

~~ General Information Manual
iii

709·7090 Data Processing System

MINOR REVISION (August, 1960)
This edition, Form D22-6508-2, is a minor revISIon of the pre­
ceding edition but does not obsolete Form D22-6508-1. The
principal change in this edition is the addition of a section on
1401 operation on page 31.

© 1959, 1960 by Internatio.nal Business Machines Corporation

INTRODUCTION

Binary Notation
Octal Notation
Magnetic Cores

CENTRAL PROCESSING UNIT

Stored Program .
Assembly Programs .
Computer Operations
Information Paths
Indexing and Indirect Addressing
Sample Problems .
Operator's Consoles. .

INPUT-OUTPUT COMPONENTS •

Magnetic Tape Storage.
Auxiliary Equipment .
Data Synchronizer
IBM 755 Tape Control.
Multiplexor
Data Channel . .
External Signal
Direct Data Feature .
Magnetic Drum Storage
Punched Cards
Card Reader
Card Punch ..
Printer
Cathode Ray Tube Equipment

SHARE

Organization
Programming System

FORTRAN AUTOMATIC CODING SYSTEM.

APPENDIX

Contents

5
6
6
7

10
10
13
15
16
18
20
22

24
24
30
31
35
35
36
37
37
37
39
40
41
41
42

44
44
44

46

47

IBM 7090 Data Processing System

IBM 709·7090 Data Processing System

Data processing sy~tems are finding new application
in virtually every phase of science, business, and in­
dustry. Rapidly expanding scientific investigations in­
volve many complex calculations. The vast amount
of data constantly being used in aircraft industries,
government agencies, and business establishments of
all kinds demand machines to compute, select, and
correlate data at electronic speeds.

Figure I shows the kind of problem that computers
are solving for scientists today. Many similar prob­
lems are encountered and solved in the scientific field;
however, the computer is adaptable to business appli­
cations as well. The computer can be, and is, used
for payroll, material inventory, or any of a great num­
ber of other business problems requiring prompt,
accurate results.

In the sample problem, the computer calculates the
density and velocity of air at each of the mesh-points
shown. From these data, engineers can evaluate the
lifting power and drag of the wing section. By solv­
ing a number of these problems, an optimum new
wing design is developed.

The mathematical formulas used are:

4. p= f (p)
Figure 1. Aircraft Application

Equations 1, 2 and 3 are replaced by difference
equations over a network as shown in the figure. This
difference system and equation 4 form a set of simul­
taneous non-linear algebraic equations. These are
solved on the computer by repeating calculations,
called an iteration method. In this one typical prob­
lem, there are 800 equations, 100 iterations, 80,000
operations per iteration, and 8,000,000 operations per
solution.

Figure 2 shows a comparison, in time, between man­
ual methods of solution and solution by computers.
The times are approximate. This comparison shows
that computers of today now have the ability to solve
problems that cannot be solved in a lifetime of man­
ual labor.

One of the first things to be considered in a com­
puter system is an understanding of the functions of
its various components. A simplified computer sys­
tem consists of three main units as shown in Figure 3.

In a typical computer system, several types of input­
output devices are needed. These may be units such

~ r\
\ Pencil and paper
{ 15 years

Desk calculator
80 weeks

IBM 701
2 minutes

IBM 704
30 seconds

IBM 709
25 seconds

IBM 7090
5 seconds

Figure 2. Time Comparison of Computation Methods (Approxi­
mate)

Introduction 5

Figure 3. Main Computer Components

as punched card readers, a device to read or write on
magnetic or paper tape, a telephone or teletype line,
punched card recorders, and printing equipment.

An input component is any device capable of feed­
ing information into a computing and data handling
unit, usually called the central processing unit.

A storage unit must also be provided to store or
"remember" all input data and instructions (also
called orders) to the computer. These instructions are
then used to tell the computer how the processing of
data is to be executed.

The central processing unit has an arithmetic sec­
tion to accomplish all arithmetic and logical opera­
tions and a section to modify or change instructions
to adapt the processing to variations within the es­
tablished procedure. A control section is also a part
of the central processing unit and directs the com­
puter in its operation by making logical decisions. An
example of one of these decisions would be a test to
determine if a number is positive or negative. As a
result of this test, the computer can take a different
processing course for each alternative. Simple tests
may be combined to make complex logical decisions.

The output components are any devices capable of
recording the resultant data after the central process­
ing unit has operated upon it.

Binary Notation

The common decimal notation of the commercial and
scientific world is a familiar one. This notation is so
familiar that its use is hardly questioned. However,
it is possible that, for some purposes, other number­
ing systems are more convenient.

What numbering system to use is entirely a matter
of convenience. Decimal notation is used because it
is most familiar and is understood by most people.
However, had our primeval ancestors developed eight
fingers instead of ten, we would probably be more
familiar with a numbering system based on eight,
rather than ten, and we might consequently question
the decimal system.

6 IBM 709-7090

The decimal system, with its ten digits, is learned
by most people early in their training. This system
serves well for counting purposes. Why then should
computers designed to assist mathematicians, engi­
neers and businessmen, be designed to use the binary
system of numbers?

The reason is that current digital computers use
binary circuits; therefore, the mathematics of com­
puters is binary in nature. The octal system is a
shorthand method of writing long binary numbers.
Octal notation is used when discussing the computer,
but has no relation to the internal computer circuits.

The binary, or "base two" system, uses the two sym­
bols 0 and 1 to represent all quantities. Counting
starts in the same manner as in the decimal system
with a 0 for zero and then a I for one. At two, how­
ever, there are no more symbols to be used. It is
therefore necessary to take the same step at two in the
binary system that is taken at ten in the decimal sys­
tem. This step is to place a I in the next position
to the left and start again with a 0 in the original
position. A binary 10 is equivalent in this respect to
a 2 in the decimal system. Counting is continued in
an analogous manner with a carry to the next higher
order every time a two is reached instead of every
time a ten is reached. Counting in the binary system
is as follows:

Binar) Decimal Binary Decimal

8 4 2 1 84 2 1

0 = 0 1 = 1
1 0 - 2 1 1 - 3

100 - 4 1 0 1 - 5
1 1 0 - 6 11 1 = 7

1 0 o 0 - 8 1 0 o 1 - 9

Octal Notation

It has already been pointed out that binary numbers
require about three times as many positions as deci­
mal numbers to express the equivalent number. This
is not a problem to the computer itself, but in talking
and writing, these binary numbers are bulky. A long
string of ones and zeros cannot be effectively trans­
mitted from one individual to another. Some short­
hand method is necessary. The octal number system
fills this need. Because of its simple relationship to
binary, numbers can be converted from one system to
another by inspection. The base of the octal system
is 8. This means there are eight symbols: 0, 1, 2, 3,
4, 5, 6, and 7. There are no 8's or 9's. The important
relationship is that three binary positions are equiva­
lent to one octal position. The following table com­
bines what has been shown concerning decimal and
binary with the octal numbers.

BINARY OCTAL DECIMAL

0 0 0
1 1 1

10 2 2
11 3 3

100 4 4
101 5 5
110 6 6
III 7 7

At this point a carry to the next higher position of
the number is necessary, since all eight symbols in the
octal system have been used.

1000
1001
1010
1011

10
II
12
13

8
9

10
11

As far as the internal circuitry of the computer is con­
cerned, it only understands binary ones and zeros.
The octal system is used to provide a shorthand
method of reading and writing binary numbers so
that the contents of a register, when shown on the
operator's panel, may be read directly. This is shown
in Figure 4, using a 36-digit binary number.

Reg; ster contents (b; nary)
Octal value

Figure 4. Binary Representation of Register Contents

Magnetic Cores

The main storage medium for many computers is the
magnetic core.

Each magnetic core is a ring or doughnut shaped
piece of ferromagnetic material. The cores "remem­
ber" information indefinitely, and can recall it in a
few millionths of a second. When a wire is inserted
through the hollow center of a core (Figure 5), an
electrical current passed along the wire sets up a mag­
netic field around the wire. This field magnetizes the
core. When the current is removed, the core remains
magnetized. 1£ a current is passed along the wire in

Core Is Set

Figure 5. Magnetic Core Action

the opposite direction, the magnetic field set up
around the wire is reversed. When this occurs, the
core is said to have "flipped" or changed its mag­
netic state. A "sense" wire is inserted through the
core and, when the core flips, a small electrical voltage
is sent along the sense wire. This voltage may then
be amplified and used in the computer (Figure 6).

Computer

Figure 6. Flipping of a Magnetic Core

As with the magnetic core, all computer elements
are able to represent two states. These two distinct
states provide the basis by which these elements hold
information. For this reason, the elements are called
bi-stable elements. For example, one state may be
interpreted as the digit 0; the other, as 1. Similarly,
the elements may be used to represent: plus or minus,
on or off, yes or no, and so on. Several of these ele­
ments are shown in Figure 7.

The IBM 709 and 7090 Data Processing Systems use
high-speed core storage units. Each unit is divided
into distinct sections called locations. Each location
is uniquely identified by a number assigned to it. This
identifying number is called an address because just
as a street address denotes the precise location of a
particular building on that street, this number de-

liD .. State

Figure 7. Bi·stable Computer Elements

Introduction 7

Number 1500

Figure 8. Core Storage Unit

notes the location of a particular item of data inside
the core storage unit called a "word" (Figure 8).

Each word is further subdivided into elements
called bits. Each bit has a value of either a 0 or a 1.
Thus. the bits (36 in each word) are the basic units
of information in the computer. Figure 8 also shows
S6 "planes" or "stories" in the core storage "building."
The operation of locating a word in core storage may
be compared to the operation of an elevator in an
office building. The elevator picks up passengers from
each floor; in core storage, one bit of information is
read or stored from each plane. In actual computer
operation, all 36 bits are read, stored, or operated
upon simultaneously, one from each plane.

As previously stated, one word contains 36 bits of
information. Core storage contains two types of
words:

1. A word upon which arithmetic or logical oper­
ations are to be performed is called a data-word.

2. A word interpreted by the computer as a code
to "order or instruct" it to perform a particular
operation is called an instruction-word.

8 IBM 709-7090

Figure 9. Instructions and Data in Core Storage

Both types of words are combinations of 36 zeros and
ones. An instruction is able to "direct" the computer
to perform some type of operation, e.g., read. write,
add, subtract, or test for zero. If a data word were
incorrectly used as an instruction, the computer might
perform an illegal operation depending upon the data
bit configuration. Data words form records. fields,
amounts, results, and so on. Figure 9 is a schematic
of core storage with both types of words contained in
separate locations.

Core storage units are available to provide the com­
puters with a capacity of 4096, 8192, or 32,768 word
locations of 36 information bits each. As a decimal
digit is expressed by three of these bits, a total of II
significant decimal digits may be expressed by each
word. In BCD coding (alphamerical characters), one
word contains six numerical or alphabetic characters.
Thus, the 32,768 words of core storage may contain
the binary equivalent to 360,448 decimal digits of stor­
age or the BCD representation of 196,608 characters.
The actual capacity of storage is thus directly related
to the type of coding used.

Figure 10 shows the three core storage units that
are available for the 709 and 7090 Data Processing
Systems. The IBM 737 Core Storage, used with the 709
system, has 4,096 words of storage. The IBM 738 and
the IBM 7302 Core Storage have 32,768 words of stor­
age and are used with the 709 and the 7090 systems,
respectively.

Figure 10. IBM Core Storage Units

Introduction 9

Central Processing Unit

The central processing unit can be divided into two
basic parts, information processing elements and exe­
cution controls. The information processing elements
are normally referred to as the arithmetic section.
The execution controls are called simply the control
section.

The arithmetic section is the computer's problem­
solving unit. The operations of addition, subtraction,
multiplication, and division, as well as shifting, trans­
ferring, and storing of results are executed in this
section. Figure 11 shows a few of the operations per­
formed in the arithmetic unit.

The control section guides the computer through
the operations necessary to complete the various in­
structions.

The execution of a group of instructions may be
compared to compounding a chemical formula. The
arithmetic section would be the laboratory where the
compounding takes place; it would call on core stor­
age for materials needed to produce the result. The
control section would follow directions given in the
formula. It would instruct the chemist as to what
ingredients to mix, how long to mix them, and in
what order they should be combined.

Of necessity, then, the control section contains a
device called the "instruction sequencer." This de­
vice locates the proper instruction to be executed;
then, while the instruction is being executed, this de­
vice sets up the conditions for the next instruction.
At different times in the program, the next instruction
to be executed may depend on the result of a test in­
struction, for example, whether an error indicator is
on or off (Figure 12) .

The arithmetic operations which computers are
capable of performing treat each part of a word in

014623
ADD 541034

555657

12345
Sub. 11111

01234

':"_ ,,'_"'~"~ Unit

Control Un i t

Figure II. Arithmetic Operations

10 IBM 709·7090

12345
SHIFT~

~
~

STORE 3416

Arithmetic Section

"test the indicator!! error indicator«.t-.
"if the indicator is on obtain the next instruction-from location
1000. If the indicator is off obtain the next instruction from
location 2000."
"the indicator is on, put 1000 into the instruction sequencer"
"get the instruction located at address 1000 and execute it."

- - - -COntral se~iia;; - - - - - - - - - - - - - - - - - --

11000!;nstructian sequencer

Figure 12. Conditional Testing and Transferring

core storage as either a 1 or a O. Thus, a computer
word consists of 36 zero and one digits and is said to
be expressed in the "binary system." An example of a
binary word as it appears in the arithmetic unit is
001101110010011011001001111001001001 which is sim­
ply a string of zeros and ones. By doing its arith­
metic in the binary system, the computer is able to
achieve greater speeds and efficiencies than would
otherwise be possible.

Normally, in solving a problem, the numerical data
are originally entered into the computer in decimal
or IBM card coding. The computer is then instructed
to translate the data into binary form, go through the
desired computations, and then translate the results
back into decimal form (Figure 13). However, data
may be entered into the computer in any form desired
by the programmer.

Instruction
0011010101111

ADD 11010001111,00
10000011101011

PRINT

Central
P(ocessing Unit

Figure 13. Decimal and Binary Data Flow

Stored Program

The work accomplished by the computer in solving
a problem or processing data consists of executing
many instructions at high speed. To solve a problem,
it must first be reduced to equations or instructions
that the computer is capable of performing. The en­
tire set of instructions used in solving a problem form
a program for the computer. Because these instruc­
tions are held in the computer's storage unit, it is
called a stored program system.

Normally, instructions are taken from sequentially
ascending locations of core storage. However, the exe­
cution of instructions does not necessarily have to
occur sequentially. It is possible, when control or
transfer instructions are given, for the computer to
alter the process of sequential execution and to indi­
cate some particular location in core storage contain­
ing the next instruction word to be executed. In this
way, the execution of any instruction or block of in­
structions may be repeated as often as desired.

For some control instructions, whether the next in­
struction is taken in sequence or from some other
specified location may depend on the result of a test
(Figure 12). In this case, the control operations pro­
vide the program with decision-making abilities. The
logical path followed by the program (that is, the
precise sequence of instructions to be executed) may
be controlled by a series of tests applied at various
points in the program. Doing this gives a stored pro­
gram the ability to change its course of execution.
These conditional operations increase immeasurably
the scope of the system's application.

Most computer instructions have an address part
indicating the location in core storage subjected to
some arithmetic or logical operation. This address
part, or field, always occupies bit positions 21 through
35 (Figure 14) in an instruction word.

Address part

I s, I

Figure 14. Address Part of an Instruction

The 15-bit address field is large enough to hold the
number 32,767 - the largest address in core storage.
This number expressed in the binary system is simply
15 consecutive ones (Figure 15) .

II III I I 11111 11111
S,1 2021 35

Figure 15. Address Part Showing Maximum Address

In a data processing system with 8,192 words of
core storage, the largest address (8191) is contained
in only 13 bit positions of the instruction word. The
contents of the two left-most positions of the address
field are ignored during the execution of an instruc­
tion to decode an address. Similarly, a computer with
4,096 words of core storage uses only bit positions 24
through 35 as its address field.

