7090 DATA PROCESSING SYSTEM BULLETIN

IBM 7090 PROGRAMMING SYSTEMS
SHARE 7090 9PAC

PART 1: IN_TRODUCTION AND GENERAL PRINCIPLE%

.

SHARE 7090 9PAC is a business-oriented programming system which
facilitates the establishment and maintenance of data files and enables the
user to obtain any desired report on this data with a minimum of program-
ming effort, in a timely manner, and in the format which the user specifies.

The 9PAC System will operate on any IBM 7090 or on any IBM 709 equipped
with Data Channel Trap. It requires a minimum machine configuration of
32K words of core storage, one on-line printer, one on-line card reader,
and 4 tape units on each of 2 channels.

This publication is the first part of a reference manual which describes the
9PAC System and prepares the reader to use the facilities it affords. The
reader is assumed to have a basic understanding of the IBM 7090, especially
as regatds input/output and magnetic tape records; no knowledge of symbolic
programming is required except with respect to the use of hand calculations,
which is an auxiliary system feature.

This publication provides a general introduction to the 9PAC System and
a description and explanation of the use of 9PAC files. Other parts of the
manual are:

SHARE 7090 9PAC SHARE 7090 9PAC
Part 2: The File Processor Part 3: The Reports Generator
Form J28-6167 ‘ Form J28-6168 “

References in this publication to the other parts of the manual are in terms
of part and chapter numbers.

9PAC was initially developed by SHARE members. SHARE members who
cooperated in the programming of the initial system were:

General Electric Company, Richland, Washington
Chrysler Corporation

Dow Chemical Company

General Electric Company, Syracuse, New York
Northern States Power Company

Phillips Petroleum Company

Union Carbide Corporation

SHARE 7090 9PAC is currently boing maintained and improved by IBM
Applied Programming.

(© 1961 by International Business Machines Corporation

TABLE OF CONTENTS

Chapter 1: An Introductionto 9PAC ¢ v v v v ..
Program Generation . , .,o eun
Program Execution
The File Processor. e e e c e e e e
The Reports Generator . . . « v ¢ ¢ v ¢ o v o o o o o o o o«
Input/Output Configurations for 9PAC Object Programs. . .

Dictionaries.« . .« . . o s e e e e
The 9PAC Language
A Simplified 9PAC Program . . . v ¢« v v ¢ o s s o ¢ o o o »
Chapter 2: General Characteristics of 9PAC Files
The Logical Characteristics of a File e e .
Subdivisionsofa File , , ¢ v v ..
Records and Fields C e e e e e e

Partial Fields e e e e e e
Grouping., . . v v v v v v 4t b b b e e e e e
Summary Records. v v v v v v v o 0 0 a0 .
Sequencing ., . . ., ... e e e e e e e e e e e e e
The "Parent-Offspring' Relationship. . ..,

The Physical Characteristics of a File.
File Characteristics e e e e e e e s e e
Labels e e e e e e e e e e e
Attached Dictionary . . « . + « v ¢ v v v o & v e e

Mode., e e e e e s e e e e e e . e e s

Density. « v v v v v v v v o « e v e e e
Blocking

Block CheckSums. c et e s e e e

Block Sequence Numbers ., . . « ¢ « v ¢ o o o o o &
File Restrictions., . . v ¢ v ¢ ¢« v ¢ v o v ¢ o o s o o o o

Chapter 3: Format of IOCS Control Cards ., . . . v ¢ v ¢ « ¢ o
The ¥JOB Card . . .« . v v v v v s v v o o s a0 s o0 o s o
The *FILECards
The *END Card . . . v s v v s o v s s o s o o o o o o oo

Appendix A: 9PAC Generation Procedure« ...
The File Processor. . . o« v v v v o o o 0 o o v s 0 o o o o s

The Reports Generator ¢ . ¢ v v o o o ¢ o s o s o s

Appendix B: Format of Dictionary Records ¢+« . .

GO U R W R R

13
13
13
14
15
15
15
16
18
19
19
19
20
20
20
20
20
20
20

21
21
24
27
28
28
28
29
30

31

CHAPTER 1: AN INTRODUCTION TO 9PAC

9PAC is a system designed for data processing of business transactions;
it consists of two basic and distinct parts: the File Processor and the
Reports Generator.

The File Processor is concerned with the original gathering of facts,
organizing the acceptable facts, and storing the facts on tape. In addition,
the File Processor provides a means of inserting, deleting, and modifying
the facts contained in a file, as well as recording new facts as they become
available.

The Reports Generator is concerned with the extraction of information from
a file and the use of this information to produce desired reports; this may
involve developing new information based on given information (totals, etc.)
or may involve editing the information in a file to create a desired report.

Program Generation

Both the File Processor and the Reports Generator are program generators;
that is, they accept input parameters (described later) written by the
programmer and from these build routines which will accomplish the
objectives specified by the programmer. These routines are generated

by the File Processor and the Reports Generator and are known as the
object program.

The object program is loaded into the IBM 7090, which will operate upon
the data, under control of the object program, to produce the output
desired by the programmer.

Program Execution

Program generation and object program execution may be accomplished in
one of two ways: Generate and Go or Load and Go.

Generate and Go is a method of operation whereby the parameter deck is
fed into either the File Processor or the Reports Generator, the object
program is generated, and then control is transferred to the object program
for immediate execution. At the same time, an object program deck may
be produced for later Load and Go.

Load and Go is a method of operation whereby a previously produced object
program deck is loaded into core storage and is then executed immediately.

The Generate and Go method provides an easy means of changing parameters
whenever an unusual combination of file activity, especially report generation,
is desired. This feature facilitates business control through the medium of
timely and custom-designed reports. The Load and Go method provides an
economical means of doing standard 9PAC jobs, since regeneration is not
required.

The File Processor

The File Processor portion of 9PAC is designed primarily to generate
object programs which will control file maintenance; however, inherent

in the logic of this system is the ability to handle file establishment as a
special case of file maintenance. File establishment consists of the initial
organization of the master file and its creation from the various available
data. File maintenance consists of the subsequent processing of the master
file, processing which will keep the file current and maintain any desired
historical data, In this process, object programs produced by the File
Processor are designed to read the master file and read any number of
additional files which contain transactions to be applied against the master
file.

These transaction files or change files are merged together and are
processed against the master file in order to produce the desired updated
new master output file.

The changes to the master file, which are generally specified in the para-
meters, but which may be specified in the change file itself, are made by
means of insertion, deletion, or modification,

Insertion is the placement of new data into the file. For example, a sales
file may require insertion of records for new salesmen or for new customers.

Deletion is the removal of information from a file. For example, a payroll
file may require the removal of records of employees who have left the
company.

Modification involves replacing, adding to, or subtracting from, information
in the file. For example, a record which contains marital status requires
replacement to reflect marriage; a record which contains year-to-date
salary requires addition to reflect current salary; and a record which
indicates inventory-on-hand requires subtraction to reflect stock with~
drawals.

