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Preface 

This manual contains four sections: IBM 7094 II Data 
Processing System, Component Circuits, System and 
Functional Components, and Timing. 

The purpose of these sections is to: 
1. Introduce the 7094 II system. 
2. Describe the various circuit cards and circuit con­

figurations. 
3. Explain briefly the purpose and operation of the 

various system components (such as the multiplexor, 
core storage, data channels, etc.), and internal func­
tional components (such as registers, adders, counters, 
etc.). 

4. Explain the 7094 II timing and cyclic makeup. 
Customer Engineers who are familiar with the 7094 

system may easily skip over the first section by reading 
only the portion on Instruction Overlap. 

Condensed logic diagrams used in this manual are as 
close to actual systems as possible. Most of these dia­
grams have been converted to positive logic by elimi­
nating any references to + or - levels. In maintaining 
this positive logic, in-phase outputs are used to indicate 
an active (conditions met) state from the condensed 
logic block. Out-of-phase outputs are also used in some 
cases to simplify the diagrams by eliminating the clut­
tering effect of convert and invert blocks. 

The material in this manual is written at engineering 
change level 253407; however, future engineering 
changes may change the logic and machine operations 
from the presentation in this manual. 

The following manuals pertain to the 7094 II system: 

FORM 

223-2721 

223-2722 

223-2723 

223-2724 
223-6910 
223-2551 

TITLE 

7094 II DPS CEIM Manual Volume 1 (Introduc­
tion, Component Circuits, System and Functional 
Components, and Timing) 
7094 II DPS CEIM Manual Volume 2 (Arithmetic 
Instructions) 
7094 II DPS CEIM Manual Volume 3 (Non-Arith­
metic Instructions, Overlap, Trapping, Compati­
bility, 7151-2 Console) 
7302-3 Core Storage CEIM Manual 
7607 Data Channel CE I-R Manual 
7909 Data Channel CE I-R Manual 

Safety 

The follOwing safety practices should be observed: 
l. At least two men should be within sight of each 

other when working on a machine with power on. 
2. Safety glasses must be worn when soldering or 

performing other operations which may endanger the 
eyes. 

3. Use caution when lowering a tailgate. Keep fin­
gers clear of gate slides when sliding a gate into a mod­
ule. Avoid hitting laminar bus connections. 

4. 120 volts, 60 cycles, and 48 vdc are still present 
inside SMS frame with frame power off and 7618 power 
on. If it is necessary to work near live power connec­
tors, convenience outlets, or inside the MG unit or core 
storage control, disconnect power cables, or turn off 
wall circuit breakers. 

5. Discharge capacitors before working on DC 
power supplies. 

6. Always turn off power before replacing a fuse. 
7. Replace safety covers that have been removed 

before proceeding to another operation. 
8. Prior to servicing, note and check the following 

items: 
Master power switch location _______ _ 
Air conditioning switch location ______ _ 
Fire extinguishers (C02 type ) _______ _ 
Emergency exit doors 10cationL-______ _ 
Fire control phone number ________ _ 
First aid phone number _________ _ 

9. Remove metal jewelry before servicing the com­
puter. 

Copies of this and other publications can be obtained through IBM Branch Offices. 
Address comments concerning the contents of this publication to: 
IBM Corporation, CE Manuals, Dept. B96, PO. Box 390, Poughkeepsie, N.Y. 12602. 

© 1964 by International Business Machines Corporation 
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Modern methods of accounting, measuring, testing, re­
search and design generate huge quantities of infor­
mation that must be processed quickly and accurately. 
A vast amount of data constantly pours into such places 
as retail establishments, weather stations, insurance 
companies, and tax bureaus. In addition, our rapidly 
expanding scientific investigations into rocket and mis­
sile design, atomic research, and missile tracking need 
faster and faster methods for carrying out increasingly 
complex calculations. To meet these demands, ma­
chines have been deveioped which can compute, select 
and correlate data at electronic speeds. 

Automating paper work is possible because the ac­
tions involved are sufficiently repetitive. The variety of 
steps necessary in processing business records or in 
computing scientific problems, for example, is small, 
indeed, compared with the number of times these steps 
must be taken. One of the first paper work machines 
was the ink stamp, possibly because applying a date or 
name was so obviously repetitive. As additional mecha­
nization was applied to paper work, machines began to 
take over the long and painstaking task of accounting. 

Although scientific applications of computers require 
a certain amount of arithmetic, such as accumulating 
partial results or totals, the problem is principally one 
of processing data. A large amount of information is 
fed into these machines (input) and a relatively small 
amount of information is produced (output). The ma­
chines are, therefore, called data processing machines. 

The first data processing machines handled informa­
tion in a series of individual operations. These included 
punching information into cards, sorting and classify­
ing cards, producing totals and balances, and printing 
the results. Intermediate results from one machine were 
transferred to another; many human decisions and in­
terventions were necessary for a complete accounting 
procedure. 

With the application of electronics, the rate of calcu­
lation was vastly increased. But more important, a basic 
new technique was introduced which might be called 
intercommunication. Electronic devices were able to 
make decisions, and, on the basis of these decisions, to 
provide internal transporting of data and intermediate 
results from step to step. Information ( data) is fed into 
one end of a data processing system and final results 
come out the other. This machine system, as we know 

IBM 7094 II Data Processing System 

it today, is the modern computer, or data processing 
system. 

The five functional sections of a generalized com­
puter are illustrated in Figure l. The advantages to be 
realized by using a computer include greatly increased 
processing speeds, a high degree of automation, and 
great flexibility. 

All information used by the computer must pass 
through the input section where the incoming informa­
tion is interpreted and converted to the language that 
the computer understands. The input section includes 
such devices as card readers, magnetic tape units, disk 
files, etc. 

From the input section, information is directed to the 
storage section. As their main storage unit, most com­
puters use an information-holding device composed of 
magnetic cores. This magnetic core storage may serve 
as the source of all information to be used by the com­
puter. Core storage has some very important advan­
tages. Most important of these is the high speed at 
which information may be placed in, or removed from, 
core storage. The highest degree of performance from 
core storage and many other types of storage can be 
realized only when the information is arranged in spe­
cific order. Once the information is located in core 
storage, it may be called for instantly in any sequence. 

The control section of a computer directs the opera­
tion of the entire computer, receiving its directions 

Input 
(Data and ~ Storage 

-----
Output 

Instructions) 

f i r i I 
I r-.J L-

1 I 

I I I I 

i • w ! I I 
I I 

Arithnetic I 
I Control and I 
I Logical I 
I I 
I I , I 
L __ -! _______ -+ ___ J 

- - - - - Instructional Control 
----Data 

Figure 1. General Computer Functional Arrangement 
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from units of detailed information from core storage. 
These units of information, which tell the control sec­
tion what operations are to be performed, are called 
instructions. That portion of the information in storage 
which is to be operated on is commonly referred to as 
data. A single piece of data used in an operation is 
often called an operand. From the above, it may be 
seen that instructions as well as data must be delivered 
to storage from the input section. Note in Figure 1 that 
the control section receives instructions from storage 
and then exhibits the necessary control over all other 
sections of the computer. 

The actual operations are, for the most part, per­
formed in the arithmetic and logical section. The con­
trol section directs exactly what operation is to be per­
formed and what operand is to be involved in the 
operation. The instructions that may be executed by a 
given computer include such arithmetic operations as 
add, subtract, multiply, or divide. Some instructions 
may place the results of the arithmetic operation back 
in core storage. Subsequent instructions may tell the 
control section to deliver the information to the output 
section which may include printers, punches, magnetic 
tape units, or a variety of other 110 devices. 

From the above description, it can be seen that a 
single instruction causes only a specific operation to be 
performed by the computer. If a complete problem is 
to be performed by the computer, a number of instruc­
tions are required to direct the computer. A group of 
such instructions, and any necessary constant data used 
to direct the computer to the accomplishment of a job, 
is called a program. Because, in modern computers the 
program is contained in storage, the computers are 
called stored program computers. When operating 
under stored program control, the computer executes 
one instruction at a time. After executing one instruc­
tion, the computer automatically proceeds to the next 
instruction. It is important to realize that every com­
puter must be directed by some type of program dur­
ing every step of its operation. 

A generalized stored program computer (Figure 1) 
operates in the following manner: A program of in­
structions to direct the computer in every step of its 
operation is stored on magnetic tape. All data upon 
which the computer is to operate are also stored on 
tape. The tapes are readied, and a key on the computer 
console is pressed which tells the control section that 
the information located on tape is to be read into stor­
age. The control section then starts the tapes and de­
livers the information to the proper locations in stor­
age. Information contained in the last tape record tells 
the control section where to find the first instruction. 
The control section then calls for and decodes the in­
struction to determine what operation is to be per-
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formed and where the operand that is to participate is 
located. Next, the control section causes the operand, 
also located in storage, to be delivered to the arithmetic 
and logical section. The arithmetic section then per­
forms the operations as called for by the control sec­
tion. After the first instruction has been performed, the 
control section calls for the next instruction from stor­
age. This instruction may very well be one that causes 
the results of the previous instruction to be stored. This 
process continues until such time that an instruction is 
encountered that causes the results (now in storage) to 
be delivered to the output section. 

Computer Words 
Before a computer can be told what to do, a common 
language is necessary between programmer and com­
puter. The 7094 II is a binary machine, so all inputs 
and outputs, internal processing, and internal commu­
nication is in terms of I-bits and O-bits. These 1's and 
O's are combined in a 36-bit word in such combinations 
that are meaningful to the computer. 

For example, the combination of 000 100 000 000, 
properly placed in the computer word, instructs the 
computer to perform an addition. Another portion of 
this particular 36-bit word (address portion) tells the 
computer which word in core storage is to be added 
(the operand). The next instruction might contain the 
combination of 000 110 000 001, which, in the proper 
location within the word, instructs the computer to 
store the sum just obtained. Again, the address portion 
of this word will instruct the computer where the sum 
is to be placed in core storage. 

From the foregoing, two types of words are apparent 
-instruction words and data words. A third type ex­
ists, the channel command. Channel commands control 
the data channel during a particular operation, such as 
read or write. These three types of words (data, in­
struction and command) are arranged by the program­
mer into a logical sequence that will result in desired 
problem-solving or data processing. 

A 7094 II word may be a numeric quantity, an in­
struction to the computer, or a data channel command. 
In all cases, the word contains a full 36 positions (or 
bits). The contents of the word become significant ac­
cording to the computer cycle of operation. Thus, a 
word coming into the computer during an instruction 
cycle is treated as an instruction. A word coming into 
the computer during an execution cycle is treated as a 
numeric quantity. 

Data Word 

When the 36 bits are expressing a numeric quantity, 
the word is referred to as a data word. Figure 2 shows 



a data word. Note that the numerical value is expressed 
in positions 1 through 35, and the sign of the value is 
expressed in the S position. When S is a 0, the value is 
positive. When S is a 1, the value is negative. 

Many logical operations, on the other hand, operate 
on full 36-bit data words. In these cases, the sign bit 
loses its special meaning and becomes just another bit 
of information in the full data word. 

Instruction Word 

A computer instruction word is shown in Figure 3. Be­
cause this word is coming into the computer during an 
instruction cycle, it will, in effect, be segmented, and 
the various segments will be interpreted to determine 
what action is expected of the computer. The 36 bits of 
the computer word are now broken into significant sec­
tions-prefix, decrement, tag and address. 

The sign position is always a part of the operation 
code. The function to be performed is dictated by the 
sign and either the remainder of the prefix field or the 
decrement. If positions 1 and 2 contain zeros, the sign 
and decrement determine the operation code. If either 
or both positions 1 and 2 contain ones, the prefix con­
tains the entire operation code and the decrement is 
used for another purpose. 

The address field usually contains the address of a 
data word in core storage. This data word is brought 
into the computer as a part of whatever arithmetic or 
logic function is called for by the operation code. Thus, 
the instruction not only dictates the operation to be 
performed, but also specifies the address of the data to 
be used. In some instances, the address field is a part of 
the operation code. When this is the case, the address 
field is not used to address the data in storage. 

The tag field causes the computer to either operate 
on a specific index register or modify the address field 
of the instruction. 

Figures 4 and 5 are variations of the computer in­
struction word. 

Instruction Addressing 

In the 7094 II, an instruction can make reference to 
three types of addresses: direct address, effective ad­
dress, or indirect address. Several hypothetical exam­
ples are shown below to illustrate how each of the 
three forms of addressing would obtain the same data 
word from core storage. 

As a review of symbolic instruction coding, consider 
the clear and add instruction: CLA * Y, T, D. 

where: 

CLA is the mnemonic instruction coding. 
* is the indication of indirect addressing. 
Y indicates the address portion of the instruction. 
T indicates the indexing portion of the instruction 

(tag) and may be omitted if no tag is speCified. 
D indicates the decrement portion of the instruction 

and may be omitted if not necessary. 

II 
S,1 35 

Figure 2. 7094 II Data Word 

Prefix 

Decrement I Tag I Address 

S, 23 1118 2021 35 

Figure 3. 7094 II Instruction Word 

I I 
S, 23 

Decrement 

111213U 

Indirect 

Address 

1118 2021 -Effective 

Address 

Address 

Figure 4. Instruction Word Address Modification Fields 

Variable Length 

Mpy or Div Count 

~ 

I I I I I Shift Count 
S, 23 91011 12 1118 2021 2728 

~ 
.... .. 

Convert Count Address 

Figure 5. Instruction Word Count Fields 

Direct Address 

The direct address is the address specified by positions 
21-35 of the instruction. Symbolic location DATA(Y) is 
the direct address shown in the example below. Execu­
tion of the CLA causes the contents of DATA (a numeri­
cal quantity in location 00002) to be moved from core 
storage and into the accumulator. 

00000 START CLA 
00001 STOP HTR 
00002 DATA OCT 

Effective Address 

DATA 
00000 
+000000001572 

The effective address is the direct address modified by 
the contents of the specified index register (Y-T). In the 
example below, assume that index register 1 contains 
00002. During execution of CLA DATA, 1 the content of 
XRl is subtracted from the location indicated by DATA 

(00004-00002=00002). The computer makes reference 
to this new modified location (00002), reads the numer­
ical quantity out of core storage and places it into the 
accumulator. 

Assume XRl = 00002 

00000 START CLA DATA,1 
00001 STOP HTR 00000 
00002 -2 OCT +000000001572 
00003 -1 OCT +000000000145 
00004 DATA PZE 0,0,0 

35 

I 
35 , 
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Indirect Addressing 

During indirect addressing, the effective address is de­
termined (Y modified by T), and a core storage refer­
ence is made to this effective address. The address por­
tion of this data word is then modified by its indexing 
tag (if specified); this second effective address repre­
sents the actual address that is to supply the instruc­
tion's data. Four situations can occur: no indexing, in­
dexing at either address, and indexing at both ad­
dresses. 

No Indexing: The CLA makes an indirect reference to 
location TABLE. In the address portion of location TABLE 

is the address represented by DATA. It is this latter ad­
dress (0002) where the computer obtains the numerical 
quantity for the accumulator. 

00000 
00001 
00002 
00003 
00004 

START 
STOP 
OATA 

+1 
TABLE 

CLA* 
HTR 
OCT 
OCT 
PZE 

TABLE 
00000 
+000000001572 
+000000000145 
DATA 

Indexing at the Instruction Address: The direct ad­
dress of the CLA is modified to form an effective address 
of TABLE - 2 (00006 - 00002 = 00004). An indirect ref­
erence is then made to the address portion of TABLE 

- 2 (location 00004). The address portion of TABLE - 2, 
DATA (00002) indicates where the computer is to ob­
tain the numerical quantity for the accumulator. 

Assume XRl = 00002 

00000 START CLA* TABLE, 1 
00001 STOP HTR 00000 
00002 DATA OCT ±00000000 1572 
00003 -3 OCT +000000000145 
00004 -2 PZE DATA 
00005 -1 PZE 0,0,0 
00006 TABLE PZE 0,0,0 

Indexing at the Indirect Address: The CLA makes an 
indirect reference to TABLE (location 00010). The ad­
dress portion of location TABLE is represented by sym­
bolic location DATA (00005), and the tag specifies index 
register 2. Address modification is performed at this in­
direct address to produce the data address of DATA - 3 
(00005 - 00003 = 00002). This new address of location 
00002 indicates where the computer is to obtain the 
numerical quantity for the accumulator. 

Assume XR2 = 00003 

00000 
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00010 

START 
STOP 

-3 
-2 
-1 

DATA 
-2 
-1 

TABLE 

CLA* 
HTR 
OCT 
OCT 
OCT 
PZE 
PZE 
PZE 
PZE 

TABLE 
00000 
±00000000 1572 
+000000000145 
+000000000256 
0,0,0 
0,0,0 
0,0,0 
DATA,2 

Indexing at Both the Instruction and Indirect Ad­
dress: The direct address of the CLA is modified to form 
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an effective address of TABLE - 2 (00010 - 00002 = 
00006). An indirect reference is then made to this new 
address. The address portion of location TABLE - 2 is 
represented by symbolic location DATA (00005) and the 
tag specifies index register 2. Address modification is 
performed at this indirect address to produce the data 
address of DATA - 3 (00005 - 00003 = 00002). This 
new effective address of location 00002 indicates where 
the computer is to obtain the numerical quantity for 
the accumulator. 

Assume XRl = 00002 and XR2 = 00003 

00000 START CLA* TABLE, 1 
00001 STOP HTR 00000 
00002 -3 OCT ±000000001572 
00003 -2 OCT +000000000l45 
00004 -1 OCT +000000000256 
00005 DATA PZE 0,0,0 
00006 -2 PZE DATA,2 
00007 -1 PZE 0,0,0 
00010 TABLE PZE 0,0,0 

7607 Data Channel Command Word 

Similar in format and application to the computer in­
struction word, the 7607 data channel command word 
(Figure 6) gains its special significance by being called 
out of storage by the control function in the data chan­
nel. This, as in the computer, occurs when one opera­
tion has been completed and the data channel must be 
directed to perform the next operation. 

After the channel operation is initiated by the com­
puter, the 7607 data channel functions as an asynchro­
nous unit under control of an I/O program. This I/O 

program, located in storage, is constructed from special 
instruction words for the channel called commands. 
These commands inform the channel as to how many 
data words to transmit, where to obtain the data words 
in core storage during writing operations or where to 
store the data words in storage during reading opera­
tions. Each command also includes control information 
which can indicate indirect addressing, non-transmis­
sion of data, and what to do upon completion of the 
command. The command word format is: . 
S, 1-2 Operations code (Informs the channel as to what 

operation is to be performed) 
3-17 Word count (Maximum number of words this com-

mand is to transmit) 
18 Indirect addressing flag 
19 Non-transmission indicator (Read select operations 

only) 
20 Not used 
21-35 Starting address where data words are to be stored 

Opn 
Code 

S, 23 

in core storage 

Word Count 

1718192021 

Figure 6. Data Channel Command Word 

Address 

35 



7909 Data Channel Command Word 

The 7909 data channel commands are decoded in the 
channel's operation decoder. Five major bits define the 
command: S, 1, 2, 3, and 19. Note, however, that posi­
tion 3 is located in the decrement portion of the word. 
Commands which do not require the decrement por­
tion portion of the word can use this position for de­
coding purposes. Other channel commands which re­
quire either a full or partial decrement field cannot use 
this position 3-bit for operation decoding. Formats for 
these commands are shown in Figure 7 and use the fol­
lowing field nomenclature: 

Y Address 
C Count 
M Mask 
F Indirect Address Flag 

35 

I··---c-----I� .... I .. I-----y----~_I 

5, 23 56 101112 1718192021 2930 35 

Figure 7. 7909 Command Word Formats 

Instruction Overlap 
The overall operational speed of the 7094 II is greatly 
increased by parallel execution (overlapping) of two 
sequential instructions. 

While the «current" instruction is in the computer 
for execution, the next sequential instruction is also ob­
tained from core storage. This second (overlapping) in­
struction is stored in the central processing unit, ana­
lyzed, modified, and partially (or completely) executed 
during the same ElL cycle that the current instruction 
is being executed. The 7094 II overlap capabilities are 
made possible by the new IBM 7302-3 Core Storage 
whose 32,768 storage locations are divided into two 
logically independent 16,384 sections. 

Two types of overlap are performed in the 7094 II; 
"double instruction overlap," and "extended sequence 
overlap." The main difference between the two types 
is how and when the two instructions are received into 
the computer from core storage-both types, however, 
achieve the same basic objectives. 

Overlap requires teamwork between the program 
register and the instruction backup register. Figure 8 
shows two sequences of double instruction overlap. In 
Figure 8a, two instructions are obtained from core stor­
age. The first instruction is placed in the program reg­
ister for immediate execution; the next sequential in­
struction (overlapping instruction) is obtained from the 
other half of core storage and placed into the instruc­
tion backup register. As the current instruction is being 

executed, preliminary functions are performed on the 
overlapping instruction in the IBR. When the current 
instruction is completed, the overlapping instruction is 
transferred to the program register (and storage regis­
ter) for completion (Figure 8b). This double instruction 
overlap occurs either initially in the program or imme­
diately after an extended sequence series has been 
broken. 

7094 II double instruction overlap is similar to 7094 
overlap. The 7094 requires that the first instruction 
come from an even address; the 7094 II, because of the 
new split-memory, does not have this restriction. 

After double instruction overlap has initially started 
the overlap operation, extended sequence overlap can 
take over. Figure 9a shows the two initial instructions 
being received from core storage. Figure 9b shows the 
second instruction being passed from the IBR to the 
program register (and storage register) as in double in­
struction overlap, but with one addition-the IBR is 
now also reaching for the third instruction. As long as 
conditions are favorable, the program register (and 
storage register) will continue to receive instructions 
from the IBR (Figures 9c and 9d). All I-time functions 
of the overlapping instruction are performed during II 
time (IBR I time) which is concurrent with ElL time of 
the overlapped instruction. 

Conditions which can break the overlap sequence in­
clude: trapping, double-precision instructions, one­
cycle instructions, and POD 76 instructions (except shift­
ing instructions). The specific details concerning in­
struction overlap are covered in volume 3. 

Binary Arithmetic 
The binary system is used in computers because all 
present components are inherently binary. That is, a 
relay maintains its contacts either closed or open, mag­
netic materials are utilized by magnetizing them in one 
direction or the other, a vacuum tube is conveniently 
maintained either fully conducting or nonconducting, 
or the transmission of information along a wire may be 
accomplished by transmitting an electrical pulse at a 
certain time. 

Although binary numbers in general have more 
terms than their decimal counterparts (about 3.3 times 
as many), computation in the binary system is quite 
simple. 

The only convenient way to learn the operation of a 
computer is to learn the binary system. The octonary 
or octal system is a shorthand method of writing long 
binary numbers. Octal notation is used when discussing 
the computer but has no relation to the internal circuits. 

Perhaps, as the first step, it would be well to see 
what is meant by the binary system of numbers. The 
binary, or base-two system, uses two symbols, 0 and 1, 
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Instructions 1 and 2 (from Core Storage) 

Instructions 1 and 2 Execution 

Instructions 3 and 4 (from Core Storage) 

Instructions 3 and 4 (Execvtions) 

Figure 8. Double Instruction Overlap 

12 

Instructions 1 and 2 (from Core Storage) 

Subsequent 
Instructions 

Subsequent 
Instructions 

Subsequent 
Instructions 

Figure 9. Extended Sequence Overlap 



to represent all quantities. Counting is started in the 
binary system in the same manner as in the decimal 
system with ° for zero and 1 for one. At two in the 
binary system it is found that there are no more sym­
bols to use. It is therefore necessary to take the same 
move at two in the binary system that is taken at ten in 
the decimal system. This move is to place a 1 in the 
next position to the left and start again with a zero in 
the original position. A binary 10 is equivalent in this 
respect to a 2 in the decimal system. Counting is con­
tinued in a similar manner with a carry to the next 
higher order every time a two is reached instead of 
every time a ten is reached. Counting in the binary sys­
tem is as follows: 

BINARY DECIMAL 

0' 0' 
1 1 

10' 2 
11 3 

100' 4 
101 5 
lID 6 
111 7 

1000 8 
1001 9 
1010 10 

Octal Number System 

It has already been pointed out that binary numbers 
require about three times as many positions as decimal 
numbers to express the equivalent number. This is not 
much of a problem to the computer itself. However, in 
talking and writing, these binary numbers are bulky. 
A long string of ones and zeros cannot be effectively 
transmitted from one individual to another. Some 
shorthand method is necessary. The octal number sys­
tem fills this need. Because of its simple relationship to 
binary, numbers can be converted from one system to 
another by inspection. The base or radix of the octal 
system is 8. This means there are eight symbols: 0, 1, 2, 
3,4,5,6, and 7. There are no 8's or 9's in this number 
system. The important relationship to remember is that 
three binary positions are equivalent to one octal 
position. 

A comparison of the binary, octal and decimal sys­
tems is as follows: 

BINARY OCTAL DECIMAL 

000 0 0' 
0'0'1 1 1 
010 2 2 
011 3 3 
100 4 4 
101 5 5 
lID 6 6 
111 7 7 

00'1 DOD 10 8 
00'1 001 11 9 
001 010 12 10 
0'0'1 011 13 11 
0'0'1 10'0' 14 12 

Remember that the computer's internal circuitry is 
concerned with only binary ones and zeros. The octal 
system is used to provide a shorthand method of read­
ing and writing binary numbers. 

The following are examples of whole numbers and 
fractions expressed in decimal, octal, and binary form. 
Octal-decimal conversion tables can be found in Ap­
pendix A, B, and C. 

Whole 
numbers 

Fractions 

Improper 
fractions 

Addition 

DECIMAL 

5 
85 

106 
127 
725 

1125 
3333 
4095 
40'96 

0'.145 
0'.250' 
0.330 
0.500 
0'.625 
0.656 
0'.700' 
0'.734 
0.900' 
0.915 

2.250' 
3.375 

15.078 
17.050 
40.960 
63.984 

OCTAL BINARY 

5 101 
125 1 0'10 10'1 
152 1 10'1 DID 
177 1 111 111 

1325 1 011 010 101 
2145 10 001 100' 10'1 
6405 110 100' 000 10'1 
7777 111 111 111 111 

10000' 1 ODD 000' 000' 000' 

0.112 0.00'1 001 0'10 
0.200 0.010 000' 000' 
0.251 0.0'10 101 0'0'1 
00400 0.100 ODD 000' 
0.500 0.10'1 DOD 000' 
0'.520' 0.10'1 DID ODD 
0.546 0.101 100' lID 
0'.570 0.10'1 111 000' 
0.715 0'.111 00'1 101 
0'.724 0.111 DID 100 

2.200 10'.010' 000' 000 
3.300 11.011 ODD 000 

17.050 1 111.00'0' 10'1 000 
21.0'31 10 001.0'00 0'11 00'1 
50.753 10'1 0'00'.111 10'1 0'11 
77.770 111 111.111 111 ODD 

Binary addition is simple. Its rules are as follows: 

0'+0=0 
1+0=1 
0'+1=1 
1 + 1 = 0 + 1 to carry 

These rules operate in all cases of addition and apply 
to both addition of integers and of fractions. Binary 
numbers are added from right to left, and the carry is 
added to the adjacent bit on the left. The following ex­
amples illustrate the rules for binary addition. Note 
that the carry is placed in the column, to which it will 
be added, in parentheses. 

o 
+ 1 

T 

(1) 
1 

+ 1 
10 

10 
+ 1 
11 

(11) 
11 

+ 1 
100' 

100' 
+ 1 

101 

(1) 
101 

+ 1 
110 

The technical terms in addition are defined as the 
augend, addend, and the sum. The augend is the term 
that is to be increased; the addend is the term to be 
added to the augend; the sum is the result of the opera­
tion. For example: 

101 Augend 
±-Qll Addend 

1000 Sum 
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In adding more than one number, the addition of the 
first set of numbers is performed and, to the sum, is 
added the third number. To the sum of the succeeding 
additions, add the next number until all the numbers 
have been totaled. For example, add: 

Oll 
III 

+ 110 

Addition of the first set of numbers 

First Sum 
Addition to the third number 
Final Sum 

1101 
1001 
0010 

+ 1111 

Addition to the first set of numbers 

First Sum 
Addition of the third number 

Second Sum 
Addition of the fourth number 

Final Sum 

01ll 
Llli. 

1010 
--l:::...-11.!l 

10000 

1101 
+ 1001 

10110 
+ 0010 

11000 
±.l.lli 
100111 

Binary fractions are added in accordance with the 
rule that governs whole numbers. The binary point is 
fixed as in the decimal system. The carry from the addi­
tion of the binary fractions in the first position to the 
right of the binary point is an integer. For example, in 
addition of the following fractions: 

DECIMAL 

118 
~ 

4/8 or 0.5 

4/8 
±....2L§ 

10/8 or 1.25 

53/8 
+ 67/8 

12 2/8 or 12.25 

Subtraction 

BINARY 

.001 
.:L.:Q!! 

.100 

.100 
±....JlQ 

1.010 

101.011 
+ 110.111 

1100.010 

The rules for binary subtraction are as follows: 

0-0=0 
0- 1 = 1 (borrow 1 and make 0 = 10) 
1-0=1 
1-1=0 

The technical definitions of the terms used in subtrac­
tion are minuend, subtrahend, and difference. The 
minuend is the number to be decreased; the subtra­
hend is the quantity of the decrease; the difference is 
the result of the operation. Thus: 

0110 Minuend 
- 100 Subtrahend 

010 Difference 

The similarity which exists between decimal and bi­
nary arithmetic when a carry is involved is analogous 
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to the similarity which exists when a borrow is in­
volved. When subtracting a 1 from a 0, a 1 must be 
borrowed from the next higher order, diminishing that 
order by 1. 

The following examples illustrate the rules for bi­
nary subtraction and the method of borrowing from 
the next higher order. 

(A) 1101 (B) 1110 
-0100 -0101 

1001 1001 

(C) 1100 
-1001 

0011 

In the example A, the subtraction of 0 from 1, 0 from 
0, and 1 from 1 produces the difference. In the example 
B, a 1 must be borrowed from the second order when 
attempting to subtract the 1 of the first order from O. 
The 1 in the second order then diminishes to O. In the 
example C, a slightly different borrow situation arises. 
The 1 to be borrowed must come from the third order 
of the minuend. That 1 then diminishes to O. The 1 of 
the first order of the minuend can then be borrowed 
from the 10 which appears in the second order. Bor­
rowing the 1 from 10 leaves a 1 in the second order of 
the minuend. Applying the rules of binary subtraction 
then produces the difference shown. 

Complement Method 

The preceding discussion delineated the methods of 
direct subtraction. The complement method of sub­
traction is a means of subtracting by addition. Design 
requirements of a processing unit do not allow for bor­
rowing, so the complement method of subtraction fits 
in with processing unit design and capabilities. 

A disadvantage of direct binary subtraction is that 
the direct subtraction of a number from a smaller num­
ber yields an incorrect result unless the subtraction is 
done by subtracting the smaller from the larger and 
then changing the sign of the difference. For example: 

5116 0.0101 
- 9/16 - 0.1001 
- 4/16 - 0.0100 

The difficulty encountered with negative results and 
the problem of providing for borrowing in circuit de­
sign are eliminated by changing the subtraction to an 
addition of negative numbers .by means of the comple­
ment process. 

The complement system of subtraction is possible 
because it is possible to limit the number of significant 
digits to be used in anyone problem or machine. The 
problem is then said to have a modulus which is the 
count of the maximum number of numbers it would be 
possible to represent in this problem. For instance, sup­
pose that a binary machine has facilities for handling 
four places, the machine could represent 16 different 
numbers from 0 to 1111. Such a machine has a modu­
lus of 16 and is said to perform modulo 16 arithmetic. 

The Significance of the modulus of the machine is 



that each time an addition results in a number equal to 
or greater than the modulus of the machine, an integral 
multiple of the modulus is lost. An example of this ac­
tion in everyday life is given by the automobile speed­
ometer. When it reaches 100,000 miles, it resets to zero 
and starts over. The speedometer has lost 100,000 by 
resetting to zero. This property of machine-counting 
methods is important in the use of complements for 
subtraction by addition. 

The complement method of subtraction may be de­
rived from the following identity: 

P - M + (M - N) = P - N 
P = Minuend 
N = Subtrahend 
M = Modulus of the machine 

P - N = Difference sought 

To derive the complement system of subtraction, let 
(M - N) equal a number called the complement of N. 
Let C stand for this complement so M - N = C. Now 
substitute C in the identity: 

P-M+C=P-N 
or (P + C) - M = P - N 

If M is moved to the other side of the identity, it be­
comes: 

P + C = M + (P - N) 

It is now evident that the minuend plus the comple­
ment of the subtrahend is equal to the difference of the 
minuend and subtrahend plus the modulus. It should 
now be recalled that when two numbers are added to 
obtain a sum greater than the modulus, the modulus is 
lost. Therefore, P + C = P - N in any system with a 
fixed modulus, provided only the sum P + C is greater 
than the modulus of the number system used. 

The above is a derivation of what, in binary arith­
metic, is called the 2's complement system. A similar 
derivation of a 1's complement system may be derived 
using (M - 1) in place of M. In this case, the final 
equation is P + C1 - 1 = P - N, which implies that the 
difference sought will be found by adding 1 to P + C1 • 

Note that C1 is equal, in this case, to (M - 1) - N. 

EXAMPLES DIRECT SUBTRACT 

lIs Complement 

Every processing unit has a modulus which is one 
greater than the largest number the processing unit can 
register. For example, a six-place binary counter can 
express all the numbers from 0 to III Ill. The modu­
lus of such a counter is 1000000. 

To obtain the 1's complement of a number, it was 
shown in the derivation above that the number must 
be subtracted from (M - 1). Therefore, to obtain the 
l's complement of a number in a six-place machine, the 
number is subtracted from (1 000 000 - 1); that is, 
from III Ill. As an example, find the 1's complement 
of the binary numbers 101 001 and 001101. 

111 III Modulus -1 
101 001 Number 
010 1101's complement of number 
111 111 Modulus -1 
001 101 Number 
110 010 l's complement of number 

A close examination of the numbers and their 1's 
complements shows that the 1's complement in binary 
arithmetic is nothing more than the original number 
with its bits reversed. That is, the original number's O's 
are made 1's and the original number's l's are made O's. 
The way to get the 1's complement, then, is by inspec­
tion; just exchange O's for l's and 1's for O's. For ex­
ample: 

100 101 = Number 
011 010 = 1's complement 

To perform subtraction by the l's complement 
method, proceed as follows: 

1. Find the complement of the subtrahend. 
2. Add the complement to the minuend. 
3. Perform end-around carry if there is a carry out of 

the highest position of the difference (explained 
below). 

The result is the difference in complement form if it is 
negative and in true form if it is positive. 

There are four possibilities, as shown by the exam­
ples below. All except the last are treated exactly the 

COMPLEMENT SUBTRACT 

Minuend < Subtrahend +011 011 Minuend 011 011 Minuend 
- 101 010 Subtrahend 010 101 Complement 
- 001 III Difference 110 000 Complement of difference 

Minuend -Subtrahend +011 011 Minuend 011 011 Minuend 
-011 011 Subtrahend 100 100 Complement 

000 000 Difference 111 111 Complement of difference 

-Minuend> Subtrahend -011 011 Minuend 100 100 Minuend complement 
-010 011 Subtrahend 010 011 Subtrahend 
- 001 000 Difference 110 III Complement of difference 

Minuend> Subtrahend +011 011 Minuend 011 011 Minuend 
- 010 101 Subtrahend 101 010 Complement 

+ 000 110 Difference 000 101 Difference - 1 
With a 1 end carry 1 

000 110 True difference 
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same. The last requires the extra step of end-around 
carry, which is a carry from the highest order around to 
the lowest order. This carry is required because of the 
cyclical nature of the number system. 

