
P ROC RAMM I NG SYSTEMS

ANALYSIS GUIDE

70917090 32K FORTRAN

Preliminary Copy

91 96 1 by International Business Machine. Corporation
Printed in U. S. A, Form R23- 9673

TABLE OF CONTENTS

FORTRAN MONITOR 1

Introduction 2
Start Card and 1-CS 7

Listing of Fortran Start Card 8
Listing of 1 CS ?

Card to Tape Simulator 10
D u m p 13
Sign On 14
F ~ P 16
Scan 17
BSS Control 2 1
Machine Error 23
Source Error 24
Tape Mover 25

FORTRAN COMPILER 29

lnt roduc tion
Section I
Section I'
Section I"
Section 11
Section I11
rntrpductim Pi?&., I V :and V
Section IV
Section V
Section V '
Section VI

Fortran Library 97
1nput /Output Library 100

General Diagnostics 1.0 6

Tables Generated By Fortran 1 1 1
ASSIGNED CONSTANT 1 1 1
CALLFN (CALLNM) 1 1 1
CLOSUB 112
C. I. T (Compiled InetrtiEWe@lX
COMMON 113
DIM 1 1 4
DOFILE (C) 115
DOTAG (B) 115
EIFNO 115
END us
EQUIT 116
FIXCON 117

FLOCON
FMTEFN
FOR MAT
FORSUB
FOR TAG
FORVAL and FORVAR
FRET
XOLARG
NOMEXC
PREDESSOR
SI z
SUBDEF
SUCCESSOR
TAU
TDO
TIEFNO
TIFGO
TIFGO FILE
TRAD
TSTOPS

APPENDICES

(I) A Fortran Tape Status By Section
B Edit Record Chart

FORTRAN MONITOR ~ .00 .00

INTRODUCTION 1. Of, 08

\. The FORTRAN System tape is written as four files. (See Figure 1.) The
f i r s t file constitutes the major portion of the monitor. Contained ae indi-
vidual records in this f i r s t file in order a s they appear on tape a r e 1-CS,
Card to Tape Simulator, Dump, Sign On, FAP I and 11, Scan, BSS Control,
Machine E r r o r record, and the Source E r r o r record. (See Figure 2.).
The second file is the FORTRAN Compiler plus t he Tape Mover record
and an additional BSS Control. This second BSS Control is used to save
t ime i f execution ie deaired, otherwise the System tape would have to be
backspaced to the f i r s t file to read BSS Control. All the library eubroutiner
that FORTRAN and FAP require a r e contained in the third file. The FOR-
TRAN diagnostic routines and e r r o r messages are contained in the fourth
and laat file on the System tape.

The FORTRAN Monitor System may be ueed in both the monitor mode and
single compile mode. In the single compile mode. only FORTRAN compila-
tion can be done. It also might be pointed out that in the single compile made
the only record used in the monitor file will be the Card to. Tape Simulator,
from this control paaeee directly to FORTRAN in the rrcond file.

Since the standard method og operation i s in the monitor mode, the deecrip-
tfon of the ay stem will be from this standpoint, and cnly under specfa1 con-
ditions will the difference6 be pointed out. C
Operating in the monitor mode, a la rge number of jobs may be .tacked otr

the input tape. The limiting factor to the number off jabs that may be stacked
i 6 the capacity of the tape reel.

A job m a y be defined as a basic unit that will be processed by the bon i to r at
any one time. It will consist of a t leas t one, but can contain many pragrame,
The job can be in one of two states, either Execute o r Non-Execute. As an
Execute job, a l l programs in the job must be related to one another, these
will be executed immediately after any assembly or compilation that is re-
quired. As a Non-Execute job, the program8 need not be related, since
only assemble o r compilation can be done. For a more camprehenaive exo
planation of job processing, reference should be made to the 709/209'0 FOR-
TRAN Monitor Reference Manual, F o r m C28- 6065.

The FORTRAN Start Card is used to initialize the System, TMa wil l rewind
the System tape, load the f i r s t record, which i s 1-CS. 1-CS is a general pur-
pose tape loading routine which remains in lower core storage at all times
during an assembly o r compilation. It is used to load al l monitor and FOR-
TRAN records, and after loading will t ransfer control to their respective
entry points,

<: .
Once 1-CS i s loaded, i t will in turn load the Card to Tape Simulator, The
Card to Tape Simulator test the card reader. foz presence of c a d s , If the

3
*

hopper i s empty, the input i s assumed to be from tape. This tape will be
A2 if in the monitor mode, if not in monitor mode, i. e . , single compile,
the input tape ie B2. If cards a r e found in the reader, a card to tape sim-
plation will follow until all cards have been read and the End of File i s met,

At this point'the next record (DUMP) i s skipped, control is again given to
1-CS to read in the Sign On record. The Sign On record will read and print
the f i rs t record onthe input tape, this should be the I. D. card. It i s in the
Sign On record that the customer may insert his own coding to process
accounting information that might be contained in the I. D. card. If an ac-
counting clock i s available in the machine, this also could be read a t this
time,

At the completion of Sign On processing, the next two records (FAP) a r e
skipped, control again passes to 1- CS to read the Monitor Scan record.
Monitor Scan will read all remaining control cards , and set up the 'proper
indicators for processing by the appropriate routine. Control now passes
v fa 1- CS to F A P if a F A P control card has been encountered, o r to BSS
Control i f the remaining cards on the input tape a r e binary and the job is
to be executed, i f neither of these conditions exist the monitor assumes
a FORTRAN compilatiop, therefore, control passes to FORTRAN in the
second file,

After the completion of a FAP, FORTRAN o r BSS relocation, control
passes back to the Monitor Scan record. This will continue until a l l pro-
programs in the job have been processed. At this time i f execution is desi r -
ed, control once again passes to BSS control to load the relocated program
and begin i t s processing. If this job were not to be executed, control will
pass back to the Sign On record, instead of BSS Control, to begin the next
job,

This whole process continues until no more jobs a r e left to process, at
this point the card reader will be selected and the program hangs up. The
operator now has the option of removing the output tape, loading a new in-
put tape, and re-initializing the system with the Start Card, o r depressing
the card reader s tar t key for a final stop,

1-CS AND START CARD 1. 02. 00

The Start Card i s a one card self loading binary card. It i s used to initia-
lize the FORTRAN monitor system, for batch compiling and/or execution.

To set the FORTRAN monitor in motion, the Start Card is placed in the ca rd
reader, the load cards button i s depreeaed, a bootstrap loader will then read
in the remainder of the START CARD. Control i s passed to the location
the f i rs t instruction beyond the bootstrap. The System tape is f i rs t rewound
and then the f iret record on the tape i s read in. The firat record ia the FOR-
TRAN loader called 1-CS, the tape read operation i s checked for a redundancy
e r r o r , if one occurred the tape i s backspaced and another attempt is made .
to read 1-CS. If three unsuccessful attempts are made the program will HALT.

If the Start button ie depressed three more attempts will be made and so on.
When the read operation i s succeseful a flag bit i s set in the sign position of
location 4z8 to indicate that the jobs that follow w i l l be processed in the moni-
tor mode. Control now passes to location 508 in 1-CS.

1-CS will be used to lpad all monitr);. records and FORTRAN Executive recorde,
If redundancy checks occur while reading any record the program will HALT,
only one attempt'will be m a d e per redundancy check.

The f i rs t two words of any System record contain the information necessary
t o indicate where loading begins, how many words a r e to be read and where
to transfer control when loading i s complete. Also contained in'word two is
the FORTRAN or monitor record number timee ten that i e being loaded, this
will be"used i f a cail i a made to the Diagnostictrecord to ascertain t b type of
diagnostic mes aage that should print.

The make up of the firet two words- of any FORTRAN or Monitor record are :
I

WORD 1 3111 WORD COUNT LOAD ADDRESS I
WORD 2 100 1 1 RECORD NUMBER xioV//A TRANSFER ADDRESS[

Also contained with 1-CS i s the diagnostic record caller. This routine will
be used by FORTRAN SectionI1 through Section VI to call the Diagnostic file
(file 4) for any e r r o r , source or na chine. P r io r to reading in the Main diagnor-
t ic record the area that i t wil l occupy ia saved a s a single record on tape A3.

.r
LISTING OF KIRTRAN START :3 tiF,:3

The following is a listing of the Start Card and showa the instruction 60-

quence in the card and also the location in storage:

SEQUENCE . STORAGE ADDRESS, TAG,
ON CARD LOCATIONS 0PERA.TION DECREMENT

IOR T
TCOA
TTR
LTM
AXT
REWA
RTBA
R CHA
TCOA
TRCA
CAL
STP
TRA
TIX
HTR
XOCP
TCH

3, f
1-
1

160
151
156
153
42 (Monitor Flag)
1

146, 1, 1
a45

0 , , 3
0

LISTING OF 1-CS

The following is a lirting of 1-CS and ehowr the inetruction sequence on
tape and also the locations in storage:

SEQUENCE STORAGE ADDRESS, TAG,
ON TAPE LOCATIONS OPERATION . DECREMENT

IOR T 23,, 77777
TCOA 1
TRA 50
RTBA 1
RCHA 37
RTBA 1
RCHA 37
WTBA 3
RCHA 41
RTBA 1
RCHA 41
TCOA 33
TXI 157
BSRA 3
HTR 36
IOR PN 0, 2, 77777
TCH 37
IORT 156, 0 4704
PZE (Monitor Flag Cell)
PZE (Chain Flag Cell)
PZE (Chain Flag Cell)
PZE (Job Linee Output Counter)
BSRA 1
HPR 77777 ,7
RTBA 1
R CHA 54
TCOA 52
TRCA 46
IOSP 55, 0, 2
IOR T
TXI **, , * * - ,

1
First two words of any monitor or FORTRAN record.

CARD TO TAPE SIMULATOR 1.03.00

After the card to tape simulator has been read into storage, by 1-CS, con-
trol i s paaeed to it. This will be the only time that this program ia used.
The monitor flag in 1-CS i s tested to determine, i f this is a monitor or
single compile operatien. The card reader is then selected, i f an End-of-
File is sensed on the f i rs t read cycle the program assumes the input i s
from tape. If the input i s from tape, control passes to record 3, Sign On,
to begin processing the f irs t job. I f we a r e not in the Monitor mode, card
to tape simulator will pass control directly to FORTRAN record 10. If
the card reader End-of-File was not sensed, a simulated card to tape opera-
tion will follow. Cards with a 7-9 punch in column 1, indicate that they are
column binary and therefore must be converted to Row binary format before
they may be written on tape. Carde with an 7-8 punch in column 1 wil l not be
written on tape but cause an EOF to be generated on tape. All other cards
a r e considered to be Hollerith and a r e checked for illegal punching prior
to being transcribed onto tape. Illegal Hollerith punching will cause the
machine to stop with a HPR 7777, in the storage register. The rules for
correcting and reloading the card reader are analogous to a READ CHECK
mtop on the off line card reader.

The carde a r e read in double buffered, to allow the card reader to operate
a t full epeed.

When the final EOF is sensed on the card reader, an E O F will be written
an tape. The input tape is then rewound, . record 2 is skipped and control
is parsed to, Sign On, record 3.

i f the monitor flag i s off, a t the termination of the card to tape simulation,
the remainder of File one wi l l be skipped and control pasred directly to,
FORTRAN (record 10).

CARD T O A -5tMULATOR
MOn//rOU RfiCORO '/

J t O A R f H ,
a6

r
fNf r f A 4 J Z C C UCCK H I 4 C

I ~ O A A ~ P CWCARO C O ~
(I U C C M S / U b A L PUKU ,

CO

I
CONVtAC

c o ~ u A / u ro
ROW 8/4'4U/

U C G / N
w u / r / w G our
UClJ 8UCFrA

I
)

DUMP RECORD WITH DUMP CARD 1,04.00

The Dump is used when trouble i s experienced during compilation o r ex-
ecution of a job. This will give the Programmer o r Customer Engineer
a printed record of the contents of core storage and the O P panel indica-
tore, which can be used to ascertain the possible cause of trouble.

' Actually the Dump record can be called by three different methodq. TWO
of theee a r e through the use of FORTRAN statements, these a r e CALL
DUMP (7) and CALL PDUMP (7) . For the description and use of these
see the 709/7090 FORTRAN MONITOR, Reference Manual (Form Number .
C28-6065). The third method of calling the Dump record is by using the
Dump card, which ehould be available a t al l installations using the
FORTRAN System.

The Dump Card will ohly destroy the f i ret three locations in storage. Thir
is accomplished by initiating a Write tape to dump the f i r s t 3500g locations
of storage, then delaying the information on the card from coming in until
the locations necessary for storing thie information have been dumped on
to tape. This delay i s accomplished by reading the f i rs t fifteen worde of
the card into locations 0, 1 and 2 and causing the program to t ransfer to
itself a t location 1. After thie delay the System tape is rewound, the f i r s t
and second records skipped and then the Dump record is read in, at which
t ime control i e passed to it.

The Dump program will cause the entire contents of memory to be written
onto tape A3, following any FORTRAN output from this job o r f rom previous
jobs. The storage entry switches a r e interrogated to determine whether or
not mnemonics a r e to be included and to see what course of action to take
after completing the dump. These options are fully explained in the 709/
7090 FORTRAN MONITOR, Reference Manual (Form Number ~28-6065) .

SIGN ON (RECORD 3)

I-
Lk The Sign On record i s called only at the beginning o r end of job. The

number of lines of output from the las t job i s picked up from the line
count storage cell in 1-CS. This number if greater than zero, i s convert-
ed to decimal and written on and off line. If Sense Switch 6 is up, an
End of Fi le will be written on tape B4, the .tacked column binary punch
tape. At this t ime a test i s made to determine i f the input tape i s po-
sitioned to read a new job (at the beginning of file). If not, the tape is
spaced forward until an End of File i s encountered. The f i rs t record of
the file i s then read and i t is then determined i f the first character is an
asterisk. If no aster isk is found, a comment i s printed on line indicating
this, then the System tape (Al) i s spaced to the Machine E r r o r record
and control passes to 1-CS. If the aster isk is found the record i s further
scanned to determine i f it ie an End Tape card. If i t ie, the End Tape card
ie written on and off line, and a load card button eequence is simulated to
end monitor operation. If the f i rs t card i s not an End Tape card, i t is as-.
eumed to be a true I. D. card. At this point, space i s provided for the indi-
vidual inetallation to insert coding for accounting purposes; therefore, at
this point, difference8 may exirt from one inrtallation to another. As the
standard program exietr, the I. D. card wil l merely be written on and off
line. After treating the I. D. record, the System tape is spaced to the
Scan record (r&:o;*d 6) , control is then pa'ssed to 1-CS.

F A P (Records 4 and 5) 0.06.00

FAP (FORTRAN ASSEMBLY PROGRAM) was written, by the Western
Data Proceasing Center a t Los Angeles, to satisfy the need to produce
machine language sub-programs for use with FORTRAN, FAP is also
a fast, versatile general purpose assembler for non- FORTRAN main
programs which h a s the additional advantage of operating within a moni-
tor system. Operating in the monitor mode,. i t is possible to assemble
and run a F A P assembled main program with the same load.

When assembling FORTRAN sub-programs, FAP provides al l necessary
information for direct communication with FORTRAN programs, including
the program card and appropriate transfer vector. Also, FAP output
occupies the binary card format required by the BSS loader.

The output may also be punched in the standard abeolute binary format,
to be run independently of any operating system.

Operating under FORTRAN Monitor control i t is posiible to input the
symbolic deck on-line o r off-line, however, the listing will only be
written off -line.

FAP main programs may call upon FORTRAN subprograms, FORTRAN.
l ibrary functions o r other FAP aubprograme. The Monitor system and
the BSS loader provide the necessary communication, bared upon infor-
mation given by the programmer in the calling sequencer. Because the
Monitor will accept programs in either binary o r symbolic form, all
programs need not be assembled o r compiled a t the same time.

They may be assembled in stages, thus providing a very useful method
of debugging the main program. One. section a t a time.

Detection of assembly e r r o r s does not stop the assembly, but doee sup-
p r e s s card punching and execution. Diagnostic information is given in
the assembly listing. Control will pass to the Machine E r r o r record o r
Source E r r o r record, depending upon the e r r o r detected.

Mr) [ITOR SCAN (RECORD 6) 1. 07, 00

Record 6 i s the p r imary monitor record in that i t in te rpre t s the control
c a r d s which specify different system programsLto be called. It a l so scan8
FORTRAN programs and prepares a single- compile input tape for the
compiler . Control i s passed to Monitor Scan in the following c i rcumstances :

a) F r o m record 3 (Sign On) after processing an I. D. ca rd a t the beginning
of a job

b) F r o m record 5 (FAP) af ter completing an assembly not for execution.

c) F r o m record 7 o r 4 3 (BSS) af ter relocating a s e r i e s o l binary p rog rams
when there a r e m o r e symbolic programs remaining in the job.

d) F r o m record 8 (machine e r r o r) o r record 9 (source e r r o r) o r record 2 '

(dump) when i t ha s been determined that the job should be continued after
an e r r o r

e) From the r e s t a r t ca rd ''CONTINUE"

Operation i s a s follows: All input i s f rom A2. Records a r e r ead double
buffered and scanned f i r s t for an a s t e r i sk in column 1. If th is i s found,
the mnemonics on the card a r e scanned and compared with a dictionary
of control c a r d mnemonics. If no a s t e r i sk i s found, the c a r d i s asuumed
to be pa r t of a FORTRAN program and a routine called SP is used. If
the ca rd i s column binary, and an XEQ control ca rd h a s been encountered
e a r l i e r in the job, control i s passed to ~ S S control (r eco rd 7): If the XEQ
flag i s off, column binary ca rds a r e ignored. As te r i sk c a r d s not in the
dictionary a r e printed on and off line a s r e m a r k s and then ignored. FORTRAN
source program ca rds a r e scanned and then t ranscr ibed onto tape B2
(FORTRAN input). A FORTRAN source ca rd with a CALL CHAIN (N, Bn)
will be changed to CALL CHAIN (N, n). Upon encountering an E N D ca rd ,
a fabricated END card i s simulated onto tape B2 containing output options as
indicated by control ca rds , previously encountered, P r o g r a m m e r ' s END
ca rd options will be preserved i l not in conflict with control c a r d s , which
have precedence. As te r i sk (control ca rds) found in the dictionary, a r e t rea ted
as follows:

a) XEQ .- A flag in 1-CS i s set indicating execution i s desired. A
word of zeros i s writ ten on the beginning of tape B 1 to indi-
cate that there i s no snapshot (see record 7).

b) CHAIN () - If the execution flag i s off, th is is t rea ted a s a r e m a r k
ca rd . If on, the pa rame te r s a r e examined and a unique
control word i s writ ten on B 1 (in front of the ze ro word)
and s tored in a cell (curchn) in 1-CS. If th i s i s the 1st l ink,
i t i s s tored in a different cel l (1st chn). A chain flag i s set
in 1-CS (FLGBX).

c) F A P

d) DATA

- An END card i s simulated onto B2 containing control
card output options and control i s passed to FAP Pas s 1
(record 4).

- This should be encountered only i f there was no execu-.
tion flag (or i f execution has been deleted). Control is
pas oed to Sign On unless the execution flag is on, in which
case an e r ro r meesage (incorrect deck set up) i e printed
and control i s passed to the source error record (record 9).

e) CARDS - A flag is set for the END card routine to set the appropriate
ROW, END card options
LIBE, ETC.

In summary, control is then paseed a s followe:

Upon Recognizing:

a) FORTRAN END card
b) Column binary card
c) F A P control card
d) Deck e r r o r
e) Machine e r r o r

Go To: -
Record 10 (FORTRAN)
Record 7 :335 Control)
Record 4 (FAP)
Record 9 (Source E r r o r)
Record 8 (Machine E r r o r)

Note: Monitor Scan has i t s own diagnostic message and print8 them on and
off line,

MO/Y/ TOR J C AN
RlCOALl 6

**S IAJr)rs/.eij , *-#- r/rnru Ad06

BSS CONTROL RECORD (RECORD 7 OR 43) 1. 08.00

Records 7 and 43 a r e identical except for tape positioning, which of cou! se ,
makes the decrement of the second word on the Sy..ltem tape, the record
number, different. This record is duplicated in o rde r to make i t quickly
accessible either f rom FORTRAN (second file) o r f rom Monitor Scan when
column binary ca rds a r e encount.ered o r f rom a just comple,tad TAP assembly.
BSS accepts card image input f rom A2 (column binary c a r d s) , B3 (FAP o r
FORTRAN binary tape), o r A1 (l ibrary subroutines) using a generalized
double buffered read routine. he BSS program is locateddn the top of mem-
ory, occupying the standard COI-~mon region.

BSS wil l locate binary card images into locations 144f3 to 730008 ?30008 to
744568 i s used for a table of BCD program names . a missing subroutine
table, and a Trans fe r Vector table. These tables together with severa l
loading counts a r e re fer red to a s the Snapshot.

Upon entry to BSS the Snapshot, from previous locations 1.n the same job i~
read f rom tape B1: If this i,s the f i r s t t ime BSS has been entered far this
job, a zero word wi l l be read indicating that this i e the f iret entry This
ze ro word was written by Monitor s c a n if execution was called for

The appropriate input tape i s selected by exaxnillation of the indicator reg is
t e r which contains a control word left by the calling record.. If an assembly
(F A P) o r compilation (FORTRAN) has just been completed. this will be tape
B3, otherwise the input tape will bc A2 in the case of column binary ca rds .
The input: tape i s read in binary, t ransfer vectors a r e peelrd off and s tored
at 1448. When a new set of t ransfer vectors a r e met , the relocated block
is saved a s a single record on tape B1. The f i r s t word of this record i s a
control word specifying the size of the program and whether o r not i t has a
t ransfer vector. If t ransfer vectors do exist a second control word is written
giving the count. Jf B3 was the f i r s t input tape, when an End of F i l e i s met ,
the input i s switched to tape A2. If this input i s binary, the p rocess of read-
ing in , saving the t ransfer vector and relocating the'binary deck s t a r t s anew.
However, if BCD information is met, i t i s scanned and compared with a
dictionary of control words An XEQ card j s ignored. a s i t i s obviously
i n the wrong place. Any control card other than CHAIN o r QATA cause
control to be passed back to monitor Scan.

If a DATA o r CHAIN card i s recognized, the table of Transfer Vectors is
searched against the table of BCD names to form a table of missing subroutines
(MISUB). The System tape j s then spaced to file 3 (l ib rary) . the l i b ra ry is
scanned f o r the missing subroutines, when found they a r e read in and relocated
in memory. This search continues until the table of missing subroutines is
zero o r two passes have been made over the l ibrary. If subroutines are sti l l
missing they a r e l is ted on and off line with an appropriate e r r o r message, the
execution bit i s deleted and control passes back to Monitor Scan to .finish any
compilation that may be left in this j ob.

Encountering the DATA control card indicates that al l programs for this
job have been processed, relocated and written on tape B1w Tape B1 is
now read, the Transfer Vector table i s changed to TTR's with their pro-
per relocated addresses, and written on tape A4 in absolute binary form.

A test i s now made to see if this i s a CHAIN job, If not, a small execu-
tion loader is moved over 1-CS. The word "Execution1' is printed, and
control passes to the execution loader. The loader reads the absolute
program f rom Tape A4 into memory. The last record on tape A4 i s the
transfer word to the program.

If i t i s a CHAIN job, and the DATA card has not been encountered, tape
B1 is backspaced to the current CHAIN I. D. word. The current link i e
then stacked on tape B 1. BSS i s refreshed, and the process begins again
reading tape A2.

When the DATA card i s encountered for a CHAIN job, the chain links are
edited from tape B 1 and a re moved to the specified chain link tape. The
execution loader i s placed over 1-CS and the f i rs t link is read in as a
single job, except that i t i e read from B1, BZ or B3 instead of from A4.
After initial loading of the f i rs t chain link, loading of subsequent links
will be done by the CHN subroutine. BSS control ca r r i e s a large eet of
diagnostic messages that print on and off line. After a diagnostic message
i e printed, control will be given to the Machine E r r o r record o r Source
E r r o r record which ever i s appropriate.

MACHINE E R R O R RECORD (RECORD 8) 1. 09. 00

If during processing of monitor o r non-monitor jobs a supposed machine
e r r o r occurs , an attempt will be made to identify the failure. After th i s
failure i s identified, an e r r o r messace will be writ ten on and off line. At
this point the System tape (A l) i s positioned a t t h e Machine E r r o r record.
The routine will f i r s t find out in what routine the e r r o r was detected, (i. e, ,
F A P , MONITOR SCAN, GENERAL DIAGNOSTIC, BSS Control, o r FORTRAN
Section I") then print options to continue this job, r e s to re memory o r to re t ry .
Since the exit f r o m this routine i s Spendent upon the routine that called i t , a
brief description of each entry will follow:

If Monitor Scan called the Machine E r r o r record sense light 3 will be on.
In this ca se the e r r o r message "JOB DELETED BECAUSE O F MACHINE
ERROR, PUSH START TO BEGIN NEXT JOB" will be printed. The System
tape will be backspaced to Sign On then the machine will halt. When the
Star t switch i s depressed, control will t ransfer to 1-CS to be r ead in Sign
On.

If F A P called the Machine E r r o r record , sense light 1 will be on. The
e r r o r s that F A P believes a r e machine e r r o r a r e pc-rsistent tape e r r o r s ,
overflow of var ious tables and table search e r r o r s . In some c a s e s table
overflow e r r o r s may be caused by incorrect deck setup o r faulty coding.
In any event instructions will be print ed on l ine? indicating in m o s t c a s e s
the type of e r r o r and the course of action to be taken. Depending on the
instructions and the action taken by the opera tor , the program can be
deleted o r continued, in either event control will be re turned to Monitor Scan.

When sense light 4 i s found on, control was received f rom the General Dia-
gnostic. Since FORTRAN may be run intither the single compile o r moni tor
modes, the options to delete o r r e t r y will vary with the mode. In e i ther '

mode, to r e t ry , control i s passed back to FORTRAN record 10. Likewise
to r e s t o r e memory and halt i s the s ame in both modes. In themonitor mode
i f deletion is called for , the source program is t ranscr ibed f rom BZ to A3
then control pas ses back to the Monitor S,can record.

When BSS control cal ls the Machine E r r o r record sense 1igh.t 2 will be on.
These e r r o r s a r e pers is tent tape checks that BSS control cannot get around.
The indication of the e r r o r i s printed on l ine, the execution bit is deleted
and control is passed to the Monitor Scan record.

The l a s t ca se will be with a l l sense lights off, when the diagnostic within
Section I of FORTRAN cal ls the Machine E r r o r record. The pr inted m e s s a g e s
and the options a r e the s ame f o r this a s they where when control was re-
ceived f rom the Main Diagnostic record.

SOURCE E R R O R RECORD 1.10.00

The Source Er ror record is called when a source e r ro r is detected. All
routines that can call the Machine Er ro r record (see 1.09.00) can also
call this record,

The only processing that i s done will be to delete the execution bit in 1-CS
if i t exists and write off line, the reason for no execution.

In the Monitor mode if any record other than Monitor Scan called thia record
control i s passed to Monitor Scan. If Monitor Scan calla this record control
is passed to the Sign On record.

However, in the case of a source error in the single compile mode the card
reader i s selected and the program will hang up.

TAPE MOVER (RECORD 42) 1, 11,OO

The Tape Mover record i s entered at the termination of FORTRAN. If
the system i s in monitor mode, the information from the single compile
print tape (B2) will be t ransferred to the stacked print tape (A3). Since
the third file (symbolic listing) i s optional, FORTRAN in Section VI will
turn on Sense Light 2 to indicate to tape mover that the third file is need-
ed, The information on the binary output tape (8 3) will be t ransfer red to
the stacked binary tape if: (1) Sense Switch 6 is up and, (2) Sense Light 1
is ON (left on if column binary cards were not called for in Section 6).
When one or both tapes have been processed the execution bit is checked,
i f ON control passee to BSS Control (Record 43), i f OFF control passes
to Monitor Scan (Record 6).

