computing
sciences

Fcorm: PASY 4-G2-

. SBC SYSTEMS REFERENCE MANUAL

IBSYS OPERATING SYSTEM

This reference manual devciibes the basic inicrmation
necessary for submit.ing a job to be processca by the
IBSYS Operating System' 3eside: ' description ¢ the —
set-up sh¢ : and the overall ~hs ra=:aristics of deck seta

ap,-there are.descriptione:of inpu./oudp-at- v lis-and-sub

routines which have beeu added by SBC,

Changes w. 4 minoy additions to the m.2nual since its last
publicztion are identified by a vertical linc in the le':
mar 'a, The maje- additions te this manial are th~ de-
zcriptions of SBC subroutines:

REREAD a~d REWRIT
FXEM, 7 .MS, ¢nd FSLES
FrPTR

4h% TLT.ON COURT
PALO ALTO, C/ LIFTRNIA

Jan., 1966

III.,

Iv.

VI,

TABLE OF CONTENTS

INTRODUCTION

IBSYS JOB DECK SET-UP

The $JOB Control Card

Differences Between the Control Cards $JOB and $ID
Use of END-OF-FILE Cards

Composite Deck Set-Up

IBSYS Monitor Control Cards ~ $DATE and $STOP

SET-UP SHEET FOR IBSYS JOBS
Specifying Tape Units
Unexpected Program Stops and Loops

IBSYS INPUT/OUTPUT UNITS
System Unit Functions

Unit Availability Table ;
Subsystem Use of Input/Output Units

IBJOB PROCESSOR

FORTRAN 1V Input/Output Units
General IBLIB Changes

SBC Data Plotting Subroutines
Subroutine CLOCK

Subroutines REREAD and REWRIT
Subroutines FXEM, FXEMS, and FSLES
Subroutine FFPTS

IBM 7090/7094 GENERALIZED SORTING SYSTEM

=P
O I
o

.

-
N == OO

wew NN

W W W
.
OO Q

e
QO O

Loyt ntn

.

~SN MW wWww = OO

o
.
o

1.

INTRODUCTION

It has been SBC's policy in the past to maintain each IBM Operating
System in its standard form, that is, to maintain the system so that

it can be used in the manner specified in the associated IBM manuals.
In certain instances SBC makes modifications to orient the Operating
System to the hardware configuration of it's computer system, or

adds features in the form of options which makes the Operating System
more efficient, more usable. Occasionally, changes are made which
supersede the way the system was originally distributed. Changes of
this type are very minor and are made to more completely adapt the
system to SBC's '"Open Shop' method of servicing our customers.

These policies of maintaining a standard Operating System have not
changed for IBSYS. The information contained in this manual is
generally an expansion of that mentioned in related IBM manuals and
pertains directly to the use of the IBSYS Operating System at the Bay
Area Scientific Computer Center. In cases where the information
conflicts with what is stated in IBM manuals, explicit words to that
effect will be included in the text,

II,

IBSYS DECK SET-Up

Of all the IBSYS Monitor control cards that could appear in a job

deck, only four play a key role in directing the processing of a

job. They are $JOB, $EXECUTE, $IBSYS and $ID. The first
two must be present in each job deck. The last two may or may
not be present depending on the nature of the job.

To understand the process of setting up a deck for the IBSYS
Operating System, it is helpful to understand the difference be-
tween a ""Job' and a ""Job segment',

A Job segment consists of those cards to be processed by a par-
ticular subsystem. It can be one of two types; a subsystem seg-
ment which starts with a $EXECUTE control card or, an IBSYS
Monitor segment which starts with a $IBSYS control card.

A job begins w1th a $JOB control card and is foilowed by as many
*Job Segment’’ decks as are necessary io complete the problem.

The $JOB Control Card

This is the first card of each job. When encountered, the input/
output unit assignments are automatically restored if needed,
output on the system output and system peripheral punch units is
separated and identified, the IBM 716 printer clock value is
produced on-line, and an accounting pause is produced.

The contents of the $JOB card, punched in columns 16-72, should
include:

1) Company name

2) Estimate Number

3) Requestor's name or initials

4) Project Number, if required

Difference between the control cards $JOB and $ID

The $JOB control card is used for interjob accounting purposes
and must be the first card of a job.

The $ID control card is optional and would be used for intrajob
accounting purposes. If used, the $ID card would be placed in
front of each 'Segment deck' and when encountered, causes the
output on the system output and system peripheral punch units to
be separated and identified and the IBM 716 printer clock value to
be produced on-line. Processing then continues.