Just as there are numerous kinds of changes to a file, there are also numerous
methods of applying these changes., The File Processor includes three

basic methods of making changes to a file during file maintenance. These

are; vertical, update, and horizontal,

A vertical change is one which applies in the same way to all records which
meet specified selection criteria. For example, all payroll records of
master mechanics might need to indicate that a ten cent raise has been
granted.

An update change is one which applies in the same way to all records which
meet specified selection criteria, but unlike the vertical change, the data
may vary. For example, an accounts payable file may need to have new
bills payable added to existing balances payable.

A horizontal change is one which applies in various ways to records which
meet specified selection criteria. The change data itself tells both the
required action and the data to use in making the change. For example, a
personnel history report may require the replacement of a new address for
an old address for one employee, and it may require the addition of a
dependent for another employee. Similarly, an inventory file may require
the addition of a quantity of one part number and the insertion of a new
vendor's name in another.

These types of changes, like many of the other concepts contained in this
chapter, will be explained further elsewhere in this manual. Their intro-
duction at this point serves only to orient the reader to the overall operation
of the 9PAC System and to develop in the reader an awareness of the power
and scope of the 9PAC System.

The output of this processing of the change data against the master file is
a new master file, an error file, and an activity report file.

The new master file may be used for subsequent processing; the error file
will reflect (1) data that is apparently in error and (2) changes that were

not made due to errors in the program. The activity file, which is optional,
is a condensed file of selected records as they appear before and/or after
change. These records may subsequently be analyzed to obtain a report

of activity to the file and may also be used to check that changes were

made in the desired manner.

Throughout the system, the programmer need not be concerned with many
of the details normally associated with programming data processing
applications. Programs generated by 9PAC include a basic logic which
controls the input/output of all data, merges multiple change files, selects
the proper change record for action against the master file, reports object-
time errors such as incorrect change data values, checks to determine
that the correct master file tape is mounted, and performs many other
routine functions automatically.

The Reports Generator

The Reports Generator portion of 9PAC is designed to generate object
programs which will produce printed reports; as an auxiliary feature due

to the logic of the system, it may also produce tape files for other purposes
such as sorting.

The Reports Generator produces object programs which read the master file
or change activity file produced by File Processor programs (or for that
matter, any of a variety of files produced from various sources) and
operates upon it to produce the desired output without destroying or changing
the input file in any manner.

Reports Generator programs select and edit data from the master file;

they then '"format" this data into print lines for off-line printing or punching.
Reports produced may have various types of lines, such as heading lines,
detail lines, and total lines.

Heading lines give information about the report. They identify it and
comment upon various sections of it.

Detail lines normally are used to list selected information related to a
single input record. For example, a detail line may contain an employee's
name, his seniority date, and his job classification.

Total lines may be used to produce totals of the various detail lines, If
the detail lines list part number, quantity on hand, and value of the stock
of that item, total lines might indicate the total value of various groupings
of the stock as well as a grand total of all the stock,

Tape files containing records that are not destined for printing may be
produced by the Reports Generator; these may include detail and total

information but may not contain heading line-type information.

Input/Output Configurations for 9PAC Object Programs

At this point, a brief explanation of 9PAC input/output configurations will
help to explain the various types of activities that may be carried out by
File Processor or Reports Generator object programs.

The File Processor typically has an input/output configuration such as the
following:

IBM 7090

Thus, a File Processor program will have a master file as input (except
in the case of file establishment) and will have one or more files which
contain change information. These are all input to the IBM 7090 under
control of the object program which has been previously loaded into core
storage.

Dictionaries

The object program controls the combining of the change files into the
master file and produces, as output, a single, updated, new master file
and a report and error file. These files may then be processed by a
Reports Generator program and/or a future File Processor program along
with additional change files.

The Reports Generator typically has an input/output configuration such as
the following:

Master
File

> IBM 7090

Thus, a Reports Generator program has a single file as input and, under
control of the object program which has been previously loaded into core

storage, produces a number of output tapes, each of which is destined for
off-line printing or punching, or for future processing such as sorting.

As an aid to program preparation and to provide for error detection, 9PAC
files have the ability to carry a description of their own data in the form of
dictionaries. These dictionaries are located at the beginning of the file and
may be used with master files and certain types of change files. Dictionaries
fulfill a variety of services. They allow input/output routines to handle
records of various lengths automatically. They permit ease of referencing
information within the file, since references may be in record type and field
number rather than in increment and length. They provide an option whereby
certain records need not carry some of their identifying information (thus
condensing the file). They define the mode of a field (BCD or binary).

They specify maximum and minimum values that a field may have (for
automatic error detection when a field exceeds these values). They also
perform other functions which are described later.

When programming subsequent applications using a file that has a dictionary,
the programmer need only refer to the established dictionary to identify

the records and fields with which he is concerned., This alone reduces the
programming effort significantly.

The 9PAC Language

Most programming languages are procedural languages; that is, the pro-
grammer must first design a flow chart of the program he wishes to compile
and then he must translate this flow chart into a series of procedural
statements.

9PAC does not use this type of language. In order to describe the 9PAC
language, it is helpful to understand the construction of 9PAC object
programs. 9PAC object programs have a predetermined logic (or general-
ized framework) into which are inserted various modules that are designed
to do the various functions which the programmer specifies in his source
language program. Thus the programmer need not flow chart his problem;
he need only specify the functions he wishes his program to perform.
Appropriate machine instructions are then generated and are placed within
the generalized framework that is pre-established for all 9PAC object
programs,

To specify the functions which he wishes his program to perform, the
programmer makes entries in specific fields (or columns) of various coding
forms. These entries are referred to as parameters, since they serve to
vary the size, complexity, number, and sequence of the various standard
functions which are built into the generalized framework to produce the
desired object program. Entries need not be made for reading and writing,
since these functions are automatically built into the object program;
however, entries describing the logical and physical characteristics of the
files must be made so that the reading and writing routines may be generated
with the correct parameters.

The File Processor generator uses four forms to specify the four basic
functions. These functions are Dictionary Definition and three types of
change functions, The mere selection of the form determines the basic
function. Within each basic function are a number of sub-functions.
Examples of these sub-functions are:

SEL Select records on the basis of the contents of specified fields
MTCH Match change records to master records
FLD Change the specified field according to the specified action

These and other functions will be described in more detail in Part 2.

The language of the Reports Generator is different from that of the File
Processor, although here too the programmer makes parameter entries
in specific fields (or columns) of various coding forms.

The Reports Generator employs three basic forms. Two forms are used
to specify the format of the output file, while the third is used to specify
the relationships between the elements of the input file and the elements of
the output file.

6

The format of a report intended for printing is described by a pictorial
representation of the desired report. The formats of records not intended
for printing are specified by entries which give the logical and physical
characteristics of the desired output file.

The parameter entries which specify the relationships between input and
output consist of input record and field identification, processing action
such as selection, editing, and accumulation, and the identification of the
output line (or record) and field associated with the input and the processing
These and other functions will be described in more detail in Part 3.