The operation part of an instruction normally is
not fixed in length but may vary depending upon the
instruction itself. Figure 16 shows the bit pattern for
an instruction specifying the addition of the contents

S,1 35

Figure 16. Add Instruction

of core storage location 0001. When this instruction is
executed by the computer, the contents of core loca­
tion 0001 are added to the contents of the accumulator
register.

For example, assume that the accumulator contains
the number +1. If the number in location 0001 is
+2, the result of executing the ADD instruction (Fig­
ure 17) is a 1 bit in positions 34 and 35, and 0 bits
in all other positions of the accumulator; (II is the
binary expression for the sum, 3). The first position
of the word is used to express the sign of the amount
or result.

Instruction (Add)

location 1 (+2) 000000000000000000000000000000000010 , ,

AC before (+1) a a a 000 a a a a 0 a 000 a a 0 a 0 0 a 0 0 0 a 0 0 a 00 a 0 a 01 ,

AC after (+3) 1010000 a 0 0 0 0 0 a a 0 0 0 a a 0 a a a 0 a 0 0 a 00000 a a 1 Ii
s 1 J5

Figure 17. Execution of an Add Instruction

A register is defined as a device with the ability to
accept data, hold them, and transfer the data to an­
other register or device. The registers are given dif­
ferent names according to their functions. Thus, the
accumulator register "accumulates" arithmetic results.
The multiplier-quotient register holds either the mul­
tiplier or the quotient in an arithmetic operation.
On all arithmetic operations, the sign positions of the
registers in use are automatically adjusted.

The accumulator register has 38 positions. They
allow the register to handle a 35-bit word with its
sign. Two extra positions, P and Q, are provided to
keep track of overflow conditions. If two 35-bit num­
bers are added together, it is possible that the result
would be larger than 35 bits, as shown in Figure 18.
The accumulator is used to hold one factor during
arithmetic operations. The other factor usually is

Accumulator register

Storage register

Combined in the adder
and returned to the
accumulator register.

S Q P I 35

! ! ! 1 000000000000000000000000000000000 1

1100000000000000000000000000000000111

Q P 1 35

I ! Ii 000000000000000000000000000000001001

! iIi 000000000000000000000000000000001001
S Q P 1 35

}1igure 18. Accumulator Overflow Condition

Central Processing Unit 11

Accumulator register
before a left shift.

5 Q P 1 35

I ! ! :100000000000000000000000000000000001

5 Q P 1-----------35
Accumulator register I I I i I
after a left shift of I 11 100000000000000000000000000000000000
one place.

Figure 19. Accumulator Shifting

held in the storage register. The two factors are com­
bined in another register-type device called the adder.
The adder consists of 35-bit positions and the two
extra ones, P and Q. Thus, any overflow out of posi­
tion 1 will be placed in position P. Likewise, any
overflow out of position P will be placed in position
Q. An overflow out of position Q will, however, be
lost.

Information in the accumulator may be shifted to
the right or to the left. 1£ a left shift is involved, an
overflow condition may be recorded in the same man­
ner as in an arithmetic operation (Figure 19). Not
only is the entire number shifted to the left, but zeros
are inserted (position 35) in the positions vacated.
Thus, no matter what the content of the accumulator,
if a left shift of 37 or more places is executed, the
contents of the accumulator are replaced by zeros.

Information may also be shifted into the accumu­
lator from the MQ register, one bit at a time, or from
the accumulator to the MQ, one bit at a time. The
effect is to create a register that is 74 positions in
length, 38 positions for the accumulator and 36 for
the MQ register.

The multiplier-quotient (MQ) register has 36 posi­
tions. During a multiply operation, this register con­
tains the multiplier; during a divide, it receives the
quotient. The register can store and shift a full 36-
bit word. In addition to shifting right or left, in the
same manner as the accumulator, it can also "ring
shift." That is, bits shifted out of the sign position
enter position 35 (Figure 20) .

In addition to its arithmetic and shifting functions,
the MQ register serves as a sending and receiving regis­
ter for some input-output operations. For the 709
system, this means that information coming from the
magnetic drum or going to the drum and CRT equip­
ment passes through the MQ register.

When a word is entered into or taken from a loca­
tion in core storage, a storage reference is said to be

51 35

MQ register before 111111000000000000111000111000111 000
a ring-shift of three
places.

51 35
MQ register after shift 11110000000000001110001110001110001111

Figure 20. MQ Register "Ring Shift"

12 IBM 709-7090

made. This operation is non-destructive. That is, the
contents of that location are left unaltered after the
operation. However, if the storage reference causes
new information to be entered into a location, the
prior contents of that location are automatically re­
placed by the new information.

Only one such storage reference can be made during
any single computer cycle. The basic computer cycle
(or internal speed) for the 709 is 12 microseconds
long (12 millionths of a second). The basic cycle for
the 7090 is 2.18 microseconds.

Normal computer operations start with an instruc­
tion (I) cycle. This cycle does the following:

1. It obtains the instruction to be executed from
the core location designated by the instruction
counter.

2. It locates the operand (number to be worked
with or upon), if any, as specified by the in­
struction's address part.

An example would be the instruction ADD 0002 (add
the contents of storage location 0002 to the contents
of the accumulator register), shown in Figure 21. All
data handling concerned with storage and the central
processing unit is accomplished in parallel. This
means that all operations are concerned with a full
word of 36 bits.

As an example, refer to Figure 17 where an ADD

operation is performed. Even though the numbers
involved use only a few bits of the entire word, the
remainder of the word is filled with zeros and all 36
positions of both words are then added in one opera­
tion. Thus the time required to add two I-bit num­
bers is the same as the time required to add two 36-
bit numbers.

This principle of parallel operation is one of the
basic differences between the 709 and 7090 computers
when compared with the 705 system series, which is
said to operate serially (normally om; position or
character at a time) .

(ADD 0002) =

~
Instruction Register

5torage Register

~
Address Register

Adders

1-+004121503051 I (number in accumulator)

Accumulator Register

Figure 21. Schematic, Decoding an Add Instruction

The instruction ADD 0002 is brought from core
storage into the storage register. At this point, the
operation part is sent to the instruction register to
determine the type of operation to be executed. At
the same time, the address portion of the storage reg­
ister is taken to the address register so that the proper
core storage location (operand) is added during the
next storage reference cycle. All numbers in Figure
21 are shown in octal notation.

The next cycle, referred to as an execution cycle,
is used when a reference to core storage is required to
obtain another word, e.g., a number to be added.
Assume that the address register has the address of the
core storage location to be added. During this second
(reference) cycle, the contents of that storage location
are brought from core storage to the storage register,
and then to the adders. At the same time, the pre­
vious number in the accumulator register is taken to
the adders. A new number is formed in the adders
and is then placed back in the accumulator register
(Figure 22).

The operation is now finished and the computer
is ready to execute the next sequential instruction.

The type of operation just described is called fixed
point arithmetic or integer arithmetic. The computer
can also perform operations in floating point arithme­
tic. A complete set of floating point instructions is
provided to increase the range of numbers used and
to reduce programming time.

In integer arithmetic, the size of the numbers used
is fixed by the design of the computer (36-bit word
size) . By using floating point arithmetic, a larger num­
ber may be expressed and operated upon, because a
part of the word is used to express the exponent (char­
acteristic) and another part of the word is used for
the fraction (mantissa).

A comparison of number size shows that the largest
number the computer can use with fixed point opera­
tion is I X 1011. This is equal to 100 billion. With
floating point operation, however, 3 X 1035 is the larg-

Instruction Register

+132540020425 (number from location 0002)

+1 32540020425

Accumulator
Register

Storage Register

Address Reg i ster

(number from location 0002)
(previous number in accumulator)

(resulting number in accumulator)

Figure 22. Schematic, Performing an Addition

I Characteristic Fraction

51 8 9 35

Figure 23. Floating-Point Word Format

est number. This number is too high to be expressed
in common language terms.

In the computer, a floating-point number is stored
in a word as shown in Figure 23. The fraction is con­
tained in bit positions 9 through 35 with the sign of
the fraction contained in position S of the word.

The characteristic is contained in bit positions 1
through 8 and is formed by adding +128 to the ex­
ponent. For example, an exponent of -32 would be
represented by a characteristic of 128-32 or 96. An
exponent of + 1 00 would be represented by a charac­
teristic of 100+128 or 228.

Most integer arithmetic instructions have a floating­
point counterpart instruction. Thus, it is possible to
ADD or to perform a floating-point ADD (FAD).

To summarize, a floating-point binary number (X)
may be represented as a signed proper fraction (B)
times some integral power (b) of 2. Examples:

X B 2b

-.001 =-.100 X 2-"
.100 .100 x 2"

l.l00 .110 X 2'
110.000 .110 X 23

Assembly Programs

The writing of a complete program for the computer
in its machine language would be rather awkward.
For example, to write only the one instruction re­
quired to subtract the contents of core location 0003
from the contents of the accumulator register requires
the recording of 36 zeros and ones, as shown in Figure
24.

This instruction can be written as SUB 0003, a more
convenient form of expressing the instruction. The writ­
ing of instructions in this form is an improvement
over the system of writing 36 zeros and ones. In addi­
tion to reducing the amount of information which
must be written, it has. more meaning to the reader.
Namely, "subtract the contents of location 0003."
However, to determine the entire machine operation,
the programmer or person reading the program must

Operation Address

Figure 24. Subtract Instruction

Central Processing Unit 13

know what is stored in location 0003. To assist the
programmer, the use of symbols can be extended to in­
clude addresses as well as the operation part of an in­
struction.

Assuming that the net pay for a payroll calculation
is stored in location 0003, the instruction might now
be written as "subtract net." This clarifies to the pro­
grammer the operation to be performed, and also what
quantity is involved. Thus, symbolic programming
employs instruction-by-instruction coding in a lan­
guage that is a representation of the basic language of
the computer itself.

The computer can execute instructions only if ,they
are stored in machine language. Thus, the instruction
"subtract net" must be converted to the basic machine
language before its execution. One way of doing this
would be to manually convert all symbolic instruc­
tions to machine language before entering them into
the computer. This obviously would be a laborious
task. A more practical solution is to have the com­
puter perform the conversion. This is accomplished
through use of a symbolic assembly program.

An assembly program performs the necessary trans­
lation or conversion from the symbolic language to
the machine language. At the same time, the program
assigns absolute core storage locations to the imtruc-

Convert the
Instructi on

"SUBTRACT NET"
Becomes

000100000010000000000000100000000

No Yes

Print and punch the
resulting program

Figure 25. Flow Chart of an Assembly Program

14 IBM 709-7090

tions and data contained in the symbolic program.
Figure 25 shows a flow chart of the process involved
when using an assembly program. Assume that the
instructions to be assembled are on punched cards and
that the assembly program itself is on a magnetic tape
(assembly tape) .

The assembly program normally provides certain re­
strictions upon the length and type of symbols that
may be used by the programmer. It assigns an abso­
lute core storage location for the first symbolic instruc­
tion and increases this location by one for each sub­
sequent instruction decoded. In this manner, the de­
coded program instructions are assigned sequential lo­
cations. Space is provided for the data that are a part
of the assembled program. Normally, the constants
and other data are placed at the end of the symbolic
program and are assigned sequential locations that
follow the instruction area.

During assembly, the first reference to a symbolic
address assigns this address to an absolute storage lo­
cation. Any subsequent references to this symbolic ad­
dress will also be assigned the same address. The man­
ner in which the assembly proceeds is described below.

Each symbolic instruction is read from the card
reader into the central processing unit. The "sub­
tract" portion of the first instruction is matched
against the contents of the assembly tape and is de­
coded into the proper bit configuration for a subtract
operation 000100000010. The "net" portion of the
instruction is assigned a location in core storage that
is not being used. This bit configuration (assume
000 100000000) is then inserted into the address portion
of the decoded subtract instruction. The full instruc­
tion word (000100000010000000000000000 I 00000000),
both operation and address parts, is then written
as the first instruction on the program tape. The
original "subtract net" is stored so that it may appear
in the final printing of the program. The assembly
program then tests to determine if more instructions
remain to be decoded. If there are more, the above
process is repeated until all symbolic instructions have
been decoded and written on the program tape. When
the assembly process is complete, the resultant as­
sembled program is printed, together with the original
symbolic instructions. The print-out takes the follow­
ing form:

SYMBOLIC INSTRUCTION DECODED MACHINE EQUIVALENT

SUBTRACT NET 000100000010000000000000100000000

When the printing process is complete, the assembly
program furnishes the programmer with a group of

punched cards containing the machine language trans­
lation so that if the program is used again, the as­
sembly process need not be repeated.

Computer Operations

The format of the instruction word is, for the most
part, a precise one. Although slight variations exist,
in general the format is as shown in Figure 26.

Operation part Flag Tag Address part

I I I I
5, 1 11 12-13 18-20 21 35

Figure 26. Instruction I'onnat

The operation part usually is contained in positions
S, 1-11 of the instruction word. In the following text
and in program writing, an alphabetic code is used to
identify the instruction operation rather than the full
name of the instruction. Thus, the code CLA signifies
CLear and Add, or SUB means SUBtract. If the numeri­
cal machine language code is to be used, it is given in
the octal system. For example, +0500 is the code for
the clear and add operation; +0402 denotes subtrac­
tion. All abbreviations are simply shorthand methods
used to reduce the manual task of writing a program.

The flag part, or flag bits, is contained in positions
12 and 13 of the word. It specifies that indirect ad­
dressing is to take place. This operation may be per­
formed only on instructions that use index registers.
Both indirect addressing and the use of index registers
are explained later in the text.

The tag bits are contained in positions 18, 19, and
20. They specify which index registers are to be used.
Only a few instructions may not use indexing.

The address part of the instruction is contained in
positions 21 through 35 of the word. It tells the com­
puter the location or "operand" that is to be used with
the instruction. In the case of shifting operations, the
address part contains the number of places to be
shifted. For other instructions, the address part may
be a part of the operation itself. Such a case would
have the address part expressed as a four-digit num­
ber; read-1200 means the reading operation will take
place and the 1200 will tell which input-output unit
is being used. In this case, the tape unit numbered 0
on data channel A would be used.

In executing the instruction ADD 1000, the computer
assumes that the augend is in the accumulator and the
addend (the number being added) is specified by the
address part of the ADD instruction. The sign of the
numbers (S position) is, of course, considered dur­
ing an add operation. When two numbers of the same

magnitude are being added, the sign of the result is
taken from the number in the accumulator.

ACCUMULATOR

+6
-6

+
+

STORAGE

-6
+6

=
=

RESULT IN

ACCUMULATOR

+0
-0

The clear-and-add (CLA) instruction is similar to
the add instruction except that the accumulator is
cleared to zeros and the contents of the location speci­
fied by the address part of the CLA instruction are
placed in the accumulator.

Add magnitude (ADM) is another similar instruc­
tion. Its operation is the same as ADD except that the
sign of the number is ignored and the number is
treated as positive.

Other arithmetic instructions are treated in a like
manner since all arithmetic processes are accomplished
by addition, and complementing a result where neces­
sary. Subtraction occurs in the following manner:

7 = 000111 Number in Accumulator
5 = 000101 Number to be Subtracted (Operand)

111000 Complement of Number in Accumulator
+ 000101

111101 Recomplement the Result
(No High-Order Carry)

000010 This is the answer, 5 subtracted from 7 = 2.

Multiplication is accomplished by testing the low­
order position of the multiplier and adding the multi­
plicand if this low-order position is a 1. After each
test, the answer is shifted one place to the left. This is
repeated until there are no more numbers in the mul­
tiplier.

5 = 000101 Multiplicand
X3= 000011 Multiplier

000101
000101

000000

15 = 00001111 Product

Division is accomplished in a like manner but shift­
ing occurs in the opposite direction. By shifting a
binary number one place to the left, the result is the
same as multiplying by 2. A number shifted one place
to the right has been divided by 2.

