IBM 709/7090 DATA PROCESSING SYSTEMS BULLETIN

PRELIMINARY BULLETIN

FORTRAN ASSEMBLY PROGRAM (FAP) FOR THE IBM 709/7090
SUPPLEMENTARY INFORMATION FOR THE 32K VERSION

This bulletin was prepared by IBM Applied Programming as a supplement to
the FORTRAN Assembly Program (FAP) for the IBM 709/7090, (Form
J28-6098-1), and together with that publication, provides current specifications
for FAP programs to be run on 32K 709 or 7090 Data Processing Systems,
operating under either the FORTRAN or Basic Monitor (IBSYS).

Included herein are descriptions of new pseudo-operations, with sections on
those connected with macro-operations and updating, and complete System
Symbol and Combined Operations Tables. For additional information on FAP
operating under the Basic Monitor (IBSYS), the reader is referred to the IBM
preliminary bulletin, Basic Monitor (IBSYS), (Form J28-8086).

Coding is indicated throughout this bulletin by the use of all capital letters
for actual coding; e.g., CLA,

Because of the preliminary nature of this bulletin, the material it contains,
together with any necessary additions and corrections, will be published in a
more complete form at a later date.

e - e g ohee € e mr—— o g
s an,

e T e S T DR LT

— —————ci
-

s e 2 - -
SR TR R T e -t

CONTENTS

The FAP Macro-Operation Processort 1
Examples of Programmer Macro-Operations. o1
Macro-Defining Pseudo-Operations. 5

MACRO . e e e e 5

The Location Field 5

The Argument List v, 5
Extending The Argument List 6

Alternative Formttt 6

MO P L e e e 7

The Prototype i i e et e e e e 7

The Location Field 7

The Operation Field i, 8

The Variable Field i, 8

Nesting Macro-Definitions. i, 9
Restrictions in Macro-Definitions 10
Macro-InstrucCtions . .. vttt et i e e e 11
MAC e e 11
Punctuation i e 12
Argument Strings o e e 13
Nested Macro-Instructions. iy 13

The Generated Cards ittt et et e 14
Created Symbols i e 14
NOC R S ¢« vt ettt ittt e e e et e e e e 15
ORGCRS | ittt 15

TR P i i i i i i i e st et e i e 16
RM T . . e e e e e e e e e e e e e e e 17

Updating Symbolic FAP Tapesttt ei e 20
UP DD AT E . e e e e e 20
NUMBER . ittt et e e e e 22
DE L E T E &ttt e et e e 22
IGNO R E ..ot e e e e e e e 23
SKIP T O & it e e e e e 23
END L . e 23
REWIND . .ottt i e e e e e e e 24
UNLOAD & ittt it e et et e e e e e e e e e e 24
SK P L L .o it i it e e e e e 25
UM o e e e e e e s 25
ENDU P . L e e e e 26

Tape Positioningttt e 26
Update Examples e 27

Additional Symbol Defining Pseudo-Operation 28
ST ot e e e e 28

Additional Program Linking Pseudo-Operation......................... 28
EX T ERN .ttt e e e e 28

TN D E K it ittt i e e e e e et i e e 29
PMC L e e e e e e 30
AL 5 A 30
Additional Conditional Assembly Pseudo-Operation..................... 31
IFF...... et ettt ee et ettt i e S |
Revised Pseudo-0Operationsttt tint ittt ettntenneneennennennnas 32
CA L .ttt e e e e e e e e e e e 32
3 D 32
ENT R Y ittt et e e e e e e e 32
) 5 OGN 32
LOC, ORG .ttt ittt it e e e e e i e 33
2 O O 33
PRIN T . .. i i it i it e i i ettt i e e i ittt e 33
TAPENO . . ittt ittt i i ettt ettt ettt e e e 33
Additional Revisions , | | ettt e e e e 33
Appendix I: Combined Operations Table oo, 35
Appendix II: System Symbol Table, FORTRAN Monitor. 45

Appendix III: FAP Operating Under the Basic Monitor 47

THE FAP MACRO-OPERATION PROCESSOR

A FAP macro-operation is a type of pseudo-operation created by
the programmer. The most significant property of an instruction
specifying a macro-operation (a macro-instruction) is that it can
generate one or more card images. The contents of the card
images generated are virtually unrestricted and may include any
machine operation, any pseudo-operation not restricted to the

first card group (e.g., COUNT, ENTRY), or any macro-operation,
and any field permitted on a FAP source card.

A macro-instruction can be regarded as an abbreviation for a
sequence of card images. The sequence of card images generated
by the macro-instruction is determined by the particular macro-
definition corresponding to the macro-instruction code. Each
macro-operation has its own definition, which consists of a head-
ing card, a sequence of prototype card images, and an END card.

A prototype card image has a standard FAP source card format
with location field, operation code, and variable field. Remarks
may appear on a prototype card; however, the remarks will not
normally appear following the variable field on the macro-
generated card image. The fields of a prototype card may con-
sist of: text, which will be reproduced as written; substitutable
arguments; and (special) punctuation characters, which delimit
arguments and, like text, are reproduced.

A field or subfield is text if it is longer than six characters or if

it is a string of one through six characters, delimited by punctuation
marks, which does not appear in the argument list of the macro-
operation heading card. A field or subfield is a substitutable
argument if it is a string of one through six characters which
appears in the argument list of the macro-operation heading card.

A macro-generated sequence of card images consists of each of the
prototype card images, with text and punctuation characters as on
the prototype, but with substitutable arguments replaced by
specific argument strings (of unrestricted length) whose position

in the argument list of the macro-instruction corresponds to that

in the argument list of the macro-definition heading card.

Examples of Programmer Macro-Operations

Suppose that the programmer has written a source program which
will assemble, including the following sequences of instructions:

e |
(XN} [
00127 0500 00 O 06365 CLA FEDTAX
00130 0400 00 O 06367 ADD STATAX
00131 0601 00 0 06370 $TO TOTTAX
s0e '
) se
00176 0500 00 O 03334 SUBCOM CLA XSuBl
00177 0400 00 O 03335 ADD YSUB1 |
00200 0601 00 O 03336 STO Z5UB1l
LN] ,
LN
01675 0500 00 O 05714 CLA PARTL
01677 0400 00 0 05715 ADD PART2 |
01700 0601 00 0 05716 ST0 TOTAL
(X&) I
LR]
1

The pattern of these three instructions might be designated by
some BCD name, say QSUM, which could then be defined as
follows:

QSUM MACRO V1sV24sV3

CLA vl |

ADD v2

sTO v3 i
QSUM END

The above sequence of five source cards generates no binary
words in the object program, but constitutes the definition of the
macro-operation which the programmer has chosen to call

QSUM. The first card is the macro-definition heading card. It
includes the name of the macro-operation in the location field

and the argument list in the variable field. The next three cards D
are the€ prototype, in which V1, V2, V3, are substitutable ar-
guments , identified in the heading card argument list. All of the
other fields, CLA, ADD, STO, are text, since they do not ap-
pear in the argument list. The fifth card (END}J marks the end of
the range of the macro-definition. It will not terminate assembly.

Once the macro-operation QSUM has been defined in the source
program, the sequence of CLA, ADD, STO, instructions may be
replaced by a macro-instruction card which generates the se-
quence of instructions with their substitutable arguments replaced
by the arguments in the variable field of the macro-instruction
QSUM:

(XX 4

00127 : QSUM FEDTAXs STATAXs TOTTAX
LR N] [+
s
00176 SUBCOM QSUM XSUBLl,YSUBLleZSUBL
i Y
‘ LN
01675 QSUM PART1»PART2» TOTAL

(XY
LY X]

1
|
I
|
I
|
1

Note, in the above example, the following points:

1. The string QSUM which appears in the location field of the
pseudo-operation MACRO is not a symbol, but a code for
the macro-operation to be defined, and as such is entered
into the Combined Operations Table. It may be the same as
a location symbol*@ppearing anywhere in the assembly,
including symbols'within the macro-definition.

2. The substitutable arguments V1, V2, V3, which appear in
the variable field of the macro-definition heading card and
also in various fields within the prototype, merely
characterize the order of the expressions and character
strings which may appear in the variable field of a later
macro-instruction using the given macro-operation. If, on
the macro-operation heading card, the order were to be
changed to V3, V1, V2, then the macro-instruction

1
00127 QSUM TOTTAXsFEDTAX»STATAX |

would cause generation of the same card images. Because
the substitutable arguments are dummy names, they may be
identical to strings used elsewhere in the program in
location, operation, or variable fields, as symbols or
operation codes, including the code for this or any other
macro-operation. The programmer should exercise caution
in constructing the prototype so the text will not be confused
with substitutable arguments, as every string of six or
fewer characters, in any field, is compared with the argument
list. Special care should be taken with alphameric text, or
with fields of VFD, DEC, or OCT pseudo-operations.

In the simple example of the macro-definition given above, the
substitutable arguments appeared in address fields in the proto-
type and were replaced by symbols on the macro-generated
cards. In general, substitutable arguments may appear in the
location field, the operation field, in any of the subfields of the
variable field, or as a heading character in any subfield. The
substitutable arguments may be replaced by any valid FAP ex-
pression or appropriate alphameric character strings,

If a substitutable argument appears in an operation field, it may be
a string of one through six characters; however, the code which
replaces it must be a standard FAP operation code of three through
six characters.

For example, the following definition could be written:

QPOLY MACRO COEFF»LOOP sDEG» T »OP

|
“AXT . DEGsT | D
LDG COEFF .
o OOP - FMP GAMMA l
oP COEFF+DEG+1yT
XCA |
TIX : LOOP»THl |
|

QPOLY END

Here mnemonic character strings have been chosen to represent
the substitutable arguments.. Notice that LOOP appears in a
-location field, OP in an.operation field, and that COEFF and DEG

" appear as symbols and within expressions in address subfields.

Notice also' that GAMMA is text ~-a symbol, and not a substitutable
dummy argument - and: presumably will be defined elsewhere in
the program:. Any use of the code QPOLY in a macro-instruction
should be accompanied by an argument list of appropriate sub-
stitutions for the substitutable ‘arguments. For example, LOOP
should be replaced by a symbol, which should not be multiply
defined, and OP should be replaced by a valid operation code.

