
Customer Engineering

Instruction -Main tenance

7094 II Data Processing System -Volume 2

Arithmetic Instructions

Customer Engineering

Instruction-Main tenance

7094 II Data Processing System -Volume 2

Arithmetic Instructions

Preface

This is the second (Volume 2) of three volumes that
make up the final version of the IBM 7094-11 Customer
Engineering Instruction-Maintenance manual. This vol­
ume contains all the arithmetic instructions for the
IBM 7094-11 Data Processing System and is arranged in
four sections:

l. Fixed-Point
2. Floating-Point
3. Double-Precision Floating-Point
4. Reference Section (Flow Charts)
The material in this volume is written at engineering

change level 253405; however, future engineering
changes may change the logic and machine operations
from their presentation here.

Volume 1 of the Customer Engineering Instruction­
Maintenance manual, IBM 7094-Il, Form 223-2721,
contains information concerning: System Organization,
Component Circuits, System and Functional Compo­
nents, and Timing.

Volume 3 of the Customer Engineering Instruction­
Maintenance manual, IBM 7094-Il, Form 223-2723,
contains information concerning: Non-Arithmetic In­
structions, Overlap, Trapping, Channel Instructions, the
IBM 7151-2 Console Control Unit, and Compatibility.
Material in Volume 3 is presently available in the Cus­
tomer Engineering Instruction-Maintenance manual,
IBM 7094-Il, Form Z22-2723, and Supplement, Form
823-4019.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, CE Manuals, Dept. B96, PO Box 390, Poughkeepsie, N. Y. 12602

© 1964 by International Business Machines Corporation

Fixed-Point Arithmetic
Addition .. .

Clear and Add-cLA
Clear and Add Logical \Vord-cAL
Add-ADD
Add Magnitude-ADM
Add and Carry Logical Word-AcL

Subtraction
Clear and Subtract-cLs.
Subtract-suB
Subtract Magnitude-SBM

Multiplication
Multiply-MPY
Multiply and Round-MPR
Round-RND

Variable-Length Multiplication
Variable-Length Multiply-vLM

Division
Divide or Halt-DvH
Divide or Proceed-DvP

Variable-Length Division
Variable-Length Divide or Halt-vDH
Variable-Length Divide or Proceed-vDP

Floating-Point Arithmetic
Characteristic and Fraction .
Sign Control
Normal and Unnormal Numbers
Zero Fraction .
Arithmetic Operations

Floating-Point Controls
Adder Separation.
Tally Counter
FACT Triggers.
Double-Precision Sync (DPS)
Floating-Point Trap

Single-Precision Floating-Point Addition and Subtraction ..
Floating Add-FAD
U nnormalized Floating Add-uFA

7
8
9
9
9

10
10
10
11
11
11
11
13
13
13
14
14
14
15
15
15
15
15

16
16
16
16
16
17
17
18
18
18
18
18
19
23
23

Contents

Floating Add Magnitude-FAM
Unnormalized F~oating Add Magnitude-uAM
Floating Subtract-FsB
Unnormalized Floating Subtract-uFs
Floating Subtract Magnitude-FsM
Unnormalized Floating Subtract Magnitude-usM
Floating Round-FRN

Single-Precision Floating-Point Multiplication
Floating MultiplY-FMP
Unnormalized Floating MultiplY-UFM

Single-Precision Floating-Point Division
Floating Divide or Halt-FDH
Floating Divide or Proceed-FDP

Double-Precision Floating-Point Arithmetic
Double-Precision Floating-Point Addition and Subtraction.

Double-Precision FP Add-DFAD
Double-Precision Unnormalized FP Add-DuFA
Double-Precision FP Add Magnitude-DFAM
Double-Precision Unnormalized FP Add

Magnitude-DuAM
Double-Precision FP Subtract-DFsB
Double-Precision Unnormalized FP Subtract-DUFs
Double-Precision FP Subtract Magnitude-DFsM
Double-Precision Unnormalized FP Subtract

Magnitude-DusM
Double-Precision Floating-Point Multiplication.

Double-Precision FP MultiplY-DFMP
Double-Precision Unnormalized FP MultiplY-DUFM .. .

Double-Precision Floating-Point Division.
Double-Precision FP Divide or Halt-DFDH
Double-Precision FP Divide or Proceed-DFDP

Reference Section
Abbreviations and Symbols
Flow Charts (See Illustration List)

Appendix
Principal Triggers Used During Arithmetic Operations

23
23
23
23
23
23
23

23
24
24

24
25
25

26
27
27
27
27

29
29
29
29

29
29
30
30

31
31
34

35
35
35

72
72

Illustrations

FIGURE TITLE PAGE
1. Fact Usage Chart 18
2. Floating-Point Spill Codes. .. 19
3. FAD; Fact Sequence Chart. .. 21
4. DFAD; Simplified Flow Chart-Sheets 1 and 2 28,29
5. Timing of Floating-Point Multiply Cycles. 30
6. Double-Precision FP Divide; Characteristic and

Sign Determination Tables. .. 31
7. Double-Precision FP Divide; Simplified Flow Chart

-Sheets 1 and 2 32, 33

Reference Section. .. 35

8. Clear and Add; Clear and Subtract; Clear and
Add Logical Word. .. 36

9. Add; Add Magnitude; Subtract; Subtract Magnitude.. 37
10. Add and Carry Logical 'Vord. 38
11. Fixed-Point Multiply-Sheets 1 through 3 39-41
12. Fixed-Point Multiply Cycles; X-Y Recording. 42
13. Round. .. 43
14. Fixed-Point Division-Sheets 1 and 2 44,45
15. Single-Precision FP Addition and Subtraction-

FAD-Sheets 1 through 8 : 46-53
16. Single-PreciSion FP MultiplY-FMP-Sheets 1 and 2 .. 54, 55
17. Floating-Round. 56
18. DFAD; Register Exchange Charts , 57
19. Double-Precision FP Addition and Subtraction-

DFAD-Sheets 1 through 6 58-63
20. Double-Precision FP MultiplY-DFMP-

Sheets 1 and 2. 64, 65
21. Floating-POint Divide (Single and Double-

Precision)-Sheets 1 through 6 66-71

I CONSOLE

I
I
I
I
L_

7094~II CPU Datl! Flow

Fixed-point arithmetic is the most basic form of arith­
metic. Simply stated, it is the process of computation
using quantities whose magnitude is completely ex­
pressed by a single (value) field. The relationship of
the magnitude to zero is expressed by a sign position.
In fixed-point arithmetic, the length of an operand is
generally determined by the siz~ of the word that oc­
cupies one location in core storage. In th~ 7094-II, fixed­
point arithmetic operands have the following basic
format:

Value Field

The sign bit (S) determines whether the magnitude is
positive or negative. When S is a 0, the magnitude is
positive; when S is a 1, the magnitude is negative. The
value field is 35 bits long and states the magnitude of
the number. A fixed-point operand can then be de­
fined as a unit of data 36 bits long, containing a sign
bit and 35 magnitude bits.

Fixed-point arithmetic in the 7094-II includes addi­
tion, subtraction, multiplication, and division. All these
operations involve only two operands. One operand is
explicitly addressed (addressed operand) and one
operand is implied (implied operand). In all four op­
erations, the explicitly addressed operand is obtain~d
from the core storage location (Y) specified by the in­
struction. The implied operand varies with the opera­
tion: addition or subtraction implies the accumulator
register (AC); multiplication, the multiplier-quotient
register (MQ); division, the combined AC-MQ registers.
The implied or accumulator operand has the following
format:

Value Field
- .A - - - - - - - - - - - -;51

Accumulator

The accumulator value field is 37 bits long. The addi­
tional bits, Q and P of the AC are provided primarily
to handle conditions which result in an overflow out of
position 1. Bits P and Q are therefore known as over­
flow bits and are treated as the two highest order accu­
mulator bits during the execution of fixed-point arith­
metic. Position 9P of the A;C is not used in fixed-pOint
arithmetic, but is used in floating-point arithmetic.

Fixed-Point Arithmetic

The actual arithmetic takes place in the adder which
has the following format:

Adders
Note: 9Q and 9P not used in fixed point.

BaSically, when the contents of the storage register (SR)

are gated into the adders Simultaneously with the true
or complement form of the AC contents, an addition or
subtraction is effected, and the result may be placed in
the AC.

In multiplication, the addressed operand is obtained
from the core storage location (Y) specified by the in­
struction; the implied operand is obtained from the MQ

register. The addressed operand is placed in the SR,

which has the basic format of a sign bit and a 35-bit
value field. SR contents become the multiplicand. MQ

contents form the multiplier, which has a forma.t iden­
tical with the multiplicand. Multiplication is effected
by a combination of right shifts and additions. A multi­
plication result is placed in the combined AC-MQ regis­
ters with MQ(35) the lowest order bit. Multiplication is
algebraic, and the resultant sign is placed in both the
AC (s) and MQ (s) positions.

In division, the addressed operand is obtained from
the core storage location (Y) specified by the instruc­
tion; the implied operand is obtained from the com­
bined AC-MQ registers. The addressed operand is placed
in the SR and becomes the divisor; the combined AC-MQ

registers become the dividend. Divisor format is the
basic single sign bit and 35 value-field bits. The divi­
dend format is a single sign bit and 72 value-field bits:

Storage Register {divisor}

Accumulator (remainder)

MQ Register (quotient)

The result or quotient is placed in the MQ register and
has a format id.entical with the divisor. Remainder bits,
if any, go into the AC with a format of one sign bit and

Fixed-Point Arithmetic 7

37 value-field bits; AC(35) is the lowest order remainder
bit. Division is effected by a combination of subtrac­
tions and left shifts.

Addition
When performing addition in the 7094-II, the general
rules of algebra must first be applied to the signs of the
quantities involved to determine whether the sum or
the difference of the quantities involved is to be ob­
tained. Therefore, when adding two positive quantities,
the result is the sum of those quantities with a positive
sign. When adding a positive and a negative quantity,
the sum is actually the difference of th~ two quantities
with the resultant sign being the sign of the larger
magnitude. Finally, when adding two negative quanti­
ties, the result is the sum of the quantities with a nega­
tive sign.

Assume the quantity +2008 is to be added to the ac­
cumulator, which contains +758, The result is +2758 ,

To satisfy machine operand format, convert the quan­
tities to their binary equivalents:

+2008 = + 010000 000
+ 758 = + 000 111101

Insert these binary numbers into respective data words
with the lowest order bit going into bit 35:

5, 1 26 27 28 29 30 31 32 33 34 35

Storage Register

5, Q P 1 26272829303132333435

Accumulator

Bits 1 through 26 are not needed to express the quan­
tities and are therefore all O's. Because accumulator bits
Q and P are treated as part of the value field and the
accumulator value is assumed as +758, bits P and Q are
O's. Because each number is positive, a 0 is placed in
the respective sign bit (S).

Fixed-point addition in the 7094-11 is identical with
that described in binary addition: 0 + 0 = 0; 0 + 1 = 1;
1 + 1 = 0 with a 1 carry to the next higher position.
Adding the two operands produces a resultant magni­
tude of 010 III 101, with a resultant sign of O. In ma­
chine operand format, the result is as follows:

S, Q PI 26272829303132333435

Accumulator

8

If the same magnitudes are used but the signs are
changed to negative, the entire handling of the magni­
tude remains unchanged in performing the addition.
The 7094-II treats the sign bits separately. To represent
the negative values correctly, insert a 1 in the sign bit
position of each of the operands and the result; this is
what is done in the computer.

Because algebraic principles are employed, addition
of two quantities with unlike signs is effectively a sub­
traction. Using the same values, but changing the sign
of the accumulator operand to a minu"s, the problem
becomes (+ 2008) + (- 758), To accomplish addition,
line up the octal points and subtract:

+ 2008

- 0758

+ 1038

To satisfy machine operand format, convert the
values to their binary equivalent:

+ 2008 = + 010 000 000
- 0758 = - 000 111101

Insert these binary numbers into their respective data
words with the lowest order bit in each value going
into bit 35

2- 00
1OI0-... -------~ oloiliololqolololq
5, 1 26 27 28 2930 31 32 33 34 35

Storage Register

I 0 I 7 5

5, Q P 1 2627 28 29 30 31 32 33 34 35

Accumulator

Bits 1 through 26 are not needed to express the quanti­
ties and are therefore all O's. Accumulator bits Q and P
are implied O's by the assumed accumulator value.

The computer adds values having unlike signs as
follows:

1. Complements the accumulator value field.
2. Adds the l's complemented accumulator value

field and storage register value field.
3. Places the result in the accumulator.
4. Compares the accumulator and storage register

signs:
a. If alike, check for a carry-out value field position

1. The coincidence of like signs and a carry-out of
position 1 indicates an overflow.

b. If unlike, checks for a Q carry:
1. If there is a Q carry, adds 1 to the accumulator

in the lowest order position (bit 35), inverts
the accumulator sign, and places the resultant
operand in the accumulator.

2. If there is no Q carry, complements the accu­
mulator value field.

The addition is then performed as follows:
1. Storage Register = + 2008 = + 010 000 000

. Accumulator = - 0758 = - 000 111101
2. Complementing the accumulator value field re­

sults in its containing III 000010, with bits Q-26 alII's.
3. Add: 010 000 000

111000010

001000010 with a 1 carry propagated
through the rest of the bits (Q-26) and out of Q.

4. The intermediate result is placed in the accumu­
lator, which now contains - 001 000 010. Bits Q-26 are
all 0' s because of the propagated carry.

5. Checking the accumulator and storage register
signs reveals they are unlike.

6. Checking for a Q carry reveals one.
7. Adding 1 to the accumulator lowest order bit

makes the value field 001 000 011, and inverting the
sign makes it positive (0).

8. The resultant value in the accumulator is
+ 001 000 011, which equals + 1038•

Repeating the problem with + 2008 as the accumu­
lator operand and - 758 as the addressed operand
causes the following:

1. Storage Register = - 758 = - 000 111101
Accumulator = + 2008 = + 010000 000

2. Complementing the accumulator value field re­
sults in its containing 101111111, with bits Q-26 alII's.

3. Add: 000 111101
101111111

110 111100 with bits Q-26 unaffected.
4. The intermediate result is placed in the accumu­

lator, which now contains + 110 III 100. Bits Q-26 are
alII's.

5. Checking the accumulator and storage register
signs reveals that they are unlike.

6. Checking for a Q carry reveals none.
7. Complementing the accumulator value field yields

a final result of + 001 000 OIl.
The term overflow means that the capacity of the

machine has been exceeded. The arithmetic result can­
not be represented by the machine because it contains
more than 35 value field positions. As previously stated,
the accumulator bits Q and P are called overflow bits.
The name, however, only provides an easy means of
identifying these bits as a pair. Because they could
originally contain 00, 01, 10, or 11, their significance
depends on the problem. When dealing with values
having like signs, a resultant 1 in either bit or in both
bits indicates an overflow. In this case, the overflow is
remembered but subsequent action depends on the
program being executed.

When dealing with unlike signs, the overflow bits are
significant as a pair and, in this sense, they either gen­
erate a Q carry or they do not generate a Q carry. If a

carry is generated, it indicates that the accumulator
operand was the smaller operand and that the number
presently in the accumulator value field is a true num­
ber equal to one less than the correct answer. If a Q
carry is not generated, its absence indicates that the ac­
cumulator operand was the larger operand and that the
number presently in the accumulator value field is the
correct answer in complement form.

Clear and Add
(I, E)

CLA + 0500

The contents of AC (S, 1-35) are replaced with the con­
tents of storage location (Y), as indicated by the ad­
dress portion of the instruction. AC (Q, p) are set to
zero. See Figure 8.

Clear and Add Logical Word
(I, E)

CAL - 0500

The logical contents of Y replace the contents of
AC(P, 1-35), the sign of Y replacing AC(P). AC(S, Q) are
set to zero. See Figure 8.

Add
(I, E)

ADD + 0400

The contents of Yare algebraically added to the con­
tents of the AC. The resulting sum replaces the contents
of the AC. AC overflow is possible. See Figure 9.

The following rules of addition are used during the
execution of the add instruction:

1. Accumulator and storage register signs alike:
a. Add true accumulator factor to the storage regis-

ter factor.
b. The accumulator sign is unchanged.
2. Accumulator and storage register signs unlike:
a. Add I's complement of the accumulator factor to

the storage register factor.
1. If no Q carry results, complement the accumu­

lator factor and leave the accumulator sign un­
changed.

2. If a Q carry results, add one to the result and
change the accumulator sign.

The contents of the AC or the I's complement of the
AC and the contents of the SR are added in the adders.
Whether to use true AC or complemented AC is deter­
mined by the comparison between the AC and SR signs.
Complement addition is used to obtain the difference
between the contents of the SR and the contents of the
AC.

The difference between the SR and AC contents can
bea complement number or a true number. The result
will be in complement form if the AC is larger than
the SR factor. A true number will result if the AC factor
is smaller than the SR factor. During the addition, a
carry-out of AD(Q) indicates that the AC factor is

Fixed-Point Arithmetic 9

smaller. No Q carry indicates that the AC factor is
larger. To remember the carry, a carry trigger is
turned on by a carry-out of AD(Q).

If the result of the complement addition is a true
number, it is one less than it should be because the
1's complement rather than the 2's complement was
used in the addition. Therefore, a 1 is added to the
result in the AC to get the correct difference. If the re­
sult of the addition is a complement number, it must
be recomplemented to get the correct true number.
The sign of the result in the AC is set the same as the
sign of the larger original factor, as determined by
the status of the Q carry.

Example 1

Signs Alike
-6+(-7) = -13
-0111 SR(7)
-0110 AC(6)

-1101 Result in AC(13)

Example 2

Signs Unlike, AC Smaller
-6+(+7) = +1
+0111 SR(7)
-10011's romp of AC(6)
-0000 Q carry

1 Add one
-0001 Result in AC
+0001 Change sign

Example 3
Signs Unlike, AC Greater
-7+(+6) =-1
+0110 SR (6)
-1000 1's comp of AC (7)
-1110 No Q carry, Result in AC
-0001 Comp AC

Add Magnitude
(I, E)

ADM + 0401

The sign of Y is ignored and the contents of Yare
treated as a positive number. This positive number is
then added algebraically to the contents of the AC.

The resulting sum replaces the contents of the AC. With
a minus AC sign, a subtractive process (signs unlike)
will occur. AC overflow is possible. See Figure 9.

Add and Carry Logical Word
(I, E)

ACL + 0361

The logical contents of Yare added to the contents of
AC(P, 1-35), the sign of Y being added to AC(P). The
resulting sum, including a carry to AD(35) if a carry­
out of AD(p) occurs, replaces the contents of AC(P, 1-35).

The AC sign is ignored; AC(Q) is unchanged; AC over­
How is not possible. See Figure 10.

10

Subtraction
Subtraction in the 7094-I1 is algebraic and is accom­
plished as follows:

l. Invert the storage register sign.
2. Compare the accumulator and storage register

signs:
a. If alike, add the contents of the accumulator and

storage register.
b. If unlike, complement the accumulator and then

add the contents of the accumulator and the stor-
age register. ,

3. Place the addition result in the accumulator.
4. Compare the accumulator and storage register

signs:
a. If alike, check for a carry-out of value field posi­

tion l. The coincidence of like signs and a carry­
out of value field position 1 indicates an over­
flow.

b. If unlike, check for a Q carry:
1. If there is a Q carry, add 1 to the present ac­

cumulator value field in the low-order position
and invert the accumulator sign.

2. If there is no Q carry, complement the accu­
mulator value field.

Assume the problem -558 - (+6008), where +6008

is the addressed operand and -558 is the implied
operand. The result is -6558 , To satisfy machine oper­
and format, convert the quantities to their binary
equivalents:
+ 6008 = + 110000 000
- 558 = - 000 101 101
Insert these binary numbers into respective data words
with the lowest order bit going into bit 35.

6 0 0
I~o--------__ 011111010101~010!q
5,1 26272829303132333435

Storage Register

o 5 5

11101010----------0101010bloll111~11
S,i Q ! P 1 26272829303132333435

Accumulator

Bits 1 through 26 are not needed to express the quan­
tities and are therefore all O's. Because accumulator
bits Q and P are treated as part of the value field and
the accumulator value is assumed as -558, bits P and
Q are D's. The addressed operand is positive, so its sign
bit is a 0, whereas the implied operand is negative, so
its sign bit is a l.

Following this procedure, the subtraction is accom­
plished as follows:

l. Storage Register = + 6008 = + 110 000 000
Accumulator = - 558 = - 000 101101

2. Complementingthe storage register sign results
in the register containing - 110000000.

3. Comparing the operand signs reveals they are
alike.

4. Add: 110000000
000 101101

110101101 with bits Q-26 all O's.
5. The addition result is placed in the accumulator,

which now contains - 110 101 101.
6. Comparing the accumulator and storage register

signs reveals they are alike.
7. Checking for a Q carry reveals none.
S. The final answer in the accumulator is

- 110 101 101 which equals -6558,

Repeating the problem, but with -558 the addressed
operand, the operand formats are as follows:

055

5, 1 2627 28 29 30 31 32 33 34 35

Storage Register

s;a p 1 26272829303132333435

Accumulator

In accordance with the procedure, the following takes
place:

1. Storage Register = - 558 = - 000 101101
Accumulator = + 6008 = + 110 000 000

2. Complementing the storage register sign results
in the register containing + 000 101 101.

3. Comparing the accumulator and storage register
sign reveals they are alike.

4. Add: 000 101101
110000000

110 101101 with bits Q-26 all O's
5. The addition result is placed in the accumulator,

which now contains + 110 101101. .
6. Comparing the accumulator and storage register

signs reveals they are alike.
7. Checking for a Q carry reveals none.
S. The final answer in the accumulator is

+ 110 101101, which eq;uals +6558,

Note the identical manner in which the two prob­
lems were handled. In each case, the arithmetic was
addition. In each case, the sign of the subtrahend
(storage register operand) was inverted. Subtraction'
of unlike signs becomes addition and it is not signifi­
cant whether the accumulator is the larger or smaller
operand.

Clear and Subtract CLS + 0502
(I, E)

With the sign position of Y sent in inverted form, the

contents of Y replace the contents of AC(S, 1-35). AC(Q, p)
are set to zero. See Figure S.

Subtract
(I, E)

SUB + 0402

The contents of Yare algebraically subtracted from the
contents of the AC. The difference replaces the con­
tents of the AC. This instruction operates the same as
ADD, except the sign of Y is used in inverted form. AC

overflow is possible. See Figure 9.

Subtract Magnitude
(I, E)

SBM - 0400

The sign of Y is ignored and the contents of Yare
treated as a negative number. This negative number
is then added algebraically to the contents of the AC.