A group of word transmission instructions is also
provided. These instructions are concerned with the
movement, at high speed, of words or parts of words
from one location or register to another. In particu­
lar, information may be either stored or taken from
locations in core storage and various registers in the
central processing unit. Since the word transmission
instructions are concerned with the movement of data,
they are used frequently.

The store (STO) instruction stores the contents of
the accumulator in the location specified by the ad-

Central Processing Unit 15

dress part of the store instruction. Other store instruc­
tions accomplish the storing of the address portion,
tag, and other portions of both the accumulator and
the multiplier-quotient registers.

The computer also has certain load instructions to
accomplish the same end as the store instructions, ex­
cept in reverse. A store instruction places the contents
of a register in storage. Conversely a load instruction
takes the contents of a storage location and places it
in a register. There are also load instructions for the
index registers.

With transmit, store, or load type instructions, the
contents of the storage location or register from which
the data are being moved remain unchanged.

Shift instructions are used to move the contents of
the accumulator and/or the multiplier-quotient regis­
ters either to the right or the left of their original posi­
tions. With the exception of the rotate-MQ-Ieft instruc­
tion, zeros are automatically inserted in the vacated
positions of the register. Thus, a shift larger than the
bit capacity of the register causes the contents of the
register to be lost and replaced by zeros. When a shift
instruction is interpreted, the amount of the shift is
determined by bit positions 28 through 35 of the shift
instruction. An example is given in Figure 27.

Instruction
Accumulator left shift (ALS)

Operation part Address part
+0767 00000100 = 4

SQPl 35
Accumulator contents ,,0..Q01010oo100111oo101001110111ooog.Y),01
before shift LOS;W 4'$
Accumulator contents 01000100111001010011101110000111010000
after shift

Figure 27. Accumulator Shifting

Control instructions are defined as instructions gov­
erning the flow of a program. They are the instruc­
tions that cause the computer to alter the normal
process of taking its instructions from sequential stor­
age locations. Control or "transfer" instructions may
be divided into two types: (1) unconditional transfers
specifying the location of the next instruction to be
executed, and (2) conditional transfers performing a
test of some kind. The location of the next instruc­
tion then depends on the outcome of the test.

Unconditional

Conditional

Transfer (TRA)
2000.

The next instruction will
come from location 2000.

Transfer on If the contents of the ac­
plus (TPL) 2000. cumulator are plus. the

next instruction will be
taken from 2000. If not
plus. the next sequential
instruction will be taken.

Certain test instructions exist and are similar to
conditional transfer instructions in that they cause

16 IBM 709-7090

some test to be performed. Unlike conditional trans­
fers, the test instructions do not specify a location for
the next instruction. Instead, the alternative location
is fixed relative to the position of the test instruction
in the program. An example is shown in the follow­
ing program.

LOCATION INSTRUCTION

100 Add
10l P-BitTest

102 Shift Right
103 Store

REMARKS

If the P bit of the accumulator is a I.
the next instruction (102) is skipped
and the instruction located after that
(103) is executed. If position P con­
tains a O. the next instruction (102)
is executed.

Many of the indicators may be tested in this manner
and the flow of the program adjusted to fix the cause
of the indication or to proceed around it.

Another important group of instructions is the one
concerned with the indexing operations. These in­
structions are explained under the indexing section of
the manual.

Information Paths

The core storage unit is normally connected directly
to the central processing unit. It is also the site of the
stored program that controls the entire computer sys­
tem. On the other hand, the auxiliary storage and in­
put-output devices are normally disconnected (not
physically but logically) from the system. They be­
come connected only by execution of certain stored
program instructions. The contents of these devices
may control the computer only after being transmitted
to core storage.

Thus, data flows between input-output devices and
core storage through the central processing unit in the
704 system (Figure 28) .

T
Figure 28. Information Flow. IBM 704 System

Using Figure 28, assume that the magnetic tape unit
marked "1" is reading data. Because the tape data
are arranged in six-bit groups across the width of the
tape, it takes six of these groups to make up a 36-bit
word. As these groups are read from tape, they are as­
sembled in the tape control. When a full word is as­
sembled, this word is sent to the central processing
unit and from there to the core storage location speci­
fied by the instruction that caused the tape to be read.
Actually, two instructions are required to read data
from any input-output device into core storage. The
first is a read-tape-I instruction with "read" as its op­
eration part and "tape 1" as its address part. The
execution of this instruction: (1) selects the proper
tape unit, (2) puts it into read status, and (3) starts
the tape moving in the proper direction. The second
instruction needed is called a copy instruction. "Copy"
is the operation part with the location that the data
should enter (core storage) as the address part. If a
copy-1000 instruction were executed, the data read
would be entered into core storage location 1000. A
single copy instruction moves one full word into stor­
age. If two or more words are to be moved, two or
more copy instructions must be furnished, each with
a different address part.

INSTRUCTION ADDRESS

Read Tape I
Copy 1000
Copy 1001
Copy 5000

REMARKS

Gets tape 1 ready and moving
Puts that word into location 1000
Puts second word into location 1001
Puts third word into location 5000

This type of instruction group is called a "copy
loop" or a copy routine. A true "loop" is fully ex­
plained under the heading "Index Registers."

The information paths and the components used in
the 709 system are shown in Figure 29. Comparing

Dota Synchronizer Unit

Channel II A" Channel" BII

Figure 29. Information Flow, IBM 709 System

Figures 28 and 29, note that the major difference be­
tween the two systems is the fact that data coming
from or going to core storage do not pass through the
central processing unit. Instead, a new device called
a data synchronizer is used as the go-between for in­
put-output devices and core storage.

With the 709 computer, the stored program starts
an input-output operation by defining which device
is to transmit (read tape) and what area in storage is
to receive the data; then the central processing unit is
free to do other calculations. Note the main differ­
ence between the 704 and the 709. In the 704, the cen­
tral processing unit must wait until all data have been
transmitted while the 709 merely starts the operation
and is then free to do other work. This subject is ex­
panded under the section "IBM 766 Data Synchro­
nizer."

The 7090 computer system uses basically the same
information paths as does the 709. Two new units are
added in the 7090 system. They replace the data syn­
chronizer's operation. They are called "multiplexor"
and "data channel." Their operation is explained in
the section "IBM 766 Data Synchronizer." Figure 30
shows information flow and components in the 7090
system.

There may be a maximum of eight data channels at­
tached to the multiplexor. Each data channel may
have the same complement of input·output devices as
shown in Figure 30. This feature gives a maximum of
80 magnetic tape units, eight card readers, eight card
punches, and eight printers.

Figure 30 shows that the central processing unit of
the 7090 system has even less control over core storage
and the input·output devices than does the 709 system.

The main difference in all three systems is the pro­
gression from a synchronous computer (704) to an
asynchronous computer (709-7090), as far as the in­
put·output controls are concerned. Here, synchronous
is defined as one operation happening after another
has finished, while asynchronous means simultaneous
occurrence of several operations.

L~~~~J~-"""1Central Processing
Unit

Figure 30. Information Flow, IBM 7090 System

Central Processing Unit 17

Indexing and Indirect Addressing

The copy routine, described previously, is acceptable
if a limited. number of words are to be copied. For
example, 1,000 copy instructions are needed to copy
1,000 words. This wastes storage space. However, the
copy address could be altered by the program each
time it is used.

A program to copy 1,000 words from tape number
I and place them into consecutive storage locations
could be as in Figure 31. In this program, thirteen
instructions and three constants are required to modify
the address of the copy instruction and test for the
end of the copy loop. The program is considerably
improved over the routine in which 1,000 copy in­
structions are needed. However, the use of an index
register makes the program much more efficient.

The computers contain three index registers that
are important to the system's operational abilities.
These registers are termed A, B, and C or 1,2, and 4.
The latter terminology is more convenient for the
programmer because the numbers used are the octal
representation of the "addresses" of the three index
registers.

Inst .
Loc. Instruction Remarks

50 Read tape 1 Get tape I ready to read
51 Copy 200 Put the lst word into location 200
52 CLA62 Clear the accumulator to zeros and add 10 it the

contents of location 62 (0000----000)
53 ADD 64 Add to the accumulator contents the contents of lo-

cation 64 (0000----001). These instructions
make a counter which is increased by one for each
copy instruction executed.

54 STO 62 Store the result in location 62.
55 CLA63 Clear and add into the accumulator, the contents of

location 63 (0000----1000).
56 SUB 62 Subtract from the accumulator (1000) the contents

of location 62. (This is the location that will in-
crease with each copy instruction execution.)

57 TRZ 65 Transfer when the accumulator contents are zero.
This will occur when 1000 copies have been ex-
ecuted.

58 CLA51 Clear the accumulator and add the contents of lo-
cation 51 (copy 200).

59 ADD 64 Add the contents of location 64 to the contents of
the accumulator. This will increase the copy
address from 200 to 201 the first time. The ad-
dress will then be increased by one each time the
instruction is executed.

60 STO 51 Store the result back at location 51 •
61 TR 51 Transfer back to location 51 so that the next word will

wi II be read in. (Remember that the copy address
has been increased by one.)

62 00---0000 Constants:
63 00---1000
64 00---0001
65 STOP The program will reach this instruction after 1000

words have been copied and will stop.

Figure 31. Sample Program

18 IBM 709-7090

operation tag-bits address
1-1 ___ 1-=0_0"--'1 1 __ ,---_1

register specification
octal alphabetic

A

10 1 0 I

11 0 0 I
S,2 11 18 2021 35

Figure 32. Index-Register Tag Bits

2

4

B

c

The addresses of index registers are stipulated in a
part of the instruction word known as the tag field.
Such addresses are normally referred to as tags. The
tags perform the same function as the address ~f the
instruction. They tell the computer whether an mdex
register is to be used and which register is to be used.
The tag field is located in positions 18, 19, and 20 of
the instruction (Figure 32) . By having more than one
tag bit in the tag field, two or more index registers
may be used in a single instruction. Thus, the con­
tents of the registers would be combined and the re­
sultant sum would be used.

The index registers are 15 positions long-large
enough to hold the largest possible storage address.
They are used to modify an address by adding the
complement of their contents to the address. This re­
duces the address by the contents of the index regis­
ter. Many instructions may specify index action, thus
making them useful for such functions as address
modification and counting.

As an example of the arithmetic involved when in­
dex registers are used, assume that index register I
contains the number 2 and that the copy instruction,
with an address of 200, is to be executed. The follow­
ing occurs (Figure 33) .

When the copy instruction is decoded, the tag bit
in position 20 specifies index action; thus, the contents
of index register 1 are complemented and placed in
the adders. Note that the contents of an index reg­
ister are always complemented when sent to the ad­
ders. This feature results in subtracting the contents
from the address. The address portion of the copy in·
struction is also placed in the adders; after adding the
two numbers, the result (called the effective address)
is used in execution of the copy instruction instead of

operation tag address

1000111000000100000010011000000010000000 I
address part of instruction·-·0000000100oo000
index register contents - - -111111111111101 _111111111111101
carry is added into (000000001111101

units postion - - - -)0 1

Effective address - - - - 000000001111110 = 176

Figure 33. Index-Register Arithmetic, Subtracting

/0001110000001000000100110000000100000001
Address part 000000010000000
index register contents 000000000000010 --000000000000010
Effective address OOOOOqoHl,OOqolO = 202

Figure 34. Index·Register Arithmetic, Adding

the actual address. In this case, the effective address
is 176. If the programmer wishes to increase the effec­
tive address, the number to be placed in the index
register is inserted in complement form. Thus, when
the address and index register contents are combined,
the result is an additive process. Using the same facts
(as in Figure 33) with the index contents in comple­
ment form, the effective address is now 202 instead of
176 (Figure 34).

With an instruction available to reduce the contents
of the index register each time it is used, the effec­
tive address is easily modified. The instruction is
called "transfer on index" (TIx) and has the format
shown in Figure 35. The operation of the instruc­
tion is as follows: If the number in the specified index
register is greater than the decrement portion, the in­
dex register is reduced by the amount of the decre­
ment and the computer takes its next instruction from
the location specified by the instruction address. If
the index register contents are equal to or less than the
decrement, the register is not changed and the next
instruction in sequence is executed.

IOperation I Decrement I Tag Address

S,1 23 17 18 2021 35

Figure 35. TIX Instruction Format

To apply this instruction, assume the same condi­
tions set forth for Figure 31. Follow the copy instruc­
tion with the transfer-on-index instruction with a de­
crement portion of I. The result would be as follows:

True Index Register Contents
Decrement Contents of TIX Instruction

True Result after Decrement Is Subtracted

000000000000010
000000000000001

000000000000001

This use of index registers for address modification
can now be applied to a program to copy 1,000 words
from a tape unit into 1,000 storage locations. The
program can be written as follows:

LOCATION INSTRUCTION DECREMENT TAG ADDRESS

50 Read tape
51 Load index register 100
52 Copy 1200
53 Transfer on index (0001) 52
54 Compute

100 Constant (1000)

Location 50. This instruction selects tape unit 1 for
reading.

Location 51. The load index instruction places the
contents of location 100 into index register I. Loca­
tion 100 contains the quantity 1000.

Location 52. Because the instruction is tagged, the
address of the copy instruction is treated as explained
in Figure 33. The first time cpy is executed, the con­
tents of the index register are subtracted, resulting in
an effective address of 200. The index register is then
reduced by the decrement of the transfer-on-index in­
struction so that successively higher locations of stor­
age are used each time through the loop.

Location 53. The TIX instruction, having a decre­
ment of I, reduces the index register each time it is
executed for a total of 1,000 times. After 1,000 words
have been copied, the decrement of the TIX will equal
the index register. No transfer will occur and the next
sequential instruction (54) will be executed.

Location 100. The constant of 1,000 is needed to
load the index register when the instruction at loca­
tion 51 is executed.

By comparing this routine, properly called a copy
loop, with the routine explained before, the number
of instructions needed to copy 1,000 words from tape
has been reduced from 1,001 to four instructions and
one constant (through the computer's ability to count,
modify addresses, and test for the end of loop with
one instruction) .

By using the many indexing operations available in
the computer, an index register may be added to, sub­
tracted from, and tested in various combinations so
that many desired effects may be accomplished.

1£ more than one index register is specified by the
tag field, the procedure is the same except that the
contents of two or more index registers are combined
and the result is then subtracted from the address field
of the instruction being executed.

The variable address concept is expanded and in­
cludes a feature called indirect addressing. Just as
index registers are addressed by tags, indirect address­
ing is specified by the presence of l's in positions 12
and 13 of the instruction. This portion is called a
flag. For example, assume that the instruction shown
(Figure 36) is to be executed. Instead of subtracting
the contents of location 2054 from the contents of the
accumulator register, the computer, because of the

operation flag tag address location 2054

I subtract III 1 000 120541 I 11500 I
S 21 35

Figure 36. Instruction Format

Central Processing Unit 19

flag, examines the location specified by the address
(2054) and uses the address part of that location
(1500) to obtain an effective address. The subtraction

is then executed as if its address part had contained
1500 instead of 2054. Thus, the contents of location
1500 are subtracted from the contents of the accumu­
lator register.

The indirect addressing feature may be combined
with indexing to obtain even greater flexibility in op­
eration. Using the same example and adding an
index register tag, the operation would be as shown
in Figure 37.

location 2000
I I 3750 I

21 35

index reg i ster 1
[OO5fJ

Figure 37. Indirect Addressing and Indexing Format

The contents of index register 1 are subtracted
from the address portion of the subtract instruction
giving an effective address of 2000. Location 2000 is
then examined and its address portion (3750) be­
comes a second effective address. Thus the contents
of location 3750 instead of 2054 are subtracted from
the contents of the accumulator.

Sample Problems

The following figures show a few examples of some
of the problems that computers are solving today. Al­
though the examples shown are in scientific fields, the
computers are adaptable to business applications.
They are used for payroll, material inventory, control
of crude oil processing, and many other business ap­
plications where efficient operation depends upon
prompt, high-speed results.

The first application shown is in the field of scien­
tific research (Figure 38) .

