
IBM 709 17090 DATA PROCESSING SYSTEMS BULLETIN

PRELIMINARY BULLETIN

FORTRAN ASSEMBLY PROGRAM (F A P) FOR THE IBM 709 / 7090 - --
SUPPLEMENTARY INFORMATION FOR THE 32K VERSION ---

This bulletin was prepared by IBM Applied Programming a s a supplement to
the FORTRAN Assembly P r o g r a m (FAP) for the IBM 70917090, (F o r m
J28-6098-I), and together with that publication, provides cur ren t specifications
for FAP p rog rams to be run on 32K 709 or 7090 Data Process ing Sys tems ,
operating under e i ther the FORTRAN o r Basic Monitor (IBSYS).

Included herein a r e descriptions of new pseudo-operations, with sections on
those connected with macro-operat ions and updating, and complete System
Symbol and Combined Operations Tables . F o r additional information on FAP
operating under the Basic Monitor (IBSYS), the reader i s r e f e r r e d to the IBM
pre l iminary bulletin, Basic Monitor (IBSYS), (F o r m J28- 8086).

Coding i s indicated throughout this bulletin by the use of a l l capital l e t t e r s
f o r actual coding; e . g . , CLA.

Because of the pre l iminary nature of this bulletin, the mater ia l i t contains,
together with any necessary additions and correct ions , will be published in a
m o r e complete f o r m a t a l a te r date .

CONTENTS

The FAP Macro-Operation P roces so r .
Examples of P r o g r a m m e r Macro-Operation s .
Macro-Defining Pseudo.Operations .

MACRO .
The Location Field .
The Argument L is t .

Extending The Argument L is t .
Alternative F o r m .
. MOP

. The Prototype
. The Location Field

The Operation Field .
. The Variable Field

. Nesting Macro-Definitions
. Restr ic t ions in Macro-Definitions

. Macro-Instructions
MAC .

. Punctuation
Argument Strings .

. Nested Macr o-Ins t ruc tions
. The Gene ra t edCards

Crea tedSymbols .
NOCRS .
ORGCRS .

IRP .
RMT .

Updating Symbolic F A P Tapes .
UPDATE .
NUMBER .
DELETE .

. IGNORE
SKIPTO .
ENDFIL .

. REWIND

. UNLOAD
SKPFIL .

. UMC
. ENDUP

. Tape Positioning
. Update Examples

. Additional Symbol Defining Pseudo-Operation 28
SET . 28

. Additional P r o g r a m Linking Pseudo-Operation 28
EXTERN . 28

Additional List Control Pseudo-Operations .
. INDEX

PMC .
. N U L L

Additional Conditional Assembly Pseudo -0per ation .
IFF .

Revised Pseudo-Operations .
CALL .
END .
ENTRY .
LBL .
LOG. ORG .
PCC .

. PRINT
. TAPENO

AdditionalRevisions .

Appendix I: Combined Operations Table . 35

Appendix 11: System Symbol Table. FORTRAN Monitor 45

. Appendix 111: F A P Operating Under the Basic Monitor 47

THE FAP MACRO-OPERATION PROCESSOR

A FAP macro-operat ion i s a type of pseudo-operation created by
the p rog rammer . The most significant proper ty of a n instruction

- -

specifying a macro-operat ion (a macro- inst ruct ion) i s that i t can
generate one o r more ca rd images . The contents of the ca rd
images generated a r e virtually unrestr ic ted and may include any
machine operation, any pseudo-operation not res t r i c ted to the
f i r s t c a rd group (e . g . , COUNT, ENTRY), o r any macro-operat ion,
and any field permitted on a FAP source ca rd .

A macro- inst ruct ion can be regarded a s a n abbreviation for a
sequence of c a rd images. The sequence of ca rd images generated
by the macro- inst ruct ion i s determined by the par t icular mac ro -
definition corresponding to the macro- inst ruct ion code. Each
macro-operat ion has i t s own definition, which consis ts of a head-
ing card , a sequence of prototype ca rd images, and an END ca rd .

A prototype ca rd image has a standard FAP source c a r d format
with location field, operation code, and variable field. Remarks
may appear on a prototype card ; however, the r e m a r k s will not
normally appear following the variable field on the mac ro -
generated ca rd image. The fields of a prototype ca rd may con-
s i s t of: text. which - w i l l be reproduced a s written; substitutable
arguments ; and (special) punctuation cha rac t e r s , which delimit
arguments and, like text, a r e reproduced.

A field o r subfield i s text if i t i s longer than six charac te rs or if
i t i s a s t r ing of one through s ix cha rac t e r s , delimited by punctuation
m a r k s , which does not appear in the argument l i s t of the mac ro -
operation heading ca rd . A field o r subfield i s a substitutable
argument if i t i s a string of one through s ix cha rac t e r s which
appears in the argument l i s t af the macro-operat ion heading ca rd .

A macro-generated sequence of c a rd images consis ts of each of the
prototype card images, with text and punctuation cha rac t e r s a s on
the prototype, but with substitutable arguments replaced by
specific argument s t r ings (of unrest r ic ted length) whose position
i n the argument l i s t of the macro-instruction corresponds to that
in the argument l i s t of the macro-definition heading ca rd .

Examples of P r o g r a m m e r Macro-Operations

Suppose that the programmer has writ ten a source program which
will assemble , including the following sequences of instructions:

. a .

C L A
ADD
S T 0
1..

* a *

SUBCOM CCA
ADD
S T 0
a * .

a a a

C L A
ADD
ST0

F E D T A X
S T A T AX
T O T T A X

P A R T l
P A R T 2
T O T A L

The pattern 05 these three instructions might be designated by
some BCD name, say QSUM, which coslld then be defined as

s

follows:

t

QSUM MACRO V l r V 2 r V 3 I
C L A V 1
ADD V 2 I
S T 0 V 3

QSUM E N D
I
J

The above sequence of five source ca rds generates no binary
words in the object program, but constitutes the definition of the
macro-operation which the programmer has chosen to call
QSUM. The f i r s t card i s the macro-definition heading ca rd . J;t.
includes the name of the macro-operation in the location field
and the argument l i s t in the variable field. The next th ree cards
a r e the prototype, in which V1, V2, V3$ a r e substitutable a r -
guments<, identified in the heading card argument l i s t . A31 of the

3
other fields, CLA, ADD, STO, a r e text, since they do not ap-
pear in the argument l i s t . The fifth card (ENDIJ marks the end of
the range of the mmro-definition. It will not terminate assembly.

Once the macro-operation QSUM has been defined in the source
program, the sequence of CLA, ADD, STO, instructions may be
replae'ed by a macru-injstruction card which. generates the se-
quenc& a$ instructions with their substitutable arguments replaced
by the arguments in the variable field of the maaro-instruction
QSUM:

*--

* a * I
..a

00127
I

QSUM FEDTAXISTATAXITOTTAX
a. a

. a .
11

SUBCOM QSUM X S U B l r Y S U B l e Z S U B l
. a .

. a .

1
QSUM P A R T 1 r.PART2, T O T A L I

Note, in the above example, the following points:

1. The string QSUM which appears in the location field of the
pseudo-operation MACRO is not a symbol, but a code for
the macro-operation to be defined, and a s such is entered
into the Combined Operations Table. It may be the same a s
a location symbol?qpearing anywhere in the assembly,
including symboEs\within the macro-definition.

The substitutable arguments V1, V2, V3, which appear in
the variable field of the macro-definition heading card and
also in various fields within the prototype, merely
characterize the order of the expressions and character
strings which may appear in the variable field of a later
macro-instruction using the given macro-operation. If, on
the macro-operation heading card, the order were to be
changed to V3, V1, V2, then the macro-instruction

QSUM TOTTAXsFEDTAXvSTATAX

would cause generation of the same card images. Because
the substitutable arguments a r e dummy names, they may be
identical to strings used elsewhere in the program in
location, operation, or variable fields, a s symbols o r
operation codes, including the code for this or any other
macro-operation. The programmer should exercise caution
in constructing the prototype so the text will not be confused
with substitutable arguments, as every string of s ix or
fewer characters, in any field, is compared with the argument
l is t . Special care should be taken with alphameric text, or
with fields of VFD, DEC, or OCT pseudo-operations.

In the simple example of the macro-definition given above, the
substitutable arguments appeared in address fields in the proto-
type and were replaced by symbols on the macro-generated
cards. In general, substitutable arguments may appear in the
location field, the operation field, in any of the subfields of the
variable field, or a s a heading character in any subfield. The
substitutable arguments may be replaced by any valid FAP ex-
pression or appropriate alphameric character strings.

If a substitutable argument appears in an operation field, i t may be
a string of one through six characters; however, the code which
replaces it must be a standard FAP operation code of three through
six characters.

For example, the following definition could be written:

I
QPOLY MACRO COEFFILOOPPDEGPT~OP

AXT DEG9T
LDQ COEFF

I
LOOP FNP GAMMA

0 P COEFF+UEG+lpT
I

XCA
T I X L O O P r T s l

I
QPOLY END I

Here mnemonic character strings have been chosen to represent
the substitutable arguments. Notice that LOOP appears in a
location field, OP in an, operation field, and that COEFF and DEG r
appear a s symbols and within, expressions in address subfields.
Notice also that GAMMA is text *-a symbol, and not a substitutable
dummy argument - and) presumably will be defined elsewhere in *
the program.. Any use of t h e code QPOLY in a macro-instruction
should be accompanied by an argument l is t of appropriate sub-
stitutions for the substitutable arguments. For example, LOOP
should be replaced by a symbol, which should not be multiply
defined, and OP should be replaced by a valid operation code.

A QPOLY macro-instruction might. be written:

I
0 2 0 3 1 X 0 1 5 QPOLY C l d 4 r F I R S T 9 5 r 4 r F A D I

I % .

