
7094 II Data Processing System-Volume 1

Introduction

Component Circuits

System and Functional Components

Timing

Customer Engineering

Instruction -Main tenance

7094 II Data Processing System-Volume 1

. Introduction
Component Circuits

System and Functional Components

Timing

Customer Engineering

Instruction-Maintenance

Preface

This manual contains four sections: IBM 7094 II Data
Processing System, Component Circuits, System and
Functional Components, and Timing.

The purpose of these sections is to:
1. Introduce the 7094 II system.
2. Describe the various circuit cards and circuit con­

figurations.
3. Explain briefly the purpose and operation of the

various system components (such as the multiplexor,
core storage, data channels, etc.), and internal func­
tional components (such as registers, adders, counters,
etc.).

4. Explain the 7094 II timing and cyclic makeup.
Customer Engineers who are familiar with the 7094

system may easily skip over the first section by reading
only the portion on Instruction Overlap.

Condensed logic diagrams used in this manual are as
close to actual systems as possible. Most of these dia­
grams have been converted to positive logic by elimi­
nating any references to + or - levels. In maintaining
this positive logic, in-phase outputs are used to indicate
an active (conditions met) state from the condensed
logic block. Out-of-phase outputs are also used in some
cases to simplify the diagrams by eliminating the clut­
tering effect of convert and invert blocks.

The material in this manual is written at engineering
change level 253407; however, future engineering
changes may change the logic and machine operations
from the presentation in this manual.

The following manuals pertain to the 7094 II system:

FORM

223-2721

223-2722

223-2723

223-2724
223-6910
223-2551

TITLE

7094 II DPS CEIM Manual Volume 1 (Introduc­
tion, Component Circuits, System and Functional
Components, and Timing)
7094 II DPS CEIM Manual Volume 2 (Arithmetic
Instructions)
7094 II DPS CEIM Manual Volume 3 (Non-Arith­
metic Instructions, Overlap, Trapping, Compati­
bility, 7151-2 Console)
7302-3 Core Storage CEIM Manual
7607 Data Channel CE I-R Manual
7909 Data Channel CE I-R Manual

Safety

The follOwing safety practices should be observed:
l. At least two men should be within sight of each

other when working on a machine with power on.
2. Safety glasses must be worn when soldering or

performing other operations which may endanger the
eyes.

3. Use caution when lowering a tailgate. Keep fin­
gers clear of gate slides when sliding a gate into a mod­
ule. Avoid hitting laminar bus connections.

4. 120 volts, 60 cycles, and 48 vdc are still present
inside SMS frame with frame power off and 7618 power
on. If it is necessary to work near live power connec­
tors, convenience outlets, or inside the MG unit or core
storage control, disconnect power cables, or turn off
wall circuit breakers.

5. Discharge capacitors before working on DC
power supplies.

6. Always turn off power before replacing a fuse.
7. Replace safety covers that have been removed

before proceeding to another operation.
8. Prior to servicing, note and check the following

items:
Master power switch location _______ _
Air conditioning switch location ______ _
Fire extinguishers (C02 type) _______ _
Emergency exit doors 10cationL-______ _
Fire control phone number ________ _
First aid phone number _________ _

9. Remove metal jewelry before servicing the com­
puter.

Copies of this and other publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, CE Manuals, Dept. B96, PO. Box 390, Poughkeepsie, N.Y. 12602.

© 1964 by International Business Machines Corporation

IBM 7094 II Data Processing System
COMPUTER WORDS.
Data Word
Instruction Word
Instruction Addressing.

Direct Address.
Effective Address.
Indirect Addressing ..
7607 Data Channel Command Word.
7909 Data Channel Command Word.

INSTRUCTION OVERLAP
BINARY ARITHMETIC '.
Octal Number System
Addition . ,
Subtraction

Complement Method.
l's Complement
2' s Complement
Signed Number

Multiplication
Division

Component Circuits
BASIC D1F CIRCUIT OPERATION
AND-Invert
oR-Invert
AND-oR-Invert
D1F CIRCUIT LOGIC BLOCKS.
Micro and Macro Blocks
AND-OR-Invert
D1F (F-Level) Triggers.

+ AOI Trigger
-OAI Trigger.
IBR Trigger

Shift Cell-sc.
DOT-oR'ing and AND'ing.
COMPONENT CIRCUITS CARD TYPES
SMS Single Card.
SMS Twin Card ..
SMS STAN-PAC Card
D1F CIRCUIT SPECIFICATIONS.
D1F Logic Block

Logic Block Input Specifications.
Logic Block Output Specifications.
Logic Block Circuit Delays
Logic Block Power Supply Requirements
Logic Block Extended Capabilities.

D1F Indicator Driver
Indicator Driver Input SpeGifications.
Indicator Driver Output Specifications
Indicator Driver Power Supply Requirements .. .

N-Line to D1F Converter-Terminator.
N to F Converter Input Specifications
N to F Converter Output Specifications
N to F Converter Delays
Power Supply Requirements

P-Line to D1F Converter-Terminator.
P to F Converter Input Specifications
P to F Converter Output Specifications.
P to F Converter Delays. ..
P to F Power Supply Requirements

D1F to N-Line Converter-Driver.
F to N Converter Input Specifications.
F to N Converter Output Specifications
F to N Converter Delays.
F to N Power Supply Requirements

7
8
8
9
9
9
9

10
10
11
11
11
13
13
14
14
15
16
16
16
17

18
18
18
19
19
20
20
20
20
21
22
22
22
23
24
24
24
24
27
27
27
27
27
27
27
28
28
28
28
28
28
28
29
29
29
29
29
29
29
29
30
30
30
30

Contents

D1F to P-Line Converter-Driver.
F to P Converter Input Specifications
F to P Converter Output Specifications
F to P Converter Delays.
F to P Power Supply Requirements

System and Functional Components
SYSTEM COMPONENTS.
7111 and 7109 Central Processing Units
7606 Multiplexor.

Multiplexor Storage Busses
Multiplexor Storage Bus oR'ing
Buffer Address Register.

7302-3 Core Storage
7302-3 Addressing

Input-Output
7607 Data Channel
7909 Data Channel
7151-2 Console Control Unit
7608 and 7618 Power Control Unit
FUNCTIONAL COMPONENTS
Storage Register-sR
Accumulator Register-AC
Multiplier-Quotient Register-MQ.
Sense Indicator Register-sl
Instruction Backup Register-IBR
Tag Register-TR
Address Register-AR
Program Counter-pc
Index Registers-xR
Program Register-PR
Shift Counter-sc

Stepping the Shift Counter.
Main Adders-AD

Individual Main Adder Position
Main Adder Bit Carry Lookahead
Main Adder Group Carry Lookahead
Q Carry Lookahead

Index Adders-xAD
Index Adder Position.
Index Adder Bit Carry Lookahead
Index Adder Group Carry Lookahead
Index Adder 3 Carry
Index Adder Compatibility

SR Zero Check
Memory Selection Circuits
MAR Switching and Address Controls

Timing .. .
MASTER CLOCKS AND PULSES
CPU Clock Pulse Distribution.
cpu-l A and B Gate Clock Pulse Designation
CP Set Pulse Generation and Distribution

MACHINE TIMING CYCLES
Master I Time

Address Gating.
Program Counter Update
Storage Bus Gating.
Address Modification
N ext Machine Cycle

Master E Time
IA E Cycle
Master L Time
Master II Time.
Master B Time
B Cycle .. .

30
30
30
31
31

33
33
33
33
34
34
34
34
36
36
36
37
37
37
38
38
41
42
42
43
44
44
46
47
47
48
48
52
52
52
53
57
58
58
59
59
59
59
63
63
64

66
66
70
70
72

73
74
76
77
77
78
78
82
82
86
86
87
89

BDW Cycle. .. 89
BCW Cycle '.' 89
Indirectly Addressed BCW Cycle. 89
TCH Command. .. 90
Indirectly Addressed TCH Command. 90

Channel Cycle Times. .. 93
Channel I Time , 93
Channel E Time. '. .. 93
Channel L Time. .. 93
Channel-cpu Cycle Time Controls. 93

Multiple Cycle Time Error Detection. 95
WAVEFORMS AND VARIABLE DELAY ADJUSTMENTS. 95
Initial Delay Settings. .. 95
Odd and Even Clock Drive Pulses. 96

CP Set Pulses '. . 96
cpu-l CP Set Pulse Width Adjustment. 96
CP Set Pulse--Clock Pulse Alignment. 96
CPU and Channel Memory Select Alignment. 97
Memory Select and MAR Bus Alignment. 97

Appendix A: Octal-Decimal Integer Conversion
Table , , 98

Appendix B: Octal-Decimal Fraction Conversion
Table , 102

Appendix C: Table of Powers of Two. 105

FIGURE TITLE

I ntrod uction
1 General Computer Functional Arrangement ..
2 7094 II Data Word
3 7094 II Instruction Word.
4 Instruction Word Address Modification Fields
5 Instruction Word Count Fields.
6 Data Channel Command Word
7 7909 Command Word Formats
8 Double Instruction Overlap
9 Extended Sequence Overlap

Component Circuits
10 +AI (-01) Circuit
11 +AND, -OR Circuit.
12 +01 (-AI) Circuit
13 +OR, -AND Circuit.
14 AND -OR-Invert Circuit
15 Macro and Micro Blocks..
16 Systems Logic vs Condensed Positive Logic

Gating Circuitry ..
17 + A01 Trigger .
18 -OAI Trigger.
19 IBR Trigger
20 Shift Cell.
21 Shift Cell Timing Chart
22 DOT-oR'ing and DOT-AND'ing
23 Twin-Card Locations for SR, AC and MQ Input Gating.
24 Twin-Card Locations for SI, IBR, XAD and XR
25 BDS Card Locations for SR, AC, MQ and AD.
26 Typical BDS Card Layout.
27 DIF Logic. ..
28 DIF Indicator Driver
29 N-Line to F -Line Converter ...
30 P-Line to F -Line Converter.
31 F-Line to N-Line Converter.
32 F-Line to P-Line Converter

System and Functional Components
33 7094 II System Configuration
34 Basic Functional Organization ..
35 Multiplexor Data Flow
36 7094 II Power Distribution.
37 7094 II CPU Data Flow
38 Storage Register Position 17.
39 Accumulator Position 17.
40 MQ Position 17.
41 Sense Indicator Position 17
42 IBR Position 17. ..
43 Tag Register Position 18

PAGE

7
9
9
9
9

10
11
12
12

18
19
19
20
20
21

21
21
22
22
22
23
23
24
25
25
26
27
28
28
29
30
30

32
33
35
38
39
40
41
42
43
43
44

Illustrations

FIGURE TITLE
44 Address Register Position 17.
45 Program Counter Position 17
46 XRA Position 17.
47 Program Register Position 9.
48 Operation Decoding.
49 Shift Counter Stepping
50 Shift Counter Timing Chart. ..
51 Main Adder Position 35
52 Group 1 Adder Carry, Generate and Propagate
53 Group 2 Generate and Propagate Lookahead
54 Main Adder Group Lookahead and Q Carry
55 Index Adder Routing.-.
56 Index Adder Positions. ...
57 Group 1 Index Adder Bit Carry and Lookahead
58 Index Adder Group Lookahead and XAD(3) Carry
59 SR Input Zero Check.
60 Memory Select Circuitry.
61 Program Counter MAR Bus Selection ..
62 MAR Bus Selection and Switching

Timing
63 Master Clock Logic.
64 5.71 MC Oscillator Output ...
65 Oscillator Output and Even Clock Drive .. .
66 CPU and Channel Cycle Relationship
67 CPU and Channel Clock Outputs and Controls.
68 CPU Clock Sequence Chart
69 Channel Clock Sequence Clrart.
70 CPU Clock Pulse Distribution.
71 CPU Clock Pulse Designations and Usage.
72 CP Set Pulse Distribution
73 Cycle Time Relationship
74 I, E, and L Time Cycle Logic.
75 I Time Flow Chart.
76 SB Gating Decision Chart.
77 IA Flow Chart.
78 Inhibit L Trigger Logic.
79 II Time Condensed Logic.
80 B Time Condensed Logic
81 B Time Sequence Chart
82 B Time Flow Chart.
83 Channel Cycle Time Logic
84 Multiple Time Check Circuitry
85 Clock Drive Pulse
86 Even and Odd Clock Drive Pulses
87 CP Set Pulse .. .
88 CP Set Pulse-Clock Pulse Alignment.
89 Memory Select Pulse Alignment
90 Memory Select-MAR Bus Alignment

PAGE
45
46
47
47
48
49
51
52
54
55
56
58
60
61
62
63
63
64
65

67
68
68
68
68
68
69
71
72
73
74
75
79
78
85
86
86
87
88
91
94
95
96
96
96
96
97
97

;1.. • j:. " Jid~.. .
.. ". 'J."1 ~, ~';" J ... ' ... :.~, ... ~ .. ~~• ' " . ., . ", >.

• ",' Ii,
• • • • • .,' ~ ••••• " <!J,', . . • ")I.. ""~

'.' •• '." ~_\i~ " ',,:;;" ~,. q

7094 n Data ProCeSsing System

Modern methods of accounting, measuring, testing, re­
search and design generate huge quantities of infor­
mation that must be processed quickly and accurately.
A vast amount of data constantly pours into such places
as retail establishments, weather stations, insurance
companies, and tax bureaus. In addition, our rapidly
expanding scientific investigations into rocket and mis­
sile design, atomic research, and missile tracking need
faster and faster methods for carrying out increasingly
complex calculations. To meet these demands, ma­
chines have been deveioped which can compute, select
and correlate data at electronic speeds.

Automating paper work is possible because the ac­
tions involved are sufficiently repetitive. The variety of
steps necessary in processing business records or in
computing scientific problems, for example, is small,
indeed, compared with the number of times these steps
must be taken. One of the first paper work machines
was the ink stamp, possibly because applying a date or
name was so obviously repetitive. As additional mecha­
nization was applied to paper work, machines began to
take over the long and painstaking task of accounting.

Although scientific applications of computers require
a certain amount of arithmetic, such as accumulating
partial results or totals, the problem is principally one
of processing data. A large amount of information is
fed into these machines (input) and a relatively small
amount of information is produced (output). The ma­
chines are, therefore, called data processing machines.

The first data processing machines handled informa­
tion in a series of individual operations. These included
punching information into cards, sorting and classify­
ing cards, producing totals and balances, and printing
the results. Intermediate results from one machine were
transferred to another; many human decisions and in­
terventions were necessary for a complete accounting
procedure.

With the application of electronics, the rate of calcu­
lation was vastly increased. But more important, a basic
new technique was introduced which might be called
intercommunication. Electronic devices were able to
make decisions, and, on the basis of these decisions, to
provide internal transporting of data and intermediate
results from step to step. Information (data) is fed into
one end of a data processing system and final results
come out the other. This machine system, as we know

IBM 7094 II Data Processing System

it today, is the modern computer, or data processing
system.

The five functional sections of a generalized com­
puter are illustrated in Figure l. The advantages to be
realized by using a computer include greatly increased
processing speeds, a high degree of automation, and
great flexibility.

All information used by the computer must pass
through the input section where the incoming informa­
tion is interpreted and converted to the language that
the computer understands. The input section includes
such devices as card readers, magnetic tape units, disk
files, etc.

From the input section, information is directed to the
storage section. As their main storage unit, most com­
puters use an information-holding device composed of
magnetic cores. This magnetic core storage may serve
as the source of all information to be used by the com­
puter. Core storage has some very important advan­
tages. Most important of these is the high speed at
which information may be placed in, or removed from,
core storage. The highest degree of performance from
core storage and many other types of storage can be
realized only when the information is arranged in spe­
cific order. Once the information is located in core
storage, it may be called for instantly in any sequence.

The control section of a computer directs the opera­
tion of the entire computer, receiving its directions

Input
(Data and ~ Storage

Output

Instructions)

f i r i I
I r-.J L-

1 I

I I I I

i • w ! I I
I I

Arithnetic I
I Control and I
I Logical I
I I
I I , I
L __ -! _______ -+ ___ J

- - - - - Instructional Control
----Data

Figure 1. General Computer Functional Arrangement

Introduction 7

from units of detailed information from core storage.
These units of information, which tell the control sec­
tion what operations are to be performed, are called
instructions. That portion of the information in storage
which is to be operated on is commonly referred to as
data. A single piece of data used in an operation is
often called an operand. From the above, it may be
seen that instructions as well as data must be delivered
to storage from the input section. Note in Figure 1 that
the control section receives instructions from storage
and then exhibits the necessary control over all other
sections of the computer.

The actual operations are, for the most part, per­
formed in the arithmetic and logical section. The con­
trol section directs exactly what operation is to be per­
formed and what operand is to be involved in the
operation. The instructions that may be executed by a
given computer include such arithmetic operations as
add, subtract, multiply, or divide. Some instructions
may place the results of the arithmetic operation back
in core storage. Subsequent instructions may tell the
control section to deliver the information to the output
section which may include printers, punches, magnetic
tape units, or a variety of other 110 devices.

From the above description, it can be seen that a
single instruction causes only a specific operation to be
performed by the computer. If a complete problem is
to be performed by the computer, a number of instruc­
tions are required to direct the computer. A group of
such instructions, and any necessary constant data used
to direct the computer to the accomplishment of a job,
is called a program. Because, in modern computers the
program is contained in storage, the computers are
called stored program computers. When operating
under stored program control, the computer executes
one instruction at a time. After executing one instruc­
tion, the computer automatically proceeds to the next
instruction. It is important to realize that every com­
puter must be directed by some type of program dur­
ing every step of its operation.

A generalized stored program computer (Figure 1)
operates in the following manner: A program of in­
structions to direct the computer in every step of its
operation is stored on magnetic tape. All data upon
which the computer is to operate are also stored on
tape. The tapes are readied, and a key on the computer
console is pressed which tells the control section that
the information located on tape is to be read into stor­
age. The control section then starts the tapes and de­
livers the information to the proper locations in stor­
age. Information contained in the last tape record tells
the control section where to find the first instruction.
The control section then calls for and decodes the in­
struction to determine what operation is to be per-

8

formed and where the operand that is to participate is
located. Next, the control section causes the operand,
also located in storage, to be delivered to the arithmetic
and logical section. The arithmetic section then per­
forms the operations as called for by the control sec­
tion. After the first instruction has been performed, the
control section calls for the next instruction from stor­
age. This instruction may very well be one that causes
the results of the previous instruction to be stored. This
process continues until such time that an instruction is
encountered that causes the results (now in storage) to
be delivered to the output section.

Computer Words
Before a computer can be told what to do, a common
language is necessary between programmer and com­
puter. The 7094 II is a binary machine, so all inputs
and outputs, internal processing, and internal commu­
nication is in terms of I-bits and O-bits. These 1's and
O's are combined in a 36-bit word in such combinations
that are meaningful to the computer.

For example, the combination of 000 100 000 000,
properly placed in the computer word, instructs the
computer to perform an addition. Another portion of
this particular 36-bit word (address portion) tells the
computer which word in core storage is to be added
(the operand). The next instruction might contain the
combination of 000 110 000 001, which, in the proper
location within the word, instructs the computer to
store the sum just obtained. Again, the address portion
of this word will instruct the computer where the sum
is to be placed in core storage.

From the foregoing, two types of words are apparent
-instruction words and data words. A third type ex­
ists, the channel command. Channel commands control
the data channel during a particular operation, such as
read or write. These three types of words (data, in­
struction and command) are arranged by the program­
mer into a logical sequence that will result in desired
problem-solving or data processing.

A 7094 II word may be a numeric quantity, an in­
struction to the computer, or a data channel command.
In all cases, the word contains a full 36 positions (or
bits). The contents of the word become significant ac­
cording to the computer cycle of operation. Thus, a
word coming into the computer during an instruction
cycle is treated as an instruction. A word coming into
the computer during an execution cycle is treated as a
numeric quantity.

Data Word

When the 36 bits are expressing a numeric quantity,
the word is referred to as a data word. Figure 2 shows

a data word. Note that the numerical value is expressed
in positions 1 through 35, and the sign of the value is
expressed in the S position. When S is a 0, the value is
positive. When S is a 1, the value is negative.

Many logical operations, on the other hand, operate
on full 36-bit data words. In these cases, the sign bit
loses its special meaning and becomes just another bit
of information in the full data word.

Instruction Word

A computer instruction word is shown in Figure 3. Be­
cause this word is coming into the computer during an
instruction cycle, it will, in effect, be segmented, and
the various segments will be interpreted to determine
what action is expected of the computer. The 36 bits of
the computer word are now broken into significant sec­
tions-prefix, decrement, tag and address.

The sign position is always a part of the operation
code. The function to be performed is dictated by the
sign and either the remainder of the prefix field or the
decrement. If positions 1 and 2 contain zeros, the sign
and decrement determine the operation code. If either
or both positions 1 and 2 contain ones, the prefix con­
tains the entire operation code and the decrement is
used for another purpose.

The address field usually contains the address of a
data word in core storage. This data word is brought
into the computer as a part of whatever arithmetic or
logic function is called for by the operation code. Thus,
the instruction not only dictates the operation to be
performed, but also specifies the address of the data to
be used. In some instances, the address field is a part of
the operation code. When this is the case, the address
field is not used to address the data in storage.

The tag field causes the computer to either operate
on a specific index register or modify the address field
of the instruction.

Figures 4 and 5 are variations of the computer in­
struction word.

Instruction Addressing

In the 7094 II, an instruction can make reference to
three types of addresses: direct address, effective ad­
dress, or indirect address. Several hypothetical exam­
ples are shown below to illustrate how each of the
three forms of addressing would obtain the same data
word from core storage.

As a review of symbolic instruction coding, consider
the clear and add instruction: CLA * Y, T, D.

where:

CLA is the mnemonic instruction coding.
* is the indication of indirect addressing.
Y indicates the address portion of the instruction.
T indicates the indexing portion of the instruction

(tag) and may be omitted if no tag is speCified.
D indicates the decrement portion of the instruction

and may be omitted if not necessary.

II
S,1 35

Figure 2. 7094 II Data Word

Prefix

Decrement I Tag I Address

S, 23 1118 2021 35

Figure 3. 7094 II Instruction Word

I I
S, 23

Decrement

111213U

Indirect

Address

1118 2021 -Effective

Address

Address

Figure 4. Instruction Word Address Modification Fields

Variable Length

Mpy or Div Count

~

I I I I I Shift Count
S, 23 91011 12 1118 2021 2728

~
.... ..

Convert Count Address

Figure 5. Instruction Word Count Fields

Direct Address

The direct address is the address specified by positions
21-35 of the instruction. Symbolic location DATA(Y) is
the direct address shown in the example below. Execu­
tion of the CLA causes the contents of DATA (a numeri­
cal quantity in location 00002) to be moved from core
storage and into the accumulator.

00000 START CLA
00001 STOP HTR
00002 DATA OCT

Effective Address

DATA
00000
+000000001572

The effective address is the direct address modified by
the contents of the specified index register (Y-T). In the
example below, assume that index register 1 contains
00002. During execution of CLA DATA, 1 the content of
XRl is subtracted from the location indicated by DATA

(00004-00002=00002). The computer makes reference
to this new modified location (00002), reads the numer­
ical quantity out of core storage and places it into the
accumulator.

Assume XRl = 00002

00000 START CLA DATA,1
00001 STOP HTR 00000
00002 -2 OCT +000000001572
00003 -1 OCT +000000000145
00004 DATA PZE 0,0,0

35

I
35 ,

Introduction 9

Indirect Addressing

During indirect addressing, the effective address is de­
termined (Y modified by T), and a core storage refer­
ence is made to this effective address. The address por­
tion of this data word is then modified by its indexing
tag (if specified); this second effective address repre­
sents the actual address that is to supply the instruc­
tion's data. Four situations can occur: no indexing, in­
dexing at either address, and indexing at both ad­
dresses.

No Indexing: The CLA makes an indirect reference to
location TABLE. In the address portion of location TABLE

is the address represented by DATA. It is this latter ad­
dress (0002) where the computer obtains the numerical
quantity for the accumulator.

00000
00001
00002
00003
00004

START
STOP
OATA

+1
TABLE

CLA*
HTR
OCT
OCT
PZE

TABLE
00000
+000000001572
+000000000145
DATA

Indexing at the Instruction Address: The direct ad­
dress of the CLA is modified to form an effective address
of TABLE - 2 (00006 - 00002 = 00004). An indirect ref­
erence is then made to the address portion of TABLE

- 2 (location 00004). The address portion of TABLE - 2,
DATA (00002) indicates where the computer is to ob­
tain the numerical quantity for the accumulator.

Assume XRl = 00002

00000 START CLA* TABLE, 1
00001 STOP HTR 00000
00002 DATA OCT ±00000000 1572
00003 -3 OCT +000000000145
00004 -2 PZE DATA
00005 -1 PZE 0,0,0
00006 TABLE PZE 0,0,0

Indexing at the Indirect Address: The CLA makes an
indirect reference to TABLE (location 00010). The ad­
dress portion of location TABLE is represented by sym­
bolic location DATA (00005), and the tag specifies index
register 2. Address modification is performed at this in­
direct address to produce the data address of DATA - 3
(00005 - 00003 = 00002). This new address of location
00002 indicates where the computer is to obtain the
numerical quantity for the accumulator.

Assume XR2 = 00003

00000
00001
00002
00003
00004
00005
00006
00007
00010

START
STOP

-3
-2
-1

DATA
-2
-1

TABLE

CLA*
HTR
OCT
OCT
OCT
PZE
PZE
PZE
PZE

TABLE
00000
±00000000 1572
+000000000145
+000000000256
0,0,0
0,0,0
0,0,0
DATA,2

Indexing at Both the Instruction and Indirect Ad­
dress: The direct address of the CLA is modified to form

10

an effective address of TABLE - 2 (00010 - 00002 =
00006). An indirect reference is then made to this new
address. The address portion of location TABLE - 2 is
represented by symbolic location DATA (00005) and the
tag specifies index register 2. Address modification is
performed at this indirect address to produce the data
address of DATA - 3 (00005 - 00003 = 00002). This
new effective address of location 00002 indicates where
the computer is to obtain the numerical quantity for
the accumulator.

Assume XRl = 00002 and XR2 = 00003

00000 START CLA* TABLE, 1
00001 STOP HTR 00000
00002 -3 OCT ±000000001572
00003 -2 OCT +000000000l45
00004 -1 OCT +000000000256
00005 DATA PZE 0,0,0
00006 -2 PZE DATA,2
00007 -1 PZE 0,0,0
00010 TABLE PZE 0,0,0

7607 Data Channel Command Word

Similar in format and application to the computer in­
struction word, the 7607 data channel command word
(Figure 6) gains its special significance by being called
out of storage by the control function in the data chan­
nel. This, as in the computer, occurs when one opera­
tion has been completed and the data channel must be
directed to perform the next operation.

After the channel operation is initiated by the com­
puter, the 7607 data channel functions as an asynchro­
nous unit under control of an I/O program. This I/O

program, located in storage, is constructed from special
instruction words for the channel called commands.
These commands inform the channel as to how many
data words to transmit, where to obtain the data words
in core storage during writing operations or where to
store the data words in storage during reading opera­
tions. Each command also includes control information
which can indicate indirect addressing, non-transmis­
sion of data, and what to do upon completion of the
command. The command word format is: .
S, 1-2 Operations code (Informs the channel as to what

operation is to be performed)
3-17 Word count (Maximum number of words this com-

mand is to transmit)
18 Indirect addressing flag
19 Non-transmission indicator (Read select operations

only)
20 Not used
21-35 Starting address where data words are to be stored

Opn
Code

S, 23

in core storage

Word Count

1718192021

Figure 6. Data Channel Command Word

Address

35

7909 Data Channel Command Word

The 7909 data channel commands are decoded in the
channel's operation decoder. Five major bits define the
command: S, 1, 2, 3, and 19. Note, however, that posi­
tion 3 is located in the decrement portion of the word.
Commands which do not require the decrement por­
tion portion of the word can use this position for de­
coding purposes. Other channel commands which re­
quire either a full or partial decrement field cannot use
this position 3-bit for operation decoding. Formats for
these commands are shown in Figure 7 and use the fol­
lowing field nomenclature:

Y Address
C Count
M Mask
F Indirect Address Flag

35

I··---c-----I� I .. I-----y----~_I

5, 23 56 101112 1718192021 2930 35

Figure 7. 7909 Command Word Formats

Instruction Overlap
The overall operational speed of the 7094 II is greatly
increased by parallel execution (overlapping) of two
sequential instructions.

While the «current" instruction is in the computer
for execution, the next sequential instruction is also ob­
tained from core storage. This second (overlapping) in­
struction is stored in the central processing unit, ana­
lyzed, modified, and partially (or completely) executed
during the same ElL cycle that the current instruction
is being executed. The 7094 II overlap capabilities are
made possible by the new IBM 7302-3 Core Storage
whose 32,768 storage locations are divided into two
logically independent 16,384 sections.

Two types of overlap are performed in the 7094 II;
"double instruction overlap," and "extended sequence
overlap." The main difference between the two types
is how and when the two instructions are received into
the computer from core storage-both types, however,
achieve the same basic objectives.

Overlap requires teamwork between the program
register and the instruction backup register. Figure 8
shows two sequences of double instruction overlap. In
Figure 8a, two instructions are obtained from core stor­
age. The first instruction is placed in the program reg­
ister for immediate execution; the next sequential in­
struction (overlapping instruction) is obtained from the
other half of core storage and placed into the instruc­
tion backup register. As the current instruction is being

executed, preliminary functions are performed on the
overlapping instruction in the IBR. When the current
instruction is completed, the overlapping instruction is
transferred to the program register (and storage regis­
ter) for completion (Figure 8b). This double instruction
overlap occurs either initially in the program or imme­
diately after an extended sequence series has been
broken.

7094 II double instruction overlap is similar to 7094
overlap. The 7094 requires that the first instruction
come from an even address; the 7094 II, because of the
new split-memory, does not have this restriction.

After double instruction overlap has initially started
the overlap operation, extended sequence overlap can
take over. Figure 9a shows the two initial instructions
being received from core storage. Figure 9b shows the
second instruction being passed from the IBR to the
program register (and storage register) as in double in­
struction overlap, but with one addition-the IBR is
now also reaching for the third instruction. As long as
conditions are favorable, the program register (and
storage register) will continue to receive instructions
from the IBR (Figures 9c and 9d). All I-time functions
of the overlapping instruction are performed during II
time (IBR I time) which is concurrent with ElL time of
the overlapped instruction.

Conditions which can break the overlap sequence in­
clude: trapping, double-precision instructions, one­
cycle instructions, and POD 76 instructions (except shift­
ing instructions). The specific details concerning in­
struction overlap are covered in volume 3.

Binary Arithmetic
The binary system is used in computers because all
present components are inherently binary. That is, a
relay maintains its contacts either closed or open, mag­
netic materials are utilized by magnetizing them in one
direction or the other, a vacuum tube is conveniently
maintained either fully conducting or nonconducting,
or the transmission of information along a wire may be
accomplished by transmitting an electrical pulse at a
certain time.

Although binary numbers in general have more
terms than their decimal counterparts (about 3.3 times
as many), computation in the binary system is quite
simple.

The only convenient way to learn the operation of a
computer is to learn the binary system. The octonary
or octal system is a shorthand method of writing long
binary numbers. Octal notation is used when discussing
the computer but has no relation to the internal circuits.

Perhaps, as the first step, it would be well to see
what is meant by the binary system of numbers. The
binary, or base-two system, uses two symbols, 0 and 1,

Introduction 11

Instructions 1 and 2 (from Core Storage)

Instructions 1 and 2 Execution

Instructions 3 and 4 (from Core Storage)

Instructions 3 and 4 (Execvtions)

Figure 8. Double Instruction Overlap

12

Instructions 1 and 2 (from Core Storage)

Subsequent
Instructions

Subsequent
Instructions

Subsequent
Instructions

Figure 9. Extended Sequence Overlap

to represent all quantities. Counting is started in the
binary system in the same manner as in the decimal
system with ° for zero and 1 for one. At two in the
binary system it is found that there are no more sym­
bols to use. It is therefore necessary to take the same
move at two in the binary system that is taken at ten in
the decimal system. This move is to place a 1 in the
next position to the left and start again with a zero in
the original position. A binary 10 is equivalent in this
respect to a 2 in the decimal system. Counting is con­
tinued in a similar manner with a carry to the next
higher order every time a two is reached instead of
every time a ten is reached. Counting in the binary sys­
tem is as follows:

BINARY DECIMAL

0' 0'
1 1

10' 2
11 3

100' 4
101 5
lID 6
111 7

1000 8
1001 9
1010 10

Octal Number System

It has already been pointed out that binary numbers
require about three times as many positions as decimal
numbers to express the equivalent number. This is not
much of a problem to the computer itself. However, in
talking and writing, these binary numbers are bulky.
A long string of ones and zeros cannot be effectively
transmitted from one individual to another. Some
shorthand method is necessary. The octal number sys­
tem fills this need. Because of its simple relationship to
binary, numbers can be converted from one system to
another by inspection. The base or radix of the octal
system is 8. This means there are eight symbols: 0, 1, 2,
3,4,5,6, and 7. There are no 8's or 9's in this number
system. The important relationship to remember is that
three binary positions are equivalent to one octal
position.

A comparison of the binary, octal and decimal sys­
tems is as follows:

BINARY OCTAL DECIMAL

000 0 0'
0'0'1 1 1
010 2 2
011 3 3
100 4 4
101 5 5
lID 6 6
111 7 7

00'1 DOD 10 8
00'1 001 11 9
001 010 12 10
0'0'1 011 13 11
0'0'1 10'0' 14 12

Remember that the computer's internal circuitry is
concerned with only binary ones and zeros. The octal
system is used to provide a shorthand method of read­
ing and writing binary numbers.

The following are examples of whole numbers and
fractions expressed in decimal, octal, and binary form.
Octal-decimal conversion tables can be found in Ap­
pendix A, B, and C.

Whole
numbers

Fractions

Improper
fractions

Addition

DECIMAL

5
85

106
127
725

1125
3333
4095
40'96

0'.145
0'.250'
0.330
0.500
0'.625
0.656
0'.700'
0'.734
0.900'
0.915

2.250'
3.375

15.078
17.050
40.960
63.984

OCTAL BINARY

5 101
125 1 0'10 10'1
152 1 10'1 DID
177 1 111 111

1325 1 011 010 101
2145 10 001 100' 10'1
6405 110 100' 000 10'1
7777 111 111 111 111

10000' 1 ODD 000' 000' 000'

0.112 0.00'1 001 0'10
0.200 0.010 000' 000'
0.251 0.0'10 101 0'0'1
00400 0.100 ODD 000'
0.500 0.10'1 DOD 000'
0'.520' 0.10'1 DID ODD
0.546 0.101 100' lID
0'.570 0.10'1 111 000'
0.715 0'.111 00'1 101
0'.724 0.111 DID 100

2.200 10'.010' 000' 000
3.300 11.011 ODD 000

17.050 1 111.00'0' 10'1 000
21.0'31 10 001.0'00 0'11 00'1
50.753 10'1 0'00'.111 10'1 0'11
77.770 111 111.111 111 ODD

Binary addition is simple. Its rules are as follows:

0'+0=0
1+0=1
0'+1=1
1 + 1 = 0 + 1 to carry

These rules operate in all cases of addition and apply
to both addition of integers and of fractions. Binary
numbers are added from right to left, and the carry is
added to the adjacent bit on the left. The following ex­
amples illustrate the rules for binary addition. Note
that the carry is placed in the column, to which it will
be added, in parentheses.

o
+ 1

T

(1)
1

+ 1
10

10
+ 1
11

(11)
11

+ 1
100'

100'
+ 1

101

(1)
101

+ 1
110

The technical terms in addition are defined as the
augend, addend, and the sum. The augend is the term
that is to be increased; the addend is the term to be
added to the augend; the sum is the result of the opera­
tion. For example:

101 Augend
±-Qll Addend

1000 Sum

Introduction 13

In adding more than one number, the addition of the
first set of numbers is performed and, to the sum, is
added the third number. To the sum of the succeeding
additions, add the next number until all the numbers
have been totaled. For example, add:

Oll
III

+ 110

Addition of the first set of numbers

First Sum
Addition to the third number
Final Sum

1101
1001
0010

+ 1111

Addition to the first set of numbers

First Sum
Addition of the third number

Second Sum
Addition of the fourth number

Final Sum

01ll
Llli.

1010
--l:::...-11.!l

10000

1101
+ 1001

10110
+ 0010

11000
±.l.lli
100111

Binary fractions are added in accordance with the
rule that governs whole numbers. The binary point is
fixed as in the decimal system. The carry from the addi­
tion of the binary fractions in the first position to the
right of the binary point is an integer. For example, in
addition of the following fractions:

DECIMAL

118
~

4/8 or 0.5

4/8
±....2L§

10/8 or 1.25

53/8
+ 67/8

12 2/8 or 12.25

Subtraction

BINARY

.001
.:L.:Q!!

.100

.100
±....JlQ

1.010

101.011
+ 110.111

1100.010

The rules for binary subtraction are as follows:

0-0=0
0- 1 = 1 (borrow 1 and make 0 = 10)
1-0=1
1-1=0

The technical definitions of the terms used in subtrac­
tion are minuend, subtrahend, and difference. The
minuend is the number to be decreased; the subtra­
hend is the quantity of the decrease; the difference is
the result of the operation. Thus:

0110 Minuend
- 100 Subtrahend

010 Difference

The similarity which exists between decimal and bi­
nary arithmetic when a carry is involved is analogous

14

to the similarity which exists when a borrow is in­
volved. When subtracting a 1 from a 0, a 1 must be
borrowed from the next higher order, diminishing that
order by 1.

The following examples illustrate the rules for bi­
nary subtraction and the method of borrowing from
the next higher order.

(A) 1101 (B) 1110
-0100 -0101

1001 1001

(C) 1100
-1001

0011

In the example A, the subtraction of 0 from 1, 0 from
0, and 1 from 1 produces the difference. In the example
B, a 1 must be borrowed from the second order when
attempting to subtract the 1 of the first order from O.
The 1 in the second order then diminishes to O. In the
example C, a slightly different borrow situation arises.
The 1 to be borrowed must come from the third order
of the minuend. That 1 then diminishes to O. The 1 of
the first order of the minuend can then be borrowed
from the 10 which appears in the second order. Bor­
rowing the 1 from 10 leaves a 1 in the second order of
the minuend. Applying the rules of binary subtraction
then produces the difference shown.

Complement Method

The preceding discussion delineated the methods of
direct subtraction. The complement method of sub­
traction is a means of subtracting by addition. Design
requirements of a processing unit do not allow for bor­
rowing, so the complement method of subtraction fits
in with processing unit design and capabilities.

A disadvantage of direct binary subtraction is that
the direct subtraction of a number from a smaller num­
ber yields an incorrect result unless the subtraction is
done by subtracting the smaller from the larger and
then changing the sign of the difference. For example:

5116 0.0101
- 9/16 - 0.1001
- 4/16 - 0.0100

The difficulty encountered with negative results and
the problem of providing for borrowing in circuit de­
sign are eliminated by changing the subtraction to an
addition of negative numbers .by means of the comple­
ment process.

The complement system of subtraction is possible
because it is possible to limit the number of significant
digits to be used in anyone problem or machine. The
problem is then said to have a modulus which is the
count of the maximum number of numbers it would be
possible to represent in this problem. For instance, sup­
pose that a binary machine has facilities for handling
four places, the machine could represent 16 different
numbers from 0 to 1111. Such a machine has a modu­
lus of 16 and is said to perform modulo 16 arithmetic.

The Significance of the modulus of the machine is

that each time an addition results in a number equal to
or greater than the modulus of the machine, an integral
multiple of the modulus is lost. An example of this ac­
tion in everyday life is given by the automobile speed­
ometer. When it reaches 100,000 miles, it resets to zero
and starts over. The speedometer has lost 100,000 by
resetting to zero. This property of machine-counting
methods is important in the use of complements for
subtraction by addition.

The complement method of subtraction may be de­
rived from the following identity:

P - M + (M - N) = P - N
P = Minuend
N = Subtrahend
M = Modulus of the machine

P - N = Difference sought

To derive the complement system of subtraction, let
(M - N) equal a number called the complement of N.
Let C stand for this complement so M - N = C. Now
substitute C in the identity:

P-M+C=P-N
or (P + C) - M = P - N

If M is moved to the other side of the identity, it be­
comes:

P + C = M + (P - N)

It is now evident that the minuend plus the comple­
ment of the subtrahend is equal to the difference of the
minuend and subtrahend plus the modulus. It should
now be recalled that when two numbers are added to
obtain a sum greater than the modulus, the modulus is
lost. Therefore, P + C = P - N in any system with a
fixed modulus, provided only the sum P + C is greater
than the modulus of the number system used.

The above is a derivation of what, in binary arith­
metic, is called the 2's complement system. A similar
derivation of a 1's complement system may be derived
using (M - 1) in place of M. In this case, the final
equation is P + C1 - 1 = P - N, which implies that the
difference sought will be found by adding 1 to P + C1 •

Note that C1 is equal, in this case, to (M - 1) - N.

