E "\{E PROGRAMMING SYSTEMS
' llv ANALYSIS GUIDE

3

709/7090 32K FORTRAN

Preliminary Copy

©1961 by International Business Machines Corporation
Printed in U. S, A. Form R23-9673

TABLE OF CONTENTS

1. 00. 00 FORTRAN MONITOR 1
1,01. 00 Introduction 2
1. 02. 00 Start Card and 1-CS .

1.02.01 Listing of Fortran Start Card 8
1, 02,02 Listing of 1-CS 9
1..03. 00 Card to Tape Simulator 10
1. 04. 00 Dump ' 13
1. 05,00 Sign On 14
1. 06. 00 Fap 16

- 1.07.00 Scan ‘ ' 17
1. 08. 00 BSS Control 21
1. 09, 00 Machine Error 23
1. 10. 00 Source Error 24
1. 11, 00 Tape Mover ' 25

2. 00, 00 FORTRAN COMPILER 29
2.01 00 Introduction 30

2 01.01 ‘ Section 1 31
2,01 02 Section I' 36
2.01.03 Section I" 42
2,01.04 Section II 47
2.01. 05 Section III 53
2,01, 06 Introductiory Sect. IV:and ¥ 59
2.01,07 Section IV ‘ 61
2.01.08 Section V 67
2.01.09 Section V! 74
2.01.10 Section VI ‘ 76
2.02.00 Fortran Library 97
2,02,01 Input/OQutput Library 100
2 03.00 General Diagnostics 106
2. 04. 00 Tables Generated By Fortran 111
2.04.01 ASSIGNED 'CONSTANT 111
2.04,02 : CALLFN (CALLNM) 111
2.04,03 CLOSUB : 112
2,04, 04 C.1.T (Compiled InstruTabled}lL)
2,04 05 COMMON 113
2.04.06 _ DIM 114
2. 04,07 DOFILE (C) 115
2.04.08 DOTAG (B) 115
2.04,09 EIFNO 115
2.04. 10 END 115
2.04.11 EQUIT 116
2.04.12 FIXCON 117

O

@

2.04.13
2,04, 14
2,04, 15
12.04.16
2.04.17
2.04.18

2,04, 31
%, 04, 32

APPENDICES

M
FLOCON
FMTEFN
FORMAT
FORSUB
FORTAG
FORVAL and FORVAR
FRET
HOLARG
NONEXC
PREDESSOR
S1Z
SUBDEF
SUCCESSOR
TAU
TDO
TIEFNO
TIFGO
TIFGO FILE
TRAD
TSTOPS

A Fortran Tape Status By Section

B Edit Record Chart

117
117
117
118
118
119
119

121

121
122
122
123
123
123
125
125
126
128
128
129

130
133

FORTRAN MONITOR 1.00.00

INTRODUCTION 1,01, 00

The FORTRAN System tape is written as four files. (See Figure 1l,) The
first file constitutes the major portion of the monitor, Contained as indi-
vidual records in this first file in order as they appear on tape are 1-CS,
Card to Tape Simulator, Dump, Sign On, FAP I and II, Scan, BSS Control,
Machine Error record, and the Source Error record. (See Figure 2.).
The second file is the FORTRAN Compiler plusthe Tape Mover record
and an additional BSS Control. This second BSS Control is used to save
time if execution is desired, otherwise the System tape would have to be
backspaced to the first file to read BSS Control. All the library subroutines
that FORTRAN and FAP require are contained in the third file, The FOR~
TRAN diagnostic routines and error messages are contained in the fourth
and last file on the System tape.

The FORTRAN Monitor System may be used in both the monitor mode and
single compile mode. In the single compile mode, only FORTRAN compila~
tion can be done. It also might be pointed out that in the single compile mode
the only record used in the monitor file will be the Card to Tape Simulator,
from this control passes directly to FORTRAN in the second file,

Since the standard method of operation is in the monitor mode, the descrip-
tion of the system will be from this standpoint, and only under special con-
ditions will the differences be pointed out,

Operating in the monitor mode, a large number of jobs may be stacked on
the input tape, The limiting factor to the number of jobs that may be stacked
i s the capacity of the tape reel.

A job may be defined as a basic unit that will be processed by the monitor at
any one time. It will consist of at least one, but can contain many programs.
The job can be in one of two states, either Execute or Non-Execute., As an
Execute job, all programs in the job must be related to one another, these
will be executed immediately after any assembly or compilation that is re-
quired. As a Non-Execute job, the programs need not be related, since

only assemble or compilation can be done. For a more comprehensive ex~
planation of job processing, reference should be made to the 709/7090 FOR~
TRAN Monitor Reference Manual, Form C28-6065,

The FORTRAN Start Card is used to initialize the System. This will rewind
the System tape, load the first record, which is 1-CS., 1-CS is a general pur-
pose tape loading routine which remains in lower core storage at all times
during an assembly or compilation. It is used to load all monitor and FOR~
TRAN records, and after loading will transfer control to their respective
entry points,

Once 1-CS is loaded, it will in turn load the Card to Tape Simulator. The
Card to Tape Simulator test the card reader for presence of cards., If the

hopper is empty, the input is assumed to be from tape. This tape will be
A2 if in the monitor mode, if not in monitor mode, i, e., single compile,

the input tape is B2. If cards are found in the reader, a card to tape sim-
ulation will follow until all cards have been read and the End of File is met.

At this point’the next record (DUMP) is skipped, control is again given to
1-CS to read in the Sign On record. The Sign On record will read and print
the first record onthe input tape, this should be the I. D. card. It is in the
Sign On record that the customer may insert his own coding to process
accounting information that might be contained in the 1. D. card. If an ac-
counting clock is available in the machine, this also could be read at this
time,.

At the completion of Sign On processing, the next two records (FAP) are
skipped, control again passes to 1-CS to read the Monitor Scan record.
Monitor Scan will read all remaining control cards, and set up the proper
indicators for processing by the appropriate routine. Control now passes
via 1-CS to FAP if a FAP control card has been encountered, or to BSS
Control if the remaining cards on the input tape are binary and the job is
to be executed, if neither of these conditions exist the monitor assumes

a FORTRAN compilation, therefore, control passes to FORTRAN in the
second file.

After the completion of a FAP, FORTRAN or BSS relocation, control

passes back to the Monitor Scan record, This will continue until all pro-
programs in the job have been processed, At this time if execution is desir-
ed, control once again passes to BSS control to load the relocated program
and begin its processing. If this job were not to be executed, control will
pass back to the Sign On record, instead of BSS Control, to begin the next
job, '

This whole process continues until no more jobs are left to process, at
this point the card reader will be selected and the program hangs up. The
operator now has the option of removing the output tape, loading a new in-
put tape, and re-initializing the system with the Start Card, or depressing
the card reader start key for a final stop.

JOLINOW NYYLYO4 -2 3uN9id
- ¢ ! L j i/
/) HOLVINWIS A1 . _, ~ _ ! : IN
¢ 1. a - [3avi|B 13 ‘18 5 - |3 o] ou1noo} ayooan P cuoo3 :
.\\. 4|53 o.ﬁmaﬁv 3| awnala) wonoisia| 1aval3| 11 dva [F|nvos |3| .ssa |3 souwd anHOVW[E| wOwu3 3dunos| m
7 , . i i
Jv o/ \.
A NS
e N
J
3dVL WILSAS NVMLN¥O4 “13uN9Id
‘ F
f— /
IN = (tv=2v) 10OHINOD SS8 ONY UIAOW \ :
34VL SNIVLINOD OSTv
NI (e—0 sOHOD3Y) m (17—01 SQuOD3Y) M m w o
/ HOLINOW | = NVYHLHOL | 7] A¥VYHEIT |1 |OLLSONDVYIQ | KI
: . 7

O

L0GIC

OF _I'ME FORTRAN SYSTELT

F CARD

READS N [-CS
S£I3 rrowniroR

*AG
‘
sraeam

ramar \Al /=-CS
CARD 70

rAPE

- s1r004
ON LINE INPI '
canp orFcx

(oPTIONAL)

REC. &

MNONITOR
A2 INPUT TAPE

SINGLE SOURCHE

pECK 70 &F

PROCHIS IO OY
FORTRAN

©

CURRENT
PROGAAM
SOUVACFK ¢ urm"s, FARP STrACKED
.———‘ MAP AND SYMBOLIC gco ovrPUr
L73TING PRINTER)
gco weur
LIBRAR ﬂ SrAcKeo
" B3) swwany ovrrur BG4 | amary ovrwr
(PouNCH]
£C | REC £:5
FAPE
STrACKELD
B2 MOVER 2¢0 ovrsur
(PRINTFR)
s ;: ‘cmra
4/ , owrevr
‘ B4 Yowck) orrrowas
REC £,
835
5 15q CowrmoL B2
sir own x 83 /
&8/

!
833

NARY TAPE
;g;aw-, conraoL
x
8/
COLVMN ‘
SINARY VT

CMAIN WTERNFDIATE
BINARY STACKING
rAPE

NON=CHAIN
STACKIND
TAPS

CHAIN OB
SrACKE O
ARy rmrs

NON - CNAIN
STACKED SI18ARY
INAUP FAPY

FIGURE 3

w”O
"" T "—’
"w REQUIRED

A3)aco rrsuiry

1-CS AND START CARD 1.02. 00

The Start Card is a one card self loading binary card. It is used to initia-
lize the FORTRAN monitor system, for batch compiling and/or execution,

To set the FORTRAN monitor in motion, the Start Card is placed in the card
reader, the load cards button is depressed, a bootstrap loader will then read

in the remainder of the START CARD. Control is passed to the location 144g,
the first instruction beyond the bootstrap. The System tape is first rewound
and then the first record on the tape is read in, The first record is the FOR-
TRAN loader called 1-CS, the tape read operation is checked for a redundancy
error, if one occurred the tape is backspaced and another attempt is made

to read 1-CS. If three unsuccessful attempts are made the pro gram will HALT,

If the Start button is depressed three more attempts will be made and so on,
When the read operation is successful a flag bit is set in the sign position of
location 42g to indicate that the jobs that follow will be processed in the moni-
tor mode. Control now passes to location 50g in 1-CS.

1-GCS will be used to lpad all monitor records and FORTRAN Executive records.
If redundancy checks occur while reading any record the program will HALT,
only one attempt will be made per redundancy check.

The first two words of any System record contain the information necessary
to indicate where loading begins, how many words are to be read and where
to transfer control when loading is complete. Also contained in word two is
the FORTRAN or monitor record number times ten that is being loaded, this
will be used if a call is made to the Diagnostic record to ascertain the type of
diagnostic message that should print.

The make up of the first two words- of any FORTRAN or Monitor record are:

WORD 1 |211] WORD COUNT V////ALOAD ADDRESS |
WORD 2 [001] RECORD NUMBER X10f/7Z/Z]TRANSFER ADDRESS|

Also contained with 1-CS is the diagnostic record caller. This routine will
be used by FORTRAN SectionI' through Section VI to call the Diagnostic file

. (file 4) for any error, source or machine. Prior to reading in the Main diagnos-

tic record the area that it will occupy is saved as a single record on tape A3.

&

LISTING OF FORTRAN START CARD

The following is a listing of the Start Card and shows
quence in the card and also the location in storage:

SEQUENCE . STORAGE

ON CARD LOCATIONS OPERATION
0 0 IORT
1 1 TCOA
2 2 TTR
3 144 LTM
4 145 AXT
5 146 REWA
6 147 RTBA
7 150 RCHA
10 151 TCOA
11 152 ~ TRCA
12 153 '~ CAL
13 154 . | STP
14 155 TRA
15 156 TIX
16 157 HTR
17 153 - 10CP
20 161 TCH

1.02.01

the instruction se-

ADDRESS, TAG,
DECREMENT

144, 0, 77777
1
144

3,1
1-
|
160
151
156
153
42 (Monitor Flag)
1
146, 1, 1
145
0,,3
0

S . Nl SRS

7

LISTING OF 1-CS B 1. 02,02

u The following is a listing of 1-CS and shows the instruction sequence on
tape and also the locations in storage:

SEQUENCE STORAGE ADDRESS, TAG,
ON TAPE - LOCATIONS OPERATION . DECREMENT
0 0 IORT 23,,77777
1 1 TCOA 1
2 2 , TRA 50
3 : 23 ‘RTBA 1
4 24 RCHA 37
5 25 RTBA 1
6 26 RCHA 37
7 27 WTBA 3
1 10 : 30 . RCHA- 41
11 31 RTBA 1
12 32 ‘ RCHA 41
13 33 } TCOA 33
14 34 TXI 157
15 35 BSRA 3
16 36 HTR 36
17 7 IORPN 0, 2, 717777
20 40 TCH 37
21 41 IORT 156, 0 4704
22 42 PZE (Monitor Flag Cell)
23 43 - PZE (Chain Flag Cell)
24 44 PZE (Chain Flag Cell)
25 , 45 © PZE (Job Lines Output Counter)
26 46 BSRA ' 1 '
27 47 HPR 77777, 7
i : 30 50 RTBA 1
31 ' 51 RCHA 54
; 32 52 TCOA ' 52
33 53 TRCA 46
34 54 I1I0SP ' 55, 0, 2
35 55 IORT | **,,**"% .
36 56 TXI L L

First two words of any monitor or FORTRAN record,

/0
CARD TO TAPE SIMULATOR 1.03. 00

After the card to tape simulator has been read into storage, by 1-CS, con-
trol is passed to it, This will be the only time that this program is used,
The monitor flag in 1-CS is tested to determine, if this is a monitor or
single compile operatien., The card reader is then selected, if an End-of-
File is sensed on the first read cycle the program assumes the input is

from tape. If the input is from tape, control passes to record 3, Sign On,

to begin processing the first job. If we are not in the Monitor mode, card

to tape simulator will pass control directly to FORTRAN record 10, If

the card reader End-of-File was not sensed, a simulated card to tape opera=-
tion will follow, Cards with a 7-9 punch in column 1, indicate that they are
column binary and therefore must be converted to Row binary format before
they may be written on tape, Cards with an 7-8 punch in column 1 will not be
written on tape but cause an EOF to be generated on tape. All other cards
are considered to be Hollerith and are checked for illegal punching prior

to being transcribed onto tape, Illegal Hollerith punching will cause the
machine to stop with a HPR 7777, in the storage register. The rules for
correcting and reloading the card reader are analogous to a READ CHECK
stop on the off line card reader,

The cards are read in double buffered, to allow the card reader to operate
. at full speed.

<) When the final EOF is sensed on the card reader, an EOF will be written
on tape., The input tape is then rewound, record 2 is skipped a.nd control
is passed to, Sign On, record 3.

If the monitor flag is off, at the termination of the card to tape si mulation,
the remainder of File one will be skipped and control passed directly to,
FOR TRAN (record 10).

®

CARD TO0 T7APE SIMULATOR

MONITOR RECORD */

o

- START
CARD
ers?r
wuau;:'o
- REA
/- €S EFOE FOUN

NO
AIRYT Y
READ can THIS
deagn o MON I IPOR

OLPFRAT/ON,

4

&S INITIALIZ N INITIALIZE
ALY rasre
82
5 — I
A Ad
rf:rY ‘.
WAS CAdD '8 TS
READER 7 MowsiroA rs
yor rouny - OPERATION,
ro I,“
CwECK 2 @ .

. 7 ware £vo wary 7o o skip Enriee| | sxip warr
NO P Rows OF AUX o FIE QN AR PRSP mIiE REconr
IV coi. one SNIP FNFIRP SH1P WEXT corO

} [220 RECORD
5 17 AN I -]] - -
nireae \Y /-cs /-¢s | [/-¢5 | [/=¢5 |
PUNCH
FORTRAN SI16 N oN FORTRAN cN ON
@ #i9. 9 9. & [2 ”n;, £
HEGR
BESIN RENO 47 14LOcAL
WS ANOTrNER PUNCH
cARD . I1WOICATIR
OLALH. _'6
WAS LAST INITIALIZE CMECK NALE MNAre 8o
CARD RFAD SrOARAGE OFCARD KOR | NALVFS oF
MHOLLERITH, svrraas iteene roncy
NO
/ARy }
CONVERF

coLumMn ro
RoVy 8/vAcy

SEGIN
WRIFING oo/
VW JUFFER

4 2e. 2 alen 777

FACK SPACE
S APPRINIArS
FAPE ONE REQ

\®

wArd Aan
v om FlE
AL oR o2

L

FIGURE 4

13
DUMP RECORD WITH DUMP CARD 1.04. 00

The Dump is used when trouble is experienced during compilation or ex-
ecution of a job, This will give the Programmer or Customer Engineer
a printed record of the contents of core storage and the OP panel indica-
tors, which can be used to ascertain the possible cause of trouble.

Actually the Dump record can be called by three different methods, Two
of these are through the use of FORTRAN statements, these are CALL
DUMP (?) and CALL PDUMP (?). For the description and use of these
see the 709/7090 FORTRAN MONITOR, Reference Manual (Form Number .
C28-6065). The third method of calling the Dump record is by using the
Dump card, which should be available at all installations using the
FORTRAN System.

The Dump Card will ohly destroy the first three locations in storage, This
is accomplished by initiating a Write tape to dump the first 3500¢ locations
of storage, then delaying the information on the card from coming in until
the locations necessary for storing this information have been dumped on
to tape. This delay is accomplished by reading the first fifteen words of
the card into locations 0, 1 and 2 and causing the program to transfer to
itself at location 1. After this delay the System tape is rewound, the first
and second records skipped and then the Dump record is read in, at which
time control is passed to it.

 'The Dump program will cause the entire contents of memory to be written

onto tape A3, following any FORTRAN output from this job or from previous
jobs. The storage entry switches are interrogated to determine whether or
not mnemonics are to be included and to see what course of action to take
after completing the dump. These options are fully explained in the 709/
7090 FORTRAN MONITOR, Reference Manual (Form Number C28-6065),

/¥
SIGN ON (RECORD 3) 1. 05,00

The Sign On record is called only at the beginning or end of job, The
number of lines of output from the last job is picked up from the line
count storage cell in 1-CS. This number if greater than zero, is convert-
ed to decimal and written on and off line, If Sense Switch 6 is up, an

End of File will be written on tape B4, the stacked column binary punch
tape. At this time a test is made to determine if the input tape is po-
sitioned to read a new job (at the beginning of file). If not, the tape is
spaced forward until an End of File is encountered, The first record of
the file is then read and it i then determined if the first character is an
asterisk. If no asterisk is found, a comment is printed on line indicating
this, then the System tape (Al) is spaced to the Machine Error record
and control passes to 1-CS. If the asterisk is found the record is further
scanned to determine if it is an End Tape card. If it is, the End Tape card
is written on and off line, and a load card button sequence is simulated to
end monitor operation, If the first card is not an End Tape card, it is as-
sumed to be a true I. D, card, At this point, space is provided for the indi-
vidual installation to insert coding for accounting purposes; therefore, at
this point, differences may exist f{rom one installation to another, As the
standard program exists, the 1.D. card will merely be written on and off
line, After treating the I. D. record, the System tape is spaced to the
Scan record (rexo:xd 6), control is then passed to 1-CS.

S FJANOD/SL

9 674 e NS YOLINOW

m.cu.wka oyYd QYT '

4

$9-/
QoY
TS CL
SOVl IOYdS
1
_Oyo2Iy
DX UTYM
5 OXIF i
- o4 INNPOD
SONIT LTS
"2y SHr0I
Flr? FLIYM
DRIMINOS
FHIT ALO YO TS SO
Fove Kovreg oNF RIIYIM

‘793 TFNOV4S

SOPYD ovoTy - .
PLVINNIS :
‘OTY Yoy¥s
\ \ A FMIHIVYN
DY IyHL
sV ON? BLIYM. §$o—/
Py YOXNXT
SR IVH oL
YL IOV SS
oyod2y
+ oYyYo ox
W \R) ON FII¥M

Qyo27y |
‘oI OvIY

<l

v

OYTE INNOD
SNIT $t

on

o7y L2773
TS TLIYM
+ LXVLS
§o>-/ [V
OXo225 Je4nQ
2137 % oS00 -4
FHLOONENSER LA
MOLY TR

FovsL a2 OBV

O

E e QXOITFY

QY¥O27Y¢ HNO ND/S

/6

FAP (Records 4 and 5) 1, 06. 00

FAP (FORTRAN ASSEMBLY PROGRAM) was written, by the Western
Data Processing Center at Los Angeles, to satisfy the need to produce
machine language sub-programs for use with FORTRAN, FAP is also
a fast, versatile general purpose assembler for non-FORTRAN main
programs which has the additional advantage of operating within a moni-
tor system. Operating in the monitor mode, . it is possible to assemble
and run a FAP assembled main program with the same load,

When assembling FORTRAN sub-programs, FAP provides all necessary
information for direct communication with FORTR AN programs, including
the program card and appropriate transfer vector. Also, FAP output
occupies the binary card format required by the BSS loader.

The output may also be punched in the standard absolute binary format,
to be run independently of any operating system.

Operating under FORTRAN Monitor control it is possible to input the
symbolic deck on-line or off-line, however, the listing will only be
written off-line,

FAP main programs may call upon FORTRAN subprograms, FORTRAN
library functions or other FAP subprograms. The Monitor system and
the BSS loader provide the necessary communication, based upon infor-
mation given by the programmer in the calling sequences.. Because the
Monitor will accept programs in either binary or symbolic form, all
programs need not be assembled or compiled at the same time.

They may be assembled in stages, thus providing a very useful method
of debugging the main program. One.section at a time.

Detection of assembly errors does not stop the assembly, but does sup-
press card punching and execution. Diagnostic information is given in
the assembly listing. Control will pass to the Machine Error record or
Source Error record, depending upon the error detected,

/7
MO IITOR SCAN (RECORD 6) 1.07.00

Record 6 is the primary monitor record in that it interprets the control
cards which specify different system programs to be called. It also scans
FORTRAN programs and prepares a single-compile input tape for the

~compiler. Control is passed to Monitor Scan in the tollowing circumstances:

a) From record 3 (Sign On) after processing an I. D. card at the beginning
of a job

b) From record 5 (FAP) after completing an assembly not for execution.

c) From record 7 or 43 (BSS) after relocating a series of binary programs
when there are more symbolic programs remaining in the job.

d) From record 8 (machine error) or record 9 (source efror) or record 2
(dump) when it has been determined that the job should be continued after
an error

e) From the restart card "CONTINUE"

Operation is as follows: All input is from A2. Records are read double
buffered and scanned first for an asterisk in column 1. If this is found,
the mnemonics on the card are scanned and compared with a dictionary

of control card mnemonics. If no asterisk is found, the card is assumed
to be part of a FORTRAN program and a routine called SP is used. If

the card is column binary, and an XEQ control card has been encountered
earlier in the job., control is passed to BSS control (record 7). If the XEQ
flag is off, column binary cards are ignored. Asterisk cards not in the

dictionary are printed on and off line as remarks and then ignored. FORTRAN

source program cards are scanned and then transcribed onto tape B2
(FORTRAN input), A FORTRAN source card with a CALL CHAIN (N, Bn)
will be changed to CALL CHAIN (N, n). Upon encountering an END card,

a fabricated END card is simulated onto tape B2 containing output options as
indicated by control cards, previously encountered. Programmer's END
card options will be preserved i{ not in conflict with control cards, which

have precedence. Asterisk (control cards) found in the dictionary, are treated

as follows:

a) XEQ - A flag in 1-CS is set indicating execution is desired. A
- word of zeros is written on the beginning of tape Bl to indi-
cate that there is no snapshot {see record 7).

b) CHAIN () - If the execution flag is off, this is treated as a remark
~card. If on, the parameters are examined and a unique
control word is written on Bl (in front of the zero word)
and stored in a cell {(curchn) in 1-CS. 1If this is the lst link,
it is stored in a different cell (1st chn). A chain flag is set
in 1-CS (FLGBX).

&

- c) FAP - An END card is simulated onto B2 containing control
Lﬂﬁ card output options and control is passed to FAP Pass 1
' (record 4).
d) DATA - This should be encountered only if there was no execu-

tion flag (or if execution has been deleted). Control is
passed to Sign On unless the execution flag is on, in which
case an error message (incorrect deck set up) is printed
and control is passed to the source error record (record 9).

e) CARDS - A flag is set for the END card routine to set the appropriate
ROW, END card options
LIBE, ETC.

In eummary, control is then passed as follows:

Upon Recognizing: Go To:

a) FORTRAN END card Record 10 (FORTRAN)

b) Column binary card . Record 7 =30 Control)

c) FAP control card Record 4 (FAP)

d) Deck error .Record 9 (Source Error)

e) Machine error Record 8 (Machine Error)
Cj Note: Monitor Scan has its own diagnostic message and prints them on and

off line,

§NO OF FUS

[T OR
RECORD €
AZ
A2
acw
SPARCN
oicrionany
POA TYPE
OF CARD
pre

WA LAST
ICORD AN
\I7Q" care

~o

5T XFQ &7
N _{-C3
WAITE 24%0

)
X0 CARC
<=1 #AcAsFacr

Ersrsre ra

X7 corrron

WAITF grai¥

ASSOMILY

on ano omr
Y7

/-CS

e (=)

WAS LAIT
RFCORD A
‘DAra‘cano

PICK VP ran]
lano £fcok0
(WONEFA -

Ua0 Racone
NNOER 1 ¥

WAITE TAZ
RECORD

worern on

TalL,

«©

Wi

VeniFpo wo.

WA PAcr
r

RI!

TAD NTo 77
BNLER - SFT|
rrER
od

AREAD,

WAS rARE \ pos

AXOUNDANCY

TNCOUN.

WAS 1/
APK yoy

OUNTERED,
o

READ iNrO
ALINRNATE
SuvArERy

AJ
V3

rACHNA

&F

AOOAIY

NOTE.
CONTROL CAN BF AICEIVIO FRON:
1. SIGN ON (R7CORD 1)
A FAP (RFCORO
3. 833 CONrROL (RECORD 7% AS)
ANACNING % SOUACE FAROR AFCORD(RECORD B % 9)
& ovMP (RrcORD &)
s tonrinue® cano

WRITE OUT
LAST
QUFFER

[ca®0 papaperan]
(wrrw conraoL
TURN ON
SENSE 1/6HT|
owr
@
WAITE §RROR
MESSAGF
WRITE BECIN
COMPIATION

MACKINE FRAOR
sowrce arnon \GP)

FIGURE &

A/

BSS CONTROL RECORD (RECORD 7 OR 43) 1.08,00

Records 7 and 43 are identical except for tape positioning, which of cou: se,
makes the decrement of the second word on the Sy.item tape, the record
number, different, This record is duplicated in order to make it quickly
accessible either from FORTRAN (second file) or from Monitor Scan when
column binary cards are encountered or from a just completed FAP assembly,
BSS accepts card image input from A2 (column binary cards), B3 (FAP or
FORTRAN binary tape), or Al (library subroutines) using a generalized
double buffered read routine. The BSS program is located -in the top of mem-
ory, occupying the standard Corymon region. .