- A QPOLY macro-instruction might be written:

: - . A -
02031 . . X015 QPOLY Cl=4sFIRST95949FAD
. J

T

The macro-instruction would cause' the following six card images
to be generated: C

02031 0774 00 00005 AXT 594

1
4
02032 0560 00 0 06161 LDQ Cl-4 |
02033 0260 00.0.00135 -FIRST FMP. GAMMA
02034 0300 00. 0.06167 FAD Cl=4+5+194 |
02035 {0131 00 0 00000 - XCA " |
02036 2 00001 4 02033 TIX FIRSTs4sl :

The symbol X015 is defined as the location in which the first in-
struction (AXT) appears; each of the substitutable arguments is
replaced by the corresponding argument in the macro-instruction
argument list. The expression'arising from the prototype address
COEFF+DEG+ 1is equivalent to C1+2.

Use of the macro-operation processor permits simulation of machine
instructions of another computer, or extending the machine
operation vocabulary of the 709/7090.

For exar'ﬁple, STO can be modified to dump the information stored
on each execution: ‘ o

0601 71 1 60000 «STO OPSYN STO

|
M sTO MACRO A |
«STO A
SXA *4294 |
15X DUMP » 6
AXT *k94 !
STO END |

The M flag, appearing in the left margin of the assembly listing to
point out a redefinition of an existing code, does not indicate an
assembly error.

MACRO-DEFINING PSEUDO-OPERATIONS

MACRO

The pseudo-operation MACRO is used to name a macro-operation
and to identify the arguments in the succeeding prototype. The
constituents of the MACRO pseudo-instruction are:

1. Three tosix BCD characters {notall zeros), appearing in
: the locatlon fxeld o

2. The opération code MACRO, appearing in the operation field;
and ot
3. A list of Substitutable dummy arguments, appearing in the

variable field.

The Location Field

The Argument

The character string in the location field is not a location symbol
and will ‘subsequently be used 'as a fmacro-operation code. If it
is the same as any other machine opération, pseudo-operation,
or macro-operation; the pseudo-operation will be flagged, the
code will be redefined within the Combined Operations Table and
the former definition lost.

List - AT e

The substitutable arguments in the macro-definition heading card
argument list may be any legal FAP -symbols, or may consist of
all numeric characters (excluding all zeros). The substitutable

_arguments ih a macto-definition may be separated by any of the

following punctuation characters:

PR o () $ cy
and the argument-list is'terminated by the ‘character 'blank,
After a punctuation character, suceeding punctuation characters

or an explicit zero are 1gnored and do not result in a substitutable
argument of zero: o

Suggestive notation in-a‘macto-definition argument list may be used.

~For example, in a macro-definition heading argument list

T
. ALPHA MACRQ A(B+C)=DSE |

S— |

is identical with

ALPHA MACRO AsBsCorD>HE

Extending the Argument List

The argument list of a macro-definition heading card may be ex-
tended by the use of the ETC pseudo-operation. In order that a
following ETC card be recognized, it is necessary that the follow- »
ing conventions apply to the preceding card:

1. An unmatched left parenthesis exists in the variable field; or, *

2. The variable field is terminated by a $ immediately followed
by a blank or card column 73. This will not be confused with
the use of this character to signal a heading character or a.
transfer vector name, as in neither of those cases willithe«$.
be immediately followed by a blank; or

3. The variable field extends to card column 72. .

If a card with an unmatched left parenthesis is not immediately
followed by an ETC card, an assembly error will be flagged. If a
card with a terminal $ is not followed by an ETC, the terminal $

is deleted from the macro-definition and ignored.

If the preceding card does not follow these conventions, an ETC D
card will be treated as the first card in the prototype, and an
assembly errar will usually result.

Alternative Form

An alternative form of the MACRO pseudo-instruction is the

following:

1. Blanks, appearing in the location field;

2. The operation code MACRO,;,appearing in the operatiiom field;
and

3. Blanks, appearing in the variable field.

The above card is immediately followed by a card with thess:
fields:

1. A FAP symbol, appearing in the location fields;

2. Three to.six:BCD characters appearing in the operation
field to be used as the macro-operation code; and

3. A list of substitutable arguments, appearing in the variable
field.

MOP

The Prototype

A symbol, which may appear in the location field of the second ecard,
is considered to be a sybstitutable argument, and not a location
symbol. It is replaced by the corresponding argument in the
location field of the macro-instruction card.This field in the macro-
instruction is a specific argument, and not a location symbol. If it
appears in the variable field of an instruction, it must be defined
elsewhere in the program.

The pseudo-operation MOP is also used to define a macro-operation.
The constituents of the MOP pseudo-instruction are:

1. Blanks, appearing in the location field;

2. The operatien code MOP, appearing in the operation field;
and
3. The macro-operation code, followed by the argument list,

appearing in the variable field.

MQOP is identical to MACRO except that the macro-operation code
being defined appears as the first subfield in.the variable field,
followed by a punctuation character and the argument list.

The prototype follows the macro-definition heading card. It
consists of a series of FAP instructions which use the substitutable
arguments listed in the variable field of the preceding MACRO

or MOP. The prototype must be followed by an END card with

the macro-operation code in its location field or variable field,

or with both the location field and the variable field blank.

To lend greater flexibility to macro-operations, parentheses and

the apostrophe have been included in the list of special characters
which may be used within the various fields of the macro-definitions.
Thus, neither may be used as part of a substitutable argument.

Remarks cards with an asterisk in column 1, appearing within a
macro-definition, will not appear in the expansions.

Heading characters in effect within the region in which the macro-
definition appears do not apply to the definition,

The: Location Field

A substitutable argument or any FAP symbol may appear in the
location field of a prototype instruction.

The Operation Field D
The following may appear in the operation field of a prototype in-
struction: any substitutable argument, any machine operation,
any pseudo-operation not restricted to the first card group (e.g.,
COUNT, ENTRY),or any macro-operation code.

The Variable Field

A blank, if encountered before card column 72 on a prototype

card (except the cards BCD, BCI, REM, TTL), is considered to
terminate the variable field, and any information or commentary

to the right of the blank will not be included in the macro-definition.
If the blank appears following an unmatched left parenthesis, how-
ever, the blank does not terminate the scan. Blanks within
parenthesis are considered to be text. If a matching right
parenthesis is not encountered before card column 73, an ETC
card must follow. Unmatched parentheses cause an assembly
error.

Alphameric cards are scanned in full for substitutable arguments.
If the variable field of BCD card (beginning in card column 12), or

a BCI card (beginning in card column 12-16), commences with a
non-blank, non-numeric character, the first subfield should be a
substitutable argument for which a count will be substituted in the
macro-instruction argument list. D

The apostrophe (8-4 punch) may be used to concatenate (link)
partial subfields in the operation field or in the variable field. It
is possible to create a single subfield from a combination of
arguments and text, as ' delimits an argument in the macro-de-
finition prototype, but is itself not included in the macro-
definition. The ! character cannot be used to concatenate sub-
fields of lower level nested macro-definitions. For example, to
delimit the count on a BCD prototype card, the following may be
used:.

ALPHA MACRO AsBsC
BCD A'Q *B' ERRORe CONDITION'C!' IGNORED.
ALPHA "END

]

The macro-instruction

——

02233 : : "ALPHA T4FLELDy»

will cause the following card to be generated:

02233 006060263125, BCD 70 .FIELD ERRORe CONDITION IGNORED

i

The following illustrates macro-generation of an operation code
by means of concatenation:

01226 4 TAPENO A6B 1
02221 K TAPENO BIL I
NAME4 MACRO AsBsCrDsEsF»sG
A B'TIC'D E |
SD'F G
NAME4 END |
03062 NAME4 AXsWsDsJs sl g% |
03062 0766 00 O 01226 AX WTDJ
03063 0776 00 O 00200 sDL *x |
03064 NAME4 AYsRsBss5sNsK
03064 0762 00 O 00225 AY RTB 5 |
03065 0776 00 0 02221 SDN K |

If parentheses are to be used as a part of text, the enclosed string
must not appear in the macro-definition heading argument list, or
the string will be considered a substitutable argument.

If a heading character of the form A$B is required, either A or B
or both may be substitutable arguments.

If a transfer vector name is required of the form $NAME, NAME
may be a substitutable argument.

If a literal of the form =A is required, A may be a substitutable
argument for which a valid form of a literal must be substituted.

The variable field of any card in the prototype may be extended by
the use of the ETC pseudo-operation. In order that a following
ETC card be recognized, it is necessary to follow the conventions
stated for extending a macro-definition heading card argument
list (page 6). The programmer should exercise caution that a
macro-generated card image which overflows column 72 has a
variable field which is properly extended by an ETC card. Such
variable fields are limited to those of a macro-instruction card,
or a nested macro-definition heading card.

These conventions for ETC cards are different from those for
ETC cards following CALL or VFD pseudo-instructions.

If a preceding card does not follow these conventions, an ETC
card will be treated as is any other card in the prototype, and will
be generated with arguments properly substituted. This ETC
card may be used to extend the variable field of a CALL or VFD
pseudo-instruction, provided it follows the conventions for CALL
or VFD.

The macro-operation compiler will generate ETC cards, recognized

by the macro-operation processor only, to follow any generated
instruction whose variable field overflows card column 72.

Nesting Macro-Definitions

Macro-operation definitions may be nested by including a macro-
definition heading card within a macro-definition prototype. The

9

various fields within the nested macro-operation will be scanned
for substitutable arguments in the argument list of the outermost D
macro-definition, Those arguments common to both the outer-
most macro-definition and the nested macro-definition will be
substitutable arguments for this inner macro-operation. Those
intended to be substitutable arguments in the nested macro-
operation, but not appearing in the outermost macro-definition
argument list, will be considerdd as text within the outermost
prototype. A macro-instruction using the outermost code will
generate the nested macro-definition heading cards and proto-
types of each of the macro-operations nested one level below,
with all outer level arguments properly substituted. The name of
the nested macro-operation may itself be an argument. This will
cause the definition of a lower level macro-operation, the proto-
type of which will be scanned for substitutable arguments in the
argument list of the current level definition, including those
substituted in the outer expansion. Lower level macro-operations
will not be defined until all higher level macro-operations within
which they are nested have been expanded.

If macro-definitions are nested, the ends of the lower level proto-
types must be marked with END cards bearing the name of the
macro-operation in the location or the variable field. If no name
appears in either field of the END card, the outermost macro-
definition is terminated.