EXAMPLES DIRECT SUBTRACT

lIs Complement

Every processing unit has a modulus which is one
greater than the largest number the processing unit can
register. For example, a six-place binary counter can
express all the numbers from 0 to III Ill. The modu­
lus of such a counter is 1000000.

To obtain the 1's complement of a number, it was
shown in the derivation above that the number must
be subtracted from (M - 1). Therefore, to obtain the
l's complement of a number in a six-place machine, the
number is subtracted from (1 000 000 - 1); that is,
from III Ill. As an example, find the 1's complement
of the binary numbers 101 001 and 001101.

111 III Modulus -1
101 001 Number
010 1101's complement of number
111 111 Modulus -1
001 101 Number
110 010 l's complement of number

A close examination of the numbers and their 1's
complements shows that the 1's complement in binary
arithmetic is nothing more than the original number
with its bits reversed. That is, the original number's O's
are made 1's and the original number's l's are made O's.
The way to get the 1's complement, then, is by inspec­
tion; just exchange O's for l's and 1's for O's. For ex­
ample:

100 101 = Number
011 010 = 1's complement

To perform subtraction by the l's complement
method, proceed as follows:

1. Find the complement of the subtrahend.
2. Add the complement to the minuend.
3. Perform end-around carry if there is a carry out of

the highest position of the difference (explained
below).

The result is the difference in complement form if it is
negative and in true form if it is positive.

There are four possibilities, as shown by the exam­
ples below. All except the last are treated exactly the

COMPLEMENT SUBTRACT

Minuend < Subtrahend +011 011 Minuend 011 011 Minuend
- 101 010 Subtrahend 010 101 Complement
- 001 III Difference 110 000 Complement of difference

Minuend -Subtrahend +011 011 Minuend 011 011 Minuend
-011 011 Subtrahend 100 100 Complement

000 000 Difference 111 111 Complement of difference

-Minuend> Subtrahend -011 011 Minuend 100 100 Minuend complement
-010 011 Subtrahend 010 011 Subtrahend
- 001 000 Difference 110 III Complement of difference

Minuend> Subtrahend +011 011 Minuend 011 011 Minuend
- 010 101 Subtrahend 101 010 Complement

+ 000 110 Difference 000 101 Difference - 1
With a 1 end carry 1

000 110 True difference

Introduction 15

same. The last requires the extra step of end-around
carry, which is a carry from the highest order around to
the lowest order. This carry is required because of the
cyclical nature of the number system.

The only time it is required is when the minuend is
larger than the subtrahend, that is, when the answer
will come out a true positive answer. Fortunately,
whenever it is required, there is a carry from the left­
most position, which serves as a reminder.

2's Complement

In the derivation of the complement system, it was
shown that a 2's complement of a number is equal to
the modulus minus the number, (M - N). Therefore, to
obtain a 2's complement in a six-place machine, the
number is subtracted from the modulus, 1 000 000. As
an example, find the 2' s complement of the numbers
101 001 and 001 101:

1 aDO 000 = Modulus 1 ODD 000 = Modulus
101 00'1 = Number . 00'1 101 = Number
010 III = 2's Complement 110 all = 2's Complement

An examination of the numbers and their complements
shows that the 2's complement of a number is the same
as the 1's complement with a 1 added to it. The 2's com­
plement is therefore formed by obtaining the 1's com­
plement and adding 1 to it. For example, to form the
2's complement of 001101:

0'0'1 101 = Number
110' OlD = 1's Complement

110 010 = l's Complement
+1

110' on = 2's Complement

To perform subtraction by the 2's complement
method:

l. Find the 2's complement of the subtrahend.
2. Add this complement to the minuend.

The result is the difference in complement form if it is
negative and in true form if it is positive. In the 2's com­
plement system, there is no need to end-around carry.

Signed Numbers

How can negative numbers in complement form be
distinguished from positive numbers in true form? In
this regard, also, binary numbers offer an advantage
with respect to representation. The sign of a number is
binary in nature; th:at is, a number is either positive or
negative. Thus, a bit representing the sign can be used
in addition to the bits representing magnitude. A 0 in
the sign bit position can be interpreted to mean that
the number is positive. A 1 in the sign bit position can
be interpreted to mean that the number is negative. By
treating the signs separately from the magnitudes in
each operation, the result sign can be predicted. There­
fore, the rules of algebra apply in determining the re­
sult sign.

16

Multiplication

The rules for binary multiplication are similar to those
of decimal multiplication. The rules for multiplying
two single digits are the same in both systems. These
rules are:

DXD=D
DX1=D
1xD=0
1x1=1

The general procedure when multiplying two multiple
digit binary numbers is the same as that in decimal
arithmetic. That is, the multiplicand is multiplied by a
digit of the multiplier, and the partial product obtained
is placed so that the least significant digit is under the
multiplier digit. When all the partial products have
been found, they are added together to find the final
product. The only difference between decimal and bi­
nary multiplication, therefore, is in the summing of the
partial products. In binary, the binary addition table is
used while in decimal, the decimal table is used.

As can be seen from the following examples, the
method of obtaining partial products and then adding
them to obtain the final product is identical to that of
decimal arithmetic.

Multiplicand 10'10 10'.11 1111
Multiplier 1101 100.1 1111
First partial product 1010 1011 1111
Second partial product 0000 0000 1111
Third partial product 1010 0000 1111
Fourth partial product 1010 1011 1111
Final product 10'000010 1100'.011 11100001

Note the placement of the binary point in the second
example. The same rules hold for its placement as
hold for placement of the decimal point in decimal
arithmetic.

The third example also illustrates an interesting
point. This is the multiplication of the two largest pos­
sible 4-bit numbers. The product is 8 bits long. In other
words the largest product that can result from the mul­
tiplication of two numbers will be no longer than the
sum of the number of bits in the multiplier and multi­
plicand.

If a number is multiplied by the radix of the number
system, this multiplication has the effect of shifting the
number one place to the left with respect to the radix
point. This is true in any number system. For example,
multiply 12.5110 by 10 (the radix of the decimal system)
and multiply the number 10.112 by 2 (the radix of the
binary system):

Number
Number times radix

12.51
125.1

10.11
101.1

Binary multiplication, then, is nothing more than a
series of add and shift operations. An example of such
an operation is given under Fixed Point Arithmetic in
Volume 2.

Division

Binary division is the process of counting the number
of times a divisor goes into a dividend. The count of
the number of times the divisor may be subtracted
from the dividend before a negative remainder occurs
is called the quotient.

Direct binary division is performed by a series of
subtractions of the divisor (actually a multiple of the
divisor), just as it is in the decimal system. For exam­
ple, divide 100011100 by 1110:

(bd ehi jk)

10 100.01
1 110 }100 011 100.00

(a) 11 10
(c) 111 1
(f) 111 0
(g) 100 00
(1) ..1l...lQ.
(m) 10

In the example, the first step is to place the divisor
below the dividend in a position which is as far re­
moved to the left as possible (a), but which will allow
a positive difference to result when the divisor is sub­
tracted from the dividend. Since the divisor will go
into this many bits of the dividend once, a 1 is placed
in the quotient at b in the same column as the lowest
order digit of the divisor. The divisor is then multiplied
by the quotient digit, and the resulting product is sub­
tracted from the dividend to produce the positive dif­
ference (c), called the current remainder. The next
digit in the dividend is brought down to the line c.
Compare the divisor to line c; note that the divisor is
larger than line c, or that the divisor goes into line c
o times. Therefore, place a 0 in the quotient at the d
position. The next digit of the dividend is then brought
down to line c. Comparing the divisor to line c shows
line c to be greater. Place a 1 in the quotient at the e

position. Multiply the divisor by the last quotient bit to
form line f. Subtract line f from line c to start line g.
The next digit in the dividend is brought down to line
g. Compare the divisor to line g; the divisor is greater,
so place a 0 in the quotient at position h. Bring the next
digit of the dividend down to line g; by comparison
line g is still smaller than the divisor. Place a 0 in the
quotient in position i, and place the next dividend digit
on line g. Still, line g is smaller than the divisor, so a 0
is placed in the quotient at position j. Placing the next
dividend digit on line g now makes line g greater than
the divisor. Place a 1 in the quotient at position k, and
multiply the divisor by this 1 to form line 1. Subtract
line I from line k to start line m. Assuming a quotient
has been developed of sufficient length, terminate the
operation. The quotient is 10 100.01 with a remainder
of 10 (line m).

Since the quotients bit is always either 0 or 1, the
division process can be reduced to a series of subtrac­
tions of the divisor, multiplied by the power of the quo­
tient bit being sought from the dividend. Each time a
subtraction results in a positive current remainder, a
1 is placed in the corresponding quotient bit position,
and the process is immediately repeated for the next
quotient bit. Each time the subtraction results in a
negative remainder, a 0 is placed in the corresponding
quotient bit. In this case, the current remainder is
restored to a positive number by adding the divisor
back to it. Following this, the next quotient bit is ob­
tained by the subtraction of the divisor multiplied by
the power of the next quotient bit.

Since the quotient bits are generated from left to
right, the power of each quotient bit is one smaller than
that of the last bit generated. This means that as the
divisor is successively subtracted from the dividend (or
current remainder), the divisor is shifted to the right in
relation to the binary point. The division process can
therefore be reduced to a process of successive subtract
and shift steps. An example of such a process is given
under Fixed Point Arithmetic in Volume 2.

Introduction 17

Component Circuits

All logic in the A and B gates of CPU 1 (7111) is com­
posed of DIF (DIode Feedback) circuitry. This new F­
level circuitry is of the non-saturating type and pro­
vides the three basic logical functions of AND, OR, and
invert. A collector-to-base diode feedback network pre­
vents transistor saturation and, therefore, allows high­
speed circuit operation. Voltage inversion always oc­
curs between the input and output.

Basic DIF Circuit Operation
Three logical functions are performed by the DIF cir­
cuit block: AND'ing, oR'ing, and inverting. Other func­
tions are also performed such as terminating, driving,
and converting from one voltage level to another, but
these are only "convenience" functions, not logical
functions.

DIF circuitry allows both the AND and OR logical func­
tions to be performed within the same logic block be­
fore output powering and inversion. Not all logic blocks
contain both functions, however; some produce just
AND'ing, others just oR'ing, while others are simply
inverters.

AND-Invert

The two-legged circuit shown in Figure 10 represents
either a + AI or -01 function. The circuit configuration
for the + AND and -OR are identical. The polarity des­
ignations are adapted to work in negative logic; that is,
the recognition of the absence as well as the presence
of information. The +AI circuit requires that all inputs
must be up (+3 volts) to obtain a down-level output
(0 volts).

Note that even though this circuit represents only an
AND function; an OR diode, D3, is also included. This
one-legged OR circuit serves no logical function, but is
always a part of the +AI configuration.

Figure lla shows the junction point of the two input
AND diodes. Only two inputs are shown in this case-­
three or more could also be used. The resistor (Rl)
limits the current How and controls the rise time of the
output.

If both inputs are at 0 volts (Figure lIb), the polar­
ity is correct for both diodes to conduct. The resultant
current How through Rl causes a voltage drop across it
to maintain a level of about 0 volts. (Consider the for­
ward resistance of the diode to be insignificant.)

18

Input 1

Input 2

Input 1

Input 2

Output

+6v

AND
Output

I
I
I
'+3v
!

Figure 10. +AI (-01) Circuit

+3v

,
I
I

lov

If input 1 rises to +3 volts (Figure llc), Dl is cut off
because the cathode is more positive than the plate.
D2, with 0 volts on its cathode, maintains conduction
and the output remains unchanged.

When input 2 changes to +3 volts (Figure lId), D2
is cut off momentarily. The junction voltage starts rising
towards +6 volts with a rise time effected by the stray
capacitance of the associated circuitry. As the junction
reaches 3 volts, both diodes return to conduction as a
final steady state condition. If the input signals are not
of the same voltage levels, the junction voltage assumes
the lowest of the input sources.

When input 1 falls to 0 volts (Figure lIe), Dl con­
ducts harder, D2 is cut off, and the output follows the
input down to 0 volts. When input 2 falls to 0 volts, D2
goes back into conduction to help maintain the 0 volt
output level.

At the output of every DIF logic circuit is a powering
transistor which automatically causes a voltage inver­
sion. When all inputs are down (0 volts), the base-to­
emitter voltage keeps the transistor out of conduction.
In this condition, the output signal level is essentially
at that of the collector power source, +3 volts.

When both inputs 1 and 2 are at +3 volts, for exam­
ple, diode D3 conducts and causes the voltage at the
base of the transistor to go more positive. In this con­
dition, the transistor conducts and the output signal is
essentially that of the transistor emitter, 0 volts.

If the active logical input lines are represented as
plus (+3 volts) levels, the active logical circuit output
is a minus (0 volt) level (Figure 10). If this output is
fed into a-AND or -OR circuit, however, the inversion
was not a "logical" inversion.

Diode D4 in the OR circuit performs a resistance
function only and does not affect the logic. D5 is the
diode which clamps the collector at a more positive
voltage than if the transistor were allowed to conduct
fully. By preventing the transistor from going into sat­
uration, better waveshapes are produced to allow faster
computer operation.

OR-Invert

The two-legged OR circuit shown in Figure 12 repre­
sents either a +01 or -AI function; both differ in logi­
cal function but are identical in circuitry. The +01 cir­
cuit produces a down-level output (0 volts) if anyone
of the inputs is up (+3 volts). This inversion, as ex­
plained previously for the AND-invert, is caused by the
output powering transistor.

+6v +6v

Rl Rl

ANO

J-Output 01 Ov
Input 1 Ov

02 .Jt Input 2 Ov

(0) (b)

+6v +6v

Rl Rl

01 Ov 01 +3v
+3v +3v

02 ~ 02
Ov +3v

(c) (d)

+6v

Rl

Input 1 -.-J
} Ov

Ov Input2~
I I

+3v
1+3v I

ANOOutPut~
(e)

Figure ll. + AND, -OR Circuit

Note that even though this circuit represents only an
OR function, two corresponding AND diodes (D3 and
D4) are included. These one-legged AND circuits serve
no logical function, but are always a part of the +01
configuration.

Figure 13 shows the junction point of the two input
OR diodes (D5 from Figure 12 has been eliminated at
this time). If both inputs are at 0 volts (Figure 13b),
the polarity is correct for both diodes to conduct. The
voltage drop across the current limiting resistor (R2)
sets the correct output level-for explanation purposes,
o volts.

If either input rises to +3 volts (Figure 13c), that
circuit leg conducts harder. The other diode cuts off
and the output follows the input to +3 volts.

Normally only one input is active at anyone time.
The junction voltage, however, tends to follow the
highest of the input signal levels.

AND-OR-Invert

Figure 14 shows the previously explained AND and OR
functions combined into a typical DIF + AOI circuit.
This circuit, too, can be considered as a -OAI depend­
ing on either the inputs available, or the output level
desired. For example, if a minus (-) output level is
desired, a +AOI designation would be used; if a plus
(+) output level is desired, a -OAI would be applicable.

AND +6v INVERT +3v

Input 1

I
I

- - - - AND- -:(;:--,

Input 2

- I

Rl I
I
I
I

D6

R2

-3v

Input I ~~----~~----­
I

Input 2 ~
I I
I I
I I

~
Output

Figure 12. +01 (-AI) Circuit

N

N

R3

Output

Component Circuits 19

Input 1 Ov

D4
Ov OR Output

Ov Input 2
(To Transistor Base)

R2 R2

(a) -3v (b) -3v

+3v

Ov
+3v Input 3 ---.J

~~~--~~ I 

Input4~ 
I I 

~ 
R2 OR Output ~~--- . ~ 

(c) -3v 

Figure 13. +OR, -AND Circuit 

DIF Circuit Logic Blocks 

Micro and Macro Blocks 

Both "macro" and "micro" logic blocks are used on the 
7094 II systems pages; the type of block used depends 
mainly on the availabilIty of printing space. Macro 
blocks can incorporate two or more micro blocks, but 
only when there are no pin connections and back panel 
wiring between micro blocks. 

As an example, consider the AND-OR-invert (AOI) cir­
cuit described in Figure 14. Figure 15a shows a macro 
block condensation of the corresponding three micro 
blocks at (b). Inputs to the macro block are "pin­
pointed" to specify input pins so that the AND functions 
are grouped and easy to separate visually. Of the eight 
possible inputs to the logic block, for example, the top 
AND function is pinpointed to input pins 2 and 3; the 
bottom AND function is pinpointed to input pins 6 and 7. 
Input pins 4 and 5 provide a visual separation of the 
two AND functions. 

Note that the i~-phase output is used from the two 
AND (+ A) micro blocks. These two blocks represent 
diode circuitry only (see Figure 14). The out-of-phase 
output is used from the +01 because the transistor is 
located at this point. 

AN D-OR-I nvert 

The + AOI was described in a previous section. Because 
of the limited number of logic block input pins, only 
certain combinations of AND-OR functions can be shown 
without losing the visual spacing. Obviously, then, it is 
not possible to show two 4-way AND'S. Combinations 
used include: 

20 

1. Two 2-way AND'S, 
2. Three 2-way AND'S, 
3. 3-way and 2-way AND, 
4. 3-way and I-way AND, etc. 
In cases of negative logic (or because of the avail­

ability of signal lines ), a + AOI can be represented by a 
-OAI. In either case, the internal circuitry is identical; 
only the final active output level will be changed. 

The + AOI circuit is used in many cases to "gate" in­
formation into registers. In these cases the + AOI is re­
placed by a G within the circuit block. 

Most circuit diagrams shown in this manual are con­
densed ALD systems with logic converted to positive 
(active) logic. Figure 16 shows at comparison of sys­
tems logic (a) and condensed positive logic (b). Note 
that the condensed logic is not concerned with voltage 
levels, only active logical levels. The out-of-phase (in­
verted) output of the systems gating circuit feeds a 
-sc; therefore, the inversion is not a logical inversion. 
Because there is no logic to the inversion, the con­
densed logic, therefore, uses an in-phase (active) out­
put from the gating (AO) circuit. 

DIF (F-Ievel) Triggers 

Triggers (also referred to as "latches") act as storage 
or remembering devices. Once they are turned on, they 
remain in that state until turned off. Triggers are used 
in some cases to form registers (tag register and ad­
dress register, for example); in other cases they are 

Input 1 

Input 2 

+6v 

I 
r--~ +6v I 

INVERT 

+3v 

I Rl I 
-------' 

Input 3 

Input 4 

D3 I D6 

AND 

I 
I 
I 
I 
I 

-----' .. ----... 
Input 1 ~-----

Input 2 ------l 

Input 3 -.J 

Input 4 -----.,;:......----...:....-------

Output .. +_3v __ ..... 1 Ov 

Figure 14. AND-oR-!nvert Circuit 

Output 



used singly to retain a specific condition (adder Q 
carry and MQ overflow, for example). Various trigger 
configurations exist in the 7094 II. 

+ AOI Trigger 

The + AOI is the most common type of trigger used in 
the new F-Ievel circuitry of the 7094 II. This circuit, 
Figure 17, uses a +AOI followed by an inverter. One or 
more input AND conditions can exist, usually consisting 
of a data input and a gating input. The output from the 
inverter is fed back to the input circuit and AND' ed with 
the reset conditions to form a latch (or hold) circuit. 
Outputs from the + AOI and inverter blocks indicate the 
trigger ON and OFF conditions, respectively. 

In Figure 17a, either data input AND being fully con­
ditioned causes the output of the + AOI to go minus (-) 
and the output of the inverter to go plus (+). This in­
verter output is fed back to AND with the reset pulse 
line forming a hold circuit. 

When the original data input AND circuit is decondi­
tioned, the hold circuit keeps the trigger on. The trig­
ger remains on until such time that the reset signal goes 
minus (-) and breaks the hold circuit. 

Figure 17b shows the trigger in positive condensed 
logic. In-phase and out-of-phase trigger outputs indi­
cate an ON and OFF state, respectively. Resets are shown 
at the bottom of the trigger block with an additional 
section added for each additional reset condition. 

SMS Card 

r
lnput/outPut Pins 

Logic Block 
(Input(output

l + PinS 

1 ----r - -- I 

_In-'-pu_t_l ____ D _ 2 +AOI 
Input 2 E _ 3 3 _ A. ___ O_u-.:tp_u_t 

4 

Input 3 5 
F - 6 
G-7 

ZHQ 8 

Input 4 

(a) Internal Connection 

Input 1 
D +A 

Input 2 

Input 3 +A A __ O_ut-,-pu_t_ 

_In ....... p_ut_4 ____ G 
Z HQ t------t 

Figure 15. Macro and Micro Blocks 

+ F Gate AD-AC Gil + F AD 17 B +G 

~ TPU 6 

vtJ + F Gate AD-Rt AC Ln3 
+ F AD 16 -T 

+ F Gate AD-Rt2 AC Ln3 -U BDS 

+ FAD 15 lB 

IC 
+ F Gate AD Left AC Line 4 GD + FAD 18 B +G Out-of-Phase 

~ BBW 6 

Outputs 
+ F Gate AC Left Ln 4 
+ F AC 18 

+ F Gate AC Left 2 Ln 4 
+ F AC 19 

2C 

Gate AD - AC In-Phase 
AD17 A 0 Outputs 
Gate AD Rt - AC 
AD16 A 
Gate AD Rt 2 - AC 
ADl5 A SC 

Gate AD Left AC 

AD18 A 0 
(IB) 

Gate AC left 
ACl8 A 
Gate AC Left 2 
AC19 A (2C) 

Figure 16. Systems Logic vs Condensed Positive Logic 
Gating Circuitry 

I Sample 

- F Reset 
+AOI 

+ F Data 1 
+ F Data 1 Gate 

+ F Data 2 

+ F Data 2 Gate 
--4D 

Data 1 
-=D-=a.:..::ta~I_G;:;.a::.:t~e ---:J .... A 0 
Data 2 

_D...:,a....:.ta....:.2....:.G,;."a.:..t...;,.e ---:J .... A (4D) 

Reset 

Figure 17. + AOI Trigger 

Tgr 1 + F Sample Tgr On r---

I 

'----
3D 

+ F Sample Tgr Off 

Sample Tgr 

(Out-of-Phase) Trigger Off 

(In-Phase) Trigger On 

Component Circuits 21 



- OAI Trigger 

The -OAI trigger is sometimes used when + F input 
levels are not available and - F levels must be used. 
Figure 18 shows one example of a -OAI trigger that 
can be turned on from two sources and reset by one 
reset signal. Note that all of the active input levels are 
- F. The overall logic remains the same as the + AOI 

trigger discussed previously. 

IBR Trigger 

The !BR trigger circuit is packaged four to a twin card. 
On systems pages the trigger is shown as two + T 
blocks; two blocks are necessary because of the limited 
number of input pins available on an individual block. 
The trigger is also a macro block because the output in­
verter is not individually shown (Figure 19). The out­
of-phase output of the + T block originates before the 
inverter; the in-phase output of the +T block originates 
after the inverter. 

The address portion of the !BR (21-35) requires an 
additional input gate. The output of the + AI block is 
connected to the trigger output at a point in front of 
the output inverter; therefore, a hold circuit is estab­
lished. The hold circuit is from pin 6 of the output in­
verter to pin 6 of the lower + T block. These two pin 6' s 

- F Set Pulse J Sample Tgr 

- F Set Pulse 2 -OA I t--__ ....----I - F Tgr On 

+ F Reset 

2D 2C 

- F Tgr Off 

Figure 18. -OAI Trigger 

r---------------~~~ 

~y IBR 35 I 
t-T +AOI t------t 
LD TPX 

~X I 
t-u TPX )icro 
L_...L_I _________ -.J 
r-------------· 

IBR 35 I 
----I~yo I Macro ----+I-'T +T 7-------_~ 

-----<I~D I 
-----tll-x TPX 6 ----~r-----lr___--I 

I U 
L_'-+ ____ _ 

__ ~A 
-----~1d 

Fi+ATl-- B 
==========~~ 
Figure 19. IBR Trigger 

22 

are common points of internal card wiring; there is no 
back panel wiring as might be concluded from the sys­
tems page layout. 

Shift Cell-SC 

The shift cell is an element which can accept new data 
at its input while it simultaneously supplies old data at 
its output. Shift cells make up the storage register, ac­
cumulator, and multiplier-quotient (MQ) register in the 
7094 II. 

These shift cells are a "double-latch" type of circuit 
where two -OAI triggers are connected in series. Both 
"set" and "hold" pulses are generated by control cir­
cuitry and used to introduce new data. Figure 20 shows 
the shift cell configuration and sequence chart for set­
ting in a 1 from an initial 0 condition. Note that the 
active levels of the input data, set, and hold pulse are 
-F. The appropriate data level must be present at the 
input to the shift cell prior to arrival of the set and hold 
pulses. The final output changes on the lagging edge of 
the pulse. 

The set and hold pulses are approximately 60 nano­
seconds in width and occur at the end of the 175 nano­
second clock pulse. The hold pulse is generated from 
the inverted output of the set pulse, skewed by one 
level of circuit delay. 

If the shift cell initially contains a 0, point B (Figure 
20) is plus (+) and O2 is deconditioned. When a minus 
(-) data signal arrives at the shift cell, 0 1 becomes con-

- F Set 

- F Hold 

~Clock Pulse (1 75ns)---> 

Data Input ~ 

Set Pulse 
1 level -..J~ 

Hold Pulse 
of delay : r---

121.evels --: ~~tay I 

Point B 
1 level of delay -

Point C -Point D 

Figure 20. Shift Cell 

~ 

- F SC = 1 

D 

:..- 2 levels of delay 
I 



ditioned. When the set pulse goes minus (-), both in­
puts are conditioned; point A goes plus (+), point B 
goes minus ( -) and a data bit is set into the first half of 
the shift cell. 

The minus (-) signal at point B feeds 0 5 and 0 6, but 
the final condition at 0 7 is blocked because the hold 
pulse has gone plus (+). The incoming data bit is not 
allowed in the second half of the shift cell at this time 
because doing so would destroy the old data and de­
feat the purpose of the shift cell. The minus (-) output 
of the inverter at point B does, however, feed back to 
O2 to act as a hold on the first half of the shift cell when 
the input data signal is removed. 

At the end of the clock pulse, the hold pulse goes 
minus (-) and conditions 0 7, the final input to the sec­
ond half of the shift cell. At this time, point C goes 
plus (+), point D goes minus (-) and the shift cell in­
dicates a 1 output. Point D is also returned to both 0 6 

and 0 7 to form a hold circuit for the second half of the 
shift cell. 

Figure 21 shows a sequence chart of a shift cell, 
AC(35) for example, under the following conditions: 

1. Initially reset to a 0 state 
2. The initial 0 replaced by a 1 
3. The 1 replaced by a second 1 
4. The second 1 replaced by a 0 
5. The last 0 replaced by another 0 

DOT-OR1ing and AND1ing 

In many cases, the available circuits do not contain 
enough inputs to satisfy a logical function. To meet 
this requirement, two or more existing circuits can be 
DOT'ed together so that the function of one logical block 
is «extended" into the other. DOT'ing is accomplished by 
having the circuits share a common transistor load, and 
because of this, some circuit card types do not contain 
transistor collector loads. 

Clock 

Data Input 

Set Pulse 

Hold Pulse 

Point B 

Point C 

Point D 
t-----hAC(35)= 1 AC(35)= 1 �.-----i-------i 
AC(35)=O AC(35)=O AC(35)=O 

Figure 21. Shift Cell Timing Chart 

Figure 22a shows the DOT'ing function with a three­
legged OR and a two-legged AND. The top three-legged 
OR circuit supplies the collector load for both itself and 
the unloaded two-legged AND circuit below. Output 
connection between the two circuits is made by back 
panel wiring. 

Note that the logical input and output levels desired 
(i.e., + F or -F) will determine whether the DOT'ing 
function is an AND or OR. 

Figure 22b shows a DOT-OR' ed configuration. Any + F 
input to the +01 circuit causes transistor T1 to conduct 
and produce a - F output; also, both inputs being + F 
at the + AI circuit cause transistor T2 to conduct and 
produce a - F output. Therefore, if the logical output 
level is - F, either circuit block produces the required 
output. 

Figure 22c shows the same identical circuit as (a) 
but as a DOT-AND configuration. All inputs being -Fat 
the -AI circuit force transistor T1 out of conduction 
and produce a + F output; either input being - F at the 
-or circuit forces transistor T2 out of conduction and 
also produces a + F output. If the input conditions are 
not as just described, either Tl or T2 will conduct and 
produce a - F output which is opposite to the logical 
output desired. 

,-------------------. 
+3v I 

I 
I 
I 

Input I 

Input 2 

t-------
I 

-3v 

I 
I 
I 
I 
I 

I 

I 
-------1 

I 

I 
I 
I 
I 
I 

I ~v I L __________________ -=_...1 
(a) 

Output 

Back Panel 

/wiring 

~~~ __ r-_,~--~~.~-F~I~np~ut~I--.. - ~~ __ ~~ 
-F Input 2
-F Input 3 Dot-AND

-F Input 4

-F Input 5

(b) (c)

Figure 22. DOT-oR'ing and DOT-AND'ing

Component Circuits 23

Component Circuits Card Types
Three types of SMS component circuit cards are used to
support the DIF circuitry; single, twin, and STAN-PAC
cards. In many cases, register positions or similar func­
tions are combined on cards as both a packaging and
trouble-shooting convenience.

SMS Single Card

All electronic components are mounted on the front
side of the card and connections to the components are
made on the back side by printed wiring patterns. The
16 contacts (labeled A through R) couple the signal
and service voltages to the circuit components when
the card is inserted into the SMS socket.

These single SMS cards form the bulk of the com­
puter logic. They contain: basic circuit elements such
as AND'ing, oR'ing, inverting, and terminating; and
semi-specialized circuit functions such as adder look­
ahead and gating.

SMS Twin Card

The twin SMS card is one physical card which requires
the panel space of two single SMS cards. The use of
twin cards provides more circuitry in a given space
(compared to single cards) and is desirable in high
speed circuitry because more operations can be per-

Reg Storage Register Accumulator MQ
Pos TPU BBW TPU BBW

S * * * *
1 01B4F27-28 * * *
2 01B4F27-28 * * *
3 01B4F27-28 * 01B4A05 01B4A07
4 01B4F27-28 '.\t 01B4A05 01B4A07
5 01B4F27-28 * 01B4A05 OlB4A07
6 01B4F27-28 * 01B4A05 01B4A07
7 01B4F25-26 * OlB4A05 01B4A07
8 01B4F25-26 * 0lB4A05 0lB4A07
9 01B4F25-26 * * *

10 01B4F25-26 01B4A04 01B4A06 *
11 01B4F25-26 OlB4A04 0lB4A06 *
12 01B4F25-26 01B4A04 0lB4A06 0lB3A19
13 01 B.4F07-08 PIB4A04 0lB4A06 0lB3A19
14 01B4F07-08 0lB4A04 0lB4A06 0lB3AI9
15 01B4F07-08 OlB4A04 0lB4A06 0lB3A19
16 OlB4F07-08 01B3A25 0lB3A24 0lB3AI9
17 01B4F07-08 0lB3A25 0lB3A24 01B3A19
18 01B4F07-08 OlB3A25 0lB3A24 0lB3A 18
19 01B3F17-18 01B3A25 0lB3A24 0lB3AI8
20 01B3F17-18 0lB3A25 0lB3A24 01B3A18
21 01B3F17-18 01B3A25 0lB3A24 01B3A18
22 01B3F17-18 01B3A22 0lB3A23 0lB3A18
23 01B3F17-18 01B3A22 0lB3A23 0lB3A 18
24 01B3F17-18 01B3A22 0lB3A23 0lB3AI7
25 01B3H06-07 OlB3A22 0lB3A23 0lB3A17
26 01B3H06-07 OlB3A22 0lB3A23 0lB3A17
27 01B3H06-07 OlB3A22 0lB3A23 01B3A17
28 01B3H06-07 OlB3A20 0lB3A21 0lB3A17
29 01B3H06-07 0lB3A20 0lB3A21 0lB3A17
30 01B3H06-07 OlB3A20 0lB3A21 0lB3A16
31 01B3H04-05 0lB3A20 0lB3A21 0lB3AI6
32 01B3H04-05 0lB3A20 0lB3A21 01B3A16
33 0IB3H04-05 0lB3A20 0lB3A21 OlB3A 16
34 01B3H04-05 * * 01B3A 16
35 01B3H04-05 * * 0lB3AI6

* Indicates the use of single cards.

Figure 23. Twin-Card Locations for SR, AC, and MQ Input Gating

24

formed before the resultant signal must be directed to
other cards by way of connectors and back-panel wir­
ing. The 32 contacts on the card (labeled A through Z
and 1 through 8) couple the signal and service voltages
to the circuit component when the card is inserted into
the SMS sockets.

Circuitry using twin cards includes: input gating to
the storage register, accumulator and MQ; instruction
backup register; sense indicator register; index regis­
ters; and index adder positions.

Register positions and twin card locations are as
shown in Figures 23 and 24.

SMS STAN·PAC Card

The STAN-PAC card is identified by its vertically mount­
ed components. Resistors, diodes, chokes, and so forth
have their top terminal welded to a component mount­
ing strip which clamps to the body of the component
for mechanical strength. The strip also provides an
electrical path to the adjacent component. Both termi­
nals of the components pass through a hole in the card
and are soldered to a land pattern on the reverse side
of the card. The 32 contacts on the card (labeled A
through Z and 1 through 8) couple the signal and serv­
ice voltages to the circuit components when the card is
inserted into the SMS sockets.

TPU

*
*
*

01B4A08
OlB4A08
01B4A08
01B4A08
OlB4A08
0lB4A08

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

The various BDS card register positions and corre­
sponding machine locations are shown in Figure 25.

Figure 26 shows a STAN-PAC BDS card. To achieve the
fast adder time of one clock pulse (175 nanoseconds),
corresponding positions of the storage register, accu­
mulator, MQ, and main adder have been combined on
one STAN-PAC circuit card. Figure 26 shows position 35.
This card position contains the shift cells for SR (35) ,

MQ(35), and AC(35). One input gate (+C) circuit for

Sense Card Instruction Card
Indicator Location Backup Location
Register (TPW) Register (TPX)

5-3 01B2H28 5-3 01A3D12

4-7 01B2H27 4-7 01A3D11

8-11 01B2H26
12-15 01 B2H25

(a) (b) 8-11 01A3D10
12-15 01A3D09

16-19 01B2H24 16-19 01A3D08

20-23 01B2H23 20 *
24-27 01 B2H22 21-23 01A3D07

28-31 01B2H21 24-27 01A3D06

32-35 01B2H20 28-31 01A3D05
32-35 01A3D04

*Indicates the use of
single cards

Index Card Index Card
Adder Location Registers Location

Position (TPS) Position (TPV)

3 01A3F18 3 01A1G18
4 01A3F17 4 01A1G17
5 01A3F16 5 01A1G16
6 01A3F15 (c) (d) 6 01A1G15
7 01A3F14 7 01A1G14
8 01A3F13 8 01A1G13
9 01A3F12 9 01A1G12
10 01A3Fll 10 01A1G11
11 01A3F10 11 01A1G10
12 01A3F09 12 01A1G09
13 01A3F08 13 01A1G08
14 01A3F07 14 01A 1G07
15 01A3F06 15 01A1G06
16 01A3F05 16 01A 1G05
17 01A3F04 17 01A 1G04

Figure 24. Twin-Card Locations for SI, IBR, XAD, and XR

SR (35) is also included; the remaining gates for the SR,

MQ, and AC are on other cards and DOT-OR' ed at the
shift cell as shown.

The corresponding main adder position also has its
input gating circuitry and output lookahead functions
(propagate, generate, and exclusive OR) on the same
card. Note, however, that the actual adder sum output
logic is on a separate card. Note, also, that the top cir­
cuit of the bottom adder gate is not used for AD(35).

SR,AC,MQ,AD Position

SR(S),AC(S, P),AD(P)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
2 I
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Card location (BDS)

01B4F22
0lB4F21
01 B4F20
01B4FI9
0lB4FI8
0lB4FI7
01B4FI6
0lB4FI5
0lB4F14
0lB4FI3
0lB4FI2
OIB4FIl
OlB4FIO
0lB4F09
OlB4F06
01B4F05
01B4F04
01B3F25
OlB3F24
OlB3F23
OlB3F22
OlB3F21
01B3F20
01B3FI9
01B3FI6
0lB3FI4
0lB3FI3
0lB3FI2
OlB3Fl1
OlB3FIO
OlB3F09
OlB3F08
0lB3F07
01B3F06
0lB3F05
0lB3F04

Figure 25. BDS Card Locations for SR, AC, MQ and AD

Component Circuits 25

+F Gate AD SR : :t]G D~>--D-~"'F
~---C ,--K-

E r-- G r-H - _1------.
_+.:...F --:G;....a_te_M--:Q-=---...... _S_R _____ 1 __ -4-__ E

,-L
-F {Dot OR of Other Input Gates},D.,--+_-+--------I
-F Set SR ~K~+_-+------------~
-F Hold SR ..;.H-=---+_--+---------...J

+F AD 35

+F Gate AC ~ SR

Storage Register {;35}
02.01.09.1

F +F SR 35

-- --- --- --- -i-- ---- -- -- -- -- --~ -- -- -- -- -- -- --

-F {Dot OR or Input Gates} M MQ 35 L +F MQ 35

-F Set MQ
-F Hold MQ

-F {Dot OR of Input Gates}

P
N

-

rr ~~_r----------------------
---- ---- ---- -- --

MQ Register {35}
02.04.06.1

V AC 35 G
---4------------------- v- ---=sc -G ----+-+------------------------

-~F~S~e~t~A--'C~-----------I-T~+---------------------T-
....:-F_H;...;.o;:.,;l..:;.d;....A.;,.,:C'---______ I-=U'----i-----------------U __

Accumulator Register {35}
02.03.08.1

+F AC 35

-- -- -- --- -- -- -- -- -- -- -- --- -- -- --- --- --- --- ---

+F Gate AC ~AD _R __ -+---+--+-+ R ~
~+--+--+ G +G

...---If---J-II --0011 ~ X ________________________________ .:..:.X +F Propagate 35

rz~ +F Gate Comp AC ~AD

{Not Used}

-----+~_+ S,
1....-1--

-z --

I
I
I
I +-----+---1

(Not Used) 6 I
----------,- AD 35 I I

{Not Used} 7 6 - I L

_2_1--+-+-: +G ~ ~-~y +F Gate Comp SR +AD

y +F Generate 35
----4J----

+F Gate SR+AD Q
---+--~,--Q

I....-F-_

Ground 1
-+-3....:v-o~lt-s---- ~~

+6 volts (MC) _5 __
-3 volts _8 __
Ground _J __

BDS - Card Location 01 B3 F04

Figure 26. Typical BDS Card Layout

26

I

I
I
I
I
I
I

~
~I

~w
~ 1-

Main Adder (35)
02.02.19.1

W +F Exclusive

OR 35

Dff Circuit Specifications

DIF Logic Block

Figure 27 shows a typical AND-OR-invert (AOI) DIF cir­
cuit. Diode Dl and the dotted circuitry below it indi­
cates the AND function; diode D2 and the dotted cir­
cuitry below it indicates the OR function. Diode D3
produces an additional voltage drop in its circuit and
is used because it provides better control than a re­
sistor. Diode D4 provides the transistor collector-to­
base feedback network to prevent the transistor from
going into saturation. The inductor (L) in the tran­
sistor collector circuit is used to improve the output
signal rise time by overcoming stray capacitance asso­
ciated with the output circuit.

Inverter circuits are formed by using one-legged AOI
circuits.

-Dfj --E +AOI A--

F F

KME+3V

U --F
--G

+6v

Input Dl

{
------l

Fan-in - - ---1
----~
------I

I ---., ---

---~ ___ ...1

-3v

Figure 27. DIF Logic

Logic Siock Input Specifications

DC Voltage Levels and Limits:

/-

3.35 v
2.88 v

0.93 v
0.47 v

Output

Fan-In Capabilities: The logic block can have a fan­
in of five on the AND circuitry, and five on the OR cir­
cuitry. Inputs can be expanded, however, as explained
later.

Logic Siock Output Specifications

DC Voltage Levels and Limits:

r 3.35V
2.88v

0.93 v
0.47 v

Fan-Out Capabilities: The logic block has a fan-out
capability of ten of the following in any combination.

Logic blocks
Line drivers
Indicator drivers
Inverter (only one)-equivalent to three loads

Logic Siock Circuit Delays

Circuit delays vary as a function of: the number of fan­
in Signals, the number of fan-out signals, and the total
length of back panel wire. The total best-case to worst­
case delays vary from approximately 5.0 to 20.0 nano­
seconds. These delays apply to the logic block which is
performing two logic functions (AND-OR).

Logic Siock Power Supply Requirements

Nominal Voltages and Tolerances:

SUPPLY

+6M
+ 3 volts
- 3 volts

TOLERANCE

± 4 percent
± 4 percent
± 4 percent

Overvoltage and
tions:

U ndervoltage Limits and C ondi-

1. The following overvoltages can be tolerated with­
out causing component damage:

SUPPLY OVERVOLTAGE LIMIT

+ 6 M + 9.0 volts
+ 3 volts + 3.6 volts
- 3 volts - 6.0 volts

2. Any power supply can be open-circuited without
causing component damage.

3. Any power supply can be shorted to ground with­
out causing component damage.

4. Power supply sequencing is not required.
5. Logic block cards may be inserted into or re­

moved from the computer with power on without caus­
ing component damage.