A Simplified 9PAC Program

The following example will illustrate some of the elements of a 9PAC pro-
gram and some aspects of coding a 9PAC problem solution. The example
is highly simplified, as is the coding. Only the major portion of the coding
is shown; it is represented schematically in a form which approximates
actual coding. The reader need not be concerned if some parts of the
sample problem are not completely clear; the example is placed here
merely to give him a feeling for the system, rather than to teach him how
to code 9PAC problems.

Suppose a program is being written which is to account for machine-time
usage by various projects and, within projects, by sub-projects.

Assume that two files exist: a master file and a change file. The master

file contains various information which is used to account for machine

time usage; information in this file is referenced by record type and field
number. The change file contains information which is to be used to change
the information in the master file, Information in the change file is referenced
in terms of column position; column position itself is indicated by increment
and length (which will be explained later).

The master file is organized as follows:

Record type 01: Project record
Field 0003: Project number
Field 0006: Estimated hours for the project
Field 0007: Project name

Record type 02: Sub-project record
Field 0004: Project number
Field 0006: Sub-project number
Field 0007: Current hours
Field 0010: Total hours

The file is ordered on project number; thus each record type must contain
a project number,

Each of these record types contains additional fields, but these are not
used for this problem.

The change file contains two separate types of change records, as follows:

1. New estimate record. This record is identified by a 5 in column 3; it
contains the project number in columns 4-10 and the new estimate in
columns 11-15,

2, Current hours record. This record is identified by either a 6 or 7 in
column 3; it contains the project number in columns 4-10, the sub-
project number in columns 11-13, and the current hours in columns
21~24,

The File Processor portion of this problem involves two file maintenance

activities:
1. Change the estimated hours in field 0006 of record type 01.

2. Record the current hours in field 0007 of record type 02 and add these
hours into the previous total in field 0010 of record type 02.

To change the estimated hours, the programmer might code the following:

Master File
Function | Record Type

UPDATE 01
Change
Function Location Change Value
SEL 002001 5

The first line indicates that this is an update change to master file record
type 01 (project records). The second line indicates that the proper type

of change record for this change (the New Estimate record) is to be identified
by a 5 in column 3 of that record. Since columns in the change record are
identified by increment (number of columns preceding the field) and length
(number of columns in the field), the column which is to contain the 5
(column 3) is stated as 002001, That is, 002 is the increment of column

3 and, since we are dealing with a single column, its length is 001. These
are combined as 002001, Fields containing data used in making changes

of this type are often identified on 9PAC coding forms as "Change Location, "

The next line to be coded might be:

Master File | Master File Change
Function | Record Type | Field Number Location

MTCH 01 0003 003007

This instruction matches the information in record type 01 and field
number 0003 (project number) with the information in columns 4-10
(increment 003 and length 007) of the New Estimate change record (project

number).

This identifying information must match before the change

described below can be made (e.g., the master file record for project
31248 can be changed only by a change record for project 31248).

Finally, the following instruction might be given:

Master File Master File Change
Function | Record Type | Field Number Location | Change Action
FLD 01 0006 010005 R

This specifies that the new estimate (columns 11-15 of the New Estimate

change record) is to replace the current estimate (master file record type
01 and field number 0006).
column headed ''"Change Action., "

Replacement is specified by the letter R in the

To record current hours for each sub-project and incorporate them in the
sub-project total hours, the following coding might be used:

Master File

Function | Record Type
UPDATE 02
Change
Function Location Change Value
SEL 002001 6-7

These lines indicate that an update change to master file record type 02 is
to be made using a Current Hours change record, which is identified by

either a 6 or 7 in column 3.

The following might be coded next:

Master File | Master File Change
Function | Record Type | Field Number Location
MTCH 02 0004 003007
MTCH 02 0006 010003

Since master file sub-project records are ordered by sub-project number
as well as project number, both of these fields must also be contained in
the change record and the change record must be matched against the
master file record to determine that both apply to the same sub-project;
this is accomplished by the above coding.

The following coding might then be used to indicate the actual change:

Master File | Master File Change
Function | Record Type | Field Number Location | Change Action

FLD 02 0007 020004 R
FLD 02 0010 020004 +

This specifies that the current hours contained in the Current Hours change
record are to replace the current hours contained in the master file record
and are to be added to the total hours in the master file record. The addition
is specified by the plus sign in the column headed ""Change Action. '

After the file has been updated, suppose it is desired to produce a report
on the hours used, etc. The master file will contain the information to
be used in preparing the report. Assume that the report is specified as
follows:

1. [Each page is to contain a heading line that will label the various columns
of information on the page.

2. Each Sub-project record in the master file is to cause a detail line to
be printed; the detail line will give the sub-project number, the current
hours, and the total hours for that sub-project.

3. Sub-projects are to be summed into total lines for each project. Total
lines will contain the project name, the total current hours and total
hours for the constituent sub-projects, and the estimated hours for
the project.

The format of the report is specified in terms of literal information (identical
information that appears each time the line is printed) and variable infor-
mation (information from input records — in this case, the master file
records — that is inserted into the output print line). The report is pictured
on a form which shows all of the various print positions. Each different

type of line is '"pictured' separately on the same form and is given a line
number which describes some of the characteristics of the line.

The report might be pictured as follows:

Line Print Position

Number 516[7 S[io[1 1[12[13[14]15]16]1 A18]19[20R 1[22[2 324 P 5[26]2 A 28293 0]3 132]33[34[35B6[37 38 [39]40L. [. . [132
HD1 O|J|E|C|T C|U{R|R|E[N|T| |T|O| |ID|AIT|E E|S|T|.

D06 +|X|X +X]. |X([(X +HX[X

Ti10 XIXIXIX|X| |T|O|T|A[L|S + XX XX [+ XX XX [+XX] XX

In this "picture," + and X specify column locations where variable data is
to be inserted. The other characters represent literal information which
is to be printed whenever the line is printed, The line number indicates
the type of line and provides certain information to the Reports Generator.
The exact rules for specifying report output are given in Part 3.

The HD1 line contains literal information only; it will be printed at the top
of every page.

The D06 line contains variable information; it will be printed each time a
sub-project record (master file record type 02) is read. Fields specified
for this line (referenced in terms of their rightmost print position in the
coding above) will subsequently be related to input fields. In this case, the
variable information from the input file will be inserted as follows:

Variable Information Rightmost Print Position of Variable Field
Sub-project number 007
Current hours 023
Total hours 030

The T10 line contains literal and variable information; it will be printed
following all sub-project detail lines for each project. The variable fields
for this type of line are:

Variable Information Rightmost Print Position of Variable Field
Project name 009
Total current hours 023
Total hours for project 030
Estimated hours 037

Literal information requires no further reference; however, each variable
field must be associated with the input field which is to supply the data.

The following coding might be used to relate the master file input with the
desired printed report:

Output

Card Input Control Rightmost
Number | Record Type|Field Number | Field Name Break Accumulate | Line Number | Print Position

1 01 0003 PROJECT NUMBER 1

2 01 0006 ESTIMATED HOURS T10 037

3 01 0007 PROJECT NAME T10 009

4 02 0006 SUB-PROJECT NUMBER D06 007

5 02 0007 CURRENT HOURS D06 023

6 02 0007 CURRENT HOURS X T10 023

7 02 0010 TOTAL HOURS D06 030

8 02 0010 TOTAL HOURS X T10 030

11

Line 1 indicates that project number is the control break field to be used
with the T10 line (this correspondence is through the 1 in the Control Break
column and the middle character of the line number — 1), A control break
may be described as a change in the value of a field which is specified as a
control field. Specifying the project number as a control break field causes
the T10 line to be printed each time the project number changes.