An example of nested macro-definitions is as follows: D

NEST1 MACRO AsBsC |
NEST2 MACRO AsDsE
NEST3 MACRO BsDsF |
LN]
LA N] I
NEST3 END
NEST2 END |
NEST1 END |

The prototype of a macro-definition may include macro-instructions,
the macro-operations of which have not yet been defined; however,
such lower level macro-operations must be defined prior to an
appearance of the higher level macro-instruction. Circular
definitions, which will result in a loop within the macro-operation
processor, must be avoided by the programmer.

Restrictions on Macro-Definitions

The following restrictions apply to all macro-definitions:

1. When operating under the FORTRAN Monitor, all macro-
definitions should be at the beginning of the program since
the Error Records (which skip to END cards) may be confused
by macro-definition END cards.

10

2. The effective limit of the number of macro-definitions or the
total length of all macro-definitions is the length of tables
which these share. Macro-operation codes are inserted in the
Combined Operations Table, and the length of the Table must
not exceed 1024 operation codes. Approximately 400 names
are available to the programmer to insert macro-operation
codes, or codes defined by OPD, OPSYN, or OPVFD pseudo-
operations.

3. Macro-definitions share core storage with the symbol table;
entries in one reduce the space available for the other. The
space taken by macro-definitions is later occupied if re-
quired by the Symbolic Reference Table.

4. An argument list longer than 63 arguments will be truncated,
but will not be flagged.

Macro-Instructions

MAC

A macro-instruction is used to generate, in line, the sequence of
instructions given by the prototype,with substitutions for the argu-
ments. The constituents of a macro-instruction are:

1. A FAP symbol, appearing in the location field;

2, A previously defined macro-operation, appearing in the
operation field; and

3. A list of FAP symbols, expressions, alphameric character
strings, or operation codes, appearing in the variable field.

The symbol in the location field of the macro-instruction will be

defined as the location of the next instruction. A macro-instruction
should not appear within the range of a DUP.

An additional pseudo-operation is available for use as a macro-
instruction. The constituents of the MAC pseudo-instruction are:

1. A FAP symbol, appearing in the location field;
2. The operation code MAC, appearing in the operation field; and

3. The name of the macro-operation followed by the argument
list appearing in the variable field.

MAC is identical to a macro-instruction with the code in the
operation field, except that the code appears as the first subfield
in the variable field, followed by a punctuation character and the
argument list.

11

Punctuation

Only commas and parentheses may be used to separate arguments
in the macro-instruction argument list. A single comma following
a right parenthesis, or a single comma preceding a left parenthesis,
is redundant and may be omitted. Consecutive commas define a
null argument string; an explicit zero, if so desired, must appear
in the argument list. A blank not within parentheses terminates
the argument list. A pair of parentheses surrounding a string of
characters in a macro-instruction argument string signifies that
everything within the parentheses is to be substituted for the cor-
responding argument in the macro-definition prototype. Within
such a pair of parentheses, nested parentheses, commas, and
blanks are considered to be part of the string to be substituted. If
a matching right parenthesis is not encountered before card
column 73, an ETC card must follow. Unmatched parentheses
cause an assembly error.

Parentheses to be included as part of a field to be substituted in a
prototype must be enclosed within an outer pair of parentheses

which will be deleted in the macro-instruction expansion.

For example, given the macro-definition

CALLIO MACRO IOCOMs T1sOPsLABEL s T29UNITsPFXsERRET !
TSX (TAPE) »4 I
PZE I0COMsT1 0P
PZE LABELsT2sUNIT |
IFF 09ERRET
PFX ERRET |
CALLIO END |

the corresponding macro-instruction could be

03072 CALLIO CITIO»2s((RBEP)) sCITLB»sCITTAP |

03072 0074 00 4 73406 TSX (TAPE) ¢4 |

03073 0 40004 2 06610 PZE CITIO»29 (RBEP)

. 03074 0 00004 0 06614 PZE CITLBssCITTAP |
IFF Oy J

Note that TAPE should not be a substitutable argument; (RBEP)
must be enclosed in an outer pair of parentheses; and that in the
macro-instruction argument list, an explicit null argument
bounded by a comma appears corresponding in position to the
substitutable argument ERRET in the macro-definition argument
list, This will cause the fourth word of the calling sequence to be
omitted {see IFF on page 31).

As the character $ does not delimit an argument in the macro-
instruction argument list, it may be used freely to indicate a
heading character or a transfer vector symbol, to replace a
substitutable argument. If the character $ is at the end of the
argument list, a comma must be used to distinguish this from the
character used to flag a following ETC card. As the character =
does not delimit an argument in the macro-instruction argument
list, it may be used freely to indicate a literal to replace a
substitutable argument.

12

[/\\,

Argument Strings

The specific argument strings to be substituted must be given in
the same order in the macro-instruction argument list as the
substitutable arguments appear in the macro-definition heading
argument list.

It is not necessary to restrict the length of an argument string

to be substituted into a location field to six characters, or into an
operation field to seven. Even an entire card image may be in-
serted into any field. No blank will be inserted following

a location field longer than six characters, and the operation field,
if any, will follow immediately.

Example:
.
NAMES MACRO XXX |
XXX REMARK
NAMES END I
04061 NAMES (CLA B) |
04061 0500 00 O 06104 CLA B REMARK

Nested Macro-Instructions

It is possible to nest macro-instructions by including either a
macro-operation code or a substitutable argument which will be
replaced by a macro-operation, within an operation field in the

prototype.
Example:
XXX MACRO i
XXX END
COS MACRO OP l
oP l
TSX $COS+4
COS END I
04155 COS(COSEXXX))
04155 COS (XXX) |
XXX
04155 0074 00 4 00005 TSX $COS»4 |
04156 0074 00 4 00005 TSX $COS»4 N

Note that the null macro-operation XXX will cause the generation
of no card images. The same effect could have been obtained by
writing:

-0 07774 O 04757 XXX OPSYN NULL

L

Note also that the assembler will assume a comma or an open
parenthesis immediately following the operation code, as early
as card column 11, to be the end of the operation field or the be-
ginning of the variable field, respectively. Hence, suggestive
notation, such as

COS{ALPHA)

13

may be used as a string to replace a substitutable argument. D
The argument and sub-argument list of a macro-instruction may

be extended by the use of the ETC pseudo-operation. In order

that a following ETC card be recognized, it is necessary that the
preceding card follow the conventions stated for extending a
macro-definition heading card argument list (page 6). If the
preceding card does not follow these conventions, an ETC card

will be treated as the first card following the macro-generated

card sequence, which usually results in an assembly error.

The Generated Cards

The generated cards are similar to the prototype cards, except
that the substitutable arguments in the prototype will be replaced
with the arguments appearing in the macro-instruction argument
list. The heading characters in effect within the region in which
the macro-instruction appears will be prefixed to all symbols
shorter than six characters in the location and variable fields.

In the 709/7090 mode, the macro-compiler will generate the

variable field beginning in card column 16, except for the cards

BCD, BCI, REM, TTL,. In the 704 mode and for the cards BCD,
BCI,REM, TTL, the variable field will begin in card column 12.

No note is taken of the card column in which the variable field

begins on a prototype card. At least one blank will separate the D
variable field from an operation code which extends beyond ‘
these card columns.

Created Symbols

If arguments are missing from the end of the argument list of a
macro-instruction, symbols will be created to fill the vacancies,
These symbols take the form of ..001,..002, to ..nnn, throughout
the program. An explicitly null argument terminated by a comma
will be treated as null; created symbols will be supplied only at
the end of the argument string.

For example, given the macro-definition heading card

ALPHA MACRO AsBseCoD

and the macro-instruction card

ALPHA Xs» |

each appearance of the substitutable argument A will be replaced
by X, each appearance of the substitutable argument B will be
omitted, as the argument is explicitly void, and each appearance
of the substitutable arguments C and D will be replaced by the
symbols..nnn created to replace the omitted arguments at the end.

14

N

NOCRS

ORGCRS

Example:

If more than 9999 symbols are to be created, the programmer
must re-origin created symbols using the ORGCRS pseudo-
operation, or assembly will be terminated.

The pseudo-operation NOCRS is used to suppress the creation of
symbols to replace specific argument strings missing from the
end of a macro-instruction argument list. The constituents of
the NOCRS pseudo-instruction are:

1. Blanks, appearing in the location field;

2. The operation code NOCRS, appearing in the operation field;
and

3. Blanks, appearing in the variable field.

In order to alter the form of created symbols, the pseudo-operation
ORGCRS may be used. This pseudo-operation also reinstates the
creation of symbols, if they had been suppressed by NOCRS. The
constituents of the ORGCRS pseudo-instruction are:

1. Blanks, appearing in the location field;

2, The operation code ORGCRS, a‘i)pearing in the operation field;
and

3. Blanks or one BCD character followed by three digits, ap-

pearing in the variable field.

The BCD character in the variable field, if any, will replace the
second dot (. Annn); the digits, if any, will be the origin of a new
set of created symbols. This origin will be one lower than the
first symbol actually created. If the BCD character is desired,
the three digits must be stated explicitly: Annn; but if it is

not desired, nnn is sufficient.

MONSTR MACRO DAVIDyALLENSROBERT»SCOTT

1
CAL DAVID |
TZE SCOTT
STA ROBERT |
ALS 18 |
ORA ROBERT
SCOTT SLW ALLEN |
RMT I
ROBERT BSS 1
RMT |
MONSTR END |

15

IRP

In this macro-definition, the transfer address SCOTT and the
storage address ROBERT must be unique for each appearance of
the macro-operation in a macro-instruction. However, neither
is required outside of the resulting expansion. Hence the as-
sembler may be permitted to assign a location symbol, by omit-
ting the corresponding arguments in the macro-instruction
argument list. The pseudo-instruction ORGCRS is used to alter
the format of the created symbol to .Nnnn:

ORGCRS N150

|
04170 MONSTR MARLYNsHERB |
04170 ~0500 00 0 00312 CAL MARLYN
04171 0100 00 0 04175 TZE eN152 |
064172 0621 00 0 06000 STA oN151 |
04173 0767 00 O 00022 ALS 18
04174 -0501 00 O 06000 ORA oN151 I
04175 0602 00 O 00313 oN152 SLW HERB :

The pseudo-operation BSS will be assembled later in the program
(see RMT below).

06000 eN151 BSS 1

The pseudo-operation IRP is used within a prototype to iterate a
series of instructions within the set of generated instructions. The
constituents of the IRP pseudo-instruction are:

1. Blanks appearing in the location field;
2. The operation code IRP, appearing in the operation field; and
3. A FAP symbol, appearing in the variable field.