BSS will locate binary card images into locations 144g to 730004 730()08 to
74456, is used for a table of BCD program names. a missing subroutine
table, and a Transfer Vector table. These tables together with several
loading counts are referred to as the Snapshot,

Upon entry to BSS the Snapshot, from previous locations in the same job isa
read from tape Bl. If this is the first time BSS has been entered for this
job, a zero word will be read indicating that this is the first entry This
zero word was written by Monitor Scan if execution was called for

The appropriate input tape is selected by examination of the indicator regis
ter which contains a control word left by the calling record. If an assembly
(FAP) or compilation (FORTRAN) has just been completed, this will be tape
B3, otherwise the input tape will be A2 in the case of column binary cards.
The input tape is read in binary, transfer vectors are peelcd off and stored
at 144g. When a new set of transfer vectors are met, the relocated block

is saved as a single record on tape Bl. The first word of this record is a
control word specifying the size of the program and whether or not it has a
transfer vector. If transfer vectdrs do exist a second control word is written
giving the count. Jf B3 was the first input tape, when an End of File is met,
the input is switched to tape A2. If this input is binary, the process of read-
ing in, saving the transfer vector and relocating the binary deck starts anew.
However, if BCD information is met, it is scanned and compared with a
dictionary of control words An XEQ card is ignored. as it is obviously

in the wrong place. Any control card other than CHAIN or DATA cause
control to be passed back to monitor Scan. ‘

If 2 DATA or CHAIN card is recognized, the table of Transfer Vectors is
searched against the table of BCD names to form a table of missing subroutines
(MISUB). The System tape is then spaced to file 3 (library), the library is
scanned for the missing subroutines, when found they are read in and relocated
in memory. This search continues until the table of missing subroutines is
zero or two passes have been made over the library, If subroutines are still
missing they are listed on and off line with an appropriate error message, the
execution bit is deleted and control passes back to Monitor Scan to finish any
compilation that may be left in this job.

O

(\.

oA

Encountering the DATA control card indicates that all programs for this
job have been processed, relocated and written on tape Bl. Tape Bl is

now read, the Transfer Vector table is changed to TTR's with their pro-
per relocated addresses, and written on tape A4 in absolute binary form.

A test is now made to see if this is a CHAIN job, If not, a small execu-
tion loader is moved over 1-CS., The word "Execution' is printed, and
control passes to the execution loader., The loader reads the absolute
programfrom Tape A4 into memory. The last record on tape A4 is the
transfer word to the program.

If it is a CHAIN job, and the DATA card has not been encountered, tape
Bl is backspaced to the current CHAIN I. D, word, The current link is
then stacked on tape Bl. BSS is refreshed, and the process begins again
reading tape A2,

When the DATA card is encountered for a CHAIN job, the chain links are
edited from tape Bl and are moved to the specified chain link tape. The
execution loader is placed over 1-CS and the first link is read in as a
single job, except that it is read from Bl, B2 or B3 instead of from A4,
After initial loading of the first chain link, loading of subsequent links

will be done by the CHN subroutine. BSS control carries a large set of
diagnostic messages that print on and off line, After a diagnostic message
is printed, control will be given to the Machine Error record or Source
Error record which ever is appropriate.

A
MACHINE ERROR RECORD (RECORD 8) 1. 09. 00

If during processing of monitor or non-monitor jobs a supposed machine

error occurs, an attempt will be made to identify the failure. After this
failure is identified, an error message will be written on and off line. At

this point the System tape (Al) is positioned at the Machine Error record.

The routine will first find out in what routine the error was detected, (i, e, ,
FAP, MONITOR SCAN, GENERAL DIAGNOSTIC, BSS Control, or FORTR AN
Section I''") then print options to continue this job, restore memory or to retry.
Since the exit from this routine is @pendent upon the routine that called it, a
brief description of each entry will follow:

If Monitor Scan called the Machine Error record sense light 3 will be on,

In this case the error message '""JOB DELETED BECAUSE OF MACHINE
ERROR, PUSH START TO BEGIN NEXT JOB" will be printed. The System
tape will be backspaced to Sign On then the machine will halt., When the
Start switch is depressed, control will transfer to 1-CS to be read in Sign
On.

If FAP called the Machine Error record, sense light 1 will be on. The
errors that FAP believes are machine error are persistent tape errors,
overflow of various tables and table search errors. In some cases table
overflow errors may be caused by incorrect deck setup or faulty coding.

In any event instructions will be printed on line, indicating in most cases

the type of error and the course of action to be taken, Depending on the
instructions and the action taken by the operator, the program can be

deleted or continued, in either event control will be returned to Monitor Scan.,

When sense light 4 is found on, control was received from the General Dia-
gnostic., Since FORTRAN may be run indther the single compile or monitor
modes, the options to delete or retry will vary with the mode. Ineither
mode, to retry, control is passed back to FORTRAN record 10, Likewise
to restore memory and halt is the same in both modes. In the monitor mode
if deletion is called for, the source program is transcribed from B2 to A3
then control passes back to the Monitor Scan record.

When BSS control calls the Machine Error record sense light 2 will be on.
These errors are persistent tape checks that BSS control cannot get around.
The indication of the error is printed on line, the execution bit is deleted
and control is passed to the Monitor Scan record.

The last case will be with all sense lights off, when the diagnostic within
Section I of FORTRAN calls the Machine Error record. The printed messages
and the options are the same for this as they where when control was re-
ceived from the Main Diagnostic record.

SOURCE ERROR RECORD 1. 10,00
The Source Error record is called when a source error is detected. All
routines that can call the Machine Error record (see 1,09, 00) can also

call this record.,

The only processing that is done will be to delete the execution bit in 1-CS
if it exists and write off line, the reason for no execution.

In the Monitor mode if any record other than Monitor Scan called this record
control is passed to Monitor Scan, If Monitor Scan calls this record control

'is passed to the Sign On record.

However, in the case of a source error in the single compile mode the card
reader is selected and the program will hang up.

<25

TAPE MOVER (RECORD 42) 1.11,00

The Tape Mover record is entered at the termination of FORTRAN, If
the system is in monitor mode, the information from the single compile
print tape (B2) will be transferred to the stacked print tape (A3). Since
the third file (symbolic listing) is optional, FORTRAN in Section VI will
turn on Sense Light 2 to indicate to tape mover that the third file is need-
ed. The information on the binary output tape (B3) will be transferred to
the stacked binary tape if: (1) Sense Switch 6 is up and, (2) Sense Light 1
is ON (left on if column binary cards were not called for in Section 6).
When one or both tapes have been processed the execution bit is checked,
if ON control passes to BSS Control (Record 43), if OFF control passes
to Monitor Scan (Record 6).

Upon initial entry to Tape Mover if the system were not in monitor mode,
the card reader would be selected and the program would hang up.

$0-/

Foramo> 538

V22K MVIE
O rSVAN
41/5 v it

[

> Sy e VIS YOL/NOW

4

i

HeVs WO
‘Owkt J3und|
Wowwss srowss

£ DA

C¥o2I¥
oo vivwre
T
YIASSE AuN?t
ML N |
Axrwwrg avry
\PIs? OMO2TS T QWS
Sea200 QL SSTION Qs
AUIME LBE WIUME 295

\ AW Va # Ve 402
PUS ONIMITN

I
|

[-#0 vrssda
PrI w2t ..

3

r{4

N Xy vwn@|
LMY

annos

(7

&Y

S50/

1t 4O ONI,
NY _Svm

7
QLN _avI
‘w3 42779

144

WNILSAS

QNIMIY

W AR A
elaliy

NYYLYOS

7P 05003
TIAON FIVI

O

O

<9

FORTRAN COMPILER 2.00.00

9

Jo
INTRODUCTION 2.01.00

The FORTRAN Executive routine comprises most of the second file of the System
Tape. The exceptions are the two monitor records, Tape Mover and BSS Control.
FORTRAN is made up of 32 records (#10 through #41) which are called in one or
more at a time, FORTRAN is broken down into six sections each one given a por-
tion of the task of analysis of the source program. There are in addition to the six
main sections, four subsections, these are I', I', V' and pre-VI. These subsections
are in reality only extensions of the main sections to which they are attached.

These sections are operated on sequentially, that is there is never a return to a
previous section once contral passes to a succeeding section.

FORTRAN can be considered as falling into two divisions, the first comprised by
sections I, II and III, the second by sections IV, V and V1. This is due to the fact
that by the end of section III, the entire object program is essentially compiled.

It is, in fact, compiled except that it exists in the C. I, T. (Compiled Instruction
Table) format, and that it has as many symbolic index registers as are required,
It is the job of the remaining three sections to correct these two situations, Sec-
tions IV and V handle the task of inserting the absolute index registers in place of
the symbolic index registers., Since we are reducing a large number of symbolic
index registers to the three absolute registers, certain index loading and saving
instructions are necessary. This problem is also handled by Sections IV and V,

‘Section VI, replaces the instructions that are in the CIT format into the proper

relocatable binary format,

As for the first three sections, it may be considered that the first two of these

do the entire task of source program analysis., This task includes performing
most of the instruction (C, I, T,) compilation. With reference to some of the in-
structions, however, sections I and II simply record information, in tabular form,
to pass on to section III, which will use these as a key to insert the proper in-
structions. Because the analysis of sections I and II are independent, the C,I. T, 's
compiled are kept in separate files, which must subsequently be merged. Section
III, therefore, has the task of performing this merge as well as a second merge
of the C, I, T. 's that it, itself has created. Both section III and the last part of
section V, because of their position at the end of necessary primary analysis,
perform certain optimizing tasks consisting mostly of removing or inserting cer=-
tain instructions,

It is well to note that the FORTRAN compiler makes extensive use of tables. These
may be considered as of two types: those which are made up directly from the
source program statements, and those which result from further analysis. It is
the former class of tables which are included in this reference manual. A list of
some of these tables and their size limitations will be discussed as they are en-
countered. The latter class do, in some cases, impose further size limitations.
Most tables are passed on from one section to another; some however, ‘are created
purely for use within a section. The source program statement, once scanned,

are not referred to again, For a more detailed description of some of these tables,
see Section 2, 04. 00,

Sl
SECTION I 2.01,01

Section I has the primary output of a file of instructions called the Compail file,
The first CIT's that are written in COMPAIL are the Arithmetic Statement Func~
tions, These are labeled in such a manner that the Merge in Section III will re-
cognize and separate these from all other CIT's, and write them as separate files,
The arithmetic instructions, of course, refer to symbolic tags in the word four
address. Also included in this file are a partial translation of the IF and GO TO
Statements, the subprogram definition statements, and input/output statements,

With respect to the IF and GO TO Statements, Section I compiles the necessary test
instructions, but it cannot compile the transfer instructions. This is because Sec-
tion I does not know whether any given IF and GO TO Statement is in the range of

a DO and involves a transfer out of the DO, It is not until this is known that it can
go directly to the statement indicated in the source program, or go to a set of in-
structions providing necessary indexing, then the transfer to the specified source
program statement. The analysis pertaining to these indexing instructions is left
to Section II with the physical instructions being compiled by the second part of
Section III, In some cases, a CIT is created containing the transfer instruction,
but without the address, The address is filled in Section III,

With respect to subprogram definition statements, information is gathered which
is used by section pre-6 in actually filling in the prologue and index-saving in-
structions,

With respect to I/O statements, all instructions are compiled except those involv-
ing DO's implied by I/O statement lists., After Section I has scanned and identified

‘the source program statement, it handles it by transferring to a routine corres-

ponding to it, Then, of course, all information is tabulated and, when possible,
compilation performed,

A new internal formula number, initially zero, incremented by one, is assigned
to each source statement, whether that statement is executable or non-executable,
Where external statement numbers -- i, e., statement numbers assigned by the
gource programmer -- exist, the TEIFNO table serves to correlate the external
and internal statement numbers.

The greatest division in the handling of statements in Section I is between the
arithmetic statements and all others. The arithmetic compiler proper constitutes
the major portion of Section I in number of instructions. The arithmetic com-

piler in making its scan of the arithmetic formula makes an enormous number

of table entries in addition to doing its statement analysis necessary for compilation.

Among these tables are the TAU tables, recording subscript combination informatien,
the FORVAL and FORVAR tables recording fixed point variables occurring on the left
and right hand sides of arithmetic statements, FIXCON and FLOCON, recording the
converted fixed and floating point numbers. It should be noted that IF and CALL
statements fall onto both sides of this division. They are treated as arithmetic
statements, with compilation occurring, that is not due directly to the arithmetic
compiler, as well,

S

The arithmetic compiler is divided into the Scan, Level Analysis, various
O Optimizing routines, and the Compiler, The Level Analysis sifts out into
- one group all those algebraic operations which form a unit, A unit is a group
that must be performed together and have the same order of binding strength
for its operators. ''Plus'' and '"minus' are one order of operators, ''multiply"
~and '"divide' are another order, The latter has greater binding strength than
the former; consequently, when they occur in the same context the latter are
assigned a higher level number. Needless to say, the use of parenthesis in
an arithmetic statement is a prime factor in determinging units and, hence,
level numbers. Optimization occurs to minimize storage accesses. This
means that every attempt is made to link one operation to its successor via
the machine registers rather than the storage cells, The compilation then
proceeds from highest level number to lowest,

Flow Within Pass I of Section I

The input to Pass I is the source program in BCD form as a single file, on tape
B2, ‘

One record at a time is read into a buffer termied FT. All comment cards and
blank cards are ignored. A special mode character in card column one is saved. 1
If a statement number (EFN) exists it is converted to a binary number and saved.
The FT buffer is now moved to the F region, and a new record is read into the
'~ FT buffer. In this manner the program looks ahead one record at a:time, to de-
C " termine if there are any continuation cards, any non-blank, non-zero, character
in card column 6). All continuation cards are read for a given statement and
assembled in the F region, A word of all ones is written after the last non-blank
word in the F region to serve as an end-of-statement marker,

At this point a decision must be made as to whether the statement is arithmetic,
if not arithmetic, it is non-arithmetic, some of which are non-executable. The
beginning of the non-arithmetic statements are compared to entries in a dic-
tionary of non-arithmetic statement beginnings, If the statement is not identified
in the dictionary a diagnostic message is printed. ;

All executable statements including arithmetic are written on tape B3 with a cor-
responding label. These records on B3 are essentially the same as the records
on B2, except they are in a more compact form and are written in binary. The
records on B3 contain all continuation cards of a source statement, less terminal
blanks, and certain pre-digested information. : :

The non-executable statements are processed in Pass I and entries made in the
appropriate tables in core. If an external statement number (EFN) appears in the
source statement, an entry is made in the TEIFNO table with a corresponding in-
ternal formula number (IFN).

C‘ ! For use and operation of these mode characters refer to operating bulletins
- for the 32K FORTRAN System,

33

A

Flow In Pass II of Section 1

The input to Pass Il is the condensed source program in binary form as a single
file on B3,

One record is read in at a time, the first word of each record is a label for the
type of statement, This address portion of the label is the transfer address to
the appropriate processor.

As the statement is scanned, the various parts are classified and appropriate
table entries are made,

When all the statements have been processed, control passes to the next record

on the System tape (Al), This record is the Diagnostic for Section I, The diagnos-
tic record can be called earlier if an error is found in the source program or a mach-
ine error is encountered. The program consists of:

Program to prepare message
Print program
Table of comments

When an error is found or occurs during Section I control goes to the Diagnostic
Program by means of a TSX using IR4. There are several possible cases:

1 IR44 O signifies an error call.

1) First error: Print "Fortran Diagnostic Program Results'' heading
and proceed as in 2).

2) Not first error: Construct parameters for printing statement being
processed and comment,

a., If error was source program, return control to Section I for pro-
cessing next statement,

b, If error was machine, print "END OF DIAGNOSTIC' message and
go to Machine Error Supervisor program (record 8).

II IR4 = O signifies control was received at the completion of Section I,

1) No errors had occurred. Go to Section I',

2) Some source program errors had occurred, Write all diagnostic
information which has been printed on tape B2 following source
program. Go to Source Program Error supervisor program.
(record 9). ' ’

TABLES GENERATED BY SECTION I;

1. Generated by Section I and required for reference. These tables, retained in
cores are::

Q)

O

F¥

NAME DESCRIPTION

DIM1 one-dimensional arrays

DIM2 two-dimensional arrays

DIM3 three-dirﬁensional arrays
TAUl one-dimensional subscripts
TAU2 two-dimensional subscripts
TAU3 three-dimensional subscripts
FIXCON fixed~point constants
FLOCON ' floating-point constants
FORSUB arithmetic statement functions
END options specified in END statement

2. Generated by Section I and not required for reference. These tables, written

on

a.

b,

tapes in buffer sized records, with labels where needed are:

Written on tape B2, 100 words per record:

NAME DESCRIPTION
CIT COMPILED INSTRUCTION TABLE

Written on tape A4, in buffer sized records with appropriate labels,

U

LABEL

10
11
12
13
14
15
16

17

NAME

TEIFNO
TDO
TIFGO
TRAD
FORTAG
FORVAR
FORVAL
FRET
EQUIT
CLOSUB
FORMAT
SUBDEF
COMMON

HOLARG
NONEXC
TSTOPS
CALLFN

FMTEFN

—

)

DESCRIPTION

corresponding IFNs and EFNs

DO statements

IFs, GO TOs, ASSIGN statements

GO TO statements

IFNs - 1 - TAU tags

fixed-point variable usage

fixed-point variable definition
FREQUENCY statements
EQUIVALENCE statements

names of closed subroutines references
FORMAT statements

SUBROUTINE or FUNCTION statements
COMMON statements

Hollerith érguments in CALL statements
IFNs on non-executable statements
IFNs of STOP and RETURN statements
first and last IFNs of CALL statements

I - O statement references to FORMAT numbers

36 |

SECTION I 2,01.02

This section is a terminal processor for Section I, and is the longest of all secondary |
sections. ' b
The tables that Section I generated were written on tape A4 as buffer size records, n.f

as they became full, They can be many records on tape A4 all of the one table
type. These records are not necessarily on the tape consecutively but rather at
random intervals, also the buffers in Section I for these tables may have been only
partially filled at the end of Section I, These partially filled buffers are left in core
for processing by Section I'.

The primary task of Section I' is to collect all like tables from tape A4, combine
them, insert the partially filled buffer, determine the word count and write these
tables on tape B2, with a label number corresponding to the type of table.

Section I' also makes certain modifications, primarily the replacement of EFN's
with corresponding IFN's, using the TIEFNO table., This can only be accomplished
when the entire source program has been reduced to tabular form. An example of
where the external statement numbers have had to be retained up to this point is

in the TDO table, Here, the number referring to the statement number of the DO
itself may be an internal formula number because it is readily known due to the
constant updating of the current internal formula number. On the other hand, the
DO range had to be recorded as an external statement number at the time the TDO
table entry was made. This is because it could not then be known how may state-
ments further on in the program the end of the DO range would occur,

The input to Section I' consists of:
1. Various parameters describing tables (in cores).
2. Buffers containing terminal entries in tables (in cores),

3. Tables which Section I'require for reference (FORSUB), END, DIM1, DIM2,
DIM3, TAUl, TAU2, TAU3, FIXCON, FLOCON in cores,)

4, Tables which Section I did not require for reference. (COMPAIL, on tape B2,
TEIFNO, TDO, TIFGO, TRAD, FORTAG, FORVAR, FORVAL FRET, EQUIT,
CLOSUB, FORMAT, SUBDEF, COMMON, HOLARG, NONEXC, TSTOPS,
CALLFN, FMTEFN, on tape A4,)

The output of Section I' consists of:

l. Tables in cores: TAUl, TAUZ2, TAU3, FIXCON, FLOCON, FORVAL, TRAD,
TIFGO, TEIFNO, NONEXC, TSTOPS, '

2, Tables on tape:
Tape B2: File 1 is Source Program
File 2 is COMPAIL table

File 3Record 1 is FORSUB table except the first word which is the
COMPAIL record count.

J7

File 4 Record 1 is FLOCON table.
Record 2 is FORMA T table.
Record 3 is SIZ table,

File 5 Record 1 is END table,
Record 2 is SUBDEF table,
Record 3 is COMMON table,
Record 4 is HOLARG table,
Record 5 is TEIFNO table.
Record 6 is TIFGO table.
Record 7 is TRAD table.
Record 8 is TDO table,
Record 9 is FORVAL table,
Record 10 is CALLNM table,
Record 11l is FORTAG table.
Record 12 is FRET table,
Record 13 is EQUIT table,
Record 14 is CLOSUB table.

The tables are processed in the following order and manner:

32K Version - The contents of the Section I CIT buffer are written as- the last

record of file 2 on tape B2,

FORSUB - The table of names and degrees of arithmetic statement functions,

if any, is written after the COMPAIL record count which is the first word in
record 1 of file 3 on tape B2.

FLOCON=- The table of floating-point constants and its word count are written

as record 1 of file 4 on tape B2.

FORMAT - The table of format statements is assembled from tape A4 and the

Section I buffer., It is written as record 2 of file 4 on tape B2; preceded by its

identification (10) and word count,

FMTEFN - The table of references to fixed format statements is assembled from

tape A4 and the Section I buffer, Each reference to a format is checked against

id

the FORMAT table, If any referenced statements are missing an error list is
developed for Section I'.

DIM! - The table of one dimensional arrays is renamed SIZ, {

DIM2 - Each entry in the table of two dimensional arrays has its two dimensions
multiplied to form the size of the array. This table is added to SIZ,

DIM3 - Each entry in the table of three dimensional arrays has its three dimen-
sions multiplied to form the size of the array. This table is added to SIZ.

SIZ - The table is written as record 3 of file 4 on tape B2, It is preceded by the
EIFNO table and its word count.

END - The END table is written as record 1 of file 5 on tape B2,

SUBDEF - The table of subprogram definition is assembled from tape A4 and the
Section I buffer, It is written as record 2 of file 5 on tape B2; preceded by its
identification (11) and word count.

COMMON - The table of common variables is assembled from tape A4 and the Sec-
tion I buffer, It is written as record 3 of file 5 on tape B2; preceded by its iden~
tification (12) and word count,

HOLARG - The table of hollerith arguments is assembled from tape A4 and the
Section I buffer, It is written as record 4 of file 5 on tape B2; preceded by its
identification (13) and word count,

TEIFNO - The table of corresponding external and internal formula numbers is
assembled from tape A4 and the Section I buffer. It is searched for duplicate
external formula numbers. If duplicates are found they are flagged as errors

for Section I''. Those cases where Section I assigned more than one internal for-
mula number, are not considered as duplicatcs and the flag is deléted, ‘
The table is written as record 5 of file 5 on tape B2; preceded by its identifi-
cation (0) and word count.

It is also retained in memory for use in processing tables discussed-below:

TIFGO - The tables of IFs, GO TOs and ASSIGNs is assembled from tape A4 ;
and the Section I buffer, Each external formula number is searched for in :
TEIFNO and its corresponding internal number replaces it in TIFGO. Any "
external formula numbers not found are set equal to 0 as an error signal to
Section I'', When all entries have been modified the table is written as record
6 of file 5 on tape B2; preceded by its identification (2) and word count.

TRAD - The table of COMPUTED and ASSIGNED GO TO addresses is assembled
from tape A4 and the Section I buffer., Each entry, which is an external formula
number, is searched forin TEIFNO, When found it is replaced by the corres-
ponding internal formula number. If not found, it is set equal to 0 as an error
signal to Section I'. When all entries have been treated the table is written as

®

O

37

record 7 of file 5 on tape B2; preceded by its identification (3) and word count.

TDO ~ The table of DO's is assembled from tape A4 and the Section I buffer,
Each entry is examined to determine if it originated from a DO or from an
Input-Output List, If it originated from a DO the EFN for the end of the DO

is searched for in TEIFNO, When it is found the corresponding IFN replaces

it in TDO. If not found, it is set equal to 0 as an error signal to Section I",

In those cases where Section I assigned more than one IFN to an external num-
ber, the last such IFN is used so that the DO includes all instructions of the
terminal statement. When all entries have been treated the table is written

as record 8 of file 5 on tape B2; preceded by its identification (1) and word count,

-

FORVAL - The table of definitions of fixed-point variables is assembled from
tape A4 and the Section I buffer.

CALLNM - The table of first and last internal formula numbers of statements
containing references to subprograms is assembled from tape A4 and the Section
I bufier. Each IFN in FORVAL is searched for as a first IFN in CALLNM. If
found, it is replaced by the corresponding last IFN. When all entries have been
processed the FORVAL table is written as record 9 of file 5 on tape B2; pre-
ceded by its identification (6) and word count, The CALLNM table is dead.

FORVAR - The table of usages of fixed-point variables is assembled from tape
A4 and the Section I buffer. It is written as record 10 of file 5 ontape B2 pre-
ceded by its identification (5) and word count,

FORTAG - The table of tag usages is assembled from tape A4 and the Section I
buffer, It is written as record 11 of file 5 on tape B2; preceded by its identifi-
cation (4) and word count.

FRET - The table of frequency statements is assembled from tape A4 and the
Section I buffer, Each EFN in FRET is searched for in TEIFNO. When found ‘
it is replaced with the corresponding IFN, If not found, it is set equal to 0 as an
error signal for Section I''. The FRET table is now sorted by IFN to form an
ordered list.

TIFGO - The TIFGO table is now re-examined for any entries for COMPUTED GO
TO statements. The IFN of each such statement is searched for in FRET., If

found, the list of branch frequencies is reversed to correspond to the object pro-
gram transfer vector.

When all TIFGO entries have been examined, the FRET table is written as record
12 of file 5 on tape B2; preceded by its identification (7) and word count,

EQUIT -~ The table of equivalence statements is assembled from Tape A4 and the

. Section I buffer, The table is reformatized to make those variables which are

equated into strings of relativelized symbols. Any found to be inconsistent are
flagged as errors for Section I'. Any redundancies are deleted. The table is
then written as record 13 of file 5 on tape B2; preceded by its identification (8)
and word count.

@

37

record 7 of file 5 on tape B2; preceded by its identification (3) and word count,

TDO - The table of DO's is assembled from tape A4 and the Section I buffer,
Each entry is examined to determine if it originated from a DO or from an
Input-Output List, If it originated from a DO the EFN for the end of the DO

is searched for in TEIFNO., When it is found the corresponding IFN replaces

it in TDO. If not found, it is set equal to 0 as an error signal to Section I'",

In those cases where Section I assigned more than one IFN to an external num-
ber, the last such IFN is used so that the DO includes all instructions of the
terminal statement. When all entries have been treated the table is written

as record 8 of file 5 on tape B2; preceded by its identification (1) and word count.