Upon initial entry to Tape Mover if the system were not in monitor mode,
the card reader would be selected and the program would hang up.

dn X I S
9sl3owor ,N ArU/MP 2rm

FORTRAN COMPILER 2.00.00

INTRODUCTION

The FORTRAN Executive routine comprises most of the second file of the System
Tape. The exceptions a r e the two monitor records, Tape Mover and BSS Control.
FORTRAN i s made up of 32 records (# l o through #41) which a r e called in one or
more a t a time. FORTRAN i s broken down into six sections each one given a por-
tion of the task of analyais of the source program. There a r e in addition to the s ix
main sections, four subsections, these a r e I t , I", V' and pre-VI. These subsections
a r e in reality only extensions of the main sections to which they a r e attached.
These sections a r e operated on sequentially, that i s there i s never a return to a .

previous section once control passes to a succeeding section.

FORTRAN can be considered a s falling into two divisions, the f i r s t comprised by
sectione I, I1 and 111, the second by sections IV, V and VI. This i s due to the fact
that by the end of section 111, the entire object program i s essentially compiled.
It i s , in fact, compiled except that i t exists in the C. I. T. (Compiled Instruction
Table) format, and that it has a s many symbolic index regixters as aFe required. -
It i s the job of the remaining three eections to correct these two situations. Sec-
tions IV and V handle the task of inserting the absolute index regis ters in place of
the symbolic index registers. Since we a r e reducing a large number of eymbolic
index registers to the three absolute registers , certain index loading and saving
instructions a r e necessary. This problem i s also handled by Sections IV and V.

Section VI, replaces the instructions that a r e in the CIT format into the proper
relocatable binary format.

As for the f i r s t three sections, i t may be considered that the f i r s t two of theae
do the entire task of source program analysis. This task includes performing
most of the instruction (C. I. T.) compilation. With reference to some of the in-
structions, however, sections I and I1 simply record information, in tabular form,
to paes on to section 111, which will use these a s a key to inser t the proper in-
structions. Because the analysis of sections I and I1 a r e independent, the C, I, T. ' a
compiled a r e kept in separate files, which must subsequently be merged. Section
111, therefore, has the task of performing this merge a s well a s a second merge
of the C. I. T. 's that i t , itself has created. Both section 111 and the las t pa r t of
section V, because of their position a t the end of necessary primary analysis,
perform certain optimizing tasks consisting mostly of removing o r inserting cer -
tain instructions.

It i s well to note that the FORTRAN compiler makes extensive use of tables. These
may be considered a s of two types: those which a r e made up directly from the
source program statements, and those which result f rom further analysis. It i s
the former c lass of tables which a r e included in this reference manual, A l i s t of
some of these tables and their size limitations will be discussed a s they are en-
countered. The lat ter class do, in some cases, impose further size limitations.
M ost tables are passed on from one section to another; some however, a r e created

0 purely for use within a section. The bourse program aiaternsnt, once scanned,
a r e not referred to again. For a more detailed description of some of these tables,
see Section 2.04.00.

SECTION I 2.01.01

Section I has the primary output of a file of instructions called the Compail file.
The f i r s t CIT'e that a r e written in COMPAIL a r e the Arithmetic Statement Func-
tions. These a r e labeled in such a manner that the Merge in Section 111 will re -
cognize and separate these f rom al l other CIT1s, and wri te them as separate filee.
The arithmetic inetructions, of course, re fer to symbolic tags in the word four
address. Also included in this file a r e a partial translation of the I F and GO TO
Statements, the subprogram definition statements, and input/output statements.

With respect to the I F and GO TO Statements, Section I compiles the necessary teat
instructions, but i t cannot compile the tranefer instructions. This is because Sec-
tion I does not know whether any given I F and GO TO Statement is in the range of
a DO and involves a t ransfer out of the DO. It is not until this is known that it can
go directly to the statement indicated in the source program, o r go to a se t of in-
structions providing necessary indexing, then the t ransfer to the specified source
program statement. The analysis pertaining to these indexing instructions is left
to Section I1 with the physical instructions being compiled by the second par t of
Section 111. In soma caree, a CIT is created containing the tronrfer instruction,
but without the address, The addrees is filled in Section 111.

With r e spect to subprogram definition statements, information is gathered which
i s used by aection pre-6 in actually filling in the prologue and index-saving in- 0 structions.

With respect to I/O statements, a l l instructions a r e compiled except those involv-
ing DO'S implied by 1 / 0 statement lists. After Section I has scanned and identified

' the source program statement, i t handles i t by transferring to a routine correa-
ponding to it. Then, of course, a l l information i s tabulated and, when possible,
compilation performed.

A new internal formula number, initially zero, incremented by one, is assigned
to each source statement, whether that statement i s executable o r non- executable.
Where external statement numbers - - i. e. , statement numbers assigned by the
source programmer -- exist, the TEIFNO table serves to correlate the external
and internal statement numbers,

The greatest division in the handling of statements in Section I i s between the
arithmetic statements and all others. The arithmetic compiler proper constitutes
the major portion of Section I in number of instructions. The arithmetic com-
piler i n making its scan of the arithmetic formula makes an enormous number
of table entries in addition to doing i t s statement analysis necessary for compilation.

Among these tables a r e the TAU tables, recording subscript combination information,
the FORVAL and FORVAR tables recording fixed point variables occurring on the left
and right hand sides of arithmetic statements, FIXCON and FLOCON, recording the 0 converted fixed and floating point numbers. It should be noted that IF and CALL
statements fall onto both sides of this division. They a r e t reated as arithmetic
statements, with compilation occurring, that is not due directly to the arithmetic
compiler, a s well.

The arithmetic compiler i s divided into the Scan, Level Analysis, various
Optimizing routines, and the Compiler. The Level Analysis sifts out into
one group al l those algebraic operations which fo rm a unit. A unit i s a group
that must be performed together and have the same order of binding strength
for i t s operators. "Plus" and "minust1 a r e one order of operators, "multiply"
and "dividel1 a r e another order. The lat ter has greater binding strength than
the former; consequently, when they occur in the same context the la t te r a r e
assigned a higher level number. Needless to say, the use of parenthesis in
an arithmetic statement i s a prime factor in determinging units and, hence,
level numbers. Optimization occurs to minimize storag e accesses. This
means that every attempt is made to link one operation to i te successor via
the machine regis ters rather than the storage cells. The compilation then
proceeds from highest level number to lowest.

Flow Within P a s s I of Section I

The input to P a s s I i s the source program in BCD form as a single file, on tape
B2.

One record a t a time i s read into a buffer termkd FT. All comment cards and
blank cards a r e ignored. A special mode character in card column on'e i s saved. 1
If a statement number (EFN) exists i t i s converted to a binary number and saved.
The F T buffer i s now moved to the F region, and a new record is read into the
F T buffer. In this manner the program looks ahead one record a t ae:time, to de-
termine if there a r e any continuation cards, any non-blank, non-zero, character
in card column 6). All continuation cards a r e read for a given statement and
assembled in the F region. A word of all ones i s written after the l a s t non-blank
word in the F region to serve a s an end-of-statement marker.

At this point a decision must be made a s to whether the statement ia arithmetic,
i f not arithmetic, i t i s non-arithmetic, some of which a r e non-executable. The
beginning of the non-arithmetic statements a r e compared to entr ies in a dic-
tionary of non-arithmetic statement beginnings. If the statement is not iqentified
in the dictionary a diagnostic message i s printed. i

All executable statements including arithmetic a r e written on tape B3 with a cor-
responding label. These records on B3 a r e essentially the same a s the records
on B2, except they a r e in a more compact form and a r e written in binary. The
records on B3 contain al l continuation cards of a source statement, I'esk terminal
blanks, and certain pre- dige sted information.

The non- executable statements a r e processed in P a s s I and ent r ies made in the
appropriate tables in core. If an external statement number (EFN) appears in the
source statement, an entry i s made in the TEIFNO table with a corresponding in-
ternal formula number (IFN).

F o r use and operation of these mode charactere refer to operating bulletins
for the 32K FORTRAN System.

Flow In Pas s I1 of Section I

The input to Pass I1 i s the condensed source program in binary form a s a single
file on B3.

One record i s read in at a time, the f irst word of each record i s a label for the
type of statement. This address portion of the label i s the transfer address to
the appropriate processor.

As the statement i s scanned, the various parts a r e classified and appropriate
table entries are made.

When all the statements have been processed, control passes to the next record
on the System tape (Al). This record is the Diagnoetic for Section I. The diagnos-
tic record can be called earlier i f an e r ror i s found in the source program o r a mach-
ine er ror i s encountered. The program consists of:

Program to prepare meesage
Print program
Table of comments

When an e r ro r i s found or occurs during Section I control goes to the Diagnoetic
Program by means of a TSX using IR4. There are several possible casee:

I IR4 C 0 signifies an e r ror call . ,

1) Firs t error: Print "Fortran Diagnostic Program Results" heading
and proceed a s in 2).

2) Not first error: Construct parameters for printing statement being
processed and comment.

a. If e r ror was source program, return control to Section I for pro-
ceeaing next statement.

b. If e r ror was machine, print "END OF DUGNOSTIC" message and
go to Machine Er ro r Supervisor program (record 8).

I1 IR4 t 0 signifies control was received at the completion of Section I.

1) No e r rors had occurred. Go to Section 1'.

TABLES

2) Some source program er rors had occurred. Write all diagnostic
information which has been printed on tape B2 following rource
program. Go to Source Program Er ro r eupervisor program.
(record 9).

GENERATED BY SECTION

1. Generated by Section I and required for reference. There tables, retained in
cores are:.

NAME

DIM P

DIM2

DIM3

TAU1

TAU2

TAU3

FIXCON

FLOCON

FORSUB

DESCRIPTION

one-dimensional ar raye

two-dimensional a r rays

three-dimensional a r rays

one-dimensional subscripts

two-dimensional subscript^

three-dimensional subscripts

fixed-point constants

floating-point constants

arithmetic etatement functione

END options specified in END statement

2. Generated by Section I and not required for reference. These tables, written
on tapes in buffer sized records, with labels where needed are:

a. Written on tape B2, 100 words per record:

NAME DESC~IPTION

CXT COMPILED INSTRUCTION TABLE

b. Written on tape A4, in buffer sized records with appropriate labele.

DESCRIPTION

TEIFNO

TDO

TIFGQ

TRAD

FORTAG

FORVAR

FORVAL

FRET

EQUIT

GLOSUB

FORMAT

SUBDEF

COMMON

HOLARG

NONEXC

TSTOPS

CALEFN

FMTEFN

corresponding IFNs and EFNe

DO etatemente

IFs, GO Toe , ASSIGN statements

GO TO statements

IFNe - I - TAU tags

fixed- point variable usage

fixed- point variable definition

FREQUENCY statements

EQUIVALENCE statements

names of closed subroutines references

FORMAT statements

SUBROUTINE or FUNCTION statement8

COMMON statemente

Hollerith arguments in CALL statements

IFNs on non- executable statement$

IFNe of STOP? and RETURN statements

first and last IFNs of CALL ratatemenee

1 - 0 statement reference8 to FORMAT numbera

SECTION I' 2. 01. 02

This section i s a terminal processor for Section I, and i s the longest of al l secondary
sections.

The tables that Section I generated were written on tape A4 a s buffer size records,
as they became full. They can be many records on tape A4 a l l of the one table
type. These records a r e not necessarily on the tape consecutively but rather at
random intervals, a lso the buffers in Section I for these tables may have been only
partially filled a t the end of Section I. These partially filled buffers a r e left in core
fo r proceasing by Section 1'.

The primary task of Section I' i s to collect al l like tables from tape A4, combine
them, inser t the partially filled buffer, determine the word count and wri te these
tables on tape BZ, with a label number corresponding to the type of table.

Section I' a lso makes certain modifications, primarily the replacement of EFN's
with corresponding IFN1s , ueing the TIEFNO table. This can only be accomplished
when the entire source program has been reduced to tabular form. An example of
where the external statement numbers have had to be retained up to this point i s
in the TDO table. Here, the number referring to the statement number of the DO
itself may be an internal formula number because i t i s readily known due to the
constant updating of the current internal formula number. On the other hand, the
DO range had to be recorded ae an external statement number at the t ime the TDO
table entry was made. This i s because it could not then be known how may state-
ments further on in the program the end of the DO range would occur.

The input to Section I' consists of:

1. Various parameters describing tables (in cores).

2. Buffers containing terminal entries in tables (in cores).

3. Tables which Section Prequire for reference (FORSUB), END, DIM1, DIM2,
DIM3, TAU1, TAU2, TAU3, FIXCON, FLOCON in cores.)

4. Tables which Section I did not require for reference. (COMPAIL, on tape BZ,
TEIFNO, TDO, TIFGO, TRAD, FORTAG, FORVAR, FORVAL FRET, EQUIT,
CLOSUB, FORMAT j SUBDEF, COMMON, HOLARG, NONEXC, TSTOPSj
CALLFN, FMTEFN, on tape A4.)

The output of Section I' consists of:

1. Tables in cores: 'TAUl, TAU2, TAU3, FIXCON, FLOCON, FORVAL, TRAD,
TIFGO, TEIFNO, NONEXC, TSTOPS.

2. Tables on tape:
Tape B2: File 1 i s Source Program

File 2 i s COMPAIL table
Fi le 3 Record 1 i s FORSUB table except the f i ret word which is the

COMPAIL record count.

37

File 4 Record 1 is FLOCON table,

Record 2 i s FORMAT table,

Record 3 i s SIZ table,

File 5 Record 1 i s END table,

Record 2 i s SUBDEF table,

Record 3 i s COMMON table.

Record 4 is HOEARG table,

~ e c o r d 5 i s TEPFNO table,

Record 6 is TPFGO table,

Record 7 i s TRAlD table,

Record 8 i s TI38 table,

Record 9 i s F O R V f U table,

Record P O i s CALENM table,

Record 11 i s FBRTAG table,

Record 12 i s FRET table,

Record 13 i s EQUIT table.

Record 14 i s CLOSUB table.

The tablee a r e processed in the following order and manner:

32K Version - The content8 of the Section I CIT buffer a r e written as. the last
record of file 2 on tape 432.

FORSUB - The table of names and degrees of arithmetic statement functions,
b

i f any, is written after the COMPAIL record count'which i s the f i rs t word in
record 1 of file 3 on tape B2.

FLOCON- The table of floating-point constants and i t s word count are written
as record 1 of file 4 on tape B2.

FORMAT - The table of format statements is assembled from tape A4 and the
Section I buffer. It i s written a s record 2 of file 4 on tape B2; preceded by i t s
identification (10) and word count,

FMTEFN - The table of references to fixed format statements is assembled from
tape A4 and the Section I buffer. Each reference to a format is checked against

the FORMAT table. If any referenced statements a r e missing an e r r o r l i s t is
developed for Section I".

DIM1 - The table of one dimensional a r r a y s is renamed SIZ. -
DIM2 - Each entry in the table of two dimensional a r r a y s has i t s two dimensions
multiplied to fo rm the size of the array. This table is added to SIZ.

DIM3 - Each entry in the table of three dimensional a r r a y s has i t s three dimen-
sions multiplied to form the size of the array. This table is added to SIZ.

SIZ - The table is written a s record 3 of file 4 on tape B2. It is preceded by the -
EIFNO table and i t s word count.

END - The END table i s written a s record 1 of file 5 on tape B2. -
SUBDEF - The table of subprogram definition is assembled f rom tape A4 and the
Section I buffer. It is written a s record 2 of file 5 on tape BZ; preceded by i t s
identification (1 1) and word count.

COMMON - The table of common variables i s assembled from tape A4 and the Sec-
tion I buffer. It i s written as record 3 of file 5 on tape B2; preceded by i t s iden-
tification (12) and word count.

HOLARG - The table of hollerith arguments i s assembled from tape A4 and the
Section I buffer. It i s written as record 4 of file 5 on tape B2; preceded by i t s
identification (1 3) and wo rd count.

TEIFNO - The table of corresponding external and internal formula numbers is
assembled from tape A4 and the Section buffer. It i s searched for duplicate
external formula numbers. If duplicates a r e found they a r e flagged a s e r r o r s
for Section I". Thos,e cases where Section I assigned more than one internal for-
mula number, a r e not. considesred as duplizatcs an,! the flag is deleted.
The table is written a s record 5 of fiIe 5 on tape BZ; preceded by its identifi-
cation (0) and word count.

It i s a lso retained in memory for use in processing tables discussed.below:

TIFGO - The tables o f IFs , GO TOs and ASSIGNS is assembled f rom tape A4
and the Section I buffer. ' Each external formula number is searched for in
TEIFNO and i t s corresponding internal number replaces i t in TIFGO.
external formula numbers not found a r e set equal to 0 as an e r r o r signal to
Section I". When all entries have been modified the table i s written as record
6 of file 5 on tape B2; preceded by i t s identification (2) and word count.

TRAD - The table of COMPUTED and ASSIGNED GO TO addresses i s assembled
f rom tape A4 and the Section I buffer. Each entry, which i s an external formula
number, i s searched for in TEIFNO. When found it i s replaced by the co r res -
ponding internal formula number. If not found, it is set equal to 0 as an e r r o r
signal to Section I". When a l l entries have been t reated the table is written as

record 7 of file 5 on tape B2; preceded by i ts identification (3) and word count.

TDO - The table of Do t s i s assembled from tape A4 and the Section I buffer. -
Each entry i s examined to determine i f i t originated from a DO or from an
Input-Output List. If i t originated from a DO the EFN for the end of the DO
ie searched for in TEIFNO. When i t i s found the corresponding IFN replaces
i t in TDO. If not found, i t i s aet equal to 0 a s an e r ro r eignal to Section I".
In those cases 'where Section I assigned more than one IFN to' an external num-
ber , the laet such IFN i s used so that the DO includes a l l instxuctions of the
terminal statement, When al l entries have been treated the table i s written
a s record 8 of file 5 on tape B2; preceded by i t s identification (1) and word count.

*

FORVAL - The table of definitions of fixed-point variables is assembled from
tape A4 and the Section I buffer.

CALLNM - The table of f i rs t and last internal formula numbers of statements
containing references to subprograms i s assembled from tape A4 and the Section
1 buffer. Each IFN in FORVAL i s searched for as a f i rs t IFN i n CALLNM. If
found, i t is replaced by the corresponding last IFN. When all entries have been
processed the FORVAL table i s written a s record 9 of file 5 on tape B2; pre-
ceded by it8 identification (6) and word count. The CALLNM table is dead.

FORVAR - The table of usages of fixed-point variables is assembled from tape
A4 and the Section I buffer. It i s written as record 10 of file 5 ontape B2 pre-
ceded by i t s identification (5) and word count.

FORTAG - The table of tag usages i s assembled from tape A4 and the Section I
buffer. It i s written as record 11 of file 5 on tape B2; preceded by i t s identifi-
cation (4) and word count,

FRET - The table of frequency statements i s assembled from tape A4 and the -
Section I buffer. Each E F N in FRET i s searched for in TEIFNO. When found
i t i s replaced with the corresponding IFN. If not found, i t i s se t equal to 0 a s an
e r r o r signal for Section 1". The FRET table i s now sorted by IFN to form an
ordered list.

TIFGO - The TIFGO table i s now re-examined for any entries for COMPUTED GO .
TO statements. The IFN of each such statement i s searched for in FRET. If
founa, the l is t of branch frequencies i s reversed to correspond to the object pro-
gram transfer vector.

When all TIFGO entries have been examined, the FRET table i s written a s record
12 of file 5 on tape B2; preceded by i t s identification (7) and word count.

EQUIT - The table of equivalence statements i s assembled from Tape A 4 and the
Section I buffer. The table i s reformatized to make those variables which are
equated into strings of relativelized symbols. Any found to be inconsistent are
flagged as e r r o r s for Section I". Any redundancies a r e deleted. The table i s
then written as record 13 of file 5 on tape BZ; preceded by its identification (8)
and word count.

record 7 of file 5 on tape BZ; preceded by i ts identification (3) and word count.

TDO - The table of DO'S i s assembled from tape A4 and the Section I buffer. -
Each entry i s examined to determine if i t originated from a DO o r f rom an
Input-Output List. If i t originated from a DO the EFN for the end of the DO
i s searched for in TEIFNO. When i t i s found the corresponding IFN replaces
i t in TDO. If not found, i t i s set equal to 0 a s an e r ro r signal to Section I".
In those cases where Section I assigned more than one IFN to an external num-
ber , the last such IFN i s used so that the DO includes a l l instructions of the
terminal statement. When all entries have been treated the table is written
a s record 8 of file 5 on tape B2; preceded by i t s identification (1) and word count.

FORVAL - The table of definitions of fixed-point variables i s assembled from
tape A4 and the Section I buffer,

CALLNM - The table of f i rs t and last internal formula numbers of statements
containing references to subprograms i s assembled from tape A4 and the Section
1 buffer. Each IFN in FORVAL i s searched for a s a f i rs t IFN in CALLNM, If
found, i t is replaced by the corresponding last IFN. When a l l entr ies have been
processed the FORVAL table i s written a s record 9 of file 5 on tape B2; pre-
ceded by i t e identification (6) and word count. The CALLNM table is dead.

FORVAR - The table of usages of fixed-point variables i s assembled from tape
A4 and the Section I buffer. It i s written as record 10 of file 5 ontape B2 pre-
ceded by i t s identification (5) and word count,

FORTAG - The table of tag usages i s assembled from tape A4 and the Section I
buffer. It i s written a s record 11 of file 5 on tape B2; preceded by i t s identifi-
cation (4) and word count,

FRET - The table of frequency statements i s assembled from tape A4 and the
Section I buffer. Each EFN in FRET i s searched for in TEIFPJO. When found
i t i s replaced with the corresponding IFN. If not found, it i s eet equal to 0 a s an
e r ro r signal for Section I". The FRET table i s now sorted by IFN to form an
ordered list,

TIFGO - The TIFGO table i s now re-examined for any entries for COMPUTED GO
TO statements. The IFN of each such statement i s searched for in FRET. If
foung, the l i s t of branch frequen cies is reversed to correspond to the object pro-
gram transfer vector.

When all TIFGO entries have been examined, the FRET table i s written a s record
12 of file 5 on tape 332; preceded by i t s identification (7) and word count.

EQUIT - The table of equivalence statements i s assembled from Tape A 4 and the
Section I buffer, ,The table is reformatized to make those variables which a r e
equated into strings of relativelized symbols. Any found to be inconsistent a r e
flagged as e r r o r s for Section It'. Any redundancies are deleted. The table is
then written a s record 13 of file 5 on tape B2; preceded by i t s identification (8)
and word count, b

CLOSUB - The table of names of closed (library) subroutines i s assembled f rom

C tape A4 and the Section I buffer. Duplicates a r e eliminated. Each name in the
CLOSUB table i s searched for in the SUBDEF table. If found. i t i a deleted
from CLOSUB aa being a dummy name. The table i s then written a s record 14
of fi le 5 on tape B2; preceded by i ts identification (9) and word count.

NONEXC - The table of statement of non-executable statements is assembled from
tape A4 and the Section I buffer. It is left in core.

TSTOPS - The table of statement numbers of STOP and RETURN statements is
assembled f rom tape A4 and the Section I buffer. It is left in core.

MSG - One i a added to the las t IFN used and i t i s left for Section I".
7

SUBROUTIN S - There a r e two subroutines used by Section 1'.

TAPOO - Table assembly Program assembles tables written on tape A4 during
Section I. It uses the parameters left by Section I to determine for a given table:

1. number of records on tape A4,

2. number of words in each record,

3. number of words remaining in the core buffer,

C 4. f i r s t location of core buffer.

The calling sequence in Section I' supplies the:

1. table identification (which also serves to locate the parameters left by Section I).

2. f i r s t location of buffer into which the table i s to be assembled.

The routine tes ts each table for overflow against a table of permissible maximums.

Tables Assembled by TAPOO a r e ehown on the following page.

TEIFNO

TDO

TIFGO .

FORVAR

FORVAL

FRET

CEOSUB

FORMT

SUBDEF

COMMON

HOEARG

NONEXC

TSTOPS

CALFN

FMTEFN

END

lDENTIFICATION
(Fir at Word):

MAXIMUM WORD
COUNT

3000

boos

WATOO - Writes assembled table on tape B2: preceded by its identification
and word count. Calling sequence supplies identification and first location
of buffer in which table has been assembled,

Yd

SECTION I"

Section I made a determined effort to eliminate the e r r o r s in any one statement.
No effort was made in Section I toward relating a particular statement to the r e s t
of the program. It would not have been convenient to do so since the tables were
not complete nor in order. It was the job of Section I' to complete the tables and
get them in order.

Section I" therefore, can be considered nothing more than a continuation of Section
I' in the f o r m of a diagnostic. It attempts to find a s many source program e r r o r s
a s possible arising f rom an interrelationship of the statements.

The e r r o r s that Section It' i s able to find a r e mainly e r r o r s in program flow. Such
a s t ransfer s to non- executable o r even non-existent statements, and conversely. no
t ransfers to executable statements which i s not in the direct path of flow. These
and other e r r o r s , a r e found through a scan of the various tables of informa tion
which comprise the 5th file on tape B2. These tables a r e of such rigid format that
i t ie easy to examine them for correct ordering and content. All e r r o r s found by
Section I" a r e accummulated in an e r r o r l i s t by several different e r r o r routines.
The table scan is only diecontinued by table overflow or a machine er ror . Section
It' u s e s the general diagnostic in the 4th file of the System tape.

In general then, i t i s t rue that by the end of Section I" very nearly a l l source pro-
g r a m e r r o r s have been found. Such things a s overlapping DO ranges and certain
r a r e cases of faulty flow still may not be found until Sections 11, IV o r V. Also
some table overflow e r r o r s may be found after Section I", however, most of the
tables a r e teeted prior to thia point and any overflow diecovered. An understanding
of the conventions deecribed in the examples below will be necessary for the des-
cription of the tables that follow:

&IF (----I Cjl, @ &'J
+

(alpha) i s the symbolic location

(beta) i s the symbolic address

alpha and beta a r e in the form of internal formula numbers (IFN).

Section 1" f i r s t initializes the e r r o r l is t with the count of missing format state-
ments. The EFN's of missing format statements a r e left in the e r r o r l i s t by
Section 1'.

TEIFNO

The TEIFNO table i s scanned for duplicate statement numbers. Duplicate
statement numbers a r e flagged minus by Section I' when it assembles the
TEIFNO table. If any minus entries a r e found, they a r e entered in the e r r o r

l is t by the ERROR routine. TEIFNO was retained in core from, Section 1'.
/*-

TIFGO

Each of the 2 word TIFGO entries i s examined for references to non-existent
statement numbers, i. e. , that there are not any zeros except those peculiar
to the particular TIFGO format. Section I' gives non-existent EFN an IFN
of zero. Further , each reference @ must be to an executable statement.
Therefore, a @ cannot be in the table of non-executable statements, the NONEXC
table. Each of the eight different types of TXFGO entries i s checked by a
apecific eubroutine within the TIFGO processor. This scan of the TIFGO table
will reeult in the checking of the TRAD table, i f one exists. If any e r r o r s a r e
found, they a r e entered in the e r r o r l i s t byeither the ERROR routine if i e
non-executable or the NOBETA routine i f i s non-existent.