The only time it is required is when the minuend is 
larger than the subtrahend, that is, when the answer 
will come out a true positive answer. Fortunately, 
whenever it is required, there is a carry from the left­
most position, which serves as a reminder. 

2's Complement 

In the derivation of the complement system, it was 
shown that a 2's complement of a number is equal to 
the modulus minus the number, (M - N). Therefore, to 
obtain a 2's complement in a six-place machine, the 
number is subtracted from the modulus, 1 000 000. As 
an example, find the 2' s complement of the numbers 
101 001 and 001 101: 

1 aDO 000 = Modulus 1 ODD 000 = Modulus 
101 00'1 = Number . 00'1 101 = Number 
010 III = 2's Complement 110 all = 2's Complement 

An examination of the numbers and their complements 
shows that the 2's complement of a number is the same 
as the 1's complement with a 1 added to it. The 2's com­
plement is therefore formed by obtaining the 1's com­
plement and adding 1 to it. For example, to form the 
2's complement of 001101: 

0'0'1 101 = Number 
110' OlD = 1's Complement 

110 010 = l's Complement 
+1 

110' on = 2's Complement 

To perform subtraction by the 2's complement 
method: 

l. Find the 2's complement of the subtrahend. 
2. Add this complement to the minuend. 

The result is the difference in complement form if it is 
negative and in true form if it is positive. In the 2's com­
plement system, there is no need to end-around carry. 

Signed Numbers 

How can negative numbers in complement form be 
distinguished from positive numbers in true form? In 
this regard, also, binary numbers offer an advantage 
with respect to representation. The sign of a number is 
binary in nature; th:at is, a number is either positive or 
negative. Thus, a bit representing the sign can be used 
in addition to the bits representing magnitude. A 0 in 
the sign bit position can be interpreted to mean that 
the number is positive. A 1 in the sign bit position can 
be interpreted to mean that the number is negative. By 
treating the signs separately from the magnitudes in 
each operation, the result sign can be predicted. There­
fore, the rules of algebra apply in determining the re­
sult sign. 
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Multiplication 

The rules for binary multiplication are similar to those 
of decimal multiplication. The rules for multiplying 
two single digits are the same in both systems. These 
rules are: 

DXD=D 
DX1=D 
1xD=0 
1x1=1 

The general procedure when multiplying two multiple 
digit binary numbers is the same as that in decimal 
arithmetic. That is, the multiplicand is multiplied by a 
digit of the multiplier, and the partial product obtained 
is placed so that the least significant digit is under the 
multiplier digit. When all the partial products have 
been found, they are added together to find the final 
product. The only difference between decimal and bi­
nary multiplication, therefore, is in the summing of the 
partial products. In binary, the binary addition table is 
used while in decimal, the decimal table is used. 

As can be seen from the following examples, the 
method of obtaining partial products and then adding 
them to obtain the final product is identical to that of 
decimal arithmetic. 

Multiplicand 10'10 10'.11 1111 
Multiplier 1101 100.1 1111 
First partial product 1010 1011 1111 
Second partial product 0000 0000 1111 
Third partial product 1010 0000 1111 
Fourth partial product 1010 1011 1111 
Final product 10'000010 1100'.011 11100001 

Note the placement of the binary point in the second 
example. The same rules hold for its placement as 
hold for placement of the decimal point in decimal 
arithmetic. 

The third example also illustrates an interesting 
point. This is the multiplication of the two largest pos­
sible 4-bit numbers. The product is 8 bits long. In other 
words the largest product that can result from the mul­
tiplication of two numbers will be no longer than the 
sum of the number of bits in the multiplier and multi­
plicand. 

If a number is multiplied by the radix of the number 
system, this multiplication has the effect of shifting the 
number one place to the left with respect to the radix 
point. This is true in any number system. For example, 
multiply 12.5110 by 10 (the radix of the decimal system) 
and multiply the number 10.112 by 2 (the radix of the 
binary system): 

Number 
Number times radix 

12.51 
125.1 

10.11 
101.1 

Binary multiplication, then, is nothing more than a 
series of add and shift operations. An example of such 
an operation is given under Fixed Point Arithmetic in 
Volume 2. 



Division 

Binary division is the process of counting the number 
of times a divisor goes into a dividend. The count of 
the number of times the divisor may be subtracted 
from the dividend before a negative remainder occurs 
is called the quotient. 

Direct binary division is performed by a series of 
subtractions of the divisor (actually a multiple of the 
divisor), just as it is in the decimal system. For exam­
ple, divide 100011100 by 1110: 

(bd ehi jk) 

10 100.01 
1 110 }100 011 100.00 

(a) 11 10 
(c) 111 1 
(f) 111 0 
(g) 100 00 
(1) ..1l...lQ. 
(m) 10 

In the example, the first step is to place the divisor 
below the dividend in a position which is as far re­
moved to the left as possible (a), but which will allow 
a positive difference to result when the divisor is sub­
tracted from the dividend. Since the divisor will go 
into this many bits of the dividend once, a 1 is placed 
in the quotient at b in the same column as the lowest 
order digit of the divisor. The divisor is then multiplied 
by the quotient digit, and the resulting product is sub­
tracted from the dividend to produce the positive dif­
ference (c), called the current remainder. The next 
digit in the dividend is brought down to the line c. 
Compare the divisor to line c; note that the divisor is 
larger than line c, or that the divisor goes into line c 
o times. Therefore, place a 0 in the quotient at the d 
position. The next digit of the dividend is then brought 
down to line c. Comparing the divisor to line c shows 
line c to be greater. Place a 1 in the quotient at the e 

position. Multiply the divisor by the last quotient bit to 
form line f. Subtract line f from line c to start line g. 
The next digit in the dividend is brought down to line 
g. Compare the divisor to line g; the divisor is greater, 
so place a 0 in the quotient at position h. Bring the next 
digit of the dividend down to line g; by comparison 
line g is still smaller than the divisor. Place a 0 in the 
quotient in position i, and place the next dividend digit 
on line g. Still, line g is smaller than the divisor, so a 0 
is placed in the quotient at position j. Placing the next 
dividend digit on line g now makes line g greater than 
the divisor. Place a 1 in the quotient at position k, and 
multiply the divisor by this 1 to form line 1. Subtract 
line I from line k to start line m. Assuming a quotient 
has been developed of sufficient length, terminate the 
operation. The quotient is 10 100.01 with a remainder 
of 10 (line m). 

Since the quotients bit is always either 0 or 1, the 
division process can be reduced to a series of subtrac­
tions of the divisor, multiplied by the power of the quo­
tient bit being sought from the dividend. Each time a 
subtraction results in a positive current remainder, a 
1 is placed in the corresponding quotient bit position, 
and the process is immediately repeated for the next 
quotient bit. Each time the subtraction results in a 
negative remainder, a 0 is placed in the corresponding 
quotient bit. In this case, the current remainder is 
restored to a positive number by adding the divisor 
back to it. Following this, the next quotient bit is ob­
tained by the subtraction of the divisor multiplied by 
the power of the next quotient bit. 

Since the quotient bits are generated from left to 
right, the power of each quotient bit is one smaller than 
that of the last bit generated. This means that as the 
divisor is successively subtracted from the dividend (or 
current remainder), the divisor is shifted to the right in 
relation to the binary point. The division process can 
therefore be reduced to a process of successive subtract 
and shift steps. An example of such a process is given 
under Fixed Point Arithmetic in Volume 2. 

Introduction 17 



Component Circuits 

All logic in the A and B gates of CPU 1 (7111) is com­
posed of DIF (DIode Feedback) circuitry. This new F­
level circuitry is of the non-saturating type and pro­
vides the three basic logical functions of AND, OR, and 
invert. A collector-to-base diode feedback network pre­
vents transistor saturation and, therefore, allows high­
speed circuit operation. Voltage inversion always oc­
curs between the input and output. 

Basic DIF Circuit Operation 
Three logical functions are performed by the DIF cir­
cuit block: AND'ing, oR'ing, and inverting. Other func­
tions are also performed such as terminating, driving, 
and converting from one voltage level to another, but 
these are only "convenience" functions, not logical 
functions. 

DIF circuitry allows both the AND and OR logical func­
tions to be performed within the same logic block be­
fore output powering and inversion. Not all logic blocks 
contain both functions, however; some produce just 
AND'ing, others just oR'ing, while others are simply 
inverters. 

AND-Invert 

The two-legged circuit shown in Figure 10 represents 
either a + AI or -01 function. The circuit configuration 
for the + AND and -OR are identical. The polarity des­
ignations are adapted to work in negative logic; that is, 
the recognition of the absence as well as the presence 
of information. The +AI circuit requires that all inputs 
must be up (+3 volts) to obtain a down-level output 
(0 volts). 

Note that even though this circuit represents only an 
AND function; an OR diode, D3, is also included. This 
one-legged OR circuit serves no logical function, but is 
always a part of the +AI configuration. 

Figure lla shows the junction point of the two input 
AND diodes. Only two inputs are shown in this case-­
three or more could also be used. The resistor (Rl) 
limits the current How and controls the rise time of the 
output. 

If both inputs are at 0 volts (Figure lIb), the polar­
ity is correct for both diodes to conduct. The resultant 
current How through Rl causes a voltage drop across it 
to maintain a level of about 0 volts. (Consider the for­
ward resistance of the diode to be insignificant.) 
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Input 1 

Input 2 

Input 1 

Input 2 

Output 

+6v 

AND 
Output 

I 
I 
I 
'+3v 
! 

Figure 10. +AI (-01) Circuit 

+3v 

, 
I 
I 

lov 

If input 1 rises to +3 volts (Figure llc), Dl is cut off 
because the cathode is more positive than the plate. 
D2, with 0 volts on its cathode, maintains conduction 
and the output remains unchanged. 

When input 2 changes to +3 volts (Figure lId), D2 
is cut off momentarily. The junction voltage starts rising 
towards +6 volts with a rise time effected by the stray 
capacitance of the associated circuitry. As the junction 
reaches 3 volts, both diodes return to conduction as a 
final steady state condition. If the input signals are not 
of the same voltage levels, the junction voltage assumes 
the lowest of the input sources. 

When input 1 falls to 0 volts (Figure lIe), Dl con­
ducts harder, D2 is cut off, and the output follows the 
input down to 0 volts. When input 2 falls to 0 volts, D2 
goes back into conduction to help maintain the 0 volt 
output level. 

At the output of every DIF logic circuit is a powering 
transistor which automatically causes a voltage inver­
sion. When all inputs are down (0 volts), the base-to­
emitter voltage keeps the transistor out of conduction. 
In this condition, the output signal level is essentially 
at that of the collector power source, +3 volts. 



When both inputs 1 and 2 are at +3 volts, for exam­
ple, diode D3 conducts and causes the voltage at the 
base of the transistor to go more positive. In this con­
dition, the transistor conducts and the output signal is 
essentially that of the transistor emitter, 0 volts. 

If the active logical input lines are represented as 
plus (+3 volts) levels, the active logical circuit output 
is a minus (0 volt) level (Figure 10). If this output is 
fed into a-AND or -OR circuit, however, the inversion 
was not a "logical" inversion. 

Diode D4 in the OR circuit performs a resistance 
function only and does not affect the logic. D5 is the 
diode which clamps the collector at a more positive 
voltage than if the transistor were allowed to conduct 
fully. By preventing the transistor from going into sat­
uration, better waveshapes are produced to allow faster 
computer operation. 

OR-Invert 

The two-legged OR circuit shown in Figure 12 repre­
sents either a +01 or -AI function; both differ in logi­
cal function but are identical in circuitry. The +01 cir­
cuit produces a down-level output (0 volts) if anyone 
of the inputs is up (+3 volts). This inversion, as ex­
plained previously for the AND-invert, is caused by the 
output powering transistor. 

+6v +6v 

Rl Rl 

ANO 

J-Output 01 Ov 
Input 1 Ov 

02 .Jt Input 2 Ov 

(0) (b) 

+6v +6v 

Rl Rl 

01 Ov 01 +3v 
+3v +3v 

02 ~ 02 
Ov +3v 

(c) (d) 

+6v 

Rl 

Input 1 -.-J 
} Ov 

Ov Input2~ 
I I 

+3v 
1+3v I 

ANOOutPut~ 
(e) 

Figure ll. + AND, -OR Circuit 

Note that even though this circuit represents only an 
OR function, two corresponding AND diodes (D3 and 
D4) are included. These one-legged AND circuits serve 
no logical function, but are always a part of the +01 
configuration. 

Figure 13 shows the junction point of the two input 
OR diodes (D5 from Figure 12 has been eliminated at 
this time). If both inputs are at 0 volts (Figure 13b), 
the polarity is correct for both diodes to conduct. The 
voltage drop across the current limiting resistor (R2) 
sets the correct output level-for explanation purposes, 
o volts. 

If either input rises to +3 volts (Figure 13c), that 
circuit leg conducts harder. The other diode cuts off 
and the output follows the input to +3 volts. 

Normally only one input is active at anyone time. 
The junction voltage, however, tends to follow the 
highest of the input signal levels. 

AND-OR-Invert 

Figure 14 shows the previously explained AND and OR 
functions combined into a typical DIF + AOI circuit. 
This circuit, too, can be considered as a -OAI depend­
ing on either the inputs available, or the output level 
desired. For example, if a minus (-) output level is 
desired, a +AOI designation would be used; if a plus 
(+) output level is desired, a -OAI would be applicable. 

AND +6v INVERT +3v 

Input 1 

I 
I 

- - - - AND- -:(;:--, 

Input 2 

- I 

Rl I 
I 
I 
I 

D6 

R2 

-3v 

Input I ~~----~~----­
I 

Input 2 ~ 
I I 
I I 
I I 

~ 
Output 

Figure 12. +01 (-AI) Circuit 

N 

N 

R3 
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Input 1 Ov 

D4 
Ov OR Output 

Ov Input 2 
(To Transistor Base) 

R2 R2 

(a) -3v (b) -3v 

+3v 

Ov 
+3v Input 3 ---.J 

~~~--~~ I 

Input4~ 
I I 

~ 
R2 OR Output ~~--- . ~ 

(c) -3v 

Figure 13. +OR, -AND Circuit 

DIF Circuit Logic Blocks 

Micro and Macro Blocks 

Both "macro" and "micro" logic blocks are used on the 
7094 II systems pages; the type of block used depends 
mainly on the availabilIty of printing space. Macro 
blocks can incorporate two or more micro blocks, but 
only when there are no pin connections and back panel 
wiring between micro blocks. 

As an example, consider the AND-OR-invert (AOI) cir­
cuit described in Figure 14. Figure 15a shows a macro 
block condensation of the corresponding three micro 
blocks at (b). Inputs to the macro block are "pin­
pointed" to specify input pins so that the AND functions 
are grouped and easy to separate visually. Of the eight 
possible inputs to the logic block, for example, the top 
AND function is pinpointed to input pins 2 and 3; the 
bottom AND function is pinpointed to input pins 6 and 7. 
Input pins 4 and 5 provide a visual separation of the 
two AND functions. 

Note that the i~-phase output is used from the two 
AND (+ A) micro blocks. These two blocks represent 
diode circuitry only (see Figure 14). The out-of-phase 
output is used from the +01 because the transistor is 
located at this point. 

AN D-OR-I nvert 

The + AOI was described in a previous section. Because 
of the limited number of logic block input pins, only 
certain combinations of AND-OR functions can be shown 
without losing the visual spacing. Obviously, then, it is 
not possible to show two 4-way AND'S. Combinations 
used include: 
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1. Two 2-way AND'S, 
2. Three 2-way AND'S, 
3. 3-way and 2-way AND, 
4. 3-way and I-way AND, etc. 
In cases of negative logic (or because of the avail­

ability of signal lines ), a + AOI can be represented by a 
-OAI. In either case, the internal circuitry is identical; 
only the final active output level will be changed. 

The + AOI circuit is used in many cases to "gate" in­
formation into registers. In these cases the + AOI is re­
placed by a G within the circuit block. 

Most circuit diagrams shown in this manual are con­
densed ALD systems with logic converted to positive 
(active) logic. Figure 16 shows at comparison of sys­
tems logic (a) and condensed positive logic (b). Note 
that the condensed logic is not concerned with voltage 
levels, only active logical levels. The out-of-phase (in­
verted) output of the systems gating circuit feeds a 
-sc; therefore, the inversion is not a logical inversion. 
Because there is no logic to the inversion, the con­
densed logic, therefore, uses an in-phase (active) out­
put from the gating (AO) circuit. 

DIF (F-Ievel) Triggers 

Triggers (also referred to as "latches") act as storage 
or remembering devices. Once they are turned on, they 
remain in that state until turned off. Triggers are used 
in some cases to form registers (tag register and ad­
dress register, for example); in other cases they are 

Input 1 

Input 2 

+6v 

I 
r--~ +6v I 

INVERT 

+3v 

I Rl I 
-------' 

Input 3 

Input 4 

D3 I D6 

AND 

I 
I 
I 
I 
I 

-----' .. ----... 
Input 1 ~-----

Input 2 ------l 

Input 3 -.J 

Input 4 -----.,;:......----...:....-------

Output .. +_3v __ ..... 1 Ov 

Figure 14. AND-oR-!nvert Circuit 
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used singly to retain a specific condition (adder Q 
carry and MQ overflow, for example). Various trigger 
configurations exist in the 7094 II. 

+ AOI Trigger 

The + AOI is the most common type of trigger used in 
the new F-Ievel circuitry of the 7094 II. This circuit, 
Figure 17, uses a +AOI followed by an inverter. One or 
more input AND conditions can exist, usually consisting 
of a data input and a gating input. The output from the 
inverter is fed back to the input circuit and AND' ed with 
the reset conditions to form a latch (or hold) circuit. 
Outputs from the + AOI and inverter blocks indicate the 
trigger ON and OFF conditions, respectively. 

In Figure 17a, either data input AND being fully con­
ditioned causes the output of the + AOI to go minus (-) 
and the output of the inverter to go plus (+). This in­
verter output is fed back to AND with the reset pulse 
line forming a hold circuit. 

When the original data input AND circuit is decondi­
tioned, the hold circuit keeps the trigger on. The trig­
ger remains on until such time that the reset signal goes 
minus (-) and breaks the hold circuit. 

Figure 17b shows the trigger in positive condensed 
logic. In-phase and out-of-phase trigger outputs indi­
cate an ON and OFF state, respectively. Resets are shown 
at the bottom of the trigger block with an additional 
section added for each additional reset condition. 
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- OAI Trigger 

The -OAI trigger is sometimes used when + F input 
levels are not available and - F levels must be used. 
Figure 18 shows one example of a -OAI trigger that 
can be turned on from two sources and reset by one 
reset signal. Note that all of the active input levels are 
- F. The overall logic remains the same as the + AOI 

trigger discussed previously. 

IBR Trigger 

The !BR trigger circuit is packaged four to a twin card. 
On systems pages the trigger is shown as two + T 
blocks; two blocks are necessary because of the limited 
number of input pins available on an individual block. 
The trigger is also a macro block because the output in­
verter is not individually shown (Figure 19). The out­
of-phase output of the + T block originates before the 
inverter; the in-phase output of the +T block originates 
after the inverter. 

The address portion of the !BR (21-35) requires an 
additional input gate. The output of the + AI block is 
connected to the trigger output at a point in front of 
the output inverter; therefore, a hold circuit is estab­
lished. The hold circuit is from pin 6 of the output in­
verter to pin 6 of the lower + T block. These two pin 6' s 

- F Set Pulse J Sample Tgr 

- F Set Pulse 2 -OA I t--__ ....----I - F Tgr On 

+ F Reset 

2D 2C 

- F Tgr Off 

Figure 18. -OAI Trigger 
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are common points of internal card wiring; there is no 
back panel wiring as might be concluded from the sys­
tems page layout. 

Shift Cell-SC 

The shift cell is an element which can accept new data 
at its input while it simultaneously supplies old data at 
its output. Shift cells make up the storage register, ac­
cumulator, and multiplier-quotient (MQ) register in the 
7094 II. 

These shift cells are a "double-latch" type of circuit 
where two -OAI triggers are connected in series. Both 
"set" and "hold" pulses are generated by control cir­
cuitry and used to introduce new data. Figure 20 shows 
the shift cell configuration and sequence chart for set­
ting in a 1 from an initial 0 condition. Note that the 
active levels of the input data, set, and hold pulse are 
-F. The appropriate data level must be present at the 
input to the shift cell prior to arrival of the set and hold 
pulses. The final output changes on the lagging edge of 
the pulse. 

The set and hold pulses are approximately 60 nano­
seconds in width and occur at the end of the 175 nano­
second clock pulse. The hold pulse is generated from 
the inverted output of the set pulse, skewed by one 
level of circuit delay. 

If the shift cell initially contains a 0, point B (Figure 
20) is plus (+) and O2 is deconditioned. When a minus 
(-) data signal arrives at the shift cell, 0 1 becomes con-
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- F Hold 
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ditioned. When the set pulse goes minus (-), both in­
puts are conditioned; point A goes plus (+), point B 
goes minus ( -) and a data bit is set into the first half of 
the shift cell. 

The minus (-) signal at point B feeds 0 5 and 0 6, but 
the final condition at 0 7 is blocked because the hold 
pulse has gone plus (+). The incoming data bit is not 
allowed in the second half of the shift cell at this time 
because doing so would destroy the old data and de­
feat the purpose of the shift cell. The minus (-) output 
of the inverter at point B does, however, feed back to 
O2 to act as a hold on the first half of the shift cell when 
the input data signal is removed. 

At the end of the clock pulse, the hold pulse goes 
minus (-) and conditions 0 7, the final input to the sec­
ond half of the shift cell. At this time, point C goes 
plus (+), point D goes minus (-) and the shift cell in­
dicates a 1 output. Point D is also returned to both 0 6 

and 0 7 to form a hold circuit for the second half of the 
shift cell. 

Figure 21 shows a sequence chart of a shift cell, 
AC(35) for example, under the following conditions: 

1. Initially reset to a 0 state 
2. The initial 0 replaced by a 1 
3. The 1 replaced by a second 1 
4. The second 1 replaced by a 0 
5. The last 0 replaced by another 0 

DOT-OR1ing and AND1ing 

In many cases, the available circuits do not contain 
enough inputs to satisfy a logical function. To meet 
this requirement, two or more existing circuits can be 
DOT'ed together so that the function of one logical block 
is «extended" into the other. DOT'ing is accomplished by 
having the circuits share a common transistor load, and 
because of this, some circuit card types do not contain 
transistor collector loads. 

Clock 

Data Input 

Set Pulse 

Hold Pulse 

Point B 

Point C 

Point D 
t-----hAC(35)= 1 AC(35)= 1 �.-----i-------i 
AC(35)=O AC(35)=O AC(35)=O 

Figure 21. Shift Cell Timing Chart 

Figure 22a shows the DOT'ing function with a three­
legged OR and a two-legged AND. The top three-legged 
OR circuit supplies the collector load for both itself and 
the unloaded two-legged AND circuit below. Output 
connection between the two circuits is made by back 
panel wiring. 

Note that the logical input and output levels desired 
(i.e., + F or -F) will determine whether the DOT'ing 
function is an AND or OR. 

Figure 22b shows a DOT-OR' ed configuration. Any + F 
input to the +01 circuit causes transistor T1 to conduct 
and produce a - F output; also, both inputs being + F 
at the + AI circuit cause transistor T2 to conduct and 
produce a - F output. Therefore, if the logical output 
level is - F, either circuit block produces the required 
output. 

Figure 22c shows the same identical circuit as (a) 
but as a DOT-AND configuration. All inputs being -Fat 
the -AI circuit force transistor T1 out of conduction 
and produce a + F output; either input being - F at the 
-or circuit forces transistor T2 out of conduction and 
also produces a + F output. If the input conditions are 
not as just described, either Tl or T2 will conduct and 
produce a - F output which is opposite to the logical 
output desired. 

,-------------------. 
+3v I 

I 
I 
I 

Input I 

Input 2 

t-------
I 

-3v 

I 
I 
I 
I 
I 

I 

I 
-------1 

I 

I 
I 
I 
I 
I 

I ~v I L __________________ -=_...1 
(a) 

Output 

Back Panel 

/wiring 

~~~ __ r-_,~--~~.~-F~I~np~ut~I--.. - ~~ __ ~~ 
-F Input 2 
-F Input 3 Dot-AND 

-F Input 4 

-F Input 5 

(b) (c) 

Figure 22. DOT-oR'ing and DOT-AND'ing 
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Component Circuits Card Types 
Three types of SMS component circuit cards are used to 
support the DIF circuitry; single, twin, and STAN-PAC 
cards. In many cases, register positions or similar func­
tions are combined on cards as both a packaging and 
trouble-shooting convenience. 

SMS Single Card 

All electronic components are mounted on the front 
side of the card and connections to the components are 
made on the back side by printed wiring patterns. The 
16 contacts (labeled A through R) couple the signal 
and service voltages to the circuit components when 
the card is inserted into the SMS socket. 

These single SMS cards form the bulk of the com­
puter logic. They contain: basic circuit elements such 
as AND'ing, oR'ing, inverting, and terminating; and 
semi-specialized circuit functions such as adder look­
ahead and gating. 

SMS Twin Card 

The twin SMS card is one physical card which requires 
the panel space of two single SMS cards. The use of 
twin cards provides more circuitry in a given space 
(compared to single cards) and is desirable in high 
speed circuitry because more operations can be per-

Reg Storage Register Accumulator MQ 
Pos TPU BBW TPU BBW 

S * * * * 
1 01B4F27-28 * * * 
2 01B4F27-28 * * * 
3 01B4F27-28 * 01B4A05 01B4A07 
4 01B4F27-28 '.\t 01B4A05 01B4A07 
5 01B4F27-28 * 01B4A05 OlB4A07 
6 01B4F27-28 * 01B4A05 01B4A07 
7 01B4F25-26 * OlB4A05 01B4A07 
8 01B4F25-26 * 0lB4A05 0lB4A07 
9 01B4F25-26 * * * 

10 01B4F25-26 01B4A04 01B4A06 * 
11 01B4F25-26 OlB4A04 0lB4A06 * 
12 01B4F25-26 01B4A04 0lB4A06 0lB3A19 
13 01 B.4F07-08 PIB4A04 0lB4A06 0lB3A19 
14 01B4F07-08 0lB4A04 0lB4A06 0lB3AI9 
15 01B4F07-08 OlB4A04 0lB4A06 0lB3A19 
16 OlB4F07-08 01B3A25 0lB3A24 0lB3AI9 
17 01B4F07-08 0lB3A25 0lB3A24 01B3A19 
18 01B4F07-08 OlB3A25 0lB3A24 0lB3A 18 
19 01B3F17-18 01B3A25 0lB3A24 0lB3AI8 
20 01B3F17-18 0lB3A25 0lB3A24 01B3A18 
21 01B3F17-18 01B3A25 0lB3A24 01B3A18 
22 01B3F17-18 01B3A22 0lB3A23 0lB3A18 
23 01B3F17-18 01B3A22 0lB3A23 0lB3A 18 
24 01B3F17-18 01B3A22 0lB3A23 0lB3AI7 
25 01B3H06-07 OlB3A22 0lB3A23 0lB3A17 
26 01B3H06-07 OlB3A22 0lB3A23 0lB3A17 
27 01B3H06-07 OlB3A22 0lB3A23 01B3A17 
28 01B3H06-07 OlB3A20 0lB3A21 0lB3A17 
29 01B3H06-07 0lB3A20 0lB3A21 0lB3A17 
30 01B3H06-07 OlB3A20 0lB3A21 0lB3A16 
31 01B3H04-05 0lB3A20 0lB3A21 0lB3AI6 
32 01B3H04-05 0lB3A20 0lB3A21 01B3A16 
33 0IB3H04-05 0lB3A20 0lB3A21 OlB3A 16 
34 01B3H04-05 * * 01B3A 16 
35 01B3H04-05 * * 0lB3AI6 

* Indicates the use of single cards. 

Figure 23. Twin-Card Locations for SR, AC, and MQ Input Gating 
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formed before the resultant signal must be directed to 
other cards by way of connectors and back-panel wir­
ing. The 32 contacts on the card (labeled A through Z 
and 1 through 8) couple the signal and service voltages 
to the circuit component when the card is inserted into 
the SMS sockets. 

Circuitry using twin cards includes: input gating to 
the storage register, accumulator and MQ; instruction 
backup register; sense indicator register; index regis­
ters; and index adder positions. 

Register positions and twin card locations are as 
shown in Figures 23 and 24. 

SMS STAN·PAC Card 

The STAN-PAC card is identified by its vertically mount­
ed components. Resistors, diodes, chokes, and so forth 
have their top terminal welded to a component mount­
ing strip which clamps to the body of the component 
for mechanical strength. The strip also provides an 
electrical path to the adjacent component. Both termi­
nals of the components pass through a hole in the card 
and are soldered to a land pattern on the reverse side 
of the card. The 32 contacts on the card (labeled A 
through Z and 1 through 8) couple the signal and serv­
ice voltages to the circuit components when the card is 
inserted into the SMS sockets. 

TPU 

* 
* 
* 

01B4A08 
OlB4A08 
01B4A08 
01B4A08 
OlB4A08 
0lB4A08 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 



The various BDS card register positions and corre­
sponding machine locations are shown in Figure 25. 

Figure 26 shows a STAN-PAC BDS card. To achieve the 
fast adder time of one clock pulse (175 nanoseconds), 
corresponding positions of the storage register, accu­
mulator, MQ, and main adder have been combined on 
one STAN-PAC circuit card. Figure 26 shows position 35. 
This card position contains the shift cells for SR ( 35 ) , 

MQ(35), and AC(35). One input gate (+C) circuit for 

Sense Card Instruction Card 
Indicator Location Backup Location 
Register (TPW) Register (TPX) 

5-3 01B2H28 5-3 01A3D12 

4-7 01B2H27 4-7 01A3D11 

8-11 01B2H26 
12-15 01 B2H25 

(a) (b) 8-11 01A3D10 
12-15 01A3D09 

16-19 01B2H24 16-19 01A3D08 

20-23 01B2H23 20 * 
24-27 01 B2H22 21-23 01A3D07 

28-31 01B2H21 24-27 01A3D06 

32-35 01B2H20 28-31 01A3D05 
32-35 01A3D04 

*Indicates the use of 
single cards 

Index Card Index Card 
Adder Location Registers Location 

Position (TPS) Position (TPV) 

3 01A3F18 3 01A1G18 
4 01A3F17 4 01A1G17 
5 01A3F16 5 01A1G16 
6 01A3F15 (c) (d) 6 01A1G15 
7 01A3F14 7 01A1G14 
8 01A3F13 8 01A1G13 
9 01A3F12 9 01A1G12 
10 01A3Fll 10 01A1G11 
11 01A3F10 11 01A1G10 
12 01A3F09 12 01A1G09 
13 01A3F08 13 01A1G08 
14 01A3F07 14 01A 1G07 
15 01A3F06 15 01A1G06 
16 01A3F05 16 01A 1G05 
17 01A3F04 17 01A 1G04 

Figure 24. Twin-Card Locations for SI, IBR, XAD, and XR 

SR ( 35) is also included; the remaining gates for the SR, 

MQ, and AC are on other cards and DOT-OR' ed at the 
shift cell as shown. 

The corresponding main adder position also has its 
input gating circuitry and output lookahead functions 
(propagate, generate, and exclusive OR) on the same 
card. Note, however, that the actual adder sum output 
logic is on a separate card. Note, also, that the top cir­
cuit of the bottom adder gate is not used for AD( 35). 

SR,AC,MQ,AD Position 

SR(S),AC(S, P),AD(P) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 I 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Card location (BDS) 

01B4F22 
0lB4F21 
01 B4F20 
01B4FI9 
0lB4FI8 
0lB4FI7 
01B4FI6 
0lB4FI5 
0lB4F14 
0lB4FI3 
0lB4FI2 
OIB4FIl 
OlB4FIO 
0lB4F09 
OlB4F06 
01B4F05 
01B4F04 
01B3F25 
OlB3F24 
OlB3F23 
OlB3F22 
OlB3F21 
01B3F20 
01B3FI9 
01B3FI6 
0lB3FI4 
0lB3FI3 
0lB3FI2 
OlB3Fl1 
OlB3FIO 
OlB3F09 
OlB3F08 
0lB3F07 
01B3F06 
0lB3F05 
0lB3F04 

Figure 25. BDS Card Locations for SR, AC, MQ and AD 
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+F Gate AD ...... SR : :t]G D~>--D-~"'F 
~---C ,--K-

E r-- G r-H - _1------. 
_+.:...F --:G;....a_te_M--:Q-=---...... _S_R _____ 1 __ -4-__ E 

,-L 
-F {Dot OR of Other Input Gates} ....,D.,--+_-+--------I 
-F Set SR ~K~+_-+------------~ 
-F Hold SR ..;.H-=---+_--+---------...J 

+F AD 35 

+F Gate AC ~ SR 

Storage Register {;35} 
02.01.09.1 

F +F SR 35 

-- --- --- --- -i-- ---- -- -- -- -- --~ -- -- -- -- -- -- --

-F {Dot OR or Input Gates} M MQ 35 L +F MQ 35 

-F Set MQ 
-F Hold MQ 

-F {Dot OR of Input Gates} 

P 
N 

-

rr ~~_r----------------------
---- ---- ---- -- --

MQ Register {35} 
02.04.06.1 

V AC 35 G 
---4------------------- v- ---=sc -G ----+-+------------------------

-~F~S~e~t~A--'C~-----------I-T~+---------------------T-
....:-F_H;...;.o;:.,;l..:;.d;....A.;,.,:C'---______ I-=U'----i-----------------U __ 

Accumulator Register {35} 
02.03.08.1 

+F AC 35 

-- -- -- --- -- -- -- -- -- -- -- --- -- -- --- --- --- --- ---

+F Gate AC ~AD _R __ -+---+--+-+ R ~ 
~+--+--+ G +G 

...---If---J-II --0011 ~ X ________________________________ .:..:.X +F Propagate 35 

rz~ +F Gate Comp AC ~AD 

{Not Used} 

-----+~_+ S, 
1....-1--

-z --

I 
I 
I 
I +-----+---1 

(Not Used) 6 I 
----------,- AD 35 I I 

{Not Used} 7 6 - I L 

_2_1--+-+-: +G ~ ~-~y +F Gate Comp SR +AD 

y +F Generate 35 
----4J----

+F Gate SR+AD Q 
---+--~,--Q 

I....-F-_ 

Ground 1 
-+-3....:v-o~lt-s---- ~~ 

+6 volts (MC) _5 __ 
-3 volts _8 __ 
Ground _J __ 

BDS - Card Location 01 B3 F04 

Figure 26. Typical BDS Card Layout 
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Dff Circuit Specifications 

DIF Logic Block 

Figure 27 shows a typical AND-OR-invert (AOI) DIF cir­
cuit. Diode Dl and the dotted circuitry below it indi­
cates the AND function; diode D2 and the dotted cir­
cuitry below it indicates the OR function. Diode D3 
produces an additional voltage drop in its circuit and 
is used because it provides better control than a re­
sistor. Diode D4 provides the transistor collector-to­
base feedback network to prevent the transistor from 
going into saturation. The inductor (L) in the tran­
sistor collector circuit is used to improve the output 
signal rise time by overcoming stray capacitance asso­
ciated with the output circuit. 