Logic Siock Extended Capabilities

Eight-Way AND: An eight-way AND fan-in may be
used with a maxinlum of one nanosecond delay added
per block.

Dot-OR Connections: Logic block collectors may be
DOT-oR'ed to increase the OR fan-in. Up to two addi­
tional collectors may be connected to a logic block out­
put; the DOT-OR' ed collectors will have a single collector
resistor and inductor. Each additional DOT-oR'ed col­
lector adds 1.5 nanoseconds to the delay of the original
circuit.

Frequently all of the circuit diodes are not used. In
these cases:

1. AND diodes can "float"
2. OR diodes must be tied to ground

Component Circuits 27

DIF Indicator Driver

The DIF indicator driver (Figure 28) is a saturating
circuit designed to indicate an output level of the DIF

logic block. The indicator light will be on when the
logic block output is at the "up" (+3 volts) level, and
off when the logic block output is at the "down" (0
volts) level. A small amount of "pre-energization" cur­
rent continues to flow through the indicator lamp even
when off and causes a faint glow at the indicator
filament.

~F­
---A U

r------,
+6M : ~ :

r-----1a----vVV 1 ~ +30v I
R4

Rl
820Q

-3v

R5
3.3K

L _L~ __ .J
The circuit portion within
dotted lines is external to
the indicator driver card
assembly.

Figure 28. DIF Indicator Driver

Indicator Driver Input Specifications

DC Voltage Levels and Limits:

f
3.12V
2.85 v

+ 0.93 v .
+ 0.47 v

Loading: The indicator driver must be considered as
at least three loads.

Indicator Driver Output Specifications

The output specifications for this circuit are determined
by the particular indicator lamp being driven. These
specifications are for driving indicator lamp PiN 550511
connected as shown in Figure 28.

DC Voltage Levels and Limits:

f
· 29.2v Lamp

24.2v ON
Lamp 22.8v
OFF 15.0v

Indicator Driver Power Supply Requirements

28

Voltages and Tolerances:

+ 6 v ± 4 percent
- 3 v ± 4 percent
+ 30 v ± 4 percent (required on the indicator panel­

not on the circuit card)

Power Supply Limitations:
1. Power supply sequencing not required.
2. Duty cycle is 100 percent.
3. Card can be removed from the computer with

power on without damage to the circuit.

N-Line to DIF Converter-Terminator

The N to F level converter provides proper termina­
tion for N-line (drift current mode) logic blocks (Fig­
ure 29). The converter also converts the N-line level to
one capable of driving an F-Ievel (voltage mode) logic
block. The circuit is designed to be driven by 200 feet
of coaxial cable from a B-type logic block.

---H r::l _p BA-­LJ-D-- U +3v

.. Converter

+12v +3v +6v

R8
150Q

L
3.3ttH

:lI----+-~ Out

N

p

N

In __ "1/\1',--_

-12v

Figure 29. N-Line to F-Line Converter

N to f Converter Input Specifications

Input voltage levels are a fundion of the input current
which is set by the driving circuit, the 82 ohm input re­
sistor, and the base-to-emitter drop of the transistor.

Fan-in Capabilities: The N to F converter-driver is
designed to accept a single N-Ievel input signal.

N to f Converter Output Specifications

DC Voltage Levels and Limits:

f
3.92V
2.98 v

+ .912v .
- .380 v

Fan-Out Capabilities: The N to F converter without
the inverter output can drive only one logic block.
When the converter has the inverter (out-of-phase)
output, the capabilities are the same as for the AOI DIF

logic block.

N to f Converter Delays

The best-case to worst-case circuit delays for the N to
F converter vary from approximately 4 to 160 nanosec­
onds. Worst-case delays consider worst-case conditions
of components, voltages, driver and output loading.

Power Supply Requirements

Power Supply Limitations:
1. All power supply tolerances are ±4 percent at the

circuit.
2. Voltage sequencing not required.
3. Circuit card can be removed without damage to

itself, its driver, or its load.
Over-Voltage Limits:

SUPPLY OVER-VOLTAGE LIMITS

+ 12 volts + 20 volts
+ 3 volts + 9 volts
- 3 volts - 9 volts
- 12 volts - 20 volts

These limits assure that breakdown limits will not be
exceeded; they do not assume proper delays and levels.

P-Line to DIF Converter-Terminator

This converter-terminator circuit is designed to termi­
nate up to 200 feet of 93 ohm coaxial line driven by a
P-line (current mode) logic block (Figure 30). The

~A­--P-U

Dl

+12v

R3
1.62K

Figure 30. P-Line to F-Line Converter

+3v

circuit also converts the incoming signal to an F-Ievel
(voltage mode) signal sufficient to drive ten DIF logic
blocks.

P to F Converter Input Specifications

DC Voltage Levels and Limits:

f
-2.90V
- 3.44 v

- 3.51 v
- 3.90v

Fan-in Capabilities: The P to F converter-driver is
designed to accept a single P-Ievel input signal.

P to f Converter Output Specifications

DC Voltages Levels and Limits:

f
3.12V
2.88 v

+ 0.91 v
+ 0.18 v

Fan-Out Capabilities: The converter block has a fan­
out capability of ten of the following in any combina­
tion.

1. Logic blocks
2. Line drivers
3. Indicator drivers
4. Inverter (only one)-equivalent to three loads

P to f Converter Delays

The best-case to worst-case circuit delays for the P to F
converter vary from approximately 4 to 54 nanoseconds.

P to F Power Supply Requirements

Power supply requirements are the same as for the N­
line to F converter-terminator.

Component Circuits 29

DIF to N-Line Converter-Driver

The F to N-line converter is designed to accept an F­
level (voltage mode) input signal and drive a single
N-Ievel (current mode) output (Figure 31). This out­
put can feed up to 200 feet (maximum) of 95 ohm co­
axial cable piN 595997.

{j-A-- ~--... Output

---E F N

-12v

+12v

p

Input
_--..1\1'1., ---1 N

p

R3
6.2K _

Figure 31. F-Line to N-Line Converter

F to N Converter Input Specifications

DC Voltage Levels and Limits:

N

P

N

/-

3.38 v

2.95 v
+ 0.93 v

+ 0.47 v

R7

R6

-12v

Fan-in Capabilities: The F to N converter-driver is
designed to accept a single F-Ievel input signal.

F to N Converter Output Specifications

DC Voltage Levels and Limits: The converter out­
put voltage levels depend on whether the terminator is
a translating (N to P-Ievel) block, or a non-translating
(N to N -level) block.

TRANSLATING

LINE TERMINATOR

NON-TRANSLATING

LINE TERMINATOR

j
+0.32V ::t_2.64V
+ 0.21 v - 3.24 v

- 0.20 v - 3.38 v
- 0.35 v - 3.82 v

Fan-Out Capabilities: The F to N converter can drive
only one logic block. Output of the converter is an out­
of-phase signal level.

30

F to N Converter Delays

The best-case to worst-case circuit delays for the F to
N converter are approximately 6 to 76 nanoseconds.

F to N Power Supply Requirements

Voltages and Tolerances:

- 12 volts ± 4 percent
+ 12 volts ± 4 percent

A ±3 volt excursion is permissible on the + 12 volt
and -12 volt power supplies under fault condJ.tions.

DIF to P-Line Converter-Driver

The F to P-line converter is designed to accept an F­
level (voltage mode) input signal and drive a single
P-Ievel (current mode) output (Figure 32). The out­
put c.an feed up to 200 feet (maximum) of 95 ohm co­
axial cable PiN 595997.

+12v

Input

+12v

Figure 32. F-Line to P-Line Converter

F to P Converter Input Specifications

DC Voltage Levels and Limits:

f
+ 5.80V
+ 4.42 v

+ 0.93 v
+ 0.47 v

Output

Dl

Fan-in Capabilities: The F to P converter is designed
to accept a single F-Ievel input signal. This converter
circuit is to be driven by an unloaded DIF circuit. The
maximum wire length between the DIF circuit output
and converter input is not to exceed 24 inches. The DIF

circuit driving this converter is to drive no other loads.

F to P Converter Output Specifications

DC Voltage Levels and Limits: The converter output
voltage levels depend on whether the tenninator is a

translating (P to N-level) block, or a non-translating
(P to P-level) block.

TRANSLATING

LINE TERMINATOR

j
-5.39V
- 6.07 v

- 5.98 v

- 6.52 v

NON-TRANSLATING

LINE TERMINATOR

- 2.75v
- 3.12v

j
-2.16V
- 2.63v

Fan-Out Capabilities: The F to P converter can drive
only one logic block. Output of the converter is an out­
of-phase signal level.

F to P Converter Delays

The best-case to worst-case circuit delays for the F to
P converter are approximately 11 to 62 nanoseconds.

These delays are measured from the input of the DIF

driving circuit to the output of the conversion circuit.

F to P Power Supply Requirements

Voltages and Tolerances:

- 3 volts ± 4 percent
+ 12 volts ± 4 percent

Power Supply Limitations:
1. The + 12 volt supply cannot be more positive than

+ 12.82 volts.
2. The -3 volt supply cannot be more positive than

-1.5 volts.

Component Circuits 31

7618
PCU

60 rv208v

3~

Power (400'" 208v, 3~) to all frames

716
Printer

711 Card
Reader

721 Card
Punch

Figure 33. 7094 II System Configuration

32

1009DTU
1011 PTU
1014 RIU
Telegraph
I/O Units

7111
Instruction

7109
Arithmetic

Processi ng Sequence
Unit Unit
(Central Proc~ssing Unit)

I

7909 Data Channel

System Components
Figure 33 is a block diagram of the 7094 II system
configuration showing a possible combination of units.
Of course, not all units are required in every installa­
tion. The final selection would be determined by cus­
tomer need.

Figure 34 illustrates the basic functional organization
of the 7094 II. Although there is a slight change in
terminology, components and functions are essentially
the same as previously described for a general com­
puter (Figure 1). Note, however, that a multiplexor has
been added. Arrows indicate the general flow of infor­
mation. Although the sections can be neatly separated
physically, there are many functional combinations not
shown in this grouping. Storage is the only functional
section that is a separate machine unit.

CPU

Control and
Arithmetic

Storage
f----Read

<l---Write

Figure 34. Basic Functional Organization

Briefly, computer information flow is from the input,
through the multiplexor, and to core storage to set up
the stored program. Instructions then come from core
storage, through the multiplexor to the CPU for decod­
ing, and a data reference is made back to core storage
to the address specified in the instruction. Instructions
return the answers to core storage where they, the an­
swers, will eventually be transmitted to the output
equipment.

The arrangement shown allows input-output (I/O) to
operate somewhat independently, sharing storage with
the computer. The highest order of controls is in the
computer where control is delegated to the lower order
controls in the data channel and multiplexor.

System and Functional Components

IBM 7111 and 7109 Central Processing Units

The central processing unit (cpu) of the 7094 II is actu­
ally made up of two sub-units-cpu-l and CPU-2. The
CPU-l is the IBM 7111 Instruction ProceSSing Unit and
CPU-2 is the IBM 7109 Arithmetic Sequence Unit.

As these names imply, CPU-l contains all arithmetic
and control registers and accepts, decodes, and routes
instructions to the rest of the computer. Because of the
dense circuit packing, CPU-l also performs a great deal
of instruction execution. CPU-2 controls instruction exe­
cution for most POD 76 and sense indicator instructions,
and I/O operations.

:Many of the functions previous associated with CPU-2
are now contained in CPU-I. There is a great deal of in­
terplay and overlap between these two units, and in
some sequences it is difficult to determine an accurate
functional boundary.

The arithmetic section is the calculating section of
the computer system. Here, portions of information,
either instructions or data, can be transformed, com­
bined, or altered. This section also keeps account of the
instruction it is using and the one it will use next.

The control section directs the other sections. It tells
them what to do and when to do it. Instructions come
into the control section from storage.

IBM 7606 Multiplexor

The IBM 7606 Multiplexor may best be described as a
switching device which controls most of the data trans­
fer and intercommunications within the system (Figure
35). It controls some of the core storage addressing and
provides data paths to and from core storage for the
computer and the data channels. The multiplexor also
provides physical connections for the various cables to
and from the data channels.

In addition to multiplexing data between core stor­
age and the several sources of inputs and outputs, the
multiplexor contains two master clocks for timings re­
quired by the main computer and data channels. These
master clocks and their operation is described later in
"Timing."

The multiplexor contains a buffer address register
(BAR) used in data channel addreSSing and also look­
ahead circuits that are used in conjunction with data
channel operations.

7094 II System and Functional Components 33

Multiplexor Storage Busses

Data words are gated from the even/odd memory data
registers and onto their respective memory data bus
out (MDBO) lines. These two sets of 36-bit data lines ar­
rive independently at the multiplexor (Figure 35).

Outputs from this multiplexor storage bus circuitry
is sent to a variety of places. When sent to the CPU,
both the even and odd busses remain independent and
isolated from one another. Gating circuitry within the
CPU (shown as © in Figure 35) determines which
bus/busses are gated into the storage register (SR), pro­
gram register (PR) and instruction backup register (IBR).

For data channel operations only the appropriate
memory is selected. Therefore, only one MDEO is active
with data. Both sets of MDBo'S are oR'ed together (as in­
dicated by @ in Figure 35) and sent out uncondition­
ally on banks 1 and 2. However, only the particular
channel requesting the data gates the data word
through the channel input switches. This gating occurs
during B cycles or the E cycle of an appropriate chan­
nel instruction or command. The data word is treated
as either data or a command word and set into appro­
priate registers.

Channellookahead circuitry in the multiplexor tests
the storage bus outputs to determine indirect address­
ing and TCH-type commands. If indirect addressing or
a TCH-type command is detected, positions 21-35 (ad­
dress portion) are immediately gated to the buffer ad­
dress register so that a second core storage reference
can be made for the data channel.

Multiplexor Storage Bus Input OR'ing

The multiplexor input oR'ing circuitry gates all data
sent to core storage (Figure 35). Data can arrive from
the storage register in the CPU or from banks 1 or 2 of
the channel storage bus. Timing and priority circuits
throughout the system, however, prevent more than
one input from being active at anyone time.

Outputs from the input oR'ing are sent over 36 lines
to the memory data bus in (MDBI) of core storage. The
data word is gated into either the even or odd memory
data register as determined by the MAR selection and
addressing circuitry.

Buffer Address Register

Memory address switching which existed in the multi­
plexor of the 7090/7094 computers has now been
greatly expanded and relocated in CPU-I. Its place in
the multiplexor has been taken over by the buffer ad­
dress register (BAR) which is directly associated with
data channel operations (Figure 35).

Inputs from the channels for memory selection come
from the channel address switches in either bank 1 or 2.

34

Inputs from positions 21-35 of the multiplexor storage
bus occur for memory selection under indirect address­
ing or TCH-type channel commands. Logic, however,
prevents more than one input from being active at any
one time. During channel trap operations, various BAR
positions are forced on to cause trapping to appropriate
memory locations. For example, BAR (14 and 16) indi­
cate the channel A trap address of 128 •

Outputs from the buffer address register go to the
MAR selection circuitry for memory addressing, and
also to banks 1 and 2 as an input to the channel address
input switches.

IBM 7302-3 Core Storage

All information in the system is at one time or another
in storage; therefore, computer speed depends on stor­
age speed. The storage scheme of most computer sys­
tems today is random access (any portion of informa­
tion can be located directly without searching other
locations).

The new l.4-microsecond air-cooled 7302-3 core
storage provides two logically independent random
access storage blocks of 16,384 words each. Both blocks
(arrays) can perform simultaneous data fetches because
each array has its own 14-bit memory address register
(MAR), 36-bit memory data register (MDR) and 36-bit
memory data bus out (MDBO). All of the following mul­
tiplexor controls have been duplicated:

Memory select
Memory read-out control
Store prefix control
Store decrement control
Store tag control
Store address control
OR to storage
Memory test time

One memory data bus in (MDBI) is located in the
multiplexor and wired to both MDR'S. Storing can not,
therefore, be executed simultaneously to both the even
and odd memory; only the memory selected by the
store operation generates the data-in gate (DIG). A si­
multaneous store and fetch combination may occur
provided there is no memory conflict.

The data channel and computer can not use core
storage simultaneously. Channel B cycles can overlap
CPU L cycles, however, because L cycles require no ref­
erence to core storage. Channel cycle requests are hon­
ored on the cycle following their receipt in the CPU, and
continue to assume priority until such time that all re­
quests from all channels have been satisfied.

For more information on core storage, refer to IBM
7302-3 Customer Engineering Instruction-Mainte­
nance Manual, Form 223-2724.

Memory Doto Memory Dato Chonnel Address Chonnel Address CPU Channel Channel
Register Register Switch Switch Storage Register Storage Bus Storage Bus

Even (MDBO) Odd (MDBO) (Bank 1) (Bank 2) (Bank 1) (Bank 2)
0-----------35 0-----------35 3-----------17 3-----------17 S,1----------35 S, 1----------35 S,1---------35

~36Lines~

I
r;;:i Multiplexor- - - - -~ - - -1--- - - -y~ -~-- -----~ -,~ - r='-II

S, 1 ,2, 18 Multiplexor Storage Bus

I ~ (02.05.10.1-

1

02.05.21.1) Multiplexor Storage Bus I
Buffer Address Register Input OR'ing

I
Channel Even I Odd (03.06.20.1-03.06.27.1) (02.05.22.1-02.05.33.1)

(O~~~~a.~~a.~) S, 1----------- 35 ! S, 1---------- 35 3------------------------------17 S, 1----------------------------35 I

l _____ L&_s~~~ s~ ___ r--- ~_t1 __ ~-~_ ~6~._s ___ J
MF SB (Even) S,1-35

1 MF SB (Odd) S, 1-35

~
Program R~gJ..s~!:.

~hift
Storage Register

ICounter

S, 1--- 9 110---17 S, 1----------35

~
Instruction

Backup Register

S, 1---------35

Figure 35. Multiplexor Data Flow

Channel Storage
Bus Input
(Bank 1)

S,1----------35

Channel Storage MAR Switch
Bus Input (CPU 1)
(Bank 2)

S,1----------35 3------------17

® Controlled Gating

@ OR'ing

G

Channel MAR Channel MAR Memory Data Memory Data
Input Input Register Register

(Bank 1) (Bank 2) Even (MDBI) Odd (MDBI)
3------------17 3----------- 17 0-----------35 0-----------35

7094 II System and Functional Components 35

7302·3 Addressing

Because each array consists of 16,384 positions, only 14
address bits are required to effect any location. The
15th bit is used for memory selection (even or odd).
MAR (3 through 16) select an address; MAR (17), which
no longer exists as such, controls the memory selection.
Memory selection is effected by whether the computer
is in normal or diagnostic mode of operation. In normal
mode, bit (17) controls memory selection whereas in
diagnostic mode bit (3) controls memory selection. This
"switching" of bits (3 and 17) is explained later in this
chapter under "MAR Bus Selection and Switching."

Because of the signal levels sent from the computer
to core storage, 1's complement addressing is indicated
in the MAR lights at the CE test panels; lights that are on
in the program counter at the operator's console, for
example, will be off at the 7302-3 and vice-versa. This
address interpolation is best done visually by reading
the address in the lights that are off. The following
chart, however, shows a light correlation between the
CPU and 7302-3 for four different address groups.

CPU 7302-3 CE PANEL MAR LIGHT INDICATIONS

ADDRESS NORMAL MODE DIAGNOSTIC MODE

INDICATION EVEN MAR ODD MAR EVEN MAR ODD MAR

00000 77776 77776
00001 77776 37776
00002 77774 77774
00003 77774 37774

37774 40002 40002
37775 40002 00002
37776 40000 40000
37777 40000 00000

40000 37776 77776
40001 37776 37776
40002 37774 77774
40003 37774 37774

77774 00002 40002
77775 00002 00002
77776 00000 40000
77777 00000 00000

Note: lights will show 777768 if this memory is not selected.

Input/Output

The input section of a computer system accepts infor­
mation from an outside source and places it into the
storage section. This information may come from
punched cards, magnetic tape, manually operated keys
or a variety of other devices. The information may be
instructions, data (numbers for arithmetic calculations),
or alphabetic characters for printing page headings,
comments, etc.

36

The output section takes calculated information from
storage and presents it to an outside user. Commonly
used forms of outputs are: magnetic tape, magnetic
disk, punched cards) printed reports, or indicator lights.

The devices and associated data channels applicable
to 7094 II input/output (I/O) operations are variable
and include the following:

7607 DATA CHANNEL

MODEL 1
729 II Magnetic Tape Unit
729 IV Magnetic Tape Unit
716 Printer
721 Card Punch
711 Card Reader

7607 DATA CHANNEL

MODEL 3
729 II Magnetic Tape Unit
729 IV Magnetic Tape Unit
729 V Magnetic Tape Unit
729 VI Magnetic Tape Unit
716 Printer
721 Card Punch
711 Card Reader

7607 DATA CHANNEL

MODEL 5
716 Printer
721 Card Punch
711 Card Reader

IBM 7607 Data Channel

7607 DATA CHANNEL

MODEL 2
729 II Magnetic Tape Unit
729 IV Magnetic Tape Unit

7607 DATA CHANNEL

MODEL 4
729 II Magnetic Tape Unit
729 IV Magnetic Tape Unit
729 V Magnetic Tape Unit
729 VI Magnetic Tape Unit

7909 DATA CHANNEL

7631 File Control
7640 H ypectape Control
1414-6 I/O Synchronizer
7750 Programmed Transmission

Control

The IBM 7607 Data Channel controls the flow of infor­
mation between I/O units and core storage. The Model
1 can control any combination of ten 729 II and 729 IV

tape units and up to one each of reader, punch, and
printer. The printer must be present if either a reader
or a punch is to be used. A 7607-2 can control any
combination of ten 729 II and IV tape units, but no card
machines. The 7607-3 and -4 perform the same func­
tions as Models 1 and 2 but with the added capacity for
handling 729 v and VI tape units. The 7607-5 handles
only the card equipment; one each of reader, printer,
and punch.

The IBM 7094 II Data Processing System may include
up to eight data channels. Each data channel can be
regarded as a subsystem with its own manual control
console and indicator panel (not shown in Figure 34).
Once a data channel is set in operation by an instruc­
tion in the computer program, it can call its own in­
structions (called commands in channel operations).
These commands make up what is known as an I/O
program. This program controls the operation of the
I/O unit. Information received from an I/O unit is

placed in core storage, or information is taken from
core storage to be supplied to a selected r/o unit.

The computer is responsible for selecting a particular
data channel and supplying its first command. The first
command can be the first of a series of commands (I/O

program) that will sustain the selected channel and de­
vice in operation independently of the computer. When
this I/O program has run its course, the selected device
stops and the operation is complete.

It is possible for a 7094 II, using eight data channels,
to have eight I/O programs and the computer program
in operation simultaneously-each independent of the
others and all sharing one common core storage.

The IBM 729 Nlagnetic Tape Units write information
on magnetic tape or read information from magnetic
tape. The higher model numbers indicate advanced
versions of the basic unit-usually referring to an in­
creased character rate.

The IBM 711 Card Reader reads information from
punched cards at 250 cards per minute.

The IBM 716 Printer prints information from core
storage at 150 lines per minute. The typewheel echo
pulses are available to the computer where they may
be used to check the accuracy of printing.

The IBM 721 Card Punch punches information from
core storage at 100 cards per minute.

For a more detailed discussion of the IBM 7607 Data
Channel and its associated I/O units refer to the IB~1
7607 Data Channel Customer Engineering Instruction­
Reference Manual, Form 223-6910 and the IBM 7094
Data Processing System Reference ~lanual, Form A22-
6703.

IBM 7909 Data Channel

The IBM 7909 Data Channel is a stored program device
designed to increase the capabilities of the IBM 7094 II

Data Processing System. The data channel attaches to
the IBM 7606 Multiplexor in the same manner as the
IBM 7607 Data Channel and controls data flow between
core storage and a variety of I/O devices. Communica­
tion and data flow between the channel and I/O adapter
is through a Standard Interface.

The many commands at its disposal give the IBM

7909 Data Channel expanded capabilities for perform­
ing logical and testing operations as well as exercising
normal control of data transmission. A variety of I/O

devices and appropriate adapters can be attached to a
7909 oriented system.

The IBM 1301 Disk Storage and IBM 7631 File Con­
trol provide a capacity of more than 55 million charac­
ters of storage for each disk storage unit.

The IBM 7320 Drum Storage and IBM 7631 File
Control provide random storage of 1,118,400 characters

on 400 data tracks. In the normal six-bit mode, each
data track provides the following capacities:

Data Bits 16,776
Character (6-bit) 2,796
Words (36-bit) 466

The IBM 7340 Hypertape Drive and IBM 7640
Hypertape Control introduce a new concept in mag­
netic tape devices. Character rates as high as 170,000
alphameric characters (28,330 words) a second are pos­
sible.

The IBM 7750 Programmed Transmission Control
links a central computer with telecommunication equip­
ment such as telegraph machines, IBM 65/66 Data
Transceivers, and IBM 7701 Magnetic Tape Transmis­
sion Terminal.

The IBM 1414-6 Input/Output Synchronizer permits
the attachment of communications and paper tape de­
vices such as:

IBM 1009 Data Transmission Unit
IBM 1011 Paper Tape Reader
IBM 1014 Remote Inquiry Units
Telegraphic Input/Output Units

IBM 7151-2 Console Control Unit

The IBM 7151-2 Console Control Unit provides a man­
ual means of controlling the system and displaying, by
indicator lights, the contents of various registers, or
anyone of the storage locations. Several registers are
continually displayed. The console also contains a CE

test panel and a marginal voltage check panel. The var­
ious lights and switches, and their meaning or operation
are discussed in more detail in Volume 3.

IBM 7608 and IBM 7618 Power Control Unit

The power supply used with transistorized circuits in
standard modular systems (SMS) has four major parts:

1. The IBM 7608, a power converter or motor-gener­
ator set which converts incoming 60-cycle, three-phase,
208-volt power to regulated 400-cycle, three-phase,
208-volt power.

2. Power supplies in each modular frame which sup­
ply voltage to all circuits in that frame.

3. The IBM 7618, a power control unit (pcu) which
contains system power control circuits, motor-generator
(M-C) regulator and marginal check Variacs.*

4. Marginal check (M/C) controls located in the main
console.

The output voltage of the motor-generator, a com­
mercially available unit, is regulated, eliminating the
need for voltage regulation in most of the modular
power supplies. Using 400-cycle AC to rectifiers means
that fewer filter capacitors are required in the modular
power supplies, as well as smaller transformers.

°Trademark of General Radio Company

7094 II System and Functional Components 37

Figure 36 shows the logic of the power system. Two
power supplies are located in each modular frame; one
supply (power supply A) is for gates A and B; the other
(power supply C) is for gate D. The power supplies
are three-phase, full-wave rectifiers using the 400-
cycle output of the generator. All rectifiers are silicon
diodes which have large current carrying capacities.
The power supplies are physically located at the rear
of each slide in the modular frame. The power unit for
gates A and B of CPU-I also provides ±3 volt supplies
to accommodate the new DIF circuitry.

Marginal checking maybe performed on part of the
+6-volt supply, part of the -12-volt supply, and core
storage driver collector voltages. Marginal check con­
trols for all units (except - 12 M for the air memory) are
mounted on the console unit.

Each modular power supply has its own open-fuse
detection circuit. In 7094 II systems, a blown fuse drops
power to only its own frame. Interlock circuits drop
power to the second half of the unit when a fuse blows.

The pcu is a separate frame containing circuits which
control power to all modular units. Power sequence
contactors, power-on and marginal check variacs,
blower relays and their overload circuit breakers (CB),
and system power control keys are the major circuits in
the pcu.

Power for the tape drives is from the wall outlets
through the channel module, where the power is inter­
locked with a data channel power-on relay.

60,...,,208v,3~

A 55-volt supply and a 46-volt supply located in the
printer furnish necessary DC voltages to the card ma­
chines.

Functional Components
Figure 37, CPU Data Flow, should be referred to in con­
junction with this section. Figure numbers are shown
within the various register blocks of Figure 37. These
figure numbers refer to more detailed information con­
cerning that particular functional component.

Storage Register-SR
(Systems 02.01.00.1-02.01.09.1)

The storage register is a 37-position register. Positions
Sand 1 through 35 accommodate the standard 36-bit
computer word and are comprised of shift cells (sc).
Position Q is used as temporary storage when saving
AC(Q) during certain logical and sense indicator in­
structions and is a trigger position instead of a shift
cell. This change in circuitry is permissible because si­
multaneous read-in read-out is not necessary at the
SR (Q) position.

The storage register acts as a buffer for words arriv­
ing from either the even or odd core storage and pro­
vides the only exit from the CPU for data going to core
storage. The storage register also serves a variety of
functions dependent on the particular instruction being
executed.

~ L Power

60'"'l208v,3¢

Wall Motor- 400'""208v3~
3¢ Gener- 400 "-' Control ~C

Box
208v,3~ Unit -12vM/c Line ~ ator

Set -48v

60 ,,",;208v,3¢

Console

60"'"'; 208v, 3¢ .
To Tape Units via Data Channel

60",",;208v,3¢
To Printer

Figure 36. 7094 II Power Distribution

38

Module
Pwr Supply
2 Per Unit

} To Other
Modular Units

I CONSOLE

I
I
L

Figure 37. 7094 II CPU Data Flow

I MULTIPLEXOR

I
I
L

3-17

5,1-5

Gate XAD ~SR 3 17 - ;--- -
XAD17

,.

" A 0
Gate SB Even ,. >--
MF SB 17 Even

" A
Gate SB Odd ~f--
MF SB 17 Odd ,. A

(4A)
"----

Gate SI +SR -r-
SI 17

,.
A 0

Gate IBR~SR -
IBR 17 --" A
Gate Op Keys '-
Op Key 17 A (3A)----4

-

Gate AD~SR ;---~

AD 17 ~ A 0
Gate AC+ SR ' t---
AC 17 A
Gate MQ ~SR SR (17)

t--- ~
MQ 17 A (2A) - Shift

Cell
Set SR
Hold SR (IA)

02.01.05. I

Figure 38. Storage Register Position 17

Figure 38 shows condensed logic of SR(17). Inputs to the
storage register as a whole can come from: the op keys;
instruction backup register (IBR); sense indicator reg­
ister (SI); accumulator register (AC); MQ register; main
adders (AD); index adders (XAD); and either the even
or odd storage bus (even or odd memory) .

Note that the index adders can be gated into either
SR (3,.17) or SR (21 ~35). This choice in gating is helpful
when routing the index registers to either decrement
or address positions. SR(Q) also receives AC(Q) as tem­
porary storage during certain instructions as mentioned
previously.

Note that the storage register inputs are also gated
to a zero check circuit (Systems 02.12.47.1). During
many operations, information is gated to the storage
register to make use of this circuit in checking for zero
values. Because there is no set pulse accompanying the
input data, the present storage register contents are not
destroyed or affected.

The storage register is the focal pOint for information
distribution and register swapping. Therefore, many
outputs are gated from various sections of the storage
register to various sections of other registers or adders.

Units receiving information from the storage register
include: the storage bus (the storage register is the
only exit from the CPU to memory), main adders, index

40

To SR Zero Check

(02. 12.47.1)
,.

Gate Comp SR ~AD
;----

-'" A 0 Not SR 17
,.

Gate SR ~AD ~ t---

...;. A (4B)
To AD 17

,.
'--'--

02.02.10. I
Gate SR Left AD

-'-

.J (tG) To AD 16
"

02.02.09.1

Gate SR 3-17 XAD
"

A

..:. (4G) To XAD 17

SR 17 0:3".05.47. I
,...--....,

Gate SR ~SB r:J (~) MF SB 17 Output
" ,.

02.01.50. I

L{HJ SR 17 Late

51 41 (ToMQ&SI)
02.01.11.1

adders, SI register, MQ, accumulator, and tag register
(manual operations).

Note that either the true or complement SR values
can be sent to the main adders. The true output of the
SR can also be shifted left one place as it is sent to the
main adders. This shift feature is used during multipli­
cation to effectively multiply by two (2).

There is no full-word routing path from the storage
register to the accumulator; data transfer of this type is
accomplished by routing the storage register to the
main adders and from there to the accumulator.
SR(s, 1-8) and SR(s, 1-5) have a direct path to AC(S, 1-8)

and AC(P, 1-5) respectively. These paths are used during
floating-point operations for characteristic routing and
convert instructions. SR (Q) can also be gated directly
to AC(Q) when restoring the AC to its original value
after certain instructions.

Either SR(3-17) or SR(21-35) can be gated to the index
adders. SR(3-17) gating is used primarily during class A
(TIX, TNX, etc.) and index transmission (LXD, LDC, PDX,

and PDC) instructions. SR(21-35) gating is used primarily
as: a routing path for index transmission instructions
(LXA, LAC, etc.); POD 76 routing to the shift counter for
class and unit decoding; and normal address modifica­
tion with a specified index register.

Each position of the storage register is combined on
the same STAN-PAC circuit card with a corresponding
position of the AD, AC, and MQ.

Accumulator Register-AC
(Systems 02.03.00.1-02.03.09.1)

. The accumulator is a 39-position register, each position
consisting of a shift cell (sc). The register positions are
labeled S, Q, P, 1-8, 9P, and 9-35. Positions Sand 1
through 35 accommodate the computer word in stand­
ard operations. Positions Q and P are used as overflow
positions because the sum of two 35-position numbers
can be greater than 35 positions. Position 9P is also an
overflow position used during floating-point operations;
it replaces the 9 overflow trigger which was used on
previous systems.

The term accumulator is somewhat misleading be­
cause the register is not actually able to accumulate.
The Accan contain only one word at a time. When
adding, the AC and adders work as a unit to perform
the addition, and the AC merely holds the result.

Figure 39 shows condensed logic of AC(17). Inputs to
the accumulator can come from: the storage register,
main adders, adjacent positions of the accumulator, and
the MQ. SR(S, 1-8), SR(S, 1-5), and SR(Q) have a direct
path to the accumulator. When the entire storage reg-

Gate AD AC - ,...-

AD 17 A 0
Gate AD Rt-+AC ~ -
AD16 ... A
Gate AD Rt 2 ~AC --
AD15

,
A ~C)

-'---

Gate AD Left ~ AC ...--..---
ADIS ~ A 0
Gate AC Lett

,. r--
ADIS ~ A AC (17)
Gate AC Left 2 I-- -AC19

,.
A (4D) ... Shift ...

"'---""-- Cell
Set AC ...
Hold AC ... (2C)

02.03.04.1

Figure 39. Accumulator Position 17

ister contents is to be set into the accumulator, how­
ever, the main adders are used as a routing path.

Note that the main adders can be gated into the ac­
cumulator in a variety of ways: direct (true or comple­
ment form for positions Q, 1-8), shifted left one posi­
tion, shifted right one position, or shifted right two
positions. Advantage is taken of this shift feature dur­
ing execution of arithmetic operations.

Right and left shift operations cause a particular AC
position to receive data from adjacent right or left AC
positions; This shifting process proceeds at two posi­
tions per clock pulse as long as the shift counter value
is two or greater. With a shift count value of one, a
single position shift is accomplished. Because of these
shifts, routing circuits are available to either the first
(adjacent) or second left/right position. of the AC and
MQ registers. Right shifts take advantage of the "shift
right 1" and "shift right 2" circuitry from the main add­
ers; for example, the shift is accomplished by routing
the AC to the main adders, and from there back into the
appropriate AC/MQ positions.

Routing paths are available to AC(9, 10) from MQ(34, 35)
and used during the initial phase of DFAD instructions
when aligning characteristics.

Outputs from the accumulator can go to a variety of
places: the storage register; main adders (true or com-

-,...-
Gate Comp AC ~AD

-"" A
Not AC (17) ... 0

Gate AC~AD --"" -
~ A (4A)

To AD 17

-'---

02.02.10.1

Gate AC Left 2 ...
LJA (4H) To AC 15 ...

02-:03.03.1

Gate AC Left .------.
A

(4B) To AC 16
~ ,.

02.03.04.1

Gate AC SR

LJ (:A) To SR 17
,.

AC17 02.01.05.1

Gate AC-+ IBR :I (tG) To IBR 17 ... ,.

03.0S.05.1

7094 II System and Functional Components 41

plement form); index adders (AC positions 30-35 for
convert instructions); IBR; and adjacent positions of the
AC or MQ during shift operations. The accumulator is
sent to the input of the storage register in many cases
(without a set pulse) to take advantage of the zero
check circuitry.

Each position of the accumulator is combined on the
same STAN-PAC circuit card with a corresponding posi­
tion of the SR, AD, and MQ.

Multiplier-Quotient Register-MQ
{Systems 02.04.00.1-02.04.06.1}

The MQ is a 36-position register, each position consist­
ing of a shift cell (sc). The MQ receives its name from
functions performed. At the start of a multiply opera­
tion it contains the multiplier; after the multiply it con­
tains the least significant half of the product. At the
beginning of a divide operation, it contains the least
significant half of the dividend; after the divide it con­
tains the quotient. Due to the double latch makeup of
the shift cell, the MQ has the ability of shifting left or
right.

Figure 40 shows condensed logic of MQ(17). Inputs
to the MQ can come from the storage register, accumu­
lator, or main adders. The SR outputs may come to
the MQ as a full word, or SR(s, 1-5) may be gated to
MQ (30-35) for convert instruction operations.

Inputs from the adders during multiplication are
from AD(34-35) to either MQ(1-2) or MQ(9-1O), depend­
ing on fixed-point or floating-point operations. The

Gt MQLft a e e r-- r----

MQ 18 :: A 0
Gate MQ Rt ::10-
MQ 16 A
Gate SR~MQ ... ~
SR 17 A (4D)

~ ~i...--

Gate MQ Rt 2 --
MQ 15 ~ A 0

Gate MQ Lt 2 ... - M~
MQ 19 A

~ (4E) ... Shift
---~ Cell

Set MQ

AD(34-35) routing paths are also used as inputs to
MQ(1,2) when performing right shift operations.

Outputs from the MQ go to a variety of places. Gat­
ings to the storage register are used for MQ store oper­
ations (the SR is the only output register to the storage
bus) or for register swapping during arithmetic oper­
ations. MQ(S, 1-5) are gated to the index adders to pro­
duce required core storage addresses during convert
operations. MQ(34, 35) are gated into AC(9, 10) during
DFAD operations when aligning the fractions prior to
the actual addition. Gating is provided for normal right
and left shifts within the MQ or between the MQ and AC.

Outputs are also available from MQ (s, 1) to MQ (34, 35)

for ring shift (RQL) operations.
Each position of the MQ is combined on the same

STAN-PAC circuit card with a corresponding position of
the SR, AD, and AC.

Sense Indicator Register-SI
{Systems 02.06.00.1-02.06.11.1}

The sense indicator register is a 36-position register
labeled S, 1-35. This register serves a variety of func­
tions. It can be used as a set of switches which are set
and tested by the program to check the progress or di­
rection of the program. It may also be used to store
words or parts of words temporarily; in this way the
register is useful in altering and testing words.

During some logical or masking operations, SI(S) is
referred to as SI(0); in these cases the first position has
lost its identity as a sign and has become just another
bit in the overall group of bits being operated on.

G t MQ L ft 2 a e e

J~ To MQ 15

02.04.03.1
Gate MQ Left -U (:s) I To MQ 16

02:04.Ci3. 1
Gate MQ Rt

J (~) I To MQ 18

02.04.03.1
Gate MQ Rt 2 ---.J (tH) l To MQ 19

02.04.03.1 ... Gate MQ~SR Hold MQ MQ 17

02.04.03.1 1 ~I A ... (2A) To SR 17

02.01.05.1

Figure 40. MQ Position 17

42

Inv or Set 51

SR 17

Not 5117
Load 51

Elect Reset 51
5117 (To 5R)

Inv or Reset 51

Figure 41. Sense Indicator Position 17

During double-precision floating-point operations
the SI register is used extensively for temporary storage
of intermediate results. In these cases the S position re­
tains its identity as an arithmetic sign.

Each sense indicator position is composed of a single
trigger-type position with a delayed output (Figure 41).
The delayed output holds the trigger information long
enough to allow proper input sampling during opera­
tions requiring SI register inversion. The only path for
information into or out of the SI register is by way of
the storage register.

Instruction Backup Register-IBR
(Systems 03.08.00.1-03.08.11.1)

The !BR is a 36-position trigger register labeled S, 1-35
and is used primarily during instruction overlap opera­
tions. As long as the instruction sequence permits, the
!BR contains the next sequential instruction to be exe­
cuted. Because of the simultaneous readout feature
from both the even and odd core storages, the !BR is
able to obtain a next sequential instruction during the
same cycle that the current instruction is being placed
into the program register. Simultaneous memory read­
out also allows the !BR to obtain the next sequential in­
struction simultaneously with a data fetch (E) cycle of

Gate 5B Even IBR
A

MF 5B 17 Even (4H)

Gate 5B Odd~IBR

MF 5B 17 Odd
A

(4G) Gate IBR 3-17-XAD

Not Hold IBR
AC17

Reset IBR
----~R(4H)

03.0B.05.1

Figure 42. IBR Position 17

To XAD 17

03.05.47.1

A
IBR 17 (3A) To 5R 17

02.01.05.1

the current instruction. The first case occurs during
"double-instruction" overlap and the second applies to
"extended-sequence" overlap. The IBR is also used as a
working register during double-precision floating-point
and ERA instructions. Figure 42 shows condensed logic
of IBR position 17.

