE 1S positive-integer {

B (ALPHABETIC)_l
LPHANUMERIC
CLASS IS A U
AN
NUMERIC
L__ PR EE A
COMPUTATIONAL
COMPUTATIONAL-1
S
USAGE IS COMPUTATIONAL-2
DISPLAY
B LEFT 7
SYNCHRONIZ —_ 2
- C ED { RIGHT }] [SIGVED_
{ LEFT 1}
PO NT LOCATION
| 21 TON 18 i RIGHT -
p0s1t1ve-integer PLACE(S]
BLANK WHEN ZERO]
™ OCCURS positive-integer TIME(S] 7
[DEPENDING ON data-name-3]
VALUE IS {literal ' }]
L figurative-constant

Each data-item description entry must begin with a
level-number and a data-name or the word FiLLER. If
the REDEFINEs clause is used, it must appear immedi-
ately after the data-name. The rest of the clauses may
appear in any order. The following list gives a summary
of the purpose of the data-item description clauses. The
rules for each clause are given under the name of the
clause.

CLAUSE USE
Shows the relation of the data-item to

other items.
Gives the name of the data-item.

level-number

data-name, FILLER

REDEFINES Allows alternate grouping of data.
Allows one area of storage to be used
for two purposes.

PICTURE Forms a dummy description of the
data-item.

SIZE Specifies the size of the data-item in
characters or digits.

CLASS Tells whether the data-item is numeric,
alphabetic, or alphanumeric.

USAGE Tells whether the data-item is to be
used for computations or is to be dis-
played.

SYNCHRONIZED Specifies position of a data-item in a
computer word.

SIGNED Specifies a sign.

POINT Specifies the location of an assumed
decimal point.

BLANK Specifies that the area is to be filled
with spaces if the value of the data
stored in it is zero.

OCCURS Allows a data-item description to be
repeated.

VALUE Gives the initial value of a data-item.

Level-Number
A level-number indicates the beginning of a data-item
description and shows the relationship of the item to
other items.

A level-number may have a value of 01 through 49,
or 77 or 88. The level-numbers 01 through 49 are used
to show the organization of data-items in logical rec-
ords. Each field in the logical record is described with
a data-item description, and the level numbers show
how the fields are related to each other.

The 01 level-number is the most inclusive and must
be used for the highest level of data organization, the
logical record. Subsequent higher level-numbers indi-
cate the organization of the subdivisions of the logical
record. Data-items that are not subdivided are called
elementary items. Data-items that are subdivided are
called group items. A group item includes all group
and elementary items described under it until
a data-item with a level-number numerically less than
or equal to the level-number of that group is encoun-
tered. Level-numbers need not be assigned consecu-
tively.

The data-items descriptions for a logical record in
the FILE sECTION can have the following level-numbers
and data-names.

01 PERSONNEL-RECORD... group item
02 AGE... elementary item

02 BIRTHPLACE... group item
03 STATE... elementary item
03 CITY... elementary item

02 RESIDENCE...
04 STREET-NAME...
04 STREET-NUMBER...

group item
elementary item
elementary item

If this logical record is moved to a work area during
the program, identical entries are used in the woRkING-
STORAGE SECTION to describe the work area.

The level-number 77 is used only in. the WORKING-
STORAGE SECTION and CONSTANT SECTION. It is used in
these sections to identify independent data-items, that
is, data-items that are not related to other items.

The level-number 88 is used with condition-names.
Condition-names may be used in the FILE SECTION or
the WORKING-STORAGE SECTION.

Data-Name, FILLER

This clause is used to specify the name of the data being
described or to specify a portion of the logical record
to which no reference is made. The format of the
clause is:

level-number data-name
FILLER

Every data-item description must begin with a level-
number followed by a data-name or the word FILLER.
A data-name is assigned to identify data-items; it refers
to the kind of data, not a particular value. A data-name
may assume many values during a program.

The data-name is the defining name of the entry, so
it need not be unique if it is qualified when referred to.

Data Division 17

A data-name may be qualified by writing either v or
oF after it, followed by the name of the group, record,
or file in which it is contained. Thus, the data-name
YEAR can be assigned to a data-item in a group named
pATE and in a group named BIRTH. A unique reference
can be made by specifying YEAR OF BIRTH or YEAR IN
DATE. There may be any number of levels of qualifica-
tion. A data-name may not be assigned to a data-item in
a group of the same name so that it would appear to
qualify itself. Rules for forming data-names are given
in “Appendix A.”

The key word FILLER is assigned to data-items that
are not referred to in the program.

REDEFINES Clause

It is sometimes necessary to use the same storage area
for different items at different times in a program. For
example, if two work areas REFUND-WORK-AREA and
BILLING-WORK-AREA are both needed in a program, they
usually occupy two different areas of storage. If these
items are never used at the same time in the program,
a REDEFINES clause is used to allow them to occupy the
same physical area.

Redefinition of an area does not supersede a previous
description. Thus, if B and C are two separate items
that share the same storage area; the procedure state-
ments MOVE X T0 B and MOVE Y TO ¢ can be executed
at any point in the program. In the first case, item B
assumes the value of X and takes the form specified by
the description of item B. In the second case, the same
physical area receives Y according to the description
of item C.

The format of the REDEFINES clause is:

level-number data-name-1 [REDEFINES data-name-2]

When the REDEFINES clause is used, it must imme-
diately follow data-name-1, the defining name of the
entry. The entries describing the new area of storage
(data-name-1 and its subdivisions) must immediately
follow the entries describing the area being redefined
(data-name-2 and its subdivisions).

Redefinition starts at data-name-2 and ends when a
level-number less than or equal to that of data-name-2
is encountered. The storage area for data-name-I must
not be larger than that for data-name-2 and the level-
numbers must be identical. Data-name-2 should be
qualified when necessary, but subscripting is not per-
mitted. (Subscripting and qualification are explained
in “Appendix A.”)

The REDPEFINES clause must not be used in the FiLE
SECTION with logical records (01 level) associated with
the same file since the paTa RECORDs clause in the file
description entry implies automatic redefinition. The
entries giving the new description of the storage area

18

must not contain VALUE clauses assigning initial values
to the area; however, the vALUE clause may be used
for condition-name entries.

The following entries in the WORKING-STORAGE SEC-
TION redefines REFUND-WORK-AREA so that it can be
used for another purpose in a different part of the
program. The redefinition includes everything under
BILLING-WORK-AREA until either a 01 level-number or
the end of the WORKING-STORAGE SECTION occurs.

01 REFUND-WORK-AREA.

01 BILLING-WORK-AREA REDEFINES :
REFUND-WORK-AREA.

Another use of the REDEFINES clause is given in
“Arrays and Subscripts” in Part 1 of this publication.

PICTURE Clause

The picTurE clause provides a compact form for speci-
fying the characteristics of an elementary data-item.
Each character position in the data-item is represented
by a code, and the combination of the codes form a
dummy or blueprint of the data-item. Instead of re-
peating one code several times, the code may be
written once followed by a number in parentheses
indicating the number of times the code is repeated.
For example, the prcrure 999999 can be written 9(6).
There may be a maximum of 30 characters in the code.
The picTUrE clause may be used (and should be for
good practice) instead of the size, crass, siGNEp, and

POINT clauses. The format of the picTure clause is:

numeric form
alphabetic form
alphanumeric form
report form

scientific decimal form
record mark

PICTURE IS

Numeric Form: The numeric form is used for
numeric data-items, that is, those composed of the
numbers 0 through 9 and an operational sign. The
maximum number of characters allowed in numeric
data-items is 18. The PICTURE may contain a combina-
tion of codes 9 vps.

Code 9 v
The code 9 indicates that the character position
always contains a numeric character. The number
123 could be a value of a data-item with the
PICTURE 999,

Code V
The code V indicates the position of an assumed
decimal point. Numeric items cannot contain
actual decimal points. No storage is reserved for

the decimal point, so it is not counted in deter-
mining the size of the item. It informs the com-
piler of the alignment of elementary items used
for computations. The number 1.23 could be a
value of a data-item with the PICTURE 9v99.

Code P
The code P represents a numeric character posi-
tion for which storage is not reserved. It is used
to indicate the location of an assumed decimal
point and is treated as though it contained a zero.
The code V may be omitted. The number .00123
can be the value of a data-item with the picTURE
vPPogs, PP999, or P(2)9(3). The number 12300 can
be the value of a data-item with the PICTURE
999ppV, 999PP, or 9(3)P(2). The size of both of

these items is 3.

Code S

The code S indicates the presence of an operational
sign. If the usack of the item is COMPUTATIONAL,
it is redundant to specify the character S, since
computational items are assumed to be signed; if
the USAGE is DISPLAY, S specifies a sign over-punch
in the units position. If used, S must always be
written as the leftmost character of the PICTURE.
The number — 123000 can be the value of a data-
item with the PICTURE 5999999 or $9(6).

Alphabetic Form: An alphabetic data-item may con-
tain only the letters of the alphabet and the space. Al-
phabetic data is required to be USAGE DISPLAY. The
PICTURE of an alphabetic data-item may contain only
the code A. The picTuRE of a data-item containing the
word output can be AAAAAA or A(6).

Alphanumeric Form: An alphanumeric data-item
may contain any character in the cosor character set.
Alphanumeric data is required to be USAGE DISPLAY.
The picrure of an alphanumeric data-item may contain
the codes 9 A X and must contain at least one A or X.
The codes 9 (numeric position) and A (alphabetic
position) have been explained. An X indicates that
the character position may contain any character in
the coBoL character set. A mixture of the codes is
treated as though the picTure were all X’s. The PICTURE
of the word Type 2 could be xxxxx or x(5).

Report Form: Data editing is accomplished by mov-
ing the source data to a data-item that has the edited
or report form of the picTURE clause. Computations are
performed before the data is edited since edited items
are ALPHANUMERIC DISPLAY and cannot be used for com-
putations. The editing specifies the insertion, replace-
ment, and/or suppression of certain characters. The
pIcTURE of an edited data-item may contain a combina-
tion of the codes:

9VPZ*. ,0BCRDB + — §

The codes 9 V P have the same meaning as in the nu-
meric form.

Suppression Characters

Code Z
The code Z specifies that the character position is
to be replaced by a space if a nonsignificant lead-
ing zero appears in this position in the source item.
The Z must never be preceded by a 9.

SOURCE
ITEM SOURCE EDITING EDITED
PICTURE ITEM PICTURE ITEM
9999 0102 7777 102
9999) 0012 7999 012
Code *

The asterisk (*) indicates check protection, that
is, the replacement of nonsignificant zeros by aster-
isks. An asterisk must never be preceded by a 9.

SOURCE

ITEM SOURCE EDITING EDITED
PICTURE ITEM PICTURE ITEM
9999 0000 L2 223 HEREK
9999 0030 *Ex **30
99999 00100 ***¥99 **100
99999 00001 **¥99 **¥01

Replacement Characters — A place must be reserved
for replacement characters, so the PICTURE must be one
character longer than the greatest number of charac-
ters that are to be moved into it.

Code Floating + — $
Zero suppression by means of a floating + or —
or $ is specified by placing a string of plus signs,
minus signs, or dollar signs in the numeric char-
acter positions to be suppressed. The floating char-
acter used appears immediately to the left of the
first significant digit of the source item.

If the value of the source item is negative, a
floating plus or minus sign causes a minus to be
placed in the edited item. If the value of the source
item is positive or zero, a floating plus sign causes
a plus to be inserted, and a floating minus sign
causes a space to be inserted in the edited item.
The string of floating characters must be the left-
most characters in a picture. The insertion char-
acters comma, B, and 0 may be embedded, non-
contiguously, in a string. Leading commas, B’s, and
0’s are suppressed.

SOURCE
ITEM SOURCE EDITING EDITED
PICTURE ITEM PICTURE ITEM
9999 0315 $$99 $315
99Vv99 3456 $$,$$$.99 $34.56
99999 00315 +++99 +315
99999 00315 ——999 315

Insertion Characters — A place must be reserved for
the insertion character so one character code must be
added to the picrure for each insertion character.

Data Division 19

Code .

The decimal point (.) specifies that an actual
decimal point is to be inserted in the indicated
position and the source item is to be aligned accord-
ingly. Numeric positions to the right of the decimal
point in the picTUrE must all have the same code.
Unlike the assumed decimal point, the actual deci-
mal point occupies a character position and is
counted in determining the sizE of an item.

SOURCE
ITEM SOURCE EDITING EDITED
PICTURE ITEM PICTURE ITEM
99V99 6321 99.99 63.21
V9999 0311 .9999 .0311
Code , 0B

The comma, zero, and B specify the insertion of
comma, zero, and space, respectively. If all char-
acters to the left of the insertion character have
been suppressed, the insertion character is sup-
pressed. If a string of identical insertion characters
is specified, it is replaced by a single character, and
a warning message is issued. Contiguous insertion
characters of different types cause an error that
prevents execution of the program. A zero to the

right of a decimal point is treated as the numeric
code 9,
SOURCE
ITEM SOURCE EDITING EDITED
PICTURE ITEM PICTURE ITEM
999999 125739 99B99B99 12 57 39
999999 123456 9990999 1230456
9999V99 123412 9,999.99 1,234.12
99999V99 412 77.777.99 4.12
Code CR DB

cr and pB are credit and debit symbols. The symbol
may appear only as the two rightmost characters
of a PICTURE and appears in the indicated position
if the source item is negative. If the value of the
source item is positive or zero, spaces appear in the
edited item.

SOURCE
ITEM SOURCE EDITING EDITED
PICTURE ITEM PICTURE ITEM
99V99 —6325 $99.99CR $63.25CR
99V99 6325 $99.99CR $63.25
Code + — §

The single plus, minus, and dollar sign specify the
insertion of + or — or $. If the value of the source
item is negative, a single plus or minus sign causes
a minus to be placed in the indicated position. If
the value of the source item is positive or zero, a
single plus sign causes a plus to be inserted, and a
single minus sign causes a space to be inserted.
The dollar sign causes a dollar sign to be placed
in the indicated position.

20

The single dollar sign must be the first code in
the prcTurE. The single plus or minus sign may be
written as either the first or the last code in the

PICTURE,
SOURCE
ITEM SOURCE EDITING EDITED
PICTURE ITEM PICTURE ITEM
9999 0315 $7999 $ 315
9999 —0411 +9999 —0411
9999 0321 —Z7799 321

Scientific Decimal Form: The scientific decimal form
of a PICTURE clause specifies a special type of editing.
The picTURE of a scientific decimal item may contain
the codes:

+ —-9.VE

A scientific decimal number has two components,
the mantissa and the exponent. The mantissa is a
signed or unsigned decimal number with or without
a decimal point. The exponent is a signed or unsigned
decimal integer. It is the power of ten by which the
mantissa is multiplied.

In the PIcTURE, the mantissa must contain a sign and
one to sixteen 9s and may contain a decimal point
represented by a . or V. The exponent is preceded by
the letter E and must contain a sign and two 9s.
Specifically the picTure must have the form:

(3w [L] 2 Le) o

exponent

mantissa
where

m and n are positive integers

m + n must be greater than zero and less than 17.
The symbol E is used to separate the exponent from
the mantissa. There must be no embedded blanks in
the picTURE.

SOURCE
ITEM SOURCE EDITING EDITED
PICTURE ITEM PICTURE ITEM
9999999 3000000 9E+6 3 x 108
V9999 .0012 9.9E-3 1.2 x 103

Record Mark: The code] specifies that the single
character record mark is to appear as a constant. If
J is used, the picTURE must contain only one J and no
other character may appear with it. The record mark
is used with peripheral equipment.

SIZE Clause

The size clause specifies the number of alphanumeric
characters or numeric digits in the data-item. The size
of elementary data-items must be specified by a pic-
TURE Or a SIZE clause.

Use of the sizE clause for a group item has no effect
on the program. The format of the size clause is:

I_SIZE IS positive-int et }-l
L positive-integer 4 ryyyy(g) =

The words craracters and picITs are equivalent
in the format. Operational signs (as indicated by a
siGNED clause or by an S in the picTuRE clause), as-
sumed decimal points (as specified by a V in the
picTuRE clause or by a PoINT clause), or assumed char-
acter positions (as indicated by a poINT clause or by
a P in the picrure clause) should not be counted in
determining the size of an item.

If there is conflict between the PICTURE and SIZE
clauses for a data-item, PICTURE dominates.

CLASS Clause

The crass clause indicates whether the data-item is
alphabetic, numeric, or alphanumeric. If a cLass clause
is given for a group item, it applies to each elementary
item in the group. The format of the crass clause is:

ALPHABETIC
NUMERI
CLASS IS NUMERIC

LPHANUMERIC
AN

An ALPHABETIC data-item consists of any combina-
tion of the 26 characters of the alphabet and a space.

A numeric data-item consists of any combination
of the numbers 0 through 9 and an operational sign.
Unsigned data is assumed to be positive. Data-items
whose USAGE IS COMPUTATIONAL are assumed to be
NUMERIC; for such items, this clause may be omitted.

An ALPHANUMERIC data-item may contain any char-
acter in the coBoL character set; therefore, ALPHABETIC
and NUMERIC items within an ALPHANUMERIC group are
not considered contradictory. The abbreviation for
ALPHANUMERIC iS AN.

If there is a conflict between the picTURE and cLASS
clauses for a data-item, PIcTURE dominates.

USAGE Clause

The vsace clause describes the representation of data
in core storage. Data may be stored in either Bcp
(Binary Coded Decimal) or binary form. In BCD
form, each character in the coBoL character set is rep-
resented by a code. The octal representation of the
Bcp character code is given in “Appendix B.” The
binary form of a number is the representation of the
number to the base 2.
The format of the usace clause is:

COMPUTATIONAL
&OMPUTATIONAL—I
USAGE IS {GOMPUTATIONAL-2
\DISPLAY

The word pispLAY means that the item is stored in
Bep form. If usacke is not specified for an elementary
item or in the description of a group to which it belongs,
the usaGk is assumed to be pispLAY. DISPLAY must not
be specified for items in files on magnetic tape recorded
in binary mode. The usaGe clause is not required for
ALPHANUMERIC data since it is assumed to be pIspPLAY.

The word cOMPUTATIONAL means that the item is
stored in binary form and is to be used for computa-
tions.

The three types of COMPUTATIONAL items are:
COMPUTATIONAL

COMPUTATIONAL-1
COMPUTATIONAL-2

double-precision floating-point
single-precision floating-point
double-precision floating-point

The word COMPUTATIONAL is used to describe a real
number to the base 10 that is used for computations.

The suffixes (—1 and —2) are used to describe
floating-point items. A floating-point number has the
form a * 10° where a, the mantissa, and b, the expo-
nent, are real numbers to the base 10.

coMPUTATIONAL-1 describes single-precision floating-
point numbers; that is, those contained in one computer
word. The mantissa may have from 1 to 8 digits and
the exponent may have 1 or 2 digits. COMPUTATIONAL-2
describes double-precision floating-point numbers; that
is, those contained in two computer words. The man-
tissa may have from 1 to 16 digits and the exponent
may have 1 or 2 digits. For both single- and double-
precision floating-point numbers, the exponent may
range from —38 to +38. The usack clause is the only
clause necessary for floating-point data.

The COMPUTATIONAL items are assumed to be NU-
MERIC, so the crass need not be specified. compuTa-
TIONAL must not be specified for items in files on
magnetic tapes recorded in Bcp mode.

Combined SIZE, CLASS, and USAGE Clavuse

The s1zE clause may be combined with the cLass clause
and/or the usace clause. The rules for the combined
clause are the same as those for the individual clauses.
The order in which crass and UsAGE are specified is
not important. The format is:

‘ALPHABETIC 2

] ‘ NUMERIC
SIZE IS integer IALPHANUMERIC
AN
|COMPUTATIONAL

\COMPUTATIONAL-1 CHARACTER[S]
\COMPUTATIONAL-2 DIGITIS]
{DisPLAY

Data Division 21

SYNCHRONIZED Clause

The syNcHRONIZED clause specifies the positioning of an
elementary item in a computer word or words. The for-
mat is:

LEFT
T IS {=——
[POIN LOCATION IS {RIGHT }

positive-integer PLACE[S] :l

LEFT
NCHR =220
[SY e {l_"_@ﬂ’}]

SYNCHRONIZED LEFT indicates that the leftmost char-
acter of the data-item is to occupy the left-hand portion
of the next computer word. This may mean that the
right-hand portion of the preceding word is unoccu-
pied.

SYNCHRONIZED RIGHT indicates that the rightmost
character of the data-item is to occupy the right-hand
portion of the next computer word. This means that the
data-item apears in a word (two words, if more than
10 digits) by itself. The most efficient form for NUMERIC
COMPUTATIONAL items is SYNCHRONIZED RIGHT, since the
item can be used for computation as it is. An unsyn-
chronized computational item or one that is syncuRo-
NIZD LEFT may have to be put into a computer word by
itself each time it is used.

SIGNED Clause

The siGNED clause is used at the elementary level to
specify a standard operational sign. The sign may also
be shown by an S in the picTurE clause. The format is:

[SIGNED :l

The sioNED clause is most often used with pisPLAY
items. The standard operational sign for pIspLAY items
is in the form of an overpunch in the rightmost position.

The standard operational sign for cOMPUTATIONAL
items is in the leftmost position. A COMPUTATIONAL item
is always signed; therefore, it is redundant to specify
an operational sign.

An item containing an operational sign must be nu-
meric; therefore, a cLass clause for the item need not
be given. The operational sign is not considered in de-
termining the size of an item. If both a picTurE clause
and a siGNED clause are used, the pIcTURE must not con-
tain editing symbols.

POINT LOCATION Clause

The PoNT LocaTION clause specifies the position of an
assumed decimal point for elementary data-items. The
location of an assumed decimal point may also be given
by a V in the picrure clause. The assumed decimal
point determines the alignment of data for computa-
tions. An actual decimal point must be given by a deci-
mal point (.) in the report form of the picTURE clause.
The format of the ponT LocaTION clause is:

22

If the location of a decimal point is not given, or im-
plied by a P in the picTUrE clause, the item is assumed
to bean integer; that is, the decimal point is at the right-
hand end of the data-item. In the format, positive-
integer, gives the location of the decimal point as the
number of character positions to the left or right of the
right-hand end of the data-item. For example, if a data-
item is to contain an interest rate that may vary from
.03 to .08 the data-item description can be:

06 INTEREST-RATE SIZE IS 2 COMPUTATIONAL

CHARACTERS, SYNCHRONIZED RIGHT, POINT
LOCATION IS LEFT 2 PLACES.

If the numbers vary from 3000 to 8000, the clause,
POINT LOCATION IS RIGHT 2 PLACES, can be substituted.

BLANK WHEN ZERO Clause

This clause specifies that the item is filled with blanks
(spaces) whenever the value of the item is zero. The
format is:

I:BLANK WHEN ZERO]

The BLANK WHEN zERO clause may be used only at
the elementary level. It must not be used if all the nu-
meric character positions in the prcTure clause contain
asterisks (*), but it overrides all other editing specifica-
tions in a PICTURE clause.

Since a BLANK WHEN ZERO clause specifies editing, the
data-item is considered to be UsAGE pIsPLAY and cLass
ALPHANUMERIC,

OCCURS Clause

The occugrs clause is used to repeat a data-item descrip-
tion. The number of times the description is to be re-
peated may be given directly in the occurs clause,
or it may be calculated when the program is executed.
Since the repeated items do not have individual de-
fining data-names, they must be subscripted when
referred to. For example, if a data-item TABLE is de-
scribed as occurs 10 TiMEs, the third occurrence is
referred to as TABLE(3). Any subdivision of a repeated
item must also be subscripted when referred to. The
rules for using subscripts are given in “Appendix A.”
The format of the occurs clause is:

[OCCURS positive-integer TIME[S]

[DEPENDING ON data-name]]

When the DEPENDING ON option is not used, positive-
integer is the number of occurrences of the data-item.

The DEPENDING ON option permits the number of rep-
etitions of the data-item description to be determined
during the execution of the program. When the data-
item is referred to, the number of repetitions is set
equal to the current value of data-name. Thus, the
number of repetitions of the data-item description may
vary during the program. When this option is used,
positive-integer is the maximum number of repetitions
and is used for storage reservation.

Data-name must be an elementary data-item with an
integral value greater than zero; or it may be the special
register TALLY. It may be qualified when used, but sub-
scripting is not permitted. Data-name must be de-
scribed prior to any variable-length portion of a data
organization. For example, if data-name and the data-
item containing the occurs clause are subdivisions of
the same logical record, data-name must be described
first.

The occurs clause may not be used at the 01 level.

VALUE Clause

The vaLuE clause specifies the value of an elementary
data-item. In the FILE sEcTION, the VALUE clause may be
used only in condition-name entries; in the CONSTANT
SECTION, it may be used only to specify the value of a
constant; and in the WORKING-STORAGE SECTION, it may
be used for either purpose.

The format of the vaLUE clause is:

[V ALUE IS {literal ' }]
_— figurative-constant

A literal is a word or number that is a constant. It
has a fixed value that never changes during the exe-
cution of a program. There are two classes of literals:
numeric and nonnumeric. For example, both of the
following are literals:

.10
“THIS IS A NONNUMERIC LITERAL”

Numeric literals may contain from 1 to 18 characters
chosen from the following: the numbers 0 through 9,
a plus or a minus sign, and a decimal point. There may
be, at most, one sign in the literal and it must appear
in the leftmost position. If a decimal point is not
present, it is assumed to be in the rightmost position.

Floating-point literals are a special type of numeric
literal and are written in floating-point literal format:

[{=}] mantissa E [{=}] exponent

The mantissa may contain 1 to 16 digits and a deci-
mal point (except in the rightmost position). The
exponent may contain one or two digits whose magni-

tude may not exceed 38. There may be no embedded
blanks in the literal. Floating-point literals may be
used only in the paTa pivisiON, but other numeric and
nonnumeric literals may also be used in the PrRocEDURE
DIVISION.

Numeric literals must not be enclosed in quotation
marks. Nonnumeric literals must be enclosed in quo-
tation marks. If a literal conforms to the rules for the
formation of numeric literals, but is enclosed in quota-
tion marks, it is assumed to be a nonnumeric literal.

Nonnumeric literals may be composed of any char-
acters in the coBoL character set except the quotation
mark and may contain up to 120 characters. All spaces
enclosed in the quotation marks are included in the
size of the literal.

A figurative constant is a value that has a preassigned
fixed data-name. It is not enclosed in quotation marks.
The fixed data-names and their meanings are given
below. The singular and plural forms may be used
interchangeably.

ZERO Represent one or more zeros (0).
ZEROS

ZEROES

SPACE Represent one or more blanks or spaces.
SPACES

HIGH-VALUE
HIGH-VALUES

Usually represent one or more 9s, the
highest value in the commercial collating
sequence; but represent one or more left
parentheses if the scientific (binary) col-
lating sequence has been specified by the
option BINSEQ on the $IBCBC control
card.

Usually represent one or more blanks or
spaces, the lowest value in the commercial
collating sequence; but represent one or
more zeros if the scientific (binary) col-
lating sequence has been specified by
the option BINSEQ on the $IBCBC con-
trol card.

Represent the character *. Note that the
use of the figurative constant QUOTE
to represent the character ’ is not equiv-
alent to the use of the symbol * to bound
a literal.

Represents one or more occurrences of
‘literal'. ‘Literal represents a single char-
acter nonnumeric literal and must be en-
closed in quotation marks. An alternative
form of ‘literal’ is any figurative constant
except ALL, e.g., ALL SPACES.

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL ‘literal’

The only figurative constant that may be used with
a numeric data-item is zEro (zERos, ZEROES). All of
the figurative constants may be used with ALPHANU-
MERIC Or ALPHABETIC data-items.

The vaLUE clause may not be used with a data-item
description that contains an occurs clause, or with a
data-item that is a subdivision of an entry containing
an occuss clause, or with a data-item that is described
after an entry in the same logical record that contains
an OCCURS DEPENDING ON clause.

Data Division 23

File Section

The FILE SECTION contains a description of all externally
stored data. Externally stored data is organized into
files made up of logical records. The two types of
entries in the FILE sEcTION are: file description entries
and data-item description entries. The file description
entries appear only in the FILE sEcTioN. They describe
the physical characteristics of the file. The data-item
descriptions in the FiLE sEcTion describe the logical
records on the file.

File Description Entry

A file description entry must precede the entries de-
scribing the data in the file. The information provided
in this entry (e.g., the recording mode of the file, label
information, and the names of the records on the file)
is necessary for reading the data in the file into core
storage or writing data from core storage.

The format of the file description entry is:

FD file-name

{ RECORD IS

\RE CORDS ARF‘.} record-name-1 [record-name-2...]

DATA

B BCD LOW
R N
ECORDING MODE IS BINARY (3 HICH _

DENSITY [WITHOUT COUNT CONTROL]

BLOCK CONTAINS [integer-1 TO] integer-2

- {RECORD[S] }'

L

CHARACTER(S]
FRECORD CONTAINS [integer-1 TO] integer-2
| CHARACTERS |
RECORDS ARE | {STANDARD
LAB — e —
EL {RECORD IS }{OMI'ITED }

T VALUE OF label-data-name-1 IS literal-1
[label-data-name-2 IS .. .]_j

Each file description entry must begin with ¥p and
the name of the file. The rest of the clauses may be
in any order. The following list summarizes the purpose
of the file description clauses:

CLAUSE USE

FD file-name Identifies the beginning of a file
description entry.

Names the records on the file.
Specifies the recording mode,
density, and presence or absence
of count control words.

Gives the number of records or
characters in a block.

Gives the number of characters in
the records.

DATA RECORDS
RECORDING MODE

BLOCK CONTAINS

RECORD CONTAINS

LABEL Tells whether the label is standard,
nonstandard, or omitted.
VALUE Gives values of fields in the stand-

ard label.

Figure 7 is a sample file description entry. The rules
for using the file description clauses are given under
the names of the individual clauses.

FD, File-name

Each file description entry must begin with ¥p and the
name of the file. The level indicator ¥p identifies the
beginning of a file description. The file-name is the
name the programmer assigns to the file. This is the
name given in the FILE-cONTROL paragraph in the
ENVIRONMENT DIVISION. The format of this clause is:

FD file-name

File-name is formed according to the rules for names
(given in “Appendix A”) and must not be qualified.

DATA RECORDS cl‘c"ms€

This required clause provides a cross reference be-
tween logical records and their associated file by nam-
ing the logical records on the file. The format is:

DATA {RECORD IS

RECORDS ARE }record-name-l [record-name-2 . . .]

Record-name-1, record-name-2, etc., are the names
of the logical records on the file. The presence of more
than one record-name indicates that the file may con-
tain records of different sizes and/or formats. The
order in which they are specified is not significant.

1 S AN I /% Wt s L1t T S T T Tt YO T Y Y S oy W W I S s v e A M

I|7|o (| :A|L|L| |FIZIL|[|'S|.| USSR T T S T T T A T N T T O N O O T T M G B O
I1tla DIAITIA: IDIIIVIII‘SIIIOI”I N W S T T O U N T T N N T T T T T G N 0 A DO A O A S AT B R S
/1,10 F|I|L|El JSIE|C|TII|0|~| S T Y T TS T U S T S S Y T U N T T W T T N O N T Y Y O W A A A
alolo Fu'Dn 1 :EIMIPILIOIYIEIEI - lFlzlLlEI 1 IRDEICIOIRIDIIINIGI r”|°|DlEl 1115I IBII|”|AIRIYl S TV N O N Y O TS A
c?l/‘o Ll :BILIOICIKI lc|o|~|T|A|Illel |‘| IRIEICIOIRIDISI 11 [LIA[BIEQLI |RLE|CIOIR|D|SI 1 |A|RIEI L T T N TN N O O S |
"{L“lxo Lyt : [IS|T|A|N|D|AIR|D| AU O O S N T O R T TR O YW T N O N T N N T Y U0 T U Y Y I |
'?|3|0 Ll :VlAleulEl IQIFI 4 IFIILLIEI-IIIDI,EI'VIT;IIFIIVCIAIﬂ/lOJNl lIl's' I'IE!M!PILIOIYIEIEISI‘I L IVﬂILLlI!EJ loIFI,,I L D N B
21410 NESEN N : . IF[IILIEI‘ISAEIRIIIA!LI-INIUXMIBIEIRI IIlsl l.l‘zlllslﬂl.l NV N S T T O S N G T T S Y T T O |
al'fxo [| :D|A\T1A| 1RlElc|0wRP|sl 1A|R|£| |P|A1YIR10|L|L|’| f151RIS|OIN|ALL|'n § D O R T S T T T YO O T O O A G T S S SO N

*A standard card form, IBM electro C61897, is available for punching source statements from this form.

Figure 7. Sample File Description Entry
24

The logical records, record-name-1, record-name-2,
are described by data-item descriptions with 01 level-
numbers. Subscripting of these names is not permitted
and qualification is not necessary since they are im-
plicitly qualified by the file-name of the entry. Sub-
scripting and qualification are explained in “Appen-
dix A

RECORDING MODE Clause

The recorpING MODE clause describes the form of the
data in the file. It indicates the recording mode and
density of the file. For files containing records of
different lengths, it specifies whether there is a control
word preceding each record to indicate the size of the

record. The format of the clause is:

BCD LOW
N ENSITY
I:RECORDING MODE IS{BIN ARY}[{HI GH}D :I

[WITHOUT COUNT CONTROL]:]

Tapes recorded in binary mode contain data in either
binary or Bcp code. Tapes recorded in Bcp mode contain
only Bcp information; therefore, data on Bcp tapes must
be described (explicitly or implicitly) in data-item de-
scriptions as USAGE 1s DISPLAY. The recording mode of
the file must agree with the recording mode of the unit
to which it is assigned if there is a system requirement.
The Bcp mode should be specified for any file assigned
exclusively to card equipment.

Either HIGH DENSITY OF LOW DENSITY may be specified.
The density is the number of characters written on a
given area of tape; the more characters, the higher the
density. Some auxiliary equipment requires the inform-
ation to be recorded in low density. However, if the
tape is to be completely processed on the 1BM 7090/
7094, the HiGH DENsITY option should-be used to mini-
mize the tape area required to contain a given number
of characters.

Usually, if a file assigned to a tape unit contains dif-
ferent length records, each record is preceded by a
control word showing the number of words in the
record. (These words should be counted in determining
the number of characters in the record if the cHARAC-

TERS form of the BLock coNTAINs clause is used.) If
WITHOUT COUNT CONTROL is specified, these control
words are not expected when the tape is read, nor are
they supplied when the tape is written.

If this clause is omitted, RECORDING MODE 1S BCD HIGH
DENSITY is assumed.

BLOCK CONTAINS Clause

Several logical records may be blocked when they are
stored on magnetic tape in order to save time in trans-
mitting the data and to conserve space on the tape. A
physical record is a block of one or more logical records.
Physical records are separated on magnetic tape by
interrecord gaps. Figure 8 shows logical records
blocked on magnetic tape.

The BLoCck coNTAINS clause specifies the size of the
blocks or physical records in the file. The format of the
BLOCK CONTAINS clause is:

BLOCK CONTAINS [integer-1 TO] integer-2
RECORDIS]
CHARACTERIS]

3\

A logical record on a file may be either fixed or
variable in length. A fixed-length record is one of pre-
determined size. A variable-length record is one whose
size is not determined until the program is run; that is,
one that contains an OCCURS DEPENDING ON clause in the
data-item description entries. A file may contain more
than one type of logical record; therefore, a combina-
tion of fixed- and/or variable-length records may be on
the file.

The recorps form of the BLock conTaINs clause is
used to specify the size of the block by the number of
logical records in the block. This is usually used for
files containing one or more types of fixed-length rec-
ords. The following rules apply to the recorps form of
the BLoCKk coNTAINS clause:

1. Integer-1 and integer-2 are the minimum and
maximum number of logical records in the block.

2. If only integer-2 is specified, each block on an in-
put file must contain integer-2 records and exactly
integer-2 records are written in a block for an output

file.

Logical Logical Logical Logical Logical Logical
Record Record Record Record Record Record
Record Record Record Record Record Record
F E D Cc B A
~— A \/_/\ ~
Block Interrecord Block
(Physical Record) Gap (Physical Record)

Figure 8. Logical Records in Blocks on Magnetic Tape

Dai

+
L

a

Division

o
[¥]3

3. If integer-1 To integer-2 is specified, each block
on an input file must contain from integer-1 to integer-2
records, and integer-2 records are written in a block for
an output file.

The craaracrers form of the clause specifies the size
of the block by the number of computer characters (six
computer characters equal one computer word) in the
block. This form may be used for files containing
variable-length records. The following rules apply to
the use of the cHARACTERS form of the BLOCK CONTAINS
clause:

1. Integer-1 and integer-2 are the minimum and
maximum number of characters in the block.

2. Integer-1 and integer-2 must be evenly divisible
by six so that there are an integral number of computer
words in the block. If they are not evenly divisible by
six, a warning message is issued; on an output file this
may mean that the rightmost positions of a record con-
tain unwanted information.

3. Each block contains an integral number of logical
records.

4. If only integer-2 is specified, each block on an in-
put file must contain up to integer-2 characters and
each block on an output file contains the greatest num-
ber of logical records possible without exceeding
integer-2 characters.

5. If integer-1 To integer-2 is specified, each block
on an input file must contain from integer-1 to integer-2

characters and each block on an output file contains the
greatest number of logical records possible without
exceeding integer-2 characters.

Care should be taken when using the CHARACTERS
form of the BLock coNTAINs clause since it applies to the
number of characters that are reserved for the block in
core storage, not to the number of characters in the
record.

1. The use of the syncHrONIZED clause in the data-
item description affects the number of characters re-
served in storage. Figure 9 shows the number of
characters that are reserved for synchronized items.

2. Control words preceding the block must be
counted in determining the block size. These words are
explained in the RECORDING MODE clause.

3. If the appLY clause of the 1-0-CcONTROL paragraph
in the ENVIRONMENT DIVISION has not been used and
there are block sequence words appended to the blocks,
one extra word (six characters) must be added to the
block size.