In order to do a quick flow analysis the IFN &of a TIFGO statement ia entered
in the ALPHA table, and the references (IFN @ I s) a r e entered in the BETA
table. The number of branches associated with a particular TIFGO entry i s
also entered in the ALPHA table with the IFN&. All TIFGO entries, except
ASSIGNS, a r e entered into these tables. The position of an ASSIGN in the source
program does not effect the path of flow in the program.

The ALPHA and BETA tables a r e internal to Section I" and have the following
,--- format:

ALPHA

BETA -

DECREMENT, TAG, - ADDRESS

IFN 6 N:: Number of
branches.

The table of STOP and RETURN statements, TSTOPS, is a pa r t of
the ALPHA table.

DECREMENT, TAG, ADDRESS

o or 1 ~ 3 0 IFN Q

*Decrement will be 1 i f @ is non- executable.

The BETA table consists of the (j 's from TIFGO, the entire TRAD
table, and the last IFN~:<+~ in the program. In the 704, the in-
clusion of machine language necessitated the building of a second
BETA table, the BETA2 table. Thia second BETA table is an ex-
tension of the BETA table and has the same format. BETA2 consists
of the TSKXPS table, table of skip type instructions such a s CPY,

GAS, LBT. etc. , and the i< +l of conditional t ranefers from TIFCO.
Conditional t ransfers a r e TXH, TIX, TMI, etc.

FLOW ANALYSIS

Example 1 (--. , GO TO 6
O(t1 DIMENSION X (5)

0(+2 FORMAT (F8.3)
More non- executable statements.

A brief flow analysis i s performed using the information in the ALPHA, BETA,
and NONEXC tables. Each &in the ALPHA table i s the termination of a path
of flow in the source program. Therefore, there must be a t ransfer to the
f i r s t executable statement following each O(in the ALPHA table. That i s , that
the IFN&+M in Example 1 must be in the BETA table, since 6 Is a r e state-
ments t ransferred to. In reference to Example 1, the flow analysis processor
wi l l f i r s t ecarch the BETA table for & +1. Not finding O(t1 in the BETA
table, i t wi l l then search for d t l in the NONEXC table, and a match will be
found, Upon finding K4-1 in the NONEXC table, the processor will then follow
the same procedure for 4 4 - 2 , c X t 3 , , t M . In searching for,::=!,+^, i f
the processor finds i t in the BETA table, the processor will then proceed to
execute a flow analysis for the next &in the ALPHA table. However, i f (: L + ~
ie' not in thd BETA table, and since it i s an executable statement. O(,+M will
not be in the NONEXC tabld.. Therefore, i f i + ~ i s not in either the BETA o r
NONEXC tables, i t i s a part of the program not reached, i. e. , an executable
statement with no path of flow to it. If any e r r o r s a r e found, they a r e entered
in the e r r o r l i s t by the NOBETA routine. TIFGO was retained in core f rom
Section 1'.

TDO -
The TDO table i s examined for DO statements that specify an illegal @. The
three legal references checked for by Section I" are :

n
1. That the IFN \? exists. i. e . , that the reference Q i s not zero.

2. That the IFN @ is executable, i. e. , that the reference @is not in the NON-
EXC table.

3. That the IFN @ is not a transfer , STOP, or RETURN statement, i. e., that
the reference 6 is not in the ALPHA table.

If any e r r o r s are found, theyare entered in the e r r o r list by both NOBETA and
<DO e r o u t i n e s , in that order. TDO is read from the 5th file on tape BZ.

FRET

The number of branches for a TIFGO statement i s saved in the ALPHA table
with the I F N during the scan of TIFGO. Section I t ' ignores statement num-
bers in the FRET table which are not in the ALPHA table, but saves any s tate-
ment number where the count of branches in FRET i s grea ter than the count of
branches shown in the ALPHA table Section IV ignores extra frequencies given
for statements other than TIFGO statements, but would be conlused by mis -
information generated when there a r e move frequencies given than there a r e
branches. If any e r r o r s a r e ound, they a r e entered in the e r r o r l i s t by the
NOBETA routine. FRET is read from the 5th file on tape B2.

EQUIT --
If Section I' has found any inconsistent equivalences when assembling the EQUIT
table, i t s e t s an e r r o r flag at the beginning of the table and only en te r s those
variable names which a r e erroneous, and sets another flag a t the end of the list.
The e r r o r s a r e entered in the e r r o r 'list by the ERROR routine. The EQUIT
TABLE i s read from the 5th file on tape B2.

If any e r r o r s have been found in Section I", i t spaces the System Tape to the
diagnostic and reads in D001. This is the only section of FORTRAN that does
not use the usual diagnostic caller. If no e r r o r s have been found, tape B2 is
spaced over the 5th end of file nark and control is t ransfer red to 1-CS to con-
tinue comp ilation.

FLOW IN SECTION I

TROM MONITOR
SCAN IN MONITOR
MOOE (F l O ; 8)

f n O M CARD TO TAPE
BIMULATOR I N SINGLE
COMPLLE MODE 4)

1

i

SECTION 1

BOURCE P A 8 8 1

PROORAM
(CILC I)

CONDENSED SOURCE
PROGRAM (F I L E I)

cLoeue
FORMAT

TICGO SUQDEC
TRAD COMMON
FORTAO HOLARG
FORVAR NONEXC
FORVAL TSTOPS
FRET CALLFN

, I couir PMTEFN
(F I L E I)

SECT ION 1
PASS I t .

L

COMPAIL 100 WORDS
r PER RLCORO (P I L L 2)

i 7 I
f

BECTION I ERROR MESSAOP

' t 0 IAQNOBTIC

0 10
Y E S

ER ROI? s
OCCUR

NO
L 0 IAQNOST l C

ERROR MEBl lAOE
716 PR INTEP ON

.I

- I
TBIFNO CLOSUB

TIFOO SUOOEF
TRAD COMMON
FORTAO HOLARO
rORVAR NONEXC

T E l f N O
T I FGO
P A D

TOO
CR eT
EQUIT
(F I L E 5)

F I L E S COMPAIL RLCORO COUNT AN0
FORSUB

F I L E 4 FLOCON
FOR M A T
812

FORVAL TBTOPb
r R e r CALLFN
llCOUlT QMTCFN

(r ~ ~ a I)

C ILO S END TEIFHO FORVAL
SUBDEF TIFGO FORVAR
COMMON TRAO FORTAQ
HOLARO TOO FRET

EQUlT

MACHINE WHAT
SOURCE PROGRAM

CLOSUB

ERROR

,,2LqGc':10N > ,,YES,
COMPLETE

OETECTEO
I

MACKINE ERROR
SUPERVISOR REG*

\IN PASS I / 1
SOURCE ERROR
SUP'ERVISOA RLC.

SECTION 11

It is the task of Section I1 to process DO sta tements and subscripted var iables ap-
pearing in ar i thmetic and input output statements. The p r imary output of this
section i s a fi le of CIT's called the COMPDO file, i t was not convenient f o r Sec-
tion I t . ~ do this , since the tables were not in o rde r . A s you will reca l l i t was the
task of Section I' to sor t , these tables into an ordered form. The tablee that Sec-
tion I1 will u se a r e in the 5th file on tape B2 and in memory . In addition, Section
11 will c r ea t e a secondary file of closed subroutines for the computation of, re la - -
tive constants, subscr ipt combination load values. Also information about t r a n s f e r s ----
out of DO loops i s recorded in the TRASTO and TRALEV tables. These two tab les
will be used by Section 111 to produce the TIFGO fi le , th i s is not to be confused
with the TIFGO table c rea ted in Section I.

P re l imina ry Deer ription of the Problem

A. Tags c rea ted by Section I

Section I1 compiles the instructions neces sa ry to compute and index so that the
symbolic index r eg i s t e r s , (t ags) , se t up in Section I for tagged inetruct ions will
contain the i r p roper values. The tagged inetructions compiled by Section I r e -
fer to sube'cripted variabler The symbolic tag i r in fact, a clubrcript combina-
tion with given dimensions and coefficients. The tags a r e divided into t h ree
c l a s s e s , 1, 2, and 3 dimensional, ar.d a r e recorded in separa te tables , TAU1,
TAU2 and TAU3

The COMPDO file of instructions contains the computing andindexing ins t ruc-
tions f o r the var ious subscrj?t combinations contained within DO ranges and
any neces sa ry additional t ags . The se inst ruct ions a r e associated with the
beginnings and ends of DO's. At the beginning of DO'S they will contain the
computing inst ruct ions neces sa ry to de te rmine the load val ue for a tag(sub-
s c r ip t combination lndex r eg i s t e r) and the load inst ruct ions . In addition, index
saving inst ruct ions may occur At the end OL' DO's these ins t ruc t ions r e f e r
to the indexing required to increment subscr ipt combinations values f o r the
next DO loop execution, to t e s t whether o r not control may ?as s out of the DO
range and. in the la t te r c a s e , to r e s e t the DO'S subscr ipt combinations to their
lowest values i f control i s st i l l in a DO containing f!*e f i r s t DO (nest) . 1

Al l of these inst ruct ions r e su l t f r o m the configuration of the combination of
DO-nest s t ruc ture on the one hand and subscr ipt combinations within the DO-
nes t on the other . A DO nest i s defined a s any s e t of DO'S a l l of which a r e
bounded contained withfn- .a single DO. Figurat ively, th i s me ans that the
outside sihgle DO i s on level one, the next DO which it contains, on level
two. and s o forth Of cou r se , in a single nes t t h e r e may be m o r e than one ,

DO on any one level g rea t e r than level 1.

The inst ruct ions performing these th ree functions are TXI, TXL, and TIX
respectively.

Fur ther .complications m a y reeult f rom the t ransfers out of Do's where
additional indexing and saving inetructions will be required. The TIFGO
file that will be compiled in Section 111 will contain the instructions necess-
a r y for doing this. The TIFGO file will be made up from information paseed
on to i t in the TRASTO and TRALEV tables created in this Section.

C. Relative Cons tant s

A considerable portion of the work of Section 11 i s devoted to the proper handling
of subscript combinations which are called relative constants. A Relative
constant i s a subscript symbol not under control of a DO on that symbol.

That ia , i t receives i t s definition in some fashion other than the indexing
normally associated with a DO. A subscript combination may, therefore,
be a pure relative constant (where none of i ts symbols i s under control of
a DO), a mixed relative constant (where at leas t one i s not under control
of a DO while the others a re) , o r a normal DO- subscript combination
(where a l l eubscript eymbols a r e under control of a DO).. Each of these
three types requires i t s own mode of treatment by Section 11.

The FORVAL table is the key in determining the point of definition of
relative constants.

The DOFILE (C) file generated in Block IV contains the inetructions neceser
a r y for the COMPUTATION of the subscripted variable load value.

F L O W WITHIN SECTION 11

To c a r r y out the analysis and to deal with the various complexititea involved,
there a r e s ix logical blocks in Section 11.

BLOCK 1 Nest analysie, flow analysis.

BLOCK 2 Subscript combination analysis.

BLOCK 3 Relative constant subscript analysis.

BLOCK 4 Compilation of subrouiines for computing relative constant
index value s.

BLOCK 5 Compilation of loop initialization, incrementing and testing
instructions.

BLOCK 6 Reordering the DO file for input to Section IIL

BLOCK I

The task of this block i s to examine the DO nesting structure and the flow
of the program. This information which Section I extracted from DO state-
ments and Input-Output l i s t s is contained in the tape table TDO, which on
being read in, ie further expanded into the 9 word table DOTAG to accommodate

the resu l t s of analysis. The DO i s scanned to determine i f i t contains other
D o ' s (DO Nest) and i f any of the rules for DO nesting have been violated by
the source program. The TIFGO table i s then searched to determine if the re
a r e t r ans fe r s within a DO loop. This i s done by searching a l l DO loops f o r
corresponding TIFGO table entries. If one i s found an entry is made in the
TRALEV table to indicate to Section 111 to compile indexing and saving in-
structions for the transfer. An entry i s a l so made in the DOTAG table in-
dicating a t ransfer exits in i t s range. 'The DOTAG and TRALEV tables a r e
writ ten out on tape a t the end of Block I.

BLOCK 11

The block I1 analysis i s ca r r i ed out for each subscript combination occurrance ,
a t leaat one of whose subscr ipts i s under control of a DO. Only the a r e a s with-
in D o ' s need therefore , be examined. The search for tags i s ca r r i ed out nes t
by nest , and within the nest DO by DO. The o rde r in which the analysis is
ca r r i ed out i s by selecting the inerrnost DO of a nest f i r s t and working toward
the outermost DO of the nest. Any FORTAG (SECTION I table) en t ry being
within and controlled by this DO i s analyzed. If such a controlling DO is - not
found for a subscr ipt , i t i s called a relative constant. The relative constant
wil l be desalt : with by Block 111. If a t ransfer out of the range of a DO exis t s ,
a sea rch is made within the DO for an equlavent subscr ipt combire. tion. If
such a tag i s found, the required value would be in a n index reg is te r at the
t ime of the t ransfer . A TRASTO entry must be made to indicate to Section
I11 that instructions would be compiled a t the point of t ransfer to save the in-
dex reg is te r value,

When a l l possibil i t ies have been dealt with, the resul ts of the whole analysis of
subscr ipt combinations a r e writ ten out a s the TAGTAG table entry on tape A4.
This provides Block 5 with information so that i t can compile the appropriate
initializing and indexing instructions a t the appropriate points. The DOTAG
table compiled by BLOCK I1 i s then writ ten out on tape B2 as the 6th f i le with
i t s record count a s the 7th file. This DOTAG table is s)ssentially the s a m e
a s the one output by Block I with additional en t r ies created by Block XI.

BLOCK 111

This block completes the subscript analysis by dealing with those subscr ipt
combinations not a l ready analyzed in Block 11, namely, pure relative constants.
A pure relative constant i s a subscript combination - none of whose subscr ip ts
i s under control of a DO. A relative constant can be defined in two different
ways:

1. By appearing on the left hard side of a ar i thmetic statement o r i n a n input-
output statement, both which a r e recorded in the FORVAL table.

2. By a t ransfer out of a DO for that subscr ipt combination.

Both of these situations were examined in Block I1 but w e r e left f o r Block 111
to process.

To process the f i r s t situation above the FORTAG table en t r ies a r e selected
one a t a time. It i s only necessary to look a t the ones not processed by
Block 11. Thc FORVAL table is then searched for the occurrence of the
par t icular FORTAG entry. If one is found an entry i s made in a table called
TSXCOM. This table enables Section 111 to compile a TSX to a subroutine
which will compute the cur ren t index value for the tag. The subroutine i s
compiled by Block IV.

Thc remainder of this Block i s devoted to the second method of defining a
relative constant. All FORTAG table en t r ies not processed by Block I1 o r
the previous par t of this Block, a r e now selected one a t a t ime. The DOTAG
table i s then searched for a DO for one of the FORTAG symbols. If such a
DO is found a sea rch i s then made to find a t ransfer out of this DO. When
such a t r ans fe r i s found an entry i s made in the TRASTO table to indicate to
Block IV what kind of subroutines will be necessary for the above conditions.

The tables generated by Block XI1 a r e ca r r i ed over to Block I V as memory
table s.

BLOCK IV

Thie Block will p rocess the tables generated in Block I11 and compile the sub-
routi nes necessary for computing relative constant index values. The sub-
routines a r e now writ ten out on tape B2 f i les 8 and 9 a s the DOFILE (C) and
i t s r eco rd count.

BLOCK V

Thie Block compiles the necessary indexing instructions fo r the tags , using
the resu l t s of the subscr ipt and flow analysis provided by Blocks I and 11. The
information necessa ry for this compilation is contained in the TAGTAG and
DOTAG tables which a r e on tape A4 and B2 respectively.

The process i s broken down into two phases. The f i r s t being the alpha which
provides the loading and initializing instructions a t the beginning of a DO. The
second i s the Beta phase which compiles the incrementing, testing and reset t ing
instruct ions a t the end of a DO, (i . e. , TXI, TXL and TIX respect ively.)

The CITs a r e now complete as far as DO'S a r e concerned and a,re now wri t ten
out onto tape B3 a s the f i r s t file. These a r e in r eve r se o r d e r , and a r e left this
way for Block VI to take c a r e of.

BLOCK VI

The o r d e r in which Block 5 compiles DO instructions for a nes t i s the backward
sequence of o(and (3 of the nes t , although within each& and () block, the ins t ruc-
t ions a r e in the natural order . he& and@ blocks of C I T t s mus t therefore be
inverted, s o that Section I11 can merge the DO file with the COMPAIL file, output

51
by Section I. The beginning of each block i s marked by an all one's CIT entry,
and after reading a neat of CIT's (the end of a nest being marked by zeros) ,
Block VI searches from the end of a nest until an all one's fence is found, The
instructions just scanned are output a6 the DO file, and would correspond to
the f i r s t w o f the nest, Block VI then looks for another fence, and 80 on, until
the whole nest i a output. When the DO file i s complete, control passes to
Section 111.

R KAD
T l P O O
TRAD
TDO
FORVAL
FORTAO
(FILE I)

OoTAo (A)
(FILL I)

DOYAO (A)
(CILL 1)

SECTION II
BLOCK Ill I

DOYAG (e)
RECORD OOUN
(F ILE 7)

OOTAQ (8)
(F I L E 6)

BECTION 11

I
LOCK 1V

DOC l L E
(F I L L I)

DOTAG (o) VILE 6
'DOTAG (B) REcORO COUNT
(F I L S 7)

DOFILE (C) (PILE 6)
POFILE (C) RSCORO C O U N T
(F I L E a)

t
S E C T I O N Ill

(FIG. II)

FIGURE 10

SECTION III 2.01. 05

The MERGZ has the pr imary function that i t s name implies . That i s , i t
must merge o r collate the different f i les of compiled instructions (CIT's)
that a r e available to it. There i s , however, an important additional func-
tion which the MERGE serves , This i s the creation of an additional file
of instructions. This additional file i s based on information gathered by
Section I1 andpaesed on to the MERGE in the form of tables.

The MERGE, therefore, falls naturally into three main divisions: Merge I
merges the two f i les passed on to i t by Sections I and 11; MERGE II c r ea t e s
the additional file of instructions; MERGE 111 m e r g e s the two f i les of instruc-
t ions now existent. The two fi les of instructions compiled by Sections I and
I1 a r e the COMPAIL and the COMPDO files. The file created in MERGE 11
i s called the TIFGO file. The resul ts of the MERGE I file i s called simply
the FIRSTFILE. MERGE 111, of course, merges the FIRSTFILE with the
TIFGO file.

At the end of MERGE 111, then a single file of CIT t s exis ts and is passed on
to Section IV. This single file i s essentially the completed compiled program.
That is, i t contains a l l the instructions necessary for the translation of the
source program, on the assumption that the object machine contains a s many
index r eg i s t e r s a s t h e r e a r e symbolic tags in the single file of instructions.
Therefore , the remainder of the FORTRAN Executive P r o g r a m is devoted to
two main tasks:

a. Substituting absolute index r eg i s t e r s for the symbolic index r e g i s t e r s a s -
sumcd up to this point.

b. Inserting the load and save index instructions required by the l imited num-
b e r of absolute tags.

It is important, fur ther , to point out that the additional file of instruction9
crea ted in MERGE I1 (TIFGO) does not resul t f rom any fur ther analysis of
the FORTRAN Source P r o g r a m a s such. Rather , i t i s compiled f r a m tables
which a r e themselves the resul t of such analysis. The MERGE, therefore ,
does no analytical work of i t s own; i t simply stands a t the c ruc ia l c ross ing
point between the f i r s t pa r t of the compiler which does the basic analysis and
the l a t t e r p a r t which handles the index reg is te r problem and the assembling
problems.

Par t ia l ly a s a resu l t of this cr i t ical position of the MERGE in the over -a l l
flow of the FORTRAN Compiler, the MERGE i s given cer ta in additional sub-
s idiary tasks to per form as i t does i t s p r imary merging tasks. In this des-
cription, these subsidiary tasks will be l is ted and descr ibed in their appro-
pr ia te place. It is only worth noting h e r e that many of,'these t a sks could
theoretically have been done ea r l i e r ; that they w e r e not done e a r l i e r and
were , instead, left to the MERGE is to a greate extent, a matter of conven-
ience for the e a r l i e r analysis. The fact that the MERGE m u s t make seve ra l

complete passea over all the CIT's makes i t simple for the MERGE to make
the insertions required by these subsidiary tasks.

FLOW WITHIN SECTION 111

MERGE: 1

A. The merge of the COMPAIL and the COMPDO files occurs by simple num-
er ica l collation. The two files a r e on two separate tapes, COMPAIL as
the second file on tape B2 and CQMPDO a s the second file on tape A4.
These files exist in 100 word records, maximum that i s 25 instructions per
record. The f i r s t word of each instruction contains the internal formula
number. The internal formula number i s physically present only for the
f i r s t instruction of the translation belonging to any unique source statement.
The exception to this i s where an input-output statement gave r i s e to m o r e
than one internal formula number. The remaining CIT'e for any one source
statement will have the f i r s t word containing al l zeros. Therefore, the in-
structions exist in blocks, each of which i s headed by an instruction with
an explicityly stated internal formula number.

B. ADDITIONAL MERGE I FUNCTIONS

1. As a resul t of the Section I1 analysis, i t may be found that certain tag
, (subscript combination) n a m e s must be changed. As you will recal l the

tag names were nothing more than a subscript combination. An arithme-
tic statement containing these tags may be used in several different DO
loops. With this in mind it i s quite obvious that the same tags really
cannot be used, therefore the names a r e changed to overcome this pro-
blem. All subscript information i s sti l l retained with the addition of a
flag indicating that the name i s different. The name changes a r e record-
ed in the Change Tag table.

Therefore, the f i r s t task that MERGE I performs i s the editing of the Change
Tag table. If the Change Tag table were unedited, i t would be necessary
for the MERGE to scan and test every tag field of every CIT appearing
within the given ranges. In order to avoid this extended testing, the table
i s edited. This editing enables the exact location of the tags requiring
changed names to be localized from the range of several statements to
a single statement. The editing occurs with the aid of the FORTAG table .

which contains an association of tag names with specific internal formula
number 8 . The edited Change Tag tables, a r e the same a s the unedited
table with the exception that the range of the statement has been reduced
down to a single statement number. While scanning the CIT's during the
merging process a tes t i s made on statement numbers to see i f they match
the number in the edited change tag table. If they do, the new names a r e
inserted in the tag field.

2. Open Subroutines. Whenever an open subroutine reference i s encountered,
during the compilation of the arithmetic instructions, a CIT i s compiled

which i s mere ly a signal to the MERGE. This signal te l l s the MERGE
not merely that an open subroutine is necessary a t this point, but i t
a l so designates which open subroutine i s given information about where
the argument is to be found. The resu l t s of an open subroutine a r e 1 eft
in the accumulator, Encountering this signal CIT o r CIT's, the MERGE
i n se r t s the appropriate open subroutine. The designations re fer r ing to
input a rgumentsbnd output resu l t s , of course, per ta in to the problem of
ar i thmetic instruction linkage, With the compilation of these functions
the MERGE has produced a single file of instructions called the FIRST-
FILE.

MERGE I1 of Section I11 does not do an)- merging; i t produces a new file of in-
structions. The tables used in producing this TIFGO file of instruct ions a r e
the TIFGO and TRAD tables f rom Section I and TRALEV and TRASTO tables
f r o m Section 11.

The need for the TIFGO file of instructions a r i s e s in the following way. The
main body of computing and indexing instructions. included jn the COMPDO
f i le, are associated with the beginning and end of DO'S. That is, the internal
formula numbers of their CIT's have the internal formula numbers belonging
to the DO statements within the range of DO statements . The en t i re Section
I Imechan i sm i s se t up to do compiling of the beginning and end of DO indexing
instructions. Merge I1 only does the analysis necessary f o r the indexing in-
s t ruct ions, required within the range of the DO's but does not compile the in-
s t ruct ions. Instead i t p repares the two 'k3bles TRALEV and TRASTO, which
summar ize thi s information,

All of these types of indexing instructions a r i s e f rom the fact that t r a n s f e r s occur
within DO's , specifically t r ans fe r s going out of the range of a DO. In consider-
ing this problem, an ent i re DO nest , involving possibly many levebs of DO's a s *

well a s many DO'S on any given level , mus t be considered. consequently, a
t r ans fe r out of a DO within any DO nest may be a t ransfer ent i re ly outside the
nes t (that i s , to level zero) o r to another DO within the nes t (that is f rom level
1 to level n) , Specific TIFGO instructions a r e caused by the fact that some in-
dexing mus t occur before a t ransfer out of the DO i s made, provided that the
configuration of the DO within the nest , subscr ipt combinations within the nest ,
and the uses of the DO indicates that indexing instructions which m a y precede
any individual t ransfer . These six se t s account for six different types of TRASTO
entr ies . E i ther one o r a combination of these se t s may be required before any
t ransfer . The TRASTO tables a r e numbered: this means that the instructions
corresponding to each type of TRASTO entry mus t occur in the sequence indicated
by the number, In setting up the TRASTO table en t r i e s , Section I1 determines
the rhlevant facts with respect to both the location of the t r ans fe r instruction
itself and the t ransfer addres ses of any single source p rogram instruction. NO
Gctailed explanation will be given for the specific reason f o r each of the six types
of TRASTO entr ies .

The MERGE I1 analysis proceeds in this general manner. It uses the TIFGO
table a s i t s guide. In this connection, it must be remembered that the TRAD
table i s simply an extension of the TIFGO table. It simply supplements those
TIFGO entr ies ar is ing from computed GO TO and ASSIGN GO TO statements.
When i t comes ac ross a TIFGO entry i t checks to see i f i t i s a lso in the TRALEV
table. If i t i s not, there i s no further concern for possible TRASTO instruc-
tions and the direct t ransfer addresses a r e compiled into the relevant t ransfer
instruction. By direct, we mean here the number given:in k!le source program,
translated into i t s internal formula number. When the t ransfer o r TIFGO entry
is in TRALEV, t he re a r i s e s the further possibility of TRASTO ent r ies f o r any
of i t s addresses. The TRALEV table, i t must be remembered, l i s t s the levels
of each of the t ransfer addresses. Consequently, a search i s made through
the TRASTO tables, f i r s t for those entr ies indicated by the TRALEV entry.
If these conditions a r e met , then MERGE XI compiles the indexing ins tructions
corresponding to this t y p of TRASTO.

The most important subsidiary task performed by this par t of the MERGE i s the
putting together of the ASSIGN CONSTANT table. This comes about a s a by-
product of the scan of the TIFGO table, which contains the ASSIGN GO TO entr ies ,
The ASSIGN CONSTANT table appears subsequently as the 5) block, containing
the t ransfer instructions to each of the possible ASSIGN GO TO addresses .

With the completion of MERGE 11, a new file of instructions exis ts , containing
the computing and indexing instructions ar is ing f rom t ransfers within DO'S.
This is the TIFGO File which i s output a s the 8th file on tape BZ.

Control now passes to Merge 111 for the final Merge.

MERGE I11

The task of MERGE 111 i s comparatively simple. It simply does a direc t merge
on the FIRSTFILE and the TIFGO file. These two files a re brought together

, and written a s the f i r s t file on tape A4. Here too, the principles of the numeri-
cal collation apply. It might be noted that in some cases , MERGE I1 will simply
have supplied t ransfer addresses for instructions which were partially compil-
ed in Scc'tion I . That i s , the Section I instructions will be complete except for
addresses. In this case, the new instructions a r e brought .t:op,~-"~r*r ?-IJ '',J: 1 ng"
one over the other.

A subsidiary task h e r e i s the insertion of the instructions necessary to branch
to the subroutines for the computation of relative constant.

All that remains for the MERGE to do i s follow the main file of instructions
with the two secondary fi les of instructions compiled by Section I and Section
11. These a r e the arithmptic statement function instructions and the A) sub-
routines, respectively. Updating of the ASSIGN CONSTANT, a d FIXCON tables
was required in Section 111. These tables a r e now complete and a r e written a s
the eighth and ninth f i les on tape B2.