FORVAL - The table of definitions of fixed-point variables is assembled from
tape A4 and the Section I buffer,

CALLNM - The table of first and last internal formula numbers of statements
containing references to subprograms is assembled from tape A4 and the Section
I buffer, Each IFN in FORVAL is searched for as a first IFN in CALLNM, If
found, it is replaced by the corresponding last IFN., When all entries have been
processed the FORVAL table is written as record 9 of file 5 on tape B2; pre-
ceded by its identification (6) and word count, The CALLNM table is dead,

FORVAR - The table of usages of fixed-point variables is assembled from tape
A4 and the Section I buffer. It is written as record 10 of file 5 ontape B2 pre-
ceded by its identification (5) and word count,

FORTAG - The table of tag usages is assembled from tape A4 and the Section I
buffer, It is written as record l1 of file 5 on tape B2; preceded by its identifi-
cation (4) and word count,

FRET - The table of frequency statements is assembled from tape A4 and the
Section I buffer, Each EFN in FRET is searched for in TEIFNO. When found

it is replaced with the corresponding IFN. If not found, it is set equal to 0 as an
error signal for Section I''. The FRET table is now sorted by IFN to form an
ordered list.

TIFGO - The TIFGO table is now re-examined for any entries for COMPUTED GO
TO statements. The IFN of each such statement is searched for in FRET. If
found, the list of branch frequencies is reversed to correspond to the object pro-
gram transfer vector,

When all TIFGO entries have been examined, the FRET table is written as record
12 of file 5 on tape B2; preceded by its identification (7) and word count,

EQUIT - The table of equivalence statements is assembled from Tape A4 and the
Section I buffer. The table is reformatized to make those variables which are
equated into strings of relativelized symbols. Any found to be inconsistent are
flagged as errors for Section I''. Any redundancies are deleted. The table is
then written as record 13 of file 5 on tape B2; preceded by its identification (8)
and word count,

A 4

“Lo

CLOSUB - The table of names of closed (library) subroutines is assembled from

tape A4 and the Section I buffer. Duplicates are eliminated, Each name in the
CLOSUB table is searched for in the SUBDEF table. If found, it is deleted
from CLOSUB as being a dummy name. The table is then written as record 14
of file 5 on tape B2; preceded by its identification (9) and word count.

NONEXC ~ The table of statement of non-executable statementsis assembled from

tape A4 and the Section I buffer., It is left in core.

TSTOPS - The table of statement numbers of STOP and RETURN statements is

assembled from tape A4 and the Section I buffer., It is left in core.

MISC - One is added to the last IFN used and it is left for Section I'.
—-ﬁ- N

SUBROUTINE S ~ There are two subroutines used by Section I',

TAPOO - Table assembly Program assembles tables written on tape A4 during

Section I. It uses the parameters left by Section I to determine for a given table:

1, number of records on tape A4,

2. number of words in each record, |

3. number of words remaining in the core buffer,

4, first location of core buffer,

The calling sequence in Section I' supplies the:

1. table identification (which also serves to locate the parameters left by Section I).
2. first location of buffer into which the table is to be assembled,

The routine tests each table for overflow against a table of permissible maximums.

Tables Assembled by TAP00 are shown on the following page.

O

NAME

TEIFNO

TDO

TIFGO

TRAD

FORTAG

FORVAR

FORVAL

FRET

EQUIT

CLOSUB

FORMT

SUBDEF

COMMON

HOLARG

NONEXC

TSTOPS

CALFN

FMTEFN

END

IDENTIFICATION MAXIMUM WORD
(First Word) COUNT
0 3000
1 3000
2 2400
3 1000
4 6000
5 6000
6 4000
7 3000
8 6000
9 6000
10 6000
11 180
12 2400
13 3600
14 1200
15 1200
16 2400
17 2000
19 15

vak

WATO00 - Writes assembled table on tape B2: preceded by its identification
and word count, Calling sequence supplies identification and first location

of buffer in which table has been assembled,

@

¥

SECTION I" 2.01,03

Section I made a determined effort to eliminate the errors in any one statement.
No effort was made in Section I toward relating a particular statement to the rest
of the program. It would not have been convenient to do so since the tables were

not complete nor in order. It was the job of Section I' to complete the tables and
get them in order,

Section I" therefore, can be considered nothing more than a continuation of Section
I' in the form of a diagnostic. It attempts to find as many source program errors
as possible arising from an interrelationship of the statements.

The errors that Section I" is able to find are mainly errors in program flow. Such
as transfers to non-executable or even non-existent statements, and conversely, no
transfers to executable statements which is not in the direct path of flow. These
and other errors, are found through a scan of the various tables of information
which comprise the 5th file on tape B2, These tables are of such rigid format that
it is easy to examine them for correct ordering and content, All errors found by
Section I'"" are accummulated in an error list by several different error routines.
The table scan is only discontinued by table overflow or a machine error. Section
I" uses the general diagnostic in the 4th file of the System tape.

In general then, it is true that by the end of Section I'' very nearly all source pro-
gram errors have been found., Such things as overlapping DO ranges and certain
rare cases of faulty flow still may not be found until Sections II, IV or V., Also
some table overflow errors may be found after Section I', however, most of the
tables are tested prior to this point and any overflow discovered, An understanding
of the conventions described in the examples below will be necessary for the des=-
cription of the tables that follow:

5 GOTO 10 5 IF (----) 10, 20, 30
HFcoto OKIF (- @ G G

(alpha) is the symbolic location

(beta) is the symbolic address

alpha and beta are in the form of internal formula numbers (IFN),
Section I'" first initializes the error list with the count of missing format state-
ments. The EFN's of missing format statements are left in the error list by
Section I'.

TEIFNO

The TEIFNO table is scanned for duplicate statement numbers. Duplicate
statement numbers are flagged minus by Section I' when it assembles the
TEIFNO table. If any minus entries are found, they are entered in the error

I g g T e P r—————————r LR UL A P -t e . T e

) list by the ERROR routine, TEIFNO was retained in core from. Section I',
'” TIFGO

Each of the 2 word TIFGO entries is examined for references to non-existent 1
statement numbers, i, e., that there are not any zeros except those peculiar k
to the particular TIFGO format, Section I' gives non-existent EFN an IFN

of zero, Further, each reference (3 must be to an executable statement.
Therefore, a 6 cannot be in the table of non-executable statements, the NONEXC
table. Each of the eight different types of TIFGO entries is checked by a
specific subroutine within the TIFGO processor. This scan of the TIFGO table
will result in the checking of the TRAD table, if one exists. If any errors are :
found, they are entered in the error list bydther the ERROR routine if 6 is
non-executable or the NOBETA routine if Q is non-existent, 3

In order to do a quick flow analysis the IFN CXof a TIFGO statement is entered
in the ALLPHA table, and the references (IFN @ 's) are entered in the BETA ‘ i
table. The number of branches associated with a particular TIFGO entry is ;
also entered in the ALPHA table with the IFNc<, All TIFGO entries, except
ASSIGNS, are entered into these tables. The position of an ASSIGN in the source
program does not effect the path of flow in the program.

The ALPHA and BETA tables are internal to Section I" and have the following

format:
ALPHA
DECREMENT, TAG, ADDRESS
N 0 IFN ¢~ N:: Number of
branches.
The table of STOP and RETURN statements, TSTOPS, is a part of
the ALPHA table.
BETA
DECREMENT, TAG, ADDRESS
0 or 1% 0o IFN G

*Decrement will be 1 if 3 is non~executable.

The BETA table consists of the (¥ 's from TIFGO, the entire TRAD
table, and the last IFN~=X +1l in the program. In the 704, the in-
clusion of machine language necessitated the building of a second
BETA table, the BETA2 table. This second BETA table is an ex~
tension of the BETA table and has the same format. BETA2 consists
of the TSKIPS table, table of skip type instructions such as CPY,

Ty

CAS, LBT, etc., and the CX +1 of conditional transfers from TIFGO.
Conditional transfers are TXH, TIX, TMI, etc.

FLOW ANALYSIS

Example 1 . GO TO (’)
X+1 DIMENSION X (5)

ol+2 FORMAT (F8. 3)
More non-executable statements,

X+4M A:=B +C

A brief flow analysis is performed using the information in the ALPHA, BETA,
and NONEXC tables. Each ©{in the ALPHA table is the termination of a path
of flow in the source program. Therefore, there must be a transfer to the
first executable statement following each O(in the ALPHA table, That is, that
the IFNo{+M in Example 1 must be in the BETA table, since é's are state-
ments transferred to. In reference to Example 1, the flow analysis processor
will first search the BETA table for OX +1. Not finding (X+1 in the BETA
table, it will then search for ©{+1 in the NONEXC table, and a match will be
found, Upon finding O +1 in the NONEXC table, the processor will then follow
the same procedure for o{+2, o{+3,......, - +M. In searching for M, if
the processor finds it in the BETA table, the processor will then proceed to
execute a flow analysis for the next :")(in the ALPHA table. However, ifX +M
ig not in the BETA table, and since it is an executable statement, & +M will
not be in the NONEXC tablé,. Therefore, if &\ +M is not in either the BETA or
NONEXC tables, it is a part of the program not reached, i, e., an executable
statement with no path of flow to it, If any errors are found, they are entered
in the error list by the NOBETA routine. TIFGO was retained in core from
Section I',

TDO

The TDO table is examined for DO statements that specify an illegal 6. The
three legal references checked for by Section I'" are:

o .
1. That the IFN |0 exists, i.e., that the reference @13 not zero.

2. That the IFN@ is executable, i. e., that the reference 613 not in the NON-
EXC table.

3. That the IFN 6 is not a transfer, STOP, or RETURN statement, i. e., that
the reference @ is not in the ALPHA table.

If any errors are found, theyare entered in the error list by both NOBETA and
X DO (S routines, in that order, TDO is read from the 5th file on tape B2.

75

FRET

The number of branches for a TIFGO statement is saved in the ALPHA table
with the IFN during the scan of TIFGO. Section I" ignores statement num-
bers in the FRET table which are not in the ALPHA table, but saves any state-
ment number where the count of branches in FRET is greater than the count of
branches shown in the ALPHA table. Section IV ignores extra frequencies given
for statements other than TIFGO statements, but would be confused by mis-
information generated when there are move frequencies given than there are
branches. If any errors are ound, they are entered in the error list by the
NOBETA routine. FRET is read from the 5th file on tape B2,

EQUIT

If Section I' has found any inconsistent equivalences when assembling the EQUIT
table, it sets an error flag at the beginning of the table and only enters those
variable names which are erroneous, and sets another flag at the end of the list,
The errors are entered in the error list by the ERROR routine. The EQUIT
TABLE is read from the 5th file on tape B2. '

If any errors have been found in Section I, it spaces the System Tape to the
diagnostic and reads in D001, This is the only section of FORTRAN that does
not use the usual diagnostic caller, If no errors have been found, tape B2 is
spaced over the 5th end of file mark and control is transferred to 1-CS to con-
tinue compilation,

@

BOURCH
PROGAAM
(riue 1)

CONDENBED
BOURCE
PFROGRAM
(riLk 1)

THIFNO CLOBUB
oo FORMAT
YIreoO SUBDEF
TRAD COMMON
FORTAG HOLARG
FORVAR NONEXC
FORVAL TBTOPS
FRET CALLFN
EQUIT FMTEFN
(riLe)

TEIFNO
TIFGO
TRAD
ToOO
FRET
caunir
(FILE 3)

FIGURE ¢

FLOW IN SECTION |

'

FROM MONITOR FROM CARD TO TAPE
BCAN IN MONITOR 8IMULATOR IN BINGLE
MODE (FIG, 6) COMPLLE MODE (FiG,

SECTION |
PABS |

“+E

PABS 11

(—
o}
©

DIin

ERROR ES

505 |

4)
CONDENSED BOURCE
"PROGRAM (FiILE 1)
-
TEIFNO cLosus
TOO FORMAT
TIFGO BUBDEF
TRAD COMMON
FORTAG HOLARG
FORVAR NONEXC
FORVAL TBTOPS
FRET CALLFN
EQUIT FMTEFN
(riLe 1)
COMPAIL 100 WORDS
PER RECORD (FILE 2)
{
BECTION |

DIAGNOSBTI(

v
OCCUR /
NO

v
SECTION I

SECTION 1

P —

SECTION 1
(FIG4 10)

e

MACHINE

MACHINE ERROR

SUPERVISOR REG,

ERROR MEBSAGK
AFTER SOURCE
PROGRAM (FiLE 0

- DIAGNOSTYTIC

FiLE)

FiLE 4

FliLE 3

SOURCE PROGRAM

ERROR MEBSAGE
716 PRINTED ON
LINE

COMPAIL RECORD COUNT AND
FORSUB .

FLOCON

FORMAT

sz

END TEIFNO FORVAL
SUBDEF TIFGO FORVAR
COMMON TRAD FORTAG
HOLARG - TOO FRET
EQUIT
cL.osuvs

WAS

ERROR
DETECTED
IN PASS |

BECTION |
COMPLETE

15

F9

SOURCE ERROR
SUPERVISOR REC,

®

0

Yl

SECTION II 2,01,04

It is the task of Section II to process DO statements and subscripted variables ap-
pearing in arithmetic and input- output statements, The primary output of this
section is a file of CIT's called the COMPDO file, It was not convenient for Sec-
tion I to do this, since the tables were not in order. As you will recall it was the
task of Section I' to sort. these tables into an ordered form. The tables that Sec-
tion II will use are in the 5th file on tape B2 and in memory. In addition, Section
II will create a secondary file of closed subroutines for the computation of, rela-
tive constants, subscript combination load values. Also information about transfers
out of DO loops is recorded in the TRASTO and TRALEV tables. These two tables
will be used by Section III to produce the TIFGO file, this is not to be confused
with the TIFGO table created in Section I.

Preliminary Description of the Problem

A, Tags created by Section I

Section II compiles the instructions necessary to compute and index so that the
symbolic index registers, (tags), set up in Section I for tagged instructions will
contain their proper values. The tagged instructions compiled by Section I re-
fer to subscripted variables. The symbolic tag is in fact, a subscript combina-
tion with given dimensions and coefficients. The tags are divided into three
classes, 1, 2, and 3 dimensional, ard are recorded in separate tables, TAUl,
TAU2 and TAU3

B. DO's

The COMPDO file of instructions contains the computing andindexing instruc-
tions for the various subscrint combinations contained within DO ranges and
any necessary additional tags. These instructions are associated with the
beginnings and ends of DO's. At the beginning of DO's they will contain the
computing instructions necessary to determine the load val ue for a tag(sub-~
script combination index register) and the load instructions. In addition, index
saving instructions may occur At the end oi DO's these instructions refer

to the indexing required to increment subscript combinations values for the
next DO loop execution, totest whether or not control may nass out of the DO
range and. in the latter case, to reset the DO's subscript combinations to their
lowest values if control is still in a DO containing tlie first DO (nest).

All of these instructions result from the configuration of the combination of
DO-nest structure on the one hand and subscript combinations within the DO-
nest on the other. A DO nest is defined as any set of DO's all of which are
bounded contained within- -a single DO. Figuratively, this means that the
outside single DO is on level one, the next DO which it contains, on level
two. and so forth Of course, in a single nest there may be more than one
DO on any one level greater than level 1.

1 The instructions performing these three functions are TXI, TXL, and TIX
respectively.

C

Yol

Further complications imay result from the transfers out of DO's where
additional indexing and saving instructions will be required, The TIFGO
file that will be compiled in Section III will contain the instructions necess-
ary for doing this. The TIFGO file will be made up from information passed
on to it in the TRASTO and TRALEV tables created in this Section.

C. Relative Constants
A considerable portion of the work of Section II is devoted to the proper handling

of subscript combinations which are called relative constants. A Relative
constant is a subscript symbol not under control of a DO on that symbol.

That is, it receives its definition in some fashion other than the indexing
normally associated with a DO, A subscript combination may, therefore,
be a pure relative constant (where none of its symbols is under control of
a DO), a mixéd relative constant (where at least one is not under control
of a DO while the others are), or a normal DO-subscript combination
(where all subscript symbols are under control of a DO).. Each of these
three types requires its own mode of treatment by Section II,

The FORVAL table is the key in determining the point of definition of
relative constants.

The DOFILE (C) file generated in Block IV contains the instructions necess~
ary for the COMPUTATION of the subscripted variable load value.

FLOW WITHIN SECTION II

To carry out the analysis and to deal with the various complexitites involved,
there are six logical blocks in Section II.

BLOCK 1 Nest analysis, flow analysis.
BLOCK 2 Subscript combination analysis,
ELOCK 3 Relative constant subscript analysis.

BLOCK 4 Compilation of subroutines for computing relative constant
index values,

BLOCK 5 Compilation of loop initialization, incrementing and testing
instructions.

BLOCK 6 Reordering the DO file for input to Section III,
BLOCK I

The task of this block is to examine the DO nesting structure and the flow

of the program. This information which Section I extracted from DO state-
ments and Input-Output lists is contained in the tape table TDO, which on

being read in, is further expanded into the 9 word table DOTAG to accommodate

¥l

the results of analysis. The DO is scanned to determine if it contains other
DO's (DO Nest) and if any of the rules for DO nesting have been violated by
the source program. The TIFGO table is then searched to determine if there
are transfers within a DO loop. This is done by searching all DO loops for
corresponding TIFGO table entries. If one is found an entry is made in the
TRALEYV table to indicate to Section III to compile indexing and saving in-
structions for the transfer. An entry is also made in the DOTAG table in-
dicating a transfer exits in its range. The DOTAG and TRALEYV tables are
written out on tape at the end of Block I.

- BLOCK II

The block II analysis is carried out for each subscript combination occurrance,
at least one of whose subscripts is under control of a DO. Only the areas with-
in DO's need therefore, be examined. The search for tags is carried out nest
by nest, and within the nest DO by DO. The order in which the analysis is
carried out is by selecting the inermost DO of a nest first and working toward.
the outermost DO of the nest. Any FORTAG (SECTION I table) entry being
within and controlled by this DO is analyzed. If such a controlling DO is not
found for a subscript, it is called a relative constant. The relative constant
will be dealt: with by Block III, If a transfer out of the range of a DO exists,

a search is made within the DO for an equlavent subscript combim tion. If
such a tag is found, the required value would be in an index register at the
time of the transfer. A TRASTO entry must be made to indicate to Section

III that instructions would be compiled at the point of transfer to save the in-
dex register value,

When all possibilities have been dealt with, the results of the whole analysis of
subscript combinations are written out as the TAGTAG table entry on tape A4.
This provides Block 5 with information so that it can compile the appropriate
initializing and indexing instructions at the appropriate points. The DOTAG
table compiled by BLOCK II is then written out on tape B2 as the 6th file with
its record count as the 7th file, This DOTAG table is essentially the same

as the one output by Block I with additional entries created by Block Il

BLOCK III

This block completes the subscript analysis by dealing with those subscript
combinations not already analyzed in Block II, namely, pure relative constants.
A pure relative constdnt is a subscript combination none of whose subscripts

is under control of a DO. A relative constant can be defined in two different
ways: '

l. By appearing on the left hard side of a arithmetic statement or in an input-
output statement, both which are recorded in the FORVAL table.

2. By a transfer out of a DO for that subscript combination.

Both of these situations were examined in Block II but were left for Block III
to process, '

50

To process the first situation above the FORTAG table entries are selected
onec at a time. It is only necessary to look at the ones not processed by
Block II. The FORVAL table is then searched for the occurrence of the
particular FORTAG entry., If one is found an entry is made in a table called
TSXCOM. This table enables Section III to compile a TSX to a subroutine
which will compute the current index value for the tag. The subroutine is
compiled by Block IV.

The remainder of this Block is devoted to the second method of defining a
relative constant, All FORTAG table entries not processed by Block II or
the previous part of this Block, are now selected one at a time. The DOTAG
table is then searched for a DO for one of the FORTAG symbols. If such a
DO is found a scarch is then made to find a transfer out of this DO. When ;
such a transfer is found an entry is made in the TRASTO table to indicate to ‘
Block IV what kind of subroutines will be necessary for the above conditions.

The tables generated by Block III are carried over to Block IV as memory
tables.

BLOCK IV

This Block will process the tables generated in Block III and compile the sub-
routines necessary for computing relative constant index values. The sub-
routines are now written out on tape B2 files 8 and 9 as the DOFILE (C) and
its record count,

BLOCK V

This Block compiles the necessary indexing instructions for the tags, using
the results of the subscript and flow analysis provided by Blocks I and II. The
informmation necessary for this compilation is ‘contained in the TAGTAG and
DOTAG tables which are on tape A4 and B2 respectively.

The process is broken down into two phases. The first being the alpha which
provides the loading and initializing instructions at the beginning of a DO. The
second is the Beta phase which compiles the incrementing, testing and resetting
instructions at the end of a DO, (i.e., TXI, TXL and TIX respectively.)

The CITs are now complete as far as DO's are concerned and are now written
out onto tape B3 as the first file. These are in reverse order, and are left this
way for Block VI to take care of.

BLOCK VI

The order in which Block 5 compiles DO instructions for a nest is the backward
sequence ofe< and {‘)7 of the nest, although within eachcX and8 block, the instruc-
tions are in the natural order. Thec<_and{J blocks of CIT's must therefore be
inverted, so that Section III can merge the DO file with the COMPAIL f{ile, output

Sl

by Section I. The beginning of each block is marked by an all one's CIT entry,
and after reading a nest of CIT's (the end of a nest being marked by zeros),
Block VI searches from the end of a nest until an all one's fence is found. The
instructions just scanned are output as the DO file, and would correspond to
the first©{ of the nest, Block VI then looks for another fence, and s0 on, until

the whole nest is output, When the DO file is complete, control passes to
Section III.

/‘\\
W

O

READ
TIiFGO
TRAD
TpO
FORVAL
FORTAG
(FILE®)

DOTAG (A)
(riLe 1)

DOTAG (A)
(FiLe 1)

DOTAG (B)
(riLg @)
DOTAG (B)
RECORD GOU
(riLe 7)

DOoTAG (B)
(FILE 8)

TAGTAG
(FILE 2)

DOFILE
(riLe 1)

FIGURE 10

N

-
.’

G6ECTION |

!

ISECTION 1
8LOCK |

[

EECTION "
LOCK i1

7T T

P 77

Y

SECTION i
BLOCK 111}

I:ac-rlou "
LOCK IV

FLOW IN SECTION Il

(FiG, 9)

4

SECTION i
IBLOCK V

SECTION 14
"BLOCK VI

#

SECTION 11}
(Fi1a, 11)

SOGE

B2

DATAG (A) (FiLE 1)

TRALEV (FILE 1)

DOTAG (B) FILE ¢

‘DOTAG (B) RECORD COUNT

(riLg 7)

TAGTAG (FILE 2)

DOFILE (C) (FILE B)
DOFILE (C) RECORD COUNT
(FILE 9)

DOFILE (INTERMEDIATE CIT'S)
(riLe n

comMpPpoO (ciT's)

53

SECTION 1II 2,01, 05

The MERGE has the primary function that its name implies, That is, it
must merge or collate the different files of compiled instructions (CIT's)
that are available to it., There is, however, an important additional func-
tion which the MERGE serves, This is the creation of an additional file
of instructions. This additional file is based on information gathered by
Section II and passed on to the MERGE in the form of tables.

The MERGE, therefore, falls naturally into three main divisions: Merge I
merges the two files passed on to it by Sections I and II; MERGE II creates
the additional file of instructions; MERGE IlIl merges the two files of instruc-
tions now existent. The two files of instructions compiled by Sections I and
Il are the COMPAIL and the COMPDO files. The file created in MERGE II
is called the TIFGO file. The results of the MERGE I file is called simply
the FIRSTFILE. MERGE III, of course, merges the FIRSTFILE with the
TIFGO file.

At the end of MERGE III, then a single file of CIT's exists and is passed on

to Section IV. This single file is essentially the completed compiled program,
That is, it contains all the instructions necessary for the translation of the
source program, on the assumption that the object machine contains as many
index registers as there are symbolic tags in the single file of instructions.
Therefore, the remainder of the FORTRAN Executive Program is devoted to
two main tasks:

a. Substituting absolute index registers for the symbolic index registers as-
sumed up to this point. '

b, Inserting the load and save index instructions required by the limited num-
ber of absolute tags.

It is important, further, to point out that the additional file of instructions
created in MERGE II (TIFGO) does not result from any further analysis of
the FORTRAN Source Program as such, Rather, it is compiled from tables
which are themselves the result of such analysis. The MERGE, therefore,
does no analytical work of its own; it simply stands at the crucial crossing
point between the first part of the compiler which does the basic analysis and
the latter part which handles the index register problem and the assembling
problems,

Partially as a result of this critical position of the MERGE in the over-all
flow of the FORTRAN Compiler, the MERGE is given certain additional sub-
sidiary tasks to perform as it does its primary merging tasks. In this des-
cription, these subsidiary tasks will be listed and described in their appro-
priate place, It is only worth noting here that many of these tasks could
theoretically have been done earlier; that they were not done earlier and
were, instead, left to the MERGE is to a greate extent, a matter of conven-
ience for the earlier analysis, The fact that the MERGE must make several

SH-

‘complete passes over all the CIT's makes it simple for the MERGE to make

the insertions required by these subsidiary tasks.
FLOW WITHIN SECTION III
MERGE I

A, The merge of the COMPAIL and the COMPDO f{iles occurs by simple num-
erical collation, The two files are on two separate tapes, COMPAIL as
the second file on tape B2 and COMPDO as the second file on tape A4,
These files exist in 100 word records, maximum that is 25 instructions per
record. The first word of each instruction contains the internal formula
number, The internal formula number is physically present only for the
first instruction of the translation belonging to any unique source statement,
The exception to this is where an input-output statement gave rise to more
than one internal formula number, The remaining CIT's for any one source
statement will have the first word containing all zeros, Therefore, the in-
structions exist in blocks, each of which is headed by an instruction with
an explicityly stated internal formula number,

B. ADDITIONAL MERGE I FUNCTIONS

1. As a result of the Section II analysis, it may be found that certain tag
(subscript combination) names must be changed, As you will recall the
tag names were nothing more than a subscript combination, An arithme=-
tic statement containing these tags may be used in several different DO
loops. With this in mind it is quite obvious that the same tags really
cannot be used, therefore the names are changed to overcome this pro-
blem. All subscript information is still retained with the addition of a
flag indicating that the name is different, The name changes are record-
ed in the Change Tag table. ‘

Therefore, the first task that MERGE I performs is the editing of the Change
Tag table. If the Change Tag table were unedited, it would be necessary
for the MERGE to scan and test every tag field of every CIT appearing
within the given ranges. In order to avoid this extended testing, the table
is edited., This editing enables the exact location of the tags requiring
changed names to be localized from the range of several statements to

a single statement, The editing occurs with the aid of the FORTAG table .
which contains an association of tag names with specific internal formula
numbers. The edited Change Tag tables, are the same as the unedited
table with the exception that the range of the statement has been reduced
down to a single statement number. While scanning the CIT's during the
merging process a test is made on statement numbers to see if they match
the number in the edited change tag table. If they do, the new names are
inserted in the tag field.