Lines 2-5 and 7 each specify an input field and describe where it is to be
located in the output report.

Lines 6 and 8 also specify an input field and describe where this information
is to be located for output; they further specify that the input fields are to
be summed together prior to output. Summing is indicated by the X in the
Accumulate column.

The result of the above coding would be a report as specified on page 10.

12

CHAPTER 2: GENERAL CHARACTERISTICS OF 9PAC FILES

Any ordered collection of data is a file. However, to be used with the 9PAC
System, files must also meet certain logical and physical requirements.

The exact requirements of a 9PAC file vary due to the purpose and use of
the file. Files may exist for many reasons. They may contain a record
of past transactions (a master file), changes to be made to a master file,
a report based on certain operations specified by a programmer, or data
to be ordered in some specific fashion.

The following is a general discussion of the types of files which may be

used with 9PAC and some of the logical and physical characteristics of
these types. The logical characteristics of a file pertain to the organization
and content of the logical records. The physical characteristics pertain

to the format and arrangement of the physical records on tape.

Specific information covering the use and format of files will be stated
where applicable.

The characteristics of a specific file may be described in a file dictionary.
The dictionary concept is a special feature of 9PAC which allows each file
to carry its own description. The dictionary is located at the beginning of
the first reel of a data file and contains a detailed description of the
composition and format of every record type contained in the file.

The Logical Characteristics of a File

Most files have certain logical characteristics: they are divided into mean-
ingful units of information; they are ordered in a useful pattern; and they
may contain certain summary information which is a composite of some of
the individual information in the file.

Subdivisions of a File

The example on the following page is a typical (though highly simplified) file
which will be used to illustrate some of the logical characteristics of a file.

The sequence data is a composite of the identifying information in the file.
In actual practice, sequencing information is much more complex than
shown here; it will be explained later in this manual. It should be noted,
however, that the combined sequence data is in ascending order; this must
always be true.

Although the file is arranged in a hierarchical manner, this need not be
done; records may be all of the same level.

The example will become clearer as the discussion of file subdivisions
continues,

13

Sequence Data

w
Bl &
S 188l 8]lE
SIS ElB |3
° U U 2 o
Sl lal=l 2 le
Sales File Elalwl Ol
Product Division 1 1 {0]0}00]1
Sales Office 1 1 1 10|00]2
Salesman 1 1 1 1 00 {3
Earnings 1 {1}11 004
Sales-Customer 01 1 1 110195
Sales-Customer 04 111 1 10415
Sales-Customer 05 1 1 110515
Salesman 4 1 1 4 10013
Earnings 1 1141004
Sales-Customer 02 1 114102 5
Sales-Customer 06 1 1140615
Salesman 5 1 1 510013
Earnings 1 11510014
Sales-Customer 03 1 1 15}1031}5
Sales-Customer 09 1 1 5]109]5
Sales Office 2 1 2 0 |[00]|2
Salesman 2 1 2 2 00 | 3
Earnings 112]2 100]|4
Sales-Customer 07 1 2 2 07 |5
Sales-Customer 08 1 2 2 08 | 5
Salesman 3 1 2 310013
Earnings 1 12]3]00]4
Sales-Customer 24 1 2 3 24 |5
Sales-Customer 25 1 2 3 2515
Product Division 2 2100} 00]|1
Sales Office 1 2 110|002
Salesman 1 2 1 1 00 | 3
Earnings 21111100} 4
Sales-Customer 14 2 1 1 14 | 5
Sales-Customer 15 2 1 1 1515

RECORDS AND FIELDS

A file is composed of records, each record containing information about
some area of activity in the file. Thus, a record in a payroll file may
pertain to an individual employee and his earnings.

More than one type of record may be included in a file. For example, a
sales file may contain a record for each customer, a record for each type

of item sold to that customer, and a record concerning the past history of
sales to that customer. Each record has a different format, and the specific
format of a record is designated by the record type. Thus, a record type
designation is quite similar to the form number which is often assigned to

a typical business form.

14

Each record may be divided into separate pieces of information called
fields. Thus, an accounts receivable record may contain fields for customer
name, debits, credits, description of services or articles sold, etc.

Each record type may be divided into fields differently, just as two business
forms may be different; however, within each record type, fields must be
fixed just as they are on a business form.

In addition, each record type may be a different length, just as a business
form may be a different size, but each record of a specific record type is
always the same length as other records of that same record type — even
though some of the fields in an individual record are left blank, space is
always provided for them.

PARTIAL FIELDS

9PAC permits a programmer to refer to part of a field, rather than the
entire field, when he so desires. For example, a date field may consist
of six columns: two for the month, two for the day, and two for the year.
If it is desired to use the year only, it can be used without reference to the
month and day.

GROUPING

A number of records may be grouped together when it is desired that one
record carry some information that is common to all of the records in a
group. For example, an inventory file may contain a record for each part
number, If, for some reason, it is desired to know what plant each part is
located in, and information concerning the plant (for example, an address
for delivery of replacement parts) is used in conjunction with the inventory
records for that plant, the inventory records may be grouped by plant and
information concerning the plant may be contained in a plant record. Group-
ing serves a different function than sequencing, which is described below,
but must be consistent with it.

Grouping must be planned in the file, but it does not require special coding
other than that the group header (the record being referred to) have a lower
record type than the detail records pertaining to it. The File Processor
and the Reports Generator automatically recognize records treated as group
headers and keep them available for ready "look back" reference. Thus,

at any time, reference may be made to the previous record of each lower
record type.

SUMMARY RECORDS

9PAC makes provision for a specialized type of record which can accumulate
totals from fields of other records. These specialized records are called
summary records in the File Processor, total lines or total records in the
Reports Generator. Any number of summary records may be used. Each
summary record type may contain several fields. Each field of a record
type may be totaled into one or more fields of one or more summary records.
Alternately, several fields from one or more record types may be totaled
into the same field of a single summary record type.

15

Sequencing

Each summary record type produces totals for all fields in the record at
the same time; the totals are produced at the programmer's option but
must be dependent upon a sequence field break (see below).

The totaling procedure produces a record in the master file at each point
that a total is taken. These total records may then be used by the Reports
Generator to formulate a desired report.

Summary records must be located at the points where the totals are to be
taken., Thus, in the above example, if a total is to be taken on the sales of
each salesman, then a separate summary record must follow the customer
sales record of each salesman., This record would be of the same level as
the salesman record since a total would be taken on a sequence break (see
below) on salesman. Additional summaries, if desired, might be taken on
the office level, the product division level, or the entire file level.