These are written a s the second file on tape A4.

At the end of the MERGE all instructions re su'lting from an ahalyrri~ of
touring the source program are complete, except for the existence of
symbolic tags, rather than at the absolute tags. This provides the main
task of Sections I V and V.

FIGURE I1

SP
FLOW IN SECTION Ill

CbR(i'l' CbCL (PILE I)

MERGE 11

MERGE III FIRST P ~ L E + TIPGO (FILS I)
CLOSED SUBROUTlNEe

1 (

TO SECT. IV

(FIG. 82)

PREPARATORY NOTES FOR SECTIONS IV AND V

It was mentioned in the Introduction that the For t r an program fell into two
divisions; the f i r s t , comprised by Section I, I1 and 111; and the second by
Sections IV, V and VI. At the end of Section I11 the program is essentially
compiled. It i s , in fact,, compiled except that i t exists in the CIT format
and the program assumes an object machine with a s many index reg i s t e r s
a s symbolic tags, Since, however, the machine will have three index re -
g is te rs , i t i s necessary to substitute assignments of these three fo r the in-
definitely high number of symbolic tags, The object he re will be to mini-
mize the number of LXD's and SXDis - - load and save instructions = - re-
quired by this fact. By "numberu here , we mean not only the number of
separate physical instructions, but a lso the number of executions of them.
That is, optimization with respect to time takes precedence over optimi-
zation with respect to space. For example, if a tag i s used in a very high
frequency, par t of the program (such a s the inner DO of a DO-next three
levels deep), and a branch t ransfer i s made to four different a r e a s , each
of which requi res saving of the tag before i t i s reused, a single save in-
struction before t ransferr ing out of the high frequency a r e a i s logically
sufficient. However, our method i s to place four separate save instruc-
tions a t the point of entry to each of the fbur branch points, thus eliminat-
ing the instruction from the path which would require most frequent execu-
t ions of it.

This case also serves to i l lustrate some of the problems confornting Section
IV and V - - the two sections whose concern this tafsk i.6, It shows that there
i s a linkage, with respect to index regis te rs , of different pa r t s of the pro-
g ram and that details of the linkage must be known for efficient insertion of
load and save instrucfions. F o r exampid, in the above case , the SXD will not
be used on any of the four paths where i t i s not required. Furh te rmore , a
comprehensive knowledge of a reas and their expected frequencies of qbject
t ime flow i s necessary. As a corollary to these problems, there is the one
of avoiding the SXD instruction for a tag which i s no longer to be used. That
i s , the tag can be efficiently killed by over-loading i t in i t s index regis te r
when the next use of the tag in i t requires a load instruction. If the l a s t r e -
ference to this tag i s one that changed i t s value, i t must be saved; i f the l a s t
references did not change i t s value but mere ly used i t s ea r l i e r established
value, i t i s n ~ t n e c e s s a r y to save. Here , a distinction between active and
passive references to tags i s necessary.

This ent i re complex of problems comprise the task of Sections IV and V.
The work required of these sections falls naturally into two divisions,
allowing the division of labor between them. Sections IV informs Section
V of the divisions of the object program for purposes of flow analysis and the
relative frequency of paths of flow over these diviGions. I ts task is much
the l e s s e r of the two sections. Section V then,uses this information along
with a knowledge of the specific tags required by each of the "divisions" to
as sign absolute index reg i s t e r s and compile necessary indexing instructions,

Before giving the general discussion of the work of these two sections, i t i s
well to note how this work was presupposed in the handling of symbo1.i~ index
regis ters by the ear l ie r sectione of Fortran. Essenti i l ly , this can be stated
very simply: the ear l ie r sections simply i g n o ~ e d the problem and acted a s
i f a s many index regis ters a s were needed were available. That i s , load in-
structions m a y appear in sequence up to any number. The assumption i s the

necessary to make the "loads" effective will be added later. The im-
portant thing to note he re i s that SXD's and LXD's a r e not always coupled a s
the previous discussion might imply. There i s an asymetry between them;
the ear l ie r eections have complete freedom with respect o LXD's, but very
rare ly compiling an SXD. On the object program level this difference i s r e -
flected in the cel ls which the SXD's and LXD's address , Section 11 instruc-
tions for example, mostly refer to the subscript symbol celle in the regular
data a r e a of core storage. On the other hand, section V's instructions always
r e f e r to the specially designated eraseable a r e a for storage of index registers .
These eraseable storage cel ls a r e refer red to a s the C) celle. The actual
designation is C)i , where i is. an increment resulting from the conversion of
the symbolic tag name. By means of this device there i s co-ordination
between Section V references to such tag storage cel ls and whatever section
I1 reference0 a r e necessary.

La./ SECTION IV 2. 01, 07

Section IV has for i t s main task che assembling of four different tables. Theee
a r e the BBB table, the P redeces so r , the Successor table, and the Tag Liar
table , The p r imary input to section IV i s the single file of merged CIT ' s ;
section IV a l so u se s other tables c rea ted ea r l i e r , The BBB table is a l i s t
of the Bas ic Blocks of the object p rogram, plus indices re fe r r ing to each
Baeic Block 's Successors and P redeces so r s , A Basic Block is a s t r e t ch
of p rogram into which t he r e i s only one entrance and f r o m which t he r e is
one exit , "Exit" mus t h e r e be in terpreted in the logical sense ; that is; i t
may consis t of m o r e than one t rans fe r instruction, going to a var ie ty of
Bas ic Blocks. Each of these Basic Blocks, then, i s a Successor Bas ic
Block. As implied by th is , section 1V must m a r k off the Bas ic Blocks of
the p rog ram and de te rmine the Successor and P redeces so r Bas ic Blocks for
any one Basic Block. A BBB entry corresponds to each Bas ic Block ; , i t has
r e f e r ences to the P redeces so r and Successor tables denoting i t s P r e d e c e s s o r
and Successor Basic Blocks, But section IV work goes beyond this , It
must provide the information to section V concerning frequency of paths of
flow. There fore , the fo rm of the P redeces so r and Successor table en t r i e s
which section IV pa s se s on to section V will contain, in addition to the Bas i c
Block re fe rence number , a number denoting re la t ive frequency of t ransi t ion
between the two Basic Blocks. He re , the two Ba sic Blocks r e f e r to the BBB
Bas ic Block and the Basic Block o r Blocks of the P r e d e c e s s o r and Successor
table tha t i t des ignates . In o r d e r to achieve these re la t ive frequency numbere ,
section IV per forms a simulated flow over the p rog ram going f r o m Bas ic
Block to Bas ic Block,

The ma jo r problem he re i s in determining which Successor Bas i c Block to go
to when, a s a resu l t of conditional t r ans f e r , a possibil i ty of m o r e than one
Succcssor Ba s ic Block exis ts . At thjs point a I'Monte Carlo" technique i s used.
A random number i s generated and, in accordance with the numer i c poss ibi l i t ies
of success ion indicated by the frequence staterrent en t r i e s fo r that conditional
t r ans f e r , a par t i cu la r Successor Bas ic Block i s chosen, The random number is meant
to a s s u r e that over the long run of the en t i re simulated flow, the poss ible Suc-
c n s s o r s will be chosen in the proportions indicated by the Frequency en t r ies .
Where no frequency entry i s made by the source p r o g r a m m e r , the assumption
is that of equal probability for a l l paths of succession.

Some of the special problems encountered during the performing of th is
simulated flow a r e those given by conditional t r a n s f e r s where the condi t ims
a r e s e t d i rect ly in the source p rog ram (such a s ASSIGN GO TO'S and SenOe
Light Tes t s) and DO'S involving var iable p a r a m e t e r s , F o r both of these ad-
ditional in termedi ta te tahles a r e necessa ry . In the c a s e of DO-nests , t h r e e
genera l c i rcumstances , involving flow analysis p robe lms , m a y occur. One
i s a 0 0 - n e s t whose DO'S a l l have constant p a r a m e t e r s and contain no t r ans -
fers , another i s constant p a r a m e t e r s with t r a n s f e r s , and the t h i rd is a DO-
nes t a t l e a s t one of whose DO'S have var iab le pa rame te r s . F o r the l a s t

mentioned circumstance, ei ther the frequency entry fo r the DO mus t be used
o r bar r ing that, a frequency of five i s chosen for the number of t imes of repe-
tition of the DO range.

F o r purposes of the simulated flow, a la rge number i s chosen, which is a func-
tion of the number of Basic Blocks and distinct t r ans fe r b ranches occur r ing in
the problem. F o r every transit ion between a Bas ic Block and i t s Successor
tha t i s made during that simulation, th i s number i s ticked off by one. The
flow ends when this number equals zero.

It should be pointed out, finally that th is simulated flow h a s nothing whatever
to do with the individuals instructions of the problem. It i s concerned only
wi th Bas ic Blocks a s units and not with the contents of a Bas ic Block, As
f a r a s section IV i s concerned a Basic Block may actually contain one hun-
dred inst ruct ions o r two instructions, and these inst ruct ions may contain many
tags o r no tags: section I1 t reatment of i t i s the same. It may a l so be men- .

tioned h e r e that the divisi-dn into Basic Blocks i s based on an examination of
the compiled instructions. ~ f l c o u r s e , the recognition of t r a h s f e r s - - beginning
with the le t te r "TIt - - i s vital. F o r this reason, section I finds i t neces sa ry
to use pseudo-name s in the CIT1s of .some of its instruction. It does not wish
section IV to think that these end Basic Blocks when actually they do not.

After the flow analysis i s completed, section IV a s sembles the BBB, P r e -
d e c e s s o r , and Successor tables. These a r e a summary of the Bas i c Block
flow and relative frequency of this flow. The BBB ent r ies a l so contain a \
designation of the type of ending for each Bas ic Block; absolute t r ans fe r , p re -
se t t r a n s f e r , conditional t r ans fe r , and s o forth. The l a s t significant i t em
that each BBB entry contains i s an index to the Tag Lis t en t r i e s belonging
to it. The Tag Lis t table i s made up a t the end of section IV i t is a l i s t of a l l
symbolic tags contained in the C I T t s of the program together with a code
designating the type of instruction re fe r r ing to the tag. %he index to th i s
table that i s placed in the BBB entry, then te l l s which tags occur in each
Bas ic Block of the p rog ram and how they a r e used.

FLOW WITHIN SECTION IV

Section IV is logically broken down into th ree pa r t s called blocks.,

BLOCK I

The f i r s t t ask of Block I i s to divide the object p rog ram into bas ic blocks, a
bas ic block being a s t re tch of p rog ram with but one entry point, and one exit
point. In o rde r to do th i s the merged CIT ' s a r e r ead in f r o m tape A4 file one.
A p a s s i s then made over the C I T t s looking for t r ans fe r s , t e s t s and skip type
instructions. Absolute and conditional t r ans fe r add res ses , and the location
of ins t ruct ions following skip type instruction, o r TXL1s (end t e s t s of DO'S)
these a r e a l l entered in the BBLIST table once, i n a lgebra ic o r d e r , by means
of a binary sea rch technique.

During this pass , when a TXL i s encountered, both i t s location and address
are entered in the new table DOLIST, thus providing a l i s t of the beginning
and end locations of all DO's in end location order* The DOLIST table will
be used la te r in this block for analysis of the flow of the program.

The TIFGO, TRAD and FRET tables a r e read in f r o m the fifth file of tape
BZ. A new table TIFRD i s now formed f r o m the assign and assigned GO
TO ent r ies in the TIFGO table, together with the associated ent r ies in the
TIFGO table, together with the associated entr ies in the TRAD tables,
(TIFGO ent r ies a r e of fixed word length, and the TRAD table was therefore
c rea ted to accommodate a l l possible Assign GO TO and t ransfer addresses .)
At the same t ime, a l l the t ransfer addresses a r e entered in BBLIST table,
When all information i s extracted from TIFGO and TRAD and entered in the
TIFRD table, TIFGO and TRAD a r e of no more use to Section IV, The
BBLIST table now constitutes a l i s t of the beginnings of a l l basic blocks in
the program, in the order in which they occur. The basic block number
which is r e fe r red to in block 11, i s the relative address of the par t icular
bas ic block within the BBLIST table.

The FRET table that was read in f rom tape ear l ie r i s now examined, all
frequency ent r ies that correspond to DO statements a r e extracted and placed
in the new DOFRET table. This i s done in preparation for the simulated
flow that will follow. The remaining FRET entr ies a r e now moved up to
occupy the vacated positions.

The table DOLIST, created ear l ie r and ordered on the ends of the D o ' s ,
i s now sorted into the order of beginnings of DO'S. When these a r e equal,
the DO wit11 the la rges t remaining location takes precedence, The table
is now compared with BBLIST, and the internal formula number in DOLIST
a r e replaced by basic block numbers. The DOTAG table is now read f r o m
file 6 on tape B2 and scanned. Each t ime a DO i s encountered whi& has a
t r ans fe r in i t s range (a DO with an IF) an indicator i s se t in the appropriate
DOLIST table indicating this.

The loop count i s now computed for DO's with constant parameters . If any
of the pa ramete r s a r e variable the loop count is taken f rom the DOFRET
table providing the frequency was e:iven in the source program. If no
DOFRET entry exists for this DO's an a rb i t r a ry loop count of 5 is given.

This te rminates thetwork of block I, control now passes to block 11.

BLOCK I1

Tape A4 i s rewound and the complete CIT i s again read.

c- A second pass i s now made over CIT, producing the three principal tables
with which simulation is accompli shed, namely BBTABL, SET and TRATABLE.
There is one 1-word entry in BBTABL for each basic block in the program,

but there may be several SET and TRATBL entries corresponding to this
one BBTABL entry. At the beginning of each basic block, the nest available
location in SET and TRATBL a r e entered in the BBTBL, thus providing a
key to information which will be accumulated during the pass, for the basic
block.

The TRATBL table contalns for each basic block in the object program the
basic block numbers of it successor basic blocks (those to which a t ransfer
i s made), Associated with each of these successor basic block numbers is
a counter which during simulation will keep count of the number of t imes the
path between the predecessor and successor in question has been traversed.
The SET table contains information pertinent to the three types of setting that
must be done during simulation. The three types a re :

1. The setting of the assign GO TO addresses.

2. The setting of sense lights. (Dummy lights only a r e maintained during
the program simulation pass, in block 111, not actual machine lights).

3. The resetting of DO indexs for DO'S which have t ransfers out of their
range,

The remainder of the analysis during this block i s concerned with obtaining
information about basic block endings. If the instruction following the current
one begins a new block, (i ts location i s in BBLIST), then the current ins t ru t -
tion should end one. If the following instruction i s a skip type instruction or
a conditional t ransfer these also constitute basic block endings. It can be
seen then that a basic block can have several types of endings. These ehd-

' ings a r e coded and entered in the BBTABL which also contain the TRATBL
and SET addresses for the basic block.

BLOCK 111

The object program i s now simulated many t imes in order to obtain s tat is t ical
information concerning relative frequencies of flow paths taken. The number
of simulations i s equal to the total number of t ransfers in the program mul-
tiplied by 128, which means that the more complex theprogram, the grea ter
the number of simulations. The program i s stepped through basic block by
basic block, using the BBTABL a s a guide, starting with the f i r s t basic
block. No reference i s made to the actual compiled instructions.

A BBTABL entry i s selected, and corresponding SET table entr ies a r e obtained.
Settings a r e made according to these entries, that i s , the SET address , o r
setting, is stored in the location given. in the decrement. F o r instance, a
SET entry turning a sense light on would cause a 1 to be s tored in the dummy
sense light address. A Set entry to reset the loopcount to be atored in the
TRATBL of the DO. (This i s where the iteration8 a r e counted during the
simulation,)

Depending on how the basic block ends the proper successor basic block i a
chosen. This process continues until the simulation is over,

After the simulation has been dealt with, a process i s begun to adjust the
flow counts of basic blocks which lie within DO'S without IF%,

It may be recalled that during the simulation, these DO'S where not simula-
ted as were the DOs with IFs and therefore the flow counts of the basic
blocks within them have not used the loopcounte of the DO'S.

The third and final pass i s made over CIT to collect tag information f o r
Section V, and during this pass , two new tables a r e built. These a r e the
TAG table, and the BBTAG table. F o r each occurrence of a tagged in-
struction, a n entry i s made in the TAG table. This entry contains %e
symbolic tag name, together with a code which tel ls what kind of instruction
i t is used with.

Each t ime the beginning of a basic block i s encountered, a BBTAG entry is
made, containing the number of entr ies so f a r in TAG. The l a s t BBTAG
table entry i s a dummy and contains the total number of TAG entries.

The BBTBL table and BBTAG table a r e now combined to form the BBB
table which will be used in Section V.

The TAG table i s now written as the third file on tape B3. The BBLIST table
that was created in block I i s now written out a s the fourth file on tape B3.
The BBLIST table was not written sooner because it will be used af te r the
TAG Table in Section V, this saves t ime in moving -tape.

Control now passes to Section V.

C I T ~ B - FIRST r l L t +
Tlroo (FILE I)

FIGURE 12

SECTION V

Section V mus t now substitute references to tags 1, 2 and 4 for the symbolic
tags which occupy the address portion of word 4 of the CIT's. As a coro l la ry
to this, the loading and saving instructions would be inser ted for the appro-
pr ia te index reg is te rs . These will load f rom and save in the group of cel l8
designated as C) - cells. The information contained in the four tables
created for i t by section IV a r e sufficient to do this.

To pe r fo rm this main task, section V operations fall logically into two broad
divisions. These are Region Generation and LXD and SXD assignment.

Region Generation is the method of setting aside a portion of the p rogram, con-
si sting of one o r m o r e basic blocks, for independent t reatment with respect
to index reg is te r assignment. After a se t of basic blocks have been se t a-
side as a region and t reated, i t then, as a region, becomes a separa te unit
l iable to be incorporated in a new region along with other basic blocks. The
flow configuration of a problem determines when a region itself becomes p a r t
of another region. When i t does i t loses i t s identify for the new region i s an
independent and separate unit. Ultimately, of course , all regions and basi c
blocks become absorbed into a single region which is the ent i re program. At
this point the section V analysis i s complete. In re fer r ing to " t reatmentt t
above, we mean the LXD and SXD assignment.

There i s . then, an interweaving of the operations of the two main divisions of
section V, Region Generation and SXD and LXD assignment. (The second of
these divisions i s often r e fe r r ed to a s the LXing Pass.) The regions grow
recursively until the ent i re problem i s one ~ e g i o n . At any given t ime dur ing
this recurs ive t reatment , severa l regions may exist independently o r one
only may exist ,

The "treatment" of a region is based on another type of simulated flow
through it. This simulated flow affects the symbolic index r eg i s t e r usage
occurr ing in the region. In cel ls represent ing the th ree index r eg i s t e r s , the
symbolic tags a r e loaded, then cornparksons made with successive symbolic
tags, as these a r e revealed in TAG l i s t . When i t becomes neceussary to
save one of the three index r eg i s t e r s , a look ahead through Tag l i s t i s made
to determine which i t is preferable to save; that i s , which i s the last index
reg is te r used fur ther ahead in the program. It should be noted that the two
fundamental problems are invblved he re . One i s P mply the problem of
assignment of index r eg i s t e r s ; this involves the compilation of LXD's and
the choice of an index reg is te r . The other i s the problem determining when
to save an index reg is te r when the quantity i s subsequently going to be over-
writ ten by a load into that index register.

With respect to the second of these two problems, a tag must be saved to
init ialize the appropriate C) cel l for l a t e r loading, and to handle "activet '
index reg is te rs . "Activityl1 i s denoted by the type of re ference made to the

tag in the tag instruction. The TAG Lis t code re fer r ing to the tagged instruction
te l l s essentially whether that instruction i s active o r passive. An active

b instruction i s simply one that changes the value of an index reg is te r (such
as TXI o r LXD) and a passive instruction i s one that u ses the tag only (such
a s CLA). Where "activity" i s present and a subsequent load will over-wri te
the index reg is te r , an SXD i s inser ted following the l a s t u s e of the symbolic
tag. Activity has meaning applying beyond the context of the immediate region
in which i t i s discovered. It may subsequently be found that in succeeding
regions a new tag value i s required. Activity for regions, then, mus t be
carefully noted.

As a resu l t of this simulation within a region, the index r eg i s t e r s upon en t ry
into a region and upon exit f rom i t a r e assigned cer ta in symbolic tags. These
a r e noted in the BBB entry for the basic block a s i t s entrance and exit con-
ditions. When a region - - which, of course , has been previously t rea ted --
i s encountered, a match must be made of the exit conditions of the l a s t bas ic
block with the entrance conditions of the basic block by which that region is
entered. Where necessary , permutation of the index r eg i s t e r s within the
already t reated region takes place to force compliance. If a match cannot
be made, L X D ' s a r e called for a t the head of the region. These LXD's a r e
c alled inter-block LXD' s because they concern the linkage between regions
a s distinct f rom basic blocks. There a r e a lso inter-block SXD's, These
resu l t f rom activity within a region already treated. The SXD i s placed a t
the head of the region using the active tag. In this way, incidentally, the
deployment of save instructions among different low frequencies paths
ra ther than the single save instruction with the high frequency path occurs.

Continuing to work in this way, f rom region to region, the high frequency
paths of flow naturally receive priority in the assignment of index reg is te rs .
The SXD's and LXD's a r e inser ted enforcing conformity of the low frequency
pathe with the already assigned high frequency paths.

During this ent i re analysis , Section V records within tables the information
needed to make the actual compilation and inser t ions of the LXD and SXD
instructions. The compilation itself occurs later. A new table, the STAG
table, is created for recording these instructions a s needed within a region.
The necessity for inter-block instructions i s recorded in the P redecesso r
table.

The inter-block instructions, because they a r e a t the head of a region, mus t
take their own location symbols so that t r ans fe r s may occur to the block.
These location symbols a re : D), when the instruction i s an LXD, and E), when
it is an SXD. A TRA instruction may have to be added to bypass these instruc-
tions when entry to the block occurs f rom the par t of the p rogram immediately
preceding it.

--- Section V, a l so because it makes a pas s over the ent i re program, performs

Li cer ta in smal l optimizing operations or1 the .somplled program.

FLOW WITHIN PART I (- 3
./

Section V uses the information about basic blocks (which has been passed
on from Section IV) to combine these basic blocks into l a rge r groups called
regions. The flow within a region i s simulated in order to determine which
symbolic tags are required and which index regis ters should be assigned to
them. . During the course of simulation, flags a r e se t to indicate where an
SXD o r LXD ie required. When a region has been treated i t 'may be combined
with other regions. Eventually all basic blocks will have been combined
into a single region, and the complete object program will have been treated.

The most frequent paths of flow between basic blocks a r e handled first .
Since an SXD o r LXD i s not inserted until necessary, this resul ts in
the most frequent paths having the least of them, and therefore a fas ter ob-
ject program.

The f i r s t step of this treatment i s the formation of the Looplist table showing
the path of flow through a new region. The starting point in Looplist forma-
tion i s the most frequent link between basic blocks which has not yet been
considered. (The PRED and SUCG tables have frequency counts which are
examined to find inoat frequent predecessor o r successor basic blocks. When
a link has been treated, the entry which re fe r s to i t i s marked with a minus
sign so i t will not be considered again.) Looplist is expanded by including as
many of the most frequent unconsidered predecessors as possible and then
as many of the most frequent Successors a s possible. If the most frequent
link i s to a basic block which i s in a region previously treated, this whole
region i e included in the Looplist. Thus a Looplist may consist of a corn?
bination of untreated basic block and regions (or basic blocks which have
already been treated).

Regions a r e classified as either opaque o r transparent. An opaque region
i e one in which a l l three index regis ters are used. A t ransparent region
has one o r more index regis ters sti l l available. When an opaque region i s
encountered while forming Looplist, no more links a r e added to it. HOW-
ever, a transparent region may stil l be added to, since there a r e index re -
giaters available within it to which tags can be assigned.

The Looplist table consists of one word entries for each basic block o r re -
gion. A code in the prefix of the word indicates whether i t r e fe r s to a basic
block, a transparent region, or an opaque region. If the entry i s a basic
block i t contains the BB number, and i f the entry is a region it contains the
numbers of the Sceic blocks a t the entry and exit points of the region. The
end of Looplist is indicated by a word of all sevens.

F r o m the starting point in Looplist, the most frequent predecessors are

CD
added one at a time until one of the following conditions have been encounter-
ed. If an entry is already in the current Looplist, this makes Looplist a
loop and prohibits further building. If an entry is an opaque region o r if there

a r e no unconsidered predecessors , then additions a r e made a t the other end,
and the most frequent successors a r e looked for. Again the same conditions
apply. Basic blocks o r regions a r e added until a loop o r an opaque region is
encountered, o r there a r e no unconsidered successors to the l a s t entry. When
a Looplist has been completed, i t will reflect the flow in a section of the object
program. It may have a loop, reflecting a loop in the object program. In
such a case , i f there is an end of Looplist not included in the loop, that sec-
tion i s eliminated from Looplist. Only the loop itself will remain in Looplist
for fur ther treatment in this Looplist. On the other hand, the Looplist may
be a string with no loops, having been stopped in both directions by encoun-
tering an opaque region o r by finding no unconsidered l inks to it.

After the Loopliat has been formed, the path of flow indicated is ready f o r
treatment. Then next stop i s to prepare for simulation which is done in the
2nd LXing pass. If the Looplist i s a string, then the only preparation necess-
ary is to m a r k the initial conditions of the IRs. If the Loopliet is a loop,
however, the 1st LXing pass i s entered.

The index reg is te rs used by the object program a r e simulated in Section V
by three storage locations which a r e continually updated. These cel ls a r e re-
ferred to a s IR s. During simulation they will contain the symbolic tags
needed by the corresponding par t of the object program.

The 1st LXing pass s imuhtes the loop in order to find out the condition of the
IRs when the 2nd LXing pass i s begun, Each basi c block in the Looplist is
examined to see which tags a r e necessary, This i s done by refer r ing to
TAGLIST (which was read in f rom tape B3 file three and contains a l i s t of a l l
tagged instructions in the object program). Tags a r e placed in the IR cel ls
as required. When a region i s met in Looplist, the previously determined
exit conditions f rom the ~ g i o n a r e placed in the IRs. After the whole looplist
has been done the IR cells contain the initial conditions for the 2nd LXing pass.

Simulation in the 2nd LXing pass i s much m o r e complex than the t reatment
of the 1st LXing pass. Ent r ies a r e made in tables when a tag must be load-
ed into o r displaced from an IR, STAG i s used to record LXs and S X s within
a basic block, and P R E D i s used for those between BBs. When a tag is dis-
placed, i t s value i s saved i f necessary in a cell se t aside for that purpose.
These tag cel ls a r e thus kept up to date s o that the next t ime a tag not-already
in an IR i s required, an LX fromthe corresponding cell will be correct .

In order to determine when an SX i s necessary, the concept of activity is used.
When the initial value of a symbolic t ag i s set , o r when that value i s changed
by an indexing instruction such as TXI, the IR becomes active. This mean8
that the value in the storage cell corresponding to that tag i s outdated. This
fact i s recorded in cel ls r e fe r red to a s AC 1, 2 and 3, one for each IR. If
t h i s tag must be displaced while treating the same Looplist, an SX will be in-
troduced immediately a f te r the active instruction, thus updating the tag cel l
and ending the activity. But i f the tag has not been displaced from the IR
after the treatmhntlof th'e Loopliat, the section of Looplist is marked active

f r om the point of the active instruction. Th is is done by placing activi ty b i t s
in the BBB entry for each BB in that section of Looplist. When flow goes
through such a BB in a subsequent Looplist, the activity wil l be noted, and
if a future SX is necessa ry i t wi l l be placed in the link f r o m the region con-
taining the BB,

A tagged ~ns t ruc t . \on that; does not change the value of the tag, does not r equ i r e
this t rea tment , Such an instruction i e cal led passive. A pass ive ins t ruct ion,
such a s CLA o r TXL, only makes i t n ece s sa ry to have the appropr ia te tag in
an IR. When a t ag i s required that i s not a l ready in an IR, an L X f r o m the .

appropr ia te tag cel l i s called for . Because of the way activi ty is handledat the
tag ce l l s m a y always be considered up to date. A l l tha t is n e c e s s a r y i e a
determination of the mos t des i rab le IR to use, If they a l l contain t ags , th is
i e done by searching ahead to find out which of the t ags p resen t ly in the IRs
wi l l be needed last .