The contents of the $ID card, punched in columns 7-72, may be
anything the user desireeg,

2.0

Use of END-OF.FILE Cards

An End-of-File card is identified by having only a 7/8 multi-punch
in column one. The remainder of the card is ignored. Some sub-
systems require that an end-of-file be the last card of the 'Segment
deck!, others don't, In order to establish a consistent pattern for
setting up decks, SBC has made the necessary modifications so that
THE LAST CARD OF EVERY 'SEGMENT DECK' CAN BE AN END-
OF-FILE CARD.

Composite Deck Set-Up

For purposes of illustration let's consider a job that contains four
segments. The deck would be set up as follows:

$J0B identifying information
ek
$EXECUTE iBJOB
(IBJOB Control cards, program decks and data)
END-DJF-FILE card
*
SEXECUTE SORT
(Sort Control Cards)
END-OF-FILE card
*

$IBSYS
(IBSYS Control cards)
END-OF-FILE card

*

$EXECUTE IBJOB
(IBJOB control cards, program decks and data)
END-DJF-FILE card

Note that the single (*) indicates the point where the $ID control
card could be inserted, The double {¥%) also indicates the insertion
point for a $ID card although it is not necessary at that point for the
$JOB card will provide the necessary accounting activities for the

first segment.

IBSYS Monitor Control Cards - $DATE and $STOP

These two control cards are mentioned because of their importance
in the processing of a stack of IBSYS jobs. The first card, $DATE,
supplies the current date for use by all subsystems and is effective
for an entire stack of jobs. The second card, $STOP, identifies the
end of a stack of jobs and causes IBSYS to terminate processing.
Users should refrain from including either of these control cards in
job decks. They will automatically be supplied for each IBSYS stack
by the Operations department.

2.2

III,

4 A et A oo

SET UP SHEET FOR IBSYS JOBS

A Green "IBSYS" Setup Sheet has been developed for all IBSYS
jobs. The required information is located in the three top lines
and in the box labeled '"Customer Specify Disposition of Output'',
Other types of Information may be as follows:

Specifying Tape Units

The IBSYS Operating System always has eight tapes associated
with it; Al - A4 and Bl - B4. Only those units which fall outside
this range need be specified.

No explicit information is required regarding the system output
or system peripheral punch units unless for example, more than
one part paper is needed for print output.

Unexpected Program Stops and Loops

The ""Check if Dump Required'" box has two entries for requesting

a manual core dump. "At Error Stop'" is for non-programmed
stops or loops and ""At Calc Limit" is for jobs which exceed maxi-
mum running time. If the appropriate box is not checked and the
condition occurs, the job will simply be removed from the machine.

Notice that some subsystems have the capabilities of producing
an automatic core dump when certain types of errors are en-
countered. At present, these capabilities are fixed and cannot
be activated or deactivated from an external source.

3.0

IV, IBSYS INPUT/OUTPUT UNITS

An integral part of the IBSYS Monitor is a scheme of associating
physical input/output units to specific system functions. Since

each subsystem requires a minimum number of input/output devices
in order to properly operate, this scheme assures that each sub-
system will have the necessary devices available. This scheme
also provides for the necessary coordination between subsystems
and allows the exact status of all units to be known and maintained
at all times,

In addition to the assignment of physical input/output units to
specific functions, the IBSYS Monitor also maintains a pool of
available input/output units; those which are in excess of the
number required to fulfill the specified system functions. The
exact number of available units is governed by the bhardware con-
figuration of the computer system.

Following is a list of the specific system functions and their physical
input/output devices, and the pool of available tapes as provided by
the IBSYS Operating System at tho Bay Area Scientific Computer
Center.