The symbol in the variable field must be the name of a single
substitutable argument appearing in the macro-definition argu-
ment list. An IRP card must precede the instructions to be
iterated, and another IRP card with blank location and variable
fields must follow the instructions. Both IRP cards must be with-
in the range of the prototype.

The argument to be substituted (appearing in the macro-instruction
argument list) is a string of sub-arguments separated by commas
and enclosed in parentheses. The number of these sub-argument
strings will be the number of iterations of the enclosed cards, and
each iteration will be made with the corresponding sub-argument
string substituted for the dummmy argument. If no argument was
given in the variable field of the first IRP, no iterations will be
made; one argument causes one iteration, etc.

For example, to compute the sum of squares, the following macro-
definition can be written:

16

RMT

SUMSQ MACRO T
sTZ T
IRP B
LDQ B 1)
FMP B
FAD T
sTO T
IRP

e — — —_— —

SUMSQ END

The four instructions marked are to be iterated. To compute
A=X% +Y2472 2, the following coding could be used:

04234 SUMSQ As(XsYsZ) |
04234 0600 00 0 06016 STz A

IRP X»Ys2Z |
04235 0560 00 0 06062 LDQ X
04236 0260 00 0 06062 FMP X |
04237 0300 00 O 06016 FAD A
04240 0601 00 O 06016 sTO A |
04241 0560 00 O 06064 LDQ Y
04242 0260 00 0O 06064 FMP Y
04243 0300 00 0 06016 FAD A |
04244 0601 00 0 06016 sTO A
04245 0560 00 0 06205 LDQ z |
04246 0260 00 0 06205 FMP z
04247 0300 00 O 06016 FAD A |
04250 0601 00 0 06016 sTO A |

An IRP pseudo-instruction cannot occur explicitly within the

range of an IRP; the first nested IRP will cause the termination of
the range, and the second, reopening of another range. However,
a macro-instruction within the range of IRP pseudo-instructions
may itself cause pairs of IRP pseudo-instructions to be generated
at a lower level.

Note that the macro-operation compiler will not generate an ETC
card for an IRP pseudo-instruction whose sub-argument string
does not fit on one card, but will process the string internally.

The IRP pseudo-operation is undefined outside of a macro-
operation.

The pseudo-operation RMT is used to bracket a block of coding
which will not be assembled as encountered, but will be assembled
when called for later in the coding. The constituents of the RMT
pseudo-instruction are:

1. Blanks, appearing in the location field;

2. The operation code RMT, appearing in the operation field;
and

3. Blanks, appearing in the variable field.

Macro-instructions may require assignment of temporary storage,
definitions of constants, closed subroutines, or other allocations

of memory. Such storage may be assigned within the macro-
operation, in which case it must be bypassed by transfer instructions;
or the programmer can keep track of the storage requirements

17

and define the necessary symbols whenever convenient. The
pseudo-operation RMT provides a means by which such storage
may be automatically assigned later in the assembly, at any
point the programmer may specify.

A remote sequence is defined as all the source cards, or macro-
generated cards, bracketed by a pair of RMT pseudo-instructions.
Remarks cards with an * in column 1 appearing within a remote
sequence will not appear in the expansion. A RMT pseudo-in-
struction cannot appear explicitly within the range of a remote
sequence; the nested pair will cause the termination of the range,
and the reopening of another range. However, a macro-in-
struction within the range of a remote sequence may itself cause
pairs of RMT pseudo-instructions to be generated at a lower
level. A remote sequence can be nested in a macro-operation,
and macro-operation prototypes not including remote sequences
may be nested to any desired depth within a remote sequence,
When the remote sequence is assembled, any macro-definitions
nested within will be defined and any macro-instructions nested
within will be expanded.

Remote sequences may be defined outside of macro-operations,
but should be used sparingly, as they may result in termination of
assembly due to macro-definition table overflow. Little is gained
by the use of this pseudo-operation outside of macro-operations.

Example:

The following remote sequence can be written:

RMT

1
CLA %
XX DEC 1€1 |
vy DUP 12
PZE |
2z BSS 10 |
cos XXX
|

RMT

Subsequently, a RMT * pseudo-instruction will cause all waiting
remote sequences to be assembled. The constituents of a RMT *
pseudo-instruction are:

1. Blanks, appearing in the location field;

2. The operation code RMT, appearing in the operation field;
and

3. An asterisk, appearing in the variable field.

RMT * and macro-instructions may be nested; however, the
depth of nesting is limited as follows: each macro-instruction

18

within a remote sequence, or conversely, each RMT ¥* generated
by a macro-instruction, requires three locations in the Level Table.
The total length of this Table is 112 locations, and the most

severe use of this Table, an alternate nesting of macro-instructions
and RMT #%, will terminate assembly if there are more than 37

such nestings.

For example, if the remote sequence above had been defined, the
following would be assembled following a RMT *:

04306 RMT *
043C6 0500 00 O 04306 cLA *
04307 +205400000009 XX DEC 1€1 |

04310 YY DUP 192
04310 0 00000 0 00000 PZE |
04311 0 00000 0 00000
04312 22 BSS 10 |
04324 cos XXX

XXX |

04324 0074 00 4 00005 TSX $C0S»4 |

If any remote sequences are waiting at the end of an assembly,
they will be assembled following the program END card. As re-
mote sequences may include macro-definitions, and macro-
instructions may include remote sequences, a significant
amount of coding may follow the END card. This generated
coding will precede any literals.

Heading characters for remote sequences are those in effect at
the time of definition, and not at the time of assembly. A remote
sequence defined or assembled in a multiply-headed region may
be improperly headed, and caution should be exercised.

19

UPDATING SYMBOLIC FAP TAPES

D

FAP permits reading an input tape other than Logical Tape 5

(the System Input Tape)and writing an updated blocked or unblocked
symbolic tape, with optional deletion of assembly. This updating
facility has been included in Pass 1 of FAP.

Update pseudo-instructions are listed in the pre-processor update
listing, but will normally not appear on an update output tape or
in the assembly listing. However, if the variable field of the
pseudo-instruction is in error and is flagged, it will appear in

the assembly listing and will be copied onto the update output tape.

UPDATE

In the FAP language, the UPDATE pseudo-operation is used to
initiate the updating mode, assign update input and output tapes,
and determine the mode of assembly. The constituents of the
UPDATE pseudo-operation are:

1. Blanks, appearing in the location field;
2. The operation code UPDATE, appearing in the operation
field; and
3. Two symbolic expressions and two single characters, all D

separated by commas, appearing in the variable field.

The first expression in the variable field is a logical tape number,
which may be void or zero (no tape provided), or the number of
the tape containing the symbolic input to be updated (Monitor tapes
1 through 8 are excluded). Successive use of the UPDATE pseudo-
operation will permit multi-reel input.

The second expression in the variable field is the logical tape
number of the tape on which an updated symbolic input for a
future assembly will be written. Unflagged update pseudo-
operations will not be copied onto this tape. Successive use of
UPDATE will permit subdividing of, or extracting from, an
input tape.

The first single character in the variable field is any non-void,
non-zero character, which indicates that the updated symbolic
tape is to be unblocked. This will result in a significant increase
in assembly time. If the character is void or zero, the updated
symbolic tape will be blocked 14 words per card, 16 cards per
block. Control cards’'and END cards are always unblocked.

The second character is any non-void, non-zero character which D
indicates that assembly is not required. In effect, this character

20

reduces the FAP processor to an updating and /or blocking routine.
No table entries are made, and Pass 2 is omitted. The only cards
recognized are update pseudo-operations (and END), and those
with an asterisk in column 1l. The second character must appear
within the first card group, and having once appeared, neither it
nor its preceding comma may reappear on another UPDATE card.

Cards with an * in card column 1 are considered to be control cards
and are unblocked if they follow another such card, or any update
pseudo-operation or END. They are considered as comments
cards and are blocked if they follow any card other than an update
pseudo-operation card or another *-type control card.

Note that corrections and additions are made on the basis of
serialization in card columns 73 through 80. A matching card on
the Source Input Tape will replace the card on the update input
tape; a nonmatching card will be inserted in sequence. A blank

is sequenced following the character * and preceding the character
/. If card columns 75 through 80 on either the source or update
input tapes are all blank, the serialization is taken to be 00000000
for sequencing, and the card is used immediately. All cards in-
serted or replaced are labeled as such, and appear on the pre-
processor assembly listing.

Example:.

UPDATE 11

This merges correction cards appearing on the Source Input

Tape with those appearing on Logical Tape 11, and reassembles, The
Update Input Tape is on the same channel as the Source Input Tape;
this is the fastest combination of tape assignments for a two-
channel installation.

Example:

UPDATE 11,12

This merges correction cards appearing on the Source Input Tape
with those appearing on Logical Tape 11, writes a blocked symbolic
output tape on Logical Tape 12, and assembles.

Example:

UPDATE ,12,,D

This copies the succeeding cards which are on the Source Input
Tape, and blocks them onto Logical Tape 12.

21

NUMBER

DELETE

Example:

UPDATE 11,,,D

This effectively spaces the tape and checks the sequence of the
cards on Logical Tape 1I.

The NUMBER pseudo-operation is used to reserialize columns
73-80 of the symbolic cards which are output on the Listing Tape
and/or Update Output Tape.

The constituents of the NUMBER pseudo-instruction are:

1. Up to six BCD characters appearing in the location field;

2. The operation code NUMBER, appearing in the operation
field; and

3. A number less than 32768, appearing in the variable field.

The six BCD characters will be left justified in card columns 73-
78 with blanks omitted, and the number will be right justified in
card columns 76-80. The programmer must insure that the BCD
and numeric fields do not overlap for the length of the program.

If the variable field is omitted, reserialization is suspended, and
old serials (if any) appearing in card columns 73-80 will be
maintained. In order to reserialize from 0, an explicit zero must
appear in the variable field, in addition to any characters which
may appear in the location field.

The DELETE pseudo-operation will cause the deletion of one or
more cards, of, or up through, a card of matching serialization.
If matching serialization does not exist, deletions will be made up

to, but not including, the next card of logically higher serialization.

The constituents of the DELETE pseudo-instruction are:

1. Blanks appearing in the location field;

2. The operation code DELETE, appearing in the operation
field;

3. THRU, when required, appearing in the variable field; and

4. A serialization number of eight characters, appearing in card

columns 73-80.

22

D,

D

IGNORE

SKIPTO

ENDFIL

Deleted cards appear, labeled as deleted, on the pre-processor
listing.