The resulting sum replaces the contents of the AC. With
a minus AC sign, an additive process (signs alike) will
occur. AC overflow is possible. See Figure 9.

Multiplication
In order to simplify the 7094-II multiplication process,
a review of the basic machine process using only one
digit of the multiplier at a time is as follows:

Binary computers perform multiplication by repeti­
tive addition and shifting. The process is similar to that
used when performing binary multiplication using
pencil and paper. The basic rule is to add and shift
when a 1 is decoded in the low-order position of the
multiplier and to shift without addition when a zero
is decoded. '

Assume the problem is to multiply 158 by 58. On
paper we would do the following:

158 = 11012 (multiplicand)
58 = lOb (multiplier)

1101 (first multiply by 1)
0000 (multiply by zero-no add-shift)

1101 (second multiply by I-shift and
add)

1000001 = 1018

Proof: 158 X 58 = 1310 X 510 = 6510
1018 = 6510

In the first step, a 1 is contained in the low-order
position of the multiplier. With a 1 in this position,
the first partial product is equal to the value of the
multiplicand. The second step requires a multiplication
by O. To accomplish this, O's are added to the first
partial product formed. The relative position of the
partial product is maintained by displacing the 0' s left
one place before the summation.

The final iteration is a multiplication by 1. The mul­
tiplicand is shifted left and added to the partial prod-

Fixed-Point Arithmetic 11

uct formed as a result of the previous two multiply
iterations.

Thus, to perform a multiplication of two binary num­
bers, the state of the low-order position of the multi­
plier is examined to determine whether that iteration
of the multiply cycle is to be a multiplication by 0 or
by 1. If the contents of the low-order position is a 1,
a multiplication by 1 is required and the multiplicand
is added to any previous partial product formed. If no
bit is detected in the low-order position of the multi­
plier, a multiplication by 0 is accomplished by adding
o to the partial product.

For convenience, three registers are used to program
a multiplication. The multiplicand is contained in the
SR, the multiplier in the MQ, and the partial product
is formed in the AC. The AC and the MQ are shifted
right after each multiplication by 1 or 0 to sense the
next higher order position of multiplier and to main­
tain the proper relationship between the partial prod­
uct and the multiplicand.

Because of the cost to store each partial product
separately before summation, an addition is performed
after each iteration and the answer is gradually built
up in the AC and MQ. A shift counter (sc) is used to
indicate when the proper number of multiplier bits
have been processed, and the multiplication is com­
plete. The value to which the sc is set is either the
length of the multiplier, 3510 bits in the 7094-II or a
value determined by the decrement field in a variable
length instruction.

Assume we are to perform the same problem
(15s X 5s), using a binary computer with five-position
registers. At the start of the problem the registers would
contain:

SC = 101 (510) SR = 01101 AC = 00000 MQ = 00101

MQ (5) is sensed to determine if its contains a 1 or
a O. If MQ(5) is a 1, the contents of the SR are added to
the contents of the AC and the result is put into the AC.

The AC and MQ are shifted right one place to align the
registers for the next step. This shift puts bit 4 of the
MQ into position 5 for sensing and also puts the least
significant bit of the answer into MQ (1). The registers
now contain:

SC=100 SR=0l101 AC = 00110 MQ = 1]0010

The bracket around the first bit in the MQ indicates
this bit is part of the partial product. MQ (5) is again
sensed to determine if its contains a 1 or O. Because a
o is encountered, no addition takes place but the AC

and MQ are shifted right one place. The registers now
look like this:

SC=Ol1 SR=01101 AC=OOOl1 MQ=Ol]OOI

The 1 in MQ (5) requires an addition and a shift.

12

The contents of the SR and AC are added and the result
placed in the AC. The AC and MQ are shifted right one
place and the registers now contain:

SR=01101 AC=01000 MQ=OOI]OO

MQ(4,5) now contain the last two bits of the orig­
inal multiplier-both O's. These O's will result in shift­
ing without addition and at the end of the problem
the registers will contain:

SC=O SR=01101 AC = 00010 MQ=OOOOl]

The operation is halted because sc = O. The answer
is contained in both the AC and MQ which equal
00010000012 = lOIs = 6510,

Binary multiplication is performed by examining
the low-order position of the multiplier to determine
whether that iteration of the multiply cycle is to be a
multiplication by 0 or 1. If the contents of the low­
order multiplier position is a 1, a multiplication by 1
is indicated and the multiplicand (storage register)
is added to any previous partial product in the AC. The
contents of the AC and MQ are shifted right one place
to align the new partial product, and to place the next
higher order position of the multiplier in the low­
order position of the MQ. If 0 had been detected
in MQ (35), a multiplication by 0 would have been indi­
cated and accomplished by shifting the partial product
and multiplier without adding the multiplicand.

Thus, by examining one position of the multiplier
and adding and shifting for the proper number of iter­
ations, the multiplication is performed. Because one
position is examined, each iteration performed may be
considered as a multiplication by either 0 or 1. The
result of each multiplication is added to the partial
product which, in turn, is shifted to maintain the
proper relationship between the partial product and
the multiplicand.

In the 7094-II, instead of looking at one digit of the
multiplier, two digits of the multiplier are decoded at
a time. It then becomes apparent that on anyone
iteration, a multiply by 0, 1, 2, or 3 is possible. A mul­
tiplier decoder is used which senses the four possible
states of MQ (34,35) which correspond to four numbers,
0, 1, 2, 3 in the base four number system. Because
time is required to decode the states of MQ(34,35), it is
necessary on all iterations, except the initial or static
one, to presense the state of these registers by exam­
ining the condition of MQ (32,33) .

The presensing (or sampling) of MQ (32,33) results in
the setting of the pre-MQ(34,35) triggers. The condition
of these triggers, along with the pre-string bit trigger,
determines the decoding for the current iteration
(multiply cycle). These decoded values indicate the
number of times the multiplicand is to be added to the
partial product.

A multiplication by 0 (X 0) indicates that the multi­
plicand is not added to the partial product. In a multi­
plication by 1 (x 1), the partial product is increased
by the amount of the multiplicand. In a multiplication
by 2 (x 2), the multiplicand is doubled by shifting
it left one place to the adders. Thus, the partial prod­
uct is increased by an amount equal to two times the
multiplicand. A multiplication by 3 (x 3) is per­
formed by subtracting the multiplicand from the par­
tial product once and adding an additional four times
the multiplicand to the partial product during the next
iteration.

While it is possible to multiply by four by shifting
the multiplicand left two places, and additional iter­
ation would be required to perform the necessary
left shift before adding, and to perform the comple­
ment add cycle. To obviate the necessity for this addi­
tional iteration, a multiplication by 4 is performed by
increasing, by 1, the next two higher order positions
of the multiplier after the complement add cycle has
been performed. Thus a multiplication by 3 is accom­
plished in one multiply iteration, consisting of the 2's
complement addition of the multiplicand, and the ad­
justment of the next two higher order positions of
the multiplier.

A string bit trigger is used to "remember" that a 1
is to be added to the next two higher order bits of the
multiplier before they are decoded. This has the effect
of shifting the multiplicand left two places for each 2's
complement add iteration performed. Once the string
bit trigger is set on, it stays on until a X 1 or X 2 addi­
tion occurs.

The ability to perform base 4 multiplication requires
the computer to scan multiplier bits at a rate twice as
fast as for a binary multiplier decoding scheme. Be­
cause of the irregular method of a multiplication by 3,
additional circuitry is required to remember that a com­
plement addition was performed. The multiplier may
be adjusted for the next iteration, and so the comple­
ment form of the high-order partial product positions
is maintained.

The complement form of the high-order positions of
the partial product is maintained by utilizing accumu­
lator overflow positions Q and P, which are set during
each complement add iteration, and remain set until a
true add is performed. With AC(Q,p) on, l's are gated
to the high-order position (Q and p) of the adders.
These positions, gated right to the accumulator regis­
ters one and two, provide the means of setting these
registers on during the subtraction and during each
subsequent multiply iteration, until a true add takes
place. A true add will occur only when a multiplication
by 1 or 2 is decoded. Because the partial product
formed as a result ofax 3 iteration contains 1's in

the high-order positions, it is always necessary to
terminate a complete multiplication with a true add
iteration. This "string" of l's in the partial product is,
during a multiplication by 1, added to the multipli­
cand. As the partial product has been shifted right
two places each iteration, the highest order position
of the multiplicand containing a 1 corresponds to a
position in the partial product included within this
string of l's, and a X 1 addition generates a 0 in AD(Q).
The output of AD(Q) is gated directly to AC(p) and
serves to set 0 in that position at the end of each X 1
multiplictaion following a' X 3 cycle. On a X 2 multi­
plication with SR gated left one place, there could be a
carry into AD(Q) which would become a part of the
partial product in AC(1) when shifted right two places.
To prevent this, the output of AD(Q) is blocked to
AC (P), resulting in the reset of AC (p) and indicating
that we have just performed a true add.

The cyclic make-up of the MPY instruction is I, E,
L, L. Two multiply iterations are performed during E
time and sixteen iterations are performed during the
following two L cycles. To allow for an effective con­
tinuous shift of the AC and MQ, the adder outputs are
gated right two places to the AC; the MQ is shifted right
two places; and the sc is stepped by two on each itera­
tion (each clock pulse) except the last. The last itera­
tion occurs on the second L 7 clock pulse when the sc
value is equal to one. On this last iteration, the adder
outputs are gated right one place to the AC; the MQ is
shifted right one place; and the sc is stepped by one
to zero. See Figure 11.

Multiply MPY + 0200
(MIN I, E; MAX I, E, 2l)

The contents of Yare multiplied by the contents of
the MQ. The 35 most significant bits of the 70-bit prod­
uct replace the AC(1-35), and the 35 least significant
bits replace the MQ(1-35). AC(Q, p) are set to zero and
the signs of the AC and MQ are set to the algebraic sign
of the product. See Figure 11.

Multiply and Round
(MIN I, E; MAX I, E, 3l)

MPR - 0200

Multiply and round operates the same as the multiply
(MPY) instruction, and also adds 1 to the AC contents if
MQ (1) equals one after the multiplication is complete.
See Figure 11.

Round
(I, l)

RND + 0760 . . . 0010

If MQ (1) equals one, the AC contents are increased
by 1. If MQ (1) equals zero, the AC contents are un­
changed. In either case, the MQ contents are un­
changed. Note that positions 24-35 of this instruction

Fixed-Point Arithmetic 13

represent part of the operation code. Modification by
indexing may change the operation code itself. AC

overflow is possible. See Figure 13.

Variable-Length Multiplication
Variable~length multiplication is fixed-point multipli­
cation with an operand other than 35 bits. The decre­
ment of the instruction is used as the count field in
variable length multiply. This count (c) is entered into
the sc to control the number of multiply iterations
performed, thus specifying· the size of the product.
The most significant portion of the product is placed
in the AC. The least significant portion of the product
is placed in the high-order positions of the MQ. The
number of MQ positions used will equal the value of
the count field contents (c). The count specified is
usually less than 43". With a count less than 43", the
low order of MQ will contain a number of unused
positions equal to 438 minus the count field. See Fig­
ure 11.

If a count of 438 is used, the variable-length instruc­
tion will perform as a fixed-length instruction. A count
of 60" or greater will cause an II A cycle, (count extend­
ing into positions 12 and 13 of instruction) and the
count of the II A word will be set into the sc. However,
this is a program error as variable-length instructions
are not indirectly addressable.

Variable-length instructions are used to conserve
machine time. For example, if the multiplier is never
more than six digits long, one L cycle can be saved
during each multiply operation. Figure 12 shows a
x-y recording of the multiply cycles which occur dur­
ing a typical VLM instruction. It should be noted that
mq.ny of the lines shown are the same for both fixed
and floating multiply.

Variable length Multiply
(MIN I, E; MAX I, E, 3l)

VlM + 0204

Variable-length multiply operates the same as the mul­
tiply (MPY) instruction with the following exceptions:
The number of multiplier positions to be tested is
specified by the number in the decrement portion
(count field) of the instruction. The 35 most significant
bits of the product replace the contents of AC(1-35) and
the number of least Significant bits, as specified by the
count field (c), replace the contents of MQ (I-C). The
remaining low-order positions of the MQ will contain
the original 35-c high-order positions of the MQ. See
Figure 11.

Division
Fixed-point binary division in the 7094-II is accom­
plished by dividing the contents of the AC and MQ,

14

taken together as the dividend, by the contents of the
SR, the divisor. A 35-position quotient is developed in
the MQ with the remainder, if any, left in the AC. The
sign of the MQ is set to the algebraic sign of the quo­
tient, as determined by the SR and AC signs. The sign
of the remainder remains the same as the sign of the
dividend.

The size of the registers restricts the size of the
factors to be divided. The quotient can never exceed
35 bits, the maximum length of the MQ. Therefore, the
sc is set to 43" (3510) to control the number of iter­
ations of the divide process and is stepped after each
iteration.

If the AC portion of the dividend is equal to or
greater than the divisor, the quotient will be too large
for the MQ. This condition prohibits division and turns
the divide check indicator on. The computer will then
either stop or proceed, depending on the type of di­
vide instruction.

The following problem illustrates a hand performed
binary division. Assuming a 4-bit register, it shows that
had the AC portion of the dividend been equal to or
greater than the divisor, a significant bit of the quo­
tient would have had to have been entered into the
AC; this would constitute a divide check condition.

AC MQ

SR = 15s = 1310 0110
(SR) Divisor

11 0 1 1"'""1 0-1-0-0 -1-11-0-
11 01
01 101

1 101
o 0000

0000
0000

Quotient (M Q) = 68 = 610

Dividend
(AC and MQ) = 1168 = 7810

6
13 f78

Remainder (AC)

Note in the problem that the' divisor will go once,
or not at all, into the high-order position of the divi­
dend. Therefore, it is only necessary to determine if
the divisor is equal to, or smaller than, these positions
of the dividend. If the divisor is equal to or smaller
than the selected positions of the dividend, a 1 is put
into the quotient and the divisor is subtracted from
that portion of the dividend. If the divisor is larger
than the selected portion of the dividend, a 0 remains
in the quotient. Another position of the dividend is
now taken into account and the procedure starts again.
These iterations continue until all positions in the divi­
dend have been tested.

In the 7094-II, the SR and AC are complement-added
(subtracted) to determine if a reduction of the high­
order positions of the dividend is possible. If a reduc­
tion is possible, these positions of the dividend are
reduced by the amount of the divisor and the differ­
ence is put into the AC. If a reduction is not possible,
the AC remains the same. A successful reduction re-

suIts in a 1 being put into the low-order of the MQ.

Following the reduction attempt, the AC and MQ are
shifted one place left to bring the next position of the
AC into alignment and another reduction is attempted.
The repetitive process continues until all positions of
the MQ portion of the dividend have been moved to
the AC. The sc will equal 0 when the division is com­
plete. See Figure 14.

In fixed-point division, four instructions are used:
divide or halt (DVH), divide or proceed (DVP), vari­
able-length divide or halt (VDH), and variable-length
divide or proceed (VDP). Note that three conditions
are involved in these instructions. First, there are two
halt-type instructions (DVH) and (VDH). These two
instructions will stop the computer in I time of the
next instruction if a divide check occurred. Second,
there are two proceed-type instructions (DVP) and
(VDP). These two instructions allow the computer to
proceed in I time of the next instruction even though
a divide check occurred, and give the programmer the
option of testing the divide check indicator with a DCT

instruction. Third, there are two variable-length type
instructions (VDH) and (VDP) which allow a count
other than 438 to be entered into the sc. These two in­
structions are used by the programmer usually when
his quotient is a fixed length and is less than 35 digits
long. For more information on these, see "Variable­
Length Division."

Divide or Halt DVH + 0220
(MIN I, E; MAX I, E, 5L)

The contents of AC (Q-35) and MQ (1-35) are divided by
the contents of storage location Y(1-35). The 35-bit
quotient replaces the contents of MQ(1-35) and the
remainder replaces the contents of AC (1-35). The MQ

sign is the algebraic sign of the quotient and the AC

sign is the sign of the dividend.
If the magnitude of Y is greater than the magnitude

of the AC, division takes place. If the magnitude of Y
is equal to or less than the magnitude of the AC, divi­
sion does not occur and the computer stops with the
divide check indicator on. For example, if AC (p) con­
tains a 1, the magnitude of Y is less than the AC con­
tents. If division does not occur, the dividend remains
unchanged in the AC and MQ. See Figure 14.

Divide or Proceed
(MIN I, E; MAX I, E, 5L)

DVP + 0221

Divide or proceed is the same as the divide or halt
(DVH) instruction with one exception: When division

does not occur (divide check condition), the computer
proceeds to the next sequential instruction. See Fig­
ure 14.

Variable-Length Division

Variable-length division is fixed-point division with an
operand of a length other than 35 bits. The decrement
of the instruction is used as the count field in variable­
length instructions. This count (c) is entered into the
sc to control the number of divide iterations per­
formed, thus specifying the number of significant
digits of the quotient. The count is usually less than
438 •

If a count of 431\ is used, the variable-length instruc­
tion will perform as a fixed-length instruction. A count
of 601\ or greater will cau.se an II A cycle (count extend­
ing into positions 12 and 13 of instruction), and the
count of the II A word will be set into the sc. However,
this is a program error as variable-length instructions
are not indirectly addressable.

Variable-length instructions are used to conserve
machine time. The number of positions in the quotient
is equal to the count and will be contained in the low­
order end of the MQ. See Figure 14.

Variable-Length Divide or Halt
(MIN I, E; MAX I, E, 5L)

VDH + 0224

Variable-length divide or halt is the same as the divide
or halt (DVH) instruction with the following exceptions:
The contents of the count field (c) determines the size
of the quotient in the low-order positions of the MQ.

The remainder replaces the contents of AC(1-35) and
the 35-c high-order positions of the MQ. If the count
field is zero, the computer will interpret the instruc­
tion as a no-operation, end op in E time, and proceed
to the next instruction. See Figure 14.

Variable-Length Divide or Proceed
(MIN I, E; MAX I, E, 5L)

VDP + 0225

Variable-length divide or proceed is the same as the
divide or proceed (DVP) instruction with the following
exceptions: The contents of the count field (c) deter­
mines the size of the quotient in the low-order posi­
tions of the MQ. The remainder replaces the contents
of AC(1-35) and the 35-c high-order positions of the MQ.

If the count field is zero, the computer will interpret
the instruction as a no-operation, end op in E time, and
proceed to the next instruction. See Figure 14.

Fixed-Point Arithmetic 15

Floating-Point Arithmetic

The range of numbers anticipated during a calculation
may be extremely large, extremely small or, in some
cases, unpredictable. Such situations make fixed-point
arithmetic difficult to work with for two reasons:

1. The size of the number is limited by the size of
the register (35 binary bits or 10 decimal digits).

2. The programmer must keep track of the point in
all numbers throughout the calculation.

To meet the needs of the large numbers and to keep
track of the point automatically, alternative arithmetic
instructions, called floating-point arithmetic instruc­
tions, are available.

Floating-point arithmetic is arithmetic dealing with
numbers in exponential form. The numbers 5.6 X 103

or 56000 X 10-4 have a familiar form. The numbers
are made of three parts: a fraction (5.6 or 56000), an
exponent (3 or -4), and a base (10).

Floating-point numbers in binary are similar to deci­
mal floating-point numbers. The major difference is
the base. Numbers in the 7094-II use 2 as a base be­
cause it is a binary computer. The other difference is
one of terms. Instead of a decimal point, we will call
it a binary point.

The following chart gives a comparison of fixed-point
binary numbers and floating-point binary numbers.

DECIMAL FIXED-POINT BINARY FLOATING-POINT BINARY

4
11

000 100 0.1 X 2°°1

001 001 0.1001 X 2100

Characteristic and Fraction

Because the 7094-II works in binary, all floating-point
numbers will be to the base 2. Therefore, to represent
a floating-point number in the computer, there is no
need to carry the base along with the number. This
limits our need to represent the fraction and the ex­
ponent. The exponent is represented in positions (1-8)
of the word and is now called the characteristic. The
fraction is contained in positions (9-35). The binary
point is to the left of the 9 bit. The sign position is
used to sign the fraction. Word layout takes this for­
mat:

I I Characteristic I Fraction
S, 1 89 35

The value of the number in the characteristic field sig­
nifies the exponent and its sign. The characteristic is
derived by adding 2008 to the exponent. If the char-

16

acteristic is 2008, the exponent is O. If the number is
201 to 377, the exponent is positive. If it is 0 to 177, the
exponent is negative. The following chart gives exam­
ples of exponential numbers and their floating-point
representation:

EXPONENTIAL BINARY FLOA TING-POINT

+ 0.1 X 2°11
- 0.01 X 2°°1

+ 0.1 X 2- 011

Sign Control

s
+
+

1-8
10000011
10000001
01111101

9-35
1000-----0
0100-----0
1000-----0

1. Addition: With unlike signs and equal factors, the
answer equals the sign of the original AC. In all other
cases, the answer equals the sign of the larger factor.

2. Subtraction: After the sign of the storage word is
inverted to the SR, the rules for addition apply.

3. Multiplication: Signs of factors alike, answer plus.
Signs of factors unlike, answer minus.

4. Single-precision division: Signs of factors alike,
quotient sign plus. Signs of factors unlike, quotient
sign minus. The remainder sign equals the original
dividend sign unless the dividend is zero. When the
dividend is zero, the remainder sign is set plus.

5. Double-precision division: On a divide check con­
dition, the MQ sign is set to equal the AC sign. In all
other cases, rules for addition apply.

Normal and Unnormal Numbers

A floating-point number is in normal form when the
digit immediately to the right of the point is a signifi­
cant bit (1). If this digit is a zero, the number is in
unnormal form. The exception to this rule is a normal
zero; a normal zero is a floating-point number whose
characteristic and fraction are both zero.

To process these two types of numbers, instructions
are divided into two categories, normal and unl1ormal.
The difference in computer operation is that the normal
instructions always attempt to produce a normal an­
swer and the unnormal instructions do not.

Zero Fraction

A floating-pOint number having a zero fraction is
treated in a variety of ways because the significance
of a zero fraction operand depends on the arithmetic
process to be performed. In addition and subtraction,
if one operand has a zero fraction, the fraction portion
of the answer will be the same as the non-zero fraction
operand. In the computer, a zero fraction operand has

no effect on the operation; the arithmetic is performed,
allowing normalization of the non-zero operand frac­
tion, if specified. If both operands contain a zero frac­
tion, the answer has no meaning and can not be nor­
malized, so the AC and MQ are reset to contain normal
zeros.