T r e a t m e n t in the 2nd LXing p a s s begins with the f i r s t e n t r y i n LPLST and
proceeds in sequence t o the last . The t h e e types of en t r i es , 1) BBs, 2)
t ransparen t regions, and 3) opaque regions, are dist inguished by a code n u m b e r
and each i s t rea ted different1.y.

If t he r e a r e a t i l l act ive IRIS remaining, just a a the 1 s t LXing p a s s was requ i red , 1
another pa s s , the act ive pa s s , is executeki. LPLST en t r i e s a r e examined and a

t rea ted again i n a manner s im i l a r to that of the.2nd LXing pas s , with SXs ca l l ed
for where necessa ry . After each LPLST en t ry h a s been deal t with, a t e s t
is m a d e to s ee i f t he re i s s t i l l an active IR. Eventually they wil l have all been
taken c a r e of and the active pass finished.

It only r e m a i n s to tjring the appropr ia te tables up to date, The PRED and
,SUCC en t r i e s that have been t rea ted a r e flagged negative. BBB h a s the new
region r e f e r ences entered, And f i na l . 1~ the region table i s updated by wiping
out obso le te en t r i e s (regions absorbed into the new one) and making the en t ry
fo r the new region,

P a r t 1 r epea t s the cycle of 1.oopliet format ion and t rea tment , with new, l a r g e
regions absorbing old ones , until a l l l inks between ba s i c blocks have been
t rea ted and the object p rog ram cons i s t s of a single, all encompassing region.

FLOW WITHIN PART I1

In p a r t I, tags w e r e continually reass igned to index r e g i s t e r s on the b a s i s of
the optimal match that could be achieved. This reass ignment W a s done by
changing the permutat ion number s i n the 2nd word of the BBB table. Part 2
m a k e s the actual changes in the appropr ia te t ab les on the b a s i s of the f ina l p e r -
mutation numbers . It a.lso combines BBLIST (r ead i n f r o m tape B3 f i l e four),
with BBB for convenience l a t e r on.

E a c h bas ic block i s -examined in sequence. The loqation word of CIT for the

f i r s t ins t ruct ion in each BB (which h a s been put in BBLIST by Section I V i s
placed in word 6 of BBB. Then the L X and SX b i t s in the PRED e n t r i e s a r e
changed according to the permutat ion numbers . Next, the STAG e n t r i e s a r e
s imi la r ly updated. Then, fo r each BB which ends with a n Assigned GO TO,
the BB number of the l a s t ass igned GO TO i s s to red in word 2 of BBB. This
i s done in o r d e r that p a r t 3 may find all GO T O N BBs eas i ly . F inal ly , the
ent rance and exit conditions i n words 3, 4 and 5 of BBB a r e r e e n t e r e d in a c -
cordance with the permutat ion numbers ,

FLOW WITHIN PART 111

Section Vmay i n s e r t SXDs and LXDe a t points in the object p r o g r a m which are
t r a n e f e r r e d to by a n Assigned GO TO, It m a y t h e r e f o r e happen that the trane-
fer should no longer go to i t ' s original a d d r e s s , but to one of the SX's or LX'..
P a r t 3 handles th i s by making the n e c e s s a r y changes in the a s s i g n conetante.

The Assign Constants a r e r e a d in f r o m tape B2 file eight. The B a s i c Block8
a r e examincd one a t a tina to de te rmine which ends with a n Assigned GO TO,
F o r each one tha t does the appropr ia te PRED en t ry i s found, F r o m the SX
and L X b i t s in P R E D , the c o r r e c t t r a n s f e r a d d r e s s i s then p repared . The
a s s i g n constants a r e then compared to the f i r s t ins t ruct ion of e a c h e u c c e s s o r
BB, and when a match i s found the Assign i s replaced by the new symbol. The
SX b i t s a r e a l s o s to red in the pref ix of word 2 in BBB f o r u s e i n Block IV.
Whon a l l the Assigned GO T O B B ' s have been found and t r e a t e d , the a l t e r e d
Assigning Constants a r e wri t ten back on tape BZ a s f i le ten f o r u s e by Section
VI.

FLOW WITHIN PART IV

P a r t 4 does the ac tual compilat ion of ins t ruct ions on the b a s i s of the informat ion
passed on by the previous p a r t s of Section V. The bi t s in PRED indica te when
in ter -b lock SX and L X ins t ruct ions a r e required . STAG h a s the n e c e s s a r y in-
format ion about when to compile an L X o r SX immedia te ly p receed ing o r follow-
ing a tagged ins t ruct ion. in CIT. The r e a l index r e g i e t e r a s s i g n m e n t for each
tag i s a l s o indicated by b i t s in STAG. Part 4 follows t h e s e d i rec t ions while
compil ing. In addition, some minor optimizing is done.

A p a s s over CIT i s m a d e , and the method used to b r ing in blocks o f . ins t ruc t ions
and scan them for tagged ins t ruct ions and endings of B B s i s s i m i l a r t o tha t used
by Section IV. T h i s i s the only t ime that Section V looks at the CIT. The in-
s t ruc t ions a r e brought in f r o m tape A4 and examined in g roups , and when the
n e c e s s a r y modificat ions have been m a d e , they a r e rewr i t t en on t a p e B3 for
Section VI.

F i r s t , p a r t 4 c o n s i d e r s a b a s i c block a s a whole. By r e f e r r i n g to the BBB and
PRED e n t r i e s for the BB, a l i s t of the n e c e s s a r y LXs in the l inks t o the BB is
formed, Then a l i s t of the n e c e s s a r y SXs in the l ink i s fo rmed , When the
SX l i s t s a r e compiled for the var ioua P R E D s , i t m a y happen that two or more of
t h e s e a r e the s a m e . The symbol ic locat ions of these SX lists wi l l be d i f fe ren t
however , because of the n y m b e r of the PRED en t ry is contained i n the locat ion
symbol. A SYN pseudo ins t ruct ion is compiled in th i s case .

A "sequential t r ans fe r t ' , which i s one f rom the l a s t instruction in the previous
BB to the f i r s t instruction in this BB, i s compiled i f necessary . The t r ans -
f e r may be around one o r m o r e l i s t s of LXs and SXs associated with other
PREDs for this BB, On the other hand, the t r ans fe r m a y be deleted i f no
instructions had to be inserted between the BBs.

After the inter-block SXs and LXs have been taken c a r e of for each BB, all
the instructions wi thin the BB a r e handled. All CIT en t r i e s without t ags a r e ,
of course , kept. A CIT entry which al ready has a r ea l tag of 4 i s checked to ,

see if i t i s a n SXD o r LXD, which has been placed around a subroutine calling
sequence. If such i s the case and i f IR4 is not neces sa ry fo r Section V ass ign-
ment of a symbolic tag a t th is point, the SXD o r LXD will be deleted. The SXD
location will be compiled a s a BSS 0 since i t m a y be r e f e r r e d t o elsewhele in
the program. When a n LXD af ter a subroutine\ calling sequence cannot be de-
le ted because IR4 is necessary , if the following instruction i s a s i m i l a r SXD,
both a r e deleted, As a resu l t , a s e r i e s of TSX instructions will have the un- ,

necessa ry SXDs and LXDs removed,

When an instruction with a symbolic tag i s encountered in CIT, the STAG ent ry
re fe r r ing to i t i s examined. If STAG requests i t , in L X f r o m the tag ce l l wi l l .
now be compiled. Then the instruction itself i s compiled and next an SX to the
tag cell i f s o indicated, Each of these instructions will have had the r e a l tag
assigned a lso on the bas i s of the STAG entry. The LXP pseudo inst ruct ion is
deleted when i t occurs , a s i s a DED. These instructions w e r e put in a s s igna ls
to p a r t 1 and a r e no longer required.

After an instruction h a s gone through the foregoing t rea tment , it is checked to
see if this i s the end d the BB If i t i s not, the next CIT entry i s examined and
t reated. When the ending i s found, any t ransfer add res ses a r e examined to s e e
i f the t r ans fe r i s to a BB with SXs o r L X s in the P R E D link. If i t is, the a d d r e s s
i s changed to the location of the proper SX o r LX. Any sequential t r a n s f e r s H
a r e not compiled a t th i s t ime , however. An indicator is s tored i f t he re is one,
and the deletion o r inser t ion of this t ransfer i s left up to the ana lys i s of the PRED
link when the next BB i s t reated, The case of an Assigned GO TO ending is
t rea ted differently. The SX bi ts placed in word 2 of BBB by p a r t 3 a r e examine d
and SXs compiled where l lecessary, Then the t r ans fe r to N is compiled.
When a l l the instructions in the BB have been t rea ted and the ending taken c a r e
of, the next BB is dealt with a s before, The p roces s continues until the end
of CIT i s reached.. Finally the relative constant routines a r e copies a t the
end of CIT i s reached. Finally the relative constant routine s a r e copies at the
end of CIT and control p a s s e s to the Section V'.

SECTION V' 2, 01.09

The purpose of Section V ' i s to add to the CIT file all constants and source
program data appearing in the symbolic listing, except for the B) and 9)
constants, f o r use in Section VI.

At the end of Section V the CIT file contains the entire working program,
the arithmetic statement function definition subroutinee, and the relative
conatant computation subroutines A). Available to Section V' are tables
on tape B2, containing the assign constants 5), fixed point constante 2),
floating point constants 3) , format BCD words 8).

Assign constants a r e in the ASSIGN table, one record of file ten, on tape
132.

Fixed point constants a r e in the FIXCON table. one record of file nine. on
tape B2.

Floating point constants a r e in the FLOCON table, record one of file four,
on tape B2.

Format BCD word a r e in the FORMAT table, record two of file four, on
tape BZ.

Universal constants 6), a r e compiled for all programe, as certain subroutinee
assume that they be present.

To initialize V', the las t CIT record previously compiled is read f rom tape
BZ. To this record, and to additional records a s they become full, a r e add-
ed the four word CIT for each word in each of th tablee, The records a r e
written out on.tape B2 a s they become full (100 words per record).

When all constants have been compiled, the partially filled final CIT r e c o r d , i f
any, i s written off on tape B3, an end of file is added to m a r k the end of the
CIT file. Control now passes 'to Section Pre VI.

FLOW 1N SECTION V
CROM =EoT '" (Flab , I t)

I

LAST RECORD (F I L E I)

A a S l Q N (F I L E l o)
FIXCON (FILE 9)
FLOCON (F I L E 4)
FORMAT (F I L E 4)

PART I V F-l

t
TO SECT. PRE V I (FIG,

ASSEMBLED TABLES AFTER
EXl8T lNQ clTt 8 (V I L E I)

SECTION VI 2. 01. 10

Since the object program i s symbolically complete, a l l tha t remain s i s to
assemble the compiled instructions, producing a relocatable binary program
ready for loading and running, and a listing of cer tain information concerning
the program being compiled. Section VI i s pr imar i ly an a s semble r , differing
l i t t le f rom any standard assembler . It builds a table of symbol names and re-
locatable locations, t ranslates BCD operation codes to binary instructions,
replaces symbolic locationswith relocatable locations, and a s clembles the
binary operation code, decrement, tag, and address into one word which
shall occupy one location in memory during object time. In addition, options
a r e available to include in the binary deck l ib ra ry subroutire s for use a t ob-
ject t ime; to punch on line a row-binary deck, preceded by the BSS loader i f a
main program; to punch on line a column-binary deck; to produce a third file
of SAP-like symbolic listing of the compiled program; to produce a binary .

symbol table.

FLOW IN SECTION VI

Record 34

Record 34 (also called P r e VI) completes the CIT file. I t uses information in
the CLOSUB, SUBDEF, and HOLARG tables, and scans during pref i r s t pass
the entire CIT file on tape B3 for those instructions referr ing to arguments
which require initialization. It wri tes the t ransfer vector, and i f a subpro-
g ram, prolog, and initialization on tape A4; copies during presecond pass the
CIT file from tape B3 to tape A4 changing cer tain pseudo op codes used internally
in FORTRAN to machine op-codes; and adds to the end of the CIT file Hollerith
arguments, and initialization addend con stants. It a l so reads into memory tab1 ee
required by section VI.

Included in this record i s a common binary search routine which remains in
memory for use by subsequent parts. The maximum table length which can
be searched by this routine i s 16383 words, which is the effective l imit to
the length of any table which must be searched.

Record 35

Record 35 builds that portion of the dictionary which is defined by COMMON,
DIMENSION, EQUIVALENCE;, CALL, SUBROUTINE, and FUNCTION state-
ments , and any statement referr ing to a l ibrary subprogram, such as PRIM:
o r X - SQRTF(B). The names of var iables , dummy variables (arguments), '

o r subroutine o r subprogram entry points a r e entered into the DEV table,
while the relocatable address assigned to each is entered into the associated
DEA table,

F i r s t processed a r e variable names appearing both in COMMON and EQUIVALENCE
statements. A variable nar,->: is selected f rom EQUIT table. I t is compared
with the names appearing in the COMMON table. If i t appears in both, the en-
t i r e sentence in the EQUIT table in which this variable appears is assigned to
upper memory.

An equivalence sentence, assembled by Section 1', contains a l l var iable names ,
the relative locations of which have been fixed by EQUIVALENCE statements.
The sentence contains no redundancies o r inconsistancies, The sentence is
made up of two-word en t r ies , the BCD variable name, and the re la t ive loca-9
tion (subscr ipt) to each other. The end of each sentence is marked by a flag
(negative sign) in the final subscript ,

The equivalence sentence i s scanned for the grea tes t subscr ipt , The c u r r e n t
value of the location counter, initially a t -207 in the 709, i s reduced by the
grea tes t subscript . This i s the base f rom which the loca t ionass igned t o e a c h
of the var iable names i s computed. The equivalence sentence i s scanned again
for any var iab les which a r e names of a r r ays . It a var iable appears in the SIZ
table, the overhang of the a r r a y length over the base location (a r r a y length -
subscr ipt) i s computed, and the maximum of these i s found. The equivalence
sentence i s scanned again. Each subscr ipt i s added to the base add res s , in
effect creating an a r r a y s tored backwards in memory , and the var iable o r
a r r a y name i s entered into DEV with i t s corresponding location in DEA, flagged
minus. The a r r a y name with the greates t subscr ipt will be ass igned the value
of the location counter before i t w a s reduced, in effect locating the mos t precem-
dent a r r a y name in the f i r s t available memory location. The value of the location
counter i s then r e serving memory for the overlapping a r r a y extending fa r thes t
into memory , and reserving for the next var iable name the next lower cell.

Suppose the re a r e common symbols E , D, X, which a r e re la ted by EQUIVA-
LENCE (E (5) , D(2) , X) , and the E and D occur in dimension s ta tements giving
the i r total s ize a s E(6) and D(S), X being a non- subscripted variable. The first
var iable to be defined i s the one with the l a rges t e lement number i n the equiva-
lence group, E in this case , and the 1st element of E is given theh ighes t f r e e
location, i. e. , , LCTR. D and X a r e immediately defined by their equioalence
relationship with E: .

or

and

It mus t a l so be determined how much space these var iables occupy. Since
the a r r a y E has 6 e lements , thelast of these would be in LCTR- 5, and
s imi la r ly D has 5 e lements , the l a s t of which would be in LCTR-7. Clear ly
then, the f i r s t f r e e location is the one following a r r a y D, namely LCTR-3,
which then becomes the new LCTR for the next s e t of assignments. This
maximum overhang would be (5 -2) . 3 , the base a d d r e s s LCTR-5 being so
reduced to determine the cell LCTR- 8,

After a l l equivalence sentences in common have been assigned, storage is
assigned for a l l other variables appearing in COMMON statements. The
COMMON table, assembled by Section I i s made up of one-word entr ies , the
BCD name of a variable appearing in a COMMON statement. Each variable
name i s checked against DEV to determine i f i t had appeared in an equiva-
lence sentence. If i t i s not so redundant, i t i s entered into DEV with the
contents of the location counter a s the corresponding la ation in DEA. The
SIZ table i s checked to determine i f this i s an a r r a y name, and the value of
the location counter i s reduced by the length of this a r r a y ; o r i f not an a r ray ,
by 1. Every variable i s assumed to be an a r r a y with a length of at leas t 1.
This , in effect, c rea tes the a r r a y stored backwards i n memory, reserving
for the next variable name the next lower cell.

When a l l of common has been assigned, the current value of the location
counter, the cell next below the l a s t cell in c o m m ~ n , i s entered into the pro-
gram card 8R address (common break).

Next to be p r o c e s s e l a r e equivalence sentences n b assigned to upper storage.
The f i r s t symbol of each equivalence sentence i s checked against DEV to deter-
mine i f any symbol in this sentence had appeared in a COMMON statement. If
i t is not so redundant, the entire sentence i s assigned s torage locations, identi-
cally a s described above, again flagged minus in DEA. The array name with
the greatest subscript in the f i r s t equivalence sentence will be assigned the lo-
cation stored in the common break, the cell next below the last cell in common.
This, and al l subsequent storage assignments la te r will be relocated down-
wards in memory.

Next to be processed i s the SUBDEF table. If this program i e a FORTRAN
eubprogram, defined by a SUBROUTINE or FUNCTION statement, the name
of the program and the argument l i s t a r e assembled into the SUBDEF table
by Section I. Each entry i s a one-word BCD name of a dummy variable used
a s an argument. Each argument name i s compared with the subprogram
name. If it i s multiply defined, a diagnostic message results. Entry i s
made into DEV to prevent assignment of a storage location for this dummy
variable i f i t appears in a DIMENSION statement not in common, o r a s the
symbolic addres word 3) of a CIT. The corresponding address in DEA is the
flag 77777. If this dummy name i s already in DEV, i t has appeared in a
EQUIVALENCE statement and a diagnostic message results. If the flag in
DEA i s not minus, the dummy name appeared in a COMMON statement. This
i s permissible, and storage i s reserved, but the DEA entry is al tered to that
dummy variable will not appear on the COMMON storage map.

The SIZ table, assembled by Section I t , i s made up of two word ent r ies , the
BCD name of the a r r a y , and the length of the array (the product of i t s dimen-
sions a s stated in a DIMENSION statement). Each a r r a y name in the SIZ
table i s checked against the DEV table to determine i f i t has appeared in a
COMMON o r EQUIVALENCE sentence o r i s a dummy variable name of an argu-
ment. If i t is not so redundant, i t i s entered into DEV with the cur rent contents

of the location counter as the corresponding location in DEA. The value of
the location counter is reduced by the length of this array. This, in effect,
c rea tes an a r r a y stored backwards in memory, reserving for the next vari-
able name the n e x t lower cell. A dummy variable name of an argument m a y
appear in a DIMENSION statement in order that a proper relative address
may be computed for reference to a specific element in an a r ray , but no storage
will be all'ocated to this dummy variable.

The storage for variables appearing in COMMON statements is now mapped.
The variable name, right adjusted, i s inserted in the second word of a tetrad;
the decimal location, right adjusted with leading zeros suppressed, inserted
in the third word; and the octal location, right adjusted with leading ze ros
included, inserted in the fourth word. The f i r s t word of every tetrad i s blank.
The title, column headings, each line a s completed, and the final part ial l ine
if any, a r e written on tape B2 immediately following theinternal end of fi le,
marking the end of the source program listing.

Next to be processed i s the transfer vector, If the source program re fe r s t o
other subprograms through a CALL statement o r an arithmetic statement in
which a function name appears, o r i f a l ibrary subroutine i e called, Section
1 aesembles the BCD name of the entry point to each such subprogram a s one-
word entr ies in the CLOSOB table. The transfer vector, made up of N such
names, occupies (relocatable) storage locations 0 thru N-1 of the object pro-
gram. Each subprogram name i s entered into DEV with the 'corresponding
lower storage locations entered into DEA. If the name is already in DEV, it haa
appeared in a COMMON, EQUIVALENCE, o r DIMENSION statement, and a
diagnostic message results. If the name of the subprokram i s a dummy name,
to be initialized, i t does not appear in CLOSUB, and no conflict exists.

Finally, the names of arithmetic statement functions a r e , processed. If such
a statement appears in the source program, Section I assembles the BCD
name of the function so defined, and the internal formufa number assigned to the
subroutine, in a two word FORSUB entry. Each name i s entered into the DEV
table with location zero (to be entered la ter) entered into DEA. . If the name i s
already in DEV, i t has appeared in a COMMON, EQUIVALENCE, o r DIMEN-
SION statement, o r has been refer red to in a CALL statement o r an a r i t h m t ic
statement including an argument l ist with the terminal F omitted f rom the
name, o r as a dummy variable name, and a diagnostic message results. The
improper use of the name with the terminal F omitted and with no argument l i s t
will compile, however improperly. In each case, the improper use of the name
of the subprogram being compiled as an argument in the argument list, a s a
name in the t ransfer vector, o r the name of an arithmetic statement function,
is checked, and i f so used, a diagnostic message results.

The DEV and DEA tables are now complete. All other variable names in the
source program a r e ' nonsubscripted, requiiing one storage location each.

Record 36

Record 36 includes the f i rs t pass over the complete CIT file, to define all
internal formula numbers, source program symbols not in DEV, and internal
eymbol s.

The DEA table i s moved up in m e m o r y and packed against the end of DEV.
The I F N table will share memory with the DEA table, the fo rmer occupying
the decrement portion of each word, while the lat ter occupies the address.
The TEV table will follow the longer of the two.

CIT records a r e brought into memory from tape A4, and are replaced with
the next subsequent record when completely scanned. Each CIT i s scanned
f i r s t for i t s opcode. I. i t i s OCT or BCD the address p r t i o n i s ignored.

For other codes the symbolic address ie scanned next. If the address i s an
internal formula number, the address i s ignored. A SYN to an IFN i s unde-
fined. If the address i s a subsidiary internal formula number (nAm), the
symbol is assembled into TIV form and TIV i s searched to define a possible
SYN to this symbol. If i t is not in TIV, it i e entered, undefined. If the ad-
d re s s i s *, the content8 of the program counter are used to define a possible
SYN to this symbol.

If the address i s

~ i x ' e d point conetan t

3) Floating point constant

5) Assign constant

6) Universal constant

8) N Format specification word

9) Initialization addend constant

B) Hollerith subroutine argument

It i s in the symbolic listing, and the address i s ignored. A SYN to one of these
symbols i s undefined.

If the address i s

Arithmetic eraseable

Arithmetic statement function argument storage

Arithmetic statement function index register eraeeable

Index register eraseable.

It i s not in the symbolic Listing, and i s entered into TIV with greatest level
of storage (decrement of word 4 CIT) a s the address. A SYN to one of these
symbols i s undefined;

If the address i s

A) N Location symbol for subroutine to compute relative
constants

D) N; .Location symbol for a section 5 LXD instruction

E). N, Location symbol for a section 5 SXD instruction

It i s in the symbolic %sting, but TIV i s searched to define a possible SYN to
one of these symbols,.-

If the address i s $ o r $$, the location assigned to each of these i s used to define
a possible SYN. If the address i s an external variable, DEV and TEV a r e
searched to define a possible SYN to one of these symbols. If this variable
name i s not in DEV o r TEV, i t ie entered into TEV, the location to be defined
later.

The op code again i s scanned for SYN. The symbol D)N o r E)N in the symbolic
location can be synonymous with another symbol D)N o r E)N, compiled by Section
V. If the SYN i s undefined, a diagnostic message results. F o r al l op-coes
other than BSS or SYN, the location counter is bumped by 1. If i t i s BSS, the
length of block reserved a s assumed to be zero. If i t i s SYN, no location i s
reserved.

Next to be scanned i s the symbolic location. If the location is an internal formula
number, the contents of the program counter a r e entered into the IFN table
(decrement portion of the joint IFN-DEA tabie), ordered a s to internal for-
mula number s. The test for an internal formula number i s such that i t may
not extend o,ver more than 12 bits in the decrement field, a maximum of
4095. If any internal number is greater , i t will appear to be an internal sym-
bol, and will miscornpile. No diagnostic message results. If the location
symbol i s a subsidiary internal formula number (nAm), TIV i s searched to
determine if there had been a prior reference to the symbol. If such a reference
had been made, the contents of the program counter a r e entered into TIV to
define this symbol. If no prior reference had been made, the symbol remains
undefined. This i s to optimize entries into the TIV table. If the reference
to the subsidiary internal formula numberdis prior to the appearance of the
number in the location field, i t will have been entered into TIV, and defiled in
pass 1. If such reference i s stbsequent to such appearance, the TIV entry will
be made, but the symbol will remain undefined until paes 2. During paes 2,
this symbol will be defined prior to such subsequent reference, Hence, any
subsidiary internal formula number to which a reference i e made will eventu-
ally appear defined in TIV, while no reference is made will hot be entered

into TIV. If the location symbol i s +, i t i s a flag set by section 111 that this
CIT re sults froma TIFGOentry for TRASTO transfer address, for consid-
eration by section IV, and i t i s ignored. For al l other internal symbols
appearing in the symbolic listing, a TIV entry i s made, the contents of the
program counter defining this symbol. If the location symbol i s $ or $$,
each of these i s defined by the contents of the program counter. If the lo-
cation symbol ia an external symbol (transfer vector name), i t i s ignored.

At the end of the f i rs t pass over the complete CIT tape, al l symbols appear-
ing in compiled instructions have been entered into one of the tables, DEV, a

IFN, TEV o r TIV. The upper location counter is one cell below the lowest
cell reserved for a DEV entry. The location counter i s reduced by the length
of the TEV table, and each variable in TEV is implicitly defined as the current
contents of the location counter plus its ordered location in the TEV table.
Later , these locations will be relocated downwards in memory,

Assignment of storage locations for eraseable cells in TIV is made next.
Each TIV entry i s examined to determine if it i s an eraseable cell (1)N,
4)N. 7)N. C)N.) If i t is, the location counter i s reduced by the la rges t
value of the block required, the address portion of the TIV entry, and this
location defines the symbol. This, in effect, creates an array stored for-
wards in memory. The location counter i s reduced by one more t o rese rve .
the next lower cell for the nest symbol. The symbol 4). eraseable for l ibrary
subroutines, i s defined a s the location at the top of memory, 77777.

T h e s t o r a g e a s s i g n m e n t o at t h i s point are as i n t h e fo l lowing d i a g r a m .