Scatterer I
Scatterer II

-" -----.
Figure 38. Neutron Scattering

20 IBM 709-7090

I ~ System Used

~709system rfl ~7090 system

Time Taken

75 seconds
15 seconds

Figure 39. Time Comparisons. Neutron Scattering Problem

Neutron Scattering

Given:
l. A spherically symmetric system consisting of two

scattering materials.
2. An initial neutron distribution in space and

energy.
3. Scattering laws for the materials and dimensions

for the system.

Find:
I. The neutron leakage rate from the system,

caused by scattering.
2. The asymptotic neutron distribution in space

and energy.

The initial collision distributions are combined ac­
cording to the scattering laws and are inserted into
matrix equations. These are multiplied by the mat­
rices and a new set of distributions is obtained. The
procedure is repeated on an iterative basis until the
asymptotic or limiting phase is reached.

Time comparisons for the solving of 25 of these
iterations appear in Figure 39 and are approximate.

Flight Trajectory

The second application is in the field of national de­
fense (Figure 40). The path of an object which is
launched from some arbitrary point is calculated. Its
trajectory is determined by its flight characteristics,

Initial --l
Velocity I
Components

j
I

Initial

j-
Initial
AI

Figure 40. Flight Trajectory

Ground

System Used Time Taken

00 --- 709 system 100 seconds

ri-l-- 7090 system 20 seconds

Figure 41. Time Comparison for Each Trajectory

the initial components of its velocity, an initial alti­
tude, and the initial angle.

The position of the object is identified by its co­
ordinates with respect to fixed axes passing through
the launching point.

Factors in this problem are:

1,100 time steps per trajectory.
1,000 operations per time step.
1,100,000 operations per trajectory.

The time comparisons for each computer are ap­
proximate and are shown in Figure 41.

Electron Density

The third application is in the field of fundamental
research (Figure 42). The electrons surrounding two
nitrogen atoms which form a nitrogen molecule) are
treated as a degenerate Fermi-Dirac gas. Such treat­
ment results in a partial differential equation called
the Thomas-Fermi-Dirac or "statistical field" equa­
tion.

The computer calculates solutions to this equation
and thereby determines the density of electrons in the
molecule and the energy of the molecule. The
Thomas-Fermi-Dirac equation is replaced by a differ­
ence system over a network of points. The network
consists of the intersections of 60 quasi-Iemniscates

Figure 42. Electron Density

["1" P~;I ,.."., r :W 800 years

Desk co I cu I ator
4000 weeks

IBM 701 system
2 hours

IBM 709 system
25 minutes

:Ii: IBM 7090 system
5 minutes

Figure 43. Time Comparison of Computer Systems. Electron
Density Problem

with 15 curves at right angles to them. The following
procedures are used to solve the problem:

900 simultaneous non-linear equations.
80 iterations per solution.
900,000 operations per iteration.
72,000,000 operations per solution.

This application graphically points out one of the
problems that could not be solved without the use of
high-speed computers. Again, the time comparisons
are approximate. Note the great range of times. The
span of 800 years required with a pencil and paper is
reduced to five minutes by the IBM 7090 Data Process­
ing System (Figure 43) .

Average execution speeds for both fixed and float­
ing-point arithmetic operations (including the time
needed to take a word from or put a word into core
storage) is shown in Figure 44.

The use of transistors in the 7090 system provides
a saving in electrical power and air conditioning re­
quirements. The reduction of electrical power may
be as great as seventy percent of the 709 requirements.

The nodular unit design of the 7090 makes it pos­
sible to place units side by side and thus minimize
space requirements. As much as fifty percent of the
709 system space requirements may be saved.

Central Processing Unit 21

FIXED POINT OPERATIONS

Operation 709 Ti me and Op/See 7090 Time and Op/See

Add or Subtract 24 usee· 41,660 4.4 usee 227,270
Logical Operations 24 usee 41,660 4.4 usee 227,270
Multiply 190 usee 5,260 25.3 usee 39,640
Divide 240 usee 4,160 30.5 usee 32,780

FLOATING POINT OPERATIONS

Operation 709 Ti me and Op/See 7090 Time and Op/See

Add or Subtract 84 usee 11 ,900 14.0 usee 71,420
Multiply 170 usee 5,880 24.0 usee 41,660
Divide 216 usee 4,620 28.3 usee 35,330

Operations-per-second numbers are approximate.

*usec = microseconds

Figure 44. Average Execution Speeds

Figure 45. IBM 709 Console

22 IBM 709-7090

Operator's Consoles

The 709 operator's console is a physical part of the
central processing unit (Figure 45). It consists of
neon lights, incandescent lamps, keys, and switches.
The contents of the main central processing unit reg­
isters are displayed in neon lights. A 1 is represented
by the light's being on; a 0, by the light's being off.
The 36 entry keys are available to manually insert a
word or words into the central processing unit and
core storage.

The IBM 7151 Console Control (Figure 46A) is a
separate unit providing centralized control of the 7090
system. It contains indicators, switches, keys, and reg­
ister displays for the operator's use. Channel indica-

Figure 46A. IBM 7151 Console Control (7090)

tors for data channel operation are provided and the
register displays have been grouped for convenience.
Data in any storage location can be displayed and/or
changed by manual insertion through use of the entry
keys and switches.

A maintenance feature, marginal checking device,
is also a part of the console. This feature includes the
capability of varying voltages and frequencies during
programmed diagnostic testing to detect potential
difficulties before actual failure of components occurs.

The IBM 7617 Data Channel Console (Figure 46B)
provides for greater input-output flexibility and effi­
ciency between the IBM 7090 Data Processing System
and its operator. One data channel console is used
with each IBM 7607 I or II Data Channel. The con­
sole may be located up to 50 feet away from the data
channel, permitting the computer system console and
data channel consoles to be grouped for greater op­
erating efficiency.

Several operations may be performed from the data
channel console when the console is in a manual
mode. These include:

1. Data transmission operations

2. Non-data tape operations

3. Loading operations

4. Storing operations Figure 46B. IBM 7617 Data Channel Console

Central Processing Unit 23

Input-Output Components

Magnetic Tape Storage

The principal input-output medium for the computer
is magnetic tape. The tape is used, in addition to in­
put-output functions, for storage of intermediate re­
sults. It is also used as permanent storage for large
files of data. Magnetic tapes may be re-used many
times, because old data are automatically erased as
new data are recorded.

The tape is a plastic material that is coated on one
side with a metallic oxide. It is one-half inch wide
and is packaged on reels with tape lengths as great as
2,400 feet. The tape can be easily magnetized and
yet retains the magnetized "spots" when put in static
storage for indefinite periods of time.

The basic electronic principle of magnetic tape re­
cording, as used in data processing systems, is similar
to that of a home tape recorder. Instead of recording
music or voice, business and scientific data are re­
corded in the form of magnetized spots. A schematic
of the recording head together with a section of mag­
netic tape is shown in Figure 47.

When electrical current flows through the record­
ing head coil, the magnetic oxide particles on the tape
are oriented in one direction. If the current in the
coil reverses its direction, the particles on the tape will
be oriented in the opposite direction. This is called
reversing the polarity of the magnetic flux. Each such
change of polarity is given the value of 1. If no
change occurs, the value is given as O.

Now, if the tape is moved past the recording head
and the current in the coil is alternated at time inter­
vals, writing on magnetic tape is accomplished.

To read the tape, the process is reversed. As the
magnetized "spots" pass the recording head, small
voltages appear in the recording coil. These voltages
are amplified (as in core storage) and are then used
by the computer.

The advantages of tape storage are shown in Fig­
ure 48.

R/W HEAD

Figure 47. Magnetic Tape Recording

24 IBM 709-7090

Master
Records

Low Cost •••

Compact •••
One foot of tape wi th its
compact starage has a re­
cording density of 200 or
556 and m~y contain 14,400
or 40,030 binary digits.

Fast •••
Reading and writing speed
of 90,000 ta 375,000 binary
digits per second.

Variable Record Size •••
From one to several thousand
alphamerical characters per
record:
Recording Density 556 = 4,620
records of 3000 characters to
37,380 six-character records
on each reel of tape.

Updated
Records

Working
Records

Permanent •••
Reels may
be used many
times for many
different jobs.

One reel of tape has
a capacity equal to
several thousand IBM
cards.

Figure 48. Magnetic Tape Advantages

Check Bits-..(1

r
60 121 1.0 241 301

Data bits- i 0 1 0 0 1
1 1 0 1 1
1 0 1 0 1
1 1 1 1 0

51 ,,0 170 231 2.0 3.1

Figure 49. Binary Word Recorded on Tape

During actual tape unit operation, seven recording
heads instead of one are placed vertically across the
tape. Thus, recording occurs in seven columns or
"tracks." With the 7'09 or 7'090 systems, two different
"modes" of recording are used, binary and binary
coded decimal (BCD).

If data are recorded on magnetic tape just as they
are found in core storage (except for the check bits),
the tape is said to be a binary tape or to have been
recorded in the binary mode. The seven recording
tracks are used as follows:

1. One track, C, is used for check-bit recording.
2. Six tracks, B, A, 8, 4, 2, and 1, are used to

record six bits of the 36-bit word.
Thus, a binary word requires six recordings of six bits
each, as is shown in Figure 49.

The check track contains a 1 bit whenever the ver­
tical (across the tape) sum of the 1's in the B, A, 8,
4, 2, and 1 tracks is even. This check bit is computed
by the tape control in the 7'09 and the data channel in
the 7'09'0.

Alphabetic and decimal information may be re­
corded on, or read from, a magnetic tape without de­
pending upon the computer through use of auxiliary
equipment.

Magnetic tapes prepared or used on this equipment
have a special coding system known as binary-coded­
decimal (BCD). As the six-bit BCD characters are read
from the tape, some of the characters are altered. This
alteration is performed so that the digits '0 through 9
and the characters A through Z are represented in core
storage by six-bit binary numbers. The alteration of
characters is shown in the following table:

Core Storage

K M 8 9 7 3

Figure 50. BCD Word Recorded on Tape

CLASS IN CORE STORAGE ON TAPE

B A B A
Numerical 0 0 0 0
A to I 0 I 1
J to R I 0 0
S to Z 0

The digits 1 through 9 are represented by the six­
bit binary numbers '0'0'0'0'01 through '0'01'0'01 (their ex­
act values as binary integers). Thus, the B and A
(zone parts) of these digits would be '0'0. The num­
ber zero is represented on tape by the bit configura­
tion '0'01'010. This representation would be automati­
cally altered to '0'00'0'00 when reading in the BCD mode.

During writing in the BCD mode, the alteration
procedure is reversed so that the BCD characters in stor­
age are transformed to the BCD tape format. The zone
portions (B and A bits) are altered and the number
zero ('00'0'0'0'0) is replaced by '0'0101'0.

In addition to alphabetic and numerical characters,
the BCD format provides for punctuation marks and
other special symbols. Included is the BCD character
BLANK which suppresses printing or punching in any
desired position during auxiliary operations.

Figure 5'0 shows the characters K M 8 9 7 3 as they
would appear on tape and in magnetic core storage.
Each word in core storage may contain six BCD char­
acters. Note that the check bit occurs when the sum
of the l's in both the numerical and zone tracks is
odd. Tapes prepared in the BCD mode are compatible
with those prepared on the IBM 65'0, 702, 7'05, and
7'07'0 Data Processing Systems. Figure 51 represents a
section of magnetic tape with all of the possible char­
acters recorded on it in the BCD mode.

0123456789 A8CDEFGHIJKlMNOPQRSTUVWXYZ &.a-S·/,'IU@

Check { C II I II II I II III I I II I I I II
Zone { 8 111111111111111111 111111

A 111111111 11111111 III III

N_,i,o' {
8 II II II II II II 1111
4 1111 I III 1II1 1111 I I I I
2 I II II II II II II II II I I I I

I I I I I I I I II I I I I I I I I I II I
Figure 51. Tape Character Coding.

Input-Output Components 25

Tape Mark
Check Character

Figure 52. Record and File Gaps on Magnetic Tape

As information is recorded on tape, the number of
1 's in each track across the tape is automatically
counted and a check bit (1) is placed in the seventh,
or C, track. When the tape is read, the check bit is
recomputed and compared against the recorded check
bit. Any discrepancy will signal an error in tape op­
eration.

In addition to this vertical checking of each column,
a horizontal count of each track containing l's is taken
and recorded at the end of the record as a separate
column called "longitudinal redundancy check char­
acter" (LRCR).

A word or group of words, recorded consecutively
on tape, is referred to as a record. The number of
words making up a record is unrestricted within the
storage limitations of the system itself. If more than
one record is placed on the same tape, a % inch sec­
tion of blank tape called a record gap is placed be­
tween them. Records may also be grouped together
forming files. These files are separated by other blank
sections of tape called file gaps.

This file gap consists of a section of blank tape
and includes a special character called a tape mark.
This character and/or gap defines the difference be­
tween the records and files on the tape (Figure 52).
The number of words in a record and the number
of records in a file are variable and are determined by
the stored program and the limitations of the system.

When data are to be recorded on tape, a full word
of 36 bits is taken from storage and is subdivided into

Figure 53. File Protect Ring

26 IBM 709·7090

groups of six bits each. Each group, with its associated
check bit, is recorded in one column across the tape.
Tapes are written or read in the forward direction
only. However, the same tape may be written, back­
spaced, and then read or rewritten if desired. Back­
spacing is halted by the record gap or file gap; thus,
one backspace instruction results in moving the tape
in a backward direction to the next record or file gap.

Because the writing operation automatically erases
any previous information recorded on the tape, a file
protection device is provided to prevent accidental
erasure of information. A circular groove is molded
around the center of each tape reel to fit a demount­
able plastic ring. Without the ring in place, writing
is suspended and only reading may occur. The reel
in this condition is protected. When the ring is in
place, either writing or reading may be performed
(Figure 53).

Like movie film, the tape must have a short length
of blank space at the beginning and at the end of the
reel that can be threaded through the feeding mechan­
ism of the tape unit. Reflective spots of aluminum
foil, placed on the tape by the operator at any de­
sired distance from the ends of the tape, are photo­
electrically sensed to indicate the physical end of tape
and the starting point for recording (Figure 54) . Dur­
ing writing operation, the reflective spot signals that
the end of the reel has been sensed.

Figure 55 shows schematically the position of the
tape reels in relation to the read-write head, feed roll­
ers, and the vacuum columns. While reading or writ­
ing, tape is transported from the file reel (left side)
past the recording head to the machine reel (right
side) .

Since it is impossible to start and stop high-speed
motion of the tape without some slack in the tape, a

Figure 54. Reflective Spots on Tape

loop of tape is held in the vacuum columns and acts
as a buffer for this motion. As tape is drawn from
one column, it is replenished from the reel above it.
As it is fed into the opposite column, the associated
reel takes up the slack.

The read-write head assembly consists of two parts,
the lower of which is stationary, and the upper part
moves up and down under control of the load and un­
load keys. Tape threading must be done with the tape

Left Ptoloy _L---r-T

..... mbly 1

'~-U
Read-Write Head

As.ernbly

Figure 55. Schematic, Tape Feed

Right Prolay
Assembly

unit in an unload status. (Changing reels or thread­
ing tape takes approximately two minutes.)

Rewind is under the control of a stored program in­
struction or may be initiated by depressing the load­
rewind key on the unit. If more than one-half inch
of tape has been wound on the machine reel, the unit
automatically performs a high-speed rewind (500
inches per second). The head is raised, tape is pulled
from the vacuum columns and the tape is moved in
a reverse direction until less than one-half inch of
tape remains on the machine reel. When this occurs,
the tape is lowered into the columns, the head as­
sembly is lowered and the backward movement is
reduced to the normal operating speed of the unit.

During the high-speed rewind, tape is passed be­
tween a light source and a photo cell. If the tape
breaks, the light strikes the photo cell causing tape
motion to immediately stop.

The IBM 729 I Magnetic Tape Unit is used with the
709 systems; 729 II and 729 IV units are used with
the 7090 system (Figure 56) .