System Unit Functions

Symbolic Physical Unit
Name and Density
SYSLBI1 Al - High
SYSLB2 No unit assigned
SYSLB3 No unit assigned
SYSL.B4 No unit assigned
SYSCRD Card Reader-~-Channel A
SYSPRT Printer-Channel A
SYSPCH Punch-Channel A
SYsoul Bl - High
SYSOU2 Bl - High
SYSIN1 A2 - High
SYSIN2 A2 - High
SYSPP1 B2 - High
SYSPP2 B4 - High
SYSCK1 No unit assigned
*SYSCK2 B7 - High
SYSUT1 A3 - High
SYSUT2 B3 - High
SYSUT3 A4 - High
SYSUT4 B4 ~ High
SYSUTS No unit assigned
SYSUT6 No unit assigned

4.0

Use

IBSYS Operating System Tape
Alternate System Library Tape
Alternate System Library Tape
Alternate System Library Tape
On-line card reader

On-line printer

On-line card punch

System print output tape

Alternate System print output tape
System Input Tape

Alternate System Input Tape
System Punch Output Tape
Alternate System Punch Output Tape
System Checkpoint Tape
Alternate System Checkpoint Tape
System Scratch Tape

System Scratch Tape

System Scratch Tape

System Scratch Tape

Extra System Utility Tape

Extra System Utility Tape

Symbolic Physical Unit

Name and Density Use

SYSUT7 No unit assigned Extra System Utility Tape
SYSUTS8 No unit assigned Extra System Utility Tape
SYSUT9 No unit assigned Extra System Utility Tape

* This unit was assigned as A5 in the distributed version,

Note that it is used by Sort for checkpoints and unreadable
records and by IBJOB when the Debug Package is being
used.

Unit Availability Table

Channel A Channel B
A5 B5
Ab B6

Subsystem Use of Input/Output Units

Each subsystem and program operating under the subsystem draws
the necessary input/output devices from the above two sources.
The methods by which this is done can be found in the appropriate
IBM manuals and will not be discussed in this Bulletin except in
cases where a clarification of available information is needed or
changes have been made which supersede the IBM Manual Infor-
mation,

4.1

v,

IBJOB PROCESSOR

The IBJOB Processor, itself a subsystem under IBSYS, contains

a number of its own individual subsystems, Specifically these

IBJOB subsystems are: FORTRAN IV, COBCL, IBMAP, IBLDR,
and a library of subroutines, IBLIB,

Changes have been made to the way FORTRAN IV programs use
input/output units and, both changes and additions have been made
to the library which will primarily benefit FORTRAN IV users.

FORTRAN IV Input/Output Units

FORTRAN IV programs refer to input/output devices by a logical
unit number, The source language statement "READ (5, 60) B"
illustrates this, where 5 is the number of a logical unit,

The library, IBLIB, contains a File routine for each input/output
device on the computer that can be referred to by a logical unit
number. These File routines link the logical unit number with a
system function or an available input/output unit, In addition, each
File routine contains information that describes the way the unit is
going to be used; input, output, or both, the mode of the data (BCD
or Binary), the blocksize, etc. The following list shows which
system unit will be used for each logical unit number and how the
system unit is defined as to mode, etc. Refer to the '"IBSYS INPUT/
OUTPUT UNITS" section for the definitions of the physical units
which are assigned to the IBSYS System Units.,

FORTRAN
Logical IBSYS Block
Unit System Unit Mode Size Use
1 SYSUT1 Binary 256 Input or Output
2 SYSuTz2 Binary 256 Input or Output
3 SYSUT3 Binary 256 Input or Output
4 SYSUT4 Binary 256 Input or Cutput
5 SYSIN1 BCD 14 Input
6 SYSOU1 BCD 110 Output
* 7 SYSPP1 BCD 14 Output
* 8 B(1) BCD 22 Input or Dutput
9 A(l) BCD 22 Input or Output
10 B(2) Binary 256 Input or Output
11 A(2) Binary 256 Input or DJutput

*The file description and/or System unit differs from the distributed
version. The last three File routines have been added because of
the additional number of input/output devices available to our
computer system.

5.0

In the list above, A{n) and B(n) refers to the nth unit in the Unit
~vailability Table for the specified (A or B) channel.

For those FORTRAN IV programmers who do not use the alternate
input/output package (ALTIO), a word of caution should be mentioned
concerning input/output operations. Generally, logical unit N must
be used as it is defined by the File routine. For example, suppose
a program uses logical unit 9 as a binary scratch unit; information
is written on this unit in binary and then read back at a later time.
An error is likely to result if the File routine that is defined above’
is used, for it specifies logical unit 9 as BCD,

To override any File routine on the library, the user must include
the corresponding File routine in his deck, modified to define the
input/output device as the program intends to use it. The general

3T memyediams wrroeald oo
form of a File routine would be:

Col 1 8 16
$IBMAP UNXX NOLIST, NOREF
ENTRY . UNXX,
« UNXX, PZE UNITXX
UNITXX FILE File specifications
END