The macro-instruction would cause the following six card images
to be generated:

I '

I
0 2 0 3 1 0 7 7 4 0 0 4 0 0 0 0 5 AXT 5 9 4
0 2 0 3 2 0 5 6 0 0 0 0 0 6 1 6 1 LDQ C 1 - 4 I
9 2 0 3 3 0 2 6 0 0 0 . 0 0 0 1 3 5 F I R S T FMP GAMMA
0 2 0 3 4 0 3 0 0 0 0 0 0 6 1 6 7 FA U C 1 - 4 + 5 + l t 4
0 2 0 3 5 ' 0 1 3 1 0 0 0 0 0 0 0 0 X C A

I
0 2 0 3 6 2 0 0 0 0 1 4 0 2 0 3 3 T I X F I R S T 9 4 9 1 I

I

The symbol X015 i s defined a s the location in which the f i r s t in-
struction (AXT) appears; each of the substitutable argument s i s
replaced by the corresponding argument in the macro -instruction
argument l is t . The expression arising f rom the prototype address
C0EFFtDEG-t 1 is equivaleht to C 1 t 2 .

Use of the macr o-operation processor permits simulation of machine
instructions of another computer, or extending the machine
operation vocabulary of 'the 709/7090.

F o r sxa&iple, S T 0 can be modified to dump the information stored
r

on each execution:

I
0 6 0 1 7 1 1 6 0 0 0 0 * S T 0 OPSYN S T 0

M S T 0 MACRO A I
* S T 0 A
SXA * + 2 9 4 I
TSX DUMP r 4
AX T ** 9 4 I

S T 0 END . 1

The M flag, appearing in the left margin of the assembly listing to
point out a redefinition of an existing code,does not indicate an
assembly e r r o r .

MACRO-DEFINING PSEUDO-OPERATIONS

MACRO

The pseudo-operation MACRO is used to name a macro-operation
and to identify the arguments in the succeeding prototype. The
constituents of the MACRO pseudo-instruction are :

1. Three to six- BCD characters (not all zeros) , appearing in
the location' field;

. "

2. The operation code MACRO, appearing in the operation field;
and

3 . A l i s t o f substitutabledumrnyarguments, appea r ing in the
variable field.

The Location Field

The character string in the location field is not a location symbol
and will subsequently be used a s a macro-operation code. If i t
i s the same a s any other machine ope'ration, pseudo-operation,
o r macro-operation, the pseudo-operation will be flagged, the
code will be redefined within the Combined Operations Table and
the former definition lost.

. .

The Argument List

The substitutable arguments in the macro-definition heading card
argument l'ist may be any Iegal FAP symbols, or may consist of
all numeric characters (excluding a l l zeros) . The substitutable
arguments in a rnacko-definition may be separated by any of the
following punctuation characters:

and the argument l i s t i s terminated by the character "blank. 11

After a punctuation character, suceeding' punctuation characters
or a n explicit ze ro a r e ignored and do not resul t in a substitutable
argument of zero.

Suggestive notation ib.a?macro-definition argument l i s t may be used.

y -
For~example , in a macro-definition heading argument l i s t

\- I . ALPHA MACRO, A (B + C) - U S E I
I

i s identical with

I 1 --/
ALPHA MACRO AIBPCIDVE I

Extending the Argument List

The argument l is t of a macro-definition heading card may be ex-
tended by the use of the ETC pseudo-operation. In order that a
following ETC card be recognized, it is necessary that the follow- u
i q conventions apply to the preceding card:

1. An unmatched left parenthesis exists in the variable field; or, *

2. The variable field i s terminated by a $ immediately followed
by a blank or card column 73. This will not be confused with
the use of this character to signal a heading character o r a
transfer vector name, a s in neither of those cases w i u g h ~ t $
be immediately followed by a blank; or

3. The variable field extends to card column 7 2 ; . -

If a card with an unmatched left parenthesis is not immediately
followed by an ETC card, an assembly e r ro r will be flagged. If a
card with a terminal $ is not followed by an ETC, the terminal $
i s deleted from the macro-definition and ignored.

If the preceding card does not follow these conventions, an ETC
card will be treated a s the f i r s t card in the prototype, and an
assembly e r ro r will usually result.

Alternative Form

An alternative form of the MACRO pseudo-instruction is the
following :

1. BXanks, appearing in the location field;

2 . The operation code MACRO,', appearing in the operathxannf%&&
and

3. Blanks, appearinginthevariablefield.

The above card is immediately followed by a cm& with the=
fields:

1. A FAP symbol, appearing in the location fieldj;;

2 , Three to six-BCD characters appearing in the operatiom
to be used a s the macro-operation code; and

3 . A Est of s ~ i t u t a b l e arguments, appearing in the variable
field,

3

A symbol, which may appear in the location field of the second eard,
is considered to be a substitutable argument, and not a location
symbol. It i s replaced by the corresponding argument in the
location field of the macro-instruction card .This field in the macro -
instruction is a specific argument, and not a location symbol. If it
appears in the variable field of an instruction, it must be defined
elsewhere in the program.

MOP

The pseudo-operation MOP is also used to define a macro-operation.
The constituents of the MOP pseudo-instruction are:

1. Blanks, appearing in the location field;

2 . The operation code MOP, appearing in the operation field;
and

3 . The macro-operation code, followed by the argument list ,
appearing in the variable field.

MOP is identical to MACRO except that the macro-operation code
being defined appears a s the f i rs t subfield in the variable field,
followed by a punctuation character and the argument l is t .

The Prototype

The prototype follows the macro-definition heading card. It

consists of a ser ies of F A P instructions which use the substitutable
arguments listed in the variable field of the preceding MACRO
o r MOP. The prototype must be followed by an END card with
the macro-operation code in i ts location field or variable field,
o r with both the location field and the variable field blank.

To lend greater flexibility to macro-operations, parentheses and
the apostrophe have been included in the l is t of special characters
which may be used within the various fields of the macro-definitions .
Thus, neither may be used a s part of a substitutable argument.

Remarks cards with an asterisk in column 1, appearing within a
macro -definition, will not appear in the expansions.

Heading characters in effect within the region in which the macro-
definition appears do not apply to the definition.

A substitutable argument or any F A P symbol may appeal: in the
location field of a prot;s$ype instruction.

The Operation Field 1
.J

The following may appear in the operation field of a prototype in-
s truction: any substitutable argument, any machine ope ration,
any pseudo-operation not restricted to the f i rs t card group (e . g . ,
COUNT, ENTRY) ,or any macro-operation code.

The Variable Field
v

A blank, if encountered before card column 72 on a prototype
card (except the cards BCD, BCI, REM, TTL), is considered to
terminate the variable field, and any information or commentary
to the right of the blank will not be included in the macro-definition.
If the blank appears following an unmatched left parenthesis, how-
ever, the blank does not terminate the scan. Blanks within
parenthesis a r e considered to be text. If a matching right
parenthesis i s not encountered before card column 73, an ETC
card must follow. Unmatched parentheses cause an assembly
e r r o r .

Alphameric cards a re scanned in full for substitutable arguments.
If the variable field of BCD card (beginning in card column 12), or
a BCI card (beginning in card column 12-16), commences with a
non-blank, non-numeric character, the f i rs t subfield should be a
substitutable argument for which a count will be substituted in the
macro -instruction argument l is t .

The apostrophe (8-4 punch) may be used to concatenate (link)
partial subfields in the operation field or in the variable field. It
i s possible to create a single subfield from a combination of
arguments and text, a s delimits an argument in the macro-de-
finition prototype, but i s itself not included in the macro-
definition. The ! character cannot be used to concatenate sub-
fields of lower level nested macro-definitions. For example, to
delimit the count on a BCD prototype card, the following may be
used:

i
A L P H A MACRO A I B ~ C

B C D A ' O ' 0 ' ERROR. C O N D I T I O N ' C ' IGNORED.
I

A L P H A END I
I

The macro-instruction

1
0 2 2 3 3 A L P H A 7 r F I E L U v I I

will cause the following card to be generated:

I
0 2 2 3 3 0 0 6 0 6 0 2 6 3 1 2 5 BCD 7 0 F I E L D ERROR* C O N U I T I O l \ I G N O R E D * I

The following illustrates macro-generation of an o,peration code
by means of concatenation:

J TAPENO A6B
K T A P E N O B l L

NAME4 MACRO AsBICSDSESFSG
A B ' T ' C ' D E

S D ' F 6
NAME4 END

NAME4 AXSWIDIJIILS**
AX WTDJ

SOL **
NAME4 A Y ~ R S B I S S ~ N S K

AY RTB 5
SDN K

If parentheses a r e to be used as a par t of text, the enclosed string
must not appear in the macro-definition heading argument list, o r
the string will be considered a substitutable argument.

If a heading character of the form A$B is required, either A or B
or both may be substitutable arguments.

If a transfer vector name is required of the form $NAME, NAME
may be a substitutable argument.

If a literal of the form =A is required, A may be a substitutable
argument for which a valid form of a literal must be substituted.

The variable field of any card in the prototype may be extended by
the use of the ETC pseudo-operation. In order that a following
ETC card be recognized, it is necessary to follow the conventions
stated for extending a macro-definition heading card argument
l is t (page 6) . The programmer should exercise caution that a
macro-generated card image which overflows column 72 has a
variable field which is properly extended by an ETC card. Such
variable fields a r e limited to those of a macro-instruction card,
o r a nested macro-definition heading card.

These conventions for ETC cards a r e different from those for
ETC cards following CALL or VFD pseudo-instructions .

If a preceding card does not follow these conventions, an ETC
card will be treated a s is any other card in the prototype, and will
be generated with arguments properly substituted. This ETC
card may be used to extend the variable field of a CALL or VFD
pseudo-instruction, provided i t follows the conventions for CALL
o r VFD.

The macro- operation compiler will generate ETC cards, recognized
by the macro-operation processor only, to follow any generated
instruction whose variable field overflows card column 7 2 .

Nesting Macro-Definitions

Macro-operation definitions may be nested by including a macro-
definition heading card within a macro-definition prototype. The

various fields within the nested macro-operation will be scanned
for substitutable arguments in the argument l is t of the outermost
macro-definition. Those arguments common to both the outer -
most macro-definition and the nested macro-definition will be
substitutable arguments for this inner macro-operation. Those
intended to be substitutable arguments in the nested macro-
ope ration, but not appearing in the outermost macr o-def inition
argument list , will be considerdd a s text within the outermost
prototype. A macro-instruction using the outermost code will
generate the nested macro-definition heading cards and proto-
types of each of the macro-operations nested one level below,
with all outer level arguments properly substituted. The name of
the nested macro-operation may itself be an argument. This will
cause the definition of a lower level macro-operation, the proto-
type of which will be scanned for substitutable arguments in the
argument list of the current level definition, including those
substituted in the outer expansion. Lower level macro-operations
will not be defined until all higher level macro-operations within
which they a r e nested have been expanded.