Inputs to the IBR can come from: either the even or
odd storage bus when receiving a new instruction; the
accumulator during double-precision register swapping
or ERA operations; XAD(3-17) to !BR(21-35). In the latter
case, the index adder is either returning a modified IBR

instruction address or sending the incremented pro­
gram counter value to the IBR for temporary storage.

Input gating is such that the outputs from the IBR

immediately follow the inputs from the storage bus.
This feature (the same as for the program register to be
discussed later) provides the earliest possible decoding
of instructions as they are read for core storage, and is
necessary for controlling overlap functions. This input
gating feature does not apply, however, for data arriv­
ing from the accumulator.

Outputs from the IBR can go to a variety of places:
IBR(S, 1-35) are gated to the SR during both overlap and
nonoverlap operations; !BR(S, 1-2) or IBR(S, 3-11) are
gated to the program register at a time when the cur­
rent instruction has completed operation and the over­
lapping (IBR) instruction is to begin execution; IBR(18-20)

is sent to the tag register for indexing indications;
IBR(3-17) are gated to the index adders for index register
testing or modification during overlapping class A in­
structions such as TIX, TX1, and TNX; IBR(21-35) are also
gated to the index adders so that address modification
can be performed by the specified index register and
the new address returned to the !BR; IBR(21-34) are gated
to the MAR switch for an appropriate instruction or data
fetch memory reference.

Extensive decoding circuitry at the IBR analyzes the
overlapping instruction to determine the various as­
pects of overlap possibilities and their operation.

7094 II System and Functional Components 43

Tag Register-TR
(Systems 03.05.22.1)

The tag register is a three-position trigger register. la­
beled 18, 19, 20. This register is used to inform the sys­
tem which index register (XR) or registers are concerned
with a particular operation. The outputs of the tag reg­
ister may be used singly or in combination to specify
the index register/registers required.

When operating in seven-XR mode, the tag register
uses all combinations of these tag bits to specify the
particular index register. Therefore, the presence of
more than one tag bit does not mean the oR'ing to­
gether of index register contents.

The 7094 II does provide compatibility with previous
systems having only three index registers. The normal
power-on status of the 7094 II is the three-xR mode. By
using the instructions LMTM and EMTM, the program­
mer has the ability to place the computer in either
seven-XR or three-xR mode, respectively. For a further
explanation, refer to the section on "7090/7094/7094 II
Compatibility" in Volume 3.

MF SB 18 Even

SB Even to TR

I Time or IA A 0
------~~~J_--~--~~

SB Odd to TR

Convert

A3(Dl)

IA Tgr

A (2A)

A
(4H)

Figure 43. Tag Register Position 18

44

(To Tog
Decoding)

TR 18

Figure 43 shows condensed logic for TR(18). Inputs to
the tag register come from: either the even or odd stor­
age bus during normal instruction loading from mem­
ory; the IBR during instruction overlap; or the storage
register during manual operations.

Outputs go to the tag register decoder circuits which
are conditioned by either three-xR or seven-XR mode of
operation.

Address Register-AR
(Systems 03.06.00.1-03.06.01.1)

The address register is a 15-position trigger register
labeled 3-17.

The primary purpose of the register is to provide
transfer or data reference addresses to core storage.
These references may be: a direct address; an effective
address as modified by an index register; an indirect
address; or a skip 1/2 address as required by skip-type
instructions.

The only gated input to the address register (Figure
44) is from the index adders which are used as either an
incrementing, modifying, or direct routing path from
other counters or registers. Positions AR(S, 16 and 17) can
also be forced on as a direct result of control logic re­
sulting from certain trapping operations.

The address register is not a counter; any address
register incrementing is accomplished through use of
the index adders.

Outputs from the address register go to the index
adders when forming skip 1/2 addresses, or the MAR
switch when making references to core storage. The
output of AR(17) is sent to the MAR bus selection cir­
cuitry (Systems 03.06.28.9). This circuitry, depending
on whether AR(17) is a 0/1, controls address register
gating to either the even or odd memory during normal
mode of operation. When in diagnostic mode, however,
AR(17) becomes an integral part of the address; this lat­
ter condition, when applicable, forces a bit to be gated
to MAR(S) of either the even or odd memory. AR(S or 17)
also effects the "AR odd trigger" which in turn controls
gating circuitry for either the even or odd storage bus
into the CPU.

Indicator lights for the address register are located
in the CE test panel area of the operator's console.

XAD~AR

CP Set A

Gate XAD
Latch ~AR

R(4E)

02.12.70.2

CP Set D

PR Store

E Time Early

03.06.02.1

Reset AR on Trap
Clear or Rst orlntlk Rst

Figure 44. Address Register Position 17

Diagnostic Mode
AR 3
Not IBR to AR Odd T r

Not Diagnostic Mode

03.08.13.1

XAD Latch 17

MAR Bus Selection (03.06.28.9)

03.06.01.1

Reset AR

03.06.02.1

Gate AR+XAD

7094 II System and Functional Components 45

Program Counter-PC
(Systems 03.06.30.1-03.06.31.1)

The program counter (labeled "Instruction Counter"
on the operator's console) is a 15-position trigger regis­
ter labeled 3-17.

The primary purpose of the program counter is to
keep account of the next sequential instruction in a
running program.

The program counter is not a counter; any incre­
menting or decrementing is accomplished through use
of the index adders. During normal sequential instruc­
tion execution, the new address associated with the
program counter is generated at 6-time of the cycle
when a reference is made to core storage. This new ad­
dress is placed temporarily in either the address regis­
ter Or!BR until I-time and then returned to the program
counter via the index adders. Note that when updating
the program counter at I-time, the index adders are
used as a routing path only, and do not affect the value
being transmitted.

The only gated input to the program counter (Figure
45) is from the index adders. As previously explained
for the address register, the index adders act as either
an incrementing, modifying, or direct routing path
from the other counters or registers. PC(S, 16, and 17) can
also be forced on directly by control logic resulting

. from certain trapping operations.
Note that either true or complement outputs can be

sent to the index adders. The true output is used dur-

XAD-+-PC

CP Set A

ing incrementing, decrementing, or routing of the pro­
gram counter to other registers. The complement PC
output is used only during overlap store operations to
check if the store instruction (in the program register)
is storing in the next sequential core storage location.
If this is the case, overlap is interrupted because the
overlapping instruction (now in the !BR) is being modi­
fied by the program and therefore invalid as it stands
in the !BR. The program counter is also sent to the MAR
switch when making references to core storage.

The output of PC(17) is sent to the MAR bus selection
circuitry (Systems 03.06.29.2) for the same purpose as
previously explained for the address register. This cir­
cuitry, depending on whether pc(17) is a 0/1, controls
program counter gating to either the even or odd mem­
ory during normal mode of operation. In diagnostic
mode, however, PC(17) becomes an integral part of the
address, and when applicable (for example, when
PC(17) equals 1) forces a bit to be gated to MAR(S) of
either the even or odd memory.

PC(17), indicating an even or odd status, also controls
gating circuitry from the even or odd storage busses
into the program register, storage register and !BR. It
must be remembered that the program counter is
stepped + 1 prior to the time that this gating circuitry
is used. Because of this prior stepping, an odd PC indi­
cation, for example, gates the even storage bus to the SR
and PR, and the odd storage bus to the !BR. Storage bus
gating is explained later in the "Master I-Time" section.

XAD Latch 17

Set PC

Gate Comp PC
~XAD

Not PC 17 To XAD 17

Reset PC on Tra
Clear or Rst or Int

03.06.32.1

FIgure 45. Program Counter Position 17

46

Gate PC XAD

To XAD 17

PC 17 MAR Bus Selection

(03.06.29.2)

Diagnostic Mode PC Not Odd
PC 3 A a

_N __ o_t _Di......:ag::....n_os......:ti_c _M~od_e __ ---+~ A PC Odd

(2A) 1-----.
03.06.30.1

Index Registers-XR
(Systems 03.05.00.1-03.05.14.1)

The 7094 II has seven index registers. Each is a 15-posi­
tion trigger register labeled 3-17. All seven XR'S are
identical and used primarily for address modification.
The 7094 II can be in either three-xR or seven-XR mode
of operation. In three-xR mode (multiple tag mode),
multiple tag bits cause an oR'ing of index registers.

Input to the index registers (Figure 46) is from the
index adders which are used, in this case, as either a
modifying or direct routing path from other registers
wi thin the CPU.

Individual positions of all seven XR'S have a common
output which is gated (under control of tag register de­
coding) to the index adders in either true or comple­
ment form. Because of the true XR outputs, it is possi­
ble to accomplish true addition in the index adders as
is required during TXI operations. True outputs are also
used to advantage during PXA, PXD, SXA, and SXD opera­
tions when true values are moved to the accumulator
or core storage.

Tag register decoding gates the complement outputs
of the specified index registers to the index adders for a
variety of operations, the primary one being address
modification. By addition of the complement XR valuc
to an address, the address is effectively reduced by the
contents of the XR.

There are many instructions which operate on the
index registers, thereby making these registers also use­
ful programming tools for counting, word alteration,
and program loop control.

XRA Set

XAD
Latch 17

Gate Camp
XR-XAD

To XAD 17 Not XR 17
,...---!~~.:.L..J"----I~

03.05.47.1

--'-....:.......t~ A
Tag 2 (lC)

A 0

A

A (lD)

XRF(17)
Tag 6 A 0
XRG(17) XR (17)
Ta 7 A (lE)

03.05.14.1

Gate XR-XAD

Figure 46. XRA Position 17

Program Register-PR
(Systems 03.14.01.1-03.14.06.1)

The program register is a ten-position trigger register.
The purpose of this register (labeled "Instruction Reg­
ister" at the operator's console) is to receive and decode
the operation portion of the instruction to be executed.
Decoder outputs then initiate and control the computer
operation until the instruction is completed.

The operation code depends on the type of instruc­
tion involved and consists of either positions S, 1-2, or S,
3-11 of the instruction word. Positions S, 1-2 are routed
to PR(S, 8-9); positions S, 3-11 are routed to PR(S, 1-9).

Primary inputs to the program register (Figure 47)
come from: either the even or odd storage bus; or the
IBR depending on whether or not instruction overlap is
involved. Outputs from the PR follow (rise with) the
inputs from the storage bus. This feature of the input
gating provides the earliest possible decoding of in­
structions as they are read from core storage. (During
memory read-out, the S-bit is strobed before the 35-bit.)
Inputs from the IBR or op keys are gated in with a
clock pulse and, therefore, differ from SB input gating.

Certain trapping operations force specific PR triggers
on directly-for example, PR(sand 9)-without hav­
ing to rely on storage bus or IBR inputs.

During manual operations, the program register can
be entered from the console op keys to allow execution
of specific instructions set up by the operator or cus­
tomer engineer.

--,N.....:o:..:...t -=..0c....KC'-'
e
.L..-

1 _----.! ° A
Op Key 2

_O-,-p_K-,eY,-l_l __ -..J ° 4A

Gate Op Keys

Not IBR 1

.....:1.:.:.BRc..::2 ___,~ ° A

_1_BR_l_l ___ ~ ° (4B

Gate IBR-PR

Not Hold PR

Not MF 5B 1 or 2 Even
MF SB 11 Even
Gate SB Even-PR

MF SB 2 Even

Not MF SB 1 or 2 Odd
MF SB 11 Odd
Gate SB Odd-PR

MF SB 2 Odd

Force Store and Trap

PR (9)

.;..:;Re=se,,-,-t -,-,PR,--_~ R(3C)

03.14.06.1
Gate PR to PR in 01 D

PR 9 (To PR Decoding)

A °
.:::.G.:::.:.ate:::....:.:::.:IBR~t:=...o -,-,-PR'-'.in:..:...O,,-,-l!::...D __ ~ A 2E) PR 9 to Gate D

Figure 47. Program Register Position 9

7094 II System and Functional Components 47

Outputs of the program register feed into the opera­
tion decoder circuitry (Figure 48). PR(S, 1-5) provides
the primary operation part and PR(6-9) provides the sec­
ondary operation part of the operation decoding. Dur­
ing some instructions, the shift counter becomes an ex­
tension of the program register and provides a class and
unit address decoding.

Note that the 7094 II actually has two program regis­
ters: the "master" register, the one which receives in­
puts directly from the storage bus or IBR, is located in
A-gate of CPU-I (7111) and the second (slave) pro­
gram register is the register that existed in the 7094 sys­
tem. The "slave" register (Systems 03.04.00.1-03.04.06.1)
is located in D-gate of CPU-I and is not really a register
as such; converter circuit blocks have replaced the trig­
gers so that these outputs follow the outputs of the
master register as gated to the D-gate (Figure 47).

Basically, the new program register provides new
and faster F-Ievel circuitry necessary in the 7094 II. The
old register provides PiN level operation decoding and
gating in CPU-2 for instructions that do not have such
critical timing requirements. The functions of the two
program registers and operation decoders cannot be
cleanly separated; therefore, both must be considered
when analyzing certain instruction operations.

Indicators at the operator's console are powered
from the old program register.

Shift Counter-SC
(Systems 03.14.14.1)

The shift counter is an eight-position count-down
counter labeled 10-17. Each position consists of a shift
cell (double latch) which allows simultaneous read-in
and read-out when counting.

The shift counter is used to count the number of
shifts or indicate the progress of operations such as
MPY, DIV, convert, floating-point add, shifting instruc­
tions, etc. The shift counter also functions as a class
and unit address decoder for operations that have a
primary operation of 76 (Figure 48).

The primary entrance to the shift counter is by way
of the index adders. The time at which the number is
gated is controlled by the operation being performed.
During POD 76 operations, the sc is set either during 15
time from PR decoding or at the beginning of L time
when the IBR is transferred to the PR during overlap.
During variable length multiply' or divide operations,
the count field is routed from the storage register via
the index adders in E time; during convert instructions,
the count is routed in the same manner in L time.

The shift counter is also used during single and dou­
ble-precision floating-point add and subtract opera­
tions (POD 30). During these operations the shift counter
is used in lining up characteristics. The characteristic
difference between the numbers in the SR and AC is

48

Primary Operation Secondary
Decoding Operation

Decoding
(±OO ... ± 76) (00 ~ 17)

\ v

Class Addr
Decoding

(00 36)

Operation Decoding

Figure 48. Operation Decoding

Unit Addr
Decoding

(00 -+ 17)

computed in the main adders, AD(I-8), and then gated
directly to SC(1O-I7) to control the number of shifts nec­
essary to align the fractions.

During multiply and divide operations (other than
variable length), a constant is forced into the shift
counter to control the number of iterations. In the case
of a floating-point operation, 338 is set into the shift
counter; for a fixed-pOint operation, 438 is set into the
shift counter.

Note that the 7094 II actually has two shift counters:
the "master" register, the one which receives the inputs
just described, is located in A-gate of CPU-I and the
second "slave" shift counter is the counter that existed
in the 7094 system. This "slave" register (Systems
03.04.14.1-03.04.17.1), located in D-gate of CPU-I, is not
really a register as such and has no counting capabili­
ties; converter circuit blocks have replaced the triggers
so that these outputs follow the outputs of the master
counter as gated to the D-gate.

As for the program register described previously, the
new shift counter provides fast F-Ievel control and
counter circuitry necessary in the 7094 II. The old reg­
ister, again, provides piN-level controls for instruction
operation in CPU-2; the main function is in class and
unit decoding and POD 76 controls. The functions of the
two counters overlap somewhat; therefore, both must
be considered when analyzing certain instruction op­
erations.

Indicators at the operator's console are powered
from the old shift counter.

Stepping the Shift Counter

Figure 49 shows condensed logic for positions 10-17 of
the shift counter. Remember that the shift counter is a
self-contained true binary count-down counter and
does not rely on the index adders for decrementing as
is necessary with the address register and program
counter.

~
No' Lc 10

SC 10
,. (2E) Insert SC 10 -

Shift

~
Cell SC 10

-""

~-r-
HoidSC10

o A -r-+--' __ 18 03.14.14.1

0

~; -- Set SC 10

~ 0 (31) -- '--
(2D)

1 SC 11

Not 1 SC 11
TO Tl T2 T3 T4 T5 T6 T7 T8 T9 TlO T]] T12 T13 T14 .-

~ (10) Insert SC 11 -SC Value 33 31 27 25 23 21 17 15 13 11 7 5 3 1 0

sc (10) F F F F F F F F F F F F F F
Shift

F Cell SC 11
sc (11) Ir! F F F F F F F F F F F F F F F

Hold SC 11
SC (12) F F F F F F F F F F F F F F F

~
0 A 03.14.14.1

SC (13) N N NN N N F F F F F F F F F r-- 19
SC (14) N N F F F F N N N N F F F F F 0

~ r--SC (15) F F N N F F N N F F N N F F F 0 (3H) Set SC 11

SCj16L N F N F N F N F N F N F N F F T '---

SC (17) N N N N N N N N N N N N N N F

~
SC 12

Not 1 SC 12 -Insert SC 12
N = On A (4C)

Shift F = Off
~cell SC 12

.--r-- HoldSC 12 -c=: 0 A I~-.--- '0 20
03.14.14.1

A5

,---- r:~3G Set SC 12

- ~~

~ (4A) 1 SC 13

Not 1 SC 13 ~

~
Insert SC 13

~

(3B) Shift

---~ A6 r-=!: Cell SC 13 ...
~~ HoldSC13 -~ 0 A ~-

Y. (5B) f- r-- 21
03.14.14.1

--'--'- 0

~
"-

Set SC 13 0 (4F)

Mpy Div 43 to SC

&.r 1 03.04.15.1 SC 14

'Not lsc 14 ... 33 to SC 14 Insert SC 14
,.--

I A (2C) Shift -- Ceil SC 14
Hold SC 14 r-=! t--== 0 A

0 22
03.14.14.1

~ - Set SC 14 0 (41) --

~
~

Not 1 SC 15 (5E) Insert SC 15

Shift

~r-r-
Hold SC 15

~Cell
SC 15

7
t--
~OA ~-

~ r-- 23 03.14.14.1

~
Step By 2 (4D) 0

~ r-- ~~(4H) Set SC 15
0 16

~
, -"--

~ I ~ Not 1 SC 16 (3D) Insert SC 16

-.--------.
',--- J Shift

~Stepsc .--- J"':! Cell SC 16
(lC)

~ 0 A HoldSC16 --03.14.18.1 r-- 24 03.14.14.1 , 0

~ !. 0 (2G Set SC 16
r---

-. A O
2

~-

1 SC 17

Not 1 sc
..... r--

~
~017 =: A (3E)

(4A) Insert SC 17 ~ 17
Step By 1 (5A) ~

Shift --'--- Ceil SC 17
33 to SC r-- Hold SC 17 ~ 0
FAD AD~SC ~ 0 A

03.14.14.1
XAD to SC Set Hold ro 25

Mpy Div 43 to SC
~~I"""l

...
SC Reset RI to SC Line 1 and Line 2 o (4F) Set SC 17

Oti4:16.1 0 CP Set C
Reset SC (2C/2E

Figure 49. Shift Counter Stepping

7094 II System and Functional Components 49

Figure 50 shows a sequence chart of the shift counter
stepping to zero from a count of seven.

Note that stepping the shift counter is conditioned
by either «step by I" or «step by 2" control circuitry.
Whether the stepping is by one or by two depends on
the particular instruction being executed. Stepping by
two is allowed during multiplication, floating-point
add/subtract, and shift-type instructions; stepping by
one must be performed during divide and convert-type
instructions.

Each position of the shift counter has control cir­
cuitry affecting three inputs to the shift cell ("insert sc
17," «set SC 17," and «hold sc 17"). The «insert" input is
activated only when that particular position is to be
fumed on. The "set" and "hold" pulses are both CP set
pulse inversions of one another, and generated from
the same control circuitry (OA blocks) only when the
status of that particular position is to be affected­
turned off or on.

Whether a shift counter position is to be changed or
not by a set/hold pulse combination is determined by
the next lower position. If the next lower position shift
cell is to be set on, the state of the next higher position
will be reversed. This rule applies for both single and
double stepping.

When stepping large numbers, the ripple effect from
position to position can become too great for reliable
operation. To reduce this ripple time, look-ahead cir­
cuitryhas been inserted at the controlling circuitry of
SC(IS).

Note that SC(16) alternately changes state between
ON and OFF during double stepping and SC(17) alter­
nates state during single stepping. The primary differ­
ence between single and double step operations is
where the step pulse control comes into the counter;
for example, SC(17) for single step and SC(16) for double
step. Double stepping is, therefore, the same as single

50

stepping except that it occurs one rung higher on the
ladder.

Assume that a count of 338 has been set into the shift
counter and that counting is by 2. The initial status of
the counter with 338 is: positions SC(17), SC(16), SC(14),

and SC(IS) are in the ON position; all remaining positions
are OFF. Because the original number is odd, each step­
ping of the counter produces an odd result. If the orig­
inal number was even (68, for example) each double
step would, in turn, produce an even result. Note that
all during double stepping, SC(17) remains unaffected.

The first step reduces the counter from 338 to 318 •

This reduction is accomplished by reversing the state
of SC(16) from ON to OFF. SC(16) being initially on, blocks
A7 from activating "insert sc 16." Set and hold pulses,
however, are produced at CP set time by OA24 with the
overall effect of inserting a zero into SC(16).

The second step which reduces the counter from 318 ,

to 278 initially finds positions SC(17), SC(14), and SC(IS)

on; and all remaining positions off. SC(16) being off con­
ditions A7 and 0 16 to change the state of SC(16) to ON:

«Insert sc 16" conditions OA23 to produce set and hold
pulses for SC(15), and also test the initial status of SC(15)

at A15• SC(15) being off, activates "insert sc IS" to flip
SC(15) on. "Insert sc IS" also conditions SC(14) circuitry
to produce only the set and hold pulses thereby turning
SC(14) off. At the end of the clock pulse, positions SC(17),

SC(16), SC(15), and SC(lS) are on and all remaining posi­
tions are off.

This pattern of double-stepping continues until all
shift counter positions except SC(17) are turned off. As
the count is reduced from three to one, «step by I" con­
trol circuitry replaces "step by 2." "Step by I" tests the
status of SC(17) at A9, but SC(17) being on blocks «insert
sc 17." A set and hold pulse is produced at OA25, how­
ever, with the result of turning SC(17) off. At this point
the shift counter equals zero and all stepping controls
are dropped.

(7) (5) (3) (I) (0)
System Page Test Point line Name Level I 2 3 4 5 6 7

:'-
02. II. 79.1 02A4E13D Shift Gate -N I

03.14.20.1 0lA4G26C SC 20r More -F

03.14.20.1 01A4G23F SC Eq 1 -F I--

03.14.18.1 0lB2B28B SC Zero Slow -F

h
.

03.14.18.1 01A4D24D Step by 2 -F

03.14.18.1 01A4G25B Step by I -F ~

03.14.18.1 01A4A25B Step SC -F
-.

03.04.16.1 01A4F28D CP Set C -F 1-h ~ ~ ~ ~ h
03.14.14.1 01A4E24B SC 15 -F

03.14.16.1 0lA4F27G Insert SC 15 -F

03.14.16.1 01A4F27F Set SC 15 -F I.
-

03.14.14.1 01A4F20C SC 16 -F ---03.14.16.1 0lA4E27A Insert SC 16 -F I---r-
03.04.16.1 01A4F27C Set SC 16 -F I--h. ~ ~
03.14.14.1 01A4E26B Set SC 17 -F

03.14.16.] 0lA4F25B Insert SC]7 -F

03.04.16.1 01A4F27E Set SC 17 -F '-

Figure 50. Shift Counter Timing Chart

7094 II System and Functional Components 51

Main Adders-AD
(Systems 02.02.00.1-02.02.19.1)

The adders in the 7094 II are made up of basic build­
ing blocks shown in Figure 51. The adders perform
arithmetic functions and are involved in many internal
data transfers within the computer. Inputs to the basic
adder circuit may be from either the accumulator or
storage register. Outputs from the adders go to the ac­
cumulator, MQ, storage register, and shift counter, de­
pending on the operation involved.

The adders are comprised of 39 individual adder
units, or bit positions. These positions include AD (Q,
P, 1-8, 9Q, 9P, 9-35); AD (Q and P) are used for over­
flows which might occur during certain arithmetic or
logical operations. AD (9Q and 9P) are used during
floating-point arithmetic.

Individual Main Adder Position

Figure 51 shows condensed logic for position 35 of the
main adders. The primary objective of an adder posi­
tion is to determine whether or not there is a sum out­
put. To determine the output, three values must be
analyzed; two adder inputs and one carry input.

Gate AC-AD

AC 35

Gate Cam AC-AD
Nat AC 35

Gate SR-AD
SR 35
Gate Comp SR-AD
Not SR 35

Carry In

Adder
Inputs

Adder
Outputs

Input A Systems 02.02.19.1

A °1

A
(4A)

Input B

A °2

A
(4B)

Propagate 35 (Either /Both)

Generate 35 (Both)

Exclusive OR 35

r Comp Exclusive OR 35
(Both/Neither)

AD Sum 35

Exclusive OR of Adder and Carry

0 1 0 1 0 1 0 1 SR

0 0 1 1 0 0 1 1 AC

0 0 0 0 1 1 1 1 Carry

- + + + - + + + Propagate 35

- - - + - - - I Generate 35

- + + - - + + - Exclusive OR 35

- + + - + - - I' AD (Sum) 35

+ Indicates an active logical state
- Indicates an inactive logical stale

Figure 51. Main Adder Position 35
~

52

True or complement inputs from the storage register
and accumulator are gated into the adder at gate cir­
cuits AOl and A02 • Either/both adder inputs being
active produces "propagate 35" at 0 3 ; both inputs being
active produces "generate 35" at A4 • Block A05 per­
forms an exclusive-oR test of the adder inputs. An input
exclusive-oR condition occurs only when either one but
not both of the inputs contains a 1. A05 performs the
test by looking for a "both" (generate 35) or "neither"
condition which is actually a complement exclusive-oR
function.

The in-phase (complement exclusive-oR) and out-of­
phase (exclusive-oR) outputs of A05 are tested along
with input carry conditions in a second exclusive-oR
circuit configuration to determine the actual adder
sum output. One adder output condition occurs at Aa
with "no carry" and "EX OR 35" (case 1 below); the other
adder output condition occurs at 0 7 and Os with
"Comp EX OR" and "Carry" conditions, respectively
(Case 2).

CASE 1 CASE 2
(a) (b) (a) (b)

Input A 1 0 Input A 0 1
Input B 0 1 Input B 0 1
Input Carry 0 0 Input Carry 1 1

Adder Output 1 1 Adder Output 1 (1)1

Taking the other four possible combinations of carry
and adder input conditions will prove that an adder
sum output is not produced. All combinations are sum­
marized in the chart on Figure 51.

Main Adder Bit Carry Lookahead

Each adder position, besides being able to determine
a sum condition, must be able to provide necessary car­
ries to adjacent positions. For determining possible
carries, three additional lines are generated from each
adder position: propagate (P), generate (G), and ex­
clusive-OR (EX oR)-Figure 51.

The output of 0 3, "propagate 35," is active when
either one or both of the adder inputs are a 1. With
these input conditions, an input carry must logically
be passed on, propagated, to adder position 34. This
carry requirement is proven below by taking the input
combinations of 0-1,1-0, and 1-1 and adding a carry; in
each case, a carry results. (Also, see chart on Figure 51.)

Input A
Input B
Input Carry

(a) (b) (c)
011
1 0 1
1 1 1

10 10 11

The output of A4, "generate 35," is active whenever
both inputs to the adder position contain a 1. With both
inputs active, the adder position has the ability to gen­
erate a carry from its inputs alone independent of
whether or not an input carry is furnished from an

outside source or a lower adder position in the group.
Proof of this carry is easily obtained below and sum­
marized in the chart on Figure 51. Note in the chart
that "generate 35" is not dependent on the input carry
status.

(a) (b)
Input All
Input B 1 1
Inpu t Carry 0 1

10 11

The output of A05, "EX OR 35," represents an adder
input exclusive-oR condition; either one but not both
inputs are a 1.

With the propagate, generate, and EX OR conditions
just explained, individual adder bit carry lookahead
can be developed. This lookahead is shown by the
solid lines and logic in Figure 52.

Using adder 35 as an example, a "carry in 34" will be
generated if: adder 35 can generate a carry; or adder
35 can propagate and there is a carry into position 35
(K in). Note that the lookahead circuitry becomes more
involved as it progresses from the lowest-order to the
highest-order adder position within the adder group.

The "carry in 31" circuitry uses exclusive-oR inputs
instead of propagate as used in the lower-order posi­
tions of the adder group. This change was made be­
cause of circuit loading; the basic circuit logic, how­
ever, remains the same.

Note in Figure 52 that there is no individual adder
lookahead circuitry for carry generation into adder 30.
Adder 30, which is the low-order position of the next

group, receives its carry indication from the group
lookahead circuitry.

An important point to remember in the carry look­
ahead concept is that each input carry generation is
dependent solely on inputs to individual adder posi­
tions; there is no "ripple" effect from one adder posi­
tion to another as is characteristic of slower type adders.

Main Adder Group Carry f.ookahead

If the lookahead were continued as explained in the
previous section, the circuitry would soon become too
large, unwieldly, and expensive. Therefore, to speed
up adder operation and facilitate lookahead, the adder
has been divided into seven groups as follows:

GROUP NUMBER ADDER BIT POSITIONS

1 35,34,33,32,31
2 30,29,28,27,26
3 25,24,23,22,21,20
4 19,18,17,16,15,14
5 13,12,11, 10,9,9P
6 9Q,8,7,6,5
7 4, 3, 2, 1, P, Q

Each group contains either four, five, or six adder
positions. Adder position 9Q is shown in group six but
actually plays no part in the lookahead function.

The primary objective of the group lookahead is to
determine whether or not carries should be introduced
into the low-order adder positions of higher adder
groups. Lookahead circuitry for group 1 is shown as
dotted lines on Figure 52, lookahead circuitry for
group 2 is shown in Figure 53. Overall lookahead for
all seven adder groups is shown as solid lines on Fig­
ure 54.

7094 II System and Functional Components 53

1011';----- Adder Positions 31-35 -----_ I'~----- Bit Corry (02.02.28.1) --------------l,~I~I(----Generote (02.02.36.1) ------;,~I
Propagate 31

Adder 31
----------,

I
Generate 31 I
r-----------I------------- --

02.02.17.1 AD Sum 31 t------------ - --~-----u_= i---j-- -- ------ ----

r I
X32 ,---
X33 A
X34
X35

: ""~ w, ~ X32 r---- 0
X33 A

I Carry

i '" ~ ''') '"" G35 (3G)
X32 '---

~opagate 32 X33 :.J A

I
.-1-L-:::l G;L.(J (3F)

I X32~ Adder 32 I
1 G33 (:G) I

Generate 32 1 1 I G32ID

I I (2F) _
02.02.17.1 Exclusive

~

OR 32 h----/------- --1-------- I t---- ---------r AD Sum 32
H- -+,-------------

I

I \

~
I I P34 J

P35
I I r- Kin (4E)

I I P33 A 0 Carry

I I P34 (lD) In 32

I I
Propagate 33 I G35 (4D)

I 1 P33~ Adder 33
I 1 G3<1 (:E)

Generate 33 I I I G33~
I I -I (3D) __

02.02.18.1 Exclusive OR 33 t--!.l r -
~

r------ ----------- I +---1-1--------- ---

r AD Sum 33
I I t-r--1------------

~r-iil r------------

I i I P34

I ~A Propagate 34 I I >- Kin (4C) W'
i 1 ~

o Carry

Adder 34 P34 ~ J7- (2B) In 33

G35 (3C) J
I I I I

~-

Generate 34 G34~

~JJ.
·1 (3B)

02.02.18.1 Excl usive OR 34
~

r-----------
f------- I t-Ll-,------------

r AD Sum 34 I I t-t-,----------- -
I I t- '-------------

~III_r /--------- --
I I i I

Adder 35 I I I
Gate AC+AD mrr-;El Propogate 35 I I I

~
I AC 35

I I I I Gate Camp AC .. AD Kin (4B) 0 Carry

J A ~ Generate 35 Not AC 35 I (3A) In 34
G35 A

i I I I : (4A) ~ 'd",'," 0'"
Gate SR .. AD

A 0 L1=t-+--r r--------- ---
~ , "N,"" DO"

L-t-.- --------- --
SR 35 L-.l_ ----------
Gate Camp SR .. AD LI_ ------- --Not SR 35

1, ~ L ---------
f---- ----

1-------- --

Carry In ~ ~-I ~,~ AD Sum 35

Group Lookahead Circuitry---
02.02.19.1

P34
--P3:s

Figure 52. Group 1 Adder Carry, Generate and Propagate

54

A

(4F)

(4G)

o

(3D)

Generate or
Propagate G J

(Carry In G2)

Lookahead for both groups 1 and 2 is shown be­
cause of their difference in logic. The dotted lines in
Figure 52 show group 1 lookahead. Six sets of condi­
tions can produce an output from the group: first,
AD(31) can generate a bit alone; second, AD(32) can
generate a bit and AD(31) can propagate the bit; etc.
Note that the logic becomes more involved from top to
bottom; the last AND circuit indicates that an input
carry (Kin) will produce a group carry if AD(31-35)
have the ability to propagate.

Group 2, as well as the remaining groups 3-7, pro­
duce two outputs; «any generate G2" and «generate or
propagate G2." Both conditions must be active to pro­
duce a carry into the next higher group. Design of thf'
adder lookahead is the result of Boolean algebra, and
may not, therefore, seem immediately logical and
straightforward. This design, however, performs the
required task of adder lookahead in a more efficient

G30 """­
G29 ~ 01
G28 ...

and economical method than other «more straightfor­
ward" configurations.

The adder group output, "any generate G2" results
at 0 1 (Figure 53), from any or all adder pOSitions being
able to generate a bit (both adder inputs are a 1).

The "generate or propagate G2" output from 0 7 re­
sults from the following conditions: first, all adder po­
sitions are able to propagate at A6; second, each posi­
tion, except the low-order adder position, has the
ability to generate and have this bit propagated
through the remaining higher-order adder positions at
A5, A4 , A3, and A2 • The ability of the low-order adder
position to generate and have its bit propagated by the
remaining adder positions is not defined specifically by
the function «generate or propagate G2." This latter
case is accounted for, however, because if AD(30) can
generate, it can also propagate. P30 activates A6 and
G30 activates 0 1; therefore, both of the group outputs
are active and a carry is passed into group 3.

G27:' (3A)
G26 "" (3B)

Any Generate G2 ~

Propagate 26 1 ID-~
Generate 26 G26... A2
--=-=.:..:.::.:...::.:..=.-:=..::..-----t-t++,....----;l~ (4B)

L-~---'

Propagate 27
Generate 27

Propagate 28
Generate 28

P26 ...

G27 ~
A3
(4C)

P26 _____

P27 ",.I A4
G28 --J (4D) ... ,.

P26 ~,...--­

P27 """ AS

r-! (3D) -
Propagate 29 P28 ~

-=G_e_ne_ra_te_2_9 __ -+-+++-t-4--G_29---:J~~ (4E) _
'I-

P26 ... _

P27 ... A6
P28 ""
P29 ...

Propagate 30 P30 "" (4F)
i---

Generate 30 02.02.35.1

Figure 53. Group 2 Generate and Propagate Lookahead

Generate or ...
Propagate G2 ,.

7094 II System and Functional Components 55

GJ
GJ

~[!]
gQ

[2]

Adder Lookahead _, • Group Lookahead • I. Q Carry

G~~~:;..", ___________ :~02~~~ _________ , .,.02.4011

Iol G~e~t~r~~~e_~? __________________ ll-fOl ~r--------------------- ~---,0 11r-~
I I rr:
I 1IIIIr

GJ I 1IIIII ___________________ .J I1I1I1
02.02.31. 1 III

GJ 0 11111 o Any Generate G6 i III

~ ~ II I
~ L2.J III,

" GJ 1I1I

III

-GJ --------0----02.02.32.'1--- rn~mgj~[:l
Any Generate G5

I: I

I' II
'I
I
I

Gen- A I
erateor 0 I I I

o :~~~a~,:J._~I_I_-+_I_I-I_I_~~~-=_==_== ~ ~== -= -= -= ~#-~J 1 -0 -----------02:~33:i---- III
o 0 Any Generate G4 I I I

~0 'I
e r;-:;r II I
" ~ Gen- I
~ erateor

o Propa- I G gateG4 I

-~----------o~~7---- :
C32:J 0 Any Generate G3 I

M [EJ I
J ~ I
~ I
~ r----------02~.35.1-- I
----~ 0 I

I II I
: II II
I I I 1/

:,:~: or I I I I I
L---S---'Propa- (5~) (ts) Carry In GR 3 : I t:t~_o I I

J==rFffiF==~~~==El g~~ ---------------------, ~t-il- (4F) J I
.-----L-.....J------+t------------------'fl-TI- - I

I1II1I ,

I i II I
IIII I
I II
I: II I
I1II I

I 1/: / I
II i III I
1111/ L I
/IIILy /
II L~- I

--==~~~~===El Generate or L L --1-::Jt~~Ir~~~ ~-L_~Pr..:::!op:::::ag:!:a.:.::te....:::G:..:.1----+-------=C:..:.ar::..!.ry....:.l:..:...n G..:..R....:.2 __ ---+-- __ =:_ (4G) __ .J

~ Q Carry Lookahead-----

02.02.36.1

Figure 54. Main Adder Group Lookahead and Q Carry

56

02.02.40.1

Figure 54 shows all adder group carries. Group 1
having the ability to either generate a bit internally or
to propagate a Kin produces a "carry in GR 2." Note
that this same carry line also conditions the top OR cir­
cuit in each of the higher group lookaheads. Depend­
ing on the inputs to the remaining adder positions, this
carry from group 1 may be propagated through the
rest of the main adder.

A carry into group 3 can result from two conditions:
group 2 can generate a carry internally, or group 2 can
propagate a carry from group 1. Taking the first case,
both "any generate G2" and "generate or propagate
G2" are active and condition the top leg of 05B and
05.A, respectively. In the second case, group 2 produces
only the "generate or propagate G2" line as input to
05.A. However, the carry from group 1 conditions the
bottom leg of 05B; A4B is satisfied and a carry is intro­
duced into group 3.

Producing a carry into higher-order groups becomes
progressively more involved but the basic concept just
described remains the same. Note that each high-order
group is conditioned by the outputs of each lower­
order group. In this manner simultaneous decisions can
be made at each group lookahead; no "ripple" is in­
volved from one group to another.

Q Carry Lookahead

The carry from the main adder, Q carry, is used in test­
ing and logical operations as well as during arithmetic
instructions. The speed at which a Q carry can be ob­
tained becomes important in many operations. There­
fore, adder group outputs are also used in Q carry
lookahead circuitry (shown as dotted lines in Figure
54) to obtain the earliest possible Q carry indication.
This lookahead follows the same philosophy described
in the preceding sections.

7094 II System and Functional Components 57

Index Adders-XAD
(Systems 03.05.40.1-03.05.47.1)

The index adders (XAD) in the 7094 IT perform a variety
of functions such as:

1. Address modification on the instruction in either
the storage register or IBR. In either case modification
is from an index register as specified by the tag portion
of the instruction concerned.

2. Tests on or modification of index registers as re­
quired by TIX, TNX, TXH, TXL, TXI (class A) instructions.

3. Incrementing the program counter, address regis­
ter or address portion of the IBR.

4. Providing an address reference to MAR during
overlap operations.

5. Producing the required data reference addresses
during convert instructions.

6. Providing direct data flow paths to or from the
program counter, address register, index register, stor­
age register (positions 3-17 or 21-35), instruction back­
up register (positions 3-17 or 21-35) and shift counter.

Two data input gates are provided to the index add­
ers; input A and input B (Figure 55). These inputs are
divided such that one half of the input data always ar­
rives at input A and the other half arrives at input B.
During address modification, for example, the address
arrives at input A and the modifying index register
value (complement) arrives at input B; during incre­
menting, the PC, AR, or IBR arrive at input A and a
"hot 1" is inserted at input B of XAD(17).

It is possible to insert "hot 1's" into either all posi­
tions of the index adder or just XAD(17); the first case
causes decrementing of the input value (-1); the latter
case causes incrementing of the input value (+ 1).

When the index adders are being used as a data
path, outputs go directly to SR(S-17), SR(21-S5) or the
shift counter. During instruction overlap, the index
adders supply a second memory address to the MAR

even/odd switch.
Note that during address modification, if no tag (tag

of 0) is specified, 1's are gated into all index adder posi­
tions along with a carry into XAD(17). These ones effec­
tively add a zero to the incoming value; therefore, the
output value is the same as that supplied by the storage
register or IBR.

An index adder latch (XAD LTH) is used in conjunc­
tion with the index adders. The latch acts as a common
delay (second half of a shift cell) in the circuit for
modifying the index registers, program counter, ad­
dress register and instruction backup register. These
registers consist of triggers (not shift cells); the delay
therefore, allows proper operation on successive clock
pulses.