2. Open Subroutines, Whenever an open subroutine reference is encountered,
during the compilation of the arithmetic instructions, a CIT is compiled

56

which is merely a signal to the MERGE. This signal tells the MERGE
not merely that an open subroutine is necessary at this point, but it
also designates which open subroutine is given information about where
the argument is to be found, The results of an open subroutine areleft
in the accumulator. Encountering this signal CIT or CIT's, the MERGE
inserts the appropriate open subroutine. The designations referring to
input arguments and output results, of course, pertain to the problem of
arithmetic instruction linkage, With the compilation of these functions

the MERGE has produced a single file of instructions called the FIRST-
FILE.

MERGE 1I

MERGE II of Section III does not do any merging; it produces a new file of in-
structions. The tables used in producing this TIFGO file of instructions are
the TIFGO and TRAD tables from Section I and TRALEV and TRASTO tables
from Section II.

The need for the TIFGO file of instructions arises in the following way. The
main body of computing and indexing instructions; included in the COMPDO
file, are associated with the beginning and end of DO's, That is, the internal
formula numbers of their CIT's have the internal formula numbers belonging
to the DO statements within the range of DO statements. The entire Section
II mechanism is set up to do compiling of the beginning and end of DO indexing
instructions. Merge II only does the analysis necessary for the indexing in-
structions, required within the range of the DO's but does not compile the in-
structions. Instead it prepares the two tdbles TRALEV and TRASTO, which
summarize this information.

All of these types of indexing instructions arise from the fact that transfers occur
within DO's, specifically transfers going out of the range of a DO. In consider-
ing this problem, an entire DO nest, involving possibly many levels of DO's as
well as many DO's on any given level, must be considered. Conse'quently, a
transfer out of a DO within any DO nest may be a transfer entirely outside the
nest (that is, to level zero) or to another DO within the nest (that is from level

1 to level n), Specific TIFGO instructions are caused by the fact that some in-
dexing must occur before a transfer out of the DO is made, provided that the
configuration of the DO within the nest, subscript combinations within the nest,
and the uses of the DO indicates that indexing instructions which may precede

any individual transfer. These six sets account for six different types of TRASTO
entries. Either oneor a combination of these sets may be required before any
transfer. The TRASTO tables are numbered: this means that the instructions
corresponding to each type of TRASTO entry must occur in the sequence indicated
by the number. In setting up the TRASTO table entries, Section II determines

the rklevant facts with respect to both the location of the transfer instruction
itself and the transfer addresses of any single source program instruction. No
Uctailed explanation will be given for the specific reason for each of the six types
of TRASTO entries.

("\

S

NSRS

The MERGE II analysis proceeds in this general manner. It uses the TIFGO
table as its guide. In this connection, it must be remembered that the TRAD
table is simply an extension of the TIFGO table., It simply supplements those
TIFGO entries arising from computed GO TO and ASSIGN GO TO statements.
When it comes across a TIFGO entry it checks to see if it is also in the TRALEV
table. If it is not, there is no further concern for possible TRASTO instruc-
tions and the direct transfer addresses are compiled into the relevant transfer
instruction., By direct, we mean here the number given'in fhe source program,
translated into its internal formula number. When the transfer or TIFGO entry
is in TRALEYV, there arises the further possibility of TRASTO entries for any
of its addresses., The TRALEYV table, it must be remembered, lists the levels
of each of the transfer addresses. Consequently, a search is made through

the TRASTO tables, first for those entries indicated by the TRALEV entry,

If these conditions are met, then MERGE II compiles the indexing instructions
corresponding to this type of TRASTO.

The most important subsidiary task performed by this part of the MERGE is the
putting together of the ASSIGN CONSTANT table. This comes about as a by-
product of the scan of the TIFGO table, which contains the ASSIGN GO TO entnes.
The ASSIGN CONSTANT table appears subsequently as the 5) block, containing
the transfer instructions to each of the possible ASSIGN GO TO addresses.

With the completion of MERGE 1II, a new file of instructions exists, containing
the computing and indexing instructions arising from transfers within DO's,
This is the TIFGO File which is output as the 8th file on tape B2.

Control now passes to Merge III for the final Merge,.
MERGE III

The task of MERGE III is comparatively simple., It simply does a direct merge
on the FIRSTFILE and the TIFGO file. These two files are brought together

and written as the first file on tape A4. Here too, the principles of the numeri-
cal collation apply. It might be noted that in some cases, MERGE II will simply
have supplied transfer addresses for instructions which were partially compil-
ed in Section I. That is, the Section I instructions will be complete except for
addresses. In this case, the new instructions are broughtitog«!lr v 'oring"
one over the other,

A subsidiary task here is the insertion of the instructions necessary to branch
to the subroutines for the computation of relative constant,

All that remains for the MERGE to do is follow the main file of instructions
with the two secondary files of instructions compiled by Section I and Section

II. These are the arithmetic statement function instructions and the A) sub-
routines, respectively. Updating of the ASSIGN CONSTANT, snd FIXCON tables
was required in Section I1I. These tables are now complete and are written as
the eighth and ninth files on tape B2.

|

These are written as the second file on tape A4.

At the end of the MERGE all instructions resulting from an ahalysis of
touring the source program are complete, except for the existence of
symbolic tags, rather than at the absolute tags, This provides the main
task of Sections IV and V.,

- FIRST FILE (FILE 1)

&b

FLOW IN SECTION It

FROM BECT. I (wria, 10)

\

FORTAG (FiLK 3) MERGE |
COMPAIL (FiLk 2)
COMPDO (FiLK 2)

\
TIiFGO (riLx 8) MERGE 11
TRAD :

TRALEVY (FILE)

\

MERGE I1I1
TIFGO (FiLg 8)

P 90 9
bbb

TO SECT, 1V
(FiG, 12)

FIGURE |l

FIRBT FiLE (FiLE |)

TIFGO FILE (FILE 3)

FIRST FILE 4+ TIFGO (FiLE)
CLOSED BUBROUTINES

(FILE 2)

ASSBSIGN CONSTANT (FILE 8)
FIXCON (FILE 9)

57
PREPARATORY NOTES FOR SECTIONS IV AND V 2,01, 06

It was mentioned in the Introduction that the Fortran program fell into two
divisions; the first, comprised by Section I, II and III; and the second by
Sections IV, V and VI. At the end of Section III the program is essentially
compiled. It is, in fact, compiled except that it exists in the CIT format
and the program assumes an object machine with as many index registers
as symbolic tags, Since, however, the machine will have three index re-
gisters, it is necessary to substitute assignments of these three for the in-
definitely high number of symbolic tags, The object here will be to mini-
mize the number of LXD's and SXD's -- load and save instructions -- re-
quired by this fact. By "number' here, we mean not only the number of
separate physical instructions, but also the number of executions of them.
That is, optimization with respect to time takes precedence over optimi-
zation with respect to space. For example, if a tag is used in a very high
frequency, part of the program (such as the inner DO of a DO-next three
levels deep), and a branch transfer is made to four different areas, each
of which requires saving of the tag before it is reused, a single save in-
struction before transferring out of the high frequency area is logically
sufficient. However, our method is to place four separate save instruc-
tions at the point of entry to each of the four branch points, thus eliminat-
ing the instruction from the path which would require most frequent execu-
tions of it,

This case also serves to illustrate some of the problems confornting Section
IV and V -- the two sections whose concern this tafsk is, It shows that there
is a linkage, with respect to index registers, of different parts of the pro-
gram and that details of the linkage must be known for efficient insertion of
load and save instructions. For examplé, in the above case, the SXD will not
be used on any of the four paths where it is not required. Furhtermore, a
comprehensive knowledge of areas and their expected frequencies of qbject
time flow is necessary, As a corollary to these problems, there is the one
of avoiding the SXD instruction for a tag which is no longer to be used. That
is, the tag can be efficiently killed by over-loading it in its index register
when the next use of the tag in it requires a load instruction. If the last re~
ference to this tag is one that changed its value, it must be saved; if the last
references did not change its value but merely used its earlier established
value, it is ngtnecessary to save, Here, a distinction between active and
passive references to tags is necessary. ‘ '

This entire complex of problems comprise the task of Sections IV and V,

The work required of these sections falls naturally into two divisions,
allowing the division of labor between them. Sections IV informs Section

V of the divisions of the object program for purposes of flow analysis and the
relative frequency of paths of flow over these divigions. Its task is much
the lesser of the two sections. Section V then.uses this information along
with a knowledge of the specific tags required by each of the "divisions" to
assign absolute index registers and compile necessary indexing instructions.

O

£0

Before giving the general discussion of the work of these two sections, it is
well to note how this work was presupposed in the handling of symbolic index
registers by the earlier sections of Fortran. KEssentiilly, this can be stated
very simply: the earlier sections simply ignored the problem and acted as

if as many index registers as were needed were available, That is, load in-
structions may appear in sequence up to any number, The assumption is the
"saves'' necessary to make the 'loads' effective will be added later, The im-
portant thing to note here is that SXD's and LXD's are not always coupled as
the previous discussion might imply. There is an asymetry between them;
the earlier sections have complete freedom with respect o LXD's, but very
rarely compiling an SXD. On the object program level this difference is re-
flected in the cells which the SXD's and LXD's address. Section II instruc-
tions for example, mostly refer to the subscript symbol cells in the regular
data area of core storage. On the other hand, section V's instructions always
refer to the specially designated eraseable area for storage of index registers.
These eraseable storage cells are referred toa s the C) cells. The actual
designation is C)i, where i is.an increment resulting from the conversion of
the symbolic tag name. By means of this device there is co-ordination
between Section V references to such tag storage cells and whatever section
Il references are necessary.

6/
SECTION IV 2.01,07

Section IV has for its main task the assembling of four different tables. These
are the BBB table, the Predecessor, the Successor table, and the Tag List
table, The primary input to section IV is the single file of merged CIT's;
section IV also uses other tables created earlier, The BBB table is a list

of the Basic Blocks of the object program, plus indices referring to each
Basic Block's Successors and Predecessors, A Basic Block is a stretch

of program into which there is only one entrance and from which there is

one exit, '"Exit'" must here be interpreted in the logical sense; that is; it
ray consist of more than one transfer instruction, going to a variety of
Basic Blocks. Each of these Basic Blocks, then, is a Successor Baasic
Block, As implied by this, section IV must mark off the Basic Blocks of

the program and determine the Successor and Predecessor Basic Blocks for
any one Basic Block. A BBB entry corresponds to each Basic Block;.it has
references to the Predecessor and Successor tables denoting its Predecessor
and Successgor Basic Blocks, But section IV work goes beyond this, It

must provide the information to section V concerning frequency of paths of
flow. Therefore, the form of the Predecessor and Successor table entries
which section IV passes on to section V will contain, in addition to the Basic
Block reference number, a number denoting relative frequency of transition
between the two Basic Blocks. Here, the two Basic Blocks refer to the BBB
Basic Block and the Basic Block or Blocks of the Predecessor and Successor
table that it designates. In order to achieve these relative frequency numbers,
section IV performs a simulated flow over the program going from Basic
Block to Basic Block.

The major problem here is in determining which Successor Basic Block to go

to when, as a result of conditional transfer, a possibility of more than one

Succcssor Basic Block exists. At ths point a '""Monte Carlo' technique is used.

A random number is generated and, in accordance with the numeric possibilities

of succession indicated by the frequence statement entries for that conditional °
transfer, a particular Successor Basic Block is chosen, The random number is meant
to assure that over the long run of the entire simulated flow, the possible Suc-

cassors will be chosen in the proportions indicated by the Frequency entries,

Where no frequency entry is made by the source programmer, the assumption

is that of equal probability for all paths of succession, ’

Some of the special problems encountered during the performing of this

" simulated flow are those given by conditional transfers where the conditioms

are set directly in the source program (such as ASSIGN GO TO's and Sense

Light Tests) and DO's involving variable parameters., For both of these ad-
ditional intermeditate tahles are necessary., In the case of DO-nests, three
general circumstances, involving flow analysis probelms, may occur. One
is a D0-nest whose DO's all have constant parameters and contain no trans-
fers, another is constant parameters with transfers, and the third is a DO-
nest at least one of whose DO's have variable parameters. For the last

6

mentioned circumstance, either the frequency entry for the DO must be used
or barring that, a frequency of five is chosen for the number of times of repe-
tition of the DO range.

For purposes of the simulated flow, a large number is chosen, which is a func-
tion of the number of Basic Blocks and distinct transfer branches occurring in
the problem. For every transition between a Basic Block and its Successor
that is made during that simulation, this number is ticked off by one. The

flow ends when this number equals zero,

It should be pointed out, finally that this simulated flow has nothing whatever
to do with the individuals instructions of the problem. It is concerned only
with Basic Blocks as units and not with the contents of a Basic Block, As

far as gsection IV is concerned a Basic Block may actually contain one hun-
dred instructions or two instructions, and these instructions may contain many
tags or no tags: section II treatment of it is the same., It may also be men-
tioned here that the division into Basic Blocks is based on an examination of
the compiled instructions. Oflcourse, the recognition of trahsfers -- beginning
with the letter "T'" -~ is vital, For this reason, section I finds it necessary
to use pseudo-names in the CIT's of .some of its instruction, It does not wish
section IV to think that these end Basic Blocks when actually they do not,

After the flow analysis is completed, section IV assembles the BBB, Pre-
decessor, and Successor tables, These are a summary of the Basic Block
flow and relative frequency of this flow., The BBB entries also contain a!
designation of the type of ending for each Basic Block; absolute transfer, pre-
set transfer, conditional transfer, and so forth., The last significant item
that each BBB entry contains is an index to the Tag List entries belonging

to it, The Tag List table is made up at the end of section IV it is a list of all
symbolic tags contained in the CIT's of the program together with a code
designating the type of instruction referring to the tag. The index to this
table that is placed in the BBB entry, then tells which tags occur in each
Basic Block of the program and how they are used,

FLOW WITHIN SECTION IV
Section IV is logically broken down into three parts called blocks.,
BLOCK I

The {irst task of Block I is to divide the object program into basic blocks, a
basic block being a stretch of program with but one entry point, and one exit
point, In order to do this the merged CIT's are read in from tape A4 file one.
A pass is then made over the CIT's looking for transfers, tests and skip type
instructions. Absolute and conditional transfer addresses, and the location
of instructions following skip type instruction, or TXL's (end tests of DO's)
these are all entered in the BBLIST table once, in algebraic order, by means
of a binary search technique,

ES

During this pass, when a TXL is encountered, both its location and address
are entercd in the new table DOLIST, thus providing a list of the beginning

and end locations of all DO's in end location order. The DOLIST table will
be used later in this block for analysis of the flow of the program.

The TIFGO, TRAD and FRET tables are read in from the fifth file of tape
B2, A new table TIFRD is now formed from the assign and assigned GO
TO entries in the TIFGO table, together with the associated entries in the
TIFGO table, together with the associated entries in the TRAD tables.
(TIFGO entries are of fixed word length, and the TRAD table was therefore
created to accommodate all possible Assign GO TO and transfer addresses.)
At the same time, all the transfer addresses are entered in BBLIST table.
When all information is extracted from TIFGO and TRAD and entered in the
TIFRD table, TIFGO and TRAD are of no more usee to Section IV, The
BBLIST table now constitutes a list of the beginnings of all basic blocks in
the program, in the order in which they occur, The basic block number
which is referred to in block II, is the relative address of the particular
basic block within the BBLIST table.

" The FRET table that was read in from tape earlier is now examined, all

frequency entries that correspond to DO statements are extracted and placed
in the new DOFRET table. This is done in preparation for the simulated
flow that will follow. The remaining FRET entries are now moved up to
occupy the vacated positions,

The table DOLIST, created earlier and ordered on the ends of the DO's,

is now sorted into the order of beginnings of DO's. When these are equal,
the DO with the largest remaining location takes precedence, The table

is now compared with BBLIST, and the internal formula number in DOLIST
are replaced by basic block numbers, The DOTAG table is now read from
file 6 on tape B2 and scanned. Each time a DO is encountered which has a
transfer in its range (a DO with an IF) an indicator is set in the appropriate
DOLIST table indicating this.

The loop count is now computed for DO's with constant parameters. If any
of the parameters are variable the loop count is taken from the DOFRET
table providing the frequency was given in the source program. If no
DOFRET entry exists for this DO's an arbitrary loop count of 5 is given.
This terminates the work of block I, control now passes to block II,
BLOCK II

Tape A4 is rewound and the complete CIT is again read.

A second pass is now made over CIT, producing the three principal tables

with which simulation is accomplished, namely BBTABL, SET and TRATABLE.
There is one l-word entry in BBTABL for each basic block in the program,

&4~

but there may be several SET and TRATBL entries corresponding to this
one BBTABL entry. At the beginning of each basic block, the next available
location in SET and TRATBL are entered in the BBTBL, thus providing a
key to information which will be accumulated during the pass, for the basic
block.

The TRATBL table contains for each basic block in the object program the
basic block numbers of it successor basic blocks (those to which a transfer
is made). Associated with each of these successor basic block numbers is

a counter which during simulation will keep count of the number of times the
path between the predecessor and successor in question has been traversed.
The SET table contains information pertinent to the three types of setting that
must be done during simulation, The three types are:

1. The setting of the assign GO TO addresses.

2. The setting of sense lights, (Dummy lights only are maintained during
the program simulation pass, in block III, not actual machine lights),

3. The resetting of DO indexs for DO's which have transfers out of their
range,

The remainder of the analysis during this block is concerned with obtaining
information about basic block endings. If the instruction following the current
one begins a new block, (its location is in BBLIST), then the current instrut-
tion should end one., If the following instruction is a skip type instruction or

a conditional transfer these also constitute basic block endings. It can be
seen then that a basic block can have several types of endings. These end-

'ings are coded and entered in the BBTABL which also contain the TRATBL

and SET addresses for the basic block,

BLOCK III

The object program is now simulated many times in order to obtain statistical
information concerning relative frequencies of flow paths taken. The number
of simulations is equal to the total number of transfers in the program mul-
tiplied by 128, which means that the more complex the program, the greater
the number of simulations. The program is stepped through basic block by
basic block, using the BBTABL as a guide, starting with the first basic

block., No reference is made to the actual compiled instructions.

A BBTABL entry is selected, and corresponding SET table entries are obtained.
Settings are made according to these entries, that is, the SET address, or
setting, is stored in the location given.in the decrement, For instance, a

SET entry turning a sense light on would cause a 1 to be stored in the dummy
sense light address, A Set entry to reset the loopcount to be stored in the
TRATBL of the DO, (This is where the iterations are counted during the
simulation,)

&S

Depending on how the basic block ends the proper successor basic block is
chosen. This process continues until the simulation is over,

After the simulation has been dealt with, a process is begun to adjust the
flow counts of basic blocks which lie within DO's without IF's,

It may be recalled that during the simulation, these DO's where not simula-
ted as were the DOs with IFs and therefore the flow counts of the basic
blocks within them have not used the loopcounts of the DO's.

The third and final pass is made over CIT to collect tag information for
Section V, and during this pass, two new tables are built, These are the
TAG table, and the BBTAG table., For each occurrence of a tagged in-

.struction, an entry is made in the TAG table. This entry contains the

symbolic tag name, together with a code which tells what kind of instruction
it is used with,

Each time the beginning of a basic block is encountered, a BBTAG entry is
made, containing the number of entries so far in TAG., The last BBTAG
table entry is a dummy and contains the total number of TAG entries.

The BBTBL table and BBTAG table are now combined to form the BBB
table which will be used in Section V.

The TAG table is now written as the third file on tape B3, The BBLIST table
that was created in block I is now written out as the fourth file on tape B3,
The BBLIST table was not written sooner because it will be used after the
TAG Table in Section V, this saves time in moving tape.

Control now passes to Section V,

CiIT’ 8 = FiRST FiLE
TIFGO (FriLE 1)

TIrFao .
TRAD (riLk s)
FRET
ODOTAG (riLe o)
- cIT ‘s« rinsT riLe +
é . TiIreo (riLk 1)

CIT!s -~ FIRBT FiILE +
TIFQO (FILE 1)

FIGURE I2

68

FLOW IN SECTION.IV

FROM..BECT, |11l (rja, I11)

"BLOGK 1
.
BLOCK 11
(
BLOCK L1}

TO BEGT. V (Fic. 13)

'

DOUBLEK KOF
TAQ
saLisT

(riLg 2)
(FiLk 3)
(riLk 4)

67

SECTION V 2,01,08

Section V must now substitute references to tags 1, 2 and 4 for the symbolic
tags which occupy the address portion of word 4 of the CIT's, As a corollary
to this, the loading and saving instructions would be inserted for the appro-
priate index registers, These will load from and save in the group of cells
designated as C) - cells. The information contained in the four tables
‘created for it by section IV are sufficient to do this.

To perform this main task, section V operations fall logically into two broad
divisions, These are Region Generation and LXD and SXD assignment,

Region Generation is the method of setting aside a portion of the program, con-
8isting of one or more basic blocks, for independent treatment with respect
to index register assignment, After a set of basic blocks have been set a-
side as a region and treated, it then, as a region, becomes a separate unit
liable to be incorporated in a new region along with other basic blocks, The
flow configuration of a problem determines when a region itself becomes part
of another region. When it does it loses its identify for the new region is an
independent and separate unit. Ultimately, of course, all regions and basic
blocks become absorbed into a single region which is the entire program. At
this point the section V analysis is complete. In referring to "'treatment"
above, we mean the LXD and SXD assignment,

There is, then, an interweaving of the operations of the two main divisions of
section V, Region Generation and SXD and LXD assignment. (The second of
these divisions is often referred toas the LXing Pass,) The regions grow
recursively until the entire problem is one region. At any given time during
this recursive treatment, several regions may exist independently or one
only may exist,

The "treatment' of a region is based on another type of simulated flow
through it. This simulated flow affects the symbolic index register usage
occurring in the region. In cells representing the three index registers, the
symbolic tags are loaded, then comparisons made with successive symbolic
tags, as these are revealed in TAG list. When it becomes necessary to
save one of the three index registers, a look ahead through Tag list is made
to determine which it is preferable to save; that is, which is the last index
register used further ahead in the program, It should be noted that the two
fundamental problems are invblved here. One is d mply the problem of
assignment of index registers; this involves the compilation of LXD's and
the choice of an index register, The other is the problem determining when
to save an index register when the quantity is subsequently going to be over-
written by a load into that index register. '

With respect to the second of these two problems, a tag must be saved to
initialize the appropriate C) cell for later loading, and to handle "active"
index registers. '"Activity" is denoted by the type of reference made to the

44

tag in the tag instruction. The TAG List code referring to the tagged instruction
tells essentially whether that instruction is active or passive, An active
instruction is simply one that changes the value of an index register (such

as TXI or LXD) and a passive instruction is one that uses the tag only (such

as CLA), Where "activity' is present and a subsequent load will over-write

the index register, an SXD is inserted following the last use of the symbolic

tag, Activity has meaning applying beyond the context of the immediate region
in which it is discovered. It may subsequently be found that in succeeding
regions a new tag value is required. Activity for regions, then, must be
carefully noted,

As a result of this simulation within a region, the index registers upon entry
into a region and upon exit from it are assigned certain symbolic tags. These
are noted in the BBB entry for the basic block as its entrance and exit con-
ditions, When a region -- which, of course, has been previously treated -~
is encountered, a match must be made of the exit conditions of the last basic
block with the entrance conditions of the basic block by which that region is
entered. Where necessary, permutation of the index registers within the
already treated region takes place to force compliance., If a match cannot
be made, LXD's are called for at the head of the region, These LXD's are
called inter~-block LXD's because they concern the linkage between regions
as distinct from basic blocks. There are also inter-block SXD's, These
result from activity within a region already treated, The SXD is placed at
the head of the region using the active tag. In this way, incidentally, the
deployment of save instructions among different low frequencies paths
rather than the single save instruction with the high frequency path occurs.

Continuing to work in this way, from region to region, the high frequency
paths of flow naturally receive priority in the assignment of index registers,
The SXD's and LXD's are inserted enforcing conformity of the low frequency
paths with the already assigned high frequency paths,

During this entire analysis, Section V records within tables the information
needed to make the actual compilation and insertions of the LXD and SXD
instructions., The compilation itself occurs later. A new table, the STAG
table, is created for recording these instructions as needed within a region,
The necessity for inter-block instructions is recorded in the Predecessor
table.

The inter-block instructions, because they are at the head of a region, must
take their own location symbols so that transfers may occur to the block.
These location symbols are: D), when the instruction is an LXD, and E), when
it is an SXD. A TRA instruction may have to be added to bypass these instruc-
tions when entry to the block occurs from the part of the program 1mmed1ate1y
preceding it,

Sectxon V, also because it makes a pass over the entire program, performs
certain small optxmxzmg operations on the compiled program,

&

&7

FLOW WITHIN PART I

Section V uses the information about basic blocks (which has been passed

on from Section IV) to combine these basic blocks into larger groups called
regions. The flow within a region is simulated in order to determine which
symbolic tags are required and which index registers should be assigned to
them.. During the course of simulation, flags are set to indicate where an
SXD or LXD is required. When a region has been treated it may be combined
with other regions. Eventually all basic blocks will have been combined

into a single region, and the complete object program will have been treated.

The most frequent paths of flow between basic blocks are handled first,
Since an SXD or LXD is not inserted until necessary, this results in

the most frequent paths having the least of them, and therefore a faster ob-
ject program.

The first step of this treatment is the formation of the Looplist table showing
the path of flow through a new region. The starting point in Looplist forma-
tion is the most frequent link between basic blocks which has not yet been
considered, (The PRED and SUCC tables have frequency counts which are
examined to find :nost frequent predecessor or successor basic blocks. When
a link has been treated, the entry which refers to it is marked with a minus
sign so it will not be considered again,) Looplist is expanded by including as
many of the most frequent unconsidered predecessors as possible and then
as many of the most frequent successors as possible., If the most frequent
link i8 to a basic block which is in a region previously treated, this whole
region is included in the Looplist. Thus a Looplist may consist of a com-
bination of untreated basic block and regions (or basic blocks which have
already been treated). '

Regions are classified as either opaque or transparent. An opaque region
is one in which all three index registers are used. A transparent region
has one or more index registers still available., When an opaque region is
encountered while forming Looplist, no more links are added to it. How-
ever, a transparent region may still be added to, since there are index re-
gisters available within it to which tags can be assigned.