The BLock contaINs clause is used to determine
buffer sizes. A buffer area is an area reserved in core
storage to hold a physical record before it is needed in
a program or after it has been processed by a program.
The input-output system automatically reads physical
records into buffer areas and writes physical records
out of buffer areas. The programmer is concerned only
with logical records. When a reap instruction is given,

Number of Characters Reserved in Core Storage
Number of characters Computational ltems Display ltems
or digits in Size or Synchionized Synchronized Left or Synchronized Synchronized Left or
Picture Clauses Right (1) Unsynchronized (2) Right (1) Unsynchronized (2)
1 6 1 6 1
2 6 2 6 2
3 6 2 é 3
4 6 3 6 4
5 6 3 6 5
6 6 4 6 6
7 é 5 12 7
8 6 5 12 8
9 6 [12 9
10 [[12 10
1 12 7 12 11
12 12 7 12 12
13 12 8 18 13
14 12 9 18 14
15 12 9 18 15
16 12 10 18 16
17 12 10 18 17
18 12 11 18 18

word must also be counted for storage reservation.

2

=

either right or left).

(1) Hems that are synchronized right are stored in computer words by themselves. This may mean that the
rightmost portion of the preceding computer word will be unoccupied. This unoccupied portion of the

Items that are synchronized left are stored in the leftmost portion of the next available computer word.
This may mecn that the rightmost portion of the preceding word is empty. This unoccupied portion of
the word must also be counted for storage reservation. An item that follows a synchronized-left item is
stored in the same word with it if there is room (unless, of course, the second item is also synchronized

Figure 9. Effect of Synchronization on Allocation of Core Storage

26

one logical record is located in the buffer area. When
a WRITE instruction is given, one logical record is re-
leased to be written out of core storage from the buffer
area. Figure 10 shows how the BLoCK conTAaNs clause
determines the size of the buffer areas. It also contains
a summary of the interpretation of the four permissible
forms of the BLock conTAINs clause. Blocks should con-
tain more than three computer words in order to insure
proper transmission of data.

The BLOCK coNTAINs clause is not required if each

physical record in the file contains only one logical
record. The form BLOCK CONTAINS 1 RECORD is assumed
if the clause is omitted. If the word RECORDS is not writ-
ten in the clause, CHARACTERS is assumed.

Figure 11 gives a summary of descriptions that can
be provided for different types of files. It shows the
relationship of the FILE-cONTROL paragraph in the EN-
VIRONMENT DIVISION and the DATA RECORDS, the RECORD-
NG MoDE, and the BLock conTains clauses in the file

description entry.

RECORD CONTAINS Clause

The RECORD conTaINS clause specifies the number (or
range) of characters in the logical records of a file.
This is an optional clause that is used primarily for

checking the record size specified in the data-item
descriptions. The format is:

@ECORD CONTAINS [integer-1 TO] integer-2
CHARACTERS]

Integer-1 and integer-2 are positive integers that
specify the number of characters in the smallest record
and the number of characters in the largest logical
record, respectively. If only integer-2 is specified, all
logical records in the file are assumed to be the same

T m ol
1eNgin,

In this clause CHARACTERS is the number of computer
characters (six characters in a computer word) in the
logical records. When specifying the number of char-
acters in the records, synchronization of computational
data-items must be taken into consideration. Figure 9
specifies the relationship.

LABEL RECORDS Clause

A label is a record or block of records that identifies
a file. The LABEL RECORDS clause is required and indi-
cates the presence or absence of standard labels. A
standard label has a fixed format. Since the sub-
divisions of the standard label have been assigned
data-names, the programmer can specify the values

Form of Clause Record Types on the File

Size of Buffer Area (1)

Interpretation of the Clause (2)

integer-2 RECORDS Records of one type; i.e., one
record name in the DATA REC-

ORDS clause.

integer-2 * record-length

Each block on an input file must contain exactly
integer-2 logical records. Exactly integer-2 logical
records will be written in a block for an output

file.

Records of more than one type;
i.e., more than one record name
in the DATA RECORDS clause.

integer-2 * length of the
longest record

Same interpretation as for records of one type.

integer-1 TO
integer-2 RECORDS

Records of one type.

integer-2 * record-length

Each block on an input file may contain from in-
teger-1 to integer-2 logical records. Integer-2
logical records will be written in a block for out-
put files.

Records of more than one type.

integer-2 * length of the
longest record

Some interpretation as for records of one type.

integer-2 CHARACTERS | Records of one type.

integer-2 / 6

Each block on both input and output files contains
integer-2 characters.

Records of more than one type.

integer-2 / 6

Each block on an input file may contain up to
integer-2 character; each block on an output file
as many logical records as possible without ex-
ceeding integer-2 characters.

integer-1 TO
integer-2 CHARACTERS

Records of one type.

integer-2 / 6

Each block on an input file may contain from in-
teger-1 to integer-2 characters. Each block on an
output file will contain as many logical records as
possible without exceeding integer-2 characters.

Records of more than one type.

integer-2 / 6

Same interpretation as for records of one type.

computer words in the logical record.

not padded.

(1) The asterisk (*) means multiplication and the slash (/) means division. Record-length is the number of

(2) The last block on the file will not necessarily be filled. When a block is not filled, it is truncated,

Figure 10. Determination of Buffer Size

Data Division 27

Use of File Block Specification Unit Type
Type Input Output Blocked Records Characters Tape Card System Unit
1 yes no no - - yes no no
2 yes no no — — no yes no
3 yes no no —_ — no no yes (1)
4 no yes no — — yes no no
5 no yes no - —_ no yes no
6 no yes no - — no no yes (2)
7 yes no no —_ - yes no no
8 yes no no - — no yes no
9 yes no no - — no no yes (1)
10 no yes no — — yes no no
n no yes no — — no yes no
12 no yes no — — no no yes (2)
13 yes no yes yes yes yes no no
14 no yes yes yes yes yes no no
15 yes no yes yes yes yes no no
16 no yes yes no yes yes no no
17 no yes yes yes no yes no no
18 yes no yes yes yes yes no no
19 no yes yes no yes yes no no
20 no yes yes yes no yes no no
Recording Mode Type of Record (3) Length of Record
Type BCD Binary Control Words One More than one Fixed Variable
1 yes yes no yes no yes no
2 yes no no yes no yes no
3 yes yes (4) no yes no yes no
4 yes ves no ves no ves no
5 yes no no yes no yes no
6 yes no no yes no yes no
7 yes yes optional no yes yes yes
8 yes no no no yes yes yes
9 yes yes (4) optional (5) no yes yes yes
10 yes yes optional no yes yes yes
n yes no no no yes yes yes
12 yes no optional (5) no yes yes yes
13 yes yes no yes no yes no
14 yes yes no yes no yes no
15 yes yes optional yes no no yes
16 yes yes optional yes no no yes
17 yes yes optional yes no no yes
18 yes yes yes no yes yes yes
19 yes yes yes no yes yes yes
20 yes yes yes no yes yes yes
(1) May be SYSINT only.
(2) May be SYSOU1 or SYSPP1 only.
(3) *“One type record” means one record-name in DATA RECORDS clause; “‘more than one type™ means more
than one record-name in DATA RECORDS clause.
(4) Binary recording mode permissible only if unit medium is tape.
(5) Control word permissible only if unit medium is tape.
Figure 11. File Characteristics
qf these names with thfa VALUE clause in t}?e file descrip- | appL JRECORDS ARE | {STANDARD
tion. Data-item descriptions must be given for non- LABEL RECORD IS OMITTED

standard labels.

The input-output verbs in the PROCEDURE DIVISION
initiate the checking of standard labels on input files
and the writing of standard labels on output files.
Instructions for writing and checking nonstandard
labels must be provided by the programmer. The
format of the LABEL rECORDS clause is:

28

When the sTANDARD option is used, a vALUE clause
usually follows to provide identifying information.

The omriTTED option is used for files without labels
and for files with nonstandard labels.

The format of the standard label is given in “Ap-
pendix B.”

VALUE Clause
The vaLue clause specifies the values of label-data-
names for standard labels. The sLABEL control card,
explained in the publication IBM 7090/7094 IBSYS
Operating System: IBJOB Processor, Form (C23-6389,
can be used to provide the same information.

The format of the vALUE clause is:

VALUE OF label-data-name-1 IS literal-1
[label-data-name-2 IS ...]

An area in storage is reserved for the processing of
standard labels. Label-data-name is a preassigned
name in this area. The value of label-data-name is
specified by a literal provided by the programmer.
Rules for literals are given in “Appendix A.” Figures
12 and 13 give the label-data-name, the class, and the
form of each literal for input and output files. If the
class is alphanumeric, the literal must be enclosed in
quotation marks. If the class is numeric, the literal
must not be enclosed in quotation marks.

If any of the items is not specified in this clause or
on a sLABEL control card for input files, it is not checked
when the file is processed. Figure 14 shows information
that is automatically written for output files if the
value of label-data-name is not specified in the vALUE
clause or on a sLABEL control card.

Note: In the standard label format, shown in “Ap-
pendix B,” there is a field named LABEL-IDENTIFIER. A
tape is accepted unconditionally as an output tape if
the value of LABEL-IDENTIFIER is ‘1BLANK.” Tapes with
the value of LABEL-IDENTIFIER equal to ‘1HDRbD' are
accepted to be written on only if the label field re-
TENTION-PERIOD shows that the retention period has
expired.

Label-Data-Name Class Form of Literal
FILE- alpha- Eighteen or fewer alphanumeric
IDENTIFICATION numeric characters that identify the file.
FILE- alpha- Five or fewer alphabetic and/or
SERIAL-NUMBER numeric numeric characters (no special
characters) with no embedded
blanks. This is equivalent to the
reel serial number (usually the
number on the external casing
of the reel of tape).
REEL- numeric Four or fewer digits that specify

the number of the reel within a
given file. The first reel of the
file is reel 1, the second reel is
reel 2, etc. The value specified
initially is checked against the
value in the label of the first reel
of the file. Every time a reel is
switched, the value specified is
increased by one; the new value
is then checked against the value
in the label of the new reel.

SEQUENCE-NUMBER

Figure 12. Label Information for Input Files

Label-Data-Name Class Form of the Literal

FILE- alpha-
IDENTIFICATION numeric
RETENTION-PERIOD numeric

Eighteen or fewer alphanumeric
characters that identify the file.
Four or fewer digits that specify
the number of days that the file
is to be saved after its date of
creation. The creation date for
the file is automatically supplied
by the input-output system when
the file is created.

FILE- alpha-
SERIAL-NUMBER numeric

Five or fewer alphabetic and/or
numeric characters (no special
characters) with no embedded
blanks. This is equivalent o the
reel serial number (usually the
number on the external casing of
the reel of tape).

Four or fewer digits that specify
the number of the reel within a
given file. The value specified is
written in the label of the first
reel of the file. Every time a
reel is switched, the value is
increased by one and written in

REEL- numeric
SEQUENCE-NUMBER

the label of the new reel.

Figure 13. Label Information for Output Files

Information Provided if Item

Label-Data-Name Not Specified

FILE- The first eighteen characters of
IDENTIFICATION the file-name are placed in the
label.

The value zero is placed in the
label.

FILE- The file-serial-number in the
SERIAL-NUMBER label of the tape being written

over is placed in the new label.

REEL- The value in the first reel of
SEQUENCE-NUMBER tape is one. The value is in-

creased by one for each succeed-
ing reei.

RETENTION-PERIOD

Figure 14. Standard Information Provided for Output Files

Description of Logical Records

Following each file description entry are data-item de-
scriptions of the logical records on the file. Each field
in the logical record is described. Any of the clauses
in the data-item description format may be used in
the FiLE sEcTION; however, the following restrictions
have been imposed:

1. The vaLUE clause may be used only in condition-
name entries. A condition-name is a name assigned to
a specific value in the range of values a data-item (con-
ditional variable) may assume. Condition-names are
identified by the special level-number 88. A condition-
name is formed in the same way as a data-name. The
rules for name formation are given in “Appendix A.”
The following example shows the use of the vALUE
clause with condition-names.

Data Division 29

05 MARITAL-STATUS PICTURE IS 9 USAGE IS
COMPUTATIONAL SYNCHRONIZED RIGHT.
88 SINGLE VALUE IS 1.

88 MARRIED VALUE IS 2
88 DIVORCED VALUE IS 3.

The following expressions would be equivalent if
used in the PROCEDURE DIVISION.

IF SINGLE. ..
IF MARTIAL-STATUS IS EQUAL TO 1...

A conditional variable may not be described as a
report or scientific decimal item.

2. The level-number 77 may not be used in the FiLE
SECTION.

3. The description of logical records on a file must
begin with 01 level-numbers. The occurs clause must
not be used at the 01 level.

4. The REDEFINEs clause must not be used at the 01
level for logical records in the same file.

Figure 15 shows data-item descriptions that can be
used to describe the logical record payroLL.

Working-Storage Section

Areas of storage reserved for processing of data work
areas are described in the WORKING-STORAGE SECTION.
The only type of entry in this section is the data-item
description.

An independent working-storage entry describes a
data-item that is not related to other items; that is, it is

neither subdivided nor a subdivision of some other
item. For example, an independent working-storage
item could be used to store an intermediate value of
a calculation. These entries are identified by the special
level-number 77. The required data-item description
clauses for independent working-storage entries are:
level-number (77), data-name, PICTURE, or size and
crass. The occurs clause is not meaningful and causes
an error at compilation time. The other data-item de-
scription clauses are optional and can be used to com-
plete the description of the item if necessary.

Data-items in the WORKING-STORAGE SECTION that are
related to each other are grouped into records and
described according to the rules for data-item de-
scriptions. The WORKING-STORAGE SECTION can be used
to describe entries in tables that are developed in
storage or to describe the work area for a record that
is read into storage and moved to the area. All clauses
used in the data-item description may be used with
organized working-storage items. Each record name
in the WORKING-STORAGE sEcTiON (01 level-number)
must be unique since it cannot be qualified by a file-
name, but subordinate data-names need not be unique
if they can be qualified.

In the FILE sECTION, the VALUE clause can be used
only in a conditional-name entry; in the workiNG-
STORAGE SECTION, the vALUE clause can be used in a
condition-name entry and also to specify the initial
value of elementary data-items. The general rules

IBM COBOL PROGRAM SHEET e
'PAG% :ROGRA: TES T - PROGRAM SYSTEM IBM - 70 7¢ SHEETJ OF ’
ROGRAMMER DATE IDENT.
020 T ALA. /28 M Pesr 00
8ia 's

4 6 ‘i’ 8 :|2 16 20 24 28 32 36 40 44 48 $2 56 60 64 68 72|
ol Ilo olll ! :PIAIYIRIOILILI 1 IUISIAIGAEI IIISI lclotunpjultAnrlzlolMAlLl'l Ly S N Y O T S T T N O N B O B A A OR
0140 Lt :ol"l #IAINI- lﬂlulnlblgﬂl |P|IICIT|U|RXE| III‘SI |919|7|?17191 l‘slyl~|c |”|R|o|”|I|z|Ep| Iklflcﬂl rl L1 I R

0 3Jo T :0135 1H|OIU|R|51 -IW!OIRIKIEPI I A A N A G N T T T Y T N O N B O B B A AN AN NN AR N
040 Ld | : L1 lol‘rl |R|£|G|U|L IAIR| |P|IIC|TIUIR|£| |I|s| I,I,I IleI”ICI”I&olNIIIZIEIDI lklzngill Tn NN 1
ol‘lo T : [lol‘fl la[VIEIRITIIMEI |PlIIC|7-IUlRIE| AI|5| 191 9| lslylfllcl’llklolﬂlllzlflpl ,ﬂ,[,G,.‘/,T; 'l Y S U Y T Y O T
01610 Lty Jlol‘?l IH101”|R|L1Y|-IR|A|TIE' g |P|I|C|T|U|RIE| |I|s| |,|,|v|7171 l‘sl Yl”lclfllklalNIIlZIEfDl IRlllqll.IITA'l VRN I B B R A
9 7|O olll 1 :PIERI‘SIOI'IIAILI IUI'SIA|G|£| AII‘sl |cl01'|P|U| 7-|A|7.l']|a|’il‘AlLl .| L M o Y N T T Y T O Y S O A R N R ||
ol‘la I] :ol'zl l‘;‘lelllrlAILI .I‘s|7-lAl 7I-”I$I L Ipljlc! rlunklEl |ls'$| 191 1 |’$| YINICIHJRL0|NIIIZ|EIDL,1@[1.)51”1 rl' S T N S N O T T 1
”xyno T : 1 |'|’1 |'S|IJN|$|L1£I |V|A|L|U|E| lll‘sl |/| I A A S AT A A D U S S T T O Y R VO T N B A N NS A O
11010 g 1 : (. wﬂ,ﬂﬂ,I'EA 1 ,V'A,L,UIE, lzl‘sl |.Z| Dl N N T T Y Y B N B B O AR A B R O
— T — ————— — ———

Figure 15. Sample Data-Item Descriptions in the FILE SECTION

30

given for the vaLUE clause in the data-description apply
to its use in the WORKING-STORAGE SECTION. No assump-
tion can be made about the initial value of a working-
storage item unless it is specified by a vALUE clause.

The WORKING-STORAGE SECTION begins with the
header woORKING-STORAGE SECTION followed by inde-
pendent items and organized items in that order.

Figure 16 shows coding in the WORKING-STORAGE
SECTION.

Constant Section

The CONSTANT SECTION is similar to the WORKING-
STORAGE SECTION, except that conditional variables and
the occurs and ReDEFINES clauses may not be used.
Each elementary item in the CONSTANT sEcTION must
have a vALUE clause.

Figure 17 shows sample data-item descriptions in
the CONSTANT SECTION,

IBM COBOL PROGRAM SHEET P
::'AGE5 PROGRAM TES T PROGQAM SYSTEM IaM - 70 74 SHEET 3 OF ,

0,3.0 PROGRAMMER AFA DATE 5~ /a2 g IDENT. ;(7;' ,80
SERIALTE :

3 A X 8

4 6718 g 16 20 24 g__s 32 36 40 44 48 52 56 60 64 68 E
010 Wlolle:IlNIGI-lSITlo|£1'4IClEI SECTION, \ o v TN ST S T SN0 T S S A O O A Y S M B AT
OIZIO JJ717: |w|£lE[K|I-'YI‘|P|A’Y| IUI§ﬁ|G|£l "Z|3| |c|o|M|P|U|:,-|A|7-IIIO|N|AIL| ‘Prz'elﬂuxlsl IIISI |9|7|V|7|7| | I T I Y A S I |
Dl3lo 114 : [(SIYINICIHIR[OINIIIZ|EIDI lklllclﬁlrl'l F N O O N T N N Y N N TN T T IO T Y T SN Y TN T O AN S OO Y N A B BN A1
0|4IO IOIII :E'DQIITIIINlGI‘I D Y O YN Y N I AN TN N N O T N O N T I T N T WO Y T A I U G N B B O O A B B B AN |
olslo 11 :012' IPIAlyl |PlI|c'TIUIRIEI Illsl l"‘|7|7'.'9|9|'| N T O T N T S TN N T TN Y Y O T N T YOO N N TN NN N U TN M AN A |
06lo | - :olal FIIA#'IEIRI |S|I|ZIE‘ |Il‘s| l‘fl.l § SN T S O T N TN U A T T YUY U T T T O T T N N O A NN N A AU NN 2N WY M N A NN A1
Ql7lo I - | :olll I7-I'A|'x'| |P|I|clT|!!l’;l£l IIIS LJI?I.I’ol"I.l N N O N T U T T O T T N Y A N N O T T SO NN T 1O TN N T TN SO MK N BN M 1
1810 |owl-&w.l | N Y T N T T N N T T N N N T O T 1 T T T Y O OO T N T S Y T W A0 O N 1

Figure 16. Sample Data-Item Descriptions in the WORKING-STORAGE SECTION

e S e S T e T I T v s S e S Y B e s T i [e T B 1

. 1

Zlolo cloI”Is:TIAINITI |'S|EICIT|IIO|NI.| IO TNS TEN H T NY T T U T N T N N ST T N U W O N N TS Y I SN U T T Y T O S
Zu'|°‘ 17171 :Il”lnéklElslz-KIAITLEI IPIIICITIUIRIEI |Z|5| |V|?|1n 1 |V|A|Lnl/|£1 11151 | |’|4| TN N T S WY O O I N O A
212101 d : 1 IUISIAIGIEI Illsl lclolulpl‘lnrx‘lrllnolNuAlLl x"jY]MclHleolﬂxIrzlElvr IklII$IHI7-I'I TN T YT T N T O S W
213101 |0|/| :7:‘|B|L|£« lUIslAlGIEI |I|S| |c|0|M|P|U|T|A|T|IIOMA|L|.l T S T T S N S T Y T O W Y S W N O N S S B
2‘4'0! 11 ;olal IOFN\EI-IDIEIPIEINIDIEI”;-’.I IPIIICITIUﬁIEI LII'SJ LVly|71 &VIAILIUIEL LIISI 1'11141'| I SN N S S A B A S A SR E |
z|5|D‘ il :ofll llehol-P|E|P|E|”|D|EIN|TI‘S| lplllcnrlulklfn lI16| Ivlqul L IvIAILIUlEI IZISI el Qe iy

*A standard card form, I1BM electro C61897, is available for punching source statements from this form.

Figure 17. Sample Data-Item Descriptions in the CONSTANT SECTION

Data Division

Procedure Division

Structure of the Procedure Division

The PROCEDURE DIVISION contains instructions for solv-
ing a problem; cosoL instructions are written in state-
ments, which may be combined to form sentences.
Groups of sentences form paragraphs and paragraphs
may be combined to form sections.

There are two types of statements; imperative state-
ments consisting of a cooL verb and its operands, and
conditional statements containing conditional expres-
sions, that is, tests for a given condition.

A coBoL sentence is composed of one or more state-
ments and must be terminated by a period. The state-
ment separator THEN may be placed before or after a
statement but should not be used at the beginning or
end of a sentence.

Several sentences that convey one idea or procedure
may be grouped to form a paragraph. A paragraph
must begin with a paragraph-name followed by a pe-
riod. A paragraph is terminated by the next paragraph-
name or section-name, or by the end of the PROCEDURE
DIVISION. A paragraph may be composed of one or more
sentences.

One or more paragraphs form a section. A section
must begin with a section-name followed by the word
sEcTION, followed by a period. Paragraphs need not be
grouped into sections; however, section-names are use-
ful for qualifying paragraph-names or for reference.
The general term procedure-name refers to both para-
graph-names and section-names.

Categories of Verbs

coBoL verbs used in imperative statements can be
grouped into the following categories.

Declaratives
VERB FUNCTION
USE Calls in user routines to supplement automatic

input-output error recovery routines and label
processing routines.
Input-Output
VERB FUNCTION
OPEN Prepares for reading or writing a file.

READ Causes a logical record to be made available
to the program for processing.

WRITE Causes a logical record to be made available
for writing.

CLOSE Releases buffer area and specifies rewind
options.

ACCEPT Accepts low-volume data from a peripheral
device.

DISPLAY Writes low-volume data on a peripheral device.

32

Arithmetic
VERB FUNCTION
COMPUTE Computes the value of mathematical formulas.
ADD Adds numbers.
SUBTRACT Subtracts numbers.
MULTIPLY Multiplies numbers.
DIVIDE Divides numbers.

Data Manipulation

VERB FUNCTION
MOVE Moves data from one area of storage to
another.
EXAMINE Counts and/or replaces individual characters

in a data-item.

Procedure Control

VERB FUNCTION

GO TO Transfers control from one part of the pro-
gram to another.

ALTER Changes the destination of a GO TO state-
ment.
PERFORM Aliows a series of statements to be executed

and control to be returned to the main part of
the program.

Compiler Directing

VERB FUNCTION

EXIT Supplements, as a dummy verb, the PER-
FORM statement.

NOTE Allows comments to be written as part of the
program listing.

STOP Causes a temporary or permanent halt in the
program.

ENTER Provides for communication between pro-
grams.

Tests

In the category “rEsts,” all procedure statements begin
with the word 1F. The type of test is given in this chart
as the verb type.

VERB FUNCTION
Relations Compares the size of two operands.
Sign Determines whether an operand is positive,

negative, or zero.

Class Determines whether an operand is numeric
or alphabetic.
Conditional Tests if a conditional variable has the value
Variable of one of its condition-names.

Tests the ON or OFF status of an entry key
on the computer.

Switch-Status

Conditional and Imperative Verbs

The following list shows conditional and imperative
statements. Conditional statements contain a condition

that must be tested before the statement is executed.
Imperative statements are commands.

IMPERATIVE CONDITIONAL
STATEMENTS STATEMENTS
USE READ (AT END)
OPEN ADD
WRITE SUBTRACT
CLOSE MULTIPLY
ACCEPT DIVIDE
DISPLAY GO TO (DEPENDING ON)
COMPUTE IF statements

ADD

SUBTRACT

MULTIPLY

DIVIDE

EXAMINE

ALTER

GO TO

PERFORM

EXIT

ENTER

NOTE

STOP

(ON SIZE ERROR)

COBOL Verbs

Declaratives

The input-output system automatically handles the
checking and writing of standard labels and executes
error recovery routines in case of input-output errors.

Procedures in addition to the normal processing by
the input-output system may be specified. The declara-
tives verb usk tells whether the procedure statements
that follow it are to be executed in addition to error
recovery routines or are to be executed in addition to
label processing routines. Any procedure statements
(except those containing input-output verbs) may fol-
low a USE statement.

Since these procedure statements are executed at the
time an error in reading or writing tape occurs or when
labels of files are to be processed, they cannot appear
" in the regular sequence of procedure statements. There-
fore, they must be written at the beginning of the
PROCEDURE DIvIsION. The word pECLARATIVES identifies
the beginning of this section of procedure statements
and the declaratives section is ended by the words END
DECLARATIVES.

USE Verb

The Use statements identify the procedure statements
that follow them. There are two options of the USE
statement. Option 1 is used if the statements that follow
it give procedures in addition to standard error proc-
essing. Option 2 is used if the statements that follow it
give procedures in addition to the writing and check-
ing of standard labels. The formats are:

Option 1.
section-name SECTION.
USE AFTER STANDARD ERROR PROCEDURE

INPUT
N { ——— .
o { fle-name-1 [file-name-2...] }

Option 2.
section-name SECTION.

USE { BEFORE } STANDARD [{ BEGINNING }]

AFTER ENDING
M REEL V], o oot oon
| \ FILE_ (| 2855 s ON
INPUT
OUTPUT

file-name-1 [file-name-2 .. .]

The statements that follow option 1 provide for addi-
tional processing after the input-output system executes
the standard error recovery routines. When an input-
output error occurs, the input-output system executes
standard errer recovery procedures. If the error cannot
be corrected, messages are printed indicating the type
of error that has occurred, a core-storage dump is taken,
and program execution is terminated. Part 1 of this
publication contains an example that specifies alternate
procedures in the declaratives section. If INpUT is speci-
fied in option 1, the statements are executed for all
input files. Otherwise, the statements are executed for
the specified input files; file-name-1, file-name-2, etc.

The statements following option 2 provide for proc-
essing in addition to standard label processing. The
operands in the Usk statement determine when and for
what files the statements are executed. The following
list shows the effect of the operands.

OPTION STATEMENTS EXECUTED

BEFORE Before regular label processing.

AFTER After regular label processing.

BEGINNING For header labels.

ENDING For trailer labels.

Option omitted For both header and trailer labels.

REEL For labels between first header and last
trailer label of the file.

FILE For first header and/or last trailer label
of the file.

Option omitted For all labels.

INPUT For all input files.

OUTPUT For all output files.

file-name-1, For files specified by file-name-1, file-name-

file-name-2 2, etc.

An example of the use of option 2 is given in Part 11
of this publication.

Note: When option 2 is used, the compiler generates
external names (in the form cNxxx) to refer to the use
procedures. The names are placed in the control dic-
tionary, and a job consisting of several programs may
have duplicate external names. It may be necessary to

Procedure Division 33

use sNAME cards to rename nonunique external names.
The sNaME cards are explained in the publication IBM
7090/7094 IBSYS Operating System, IBJOB Processor,
Form C28-6389.

The following list shows the order of entries in a
declaratives section.

PROCEDURE DIVISION.
DECLARATIVES.
section-name-1 SECTION.

USE...

procedure statements in section-name-1.
section-name-2 SECTION.

USE...

procedure statements in section-name-2.
section-name-3 SECTION.

END DECLARATIVES.

Input-Output Verbs

Input-output verbs are used to transmit data between
the computer and peripheral devices. The input-output
system automatically handles most input-output func-
tions when an input-output verb is encountered. An
OPEN verb initiates reading or writing a file and reserves
a buffer area for the file. A rEAD verb causes one logical
record in the buffer area to be made available to the
program. The wriTE verb causes one logical record to
be made available to be written out of storage from the
buffer area. The cLose verb closes the buffer area so
that it can be used for other files.

The accepr and pispLAY verbs facilitate the handling
of the input and output of data from specified system
units, for example, messages to the machine operator
that are written on the on-line printer.

OPEN Verb

The opEN verb initiates the checking or writing of the
standard header label preceding the file, causes use
declaratives to be executed, and prepares input-output
units to read or write.

A file must be in oPEN status before a READ or WRITE
statement can be issued for it. The oPEN verb initializes
input-output procedures, but REApD and wriTE state-
ments actually obtain and release the records.

The format of the oPEN statement is:

OUTPUT file-name-1 [file-name-2. . .]
INPUT file-name-1 [file-name-2 . . .]
OUTPUT file-name-3
[file-name-4 . . .]

INPUT file-name-1 [file-name-2...])

OPEN

File-name-1, file-name-2, etc. are the names the pro-
grammer assigned the files in the file description entries
in the paTA DIVISION or in the FILE-coNTROL paragraph
in the ENVIRONMENT DIVISION.

34

When a file is opened, it remains in oPEN status until
a cLOsE statement for that file is executed. Therefore, a
second OPEN statement for a file cannot be executed
prior to the execution of a cLosE statement for that file.

READ Verb

A RreAD verb causes one logical record of a specified file
to be made available to the program. The reap state-
ment includes an instruction for the procedure if the
record is the last record on the file. If the file is on more
than one reel of tape, the reAD verb causes the follow-
ing operations when the end of the reel is reached.

1. The standard trailer label subroutine and any pro-
cedures specified in the declaratives section are exe-
cuted.

2. A reel switch occurs.

3. The standard header label subroutine and any
procedures specified in the declarative section are exe-
cuted.

4. Checkpoints are written.

5. The next record is made available.

For input files, the standard label subroutines check
the values in the labels to ensure that they match the
values given in the vaLUE clause of the file description
entry. If there is an error in the label, a message is
printed on-line. The machine operator has the option of
ignoring the label error and causing processing to con-
tinue. The format of the rREAD statement is:

READ file-name RECORD [INTO data-name]
AT END { imperative-statement }

NEXT SENTENCE

File-name is the name of the file described in the file
description entry. Although the name of the file is speci-
fied, the READ verb causes the next logical record on the
file to be made available. If there is more than one type
of record on the file, the programmer must have some
means of determining which type has been read.

The 1NTO data-name option causes the record to be
put into a working-storage or other record area as well
as the input area. It has the same effect as though there
were statements to READ the record into the input area
and MOVE it to the area specified by data-name. The
record is available in both the input area and the data-
name area. Data-name must not be the name of a logical
record on the file specified by file-name. If the format
of the data-name area is different from that of the input
area, moving is performed according to the rules speci-
fied for a group move (assumes picTure of all X’s)
without the corresPoNDING option.

An At END clause is required in every READ statement.
It specifies the procedure to be followed after the last
record on the file has been read. After the aT Exp clause
has been executed, an attempt to perform a ReAD state-

ment without the execution of a crosE and a subse-
quent opeN for the file constitutes an error except for
multireel unlabeled files.

For multireel unlabeled files, the programmer can
identify the file in the FILE-cONTROL paragraph in the
ENVIRONMENT DIVISION as a multiple reel file and pro-
vide a means of communicating to the program, usually
by the entry keys or control cards, whether a continua-
tion reel exists for the file. Upon execution of the AT ExD
clause, if it is determined that the last reel of the file
has been processed, a CLOSE statement may be given. If
it is determined that a continuation reel does exist for
the file, the next READ statement causes the input-output
system to rewind and unload the reel last read and to
switch units if required.

WRITE Verb

A wrrtE verb releases a logical record for external
storage. If the output file is recorded on more than one
reel of tape, the wrrtE verb causes the following opera-
tions when the end of the reel is reached.

1. The standard trailer label subroutines and pro-
cedures specified in the declaratives section are exe-
cuted.

2. A reel switch occurs.

3. The standard header label subroutine and pro-
cedures specified in the declaratives section are exe-
cuted.

4. Checkpoints are written.

For output files, standard label subroutines cause the
values specified in the vaLUE clause of the file descrip-
tion entry to be written in the label.

The format of the wrre verb is:

WRITE record-name [FROM data-name]

Record-name is the name assigned to the logical
record in the FILE secTioN (a data-item description
with a 01 level-number).

The FroM data-name option specifies that the record
is to be moved from a working-storage area or other
record area named data-name to the output area record-
name and then released for external storage. If the for-
mat of data-name differs from record-name, moving is
performed according to the rules for a group Move
(assumed picrure of all X’s) without the CORRESPOND-
ING option.

After the wrrTE statement is executed, the informa-
tion in record-name cannot be referred to; but if the
FROM option is used, the information in data-name is
still available.

CLOSE Verb

The crose verb initiates the closing of the file and re-
leases the buffer area for further use by the program.
The format of the cLOSE statement is:

Option 1.
CLOSE file-name-1 | wiTH § NO REWIND |}
=== LOCK
[file-name-2 . . .]
Option 2.

CLOSE file-name-1 REEL [file-name-2...]

Option 1 is used to terminate processing on a file.
When a cLosk file-name statement is given, the specified
options are executed for the current reel of the ﬁle and
no further pIOCGSSiﬁg on the file is permmcu until an

oPEN statement is given. The following list shows the
effect of the options in the cLosE file-name statement:

ACTION FOR THE CURRENT REEL

OPTION OF THE FILE
LOCK rewinding and unloading
NO REWIND no rewinding
neither option rewinding
specified
Option 2, the REEL option, is used when the file is on

more than one reel of tape, and the programmer wants
to stop reading or writing the records on one reel and
go on to the next reel. Lock, that is, rewinding and un-
loading, is assumed when this option is used. On
labeled input files, the trailer label is not checked; but
the header label on the next reel is checked and state-
ments in the declaratives section are executed. If this
option is used for the last reel of an input file, an error
is probable for unlabeled files and certain for labeled
files. On labeled output files, both trailer and header
labels are written and the statements in the declaratives
section are executed. Checkpoints specified (in the
1-0-CONTROL paragraph of the ENVIRONMENT DIVISION)
for either input or output files are not taken if the reEL
option is used.

If a file is assigned to a system unit in the assicN TO
clause in the ENVIRONMENT DIVISION, the CLOSE options
for the file may be overridden by the crLosk options of
the system unit.

Figures 18 and 19 show the operations initiated by
the input-output verbs, OPEN, READ, WRITE, and CLOSE.

ACCEPT Verb

The accepr verb permits low-volume data to be read
from the card reader or the system input unit (sysinN1).
The format of the AcCEPT statement is:

ACCEPT data-name [FROM SYSINI:I

The usack of data-name must be pispLAY and it may
not be a report, scientific decimal, or floating-point
item. Data-name may not exceed 72 characters. The

Procedure Division 35

Open Read Close

Locate Next

Processing Record In Processin, Processing
Buffer Area
Check Check
Header End No Trailer
Label of Reel Label
Yes
Check
Execute . Execute
4 Traifer Declarati
Declaratives Labe! claratives
Execute
Declaratives
Yes Write heckpoi Yes Write
Checkpoint Checkpoint Checkpoint
No
Write 1—_—__,
Checkpoint
No Close File
And Release
Area
Tape
Alternation
Processing|
v NG
Check
Header
Label
3 Yes Execute
Declaratives Declaratives
N No
. Yes Write
Checkpoint Checkpoint
No
. No End
Processi of File
Yes
Execute
At End Processing]
Statement

Figure 18. Operations Initiated by Input-Output Verbs on Input Files

36

Close

Open
Put Racord /\
in Buffer Processing]
Area

Processing]
Y
Write Write
Header End i
N Trailer
Label of Reel = Label

Execute
Declaratives

Write
Trailer

Execute
Declaratives

No
Yes Write
Checkpoint
e i

Execute
Declaratives

Write
Checkpoint

Write
Checkpoint
A
Processing] No Close File
And Release
A Area
Tape
Alternation
Processing|
Y
Write
Header
Label

Execute
Declaratives

Write
Checkpoint

End
of File

Figure 19. Operations Initiated by Input-Output Verbs on Output Files

Procedure Division 37

length of data-name may not vary in the program, that
is, the data-item description entry may not contain an
OCCURS DEPENDING ON clause.

DISPLAY Verb

The pispLAY verb causes low-volume data to be written
on either the on-line printer or the system output unit
(sysout). The format of the pispLAY statement is:

literal-2
data-name-2
figurative-constant-2

[UPON SYSOU1]

literal-1
DISPLAY { data-name-1
figurative-constant-1

The standard display device is the on-line printer. If
UPON sysoul is specified, the display device is the sys-
tem output unit. Normally, a line of displayed informa-
tion is 72 characters long. If upoN sysou1 is specified
and sysou1 is a magnetic tape unit, the information dis-
played is in strings of 120 characters, that is, the “print
line” is 120 characters long. Automatic carriage control
for off-line printing of output on sysout1 is provided.

When pisprAY is followed by multiple operands, the
data constituting the first operand is made the first set
of characters on the first line, the data constituting the
second operand is made the second set of characters on
the first line, and so forth, until the print lire is filled.
Then the line is displayed. The only operands that can
be split so that parts of the item appear on two or more
successive print lines are either group items or ele-
mentary items whose PICTURE clause is either A(n)
alphabetic or X(n) alphanumeric. If there is not
enough room in the print line for any other type of item,
the current print line is filled with spaces and displayed.
The pending item is the first set of characters on the
new print line, ‘

Negative NUMERIC COMPUTATIONAL data-items and
all NuMERIC DISPLAY data-items are prepared for ex-
ternal output with the sign indicated by an overpunch
in the rightmost character position. The printer recog-
nizes these as alphanumeric characters and prints them
accordingly. A complete list of the alphanumeric char-
acters corresponding to a digit with a sign overpunch is
given in “Appendix B.”