Each unit is equipped with a selector dial to be set
from 0 through 9 by the operator. The selected num­
ber then becomes the "address" of the unit. Instruc­
tions from the stored program condition or alert the
unit for use by specifying this address.

The 729 I reads and writes at a density of 200 char­
acters per inch of tape. This means that a 100-char­
acter record would occupy one-half inch of tape. Tape
is moved past the read-write head at a speed of 75
inches per second, thereby making the rate of read­
ing or writing 15,000 characters per second or 67
microseconds per character.

Input-Output Components 27

IBM 729 I

Figure 56. IBM Magnetic Tape Units

The 729 II unit reads and writes at one of two
~haracter densities, either 200 or 556 characters per
mch of tape. This dual density feature is under stored
program control. Tape moves past the read-write head
at a speed of 75 inches per second. The combination
of character density and tape speed give character
rates of 15,000 or 41,667 characters per second depend­
ing upon the recording density used.

Since a record gap is placed between each record
on tape, the total time required to read a record must
include time to space over the gap. This is termed
"access time" to the data. Average access time for the
729 I and 729 II is 10.8 milliseconds.

Figure 57 is a table showing a comparison between
100 different size records written in both density modes
on the 729 II tape unit. Note that 2,370 feet of the
available 2,400 feet are used, allowing 30 feet for the
beginning- and end-of-tape reflective strips.

The 729 IV tape unit also reads and writes at two
densities, 200 or 556, and is under program control.

28 IBM 709·7090

IBM 729 II and IV

With this model, however, the tape moves at a speed
of 112.5 inches per second. Thus, character density
and tape speed give character rates of 22,500 and
62,500 characters per second. For the 729 IV, with its
faster tape speed, the average access time is reduced
to 7.3 milliseconds. Figure 58 shows a time compari­
son for 100 records on the 729 IV tape unit.

Figures 57 and 58 show that the effective character
rate increases in efficiency as longer records' are proc­
essed. Rate per character for the 729 II is 67 or 24
microseconds; for the 729 IV, it is 44 or 16 micro­
seconds. Figure 59 shows rates for 100 records.

The 729 Magnetic Tape Units incorporate two mag­
netic gaps for each of the seven recording tracks. One

Characters
Per Record

6
36

360
720

1800
3600

729 II - Low Density
Time in Seconds

1.12
1.32
3.49
5.90

13.14
25.20

729 II - High Density
Time in Seconds

1.09
1.17
1.94
2.81
5.40
9.72

Figure 57. Time Comparison for the IBM 729 II

..

•

Characters
Per Record

6
36

360
720

1800
3600

729 IV - low Density
Time in Seconds

.76

.89
2.31
3.90
8.65

16.57

729 IV - High Density
Time in Seconds

.74

.78
1.30
1.88
3.61
6.49

Figure 58. Time Comparison for the IBM 729 IV

Characters 729 I, 729 II - Low Density 729 II - High Density
Per Record Characters per Second Characters per Second

6 536 550
36 2727 3077

360 10315 18556
720 12203 25623

1800 13699 33333
3600 14286 37037

729 IV - Low Density 729 IV - High Density

6 789 811
36 4045 4615

360 15584 27692
720 18461 38298

1800 20809 49861
3600 21726 55470

Figure 59. Effective Character Rates for 100 Records

gap is used for writing; the other, for reading. The
two-gap head (Figure 60) offers increased checking
while writing. A tape that is being written passes first
over the write gap (to record the data) and then over
the read gap (to check the writing). With this type
of operation, written data are automatically read and

727 729 I 729 II
Tape Speed (Inches per Second) 75 75 75
Record Density (per Inch) 200 200 2000r556
Character Rate per Second 15000 15000 15000 or 41667
Record Gap Size in Inches 3/4 3/4 3/4
Record Gap Time in Milliseconds 10.8 10.8 10.8
Maximum Number

of Tape Units IBM 753 10
per Control IBM 754 10
Unit: IBM 755 8

IBM 760 2
IBM 767(1) 5 and/or
IBM 777 8
IBM 7607(2) 10

Where used: Aux. Card-to-Tape (3 x x
Aux. Tape-to-Card x x
Aux. Tape-to-Printer

IBM 717 x x
IBM 72D-730 x x

IBM 650 x
IBM 704 x
IBM 705 lor II x
IBM 705 III x
IBM 709 x
IBM 7070 x
IBM 7090 x

Figure 60. Two-Gap Recording Head

Dual
Channels

Good Signal

Unwanted
- - - Noise - - - - - - - - --

Figure 61. Error Detection

checked. Each vertical column of six bits and the
check bit for that column are analyzed. If any dis­
crepancy occurred during the write operation, it is de­
tected at the read gap and a tape check indicator is
turned on.

Dual-level sensing is used with the two-gap head,
to increase error or weak signal detection at' the time
of writing. Signals received by the checking circuitry
associated with the read-write head are interpreted at
two different energy levels (EI and E2 in Figure 61).
This interpretation or analysis determines that:

1. The data signal strength is at a level that pro­

729 III
112.5
556

62500
3/4
7.3

5

or

x

729 IV
112.5

2000r556
22500 or 62500

3/4
7.3

10

x
x

vides good signals when the
tape is read at a later time.

2. No unwanted signal (strong
noise) is present on the re­
corded tape.

3. Compensating errors do not
exist because of a bit-for-bit
match that occurs at both
levels.

By testing the tape check indi­
cator, the computer can institute
corrective action whenever an
error is sensed.

Figure 62 shows the compa­
tible features of the different
magnetic tape units and data
processing systems.

(l) A maximum of ten 729 I tape units may be used if no 729 III tape units
are used; otherwise, a maximum of five of each type must be used.

(2) Ten intermixed tape units may be used on each IBM 7607.
(3) Dual level sensing is not active.

Figure 62. Features of Magnetic Tape Units

Input-Output Components 29

Auxiliary Equipment

Auxiliary equipment, a part of most data processing
systems, is described below.

1. Card-la-Tape (Figure 63)

The IBM 714 Card Reader, IBM 727 or 729 I Magnetic
Tape Unit, and the IBM 759 Card Reader Control per­
form independent card-to-tape operations. Informa­
tion can be read from a punched card and written
on magnetic tape for future processing in the com­
puter at a speed of 250 cards per minute. Auxiliary
card-to-tape equipment does the following:

a. It converts punched card data into magnetic
tape records without using the computer.

b. It selects or rearranges the data on cards for re­
cording.

c. It emits constant information.

d. It checks each record automatically after it is
recorded.

e. It selects data from two cards, if desired, to be
combined into one record on tape.

2. Tape-la-Card (Figure 64)

The IBM 722 Card Punch, IBM 727 or 729 I Magnetic
Tape Unit, and the IBM 758 Card Punch Control per­
form independent tape-to-card operations. Informa-

=

tion can be read directly from magnetic tape and
punched into cards. The tape can he recorded either
on card-to-tape equipment or on one of the IBM data
processing systems. Tape to card equipment per­
forms the following operations:

a. It converts magnetic tape records to punched
cards independent of computer operations.

h. It automatically checks punched data for accu­
racy.

c. It operates the card punch at a speed of 100
cards per minute.

3. Tape-la-Printer (Figure 65)

The IBM 717 Printer, IBM 727 or 729 I Magnetic Tape
Unit and the IBM 757 Printer Control perform inde­
pendent tape-to-printer operations. Information, can
he read from tape and printed in the exact form in
which it appears on tape. The tape can be recorded
either on card-to-tape equipment or on one of the IBM

data processing systems. The equipment performs
the following:

a. It converts magnetic tape records to printed
forms without depending on computer opera­
tions.

b. It prints 150 lines per minute, using 120 type
wheels of 48 characters each. Alphabetic, nu­
merical, and II special symbols are used.

c. It checks printed information automatically.

IJlM 714 Card Reader IBM 759 Card Reader Control IBM 727 or IBM 729-1 Magnetic Tape Unit

Figure 63. Card-to-Tape Auxiliary Units

IBM 727 or 729-1 Magnetic Tape Unit

Figure 64. Tape-to-Card Equipment

30 IBM 709-7090

=

IBM 758 Card Punch Control IBM 722 Card Punch

IBM 727 or 729-1 Magnetic Tape Unit

Figure 65. Tape-to-717 Printer

IBM 757 Printer Control

4. Tape-to-High Speed Printer (Figure 66)

The IBM 720 or 730 Printer (Model 2), IBM 727
or 729 I Magnetic Tape Unit, and the IBM 760 Con­
trol and Storage may perform independent tape-to­
printer operations. Information can be read from
magnetic tape and printed in the form it appeared on
tape. The tape can be recorded either on card-to-tape
equipment or on one of the IBM data processing sys­
tems. Auxiliary high-speed printing from tape does
the following:

a. It converts magnetic tape records to printed form
without depending upon computer operations.

b. It prints 500 lines per minute with the 720, or
1,000 lines per minute with the 730 Printer_

c. It uses 120 printing positions of 47 characters
each. Alphabetic, numerical, and special sym­
bols can be printed.

d. It checks information automatically.

5. Auxiliary Operations with IBM 1401

An IBM 1401 Data Processing System can be used for
all auxiliary operations. This system consists of a
1401 Processing Unit with as many as 16,000 positions
of core storage, a 1402 Card Read Punch, 1403 Printer,
and six Magnetic Tape Units (either 729 II or 729

IBM 717 Printer

IV). The 1401 is particularly adapted to such conver­
sion operations as: (1) card-to-tape, with off-line
audit, control, and edit of input data at 800 cards per
minute; (2) tape-to-card, at 250 cards per minute; (3)
tape-to-printer, at 600 lines per minute.

Data Synchronizer

In most computers, internal processing speeds are
much faster than the input devices that read data or
the output devices that record the results. For ex­
ample, the internal speed of the 709 is approximately
34 times faster than that of the 729 I tape unit and
833 times faster than that of the card reader_ How­
ever, a word is not always available from tape every
34 machine cycles. Because magnetic tape is a plastic
medium being read by a mechanical device, the data
transmission rate varies. Actually, input-output de­
vices are asynchronous with the computer; that is,
no fixed time relation exists between these devices
and the computer_

Some systems overcome this problem by suspending
all computing while an 1-0 device is being used. The
core storage waits until the input device has accumu­
lated a data word; this word is stored; the computer
then waits for the next piece of data_ The stored

IBM 727 or 729-1 Magnetic Tape Unit

Figure 66. Tape-to-720 or 730 Printer

IBM 760 Control and Storage IBM 720 or IBM 730 Printer

Input-Output Components 31

Figure 67. Data Transmission, IBM 704 System

program starts an input operation by defining the in­
put device and the receiving storage area. Processing
is delayed while any data are being moved in or out of
storage. One advantage to this method is the ease in
programming effort. The great disadvantage is the
tremendous waste of possible computing time (Fig­
ure 67).

The data synchronizers permit the 709 central
processing unit to perform a more independent role
in controlling the input and output than that of the
704 central processing unit. In the 709 system, the
central processing unit initiates and monitors 1-0 op­
erations but is not interrupted with the detail of rout­
ing the data (Figure 68) .

Each data synchronizer is composed of two com­
pletely separate and independent input-output chan­
nels. These two data channels provide for simultaneous
computing and transmission between the input-output
units and core storage. A data channel may be thought
of as a small computer having the responsibility for
controlling the quantity and destination of all data
transmitted between core storage and an input-output
unit. It also performs limited counting and testing
operations exclusively concerned with the transmis­
sion of data.

No restrictions exist on the type of transmission
being performed by a data channel. All channels
may be used for input, output, or for a combination
of input-output operations that will be concurrent
with calculation (Figure 69) .

The IBM 766 Data Synchronizer, used with the 709
system, provides a powerful link between core storage
and the input-output devices. This new concept of
input-output control enables processing to be per­
formed simultaneously with reading and writing. One,

Input·
Device

709 System

Figure 68. Data Transmission, IBM 709, 7090 Systems

!l2 IBM 709-7090

Core Storage

Printer

Central Processing Unit

Figure 69. Simultaneous Input, Calculation, and Output

two, or three data synchronizers can be used in the
system. Since each data synchronizer contains two
input-output data channels, one channel can be read­
ing from a tape while the other channel is writing on
another tape, printer, or card punch. At the same
time, processing may be executed in the central proc­
essing unit.

The IBM 766 Data Synchronizer (Figure 70) pro­
vides for improved methods of input-output control
listed below. They can be summarized as the ability
to:

1. Use the record structure of other IBM input­
output devices. This provides for the use of
other IBM computer tapes with the 709 system
thus making it compatible with other systems.

2. Use any previous IBM computer coding as input
data.

3. Transfer input data to scattered core storage
locations without loss of programming time.

4. Ignore unwanted data in a record. If desired,
unwanted data may be skipped.

7090 System

,

Figure 70. IBM 766 Data Synchronizer

5. Use minimum time in transferring data between
input-output units and storage. One core stor­
age cycle is used for each word processed.

6. Synchronize the stored program with the input­
output operations when desired. Thus synchro­
nization is optional to the programmer.

To these six refinements, add a seventh and totally
new ability to:

7. Operate six different input-output devices and
compute simultaneously.

The 709 system programs involving input-output
and processing are considered as two separate pro­
grams although all instructions are stored in core
storage. These two programs are called the process­
ing program and the data channel program.

The processing program is responsible for all arith­
metic, logical, and some testing operations. It controls
all operations that occur within the central process­
ing unit, plus the starting of input-output operations.

The data channel program is responsible for the
actual movement of data, counting of words, and
some automatic testing.

The two programs run concurrently and the central
processing unit's program is interrupted only when a
data channel requires data from, or has data for, core
storage.

The operation of a data channel is started by cen­
tral processing unit instructions. Once started, how-

ever, the data channel operates independently of the
main program. The data channel is said to contain
or "stack" its own instructions. For example:

INSTRUCTION

1. Rewind tape unit 1.
2. Backspace tape unit 2. (These instructions are executed

immediately in the central processing unit.)
3. Write tape unit 3.

1. The rewind instruction starts tape unit I re­
winding. (This may take as long as I-Y2 minutes.)

2. Two machine cycles after the rewind instruc­
tion is decoded in the central processing unit, the
next instruction is decoded. Tape unit 2 then begins
its backspace operation. (The time to complete the
backspace is a variable depending on the record size.)

3. Again, after two machine cycles, tape unit 3
starts the writing operation. To summarize, the three
instructions are executed by the central processing
unit in six machine cycles. The central processing unit
is then free to process other data until it is asked for
a storage reference cycle by the data channel.

Instructions concerned with a data channel are
called "commands" instead of instructions in order
to keep their understanding apart from the central
processing unit instructions.

Figure 7 I shows a simple program in which the cen­
tral processing unit is processing data while the data
channel is reading information from a tape. The
data channel program, made up of commands, and the
instructions for the central processing unit are both
stored in core storage. A single command may trans­
mit a large block of words between core storage and
an 1-0 unit. Normally, many instructions in the main
program may be executed during the time taken to
execute a single command in the data channel.

Main Program. The first main program instruction
selects the proper tape attached to data channel A.
The second instruction would then load the first
command (Ioep) into that data channel. The remain­
ing instructions would then start processing some other
central processing unit program.

Main Program Instructions

RTDA ------ read tape decimal, channel A.
RCHA------ Reset and load channel A command.

central processing unit instruction!
II II II II

" " " "

Data Channel Program Instructions

10CP ------ 1-0 count and proceed.
10CPN----- 1-0 count and proceed, but do not transmit.
10RP------- 1-0 record control and proceed.
10CD------ 1-0 count and disconnect.

Figure 71. CPU and Data Channel Programs

Input-Output Components 33

Word Count Address

17 3

Figure 72. Data Channel Registers

Figure 72 shows the format of data channel com­
mands. The operation part of the command is con­
tained in positions S, 1,2, and 19.

The address part, controlling the flow of data, is
contained in positions 21 through 35.