The Looplist table consists of one word entries for each basic block or re-
gion. A code in the prefix of the word indicates whether it refers to a basic
block, a transparent region, or an opaque region. If the entry is a basic
block it contains the BB number, and if the entry is.a region it contains the
numbers of the bacic blocks at the entry and exit points of the region., The
end of Looplist is indicated by a word of all sevens.

From the starting point in Looplist, the most frequent predecessors are
added one at a time until one of the following conditions have been encounter-
ed. If an entry is already in the current Looplist, this makes Looplist a

loop and prohibits further building. If an entry is an opaque region or if there

70
are no unconsidered predecessors, then additions are made at the other end,
and the most frequent successors are looked for, Again the same conditions
apply. Basic blocks or regions are added until a loop or an opaque region is
encountered, or there are no unconsidered successors to the last entry. When
a Looplist has been completed, it will reflect the flow in a section of the object
program. It may have a loop, reflecting a loop in the object program. In '
such a case, if there is an end of Looplist not included in the loop, that sec-
tion is eliminated from Looplist. Only the loop itself will remain in Looplist
for further treatment in this Looplist, On the other hand, the Looplist may

* be a string with no loops, having been stopped in both directions by encoun=~
tering an opaque region or by finding no unconsidered links to it,

After the Looplist has been formed, the path of flow indicated is ready for
treatment. Then next stop is to prepare for simulation which is done in the
2nd LXing pass. If the Looplist is a string, then the only preparation necess-
ary is to mark the initial conditions of the IRs. If the Looplist is a loop,
however, the lst LXing pass is entered.

The index registers used by the object program are simulated in Section V

by three storage locations which are continually updated, These cells are re-
ferred to as IRs, During simulation they will contain the symbolic tags
needed by the corresponding part of the object program.

.The 1lst LXing pass simuhtes the loop in order to find out the condition of the
IRs when the 2nd LXing pass is begun, KEach bas ¢ block in the Looplist is
examined to see which tags are necessary, This is done by referring to
TAGLIST (which was read in from tape B3 file three and contains a list of all
tagged instructions in the object program)., Tags are placed in the IR cells

as required. When a region is met in Looplist, the previously determined
exit conditions from the e2gion are placed in the IRs, After the whole looplist
has been done the IR cells contain the initial conditions for the 2nd LXing pass.

Simulation in the 2nd LXing pass is much more complex than the treatment

of the lst LXing pass. Entries are made in tables when a tag must be load-
ed into or displaced from an IR, STAG is used to record LXs and SXs within
a basic block, and PRED is used for those between BBs. When a tag is dis~
placed, its value is saved if necessary in a cell set aside for that purpose.
These tag cells are thus kept up to date so that the next time a tag not.already
in an IR is required, an LX fromthe corresponding cell will be correct,

In order to determine when an SX is necessary, the concept of activity is used. -
When the initial value of a symbolic tag is set, or when that value is changed
by an indexing instruction such as TXI, the IR becomes active., This means
that the value in the storage cell corresponding to that tag is outdated, This
fact is recorded in cells referred to as AC 1, 2 and 3, one for each IR, If

this tag must be displaced while treating the same Looplist, an SX will be in-
troduced immediately after the active instruction, thus updating the tag cell
and ending the activity, But if the tag has not been displaced from the IR

after the treatment:of the Looplist, the section of Looplist is marked active

7l
from the point of the active instruction. This is done by placing activity bits
in the BBB entry for each BB in that section of Looplist. When flow goes
through such a BB in a subsequent Looplist, the activity will be noted, and
if a future SX is necessary it will be placed in the link from the region con-
taining the BB,

A tagged instruction that does not change the value of the tag, does not require
this treatment, Such an instruction is called passive. A passive instruction,
such as CLA or TXL, only makes it necessary to have the appropriate tag in
an IR. When a tag is required that is not already in an IR, an LX from the
appropriate tag cell is called for. Because of the way activity is handled," the
tag cells may always be considered up to date. All that is necessary is a
determination of the most desirable IR to use, If they all contain tags, this

is done by searching ahead to find out which of the tags presently in the IRs
will be needed las! .

‘Treatment in the 2nd LXing pass begins with the first entry in LPLST and

proceeds in sequence to the last, The three types of entries, 1) BBs, 2)
transparent regions, and 3) opaque regions, are distinguished by a code number
and each is treated differently,

If there are still active IR's remaining, just as the lst LXing pass was required,
another pass, the active pass, is executed. LPLST entries are examined and
treated again in a manner similar to that of the 2nd LXing pass, with SXs called
for where necessary. After each LPLST entry has been dealt with, a test

is made to see if there is still an active IR, Eventually they will have all been
taken care of and the active pass finished,

It only remains to Hring the appropriate tables up to date, The PRED and
SUCC entries that have been treated are flagged negative., BBB has the new
region references entered. And finally the region table is updated by wiping
out obsolete entries (regions absorbed into the new one) and making the entry
for the new region,

Part 1 repeats the cycle of looplist formation and treatment, with new, large
régions absorbing old ones, until all links between basic blocks have been
treated and the object program consists of a single, all encompassing region,

FLOW WITHIN PART II

In part I, tags were continually reassigned to index registers on the basis of
the optimal match that could be achieved, This reassignment was done by
changing the permutation numbers in the 2nd word of the BBB table. Part 2
makes the actual changes in the appropriate tables on the basis of the final per-
mutation numbers. It also combines BBLIST (read in from tape B3 file four),
with BBB for convenience later on,

Each basic block is-examined in sequence., The logation word of CIT for the

/R

first instruction in each BB (which has been put in BBLIST by Section IV is
placed in word 6 of BBB. Then the LX and SX bits in the PRED entries are
changed according to the permutation numbers. Next, the STAG entries are
similarly updated. Then, for each BB which ends with an Assigned GO TO,
the BB number of the last assigned GO TO is stored in word 2 of BBB. This
is done in order that part 3 may find all GO TO N BBs easily. Finally, the
entrance and exit conditions in words 3, 4 and 5 of BBB are reentered in ac-
cordance with the permutation numbers, "

FLOW WITHIN PART III

Section Vmay insert SXDs and LXDs at points in the object program which are
transferred to by an Assigned GO TO. It may therefore happen that the trans-
fer should no longer go to it's original address, but to one of the SX's or LX's,
Part 3 handles this by making the necessary changes in the assign constants.

The Assign Constants are read in from tape B2 file eight, The Basic Blocks
are examined one at a tine to determine which ends with an Assigned GO TO.
For each one that does the appropriate PRED entry is found. From the SX
and LX bits in PRED, the correct transfer address is then prepared. The
assign constants are then compared to the first instruction of each successor
BB, and when a match is found the Assign is replaced by the new symbol. The
SX bits are also stored in the prefix of word 2 in BBB for use in Block 1V,
When all the Assigned GO TO BB's have been found and treated, the altered
Assigning Constants are written back on tape B2 as file ten for use by Section
V.

FLOW WITHIN PART IV

Part 4 does the actual compilation of instructions on the basis of the information
passed on by the previous parts of Section V, The bits in PRED indicate when
inter-block SX and LX instructions are required. STAG has the necessary in-
formation about when to compile an LX or SX immediately preceeding or follow-
ing a tagged instruction.in CIT. The real index register assignment for each
tag is also indicated by bits in STAG. Part 4 follows these directions while
compiling. In addition, some minor optimizing is done,

A pass over CIT is made, and the method used to bring in blocks of-instructions
and scan them for tagged instructions and endings of BBs is similar to that used
by Section IV. This is the only time that Section V looks at the CIT. The in-
structions are brought in from tape A4 and examined in groups, and when the
necessary modifications have been made, they are rewritten on tape B3 for
Section VI.

First, part 4 considers a basic block as a whole, By referring to the BBB and
PRED entries for the BB, a list of the necessary LXs in the links to the BB is
formed, Then a list of the necessary SXs in the link is formed, When the

SX lists are compiled for the various PREDs, it may happen that two or more of
these are the same. The symbolic locations of these SX lists will be different
however, because of the number of the PRED entry is contained in the location
symbol. A SYN pseudo instruction is compiled in this case.

—

@,

77

A '"'sequential transfer', which is one from the last instruction in the previous
BB to the first instruction in this BB, is compiled if necessary. The trans-
fer may be around one or more lists of LXs and SXs associated with other
PREDs for this BB. On the other hand, the transfer may be deleted if no
instructions had to be inserted between the BBs.

After the inter-block SXs and LLXs have been taken care of for each BB, all
the instructions wi thin the BB are handled. All CIT entries without tags are,
of course, kept, A CIT entry which already has a real tag of 4 is checked to
see if it is an SXD or LLXD, which has been placed around a subroutine calling
sequence. If such is the case and if IR4 is not necessary for Section V assign-
ment of 2 symbolic tag at this point, the SXD or LXD will be deleted, The SXD
location will be compiled as a BSS 0 since it may be referred to elsewhere in
the program. When an LXD after a subroutine calling sequence cannot be de~
leted because IR4 is necessary, if the following instruction is a similar SXD,
both are deleted. As a result, a series of TSX instructions will have the un-
necessary SXDs and LLXDs removed.

When an instruction with a symbolic tag is encountered in CIT, the STAG entry
referring to it is examined, If STAG requests it, in LX from the tag cell will.
now be compiled, Then the instruction itself is compiled and next an SX to the
tag cell if so indicated, Each of these instructions will have had the real tag
assigned also on the basis of the STAG entry. The LXP pseudo instruction is
deleted when it occurs, as is a DED. These instructions were put in as signals
to part 1 and are no longer required.

After an instruction has gone through the foregoing treatment, it is checked to
sce if this is the end d the BB. If it is not, the next CIT entry is examined and
treated. When the ending is found, any transfer addresses are examined to see
if the transfer is to a BB with SXs or LXs in the PRED link, If it is, the address
is changed to the location of the proper SX or LLX., Any '"sequential transfers"
are not compiled at this time, however., An indicator is stored if there is one,
and the deletion or insertion of this transfer is left up to the analysis of the PRED
link when the next BB is treated, The case of an Assigned GO TO ending is
treated differently, The SX bits placed in word 2 of BBB by part 3 are examined
and SXs compiled where necessary, Then the transfer to N is compiled.

When all the instructions in the BB have been treated and the ending taken care
of, the next BB is dealt with as before, The process continues until the end

of CIT is reached. Finally the relative constant routines are copies at the

end of CIT is reached. Finally the relative constant routines are copies at the
end of CIT and control passes to the Section V', '

74
SECTION V! 2,01.09

The purpose of Section V' is to add to the CIT f{ile all constants and source
program data appearing in the symbolic listing, except for the B) and 9)
constants, for use in Section VI,

At the end of Section V the CIT file contains the entire working program,
the arithmetic statement function definition subroutines, and the relative
constant computation subroutines A). Available to Section V' are tables
on tape B2, containing the assign constants 5), fixed point constants 2),
floating point constants 3), format BCD words 8).

Aasign constants are in the ASSIGN table, one record of file ten, on tape
B2,

Fixed point constants are in the FIXCON table, one record of file nine, on
tape B2.

Floating point constants are in the FLOCON table, record one of file four,
on tape B2.

Format BCD word are in the FORMAT table, record two of file four, on
tape B2.

Universal constants 6), are compiled for all programs, as certain subroutines
assume that they be present.

To initialize V', the last CIT record previously compiled is read from tape
B2. To this record, and to additional records as they become full, are add-
ed the four word CIT for each word in each of the tables. The records are
written out on-tape B2 as they become full (100 words per record).

When all constants have been compiled, the partially filled final CIT record,. if
any, is written off on tape B3, an end of file is added to mark the end of the
CIT file. Control now passes to Section Pre VI,

75

FLOW IN SECTION V

FROM BEOQT IV (Fic. .12)

PART |
TAGLIBT (FiLK 3) .__~
\
PART }I
BBLIST (FILK 4) : F
PART 111
ABSIGN (FiLE 8) —l ABSIGN (FILK 10)
MODIFIED
A
i
PART vV :
-
ciT!s (FILE | & 2) ‘ ._+ cit!s (riLk 1) 3
: {
LABT ARECORD (FILE 1) B3 s SECTION V

S,

"ABSEMBLED TABLES AFTER
EXISTING CIT/ B (FiLE 1)

ASBSIGN (FILE 10)
FIXCON (FILE 9)
FLOCON (FILE 4)
FORMAT (FILE 4)

i

¢

TO SECT, PRE VI (rig, 14

FIGURE'I3

O

O

Z3

SECTION VI 2,01.10

Since the object program is symbolically complete, all that remains is to
agsemble the compiled instructions, producing a relocatable binary program
ready for loading and running, and a listing of certain information concerning
the program being compiled. Section VI is primarily an assembler, differing
little from any standard assembler. It builds a table of symbol names and re-
locatable locations, translates BCD operation codes to binary instructions,
replaces symbolic locationsmwith relocatable locations, and assembles the
binary operation code, decrement, tag, and address into one word which

shall occupy one location in memory during object time. In addition, options
are available to include in the binary deck library subroutire s for use at ob-
ject time; to punch on line a row-binary deck, preceded by the BSS loader if a
main program; to punch on line a column-binary deck; to produce a third file
of SAP-like symbolic listing of the compiled program; to produce a binary
symbol table.

FLOW IN SECTION VI
Record 34

Record 34 (also called Pre VI) completes the CIT file, It uses information in

the CLOSUB, SUBDEF, and HOLARG tables, and scans during prefirst pass

the entire CIT file on tape B3 for those instructions referring to arguments

which require initialization, It writes the transfer vector, and if a subpro-
gram, prolog, and initialization on tape A4; copies during presecond pass the

CIT file from tape B3 to tape A4 changing certain pseudo op codes used internally
in FORTRAN to machine op-codes; and adds to the end of the CIT file Hollerith
arguments, and initialization addend constants. It also reads into memory tables
required by section VI, '

Included in this record is a common binary search routine which remains in
memory for use by subsequent parts, The maximum table length which can
be searched by this routine is 16383 words, which is the effective limit to
the length of any table which must be searched.

Record 35

Record 35 builds that portion of the dictionary which is defined by COMMON,
DIMENSION, EQUIVALENCE, CALL, SUBROUTINE, and FUNCTION state-
ments, and any statement referring to a library subprogram, such as PRINT
or X « SQRTF(B). The names of variables, dummy variables (arguments),
or subroutine or subprogram entry points are entered into the DEV table,
while the relocatable address assigned to each is entered into the associated
DEA table.

First processed are variable names appearing both in COMMON and EQUIVALENCE

statements, A variable nar:c is selected from EQUIT table. It is compared
with the names appearing in the COMMON table. If it appears in both, the en-
tire sentence in the EQUIT table in which this variable appears is assigned to
upper memory. ' '

77

An equivalence sentence, assembled by Section I', contains all variable names,
the relative locations of which have been fixed by EQUIVALENCE statements,
The sentence contains no redundancies or inconsistancies. The sentence is
made up of two-word entries, the BCD variable name, and the relative loca-
tion (subscript) to each other. The end of each sentence is marked by a flag
(negative sign) in the final subscript,

The equivalence sentence is scanned for the greatest subscript, The current
value of the location counter, initially at ~207 in the 709, is reduced by the
greatest subscript. This is the base from which the location assigned toeach
of the variable names is computed, The equivalence sentence is scanned again
for any variables which are names of arrays., It a variable appears in the SIZ
table, the overhang of the array length over the base location (array length -
subscript) is computed, and the maximum of these is found. The equivalence
sentence is scanned again, Each subscript is added to the base address, in
effect creating an array stored backwards in memory, and the variable or
array name is entered into DEV with its corresponding location in DEA, flagged
minus. The array name with the greatest subscript will be assigned the value
of the location counter before it was reduced, in effect locating the most prece-
dent array name in the first available memory location. The value of the location
counter is then reserving memory for the overlapping array extending farthest
into memory, and reserving for the next variable name the next lower cell.

Suppose there are common symbols E, D, X, which are related by EQUIVA-~
LENCE (E (5), D(2), X), and the E and D occur in dimension statements giving
their total size as E(6) and D(5), X being a non-subscripted variable. The first
variable to be defined is the one with the largest element number in the equiva-
lence group, E in this case, and the lst element of E is given the highest free
location, i.e,, LCTR. D and X are immediately defined by their equimalence
relationship with E:

E(5) s D(2) = X

D: E-3
or - LCTR-3
and X =-E-4
- LCTR-4

It must also be determined how much space these variables occupy. Since

- the array E has 6 elements, thelast of these would be in LCTR-5, and

similarly D has 5 elements, the last of which would be in LCTR-7., Clearly
then, the first free location is the one following array D, namely LCTR-3,

‘which then becomes the new LCTR for the next set of assignments. This

maximum overhang would be (5-2) = 3, the base address LCTR-5 being so
reduced to determine the cell LCTR-8.

7

After all equivalence sentences in common have been assigned, storage is
assigned for all other variables appearing in COMMON statements. The
COMMON table, assembled by Section I is made up of one-word entries, the
BCD name of a variable appearing in a COMMON statement, Each variable
name is checked against DEV to determine if it had appeared in an equiva-
lence sentence., If it is not so redundant, it is entered into DEV with the
contents of the location counter as the corresponding la ation in DEA, The
SIZ table is checked to determine if this is an array name, and the value of
the location counter is reduced by the length of this array; or if not an array,
by l. Every variable is assumed to be an array with a length of at least 1,
This, in effect, creates the array stored backwards in memory, reserving
for the next variable name the next lower cell.

When all of common has been assigned, the current value of the location
counter, the cell next below the last cell in commbn, is entered into the pro-
gram card 8R address (common break),

Next to be processed are equivalence sentences ndt assigned to upper storage.
The first symbol of each equivalence sentence is checked against DEV to deter-
mine if any symbol in this sentence had appeared in a COMMON statement, If
it is not so redundant, the entire sentence is assigned storage locations, identi-
cally as described above, again flagged minus in DEA, The array name with
the greatest subscript in the first equivalence sentence will be assigned the lo-
cation stored in the common break, the cell next below the last cell in common,
This, and all subsequent storage assignments later will be relocated down-
wards in memory, '

Next to be processed is the SUBDEF table. If this program is a FORTRAN
subprogram, defined by a SUBROUTINE or FUNCTION statement, the name
of the program and the argument list are assembled into the SUBDEF table
by Section I, - Each entry is a one-word BCD name of a dummy variable used
as an argument, Each argument name is compared with the subprogram
name, If it is multiply defined, a diagnostic message results, Entry is
made into DEV to prevent assignment of a storage location for this dummy
variable if it appears in a DIMENSION statement not in common, or as the
symbolic addresqword 3) of a CIT., The corresponding address in DEA is the
flag 77777, If this dummy name is already in DEV, it has appeared in a
EQUIVALENCE statement and a diagnostic message results. If the flag in
DEA is not minus, the dummy name appeared in a COMMON statement. This
is permissible, and storage is reserved, but the DEA entry is altered to that
dummy variable will not appear on the COMMON storage map.

The SIZ table, assembled by Section I', is made up of two word entries, the
BCD name of the array, and the length of the array (the product of its dimen-
sions as stated in a DIMENSION statement), Each array name in the SIZ

table is checked against the DEV table to determine if it has appeared in a
COMMON or EQUIVALENCE sentence or is a dummy variable name of an argu-
ment, If it is not so redundant, it is entered into DEV with the current contents

77
of the location counter as the corresponding location in DEA. The value of
the location counter is reduced by the length of this array. This, in effect,
creates an array stored backwards in memory, reserving for the next vari-
able name the next lower cell. A dummy variable name of an argument may
appear in a DIMENSION statement in order that a proper relative address

may be computed for reference to a specific element in an array, but no storage
will be allocated to this dummy variable,

The storage for variables appearing in COMMON statements is now mapped,
The variable name, right adjusted, is inserted in the second word of a tetrad;
the decimal location, right adjusted with leading zeros suppressed, inserted
in the third word; and the octal location, right adjusted with leading zeros
included, inserted in the fourth word. The first word of every tetrad is blank.
The title, column headings, each line as completed, and the final partial line
if any, are written on tape B2 immediately following theinternal end of file,
marking the end of the source program listing,

Next to be processed is the transfer vectér. If the source program refers to
other subprograms through a CALL statement or an arithmetic statement in
which a function name appears, or if a library subroutine is called, Section

I assembles the BCD name of the entry point to each such subprogram as one-
word entries in the CLOSUB table. The transfer vector, made up of N such
names, occupies (relocatable) storage locations 0 thru N-1 of the object pro-
gram, Each subprogram name is entered into DEV with the corresponding
lower storage locations entered into DEA. If the name is already in DEV, it has
appeared in a COMMON, EQUIVALENCE, or DIMENSION statement, and a
diagnostic message results. If the name of the subprogram is a dummy name,
to be initialized, it does not appear in CLOSUB, and no conflict exists.

Finally, the names of arithmetic statement functions are. processed. If such

a statement appears in the source program, Section I assembles the BCD

aame of the function so defined, and the internal formula number assigned to the
subroutine, in a two word FORSUB entry. Each name is entered into the DEV
table with location zero (to be entered later) entered into DEA. ' If the name is
already in DEV, it has appeared in a COMMON, EQUIVALENCE, or DIMEN-
SION statement, or has been referred to in a CALL statement or an arithme tic

_ statement including an argument list with the terminal F omitted from the

name, or as a dummy variable name, and a diagnostic message results. The
improper use of the name with the terminal F omitted and with no argument list

will compile, however improperly. In each case, the improper use of the name

of the subprogram being compiled as an argument in the argument list, as a
name in the transfer vector, or the name of an arithmetic statement funcuon,
is checked, and if so used, a diagnostic message results.

The DEV and DEA tables are now complete. . All other variable names in the
source program are nonsubscripted, requiring one storage location each.

pee,
Record 36

Record 36 includes the first pass over the complete CIT file, to define all
internal formula numbers, source program symbols not in DEV, and internal
symbols.

The DEA table is moved up in memory and packed against the end of DEV,
The IFN table will share memory with the DEA table, the former occupying
the decrement portion of each word, while the latter occupies the address.
The TEYV table will follow the longer of the two,

CIT records are brought into memory from tape A4, and are replaced'with
the next subsequent record when completely scanned, Each CIT is scanned
first for its opcode. I.itis OCT or BCD the address portion is ignored.

For other codes the symbolic address is scanned next. If the address is an
internal formula number, the address is ignored. A SYN to an IFN is unde-
fined, If the address is a subsidiary internal formula number (nAm), the
symbol is assembled into TIV form and TIV is searched to define a possible
SYN to this symbol, If it is not in TIV, it is entered, undefined. If the ad-
dress is *, the contents of the program counter are used to define a possible
SYN to this symbol.,

If the address is

2) f‘i:c‘ed point constant

3) Floating point constant

5) Assign constant

6) Universal constant

8) N _‘ Format specification word

9) Initialization addend constant
B) Hollerith subroutine argument

It is in the symbolic listing, and the address is ignored. A SYN to one of these

symbols is undefined,

If the address is

1) N Arithmetic eraseable
4) N Arithmetic statement function argument storage
) N Arithmetic statement function index register eraseable

C)N Index register eraseable,

7.

Vs
.’
I

It is not in the symbolic I‘isting, and is entered into TIV with greatest level
of storage (decrement of word 4 CIT) as the address, A SYN to one of these
symbols is undefined, - ‘

If the address is

A) N Location symbol for subroutine to compute relative
constants

D) N, Location symbol for a section 5 LXD instruction

E). N, Location symbol for a section 5 SXD instruction

It is in the symbolic kisting, but TIV is searched to define a possible SYN to
one of these symbols,

If the address is $ or $$, the location assigned to each of these is used to define
a possible SYN, If the address is an external variable, DEV and TEV are
searched to define a possible SYN to one of these symbols, If this variable
name is not in DEV or TEV, it is entered into TEV, the location to be defined
later,

The op code again is scanned for SYN, The symbol D)N or E)N in the symbolic
location can be synonymous with another symbol D)N or E)N, compiled by Section
V. 1If the SYN is undefined, a diagnostic message resuits, For all op-coes '
other than BSS or SYN, the location counter is bumped by 1. If it is BSS, the
length of block reserved as assumed to be zero, If it is SYN, no location is
reserved,

Next to be scanned is the symbolic location. If the location is an internal formula
number, the contents of the program counter are entered into the IFN table
(decrement portion of the joint IFN-DEA takle), ordered as to internal for-

mula number s, The test for an internal formula number is such that it may

not extend over more than 12 bits in the decrement field, a maximum of

4095. If any internal number is greater, it will appear to be an internal sym-
bol, and will miscompile. No diagnostic message results. If the location
symbol is a subsidiary internal formula number (nAm), TIV is searched to
determine if there had been a prior reference to the symbol, If such a reference
had been made, the contents of the program counter are entered into TIV to
define this symbol, If no prior reference had been made, the symbol remains
undefined, This is to optimize entries into the TIV table, If the reference

to the subsidiary internal formula number-is prior to the appearance of the
number in the location field, it will have been entered into TIV, and defired in
pass 1. If such reference is siibsequent to such appearance, the TIV entry will
be made, but the symbol will remain undefined until pass 2, During pass 2,

this symbol will be defined prior to such subsequent reference, Hence, any
subsidiary internal formula number to which a reference is made will eventu-
ally appear defined in TIV, while no reference is made will hot be entered

2

into TIV. If the location symbol is *, it is a flag set by section III that this
CIT results froma TIFGOentry for TRASTO transfer address, for consid-
eration by section IV, and it is ignored. For all other internal symbols
appearing in the symbolic listing, a TIV entry is made, the contents of the
program counter defining this symbol. If the location symbol is $ or $$,
each of these is defined by the contents of the program counter. If the lo-
cation symbol is an external symbol (transfer vector name), if is ignored.

At the end of the first pass over the complete CIT tape, all symbols appear-

ing in compiled instructions have been entered into one of the tables, DEV, .
IFN, TEV or TIV. The upper location counter is one cell below the lowest

cell reserved for a DEV entry. The location counter is reduced by the length

of the TEV table, and each variable in TEV is implicitly defined as the current
contents of the location counter plus its ordered location in the TEV table.

Later, these locations will be relocated downwards in memory.

Assignment of storage locations for eraseable cells in TIV is made next.