If a file is assigned to sysoui, data written on the file
(wriTE statement) and items displayed on sysoui do
not necessarily appear on the listing in the order
written. Output from a DpISPLAY statement is produced
immediately, but output from a WRITE statement is put
in a buffer area and written by the input-output system
when the buffer is full. If sysou1 is used both for a
pisPLAY device and for an output file, the automatic
carriage control feature is subject to interference.

The special register TALLY is a valid operand in a
DISPLAY statement.

38

Arithmetic Verbs

Arithmetic verbs are used for computations. Each op-
eration can be individually specified with the verbs
ADD, SUBTRACT, MULTIPLY, and DIVIDE; or the operations
can be combined in a formula expressed in terms of
mathematical symbols. The coMpPUTE verb is used with
formulas.

The ForTRAN 1v mathematical library subroutines
can be used in a coBoL program to perform other alge-
braic operations. A description and example are given
in Part 11 of this publication.

COMPUTE Verb

The compuTe verb allows arithmetic operations to be
specified in a formula. It may be used instead of the
ADD, SUBTRACT, MULTIPLY, and DIVIDE statements, which
are internally changed to comMPUTE statements by the
compiler.

The format of the coMPUTE statement is:

formula
data-name-2
literal

[ON SIZE ERROR imperative-statement]

COMPUTE data-name-1 [ROUNDED] =

Daia-name-I must be the name of an elementary
data-item described in DATA DivisioN or the special
register TALLY; it cannot be a literal. The result of the
calculation is stored in data-name-1.

If data-name-2 or literal is specified, data-name-1 is
set equal to data-name-2 or literal. In this case, data-
name-1 can be any legitimate receiving field for a
MOVE from data-name-2 or literal. Legitimate receiving
fields are shown in Figure 22.

Formula can be any combination of numeric literals,
data-names, and arithmetic symbols. There are five
arithmetic symbols used in formulas in cosor. The
symbols and their meanings are:

SYMBOL MEANING
+ Add
- Subtract
* Multiply
/ Divide
** Exponentiate

The order in which the operations are to be per-
formed may be indicated by parentheses. If paren-
theses are nested, expressions in the innermost paren-
theses are evaluated first. The following examples show
the order of operations indicated by parentheses:

Example 1:

COMPUTE RESULTS =3* (24 5) *(8/2)
results in
RESULT =3*7*4 =284

Example 2:

COMPUTE RESULT =3 + (4* (7 + 8)) + 2
results in
RESULT =3+ (4*15) +2=3+60+2 =65

If there are no parentheses, the expression is evalu-
ated in the following order: first, exponentiation, then
multiplication and division, and last, addition and sub-
traction. Expressions on the same level are evaluated
from left to right. For example, A / B * C is the same as
(A / B) * C. The following example shows the eval-
uation of an expression in which the order is not indi-
cated by parentheses.

Example:

10/5) + ((2%*3)*4) — 6
4) -6

o
|

Exponentiation of either a negative variable or literal
is allowed only if the exponent is either a literal or
data-name having an integral value. If the exponent
is other than a non-negative integer, the result of the
exponentiation is zero.

It should be noted that the operational symbols
must be preceded and followed by a space.

Decimal point alignment is automatically supplied
by the compiler. If the number of decimal places (those
to the right of the decimal point) in the result is greater
than the number of decimal places in the description
of data-name-1, excess decimal places are truncated
unless the ROUNDED option is specified. When ROUNDED
is specified, the least significant digit of the result in
data-name-1 is increased by 1 if the most significant
digit of the excess is greater than or equal to 5.

Whenever the number of integral places (those to
the left of the decimal point) in the result exceeds the
number of integral places in data-name-1, a size error
condition arises. When oN siZe ERROR is not specified
and a size error occurs, the value of data-name-1 is
unpredictable. When oN size ERROR is specified and a
size error occurs, the value of data-name-1 is unpredic-
table, but the statement following the words oN size
ERROR is executed.

ADD Verb
The App verb is used to add two or more numeric data-
items. The format of the app statement is:

Option 1.

ADD literal-1 literal-2 o TO
= |} data-name-1 data-name-2 GIVING

data-name-n]
[ROUNDED] [ON SIZE ERROR imperative-statement]

Option 2.
ADD CORRESPONDING data-name-1 m data-name-2

[ROUNDED] [ON SIZE ERROR imperative-statement]

Option 1 is used to add two or more elementary
items. Data-name-1, data-name-2, etc., may be numeric
elementary data-items described in the DATA pIvisION
(e.g., with the numeric form of the picTURE clause) or
may be the special register TarLy. The literals must be
numeric.

If the civing option is used, the sum of the items
preceding data-name-n is stored in data-name-n. Since
data-name-n is not an operand, it may contain editing
symbols in the picTURE clause of its data-item descrip-
tion.

If the To option is used, the sum of all the items, in-
cluding data-name-n, is stored in data-name-n. In this
case, data-name-n is used in the calculation and must
not contain editing symbols. If neither To nor civine
is specified, To is assumed.

Option 2, ADD CORRESPONDING, is used to add the ele-
mentary items in a group to matching elementary items
in another group. Data-name-1 and data-name-2 are
the names of the groups containing the elementary
items to be added. Two elementary items match if
their names are the same, including all qualification
up to {not including) defa-name-1 and data-name-2.
An item in the group data-name-1 is added to an item
in the group data-name-2 that has the same name; the
result is stored in the group data-name-2.

In both option 1 and option 2, ROUNDED and SIZE
ERROR have the same meanings as in the COMPUTE state-
ment.

Figure 20 shows the effect of an ADD CORRESPONDING
statement.

ADD CORRESPONDING WEEKLY-RECORDS TO YEARLY-RECORDS

Data-names in Values Before Values After

Data-names in Values Before Values After
group data-name-1 ADD ADD
(WEEKLY-RECORDS) CORRESPONDING CORRESPONDING

03 WEEKLY-RECORDS - -
04 HOURS-WORKED 40 40
04 PAYROLL - -~
05 PAY 100 100
05 NET-PAY 97 97
04 TAX 3 3

group data-name-2 ADD ADD
(YEARLY-RECORDS) CORRESPONDING CORRESPONDING

02 YEARLY-RECORDS - -

04 HOURS-WORKED 120 160

04 PAYROLL - -

06 PAY 300 400

04 TAX-RATE 03 03

04 TAX 9 12

Figure 20. Example of ADD CORRESPONDING

Procedure Division 39

Subtract Verb

The suBtrACT verb is used to subtract one, or a sum of
two or more, numeric data-items from a specified item.
The format of the suBTRACT statement is:

Option 1.
SUBTRACT literal-1 literal-2 .
—— | data-name-1 data-name-2
literal-
FROM 4 eran [GIVING data-name-m]

data-name-n
[ROUNDED] [ON SIZE ERROR imperative-statement]

Option 2.
SUBTRACT CORRESPONDING data-name-1 FROM
data-name-2
[ROUNDED] [ON SIZE ERROR imperative-statement]

Option 1 is used to subtract one or more elementary
items from another elementary item. When dealing

with multiple subtrahends, the effect of the subtraction -

is as though the subtrahends were first added together,
and the sum then subtracted from the minuend.

Data-name-1 through data-name-n must be elemen-
tary numeric data-items described in the paTA DIVISION,
or the special register TaLLy. Literal-I through literal-n
must be numeric literals.

If the civinG option is used, the result is stored in
data-name-n, which may contain editing symbols since
it is not used in the calculation. If the civin option is
not specified, the result of the subtraction is stored in
data-name-n which, therefore, may not be a literal.
Data-name-n may not contain editing symbols since it
is used as an operand.

The effect of the rRounpED and ON s1iZE ERROR options
is the same as for the compuTE statement.

Option 2, the CORRESPONDING option, is the same as
the ADD CORRESPONDING option, except that matching
items are subtracted rather than added.

MULTIPLY Verb
The muLTIPLY verb is used to multiply two numeric
data-items. The format of the MmuLTIPLY Statement is:

MULTIPLY J data-name-1 } data-name-2 }

literal-1 — | literal-2
[GIVING data-name-3] [ROUNDED]
[ON SIZE ERROR imperative-statement]

If the civine option is specified, the result of the
multiplication is stored in data-name-3, which may
contain editing symbols. If the civine option is not
specified, the result of the multiplication is stored in
data-name-2, which, therefore, must neither be a literal
nor contain editing symbols.

Data-name-1 and data-name-2 must be either nu-
meric elementary items containing no editing symbols
or they may be the special register TaLLY. Literal-1 and
literal-2 must be numeric literals.

40

The rouNDED and ON sIZE ERROR options are the same
as for the compuTE statement.

The statement MULTIPLY RATE BY TIME GIVING DIS-
TANCE has the same effect as COMPUTE DISTANCE = RATE
* TIME.

DIVIDE Verb

The prvipe verb is used to divide one numeric data-item
by another. The format of the pivipE statement is:

DIVIDE d.ata-name-l INTO d.ata-name-2
— | literal-1 = | literal-2
[GIVING data-name-3] [ROUNDED]
[ON SIZE ERROR imperative-statement]

When the civing option is specified, the result of the
division is stored in data-name-3, which may contain
editing symbols. When the civine option is not speci-
fied, the result is stored in data-name-2 (not a literal),
which must not contain editing symbols.

Data-name-1 and data-name-2 must be either nu-
meric elementary items containing no editing symbols,
or the special register TaLLy. Literal-1 and literal-2
must be numeric literals.

The rounDED and ON s1zE ERROR options follow the
rules for the coMPUTE statement.

Since division by zero constitutes a size error, it is
wise to test for a zero condition before dividing.

The statement DIVIDE TOTAL-COST INTO QUANTITY GIV-
ING ITEM-PRICE is equivalent to COMPUTE ITEM-PKICE =
QUANTITY / TOTAL-COST.

Data Manipulation Verbs

The MoOVE verb moves data from one area of core stor-
age to another. The ExaAMINE verb is used to count the
occurrences of, and/or to replace, a specified character
in a data-item.

MOVE Verb

The MovE verb is used to move data from one area of
core storage to one or more other areas. Both the
source area and the receiving area(s) must be de-
scribed in the paTa pivision. The data is stored in con-
formity with the description of the receiving area;
therefore, this verb can be used to convert data from
one form to another. For example, a numeric item can
be edited by moving it to a data-item described by the
report form of the PICTURE clause.
The format of the MovE statement is:

Option 1.

MOVE fd_ata'f’ame'l ITo data name @ [data name 3. .]
|litera: f—

Option 2.
MOVE CORRESPONDING data-name-1 TQ data-name-2
[data-name-3 . . .]

Option 1 is the simple MOVE statement. The value of
the data in the source field, data-name-1 or literal, is
unchanged by the MovE statement. It is stored in ac-
cordance with the description of the receiving fields,
data-name-2, data-name-3, etc.

When numeric items (COMPUTATIONAL OF DISPLAY)
are moved to numeric fields, they are aligned by deci-
mal points with zero-filling or truncation on either end,
as required. A warning message is given by the com-
piler if there is a possibility that significant digits will
be lost through truncation when the program is exe-
cuted.

When numeric COMPUTATIONAL items are moved to
numeric pispLAY fields, they are converted from binary
to Bcp; that is, UsAGE becomes DISPLAY. Since coMmpuU-
TATIONAL items are assumed to be signed, the pispLAY
PICTURE is preceded by an S.

When numeric items (COMPUTATIONAL OF DISPLAY)
are moved to report fields for editing, they are aligned
as specified in the report field. (Editing is explained
under the report form of the picrurE clause.) After the
item is edited, it is treated as alphanumeric data when
referred to in the program.

When numeric items are moved to alphanumeric
fields, they are stored in the field from left to right and
the signs are dropped. Nonsignificant digits are trun-
cated if the item is too long. Trailing blanks fill in the
field if the item is too short.

Nonnumeric data is placed in the receiving field from
left to right. If the source field is shorter than the
receiving field, the extra positions in the receiving field
are filled with spaces. If the source field is longer than
the receiving field, the operation is terminated when
the receiving field is filled, and a warning message is

given. Nonnumeric data must not be moved to numeric
fields.

Figure 21 shows the effect of MoVvE statements.

A group item may be moved to an elementary item;
an elementary item may be moved to a group item. If
either is done, the data is treated as nonnumeric data
and placed in the receiving field from left to right.

Figure 22 shows the kind of data that can be moved
from one area of storage to another.

Option 2, the corrESPONDING option, is used to move
group items. Items in the group data-name-I are
moved to items in the group data-name-2 (data-name-3,
etc.) that have the same name. The CORRESPONDING
option has the same effect as moving the elementary
items individually.

As in the simple MoVE, the CORRESPONDING option
causes the data to be stored in conformity with the
receiving field. An item in the group data-name-1 is
moved to a field in data-name-2 if the names are the
same including all qualification up to (but not includ-
ing) data-name-1 and data-name-2. At least one of the
items in a matching pair must be elementary. This
option may not be used with data-items having level-
numbers of 77 or 88. Neither data-name-1 nor data-
name-2 may contain an occurs clause. If a REDEFINES
clause has been used, the data description for the name
referred to by the MOVE CORRESPONDING statement is
used.

Figure 23 shows the effect of a MOVE CORRESPONDING
statement. The noncorresponding items in the source
area are not moved and the noncorresponding items
in the receiving area are not affected.

Source Area Receiving Area
Data Before Data After Data Before Data After
PICTURE MOVE MOVE PICTURE MOVE MOVE
X(4) 1.23 1.23 X(6) ABCDEF 1.23bb
V99 1.23 1.23 X(6) 13.231 123bbb
999 123 123 X(6) bbbbbb 123bbb
S$9(6) — 000199 —000199 X(4) bOUT 0001
2(4)V9(5) 1234.56789 1234.56789 X(72) bbb...b 12345678%bb. .. b
99V99 12.34 12.34 V99 98.76 12.34
9V99 12.34 12.34 9Ve 98.7 12.3
9v9 1.2 1.2 9V99IP 98.654 01.200
X(3) A28B A28 XXXXXX YOX8W A2Bbbb
99V99 12.34 12.34 $2229.99 $8765.43 $ 1234

Figure 21. Effect of MOVE Statements

41

Procedure Division

L

Receiving Field Type
Elementary ltems
Group Numeric Floating-point
Items Alphabetic Alpha- COMPUTA- Numeric COMPUTA- Scientific
Source Field Type m (2) numeric TIONAL DISPLAY Report TIONAL Decimal
Group ltems (1) yes
Elementary ltems yes yes no no no no no
Alphabetic yes yes yes no no no no no
Alphanumeric yes yes yes no no no no no
Numeric yes no yes yes yes yes yes yes
COMPUTATIONAL
Numeric DISPLAY yes no yes yes yes yes yes yes
Report yes no yes no no no no no
Floating-point yes no yes yes yes yes yes yes
COMPUTATIONAL
Scientific Decimal yes no yes yes yes yes yes yes
Figurative Constants
ZERO[S] or ZEROES yes no yes yes yes yes (3) yes yes (3)
SPACE[S] yes yes yes no no no (4) no no
LOW-VALUE[S] yes no yes no no no no no
HIGH-VALUE[S] yes no yes no no no no no
QUOTE[S] yes no yes no no no no no
ALL... yes yes (2) yes no yes (5) no no no
(1) Group items are treated as having a PICTURE of all X's.
(2) All characters must be alphabetic.
(3) Zero suppression takes place if specified.
(4) A warning message is given.
(5) The character must be numeric.

Figure 22. Permissible Source and Receiving Fields in MOVE Statements

MOVE CORRESPONDING INVENTORY-POSTING TO INVENTORY-RECORD

Source Area:

PART- | QUANTITY- ON- ORDER-
INVENTORY-POSTING NUMBER USED HAND | SHIPPED RECEIVED POINT
Receiving Area: y y
S PART- PART- ON- UNIT- | QUANTITY- | ORDER-
INVENTORY-RECORD NUMBER NAME HAND cosT USED POINT

Figure 23. Effect of MOVE CORRESPONDING Statement

EXAMINE Verb

The ExaMINE verb is used either to count the number
of times a specified character appears in a data-item
and/or to replace a character with another character.
The format of the ExaMINE statement is:

EXAMINE date-name
ALL
TALLYING ! LEADING literal-1
UNTIL FIRST
[REPLACING BY literal-2]

ALL

LEADING literal-1 BY

UNTIL FIRST literal-2

FIRST

REPLACING

42

The ExaMINE verb causes data-name to be scanned
from left to right. When the TaLLYING option is used,
a count is made of the occurrences of literal-1 in data-
name. The count replaces the value of the special reg-
ister TaLLY. The word TALLY is the preassigned name
of a special register that can hold five decimal digits.

The REPLACING option (used alone or with the TaLLY-
ING option) causes literal-1 to be replaced by literal-2
in data-name. If the rRePLACING option is used with the
TALLYING option, the characters counted are the ones
that are replaced, that is, the option chosen for TALLY-
ING applies to REPLACING.

The word AL specifies that each occurrence of
literal-1 in the data-name is counted and/or replaced
by literal-2.

The word LEADING specifies that literal-1 is counted
and/or replaced by literal-2 only until a character dif-
ferent from literal-1 is encountered.

The word UNTIL FIRsT specifies that characters other
than literal-1 are counted and/or replaced by literal-2
until the first occurrence of literal-1.

The word rirst (used only with the REPLACING op-
tion) specifies that only the first occurrence of literal-1
is to be replaced by literal-2.

The ExaAMINE statement can be used only with pis-
PLAY data-items. Any literal used must be a member of
the character set associated with the crass of data-
name; e.g., if the cLass of data-name is NUMERIC, the
literal must be numeric and not enclosed in quotation
marks. The literals must be single characters. A figura-
tive constant may be specified instead of the literals
and it will be considered to be a single-character literal.
Literals and figurative constants are explained in “Ap-
pendix A.”

Procedure Control Verbs

Normally, instructions in the PROCEDURE DIVISION are
executed sequentially. The procedure control verbs
allow alterations in the sequence. The co TO verb
causes a transfer to another part of the program. The
aLTER verb is used to change the destination of a
co TO statement. The PERFORM verb causes a series of
statements to be executed a specified number of times.

GO TO Verb

The co To verb allows a transfer from one part of the
program to another. The format of the co TO state-
ment is:

Option 1.
paragraph-name. GO TO

Option 2.
GO TO procedure-name-1

Option 3.

GO TO procedure-name-1 procedure-name-2
[procedure-name-3 . ..] DEPENDING ON data-name

In option 1, the destination of the co To verb is not
given. It must be specified by an ALTER statement be-
fore the Go TO statement is executed. Paragraph-name
is required and the paragraph may contain only the
words GO TO.

When option 2 is used, the next statement to be
executed after the 6o TO statement is the first state-
ment in procedure-name-1. The ALTER verb can be
used to change the destination of the co To statement.

If this is done, the co TO statement must appear in a
paragraph by itself.

Option 3 provides another method of transferring
to different parts of the program. The transfer is to the
1st, 2nd,...,nth procedure-name as the value of
data-name is 1, 2, . . ., n. In order to transfer, data-
name must have a positive integral value; if the value
is anything other than the integers 1,2, ..., n, then no
transfer is executed and control passes to the next
statement in the normal sequence.

ALTER Verb

The ALTER verb changes the transfer point specified in
a o To statement. The format of the ALTER state-
ment is:

ALTER paragraph-name-1 TO PROCEED TO
paragraph-name-2 [paragraph-name-3 TO PROCEED TO
paragraph-name-4 . . .]

Paragraph-name-1, paragraph-name-3, etc., are the
names of paragraphs consisting of only a noncondi-
tional Go To statement, that is, option 1 or 2 of the
GO TO verb.

Paragraph-name-2, paragraph-name-4, etc., are the
names of paragraphs to which the co To statement
causes a transfer after the ALTER statement is executed.

For example, in the coding given below, a transfer
is made to the paragraph named sort the first time
through the program and to the paragraph name
MERGE after the statement at REVERSE is executed.

P1. ALTER P3 TO PROCEED TO SORT.
P3. GO TO

REVERSE. ALTER P3 TO PROCEED TO MERGE.

PERFORM Verb

The PERFORM verb is used to depart from the normal
sequence of procedures in order to execute one state-
ment, or a series of statements, a specified number of
times. After the statements are executed, control is
returned to the statement after the PERFORM statement.
The format of the PERFORM statement is:

Option 1.
PERFORM procedure-name-1 [THRU procedure-name-2]

Option 2.
PERFORM procedure-name-1 [THRU procedure-name-2]
{ da'ta-name } TIME[S]
integer _—

Procedure Division 43

Option 3.
PERFORM procedure-name-1 [THRU procedure-name-2]
UNTIL condition

Option 4.
PERFORM procedure-name-1 [THRU procedure-name-2]

data-name-2
literal-1

data-name-2
Y
B { literal-2

VARYING data-name-1 FROM {

} UNTIL condition

Option 5.
PERFORM procedure-name-1 [THRU procedure-name-2]
data-name-1 }

VARYING subscript-name-1 FROM { .
_— = | integer-1

BY {flata-name-Q
— | integer-2

} UNTIL condition-1

AFTER subscript-name-2

FROM { data-name-3 } BY { data-name-4}

— | integer-3 integer-4
UNTIL condition-2

[AFTER subscript-name-3

O e - <

HIEEET-U

UNTIL condition-3]

intoasa- B
inweger-o

FROM { data-name- }BY data-name-6 _|
{] L

All of the options begin with pErRFORM procedure-
name-1 [THRU procedure-name-2]. Procedure-name-1
is the location of the statement to be executed after the
PERFORM statement. If procedure-name-2 is specified,
the series of statements to be executed include the
statements at procedure-name-1 through the statements
at procedure-name-2.

If procedure-name-2 is not specified, statements fol-
lowing procedure-name-1 are executed until another
procedure-name of the same level as procedure-name-1
is encountered; that is, if procedure-name-1 is a para-
graph-name, all the statements in the paragraph are
executed; if procedure-name-1 is a section-name, all
the statements in the section are executed.

The last statement in the sequence to be performed
must not be a co To statement. The exit statement may
be used as the last statement of the sequence if there
are several places in the sequence that transfer control
to the last statement (and, hence, to the statement
following the PERFORM statement).

Option 1 is a simple PERFORM statement. The speci-
fied sequence of statements is executed, and control
is returned to the statement immediately following the
PERFORM statement.

Option 2 is the TiMEs option, The number of times
the series of statements is executed is specified by an
integer, or by a data-name that contains a nonnegative
integer.

44

Option 3 is the uNTIL option. The series of statements
is executed until the specified condition is met.

Option 4 is the varyiNG option. Data-name-1 is in-
creased or decreased by the value of data-name-3 (or
literal-2) each time the series of procedures is executed
until the specified condition is met. Data-name-2 (or
literal-1) gives the initial value of data-name-1. Data-
name-2, data-name-3, integer-1, and integer-2 must be
numeric, but they need not be integers.

Option 5 is the vARYING subscript-name option. The
subscripts are incremented in a nested fashion each
time the series of statements is executed until the con-
ditions are met. A maximum of three subscripts can be
varied.

When only one subscript is being varied, the opera-
tion is the same as that of the vamrvinc data-name
option (option 4). Figure 24 shows how the PERFORM
statement with one subscript is evaluated.

When two subscripts are varied, the value of sub-
script-name-2 goes through a complete cycle (Fro,
BY, UNTIL) each time that subscript-name-1 is increased
or decreased by its BY value. The PERFORM is completed
as soon as condition-1 is true. Figure 25 shows how a
PERFORM statement with two subscripts is evaluated.

When three subscripts are used, the value of
subscript-name-3 goes through a complete cycle each
time that subscript-name-2 is changed by its By value.
Furthermore, subscript-name-2 goes through a com-
plete cycle each time that subscript-name-1 is changed
by its BY value. The PERFORM is completed when con-
dition-1 is true. The flow chart in Figure 26 shows how
option 5 of the PERFORM verb with three subscripts is
evaluated.

Entrance

Set subscript-name-1 equal to
initial value (FROM)

Y

Condition

Trve Exit

False

Execute procedure-name~-1
THRU procedure~name=2

!

Change subscript-name-1
by its BY value

NOTE: The value of subscript-name-1 is increased or decreased before the
condition is tested. For example, the statement

PERFORM procedure-name-1 THRU procedure-name -2
VARYING subscript-name-1 FROM 1 by 1 UNTIL

subscript -name=~1 = §

will cause the statements from procedure-name-1 through procedure-
name-2 to be executed five times.

Figure 24. PERFORM Statement with One Subscript

Entrance

Set subscript-name-1 and subscript-name -2
to initial values (FROM)

False

J Condition-1 I True

Condition-2

Execuie procedure-name -1

THRU procedure -name-2

!

u Change subscript-name-2 by
its BY value

Change subscript=name-1 by
its BY value

|

»Exit

For example, the following diagrams show permis-
sible conditions:

X PERFORM a THRU m x PERFORM a THRU m
a a

d PERFORM f THRU | d PERFORM f THRU |
f h
o] .

m f

1

The series of procedures associated with a PERFORM
statement may overlap or intersect the series asso-
ciated with another PERFORM statement, provided
neither sequence includes the PERFORM statement asso-

NOTE: The subscripts are increased or decreased before the condition is

ciated with the other sequence.

tested. When the statements under control of the PERFORM verb
are executed the specified number of times, subscript-name-2
has its initial value (FROM).

Figure 25. PERFORM Statement with Two Subscripts

If a series of statements referred to by a PERFORM
statement includes another PERFORM statement, the
series associated with the included PerrorRM statement
must be either totally included in or totally excluded
from the series associated with the first PERFORM
statement.

Entrance

!

For example:

Correct Incorrect

x PERFORM a THRU m PERFORM a THRU m

by

a a
f d PERFORM f THRU j
m f
I m

d PERFORM f THRU | i

Set subscript-name=-1, subscript-name-2

and subscript-name-3 to initial values (FROM)

o] Condition-1 | Trye
;False

Condition-2

Execute procedure-name-1
THRU procedure -name -2

subscript-name=-3
to its initial value

(FROM)
. Change
L Change subscript-name-2 subscript-name-2

by its BY value by its BY value

1

» Exit

Set

subscript-name-2
to its initial value
(FROM)

l NQTE: The subscripts are increased or
decreased before the condition is
tested. When the statements under

Change the control of the PERFORM state=

subscript=name-1 ment are executed the specified
by its BY value number of times, subscript-name-2
and subscript-name=3 have their

initial values (FROM).

Figure 26. PERFORM Statement with Three Subscripts

Procedure Division 45

Compiler Directing Verbs

Compiler directing verbs are special verbs that provide
instructions for the coBoL compiler.

The exit verb is a dummy verb often used in the
last statement in a series executed under the control
of a PERFORM verb. The NOTE verb allows messages to
be written during the execution of the program but
does not affect the program in any other way. The
sToP verb indicates the end of the program or a pause
in the execution of the program. The ENTER verb is
used to leave the main program and to transfer control
to another program.

EXIT Verb

The Exrr statement provides a paragraph-name to
serve as an end-point for a PERFORM statement when a
series of procedures under the control of a PERFORM
verb demand an ultimate common transfer point. In
this case, an EXIT paragraph can be the object of co To
statements in the series of statements under the control
of a PERFORM statement. Its procedure-name may be
given as the object of the THRU option in the PERFORM
statement.

In all other cases, Exit paragraphs perform no func-
tion and sequential control passes through them to the
first sentence of the next paragraph. The format of the
EXIT statement is:

paragraph-name. EXIT.

EXIT must appear as a single one-word paragraph.

NOTE Verb

The NoTE verb is used for writing explanatory state-
ments that appear on the output listing but have no
effect on the program. The format of the NoTE state-
ment is:

NOTE any combination of characters from the COBOL char-
acter set

If NotE is the first verb of a paragraph, the entire
paragraph is treated as a note. If NoTE is not the first
verb in a paragraph, the note ends with a period fol-
lowed by a space.

STOP Verb

The stop statement is used to halt the program tem-
porarily or to indicate the end of a program or a pro-
gram section. The format of the stop statement is:

literal
{ RUN
STOP LITERAL is usually specified for a temporary

halt in the program to give instructions to the machine
operator. The literal is displayed on the on-line printer.

STOP

46

When the program is continued, the statement exe-
cuted is the statement following the stop verb.

sTOP RUN is used to indicate the end of the program
or the program section. This causes control to be re-
turned to the system monitor or to a calling program
that is using this program as a subprogram.

ENTER Verb

The ENTER verb provides for communication between
a cosoL program and a subprogram that may be
written in COBOL, FORTRAN 1v (a scientific programming
language), or MAP (a mnemonic programming lan-
guage). In Part um of this publication, there are
examples of communication between a coBoL program
and subprograms written in COBOL, FORTRAN 1v, and
MaP. There is also an explanation of the use of the
ENTER verb with FORTRAN 1v mathematical subroutines
from the library.

There are three forms of ENTER statements. The for-
mats are:

CALL Form:
paragraph-name-1. ENTER LINKAGE-MODE.

CALL ‘entry-name’ USING ! da ta-name-1...
~ (file-name-1. ..

data-name-m [data-name-m+1 .. .]
file-name-m .

[data-name-m+n]
RETURNING procedure-name-1 [procedure-name-2 .. .]
paragraph-name-2. ENTER COBOL.

ENTRY POINT Form:
paragraph-name-1. ENTER LINKAGE-MODE.,
ENTRY POINT IS ‘entry-name’
[RECEIVE [data-name-1 ...] data-name-m]
[PROVIDE [data-name-m+1...] date-name-m+n]
paragraph-name-2. ENTER COBOL.

RETURN Form:
paragraph-name-1. ENTER LINKAGE-MODE.
RETURN VIA ‘entry-name’

[DEPENDING ON data-name].

paragraph-name-2. ENTER COBOL.

The caLw form is used in the coBoL main program
to transfer to the subprogram.’ Entry-name’is the name
of the point in the subprogram to which control is
transferred. The usinG option specifies the parameters
that are passed between the main program and the
subprogram. Data-name-1 through data-name-m (file-
name-1 through file-name-m) name the data-items that
are passed to the subprogram. Data-name-m + I
through data-name-m + n name data-items that re-
ceive data from the subprogram. The rRETURNING option
is used with the RETURN form of the ENTER statement to

specify the point in the main program to which con-
trol is returned after the subprogram is executed.

The ExTRY POINT form identifies the place in the sub-
program to which control is transferred. ‘Entry-name’
is the identifying name. This is the same ‘entry-name’
that appears in the caLL form of the ENTER statement.
The RECEIVE option specifies the data-items that re-
ceive data from the main program. The PROVIDE option
specifies the data-items that return data to the main
program

h]
e CATT form in fr}o maih nrooram ang t +ne ENTRY
i1he CALL 1orm 1n the mam piUsiaiin ail i LN AL X

pOINT form in the subprogram must both be used in
order to pass parameters from one cosoL program to
the other. The data-items specified in the carL form
are matched to the data-items specified in the ENTRY
POINT form by their relative position. The names need
not be the same. The following example shows how
the values are passed between programs.

Parameters Specified:
MAIN PROGRAM

CALL Form

USING A, B, C, D

SUBPROGRAM
ENTRY POINT Form
RECEIVE E, F PROVIDE G, H

Effect: When control is transferred to the subpro-
gram, data-items E and F in the subprogram are set
equal to the current value of data-items A and B in
the main program. After the specified section subpro-
gram is executed and control is returned to the main
program, data-items C and D in the main program are
set to the current value of data-items G and H in the
subprogram.

The reTUrN form identifies the end of the section of
the subprogram to be executed and provides for return
to the main program. ‘Entry-name’ is the identifying
name of the section of the subprogram to be executed.
This is the same ‘entry-name’ that appears in the caLL
form and the ENTRY POINT form of the associated ENTER
statements. Usually control is returned to the main
program to the statement following the last statement
of the caLL form, that is, to the statement after ENTER
coBoL. The DEPENDING ON option in the RETURN form
can be used with the RETURNING option in the caLL
form to specify an alternate return. The return is to
the 1st, 2nd, . . ., nth procedure-name following RE-
TURNING as the value of data-name (following DEPEND-
INGON) is 1,2, ..., n. If the value of data-name is zero,
the normal return is taken.

The following coding shows the use of the ENTER
verb in a coBoOL main program and a coBoL subroutine.

Main Program:

PARAGRAPH-NAME-1. ENTER LINKAGE-MODE.
CALL ‘ENTPT USING WORK, WORK, AMOUNT.

PARAGRAPH-NAME-2. ENTER COBOL.

Subprogram:

PARAGRAPH-NAME-3. ENTER LINKACE MODE.
ENTRY POINT IS ‘ENTPT
RECEIVE WORK-A PROVIDE WORK-A, AMOUNT-A.

PARAGRAPH-NAME-4. ENTER COBOL.

PARAGR;&PH-NAME-& ENTER LINKAGE-MODE.
RETURN VIA ‘ENTPT.

PARAGRAPH-NAME-6. ENTER COBOL.

When control transfers to the subroutine, the value
of work-A becomes equal to the value of work. Follow-
ing PARAGRAPH-NAME-4 are COBOL procedure statements
that affect the values of work-aA and AMoOuUNT-A. After
these statements are executed and PARAGRAPH-NAME-5
is encountered, control returns to the main program (to
the statement after PARAGRAPH-NAME-2), and the values
of work and AMOUNT in the main program are set equal
to the values of work-a and aMounT-4 at the end of
the subroutine.

The following list summarizes the rules for using
ENTER statements.

1. ENTER statements can be used only in coBoL pro-
grams. When one of the programs is written in another
programming language, the statements from the lan-
guage must be used in the program. Examples are
given in Part 1 of this publication.

2. There may be more than one entry point in a
subprogram. The ‘entry-name’ identifies the point to
which control is transferred.

3. ‘Entry-name’ is the identifying name of the section
of the subprogram to bé executed. The same name
appears in the three related ENTER statements.

4. ‘Entry-name’ must consist of six or fewer char-
acters chosen from the letters A through Z, the num-
bers 0 through 9, and the hyphen. There must be at
least one alphabetic character, and there may be no
embedded blanks. The name must be enclosed in quo-
tation marks,

5. When the exTrY POINT form is used, ‘entry-name’
cannot be the deckname of the subprogram.

6. If the ‘entry-name’ in the caLL form of the ENTER
statement of the main program is the deckname of the
subprogram (on the siBCBC control card), the RETURN
form need not be used in the subprogram. The state-
ment STOP RUN causes control to be returned to the
main program.

7. The parameters specified in the carr form and the
ENTRY POINT form to pass data between the programs
must conform to the following rules.

a. The number of data-names following usiNG in
the cair form must equal the sum of the data-
names following RECerve and PrROVIDE in the
ENTRY POINT form.

Procedure Division 47

b. The data-items are matched by their relative
positions. The names following using in the
caLL form need not be identical to the names
in the corresponding positions following RECEIVE
and PROVIDE in the ENTRY POINT form, but the
data-item descriptions must be equivalent.

c. Data-names may be repeated.
d. The data-items must not be variable in length.

e. Data-items following RecEive and PROVIDE in
the ENTRY POINT form may not be report items;
however, scientific decimal items are permitted.
Although report items may follow using in the
caLL form, the restriction for the ENTRY POINT
form requires that the subprogram' be written
in a language other than cosoL.

f. File-names can follow the usinG option only if
the subprogram is written in the maP language.
The address of the corresponding file control
block is provided to the map program. File con-
trol blocks are explained in the publication IBM
7090/7094 Input/Output Control System, Form
C28-6392.

Tests — Conditional Expressions

A conditional expression is one that may be either true
or false when it is evaluated. For example, the expres-
sion YEARLY-INCOME IS GREATER THAN 5000 is a condi-
tional expression, since it is true or false depending on
the value of YEARLY-INcOME when the statement is
executed.

Conditional statements, that is, those containing con-
ditional expressions, are of the following forms:

Option 1.

IF conditional-expression statement-1

Option 2.

statement-1
NEXT SENTENCE

OTHERWISE statement-2 |
ELSE NEXT SENTENCE
— 1
In option 1, if the condition is n\et, the next state-
ment to be executed is statement-1.'If the condition is

not met, the next statement to be executed is the state-
ment following the conditional statement.

In option 2, if both statement-1 and statement-2 are
specified, statement-1 is executed when the condition
is met, and statement-2 is executed when the condition
is not met. If NEXT SENTENCE and statement-2 are speci-
fied in that order, statement-2 is executed only when

IF conditional-expression

48

the condition is not met; otherwise, the next sequential
instruction is executed. Specifying statemeni-1 and
NEXT SENTENCE in that order is equivalent to using op-
tion 1.

The onN sz ERROR clause of arithmetic statements,
the AT END clause of the rEAD statement, and the co
TO DEPENDING ON statement are special kinds of condi-
tional expressions. In these statements, the ELSE
(oTHERWISE) option is not permitted.

Simple Conditional Tests

There are five types of simple conditional tests. In
each, the test is to determine if the specified condition
is met.

Relation Test

A relation test is a comparison of the size of two oper-
ands. The format is:

data-name-1 IS [NOT] GREATER THAN

literal-1 IS [NOT] LESS THAN
=)formula-1 IS [NOT] EQUAL TO

\ﬁgurative constant-1) \ [NOT] =

data-name-2
literal-2

formula-2

figurative constant-2

If both of the operands are numeric, the algebraic
values are compared. If one or both of the operands
are nonnumeric, they are compared with respect to
a collating sequence. (The commercial collating
sequence is assumed unless the 7090/7094 collating
sequence is specified by placing BINSEQ on the siBCBC
control card; these collating sequences are shown in
“Appendix B.”) The operands are compared from left
to right. If they are of unequal length, the longer is
assumed to be the greater; however, leading zeros and
blanks and trailing blanks are ignored.

The operands cannot be both literals or figurative
constants.

Sign Test

The sign test determines whether the value of a data-
item or a formula is greater than, less than, or equal to
zero. The format is:

dat POSITIVE
IF fa "““lame IS [NOT] ! NEGATIVE
ormula 7ZERO

Class Test

The class test determines whether data is alphabetic
or numeric. The test can be made only for an ALPHA-
NUMERIC data-item. The format is:

IF data-name IS [NOT] {w }

ALPHABETIC

A xuMmeric data-item consists of characters chosen
from the numbers O through 9 and the operational
signs. An ALPHABETIC data-item consists of characters
chosen from the letters A through Z and the space.
When a single-character item is an operational sign, it
is considered NUMERIC if the test is for a NUMERIC item
and arpHABETIC if the test is for an ALPHABETIC item.