The count part controls the number of words in­
volved in the operation and is located in positions
3 through 17. Position 18 designates indirect address­
ing of the command, in the 7090 system only. Posi­
tion 20 is not used. (Indirect addressing of commands
is available for the 709 as an optional feature.)

As can be seen in Figure 72, the count and address
parts are put into a word count register and an ad­
dress register. The operation parts are put into an
operation register. These registers are, of course, in
the data channel.

Assume that the first command (Figure 71) has an
address part of 3000 and a count part of 00006.

INPUT-OUTPUT, COUNT AND PROCEED (IOCP 00006
3000). This command reads the first six words from
the selected tape and places them into consecutive
core locations starting with location 3000. Each time
a word is moved, the count is reduced by one. When
the count (00006) is reduced to zero, this command
is completed. Because it is a proceed (P) type com­
mand, the next command is brought into the data
channel for execution.

The second command is INPUT-OUTPUT, COUNT AND

PRO~EED IN NON-TRANSMIT MODE (IOCPN 00005 0000).
ThIs command results in skipping the next five words
on the same tape. N designates that the five words in­
volved will be read but not placed in core storage
(thus effectively skipping them). Again, because of
the P, the next command is brought into the data
channel.

The third command, INPUT-OUTPUT UNDER RECORD

CONTROL AND PROCEED (IORP 77777 3006), results in
reading the remainder of the words in that record
into core storage starting with location 3006. Because
the number of words remaining in the record is not
known, the large count (77777) is used. The sensing
of the record gap on the tape signals the end of this
command and the next command is brought into the
data channel (P).

!l4 IBM 709-7090

The fourth command, INPUT-OUTPUT, COUNT AND

DISCONNECT (IOCD 00000 0000), disconnects or dis­
engages the data channel, thus signaling the central
processing unit that the data channel program is fin­
ished.

A maximum of three data synchronizers (six data
channels) may be used with a 709 system. The data
channels of the first data synchronizer are called A
and B, the second two are C and D, and the third two
are E and F.

Each data channel may have as many as eight IBM

729 I Magnetic Tape Units attached to it. Data chan­
nels A, C, and E may also have one IBM 711 Card
Reader, one IBM 721 Card Punch, and one IBM 716
Printer attached to each channel. While all data
channels may be operated concurrently with comput­
ing, only one input-output unit per channel may be
in operation at any given time.

A complete 709 Data Processing System is shown
in Figure 73. The additional data synchronizers are
not shown but would be attached in the same manner
as the first.

To summarize the data synchronizer, the word
"channel" is associated with television. Here, a tele­
vision channel might be defined as a band of fre­
quencies over which one station can broadcast sound

. ' pIcture, and pulses to synchronize a receiver with the
camera. If three television stations are broadcasting
simultaneously they must use three separate channels.

A data channel is a group of components that can
transmit data between one input or output device and
core storage and can synchronize the two. If three 1-0

devices are to operate simultaneously, they must use
three separate channels.

A television receiver can receive only one channel
at a time; core storage in a computer can service only
one channel at a time. A television transmitter can

Data Synchronizer Unit

Figure 73. IBM 709 System

broadcast the picture from only one camera at a time;
a data channel must use only one 1-0 device at a time
although it is able to control several of them.

With as many as 48 tape units and three sets of
card machines controlled by the stored program, the
709 system can perform many jobs "on line" that were
formerly performed by auxiliary equipment. On line
means that the job is performed using the entire com­
puter system instead of using the "off line" auxiliary
equipment.

IBM 755 Tape Control

An IBM 755 Tape Control (Figure 74) is attached
between every eight tape units and the appropriate
data channel. Several reasons why this is done are:

1. Tape signals must be amplified and analyzed to
be usable. Strong noise signals must be rejected,
and weak correct signals must be accepted.

2. Only six information bits can be written on tape
at one time. The tape control separates the 36-
bit word into six 6-bit characters and also gen­
erates a seventh checking bit for each character.
The characters are then delivered to the tape
recording head, one at a time. The process is
essentially reversed during tape reading. The
data transfer is shown in Figure 74.

3. A signal for the end of record, end of file, weak
or invalid character, or the physical end of tape
is also passed through the tape control to the
data channel.

Only the 704 and 709 systems use tape controls.
The IBM 753 Tape Control is used with the 704 and
the IBM 755 Tape Control is used with the 709 system.

The problem of asynchronous balance is resolved
in the 7090 system through a combination of two new
units that perform the simultaneous reading, writing,
and computing functions. These units are the IBM

7606 Multiplexor and the IBM 7607 Data Channel.

::,:: :

36 Bits

I

Figure 74. Data Transfer between Tape Control, Tape Unit, and
Data Channel

Figure 75. IBM 7606 Multiplexor

Multiplexor

The IBM 7606 Multiplexor (Figure 75) accomplishes
all of the data switching in the 7090 system. All input­
output components in the system must feed their data
through the multiplexor. Likewise, any data coming
from core storage must go first to the multiplexor and
then to the component.

Data flow in the 7090 system is shown in Figure 76.
The data flow path is from an input-output device to
the data channel to the multiplexor and then to core
storage.

Figure 76. Data Transmission, IBM 7090 System

Input-Output Components 35

The multiplexor handles as many as eight input­
output data channels. The data word is handled in
the normal fashion of 36 bits in parallel, coming from
or going to core storage.

Data Channel

The IBM 7607 Data Channel (Figure 77) is another
new unit used with the 7090 system. Data channels
replace the data synchronizers and tape controls used
with the 709 system.

Each data channel is basically a completely separate
and independent input-output channel. It provides
for the transmission of data between the input-output
device and core storage, a transmission that is inde­
pendent of computing. As in the 709 system, the
stored program starts an input operation by defining
which input device is to transmit and which core
storage area is to receive. The stored program can
then proceed to execute instructions (compute) not
related to the input transmission. When a full word
has been assembled in the data channel, this word is
put into core storage. An interruption of the compute
program could occur only during the execution of a
convert or, in rare cases, some floating point instruc­
tions. This interruption could be only for 2.18 micro­
seconds. This procedure is reversed if an output oper­
ation is being performed.

Thus, one or more data channels can be occupied
with an input operation while others are being used

STORAGE

Figure 78. Data Channel and CPU Processing, IBM 7090

36 IBM 709·7090

Figure 77. IBM 7607 Data Channel

for output purposes. All operations are simultaneous
with the processing that is occurring in the central
processing unit.

A schematic of two data channels operating asyn­
chronously with processing in the central processing
unit is shown in Figure 78.

Each data channel may have as many as ten inter­
mixed IBM 729 II and 729 IV Magnetic Tape Units
in addition to a card reader, card punch, and a printer.

External Signal

A standard feature of the computer system is its abil­
ity to accept a signal from an external source. This
signal causes the computer to execute a trapping
operation when it is received. The instruction being
executed is completed and the location of the next
instruction in sequence is placed in the address part
of core location 0003. The computer then takes its
next instruction from location 0004.

Direct Data Feature

As an optional feature, the computer may be equipped
with the direct data feature. This allows the trans­
mission of data between the computer and an external
data device. With this feature, an external signal
initiates the trapping operation and the stored pro­
gram may then take whatever action is required to
introduce data into the system or supply data from
the system to the direct data device.

Thus the main office of a company using the com­
puter could receive data from branch offices by direct
wire. This direct data path, as is shown in Figure 79,
could be an IBM 65-66 Data Transceiver or anyone of
many types of transmi tting devices.

Figure 79. Schematic, External Signal and Direct Data Features

Magnetic Drum Storage

The magnetic drum is another storage device used in
electronic computers. It uses the same principle as mag­
netic tape: A magnetic material can be rapidly mag­
netized and de-magnetized, and will, like magnetic
tape, remain magnetized until deliberately erased.
Magnetic drum storage has the advantage that, once
information is recorded, it is retained even if the
power to the computer is interrupted.

An important additional advantage possessed by a
magnetic drum is the ability to read or alter stored
information selectively, without reading or rewriting
the entire contents of the drum. In the case of mag­
netic tape, the entire file must be searched or re­
written. This ability to read or write selectively is a
valuable asset when large tables are stored and search
operations are to be performed or when information
stored in the table must be modified. Therefore, the
drum is used primarily for the storage of large blocks
of related information such as subprograms, rate
tables, or supplementary data needed for the solution
of a problem.

A comparison between magnetic tape and drum
storage shows that tape is a long, thin, storage device
using one recording head while the drum is a short,
wide, storage device using many recording heads. This
similarity is shown in Figure 80.

Figure 80. Magnetic Tape and Drum as Storage Devices

The magnetic material used on the drum is a wire
made of an alloy containing copper, nickel, cobalt,
and iron. This wire is wound and fused to the surface
of the drum and the surface is then ground to an ex­
tremely fine tolerance, providing a smooth even mag­
netic surface.

The writing or recording process is similar to mag­
netic tape in that a coated surface passes under a re­
cording head. Information is written on this mag­
netic surface by an electrical pulse that causes the
head to become active. Whenever the head is active,
the area directly under it becomes magnetized as
shown in Figure 81. This area is called a bit or a one.
Thus, information is stored on the surface of the
drum in a pattern represented by combinations of
magnetized areas.

Input-Output Components 37

Figure 81. Writing on a
Drum

Figure 82. Reading from a
Drum

To read the information, the magnetized surface is
passed under the recording head. This time, the mag­
netized area on the drum surface generates small volt­
age pulses in the head as shown in Figure 82, exactly
the reverse of the writing process. These voltage
pulses are amplified and are then available for use
in the computer.

The 36 recording heads spread across the surface
of one drum accommodate the word size of the com­
puter (Figure 83) .

Recordina---~-""~
Heeds

Drum

Figure 83. Magnetic Drum Recording Heads

A magnetic drum unit has a storage capacity ot
8,192 words, each word consisting of 36 bits. The
drum unit contains two distinct physical drum~ each
with a capacity of 4,096 words. Each of the physical
drums contains two logical drums with a capacity of
2,048 words each. A logical drum is selected by giving
the appropriate address.

The 2,048 locations on each logical drum can be
individually addressed by integers in the range 0000-
2047 (0000-3777 octal). A record or block of words

Figure 84. Drum Sectors and Addresses

!l8 IBM 709-7090

Figure 85. IBM 733 Magnetic Drum

is normally stored in sequentially numbered locations.
The program must indicate the drum address where
the first word is to be written or read. The number
of copy instructions executed then determines the
number of words in the record.

Figure 84 illustrates the physical arrangement of
words on a logical drum. The addresses are num­
bered octally. Observe that, when reading or writing
a continuous record, the computer refers to every
eighth word of a drum for consecutive addresses. Each
logical drum has 256 sectors (a group of eight loca­
tions) and therefore must make eight complete revo­
lutions for all 2,048 words to be read or written as
a continuous record.

In summary, the drum is a high-volume, moderate­
speed, long-term data storage medium for use with
both the 704 and the 709 systems. It is particularly
useful for the storage of large blocks of information
such as subroutines, rate tables, or supplementary data
needed for the solution of a problem. The data stored
on the drum are not destroyed when power is re-

moved. This makes the drum valuable for overnight
storage of intermediate results during the processing
of involved problems.

The IBM 733 Magnetic Drum (Figure 85) is one of
two input-output units in the 709 system that function
without being dependent upon the data synchronizer.
The other unit is the IBM 740 CRT Output Recorder
and Display Unit. The 7090 system does not use the
magnetic drum, or any of the CRT equipment.

Punched Cards

In most applications, magnetic tape is used as the
principal input medium. It may also be desirable to
use IBM cards as an input medium in some situations
where the volume of input is sufficiently small to per­
mit an economical operation. In either case, IBM cards
are used for initially recording data because of their
great flexibility. Errors are easily detected and cor­
rected, input data may be readily prepared on several
card punch locations simultaneously and the cards
may be collected at a central location before entry
into the computer.

Entering a program on cards may be done in such
a way that instructions are punched, one to a card,
in the most desirable form to the programmer. The
computer can then be supplied with a standard pro­
gram to assemble the instructions in the desired order.
Then, if errors are detected or if changes must be
made, the error cards are removed, the correct ones
are added, and the computer prepares the new pro­
gram. Note that there is no need to repunch all cards
but only the cards in error.

0 2345 67139A'BCD F IJjL I:IOPQRS
'U nil I y:+-

I
...
I II I I 10 0 j " " ' ..

1 1 1

22 2

333 33 33

4444 444 444 44

55555 5555 5555 555

666666 66666 66666 6666

7777777 777777 777777 77777

88888888 8888888 88888881 888888

999999999 99999999 99999999 9999999 999999999999
12345611'WII1213"'516'7aI9m~u~N~ana~~3In~~»~v~~*~~U"u*~*

Figure 86. Standard IBM Card Code

Punched card input and output may represent any
alphabetic character, special symbol, or binary punch­
ing if the assembly program handling it is able to rec­
ognize the code used. The standard IBM card code is
shown in Figure 86.

Only 72 card columns of the IBM card can be read
into or punched from core storage during any given
storage reference cycle. Any 72 of the possible 80 card
columns of the card can be selected through use of a
control panel on the card reader and the proper wir­
ing on that panel. Figure 87 shows how the card may
be punched to record data in binary form. In this
particular example, the first 72 columns of the card
are used. Each row is split into half-rows of 36 card
columns, each corresponding to the 36-bit binary
word. Thus, the half-row identified by the circled 9
is named the 5-row left. Similarly, the row identified
by the circled 10 is named the 5-row right.

I ~ ,---------left Hall-------..... +! -------Right Hall ______ -! • ..J!-4._~ni"ed -i o um"s

® @ 12-Raw

® @ ll-Row

0000000000000000 O@OO 0 0 0 0 0 0 0 0 0000000 00000000000000000 ®O 0 0 00000000000000 00000000
7374757&77781980

11111111111111111@11111111111111111 11111111111111111@11111111111111111 111 II 1 II

222222222 n 2 2 2 2 2 2@>2 2 2 2 2 2 2 2 2 2 2 2 2 2 222 2222222222222222 2@2 2 2 2 2 2 2 2222222222 22222222

33333333333333333@33333333333333333 3333333333333333 3@3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33333333

4444444444444444 4@4 4 4 4 4 4 4 4 4 4 4 4 4 4444 4444444444444444 4@4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44444444

55555555555555555055555555555555555 5555555555555555 5@5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 55555555

66666666666666666066666666666666666 66666666666666666@66 6 6 6 6 6 6666666666 66666666

7777777777777777 7@7 7 7 7 7 7 7 7 7 77777777 777777777 7 7 7 7 7 7 7 70777777 7 7 7 7 7 7 77 7 7 7 77777777

8888888888888888 8@888 8 8 8 8 8 8 8 8888888 88888888888888888088888888888888888 88888888

9 9 9.9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 999999999999999 9 9~9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 99999999
123456789mnUDM~mnmw~n22nN~Hvna~M»nM~H 31383940414743444541474849505152535 5565758 59 60 6162 6364 65 6667 6169 70 7112 1374157617 78 7980

Figure 87. Sequence of Card Reading

Input-Output Components 39

Thus, there are 24 half-rows in the card. One full
word of binary data (including the sign) can be
punched in any half-row. The card reader regards the
punched hole as a binary 1. An unpunched hole indi­
cates a binary O. For example, a punched hole in the
8-row, card column 36, is regarded by the reader as a
binary I in the least significant position of the word
in the 8-row left. The left-most position of each half
row is reserved for the sign bit of that word (columns
1 and 37). A binary 1 represents a negative sign while
a binary 0 (no punch) represents a positive sign.

When reading or punching cards, a record is de­
fined as the information contained in one card. A
file consists of any number of cards and takes the form
of a deck. Note that the definitions of records and
files differ depending on the particular input-output
component being discussed.

Card Reader

The IBM 711 Card Reader (Figure 88) is used by the
computer as the card input device. This reader is
available in two models. The model I reads cards at
the rate of 150 per minute while the model II reads
250 cards per minute.