Each TIV entry is examined to determine if it is an eraseable cell (1)N,

4)N, 7)N, C)N.) If it is, the location counter is reduced by the largest

value of the block required, the address portion of the TIV entry, and this
location defines the symbol. This, in effect, creates an array stored for-
wards in memory. The location counter is reduced by one more 10 reserve
the next lower cell for the next symbol. The symbol 4), eraseable for library
subroutines, is defined as the location at the top of memory, 77777,

VSt

The storage assignments at this point are as in the following diagram,

Location Table
Symtol - Entries relocatable
zero
NAME TRANSFER VECTOR DEV
$ PROLOG .
l;",subprograms only
INITIALIZATION :
$$ IFN
nA TIV
nAm OBJECT PROGRAM
D)N TIV
E)N TIV
(Name
nA ARITHMETIC SUBROUTINES in DEV)
IFN
A)N RELCON SUBROUTINES TIV
5)
2)
3) PROGRAM CONSTANTS TIV
6) end of symbolic
8)N listing,
B) :
program
NOT ASSIGNED counter
contents of lo-
7)N cation counter
4)N ERASEABLE STORAGE TIV
1)N
C)N
NAME NON SUBSCRIPTED VARIABLES TEV
NAME DIMENSION VARIABLES DEV
NAME DIMENSION EQUIV VARIABLES DEV common breadc P
NAME COMMON DIMENSION VARIABLES DEV
NAME COMMON DIM. EQUIV. VARIABLES DEV -207(709)
LIBRARY SUBROUTINE !
ERASEABLE
4) ’ TIV top of memory :
Note: argument dummy names (in subprograms) are entered into DEV, flagged 4
77777 in DEA '
|

2=

Record 37

Record 37 assigns locations for arithmetic statement function subroutines
and maps them., The DEYV table is scanned for the name of each subroutine
(word 1 of each FORSUB table entry). If it is not found, a machine error
has occurred, and a diagnostic message results. The location of the in-
ternal formula number assigned to this subroutine name (decrement of word
2 of FORSUB table entry) is found in the IFN table, and inserted in the ad-

~dress of word 2 of the FORSUB table entry, and to define this symbolic loca-

tion, in the DEA table,

The location of each subroutine is now mapped. The subroutine name, right
adjusted, is inserted in the second word of a tetrad; the decimal internal for-
mula number, right adjusted, inserted in the third word; and the octal loca-
tion of this internal formula number, right adjusted with leading zeros in-
cluded, inserted in the fourth word. The first word of every tetrad is blank,
The title, column headings, each line as completed, and the final partial

line if any are written on tape B2, following the mapping of common storage
assignment, if any.

Record 38

Record 38 maps external formula numbers with corresponding internal for-
mula numbers and relative locations.

Each decimal external formula number (address portion of one-word entry)

in EIFN table, right adjusted, is inserted in the second word of a tetrad; the
decimal internal formula number (decrement portion of entry), ritht adjusted
is inserted in the third word; and the octal location of this internal formula
number, found in the IFN table, right adjusted with leading zeros included,
inserted in the fourth word, The first word of eery tetrad is blank. The title,
column headings, each line as completed, and the final partial line if any are

written on tape B2, following the mapping of arithmetic statement function sub- -

routines, if any.
Record 39

Record 39 relocates storage not in common downwards packed against program
constants,

The length of unassigned memory is computed (contents of location counter less
contents of program counter, plus one), and is the extent of relocation. The
position of the program bredk is computed (location of common break less con-
tents of the location counter, number of variables to be relocated, added to
contents of program counter), and inserted in the program card 8L address.

Each location in DEA is compared against the common break (highest cell in
storage to be relocated). If it is not in common, a transfer vector name, a

)

subprogram argument dummy variable (flagged 77777), or an arithmetic sub-
routine, the location is reduced by the extent of relocation. The base location
for TEV is so relocated; in effect, relocating each variable in TEV, Each _
location in TIV is comp red against the common break and the program break,
If it is not 4) (location 77777), program data in the symbolic listing, or an
instruction location symbol, it is an eraseable cell and is so relocated,

The final storage assignments are as in the following diagram.

-{ TRANSFER VECTOR relocatable zero
entry point (subprogram) PROLOG ' subprograms only
entry point (main program) INITIALIZATION

OBJECT PROGRAM

ARITHMETIC SUBROUTINES
RELCON SUBROUTINES
PROGRAM CONSTANTS
ERASEABLE STORAGE
NON SUBSCRIPTED VAR,

~DIMENSION VARIABLES

| DIMENSION EQUIV, VAR. _

B A AN S A T F i T

NOT

ASSIGNED

program break

common break

COMMON DIMENSION VAR. e
COM. DIMEN, EQUIV, VAR, -207 (709)
LIBRARY SUB, ERASEABLE

The limits of storage not used by program (program break and common break),
converted to decimal, right adjusted with leading zeros suppressed, are in-
serted in the third word of a tetrad; converted to octal, right adjusted with
leading zeros included, inserted in the fourth word. The first and second word
of this tetrad are blank, The title, column headings, and this line are written
on tape B2, following the mapping of external-internal formula numbers, if any.

Next are mapped the transfer vector, program variables not in common, and
internal symbols, The number of mitries in the transfer vecotr is one location
greater than that of the last name in the transfer vector. Each location in DEA

is compared against the location of the first instruction following the transfer
vector, and if in the transfer vector, the corresponding transfer vecotr name in
DEV, right adjusted, is inserted in the second word of a tetrad; the decimal
location, right adjusted with leading zeros suppressed, inserted in the third word;
and the octal location, right adjusted with leading zeros included, inserted in

the fourth word. The first word of every tetrad is blank. The title, column head-
ings, each line as completed, and the final partical line if any, are written on tape
B2 following the mapping of the storage limits,

7€

If any arithmetic subroutines exist, the location following them is the first
location in which a variable may appear., If not, the location following the
transfer vector is this location, Each location in DEA is compared against

the first location following either the transfer vector ar arithmetic sub-
routines, and against the common break, If it has not been listed previously
as a transfer vector or arithmetic subroutine name, as a variable in common,
or is not a subprogram argument dummy variable name, it is a subscripted
variable not in common, and the corresponding name in DEV, right adjusted,
is inserted in the second word of a tetrad; the decimal location, right adjust-
ed with leading zeros suppressed, inserted in the third word; and the octal
location right adjusted with leading zeros included, inserted in the fourth word,
The first word of every tetrad is blank., The title, column headings, each line
as completed, and the final partial line, if any, are written on tape B2 following
the mapping of the transfer vector, if any,

Each entry in TEV (nonsubscripted variable not in common), right adjusted,

is inserted in the second word of a tetrad; the decimal location, the sum .of

base location for TEV and the relative location of this variable in TEV, right
adjusted with leading zeros suppressed, inserted in the third word; and the octal
location, right adjusted with leading zeros included, inserted in the fourth word.
The first word of every tetrad is blank.. The title, column headings, each line
as completed, and the final partial line, if any, are written on.tape B2 follow-
ing the mapping of the subscripted variables not in common , if any,

Each entry in TIV is then mapped. A TIV entry consists of a symbol in bits,
S, 1, 2, 3; bits 4 and 5 zero; sub symbol, if any, in bits 6-20; and the loca-
tion in bits 21-35. A subsidiary internal formula number consists of bits S,
1, 2, 3, 20 zero, the intemal formula number in bits 4-14 (maximum size
2047); the subsidiary number in bits 15-19; and the location in bits 21-35,

If the TIV entry is a sub internal formula number, it is ignored, If itis an
internal symbol for a storage cell, an alpha numeric character from the set

1 through 9, A through E is assigned to the 4-bit pseudo symbol, followed

by a right parenthesis, The 15 bit subsymbol, if any, is converted five bits at
a timeto 3 alpha numeric characters from the set 1 through 9, A through W.

~The pseudo symbol, left adjusted, is inserted in the second word of a tetrad;

the decimal location, right adjusted with leading zeros suppressed, inserted

in the third word; and octal location, right adjusted with leading zeros included,
inserted in the fourth word. The first word of every tetrad is blank. The title,
column headings, each line as completed, and the final partial line, if any, are
written on tape B2 followingthe mapping of nonsubscripted variables not in com-
mon, if any,

Next the program card is written as the first binary output on tape B3, Program
card 9L includes a 4 punch in the prefix and a word count of 4 in the decrement.
8L contains the length of transfer vector in the decrement and program break in
the address. B8R contains the common break in the address, 7L contains the BCD
subprogram name, if any, 7R contains the entry point, relative to zero in the

g7

address, The computed checksum of the card is inserted in 9R.

Column binary bits, 7-9 punch in column 1, not included in the checksum, are
inserted in 9L, and the program card is written as the first record on binary
output tape B3,

Record 40

Record 40 includes the second pass over the CIT tape to define each of the
symbols used in each CIT, counstruct a binary instruction for each CIT, and
write the compiled program on binary output tape # B3.

CIT records are brought into memory from tape A4, and are replaced with
the next subsequent record when completely scanned,

Relocation bit patterns are of three types. T 'pe 00 indicates that address por-
tion of the instruction is not relocatable, Type 010 indicates that the address
portion is relocatable as data on the proper side of the program break., Type
011 indicates that the instruction is complement relocatable; the address re-
fers to a cell in an array the base symbol of which is on the opposite side of the
program break, and should be relocated as its base symbol would be, The de-
crement of an instruction is not relocatable in a FORTRAN object program.

The relocation bits are initially reset to not relocatable, First to be scanned is
the opcode. If it is OCT or BCD, the address portion isnot relocatable., For
all other opcobdes, the symbolic address is scanned next, If the symbolic
address is zero, it is not relocatable, Ii the symbolic address is an internal
formula number, the location is obtained from the TIV table, If the symbolic
address is *, the location is the current contents of the program counter, If
the symbolic address is $ or $$, the location is as assigned to either of these.
If the symbolic address is an external symbol, the location is obtained from
TEV or DEA, If any symbol has as yet not been defined, a diagnostic message
results, For each of these, the address is tentatively set directly relocatable,

The opcode is again scanned, If it is SYN, the definition is saved to be checked.
No binary output results. If it is BSS, the length of the block reserved is as-
sumed to be zero. No binary output results. For all opcodes other than BCD,
OCT, BSS or SYN, the binary machine code is i1ound in the SOPR table. If the
opcode is not found in the table, a diagnoétic message resulis.

The relative address is added to the location for the symbolic address to deter-
mine the absolute address for the symbol, If negative, it is complemented.
The base symbol (symbolic address) is examined to determine if both the base
symbol and the absolute address are on the same side of the program break.

If they are not, the address is set complement relocatable, The binary decre-
ment, absolute tag, and absolute address are combined with the operation code.
For BCD or OCT, the binary word (symbolic address) is used. The program
counter is bumped one location,

4

The relocation bits are packed left adjusted against any prior relocation bits
already in the 8 row of the card image. The binary instruction is inserted
inthe next available half row of the card image. When the card image is full,
the word count is inserted in 9L decrement, the load address is inserted in
9L address, the chegcksum is computed and inserted in 9R, column binary
bits added to 9L, the card is written on tape B3, and the load address is up-
dated to the program counter for the next instruction. Column binary bits
are not included in the checksum 9R, and tape B3 is unusable for off line out-
put.

For all CIT's the symbolic location is scanned, If it is a subsidiary internal
formula number and is not in TIV, it has been omitted as no reference to it

was made in the symbolic address, and it is ignored, If it is in TIV and is

not yet defined, the reference to it was later in the CIT file than its appear-
ance in the location field. It is here defined, the location assigned to this
symbol is checked against the program counter. If it is inconsistent, a dia-
gnostic message results, If the symbolic location is an internal formula num-
ber, it is checked for inconsistent definition, If the symbolic location is an
internal symbol, it is the symbol for program data appearing in the symbolic
listing, or the symbol assigned to a Section V LXD or SXD instruction or a
relcon subroutine, If the symbol appears in TIV it is checked for inconsistent.
definition. If it does not appear in TIV, it is a machine error, but no diagnos-
tic message will result. If it is $, $$, *, or an external symbol in DEV (trans-
fer vector name) it is ignored. No other external symbol in DEV or any in TEV
should appear in a location field,

After the entrie CIT file has been scanned, the final partial card image, if any,
is written on tape B3, Processing is now complete, except for the transfer
card, and for options. :

Record 41

Record 41 processes the options which the programmer has instructed the
FORTRAN compiler to provide. Available are the following options:

Sense Switch 1 UupP Binary cards for the object program are punched on
line. Tape B4 also contains thegacked binary pro-
gram if row binary has been requested on line.

DOWN Binary cards for the output program are not punch-
ed. Tape B4 contains the stacked binary program
for the source program compiled.

Note: Binary card images on tape B3 omit the column
binary bits from the checksum and are unusable,

Sense Switch 2 UupP Produces, on tape B2, two files for source program
compiled, consisting of the source program and a map
of object program storage.

Sense Switch 3

Sense Switch 4

Sense Switch 5

Sense Switch 6

I

a4
DOWN Adds a third file for each program compiled (see

above) containing the object program in symbolic
machine language on tape.

Note: This listing will be stacked on tape A3 as one file for
the entire monitor run.

up No on line listings are produced,

DOWN Lists on line the firsttwo or three files of tape B2,
depending on the setting of Sense Switch 2.

up Relocatable row binary cards for the object program
are punched on line, if Sense Switch 1 is up,

DOWN Relocatable columnar binary cards for the object
program are punched on line if Sense Switch 1 is
up. These will not be stacked on tape B4. Also
these appear on tape B3, see note under Switch 1.

-UP Library routines are not punched out on line or

written on tape B4.

DOWN Causes library routines to be punched on line and
written on tape B4, depending on whether Sense
Switch 1 and 4 are in the Up or Down position. See.
note under Switch 4 down, and Switch 1.

Not applicable to Section 6.

The transfer vector, which has been stored as one record following the CIT
file on tape A4, is brought back into memory. End card setting and/or phy-
sical sense switch 5 is tested to determine if a library search is required.

If the transfer vector is not empty and a library search is requested, a flag

for subroutire s found in each pass over the library

tape is reset.

The next record in the library file is read into memory. If 9L prefix has a 4
punch, it is a program card; if not the next record is read in,

After a program card has been found, the next record is brought into memory
with rows 8 through 12 packed against the earlier card image. Row 9L prefix
is again.tested to determine if the program card continues over more than one

card. When a card other than a program is encountered, the tape is backspaced
over the card image, and a consolidated program card exists in memory.
word count of the consolidated program card is inserted in the decrement of 8L.

f;le on the FORTRAN system

The

|

%o,

Each right row (entry point relative to zero corresponding to entry point
name) is scanned to determine if it is flagged by a sign bit punch as a secon-
dary entry point, I itis not so flagged, the left row (name of primary entry
point) is compared against the transfer vector to determine if this sub-
routine is required to complete the object program, If no such name is found,
the remainder of the subroutine in the library file is passed over to find the
first program card of the following subroutine,

If a primary entry point to a subroutine is found in the transfer vector, the
name is transferred from the transfer vector to a list of entry paints to
subroutines output from the library. A flag is set that at least one subroutine
has been found on this pass over the library file.

The names of all entry points to subroutines output are added to the found list,
and if any of these are in the transfer vector, they are deleted fromthe transfer
vector,

The consolidated program card is converted back into individual card images,
and writte on tape B3 following the oject pragram, or the last library sub-
routine output, and the next record read fromthe library file. If the library
subroutine includes a transfer vector, each name in the subroutine transfer
vector is compared against the found list and the object program transfer
vector. If it is in neither, it is a new requirement and it is added to the ob-
ject program transfer vector look for list. The card image is written on
tape B3 followingthe library program card, or last subroutine card. If the
subroutine transfer vector is not exhausted, the next card image is read in and
processing continues as above. If a program card or end of file is sensed
before the subroutine transfer vector is exhausted, a diagnostic message re-
sults..

After the subroutine transfer vector is exhausted, the remaining cards in the
library subroutine are copies from the library file to tape B3, until the next
program card is encountered. If the object program transfer vector is ex-
hausted, the search is completed. If not, the search continues until the end
of the library file is sensed, ‘

After the end of the library file, the flag for subroutines found is examined,

If any subroutines have been found on this pass, the subroutine transfer vec-
tor may require another pass over the library file, as these new subroutines
may have added names to the look for list. If the look for list is not exhausted,
and subroutines have been added this pass, the system tape is backspaced to
the beginning of the library file, the subroutines found flag reset, and another
pass over the library file is made.

After the library search is completed, the system tape is repositioned at the
end of this record, and if any names of entry points to libra:y subroutines
are on the found list, these names are written on the storage map. Each BCD
name is right adjusted and inserted in the second word of a pair, The first
word is blank. The title, each line as completed, and the final partial line,
if any, are written on tape B2 following the mapping of internal symbols.

g
71

After this mapping, or if the library search was not required, the transfer

vector is examined to determine if any subprograms exist which are not lib-

rary subroutines. Each BCD name remaining in the transfer vector is right
adjusted and inserted in the second word of a pair, The first word is blank.

The title, each line as completed, and the final partial line, if any, are
written on tape B2 following the mapping of names of entry pomts to library
subroutines found, if any.

The storage map is now complete and marked with an end of file,

If the object program is not a subprogram, a transfer card is written on tape
B3, The end of binary output is marked with an end of file, and the tape is
rewound.

End card setting and/or physical sense switch 1 is tested to determine if
cards are required on line. Ii cards are required on line, end card setting
and/or physical sense switch 4 is tested to determine if cards should be row
binary or column binary.

If switch 4 is up, cards are to be row binary, and if the object program is not
a subprogram, the BSS loader is punched on line. The column binary bits are
deleted from 9L of each card image. and the card punched on line.

If switch 4 is down, cards are to be column binary, the column binary bits are
added into the checksum, 9R, or each card image, tle row binary rotated to a ,
column binary image, and the card punched on line.

If no column binary cards have been punched on line, sense light 1 is turned '
on to so flag the monitor. and the binary output will be stacked on tape B4.
The binary output on B3 does not include column binary bits in the checksum,
and is unuseable,

End card setting and/or physical sense switch 2 is tested to determine if a
machine language listing is required. If it is so requested , sense light 2
is turned on to flag monitor that a third file exists on'the BCD output tape.
An additional pass is made over the CIT tape toaccomplish this.

CIT records are brought into memory from tape A4, and are replaced with

the next subsequent record when completely scanned. First the symbolic loca-
tion is processed, If the symbolic location is an internal formula nurhber or a
subsidiary internal formula number, the main number is converted to decimal,

_the character A appended, and the subsidiary number converted to decimal. The

largest internal formula number which can be stored in TIV is 2047, and a sub-
sidiary number can be one character only, Hence this symbol cannot exceed
six characters. If the symbolic location is *, it is deleted. If the symbolic
location is an internal symbol, a pseudo symbol is constructed which cannot
exceed five characters. If the symbol is $, $$ or a transfer vector name, these
characters are used. The BCD symbol, so constructed, right adjusted, is
inserted in the third word of a hexad.

o~

The BCD opcode, preceded and followed by a blank, is inserted in the first
five characters of the fourth word.

If the opcode is BCD, and the symbolic address is a 777777777777 flag, the
code is replaced by OCT, and processing continues as an octal symbolic
address.

If the symbolic address is not a flag, the numeral 1 is inserted in the sixth
character of the fourth word, and the six character BCD word in the fifth, .
The sixth word is blank, #

if the opcode is OCT, the first bit is interpreted as a sign, inserted in the
sixth character of the fourth word, and the 35 bit binary number, converted
to 12 BCD octal digits, is inserted in fifth and sixth words.

For all opcodes other than BCD or OCT, the symbolic address is processed
as follows. If the symbolic address is an internal formula number or a sub-
sidiary internal formula number, the main number is converted to decimal,
the caracter A appended, and the subsidiary number, if any, converted to
decimal. The first BCD character of the internal formula number is inserted
in the sixth character of the fourth word. The remaining BCD characters
(five or fewer) of the symbol, followed by blanks, are saved. If the symbol
address is an internal symbol, a pseudo symbol is constructed, The first
BCD character of the pseudo symbol is inserted in the sixth character of the
fourth word, The remaining BCD characters (four or fewer) of the pseudo
symbol, followed by blanks are saved. If the symbolic address is an *, $,
$$, or any extemal symbol, the first BCD character of the symbol is insert-
ed in the sixth character of the fourth word. The remaining BCD characters
(five or fewer) of the symbol followed by blanks are saved,

The remaining characters in the symbol (five or fewer) followed by blanks are
examined one at a time for the first blank character, The non-blank characters
are packed left adjusted into the fifth character of the fifth word. The relative
address is isolated from the decrement of the CIT word 4. If it exists, it is
converted to five or fewer BCD decimal digits, The BCD sign is inserted

packed against the symbol, no farther than the sixth character of the fifth word.
The BCD relative address is packed against the sign, extending no farther

than the fifth character of the sixth word. The tag is isolated from the address
of the CIT word 4, If the tag is greater than four, the flag T is inserted in
following the tag, No diagnostic message results. A comma is inserted packed
against the symbol or relative address, no farther thanthe sixth character of

the sixth word, followed by the tag, no farther than the first character of the
seventh word, The CIT decrement is isolated from the address portion of CIT
word 1. If it exists, it is converted to 5 or fewer BCD decimal digits. A comma
is inserted packed against the symbol or relative address, no farther than the .
second character of the seventh word, followed by the decrement, packed against F
the comma, no farther than the second character of the eigth word. ‘

73

If following the symbolic address (and, if it exists, the relative address) no
tag exists, the CIT decrement is isolated from the address portion of CIT
word 1, If it exists, a zero is selected as the tag field, and processing
continues as before,

If no symbolic address exists, the CIT fouw word is tested for a relative address
and/or tag, If either or both exists, the relative address is isolated., If it .
exists, it is converted to a 5 or fewer BCD decimal digits. If it is negative,
the sign is inserted in the sixth character of the fourth word. If positive, the
first BCD numeral is inserted in the sixth character of the fourth word,

The remaining characters are inserted left adjusted in the fifth word, and the
tag and decrement are processed as before, If no symbolic address or re-
lative address exist, a zero is inserted in the sixth character of the fourth
word, and the tag axd decrement are porcessed as before,

If no symbolic address, relative address or tag exist, the CIT decrement

is isolated from the address portion of CIT word 1, If it exists, a zero is
inserted in the sixth character of the fourth word, and the tag and decrement
processed as before. Processing of the full tag is necessary to insert the
nonredundant comma and zero tag field,

After the variable field has been processed, the final wor d is filled with blanks,
If no variable field exists, a blank is inserted in the sixth character of the fourth
word.,

All processing converges at this point. If the opcode is not SYN or BSS, the
relative counter is converted to 5 BCD octal digits, left adjusted, followed

by a blank, and inserted in the second word of the hexad. The relative counter

is bumped by one. If the opcode is BSS, the block length is assumed to be

zero, hence for either BSS or SYN word two is blank, and the relative counter

is unchanged. Word one of every hexad is blank. The CIT is now in the standard
form.

SYMBOL OPC ADDRESS+RA, TAG, DECREMENT

The six words of every hexad are transferred to.a page image buffer, In

this process, overflow of the machine language image to the seventh and first
two characters of the eighth word are truncated, As the FORTRAN processor
compiles TIX, TXI and TXL only in a DO loop, the only machine language in-

structions which may contain decrement fields are TXI%+1, 4, 32767 TIX*+1,

4, 32767 and TXL 4095A, 4, 32767. None of these will overflow. '

A count is kept of the hexad entries made in the page image buffer., The first

58 entries are made in column one, the next 58 entries in column 2, and the next
58 entries in column 3. When 174 entries have been made, the page image

is followed by a page restore, : ‘

Whenthe end of the CIT file is sensed, the buffer is checked for a partial page
image., If a partial image exists, it is written on tape B2, An end of file mark

" is written following the machine language listing, and tapes B2 and A4 are re-

wound. The information on tape A4 is no longer of significance.

P

End card setting and/or physical sense switch 3 is tested to determine if
on-line output of the source program, storage map, and machine language
listing (if any) is required. If it is so requested, the page is restored so
that each file begins on a new page.

One record (one printed line) is read from tape B2, is converted to a card

‘ image, and the line is printed,

When the end of the source program f{ile is sensed, the page is restored and the
map is printed line by line

When the end of the storage map file is sensed, sense light 2 is tested to de-
termine if a third file, the machine language listing, exists on tape B2. If it
does, this flag is restored for monitor, the page is restored and the listing is
printed line by line.

When the end of the listing file is sensed, tape B2 is rewound., The FORTRAN
compiler has completed processing of the source program, The results of the
FORTRAN compilation are on two tapes:; tape B2, the BCD source program,
storage map, and symbolic listing if requested; and tape B3, the binary pro-
gram card, the object program, library subroutines including their program
cards if requested, and transfer card if a main program. If on line output has
been requested, and transfer card if a main program, If on line output has been
requrested, cards have been punched and listings have been printed,

Control is passed to the monitor.

EIFNO (FILE 1)

G
FLOW IN SECTION Vi
FROM SECT. V (ric I13)
o poaws oo
&) ronsun COMMON RECORD 34
- (FiLE 3) HOLARG
8iz TIEFNO
(riLe &) EQUIT
£ND Losus
susogr FILE 3)

ciT! s (FILE D)

1

RECORD 33

y

RECORD 38

citls (riLe 1)

; R acorin a7

RECORD 3238

EIFNO (FILE 1)

S STORAGE NOT USED BY PROGRAM" RECORD 39
VLOCATION OF NAME IN TRANSFER VECTORU
A STORAGE LOCATIONS FOR VARIABLES
APPEARING IN DIMENSION AND EQUIVALENCE
SENTENCES

Ve TORAGE LOCATIONS FOR VARIADLES NOT
APPEARING IN DIMEN ION’ EQUIVALENCES OR
COMMON SENTENCES

ISTORAGE LOCATIONS FOR SYMBOLICS NOT
APPEARING IN BOURCE PROGRAM,"

13

(FiG, I%)
HEADINGS WRITTEN ON TAPE 82 (FILE 2) ONLY AS PERTINANT,

APPEAR. FIGURE i4.

NOTE

cit’s (compLETE) (FiLE 1)
cLosuB (FiLE 2)

B8TORAGE MAP (HEADING) (FILE 2)
#STORAGE FOR VARIABLES
APPEARING IN COMMON
SENTENCES Y

MAP (HEADING)(FILE 2)

WNAMES OF ARITHMETIC STATE~
MENT FUNCTIONS WITH CORRES~
PONDING INTERNAL FORMULA R
NUMBERS AND OCTAL LOCATIONS

MAP (HEADING)(FILE 2)

VEXTERNAL FORMULA NUMBERS

WITH CORRESPONDING INTERNAL
FORMULA NUMBERS AND OCTAL
LOCATIONS o . .