The XAD latch is "free running" and always copies
the contents of the index adders at the end of each

58

clock pulse. The receiving register receives the new in­
formation immediately thereafter which is slightly into
the following clock period.

When gating from the index adder latch to the XR,

PC, AR, or IBR, four additional triggers are required as a
short-time memory device to remember which register
is to receive the output from the XAD latch. This re­
membering is necessary because the gating line to the
index adders (XAD to AR, for example) will have al­
ready dropped before the new output can be gated
from the XAD latch to the address register. Figure 44
shows condensed logic of the gating sequence for data
flow from the index adder latch to the address register.

Index Adder Position

Figure 56 shows condensed logic for index adder posi­
tions 3, 4, and 17. As can be seen, the index adder is al­
most identical to the main adders discussed previously.
The main difference between the XAD and AD is the
number of inputs and outputs used. Also, because of
the type of circuit cards used, some logic blocks appear
as micro blocks whereas others appear as macro blocks.

The basic function remains the same-that of deter­
mining whether or not there is an adder sum output.

SR 3-17

SR 21-35

IBR3-17

AR

True PC

Compl PC

'------+To SR 21-35

Figure 55. Index Adder Routing

To MAR Switch
(3-16)

The three basic inputs to the index adder are: input
A, input B, and an input carry. As already discussed,
the XAD inputs are divided so that the two values to be
added arrive at inputs A and B, respectively. Logically,
there never should be more than one input active at
either input A or B at any given time.

Using XAD (17) in Figure 56 as an example, there are
two A-input gates (AOll and A012) tied together to
form a 6-way AND-OR function. Two B-input gates also
exist (A013 and A014) but are not oR'ed together di­
rectly. The difference between the A- and B-inputs is
due to circuit card usage and not because of logic.

Any data input being active (Ad A2/BdB2) produces
"propagate 17" at 0 19. Either Ad A2 being active at
0 15, and either BdB2 being active at 0 16 produces
"generate 17" at A20. These propagate and generate
lines are used in the adder lookahead circuitry to be
discussed later.

The circuit combination of A17, A18, and 0 21 per­
forms an exclusive OR test of the two data inputs. The
in-phase (active) output of 0 21 indicates a "not exclu­
sive OR" state (not A"'V'B); the A and B inputs are
either both O's or both 1's. The out-of-phase (inactive)
output of 0 21 indicate an "exclusive OR" state (A"'tB);
either A or B is a 1, but not both. In the main adders,
loading conditions required that this exclusive OR func­
tion be used in adder lookahead. In the index adders,
however, loading is not as great and the exclusive OR
function is not required outside of the immediate
adder positions.

The carry into XAD(17) affects only the sum output.
The input carry is, therefore, combined with the out­
put conditions of 0 21 in a second exclusive OR network
consisting of A22 and OA23. Taking various examples of
A, B, and carry inputs should quickly prove the circuit
validity.

Index Adder Bit Carry Lookahead

As was explained with the main adders, each index
adder position must be able to provide necessary car­
ries into adjacent positions. For determining possible
carries, two lines are produced from each adder posi­
tion: propagate (P) and generate (G).

The output of 0 19, "propagate 17" (Figure 56), is
active if any A/B input is a 1. The output of A20, "gen­
erate 17," is active if both A and B inputs are 1's. With
the propagate and generate lines, individual adder bit
carry lookahead is developed as shown by the solid
lines in Figure 57. This lookahead circuitry, again, be­
comes progressively more involved as it progresses
from the lowest-order to the highest-order adder posi­
tion within the adder group.

No adder bit carry lookahead circuitry is provided
for XAD(12). XAD(12), which is the low-order position
of the next group, receives its carry indication from
the group lookahead circuitry to be discussed next.

Index Adeler Group Carry Lookahead

The 15 index adder positions are divided into three
groups of 5 positions each as follows:

GROUP NUMBEB

1
2
3

XAD POSITIONS

17, 16, 15, 14, 13
12, 11, 10, 9, 8
7,6,5,4,3

The object of dividing the index adders into three
groups is to speed up adder operation and simplify
lookahead circuitry. Group lookahead circuitry, as
shown by solid lines in Figure 58, determines whether
or not carries should be introduced into the low-order
positions of groups 2 and 3. The lookahead circuitry
for group 1 is also shown by dashed lines in Figure 57.
Lookahead circuitry for groups 2 and 3 are different
than group 1 but identical to that of the main adder as
shown in Figure 53. Because of the similarity, see
"Main Adder Group Carry Lookahead" section for a
more detailed explanation.

Index Adder 3 Carry

A carry from the index adder, "XAD 3 carry," is used
primarily as a test for successful transfers when exe­
cuting class A instructions (TIX, TNX, etc.) from either
the program register or IBR.

Direct outputs from all three index adder groups are
used in detecting an XAD (3) carry. The circuitry is
shown as dashed lines in Figure 58 and is simply an ex­
tension of the lookahead circuitry used for groups 1 and
2. No XAD(3) carry trigger is necessary; the circuit out­
put is active long enough to allow all tests to be made.

Again, carry lookahead is dependent solely on inputs
to the individual adder positions; no individual adder
or group carries are involved.

Index Adder Compatibility

When executing 704 or 709 programs under compati­
bility mode, XAD (3) and XAD (4) must be effectively by­
passed. This bypassing can be accomplished by forcing
the XAD position into a propagate condition (Figure 56).

When the memory nullify trigger is on, "memory
null" is applied through 0 6 to activate "propagate 3."
Any resulting carry up through XAD (4) will, therefore,
logically be "passed through" XAD (3) and give an
XAD(3) carry. Because XAD(3) does not theoretically
exist at this point, any possible sum output must be
blocked. This blocking is accomplished at the output
of OA24 by dot AND'ing with a "not memory null" con­
dition.

If the 16K/24K switch on the CE panel is in the 24K
position, 24K of memory is available to the I/O com­
patibility program and 8K available to the executing
program. Under these conditions, XAD(4) must also be
bypassed and the XAD (4) sum blocked. The methods
used are the same as those described above for XAD(s).

7094 II System and Functional Components 59

Mem Null -Tgr

Input AI

r---------~~~<3;r--

.-----------+l~ IBR 3

XAD 3 (03.0S.40. I)
AR 3

~1~BR~2~1~ _____ ~_H~====~~~~-~~~(4A),~_+~------~~r_~~_,
'-'-:- ~ 0 I
Input A2 r-r--_ -_ -_-_ -_ -_ -_ -_ -_ --'--:--,-::J (3A) ~ ____________ P_r_op_a_g_at_e_3_~

r-___ ~r-'- r-- f----4 '
~S~R~3 _____ -+~~~-----+l'~ 04

~SR21 ~~ ~
..!.P~C~3~ ____ +++++-+ __ ~ A (4B) 0

,-I,;,- (2B) A

r-ill
n ut B3 Generate 3

06 ~ (IB) ~--<I-------------------~'
(4D) ~ (3B)

In ut BI

_N_o_t_P_C_3 ____ --IH-H-I-+-+_+~-_+I A ~ ~ L rAI
~~ ., (2C) l

~N~o~t~X~R~3~ ___ +4~~~+_+I-~ 'A -~~--J-J-- 0
~ - - ~ A (IC) .--

.:..X:.:.:R~3~ ____ +-+++H_++++-~" A (4C)-:---:-=- ,.;.t (3C) ~ ~ 0 A
'-FG=J'--nput B2 ~r8NO Carry (2D) I__ 24

Carry In 3 I In 3 0 (I D XAD 3 Sum

~
I ~~~J' r--- AI Memory Null --fI1 Not Memory Null ""-Dot

R 4B ~~-----------------+++++~~rr----r-~~---------~'(IE) AND
02 ~ I 02.12.76. I _________ -I-+.J.+++~~+.j--- 1---_________________________________ _

Not Display
Storage or Input AI XAD 4 (03.0S.4I. I)
Clear Control AR 4,H-1I-+-+--H-+--+t~o;r--

IBR 4
t-­

~++-+-+++-~ A
t--

~1~BR~2~2~ ____ ~~~~~~--~~~~~-~~~ A (4A)'~-4~_+------~~~~~
'--'--- ---.J 0 I
Input A2 r-.+ ... -_-_-_-_~-_-_-_-_-__'__>.~~J (3A) ~-------------P-ro-p-a-ga-t-e-4-~

~~-+-l-+-~',.....:--:-ATOa r----SR 4

SR 22 e-+--I-I-I----',~t_;

.:.P-=C_4~ ____ l_+++!-·+--_ ++++ ++_-'~~t-; (4B)I--+.e-t-t--:~r---o-
I;;;~ (2B).--.

Not PC 4 r-r-'-r-- - ~r==o=rI (~) 1~~ ... ~----------G-e-ne-r-at-e-4-~~
..:..=---'---'------+-4++-I-+--+-++_'~ A 09 ~ (3B) ~ T
NotXR4 ~7 "':":'~"':':"'-~--+-4++~I----'+-+4--+lf- I ~ ~

J;;pu'ts2 ~~~ (IC) ~-+---===---~r--r-
XR4 ~ A (4C)f- (2C) ~

Ones to XAD (3C) ~ lOA

_24_K_M_o_de--'.(S_w_it_c_h) ___ -.t, ~i) f--=2_4K:..:...:.N~..:.U~II~~~~~~:~~~~~:::::;:~:~::::'l_'~"'4'::~oL) j-__ ----' ->. '-- ~NO Carry _I (:D) -.C~ ~:D XAD 4 Sum

02.12.76. I 1 ~ Carry In 4 In 4 ~'-'-- 1'-- _
... I Not 24K Memory Null I Dot

'-------------~(IE) AND

-------- -----H-++-++.-+-H'--. -- --------------------------------

Figure 56. Index Adder Positions

60

~A~R~17 ___ ~-~~!_!_!_+_-++4~ A 0 1
~?~B~~t~r7~IB~R~3~-~1~7--.~X~A~D~++I-+--+++-1~~

~G~a~t~e~I~BR~2~1~-~3S~-.~~X~A~D~~I__+_+4_~~ AI/~BI/B2
...:1.::::BR~3S=---_______ -+-IH--+++~ A 4F) I-A __ I t-------~"' '--';:;-:-:::1

'--~ r------~~J 019 I
~G~a~t~e~S~R~3--1~7-~~X~A~D~ __ ~--!_++_~r-'-ln-~p~~ ~
-"S~R~I!....7..,.,.... __ -::-:::---,.,...,..:::____f-+-_+++~ A 012 A2
~~~R~;~~~S~R~2~1~-3~5~-.~X~A~D~~~-+~---:~~~ 

Gate PC_XAD AI/A2 

-:-ca-t-~-C-o-m-p-p-C--.-X-A-D-----+++---'l~*; ~~ 

XAD 17 (03. OS. 47. J) 

Not PC 17 A C13 BI DOl"" I ..:G::.:a::.;.t=:-e.,.::C;.:::o;:,;m~pX:;.:R--.=....:.X.::.A~D~------'_+-~ ... A (3)i') ~ A20 (G,;nerate) 
NotXR 17 ~ ~ T 
~G~a~t~e~X~R~-.~X7A~D~-----------+-1~~ 

XR 17 A 4H) BI LA~; 
..:G~a~to:.e.!:A~C'-'3~O'_-~3S~~....::...~X.:...:A""D ______ ~ ,In u;.E Not (2H) 

.:.A~C::.....:.3S:"""=-=-=-__ """"'-=-_______ --+l-"~ C1 ~2· _ Ne~B A ¥ B 
Gate MQ S-5 .... XAD I ~ 
--------------~ A L.-~ AI8 0 21 NotA¥B r--r-

L..- "-'- A 22 23 

Propagate 17 

Generate 17 

MQ5 (41) B2 (3H) (IH) ~ 0 A 

Carry In 17 ........."., Not Carry, (21) ~ 
T I In 17 r4' ~~ XAD 17 Sum 



XAD Positions 13-17 Bit Carry (03.05.52.1) -----~ ..... I~f---- Generate (03.05.57.1) --1 
.... --X-A-D-I-3--- Propagate 13 

Generate 13 I 
03.05.45.1 - - ---, - -- - - - - - - -- --

- ..... - - - - XAD Sum 13 I 

r ~ ~------------- ..!13 

~--~--------------
I , P14 r---

I I P15' A 
I I P16" 
I I P17'" 
I I ~~( ,_2_1.).,t------l~-""'A_, 

I 
I P14 = ~- 0 

I P15 ~ A --I ,.---+ 
I I P16 ....... 
I ' G17 (2H) _ (lG) 

Propo-II I P14 = 
... -------. gate P15~ A 

XAD 14 14' G16 (2G)_ 

I I P14? ==t:== 
I I G15 (2F) I---

Gen- I I '-------
erate i. I G14 ~ 

Carry 
In 
13 

_ .J!3.:..2? .46.1- _ 14 I 17' (2 E) \--_--J 

r XAD S~m f-I -:1- _=- .:- - _ ~ -=----=--=-_--=- -:~ ~ ~-....--, 
.. 
______ .. 14 --, +- G_15 

.... -11- --' ---------- ~_--.J 

II P15-
I I P16 --: A 

I I PI?: 
I I Kin" (41) .......--
I I PI5"7'= ,. 0 
I I P16 ~ A I ~ Carry 

___ Pr-'opo'-----+-1--+--1-'" ,Q..!Z.;: (4H) Ur In 

gate 15 I I P15~ ~ ~ (3H) ~ 
__ +--'--I-+--+--4--I,--G_l_6~ ~ (4G) '--"--'-

I I : G15~ ~ 

XAD15 

Generate 
03.05.46.1 15 f-------

....>0.. XAD Sum 
1""' ... _____ .... 15 ... 

Propagate 
.... ----~·16 I 

XAD 16 ,.----l 

Generate 
16 

_ ..2.3.:..22 . .£:!.... -
XAD Sum 

~~ ________ ~16 

III (4F) ~ 

H I" _~ ~ -=--=-"--_ -=--=--=--= -=--~: : n= -f----- - ---- -- PIS 

... --tTT-
'
- f- - - - - - - __ - __ G 

III P16_ 
I I I P17 -~ A 
I I I ~ Kin -;. (4E) ~ ~arry 
I I I P16 ~ ~ (~) 15 

I I G17~ (4D) tJ 
I' I I ~ i I I G16",-1 A 
III -~ 
~l ___________ PI 
I ~ + ___ - _ - _ - _ - __ -.fl 
I I H--f----- _______ ~5 
I II~ ------------~ 
~+tl !-f-- - - - - --- ---- <l. 

I I , I 
Propagate 17 I I : I P17 1AI 

.... -X-A-D-I-7--.. ~ I I I: Kin -J (ts) l 
Generate 17 I I I I G17 ~ ~arry 

I T I I T",.--;t:;I 0 In 
I I I I I (4A) l '" (3B) 16 

~~~.~1__ Lli-!.l __ ~ _______ f!3 
-'- XAD Sum 17 ~ Lll. L ____________ ...f.l.!,.
,- ... 4-1- ___________ -.fl~

i --=-_--=--=--=-_--=-= = = = j~} _Ca_r...:ry_i_n_l_7.--_________________ • ___________ J9

Figure 57. Group 1 Index Adder Bit Carry and Lookahead

A

(4E)

A

(4F)

A

(4G)

o

(3D)

Generate
Gl

7094 II System and Functional Components 61

I<-- XAD Positions ---.>*�----------- XAD Group Lookahead and XAD 3 Carry -----------------::.~I

Q.
:l
o

(5

.-------. P 8

1 8 I G8

P9

I 9 I G9 I

P10

~G10 --
~P11

11 I G11

P12 .-------.

U Any Gen"a!e G3

(3A-3B) ---I 0 ~-----tr-~
o II r~-'

(3D) Ge~ate ~ 4 ~o :
Propagate G3 i I (4E) I

I I !~ro-ll~XAD3
L+t~~~a~_~

03 .05.55. 1 I I I 03.05.70. 1
------------1-1-1 -------

~ III ,
~ III

r-t:: (3A-3B) Any Generate G2 III ,-
II

~ II --- II
'~ II
~ (4C) II L:: ..----. 0 II , A ...

II ~J (40) ... - ,
I

~ ~ (30)
Generate or TO (~) l
Propagate G2

I I
.!" (4E) r-- 1 ~ A l Carry In
~ - ~ I (4B) (3C) Gr 3

,
A --- --

,

112 I G12

I I ... ~ 03.05.56.1 03.05.70.1

--'PT3 -- ------ -- -------------- - ~-- ---- -----
~G13 A

I (4B)

P14 ~ ... (4C)

....---...

~G14
,

A

(40)

;;:-
~() .-------. P 1 5

1
15 I G15

...

~~
....

'----"

~ Generate G1 Carry In Gr 2
~ (30)

-.:. A r-:l P16

16 I G16

,
....
~~r--

:;;:-
,

P17

NG17
1 :

(4G)
03.05.57.1 -- ---- -- -- --- -- ---- -- ---------- -- ----

Carry In 17

XAO 3 Carry Circuitry------

Figure 58. Index Adder Group Lookahead and XAD(3) Carry

62

SR Zero Check
(Systems 02.12.47.1)

Outputs from storage register input gating (1-35) are
fed to a zero check circuit as shown in Figure 59. Note
that the test is made from data introduced at the stor­
age register input gating and not from data presently
in the storage register. In most cases, the data to be
tested will not actually be set into the storage register.

Many instructions gate the contents of the various
CPU registers and adders to this zero check circuit as a
check for either zero or equal conditions. Arithmetic
operations make extensive use of this check circuit for
detecting initial zero quantities (i.e., multiplier or mul­
tiplicand) or zero final results. When tests are made
on the fraction of floating-point quantities, only posi­
tions 9:"35 are gated from the register concerned to the
check circuit.

Not SR Input 1 .---
Not SR Input 2 ~ A

Not SR Input 3
~

Not SR Input 4
~

Not SR Input 5 ~

Not SR Input 6 ~

Not SRTnout 7 ? (4A) SR 1-7 = Zero
'----

Not SR Input 8
~~ Not SR Input 9

Not SR Input 10
"'7'

Not SR Input 11
,

Not SR Input 12 ""7'

Not SR 1nput 13 ~

SR 9-14 = Zero
Not SR 1riPut T4 ~ (4B)

Not SR Input 15
~

Not SR Input 16
, A

Not SR Input 17
~

Not SR Input 18 -: ~-;;-~ Not SR Input 19
Not SR Input 20

,
SR 15-21 = Zero ~

Not SR Input 21 ? (4D)

Not SR Input 22 .----
Not SR Input 23

~ A

Not SR Input 24
,

Not SR Input 25
~

_ ...
Not SR Input 26 -,.

Not SR Input 27 ""7'
SR 22-28 = Zero

Not SR Inout 28 ? (4E)

Not SR Input 29
~r---;;-

Not SR Input 30
Not SR Input 31 ~

Not SR Input 32
,..

Not SR Input 33
,.

Not SR Input 34 ~

Not SR Inout 35
, (4G) SR 29-35 = Zero

Figure 59. SR Input Zero Check

Memory Selection Circuits
(Systems 03.06.29.4)

~ (2D)

~~
SR 1-35lnput = Zero

The 7302-3 core storage is divided into two logically
independent units of 16,384 positions each. To initiate
these two units, separate «memory select" pulses are
required. When computer circuitry requires a refer­
ence to the even memory, a «memory select even" pulse

is generated; when computer circuitry requires a refer­
ence to the odd memory, a «memory select odd" pulse
is generated-if both references are required, both se­
lect pulses are generated.

In Figure 60, 0 1 and O2 receive the circuit indica­
tions as to which memory/memories are required.
These gating pulses occur at the end of the machine
cycle, 6(D2) time, and also cause gating of MAR(S-16)

addressing lines to the 7302-3. Just how these even or
odd gating lines are developed will be discussed in the
following section.

The memory select pulses can occur at two different
times: CPU operations at 7(D1) time; and channel oper­
ations at A2(D1) time. Data channel operations select
memory ata later time because of the longer 12-point
cycle. The memory, operating at a faster rate, provides
the necessary data at the proper channel time. The re­
verse also applies when storing data from the channel.

Note from A03 that channel operations assume pri­
ority-cpu memory selection is blocked until all chan­
nels are completed with either B or E time.

A7(Dl)S

Gate PC MAR Even r---
Gate AR MAR Even 0 1 Gate IBR MAR Even
Gate BAR MAR Even

~41 Gate XAD MAR Even (4A)
- ,. 1 (3A) Mem Select (Even)

~ A5
I -]
~ (3B) l

Gate PC MAR Odd r-
Gate AR MAR Odd 02
Gate IBR MAR Odd
Gate BAR MAR Odd
Gate XAD MAR Odd (4E) -.,., A6 I,

L....--- -,. 1 (3E) Mem Select (Odd)

I J --,- A7
--:I (3F) 1

Channel E Time ,....-- Not Chan
03.0"6.2'9.4

MF Go Tgr
A 03 1Tr;;"e-

B Time A (3C) Chan Time

'--

Channel A2(Dl) Dlyd

Figure 60. Memory Select Circuitry

7094 II System and Functional Components 63

MAR Switching and Address Controls

Only 14 of the 15 address bits are required to select
anyone of the 16,384 even or odd memory positions.
The remaining 15th address bit determines selection of
the appropriate memory.

Memory selection and MAR gating is effected by
whether the computer is operating in the normal mode
or diagnostic mode.

In normal mode, the even memory contains all of the
even addresses (0,2,4, 6, 10 through 77,7768); the odd
memory contains all of the odd addresses (1,3, 5, 7, 11
through 77,7778). With this normal case, memory selec­
tion is under control of address bit (17)-if bit (17) = 0,
select even memory; if bit (17) = 1, select odd memory.
This selection circuitry for program counter gating is
shown in Figure 61 at A2 and A4, respectively.

In diagnostic mode, the "even" memory contains the
lower half of all memory addresses (0 through 37,777s);
the "odd" memory contains the upper half of all mem­
ory addresses (40,000s through 77,777s). With this diag­
nostic case, memory selection is under control of ad­
dress bit (3)-if bit (3) = 0, select even memory; if bit
(3) = 1, select odd memory. This selection circuitry is
shown at A3 and A5 •

MAR selection and gating is under control of five
sources: the program counter as just described, the
address register, IBR, buffer address register for channel
operations, and index adders. Figure 62 shows the

Not Block PC and XAD to MAR on Channel Trap

~ Gate PC-'MAR
Gate PC'" MAR Line 1

,
~

Gate PC MAR Li ne 2 :.
Gate PC-.MAR Line 3

,.
(4A)

Not Diagnostic Mode -
Not PC 17

Diagnostic Mode
Not PC 3

PC 17

PC 3

Figure 61. Program Counter MAR Bus Selection

64

...-.-

>--

overall logic for all five controlling sources; the pro­
gram counter controls as shown in Figure 61 are re­
peated at the top of Figure 62. Note the similarity of
the controls and also that they control only MAR(4-16).

Controls for MAR(S) are handled separately because
of the MAR(S and 17) "switching" for normal and diag­
nostic modes of operation. Circuit tests are made to de­
termine whether or not a bit should be sent on the
MAR(S) bus. Four combinations of address bits (3 and
17) can exist:

DIAGNOSTIC MODE 3 17 NORMAL MODE

1. Select even memory 0 0 Select even memory
2. Select odd memory 1 0 Select even memory
3. Select even memory 0 1 Select odd memory
4. Select odd memory 1 1 Select odd memory

Selection of MAR(S)-even memory requires item 2
for normal mode and item 3 for diagnostic mode. These
two cases are shown for the program counter at A6 and
A7 in Figures 61 and 62.

Selection of MAR(s)-odd memory requires only item
4. Note that this item is independent of either normal
or diagnostic mode, and is shown at As in Figures 61
and 62.

When operating in diagnostic mode, two sequential
instructions cannot be fetched from the same memory
on the same cycle. Because of the memory arrange­
ment, "gate XAD to MAR" circuitry has no logic, and is,
therefore, blocked at A4B, Figure 62.

03.06.29.2
Dot

/AND

~ (3A)

- I _ _

~ A3 J g~ I Gate PC--.MAR (Even) I~ (3B) , -
~ A4

(3E)

1 ___.

~ J 010
1 Gate PC --. MAR (Odd) I~ (3F) ___ (2 F)

,-..-- ,
-... A6

~
~

7 (3C) l ===
... A7

.....

~ ----=tJllil _ (3D) (2D) PC MAR 3 (Even)
'-

~ (3G) PC MAR 3 (Odd) ... ,.

Not Block PC and XAD to MAR on Channel Trap 03 06 29 2
Gate PC-MAR
Gate PC MAR line 1 .1 0 1 Dot AND
Gate PC - MAR line 21 ,/ Gate PC-MARline 3.1 (4A)

Not Diagnostic Mode ~
Not PC 17 (3A)

~ Diagnostic Mode J g:) l Gate PC-MAR (Even) Not PC 3 (31l)

;fA PC 17 (3:)

-~ J 010 I PC 3 ~--~ ""'dC-MAR (Odd)

'-
..... :: A6
,...~ (3C)

f-~ 011
(3D) (2 D) PC MAR 3 (Even) ~~

~ ~ 0

~~) PC MAR 3 (Odd) (3H) MAR 3 (Even)'

- - -- -- -- -- -r- ------ -- ---- --- I 1" Gate AR-MAR 03.06.28.9 Dot OR
Gate AR-MAR line 1 0 0

/MAR3 Gate AR- MAR Line 2 (31)
Gate AR- MAR Line 3 (4A)

~~ f (Odd)

Not AR 17 03.06.29.3

f---,;:- -=:! 0 I Not AR 3 ...-r--f-- (3B) (2B) Gate AR-MAR (Even)
~==:=:= ~

AR 17 ~ r- A

dm-- I ~-=:---= - ~
AR 3 ~r--r- (~) L:I (~) I Gate AR-MAR (Odd)

~--,;:- PC 4 --'A'Cl
~r-- t:~ (3C) AR 4 A

~ -=;;-" I--r----' IBR 22 A
~- BAR 4-MAR (3D) ~AR 3 (Even) A (3A)

XAD 4 A (3D) MAR 4 (Even)
A AR 3 (Odd)

~~

~
~A 0 -------- -- -- ---- -- ---

Gate IBR-MAR - ~ 03.06.29.1 --A
Gate IBR-MAR J 0

A
Gate IBR-MAR J (4A)

r~ (tA) L A (3C)
Not IBR 35 A (3D) MAR 4 (Odd)

~'--

Not IBR 21 ~ r--~ (3~ D (~B) I Gate IBR-MAR (Even) 03.06.28.1
I

~ ~ I I IBR 35 ~~ (~E) I ·~I I
IBR 21 ~ '-C:; (~F) -=:I (~) I Gate IBR-MAR (Odd) I I ;::::::= ~ I I t;: A I '-r-- - (3C) I = I I r- .::; A J (2~) IIBR MAR 3 (Even)

I
~ I I .~

I A IBR MAR 3 (Odd) I (3G) I
GaleB~M~ -- --- - !'"""--- -- -- -- -- -- ---- I A 03.06.29.3 I
BAR 17 MAR (BAR 17=1,~~~ 17 ~ (4A) h I I
Hot One to BAR Bus 17 ~BAR I :B AQO l I 17 - (4B) (3B) Gate BAR-MAR (Even)

I = ~ I Not BAR 3- MAR
r;! (~E) I h I

BAR 3-MAR ~ 8F) I Gate BAR-MAR (Odd) I I
~

PC 16 'A""'O
- AR 16 ~ "A

~r-;;- I IBR 34 I--

~ -
-- (4D) D (~D) I BAR MAR 3 (Even) BAR 16-MAR A (3A)

--~ ~
XAD16 A

(3B) MAR 16 (Even)
~~

(4G) BAR MAR 3 (Odd)

-- --- ~t Diagnosti~e --- -- --- --- --- -- --
NotBlockPCandxADp':j" A 03.06.28.8