Inverter circuits are formed by using one-legged AOI 
circuits. 

-Dfj --E +AOI A--

F F 

_KME_+3V 

U --F 
--G 

+6v 

Input Dl 

{
------l 

Fan-in - - ---1 
----~ 
------I 

I ---., --- .... 

---~ ___ ...1 

-3v 

Figure 27. DIF Logic 

Logic Siock Input Specifications 

DC Voltage Levels and Limits: 

/-

3.35 v 
2.88 v 

0.93 v 
0.47 v 

Output 

Fan-In Capabilities: The logic block can have a fan­
in of five on the AND circuitry, and five on the OR cir­
cuitry. Inputs can be expanded, however, as explained 
later. 

Logic Siock Output Specifications 

DC Voltage Levels and Limits: 

r 3.35V 
2.88v 

0.93 v 
0.47 v 

Fan-Out Capabilities: The logic block has a fan-out 
capability of ten of the following in any combination. 

Logic blocks 
Line drivers 
Indicator drivers 
Inverter (only one )-equivalent to three loads 

Logic Siock Circuit Delays 

Circuit delays vary as a function of: the number of fan­
in Signals, the number of fan-out signals, and the total 
length of back panel wire. The total best-case to worst­
case delays vary from approximately 5.0 to 20.0 nano­
seconds. These delays apply to the logic block which is 
performing two logic functions (AND-OR). 

Logic Siock Power Supply Requirements 

Nominal Voltages and Tolerances: 

SUPPLY 

+6M 
+ 3 volts 
- 3 volts 

TOLERANCE 

± 4 percent 
± 4 percent 
± 4 percent 

Overvoltage and 
tions: 

U ndervoltage Limits and C ondi-

1. The following overvoltages can be tolerated with­
out causing component damage: 

SUPPLY OVERVOLTAGE LIMIT 

+ 6 M + 9.0 volts 
+ 3 volts + 3.6 volts 
- 3 volts - 6.0 volts 

2. Any power supply can be open-circuited without 
causing component damage. 

3. Any power supply can be shorted to ground with­
out causing component damage. 

4. Power supply sequencing is not required. 
5. Logic block cards may be inserted into or re­

moved from the computer with power on without caus­
ing component damage. 

Logic Siock Extended Capabilities 

Eight-Way AND: An eight-way AND fan-in may be 
used with a maxinlum of one nanosecond delay added 
per block. 

Dot-OR Connections: Logic block collectors may be 
DOT-oR'ed to increase the OR fan-in. Up to two addi­
tional collectors may be connected to a logic block out­
put; the DOT-OR' ed collectors will have a single collector 
resistor and inductor. Each additional DOT-oR'ed col­
lector adds 1.5 nanoseconds to the delay of the original 
circuit. 

Frequently all of the circuit diodes are not used. In 
these cases: 

1. AND diodes can "float" 
2. OR diodes must be tied to ground 
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DIF Indicator Driver 

The DIF indicator driver (Figure 28) is a saturating 
circuit designed to indicate an output level of the DIF 

logic block. The indicator light will be on when the 
logic block output is at the "up" (+3 volts) level, and 
off when the logic block output is at the "down" (0 
volts) level. A small amount of "pre-energization" cur­
rent continues to flow through the indicator lamp even 
when off and causes a faint glow at the indicator 
filament. 

~F­
---A U 

r------, 
+6M : ~ : 

r-----1a----vVV .... 1 ~ +30v I 
R4 

Rl 
820Q 

-3v 

R5 
3.3K 

L _L~ __ .J 
The circuit portion within 
dotted lines is external to 
the indicator driver card 
assembly. 

Figure 28. DIF Indicator Driver 

Indicator Driver Input Specifications 

DC Voltage Levels and Limits: 

f
3.12V 
2.85 v 

+ 0.93 v . 
+ 0.47 v 

Loading: The indicator driver must be considered as 
at least three loads. 

Indicator Driver Output Specifications 

The output specifications for this circuit are determined 
by the particular indicator lamp being driven. These 
specifications are for driving indicator lamp PiN 550511 
connected as shown in Figure 28. 

DC Voltage Levels and Limits: 

f
· 29.2v Lamp 

24.2v ON 
Lamp 22.8v 
OFF 15.0v 

Indicator Driver Power Supply Requirements 
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Voltages and Tolerances: 

+ 6 v ± 4 percent 
- 3 v ± 4 percent 
+ 30 v ± 4 percent (required on the indicator panel­

not on the circuit card) 

Power Supply Limitations: 
1. Power supply sequencing not required. 
2. Duty cycle is 100 percent. 
3. Card can be removed from the computer with 

power on without damage to the circuit. 

N-Line to DIF Converter-Terminator 

The N to F level converter provides proper termina­
tion for N-line (drift current mode) logic blocks (Fig­
ure 29). The converter also converts the N-line level to 
one capable of driving an F-Ievel (voltage mode) logic 
block. The circuit is designed to be driven by 200 feet 
of coaxial cable from a B-type logic block. 

---H r::l _p BA-­LJ-D-- U +3v 

.. Converter 

+12v +3v +6v 

R8 
150Q 

L 
3.3ttH 

:lI----+-~ Out 

N 

p 

N 

In __ "1/\1',--_ 

-12v 

Figure 29. N-Line to F-Line Converter 

N to f Converter Input Specifications 

Input voltage levels are a fundion of the input current 
which is set by the driving circuit, the 82 ohm input re­
sistor, and the base-to-emitter drop of the transistor. 

Fan-in Capabilities: The N to F converter-driver is 
designed to accept a single N-Ievel input signal. 

N to f Converter Output Specifications 

DC Voltage Levels and Limits: 

f
3.92V 
2.98 v 

+ .912v . 
- .380 v 



Fan-Out Capabilities: The N to F converter without 
the inverter output can drive only one logic block. 
When the converter has the inverter (out-of-phase) 
output, the capabilities are the same as for the AOI DIF 

logic block. 

N to f Converter Delays 

The best-case to worst-case circuit delays for the N to 
F converter vary from approximately 4 to 160 nanosec­
onds. Worst-case delays consider worst-case conditions 
of components, voltages, driver and output loading. 

Power Supply Requirements 

Power Supply Limitations: 
1. All power supply tolerances are ±4 percent at the 

circuit. 
2. Voltage sequencing not required. 
3. Circuit card can be removed without damage to 

itself, its driver, or its load. 
Over-Voltage Limits: 

SUPPLY OVER-VOLTAGE LIMITS 

+ 12 volts + 20 volts 
+ 3 volts + 9 volts 
- 3 volts - 9 volts 
- 12 volts - 20 volts 

These limits assure that breakdown limits will not be 
exceeded; they do not assume proper delays and levels. 

P-Line to DIF Converter-Terminator 

This converter-terminator circuit is designed to termi­
nate up to 200 feet of 93 ohm coaxial line driven by a 
P-line (current mode) logic block (Figure 30). The 

~A­--P-U 

Dl 

+12v 

R3 
1.62K 

Figure 30. P-Line to F-Line Converter 

+3v 

circuit also converts the incoming signal to an F-Ievel 
(voltage mode) signal sufficient to drive ten DIF logic 
blocks. 

P to F Converter Input Specifications 

DC Voltage Levels and Limits: 

f
-2.90V 
- 3.44 v 

- 3.51 v 
- 3.90v 

Fan-in Capabilities: The P to F converter-driver is 
designed to accept a single P-Ievel input signal. 

P to f Converter Output Specifications 

DC Voltages Levels and Limits: 

f
3.12V 
2.88 v 

+ 0.91 v 
+ 0.18 v 

Fan-Out Capabilities: The converter block has a fan­
out capability of ten of the following in any combina­
tion. 

1. Logic blocks 
2. Line drivers 
3. Indicator drivers 
4. Inverter (only one )-equivalent to three loads 

P to f Converter Delays 

The best-case to worst-case circuit delays for the P to F 
converter vary from approximately 4 to 54 nanoseconds. 

P to F Power Supply Requirements 

Power supply requirements are the same as for the N­
line to F converter-terminator. 
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DIF to N-Line Converter-Driver 

The F to N-line converter is designed to accept an F­
level (voltage mode) input signal and drive a single 
N-Ievel (current mode) output (Figure 31). This out­
put can feed up to 200 feet (maximum) of 95 ohm co­
axial cable piN 595997. 

{j-A-- ~--... Output 

---E F N 

-12v 

+12v 

p 

Input 
_--..1\1'1., ....... ---1 N 

p 

R3 
6.2K _ 

Figure 31. F-Line to N-Line Converter 

F to N Converter Input Specifications 

DC Voltage Levels and Limits: 

N 

P 

N 

/-

3.38 v 

2.95 v 
+ 0.93 v 

+ 0.47 v 

R7 

R6 

-12v 

Fan-in Capabilities: The F to N converter-driver is 
designed to accept a single F-Ievel input signal. 

F to N Converter Output Specifications 

DC Voltage Levels and Limits: The converter out­
put voltage levels depend on whether the terminator is 
a translating (N to P-Ievel) block, or a non-translating 
( N to N -level) block. 

TRANSLATING 

LINE TERMINATOR 

NON-TRANSLATING 

LINE TERMINATOR 

j
+0.32V ::t_2.64V 
+ 0.21 v - 3.24 v 

- 0.20 v - 3.38 v 
- 0.35 v - 3.82 v 

Fan-Out Capabilities: The F to N converter can drive 
only one logic block. Output of the converter is an out­
of-phase signal level. 
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F to N Converter Delays 

The best-case to worst-case circuit delays for the F to 
N converter are approximately 6 to 76 nanoseconds. 

F to N Power Supply Requirements 

Voltages and Tolerances: 

- 12 volts ± 4 percent 
+ 12 volts ± 4 percent 

A ±3 volt excursion is permissible on the + 12 volt 
and -12 volt power supplies under fault condJ.tions. 

DIF to P-Line Converter-Driver 

The F to P-line converter is designed to accept an F­
level (voltage mode) input signal and drive a single 
P-Ievel (current mode) output (Figure 32). The out­
put c.an feed up to 200 feet (maximum) of 95 ohm co­
axial cable PiN 595997. 

+12v 

Input 

+12v 

Figure 32. F-Line to P-Line Converter 

F to P Converter Input Specifications 

DC Voltage Levels and Limits: 

f
+ 5.80V 
+ 4.42 v 

+ 0.93 v 
+ 0.47 v 

Output 

Dl 

Fan-in Capabilities: The F to P converter is designed 
to accept a single F-Ievel input signal. This converter 
circuit is to be driven by an unloaded DIF circuit. The 
maximum wire length between the DIF circuit output 
and converter input is not to exceed 24 inches. The DIF 

circuit driving this converter is to drive no other loads. 

F to P Converter Output Specifications 

DC Voltage Levels and Limits: The converter output 
voltage levels depend on whether the tenninator is a 



translating (P to N-level) block, or a non-translating 
(P to P-level) block. 

TRANSLATING 

LINE TERMINATOR 

j
-5.39V 
- 6.07 v 

- 5.98 v 

- 6.52 v 

NON-TRANSLATING 

LINE TERMINATOR 

- 2.75v 
- 3.12v 

j
-2.16V 
- 2.63v 

Fan-Out Capabilities: The F to P converter can drive 
only one logic block. Output of the converter is an out­
of-phase signal level. 

F to P Converter Delays 

The best-case to worst-case circuit delays for the F to 
P converter are approximately 11 to 62 nanoseconds. 

These delays are measured from the input of the DIF 

driving circuit to the output of the conversion circuit. 

F to P Power Supply Requirements 

Voltages and Tolerances: 

- 3 volts ± 4 percent 
+ 12 volts ± 4 percent 

Power Supply Limitations: 
1. The + 12 volt supply cannot be more positive than 

+ 12.82 volts. 
2. The -3 volt supply cannot be more positive than 

-1.5 volts. 
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7618 
PCU 

60 rv208v 

3~ 

Power (400'" 208v, 3~) to all frames 
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711 Card 
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721 Card 
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Figure 33. 7094 II System Configuration 
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System Components 
Figure 33 is a block diagram of the 7094 II system 
configuration showing a possible combination of units. 
Of course, not all units are required in every installa­
tion. The final selection would be determined by cus­
tomer need. 

Figure 34 illustrates the basic functional organization 
of the 7094 II. Although there is a slight change in 
terminology, components and functions are essentially 
the same as previously described for a general com­
puter (Figure 1). Note, however, that a multiplexor has 
been added. Arrows indicate the general flow of infor­
mation. Although the sections can be neatly separated 
physically, there are many functional combinations not 
shown in this grouping. Storage is the only functional 
section that is a separate machine unit. 

CPU 

Control and 
Arithmetic 

Storage 
f----Read 

<l---Write 

Figure 34. Basic Functional Organization 

Briefly, computer information flow is from the input, 
through the multiplexor, and to core storage to set up 
the stored program. Instructions then come from core 
storage, through the multiplexor to the CPU for decod­
ing, and a data reference is made back to core storage 
to the address specified in the instruction. Instructions 
return the answers to core storage where they, the an­
swers, will eventually be transmitted to the output 
equipment. 

The arrangement shown allows input-output (I/O) to 
operate somewhat independently, sharing storage with 
the computer. The highest order of controls is in the 
computer where control is delegated to the lower order 
controls in the data channel and multiplexor. 

System and Functional Components 

IBM 7111 and 7109 Central Processing Units 

The central processing unit (cpu) of the 7094 II is actu­
ally made up of two sub-units-cpu-l and CPU-2. The 
CPU-l is the IBM 7111 Instruction ProceSSing Unit and 
CPU-2 is the IBM 7109 Arithmetic Sequence Unit. 

As these names imply, CPU-l contains all arithmetic 
and control registers and accepts, decodes, and routes 
instructions to the rest of the computer. Because of the 
dense circuit packing, CPU-l also performs a great deal 
of instruction execution. CPU-2 controls instruction exe­
cution for most POD 76 and sense indicator instructions, 
and I/O operations. 

:Many of the functions previous associated with CPU-2 
are now contained in CPU-I. There is a great deal of in­
terplay and overlap between these two units, and in 
some sequences it is difficult to determine an accurate 
functional boundary. 

The arithmetic section is the calculating section of 
the computer system. Here, portions of information, 
either instructions or data, can be transformed, com­
bined, or altered. This section also keeps account of the 
instruction it is using and the one it will use next. 

The control section directs the other sections. It tells 
them what to do and when to do it. Instructions come 
into the control section from storage. 

IBM 7606 Multiplexor 

The IBM 7606 Multiplexor may best be described as a 
switching device which controls most of the data trans­
fer and intercommunications within the system (Figure 
35). It controls some of the core storage addressing and 
provides data paths to and from core storage for the 
computer and the data channels. The multiplexor also 
provides physical connections for the various cables to 
and from the data channels. 

In addition to multiplexing data between core stor­
age and the several sources of inputs and outputs, the 
multiplexor contains two master clocks for timings re­
quired by the main computer and data channels. These 
master clocks and their operation is described later in 
"Timing." 

The multiplexor contains a buffer address register 
(BAR) used in data channel addreSSing and also look­
ahead circuits that are used in conjunction with data 
channel operations. 
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Multiplexor Storage Busses 

Data words are gated from the even/odd memory data 
registers and onto their respective memory data bus 
out (MDBO) lines. These two sets of 36-bit data lines ar­
rive independently at the multiplexor (Figure 35). 

Outputs from this multiplexor storage bus circuitry 
is sent to a variety of places. When sent to the CPU, 
both the even and odd busses remain independent and 
isolated from one another. Gating circuitry within the 
CPU (shown as © in Figure 35) determines which 
bus/busses are gated into the storage register (SR), pro­
gram register (PR) and instruction backup register (IBR). 

For data channel operations only the appropriate 
memory is selected. Therefore, only one MDEO is active 
with data. Both sets of MDBo'S are oR'ed together (as in­
dicated by @ in Figure 35) and sent out uncondition­
ally on banks 1 and 2. However, only the particular 
channel requesting the data gates the data word 
through the channel input switches. This gating occurs 
during B cycles or the E cycle of an appropriate chan­
nel instruction or command. The data word is treated 
as either data or a command word and set into appro­
priate registers. 

Channellookahead circuitry in the multiplexor tests 
the storage bus outputs to determine indirect address­
ing and TCH-type commands. If indirect addressing or 
a TCH-type command is detected, positions 21-35 (ad­
dress portion) are immediately gated to the buffer ad­
dress register so that a second core storage reference 
can be made for the data channel. 

Multiplexor Storage Bus Input OR'ing 

The multiplexor input oR'ing circuitry gates all data 
sent to core storage (Figure 35). Data can arrive from 
the storage register in the CPU or from banks 1 or 2 of 
the channel storage bus. Timing and priority circuits 
throughout the system, however, prevent more than 
one input from being active at anyone time. 

Outputs from the input oR'ing are sent over 36 lines 
to the memory data bus in (MDBI) of core storage. The 
data word is gated into either the even or odd memory 
data register as determined by the MAR selection and 
addressing circuitry. 

Buffer Address Register 

Memory address switching which existed in the multi­
plexor of the 7090/7094 computers has now been 
greatly expanded and relocated in CPU-I. Its place in 
the multiplexor has been taken over by the buffer ad­
dress register (BAR) which is directly associated with 
data channel operations (Figure 35). 

Inputs from the channels for memory selection come 
from the channel address switches in either bank 1 or 2. 
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Inputs from positions 21-35 of the multiplexor storage 
bus occur for memory selection under indirect address­
ing or TCH-type channel commands. Logic, however, 
prevents more than one input from being active at any 
one time. During channel trap operations, various BAR 
positions are forced on to cause trapping to appropriate 
memory locations. For example, BAR (14 and 16) indi­
cate the channel A trap address of 128 • 

Outputs from the buffer address register go to the 
MAR selection circuitry for memory addressing, and 
also to banks 1 and 2 as an input to the channel address 
input switches. 

IBM 7302-3 Core Storage 

All information in the system is at one time or another 
in storage; therefore, computer speed depends on stor­
age speed. The storage scheme of most computer sys­
tems today is random access (any portion of informa­
tion can be located directly without searching other 
locations ). 

The new l.4-microsecond air-cooled 7302-3 core 
storage provides two logically independent random 
access storage blocks of 16,384 words each. Both blocks 
(arrays) can perform simultaneous data fetches because 
each array has its own 14-bit memory address register 
(MAR), 36-bit memory data register (MDR) and 36-bit 
memory data bus out (MDBO). All of the following mul­
tiplexor controls have been duplicated: 

Memory select 
Memory read-out control 
Store prefix control 
Store decrement control 
Store tag control 
Store address control 
OR to storage 
Memory test time 

One memory data bus in (MDBI) is located in the 
multiplexor and wired to both MDR'S. Storing can not, 
therefore, be executed simultaneously to both the even 
and odd memory; only the memory selected by the 
store operation generates the data-in gate (DIG). A si­
multaneous store and fetch combination may occur 
provided there is no memory conflict. 

The data channel and computer can not use core 
storage simultaneously. Channel B cycles can overlap 
CPU L cycles, however, because L cycles require no ref­
erence to core storage. Channel cycle requests are hon­
ored on the cycle following their receipt in the CPU, and 
continue to assume priority until such time that all re­
quests from all channels have been satisfied. 

For more information on core storage, refer to IBM 
7302-3 Customer Engineering Instruction-Mainte­
nance Manual, Form 223-2724. 
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7302·3 Addressing 

Because each array consists of 16,384 positions, only 14 
address bits are required to effect any location. The 
15th bit is used for memory selection (even or odd). 
MAR (3 through 16) select an address; MAR (17), which 
no longer exists as such, controls the memory selection. 
Memory selection is effected by whether the computer 
is in normal or diagnostic mode of operation. In normal 
mode, bit (17) controls memory selection whereas in 
diagnostic mode bit (3) controls memory selection. This 
"switching" of bits (3 and 17) is explained later in this 
chapter under "MAR Bus Selection and Switching." 

Because of the signal levels sent from the computer 
to core storage, 1's complement addressing is indicated 
in the MAR lights at the CE test panels; lights that are on 
in the program counter at the operator's console, for 
example, will be off at the 7302-3 and vice-versa. This 
address interpolation is best done visually by reading 
the address in the lights that are off. The following 
chart, however, shows a light correlation between the 
CPU and 7302-3 for four different address groups. 

CPU 7302-3 CE PANEL MAR LIGHT INDICATIONS 

ADDRESS NORMAL MODE DIAGNOSTIC MODE 

INDICATION EVEN MAR ODD MAR EVEN MAR ODD MAR 

00000 77776 77776 
00001 77776 37776 
00002 77774 77774 
00003 77774 37774 

37774 40002 40002 
37775 40002 00002 
37776 40000 40000 
37777 40000 00000 

40000 37776 77776 
40001 37776 37776 
40002 37774 77774 
40003 37774 37774 

77774 00002 40002 
77775 00002 00002 
77776 00000 40000 
77777 00000 00000 

Note: lights will show 777768 if this memory is not selected. 

Input/Output 

The input section of a computer system accepts infor­
mation from an outside source and places it into the 
storage section. This information may come from 
punched cards, magnetic tape, manually operated keys 
or a variety of other devices. The information may be 
instructions, data (numbers for arithmetic calculations), 
or alphabetic characters for printing page headings, 
comments, etc. 
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The output section takes calculated information from 
storage and presents it to an outside user. Commonly 
used forms of outputs are: magnetic tape, magnetic 
disk, punched cards) printed reports, or indicator lights. 

The devices and associated data channels applicable 
to 7094 II input/output (I/O) operations are variable 
and include the following: 

7607 DATA CHANNEL 

MODEL 1 
729 II Magnetic Tape Unit 
729 IV Magnetic Tape Unit 
716 Printer 
721 Card Punch 
711 Card Reader 

7607 DATA CHANNEL 

MODEL 3 
729 II Magnetic Tape Unit 
729 IV Magnetic Tape Unit 
729 V Magnetic Tape Unit 
729 VI Magnetic Tape Unit 
716 Printer 
721 Card Punch 
711 Card Reader 

7607 DATA CHANNEL 

MODEL 5 
716 Printer 
721 Card Punch 
711 Card Reader 

IBM 7607 Data Channel 

7607 DATA CHANNEL 

MODEL 2 
729 II Magnetic Tape Unit 
729 IV Magnetic Tape Unit 

7607 DATA CHANNEL 

MODEL 4 
729 II Magnetic Tape Unit 
729 IV Magnetic Tape Unit 
729 V Magnetic Tape Unit 
729 VI Magnetic Tape Unit 

7909 DATA CHANNEL 

7631 File Control 
7640 H ypectape Control 
1414-6 I/O Synchronizer 
7750 Programmed Transmission 

Control 

The IBM 7607 Data Channel controls the flow of infor­
mation between I/O units and core storage. The Model 
1 can control any combination of ten 729 II and 729 IV 

tape units and up to one each of reader, punch, and 
printer. The printer must be present if either a reader 
or a punch is to be used. A 7607-2 can control any 
combination of ten 729 II and IV tape units, but no card 
machines. The 7607-3 and -4 perform the same func­
tions as Models 1 and 2 but with the added capacity for 
handling 729 v and VI tape units. The 7607-5 handles 
only the card equipment; one each of reader, printer, 
and punch. 

The IBM 7094 II Data Processing System may include 
up to eight data channels. Each data channel can be 
regarded as a subsystem with its own manual control 
console and indicator panel (not shown in Figure 34). 
Once a data channel is set in operation by an instruc­
tion in the computer program, it can call its own in­
structions (called commands in channel operations). 
These commands make up what is known as an I/O 
program. This program controls the operation of the 
I/O unit. Information received from an I/O unit is 



placed in core storage, or information is taken from 
core storage to be supplied to a selected r/o unit. 

The computer is responsible for selecting a particular 
data channel and supplying its first command. The first 
command can be the first of a series of commands (I/O 

program) that will sustain the selected channel and de­
vice in operation independently of the computer. When 
this I/O program has run its course, the selected device 
stops and the operation is complete. 

It is possible for a 7094 II, using eight data channels, 
to have eight I/O programs and the computer program 
in operation simultaneously-each independent of the 
others and all sharing one common core storage. 

The IBM 729 Nlagnetic Tape Units write information 
on magnetic tape or read information from magnetic 
tape. The higher model numbers indicate advanced 
versions of the basic unit-usually referring to an in­
creased character rate. 

The IBM 711 Card Reader reads information from 
punched cards at 250 cards per minute. 

The IBM 716 Printer prints information from core 
storage at 150 lines per minute. The typewheel echo 
pulses are available to the computer where they may 
be used to check the accuracy of printing. 

The IBM 721 Card Punch punches information from 
core storage at 100 cards per minute. 

For a more detailed discussion of the IBM 7607 Data 
Channel and its associated I/O units refer to the IB~1 
7607 Data Channel Customer Engineering Instruction­
Reference Manual, Form 223-6910 and the IBM 7094 
Data Processing System Reference ~lanual, Form A22-
6703. 

IBM 7909 Data Channel 

The IBM 7909 Data Channel is a stored program device 
designed to increase the capabilities of the IBM 7094 II 

Data Processing System. The data channel attaches to 
the IBM 7606 Multiplexor in the same manner as the 
IBM 7607 Data Channel and controls data flow between 
core storage and a variety of I/O devices. Communica­
tion and data flow between the channel and I/O adapter 
is through a Standard Interface. 

The many commands at its disposal give the IBM 

7909 Data Channel expanded capabilities for perform­
ing logical and testing operations as well as exercising 
normal control of data transmission. A variety of I/O 

devices and appropriate adapters can be attached to a 
7909 oriented system. 

The IBM 1301 Disk Storage and IBM 7631 File Con­
trol provide a capacity of more than 55 million charac­
ters of storage for each disk storage unit. 

The IBM 7320 Drum Storage and IBM 7631 File 
Control provide random storage of 1,118,400 characters 

on 400 data tracks. In the normal six-bit mode, each 
data track provides the following capacities: 

Data Bits 16,776 
Character (6-bit) 2,796 
Words (36-bit) 466 

The IBM 7340 Hypertape Drive and IBM 7640 
Hypertape Control introduce a new concept in mag­
netic tape devices. Character rates as high as 170,000 
alphameric characters (28,330 words) a second are pos­
sible. 

The IBM 7750 Programmed Transmission Control 
links a central computer with telecommunication equip­
ment such as telegraph machines, IBM 65/66 Data 
Transceivers, and IBM 7701 Magnetic Tape Transmis­
sion Terminal. 

The IBM 1414-6 Input/Output Synchronizer permits 
the attachment of communications and paper tape de­
vices such as: 

IBM 1009 Data Transmission Unit 
IBM 1011 Paper Tape Reader 
IBM 1014 Remote Inquiry Units 
Telegraphic Input/Output Units 

IBM 7151-2 Console Control Unit 

The IBM 7151-2 Console Control Unit provides a man­
ual means of controlling the system and displaying, by 
indicator lights, the contents of various registers, or 
anyone of the storage locations. Several registers are 
continually displayed. The console also contains a CE 

test panel and a marginal voltage check panel. The var­
ious lights and switches, and their meaning or operation 
are discussed in more detail in Volume 3. 

IBM 7608 and IBM 7618 Power Control Unit 

The power supply used with transistorized circuits in 
standard modular systems (SMS) has four major parts: 

1. The IBM 7608, a power converter or motor-gener­
ator set which converts incoming 60-cycle, three-phase, 
208-volt power to regulated 400-cycle, three-phase, 
208-volt power. 

2. Power supplies in each modular frame which sup­
ply voltage to all circuits in that frame. 

3. The IBM 7618, a power control unit (pcu) which 
contains system power control circuits, motor-generator 
(M-C) regulator and marginal check Variacs.* 

4. Marginal check (M/C) controls located in the main 
console. 

The output voltage of the motor-generator, a com­
mercially available unit, is regulated, eliminating the 
need for voltage regulation in most of the modular 
power supplies. Using 400-cycle AC to rectifiers means 
that fewer filter capacitors are required in the modular 
power supplies, as well as smaller transformers. 

°Trademark of General Radio Company 
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Figure 36 shows the logic of the power system. Two 
power supplies are located in each modular frame; one 
supply (power supply A) is for gates A and B; the other 
(power supply C) is for gate D. The power supplies 
are three-phase, full-wave rectifiers using the 400-
cycle output of the generator. All rectifiers are silicon 
diodes which have large current carrying capacities. 
The power supplies are physically located at the rear 
of each slide in the modular frame. The power unit for 
gates A and B of CPU-I also provides ±3 volt supplies 
to accommodate the new DIF circuitry. 

Marginal checking maybe performed on part of the 
+6-volt supply, part of the -12-volt supply, and core 
storage driver collector voltages. Marginal check con­
trols for all units (except - 12 M for the air memory) are 
mounted on the console unit. 

Each modular power supply has its own open-fuse 
detection circuit. In 7094 II systems, a blown fuse drops 
power to only its own frame. Interlock circuits drop 
power to the second half of the unit when a fuse blows. 

The pcu is a separate frame containing circuits which 
control power to all modular units. Power sequence 
contactors, power-on and marginal check variacs, 
blower relays and their overload circuit breakers (CB), 
and system power control keys are the major circuits in 
the pcu. 

Power for the tape drives is from the wall outlets 
through the channel module, where the power is inter­
locked with a data channel power-on relay. 

60,...,,208v,3~ 

A 55-volt supply and a 46-volt supply located in the 
printer furnish necessary DC voltages to the card ma­
chines. 

Functional Components 
Figure 37, CPU Data Flow, should be referred to in con­
junction with this section. Figure numbers are shown 
within the various register blocks of Figure 37. These 
figure numbers refer to more detailed information con­
cerning that particular functional component. 

Storage Register-SR 
(Systems 02.01.00.1-02.01.09.1) 

The storage register is a 37-position register. Positions 
Sand 1 through 35 accommodate the standard 36-bit 
computer word and are comprised of shift cells (sc). 
Position Q is used as temporary storage when saving 
AC( Q) during certain logical and sense indicator in­
structions and is a trigger position instead of a shift 
cell. This change in circuitry is permissible because si­
multaneous read-in read-out is not necessary at the 
SR ( Q) position. 

The storage register acts as a buffer for words arriv­
ing from either the even or odd core storage and pro­
vides the only exit from the CPU for data going to core 
storage. The storage register also serves a variety of 
functions dependent on the particular instruction being 
executed. 

~ L Power 

60'"'l208v,3¢ 

Wall Motor- 400'""208v3~ 
3¢ Gener- 400 "-' Control ~C 

Box 
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To Printer 

Figure 36. 7094 II Power Distribution 
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Figure 38. Storage Register Position 17 

Figure 38 shows condensed logic of SR( 17). Inputs to the 
storage register as a whole can come from: the op keys; 
instruction backup register (IBR); sense indicator reg­
ister (SI); accumulator register (AC); MQ register; main 
adders (AD); index adders (XAD); and either the even 
or odd storage bus (even or odd memory) . 

Note that the index adders can be gated into either 
SR ( 3,.17) or SR ( 21 ~35 ). This choice in gating is helpful 
when routing the index registers to either decrement 
or address positions. SR( Q) also receives AC( Q) as tem­
porary storage during certain instructions as mentioned 
previously. 

Note that the storage register inputs are also gated 
to a zero check circuit (Systems 02.12.47.1). During 
many operations, information is gated to the storage 
register to make use of this circuit in checking for zero 
values. Because there is no set pulse accompanying the 
input data, the present storage register contents are not 
destroyed or affected. 

The storage register is the focal pOint for information 
distribution and register swapping. Therefore, many 
outputs are gated from various sections of the storage 
register to various sections of other registers or adders. 

Units receiving information from the storage register 
include: the storage bus (the storage register is the 
only exit from the CPU to memory), main adders, index 
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adders, SI register, MQ, accumulator, and tag register 
(manual operations). 

Note that either the true or complement SR values 
can be sent to the main adders. The true output of the 
SR can also be shifted left one place as it is sent to the 
main adders. This shift feature is used during multipli­
cation to effectively multiply by two (2). 

There is no full-word routing path from the storage 
register to the accumulator; data transfer of this type is 
accomplished by routing the storage register to the 
main adders and from there to the accumulator. 
SR( s, 1-8) and SR( s, 1-5) have a direct path to AC( S, 1-8) 

and AC(P, 1-5) respectively. These paths are used during 
floating-point operations for characteristic routing and 
convert instructions. SR ( Q) can also be gated directly 
to AC( Q) when restoring the AC to its original value 
after certain instructions. 

Either SR( 3-17) or SR( 21-35) can be gated to the index 
adders. SR( 3-17) gating is used primarily during class A 
(TIX, TNX, etc.) and index transmission (LXD, LDC, PDX, 

and PDC) instructions. SR( 21-35) gating is used primarily 
as: a routing path for index transmission instructions 
(LXA, LAC, etc.); POD 76 routing to the shift counter for 
class and unit decoding; and normal address modifica­
tion with a specified index register. 



Each position of the storage register is combined on 
the same STAN-PAC circuit card with a corresponding 
position of the AD, AC, and MQ. 

Accumulator Register-AC 
(Systems 02.03.00.1-02.03.09.1) 

. The accumulator is a 39-position register, each position 
consisting of a shift cell (sc). The register positions are 
labeled S, Q, P, 1-8, 9P, and 9-35. Positions Sand 1 
through 35 accommodate the computer word in stand­
ard operations. Positions Q and P are used as overflow 
positions because the sum of two 35-position numbers 
can be greater than 35 positions. Position 9P is also an 
overflow position used during floating-point operations; 
it replaces the 9 overflow trigger which was used on 
previous systems. 

The term accumulator is somewhat misleading be­
cause the register is not actually able to accumulate. 
The Accan contain only one word at a time. When 
adding, the AC and adders work as a unit to perform 
the addition, and the AC merely holds the result. 

Figure 39 shows condensed logic of AC( 17). Inputs to 
the accumulator can come from: the storage register, 
main adders, adjacent positions of the accumulator, and 
the MQ. SR( S, 1-8), SR( S, 1-5), and SR( Q) have a direct 
path to the accumulator. When the entire storage reg-
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Figure 39. Accumulator Position 17 

ister contents is to be set into the accumulator, how­
ever, the main adders are used as a routing path. 

Note that the main adders can be gated into the ac­
cumulator in a variety of ways: direct (true or comple­
ment form for positions Q, 1-8), shifted left one posi­
tion, shifted right one position, or shifted right two 
positions. Advantage is taken of this shift feature dur­
ing execution of arithmetic operations. 

Right and left shift operations cause a particular AC 
position to receive data from adjacent right or left AC 
positions; This shifting process proceeds at two posi­
tions per clock pulse as long as the shift counter value 
is two or greater. With a shift count value of one, a 
single position shift is accomplished. Because of these 
shifts, routing circuits are available to either the first 
( adjacent) or second left/right position. of the AC and 
MQ registers. Right shifts take advantage of the "shift 
right 1" and "shift right 2" circuitry from the main add­
ers; for example, the shift is accomplished by routing 
the AC to the main adders, and from there back into the 
appropriate AC/MQ positions. 

Routing paths are available to AC(9, 10) from MQ(34, 35) 
and used during the initial phase of DFAD instructions 
when aligning characteristics. 

Outputs from the accumulator can go to a variety of 
places: the storage register; main adders (true or com-

-,...-
Gate Comp AC ~AD 

-"" A 
Not AC (17) ... 0 

Gate AC~AD --"" -
~ A (4A) 

To AD 17 

-'---

02.02.10.1 

Gate AC Left 2 ... 
LJA (4H) To AC 15 ... 