In multiplication, a zero fraction has a different
meaning and is treated differently. A zero fraction
multiplicand results in a product containing a zero frac­
tion: anything times zero equals zero. Likewise, a zero
raised to some power is still zero; thus the operation
is not performed as the result would be meaningless.
Also, a zero fraction can not be normalized. Conse­
quently, in a single-precision multiplication, a zero
fraction multiplicand causes the operation to be ter­
minated and the AC and MQ registers (both charac­
teristic and fraction) to be reset (a normal zero condi­
tion). However, the sign of this normal zero will be set
plus or minus as determined by the algebraic sign of
the product.

Effectively, a multiplier with a zero fraction has the
same meaning as a multiplicand with a zero fraction:
the result fraction will be zero. In a normalized single­
precision floating multiply (FMP) with a zero fraction
multiplier, the AC and MQ registers are reset to a
normal zero with an affixed algebraic sign. In an un­
normalized single-precision floating multiply (UFM)

with a zero fraction multiplier, the fractions are not
multiplied but the characteristics are added and the
product (AC and MQ) has the properly signed char­
acteristics with zero fractions.

In division, the divisor or the dividend could con­
tain a zero fraction. Each case has a different meaning
and is treated differently. If the divisor has a zero frac­
tion, the quotient cannot be determined; a divide­
check condition results and the operation is ended.
The dividend, however, remains unaltered in this case.
When the dividend contains a zero fraction, the quo­
tient will be zero and the operation is ended. However,
in this case, the associated characteristic positions of
the AC and MQ registers, which hold the result of a
division, are cleared.

The preceding discussion pertains only to zero frac­
tion operands. In multiplication and division, zero
fraction results are due to zero fraction operands and
have already been covered. In addition and subtrac­
tion, a zero fraction result is possible with non-zero
fraction operands. On a normalized addition or sub­
traction, a zero fraction result causes the AC and MQ

characteristics to be reset to zero. A zero fraction re­
sult of a unnormalized add or subtract does not reset
the characteristics, but sets the MQ characteristic 2710

less than the AC characteristic.

Arithmetic Operations

Addition of floating-point numbers is done by adding
the fractions of floating-point numbers that have equal
characteristics. The characteristics are set equal before
the addition by placing the number with the smallest
characteristic in the AC. The AC fraction is then
shifted right the number of places equal to the differ­
ence between the SR and AC characteristics (~). Bits
shifted out of AC (35) enter MQ (9), and bits shifted
out of MQ(35) are lost. After shifting stops, the AC and
SR fractions are added. The sum appears in the AC and
forms the most significant part of the answer. The
least significant part is the bits that were shifted into
the MQ. The MQ characteristic is set 2710 less than the
AC characteristic to complete an unnormalized floating
add. If it were a normalizing instruction, a check
would be made to see if a 1 were in AC(9). If AC(9)
does contain a 1, the operation would be complete; if
not, the AC would shift left until a 1 did appear in
AC(9). Shifting increases the number, so to keep it
the same, the characteristic is reduced by the number
of left shifts taken. Floating-point subtraction works
the same except that the fractions are subtracted.

Floating multiply is accomplished by multiplying
the fraction in the SR by the fraction in the MQ. The
exponents in multiply are added, so in a floating mul­
tiply, the computer adds the characteristics. Because
2008 had been added to each exponent originally, 200R

must be subtracted from the characteristic. The most
significant part of the product is in the AC and the least
significant part is in the MQ.

Floating-point divide is accomplished by dividing
the fraction of the dividend by the fraction of the
divisor and subtracting the characteristics. During the
subtraction of the characteristics, the 2008 that is
added to all exponents is lost. Therefore, before the
answer is final, 2008 must be added to the quotient
characteristic. The quotient appears in the MQ and the
remainder of the dividend in the AC. The remainder
characteristic will equal the original dividend char­
acteristic -2710 unless a quotient equal to or greater
than one condition (Q :> 1) existed in E time. When
Q :> 1 in E time, the remainder characteristic will equal
the original dividend characteristic -2610,

Floating-Point Controls
Because of the additional operations performed in
floating-point arithmetic, several control devices are
necessary. Adder separation circuits; a two-stage tally
counter; seven floating-add control triggers; a four­
stage double-precision synchronizer; and a character­
istic checking circuit are used to control the operations.

Floating-Point Arithmetic 17

Adder Separation

To separate the characteristic and fraction during a
floating-point instruction, the ability to send the AD(9)
carry to AD(8) is blocked; Systems 03.01.02.1 (4D).
On a floating-point instruction, the minus output of the
above block causes input to Systems 02.14.27.1 (IG),
pin Q, to go plus; thus blocking the "one to AD(9P)"
that is used during fixed-point operation. Systems
02.14.27.1 (2G) shows the four ways an AD(9) carry
(fraction carry) can increase the characteristic on
floating-point instructions.

Tally Counter

The tally counter (TC), which is normally reset to one,
is used for both single and double-precision floating
divide instructions. The final quotient characteristic is
computed on the first L cycle of such an instruction
after which the TC is stepped to a value of two. This
step occurs on the first L 7 (Dl) pulse on Systems
02.10.20.1 (3B). When the instruction operation is
ended, the TC is reset to one with an Al(Dl) pulse on
Systems 08.00.32.1 (3F).

FACT Triggers

The seven floating-add control triggers (FACT 1-7) are
used for various operations of single-precision floating­
point addition, subtraction, and multiplication. The
FACT triggers are also used in the control of all double­
precision floating-point arithmetic instructions. Follow­
ing is a list of the FACT triggers and their main func­
tions:

FACT 1: used for fraction alignment as determined
by the characteristic difference (.6.).

FACT 2: controls addition of the operands and sets
the SR characteristic into the AC.

FACT 3: complements the AC or adds one to its con­
tents, as determined by a fraction carry with unlike
signs during the previous FACT 2.

FACT 4: controls normalization, including adjustment
of the characteristic.

FACT 5: controls fraction overflow shifting, MQ char­
acteristic development, and end operation. FACT 5 is
used by all floating-point instructions excepting single­
precision floating divide and floating round.

FACT 6: controls complementing of the MQ fraction
for cases of unlike signs, where the SR fraction was
greater than the AC fraction, and the MQ fraction con­
tains significant data.

FACT 7: controls placement of the MQ data, which
was corrected in FACT 6, back into the MQ.

All FACT triggers are normally in the reset (off) con­
dition. See Figure 1 for FACT usage.

18

Type of FACT Number
Instruction

FAD, FSB

DFAD,DFSB

FMP

DFMP

DP FP Divide

A = Possible
B = Always

1

A

C

2 3 4

C A A

C A A

C A A

C = Always, unless E-End Op Condition

Figure 1. Fact Usage Chart

Double-Precision Sync COPS)

5

B

B

C

C

C

6 7 3&7

A A

A A A

A A

The double-precision sync controls the different phases
of all double-precision FP instructions. When DPS = 0,
various gates for single-precision FP operations are
operative, so it may be said that the DPS controls both
single and double-precision instructions. The opera­
tions performed under DPS control are explained in the
general descriptions of the three main types of double­
precision instructions.

Floating-Point Trap

During the execution of floating-point instructions, the
resultant characteristic in the AC and MQ may exceed
eight bit positions. The capacity is exceeded if the ex­
ponent goes above + 1778 or below - 2008• Over
+ 1778 is termed overflow while below - 2008 is
termed underflow. Floating-point overflow or under­
flow (spill) can occur in either (or both) of the AC

and MQ registers.
A unique system of spill identification called floating­

point trap is used to identify the instruction and the
register condition which cause a floating-point over­
flow or underflow. A floating-point trap is possible
only when operating in floating-point trap mode. The
FP trap mode trigger (Systems 02.10.71.1) is reset on,
thus the computer normally operates in this mode. To
leave this condition, a LFTM (leave floating-trap mode)
instruction must be executed. The normal mode of
operation may then be re-entered by resetting the com­
puter or executing a EFTM (enter floating-trap mode)
instruction.

When in floating-point trap mode and upon sensing
an overflow or underflow, the computer puts the loca­
tion plus one (of the FP instruction causing the spill)
into the address portion of location 0000. An identify­
ing code, telling whether an underflow or overflow
occurred, which registers are involved, and whether
the most significant result is in the AC or MQ, is put in
the decrement portion of location 0000. The decrement

positions used and the meaning of a 1 bit in these
positions are:

POSITION MEANING

14 Single-precision divide {MQ register is not an ex-
tension of the AC factor.}

15 Overflow in AC or MQ, or both registers.
16 AC overflow or underflow.
17 MQ overflow or underflow.

Refer to Figure 2 for possible spill codes resulting
from floating-point instructions. The following steps
show how characteristic overflow and underflow is
recognized and how the spill code is developed:

1. Underflow or overflow of the MQ characteristic is
detected by a bit in AD (p) as the MQ characteristic is
computed in the adders. MQ overflow trigger 1 is set on
if AD(p) equals 1 at this time, Systems 02.10.50.1 (3C).
If AD(Q) equals zero at this time, FP overflow trigger
1 is also set on to indicate it is an overflow condition,
Systems 02.10.50.1 (4F).

2. During the I cycle following the FP instruction,
underflow or overflow of the AC characteristic is de­
tected by a bit in AC(p). The FP trap trigger is set on if
AC(p) equals 1 at this time, Systems 02.10.50.1 (3A).
If AC (Q) equals zero at this time, FP overflow trigger
1 is also set on to indicate it is an overflow condition,
Systems 02.10.50.1 (3B). Note that the FP trap trigger
is also turned on in the I cycle following any FP instruc­
tion that turns on MQ overflow trigger 1 (as in the pre­
ceding step 1), Systems 02.10.50.1 (3A).

3. When the FP trap trigger is on, as a result of
steps 1 or 2 (or both), the trap sequence begins. Only
the development of the spill codes will be discussed.
Spill code development is the result of AC (p) status
and the various triggers that are on as a result of
steps 1 and 2.

FP Operation (with
possible types) Type

Floating Round (C) ~ A

Single and Double-
Precision: Add or B
Subtract (A, B, C);

) <

Multiply (A, B, C, D) C

Double-Prec ision D Divide (A,B,C)

{
E

Single-Precision F

Divide (E,F,G,H) G

H

Figure 2. Floating-Point Spill Codes

a. Bit 14: FP divide trigger, Systems 02.10.52.1 (3B).
This trigger is on whenever a single-precision
divide takes place.

b. Bit 15: FP overflow trigger 1, Systems 02.10.52.1
(3D).
This trigger on as a result of AD (p) and not AD (Q)
as the MQ characteristic is computed during the
FP instruction; or AC (p) and not AC (Q) in the I
cycle following the FP instruction.

c. Bit 16: AC(p) equals 1 in the I cycle following
the FP instruction.

d. Bit 17: MQ overflow trigger 1, Systems 02.10.51.1
(3G).
This trigger on as a result of AD (p) when the MQ

characteristic is computed during the FP instruc­
tion.

Single-Precision Floating-Point
Addition and Subtraction

These instructions algebraically add (or subtract) the
floating-point numbers in Y and in the AC placing their
sum (or difference) in the AC and MQ, with the result­
an t characteristic in the AC and a characteristic smaller
by 27}o in the MQ. The most significant portion of the
result is found in the AC and the least significant por­
tion in the MQ. Floating-point underflow or overflow
is possible. Refer to the FAD flow chart (Figure 15)
for the following discussion.

If AC (Q and p) are not equal to zero before the exe­
cution of these instructions, the result will usually be
incorrect. Non-zero bits inAc(Q or p), initially inter­
preted as part of the AC characteristic, make the AC

Decrement Position

AC MQ 14 15 16 17

- Unfl 0 0 0 1

Unfl Unfl 0 0 1 1

Ovfl - 0 1 1 0

Ovfl Ovfl 0 1 1 1

- Unfl 1 0 0 1

Unfl - 1 0 1 0

Unfl Unfl 1 0 1 1

- Ovfl 1 1 0 1

Floating-Point Arithmetic 19

characteristic larger than the SR characteristic so that
the SR and AC are always exchanged during E time.
During this exchange, a 1 will be placed in SR (s) posi­
tion if there is a 1 in AC(S or p) so that the sign of the
number may be changed. Any AC(Q) bit is lost and
both AC(Q and p) are cleared when the contents of
SR replace the contents of the AC. ,

E time objectives of a single-precision floating add
(or subtract) instruction are as follows:

1. Check the AC characteristic for a possible float­
ing-point trap condition (MQ underflow or AC over­
flow). If the preceding condition is possible, set the
overlap conflict trigger.

2. Put storage location Y into the SR, setting the SR

(s) position as determined by the specific instruction.
3. Reset the MQ.

4. Determine the characteristic difference (~).
a. If ~ equals 0, signs are alike, and one of the frac­

tions is normalized (it contains a 1 in the high­
order bit position); set FACT 2 to add the frac­
tions and "end op."

b. If ~ is less than 100R but does not meet all of the
above conditions, place the larger word into the
SR and the smaller word into the AC, set ~ into
the sc and if ~ is greater than 0, set FACT 1 for
lining up the fractions.

c. If ~ is greater than 778 and the larger fraction is
normalized, "end op," place the larger word into
the AC and set FACT 5 to compute the MQ charac­
teristic and sign.

d. If ~ is greater than 77R and the larger word is not
normalized, place the larger word into the SR,

reset the AC and MQ, and set FACT 2 which will
add the larger fraction to zero.

To determine the characteristic difference, the 2' s
complement of the AC characteristic is added to the SR

characteristic. Because of the complement addition of
the AC characteristic to the SR characteristic, a Q carry
indicates that the SR characteristic is equal to or greater

• than the AC characteristic. No Q carry indicates that
the AC characteristic is larger. Therefore, the word in
the SR is moved to the AC and the word in the AC is
moved to the SR to place the smaller word in the AC.

If ~ equals 0, signs are alike and one of the fractions
is normalized; the operation can be ended in E time.
The operation will be completed during E7 because
the sum will always be a normalized fraction, which
requires no post shifting for inormalization.

If ~ is less than l00s, a normal addition is performed
with one or more L time required.

If ~ is greater than 778, the resulting sum of the two
words is equal to the larger word because the smaller
word would eventually be shifted out of the AC and the
MQ. It takes 668 shifts to shift a bit from AC fraction

20

position (9) out through MQ fraction position (35).
~ is checked for 778 rather than 668 because it is easier
to do in the computer. To save machine time, the AC is
cleared rather than to allow shifting to take place. If
the larger fraction is normalized, the operation can be
ended in E time because the sum will be a normalized
number and the operation will be completed during E7.

5. Start FACT sequence. See Figure 3 for the FACT

sequence flow chart.
FACT 1 is used to equalize the characteristics and will

occur only if the characteristic difference (~) equals 1
or more. For correct operation, ~ should not equal
more than 1008 in order to set FACT 1; however, if
AC(Q and p) are not equal to zero at E5 time, it is pos­
sible to have a ~ of 101R or more and to set FACT 1.

This is possible as AC (Q or p) . equal to 1 blocks turn­
ing on the reset add trigger. With the preceding
thought in mind, it can be seen that a ~ of 3778 is pos­
sible, with a resulting FACT 1 duration of 12810 clock
pulses.

Equalizing the characteristics is accomplished by
right shifting the AC and MQ fractions the number of
places equal to ~. With the sc equal to ~ at the start of
FACT 1, the following operation occurs: On any clock
pulse that the sc equals 3 or more, the AC and MQ are
shifted right 2 places and the sc stepped down 2 places.
On any clock pulse that the sc equals 2, the AC and MQ

are shifted right 2 places, the sc stepped to zero, and
FACT 2 is set. On any clock pulse that the sc equals 1,
the AC and MQ are shifted right 1 place, the sc stepped
to zero, and FACT 2 set.

FACT 2 controls the algebraic addition of the two
fractions as follows:

1. Regardless of signs: The MQ fraction is sent into
the SR for zero testing and to facilitate recomplement­
ing the MQ in FACT 6 if necessary.

2. Signs alike: Add the SR fraction to the AC fraction
and set the sum into the AC along with the SR charac­
teristic. If a fraction carry occurs as a result of the ad­
dition, turn on the carry trigger to remember that the
AC and MQ are to be shifted right 1 place in FACT 5.

AD(9Q) is sent to AC(9P) to hold any fraction carry so
it can be shifted back into AC(9) in FACT 5. AD(9P) is
allowed to carry into AD (8) to increase the character­
istic of the sum if a fraction carry occurs. On a normal
instruction, with no fraction carry, and without a two­
cycle add condition, FACT 4 will be set. If it is an un­
normal instruction, or a normal instruction with a frac­
tion carry, or a two-cycle add condition (pre-end op),
FACT 5 will be set.

3. Signs unlike: Add the SR fraction to the 1's com­
plement of the AC fraction and set the sum into the AC

along with the SR characteristic.

2 Cycle Add
Condition

'\

E5
End Op

E6
Fact 2

E7
Fact 5

Yes

FAD
E Time

I
No 6= Zero

Signs Alike
SR or AC(9)=1 Reset Add

Condition ~

~Larger Numbe~ 1\ Normal /

E5
End Op

~ Normal~
I \ Instruction r

Fraction
Overflow

Yes

Yes

Yes

~ ~-----'
Fact 4

Fact 5

Figure 3. FAD; Fact Sequence Chart

Fact Number

1.
2.
3.
4.
5.

6,7.

Fact 1

Fact 2

Signs Alike

Equal ize Characteristics
Add Fractions
Correct AC
Normalize
Adjust MQ Char and End Op
Com pi ement MQ

No

No

}

1
6=Z.,o r

~ ____ J

1st Cycle
at E7 (if
necessary)

Occurs at E7 if no
~ Fact 1 and not 2

Cycle Add Condition

No

AC;; SR
No

1
Yes

MQ = Zero

No

Fact 3

Normal
Instruction r

~-----'

~

Fact 4

I
No

AC(9)=One

Fact 5

I
Yes Normal

Instruction

Yes

No

Fact 6

Fact 7

No

Fact 5

Floating-Point Arithmetic 21

a. With fraction carry: An AD(9P) carry turns on the
carry trigger to remember that in FACT 3 the addi­
tion result in the AC is in true form. With the AC

in true form, the AC sign must be made the same
as the SR sign, so the· SR (s) to AC (s) trigger is
turned on. If the MQ fraction equals zero, FACT 3

is set to adjust the AC, making it the result of a 2's
complement addition instead of a 1's complement
addition. This is done by adding 1 to the AC dur­
ing FACT 3. If the MQ fraction is not zero, FACT 6 is
set to recomplement the MQ fraction.

b. No fraction carry: No AD(9P) carry means the ad­
dition result in the AC is in complement form, so
FACT 3 is set to recomplement the AC fraction.

FACT 3 can only occur with unlike signs and is used
to correct the AC contents as determined by carry trig­
ger status. With the carry trigger off, FACT 3 recomple­
ments the AC fraction and sets FACT 4 or 5 as determined
by the specific instruction. With the carry trigger on,
FACT 3 adds 1 to the true 1's complement result in the
AC, thus making it a true 2's complement result. FACT 4

or 5 is then set as determined by the instruction.
FACT 4 is used to normalize the sum in the AC by

shifting the AC and MQ left until AC(9) equals 1. AC

characteristic underflow is possible as each left shift of
one decreases the AC characteristic by one.

If AC(9) equals 1 as FACT 4 is entered, no shifting
takes place and FACT 5 is set. This is possible under the
three following sets of conditions:

1. Normal instruction, like signs, and no fraction
carry in FACT 2.

2. Normal instruction, unlike signs, and no fraction
carry in FACT 2.

3. Normal instruction, unlike signs, fraction carry in
FACT 2, and MQ equal to zero. Steps 2 and 3 came from
FACT 3, step 1 from FACT 2. The only other entry point
to FACT 4 is from FACT 7, where AC(9) must equal zero
on a normal instruction.

If the AC and MQ fractions equal zero as FACT 4 is en­
tered, FACT 5 is set. Since AC(9 and 10) are also zero,
the AC and MQ are shifted left two places and the AC

characteristic is decreased by 2; however, shifting zeros
has no effect and reducing the AC characteristic has no
effect as FACT 5 resets the AC and MQ characteristics
when the AC and MQ fractions equal zero.

On any clock pulse where AC(10) equals 1 and AC(9)
equals zero, only one shift is taken; FACT 5 is set. On
any clock pulse where AC (11) equals 1 and AC (9 and 10)

equals zero, two shifts are taken; FACT 5 is set.
FACT 5 is used to set the pre-end op trigger if it is not

already on; to set the correct sign into the AC and MQ;

to adjust the MQ characteristic (or reset the AC and MQ

characteristics to zero); to shift the AC and MQ frac-

22

tions right 1 place if there was a fraction carry with like
signs in FACT 2; and to check for a floating-point trap
condition.

l. Set pre-end op trigger to end op on the next L5
pulse.

2. With unlike signs in FACT 2, if a fraction carry
occurs (AC < SR), the SR (s) to AC (s) trigger is set on.
In FACT 5, with the SR (s) to AC (s) trigger on, and the
AC and MQ fractions are not zero, the SR(s) is set into
the AC and MQ signs; or, if the preceding conditions are
not met, the AC (s) is set into the MQ (s) .

3. On a normal instruction, with no fraction carry in
FACT 2, and when the AC and MQ fractions equal zero,
the AC and MQ characteristics are reset; or, if the pre­
ceding conditions are not met, the MQ characteristic is
set to a value 2710 less than the AC characteristic.

4. With signs alike, and a fraction carry occurs in
FACT 2, FACT 5 shifts the AC and MQ right 1 place. This
puts the carry bit located in AC(9P) into AC(9) thus
normalizing the AC contents.

5. When the MQ characteristic is set 2710 less than
the AC characteristic, MQ underflow is possible. FACT 5

checks for this condition and if present, sets the FAD MQ

overflow trigger on.
FACT 6 is used to complement the MQ fraction and

can only occur when the three following conditions are
met:

1. Signs unlike (causes 1's complement addition in
FACT 2).

2. AC sum in true form (fraction carry) .
3. MQ fraction not equal to zero (FACT 1 occurred

and shifted at least one significant bit into the MQ) .

Complementing the MQ with the 2's complement is
the same as making a 2' s complement addition of the
MQ to all zeros. The MQ contains the low-order posi­
tions of the original AC. Since the 1's complement addi­
tion of the AC gave a true result, a 2's complement ad­
dition to zeros will give the correct result for the MQ

portion of the answer.
The following example shows a computer using six­

bit registers, with signs unlike, and with Significant bits
in the MQ as a result of FACT 1. At the start of FACT 2, the
register contents are:

SR 001 101 = 158
AC 001 010 = 128 (high-order position of original AC)
MQ llO 000 = 60s (low-order pos~tion of original AC)

FACT 2 operation

AC 001 010
AC llO 101 (signs unlike)
SR 001 101

A9t000 010 = 2s

9P carry }
MQ ¥= zero Set FACT 6

FACT 6 operation

MQ llO 000

MQ 001 Ill} , 1 2 s complement MQ
.."..-:-::::--:::~~~
MQ 010 000 = 208

The final result found in the combined AC-MQ regis­
ters is: 21208.