Conditional Variable Test

A condition-name is a name assigned to one of the
values in the range of values a data-item can assume.
Condition-names are identified by the special level-
number 88; an example is given in the description of
the vaLue clause of the data-item description in the
riLE sEcTioN. The data-item that assumes the range of
values is called a conditional variable. The conditional
variable test determines whether the value of the con-
ditional variable is equal to the value of a condition-
name associated with it. The format is:

IF [NOT] condition-name

Switch Status Test

The oFF position and the ox position of the entry keys
on the computer may be assigned switch-status names
in the SPECIAL-NAMES paragraph in the ENVIRONMENT
pivisioN. The switch status test provides a means of
determining whether an entry key is on or off. The
format is:

IF [NOT] switch-status-name

Compound Conditions

Simple conditional tests are for a single condition. The
tests may be combined with the logical connectives
anp and or to form compound conditions. Figure 27
shows the effect of the logical connectives on simple
conditions C1 and CZ.

C1 c2 C1 AND C2 Cl1ORC2
True True Truve True
False True False True
True False False True
False False False False

Figure 27. Logical Connectives

The expression C1 axp C2 is equivalent to the ex-
pression “both C1 and C2,” that is, the condition is
true only if Cl is true and C2 is true. The expression
C1 or C2 is equivalent to the expression “either C1 or
C2,” that is, the condition is true if Cl is true, or if C2
is true, or if both C1 and C2 are true.

Any number of operands may be combined accord-
ing to these rules. If both logical connectives, Axp and
OR, are used in an expression, parentheses may be used
to indicate grouping. The parentheses must always be
paired; and the contents of the innermost parentheses
are evaluated first as in algebra. If parentheses are not
used, then the conditions are grouped first according
to aND, proceeding from left to right, and then by og,
proceeding from left to right.

The following examples show how the compiler eval-
uates compound conditions when C1 and C2 are true
conditions and C3 and C4 are false conditions.

Example 1:
Evaluate: C1 AND (C2 OR NOT (C3 OR C4)).
Solution: true AND (true OR NOT (false OR false)).
= true AND (true OR NOT false).
= true AND (true OR true).
= true AND true.
= true.
Example 2:
Evaluate: Cl1 OR C2 AND C3.
Solution: true OR true AND false.
= true OR (true AND false).
= true OR false.
= true.
Example 3:
Evaluate: /Cl AND G2 OR NOT C3 AND c4
Solution: true AND true OR NOT false AND false.

= (true AND true)} OR (NOT false AND false).
= true OR (true AND false).

= true OR false.

= true.

The logical operators axp and or may also be used
to combine operands. The effect is the same as when
they are used to combine simple conditions. For exam-
ple, the expression IF SUM AND DIFFERENCE POSITIVE is
equivalent to the expression IF SUM POSITIVE AND IF
DIFFERENCE POSITIVE. '

Nested Conditionals

In option 2 of the format of a conditional statement;
that is,

IF conditional-expression { statement-1 }

NEXT SENTENCE
OTHERWISE statement-2
ELSE NEXT SENTENCE

Procedure Division 49

statement-1 and statement-2 may consist of one or more
imperative statements and/or a conditional statement.
If a conditional statement appears as statement-1 or as
part of statement-1, it is said to be nested. A nested
conditional statement is completely contained in an-
other statement. The r and ELSE combinations are
paired from the inside outward and the sentence is
evaluated from left to right. Figure 28 shows the eval-
uation of a nested conditional statement.

Statement:

IF PRINCIPAL LESS TAX ADD 1 TO COUNT IF PRINCIPAL LESS INSUR-
ANCE MOVE CORRESPONDING A TO B IF COUNT GREATER 10 GO

TO ERR ELSE PERFORM PARAGI THRU PARAGS ELSE MOVE CORRESPOND-~
ING A TO C ELSE COMPUTE RATE = INTEREST / (PRINCIPAL * TIME) .

Evaluation:

PRINCIPAL COMPUTE RATE =
LESS THAN No INTEREST
TAX PRINCIPAL * TIME
es
ADD
1
TO COUNT
I

PRINCIPAL

MOVE

LESS THAN -

INSURANC CORRESPONDING
ATOC

MOVE
CORRESPONDING
ATOB

COUNT
GREATER THAN
10

PERFORM PARAGI
THRU PARAGS

!

GO 1O NEXT €
ERR SENTENCE

Figure 28. Evaluation of a Nested Conditional Statement

50

ENTER Verb

The following examples illustrate the use of the ENTER
verb. The rules for the ENTER verb were given in Part
1 of this publication, but the formats are repeated here
for ease of reference.

CALL Form:

paragraph-name-1. ENTER LINKAGE-MODE.

CALL ‘entry-name’ [USING {gfet::;fi L. }

data-name-m
file-name-m
RETURNING procedure-name-1 [procedure-name-2 . . .]
paragraph-name-2. ENTER COBOL.

[data-name-m+1 .. .] [data-name-m+n]

ENTRY POINT Form:

paragraph-name-1. ENTER LINKAGE-MODE.
ENTRY POINT IS ‘entry-name’

[RECEIVE {data-name-1...] data—name-m}

[PROVIDE [data-name-m+1...] data-name-m+n:|
paragraph-name-2. ENTER COBOL.

RETURN Form:
paragraph-name-1. ENTER LINKAGE-MODE.

RETURN VIA ‘entry-name’ [DEPENDING ON data-name.]
paragraph-name-2. ENTER COBOL.

FORTRAN IV Library Subroutines

The ForTRAN 1v mathematical library subroutines can
be used in a coBoL program without requiring the use
of a programming language other than cosor. Thirty-
two mathematical functions can be evaluated with
these subroutines. The evaluation of the functions is
actually performed by the 7090/7094 FORTRAN 1V
mathematics library, but the linkage to the subroutines
(FORTRAN-ACCEss feature of coBoL) is in the cosoL
language. All data-items used as operands or results
are defined as normal cosoL data-items that may be
manipulated in the cosoL language. The variables to
be used in the computations are supplied to the sub-
routine, the computation is performed, and the result
is returned to the coBoL program. Special coBoL-names

PART H

Examples of Language Usage

have been assigned to the entry points of each sub-
routine. The general format for calling the FORTRAN 1v
library subroutines is:

paragraph-name-1. ENTER LINKAGE-MODE.
CALL ‘COBOL-name’ USING data-name-1 data-name-2
[data-name-3].
paragraph-name-2. ENTER COBOL.

The result of the calculation is stored in data-name-1.
Data-name-2, and data-name-3 if applicable, are the
operands. Figure 29 shows the types of operations that
can be performed, the cosor-names for the subrou-
tines, and the types of data that can be used for each
subroutine.

Types of Data

The following list shows the type of data that may be
used as operands in the FORTRAN 1v library subroutines.
The data types correspond to the numbers in paren-
theses following the operands in Figure 29.

The complete range of values for the type of number
is given in the list. However, the acceptable range of
the variables for each subroutine is determined by the
subroutine, and the cosoL compiler does not check
their validity. The accuracy of the cosoL results is
approximately the same as the FORTRAN 1v subroutine
accuracy. The subroutines also include error proce-
dures. The ForTRAN 1v subroutines are completely
documented in the library section of the publication
IBM 7090/7094 IBSYS Operating System, IBJOB
Processor, Form C28-6389.

1. Single-Precision Fixed-Point:

Values data-item may assume: Integers of 10 or

fewer digits.

level-number data-name PICTURE 9(10)
SYNCHRONIZED RIGHT USAGE COMPUTATIONAL
[VALUE numeric-literall IOCCURS N

Note: The item must be an integer (no V in the
pICTURE clause) and the size must be given as 10.

2. Double-Precision Fixed-Point:
Values data-item may assume: Integers of 20 or

Examples of Language Usage 51

C = f(A, B) where C is the result, and A and B are the operands.
(The numbers in parentheses are data types.)
FORTRAN COBOL Result Operands
(A, B) Name Name data-name-1 data-name-2 data-name-3

AP XP1. .CXP1 * c(n A(1) B(1)
AB XP2. .CXP2 * c@) A(3) B(1)
AP XP3. CXP3 * c@) A(3) B(3)
AP .DXP1. .CDXP1 * C(4) A(4) B(1)
A® .DXP2. .CDXP2 * C(4) A(4) B(4)
AP .CXP1. .CCXP1 C(5) A(5) B(1)
et EXP .CEXP Cc(3) A(3)

et DEXP .CDEXP C(4) A(4)

et CEXP .CCEXP C(5) A(5)

In(A) ALOG .CALOG c@) A(3)

In(A) DLOG .CDLOG C(4) A(4)

In(A) CcLoG .CCLOG c(5) A(5)

logio(A) ALOG10 .CAL10 c@3) A(3)

logzo(A) DLOG10 .CDL10 C(4) A(4)

Tan™(A) ATAN .CATAN c@) A(3)

Tan™(A) DATAN .CDATN C(4) A(4)

Tan"}(A/B) ATAN2 .CATN2 c(3) A(3) B(3)
Tan(A/B) DATAN2 .CDAT2 C(4) A(4) B(4)
Sin(A) SIN .CSIN c@3) A(3)

Sin(A) DSIN .CDSIN C(4) A(4)

Sin(A) CSIN .CCSIN c(5) A(5)

Cos(A) cos .CCos Cc(3) A@3)

Cos(A) DCOS .CDCOS C(4) A(4)

Cos(A) CcCcos .CCCOS C(5) A(5)

Tanh(A) TANH .CTANH c@3) A(3)

VA SQRT .CSQRT c@3) A(3)

VA DSQRT .CDSQR C(4) A(4)

VA CSQRT .CCSQR c(5 A(5)

A MOD B DMOD .CDMOD C(4) A4 B(4)
|A| .CABS. .CCABS c@3) A(5)

A*B .CFMP. .CCFMP C(5) A(5) B(5)
A/B .CFDP. .CCFDP c(5) A(5) B(5)
*Note the COBOL language already provides exponentiation (except complex) in the COMPUTE
statement.

Figure 20. FORTRAN IV Mathematical Subroutines

fewer digits. This type of item may not be used
with the subroutines at the present time.

3. Single-Precision Floating-Point:
Values data-item may assume: Real numbers of the
form a * 10® where a is a real number of 8 or fewer
digits and b ranges from —38 to +38.

level-number data-name USAGE COMPUTATIONAL-1
numeric-literal
[V—Alﬂ {ﬂoating-point—literal }][M -l

4. Double-Precision Floating-Point:
Values data-item may assume: Real numbers of the
form a * 10° where a is a real number of 16 or fewer
digits and b ranges from —38 to +38.

level-number data-name USAGE COMPUTATIONAL-2

numeric-literal
[V—ALUE {ﬂoating-point-literal }][——OCCURS ol

5. Complex Numbers: A complex number has the form
x + iy where i is the imaginary number \/—=1. Since
coBoL normally has no convention for handling com-

52

plex numbers, the following rules have been estab-
lished:

a. A complex number is defined as a group item
containing two elementary items that are de-
scribed as single-precision floating-point (item
3) items.

b. The coRRESPONDING option of the App, sUBTRACT,
and MOVE statements may be used to facilitate
the handling of complex data-items. When this
is done, a naming convention must be followed
that conforms to the rules for the correspPoND-
ING option.

c. Tables of complex numbers may be set up by
using the occurs clause at the group level. The
occurs clause must not be used for the ele-
mentary items, but otherwise normal rules of
the occurs clause apply.

d. When a complex number is displayed, the pis-
PLAY statement must refer to the elementary
items.

The following example shows typical entries required
to perform the addition (1 +i2) + (7 +i4) =8 + i6.
reAL and 1MAG are used as the naming convention in
the example.

DATA DIVISION Entries:
01 A.
02 REAL USAGE IS COMPUTATIONAL-1
VALUE IS 1.
02 IMAG USAGE IS COMPUTATIONAL-1
VALUE 1S 2.
01 B.
02 REAL USAGE IS COMPUTATIONAL-1
VALUE IS 7.
02 IMAG USAGE IS COMPUTATIONAL-1
VALUE IS 4.

PROCEDURE DIVISION Entries:
ADD CORRESPONDING A TO B.

The elementary items may also be referred to indi-
vidually, as in the following statements.

ADD REAL OF A TO REAL OF B.
MOVE 3 TO IMAG OF B.
DISPLAY REAL OF A, SPACE, IMAG OF A.

Example of Use of FORTRAN IV Library Subroutines

Summary of the Problem: This program shows how
the FORTRAN Iv mathematical subroutines can be used
by a coBoL program to evaluate a mathematical for-
mula. The subroutines .ccexp (natural exponentiation)
and .ccFMp (complex multiplication) are used. The
problem is to evaluate the formula:

y = aet)
Step 1. Use coBoL to calculate the value of the ex-
ponent

Wit ——)
c
Step 2. Use the FORTRAN 1v access subroutine .CCEXP
to calculate
(natural complex exponentiation)

Step 3. Use the FORTRAN 1v access subroutine .CCFMP
to calculate

(complex multiplication)

Step 4. Use cosoL to edit the results and display them.
Program Listing of FORTRAN IV Library Subroutines:

$JOB CALCULATION OF HARMONIC
s* WAVE AMPLITUDE
SEXECUTE IBJOB
SIBJOB FTC GO, MAP
SIBCBC WAVE FULIST, NODECK
IDENTIFICATION DIVISION.
PROGRAM-ID. HARMONIC-WAVE-
AMPLITUDE.

REMARKS. THE GENERAL EXPRESSION FOR
A HARMONIC WAVE TRAVELLING TO THE

RIGHT (LE., POSITIVE X) IN AN IDEAL
MEDIUM IS . . .
Y=A*(E**(]*W*(T—x/c)))
WHERE
Y IS THE AMPLITUDE OF THE WAVE X
AT TIME T,
E IS THE NATURAL BASE.
J IS THE IMAGINARY NUMBER.
WIS THE FREQUENCY, ASSUMED
KNOWN AND CONSTANT.
T IS THE TIME.
X IS THE DISPLACEMENT, ASSUMED
KNOWN AND CONSTANT.
C IS THE VELOCITY OF WAVE
PROPAGATION, ASSUMED KNOWN
AND CONSTANT.
A IS A CONSTANT, ASSUMED KNOWN.
BOTH Y AND A ARE COMPLEX NUMBERS.
A IS PRESUMED TO HAVE A NON-ZERO
IMAGINARY PART.
PROBLEM . . .
TO LIST, FOR TIMES FROM 0 TO 100,
THE DISPLACEMENT OF Y. (THIS MAY
HAVE NON-ZERO IMAGINARY PART
DUE TO ASSUMPTIONS MADE FOR A).

DATA DIVISION.
WORKING-STORAGE SECTION.

01

01
01
01
01

o1

01

01

01
01

T PICTURE 9(3) COMPUTATIONAL
SYNCHRONIZED RIGHT.

C COMPUTATIONAL-1 VALUE 30.
X COMPUTATIONAL-1 VALUE 30.
W COMPUTATIONAL-1 VALUE 25,
EXP-COMPLEX COMPUTATIONAL-1,
02 EXP-REAL.

02 EXP-IMAG.

E-TERM COMPUTATIONAL-1.

02 E-REAL.

02 E-IMAG.

A-COMPLEX COMPUTATIONAL-1.
02 A-REAL VALUE 500.

02 A-IMAG VALUE 325.
Y-COMPLEX COMPUTATIONAL-1,
02 Y-REAL.

02 Y-IMAG.

SHOW-REAL PICTURE XXXXXX,
SHOW-IMAG PICTUBE XXXXXX.

PROCEDURE DIVISION.

GENERAL SECTION,

GO. DISPLAY ‘COMPLEX AMPLITUDES OF A

HARMONIC WAVE AT A POINT X
‘FROM T = 0 TO T = 100.” UPON SYSOUL.

Gl. PERFORM Y-LOOP VARYING T FROM 0

BY 1 UNTIL T = 101.

G2. STOP RUN.

Examples of Language Usage 53

Y-LOOP SECTION.
Y1. COMPUTE EXP-IMAG = W * (T - X / C)
ON SIZE ERROR MOVE ZERO TO EXP-IMAG.

Y2. MOVE ZERO TO EXP-REAL.

Y3. ENTER LINKAGE-MODE.

CALL ‘.CCEXP’ USING E-TERM, EXP-
COMPLEX.
CALL ".CCFMP USING Y-COMPLEX,
A-COMPLEX, E-TERM.
Y4. ENTER COBOL.
MOVE Y-REAL TO SHOW-REAL.
MOVE Y-IMAG TO SHOW-IMAG.

Y5. DISPLAY ‘AT TIME , T, ‘ DISPLACEMENT
IS, SHOW-REAL, * + J *’| SHOW-IMAG
UPON SYSOU1,

$CBEND

COBOL Linkage to MAP, FORTRAN IV, and
COBOL Subprograms

The EnTER verb allows control to be transferred and
data to be passed between a cosor program and sub-
programs written in MAP, FORTRAN IV, OF COBOL.

The types of data acceptable for ForTrAN v mathe-
matical library subroutines are also acceptable to sub-
programs written in MAP or FORTRAN 1v. These types
are listed under the discussion of the FORTRAN 1v
mathematical library subroutines. The general restric-
tions on data passed between programs apply for
linkage to programs written in cosor, MAP, OF FORTRAN
v. The accumulator and other registers may not be
used as parameters in linkage between a coBoL pro-
gram and any subprogram since the cosor compiler
generates coding that destroys the contents of these
registers. The instructions for entering the linkage
mode are written in the language of the program or
subprogram. Figure 30 shows instructions for entering
the linkage mode for coBoL, FORTRAN 1v, and MaP. De-
tailed rules for using ForTrRAN v and MaP linkage mode
statements are given under the names of the statements
in the publications: IBM 7090/7094 IBSYS Operating
System: FORTRAN IV Language, Form C28-6390,
and IBM 7090/7094 IBSYS Operating System: Macro
Assembly Program (MAP) Language, Form C28-6392.

Summary of Problem: This example shows the link-
age between a coBoL program and a cosoL subprogram,
a MAP subprogram, and a FORTRAN 1v subprogram.

The cosoL main program reads payroll cards and
calls a cooL subprogram to calculate regular pay and
return this information to the main program. The re-
turn to the main program is to one of two subroutines
depending on whether the employee is exempt or non-
exempt from overtime pay. The non-exempt subroutine
calls a FORTRAN 1v subprogram that calculates overtime
pay (at the rate of time and a half) and returns the

54

Main Program Statements Subprogram Statements
Language Used Language Used
COBOL CALL form of COBOL ENTRY POINT
ENTER statement and RETURN
forms of ENTER
statement
COBOL CALL form of MAP SAVE AND
ENTER statement RETURN
COBOL CALL form of FORTRAN IV SUBROUTINE
ENTER statement and RETURN
MAP CALL COBOL ENTRY POINT
and RETURN
forms of ENTER
statement
FORTRAN IV CALL COBOL ENTRY POINT
and RETURN
forms of ENTER
statement

Figure 30. Statements Used in COBOL, MAP, and FORTRAN
IV to Enter the Linkage Mode

information to the main program. The main program
then calls a mMaP subroutine that calculates double-
time pay and returns the information to the main pro-
gram. Then the total pay for both exempt and non-

.1 p
exempt employees is displayed.

Program Listing of COBOL, MAP, and FORTRAN
IV Linkage:

COBOL Main Program

$JOB PAYROLL CALCULATION TO
s* GROSS

SEXECUTE IBJOB

SIBJOB PAY GO, MAP

$IBCBC CBC1 FULIST, NODECK

IDENTIFICATION DIVISION,

PROGRAM-ID. PAY-CALCULATION-TO-GROSS,

AUTHOR, ACCOUNTING MANAGER D. J. M.

INSTALLATION. PAYROLL DEPARTMENT.

DATE-WRITTEN. 7/21/64.

REMARKS, THIS ROUTINE DEMONSTRATES
THE CALLING OF COBOL, FORTRAN,
AND MAP PROGRAMS FROM COBOL.

DATA DIVISION.

WORKING-STORAGE SECTION,

77 O-T-COMP PICTURE 9(8)v99
COMPUTATIONAL SYNCHRONIZED
RIGHT.

77 D-T-COMP PICTURE 9(8)v99
COMPUTATIONAL SYNCHRONIZED
RIGHT.

77 RATE-COMP PICTURE 9(7)v999
COMPUTATIONAL SYNCHRONTZED
RIGHT.

01 HRS-CARD.

02 MAN-NO PICTURE 9(6).

02 REG-HRS PICTURE 9999V99.

02 O-T-HRS PICTURE 9999V99.

02 D-T-HES PICTURE 9999V99.

01 RATE PICTURE 999V999.
01 PAY-SUMS, USAGE IS COMPUTATIONAL.

02 STRAIGHT-PAY PICTURE 9(7)v999
SYNCHRONIZED RIGHT.

02 O-T-PAY PICTURE 9(7)V999
SYNCHRONIZED RIGHT.

02 D-T-PAY PICTURE 9(7)v999
SYNCHRONIZED RIGHT.

01 GROSS PICTURE $8555.99.
01 NAME-B,

02 NAME PICTURE X(18).

02 B PICTURE X VALUE SPACE.
PROCEDURE DIVISION.
GROSS-PAY-REPORT. ACCEPT HRS-CARD FROM

SYSIN1.

IF HRS-CARD = ZERO STOP RUN.

MOVE 0 TO 0-T-PAY, D-T-PAY.
STRAIGHT-PAY-CALC.

ENTER LINKAGE-MODE.

CALL ‘COBOLS” USING MAN-NO, REG-HRS,
NAME, BATE, STRAIGHT-PAY,
RETURNING EXEMPT, NON-EXEMPT.

RETURN-TO-COBOL-1. ENTER COBOL.
NON-EXEMPT.
BCD-TO-BIN-CONVERSION.

MOVE O-T-HES TO O-T-COMP.

MOVE D-T-HRS TO D-T-COMP.

MOVE RATE TO RATE-COMP.

O-T-CALC.
IF O-T-HRS = ZERO GO TO D-T-CALC.
O-T-CALC-BY-FORTRAN.
ENTER LINKAGE-MODE.
CALL ‘FORTRS USING O-T-COMP,
RATE-COMP, O-T-PAY.
RETURN-TO-COBOL-2. ENTER COBOL.
D-T-CALC. IF D-T-HRS = 0 GO TO CALC-GROSS.
D-T-CALC-BY-MAP, ENTER LINKAGE-MODE.
CALL ‘MAPS USING D-T-COMP,
RATE-COMP, D-T-PAY.
RETURN-TO-COBOL-3. ENTER COBOL.
EXEMPT.
CALC-GROSS. COMPUTE GROSS =
STRAIGHT-PAY + O-T-PAY + D-T-PAY.
SHOW-GROSS-PAY-REPORT.
DISPLAY NAME-B, MAN-NO, B GROSS
UPON SYSOUL.
GO TO GROSS-PAY-REPORT.

$CBEND
COBOL Subprogram
SIBCBC CBC2 FULIST, NODECK

IDENTIFICATION DIVISION.

PROGRAM-ID. COBOLS.

AUTHOR. D. J. M.

INSTALLATION, PAYROLL DEPARTMENT.

DATE WRITTEN. 7/21/64.

REMARKS.

FIND NAME, RATE, AND CALCULATE

STRAIGHT PAY.

ENVIRONMENT DIVISION,

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT EMPLOYEE-RECORDS ASSIGN TO

A(1).

DATA DIVISION.

FILE SECTION.

FD EMPLOYEE-RECORDS LABEL RECORDS
ARE OMITTED.

DATA RECORD IS TBL-AREA.

01 TBL-AREA.

02 EMPLOYEE-COUNT PICTURE 9(4).
02 MAN-RECORD OCCURS 1000 TIMES
DEPENDING ON EMPLOYEE-COUNT.

03 MAN-NO PICTURE 9(6).

03 HOURLY-RATE PICTURE 999V999.

03 X PICTURE X(6).

03 MAN-NAME PICTURE X(18).

WORKING-STORAGE SECTION.

77 ZRO COMPUTATIONAL SYNCHRONIZED
RIGHT PICTURE 9(10), VALUE 0.

77 DIRECTION PICTURE 99999
COMPUTATIONAL, SYNCHRONIZED
RIGHT.

01 EMPLOYEE-NUMBER PICTURE 9(6).

01 NAME-OF-EMP PICTURE X(18).

01 BATE PICTURE 999V999.

01 REG-HRS FICTURE 999V92.

01 STRAIGHT-PAY PICTURE 999V999
COMPUTATIONAL SYNCHRONIZED
RIGHT.

PROCEDURE DIVISION.

ENTRY-TO-LOCATE-RATE.

ENTER LINKAGE-MODE.

ENTRY POINT IS ‘COBOLS RECEIVE
EMPLOYEE-NUMBER, REG-HRS,
PROVIDE NAME-OF-EMP, RATE,
STRAIGHT-PAY.

RETURN-TO-COBOL-A. ENTER COBOL.

PIVOT-POINT. GO TO FIRST-TIME-THRU.

FIRST-TIME-THRU.

OPEN INPUT EMPLOYEE-RECORDS.
READ EMPLOYEE-RECORDS AT END NEXT

SENTENCE.

ALTER PIVOT-POINT TO PROCEED TO

ALL-TIMES-THRU.

ALL-TIMES-THRU.

PERFORM FIND-NAME-RATE VARYING

Examples of Language Usage 55

TALLY FROM 1 BY 1 UNTIL TALLY
IS GREATER THAN EMPLOYEE-COUNT.

NOT-FOUND. DISPLAY ‘MAN NUMBER
EMPLOYEE-NUMBER ‘UNASSIGNED.’
UPON SYSOUL,

MOVE ‘UNKNOWN TO NAME-OF-EMP,
MOVE 0 TO RATE, STRAIGHT-PAY,
MOVE 1 TO DIRECTION, GO TO
CONCLUSION.

FOUND. MOVE MAN-NAME (TALLY) TO
NAME-OF-EMP, MOVE HOURLY-RATE
(TALLY) TO RATE.

CALC-STRAIGHT-PAY. IF X (TALLY) = E,
MOVE RATE TO STRAIGHT-PAY, MOVE 1
TO DIRECTION, GO TO CONCLUSION, COM-
PUTE STRAIGHT-PAY = REG-HRS * RATE.
MOVE 2 TO DIRECTION,

CONCLUSION. ENTER LINKAGE-MODE.,
RETURN VIA ‘COBOLS DEPENDING ON
DIRECTION.

RETURN-TO-COBOL-B. ENTER COBOL.

CLOSE EMPLOYEE-RECORDS.

FIND-NAME-RATE SECTION,

IF EMPLOYEE-NUMBER = MAN-NO

(TArLY) co TO FOUND.

T

$CBEND
FORTRAN 1V Subprogram
SIBFTC FIC1 FULIST, NODECK
SUBROUTINE FORTRS (IOTHRS,IRATE,IOTPAY)
IOTPAY = (IOTHRS*IRATE*15)/1000
RETURN
END
MAP Subprogram
SIBMAP MAP1 FULIST, NODECK
ENTRY MAPS
MAPS SAVE 4 DOUBLE-TIME CALCUL-
LDQ* 3,4 ATION
MPY* 4,4 DOUBLE-TIME-HRS
* IN MQ
MULTIPLY D-T-HES
* BY RATE, RESULT
DVP =50 IN AC, MQ WITH
STQ* 5,4 5 DECIMAL PLACES
RETURN MAPS THE C(AC, MQ) ARE
END TO BE MULTIPLIED
* BY 2 AND DOWN-
* SCALED 2 PLACES
* TO GIVE 2 DEC.
* PLACES.
* STORE DOUBLE-TIME-
* PAY INTO CALLING
* PROGRAM.

Dump Subroutine

The dump subroutine is used to obtain core storage
dumps (selected portions of core storage written on
magnetic tape). The format for calling the dump sub-
routine is:

paragraph-name-1. ENTER LINKAGE-MODE.

‘DUMP’
CALL {‘PDUMP’}
[USING data-name-1 data-name-2 data-name-3]

[data-name-4 data-name-5 data-name-6].
paragraph-name-2. ENTER COBOL.

The entry point ‘Dump’ is used to obtain a dump of
selected portions of core storage and return control to
the BjoB Processor Monitor,

The entry point ‘Ppump’ is used to obtain a dump of
selected portions of core storage during the execution
of the program. After the dump has been taken, ex-
ecution of the program is resumed.

The parameters that follow usin specify the portions
of core storage that are to be dumped, and the type
of dump that is to be taken. The values stored from
data-name-1 (data-name-4, etc.) through data-name-2
(data-name-5, etc.) are dumped. The data-names may
be any names in the WORKING-STORAGE Or CONSTANT
SECTIONS or may be file-names. When a file-name is
used as a parameter, the file control block is dumped.

Data-name-3 (data-name-6, etc.) must contain codes
that specify the type of dump to be taken. The codes
and their meanings are:

CODE MEANING
0 octal
1 floating-point
2 integer
3 octal and mnemonics

If usiNG is omitted all of core storage is dumped
in octal.

USE Verb

The usk verbs appear in the declaratives section of the
PROCEDURE DIVISION and allow the user to specify rou-
tines to be executed at the time labels are written or
checked and at the time input/output errors occur.
The rules for the use verb are given in Part 1 of this
publication but the format is repeated here for easy
reference.

Option 1.
section-name SECTION.
USE AFTER STANDARD ERROR PROCEDURE

INPUT
ON {ﬁle-name-l [file-name-2 . . .]} :

Option 2.
section-name SECTION.

[BEFORE (BEGINNING
USE {AFTEB }STANDARD B@JD_I’\E }:l

REEL
[{FILE }] LABEL PROCEDURE

INPUT
ON {OUTPUT
file-name-1 [file-name-2...]

Label Processing and Error Checking Routine

There are two USE statements in the declaratives section
of this program. The first Use statement initiates pro-
cedures to alter a standard label before it is checked.
Since a coBoL programmer cannot make reference to
the label area, a Map subprogram is called to move
the standard label from the label area to a work area
that can be referred to by the cosoL program. The
coBOL program puts the customer’s name in the label
and calls a MaP subprogram to return the altered label
to the label area. In the regular sequence of procedure
statements (not in the declaratives section), the altered
label is displayed.

The second UsE statement specifies procedures to be
followed if an input-output error occurs. Normally, if
an error cannot be corrected, the input-output system
puts codes indicating the type of error in the multi-
plier-quotient register (an internal register that cannot
be referred to in a coBoL program) and transfers con-
trol to a coBoL compiler subroutine that prints messages
indicating the type of error that has occurred, takes
a core storage dump, and terminates execution. If UsE
statements are given, they replace the normal cosoL
compiler subroutine. In this program, a Map sub-
program is called to store the error codes in a word
that can be referred to by the cooL program. During
the regular sequence of execution statements (not in
the declaratives section) this word is tested, and the
type of error, if any, is displayed. In this program, no
dump is taken and program execution is not terminated
if an input-output error occurs.

Program Listing of Label Processing and Error
Checking Routine:

COBOL Main Program
$JOB COBOL LABEL ACCESS AND ERROR
s* CHECKING DEMO PROGRAM.
SEXECUTE IBJOB
SIBJOB DEMO GO, MAP
$IBCBC USELBL FULIST, NODECK

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT A-FILE ASSIGN TO A(1), A(2)

FOR MULTIPLE REEL.

DATA DIVISION.

FILE SECTION.

FD A-FILE LABEL RECORDS ARE STANDARD
RECORDING MODE IS BINARY LOW,
DATA RECORD IS SIMPLE.

01 SIMPLE PICTURE X(72).
WORKING-STORAGE SECTION.

01 SIZE-OF-LABEL-IN-WORDS PICTURE 9(10)
COMPUTATIONAL VALUE 14.

N1 CTa
Ui S

TA

02
02
02
02
02
02
02
02
02

<D

NDARD-T 5 REY
LN OGS

NS %8535 P

LABEL-ID
FILLER
TAPE-SER-NUMBER
FILLER
FILE-SER-NUMBER
FILLER
REEL-SEQ-NUMBER
FILLER

CREATION

03 YEAR

03 FILLER

03 DAY

FILLER
RETENTION-DAYS
FILLER
FILE-DENSITY
FILE-MODE
CHK-SUM
SEQ-CHECK
CHECK-POINT
BCD-FILE-NAME
SORT-RESERVED

2 ARBITRARY

PICTURE X(6).
PICTURE X.
PICTURE X(5).
PICTURE X.
PICTURE X(5).
PICTURE X.
PICTURE X(4).
PICTURE X.
PICTURE X.
PICTURE 99.
PICTURE X.
PICTURE 999.
PICTURE XXX.
PICTURE 999.
PICTURE X.
PICTURE 9.
PICTURE 9.
PICTURE 9.
PICTURE 9.
PICTURE 9.

01 CUSTOMERS-NAME PICTURE X (12) VALUE

‘ABC WIDGETS .

01 ID-WORD.
02 TYPER PICTURE X VALUE ZERO.

88 CK-RED-SEQ
88 CK-AND-RED
88 SEQ-AND-RED
88 RED-ONLY
88 CK-AND-SEQ
88 CK-ONLY

88 SEQ-ONLY
88 NO-ERROR

VALUE Y.
VALUE *’

VALUE Q.
VALUE -,

VALUE ‘H’.
VALUE ‘+’.
VALUE 8.
VALUE 0.

02 FILLER PICTURE X(5) VALUE ZERO.

PROCEDURE DIVISION.

DECLARATIVES.

PLACE-CUST-NAME-IN-LBL SECTION.
USE BEFORE STANDARD BEGINNING REEL
LABEL PROCEDURE ON A-FILE.

Examples of Language Usage 57

B. ENTER LINKAGE-MODE.

CALL ‘GETLBL USING STANDARD-LABEL,

SIZE-OF-LABEL-IN-WORDS.
C. ENTER COBOL.
D. MOVE CUSTOMERS-NAME TO ARBITRARY

OF STANDARD LABEL.

E. ENTER LINKAGE-MODE.
CALL ‘PUTLBL’ USING STANDARD-LABEL,
SIZE-OF-LABEL-IN-WORDS.
F. ENTER COBOL.
ERROR-IDENTIFY SECTION.
USE AFTER STANDARD ERROR PROCEDURE
ON A-FILE.
El1. ENTER LINKAGE-MODE.
CALL ‘ERRSET USING ID-WORD.
E12. ENTER COBOL.
END DECLARATIVES.
MAIN PROGRAM SECTION.

OPEN INPUT A-FILE.

DISPLAY ‘THE LABEL FOUND UPON OPEN-

was...’.

DISPLAY STANDARD-LABEL.

MP1, NOTE MAIN PROGRAM DELETED FOR
SAKE OF CLARITY.
CUSTOMERS-NAME IS DETERMINED IN
THIS SECTION.
INPUT-A-FILE SECTION.
READ A-FILE AT END GO TO CLOSE-UP.
TEST-FOR-DETECTED-ERR SECTION.

IF NO-ERROR GO TO STOP-TESTING.

IF SEQ-ONLY OR CK-AND-SEQ OR
SEQ-AND-RED OR CK-RED-SEQ DISPLAY
‘SEQUENCE CKECK'.

IF CK-ONLY OR CK-AND-SEQ OR
CK-AND-RED OR CK-RED-SEQ DISPLAY
‘CHECKSUM’,

IF RED-ONLY OR SEQ-AND-RED OR
CK-AND-RED OR CK-RED-SEQ DISPLAY
‘READ REDUNDANCY.

DISPLAY ‘ERROR(S) ENCOUNTERED WHILE
READING A-FILE . '

STOP-TESTING.

GO TO MP1.

CLOSE-UP. CLOSE A-FILE, STOP RUN.
$CBEND

Map Subprogram Error Codes

SIBMAP MAPDCK FULIST, NODECK
ERRSET SAVE
LGL
LDQ =0
LGR 3
STQ* 3,4 SAVE ERROR CODE BITS
RETURN ERRSET
END

58

Map Subprogram Label Area

SIBMAP GP 20, LIST, REF, NODECK
ENTRY GETLBL
GETLBL AXT 2,2
TRA *+2
ENTRY PUTLBL
PUTLBL AXT 1,2
CLA 3,4
STA X
CLA 4,4
STA *+1
LAC **1
TXL ZERO,1,0
SXD *+10,1
SXA *110,4
AXT ,21
AXT 2,4
XEC Y+2,2
XEC Z+2,2
TXI *1+1,1,-1
TXH *42,1,-14
AXT 1,4
TXL *19.1,-21
TXH *_g,1,**
AXT ¥k 4
TRA 5,4
ZERO AXT -21,1
TRA *-14
w PZE .LAREA,1
PZE .AREA1-14,1
X PZE)1
Y cLa* W+2,4
CLA* X
z STO* X
sTo* wW+2,4
END

Arrays and Subscripts

It is often necessary to have an entire array of informa-
tion available for a coBoL program. An array can be
set up in any of the three sections in the paTA DIVISION.
Each entry in the array can be described and given a
value in the CONSTANT SECTION; or the array can be de-
veloped during the execution of the program and the
entries described in the WORKING-STORAGE SECTION; or
the array can be read into storage from tape and de-
scribed in the FiLE-sECTION.

The following is an example of an array defined in
the WORKING-STORAGE SECTION. Population figures are
given for ten cities in each state. The states are divided
into five regions, each region containing ten states.

01 POPULATION-TABLE.
02 REGIONI.
03 MAINE USAGE IS COMPUTATIONAL.
04 AUGUSTA PICTURE IS 99999
SYNCHRONIZED RIGHT VALUE IS 34527.
04 BANGOR PICTURE IS 99999 SYNCHRONIZED
RIGHT VALUE IS 21438.

02 REGION2.

These 556 entries in the WORKING-STORAGE SECTION

O AP uny oy < 3 oF, ; i
put tne entire array in storage, but calculations require

a separate statement for each city. For example, to
determine which cities have populations over 50,000,
statements like the following are needed for each
calculation:

IF AUGUSTA GREATER THAN 5000. . .
IF BANGOR GREATER THAN 50000. ..

Redefining the array allows the population of each
city to be referred to by subscripting. The rules for
subscripting are given in “Appendix A.” The array can
be redefined with the following entries, which immedi-
ately follow the entries defining the array.