02-:03.03.1 

Gate AC Left .------. 
A 

(4B) To AC 16 
~ ,. 

02.03.04.1 

Gate AC .... SR 

LJ (:A) To SR 17 
,. 

AC17 02.01.05.1 

------
Gate AC-+ IBR :I (tG) To IBR 17 ... ,. 

03.0S.05.1 
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plement form); index adders (AC positions 30-35 for 
convert instructions); IBR; and adjacent positions of the 
AC or MQ during shift operations. The accumulator is 
sent to the input of the storage register in many cases 
(without a set pulse) to take advantage of the zero 
check circuitry. 

Each position of the accumulator is combined on the 
same STAN-PAC circuit card with a corresponding posi­
tion of the SR, AD, and MQ. 

Multiplier-Quotient Register-MQ 
{Systems 02.04.00.1-02.04.06.1} 

The MQ is a 36-position register, each position consist­
ing of a shift cell (sc). The MQ receives its name from 
functions performed. At the start of a multiply opera­
tion it contains the multiplier; after the multiply it con­
tains the least significant half of the product. At the 
beginning of a divide operation, it contains the least 
significant half of the dividend; after the divide it con­
tains the quotient. Due to the double latch makeup of 
the shift cell, the MQ has the ability of shifting left or 
right. 

Figure 40 shows condensed logic of MQ(17). Inputs 
to the MQ can come from the storage register, accumu­
lator, or main adders. The SR outputs may come to 
the MQ as a full word, or SR( s, 1-5) may be gated to 
MQ ( 30-35) for convert instruction operations. 

Inputs from the adders during multiplication are 
from AD(34-35) to either MQ(1-2) or MQ(9-1O), depend­
ing on fixed-point or floating-point operations. The 

Gt MQLft a e e r-- r----

MQ 18 :: A 0 
Gate MQ Rt ::10-
MQ 16 A 
Gate SR~MQ ... ~ 
SR 17 .... A (4D) 

~ ~i...--

Gate MQ Rt 2 --
MQ 15 ~ A 0 

Gate MQ Lt 2 ... - M~ 
MQ 19 A 

~ (4E) ... Shift 
---~ Cell 

Set MQ 

AD(34-35) routing paths are also used as inputs to 
MQ( 1,2) when performing right shift operations. 

Outputs from the MQ go to a variety of places. Gat­
ings to the storage register are used for MQ store oper­
ations (the SR is the only output register to the storage 
bus) or for register swapping during arithmetic oper­
ations. MQ(S, 1-5) are gated to the index adders to pro­
duce required core storage addresses during convert 
operations. MQ(34, 35) are gated into AC(9, 10) during 
DFAD operations when aligning the fractions prior to 
the actual addition. Gating is provided for normal right 
and left shifts within the MQ or between the MQ and AC. 

Outputs are also available from MQ (s, 1) to MQ (34, 35) 

for ring shift (RQL) operations. 
Each position of the MQ is combined on the same 

STAN-PAC circuit card with a corresponding position of 
the SR, AD, and AC. 

Sense Indicator Register-SI 
{Systems 02.06.00.1-02.06.11.1} 

The sense indicator register is a 36-position register 
labeled S, 1-35. This register serves a variety of func­
tions. It can be used as a set of switches which are set 
and tested by the program to check the progress or di­
rection of the program. It may also be used to store 
words or parts of words temporarily; in this way the 
register is useful in altering and testing words. 

During some logical or masking operations, SI(S) is 
referred to as SI( 0); in these cases the first position has 
lost its identity as a sign and has become just another 
bit in the overall group of bits being operated on. 

G t MQ L ft 2 a e e 

J~ To MQ 15 

02.04.03.1 
Gate MQ Left -U (:s) I To MQ 16 

02:04.Ci3. 1 
Gate MQ Rt 

J (~) I To MQ 18 

02.04.03.1 
Gate MQ Rt 2 ---.J (tH) l To MQ 19 

02.04.03.1 ... Gate MQ~SR Hold MQ MQ 17 

02.04.03.1 1 ~I A ... (2A) To SR 17 

02.01.05.1 

Figure 40. MQ Position 17 
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Inv or Set 51 

SR 17 

Not 5117 
Load 51 

Elect Reset 51 
5117 (To 5R) 

Inv or Reset 51 

Figure 41. Sense Indicator Position 17 

During double-precision floating-point operations 
the SI register is used extensively for temporary storage 
of intermediate results. In these cases the S position re­
tains its identity as an arithmetic sign. 

Each sense indicator position is composed of a single 
trigger-type position with a delayed output (Figure 41). 
The delayed output holds the trigger information long 
enough to allow proper input sampling during opera­
tions requiring SI register inversion. The only path for 
information into or out of the SI register is by way of 
the storage register. 

Instruction Backup Register-IBR 
(Systems 03.08.00.1-03.08.11.1) 

The !BR is a 36-position trigger register labeled S, 1-35 
and is used primarily during instruction overlap opera­
tions. As long as the instruction sequence permits, the 
!BR contains the next sequential instruction to be exe­
cuted. Because of the simultaneous readout feature 
from both the even and odd core storages, the !BR is 
able to obtain a next sequential instruction during the 
same cycle that the current instruction is being placed 
into the program register. Simultaneous memory read­
out also allows the !BR to obtain the next sequential in­
struction simultaneously with a data fetch (E) cycle of 

Gate 5B Even .... IBR 
A 

MF 5B 17 Even (4H) 

Gate 5B Odd~IBR 

MF 5B 17 Odd 
A 

(4G) Gate IBR 3-17-XAD 

Not Hold IBR 
AC17 

Reset IBR 
----~R(4H) 

03.0B.05.1 

Figure 42. IBR Position 17 

To XAD 17 

03.05.47.1 

A 
IBR 17 (3A) To 5R 17 

02.01.05.1 

the current instruction. The first case occurs during 
"double-instruction" overlap and the second applies to 
"extended-sequence" overlap. The IBR is also used as a 
working register during double-precision floating-point 
and ERA instructions. Figure 42 shows condensed logic 
of IBR position 17. 

Inputs to the IBR can come from: either the even or 
odd storage bus when receiving a new instruction; the 
accumulator during double-precision register swapping 
or ERA operations; XAD(3-17) to !BR(21-35). In the latter 
case, the index adder is either returning a modified IBR 

instruction address or sending the incremented pro­
gram counter value to the IBR for temporary storage. 

Input gating is such that the outputs from the IBR 

immediately follow the inputs from the storage bus. 
This feature (the same as for the program register to be 
discussed later) provides the earliest possible decoding 
of instructions as they are read for core storage, and is 
necessary for controlling overlap functions. This input 
gating feature does not apply, however, for data arriv­
ing from the accumulator. 

Outputs from the IBR can go to a variety of places: 
IBR(S, 1-35) are gated to the SR during both overlap and 
nonoverlap operations; !BR( S, 1-2) or IBR( S, 3-11) are 
gated to the program register at a time when the cur­
rent instruction has completed operation and the over­
lapping (IBR) instruction is to begin execution; IBR(18-20) 

is sent to the tag register for indexing indications; 
IBR(3-17) are gated to the index adders for index register 
testing or modification during overlapping class A in­
structions such as TIX, TX1, and TNX; IBR(21-35) are also 
gated to the index adders so that address modification 
can be performed by the specified index register and 
the new address returned to the !BR; IBR(21-34) are gated 
to the MAR switch for an appropriate instruction or data 
fetch memory reference. 

Extensive decoding circuitry at the IBR analyzes the 
overlapping instruction to determine the various as­
pects of overlap possibilities and their operation. 
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Tag Register-TR 
(Systems 03.05.22.1) 

The tag register is a three-position trigger register. la­
beled 18, 19, 20. This register is used to inform the sys­
tem which index register (XR) or registers are concerned 
with a particular operation. The outputs of the tag reg­
ister may be used singly or in combination to specify 
the index register/registers required. 

When operating in seven-XR mode, the tag register 
uses all combinations of these tag bits to specify the 
particular index register. Therefore, the presence of 
more than one tag bit does not mean the oR'ing to­
gether of index register contents. 

The 7094 II does provide compatibility with previous 
systems having only three index registers. The normal 
power-on status of the 7094 II is the three-xR mode. By 
using the instructions LMTM and EMTM, the program­
mer has the ability to place the computer in either 
seven-XR or three-xR mode, respectively. For a further 
explanation, refer to the section on "7090/7094/7094 II 
Compatibility" in Volume 3. 

MF SB 18 Even 

SB Even to TR 

I Time or IA A 0 
------~~~J_--~--~~ 

SB Odd to TR 

Convert 

A3(Dl) 

IA Tgr 

A (2A) 

A 
(4H) 

Figure 43. Tag Register Position 18 
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(To Tog 
Decoding) 

TR 18 

Figure 43 shows condensed logic for TR(18). Inputs to 
the tag register come from: either the even or odd stor­
age bus during normal instruction loading from mem­
ory; the IBR during instruction overlap; or the storage 
register during manual operations. 

Outputs go to the tag register decoder circuits which 
are conditioned by either three-xR or seven-XR mode of 
operation. 

Address Register-AR 
(Systems 03.06.00.1-03.06.01.1) 

The address register is a 15-position trigger register 
labeled 3-17. 

The primary purpose of the register is to provide 
transfer or data reference addresses to core storage. 
These references may be: a direct address; an effective 
address as modified by an index register; an indirect 
address; or a skip 1/2 address as required by skip-type 
instructions. 

The only gated input to the address register (Figure 
44) is from the index adders which are used as either an 
incrementing, modifying, or direct routing path from 
other counters or registers. Positions AR(S, 16 and 17) can 
also be forced on as a direct result of control logic re­
sulting from certain trapping operations. 

The address register is not a counter; any address 
register incrementing is accomplished through use of 
the index adders. 

Outputs from the address register go to the index 
adders when forming skip 1/2 addresses, or the MAR 
switch when making references to core storage. The 
output of AR(17) is sent to the MAR bus selection cir­
cuitry (Systems 03.06.28.9). This circuitry, depending 
on whether AR(17) is a 0/1, controls address register 
gating to either the even or odd memory during normal 
mode of operation. When in diagnostic mode, however, 
AR(17) becomes an integral part of the address; this lat­
ter condition, when applicable, forces a bit to be gated 
to MAR(S) of either the even or odd memory. AR(S or 17) 
also effects the "AR odd trigger" which in turn controls 
gating circuitry for either the even or odd storage bus 
into the CPU. 

Indicator lights for the address register are located 
in the CE test panel area of the operator's console. 



XAD~AR 

CP Set A 

Gate XAD 
Latch ~AR 

R(4E) 

02.12.70.2 

CP Set D 

PR Store 

E Time Early 

03.06.02.1 

Reset AR on Trap 
Clear or Rst orlntlk Rst 

Figure 44. Address Register Position 17 

Diagnostic Mode 
AR 3 
Not IBR to AR Odd T r 

Not Diagnostic Mode 

03.08.13.1 

XAD Latch 17 

MAR Bus Selection (03.06.28.9) 

03.06.01.1 

Reset AR 

03.06.02.1 

Gate AR+XAD 

7094 II System and Functional Components 45 



Program Counter-PC 
(Systems 03.06.30.1-03.06.31.1) 

The program counter (labeled "Instruction Counter" 
on the operator's console) is a 15-position trigger regis­
ter labeled 3-17. 

The primary purpose of the program counter is to 
keep account of the next sequential instruction in a 
running program. 

The program counter is not a counter; any incre­
menting or decrementing is accomplished through use 
of the index adders. During normal sequential instruc­
tion execution, the new address associated with the 
program counter is generated at 6-time of the cycle 
when a reference is made to core storage. This new ad­
dress is placed temporarily in either the address regis­
ter Or!BR until I-time and then returned to the program 
counter via the index adders. Note that when updating 
the program counter at I-time, the index adders are 
used as a routing path only, and do not affect the value 
being transmitted. 

The only gated input to the program counter (Figure 
45) is from the index adders. As previously explained 
for the address register, the index adders act as either 
an incrementing, modifying, or direct routing path 
from the other counters or registers. PC(S, 16, and 17) can 
also be forced on directly by control logic resulting 

. from certain trapping operations. 
Note that either true or complement outputs can be 

sent to the index adders. The true output is used dur-

XAD-+-PC 

CP Set A 

ing incrementing, decrementing, or routing of the pro­
gram counter to other registers. The complement PC 
output is used only during overlap store operations to 
check if the store instruction (in the program register) 
is storing in the next sequential core storage location. 
If this is the case, overlap is interrupted because the 
overlapping instruction (now in the !BR) is being modi­
fied by the program and therefore invalid as it stands 
in the !BR. The program counter is also sent to the MAR 
switch when making references to core storage. 

The output of PC(17) is sent to the MAR bus selection 
circuitry (Systems 03.06.29.2) for the same purpose as 
previously explained for the address register. This cir­
cuitry, depending on whether pc(17) is a 0/1, controls 
program counter gating to either the even or odd mem­
ory during normal mode of operation. In diagnostic 
mode, however, PC(17) becomes an integral part of the 
address, and when applicable (for example, when 
PC(17) equals 1) forces a bit to be gated to MAR(S) of 
either the even or odd memory. 

PC(17), indicating an even or odd status, also controls 
gating circuitry from the even or odd storage busses 
into the program register, storage register and !BR. It 
must be remembered that the program counter is 
stepped + 1 prior to the time that this gating circuitry 
is used. Because of this prior stepping, an odd PC indi­
cation, for example, gates the even storage bus to the SR 
and PR, and the odd storage bus to the !BR. Storage bus 
gating is explained later in the "Master I-Time" section. 

XAD Latch 17 

Set PC 

Gate Comp PC 
~XAD 

Not PC 17 To XAD 17 

Reset PC on Tra 
Clear or Rst or Int 

03.06.32.1 

FIgure 45. Program Counter Position 17 
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To XAD 17 

PC 17 MAR Bus Selection 

(03.06.29.2) 

Diagnostic Mode PC Not Odd 
PC 3 A a 

_N __ o_t _Di......:ag::....n_os......:ti_c _M~od_e __ ---+~ A PC Odd 

(2A) 1-----. 
03.06.30.1 



Index Registers-XR 
(Systems 03.05.00.1-03.05.14.1) 

The 7094 II has seven index registers. Each is a 15-posi­
tion trigger register labeled 3-17. All seven XR'S are 
identical and used primarily for address modification. 
The 7094 II can be in either three-xR or seven-XR mode 
of operation. In three-xR mode (multiple tag mode), 
multiple tag bits cause an oR'ing of index registers. 

Input to the index registers (Figure 46) is from the 
index adders which are used, in this case, as either a 
modifying or direct routing path from other registers 
wi thin the CPU. 

Individual positions of all seven XR'S have a common 
output which is gated (under control of tag register de­
coding) to the index adders in either true or comple­
ment form. Because of the true XR outputs, it is possi­
ble to accomplish true addition in the index adders as 
is required during TXI operations. True outputs are also 
used to advantage during PXA, PXD, SXA, and SXD opera­
tions when true values are moved to the accumulator 
or core storage. 

Tag register decoding gates the complement outputs 
of the specified index registers to the index adders for a 
variety of operations, the primary one being address 
modification. By addition of the complement XR valuc 
to an address, the address is effectively reduced by the 
contents of the XR. 

There are many instructions which operate on the 
index registers, thereby making these registers also use­
ful programming tools for counting, word alteration, 
and program loop control. 

XRA Set 

XAD 
Latch 17 

Gate Camp 
XR-XAD 

To XAD 17 Not XR 17 
,...---!~~.:.L..J"----I~ 

03.05.47.1 

--'-....:.......t~ A 
Tag 2 (lC) 

A 0 

A 

A (lD) 

XRF(17) 
Tag 6 A 0 
XRG(17) XR (17) 
Ta 7 A (lE) 

03.05.14.1 

Gate XR-XAD 

Figure 46. XRA Position 17 

Program Register-PR 
(Systems 03.14.01.1-03.14.06.1) 

The program register is a ten-position trigger register. 
The purpose of this register (labeled "Instruction Reg­
ister" at the operator's console) is to receive and decode 
the operation portion of the instruction to be executed. 
Decoder outputs then initiate and control the computer 
operation until the instruction is completed. 

The operation code depends on the type of instruc­
tion involved and consists of either positions S, 1-2, or S, 
3-11 of the instruction word. Positions S, 1-2 are routed 
to PR(S, 8-9); positions S, 3-11 are routed to PR(S, 1-9). 

Primary inputs to the program register (Figure 47) 
come from: either the even or odd storage bus; or the 
IBR depending on whether or not instruction overlap is 
involved. Outputs from the PR follow (rise with) the 
inputs from the storage bus. This feature of the input 
gating provides the earliest possible decoding of in­
structions as they are read from core storage. (During 
memory read-out, the S-bit is strobed before the 35-bit.) 
Inputs from the IBR or op keys are gated in with a 
clock pulse and, therefore, differ from SB input gating. 

Certain trapping operations force specific PR triggers 
on directly-for example, PR( sand 9 )-without hav­
ing to rely on storage bus or IBR inputs. 

During manual operations, the program register can 
be entered from the console op keys to allow execution 
of specific instructions set up by the operator or cus­
tomer engineer. 

--,N.....:o:..:...t -=..0c....KC'-'
e
.L..-

1 _----.! ° A 
Op Key 2 

_O-,-p_K-,eY,-l_l __ -..J ° 4A 

Gate Op Keys 

Not IBR 1 

.....:1.:.:.BRc..::2 ___ ...........,~ ° A 

_1_BR_l_l ___ ~ ° (4B 

Gate IBR-PR 

Not Hold PR 

Not MF 5B 1 or 2 Even 
MF SB 11 Even 
Gate SB Even-PR 

MF SB 2 Even 

Not MF SB 1 or 2 Odd 
MF SB 11 Odd 
Gate SB Odd-PR 

MF SB 2 Odd 

Force Store and Trap 

PR (9) 

.;..:;Re=se,,-,-t -,-,PR,--_~ R(3C) 

03.14.06.1 
Gate PR to PR in 01 D 

PR 9 (To PR Decoding) 

A ° 
.:::.G.:::.:.ate:::....:.:::.:IBR~t:=...o -,-,-PR'-'.in:..:...O,,-,-l!::...D __ ~ A 2E) PR 9 to Gate D 

Figure 47. Program Register Position 9 
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Outputs of the program register feed into the opera­
tion decoder circuitry (Figure 48). PR(S, 1-5) provides 
the primary operation part and PR( 6-9) provides the sec­
ondary operation part of the operation decoding. Dur­
ing some instructions, the shift counter becomes an ex­
tension of the program register and provides a class and 
unit address decoding. 

Note that the 7094 II actually has two program regis­
ters: the "master" register, the one which receives in­
puts directly from the storage bus or IBR, is located in 
A-gate of CPU-I (7111) and the second (slave) pro­
gram register is the register that existed in the 7094 sys­
tem. The "slave" register (Systems 03.04.00.1-03.04.06.1) 
is located in D-gate of CPU-I and is not really a register 
as such; converter circuit blocks have replaced the trig­
gers so that these outputs follow the outputs of the 
master register as gated to the D-gate (Figure 47). 

Basically, the new program register provides new 
and faster F-Ievel circuitry necessary in the 7094 II. The 
old register provides PiN level operation decoding and 
gating in CPU-2 for instructions that do not have such 
critical timing requirements. The functions of the two 
program registers and operation decoders cannot be 
cleanly separated; therefore, both must be considered 
when analyzing certain instruction operations. 

Indicators at the operator's console are powered 
from the old program register. 

Shift Counter-SC 
(Systems 03.14.14.1) 

The shift counter is an eight-position count-down 
counter labeled 10-17. Each position consists of a shift 
cell (double latch) which allows simultaneous read-in 
and read-out when counting. 

The shift counter is used to count the number of 
shifts or indicate the progress of operations such as 
MPY, DIV, convert, floating-point add, shifting instruc­
tions, etc. The shift counter also functions as a class 
and unit address decoder for operations that have a 
primary operation of 76 (Figure 48). 

The primary entrance to the shift counter is by way 
of the index adders. The time at which the number is 
gated is controlled by the operation being performed. 
During POD 76 operations, the sc is set either during 15 
time from PR decoding or at the beginning of L time 
when the IBR is transferred to the PR during overlap. 
During variable length multiply' or divide operations, 
the count field is routed from the storage register via 
the index adders in E time; during convert instructions, 
the count is routed in the same manner in L time. 

The shift counter is also used during single and dou­
ble-precision floating-point add and subtract opera­
tions (POD 30). During these operations the shift counter 
is used in lining up characteristics. The characteristic 
difference between the numbers in the SR and AC is 

48 

Primary Operation Secondary 
Decoding Operation 

Decoding 
(±OO ... ± 76) (00 ~ 17) 

\ v 

Class Addr 
Decoding 

(00 .... 36) 

Operation Decoding 

Figure 48. Operation Decoding 

Unit Addr 
Decoding 

(00 -+ 17) 

computed in the main adders, AD(I-8), and then gated 
directly to SC(1O-I7) to control the number of shifts nec­
essary to align the fractions. 

During multiply and divide operations (other than 
variable length), a constant is forced into the shift 
counter to control the number of iterations. In the case 
of a floating-point operation, 338 is set into the shift 
counter; for a fixed-pOint operation, 438 is set into the 
shift counter. 

Note that the 7094 II actually has two shift counters: 
the "master" register, the one which receives the inputs 
just described, is located in A-gate of CPU-I and the 
second "slave" shift counter is the counter that existed 
in the 7094 system. This "slave" register (Systems 
03.04.14.1-03.04.17.1), located in D-gate of CPU-I, is not 
really a register as such and has no counting capabili­
ties; converter circuit blocks have replaced the triggers 
so that these outputs follow the outputs of the master 
counter as gated to the D-gate. 

As for the program register described previously, the 
new shift counter provides fast F-Ievel control and 
counter circuitry necessary in the 7094 II. The old reg­
ister, again, provides piN-level controls for instruction 
operation in CPU-2; the main function is in class and 
unit decoding and POD 76 controls. The functions of the 
two counters overlap somewhat; therefore, both must 
be considered when analyzing certain instruction op­
erations. 

Indicators at the operator's console are powered 
from the old shift counter. 

Stepping the Shift Counter 

Figure 49 shows condensed logic for positions 10-17 of 
the shift counter. Remember that the shift counter is a 
self-contained true binary count-down counter and 
does not rely on the index adders for decrementing as 
is necessary with the address register and program 
counter. 
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~~I"""l 

... 
SC Reset RI to SC Line 1 and Line 2 o (4F) Set SC 17 

Oti4:16.1 0 CP Set C 
Reset SC (2C/2E 

Figure 49. Shift Counter Stepping 
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Figure 50 shows a sequence chart of the shift counter 
stepping to zero from a count of seven. 

Note that stepping the shift counter is conditioned 
by either «step by I" or «step by 2" control circuitry. 
Whether the stepping is by one or by two depends on 
the particular instruction being executed. Stepping by 
two is allowed during multiplication, floating-point 
add/subtract, and shift-type instructions; stepping by 
one must be performed during divide and convert-type 
instructions. 

Each position of the shift counter has control cir­
cuitry affecting three inputs to the shift cell ("insert sc 
17," «set SC 17," and «hold sc 17"). The «insert" input is 
activated only when that particular position is to be 
fumed on. The "set" and "hold" pulses are both CP set 
pulse inversions of one another, and generated from 
the same control circuitry (OA blocks) only when the 
status of that particular position is to be affected­
turned off or on. 

Whether a shift counter position is to be changed or 
not by a set/hold pulse combination is determined by 
the next lower position. If the next lower position shift 
cell is to be set on, the state of the next higher position 
will be reversed. This rule applies for both single and 
double stepping. 

When stepping large numbers, the ripple effect from 
position to position can become too great for reliable 
operation. To reduce this ripple time, look-ahead cir­
cuitryhas been inserted at the controlling circuitry of 
SC(IS). 

Note that SC(16) alternately changes state between 
ON and OFF during double stepping and SC(17) alter­
nates state during single stepping. The primary differ­
ence between single and double step operations is 
where the step pulse control comes into the counter; 
for example, SC(17) for single step and SC(16) for double 
step. Double stepping is, therefore, the same as single 

50 

stepping except that it occurs one rung higher on the 
ladder. 

Assume that a count of 338 has been set into the shift 
counter and that counting is by 2. The initial status of 
the counter with 338 is: positions SC(17), SC(16), SC(14), 

and SC(IS) are in the ON position; all remaining positions 
are OFF. Because the original number is odd, each step­
ping of the counter produces an odd result. If the orig­
inal number was even (68, for example) each double 
step would, in turn, produce an even result. Note that 
all during double stepping, SC(17) remains unaffected. 

The first step reduces the counter from 338 to 318 • 

This reduction is accomplished by reversing the state 
of SC(16) from ON to OFF. SC(16) being initially on, blocks 
A7 from activating "insert sc 16." Set and hold pulses, 
however, are produced at CP set time by OA24 with the 
overall effect of inserting a zero into SC(16). 

The second step which reduces the counter from 318 , 

to 278 initially finds positions SC(17), SC(14), and SC(IS) 

on; and all remaining positions off. SC( 16) being off con­
ditions A7 and 0 16 to change the state of SC(16) to ON: 

«Insert sc 16" conditions OA23 to produce set and hold 
pulses for SC(15), and also test the initial status of SC(15) 

at A15• SC(15) being off, activates "insert sc IS" to flip 
SC(15) on. "Insert sc IS" also conditions SC(14) circuitry 
to produce only the set and hold pulses thereby turning 
SC(14) off. At the end of the clock pulse, positions SC(17), 

SC(16), SC(15), and SC(lS) are on and all remaining posi­
tions are off. 

This pattern of double-stepping continues until all 
shift counter positions except SC(17) are turned off. As 
the count is reduced from three to one, «step by I" con­
trol circuitry replaces "step by 2." "Step by I" tests the 
status of SC(17) at A9, but SC(17) being on blocks «insert 
sc 17." A set and hold pulse is produced at OA25, how­
ever, with the result of turning SC(17) off. At this point 
the shift counter equals zero and all stepping controls 
are dropped. 



(7) (5) (3) (I) (0) 
System Page Test Point line Name Level I 2 3 4 5 6 7 

:'-
02. II. 79.1 02A4E13D Shift Gate -N I 

03.14.20.1 0lA4G26C SC 20r More -F 

03.14.20.1 01A4G23F SC Eq 1 -F I--

03.14.18.1 0lB2B28B SC Zero Slow -F 

h 
. 

03.14.18.1 01A4D24D Step by 2 -F 

03.14.18.1 01A4G25B Step by I -F ~ 

03.14.18.1 01A4A25B Step SC -F 
-. 

03.04.16.1 01A4F28D CP Set C -F 1-h ~ ~ ~ ~ h 
03.14.14.1 01A4E24B SC 15 -F 

03.14.16.1 0lA4F27G Insert SC 15 -F 

03.14.16.1 01A4F27F Set SC 15 -F I. 
-

03.14.14.1 01A4F20C SC 16 -F ---03.14.16.1 0lA4E27A Insert SC 16 -F I---r-
03.04.16.1 01A4F27C Set SC 16 -F I--h. ~ ~ 
03.14.14.1 01A4E26B Set SC 17 -F 

03.14.16. ] 0lA4F25B Insert SC ]7 -F 

03.04.16.1 01A4F27E Set SC 17 -F '-

Figure 50. Shift Counter Timing Chart 
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Main Adders-AD 
(Systems 02.02.00.1-02.02.19.1) 

The adders in the 7094 II are made up of basic build­
ing blocks shown in Figure 51. The adders perform 
arithmetic functions and are involved in many internal 
data transfers within the computer. Inputs to the basic 
adder circuit may be from either the accumulator or 
storage register. Outputs from the adders go to the ac­
cumulator, MQ, storage register, and shift counter, de­
pending on the operation involved. 

The adders are comprised of 39 individual adder 
units, or bit positions. These positions include AD (Q, 
P, 1-8, 9Q, 9P, 9-35); AD (Q and P) are used for over­
flows which might occur during certain arithmetic or 
logical operations. AD (9Q and 9P) are used during 
floating-point arithmetic. 

Individual Main Adder Position 

Figure 51 shows condensed logic for position 35 of the 
main adders. The primary objective of an adder posi­
tion is to determine whether or not there is a sum out­
put. To determine the output, three values must be 
analyzed; two adder inputs and one carry input. 

Gate AC-AD 

AC 35 

Gate Cam AC-AD 
Nat AC 35 

Gate SR-AD 
SR 35 
Gate Comp SR-AD 
Not SR 35 

Carry In 

Adder 
Inputs 

Adder 
Outputs 

Input A Systems 02.02.19.1 

A °1 

A 
(4A) 

Input B 

A °2 

A 
(4B) 

Propagate 35 (Either /Both) 

Generate 35 (Both) 

Exclusive OR 35 

r Comp Exclusive OR 35 
(Both/Neither) 

AD Sum 35 

Exclusive OR of Adder and Carry 

0 1 0 1 0 1 0 1 SR 

0 0 1 1 0 0 1 1 AC 

0 0 0 0 1 1 1 1 Carry 

- + + + - + + + Propagate 35 

- - - + - - - I Generate 35 

- + + - - + + - Exclusive OR 35 

- + + - + - - I' AD (Sum) 35 

+ Indicates an active logical state 
- Indicates an inactive logical stale 

Figure 51. Main Adder Position 35 
~ 
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True or complement inputs from the storage register 
and accumulator are gated into the adder at gate cir­
cuits AOl and A02 • Either/both adder inputs being 
active produces "propagate 35" at 0 3 ; both inputs being 
active produces "generate 35" at A4 • Block A05 per­
forms an exclusive-oR test of the adder inputs. An input 
exclusive-oR condition occurs only when either one but 
not both of the inputs contains a 1. A05 performs the 
test by looking for a "both" (generate 35) or "neither" 
condition which is actually a complement exclusive-oR 
function. 

The in-phase (complement exclusive-oR) and out-of­
phase (exclusive-oR) outputs of A05 are tested along 
with input carry conditions in a second exclusive-oR 
circuit configuration to determine the actual adder 
sum output. One adder output condition occurs at Aa 
with "no carry" and "EX OR 35" (case 1 below); the other 
adder output condition occurs at 0 7 and Os with 
"Comp EX OR" and "Carry" conditions, respectively 
(Case 2). 

CASE 1 CASE 2 
(a) (b) (a) (b) 

Input A 1 0 Input A 0 1 
Input B 0 1 Input B 0 1 
Input Carry 0 0 Input Carry 1 1 

Adder Output 1 1 Adder Output 1 (1)1 

Taking the other four possible combinations of carry 
and adder input conditions will prove that an adder 
sum output is not produced. All combinations are sum­
marized in the chart on Figure 51. 

Main Adder Bit Carry Lookahead 

Each adder position, besides being able to determine 
a sum condition, must be able to provide necessary car­
ries to adjacent positions. For determining possible 
carries, three additional lines are generated from each 
adder position: propagate (P), generate (G), and ex­
clusive-OR (EX oR)-Figure 51. 

The output of 0 3, "propagate 35," is active when 
either one or both of the adder inputs are a 1. With 
these input conditions, an input carry must logically 
be passed on, propagated, to adder position 34. This 
carry requirement is proven below by taking the input 
combinations of 0-1,1-0, and 1-1 and adding a carry; in 
each case, a carry results. (Also, see chart on Figure 51.) 

Input A 
Input B 
Input Carry 

(a) (b) (c) 
011 
1 0 1 
1 1 1 

10 10 11 

The output of A4, "generate 35," is active whenever 
both inputs to the adder position contain a 1. With both 
inputs active, the adder position has the ability to gen­
erate a carry from its inputs alone independent of 
whether or not an input carry is furnished from an 



outside source or a lower adder position in the group. 
Proof of this carry is easily obtained below and sum­
marized in the chart on Figure 51. Note in the chart 
that "generate 35" is not dependent on the input carry 
status. 

(a) (b) 
Input All 
Input B 1 1 
Inpu t Carry 0 1 

10 11 

The output of A05, "EX OR 35," represents an adder 
input exclusive-oR condition; either one but not both 
inputs are a 1. 

With the propagate, generate, and EX OR conditions 
just explained, individual adder bit carry lookahead 
can be developed. This lookahead is shown by the 
solid lines and logic in Figure 52. 

Using adder 35 as an example, a "carry in 34" will be 
generated if: adder 35 can generate a carry; or adder 
35 can propagate and there is a carry into position 35 
(K in). Note that the lookahead circuitry becomes more 
involved as it progresses from the lowest-order to the 
highest-order adder position within the adder group. 

The "carry in 31" circuitry uses exclusive-oR inputs 
instead of propagate as used in the lower-order posi­
tions of the adder group. This change was made be­
cause of circuit loading; the basic circuit logic, how­
ever, remains the same. 

Note in Figure 52 that there is no individual adder 
lookahead circuitry for carry generation into adder 30. 
Adder 30, which is the low-order position of the next 

group, receives its carry indication from the group 
lookahead circuitry. 

An important point to remember in the carry look­
ahead concept is that each input carry generation is 
dependent solely on inputs to individual adder posi­
tions; there is no "ripple" effect from one adder posi­
tion to another as is characteristic of slower type adders. 

Main Adder Group Carry f.ookahead 

If the lookahead were continued as explained in the 
previous section, the circuitry would soon become too 
large, unwieldly, and expensive. Therefore, to speed 
up adder operation and facilitate lookahead, the adder 
has been divided into seven groups as follows: 

GROUP NUMBER ADDER BIT POSITIONS 

1 35,34,33,32,31 
2 30,29,28,27,26 
3 25,24,23,22,21,20 
4 19,18,17,16,15,14 
5 13,12,11, 10,9,9P 
6 9Q,8,7,6,5 
7 4, 3, 2, 1, P, Q 

Each group contains either four, five, or six adder 
positions. Adder position 9Q is shown in group six but 
actually plays no part in the lookahead function. 

The primary objective of the group lookahead is to 
determine whether or not carries should be introduced 
into the low-order adder positions of higher adder 
groups. Lookahead circuitry for group 1 is shown as 
dotted lines on Figure 52, lookahead circuitry for 
group 2 is shown in Figure 53. Overall lookahead for 
all seven adder groups is shown as solid lines on Fig­
ure 54. 
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1011';----- Adder Positions 31-35 -----_ .... I'~----- Bit Corry (02.02.28.1) --------------l,~I~I(----Generote (02.02.36.1) ------;,~I 
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Figure 52. Group 1 Adder Carry, Generate and Propagate 
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Lookahead for both groups 1 and 2 is shown be­
cause of their difference in logic. The dotted lines in 
Figure 52 show group 1 lookahead. Six sets of condi­
tions can produce an output from the group: first, 
AD(31) can generate a bit alone; second, AD(32) can 
generate a bit and AD(31) can propagate the bit; etc. 
Note that the logic becomes more involved from top to 
bottom; the last AND circuit indicates that an input 
carry (Kin) will produce a group carry if AD(31-35) 
have the ability to propagate. 

Group 2, as well as the remaining groups 3-7, pro­
duce two outputs; «any generate G2" and «generate or 
propagate G2." Both conditions must be active to pro­
duce a carry into the next higher group. Design of thf' 
adder lookahead is the result of Boolean algebra, and 
may not, therefore, seem immediately logical and 
straightforward. This design, however, performs the 
required task of adder lookahead in a more efficient 

G30 """­
G29 ~ 01 
G28 ... 

and economical method than other «more straightfor­
ward" configurations. 

The adder group output, "any generate G2" results 
at 0 1 (Figure 53), from any or all adder pOSitions being 
able to generate a bit (both adder inputs are a 1). 