In the above, XX is the FORTRAN IV logical unit number (with a
leading zero if applicable) that is being redefined, Details on how
to use the IBMAP pseudo-op FILE can be found in the manual
Y"IBM 7090/7094 Programming Systems: MAP (Macro Assembly
Program) Language,'" form C28-6311,

An example of the File routine for the above program that uses
logical unit 9 as Binary would be:

Coll 8 16
$IBMAP UNO09 NOLIST, NOREF
ENTRY . UNO09,
. UNO09, PZE UNITO09
UNITO09 FILE »A(l), READY, INOUT, BLK=256,
ETC BIN, NOLIST
END

General IBLIB Changes

The IBSYS Operating System can operate on either an IBM 7090 or

an IBM 7094, Because of this, the distributed Double Precision

and Complex mathematic routines simulate these two-word operations
as the IBM 7090 doesn't contain the necessary hardware instructions.

To take advantage of the double-word hardware capabilities, all
Double Precision and Complex mathematic routines have been re-
assembled for our IBM 7094. This results in decreasing both
execution time and the size of each routine.

Programming Note

Programs containing double-precision or complex computation
must be compiled for the IBM 7094. This is accomplished by
specifying the '"M94' option on the $IBFTC or $IBMAP card.

v

e o

SBC Data Plotting Subroutines

The SBC Data Plotting subroutines have been added to the library.

A complete description of what they do and how they are used is
found in "SBC Systems Reference Manual: 7094 Data plotting
Subroutines", Form PASRM-04,

Subroutine CLOCK

This subroutine allows programs to obtain the current value of the

IBM 716 printer clock. The calling sequence for a FORTRAN IV
program would be

CALL CLOCK (X)

Upon return from this subroutine, X will be a floating point number
that represents the current clock value. The magnitude of the clock
value can be 9999. 99 where the decimal portion represents hundredths
of a minute and the integer represents minutes.

Subroutines REREAD and REWRIT

These routines provide a flexible means of re- formatting data
without having to use an external input/output device. This is
accomplished by means of a CALL to one of these routines followed

by a pseudo-input/output statement,

Using REWRIT

The general form of the two FORTRAN IV statements are:

CALL REWRIT
WRITE (N, X) List

The information specified in the 'list’ is extracted from core,
formatted according to FORMAT statement number 'X ', and placed
in an intermediate BCD buffer. The only value this affords is that
its possible to "REREAD' this information using entirely different
FORMAT sgpecifications,

5-3‘

Using REREAD

The general form for REREADing is®

CALL REREAD
READ (N, X) List

This is the more usable of the two routines since re-formatting can
be accomplished using data that was read from tape, or written on
tape, as well as with data that was REWRITen.

With this routine, the data that was last placed in the intermediate
BCD buffer (either by a true BCD READ, a true BCD WRITE, or

by a REWRIT) is formatted according to FORMAT statement number
X' and placed into the variable locations specified by the 'list'.

Rules for using REREAD and REWRIT

In the general form examples above, !N’ represents a logical unit
number and can be either an integer or an integer variable. Al-
though this logical unit number is superfluous (because 1/0 devices
are not used) it must nevertheless be a legal number.

The pseudo-input/output statement must immediately follow the CALL
and must directionally agree with the routine being used (i.e., READ
follows REREAD, WRITE follows REWRIT). Program execution

will be terminated with the message '"I/O STATEMENT MUST *
FOLLOW A CALL TO REREATL OR REWRIT" if errors in usage are
detected.

Restrictions

Although it's syntactically possible to create a pseudo-~-input/output
statement and associated FORMAT statement to deal with multiple
records, neither of these routines can process these types of state-
ments. In other words, for each CALL to either of these routines,
only 132 characters of information can be processed.

5.4

Subroutines FXEM, FXEMS, FSLES
SBC Subroutines, FXEMS and FSLES are related to the Library
Subroutine FXEM which has execution termination control when-
ever errors are detected by other Library Subroutines, Itis
essential that the user fully understands the contents of the
section titled '"FORTRAN IV UTILITY LIBRARY! in the IBJOB
Processor Manual to realize the usefulness of the modifications
and additions incorpeorated, FXEM receives control each time
an error is detected by a Library Subroutine, Having received
control, it will normally produce an appropriate error message
and an error- flow trace on the system output tape,