01 TABLE REDEFINES POPULATION-TABLE.
02 REGION OCCURS 5 TIMES.
03 STATE OCCURS 10 TIMES.
04 POPULATION OCCURS 10 TIMES PICTURE
IS 99999 USAGE IS COMPUTATIONAL
SYNCHRONIZED RIGHT.

Figure 31 shows the form of the array set up by
these entries.

TABLE

After redefinition, the population of Augusta, the
first city in the first state in the first region, can be
referred to as POPULATION (1, 1, 1), and Bangor can be
referred to as POPULATION (1, 1, 2)}. Reference can be
made to any part of the array. For instance, the whole
third region can be referred to as recioN (3), or the
second state in the third region can be referred to as
STATE (3,2).

Assigning names to these subscripts in the WORKING-
STORAGE SECTION and varying the values in the pro-
ceDpURE DIVISION allows a more general reference. For
instance the constants ARea, parT, and crry can be
assigned initial values and varied in the PROCEDURE
prvisioN so that reference can be made to PopuLATION
(AREA, PART, CITY).

In summary, the following entries can be used in the

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
77 AREA PICTURE IS 9 USAGE IS COMPUTATIONAL
SYNCHRONIZED RIGHT VALUE IS 1.
77 PART PICTURE IS 99 USAGE IS COMPUTATIONAL
SYNCHRONIZED RIGHT VALUE IS 1.
77 CITY PICTURE IS 99 USAGE IS COMPUTATIONAL
SYNCHRONIZED RIGHT VALUE IS 1.

01 POP‘:ILATION-TABLE.
02 REGIONI.
03 MAINE USAGE IS COMPUTATIONAL.

01 TABi_.E REDEFINES POPULATION-TABLE.
02 REGION OCCURS 5 TIMES.

I I]
Region | Region It Region 111 Region IV Region V
1 ' 1 |
' | 1 !
| 1 1 [
|] I I I I | I I I
State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10
I] T I I
n | | i | | ! i |
i | 1 I 1 ! [| |
I I | I [| I I l I
City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8 City9 City 10
Pop Pop Pop Pop Pop Pop Pop Pop Pop Pop

Figure 31. Organization of an Array Described with Nested OCCURS Clauses

Examples of Language Usage 59

03 STATE OCCURS 10 TIMES.
04 POPULATION OCCURS 10 TIMES PICTURE
IS 99999 USAGE IS COMPUTATIONAL
SYNCHRONIZED RIGHT.

To determine which cities have populations over
50,000, the following statement can be used in the
PROCEDURE DIVISION:

TEST. IF POPULATION (AREA, PART, CITY) IS
GREATER THAN 50000. ..

Option 5 of the pErRFORM statement can be used to
vary the subscripts AREA, PART, and cIty so that this
one statement can be used for each city’s population.
SUBSCRPT. PERFORM TEST VARYING AREA FROM 1

BY 1 UNTIL
AREA = 6 AFTER PART FROM 1 BY 1 UNTIL

PART = 11 AFTER CITY FROM 1 BY 1 UNTIL
CITY = 11.

The first time through the paragraph, poruLaTION
(AREA, PART, cITY) is equal to popuLATION (1, 1, 1);
the eleventh time through the paragraph, it is equal to
POPULATION (1, 2,1), etc.

Blocking and Deblocking Records

If there are a large number of logical records in a
block, it may be advantageous to block and deblock
the records using the cosoL language. The basic tech-
nique is as follows:

1. Rather than describe the logical record after the
file description entry, use the following entries.

ENTRIES

01 data-name-1.
02 data-name-2 PICTURE X(6)
OCCURS n.

COMMENTS

Data-name-1 is the name
given in the DATA REC-
ORDS clause, and n is the
size of the block in words.

2. Describe the logical record in the WORKING-STOR-
AGE secTION and redefine it with a record of the fol-
lowing form:

ENTRIES

01 logical-record.

01 data-name-3 REDEFINES
logical-record.

02 data-name-4 PICTURE X(6) The letter m represents the
OCCURS m. size of the record in words.
3. To obtain or release records, give a PERFORM state-

ment, rather than a READ or WRITE statement. The

statements under control of the pERFORM are of the

following type:

READ:

a. Using a counter as a subscript, MOVE subscripted the
next m (record size) words from data-name-2 to data-
name-4.

b. When all n (block size) words have been moved, the
statement READ filc name AT END...causcs a new
block to be read.

WRITE:

a. Using a counter as a subscript, MOVE subscripted the

next m (record size) words from data-name-4 to data-
name-2.

COMMENTS

60

b. When all » (block size) words have been moved, the
statement WRITE data-name-1 causes the block to be
written out of storage.

4. If the last block on an output physical record is
not completely filled with valid data, it may have to
be padded before it is written out of storage. A test
must be given to detect this padding for input records.

Example of Deblocking Records Using COBOL

The following example shows how variable-length
records are deblocked. The block sizes are given in a
dummy record description in the riLe section. The
logical record sizes are given in the WORKING-STORAGE
secTiON. The general procedure follows the basic tech-
nique described for deblocking records. Separate MovE
statements (READ-INFILE SECTION and WRITE-OUT-RCD
SECTION) are given instead of a PERFORM statement.
This procedure takes less execution time but uses more
storage.

The first record in the file is handled separately. Since
the records are of variable length, a termination char-
acter appears at the end of each physical record. This
is necessary only on the last record for fixed-length
records.

Program Listing of Blocking and Deblocking
Records:

$EXECUTE 1BJOB
SIBJOB LOGIC, MAP, FILES, LABELS
SIBCBC COBOP FULIST, DECK

IDENTIFICATION DIVISION.
PROGRAM-ID. TRACING PHASE OF
CORPORATE EXPRESS PROGRAM.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-7090.
OBJECT-COMPUTER. IBM-7090.
SPECIAL-NAMES.
KEY 11S ABLEKEY ON STATUS IS SWISON.
INPUT-OUTPUT SECTION.
FILE-CONTROL. SELECT OUT-FILE ASSIGN TO
A(1) FOR MULTIPLE REEL.
SELECT INFILE ASSIGN TO B(1) FOR
MULTIPLE REEL.
SELECT NEW-FILE ASSIGN TO B(1).
DATA DIVISION.
FILE SECTION.
FD NEW-FILE RECORDING MODE IS BCD HIGH
DENSITY
BLOCK CONTAINS 1002 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS DUM-REC.
01 DUM-REC.
02 RECS PICTURE X(18) OCCURS 55 TIMES.
02 RECS-FILLER PICTURE X(12).

FD OUT-FILE
RECORDING MODE IS BCD HIGH DENSITY
BLOCK CONTAINS 1002 CHARACTERS LABEL

RECORDS ARE OMITTED DATA
RECORD IS OUT-RCD.

01 QUT-RCD.

02 OUT-WDS PICTURE IS X(06) OCCURS 167
TIMES.

FD INFILE
RECORDING MODE IS BCD HIGH DENSITY
BLOCK CONTAINS 1002 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS INRECORD.

01 INRECORD.

02 IN-WDS PICTURE X(6) OCCURS 167
TIMES.
WORKING-STORAGE SECTION,
01 WORKER.
02 WORK-AREA PICTURE X(6) OCCURS 15
TIMES.
01 WORKER-C REDEFINES WORKER.
02 Al PICTURE X(6).
02 A2 PICTURE X(6).
02 A3 PICTURE X(8).
02 A4 PICTURE X(6).
02 A5 PICTURE X(6).
02 A6 PICTURE X(6).
02 A7 PICTURE X(6).
02 A8 PICTURE X(6).
02 A% PICTURE X(6).
02 B1 PICTURE X(6).
02 B2 PICTURE X(6).
02 B3 PICTURE X(6).
02 B4 PICTURE X(6).
02 B5 PICTURE X(6).
02 B6 PICTURE X(6).
01 WORKER-1 REDEFINES WORKER.
02 PARTIAL PICTURE IS X(12).
02 SOMEORE PICTURE IS X(12).
01 WORKER-2 REDEFINES WORKER.
02 THISONE PICTURE IS X(6).
02 THATTONE PICTURE 18 X(12).
01 DUMMY.
02 DUM-COUNT PICTURE 9(2)
COMPUTATIONAL SYNCHRONIZED
RIGHT VALUE IS 03.
02 DUM-BAL PICTURE X(12) VALUE
‘ABCDEFGHIJKL .
01 U PICTURE 9(5) SYNCHRONIZED RIGHT
COMPUTATIONAL.
01 W PICTURE 9(5) SYNCHRONIZED RIGHT
COMPUTATIONAL.
01 X PICTURE 9(5) SYNCHRONIZED RIGHT
COMPUTATIONAL.

01 Y PICTURE 9(5) SYNCHRONIZED RIGHT
COMPUTATIONAL.
01 Z PICTURE 9(5) SYNCHRONIZED RIGHT
COMPUTATIONAL.
01 CLASSIFIER.
02 KOUNT PICTURE 9(2) COMPUTATIONAL
SYNCHRONIZED RIGHT.
PROCEDURE DIVISION,
STARTT.
OPEN OUTPUT NEW-FILE.
PERFORM CREATE-TAPE VARYING Y FROM
1 BY 1 UNTIL Y = 601.
CLOSE NEW-FILE.
OPEN INPUT INFILE OUTPUT OUT-FILE.
MOVE 1 TO W.
MOVE 1 TO U PERFORM READ-NEW,
RIF.
PERFORM READ-INFILE.
PERFORM WRITE-OUT-RCD.
GO TO RIF.
EO]J.
CLOSE INFILE OUT-FILE.
STOP ‘KEY 1 DOWN TO RESTART .
IF SWISON GO TO STARTT.
MOVE WORKER-2 TO DUMMY.
DISPLAY DUMMY.
STOP RUN.
READ-INFILE SECTION.
RIL.
MOVE IN-WDS (X) TO CLASSIFIER.
IF CLASSIFIER = SPACES PERFORM
READ-NEW GO TO RIL.
COMPUTE Y = X + KOUNT.
MOVE IN-WDS (X) TO Al ADD 1 TO X.
IF X = Y GO TO END-1.
MOVE IN-WDS (X) TO A2 ADD 1 TO X.
IF X = Y GO TO END-1.
MOVE IN-WDS (X) TO A3 ADD 1 TO X.
IF X = Y GO TO END-1.
MOVE IN-WDS (X) TO A4 ADD 1 TO X.
IF X = Y GO TO END-1.
MOVE IN-WDS (X) TO A5 ADD 1 TO X.
IF X = Y GO TO END-1.
MOVE IN-WDS (X) TO A6 ADD 1 TO X.
IF X = Y GO TO END-1.
MOVE IN-WDS (X) TO A7 ADD 1 TO X.
IF X = Y GO TO END-1.
MOVE IN-WDS (X) TO A8 ADD 1 TO X.
IF X = Y GO TO END-1.
MOVE IN-WDS (X) TO A9 ADD 1 TO X.
IF X = Y GO TO END-1.
MOVE IN-WDSs (X) TO B1 ADD 1 TO X.
IF X = Y GO TO END-1.
MOVE IN-WDS (X) TO B2 ADD 1 TO X.

Examples of Language Usage

62

IF X = Y GO TO END-1.

MOVE IN-WDS (X) TO B3 ADD 1 TO X.

IF X = Y GO TO END-1.

MOVE IN-WDS (X) TO B4 ADD 1 TO X.

IF X = Y GO TO END-1.

MOVE IN-WDS (X) TO B5 ADD 1 TO X.

IF X = Y GO TO END-1.

MOVE IN-WDS (X) TO B6 ADD 1 TO X.

END-1. EXIT.
READ-NEW SECTION.

READ INFILE AT END GO TO EOJ.

MOVE 1 TO X.

WRITE-OUT-RCD SECTION.

IF U + KOUNT GREATER THAN 167 MOVE
SPACE TO OUT-WDS (U) WRITE
OUT-RCD MOVE 1 TO U MOVE 1
TO W.

COMPUTE W = W + KOUNT.

MOVE 1 TO Z.

MOVE Al TO OUT-WDS (U) ADD 1 TO U.

IF U = W GO TO END-2.

MOVE A2 TO OUT-WDS (U) ADD 17O U.

IF U = W GO TO END-2.

MOVE A3 TO OUT-WDS (U) ALL 1 TO U.

IF U = W GO TO END-2.

MOVE A4 TO OUT-WDS (U) ADD 1 TO U.

IF U = W GO TO END-2.

MOVE A5 TO OUT-WDS (U) ADD 1 TO U.

IF U = W GO TO END-2,
MOVE A6 TO OUT-WDS (U) ADD 1 TO U.
IF U = W GO TO END-2.
MOVE A7 TO OUT-WDS (U) ADD 1 TO U.
IF U = W GO TO END-2.
MOVE A8 TO OUT-WDS (U) ADD 1 TO U.
IF U = W GO TO END-2.
MOVE A9 TO OUT-WDS (U) ADD 1 TO U.
IF U = W GO TO END-2.
MOVE B1 TO OUT-WDS (U) ADD 1 TO U.
IF U = W GO TO END-2.
MOVE B2 TO OUT-WDS (U) ADD 1 TO U.
IF U = W GO TO END-2,
MOVE B3 TO OUT-WDS (U) ADD 1 TO U.
IF U = W GO TO END-2.
MOVE B4 TO OUT-WDS (U) ADD 1 TO U.
IF U = W GO TO END-2.
MOVE B5 TO OUT-WDS (U) ADD 1 TO U.
IF U = W GO TO END-2.
MOVE B6 TO OUT-WDS (U) ADD 1 TO U.
END-2. EXIT.
CREATE-TAPE SECTION.
PERFORM CREATE-IN VARYING Z FROM 1
BY 1 UNTIL Z = 56.
MOVE SPACES TO
WRITE DUM-REC.
CREATE-IN SECTION.
MOVE DUMMY TO RECS (Z).

Partial List of Compiler Limitations

Size

1. There are 32,767 computer words in core storage
in the 7090 and 7094 compnters. Therefore, the fol-
lowing restrictions apply to the size of data:

a. The record size is limited to 32,767 computer
characters.

b. The block size is limited to 32,767 computer
words.

c. Subscripts may not have values greater than
32,767.

d. A data-item that controls the size of variable-
length repeated items cannot have a value that
is large enough to permit the repeated items to
occupy more than 32,767 computer words. For
example, if a data-item that occupies a full
computer word (6 nonnumeric characters or 9
numeric computational digits) is described as
OCCURS integer TIMES DEPENDING ON data-name,
neither integer nor data-name may have a
value greater than 32,767.

NortE: Actually not all 32,767 words are available for
data since the program is in storage too, as are various
components of the operating system. The compiler
does not issue a message unless these limits are ex-
ceeded, but if there is not enough core storage avail-
able, an error message is given when the program is
loaded.

2. The compiler usually limits the size of elemen-
tary data-items to 2,048 computer characters. A data-
item that occupies an integral number of computer
words (e.g., a BCp item, synchronized, with the number
of its characters evenly divisible by 6) may occupy a
maximum of 2,048 computer words (12,288 charac-
ters). The language imposes further restrictions on the
size of elementary items.

3. No more than 49 levels of qualifications are per-
mitted.

1. Each name in a coBoL program is entered in a
compiler dictionary. Although the number of names
permitted in the dictionary varies with the program,
the maximum number ever permissible is 3,875.

The dictionary occupies 26,247 computer words in
core storage. Not all of the words are available to the
program since the compiler also makes entries in the

Programming Pointers

dictionary. For example, each cosor word used in the
program is entered in the dictionary.

Every program-name uses from two to four dic-
tionary words. Names with five or less characters
occupy two words (plus a possibly shared pointer
word). File-names and names that use the maximum
of 30 characters occupy four words. Thus it is possible
that the limit of the dictionary may be reached before
3,875 names are entered in it.

2. The ‘entry-name’ used for cross reference with the
ENTER verb is limited to six characters for compatability
with other 1BjoB subsystems.

3. The ‘entry-name’ used in the ENTRY POINT form
of the ENTER statement cannot be the same as the deck-
name of the program that contains this form of the
ENTER statement.

4. The maximum number of operands that can ever
follow UsING in an ENTER statement or that can follow
a DISPLAY statement is 128. Actually, the practical limit
varies from 50 to 128.

Files

1. The maximum number of files allowed in a single
compilation is 83.

2. Nothing may be written on an input file. Check-
points are written on labeled output files or on the
system checkpoint unit.

3. Files attached to the card reader or card punch
must be Bcp recording mode, unblocked, not labeled,
and of a fixed-length not exceeding 72 characters.

4. If the system units sYsIN1, sysoul, and SYSPP1 are
attached as card units, the files must be described in
accordance with the rules for card units.

Formulas and Conditional Expressions

1. A maximum of 500 arithmetic operands and
operators is permitted in a single expression.

2. A maximum of 20 Boolean (logical) operators is
permitted in a single conditional expression. Boolean
operators are AND, OR, and NOT.

3. A maximum of 18 simple condition tests is per-
mitted in a single conditional expression.

Miscellaneous

1. On the siBcBC control card only three or seven
index registers may be specified. Usually the 7090 has
only three index registers.

2. Read redundancies on the system input tape dur-

Programming Pointers 63

ing compilation are retried 20 times before a disaster
message is given.

Checklist

Order

1. The complete organization of a source program
is given in “Appendix A.”

2. A file description entry must precede the data-
item descriptions of the data on the file.

3. Independent working-storage items should pre-
cede grouped working-storage items.

4. Independent constants should precede grouped
constants.

5. A data-item description must begin with a level-
number and data-name. A REpEFINES clause, if used,
must follow the data-name. The other clauses may be
written in any order.

6. The declarative section must be at the beginning
of the PROCEDURE DIVISION,

Efficiency

1. The most efficient form for computational items
is SYNCHRONIZED RIGHT so that the items do not have to
be unpacked before they are used,

2. Subscripted references take more time to execute
than direct references.

3. It is usually more efficient to use Go TO DEPENDING
ON statements than a series of 1F statements. If a data-
name can have many values, assign code numbers
rather than condition-names, since condition-names
must be tested individually.

4. The use of six or fewer characters in names de-
creases compilation time and lessens the possibility
of a name-table overflow.

5. It is usually more efficient to use coMPUTE state-
ments than ADpD, SUBTRACT, MULTIPLY, and DIVIDE, the
individual arithmetic statements.

6. High blocking factors may be efficiently handled
by describing the block as an unlabeled record in the
file description entry and unblocking it with state-
ments in the PROCEDURE DIVISION.

7. If a series of statements is to be executed re-
peatedly at only one point in a program, it is more
efficient to place the statements where they are to be
executed than to refer to them with a PERFORM state-
ment. This is true only if the varyinG option of the
PERFORM statement is not used.

8. If a data-item is to be filled with a single re-
peated character, it is more efficient to use a figurative
constant than a literal. For example. MOVE ZEROES TO A
is more efficient than MovE 0 To a if A is a scaled
numeric item.

9. DISPLAY statements on the on-line printer are time
consuming.

64

10. The computation of checksums (apPLY clause
of the 1-0-coNTROL paragraph of the ENVIRONMENT
DIVISION) may considerably increase the running time
of the program. The formation and checking of the
block sequence number is less time consuming, how-
ever, and is helpful in detecting machine malfunctions.

Redundant Clauses

1. If crLASS is ALPHANUMERIC, USAGE is assumed to be
DISPLAY.

2. If USAGE is COMPUTATIONAL, CLASS is assumed to
be NuMERIC,

3. Edited items (described with a BLANK WHEN
zero clause or by the report form of the piCTURE
clause) are assumed to be ALPHANUMERIC DISPLAY.

4. An item containing a SIGNED clause is assumed to
be NUMERIC.

5. It is redundant to specify an operational sign for
an item whose USAGE is COMPUTATIONAL, either with a
SIGNED clause or with an s in a PICTURE clause.

6. A picTurE clause should not be used with roINT,
SIGNED, or S1ZE clauses. In case of a contradictory occur-
rence, an E level error message is produced, but the
PICTURE specifications appear in the binary deck.

7. Computational floating-point numbers are not

affected by a synNCHRON1ZED clause since they always
occupy one (single-precision) or two (double-pre-
cision) full words.

8. The only clause required for computational
floating-point items is USAGE IS COMPUTATIONAL-1 {or
COMPUTATIONAL-2).

9. Any information provided in the CONSTANT sEc-
TION can be put in the WORKING-STORAGE SECTION.

Input-Output

1. The Bcp recording mode must be specified for a
file assigned exclusively to card equipment.

2. The Bep recording mode must be specified for an
output file assigned to a system unit (sysou1 or sYsppP1).

3. If Bcp recording mode is specified for a file, the
data on the file must be described (explicitly or
implicitly) as USAGE DISPLAY.

4. If binary recording mode is specified for a file,
the data on the file may be described as usace com-
PUTATIONAL, COMPUTATIONAL-1, COMPUTATIONAL-2, OF
DISPLAY.

5. Two files that share the same file description en-
try; that is, the rexaMiING clause in the FILE-CONTROL
paragraph has been used, cannot be in opEN status at
the same time.

6. opEN, cLosE, and READ file-name. wriTE record-
name.

7. Control words are required if records of different
types are blocked on a file,

8. If records of a different type are on a file, the
programmer must determine which record type has
been read.

9. Checkpoints, not written on the checkpoint unit,
are written on labeled output files only.

10. Logical records may not extend across physical
records on a file.

11. Files assigned to card equipment may not be
blocked.

12. If a file is to be processed for both input and
output, there must be two SELECT entries for it in the
FILE-CONTROL paragraph of the ENVIRONMENT DIVISION.

13. No input-output verbs may be used in the

declaratives section of the PROCEDURE DIVISION.

14. If there is an error in a label, a message is written
on-line. The machine operator has the option of ignor-
ing the label error.

15. Tapes assigned to sysou1 and tapes to be printed
should have a carriage control character preceding
each record. For further information, see “Off-Line
Processing of Output” in the publication IBM 7090/
7094 IBSYS Operating System, Operator's Guide, Form
(C28-6355.

16. Depending on the way it is used most of the
time, data should be described as COMPUTATIONAL or
DISPLAY.

17. Blocks (BLoCK coNTAINs clause) must be longer
than two computer words (12 computer characters),
or they cannot be read or written.

18. If blocks (BLOCK cONTAINS clause) are not com-
posed of an integral number of computer words, the
rightmost portion of a record on an output file may
contain unwanted information since the full word is to
be written.

Level-Numbers

1. The 01 level-number must be used for the highest
levels of data organization in the data-item descrip-
tions in the FILE and WORKING-STORAGE SECTIONS.

2. The occurs clause may not be used with an entry
with a 01 or 77 level-number.

3. A condition-name, identified by the level-number
88, must have a vaLuE clause.]

4. SIGNED, SYNCHRONIZED, POINT, PICTURE, and BLANK
WHEN ZERO may be specified only at an elementary
level.

5. A level-number is required at the beginning of
every data-item description.

Size

1. A maximum of 2,048 characters is usually per-
mitted for alphanumeric elementary data-items. If the
item occupies an integral number of computer words,
the maximum size is 12,288 characters.

2. The maximum size for computational (not float-
ing-point) numbers is 18.

3. The value of the mantissa of single-precision
floating-point numbers may not exceed eight digits.
The exponent may range in value from —38 to +38.

4. The contents of the mantissa of a double-precision
floating-point number may not exceed 16 digits. The
exponent many range in value from —38 to +38.

5. The maximum size of numeric literals is 18; the
maximum size of nonnumeric literals is 120.

6. The maximum number of character codes in a
PICTURE is 30.

respectively, in the picrure clause) are not counted in
determining the size of an item.

8. When the craRAcTERS form of the BLOCK CONTAINS
clause is used, control words indicating the length of
the records must be counted in determining the size of
the block. If the appLY clause of the 1-0-coNTROL para-
graph has not been used, and if there are block se-
quence words on the file, block sequence words must
be counted in determining the size of the block.

Data-Values

1. Subscripts must have positive integral values
greater than zero.

2. Exponentiation of a negative value is allowed only
if the exponent is a nonnegative integer. Otherwise,
the result of the exponentiation is zero.

3. A vaLUE clause may not be used with a:

a. REDEFINES clause except for condition-name
entries.

b. data-item described after an entry in the same
logical record that contains an OCCURS DEPEND-
ING ON clause.

c. data-item description that contains an occurs
clause.

4. data-item that is a subdivision of an entry con-
taining an occugs clause.

4. In the FILE sEcTION, the VALUE clause may be used
with condition-names or to provide label information.
In the CONSTANT SECTION, the VALUE clause may be used
only to specify the initial value of storage. In the
WORKING-STORAGE SECTION, the VALUE clause may be
used with condition-names or to specify the initial
value of storage.

General

1. Computational floating-point numbers must be
described as COMPUTATIONAL-1 Or COMPUTATIONAL-2 in
the usace clause. The scientific decimal form of the
PICTURE clause is used only for editing.

2. Floating-point literals may be used only in the
DATA DIVISION.

Programming Pointers 85

3. A reperFINES clause must not be used with logical
records on the same file. A paTA RECORDS clause in the
file description entry provides automatic redefinition.

4. When a group item is manipulated in the PrOCE-
DURE DIVISION, it is treated as an elementary item with
a PICTURE of all X’s.

5. The statements following the AT END clause of the
READ verb and the oN sizE ERROR clause of the arith-
metic verbs must be imperative, not conditional.

6. An oN size ERROR clause should be included in
arithmetic statements whenever there is a possibility
that a size error might occur.

7. If zero is divided by zero, the result is zero.

Control Cards

The cosor Compiler is a component of the mjoB Operating System. Figure 32 shows the logical struc-
Processor, which is, in turn, a component of the msys ture of the msys Operating System.

SYSTEM MONITOR (IBSYS)

T T TS T T T T T T T T T T T T T T T T T T T 1
! |
: !
| i
1
| Input/Output Nucleus |Supervisor| Editor System Core- {
| Executor (IBNUC) | (1BSUP) {I1BEDT) Storage Dump I
1 {10EX} Program |
| (SYSDMP) :
i
| |
| |
L e e - J
IPAC Input/Output Restart Symbolic
Processor Control System Program Update
(pAQ) (1ocs) (RESTART) Program
(UPDATE)
Commercial Ge .
Utilities Translator neralized 1BJOB FORTRAN I
(DK90UT) Processor Sorting Program Processor Processor
P (SORT) (1JOB) (FORTRAN)
Urility Commercial 1BJOB FORTRAN
Monitor Translator Monitor il
Monitor Monitor
T T T T
| ! | |
| | i 1
| | | i
| | | !
] " |
Disk/Drum ! . cosoL ! FORTRAN
}‘ =7 Utilities = Compiler Compiler ——Jl i - —}
1 | (IBCBC) | Compiler |
I | | I
| ! | |
1 | ! |
1 1 | i
i ! FORTRAN IV | | Fap :
T | I
L D:'p: —— Loader Compiler —— Assembly |
P (IBFTC) (including IBSFAP)

TTTTTTTT

|
|
|
1
|
|
Symbolic Macro :
}__‘ Maintenance Assembly r__.|
| (MAIN) Program \
1 |
| i
| |
| |
| |
t . |
Lt Unamer Looder ||
(SUBUP) (18LOR) \
|
|
!
1
Subroutine i
Librory —--Jl
(1BLIB) |
i
i
1
Debugging __:

Processor

Figure 32. The IBSYS Operating System
Control Cards 67

Monitored operation in the 1Bsys Operating System
is directed by control cards. The mBsys System Monitor
controls communication among the components of the
Bsys Operating System. The 1BjoB Processor Monitor
controls communication between the System Monitor
and components of the 1BjoB Processor.

The publication IBM 7090/7094 IBSYS Operating
System: IBJOB Processor, Form C28-6389, contains a
description of all 1Bjos Processor control cards.

Control Cards Used in a COBOL Program

The following control cards may be used to compile
and execute a cosoL program. Underlined options in
the formats of the control cards are assumed, if the
option is omitted.

Figures 33 and 34 show the order of control cards
used for compiling and executing a coBoL program.

$JOB Card

The 1BjoB Processor Monitor transfers control to the
Bsys System Monitor when the Processor Monitor
reads a syoB card. If system units have not been reas-
signed or made unavailable during the last job and if
a between-jobs interrupt condition does not exist, the
Processor Monitor regains control and transfers to the
installation accounting routine. If there is no installa-
tion accounting routine, the sjoB card is listed on both
the system printer and the system output unit and the
System Monitor retains control.

If units have been reassigned or made unavailable
during the last job and/or if a between-jobs interrupt
condition does exist, the System Monitor processes the
card and retains control until a sexecute card is read.

The format of the sjos card is:

1 16

$JOB any text

Columns 16 through 72 are normally used to identify
a job and may contain any combination of alphameric
characters and blanks.

$EXECUTE Card

The sexecute card must precede a cosoL program
within a job if one of the following conditions exists:

End of File

$CBEND
(COBOL source deck) ’
$IBCBC DECK1
$I1BJOB

| $EXECUTE 1BJOB
$JOB

Figure 33. Sample Control Card Deck for One COBOL
Compilation

68

$CBEND
[l 7 .
(COBOL source deck) ‘
$IBCBC DECK2
$CBEND

y

(COBOL source deck)
$IBCBC DECK1
$I1BJOB
$EXECUTE IBJOB
$JOB

NOTE: Any number of COBOL source decks
or MAP or FORTRAN 1V source decks may
appear between the $IBJOB and the
End-of-File card.

Figure 34. Sample Control Card Deck for Two COBOL
Compilations

1. The cosoL program is the first unit of work to be
performed within the job.

2. The previous 18joB Processor application resulted
in execution of an object program.

3. A subsystem of 1Bsys other than 1BjoB Wwas in
control.

The Processor Monitor checks the subsystem name.
If the name is 1BjoB, no action is taken. If the name
is anything other than 1Bjos, this information is relayed
to the 1Bsys Monitor. The Processor Monitor then trans-
fers control to the 1Bsys Monitor.

The format of the sexecutk card is:

1 16
SEXECUTE subsystem name

The subsystem name may consist of six or fewer
BCD characters beginning in column 16. For coBoL pro-
grams, the subsystem name is 18joB.

$IBJOB Card

The siBjos card must be the first control card read by
the Processor Monitor for a given application. The
options that can be specified in the siBjoB control card
prescribe the manner in which an application may be
processed.

The format of the sijoB card is:

1 16

$IBJOB [, options]

The options, which start in column 16, are described
in the following text.

Execution Option

[+ {80]
NOGO

1. co — The object program is executed after it is
loaded.

2. Noco — The object program is not executed, even
if it is loaded. If this option is specified, the object pro-
gram is loaded only when rocic, pLocic, or MaP is
specified in the siBjoB card.

If neither co nor Noco is specified, the object pro-
gram is to be executed (co).

Logic Options

% NOLOGIC }
4 LOGIC
DLOGIC

1. NoLocIic — A cross-reference table is not wanted.

2. Locic — A cross-reference table of the program
sections and of the system subroutines required for
execution is generated. The origin and length of each
program section and subroutine, and the buffer assign-
ments are also given. When this option is specified for
a Librarian execution, a listing of the control section
dependencies in the generated library is produced.

3. prLocic — A cross-reference table of the program
sections and of the origin and length of each program
section is gemerated. The system subroutines and
buffer assignments are not given if this option is
chosen.

If neither NoLocIC, LOGIC, nor DLOGIC is specified, a
cross-reference table is not generated (NoLoGIC).

MAP Options

l:, { NOMAP }:l
MAP

1. NomAP — A core storage map is not wanted.

2. MAP — A core storage map showing the origin
and the amount of core storage used by the 1Bsys
Operating System, the object program, and the input-
output buffer, is generated. The file list and buffer
pool organization are also given. When this option is
specified for a Librarian execution, a listing of all sub-
routines in the generated library is produced.

If neither NoMAP nor MAP is specified, a storage map
is not generated {sMAP).

File List Options

. § NOFILES
FILES

1. noFiLEs — A listing of the input-output unit
assignments and mounting instructions to the operator
are printed on-line.

2. FiLes — A listing of the input-output unit assign-
ments and mounting instructions to the operator are
printed on-line and off-line.

If neither NoFILEs nor FiLEs is specified, the list is
printed only on-line (NOFILES).

Input Deck Options

[+ {36588]

1. source — The application contains at least one
compilation or assembly.

2. NosoURCE — The application contains only re-
locatable binary program decks. These decks are
loaded from the System Input Unit.

If neither SOURCE nor NOSOURCE is specified, it is
assumed that a compilation and/or assembly is re-
quired in the application (SOURCE).

Input/Output Options
I0EX
MINIMUM
BASIC
LABELS
FIOCS

ALTIO

1. 10Ex — The object program uses the Input/Output
Executor (10EX).

2. mintmuM — The minimum-level package of 10cs
is to be loaded with the object program.

3. Basic — The basic-level package of 10cs is to be
loaded with the object program.

4. LaBELs — The labels-level package of 10Cs is
loaded with the object program. When this option is
specified, the 1ocs package intended especially for use
with FORTRAN 1v programs is loaded with the standard
package.

If none of these options is specified, the Loader
determines the level of 1ocs to be loaded with the
object program.

5. F1ocs — The standard FORTRAN 1v input-output
package is loaded with the object program.

6. aLtio — The alternate FORTRAN Iv input-output
package is loaded with the object program.

The levels of 10cs are described in the publication
IBM 7090/7094 IBSYS Operating System: Input/
Output Control System, Form C28-6345.

>

Overlay Options

[feton]

NOFLOW

1. FLow — Execution of the object program is not
permitted if the rules concerning references between
links are violated. These rules may be found in the
section “Overlay Feature of the Loader” in the publi-
cation IBM 7090/7094 IBSYS Operating System: IBJOB
Processor, Form (C28-6389.

2. NorLow — Execution is allowed even though the
rules governing references between links are violated.

If neither FLow nor NorLow is specified, execution
of the object program is not permitted when the
rules governing references between links are vio-
lated (rLow).

$IBCBC Card

The cosoL Compiler is called into core storage when
the Processor Monitor reads a siBcsc card. The stBcsc
card contains the name of the deck that follows, output
options (list and punch operations), and machine-
oriented options that increase the efficiency of the
object program.

Control Cards 69

The format of the siBcBc card is:

1 8 16

$IBCBC deckname [. options]
where deckname names the deck that follows. A deck
name of six or fewer alphameric characters must be
punched in columns 8-13. Characters that cannot be
used in the deck name are: parentheses, commas,
slashes, quotation marks, equal signs, and embedded
blanks.

The variable field starts in column 16. The options
that may appear in this field are described in the
following text.

List Options

NOLIST
l:’ LIST :I
FULIST

1. NorLisT — A listing of the object program is not
wanted. Error messages produced by the Assembler
are listed.

2. LisT — A listing of the object program, three in-
structions per line, is generated. Only the relative
locations and symbolic information are listed.

3. FuLisT — A listing of the object program is gen-
erated, one instruction per line. This listing includes

follow

conaratad antal information Th o) lOW’lﬁg is an ex-

o
Hriitiatvu vital uuuviiiauVll. 110

ample of a program listing:

00041 0604 00 0 01400 10011 STI .CAREF
00042 0441 00 0 00150 10001 LDI SP+1
00043 0604 00 0 02000 10011 STI .CBREF
00044 0074 00 4 02400 10011 TSK .CMPK3,4
00045 1000006 1 03000 10011 TXI .CANA21,6
00046 1000004 1 03400 10011 TXI .CANA3,14
00047 0441 00 0 00154 10001 LDI SP+5
00050 0604 00 0 01400 10011 STI .CAREF

If neither NoLIsT, LIST, nor FULIST is specified, a list-
ing is not written on the System Output Unit.

Symbol Table Options

[, { NOREF }:l
REF

1. NOREF — A sorted dictionary and a cross-reference
table are not wanted.

2. REF — A sorted dictionary of the source language
names and their associated Equivalent Name (EN)
numbers and a cross-reference table of the symbols
used in the object program are generated. The follow-
ing is an example of a cross-reference dictionary:

FIELD1 ENO0235
FIELD2 EN0237
OUTPUT-FILE EN0224, 0230
OUTPUT-RECORD EN0231
WORK-RECORD EN0234

If neither NOREF nor REF is specified, the dictionary
and table are not generated { Norer).

Punch Options
, JDECK
NODECK

70

1. pEck — The object program is written on the Sys-
tem Peripheral Punch Unit (syspp1).

2. NopECcK — A punched deck is not wanted.

If neither pECK nor NobEck is specified, the object
program is written on the System Peripheral Punch
Unit (pECK).

Instruction Set Options

M90
[’ M94]
M94/2

1. M90 — The object program uses only 7090 ma-
chine instructions. All double-precision operations are
simulated by system macros, and Even pseudo-opera-
tions are treated as commentary.

2. M94 — The object program uses only 7090 ma-
chine instructions.

3. M94/2 — The object program uses 7094 machine
instructions. EVEN pseudo-operations are treated as
commentary.

Note: Only the M90 option has any effect. The other
options have not been implemented. If 7 index registers
are to be used, xr7 must be specified.

Index Register Options

[, fxrsl]
L \XR7{ |

1. xr3 — The object program uses three index reg-
isters (1,2, and 4).

2. xr7 — The object program uses 7 index registers.

If neither xrs nor xr7 is specified, the object pro-
gram uses only three index registers (xgrs).

Code Options

I:, { INLINE }:'
TIGHT)

1. iNuiNE — The object program’s computational and
MOVE tasks are optimized for speed.

2. TicHT — The object program’s computational and
MOVE tasks that are generated are smaller, thereby con-
serving object-time core storage.

If neither INLINE nor TIGHT is specified, the object
program’s computational and MovE tasks are optimized
for speed (INLINE).

Tape Error Options

[y { IOEND }]
READON

1. 10END — Errors that occur while reading tape at
object time cause irrecoverable error conditions.

2. READON — Errors that occur while reading tape at
object time are ignored. This option allows high-volume
data processing to continue while ignoring low-volume
error conditions.

If neither 10END nor READON is specified, these errors
are allowed to cause irrecoverable error conditions
(10END).

Collating Sequence Options
[, fcousEo }_‘
L iBINSEQ J

1. comseQ — The object program uses the commer-
cial collating sequence.

9. BnsEQ — The object program uses the binary
scientific collating sequences.

If neither coMsEQ nor BINSEQ is specified, the object
program uses the commercial collating sequence
(COMSEQ).