The "generate or propagate G2" output from 0 7 re­
sults from the following conditions: first, all adder po­
sitions are able to propagate at A6; second, each posi­
tion, except the low-order adder position, has the 
ability to generate and have this bit propagated 
through the remaining higher-order adder positions at 
A5, A4 , A3, and A2 • The ability of the low-order adder 
position to generate and have its bit propagated by the 
remaining adder positions is not defined specifically by 
the function «generate or propagate G2." This latter 
case is accounted for, however, because if AD(30) can 
generate, it can also propagate. P30 activates A6 and 
G30 activates 0 1; therefore, both of the group outputs 
are active and a carry is passed into group 3. 

G27:' (3A) 
G26 "" (3B) 

Any Generate G2 ~ 

Propagate 26 1 ID-~ 
Generate 26 G26... A2 
--=-=.:..:.::.:...::.:..=.-:=..::..-----t-t++,....----;l~ (4B) 

_L-_~---' 

Propagate 27 
Generate 27 

Propagate 28 
Generate 28 

P26 ... 

G27 ~ 
A3 
(4C) 

P26 _____ 

P27 ",.I A4 
G28 --J (4D) ... ,. 

P26 ~,...--­

P27 """ AS 

r-! (3D) -
Propagate 29 P28 ~ 

-=G_e_ne_ra_te_2_9 __ -+-+++-t-4--G_29---:J~~ (4E) _ 
'I-

P26 ... _ 

P27 ... A6 
P28 "" 
P29 ... 

Propagate 30 P30 "" (4F) 
i---

Generate 30 02.02.35.1 

Figure 53. Group 2 Generate and Propagate Lookahead 

Generate or ... 
Propagate G2 ,. 
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Figure 54 shows all adder group carries. Group 1 
having the ability to either generate a bit internally or 
to propagate a Kin produces a "carry in GR 2." Note 
that this same carry line also conditions the top OR cir­
cuit in each of the higher group lookaheads. Depend­
ing on the inputs to the remaining adder positions, this 
carry from group 1 may be propagated through the 
rest of the main adder. 

A carry into group 3 can result from two conditions: 
group 2 can generate a carry internally, or group 2 can 
propagate a carry from group 1. Taking the first case, 
both "any generate G2" and "generate or propagate 
G2" are active and condition the top leg of 05B and 
05.A, respectively. In the second case, group 2 produces 
only the "generate or propagate G2" line as input to 
05.A. However, the carry from group 1 conditions the 
bottom leg of 05B; A4B is satisfied and a carry is intro­
duced into group 3. 

Producing a carry into higher-order groups becomes 
progressively more involved but the basic concept just 
described remains the same. Note that each high-order 
group is conditioned by the outputs of each lower­
order group. In this manner simultaneous decisions can 
be made at each group lookahead; no "ripple" is in­
volved from one group to another. 

Q Carry Lookahead 

The carry from the main adder, Q carry, is used in test­
ing and logical operations as well as during arithmetic 
instructions. The speed at which a Q carry can be ob­
tained becomes important in many operations. There­
fore, adder group outputs are also used in Q carry 
lookahead circuitry (shown as dotted lines in Figure 
54) to obtain the earliest possible Q carry indication. 
This lookahead follows the same philosophy described 
in the preceding sections. 
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Index Adders-XAD 
(Systems 03.05.40.1-03.05.47.1) 

The index adders (XAD ) in the 7094 IT perform a variety 
of functions such as: 

1. Address modification on the instruction in either 
the storage register or IBR. In either case modification 
is from an index register as specified by the tag portion 
of the instruction concerned. 

2. Tests on or modification of index registers as re­
quired by TIX, TNX, TXH, TXL, TXI (class A) instructions. 

3. Incrementing the program counter, address regis­
ter or address portion of the IBR. 

4. Providing an address reference to MAR during 
overlap operations. 

5. Producing the required data reference addresses 
during convert instructions. 

6. Providing direct data flow paths to or from the 
program counter, address register, index register, stor­
age register (positions 3-17 or 21-35), instruction back­
up register (positions 3-17 or 21-35) and shift counter. 

Two data input gates are provided to the index add­
ers; input A and input B (Figure 55). These inputs are 
divided such that one half of the input data always ar­
rives at input A and the other half arrives at input B. 
During address modification, for example, the address 
arrives at input A and the modifying index register 
value (complement) arrives at input B; during incre­
menting, the PC, AR, or IBR arrive at input A and a 
"hot 1" is inserted at input B of XAD( 17). 

It is possible to insert "hot 1's" into either all posi­
tions of the index adder or just XAD( 17); the first case 
causes decrementing of the input value (-1); the latter 
case causes incrementing of the input value ( + 1). 

When the index adders are being used as a data 
path, outputs go directly to SR(S-17), SR(21-S5) or the 
shift counter. During instruction overlap, the index 
adders supply a second memory address to the MAR 

even/odd switch. 
Note that during address modification, if no tag (tag 

of 0) is specified, 1's are gated into all index adder posi­
tions along with a carry into XAD(17). These ones effec­
tively add a zero to the incoming value; therefore, the 
output value is the same as that supplied by the storage 
register or IBR. 

An index adder latch (XAD LTH) is used in conjunc­
tion with the index adders. The latch acts as a common 
delay (second half of a shift cell) in the circuit for 
modifying the index registers, program counter, ad­
dress register and instruction backup register. These 
registers consist of triggers (not shift cells); the delay 
therefore, allows proper operation on successive clock 
pulses. 

The XAD latch is "free running" and always copies 
the contents of the index adders at the end of each 
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clock pulse. The receiving register receives the new in­
formation immediately thereafter which is slightly into 
the following clock period. 

When gating from the index adder latch to the XR, 

PC, AR, or IBR, four additional triggers are required as a 
short-time memory device to remember which register 
is to receive the output from the XAD latch. This re­
membering is necessary because the gating line to the 
index adders (XAD to AR, for example) will have al­
ready dropped before the new output can be gated 
from the XAD latch to the address register. Figure 44 
shows condensed logic of the gating sequence for data 
flow from the index adder latch to the address register. 

Index Adder Position 

Figure 56 shows condensed logic for index adder posi­
tions 3, 4, and 17. As can be seen, the index adder is al­
most identical to the main adders discussed previously. 
The main difference between the XAD and AD is the 
number of inputs and outputs used. Also, because of 
the type of circuit cards used, some logic blocks appear 
as micro blocks whereas others appear as macro blocks. 

The basic function remains the same-that of deter­
mining whether or not there is an adder sum output. 

SR 3-17 

SR 21-35 

IBR3-17 

AR 

True PC 

Compl PC 

'------+To SR 21-35 

Figure 55. Index Adder Routing 

To MAR Switch 
(3-16) 



The three basic inputs to the index adder are: input 
A, input B, and an input carry. As already discussed, 
the XAD inputs are divided so that the two values to be 
added arrive at inputs A and B, respectively. Logically, 
there never should be more than one input active at 
either input A or B at any given time. 

Using XAD ( 17) in Figure 56 as an example, there are 
two A-input gates (AOll and A012 ) tied together to 
form a 6-way AND-OR function. Two B-input gates also 
exist (A013 and A014 ) but are not oR'ed together di­
rectly. The difference between the A- and B-inputs is 
due to circuit card usage and not because of logic. 

Any data input being active (Ad A2/BdB2) produces 
"propagate 17" at 0 19. Either Ad A2 being active at 
0 15, and either BdB2 being active at 0 16 produces 
"generate 17" at A20. These propagate and generate 
lines are used in the adder lookahead circuitry to be 
discussed later. 

The circuit combination of A17, A18, and 0 21 per­
forms an exclusive OR test of the two data inputs. The 
in-phase (active) output of 0 21 indicates a "not exclu­
sive OR" state (not A"'V'B); the A and B inputs are 
either both O's or both 1's. The out-of-phase (inactive) 
output of 0 21 indicate an "exclusive OR" state (A"'tB); 
either A or B is a 1, but not both. In the main adders, 
loading conditions required that this exclusive OR func­
tion be used in adder lookahead. In the index adders, 
however, loading is not as great and the exclusive OR 
function is not required outside of the immediate 
adder positions. 

The carry into XAD(17) affects only the sum output. 
The input carry is, therefore, combined with the out­
put conditions of 0 21 in a second exclusive OR network 
consisting of A22 and OA23. Taking various examples of 
A, B, and carry inputs should quickly prove the circuit 
validity. 

Index Adder Bit Carry Lookahead 

As was explained with the main adders, each index 
adder position must be able to provide necessary car­
ries into adjacent positions. For determining possible 
carries, two lines are produced from each adder posi­
tion: propagate (P) and generate (G). 

The output of 0 19, "propagate 17" (Figure 56), is 
active if any A/B input is a 1. The output of A20, "gen­
erate 17," is active if both A and B inputs are 1's. With 
the propagate and generate lines, individual adder bit 
carry lookahead is developed as shown by the solid 
lines in Figure 57. This lookahead circuitry, again, be­
comes progressively more involved as it progresses 
from the lowest-order to the highest-order adder posi­
tion within the adder group. 

No adder bit carry lookahead circuitry is provided 
for XAD(12). XAD(12), which is the low-order position 
of the next group, receives its carry indication from 
the group lookahead circuitry to be discussed next. 

Index Adeler Group Carry Lookahead 

The 15 index adder positions are divided into three 
groups of 5 positions each as follows: 

GROUP NUMBEB 

1 
2 
3 

XAD POSITIONS 

17, 16, 15, 14, 13 
12, 11, 10, 9, 8 
7,6,5,4,3 

The object of dividing the index adders into three 
groups is to speed up adder operation and simplify 
lookahead circuitry. Group lookahead circuitry, as 
shown by solid lines in Figure 58, determines whether 
or not carries should be introduced into the low-order 
positions of groups 2 and 3. The lookahead circuitry 
for group 1 is also shown by dashed lines in Figure 57. 
Lookahead circuitry for groups 2 and 3 are different 
than group 1 but identical to that of the main adder as 
shown in Figure 53. Because of the similarity, see 
"Main Adder Group Carry Lookahead" section for a 
more detailed explanation. 

Index Adder 3 Carry 

A carry from the index adder, "XAD 3 carry," is used 
primarily as a test for successful transfers when exe­
cuting class A instructions (TIX, TNX, etc.) from either 
the program register or IBR. 

Direct outputs from all three index adder groups are 
used in detecting an XAD ( 3) carry. The circuitry is 
shown as dashed lines in Figure 58 and is simply an ex­
tension of the lookahead circuitry used for groups 1 and 
2. No XAD( 3) carry trigger is necessary; the circuit out­
put is active long enough to allow all tests to be made. 

Again, carry lookahead is dependent solely on inputs 
to the individual adder positions; no individual adder 
or group carries are involved. 

Index Adder Compatibility 

When executing 704 or 709 programs under compati­
bility mode, XAD ( 3) and XAD ( 4) must be effectively by­
passed. This bypassing can be accomplished by forcing 
the XAD position into a propagate condition (Figure 56). 

When the memory nullify trigger is on, "memory 
null" is applied through 0 6 to activate "propagate 3." 
Any resulting carry up through XAD ( 4) will, therefore, 
logically be "passed through" XAD ( 3 ) and give an 
XAD( 3) carry. Because XAD( 3) does not theoretically 
exist at this point, any possible sum output must be 
blocked. This blocking is accomplished at the output 
of OA24 by dot AND'ing with a "not memory null" con­
dition. 

If the 16K/24K switch on the CE panel is in the 24K 
position, 24K of memory is available to the I/O com­
patibility program and 8K available to the executing 
program. Under these conditions, XAD( 4) must also be 
bypassed and the XAD ( 4) sum blocked. The methods 
used are the same as those described above for XAD(s). 

7094 II System and Functional Components 59 



Mem Null -Tgr 

Input AI 

r---------~~~<3;r--

.-----------+l~ IBR 3 

XAD 3 (03.0S.40. I) 
AR 3 

~1~BR~2~1~ _____ ~_H~====~~~~-~~~(4A),~_+~------~~r_~~_, 
'-'-:- ~ 0 I 
Input A2 r-r--_ -_ -_-_ -_ -_ -_ -_ -_ --'--:--,-::J (3A) ~ ____________ P_r_op_a_g_at_e_3_~ 

r-___ ~r-'- r-- f----4 ' 
~S~R~3 _____ -+~~~-----+l'~ 04 

~SR21 ~~ ~ 
..!.P~C~3~ ____ +++++-+ __ ~ A (4B) 0 

,-I,;,- (2B) A 

r-ill
n ut B3 Generate 3 

06 ~ (IB) ~--<I-------------------~' 
(4D) ~ (3B) 

In ut BI 

_N_o_t_P_C_3 ____ --IH-H-I-+-+_+~-_+I A ~ ~ L rAI 
~~ ., (2C) l 

~N~o~t~X~R~3~ ___ +4~~~+_+I-~ 'A -~~--J-J-- 0 
~ - - ~ A (IC) .--

.:..X:.:.:R~3~ ____ +-+++H_++++-~" A (4C)-:---:-=- ,.;.t (3C) ~ ~ 0 A 
'-FG=J'--nput B2 ~r8NO Carry (2D) I__ 24 

Carry In 3 I In 3 0 (I D XAD 3 Sum 

~ 
I ~~~J' r--- AI Memory Null --fI1 Not Memory Null ""-Dot 

R 4B ~~-----------------+++++~~rr----r-~~---------~'(IE) AND 
02 ~ I 02.12.76. I _________ -I-+.J.+++~~+.j--- 1---_________________________________ _ 

Not Display 
Storage or Input AI XAD 4 (03.0S.4I. I) 
Clear Control AR 4 ....,H-1I-+-+--H-+--+t~o;r--

IBR 4 
t-­

~++-+-+++-~ A 
t--

~1~BR~2~2~ ____ ~~~~~~--~~~~~-~~~ A (4A)'~-4~_+------~~~~~ 
'--'--- ---.J 0 I 
Input A2 r-.+ ... -_-_-_-_~-_-_-_-_-__'__>.~~J (3A) ~-------------P-ro-p-a-ga-t-e-4-~ 

~~-+-l-+-~',.....:--:-ATOa r----SR 4 

SR 22 e-+--I-I-I----',~t_; 

.:.P-=C_4~ ____ l_+++!-·+--_ ++++ ++_-'~~t-; (4B)I--+.e-t-t--:~r---o-
I;;;~ (2B).--. 

Not PC 4 r-r-'-r-- - ~r==o=rI (~) 1~~ ... ~----------G-e-ne-r-at-e-4-~~ 
..:..=---'---'------+-4++-I-+--+-++_'~ A 09 ~ (3B) ~ T 
NotXR4 ~7 "':":'~"':':"'-~--+-4++~I----'+-+4--+lf- I ~ ~ 

J;;pu'ts2 ~~~ (IC) ~-+---===---~r--r-
XR4 ~ A (4C)f- (2C) ~ 

Ones to XAD (3C) ~ lOA 

_24_K_M_o_de--'.(S_w_it_c_h) ___ -.t, ~i) f--=2_4K:..:...:.N~..:.U~II~~~~~~:~~~~~:::::;:~:~::::'l_'~"'4'::~oL) j-__ ----' ->. '-- ~NO Carry _I (:D) -.C~ ~:D XAD 4 Sum 

02.12.76. I 1 ~ Carry In 4 In 4 ~'-'-- 1'-- _ 
... I Not 24K Memory Null I .......... Dot 

'-------------~(IE) AND 

-------- -----H-++-++.-+-H'--. -- --------------------------------

Figure 56. Index Adder Positions 

60 

~A~R~17 ___ ~-~~!_!_!_+_-++4~ A 0 1 
~?~B~~t~r7~IB~R~3~-~1~7--.~X~A~D~++I-+--+++-1~~ 

~G~a~t~e~I~BR~2~1~-~3S~-.~~X~A~D~~I__+_+4_~~ AI/~BI/B2 
...:1.::::BR~3S=---_______ -+-IH--+++~ A 4F) I-A __ I ..... t-------~"' '--';:;-:-:::1 

'--~ r------~~J 019 I 
~G~a~t~e~S~R~3--1~7-~~X~A~D~ __ ~--!_++_~r-'-ln-~p~~ ~ 
-"S~R~I!....7..,.,.... __ -::-:::---,.,...,..:::____f-+-_+++~ A 012 A2 
~~~R~;~~~S~R~2~1~-3~5~-.~X~A~D~~~-+~---:~~~ 

Gate PC_XAD AI/A2 

-:-ca-t-~-C-o-m-p-p-C--.-X-A-D-----+++---'l~*; ~~ 

XAD 17 (03. OS. 47. J) 

Not PC 17 A C13 BI DOl"" I ..:G::.:a::.;.t=:-e.,.::C;.:::o;:,;m~pX:;.:R--.=....:.X.::.A~D~------'_+-~ ... A (3)i') ~ A20 (G,;nerate) 
NotXR 17 ~ ~ T 
~G~a~t~e~X~R~-.~X7A~D~-----------+-1~~ 

XR 17 A 4H) BI LA~; 
..:G~a~to:.e.!:A~C'-'3~O'_-~3S~~....::...~X.:...:A""D ______ ~ ,In u;.E Not (2H) 

.:.A~C::.....:.3S:"""=-=-=-__ """"'-=-_______ --+l-"~ C1 ~2· _ Ne~B A ¥ B 
Gate MQ S-5 .... XAD I ~ 
--------------~ A L.-~ AI8 0 21 NotA¥B r--r-

L..- "-'- A 22 23 

Propagate 17 

Generate 17 

MQ5 (41) B2 (3H) (IH) ~ 0 A 

Carry In 17 ........."., Not Carry, (21) ~ 
T I In 17 r4' ~~ XAD 17 Sum 



XAD Positions 13-17 Bit Carry (03.05.52.1) -----~ ..... I~f---- Generate (03.05.57.1) --1 
.... --X-A-D-I-3--- Propagate 13 

Generate 13 I 
03.05.45.1 - - ---, - -- - - - - - - -- --

- ..... - - - - XAD Sum 13 I 

r ~ ~------------- ..!13 

~--~--------------
I , P14 r---

I I P15' A 
I I P16" 
I I P17'" 
I I ~~( ,_2_1.).,t------l~-""'A_, 

I 
I P14 = ~- 0 

I P15 ~ A --I ,.---+ 
I I P16 ....... 
I ' G17 (2H) _ (lG) 

Propo-II I P14 = 
... -------. gate P15~ A 

XAD 14 14' G16 (2G)_ 

I I P14? ==t:== 
I I G15 (2F) I---

Gen- I I '-------
erate i. I G14 ~ 

Carry 
In 
13 

_ .J!3.:..2? .46.1- _ 14 I 17' (2 E) \--_--J 

r XAD S~m f-I -:1- _=- .:- - _ ~ -=----=--=-_--=- -:~ ~ ~-....--, 
.. 
______ .. 14 --, +- G_15 

.... -11- --' ---------- ~_--.J 

II P15-
I I P16 --: A 

I I PI?: 
I I Kin" (41) .......--
I I PI5"7'= ,. 0 
I I P16 ~ A I ~ Carry 

___ Pr-'opo'-----+-1--+--1-'" ,Q..!Z.;: (4H) Ur In 

gate 15 I I P15~ ~ ~ (3H) ~ 
__ +--'--I-+--+--4--I,--G_l_6~ ~ (4G) '--"--'-

I I : G15~ ~ 

XAD15 

Generate 
03.05.46.1 15 f-------

....>0.. XAD Sum 
1""' ... _____ .... 15 ... 

Propagate 
.... ----~·16 I 

XAD 16 ,.----l 

Generate 
16 

_ ..2.3.:..22 . .£:!.... -
XAD Sum 

~~ ________ ~16 

III (4F) ~ 

H I" _~ ~ -=--=-"--_ -=--=--=--= -=--~: : n= -f----- - ---- -- PIS 

... --tTT-
'
- f- - - - - - - __ - __ G 

III P16_ 
I I I P17 -~ A 
I I I ~ Kin -;. (4E) ~ ~arry 
I I I P16 ~ ~ (~) 15 

I I G17~ (4D) tJ 
I' I I ~ i I I G16",-1 A 
III -~ 
~l ___________ PI 
I ~ + ___ - _ - _ - _ - __ -.fl 
I I H--f----- _______ ~5 
I II~ ------------~ 
~+tl !-f-- - - - - --- ---- <l. 

I I , I 
Propagate 17 I I : I P17 1AI 

.... -X-A-D-I-7--.. ~ I I I: Kin -J (ts) l 
Generate 17 I I I I G17 ~ ~arry 

I T I I T",.--;t:;I 0 In 
I I I I I (4A) l '" (3B) 16 

~~~.~1__ Lli-!.l __ ~ _______ f!3 
-'- XAD Sum 17 ~ Lll. L ____________ ...f.l.!,. 
,- ... 4-1- ___________ -.fl~ 

i --=-_--=--=--=-_--=-= = = = j~} _Ca_r...:ry_i_n_l_7.--_________________ • ___________ J9 

Figure 57. Group 1 Index Adder Bit Carry and Lookahead 

A 

(4E) 

A 

(4F) 

A 

(4G) 

o 

(3D) 

Generate 
Gl 

7094 II System and Functional Components 61 



I<-- XAD Positions ---.>*� ... .----------- XAD Group Lookahead and XAD 3 Carry -----------------::.~I 

Q. 
:l 
o 

(5 

.-------. P 8 

1 8 I G8 

P9 

I 9 I G9 I 

P10 

~G10 --
~P11 

11 I G11 

P12 .-------. 

U Any Gen"a!e G3 

(3A-3B) ---I 0 ~-----tr-~ 
o II r~-' 

(3D) Ge~ate ~ 4 ~o : 
Propagate G3 i I (4E) I 

I I !~ro-ll~XAD3 
L+t~~~a~_~ 

03 .05.55. 1 I I I 03.05.70. 1 
------------1-1-1 -------

~ III , 
~ III 

r-t:: (3A-3B) Any Generate G2 III ,-
II 

~ II --- II 
'~ II 
~ (4C) II L:: ..----. 0 II , A ... 

II ~J (40) ... - , 
I 

~ ~ (30) 
Generate or TO (~) l ..... 
Propagate G2 

I I 
.!" (4E) r-- 1 ~ A l Carry In 
~ - ~ I (4B) (3C) Gr 3 

, 
A --- --

, 

112 I G12 

I I ... ~ 03.05.56.1 03.05.70.1 

--'PT3 -- ------ -- -------------- - ~-- ---- -----
~G13 A 

I (4B) 

P14 ~ ... (4C) 

....---... 

~G14 
, 

A 

(40) 

;;:-
~() .-------. P 1 5 

1
15 I G15 

... 

~~ 
.... 

'----" 

~ Generate G1 Carry In Gr 2 
~ (30) 

-.:. A r-:l P16 .... 

16 I G16 

, 
.... 
~~r--

:;;:-
, 

P17 .... 

NG17 
1 : 

(4G) 
03.05.57.1 -- ---- -- -- --- -- ---- -- ---------- -- ----

Carry In 17 

XAO 3 Carry Circuitry------

Figure 58. Index Adder Group Lookahead and XAD(3) Carry 

62 



SR Zero Check 
(Systems 02.12.47.1 ) 

Outputs from storage register input gating (1-35) are 
fed to a zero check circuit as shown in Figure 59. Note 
that the test is made from data introduced at the stor­
age register input gating and not from data presently 
in the storage register. In most cases, the data to be 
tested will not actually be set into the storage register. 

Many instructions gate the contents of the various 
CPU registers and adders to this zero check circuit as a 
check for either zero or equal conditions. Arithmetic 
operations make extensive use of this check circuit for 
detecting initial zero quantities (i.e., multiplier or mul­
tiplicand) or zero final results. When tests are made 
on the fraction of floating-point quantities, only posi­
tions 9:"35 are gated from the register concerned to the 
check circuit. 
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Figure 59. SR Input Zero Check 

Memory Selection Circuits 
(Systems 03.06.29.4) 

~ (2D) 

~~ 
SR 1-35lnput = Zero 

The 7302-3 core storage is divided into two logically 
independent units of 16,384 positions each. To initiate 
these two units, separate «memory select" pulses are 
required. When computer circuitry requires a refer­
ence to the even memory, a «memory select even" pulse 

is generated; when computer circuitry requires a refer­
ence to the odd memory, a «memory select odd" pulse 
is generated-if both references are required, both se­
lect pulses are generated. 

In Figure 60, 0 1 and O2 receive the circuit indica­
tions as to which memory/memories are required. 
These gating pulses occur at the end of the machine 
cycle, 6(D2) time, and also cause gating of MAR(S-16) 

addressing lines to the 7302-3. Just how these even or 
odd gating lines are developed will be discussed in the 
following section. 

The memory select pulses can occur at two different 
times: CPU operations at 7(D1) time; and channel oper­
ations at A2(D1) time. Data channel operations select 
memory ata later time because of the longer 12-point 
cycle. The memory, operating at a faster rate, provides 
the necessary data at the proper channel time. The re­
verse also applies when storing data from the channel. 

Note from A03 that channel operations assume pri­
ority-cpu memory selection is blocked until all chan­
nels are completed with either B or E time. 
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Figure 60. Memory Select Circuitry 
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MAR Switching and Address Controls 

Only 14 of the 15 address bits are required to select 
anyone of the 16,384 even or odd memory positions. 
The remaining 15th address bit determines selection of 
the appropriate memory. 

Memory selection and MAR gating is effected by 
whether the computer is operating in the normal mode 
or diagnostic mode. 

In normal mode, the even memory contains all of the 
even addresses (0,2,4, 6, 10 through 77,7768); the odd 
memory contains all of the odd addresses (1,3, 5, 7, 11 
through 77,7778). With this normal case, memory selec­
tion is under control of address bit (17)-if bit (17) = 0, 
select even memory; if bit (17) = 1, select odd memory. 
This selection circuitry for program counter gating is 
shown in Figure 61 at A2 and A4, respectively. 

In diagnostic mode, the "even" memory contains the 
lower half of all memory addresses (0 through 37,777s); 
the "odd" memory contains the upper half of all mem­
ory addresses (40,000s through 77,777s). With this diag­
nostic case, memory selection is under control of ad­
dress bit (3)-if bit (3) = 0, select even memory; if bit 
(3) = 1, select odd memory. This selection circuitry is 
shown at A3 and A5 • 

MAR selection and gating is under control of five 
sources: the program counter as just described, the 
address register, IBR, buffer address register for channel 
operations, and index adders. Figure 62 shows the 

Not Block PC and XAD to MAR on Channel Trap 

~ Gate PC-'MAR .... 
Gate PC'" MAR Line 1 

, 
~ 

Gate PC .... MAR Li ne 2 :. 
Gate PC-.MAR Line 3 

,. 
(4A) 
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Not PC 17 

Diagnostic Mode 
Not PC 3 

PC 17 

PC 3 

Figure 61. Program Counter MAR Bus Selection 
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overall logic for all five controlling sources; the pro­
gram counter controls as shown in Figure 61 are re­
peated at the top of Figure 62. Note the similarity of 
the controls and also that they control only MAR(4-16). 

Controls for MAR(S) are handled separately because 
of the MAR(S and 17) "switching" for normal and diag­
nostic modes of operation. Circuit tests are made to de­
termine whether or not a bit should be sent on the 
MAR(S) bus. Four combinations of address bits (3 and 
17) can exist: 

DIAGNOSTIC MODE 3 17 NORMAL MODE 

1. Select even memory 0 0 Select even memory 
2. Select odd memory 1 0 Select even memory 
3. Select even memory 0 1 Select odd memory 
4. Select odd memory 1 1 Select odd memory 

Selection of MAR( S )-even memory requires item 2 
for normal mode and item 3 for diagnostic mode. These 
two cases are shown for the program counter at A6 and 
A7 in Figures 61 and 62. 

Selection of MAR(s)-odd memory requires only item 
4. Note that this item is independent of either normal 
or diagnostic mode, and is shown at As in Figures 61 
and 62. 

When operating in diagnostic mode, two sequential 
instructions cannot be fetched from the same memory 
on the same cycle. Because of the memory arrange­
ment, "gate XAD to MAR" circuitry has no logic, and is, 
therefore, blocked at A4B, Figure 62. 
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Figure 62. MAR Bus Selection and Switching 
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Timing 

Master Clocks and Pulses 
All of the computer functions are directly related to 
two master clocks shown in Figure 63. These clocks 
located in the multiplexor, provide the basic pulses 
necessary for CPU and channel operation. 

The heart of these clocks is a 5.71 megacycle oscil­
lator which produces a complete output cycle once 
every .175 microseconds (175 nanoseconds). Each posi­
tive and negative oscillator output pulse is, then, ap­
proximately 87 nanoseconds long (Figure 64). 

The CPU clock is an 8 cycle-point clock composed of 
eight triggers (cpu clock triggers 0-7); the channel 
clock is a 12 cycle-point clock composed of 12 triggers 
(channel clock triggers 0-11). In either case, the clock 
forms a closed ring-each trigger is turned on in se­
quence and provides a gated output of 175 nanosec­
onds. The combined outputs produce the basic cycle 
times as follows: 

CPU Cycle: 8 x .175 = lAO microseconds 
Channel Cycle: 12 x .175 = 2.10 microseconds 

Clock drive pulses needed to sequentially step the 
clock triggers are produced by the clock drive trigger 
(Figure 63). Oscillator outputs gate two controlling 
AND circuits to the clock drive trigger; the top AND 

circuit is used to set, and the lower AND circuit is used 
to reset the trigger. Delayed outputs from the clock 
drive trigger condition the input AND circuits such that 
the trigger changes state with each positive oscillator 
pulse. Outputs from the clock drive trigger ("even 
clock drive~' and "odd clock drive"), Figure 65, are a 
series of pulses 175 nanoseconds in duration. The clock 
drive trigger has acted to halve the output rate of the 

·oscillator. 
Both the CPU and channel master clocks are reset 

under power-on conditions or by depression of the 
console clear key (Figure 63). At the end of the reset 
pulse, the DLY-AND circuit combination produces a 100 
nanosecond "start clock" pulse which turns on both 
the CPU clock 0 and channel clock 0 triggers. 

U sing the CPU clock as an example in Figure 63, the 
next "even clock drive" gates the CPU clock 0 trigger 
output to produce an AO(Dl) pulse of 175 nanoseconds 
duration. This same AO(Dl) pulse, besides being gated 
to other circuitry, also turns on the CPU clock 1 trigger. 
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Note that even though the CPU clock 1 trigger is turned 
on at O-time, the output of its AND circuit does not be­
come active until "odd clock drive," 175 nanoseconds 
later. The main logical output of the trigger is, there­
fore, Al(Dl). 

As a result of the preceding logic, the Al(Dl) pulse 
turns on CPU clock 2 trigger. This trigger output when 
gated with "even clock drive" produces an A2(Dl) 
pulse. Referring to Figure 63, CPU clock 2 trigger 
turning on at I-time acts as a reset to CPU clock 0 trig­
ger, and the A2(Dl) gated output acts as a set pulse 
for CPU clock 3 trigger. This sequence continues 
through CPU clock 7 trigger. Rise of the A7(Dl) pulse 
turns the CPU clock 0 trigger back on and the clock 
continues to run in a closed ring. 

I/O operations on the 7094 II are bascially the same 
as for the 7090/7094. Timing conditions, however, are 
such that the 1.4 microseconds cycle is too fast to sup­
port channel operations without considerable rework 
within the channel itself. Therefore, to accommodate 
the channels and simplify the 7094 to 7094 II conver­
sions, the 12 cycle-point clock has been retained 
strictly for use by the channels. Looking at the chan­
nel clock in Figure 63 shows that operation is identical 
to the CPU clock except that the cycle duration is ex­
tended beyond clock 7 time to include clock 11 time. 

Note that even though the CPU and channel clocks 
are separate circuits, both are reset, started, and under 
control of common clock logic. From Figure 66 it can 
be seen that two channel cycles occur for every three 
CPU cycles. Therefore, at every third CPU cycle both 
clocks align themselves with respect to O-time. More 
information concerning channel operation and tim­
ings will be found later in this section and in volume 3. 

Figure 67 shows outputs and controls significant to 
each stage of the CPU and channel clock rings. Figures 
68 and 69 shows sequence charts for the CPU and 
channel clocks respectively. Note that each clock trig­
ger is on for 350 nanoseconds, twice the time duration 
of an individual clock pulse. A particular clock trig­
ger is turned on one clock pulse early and only the 
last half of the output is gated by the clock drive pulse. 
This slower SWitching of the clock triggers provides 
increased reliability in the clock operation as well as 
additional pulses usable in the computer. 
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Figure 64. 5.71 MC Oscillator Output 

Figure 65. Oscillator Output and Even Clock Drive 

Figure 66. CPU and Channel Cycle Relationship 
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CPU Turned Turned Tgr Ouration 
Clock Tgr. On by Off by and Output 

0 A7 (01) Clock 2 Tgr A7 (02) 
I AO (01) Clock 3 Tgr AO (02) 
2 AI (OJ) Clock 4 Tgr AI (02) 
3 A2 (OJ) Clock 5 Tgr A2 (02) 
4 A3 (01) Clock 6 Tgr A3 (02) 
5 A4 (OJ) Clock 7 Tgr A4 (02) 
6 A5 (01) Clock a Tgr A5 (02) 
7 A6 (OJ) Clock I Tgr A6 (02) 

Channel Turned Turned Tgr Ouration 
Clock Tgr. On by Off by and Output 

0 AII(OI) Clock 2 Tgr A II (02) 
I AO (01) Clock 3 Tgr AO (02) 
2 AI (OJ) Clock 4 Tgr AI (02) 
3 A2 (01) Clock 5 Tgr A2 (02) 
4 A3 (OJ) Clock 6 Tgr A3 (02) 
5 A4 (OJ) Clock 7 Tgr A4 (02) 
6 A5 (OJ) Clock 8 Tgr A5 (02) 
7 A6 (01) Clock 9 Tgr A6 (02) 
8 A7 (OJ) Clock 10 Tgr A7 (02) 
9 A8 (OJ) Clock I I Tgr A8 (02) 

10 A9 (01) Clock 0 Tgr A9 (02) 
II AIO (01) Clock I Tgr Ala (02) 

Figurc 67. CPU and Channel Clock Output and Controls 
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Figure 68. CPU Clock Sequence Chart 
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CPU Clock Pulse Distribution 

The CPU clock is located in the multiplexor and the 
output pulses are distributed to both CPU-I and CPU-2 

for usage. Because of inherent delays in logic blocks 
and cable transmission lines, clock pulses arrive at the 
various CPU gates after finite delays. 

Figure 70 shows the typical distribution pattern of a 
CPU pulse. This MPXR A3(Dl) pulse is generated by the 
CPU clock 3 trigger (Figure 63) and sent to both CPU-I 

and CPU-2 for usage. By the time the MPXR A3(Dl) 
pulse arrives at CPU-2, however, the MPXR A4(Dl) pulse 
is being formed. Therefore, to provide alignment of 
pulses between the multiplexor and CPU-2, the original 
MPXR A3(Dl) pulse is relabeled as MF A4(Dl) upon 
entering CPU-2. 

As the original MPXR A3(Dl) pulse continues on its 
way to CPU-I, additional delays are encountered similar 
to the ones just described. With the help of a DLY 

block, the incoming pulse to CPU-I is delayed a small 
amount and again relabeled as a MF A A5(Dl). 

