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Preface 

This is the second (Volume 2) of three volumes that 
make up the final version of the IBM 7094-11 Customer 
Engineering Instruction-Maintenance manual. This vol­
ume contains all the arithmetic instructions for the 
IBM 7094-11 Data Processing System and is arranged in 
four sections: 

l. Fixed-Point 
2. Floating-Point 
3. Double-Precision Floating-Point 
4. Reference Section (Flow Charts) 
The material in this volume is written at engineering 

change level 253405; however, future engineering 
changes may change the logic and machine operations 
from their presentation here. 

Volume 1 of the Customer Engineering Instruction­
Maintenance manual, IBM 7094-Il, Form 223-2721, 
contains information concerning: System Organization, 
Component Circuits, System and Functional Compo­
nents, and Timing. 

Volume 3 of the Customer Engineering Instruction­
Maintenance manual, IBM 7094-Il, Form 223-2723, 
contains information concerning: Non-Arithmetic In­
structions, Overlap, Trapping, Channel Instructions, the 
IBM 7151-2 Console Control Unit, and Compatibility. 
Material in Volume 3 is presently available in the Cus­
tomer Engineering Instruction-Maintenance manual, 
IBM 7094-Il, Form Z22-2723, and Supplement, Form 
823-4019. 

Copies of this and other IBM publications can be obtained through IBM Branch Offices. 
Address comments concerning the contents of this publication to: 
IBM Corporation, CE Manuals, Dept. B96, PO Box 390, Poughkeepsie, N. Y. 12602 

© 1964 by International Business Machines Corporation 



Fixed-Point Arithmetic .......................... . 
Addition ........................................ . 

Clear and Add-cLA ............................. . 
Clear and Add Logical \Vord-cAL ................. . 
Add-ADD ..................................... . 
Add Magnitude-ADM ............................ . 
Add and Carry Logical Word-AcL ................. . 

Subtraction ...................................... . 
Clear and Subtract-cLs. . . . . . . . . . . .. . .......... . 
Subtract-suB .................................. . 
Subtract Magnitude-SBM ........................ . 

Multiplication .................................... . 
Multiply-MPY .................................. . 
Multiply and Round-MPR ........................ . 
Round-RND .................................... . 

Variable-Length Multiplication ...................... . 
Variable-Length Multiply-vLM ................... . 

Division ......................................... . 
Divide or Halt-DvH ............................. . 
Divide or Proceed-DvP .......................... . 

Variable-Length Division ........................... . 
Variable-Length Divide or Halt-vDH ............... . 
Variable-Length Divide or Proceed-vDP ............ . 

Floating-Point Arithmetic . ....................... . 
Characteristic and Fraction . . . . . . . . . . . . . . . . . . . . . . . . 
Sign Control .................................... . 
Normal and Unnormal Numbers ................... . 
Zero Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Arithmetic Operations ............................ . 

Floating-Point Controls ............................. . 
Adder Separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Tally Counter ................................... . 
FACT Triggers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Double-Precision Sync (DPS) ...................... . 
Floating-Point Trap .............................. . 

Single-Precision Floating-Point Addition and Subtraction .. 
Floating Add-FAD .............................. . 
U nnormalized Floating Add-uFA ................. . 

7 
8 
9 
9 
9 

10 
10 
10 
11 
11 
11 
11 
13 
13 
13 
14 
14 
14 
15 
15 
15 
15 
15 

16 
16 
16 
16 
16 
17 
17 
18 
18 
18 
18 
18 
19 
23 
23 

Contents 

Floating Add Magnitude-FAM .................... . 
Unnormalized F~oating Add Magnitude-uAM ....... . 
Floating Subtract-FsB ........................... . 
Unnormalized Floating Subtract-uFs .............. . 
Floating Subtract Magnitude-FsM ................. . 
Unnormalized Floating Subtract Magnitude-usM .... . 
Floating Round-FRN ............................ . 

Single-Precision Floating-Point Multiplication .......... . 
Floating MultiplY-FMP .......................... . 
Unnormalized Floating MultiplY-UFM ............. . 

Single-Precision Floating-Point Division ............... . 
Floating Divide or Halt-FDH ..................... . 
Floating Divide or Proceed-FDP ................... . 

Double-Precision Floating-Point Arithmetic . ...... . 
Double-Precision Floating-Point Addition and Subtraction. 