to MARon Channel Trap (4B)
~~~ 

A a Gate XAD*-MAR ~ I--
Gate XAD*-MAR Line 1 a A 

Gate XA[)'MAR Line.1.. Dot AND A 

Gate XAD--MAR Line i / ~ (3Q 

Gate XAD*-MAR Line 4.. (4A) 
(3D) MAR 16 (Odd) 

~ 
A 

Not XAD 17 -- Gate XAD*-MAR (Even) 
~'--

03.06.28.7 

~ XAD 17 Gate XAD-MAR (Odd) 

XAD 3 L~ XAD MAR 3 (Even) 

I }jrl XAD MAR 3 (Odd) 

Figure 62. MAR Bus Selection and Switching 

7094 II System and Functional Components 65 



Timing 

Master Clocks and Pulses 
All of the computer functions are directly related to 
two master clocks shown in Figure 63. These clocks 
located in the multiplexor, provide the basic pulses 
necessary for CPU and channel operation. 

The heart of these clocks is a 5.71 megacycle oscil­
lator which produces a complete output cycle once 
every .175 microseconds (175 nanoseconds). Each posi­
tive and negative oscillator output pulse is, then, ap­
proximately 87 nanoseconds long (Figure 64). 

The CPU clock is an 8 cycle-point clock composed of 
eight triggers (cpu clock triggers 0-7); the channel 
clock is a 12 cycle-point clock composed of 12 triggers 
(channel clock triggers 0-11). In either case, the clock 
forms a closed ring-each trigger is turned on in se­
quence and provides a gated output of 175 nanosec­
onds. The combined outputs produce the basic cycle 
times as follows: 

CPU Cycle: 8 x .175 = lAO microseconds 
Channel Cycle: 12 x .175 = 2.10 microseconds 

Clock drive pulses needed to sequentially step the 
clock triggers are produced by the clock drive trigger 
(Figure 63). Oscillator outputs gate two controlling 
AND circuits to the clock drive trigger; the top AND 

circuit is used to set, and the lower AND circuit is used 
to reset the trigger. Delayed outputs from the clock 
drive trigger condition the input AND circuits such that 
the trigger changes state with each positive oscillator 
pulse. Outputs from the clock drive trigger ("even 
clock drive~' and "odd clock drive"), Figure 65, are a 
series of pulses 175 nanoseconds in duration. The clock 
drive trigger has acted to halve the output rate of the 

·oscillator. 
Both the CPU and channel master clocks are reset 

under power-on conditions or by depression of the 
console clear key (Figure 63). At the end of the reset 
pulse, the DLY-AND circuit combination produces a 100 
nanosecond "start clock" pulse which turns on both 
the CPU clock 0 and channel clock 0 triggers. 

U sing the CPU clock as an example in Figure 63, the 
next "even clock drive" gates the CPU clock 0 trigger 
output to produce an AO(Dl) pulse of 175 nanoseconds 
duration. This same AO(Dl) pulse, besides being gated 
to other circuitry, also turns on the CPU clock 1 trigger. 

66 

Note that even though the CPU clock 1 trigger is turned 
on at O-time, the output of its AND circuit does not be­
come active until "odd clock drive," 175 nanoseconds 
later. The main logical output of the trigger is, there­
fore, Al(Dl). 

As a result of the preceding logic, the Al(Dl) pulse 
turns on CPU clock 2 trigger. This trigger output when 
gated with "even clock drive" produces an A2(Dl) 
pulse. Referring to Figure 63, CPU clock 2 trigger 
turning on at I-time acts as a reset to CPU clock 0 trig­
ger, and the A2(Dl) gated output acts as a set pulse 
for CPU clock 3 trigger. This sequence continues 
through CPU clock 7 trigger. Rise of the A7(Dl) pulse 
turns the CPU clock 0 trigger back on and the clock 
continues to run in a closed ring. 

I/O operations on the 7094 II are bascially the same 
as for the 7090/7094. Timing conditions, however, are 
such that the 1.4 microseconds cycle is too fast to sup­
port channel operations without considerable rework 
within the channel itself. Therefore, to accommodate 
the channels and simplify the 7094 to 7094 II conver­
sions, the 12 cycle-point clock has been retained 
strictly for use by the channels. Looking at the chan­
nel clock in Figure 63 shows that operation is identical 
to the CPU clock except that the cycle duration is ex­
tended beyond clock 7 time to include clock 11 time. 

Note that even though the CPU and channel clocks 
are separate circuits, both are reset, started, and under 
control of common clock logic. From Figure 66 it can 
be seen that two channel cycles occur for every three 
CPU cycles. Therefore, at every third CPU cycle both 
clocks align themselves with respect to O-time. More 
information concerning channel operation and tim­
ings will be found later in this section and in volume 3. 

Figure 67 shows outputs and controls significant to 
each stage of the CPU and channel clock rings. Figures 
68 and 69 shows sequence charts for the CPU and 
channel clocks respectively. Note that each clock trig­
ger is on for 350 nanoseconds, twice the time duration 
of an individual clock pulse. A particular clock trig­
ger is turned on one clock pulse early and only the 
last half of the output is gated by the clock drive pulse. 
This slower SWitching of the clock triggers provides 
increased reliability in the clock operation as well as 
additional pulses usable in the computer. 



Set Pulse Drive 
.------~,.. Clock Drive r---

5.71 
MC 
Osc 

(5A) ~J J A L~ Even Clock Drive 
(4C) T ~---------------, 

- ,. Odd Clock Drive 

----

Power On 
Reset 

Clock Reset 
on Clear 

Clock Drive (Off) 

1rDi;r 
l.J (2C) lClock Drive (On) 

I 

100* I ~ 
&lJ (:H) I... Clock Start 

Clock Reset 

__ ~OO.44.~~ ________ 1 l---~-----------------
Ch~O II 08.00.40.1-08.00.43.1 C= 0 08.00.43.2-08.00.43.3 

l+ T(OR) ~ ~ T(OR) 

~ _ All (D2) ... 

__ f----',.~I R(4C) ~ 

r
~ A 
- (3B) _Chan AO(Dl) 

I -
r-----4-+-~f-------~ 

t7' 

IChan Clk 2 

~r-

.-f----: .. ~R(4i) 
_A_3~(D_2~)_~~_.~~~ 

,.~ 

!chan Clk 3 

~r-

e-1---i""''''R(4Cf 
_A_4~(_D2~) __ ~+-_ ... ~RtKt ,. ---:........;.. 

, 

Chan Clk 11 
Al0(Dl) ~ 
------~-~, T 

Channel Clock 

Figure 63. Master Clock Logic 

AO(D2) .. 
----J (:E) I _Chan Al (D1) ... 

I 
Al(D2) ... 

----
(:H) I ... Chan A2 (D 1>.... - 1 

,. 

A2(D2) ... 

Turn~ T ' 
,~ , Chan Clk 4~ 

_ Al0(D2) _~ 

~) I .ChaoAl1(Dl) 
T 

_ MPXR A7(D2) ... 

t7' 
MPXR AO(D2) ... 

,. 

R(35) 

r~ ~MPXRA1(Dl) ... 

L7' 
1 . 

r------r~+_++-----~ 

MPXR 
~ A3(D2) .~ ..B..illL 

MPXR ~ 
A4(D2)e-+---l~~~ 
--'----'-+-+---l~~~ 

, 
I 

MPXR I CPU Clk 7 

A6(Dl) -
---'----'-+-+-~ .. ~ T 

CPU Clock 

_ MPXR Al (D2) 

~MPXRA'(Dl)-
I 

MPXR A2(D2) 

MPXR A6(D2) .. 

J (:G) I ~XR A7(Dl) .. 
~ ________ ~J ,. 

Timing 67 



Figure 64. 5.71 MC Oscillator Output 

Figure 65. Oscillator Output and Even Clock Drive 

Figure 66. CPU and Channel Cycle Relationship 

68 

CPU Turned Turned Tgr Ouration 
Clock Tgr. On by Off by and Output 

0 A7 (01) Clock 2 Tgr A7 (02) 
I AO (01) Clock 3 Tgr AO (02) 
2 AI (OJ) Clock 4 Tgr AI (02) 
3 A2 (OJ) Clock 5 Tgr A2 (02) 
4 A3 (01) Clock 6 Tgr A3 (02) 
5 A4 (OJ) Clock 7 Tgr A4 (02) 
6 A5 (01) Clock a Tgr A5 (02) 
7 A6 (OJ) Clock I Tgr A6 (02) 

Channel Turned Turned Tgr Ouration 
Clock Tgr. On by Off by and Output 

0 AII(OI) Clock 2 Tgr A II (02) 
I AO (01) Clock 3 Tgr AO (02) 
2 AI (OJ) Clock 4 Tgr AI (02) 
3 A2 (01) Clock 5 Tgr A2 (02) 
4 A3 (OJ) Clock 6 Tgr A3 (02) 
5 A4 (OJ) Clock 7 Tgr A4 (02) 
6 A5 (OJ) Clock 8 Tgr A5 (02) 
7 A6 (01) Clock 9 Tgr A6 (02) 
8 A7 (OJ) Clock 10 Tgr A7 (02) 
9 A8 (OJ) Clock I I Tgr A8 (02) 

10 A9 (01) Clock 0 Tgr A9 (02) 
II AIO (01) Clock I Tgr Ala (02) 

Figurc 67. CPU and Channel Clock Output and Controls 

Even Ring Drive 

Odd Ring Drive 

Start Clack Pulse 

CPU Clack 0 Trigger 
MPXR AO(Dl) Clock Pulse 

CPU Clock 1 Trigger 
MPXR Al(Dl) Clock Pulse 

CPU Clock 2 Trigger 

MPXR A2(Dl) Clock Pulse 

CPU Clock 3 Trigger 
MPXR A3(Dl) Clock Pulse 

CPU Clock 4 Trigger 

MPXR A4(Dl) Clock Pulse 

CPU Clock 5 Trigger 

MPXR A5(Dl) Clock Pulse 

CPU Clock 6 Trigger 

MPXR A6(Dl) Clock Pulse 

CPU Clock 7 Trigger 
MPXR A7(Dl) Clock Pulse 

Figure 68. CPU Clock Sequence Chart 

Gated 
Output 

AO (01) 
A I (OJ) 
A2 (01) 
A3 (01) 
A4 (01) 
A5 (01) 
A6 (01) 
A7 (01) 

Gated 
Output 

AO (01) 
AI (01) 
A2 (01) 
A3 (OJ) 
A4 (01) 
A5 (OJ) 
A6 (01) 
A7 (01) 
A8 (OJ) 
A9 (01) 
Ala (01) 
A II (01) 



Even Ring Drive 

Odd Ring Drive 

Start Clock Pulse I I 
Channel Clock 0 Trigger' -W LlJ Ll.J 

I I 

~~ ____ ~n~ ____ ~n~ __ _ 
I I 

Channel Clock 1 Trigger -W-------iLJ LJ 
AO(D1) Clock Pulse 

::::::IC~::k:I:;gg" ----'~r-------+i-...u : Lj'------
-----'~ i ~ ! rLL----

Channel Clock 3 Trigger L...J I W I W 
A3(D1) Clock Pulse __ --.~ I ~ I ~ 

Channel Clock 4 Trigger W I L..J I u-
______ ~~~ ____ ~I--~n~----~I--~~ 

~----~I --~ I 
Channel Clock 5 Trigger W I l...J I W--

----~~~--~I--~~~~I--~~ 

A2(D1) Clock Pulse 

A4(D1) Clock Pulse 

A5(D1) Clock Pulse 

W I W..-----.I-----.W-
Channel Clock 6 Trigger 

-~~ I ~r----L....-I -~ 
::;::~IC~~:k :I~~;gg" 2J I 2J..--..... I! ___ ----,~ 
Channel Clock 8 Trigger I 

_____ ----...In I r1 I 
I I"""---+-I ----W I 

Channel Clock 9 Trigger ...... I 

------~~~~I----~~ I 

Channel Clock 10 Trigger W I Wr-...!-[-----

----------~n~i~------~n i w Wr-------
I I 

A6(D1) Clock Pulse 

A8(D1) Clock Pulse 

A9(D1) Clock Pulse 

A 1O(D1) Clock Pulse 

Channel Clock 11 Trigger 

A11(Dl) Clock Pulse 
_______ ~~ n~ ___ _ 

Figure 69. Channel Clock Sequence Chart 

Timing 69 



CPU Clock Pulse Distribution 

The CPU clock is located in the multiplexor and the 
output pulses are distributed to both CPU-I and CPU-2 

for usage. Because of inherent delays in logic blocks 
and cable transmission lines, clock pulses arrive at the 
various CPU gates after finite delays. 

Figure 70 shows the typical distribution pattern of a 
CPU pulse. This MPXR A3(Dl) pulse is generated by the 
CPU clock 3 trigger (Figure 63) and sent to both CPU-I 

and CPU-2 for usage. By the time the MPXR A3(Dl) 
pulse arrives at CPU-2, however, the MPXR A4(Dl) pulse 
is being formed. Therefore, to provide alignment of 
pulses between the multiplexor and CPU-2, the original 
MPXR A3(Dl) pulse is relabeled as MF A4(Dl) upon 
entering CPU-2. 

As the original MPXR A3(Dl) pulse continues on its 
way to CPU-I, additional delays are encountered similar 
to the ones just described. With the help of a DLY 

block, the incoming pulse to CPU-I is delayed a small 
amount and again relabeled as a MF A A5(Dl). 

There is, therefore, a skew of one clock pulse be­
tween the CPU-2 and multiplexor, and a skew of two 
clock pulses between gates A and B of CPU-I and the 
multiplexor. A5(Dl) pulses throughout the computer, 
for example, are the result of three different CPU clock 
trigger outputs in the multiplexor. Except for trouble­
shooting purposes, these various outputs need not 
concern the reader. The computer circuitry doesn't 
care where the pulses come from as long as they repre­
sent the correct timing or logic. 

Although the AO(Dl) through A7(Dl) pulses are the 
prime outputs of the CPU clock, the D2 pulses are also 
distributed and used throughout the computer. Pulses 
of other durations such as A3(D3), AO(D6), etc., are 
produced throughout the systems as needed by using 
either triggers or combinations of AND and OR circuits. 

70 

In the computer, clock pulses are gated during cyclic 
operation and then labeled I6(Dl) or E5(Dl), depend­
ing on the particular cycle of operation. Whenever an 
A pulse is encountered in studying the computer, for 
example A6(Dl), it means this pulse is used directly 
from the clock and is independent of the computer's 
cycle of operation. This A pulse ·always occurs at 6 time 
and is always available. 

CPU 1 A and B Gate Clock Pulse Designation 

Timing pulse alignment becomes increasingly more 
important as the internal computer operations are 
compressed into smaller and smaller intervals of time. 
In the A and B gates of CPU-I where a major portion 
of the computer operatiol)s are performed, the clock 
pulses have been systematically delayed, aligned and 
labeled accordingly. 

In Figure 70 the clock pulse coming into the A gate 
of CPU-I is directed into two similar groups of circuitry. 
The top group of pulses labeled LN B (Line B) are sent 
to the B gate for usage; the bottom group (LN A) re­
mains in the A gate for usage. 

Pulses used in both A and B gates of CPU-I also 
have an additional letter and number designation­
A5(Dl) G3, for example. In Figure 70 "-F A5(Dl) G5 
LNA" is the earliest A5(Dl) pulse used in the A gate. 
This pulse delayed through an inverter produces a 
"+ F A5(Dl) G4." Additional inverter delays produce 
"-F A5(Dl) G3," "+F A5(Dl) G2," and "±F A5(Dl) R» 
pulses. Note that the higher the G number, the earlier 
the pulse. By picking the appropriate pulse, compensa­
tion can be made for the number of levels of logic delay 
preceding a trigger or register gating circuitry. 



Multiplexor (Figure 63) CPU 2 

CPU Clk 3 

MPXR 
A3(D1) MF A4(D1) R 

Odd Clock 
Drive 

02.15.08.1 

Figure 70. CPU Clock Pulse Distribution 

CPU 1 (D Gate) CPU 1 (A Gate) 

02.15.70.6 

-F A5(D 1) G5 L NB 

+FA5(D1)G4 LNB : 

-F A5(D1)G3 LNB 

+F A5(Dl)G2 LNB 

I'I-F A5(D1)R LNB 

LMJ 

-FA5(D1)G5 LNA 

+FA5(D1) G4 LNA 

-FA5(D1)G3 LNA 

+FA5(D1)G2 LNA 

B Gate 
Usage 

A Gate 
Usage 



Figure 71 shows four typical examples of pulse 
usage. At circuit (a), the A5(D1) G4 pulse is used be­
cause of the four levels of logic in front of the register 
gate. At circuits (b) and (c) the G3 and G2 pulses are 
used because of the three and two levels of logic in 
front of the register gating. The R (register) pulse, cir­
cuit (d), is the latest pulse and is usually used as a 
direct input to a trigger. There are, of course, excep­
tions to the pattern of usage just discussed. 

Note that the G-pulse levels alternate between +F 
and -F at each step because of the natural inversion 
from each DIF logic block. The majority of the triggers 
and register inputs use + level logic (i.e. +G or +AOI). 

CP Set Pulse Generation and Distribution 

Computer set pulses (cp set pulses) are developed di­
rectly from the master oscillator. These pulses are pre-

(a) +F A5(Dl}G4 
r2 Levels 

-F 

(b) -F A5(Dl)G3 

(c) +F A5(Dl}G2 

cisely generated and timed to set triggers and regis­
ters, and control much of the gating and shifting of 
data within the computer. Width and timing of the 
Cp set pulses, as related to the clock pulses, are ex­
tremely important to successful machine operation. 

The input set pulse drive pulses are received directly 
from the oscillator. A variable delay is used to pOSition 
the cp set pulse when aligning it with the clock pulses 
in the computer. Actual CP set pulse settings are made 
at the A and B gates in CPU-I. 

Figure 72 shows condensed logic of how the CP set 
pulses are shaped, delayed, and distributed for spe­
cific usage in the computer. The inverters in Figure 72 
have been included, not because they perform logic, 
but because they contribute to the timing delays. 

r-1 Level ----:i~ 
+F 

-AI 

Gate 

+G 

* Refer to Figure 70 (d) +F A5(D])R 

Figure 71. CPU Clock Pulse Designations and Usage 

72 



A Gate (02.15.61.1) 

CP Set 
CP Set (SCS) 

CP Set A 

CP Set B 

CP Set C 

CP Set D 

CAS CP Set 

------- ----------------
B Gate (02.15.61.2) 

....-"l-----~~~J---.... Simi lar to A Gate Above 

Figure 72. CP Set Pulse Distribution 

Machine Timing Cycles 
7904 II computer operation consists of several types 
of machine cycles concerned with both CPU and chan­
neloperations. 

CPU CYCLES CHANNEL CYCLES 

I Instruction B Buffer 
II IBR Instruction Chan I Channel Instruction 
E Execution Chan E Channel Execution 
L Logical Chan L Channel Logical 

The CPU cycles are directly concerned with CPU 

operations and the 8 cycle-point 1.4 microsecond clock. 
The channel cycles are directly concerned with chan­
nel operation and the 12 cycle-point 2.1 microsecond 
clock. 

The cyclic sequence of a computer instruction is 
fixed and, depending on overlap conditions, begins 
with either an I or II cycle. The total number and 
types of machine cycles required for each instruction 
is determined by the number of steps to be performed 
before the operation is completed. This number varies 
depending on the conditions set forth by the particular 
instruction. 

The various cycles essentially perform the follow­
ing functions. Each will be discussed in greater detail 
in later sections. 

I Cycle: The I cycle occurs because of a break in 
the overlap sequence. References are made to core 
storage and two sequential instructions are received 
into the program register and IBR for execution. 

II Cycle: The II cycle occurs simultaneously with 
an E or L cycle and is used to perform functions con­
cerned with the overlapping instruction in the IBR. 

E Cycle: The E cycle is used for data or IA (indirect 
address) cycle references to core storage. This E cycle 
can be initiated by an instruction in either the pro­
gram register or IBR depending on the conditions of 
overlap. 

L Cycle: During the L cycle the computer performs 
logical or arithmetic functions without reference to 
core storage. This L cycle can be initiated by an in­
struction in either the program register or IBR depend­
ing on the conditions of overlap. 

B Cycle: During the B cycle, a data channel uses 
core storage for either accepting or delivering data (or 
a data channel command word) in connection with an 
input-output operation. This B cycle occurs simul­
taneously with L cycles but never occurs simultane­
ously with I, E, or II cycles. 

Timing 73 



Chan I Cycle: The channel I cycle supplies 1.05 
microsecond I time gatings to channel banks 1 and 2 
and is used primarily for reset functions. 

Chan E Cycle: The channel E cycle supplies 2.1 
microsecond E times gatings to the CPU circuits as well 
as channel banks 1 and 2. This gating is used primarily 
during channel operations requiring references to core 
storage (i.e., POD'S 54/64 or ENB). 

Chan L Cycle: The channel L cycle supplies 2.1 
microsecond L time gatings to banks 1 and 2 for chan­
nel circuit controls. 

The CPU I and E cycle timings are such that they 
each gate their own instruction and data memory 
references. To accomplish this, I or E time for address­
ing comes up early (6 time of the previous cycle). 
There is, therefore, considerable overlapping of cycle 
times as shown in Figure 73. 

I 
I 

6 6 I ~ i I Time Gating I 
.... --~L 

I 
I 

6 i i E Time Gating I 

I 

I 
7 

i I L Time Gating 

6 I 

" Time Gating i I U I 

Figure 73. Cycle Time Relationship 

74 

Master I Time 

I time is not the steadily recurring type of cycle that 
existed on previous systems; it results only because of 
a break in the overlap sequence of instructions. For 
example, this break in sequence might occur because 
of a successful transfer or skip condition resulting from 
the instruction in the program register or IBR. 

Figure 74 shows condensed logic of I time. Note 
that even though the I time trigger might be turned 
on, its outputs may be blocked until such time that 
channel B cycle demands are satisfied. I time outputs 
are also gated by the master stop trigger or machine 
cycle gate (manual operations). 

The basic objectives of the I cycle are to: 

1. Select the proper memory/memories and gate the 
corresponding address( es) out to MAR( s). 

2. Update the program counter to the proper ad­
dress. 

3. Gate the proper instruction(s) from the even/odd 
storage bus into the program register, storage register, 
tag register and IBR. 

4. Perform address modification when applicable. 

5. Determine and initiate the next type of machine 
cycle. 



A5(Dl)R CP Set 

Not IBR Go to E L 
FAD E Time End-O 

End-Op Condition 

Overlap Conflict Condition 

Skip Trigger 

Pre IA Trigger 

Test 

Program { 
Register 
Controls 

Pre IA Trigger 

IBR 
Controls 

A6(Dl) R 

CP Set B 

Machine Cycle Gate 

Master Stop Trigger Off 

Not B Interrupt 

08.00.19.2 
(2G) 

Gen Reset 

Not B Interrupt For L Time 

Figure 74. I, E, and L Time Cycle Logic 

o Manual I Time Control 

(IG) 

04.20.10.1 

Al(Dl) 

Not Indirect Addressing 

I Time Trigger 

I Time Early (Addressing) 

I Late Dlyd 

I Late 
Delayed 

08.00.18.3 

E Time Trigger 

E Time Early (Addressing) 

E Time (for IA) 

(To CPU 2) 

L Time Early 

L Time Late 

Timing 75 



Address Gating 

Objective 1 is initiated in the upper area of Figure 75 
(sheet 1). This area shows the decisions required for 
initiating an I cycle. The skip trigger coming on as the 
result of an instruction in the program register nulli­
fies overlap and forces an I cycle because the instruc­
tion in the IBR is going to be bypassed. 

If the skip trigger does not come on but there is an 
overlap conflict condition, overlap will, again, be in­
hibited. In this latter case, the computer waits until 
the instruction in the program register has ended oper­
ation before initiating an I cycle. Special FAD E time 
end-op circuitry has been added because of timing 
considerations. 

If the skip trigger is off and there is no overlap con­
flict condition (Figure 75), a test is made to see if the 
instruction being executed from the IBR will send the 
computer into either an E or L cycle. If this ElL test 
is successful, the computer proceeds to ElL time to 
complete execution of the overlapping instruction. If 
the test fails (the IBR contains a I-cycle instruction, for 
example) the computer waits until the instruction in 
the program register completes operation and then 
initiates an I cycle. 

Note that the I time trigger is turned on at 5 time 
(three clock pulses before the end) of the previous 
cycle. Turning the trigger on early allows its outputs 
to provide addressing gates starting at 6 time. Machine 
cycle design is such that the upcoming cycle provides 
its own memory address gating. 

With the exception of MAR addressing controls, the 
I time does not logically start until the following 0 
time. 

Any B times requested by a data channel will be 
serviced before the I cycle is allowed to continue. This 
blocking of I time is accomplished by degating the out­
put of the I time trigger with "B interrupt." 

I time outputs can be grouped as follows: 
I time early for addressing: These outputs are avail­

able starting at 6 time of the preceding cycle and are 
used primarily for gating the proper instruction ad­
dresses to memory. 

I time early: These outputs are delayed outputs of 
the I time trigger and are available primarily for gating 
functions at the beginning or during early portions of 
the I cycle. 

I time late: These outputs are delayed longer than 
the early pulses and are, therefore, available for gating 
functions during the latter portion of the I cycle. The 
I time trigger is turned off at I5(DI) time so it is the 
delayed outputs that maintain the required gating 
until the end of the cycle. 

I time late delayed: This output is used to decre­
ment the program counter under HTR control so that 
the counter will indicate the actual address of the HTR 

instruction. 

76 

Going into I time is like getting a fresh start in the 
program sequence and because of this, two sequential 
instructions will be referenced from core storage and 
brought into the CPU. Except for certain operations, 
the address of one of the next two instructions to be 
executed will always be found in either the program 
counter, address register, or the address portion of the 
IBR. The address of the other instruction can be ob­
tained by incrementing or decrementing the first ad­
dress. Both of these addresses when gated to the even 
and odd memories will retrieve the next two desired 
sequential instructions. 

Note that the addressing blocks in the lower area 
of Figure 75 are divided from left to right into distinct 
groups according to function. 

Group 1-Address Gating to MAR: One of these 
three gates will be active to provide one instruction ad­
dress to MAR. This same address is gated to the index 
adders for either incrementing or decrementing. 

Group 2-XAD Gating to j\1 AR: This block provides 
the other instruction address to MAR. In the majority of 
cases this second address is an incremented (+ 1) value 
of the first address. In some cases, however, this second 
address is a decremented (-1) value of the first ad­
dress. Note that the XAD to MAR path is only active 
when the computer is in overlap mode and not diag­
nostic mode. 

Group 3-1's to XAD (3-17): These two blocks cause 
incrementing or decrementing in the index adders. 
Gating a 1 to XAD(17) is an unconditional I6(D2) func~ 
tion and causes address incrementing (+ 1). Gating 1's 
to XAD(3-16) along with the 1 to XAD(17) causes address 
decrementing (-1) by performing 1's complement ad­
dition. 

Group 4-Address Updating Paths: This fourth 
functional group takes the incremented (or decre­
mented) XAD address output and routes it to either the 
address register or IBR for temporary storage. This ad­
dress will update the program counter at Il(DI) time. 

Group 5-BAR Address Gating to MAR: This last 
functional group is used during channel trap oper­
ations when addressing the specific data channel trap 
location. 

When progressing through the series of I time ad­
dressing decisions, a channel trap is concerned with 
group 5 and directs the routing of the buffer address 
register (BAR) to MAR. 

For all other I time addressing decisions, groups 1 
through 4 are used according to the following rules 
(Figure 75): 

l. One block (and only one block) is always used 
from group l. Either the PC, AR, or IBR will contain the 
correct address of one of the next two sequential in­
structions. This same address is also gated to the index 
adders. 



2. An entry will always be made into group 2. 
Whether or not the index adders are gated to MAR 

depends on both overlap mode and diagnostic mode. 
3. In group 3, a 1 is always gated to XAD(17) for in­

crementing purposes. During the two cases where 
decrementing is involved, the 1's to XAD(3-16) are also 
used. 

4. One block (and only one block) is always used 
from group 4. These updating paths route the index 
adder value to either the address register or IBR as 
temporary storage until the program counter can be 
updated at the next Il(Dl) time. Note that the value 
set into the address register or IBR at this time nor­
mally corresponds to the second instruction selected 
from memory (i.e., the instruction which will be set 
into the IBR at 14 time of the I cycle). 

U sing the above rules and making a systematic pro­
gression through the maze of addressing decisions 
should prove the logic of the I time addressing. 

Program Counter Update 

Objective 2 updates the program counter to the proper 
address. The program counter is always one step ahead 
of the current instruction being executed; therefore, 
the address to be set into the program counter will 
correspond to the instruction destined for the IBR. 

In the previous section, addresses were sent to MAR 

during I6(D2). At the same time, the incremented (or 
decremented) value from the index adders was also 
routed and set into either the address register or IBR 

(Figure 75, sheet 1). These group 4 routing paths place 
the updating program counter address in "temporary 
storage." During Il(Dl) time, this address is routed 
unmodified to the program counter via the index add­
ers (Figure 75, sheet 2). Note that the pattern of de­
cision making for the updating circuitry is similar to 
that for address gating discussed previously. 

If the address register or IBR had received an incre­
mented (+ 1) address from the index adders, that cor­
responding register contains the correct updating 
address for the program counter. If, however, the ad­
dress register or IBR had received a decremented (-1) 
address from the index adders, the register originating 
the address contains the correct updating address for 
the program counter. 

In some cases the program counter already contains 
the correct address. When these cases occur, the up­
dating paths are blocked and the program counter 
value remains unchanged. One case, a successful class 
A transfer in trap mode, requires a carry to XAD(17) 

during update to put the value 00001 into the program 
counter. 

Storage Sus Gating 

The third objective is to gate the storage buses into 
the computer. The instructions which were addressed 
at the previous 6 time will be available by 4 time on 
the even and odd storage buses. 

In Figure 75 (sheet 2) an external trapping condi­
tion will nullify the two new instructions arriving 
from core storage and, instead, force an STR operation 
by turning on PR (s, 9). 

Excluding the trap condition, five routing and set­
ting functions are available for the even and odd stor­
age buses: 

SB(S, 1-35) ~ SR(S, 1-35) and TR (18-20) 
SB(S, 1-2) ~ PR(S, 8-9) 
SB(S, 3-11) ~ PR(S, 1-9) 
SB(S, 1-35) ~ IBR(S, 1-35) 14(Dl) Set Pulse 
SB(S, 1-35) ~ IBR(S, 1-35) 14(D2) Set Pulse 

Excluding the XEC instruction and channel traps for 
the present, the program counter is the deciding factor 
as to which storage bus is routed into the program 
register (PR) and IBR. Remember that the program 
counter was already updated (incremented) at II time 
and is + 1 ahead of the current instruction. Because of 
this, if the program counter is at an odd value the even 
storage bus is gated to the program register and the 
odd bus to the IBR. If the program counter is at an 
even value the odd storage bus is gated to the program 
register and the even bus to the IBR. 

A class A instruction coming into the program reg­
ister is "pre-sensed" from the storage bus. If the instruc­
tion is a one cycle class A instruction (TIX, TNX, TXH, 

TXL, TXI) circuits are immediately set up to also route 
this same instruction into the IBR with an I4(D2) pulse. 
Note that this longer I4(D2) pulse overrides the in­
struction placed in the IBR with the normal I4(Dl) 
pulse. The reason for this special gating into the IBR 

is because of addressing considerations which will be 
discussed in Volume 3. 

Tracing through the flow chart (Figure 75-sheet 2) 
will also show the storage bus gatings for channel trap 
and XEC conditions. In some of these latter conditions 
the program counter value (even/odd) may cause some 
unnecessary gatings into the IBR. These gatings cause 
no problems, however, because overlapping is pre­
vented at this time. 

Figures 75 (sheet 2) and 76 provide a summary of 
the various SB gating conditions. 

After the program register has been set with the new 
instruction, a check is made to determine if overlapping 
is possible. If so, the IBR loaded trigger is turned on. 

Timing 77 



Address Modification 

Objective number 4 is address modification. This mod­
ification is performed during the I5(Dl) clock pulse so 
that the modified address (if an index register was 
specified) will be available for MAR gating during the 
next two clock pulses; i.e., E6(D2) early. 

Class A instructions (TIX, TNX, TXH, TXL, TXI) block 
address modification. Instead, the I4(D2) period of 
time is used to perform the specific test or operation on 
the index register (Figure 75, sheet 2). If the conditions 
of the test are successful, a PR condition-met-trigger is 
turned on; if the test fails, the trigger remains off. 

If the instruction in the program register is indexable, 
SR(21-35) and the complement of the specified index reg­
ister(s) are gated to the index adders with a carry to 
XAD(17). This 2's complement addition effectively per­
forms a subtraction of the index register value from 
the address portion of the instruction. If no index reg­
ister is specified, all 1's are gated from the index regis­
ter along with the carry to XAD(17) to effectively sub­
tract zero from the address in SR(21-35). 

The modified address resulting in the index adders 
is gated to the address register for MAR gating at 

E6(D2) time. If the instruction is a POD 76, the index 
adders are also routed to the shift counter for further 
decoding. 

Next Machine Cycle 

At the same time that the address modification or class 
A testing is being performed, other circuitry is deter­
mining the next machine cycle. 

If the PR instruction contains bits in positions 12 and 
13, SR( 12, 13), and meets the other conditions shown in 
Figure 75 (sheet 2), the pre-IA trigger is turned on and 
an E cycle follows. 

If no E(IA) cycle is called for, a test is made to see if 
a I-cycle instruction is in the program register. If so, 
the end-op trigger is turned on and another I cycle 
follows. 

If the instruction in the PR does not call for ending 
opera tion, tests are made to see if an E cycle should 
follow. If the test is successful, the master E time trig­
ger is turned on and an E cycle follows. If, however, 
neither an I or E cycle is requested, the master L time 
trigger is turned on and an L cycle follows. 

SB Gating SB Gating Oecision Blocks 

XEC Operation Chan Trap Normal 

~ I~ 1i<Y1 !~ IWl l~ I~ I~ 
EVEN SB 

SS .... SR and TR V- t.--- t.--- V- t.--- I..---

SB(S,l-2)-'PR(S,8-9) t.--- J....- J....-

SB(S,3-11)-'PR(S,l-9) V- J....- t.---
SB .... ,BR 14(01) t.--- J....- V- t.--- J....- I..---

SB~IBR 14(02) J....- J....- t.--- J....- t.---

OOD SB 
SB .... SR and TR t.--- t.--- t.--- t.--- t.--- I..--- V- t.--- V- t.---
SB(S, 1-2)~PR(S, 8-9) J....- t.--- I..--- t.--- V-

SB{S,3-11)+PR(S,l-9) J....- J....- t.--- t--- t.---
SB .... ,BR 14(01) V- I..--- J....- J....- J....- J....- t.--- t.--- V-

SB~IBR 14(02) J....- J....- V- t.---

Y I ndl cates Yes N Indicates No 

Figure 76. SB Gating Decision Chart 

78 



---
Wait until the instruction in the program Start 
register has completed execution ~ 

----=c-
t 

Skip 
Off Trigger 

02.09.42.3(3Dl 

On 

Wait until the instruction in the program 
,:::- register has completed execution 

/ PR instruction skip condition 

The IBR instruction will not 
Overlap ~ complete execution 

...-____ ....:N..:.o:::......{ Confl ict Cond )-Y.!.Ce"'s'--___________ -'/"--_--, 

03.0B.17.2(4E) 
The computer bypasses I time 
and goes directly to E or L 
time of the IBR instruction 

IBR Go 

1 
s; n a. i Yes to E/L )..N~o _____ ~ 

C'1 c1e 
i VI sfV' -I ,A·; ov) OB.00.20.2(2F) 

Special End-Op for 
FAD Instruction 

FAD E-Time /. ~ Yes 
FAO E-Time 

End Op No End Op No 

02. 13.47.2(4A) 02. 13.47.2(4A) 

I1(DI) 
13(D 1) 
14(DI) 
I4(DI) 
14(DI) 
I4(DI) 
I4(DI) 
15(DI) 
15(DI) 

~~<nd Op Cand 
No (Normal) 

B.00.09.2(4C 

Yes 

The I-Time trigger is turned ON at 
5 time (the last three clock pulses of) 
the previous cycle. 
With the exception of MAR addressing 
controls, the I time does not logically 
start until the following 0 time. 

I Ti me Resets 

03.0B.17.2 
03.05.22.1 
03.14.00.1 
03.0B.13.1 
OB.00.09.2 
03.0B.17.2 
03.0B.17.2 
OB.00.IB.2 
02.15.70.5 

XEC Trigger 
TAG Register 
PR and Shift Counter 
IBR 
End-Op Trigger 
Overlap Conf Tgr 
Overlap Conf Rem Tgr 
I Time Trigger 
PR and IBR Cond Met Tgr 

No 

I
, A5 CP Set 
Turn on Master 

------z.- I Time Trigger 
08.00.18.2(3C) 

Yes 
End Op Cond 

(Normal) No 

08.00.09.2(4C 

Maior I Time Obiectives 

I. Memory Selection and Addressing 
-16(02) 

2. Program Counter Updating 
-II(DI) 

1 ~. Wait until all of the channel 
, B-Time requests have been 

~ 
B-Time -s-- completely serviced. 

No Interrupt Yes 
OB.00.21.2(3B) 

3. Storage Bus Gating - 14(0 I) 
4. Address Modification - 15(01) 
5. Oetermining and Initiating the 

Next Type of Machine Cycle 
-15(01) 

, 
I Time Gating 

I. I time early for addressing 
2. I time early (circuit OL Y) 

(to CPU 2 circuitry) 
3. I time late (Circuit OL Y) 
4. I time late-delayed (until the 

following AI(Dl) time). 
OB.OO.IB.I - .2 - .3 

+ 
This is the I time following the 

f 
E time of the STR operation 

r--I __ N-"o....( Channel Trap )-Y.:..;e:::..:s-'-__ ...L.. ______________________ ---, 

• 03.08.15.3(4F) 

XEC Code 
Yes 

03.08.15.1(4B) 

Tra"1s(:'ev No Skip ~~g(ler 
1.. lI1;;-i-V:~d I J'h-5--'-~ 

~ 02.09.42.3(20) 
'--___ ---I 

No 

On Off 

PR Condition 
Met 

03.06.19.1(3D) 

~
OVerlaPTgr 

03.08.15.1(--) )-----. 
03.0B.15.1(11) 

Yes 

Yes 

~ 
No 

Trap Mode 

03.0B.15.1(4C) 
03.08.15.1(40) 

Yes 

Skip 2 / Ski.P 1/2 \SkiP I 

~ 02.09.42.2!i 

~a Overlap Mode Yes No Overlap MOde\r-es 
03.0B.15.2(4F) 03.0B.15.1(4A) 
03.0B.15.1(4A) 03.0B.l5.2(4G) 

Ms ~~~;:~~t b- . -. Yes .. _Transfer- . No .... _ .0 • ~
ClassA 

03.0B. 15.1 (4C) F:.......:....~~::...;::.."-'---~~---'----~ __ +_'_-----------' 03.08.15.1(4F) 
03.08.15.1(--) 

~
IBR condition:, 

Yes Met No 
03.08.15.1(4H) 
03.08.15.1(41) 

~/ Group I 

I6(02) 16(D2) 

PC<~~ 
03.06.29.2 
03.06.09.1 

AR<~~ 
03.06.28.9 
03.06.06.2 

16(D2) 

IBR <: MAR 
XAO 

03.06.29.1 
03.06.06.2 

Figure 75. I Time Flow Chart (Sheet 1 of 2) 

3.0B.15. 1 (4D 

-T 
_tiJ Overlap MOde .. ~ Yes 

n03.0B.l5.1(2E)j I 
f 

I_Yes / Oi~~~:stic ~ 
n03.08.15.1(2o/ I 

Grou,...p_2_--I'--_---. 
16(D2) 

XAD ... MAR 

03.06.28.8 

An Unconditional Used when decrementing 

This is the core storage 
reference to odd memory 
(i.~., location 138, 15a, 
17a, etc.). Setting the 
MDBO latch gates the 
odd storage bus to the 
PR and SR. 

16(02) 
Set MOBO 
Odd Lotch 

02 .12 .52 .2(5H) 

Except for a channe I 
trap condition, one 
of these two address 
up-dating paths will A 1 is not actually set 

/ 
be active. The AR into BAR (17). Instead, 

17 CP set time. gating of the buffer 
address register to odd V 

and IBR are set at this condition causes 

VG~~j/j + G'~P:~ j 
r---...J....._~ 

16(02) function dd 

c G,.,,!, J~v"--a--:.....,} ~,. 
16(D2) 

1-XAO (17) 

16(02) 

l's-XAD(3-16) 

03.06.13.1 03.06.09.1 

I 

]7(01) I 
Memory Select 

(Even and/or Odd) 
03.06.29.4 , 

To Sheet 2 

16(02) 

XAD_AR 

02.12.70.1 

I 

16(02) 16(02) 16(02) 

XAO-IBR BAR-MAR I-BAR (17) 
03.0a.15.3(3F) 03.08. 15.3(2G) 

02.12.70.1 03.06.29.3(5A) 03.06.29.3(3C) 

I I I 



No 

No 

Skip Trigger 
On 

02.09.42.3 

No 

XEC Code 

03.06.03.2(2A) 

Yes 

No 

From Sheet 1 

+ 
(Note I) 

Manual Ctrls 

03.06.03.2(2A) 

Yes Manual Operations are· covered 
r--------4~ in a separate section in volume 3. 

Trap Tgr On Yes This is the I time following the E time 
Channel II 

03.06.03.2(2A / of the channel STR Operation. 

The program counter contains the address of the 
Yes / next sequential instruction and will not be changed at this time 

PR Condition 
The address register has been set r< ! h No Met Yes 
to OOOOIS as a result of the trap Skip 2 Skip 1/2 Ski I 

03.06.19.1(3D 

y~ / 02.09.42.2 On 
Overlap Tgr 

03.06.03.1 (5E) 
03.06 .03 .2(5A) 

Yes 
Overlap 

No Conflict 

03.06.03.1 (4D 

The program counter already contains 
the correct address. Th i s address 
corresponds to the instruction which 
will be loaded into the IBR at the 
following 14 time. 

/ 

This row of class A decisions 
is based on the instruction 
coming into the PR at this 
time as pre-sensed 
from SB(S,I-2). 

Off 

C I" .. ,~ &I /J II' L I . 
........ - /7 ,"-:;,V"uC.T'OVl 

ctV~ "Tv-ctPlstev 1/ ;hSi-Y"Wrt-;c' 

1 f.-' I' Co VI 01 JIll! e.. + Ii fr1~"/--,--",,""\ 
t-v'4v>s{ef- a.dd lOa $ AR Odd Tgr 

.L6J ; If t 03.0S.13.1(3G) 

}, Cpr<' '1 PC Odd/Evenn PC Odd PC Even 

D3R 
03.06.30. I (2A) 

res I;s't~~sc~on ~ :d In;tlr~s;t~n ~ 
03.06.13.1 (4B); I ~3.06.13.1(4Bi . 

A B 

No 
Class A 
Transfer 

02.12.76.1(5B} 
Trap MOde;r ~Overlap Mode Overlap MOdiF 

No 

XEC Trigger 

03.06.03.2(IC) Yes N 03.06.03.2(3D) Yes No 03.06.03.2(3C) Yes 
03.06.03.2(IDl 03.06.03.2(4B) J 03.06.03.1 (5C) 

No 

J1(DI) 
I-XAD (17) 

03.06.03.2(ID) 
03.06.13.1 (2E) 

No 

FP Trap or 
Interrupt 

(Chon Trap Dem) 
3.14.00.1 (2B) 

Off 

v 
II(Dl) 

AR - XAD 

03.06.05.2(4A) 

II CP Set 
XAD--PC 

02.12.70.1(3F) 

1 

(Note 1) 
Manual Ctrls 

03. 14.00. 1 (2B) 

Yes 

II (Dl) 
IBR - XAD 

03.06.06.2(3G) 

At this point the program counter value is +1 
- higher than the address of the instruction which 

will be loaded into the PR at 14 time. 

Yes Manual operations are covered 
in a separate section in volumn 3. 

This is the I time preceding the E time of the 
/ STR operation. 

The instructions coming into the computer / 
ore blocked. Instead, the computer is 
forced into on STR operation by setting 

03.08. 17.2(4A) 

On 

PR(S,9). The channel trap MDBO latch prevents the 
IBR loaded trigger from being set during 
the I time following the STR operation. ------- On Chon Trap Off 

PC ~PC Od:j!~" ;;:~' 'h, 'BR 00"'" W(~C";;:~ Od:j!~" ~''" ~~~~~d;(~~}-PpdC-E-ve-n--'PC-O-d· 'd/Even ~C Odd 

J \03.06.30.1(2AL~ ! \03.06.30.1(2AY ! ~ \o3.06"30.1(2AV ~ 
vd I~~;~~~an ~ vd In~:~~~t~on ~ ~ ';~t~~Sc~on ~ Y~ In~!~~:t~on ~.d I~s~~~c~on 'llis J In:!~~:t~on ~ 
~3.06.13.1(4B)/~3.06.13.1(4BV ~3.06.13.1(4By .... ~3.06.13.1(4Bf·r \03.06.13.1(4BV 1~3.16.13.1(4BV 

C D E F G H 

I T I 

~~~ I ~ /4~ ~(';.~ [~D2) II ~~~ ~ /4(:'; 
I SB -SR, TR 5B(S,I-2)-PR(S,8-9) SB(S,3-ll)-PR(S;I-9) SB-IBR SB -IBR II SB-SR, TR 5B(S,I-2)-PR(S,S-9) SB(s,3-11)-PR(S,I-9)

14([)1) 14(D2)
SB-IBR SB-IBR

14(D2)
Set PR(S,9)

03.0S.13.1 (11) 03.08.13.1 (II) - I 03.0S.13.1(IH) 03.0S.13.1(IH) I 02.12.52.2(3A) 03.14.00.1 (IA) 03.14.00.1 (IA) 03.0B.13.1(3C) 03.0B.13.l(3C) I 02.12.52.2(3E) 03.14.00.1(lC) 03.14.00.1(lC) 03.0B.13.1(3F) 03.0B.13.1(3F) I 03.14.00.1(2A)

~e~ ____ ~ _____ -t ________ ~v=-l~d __________ + _______ ~dd~

I

Instructions Such as PAX,
PAC, PCA,PCD, etc.
Details of their execution
found in volume 3.

No

l I

f

f{s PRPODto
Inhibit Ovlp

03.08.16.2

No

t
Class A

Instructi on

03.06.13.1 (4B)

PR Indexable .?= (PR 6 & 7) es
02.10.65.2(5A)

15\Dl)

No

Yes

I5(Dl)
Tum On IBR
Loaded Tgr

03.0S.16.2(3F)

(TIX, TNX, TXH, TXL, TXI, STR)

No SIR

03.06.13.1(4C

Yes

SR(21-35j-XAD Carry-XAD(I7) 15 Dl))II(15(Dl) .J
03.06.03.2(4H) ,03.06.13.2(3E)1 03.06.07.1 (2C) ,03.05.52.1 (5A)

Camp XR-XAD
03.06.03. 2(5F) ,03.06.07.1 (2C)

1-XAD(l7) Comp XR-XAb
14(D2) I(14(D2) 14(D2)

SR(3-17) - XAD
03.06.13.1(2B) I 03.06.07.1 (2C) ,03.05.52.1 (5A) 03,06.02.3(5 F) , 03.06.07.1 (2C

Na~OD76 Yes

~
'--------{03.01.01.1

(IH)

"'------------+,

I
15 CP Set I

XAD-AR
02.12.70.1 (4D) ,03.06.02.1 (5A)

15 CP Set
XAD-SC

03.06.03.2(41) ,03.06.11.1 (3F)

t
XR value subtracted from instruction address,
SR(21-35). If no XR. is specified, all l's
gated from XR output circuitry.

Note: A POD 76 instruction
_will have address modification

performed if togged.

t

N~ ClassA hes Tra Cond Met

02.12.76.1

Turn on PR I J6(Dl)
Cond Met Tgr Reset AR

03.06.19.1 (3D) 03.06. 14.2(3D)
T ~ ____________ .l ______________ ~J /
,l4---I This reset will also occur for

~
the first I cycle of a transfer

N 5 () Yes See IA Flow Chart instruction ·in trap mode.
o RI2,13=I's_ / forDetails

02.10.65.2 (5E)

14 ______ ---'N~o_< pe':m'i~ed?}-YJ.-"e""s'----..." SB Gating 58 Gating Decision Blocks
XEC Operation Chon TrOD Norm,,1

,.--------{ Cycle Inst 0 Turn on Pre IA Tgr Yes ~N 15 CP Set
EVEN SB I~ ~ 1KY1 f01 KVl I~ ~ ~

15(ep) Set
Turn On End-Op Tgr

08.00.09.2(3B)

I Time
Sheet I ---

j I

L Time

02.10.65.2(3B)

I
16(DI)

T urn On Master E T gr
08.00.19.2(2B)

E Time

SB-5R and TR
SB(s,I-2) __ PR(S 8-9)
sB(S ,3-11) __ PR(S, 1-9)
5B IBR J4(Dl)
SB -IBR J 4(D2)

ODD 5B

sB-5R and TR
SB(S, 1-2) -PR(S,S-9)
SB(S 3-11) - PR(S, 1-9)
5B-JBR I4(01)
SB - IBR 14(D2

V V V V
V V

V V
V V

L-- V

V
V

V V V
V

V V
V

V

V V V V
V V V

V V V V V V V V V
V V V- V

V V V V V
V- V V V- V V

V- V- V

Figure 75. I Time Flow Chart (Sheet 2 of 2)

Master E Time

Figure 74 shows condensed logic for the E cycle. Note
that this E cycle can be initiated by an instruction in
either the program register or lBR depending on over­
lap conditions. In either case, the E time trigger is
turned on by 6- time of the preceding cycle to allow
memory addressing. In this manner, E time provides
memory addressing for its own data reference.

Outputs from the E time trigger may be blocked
until channel B time requests are satisfied. This same
situation exists for I time, which was described previ­
ously. After all of the B times are satisfied, the block­
ing is removed and the computer proceeds with the
instruction.

The master E time trigger is reset at E4 time; how­
ever, by use of delays, E time gating circuits are ex­
tended until the end of the cycle. E time outputs in­
clude:

1. E time early for addressing (not deconditioned
bYlA)

2. E time early
3. E time early (for lA)

4. E time late
5. E time late (for lA)

Note that, unless specifically labeled «for lA," E time
gatings (with exception of E time for addressing) are
blocked during an lA (indirect address) cycle. In this
manner the instruction execution is blocked until the
normal E cycle (not lA cycle) occurs. If an instruction
requires several consecutive E cycles (CVR, for exam­
pIe) the master E time trigger is set and reset for each
cycle.

IA E Cycle

Indirect addressing requires making a second refer­
ence to core storage. This second reference either ob­
tains the actual data word in cases of data handling
instructions (CLA, ADD, etc.), or the new transfer ad­
dress in cases of transfer instructions (TRA, TQO, etc.).

During the first memory reference (IA E cycle), a
new word is brought into the storage register from a
location specified by positions 21-35 of the original in­
struction word. Positions 21-35 of the lA word contain,
in effect, a new memory reference. This new address
when sent to core storage retrieves the desired data (or
transfer address) .

Several examples of indirect addressing are shown
in an earlier section of this manual, «Instruction Ad­
dressing."

The basic objectives of an lA cycle are:
l. Make proper reference to memory for the IA

word.
2. Gate the storage bus even/odd into the storage

register.

82

3. Perform address modification according to the
tag specified in the lA word.

4. Determine and initiate the next type of machine
cycle.

5. Select the proper memory(s) and gate the corre­
sponding address(es) to MAR(S).

An lA cycle can be initiated by an instruction in
either the program register (I time) or the lBR (II time).
See Figure 77. Test conditions for the IA cycle are simi­
lar in either case.

Indirect addressing has the following restrictions:
1. The instruction must be indexable. Non-indexable

instructions such as the class A type (TlX, TNX, etc.)
make use of the entire decrement portion of the in­
struction word for indexing purposes. Therefore,. posi­
tions 12 and 13 lose their meaning for indirect address­
ing. Other non-indexable instructions such as PAX, PXA,

SXA, SXD, etc., actually operate on the index register and
are, therefore, not subject to address modification.

2. Except for transfer instructions, indirect address­
ing is only possible on instructions of 2X, 3X, 4X, 5X,
and 6X operation codes. Codes below 2X and above
6X require L cycles for their execution. Without refer­
ences to core storage, indirect addressing has no pur­
pose.

3. Transfer instructions can normally be indirectly
addressed. However, this feature is nullified (except
for TTR/ESNT) if the machine is in the trap mode of
operation. When in the trap mode, the address of the
transfer instruction is stored in location 000008 and if
the transfer conditions are met, the computer traps to
location 000018 • Because a transfer is never actually
made to the transfer address, indirect addressing in
the trap mode accomplishes no useful purpose. The
programmer's trap subroutine must test to determine
if indirect addressing existed in the transfer instruc­
tion.

If the lA cycle is initiated by the program register
instruction, a pre lA trigger is turned on. If the IA cycle
is initiated by the IBR instruction a pre IIA trigger is
turned on. In either case, a common lA trigger is turned
on at the next EO time.

II times are blocked from occurring simultaneously
with the E(lA) cycle because of a conflict in usage of
the index adders at 5 time.

Note that during an II cycle the instruction in the
program register may detect a skip condition which
will bypass the overlapping instruction. A trap condi­
tion may also demand recognition ahead of the over­
lapping instruction. In either of these two cases, over­
lapping is nullified and the E(lA) cycle is blocked from
occurring.

If the lA cycle is requested by the overlapping in­
struction (i.e., II time), the lA cycle must wait for an

end-op signal from the instruction in the program reg­
ister. This condition would occur, for example, if the
overlapping instruction is preceded by a multiply in­
struction. See example on Figure 77.

IA Memory Reference: The address to be gated to
MAR depends on whether the IA cycle was initiated by
a preceding I or II cycle. This fact is determined by
the OFF and ON states of the end-op trigger, respec­
tively, and causes gating of either the address register
or IBR to MAR (Figure 77). Note that only one address
is sent and only one memory is selected.

A check is made to determine if the value in the ad­
dress register or IBR is even! odd. If odd, the AR odd
trigger is turned on for later references. The even!odd
conditions are also dependent on whether the com­
puter is in normal or diagnostic mode of operation.