Debugging Dictionary Options

Rl
DD

1. Noop — A debugging dictionary is not wanted.

9. pp— A debugging dictionary is desired. A de-
bugging dictionary helps in debugging a MaP program
generated by the coor. Compiler. The cosoL Compiler
takes no action on this option except to pass to the
Assembler. The Assembler then produces a dictionary
containing all 1BcBc- and 1BMAP- generated symbols.

If neither Nopp nor oo is specified, debugging dic-
tionary is not produced (Nobp).

$CBEND Card
Every copor source deck must be followed immedi-
ately by a scBeND card.

The format of the scBEND card is:

1 8
$CBEND
Debugging Package

The debugging package enables the programmer to
manipulate data, control processing, and obtain dumps
of the contents of any locations in core storage at
specified locations within his program. There is no
limit on the number of requests that may be given for
a single program.

This package provides the programmer with two
types of debugging: compile-time debugging and load-
time debugging. The publication IBM 7090/7094 IBSYS
Operating System: IBJOB Processor Debugging Pack-
age, Form C28-6393, contains examples of debugging
requests.

Compile-Time Debugging
Compile-time debugging may be used to analyze and
display various results in a coBoL source program.
Debug requests are similar to cooL procedural state-
ments and almost all procedural capabilities of the
compiler may be utilized.

$1BDBC Card

The sBoBc card heads each compile-time debug re-
quest. The siBpBC card serves two functions: it identi-
fies individual requests; and it defines the point at

which the request is to be executed.

The format of the stBpBC card is:

1 8 16

$IBDBC [name] location [, FATAL]
where name is an optional user-assigned control sec-
tion name, which permits deletion of the request at
load time. This name must be a unique control section
name consisting of up to six alphabetic and numeric
characters, at least one of which must be alphabetic.

Location is the coBoL section-name or paragraph-
name (qualified, if necessary) indicating the point in
the program at which the request is to be executed
(insertion point). Effectively, debug requests are per-
formed as if they were physically placed in the source
program following the section- or paragraph-name,
but preceding the text associated with the name.

FATAL, when specified, prevents loading and execu-
tion of the object program when an error of level E or
greater occurs within a debug request statement. If
FATAL is not specified, a cosoL error of level E or less,
encountered within the procedural text of a debug
request, does not prevent loading and execution of the
object program. In this situation an attempt is made
to interpret the statement. If the interpretation attempt
is unsuccessful, the invalid statement is disregarded.
If the request consists of more than one statement,
only the invalid statement is disregarded.

The text of the debug request follows immediately
after the siBpBC card. The text may consist of any valid
procedural statements conforming to the requirements
of the cosoL language and format and the count-
conditional statement. The only restriction on these
statements is that they may not transfer control outside
of the debug request itself. Display statements in a
debug request are written on sysou1.

An end-of-file card or any $-control card terminates
the compile-time debugging packet. The debugging
packet follows the scBenNDp control card in a COBOL
source program.

Count-Conditional Statement

The count-conditional statement, which can be used
only in debug requests, provide a means of deter-
mining when debugging action should be taken. For
example, it can be used to cause a debug statement to
be executed the first, third, fifth, etc., times through a
loop that begins at a paragraph-name specified by
location on the siBpBC control card. The count-condi-
tional statement has the same structure as the 1F state-
ment and may be nested in the same manner. The
format of the count conditional statement is:

ON positive-integer-1 [AND EVERY positive-integer-2]
TUNTIL positive-integer-3] statement-1

ELSE
l: OTHERWISE }statement-Z]

Contro] Cards 71

Positive-integer-1 specifies the time that statement-1
is to be executed for the first time. For example, in the
following debug request:

$IBDBC
ON 3 DISPLAY A.
cause the statement pispLAY A to be executed on the
third time through paract (probably the paragraph-
name of a series of statements executed under control
of a PERFORM verb). No action is taken at any other
time.

Positive-integer-2 and positive-integer-3 specify the
intermediate times and the last time statement-1 is to
be executed. For example, the following debug re-
quest:

$IBDBC PARAG1
ON 5 AND EVERY 3 UNTIL 12 DISPLAY A.
causes the statement DISPLAY A to be executed on the
fifth, eighth, and eleventh time the statements at
PARAG! are executed. No action is taken at any other
time.
Statement-2 is used to specify an action for the times

PARAGI1

72

statement-1 is not executed. For example, the follow-
ing debug request:
$IBDBC PARAGI1
ON 2 AND EVERY 2 UNTIL 10 DISPLAY A ELSE
DISPLAY B.

causes the statement pispLAY A to be executed on the
second, fourth, sixth, and eighth times through parac1
and the statement pisPLAY B to be executed at all other
times.

Load Time Debugging

The load-time debugging facility allows programmers
to insert debug requests at load-time that are to be
executed with the object program. The language for
load-time debug requests is derived from the FORTRAN
v language, with changes made for debugging pur-
poses. All load-time requests for a particular Processor
application are grouped together in what is called the
debugging packet. The load-time debugging packet is
placed immediately following the siBjoB card at the
beginning of the job deck, preceding the source and/or
object decks.

The following alphabetic list contains the error mes-
sages generated by the coorL Compiler and their
explanations. Messages involving the linkage-mode
language and complle-tlme debugging language are
"lL‘ludl:d in l._‘l‘"\ }l\l since l‘l‘"‘y are 30 osel
nected to coBoL programming.

In addition to the error message, a card number
corresponding to the number of a card in the deck
is also generated. This number does not necessarily
mean that the error occurred on the particular card
but only in that general area. If the compiler for
some reason cannot determine the number of a card,
it lists the number as either 0000 or 9999. External
names of the form ENxxxx (Equivalent Names) are
also generated and printed on the output listing. The
numbers correspond to names assigned by the pro-
grammer in the pATa prvision of a coBoL program.
They are frequently used for reference in the error
messages.

Each error message is preceded by a code indicating
the level of the error.

W (Warning)
E (Error)
D (Disaster)

Compilation and execution continue.
Execution is suppressed.
Compilation is terminated.

Words in a message that must vary from situation
to situation are denoted by “*****” Where asterisks

actually appear as a standard part of a message, the
condition is specifically noted.

A SPACE SHOULD SEPARATE A SUBSCRIPTED NAME
FROM THE FOLLOWING LEFT PARENTHESIS. SPACE
IS ASSUMED.

Self-explanatory.

‘ACCEPT’ MAY ONLY BE FOLLOWED BY A DATA-NAME.
NOTHING DONE.
See the ACCEPT verb.

ALL CHARACTERS ACCEPTED FOR ***** MUST BE
NUMERIC.
See the ACCEPT verb.

ALPHABETIC CLASS SPECIFIED FOR ***** IGNORED
SINCE ITEM IS EXTERNAL DECIMAL.
ALPHABETIC CLASS cannot be specified for external
decimal (NUMERIC DISPLAY) items.

ALPHABETIC OR ALPHANUMERIC CLASS SPECIFIED
FOR ***** IGNORED SINCE ITEM IS INTERNAL
DECIMAL.
Internal decimal (NUMERIC COMPUTATIONAL) items
cannot be alphabetic or alphanumeric.

ALTER AT ***** DISALLOWED SINCE IT IS NOT SINGLE
GO TO SENTENCE.
See the ALTER verb.

COBOL Compiler Error Messages

ALTER REFERENCE INCORRECT ***** IS NOT A *****
NOTHING DONE.
There has been incorrect use of the ALTER verb. The
ALTER statement is ignored.

**¥¥% AND ¥+ HAVE NO CORRESPONDING SUB-
FIELDS. NO ACTION STATEMENTS GENERATED FOR

THIS PAIR.
See the MOVE CORRESPONDING verb.

ARGUMENT NUMBER #**#** MAY NOT APPEAR IN A
DISPLAY STATEMENT. SPACE ASSUMED INSTEAD.
See the DISPLAY verb.

ARITHMETIC PHRASES IN CONDITIONAL EXPRES-
SIONS MAY NOT CONSIST OF MORE THAN 500 OPER-
ATORS AND OPERANDS. EXPRESSION DELETED SINCE
LIMIT EXCEEDED.

Break expression into smaller parts.

*+kkk ASSOCIATED WITH OCCURS... DEPENDING ON
., IS AN IMPROPER DATA ITEM. CLAUSE IGNORED.
The data-name is required to be a positive integer greater
than zero. See OCCURS clause of the data-item description.

*+kxx AGSOCIATED WITH REDEFINES OR OCCURS...
DEPENDING ON..., IS AN IMPROPER DATA ITEM.
CLAUSE IGNORED.
See the REDEFINES and OCCURS clauses of the data-
item description.

ATTEMPTED DIVISION BY ZERO BYPASSED. RESULT
TAKEN TO BE ZERO.
Division by zero is mathematically undefined.

BINARY COMPUTATIONAL USAGE OF ***** INCOM-
PATIBLE WITH BCD RECORDING MODE FOR THIS
FILE.

The record must agree with the mode specifications.

BINARY RECORDING MODE SPECIFICATION OF FILE
**k¥+ AGCIGNED TO CARD UNIT IS NOT PERMITTED.
Cards coming from the card reader must not be in binary.

BLOCK SIZE (***** COMPUTER WORDS) SPECIFIED
FOR FILE ***** IS NOT A MULTIPLE OF RECORD SIZE
(***** COMPUTER WORDS). BLOCK SIZE CHANGED TO
**xx+ COMPUTER WORDS.
This message indicates that the block size and the record
size are inconsistent. See the BLOCK CONTAINS and
RECORD CONTAINS clauses.

BLOCKING OF DISTINCT RECORD TYPES OF DIFFER-
ING SIZES, WITHOUT COUNT CONTROL, IN FILE *****
IS NOT PERMITTED. FILE IS SET UNBLOCKED.

See BLOCK clause of file description entry.

*xsx+ CANNOT BE SUBSCRIPTED. SCAN RESUMED AT
NEXT VERB, PERIOD, OR INFORMATION IN THE A
MARGIN.

See subscripts.

*+x+x+ CANNOT BE USED AS AN ARGUMENT FOR THE

CORRESPONDING OPTION.
See the CORRESPONDING option of the ADD, SUB-
TRACT, and MOVE verbs.

COBOL Compiler Error Messages 73

*+xxx CANNOT HAVE MORE THAN 49 QUALIFIERS.
EXTRA ONES DELETED.
Self-explanatory.

CANNOT USE VARIABLE LENGTH ITEMS FOR COM-
PARISON. NOTHING DONE.
See IF conditional statements in the PROCEDURE
DIVISION.

CARD SEQUENCE ERROR IN COLUMNS 1-6. CONDI-
TION IGNORED.
The card sequence has been checked and this error mes-
sage results. There is no effect on compilation.

CARD UNIT NOT ALLOWED AS SECONDARY UNIT
ASSIGNED TO FILE ***** SECONDARY UNIT ASSIGN-
MENT IGNORED.
See the FILE-CONTROL paragraph in the INPUT-
OUTPUT section of the ENVIRONMENT DIVISION.

CAUTION, GROUP ITEM ***** TESTED.
A group item was an operand of an EXAMINE or IF
class-test-type statement. This is a warning message.

CAUTION, GROUP LEVEL MOVE FROM ***** TQ *****,
See the MOVE CORRESPONDING verb.

CAUTION, MOVE FROM ***** TQ ***** CAUSES TRUN-
CATION.
This message indicates that either the size or number of
decimal places of the items did not match. There is a
possibility that information will be lost.

CAUTION, MOVE FROM #***** T() **¥** CAUSES TRUN-

CATION EXCEPT IN CASES OF SYNCHRONIZATION.
This message indicates that there might be a loss of sig-
nificant data.

CHARACTER LOGIC MOVE INVOLVING AN ITEM
LONGER THAN 32767 CHARACTERS. NOTHING GEN-
ERATED.
This message indicates a compiler limitation has been
reached.

CHECKPOINTS DESIGNATED TO BE WRITTEN ON FILE
**xxx BUT FILE IS NOT LABELED OUTPUT. CHECK-
POINTS WILL BE WRITTEN ON STANDARD CHECK-
POINT UNIT INSTEAD.
This message indicates that checkpoints cannot be written
on an input file or an unlabeled output file.

CLOSE REEL FOR ***** IS ILLEGAL SINCE FILE IS
ASSIGNED TO A CARD OR SYSTEM UNIT. REEL OPTION
IGNORED.

Self-explanatory.

COBOL COMPILER DOES NOT OBEY THE USE OF XR4,

XR5, OR XR6 ON $IBCBC CARD. XR3 IS ASSUMED.
Index register 3 and 7 are the only index register specifi-
cations accepted. See control cards.

COBOL WORD ***** WAS NOT FOUND WHERE RE-

QUIRED IN THIS STATEMENT. STATEMENT DELETED.
This message indicates a language violation. See the rules
regarding the use of the particular verb used.

COBOL WORD ‘SECTION’ MISSING. BEGINNING OF
#+++ SECTION ASSUMED BY COMPILER.
See “Organization of Source Program” and the ENVIRON-
MENT DIVISION.

COBOL WORDS °‘ASSIGN TO’ OMITTED IN SELECT
ENTRY ***** ASSUMED UNIT ASSIGNMENTS IS ‘1 TAPE-
UNIT.
See the FILE-CONTROL paragraph in the INPUT-OUT-
PUT SECTION of the ENVIRONMENT DIVISION.

74

COBOL WORDS ‘TO PROCEED TO’ NOT FOUND WHERE
REQUIRED IN ALTER STATEMENT. STATEMENT
DELETED.

See the ALTER verb.

‘COLLATE-COMMERCIAL’ SHOULD NOT APPEAR IN
ENVIRONMENT DIVISION. COLLATING SEQUENCE
ASSUMED COMMERCIAL UNLESS ‘BINSEQ’ APPEARS
ON $IBCBC CARD.

This message indicates obsolete wording.

COMMA ILLEGALLY TO RIGHT OF POINT IN PICTURE
OF REPORT ITEM ***** 4+ 4+ 4+ + 4+ IS ASSUMED
PICTURE.

See the PICTURE clause of the data-item description.

COMPILER ***** COUNT CONTROL CONVENTION *****
FILE *****.
See the file description entry in the DATA DIVISION.

COMPILER ***** COUNT CONTROL CONVENTION *#*#*
FILE ***+* UNLESS ***** IS ASSIGNED TO A CARD
UNIT AT OBJECT-TIME.

See the file description entry in the DATA DIVISION.

COMPILER ALLOWS ONLY 20 CONSECUTIVE IMPLIED
BOOLEAN OPERATORS. CONDITIONAL EXPRESSION
DELETED SINCE MAXIMUM EXCEEDED.

Break the expression into smaller parts.

COMPILER ASSUMES FILE (S) ASSOCIATED WITH FD
ENTRY ***** HAS LABEL RECORD SINCE VALUE OF
LABEL GIVEN.
See the LABEL and VALUE clauses of the file descrip-
tion entry.

COMPILER BASE LOCATOR CAPACITY EXCEEDED.
TRY SUBDIVIDING INTO SMALLER PROGRAMS FOR
SEPARATE COMPILATION WITH COMBINATION AT
OBJECT TIME.
This message indicates a compiler limitation has been
reached.

COMPILER FORCED TO ASSUME ***** [S A GROUP ITEM
DUE TO ERROR IN SUBSEQUENT LEVEL NUMBER.
See level-numbers in the DATA DIVISION.

COMPILER IGNORES ILLEGAL CLAUSES IN DESCRIP-
TION OF LEVEL 88 CONDITION ***** (ONLY VALUE IS
ALLOWED).

See condition-name in the DATA DIVISION.

COMPILER TABLE CAPACITY EXCEEDED. TRY SUB-

DIVIDING INTO SMALLER PROGRAMS FOR SEPARATE

COMPILATION WITH COMBINATION AT OBJECT TIME.
This message indicates that a compiler limitation has been
exceeded. Suggested action is included in the message.

COMPILER THWARTED IN SEARCHING DATA STRUC-

TURE FOR GROUP(S) CONTAINING ARRAY ***** PROB-

ABLY DUE TO TOO MANY SUBSCRIPTS GIVEN. OBJECT

PROGRAM USES FIRST ELEMENT OF THE ARRAY.
See subscripts.

CONDITIONAL EXPRESSION TEST CAPACITY EX-

CEEDED. REWRITE AS TWO OR MORE SEPARATE

EXPRESSIONS WITH A MAXIMUM OF 18 OPERATORS.

ILLEGAL SENTENCE STRUCTURE. NOTHING DONE.
This message indicates that a compiler limitation has heen
reached.

akkkE

CONDITIONAL VARIABLE IMPROPERLY DE-

SCRIBED AS A REPORT, SCIENTIFIC DECIMAL, OR

FLOATING POINT ITEM. X IS ASSUMED PICTURE.
See conditional variables.

CONFLICTING ‘USE’ OPTIONS FOR FILE ***** OVER-

RIDDEN BY ‘USE’ STATEMENT(S) FOR ***** FILES.
This message indicates that conflicting USE procedures
have occurred. See the USE verb.

CONTINUATION CHARACTER MUST NOT BE USED
WITH AN OCCUPIED A MARGIN. CONTINUATION
CHARACTER IGNORED.
Continued items must not begin before B margin. See
“Reference Format.”

CONTROL CARD ENCOUNTERED PRECEDING $CBEND
CARD. END OF COBOL TEXT ASSUMED.
It is assumed that the $CBEND card is missing.

Enter the information in detail.

CORRESPONDING FIELDS OF ***** AND ***** QVERLAP.
See the MOVE CORRESPONDING verb.

CROSS-REFERENCE NAME TOO LONG. FIRST 6 CHAR-
ACTERS USED.
A cross-reference name is limited to 6 characters. See the
ENTER verb.

DATA DIVISION-HEADER NOT FOLLOWED BY SEC-
TION-NAME. SCAN RESUMED AT NEXT DATA DESCRIP-
TION ENTRY, SECTION, OR DIVISION.
See the “Organization of Source Program” and DATA
DIVISION.

DATA ITEM ***** INVALID AS AN ARGUMENT IN
‘EXAMINE’ STATEMENT OR CLASS TEST. STATEMENT
DELETED.

See the EXAMINE verb.

DATA ITEM ***** IS UNDER INFLUENCE OF INCON-
SISTENT USAGE AND CLASS CLAUSES. DETERMINING
HIERARCHY IS PICTURE, USAGE, CLASS.

See the data-item description in the DATA DIVISION.

DATA ITEM ***** WITH REDEFINES CLAUSE NOT
PRECEDED BY AN ELEMENTARY ITEM. REDEFINES
IGNORED.
The redefining item must follow the redefined item with
no intervening entries. See the REDEFINES clause of the

data-item description.

DATA-NAME, NOT ***** EXPECTED AS ARGUMENT IN
THIS STATEMENT. STATEMENT DELETED.
See the rules regarding the use of the particular verb re-
ferred to in this message.

DATA-NAME ***¥* REQUIRING CONVERSION, EDITING,
OR DEFINITION MAY NOT APPEAR IN AN ACCEPT
STATEMENT. NOTHING DONE.

See the ACCEPT verb.

DATA RECORDS CLAUSE OMITTED IN FD ENTRY *****
CONDITION IGNORED.
See the DATA RECORDS clause of the file description
entry.

DECK NAME IN ‘CALL’ STATEMENT MUST BE EN-
CLOSED IN QUOTES. STATEMENT DELETED.
This message indicates a language rule violation. See the
ENTER verb.

DECK NAME IS MISSING ON $IBCBC CARD. CONDITION
IGNORED.
Self-explanatory.

‘DECLARATIVES’ MUST BE AT BEGINNING OF PRO-
CEDURE DIVISION. STATEMENT DELETED.
This message indicates a language requirement. See
“Organization of Source Program.”

***+** DEFINED IN MORE THAN ONE OUTPUT FILE.
INPUT/OUTPUT STATEMENT IGNORED.

The record name used must be unique.

¥¥+* DESCRIPTION ENTRY ENCOUNTERED. BEGIN-

NING OF #*#**** SECTION ASSUMED BY COMPILER.
See “Organization of Source Program” and the DATA
DIVISION.

DISCREPANCY BETWEEN LEVELS OF ***#* AND THE
REDEFINED ITEM. DISCREPANCY IGNORED AT THIS
POINT OF ANALYSIS.
The redefining item should match the redefined item. In
this case, the level numbers do not match. This is a warn-
ing level message. See the REDEFINES clause of the

Anba Shosn Joaoadoart
data-item description.

DIVISION NAME SHOULD BE FOLLOWED BY THE
WORD DIVISION AND A PERIOD. CONDITION IGNORED.
Self-explanatory.

DIVISION MUST BE IN ORDER AND NOT DUPLICATED.
COMPILER SKIPS TO NEXT DIVISION.
See “Organization of Source Program.”

$ IS A LEGAL CHARACTER ONLY IN THE PICTURE
CLAUSE. $ DELETED.
Self-explanatory.

DOUBLE ASTERISKS (INDICATING EXPONENTIATION)
SHOULD NOT BE SEPARATED BY SPACE(S). SPACE(S)
IGNORED.

See formulas in the COMPUTE statement in the PRO-
CEDURE DIVISION.

DOWNSCALE GENERATED WHICH LOSES ALL SIG-
NIFICANT DIGITS.
This message indicates that data has been lost due to
downscaling.

ELEMENTARY LEVEL CLAUSES IN DESCRIPTION OF

GROUP ITEM ****+ IGNORED (LE., VALUE, SIGNED,

POINT, SYNCHRONIZED, EDITING, OR PICTURE.)
Certain clauses apply only to elementary items. See the
discussion of the particular clause.

END OF COBOL MESSAGES.
Self-explanatory.

ENVIRONMENT **#** NOT FOLLOWED BY ****¥* SCAN
RESUMED AT NEXT PARAGRAPH, SECTION, OR DIVI-
SION.
See “Organization of Source Program” and the ENVIRON-
MENT DIVISION.

ENVIRONMENT PARAGRAPH-NAME ENCOUNTERED.
BEGINNING OF ***** SECTION ASSUMED BY COM-
PILER.

See the ENVIRONMENT DIVISION.

ERRONEOUS PARENTHESIZATION IGNORED. TRANS-
LATION CONTINUES ARBITRARILY.
The number of left parentheses should equal the number
of right parentheses.

ERROR IN OCCURS...DEPENDING ON CLAUSE IN
DESCRIPTION OF *#**** COMPILER ASSUMES OCCURS
EXACTLY 100 TIMES, IGNORING QUANTITY ITEM.

See the OCCURS clause in the data-item description entry.

ERRORS IN OCCURS...DEPENDING ON CLAUSE IN
DESCRIPTION OF ***** COMPILER IGNORES °‘IN-
TEGER-1 TO’ SPECIFICATION.

See the OCCURS clause.

ERROR MESSAGE NOT YET IN FILE.
This message should never appear. If it does, a systems
engineer should be called to initiate an error report.

COBOL Compiler Error Messages 75

ERROR NUMBER ** DUMMY **
This message precedes a debugging printout.

EXCESSIVE BLOCK SIZE SPECIFIED FOR FILE *****,
FILE IS SET UNBLOCKED.
See the BLOCK CONTAINS clause of the file description
entry.

EXTRANEOUS ‘ELSE’ FOUND. IF IN ‘AT END’ OR ‘ON
SIZE ERROR’ CLAUSE, ‘ELSE’ TREATED AS A PERIOD,
IN OTHER CASES IT IS TREATED AS A COMMA,
This message indicates a language violation. See the rules
regarding the particular verb for which ELSE is an option.
The statement must be rewritten to eliminate the ex-
traneous ELSE.

FD ENTRY ***** NOT TERMINATED BY A PERIOD.
CONDITION IGNORED.
Self-explanatory.

FIGURATIVE CONSTANT OR NON-NUMERIC LITERAL
MUST FOLLOW ‘ALL. ALL ZERO ASSUMED IF COBOL
WORD NEXT.

See figurative constants.

FILE ***** ASSIGNED TO ***** BUT FILE IS NOT
*xxak kkkrx USAGE ASSUMED.
File usage is contradictory to system unit usage.

FILE ***** ASSIGNED TO CARD UNIT HAS RECORD
CONTAINING MORE THAN 72 CHARACTERS. MAXIMUM
RECORD SIZE PROCESSED IS 72 CHARACTERS.
Card column limitation has been exceeded. There are only
72 columns available. The first 72 characters will be proc-
essed.

FILE ***** ASSIGNED TO SYSOUl, BUT RECORDING
MODE GIVEN AS BINARY. RECORDING MODE
CHANGED TO BCD.
This message indicates a system requirement; SYSOUl
must be BCD.

FILE #***** ASSOCIATED WITH REDUNDANT ‘USE’
STATEMENT. FIRST ONE RETAINED.
This message indicates that a redundant USE statement
has been encountered. See the USE verb.

FILE ***** HAS NO ASSOCIATED FD ENTRY. ARBITRARY
SPECIFICATIONS ASSUMED.
See the file description entry.

FILE ***** HAS NO RECORDS. INPUT/OUTPUT STATE-
MENT IGNORED.
See the DATA RECORDS clause of the file description
entry.

FILE ***** IS ASSIGNED TO A CARD OR SYSTEM UNIT.
OPTIONS SPECIFIED IN CLOSE STATEMENT ARE
IGNORED.
This message indicates that certain system conventions
(as indicated) take priority over COBOL options.

FILE ***** IS ASSIGNED TO ***** AND FILE RECORD-
ING MODE IS BINARY. UNIT NOT PERMITTED TO BE
CARD AT OBJECT-TIME.
This message indicates that system units SYSIN1, SYSOU]1,
and SYSPP1, should not be specified as card units at ex-
ecution time. This is a system restriction.

FILE ***** IS ASSIGNED TO ***** AND MAXIMUM
RECORD SIZE EXCEEDS 72 CHARACTERS. UNIT NOT
PERMITTED TO BE CARD AT OBJECT-TIME.
This message indicates that system units SYSINI, SYSOU1,
and SYSPPI, should not be specified as card units at execu-
tion time. This is a system restriction.

76

E:k FILE *** IS ASSIGNED TO ***** UNIT NOT
PERMITTED TO BE CARD AT OBJECT-TIME,
This message indicates that system units, SYSIN1, SYSOU1,
and SYSPPI, should not be specified as card units at ex-
ecution time. This is a system restriction.

*¥*x%% FPILE ***** NOT PERMITTED AS ARGUMENT IN
‘USE’ OPTION ***** STATEMENT.
See the USE verb.

FILE ***** RETENTION-PERIOD SPECIFICATION IG-
NORED SINCE ALLOWED ONLY FOR OUTPUT FILE.
See the VALUE clause of the file description entry.

FILE ***** SPECIFIED AS ***** INPUT ***** QUTPUT.
*¥*xx¥ USAGE ASSUMED.
This message indicates that the rules governing the use
of the USE verb have been violated. See the USE verb.

‘FILLER’ NOT PERMITTED AS FILE-NAME. FD ENTRY
IGNORED.
Self-explanatory.

FIRST REPETITION OF SUBSCRIPTING ERROR. SUB-
SEQUENTLY, MESSAGES REFERRING TO SUBSCRIPTS
APPEAR ONLY ONCE CORRESPONDING TO THE FIRST
APPEARANCE OF EACH UNIQUE SUBSCRIPT DATA-
NAME OR EXPRESSION.

No further messages will be generated for this error.

FLOATING POINT UNDERFLOW CONVERTING
LITERAL. ZERO USED.
This message indicates the exponent became less than the
minimum exponent which is 2—128 (approximately 10—38).

FLOATING POINT OVERFLOW IN CONVERTING
LITERAL. MAXIMUM VALUE USED.
This message indicates the exponent became greater than
the maximum exponent which is 2+127 (approximately
10+38),

***4% FORCED TO LEVEL NUMBER OF 0l.
Every data organization must have the highest order at
the 01 level. See level-numbers in the DATA DIVISION.

Aok dkokokokok FROL\I kokokkok kokkokk TO dokkkk kkkkk
Fokkokk kokkokok

See the MOVE verb.

‘FROM’ MAY ONLY BE FOLLOWED BY IBJOB STAND-
ARD MNEMONIC-NAME ‘SYSIN1. SYSIN1 ASSUMED.
See the rules for the ACCEPT verb.

GROUP ITEM ***** USED AS A SUBSCRIPT. OBJECT
PROGRAM USES SUBSCRIPT VALUE OF 1.
See subscripts.

*#xkk AS AN ILLEGAL LEVEL NUMBER. ASSUMED
LEVEL NUMBER IS 49.
Valid level-numbers are 01 through 49, 77, and 88. If any
other number is specified, 49 will be assumed. See level-
numbers.

*xkkx IJAS AN ILLEGAL PICTURE. ***** IS ASSUMED
PICTURE.
See the PICTURE clause of the data-item description.

*#kxx HAS NO FILE DESCRIPTION. INPUT/OUTPUT
STATEMENT IGNORED.
See the verb being used. Also check for proper working
of the file description entry and the FILE-CONTROL para-
graph.

#*#¥x JAS NOT APPEARED IN A SELECT ENTRY IN
ENVIRONMENT DIVISION. FD ENTRY IGNORED.
Self-explanatory.

##xxk [JAS NOT BEEN DEFINED IN A SELECT ENTRY
AND IS IGNORED.
See the FILE-CONTROL paragraph of the INPUT-OUT-
PUT SECTION in the ENVIRONMENT DIVISION.

*x#¢% [JAS VALUE CLAUSE TOGETHER ILLEGALLY
WITH OCCURS OR REDEFINES. VALUE ACCEPTED IF
OCCURS — APPLIED TO FIRST ELEMENT.
The OCCURS clause or the REDEFINES clause has been
used illegally with the VALUE clause. See the three clauses
in the data-item description entry.

HYPHENATED FORM OF ***¥* DESIGNATION
PREFERRED.

1-O-CONTROL OPTIONS FOR ***** JGNORED SINCE
ALLOWED ONLY FOR BINARY FILES.
This message reflects a system (IOCS) requirement.

I-O-CONTROL PARAGRAPH NOT FOLLOWING FILE-
CONTROL PARAGRAPH IGNORED.
See “Organization of Source Program” and the ENVIRON-
MENT DIVISION.

ILLEGAL ****#* UNIT ASSIGNED TO FILE *****
See the FILE-CONTROL paragraph in the INPUT-
QUTPUT SECTION of the ENVIRONMENT DIVISION.

ILLEGAL ARGUMENT IN ‘ON’ STATEMENT. STATE-
MENT DELETED.
Refer to “Debugging Package.”

ILLEGAL ARITHMETIC PHRASE, ENDING WITH AN
OPERATOR OTHER THAN RIGHT PARENTHESIS.
PHRASE DELETED.
See formulas in the COMPUTE statement of the PRO-
CEDURE DIVISION.

ILLEGAL CHARACTER IN COLUMN 7. SPACE IS
ASSUMED.
A hyphen or a blank are the only characters allowed in
column 7. See “Reference Format.”

ILLEGAL CHARACTER IN LITERAL. CHARACTER
IGNORED.
This message indicates one of the basic rules has been
violated. See literals.

ILLEGAL CHARACTER ON CARD DELETED.
Self-explanatory.

ILLEGAL CLAUSE(S) DESCRIBING ***** IGNORED.

LENGTH 1, VALUE OF R.M. ASSIGNED BY COMPILER.

ONLY SYNCHRONIZATION, IF ANY, RETAINED.
Consult the specific format for the record mark (PIC-
TURE J).

ILLEGAL CLAUSE(S) IN DESCRIPTION OF FLOATING
POINT ITEM ***** IGNORED.
See the discussion on the specific format for floating-point
items in the USAGE clause of the data-item description
entry.
ILLEGAL CLAUSE(S) IN DESCRIPTION OF SCIENTIFIC
DECIMAL ITEM ***** IGNORED.
See the discussion on the specific format for scientific
decimal items in the PICTURE clause of the data-item
description entry.

ILLEGAL CONDITIONAL EXPRESSION IN AT END OR

ON SIZE ERROR CLAUSE.
This message has been generated because of a COBOL
language restriction, but the 7090/7094 compiler accepts
the statement. See the description of the AT END clause
of the READ verb or of the ON SIZE ERROR clause
relating to the ADD, SUBTRACT, MULTIPLY, or DIVIDE
verb.

ok ok ok ok

ILLEGAL CONDITIONAL EXPRESSION IN TEXT. EX-

PRESSION IGNORED.
See conditional
DIVISION.

ILLEGAL CONTROL SECTION NAME FOR DEBUG RE-
QUEST. NAME IGNORED.
Refer to “Debugging Package.”

ILLEGAL DESIGNATION OF SIGN CONVENTION IN
PICTURE OF REPORT ITEM *¥¥¥* 44444+ IS
ASSUMED.
See the report form of the PICTURE clause of the data-
item description entry.

statements in the PROCEDURE

ILLECAI, FORM OF VALUE FQR #¥¥¥ kikxx VALUE
IGNORED.
Self-explanatory.

ILLEGAL INSERTION POINT SPECIFICATION FOR DE-
BUG REQUEST. REQUEST WILL NOT BE EXECUTED.
Refer to “Debugging Package.”

ILLEGAL MIXTURE OF DIGIT POSITION CHARACTERS
(9 Z *) AFTER POINT IN PICTURE OF REPORT ITEM
¥¥x¥%¥ L+ ++4++4+ IS ASSUMED PICTURE.
See the report form of the PICTURE clause of the data-
item description entry.

ILLEGAL MIXTURE OF ORDER OF DIGIT POSITION
CHARACTERS IN PICTURE OF REPORT ITEM ***¥¥
+++++++ IS ASSUMED PICTURE.
See the report form of the PICTURE clause of the data-
item description entry.

ILLEGAL PICTURE OF SCIENTIFIC DECIMAL ITEM
krkkk -+ 99999999E+99 IS ASSUMED PICTURE.
See the scientific decimal form of the PICTURE clause
of the data-item description entry.

ILLEGAL PICTURE (OR NEITHER PICTURE NOR LEGAL
SIZE GIVEN) FOR ***** DECIMAL ITEM ***** 999999
IS ASSUMED PICTURE.

The size must be specified by either ‘the SIZE or the
PICTURE clause.

ILLEGAL POINT OR SIGNED CLAUSE IN DESCRIPTION
OF NON-REPORT DISPLAY ITEM *#¥¥¥
See the data-item description entry in the
DIVISION.

ILLEGAL REDEFINITION IGNORED FOR FILE RECORD
(01 LEVEL) NAMED **#%%,
The REDEFINES clause cannot be used with logical
records (01 level) associated with the same file. See the
REDEFINES clause of the data-item description entry.

ILLEGAL SENTENCE STRUCTURE. NOTHING -DONE.

See punctuation.

ILLEGAL SUBSCRIPT STRUCTURE. SCAN RESUMED AT
NEXT VERB, PERIOD, OR INFORMATION IN THE A
MARGIN.

See subscripts.

ILLEGAL USAGE OR CLASS CLAUSE (OR BLANK

WHEN ZERO) IN DESCRIPTION OF ALPHANUMERIC

ITEM **#*#* CLAUSE IGNORED IN FAVOR OF PICTURE.
This warning message indicates a violation of a language
rule.

ILLEGAL USAGE OR CLASS CLAUSE(S) IGNORED IN
FAVOR OF PICTURE OF REPORT ITEM *****
The PICTURE clause overrides contradictory USAGE
and CLASS clauses.

ILLEGAL USE OF COMMA IN PICTURE OF REPORT
ITEM ***** 4+ 4+ 4+ ++++ IS ASSUMED PICTURE.
Self-explanatory.

DATA

COBOL Compiler Error Messages 77

ILLEGAL USE OF $ IN PICTURE OF REPORT ITEM *****,
+++++4++ IS ASSUMED PICTURE.
See replacement characters under the PICTURE clause of
the data-item description entry.

ILLEGAL USE OF UNALTERABLE ‘GO TO’ STATEMENT
‘GO TO’ STATEMENT DELETED.
See the GO TO and ALTER verbs.

ILLEGAL USE OF V OR POINT IN PICTURE OF REPORT
ITEM ***** 4+ 4+ ++4+4++ IS ASSUMED PICTURE.
See the report form of the PICTURE clause of the data-item
description entry.

IMPROPER CHARACTER INTERRUPTS STRING OF +
OR — OR $ IN PICTURE OF REPORT ITEM *****
+++++++ IS ASSUMED PICTURE.
See the floating +, —, or $ in the report form of the PIC-
TURE clause of the data-item description entry.

IMPROPER LABEL CLAUSE IGNORED. COMPILER
ASSUMES LABEL RECORD(S) OMITTED UNLESS VALUE
CLAUSE PRESENT.

See the LABEL clause of the file description entry.

IMPROPER RECORDING CLAUSE IGNORED. BCD,
HIGH DENSITY ASSUMED.
See the RECORDING MODE clause of the file description
entry.

***x* IN THE ENVIRONMENT DIVISION MUST NOT BE
REPEATED. SCAN RESUMED AT NEXT PARAGRAPH,
SECTION, OR DIVISION.
See “Organization of Source Program”™ and the ENVIRON-
MENT DIVISION,

IMCOMPLETE STATEMENT DELETED.
This message indicates invalid sentence structure. Consult
the rules regarding the particular verb.

INELIGIBLE DATA-NAME ***** IN RECEIVE OR PRO-
VIDE STATEMENT. SCAN RESUMED AT NEXT VERB,
PERIOD, OR INFORMATION IN THE A-MARGIN.

See the ENTER verb.

INELIGIBLE DATA-NAME CANNOT BE USED AS AN
ARGUMENT FOR THE CORRESPONDING OPTION.
See the CORRESPONDING clause under the MOVE verb.

INPUT’ or ‘OUTPUT’ MUST FOLLOW VERB IN AN
‘OPEN’ STATEMENT. STATEMENT DELETED.
The OPEN statement requires that either INPUT or OUT-
PUT be specified. See the OPEN verb.

INPUT/OUTPUT STATEMENT IGNORED.

See the PROCEDURE DIVISION discussion on the
associated verb often associated with errors concerning SELECT
or FD entries.

INTEGER MUST NOT EXCEED 32767. INTEGER 1
ASSUMED.

This message indicates that core storage capacity has been
exceeded.

INCONSISTENT FILE AND SERIAL
PERMANENT CLOSE

g}]gg“NAL UNABLE TO STASH
FRA READOUT SEQUENCE

UTILITY READ
UTILITY EOF
Possible causes:

1. “short” of faulty utility tapes
2. oversize program

3. machine error

INVALID LITERAL USED IN EXAMINE STATEMENT.
Self-explanatory.