If macro-definitions a r e nested, the ends of the lower level proto-
types must be marked with END cards bearing the name of the
macro-operation in the location or the variable field. If no name
appears in either field of the END card, the outermost macro-
definition is terminated.

An example of nested macro-definitions i s a s follows: -1
N E S T l MACRO A B B s C
N E S T 2 MACRO ASDIE
N E S T 3 MACRO B ~ D I F

0 . 0
I

* * *
N E S T 3 END

I
N E S T 2 END
N E S T l END I

1

The prototype of a macro-definition may include macro-instructions,
the macro-operations of which have not yet been defined; however,
such lower level macro-operations must be defined prior to an
appearance of the higher level macro-instruction. Circular
definitions, which will result in a loop within the macro- operation
processor, must be avoided by the programmer.

Restrictions on Macr o-Definitions

The following r e s trictions apply to all macr o-def initions:

1. When operating under the FORTRAN Monitor, al l macro-
definitions should be a t the beginning of the program since
the E r r o r Records (which skip to END cards) may be confused
by mac ro-definition END cards.

The effective limit of the number of macro-definitions or the
total length of all macro-definitions i s the length of tables
which these share. Macro-operation codes a r e inserted in the
Combined Operations Table, and the length of the Table must
not exceed 1024 operation codes. Approximately 400 names
a r e available to the programmer to insert macro-operation
codes, or codes defined by OPD, OPSYN, or OPVFD pseudo-
operations.

Macr o-definitions share core storage with the symbol table;
entries in one reduce the space available for the other. The
space taken by macro-definitions is later occupied if r e -
quired by the Symbolic Reference Table.

4. An argument l is t longer than 63 arguments will be truncated,
but will not be flagged.

Macro-Instructions

A macro-instruction i s used to generate, in line, the sequence of
instructions given by the prototype,with substitutions for the argu-
ments. The constituents of a macro-instruction are:

1. A FAP symbol, appearing in the location field;

2. Apreviouslydefinedmacro-operation, appearinginthe
operation field; and

3. A l i s t of FAP symbols, expressions, alphameric character
strings, or operation codes, appearing in the variable field.

The symbol in the location field of the macro-instruction will be
defined a s the location of the next instruction. A macro-instruction
should not appear within the range of a DUP.

MAC

An additional pseudo-operation i s available for use a s a macro-
instruction. The constituents of the MAC pseudo-instruction are:

1. A FAP symbol, appearing in the location field;

2. The operation code MAC, appearing in the operation field; and

3 . The name of the macro-operation followed by the argument
l is t appearing in the variable field.

MAC is identical to a macro-instruction with the code in the
operation field, except that the code appears a s the f i rs t subfield
in the variable field, followed by a punctuation character and the
argument l is t .

Punctuation

Only commas and parentheses may be used to separate arguments 3
in the macro-instruction argument list . A single comma following
a right parenthesis, or a single comma preceding a left parenthesis,
i s redundant and may be omitted. Consecutive commas define a
null argument string; an explicit zero, if so desired, must appear
in the argument l is t . A blank not within parentheses terminates
the argument list . A pair of parentheses surrounding a string of
characters in a macro-instruction argument string signifies that
everything within the parentheses is to be substituted for the cor-
r e sponding argument in the macro-definition prototype. Within
such a pair of parentheses, nested parentheses, commas, and
blanks a r e considered to be par t of the string to be substituted. If
a matching right parenthesis i s not encountered before card
column 73, an ETC card must follow. Unmatched parentheses
cause an assembly e r r o r .

Parentheses to be included a s part of a field to be substituted in a
prototype must be enclosed within an outer pair of parentheses
which will be deleted in the macro-instruction expansion.

For example, given the macro-definition

C A L L I O M A C R O IOCOMtTltOPtLAQELtTZtUNITtPFXeERRET
TSX (T A P E) r 4
PZ E I O C O M t T l r O P
PZE LABEL t T 2 t U N I T

I
I F F O t E R R E T

I
PFX ERRET

C A L L 1 0 END
I

the corresponding macro-instruction could be

03072 C A L L 1 0 C I T I O ~ ~ ~ ((R B E P)) ~ C I T L B ~ ~ C I T T A P I , , I
03072 0074 00 4 73406 TSX (T A P E) t 4
03073 0 40004 2 06610 PZE C I T I O t 2 t (R B E P)

I
03074 0 00004 0 06614 PZE C I T L B t t C l T T A P

I F F 01
I

Note that TAPE should not be a substitutable argument; (RBEP)
must be enclosed in an outer pair of parentheses; and that in the
macro-instruction argument l is t , an explicit null argument
bounded by a comma appears corresponding in position to the
substitutable argument ERRET in the macro-definition argument
l is t . This will cause the fourth word of the calling sequence to be
omitted (see I F F on page 3 1) .
As the character $ does not delimit an argument in the macro-
instruction argument l is t , i t may be used freely to indicate a
heading character or a transfer vector symbol, to replace a
substitutable argument. If the character $ i s a t the end of the
argument list , a comma must be used to distinguish this f rom the
character used to flag a following ETC card. As the character =
does not delimit an argument in the macro-instruction argument
list , it may be used freely to indicate a l i teral to replace a
substitutable argument.

Argument Strings

The specific argument strings to be substituted must be given in
the same order in the macro-instruction argument l i s t a s the
substitutable arguments appear in the macro-definition heading
argument l is t .

It i s not necessary to res t r ic t the length of an argument string
to be substituted into a location field to six characters , or into an
operation field to seven. Even an entire card image may be in-
ser ted into any field. No blank will be inserted following
a location field longer than six characters , and the operation field,
if any, will follow immediately.

Example :

t

NAME9 MACRO XXX
XXX REMARK I

NAME9 END

04061 NAME9 (C L A B 1
I

04061 0500 00 0 06104 CLA B REMARK I
1

Nested Macro-Instructions

It is possible to nest macro-instructions by including either a
macro-operation code o r a substitutable argument which will be
replaced by a macro-operation, within an operation field in the
prototype.

Example :

XXX MACRO I
XXX E N D

COS MACRO OP
OP

I
T S X S C O S 9 4

COS END
I

04155 C O S (C O S (X X X) 1
I

04155 COS (XXX 1
XXX
T S X B C O S e 4

I
04155 0074 00 4 00005
04156 0074 00 4 00005 T S X S C O S e 4

I
I

Note that the null macro-operation XXX will cause the generation
of no card images. The same effect could have been obtained by
writing :

.
I

-0 07774 0 04757 X X X O P S Y N N U L L I
I

Note also that the assembler will assume a comma or an open
parenthesis immediately following the operation code, a s early
a s card column 11, to be the end of the operation field or the be-
ginning of the variable field, respectively. Hence, suggestive
notation, such a s
I 1

may be used a s a string to replace a substitutable argument.
3
-J/

The argument and sub-argument l is t of a macro-instruction may
be extended by the use of the ETC pseudo-operation. In order
that a following ETC card be recognized, i t i s necessary that the
preceding card follow the conventions stated for extending a
macro-definition heading card argument list (page 6) . ~f the
preceding card does not follow these conventions, an ETC card
will be treated a s the f i r s t card following the macro-generated
card sequence, which usually results in an assembly e r r o r .

The Generated Cards

The generated cards a r e similar to the prototype cards, except
that the substitutable arguments in the prototype wi l l be replaced
with the arguments appearing in the macro-instruction argument
l is t . The heading characters in effect within the region in which
the macro-instruction appears will be prefixed to all symbols
shorter than six characters in the location and variable fields.

In the 7 0 9 / 7 0 9 0 mode, the macro-compiler will generate the
variable field beginning in card column 16, except for the cards
BCD, BCI, REM, TTL. In the 704 mode and for the cards BCD,
BCI, REM, TTL, the variable field will begin in card column 12.
No note i s taken of the card column in which the variable field
begins on a prototype card. At least one blank will separate the 2
variable field from an operation code which extends beyond
these card columns.

Created Symbols

If arguments a r e missing from the end of the argument l is t of a
macro-instruction, symbols will be created to fill the vacancies.
These symbols take the form of . .001, . .002, to . .nnn, throughout
the program. An explicitly null argument terminated by a comma
will be treated a s null; created symbols will be supplied only a t
the end of the argument string.

F o r example, given the macro-definition heading card

1
A L P H A M A C R O A g B g C 9 D I

1

and the macr o-instruction card

1
A L P H A X I I I

I

each appearance of the substitutable argument A will be replaced
by X, each appearance of the substitutable argument B will be
omitted, a s the argument is explicitly void, and each appearance
of the substitutable arguments C and D will be replaced by the
symbols.. nnn created to replace the omitted arguments a t the end.

3

If more than9999 symbols a r e to be created, the programmer
must r e -origin created symbols using the ORGCRS pseudo-
operation, or assembly will be terminated.

NOCRS

The pseudo-operation NOCRS is used to suppress the creation of
symbols to replace specific argument strings missing f rom the
end of a macro-instruction argument l is t . The constituents of
the NOCRS pseudo-instruction a re :

1. Blanks, appear ingin the loca t ionf ie ld ;

2 . The operation code NOCRS, appearing in the operation field;
and

3 . Blanks, appearing in the variable field.

ORGCRS

In order to alter the form of created symbols, the pseudo-operation
ORGCRS may be used. This pseudo-operation a lso reinstates the
creation of symbols, if they had been suppressed by NOCRS. The
constituents of the ORGCRS pseudo-instruction a re :

1. Blanks, appearing in the location field;

2 . The operation code ORGCRS, appearing in the operation field;
and

3 . Blanks o r one BCD character followed by three digits, ap-
pearing in the variable field.

The BCD character in the variable field, if any, will replace the
second dot (. Annn); the digits, if any, will be the origin of a new
se t of created symbols. This origin will be one lower than the
f i r s t symbol actually created. If the BCD character is desired,
the three digits must be stated explicitly: Annn; but if i t is
not desired, nnn i s sufficient.