Data punched in the cards may be numerical, alpha­
betic, binary, or any special character code. The inter­
pretation of the coding and reading format is con­
trolled by the stored program and the control panel
located on the reader. As a punched card proceeds
through the reader, a "card image" is built up in core
storage (Figure 89). As additional cards are read,

Figure 88. IBM 711 Card Reader

40 IBM 709·7090

,

'. '.. ~

1'1 lLI 'It'

Core Storage

Figure 89. Card Image in Core Storage

they too become a part of the card images stored in
core storage.

The IBM 709 Data Processing System may have one
model II card reader attached to data synchronizer
channel A, and additional readers may be attached to
channels C and E. If a reader is attached to a data
channel, an IBM 716 Printer must also be attached to
the same channel because it is the power source for
the reader.

The IBM 7090 Data Processing System may have
one model II reader attached to each data channel,
making a total of eight possible readers on the system.
A printer is required for each reader.

Figure 90. IBM 721 Card Punch

Card Punch

The IBM 721 Card Punch (Figure 90) is used as the
punching or recording unit for IBM cards. The 721
punches cards at a rate of 100 cards per minute.

Basic card punch operations are analogous to those
of the card reader, except that instead of building up
a card image in core storage when data are read from
a card, the card image is sent from core storage to the
card punch to be recorded as punched holes (Fig­
ure 91). The stored program and the control panel on
the card punch control the coding and the recording
format of the card image.

The IBM 709 Data Processing System may have one
card punch attached to data channels A, C, and E. If
a card punch is attached to a data channel, that chan­
nel must also have an IBM 716 Printer attached to it.
One printer will accommodate both the reader and
punch.

The IBM 7090 Data Processing System may have
one card punch attached to each data channel making
a total of eight possible card punches per system. One
printer is required for each card reader and card
punch.

Printer

The IBM 716 Printer (Figure 92) is used to prepare
printed output from the computer systems.

The printer is equipped with 120 rotary type wheels
(Figure 93). Each type wheel has 48 characters in-

with a "0"
zone

zone
"7" hole
by itself

with a "12"
zone

"12" hole
"11" hole

b"O" hale 6 ~ ~
"7" holes

Character Printed

Card Punch

Figure 9l. Punching a Card Image

Figure 92. IBM 716 Printer

W

5

E

8 l R

I/L 1/;

... I
" ,

I

A' A' .Y vVVVJ
'A'..vv'vvv
fVI/ v'v

Core Storage

o

Zone Porti on

T 2 B
Figure 93. IBM 716 Printer Type Wheel

Input-Output Components 41

I
Printed

I Data

/ 1 .11

I Data to be . ..
... . ' . . Printey Printer

IA

lfl/

Figure 94. Printing from Core Storage

eluding numerals, alphabetic symbols, and special
characters. Information is printed at the rate of 150
lines per minute with as many as 120 characters per
line. The print format and arrangement of the data
to be printed are controlled by the stored program
and a control panel located on the printer. Use of the
proper stored program enables the printing of any
desired information in any form convenient to the
programmer.

Figure 94 shows a report as it appears in core
storage and as it would appear being printed on the
716 Printer. The choice of which type wheels to use
in the actual printing would be decided by the control
panel wiring on the printer.

The IBM 709 Data Processing System uses one
printer attached to data channels A, C, and E. The
IBM 7090 Data Processing System may have a total of
eight printers, one attached to each data channel.
With all systems, the 716 Printer supplies the power
for both the card reader and the card punch and,
therefore, each set of card equipment must be attached
to one data channel.

Cathode Ray Tube Equipment

Visual display of processed data is provided by' a
cathode ray tube display unit. Numbers are con­
verted into alphamerical characters, curves, or any
type of visual representation. With this unit, the
actual results determined by the mathematical for­
mula used in Figure I could be used to display the
cross section of the wing design (Figure 95).

Associated with this display unit is a second cathode
ray tube with a camera attached. This unit provides
a permanent filmed recording of the displayed data so
that different designs can be compared and evaluated.

When a character is to be displayed, only 35 posi­
tions of the word containing the character are used.
The sign position is considered positive. The remain­
ing bits signify a display or no-display of a spot, de-

42 IBM 709·7090

Figure 95. Visual Display of Wing Design

pending on whether the bit is a I or a O. The first
column of the character is represented by the first
group of seven bits (following the sign bit); the sec­
ond column, by the second group of 7 bits, and so on.
The first bit of each group may correspond to the
lowest position of each column; succeeding bits will
move up the column, one bit at a time.

S I 7 14 21 28 35

Figure 96. CRT Character Plotting

An example of CRT character plotting is shown in
Figure 96. The word responsible for the plot, as it
appears in core storage, is shown above the plot. The
program consists of a write instruction addressing the
CRT and a copy instruction specifying the storage
location of the word containing the character to be
plotted.

The IBM 740 Cathode Ray Tube Recorder (Figure
97) is basically a digital-to-analog converter. It is con­
nected to both the 704 and 709 systems. The recorder
contains a seven-inch cathode ray tube as the actual
output device. A camera, mounted over the face of
the CRT, produces a filmed recording of the plotted
data.

The IBM 780 Cathode Ray Tube Display (Figure
98) is connected to the CRT recorder and controlled by
it. This unit contains a 21-inch CRT, similar to a home
television receiver tube, to provide an immediate dis­
play of the plot being filmed by the 740 unit. The
CRT display is, in effect, a "slave unit" to the CRT re­
corder. The conversion from digital to analog data,

Figure 97. IBM 740 CRT Output Recorder

the display of that data on the faces of the CRT'S, and
the operation of the camera are all accomplished at
electronic speeds under control of the stored program.

The 7090 system does not use either the CRT re­
corder or the CRT display units.

Figure 99 shows comparative statistics of the 709
and 7090 systems. Refer to the Reference Manuals
(IBM 709, Form A22-6536, or IBM 7090, Form

A22-6528) for the operational details concerning the
systems.

Figure 98. IBM 780 CRT Display

709 7090
Core Storage Size 4096, 8192 or 32,768 words 32,768 words

T ransi stari zed no yes

Internal Speed (Basic Cycle) 12usec 2.18 usee

Simul taneous Read-Write-Compute yes yes

Tape Skip Abil ity yes yes

Automatic Input-Output Priority yes yes

Data Channel Trapping y~s yes

Number of Instructions 208 220

Maximum Number of:

Tape Units 48 80

1-0 Data Channels 2,4 or 6 1 thru 8

Card Readers 3 8

Card Punches 3 8

Printers 3 8

Magneti c Drums 2 none

CRT Recorder and Display 1 none

Figure 99. Comparison of the IBM 709 and 7090 Systems

Input-Output Components 43

Share

Organization

The present Share organization was conceived when
three customers, involved in preparation for a 704
Data Processing System, began informal discussions
concerning their individual plans and problems. The
mutual respect of the participants for the program­
ming competence of each other was expressed; they
were willing to accept the ideas of others, even to the
extent of obsoleting methods already prepared within
their own installations. It was agreed that a full-scale
attempt should be made to bring Share into being.
The first meeting was held in 1955 with seventeen
members present.

One of the advantages of an organization of this
type is that each member is closely united with the
development of computer usage throughout the world.
A substantial portion of the major users of high­
speed digital computers is represented in the Share
membership. It has been found that critical evalua­
tion of each other's ideas usually produces a distilla­
tion of thoughts, superior to any individual opinions.

Members realize substantial savings in programming
and check-out of programs. The continual inter­
change of ideas among members has demonstrated that
a high degree of computing sophistication is rapidly
built up in a Share installation.

In its initial phase, Share was concerned primarily
with procedures and standards. Later, the prepara­
tion and distribution of programs was started. No
slacking of activity is anticipated since, as the most
essential programs are completed, emphasis shifts to
new areas of mathematical computation.

Programming System

The Share 709 system is used with the 7090 Data
Processing System as the main programming system. It
enables the programmers to write, check-out, and alter
their programs quickly and easily. The Share 709
System (sos) can be thought of as composed of four
distinct parts:

1. The Share compiler assembler translator (SCAT).

2. The program testing and correcting system.
3. The input-output system.

4. The MockDonald control system.

44 IBM 709-7090

The SCAT portion of the sos consists of two parts,
the compiler and the modify-and-Ioad program.

The compiler performs about the same functions
for the 709 and 7090 systems that the Share assembly
program (SAP) performs for the 704 system. With a
few minor exceptions, a Share assembly language pro­
gram is acceptable as input for the compiler and re­
sults in a program listing and an absolute binary pro­
gram card deck. In addition to the results produced
by Share assembly program, the compiler can produce
a "squoze" card deck. This deck contains the sym­
bolic source program in encoded binary form. This
form may be converted to machine language and
loaded by the modify and load program almost as
rapidly as an ordinary binary load program loads an
absolute binary card deck. Two main reasons for the
intermediate squoze card deck phase are:

1. Modifications to the program can be made in
the original SCAT language and then added to the
squoze deck for loading by the modify-and-Ioad
program.

2. Enough of the original symbolic information can
be retained during the program execution to per­
mit the checking and correcting program to re­
turn printed output in the original symbolic
language. In most instances, these two features
make it unnecessary to "patch" a program in
machine language. Thus, nearly all cross-ref­
erencing between symbolic and binary may be
avoided.

Another powerful tool in the compiler is the idea
of "macro-operation." The compiler is built to recog­
nize a large fixed number of macro-operations. It also
accepts and temporarily retains definitions of macro­
operations given by the programmer. In either case, it
generates and inserts into the program the sequence
of machine words specified by anyone of these macro­
operations in a macro-instruction. Among the sys­
tem (fixed) macros are all of the pseudo-operations
making up the checking and correcting program, the
input-output, and the MockDonald control system
languages.

A significant feature of the SCAT system is that the
loading process is also an assembly process. The
squoze deck is not in a form that can be inserted into
the computer as is. It is the result of what corresponds
to the first pass of the 704 Share assembly program sys­
tem. With SAP a second pass is needed to decode the
assembled deck into absolute binary. In the SCAT sys­
tem, the second pass is a function of the modify-and-

load program. This program provides for the same
modification of the original code that could be ob­
tained by changing the original symbolic deck and
reassembling. Thus, in SCAT, program modifications
are given to the loading program and, for these
changes, the modify·and-Ioad program performs both
the first and second passes. In this sense, the loading
program is a full assembly program. When program
modifications are made with the loader, it produces
on request a new squoze deck or an absolute binary
deck, as well as the listing of the modified program.
In addition to the above operations, the modify-and­
load program performs checking operations for both
programmer and machine errors.

The input-output system permits writing of 1-0 pro­
grams designed for a particular customer's application.
Transmission macro-instructions are used and are
executed by a routine called the dispatcher. These

macros provide simultaneous input-output with com­
puting. Computing is interlocked with data transmis­
sion so that the computer will not attempt to use or
modify data to be completed. Transmission orders
are channel-stacked when required and subsequently
the dispatching of these orders on data channels is au­
tomatic when the channel is free. The programmer
may interrogate the dispatcher for the status of any
transmission at any point in the program. The check­
ing of input-output indicators is automatically ac­
complished by the dispatcher.

The MockDonald control system has been designed
to enable the automatic transition from one problem
to the next, to maintain a machine program log, to
aid in the parallel operation of tapes and main frame
processing and, in general, to perform many of the op­
erations that would normally be handled by a profes­
sional machine operator.

Share 45

Fortran Automatic Coding System

The IBM· Mathematical FORmula TRANslating System,
709 FORTRAN, is an automatic coding system for the
IBM 709 Data Processing System. More precisely, it is
a 709 program that accepts a source program written
in the Fortran language, closely resembling the ordi­
nary language of mathematics, and produces a ma­
chine language object program ready to be run on a
709.

The 709 Fortran therefore, in effect, transforms the
IBM 709 into a machine with which communication
can be made in a language more concise and more
familiar than the 709 machine language itself. The
result is a substantial reduction in the training re­
quired to program, as well as in the time consumed in
writing programs and eliminating errors from them.

Among the features which characterize the 709
Fortran system are the following:

The 709 Fortran is available in versions for all sizes
of storage. Each version produces programs which
can be used on any size of 709, provided sufficient stor­
age is available for the object program. Object pro­
grams that are too large for the 709 on which they
are to be used must be subdivided by the user.

Object programs produced by Fortran will gener­
ally be as efficient as those written by experienced
programmers.

The Fortran language is intended to provide facili­
ties for expressing any problem of numerical compu­
tation. In particular, problems containing large sets
of formulas and many variables can be dealt with

46 IBM 709·7090

easily, and any variable may have up to three inde·
pendent subscripts.

The language of Fortran may be expanded by the
use of subprograms. These subprograms may be writ­
ten in Fortran language, and may be called by other
Fortran programs, as well as subprograms. The lan­
guage may be expanded by the use of subprograms to
any desired depth.

For problems in which machine words have a logi­
cal rather than a numerical meaning, the language is
less satisfactory, and difficulties may arise in express­
ing such problems. Nevertheless, many logical opera­
tions not directly expressible in the Fortran language
can be carried out by making use of the provisions
for incorporating library routines.

Prewritten routines, to evaluate functions of any
number of arguments, can be made available for in­
corporation into object programs by the use of any
of several different facilities provided for this purpose.

Certain statements in the Fortran language cause
the inclusion in the object program of the necessary
input and output routines. Those which deal with
decimal information include conversion to or from
the internal machine language, and permit consider­
able freedom of format in data input and output.

Arithmetic in an object program will generally be
performed with single-precision floating point num­
bers. These numbers provide about 8 decimal digits
of precision, and may be zero or have magnitudes
between approximately 10-38 and 1038• Fixed point
arithmetic for integers is also provided.

CODE

ACL
ADD
ADM
ALS
ANA
ANS
ARS
AXC
AXT
BSFA
BSFB
BSFC
BSFD
BSFE
BSFF

uBSFG
··BSFH

BSR
BSRA
BSRB
BSRC
BSRD
BSRE
BSRF

··BSRG
··BSRH

BTTA
BTTB
BTTC
BTTD
BTTE
BTTF

··BTTG
··BTTH

·CAD
CAL
CAQ
CAS
CFF
CHS
CLA
CLM
CLS
COM

·CPY
CRQ
CVR
DCT
DVH
DVP
ENK
ERA
ETM
ETTA
ETTB
ETTC
ETTD
ETTE
ETTF

uETTG
··ETTH

FAD

COMMENT

Add and Carry Logical Word X
Add ... X
Add Magnitude ... X
Accumulator Left Shift X
AND to Accumulator X
AND to Storage .. X
Accumulator Right Shift X
Address to Index, Complemented
Address to Index, True
Backspace File, Ch. A X
Backspace File, Ch. B X
Backspace File, Ch. C X
Backspace File, Ch. D X
Backspace File, Ch. E X
Backspace File, Ch. F X
Backspace File, Ch. G X
Backspace File, Ch. H X
Backspace Record X
Backspace Record, Ch. A X
Backspace Record, Ch. B X
Backspace Record, Ch. C X
Backspace Record, Ch. D X
Backspace Record, Ch. E X
Backspace Record, Ch. F X
Backspace Record, Ch. G X
Backspace Record, Ch. H X
Beginning of Tape Test, Ch. A X
Beginning of Tape Test, Ch. B X
Beginning of Tape Test, Ch. C X
Beginning of Tape Test, Ch. D X
Beginning of Tape Test, Ch. E X
Beginning of Tape Test, Ch. F X
Beginning of Tape Test, Ch. G X
Beginning of Tape Test, Ch. H X
Copy and Add Logical Word X
Clear and Add Logical Word X
Convert by Addition from MQ
Compare Accumulator with Storage X
Change Film Frame X
Change Sign X
Clear and Add X
Clear Magnitude .. X
Clear and Subtract X
Complement Magnitude X
Copy X
Convert by Replacement from MQ
Convert by Replacement from AC
Divide Check Test X
Divide or Halt .. X
Divide or Proceed X
Enter Keys .. X
Exclusive OR to Accumulator X
Enter Trapping Mode X
End of Tape Test, Ch. A X
End of Tape Test, Ch. B X
End of Tape Test, Ch. C X
End of Tape Test, Ch. D X
End of Tape Test, Ch. E X
End of Tape Test, Ch. F X
End of Tape Test, Ch. G X
End of Tape Test, Ch. H X
Floating Add X

-709 system instruction only.
u7090 system instruction only.