If it is not desired to carry these summary records in the master file,
Reports Generator total lines may be created. In this case, the totals are
created by the Reports Generator and they do not become part of the master
file; however, they may be used as desired in the Reports Generator program,

A file is processed serially from beginning to end. Thus, each item is
handled sequentially; there is no random access to the file. In addition,
each item of information in a file must be capable of being addressed
individually. Therefore, each record in a file must be sequenced; that is,
it must be in a meaningful order and it must contain information by which
it may be placed into that meaningful order.

For example, suppose an inventory file is ordered by plant, section,
department, and part number. A record type may be set up as follows:

PLANT NUMBER — SECTION NUMBER — DEPARTMENT NUMBER —
PART NUMBER — QUANTITY IN STOCK — ORDER POINT —
USAGE TO DATE

Thus, there are seven fields in the record, and records are ordered on the
first four fields only. In addition, each file is sequenced by record type
(this is always the lowest sequence level). In the example on the following
page, records marked with an asterisk are out of sequence.

Record 3 is out of sequence on part number; it should be inserted before
record 2.

Record 4 is out of sequence on section number; it should be inserted after
record 1.

Record 5 is out of sequence on plant number; it should be inserted before
record 1,

Record 11 is out of sequence on department number; it should be inserted
before record 10.

16

Record
Number for
Illustration | Plant Section | Department | Part Record | Other
Only Number | Number | Number Number | Type Information
1 1 3 1 88 03 Not related to sequence
2 2 2 1 101 03 Not related to sequence
* 3 2 2 1 99 03 Not related to sequence
* 4 2 1 3 104 03 Not related to sequence
* 5 1 2 1 31 03 Not related to sequence
6 3 2 3 222 03 Not related to sequence
7 3 3 2 301 03 Not related to sequence
8 4 1 1 42 03 Not related to sequence
9 4 2 2 88 03 Not related to sequence
10 4 3 2 91 03 Not related to sequence
* 11 4 3 1 76 03 Not related to sequence

Since there is only one record type in this example, records may not be out
of sequence on record type. This field, however, is checked for correct
sequence to prevent equality when there are several record types and other
sequencing information is identical.

These records are shown below in correct order,

Record
Number for
INustration | Plant Section | Department | Part Record | Other
Only Number | Number | Number Number | Type Information
5 1 2 1 31 03 Not related to sequence
1 1 3 1 88 03 Not related to sequence
4 2 1 3 104 03 Not related to sequence
3 2 2 1 99 03 Not related to sequence
2 2 2 1 101 03 Not related to sequence
6 3 2 3 222 03 Not related to sequence
7 3 3 2 301 03 Not related to sequence
8 4 1 1 42 03 Not related to sequence
9 4 2 2 88 03 Not related to sequence
11 4 3 1 76 03 Not related to sequence
10 4 3 2 91 03 Not related to sequence

Records may be of different record types, but they must be sequenced
according to the same information in any given file.

Fields which contain sequencing information are called sequence fields.
These fields may actually appear in any order in the records. Thus, the
primary or first sequence level could be the physically last field of the
record. A change in the value of any sequence field is called a sequence field
break (or control field break). In the revised example above, there are
sequence field breaks on plant number after records 1, 2, and 7. There are
sequence field breaks on section number after records 5, 1, 4, 6, 7, 8, and
9. There are also sequence field breaks on department number and part
number,

17

Because records in a file must be handled in sequence, the sequence of a
file must be planned carefully in terms of the file use, format of input
change data to the file, and types of reports it is desired to produce from
the file.

Although the establishment of file sequence is the programmer's responsibility,
the File Processor will check to determine that all files are correctly ordered
on all fields designated as sequence fields. The File Processor will not
operate on a file that is not in proper sequence:

1. Each record must contain at least one sequence field in addition to
record type.

2. Each record must be completely and uniquely sequenced. (The sequence
fields themselves need not be unique if the record type varies.)

The Reports Generator does not check files for proper sequencing, nor is it
required that Reports Generator input files be properly sequenced, However,
the logic of the program will usually require that input files be in proper
sequence to make control breaks meaningful, etc.

THE "PARENT-OFFSPRING'" RELATIONSHIP

If the records in a file are to be sorted, then each record must contain all

of the sequence fields on which sorting is to take place. However, it

often happens that once a master file is established, sorting is either not
required or is infrequently required. In such cases, considerable tape space
(and thus input/output time and internal computer storage) may be saved by
establishing a parent-offspring relationship for the records. This relation-
ship may be established only in a master file. Such a relationship merely
means that the parent record contains some of the sequencing information
for the offspring records.

In the example above, there were four sequencing fields and each record
contained all of the sequencing information for that record. Redundant
sequencing information may be eliminated by specifying in the dictionary
a parent-offspring relationship as follows:

Record Parent
Type Sequence Field Record Type
03 Plant Number -
04 Section Number 03
05 Department Number 04
06 Part Number 05

The effect of the above record establishment is to consider that each record
of record type 04 pertains to the plant identified by the preceding record of
record type 03. Similarly, each record type 05 pertains to the preceding
record type 04 and each record type 06 pertains to the preceding record

type 05.

18

Alternately, a parent record type could be established which would contain
the first three sequence fields and the detail records could then contain the
fourth and final sequence field.

Each record type may contain other fields which are not sequence fields.

A parent-offspring relationship may be established on virtually any possible
combination of sequence fields, provided:

1. Each record type contains at least one sequence field in addition to the
record type.

2. All records have a complete and unique sequence identification based
either on complete sequence fields or on a parent-offspring relationship.

3. When a parent-offspring relationship is established, each offspring is
sequentially arranged and is grouped immediately following its respective
parent record.

The effect, when using a file, is always the same; each record is uniquely
sequenced.

As indicated earlier, a file which utilizes a parent-offspring relationship
may not be sorted; this is due to the fact that a record which is to be sorted
must contain all sequence fields.

The Physical Characteristics of a File

A file has certain physical characteristics which have no logical significance
but which do affect the manipulation of the file by 9PAC. For example, the
file may have identifying information, it must be on tape, it may be in the
BCD or binary mode.

In 9PAC, the physical characteristics of a file are largely determined by
the purpose of the file. Thus, one type of file may be suitable for a change
file while another type may be required for a master file.

File Characteristics

All 9PAC files are allowed the following optional characteristics, except as
noted in the section on ""File Restrictions, ' see below.

LABELS

Files may be labeled or unlabeled. A labeled file is one which contains
control information at the beginning of a reel of tape (header label) and/or
at the end of a reel of tape (trailer label). The trailer label may indicate
either end of reel or end of file. All labels must be standard IOCS labels.
(For this and succeeding references to IOCS, the reader is referred to the
IBM Reference Manual 709/7090 Input/Output Control System, Form
C28-6100-1,)

19

ATTACHED DICTIONARY

Files may be preceded by a dictionary which describes the logical and
physical characteristics of the file. Thus, the dictionary describes each
record type, and its division into fields, sequence fields, parent and off-
spring records, etc. Records contained in a file which has a dictionary
must have their record type designated by their first two characters.

MODE

9PAC files may be written either in the binary or BCD mode. Care should
be taken to avoid writing fields containing binary numbers in the BCD mode.