Double-Precision FP Add-DFAD ................... . 
Double-Precision Unnormalized FP Add-DuFA ...... . 
Double-Precision FP Add Magnitude-DFAM ......... . 
Double-Precision Unnormalized FP Add 

Magnitude-DuAM ............................. . 
Double-Precision FP Subtract-DFsB ............... . 
Double-Precision Unnormalized FP Subtract-DUFs ... . 
Double-Precision FP Subtract Magnitude-DFsM ..... . 
Double-Precision Unnormalized FP Subtract 

Magnitude-DusM ............................. . 
Double-Precision Floating-Point Multiplication. . . . . . . .. . 

Double-Precision FP MultiplY-DFMP ............... . 
Double-Precision Unnormalized FP MultiplY-DUFM .. . 

Double-Precision Floating-Point Division. . . . . . . . . . . . . . . 
Double-Precision FP Divide or Halt-DFDH .......... . 
Double-Precision FP Divide or Proceed-DFDP ....... . 

Reference Section ............................... . 
Abbreviations and Symbols .......................... . 
Flow Charts (See Illustration List) . . . . . . . . . . . . . . . . . .. . 

Appendix ....................................... . 
Principal Triggers Used During Arithmetic Operations ... . 

23 
23 
23 
23 
23 
23 
23 

23 
24 
24 

24 
25 
25 

26 
27 
27 
27 
27 

29 
29 
29 
29 

29 
29 
30 
30 

31 
31 
34 

35 
35 
35 

72 
72 





Illustrations 

FIGURE TITLE PAGE 
1. Fact Usage Chart ............................... 18 
2. Floating-Point Spill Codes. . . . . . . . . . . . . . . . . . . . . . .. 19 
3. FAD; Fact Sequence Chart. . . . . . . . . . . . . . . . . . . . . . .. 21 
4. DFAD; Simplified Flow Chart-Sheets 1 and 2 ....... 28,29 
5. Timing of Floating-Point Multiply Cycles. . . . . . . . . .. 30 
6. Double-Precision FP Divide; Characteristic and 

Sign Determination Tables. . . . . . . . . . . . . . . . . . . . . . .. 31 
7. Double-Precision FP Divide; Simplified Flow Chart 

-Sheets 1 and 2 ............................... 32, 33 

Reference Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 

8. Clear and Add; Clear and Subtract; Clear and 
Add Logical Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 

9. Add; Add Magnitude; Subtract; Subtract Magnitude.. 37 
10. Add and Carry Logical 'Vord. . . . . . . . . . . . . . . . . . . .. 38 
11. Fixed-Point Multiply-Sheets 1 through 3 .......... 39-41 
12. Fixed-Point Multiply Cycles; X-Y Recording. . . . . . . .. 42 
13. Round. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43 
14. Fixed-Point Division-Sheets 1 and 2 .............. 44,45 
15. Single-Precision FP Addition and Subtraction-

FAD-Sheets 1 through 8 ............. : ........... 46-53 
16. Single-PreciSion FP MultiplY-FMP-Sheets 1 and 2 .. 54, 55 
17. Floating-Round. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .. 56 
18. DFAD; Register Exchange Charts .................. , 57 
19. Double-Precision FP Addition and Subtraction-

DFAD-Sheets 1 through 6 ....................... 58-63 
20. Double-Precision FP MultiplY-DFMP-

Sheets 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64, 65 
21. Floating-POint Divide (Single and Double-

Precision )-Sheets 1 through 6 ................... 66-71 



I CONSOLE 

I 
I 
I 
I 
L_ 

7094~II CPU Datl! Flow 



Fixed-point arithmetic is the most basic form of arith­
metic. Simply stated, it is the process of computation 
using quantities whose magnitude is completely ex­
pressed by a single (value) field. The relationship of 
the magnitude to zero is expressed by a sign position. 
In fixed-point arithmetic, the length of an operand is 
generally determined by the siz~ of the word that oc­
cupies one location in core storage. In th~ 7094-II, fixed­
point arithmetic operands have the following basic 
format: 

Value Field 

The sign bit (S) determines whether the magnitude is 
positive or negative. When S is a 0, the magnitude is 
positive; when S is a 1, the magnitude is negative. The 
value field is 35 bits long and states the magnitude of 
the number. A fixed-point operand can then be de­
fined as a unit of data 36 bits long, containing a sign 
bit and 35 magnitude bits. 