78

¥ IS A NAME DEFINITIOIN AND MUST NOT BE
QUALIFIED. DEFINITION FORCED.
This message refers to a data-name, condition-name, or
procedure-name that was not properly defined; see the
statement being used.

#%% IS A TYPE OF ELEMENTARY DATA ITEM THAT
MAY NOT BE USED AS A SUBSCRIPT. OBJECT PRO-
GRAM USES SUBSCRIPT VALUE OF 1.

See subscripts.

**x*x IS A TYPE OF ELEMENTARY DATA ITEM THAT
MAY NOT BE USED IN °‘RETURN. STATEMENT
DELETED.

See the ENTER verb.

*#%%£% IS AN OUT-OF-RANGE REFERENCE.
Refer to “Debugging Package.”

**#*% IS AN UNRECOGNIZABLE ITEM ON CARD. COM.-
PILER SKIPS TO NEXT DIVISION.
The remainder of division is skipped. Check for spelling
error.

#%+ IS GREATER THAN ** FIRST VALUE USED IN
DETERMINING MAXIMUM ***** QI7ZE.
See the file description entry.

**x*x IS IMPROPERLY QUALIFIED. DEFINITION
FORCED.
See subscripts.

**+++ IS IMPROPERLY QUALIFIED, NAME IS NOT
UNIQUE. DEFINITION FORCED.
This message refers to a data-name, condition-name, or
procedure-name that was not properly defined; see quali-
fication of names.

xxx IS NOT *** INPUT/OUTPUT STATEMENT
IGNORED.
The READ verb requires a file-name; the WRITE verb re-
quires a record name. See the rules regarding the particular
verb.

**4*+ IS NOT A FILE NAME. FD ENTRY IGNORED.
There is no legitimate SELECT entry in FILE-CONTROL
paragraph. See the ENVIRONMENT DIVISION and the
FILE SECTION of the DATA DIVISION.

**x+* IS NOT A FILE-NAME. I-O-CONTROL CLAUSE
IGNORED.
A spelling error may have occurred in the file-name and
no match can be found. The I-O-CONTROL paragraph
in the INPUT-OUTPUT SECTION of the ENVIRON-
MENT DIVISION is ignored.

¥&x IS NOT A LEGAL CONDITION-NAME. REMAINDER
OF SWITCH-NAME ENTRY IGNORED.
See the SPECIAL-NAMES paragraph in the CONFIGU-
RATION SECTION of the ENVIRONMENT DIVISION.

**¥*3% IS NOT A LEGAL FILE-NAME. SELECT ENTRY
IGNORED.
A language rule has been violated. See the FILE-
CONTROL paragraph in the INPUT-OUTPUT SECTION
of the ENVIRONMENT DIVISION.

**x+* IS NOT A LEGAL MNEMONIC-NAME. REMAINDER
OF SWITCH-NAME ENTRY IGNORED.
See the SPECIAL-NAMES paragraph in the CONFIGU-
RATION SECTION of the ENVIRONMENT DIVISION.

**#¥%% IS NOT A LITERAL. CLAUSE IGNORED.
See the VALUE clause of the data-item description entry.

***x%* IS NOT A NUMERIC LITERAL AND IS IGNORED.
See the VALUE clause of the file description entry.

**+x#% 1§ NOT A PROCEDURE NAME. TRANSFER BY-
PASSING THIS STATEMENT INSERTED.
Incorrect reference. See the structure of the PROCEDURE
DIVISION.

*#+¥x IS NOT DEFINED. DEFINITION FORCED UNLESS
A QUALIFIER.
This message refers to a data-name, condition-name, or
procedure-name that was not properly defined; see quali-
fication.

**+xx IS STRUCTURALLY INCORRECT AT THIS POINT.
I-O-CONTROL CLAUSE IGNORED.
A section head has been omitted. See “Organization of
Source Program” and the ENVIRONMENT DIVISION.
**+x* IS STRUCTURALLY INCORRECT AT THIS POINT.
REMAINDER OF SWITCH-NAME ENTRY IGNORED.
See the SPECIAL-NAMES paragraph in the CONFIGU-
RATION SECTION of the ENVIRONMENT DIVISION.

#+ik* IS STRUCTURALLY INCORRECT AT THIS POINT.
SCAN RESUMED AT BEGINNING OF NEXT RERUN
CLAUSE, PERIOD, OR PROPER INFORMATION IN THE
A MARGIN.
See I-O-CONTROL paragraph of the INPUT-OUTPUT
SECTION of the ENVIRONMENT DIVISION.

**¥#+¥ IS STRUCTURALLY INCORRECT AT THIS POINT.
SCAN RESUMED AT BEGINNING OF NEXT SELECT
ENTRY, PERIOD, OR PROPER INFORMATION IN THE A
MARGIN.
See the FILE-CONTROL paragraph in the INPUT-OUT-
PUT SECTION of the ENVIRONMENT DIVISION.

*k+k+ IS STRUCTURALLY INCORRECT AT THIS POINT.
SCAN RESUMED AT BEGINNING OF NEXT SWITCH-
NAME ENTRY, PERIOD, OR PROPER INFORMATION IN
THE A MARGIN.
See “Organization of the Source Program” and the EN-
VIRONMENT DIVISION.

¥¥¥¥ IS STRUCTURALLY INCORRECT AT THIS POINT.
SCAN RESUMED AT NEXT VERB, PERIOD, OR INFORMA-
TION IN THE A MARGIN.
This message indicates that a language rule has been
violated. See the PROCEDURE DIVISION information
for the particular verb used.

*k#xk IS UNIDENTIFIABLE. CLAUSE IGNORED.
See the DATA DIVISION.

**¥¥¥+ IS UNIDENTIFIABLE. REMAINDER OF CLAUSE
IGNORED.
See the FILE SECTION of the DATA DIVISION. This
wording may also concern the PROCEDURE DIVISION;
see message below.

*#i4% IS UNIDENTIFIABLE. REMAINDER OF CLAUSE
IGNORED.
Check spelling. Also study the rules of the particular verb
used in this clause. This wording may also concern the
FILE SECTION of the DATA DIVISION; see message
above.

*r*x¥ IS UNRECOGNIZABLE IN PROBABLE MULTIPLE
REEL OPTION. MULTIPLE REELS ASSUMED.
This message indicates a probable spelling error.

***+% IS UNRECOGNIZABLE. SCAN RESUMED AT NEXT
DATA DESCRIPTION ENTRY, SECTION, OR DIVISION.
See the DATA DIVISION.

*#2++ IS UNRECOGNIZABLE. SCAN RESUMED AT NEXT
PARAGRAPH, SECTION, OR DIVISION.
See the PROCEDURE DIVISION.

ITEM ***** HAS NO SPECIFIED LENGTH. CONDITION
IGNORED.
Length of a data-item must be specified. See the PICTURE
and SIZE clauses of the data-item description entry.

JUSTIFIED CLAUSE IN DESCRIPTION OF

IGNORED. THIS FEATURE NOT IMPLEMENTED.
The JUSTIFIED clause is not a feature of 7090/7094
COBOL.

LABEL CLAUSE OMITTED IN FD ENTRY **¥** COM-
PILER ASSUMES LABEL RECORD(S) OMITTED.
See the LABEL clause of the file description entry.

LENGTH OF NON-NUMERIC LITERAL EXCEEDS
LENGTH SPECIFIED BY SIZE OR PICTURE CLAUSE FOR
*#¥%% 1,O0W ORDER TRUNCATION DONE.
The alphanumeric constant contained within the VALUE
clause should not be greater in size than the item. When

it is greater, the low-order portion is truncated.

LENGTH OF ***** NOT BOTH CONSTANT AND LESS
THAN 73 CHARACTERS. NOTHING DONE.
See the ACCEPT verb.

LENGTH (***** CHARACTERS) OF REDEFINING DATA
FIELD HEADED BY DATA-NAME ***** IS GREATER
THAN LENGTH (***** CHARACTERS) OF DATA
FIELD BEING REDEFINED. DANGEROUS CONDITION
IGNORED.
See the REDEFINES clause of the data-item description
entry.

LEVEL FD SHOULD APPEAR IN THE A MARGIN. A MAR-
GIN ASSUMED.
This message indicates a violation of a language rule. See
“Reference Format.”

LEVEL OF ***** CONFLICTS WITH THE PRECEDING
LEVEL NUMBER CONDITION IGNORED.
See level-numbers in the data-item description entry.

LEVEL 77 ITEM ***#* MAY NOT HAVE OCCURS.
See independent items (level-numbers 77) in the WORK-
ING-STORAGE and CONSTANT SECTIONS.

LEVEL 77 ITEM ***** APPEARS IN FILE SECTION. IN-
VALID DATA ORGANIZATION RESULTS.
Level 77 items are allowed only in the WORKING-STOR-
AGE and CONSTANT SECTIONS.

LEVEL 88 CONDITION ***** T ACKS MANDATORY
VALUE CLAUSE.
Condition-names (level-number 88) must have a VALUE
clause. See condition-names.

LEVEL 88 CONDITION ****+* APPEARS ILLEGALLY in
CONSTANT SECTION.
Condition-names (level-number 88) have no meaning in
the CONSTANT SECTION. See condition-names.

LEVEL 88 CONDITION ***** NOT PRECEDED BY VALID
ELEMENTARY ITEM.
See condition-names.

LIMIT (15 BITS) OF SIZE FIELD IN DICTIONARY
NECESSITATES TREATING OPERATION LENGTH OF
*%%%% AS MODULO 32768.
This message indicates a compiler limitation has been
reached.

LITERAL FOLLOWING ALL IS LIMITED TO ONE CHAR-
ACTER. THE FIRST LITERAL CHARACTER IS USED.
See figurative constants.

*+x++ | TTERAL IS TOO LONG. FIRST ***** CHARACTERS
WILL BE USED.
See the VALUE clause of the file description entry.

F kb kK

COBOL Compiler Error Messages 79

LOCATION FIELD FORMAT ERROR.
A numeric deckname was used on the $IBCBC card. This is
a MAP message referring to the initial SAVE card of the
assembly. If any other MAP message is produced, a systems
engineer should be notified.

MACHINE OR COMPILER ERROR. COMPILATION IS
INCOMPLETE.
(1) This message may indicate a machine error. Notify a
customer engineer. (2) This message may indicate a com-
piler error. Consult a systems engineer concerning the
APAR procedure.

MAXIMUM NUMBER ***** OF DIFFERENT NAMES IN
A SOURCE PROGRAM EXCEEDED. COMPILATION
TERMINATED.
This message indicates that a compiler limitation has been
exceeded. Rework program into smaller, individual pro-
grams.

MAXIMUM RECORD SIZE (***** COMPUTER WORDS)

EXCEEDS SPECIFIED BLOCK SIZE (***** COMPUTER

WORDS) OF FILE ***** FILE IS SET UNBLOCKED.
This message indicates that the blocksize specified was
not large enough. See the BLOCK CONTAINS clause of
the file description entry.

MAXIMUM RECORD SIZE (***** COMPUTER WORDS)
SPECIFIED IN FD ENTRY ASSOCIATED WITH FILE
**¥¥%+ IS NOT EQUAL TO SIZE OF MAXIMUM RECORD
(***** COMPUTER WORDS) FD RECORD CLAUSE
IGNORED.
This message indicates that there is an inconsistency be-
tween the record size specified in the file description entry
and the record size given in the descriptions of the record.
See RECORD CONTAINS and SIZE clauses in the FILE
SECTION

...... *rxxxxxixrrs MESSAGE CAPACITY EXCEEDED.
This message indicates a compiler limitation. No more error
messages can be generated. At least one further error has
not been recorded.

MISUSE OF PERIOD, SIGN, OR E IN LITERAL. ILLEGAL
CHARACTER(S) IGNORED.
This message indicates one of the mentioned rules has
been violated. See literals.

MIXED CONTIGUOUS INSERTION-CHARACTERS IN
PICTURE OF REPORT ITEM ***** 4+ 4+ 44444 IS AS-
SUMED PICTURE.
See insertion characters under the PICTURE clause of
the data-item description entry.

MNEMONIC ***** NOT UNIQUE, CONDITION IGNORED.
See the SPECIAL-NAMES paragraph in the CONFIGU-
RATION SECTION of the ENVIRONMENT DIVISION.

MOVE FROM A FIGURATIVE CONSTANT TO A VARI-
ABLE LENGTH GROUP ITEM NOT ALLOWED.
See the MOVE verb.

MOVE FROM A FIGURATIVE CONSTANT TO AN ITEM
LONGER THAN 32767 CHARACTERS NOT ALLOWED.
This message indicates a compiler limitation has been
reached. Suggest dividing data-item into smaller parts.

MULTIPLE ***** CLAUSES IN ***** DATA DESCRIP-
TION. FIRST ONE RETAINED.
This message indicates an extraneous clause has appeared.
Only the first clause is retained.

MULTIPLE ***** CLAUSES IN FD ENTRY ***** FIRST
ONE RETAINED.
See the file description entry.

80

MULTIPLE CONTIGUOUS INSERTION-CHARACTERS IN
PICTURE OF REPORT ITEM ***** CHANGED TO A
SINGLE CHARACTER.
This message indicates a compiler convention. See the
report form of the PICTURE clause in the data-item
description entry.

MULTIPLE REEL OPTION FOR FILE ***** OMITTED
WHERE REQUIRED BUT IS ASSUMED.
MULTIPLE REEL must be specified if a file is on two
or more reels of magnetic tape. See the FILE-CONTROL
paragraph of the INPUT-OUTPUT SECTION in the
ENVIRONMENT DIVISION.

NEITHER PICTURE NOR SIZE CLAUSE GIVEN FOR NON-
REPORT DISPLAY ITEM ***** X IS ASSUMED PICTURE.
Self-explanatory.

NEITHER PICTURE NOR SIZE CLAUSE GIVEN FOR RE-
PORT ITEM ***** 4+ 44+ ++4 IS ASSUMED PICTURE.
See the data-item description entry.

NESTED REDEFINES ILLEGAL. REDEFINES CLAUSE
IGNORED FOR *****,
Redefining is not allowed at a subordinate level to another
REDEFINES. No more than one REDEFINES in one or-
ganization is permitted.

NO DIGIT POSITIONS IN PICTURE OF REPORT ITEM
**¥x* ++++++ IS ASSUMED PICTURE.
See the report form of the PICTURE clause in the data-
item description entry.

NO ERRORS WERE DETECTED BY THE COMPILER.
Self-explanatory.

NO PARAGRAPH NAME FOUND PRECEDING ‘EXIT
STATEMENT. CONDITION IGNORED.
EXIT must always be a one-word paragraph. See the dis-
cussion of the EXIT verb.

NO RECORD DESCRIPTION ENTRIES FOLLOW FD
ENTRY *****,
See “Organization of Source Program” and the DATA
DIVISION.

NON-ALPHABETIC LITERAL GIVEN FOR ALPHABETIC
ITEM ***** CONDITION IGNORED.
The value given for an alphabetic item may not contain
nonalphabetic characters.

NON-NUMERIC LITERAL CONTINUATION MUST BEGIN
WITH A QUOTE. QUOTE ASSUMED PRECEDING FIRST
NON-SPACE CHARACTER.

See “Reference Format.”

NON-NUMERIC LITERAL LONGER THAN 120 CHAR-
ACTERS OR NAME LONGER THAN 30 CHARACTERS
TRUNCATED.

This message indicates a language restriction. See literals.

NON-NUMERIC LITERAL VALUE OF NUMERIC ITEM
**x*+ IGNORED.
Numeric items may have only numeric values. See the
VALUE clause in the DATA DIVISION.

***¥x NOT A LABEL-DATA-NAME. REMAINDER OF
VALUE CLAUSE IGNORED.
See the VALUE clause of the file description entry.

NOT IN ‘DECLARATIVES’ MODE. STATEMENT
DELETED.
The USE verb may be used only in the declarative section.
See the USE verb.

NOTE...FILE-NAME CHANGED FOR INTERNAL PUR-
POSES TQ *****,
Internal limitations make change of file-name mandatory.
No information is lost.

NUMBER OF DIGITS IN FIELD OF LITERAL EXCEEDS
LIMIT OF 18. 18 DIGITS USED.
A numeric literal may not contain more than 18 characters.
See the rules for literals.

NUMBER OF FILES NAMED IN FILE-CONTROL EX-

CEEDS MAXIMUM OF 63. COMPILATION TERMINATED.
This message indicates that a compiler limitation has been
reached. This is a D-level message causing compilation to
stop. A dump also results. It is suggested that the job be
broken into smaller jobs.

NUMBER OF OCCURRENCES OF *+xxxx 1§ JLLEGAL.
COMPILER ASSUMES OCCURS EXACTLY 100 TIMES.
See the OCCURS clause of the data-item description entry.

NUMBER OF OCCURRENCES OF ITEM ***** DEPENDS
ON A FOLLOWING ITEM IN THE SAME DATA GROUP.
‘DEPENDING ON’ CLAUSE IGNORED.
The description of the item that determines the number
of repetitions cannot follow the item with the OCCURS
DEPENDING ON CLAUSE. See the OCCURS clause of
the data-item description entry.

OBJECT-COMPUTER DESIGNATION OVERRIDDEN BY
*xxxx OPTION ON $IBCBC CARD.
This message indicates that the number of index registers
specified on the $IBCBC card does not agree with the
number of index registers designated by the object-
computer.

OCCURS CLAUSE IGNORED FOR CONDITIONAL VARI-
ABLE ****i‘
See conditional variables.

OCCURS CLAUSE NOT PERMITTED FOR HIGHEST
LEVEL DATA ITEM *****,
This message indicates a language limitation. An OCCURS
clause may not be used at 01 level.

xxx¥x QF FILE ***** ASSIGNED TO ***** NOT PER-
MITTED.
This message indicates a system function error. Blocking is
not permitted on system units.

#x#x%¥ OF GROUP ITEM ***** IGNORED DUE TO CON-
FLICT WITH A HIGHER ORDER GROUP.
Self-explanatory.

ONLY FILE-NAMES MAY BE USED AS ARGUMENTS IN
‘OPEN’ OR ‘CLOSE’ STATEMENTS. STATEMENT DE-
LETED.
See OPEN and CLOSE statements in the PROCEDURE
DIVISION.

OPERAND TABLE OVERFLOW TRANSLATING EXPRES-
SION. STATEMENT DELETED.
The statement is too large. Re-arrange the statement in
smaller parts.

OPERATION IGNORED BECAUSE ***** HAS IMPROPER
DATA FORMAT.
See the rules regarding the particular verb.

OPERATION IGNORED BECAUSE ILLEGAL USE OF
FIGURATIVE CONSTANT.

See figurative constants.

#*++++ ORDER TRUNCATION OCCURS IN GENERATION
OF INITIAL VALUE FOR *****,
See VALUE clause of the data-item description entry.

#*++++ PARAGRAPH APPEARS ILLEGALLY IN ***** SEC-
TION. SCAN RESUMED AT NEXT PARAGRAPH, SECTION,
OR DIVISION.
See “Organization of Source Program” and ENVIRON-
MENT DIVISION.

PERFORM STATEMENT STRUCTURALLY INCORRECT.
STATEMENT DELETED.
See the PERFORM verb.

PERMANENT READ ERROR DURING PROCEDURE IN-
STRUCTION GENERATION PHASE. COMPILATION IS
SUSPECT.
This message indicates a bad utility tape. Do not trust
compilation. Suggest re-compilation.

PICTURE OF ALPHANUMERIC ITEM ***** CONTAINS
A MIXTURE OF A’S AND 9'S — TREATED AS ALL X'S.
This message indicates a language rule violation.

PICTURE OF REPORT ITEM ***** HAS ILLEGAL USE
OF SCALING CHARACTER P. +++++++ IS ASSUMED
PICTURE.

See the PICTURE clause of the data-item description entry.

PICTURE OF REPORT ITEM ***** HAS SCALING CHAR-
ACTER P EMBEDDED ILLEGALLY BETWEEN NUMERIC
CHARACTER POSITIONS +++++++ IS ASSUMED
PICTURE.

See the PICTURE clause of the data-item description entry.

PICTURE OF REPORT ITEM ***** IS ILLEGAL.
+++++++ IS ASSUMED PICTURE.
See the report form of the PICTURE clause in the data-
item description entry.

PREVIOUS DATA DESCRIPTION NOT TERMINATED BY
A PERIOD. PERIOD ASSUMED AND PROCESSING OF
*xkix BEGUN.

Self-explanatory.

PRIMARY AND SECONDARY UNITS ASSIGNED TO FILE
xxxxx CONFLICT. SECONDARY UNIT ASSIGNMENT
IGNORED.

Self-explanatory.

PROCEDURE STATEMENT TO ***** FILE ¥k NOT
GIVEN.
Every file named in a SELECT statement in the FILE-
CONTROL paragraph of the ENVIRONMENT DIVISION
must be opened and closed in the PROCEDURE DIVI-
SION. See the verbs OPEN and CLOSE.

QUANTITY ITEM %% SIIOULD NOT BE USED WITH
‘REPLACING’ OPTION IN ‘EXAMINE’ STATEMENT. CON-
DITION IGNORED.

See the EXAMINE verb.

RECORD ***** APPEARS IN RECORD DESCRIPTION
ENTRY BUT WAS NOT LISTED IN THE FD DATA
RECORD(S) CLAUSE. CONDITION IGNORED AND REC-
ORD DESCRIPTION RETAINED.
See the DATA RECORDS clause of the file description
entry.

RECORD HEADED BY DATA ITEM ***** EXCEEDS 32767
WORDS. LENGTH MODULO 32768 USED.
This message indicates a compiler limitation has been
reached.

RECORD ***** LISTED IN THE FD DATA RECORD(S)
CLAUSE DOES NOT APPEAR IN A RECORD DESCRIP-
TION ENTRY. CONDITION IGNORED.
See the DATA RECORDS clause of the file description
entry.

REDEFINES DESCRIBING ***** NOT FOLLOWED BY A
PREVIOUSLY DEFINED DATA-NAME. CLAUSE
IGNORED.
See the REDEFINES clause of the data-item description
entry.

REDUNDANCY ON SYSTEM INPUT UNIT. CONDITION
IGNORED.
One card image may have been lost. Suggest re-compilation.

COBOL Compiler Error Messages 81

REDUNDANT FD ENTRY ***** IGNORED.
Self-explanatory.

REDUNDANT FD ENTRY ***** IGNORED. ONLY ONE
FD ENTRY MAY DESCRIBE A SET OF RENAMED SELECT
ENTRIES.
See description of RENAMING clause of the SELECT
entry.

REDUNDANT I-O-CONTROL SPECIFICATION.
SEQUENCE-CHECK, CHECK-SUM, or RERUN has
been specified more than one time for a given file in the
I-O-CONTROL paragraph of the ENVIRONMENT DIVI-
SION. For example, the following two cards in the same
program cause check-sum to be specified for FILE-
NAME-1 twice:

APPLY CHECK-SUM ON FILE-NAME-1.

APPLY CHECK-SUM ON ALL FILES.
The card whose number is given with the message con-
tains the SELECT entry for the file involved.

REDUNDANT SELECT ENTRY ***** IGNORED.
A file-name has been selected more than once in the
FILE-CONTROL paragraph of the ENVIRONMENT
DIVISION.

REDUNDANT SWITCH-NAME ENTRY FOR KEY *#*x*
IGNORED.
See the SPECIAL-NAMES paragraph of the ENVIRON-
MENT DIVISION.

REDUNDANT ‘USE’ STATEMENT.

STATEMENT DELETED.
This message indicates that a redundant USE statement
has been encountered. See the USE verb.

‘RENAMING’ MAY ONLY BE FOLLOWED BY A FILE-
NAME, REMAINDER OF SELECT ENTRY IGNORED.
ASSUMED UNIT ASSIGNMENT IS ‘1 TAPE-UNIT
If the RENAMING option is used in the FILE-CONTROL
paragraph of the ENVIRONMENT DIVISION, it must
be followed by a file-name.

SECTION-HEADER ***** SECTION NOT FOLLOWED BY

*x#x% DESCRIPTION ENTRY. SCAN RESUMED AT NEXT

***xx DESCRIPTION ENTRY, SECTION, OR DIVISION.
See “Organization of Source Program.”

SECTION IN THE DATA DIVISION MUST ***** SCAN
RESUMED AT NEXT SECTION, OR DIVISION.
See “Organization of Source Program.”

SENTENCE LENGTH EXCEEDS COMPILER CAPACITY.
SUGGEST SUBDIVIDING SENTENCE INTO SMALLER
COMPONENTS.

Self-explanatory.

SEQUENCE-CHECK MUST BE SPECIFIED WHEN
CHECK-SUM IS SPECIFIED. SEQUENCE-CHECK
ASSUMED.

This message reflects a system (IOCS) requirement.

729-MODEL NO. ***** ASSIGNED TO FILE ***** NOT
ACCEPTABLE TO LOADER, CHANGED BY COMPILER
TO **4*+_
This message indicates a system restriction. Certain 729
Magnetic Tape Units cannot be used.

***** SHOULD BE FOLLOWED BY A SPACE. SPACE IS
ASSUMED.,
See punctuation.

***** SHOULD NOT BE FOLLOWED BY A SPACE. CON-
DITION IGNORED.
See punctuation.

82

#¥*+ SHOULD NOT BE IN THE A MARGIN. B MARGIN
ASSUMED.
See “Reference Format.”

SIZE OF ***** GIVEN AS 0. COMPILER ASSUMES SIZE
IS 6.
Zero is an illegal size.

SIZE, POINT, SIGNED, OR EDITING CLAUSES IGNORED
IN FAVOR OF PICTURE IN #****
This message indicates that some information has been
duplicated. In this case, the PICTURE clause information
is contrary to similar information specified in another
clause. The PICTURE is correct.

SOURCE-COMPUTER IS IMPROPERLY SPECIFIED. IBM-
7090 ASSUMED.
The hyphen must be specified in “IBM-7090” in the CON-
FIGURATION SECTION of the ENVIRONMENT DIVI-
SION.

x* SPECIFICATION ** REMAINDER OF VALUE
CLAUSE IGNORED.
See the VALUE clause of the file description entry.

***** SPECIFICATION IN ***** CLAUSE NOT AN UN-
SIGNED INTEGER. CLAUSE IGNORED.
See the DATA DIVISION.

¥**** SPECIFICATION IN ***** CLAUSE NOT AN UN-
SIGNED INTEGER. REMAINDER OF CLAUSE RE-
TAINED.

See the DATA DIVISION.

STATEMENT CONTAINS TOO FEW RIGHT PAREN-
THESES. COMPENSATING PARENTHESES ADDED AT
END OF STATEMENT.
The number of right parentheses must equal the number
of left parentheses.

STATEMENT CONTAINS TOO MANY RIGHT PAREN-
THESES. EXTRA PARENTHESES IGNORED.
The number of right parentheses must equal the number
of left parentheses.

STATEMENT REQUIRES A DATA-NAME, LITERAL, OR
FIGURATIVE CONSTANT, NOT ***** AS AN ARGU-
MENT, STATEMENT DELETED.
See the rules regarding the use of the particular verb re-
ferred to in this message.

STATEMENT REQUIRES A PROCEDURE NAME, NOT
**#ixx AS AN ARGUMENT. STATEMENT DELETED.
See the rules regarding the use of the particular verb re-
ferred to in this message.

SUBORGANIZATION OF ITEM ***** WITH OCCURS
CLAUSE CONTAINS A VALUE CLAUSE. VALUE GIVEN
TO FIRST ELEMENT ONLY.
A VALUE clause cannot appear in a description subordi-
nate to one containing an OCCURS clause. See the VALUE
and OCCURS clauses of the data-item description entry.

SUBSCRIPT COUNT EXCEEDS 3. SCAN RESUMED AT
NEXT VERB, PERIOD, OR INFORMATION IN THE A
MARGIN.
Only three levels of subscripting are allowed. See sub-
scripts.

SUBSCRIPT INTEGER MUST NOT EXCEED 32767. IN-
TEGER 1 ASSUMED.
This message indicates that a compiler limitation has been
exceeded.

SUBSCRIPT MISSING AFTER LEFT PARENTHESIS.
SCAN RESUMED AT NEXT VERB, PERIOD, OR INFOR-
MATION IN THE A MARGIN.

Information has been omitted.

SYNCHRONIZED ITEM ***** HAS REDEFINES CLAUSE.
STORAGE ASSIGNMENT MIGHT NOT BEGIN WITH THE
FIRST CHARACTER POSITION OF THE REDEFINED
AREA. CONDITION IGNORED.
This message indicates the characteristics of the REDE-
FINES clause take priority.

SYSIDR ACCOUNTING ROUTINE ERROR.
Contact your systems engineer whenever this message
occurs.

Eammmasssser ¥ /Ao

{TSX) —***** 1.(SKEL)
Consult your systems engineer concerning APAR procedure
whenever this message occurs. It is always accompanied

by the MACHINE OR COMPILER ERROR message.

TERMINATION OF LITERAL FORCED AT END OF
CARD.
This message indicates that either a quote mark or a con-
tinnation mark has been omitted. See literals.

TOO FEW OPERANDS IN ADD STATEMENT. STATE-
MENT DELETED.
A minimum of two operands is allowed in an ADD state-
ment.

TOO FEW SUBSCRIPTS GIVEN FOR ***** COMPILER
ASSUMES MISSING LEFTMOST SUBCRIPTS TO BE 1.
See subscripting.

TRANSFER BYPASSED BECAUSE ***** 1S NOT A STATE-
MENT OR SECTION NAME.
Self-explanatory.

91 PERMANENT READ REDUNDANCIES ON SYSTEM
INPUT UNIT. COMPILATION TERMINATED.
This message indicates 21 card read errors. Compilation
is terminated and a dump is taken.

UNIDENTIFIABLE WORD ***** IN DATA DESCRIPTION.
WORD OR CLAUSE IGNORED.
This message indicates a program error. See the DATA
DIVISION.

TY WAIIRT)
T2 WORD

¥
L
9
Ll
9
El
9
4
4
4
4
4

MNEMONIC-NAME ‘SYSOU1.” SYSOU1 ASSUMED.
SYSOU1 is the only unit permitted for DISPLAY state-
ments.

UPSCALE MAY CAUSE HIGH ORDER TRUNCATION FOR
STORE INTQ *****,
High-order truncation may occur because of decimal point
alignment in a receiving area that is too small. An error
will probably result from this operation.

‘USE’ NOT PRECEDED BY SECTION-NAME.
See the rules regarding the USE verb in the declaratives
section of the PROCEDURE DIVISION.

#+2x% USED AS A SUBSCRIPT HAS AN ALPHANUMERIC
PICTURE, BUT VALUES MUST BE RESTRICTED TO
INTEGERS.

See subscripts.

sxxx¢ [JSED AS A SUBSCRIPT HAS AN ALPHABETIC
PICTURE. INVALID SUBSCRIPT. OBJECT PROGRAM
USES SUBSCRIPT VALUE OF 1.

See subscripts.

*++¢+ USED AS SUBSCRIPT IS A SIGNED EXTERNAL

DECIMAL ITEM. NEGATIVE VALUES CAUSE ERRORS.
Subscripts must have positive integer values. See sub-
scripts.

*++++ USED AS A SUBSCRIPT IS IN BCD. OBJECT-TIME
CONVERSION AND/OR UNPACKING IS REQUIRED FOR
SUBSCRIPTS NOT COMPUTATIONAL, SYNCHRONIZED
RIGHT.
In most cases computational, synchronized right items are
more efficient as subscripts.

*xx+% JSED AS A SUBSCRIPT. IS INVALID DUE TO NON-
ZERO SCALING. OBJECT PROGRAM USES SUBSCRIPT
VALUE OF 1.

Subscripts must be positive integers. See subscripts.

*xxx% JSED AS A SUBSCRIPT. IS NOT SYNCHRONIZED
RIGHT. OBJECT-TIME UNPACKING 1S REQUIRED.
In most cases synchronized right items are more efficient
as subscripts.

s#x++ USED TO CONTROL A GO TO, HAS ILLEGAL
FORMAT. GO TO STATEMENT IGNORED.
See the GO TO DEPENDING ON statement in the PRO-
CEDURE DIVISION.

#++¢+ (JSED TO CONTROL A GO TO, IS NOT AN IN-
TEGER. INTEGER PART USED.
See the GO TO DEPENDING ON statement in the PRO-
CEDURE DIVISION.

‘USING’ MUST BE FOLLOWED BY THE NAME OF A

FIXED-LOCATION DATA-ITEM. STATEMENT DELETED.
See the description of the CALL form of the ENTER
verb.

VALUE CLAUSE OF ITEM ***** [GNORED SINCE IT IS
EITHER REDEFINED, PRECEDED BY A VARIABLE
LENGTH ITEM, OR IS IN THE FILE SECTION.
This message indicates that certain clauses are contradic-
tory. See the VALUE clause of data-item description.

VALUE CLAUSE OMITTED IN FD ENTRY ***** LEGAL
BUT UNUSUAL.
See the VALUE clause of the file description entry.

WARNING. LISTING OF THIS NAME HAS BEEN TERMI-
NATED. PROGRAM IS NOT AFFECTED.
The REF has been used. Because the number of items
cross-referenced exceeds compiler limitations, the REF
list may be incomplete.

#+¥x* WITH REDEFINES CLAUSE NOT IMMEDIATELY
PRECEDED BY THE REDEFINED AREA REDEFINES
IGNOGRED.
The redefining item must follow the redefined item with
no intervening entries, See the REDEFINES clause of the

data-item description entry.

“WITHOUT MUST BE FOLLOWED BY COBOL WORDS
‘COUNT CONTROL’ IN RECORDING CLAUSE. NOTHING
DONE.
See the RECORDING MODE clause of the file description
entry.

WORDING ‘EVERY BEGINNING OF REEL’ PREFERRED
IN RERUN CLAUSE AND IS ASSUMED.

This message indicates obsolete wording. See the I-O-

CONTROL paragraph of the ENVIRONMENT DIVI-

SION.

Norte: If a compilation is terminated and a dump

taken with no error message being printed, a systems
engineer should be notified.

Note: The MAP message LOCATION FIELD FORMAT
£rROR, which refers to the initial save card of the as-
sembly, will be given if a numeric deckname is used
on the siBcec card. If any other MAP message is pro-
duced, a systems engineer should be notified.

COBOL Compiler Compiler Error Messages 83

Appendix A

Reference Format

A coBoL program may be written on coBOL program
sheets. The rules for using the program sheet are
given below.

Contents of Columns

Columns 1-6: These columns may be used for
sequence numbers. The first three columns give the
page number and the next three columns give the line
number. Only numbers, not letters of the alphabet or
special characters, may be used in these columns.
Sequence numbers are optional, but they are checked
if they are present.

Column 7: This column is used only to indicate the
continuation of a word to a new line. A hyphen in
column 7 signifies that the first character on the new
line is to follow the last character on the preceding line
without an intervening space (no other character
may appear in column 7). An alphanumeric literal
(one or more words enclosed in quotation marks) con-
stitutes one cosor word. If the literal is continued
from one line to the next, a hyphen must be put in
column 7 of the new line. Remaining spaces on the
first line are considered to be part of the literal. A
quotation mark must precede the portion of the literal
that is on the new line but leading spaces before the
quotation mark are not considered to be part of the
literal.

Columns 8-72: These columns are used for the pro-
gram. Formats for the entries are given throughout
this publication.

Columns 73-80: These columns are used for identifi-
cation. They may contain any character from the
character set and have no effect on the program.

Margins

Margin A (columns 8-11) and margin B (columns
12-72) are marked on the program sheet. The entries
that must begin in each margin are:

1. The names of divisions must begin at margin A,
followed by a space and the word pivision, followed
by a period. No other information can appear on the
line.

2. The names of sections must begin at margin A,
followed by a space and the word section, followed
by a period.

3. Paragraph names must begin at margin A and be
immediately followed by a period and a space. Suc-
ceeding lines in the paragraph must begin in margin B.

84

4. File description entries must begin in margin A.
Succeeding lines in the file description entry must
begin in margin B.

5. Data-item descriptions may begin in margin A
or B, but a data-name cannot begin before margin B.

Punctuation

The punctuation given in the entry formats in this
publication must be used. The following list gives
the rules for punctuation.

1. A period or comma must immediately follow a
word and must be followed immediately by a space.
A period must follow a division-name, a section-name,
a paragraph-name, a complete file description or data-
item description entry, and a complete sentence or
paragraph. The use of commas is optional, they may
be used to separate a series of items.

2. At least one space must appear between two

successive words and/or parenthetical expressions. Two
or more successive spaces are treated as a single
space except in nonnumeric literals.

3. A beginning quotation mark must not be fol-
lowed by a space and an ending quotation mark must
not be preceded by a space, unless the spaces are
desired in a nonnumeric literal. All spaces within the
quotation marks for nonnumeric literals are included
in the literal. Nonnumeric literals and entry-names (in
an ENTER statement) must be enclosed in quotation
marks.

4. Punctuation rules are suspended inside the quo-
tation marks for nonnumeric literals.

5. A left parenthesis must not be immediately fol-
lowed by a space, and a right parenthesis must not
be immediately preceded by a space. Subscripts must
be enclosed in parentheses. Parentheses may be used
to indicate the order of operations.

6. Arithmetic operators (and the equal sign) must
be preceded and followed by a space.

Types of Names
The following types of names can be used in a cosoL
program.

1. data-names: Names assigned to either group or
elementary data-items in data-item description entries.

2. file-names: Names assigned to files in file descrip-
tion entries.

3. condition-names: Names assigned, in data-item
description entries, to a specific value in the range of
values a data-item may assume. Condition-names are
identified by the special level-number 88.

4. switch-status-names: Names assigned to identify
the entry keys. Switch-status-names are assigned in the
ENVIRONMENT DIVISION (SPECIAL-NAMES paragraph) and
may be tested with a switch-status test in the pro-
CEDURE DIVISION.

5. entry-names: Names used with ENTER verbs to
ify entry points of subprograms.

6. paragraph-names: Names assigned to paragraphs
in the PROCEDURE DIVISION.

7. section-names: Names assigned to sections in the
PROCEDURE DIVISION.

8. procedure-names: Paragraph-names and section-
names.

Name Formation

Names consist of a combination of the letters A through
7, the numbers 0 through 9, and the hyphen. The fol-
lowing rules must be followed in forming names.