DENSITY
9PAC files may be written in either high or low density.
BLOCKING

Files may be blocked or unblocked. If blocked, the block size may be any
desired length.

BLOCK CHECK SUMS

Binary files may have standard IOCS block check sums if block sequence
numbers are present.

BLOCK SEQUENCE NUMBERS

Binary files may have standard IOCS block sequence numbers.
File Restrictions
File Processor input master files must have a dictionary attached.

Reports Generator report output must not have attached dictionaries, block
check sums, or block sequence numbers,

Any file may have mixed record types providing each record type has a
fixed length, If no dictionary is attached, all record types must have the
same length; if a dictionary is attached, each record type may have a
different length.

20

CHAPTER 3: FORMAT OF I0CS CONTROL CARDS

In order to specify the physical characteristics of a file, it is necessary to
prepare three types of IOCS (Input/Output Control System) cards: *JOB,
*FILE, and *END.

The formats of these cards are given below. The *JOB card and the *FILE
card are prepared on a single 9PAC coding form (see Figure 1); no coding
form is provided for the *END card. All entries must be left-justified.
Note: The symbol "b" is used to represent blanks.

The cards for each 9PAC job must be arranged in the following order:

1. The *JOB card.

2, *FILE cards as required.

3. An *END card.

4, File Processor or Reports Generator parameter packets (discussed in
the File Processor and the Reports Generator sections).

The *JOB Card

The *JOB card provides certain required information about the job to the
9PAC System. It is always printed on~line when it is read.

SWITCHES

JoB

NTS
TYPE JOB NAME COMME

1121314156718

L~ LISTING

T-TAPE
B-BITS

alafsfeftalald ' 0 o O 0 R 0 e TR R D D (G . D S R D D S
Columns/Contents Description
1-6 Must be blank.
7-10 Function Must contain *JOB.
11-12 Must be blank.
13-17 Job Type Must contain one of the following codes to indicate job type:

RGGEN Reports Generator — Generate and Go
RGBIN Reports Generator — Load and Go
FPGEN File Processor — Generate and Go
FPBIN File Processor — Load and Go

18 Must be blank.

19 Tape Indicator Normally this column is blank; however, for Load and Go when
the *JOB card is to be read on-line and the binary object program
is on tape, this column must contain a T,

21

Columns/Contents

20 Bits Indicator
21 Punch Indicator
22 List Indicator

23-30 Switches 1-8

31-48 Job Name

49-72 Comments

22

Description

Normally this column is blank to indicate that increments and
lengths are in characters; however, if it is desired to specify
increments and lengths in bits, this column must contain a B.

Normally this column is blank; however, if during generation
it is desired to punch an object program deck, this column
must contain a P,

Normally this column is blank; however, if it is desired to
produce an object program listing (File Processor only), this
column must contain an L.

These switches are used to choose system options; the normal
mode is OFF; any non-blank character turns the switch ON,
Unless otherwise noted, the switches pertain to both File
Processor and Reports Generator.

Switch 1. ON: Generation-time error diagnostics printed
on-line.

OFF: Generation-time error diagnostics printed
off-line.

Switch 2. ON: Object~time logical counts are printed on-
line,

OFF': Object-time logical counts are printed off-
line.

Switch 3. ON: Unconditional system messages (e.g.,
GENERATION COMPLETE) are printed on-
line.

OFF: Unconditional system messages are printed
off-line.

Switch 4. ON: Use 709 collating sequence (File Processor
only). This results in faster 9PAC operation,
however, the commercial (702) collating
sequence is required for off-line sorting
equipment,

OFF: Use commercial collating sequence.

Switches 5-8, Not used.

May contain any alphameric comments; this entry is included
in system messages.

May contain any alphameric comments.

€2C

SHARE 7090 9PAC
10CS CONTROL CARDS

X28-6140-0
PRINTED IN U.S.A.

] SWITCHES
z(2
wlalSlE
JoB HEHE J0B NAME COMMENTS
a4
e [F|7|51T1]2]3]4|5|8|7
~loja|d
4l o3& U S S | RS S GHN S S G S | 4 IUR S S § +—4 + PR T S S U SN S S S SR U S S S i
sl ie]ofed e 7 31 [s2[sa[sa]ssfss[s7]38[39so]s azla3[saleslafe 7Jas as|so[sis2[s3]s4]s s|s6|57]sa[s9]60]e [s2le3fe a[es]el67leslsalr0] 71|72
it . & [*] . 0; i g
L . slol% i
H s ol 12l |B1EI2LelS : |
] 9] mAxIMUM rLel 12| primary [seconoar) 2|, 1el5|w| 0 is|2|E(E REEL | FILE v |
¢ BLOCK | FUNCTION {hodlg| 70 o | LE|&(31218|2(8(3|8|x} [scovemce] | semiac el FILE NAME
LENGTH H HHEBEHEEMI NUMBER NUMBER a3 |
. gl uwr UNIT MMM R MEE =
: rlulglwlwia|g w
|G 3 e 2ul212|3|S(£l «
- r=Y & i /?_JILKILM. Sdnio|Ola
>
*
. PN .F.|.L.E [n : P PR L L P
3 - .
. L .r;|.LLE 3 - i Ll i1 P YRS WA U SR W SN N W IO W N S W ¥
* s -
V . I*FILE L1 s .
o » , . :
| Lo FYLEL . HE - . R R e
- . L -
V . . -
‘ L. |"FILE . TS . M "
o - - . :
{ P .F.'LLE Ej?é 3 sQK 111 11 1 g a " N A aa
.
B * o . o
2 Lo .F"ALEV,; i1 1 Y - P S S A U G S S Y W S
R
N .F.I.L.E”; L TRt PR P S T S S S G S S SR
. -
- (.
L .Ful;LE o L1 1 JUNTEY P S S S A G S S S SR
x
P - PR S N N 'Y R VR ST G WD VA T S S S U WY S
L [N W B S P S S G U T VNN S S S S A S
P [A P W S U R S S W A G SR
M FUNTI B S P S S S G S
N N i 14 11 1 1 i 1 1 Ll 14 11 11 1 1
N P S P S T S S Y S S S T S
L R S T S S S S S W W N G S S
L IR B PR U S ST TS W WD S S S GO S N
- M BT P S S T SO S S S VU U G S Y
L TR T I B Y hi P S Y SO S R W S RS S S S
PO TN N S SR : U U S SO S B L e . WU W WS VO WUONN WA U T N W0 WA G T W N DA
138080 7[5 [10i] 2] sfra]is]16] 7 18[19[20]2 oalesfoalz s|esfz7jze 29|30} 31[32[33]3 4[38]36]37[36]39|ac|a1[az]a3jasjas|ae|a7|asjas]so]s: [s2]s3 5455156k'llsaTssIso‘sxIsz[esleo[es[ss‘sv[ulss]7o[~n]72

Figure 1.