MONSTR MACRO D A V I D ~ A L L E N ~ R O B E R T B S C O T T
CAL D A V I D
TZE SCOTT
STA ROBERT
ALS 18
OAA ROBERT

SCOTT SLW ALLEN
RM 1

ROBERT BSS 1
RM 1

MONSTR END

In this macro-definition, the transfer address SCOTT and the 7

storage address ROBERT must be unique for each appearance of
the macro-operation in a macro-instruction. However, neither
i s required outside of the resulting expansion. Hence the as-
sembler may be permitted to assign a location symbol, by omit-
ting the corresponding arguments in the macro-instruction
argument l is t . The pseudo-instruction ORGCRS is used to al ter
the format of the created symbol to . Nnnn:

I ORGCRS Nl5O I
I

I 04170 MONSTR MARLYNBHERB
04170 -0500 00 0 00312 CAL MARLYN
04171 0100 00 0 04175 TZE a N152 I
04172 0621 00 0 06000 STA oN151
04173 0767 00 0 00022 ALS 18 I v

04174 -0501 00 0 06000 ORA aN151 I
04175 0602 00 0 00313 oN152 sLW HERB I

The pseudo-operation BSS will be assembled later in the program
(see RMT below).

I
06000 oN151 BSS 1

I
I

IRP

The pseudo-operation IRP i s used within a prototype to iterate a
ser ies of instructions within the se t of generated instructions.
constituents of the IRP pseudo-instruction are:

1. Blanks ap,pearing in the location field;

2 . The operation code IRP, appearing in the operation field; and

3 . A FAP symbol, appearing in the variable field.

The symbol in the variable field must be the name of a single
substitutable argument appearing in the macro-definition argu-
ment list . An IRP card must precede the instructions to be
iterated, and another IRP card with blank location and variable
fields must follow the instructions. Both IRP cards must be with-
in the range of the prototype.

The argument to be substituted (appearing in the macro-instruction
argument list) i s a string of sub-arguments separated by commas
and enclosed in parentheses. The number of these sub-argument e

strings will be the number of iterations of the enclosed cards, and
each iteration will be made with the corresponding sub -argument
string substituted for the dummy argument. If no argument was

b

given in the variable field of the f i r s t IRP, no iterations will be
made; one argument causes one iteration, etc .
F o r example, to compute the sum of squares, the following macro-
definition can be written:

SUMSQ MACRO T IB I

ST2 T
I R P I3

I
LDQ B 11
FMP B 2 1

I
FAD T 3)
S T 0 T 4

I
I RP

SUMSQ END
I
I

The four instructions marked a r e to be iterated. To compute
A = X ~ +Y +Z , the following coding could be used:

04234 SUMSQ A I (X I Y I Z)
04234 0600 00 0 06016 STZ A

I
I R P XIYIZ

04235 0560 00 0 06062 LDQ X
I

04236 0260 00 0 06062 FMP X
04237 0300 00 0 06016 FAD A
04240 0601 00 0 06016 S T 0 A

I
04241 0560 00 0 06064 LDQ Y
04242 0260 00 0 06064 FMP Y

I
04243 0300 00 0 06016 FAD A
04244 0601 00 0 06016 S T 0 A

I
04245 0560 00 0 06205 LDQ Z
04246 0260 00 0 06205 FMP Z

I
04247 0300 00 0 06016 FAD A
34250 0601 00 0 06016 S T 0 A

I

An IRP pseudo -instruction cannot occur explicitly within the
range of an IRP; the f i r s t nested IRP will cause the termination of
the range, and the second, reopening of another range. However,
a macro-instruction within the range of IRP pseudo-instructions
may itself cause pairs of IRP pseudo-instructions to be generated
a t a lower level.

Note that the macro-operation compiler will not generate an ETC
card for an IRP pseudo-instruction whose sub-argument string
does not fit on one card, but will process the string internally.

The IRP pseudo-operation is undefined outside of a macro-
operation.

RMT

The pseudo-operation RMT i s used to bracket a block of coding
which will not be assembled a s encountered, but will be assembled
when called for later in the coding. The constituents of the RMT
pseudo-instruction are:

1. Blanks, appearing in the location field;

2 . The operation code RMT, appearing in the operation field;
and

3 . Blanks, appearing in the variable field.

Macro-instructions may require assignment of temporary storage,
definitions of constants, closed subroutines, or other allocations
of memory. Such storage may be assigned within the macro-
operation, in which case it must be bypassed by transfer instructions;
or the programmer can keep track of the storage requirements

and define the necessary symbols whenever convenient. The
pseudo-operation RMT provides a means by which such storage 3
may be automatically assigned later in the assembly, a t any
point the programmer may specify.

A remote sequence i s defined a s a l l the source cards , o r macro-
generated cards , bracketed by a pair of RMT pseudo-instructions .
Remarks cards with an * in column 1 appearing within a remote
sequence will not appear in the expansion. A RMT pseudo-in-
struction cannot appear explicitly within the range of a remote
sequence; the nested pair will cause the termination of the range,
and the reopening of another range. However, a macro-in-
struction within the range of a remote sequence may itself cause
pa i rs of RMT pseudo-instructions to be generated a t a lower
level. A remote sequence can be nested in a macro-operation,
and macro- operation prototypes not including remote sequences
may be nested to any desired depth within a remote sequence.
When the remote sequence is assembled, any macro-definitions
nested within will be defined and any macro-instructions nested
within will be expanded.

Remote sequences may be defined outside of macro-operations,
but should be used sparingly, a s they may resul t in termination of
assembly due to macr o-definition table overflow. Little i s gained
by the use of this pseudo-operation outside of macro-operations.

Example : 3
The following remote sequence can be written:

R M T
CLA *

X X DEC 1 E l
Y Y DUP 192

PZ E
Z Z BSS 10

COS X X X
R M T

Subsequently, a RMT * pseudo-ins truction will cause a l l waiting
remote sequences to be assembled. The constituents of a RMT *
pseudo-instruction are :

1. Blanks, appearing in the location field;

2 . The operation code RMT, appearing in the operation field;
and

3 . An as ter i sk , appearing in the variable field.

RMT * and macro-instructions may be nested; however, the
depth of nesting i s limited a s follows: each macro-instruction

within a remote sequence, or conversely, each RMT * generated
by a macro-instruction, requires three locations in the Level Table.
The total length of this Table i s 112 locations, and the most
severe use of this Table, an alternate nesting of macro-instructions
and RMT *, will terminate assembly if there are more than 37
such nestings.

For example, if the remote sequence above had been defined, the
following would be assembled following a RMT

04306 R M T * I

043C6 05CO 00 0 04306 CLA *
04307 +205400000003 X X DEC 1E 1

04310 Y Y DU P lt2
I

04310 0 00000 0 00000 PZE
04311 0 00000 0 00000

I
04312 Z Z BSS 10
04324 COS X X X

I
X X X

04324 0074 00 4 00005 T S X SCOS B 4
I

If any remote sequences a r e waiting a t the end of an assembly,
they will be assembled following the program END card. As r e -
mote sequences may include macro-definitions, and macro-
instructions may include remote sequence s , a significant
amount of coding may follow the END card. This generated
coding will precede any l i terals .

Heading characters for remote sequences a r e those in effect at
the time of definition, and not a t the time of assembly. A remote
sequence defined or assembled in a multiply -headed region may
be improperly headed, and caution should be exercised.

UPDATING SYMBOLIC FAP TAPES
1

FAP permits reading an input tape other than Logical Tape 5
J

(the System Input Tape) and writing an updated blocked or unblocked
symbolic tape, with optional deletion of assembly. This updating
facility has been included in P a s s 1 of FAP.

Update pseudo-instructions a r e listed in the pre-processor update
listing, but will normally not appear on an update output tape or
in the assembly listing. However, if the variable field of the
pseudo-instruction is in e r r o r and is flagged, it will appear in
the assembly listing and will be copied onto the update output tape.

w

UPDATE

In the FAP language, the UPDATE pseudo-operation i s used to
initiate the updating mode, assign update input and output tapes,
and determine the mode of assembly. The constituents of the
UPDATE pseudo-operation are:

1. Blanks, appearing in the location field;

2 . The operation code UPDATE, appearing in the operation
field; and

3 . Twosymbolicexpressionsandtwosinglecharacters,all 1
separated by commas, appearing in the variable field.

The f i r s t expression in the variable field i s a logical tape number,
which may be void or zero (no tape provided), or the number of
the tape containing the symbolic input to be updated (Monitor tapes
1 through 8 a r e excluded). Successive use of the UPDATE pseudo-
operation will permit multi-reel input.

The second expression in the variable field i s the logical tape
number of the tape on which an updated symbolic input for a
future assembly will be written, Unflagged update pseudo-
operations will not be copied onto this tape. Successive use of
UPDATE will permit subdividing of, or extracting from, an
input tape.

The f i r s t single character in the variable field is any non-void,
non-zer o character, which indicates that the updated symbolic
tape i s to be unblocked. This will result in a significant increase
in assembly time. If the character i s void or zero, the updated
symbolic tape will be blocked 14 words per card, 16 cards per
block. Control cards'and END cards a r e alwaysunblocked.

The second character is any non-void, non-zero character which
indicates that assembly i s not required. In effect, this character

3

reduces the F A P processor to an updating and /or blocking routine.
No table entries a r e made, and P a s s 2 i s omitted. The only cards
recognized a r e update pseudo-operations (and END), and those
with an asterisk in column 1. The second character must a,ppear
within the f i r s t card group, and having once a,ppeared, neither it
nor i ts preceding comma may reappear on another UPDATE card.

Cards with an * in card column 1 a r e considered to be control cards
and a re unblocked if they follow another such card, or any update
pseudo-operation or END. They a r e considered a s comments
cards and a re blocked if they follow any card other than an update
pseudo-operation card or another *-type control card.

Note that corrections and additions a r e made on the basis of
serialization in card columns 73 through 80. A matching card on
the Source Input Tape will replace the card on the update input
tape; a nonmatching card will be inserted in sequence. A blank
i s sequenced following the character * and preceding the character
/ . If card columns 75 through 80 on either the source or update
input tapes a r e al l blank, the serialization i s taken to be 00000000
for sequencing, and the card is used immediately. A l l cards in-
serted or replaced a r e labeled a s such, and appear on the pre-
processor assembly listing.

Example :

UPDATE 11

This merges correction cards appearing on the Source Input
Tape with those appearing on Logical Tape 11, and reassembles, The
Update Input Tape i s on the same channel a s the Source Input Tape;
this i s the fastest combination of tape assignments for a two-
channel ins tallation.