T a b l e
E n t r i e s relocatable

z e r o

-.
DEV

I

NAME

$

T R A N S F E R VECTOR

PROLOG
. ;' subprograms only

INITIAL1 ZATION

<

$$
nA

I F N
TIV

e n d of s y m b o l i c
l i s t i n g ,

p r r ~ g r2m
<:oun!.er
c o n t e n t s of l o -
c a t i o n c o u n t e r

P R O G R A M CONSTANTS (TIV

I ,

TIV
TIV
(N a m e
i n DEV)
I F N
TIV

n A m ' O B J E C T P R O G R A M

5
2)
3
6)
8) N
B)

D) N
E)N

nA
v

A)N

6

A R I T H M E T I C SUBROUTINES

R E L C O N SUBROUTINES

TIV

T E V

NOT ASSIGNED

77777 i n DEA

NAME

NAME

NAME

NAME
L

4
' Aote :

DIMENSION VARIABLES

DIMENSION EQUIV VARIABLES

COMMON DIMENSION VARIABLES

COMMON DIM. EQUIV. VARIABLES

LIBRARY SUBROUTINE
E R A S E A B L E

7)N
4) N
1) N
C) N

NAME

E R A S E A B L E STORAGE

NON S U B S C R I P T E D VARIABLES

a r g a r n e n t d u m m y n a m e s (in s u b p r o g r a m s) are e n t e r e d into ~ E Y , f l a g g e d

DEV

D E V

D E V

D E V

T I V

c o m m o n b r e d c

-207 (7 0 9)

t o p of m e m o r y

Record 37
I

Record 37 ass igns locations for ar i thmetic s ta tement function subroutines
and maps them. The DEV table i s scanned for the name of each subroutine
(word 1 of each FORSUB table entry). If i t i s not found, a machine e r r o r
has occur red , and a diagnostic message resul ts . The location of the in-
t e rna l formula number assigned to this subroutine name (decrement of word
2 of FORSUB table entry) i s found in the IFN table, and inser ted in the ad-
d r e s s of word 2 of the FORSUB table entry, and to define th i s symbolic loca-
tion, in the DEA table.

The location of each subroutine i s now mapped. The subroutine name, right
adjusted, is inser ted in the second word of a te t rad; the decimal internal fo r -
mula number , right adjusted, inser ted in the third word; and the octal loca-
tion of this internal formula number, right adjusted with leading ze ros in-
cluded, inser ted in the fourth word. The f i r s t word of every te t rad is blank.
The t i t le, column headings, each line a s completed, and the final par t ia l
l ine i f any a r e wri t ten on tape B2, following the mapping of common s torage
ass ignment , if any.

Record 38

Record 3 8 maps external formula numbers with corresponding internal fo r -
mula numbers and relative locations,

Each decimal external formula number (address portion of one-word entry)
i n E I F N table, right adjusted, i s inser ted in the second word of a t e t rad ; the
decimal internal formula number (decrement portion of entry) , r i th t adjusted
i s inser ted in the third word; and the octal location of this internal formula
number , found in the I F N table, right adjusted with leading z e r o s included,
inser ted in the fourth word. The f i r s t word of wery te t rad is blank. The t i t le ,
column headings, each line as completed, and the final par t ia l l ine i f any a r e
wri t ten on tape B2, following the mapping of ar i thmetic s ta tement function sub-
routine s , i f any.

Record 39

Record 39 re locates storage not in common downwards packed against p r o g r a m
constants.

The length of unassigned memory i s computed (contents of location counter l e s s
contents of p rog ram counter, plus one) , and i s the extent of relocation. The
position of the program bredc i s computed (location of common b reak l e s s con-
tents of the location counter , number of var iables to be relocated, added to
contents of p rogram counter) , and inser ted in the p rog ram c a r d 8L address .

Each location in DEA i s compared against the common b reak (highest ce l l in
s torage to be relocated). If i t i s not in common, a t r ans fe r vector n a m e , a

subprogram argument dummy variable (flagged 77777), o r an arithmetic sub-
routine, the location i s reduced by the extent of relocation. The base location
for TEV i s s o relocated; in effect, relocating each variable in TEV. Each
location in TIV i s cornp red against the common break and the program break.
If i t is not 4) (location 77777), program data in the symbolic listing, o r an
instruction location symbol, i t i s an eraseable cell and i s so relocated.

The final storage assignments are a s in the following diagram.

TRANSFER VECTOR relocatable zero

entry point (subprogram)

entry point (main program)

1 PROLOG I) subprograms only

I INITIALIZATION 1)
OBJECT PROGRAM

r I
ARITHMETIC SUBROUTINES
RELCON SUBROUTlNES
PROGRAM CONSTANTS

The limits of storage not used by program (program break and common break),

ERASEABLE STORAGE
NON SUBSCRIPTED VAR.

-DIMENSION VARIABLES
DIMENSION EQUIV. VAR.

NOT
ASSIGNED

-I-- -
COMMON DIMENSION VAR.

converted to decimal, right adjusted with leading zeros suppressed, are in-

program break

common break

serted in the third word of a tetrad; converted to octal, right adjusted with

COM. DIMEN. EQUIV, VAR. -207 (709)
, LIBRARY SUB. ERASEABLE L

leading zeros included, inserted in the fourth word. The f i rs t and second word
of this tetrad a r e blank. The title, column headings, and this line a r e written
on tape BZ, following the mapping of external-internal formula numbers, i f any.

Next are mapped the transfer vector, program variables not in common, and
internal symbols. The number of mtries in the transfer vecotr i s one location
greater than that of the last name in the transfer vector. Each location in DEA
i s compared agains t the location of the f i rs t instruction following the transfer
vector, and if in the transfer vector, the corresponding transfer vecotr name in
DEV, right adjusted, is inserted in the second word of a tetrad; the decimal
location, right adjusted with leading zeros suppressed, inserted in the third word;
and the octal location, right adjusted with leading zeros included, inserted in
the fourth word. The f irs t word of every tetrad is blank. The title, column head-
ings, each line as completed, and the final partical line i f any, are written on tape
BZ following the mapping of the storage limits.

If any arithmetic subroutines exist, the location following them i s the f i r s t
location in which a variable may appear. If not, the location following the
t ransfer vector i s this location. Each location in DEA is compared against
the f i r s t location following either the t ransfer vector ca arithmetic sub-
routines, and against the common break. If i t has not been listed previously
a s a t ransfer vector o r arithmetic subroutine name, a s a variable in common,
o r i s not a subprogram argument dummy variable name, i t is a subscripted
variable not in common, and the corresponding name in DEV, right adjusted,
i s inserted in the second word of a tetrad; the decimal location, right adjust-
ed with leading zeros suppressed, inserted in the third word; and the octal
location right adjusted with leading zeros included, inserted in the fourth word.
The f i r s t word of every tetrad i s blank. The title, column headings, each l ine
as completed, and the final partial line, i f any, a r e written on tape B2 following
the mapping of the t ransfer vector, i f any.

Each entry in TEV (nonsubscripted variable not in common), right adjusted,
i s inser ted in the second word of a tetrad; the decimal location, the' sum .of
base location for TEV and the relative location of this variable in TEV, right
adjusted with leading zeros suppressed, inserted in the third word; and the octal
location, right adjusted with leading zeros included, inserted in the fourth word.
The f i r s t word of every tetrad i s blank. The title, column headings, each line
a s completed, and the final partial l ine, i f any, a r e written o n ~ t a p e B2 follow-
ing the mapping of the subscripted variables not in common , i f any.

Each entry in TIV is then mapped. A TIV entry consists of a symbol in bits,
S, 1, 2 , 3; bits 4 and 5 zero; sub symbol, i f any, in bi ts 6-20; and the loca-
tion in bits 21-35. A subsidiary internal formula number consis ts of bi ts S,
1, 2, 3, 20 zero, the internal formula number in bits 4- 14 (maximum size
2047); the subsidiary number in bits 15- 19; and the location in bits 21- 35.

If the TIV entry i s a sub in terna l formula number, i t is ignored. If i t is an
internal symbol for a storage cell , an alpha numeric character from the se t
1 through 9, A through E i s assigned to the 4-bit pseudo symbol, followed
by a right parenthesis. The 15 bit subsymbol, i f any, i s converted five bi ts a t
a t imeto 3 alpha numeric charac ters from the set 1 through 9, A through W.
The pseudo symbol, left adjusted, is inserted in the second word of a tetrad;
the decimal location, right adjusted with leading zeros suppressed, inserted
in the third word; and octal location, right adjusted with leading ze ros included,
inserted in the fourth word. The f i r s t word of every tetrad is blank. The title,
column headings, each line a s completed, and the final part ia l l ine, i f any, a r e
written o n tape B2 following.the mapping of nonsubscripted variables not in com-
mon, i f any.

Next the program card i s written a s the f i r s t binary output on tape B3. P rogram
ca rd 9L includes a 4 punch in the prefix and a word count of 4 in the decrement.
8L contains the length of t r ans fe rvec to r in the decrement and program break in
the address , 8R contains the common break in the address , 7L contains the BCD
subprogram name, if any. 7R contains the entry point, relative to zero in the

address . The computed checksum of the card i s inserted in 9R.

Q column binary bi ts , 7-9 punch in column 1, not included in the checksum, a r e
inse r t ed in 9L, and the program card i s written ao the f i r s t record on binary
output tape B3.

Record 40

Record 40 includes the second pass over the CIT tape to define each of the
eymbols used in each CIT, construct a binary instruction for each CIT, and
wri te the compiled program on binary output tape # B3,

CIT records a r e brought into memory from tape A4, and a r e replaced with
the next subsequent record when completely scanned.

Relocation bit ?atterns a r e of three types. T - ~ p e 00 indicates that address por-
tion of the instruction i s not relocatable. Type 010 indicates that the address
portion is relocatable a s data on the proper side of the program break, Type
011 indicates that the instruction is complement relocatable; the address r e -
f e r s to a cell in an a r r a y the base symbol of which i s on the opposite side of the
program break, and should be relocated as its base rymbol would be. The de-
crement of an instruction i s not relocatable in a FORTRAN object program.

The relocation bits a r e initially r e se t to not relocatable. F i r s t to be scanned is
the opcode. If it i s OCT or BCD, the address portion i sno t relocatable. F o r Q al l other opcndes, the symbolic address i s scanned next. If the symbolic
address i s zero , i t i a not relocatable. Ii the symbolic address i s an internal
formula number, the location i s obtained from the TIV table, If the symbolic
address i s 8 , the location i s the current contents of the program counter. If
the symbolic address i s $ or $$, the location i s a s assigned to either of these.
If the symbolic address i s an external symbol, the location is obtained f r o m
TEV o r DEA. If any symbol has a s yet not been defined, a diagnostic message
results. F o r each of these, the address i s tentatively se t directly relocatable.

The opcode i s again scanned, If it is SYN, the definition i s saved to be checked.
No binary output results. If i t i s BSS, the length of the block reserved i s a s -
sumed to be zero. No binary output results. F o r all opcodes other than BCD,
OCT, BSS or SYN, the b inary machine code i s ~ound in the SOPR table. If the
opcode i s not found in the table, a diagndtic message resul ts ,

The relative address i s added to the location for the symbolic address to de ter -
mine the absolute address for the symbol. If negative, i t i s complemented.
The base symbol (symbolic address) i s examined to determine i f both the base
symbol and the absolute address a r e on the same side of the program break.
If they a r e not, the address i s set complement relocatable. The binary decre-
ment, absolute tag, and absolute address a r e combined with the operation code.
F o r BCD or OCT, the binary word (symbolic address) is used. The program
counter is bumped one location,

The relocation bits a r e packed left adjusted against any pr ior relocation bits
already in the 8 row of the card image. The binary instruction i s inserted
inthe next available half row of the card image. When the card image i s full,
the word count i s inserted in 9L decrement, the load address i s inser ted in
9L address , the chesksum i s computed and inser ted in 9R, column binary
bits added to 9L, the card i s written on tape B3, and the load address i s up-
dated to the program counter for the next instruction. Column binary bi ts
a re not included in the checksum 9R, and tape B3 is unusable for off line out-
put.

F o r al l CIT's the symbolic location i s scanned. If i t is a subsidiary internal
formula number and i s not in TIV, i t has been omitted a s no reference to it
was made in the symbolic address , and i t i s ignored. Xf i t is in TIV and i s
not yet defined, the reference to it was la te r in the CIT file than i t s appear-
ance in the location field. It i s here defined, the location assigned to this
symbol i s checked against the program counter. If i t i s inconsistent. a dia-
gnostic message results. If the symbolic location i s an internal formula num-
b e r , i t i s checked for inconsistent definition, If the symbolic location is an
internal symbol, i t i s the symbol for program data appearing in the symbolic
listing, o r the symbol assigned to a Section V LXD o r SXD instruction o r a
relcon subroutine. If the symbol appears in TIV i t i s checked for inconsistent
definition. If i t does not appear in TIV, i t is a machine e r r o r , but no diagnos-
t ic message will result. If i t i s $, $$, 9, o r an external symbol in DEV (t rans-
f e r vector name) i t i s ignored. No other external symbol in DEV o r any in TEV
should appear in a location field.

After the entrie CIT file has been scanned, the final par t ia l ca rd image, if any.
i s writ ten on tape B3. Processing i s now complete, except for the t r a n s f e r
card , and for options.

Record 41

Record 41 processes the options which the programmer has instructed the
FORTRAN compiler to provide. Available a r e the following options:

Sense Switch 1 U P Binary cards for the object program are punched on
line. Tape B4 a lso contains t h e stacked binary pro-
gram i f row binary has been requested on line.

DOWN Binary ca rds for the output program a r e not punch-
ed. Tape B4 contains the stacked binary program
fo r the source program compiled.

Note: Binary card images on tape B3 omit the column
binary bits from the checksum and a r e unusable.

Sense Switch 2 U P Produces, on tape B2, two fi les for source program
compiled, consisting of the source program and a map
of object program storage.

DOWN Adds a third file for each program compiled (see
above) containing the object program in symbolic
machine language on tape.

Note: This listing will be stacked on tape A3 as one file for
the ent i re monitor run.

Sense Switch 3 U P No on line l ist ings a r e produced.

DOWN L i s t s on line the f i r s t two o r three fi les of tape B2,
depending on the setting of Sense Switch 2.

Sense Switch 4 U P Relocatable row binary ca rds for the object program
a r e punched on line, i f Sense Switch 1 is up,

DOWN Relocatable columnar binary ca rds for the object
program are punched on line i f Sense Switch 1 is
up. These will not be stacked on tape B4. Also
these appear on tape B3, see note under Switch 1,

Sense Switch 5 U P Library routines a r e not punched out on line o r
written on tape 334.

DOWN Causes l ibrary routines to be punched on line and
written on tape B4, depending on whether Sense
Switch 1 and 4 a re in the Up o r Down position. See
note under Switch 4 down, and Switch 1,

Sense Switch 6 Not applicable to Section 6.

The t ransfer vector , which h a s been s tored a s one record following the CIT
f i le on tape A4, is brought back into memory. End ca rd setting and/or phy-
s ica l sense switch 5 i s tes ted to determine i f a l ibrary sea rch is required.
If the t ransfer vector i s not empty and a l ibrary search is requested, a flag
for subroutire s found in each pass over the l ibrary fjle on the FORTRAN sys tem
tape i s reset .

The next record in the l ibrary file i s read into memory. If 9L prefix has a 4
punch, i t i s a program card; if not the next record is read in.

After a program ca rd has been found, the next record is brought into memory
with rows 8 through 12 packed against the ea r l i e r c a r d image. Row 9L pref ix
i s again.tested to determine i f the program ca rd continues over m o r e than one
card. When a card other than a program i s encountered, the tape is backspaced
over the card image, ana a consolidated program c a r d ex is t s i n memory. The
word count of the consolidated program ca rd i s inser ted in the decrement of 8L.

Each right row (entry point relative to zero corresponding to en t ry point
name) i s scanned to determine i f i t i s flagged by a sign bit punch a s a secon-
d a r y entry point. I i t i s not so flagged, the left row (name of p r imary en t ry
poirit) i s compared against the t ransfer vector to determine i f th is sub-
routine i s required to complete the object program. If no such name is found,
the remainder of the subroutine in the l i b ra ry file is passed over to find the
f i r s t p rogram c a r d of the following subroutine.

If a pr imary entry point to a subroutine i s found in the t r ans fe r vector , the
name i s t r ans fe r r ed f rom the t ransfer vector to a l i s t of entry paints to
subroutines output f rom the l ibrary. A flag i s se t that a t l eas t one subroutine
has been found on this p a s s over the l i b ra ry file.

The names of a l l entry points to subroutine s output a r e added t o the found l i s t ,
and if any of these a r e i n the t ransfer vec tor , they a r e deleted f r o m the t r a n s f e r
vector ,

The consolidated program ca rd i s converted back into individual c a r d images ,
and wr i t te on tape B3 following the olject p rogram, o r the l a s t l i b r a r y sub-
routine output, and the next record read f romthe l i b ra ry file. If the l i b r a r y
subroutine includes a t ransfer vector , each name in the subroutine t r a n s f e r
vector i s compared against the found l i s t and the object p rog ram t r a n s f e r
vector. If i t i s in neither, i t i s a new requirement and i t i s added to the ob-
ject p rogram t ransfer vec tor look for l ist . The ca rd image is wri t ten on
tape B3 followingthe l i b ra ry program c a r d , o r l a s t subroutine card. If the
subroutine t ransfer vector i s not exhausted, the next c a r d image is r ead i n and
processing continues a s above. If a program ca rd o r end of f i le is sensed
before the subroutine t r ans fe r vector i s exhausted, a diagnostic m e s s a g e r e -
sults,.

After the subroutine t ransfer vector i s exhausted, the remaining c a r d s i n the
l i b ra ry subroutine a r e copies f rom the l i b ra ry f i l e to tape B3, until the next
p rog ram card is encountered. If the object p rog ram t r ans fe r vec tor is ex-
hausted, the s ea rch i s completed. If not, the s ea rch continues until the end
of the l i b ra ry fi le i s sensed.

After the end of the l i b ra ry file, the flag for subroutines found is examined.
If any subroutines have been found on this pas s , the subroutine t r a n s f e r vec-
t o r may requi re another pas s over the l i b ra ry fi le, a s these new subroutines
may have added names to the look for l ist . If the look for l i s t i s not exhausted,
and subroutines have been added this pas s , the system t a p e i s back'spaced to
the beginning of the l i b ra ry file, the subroutines found flag r e s e t , and another
p a s s over the l i b ra ry fi le i s made.

After the l i b ra ry sea rch i s completed, the sys tem tape i s reposit ioned a t the
end of this r eco rd , and if any names of en t ry points to l ib ra -y subroutines
a r e on the found l i s t , these names a r e writ ten on the s torage map. Each BCD
name is right adjusted and inser ted in the second word of a pair . T h e f i r s t
word is blank. The t i t le, each line a s completed, and the final par t ia l i ine,
i f any, a r e wri t ten on tape B2 following the mapping of internal symbols.

After this mapping, o r if the l ibrary search was not required, the t r ans fe r
vector i s examined to determine i f any subprograms exist which a r e not l ib-
r a r y subroutines. Each BCD name remaining in the t ransfer vector is right
adjusted and inser ted in the second word of a pair . The first word is blank.

The title, each line a s completed, and the final par t ia l line, i f any, a r e
writ ten on tape B2 following the mapping of names of entry points to l i b ra ry
subroutines found, i f any.

The storage map i s now complete and marked with an end of file.

If the object program i s not a subprogram, a t ransfer ca rd is written on tape
B3. The end of binary output is marked with an end of file, and the tape is
rewound.

End ca rd setting and/or physical' sense switch 1 is tested to determine if
ca rds a r e required on line, I i cards a r e required on line, end card setting
and/or physical sense switch 4 i s tested to determine i f c a rds should be row
binary o r column binary.

If switch 4 i s up, cards a r e to be row binary, and i f the object program is not
a subprogram, the BSS loader i s punched on line. The column binary bi ts a r e
deleted f rom 9L of each card image and the ca rd punched on line.

1f switch 4 i s down, ca rds a r e to be column binary, the column binary bi ts a r e
added into the checksum, 9R, o r each ca rd image, t1:e row binary rotated to a
column binary image, and the card punched on line,

If no column binary ca rds have been punched on line, sense light 1 is turned
on to s o flag the m o n i t o r and th,,e binary output will be stacked on tape B4.
The binary output on B3 does not include column binary b i t s in the checksum.
and i s unuseable,

E d card setting and/or physical sense switch 2 is tested to determine if a
machine language listing i s required. If i t i s so requested , sense light 2
i s turned on to flag monitor that a third file exis ts on7he BCD output tape.
An additional pass i s made over the CIT tape toaccomplish this.

CIT records a r e brought into memory f rom tape A4, and a r e replaced with
the next sub sequent record when completely scanned. Fir s t the symbolic loca-
tion i s processed, If the symbolic location i s an internal formula number o r a
subsidiary internal formula number, h e main number i s converted to dec imal ,
the character A appended, and the subsidiary number converted to decimal. The
l a rges t internal formula number which can be s tored in TIV is 2047, and a sub-
s idiary number can be one charac ter only, Hence this symbol cannot exceed
s ix characters . If the symbolic location i s *, i t is deleted. If the symbolic
location i s an internal symbol, a pseudo symbol is constructed which cannot

, exceed five charac ters . If the symbol is $, $$ o r a t r ans fe r vector name, these
cha rac te r s a r e used. The BCD symbol, so constructed, right adjusted, is
inser ted in the third word of a hexad,

I
~ - - ~ ~ + - ~ w r ~ - - . - W r w r rr*rr-- ru. i.-rrr.... d -- - *.. r x - I*. u--*."- * - -

The BCD opcode, preceded and followed by a blank, i s inser ted in the f i r s t
five cha rac t e r s of the fourth word,

If the opcodd i s BCD, and the symbolic add res s i s a 777777777777 f lag, the
code i s replaced by OCT, and processing continues as an octal symbolic
address ,

If the symbolic add res s i s not a flag, the numeral 1 i s inser ted in the sixth
cha rac t e r of the fourth word, and the six charac te r BCD word in the fifth.
The sixth word i s blank.

i f the opcode i s OCT, the f i r s t bit i s in terpreted a s a sign, inser ted in the
sixth cha rac t e r of the fourth word, and the 35 bit b inary number , converted
to 12 BCD octal 'digits, i s inser ted in fifth and sixth words.

F o r a l l opcodes other than BCD o r OCT, the symbolic add res s i s p rocessed
a s follows. If the symbolic add res s i s an internal formula number or a sub-
s idiary internal formula number, the main number i s converted to decimal ,
the c a r a c t e r A appended, and the subsidiary number, if any, converted to
decimal. The f i r s t BCD charac te r of the internal formula number is inserted
in the sixth charac te r of the fourth word. The remaining BCD c h a r a c t e r s
(five o r fewer) of the symbol, followed by blanks, a r e saved. If the symbol
add res s i s a n internal symbol, a pseudo symbol is constructed. The f i r s t
BCD cha rac t e r of the pseudo symbol i s inser ted in the sixth cha rac t e r o f the
fourth word. The remaining BCD cha rac t e r s (four o r fewer) o f the pseudo
symbol, followed by blanks a r e saved. If the symbolic a d d r e s s i s an *, $,
$$, o r any external symbol, the f i r s t BCD charac te r of the symbol is i n s e r t -
ed in the sixth charactel* of the fourth word. The remaining BCD c h a r a c t e r s
(five o r fewer) of the symbol followed by blanks a r e saved.

The remaining cha rac t e r s in the symbol (five o r fewer) followed by blanks a r e
examined one a t a t ime for the f i r s t blank cha rac t e r , The non-blank c h a r a c t e r s
a r e packed lef t adjusted into the fifth charac te r of the fifth word. The re la t ive
add res s i s isolated f rom the decrement of the CIT word 4. If i t ex is t s , i t i s
converted to five o r fewer BCD decimal digits , The BCD sign i s inser ted
packed against the symbol, no f a r the r than the sixth cha rac t e r of the f i f th word.
The BCD relat ive add res s i s packed against the sign, extending no f a r the r
than the fifth cha rac t e r of the sixth word. The tag i s isolated f r o m the a d d r e s s
of the CIT word 4, If t h ~ tag i s g rea t e r than four , the flag T i s i n se r t ed in
following the tag, No diagnostic message resu l t s . A comma i s inser ted packed
against the symbol or relative add res s , no f a r the r thant he sixth cha rac t e r of
the sixth word, followed by the tag, no fa r ther than the f i r s t cha rac t e r of the
seventh word, The CIT decrement i s isolated f rom the a d d r e s s portion of CIT
word 1 , If i t ex i s t s , i t i s converted to 5 o r fewer BCD decimal digits. A comma
i s inser ted packed against the symbol o r relative add res s , no f a r the r than the
second cha rac t e r of the seventh word, followed by the decrement , packed against
the comma, no f a r the r than the second charac te r of the eigfh word.

If following the' symbolic address (and, i f i t exis ts , the relative addres s) no
tag exis ts , the CIT decrement i s isolated f rom the addres s portion of CIT
word 1. If i t exis ts , a zero i s selected a s the tag field, and processing
continues a s before.

If no symbolic address exists, the CIT £ow word is tes ted for a relative addres s
and/or tag. If e i ther o r both exis ts , the relative addres s is isolated. If i t
ex is t s , i t i s converted to a 5 o r fewer BCD decimal digits. If it is negat ive,
the sign i s inser ted in the sixth charac te r of the fourth word. If positive, the
f i r s t BCD numeral i s inser ted in the sixth charac te r of the fourth word.
The remaining charac te r 3 a r e inser ted left adjusted in the fifth word, and the
tag and decrement a r e processed a s before. If no symbolic addres s o r r e -
lative addres s exist , a ze ro i s inser ted in the sixth charac te r of the fourth
word, and the tag a1 d decrement a r e porceosed as before.

If no symbolic address , relative address o r tag exist , the CIT decrement
i s isolated f rom the addres s portion of CIT word 1. If i t exis ts , a ze ro i s
inser ted in the sixth character of the fourth word, and the tag and decrement
processed a s before. Processing of the full tap i s necessary to i n s e r t the
nonredundant comma and zero tag field.

After the variable field has been processed, the final ward is filled with blanks.
If no var iable field exis ts , a blank is inser ted in the sixth charac te r of the fourth
word.

All processing converges a t this point. If the opcode i s not SYN o r BSS, the
re la t ive counter i s converted to 5 BCD octal digits, left adjusted, followed
by a blank, and inser ted in the second word of the hexad. The relative counter
is bumped by one. If the opcode i s BSS, the block length is assumed to be
ze ro , hence for e i ther BSS or SYN word two i s blank, and the relative counter
i s unchanged. Word one of every hexad i s blank. The CIT is now in the s tandard
form.

SYMBOL OPC ADDRESStRA, TAG, DECRE-NT

The s ix words of every hexad a r e t ransfer red to , a page image buffer. In
this process , overflow of the machine language image to the seventh and f i r s t
two cha rac t e r s of the eighth word a r e truncated. As the FORTRAN processo r
compiles TIX, TXI and TXL only in a DO loop, the only machine language in-
structions which may contain decrement fields a r e TXI++ 1, 4, 32767 TIX*+l,
4, 32767 and TXL 4095A, 4, 32767. None of these will overflow.

A count i s kept of the hexad en t r ies made in the page image buffer. The f i r s t
58 en t r ies a r e made in column one, the next 58 en t r ies in column 2, and the next
58 en t r ies in column 3. When 174 en t r ies have been made, the page image
i s followed by a page res tore .

Whenthe end of the CIT file i s sensed, the buffer i s checked for a par t ia l page
image. If a par t ia l image exis ts , i t i s writ ten on tape B2. An end of f i le m a r k
is writ ten following the machine language listing, and tapes B2 and A4 a r e r e -
wound. The information on tape A4 i s no longer of significance.

End card setting and/or physical sense switch 3 i s tested to determine i f
on-line output of the source program, storage map, and machine language
l ist ing (if any) is required. If i t i s s o requested, the page i s res tored so
that each file begins on a new page.