PROOF

I I
SR 151008 = 1310010

AC-MQ 121608 = 1017510
I I

AC-MQ 21208 = 2, 2510

FACT 7 always follows FACT 6 and puts the corrected
MQ fraction back into the MQ. FACT 4 or 5 is then set as
conditions require.

Floating Add FAD + 0300
(MIN I, E; MAX I, E, 8l)

The floating-point numbers in Y and the AC are alge­
braically added together. The most significant portion
of the result appears as a normal floating-point number
in the AC. The least significant portion of the result ap­
pears in the MQ as a floating-point number with a char­
acteristic 2710 less than the AC characteristic. The signs
of the AC and MQ are set to the sign of the larger fac­
tor. The sum in the AC and MQ is always normalized
whether the original factors were normal or not. If the
contents of AC(1-35) contain zeros, the FAD instruction
may be used to normalize an unnormal floating-point
number. Floating-point underflow or overflow is possi­
ble. Refer to the FAD flow chart (Figure 15) and to the
preceding discussion on single-precision FP addition
and subtraction for detailed machine operation.

Unnormalized Floating Add
(MIN I, E; MAX I, E, 5l)

UFA - 0300

The floating-point numbers in Y and the AC are alge­
braically added together as in a FAD instruction. No
attempt is made to normalize; thus the result may be
an unnormal number. Floating-point underflow or over­
flow is possible. See Figure 15.

Floating Add Magnitude
(MIN I, E; MAX I, E, 8l)

FAM + 0304

This instruction algebraically adds the positive magni­
tude of the floating-point number in Y to the signed
floating-point number in the AC, and normalizes the re­
sult. Floating-point underflow or overflow is possible.
See Figure 15.

Unnormalized Floating Add Magnitude UAM - 0304
(MIN I, E; MAX I, E, 5l)

This instruction algebraically adds the positive magni­
tude of the floating-point number in Y to the signed
floating-point number in the AC. No attempt is made to
normalize; thus the result may be an unnormal num­
ber. Floating-point underflow or overflow is possible.
See Figure 15.

Floating Subtract FSB + 0302
(MIN I, E; MAX I, E, 8l)

This instruction algebraically subtracts the floating­
point number in Y from the floating-point number in
the AC and normalizes the result. Floating-point under­
flow or overflow is possible. See Figure 15.

Unnormalized Floating Subtract
(MIN I, E; MAX I, E, 5l)

UFS - 0302

This instruction algebraically subtracts the floating­
point number in Y from the floating-point number in
theAc. No attempt is made to normalize; thus the re­
sult may be an unnormal number. Floating-point un­
derflow or overflow is possible. See Figure 15.

Floating Subtract Magnitude
(MIN I, E; MAX I, E, 8l)

FSM + 0306

This instruction algebraically subtracts the positive
magnitude of the floating-point number in Y from the
signed floating-pOint number in the AC and normalizes
the result. Floating-point underflow or overflow is pos­
sible. See Figure 15.

Unnormalized Floating Subtract Magnitude
(MIN I, E; MAX I, E, 5l) USM - 0306

This instruction algebraically subtracts the positive
magnitude of the floating-point number in Y from the
signed floating-point number in the AC. No attempt is
made to normalize; thus the result may be an unnor­
mal number. Floating-point underflow or overflow is
possible. See Figure 15.

Floating Round
(I, l)

FRN + 0760 ... 0011

Floating-point add, subtract, and multiply instructions
produce a double-word result. The instruction FRN
adds 1 to AC(35) if MQ(9) equals l. (When MQ(9)
equals 1, the MQ fraction is equal to or exceeds half the
magnitude of a I-bit in AC position 35.) If adding a 1
to AC (35) results in a 9P carry, the AC is corrected by
adding 1 to the AC characteristic; shifting AC(9-34) right
one place; and putting the 9P carry into AC(9). Floating­
point overflow is possible. See Figure 17.

Single-Precision Floating-Point Multiplication
In single-precision FP multiplication, the floating-point
number in the SR (multiplicand) is multiplied alge­
braically by the floating-point number in the MQ (mul­
tiplier). The product is placed in the AC and MQ. The
characteristic of the product is contained in AC (1-8) ,

Floating-Point Arithmetic 23

the most significant portion of the product fraction in
AC (9-35), and the least significant portion in MQ (9-85) •

MQ (1-8) contains the AC characteristic minus 2710• With
like signs, the product signs are set plus. On unlike
signs, the product signs are set minus.

Two separate operations are performed during a
Hoating-point multiplication; the characteristics are
added and the fractions are multiplied. As in all Hoat­
ing-point operations, the value 2008 is the dividing line
between positive and negative characteristics (expo­
nents). Because both characteristics contain this value,
2008 is subtracted from the sum during the character­
istic addition. Fraction multiplication during Hoating­
point arithmetic is similar to fixed-point multiplication
with AD(9P,9Q) corresponding to AD(P,Q) and AC(9P)

serving the same function as AC(p) in fixed-point;
MQ(9,10) corresponds to MQ(1,2) in fixed-point arith­
metic.

Floating Multiply FMP + 0260
(MIN I, E; MAX I, E, 2L)

The contents of Yare multiplied by the contents of the
MQ. The most significant part of the product appears
in the AC and the least significant part appears in the
MQ. The product of two normalized numbers is in nor­
malized form. If either of the numbers is not normal­
ized, the product may be in unnormalized form. Float­
ing-point underHow or overflow is possible. Refer to
the FMP How chart (Figure 16) for the following dis­
cussion.

l. The product signs are algebraically set whether
multiplication takes place or not.

2a. If the MQ fraction (multiplier) or the SR fraction
(multiplicand) are equal to zero, AC(Q-85) and
MQ(I-85) are reset to zero and the computer proceeds
to the next instruction.

2b. If the MQ or SR are not zero, the sum of the char­
acteristics, minus 2008, is placed in AC(1-8) forming the
final product characteristic.

3. If multiplication takes place, SR(9-85) is multiplied
by MQ (9-35). The 27 most significant bits of the 54-bit
product replace the contents of AC (9-85) and the 27
least significant bits replace the contents of MQ (9-85) •

4. If AC(9) equals zero after multiplication takes
place, the contents of AC (10-85) and MQ (9-35) are
shifted left one place and the AC characteristic is re­
duced by 1.

5a. After multiplication is finished AC(9-85) is tested
for zero in FACI' 5. If this high-order portion of the
product equals zero, the AC and MQ characteristics are
reset to zero.

5b. If AC(9-85) does not equal zero, the MQ charac­
teristic is set 2710 less than the AC characteristic.

24

Unnormalized Floating Multiply
(MIN I, E; MAX I, E, 2L)

UFM - 0260

The floating-point number in Y is multiplied by the
floating-point number in the MQ. No attempt is made
to normalize; thus the result may be an unnormal num­
ber. Floating-point underflow or overflow is possible.
See Figure 16. This instruction is the same as FMP with
the following exceptions:

l. If the MQ fraction (multiplier) is zero, the pre­
end op trigger is not set, as on a FMP instruction, but
instead the sc is reset to zero. The sc equal to zero pre­
vents fraction multiplication but does allow the addi­
tion of the characteristics.

2. No attempt is made to normalize the multiplica­
tion result.

3. If AC(9-85) equals zero after multiplication is fin­
ished, FACI' 5 does not reset the AC and MQ characteris­
tics as in FMP, and the MQ characteristic is set 2710 less
than the AC characteristic.

Single-Precision floating-Point Division
In single-precision FP division, the floating-point num­
ber in the AC (dividend) is divided by the floating­
point number in storage (divisor) as deSignated by the
address of the . instruction. The MQ register (S-85) is
initially reset, whereas this is not true in fixed-point or
double-precision division. In floating-point division,
the fraction of the dividend is divided by the fraction
of the divisor to obtain the quotient fraction of the re­
sult. Division of the fractions is similar to fixed-point
division. A floating-point remainder of the dividend, if
any, is left in the AC. The sign of the quotient (MQ) is
set algebraically as determined by the signs of the AC

and SR. The sign of the remainder (AC) is the same as
the sign of the original dividend unless the dividend
fraction was zero, in which case the AC sign is set
positive.

The exponents in a division are subtracted. There­
fore, the characteristic of the MQ (quotient) is deter­
mined by subtracting the SR characteristic (divisor)
from the AC characteristic (dividend). The extra 2008

in each exponent is lost in the subtraction of the AC

and SR characteristics so 2008 must be added to the
final MQ characteristic. The characteristic of the re­
mainder in the AC is set 2710 less than the original divi­
dend characteristic.

If the initial factors are normalized floating-point
numbers, the quotient will also be normal. However,
no attempt is made to normalize the result.

The dividend fraction (AC) cannot be twice as large
as the divisor fraction (SR). If it is two or more times
greater, the divide check indicator is turned: on, divi-

sion does not take place and the contents of the AC will
remain unchanged.

If the dividend fraction, AC (9-35), is zero, actual divi­
sion does not take place, and the AC is reset to a normal
zero, with a plus sign. If a divide check condition ex­
isted along with the AC fraction being zero, the divide
check indicator is turned on in addition to resetting
the AC.

Division of the fractions is done in the same manner
as a fixed-point division except only 2710 reductions are
attempted in floating-point because the fraction is con­
tained in 2710 positions.

Single-precision floating divide uses the first step of
the tally counter to develop the final quotient charac­
teristic. The minimum cyclic time of a single-precision
floating divide is I,E where division does not take
place, or a maximum I,E, and 4L cycles when division
does take place. One reduction attempt is performed
each clock pulse, starting with the first LO pulse. The
last reduction occurs on the fourth L2 pulse at which
time the shift counter is stepped to zero. See Figure 21.

Floating Divide or Halt
(MIN I, E; MAX I, E, 4L)

FDH + 0240

The floating-point number in the AC is divided by the
floating-point number in Y. The quotient appears in
the MQ and the remainder in the AC. The quotient is in
normal form if both the dividend and divisor are in
normal form. Floating-point underflow or overflow is
possible. See Figure 21 for the following discussion.

1. The MQ sign is set to the algebraic sign of the quo­
tient under all conditions.

2. Unless the following step 3 occurs, the AC sign re­
mains unchanged, so that the signs of the remainder
and dividend always agree.

3. If the AC fraction (dividend) equals zero, the AC

sign and the AC and MQ characteristics are set to zero.
The computer then proceeds to the next instruction,

unless a divide check condition exists, in which case
the computer halts with the divide check light on.
(Note: With the AC fraction equal to zero, a divide
check condition can occur only if the SR fraction is also
zero.)

4. If the AC fraction is equal to or greater than twice
the divisor fraction (AC 5= 2' SR) , the divide check
light turns on and the computer halts. The dividend is
left unchanged and the MQ is left a signed normal zero.

5. If division does take place, the quotient charac­
teristic is set into MQ (1-8). This characteristic value is
the result of subtracting the SR characteristic from the
AC characteristic and then adding 2008 to the differ­
ence. Refer to step 7.

6. After division is completed, the original dividend
characteristic minus 2710 is set into AC(1-8), thus set­
ting the remainder characteristic. Refer to step 7.

7. In steps 5 and 6, the characteristic values may
be 1 higher than stated. If so, it is the result of the
AC being equal to or greater than the SR before the first
divide reduction cycle. This condition is referred to as
a quotient equal or greater than one (Q 5= 1) condition.

On a Q 5= 1 condition, the AC characteristic is in­
creased by 1 before any characteristic computing is
done. Increasing the AC characteristic by 1 is effectively
the same as shifting the AC left 1 place. If the Q 5= 1

condition does not exist, the AC and MQ are shifted left
1 place before divide reduction cycles take place.

Floating Divide or Proceed
(MIN I, E; MAX I, E, 4L)

FOP + 0241

The floating-point number in the AC is divided by the
floating-point number in Y. This instruction operates
the same as the FDH instruction except that on a divide
check condition, the computer does not halt but pro­
ceeds to the next instruction with the divide check
light on. The divide check condition may be tested at
some later time by the DCT instruction. See Figure 21.

Floating-Point Arithmetic 25

Double-Precision Floating-Point Arithmetic

The purpose of floating-point arithmetic is to improve
the handling of very large or very small numbers rap­
idly and accurately. When a fixed-point fraction is
changed to floating-point form, the resulting fraction
may exceed 27 bits. In the 7094-II, circuits which ac­
commodate the longer-length fraction are used when
operating with double-precision instructions. Double­
precision doubles the fraction-handling capacity there­
by doubling the precision of the result. The end result
of a double-precision floating-point number is a prod­
uct consisting of characteristic and fraction, the frac­
tion being 54 bits long.

In all double-precision arithmetic instructions, the
most significant 27 bits of the answer are contained in
the AC and the least significant in the MQ. The charac­
teristic is contained in AC(1-8), and the characteristic
-27 is contained in MQ(I-8).

When a double-precision instruction is referenced to
a location in memory (Y), that location will be placed
in the storage register (SR) and the next location (Y+1)
will be placed in the instruction backup register (IBR).

This double-precision number, consisting of two se­
quential memory locations, is called the addressed
operand.

The first memory location referenced (Y) contains
the addressed operand sign, characteristic, and high­
order fraction. The second memory location is auto­
matically referenced and will be one address higher
than the first location referenced. It is assumed that the
sign of the second location equals the sign of the first
location and that the characteristic equals the charac­
teristic -27 of the first location. Only the fraction bits
of the second location are used; these bits form the
low-order fraction of the addressed operand. The ad­
dressed operand is placed in the storage register (SR)
and the instruction backup register (IBR).

The second double-precision floating-point number
is called the implied operand and will be initially lo­
cated in the AC and MQ. This implied operand consists
of the sign, characteristic, and high-order fraction lo­
cated in the AC, and the low-order fraction located in
the MQ. The MQ sign is assumed equal to the AC sign,
and the MQ characteristic is assumed equal to the AC

characteristic -27. The most significant portion of the
implied operand will be in the AC and the least signifi­
cant in the MQ.

The MQ is assigned a characteristic 2710 less than the

26

AC characteristic because the fraction contained in
MQ (9-35) is displaced 27 positions to the right of the
accumulator binary point, which is the point just to the
left of AC (9) .

On all double-precision instructions, the sense indi­
cator (SI) register is used for temporary storage during
register exchanging and various addition, multiplica­
tion, and divide operations. This causes the destruction
of any information contained in the SI register at the
beginning of a double-precision instruction.

Since the IBR is used for all double-precision instruc­
tions, overlap is not possible during their E or L cycles.

The format at the start of a double-precision instruc­
tion, showing register contents, is as follows:

I: A I
S,l 89 35

AC

I! n-27 ! I
S,l 89 35

MQ

I! m ! C I
s, 1 89 35

SR

I! m-27 ! D I
S,l 89 35

IBR

Where:
1-8 contains the characteristic, and 9-35 the fraction.
AC = A . 2n, the most significant part of the implied

operand.
MQ = B . 211 - 27, the least significant part of the im­

plied operand.
SR = C . 2m , the most significant part of the ad­

dressed operand.
IBR = D . 2m - 27, the least significant part of the ad­

dressed operand.
For convenience, regroup the numbers into character­
istic and fraction where:

A = A characteristic and A fraction (A . 211)
B = B characteristic and B fraction (B . 211 - 27)

C = C characteristic and C fraction (C . 2m)

D = D characteristic and D fraction (D . 2m - 27)

Double-Precision Floating-Point
Addition and Subtraction
These instructions add (or subtract) A . 2n + B . 2n - 27

to C . 2m + D . 2m - 27 and place their sum (or differ­
ence) in the AC and MQ with the resultant characteristic
in the AC and a characteristic smaller by 2710 in the
MQ. These instructions assume that A . 2n and B . 2n - 27

have been previously placed in the AC and MQ respec­
tively and that C . 2m and D . 2m - 27 are in consecutive
locations in memory. For a simplified flow chart of
these operations, refer to Figure 4.

Two sets of controls are used in double-precision ad­
dition and subtraction. The floating-add control trig­
gers (FACT 1-7) are used as in single-precision but with
certain modifications. The double-precision sync (DPS)

modifies FACT operations and also controls data move­
ment before and after additions. FACT 4 is the only FACT

not modified by the DPS.

DPS 0 controls the E time and first LO movements of
data in preparation for the first add. At the end of LO
time, the larger of the two operands will be in the Sl

and SR, with the smaller operand in the MQ and AC.

They will appear in one of the following two forms.

SI SR

l. CD· 2m

2. A B· 2n

AC MQ Figure Reference

B . 2n A Figure 18, Chart 1
D . 2m C Figure 18, Chart 2

At the end of LO, FACT 1 is set for pre-normalization
and the DPS is stepped to one. An E time end op may
occur if the characteristic difference is greater than 778
and the larger of the two operands is normalized. When
this occurs, the larger' of the two operands is placed in
the AC and MQ and FACT 5 is set to complete the opera­
tion. See Figure 18, Charts 3 and 4.

DPS 1 controls pre-normalization (FACT 1) and first
add (FACT 2). During FACT 1, MQ (35) is shifted to
AC(9) and the AC(35) to MQ(9) gates are blocked. Dur­
ing FACT 2, a two's complement add is performed if the
signs are unlike instead of the one's complement add of
single-precision. Single-precision controls place the
contents of MQ(9-35) in the SR during FACT 2. The AC

and SR fractions are exchanged following FACT 2 and
the DPS is stepped to complete the operand relocation
in preparation for the second addition. Figure 18
(Chart 5) shows all the register exchanges that occur
when the DPS is not zero. DPS 2 is used to complete the
operand relocation in preparation for the second add.
SI (9-35) and SR (9-35) are exchanged, the DPS is stepped
and FACT 2 is set for the second addition.

DPS 3 controls the second add, MQ adjust, normaliza­
tion, and end operation functions. During FACT 2, any
AD(9) carries which were generated under DPS 2 con­
trol are now treated as carries into AD (35). If a true
add is being performed, the operation will proceed to

FACT 4 for normalization or to FACT 5 if normalization is
not required. All single-precision decisions during
these controls are valid. If a complement add is being
performed in FACT 2, the single-precision decisions do
not apply as they are based on a one's complement ad­
dition. If a 9 carry occurs during this complement add,
it indicates that the answer in both the MQ and AC are
in true form except that their contents must be checked
for zero. If this condition occurs, FACT 4 is set for post
normalization. If a complement add is being performed

. and an AD(9) carry does not occur, it indicates that the
MQ and AC are in two's complement form and must be
corrected. MQ (9-35) is set into SR (9-35) by the single­
precision controls of FACT 2 and FACT 6 is set. During
FACT 6, the complement of SR (9-35) is gated to AD (9-35)

along with a carry to AD (35) and AD (9-35) is gated to
SR (9-35). The carry trigger is turned on if a carry re­
sulted and FACT 7 and FACT 3 are set. During FACT 7,

SR (9-35) is gated to MQ (9-35) and comp AC (9-35) is
gated to AD(9-35) along with the carry trigger. AD(9-35)

is then gated to AC(9-35) and FACT 4 or 5 is set, depend­
ing on normalization requirements. The instruction is
then completed under single-precision controls. See
Figure 19.

Double-Precision FP Add
(MIN I, E; MAX I, E, 11 l)

DFAD + 0301

The double-precision floating-point number in Y and
Y + 1 is algebraically added to the double-precision
floating-point number in the AC and MQ. The most sig­
nificant portion of the result appears in the AC, and the
least significant in the MQ. The sign of the result is the
sign of the larger operand. The result is always nor­
malized whether the original operands were normal or
not. Floating-point underflow or overflow is possible.
See Figure 19.

Double-Precision Unnormalized FP Add
(MIN I, E; MAX I, E, 8l) DUFA - 0301

The double-precision floating-point number in Y and
Y + 1 is algebraically added to the double-precision
floating-point number in the AC and MQ. No attempt is
made to normalize, thus the result may be an unnormal
number. Floating-point underflow or overflow is possi­
ble. See Figure 19.

Double-Precision FP Add Magnitude
(MIN I, E; MAX I, E, 11 l)

DFAM + 0305

The positive magnitude of the double-precision float­
ing-point number in Y and Y + 1 is algebraically added
to the signed double-precision floating-point number
in the AC and MQ. The result is normalized. Floating­
point underflow or overflow is possible. See Figure 19.

Double-Precision Floating-Point Arithmetic 27

28

A
C

D
C

Figure 4. DFAD; Simplified Flow Chart-Sheet 1 of 2

Add (A+C)

If Necessary
;:'l/ to Recomp MQ

in Fact 6

Follow Single Precision
(Fact 5 or 4,5)

Figure 4. DFAD; Simplified Flow Chart-Sheet 2 of 2

Double-Precision Unnormalized FP Add Magnitude
(MIN I, E; MAX I, E, 8L) DUAM - 0305

The positive magnitude of the double-precision float­
ing-point number in Y and Y + 1 is algebraically added
to the signed double-precision floating-point number
in the AC and MQ. No attempt is made to normalize,
thus the result may be an unnormal number. Floating­
point underflow or overflow is possible. See Figure 19.

Double-Precision FP Subtract
(MIN I, E; MAX I, E, 11 L)

DFSB + 0303

The double-precision floating-point number in Y and
Y + 1 is algebraically subtracted from the double-pre­
cision floating-point number in the AC and MQ. The re­
sult is normalized. Floating-point underflow or over­
flow is possible. See Figure 19.

Double-Precision Unnormalized FP Subtract
(MIN I, E; MAX I, E, 8L) DUFS - 0303

The double-precision floating-point number in Y and

Y + 1 is algebraically subtracted from the double-pr~
cision floating-point number in the AC and MQ. No at­
tempt is made to normalize, thus the result may be an
unnormal number. Floating-point underflow or over­
flow is possible. See Figure 19.

Double-Precision FP Subtract Magnitude
(MIN I, E; MAX I, E, 11 L) DFSM + 0307

The positive magnitude of the double-precision float­
ing-point number in Y and Y + 1 is algebraically sub­
tracted from the signed double-precision floating-point
number in the AC and MQ. The result is normalized.
Floating-point underflow or overflow is possible. See
Figure 19.

Double-Precision Unnormalized FP Subtract Magnitude
(MIN I, E; MAX I, E, 8L) DUSM - 0307

The positive magnitude of the double-precision float­
ing-point number in Y and Y + 1 is algebraically sub­
tracted from the signed double-precision floating-point
number in the AC and MQ. No attempt is made to nor­
malize, thus the result may be an unnormal number.
Floating-point underflow or overflow is possible. See
Figure 19.