Example:

UPDATE 1 1 , 1 2

This merges correction cards appearing on the Source Input Tape
with those appearing on Logical Tape 11, writes a blocked symbolic
output tape on Logical Tape 12, and assembles.

Example:

r

UPDATE ,12, , D

This copies the succeeding cards which a re on the Source Input
Tape, and blocks them onto Logical Tape 12.

Example :

UPDATE l l , , , D

This effectively spaces the tape and checks the sequence of the
cards on Logical Tape 11.

NUMBER

The NUMBER pseudo-operation is used to reserial ize columns
73-80 of the symbolic cards which a r e output on the Listing Tape
and/or Update Output Tape.

The constituents of the NUMBER pseudo-instruction are :

1. Up to s ix BCD characters appearing in the location field;

2. The operation code NUMBER, appearing in the operation
field; and

3. A number less than 32768, appearing in the variable field.

The six BCD characters will be left justified in card columns 73-
78 with blanks omitted, and the number will be right justified in
card columns 76-80. The programmer must insure that the BCD
and numeric fields do not overlap for the length of the program.
If the variable field i s omitted, reserialization i s suspended, and
old ser ia ls (i f any) appearing in card columns 73-80 will be
maintained. In order to reserial ize f rom 0, an explicit ze ro must
appear in the variable field, in addition to any characters which
may appear in the location field.

DELETE

The DELETE pseudo-operation will cause the deletion of one or
more cards, of, or up through, a card of matching serialization.
If matching serialization does not exist, deletions will be made up
to, but not including, the next card of logically higher serialization.
The constituents of the DELETE pseudo-instruction are :

1. Blanks appearing in the location field;

2 . Theopera t ioncodeDELETE,appear ingintheopera t ion
field;

3. THRU, when required, appearing in the variable field; and

4. A serialization number of eight characters , appearing in card
columns 73-80.

3

Deleted cards appear, labeled a s deleted, on the pre-processor
listing .

IGNORE

IGNORE i s identical with DELETE except that the cards deleted
will not appear on the pre-processor listing. IGNORE has two
forms: IGNORE and IGNORE THRU, which a r e s imilar t o
DELETE and DELETE THRU.

SKIPTO

The SKIPTO pseudo-operation will cause the deletion of one or
more cards up to, but not including, a card of matching
serialization.

The constituents of the SKIPTO pseudo-instruction a re :

1. Blanks, appearing in the location field;

2 . The operation code SKIPTO, appearing in the operation
field;

3 . Blanks, appearing in the variable field; and

4. A serialization number of eight characters , appearing in
card columns 73-80.

Cards deleted will not appear on the pre-processor listing.
Cards of higher serialization will not cause this operation to -
terminate.

ENDFIL

The ENDFIL pseudo-operation is used during an update, with o r
without assembly, t o cause an e n d ~ f - f i l e to be written on the up-
date tape s o addressed .
The constituents of the ENDFIL pseudo-instruction are:

1. Blanks, appearing in the location field;

2 . Theoperat ioncodeENDFIL, appear ingin theopera t ionf ie ld ;
and

3 . A FAP expression o r logical tape number appearing in the
variable field.

If the logical tape number in the variable field is that of the cu r -
rent update output tape, s o specified by an UPDATE pseudo-

instruction, the last partial block of card images waiting to be
output will be written on the update output tape before the end-of-
file i s written. If the variable field i s blank, the update output
tape i s assumed.

RE WIND

The REWIND pseudo-operation i s used during an update with or
without assembly to cause the addressed update tape to be r e -
wound.

The constituents of the REWIND pseudo-instruction are :

1. Blanks, appearing in the location field;

2 . The operation code REWIND, appearing in the operation
field; and

3 . A FAP expression or logical tape number, appearing in the
variable field .

If the logical tape number in the variable field i s that of the cur-
rent update output tape, specified by an UPDATE pseudo-in-
struction, the last partial block of card images waiting to be out-
put will be written on the update output tape before the tape i s r e -
wound. If the variable field i s blank, the update output tape i s a s -
sumed. If the update input or output tape i s rewound, no update
operation pertaining to it will be executed unless i t i s addressed
by a subsequent UPDATE pseudo-instruction.

UNLOAD

The UNLOAD pseudo-operation is used during an update with or
without assembly, to cause the addressed update tape to be r e -
wound and unloaded.

The constituents of the UNLOAD pseudo-instruction are:

1. Blanks, appearing in the location field;

2 . The operation code UNLOAD appearing in the operation
field; and

3 . A FAP expression o r logical tape number, appearing in the
variable field.

If the logical tape number in the variable field i s the current up-
date output tape, specified by an UPDATE pseudo-instruction, the
last partial block of card images waiting to be output will be writ-
ten on the update output tape before the tape i s rewound and un-
loaded. If the variable field is blank, the update output tape i s
assumed. If the update input or ~ u t p u t tape i s rewound and un-

3

loaded, no update operation will be performed on i t unless it is
addressed by a subsequent UPDATE pseudo-instruction. In the
lat ter case, the operator should be informed by a PRINT pseudo-
instruction to ready the tape sufficiently in advance to avoid delay-
ing the assembler .

SKPFIL

The SKPFIL pseudo-operation is used during an update with o r
without assembly to cause the update tape which i t addresses to
be spaced forward until an end-of-file i s passed.

The constituents of the SKPFIL pseudo-instruction are :

1. Blanks, appearing in the location field;

2 . The operation code SKPFIL, appearing in the operation field;
and

3 . A FAP expression o r logical tape number, appearing in the
variable field.

If the logical tape number in the variable field is that of the cur-
rent update output tape, a s specified by an UPDATE pseudo-in-
struction, the las t partial block of card images waiting to be writ-
ten will be placed on the update output tape before the tape is
spaced. If the variable field is blank, the update input tape i s
assumed.

UMC

The UMC pseudo-operation i s used to output card images
generated by a macr o-instruction onto a symbolic update output
tape and to delete a l l macro-definition and macro -instruction
ca rds . A subsequent appearance of UMC will cause a reversion
to the normal output of macro-def inition and macro-instruction
cards ; alternate appearances cause alternate switching f rom
writing to not writing macro-generated images.

The constituents of the UMC pseudo-instruction are:

1. Blanks, appearing in the location field;

2 . Theoperat ioncodeUMC, appear ingin theopera t ionf ie ld ,
and

3 . Blanks, appearing in the variable field.

The programmer should exercise caution in the use of this pseudo-
operation, in that a macro-definition may be deleted, but a macro-
instruction for the same code may remain. As the remaining remote

sequences will be expanded after the END card i s written, they
must be inserted before the END card by the use of the RMT *

1

pseudo-operation. The serial numbers associated with deleted
macro-definition cards will be deleted; all cards generated by the

J
macro-instruction will be serialized with the ser ia l number
associated with the macro-instruction card. Access to any of
these i s difficult. An IRP pseudo-operation in an expression is
never copied on the update output tape.

ENDUP

The ENDUP pseudo-operation signals the termination of a FAP
update with assembly deleted. The constituents of the ENDUP pseudo- *

operation are:

1. Blanks, appearing in the location field;

2 . The operation code ENDUP, appearing in the o,peration field;

3 . Blanks, appearing in the variable field; and

4. A serialization of eight characters , appearing in card
columns 73-80.

If assembly i s deleted, END cards will be unblocked, but will not
terminate the pass. This makes it possible to update more than
one program a t a time. If the assembly i s not deleted, ENDUP
will be undefined. A card on the update input tape of matching
serialization will be deleted, and no card of such serialization
will appear on the updated output tape. Blank serialization on
the ENDUP card will cause immediate termination of the update.

Tape Positioning

Because matching serialization i s not required for any control
card, i t will be necessary, for proper spacing of tapes, to have
symbolic cards of matching serialization on the Source Input Tape
to position the update input tape past those cards of logically
higher serialization which precede the card which i s next to be
updated (such cards a r e referred to a s I1spacers" below). It i s
also necessary to have either an END card of matching serialization
on the source input tape or an ENDUP card (for an update without
assembly) which i s properly serialized, or without serialization,
immediately following a properly serialized END card on the
Source Input Tape. This insures that the update tape is properly
positioned at the termination of FAP P a s s 1. It should be noted
that if a multi-reel update job has been terminated during P a s s 1
due to source tape or machine e r r o r , update input and output tapes
may be positioned incorrectly. Caution should be exercised in
restarting or continuing. For a single input and single output
tape, the E r r o r Records will attempt to reposition these tapes for
another t ry .

In order to update a FORTRAN source deck, the output tape must
be unblocked and the assembly deleted. ENDUP i s the pseudo-
operation to terminate the job.

In case of illegible cards on the Source Input Tape, the assembly is
terminated and the Machine E r r o r Record will skip to the end of
the job, to the END card, or to the beginning of the assembly, a t
the operator 's option. If a card (or block of cards) on the update
input tape i s illegible, the card (or cards) will be omitted, the
next source correction card read, a message printed on- and off-
line, and the job will continue. It i s possible to re inser t lost
cards during a later update. The omission of such cards will
usually result in an assembly e r r o r , but the update input tape will
be properly spaced for the next assembly, unless an END card or
a "spacerI1 card i s read erroneously.

Update Examples

The following sequence of cards would cause an end-of-file, an
END TAPE card, and another end-of -file to be written on the up-
dated Symbolic Tape 12, this tape to be rewound, and Logical Tape
11 to be unloaded:

The following cards could surround an input deck on the Source
Input Tape to obtain a blocked, serialized Tape 12 for a later
assembly:

1

DATE 1 / 2 / 6 2
JOB I D E N T I F I C A T I O N
PACK
F AP
PAGE T I T L E CARD
UPDATE , 1 2
NUMBER 0
DATE 1 / 2 / 6 2
JOB I D E N T I F I C A T I O N
PACK
F AP
PAGE T I T L E CARD
COUNT 5000
ABS . . .