Fixed-point arithmetic in the 7094-II includes addi­
tion, subtraction, multiplication, and division. All these 
operations involve only two operands. One operand is 
explicitly addressed (addressed operand) and one 
operand is implied (implied operand). In all four op­
erations, the explicitly addressed operand is obtain~d 
from the core storage location (Y) specified by the in­
struction. The implied operand varies with the opera­
tion: addition or subtraction implies the accumulator 
register (AC); multiplication, the multiplier-quotient 
register (MQ); division, the combined AC-MQ registers. 
The implied or accumulator operand has the following 
format: 

Value Field 
- .A - - - - - - - - - - - -;51 

Accumulator 

The accumulator value field is 37 bits long. The addi­
tional bits, Q and P of the AC are provided primarily 
to handle conditions which result in an overflow out of 
position 1. Bits P and Q are therefore known as over­
flow bits and are treated as the two highest order accu­
mulator bits during the execution of fixed-point arith­
metic. Position 9P of the A;C is not used in fixed-pOint 
arithmetic, but is used in floating-point arithmetic. 

Fixed-Point Arithmetic 

The actual arithmetic takes place in the adder which 
has the following format: 

Adders 
Note: 9Q and 9P not used in fixed point. 

BaSically, when the contents of the storage register (SR) 

are gated into the adders Simultaneously with the true 
or complement form of the AC contents, an addition or 
subtraction is effected, and the result may be placed in 
the AC. 

In multiplication, the addressed operand is obtained 
from the core storage location (Y) specified by the in­
struction; the implied operand is obtained from the MQ 

register. The addressed operand is placed in the SR, 

which has the basic format of a sign bit and a 35-bit 
value field. SR contents become the multiplicand. MQ 

contents form the multiplier, which has a forma.t iden­
tical with the multiplicand. Multiplication is effected 
by a combination of right shifts and additions. A multi­
plication result is placed in the combined AC-MQ regis­
ters with MQ( 35) the lowest order bit. Multiplication is 
algebraic, and the resultant sign is placed in both the 
AC ( s) and MQ ( s) positions. 

In division, the addressed operand is obtained from 
the core storage location (Y) specified by the instruc­
tion; the implied operand is obtained from the com­
bined AC-MQ registers. The addressed operand is placed 
in the SR and becomes the divisor; the combined AC-MQ 

registers become the dividend. Divisor format is the 
basic single sign bit and 35 value-field bits. The divi­
dend format is a single sign bit and 72 value-field bits: 

Storage Register {divisor} 

Accumulator (remainder) 

MQ Register (quotient) 

The result or quotient is placed in the MQ register and 
has a format id.entical with the divisor. Remainder bits, 
if any, go into the AC with a format of one sign bit and 
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37 value-field bits; AC( 35) is the lowest order remainder 
bit. Division is effected by a combination of subtrac­
tions and left shifts. 

Addition 
When performing addition in the 7094-II, the general 
rules of algebra must first be applied to the signs of the 
quantities involved to determine whether the sum or 
the difference of the quantities involved is to be ob­
tained. Therefore, when adding two positive quantities, 
the result is the sum of those quantities with a positive 
sign. When adding a positive and a negative quantity, 
the sum is actually the difference of th~ two quantities 
with the resultant sign being the sign of the larger 
magnitude. Finally, when adding two negative quanti­
ties, the result is the sum of the quantities with a nega­
tive sign. 

Assume the quantity +2008 is to be added to the ac­
cumulator, which contains +758, The result is +2758 , 

To satisfy machine operand format, convert the quan­
tities to their binary equivalents: 

+2008 = + 010000 000 
+ 758 = + 000 111101 

Insert these binary numbers into respective data words 
with the lowest order bit going into bit 35: 

5, 1 26 27 28 29 30 31 32 33 34 35 

Storage Register 

5, Q P 1 26272829303132333435 

Accumulator 

Bits 1 through 26 are not needed to express the quan­
tities and are therefore all O's. Because accumulator bits 
Q and P are treated as part of the value field and the 
accumulator value is assumed as +758, bits P and Q are 
O's. Because each number is positive, a 0 is placed in 
the respective sign bit (S). 