Double-Precision Floating-Point Multiplication
The object of a double-precision floating-point multi­
ply instruction is to multiply the addressed operand
located in Y and Y + 1 by the implied operand in the
AcandMQ.

If the multiplier is denoted by A . 2n + B . 2n - 27

and the multiplicand is denoted by C . 2m + D . 2m - 27

the following arithmetic operation is performed.
(C· 2m +D' 2m - 27). (A, 2n +B' 2n - 27)

The computer performs two multiplications, an add,
a third multiplication, a second add, and ends with
the answer in the AC and MQ. A possible fourth multi­
plication (B . D) is not performed as the product is
insignificant with a 54-bit fraction.

During E time; A and B, C and D, and A and Care
tested to see if they are equal to zero. A zero combin­
ation of any of these will result in a zero product, so
the operation is terminated at the end of E time and
the registers are set to a normal zero. The signs of the
product are also set during E time and the fractions .
are moved in preparation for the first multiply (B . c).

DPS 0 controls the first multiply and the following
register swap in preparation for the second multiply
(A . D).

DPS 1 controls the second multiply and the following
register swaps in preparation for the third multiply
(A . c). The addition of (B . c) + (A . D) is also done
during the register swapping. If a carry results from

Double-Precision Floating-Point Arithmetic 29

this addition, it is remembered by stepping the DPS

one extra time.
DPS 2 OR 3 controls the third multiply (A • C). If the

DPS equals 3 at the end of the third multiply, it means
a carry occurred on the sum of (B . c) + (A . D) and
must be added to the final product. If no carry oc­
curred, the DPS will equal 2 at the end of the third
multiply with the product in its final form except for
normalizing which is done during DPS 2 or 3 if required.
FACT 5 controls the MQ characteristic computation and
the zero testing of the fractions.

The DFMP flow chart (Figure 20) can be briefly
summarized as follows:

1. Add characteristics of the two floating-point oper­
ands (m + n - 200).

2. Multiply the original MQ fraction by the fraction
of Y (B . c).

3. Multiply the original AC fraction by the fraction
of Y + 1 (A . D).

4. Add the products of steps 2 and 3 (B . C + A . D).
5. Multiply the original AC fraction by the fraction

of Y (A . c).
6. Add the product of step 5 to the sum of step 4

[A . C + (B . C + A . D)].

7. Adjust MQ characteristic.
Three types of instructions use floating-point multi­

ply cycles (Figure 16, sheet 2 of 2) to obtain their
desired result: single and double-precision multiplica­
tion, and double-precision division. The timings in­
volved are shown in Figure 5.

338 - sc (14 Clk Pulses Each Mpy)

Instruction Type Turn On MfY Step SC
Cycle Tgr 1 By 1- Zero

Single-Precision E6 2nd L4 Multiply

Double-Precision
Multiply

1st Mpy (B'C) E6 2nd L4

2nd Mpy (A·D) 3rd L3 5th L1

3rd Mpy (A'C) 5th L7 7th L5

Double-Precision 5th LO 6th L6 Divide (Ql'D)

Figure 5. Timing of Floating-Point Multiply Cycles

Double-Precision FP Multiply
(MIN I, E; MAX I, E, 7L)

DFMP + 0261

The double-precision floating-point number in Y and
Y + 1 is multiplied by the double-precision floating­
point number in the AC and MQ. The most significant

30

part of the product appears in the AC and the least
Significant in the MQ. The product of two normalized
numbers is in normalized form. If either number is not
normalized, the product may be in unnormalized form.
Floating-point underflow or overflow is possible. Refer
to Figure 20 for the following steps:

1. The product signs are algebraically set whether
multiplication takes place or not.

2a. If the multiplier (A, B) or the multiplicand
(C, D) is a normal zero, or the high-order fractions of
both (A, C) are zero, the AC and MQ are reset to a
signed normal zero and the computer proceeds to the
next instruction.

2b. If step 2a is not true, three multiplications take
place: (B . c), (A . D), and (A . c). The low-order
parts of the products (B . c) and (A . D) are discarded
and the remaining high-order parts are added to the
low-order part of the product (A . C).

3. At the end of step 2b, if the high-order part of
the final product is not a normal number, the AC and
MQ fractions are shifted left one position and the char­
acteristic of the AC is reduced by 1.

4a. At the end of step 3, if the final product in the
AC and MQ is zero, the AC and MQ characteristics are
reset, giving a signed normal zero.

4b. If the final product is not zero, the AC charac­
teristic equals the sum of the characteristics of Y and
the original AC, minus 2008 • The MQ characteristic will
equal the AC characteristic minus 2710•

Double-Precision Unnormalized FP Multiply
(MIN I, E; MAX I, E, 7L) DUFM - 0261

The double-precision floating-point number in Y and
Y + 1 is multiplied by the double-precision floating­
point number in the AC and MQ. No attempt is made
to normalize, thus the result may be an unnormal num­
ber. Floating-point underflow or overflow is possible.
See Figure 20. This instruction is the same as DFMP

with the following exceptions:
1. If the AC and MQ fractions (multiplier) are zero,

the pre-end op trigger is not set as on DFMP, but in­
stead the sc is reset to zero. The sc equal to zero pre­
vents the first multiply (B . c) from taking place but
all other operations are performed as usual. When this
condition occurs, FACT 5 will be set on the sixth L 7
pulse, which is one cycle earlier than under normal
conditions.

2. No attempt is made to normalize the final result.
3. If the final product in the AC and MQ is zero,

FACT 5 does not reset the AC and MQ characteristics as
in DFMP, and the MQ characteristic is set 2710 less tha.n
the AC characteristic.

Double-Precision Floating-Point Division

The objective of a double-precision floating-point di­
vide instruction is to divide the implied operand in
the AC and MQ by the addressed operand located in Y
and Y + 1.

If the dividend is denoted by A . 2n + B . 2n - 27

and the divisor is denoted by C . 2m + D . 2m - 27 the
follOwing arithmetic operation is performed:

A . 2n + B ·2n - 27

C . 2m + D . 2m -27

This can be separated into two single-precision divide
operations:
A . 2n + B . 2n - 27

where Ql is the high-order quotient and Rl is the re­
mainder from this division.
Rl • 2n - 27 - QlD • 2n - 27

= Q . 2n - m - 27 + R . 2n - 54
C . 2m 2 2

where Q2 is the low-order quotient and R2 is the re­
mainder from this division. Because the fraction of R2

is 54 bits removed from the original dividend, it is not
used.

The development of the high-order quotient (Ql)

and remainder (R l) is accomplished by performing
a single-precision divide, except that the Sl register is
reset rather than the MQ.

The final quotient characteristic is developed and
put into AC(1-8) during the first L cycle of this divide.

The development of the second quotient cannot be
accomplished in the form shown in equation 2, there­
fore an intermediate step is necessary.

The factors Ql and D are multiplied together. This
is accomplished by turning on the block divide trigger,
placing Ql in the SR, D in the MQ, resetting AC(9-35),

and turning on the multiply cycle trigger. The multiply
cycle trigger will cause multiplication of the fraction
in the SR by the fraction in the MQ and will place the
product in the AC and MQ. Because the low-order digits
of the product in the MQ are 54 bits removed from the
original double-precision dividend, it is not used. After
the multiply cycle trigger is turned oH by the sc going
to 0, the fraction Rl is placed in the storage register
and the factor QlD located in the· AC is alegbraically
subtracted from it. This places the fraction Rl - QlD

in the AC.

At the end of the development of Rl - QlD, the factor
C is placed in the SR, MQ (9-35) is reset, and the block
divide trigger IS reset so that a second single-precision
divide may take place. This time Rl - QlD is divided
by C, which develops Q2 in the MQ and R2 in the AC.

At the end of the second divide, the block divide trig-

ger is again turned on, Ql is placed in the SR, AC(9-35)

is reset, and FACT 2 is turned on. With FACT 2 on, a
single-precision normalized floating-add is performed
(Ql + Q2). Normalization in FACT 4 takes place if
needed. FACT 5 then computes Q2 characteristic plac­
ing it in MQ (1-8), and sets the pre-end op trigger to
end the operation. Figure 6 shows the characteristics
and signs of a double-precision divide operation. See
Figure 7 for a simplified flow chart of double-preci­
sion division.

CHARACTERISTICS

SIGNS

A+B C+fil Q
1 R * 1 Q1D* R1-Q1D Q

2

~ ~ ~ ~ W R1>Q1D R1<Q1D R1>Q1D R1<Q1D

+ + + + + + - + -
+ - - + + + - - +

- + - - - - + - +

- - + - - - + + -

* Note that Rl and Q1D Always Follow the Sign of A+B

Figure 6. Double-Precision FP Divide;
Characteristic and Sign Determination Tables

Double-Precision FP Divide or Ha It
(MIN I, E; MAX I, E, 15L)

DFDH - 0240

The double-precision floating-point number in the AC

and MQ is divided by the double-precision floating­
point number in Y and Y + 1. The quotient is a nor­
malized double-precision floating-point number in the
AC and MQ. Floating-point underflow or overflow is
possible.

If the AC fraction (at the start of either divide oper­
ation) is equal to or greater than twice the divisor
fraction (AC :> 2 • SR), the divide check turns on and
the computer halts. Since this procedure contains two
floating-point divide operations, a divide check could
occur at two diHerent times: (1) If a divide check oc­
curs on the first division, the dividend remains un­
changed and the sense indicator register is cleared.
(2) If a divide check occurs on the second division,
the AC fraction contains (Rl - QlD) and the sense reg­
ister contains the quotient (Ql) of the first division.

Double-Precision Floating-Point Arithmetic 31

El (03)

OPS =0
Zero Test

AC and MQ

1
E2 I E5 1

Reset SI Diy Ck Test
Turn on

1st Cycle Tgr Set MQ Sign

I I
1

Yes Oiv Ck or
AC and MQ

No

=Zero

E5 E6 r E7

End Op
Reset 1st 33S-SC

Cycle Tgr

I
r

Yes
Q">1

No

E7

E7 1
Reset

1st Cycle Tgr

1
lL5 I (03) I

Compute Diy Cycles
Quotient under

Char SC Control

I J
4L4 T

StepDPS-l
Turn on

81k Div Tgr

1
4L6 r 4L6

33S-SC

I
5LO T

Step DPS-2
Turn on Mpy

Cycle Tgr

I

I
Find !:J.

I

~
FP Shift

Left One
Place

I

(A+8)';'C
1/'v-4L2

I (02)

Swap Regs
for Q l 00

J

On Single-Precision}
FP Multiply-
Figure 16 (Sheet 2)

Mpy Cycles
under

SC Control

~

·(Ql o0)
5LI-6L6

7Ll (02)

7L3 I
Turn on

1st Cycle Tgr

I

7L5

7L2

7L3

Reset
81k Diy Tgr
MQ (1-35)

7L5

Set MQ Sign

End Op
Reset 1st

Cycle Tgr

Yes

7L7

7L7

Swap Regs
for

Rl -Ql 0

7L3

Swap Regs

for Rl -
Q

l
0

C

7L5

Diy Ck

FP Shift
Left One

Place

Reset 1st
Cycle Tgr

Diy Cycles
under

SC Control

To Sheet 2

Diy Ck
Test

No

7L6

No

(R l - Q 1D)+C

SLO-llL2

/

Figure 70 Double-Precision FP Divide; Simplified Flow Chart-Sheet 1 of 2

32

7L3

llL6

llL4

Turn On
Blk Div Tgr

Shift IQ2
Left One

Place

Add
Q, +Q2

Fact 3
Correct AC

Step
to DPS {

No Effect on
DPS Status
(DPS = 3)

llL5 llL5

Q,-SR

Reset AC

(On FAD Flow Chart
\.Figure 15 (Sheet 4)

Set
Fact 2

Fact 6 and 7
Correct MQ

Fact 4
Normalize

Fact 5
End Op

Set
DPS - Zero

Figure 7. Double-Precision FP Divide; Simplified Flow Chart-Sheet 2 of 2

Double-Precision Floating-Point Arithmetic 33

The overflow or underflow indication will be lost if a
divide check occurs. See Figure 21 for the following
steps:

1. Signs resulting from this instruction are always
alike:

a. Before th~ first divide, with or without a divide
check, when A and B fractions are zero; with
like signs, the AC and MQ signs are set plus; with
unlike signs, the AC and MQ signs are set minus.

b. Before the first or second divide, with a divide
check only, the AC and MQ signs equal the sign
of the original AC.

c. When both divisions take place, the AC and MQ

signs are the algebraic result of the original
operands.

2. Quotient characteristics are developed and re­
tained only when the dividend fractions (A,B) are not
zero and a divide check does not occur:

34

a. If the original AC and MQ fractions (A,B) equal
zero, the AC and MQ characteristics are set to
zero.

b. If A and B fractions are not zero, and a divide
check occurs before the first divide, the AC and
MQ characteristics remain unchanged.

c. If a divide check occurs before the second divide,
the AC and MQ characteristics will equal zero.

d. When none of the pregeding conditions occur, a
successful division takes place, and the AC char­
acteristic will equal the characteristics of A
minus C, plus 2008 • The MQ characteristic will
equal the AC characteristic - 2710 ,

Double-Precision FP Divide or Proceed DFDP - 0241
(MIN I, Ei MAX I, E, 1SL)
The double-precision floating-point number in the
AC and MQ is divided by the double-precision floating­
point number in Y and Y + 1. The quotient is a nor­
malized double-precision floating-point number in the
AC and MQ. This instruction is the same as DFDH ex­
cept on a divide check condition. If a divide check oc­
curs, the computer does not halt but proceeds to the
next instruction. See Figure 21.

Abbreviations
AC
AD
Adr
AR
Auto
Blk
c

Char
Clk
Comp
Cond
Ctrl
DivCk
Dlyd
DP
DPS
FP
Gt
IA
IBR
Inst
Lt
Mpy
MQ
MST
Op
Ovlp
Ovfl
PC
POD
Ppg
PR
Prec
Pri
Recomp
Reg
Rt
SB
SC
Sh
SI
SR
SOD
SS
Stg
TC
Tgr
Unfl

Accumulator Register
Adder / Adders
Address
Address Register
Automatic
Block (stop/bar)
The number of iterations to be performed in variable­

length instructions (in decrement portion of in­
struction)

Characteristic
Clock Pulse
Complement
Condition
Control
Divide Check
Delayed
Double-Precision
Double-Precision Sync
Floating-Point
Gate
Indirect Address
Instruction Backup Register
Instruction
Left
Multiply
Multiplier-Quotient Register
Master Stop
Operation
Overlap
Overflow
Program Counter
Primary Operation Decoder
Propagate
Program Register
Precision
Primary
Recomplement
Register
Right
Storage Bus
Shift Counter
Shift
Sense Indicator Register
Storage Register
Secondary Operation Decoder
Single-Shot
Storage
Tally Counter
Trigger
Underflow

XAD Index Adders
Y Storage Word (referred to by address portion of cur-

rent instruction)

Reference Section

Symbols
/:::,.

>
<
>
<
AB

*

A·B

Characteristic Difference

(A>B) A "greater than" B

(A<B) A "less than" B

(A5 B) A "equals or greater than" B

(A<B) A "equals or less than" B

Complement of (AB)

Block location shown at exit of feeding block
(used in flow charts thus: 02.13.47.1 *)

A Times B (multiplication)

Not Equal (opposite of equal)

Reference Section 35

I Time
POO 50

I
E4 (01)

SB -SR

02. 12.S2.2 (SF)

I
No CLS Yes

1
I I

E4 (01) E4 (01)
Block Invert

SB (S)-SR (S) SB (S) - SR (S)

02.09.93.1 (2B) 02.09.93.1 (4B)

1 I
I

ES (01)
E End Op

08.00.02.2 (4A)

I
CLA/CLS CAL

Instruction

ES (03)
ES (03)

SR (S-3S)
SR (1-35)--AO -+AO (P-3S)

02.12.14.1 (2G) 02.12.1S.1 (2H)

E7 (01)
E7 (01)

Set
SR (S) -+ AC (S) AC (S) Plus

02.12.37.1 (3E) 02.12.92.1 (20)

I

I
E7 (01)

AO (Q-35) - AC

02.12.31.1 (2E)

I
Proceed

Figure 8. Clear and Add; Clear and Subtract; Clear and Add Logical Word

36

No

A?d
\ Instruction

SBM

E4 (D1)
Set SR

Sign Minus

02.09.93 . 1 (4C)

T
E5 (D1)

E End Op

08.00.02.2 (4A)

1
T

.--__ -"-Un_l_ik_e-(AC and SR Signs

E6 (D1)

AC (0-35) - AD
-AC

02.09.91.2 (3B)

No

ADM r-

Alike

E4 (D1)
Set SR

Sign Plus

02.09.93 . 1 (4E)

E6 (D1)
AC (0-35) -AD

-AC

02.09.91. 2 (3D)

T
...

I Time
POD 40

T
T

T
E4 CD1)
Block

SB (5) - SR (5)

02.09.93.1 (2B)

1

E6 (D1)
SR (1-35) - AD

02.09.91.2 (3E)

. 1r--_--.:A~I:...::ik~e';".(AC and SR Signs Unlike

Yes
AD (1) Cae", ~

E7 (D1)
Turn On

AC Ovfl Tgr
02.09.91.2 (2D)

I
E7 (D1)

AC (0-35)-AD
--AC

02.09.91.2 (3B)

T

No Carry Tgr On

I
E7 Set

Set
AC (5) Minus

I
E4 (D1)
Invert

SB (5) - SR (5)

02.09.93.1 (4A)

1

E4 (D1)
SB-SR

02.12.52.2 (5F)

AC<S~ E6(D1) \NO
1\ OCarry /

E6 Set
Set

CarryTgr

02.02.40.1 (4H)

Yes

E7 (D1)
AC (0-35)- AD

-AC
02.09.91.2 (3C)

I.
T

Plus AC Sign

'----_-./

E7 (D1)
Carry -+ AD (35)

02.09.91.2 (3C)

Minus

E7 Set
Set

AC (5) Plus

02 . 09 . 91 . 2 (1 F) 02.09.91.2 (lE)

1

Proceed

Figure 9. Add; Add Magnitude; Subtract; Subtract Magnitude Reference Section 37

I Time
POD 36

1 --

E4 (01)
POD 36

Exec Ori
SB--SR End Op In E

02. 1 2.52. 2 (5F) 02 . 09 . 46. 1 (1 H)

I
E5 (01) E5 (01)

Save AC (Q) AC (Q) --SR (Q) End Op

~ 02.12.01.1 (3H) 08.00.09.2

I
E5 (03) E5 (03)

SR (5-35) AC (Q-35)
--AD (P-35) --AD (Q-35)

02.12.15.1 (2H) 02.12.24.1 (2C)

I r< AD IP) C,ny r
r

Carry --AD (35)

02.14.27.1 (4G)

1
E7 (01) E7 (01)

Original AC (Q) SR (Q)--AC (Q) AD (P-35) --AC

~ 02.12.38.1 (2E) 02.12.30.1 (3B)

t
Proceed

Figure 10. Add and Carry Logical Word

38

OBJECTIVES

1. Zero Test Multiplier,
Multiplicand, and
Shift Counter

2. Reset AC
3. Set Signs

SC

E5 (D1)
Set Mpy

Cycle Tgr 1
02.13.73.1 (lE)

To Fixed~Point
Multiply Cycles

(Sheet 2)

E2 (D1)
43

S
-SC

02. 13.S4. 1 (2A)

No

02. 12. 52 . 2 (5F)

E4 (D1)
Reset AC

02.13.73.1 (2B)

POD 20
Multiply

E5 (D1)
Set MQ and AC

Signs Plus

02.13.73.1 (4C)

E5 (Dl)
Reset MQ

02.13.73.1 (2F)

Zero Test of Multiplier at E3(D1)
is Invalid if this Instruction is
Overlapping the Previous
Instruction. End Op Tgr "ON"
(from previous instruction)
Holds Pre-End Op Tgr Reset
During A3(D1).
Systems OS.00.1O.1(4C), pin P.