One record (one printed l ine) is read from tape B2, i s converted to a ca rd
"image, and the line i s printed,

When the end of the source program file is sensed, the page i s res tored and the
map is prirt ed line by l ine

When the end of the storage map file i s sensed, sense light 2 i s tes ted to de-
te rmine i f a third file, the machine language l ist ing, exis ts on tape B2. If i t
does , this flag i s res tored for monitor, the page is res tored and the l ist ing is
printed l ine by line,

When the end of the l ist ing file i s sensed, tape B2 i s rewound. The FORTRAN
compiler has completed processing of the source program. The r e su l t s of the
FORTRAN compilation are on two tapes: tape B2, the BCD source p rogram,
s torage map, and symbolic listing i f requested; and tape B3, the binary pro-
g r a m card , the object program, l ib rary subroutines including their program
c a r d s if requested, and t ransfer ca rd i f a main program. If on l ine output has
been requested, and t ransfer card i f a main program, If on l ine output h a s been
requrested, ca rds have been punched and l ist ings have been printed.

Control i s passed to the monitor.

75
FLOW IN SECTION Vi

A d -

r-' '.
FORBUD COMMON R E C O R D 34
(CILIS 3) HOLARO
81Z TIEFNO
L C 4 L Q U l T
E N 0
.UBDLI f:P,","IB)

c t r l s (COMPLBTS) (VILE 1)
C I T ~ (FILE I) c ~ o e u a (CILIS a)

RECORD 36 r - - l

RECORD 37 l-5

s T o R A o e MAP (HEADING) (FILS I)
*STORAGE FOR VARIAEILO~
APPgARINQ I N COMMON
SENTLNCLB~~

+'STORAGE NOT USED R V PROGRAM"
%LOCATION OF NAME IN TRANSFER VECTOR"
#STORAGE LOCATIONS FOR V A R 1 4 6 L E S

APPEAR INQ IN W IMENSION AND EQUIVALENCE
SENTENCES

'STORAGE LOCATIONS FOR V A R l A n L E S NOT
APPEAR ING I N DIMEN IONt EQUIVALENCES OR
COMMON SENTENCES
(ISTORAOE LOCATIONS FOR BYMBOLICS NOT

APPEAR I N 0 I N SOURCE P R O ~ ~ A M . ' ~

MAP (HEADINO)(FILE X)
\\NAMES OF ARITHMETIC STATE-
MENT FUNCTIONS W I T H CORRES-
POND INO INTERNAL FORMULA
NUMQERS AND OCTAL LOCATIONS'

ECORD 38 F-l
MAP (HEAC)INO)(IPILE 21

UEXTERNAL FORMULA NUMBERS
W I T H CORRESPONDING INTERNAL
FORMULA NUMBERS AND OCTAL
LOCATIONS J

RECORD 39 9 ---y3 2 PROGRAM CAR0 (B I N A R Y ~ I L E ~)

---ti2 M A P (H ~ A o I N Q) (F I L E 2).

I
(FIG. IS)

NOT= . HEADINGS WRITTEN ON T A P E B I (F I L E 2) ONLY A S PERTINANT. ONLY HEADINGS MARKED + W I L L A L W A Y S
APPEAR. FIGURE 1 4 .

FLOW IN SECTION VI CON'T
F I G 14

s ,

RPCORO 40 . OBJECT PROGRAM (r I L e 1)
(BINARY)

- - - - - - - - C -

FacoRo 1 1
LIDRARY I M A P (HCADINO) (F I L E 2)

I SEARCH ' ~ N T R Y POINTS TO sum-

I ROUTlNP&

I C

1 t I
I
1
I
I DOWN

1
I

1 /

L I B R A R Y I SEARCH

I - (CONT D - SU8ROUTlP4SS (F I L E I)

1
I I

I
1
I
I / A

OBJECT'

i $ I I
7 21 DECK

(ROW ~ I N A R ~

1 b i J

I ON L I N E
I

t
b _ 1 PUNCH . -

I I
I
I 721

OBJECT DECW
(COLUMN
BINARY)

I -
I
I
I
I DOWN I
I \/ I
I OBJECT I
I

1 = - PllOGRAM . I s v M e o L l c LISTI ~a (FILL 3)

1
L I S T I N G 1 END F I L E 3

I
I
1
I
I
I
I DOWN I

I I

SOURCE PROGRAM) MAPI
ON LINE: SYMBOLIC L l S T l N a

(OPTIONAL D ~ P E N O ~ N G ON
8 9 2)

FORTRAN LIBRARY

The l ib rary i s contained in the third file on the System Tape. The l i b ra ry
contains the input, output, math, monitor, var ious control routines and
the l ib rar ian , required for the execution of any object p rog ram compiled
by FORTRAN,

The m t h and control routines wi l l not be discussed in detail, The logic
and coding of these routines i s straight forward, and reference to the
specific l is t ings should be made i f any question should a r i se .

The input/output routines a r e not a s straight forward as the aforementioned
routines, therefore , a m o r e complete wri te-up wi l l b e given in 2. 02. 01.

The l i b ra ry contains the following routines:

INPUT-OUTPUT LIBRARY

Control Routines

IOS/ Input- Output Supervisor

IOU/ Input - Output Channel- Unit Table

SLO/ Short-List Output

WER/ Tape Write E r r o r

RER/ Tape Read E r r o r

Hollerith Input- Output

O H Input- Output Hollerith

STH/ Storage to Tape Hollerith

TSH/ Tape to Storage Hollerith

CSH/ Card to Storage Hollerith

SCH/ Storage to Card Hollerith

sPH/ Storage to P r in t e r Hollerith

B i n a r y Input- Output

IOB / Input- Output Bina ry

STB/ Storage to Tape Binary

TSB/ Tape to Storage B i n a r y

DRM/ Wri te D r u m and Read Drum

Tape Non- T r a n s m i s s i o n

BsT/ Backspace Tape

E F T / Endfile Tape

R W T / Rewind Tape

MATH LIBRARY

X P ~ / Exponential - FXPT Base - FXPT Exp.

X P 2 / Exponential - F L P T B a s e - F X P T Exp.

X P 3 / Exponential - FLPT Base - FLPT Exp.

ATN/ Floating Point Arctangent

XPF/ Floating Point Expenciltial Function

LOG/ Float ing Point Natura l ~ o ~ a r i t h r n ,

SCN/ Float ing Point Sine and Cosine

SQR/ Floating Point Square Root

TNH/ Float ing Point Hyperbolic Tangent

MONITOR L I B R A R Y

CHN/ Chain

D M P / Dump

XIT/ E x i t .

OTHER LIBRARY ROUTINES

F P T / Floating Point Trap

TES/ Test Last Write

XLO/ Relocated Location Function

EXE/ Execution Error

THE LIBRARY EDITOR

LIB/ Librarian

INPUT/OUTPUT LIBRARY

The 709 F o r t r a n I / O L ib ra ry was designed a s a s imple , genera l ized and flexi-
ble method f o r handling the input-output and conversion of da ta requi red by
For t ran-compi led p r o g r a m s at object t ime under Monitor o r non-monitor op-
eration. The 110 L ib ra ry (IOL) cons is t s of hand coded, Fap-assembled , re lo-
catable subroutines, which communicate with F o r t r a n p r o g r a m s by m e a n s of
linkage compiled by the 1 / 0 Trans la tor (IOT) in Section I.

Most o f the analys ls done by the IOT concerns the i t e m s in the List, When an i t em
in the L i s t spec i f ies an a r r a y (i. e. , used in a Dimension s ta tement) but i s not
subscripted In the L i s t , the Short L i s t subroutines (SLI, SLO) a r c used to com-
municate between the a r r a y and the Mode subroutine. If, however, the i t em in
the L i s t is subscr ip ted , indexing instruct ions will be necessa ry . IOT wil l m a k e
e n t r i e s in the TDO table, which cause Section I1 to compile the n e c e s s a r y in-
s t ruc t ions for the t rea tment of a r r a y s conforming to s tandard F o r t r a n usage ,

,

i. e . ; the f i r s t element i s assigned the highest location of the a r r a y . The r emain -
d e r of IOT1s t a sk i s simple: the communication of the minimum amount of in-
formation n e c e s s a r y to the IOL. This could be: the unit designation, type de-
signation, location of Format specification, and the termination of the List .

The simplicity of th is scheme will become apparent during the following d e s -
cription. I ts flexibility and general i ty provide advantages of e a s y modification,
and a continuing opportunity for improvement. This par t ly expalins the r eason
for the fragmentation of the IOL into about twenty different routines. General ly,
in sys t ems design, the linkage cos t of keeping functions sepa ra te and dist inct ,
i s repaid both in memory space and in the e a s e with which addit ions and improve-
men t s may be made.

The IOL contains four types of routines:

1) for initialization and control: IOS, IOU, SEO, SLI, WER, R E R ;

2) f o r the t r ansmiss ion of information to and f r o m each TYPE of 110 unit:
STH, TSH, CSH, SCH, SPH, STB, TSB, DRM;

3) for the conversion of data, and/or i t s t r ansmiss ion to and from. the da ta a r e a ,
according to MODE: IOH, IOB;

4) and for non- t ransmiss ion TYPE tape handling; BST, EFT, RWT.

In the following wr i t e -up , the mode routines (IOH, IOB) will be describedm'in
conjunction with the unit routines.

The genera l overa l l flow can b e outlined a s follows:

1) The logical unit designation, i f ' n e c e s s a r y , is picked up, and control ex i t s
f rom the call'lng sequence to the indicated TYPE routine.

2) If th is i s a non- t ransmiss ion TYPE routine, control p a s s e s d i rec t ly to the
control rout ine, IOS, fo r initialization. If a t r ansmiss ion type, except DRM,
and TYPE routine furnishes the c o r r e c t switch setting for input o r output t o the

appropriate MODE routine. Then the MODE routine conveys the logical
unit designation, along with the correc t m o d e indication, to IOS.

3) IOS turns to the IOU table for the logical-actual unit correspondence, after
having checked for the correc t completion of a previous wri te statement.
When al l 1/0 commands have been initialized, control re turns to the MODE
routine (or to the non- transmission caller).

4) The MODE routine now controls transmission, and/or conversion, of data
according to the Format specification and the Lis t of items indicated by the
calling sequence. A return is made to the TYPE unit routine for each record
of input o r output.

5) When the List is satisfied a final return i s made to the MODE routine to make
su re the l a s t record is read or written, and to . r e s to re conditions.

TYPE
UNIT

TSH

STH

CSH

SCH

SPH

STB

TSB

BST

E F T

RWT

DR M

MODE

SHOR T -
LIST

CONTROL

TAPE
ERROR

CONTROL

TABLE OF USAGE

CHANNEL-
UNIT

CONTROL

IOH

IOH

IOH

IOH

IOH +

IOB

1013

SLI

SLO

SLI

SLO

SLO

SLO

SLX

..

RER

VIER

.r

WER

RER

..
r

HOLLERITH INPUT /OUTPUT

READ F M T , LIST
READ INPUT TAPE N, FMT, LIST
W R I T E OUTPUT TAPE N, F M T , LIST
PUNCH F M T , LIST
P R I N T F M T , LIST

709
CALLING SEQUENCE

TSX
PZE
*, b

LIST

BINARY TAPE INPUT/OUTPUT

'I
CSH
TSH
STH
SCH

1 "PH

WRITE TAPE N, LPST
READ TAPE N, LPST

*

C

709
CALLING SEQUENCE

TSX

LIST

TSX
RLR (- - - 4 - - i ~ ~

BINARY DRUM I N P U T / O U T P U T

W R I T E DRUM N, J, LIST
READ DRUM N, J, LIST

709
C A L L I N G SEQUENCE

C A L N
TSX (- o n) , 4

GAL J
LDA . .

TAPE NON- TRANSMISSION

BACKSPACE
ENDFILE
R E W I N D

709
C A L L I N G SEQUENCE

CAL
TSX --F]

R W T

S U B S C R I P T E D ARRAY LISTS

I N P U T

. . *
STR
STQ ARRAY t 1, TA.G

O U T P U T

m . 0

L D Q ARRAY + I , TAG
STR

T X I
TXL

NON- SUBSCRIPTED ARRAY LISTS

I N P U T

TSX (SLI), 4
PZE 'ARRAY + 1
PZE SIZE

O U T P U T

TSX (SLO) , 4
PZE ARRAY t li
P Z E SIZE

N O T E

7 0 9 DRUM L I S T S C O M P I L E
THE SAME AS 704 BINARY

GENERAL DiAGNOSTIC' 2. 03. 00

The general diagnostic for the FORTRAN system covers machine and source
p rog ram e r r o r s revealed by Section I ' through VI. When a machine o r source
program e r r o r i s encountered in any one of these executive sys t em reco rds , a
TSX DIAG, 4 t r ans fe r s controi to the diagnostic cal ler . In the 709 FORTRAN
sys tem the diagnostic ca l le r remains i n lower memory with 1 to CS The
cal ler then dumps a buffer of 2500 words onto tape A3. The diagnostic ca l l e r
then spaces the system tape to the 4th file and proceeds to r ead in the main
diagnostic record.

The main diagnostic record of the 4th Pile (record 1) contains a l l the informat ion
neces sa ry to cal l one of the subroutines needed for converting and printing e r r o r
comments , and f o r returning to the proper record in the FORTRAN Monitor.
The main record converts the contents of index reg is te r 4 back t o the location
number of the TSX, and uses this constant a s the e r r o r number. I t is in the
main r eco rd that the heading (FORTRAN DIAGNOSTICS RESULTS), Section
number , r eco rd number and the location of the TSX in that Section i s printed.
Also, upon re turn from the appropria te e r r o r processing subroutine the m e s s a g e
END OF DIAGNOSTIC PROGRAM RESULTS. - - - * - PROGRAM CANNOT BE CON-
TINUED will print.

The main record per forms a table s ea rch in o rde r to determine which of the
fourth file r eco rds contains information pertinent to the e r r o r . The e r r o r num-
b e r (2 ' s complement of I R 4) i s compared to a l i s t of e r r o r s . This l i s t h a s 2-
word entr ies . The f i r s t word i s an e r r o r number corresponding to the location
of a TSX in the executive system, The second word is the record number in the
fourth file which c ontains the pertinent comments and coding to pr int information
about the e r r o r . If the second word i s minus, i t will a l so contain the FORTRAN
reco rd number of the TSX. The minus indicates that the e r r o r number m a y be
duplicated in the e r r o r l i s t and if the FORTRAN reco rd number does not match
the one picked up by the diagnostic f rom 1 to CS, the comparison with the e r r o r
l i s t continues, until a match i s found,

When the match has been found, the diagnostic record number is used to space
the sys tem tape to the co r r ec t record in the 4th file. If a match i s not f m n d
in the e r r o r l i s t , the main record will then read in DO02 which concerns un-
l is ted e r r o r calls . The pertineht diagnostic record i s then read in over the
e r r o r l i s t and the main record t r ans fe r s control to i t ,

Each of these r eco rds i s se t up to handle information about one. e r r o r , o r m e

specific type of e r r o r , only. Usually, this i s done by s t ra ight forward coding
which makes use of the print subroutines in the main record. The p rog ram
instruct ions executed may obtain fur ther information to be inser ted into the
e r r o r comment f rom tapes , c o r e s , o r the c o r e dump. The e r r o r comment ,
which is contained in that-par t icular diagnostic record in BCD, is then pr inted

After a l l c r r o r comments have been printed, control i s always re turned to
one of two points in the main diagnostic record. This will depend upon
whether the e r r o r encountered w a s a machine e r r o r o r a source p rog ram
c r r o r ,

The main diagnostic record spaces the System tape to e i ther the machine
e r r o r o r the source program e r r o r record in the FORTRAN Monitor, de-
pending upon the aforementioned e r r o r return. The diagnostic ' then pr in t s
the end comment and t r ans fe r s control to 1-CS to read in the p rope r Monitor
e r r o r record.

Operator options, i f any, a r e printed by the Monitor e r r o r r eco rd on the 709.
The options will vary depending upon whether the sys t em i s operating in the
Monitor mode o r single compile mode.

THE DIAGNOSTIC RECORD FOR SECTION I"

A few diagnostic records obtain information f rom an e r r o r l i s t left in upper
m e m o r y by the system record that has called the diagnostic, The diagnostic
r eco rd for Section I" i e such a record , DO03 is-unique in tha t it contains a l l
of the e r r o r comments for Section I", ra ther than just one comment. In the
kase of D003, the information for a par t icular e r r o r is preceded by a flag.
The format of the e r r o r l i s t i s descr ibed in the wri te-up for Section I'andI" .

4'

DO03 per forms a table search in o rde r to determine which subroutine within
itself i s to p roces s the e r r o r current ly being teeated in the e r r o r list. Th i s
table s ea rch i s done by comparing the fiag in the e r r o r l i s t with the first word
of a two word entry in an e r r o r table,

The f i r s t wordkin the e r r o r a t a b l e entry i s the'location of a TSX t o the error
routine in Section I". The second word i s the location of the subroutine in
DO03 for processing that type of e r r o r . When a match has been found, the
table s ea rch routine t r ans fe r s control to the proper subroutine. The sub-
routine ex t rac t s whatever information i t may need f rom the e r r o r l i s t and.
l ike other diagnostic s , u se s the subroutines in the main diagnostic, r eco rd
for producing an e r r o r comment. When the subroutine has finished i ta t ask ,
control i s re turned to the table search routine. At this point the subroutine
will have cor rec t ly incremented the index reg is te r that re fe rences the e r r o r
l i s t so that the table search routine will examine the next flag in the e r r o r list.

DO03 i s a l so given a word count of the number of words in the e r r o r l i s t by
Section I". The table s ea rch routine t e s t s against th i s word count for an ex-
hausted e r roy list. If the e r r o r l i s t has not been fully t rea ted , the p roces s
of table searching, t ransfer r ing to a subroutine, and returning to the table
s ea rch routine continues. When al l accumulated e r r o r s have been t rea ted ,
DO03 then re turns control to the main diagnostic record.

The main diagnostic record will spaae the System tape to the source program
error record in the FORTRAN Monitor, this ie due to the fact that all errors
found by Section I" are assumed to be source program errors.

t
m r A A N \ZfCT/ON I"
G/NfRAI D/AGM#r/C
ON ACCUH UL A T 8 0 --
W A C f 6AAOR$ iZWM0
IN J ~ C T K ~ K J r '{r "
&& OWN C A l L f R

GENERAL DIAGNOSNC: ' / lo

SPEND

r /c CALLS* FROM SC'CT/ON J"
FIG. 9

ro
MA/N D/AGNOJT/C
RECORD f000/)

W A / T P
O /A6NOJr /C C./IADING
SEC T/O N NUMBrR
RFCORD NOM8I"R
r ' X L G C R r i O N

\ I rmr
SL'CT/O# f"
D/4ONOSNG 0 1 1 . RKCORD (DOOJ) ,

NO I'
*

rot/

SOUR CE
Xi+'ROR RECORD

+

* UNI /S lX0
J

Dl4 CNOS f4C CALL
R€CO8D (000;2)

APPROPR/A r&'
SUBROUT/N&" YO
P R / # ~ P E R ~ I N E X ~ ; PSR f d M 6 N r
ERR04 MYJ3ROL" ' ERAOR #&$$'A&#

UnoAOs yo00 4 982)

t '
>

TABLES GENERATED BY FORTRAN 2. 04. 00

During the execution of the For t r an E::ecutivc program the source program
i s examined and broken down into two principle par ts . These two forms a r e
CIT's (compiled instruction tables) and tables.

The objective of the Fol :ran execut ive routine is o present 1.0 Section VI.
t he source program in CIT form. Section VI wi l l examine these CITts ,p ro -
duce the relocatable binary deck map of s torage, and the symbolic].istin$.

When CIT's cannot be completed in a given section, ~ablcs are generated to
be passed on to subsequent section? :o suppl~l the nccessary information to
complete the CJT1s. A good many of tlicse tablcs a r e generated by Section
I and edited by Section 1 ' . Section I ' wri tes these tables on tape 3 2 in files
3 , 4 and 5, The f i r s t word of each of these records is an identification num-
ber and the second word i s the word count of the record.

Following will be a brief description of some of t h e principably used tables
generared by For t ran .

ASSIGNED CONSTANT 2. 04. 01

The Assigned Constant table i s generated by Section I11 during tho scan of the
TIFGO table, which contains the ASSIGNED GO TO entr ies .

During Section V, i f any index saving . instructjons are necessary to the rc-
sult of the GO TO, the assigned constant table will be updated so as to r e -
flect th i s condition.

The table i s preceded by an identification number and the tablc. Each assigned
constant i s a one-word binary number in the decrement field correep0,nding to
s o m e internal formula number used in the source program.

I F N

During the Section V ' all Assigned Constant entries wil l be placed in CIT
form for the 5) region.

Section I11 will wri te the Assigned Constants a s the eighth file on Tape B2.
Section V after updating will wri te them as the tenth file on Tape 3 2 .

CALLFN (also called CALLNM) 2 , 04, 02

The CALLFN record i s a table of internal formula numbers IFN's pr-esented
in CALL statements. Each entry into the table requi resonly one full word.
The decrement word contains the internal formula number I F N of the first
variable in the CALL statement.

Each I F N in FORVAL is searched for a s a f i r s t I F N in CALLFN. If found, 6' i t i s replaced by the corresponding las t IFN. When al l entr ies have becn
$ x o c c ~ ~ c d the C A L L F N [ah].-'{s Sea& .,

This table was written during Section I onto tape A4 a s buffer s ize records.
It wi l l be read in by Section I and processed,

CLOSUB

The CLOSUB record i s a table of closed subroutines called for in the source
program. A closed subroutine is one with a single entrance and single exit.
Ent r ies a r e made in the CLOSUB record when the source program re fe r s to
a eystem subroutine o r function type subprogram, a subroutine o r function
defined by fhe programmer , o r by INPUT/OUTPUT statements and by any use
of any For t r an function that a re defined a s closed subroutines. The functions
ABSF, XABSF, INTE, XINTF, MODE", XMOOF, MINOF, MINIP, XMINOF,
~ M I N I F , FLOATE, XIFXF, SIGNF, XIGNF, DIMF, XDIMF, a r e open sub-
routines. One entry i s made in the CLOSUB table for each subprogram called
for in the source program, this one word contains the BCD name of the func-
tion o r subroutine.

The CLOSUB table i s stored on Tape A4 during Section I, Section I' will then
' edit these buffer s ize records and rew'rite this table on Tape B2 in the fifth

. file with the f i r s t word being the identification number. The second word
being the count of the number of wordk in the table.

I (BGD) Name of Subroutine I

COMPILED INSTRUCTION TABLES 2. 04.04

By the end of Section 111, the object program i s completely compiled in
symbolic form (with the exception of l ibrary subroutines and some constants).

Ultimately most source information must appear in Compiled Instruction
Table, (CIT), form.

Most CIT's a r e s tored on tape during the run of the executive routine. There
i s only one standard four-word format for CIT'a:

WORD 2

LOCATION SYMBOL
(B CD)

OPERATION CODE
(B CD)

SECONDAlR Y LOCATION
SYMBOL

DECRENENT
OCT

W O R D 3 MBOLIC A
(B CD)

ADDEND

DDR ESS

I TAU TAG
OCT

t

The decrement of word one contains the I F N . (location symbol), of the in-
struct.ion in word 2. The address of word 1 i s the secondary location s y m -
bol i f needed,

The decrement of word 2 contains a BCD memonic representation of the in-
struction for which this entry i s made (i. e , , CLA, OCT, ADD, etc.). F r o m
th i s entry the reader can appreciate the sophisication of the F o r t r a n t r ans l a to r ,
the executive program has writ ten a symbolic instruction which will be sub-
sequently assembled by an assembly program s imi la r to most symbolic as-
sembler s. The addres s of word 2 contains, if any, the decrement of a type
A instruction.

Word 3 contains a BCD representation the symbolic addres s ass igned to the
ins t ruct ion by the executive routine. A's'in coding by hand, the executive
rputine uses symbolic addressing in wri t ing its instructions in symbolic form.
It i s interesting to note that the symbols used by the machine have no mnemonic
value to the human reader but of course a one bit difference in configuration
i s accurate enough discrimination for the machine . A typical symbolic addres s
i s 6). The decrement of word 4 i s the addend to the symbolic address in word
3 o r the relative absolute part of the addxess of the instruction.

F o r example, in CLA N t 3 , !:he t3 would be entered into this field. The addrese
of word 4 contains the symbolic tag of the FORTAG table for this instruction.

The COMPAIL file generated by Section I and the COMDO f i le generated by
Section I1 a r e typical CIT tables. The COMPAIL file i s contained in file 2
on tape B2, the COMPDO fi le that is gknerated by Section 11 i s contained in
fi le 2 of tape A4.

COMMON 2 .04 05

Normally data and instructions a r e compiled adjacent to each other in order to
p re se rve high o rde r storage cells.

The COMMON statement permi ts the programmer to assign specific co re
storage areas to the storage of data. The COMMON statement i s the follow-
ing form: COMMONX, ANGLE, MATA, and MATB,

The items listed after COMMON statements wi l l be assigned to core s torage
s t a r r ing at l ~ c a t i o n 774618 and continuing downwards, Ent i re arrays may be
shifted to upper storage through the use of the COMMON statement.

Tllc COMMON tablc is a compilationoi all COMMON statements and i s rccord-
cd on tape A 4 in Scction I and edited by Section I ' and wri t ten on tape 02 in the
fifth iilc,

12acil en t ry into the tablc rcqui res a s many w o r d s as the re items in the l i s t
following the word COMMON. FOI- e s n t ~ p l e , the COMMON statement: COMMON
X , ANGLE, MATA, MATB requil-es t h e u s e of four full words and is recorded
in the following format i n BCD:

w O n D 1
W O R D 2
W O R D 3
WOI<D 4

DIM 2, 04. 06

The DIM reco rd i s generated dur ing the ar i thmetic processing in Section I
s to rage , as a resu l t of encountering DIMERSION sta tements , and i s left in
for Section 1'. Recal l that the DIMENSION statement cons is t s of a l i s t of
variables with an integer in parenthesis following the variables. Integer r e -
prcscnts the greatest number of elements in an array, During Section I' the
DIM table is converted to the SIZE table,

The DIMENSION statement is not execu ted (no inst ruct ions will appear in the
objcct program for this statement) but wi l l p r e se rve blocks of s to rage f o r sub-
scr ipted dimensions and four words for th ree dimcnsions. The en t r i e s a r e
made according to the following format :

Onc-dimensional a r r a y : Example: DIMENSION A (7)

W O R D 1

WORD 2

Decrement
A

Address
Subscripted Variable

W O R D 3 A. 3.7

Two--dimensional a r r a y : Examplc. DIEMSNION A (7, 12)

Decrement
A

Dimensions .

check -sum of en t ry

Address
Subscripted Variable

12 Dimensions 1 & 2

+12 Check sum of entry

Three--dimensional a r r a y : Example: DIMENSION A (7, 12.6)

IVORD 1

WORD 2

Decrement
A

Address
Subscripted Var iab le

Dimension 1 & 2

W O R D 3

W O R D 4

Dimension 3

Checlc sum of entry

DOFILE (C) 2. 04, 07

The DOFILE (C) i s a file of CIT en t r ies of subroutines, neces sa ry to complete
re la t ive constants, These are generated by Sect:oil I1 after examination of a l l
the DO sta tements i n the source program.

The DOFILE (C) i s recorded, in standard CIT format , on tape B2 as the eighth
file. A count of the number of r eco rds is recorded as a one word r eco rd on the
tape B2 file nine.

The DOTAG (B) table i s the resul t of an analysis of pr ior i ty of interlocking
DO sta tements (nests) . In' this analysis an entry is made in the DOTAG
table for. eve ry entry i n the TDO table. Each table cons is t s of nine words ,
the firat five are identical to the corresponding entry in the TDO table. The
last four words are a result of an analysis , by Sec t io l~ 11, of the nests of DO
statements. The l a s t four words have the followiiig format:

Level Number of this DO xs (n2-nl+n3/n3) n3

N i Level of definition of nl

,:c I I I I I I n2 -
Eras - name of tag which
able will be used-for test , I I

I I I I
I ' n3

* Contains b i t s , the rightmost of which de te rmines the highest level of
t r ans fe r f rom this DO,

EIFNO 2 , 04. 09

After the analysis i s done by Section I the l a s t I F N number + 1 is left in a cell
called EIFNO, The EIFNO table consisting of 1 word only wil l be c a r r i e d over
to Section I ' as a memory table. This will be used during the scan of TIFGO
by Section I". The scan looks a t the EIFNO table to see i f any IF or GO TO
en t r i e s a r e outside the range oi" the source program.