IGNORE is identical with DELETE except that the cards deleted
will not appear on the pre-processor listing. IGNORE has two
forms: IGNORE and IGNORE THRU, which are similar to
DELETE and DELETE THRU,

The SKIPTO pseudo-operation will cause the deletion of one or
more cards up to, but not including, a card of matching
serialization.

The constituents of the SKIPTO pseudo-instruction are:

1. Blanks, appearing in the location field;

2. The operation code SKIPTO, appearing in the operation
field;

3. Blanks, appearing in the variable field; and

4, A serialization number of eight characters, appearing in

card columns 73-80.

Cards deleted will not appear on the pre-processor listing.
Cards of higher serialization will not cause this operation to
terminate.

The ENDFIL pseudo-operation is used during an update, with or
without assembly, to cause an end-of-file to be written on the up-
date tape so addressed .

The constituents of the ENDFIL pseudo-instruction are:

1. Blanks, appearing in the location field;

2. The operation code ENDFIL, appearing in the operation field;
and

3. A FAP expression or logical tape number appearing in the

variable field.

If the logical tape number in the variable field is that of the cur-
rent update output tape, so specified by an UPDATE pseudo-

23

instruction, the last partial block of card images waiting to be

output will be written on the update output tape before the end-of -

file is written. If the variable field is blank, the update output D
tape is assumed. :

REWIND

The REWIND pseudo-operation is used during an update with or
without assembly to cause the addressed update tape to be re-
wound.

The constituents of the REWIND pseudo-instruction are:
1. Blanks, appearing in the location field;

2. The operation code REWIND, appearing in the operation
field; and

3. A FAP expression or logical tape number, appearing in the
variable field.

If the logical tape number in the variable field is that of the cur-

rent update output tape, specified by an UPDATE pseudo-in-

struction, the last partial block of card images waiting to be out-

put will be written on the update output tape before the tape is re-
wound. If the variable field is blank, the update output tape is as- -
sumed. If the update input or output tape is rewound, no update)
operation pertaining to it will be executed unless it is addressed

by a subsequent UPDATE pseudo-instruction.

UNLOAD
The UNLOAD pseudo-operation is used during an update with or
without assembly, to cause the addressed update tape to be re-

wound and unloaded.

The constituents of the UNLOAD pseudo-instruction are:

1. Blanks, appearing in the location field;

2. The operation code UNLOAD appearing in the operation
field; and

3. A FAP expression or logical tape number, appearing in the

variable field.

If the logical tape number in the variable field is the current up-

date output tape, specified by an UPDATE pseudo-instruction, the

last partial block of card images waiting to be output will be writ-

ten on the update output tape before the tape is rewound and un-

loaded. If the variable field is blank, the update output tape is J
assumed. If the update input or output tape is rewound and un-

24

SKPFIL

UMC

loaded, no update operation will be performed on it unless it is
addressed by a subsequent UPDATE pseudo-instruction. In the
latter case, the operator should be informed by a PRINT pseudo-
instruction to ready the tape sufficiently in advance to avoid delay-
ing the assembler.

The SKPFIL pseudo-operation is used during an update with or
without assembly to cause the update tape which it addresses to
be spaced forward until an end-of-file is passed.

The constituents of the SKPFIL pseudo-instruction are:

1. Blanks, appearing in the location field;

2. The operation code SKPFIL, appearing inthe operation field;
and

3. A FAP expression or logical tape number, appearing in the

variable field.

If the logical tape number in the variable field is that of the cur-
rent update output tape, as specified by an UPDATE pseudo-in-
struction, the last partial block of card images waiting to be writ-
ten will be placed on the update output tape before the tape is
spaced. If the variable field is blank, the update input tape is
assumed.

The UMC pseudo-operation is used to output card images
generated by a macro-instruction onto a symbolic update output
tape and to delete all macro-definition and macro-instruction
cards. A subsequent appearance of UMC will cause a reversion
to the normal output of macro-definition and macro-instruction
cards; alternate appearances cause alternate switching from
writing to not writing macro-generated images.

The constituents of the UMC pseudo-instruction are:

1. Blanks, appearing in the location field;

2. The operation code UMC, appearing in the operation field,
and

3. Blanks, appearing in the variable field.

The programmer should exercise caution in the use of this pseudo-
operation, in that a macro-definition may be deleted, but a macro-

instruction for the same code may remain. As the remaining remote

25

sequences will be expanded after the END card is written, they
must be inserted before the END card by the use of the RMT *
pseudo-operation. The serial numbers associated with deleted
macro-definition cards will be deleted; all cards generated by the
macro-~instruction will be serialized with the serial number
associated with the macro-instruction card. Access to any of
these is difficult. An IRP pseudo-operation in an expression is
never copied on the update output tape.

ENDUP .
The ENDUP pseudo-operation signals the termination of a FAP

update with assembly deleted. The constituents of the ENDUP pseudo- °*
operation are:

1. Blanks, appearing in the location field;

2. The operation code ENDUP, appearing in the operation field;
3. Blanks, appearing in the variable field; and

4. A serialization of eight characters, appearing in card

columns 73-80.

If assembly is deleted, END cards will be unblocked, but will not
terminate the pass. This makes it possible to update more than

one program at a time. If the assembly is not deleted, ENDUP D
will be undefined. A card on the update input tape of matching
serialization will be deleted, and no card of such serialization

will appear on the updated output tape. Blank serialization on

the ENDUP card will cause immediate termination of the update.

Tape Positioning

Because matching serialization is not required for any control

card, it will be necessary, for proper spacing of tapes, to have
symbolic cards of matching serialization on the Source Input Tape
to position the update input tape past those cards of logically

higher serialization which precede the card which is next to be
updated (such cards are referred to as '"spacers' below). It is

also necessary to have either an END card of matching serialization
on the source input tape or an ENDUP card (for an update without
assembly) which is properly serialized, or without serialization,
immediately following a properly serialized END card on the
Source Input Tape. This insures that the update tape is properly
positioned at the termination of FAP Pass 1. It should be noted

that if a multi-reel update job has been terminated during Pass 1
due to source tape or machine error, update input and output tapes
may be positioned incorrectly. Caution should be exercised in
restarting or continuing. For a single input and single output :)
tape, the Error Records will attempt to reposition these tapes for

another try.

26

7N\

In order to update a FORTRAN source deck, the output tape must
be unblocked and the assembly deleted. ENDUP is the pseudo-
operation to terminate the job.

In case of illegible cards on the Source Input Tape, the assembly is
terminated and the Machine Error Record will skip to the end of
the job, to the END card, or to the beginning of the assembly, at
the operator's option. If a card (or block of cards) on the update
input tape is illegible, the card (or cards) will be omitted, the
next source correction card read, a message printed on- and off-
line, and the job will continue. It is possible to reinsert lost
cards during a later update. The omission of such cards will
usually result in an assembly error, but the update input tape will
be properly spaced for the next assembly, unless an END card or
a '"'spacer' card is read erroneously.

Update Examples

The following sequence of cards would cause an end-of-file, an
END TAPE card, and another end-of-file to be written on the up-
dated Symbolic Tape 12, this tape to be rewound, and Logical Tape
11 to be unloaded:

* FAP
UPDATE ,12,,D
ENDF IL

* END TAPE
ENDFIL
REWIND
UNLOAD 11
ENDUP

The following cards could surround an input deck on the Source
Input Tape to obtain a blocked, serialized Tape 12 for a later
assembly:

* DATE 1/2/62

* JOB IDENTIFICATION
PACK
FAP
PAGE TITLE CARD
UPDATE ,12

FOl NUMBER ©
DATE 1/2/62
JOB IDENTIFICATION
PACK
FAP
PAGE TITLE CARD
COUNT 5000
ABS

X K K

% % %k ok %

END
* FAP
UPDATE ,12
ENDF IL
* END TAPE
ENDF IL
UNLOAD
END
(END OF FILE)
* END TAPE
(END OF FILE)

27

The following cards on the Source Input Tape might be used to up-
date and reserialize symbolic cards on Logical Tape 9, with
assembly deleted and with the updated output on Logical Tape 10:

* FAP

UPDATE 9510ssD

FOl NUMBER 0
CAL ERASE FO101010
DELETE F0101200
NZT SYMBL FOl01l461
TRA ERROR

Fo2 NUMBER 0 F0199999
DELETE F0201730
DELETE THRU F0201840
DELETE F0202040
IGNORE THRU F0204170

FO3 NUMBER © F0299999
END FO301760
ENDUP

ADDITIONAL SYMBOL DEFINING PSEUDO-OPERATION

SET

In order to define a symbol, permitting it to be redefined later,
the pseudo-operation SET may be used. The constituents of SET
are:

1. A FAP symbol, appearing in the location field;
2. The operation code SET, appearing in the operation field;
and

3. A FAP expression, appearing in the variable field.

The symbol in the location field is defined to have the value of

the FAP expression in the variable field. This expression must
satisfy all the rules of writing expressions. If the symbol had
previously been defined by the SET pseudo-operation, it will be
redefined. If the symbol had previously been defined, but not by

a SET pseudo-operation, the symbol will be redefined, but an error
flag will appear in the left margin of the listing. This is not an
assembly error. The SET pseudo-operation will override any prior
means of definition. This pseudo-operation is useful in providing

a value for a parameter used within a macro-operation, which is
not accessible through the argument list.

ADDITIONAL PROGRAM LINKING PSEUDO-OPERATION

EXTERN

The EXTERN pseudo-operation is used to insert symbols in the
transfer vector.

The constituents of the EXTERN pseudo-instruction are:

28 ;

1. Blanks, appearing in the location field;

2. The operation code EXTERN, appearing in the operation
field; and

3. A list of FAP symbols, of one through six BCD characters,
separated by commas, appearing in the variable field.

A symbol appearing in an EXTERN list, if already in the transfer
vector, will be ignored. If a symbol has been previously defined
in the location field of a machine instruction or a symbol defining
pseudo-operation, it will be multiply defined. EXTERN is
undefined in an absolute assembly.

ADDITIONAL LIST CONTROL PSEUDO-OPERATIONS

INDEX

The INDEX pseudo-operation is used to list a table of contents
of important locations within the assembly,

The constituents of the INDEX pseudo-instruction are:

1. Blanks, appearing in the location field;
2, The operation code INDEX, appearing in the operation field;
and

3. A list of FAP symbols, of one through six BCD characters,
separated by commas, appearing in the variable field.

The first appearance of an INDEX card will cause the message
TABLE OF CONTENTS

to be listed. Each subfield of an INDEX pseudo-instruction will
cause the symbol, and its definition, to be listed. The listing of
the INDEX card itself is governed by the mode of the PCC control
card.