{

Yes

(3E)

E5 (D1)
Pre-End Op

End Op
02.13.73.1 (2F)

Set
Pre-End Op

02. 13.73. 1 (*)

Next Instruction

Figure 11. Fixed-Point Multiply-Sheet 10f 3

Reference Section 39

OBJECTIVE

Multiply SR by MQ Fixed-Point
(1 Mpy Cycle Each Clk Pulse) Multiply Cycles
Refer to Figure 12 for Relative
Pulse Timings

j

~I
T A

~
AC (Q-35)--AD E\ H,,' r ~ L4 (Dl)

~
No AC (P) -AD (Q) MPY Inst SC = One Mpy Cycle

SC < 7
02.13.77.1 (3D)

~For Setting~
Pre-Tgrs

Blk Pre-MQ 34 Step SC Sample Sample L4 (Dl)
Set To Decoder Mpy Ctrl MQ (34,35) MQ (32,33) and SB Tgr Pre-End Op

02.13.75.1 (3D) 02.13.73.1 (2H) 02.13.77.1 (IA) 02.13.77.1 (1C) 02.13.73.1 (4G)

I

T T I
Pre T grs Pre Tgrs Pre Tgrs Pre Tgrs

Pre-Tgrs
34 35 SB 34 35 SB 34 35 SB 34 35 SB

0 0 0 0 0 0 1 1 0 1 1 3 1 0 1 ~) Octol or or or or
6 Values 1 1 1 7 0 1 0 2 1 0 0 4 1 1 0

I I I
Decode X 0 Decode X 1 Decode X 2 Decode X 3

02.13.75.1 (3A) 02.13.75.1 (3H) 02.13.75.1 (3C) 02.13.75.1 (3F)

I I
i

I I

Pre-SB Tgr SR (1-35) SR (1-35) SR (1-35)-AD l's-AD (Q,P,
-SB Tgr -AD Lt I-AD Set SB Tgr 9Q,9P,35)

02. 13.77. 1 (5H) 02.13.75.1 (3H) 02.13.75.1 (3C) 02.13.75.1 (3F) 02. 13.75. 1 (3 F)

1 1 1 J
t

~ sCeO"

r(SC> 2)
No

+

~ Decooe X 2 r- , FI", r' Mpy Cycle
Each Clk Each Clk Each Clk

AD (Q-34) AD(35)--MQ(I)
Sh MQ (1-35)

Rt l--AC Rt 1

02.13,73.1 (4D) 02.13.73.1 (4D) 02.13,73.1 (4D)
Each Clk r-

AD (Q) __ AC (P)
Set Mpy

02.13,73.1 (IH) Cycle Tgr 2

02.13.77.1 (3B)

I
Each Clk Each Clk Each Clk Each Clk Each Clk Reset Mpy Step SC Step SC AD (Q-33) AD (34,35) Sh MQ (1-35)

By 1 By 2 Rt 2--AC --MQ(I,2) Rt 2 Cycle Tgr 1

03.14.18.1 (3E) 03.14.18.1 (3D) 02.13.73.1 (3H) 02.13.73.1 (3H) 02.13.73.1 (3H) 02.15.61.2 (3H)

~ I
MPY or MPR Inst, f
Steps SC - Zero

~
at 2nd L7 No
VLM Inst-Variable SC = Zero

To SC = Zero
(Sheet 3)

Figure 11. Fixed-Point Multiply-Sheet 2 of 3

40

VLpA

Possible Only on
Even Count ~

~Yes No

MPR, VLM

(Wait)

3rd L Cycle on MPR
Inst, Varioble on ~
VLM Inst

MPR

L1 (01)
Set

Pre-End Op

02.13.73.1 (3E)

Reset MPY
Cycle Tgr 2

02.13.77.1 (4C)

MPY

Next Instruction

/I /Last Decode Was X 3
/~ (Possible Only with Even Count)

L6 (01)
AC (0-35) --AD

MO (l) __ AO (35)
L6 (01)

AD (0-35) --AC

Figure 11. Fixed-Point Multiply-Sheet 3 of 3

Yes

AC (0-35) --AD
AC (P) __ AO (0)

AO (01)
Reset

Pre Tgrs

02.13.77.1 (5E)

Reset Mpy
Cycle Tgr 2

02.13.77.1 (4C)

~
Effective X 1 Operation

SR (1-35) __ AD L6 (01)
AD (0-35)--AC

Reference Section 41

Line' TEST POINT LEVEL

1. IB2023C +F

2. IB3F04M -F

3. IB2E280 +F

4. IB2E28C +F

5. IB3F04P -F

6. IB3F04N -F

7. IB3F07L +F

8. IB3F06L +F

9. IB3F05L +F

10. IB3F04L +F

n. IB2F04B +F

12. IB2F04C +F

13. IB2F04D +F

14. IB2Fl4H +F

15. IB2J06B +F

16. IB2J08C -F

17. IB2J07C -F

18. IB2J09C -F

19. lA40240 -F

ZO. IB2E260 +F

21. lA4G25B -F

22. IB2E26C +F

PROGRAM (All Numbers Octal)

LINE NAME SYSTEMS

Mpy Cycle Trigger 02.13. 77. 1(30)

Gate to MQ 35 02.04. 06. H2F)

sample MQ 34 and 35 02. 13.77. HIAl

Sample MQ 32 and 33 02.13.77. HIC)

SetMQ 35 02. 04. 06. H2F)

Hold MQ 35 02. 04. 06. H2F)

MQ32 02. 04. 05. H2H)

MQ33 02. 04. 06. H2A)

MQ34 02. 04. 06. 1(2C)

MQ 35 02. 04. 06. I(2Fl

Pre MQ 34 Trigger 02. 13.77. 1(2E)

Pre MQ 35 Trigger 02. 13.77. 1(2F)

Pre String Bit Tgr 02. 13. 77. l(2G)

String Bit Trigger 02.13. 77. 1(3H)

Decode XO 02.13.75. 1(2Al

Decode Xl 02.13.75. 1(3H)

Decode X2 02.13.75.1(3e)

Decode X3 02. 13.75. 1(3F)

Step SC by 2 03.14.18. 1(30)

SH RT 2 02. 13.73. 1(3H)

Step SC by 1 03.14.18. 1(3E)

SH RT 1 02.13. 73.1(4D)

r-

~

r--

)1\

Location
o
1
2
3

10
n

-

Instruction
LOQ 10
VLM 15 11
TRA 0
HTR

15771
5

.--U IU IU U \n ~\ f\
JLJ U U

I
r-

!

I L f
--

n ,----

~ ~

~ hf-
rl\ II"
r--.. V--

'-----'

IL-r
I~

1'---

~

r\
J

~

Figure 12. Fixed-Point Multiply Cycles; X-V Recording

42

\

r rL l!'

U IU IUI\
n h h V
U u U~

L. lJ r\ ----

L Jr\
-- --, '" \-._. -

n RESETS FROM

\~~ >- 02.13.77. 1(2B)

--n
r'f'-IV n- RESETS FROM

02.15.61. 2(3F)
j...-.c.-

~

V
1'-----'

lrJoJ'.
I~

L lJ
f 1\

15 (Dl)
SR(21-3s)
--XAD

03.06.03.2 (4H)

12 (D2)
AC(Q-3s) -+ AD

02.12.24.1 (2A)

Figure 13. Round

I Time
POD 76

RND

02.09.57.1 (2A)

L4 (Dl)
LEnd Op

00.00.01.1 (3C)

12 (D2)
Carry -+ AD(35)

02. 12. 29. 1 (4C)

12 (D2)
Turn On

AC Ovfl Tgr
02.10.36.1 (4D)

15 (Dl)
XAD--SC

03.06.03.2(41)

For Decoding
/ Instruction

13 (Dl)
AD(Q-35)- AC

02.12.31.1 (2B)

Reference Section 43

OBJECTIVES

1. Set SC and Zero Check SC
2. Div Ck Test
3. Shift Left to Prepare

for First Div Reduction Cycle

Min I,E }
Max I,E,5L

1

DVH,DVP

E2 (D1)
438 --SC

(2A)

No

1

Divide POD 22

+

Instruction

r
E4 (Dl)

SB-SR

02.12.52.2 (5F)

I
SC = Zero

VDH VDP

E2 (D1)
SR (3-17) - XAD

XAD (10-17) -- sc
(lAl

Yes

SR (1-35) --AD
l's -AD (Q,P)

AC (Q-35) -- AD
1--AD (35)

E5 (Dl)
End Op

1

E6 (Dl)
Sh AC (Q-35)
-- Lt 1

(2D)

I

l
(SR >AC)~

No

E6 (Dl)
Sh MQ (1-35)

--Ltl

(2D)

To L Time
POD 22

(4C)

Q Carry

·1

(4C)

I
Div Ck (AC 5 SR)

Yes~

(2B)

Next Instruction

I
E6 (Dl) E5 (D1)

MQ (l)--AC (35) Turn On
Div Ck Tgr

(2D) (2C)

I 1

DVP,VDP
Instruction

Proceed

Figure 14. Fixed-Point Division-Sheet 1 of 2

44

Note: Unless otherwise shown, all
blocks on Systems 02.13.84.1

{

With Count of 578

Min I,E
Max I,E,7L

E5 (D1)
Turn On

T1 Tgr

(2C)

DVH,VDH

E5 (D1)
Block

Overlap

I
E5 (D1)
End Op

1

I
12 (Dl)

Turn On
MST Tgr

(2C)

(2C) 04.20.11.1 (4A)

I

Halt

OBJECTIVES

1. One Reduction Cycle
Each Clk Pulse

2. End Op When SC = Zero

SC Steps to Zero During
5th L2 Pulse for DVH,
DVP Instructions

L Time
POD 22

__ llil 1\ SC=Zero
Yes

Note: Unless otherwise shown, all
blocks on Systems 02.13.84.1

(Divide Reduction Cycles)

I
SR (1-35) -- AD
l's-AD (Q,P)

(4C)

I

AC (Q-35)-- AD
1-- AD (35)

(4C)

No Q Corry Yes

Successful
/'>./ Reduction

,Y ~ (AC 5 SR)

AC and MQ are Shifted Right 1 because They Were
Shifted Left 1 at E6 without Stepping SC in
Preparation for First Divide Reduction Cycle L5 (Dl)

End Op

1

(2F)

~Ac~a~dSR r
es Signs 0

L7 (Dl)
Set MQ (S)

L7 (Dl)
Sh AC (Q-35)

-Rtl

L7 (D1)
AC (35)- MQ (1)

L7 (Dl)
Sh MQ (1-35)

-Rt1 Alike

L7 (Dl)
l-MQ(S)

(21)

Figure 14. Fixed-Point Division-Sheet 2 of 2

(2G)

Proceed

(2G) (2G) (2G)

1 1

Reference Section 45

OBJECTIVES

1. Check for Possible Trap
2. Set SR Sign
3. Check for 2 Cyc Ie

Add Condition

r< '58 ~ UFS l'
K'AMOC UAM

FAD or UFA

Yes

f< 'SM oc USM 7'

POD 30
PR (9) = Zero

1- AD (9P)

02.14.27.1 (3D)

E2 (Dl)

AC (Q-8)-AD

02.13.47.1 (3B)

E3 (Dl)
AC (Q-8) -- AD

02.13.47.1 (3A)

Blocked During
~Faet 1

Check for AC Char < 338
./ (MQ Unfl Possible)

I

E2 (Dl)
l's-AD
(4,5,7,8)

02.13.47.1 (3B)

E3 (Dl)
l's--AD
(Q,P,8)

02.13.47.1 (3A)

""" rJ "f
Check for AC

Yes

\
E2 (D2)
Q Carry

Possible Trap
Condition

Set Ovlap
Confl i ct T gr

02.13.47.1 (2A)

1
Char '5 3778

r--__ ----4II--__ ~~--~---...,(AC Ovfl Possible) , t E4 (Dl)
SB--SR

E4 (Dl)

No

E4 (Dl)
Set SR

Sign Minus
Set SR

E4 (Dl)
Block

E4 (Dl)
Invert

SB(S)-SR(S)
02.09.93.1 (4A)

02.12.52.2 (5F)
Sign Plus

02 . 09 . 93 . 1 (4C) 02.09.93.1 (4.E)
SB (5) - SR (5)
02.09.93.1 (2B)

~(D3)
AC (Q-8)--AD

l--AD (8)

02. 13.47. 1 (3C)

No
6.= Zero

E5 (D3)
SR (1-35) -- AD

02.13.47.1 (3C)

Yes

No SR and AC
Signs Alike

Yes

Note: Overlap confl iet tgr is set at L5 time
whenever the AC char <: 37, Systems 02. 13.45. 1 (31)

2 Cycle Add
~Condition

Yes ~~ ______________________ N~o SRorAC

(9) = One

E5 (Dl)
End Op

Pre End Op

02.13.47.1 (2E)

To FAD
(Sheet 2)

E5 (Dl)
Set Fact 2

02.13.47.1 (2F)

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 1 of 8

46

OBJECTIVES

1. Determine Characteristic
Difference (I:::.)

2. Reset MQ

From FAD
(Sheet 1)

3. Prepare for AI ignment
of Fractions

4. Start Fact Sequence

~(Gate to SR and AC - No Set)

Ir------.---~I

E5 (01)
Reset MQ

02.13.47.1 (3~)

I

E5 (01)
AC (9-35) -- SR
AD (9-35) -AC

02.13.47.1 (3D)

(AC <: SR)--,

Desired Condition ~Yes E5 (01)
AD (Q) Corry

Logic Block~
(1-5H), (21))

E5 CP Set
Turn Reset

Add Tgr On

02.13.47.2 (3E,3F)

E5 (01)
Pre-End Op

End Op

02.13.47.2(4B,4C)

SR-AC

~
E6 (01)

SR (S-8) -- AC
AD (9-35) -- AC

02.13.47.2 (4G)

E6 CP Set
Set Fact 5

02.13.47.2 (3G)

To Fact 5
(Sheet 7)

To Fact 2
(Sheet 4)

+
E5 (01)

Block Set
to SR and AC

02.13.47.1

E5 (01)
AD (lor 2)

= One
No

Yes
SR (9) = One

Yes Fact 2 On

02.13.51. 1

No

No

No

02.02.40.1

Reset Add
Tgr On

02.13.61. 1

E6 (01)
AD (1-8)
--SC

No

02.13.47.2 (21)

NO/ 1:::.= Zero

1\ 02.13.47.1

E6 CP Set
Set Fact 1

02.13.47.2 (lH)

To Fact 1
(Sheet 3)

E5 (01)
AC (S,P-8)- SR

SR (S-8)-AC

02.13.47.1 (lG)

I

~(AC >SR)

No

No

E5 CP Set
Allow

SR and AC
Set

E5 (01)
AD (lor 2)

= Zero and AC
(Q-P) = Zero

;I
Swap SR and AC

E5 CP Set
Turn Reset
Add Tgr On

02.13.47.2 (40)

I

AC (9) = One Yes
and ~----------------~

AC (Q-P) = Zero (5B)

Yes

E6 (01)
Reset

AC and MQ

E5 (01)
Pre-End Op

End Op

02.13.47.2 (4A)
02.13.47.2 (5H) "\

Will Add Larger
Fraction to Zero

Yes

(4E)

E6 CP Set
Set Fact 2

02.13.47.2 (31)

To Fact 2
(Sheet 4)

Original AC \
Value

.....-+ AC ...-~ __ -L. ____ ----.,

E6 (01)
SR (S -8) -- AC

AD (9-35) -- AC
02. 13.47. 2 (4G)

E6 CP Set
Set Fact 5

02.13.47.2 (3G)

To Fact 5
(Sheet 7)

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 2 of 8

Reference Section 47

OBJECTIVE

Equal ize Characteristics
(1-32 Clock Pulses)

Note: Up to 128 Clk Pulses
(t.=377), ifAC(QorP)=l
at E5 Time (Blocks Turn-On
of Reset Add Tgr)

From FAD
(Sheet 2)

~SCfO

Fact 1

02.13.49.1
;

Starts at E7
(If Necessary)

(SC>l)~

~ SC = On. }-'Y...;:;e;:..s --------,

Step SC
By 1

03.14.18.1 (3E)

? Each Clk

Sh AC (9P-35) Rt 1
Sh MQ (9-35) Rt 1

02.13.49.1 (2E)

I
AC (35)

-MQ (9)

02.13.49.1 (2E)

1'----_....--..-1 __ ----'1
~Each elk

+ +
Step SC Sh AC (9P-35) Rt 2

By 2 Sh MQ (9-35) Rt 2

03.14.18.1 (3~) 02.13.49.1 (20)

l 1
1

No
SC < 2

Yes

+
AC (34,35)

-MQ (9,10)

02.13.49.1 (20)

I

Set Fact 2

02. 13 .49. 1 (1 C)

To Fact 2
(Sheet 4)

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 3 of 8

48

OBJECTIVE

Add Fractions
(1 Clock Pulse)

Note: Overlap Conflict Tgr is
set at L5 whenever the AC
Char <: 37, Systems 02.13.45.1 (31)

Allow Fraction True Add~
Carry To
I ncrease Char

~ + +
Ppg AD (9P) AC (9-35)

Carry - AD (8) -AD

02.13.51.1 (3B) 02.13.51.1 (3C)

1 1

+
,

MQ (9-35) AD (Q-8)
-SR -AC

02.13.51.1 (3F) 02.13.51.1 (IG)

1 ~

Fact 2

02.13.51. 1

1

Yes
Signs Alike

SR (1-35)
--AD

02.13.51. 1 (40)

AD (9-35)
-AC

02.13.51.1 (3F)

\1
MQ Fraction Blocked on + to SR

~ E6(Dl)
\ Pre-End Op

DP Divide

Yes Signs Alike

2 Cycle

Y
,//V' Add Condition es

(2F)

AC in True

No

~"'=I 1",',"cHo"

Form-Change ~
Sign

r\
CP Set

Set Fact 4

02.13.52.1 (2E)

To Fact 4
(Sheet 6)

t
AD (9P) Carry

No

(2G)

Fraction Carry

Yes ~f- (Will Shift AC Right
One Place in Fact 5)

(2H)

CP Set
Set Fact 5

02.13.52.1 (*)

To Fact 5
(Sheet 7)

No

~CompAdd

AC (9-35)
--AD

02.13.51.1 (4C)

Fraction Carry
TOAC/

AD (9Q)
--AC (9P)

POD 30
l--AD (9P)

02.14.27.1 (3D)

yes/ \I'JO __
\AD (9P) Carry /

CP Set
Turn On
Carry Tgr

02.12.32.1 (3D) 02.13.51.1 (4G)

(AC < SR)~
Yes

Turn On
SR (S) -- AC (S)

Tgr
02.13.52.1 (20)

CP Set
Set Fact 6

No

02.13.52.1 (2C)

To Fact 6
(Sheet 8)

AD (9P) Carry

MQ
Fraction

~ 1
SR = Zero

~(AC5SR)

No

(2A)

Yes

(2B)

CP Set
Set Fact 3

02.13.52.1 (*)

To Fact 3
(Sheet 5)

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 4 of 8

Reference Section 49

OBJECTIVE

Correct AC
(1 Clock Pulse)

Fraction Carry in
Fact 2 and MQ
Was Zero ~

AC (9-35)
--AD

02.13.53.1 (3A)

I

Yes

1--AD (35)

02.13.53.1 (4B)

1

Set Fact 5

02.13.53.1 (5D)

To Fact 5
(Sheet 7)

No

Fact 3

02.13.53.1

Carry Tgr On

02.02.40.1

AD (9-35)
--AC

02.13.53.1 (3D)

Normal
Instruction

fV Can Enter Fact 3
Only If Signs
Are Unlike

No

Yes

;IV No Fraction Carry
in Fact 2,
Recomplement AC

AC (9-35)
--AD

02.13.53.1 (3C)

Set Fact 4

02.13.53.1 (4G)

To Fact 4
(Sheet 6)

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 5 of 8

50

Set
Fact 5

OBJECTIVE

Normalize AC
(1-27 Clock Pulses)

Yes

(4D)

Yes

(5B)

Yes

(5C)

Yes

(5D)

AC (9) = One

AD (Q-8)
-- AC

02.13.55.1 (2G)

AC and MQ
(9-35) = Zero

AC (10) = One

AC (11) = One

No

L5 (Dl)
Set End Op

02.13.55.1 (*) 02.13.55.1 (2H)

To Fact 5
(Sheet 7)

T

No Yes

1-- AD (8)

02.02.04.1 (2E)

No

No

No

Yes

I ,-
AC (9-12) Yes

= Zero

Sh AC and MQ
(9-35) Lt 1

02.13.55.1 (2F)

Fact 4

02.13.55.1

\NO
AC(10)=onj

AC (Q-8)-AD
l's -- AD (Q-7)

02.13.55.1 (4A)

L5 (Dl)
No

MQ(9)- AC(35)

02.13.55.1 (2F)

l
Yes

Fact 5

AC (9-35) - SR
Zero Test

02.13.55.1 (2C)

MQ (9-35)- SR
Zero Test

02.13.55.1 (2C)

AC 9 = 1, AC 10 = 1
or

AC 9 = 1, AC 10 = 0
or

AC 9 = 0, AC 10 = 0
\ J

"

~~C (~= ze,~, es and 0

AC (10) = One

,
~ AC (9 and 101' ! = Zero

AC (9) = One
Fact 5 is Set, and
No Shifting Occurs

Sh AC and MQ MQ (9 and 10)
(9-35) Lt 2 -- AC (34 and 35)

02.13.55.1 (2E) 02.13.55.1 (2E)

1

No

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 6 of 8

Reference Section 51

OBJECTIVES

1. Adjust MQ Char
2. Rt Sh 1 (to Normal ize) if

Fraction Carry in Fact 2
3. Set Signs
4. End Op

(1 Clk Pulse)

AC Char

\ 1
Set

AC (Q-8)-AD
lIs-AD
(Q-3,6,8) Pre-End Op

(4B) (3C)

Fact 5

02.13.57.1

AC (9-35)-SR
Zero Test

(4B)

\~ 1 ____ ~1~----~

This Line Blocked On

Note: Unless otherwise shown, all
blocks on Systems 02.13.57.1

I

~
1 \ POD 26

'-------'

MQ (9-35)-SR
Zero Test

(3A)

Yes

\
Note: DP POD 26
Zero Checks MQ (9-35),
Systems 02.12.05.1. (5G)

2 1s Comp
of 33

8

~o 'r-es AC (9P) = Zero
(5F)

DFAD E End Op rJ
~Kes Signs Alike No

and
Carry Tgr On

~ SR=Zero ~
1- (5F) \ /

AC (9P-35)
-AD

Signs Unlike (AC Z SR)

AC<SR ~N SF On SR (5)- AC (S) Off
Tgr

(2E)

b/(N3
0
D) Normal ~

1 (3 D\ I nstruct ion /
'--___ oJ

AD (1-8)
-MQ (1-8)

Reset AC (Q-8)
and MQ (1-8)

(*)

Turn On
FAD MQ Ovfl Tgr

(3G)

(3F)

I
AD (9P-34) Rt 1 -. AC

AD (35) - MQ (9)

I

Reset
Fact 5

(2H)

(5C)

~ --\ SR = Zero
Yes

I
Sh MQ (9-35)

-Rtl

(2H)

1

SR (S)- AC (S)
SR (5) -MQ (S)

(1C)

AC (S) -MQ (5)

(2B)

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 7 of 8

52

OBJECTIVE

Complement MQ Fraction
(I Clk Pulse)

SR (9-35)
--AD

AD (9-35)
-- SR

OBJECTIVE

(3E)

Put Corrected MQ
Fraction Back in MQ
(1 Clk Pulse)

Set Fact 4

Fact 6

(4B)

I-AD (35)

(4B)

Set Fact 7

(Ie)

Fact 7

(4G)

SR (9-35)
-MQ (9-35)

Yes

(IH)

Set Fact 5

Note: Unless otherwise shown, all
blocks on Systems 02.13.59. I

Set
Pre-End Op

(IF)

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 8 of 8

Reference Section 53

OBJECTIVES

I. Compute Product Characteristic
2. Zero Test Multiplier Fraction and

Multiplicand for a Normal Zero
S t S· e Igns

4. Reset AC (9-35) to Zero
Single Prec

Nate: Unless otherwise shown, all
blocks on Systems 02.13.79.1

Floating Mpy
POD 26

1
I

EI (DI) Note: Overlap Conflict Tgr is set

MQ (1-8) EI (DI) at L5 whenever the AC Char <' 37,

--+ SR 33
8
-SC Systems 02.13.45.1 (31)

(4E) (4E)

I
MQ Char -AC I
~ I I Zero Test of Multiplier Fraction

E2 (DI) E2 (D2) at E3 (DI) is Invalid if FMP
Instruction is Overlapping the SR (1-8) -AD MQ (9-35) - SR Preceeding Instruction. End Op AD (Q-8)-AC Zero Test Tgr "ON" (from previous instruc-

(IA)
MQ Char - 200

(2B) tian) Holds Pre-End Op Tgr Reset

j t During A3 (D I).

j --AC
/ Systems 08.00.10.1 (4C), pin P.

r -,
E3 (Dl)

No E3 (DI) Yes
E3 (DI) SR = Zero t_ I's -AD (Q,P, I) AC (Q-8) -AD

AD (Q-8) --+ AC
p/FMP

(4A) (4A) U F M -s-.",. No Normal Yes

~ I I l Instruction

2's Comp I
2008 E4 (DI) Multipl icand E3 (DI) E3 (DI)