The EWNO table will be wri t ten a s the first word in the SIZ table by Section
1'. This wil l be used by Section VI to form the base location fo r lower s torage
var iables .

END 2. 04. 10

The END sta tement pe rmi t s the p rog rammer to compile several programs

within one job. The Monitor Scan r eco rd , upon sensing an End c a r d , w i l l
p a s s control to t.he F o r t r a n routine. After compilation of the first job
F o r t r a n will turn control back to Scan, t,o inl t ial izc the second p r o g r a m
This p r o c e s s wil l continue until an end of file is sen . l d on the input tape
This indicates an end of job to Scan

Jn a'ddition to the batch compiling fea ture of the End s ta tement , r t also j.8

used to indicate Sense Switch se t t ings . This wil l perm1.t the programmer
t o u s e s epa ra t e s e n s t swi tch control for each program.

The END table cons i s t s of 15 en t r i e s , one fo r each Sense Switch option At
present . the f i r s t five a r e ope ra t i ve These correspond to the f irst five
Sense Swltches on thc ope;ators cons~1 . e The remaining 10 wil l be added
later as additional system fea tures a r b needed,

The options of each Senoe Switch, 0, 1 o r 2 , a re stored in the a d d r e s ~ por
tion of each entrys, in the END table,

This i s generated during Sect,jon I and held in storage until SecCion I ' when
it is wr i t t en on tape B2 i s the fifth file i t will be used by Section VI, a s
opt.lined jn the F o r t r a n Monitor Operat ions Manual.+, to proceee the pro*.
g r a m s options

The EQUIT r e c o r d is a table containing a l l the informaf jon included i n
equivalence s ta tements Each item jn the p a i r s of parenfhesia requzres two
full 7 0 9 words fo r s to rage The f i r s t w o r d contains the variable name i n
BCD f o r m The cons t a i~ t , i f p r e sen t , i s conver ted to binary, and stored
i n the second word. If no constant i s p r e sen t , i t is taken to be one, and a
one i s s t o r ed in the second word , This p r o c e s s continued for each 'apecifi
cation in the Equivalence s ta tement . A minus slgn in the last entry indicate8
the end of a s e r i e s of equivalent s to rage locations

WORD 1 VARIABLE NAME: (BCD)

W O R D 2 N

W O R D n VARIABLE NAME !BCD)

W O R D ni-1 N

The ECUIT r eco rd is generated dur ing Section I and edited in Section I' and
written as the 12th r eco rd in t h e 5t.h f i le on tape B2,

The E'IXCON record i s a table of fixed point constant specified by the program.
These constants a r e entered in fixed point form a s data o r a r e subsequently
computed from other fixed point constants. These numbers, entered with-
out decimal points during READ statements a r e defined according to somc
FORMAT statement as fixed point constants, a r e one of the types entered into
FIXCON table. Numbers appearing a s constants in statements of the form
A P 3 + B a r e entries in the FIXCON table; in this example 3 i s the entry.

The FIXCON table i s generated during Section I and retained in core until
Section 111. Each entry requires two full words, the f i r s t being the fixed
point constant in binary, the second i t s check sum,

WORD 1 FIXED POINT CONSTANT

WORD 2 CHECK SUM

FEOCON 2. 04. 13

The FEOCON record is a table of floating point constants occurring in the
\source program, They may be entered from an input source such a s ca rds
o r tape, omputed from combinations of floating point constants, o r appearing
as coefficients with decimal poiote in For t ran source statements.

The FLOCON table i s developed during Section I and is stored in core , in the
same format a s the FIXCON table. That i s , there a r e two words required
for each entry, the f i r s t containing the floating point constant and the second
the check s&n of this o8e word.

The FLOCON table i s written on tape B2, file 4, the f i r s t record by Section 1'.

FMTEFN 2. 04. 14
I

The FMTEFN i s a table of external formula numbers associa ted with the for-
mat numbers in read-write statements. For each read-write statement a
one word entry i s made in FMTEFN containing the binary equivalent of the EFN.

The FMTEFN table was written a s buffer size records, during Section I, on
tape A4. During Section I t a s the table i s being assembled, the entr ies a r e
compared with the FORMAT table. If any statements in the FORMAT table
a r e missing, (no match i FMTEFb; , , , an e r r o r l i s t i s developed for Section
1'. The table will not be needed again and i s considered dead.

FORMAT RECORD 2. 04. 15

The FORMAT Record i s a table of arguments presented in FORMAT state-
ments. The arguments a r e stored in BCD form in sequential storage loca-

tions. Since the length of arguments i s a variable, the number of words reo-
quired to store all the argument must be variable. Eech entry into the table
i s separated from succeeding entries by a word filled with bits.

WORD 1 E F N of Format statement

WORD 2 FORMAT SPECIFICATION (BCD)

WORD 3

W O R D 4 ALL ONES

This is recorded on tape A4 in buffer size records by Section I. During
Section I' i t is edited and written as the second record of file 4 on tape B2,.
The FORMAT table wi l l be used in Section V'.

FOR SUB 2.04 16

A FORSUB entry is made for each arithmetic function definition appearing
in the source program. The function name appears on the left side of the
equal sign and the parameters appear on the right,

Each entry in FORSUB requires 2 words. The f i r s t word is the function
name, the second word is the internal formula number of the statement,
F o r exampl.:: FIRSTF (X) A*X+B. The table appears:

W O R D 1

W O R D 2

The FORSUB record i s retained in memory until Section I', when it i s
written as the only record in file 3 on tape B2.* The first word of the
FORSUB record i s the COMPAIL record count: and the second word is
the FORSUB word count.

FOR TAG 2. 04. 17

The FORTAG record i s a table that represents an index to the TAU table.
It has a one-word entry of the following format:

*XR INFO, This field indicates whether or not the FORTAG entry
use an absolute o r symbolic index register. If there are no ent r ies . a
symbolic XR i s inferred, If there i s an entry the field is t reated like the
tag field of an instruction (i. e. , 24 : XRA, 25 - XRB, 26 -: XRC).

-
t I F N
1 \ 7 24 26 2': 35

+XR
INFO

6#INDEX TO
TAU TABLE

P

** Index to TAU table. The bit configuration in this .field indicates which
TAU table entry has the assokiated IFN.

The table i s generated during Section I and written in buffer size records on
tape A4. During Section I1 the table i s edited and written' a t the 11th record
in the 5th file on tape BZ with i ts identification label.

. .

FORVAL AND F O R V A R 2, 04, 18

The FORVAL and FORVAR records are tables of the fixed point non-subscripted
variable, appearing to the l e f t of (FORVAL), and the right of (FORVAR), the
equality sign in a statement, A fixed point non- subscripted variable must satisfy
the following conditions:

1, Must be six o r l e s s characters,

2. The f i rs t character must be alphabetic.

3. I an integer, it must s tar t with I, J, Kj L, M or N.

+. Muat not read like a function name.

5. Must not have a left parenthesis following it.

6. Must be entered a s data in fixed paint form.

F o r example, i f A and B are fixed point torrh, the statement, "ARG - BRAND
4-6" contains "ARGI1 a s an entry in the FORVAL table and "BRAND" as an
entry in the FORVAR table.,

Fo r example, the statement A R G = BRAND +6 would be written:
FORVAL TABLE (BCD) -.

FORVAR TABLE (BCD)

B R A N D

The tables were generated during Section I and temporarily stored on tape
A4 in buffer sized records. The tables a r e edited during Section I' and
written as the 9th and 10th records in file 5 on tape B2.

FRET 2. 04. 19

The FRET table is a table generated from the FREQUENCY statement given

in the source program. This i s a variable Idngth entry table; that i s , each
entry occupiee an indeterminate number of words, dependent on the number
of branch points described by frequency statements. Each FREQUENCY state-
ment permits the programmer to specify the number of t imes a particular
branching point will be utilized by the source program. F o r instance, a par-
ticular IF statement may appnar in a program as :

b

The programmer can best use index registers in the program by informing
the program that branch 10 will be used five t imes, branch 20 will be used
three t imes and branch 30 will 'be used six t imes, by entering the following
frequency statement:

FREQUENCY 38 (5, 3. 6)

The general form i s

FREQUENCY N (i, j, k. ...)

Where N = EFM of branch point

i , j; k : frequency of each branch

Entr ies into the FRET table a r e rade according to the following format:

Decrement
WORD 1

WORD 2

WORD 3 3

WORD 4 6

The length of each entry will be determined by the number of branches.

During Section I the FRET table was written a s buffer size records on tape
A4. During the editing by Section I f , each E F N in FRET i s searched for in
TEIFNO. When found it is replaced with the corresponding IFN. If not found,
it i s set equal to zero a s an e r r o r signal for Section 1'. The FRET table is
then sorted by I F N ' ~ ~ form an ordered list. It i s then written as the 12th
record of the 5th file on tape B2.

HOLARG 2. 04. 20

The HOLARG record i s a collection of Hollerith arguments in CALL state-
ments. In a CALL statement, the Hollerith argument, is not describing an
argument of some subprogram, but is itself the data to be operated on. An
example of this kind of CALL statement is:

CALL (9HEND POINT)

In this example the name of the subprogram i s "SUBP" which i s a hardcoded
program. In the argument 9 specifies the number of Hollerith charac ters that
follow and the H specifies that the data i s Hollerith. "The HOLARG" table will
contain only the "END POINTH the 9H will be dropped. Since any number of char-
ac tera may be specified, "the HOLARGu table can be a variable number of words
per entry. F o r this reason a word of all ones i s written a t the las t word in the
table,

A s in the above example the table would look like:

WORD 1 E N D bl P 0

WORD 2 P N T bl bl bl

WORD 3 77 77 77 77 77 77

The HOCARGE table i s written during Section 1 on tape A4 a s buffer size r e -
cords. During Section I' i t i s written as the 4th record in file 5 on tape B2
with its label number and word couht. This table will be used during Section
VI to generate the 5) region.

NONEXC 2.04. 21

The NONEXC record i s a table of IFN's and associated E F N t s for non-execu-
table For t ran statements. The following statements are non- exeautable:

PAUSE, FORMAT, DIMENSION, EQUIVALENCE, FREQUENCY

Each entry into the NONEXC table requires only one word. The decrement
of this entry contains the I F N , and the address contains the EFN of the non-
executable instruction.

The HOLARGE table i s generated during Section I. It i s retained in co re until
Section I t , when i t will be used to detect t ransfers to non-executable s tatements ,
and flag these as e r r o r s . The NONEXC table will not be used again.

r -
PREDESSOR

During the flow analysis by Section 1V the source program is broken down
into what is termed Basic Blocks. A Basic Block is a stretch of source
program i ~ t o which there i s only one entrance and from which there i s only
one exit. Exit must here be interpreted in the logical sense, that i s , i t
m a y consist of m o r e than one transfer instruction, going to a variety of
Basic Blocks. Each of these Basic Blocks, then i s a ~ u c d e s s o r Basic Block.
As implied by this, Section IV must mark off the basic blocks of the program
and determine the Successor and Predessor Basic Blocks for any one Basic
Block. During the flow analysis by Section IV a count of the number of t imes
that a Basic Block i s entered, this i s called the flow count, The PREDESSOR
table is made up of one word entries for each Basic Block.

F L O W COUNT BASIC BLOCK NUMBER

The decrement portion of the Predessor table entry. contains the flow count,
the address portion contains the Basic Block number. The PREDESSOR
.tablp i s passed on from Section IV as a memory tab'le to Section V to be used
for a further analyais of the flow of the source program.

The SIZ table contains the variable and maximum dimensions of arrays. This
table i s made up of the product of the dimensions contained in the DIM1, DIM2
and DIM3 tables .generated by Section 1.

The SIZ record requires two full words for each entry. The entry is of the
following format:

WORD P VARIABLE NAME (BCD)

WORD 2 TOTAL SIZE OF ARRAY

For example: given elhe DIMENSION statement:

DIMENSION C (3 , 4, 5)

The table entry would appear as:

WORD 1 C (B CD)

WORD 2 *60 (BIN)

The SIZ table is written as the 3rd record in file 4 on tape IBZ..by Section 1'.

For t r an can also call in subroutines described by the progralnrrler in the
source program. , F o r example, the subroutine introduced by the statement
SUBROUTINE MATMPY (A, N, M, B , L, C) could be called into the main
program by the statement:

Essentially, what happens is that the previously descr ibed MATMPY sub-
routine is brought into the compilation with the arguments of the SUBROUTINE
statement. Naturally the arguments of the SUBROUTINE statement should
correspond in mode, number, and order to those of the original MATMPY
subroutine,

Each chr ; - / into the SUBDEF record requi res one full word fo r the name of the
subro~!~ . i l~e (i, e. , MATMPY) and one full word for each of the arguments includ-
ed (A, N, M, B, L, C) is recorded as:

W\ORD 1

WORD 2

WORD 3

Decrement Address
MATMPY (BCD)

W O R D 4

WORD 5

WORD 6

W O R D 7

The SUBDEF table i s recorded in buffer s ize r eco rds , during Section I, on
tape A4. During Section I1 it i s writ ten a s the second r eco rd in file 5 on tape
B2 with i t s table number and word count.

SUCCESSOR

The SUCCESSOR table i s identical to the PREDESSOR table descr ibed in
Section 2. 04. 22. The main difference is that the addres s portion of the one
word entry contains the SUCCESSOR Basic Block number instead of the P R E -
DESSOR basic block number. This table i s passed on to Section V as a memory
table.

TAU

The TAU table i s a collection of the subscr ipt information used in 1/0 l i s t s o r
in Arithmetic expressions, The TAU table m a y be one, two, o r th ree dimen-

/2+
sional, recorded in the following format:

Subscript i a one-dimensional:

TAU1

WORD 1

WORD 2

CB is coefficient

Subscript is two-dimensional:

TAU2

WORD P

WOpD 2

WORD 3

WORD 4

I VARIABLE NAME I (BCD) I
I VARIABLE NAME 2 (BCD) I

Subscript i a three-dimeneional:

TAU3

WORD 1

WORD 2

WORD 3

WORD 4

WORD 5

WORD 6

C1 i s f i r s t coefficient
C2 i s second coefficient
C3 is third coefficient
d l i s f i r s t dimension from DIM3
d2 is second dimension f rom DIM3

TDO

The TDO record i s a table which resul ts from DO statements in the symbolic
program, Each entry require8 five full words, The five words a r e written
according to the following format:

WORD 1 Decrement

W O R D 2

Address

Decrement

Internal formula number (IFN of the DO
Statement (O()

The E F N of the l a s t statement executed
under control of the DO statement (@)

The BCD symbol for the integer variable
of the DO statement (I, J, K, L, M or N)

WORD 3 Addrese F i r s t value of variable (n 1)

WORD 4 Address Final value of variable (n2)

WORD 5 Address Increment of the variable (n.) 3

The following DO statement would result in the table entry shown:

WORD 1

W O R D 2

WORD 3

WORD 4

'I': GHD 5

TIEFNO

Decrement
5

Address
8

Two reference numbers are associated with For t ran statements, the i n t e r r ~ l
I F N and external EFN formula numbers, All statements in the source pro-
g r a m have internal formula numbers (IFN) . These numbers a r e assigned to the
statement sequentially starting with 1. The external formula number (EFM ,
on the other hand, i s an arb i t rary integer assigned to the statement by the pro-
g rammer , generally to permit reference to the particular statement by the
source program. There is no need to assign an external formula number to
any statement to which reference i s never made. Therefore, a l l s t a t e m n t s
have IFN and some have both I F N and EFN,

The EFN's and their corresponding IFN1s are stored in the TEIFNO record
by the t ranslator during the run of Section I. Each statement requi res the
use of one f u l l word for storage. Then entry i s made as fo lows:

e PFN 1 E F N

F o r exampie, i f the following statement i s the 28th etatement in the program,
the indicated table entry i s made.

STATEMENT

TEPPNO Entry

The TEiFNO table i a written as buffer size records on tape A4 during Section
I. During Section It i t i s written a0 the fifth record in file 5 on tape BZ with
i t s correspondiq table number and word count.

The TIFGO record i s a table of the IF, ASSIGN, and GO TO statement in the
eource program. Each statement in the program demands the use of two full
709 words for storage. This section describes entr ies that resul t f rom each
type of statement. The f i rs t word of the f i r s t record in the TIFGO table is the
label number.

IF Statement Entry. Example: IF (E) nl, n2, ng

The entry for this statement i s shown below:

WORD P

WORD 2

Unconditional. GO TO Entry. Example: GO TO n

The Entry for this statement is shown below:

WORD h

WORD 2

Assigned Go To Entry

In this type of statement the GO TO destination i s determined by a previous
ASSIGN statement. The l i s t of alternativeefollowing in parenthesis a r e mrely
a l i s t of al l the possible GO TO destinations.

For example, consider the following statement:

The GO TO destination will be the ith statement. The TIFGO table entry for
this statement would be:

WORD 2

*CTRAD1 - The number of the entry in the TRAD record corresponding
to the f i rs t possible transfer address given in the GO TO argument.
**CTRADN - The number of the last possible transfer address.

Computed GO TO Statement. Example: 26 GO TO (B1, B2, Bg. . .BN! 1.
In thie type of statement a transfer will take place in the objhct program dependent
on the current value of I. I is a variable which i e assigned some computed integer
by the source program. The transfer takes place to the Ith term of the GO TO list
of B's. For example, i t the value of I i s computed a s 3, then the program will
t ransfer to the third location in the l is t of locations which follow GO TO (B3 in
the example). The entry for the computed GO TO takes the following form:

WORD 1

WORD 2

Assigned Statement Entry. Example: ASSIGN 30 to N

CTRADl

This statement i s used in conjunction with a GO TO statement, as described under
the computed GO TO Statement,

CTRAN,

The table entry of the above example takes thefollowing form:

*Unconditional '

WORD P

WORD 2

Indicator- Controlled IF Statement. Example: IF(indiaator type) A1, A2

(IPN)

This statement is used in conjunction with:

6*

~ s s i ~ k e d value 30 e

1, Sense switches
2. Sense lights
3, Divide check indicator
4. Accumulator overflow light
5, Quotient overflow light

If the corresponding indicator i s on o r switch i s down, transfer of the program
proceeds to the statement specified by the first number following the parentheeis.
If the corresponding indicator i s off or switch i s up, transfer of the program pro-
ceeds to the statement spetified by the second number following the parentheeia.

The table entry takes the following format, for the example given:

Decrement Address
WORD 1

WORD 2

+3 t Sense Switch o t Sense Light
4 I Divide Check
5 = ACC or MQ ovdrflow

The TIFGO FILE table is written as buffer size records on tape A4 during
Section I. During Section I' i t i s written a s the sixth record in'file 5 on
tape B2, with its corresponding table number and word count.

TIFGO FILE 2. 04. 30

The TIFGO FILE table i s generated in Section 111. It is proddced from the
TIFGO and TRAD table from Section I, and the TRALEV and TRASTO table
from Section PI.

The need for the TIFGO FILE of instructions a r i ses in the following mahner.
The main body of computing an indexing instruction, included in the COMPDO
file, arc absociated with the beginning and end of DO'S. However, i f a trans-
fer should exist within DO certain indexing and saving instructions will be
necessary i f entry i e made back into the DO from the transferred point. The
TIFGO FILE contains the CIT's necessary to produce these index saving in-
structions.

The TIFGO FILE i s recorded a s the eighth file on tape B2 by Section III;
During the last pass of Section 111 theTIFGO FILE i s read in from tape B2
and merged with the COMPDO and COMPAIL files. This merge constitute8
the f irst file on tape A4, at the end of Section 111.

TRAD 2.04, 30

The TRAD table contains all of the possible transfer addresses listed in
assigned and computed GO TO statements.

As many words a r e used a s there are transferred to, addresses in the GO
/-\ TO'statement. The transfer address (EFN) i s entered in binary foan into the

C3 address field of coneecutive words in the TRAD table.

The following GO TO statement would cause the following table entry to bc madc:

T R A D

W O R D 1

W O R D 2

WORD 3

n1 (EFN)

n2 (E F N)

WORD m n, (EFN)

The T R A D table is written a e buffer size records on tape A4 during Scction I.
During-Section I' a l l external formula numbers (EFN) a r e marched for in
TEIFNO and when found are replaced by their cor roeponding internal formula
numbs; (IFN). TDO is then written as t h e eighth record of file 5 on tape B2.

TSTOPS 2, 04, 32

The CSTOPS table contain6 the extarnal and internal formula number o associated
with the STOP etatements in the souree program. Each entry into the table
requires only one full word. The decrement of the word contains the IFN and
the address contains the EFN of the STOP statements.

An entry is also made in the TSTOP table for return statements. The TSTOP
table will be le f t in core for processing by Section IN. At the end of Section I"
the table will no longer be used.

File

,450
APPZNDIX A

FORTRNq TAPE I32 STATUS BY SECTION
(Thisconf igura t ion holdo only at the end of the given section)

CONTENTS Written by Overwritton by
Section Section $3

1 SOURCE: PROGRAM (BCD) - 1 FORTRAN Peripheral
Statement card/record Reader or card-

2 COMPAIL - 100 worde /record I-Pass I1

I @OMPAIL RECORD COUNT and FORSUB
(if it exiots)

Table
Lab e 1

Table Name
(In order ao on tape)

FORMAT
SIZ
END
SUBDEF
COMMON
HOLARG'
TEIFNQ
TIFGO
TRAD

FORVAL
FORVAR
FORTAG
FRET
EQUIT
CLOSUB

Maxi mum
No, of Words

1800
boo0
2320

15
180

2400
3600
3000
2400
1000
3000
4000
6000
6000
3000
6000
6000

DOTAG B - variable number of record8 -war
iable number of entr ies / record 0-9 words/entr

DOTAG B RECORD COUNT

II - Block 2 (
I

I1 - Block 2 1
8 DOFILE C - CITts fo r A) subroutiries I1 - Block 4 111 - Merge I1

9 DOFLE c urn CQITNT I11 - Block 4 XI1 - Merae 111
8 TIFGO FILE 111 - M e r g e 1 1 1 1 x 1 - M e r g e 1 1 1
P..

8 ASSIGN CONSTANT 111 - M e r g e 111
9 FIXCON I11 - Merge I11

10 ASSIGN CONSTANT V - Part 3

STORAGE MAP (BCD) FOR PROGRAM VI

SY M B O U C LISTING FOR FR0GRA.M V'I

* Any overwriting of f i le (e) obs oletea all information previously following- it on the tape.

4'3,'
APPENDIX A

FORTRAN TAPE B3 STATUS BY SECTION
(Thie configuration holds only at the end of the given Section)

1 I CONDENSED SOURCE PROGRAM I I - PASS l I 11 - BLOCK 1

Overwritten

DOTAC A - Variable number of records;
variable number of entr iee/record; 9 word/
entry; maximum of 1350 word8
DOFHEE - INTERMEDIATE CIT's for DO
STATEMENTS 408 words/record

I1 - Block 1

Section * * - - .

by
File

I1 - Block 5

FLRSTFILE Mer'ged CIT'e of COMPAIL and
COMPDO) 180 words/recsrd

Contents

111 - Block 1

Written by
Section

111 - Block 1

111 - Block 1 I
I

V - Block A

3 TAGLHST - 15 words/record Block 3

. 4 BBLIST - 6 words/entry Block 3

CITqd FOR FORTRAN FUNCTIONS - 100
worde/record

I
- -- -

V - PART IV V"

ASSEMBLED TABLES

* -

DOUBLE ZND OF FILE MARK Block 3

I11 - Block 1

h BINARY OUTPUT (card image form) VI
a, P r o g r a m Card
be Binary Object Program
c. Lib ra ry Routines (i f requested)
d. EOF

IV - Block 3

* Any overwriting of file (s) obsoletes a l l information previously following it on the tape.

/ 3 C ' i

APPENDIX A

FORTRAN TAPE A4 STATUS BY SECTION

(This configuration holds only at the end of the given Section)

TRALEV - maximum 2400 worde/record

TAGTAG - 1 record/nest of DO1a with tags;

MERGED CITts OF @OMPAIL, COMPDO,

C

V I - PART A

2 CLOSUB (1 record) VI - PART A

* Any overwriting of file(a) obsoletes all information previously following it' on the tape.

/5'3
APPENDIX B

FORTRAN EDIT RECORD CHART - 32K SYSTEM

Record
Numbo r Deecription

File # 1 MONITOR

9F00
01
02
03
04 .

05
06
07
08
09
09. 1

File # 2

9F10 .

1 1
12

9F 13

1-CS
Card- to- taps
Dump
Sign - on
FAP-Pass P
F A P - P a s s 2
Monitor Scan
BSS Control
Machine Error
Sou*ce Error
Dummy Record

SECTION IE

Pass 1
Pass 2
Diagnostic

SECTION T o

SECTION I"

SECTION I1

Block O n e
Block Two
Block Three-A
Block Three-B
Block Four
Block Five
Block Six

SE CTXON I11

9F22 Block One-A
23 Block One-B
24 Block Two
25 ' Block Three

Tranofer
Addrese

Initial
, Address

23
144
144
144
144
232
144

74454
144
144
IL 44

144
3000

21451

10 14

315

' 144
' 310

3 10
42 1

15321
14147

3 10

27340
144
310
3 10

Final #2 Word (Loc 568)
, Address , , Fortran Records

XXX X X X XXX XXX

100 012 000 145
100 024 000 145
100 036 000 145
100 050 000 232
100 062 000 232
100 074 000 145
100 106 074 457 '

100 120 000 145
100 132 000 145
100 133 000 144

- 2-
Trsnnfor Initial Final

Acldroca
//Z W o r d
J7ortra.11 Rccorci.3

SECTION IV

93[;'26 Block One
27 13lock Two
28 Block Threo

SECTION V I
9F29 Part One

30 Part Two
3 1 Part Three
32 Part Four

SECTION V' I

SECTION VI

MONITOR

9F42 Tape Mover
4 13 BSS Control

Filo # 3 LIBRARY

File # 4 GENERAL,
DIAGNOSTICS

	Table of Contents
	FORTRAN Monitor
	Introduction
	Start Card and 1-CS
	Listing of Fortran Start Card
	Listing of 1-CS

	Card to Tape Simulator
	Dump
	Sign On
	Fap
	Scan
	BSS Control
	Machine Error
	Source Error
	Tape Mover

	FORTRAN Compiler
	Introduction
	Section I
	Section I'
	Sectoin I''
	Section II
	Section III
	Section IV
	Section V
	Section V'
	SectionVI

	Fortran Library
	Input/Output Library

	General Diagnostics
	Tables Generated by Fortran
	ASSIGNED CONSTANT
	CALLFN (CALLNM)
	CLOSUB
	C.I.T. (Compiled Instruction Tables)
	COMMON
	DIM
	DOFILE (C)
	DOTAG (B)
	EIFNO
	END
	EQUIT
	FIXCON
	FLOCON
	FMTEFN
	FORMAT
	FORSUB
	FORTAG
	FORVAL and FORVAR
	FRET
	HOLARG
	NONEXC
	PREDECESSOR
	SIZ
	SUBDEF
	SUCCESSOR
	TAU
	TDO
	TIEFNO
	TIFGO
	TIFGO FILE
	TRAD
	TSTOPS

	APPENDICES
	A Fortran Tape Status By Section
	B Edit Record Chart