There is, therefore, a skew of one clock pulse be­
tween the CPU-2 and multiplexor, and a skew of two 
clock pulses between gates A and B of CPU-I and the 
multiplexor. A5(Dl) pulses throughout the computer, 
for example, are the result of three different CPU clock 
trigger outputs in the multiplexor. Except for trouble­
shooting purposes, these various outputs need not 
concern the reader. The computer circuitry doesn't 
care where the pulses come from as long as they repre­
sent the correct timing or logic. 

Although the AO(Dl) through A7(Dl) pulses are the 
prime outputs of the CPU clock, the D2 pulses are also 
distributed and used throughout the computer. Pulses 
of other durations such as A3(D3), AO(D6), etc., are 
produced throughout the systems as needed by using 
either triggers or combinations of AND and OR circuits. 
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In the computer, clock pulses are gated during cyclic 
operation and then labeled I6(Dl) or E5(Dl), depend­
ing on the particular cycle of operation. Whenever an 
A pulse is encountered in studying the computer, for 
example A6(Dl), it means this pulse is used directly 
from the clock and is independent of the computer's 
cycle of operation. This A pulse ·always occurs at 6 time 
and is always available. 

CPU 1 A and B Gate Clock Pulse Designation 

Timing pulse alignment becomes increasingly more 
important as the internal computer operations are 
compressed into smaller and smaller intervals of time. 
In the A and B gates of CPU-I where a major portion 
of the computer operatiol)s are performed, the clock 
pulses have been systematically delayed, aligned and 
labeled accordingly. 

In Figure 70 the clock pulse coming into the A gate 
of CPU-I is directed into two similar groups of circuitry. 
The top group of pulses labeled LN B (Line B) are sent 
to the B gate for usage; the bottom group (LN A) re­
mains in the A gate for usage. 

Pulses used in both A and B gates of CPU-I also 
have an additional letter and number designation­
A5(Dl) G3, for example. In Figure 70 "-F A5(Dl) G5 
LNA" is the earliest A5(Dl) pulse used in the A gate. 
This pulse delayed through an inverter produces a 
"+ F A5(Dl) G4." Additional inverter delays produce 
"-F A5(Dl) G3," "+F A5(Dl) G2," and "±F A5(Dl) R» 
pulses. Note that the higher the G number, the earlier 
the pulse. By picking the appropriate pulse, compensa­
tion can be made for the number of levels of logic delay 
preceding a trigger or register gating circuitry. 
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Figure 71 shows four typical examples of pulse 
usage. At circuit (a), the A5(D1) G4 pulse is used be­
cause of the four levels of logic in front of the register 
gate. At circuits (b) and (c) the G3 and G2 pulses are 
used because of the three and two levels of logic in 
front of the register gating. The R (register) pulse, cir­
cuit (d), is the latest pulse and is usually used as a 
direct input to a trigger. There are, of course, excep­
tions to the pattern of usage just discussed. 

Note that the G-pulse levels alternate between +F 
and -F at each step because of the natural inversion 
from each DIF logic block. The majority of the triggers 
and register inputs use + level logic (i.e. +G or +AOI). 

CP Set Pulse Generation and Distribution 

Computer set pulses (cp set pulses) are developed di­
rectly from the master oscillator. These pulses are pre-

(a) +F A5(Dl}G4 
r2 Levels 

-F 

(b) -F A5(Dl)G3 

(c) +F A5(Dl}G2 

cisely generated and timed to set triggers and regis­
ters, and control much of the gating and shifting of 
data within the computer. Width and timing of the 
Cp set pulses, as related to the clock pulses, are ex­
tremely important to successful machine operation. 

The input set pulse drive pulses are received directly 
from the oscillator. A variable delay is used to pOSition 
the cp set pulse when aligning it with the clock pulses 
in the computer. Actual CP set pulse settings are made 
at the A and B gates in CPU-I. 

Figure 72 shows condensed logic of how the CP set 
pulses are shaped, delayed, and distributed for spe­
cific usage in the computer. The inverters in Figure 72 
have been included, not because they perform logic, 
but because they contribute to the timing delays. 

r-1 Level ----:i~ 
+F 

-AI 

Gate 

+G 

* Refer to Figure 70 (d) +F A5(D])R 

Figure 71. CPU Clock Pulse Designations and Usage 
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Figure 72. CP Set Pulse Distribution 

Machine Timing Cycles 
7904 II computer operation consists of several types 
of machine cycles concerned with both CPU and chan­
neloperations. 

CPU CYCLES CHANNEL CYCLES 

I Instruction B Buffer 
II IBR Instruction Chan I Channel Instruction 
E Execution Chan E Channel Execution 
L Logical Chan L Channel Logical 

The CPU cycles are directly concerned with CPU 

operations and the 8 cycle-point 1.4 microsecond clock. 
The channel cycles are directly concerned with chan­
nel operation and the 12 cycle-point 2.1 microsecond 
clock. 

The cyclic sequence of a computer instruction is 
fixed and, depending on overlap conditions, begins 
with either an I or II cycle. The total number and 
types of machine cycles required for each instruction 
is determined by the number of steps to be performed 
before the operation is completed. This number varies 
depending on the conditions set forth by the particular 
instruction. 

The various cycles essentially perform the follow­
ing functions. Each will be discussed in greater detail 
in later sections. 

I Cycle: The I cycle occurs because of a break in 
the overlap sequence. References are made to core 
storage and two sequential instructions are received 
into the program register and IBR for execution. 

II Cycle: The II cycle occurs simultaneously with 
an E or L cycle and is used to perform functions con­
cerned with the overlapping instruction in the IBR. 

E Cycle: The E cycle is used for data or IA (indirect 
address) cycle references to core storage. This E cycle 
can be initiated by an instruction in either the pro­
gram register or IBR depending on the conditions of 
overlap. 

L Cycle: During the L cycle the computer performs 
logical or arithmetic functions without reference to 
core storage. This L cycle can be initiated by an in­
struction in either the program register or IBR depend­
ing on the conditions of overlap. 

B Cycle: During the B cycle, a data channel uses 
core storage for either accepting or delivering data (or 
a data channel command word) in connection with an 
input-output operation. This B cycle occurs simul­
taneously with L cycles but never occurs simultane­
ously with I, E, or II cycles. 
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Chan I Cycle: The channel I cycle supplies 1.05 
microsecond I time gatings to channel banks 1 and 2 
and is used primarily for reset functions. 

Chan E Cycle: The channel E cycle supplies 2.1 
microsecond E times gatings to the CPU circuits as well 
as channel banks 1 and 2. This gating is used primarily 
during channel operations requiring references to core 
storage (i.e., POD'S 54/64 or ENB). 

Chan L Cycle: The channel L cycle supplies 2.1 
microsecond L time gatings to banks 1 and 2 for chan­
nel circuit controls. 

The CPU I and E cycle timings are such that they 
each gate their own instruction and data memory 
references. To accomplish this, I or E time for address­
ing comes up early (6 time of the previous cycle). 
There is, therefore, considerable overlapping of cycle 
times as shown in Figure 73. 

I 
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6 6 I ~ i I Time Gating I 
.... --~L 

I 
I 

6 i i E Time Gating I 

I 

I 
7 

i I L Time Gating 

6 I 

" Time Gating i I U I 

Figure 73. Cycle Time Relationship 
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Master I Time 

I time is not the steadily recurring type of cycle that 
existed on previous systems; it results only because of 
a break in the overlap sequence of instructions. For 
example, this break in sequence might occur because 
of a successful transfer or skip condition resulting from 
the instruction in the program register or IBR. 

Figure 74 shows condensed logic of I time. Note 
that even though the I time trigger might be turned 
on, its outputs may be blocked until such time that 
channel B cycle demands are satisfied. I time outputs 
are also gated by the master stop trigger or machine 
cycle gate (manual operations). 

The basic objectives of the I cycle are to: 

1. Select the proper memory/memories and gate the 
corresponding address( es) out to MAR( s). 

2. Update the program counter to the proper ad­
dress. 

3. Gate the proper instruction(s) from the even/odd 
storage bus into the program register, storage register, 
tag register and IBR. 

4. Perform address modification when applicable. 

5. Determine and initiate the next type of machine 
cycle. 
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Address Gating 

Objective 1 is initiated in the upper area of Figure 75 
(sheet 1). This area shows the decisions required for 
initiating an I cycle. The skip trigger coming on as the 
result of an instruction in the program register nulli­
fies overlap and forces an I cycle because the instruc­
tion in the IBR is going to be bypassed. 

If the skip trigger does not come on but there is an 
overlap conflict condition, overlap will, again, be in­
hibited. In this latter case, the computer waits until 
the instruction in the program register has ended oper­
ation before initiating an I cycle. Special FAD E time 
end-op circuitry has been added because of timing 
considerations. 

If the skip trigger is off and there is no overlap con­
flict condition (Figure 75), a test is made to see if the 
instruction being executed from the IBR will send the 
computer into either an E or L cycle. If this ElL test 
is successful, the computer proceeds to ElL time to 
complete execution of the overlapping instruction. If 
the test fails (the IBR contains a I-cycle instruction, for 
example) the computer waits until the instruction in 
the program register completes operation and then 
initiates an I cycle. 

Note that the I time trigger is turned on at 5 time 
(three clock pulses before the end) of the previous 
cycle. Turning the trigger on early allows its outputs 
to provide addressing gates starting at 6 time. Machine 
cycle design is such that the upcoming cycle provides 
its own memory address gating. 

With the exception of MAR addressing controls, the 
I time does not logically start until the following 0 
time. 

Any B times requested by a data channel will be 
serviced before the I cycle is allowed to continue. This 
blocking of I time is accomplished by degating the out­
put of the I time trigger with "B interrupt." 

I time outputs can be grouped as follows: 
I time early for addressing: These outputs are avail­

able starting at 6 time of the preceding cycle and are 
used primarily for gating the proper instruction ad­
dresses to memory. 

I time early: These outputs are delayed outputs of 
the I time trigger and are available primarily for gating 
functions at the beginning or during early portions of 
the I cycle. 

I time late: These outputs are delayed longer than 
the early pulses and are, therefore, available for gating 
functions during the latter portion of the I cycle. The 
I time trigger is turned off at I5(DI) time so it is the 
delayed outputs that maintain the required gating 
until the end of the cycle. 

I time late delayed: This output is used to decre­
ment the program counter under HTR control so that 
the counter will indicate the actual address of the HTR 

instruction. 
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Going into I time is like getting a fresh start in the 
program sequence and because of this, two sequential 
instructions will be referenced from core storage and 
brought into the CPU. Except for certain operations, 
the address of one of the next two instructions to be 
executed will always be found in either the program 
counter, address register, or the address portion of the 
IBR. The address of the other instruction can be ob­
tained by incrementing or decrementing the first ad­
dress. Both of these addresses when gated to the even 
and odd memories will retrieve the next two desired 
sequential instructions. 

Note that the addressing blocks in the lower area 
of Figure 75 are divided from left to right into distinct 
groups according to function. 

Group 1-Address Gating to MAR: One of these 
three gates will be active to provide one instruction ad­
dress to MAR. This same address is gated to the index 
adders for either incrementing or decrementing. 

Group 2-XAD Gating to j\1 AR: This block provides 
the other instruction address to MAR. In the majority of 
cases this second address is an incremented (+ 1) value 
of the first address. In some cases, however, this second 
address is a decremented (-1) value of the first ad­
dress. Note that the XAD to MAR path is only active 
when the computer is in overlap mode and not diag­
nostic mode. 

Group 3-1's to XAD (3-17): These two blocks cause 
incrementing or decrementing in the index adders. 
Gating a 1 to XAD(17) is an unconditional I6(D2) func~ 
tion and causes address incrementing (+ 1). Gating 1's 
to XAD(3-16) along with the 1 to XAD(17) causes address 
decrementing (-1) by performing 1's complement ad­
dition. 

Group 4-Address Updating Paths: This fourth 
functional group takes the incremented (or decre­
mented) XAD address output and routes it to either the 
address register or IBR for temporary storage. This ad­
dress will update the program counter at Il(DI) time. 

Group 5-BAR Address Gating to MAR: This last 
functional group is used during channel trap oper­
ations when addressing the specific data channel trap 
location. 

When progressing through the series of I time ad­
dressing decisions, a channel trap is concerned with 
group 5 and directs the routing of the buffer address 
register (BAR) to MAR. 

For all other I time addressing decisions, groups 1 
through 4 are used according to the following rules 
(Figure 75): 

l. One block (and only one block) is always used 
from group l. Either the PC, AR, or IBR will contain the 
correct address of one of the next two sequential in­
structions. This same address is also gated to the index 
adders. 



2. An entry will always be made into group 2. 
Whether or not the index adders are gated to MAR 

depends on both overlap mode and diagnostic mode. 
3. In group 3, a 1 is always gated to XAD(17) for in­

crementing purposes. During the two cases where 
decrementing is involved, the 1's to XAD(3-16) are also 
used. 

4. One block (and only one block) is always used 
from group 4. These updating paths route the index 
adder value to either the address register or IBR as 
temporary storage until the program counter can be 
updated at the next Il(Dl) time. Note that the value 
set into the address register or IBR at this time nor­
mally corresponds to the second instruction selected 
from memory (i.e., the instruction which will be set 
into the IBR at 14 time of the I cycle). 

U sing the above rules and making a systematic pro­
gression through the maze of addressing decisions 
should prove the logic of the I time addressing. 

Program Counter Update 

Objective 2 updates the program counter to the proper 
address. The program counter is always one step ahead 
of the current instruction being executed; therefore, 
the address to be set into the program counter will 
correspond to the instruction destined for the IBR. 

In the previous section, addresses were sent to MAR 

during I6(D2). At the same time, the incremented (or 
decremented) value from the index adders was also 
routed and set into either the address register or IBR 

(Figure 75, sheet 1). These group 4 routing paths place 
the updating program counter address in "temporary 
storage." During Il(Dl) time, this address is routed 
unmodified to the program counter via the index add­
ers (Figure 75, sheet 2). Note that the pattern of de­
cision making for the updating circuitry is similar to 
that for address gating discussed previously. 

If the address register or IBR had received an incre­
mented (+ 1) address from the index adders, that cor­
responding register contains the correct updating 
address for the program counter. If, however, the ad­
dress register or IBR had received a decremented (-1) 
address from the index adders, the register originating 
the address contains the correct updating address for 
the program counter. 

In some cases the program counter already contains 
the correct address. When these cases occur, the up­
dating paths are blocked and the program counter 
value remains unchanged. One case, a successful class 
A transfer in trap mode, requires a carry to XAD(17) 

during update to put the value 00001 into the program 
counter. 

Storage Sus Gating 

The third objective is to gate the storage buses into 
the computer. The instructions which were addressed 
at the previous 6 time will be available by 4 time on 
the even and odd storage buses. 

In Figure 75 (sheet 2) an external trapping condi­
tion will nullify the two new instructions arriving 
from core storage and, instead, force an STR operation 
by turning on PR (s, 9). 

Excluding the trap condition, five routing and set­
ting functions are available for the even and odd stor­
age buses: 

SB(S, 1-35) ~ SR(S, 1-35) and TR (18-20) 
SB(S, 1-2) ~ PR(S, 8-9) 
SB(S, 3-11) ~ PR(S, 1-9) 
SB(S, 1-35) ~ IBR(S, 1-35) 14(Dl) Set Pulse 
SB(S, 1-35) ~ IBR(S, 1-35) 14(D2) Set Pulse 

Excluding the XEC instruction and channel traps for 
the present, the program counter is the deciding factor 
as to which storage bus is routed into the program 
register (PR) and IBR. Remember that the program 
counter was already updated (incremented) at II time 
and is + 1 ahead of the current instruction. Because of 
this, if the program counter is at an odd value the even 
storage bus is gated to the program register and the 
odd bus to the IBR. If the program counter is at an 
even value the odd storage bus is gated to the program 
register and the even bus to the IBR. 

A class A instruction coming into the program reg­
ister is "pre-sensed" from the storage bus. If the instruc­
tion is a one cycle class A instruction (TIX, TNX, TXH, 

TXL, TXI) circuits are immediately set up to also route 
this same instruction into the IBR with an I4(D2) pulse. 
Note that this longer I4(D2) pulse overrides the in­
struction placed in the IBR with the normal I4(Dl) 
pulse. The reason for this special gating into the IBR 

is because of addressing considerations which will be 
discussed in Volume 3. 

Tracing through the flow chart (Figure 75-sheet 2) 
will also show the storage bus gatings for channel trap 
and XEC conditions. In some of these latter conditions 
the program counter value (even/odd) may cause some 
unnecessary gatings into the IBR. These gatings cause 
no problems, however, because overlapping is pre­
vented at this time. 

Figures 75 (sheet 2) and 76 provide a summary of 
the various SB gating conditions. 

After the program register has been set with the new 
instruction, a check is made to determine if overlapping 
is possible. If so, the IBR loaded trigger is turned on. 

Timing 77 



Address Modification 

Objective number 4 is address modification. This mod­
ification is performed during the I5(Dl) clock pulse so 
that the modified address (if an index register was 
specified) will be available for MAR gating during the 
next two clock pulses; i.e., E6(D2) early. 

Class A instructions (TIX, TNX, TXH, TXL, TXI) block 
address modification. Instead, the I4(D2) period of 
time is used to perform the specific test or operation on 
the index register (Figure 75, sheet 2). If the conditions 
of the test are successful, a PR condition-met-trigger is 
turned on; if the test fails, the trigger remains off. 

If the instruction in the program register is indexable, 
SR(21-35) and the complement of the specified index reg­
ister(s) are gated to the index adders with a carry to 
XAD(17). This 2's complement addition effectively per­
forms a subtraction of the index register value from 
the address portion of the instruction. If no index reg­
ister is specified, all 1's are gated from the index regis­
ter along with the carry to XAD(17) to effectively sub­
tract zero from the address in SR(21-35). 

The modified address resulting in the index adders 
is gated to the address register for MAR gating at 

E6(D2) time. If the instruction is a POD 76, the index 
adders are also routed to the shift counter for further 
decoding. 

Next Machine Cycle 

At the same time that the address modification or class 
A testing is being performed, other circuitry is deter­
mining the next machine cycle. 

If the PR instruction contains bits in positions 12 and 
13, SR( 12, 13), and meets the other conditions shown in 
Figure 75 (sheet 2), the pre-IA trigger is turned on and 
an E cycle follows. 

If no E(IA) cycle is called for, a test is made to see if 
a I-cycle instruction is in the program register. If so, 
the end-op trigger is turned on and another I cycle 
follows. 

If the instruction in the PR does not call for ending 
opera tion, tests are made to see if an E cycle should 
follow. If the test is successful, the master E time trig­
ger is turned on and an E cycle follows. If, however, 
neither an I or E cycle is requested, the master L time 
trigger is turned on and an L cycle follows. 

SB Gating SB Gating Oecision Blocks 

XEC Operation Chan Trap Normal 

~ I~ 1i<Y1 !~ IWl l~ I~ I~ 
EVEN SB 

SS .... SR and TR V- t.--- t.--- V- t.--- I..---

SB(S,l-2)-'PR(S,8-9) t.--- J....- J....-

SB(S,3-11)-'PR(S,l-9) V- J....- t.---
SB .... ,BR 14(01) t.--- J....- V- t.--- J....- I..---

SB~IBR 14(02) J....- J....- t.--- J....- t.---

OOD SB 
SB .... SR and TR t.--- t.--- t.--- t.--- t.--- I..--- V- t.--- V- t.---
SB(S, 1-2)~PR(S, 8-9) J....- t.--- I..--- t.--- V-

SB{S,3-11)+PR(S,l-9) J....- J....- t.--- t--- t.---
SB .... ,BR 14(01) V- I..--- J....- J....- J....- J....- t.--- t.--- V-

SB~IBR 14(02) J....- J....- V- t.---

Y I ndl cates Yes N Indicates No 

Figure 76. SB Gating Decision Chart 
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Figure 75. I Time Flow Chart (Sheet 1 of 2) 
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Master E Time 

Figure 74 shows condensed logic for the E cycle. Note 
that this E cycle can be initiated by an instruction in 
either the program register or lBR depending on over­
lap conditions. In either case, the E time trigger is 
turned on by 6- time of the preceding cycle to allow 
memory addressing. In this manner, E time provides 
memory addressing for its own data reference. 

Outputs from the E time trigger may be blocked 
until channel B time requests are satisfied. This same 
situation exists for I time, which was described previ­
ously. After all of the B times are satisfied, the block­
ing is removed and the computer proceeds with the 
instruction. 

The master E time trigger is reset at E4 time; how­
ever, by use of delays, E time gating circuits are ex­
tended until the end of the cycle. E time outputs in­
clude: 

1. E time early for addressing (not deconditioned 
bYlA) 

2. E time early 
3. E time early (for lA) 

4. E time late 
5. E time late (for lA) 

Note that, unless specifically labeled «for lA," E time 
gatings (with exception of E time for addressing) are 
blocked during an lA (indirect address) cycle. In this 
manner the instruction execution is blocked until the 
normal E cycle (not lA cycle) occurs. If an instruction 
requires several consecutive E cycles (CVR, for exam­
pIe) the master E time trigger is set and reset for each 
cycle. 

IA E Cycle 

Indirect addressing requires making a second refer­
ence to core storage. This second reference either ob­
tains the actual data word in cases of data handling 
instructions (CLA, ADD, etc.), or the new transfer ad­
dress in cases of transfer instructions (TRA, TQO, etc.). 

During the first memory reference (IA E cycle), a 
new word is brought into the storage register from a 
location specified by positions 21-35 of the original in­
struction word. Positions 21-35 of the lA word contain, 
in effect, a new memory reference. This new address 
when sent to core storage retrieves the desired data (or 
transfer address) . 

Several examples of indirect addressing are shown 
in an earlier section of this manual, «Instruction Ad­
dressing." 

The basic objectives of an lA cycle are: 
l. Make proper reference to memory for the IA 

word. 
2. Gate the storage bus even/odd into the storage 

register. 
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3. Perform address modification according to the 
tag specified in the lA word. 

4. Determine and initiate the next type of machine 
cycle. 

5. Select the proper memory(s) and gate the corre­
sponding address(es) to MAR(S). 

An lA cycle can be initiated by an instruction in 
either the program register (I time) or the lBR (II time). 
See Figure 77. Test conditions for the IA cycle are simi­
lar in either case. 

Indirect addressing has the following restrictions: 
1. The instruction must be indexable. Non-indexable 

instructions such as the class A type (TlX, TNX, etc.) 
make use of the entire decrement portion of the in­
struction word for indexing purposes. Therefore,. posi­
tions 12 and 13 lose their meaning for indirect address­
ing. Other non-indexable instructions such as PAX, PXA, 

SXA, SXD, etc., actually operate on the index register and 
are, therefore, not subject to address modification. 

2. Except for transfer instructions, indirect address­
ing is only possible on instructions of 2X, 3X, 4X, 5X, 
and 6X operation codes. Codes below 2X and above 
6X require L cycles for their execution. Without refer­
ences to core storage, indirect addressing has no pur­
pose. 

3. Transfer instructions can normally be indirectly 
addressed. However, this feature is nullified (except 
for TTR/ESNT) if the machine is in the trap mode of 
operation. When in the trap mode, the address of the 
transfer instruction is stored in location 000008 and if 
the transfer conditions are met, the computer traps to 
location 000018 • Because a transfer is never actually 
made to the transfer address, indirect addressing in 
the trap mode accomplishes no useful purpose. The 
programmer's trap subroutine must test to determine 
if indirect addressing existed in the transfer instruc­
tion. 

If the lA cycle is initiated by the program register 
instruction, a pre lA trigger is turned on. If the IA cycle 
is initiated by the IBR instruction a pre IIA trigger is 
turned on. In either case, a common lA trigger is turned 
on at the next EO time. 

II times are blocked from occurring simultaneously 
with the E( lA) cycle because of a conflict in usage of 
the index adders at 5 time. 

Note that during an II cycle the instruction in the 
program register may detect a skip condition which 
will bypass the overlapping instruction. A trap condi­
tion may also demand recognition ahead of the over­
lapping instruction. In either of these two cases, over­
lapping is nullified and the E( lA) cycle is blocked from 
occurring. 

If the lA cycle is requested by the overlapping in­
struction (i.e., II time), the lA cycle must wait for an 



end-op signal from the instruction in the program reg­
ister. This condition would occur, for example, if the 
overlapping instruction is preceded by a multiply in­
struction. See example on Figure 77. 

IA Memory Reference: The address to be gated to 
MAR depends on whether the IA cycle was initiated by 
a preceding I or II cycle. This fact is determined by 
the OFF and ON states of the end-op trigger, respec­
tively, and causes gating of either the address register 
or IBR to MAR (Figure 77). Note that only one address 
is sent and only one memory is selected. 

A check is made to determine if the value in the ad­
dress register or IBR is even! odd. If odd, the AR odd 
trigger is turned on for later references. The even!odd 
conditions are also dependent on whether the com­
puter is in normal or diagnostic mode of operation. 

Storage Bus Gating: The data word arriving at E4 
time is gated into the storage register. The proper bus 
is determined by the status of the AR odd trigger (Fig­
ure 77). 

Address Modification: At E ( IA) 5 (D 1) time, Figure 
77, SR( 21-35) are routed to the index adders together 
with the complement of the specified index register. A 
carry to XAD( 17) causes 2's complement addition and 
the index register value is effectively subtracted from 
SR( 21-35). 

This new modified memory address is set into the 
address register for gating to MAR at E6( D2) time. 
This modified address is also gated to IBR( 21-35) if the 
IBR loaded trigger is off. If the IBR loaded trigger is off, 

the IA cycle was initiated from an II cycle. Under these 
conditions, an II cycle may follow the IA cycle. Routing 
the modified address to the IBR allows use of memory 
conflict detection circuits on Systems 08.00.22.2 (5F). 

Next Machine Cycle: One cycle transfer instructions 
end-op during the IA cycle; therefore, the next cycle 
will be an I cycle. Two cycle transfer instructions re­
quire an L cycle to complete operation. Because of 
this, an L cycle will follow the IA cycle. 

If a I-cycle or 2-cycle transfer condition does not 
exist, the next cycle must be an E cycle (except for 
possible B cycle interrupts). If conditions allow, an II 
cycle may also occur simultaneously with this next E 
cycle. Note that the path which turns on the II time 
trigger (Figure 77) also turns on the E time trigger. 
The reverse condition, however, is not true. 

MAR Gating and Selection: A I-cycle E ( IA) transfer 
end-op causes two sequential addresses to be sent to 
MAR from the address register and index adders. This 
condition was covered in a previous section on I time 
and in Figure 75. 

All other conditions force a data E cycle with the 
modified data address sent to MAR from the address 
register. If an II cycle is also allowed to occur, the pro­
gram counter is sent to MAR to fetch a new overlapping 
instruction. There is one condition on the PC~MAR gat­
ing, however. The IBR loaded trigger being on indicates 
an II time without a reference to memory because the 
IBR had already been loaded with an instruction during 
the previous I time. 
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Indirect Address not 
possible - proceed normally. 

The Pre IIA trigger is normally reset at 
the next A2(Dl) time. 
An overlap conflict or skip condition will 
reset the Pre lIA trigger immediately at 
6-time. 

II time is not allowed to occur 
simultaneously with an E(lA} cy~ 

On 

Indicates that the ~ 
instruction in the PR is skipping 
around the overlapping Inst. 

Ves 

Indicates that a condition (such as a channel? 
trap) is nullifying the overlap operation. 

Basic IA Cycle Objecti yes 

1. Address memory for IA data word - E6(D2) 
2. GateSBtoSR- E4(Dl) 
3. Perform Address Modification - E5(Dl) 
4. Initiate next machine cycle - E6(Dl) 
5. Address Memory -l/E/lI6(D2) 

1. Reset II Time Tgr 
2. Block II~II 
08.00.22.2 (2C) 
08.00.22.2 (5E) 

1. Reset I Time Tgr 
2. ResetIlTimeTgr 
08.00.18.2 (3B) 
08.00.22.2 (2C) 

A function of the U 

The f time trigger can not be 
turned on until the imtruction / 
in the PR has completed operation. 

Example: 0 CLA 

1 MPV 

2 ADD' 

n 

II I E(lA) 

The end-op trigger being on at this time 
indicates on IA cycle initiated by the IBR 
instruction during an II cycle. 

The end-op trigger is turned off at 
E4(D I) time of the I A cycle. 
Systems 08.00.19.2(41 ) 

Reset ot E7 CP set time of the IA cycle ----.r--

E4(Dl) 
SB-SR 

02.12.52.2 (3A) 

E4(Dl) 
SB(18-20) ........ TR 

02.12.52. 2(3A), 0J.05.22.1 (SA) 

Ves 

t-----------------1-._ Indirect Addressint not 

~ The Pre IA trigger is reset at the 
next A2(DI) time. 

The end-op trigger being off ot this time 
indicates an IA cycle initiated by the PR 
instruction during an I cycle 

The IBR loaded trigger being OFF ot this time 
indicates entrance from an II cycle. 

possible - proceed normally. 

The IBR loaded trigger being on ot this time 
indi cates entrance from an I cycle with on 
overlapping instruction in the IBR .,..------.-::~..( }---:::::.:....------, 

On 

~ Figure 77. IA Cycle Flow Chart 

This is really a memory conflict check of the AR and PC. The AR ====~ 
value was also set into the lBR at the previous E(IA)5(Dl) Time ....... 

Both paths must be used if 
the 11 time trigger was 
turned ON. 

If the IBR loaded trigger is ON at th;s 
time, the tBR had already been loaded ----....r--..On 
with a second instruction during 
the preceding I time. 

The modified address is also placed into the 
~ IBR to make use of the PC-IBR memory conFlict 

checking circuitry on Systems OB.OO.22.2(5F}. 
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Turn On L Time Trigger 
08.00.20.2 (3C) 
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See the I time flow 
chart (Figure 76) for 
complete detoi I s of 
address gating. 

/ 
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Master L Time 

L time provides a logic cycle of operation during which 
the computer performs functions not related to core 
storage. 

Control circuitry (Figure 74) is similar in some re­
spects to E time because it can be initiated by an in­
struction in either the program register or IBR depend­
ing on overlap conditions (only IBR shift instructions 
can force an L cycle). 

The turn-on logic is such that an L cycle occurs if 
the instruction does not specifically call for an I or E 
cycle. The I or E turn-on is at A5 CP set; if these I or 
E controls are not present, the master L time trigger is 
turned on one clock pulse later at A6 CP set. 

As long as the input PR or IBR controls are active, the 
L time trigger is turned on again each cycle. In this 
manner, the L time trigger remains on as long as 
needed. Use of delay circuitry produces both "L time 
early" and "L time late" outputs for circuit controls in 
CPU-l and CPU-2. 

When the master stop trigger is turned on, the com­
puter remains at whatever cycle time it was proceeding 
to when the master stop trigger came on. An inhibit L 
trigger is turned on by the master stop trigger (Figure 
78) to block both the master L time and II time outputs 
(Figure 74). 

The inhibit L trigger is also turned on by the HTR 

and HPR instructions. L time of these two halt instruc­
tions is blocked until the start key is depressed. At this 
time, the inhibit L trigger is turned off and the com­
puter either transfers or proceeds to the next instruc­
tion. 

E Time Tgr 
CP Set 

Conditioning and 
Blocking Circuits 

Gen Reset 
Pre IIA Tgr 

Figure 79. II Time Condensed Logic 
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II Time Tgr 

08.00.22.2 

MST Off 
Not I Time Late 

6 CP Set 

HTR 

Figure 78. Inhibit L Trigger Logic 

B Interrupt For 
L Time 

(Blocks L & II 
Times) 

08.00.21.2 

During channel operations, the CPU remains in L 
time until the next instruction is begun. 

Master II Time 

II time (IBR I time) is the instruction cycle for the over­
lapping instruction in the IBR. During this cycle ad­
dress modification and preliminary tests are performed 
by the overlapping instruction. When not prohibited, 
II time occurs simultaneously with either an E or L 
cycle of the preceding instruction. 

Figure 79 shows basic condensed logic of the II time 
trigger circuitry. Note that II time can be initiated by 
instruction controls from either the program register or 
IBR. The II time trigger is turned on at 6 time of the 
preceding cycle to allow memory addressing. In this 
manner, II time performs memory addressing for its 
own data reference. 

Details of II time together with an II time How chart 
are found in Volume 3. 

II Time Early 

II Time Late 



Master B Time 

B (buffer) time is the cycle during which one of the 
data channels makes reference to core storage. Most 
I/O devices move at a fixed rate and therefore request 
or transmit data at specific intervals. When data word 
requests are not serviced in time, information is lost 
and I/O checks result. Because of this timing require­
ment, channel B cycle demands are serviced during the 
cycle immediately following the request. If the next 
CPU cycle is to be an I, E or II cycle, the output of the 
master trigger is blocked. If the next CPU cycle is to be 
a normal L cycle, both the Band L cycles occur simul­
taneously. 

"B cycle demand" is sent out by the channel early in 
the cycle such that the signal arrives at the multiplexor 
before channel 9 time. Provided the computer is not 
servicing a channel trap or a POD 64 instruction, the 
master B time trigger is turned on with the next chan­
nel A9(Dl) pulse (Figure 80). 

MST On 

AS(Dl) 

MST Off 
AS CP Set 

Ch A9(Dl) 
A Not POD 64 

Not Trap to Channel 
B Cycle Demand 

Retain Priority (3G) 
Ch A7(Dl) 

Figure 80. B Time Condensed Logic 

The POD 64 (store channel instruction) restriction pre­
vents a possible alteration in the channel registers 
which would cause false error indications while run­
ning CE diagnostic programs. B time requests are 
blocked during channel trap operations to prevent de­
stroying the trap address in the buffer address register. 

The B time request occurs at channel 7 time. Chan­
nels requesting additional B cycles cause the B time 
trigger to be turned on again in time to prevent the 
CPU from regaining cycle control. "Retain priority" con­
ditions (TCH or IA) recognized by the multiplexor look­
ahead circuitry bypasses the normal turn-on controls. 

The B interrupt trigger (Figure 80) blocks outputs 
from the master I, E, and II time triggers either during 
B times or when the master stop trigger is on. Note that 
the B time trigger is under control of channel clock 
pulses whereas the B interrupt trigger is under control 
of CPU clock pulses. The B time trigger turning on 
causes the B interrupt trigger to turn on at CPU-5 time 
which is early enough to block the next cyclic output 
from the master I, E, and II triggers. 

B Interrupt 

(Blocks I, E and II times) 

B Time 

(B Time Gating) 
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Because of timing relationships between the channel 
and CPU clocks, the B interrupt trigger can be turned 
on and off for two cases (Figure 81). Case 1 shows the 
channel 9-CPU-I timing relationship where the B time 
trigger turns on at channel 9 time and the B interrupt 
trigger turns on four clock pulses later at CPU-5 time. 
Considering only one channel B cycle request, the B 

interrupt trigger only blocks one CPU I, E or II cycle. 
Case 2 shows the channel 9-CPU-5 timing relationship 

where both the B time and B interrupt triggers turn on 
during the same clock pulse. In this later case, however, 
the timings are such that the B interrupt trigger re­
mains on for one extra cycle and two CPU cycles are 
blocked. 