16 F AP
UPDATE ,12 , ,D
ENDF I L

i~ END TAPE
ENDF I L
REWIND
UNLOAD 11
ENDUP

.
END

Q F AP
UPDATE , 1 2
ENDF I L

H END TAPE
ENDF I L
UNLOAD
END

(END OF F I L E)
9 END TAPE

(END OF F I L E)

The following cards on the Source Input Tape might be used to up-
date and reserial ize symbolic cards on Logical Tape 9, with
assembly deleted and with the updated output on Logical Tape 10:

Y FAP
UPDATE 9 t l O 9 t D

F 0 1 NUMBER 0
CAL ERASE F O l O l O l O
DELETE F 0 1 0 1 2 0 0
NZT SYMBL F 0 1 0 1 4 6 1
TRA ERROR

F 0 2 NUMBER 0 F019YY99
DELETE F 0 2 0 1 7 3 0
DELETE THRU F 0 2 0 1 8 4 0
DELETE F 0 2 0 2 0 4 0
IGNORE THRU F 0 2 0 4 1 7 0

F 0 3 NUMBER 0 F02Y 9 9 9 9
END F 0 3 0 1 7 6 0
ENDUP

ADDITIONAL SYMBOL DEFINING PSEUDO-OPERATION

SET

In order to define a symbol, permitting i t to be redefined la te r ,
the pseudo-operation SET may be used. The constituents of SET
are:

1. A FAP symbol, appearing in the location field;

2 . The operation code SET, appearing in the operation field;
and

3 . A FAP expression, appearing in the variable field.

The symbol in the location field is defined to have the value of
the F A P expression in the variable field. This expression must
satisfy al l the rules of writing expressions. If the symbol had
previously been defined by the SET pseudo-operation, i t will be
redefined. If the symbol had previously been defined, but not by
a SET pseudo-operation, the symbol will be redefined, but an e r r o r
flag will appear in the left margin of the listing. This is not an
assembly e r r o r . The SET pseudo-operation will override any pr ior
means of definition. This pseudo-operation is useful in providing
a value for a parameter used within a macro-operation, which i s
not accessible through the argument l i s t .

ADDITIONAL PROGRAM LINKING PSEUDO-OPERATION

EXTERN

The EXTERN pseudo-operation i s used to inser t symbols in the
t ransfer vector.

The constituents of the EXTERN pseudo-instruction are :

1. Blanks, appearing in the location field;

(I.

2 . The operation code EXTERN, appearing in the operation
field; and

3 . A l is t of FAP symbols, of one through six BCD characters,
separated by commas, appearing in the variable field.

A symbol appearing in an EXTERN list, if already in the transfer
vector, will be ignored. If a symbol has been previously defined
in the location field of a machine instruction or a symbol defining
pseudo-operation, i t will be multiply defined. EXTERN i s
undefined in an absolute assembly.

ADDITIONAL LIST CONTROL PSEUDO-OPERATIONS

INDEX

The INDEX pseudo-operation i s used to l is t a table of contents
of important locations within the assembly .
The constituents of the INDEX pseudo-instruction are:

1. Blanks, appearing in the location field;

2 . The operation code INDEX, appearing in the operation field;
and

3 . A l i s t o f F A P s y m b o l s , o fone th roughs ixBCDcharac te r s ,
separated by commas, appearing in the variable field.

The f i rs t appearance of an INDEX card will cause the message

TABLE OF CONTENTS

to be listed. Each subfield of an INDEX pseudo-instruction will
cause the symbol, and its definition, to be listed. The listing of
the INDEX card itself i s governed by the mode of the PCC control
card.

INDEX pseudo-instructions may appear anywhere in the source
program, and need not be grouped. The listing generated by
INDEX pseudo-instructions will be inserted where the pseudo-
instructions appear. However, the message TABLE OF CONTENTS
will appear but once; and, for the most meaningful commentary,
INDEX pseudo-instructions should be grouped at the beginning of
the source program, interspersed with appropriate remarks
cards .

PMC

Alternate appearances of PMC pseudo-operations with blanks in the
variable field cause and suppress listing; ON or OFF give
absolute control.

The constituents of the PMC pseudo-instruction a re :

1. Blanks appearing in the location field;

2 . The operation code PMC, appearing in the operation field;
and

3 . Blanks, or ON, or OFF, appearing in the variable field.

Card images generated through the use of a macro-instruction a r e
normally not l isted, except for card images which a r e flagged by
the assembler . In order to cause such ca rd images and the octal
instruction to be listed, the pseudo-operation PMC can be used.

Control cards generated by macro-instructions a r e listed only if
both PMC and PCC modes a r e ON. The nesting level of macro-
generated cards appear s in card columns 81 through 84 of the
listing .

NULL

The NULL pseudo-instruction i s used to cause a ca rd image to be
l is ted in full, but to have no effect upon assembly.

The constituents of the NULL pseudo-instruction are :

1. Any BCD charac ters appearing in the location field;

2 . The operation code NULL, appearing in the operation field;
and

3 . Any BCD charac ters , appearing in the variable field.

A possible use of the NULL pseudo-instruction i s

-0 07774 0 04757 CODE OPSYN NULL
i
I I
I

where CODE i s a machine operation or pseudo-operation which is
not defined in the assembler , the effect of which may be omitted
f rom the assembly . For example,

i

-0 07774 0 04757 E N T R Y OPSYN NULL I
I

will enable a proper absolute assembly of a subprogram, with
ENTRY pseudo-instructions listed, but not affecting the program. 3

ADDITIONAL CONDITIONAL ASSEMBLY PSEUDO-OPERATION

I F F

The I F F pseudo-operation controls the assembly of the following
ca rd .

The constituents of the I F F pseudo-instruction are:

1 . Blanks appearing in the location field;

2. I F F appearing in the operation field; and

3. A se r i e s of FAP symbols separated by commas appearing
in the variable field.

The pseudo-operation I F F with P , A, B in the variable field pro-
vides conditional assembly of program segments according to the
values of the parameters P, A, B. P i s a FAP expression, and A
and B a r e BCD symbols. The pseudo-operation resu l t s in assembly
of the next instruction (and a l l ETC cards) , only if

1. P i s not 0 and A i s identical to B.

P will be ze ro if i t i s undefined; P will be considered non-zero if
i t i s relocatable. That the conditional assembly governed by IFF
extends over only one card (and a l l ETC ca rds) i s not a ser ious
restr ic t ion, a s the following card may be a macro-instruction
which will expand to a sequence of any length, or i t may be another
I F F . Remarks cards with an * in column 1 following an I F F will
be ignored; the instruction immediately following a block of such
cards will be conditionally assembled.

The example of the CALL10 macro-operation (page 12) can be
used to demonstrate I F F . A s P=O, the next prototype ca rd

PFX ERRET

will be generated only if field A, replacing the substitutable argu-
ment ERRET, i s not identical with field B, which i s void. As in
the macro-instruction argument l is t , field A i s a lso a void field;
i t i s identical with field B, and the next prototype card will not be
generated.

An I F F pseudo-operation, and al l cards under i t s control, wi l l be
copied on an update output tape.

F o r example, the following macro-definition can be written:

I

I

ADD3 MACRO AtB,C I
CLA A
AUU b

I

I F F O ~ C P A C I
S T 0 C I

ADD3 END I
I

If it i s desired to s tore the resul t , the following macro-instruction
can be written:

I

04552 ADD3 X,Y*Z I
04552 0500 0 0 0 06062 CLA X
04553 0400 00 0 06064 ADD Y

I
I F F O,Z,AC I

04554 0601 00 0 06205 S T 0 Z I
I

If i t is desired to leave the resul t in the Accumulator, the follow-
ing macro-instruction can be written:

1
04622 ADD3 XvYtAC I
04622 0500 0 0 0 06062 CLA X I
04623 0400 00 0 06064 ADD Y

I F F 0,ACsAC
I
I

I

REVISED PSEUDO-OPERATIONS

The following changes have been made in existing pseudo-
operations :

CALL

A CALL pseudo-instruction may be used in an absolute assembly.
No transfer vector entry will be made, and the name of the sub-
program in the f i r s t subfield of the variable field must be defined
a s any other symbol.

END

A symbol in the location field of an END pseudo-instruction will
be defined a s the last location used by the program, one location
below the program break.

ENTRY

An explicit zero in the variable field of a n ENTRY pseudo-
instruction will cause the program card to indicate that the entry
point to the main program is the f i r s t instruction following the
t ransfer vector and linkage director .

LBL

If the variable field of a LBL pseudo-instruction i s blank,
serialization of binary ca rds will be discontinued. In order to
ser ial ize f rom 0, a n explicit zero must appear in the variable
field.

LOC
ORG

A LOC o r ORG pseudo-instruction may be used in a relocatable
assembly. If the expression in a variable field is COMMON o r
undefined, an assembly e r r o r will resul t . If the expression in
the variable field i s absolute o r relocatable, the new origin, and
any symbol in the location field of a LOC o r ORG card , will
always be assumed to be relocatable above the t ransfer vector
and linkage d i rec tor .

PCC

A PCC pseudo-instruction may nowhave ON or OFF a s well a s
blanks in the variable field; the new fo rms give absolute switch
control.

PRINT

PRINT i s considered to be an update pseudo-operation, and will
be l isted in the pre -processor update listing. It will not appear
on the assembly listing o r the update output tape.

TAPENO

Any one of the following charac te rs may be used to se t the mode
in a TAPENO pseudo- instruction:

ADDITIONAL REVISIONS - - -- -

Binary
Decimal
High density
Low density

The locations of definitions of symbols defined by the following
pseudo-operations will appear in the symbolic reference table:
BOOL, COMMON, EQU, MAX, MIN, SYN, and TAPENO.

In addition, if a symbol i s multiply defined by i ts appearance in
the location field of more than one of the following operations, the

point of definition will be flagged in the left hand margin of the
listing: BCD, BCI, BES, BOOL, BSS, CALL, COMMON, DEC,
DUP E Q U , IFEOF, MAX, MIN, OCT, SYN, TAPENO, VFD, or
any machine instruction. This flag does not signify an assembly
e r r o r . However, any reference to a multiply defined symbol in
the variable field of a machine operation or pseudo-operation will
be flagged a s before, signifying an assembly e r r o r . It i s possible
to have two M flags in the left-hand margin opposite a single in-
struction: one referr ing to the point of definition (location field)
and the other to the point of use (variable field).

APPENDIX I: COMBINED OPERATIONS TABLE

The following i s a l is t of pseudo-operations in the Combined
Operations Table. Those marked with @ have been added or ex-
tended, and a r e described in this bulletin; all others a r e
described in detail in FORTRAN Assembly P rogram (FAP) for
the IBM 709/7090 (Form J28-6098-1).