IOCS Control Cards form

The *FILE Cards

The *FILE cards specify the physical characteristics of the files; one card
is required for each input or output file,

2| rrimary

G
uNIT

SECONDARY] - |

FILE
SERIAL
NUMBER

] REEL
SEQUENCE
4 NumBER

o FILE NAME

UNIT e

REEL CONT_FLAG|
FILE DENSITY
FILE MODE

LABELING CONV.
SEQ. NUMB. FLAG
CHECK SUM FLAG

FILE TYPE

MOUNTING INDIC

LIST CONTROL

+

o f
V[2]3]e[s]e]"[e]s

<
fe |

Sl

=R

= -
Ry g
i] 5 :
(2]

>

>

<

NS SRR |
i710]is]ed]e: [2zfeslzazsjesler

................

nnnnnnnnn i

i '
[30[31[32[33]s ¢|3sf3ef57

oy bed Cobd .
os[ss]eclerjeefesfactasfes]e-] [seles]sefssselsrlselsslec]er]eclesedesteslsrfeafeslrol1 [r2

Columns/Contents
1
2 Dictionary
Conventions
3-6 Maximum

7-11

12

13

14-15

Block Length

Function

Close File
Indicator

File Number

24

Description

Not used by programmer; reserved for column binary indication
in binary decks.

Must be blank if the file does not contain a dictionary; otherwise,
must contain one of the following codes to indicate the dictionary
density:

H High

L Low

Must specify the maximum block length, as follows:

Any Number Block length (in 709 words) including the block
sequence word, if present.

blank 0500 assumed.

Gbbb Reports Generator report output is to be
grouped for 720 printing,

Nbbb Reports Generator report output is to be

unblocked for printing.
Must contain *FILE,

Not used.,

Must contain one of the following codes to indicate the action
to be taken when the file is closed:

U Rewind and unload.

Rorb Rewind only.

N Do not rewind.

S Do not rewind; no EOF mark or trailer labels
written. S may be used only for files used

in hand calculations.

Must contain a unique number from among the following:

00 File Processor master input file,
07 File Processor master output file,
08 File Processor Change and Error Report file.

Columns/Contents Description

14-15 File Number 09 File Processor horizontal input.
(Continued) 10 Reports Generator input file,
01-06 and 11-15 Any other File Processor or Reports
Generator file. A maximum of 16 files are
permitted for any single 9PAC job.

16 Not used.
17 Tape Mounting May be blank to indicate that the file will be mounted when
Indicator required (as indicated by an unconditional system message)

or may contain an * to indicate that the file is to be mounted
at start of generation (this would include labeled files and/or
files with dictionaries).

18-21 Primary Input/ Must specify the primary I/O unit as follows, where x represents

Output Unit a channel designation A-D and y represents a channel designation
Aor C:
RDy Card Reader
PUy Card Punch 1 May only be used in files
PRy Printer used in hand calculations.
xbb Tape Unit

22-25 Secondary Input/ If a tape unit is specified in the same format as in columns
Output Unit 18-21, tape unit alternation will occur; otherwise, these
columns must be blank., For alternation, the first reel of
the file must be mounted on the primary tape unit. In either
case, physical unit number is assigned by the system at
execution time.

26 Not used.

27 List Control The file list prints the following information on-line:
File number
File name
1/0 unit

Starting reel sequence number

Tape mounting indicator

If a secondary unit is assigned, the above information is re-
peated for that unit. This column may be blank to cause this
file to be included in the file list, or may contain an N to omit
this file from the file list.

28 File Type Must contain one of the following codes to indicate the file type:
C Checkpoint
I Input
T Total block output (standard for most output)
P Partial block output (for I-Language and hand calculations

only)

Input — octal 7's padding present

Input — BCD 9's padding present

Total block output — octal 7's padding to be added
Total block output — BCD 9's padding to be added

- SURE O

25

Columns/Contents

29 Reel Control Flag

30 File Density

31 File Mode

32 Labeling
Conventions

33 Block Sequence

Number Flag

34 Block Check
Sum Flag

35 Checkpoint
Conventions

36 Restart Flag

37

38-41 Sequence Number
of First Reel

42-43

44-48 File Serial
Number

26

Description

For input files only, may contain one of the following codes:

M Multi-reel unlabeled file (a pause will occur at each EOF)

L Search for label on OPEN (hand calculations only)

b Single reel unlabeled or single or multi-reel labeled file
(the file will be closed at EOF)

Must contain one of the following codes to indicate the density
of the file text:

H High

L Low

Must contain one of the following codes to indicate the mode

of the file text:

D BCD

B Binary

Files containing binary numbers (e.g., if any field is specified
as binary in the dictionary) must use B.

Must contain one of the following codes to indicate labeling
conventions:

H Labels in high density

L Labels in low density

b No labels

Trailer labels are always written in the same density as the
file text. Dictionaries, if present, must be the same density
as header labels.

For binary files only, may contain an S to indicate block
sequence numbers; otherwise, must be blank.

For binary files with block sequence numbers, may contain a
C to indicate block check sums; otherwise, must be blank.

Must contain one of the following codes to indicate checkpoint

conventions:

F Write checkpoints at each reel switch (labeled output files
only)

C Write checkpoints at each reel switch (any file)

b No checkpoints

May contain a code to indicate positioning for restart.
Not used.

For labeled files, must contain the sequence number of the
first reel; otherwise must be blank.

Not used.

For labeled files only, may contain a file serial number to
identify the file.

Columns/Contents Description

49-50 Not used.

51-53 Retention Days May contain the number of days the file is to be retained (not
checked by system).

54 Not used.

55-72 File Name May contain any alphameric comments; these columns will be
printed in appropriate messages.

The *END Card

The *END card is used to signal the end of the IOCS cards; it must precede
all 9PAC parameter cards.

The *END card consists of *END in columns 7-10; all other columns must
be blank.

27

APPENDIX A: 9PAC GENERATION PROCEDURE

This appendix contains a brief description of the program logic used by
the File Processor and the Reports Generator.

The File Processor

The File Processor is a two phase generator for a file maintenance program
in which the logic is predetermined. In the first phase, the parameter deck
is read and a symbolic program is generated in program modules, or
logical blocks, and is written on a scratch tape (file number 09). In the
second phase, these modules are read, absolute addresses are assigned,
and the program is placed in core storage ready for execution as a single
phase object program if no horizontal change packets are present.

If, however, horizontal change packets are present, the generated object
program is written as a scratch file behind the file dictionary of the change
and error report file (file number 08) and the main object program is
written as a scratch file behind the master file dictionary. The horizontal
change data is then read, a twelve-word dictionary is inserted in place

of each change field number, and the expanded record is written on the
tape which is to contain the processed horizontal data. This file becomes
the input, along with update change files, to the main object program for
file maintenance,

Since generation occurs as the parameter deck is read, and since the object
program logic is predetermined, the order of execution of the object program

is not the same as the order of program generation.

The Reports Generator

The logic of the Reports Generator is the same as that of the File Processor
except that the Reports Generator contains no provision for any situation
comparable to the handling of horizontal changes by the File Processor.

28

APPENDIX B: FORMAT OF DICTIONARY RECORDS

Given below are the formats of the various dictionary records; they are
identified by the executive code in the first character position.