Before exiting, FXEM determines whether to continue or terminate
execution by testing the appropriate bit ih control words that are
within FXEM, If the tested bit is off, FXEM will terminate
execution, If the bit is on, the optional exit message is produced
and control is returned to the calling routine which in turn resumes
execution, Of all the library subroutines which participate in this
scheme, not all provide for re suming execution, Some errors are
severe enough that it is considered infeasible to continue,

With the original version of FXEM it was possible for it to produce
an infinite number of error messages and traces, provided that the
optional exit bits allowed continuation, To protect against a possible
loop of this type, SBC has modified FXEM so that it terminates
execution after receiving control 100 times, Since this limit may

not be totally satisfactory, facilities are provided to change this value
during execution,

Besides providing the facilities for changing the count of the number
of times FXEM is to get control, SBC's subroutine FXEMS further
allows the user to have control over whether or not the error
messages, the optional exit messages, and/or the error-~flow trace
messages are to be produced. Through arguments in the calling
sequence each class of message can either be allowed or suppressed.
In the case of an error which results in execution being terminated,
both classes of messages will unconditionally be produced.

The calling sequence for FXEMS is:

CALL FXEMS (I, J, K)

where I = Integer representing the total number of times
FXEM is allowed to receive control before it
unconditionally terminates execution. Note that
each call to FXEMS, where I is non-zero, will
result in redefining the count to the value of I,
If the value of I is zero, the current count is
unaltered. This allows for the changing of J or
K without having to redefine the count,

5.5

J=0 Allow error-flow trace messages.

=1 Suppress error-flow trace messages.
K=0 Allow error and optional exit messages.
=1 Suppress error and optional exit messages.

The IBJOB Processor Manual describes how to change the bits in
the FXEM control words which govern the optional exits. In order
to provide a convenient way of changing these bits, and to also
provide the ability to dynamically change them during program
execution, SBC has added subroutine FSLES to the IBJOB library.

The calling sequence for this routine is
CALL FSLES (ICODE1, ICODEZ, . ., . , ICODEn)

where ICODEn = The error code number associated with
the error, as defined in the IBJOB
Processor Manual under the section
"Subroutine Library Error Messages',

If ICODEn is positive, the corresponding
control bit will be turned on (take optional
exit if possible).

If ICODEn is negative, the corresponding
control bit will be turned off (terminate
execution).

The argument list is variable, therefore only the pertinent codes
need be specified. Optional exit control bits for subroutines with
no optional exits can be altered, but they are ignored and execution
is always terminated. For those errors which have optional exits,
the control bits corresponding to the following error codes are OFF
in the distributed system. All other control bits for which there
are optional exits are ON,

31,32, 33, 35, 38, 39, 40, 41, 42, 48,51, 53, 57, and 65

5.6

Subroutine FFPTS

During execution of 2 FORTRAN IV program in which a floating
point underflow or overflow occurs, a floating point trap will
also occur. This trap is essentially a transfer to a system
routine called . FPTRP. The .FPTRP routine determines the
type of underflow or overflow {AC, MQ, or both) and processes
it accordingly. A by-product of this processing is a defining

message such as 'UNDERFLOW AT XXXXX IN AC!,

Although there is no limit to the number of times this routine

can be used, there is a limit to the number of times the messages
will be produced (normally 5 messages). When this limit is
reached, subsequent processing by . FPTRP will not produce

any messages. Since this built-in limit may not be entirely
satisfactory, SBC has developed a routine which allows execution
time definition of a more desirable limit.

The calling sequence for this routine is:
CALL FFPTS {(MLIMIT)

where MLIMIT = An integer representing the maximum
number of messages to be produced.
Note that this integer can be zero, in
which case no messages will be produced.
Note also that each time this routine is
called the count is redefined to the value
of MLIMIT,

5.7

VI. IBM 7090/7094 GENERALIZED SORTING SYSTEM

This IBSYS subsystem is being mentioned not because of any
changes that have been made, but rather to clarify its use
regarding the order of the merge it can perform.

The order of the merge is limited by the number of tapes
available on the computer system. The IBM manual "IBM
7090/7094 Generalized Sorting System: 7090/7094 Sort,
"Form C28-6365, states that the number of tapes required
by Sort is 2M, where M is the order of the merge.

Under the concepts of monitored operations, certain con-
ventions have to be established regarding the use of certain
units (i, e., input, output, Operating System residence). With
this in mind, we see that four units are used for these purposes
(SYSLB1, SYSIN1, SYSOU1 and SYSPP1) and are therefore not
available for general use.