INDEX pseudo-instructions may appear anywhere in the source
program, and need not be grouped. The listing generated by
INDEX pseudo-instructions will be inserted where the pseudo-

instructions appear. However, the message TABLE OF CONTENTS

will appear but once; and, for the most meaningful commentary,
INDEX pseudo-instructions should be grouped at the beginning of
the source program, interspersed with appropriate remarks
cards.

29

PMC

NULL

Alternate appearances of PMC pseudo-operations with blanks in the
variable field cause and suppress listing; ON or OFF give
absolute control.

The constituents of the PMC pseudo-instruction are:

1. Blanks appearing in the location field;
2. The operation code PMC, appearing in the operation field;
and

3. Blanks, or ON, or OFF, appearing in the variable field.

Card images generated through the use of a macro-instruction are
normally not listed, except for card images which are flagged by
the assembler. In order to cause such card images and the octal
instruction to be listed, the pseudo-operation PMC can be used.

Control cards generated by macro-instructions are listed only if
both PMC and PCC modes are ON. The nesting level of macro-
generated cards appears in card columns 81 through 84 of the
listing.

The NULL pseudo-instruction is used to cause a card image to be
listed in full, but to have no effect upon assembly.

The constituents of the NULL pseudo-instruction are:

1. Any BCD characters appearing in the location field;
2. The operation code NULL, appearing in the operation field;
and

3. Any BCD characters, appearing in the variable field.

A possible use of the NULL pseudo-instruction is

o

-0 07774 0 04757 CODE OPSYN NULL

where CODE is a machine operation or pseudo-operation which is
not defined in the assembler, the effect of which may be omitted
from the assembly. For example,

-0 07774 0 04757 ENTRY OPSYN NULL

will enable a proper absolute assembly of a subprogram, with
ENTRY pseudo-instructions listed, but not affecting the program.

30

D

D

ADDITIONAL CONDITIONAL ASSEMBLY PSEUDO-OPERATION

IFF

The IFF pseudo-operation controls the assembly of the following
card.

The constituents of the IFF pseudo-instruction are:

1. Blanks appearing in the location field;
2. IFF appearing in the operation field; and
3. A series of FAP symbols separated by commas appearing

in the variable field.

The pseudo-operation IFF with P, A, B in the variable field pro-

vides conditional assembly of program segments according to the
values of the parameters P,A,B. P is a FAP expression, and A
and B are BCD symbols. The pseudo-operation results in assembly
of the next instruction (and all ETC cards), only if

1. P is not 0 and A is identical to B.
2. P = 0 and A not identical to B.

P will be zero if it is undefined; P will be considered non-zero if
it is relocatable. That the conditional assembly governed by IFF
extends over only one card (and all ETC cards) is not a serious
restriction, as the following card may be a macro-instruction
which will expand to a sequence of any length, or it may be another
IFF. Remarks cards with an * in columnl following an IFF will
be ignored; the instruction immediately following a block of such
cards will be conditionally assembled.

The example of the CALLIO macro-operation (page 12) can be
used to demonstrate IFF, As P=0, the next prototype card

PFX ERRET

will be generated only if field A, replacing the substitutable argu-
ment ERRET, is not identical with field B, which is void. As in
the macro-instruction argument list, field A is also a void field;
it is identical with field B, and the next prototype card will not be
generated.

An IFF pseudo-operation, and all cards under its control, will be
copied on an update output tape.

For example, the following macro-definition can be written:

31

D)

ADD3 MACRO AsBsC

CLA A
IFF 0sCrAC
STO C

ADD3 END

|
|
!
AbLL B |
|
|
]

If it is desired to store the result, the following macro-instruction
can be written:

1

04552 ADD3 XsYsZ |

04552 0500 00 0 06062 CLA X |
04553 0400 00 0 06064 ADD Y

IFF 0sZsAC |

04554 0601 00 0 06205 STO z I

|

If it is desired to leave the result in the Accumulator, the follow-
ing macro-instruction can be written:

—1
04622 ADD3 XsYsAC I
04622 0500 00 0 06062 CLA X |
04623 0400 00 0 06064 ADD Y |
IFF 04ACsAC)
]
REVISED PSEUDO-OPERATIONS
The following changes have been made in existing pseudo-
operations:)
CALL
A CALL pseudo-instruction may be used in an absolute assembly.
No transfer vector entry will be made, and the name of the sub-
program in the first subfield of the variable field must be defined
as any other symbol,
END
A symbol in the location field of an END pseudo-instruction will
be defined as the last location used by the program, one location
below the program break.
ENTRY

An explicit zero in the variable field of an ENTRY pseudo-
instruction will cause the program card to indicate that the entry
point to the main program is the first instruction following the
transfer vector and linkage director.

32

- LBL

LOC
ORG

PCC

PRINT

TAPENO

If the variable field of a LBL pseudo-instruction is blank,
serialization of binary cards will be discontinued. In order to

serialize from 0, an explicit zero must appear in the variable
field.

A LOC or ORG pseudo-instruction may be used in a relocatable
assembly. If the expression in a variable field is COMMON or
undefined, an assembly error will result. If the expression in
the variable field is absolute or relocatable, the new origin, and
any symbol in the location field of a LOC or ORG card, will
always be assumed to be relocatable above the transfer vector
and linkage director.

A PCC pseudo-instruction may nowhave ON or OFF as well as
blanks in the variable field; the new forms give absolute switch
control.

PRINT is considered to be an update pseudo-operation, and will
be listed in the pre-processor update listing. It will not appear
on the assembly listing or the update output tape.

Any one of the following characters may be used to set the mode
in a TAPENO pseudo-instruction:

Binary
Decimal
High density
Low density

Cnow

ADDITIONAL REVISIONS _

The locations of definitions of symbols defined by the following
pseudo-operations will appear in the symbolic reference table:
BOOL, COMMON, EQU, MAX, MIN, SYN, and TAPENO.

In addition, if a symbol is multiply defined by its appearance in
the location field of more than one of the following operations, the

33

point of definition will be flagged in the left hand margin of the
listing: BCD, BCI, BES, BOOL, BSS, CALL, COMMON, DEC,
DUP EQU, IFEOF, MAX, MIN, OCT, SYN, TAPENO, VFD, or
any machine instruction. This flag does not signify an assembly
error. However, any reference to a multiply defined symbol in
the variable field of a machine operation or pseudo-operation will
be flagged as before, signifying an assembly error. It is possible
to have two M flags in the left-hand margin opposite a single in-
struction: one referring to the point of definition (location field)
and the other to the point of use (variable field).

34

APPENDIX I: COMBINED OPERATIONS TABLE

Pseudo-Operations

The following is a list of pseudo-operations in the Combined
Operations Table. Those marked with @ have been added or ex-
tended, and are described in this bulletin; all others are
described in detail in FORTRAN Assembly Program (FAP) for
the IBM 709/7090 (Form J28-6098-1).

Operation Code Purpose

704 Set mode of assembly
7090 Set mode of assembly
9LP Set card format
ABS Set card format
BCD Data generating
BCI Data generating
BES Storage allocating
BOOL Symbol defining
BSS Storage allocating
@ CALL Program linking
COMMON Storage allocating
COUNT Assembler information
DEC Data generating
@ DELETE Update information *
DETAIL List control
DUP Data generating
EJECT List control
@ END Assembler information
@ ENDFIL Update information
@ ENDUP Update information
ENTRY Program linking
EQU Symbol defining
ETC Continue variable field *
@ EXTERN Program linking
FUL Set card format
HEAD Symbol defining
HED Symbol defining
IFEOF Program linking
@ IFF Conditional assembly
@ IGNORE Update information *
@ INDEX List control
@ IRP Macro-operation control
@ LBL Binary card labelling
LIST List control
@ LOC Storage allocating
@ MAC Macro-instruction

35

Operation Code Purpose

@ MACRO Macro-definition
MAX Symbol defining
MIN Symbol defining

@ MOoP Macro-definition

@ NOCRS Macro-operation control

@ NULL List control

@ NUMBER Update information
OoCT Data generating
OPD Opcode defining
OPSYN Opcode defining
OPVFD Opcode defining

@ ORG Storage allocating

@ ORGCRS Macro-operation control

@ PCC List control

@ PMC List control

@ PRINT Update information
REF List control
REM List control

@ REWIND Update information

@ RMT Deferred assembly

@ SET Symbol defining

@ SKIPTO Update information *
SKP List control

@ SKPFIL Update information
SPACE List control
SPC List control
SST Symbol defining
SYN Symbol defining

@ TAPENO Symbol defining
TCD Set card format
TITLE List control
TTL List control

@ UMC Update information
UNLIST List control

@ UNLOAD Update information

@ UPDATE Update information
VEFD Data generating

The following pseudo-operations have been deleted:
ENDFUL {(use ABS)

FAP (use COUNT; not to be confused with
*FAP Monitor Control Card)

* Pseudo-operations which do not appear in the Combined
Operations table.

36

Machine and Extended Machine Instructions

The following is a list of machine instructions and extended
machine instructions, type, and permissible fields in the Com-
bined Operations Table. Each is described in detail in the 7090
Reference Manual (Form A22-6568) and/or in the 704 Reference
Manual (Form A22-6500 1). Those marked @ have been added
or extended.

In the machine instruction list, the description of the machine
instruction, the fields permitted and/or machine required, the
mode of assembly, and other information is coded as follows:

INSTRUCTIONS
TYPE INSTRUCTION FORMAT USAGE
A 0 00000 0 00000 18 bit decrement field
B 0000 xx 0 00000 No decrement field
C 0000 00 0 00000 8 bit decrement field
D 0000 xx 000000 18 bit address field
E 0760 xx 0 x0000 13 bit address field
K 00 0000 0 00000 4 bit prefix field
OTHER CODES
CODE INTERPRETATION
N Not significant, or may change operation
P Permissible
R Required
T Operation code defined or required address
satisfied by use of TAPENO character
(I/0) I/0 unit address defined by operation mnemonic
4 Permissible in 704 mode only
9 Permissible in 7090 mode only
8 Decrement field not longer than 8 bits required

An "X" as the fourth character of an operation code indicates a
variable channel operation, for which character the channel de-
signation A to H, or a properly defined TAPENO character, must

be substituted. Unit record equipment should not use this character.