The possible dictionary records are:

B Record Beginning of dictionary record.
P Record End of dictionary record; this format is not shown since it
is identical to the B record except that P is the executive code.
E Record Record type header record.
F Record Field description record.
G Record Summary definition record.
B
-;-;: § Zeros F‘;;‘::l::l File Name Blanks
H]
K
12 7 13 31
E = I
= % 5 t 8
H . . w| 2 !g P: o g
'% .§ F':’:I:‘e;:l g : ‘E R;;::d Record Length g‘: 4 C‘:;:t Record Name ; ; Blanks
@ s3
L AR &
]
1 2 7 8 10 12 16 18 20 Z$8
F Record Increment Allowable Range
T T
'g Record| Field Field Field : Field g g :
e e iel e " 1e. - M.
g & Type [Number| Mode Size Not Used | Words | Bits Name Not Used 5% 3 1 Blanks
5 | sA |2 |
] ; I
L 1
1 2 4 8 11 14 18 24 42 48 50 51 53 85
G From To
[
2 ! |
3 of Record | Field | Record | Field
§U T;pe : Namber 'le':'pz : Number Blanks
5 | '
1 i

-

29

85

APPENDIX C: 9PAC COLLATING SEQUENCES

Listed below are the two collating sequences which may be used in the
9PAC System.

Commercial Sequence 709 Sequence
Character Card Code Character Card Code
blank 0 0

. 12-8-3 1 1

) 12-8-4 2 2

+ 12 3 3

$ 11-8-3 4 4

* 11-8-4 5 5

- 11 6 6

/ 0-1 7 7

, 0-8-3 8 8

% 0-8-4 9 9

8-3 # 8-3

@ 8-4 @ 8-4

+0 12-0 + 12

A 12-1 A 12-1

B 12-2 B 12-2

C 12-3 C 12-3

D 12-4 D 12-4

E 12-5 E 12-5

F 12-6 F 12-6

G 12-7 G 12-7

H 12-8 H 12.8

1 12.9 I 12-9

-0 11-0 +0 12-0

J 11-1 . 12-8-3

K 11-2) 12-8-4

L 11-3 - 11

M 11-4] 11-1

N 11-5 K 11-2

(o) 11-6 L 11-3

P 11-7 M 11-4

Q 11-8 N 11-5

R 11-9 (e} 11-6
Record Mark 0-8-2 P 11-7

S 0-2 Q 11-8

T 0-3 R 11-9

U 0-4 -0 11-0

v 0-5 $ 11-8-3

w 0-6 * 11-8-4

X 0-7 blank

Y 0-8 / 0-1

z 0-9 S 0-2

0 0 T 0-3

1 1 U 0-4

2 2 A 0-5

3 3 w 0-6

4 4 X 0-7

5 5 Y 0-8

6 6 Z 0-9

7 7 Record Mark 0-8-2

8 8 , 0-8-3

9 9 % 0-8-4

30

Activity File 3

Basic Logic 3

Bits Indicator 22

Block Check Sums 20, 26
Block Sequence Numbers 20, 26
Blocking 20, 24

Change Files 2, 4
Checkpoint Conventions 26
Close File Indicator 24
Coding Forms 6
Collating Sequences 22, 30
Control Break 12, 17

(See also: Sequencing)

Deletion 2

Density 20

Detail Lines 4

Dictionaries 5, 13, 20
Dictionary Density 24
Dictionary Record Formats 29

END Card 21, 27
Error File 3
Execution 1

Field Number 7

Fields 14, 15

File 13
density 26
establishment 2
list 25
maintenance 2
mode 26
name 27
number 24
restrictions 20
serial number 26

type 25
FILE Card 21, 24
Format 3

Functions 6

Generalized Framework 6
Generate and Go 1
Generation 1, 28
Grouping 15

Heading Lines 4
Horizontal Change 3

Increment 8

Input/Output Configuration 4

Input/Output Control System 19
control cards Z2i

Insertion 2

31

INDEX

JOB Card 21

Job Types 21
Labels 19, 32
Length 8

List Indicator 22

Literal Information 10

Load and Go 1

Logical Characteristics of a File
Look-Back 15

Master File 2, 3, 4
Message Printing Options 22
Mode 20

Modification 2

9PAC Language 6

Object Program 1

Padding Characters 25
Parameters 1, 6

13

Parent-Offspring Relationship 18-19

Partial Fields 15

Physical Characteristics of a File
Predetermined Logic 6

Primary Input/Output Unit 25
Program Modules 6

Punch Indicator 22

Record Type 7, 14
Records 14

Reel Control Flag 26
Report and FError File 4
Report Files 4

Reports 3 '

Restart Flag 26
Retention Days 27

Secondary Input/Output Unit 25
Sequencing 16-18

break 16-17
data 13
field 17

Summary Records 15

Tape
indicator 21
mounting indicator 25
unit alternation 25
Total Lines 4, 15
Transaction Files 2

Update Change 2

Variable Information 10
Vertical Change 2

13, 19

J28-6166

PUBLICATIONS
Following is a list of IBM publications which may be of interest to the reader:

REFERENCE MANUALS

Form Number Title

A22-6528-1 IBM 7090 Data Processing System

A22-6536 IBM 709 Data Processing System

A22-6616 7340 HYPERTAPE Drive

C28-6036 Generalized Sorting Program for the IBM 709 Sort 709
C28-6052 Generalized Merging Program for the IBM 709 Merge 709
C28-6100-1 IBM 709/7090 Input/Output Control System

GENERAL INFORMATION MANUALS

D22-6508-2 IBM 709/7090 Data Processing System

F28-8001 Sorting Methods for IBM Data Processing Systems

F28-8043 IBM Commercial Translator

F28-8053-1 COBOL

F28-8074 FORTRAN

BULLETINS

G22-6505-1 IBM 7090 Data Processing System

G22-6634 7340 HYPERTAPE Drive

J28-6043-1 Sort 709: Sorting Times for the IBM 7090

J28-6059 Addenda and Errata to the Sort 709 Manual

J28-6061 Addenda to the Merge 709 Manual

J28-6080 IBM 709 Utility Programs

J28-6138 Sort 709: Sorting Times for the IBM 7090 with IBM 729VI

B Magnetic Tape Units '

J28-6152 IBM 7090 with IBM 7340 HYPERTAPE Drives: Programs and
Programming Systems

J28-6153 IBM HYPERTAPE Input/Output Control System for 7000 Series
Data Processing Systems

J28-6156 IBM 7090 Generalized Sorting Program Using IBM 7340

HYPERTAPE Drives

SOS REFERENCE MANUAL

X28-1213 SOS Reference Manual - SHARE System for the IBM 709
(loose-leaf binder and index tabs)

328-1219 SOS Reference Manual Distribution No. 1

328-1262 SOS Reference Manual Distribution No. 2

328-1377 SOS Reference Manual Distribution No. 3

328-1395 SOS Reference Manual Distribution No. 4

328-1406 SOS Reference Manual Distribution No. 5

TIBIML

International Business Machines Corporation
Data Processing Division, 112 East Post Road, White Plains, N.Y. Printed in U.S. A,]28-6166

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32