Storage Bus Gating: The data word arriving at E4
time is gated into the storage register. The proper bus
is determined by the status of the AR odd trigger (Fig­
ure 77).

Address Modification: At E (IA) 5 (D 1) time, Figure
77, SR(21-35) are routed to the index adders together
with the complement of the specified index register. A
carry to XAD(17) causes 2's complement addition and
the index register value is effectively subtracted from
SR(21-35).

This new modified memory address is set into the
address register for gating to MAR at E6(D2) time.
This modified address is also gated to IBR(21-35) if the
IBR loaded trigger is off. If the IBR loaded trigger is off,

the IA cycle was initiated from an II cycle. Under these
conditions, an II cycle may follow the IA cycle. Routing
the modified address to the IBR allows use of memory
conflict detection circuits on Systems 08.00.22.2 (5F).

Next Machine Cycle: One cycle transfer instructions
end-op during the IA cycle; therefore, the next cycle
will be an I cycle. Two cycle transfer instructions re­
quire an L cycle to complete operation. Because of
this, an L cycle will follow the IA cycle.

If a I-cycle or 2-cycle transfer condition does not
exist, the next cycle must be an E cycle (except for
possible B cycle interrupts). If conditions allow, an II
cycle may also occur simultaneously with this next E
cycle. Note that the path which turns on the II time
trigger (Figure 77) also turns on the E time trigger.
The reverse condition, however, is not true.

MAR Gating and Selection: A I-cycle E (IA) transfer
end-op causes two sequential addresses to be sent to
MAR from the address register and index adders. This
condition was covered in a previous section on I time
and in Figure 75.

All other conditions force a data E cycle with the
modified data address sent to MAR from the address
register. If an II cycle is also allowed to occur, the pro­
gram counter is sent to MAR to fetch a new overlapping
instruction. There is one condition on the PC~MAR gat­
ing, however. The IBR loaded trigger being on indicates
an II time without a reference to memory because the
IBR had already been loaded with an instruction during
the previous I time.

Timing 83

Indirect Address not
possible - proceed normally.

The Pre IIA trigger is normally reset at
the next A2(Dl) time.
An overlap conflict or skip condition will
reset the Pre lIA trigger immediately at
6-time.

II time is not allowed to occur
simultaneously with an E(lA} cy~

On

Indicates that the ~
instruction in the PR is skipping
around the overlapping Inst.

Ves

Indicates that a condition (such as a channel?
trap) is nullifying the overlap operation.

Basic IA Cycle Objecti yes

1. Address memory for IA data word - E6(D2)
2. GateSBtoSR- E4(Dl)
3. Perform Address Modification - E5(Dl)
4. Initiate next machine cycle - E6(Dl)
5. Address Memory -l/E/lI6(D2)

1. Reset II Time Tgr
2. Block II~II
08.00.22.2 (2C)
08.00.22.2 (5E)

1. Reset I Time Tgr
2. ResetIlTimeTgr
08.00.18.2 (3B)
08.00.22.2 (2C)

A function of the U

The f time trigger can not be
turned on until the imtruction /
in the PR has completed operation.

Example: 0 CLA

1 MPV

2 ADD'

n

II I E(lA)

The end-op trigger being on at this time
indicates on IA cycle initiated by the IBR
instruction during an II cycle.

The end-op trigger is turned off at
E4(D I) time of the I A cycle.
Systems 08.00.19.2(41)

Reset ot E7 CP set time of the IA cycle ----.r--

E4(Dl)
SB-SR

02.12.52.2 (3A)

E4(Dl)
SB(18-20) TR

02.12.52. 2(3A), 0J.05.22.1 (SA)

Ves

t-----------------1-._ Indirect Addressint not

~ The Pre IA trigger is reset at the
next A2(DI) time.

The end-op trigger being off ot this time
indicates an IA cycle initiated by the PR
instruction during an I cycle

The IBR loaded trigger being OFF ot this time
indicates entrance from an II cycle.

possible - proceed normally.

The IBR loaded trigger being on ot this time
indi cates entrance from an I cycle with on
overlapping instruction in the IBR .,..------.-::~..(}---:::::.:....------,

On

~ Figure 77. IA Cycle Flow Chart

This is really a memory conflict check of the AR and PC. The AR ====~
value was also set into the lBR at the previous E(IA)5(Dl) Time

Both paths must be used if
the 11 time trigger was
turned ON.

If the IBR loaded trigger is ON at th;s
time, the tBR had already been loaded ----....r--..On
with a second instruction during
the preceding I time.

The modified address is also placed into the
~ IBR to make use of the PC-IBR memory conFlict

checking circuitry on Systems OB.OO.22.2(5F}.

Ve,

Turned on because of
no request for 1 or E

time "'"
~~---A76~C~P~S-et-------'

Turn On L Time Trigger
08.00.20.2 (3C)

E(IA)S CP Set
Turn On I Time Tgr

08.00.18.2 (3C)

See the I time flow
chart (Figure 76) for
complete detoi I s of
address gating.

/
16(D2)

AR-MAR
AR+l-MAR

03.08.15.1

Master L Time

L time provides a logic cycle of operation during which
the computer performs functions not related to core
storage.

Control circuitry (Figure 74) is similar in some re­
spects to E time because it can be initiated by an in­
struction in either the program register or IBR depend­
ing on overlap conditions (only IBR shift instructions
can force an L cycle).

The turn-on logic is such that an L cycle occurs if
the instruction does not specifically call for an I or E
cycle. The I or E turn-on is at A5 CP set; if these I or
E controls are not present, the master L time trigger is
turned on one clock pulse later at A6 CP set.

As long as the input PR or IBR controls are active, the
L time trigger is turned on again each cycle. In this
manner, the L time trigger remains on as long as
needed. Use of delay circuitry produces both "L time
early" and "L time late" outputs for circuit controls in
CPU-l and CPU-2.

When the master stop trigger is turned on, the com­
puter remains at whatever cycle time it was proceeding
to when the master stop trigger came on. An inhibit L
trigger is turned on by the master stop trigger (Figure
78) to block both the master L time and II time outputs
(Figure 74).

The inhibit L trigger is also turned on by the HTR

and HPR instructions. L time of these two halt instruc­
tions is blocked until the start key is depressed. At this
time, the inhibit L trigger is turned off and the com­
puter either transfers or proceeds to the next instruc­
tion.

E Time Tgr
CP Set

Conditioning and
Blocking Circuits

Gen Reset
Pre IIA Tgr

Figure 79. II Time Condensed Logic

86

II Time Tgr

08.00.22.2

MST Off
Not I Time Late

6 CP Set

HTR

Figure 78. Inhibit L Trigger Logic

B Interrupt For
L Time

(Blocks L & II
Times)

08.00.21.2

During channel operations, the CPU remains in L
time until the next instruction is begun.

Master II Time

II time (IBR I time) is the instruction cycle for the over­
lapping instruction in the IBR. During this cycle ad­
dress modification and preliminary tests are performed
by the overlapping instruction. When not prohibited,
II time occurs simultaneously with either an E or L
cycle of the preceding instruction.

Figure 79 shows basic condensed logic of the II time
trigger circuitry. Note that II time can be initiated by
instruction controls from either the program register or
IBR. The II time trigger is turned on at 6 time of the
preceding cycle to allow memory addressing. In this
manner, II time performs memory addressing for its
own data reference.

Details of II time together with an II time How chart
are found in Volume 3.

II Time Early

II Time Late

Master B Time

B (buffer) time is the cycle during which one of the
data channels makes reference to core storage. Most
I/O devices move at a fixed rate and therefore request
or transmit data at specific intervals. When data word
requests are not serviced in time, information is lost
and I/O checks result. Because of this timing require­
ment, channel B cycle demands are serviced during the
cycle immediately following the request. If the next
CPU cycle is to be an I, E or II cycle, the output of the
master trigger is blocked. If the next CPU cycle is to be
a normal L cycle, both the Band L cycles occur simul­
taneously.

"B cycle demand" is sent out by the channel early in
the cycle such that the signal arrives at the multiplexor
before channel 9 time. Provided the computer is not
servicing a channel trap or a POD 64 instruction, the
master B time trigger is turned on with the next chan­
nel A9(Dl) pulse (Figure 80).

MST On

AS(Dl)

MST Off
AS CP Set

Ch A9(Dl)
A Not POD 64

Not Trap to Channel
B Cycle Demand

Retain Priority (3G)
Ch A7(Dl)

Figure 80. B Time Condensed Logic

The POD 64 (store channel instruction) restriction pre­
vents a possible alteration in the channel registers
which would cause false error indications while run­
ning CE diagnostic programs. B time requests are
blocked during channel trap operations to prevent de­
stroying the trap address in the buffer address register.

The B time request occurs at channel 7 time. Chan­
nels requesting additional B cycles cause the B time
trigger to be turned on again in time to prevent the
CPU from regaining cycle control. "Retain priority" con­
ditions (TCH or IA) recognized by the multiplexor look­
ahead circuitry bypasses the normal turn-on controls.

The B interrupt trigger (Figure 80) blocks outputs
from the master I, E, and II time triggers either during
B times or when the master stop trigger is on. Note that
the B time trigger is under control of channel clock
pulses whereas the B interrupt trigger is under control
of CPU clock pulses. The B time trigger turning on
causes the B interrupt trigger to turn on at CPU-5 time
which is early enough to block the next cyclic output
from the master I, E, and II triggers.

B Interrupt

(Blocks I, E and II times)

B Time

(B Time Gating)

Timing 87

Because of timing relationships between the channel
and CPU clocks, the B interrupt trigger can be turned
on and off for two cases (Figure 81). Case 1 shows the
channel 9-CPU-I timing relationship where the B time
trigger turns on at channel 9 time and the B interrupt
trigger turns on four clock pulses later at CPU-5 time.
Considering only one channel B cycle request, the B

interrupt trigger only blocks one CPU I, E or II cycle.
Case 2 shows the channel 9-CPU-5 timing relationship

where both the B time and B interrupt triggers turn on
during the same clock pulse. In this later case, however,
the timings are such that the B interrupt trigger re­
mains on for one extra cycle and two CPU cycles are
blocked.

Item

A

B

C

D

A

C

D

B Cycle Demand

B Time Trigger

B Interrupt Trigger

CPU I, E & " times
blocked due to B time

CASE 2

B Cycle Demand

B Time Trigger

B Interrupt Trigger

CPU I, E & " times
blocked due to B time

000
10 11 I 1 2 3 4 5 6 7 8 9 10 11 I 1 2 3 4 5 6 7 8 9 10 11 I 1 2 3 4

2 3 ~567012345 6 7 01234567012 3~5670

3 I ~ 2 I I, I
~~----.I-------I--~I I I

: A-9' I B-7 I i
I I 1 I

I I B-CPU5 : B-CPU~ I I
! I lit I I

I
I
I
I

I I C I Ie I I I -------1 I I
I I I I
I I I I

'I 3 ~I----_I __ 2 :
I~----------r_ __ ----,~--~r I I l~ __________________ _

I I I A-9 I B-7 I
I I r I I I
II I B-CPU5 I s-cPu51

,~ __________ ~" ______ ~ ______ I ______ ~i""-I""""""""-I~~

I I I I I I I C 1 ____ .. C

'~------------~,--------l~------~: --------------~ I

Figure 81. B Time Sequence Chart

88

B Cycle

The main system objectives associated with B cycles
are to:

1. Accept B time requests from the data channel
2. Set BAR to the proper address
3. Select the proper even/odd memory
4. Route data and commands to the proper system

areas
5. Test and perfonn TCH and IA functions
6. Initiate subsequent B cycles where applicable
B cycle requests are initiated by circuitry from with­

in the attached data channels and are based on the im­
mediate channel demands. In most cases, the "B cycle
demand" is honored during the cycle following receipt
into the cpu. Refer to Figure 82.

A "B cycle demand" arriving during the execution of
a channel trap operation or POD 64 (store channel) in­
struction is delayed until after their completion. These
delays are necessary because of conflicts in usage with
the buffer address register, and for diagnostic program­
ming reasons, respectively.

"B cycle demands" are initiated at approximately
channel 3 time and arrive at the cpu circuitry in time
to tum on the B time trigger with a channel A9(Dl)
pulse. The B time interrupt trigger is turned on at
cpu 5 time to block the master I, E, and II time outputs.
This blocking remains in effect until cpu A5 time fol­
lowing the turn off of the B time trigger (Figure 81).

Instruction overlap is suspended during all B cycles.
Only one memory (even/odd) is addressed, and only
one memory select pulse is generated. Therefore, only
one data word is placed on the storage bus.

SDW Cycle

The first function perfonned (Figure 82) is setting
the buffer address register (BAR) to the proper memory
data reference as specified by the channel address
switches (CAS). BAR was reset by a previouschannelAl1
pulse and is now set at BO(D2) time. For a read BDW

cycle, the channel store trigger is turned on to provide
the necessary memory "read-out" and "store" controls.

Selection of the proper memory and BAR gating is
based on BAR(17). The memory select pulse is initiated
at approximately B2 time. For a write BDW cycle, the
data word is available on the storage bus at approxi­
mately B7 time for sampling into the channel's data
register. For a read BDW cycle, the channel has the
data word on the storage bus at the proper time to be
sampled into the memory buffer register (Figure 35).

SCW Cycle

Consider a nonnal BCW cycle with no indirect ad­
dressing or TCH command (Figure 82). Accepting the
"B cycle demand," turning on the B time trigger and
selecting memory are as explained previously. The

channel determines the memory location by routing an
address from its location counter/command counter
into the multiplexor buffer address register.

Note that all BCW cycles have the characteristics of a
write operation where the data word is taken from
memory and sent to the channel.

The data command read from memory is placed on
the storage bus and sampled into the channel's opera­
tion register, word counter and address register. The
channel's location counter (7607) or command counter
(7909) is stepped +1 to indicate the next sequential
command's location.

If the channel is performing a write operation at the
time of the BCW cycle, a BDW cycle is immediately re­
quested. This BDW cycle may not be initiated in time,
however, to prevent the cpu from regaining program
control. This channel must also seek priority with other
channels requesting B cycles on the system.

Indirectly Addressed SCW Cycle

Consider IA commands other than TCH (Figure 82). Ac­
cepting the "B cycle demand," turning on the B time
trigger, and selecting memory are the same as ex­
plained previously. The initial pass through the flow
chart finds the IA address control trigger off.

Position 18 of both the even and odd storage bus are
oR'ed together, MB(18), as a test for indirect addressing.
oR'ing both storage buses is valid because only one of
the buses will contain information.

Ignore for the moment the special case of a proceed
type command with a word count equal zero. The com­
mand word on the storage bus is sampled into the
channel's operation register, word counter, and ad­
dress register. The operation register and word counter
contain valid data; the address register contents will
be replaced with a new value during the next cycle.

Because of SB(18), an IA address control trigger is
turned on which generates and sends a "retain priority"
signal to all channels (Figure 82). In the multiplexor,
"retain priority" produces an immediate "B cycle de­
mand" and prevents the B time trigger from being
reset. In this manner a second B cycle is initiated and
the cpu is prevented from regaining control.

The IA address control trigger being on allows an
IND 18 trigger to be turned on and its "IND 18" Signal
sent out on banks 1 and 2 to all data channels.

The address portion of the initial BCW data word rep­
resents a new memory reference. Because of this, mul­
tiplexor storage bus positions 21-35 are routed directly
into the buffer address register (Figure 35). The data
word resulting from the second BCW cycle is placed on
the storage bus as before. This time, however, the data
channel only accepts the address portion (21-35) into
its address register; the original operation coding and
word count remain unaltered. Following this second

Timing 89

BCW cycle, the channel's location counter/command
counter is stepped + 1.

The IA address control trigger is turned off at chan­
nel A3(D2) time and the IND 18 trigger is turned off at
the following channel AI0(D2). Timing is such that
only one level of indirect addressing is permitted. A bit
in SB(18) of the second BCW word is ignored and the
IND 18 trigger is not turned on again.

A special case of a proceed type command with a
word count equal zero was ignored in the previous dis­
cussion. An IOCP, IORP, or IOSP command with a word
count equal zero must be bypassed. Indirect address­
ing, therefore, performs no logic and is ignored (Figure
82). The command is routed to the channel and set into
the operation register, word counter and address regis­
ter as usual. Channel circuitry recognizes the zero word
count condition and initiates another "B cycle de­
mand." Multiplexor lookahead circuitry does not retain
priority in this case.

TCH Command

Consider a TCH command without indirect addressing.
The TCH acts as a channel transfer instruction to alter
the sequence of I/O commands being executed. The
transfer is accomplished by altering the value in the
channel's location counter (7607) or command counter
(7909). The channel determines the memory location
by routing an address from its location counter/com­
mand counter into the multiplexor's buffer address
register (BAR). Accepting the initial "B cycle demand,"
turning on the B time trigger and selecting memory are
as explained previously.

The TCH command is detected (Figure 82) by testing
the storage bus for not S, not 1, 2. The 7607 data chan­
nel's operation register, word counter and address reg­
ister are set as usual; the 7909 sets only the address
register and a TCH trigger. A TCH address control trig­
ger is turned on in the multiplexor and a second B cycle
is immediately initiated by "retain priority."

The address portion of the TCH command contains
the transfer-to address. This address is immediately set

90

into the buffer address register for the next memory
reference. The address is also set into the channel loca­
tion counter/command counter to indicate the new I/O

command sequence.
The second BCW cycle places the new I/O command

on the storage bus and the operation continues as ex­
plained preViously. This new command (Figure 82)
may be a TCH command, another I/O command, or an
indirectly addressed I/O command.

Indirectly Addressed TCH Command

An IA TCH command operates similar in.most respects
to the normal TCH (Figure 82). During the first BCW

cycle, the storage bus indicates not S, not 1, 2, and 18.
As a result, both the "TCH address control" and "IA ad­
dress control" triggers are turned on. "Retain priority"
circuitry in the multiplexor immediately initiates a sec­
ond BCW cycle and turns on the IND 18 trigger. The new
(IA) memory reference is routed from SB(21-35) and set
into the buffer address register. Note that "IND 18" con­
trol circuitry in the channel prevents setting of the loca­
tion counter/command counter during the first BCW

cycle.
At channel A3 time, the IA address control trigger is

turned off but the reset to the TCH address control trig­
ger is blocked. "Retain priority" is maintained because
of the TCH address control trigger and the multiplexor
immediately requests the third BCW cycle.

During the second BCW cycle, the address portion of
this IA data word contains the actual TCH transfer-to
address. This address is immediately set into the buffer
address register for the third memory reference, and
also set into the channel location counter/command
counter to indicate the new I/O command sequence.
The IND 18 trigger is turned off during the second BCW

cycle which, in turn, allows the address control trigger
to be turned off at channel A3 time.

The third BCW cycle places the new I/O command on
the storage bus and the operation continues as ex­
plained previously.

From Sheet 2

Wait for channel
B cycle demand

Wait unti I com­
pletion of either
the channe I trap
or POD 64 /V'"
operation

From Sheet 2
(Start Next Sequential BCW Cycle)

06.10.01.1(2G,2H)

B11 (Dl)
Turn On

Ind 18 Trigger
06.10.01.l(2C)

On

Reset at Chan A 10 time following
/ turn off of the IA address control

trigger

Data Channel
BAR-

1. Loc Cntr
(7607)

2. Cmmd Cntr
(7909)

~ This gating occurs
/ after BAR has been

set from the SB

B8 -A3 The new address is routed directly
SB -BAR / from multiplexor circuitry into BAR.

06. 10.00. 1 (3C) The All(Dl) BAR reset pulse does
not occur at this time because of
"retain priority" being active.

B2(Dl) Dlyd
Select Memory
03.06.29.4(3B)

To Sheet 2

B2(Dl) Dlyd
Select Memory
03.06.29.4(3F)

Figure 82. B Time Flow Chart (Sheet 1 of 2)

1. Accept B time Requests from channel
2. Set BAR to proper address
3. Select the proper even/odd memory
4. Route data and commands to proper system areas
5. Test and perform TCH and IA functions
6. Initiate subsequent B cycles where applicable

The master B time trigger
~ reset occurs at every

Channel A7(Dl)

The B Time Interrupt trigger is turned ON at
CPU A5(Dl) time to block the Master I, E,
and II time outputs. This blocking remains
until CPU A5 time following the turn OFF
of the B time trigger.

The I A Address Control trigger
--z.-and TCH Address Control trigger

will both be in the OFF status on

~:":"":";:":";':"":"":''':''''';'':-Jfu' 7 "'oo,h >h. fI~ ,hort.

Off

Ch All(Dl)
Reset BAR

03.06.27.1(3H)

ChAll(Dl)
Reset Chan
Store Tgr

01.00.00.1 (3C)

BO(D2) BDW Cycles - CAS set from Channel

BCW

CAS --BAR
06.10.00.1 (2B)

Core Storage

...-z---::: Address Counter.
BCW Cycles - CAS set from Channel

Location Counter
(7607) or Command

Counter (7909).

Even Memory RO
Odd Memory RO
Store prefix

Controls ~ Store Decrement
Store Tag

(2D)
(2E)
(4D)
(2F)
(4E)
(4F) Store Address

01.00.00.1

Timing 91

On

(Data Word Cycle)
BOW

Channel initiates
another request for
B (BOW) Cycle
and retains
priority.

From Sheet 1

Write

The multiplexor retains
priority because the TCH
address control tri gger
was not turned off during
the previous cycle.

To Sheet 1

Figure 82. B Time Flow Chart (Sheet 2 of 2)

92

This trigger will always be OFF on the first
pass through the flow chart.

! The trigger being turned ON prevents a second
IA cycle. (Only one level of indirect addressing
is allowed}.

Off
~Also LlPT command for 7909

,.-_ _'" ~ data channel

No

Data Channel
Set (7607)

1. Opn Reg.
2. Word Cntr

Data Channel

~
3. Addr Cntr 1. Opn Reg

2. Word Cntr
3. Addr Cntr

To Sheet 1
(Start Next Sequential BCW Cycle)

Yes

Yes .¥'I--J~~P Channel Commands

10RP
IOSP

.(Storage Bus
/ (3-17) = 0

Yes

Data Channel
Set

1. Opn Reg
2. Word Cntr
3. Addr Cntr

Step
1. TciCCntr/
2 Cmmd Cntr

No

Data Channel
Set

1. Op,;-Reg
2. Word Cntr
3. Addr Cntr

1.
2

Channel Cycle Times

Three channel cycle time triggers (Figure 83) have
been added in CPU-2 to supply 2.1 microsecond cycle
times for data channel usage. While these three cycle
time triggers are controlling the channel, the CPU waits
in CPU L time until the channel operation is completed.
The end of the channel operation is indicated by the
"MF go" trigger which turns on the end-op trigger and
sends the CPU into its next cycle time.

Channell Time

The channel I time trigger (Figure 83) is not the first
channel cycle trigger to be turned on as might be
thought. Instead, it is the last channel cycle time avail­
able (I time next) and performs mostly housekeeping
functions (I time resets) in the channel.

Channel E Time

The channel E time trigger (Figure 83) provides a 2.1
microsecond cycle for channel operations requiring a
reference to core storage. These operations would in­
clude: enable, store channel, POD 54(RCH/LCH/RSC/STC),

and channel traps.
Circuit controls and timings are such that the chan­

nel EO time is aligned with the CPU 4 time. This align­
ment is necessary for POD 64 and enable instructions.

The channel E time indicates the end of a channel
operation. Because of this, the MF go trigger is turned
on late in the channel E cycle to force an end-op con­
dition and allow the CPU program to continue with the
next instruction.

Channel L Time

The channel L time trigger (Figure 83) provides 2.1
microsecond cycles necessary for channel operations.
These operations include all of the I/O select, sense,
and test instructions. POD 54 instructions (RCH/LCH/

RSC/STC) also require L cycles prior to the time that the
channel may signal a "proceed to E."

Note that the channel L time trigger is turned on at
channel 11 time which may be aligned with either a
CPU 3 or 7 pulse. Synchronism is not performed as with
the preceding channel E time trigger.

Channel-CPU Cycle Time Controls

Two triggers are used to control cycle times. The chan­
nel "L-E end" trigger controls channel cycle times, and
the "MF go" trigger controls the CPU time.

The channel L-E end trigger coming on signals the
end of the channel operation. In some cases, the chan­
nel I time trigger is then turned on to accomplish
housekeeping resets to the channel.

The MF go trigger is normally on. At the start of the
channel operation, the MF go trigger is turned off
which, in turn, turns the "L end-op sync" trigger on
(Figure 83). When the channel operation is completed,
the MY go trigger is turned on again and the output of
tlie "L end-op sync" trigger is gated to produce an "E
or L end-op." This latter signal turns on the end-op
trigger and allows the CPU to continue with the next
instruction.

Timing 93

SOD 02 (Read)

SOD 06 (Write) I (~) '"AO
Not Tape Class AdcIress
Chan End Op
Chan A 1 O(D 1) gj;]IhO" r Hm.
Any I/o Test or Sense ~ ~

, (4C) T

Channel I Time ,
Enable Ch A6(D1) I R(3D)

I (~)
'~

POD 64
08.00.27.1

-
IA Ctrl T gr Off' -: AO
Not A3(D2) (CPU Pulse)

~,

~

Ch All (D1)

Not B Time

Not BCW ~

(4B)
"" ,..---

... ~ AO

POD 54 4.-I-~
Proceed to E

(4D) H

~
~~ AO Chan E Time

Channel Trap L-I-~ ~
L ~ t---<~ Any Select ~ (4E) ,. } To Channel ~ Channel E Time

or Test or
~ A Elf Banks 1 & 2

POD 54 ~ (4F) I-r:; R 3F

J A .-1-

Not (3F) ~
AO 08.00.28.1

POD 54 ---------...
.... ~

Not MST I ~
Time Early

(4F)
= ... ~ AO Chan L Time

POD 54 ~ -T
Not (4G) ~r> Proceed -====. Channel L Time ~

to E J (5~) I ~J (:H) L ~ "'"'R'('3R)
,

~R(3R) I -------.....
Reset Ctrl '--'---'-

CTearTtri 0 08.00.29.1

Interlock (4B) Reset CT
Reset On 04.20.12.1 Tgrs
Load

Any I/o Sense or Test
r---- Chan L-E

A
_:::,~,JOff) Ch A8(D 1) Delayed (4E) l

Chan End-Op
.,.

;:-= ~

T(OR)
Chan A10(D1)

,.
AO

, (4F) ~ ~ ~ >--
~ AO ~1mHr

TLJ ~~ Not Manual Stop
Not Channel Trap 08.00.27.1
13 D1) (41)

L End-Op Sync Tape Class Addr or POD 54 r--- ,.......
A L Time Late T

~ (4S) n ~o(Off~] A

l~ L--~
r=-= (3S) A P"'" 0 '-+ T(OR) ~
~ I--I' (3C) -. ~~ I' A U r---

R A
Ch AO(D1) (4D) ~ AO (On) 0"8:"00.02. 2 ~ E or L
L Time '---- (3D) ~~ End-Op
A4(D1)
POD 54

J'--~
08.00.27.2 I'W POD 64 (4E)

T
~~ ~ AO
~ (3F)

Figure 83. Channel Cycle Time Logic

94

L Time
B Interrupt

I Time

E Time

II Time Late

Not L Time Late
Not E Time Late
A2(Dl)

A1(Dl)

A5(Dl)

Chan A9(Dl)
CP Set

AO

(3H)

Mult Time
Mult Time Error
Lite On CE Panel

, \ I 1;-

.: -:.

08.00.22.2 Turn On MST Tgr
~ln.:..:..te::..:.r~lo=ck::......:R=e=5e-,-t ___ ~ R(2E)

Figure 84. Multiple Time Check Circuitry

Multiple Cycle Time Error Detection

Eight different cycle times and two separate clocks
exist in the 7094 II. Only certain cycles can occur simul­
taneously without causing machine malfunctions. Ille­
gal cycle combinations turn on a multiple time trigger
which immediately stops the computer and lights a
mult time light on the console CE panel.

Test circuitry (Figure 84) monitors the various CPU

cycle times once every cycle. The top group of circuits
checks for the following illegal combinations: I and E;
L and I; Land E; B and I; and Band E.

Note that Band L times are allowed to occur simul­
taneously.

II time is allowed to occur Simultaneously with an E
or L cycle. II time occurring without either an E or L
time is detected at A03H•

Clock alignment is checked at A03I• Every channel
A9(DI) pulse should occur Simultaneously with either
a CPU AI(DI) or A5(DI) pulse. An absence of these
conditions turns on the multiple time trigger.

There is no check on multiple channel cycle times.

08.00.17.1

Waveforms and Variable Delay Adjustments
The oscilloscope being used must contain probes of
the same length. Test the oscilloscope by placing both
probes on the same point and noting if there is any
difference in the time relationship between the A and
B sweeps.

The following adjustments should be made in the
order presented because in some cases a later adjust­
ment is based on the proper earlier setting. It must be
remembered, however, that many of these settings are
nominal (starting point) settings and may vary slightly
with later adjustments or from system to system.

Initial Delay Settings

All variable delays shall be set to the nominal values
specified on Systems 00.92.01.0 (sheets "1 and 2) before
proceeding with the following adjustments. Timings
for F lines should be measured at the 1.5 volt level.

Timing 95

Odd and Even Clock Drive Pulses

Odd and even clock drive pulses should meet all re­
quirements of the waveform shown in Figures 85 and
86 when observed at 03A4C15F (Systems 08.00.44.1,
IF).

CP Set Pulses

CP set pulses should meet all requirements ()f the wave­
form shown in Figure 87 when observed at 01AIC12C
(Systems 02.15.6l.1,4D) and 01BIC20B (Systems
02.15.61.2,5E).

CPU-l CP Set Pulse Width Adjustment

Connect the scope probe to the test points indicated
below and adjust the CP set pulse width by means of
the corresponding V7 delay card. The first two adjust­
ments determine the CP set pulse widths at the A and
B gates, respectively. The last width adjustment is for
setting the FACT triggers during arithmetic operations
and is more critical than most other set pulses.

TEST POINT LEVEL WIDTH DLY LOCATION SYSTEMS

01A1E13E
01B1E24B
01B1F21C

-F 50 ± 3 ns 01A1E14 (A-H) 02.15.61.1,4B
-F 60 ± 3 ns 01B1E25 (B-G) 02.15.61.2,4A
+F 40 ± 3ns 01B1E12 (D-E) 02.15.61.2,2B

CP Set Pulse-Clock Pulse Alignment

In this section the multiplexor CP set pulse is adjusted
with respect to the A7(Dl) CPU-l pulse. This A7(Dl)
pulse is already properly aligned to the CPU-2 pulse be­
cause of the VB delay 01D2E21 (Systems 02.15.42.1,
3H).

1. Synchronize the scope on "-F A6(D2)" at 01Al­
B14B (Systems 02.15.71.1, 4H).

2. Connect scope probe A to "-F A7(Dl)" at 01Bl­
C05E (Systems 02.15.70.8, 41).

3. Connect scope probe B to "+ F CP set" at 01Bl­
E24C (Systems 02.15.61.2, 5A).

4. Adjust the variable delay control at 03B3D03
(Systems 08.00.47.1, 4C) so that the fall of the set pulse
occurs 10 nanoseconds before the fall of the "-F
A7(Dl)" pulse. This 10 nanosecond timing is measured
at the point where both pulses cross the F reference
level (Figure 88).

The optimum multiplexor delay line operation point
is determined by running 9M8l. The setting is the mid­
point of the error free operating range of 9M81 running
at normal voltage as the delay line is varied. After de­
termining the optimum operating point and without
disturbing the delay line adjustment, remove and re­
install the delay line knob at 03B3D03 to read zero.

96

Ref -6v

t1 = t2 within 7ns

Figure 85. Clock Drive Pulse

Figure 86. Even and Odd Clock Drive Pulses

1 .5v Ref

t1 = t2 within4ns

Figure 87. CP Set Pulse

Figure 88. CP Set Pulse--Clock Pulse Alignment

CPU and Channel Memory Select Alignment

Memory selection occurs with different clock pulses
(and from different clocks) when initiated during either
CPU or channel operations. These two memory selects
must be aligned to insure proper operation when mem­
ory is being alternately used by both the CPU and
channel.

1. Synchronize the scope on "+F A6(Dl)" at 01Al­
B05G (Systems 02.15.70.7, 41).

2. Connect scope probe A to "+ F A2(Dl)" at 01A4-
J24E (Systems 03.06.29.4, 3B).

3. Connect scope probe B to "+F A7(Dl)" at 01A4-
J24G (Systems 03.06.29.4, 3A).

4. Adjust the V7 delay card at 03A4J17 (A-H) (Sys­
tems 08.00.40.1, IG) so that the rise of the channel
A2(Dl) dlyd pulse crosses the reference line at the
same time as the A7(Dl)S pulse, ±3 nanoseconds as
shown in Figure 89.

Memory Select and MAR Bus Alignment

This section checks that the MAR bus pulses precede
the MAR set pulse by at least 20 nanoseconds. This
check is made at both the even and odd memories. Fig­
ure 90 shows a representative pulse. Note that all of the
test points are at the 7302-3 panels.

1. Execute either a TRA (+0020) 77776, 0 or TRA

77777, 0 as indicated below in continuous enter in­
struction.

2. Synchronize the scope on "-FE time" at
01A2E12P (Systems 08.00.19.3, 3A). This test point is
in the CPU.

3. Connect scope probe A to the MAR set point indi­
cated below.

4. Connect scope probe B to the MAR bus points in­
dica ted below.

5. All of the MAR bus lines should precede their re­
spective MAR set pulses by at least 20 nanoseconds.

Figure 89. Memory Select Pulse Alignment

Figure 90. Memory Select-MAR Bus Alignment

CONDITIONS
Instruction
MAR set
MAR4
MAR 8
MAR 12
MAR 16

EVEN MEMORY
TRA 77776,0

ODD MEMORY
TRA 77777,0

01B3C16D (01.11.01.1 -3B) Probe A
01B3C16E (01.11.01.1 -3B) Probe B
01B3C18E (01.11.01.1 -3F) Probe B
01B3C20V (01.11.02.1 -3C) Probe B
01B3C22V (01.11.02.1 -3G) Probe B

01C3C16D (01.41.01.1 -3B) Probe A
01C3C16E (01.41.01.1 -3B) Probe B
01C3C18E (01.41.01.1 -3F) Probe B
01C3C20V (01.41.02.1 -3C) Probe B
01C3C22V (01.41.02.1 -3G) Probe B

Timing 97

Appendix A: Octal-Decimal Integer Conversion Table

0000
to

0777
(Octal)

0000
to

0511
(Decimal)

Octal Decimal
10000- 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480·
60000 - 24576
70000 - 28672

1000
to

1777
(Octal)

98

0512
to

1023
(Decimal)

0000
0010
0020
0030
0040
0050
0060
0070

0100
0110
0120
0130
0140
0150
0160
0170

0200
0210
0220
0230
0240
0250
0260
0270

0300
0310
0320
0330
0340
0350
0360
0370

1000
1010
1020
1030
1040
1050
1060
1070

1100
1110
1120
1130
1140
1150
1160
1170

1200
1210
1220
1230
1240
1250
1260
1270

1300
1310
1320
1330
1340
1350
1360
1370

0 1 2

0000 0001 0002
0008 0009 0010
0016 0017 0018
0024 0025 0026
0032 0033 0034
0040 0041 0042
0048 0049 0050
0056 0057 0058

0064 0065 0066
0072 0073 0074
0080 0081 0082
0088 0089 0090
0096 00~7 0098
0104 0105 0106
0112 0113 0114
0120 0121 0122

0128 0129 0130
0136 0137 0138
0144 0145 0146
0152 0153 0154
0160 0161 0162
0168 0169 0170
0176 0177 0178
0184 0185 0186

0192 0193 0194
0200 0201 0202
0208 0209 0210
0216 0217 0218
0224 0225 0226
0232 0233 0234
0240 0241 0242
0248 0249 0250

0 1 2

0512 0513 0514
0520 0521 0522
0528 0529 0530
0536 0537 0538
0544 0545 0546
0552 05.53 0554
0560 0561 0562
0568 0569 0570

0576 0577 0578
0584 0585 0586
0592 0593 0594
0600 0601 0602
0608 0609 0610
0616 0617 0618
0624 0625 0626
0632 0633 0634

0640 0641 0642
0648 0649 0650
0656 0657 0658
0664 0665 0666
0672 0673 0674
0680 0681 0682
0688 0689 0690
0696 0697 0698

0704 0705 0706
0712 0713 0714
0720 0721 0722
0728 0729 0730
0736 0737 0738
0744 0745 0746
0752 0753 0754
0760 0761 0762

3 4 5 6 7

0003 0004 0005 0006 0007
0011 0012 0013 0014 0015
0019 0020 0021 0022 0023
0027 0028 0029 0030 0031
0035 0036 0037 0038 0039
0043 0044 0045 0046 0047
0051 0052 0053 0054 0055
0059 0060 0061 0062 0063

0067 0068 0069 0070 0071
0075 0076 0077 0078 0079
0083 0084 0085 0086 0087
0091 0092 0093 0094 0095
0099 0100 0101 0102 0103
0107 0108 0109 0110 0111
0115 0116 0117 0118 0119
0123 0124 0125 0126 0127

0131 0132 0133 0134 0135
0139 0140 0141 0142 0143
0147 0148 0149 0150 0151
0155 0156 0157 0158 0159
0163 0164 0165 0166 0167
0171 0172 0173 0174 0175
0179 0180 0181 0182 0183
0187 0188 0189 0190 0191

0195 0196 0197 0198 0199
0203 0204 0205 0206 0207
0211 0212 0213 0214 0215
0219 0220 0221 0222 0223
0227 0228 0229 0230 0231
0235 0236 0237 0238 0239
0243 0244 0245 0246 0247
0251 0252 0253 0254 0255

3 4 5 6 7

0515 0516 0517 0518 0519
0523 0524 0525 0526 0527
0531 0532 0533 0534 0535
0539 0540 0541 0542 0543
0547 0548 0549 0550 0551
0555 0556 0557 0558 0559
0563 0564 0565 0566 0567
0571 0572 0573 0574 0575

0579 0580 0581 0582 0583
0587 0588 0589 0590 0591
0595 0596 0597 0598 0599
0603 0604 0605 0606 0607
0611 0612 0613 0614 0615
0619 0620 0621 0622 0623
0627 0628 0629 0630 0631
0635 0636 0637 0638 0639

0643 0644 0645 0646 0647
0651 0652 0653 0654 0655
0659 0660 0661 0662 0663
0667 0668 0669 0670 0671
0675 0676 0677 0678 0679
0683 0684 0685 0686 0687
0691 0692 0693 0694 0695
0699 0700 0701 0702 0703

0707 0708 0709 0710 0711
0715 0716 0717 0718 0719
0723 0724 0725 0726 0727
0731 0732 0733 0734 0735
0739 0740 0741 0742 0743
0747 0748 0749 0750 0751
0755 0756 0757 0758 0759
0763 0764 0765 0766 0767

0 1 2 3 4 5 6 7

0400 0256 0257 0258 0259 0260 0261 0262 0263
0410 0264 0265 0266 0267 0268 0269 0270 0271
0420 0272 0273 0274 0275 0276 0277 0278 0279
0430 0280 0281 0282 0283 0284 0285 0286 0287
0440 0288 0289 0290 0291 0292 0293 0294 0295
0450 0296 0297 0298 0299 0300 0301 0302 0303
0460 0304 0305 0306 0307 0308 0309 0310 0311
0470 0312 0313 0314 0315 0316 0317 0318 0319

0500 0320 0321 0322 0323 0324 0325 0326 0327
0510 0328 0329 0330 0331 0332 0333 0334 0335
0520 0336 0337 0338 0339 0340 0341 0342 0343
0530 0344 0345 0346 0347 0348 0349 0350 0351
0540 0352 0353 0354 0355 0356 0357 0358 0359
0550 0360 0361 0362 0363 0364 0365 0366 0367
0560 0368 0369 0370 0371 0372 0373 0374 0375
0570 0376 0377 0378 0379 0380 0381 0382 0383

0600 0384 0385 0386 0387 0388 0389 0390 0391
0610 0392 0393 0394 0395 0396 0397 0398 0399
0620 0400 0401 0402 0403 0404 0405 0406 0407
0630 0408 0409 0410 0411 0412 0413 0414 0415
0640 0416 0417 0418 0419 0420 0421 0422 0423
0650 0424 0425 0426 0427 0428 0429 0430 0431
0660 0432 0433 0434 0435 0436 0437 0438 0439
0670 0440 0441 0442 0443 0444 0445 0446 0447

0700 0448 0449 0450 0451 0452 0453 0454 0455
0710 0456 0457 0458 0459 0460 0461 0462 0463
0720 0464 0465 0466 0467 0468 0469 0470 0471
0730 0472 0473 0474 0475 0476 0477 0478 0479
0740 0480 0481 0482 0483 0484 0485 0486 0487
0750 0488 0489 0490 0491 0492 0493 0494 0495
0760 0496 0497 0498 0499 0500 0501 0502 0503
0770 0504 0505 0506 0507 0508 0509 0510 0511