PROGRAM CARD (BINARYXFILEL)

MAP (HEADING)(FILE 2)*

ONLY HEADINGS MARKED + WiLL ALWAYS

76
FLOW IN SECTION VI CON'T

FIG 14

C |

REXCORD 40
civle (riLk 1) k OBJECT PROGRAM (FILK))
(BINARY)
r- T G S — et —-—-—-‘
I RECORD 41) 1
1 LIDRARY MAP (HEADING) (FILE 2)
CLOBUB (FriLK 2)) ‘ SEARCH I YENTRY POINTS TO SUB~
1 ROUTINES
l
! |
| I
] |
i SS 5 2
I I
l DOWN I
| |
| LIBRARY I
Lisrany (FiLk 2) (:::“:‘é" - B3 SUBROUTINES (FILE 1)
| O
| . |
. I
I SSi DOWN]
| [P —
1 . onJecT’
. I up t 721 DECK
(: (ROW BINARY
— l ON LINE |
OBJECT PROGRAM (FILE 1) PUNGH ;
| | - |
| ‘ DOWN (OBJECT DECH
. y ‘ I o~ 72I (COLUMN
l l . BINARY)
!
| Ssz upP l ’
| ' ‘ |
| ' | |
l DOWN '
| I
N o ‘
CITEFILE 1) A4 i [B2 SYMBOLIC LISTING (FILE 3)
| LISTING l END FILE 3
l |
| SS3 L l
l |
I
| DOWN |
| [|
|
. SOURCE PROGRAM, MAP,
ON LINE Ll SYMBOLIC LIBTING
B8C0 OUTPUT (FILES) 2 3) PRINT ™ 716 (OPTIONAL DEPENDING ON
| | . 882)
(‘ | el

TO TAPE
mover Fi6 7

FIGURE I5

77
FORTRAN LIBRARY 2,02,00
The library is contained in the third file on the System Tape. The library
contains the input, output, math, monitor, various control routines and
the librarian, required for the execution of any object program compiled
by FORTRAN,
The ma th and control routines will not be discussed in detail, The logic
and coding of these routines is straight forward, and reference to the

specific listings should be made if any question should arise,

The input/output routines are not as straight forward as the aforementioned
routines, therefore, a more complete write-up will be given in 2, 02,01,

The library contains the following routines:
INPUT-OUTPUT LIBRARYb
Control Routines

1I0S/ Input-Output Supervisor

IOU/ Input-Output Channel-Unit Table

SLO/ Short-List Output

SLI/ Short-List Input

WER/ Tape Write Error

RER/ Tape Read Error

Hollerith Input-OQutput
IOH/ Input-Output Hollerith
STH/ Storage to Tape Hollerith
TSH/ Tape to Storage Hollerith
CSH/ Card to Storage Hollerith
SCH/ Storage to Card Hollerith

SPH/ Storage to Printer Hollerith

7

Binary Input-Output

IOB/ Input-Output Binary
STB/ Storage to Tape Binary
TSB/ Tape to Storage Binary

DRM/ Write Drum and Read Drum

Tape Non-Transmission

BST/ Backspace Tape
EFT/ Endfile Tape

RWT/ Rewind Tape

MATH LIBRARY

Xp1/
XP2/
XP3/
ATN/
XPr/
LOG/
SCN/
SQR/

TNH/

Exponential - FXPT Base - FXPT Exp.
Exponential - FLPT Base - FXPT Exp,
Exponential - FLPT Base - FLPT Exp.
Floafing Point Arctangent

Floating Point Expencatial Function
Floating Point Natural Logarithm
Floating Point Sine and Cosine
Floating Point équare Root

Floating Point Hyperbolic Tangent

MONITOR LIBRARY

CHN/

Chain

DMP/ Dump

XIT/

Exit-

Q | OTHER LIBRARY ROUTINES
FPT/ Floating Point Trap
TES/ Test Last Write
XLO/ Relocated Location Function

EXE/ Execution Error

THE LIBRARY EDITOR

LIB/ Librarian

JO0

INPUT/OUTPUT LIBRARY 2,.02.01

The 709 Fortran I/O Library was designed as a simple, generalized and flexi-
ble method for handling the input-output and conversion of data required by
Fortran-compiled programs at object time under Monitor or non-monitor op-
eration. The I/O Library (IOL) consists of hand coded, Fap-assembled, relo-
catable subroutines, which communicate with Fortran programs by means of
linkage compiled by the 1/O Translator (IOT) in Section I,

Most of the analysis done by the IOT concerns the items in the List., When an item
in the List specifies an array (i.e., used in a Dimension statement) but is not
subscripted in the List, the Short List subroutines {SLI, SLO) are used to com-
municate between the array and the Mode subroutine, If, however, the item in
the List is subscripted, indexing instructions will be necessary. IOT will make
entries in the TDO table, which cause Section II to compile the necessary in-
structions for the treatment of arrays conforming to standard Fortran usage,

i, e,; the first element is assigned the highest location of the array. The remain-
der of IOT's task is simple: the communication of the minimum amount of in-
formation necessary to the IOL. This could be: the unit designation, type de-
signation, location of Format specification, and the termination of the List.

The simplicity of this scheme will become apparent during the following des-
cription. Its flexibility and generality provide advantages of easy modification,
and a continuing opportunity for improvement., This partly expalins the reason
for the fragmentation of the IOL into about twenty different routines, Generally,
in systems design, the linkage cost of keeping functions separate and distinct,

is repaid both in memory space and in the ease with which additions and improve-
ments may be made.

The IOL contains four types of routines:
1) for initialization and control: I0S, 10U, SLO, SLI, WER, RER;

2) for the transmission of information to and from each TYPE of I/O unit:
STH, TSH, CSH, SCH, SPH, STB, TSB, DRM;

3) for the conversion of data, and/or its transmission to and from the data area,
according to MODE: IOH, IOB;

4) and for non-transmission TYPE tape handling; BST, EFT, RWT.

In the following write-up, the mode routines (IOH, 10B) will be described’in
conjunction with the unit routines,

The general overall flow can be outlined as follows:

1) The logical unit designation, if necessary, is picked up, and control exits
from the calling sequence to the indicated TYPE routine.

2) If this is a non-transmission TYPE routine, control passes directly to the
control routine, 10§, for initialization. If a transmission type, except DRM,
and TYPE routine furnishes the correct switch setting for input or output to the

Yo%

‘ . appropriate MODE routine, Then the MODE routine conveys the logical
% — unit designation, along with the correct mode indication, to IOS.

3) IOS turns to the IOU table for the logical-actual unit correspondence, after
having checked for the correct completion of a previous write statement,
When all I/O commands have been initialized, control returns to the MODE
routine {or to the non-transmission caller),

4) The MODE routine now controls transmission, and/or conversion, of data
according to the Format specification and the List of items indicated by the

calling sequence. A return is made to the TYPE unit routine for each record
of input or output,

5) When the List is satisfied a final return is made to the MODE routine to make
sure the last record is read or written, and to restore conditions,

TYPE
UNIT

TSH
STH

CsH

SCH

SPH

STB

TSB

| BST
‘ EFT
RWT

DRM

MODE

I10H

IOH

I0H

IOH

IOH

10B.

I10B

foH

TABLE OF USAGE

SHORT-
LIST
CONTROL

SLI
SLO
SLI
SLO
SLO
SLO

SLi

TAPE
ERROR

CONTROL

RER

WER

WER

RER

CHANNEL-
UNIT
CONTROL

10S

108

10S

I0S

108

108

108

10s

10S

[03

HOLLERITH INPUT/OUTPUT

READ FMT, LIST

READ INPUT TAPE N, FMT, LIST
WRITE OUTPUT TAPE N, FMT, LIST
PUNCH FMT, LIST

PRINT FMT, LIST

709
CALLING SEQUENCE

CAL N

TSX (=-~), 4 ==—— CSH

PZE FMT TSH

.. STH

LIST SCH
>PH

wSX {---), 4~«—— RTN
FIL

BINARY TAPE INPUT/OUTPUT

WRITE TAPE N, LIST
READ TAPE N, LIST

709
CALLING SEQUENCE
CAL N
TSX (---), 4 =&——{ STB
TSB
LIST
TSX (---), 4=t——v WLR
RLR

o

BINARY DRUM INPUT/OUTPUT

Q WRITE DRUM N, J, LIST
READ DRUM N, J, LIST

709
CALLING SEQUENCE

CAL N
TSX (---), 4 =——- SDR
DRS

CAL J
LDA

.00 .

- LIST

TAPE NON-TRANSMISSION

BACKSPACE
ENDFILE
REWIND

Z ZZ

709
& CALLING SEQUENCE

CAL N

TSX (-=-), 4=e—— BST
EFT
RWT

O

SUBSCRIPTED ARRAY LISTS

709

INPUT

STR
STQ ARRAY + 1, TAG

OUTPUT

LDQ ARRAY + 1, TAG
STR
INDEXING

TXI
TXL

NON-SUBSCRIPTED ARRAY LISTS

709
INPUT
TSX (SLI), 4

PZE ARRAY + 1
PZE SIZE

OUTPUT

TSX (SLO), 4
PZE ARRAY + 1
PZE SIZE

NOTE

- 709 DRUM LISTS COMPILE
THE SAME AS 704 BINARY

T T et o R B 7w

L6

GENERAL DIAGNOSTIC*® 2,03,00

The general diagnostic for the FORTRAN system covers machine and source
program errors revealed by Section I' through VIi. When a machine or source
program error is encountered in any one of these executive system records, a
TSX DIAG, 4 transfers control to the diagnostic caller, In the 709 FORTRAN
system the diagnostic caller remains in lower memory with 1 to CS. The
caller then dumps a buffer of 2500 words onto tape A3, The diagnostic caller
then spaces the system tape to the 4th file and proceeds to read in the main
diagnostic record.

The main diagnostic record of the 4th file (record 1) contains all the information
necessary to call one of the subroutines needed for converting and printing error
comments, and for returning to the proper record in the FORTRAN Monitor.

The main record converts the contents of index register 4 back to the location
number of the TSX, and uses this constant as the error number, It is in the
main record that the heading (FORTRAN DIAGNOSTICS RESULTS), Section
number, record number and the location of the TSX in that Section is printed.
Also, upon return from the appropriate error processing subroutine the message
END OF DIAGNOSTIC PROGRAM RESULTS- ----PROGRAM CANNOT BE CON-
TINUED will print,

The main record performs a table search in order to determine which of the
fourth file records contains information pertinent to the error. The error num-
ber (2's complement of IR4) is compared to a list of errors. This list has 2-
word entries. The first word is an error number corresponding to the location
of a TSX in the executive system., The second word is the record number in the
fourth file which c ontains the pertinent comments and coding to print information
about the error. If the second word is minus, it will also contain the FORTRAN
record number of the TSX. The minus indicates that the error number may be
duplicated in the error list and if the FORTRAN record number does nat match
the one picked up by the diagnostic from 1 to CS, the comparison with the error
list continues, until a match is found, ' ‘

When the match has been found, the diagnostic record number is used to space
the system tape to the correct record in the 4th file. If a match is not found
in the error list, the main record will then read in D002 which concerns un-
listed error calls. The pertineht diagnostic record is then read in over the
error list and the main record transfers control to it,

Each of these records is set up to handle information about one error, or one
specific type of error, only. Usually, this is done by straight forward coding
which makes use of the print subroutines in the main record., The program
instructions executed may obtain further information to be inserted into the

error comment from tapes, cores, or the core dump. The error comment,
which is contained in that'particular diagnostic record in BCD, is then printed

27

After all error comments have been printed, control is always returned to
one of two points in the main diagnostic record. This will depend upon
whether the error encountered was a machine error or a source program
error,

The main diagnostic record spaces the System tape to either the machine
error or the source program error record in the FORTRAN Monitor, de-
pending upon the aforementioned error return. The diagnostic then prints
the end comment and transfers control to 1-CS to read in the proper Monitor
error record.

Operator options, if any, are printed by the Monitor error record on the 709,
The options will vary depending upon whether the system is operating in the
Monitor mode or single compile mode.

THE DIAGNOSTIC RECORD FOR SECTION I"

A few diagnostic records obtain information from an error list left in upper
memory by the system record that has called the diagnostic., The diagnostic
record for Section I'' is such a record, D003 is'unique in that it contains all
of the error comments for Section I'", rather than just one comment. In the
case of D003, the information for a particular error is preceded by a flag.
The format of the error list is described in the write-up for Section I'andI".

/
I

D003 performs a table search in order to determine which subroutine within
itself is to process the error currently being teeated in the error list. - This
table search is done by comparing the flag in the error list with the first word
of a two word entry in an error table.

The first word in the error table entry is the'location of a TSX to the error
routine in Section I''. The second word is the location of the subroutine in
D003 for processing that type of error, When a match has been found, the
table search routine transfers control to the proper subroutine, The sub-
routine extracts whatever information it may need from the error list and,
like other diagnostics, uses the subroutines in the main diagnostic record

for producing an error comment. When the subroutine has finished its task,
control is returned to the table search routine, At this point the subroutine.
will have correctly incremented the index register that references the error
list so that the table search routine will examine the next flag in the error list,

D003 is also given a word count of the number of words in the error list by
Section I''. The table search routine tests against this word count for an ex-
hausted erroy list. If the error list has not been fully treated, the process

~ of table searching, transferring to a subroutine, and returning to the table

search routine continues. When all accumulated errors have been treated,
D003 then returns control to the main diagnostic record,

of

. The main diagnostic record will space the System tape to the source program
(> error record in the FORTRAN Monitor, this is due to the fact that all errors
found by Section I'" are assumed to be source program errors.

DIAGNOSTIC LINKAGE [OF

i

MONITOR RECOROS

ON ANY ERROR

4

(FILE 2)

SELF « CONTAINLD
DOIAGNOSTICS

MONITOR RECORDS |

O k1)

SELF - CONTAINED

DIAGHNOSTICS

FORTRAN

SECTION I

SELR -CONTAINED

DIAGNOSTIC

FORTIRAN L0C 23
SECT/ION X' DIAGNOSTIC

: CA

GENERAL DIAGNOITIC - r:f:: W
ON MACHINE FRROR [=CS
ONLY. -
VY ORTRAN SECT/on I’

GENERAL DIAGNOSTIC \
ON ACCUMULATED #\g
\SOURCE £FRRORS FOUND

' SECTrons I E LY

HAS QWN CALLER

FORTRAN oc 22
SECTIONI I rHRUXI] DIAGNOSTIC

CALLER
CONTAINFD IN

GENERAL DIAGNOSTIC P

;S

70 /

MAIN DIAGNOSTIC
RECORD (D0OOY)
(FI4E4)

\sesk miGuRE 17)

Frgure / 6

FROM DIAGNOSTIC CALLER

ERROR RECORD

GENERAL DIAGNOSTIC //©

ro
MAIN DIAGNOSTIC
RECORD (DOOI)

FROM SECTION I
F1G6. 9

776

| WR/TE S

O/IAGNOSTIC HEADING
SECTION NUMEER
RECORD NUMEBLR
TSX LGCAT/ION

TO*/

SECYION XV
D/IAGNOSTIC CALL
y _|RFcoOrRD (Do0X)

{

lazid

7ot/ i
APPROPRIATE
SUBROUVYINE T0
PRINT PERTINENT
ERROR MESSAGH
. |RECOROS (0OO#162)

UNLISTED
© | OIAGNOSTIC CALL
| RECORD (DOO2)

r

C PERTINGNT

FRROR MESSAGE

DIGRrv)
MAIN DIAGHNOSTI
RECORD (DOOY)

SPEND
MAIN DIAGNOST:
RECORD(DOO!)

MACKINE

/6

SOURCE
ERROR RECORD

WRITE ENO OF
DIAGNOSTIC
MESTAGK

82

7/6

B2

PERTINENT
ARROR MEISSAGK |

/76

Figure 17

/7!
TABLES GENERATED BY FORTRAN 2.04. 00

During the execution of the Fortran E:ecutive program the source program
is examined and broken down into two principle parts. These two forms are
CIT's (compiled instruction tables) and tables. '

The objective of the Foiiran executive routine is o present to Section VI,
the source program in CIT form, Section VI will examine these CIT's,pro-
duce the relocatable binary deck map of storage, and the symbolic listing.

When CIT's cannot be completed in a given section, tables are gcnerated to
be passed on to subsequent sectiong to supply the necessary information to
complete the CIT's. A good many of these tables are generated by Section

I and edited by Section I'. Section I' writes these tables on tape B2 in files
3, 4 and 5. The first word of each of these records is an identification num-
ber and the second word is the word count of the record.

Following will be a brief description of some of the principably used tables
generated by Fortran, ‘

ASSIGNED CONSTANT 2.04.01

The Assigned Constant table is generated by Section III during the scan of the
TIFGO table, which contains the ASSIGNED GO TO entries.

During Section V, if any index saving-instructions are necessary to the re-
sult of the GO TO, the assigned constant table will be updated so as to re-
flect this condition.

The table is preceded by an identification number and the table. Each assigned
constant is a one-word binary number in the decrement field corresponding to
some internal formula number used in the source program.

IFN

During the Section V' all Assigned Constant entries will be placed in CIT
form for the 5) region,"

Section III will write the Assigned Constants as the eighth file on Tape B2.
Section V after updating will write them as the tenth file on Tape 32.

CALLFN (also called CALLNM) : 2.04.02

The CALLFN record is a table of internal formula numbers IFN's presented
in CALL statements. Each entry into the table requiresonly one full word.
The decrement word contains the internal formula number IFN of the first
variable in the CALL statement. ‘

Vs

Each IFN in FORVAL is searched for as a first IFN in CALLFN., If found,
it is replaced by the corresponding last IFN. When all entries have becn

processed the CALLFN tahl~'is dead

This table was written during Section I onto tape A4 as buffer size records.
It will be read in by Section I and processed.

| UFN (1st VARIABLE) [IFN (LAST VARIABLE)|

CLOSUB 2,04.03

The CLOSUB record is a table of closed subroutines called for in the source
program. A closed subroutine is one with a single entrance and single exit,
Entries are made in the CLOSUB record when the source program refers to

a system subroutine or function type subprogram, a subroutine or function
defined by the programmer, or by INPUT/OUTPUT statements and by any use
of any Fortran function that are defined as closed subroutines. The functions

"ABSF, XABSF, INTE, XINTF, MODF, XMOOF, MINOF, MINIF, XMINOF,

}&MINIF, FLOATE, XI¥FXF, SIGNF, XIGNF, DIMF, XDIMF, are open sub-
routines. One entry is made in the CLOSUB table for each subprogram called
for in the source program, this one word contains the BCD name of the func-
tion or subroutine, ' ‘

The CLOSUB table is stored on Tape A4 during Section I, Section I' will then

“edit these buffer size records and rewrite this table on Tape B2 in the fifth

file with the first word being the identification number. The second word
being the count of the number of words 'in the table.

| (BCD) Name of Subroutine [

COMPILED INSTRUCTION TABLES 2,04, 04

By the end of Section III, the object program is completely compiled in
symbolic form (with the exception of library subroutines and some constants).

Ultimately most source information must appear in Compiled Instruction
Table, (CIT), form.

Most CIT's are stored on tape during the run of the executive routine. There
is only one standard four-word format for CIT's:

WORD 1 LOCATION SYMBOL SECONDARY LOCATION
(BCD) SYMBOL
(BCD)
WORD 2 OPERATION CODE DECREMENT

(BCD) oCT

€O

SIS

WORD 3 SYMBOLIC ADDRESS
(BCD)
WORD 4 ADDEND A I TAU TAG
OCT

The decrement of word one contains the IFN. (location symbol), of the in-
struction in word 2. The address of word 1 is the secondary location sym-
bol if needed. ‘

The decrement of word 2 contains a BCD memonic representation of the in-
struction for which this entry is made (i.e., CLA, OCT, ADD, etc.). From
this entry the reader can appreciate the sophisication of the Fortran translator,
the executive program has written a symbolic instruction which will be sub-
sequently assembled by an assembly program similar to most symbolic as-
semblers. The address of word 2 contains, if any, the decrement of a type

A instruction.

Word 3 contains a BCD representation the symbolic address assigned to the
instruction by the executive routine. As in coding by hand, the executive
routine uses symbolic addressing in writing its instructions in symbolic form,
It is intere sting. to note that the symbols used by the machine have no mnemonic
value to the human reader but of course a one bit difference in configuration

is accurate enough discrimination for the machine. A typical symbolic address
is 6). The decrement of word 4 is the addend to the symbolic address in word
3 or the relative absolute part of the address of the instruction.

For example, in CLA N+3, the +3 would be entered into this field, The address
of word 4 contains the symbolic tag of the FORTAG table for this instruction.

The COMPAIL file generated by Section I and the COMDO file generated by
Section Il are typical CIT tables, The COMPAIL f{ile is contained in file 2
on tape B2, the COMPDO f{ile that is génerated by Section II is contained in
file 2 of tape A4,

COMMON 2.04 05

Normally data and instructions are compiled adjacent to each other in order to
preserve high order storage cells.

The COMMON statement permits the programmer to assign specific core
storage areas to the storage of data. The COMMON statement is the follow~
ing form: COMMONX, ANGLE, MATA, and MATB.

The items listed after COMMON statements will be assigned to core storage
starting at location 77461g and continuing downwards, Entire arrays may be
shifted to upper storage through the use of the COMMON statement.

/ .
Vi /’»‘/.a

The COMMON table is a compilationof all COMMON statements and is record-

cd on tape A4 in Section I and edited by Scction I' and written on tape B2 in the
fi{th file.

Zach cntry into the table requires as many words as there items in the list
following the word COMMON. For exa:ple, the COMMON statement: COMMON
X, ANGLE, MATA, MATB requires the use of four full words and is recorded
in the following format in BCD:

WORD 1 X bl bl bl bl bl

WORD 2 A N G L E bl

WORD 3 M A T A bl bl

WORD 4 M A T B bl bl

DIM 2. 04, 06

The DIM record is generated during the arithmetic processing in Section I
storage, as a result of encountering DIMENSION statements, and is left in
for Section I'. Recall that the DIMENSION statement consists of a list of
variables with an integer in parenthesis following the variables. Integer re-
precsents the greatest number of elements in an array. During Section I' the
DIM table is converted to the SIZE table,

The DIMENSION statement is not executed (no instructions will appear in the
object program for this statement) but will preserve blocks of storage for sub-
scripted dimensions and four words for three dimensions, The entries are
madec according to the following format:

One-dimensional array: Example: DIMENSION A (7)

Decrement ' - Address
WORD 1 A "Subscripted Variable
WORD 2 7 Dimensions .
WORD 3 A +7 Check -sum of entry

Two-dimensional array: Example. DIEMSNION A (7, 12)

Decrement Address
WORD 1 A Subscripted ¥ariable
WORD 2 7 : 12 Dimensions 1 & 2
WQRD 3 A+7 +12 Check sum of entry

Three«dimensiohal array: Example: DIMENSION A (7, 12, 6)

, Decrement -Address
WORD 1 A Subscripted Variable
WORD 2 7 ' 12 Dimension 1 & 2

/ ’S

WORD 3 6 Dimension 3
WORD 4 A+7 +12+6 Check sum of entry
DOFILE (C) 2.04.07

The DOFILE (C) is a file of CIT entries of subroutines, necessary to complete
relative constants, These are generated by Sect. on II after examination of all
the DO statements in the source program,

The DOFILE (C) is recorded, in standard CIT format, on tape B2 as the eighth
file. A count of the number of records is recorded as a one word record on the
tape B2 file nine.

DOTAG (B) 2.04.08

The DOTAG (B) table is the result of an analysis of priority of interlocking
DO statements (nests)., In this analysis an entry is made in the DOTAG
table for. every entry in the TDO table. Each table consists of nine words,
the first five are identical to the corresponding entry in the TDO table. The
last four words are a result of an analysis, by Section II, of the nests of DO
statements. The last four words have the following formai:

Level Number of this DO X=(n2-nl+n3/n3) n3

N { Level of definition of nl

e H [} " i nz
Eras- name of tag which ,
able willbeused{for test i " " " n3

I :
* Contains bits, the rightmost of which determines the highest level of
transfer from this DO,

EIFNO : 2,04.09

After the analysis is done by Section I thelast IFN number +1 is left in a cell
called EIFNO, The EIFNO table consisting of 1 word only will be carried over
to Section I' as a memory table. This will be used during the scan of TIFGO
by Section I'. The scan looks at the EIFNO table to see if any IF or GO TO
entries are outside the range ol the source program.

The EIFNO table will be written as the first word in the SIZ table by Section
I'. This will be used by Section VI to form the base location for lower storage
variables, '

END 2,04.10

The END statement permits the programmer to compile several programs

4

within one job. The Monitor Scan record, upon sensing an End card, will
pass control to the Fortran routine. After compilation of the first job
Fortran will turn control back to Scan, to imitialize the second program
This process will continue until an end of file is sen .2d on the input “ape
This indicates an end of job to Scan

In addition to the batch compiling feature of the End statement. 1t also is
used to indicate Sense Switch geftings, This will permit the programmer
to use separate sense¢ switch control for each program.

The END table consists of 15 entries, one for each Sense Switch option At
present. the first five are operative. These correspond to the first five
Sense Switches on thec operators console The remaining 10 will be added
later as additional system features are needed,

The options of each Sense Switch, 0, 1 or 2, are stored in the address por
tion of each entry, in the END table,

This is generated during Section I and held in storage until Section I' when
it is written on tape B2 is the fifth file 1Tt will be used hy Section VI, as
outlined in the Fortran Monitor Operations Manual*, to process the pro-
grams options

* (C28-6065)

‘EQUIT : 2 04 11

The EQUIT record is a table containing all the information included in
equivalence statements Each item in the pairs of parenthesis requixes fwo
full 709 words for storage The first word contains the variable name in
BCD form The constaint, if present, is converted to binary, and stored

in the second word. If no constant is present, it is taken to be one, and a
one is stored in the second word, This process continued for each specifi

cation in the Equivalence statement, A minus sign in the last entry indicates

the end of a series of equivalent storage locations

WORD ! VARIABLE NAME (BCD)
WORD 2 N
WORDN VARIABLE NAME /BCD)
WORD n+l o N

The ECUIT record is generated during Section I and edited in Section I' and
written as the 12th record in the 5th file on tape B2,

7

FIXCON 2,04.12

The FIXCON record is a table of fixed point constant specified by the program,
These constants are entered in fixed point form as data or are subsequently
computed from other fixed point constants, These numbers, entered with-

out decimal points during READ statements are defined according to some

. FORMAT statement as fixed point constants, are one of the types entered into

FIXCON table. Numbers appearing as constants in statements of the form
Ao 3+ B are entries in the FIXCON table; in this example 3 is the entry.