Violation of these rules will be flagged in the left hand margin of
the listing, but this flag will not indicate an assembly error with
deletion of relocatable binary cards. No 709 mode exists; hence
while assembling in the 7090 mode, drum instructions will be
flagged while indirect addressing of I/O commands will not.

Operation codes which are on a "Request Price Quotation' basis
are indicated by RPQ in the mode column.

37

Op Code

ACL
ADD
ADM
ALS
ANA
ANS
ARS
AXC
AXT

@BRA

@BRN
BSF
BSFX
BSR
BSRX
BST
BTT
BTTX
CAD
CAL
CAQ
CAS
CFF
CHS
CLA
CLM
CLS
COM
CPY

@CPYD

@QCPYP
CRQ

@CTL

@CTLR

@CTLW
CVR
DCT
DRS
DVH
DVP
EAD
EAXM
ECA
ECQ
ECTM
EDP

EFTM
ELD
EMP
ENB
ENK
ERA
ESB

38

Type

PruobtrdooEEw

B(I/0)
B(1/0)
B(1/0)
B(1/0)
B(1/0)

WD IQORARR QPRI DO O ENE

Addr

H

—

H

WHWZH O Z 2O WZ AR N Z I IO O WY Z N Z N2 2O YO W Z OO N W OO O m R DD E DD

Tag

o l-= B I B v B v B o B B

— o~

NN
N

tTwZzuwizozdnZiuiiZUuZZZ29zZ2z29z29zZvz22yvdddzdvodudd

Dec

(2)

—
o
~—

® o

Ind Addr

www

el

v Wwwv wWHo'd Utdw wWW

Wy ‘TdY

Mode

0 O

[} SN iV B N o RN e N N o)

Ne

f¥o RV e JENe RN« JEN e RN« JEN « JIT N

P
av)
@)

RPQ
RPQ
RPQ
RPQ

RPQ

RPQ

%\O\D\D

)

VR

Op Code

ESNT
EST
ESTM
ETM
ETT
ETTX
EUA
FAD
FAM
FDH
FDP
FIVE
FMP
FOR
FOUR
FRN
FSB
FSM
FVE
HPR
HTR

@ICC
IIA
IIL
IIR
I1IS
10D
10T
IOXY(N)
.. (3)
LAC

@LAR
LAS
LAXM
LBT

@LCC
L CHX
LDA
LDC
LDI
LDQ
LFT
LFTM
LGL
LGR

@LIP

@QLIPT
LLS
LNT
LRS
LSNM
LTM

LXA
39

WP EH>PPEPIOIEEEEE D ® :]
°
o

A
—_~
sk
~—

=

WO RN OO R RE > >H

>
[N
o
H

H

W2y BN ZR N ZO NN NN NN ZZ N NI N Z 2O RN Z 2 Z U R N2 R IN AN R ZZZ R

ZZvyvzZiwdwwdzZzuvwdodwowoddd 22290

Tag

TR YYizZZ2ZU0Z000Z22"

"ZZYWZ

= Z2Z49

Dec

™

ZZ

Ind Addr

v wwouRoY

avliye)

o U

o ls)

O O

fYo Ve It NN« BN N R e B

W o w00

PQ

(Vo JEN© I Ve BN]

el

Op Code Type Tag Dec Ind Addr Mode

LXD
MON
MPR
MPY
MSE
MTH
MTW
MZE
NOP
NTR
NZT
OAlL
OFT
ONE
ONT
ORA
ORS
oSI
PAC
PAI
PAX
PBT
PDC
PDX
PIA
PON
PSE
PSLX
PTH
PTW
PXA
PXD
PZE
RCD
RCDX
RCHX
RCT
RDC
RDCX
RDR B(I/0) R
RDS B R
REW B(I/0) R
REWX B(I/0) RT
RFT
RIA
@RICX
RIL
RIR
RIS
RND
RNT
RPR B(1/0)
RPRX B(I/0)
RQL B

o S o B o B o
o B oI o Bt e} ol o)
O O O B

O O O

P RPQ

PHTPPUEUEHPUDNHODONO OO PO E>PE > >EEE>W
U9

HEHEE D
He o
NS
ee
ZRPZPZTVZZVVPPVZZ 222228 PRBIRNZWHZVVVI R WD 2
=}
H

Ttttz zUiiRsdiiiiZeNZNZNddd0YYZ0YdZYYY R O0OR
RV RV- I

L
W Z
NI RN EN- V-V

UBBoOUMRBUO
A

PR E TR

40

M

Op Code

@RSCX
RTB
RTBX
RTD
RTDX
RTT
RUN
RUNX
*%dk (3)
bbb (3)

@SAR
SBM
SCHX
SDH
SDHX
SDL
SDLX
SDN
SEVEN
SIL
SIR
SIX
SLF
SLN
SLQ
SLT
SLW

@SMS

@SNS
SPR
SPRX
SPT
SPTX
SPU
SPUX
SSLX
SSM
SSP
STA

@STCX
STD
STI
STL
STO
STP
STQ
STR
STT
STZ
SUB
SVN
SWT
SXA

41

Type Addr Tag

BT R
B(I/O) R
B(I/0) RT
B(I1/0) R
B(I/O) RT
E N
B(I/0) R
B(I/O) RT
A
A
K
B
BT
B(I/0) R
B(I/O) RT
B(I/0) R
B(I/O) RT
B(I/O)R .

PRl B v B

wm»mmw»wwmmwwwwmmgmmwmmmwwmmmmm:>Uc::b
WO Z ORI ZRZ 2O NS NN N ZO NN 20N WD

YowWwvowodudizddddzod oD U

s wHwwZYdotdttZ2Ydzzdddid Yt ZZdvttZ 0

Dec

ZvH

Ind Addr

P

o v

T H

T

Y wWhwududXd

Mode

O O h O el

Ne)

O 0 O L OO VOO

O O

RPQ

Ne}

0O

Op Code

SXD

@

@

TCH
TCM
TCNX
TCOX
TDC
TEFX
THREE
TIF
TIO
TIX
TLQ
TMI
TNO
TNX
TNZ
TOV
TPL
TQO
TQP
TRA
TRCX
TRS
TSX
TTR
TWO

@TWT

42

TXH
TXI
TXL
TZE
UAM

UFA -

UFM
UFS
USM
VDH
VDP
VLM
WDR
WEF
WEFX
WPB
WPBX
WPD
WPDX
WPR
WPRX
WPU
WPUX

Type

B
A
K(1)

o o le.
H H4

el BBl B el - - e B L B e B R B RS B B B B I B B s B B ol e B - Il B Z
f= N
4

MO WWEEEPPRPDUNCDOD DO PODOE > B W>

gyl
(=™
NN
83
o

B(I/O) RT
B(I/0) P
B(1/0) N
B(I/0) P
B(I/0) N
B(I/0) P
B(I/O) N
B(1/0) P
B(I/0} N

3
9
aa

ZyZwyZyZzuvvoiudwouiitid R Rz dyo i ddo R dd it 29 dZ2d @

Dec

W 2

mTzZY

[o]

Ind Addr

Y'dYwd WY WO

YddwoddHd

g

d

o B o Bt e B o B o By o

Mode

[e XN« JENoJNo JENe IRV « Vo JEN e JEN o]

RPQ

WO 0 WO O

N>

J

—r’

Op Code Type Addr Tag Dec Ind Addr Mode

WRS B R P
WTB B(I/O) R P
WTBX B(I/O) RT P 9
WTD B(I/O) R P
WTDX B(I/O) RT P 9

@WTR A R N N P 9
WTS B(I/O) N N 4
WTV B(I/O) N N
XCA B N N 9
XCL B N N 9
XEC B R P P 9
XIT B R P P

@xXMT A R N R P 9
ZAC B N (2)
ZET B R P P 9
ZSA B R (2) 9
ZSD B R (2)

Footnotes From the Combined Operations Table

(1) A count field in the low order pasition of the operation code is
assembled from the fourth.subfield of the variable field;
e.g.,

icc ,,,4

(2) The following extended macliine operations are included in
the Combined Operations Table (listed above). They dif-
fer from the assembled machine operation codes only in
that no flag will appear in the left hand margin of the listing
for certain uncoded tag and decrement fields.

Mnemonic As Assembled Unﬂagged Omitted Fields
BRA TXL T,D

BRN TXH T,D

ZAC PXD T

ZSA SXA. T

ZSD SXD. T

(3) Alternate:forms for PZE(. . .,***,bbb).

Disk File Orders

The following disk file: arders (see IBM 1301 Input/Otutput Control
System for 1410 and 7000 Series Data Processing Systems, Form
J28-8064-1) are included in the Combined Operations Table. The
symbsolic: arder should be written as

LOC DORD A,T,H,R
437

and will assemble as ten BCD digits in two successive locations.

A subfield may be any valid FAP expression, but the expression)
may not be common or relocatable or an assembly error will re-

sult. Fields marked R are required; they will be flagged A if

missing. They may be coded void by the use of %% or successive
commas. Fields notso marked, if coded, will be flagged F and

ignored. Neither of these flags will indicate an assembly error.

All are marked with @ to indicate they are new.