0 1 2 3 4 5 6 7

1400 0768 0769 0770 0771 077~ 0773 0774 0775
1410 0776 0777 0778 0779 0780 0781 0782 0783
1420 0784 0785 0786 0787 0788 0789 0790 0791
1430 0792 0793 0794 0795 0796 0797 0798 0799
1440 0800 0801 0802 0803 0804 0805 0806 0807
1450 0808 0809 0810 0811 0812 0813 0814 0815
1460 0816 0817 0818 0819 0820 0821 0822 0823
1470 0824 0825 0826 0827 0828 0829 0830 0831

1500 0832 0833 0834 0835 0836 0837 0838 0839
1510 0840 0841 0842 0843 0844 0845 0846 0847
1520 0848 0849 0850 0851 0852 0853 0854 0855
1530 0856 0857 0858 0859 0860 0861 0862 0863
1540 0864 0865 0866 0867 0868 0869 0870 0871
1550 0872 0873 0874 0875 0876 0877 0878 0879
1560 0880 0881 0882 0883 0884 0885 0886 0887
1570 0888 0889 0890 0891 0892 0893 0894 0895

1600 0896 0897 0898 0899 0900 0901 0902 0903
1610 0904 0905 0906 0907 0908 0909 0910 0911
1620 0912 0913 0914 0915 0916 0917 0918 0919
1630 0920 0921 0922 0923 0924 0925 0926 0927
1640 0928 0929 0930 0931 0932 0933 0934 0935
1650 0936 0937 0938 0939 0940 0941 0942 0943
1660 0944 0945 0946 0947 0948 0949 0950 0951
1670 0952 0953 0954 0955 0956 0957 0958 0959

1700 0960 0961 0962 0963 0964 0965 0966 0967
1710 0968 0969 0970 0971 0972 0973 0974 0975
1720 0976 0977 0978 0979 0980 0981 0982 0983
1730 0984 0985 0986 0987 0988 0989 0990 0991
1740 0992 0993 0994 0995 0996 0997 0998 0999
1750 1000 1001 1002 1003 1004 1005 1006 1007
1760 1008 1009 1010 1011 1012 1013 1014 1015
1770 1016 1017 1018 1019 1020 1021 1022 1023

Octal-Decimal Integer Conversion Table (Continued)

0 1 2 3 4 5 6 7 I

2000 1024 1025 1026 1027 1028 1029 1030 1031 2400
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410
2020 1040 1041 1042 1043 1044 1045 1046 1047 2420
2030 1048 1049 1050 1051 1052 1053 1054 1055 2430
2040 1056 1057 1058 1059 1060 1061 1062 1063 2440
2050 1064 1065 1066 1067 1068 1069 1070 1071 2450
2060 1072 1073 1074 1075 1076 1077 1078 1079 2460
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470

2100 1088 1089 1090 1091 1092 1093 1094 1095 2500
2110 1096 1097 1098 1099 1100 1101 1102 1103 2510
2120 1104 1105 1106 1107 1108 1109 1110 1111 2520
2130 1112 1113 1114 1115 1116 1117 1118 1119 2530
2140 1120 1121 1122 1123 1124 1125 1126 1127 2540
2150 1128 1129 1130 1131 1132 1133 1134 1135 2550
2160 1136 1137 1138 1139 1140 1141 1142 1143 2560
2170 1144 1145 1146 1147 1148 1149 1150 li51 2570

2200 1152 1153 1154 1155 1156 1157 1158 1159 2600
2210 1160 1161 1162 1163 1164 1165 1166 1167 2610
2220 1168 1169 1170 1171 1172 1173 1174 1175 2620
2230 1176 1177 1178 1179 1180 1181 1182 1183 2630
2240 1184 1185 1186 1187 1188 1189 1190 1191 2640
2250 1192 1193 1194 1195 1196 1197 1198 1199 2650
2260 1200 1201 1202 1203 1204 1205 1206 1207 2660
2270 1208 1209 1210 1211 1212 1213 1214 1215 2670

2300 1216 1217 1218 1219 1220 1221 1222 1223 2700
2310 1224 1225 1226 1227 1228 1229 1230 1231 2710
2320 1232 1233 1234 1235 1236 1237 1238 1239 2720
2330 1240 1241 1242 1243 1244 1245 1246 1247 2730
2340 1248 1249 1250 1251 1252 1253 1254 1255 2740
2350 1256 1257 1258 1259 1260 1261 1262 1263 2750
2360 1264 1265 1266 1'267 1268 1269 1270 1271 2760
2370 1272 1273 1274 1275 1276 1277 1278 1279 2770

0 1 2 3 4 5 6 7

3000 1536 1537 1538 1539 1540 1541 1542 1543 3400
3010 1544 1545 1546 1547 1548 1549 1550 1551 3410
3020 1552 1553 1554 1555 1556 1557 1558 1559 3420
3030 1560 1561 1562 1563 1564 1565 1566 1567 3430
3040 1568 1569 1570 1571 1572 1573 1574 1575 3440
3050 1576 1577 1578 1579 1580 1581 1582 1583 3450
3060 1584 1585 1586 1587 1588 1589 1590 1591 3460
3070 1592 1593 1594 1595 1596 1597 1598 1599 3470

3100 1600 1601 1602 1603 1604 1605 1606 1607 3500
3110 1608 1609 1610 1611 1612 1613 1614 1615 3510
3120 1616 1617 1618 1619 1620 1621 1622 1623 3520
3130 1624 1625 1626 1627 1628 1629 1630 1631 3530
3140 1632 1633 1634 1635 1636 1637 1638 1639 3540
3150 1640 1641 1642 1643 1644 1645 1646 1647 3550
3160 1648 1649 1650 1651 1652 1653 1654 1655 3560
3170 1656 1657 1658 1659 1660 1661 1662 1663 3570

3200 1664 1665 1666 1667 1668 1669 1670 1671 3600
3210 1672 1673 1674 1675 1676 1677 1678 1679 3610
3220 1680 1681 1682 1683 1684 1685 1686 1687 3620
3230 1688 1689 1690 1691 1692 1693 1694 1695 3630
3240 1696 1697 1698 1699 1700 1701 1702 1703 3640
3250 1704 1705 1706 1707 1708 1709 1710 1711 3650
3260 1712 1713 1714 1715 1716 1717 1718 1719 3660
3270 1720 1721 1722 1723 1724 1725 1726 1727 3670

3300 1728 1729 1730 1731 1732 1733 1734 1735 3700
3310 1736 1737 1738 1739 1740 1741 1742 1743 3710
3320 1744 1745 1746 1747 1748 1749 1750 1751 3720
3330 1752 1753 1754 1755 1756 1757 1758 1759 3730
3340 1760 1761 1762 1763 1764 1765 1766 1767 3740
3350 1768 1769 1770 1771 1772 1773 1774 1775 3750
3360 1776 1777 1778 1779 1780 1781 1782 1783 3760
3370 1784 1785 1786 1787 1788 1789 1790 1791 3770

0 1 2 3

1280 1281 1282 1283
1288 1289 1290 1291
1296 1297 1298 1299
1304 1305 1306 1307
1312 1313 1314 1315
1320 1321 1322 1323
1328 1329 1330 1331
1336 1337 1338 1339

1344 1345 1346 1347
1352 1353 1354 1355
1360 1361 1362 1363
1368 1369 1370 1371
1376 1377 1378 1379
1384 1385 1386 1387
1392 1393 1394 1395
1400 1401 1402 1403

1408 1409 1410 1411
1416 1417 1418 1419
1424 1425 1426 1427
1432 1433 1434 1435
1440 1441 1442 1443
1448 1449 1450 1451
1456 1457 1458 1459
1464 1465 1466 1467

1472 1473 1474 1475
1480 1481 1482 1483
1488 1489 1490 1491
1496 1497 1498 1499
1504 1505 1506 1507
1512 1513 1514 1515
1520 1521 1522 1523
1528 1529 1530 1531

0 1 2 3

1792 1793 1794 1795
1800 1801 1802 1803
1808 1809 1810 1811
1816 1817 1818 1819
1824 1825 1826 1827
1832 1833 1834 1835
1840 1841 1842 1843
1848 1849 1850 1851

1856 1857 1858 1859
1864 1865 1866 1867
1872 1873 1874 1875
1880 1881 1882 1883
1888 1889 1890 1891
1896 1897 1898 1899
1904 1905 1906 1907
1912 1913 1914 1915

1920 1921 1922 1923
1928 1929 1930 1931
1936 1937 1938 1939
1944 1945 1946 1947
1952 1953 1954 1955
1960 1961 1962 1963
1968 1969 1970 1971
1976 1977 1978 1979

1984 1985 1986 1987
1992 1993 1994 1995
2000 2001 2002 2003
2008 2009 2010 2011
2016 2017 2018 2019
2024 2025 2026 2027
2032 2033 2034 2035
2040 2041 2042 2043

4 5

1284 1285
1292 1293
1300 1301
1308 1309
1316 1317
1324 1325
1332 1333
1340 1341

1348 1349
1356 1357
1364 1365
1372 1373
1380 1381
1388 1389
1396 1397
1404 1405

1412 1413
1420 1421
1428 1429
1436 1437
1444 1445
1452 1453
1460 1461
1468 1469

1476 1477
1484 1485
1492 1493
1500 1501
1508 1509
1516 1517
1524 1525
1532 1533

4 5

1796 1797
1"804 1805
1812 1813
1820 1821
1828 1829
1836 1837
1844 1845
1852 1853

1860 1861
1868 1869
1876 1877
1884 1885
1892 1893
1900 1901
1908 1909
1916 1917

1924 1925
1932 1933
1940 1941
1948 1949
1956 1957
1964 1965
1972 1973
1980 1981

1988 1989
1996 1997
2004 2005
2012 2013
2020 2021
2028 2029
2036 2037
2044 2045

6

1286
1294
1302
1310
1318
1326
1334
1342

1350
1358·
1366
1374
1382
1390
1398
1406

1414
1422
1430
1438
1446
1454
1462
1470

1478
1486
1494
1502
1510
1518
1526
1534

6

1798
1806
1814
1822
1830
1838
1846
1854

1862
1870
1878
1886
1894
1902
1910
1918

1926
1934
1942
1950
1958
1966
1974
1982

1990
1998
2006
2014
2022
2030
2038
2046

7

1287
1295
1303
1311
1319
1327
1335
1343

1351
1359
1367
1375
1383
1391
1399
1407

1415
1423
1431
1439
1447
1455
1463
1471

1479
1487
1495
1503
1511
1519
1527
1535

7

1799
1807
1815
1823
1831
1839
1847
1855

1863
1871
1879
1887
1895
1903
1911
1919

1927
1935
1943
1951
1959
1967
1975
1983

1991
1999
2007
2015
2023
2031
2039
2047

2000 1024
to to

2777 1535
(Octal) (Decimal)

Octal Decimal
10000 - .4096
20000 - 8192
30000 - 12288
.40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000
to

3777
(Octal)

1536
to

2047
(Decimal)

Octal-Decimal Integer Conversion 99

Octal-Decimal Integer Conversion Table (Continued)

.(000
to

,(777
(Odal)

20.(8
to

2559
(Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

5000
to

5777
(Odal)

100

2560
to

3071
(Decimal)

4000
4010
4020
4030
4040
4050
4060
4070

4100
4110
4120
4130
4140
4150
4160
4170

4200
4210
4220
4230
4240
4250
4260
4270

4300
4310
4320
4330
4340
4350
4360
4370

5000
5010
5020
5030
5040
5050
5060
5070

5100
5110
5120
5130
5140
5150
5160
5170

5200
5210
5220
5230
5240
5250
5260
5270

5300
5310
5320
5330
5340
5350
5360
5370

0 1 2

2048 2049 2050
2056 2057 2058
2064 2065 2066
2072 2073 2074
2080 2081 2082
2088 2089 2090
2096 2097 2098
2104 2105 2106

2112 2113 2114
2120 2121 2122
2128 2129 2130
2136 2137 2138
2144 2145 2146
2152 2153 2154
2160 2161 2162
2168 2169 2170

2176 2177 2178
2184 2185 2186
2192 2193 2194
2200 2201 2202
2208 2209 2210
2216 2217 2218
2224 2225 2226
2232 2233 2234

2240 2241 2242
2248 2249 2250
2256 2257 2258
2264 2265 2266
2272 2273 2274
2280 2281 2282
2288 2289 2290
2296 2297 2298

0 1 2

2560 2561 2562
2568 2569 2570
2576 2577 2578
2584 2585 2586
2592 2593 2594
2600 2601 2602
2608 2609 2610
2616 2617 2618

2624 2625 2626
2632 2633 2634
2640 2641 2642
2648 2649 2650
2656 2657 2658
2664 2665 2666
2672 2673 2674
2680 2681 2682

2688 2689 2690
2696 2697 2698
2704 2705 2706
2712 2713 2714
2720 2721 2722
2728 2729 2730
2736 2737 2738
2744 2745 27'6

2752 2753 2754
2760 2761 2762
2768 2769 2770
2776 2777 2778
2':84 2785 2786
2792 2793 2794
2800 2801 2802
2808 2809 2810

3 4 5 6 7

2051 2052 2053 2054 2055
2059 2060 2061 2062 2063
2067 2068 2069 2070 2071
2075 2076 2077 2078 2079
2083 2084 2085 2086 2087
2091 2092 2093 2094 2095
2099 2100 2101 2102 2103
2107 2108 2109 2110 2111

2115 2116 2117 2118 2119
2123 2124 2125 2126 2127
2131 2132 2133 2134 2135
2139 2140 2141 2142 2143
2147 2148 2149 2150 2151
2155 2156 2157 2158 2159
2163 2164 2165 2166 2167
2171 2172 2173 2174 2175

2179 2180 2181 2182 2183
2187 2188 2189 2190 2191
219.5 2196 2197 2198 2199
2203 2204 2205 2206 2207
2211 2212 2213 2214 2215
2219 2220 2221 2222 2223
2227 2228 2229 2230 2231
2235 2236 2237 2238 2239

2243 2244 2245 2246 2247
2251 2252 2253 2254 2255
2259 2260 2261 2262 2263
2267 2268 2269 2270 2271
2275 2276 2277 2278 2279
2283 2284 2285 2286 2287
2291 2292 2293 2294 2295
2299 2300 2301 2302 2303

3 4 5 6 7

2563 2564 2565 2566 2567
2571 2572 2573 2574 2575
2579 2580 2581 2582 2583
2587 2588 2589 2590 2591
2595 2596 2597 2598 2599
2603 2604 2605 2606 2607
2611 2612 2613 2614 2615
2619 2620 2621 2622 2623

2627 2628 2629 2630 2631
2635 2636 2637 2638 2639
2643 2644 2645 2646 2647
2651 2652 2653 2654 2655
2659 2660 26tH 2662 2663
2667 2668 2669 2670 2671
2675 2676 2677 2678 2679
2683 2684 2685 2686 2687

2691 2692 2693 2694 2695
2699 2700 2701 2702 2703
2707 2708 2709 2710 2711
2715 2716 2717 2718 2719
2723 2724 2725 2726 2727
2731 2732 2733 2734 2735
2739 2740 2741 2742 2743
2747 2748 2749 2750 2751

2755 2756 2757 2758 2759
2763 2764 2765 2766 2767
2771 2772 2773 2774 2775
2779 2780 2781 2782 2783
2787 2788 2789 2790 2791
2795 2796 2797 2798 2799
2803 2804 2805 2806 2807
2811 2812 2813 2814 2815

0 1 2 3 4 5 6 7

4400 2304 2305 2306 2307 2308 2309 2310 2311
4410 2312 2313 2314 2315 2316 2317 2318 2319
4420 2320 2~21 2322 2323 2324 2325 2326 2327
4430 2328 2329 2330 2331 2332 2333 2334 2335
4440 2336 2337 2338 2339 2340 2341 2342 2343
4450 2344 2345 2346 2347 2348 2349 2350 2351
4460 2352 2353 2354 2355 2356 2357 2358 2359
4470 2360 2361 2362 2363 2364 2365 2366 2367

4500 2368 2369 2370 2371 2372 2373 2374 2375
4510 2376 2377 2378 2379 2380 2381 2382 2383
4520 2384 2385 2386 2387 2388 2389 2390 2391
4530 2392 2393 2394 2395 2396 2397 2398 2399
4540 2400 2401 2402 2403 2404 2405 2406 2407
4550 2408 2409 2410 2411 2412 2413 2414 2415
4560 2416 2417 2418 2419 2420 2421 2422 2423
4570 2424 2425 2426 2427 2428 2429 2430 2431

4600 2432 2433 2434 2435 2436 2437 2438 2439
4610 2440 2441 2442 2443 2444 2445 2446 2447
4620 2448 2449 2450 2451 2452 2453 2454 2455
4630 2456 2457 2458 2459 2460 2461 2462 2463
4640 2464 2465 2466 2467 2468 2469 2470 2471
4650 2472 2473 2474 2475 2476 2477 2478 2479
4660 2480 2481 2482 2483 2484 2485 2486 2487
4670 2488 2489 2490 2491 2492 2493 2494 2495

4700 2496 2497 2498 2499 2500 2501 2502 2503
4710 2504 2505 2506 2507 2508 2509 2510 2511
4720 2512 2513 2514 2515 2516 2517 2518 2519
4730 2520 2521 2522 2523 2524 .2525 2526 2527
4740 2528 2529 2530 2531 2532 2533 2534 2535
4750 2536 2537 2538 2539 2540 2541 2542 2543
4760 2544 2545 2546 2547 2548 2549 2550 2551
4770 2552 2553 2554 2555 2556 2557 2558 2559 -_.

0 1 2 3 4 5 6 7

5400 2816 2817 2818 2819 2820 2821 2822 2823
5410 2824 2825 2826 2827 2828 2829 2830 2831
5420 2832 2833 2834 2835 2836 2837 2838 2839
5430 2840 2841 2842 2843 2844 2845 2846 2847
5440 2848 2849 2850 2851 2852 2853 2854 2855
5450 2856 2857 2858 2859 2860 2861 2862 2863
5460 2864 2865 2866 2867 2868 2869 2870 2871
5470 2872 2873 2874 2875 2876 2877 2878 2879

5500 2880 2881 2882 2883 2884 2885 2886 2887
5510 2888 2889 2890 2891 2892 2893 2894 2895
5520 2896 2897 2898 2899 2900 2901 2902 2903
5530 2904 2905 2906 2907 2908 2909 2910 2911
5540 2912 2913 2914 2915 2916 2917 2918 2919
5550 2920 2921 2922 2923 2924 2925 2926 2927
5560 2928 2929 2930 2931 2932 2933 2934 2935
5570 2936 2937 2938 2939 2940 2941 2942 2943

5600 2944 2945 2946 2947 2948 2949 2950 2951
5610 2952 2953 2954 2955 2956 2957 2958 2959
5620 2960 296.1 2962 2963 2964 2965 2966 2967
5630 2968 2969 2970 2971 2972 2973 2974 2975
5640 2976 2977 2978 2979 2980 2981 2982 2983
5650 2984 2985 2986 2987 2988 2989 2990 2991
5660 2992 2993 2994 2995 2996 2997 2998 2999
5670 3000 3001 3002 3003 3004 3005 3006 3007

5700 3008 3009 3010 3011 3012 3013 3014 3015
5710 3016 3017 3018 3019 3020 3021 3022 3023
5720 3024 3025 3026 3027 3028 3029 3030 3031
5730 3032 3033 3034 3035 3036 3037 3038 3039
5740 3040 3041 3042 3043 3044 3045 3046 3047
5750 3048 3049 3050 3051 3052 3053 3054 3055
5760 3056 3057 3058 3059 3060 3061 3062 3063
5770 3064 3065 3066 3067 '3068 3069 3070 3071

Octal-Decimal Integer Conversion Table (Continued)

0 1 2 3 4 5 6 7

6000 3072 3073 3074 3075 3076 3077 3078 3079 6400
6010 3080 3081 3082 3083 3084 3085 3086 3087 6410
6020 3088 3089 3090 3091 3092 3093 3094 3095 6420
6030 3096 3097 3098 3099 3100 3101 3102 3103 6430
6040 3104 3105 3106 3107 3108 3109 3110 3111 6440
6050 3112 3113 3114 3115 3116 3117 3118 3119 6450
6060 3j20 3121 3122 3123 3124 3125 3126 3127 6460
6070 3128 3129 3130 3131 3132 3133 3134 3135 6470

6100 3136 3137 3138 3139 3140 3141 3142 3143 6500
6110 3144 3145 3146 3147 3148 3149 3150 3151 6510
6120 3152 3153 3154 3155 3156 3157 3158 3159 6520
6130 3160 3161 3162 3163 3164 3165 3166 3167 6530
6140 3168 3169 3170 3171 3172 3173 3174 3175 6540
6150 3176 3177 3178 3179 3180 3181 3182 3183 6550
6160 3184 3185 3186 3187 3188 3189 3190 3191 6560
6170 3192 3193 3194 3195 3196 3197 3198 3199 6570

6200 3200 3201 3202 3203 3204 3205 3206 3207 6600
6210 3208 3209 3210 3211 3212 3213 3214 3215 6610
6220 3216 3217 3218 3219 3220 3221 3222 3223 6620
6230 3224 3225 3226 3227 3228 3229 3230 3231 6630
6240 3232 3233 3234 3235 3236 3237 3238 3239 6640
6250 3240 3241 3242 3243 3244 3245 3246 3247 6650
6260 3248 3249 3250 3251 3252 3253 3254 3255 6660
6270 3256 3257 3258 3259 3260 3261 326~ 3263 6670

6300 3264 3265 3266 3267 3268 3269 3270 3271 6700
6310 3272 3273 3274 3275 3276 3277 3278 3279 6710
6320 3280 3281 3282 3283 3284 3285 3286 3287 6720
6330 3288 3289 3290 3291 3292 3293 3294 3295 6730
6340 3296 3297 3298 3299 3300 3301 3302 3303 6740
6350 3304 3305 3306 3307 3308 3309 3310 3311 6750
6360 3312 3313 3314 3315 3316 3317 3318 3319 6760
6370 3320 3321 3322 3323 3324 3325 3326 3327 6770

0 1 2 3 4 5 6 7

7000 3584 3585 3586 3587 3588 3589 3590 3591
1.010 3592 3593 3594 3595 3596 3597 3598 3599
7'020 3600 3601 3602 3603 3604 3605 3606 3607
7030 3608 3609 3610 3611 3612 3613 3614 3615
7040 3616 3617 3618 3619 3620 3621 3622 3623
7050 3624 3625 3626 3627 3628 3629 3630 3631
7060 3632 3633 3634 3635 3636 3637 3638 3639
7070 3640 3641 3642 3643 3644 3645 3646 3647

7400
7410
7420
7430
7440
7450
7460
7470

7100 3648 3649 3650 3651 3652 3653 3654 3655 7500
7110 3656 3657 3658 3659 3660 3661 3662 3663 7510
7120 3664 3665 3666 3667 3668 3669 3670 3671 7520
7130 3672 3673 3674 3675 3676 3677 3678 3679
7140 3680 3681 3682 3683 3684 3685 3686 3687

7530
7540

7150 3688 3689 3690 3691 3692 3693 3694 3695 7550
7160 3696 3697 3698 3699 3700 3701 3702 3703 7560
7170 3704 3705 3706 3707 3708 3709 3710 3711 7570

7200 3712 3713 3714 3715 3716 3717 3718 3719 7600
7210 3720 3721 3722 3723 3724 3725 3726 3727 7610
7220 3728 3729 3730 3731 3732 3733 3734 3735 7620
7230 3736 3737 3738 3739 3740 3741 3742 3743 7630
7240 3744 3745 3746 3747 3748 3749 3750 3751 7640
7250 3752 3753 3754 3755 3756 3757 3758 3759 7650
7260 3760 3761 3762 3763 3764 3765 3766 3767 7660
7270 3768 3769 3770 3771 3772 3773 3774 3775 7670

7300 3776 3777 3778 3779 3780 3781 3782 3783 7700
7310 3784 37-85 3786 3787 3788 3789 3790 3791 7710
7320 3792 3793 3794 3795 3796 3797 3798 3799 7720
7330 3800 3801 3802 3803 3804 3805 3806 3807 7730
7340 38{)8 3809 3810 3811 3812 3813 3814 3815 7740
7350 3816 3817 3818 3819 3820 3821 3822 3823 7750
7360 3824 3825 3826 3827 3828 3829 3830 3831 7760
7370 3832 3833 3834 3835 3836 3837 3838 3839 7770

0 1 2 3

3328 3329 3330 3331
3336 3337 3338 3339
3344 3345 3346 3347
3352 3353 3354 3355
3360 3361 3362 3363
3368 3369 3370 3371
3376 3377 3378 3379
3384 3385 3386 3387

3392 3393 3394 3395
3400 3401 3402 3403
3408 3409 3410 3411
3416 3417 3418 3419
3424 3425 3426 3427
3432 3433 3434 3435
3440 3441 3442 3443
3448 3449 3450 3451

3456 3457 3458 3459
3464 3465 3466 3467
3472 3473 3474 3475
3480 3481 3482 3483
3488 3489 3490 3491
3496 3497 3498 3499
3504 3505 3506 3507
3512 3513 3514 3515

3520 3521 3522 3523
3528 3529 3530 3531
3536 3537 3538 3539
3544 3545 3546 3547
3552 3553 3554 3555
3560 3561 3562 3563
3568 3569 3570 3571
3576 3577 3578 3579

0 1 2 3

3840 3841 3842 3843
3848 3849 3850 3851
3856 3857 3858 3859
3864 3865 3866 3867
3872 3873 3874 3875
3880 3881 3882 3883
3888 3889 3890 3891
3896 3897 3898 3899

3904 3905 3906 3907
3912 3913 3914 3915
3920 3921 3922 3923
3928 3929 3930 3931
3936 3937 3938 3939
3944 3945 3946 3947
3952 3953 3954 3955
3960 3961 3962 3963

3968 3969 3970 3971
3976 3977 3978 3979
3984 3985 3986 3987
3992 3993 3994 3995
4000 4001 4002 4003
4008 4009 4010 4011
4016 4017 4018 4019
4024 4025 4026 4027

4032 4033 4034 4035
4040 4041 4042 4043
4048 4049 4050 4051
4056 4057 4058 4059
4064 4065 4066 4067
4072 4073 4074 4075
4080 4081 4082 4083
4088 4089 4090 4091

4 5 6

3332 3333 3334
3340 3341 3342
3348 3349 3350
3356 3357 3358
3364 3365 3366
3372 3373 3374
3380 3381 3382
3388 3389 3390

3396 3397 3398
3404 3405 3406
3412 3413 3414
3420 3421 3422
3428 3429 3430
3436 3437 3438
3444 3445 3446
3452 3453 3454

3460 3461 3462
3468 3469 3470
3476 3477 3478
3484 3485 3486
3492 3493 3494
3500 3501 3502
3508 3509 3510
3516 3517 3518

3524 3525 3526
3532 3533 3534
3540 3541 3542
3548 3549 3550
3556 3557 3558
3564 3565 3566
3572 3573 3574
3580 3581 3582

4 5 6

3844 3845 3846
3852 3853' 3854
3860 3861 3862
3868 3869 3870
3876 3877 3878
3884 3885 3886
3892 3893 3894
3900 3901 3902

3908 3909 3910
3916 3917 3918
3924 3925 3926
3932 3933 3934
3940 3941 3942
3948 3949 3950
3956 3957 3958
3964 3965 3966

3972 3973 3974
3980 398r 3982
3988 3989 3990
3996 3997 3998
4004 4005 4006
4012 4013 4014
4020 4021 4022
4028 4029 4030

4036 4037 4038
4044 4045 4046
4052 4053 4054
4060 4061 4062
4068 4069 4070
4076 4077 4078
4084 4085 4086
4092 4093 4094

7

3335
3343
3351
3359
3367
3375
3383
3391

3399
3407
3415
3423
3431
3439
3447
3455

3463
3471
3479
3487
3495
3503
3511
3519

3527
3535
3543
3551
3559
3567
3575
3583

7

3847
3855
3863
3871
3879
3887
3895
3903

3911
3919
3927
3935
3943
3951
3959
3967

3975
3983
3991
3999
4007
4015
4023
4031

4039
4047
4055
4063
4071
4079
4087
40~5

6000
to

6777
(Octal)

3072
to

3583
(Decimal)

Octa I Decima I
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

7000 3584
to to

7777 "095
(Odal) (Decimal)

Octal-Decimal Integer Conversion 101

Appendix B: Octal-Decimal Fraction Conversion Table

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000 .000000 .100 .125000 .200 .250000 .300 .3.75000

.001 .001953 .101 .126953 .201 .251953 .301 .376953

.002 .003906 .102 .128906 .202 .253906 .302 .378906

.003 .005859 .103 .130859 .203 .255859 .303 .380859

.004 .007812 .104 .132812 .204 .257812 .304 .382812

.005 .009765 .105 .134765 .205 .259765 .305 .384765

.006 .011718 .106 .136718 .206 .261718 .306 .386718

.007 .013671 .107 .138671 .207 .263671 .307 .388671

.010 .015625 .110 .140625 .210 .265625 .310 .390625

.011 .017578 .111 .142578 .211 .267578 .311 .392578

.012 .019531 .112 .144531 .212 .269531 .312 .394531

.013 .021484 .113 .146484 .213 .271484 .313 .396484

.014 .023437 .114 .148437 .214 .273437 .314 .398437

.015 .025390 .115 .150390 .215 .275390 .315 .400390

.016 .027343 .116 .152343 .216 .277343 .316 .402343

.017 .029296 .117 .154296 .217 .279296 .317 .404296

.020 .031250 .120 .156250 .220 .281250 .320 .406250

.021 .033203 .121 .158203 .221 .283203 .321 .408203

.022 .035156 .122 .160156 .222 .285156 .322 .410156

.023 .037109 .123 .162109 .223 .287109 .323 .412109

.024 .039062 .124 .164062 .224 .289062 .324 .414062

.025 .041015 .125 .166015 .225 .291015 .325 .416015

.026 .042968 .126 .167968 .226 .292968 .326 .417968

.027 .044921 .127 .169921 .227 .294921 .327 .419921

.030 .046875 .130 .171875 .230 .296875 .330 .421875

.031 .048828 .131 .173828 .231 .298828 .331 .423828

.032 .050781 .132 .175781 .232 .300781 .332 .426781

.033 .052734 .133 .177734 .233 .302734 .333 .427734

.034 .054687 .134 .179687 .234 .304687 .334 .429687

.\)35 .056640 .135 .181640 .235 .306640 .335 .431640

.036 .058593 .136 .183593 .236 .308593 .336 .433593

.037 .060546 .137 .185546 .237 .310546 .337 .435546

.040 .062500 .140 .187500 .240 .312500 .340 .437500

.041 .064453 .141 .189453 .241 .314453 .341 .439453

.042 .066406 .142 .191406 .242 .316406 .342 .441406

.043 .068359 .143 .193359 .243 .318359 .343 .443359

.044 .070312 .144 .195312 .244 .320312 .344 .445312

.045 .072265 .145 .197265 .245 .322265 .345 .447265

.046 .074218 .146 .199218 .246 .324218 .346 .449218

.047 .076171 .147 .201171 .247 .326171 .347 .451171

.050 .078125 .150 .203125 .250 .328125 .350 .453125

.051 .080078 .151 .205078 .251 .330078 .351 .455078

.052 .082031 .152 .207031 .252 .332031 .352 .457031

.053 .083984 .153 .208984 .253 .333984 .353 .458984

.054 .085937 .154 .210937 .254 .335937 .354 .460937

.055 .087890 .155 .212890 .255 .337890 .355 .462890

.056 .089843 .156 .214843 .256 .339843 .356 .464843

.057 .091796 .157 .216796 .257 .341796 .357 .466796

.060 .093750 .160 .218750 .260 .343750 .360 .468750

.061 .095703 .161 .220703 .261 .345703 .361 .-470703

.062 .097656 .162 .222656 .262 ~347656 .362 .472656

.063 .099609 .163 .224609 .263 .349609 .363 .474609

.064 .101562 .164 .226562 .264 .351562 .364 .476562

.065 .103515 .165 .228515 .265 .353515 .365 .478515

.066 .105468 .166 .230468 .266 .355468 .366 .480468

.067 .107421 .167 .232421 .267 .357421 .367 .482421

.070 .109375 .170 .234375 .270 .359375 .370 .484375

.071 .111328 .171 .236328 .271 .361328 .371 .486328

.072 .113281 .172 .238281 .272 .363281 .372 .488281

.073 .115234 .173 .240234 .273 .365234 .373 .490234

.074 .117187 .174 .242187 .274 .367187 .374 .492187

.075 .119140 .175 .244140 .275 .369140 .375 .494140

.076 .121093 .176 .246093 .276 .371093 .376 .496093

.077 .123046 .177 .248046 .277 .373046 .377 .498046

102

Octal-Decimal Fraction Conversion Table (Continued)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

.000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736

.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740

.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743

.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747

.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751

.000006 .000022 .000106 .000267 .000206 .000511 .000306 .000755

.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759

.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766

.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .000782

.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785

.000017 .000057 .000117 .000301 .000217 .000545 .000317 .000789

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801

.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805

.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827

.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839

.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843

.000036 .000114 .000136 .000358 .000236 .00'0602 .000336 .000846

.000037 .000118 .000137 .000362 .000237 .000606 .000337 .000850

.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862

.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881

.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885

.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892

.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896

.000054 .000167 .000154 .000U1 .000254 .000656 .000354 .000900

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907

.000057 .000179 .000157 .000423 .000257 .000667 .000357 .000911

.000060 .000183 .000160 .000427 .000260 .0006'71 .000360 • 000911~

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919

.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938

.000067 .000209 .000167 .000453 • ()00267 .000698 .000367 .000942

.000070 .000213 .000170 .000457 .000270 .. .000701 .000370 .000946
• 000071 .000217 .000171 .000461 .0002'71 • Q00705 .000371 .000949
.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953
.000073 .000225 .000173 .000469 .000273 .000713 .000373 .000957
.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961
.000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965
.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968
.000077 .000240 .000177 .000484 .000277 .000728 .000377 .000972

Octal-Decimal Fraction Conversion 103

Octal-Decimal Fraction Conversion Table (Continued)

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC,

,000400 ,000976 ,000500 ,001220 ,000600 .001464 .000700 ,001708
,000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712
.000402 .000984 .000502 .001228 .000602 .001472 .000702 .001716
.000403 ,000988 .000503 .001232 .000603 .001476 .000703 .001720
.000404 .000991 .000504 .001235 .000604 .001480 .000704 ,001724
.000405 .000995 .000505 .001239 .000605 .001483 .000705 .001728
.000406 .000999 .000506 ,001243 .000606 .001487 .000706 .001731
.000407 .001003 ,000507 .001247 .000607 .001491 .000707 .001735
.000410 .001007 .000510 .001251 ,000610 ,001495 .000710 .001739
.000411 .001010 .000511 .001255 ,000611 .001499 .000711 .001743
,000412 .001014 .000512 .001258 .000612 .001502 .000712 .001747
,000413 .001018 .000513 ,001262 .000613 .001506 .000713 ,001750
.000414 .001022 ,000514 .001266 .000614 .001510 .000714 ,001754
,000415 .001026 .000515 .001270 ,000615 .001514 .000715 .001758
.000416 ,001029 .000516 .001274 .000616 .001518 .000716 .001762
,000417 .001033 ,000517 .001277 .000617 .001522 .000717 .001766

.000420 ,001037 ,000520 .001281 ,000620 .001525 .000720 ,001770
,000421 .001041 .000521 .001285 ,000621 .001529 ,000721 .001773
,000422 .001045 .000522 .001289 .000622 .001533 .000722 ,001777
.000423 ,001049 .000523 .001293 .000623 .001537 .000723 ,001781
.000424 .001052 .000524 .001296 .000624 ,001541 .000724 .001785
.000425 .001056 .000525 .001300 .000625 .001544 .000725 .001789
.000426 ,001060 .000526 ,001304 .000626 .001548 .000726 .001792
,000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796
.000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800
,000431 ,001071 .000531 .001316 .000631 ,001560 .000731 .001804
.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808
.000433 ,001079 .000533 .001323 .000633 .001567 .000733 .001811
.000434 .001083 .000534 .001327 .000634 .001571 ,000734 ,001815
.000435 .001087 .000535 .001331 ,000635 .001575 ,000735 .001819
.000436 .001091 ,000536 .001335 .000636 .001579 ,000736 .001823
.000437 ,001094 .000537 .001338 ,000637 .001583 .000737 .001827

,000440 ,001098 ,000540 .001342 .000640 .001586 .000740 .001831
.000441 ,001102 .000541 ,001346 ,000641 .001590 .000741 .001834
,000442 .001106 .000542 .001350 .000642 .001594 ,000742 ,001838
,000443 ,001110 ,000543 .001354 .000643 ,001598 ,000743 ,001842
,000444 ,001113 .000544 .001358 .000644 .001602 ,000744 ,001846
.000445 ,001117 ,000545 ,001361 .000645 ,001605 .000745 .001850
.000446 .001121 ,000546 .001365 ,000646 ,001609 .000746 ,001853
.000447 .001125 ,000547 .001369 ,000647 ,001613 .000747 .001857
.000450 ,001129 .000550 ,001373 .000650 ,001617 ,000750 ,001861
.000451 .001132 ,000551 .001377 ,800651 .001621 ,000751 .001865
.000452 .001136 .000552 .001380 ,000652 .001625 ,000752 .001869
,000453 .001140 ,000553 .001384 ,000653 .001628 .000753 .001873
.000454 .001144 .000554 .001388 ,000654 .001632 .000754 .001876
.000455 .001148 .000555 .001392 .000655 ,001636 .000755 .001880
.000456 .001152 .000556 .001396 .001)656 .001640 ,000756 ,001884
,000457 .001155 .000557 .001399 ,000657 ,001644 ,000757 .001888
.000460 ,001159 ,000560 ,001403 ,000660 ,001647 .000760 ,001892
,000461 ,001163 .000561 .001407 ,000661 ,001651 .000761 ,001895
,000462 .001167 ,000562 ,001411 ,000662 .001655 .000762 ,001899

-
,000463 ...001171 .000563 .001415 .000663 ,001659 ,000763 .001903
.000464 .001174 ,000564 .001419 ,000664 ,001663 ,000764: .001907
,000465 .001178 .000565 ,001422 ,000665 .001667 ,000765 ,001911
.000466 ,001182 .000566 .001426 .000666 ,001670 ,000766 .001914-
,000467 ,001186 ,000567 .001430 ,000667 .001674 .000767 ,001918
,0004'10 ,001190 ,000570 .001434 .000670 ,001678 ,000770 ,001922
,000471 .001194 .000571 ,001438 ,000671 ,001682 ,00.0771 ,001926
,000472 ,001197 .000572 ,001441 ,000672 ,001686 .000772 .001930
.000473 .001201 .000573 .001445 ,000673 .001689 .000773 :001934
,000474 ,001205 .000574 .001449 .000674 .001693 .000774 .001937
.000475 .001209 .000575 .001453 ,000675 ,001697 .000775 ,001941
,000476 .001213 ,000576 .001457 ,000676 ,OOI7.Dl .000776 ,001945
,000477 .001216 .000577 ,001461 .000677 ,001705 .000777 .001949

104

Appendix C: Table of Powers of Two

2" 1t 2- 11

1 0 1.0
2 1 0,5
4 2 0,25
8 3 0,125

16 4 0,062 5
32 5 0,031 25
64 6 0,015 625

128 7 0,007 812 5

256 8 0,003 906 25
512 9 0,001 953 125

1 024 10 0,000 976 562 5
2 048 11 0,000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122' 070 312 5

16 384 14 0,000 061 035 156 25
32 768 15 0,000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0,000 007 629 394 531 25
262 144 18 0,000 003 814 69'7 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0,000 000 476 8'37 158 203 125
4 194 304 22 0,000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 00-7 450 580 596 923 828 125

268435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

Powers of Two 105

1111
Zl
-I
.JI
C)I
ZI
0 1
.JI
(I

I
.. I
jl
U

FOLD

COMMENT SHEET

IBM 7094 II DATA PROCESSING SYSTEM - VOLUME I

CUSTOMER ENGINEERING INSTRUCTION-MAINTENANCE. FORM 223-2721-0

FROM

NAME

OFFICE NO.

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED FOLD

D SUGGESTED ADDITION (PAGE , TIMING CHART, DRAWING, PROCEDURE, ETC.)

o SUGGESTED DELETION (PAGE

D ERROR (PAGE

EXPLANA TION

FOLD

NO POSTAGE NECESSARY IF MAILED IN U. S. A.
FOLD ON TWO LINES, STAPLE, AND MAIL

~TAPLE

~OLD FOLD

-- - - -- -- - ---- ---------------.------------------

)LD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION

P.O. BOX 390

POUGHKEEPSIE, N. Y. 12602

ATTN: CE MANUALS, DEPARTMENT 8"96

STAPLE

FIRST CLASS
PERM IT NO. 81

POUGHKEEPSIE. N.Y.

FOLD

1&1
Z

.J

t!J
Z
o
.J
(

...
:J
o

10j64:1.SM VO-112
I
I
I

STAPLE I
I

223·2721 ·0

ITmlllli
(J)

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains , N. Y. 10601

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	replyA
	replyB
	xBack