Operation Code Purpose

7 04
7090
9LP
ABS
BCD
BCI
BES
BOOL
BSS
CALL
COMMON
COUNT
DEC
DELETE
DETAIL
DUP
EJECT
END
ENDFIL
ENDUP
ENTRY
EQU
ETC
EXTERN
FUL
HEAD
HED
IFEOF
I F F
IGNORE
INDEX
IRP
LBL
LIST
LOG
MAC

Set mode of assembly
Set mode of assembly
Set card format
Set card format
Data generating
Data generating
Storage allocating
Symb 01 defining
Storage allocating
Program linking

Storage allocating
As sembler information
Data generating
Update information *
List control
Data generating
List control
Assembler information
Update information
Update information
P rogram linking
Symbol defining
Continue variable field *
Program linking
Set card format
Symb 01 defining
Symbol defining
P r og r a m linking
Conditional assembly
Update information
List control
Macro-operation control
Binary card labelling
List control
Storage allocating
Macro-instruction

Operation Code Purpose

MACRO
MAX
MIN
MOP
NO CRS
NULL
NUMB ER
OCT
OPD
OPSYN
OP VFD
ORG
ORGCRS
PCC
PMC
PRINT
REF
REM
RE WIND
RMT
SET
SKIPTO
SKP
SKPFIL
SPACE
SP C
SST
SYN
TAPENO

TCD
TITLE
TTL
UMC
UNLIS T
UNLOAD
UPDATE
VFD

Mac ro-def inition
Symbol defining
Symb 01 defining
Mac r o- def inition
Macro-operation control
List control
Update information
Data generating
Opcode defining
Opcode defining
Opcode defining
Storage allocating
Macro-operation control
List contr 01
List control
Update information
List control
List control
Update information
Deferred assembly
S yrnb 01 defining
Update information *
List control
Update information
List control
List control
S ymb 01 defining
Symbol defining
Symbol defining
Set card format
List control
List control
Update information
List control
Update information
Update information
Data generating

The following pseudo-operations have been deleted:

ENDFUL (use ABS)
FAP (use COUNT; not to be confused with

*FAP Monitor Control Card)

* Pseudo-operations which do not appear in the Combined
Operations table.

Machine and Extended Machine Instructions

The following i s a l is t of machine instructions and extended
machine instructions, type, and permissible fields in the Com-
bined Operations Table. Each i s described in detail in the 7090
Reference Manual (Form A22-6568) and/or in the 704 Reference
Manual (Form A22-6500 1). Those marked @ have been added
o r extended.

In the machine instruction list , the description of the machine
instruction, the fields permitted and/or machine required, the
mode of assembly, and other information i s coded a s follows:

INSTRUCTIONS

TYPE INSTRUCTION FORMAT USAGE

18 bit decrement field
No decrement field
8 bit decrement field
18 bit address field
13 bit address field
4 bit prefix field

OTHER CODES

CODE INTERPRETATION

Not significant, or may change operation
Permissible
Required
Operation code defined or required address

satisfied by use of TAPENO character
I /O unit address defined by operation mnemonic
Permissible in 704 mode only
Permissible in 7090 mode only
Decrement field not longer than 8 bits required

An I1Xl1 a s the fourth character of an operation code indicates a
variable channel operation, for which character the channel de -
signation A to H, or a properly defined TAPENO character, must
be substituted. Unit record equipment should not use this character .

Violation of these rules will be flagged in the left hand margin of
the listing, but this flag will not indicate an assembly e r r o r with
deletion of relocatable binary cards. No 709 mode exists; hence
while assembling in the 7090 mode, drum instructions will be
flagged while indirect addre s sing of 1/0 commands will not.

Operation codes which a r e on a "Request P r ice Quotation" basis
a r e indicated by RPQ in the mode column.

Op Code

ACL
ADD
ADM
ALS
ANA
ANS
ARS
AXC
AXT

@BRA
@BRN

BSF
BSFX
BSR
BSRX
BST
BTT
BTTX
CAD
CAL
CAQ
CAS
C F F
CHS
CLA
CLM
CLS
COM
C P Y

@CPYD
@CPYP

CRQ
@CTL
@CTLR
@CTLW

CVR
DCT
DRS
DVH
DVP
EAD
EAXM
ECA
ECQ
ECTM
EDP
EFTM
ELD
E M P
ENB
ENK
ERA
ESB

Type Addr Dec Ind Addr Mode

R P Q
R P Q
R P Q
R P Q

9
R P Q

9
R P Q

9
9
9

R P Q

Op Code Type Addr Tag Dec IndAddr Mode

ESNT
EST
ESTM
ETM
E T T
ETTX
EUA
FAD
FAM
FDH
F D P
FIVE
F M P
FOR
FOUR
F R N
FSB
FSM
F VE
HPR
HTR

@ICC
IIA
IIL
IIR
11s
IOD
IOT
IOXY(N)
. . . (3)
LAC

@LAR
LAS
LAXM
LBT

@LCC
LCHX
LDA
LDC
LDI
LDQ
L F T
LFTM
LGL
LGR

@LIP
@LIPT
L LS
L NT
LRS
LSNM
LTM

9
R P Q
9

LXA

39

Op Code

LXD
MON
MPR
MPY
MSE
MTH
MT W
MZE
NOP
NTR
NZT
OAI
OFT
ONE
ONT
ORA
ORS
OSI
PAC
PA1
PAX
P B T
PDC
PDX
PIA
PON
P S E
PSLX
P T H
P T W
PXA
P X D
P Z E
RCD
RCDX
RCHX
RCT
RDC
RDCX
RDR
RDS
R E W
R E WX
R F T
RIA

@RICX
RIL
RIR
RIS
RND
RNT
R P R
RPRX
RQL

Type Addr Tag Dec Ind Addr Mode

Op Code

@RSCX
RTB
RTBX
RTD
RTDX
RTT
RUN
RUNX
***< (3)
bbb (3)

@SAR
SBM
SCHX
SDH
SDHX
SDL
SDLX
SDN
SEVEN
SIL
SIR
SIX
SLF
SLN
SLQ
SLT
SLW

@SMS
@SNS

SPR
SPRX
SPT
SPTX
SPU
SPUX
SSLX
SSM
SSP
STA

@STCX
STD
ST1
STL
S T 0
STP
STQ
STR
STT
STZ
SUB
SVN
SWT
SXA

Type Addr Tag Dec Ind Addr Mode

Op Code Type Addr

SXD
TCH

@TCM
TCNX
TCOX

@TDC
TEFX
THREE
TIF
TI0
TIX
T L Q
TMI
TNO
TNX
TNZ
TOV
T P L
TQO
T a p
TRA
TRCX
TRS
TSX
T T R
TWO

@TWT
TXH
TXI
T X L
TZE
UAM
UFA
UFM
U F S
USM
VDH
VDP
VLM
WDR
WEF
WEFX
W B
W P BX
WPD
WPDX
WPR
m x
WUa
WPUX

Tag Dec

R
P N
N R
P
P
N N
P
P P
P
P
R R
P
P
P
R R
P
P
P
P
P
P
P
P
R
P
P P
N N
R R
W R
R R
P
P
P
P
P
P
P 8
P 8
P 8
P
P
P
P
N
P
N
P
M
P
N

Ind Addr

P
P
P
P>
P
P

P
P

P
P
P

P
P
P
P
P
P
P

P

P

P
P
P
P
P
P

Mode

9
9
9
9
9-
9
9
9
9

Op Code Type Addr Tag Dec Ind Addr Mode

W R S
W T B
WTBX
W T D
W T D X

@WTR
WTS
WTV
XCA
XCL
XEC
XIT

@XMT
ZAG
ZET
ZSA
ZSD

Footnotes From the Combined Operations Table

(1) A count fieLd in the low o d e r p d t i o n of the operation code is
assembled from the fourthawbfi~ld of the variable field;
e-g.,

(2) The following exten4ed nsmbaine operations are included in
the Combined Operations Table (listed above). They dif -
f e r from the assembled machine operation codes only in
that no flag will appear in the left hand margin of the listing
for certain uncoded tag and decrement fields,,

Mnemonic As Assembled Unflagged Omitted Fields

BRA
BRM
ZAC
ZSA
ZSD

TXL
TXH
PXD
sm.
SXD

(3) Alternate forms for PZE(. . . ,***,bbb).

Disk File Orders

The following disk m e omtiers {see IBM 1301..~n~pt/Output control
System for 1410 and 7000 Series Processhp: Systems, Form
528-8064-1) a r e included in the Combined Operations Table, The
aypbalffi ox.der should be written as

LOG: DORD A,TsH,R

and will assemble a s ten BCD digits in two successive locations.
A subfield may be any valid FAP expression, but the expre ssion
may not be common or relocatable or an a s s e d l y e r r o r will r e -

3
sult . Fields marked R a r e required; they w i l l be flagged A if
missing. They may be coded void by the use of ** o r successive
commas. Fields not so marked, if coded, will be flagged F and
ignored. Neither of these flags w i l l indicate an assembly e r r o r .
All a r e marked with @ to indicate they a r e new.

Access and
MNEMONIC Module Track Head Record Mode

APPENDIX 11: SYSTEM SYMBOL TABLE, FORTRAN MOMTOR

(-- The following i s a l is t of symbols and octal definitions, which can
be defined with the use of the SST control card , fo r the assembler
operating under the FORTRAN Monitor.