Item 

A 

B 

C 

D 

A 

C 

D 

B Cycle Demand 

B Time Trigger 

B Interrupt Trigger 

CPU I, E & " times 
blocked due to B time 

CASE 2 

B Cycle Demand 

B Time Trigger 

B Interrupt Trigger 

CPU I, E & " times 
blocked due to B time 

000 
10 11 I 1 2 3 4 5 6 7 8 9 10 11 I 1 2 3 4 5 6 7 8 9 10 11 I 1 2 3 4 

2 3 ~567012345 6 7 01234567012 3~5670 

3 I ~ 2 I I, I 
~~----.I-------I--~I I I 

: A-9' I B-7 I i 
I I 1 I 

I I B-CPU5 : B-CPU~ I I 
! I lit I I 

I 
I 
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I 

I I C I Ie I I I ..... -------1 I I 
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I I I I 

'I 3 ~I----_I __ 2 : 
I~----------r_ __ ----,~--~r I I l~ __________________ _ 

I I I A-9 I B-7 I 
I I r I I I 
II I B-CPU5 I s-cPu51 
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I I I I I I I C 1 ............... ____ .. C 

'~------------~,--------l~------~: --------------~ I 

Figure 81. B Time Sequence Chart 
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B Cycle 

The main system objectives associated with B cycles 
are to: 

1. Accept B time requests from the data channel 
2. Set BAR to the proper address 
3. Select the proper even/odd memory 
4. Route data and commands to the proper system 

areas 
5. Test and perfonn TCH and IA functions 
6. Initiate subsequent B cycles where applicable 
B cycle requests are initiated by circuitry from with­

in the attached data channels and are based on the im­
mediate channel demands. In most cases, the "B cycle 
demand" is honored during the cycle following receipt 
into the cpu. Refer to Figure 82. 

A "B cycle demand" arriving during the execution of 
a channel trap operation or POD 64 (store channel) in­
struction is delayed until after their completion. These 
delays are necessary because of conflicts in usage with 
the buffer address register, and for diagnostic program­
ming reasons, respectively. 

"B cycle demands" are initiated at approximately 
channel 3 time and arrive at the cpu circuitry in time 
to tum on the B time trigger with a channel A9(Dl) 
pulse. The B time interrupt trigger is turned on at 
cpu 5 time to block the master I, E, and II time outputs. 
This blocking remains in effect until cpu A5 time fol­
lowing the turn off of the B time trigger (Figure 81). 

Instruction overlap is suspended during all B cycles. 
Only one memory (even/odd) is addressed, and only 
one memory select pulse is generated. Therefore, only 
one data word is placed on the storage bus. 

SDW Cycle 

The first function perfonned (Figure 82) is setting 
the buffer address register (BAR) to the proper memory 
data reference as specified by the channel address 
switches (CAS). BAR was reset by a previouschannelAl1 
pulse and is now set at BO(D2) time. For a read BDW 

cycle, the channel store trigger is turned on to provide 
the necessary memory "read-out" and "store" controls. 

Selection of the proper memory and BAR gating is 
based on BAR(17). The memory select pulse is initiated 
at approximately B2 time. For a write BDW cycle, the 
data word is available on the storage bus at approxi­
mately B7 time for sampling into the channel's data 
register. For a read BDW cycle, the channel has the 
data word on the storage bus at the proper time to be 
sampled into the memory buffer register (Figure 35). 

SCW Cycle 

Consider a nonnal BCW cycle with no indirect ad­
dressing or TCH command (Figure 82). Accepting the 
"B cycle demand," turning on the B time trigger and 
selecting memory are as explained previously. The 

channel determines the memory location by routing an 
address from its location counter/command counter 
into the multiplexor buffer address register. 

Note that all BCW cycles have the characteristics of a 
write operation where the data word is taken from 
memory and sent to the channel. 

The data command read from memory is placed on 
the storage bus and sampled into the channel's opera­
tion register, word counter and address register. The 
channel's location counter (7607) or command counter 
(7909) is stepped +1 to indicate the next sequential 
command's location. 

If the channel is performing a write operation at the 
time of the BCW cycle, a BDW cycle is immediately re­
quested. This BDW cycle may not be initiated in time, 
however, to prevent the cpu from regaining program 
control. This channel must also seek priority with other 
channels requesting B cycles on the system. 

Indirectly Addressed SCW Cycle 

Consider IA commands other than TCH (Figure 82). Ac­
cepting the "B cycle demand," turning on the B time 
trigger, and selecting memory are the same as ex­
plained previously. The initial pass through the flow 
chart finds the IA address control trigger off. 

Position 18 of both the even and odd storage bus are 
oR'ed together, MB(18), as a test for indirect addressing. 
oR'ing both storage buses is valid because only one of 
the buses will contain information. 

Ignore for the moment the special case of a proceed 
type command with a word count equal zero. The com­
mand word on the storage bus is sampled into the 
channel's operation register, word counter, and ad­
dress register. The operation register and word counter 
contain valid data; the address register contents will 
be replaced with a new value during the next cycle. 

Because of SB(18), an IA address control trigger is 
turned on which generates and sends a "retain priority" 
signal to all channels (Figure 82). In the multiplexor, 
"retain priority" produces an immediate "B cycle de­
mand" and prevents the B time trigger from being 
reset. In this manner a second B cycle is initiated and 
the cpu is prevented from regaining control. 

The IA address control trigger being on allows an 
IND 18 trigger to be turned on and its "IND 18" Signal 
sent out on banks 1 and 2 to all data channels. 

The address portion of the initial BCW data word rep­
resents a new memory reference. Because of this, mul­
tiplexor storage bus positions 21-35 are routed directly 
into the buffer address register (Figure 35). The data 
word resulting from the second BCW cycle is placed on 
the storage bus as before. This time, however, the data 
channel only accepts the address portion (21-35) into 
its address register; the original operation coding and 
word count remain unaltered. Following this second 
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BCW cycle, the channel's location counter/command 
counter is stepped + 1. 

The IA address control trigger is turned off at chan­
nel A3(D2) time and the IND 18 trigger is turned off at 
the following channel AI0(D2). Timing is such that 
only one level of indirect addressing is permitted. A bit 
in SB( 18) of the second BCW word is ignored and the 
IND 18 trigger is not turned on again. 

A special case of a proceed type command with a 
word count equal zero was ignored in the previous dis­
cussion. An IOCP, IORP, or IOSP command with a word 
count equal zero must be bypassed. Indirect address­
ing, therefore, performs no logic and is ignored (Figure 
82). The command is routed to the channel and set into 
the operation register, word counter and address regis­
ter as usual. Channel circuitry recognizes the zero word 
count condition and initiates another "B cycle de­
mand." Multiplexor lookahead circuitry does not retain 
priority in this case. 

TCH Command 

Consider a TCH command without indirect addressing. 
The TCH acts as a channel transfer instruction to alter 
the sequence of I/O commands being executed. The 
transfer is accomplished by altering the value in the 
channel's location counter (7607) or command counter 
(7909). The channel determines the memory location 
by routing an address from its location counter/com­
mand counter into the multiplexor's buffer address 
register (BAR). Accepting the initial "B cycle demand," 
turning on the B time trigger and selecting memory are 
as explained previously. 

The TCH command is detected (Figure 82) by testing 
the storage bus for not S, not 1, 2. The 7607 data chan­
nel's operation register, word counter and address reg­
ister are set as usual; the 7909 sets only the address 
register and a TCH trigger. A TCH address control trig­
ger is turned on in the multiplexor and a second B cycle 
is immediately initiated by "retain priority." 

The address portion of the TCH command contains 
the transfer-to address. This address is immediately set 
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into the buffer address register for the next memory 
reference. The address is also set into the channel loca­
tion counter/command counter to indicate the new I/O 

command sequence. 
The second BCW cycle places the new I/O command 

on the storage bus and the operation continues as ex­
plained preViously. This new command (Figure 82) 
may be a TCH command, another I/O command, or an 
indirectly addressed I/O command. 

Indirectly Addressed TCH Command 

An IA TCH command operates similar in.most respects 
to the normal TCH (Figure 82). During the first BCW 

cycle, the storage bus indicates not S, not 1, 2, and 18. 
As a result, both the "TCH address control" and "IA ad­
dress control" triggers are turned on. "Retain priority" 
circuitry in the multiplexor immediately initiates a sec­
ond BCW cycle and turns on the IND 18 trigger. The new 
(IA) memory reference is routed from SB(21-35) and set 
into the buffer address register. Note that "IND 18" con­
trol circuitry in the channel prevents setting of the loca­
tion counter/command counter during the first BCW 

cycle. 
At channel A3 time, the IA address control trigger is 

turned off but the reset to the TCH address control trig­
ger is blocked. "Retain priority" is maintained because 
of the TCH address control trigger and the multiplexor 
immediately requests the third BCW cycle. 

During the second BCW cycle, the address portion of 
this IA data word contains the actual TCH transfer-to 
address. This address is immediately set into the buffer 
address register for the third memory reference, and 
also set into the channel location counter/command 
counter to indicate the new I/O command sequence. 
The IND 18 trigger is turned off during the second BCW 

cycle which, in turn, allows the address control trigger 
to be turned off at channel A3 time. 

The third BCW cycle places the new I/O command on 
the storage bus and the operation continues as ex­
plained previously. 
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Figure 82. B Time Flow Chart (Sheet 1 of 2) 

1. Accept B time Requests from channel 
2. Set BAR to proper address 
3. Select the proper even/odd memory 
4. Route data and commands to proper system areas 
5. Test and perform TCH and IA functions 
6. Initiate subsequent B cycles where applicable 
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The I A Address Control trigger 
--z.-and TCH Address Control trigger 

will both be in the OFF status on 

~:":"":";:":";':"":"":''':''''';'':-Jfu' 7 "'oo,h >h. fI~ ,hort. 

Off 

Ch All(Dl) 
Reset BAR 

03.06.27.1(3H) 

ChAll(Dl) 
Reset Chan 
Store Tgr 

01.00.00.1 (3C) 

BO(D2) BDW Cycles - CAS set from Channel 

BCW 

CAS --BAR 
06.10.00.1 (2B) 

Core Storage 

...-z---::: Address Counter. 
BCW Cycles - CAS set from Channel 

Location Counter 
(7607) or Command 

Counter (7909). 

Even Memory RO 
Odd Memory RO 
Store prefix 

Controls ~ Store Decrement 
Store Tag 

(2D) 
(2E) 
(4D) 
(2F) 
(4E) 
(4F) Store Address 

01.00.00.1 
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B (BOW) Cycle 
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priority. 

From Sheet 1 

Write 

The multiplexor retains 
priority because the TCH 
address control tri gger 
was not turned off during 
the previous cycle. 

To Sheet 1 

Figure 82. B Time Flow Chart (Sheet 2 of 2) 
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This trigger will always be OFF on the first 
pass through the flow chart. 

! The trigger being turned ON prevents a second 
IA cycle. (Only one level of indirect addressing 
is allowed}. 
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1. Opn Reg. 
2. Word Cntr 

Data Channel 

~ 
3. Addr Cntr 1. Opn Reg 

2. Word Cntr 
3. Addr Cntr 

To Sheet 1 
(Start Next Sequential BCW Cycle) 

Yes 

Yes .¥'I--J~~P Channel Commands 

10RP 
IOSP 

.( Storage Bus 
/ (3-17) = 0 

Yes 

Data Channel 
Set 

1. Opn Reg 
2. Word Cntr 
3. Addr Cntr 

Step 
1. TciCCntr/ 
2 Cmmd Cntr 

No 

Data Channel 
Set 

1. Op,;-Reg 
2. Word Cntr 
3. Addr Cntr 

1. 
2 



Channel Cycle Times 

Three channel cycle time triggers (Figure 83) have 
been added in CPU-2 to supply 2.1 microsecond cycle 
times for data channel usage. While these three cycle 
time triggers are controlling the channel, the CPU waits 
in CPU L time until the channel operation is completed. 
The end of the channel operation is indicated by the 
"MF go" trigger which turns on the end-op trigger and 
sends the CPU into its next cycle time. 

Channell Time 

The channel I time trigger (Figure 83) is not the first 
channel cycle trigger to be turned on as might be 
thought. Instead, it is the last channel cycle time avail­
able (I time next) and performs mostly housekeeping 
functions (I time resets) in the channel. 

Channel E Time 

The channel E time trigger (Figure 83) provides a 2.1 
microsecond cycle for channel operations requiring a 
reference to core storage. These operations would in­
clude: enable, store channel, POD 54(RCH/LCH/RSC/STC), 

and channel traps. 
Circuit controls and timings are such that the chan­

nel EO time is aligned with the CPU 4 time. This align­
ment is necessary for POD 64 and enable instructions. 

The channel E time indicates the end of a channel 
operation. Because of this, the MF go trigger is turned 
on late in the channel E cycle to force an end-op con­
dition and allow the CPU program to continue with the 
next instruction. 

Channel L Time 

The channel L time trigger (Figure 83) provides 2.1 
microsecond cycles necessary for channel operations. 
These operations include all of the I/O select, sense, 
and test instructions. POD 54 instructions (RCH/LCH/ 

RSC/STC) also require L cycles prior to the time that the 
channel may signal a "proceed to E." 

Note that the channel L time trigger is turned on at 
channel 11 time which may be aligned with either a 
CPU 3 or 7 pulse. Synchronism is not performed as with 
the preceding channel E time trigger. 

Channel-CPU Cycle Time Controls 

Two triggers are used to control cycle times. The chan­
nel "L-E end" trigger controls channel cycle times, and 
the "MF go" trigger controls the CPU time. 

The channel L-E end trigger coming on signals the 
end of the channel operation. In some cases, the chan­
nel I time trigger is then turned on to accomplish 
housekeeping resets to the channel. 

The MF go trigger is normally on. At the start of the 
channel operation, the MF go trigger is turned off 
which, in turn, turns the "L end-op sync" trigger on 
(Figure 83). When the channel operation is completed, 
the MY go trigger is turned on again and the output of 
tlie "L end-op sync" trigger is gated to produce an "E 
or L end-op." This latter signal turns on the end-op 
trigger and allows the CPU to continue with the next 
instruction. 
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Figure 83. Channel Cycle Time Logic 
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L Time 
B Interrupt 

I Time 

E Time 

II Time Late 

Not L Time Late 
Not E Time Late 
A2(Dl) 

A1(Dl) 

A5(Dl) 

Chan A9(Dl) 
CP Set 

AO 

(3H) 

Mult Time 
Mult Time Error 
Lite On CE Panel 

, \ I 1;-

.: -:. 

08.00.22.2 Turn On MST Tgr 
~ln.:..:..te::..:.r~lo=ck::......:R=e=5e-,-t ___ ~ R(2E) 

Figure 84. Multiple Time Check Circuitry 

Multiple Cycle Time Error Detection 

Eight different cycle times and two separate clocks 
exist in the 7094 II. Only certain cycles can occur simul­
taneously without causing machine malfunctions. Ille­
gal cycle combinations turn on a multiple time trigger 
which immediately stops the computer and lights a 
mult time light on the console CE panel. 

Test circuitry (Figure 84) monitors the various CPU 

cycle times once every cycle. The top group of circuits 
checks for the following illegal combinations: I and E; 
L and I; Land E; B and I; and Band E. 

Note that Band L times are allowed to occur simul­
taneously. 

II time is allowed to occur Simultaneously with an E 
or L cycle. II time occurring without either an E or L 
time is detected at A03H• 

Clock alignment is checked at A03I• Every channel 
A9(DI) pulse should occur Simultaneously with either 
a CPU AI(DI) or A5(DI) pulse. An absence of these 
conditions turns on the multiple time trigger. 

There is no check on multiple channel cycle times. 

08.00.17.1 

Waveforms and Variable Delay Adjustments 
The oscilloscope being used must contain probes of 
the same length. Test the oscilloscope by placing both 
probes on the same point and noting if there is any 
difference in the time relationship between the A and 
B sweeps. 

The following adjustments should be made in the 
order presented because in some cases a later adjust­
ment is based on the proper earlier setting. It must be 
remembered, however, that many of these settings are 
nominal (starting point) settings and may vary slightly 
with later adjustments or from system to system. 

Initial Delay Settings 

All variable delays shall be set to the nominal values 
specified on Systems 00.92.01.0 (sheets "1 and 2) before 
proceeding with the following adjustments. Timings 
for F lines should be measured at the 1.5 volt level. 
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Odd and Even Clock Drive Pulses 

Odd and even clock drive pulses should meet all re­
quirements of the waveform shown in Figures 85 and 
86 when observed at 03A4C15F (Systems 08.00.44.1, 
IF). 

CP Set Pulses 

CP set pulses should meet all requirements ()f the wave­
form shown in Figure 87 when observed at 01AIC12C 
(Systems 02.15.6l.1,4D) and 01BIC20B (Systems 
02.15.61.2,5E). 

CPU-l CP Set Pulse Width Adjustment 

Connect the scope probe to the test points indicated 
below and adjust the CP set pulse width by means of 
the corresponding V7 delay card. The first two adjust­
ments determine the CP set pulse widths at the A and 
B gates, respectively. The last width adjustment is for 
setting the FACT triggers during arithmetic operations 
and is more critical than most other set pulses. 

TEST POINT LEVEL WIDTH DLY LOCATION SYSTEMS 

01A1E13E 
01B1E24B 
01B1F21C 

-F 50 ± 3 ns 01A1E14 (A-H) 02.15.61.1,4B 
-F 60 ± 3 ns 01B1E25 (B-G) 02.15.61.2,4A 
+F 40 ± 3ns 01B1E12 (D-E) 02.15.61.2,2B 

CP Set Pulse-Clock Pulse Alignment 

In this section the multiplexor CP set pulse is adjusted 
with respect to the A7(Dl) CPU-l pulse. This A7(Dl) 
pulse is already properly aligned to the CPU-2 pulse be­
cause of the VB delay 01D2E21 (Systems 02.15.42.1, 
3H). 

1. Synchronize the scope on "-F A6(D2)" at 01Al­
B14B (Systems 02.15.71.1, 4H). 

2. Connect scope probe A to "-F A7(Dl)" at 01Bl­
C05E (Systems 02.15.70.8, 41). 

3. Connect scope probe B to "+ F CP set" at 01Bl­
E24C (Systems 02.15.61.2, 5A). 

4. Adjust the variable delay control at 03B3D03 
(Systems 08.00.47.1, 4C) so that the fall of the set pulse 
occurs 10 nanoseconds before the fall of the "-F 
A7(Dl)" pulse. This 10 nanosecond timing is measured 
at the point where both pulses cross the F reference 
level (Figure 88). 

The optimum multiplexor delay line operation point 
is determined by running 9M8l. The setting is the mid­
point of the error free operating range of 9M81 running 
at normal voltage as the delay line is varied. After de­
termining the optimum operating point and without 
disturbing the delay line adjustment, remove and re­
install the delay line knob at 03B3D03 to read zero. 
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Ref -6v 

t1 = t2 within 7ns 

Figure 85. Clock Drive Pulse 

Figure 86. Even and Odd Clock Drive Pulses 

1 .5v Ref 

t1 = t2 within4ns 

Figure 87. CP Set Pulse 

Figure 88. CP Set Pulse--Clock Pulse Alignment 



CPU and Channel Memory Select Alignment 

Memory selection occurs with different clock pulses 
(and from different clocks) when initiated during either 
CPU or channel operations. These two memory selects 
must be aligned to insure proper operation when mem­
ory is being alternately used by both the CPU and 
channel. 

1. Synchronize the scope on "+F A6(Dl)" at 01Al­
B05G (Systems 02.15.70.7, 41). 

2. Connect scope probe A to "+ F A2(Dl)" at 01A4-
J24E (Systems 03.06.29.4, 3B). 

3. Connect scope probe B to "+F A7(Dl)" at 01A4-
J24G (Systems 03.06.29.4, 3A). 

4. Adjust the V7 delay card at 03A4J17 (A-H) (Sys­
tems 08.00.40.1, IG) so that the rise of the channel 
A2(Dl) dlyd pulse crosses the reference line at the 
same time as the A7(Dl)S pulse, ±3 nanoseconds as 
shown in Figure 89. 

Memory Select and MAR Bus Alignment 

This section checks that the MAR bus pulses precede 
the MAR set pulse by at least 20 nanoseconds. This 
check is made at both the even and odd memories. Fig­
ure 90 shows a representative pulse. Note that all of the 
test points are at the 7302-3 panels. 

1. Execute either a TRA (+0020) 77776, 0 or TRA 

77777, 0 as indicated below in continuous enter in­
struction. 

2. Synchronize the scope on "-FE time" at 
01A2E12P (Systems 08.00.19.3, 3A). This test point is 
in the CPU. 

3. Connect scope probe A to the MAR set point indi­
cated below. 

4. Connect scope probe B to the MAR bus points in­
dica ted below. 

5. All of the MAR bus lines should precede their re­
spective MAR set pulses by at least 20 nanoseconds. 

Figure 89. Memory Select Pulse Alignment 

Figure 90. Memory Select-MAR Bus Alignment 

CONDITIONS 
Instruction 
MAR set 
MAR4 
MAR 8 
MAR 12 
MAR 16 

EVEN MEMORY 
TRA 77776,0 

ODD MEMORY 
TRA 77777,0 

01B3C16D (01.11.01.1 -3B) Probe A 
01B3C16E (01.11.01.1 -3B) Probe B 
01B3C18E (01.11.01.1 -3F) Probe B 
01B3C20V (01.11.02.1 -3C) Probe B 
01B3C22V (01.11.02.1 -3G) Probe B 

01C3C16D (01.41.01.1 -3B) Probe A 
01C3C16E (01.41.01.1 -3B) Probe B 
01C3C18E (01.41.01.1 -3F) Probe B 
01C3C20V (01.41.02.1 -3C) Probe B 
01C3C22V (01.41.02.1 -3G) Probe B 
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Appendix A: Octal-Decimal Integer Conversion Table 

0000 
to 

0777 
(Octal) 

0000 
to 

0511 
(Decimal) 

Octal Decimal 
10000- 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480· 
60000 - 24576 
70000 - 28672 

1000 
to 

1777 
(Octal) 

98 

0512 
to 

1023 
(Decimal) 

0000 
0010 
0020 
0030 
0040 
0050 
0060 
0070 

0100 
0110 
0120 
0130 
0140 
0150 
0160 
0170 

0200 
0210 
0220 
0230 
0240 
0250 
0260 
0270 

0300 
0310 
0320 
0330 
0340 
0350 
0360 
0370 

1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 

1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 

1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 

1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 

0 1 2 

0000 0001 0002 
0008 0009 0010 
0016 0017 0018 
0024 0025 0026 
0032 0033 0034 
0040 0041 0042 
0048 0049 0050 
0056 0057 0058 

0064 0065 0066 
0072 0073 0074 
0080 0081 0082 
0088 0089 0090 
0096 00~7 0098 
0104 0105 0106 
0112 0113 0114 
0120 0121 0122 

0128 0129 0130 
0136 0137 0138 
0144 0145 0146 
0152 0153 0154 
0160 0161 0162 
0168 0169 0170 
0176 0177 0178 
0184 0185 0186 

0192 0193 0194 
0200 0201 0202 
0208 0209 0210 
0216 0217 0218 
0224 0225 0226 
0232 0233 0234 
0240 0241 0242 
0248 0249 0250 

0 1 2 

0512 0513 0514 
0520 0521 0522 
0528 0529 0530 
0536 0537 0538 
0544 0545 0546 
0552 05.53 0554 
0560 0561 0562 
0568 0569 0570 

0576 0577 0578 
0584 0585 0586 
0592 0593 0594 
0600 0601 0602 
0608 0609 0610 
0616 0617 0618 
0624 0625 0626 
0632 0633 0634 

0640 0641 0642 
0648 0649 0650 
0656 0657 0658 
0664 0665 0666 
0672 0673 0674 
0680 0681 0682 
0688 0689 0690 
0696 0697 0698 

0704 0705 0706 
0712 0713 0714 
0720 0721 0722 
0728 0729 0730 
0736 0737 0738 
0744 0745 0746 
0752 0753 0754 
0760 0761 0762 

3 4 5 6 7 

0003 0004 0005 0006 0007 
0011 0012 0013 0014 0015 
0019 0020 0021 0022 0023 
0027 0028 0029 0030 0031 
0035 0036 0037 0038 0039 
0043 0044 0045 0046 0047 
0051 0052 0053 0054 0055 
0059 0060 0061 0062 0063 

0067 0068 0069 0070 0071 
0075 0076 0077 0078 0079 
0083 0084 0085 0086 0087 
0091 0092 0093 0094 0095 
0099 0100 0101 0102 0103 
0107 0108 0109 0110 0111 
0115 0116 0117 0118 0119 
0123 0124 0125 0126 0127 

0131 0132 0133 0134 0135 
0139 0140 0141 0142 0143 
0147 0148 0149 0150 0151 
0155 0156 0157 0158 0159 
0163 0164 0165 0166 0167 
0171 0172 0173 0174 0175 
0179 0180 0181 0182 0183 
0187 0188 0189 0190 0191 

0195 0196 0197 0198 0199 
0203 0204 0205 0206 0207 
0211 0212 0213 0214 0215 
0219 0220 0221 0222 0223 
0227 0228 0229 0230 0231 
0235 0236 0237 0238 0239 
0243 0244 0245 0246 0247 
0251 0252 0253 0254 0255 

3 4 5 6 7 

0515 0516 0517 0518 0519 
0523 0524 0525 0526 0527 
0531 0532 0533 0534 0535 
0539 0540 0541 0542 0543 
0547 0548 0549 0550 0551 
0555 0556 0557 0558 0559 
0563 0564 0565 0566 0567 
0571 0572 0573 0574 0575 

0579 0580 0581 0582 0583 
0587 0588 0589 0590 0591 
0595 0596 0597 0598 0599 
0603 0604 0605 0606 0607 
0611 0612 0613 0614 0615 
0619 0620 0621 0622 0623 
0627 0628 0629 0630 0631 
0635 0636 0637 0638 0639 

0643 0644 0645 0646 0647 
0651 0652 0653 0654 0655 
0659 0660 0661 0662 0663 
0667 0668 0669 0670 0671 
0675 0676 0677 0678 0679 
0683 0684 0685 0686 0687 
0691 0692 0693 0694 0695 
0699 0700 0701 0702 0703 

0707 0708 0709 0710 0711 
0715 0716 0717 0718 0719 
0723 0724 0725 0726 0727 
0731 0732 0733 0734 0735 
0739 0740 0741 0742 0743 
0747 0748 0749 0750 0751 
0755 0756 0757 0758 0759 
0763 0764 0765 0766 0767 

0 1 2 3 4 5 6 7 

0400 0256 0257 0258 0259 0260 0261 0262 0263 
0410 0264 0265 0266 0267 0268 0269 0270 0271 
0420 0272 0273 0274 0275 0276 0277 0278 0279 
0430 0280 0281 0282 0283 0284 0285 0286 0287 
0440 0288 0289 0290 0291 0292 0293 0294 0295 
0450 0296 0297 0298 0299 0300 0301 0302 0303 
0460 0304 0305 0306 0307 0308 0309 0310 0311 
0470 0312 0313 0314 0315 0316 0317 0318 0319 

0500 0320 0321 0322 0323 0324 0325 0326 0327 
0510 0328 0329 0330 0331 0332 0333 0334 0335 
0520 0336 0337 0338 0339 0340 0341 0342 0343 
0530 0344 0345 0346 0347 0348 0349 0350 0351 
0540 0352 0353 0354 0355 0356 0357 0358 0359 
0550 0360 0361 0362 0363 0364 0365 0366 0367 
0560 0368 0369 0370 0371 0372 0373 0374 0375 
0570 0376 0377 0378 0379 0380 0381 0382 0383 

0600 0384 0385 0386 0387 0388 0389 0390 0391 
0610 0392 0393 0394 0395 0396 0397 0398 0399 
0620 0400 0401 0402 0403 0404 0405 0406 0407 
0630 0408 0409 0410 0411 0412 0413 0414 0415 
0640 0416 0417 0418 0419 0420 0421 0422 0423 
0650 0424 0425 0426 0427 0428 0429 0430 0431 
0660 0432 0433 0434 0435 0436 0437 0438 0439 
0670 0440 0441 0442 0443 0444 0445 0446 0447 

0700 0448 0449 0450 0451 0452 0453 0454 0455 
0710 0456 0457 0458 0459 0460 0461 0462 0463 
0720 0464 0465 0466 0467 0468 0469 0470 0471 
0730 0472 0473 0474 0475 0476 0477 0478 0479 
0740 0480 0481 0482 0483 0484 0485 0486 0487 
0750 0488 0489 0490 0491 0492 0493 0494 0495 
0760 0496 0497 0498 0499 0500 0501 0502 0503 
0770 0504 0505 0506 0507 0508 0509 0510 0511 

0 1 2 3 4 5 6 7 

1400 0768 0769 0770 0771 077~ 0773 0774 0775 
1410 0776 0777 0778 0779 0780 0781 0782 0783 
1420 0784 0785 0786 0787 0788 0789 0790 0791 
1430 0792 0793 0794 0795 0796 0797 0798 0799 
1440 0800 0801 0802 0803 0804 0805 0806 0807 
1450 0808 0809 0810 0811 0812 0813 0814 0815 
1460 0816 0817 0818 0819 0820 0821 0822 0823 
1470 0824 0825 0826 0827 0828 0829 0830 0831 

1500 0832 0833 0834 0835 0836 0837 0838 0839 
1510 0840 0841 0842 0843 0844 0845 0846 0847 
1520 0848 0849 0850 0851 0852 0853 0854 0855 
1530 0856 0857 0858 0859 0860 0861 0862 0863 
1540 0864 0865 0866 0867 0868 0869 0870 0871 
1550 0872 0873 0874 0875 0876 0877 0878 0879 
1560 0880 0881 0882 0883 0884 0885 0886 0887 
1570 0888 0889 0890 0891 0892 0893 0894 0895 

1600 0896 0897 0898 0899 0900 0901 0902 0903 
1610 0904 0905 0906 0907 0908 0909 0910 0911 
1620 0912 0913 0914 0915 0916 0917 0918 0919 
1630 0920 0921 0922 0923 0924 0925 0926 0927 
1640 0928 0929 0930 0931 0932 0933 0934 0935 
1650 0936 0937 0938 0939 0940 0941 0942 0943 
1660 0944 0945 0946 0947 0948 0949 0950 0951 
1670 0952 0953 0954 0955 0956 0957 0958 0959 

1700 0960 0961 0962 0963 0964 0965 0966 0967 
1710 0968 0969 0970 0971 0972 0973 0974 0975 
1720 0976 0977 0978 0979 0980 0981 0982 0983 
1730 0984 0985 0986 0987 0988 0989 0990 0991 
1740 0992 0993 0994 0995 0996 0997 0998 0999 
1750 1000 1001 1002 1003 1004 1005 1006 1007 
1760 1008 1009 1010 1011 1012 1013 1014 1015 
1770 1016 1017 1018 1019 1020 1021 1022 1023 



Octal-Decimal Integer Conversion Table (Continued) 

0 1 2 3 4 5 6 7 I 

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400 
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410 
2020 1040 1041 1042 1043 1044 1045 1046 1047 2420 
2030 1048 1049 1050 1051 1052 1053 1054 1055 2430 
2040 1056 1057 1058 1059 1060 1061 1062 1063 2440 
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450 
2060 1072 1073 1074 1075 1076 1077 1078 1079 2460 
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470 

2100 1088 1089 1090 1091 1092 1093 1094 1095 2500 
2110 1096 1097 1098 1099 1100 1101 1102 1103 2510 
2120 1104 1105 1106 1107 1108 1109 1110 1111 2520 
2130 1112 1113 1114 1115 1116 1117 1118 1119 2530 
2140 1120 1121 1122 1123 1124 1125 1126 1127 2540 
2150 1128 1129 1130 1131 1132 1133 1134 1135 2550 
2160 1136 1137 1138 1139 1140 1141 1142 1143 2560 
2170 1144 1145 1146 1147 1148 1149 1150 li51 2570 

2200 1152 1153 1154 1155 1156 1157 1158 1159 2600 
2210 1160 1161 1162 1163 1164 1165 1166 1167 2610 
2220 1168 1169 1170 1171 1172 1173 1174 1175 2620 
2230 1176 1177 1178 1179 1180 1181 1182 1183 2630 
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640 
2250 1192 1193 1194 1195 1196 1197 1198 1199 2650 
2260 1200 1201 1202 1203 1204 1205 1206 1207 2660 
2270 1208 1209 1210 1211 1212 1213 1214 1215 2670 

2300 1216 1217 1218 1219 1220 1221 1222 1223 2700 
2310 1224 1225 1226 1227 1228 1229 1230 1231 2710 
2320 1232 1233 1234 1235 1236 1237 1238 1239 2720 
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730 
2340 1248 1249 1250 1251 1252 1253 1254 1255 2740 
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750 
2360 1264 1265 1266 1'267 1268 1269 1270 1271 2760 
2370 1272 1273 1274 1275 1276 1277 1278 1279 2770 

0 1 2 3 4 5 6 7 

3000 1536 1537 1538 1539 1540 1541 1542 1543 3400 
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410 
3020 1552 1553 1554 1555 1556 1557 1558 1559 3420 
3030 1560 1561 1562 1563 1564 1565 1566 1567 3430 
3040 1568 1569 1570 1571 1572 1573 1574 1575 3440 
3050 1576 1577 1578 1579 1580 1581 1582 1583 3450 
3060 1584 1585 1586 1587 1588 1589 1590 1591 3460 
3070 1592 1593 1594 1595 1596 1597 1598 1599 3470 

3100 1600 1601 1602 1603 1604 1605 1606 1607 3500 
3110 1608 1609 1610 1611 1612 1613 1614 1615 3510 
3120 1616 1617 1618 1619 1620 1621 1622 1623 3520 
3130 1624 1625 1626 1627 1628 1629 1630 1631 3530 
3140 1632 1633 1634 1635 1636 1637 1638 1639 3540 
3150 1640 1641 1642 1643 1644 1645 1646 1647 3550 
3160 1648 1649 1650 1651 1652 1653 1654 1655 3560 
3170 1656 1657 1658 1659 1660 1661 1662 1663 3570 

3200 1664 1665 1666 1667 1668 1669 1670 1671 3600 
3210 1672 1673 1674 1675 1676 1677 1678 1679 3610 
3220 1680 1681 1682 1683 1684 1685 1686 1687 3620 
3230 1688 1689 1690 1691 1692 1693 1694 1695 3630 
3240 1696 1697 1698 1699 1700 1701 1702 1703 3640 
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650 
3260 1712 1713 1714 1715 1716 1717 1718 1719 3660 
3270 1720 1721 1722 1723 1724 1725 1726 1727 3670 

3300 1728 1729 1730 1731 1732 1733 1734 1735 3700 
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710 
3320 1744 1745 1746 1747 1748 1749 1750 1751 3720 
3330 1752 1753 1754 1755 1756 1757 1758 1759 3730 
3340 1760 1761 1762 1763 1764 1765 1766 1767 3740 
3350 1768 1769 1770 1771 1772 1773 1774 1775 3750 
3360 1776 1777 1778 1779 1780 1781 1782 1783 3760 
3370 1784 1785 1786 1787 1788 1789 1790 1791 3770 

0 1 2 3 

1280 1281 1282 1283 
1288 1289 1290 1291 
1296 1297 1298 1299 
1304 1305 1306 1307 
1312 1313 1314 1315 
1320 1321 1322 1323 
1328 1329 1330 1331 
1336 1337 1338 1339 

1344 1345 1346 1347 
1352 1353 1354 1355 
1360 1361 1362 1363 
1368 1369 1370 1371 
1376 1377 1378 1379 
1384 1385 1386 1387 
1392 1393 1394 1395 
1400 1401 1402 1403 

1408 1409 1410 1411 
1416 1417 1418 1419 
1424 1425 1426 1427 
1432 1433 1434 1435 
1440 1441 1442 1443 
1448 1449 1450 1451 
1456 1457 1458 1459 
1464 1465 1466 1467 