1. Names must not contain blanks (spaces).

2. They may contain from 1 to 30 characters.

3. They may neither begin nor end with a hyphen,
although hyphens may be used in the name for read-
ability.

4. File-names, data-names, condition-names, entry-
names, and switch-status-names must contain at least
one alphabetic character. Paragraph-names and
section-names may consist entirely of numbers.

5. Names need not be unique if they can be qualified.

Literals

A literal is a word or number that defines itself.
Literals have constant values that do not vary in a
program. Nonnumeric literals must be enclosed in
quotation marks. Numeric literals must not be en-
closed in quotation marks.

Nonnumeric literals may be composed of from
1 to 120 alphanumeric characters (except the quota-
tion mark) counting embedded spaces as characters.

Numeric literals may be composed of from 1 to 18
characters chosen from the digits 0 through 9, the
sign character, and the decimal point. There may be
at most one sign and/or one decimal point. The sign
must appear as the leftmost character (unsigned num-
bers are assumed to be positive) and the decimal point
may appear anywhere except as the rightmost char-
acter.

Floating-point literals are a special type of numeric
literal and are written in the following special floating-
point format. There must be no embedded blanks.

{ t } mantissa E { i_ } exponent

The mantissa may contain from 1 to 16 digits and a
decimal point (except in the rightmost position). The
exponent may be one or two digits and the magnitude
must not exceed 38. Floating-point literals may be
used only in the paTA pivision. All other literals may
be used in the PROCEDURE DIVISION.

Examples of nonnumeric literals are:

“EXAMINE CLOCK NUMBER”

“PAGE 144 MISSING”
“—125.65"

Examples of numeric literals are:

1506789
-1257.6
+258.65
+2.6E—16

Quulifiers

A qualifier is a name preceded by 1~ or oF that is used
to make a subordinate name unique. For example, if
two paragraphs in a program are named PARAGRAPH?,
and one of them is in a section named sEcTioN2 and
the other in a section named SECTIONS, a unique refer-
ence can be made by specifying PARAGRAPH2 IN
SECTION2 or PARAGRAPH2 OF sECTION3. The following
rules must be observed for qualification:

1. Subscripts, conditional variables, condition-
names procedure-names, and data-names may be
made unique by qualification.

9. A fle-name is the highest level qualifier available
for a data-name. A section-name is the only qualifier
available for a paragraph-name. File-names and sec-
tion-names must be unique since they cannot be quali-
fied.

3. Names must appear in ascending order of hier-
archy with either the word 1v or oF separating them.
Enough qualification must be mentioned to make the
name unique.

4. A qualifier must be of a higher level and in the
same hierarchy as the name it is qualifying.

5. The highest level qualifier must be unique.

6. The same name must not appear at two levels in
a hierarchy.

7. Each name in a hierarchy must be unique at its
own level. For example, in one group there cannot
be two elementary items with identical names and
level numbers.

8. Paragraph-names must not be duplicated in the
same section. Paragraph-names need not be qualified
when referred to within the section.

Appendix A 85

9. A data-name cannot be subscripted when it is
being used as a qualifier.

10. A name can be qualified even though it does
not need qualification. The use of more names for
qualification than are required for uniqueness is per-
mitted. If there is more than one combination of quali-
fiers that insures uniqueness, any set can be used.

Subscripts

A subscript is a value that locates a particular item
in a set of repeated items. For example, if the clause
OCCURS 5 TIMES is used in the data-item description
of an item named NUMBER, the third occurrence could
be referred to as NUMBER (3).

The following rules apply to the use of subscripts:

1. The subscript may be represented by a literal
that is a positive integer, or by a data-name that has
a positive integral value, or by the special register
TALLY.

2. Subscripts are enclosed in parentheses and sep-
arated by commas.

3. If sets of repeated items are nested, the use of
multiple subscripts to refer to a particular item is
permitted.

4. A maximum of three levels of subscripts is per-
mitted.

5. Multilevel subscripts are written from left to
right in the order: major, intermediate, minor. A sub-
script value of 1 denotes the first element of a list,
a value of 2 refers to the second element of the list,
etc. A subscript with the value (1, 2) refers to the
second element within the first set of repeated ele-
ments. The last item in a nested set of repeated items
with the major element appearing ten times, the inter-
mediate element appearing five times in each major
element, and the minor element appearing three times
in each intermediate element, has the subscript value
(10, 5, 3).

6. The name of the minor element in a nested set
of items is the one subscripted.

7. If a data-item is repeated, that is, described with
an occurs clause or is a subdivision of an item de-
scribed with an occues clause, it must be subscripted
when it is used.

8. A data-name can be subscripted only if there is
an occurs clause in its data-item description or in the
description of a group item to which it belongs.

9. If a data-item is described as occurs positive-
integer TIMES DEPENDING ON data-name, the number
of repetitions is determined by the value of data-
name at the time reference is made to the repeated
item. Data-name cannot have a negative or zero value
at this time.

86

10. The same data-name can be used as a subscript
for different items.

11. A data-name must not be subscripted when:

a. it is being used as a subscript.
b. it is being used as a qualifier.
c. itis in the pDATA DIVISION.

There are several correct ways of expressing sub-
scripted data-names. For example, if a data-item
named A occurs five times and contains a data item
named B that occurs four times in each A, and each B,
in turn, contains a data-item C that occurs twice in
each B, then the following expressions are all correct
references to the last C, that is, to the second C in the
fourth B in the fifth A:

CINBINA (5,4,2)
CINB (5,4,2)

CINA(54,2)
C(5,4,2)

The following forms of expressions are incorrect:
C(5,4,2)INBINA
C(2)INB (4)INA(5)

C(4,2)INA (5)
C(2)INB(5,4)

Figurative Constants

A figurative constant is a value with a preassigned
fixed data-name. It is not enclosed in quotation marks.
The fixed data-names and their meanings are given
below. The singular and plural forms may be used
interchangeably.

ZERO Represent one or more zeros (0).

ZEROS

ZEROES

SPACE Represent one or more blanks or spaces.
SPACES

HIGH-VALUE Usually represent one or more 9’s, the

HIGH-VALUES highest value in the commercial collating
sequence; but represent one or more left
parentheses if the scientific (binary) collat-
ing sequence has been specified by the

option BINSEQ on the $IBCBC control card.

LOW-VALUE Usually represent one or more blanks or
LOW-VALUES spaces, the lowest value in the commercial
collating sequence; but represent one or
more zeros if the scientific (binary) collating
sequence has been specified by the option
BINSEQ on the $IBCBC control card.
QUOTE Represent the quotation character ’. Note
QUOTES that the use of the figurative constant

QUOTE to represent the character * is not
equivalent to the use of the symbol ’ to
bound a literal.

Represents one or more occurrences of
‘literal.” “Literal’ represents a single charac-
ter nonnumeric literal and must be enclosed
in quotation marks. An alternate form of
‘literal is any figurative constant except ALL,
e.g., ALL SPACES.

ZERO (ZEROS, ZEROES) is the only figurative constant
that may be used with a compuTaTIONAL data-item. All

ALL ‘literal’

of the figurative constants may be used with pisPLAY
data-items.

The following examples show uses of figurative con-
stants:

1. MOVE ALL ‘4 TO COUNT-FIELD, where COUNT-FIELD
has been described as having 6 characters, results in
444444,

9. MOVE SPACES TO TITLE-BOUNDARY results in the
item TITLE-BOUNDARY being filled with spaces.

3. The statement DISPLAY QUOTE, ‘NAME, QUOTE re-
sults in the word ‘NamE displayed on the DISPLAY
device.

4. MOVE QUOTE TO AREA-A, where AREA-A has been
described as having five characters, results in """’

Organization of Source Program

The following is a list of the items that may appear in a
source program. Some of the items are required; others
are optional. This may be checked in the discussion
of the individual entries. The sequence of entries given
here is recommended; the division must appear as
shown.

IDENTIFICATION DIVISION.
PROGRAM-ID.

AUTHOR.

INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

REMARKS.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.

DATA DIVISION.
FILE SECTION.
FD file-name-1
01 data-name
02 data-name
03 data-name
88 condition-name

02 data-name

01 data-name

FD file-name-n

WORKING-STORAGE SECTION.
77 data-name
88 condition-name

77 data-name
01 data-name
02 data-name
03 data-name
88 condition-name

02 data-name
01 data-name

CONSTANT SECTION.
77 data-name

77 data-name
01 data-name
02 data-name
03 data-name
02 data-name
01 data-name

PROCEDURE DIVISION.
DECLARATIVES.
section-name-1 SECTION.
paragraph-name-1.

paragraph-name-n.

section-name-n SECTION.

END DECLARATIVES.
section-name-1 SECTION.
paragraph-name-1.

paragraph-name-n.

section-name-n + m SECTION.

Appendix A

87

Appendix B

Standard Label Format

In a coBoL program, the vaLuE clause of the file de-
scription entry is the only means of referring to the
label area. An example of modifying a label using a
MAP program is given in Part 11 of this publication.

Format of the IBM Standard 84-Character
Header Label

01 STANDARD-HEADER-LABEL USAGE IS DISPLAY.
02 LABEL-IDENTIFIER PICTURE X(6).

88 HEADER VALUE ‘1HDR’.

02 FILLER PICTURE X.

02 REEL-SERIAL-NUMBER PICTURE X(5).

02 FILLER PICTURE X.

02 FILE-SERIAL-NUMBER PICTURE X(5).

02 FILLER PICTURE X.

02 REEL-SEQUENCE-NUMBER PICTURE X(4).
02 CREATION_DATE

Ve LNEA JION-JALL.

03 YEAR PICTURE 99.

03 FILLER PICTURE X.

03 DAY PICTURE 999.

02 FILLER PICTURE X(3).

02 RETENTION-DAYS PICTURE 9(3).

02 FILLER PICTURE X.

02 FILE-DENSITY PICTURE 9.

02 FILE-MODE PICTURE 9.

02 CHECK-SUM-INDICATOR PICTURE 9.
02 BLOCK-SEQUENCE-INDICATOR PICTURE 9.
02 CHECKPOINT-INDICATOR PICTURE 9.
02 FILE-IDENTIFICATION PICTURE X(18).
02 SORT-RESERVED PCTURE X(12).

02 OPTIONAL PICTURE X(12).

Format of the IBM Standard 84-Character
Trailer Label

01 STANDARD-TRAILER-LABEL USAGE IS DISPLAY.
02 LABEL-IDENTIFIER PICTURE IS X(6).
88 END-OF-REEL VALUE IS ‘1EOR’.

88 END-OF-FILE VALUE IS ‘1EQOF.

02 FILLER PICTURE X.

02 BLOCK-COUNT PICTURE 9(5).

02 FILLER PICTURE X.

02 UNIT-CONTROL-WORD PICTURE 9(5).
02 OPTIONAL PICTURE X(66).

88

Format of Required Label on Blank Reels

01 AVAILABLE-REEL USAGE IS DISPLAY.
02 LABEL-IDENTIFIER PICTURE X(6).

88 BLANK-TAPE VALUE IS ‘1BLANK’.

02 FILLER PICTURE X.

02 REEL-SERIAL-NUMBER PICTURE X(5).
02 OPTIONAL PICTURE X(72).

IBM COBOL Character Set

The complete 18BM coBoL character set consists of the
following 48 characters:

0-9 Numbers

A-Z Letters of the alphabet
Blank or space

Plus sign

Minus sign or hyphen
Asterisk

Stroke (virgule or slash)
Equal sign

Dollar sign

Comma

Period or decimal point
Quotation mark

Left parenthesis

) Right parenthesis

R T IS

ve

Collating Sequence

The two permissible collating sequences, in order with
the lowest values at the top of the columns, are:

7090/94 COMMERCIAL
0 through 9 blank or space
’)orp
+ or &
+ $
A through I *
+ -—
0 /
) (:)r %
- =or #
J through R or @
= +
0 0
f A through I
blank or space 0
/ J through R
S through Z =+
=+ S through Z
, 0 through 9

(
The comnercial collating sequence is used by the
compiler unless the 7090/7094 collating sequence is
specified by placing BiNsSEQ on the s1BCcBC control card.

MAP BCD Character Code and IBM Punched
Card Code

The map Bcp character code is shown in octal form
in the following table with the corresponding 1BM
punched card code.

CHARACTER BCD CODE (OCTAL) CARD CODE
(blank) 60 (blank)

0 00 0

1 01 1

2 02 2

3 03 3

4 04 4

5 05 5

6 06 6

7 o7 7

8 10 8

9 11 9

A 21 12-1

B 22 12-2
C 23 12-3
D 24 12-4
E 25 12-5

F 26 12-6
G 27 12-7
H 30 12-8

1 31 12-9

] 41 11-1

K 42 11-2

L 43 11-3
M 44 11-4
N 45 11-5
(0] 46 11-6

P 47 11-7
Q 50 11-8
R 51 11-9

S 62 0-2
T 63 0-3
U 64 0-4
A% 65 0-5
w 66 0-6
X 67 0-7

Y 70 0-8

Z 71 0-9
+ (plus) 20 12

— (minus) 40 11

/ (slash) 61 0-1
’(apostrophe) 14 8-4

. (period) 33 12-8-3
) (right parenthesis) 34 12-8-4
$ (dollar sign) 53 11-8-3
* (asterisk) 54 11-8-4
, (comma) 73 0-8-3
((left parenthesis) 74 0-8-4

Alphanumeric Characters Corresponding to
Digits with a Sign Overpunch

RIGHTMOST CHARACTER AND SIGN
+0

ALPHANUMERIC CHARACTER

[
—
HOMWOZZINRT | "mORETQOW R

-9
NOTE: All NUMERIC DISPLAY data-items and negative
NUMERIC COMPUTATIONAL data-items are displayed with
the sign indicated as an overpunch in the rightmost character
position.

Complete List of IBM 7090/7094 COBOL Words

The words listed in this section constitute the complete
BM 7090/7094 coBoL vocabulary. These words are
pre-empted and may not be used in a coBoL program
except as specified in the manual.

Many words are given in both singular and plural
form. This is for the convenience of the source pro-
grammer. The compiler recognizes and accepts either
form.

ACCEPT AND
ADD APPLY
AFTER ARE

ALL ASSIGN
ALPHABETIC AT
ALPHANUMERIC AUTHOR
ALTER BCD

AN BEFORE

Appendix B 89

BEGINNING
BINARY
BLANK
BLOCK

BY

CALL
CARD-PUNCH
CARD-READER
CHARACTER
CHECK*
CHARACTERS
CHECKPOINT-UNIT
CHECK-SUM

CLASS

CLOSE

COBOL
COLLATE-COMMERCIAL*
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTE
CONFIGURATION
CONSTANT
CONTAINS
CONTROL
CORRESPONDING
COUNT

DATA
DATE-COMPILED
DATE-WRITTEN
DECLARATIVES
DENSITY
DEPENDING
DIGIT

DIGITS

DISPLAY
DIVIDE
DIVISION
DOLLAR¥*

ELSE
END

ENDING*
ENTER

ENTRY
ENVIRONMENT
EQUAL
EQUALS

ERROR

EVERY
EXAMINE
EXCEEDS

*This word is not described in this publication but, nevertheless, is pre-
empted and should not be used in a 7090/7094 COBOL program.

90

EXIT
EXPONENTIATED*

FD

FILE

FILES

FILE-CONTROL
FILE-IDENTIFICATION
FILE-SERIAL-NUMBER
FILLER

FIRST

FLOAT*

FOR

FROM

GIVING
GO
GREATER

HIGH
HIGH-VALUE
HIGH-VALUES
HYPERTAPE

IBM-7090
IBM-7094
IBM7090 *
IBM7094 *

D
IDENTIFICATION
IF

IN

INPUT
INPUT-OUTPUT
INSTALLATION
INTO
I-O-CONTROL

1S

KEY

LABEL
LEADING
LEAVING *
LEFT

LESS
LINKAGE-MODE
LOCATION
LOCK

LOW
LOW-VALUE
LOW-VALUES

MINUS *
MODE
MOVE

MULTIPLE
MULTIPLY
NEGATIVE
NEXT

NO

NONE

NOT

NOTE
NUMERIC

OBJECT-COMPUTER
OCCURS

OF

OFF
OMITTED
ON

OPEN
OPTIONAL *
OR
OTHERWISE
OUTPUT

PERFORM
PICTURE
PLACE
PLACES
PLUS *
POINT
POSITIVE
PRINTER
PROCEDURE
PROCEED
PROGRAM-ID
PROTECT *
PROVIDE

QUOTE
QUOTES

READ

RECEIVE

RECORD

RECORDING
RECORDS
REDEFINES

REEL
REEL-SEQUENCE-NUMBER
REMARKS
RENAMING
REPLACING

RERUN
RETENTION-PERIOD
RETURN
RETURNING
REWIND

RIGHT

ROUNDED
RUN

SECTION
SECURITY

SELECT

SENTENCE
SEQUENCE-CHECK
SIGN

SIGNED

SIZE
SOURCE-COMPUTER
SPACE

SPACES
SPECIAL-NAME
STANDARD
STATUS

STOP

SUBTRACT
SYNCHRONIZED
SYSIN1

SYSOU1

TALLY
TALLYING
TAPE-UNIT
TAPE-UNITS
THAN
THEN
THROUGH
THRU
TIME
TIMES

TO

}equivalent

UNEQUAL
UNTIL
UPPER-BOUND¥
UPPER-BOUNDS*
UPON

USAGE

USE

USING

VALUE
VARYING
VIA

WHEN

WITH

WITHOUT
‘WORKING-STORAGE
‘WRITE

ZERO
ZEROES
ZEROS

The following list contains definitions of terms as used
in this publication.

AvLpPHABETIC DATA
A combination of the space and the 26 characters of the
alphabet.

ALPHANUMERIC DATA
A combination of the characters in the COBOL character set
shown in “Appendix B.”

BCD (Binary CopeEp DECIMAL)

A code composed of 0’s and 1’s used for representing alpha-
numeric data in core storage. Each character in the COBOL
character set can be coded as a combination of six 0’s and 1’s.
The octal representation of the BCD character is given in
“Appendix B.” For further information, see “Computer Data
and Instructions,” in the publication IBM 7040 and 7044
Data Processing Systems, Student Text, Form C22-6732.

BIiNARY

A code in which numbers are represented to the base 2. Num-
bers used for computations are stored in the computer in binary
form. One binary bit is used for each digit of a binary number
and one bit is used for the sign. In the computer, a multiple of
six bits is always used with the sign as the leftmost bit. Thus,
the number +13 is coded as 001101 and the number —13 is
coded as 101101. Numeric computational items (binary num-
bers) that are synchronized right are stored in computer
words by themselves with the sign bit in the leftmost bit of
the computer word. For example, the number —13 is stored as
100000000000000000000000000000001101. For further infor-
mation see “Computer Data and Instructions,” in the publi-
cation IBM 7040 and 7044 Data Processing Sysiems, Student
Text, Form C22-6732.

Brock
A physical record.

Brocking FacTor
Number of logical records in a physical record.

BLock SEQUENCE NUMBER
The number of the block in each reel of the file; that is, the
first block on the reel, the second block on the reel, etc. This
number can be put in a block sequence word appended to
each block on a file recorded in binary mode.

BooLEAN OPERATORS
The logical operators AND, OR, and NOT.

BUFFER

An area of core storage reserved by the input-output system
for storage of blocks of logical records. A buffer area for
input files is used to store logical records after the input-output
system has read them from tape, but before they are re-
quested in the program. A buffer area for output files holds
processed logical records until a block is complete and the
records can be written on magnetic tape. For further infor-
mation, see the publication IBM 7090/7094 IBSYS Operating
System, Input/Output Control System, Form C28-6345.

Byte (7090/7094)
Six binary bits.

CHECKPOINT
A reference point taken during execution of a program. The
tape positions, the status of machine registers and switches,
and the contents of core storage are recorded for the purpose
of later restarting the program.

Glossary

CHECKSUM

Used to check whether data has been transmitted accurately.
It is formed by computing the logical sum of the data in the
block, excluding the block sequence word, and logically
adding the left and right halves of the word. This computation
is performed for input files and checked for output files by
the input-output system. The checksum is recorded in the
block sequence word that may be appended to the end of
each block on a file recorded in binary mode.

COBOL Words
Words that are pre-empted and may be used only as speci-
fied in this publication. A complete list of these words is
given in “Appendix B.”

CompiLE TIME
The time when the user’s program is compiled.

CompLEX NUMBER
A number of the form x + iy wherei = V —1.

CompuTER CHARACTER (7090/7094)
One sixth of a computer word. Each computer character is
composed of six binary bits, each of which can be on (coded
as 1) or off (coded as 0).

One BCD character can be stored in one computer char-
acter; six BCD characters can be stored in one computer
word. A binary number that can be converted to 10 decimal
digits can be stored in one computer word.

CoMpPUTER WORD
The basic unit of logic in 7090/7094 computers. Each com-
puter word is composed of 36 binary bits. All computations
are performed with computer words.

ConpiTioN NAME
Name assigned to one value in the range of values a condi-
tional variable may assume. Condition-names are identified
by the special level-number 88.

ConpITIONAL EXPRESSIONS
An expression that can be either true or faise. For example,
A IS GREATER THAN B is a conditional expression since
it is true or false depending on the values of A and B when
the expression is evaluated.

CONDITIONAL STATEMENT
A statement in the PROCEDURE DIVISION containing a
conditional expression to be evaluated.

CONNECTIVES
The words, AND, OR, THEN, and/or a comma used to form
compound conditional statements. The words OF and IN used
to denote qualification.

CoNTROL SECTION
An area of coding, identified by an external name, that is
accessible to other segments of a program. Control sections
can be replaced with coding in other program segments or
can be deleted. Control section names given in a debug re-
quest (name on the $IBDBC control card) permit the dele-
tion of the debug request at load time.

CoRE-STORAGE Dump
The contents of core storage written on an external unit.

Data-NaMe
Name assigned to identify an area of core storage that is
filled with data when the program is executed. The value of
the data stored in an area identified by a data-name may vary
during the program.

Glossary 91

DEerFINING NAME
The name following the level-number in the data-item de-
scription or the level indicator FD in the file description.
Defining names must not be subscripted or qualified.

DeNsiTY
The number of characters that can be written on a given
area of tape; the more characters that can be written, the
higher the density. Tapes may be recorded in either HIGH
or LOW density.

DrrrFeriNG LENGTH RECORDS
Different record types; that is, more than one record-name
in the DATA RECORDS clause of the file description entry.

Dump
See core-storage dump.

ELEMENTARY ITEM
A data-item that contains no subdivisions.

EnTRY KEYS
Switches on the console of the computer that can be set on
or off by the machine operator. They may be tested with a
switch-status test in a COBOL program.

ExTERNAL DECIMAL
An elementary data-item described as NUMERIC DISPLAY;
that is, a BCD number.

FicuraTive CONSTANT
Value with a preassigned fixed data-name. Figurative con-
stants are: ZEROI[E][S], SPACE[S], HIGH-VALUEI[S],
LOW-VALUE[S], QUOTE[S], ALL. Rules for figurative
constants are given in “Appendix A.”

FiLE
A collection of related logical records. A file may contain one
or more types of logical records.

FiLe ConTROL BLOCK
An area of core storage containing the information about a
file that is provided in the file description entry and the
FILE-CONTROL paragraph.

Fixep-LencTH RECORDS
Logical records whose length is specified in the DATA DIVI-
SION, not determined when the program is executed.

Fixep-PoinT NUMBER
A number whose USAGE is COMPUTATIONAL or DIS-
PLAY (not COMPUTATIONAL-1 or COMPUTATIONAL-2).

FroATING-POINT NUMBER
A number of the external form a * 10% used for computations
(described as USAGE IS COMPUTATIONAL-1 or COM-
PUTATIONAL-2) where a and b are to the base 10. Inter-
nally, the numbers are stored in the form ¢ * 2¢ where ¢ and
d are binary numbers.

Group ITEM
A data-item that contains subdivisions.

HeaDeR LABEL
A label record that is at the beginning of each reel of tape
for a file. The format of the IBM standard 84-character
header label is given in “Appendix B.”

IBJOB PrOCESSOR
A major subsystem of the 7090/7094 IBSYS Operating Sys-
tem. The COBOL compiler is a component of the IBJOB
Processor.

IMPERATIVE STATEMENT
A statement in the PROCEDURE DIVISION consisting of a
COBOL verb and its operands. Imperative statements do not
contain any conditional expressions to be evaluated; they
are commands.

INDEPENDENT ITEM
A data-item described in the WORKING-STORAGE or
CONSTANT SECTION that is not related to other items in
the section. Independent items are identified by the special
level-number 77.

92

INSERTION CHARACTERS
Editing characters to be placed in a number that is moved to
a data-item described with the report form of a PICTURE
clause. Insertion characters are: $ — + , . CR DB 0 B.

INsErTION POINT
The paragraph-name or section-name (location on the
$IBDBC control card) in the program where debug state-
ments are to be executed. Although debug requests are written
in a debugging package placed at the end of the program,
they are executed as if they were placed in the program
following the insertion point.

INTERNAL DECIMAL
An elementary data-item described as NUMERIC COMPU-
TATIONAL; that is, a binary number.

I0CS (Inpur/OutPUur CONTROL SYSTEM)
An object-time subroutine that controls data transmittal be-
tween storage and external storage devices.

Key Worps
See COBOL Words.

LaBEL
A record that identifies a file. The standard label format is
given in “Appendix B.” For further information, see the pub-
lication IBM 7090/7094 IBSYS Operating System, Input/
Output Control System, Form C28-6345.

LitERAL
A word or number that defines itself. The value of the literal
is a constant and does not vary in the program. The rules for
using literals are given in “Appendix A.”

LocicaL CONNECTIVES
The words AND and OR. For example, A AND B means
“both A and B,” A OR B means “either A or B.”

Locicar Recorp
An organized grouping of one or more data-items. The organi-
zation is shown by level-numbers in the data-item description
entries.

Loorp
A series of statements that are to be executed repeatedly, as
under the control of a PERFORM statement.

NumMEeric DaTa
Composed of a combination of the decimal point, the plus or
minus signs, and the numbers 0 through 9.

OsjecT PROGRAM
A program translated into machine language. This is output
from a compilation. It can be loaded into core storage and
executed.

OejecT TIME
The time when the user’s program is executed.

OctaL NUMBER
A number represented to the base 8. Octal numbers are a
convenient form for writing binary numbers. Each group of
three binary digits can be represented as one octal digit as
follows:

BINARY NUMBER

000
001
010
011
100
101
110
111

OpTiONAL WORDS
Words used to improve the readability of the COBOL lan-
guage. These are upper case, not underlined, words in the
formats. Omission of these words is permissible, but misspell-
ing or replacing them by another word constitutes an error.

OCTAL EQUIVALENT

N U WO

PARAGRAPH
A group of sentences that conveys one idea or procedure.
Paragraphs are used in the PROCEDURE DIVISION and
must be given paragraph-names.

PuysicaL REcorp
Data stored between two interrecord gaps on an external
device. A physical record contains one or more logical records.

PROCEDURE-NAME
Paragraph-name or section-name.

PROCEDURE STATEMENT
A conditional or imperative statement.

QUALIFIER
A name preceded by IN or OF that is used to
ati

make a sub-
on

ordinate name unigue. The rules for qualif are given
in “Appendix A.”
Recorp

See logical record and physical record.

RECORDING MODE
The code, BCD or binary, in which information is recorded
when it is stored on magnetic tape.

RePLACEMENT CHARACTERS
Editing characters that replace nonsignificant zeros in a
number that is moved to a data-item described with the
report form of a PICTURE clause. Replacement characters
are the floating $, —, and + signs.

ReRruUN
See Restart.

ReservEp WORDS

Words that have special meaning to the compiler and can
be used only as specified. See COBOL Words.

RESTART
To resume execution of a program from a reference point
established by taking a checkpoint. For further information,
see the publication IBM 7090/7094 IBSYS Operating Sys-
tem, Operator’s Guide, Form C28-6355.

SaMmE LeENcTH RECORDS
Records of the same type; that is, one record-name in the
DATA RECORDS clause.

ScaLING
1. Automatic process of effectively handling decimal places
in arithmetic computations.
2. Indicating the position of an assumed decimal point for a
data-item when the point is not within the item. This is
done with a P in the PICTURE clause.

Scavring Factor
Number of decimal places in an item.

ScienTIFic DEciMaL
A report item of the form a * 10® where a and b are num-
bers to the base 10. Scientific decimal items are ALPHA-
NUMERIC DISPLAY.

SECTION
A group of paragraphs. Sections must be given section-names.

SENTENCE
One or more procedure statements (possibly separated by a
connective) terminated by a period.

SysteM UnNrt
An input-output device that is named according to its function
under the 7090/7094 IBSYS Operating System.

TaLrLy
A preassigned data-name for a special register (SIZE IS 5
COMPUTATIONAL DIGITS SYNCHRONIZED RIGHT)
used to hold intermediate results during a program.

TrAILER LABEL
A label record that is the last logical record on each reel of
tape for a file. The format for the standard 84-character
trailer label is given in “Appendix B.”

TRUNCATION
1. The elimination of leading and/or trailing digits from a
number (aligned by a decimal point) that is too large to
fit in the space reserved for it.
9. The elimination of trailing characters from a word that is
too large to fit in the space reserved for it.

UNPACKING
Putting a data-item in a computer word by itself.

VARIABLE LENGTH
Organization containing an OCCURS DEPENDING ON
clause.

VARiABLE-LENGTH RECORDS
Records whose size is not determined until the program is
executed; that is, those containing an OCCURS DEPEND-
ING ON clause in the data-item description entry.

Worbp
See computer word.

Glossary 93

Index

ACCEPT 32, 35
Actual Decimal Point 20
ADD 32, 39
ADD CORRESPONDING 39
Alignment 39
ALL 23, 85
Alphabetic 91
ALPHABETIC 21, 49
AlphabeticForm 19
ALPHANUMERIC 21
Alphanumeric 91
Alphanumeric Form 19
Alphanumeric literals 85
ALTER 32, 43
AN 21
APPLY 14
ATTayS .. 58
Arithmetic 38
Arithmetic Verbs 38
ASSIGN TO 11,12
Assumed Decimal Point, 20, 22
AT END ... 34
AUTHOR 9
BCD . . 91
BCD/Character Code 88
Binary 91
BLANK .. 17
BLANK WHEN ZERO 22
Block 91
BLOCK CONTAINS 24, 25, 27
Block Sequence Number 13,91
Block Size 63
Blocking 60
Blocking Factor 91
Boolean Operators 91
Buffer 26, 35, 91
Byte 91
CardCode 88
CALL .. 47
Card Number 73
SCBEND 71
Character Code &3
Character Set 88
Characters 63, 91
Checklist 64
Checkpoints 13, 34, 35, 91
Checksum 13,91
CLASS ... L. 17,21
Class Testo . 32,49
CLOSE 32, 35, 36, 37
COBOL Words 90, 91
Code 18
Collating Sequence 48, 86, 88
Columns 84
Compilation 68
Compile Time9
Compiler Directing Verbs 46
Compiler Limitations 63
Compound Conditions 49
Complex Numbers 52, 91
COMPUTE 32, 38
Computer Character 91
Computer Word 91
Conditional Expressions 47,63, 91

94

Conditional Statements 32, 33, 91
Conditional Variable 49
Conditional Variable Test 32
Condition-Name 17, 29, 49, 85, 91
CONFIGURATION SECTION 10
Connectives 91
CONSTANT SECTION 16, 30, 31
Continuation 84
Control Cards 67
Control Section 91
Core-Storage Dump 91
CORRESPONDING 52
Count-Conditional Statement 71
COUNT CONTROL 25
DATA DIVISION 16
Data-Item Description B 16, 24, 29, 30
Data Manipulation Verbs 40
Data-Names 17, 84, 91
DATA RECORDS 24, 27
Data Types 51
DATE-COMPILED 9
DATE-WRITTEN 9
Deblocking 60
Debugging 71
Decimal Point 20, 22
Declaratives 32, 56
Defining Name 92
DENSITY 25
Density 92
Differing Length Records 92
DISPLAY 32, 38, 63, 88
DIVIDE 32, 40
Double-Precision 51,52
Dump 56, 91, 92
Editing 19, 41
Efficiency 64
Elementary Item 16, 17, 18, 92
ENTER 32, 47,51, 63
Entries 87
Entry Keys 11, 49, 92
Entry-Name 47, 63, 85
ENTRY POINT 47
ENVIRONMENT DIVISION 10
Error Checking 57
Error Level 73
Error Messages 73
Error Procedure 56
Error Recovery 33
EXAMINE 32, 42
SEXECUTE i . 67
EXIT . 32, 46
External Decimal 92
External Names 33,73
FD 24
Figurative Constants 23, 86, 92
File ... 16, 92
FILE-CONTROL 10, 11, 27
File Control Block 92
$FILE Control Card 13,14
File Description 16,24
FILE-IDENTIFICATION 29
File-Name 24, 84
FILE SECTION 16, 24, 29

FILE-SERIAL-NUMBER 29

Fileso 63
FILLER ... 17
Fixed-Length-Records 25, 28, 92
Fixed-Point 51
Fixed-Point Number 92
Floating-Point 52, 92
Floating-Point Literals 85
Formulas 38, 63
FORTRAN-ACCESS 51
FORTRAN IV . 51,54
FORTRAN 1V Library Subroutines 51
GO TO .. 32, 42
Group Item 16, 17,92
Header Label 34, 88, 92
HIGH DENSITY 25
HIGH-VALUE 23, 86
Hypertape 12
SIBCBC 69
$IBDBC 71
SIBJOB oo 68
IBJOB Processoruciiniiiiiiiioi.. 67, 92
IBSYS Operating System 67
ID DIVISION 9
Identification 84
IDENTIFICATION DIVISION 9
IF 32, 49, 50
Imperative Statements 32, 92
Implied Clauses 64
Independent Item 17, 30, 92
Input-Output 64
INPUT-OUTPUT SECTION 10,11
Input-Output Verbs 34
Insertion Characters 19, 92
Insertion Point 92
INSTALLATION 9
Internal Decimal 92
Intersystem Units P, 12,13
I-O-CONTROL i 10,13, 14
IOCS . 92
$JOB ..o 68
Key Words, 88, 92
$LABEL Control Card 29
Tabel Procedure 58
Label Processing 33, 57
LABEL RECORDS 27
LABELS 24
Labels 27, 34, 88, 92
Levelof Error 73
Level-Numbers 17,65
Linkage 54
Literal 23, 85, 92
Logical Connectives 49, 92
Logical Records, 16, 17, 25, 29, 34, 92
Loop 92
LOW DENSITY F 25
LOW-VALUE P 23, 86
MAP 54
Margins e 84
Mathematical Subroutines 51
MOVE ..o 32, 40
MOVE CORRESPONDING 32, 40
MULTIPLY 32, 40
Names 63, 64, 84, 85
NEGATIVE .. 48
Nested 50
Nonnumeric Literal 23, 85
Nonstandard Label 28
NOTE 32, 47
NUMERIC 21, 49
Numeric Data 92

Numeric Form 18
Numeric Literal 23, 85
OBJECT-COMPUTER 10,11
Object Program 92
Object Time 92
OCCURS 17, 22, 30, 63, 86
Octal Form 88
Octal Number 92
ON 71
ON SIZE ERROR 38
OPEN 32, 34, 36, 37
Optional Word 92
Order 64, 87
Organization 87
Overpunch, 88
Paragraph-Name 32, 85
Paragraphs 32
Parentheses 38, 49
PERFORM 32, 44, 45, 46, 59
Physical Record 24,93
PICTURE 17,18
POINT . 17
POINT LOCATION 22
POSITIVE 48
Procedure Control Verbs 42
PROCEDURE DIVISION 32
Procedure-Name 32, 85,93
Procedure Statement 93
PROGRAM-ID 9
Program Sheet, 84
PROVIDE 47
Punctuation 8, 84
Qualifiers 85,93
Qualification 18, 25, 40, 85
QUOTE 23, 86
READ 32, 34, 36
RECEIVE 47
Receiving Field 41
Record 3
RECORD CONTAINS 24
Record Mark 20
Record-Name 24
Record Size 63
RECORDING MODE 24, 25, 27
Recording Mode

REDEFINES 17, 18, 30, 59
Redundant Clauses

REEL-SEQUENCE-NUMBER 29
Reference Format 84
Relation Test 32, 48
REMARKS 9
RENAMING 12
Replacement Characters 19,93
REPLACING 42
Report Form 19
RERUN ... 14
Rerun 93
Reserved Words 93
Restart L 93
RETENTION PERIOD 29
RETURN . .. 47
ROUNDED 38
Same Length Records 93
Scaling 93
Scaling Factor 93
Scientific Decimal 20, 93
Section 32,93
Section-Name 32, 85
SECURITY 9
SELECT 11,12
Sentences 32,93
Sequence Numbers 84

Sign ... 48

Sign Overpunch 88
Sign Test 32, 48
SIGNED 17, 22
Simple Conditions 48
Single-Precision 51, 52
SiZe . 48, 63, 65
SIZE . oo 17, 20, 21
SOURCE-COMPUTER 10
Source Field 41
Source Program 87
SPACE 23, 86
SPECIAL-NAMES 10,11, 49
Standard Label 27, 33,34
Statements 32
STOP 32, 47
Subprograms 54
Subscripts 22, 44, 58, 63, 64, 86, 93
SUBTRACT i, 32, 40
SUBTRACT CORRESPONDING 32,40
Suppression Characters 19
Switch-Status Names 11, 49, 85
Switch-Status Test 32
Symbolic Units e 12
SYNCHRONIZED 17, 22, 26, 64

96

SYSINI ... 35
SYSOUL 38
System Units 13,93
TALLY 23, 38, 39, 93
TALLYING 42
Tests 47
THEN .. 32
Trailer Label 34, 88, 93
Truncation 41,93
Types of Data 51
Unit Record Equipment 12
Unlabeled Files 35
Unpacking 93
USAGE 17,21
USE 32, 33, 56
USING .. 47
VALUE 17,24, 29
VALUE Clause 65
Variable Length 22, 93
Variable-Length Record 25, 28, 93
Word 91, 93
WORKING-STORAGE SECTION 16, 30, 31
WRITE 32, 35, 37
ZERO 23, 48, 86

C28-6391-0

LBV

®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

'V'S'N Ul pajunig

0-16€9-82D

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	xBack