Fixed-point addition in the 7094-11 is identical with 
that described in binary addition: 0 + 0 = 0; 0 + 1 = 1; 
1 + 1 = 0 with a 1 carry to the next higher position. 
Adding the two operands produces a resultant magni­
tude of 010 III 101, with a resultant sign of O. In ma­
chine operand format, the result is as follows: 

S, Q PI 26272829303132333435 

Accumulator 

8 

If the same magnitudes are used but the signs are 
changed to negative, the entire handling of the magni­
tude remains unchanged in performing the addition. 
The 7094-II treats the sign bits separately. To represent 
the negative values correctly, insert a 1 in the sign bit 
position of each of the operands and the result; this is 
what is done in the computer. 

Because algebraic principles are employed, addition 
of two quantities with unlike signs is effectively a sub­
traction. Using the same values, but changing the sign 
of the accumulator operand to a minu"s, the problem 
becomes (+ 2008 ) + (- 758 ), To accomplish addition, 
line up the octal points and subtract: 

+ 2008 

- 0758 

+ 1038 

To satisfy machine operand format, convert the 
values to their binary equivalent: 

+ 2008 = + 010 000 000 
- 0758 = - 000 111101 

Insert these binary numbers into their respective data 
words with the lowest order bit in each value going 
into bit 35 

2- 00 
1OI0-... -------~ oloiliololqolololq 
5, 1 26 27 28 2930 31 32 33 34 35 

Storage Register 

I 0 I 7 5 

5, Q P 1 2627 28 29 30 31 32 33 34 35 

Accumulator 

Bits 1 through 26 are not needed to express the quanti­
ties and are therefore all O's. Accumulator bits Q and P 
are implied O's by the assumed accumulator value. 

The computer adds values having unlike signs as 
follows: 

1. Complements the accumulator value field. 
2. Adds the l's complemented accumulator value 

field and storage register value field. 
3. Places the result in the accumulator. 
4. Compares the accumulator and storage register 

signs: 
a. If alike, check for a carry-out value field position 

1. The coincidence of like signs and a carry-out of 
position 1 indicates an overflow. 

b. If unlike, checks for a Q carry: 
1. If there is a Q carry, adds 1 to the accumulator 

in the lowest order position (bit 35), inverts 
the accumulator sign, and places the resultant 
operand in the accumulator. 

2. If there is no Q carry, complements the accu­
mulator value field. 



The addition is then performed as follows: 
1. Storage Register = + 2008 = + 010 000 000 

. Accumulator = - 0758 = - 000 111101 
2. Complementing the accumulator value field re­

sults in its containing III 000010, with bits Q-26 alII's. 
3. Add: 010 000 000 

111000010 

001000010 with a 1 carry propagated 
through the rest of the bits (Q-26) and out of Q. 

4. The intermediate result is placed in the accumu­
lator, which now contains - 001 000 010. Bits Q-26 are 
all 0' s because of the propagated carry. 

5. Checking the accumulator and storage register 
signs reveals they are unlike. 

6. Checking for a Q carry reveals one. 
7. Adding 1 to the accumulator lowest order bit 

makes the value field 001 000 011, and inverting the 
sign makes it positive (0). 

8. The resultant value in the accumulator is 
+ 001 000 011, which equals + 1038• 

Repeating the problem with + 2008 as the accumu­
lator operand and - 758 as the addressed operand 
causes the following: 

1. Storage Register = - 758 = - 000 111101 
Accumulator = + 2008 = + 010000 000 

2. Complementing the accumulator value field re­
sults in its containing 101111111, with bits Q-26 alII's. 

3. Add: 000 111101 
101111111 

110 111100 with bits Q-26 unaffected. 
4. The intermediate result is placed in the accumu­

lator, which now contains + 110 III 100. Bits Q-26 are 
alII's. 

5. Checking the accumulator and storage register 
signs reveals that they are unlike. 

6. Checking for a Q carry reveals none. 
7. Complementing the accumulator value field yields 

a final result of + 001 000 OIl. 
The term overflow means that the capacity of the 

machine has been exceeded. The arithmetic result can­
not be represented by the machine because it contains 
more than 35 value field positions. As previously stated, 
the accumulator bits Q and P are called overflow bits. 
The name, however, only provides an easy means of 
identifying these bits as a pair. Because they could 
originally contain 00, 01, 10, or 11, their significance 
depends on the problem. When dealing with values 
having like signs, a resultant 1 in either bit or in both 
bits indicates an overflow. In this case, the overflow is 
remembered but subsequent action depends on the 
program being executed. 