- Access and : :
MNEMONIC Module Track Head Record Mode

@DEBM
@DNOP
@DREL
@DSAI
@DSBM
@DSEK
@DVCY
@DVHA
@DVSR
@DVTA
@DVTN
@DWRC
@DWRF

b
o]
w

L R
mmmEEEED W
WEREEE R W
WY W W
OO OOV OVOVO OOV OVOVO VYO

44

APPENDIX II: SYSTEM SYMBOL TABLE, FORTRAN MONITOR
The followirig is a list of symbols and octal definitions, which can
be defined with the use of the SST control card, for the assembler
operating under the FORTRAN Monitor.
CORE ALLOCATION SYMBOLS

TOPMEM NN Top of available memory

BOTIOP 73400 Bottom of I/O package
BOTTOM -00144 Bottom of available memory
(PCBK) 00143 Object program program break, ,common
v break
DATEBX = - 00142 Monitor date cell
LINECT - 00141 Monitor job line count, , FORTRAN page
, number, label flag in prefix
FLAGBX 00140 Monitor flag cell

TAPE ASSIGNMENT SYMBOLS

SYSTAP 00001 System tape

FINTAP 00002 First intermediate tape
SINTAP 00003 Second intermediate tape
TINTAP 00004 Third intermediate tape
MINTAP 00005 Monitor input tape

MLSTAP 00006 Monitor listing tape

MBNTAP 00007 Monitor punch tape

MCHTAP 00010 Monitor intermediate chain tape
SNPTAP 00011 Snap tape ~

LIBTAP 00001 System library tape

ENTRY POINTS TO I/O PACKAGE

(LOAD) 73400 Call next record on system tape
(DIAG) 73403 Call diagnostic record, source or machine
- i error

(TAPE) 73406 Initiate tape operation

(PRNT) 73411 Initiate on-line print

(PNCH) 73414 Initiate on-line punch

(READ) . 73417 Initiate on-line card read

(STAT) 73422 Locate tape statistic tables

(REST) 73425 Restore console

(STDN) -73431 Set tape density

(SECL) 73447 Call source program error record
- . (MECL) .. 73450 Call machine error record

(DGLD) 73451 Restore memory and halt

PARAMETERS VARIABLE AT EDIT TIME

(ES1S) 73452 Physical sense switch corresponding to
END card setting 1
(ES2S) 73453 Physical sense switch corresponding to

END card setting 2

45

(ES3S)
(ES4S)
(ES5S)
(ES6S)
(PGCT)
(LIBT)

73454
73455
73456
73457
73460
73461

Physical sense switch corresponding to ECS 3
Physical sense switch corresponding to ECS 4
Physical sense switch corresponding to ECS 5
Physical sense switch unassigned

Listing page dimensions

System library tape assignment

COMMON COMMUNICATIONS REGION

(FGBX)
(LNCT)
(DATE)
(SNCT)
(MSLN)
(ENDS)
(SCHU)

73467
73470
73471
73472
73473
73474
73501

Location of Monitor flag cell
Location of Monitor line count

Job date

Snapshot tape file count

Flag fotr diagnostic record

End card settings

Data transmission error information

DEFINITIONS OF OPERATION MNEMONICS
TO INITIATE TAPE OPERATION

(WROW)
(RDEC)
(WEFC)
(RBEC)
(WDNC)
(RDNC)
(WBNC)
(RBNC)
(RDEP)
(WEFP)
(RBEP)
(WDNP)
(RDNP)
(WBNP)
(RBNP)
(SKDC)
(SKBC)

(SKDP)
(SKBP)

(CHKU)
(TPER)

(SNAP)

46

40031
40016
40015
40014
40013
40012
40011
40010
40006
40005
40004
40003
40002
40001
40000
20012
20010

20002
20000
10000

04000

01000

Operation Information End File Check
Write Row binary Immediate
Read Decimal Permitted Immediate
Write End file Immediate
Read Binary Permitted Immediate
Write Decimal Immediate
Read Decimal Prohibited Immediate
Write Binary Immediate
Read Binary Prohibited Immediate
Read Decimal Permitted Later
Write End File Later
Read Binary Permitted Later
Write Decimal Later
Read Decimal Prohibited Later
Write Binary Later
Read Binary Prohibited Later
Skip Decimal Immediate
Skip Binary Immediate
Backspace for BTT
Skip Decimal Later
Skip Binary Later
Backspace Not sig-
nificant

Delay and check last information transmitted
Error return for transmitted information
found improper

Dump panel and memory selectively on SNPTAP

D

APPENDIX Ili: FAP OPERATING UNDER THE BASIC MONITOR (IBSFAP)

Introduction

FAP is available as an independent system called IBSFAP operat-
ing under the IBSYS Basic Monitor. IBSFAP is completely in-
dependent of the FORTRAN Monitor. Complete IBSYS speci-
fications will be found in the IBM Basic Monitor (IBSYS) bulletin
(Form J28-8086).

IBSFAP Operations

Control Cards

The following Basic Monitor card

1 16
$EXECUTE IBSFAP

will call Pass 1 of IBSFAP (IBSFP1).

A minimal monitor in IBSFP1 recognizes the following control

cards:
Format Use
1 7 , 16
$1D Installation accounting request
$IBSYS Return to Basic Monitor
*ROW Specifies off-line row-binary
card output
*PRINT Specifies on+line assembly listing

*CARDS COLUMN Specifies on-line column-binary
card output

*CARDS ROW Specifies on-line row-binary
card output

*remarks preceding Specifies remarks to be printed

*FAP by Monitor on-line

*F AP Specifies beginning of a FAP

assembly or updating run

The cards beginning in column 1 are Basic Monitor cards, while
the rest (preceded by an asterisk) are IBSFAP control cards .

47

Input/Output Units

Output from IBSFAP is always blocked on SYSOU1, for the 720
Printer, five lines per block, and binary punched output is placed D
on SYSPPI in card image form. The on-line options supplement,

but do not replace, these operations.

IBSFAP uses logical units for updating and referencing. The
input/output unit correspondence to SYSUNI functions is as

follows:

SYSUNI Logical I/O Unit Function
SYSLB1, (2,3, or 4) 1 IBSFAP syste

SYSUT2 2 Scratch =
SYSUT4 3 Scratch

SYSCKI1 4 Scratch, on-line card output only
SYSINL 5 IBSYS input '
SYSOUl 6 IBSYS BCD list output
SYSPPI1 7 IBSYS binary card output
SYSUTI1 8 Available for updating
SYSUT3 9 Available for updating
SYSCK2 10

Available for updating

For maximum running efficiency, it is suggested that SYSUT2 and
SYSUT4 be on channels different from those of SYSINI and

SYSOUIL, especially on large assemblies or updatings, and that the)
update input tape be on the same channel as SYSINI.

Example

The following would be the sequence of cards on SYSINI to do
multiple assemblies:

. Format Function
1 7 16
$DATE mmddyy
$ATTACH (unit) Any number of unitassignments
$AS (function) . as necessary
$EXECUTE IBSFAP

* Monitor control cards, as

*FAP : required

*page heading remarks
- COUNT m

Source input deck to be
. assembled

END ,
¥, ~ s Monitor control card, as

required D

*page heading remarks

48

COUNT m

ABS
Additional source input decks to
be assembled
END
$IBSYS Return to IBNUC

Special IBSFAP Feature

The pseudo-operation, SST, provides IBNUC and IOEX symbolic
definition entries as follows:

1. All the one-entry points starting with SYSTRA through SYSLDR
in IBNUC, plus the current value of SYSEND and SYSORG.

2. All the SYSUNI functions.

3. The communication region to IOEX from ACTIV to TRPSW
as follows:

IOEX COMMUNICATION TABLE

Equivalent Assembly

IOEX Symbol _Symbol, If Used Function
ENTRY POINTS TO IOEX SUBROUTINES
ACTIV (ACTIV Activate Routine & Test
ACTIV+1 (ACTVX Activate Routine Without
Test
NDATA (NDATA Non-Data Select & Test
NDATA+1 (NDSLX Non-Data Select Without
Test
MWR,PROUT (PROUT Message Writer
PUNCH (PUNCH Hollerith Punch
FRCHX (FRCHX Free Channel X
PAWSX (PAWSX Error Pause
PAUSX (PAUSE Operator Action Pause
STOPX (STOPX Dead Stop Entry
SYMUNI (SYMUN Symbolic Unit Conversion
BCVDEC-1 (DECVD Binary to Decimal Con-
version--AC
Decrement
BCVDEC (DECVA Binary to Decrement
Conversion--AC
Address
CKWAT (CKWAT Checkpoint Wait
BCD5-1 (BCD5R Octal to BCD Bits 3-17, MQ
BCD5 (BCD5X Octal to BCD Bits S-14, MQ
CVPRT (CVPRT Convert and Append to
Tape Message
STOPD (STOPD Dead Stop Location

49

IOEX Symbol

Equivalent Assembly

Symbol, If Used

Function

INDIRECT REFERENCES TO CHANNEL DATA TABLES

CHXAC
URRXI
RCTXI
RCHXI
TCOXI
TR CXI
ETTXI
TEFXI
TRAPX

TRAP
COMM
LTPOS
IOXSI

CHPSW
TRPSW

50

(CHXAC
(URRXI
(RCTXI
(RCHXI
(TCOXI
(TRCXI
(ETTXI
(TEFXI
(TRAPX

TRAP DATA
(TRAPS
(COMMM
(LTPOS
(IOXSI
ACTIVITY SWITCHES

(CHPSW
(TRPSW

Channel Activity
Redundancy Count
Redundancy Control
Reset L.oad Channel
Channel Delay

Tape Redundancy Test
End Tape Test

End File Test

Current Traps Enabled

Current traps enabled
Store Channel Results
Tape Position

Sense Indicators

Checkpoint
Trap

J28-6186

BEIVI

International Business Machines Corporation

PUBLICATIONS

D

Following is a list of IBM publications which may be of interest to the reader:

REFERENCE MANUALS

Form Number

A22-6528-1

A22-6536

C28-6054-2
C28-6066-3

Title

IBM 7090 Data Processing System

IBM 709 Data Processing System
709/7090 FORTRAN Programming System
709/7090 FORTRAN Operations

L o

GENERAL INFORMATION MANUALS

D22-6508-2

¥28-8043

F28-8053-1
F28-8074-1

BULLETINS
G22-6505-1

J28-6098-1
J28-6114-1

J28-6132
J28-6133

J28-6135
J28-6166

J28-6167
J28-6168
J28-6169
J28-6173

J28-6174
J28-6184
J28-8086

IBM 709/7090 Data Processing System
IBM Commercial Translator

COBOL

FORTRAN

IBM 7090 Data Processing System
FORTRAN Assembly Program (FAP) for the IBM 7090
32K 709/7090 FORTRAN: Double-Precision and D
Complex Arithmetic
Advance Specifications: 7090 FORTRAN and FORTRAN
Assembly Program (FAP)
32K 709/7090 FORTRAN: Source Language Debugging
at Object Time
32K 709/7090 FORTRAN: Adding Built-In Functions
SHARE 7090 9PAC: Partl - Introduction and
General Principles
SHARE 7090 9PAC: Part 2 - The File Processor
SHARE 7090 9PAC: Part 3 - The Reports Generator
IBM 709/7090 Commercial Translator Processor
IBM 7000/1400 Output Editing System- Preliminary
Reference Manual
S-Program for the IBM 7090: Preliminary Specifications
IBM 7094 Programs and Programming Systems
7090 Operating Systems: Basic Monitor (IBSYS)

—

D

Data Processing Division, 112 East Post Road, White Plains, N.Y. Printed in U.S. A, J28-6186