In order to determine what the maximum value of M could be,
one must consider the total number of units available on the
computer less the four mentioned above. In addition, one
must consider whether unreadable records and dictionaries
are to be saved and checkpoints are to be taken or not. These
Sort features require an additional unit (SYSCK2) if they are
desired.

The number of input/output devices at the Bay Area Scientific
Computer Center is such that the maximum value of M can be
4 if the NOCKPT option is used, or 3 if checkpoints are to be
taken.

6.0

SDD - SAN JOSE LABORATORY
Engineering § Scientific
Computation Laboratory - Dept. 555

July 14, 1965

n A -

MEMORANDUM TO: All Computer Laboratory Users

SUBJECT: IMPLEMENTATION OF 7090/94 IBSYS OPERATING SYSTEM
VERSION 13 R

PROJECTED DATE OF RELEASE: July 26, 1965

A new version of the IBSYS OPERATING SYSTEM will be implemented.
This new version represents many significant improvements to pre-
vious versions, the most significant being the introduction of a
new FORTRAN IV compiler. The new compiler features speed, language
and list output improvements.

Other changes, additions and improvements have been made to the
IBSYS Loader, and IBJOB Library, all of which will be discussed
individually.

IBSYS Monitor

1. The $SWITCH card no longer changes the densities of the phys-
ical units involved.

2. Five additional utility functions (SYSUTS - SYSUT9) have been
added to the SYSUNI function table. These additional utility
functions may not be used for IBJOB overlay link-residence.

IBJOB Monitor

1. A new control card (S$STITLE) has been added for page headings.

2. Four IBJOB control cards have changed.
a. The SIBJOB card has an additional parameter 'ALTIO'
b. The $IBMAP card allows for new IBMAP options. NOSYM,
MONSYM, or JOBSYM.
c. The $IBFTC card no longer contains the ‘REF' option. If
REF 1s specified, it will be ignored.
d. The IBDBL card has new option, 'NOMES'

IBLDR (1BJOB Loader)

1. TIf 'ALTIO' is specified on the $IBJOB card, an Alternate FOR-
. TRAN IV I/0 package replaces the standard FORTRAN IV I/0 pack-
age. This allows 1900 more locations to be available to the
user, but suppresses optimal I/0 buffering.

2. A new expanded load map facility has been added to the loader,
which will eliminate in most cascs, the nced ior a LOGIC printout.

TG: All Computer Laboratory Users

"
o
oQ
(¢]
Do

IBMAP (MAP Assembler)

1. Two new pseudo operations are available (LITORG and LOC).

Z. A new option on the $IBMAP card to allow pre-definition of
IBSYS and IBJOB monitor symbols.

IBFTC (FORTRAN IV Compiler)

1. The compiling time for most jobs has been decreased. The a-
mount of performance improvement varies upon the options re-
quested, the nature of the source program, and the number of
compilations within a job.

2. FORTRAN IV now allows (a) up to seven (7) dimensions, (b) non-
standard returns from subroutines, and (c) multiple entry
points to a subprogram.

3. The PREST option ($0EDIT card) for FORTRAN IV is now ignored.

4. A name of any deck may not be the same as any program, subpro-
gram or ENTRY name in the same job.
The compiler will issue an error message for the case where
the deck name is the same as that of the (sub)program name
for, or ENTRY name in that deck.

5. Consult FORTRAN IV Manual for VERSION 13 for changes re-
lating to non-executable statement ordering. (i.e., COMMON,
EQUIVALENCE, DIMENSION, etc.)

IBCBC (COBOL Compiler)

1. APPLY CHECK-SUM, APPLY SEQUENCE-CHECK, RERUN...ALL FILES, RE-
RUN...OUTPUT FILES, RERUN...INPUT FILES, RERUN options have
been implemented.

2. Access to the FORTRAN IV mathematics library is provided
through additions to the language.

3. The DiSPLAY verb allows greater versatility.

4. Use of the ELSE (OTHERWISE) option following the AT END
clause of the READ verb and the ON SIZE ERROR option of the
COMPUTE, ADD, SUBTRACT, MULTIPLY and DIVIDE verbs will cause
a warning message.

Internal decimal data items (USAGE COMPUTATIONAL) which are
negative will have a sign overpunch indicated over the right
most position when it is outputted.

w
.