SB -SR "v-SR Reset SC Set Pre-End Op

02.12.52.2 (5F) (ID) (IE)

I 1
Zero Test
Multiplicand~ f t

E5 (DI)
No SR and MQ Yes

No Yes

~
Signs Alike

SB = Zero

E5 (DI) E6 (DI) E6 (DI)
Pre-End Op Set AC and MQ Set AC and MQ

End Op Signs Minus Signs Plus

(IE) (3B,4B) (3B)

I I
I

I T I
E6 (DI) E6 (DI) E6 (DI) t'"o' p,",,,, Characteristic

AC (Q-8) -AD SR (1-8)-AD AD (Q-35) - AC AC (9-35) Reset

(4D) (4D) (4D) to Zero

~ I ,./ 1 1
MQ Char SR Char
- 200

No Pre-End Op On Yes

I
E7 (DI)

No SC = Zero Yes Reset AC (Q-8)

I ~ I
and MQ (1-35)

(3E)

E6 (DI)
MQ=O I Turn On Mpy (UFM) L5 (DI)

Cycle Tgr I LEnd Op

(2F) 02.13.81. I (2G ,4H)

+ I
To Floating-Point
Multiply Cycles

(Sheet 2) Next Instruction

Figure 16. Single-Precision FP MultipIY-FMP; Sheet 1 of 2

54

OBJECTIVE Floating-Point
MultifilY SR and MQ Fractions Multiply Cycles
(14 C k Pulses) Refer to Figure 12
For Relative Pulse Timings

t 1 t
Zero Shift r AC (9-35) AC(9P)- ~M~CYd.j Counter -AD AD (9P,9Q)

Possible Only on / Value Number

DUFM (When 02.13.79.1 (4F) 02.13.79.1 (4F)

AB = Zero) I ~ For Setting ~
For Last FP Pre-Tgrs

Mpy Cycle
Blk Pre-MQ 34 Step SC Sample Sample

~ to Decoder Mpy Ctrl MQ (32,33) and SB Tgr MQ (34,35)

02.13.75.1 (lE) 02.13.73.1 (2H) 02.13.77.1 (lC) 02.13.77.1 (lA)

Gated By SC Not Zero 1
I 1 I

Pre Tgrs Pre Tgrs Pre Tgrs Pre Tgrs
Pre-Tgrs 34 35 SB 34 35 SB 34 35 SB 34 35 SB

0 0 0 0 0 0 1 1 0 1 1 3 1 0 1 :} Octal or or or or Values 1 1 1 7 0 1 0 2 1 0 0 4 1 1 0

I I I
Decode X 0 Decode Xl Decode X 2 Decode X 3

02.13.75.1 (3A) 02.13.75.1 (3H) 02.13.75.1 (3C) 02.13.75.1 (3F)

I I
1

Pre-S.B Tgr SR (1-35) SR (1-35) SR (1-35) -AD l's -AD (Q,P,
-SBTgr -AD Lt 1-AD Set 5B Tgr 9Q,9P,35)

02.13.77.1 (5H) 02.13.75.1 (3H) 02.13.75.1 (3C) 02.13.75.1 (3F) 02.13.75.1 (3F)

l 1 1 ,
(Last (14th) Mpy Cycle)

SC :> 2 (Always = 3 on Next to

Yes No f Last Cycle)
Steps sc

I
sc = One

-zero~l j
Each Clk Each Clk Each Clk
Step SC AD (9Q-34) AD (35) - MQ (9) ~ No

By 1 Rtl-AC Sh MQ (9-35) Rt 1 Decode X 2

03.14.1B.l (3E) 02.13.79.1 (4H) 02.13.79.1 (4H)

I 1 Each Clk
J AD (9Q)

I -AC (9P)

No Yes
02.13.79.1 (31)

SC = Zero 1
I I T T

Reset Mpy Each Clk Each Clk Each Clk Each Clk
Step SC AD (9Q-33) AD (34,35) Sh MQ (9-35) Cycle Tgr By 2 Rt2-AC -MQ(9,10) Rt 2

02.13.77.1 (4C) 03.14. lB.l (3D) 02.13.79.1 (4G) 02.13.79.1 (4G) 02.13.79.1 (4G)

t I 1 1 I
1 (SC> 1)

Yes Double- No

~
Precision

~ DP r L5 (Dl) ~Ac(~=u~>i End Op
Instruction

(4H)
and Normal

Type 02.13.B1.,1 (2G) Instruction

/ Normalize 1 Place

1
L6 CP Set L6 (Dl) L6 (01) L6 (Dl)
Turn On l's - AD (Q-B) AD (Q-B)-AC Sh AC and MQ

To FP Divide To DFMP Fact 5 AC(Q-B)-AD MQ (9) - AC (35) (10-35) Lt 1
Figure 21 (Sheet 5) Figure 20 (Sheet 2) 02. 13.Bl.l (3H) 02.13.Bl.l (4G, I) 02.13.B1.1 (4G, I) 02.13.B1.1 (4G,I)

1 I

To FAD, Fact 5
Figure 15 (Sheet 7)

Figure 16. Single-Precision FP MultiplY-FMP; Sheet 2 of 2

Reference Section 55

1-AD (9P) Ppg AD (9P)
Carry -+ AD (S)

03.01.02.1 (3D) 02.13.51.1 (2B) '" / Allow Fraction Carry to ~

I
AD (9P) Carry

--AD(S)

02. 02 . 23. 1 (4B)

I

I
L5 (D1)

1--AC (9)

Increase Characteristic

02.10.27.1 (3F)

I

LEnd Op

OS.00.01.1 (3C)

Next
I Time

I Time
POD 76

1

No MQ (9) = one~es
AC (Q) = Zero (2A)

02.10.27.1

Figure 17. Floating Round

56

SR (21-35)
-XAD

03.06.03.2 (4H)

T

1
XAD--SC

03.06.03.2 (41)

I

MQ(9)e
o"r-

f
For Decoding
Instruction

ACChar ~ Ovfl ~
Yes AC (P) = One No

12 (D1)
Turn On FP

Trap Tgr

02.10.50.1 (3A)

T
Proceed

I
12 (D1)

Turn On FP
Ovfl Tgr

02.10.50.1 (3B)

1

E5 E6
5, 1-8, 9-35 5, 1-8,9-35

5R (9-35) - MQ 5R (9-35) - AC
MQ (9-35) - SR AC (9-35) -+ 5R

AC A A A A A A

MQ B B B 8 B C

5R C C C C C B

51
IBR 0 0 0 0 0 0

Chart 1 Conditions: Carry Tgr On (AC <: 5R)
Normal Add (~ <: 77)

E5 E6

5R (9-35) - MQ 5R (9-35) - AC
MQ (9-35)- 5R AC (9-35) -+ 5R
5R (5-8) -AC
AC (5-8)-5R

AC A A A C C A

MQ B B B B B C

5R C C C A A B

51

IBR 0 0 0 0 0 0

Chart 2 Conditions: Carry Tgr Off (AC > 5R)
Normal Add (6 <: 77)

E5 E6

5R (9-35) - MQ IBR (9-35)- 5R
MQ (9-35) - 5R 5R-+51

AC A A A A A A

MQ B B B B B C

5R C C C C C B

51
IBR 0 0 0 0 0 0

Chart 3 Conditions: Carry Tgr On (AC <: 5R)
Reset Add (6) 77)

E7
5, 1-8,9-35

5R (9-35) -+ MQ
MQ (9-35) - 5R

A A B

B B C
C C A

0 0 0

or

E7

IBR (9-35) -+ 5R
5R- 51

C C 8

B B C

A A A

0 0 0

or

E7

5R (9-35) -+ MQ
MQ (9-35)- 5R
5R (5-8)-AC

A A A

B B C

C C 0

C C B
0 0 0

5R (9) = One (End Op Tgr On)

E5 E6

5R (9-35) -+ MQ
MQ (9-35) -+ 5R
5R (5-8)-+AC
AC (5-8) -5R

AC A A A C C A

MQ B B B B B C
5R C C C A A B

SI

IBR 0 0 0 0 0 0

Chart 4 Conditions: Carry T gr Off (AC > 5R)
Reset Add (6 > 100)

E7

5R (9-35) -+ MQ
MQ (9-35) - 5R
5R (5-8) -AC

C C A

B B C
A A B

0 0 0

AC (9) = One (End Op Tgr On)

Note: On charts 1-4, register contents are shown at
beginning of indicated clock pulses.

Carry Tgr On
(AC" 5R)

AC MQ 5R 51

OPS = 1, Fact 1 B A 0 C

DPS=l, Fact 2 B A 0 C

DPS = 1, Fact 0 B + 0_ A_ :-A C

A"*' ---.. ~B+ 0 OPS = 2 A /C

DPS = 3, Fact 2 A B+'O C' C

OPS = 3, Fact 2 A+C B+O 8+0 C

Chart 5: OPS > Zero

Figure 18. DFAD; Register Exchange Charts

IBR

0

0

0

0

0

0

LO 11
5, 1-8,9-35 5, 1-8, 9-35

AC

0

0

IBR (9-35) - 5R
5R-51

A A B A

B B A B

C C C C

C
0 0 0 0

Corry Tgr On (AC <: 5R)
Reset Add (6 > 77)
5R (9) = Zero

LO

5R (9-35) - AC
AC (9-35) - 5R

C C B C

B B C B

A A 0 A

A A A A

0 0 0 0

Carry Tgr Off (AC >5R)
Reset Add (6 > 100)
AC (9) = Zero

10

5R (9-35) - AC
AC (9-35)-+ 5R

C C A C

B B 0 B

C C C C

C C B C
0 0 0 0

10

A A A A

B B B B

A A C A

0 0 0 0

Carry Tgr Off
(AC> 5R)

MQ 5R 51

C B A

C B A

B+O C)-C A

C~ ~ "'B+ 0 /A

C B+ I(A;' A

A+C B+O B+O A

A

B

C

C
0

11

C

B

A

A

0

11

Fact 5

C

B

C

C
0

11

Fact 5

A

B
A

0

IBR

0

0

0

0

0

0

8.

A

0

C
0

0

C

B

A

0

C

0

A

B
0

A

B

C

0

Reference Section 57

r
E4 (01)
Invert

r<
SB(S)- SR(S)

02.09.93.1 (4A)

-1

E5 (01)
Turn Reset

Add Tgr On

02. 13.47.2(3E)(3F)

I

POO 30, PR(9) = 1
OPS = Zero

1---AO(9P)

02.14.27.1 (30)

I

OFSB No or
OUFS

~
OFAM

or
OUAM

E4 (01)
Block

SB(S) --SR(S)

02.09.93.1 (2B)

1

02.12.52.2 (5F)l
03.08.13.1 (5C>j

I
E5 (03)

AC (Q-8) ___ AO
1--AO (8)

02.13.47.1 (3C)

I

SR;; AC ~

~Yes

I
E5 (01)

Turn On
Carry Tgr

02.13.65.1 (lE)

I
AO (lor 2)

=One
No

E4 (01)
Set SR

Sign Plus

02.09.93.1 (4E)

E4 (01)
SB--SR
SB---IBR

E5 (01)
SR(9-35) --- MQ
MQ(9-35) -- SR

02.13.65.1 (3B)

Q Carry

Normal
Add

~

To/:::;. <: 77
(OFAO Sheet 2)

~Blocked Ouring
Fact 1

No

I
OFSM N\\ O~~M

I

~ OFAO or
OUFA

OPS = Zero
SR(1-35)--AO

02.13.65.1 (lA)

C
B

J

Yes

I
E4 (01)
Set SR

Sign Minus

02 . 09 . 93 . 1 (4C)

1

NO/
AC> SR

No

I
E5 (01)

SR(S-8) --AC
AC(S -8) --SR

02.13.47.1 (lG)

I
AO (lor 2)
= Zero and

AC(Q, P)=Zero

AO (lor 2) Zero
~ Indicates /:::;.> 100

8 Yes

E5 (01)
Turn Reset

Add Tgr On

02.13.47.2 (40)

-

(
To Reset Add

. (OFAO Sheet 2)

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 1 of 6

58

OBJECTIVE

From OFAO
(Sheet 1)

b. <: 77

If Not E End Op Condition
Swap Registers For
First Addition (B+O)

I
E6 (01)

B
A

AD (9-35) - AC
AC (9-35) - SR

02.13.65.1 (3C)

I

SR 5 AC

~Yes

+
E7 (01) A

SR (9-35) --MQ C
MQ (9-35) - SR

02.13.65.1 (3~)

I
LO (01)

D IBR (9-35)- SR
C SR-SI

02.13.65.1 (3E)

1

E6 (01)
AD (1-8)- SC

02.13.47.2 (21)

T

Carry Tgr On No

02.02.40.1

I
LO (01)

Step OPS-l

02.13.65.1 (11)

I
LO (01)

Set Fact 1

02. 13.65. 1 (1 H)

• To OPS = 1, Fact 1
(OFAO Sheet 3)

No

SR 5 AC

~Yes

SR (9) = One Yes

(3C)

From OFAO
(Sheet 1)

Reset Add

02.13.61. 1 (40)

Q Carry

E5 (01)
Pre-End Op

End Op

0AC > SR

NoF

No
AC (9) = One

and Yes
AC (Q, P) = Zero (4A)

E End Op Condition:

(1. b. 5100

{

b.- SC
Blocked If
Reset Add T gr On 02.13.47.2(*)

/ 2. Larger Number Norma
3. AC (Q, P) = Zero

/AC

1
E7 (01)

IBR (9-35)- SR
SR-SI

02.13.65.1 (3F)

I
LO (01)

AD (9-35) - AC
AC (9-35) - SR

02.13.65.1 (3G)

I

> SR -...r---...... ~ Carry Tgr On

1\ 02.02.40.1

D
A

I

SR:> AC

Yes j

I

E6 (01)
IBR (9-35) - SR

SR- 51

02.13.65.1 (3H)

D
B

E7 (01) E7 (01) D or B
C SR (5-8)-- AC SR (9-35) --MQ

MQ (9-35) - SR

02.13.65.1 (31) 02.13.65.1 (31)

/ l
Characteristic

of Larger Numb(\e

No Carry T gr On

02.02.40.1

10 (01)
Set Fact 5

02.13.65.1 (IF)

To FAD, Fact 5
Figure 15 (Sheet 7)

I

Yes

10 (01)
AD (9-35) - AC
AC (9-35)-- SR

02.13.65.1 (3A)

T

D
B

C
A

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 2 of 6

Reference Section 59

OBJECTIVES

1. Equal ize Characteristics If Necessary or Reset
AC and MQ Fractions If Reset Add Condition

2. Set Fact 2

Note: 1-AO (9P),Systems 02.14.27.1 (3~)
blocked During Fact 1

I

SC 5 2
~No

SC = One

I

Yes

No
SC = Zero

Step SC
By 1

03.14.18.1 (3E)

Step SC Sh AC (9P-35) Rt 2 MQ (34,35)
By 2 Sh MQ (9-35) Rt 2 - AC (9,10)

03.14.18.1 (3~) 02.13.49.1 (2H) 02.13.49.1 (2H) ~

I 1 I CAC = Low Order \
L--___ .-___ *_----------' MQ = High Order)

Set
Fact 2

02.13.49.1 (Ie)

ToOPS=I, Fact 2
(OFAO Sheet 4)

Yes

J
No

SC < 2

OPS = 1
Fact 1

"Block"
AC (35) - MQ (9)

AC(34,35)-MQ(9,10)

No

02.13.49.1 (50)

Reset Add
Tgr On

02.13.61.1

Yes

Reset
AC and MQ (9-35)

Yes

Sh AC (9P-35) Rt 1
Sh MQ (9-35) Rt 1

I
MQ (35)

-AC(9)

02.13.67.1 (3A)

02.13.49.1 (21) 02.13.49.1 (21)

1 /1
/

MC = Low Order \
,MQ = High Orde~

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 3 of 6

60

DPS == 1, Fact 2 OBJ ECTIVES

1. Add (B + D)
2. MQ Fraction --SR DPS == 1

Fact 2

Note: When a choice of factors is shown at
the side of a block, the first factor listed is
a result of SR :> AC at E5 (C:> A).

3. Reset Fact 2
(1 Clk Pulse)

I
Fact 2

1

D or B SR (1-35)
-AD

Fact 2
1--AD (9P)

Fact 2
AC (9-35) --AD

02. 13. 51. 1 (3C)

I

I

02.13.51.1 (4D)

I
True Add~

Yes

T
CP Set

02.14.27.1 (3D)

T

Signs AI ike

..
I
T

CP Set

I

~ 2's Comp Add

No

I
Fact 2

B or D AC {9-35) __ AD

02.13.51.1 (4C)

1

T
CP Set Fact Set

Reset Fact 2 A or C MQ (9-35)--SR AD (9Q)--AC (9P) AD (Q-8)-AC

02.13.51.1 (5E) 02.13.51.1 (2F) 02.12.32.1 (3D) 02.13.51. 1 (lG)

I 1 1
T

DPS == 1, Fact Zero OBJECTIVES
'\ Remember Fraction

Carry of B + D

1. Start Reg Swapping For
2nd Add (A + C)

2. Step DPS--2
(1 Clk Pulse)

A or C
B+D

I
Fact Zero

SR (1-35)--AD

02.13.67.1 (3C)

1
T

CP Set
AD (9-35)-AC
AC (9-35) -- SR

02.13.67.1 (3C)

I
T

DPS == 1
Fact Zero

1
T

Fact Zero
Block Set

To AC (9P)
02. 13.67.1 (3C)

1
T

Fact Set
Step DPS--2

{02.13.67.1 (2C)

I

~ Fact Zero because Fact
Tgr Set is Blocked under
DPS == 1, and Fact 2

DPS == 2, Fact Zero OBJECTIVES

1. Complete Reg Swapping
For 2nd Add (A + C)

2. Step DPS--3
3. Set Fact 2

(1 Clk Pulse)

DPS == 2
Fact Zero

I
SI (9-35)-SR

SR (9-35) --MQ

02.13.67.1 (3D)

1
T

Step DPS--3

02.13.67.1 (2D)

I

C or A
B+D

I

Set Fact 2

02.13.67.1 (2E)

1

To DPS == 3, Fact 2
(DFAD Sheet 5)

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 4 of 6 Reference Section 61

DPS = 3, Fact 2 OBJECTIVES

1. Add (A + C) Plus Fraction
Carry from First Add

2. B + D Sum -+ SR
3. Set Next Fact Tgr

(1 Clk Pulse)

I

DPS = 3
Fact 2

I
For Fact 6 ~
(If Necessary)

Fact 2 Fact 2 C or Fact 2 1 - AD (35) If
MQ (9-35) - SR B + D SR (1-35) -+ AD A AC (9P) - AD (35) Carry from B + D Addition

02.13.51.1 (2F) 02.13.51.1 (40) 02 •. 13.67.1 (3F)
,#'1/

IL------_----..-__ ----li

Yes
$;9"' AUk. r--

To FAD, Fact 2
Figure 15 (Sheet 4)

Fact 2
A or C AC (9-35) _ AD ~ l's Comp Add

02.13.51.1 (4C)

Final AC Char ~ AD (a=~8fe~ AC

02.13.51.1 (lG)

CP Set A + C (Plus Any Carry From

Fact Set
Set

Fact 4

02.13.67.1 (21)

To FAD, Fact 4
Figure 15 (Sheet 6)

Yes

AD (9-35) - AC B + D Addition)

02.13.51.1 (2F)

AC in True Form ~

Yes
AD (9P) Carry

I
Fact Set
Set SR(S)

-AC(S) Tgr

02.13.67.1 (1\)

+
Normal

Instruction
No

,
Fact Set

Set
Fact 5

02.13.67.1 (2H)

To FAD, Fact 5
Figure 15 (Sheet 7)

AC in Comp Form

No~

Fact Set
Set

Fact 6

02.13.67.1 (2G)

To DPS = 3, Fact 6
(DFAD Sheet 6)

I
Fact Set

Reset
Carry Tgr

02.13.67.1 (2G)

I

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 5 of 6

62

DPS = 3, Fact 6 OBJECTIVES

1. Recomplement B + D
2. Set Facts 3 and 7

(1 Clk Pulse)

Turn Carry
Tgr On

02. 13. 59. 1 (1 E)

B + D in AD (9-35)- SR
True Form~

02.13.59.1 (3E)

DPS = 3, Facts 3 and 7 OBJECTIVES

1. Recomplement A + C
2. Set Next Fact T gr

(1 Clk Pulse)

Fact 7 Fact 3

Fact 6
SR (9-35)-AD ~Recomp B + D

l-AD(35) /'
02.13.59.1 (48)

Fact Set
Set Fact 3

02.13.59.1 (ID)

Fact Set
Set Fact 7

02.13.59.1 (1C)

B + D to MQ~ SR (9-35)- MQ AC (9-35) - AD
Fact 3

I-AD (35)
Carry from
B + D Recomp

02.13.59.1 (31) 02.13.53.1 (3C) 02.13.53.1 (48)

A+C

CP Set
Final Sum in AD (9-35)- AC
True Form ~

02.13.53.1 (3E)

Fact Set
Set Fact 4

02.13.53.1 (4G)

Fact Set
Set Fact 5

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 6 of 6

Reference Section 63

OBJECTIVES

1. Compute Product Char
2. Zero Test Multiplier and Multiplicand
3. Set Signs
4. Reset AC (9-35) to Zero
5. Prepare for First Mpy (B· C)

I T

POO 26
and

PR (9)

I

T
E2 (02)

1

Note: Unless otherwise shown, all
blocks on Systems 02.13.81.1

verla~~onfHctTgr

E2 (02)

Is Set at l5 Whenever
the AC Char :;(37,
Systems 02.13.45.1 (31)

El (01) E2 (01)
338 -SC AC (S) -MQ (S) AC (9-35)-SR

Zero Test
MQ (9-35)-SR

Zero Test
02.13.79.1 (4E) (4A)

I I
I

I I

Subrra" 200~ E3 (01) E3 (01)

l's-AO(Q,P,I) AC (Q-8) -AO
from Char AO (Q-8)-AC

02.13.79.1 (4A) 02.13.79.1 (4A)

I I
T

02.12.52.2 (5F)!.
03.08.13.1 (5CU

E4 (01)
SB--SR
SB-IBR

I
E5 (01)

AC (9-35) -- SR
SR (9-35) - SI

(4C)

I

I
E6 (01)

Set AC and MQ
Signs Minus

02.13.79.1 ~!:~
I

I
E6 (01)

AC (Q-8) --AO
SR (1-8) --AO

No SR and MQ
Signs Alike

1

Yes

I
E5 (01)

Reset MQ (1-8)

(4C)

I

I
E6 (01)

Set AC and MQ
Signs Plus

02.13.79.1 (3B)

I

I
E6 (01)

AO (Q-35)
--AC

(3A) 02.13.79.1 (2B) Zero Test of Multiplier (AB)

I I
T

~o E3 (01) >-Y....,.~_s _-,
SR = Zero ~

1....-___ -/ AB = Zero

at E3 (01) is Invalid if DFMP
Instruction is Overlapping the
Preceeding Instruction. End
Op Tgr "ON" (from previous
instruction) Holds Pre-End Op
Tgr Reset Ouring A3(01).
Systems 08.00.10.1(4C),pin P.