The FIXCON table is generated during Section I and retained in core until
Section III. Each entry requires two full words, the first being the fixed
point constant in binary, the second its check sum,

WORD 1 FIXED POINT CONSTANT
WORD 2 CHECK SUM
FLOCON 2.04.13

The FLOCON record is a table of floating point constants occurring in the
\source program, They may be entered from an input source such as cards
or tape, omputed from combinations of floating point constants, or appearing
as coefficients with decimal points in Fortran source statements,

The FLOCON table is developed during Section I and is stored in core, in the
same format as the FIXCON table., That is, there are two words requir ed
for each entry, the first containing the floating point constant and the second
the check sum of this ohe word. '

The FLOCON table is written on tape B2, file 4, the first record by Section I',
FMTEFN ‘ 2,04, 14

The FMTEFN is a table of external formula numbers assoca ted with the for-
mat numbers in read-write statements, For each read-write statement a
one word entry is made in FMTEFN containing the binary equivalent of the EFN.

The FMTEFN table was written as buffer size records, during Section.I, on
tape A4, During Section I' as the table is being assembled, the entries are
compared with the FORMAT table, If any statements in the FORMAT table
are missing, (no matchi FMTEFN , an error list is developed for Section
I'. The table will not be needed again and is considered dead.

FORMAT RECORD 2.04.15

The FORMAT Record is a table of arguments presented in FORMAT state-

ments, The arguments are stored in BCD form in sequential storage loca-

/7

tions. Since the length of arguments is a variable, the number of words re-
quired to store all the argument must be variable., Esch entry into the table
is separated from succeeding entries by a word filled with bits.

WORD 1 EFN of Format statement

WORD 2 FORMAT SPECIFICATION (BCD)
WORD 3

WORD 4 ALL ONES

This is recorded on tape A4 in buffer size records by Section I. During
Section I' it is edited and written as the second record of file 4 on tape B2.
The FORMAT table will be used in Section V',

FORSUB : _ 2.04 16

A FORSUB entry is made for each arithmetic function definition appearing
in the source program. The function name appears on the left side of the
equal sign and the parameters appear on the right.

Each entry in FORSUB requires 2 words, The first word is the function
name, the second word is the internal formula number of the statement.
For exampla: FIRSTF (X) » A*X+B. The table appears:

WORD 1 FIRST (BCD)

WORD 2 3 IFN

The FORSUB record is retained in memory until Section I', when it is
written as the only record in file 3 on tape B2. The first word of the
FORSUB record 18 the COMPAIL record count, and the second word is
the FORSUB word count.

FORTAG 2.04.17

The FORTAG record is a table that represents a8n index to the TAU table.
It has a one-word entry of the following format:

*XR *»¥INDEX TO
IFN INFO ‘ TAU TABLE

1 17 24 26 27 35

%*XR INFO. This field indicates whether or not the FORTAG entry
use an absolute or symbolic index register. If there are no entries, a
symbolic XR is inferred. If there is an entry the field is treated like the
tag field of an instruction (i,e., 24 - XRA, 25 -~ XRB, 26 = XRC).

/17

#% Index to TAU table, The bit configuration in this field indicates which
TAU table entry has the associated IFN.

The table is generated during Section I and written in buffer size records on
tape A4. During Section I' the table is edited and written at the 11th record
in the 5th file on tape B2 with its identification label.
FORVAL AND FORVAR 2,04, 18
The FORVAL and FORVAR records are tables of the fixed point non-subscripted
variable, appearing te the left of (FORVAL), and the right of (FORVAR), the
equality sign in a statement., A fixed point non-subscripted variable must satisfy
the following conditions: ' '
1, Must be 8ix or lgss characters.
2. The first character must be alphabetic.
3. I an integer, it must start with I, J; K, L, Mor N.
4. Must not read like a function name.
5. Must not have a left parenthesis following it.
6., Must be entered as data in fixed paint form.

~For example, if A and B are fixed point form, the statement, "ARG = BRAND
+6" contains "ARG" as an entry in the. FORVAL table and "BRAND" as an
entry in the FORVAR table,

For example, the statement ARG = BRAND +6 would be written:
FORVAL TABLE (BCD) ‘

~

A R G
FORVAR TABLE (BCD)

B R A N D
The tables were generated during Section I and temporarily stored on tape
A4 in buffer sized records. The tables are edited during Section I' and
written as the 9th and 10th records in file 5 on tape B2,

FRET ' 2. 04,19

The FRET table is a table generated from the FREQUENCY statement given

/HO

in the source program. This is a variable léngth entry table; that is, each
entry occupies an indeterminate number of words, dependent on the number

of branch points described by frequency statements, Each FREQUENCY state-
ment permits the programmer to specify the number of times a particular
branching point will be utilized by the source program. For instance, a par-
ticular IF statement may appear in a program as:

38 IF N (10, 20, 30)

The programmer can best use index registers in the program by informing
the program that branch 10 will be used five times, branch 20 will be used
three times and branch 30 will be used six times, by entering the following \
frequency statement:

FREQUENCY 38 (5, 3, 6)
The general form is -
FREQUENCY N (i, j, k....)

Where N = EFM of branch point
i, j, k= frequency of each branch

Entries into the FRET table are rade according to the following format:

Decrement Address
WORD 1 38
WORD 2 5
WORD 3 3
WORD 4 6

The length of each entry will be determined by the number of branches.

During Section I the FRET table was written as buffer size records on tape
A4. During the editing by Section I', each EFN in FRET is searched for in
TEIFNO. When found it is replaced with the corresponding IFN. If not found,
it is set equal to zero as an error signal for Section I'' The FRET table is
then sorted by IFN to form an ordered list. It is then written as the 12th
record of the 5th file on tape B2.

/!

HOLARG 2.04. 20

The HOLARG record is a collection of Hollerith arguments in CALL state-
ments, In a CALL statement, the Hollerith argument, is not describing an
argument of some subprogram, but is itself the data to be operated on. An
example of this kind of CALL statement is:

CALL (9HEND POINT)

In this example the name of the subprogram is "SUBP'" which is a hardcoded
program, In the argument 9 specifies the number of Hollerith characters that
follow and the H specifies that the data is Hollerith, "The HOLARG" table will
contain only the "END POINT" the 9H will be dropped. Since any number of char-
acters may be specified, 'the HOLARG' table can be a variable number of words
per entry, For this reason a word of all ones is written at the last word in the
table.

As in the above example the table would look like:

WORD 1 E N D bl P O
WORD 2 1 N T bl bl bl

WORD 3 77 11 77 77 77 77

The HOCARGE table is written during Section I on tape A4 asg buffer size re-
cords, During Section I' it is written as the 4th record in file 5 on tape B2
with its label number and word count, This table will be used during Section
VI to generate the 5) region,

NONEXC 2,04, 21

The NONEXC record is a table of IFN's and associated EFN's for non-execu-
table Fortran statements, The following statements are non-exeuutable:

PAUSE, FORMAT, DIMENSION, EQUIVALENCE, FREQUENCY

Each entry into the NONEXC table requires only one word., The decrement
of this entry contains the IFN, and the address contains the EFN of the non-
executable instruction,

The HOLARGE table is generated during Section I, It is retained in core until
Section I', when it will be used to detect transfers to non-executable statements,
and flag these as errors, The NONEXC table will not be used again,

A d

/A

PREDESSOR 2.04,22

During the flow analysis by Section IV the source program is broken down
into what is termed Basic Blocks, A Basic Block is a stretch of source
program into which there is only one entrance and from which there is only
one exit. Exit must here be interpreted in the logical sense, that is, it

may consgist of more than one transfer instruction, going to a variety of
Basic Blocks, Each of these Basic Blocks, then is a Sucdessor Basic Block.
As implied by this, Section IV must mark off the basic blocks of the program
and determine the Successor and Predessor Basic Blocks for any one Basic
Block. During the flow analysis by Section IV a count of the number of times
that a Basic Block is entered, this is called the flow count, The PREDESSOR
table is made up of one word entries for each Basic Block.

3 i7 21 ‘ 35

NJFLOW COUNT p\{BASIC BLOCK NUMBER

The decrement portion of the Predessor table entry contains the flow count,
the address portion contains the Basic Block number. The PREDESSOR

.tab]\e is passed on from Section IV as a memory table to Section V to be used

for a further analysis of the flow of the source program.

siz | 2.04,23
The SIZ table contains the variable and maximum dimensions of arrays. This
table is made up of the product of the dimensions contained in the DIM1, DIM2
and DIM3 tables generated by Section I. ’

The SIZ record requires two full words for each entry. The entry is of the
following format:

WORD 1 VARIABLE NAME (BCD)
WORD 2 TOTAL SIZE OF ARRAY
For example: given the DIMENSION statement:
DIMENSION C (3, 4, 5)

The table entry would appear as:

WORD 1 C(BCD)
WORD 2 | %60 (BIN)
#3x4x5 = 60

The SIZ table is written as the 3rd record in file 4 on tape B2.by Section I',

T e, e

A G b S

/3

SUBDEF 2, 04. 24

Fortran can also call in subroutines described by the programmer in the
source program. For example, the subroutine introduced by the statement
SUBROUTINE MATMPY (A, N, M, B, L, C) could be called into the main
program by the statement:

CALL MATMPY (X, 5, 10, 4, 7, Z).

Esgsentially, what happens is that the previously described MATMPY sub-
routine is brought into the compilation with the arguments of the SUBROUTINE
statement. Naturally the arguments of the SUBROUTINE statement should
correspond in mode, number, and order to those of the original MATMPY
subroutine.

Each ct-':;-y'into the SUBDEF record requires one full word for the name of the
subrouvdine (i, e, , MATMPY) and one full word for each of the arguments includ-
ed (A, N, M, B, L, C) is recorded as:

Decrement Address.
WORD 1 MATMPY (BCD)

| Q‘D WORD 2 | A

WORD 3 N
WORD 4 | M
WORD 5 - B
WORD 6 L
WORD 7 C

The SUBDEF table is recorded in buffer size records, during Section I, on
tape A4, During Section II it is written as the second record in file 5 on tape
B2 with its table number and word count.

SUCCESSOR 2.04. 25

The SUCCESSOR table is identical to the PREDESSOR table described in

Section 2. 04, 22, The main difference is that the address portion of the one
word entry contains the SUCCESSOR Basic Block number instead of the PRE-
DESSOR basic block number. This table is passed on to Section V as a memory
‘table.

TAU 2, 04. 26

The TAU table is a collection of the subscript information used in I/0 lists or
in Arithmetic expressions, The TAU table may be one, two, or three dimen-

/X4

sional, recorded in the following format:

Subscript is one-dimensional:

TAUl

WORD 1

WORD 2

Clx*

VARIABLE NAME (BCD)

Cl is coefficient

Subscript is two-dimensional:

TAU2

WORD 1
‘WORD 2
WORD 3

WORD 4

Ci C2

VARIABLE NAME 1 (BCD)

" VARIABLE NAME 2 (BCD)

dl

Subscript is three-dimensional:

TAU3

WORD 1
WORD 2
WORD 3
WORD 4
WORD 5

WORD 6

-

Cl ' c2

C3

VARIABLE NAME 1 (BCD)

VARIABLE NAME 2 (BCD)

VARIABLE NAME 3 (BCD)

dl d2

Cl is first coefficient

C2 is second coefficient

C3 is third coefficient

dl is first dimension from DIM3
d2 is second dimension from DIM3

/XS
TDO S 2.04. 27

The TDO record is a table which results from DO statements in the symbolic
program, Each entry requires five full words. The five words are written
according to the following format: '

WORD 1 Decrement Internal formula number (IFN of the DO
Statement (OX)

Address The EFN of the last statement executed
under control of the DO statement (6)

WORD 2 Decrement The BCD symbol for the integer variable
A of the DO statement (I, J, K, L, M or N)

WORD 3 Address First value of variable (n])

WORD 4 Address Final value of variable (n3)

WORD 5 Address Increment of the variable (n3)

The following DO statement would result in the table entry shown:

5 DO 81:1, 25, 2

Decrement Address
WORD 1 5 8
WORD 2 R
WORD 3 | 1
WORD 4 25
WORD 5 1 2
TIEFNO | 2.04.28

"Two reference numbers are associated with Fortran statements, the internal
IFN and external EFN formula numbers, All statements in the source pro-
gram have internal formula numbers (IFN). These numbers are assigned to the
statement sequentially starting with 1, The external formula number (EFN) ,
on the other hand, is an arbitrary integer assigned to the statement by the pro-
grammer, generally to permit reference to the particular statement by the
source program, There is no need to assign an external formula number to
any statement to which reference is never made. Therefore, all staterents
have IFN and some have both IFN and EFN,

(D

/R

The EFN's and their corresponding IFN's are stored in the TEIFNO record
by the translator during the run of Section I, Each statement requires the
use of one full word for storage. Then entry is made as follows:

IFN EFN

For exampie, if the following statement is the 28th statement in the program,
the indicated table entry is made.

STATEMENT
15D0 61=1, 8
TEIFNO Entry g 28 | 15 |

The TEIFNO table is written as buffer size records on tape A4 during Section
I. During Section I' it is written as the fifth record in {ile 5 on tape B2 with
its corresponding table number and word count.

TIFGO | 2,04, 29

The TIFGO record is a table of the IF, ASSIGN, and GO TO statement in the
gource program, Each statement in the program demands the use of two full
709 words for storage. This section describes entries that result from each
type of statement. The first word of the first record in the TIFGO table is the
label number. ‘

IF Statement Entry, Example: IF (E) ny, n,, Ny

The entry for this statement is shown below:

WORD 1 ‘ (IFN) n,

Unconditional GO TO Entry. Example: GO TOn

The Entry for this statement is shown below:

WORD 1 (IFN) 0

WORD 2 0 n

Assigned Go To Entry

In this type of statement the GO TO destination is determined by a previous
ASSIGN statement. The list of alternatives following in parenthesis are merely
a list of all the possible GO TO destinations, '

/7

For example, consider the following statement:

GOTON(BI,B B3, B4noao.oooooou-oBN) .

2’

The GO TO destination will be the Ith statement., The TIFGO table entry for
this statement would be:

WORD 1 IFN 2

WORD 2 *CTRAD

1 #**CTRADy

*CTRAD, - The number of the entry in the TRAD record corresponding
to the first possible transfer address given in the GO TO argument,
**CTRADp - The number of the last possible transfer address.

Computed GO TO Statement, Example: 26 GO TO (Bl, B, B3. . .,BN] I

In this type of statement a transfer will take place in the object program dependent
on the current value of I. I1is a variable which is assigned some computed integer
by the source program. The transfer takes placeto the Ith term of the GO TO list
of B's. For example, if the value of I is computed as 3, then the program will
transfer to the third location in the list of locations which follow GO TO (B3 in

the example), The entry for the computed GO TO takes the following form:

WORD 1 (IFN) 2%
WORD 2 . CTRADj CTRANN
*Unconditional "

Assigned Statement Entry. Example: ASSIGN 30 to N

This statement is used in conjunction with a GO TO statement, as described under
the computed GO TO Statement,

The table entry of the above example takes the following form:

WORD 1 (IFN) 6%

WORD 2 Assigned value 30

Indicator-Controlled IF Statement, Example: IF(indiaator type) A]l, A2
This statement is used in conjuhction with:

Sense switches

Sense lights

Divide check indicator
Accumulator overflow light
Quotient overflow light

.)

Ui#?)Nb—-

JRF

If the corresponding indicator is on or switch is down, transfer of the program
proceeds to the statement specified by the first number following the parenthesis.
If the corresponding indicator is off or switch is up, transfer of the program pro-
ceeds to the statement specified by the second number following the parenthesis,

The table entry takes the following format, for the example given:

. Decrement Address
WORD 1 (IFN)eX 3, 4, or 5%
WORD 2) nj np

*3 = Sense Switch or Sense Light
4 » Divide Check
5 = ACC or MQ oveérilow

The TIFGO FILE table is written as buffer size records on tape A4 during
Section I. During Section I' it is written as the sixth record in'file 5 on
tape B2, with its corresponding table number and word count,

TIFGO FILE 2, 04, 30

The TIFGO FILE table is generated in Section III, It is produced from the
TIFGO and TRAD table from Section I, and the TRALEV and TRASTO table
from Section II. ‘

The need for the TIFGO FILE of instructions arises in the following manner,
The main body of computing an indexing instruction, included in the COMPDO
file, are associated with the beginning and end of DO's. However, if a trans-
fer should exist within DO certain indexing and saving instructions will be
necessary if entry is made back into the DO from the transferred point, The
TIFGO FILE contains the CIT's necessary to produce these index saving in-
structions,

The TIFGO FILE is recorded as the eighth file on tape B2 by Section III;
During the last pass of Section III theTIFGO FILE is read in from tape B2
and merged with the COMPDO and COMPAIL files, This merge constitutes
the first file on tape A4, at the end of Section III, ‘

TRAD 2,04, 31

The TRAD table contains all of the possible transfer addresses 1isted in
assigned and computed GO TO statements.

As many words are used as there are transferred to, addresses in the GO
'TO statement. The transfer address (EFN) is entered in binary form into the
address field of consecutive words in the TRAD table, '

/27

The following GO TO statement would causc the following table entry to be made:

GO To (nl, nz, n3,.-o-.....nm), I

TRAD
WORD 1 n; (EFN)
WORD 2 nz (EFN)
WORD 3 n3 (EFN)
WORD m nm (EFN)

The TRAD table is written as buffer size records on tape A4 during Section I,
During Section I' all external formula numbers (EFN) are searched for in

TEIFNO and when found are replaced by their corresponding internal formula
number (IFN). TDO is then written as the eighth record of file 5 on tape B2.

TSTOPS 2,04, 32

The TSTOPS table contains the external and internal formula numbers associated
with the STOP statements in the source program. Each entry into the table
requires only one full word. The decrement of the word contains the IFN and
the address contains the EFN of the STOP statements.

\ (IFN) N (EFN)

An entry is also made in the TSTOP table for return statements. The TSTOP
table will be left in core for processing by Section I", At the end of Section I"
the table will no longer be used.

yale,
APPENDIX A

FORTRAN TAPE B2 STATUS BY SECTION
(This.configuration holds only at the end of the given secction)

File CONTENTS Written by Overwritten by
Section Section *
1 SOURCE PROGRAM (BCD) - 1 FORTRAN Peripheral
Statement card/record Reader or card-
ta tape gimulaton
2 COMPAIL - 100 words/record 1-Pass II 1 VI
3 COMPAIL RECORD COUNT and FORSUB . VI
(if it exists)
4 Table Table Name Maximum
Label (Inorder as on tape) No. of Words
FIOCUN 1800 I
10 FORMAT 5000
S1Z 2320
END , 15
11 SUBDEF 180
12 COMMON 2400
) 13 HOLARG ! 3600
| 0 TEIFNO 3000
N 2 TIFGO 2400
5 3 TRAD 1000 I
1 TDO 3000
6 FORVAL 4000
5 FORVAR - 6000
4 FORTAG 6000
7 FRET 3000
8 EQUIT 6000
9 CLOSUB 6000
6 DOTAG B - variable number of records -war-< Il - Block 2
iable number of entries /record -9 words/entry
1 DOTAG B RECORD COUNT II - Block 2
8 DOFILE C - CIT's for A) subroutines I1 - Block 4 IIT - Merge II
9 DOFILE C RECORD COUNT III - Block 4 IIT - Merge III
8 TIFGO FILE _ III - Merge III Il - Merge III
o 8 ASSIGN CONSTANT III - Merge 111
9 FIXCON III - Merge 111
10 ASSIGN CONSTANT V - Part 3
- STORAGE MAP (BCD) FOR PROGRAM \'2 1
d” YI

SYMBOLIC LISTING FOR PROGRAM

* Any overwriting of file(s) obsoletes all information previously following_ it on the tape.

/3/

APPENDIX A

FORTRAN TAPE B3 STATUS BY SECTION
(This configuration holds only at the end of the given Section)

a, Program Card

b, Binary Object Program

¢. Library Routines (if requested)
d. EOF ' ' ‘

: Overwritten
Written by by
File Contents Section Section *
1 CONDENSED SOURCE PROGRAM I1-PASS 1 II - BLOCK 1
1 DOTAG A - Variable number of records;
variable number of entries/record; 9 word/ II - Block 1 IIl - Block 1
entry; maximum of 1350 words
DOFILE - INTERMEDIATE CiT's for DO ‘
STATEMENTS 400 words/record Il - Block 5 | III - Block 1
)| FIRSTFILE Merged CIT'a of COMPAIL and III - Block 1| V - Block A
COMPDO) 100 words/record
2 CIT's FOR FORTRAN FUNCTIONS - 100 :
words/record III - Block 1 IV - Block 3
2 DOUBLE END OF FILE MARK Block 3.
3 TAGLIST - 15 words/record Block 3 _
4 'BBLIST - 6 words/entry Block 3
1 CIT's V - PARTIV | V'
1 ASSEMBLED TABLES A VI - PART A
1 EIFNO Vi- PART A| VI
1 BINARY OUTPUT (card image form) VI

* Any overwriting of file (s) obsoletes all information previously following it on the tape.

o~

/32
APPENDIX A

FORTRAN TAPE A4 STATUS BY SECTION
(This configuration holds only at the end of the given Section)

Overwritten
Written by by
File Contents Section Section.u ‘
1 Various table buffers written in the order in I b9 W
which filled. Each table is preceded by an ‘
identification label. (See tape B2, files 4 |
and 5),
1 TRALEV - maximum 2400 words/record II - Block 1 | III MERGE
2 TAGTAG - 1 record/nest of DO's with tags; : :
4 words/ tag entry : II' - Block 2 II- Block 6
2 COMPDO - 100 words/record II.- Block 6 | IlI- MERGE 3
1 MERGED CIT's OF COMPAIL, COMPDO, .
TIFGO III - MERGE3 VI- PART A
2 CIT's for CLOSED SUBROUTINES FOR]
' DOFILEC and FORTRAN FUNGCTIONS I - MERGE} VI- PART A
1 CIT's (complete) VI - PART A
2 CLOSUB (1 record) VI - PART A

* Any overwriting of file(s) obsoletes all information previously following it on the tape,

FORTRAN EDIT RECORD CHART - 32K SYSTEM

/B3

APPLNDIX B

Record Transfer Initial Final #2 Word (Loc 56g)
Number Description Address Address = Address Fortran Records
File # 1 MONITOR
9F00 1-CS 50 23 56 KAX XXX XXX XXX
0l Card~to-tape 145 144 1026 100 012 000 145
02 Dump 145 144 3312 100 024 000 145
03 Sign - on 145 144 1311 100 036 000 145
04 . FAP-Pass 1 232 144 10435 100 050 000 232
05 FAP-Pass 2 232 232 " 7163 100 062 00'0 232
06 Monitor Scan 145 144 2076 100 074 000 145
07 BSS Control T4457 74454 77777 100 106 074 457
08 Machine Exrror 145 144 1474 100 120 000 145
09 Source Error 145 144 352 . 100 132 000 145
09,1 Dummy Record 144 144 145 100 133 000 144
File # 2 SECTION I
9F10 Pass 1 1014 144 4100 " 100 144 001 014
11 Pass 2 1062 3000 17515 100 156 00} 062
12 Diagnostic 21451 21451 24251 100 170 02] 451
SECTION I?
9F13 1014 1014 3502 100 202 001 014
SECTION I
9F14 315 315 1477 100 214 000 315
SECTION II
9F15 Block One 357 144 2344 100 226 000 357
16 Block Two 453 310 4151 100 240 000 453
17 Block Three-~A 421 310 21471 100 252 000 421
18 .Block Three«B 421 421 1513 100 264 000 421
19 Block Four 15341 - 15321 16202 100 276 015 341
20 Block Five 14147 14147 34476 100 310 014 147
21 Block Six 310 310 412 100 322 000 310
SECTION IIX
9r22 Block éne-A 50 27340 27506 100 334 000 050
23 Block One-B 310 144 2547 - 100 346 000 310
24 Block Two 310 310 2633 100 360 000 310
25 Block Three 310 310 2633 - 100 372 000 310

/G

-2-
Record Transafer initial Final 2 Word
Mumber Deecription Address Addreses Addreso Fortran Receorda
SECTION 1V
9126 Block One 242 144 1225 100 404 000 242
27 Block Two 247 202 1350 100 416 000 247
28 Block Three 250 207 1232 100 430 000 250
SECTION V
9F29 Part One 4617 144 11511 100 442 004 617
30 Part Two 203 202 526 100 454 000 203
31 Part Three 203 203 523 100 466 000 203
32 Part Four 3367 202 + 4346 100 500 003 367
SECTION V!
9F33 366 144 702 100 512 000 366
SECTION VI
9F34 A 460 144 1676 100 524 000 460
35 C 632 460 1434 100 536 000 632
36 G 460 - 460 1357 100550 000 460
37 H 460 460 1022 100 562 000 460
38 1 460 460 747 ‘100 574 000 460
39 J 460 460 1626 100 606 000 460
40 N 460 460 6654 100 620 000 460
41 P 460 460 3540 100 632 000 460
MONITOR
9F42 Tape Mover 270 144 1461 - 100 644 000 270
43 BSS Control 74457 74454 77777 100 656 074 457
File # 3 LIBRARY
9FPT 9CSH 9RER
IXPl1 9SCH 9IOH
9XP2 9SPH 910B
9XP3 9STB 910S
9ATN 9TSB 910U
9IXPF 9BST 9CHN
9L.OG 9L¥FT 9DMP
9SCN RWT 9XIT
9SQR SDRM 9XLO
3TNH 9SLO 9TES
9TSH 9SLI
9STH IWER
File # 4 GENERAL

DIAGNOSTICS

	Table of Contents
	FORTRAN Monitor
	Introduction
	Start Card and 1-CS
	Listing of Fortran Start Card
	Listing of 1-CS

	Card to Tape Simulator
	Dump
	Sign On
	Fap
	Scan
	BSS Control
	Machine Error
	Source Error
	Tape Mover

	FORTRAN Compiler
	Introduction
	Section I
	Section I'
	Sectoin I''
	Section II
	Section III
	Section IV
	Section V
	Section V'
	SectionVI

	Fortran Library
	Input/Output Library

	General Diagnostics
	Tables Generated by Fortran
	ASSIGNED CONSTANT
	CALLFN (CALLNM)
	CLOSUB
	C.I.T. (Compiled Instruction Tables)
	COMMON
	DIM
	DOFILE (C)
	DOTAG (B)
	EIFNO
	END
	EQUIT
	FIXCON
	FLOCON
	FMTEFN
	FORMAT
	FORSUB
	FORTAG
	FORVAL and FORVAR
	FRET
	HOLARG
	NONEXC
	PREDECESSOR
	SIZ
	SUBDEF
	SUCCESSOR
	TAU
	TDO
	TIEFNO
	TIFGO
	TIFGO FILE
	TRAD
	TSTOPS

	APPENDICES
	A Fortran Tape Status By Section
	B Edit Record Chart