X
X
X

X
X

X

X

X

X

X
X

X

X

CODE

FAM
FDH
FDP
FMP
FOR
FRN
FSB
FSM
FVE
HPR
HTR
IIA
ilL
IIR
liS
IOCD

IOCDN
IOCP

IOCPN
IOCT

IOCTN
IORP
IORPN
IORT
IORTN
IOSP
IOSPN
lOST
IOSTN
lOT
LAC
LAS

LBT
LCHA
LCHB
LCHC
LCHD
LCHE
LCHF

··LCHG
·-LCHH

-LDA
LDC
LDI
LDQ
LFT
LGL
LGR
LLS
LNT
LRS
LTM
LXA
LXD
MON
MPR
MPY
MSE

SCAT Mnemonic Operation Codes

COMMENT

Floating Add Magnitude X X
Floating Divide or Halt X X
Floating Divide or Proceed X X
Floating Multiply X X
Four
Floating Round .. X
Floating Subtract X X
Floating Subtract Magnitude... X X
Five
Halt and Proceed
Halt and Transfer X X
Invert Indicators from Accumulator
Invert Indicators of the Left Half
Invert Indicators of the Right Half
Invert Indicators from Storage X X
Input-Output under Count Control and

Disconnect
(IOCD with No Transmission)
Input-Output under Count Control and

Proceed
(IOCP with No Transmission)
Input-Output under Count Control and

Transfer
(IOCT with No Transmission)
Input-Output of a Record and Proceed
(IORP with No Transmission)
Input-Output of a Record and Transfer
(IORT with No Transmission)
Input-Output until Signal and Proceed
(IOSP with No Transmission)
Input-Output until Signal and Transfer
(lOST with No Transmission)
Input-Output Check Test X
Load Complement of Address in Index ..
Logical Compare Accumulator with

Storage .. X X
Low-Order Bit Test X
Load Channel A X X
Load Channel B X X
Load Channel C X X
Load Channel D .. X X
Load Channel E .. X X
Load Channel F X X
Load Channel G .. X
Load Channel H .. X
Locate Drum Address X X
Load Complement of Decrement in XR
Load Indicators .. X X
Load the MQ .. X X
Left Half Indicators, Off Test
Logical Left Shift X
Logical Right Shift X
Long Left Shift X
Left Half Indicators, On Test
Long Right Shift X
Leave Trapping Mode X
Load Index from Address
Load Index from Decrement
Minus One
MUltiply and Round X X
Multiply .. X X
Minus Sense .. X

Appendix 47

SCAT Mnemonic Operation Codes (Con~d)

CODE

ORA
ORS
OSI
PAC
PAl
PAX
PBT
PDC
PDX
PIA
PON
PSE
PTH
PTW
PXA
PXD
PZE
RCDA

""RCDB
RCDC

"RCDD
RCDE

""RCDF
""RCDG
URCDH

RCHA
RCHB
RCHC
RCHD
RCHE
RCHF

··RCHG
uRCHH
""RDCA

RDCB
RDCC
RDCD
RDCE
RDCF
RDCG

"·RDCH
·RDR

RDS
REWA
REWB
R£WC
REWD
REWE
REWF

uREWG
UREWH

RIT
RIA
RIL
RIR
RIS
RND
RNT
RPRA

·"RPRB
RPRC

uRPRD
RPRE

URPRF
··RPRG
··RPRH

RQL
RTBA
RTBB

COMMENT

OR to Accumulator X X
OR to Storage .. X X
OR Storage to Indicators X X
Place Complement of Address in XR
Place Accumulator in Indicators
Place Address ill Index
P-Bit Test .. X
Place Complement of Decrement in XR
Place Decrement in Index
Place Indicators in Accumulator
Plus One
Plus Sense .. X
Plus Three
Plus Two
Place Index in Address
Place Index in Decrement
Plus Zero
Read Card Reader, Ch. A X
Read Card Reader, Ch. B X
Read Card Reader, Ch. C X
Read Card Reader, Ch. D X
Read Card Reader, Ch. E X
Read Card Reader, Ch. F X
Read Card Reader, Ch. G X
Read Card Reader, Ch. H X
Reset and Load, Ch. A X X
Reset and Load, Ch. B............................ X X
Reset and Load, Ch. C.......... X X
Reset and Load, Ch. D X X
Reset and Load, Ch. E.... X X
Reset and Load, Ch. F X X
Reset and Load, Ch. G X X
Reset and Load, Ch. H X X
Reset Data Channel A X
Reset Data Channel B , X
Reset Data Channel C X
Reset Data Channel D X
Reset Data Channel E.... X
Reset Data Channel F.... X
Reset Data Channel G X
Reset Data Channel H X
Read Drum .. X
Read Select .. X
Rewind, Ch. A .. X
Rewind, Ch. B .. X
Rewind, Ch. C .. X
Rewind, Ch. D .. X
Rewind, Ch. E .. X
Rewind, Ch. F .. X
Rewind, Ch. G .. X
Rewind, Ch. H .. X
Right Half Indicators, Off Test
Reset Indicators from the Accumulator
Reset Indicators of the Left Half
Reset Indicators of the Right Half
Reset Indicators from Storage X X
Round .. X
Right Half Indicators, On Test
Read Printer, Ch. A X
Read Printer, Ch. B X
Read Printer, Ch. C X
Read Printer, Ch. D X
Read Printer, Ch. E X
Read Printer, Ch. F X
Read Printer, Ch. G X
Read Printer, Ch. H X
Rotate MQ Left .. X
Read Tape Binary, Ch. A X
Read Tape Binary, Ch. B X

·709 system instruction only.
u7090 system instruction only.

48 IBM 709-7090

CODE

RTBC
RTBD
RTBE
RTBF

uRTBG
uRTBH

RTDA
RTDB
RTDC
RTDD
RTDE
RTDF

·"RTDG
"RTDH

RUNA
RUNB
RUNC
RUND
RUNE
RUNF

"RUNG
"RUNII

SBM
SCHA
SCHB
SCHC
SCHD
SCHE
SCHF

"·SCHG
"SCHH

SDHA
SDHB
SDHC
SDHD
SDHE
SDHF

·SDHG
·SDHH

SDLA
SDLB
SDLC
SDLD
SDLE
SDLF

"SDLG
·SDLH

SIL
SIR
SIX
SLF
SLN
SLQ
SLT
SLW
SPRA

"SPRB
SPRC

""SPRD
SPRE

··SPRF
"SPRG
"SPRH

SPTA
"SPTB

SPTC
"SPTD

SPTE
"SPTF
"SPTG

r.I
-1

" <
~
r.I
co

COMMENT ~

Read Tape Binary, Ch. C X
Read Tape Binary, Ch. D X
Read Tape Binary, Ch. E X
Read Tape Binary, Ch. F X
Read Tape Binary, Ch. G X
Read Tape Binary, Ch. H X
Read Tape Decimal, Ch. A X
Read Tape Decimal, Ch. B................ X
Read Tape Decimal, Ch. C...................... X
Read Tape Decimal, Ch. D X
Read Tape Decimal, Ch. E...................... X
Read Tape Decimal, Ch. I' X
Read Tape Decimal, Ch. G...................... X
Read Tape Decimal, Ch. H...................... X
Rewind and Unload, Channel A X
Rewind and Unload, Channel B X
Rewind and Unload, Channel C X
Rewind and Unload, Channel D X
Rewind and Unload, Channel E X
Rewind and Unload, Channel F X
Rewind and Unload, Channel G X
Rewind and Unload, Channel H X
Subtract Magnitude X
Store, Ch. A.......... X
Store, Ch. B , X
Store, Ch. C ' X
Store, Ch. D , X
Store, Ch. E X
Store, Ch. I' X
Store, Ch. G X
Store, Ch. H X
Set Density High. Channel A.... X
Set Density High, Channel B...)(
Set Density High, Channel C X
Set Density High, Channel D X
Set Density High, Channel E X
Set Density High, Channel F X
Set Density High, Channel G X
Set Density High. Channel H X
Set Density Low, Channel A X
Set Density Low, Channel B X
Set Density Low. Channel C X
Set Density Low, Channel D X
Set Density Low, Channel E X
Set Density Low, Channel F X
Set Density Low, Channel G X
Set Density Low, Channel H X
Set Indicators of the Left Half .,
Set Indicators of the Right Half
Six
Sense Lights Off X
Sense Lights On .. X
Store Left Half MQ X
Sense Light Test X
Store Logical Word X
Sense Printer, Ch. A X
Sense Printer, Ch. B X
Sense Printer. Ch. C X
Sense Printer, Ch. D X
Sense Printer, Ch. E X
Sense Printer, Ch. F.................................. X
Sense Printer, Ch. G.......... X
Sense Printer, Ch. H X
Sense Printer Test, Ch. A X
Sense Printer Test, Ch. B........................ X
Sense Printer Test, Ch. C X
Sense Printer Test, Ch. D X
Sense Printer Test, Ch. E X
Sense Printer Test, Ch. F X
Sense Printer Test, Ch. G X

i
I:i
~

X
X
X
X
X
X
X
X
X

X

X

(lODE

"SPTH
SPUA

"SPUB
SPUC

"SPUD
SPUE

"SPUF
"SPUG
"SPUH

SSM
SSP
STA
STD
STI
STL
STO
STP
STQ
STR
STT
STZ
SUB
SVN
SWT
SXA
SXD
TCH
TCNA
TCNB
TCNC
TCND
TCNE
TCNF

"TCNG
--TCNH

TCOA
TCOB
TCOC
TCOD
TCOE
TCOF

--TCOG
"TCOH

TEFA
TEFB
TEFC
TEFD
TEFE
TEFF

-"TEFG
·"TEFH

TIF
TIO
TIX
TLQ
TMI
TNO
TNX
TNZ
TOV
TPL
TQP
TRA
TRCA
TRCB
TRCC
TRCD
TRCE
TRCF

"TRCG
··TRCH

COMMENl

Sense Printer Test, Ch. H X
Sense Punch, Ch. A X
Sense Punch, Ch. B X
Sense Punch, Ch. C X
Sense Punch, Ch. D X
Sense Punch, Ch. E X
Sense Punch, Ch. F X
Sense Punch, Ch. G X
Sense Punch, Ch. H X
Set Sign Minus X
Set Sign Plus X
Store Address X
Store Decrement X
Store Indicators X
Store Instruction Location Counter X
Store .. X
Store Prefix X
Store MQ X
Store Location and Trap
Store Tag X
Store Zero X
Subtract .. X
Seven .. .
Sense Switch Test X
Store Index in Address
Store Index in Decrement
Transfer in Channel
Transfer on Ch. A Not in Operation X
Transfer on Ch. B Not in Operation X
Transfer on Ch. C Not in Operation X
Transfer on Ch. D Not in Operation X
Transfer on Ch. E Not in Operation X
Transfer on Ch. F Not in Operation X
Transfer on Ch. G Not in Operation X
Transfer on Ch. H Not in Operation X
Transfer on Ch. A in Operation X
Transfer on Ch. B in Operation X
Transfer on Ch. C in Operation X
Transfer on Ch. D in Operation X
Transfer on Ch. E in Operation X
Transfer on Ch. F in Operation X
Transfer on Ch. G in Operation X
Transfer on Ch. H in Operation X
Transfer on End of File, Ch. A X
Transfer on End of File, Ch. B X
Transfer on End of File, Ch. C X
Transfer on End of File, Ch. D X
Transfer on End of File, Ch. E X
Transfer on End of File, Ch. F X
Transfer on End of File, Ch. G X
Transfer on End of File, Ch. H X
Transfer if Indicators Off X
Transfer if Indicators On X
Transfer on Index
Transfer on Low MQ X
Transfer on Minus X
Transfer on No Overflow X
Transfer on No Index
Transfer on No Zero X
Transfer on Overflow X
Transfer on Plus X
Transfer on MQ Plus X
Transfer X
Transfer on Redun. Check, Ch. A X
Transfer on Redun. Check, Ch. B X
Transfer on Redun. Check, Ch. C X
Transfer on Redun. Check, Ch. D X
Transfer on Redun. C1!eck, Ch. E X
Transfer on Redun. Check, Ch. F X
Transfer on Redun. Check, Ch. G X
Transfer on Redun. Check, Ch. H X

-709 system instruction only.
"7090 system instruction only.

X
X
X
X
X
X
X

X
X
X

x
x
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X

SCAT Mnemonic Operation Codes (Conrd)

CODE

TSX
TTR
TXH
TXI
TXL
TZE
UAM
UFA
UFM
UFS
USM
VDH
VDP
VLM

"WDR
WEF
WEFA
WEFB
WEFC
WEFD
WEFE
WEFF

""WEFG
""WEFH

WPBA
"WPBB

WPBC
.... WPBD

WPBE
""WPBF
"WPBG
.... WPBH

WPDA
.... WPDB

WPDC
"WPDD

WPDE
""WPDF
"'WPDG
.... WPDH

WPUA
"WPUB

WPUC
.... WPUD

WPUE
""WPUF
""WPUG
"'WPUH

WRS
WTBA
WTBB
WTBC
WTBD
WTBE
WTBF

.... WTBG
""WTBH

WTDA
WTDB
WTDC
WTDD
WTDE
WTDF

"WTDG
"·WTDH

"WTV
XCA
XCL
XEC
ZET

COMMENT

Transfer and Set Index
Trap Transfer X X
Transfer on Index High
Transfer with Index Incremented
Transfer on Index Low
Transfer on Zero X X
Un normalized Add Magnitude X X
Unnormalized Floating Add X X
Unnormalized Floating Multiply X X
Un normalized Floating Subtract X X
Unnormalized Subtract Magnitude X X
Variable Length Divide or Halt X
Variable Length Divide or Proceed X
Variable Length Multiply............ X
Write Drum .. X
Write End of File X
Write End of File, Ch. A X
Write End of File, Ch. B X
Write End of File, Ch. C X
Write End of File, Ch. D X
Write End of File, Ch. E X
Write End of File, Ch. F X
Write End of File, Ch. G X
Write End of File, Ch. H X
Write Printer Binary, Ch. A X
Write Printer Binary, Ch. B X
Write Printer Binary, Ch. C X
Write Printer Binary, Ch. D X
Write Printer Binary, Ch. E X
Write Printer Binary, Ch. F X
Write Printer Binary, Ch. G X
Write Printer Binary, Ch. H X
Write Printer Decimal, Ch. A X
Write Printer Decimal, Ch. B X
Write Printer Decimal, Ch. C X
Write Printer Decimal, Ch. D X
Write Printer Decimal, Ch. E X
Write Printer Decimal, Ch. F X
Write Printer Decimal, Ch. G X
Write Printer Decimal, Ch. H X
Write Punch, Ch. A X
Write Punch, Ch. B X
Write Punch, Ch. C X
Write Punch, Ch. D X
Write Punch, Ch. E X
Write Punch, Ch. F............................. X
Write Punch, Ch. G X
Write Punch, Ch. H X
Write Select X
Write Tape Binary, Ch. A X
Write Tape Binary, Ch. B X
Write Tape Binary, Ch. C X
Write Tape Binary, Ch. D X
Write Tape Binary, Ch. E X
Write Tape Binary, Ch. F X
Write Tape Binary, Ch. G X
Write Tape Binary, Ch. H X
Write Tape Decimal, Ch. A X
Write Tape Decimal, Ch. B X
Write Tape Decimal, Ch. C X
Write Tape Decimal, Ch. D X
Write Tape Decimal, Ch. E X
Write Tape Decimal, Ch. F X
Write Tape Decimal, Ch. G X
Write Tape Decimal, Ch. H X
Write Cathode Ray Tube X
Exchange Accumulator and MQ
Exchange Logical Accumulator and MQ
Execute .. X X
Storage Zero Test X X

Appendix 49

.. :

1,1

·.