1472 1473 1474 1475 
1480 1481 1482 1483 
1488 1489 1490 1491 
1496 1497 1498 1499 
1504 1505 1506 1507 
1512 1513 1514 1515 
1520 1521 1522 1523 
1528 1529 1530 1531 

0 1 2 3 

1792 1793 1794 1795 
1800 1801 1802 1803 
1808 1809 1810 1811 
1816 1817 1818 1819 
1824 1825 1826 1827 
1832 1833 1834 1835 
1840 1841 1842 1843 
1848 1849 1850 1851 

1856 1857 1858 1859 
1864 1865 1866 1867 
1872 1873 1874 1875 
1880 1881 1882 1883 
1888 1889 1890 1891 
1896 1897 1898 1899 
1904 1905 1906 1907 
1912 1913 1914 1915 

1920 1921 1922 1923 
1928 1929 1930 1931 
1936 1937 1938 1939 
1944 1945 1946 1947 
1952 1953 1954 1955 
1960 1961 1962 1963 
1968 1969 1970 1971 
1976 1977 1978 1979 

1984 1985 1986 1987 
1992 1993 1994 1995 
2000 2001 2002 2003 
2008 2009 2010 2011 
2016 2017 2018 2019 
2024 2025 2026 2027 
2032 2033 2034 2035 
2040 2041 2042 2043 

4 5 

1284 1285 
1292 1293 
1300 1301 
1308 1309 
1316 1317 
1324 1325 
1332 1333 
1340 1341 

1348 1349 
1356 1357 
1364 1365 
1372 1373 
1380 1381 
1388 1389 
1396 1397 
1404 1405 

1412 1413 
1420 1421 
1428 1429 
1436 1437 
1444 1445 
1452 1453 
1460 1461 
1468 1469 

1476 1477 
1484 1485 
1492 1493 
1500 1501 
1508 1509 
1516 1517 
1524 1525 
1532 1533 

4 5 

1796 1797 
1"804 1805 
1812 1813 
1820 1821 
1828 1829 
1836 1837 
1844 1845 
1852 1853 

1860 1861 
1868 1869 
1876 1877 
1884 1885 
1892 1893 
1900 1901 
1908 1909 
1916 1917 

1924 1925 
1932 1933 
1940 1941 
1948 1949 
1956 1957 
1964 1965 
1972 1973 
1980 1981 

1988 1989 
1996 1997 
2004 2005 
2012 2013 
2020 2021 
2028 2029 
2036 2037 
2044 2045 

6 

1286 
1294 
1302 
1310 
1318 
1326 
1334 
1342 

1350 
1358· 
1366 
1374 
1382 
1390 
1398 
1406 

1414 
1422 
1430 
1438 
1446 
1454 
1462 
1470 

1478 
1486 
1494 
1502 
1510 
1518 
1526 
1534 

6 

1798 
1806 
1814 
1822 
1830 
1838 
1846 
1854 

1862 
1870 
1878 
1886 
1894 
1902 
1910 
1918 

1926 
1934 
1942 
1950 
1958 
1966 
1974 
1982 

1990 
1998 
2006 
2014 
2022 
2030 
2038 
2046 

7 

1287 
1295 
1303 
1311 
1319 
1327 
1335 
1343 

1351 
1359 
1367 
1375 
1383 
1391 
1399 
1407 

1415 
1423 
1431 
1439 
1447 
1455 
1463 
1471 

1479 
1487 
1495 
1503 
1511 
1519 
1527 
1535 

7 

1799 
1807 
1815 
1823 
1831 
1839 
1847 
1855 

1863 
1871 
1879 
1887 
1895 
1903 
1911 
1919 

1927 
1935 
1943 
1951 
1959 
1967 
1975 
1983 

1991 
1999 
2007 
2015 
2023 
2031 
2039 
2047 

2000 1024 
to to 

2777 1535 
(Octal) (Decimal) 

Octal Decimal 
10000 - .4096 
20000 - 8192 
30000 - 12288 
.40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

3000 
to 

3777 
(Octal) 

1536 
to 

2047 
(Decimal) 

Octal-Decimal Integer Conversion 99 



Octal-Decimal Integer Conversion Table (Continued) 

.(000 
to 

,(777 
(Odal) 

20.(8 
to 

2559 
(Decimal) 

Octal Decimal 
10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

5000 
to 

5777 
(Odal) 

100 

2560 
to 

3071 
(Decimal) 

4000 
4010 
4020 
4030 
4040 
4050 
4060 
4070 

4100 
4110 
4120 
4130 
4140 
4150 
4160 
4170 

4200 
4210 
4220 
4230 
4240 
4250 
4260 
4270 

4300 
4310 
4320 
4330 
4340 
4350 
4360 
4370 

5000 
5010 
5020 
5030 
5040 
5050 
5060 
5070 

5100 
5110 
5120 
5130 
5140 
5150 
5160 
5170 

5200 
5210 
5220 
5230 
5240 
5250 
5260 
5270 

5300 
5310 
5320 
5330 
5340 
5350 
5360 
5370 

0 1 2 

2048 2049 2050 
2056 2057 2058 
2064 2065 2066 
2072 2073 2074 
2080 2081 2082 
2088 2089 2090 
2096 2097 2098 
2104 2105 2106 

2112 2113 2114 
2120 2121 2122 
2128 2129 2130 
2136 2137 2138 
2144 2145 2146 
2152 2153 2154 
2160 2161 2162 
2168 2169 2170 

2176 2177 2178 
2184 2185 2186 
2192 2193 2194 
2200 2201 2202 
2208 2209 2210 
2216 2217 2218 
2224 2225 2226 
2232 2233 2234 

2240 2241 2242 
2248 2249 2250 
2256 2257 2258 
2264 2265 2266 
2272 2273 2274 
2280 2281 2282 
2288 2289 2290 
2296 2297 2298 

0 1 2 

2560 2561 2562 
2568 2569 2570 
2576 2577 2578 
2584 2585 2586 
2592 2593 2594 
2600 2601 2602 
2608 2609 2610 
2616 2617 2618 

2624 2625 2626 
2632 2633 2634 
2640 2641 2642 
2648 2649 2650 
2656 2657 2658 
2664 2665 2666 
2672 2673 2674 
2680 2681 2682 

2688 2689 2690 
2696 2697 2698 
2704 2705 2706 
2712 2713 2714 
2720 2721 2722 
2728 2729 2730 
2736 2737 2738 
2744 2745 27'6 

2752 2753 2754 
2760 2761 2762 
2768 2769 2770 
2776 2777 2778 
2':84 2785 2786 
2792 2793 2794 
2800 2801 2802 
2808 2809 2810 

3 4 5 6 7 

2051 2052 2053 2054 2055 
2059 2060 2061 2062 2063 
2067 2068 2069 2070 2071 
2075 2076 2077 2078 2079 
2083 2084 2085 2086 2087 
2091 2092 2093 2094 2095 
2099 2100 2101 2102 2103 
2107 2108 2109 2110 2111 

2115 2116 2117 2118 2119 
2123 2124 2125 2126 2127 
2131 2132 2133 2134 2135 
2139 2140 2141 2142 2143 
2147 2148 2149 2150 2151 
2155 2156 2157 2158 2159 
2163 2164 2165 2166 2167 
2171 2172 2173 2174 2175 

2179 2180 2181 2182 2183 
2187 2188 2189 2190 2191 
219.5 2196 2197 2198 2199 
2203 2204 2205 2206 2207 
2211 2212 2213 2214 2215 
2219 2220 2221 2222 2223 
2227 2228 2229 2230 2231 
2235 2236 2237 2238 2239 

2243 2244 2245 2246 2247 
2251 2252 2253 2254 2255 
2259 2260 2261 2262 2263 
2267 2268 2269 2270 2271 
2275 2276 2277 2278 2279 
2283 2284 2285 2286 2287 
2291 2292 2293 2294 2295 
2299 2300 2301 2302 2303 

3 4 5 6 7 

2563 2564 2565 2566 2567 
2571 2572 2573 2574 2575 
2579 2580 2581 2582 2583 
2587 2588 2589 2590 2591 
2595 2596 2597 2598 2599 
2603 2604 2605 2606 2607 
2611 2612 2613 2614 2615 
2619 2620 2621 2622 2623 

2627 2628 2629 2630 2631 
2635 2636 2637 2638 2639 
2643 2644 2645 2646 2647 
2651 2652 2653 2654 2655 
2659 2660 26tH 2662 2663 
2667 2668 2669 2670 2671 
2675 2676 2677 2678 2679 
2683 2684 2685 2686 2687 

2691 2692 2693 2694 2695 
2699 2700 2701 2702 2703 
2707 2708 2709 2710 2711 
2715 2716 2717 2718 2719 
2723 2724 2725 2726 2727 
2731 2732 2733 2734 2735 
2739 2740 2741 2742 2743 
2747 2748 2749 2750 2751 

2755 2756 2757 2758 2759 
2763 2764 2765 2766 2767 
2771 2772 2773 2774 2775 
2779 2780 2781 2782 2783 
2787 2788 2789 2790 2791 
2795 2796 2797 2798 2799 
2803 2804 2805 2806 2807 
2811 2812 2813 2814 2815 

0 1 2 3 4 5 6 7 

4400 2304 2305 2306 2307 2308 2309 2310 2311 
4410 2312 2313 2314 2315 2316 2317 2318 2319 
4420 2320 2~21 2322 2323 2324 2325 2326 2327 
4430 2328 2329 2330 2331 2332 2333 2334 2335 
4440 2336 2337 2338 2339 2340 2341 2342 2343 
4450 2344 2345 2346 2347 2348 2349 2350 2351 
4460 2352 2353 2354 2355 2356 2357 2358 2359 
4470 2360 2361 2362 2363 2364 2365 2366 2367 

4500 2368 2369 2370 2371 2372 2373 2374 2375 
4510 2376 2377 2378 2379 2380 2381 2382 2383 
4520 2384 2385 2386 2387 2388 2389 2390 2391 
4530 2392 2393 2394 2395 2396 2397 2398 2399 
4540 2400 2401 2402 2403 2404 2405 2406 2407 
4550 2408 2409 2410 2411 2412 2413 2414 2415 
4560 2416 2417 2418 2419 2420 2421 2422 2423 
4570 2424 2425 2426 2427 2428 2429 2430 2431 

4600 2432 2433 2434 2435 2436 2437 2438 2439 
4610 2440 2441 2442 2443 2444 2445 2446 2447 
4620 2448 2449 2450 2451 2452 2453 2454 2455 
4630 2456 2457 2458 2459 2460 2461 2462 2463 
4640 2464 2465 2466 2467 2468 2469 2470 2471 
4650 2472 2473 2474 2475 2476 2477 2478 2479 
4660 2480 2481 2482 2483 2484 2485 2486 2487 
4670 2488 2489 2490 2491 2492 2493 2494 2495 

4700 2496 2497 2498 2499 2500 2501 2502 2503 
4710 2504 2505 2506 2507 2508 2509 2510 2511 
4720 2512 2513 2514 2515 2516 2517 2518 2519 
4730 2520 2521 2522 2523 2524 .2525 2526 2527 
4740 2528 2529 2530 2531 2532 2533 2534 2535 
4750 2536 2537 2538 2539 2540 2541 2542 2543 
4760 2544 2545 2546 2547 2548 2549 2550 2551 
4770 2552 2553 2554 2555 2556 2557 2558 2559 -_. 

0 1 2 3 4 5 6 7 

5400 2816 2817 2818 2819 2820 2821 2822 2823 
5410 2824 2825 2826 2827 2828 2829 2830 2831 
5420 2832 2833 2834 2835 2836 2837 2838 2839 
5430 2840 2841 2842 2843 2844 2845 2846 2847 
5440 2848 2849 2850 2851 2852 2853 2854 2855 
5450 2856 2857 2858 2859 2860 2861 2862 2863 
5460 2864 2865 2866 2867 2868 2869 2870 2871 
5470 2872 2873 2874 2875 2876 2877 2878 2879 

5500 2880 2881 2882 2883 2884 2885 2886 2887 
5510 2888 2889 2890 2891 2892 2893 2894 2895 
5520 2896 2897 2898 2899 2900 2901 2902 2903 
5530 2904 2905 2906 2907 2908 2909 2910 2911 
5540 2912 2913 2914 2915 2916 2917 2918 2919 
5550 2920 2921 2922 2923 2924 2925 2926 2927 
5560 2928 2929 2930 2931 2932 2933 2934 2935 
5570 2936 2937 2938 2939 2940 2941 2942 2943 

5600 2944 2945 2946 2947 2948 2949 2950 2951 
5610 2952 2953 2954 2955 2956 2957 2958 2959 
5620 2960 296.1 2962 2963 2964 2965 2966 2967 
5630 2968 2969 2970 2971 2972 2973 2974 2975 
5640 2976 2977 2978 2979 2980 2981 2982 2983 
5650 2984 2985 2986 2987 2988 2989 2990 2991 
5660 2992 2993 2994 2995 2996 2997 2998 2999 
5670 3000 3001 3002 3003 3004 3005 3006 3007 

5700 3008 3009 3010 3011 3012 3013 3014 3015 
5710 3016 3017 3018 3019 3020 3021 3022 3023 
5720 3024 3025 3026 3027 3028 3029 3030 3031 
5730 3032 3033 3034 3035 3036 3037 3038 3039 
5740 3040 3041 3042 3043 3044 3045 3046 3047 
5750 3048 3049 3050 3051 3052 3053 3054 3055 
5760 3056 3057 3058 3059 3060 3061 3062 3063 
5770 3064 3065 3066 3067 '3068 3069 3070 3071 



Octal-Decimal Integer Conversion Table (Continued) 

0 1 2 3 4 5 6 7 

6000 3072 3073 3074 3075 3076 3077 3078 3079 6400 
6010 3080 3081 3082 3083 3084 3085 3086 3087 6410 
6020 3088 3089 3090 3091 3092 3093 3094 3095 6420 
6030 3096 3097 3098 3099 3100 3101 3102 3103 6430 
6040 3104 3105 3106 3107 3108 3109 3110 3111 6440 
6050 3112 3113 3114 3115 3116 3117 3118 3119 6450 
6060 3j20 3121 3122 3123 3124 3125 3126 3127 6460 
6070 3128 3129 3130 3131 3132 3133 3134 3135 6470 

6100 3136 3137 3138 3139 3140 3141 3142 3143 6500 
6110 3144 3145 3146 3147 3148 3149 3150 3151 6510 
6120 3152 3153 3154 3155 3156 3157 3158 3159 6520 
6130 3160 3161 3162 3163 3164 3165 3166 3167 6530 
6140 3168 3169 3170 3171 3172 3173 3174 3175 6540 
6150 3176 3177 3178 3179 3180 3181 3182 3183 6550 
6160 3184 3185 3186 3187 3188 3189 3190 3191 6560 
6170 3192 3193 3194 3195 3196 3197 3198 3199 6570 

6200 3200 3201 3202 3203 3204 3205 3206 3207 6600 
6210 3208 3209 3210 3211 3212 3213 3214 3215 6610 
6220 3216 3217 3218 3219 3220 3221 3222 3223 6620 
6230 3224 3225 3226 3227 3228 3229 3230 3231 6630 
6240 3232 3233 3234 3235 3236 3237 3238 3239 6640 
6250 3240 3241 3242 3243 3244 3245 3246 3247 6650 
6260 3248 3249 3250 3251 3252 3253 3254 3255 6660 
6270 3256 3257 3258 3259 3260 3261 326~ 3263 6670 

6300 3264 3265 3266 3267 3268 3269 3270 3271 6700 
6310 3272 3273 3274 3275 3276 3277 3278 3279 6710 
6320 3280 3281 3282 3283 3284 3285 3286 3287 6720 
6330 3288 3289 3290 3291 3292 3293 3294 3295 6730 
6340 3296 3297 3298 3299 3300 3301 3302 3303 6740 
6350 3304 3305 3306 3307 3308 3309 3310 3311 6750 
6360 3312 3313 3314 3315 3316 3317 3318 3319 6760 
6370 3320 3321 3322 3323 3324 3325 3326 3327 6770 

0 1 2 3 4 5 6 7 

7000 3584 3585 3586 3587 3588 3589 3590 3591 
1.010 3592 3593 3594 3595 3596 3597 3598 3599 
7'020 3600 3601 3602 3603 3604 3605 3606 3607 
7030 3608 3609 3610 3611 3612 3613 3614 3615 
7040 3616 3617 3618 3619 3620 3621 3622 3623 
7050 3624 3625 3626 3627 3628 3629 3630 3631 
7060 3632 3633 3634 3635 3636 3637 3638 3639 
7070 3640 3641 3642 3643 3644 3645 3646 3647 

7400 
7410 
7420 
7430 
7440 
7450 
7460 
7470 

7100 3648 3649 3650 3651 3652 3653 3654 3655 7500 
7110 3656 3657 3658 3659 3660 3661 3662 3663 7510 
7120 3664 3665 3666 3667 3668 3669 3670 3671 7520 
7130 3672 3673 3674 3675 3676 3677 3678 3679 
7140 3680 3681 3682 3683 3684 3685 3686 3687 

7530 
7540 

7150 3688 3689 3690 3691 3692 3693 3694 3695 7550 
7160 3696 3697 3698 3699 3700 3701 3702 3703 7560 
7170 3704 3705 3706 3707 3708 3709 3710 3711 7570 

7200 3712 3713 3714 3715 3716 3717 3718 3719 7600 
7210 3720 3721 3722 3723 3724 3725 3726 3727 7610 
7220 3728 3729 3730 3731 3732 3733 3734 3735 7620 
7230 3736 3737 3738 3739 3740 3741 3742 3743 7630 
7240 3744 3745 3746 3747 3748 3749 3750 3751 7640 
7250 3752 3753 3754 3755 3756 3757 3758 3759 7650 
7260 3760 3761 3762 3763 3764 3765 3766 3767 7660 
7270 3768 3769 3770 3771 3772 3773 3774 3775 7670 

7300 3776 3777 3778 3779 3780 3781 3782 3783 7700 
7310 3784 37-85 3786 3787 3788 3789 3790 3791 7710 
7320 3792 3793 3794 3795 3796 3797 3798 3799 7720 
7330 3800 3801 3802 3803 3804 3805 3806 3807 7730 
7340 38{)8 3809 3810 3811 3812 3813 3814 3815 7740 
7350 3816 3817 3818 3819 3820 3821 3822 3823 7750 
7360 3824 3825 3826 3827 3828 3829 3830 3831 7760 
7370 3832 3833 3834 3835 3836 3837 3838 3839 7770 

0 1 2 3 

3328 3329 3330 3331 
3336 3337 3338 3339 
3344 3345 3346 3347 
3352 3353 3354 3355 
3360 3361 3362 3363 
3368 3369 3370 3371 
3376 3377 3378 3379 
3384 3385 3386 3387 

3392 3393 3394 3395 
3400 3401 3402 3403 
3408 3409 3410 3411 
3416 3417 3418 3419 
3424 3425 3426 3427 
3432 3433 3434 3435 
3440 3441 3442 3443 
3448 3449 3450 3451 

3456 3457 3458 3459 
3464 3465 3466 3467 
3472 3473 3474 3475 
3480 3481 3482 3483 
3488 3489 3490 3491 
3496 3497 3498 3499 
3504 3505 3506 3507 
3512 3513 3514 3515 

3520 3521 3522 3523 
3528 3529 3530 3531 
3536 3537 3538 3539 
3544 3545 3546 3547 
3552 3553 3554 3555 
3560 3561 3562 3563 
3568 3569 3570 3571 
3576 3577 3578 3579 

0 1 2 3 

3840 3841 3842 3843 
3848 3849 3850 3851 
3856 3857 3858 3859 
3864 3865 3866 3867 
3872 3873 3874 3875 
3880 3881 3882 3883 
3888 3889 3890 3891 
3896 3897 3898 3899 

3904 3905 3906 3907 
3912 3913 3914 3915 
3920 3921 3922 3923 
3928 3929 3930 3931 
3936 3937 3938 3939 
3944 3945 3946 3947 
3952 3953 3954 3955 
3960 3961 3962 3963 

3968 3969 3970 3971 
3976 3977 3978 3979 
3984 3985 3986 3987 
3992 3993 3994 3995 
4000 4001 4002 4003 
4008 4009 4010 4011 
4016 4017 4018 4019 
4024 4025 4026 4027 

4032 4033 4034 4035 
4040 4041 4042 4043 
4048 4049 4050 4051 
4056 4057 4058 4059 
4064 4065 4066 4067 
4072 4073 4074 4075 
4080 4081 4082 4083 
4088 4089 4090 4091 

4 5 6 

3332 3333 3334 
3340 3341 3342 
3348 3349 3350 
3356 3357 3358 
3364 3365 3366 
3372 3373 3374 
3380 3381 3382 
3388 3389 3390 

3396 3397 3398 
3404 3405 3406 
3412 3413 3414 
3420 3421 3422 
3428 3429 3430 
3436 3437 3438 
3444 3445 3446 
3452 3453 3454 

3460 3461 3462 
3468 3469 3470 
3476 3477 3478 
3484 3485 3486 
3492 3493 3494 
3500 3501 3502 
3508 3509 3510 
3516 3517 3518 

3524 3525 3526 
3532 3533 3534 
3540 3541 3542 
3548 3549 3550 
3556 3557 3558 
3564 3565 3566 
3572 3573 3574 
3580 3581 3582 

4 5 6 

3844 3845 3846 
3852 3853' 3854 
3860 3861 3862 
3868 3869 3870 
3876 3877 3878 
3884 3885 3886 
3892 3893 3894 
3900 3901 3902 

3908 3909 3910 
3916 3917 3918 
3924 3925 3926 
3932 3933 3934 
3940 3941 3942 
3948 3949 3950 
3956 3957 3958 
3964 3965 3966 

3972 3973 3974 
3980 398r 3982 
3988 3989 3990 
3996 3997 3998 
4004 4005 4006 
4012 4013 4014 
4020 4021 4022 
4028 4029 4030 

4036 4037 4038 
4044 4045 4046 
4052 4053 4054 
4060 4061 4062 
4068 4069 4070 
4076 4077 4078 
4084 4085 4086 
4092 4093 4094 

7 

3335 
3343 
3351 
3359 
3367 
3375 
3383 
3391 

3399 
3407 
3415 
3423 
3431 
3439 
3447 
3455 

3463 
3471 
3479 
3487 
3495 
3503 
3511 
3519 

3527 
3535 
3543 
3551 
3559 
3567 
3575 
3583 

7 

3847 
3855 
3863 
3871 
3879 
3887 
3895 
3903 

3911 
3919 
3927 
3935 
3943 
3951 
3959 
3967 

3975 
3983 
3991 
3999 
4007 
4015 
4023 
4031 

4039 
4047 
4055 
4063 
4071 
4079 
4087 
40~5 

6000 
to 

6777 
(Octal) 

3072 
to 

3583 
(Decimal) 

Octa I Decima I 
10000 - 4096 
20000 - 8192 
30000 - 12288 
40000 - 16384 
50000 - 20480 
60000 - 24576 
70000 - 28672 

7000 3584 
to to 

7777 "095 
(Odal) (Decimal) 
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Appendix B: Octal-Decimal Fraction Conversion Table 

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC. 

.000 .000000 .100 .125000 .200 .250000 .300 .3.75000 

.001 .001953 .101 .126953 .201 .251953 .301 .376953 

.002 .003906 .102 .128906 .202 .253906 .302 .378906 

.003 .005859 .103 .130859 .203 .255859 .303 .380859 

.004 .007812 .104 .132812 .204 .257812 .304 .382812 

.005 .009765 .105 .134765 .205 .259765 .305 .384765 

.006 .011718 .106 .136718 .206 .261718 .306 .386718 

.007 .013671 .107 .138671 .207 .263671 .307 .388671 

.010 .015625 .110 .140625 .210 .265625 .310 .390625 

.011 .017578 .111 .142578 .211 .267578 .311 .392578 

.012 .019531 .112 .144531 .212 .269531 .312 .394531 

.013 .021484 .113 .146484 .213 .271484 .313 .396484 

.014 .023437 .114 .148437 .214 .273437 .314 .398437 

.015 .025390 .115 .150390 .215 .275390 .315 .400390 

.016 .027343 .116 .152343 .216 .277343 .316 .402343 

.017 .029296 .117 .154296 .217 .279296 .317 .404296 

.020 .031250 .120 .156250 .220 .281250 .320 .406250 

.021 .033203 .121 .158203 .221 .283203 .321 .408203 

.022 .035156 .122 .160156 .222 .285156 .322 .410156 

.023 .037109 .123 .162109 .223 .287109 .323 .412109 

.024 .039062 .124 .164062 .224 .289062 .324 .414062 

.025 .041015 .125 .166015 .225 .291015 .325 .416015 

.026 .042968 .126 .167968 .226 .292968 .326 .417968 

.027 .044921 .127 .169921 .227 .294921 .327 .419921 

.030 .046875 .130 .171875 .230 .296875 .330 .421875 

.031 .048828 .131 .173828 .231 .298828 .331 .423828 

.032 .050781 .132 .175781 .232 .300781 .332 .426781 

.033 .052734 .133 .177734 .233 .302734 .333 .427734 

.034 .054687 .134 .179687 .234 .304687 .334 .429687 

.\)35 .056640 .135 .181640 .235 .306640 .335 .431640 

.036 .058593 .136 .183593 .236 .308593 .336 .433593 

.037 .060546 .137 .185546 .237 .310546 .337 .435546 

.040 .062500 .140 .187500 .240 .312500 .340 .437500 

.041 .064453 .141 .189453 .241 .314453 .341 .439453 

.042 .066406 .142 .191406 .242 .316406 .342 .441406 

.043 .068359 .143 .193359 .243 .318359 .343 .443359 

.044 .070312 .144 .195312 .244 .320312 .344 .445312 

.045 .072265 .145 .197265 .245 .322265 .345 .447265 

.046 .074218 .146 .199218 .246 .324218 .346 .449218 

.047 .076171 .147 .201171 .247 .326171 .347 .451171 

.050 .078125 .150 .203125 .250 .328125 .350 .453125 

.051 .080078 .151 .205078 .251 .330078 .351 .455078 

.052 .082031 .152 .207031 .252 .332031 .352 .457031 

.053 .083984 .153 .208984 .253 .333984 .353 .458984 

.054 .085937 .154 .210937 .254 .335937 .354 .460937 

.055 .087890 .155 .212890 .255 .337890 .355 .462890 

.056 .089843 .156 .214843 .256 .339843 .356 .464843 

.057 .091796 .157 .216796 .257 .341796 .357 .466796 

.060 .093750 .160 .218750 .260 .343750 .360 .468750 

.061 .095703 .161 .220703 .261 .345703 .361 .-470703 

.062 .097656 .162 .222656 .262 ~347656 .362 .472656 

.063 .099609 .163 .224609 .263 .349609 .363 .474609 

.064 .101562 .164 .226562 .264 .351562 .364 .476562 

.065 .103515 .165 .228515 .265 .353515 .365 .478515 

.066 .105468 .166 .230468 .266 .355468 .366 .480468 

.067 .107421 .167 .232421 .267 .357421 .367 .482421 

.070 .109375 .170 .234375 .270 .359375 .370 .484375 

.071 .111328 .171 .236328 .271 .361328 .371 .486328 

.072 .113281 .172 .238281 .272 .363281 .372 .488281 

.073 .115234 .173 .240234 .273 .365234 .373 .490234 

.074 .117187 .174 .242187 .274 .367187 .374 .492187 

.075 .119140 .175 .244140 .275 .369140 .375 .494140 

.076 .121093 .176 .246093 .276 .371093 .376 .496093 

.077 .123046 .177 .248046 .277 .373046 .377 .498046 
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Octal-Decimal Fraction Conversion Table (Continued) 

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC. 

.000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732 

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736 

.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740 

.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743 

.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747 

.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751 

.000006 .000022 .000106 .000267 .000206 .000511 .000306 .000755 

.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759 

.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762 

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766 

.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770 

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774 

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778 

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .000782 

.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785 

.000017 .000057 .000117 .000301 .000217 .000545 .000317 .000789 

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793 

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797 

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801 

.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805 

.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808 

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812 

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816 

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820 

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823 

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827 

.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831 

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835 

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839 

.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843 

.000036 .000114 .000136 .000358 .000236 .00'0602 .000336 .000846 

.000037 .000118 .000137 .000362 .000237 .000606 .000337 .000850 

.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854 

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858 

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862 

.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865 

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869 

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873 

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877 

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881 

.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885 

.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888 

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892 

.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896 

.000054 .000167 .000154 .000U1 .000254 .000656 .000354 .000900 

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904 

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907 

.000057 .000179 .000157 .000423 .000257 .000667 .000357 .000911 

.000060 .000183 .000160 .000427 .000260 .0006'71 .000360 • 000911~ 

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919 

.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923 

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926 

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930 

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934 

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938 

.000067 .000209 .000167 .000453 • ()00267 .000698 .000367 .000942 

.000070 .000213 .000170 .000457 .000270 .. .000701 .000370 .000946 
• 000071 .000217 .000171 .000461 .0002'71 • Q00705 .000371 .000949 
.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953 
.000073 .000225 .000173 .000469 .000273 .000713 .000373 .000957 
.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961 
.000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965 
.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968 
.000077 .000240 .000177 .000484 .000277 .000728 .000377 .000972 
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Octal-Decimal Fraction Conversion Table (Continued) 

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC, 

,000400 ,000976 ,000500 ,001220 ,000600 .001464 .000700 ,001708 
,000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712 
.000402 .000984 .000502 .001228 .000602 .001472 .000702 .001716 
.000403 ,000988 .000503 .001232 .000603 .001476 .000703 .001720 
.000404 .000991 .000504 .001235 .000604 .001480 .000704 ,001724 
.000405 .000995 .000505 .001239 .000605 .001483 .000705 .001728 
.000406 .000999 .000506 ,001243 .000606 .001487 .000706 .001731 
.000407 .001003 ,000507 .001247 .000607 .001491 .000707 .001735 
.000410 .001007 .000510 .001251 ,000610 ,001495 .000710 .001739 
.000411 .001010 .000511 .001255 ,000611 .001499 .000711 .001743 
,000412 .001014 .000512 .001258 .000612 .001502 .000712 .001747 
,000413 .001018 .000513 ,001262 .000613 .001506 .000713 ,001750 
.000414 .001022 ,000514 .001266 .000614 .001510 .000714 ,001754 
,000415 .001026 .000515 .001270 ,000615 .001514 .000715 .001758 
.000416 ,001029 .000516 .001274 .000616 .001518 .000716 .001762 
,000417 .001033 ,000517 .001277 .000617 .001522 .000717 .001766 

.000420 ,001037 ,000520 .001281 ,000620 .001525 .000720 ,001770 
,000421 .001041 .000521 .001285 ,000621 .001529 ,000721 .001773 
,000422 .001045 .000522 .001289 .000622 .001533 .000722 ,001777 
.000423 ,001049 .000523 .001293 .000623 .001537 .000723 ,001781 
.000424 .001052 .000524 .001296 .000624 ,001541 .000724 .001785 
.000425 .001056 .000525 .001300 .000625 .001544 .000725 .001789 
.000426 ,001060 .000526 ,001304 .000626 .001548 .000726 .001792 
,000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796 
.000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800 
,000431 ,001071 .000531 .001316 .000631 ,001560 .000731 .001804 
.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808 
.000433 ,001079 .000533 .001323 .000633 .001567 .000733 .001811 
.000434 .001083 .000534 .001327 .000634 .001571 ,000734 ,001815 
.000435 .001087 .000535 .001331 ,000635 .001575 ,000735 .001819 
.000436 .001091 ,000536 .001335 .000636 .001579 ,000736 .001823 
.000437 ,001094 .000537 .001338 ,000637 .001583 .000737 .001827 

,000440 ,001098 ,000540 .001342 .000640 .001586 .000740 .001831 
.000441 ,001102 .000541 ,001346 ,000641 .001590 .000741 .001834 
,000442 .001106 .000542 .001350 .000642 .001594 ,000742 ,001838 
,000443 ,001110 ,000543 .001354 .000643 ,001598 ,000743 ,001842 
,000444 ,001113 .000544 .001358 .000644 .001602 ,000744 ,001846 
.000445 ,001117 ,000545 ,001361 .000645 ,001605 .000745 .001850 
.000446 .001121 ,000546 .001365 ,000646 ,001609 .000746 ,001853 
.000447 .001125 ,000547 .001369 ,000647 ,001613 .000747 .001857 
.000450 ,001129 .000550 ,001373 .000650 ,001617 ,000750 ,001861 
.000451 .001132 ,000551 .001377 ,800651 .001621 ,000751 .001865 
.000452 .001136 .000552 .001380 ,000652 .001625 ,000752 .001869 
,000453 .001140 ,000553 .001384 ,000653 .001628 .000753 .001873 
.000454 .001144 .000554 .001388 ,000654 .001632 .000754 .001876 
.000455 .001148 .000555 .001392 .000655 ,001636 .000755 .001880 
.000456 .001152 .000556 .001396 .001)656 .001640 ,000756 ,001884 
,000457 .001155 .000557 .001399 ,000657 ,001644 ,000757 .001888 
.000460 ,001159 ,000560 ,001403 ,000660 ,001647 .000760 ,001892 
,000461 ,001163 .000561 .001407 ,000661 ,001651 .000761 ,001895 
,000462 .001167 ,000562 ,001411 ,000662 .001655 .000762 ,001899 

-
,000463 ...001171 .000563 .001415 .000663 ,001659 ,000763 .001903 
.000464 .001174 ,000564 .001419 ,000664 ,001663 ,000764: .001907 
,000465 .001178 .000565 ,001422 ,000665 .001667 ,000765 ,001911 
.000466 ,001182 .000566 .001426 .000666 ,001670 ,000766 .001914-
,000467 ,001186 ,000567 .001430 ,000667 .001674 .000767 ,001918 
,0004'10 ,001190 ,000570 .001434 .000670 ,001678 ,000770 ,001922 
,000471 .001194 .000571 ,001438 ,000671 ,001682 ,00.0771 ,001926 
,000472 ,001197 .000572 ,001441 ,000672 ,001686 .000772 .001930 
.000473 .001201 .000573 .001445 ,000673 .001689 .000773 :001934 
,000474 ,001205 .000574 .001449 .000674 .001693 .000774 .001937 
.000475 .001209 .000575 .001453 ,000675 ,001697 .000775 ,001941 
,000476 .001213 ,000576 .001457 ,000676 ,OOI7.Dl .000776 ,001945 
,000477 .001216 .000577 ,001461 .000677 ,001705 .000777 .001949 

104 



Appendix C: Table of Powers of Two 

2" 1t 2- 11 

1 0 1.0 
2 1 0,5 
4 2 0,25 
8 3 0,125 

16 4 0,062 5 
32 5 0,031 25 
64 6 0,015 625 

128 7 0,007 812 5 

256 8 0,003 906 25 
512 9 0,001 953 125 

1 024 10 0,000 976 562 5 
2 048 11 0,000 488 281 25 

4 096 12 0.000 244 140 625 
8 192 13 0.000 122' 070 312 5 

16 384 14 0,000 061 035 156 25 
32 768 15 0,000 030 517 578 125 

65 536 16 0.000 015 258 789 062 5 
131 072 17 0,000 007 629 394 531 25 
262 144 18 0,000 003 814 69'7 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0,000 000 476 8'37 158 203 125 
4 194 304 22 0,000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16 777 216 24 0.000 000 059 604 644 775 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 00-7 450 580 596 923 828 125 

268435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 
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