CORE ALLOCATION SYMBOLS

TOPMEM 77777 Top of available memory
BOTIOP 73400 Bottom of 110 package
BOTTOM 00 144 Bottom of available memory
(P CBK) 00 143 Object program program break, , common

break
DATEBX 00 142 Monitor date cell
LINECT 00 14 1 Monitor job line count, , FORTRAN page

number, label flag in prefix
FLAGBX 00 140 Monitor flag cell

TAPE ASSIGNMENT SYMBOLS

SYSTAP
FINTAP
SINTAP
TINTAP
MINTAP
MLSTAP
MBNTAP
MCHTAP
SNPTAP
LIBTAP

System tape
F i r s t intermediate tape
Second intermediate tape
Third intermediate tape
Monitor input tape
Monitor listing tape
Monitor punch tape
Monitor intermediate chain tape
Snap tape
System l ibrary tape

ENTRY POINTS TO 110 PACKAGE

(LOAD)
(DIAG)

(TAPE)
(PRNT)
(PNCH)
(READ)
(STAT)
(REST)
(STDN)
(SECL,)
(NECL)
(DGLD)

Call next record on system tape
Call diagnostic record, source or machine

e r r o r
Initiate tape operation
Initiate on-line print
Initiate on-line punch
Initiate on-line card read
Locate tape statistic tables
Restore console
Set tape density
Call source program e r r o r record
Call machine e r r o r record
Restore memory and halt

, PARAMETERS VARIABLE AT EDIT TIME

73452 Physical sense switch corresponding to
END card setting 1

73453 Physical sense switch corresponding to
END card setting 2

(ES3S) 73454 Physical sense switch corresponding to ECS 3
(ES4S) 73455 Physical sense switch corresponding to ECS 4
(ESSS) 73456 Physical sense switch corresponding t o ECS 5
(ES6S) 73457 Physical sense switch unassigned

3
(PGCT) 7 3460 Listing page dimensions
(LIBT) 73461 System l ibrary tape assignment

COMMON COMMUNICATIONS REGION

(FGBX) 73467 Location of Monitor flag cel l
(LNCT) 73470 Location of Monitor line count
(DATE) 73471 Job date
(SNCT) 73472 Snapshottapefi lecount
(MSLN) 73473 Flag for diagnostic record
(ENDS) 73474 End card settings
(SCHU) 73501 Data transmission e r r o r information

DEFINITIONS OF OPERATION MNEMONICS
TO INITIATE TAPE OPERATfON

O ~ e r a t i o n Information End Fi le Check

(WROW)
(RDEC)
(WEFC)
(RBEC)
('WDNC)
(RDNC)
(WBNC)
(RBNC)
(RDEP)
(WEFP)
(RBEP)
(WDNP)
(R D W)
(W S N p)
(RBNP)
(SKDC)
(SKBC)

(SKDP)
(SKBP)

(CHKU)
(TPER)

(SNAP)

W r ite Row binary Immediate
Read Decimal Permitted Immediate
Write End file Imme diat e
Read Binary Permit ted Immediate
Write Decimal Immediate
Read Decimal Prohibited Immediate
Write Binary Immediate
Read Binary Prohibited Immediate
Read Decimal P e rmitted Later
W ~ i t e E~ld File Later
Read Binary Permit ted Later
Write Decimal Later
Read Decimal Prohibited Later
Write Binary Later
Read Binary Prohibited Later
Skip Decimal Immediate
Skip Binary Immediate
Backspace for BTT
Skip De c imal Later
Skip Binary Later
Backspace Not sig-

nif icant
B l a y and check las t information transmitted

t

E r r o r return for transmitted information
found improper *

Dump panel and memory selectively on SNPTAP

APPENDIX III: FAP OPERATI

Introduction

FAP is available as an independent system called IBSFAP operat-
ing under the IBSYS Basic Monitor. IBSFAP i s corripletely in-
dependent of the FORTRAN Monitor. Complete IBSYS speci-
fications will be found in the IBM Basic Monitor (IBSYS) bulletin
(Form 528-8086).

IBSFAP Operations

Control Cards

The following Basic Monitor card

1 16
$EXECUTE IBSFAP

will call P a s s 1 of IBSFAP (IBSFPl).

A minimal monitor in IBSFPl recognizes the following control
cards:

Format U s e -

$ID Installation accounting request
$IBSYS Return to Basic Monitor

*ROW Specifies off -line row-binary
card output

*PRINT Specifies on*li.ne assembly listing
*CARDS COLUMN Specifies on-line column-binary

card output
*CARDS ROW Specifies on-line row-binary

card output
aremarks preceding Specifies remarks to be printed

*FAP by Monitor on-line
*FAP Specifies beginning of a FAP

assembly or updating run

The cards beginning in column 1 a r e Basic Monitor cards, while
the res t (preceded by an asterisk) ase IBSFAP control cards.

Input /Output Units

Output f rom IBSFAP is always blocked on SYSOUl, for the 720
P r in t e r , five lines per block, and binary punched output is placed
on SYSPPl in card image form. The on-line options supplement,
but do not replace, these operations.

IBSFAP uses logical units for updating and referencing. The
input /output unit correspondence to SYSUNI functions is a s
follows:

SYSUNI Logical 110 Unit Function

SYSLB 1, (2, 3, or 4) 1
SYSUT2 2
SYSUT4 3
SYSCKl 4
SYSINl 5
SYSOUl 6
SYSPPl 7
SYSUTl 8
SYSUT3 9
SYSCK2 10

IBSFAP system
Scratch
Scratch
Scratch, on-line card output only
IBSYS input
IBSYS BCD l i s t output
IBSYS binary card output
Available for updating
Available for updating
Available for updating

For maximum running efficiency, it i s suggested that SYSUT2 and
SYSUT4 be on channels different f rom those of SYSINl and
SYSOUl, especially on large assemblies or updatings , and that the
update input tape be on the same channel a s SYSINl.

Example

The following would be the sequence of cards on SYSINl to do
multiple assemblies:

Format

$DATE mmddyy
$ATTACH (unit)
$AS (function)
$EXECUTE IBSFAP

*. . .
*FAP

*page heading remarks
COUNT m

. . .
END
>k.. .

Function

Any number of unit a s signments
a s necessary

Monitor control cards , a s
required

Source input deck to be
assembled

Monitor control card , a s
required

:kpage heading remarks

COUNT m
ABS
... Additional source input decks t o

be assembled
. ..
END

$IBSYS Re tu rn t o IBNUC

Spe cia1 IBSFAP Fea tu r e

The pseudo -operation, SST, provides IBNUC and IOEX symbolic
definition en t r i e s as follows:

1. All the one-entry points s tar t ing with SYSTRA through SYSLDR
i n IBNUC, plus the cu r r en t value of SYSEND and SYSORG.

2 . All the SYSUNI functions.

3 . The communication region to IOEX f r o m ACTIV t o TRPSW
a s follows:

IOEX COMMUNICATION TABLE

Equivalent Assembly
IOEX Symbol Symbol, If -Used Function

ENTRY POINTS T O IOEX SUBROUTINES

ACTIV
ACTIVtl

NDATA
NDATAtl

MWR,PROUT
PUNCH
FRCHX
PAWSX
PAUSX
STOPX
SYMUNI

(ACTIV
(ACTVX

(NDATA
(NDSLX

(PROUT
(PUNCH
(FRCHX
(PAWSX
(PAUSE
(STOPX
(SYMUN

BCVDEC-1 (DECVD

BCVDEC

CKWAT
BCD5-1
BCD5
CVPRT

STOPD

Activate Routine & T e s t
Activate Routine -Without

T e s t
Non-Data Select & Tes t
Non-Data Select Without

T e s t
Message Wri te r
Hol ler i th Punch
F r e e Channel X
E r r o r P a u s e
Opera tor Action P a u s e
Dead Stop En t ry
Symbolic Unit Conversion
Binary to Decimal Con-

vers ion- -AC
Decrement

(DECVA Binary to Decrement
Conversion- -AC
Addre s s

(CKWAT Checkpoint Wait
(BCDSR Octal t o BCD Bi t s 3-17, MQ
(BCD5X Octal t o BCD Bi t s S-14, MQ
(CVPRT Convert and Append t o

Tape Message
(STOPD Dead Stop Location

Equivalent Assembly
I OEX Symbol Symbol, I£ Used Function

INDIRECT REFERENCES TO CHANNEL DATA TABLES
J

CHXAC
URRXI
RCTXI
RCHXI
TCOXI
TRCXI
ETTXI
TEFXI
TRAPX

TRAP
COMM
LTPOS
IOXSI

CHPSW
TRPSW

(CHXAC
(URRXI
(RCTXI
(RCHXI
(TCOXI
(TRCXI
(ETTXI
(TEFXI
(TRAPX

TRAP DATA

(TRAPS
(COMMM
(LTPOS
(IOXSI

ACTIVITY SWITCHES

(CHPSW
(TRPS W

Channel Activity
Redundancy Count
Redundancy Contr 01
Reset Load Channel
Channel Delay
Tape Redundancy Tes t T

End Tape Test
End Fi le Test

Current Traps Enabled
*

Current t r aps enabled
Store Channel Results
Tape Position .

Sense Indicators

Checkpoint
T rap

PUBLICATIONS

Following i s a l i s t of IBM publications which m a y be of i n t e r e s t t o the r e a d e r :

REFERENCE MANUALS

F o r m Number Ti t le

A22-6528- 1 IBM 7090 Data P r o c e s s i n g Sys tem
A22-6536 IBM 709 Data P r o c e s s i n g Sys tem
C28-6054-2 709 17090 FORTRAN P r o g r a m m i n g Sys tem
C28-6066-3 709 17090 FORTRAN Operat ions

GENERAL INFORMATION MANUALS

D22-6508-2 IBM 70917090 Data P r o c e s s i n g S y s t e m
F28-8043 IBM Commerc ia l T r a n s l a t o r
F28-8053- 1 COBOL
F28-8074- 1 FORTRAN

BULLETINS

IBM 7090 Data P r o c e s s i n g Sys tem
FORTRAN Assembly P r o g r a m (F A P) f o r the IBM 7090
32K 70917090 FORTRAN: Double - P r e c i s i o n and

Complex Ar i thmet ic
Advance Specifications: 7090 FORTRAN and FORTRAN

Assembly P r o g r a m (F A P) I

32K 70917090 FORTRAN: Source Language Debugging I

a t Object Tii-ne
32K 70917090 FORTRAN: Adding Buil t-In Funct ions
SHARE 7090 9PAC: P a r t 1 - Introduction and

G e n e r a l P r i n c i p l e s
SHARE 7090 9PAC: P a r t 2 - The F i l e P r o c e s s o r
SHARE 7090 9PAC: P a r t 3 - The Repor t s G e n e r a t o r
IBM 709/7090 C o m m e r c i a l T r a n s l a t o r P r o c e s s o r

I

I
IBM 7000/1400 Output Edit ing Sys tem- P r e l i m i n a r y

Refe rence Manual
S - P r o g r a m f o r the IBM 70%: P r e l i m i n a r y Specifications
IBM 7094 P r o g r a m s and P r o g r a m m i n g S y s t e m s
7090 Operating Sys tems : Bas ic Monitor (IBSYS)

i

International Business Machines Corporation
Data Processing Division, 112 East Post Road, White Plains, N. Y . Printed in U. S. A. J28-6186