-3
(@)

All Computer Laboratory Users Page 3

Numeric signed items (USAGE DISPLAY), i.e. PICTURE S9(n) are
displayed with the appropriate sign overpunch in the lowest
order character + or -.

IBLIB (IBJOB Library)

l.

Installation optional I/0 conversion routines were incorpor-
ated in the IBLIB.

Some of the differences with standard conversion routines are
described below:

a. For output, a number converted by E, D, F or I conversion
requiring more spaces than are allowed by the field width,
will be disregarded and the field will be filled with as-
terisks (*). \

b. For output with E conversion (D conversion), if the for-
mat specification nPEw.d (nPDw.d) requires n + d decimal
digits where n +d 8 (n+d 16), n + d - 8 (n+d - 16)
zeros will be appended as the low-order digits.

The information contained in the parentheses pertains to
D conversions only.

C. A normal zero will be written out as 0.0 E-38 or 0.0 D-38
with the number of zeros after the decimal point determined
by d in the format statement. In the example given
(0.0 E-38), d = 1.

d. 190 core storage locations are saved as compared with ex-
existing routines. '

Inputting of E, F, D or I type fields has been improved for
accuracy.

-LXCON (post execution processing routine for COBOL and FOR-
TRAN IV programs) now handles closing of files as follows:

a. Closed files are ignored unless it is PRINT, PUNCH, or
HOLD.

b. Checkpoint files will be closed with no rewind.

c. Internal files are not closed.

The FORTRAN Mathematics Subroutine Library has been revised
Lo give greater accuracy than previous routines.

All double-precision and complex subroutine were reassembled
for 7094.

TO: All Computer Laboratory Users Page 4

6. The following list of SUbTOutlneS have been added to the
IBJOB library.

COBOL FORTRAN

.CTAN ETNC - tangent and cotangent

.CARSN FASC - arcsine and arccosine

.CGAMA FGAM - gamma and log-gamma function
.CSINH FSCH - hyperbolic sine and cosine
.CERF FERF - error function

7. San Jose Plant site routines added are:

In addition to the plot routines: ANN, AXIS, LINE, NUMBER,

BCDFL, BLDFX, PLOTS, PLOT, PLOTE, PLOTEQ, SCALE, SYMBOL,

which were in the VERSION 12 Library - we added SGPLOT,

SALAX, MAT which will enable the user of the plot routines

an easier access to the above. The write-up of these rou-

tines, as well as the following ones, can be obtained from

Camille Bader, the librarian.

We also added some mathematical routines:

ITRW: For iteration processes, speeds up convergence of equa-
tions of the type x = f(x).

RNDMGN: Generate random numbers.

We will, in the future, add more routines to the library, if

we feel they will add to our capabilities. As they become

incorporated we will circulate memos notifying all users.

GENERAL INFORMATION ON VERSION 13

All subsystems, with the exception of FORTRAN IV, essentially re-
main the same as in previous versions of IBSYS.

FORTRAN IV users should take note on some differences discovered
between VERSION 13 and previous versions.

1. Object decks obtained from previous versions will succes-
sfully execute under VERSION 13%

2. Object decks obtained from VERSION 13 will not execute
under previous versions. '

3. Large programs which nrev1ously compiled using other ver-
sions may or may not compile using VERSION 13. (In this
case, the user may further segment the program or compile
using a previous version and executing under VERSION 13).

® Previous version decks using double-precision or complex
computations must be compiled using the M94 option.

All IBJOB users should take note that M94 and XR7 are now the as-
sumed parameter of the $IBCBC, $IBFTC, and $IBMAP cards.

TO: A1l Comnuter Labora

......... peees e’

VERSION 13 MANUALS

IBSYS Monitor
I0CS
OPERATOR'S GUIDE

UTTT T‘T‘TES

4 Adad i &

IBJOB Processor
FORTRAN IV
COBOL

MA
[/ 7aN

IBJOB Processor Debug
Package

REVISED FORTRAN IV MATH
ROUTINES TNL

BT
MMR/ TV

cc: File

tory Users

C28-6248-3
C28-6345-3
C28-6355-3
N28-0125

C28-6389-0
C28-6390-0
C28-6391-0

C28-6392-0
C28-6393-0
N28-0154-0

B. Tsuchimoto
M. M. Rogson

	001
	002
	1-00
	2-00
	2-01
	2-02
	3-00
	4-00
	4-01
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	6-00
	_1
	_2
	_3
	_4
	_5