I
No 1 OUFM

E3 (01)
Reset SC
-Zero

02.13.79.1 (10)

1
T

E4 (01)

~--'---..

Normal
Instruction

Yes

OFMP

E3 (01)
Pre-End Op

02. 13.79. 1 (1 E)

AC (9-35) - AO ft/Zero Check A Fraction
l's_AO (9P,35) /

I
E5 (01)

SB--SR
= Zero

(1C)

r< '--___ ..J

~C = Zero

Yes

No y,;CD = Zero
E5 (01) Yes

SB-IBR
= Zero (3C)

Yes ~NO/ E5(Dl) 1\ AO (9P) Carry (20)~

AC = Zero
E5 (01)

Pre-End Op
End Op

02.13.81.1 (*) 02.13.79.1 (40) / 02.13.79.1 (40)

I
Char of A+C --+ AC (Q-8) 1 T

L-________ R~e~se_t_A~C~(~9_-3~5~) __________ ~--------._------------------~
i

Yes Pre-End Op No

1

E7 (01)
Reset

AC (Q-8) and
MQ (1-35)

02.13.79.1 (3E)

T
Next Instruction

Figure 20. Double-Precision FP MultipIY-DFMP; Sheet 1 of 2

64

I
E6 (01)

A SR (9-35)- SI
C SI (9-35)-SR

(48)

I
t

I
E6 (01)

Turn on Mpy
Cycle Tgr

(3B)

I

To Floating-Point
Multiply Cycles

Figure 16 (Sheet 2)

OBJECTIVES

1st Pass - Prepare for 2nd Mpy (A.O),
Reset AC

2nd Pass - Prepare for 3rd Mpy (A'C),
Add B'C + A'O

3rd Pass - Normalize One Place If
Necessary, Set Fact 5

No

From Floating-Point
Multiply Cycles

Figure 16 (Sheet 2)

L4 (01)
OPS = 2 or 3
and SC <: 7

Yes

7L4 (01)
Pre-End Op

Note: Unless otherwise shown, all
b locks on Systems 02. 13.83. 1

Occurs While

f SC = 3 Ouring
Third Multiply

(4A)

End of 1st
and 2nd Mpy~

No

.
Pre-End Op

3rd Pass Only
(End of 3rd Mpy)

Yes?

1st Pass Only

v!/ DPS =Z~O \NO

Both 1st and
2nd Passes

/ No

~nd Pass Only ~

D'S = 1 / y",j I NO\ DPS=3); 1\ / lstPass

L5 (01) \ 2nd Pass
IBR (9-35)- SR } DorB.C,v...---______ ..

SR (9-35)-- MQ Cor A
(2B) ...---__ 1..-_---. l

2L6 (01)
SR (9-35) - MQ
MQ (1-35)- SR

2L7 (01)
Reset

AC (9-35)

(20)

(2E)

'-----r-----J

B'C r
A'D l

r-----I-----.
L6 (01)

338 - SC

5L6 (01)
SR (9-35) - AO
AC (9-35) -- AO

l--AO (9P)

(3G)
AC (9-35) -- IBR

(2C) B'CorD'A
L..---"--l-"';"~

2ndP~as + r
\yes L7 (01) No

OPS 1 Tgr
On

L7 (01)
corB'C(SR-SI
AorC SI (9-35)- SR

5L7 (01)
Turn On Mpy

Cycle Tgr

-

(2F) (2H)

_____ ------ll /

Ll (01)
Step OPS

For 3rd Mpy

For 2nd
Mpy~

'--_--r __ (3_E)--' ~

3L3 (01)
Turn On Mpy

Cycle Tgr

(2H)

1st Pass - Step OPS -+ 1 (3rd L Cycle)
2nd Pass - Step OPS - 2 or 3, Mpy Cycles
of 3rd Mpy Occuring at Same Time
(6th L Cycle)

To Floating-Point
Multiply Cycles

Fiaure 16 (Sheet 2)

Figure 20. Double-Precision FP MultipIY-DFMP; Sheet 2 of 2

5L6 (01)
AD (9-35)
--AC

5L6 (Dl)
Step OPS -+ 2

(3G)

(IF)

,

I
7L6 (01)

Oue to Carryon
B'C + A'O

7L6 (01)
AC (9-35) - AO

1--AO (35) AO (9-35) - AC

1

No

I

(4H)

T
7L7 (01)

AC (Q-8)-AO
l's - AO (Q-8)

(3F)

1

(4H)

AC (9) = zer)o~~es
and Normal
Instruction

7L7 (01) 7L7 (01)
Sh AC and MQ
(10-35) - LT 1

MQ (9) - AC (35)
AO (Q-8)- AC

1
(21)

7L7 (01)
Set Fact 5

(lD)

To FAO, Fact 5
Figure 15 (Sheet 7)

(21)

Reference Section 65

A

OBJECTIVES

1. Zero Test AC and MQ
2. Oivide Check Test
3. Set MQ Sign

E2 (01)
Reset

51 (S-3S)

(3A)

(1st Cycle Tgr On)

E2 (01)
Reset

MQ (1-3S)

Floating-Point Oivide

E2 (01)
Turn On

1st Cycle Tgr

02. 13.89. 1 (SF)

El (03)
AC and MQ '(9-3S)
-- Zero Test

02.13.88.1 (20)

+

(2A)

Yes / AC and MQ
\ (9-3S) = Zero

E4 (01)
SB-SR
SB-IBR

E3 (01)
Turn On

9P Carry Tgr

02.13.89.1 (3A)

}
. 02. 12.S2.2 (SF)

03.08.13.1 (SC)

Note· Unless otherwise shown, all
blocks on Systems 02.13.8S.1

No

I
El (03)

ArIO-R) __ An

l's -AO(4,S,7,8)

02.13.88.1 (20)

~~e'fI""
Q Ca"y j Ye, ~

t
No

Also if AC(Q or P)
EqualOne~

E3 (01)
Block

Overlap

02.13.88.1 (2E)

~ Entry Point
for 2nd Oivide
OPS = 3

I
AS (01)

Reset

AS (01) AS (01)

t 2nd Oivide
;-v(OPS = 3)

~ D~=Ze'a r: (From Sheet S) MQ (5)
(2B)

T

No

AC (9-3S) -- AO
l--AO (9P)

(2B)

Yes

SR (9-3S)
-AO (9P-34)

(2B)

AC and SR
Signs
Alike AC 5> (2'SR)

AC and MQ = I
Zero t
O~ / 9' Carry T9' \ Off _

j\o2.13.89.1(2A);

AS (01)
Set MQ (5)

Minus

(21)

I
AS(OI)

Turn On Oiv Ck .1 Block Overlap

r
AS (01)
End Op
Reset 1st

Cycle Tgr
(SO)

~o \Yes

AO (9P) Carry r
I

AS (01)
Turn On
Tl Tgr

(SO)

End Op
Reset 1st
Cycle Tgr

(20)

To FP Oivide
(Sheet 2)

/ '---__ .---.:....(S_0:...t)

Overlap Not Blocked 1~ ________ l~_'-i---__ ~l~ _____ -----I
If ~ivide or Proceed ,
Instruction

1
Yes

OPS = 3

L6 (01)
Reset

AC (Q-8)

02.13.88.1 (2G)

(Oiv Ck) No
j

r-
~ PR (5)

A7 (01)
AC (5)

-MQ (5)

(2H)

9P Carry
Tgr On

~r<

Yes (AC and MQ = 0)

E7 (01)
Reset

AC (S,Q-8)
(2G)

t

I
E7 (01)

Reset
MQ (1-8)

(2G)

I
T 1 PR (5) r< TlT9'Oo 7 12 (01)

Turn On
and MST Tgr

PR (9):\: Zero
04.20.11.1 (4B) E7 (01)

MQ (5)
-AC(S) t

(2F)
Proceed Halt

1

Figure 21. Floating-Point Divide (Single and Double-Precision}-Sheet 1 of 6

66

OBJECTIVES

1. Get Char Difference (6.)
2. Check For Q :> 1

A6 (01) A6 (01)
SR (9-35) - AD

i 's - AD (9Q,9P)
AC (Q-35) - AD
1- AD (35)

(2A) (2A)

Q:>l~~< >~ Yes No
AD (9P) Carry

A6 (01)
Turn On

9P Carry Tgr

02.13.89.1 (4A)

Off

A7 (01)
Reset

E7 (01)

1st Cycle Tgr
SR (1-8) -AD
l's-AO (Q,P)

From FP Divide
(Sheet 1)

1st Cycle Tgr

A6 (01)
338 - SC

(20)

On

Note: Unless otherwise shown, all
blocks on Systems 02.13.86.1

A6 (01)
Ppg AD (9P)

Carry - AD (8)
(lA)
~ En~

'--___ -J

\
Adds 1 to AC Char if
AC:> SR On 1st Oiv
Only (Effectively Shifts
AC left 1 Place) ~

1st Divide
Only

I
Yes

E6 (01)
AD (Q-S)
-AC

(2B)

(Subtract SR Char from AC Char)

r
E7 (01)

AC (Q-S)
-AD

E7 (01)
Carry

-AD (8)

E7 (01)
AD (Q-8) 6.
-AC

02.13.S9.1 (50) (4C) (4C) (4C) (4C)

A7 (01)
Sh AC (9-35)

-Lt
(2C)

(Q < 1)""

Off
9P Carry Tgr

A7 (01)
MQ(9)-

AC (35)
(2C)

~

1

On No

A7 (01)
Sh MQ (9-35) Q

1 -Lt
(2C)

1

To FP ~ivide
(Sheet 3)

Figure 21. Floating-Point Divide (Single and Double-Precision}-Sheet 2 of 6

~2ndOivide
OPS=3 /

'--___ ..J

L7 (01) L7 (01)
SI (S)- MQ (S)-

SR (S) AC (S)
02.13.SS.1 (2A) 02.13.88.1 (2A)

1 ~ /1
\

Occurs 4 times (7th through
10th L Cycle) while OPS = 3

Q
2

Reference Section 67

OBJECTIVES

1. Develop Final Quotient Char
2. Divide Reduction Cycles

~
LTime r-No Blk Div and Yes

1st Cycle
Tgrs Off

(
From FP Divide

(Sheet 2)

Yes A4(D1) ~
SC = Zero /

Note: Unless otherwise shown,
all blocks on Systems 02.13.86.1

~
/

Develop Final Quotient
Characteristic (FP Ovfl
or Unfl is Possible)

L Time
1st Step

'--___ oJ

Yes

Add 200 to t::.

~
L5 (D3)

1-AD(1)

02.10.43.1 (21)

~ ~(S) i-
L6 (D1)

AD (Q-8)

Final
Quotient
Character i st i c

-- AC "'-
(21) """t::.+200~

L..-----r------'

L6 (D1)
AD (1-:-8)
-SR

02.10.44.1 (3B)

t
AC (Q-81
-AD

J

L6 (D1)
SR (1-8)
-MQ

(2E)

02.10.44.1 (3B) I;
Original Divisor Char

t::.+2t ~L

Each Clk

SR (9-35) -+ AD
l's-AD (9Q,9P)

Each Clk
AC (Q-35)
-AD

Each Clk
1--AD(35)

L7 (D1)
SR (1-8)
-MQ

L7 (D1)
MQ (1-8)
-SR

L7 (D1)
Step

TC--2

(2E)

d _ \ sc = Zero

Each Clk
Sh MQ (9-35)

-Lt1

(2F)

No

(2E)

(Divide Reduction Cycles)

Each Clk
MQ (9)-­

AC (35)

Each Clk
Step SC

(2E) 02.10.44.1 (3C)

Each Clk
Sh AC (9-35)

-Lt1

(2F) (2F) 2.12.35.1 (4D)

t
To FP Divide

(Sheet 4)

Figure 21. Floating-Point Divide (Single and Double-Precision}-Sheet 3 of 6

68

02.10.44.1 (3C) 02.10.20.1 (3B)

I

(AC:; SR)

AD (9P)
Carry

Yes ~ Successfu I
Reduction

Each Clk
AD (9-35)

-AC (9P-34)

2.12.32.2 (4D)

Each Clk
1-MQ (35)

2.04.06.1 (4H)

1

t::.

From FP Divide
(Sheet 3)

ft remainder, as dividend 1 Original Divisor Char
vely shifted left one

I T p I :; 1 condition, or ~
if ted left.1 place on

L4 (D1) L4 (D1) L4 (D1) " If SP o;v {Re.UIt 01 dition (in E time, with-
g the shift counter). Sh AC (9P-35) SR (1-8) AC (Q-8) b,. + 200 If DP Div L Time

s in correct position as - Rt1 --AD --AD 1st Step

tered into MQ(35) on

Note: Shi
was effecti
place on Q
actually sh
Q < 1 con
out steppin
Quotient i
l's were en
successful
of MQ(34)

reduction cycles, instead
02.13.86.1 (2G) 02.13.86.1 (2G) 02.13.86.1 (2G)

I 1 J as in fixed-point.

T
Double-

Original Dividend Char* 2's Comp
Precision ~ _

PR (S) + / -"
of 2710 r ~ T f

4L4 (D1) 4L5 (D1) 4L5 (D1)
AD (Q-8) AC (Q-8) l's- AD (Q,P, , -AC --AD 1,2,3,6,8)

02.13.86.1 (4G) 02.13.86.1 (2E) 02.13.86.1 (2H) i\ D~ = Zeco !J- 1
02.13.63.1 !

4L5 (D1)
DPS = 3 4L5 (D1) AD (Q-8)

t End Op -AC

L4 (D1) 4L4 (D1) llL4 (D1) 02.13.86.1 (2H) 02.13.86.1 (2H)

Turn On Step Step ~ Original Dividen Blk Div Tgr DPS-1 To DPS
"-No Effect T Char - 2710*

d

02.13.86.1 (2G) 02.13.86.1 (2G) 02.13.86.1 (2G)
on DPS Status) 1 Proceed * Note: May Be + 1 ,

End of 2nd End of First

Divide (D~ f\ ;tV'Divide
~No

DPS = 1
Yes

J I
4L6 (D1) 4L6 (D1) 4L6 (D1)

C SR (S-35) 33g- SC IBR (9-35)
To FP Divide -- SI -- SR

D

(Sheet 6)
02.13.87.1 (2A) 02.13.87.1 (2A) 02.13.87.1 (2A)

I I
OBJECTIVES: Single Precision

1. Set Char of Remainder (AC)
I I 2710 Less Than Dividend

2. End Op 4L7 (D1) 4L7 (D1) 4L7 (D1)
Rl AC (S-35) Q

1 MQ (S-35) SR (9-35) D

-IBR -SR -MQ

02.13.87.1 (2B) 02.13.87.1 (2B) 02.13.87.1 (2B)

OBJECTIVES: Double-Precision I I
Prepare For Mpy (Q 1 • D)

QI-
SR? For MPY I I D-MQ Q 1 'D Reset AC

5LO (D1) 5LO (D1) 5LO (D1)
C-SI Save Reset Step Turn On Mpy
R1-IBR AC (9-35) DPS- 2 Cycle Tgr

02.13.87.1 (2C) 02.13.87.1 (2Cl 02. 13,87. 1 (1 C)

l I

To Floating-Point To Multiply
Multiply Cycles ~Q1'D

Figure 16 (S heet 2)

Figure 21. Floating-Point Divide (Single and Double-Precision}-Sheet 4 of 6

Reference Section 69

Rl

C

OBJECTIVES

1. Add R1-Q10

2. Prepare for 2nd ~ivide
R1- Q 10

C

R1-Q10_AC}
C-SR For Oivide
Reset MQ
Q1-S1 (Save)

I
7L1 (01)

Rl
IBR (9-35)

--SR

I

7L2 (01)
SR (9-35) Q1D
-AO

(2E)

7L2 (01)
Turn on 9P
Carry Tgr

2.13.89.1 (5A)

7L3 (01)
SI (S-35)
-SR

(2H)

Yes

Q1

Q1
(20)

7L2 (01)

AC (9-35)
-AO

AO (9P)
Carry

7L3 (01)
SR (S-35)
--SI

1

From Floating-Point
Multiply Cycles

Figure 16 (Sheet 2)

Note: Unless otherwise shown,
all blocks on Systems 02.13.87.1

~ OPS=2 \NO_
~ SC=Zero /

I I
7L1 (01) 711 (01) 711 (01)
SR (9-35) Reset 9P Reset Pre-
--MQ Carry Tgr MQ Tgrs

(20) (20) (20)

1 I

I
7L2 (01) 7L2 (01) 7L2 (01)

1-AO (35) AO (9-35) MQ (9-35)
1-AO (9P) -AC -SR

(2E) (2E) (2F) (2F)

R1-Q1D I
.rt/ R1< Q1 0 (Addition Result in Comp Form,

/'. Recomp AC)
No

Gated by 9P Carry
Tgr Off·~

~~--------~~~----------~~

I

(2H)

7L3 (01)

AC (9-35)-AO
1--AO(35)

(2G)

7L3 (01)
AO (9-35)
--AC

(2G)

7L3 (01)
Reset

MQ (1-35)

7L3 (01)
Turn On

1st Cycle Tgr

(2H)

7L3 (01)
Step

OPS-3

(2H)

To FP Oivide
(Sheet 1)

(2H)

cb
To

2nd ~ivide
A ~ Entry Point

7L3 (01)
Invert
AC (S)

(2G)

I

f
7L3 (01)
Turn Off

Blk Div Tgr

(2H)

1

Q1

I
7L3 (01)
Reset 9P
Carry Tgr

I

Figure 21. Floating-Point Divide (Single and Double-Precision)-Sheet 5 of 6

70

(2H)

Q1

OBJECTIVES:

1. Check Q2 Fraction

2. Prepare For Addition (Q1 + Q2)

I
llL5 (01)
SI (S-35)
-SR

(2B)

I

1 I
llL5 (01) llL5 (01)

Reset Reset
AC(9-35) OPS - Zero

1
(2B)

Do Normal
FAD

Q 1+Q2

To FAD, Fact 2
Figure 15 (Sheet 4)

(2B)

i

C From FP Divide
(Sheet 4)
~-

Note: Unless otherwise shown,
all blocks on Systems 02.13.88.1

OPS=3 ~ Blk Oiv No
Tgr On

Yes

Off

Q2 Fraction Displaced

~2610 Positions Less

/. Than Q 1 Fraction

9P r=0~n ____________ -,
Carry Tgr

11L5(01)
Set Fact 2

(2B)

-

I I
llL5 (01) llL5 (01)

MQ(9)- Sh MQ (10-35)
AC(35) -Lt1

(2C) (2C)

1 J

Fact Sequence: Fact 4 Will Occur
Only When AC (9) = Zero

AC(S) = SR(S)

AC(S) ISR(S)
and Q2 = 0

Fact 2,(4),5

Fact 2,6,7,(4),5

Fact 2,3,(4),5

Q2

Figure 21. Floating-Point Divide (Single and Double-Precision}-Sheet 6 of 6

Reference Section 71

Appendix

Principal Triggers Used During Arithmetic
Operations

TRIGGER NAME

ACOvH
Blk FP Div
Carry Tgr
9 Carry
9P Carry
Clk Drive
DPS 1-3
DivCk
EndOp
FACT 1-7
FADMQOvH
First Cycle
FPDiv
FP OvH #1
FPOvH #2
FP Trap
FP Trap Mode
MST
Mpy Cycle #1
MpyCycle #2
MQ OvH #1
MQ OvH #2
MQ String Bit
Ovlp Conflict
Pre-End Op
Pre MQ 34
Pre MQ 35
Pre MQ String Bit
Reset Add
SR (S)-AC (S)
T1

72

SYSTEMS LOCATION

02.10.36.1
02.13.89.1
02.02.40.1
02.10.37.1
02.13.89.1
02.13.44.1
02.13.63.1
02.10.53.1
08.00.09.2
02.13.49.1-02.13.59.1
02.13.57.1
02.13.89.1
02.10.52.1
02.10.52.1
02.10.50.1
02.10.51.1
02.10.71.1
04.20.11.1
02.13.77.1
02.13.77.1
02.10.51.1
02.13.04.1
02.13.77.1
03.08.17.2
08.00.10.1
02.13.77.1
02.13.77.1
02.13.77.1
02.13.61.1
02.13.61.1
02.10.53.1

1111
ZI
-I
.JI

"I ZI
0 1
.JI
(I

I "I :)1
u

FOLD

COMMENT SHEET

IBM 709411 DATA PROCESSING SYSTEM -VOLUME II

ARITHMETIC INSTRUCTIONS
CUSTOMER ENGINEERING INSTRUCTION-MAINTENANCE, FORM 223-2722-0

FROM

NAME

OFFICE NO.

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED

o SUGGESTED ADDITION (PAGE , TIMING CHART, DRAWING, PROCEDURE, ETC.)

o SUGGESTED DELETION (PAGE

o ERROR (PAG E

EXPLANATION

NO POSTAGE NECESSARY IF MAILED IN U. S. A.
FOLD ON TWO LINES, STAPLE, AND MAIL

FOLD

FOLD

STAPLE STAPLE

FOLD FOLD

,-- - - -- -- - ---- - --------------,..---------------...

~OLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION

P. O. BOX 390

POUGHKEEPSIE, N. Y.12602

ATTN: CE MANUALS. DEPARTMENT 896

STAPLE

FIRST CLASS
PERM IT NO. 81

POUGHKEEPSIE, N. Y.

FOLD

l&I

I!
I .J
I(!J
I Z
10
I .J

1<
I t­
I :::J
IU

6/64:1. SM-FAW-80
I
I
I

STAPLE !

III
tJ

e ~ >- e nI j:.o

~
III ~ nI III
-lIlj:.o -U 1Il_~ III
>- ~ >-
til ';...:3 til

~

-- --- ----CUT HERE- - -- ---

223·2722-0

llrn~
(!)

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

I
I
I
I
I
I
I

_.-J

;;
;c:
.....
0
'0
=

~ :;.
it
"-
:;.
c v.
?-

J

~

J

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	replyA
	replyB
	xBack