When dealing with unlike signs, the overflow bits are 
significant as a pair and, in this sense, they either gen­
erate a Q carry or they do not generate a Q carry. If a 

carry is generated, it indicates that the accumulator 
operand was the smaller operand and that the number 
presently in the accumulator value field is a true num­
ber equal to one less than the correct answer. If a Q 
carry is not generated, its absence indicates that the ac­
cumulator operand was the larger operand and that the 
number presently in the accumulator value field is the 
correct answer in complement form. 

Clear and Add 
(I, E) 

CLA + 0500 

The contents of AC (S, 1-35) are replaced with the con­
tents of storage location (Y), as indicated by the ad­
dress portion of the instruction. AC ( Q, p) are set to 
zero. See Figure 8. 

Clear and Add Logical Word 
(I, E) 

CAL - 0500 

The logical contents of Y replace the contents of 
AC(P, 1-35), the sign of Y replacing AC(P). AC(S, Q) are 
set to zero. See Figure 8. 

Add 
(I, E) 

ADD + 0400 

The contents of Yare algebraically added to the con­
tents of the AC. The resulting sum replaces the contents 
of the AC. AC overflow is possible. See Figure 9. 

The following rules of addition are used during the 
execution of the add instruction: 

1. Accumulator and storage register signs alike: 
a. Add true accumulator factor to the storage regis-

ter factor. 
b. The accumulator sign is unchanged. 
2. Accumulator and storage register signs unlike: 
a. Add I's complement of the accumulator factor to 

the storage register factor. 
1. If no Q carry results, complement the accumu­

lator factor and leave the accumulator sign un­
changed. 

2. If a Q carry results, add one to the result and 
change the accumulator sign. 

The contents of the AC or the I's complement of the 
AC and the contents of the SR are added in the adders. 
Whether to use true AC or complemented AC is deter­
mined by the comparison between the AC and SR signs. 
Complement addition is used to obtain the difference 
between the contents of the SR and the contents of the 
AC. 

The difference between the SR and AC contents can 
bea complement number or a true number. The result 
will be in complement form if the AC is larger than 
the SR factor. A true number will result if the AC factor 
is smaller than the SR factor. During the addition, a 
carry-out of AD( Q) indicates that the AC factor is 
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smaller. No Q carry indicates that the AC factor is 
larger. To remember the carry, a carry trigger is 
turned on by a carry-out of AD( Q). 

If the result of the complement addition is a true 
number, it is one less than it should be because the 
1's complement rather than the 2's complement was 
used in the addition. Therefore, a 1 is added to the 
result in the AC to get the correct difference. If the re­
sult of the addition is a complement number, it must 
be recomplemented to get the correct true number. 
The sign of the result in the AC is set the same as the 
sign of the larger original factor, as determined by 
the status of the Q carry. 

Example 1 

Signs Alike 
-6+(-7) = -13 
-0111 SR(7) 
-0110 AC(6) 

-1101 Result in AC(13) 

Example 2 

Signs Unlike, AC Smaller 
-6+(+7) = +1 
+0111 SR(7) 
-10011's romp of AC(6) 
-0000 Q carry 

1 Add one 
-0001 Result in AC 
+0001 Change sign 

Example 3 
Signs Unlike, AC Greater 
-7+(+6) =-1 
+0110 SR (6) 
-1000 1's comp of AC (7) 
-1110 No Q carry, Result in AC 
-0001 Comp AC 

Add Magnitude 
(I, E) 

ADM + 0401 

The sign of Y is ignored and the contents of Yare 
treated as a positive number. This positive number is 
then added algebraically to the contents of the AC. 

The resulting sum replaces the contents of the AC. With 
a minus AC sign, a subtractive process (signs unlike) 
will occur. AC overflow is possible. See Figure 9. 

Add and Carry Logical Word 
(I, E) 

ACL + 0361 

The logical contents of Yare added to the contents of 
AC(P, 1-35), the sign of Y being added to AC(P). The 
resulting sum, including a carry to AD( 35) if a carry­
out of AD(p) occurs, replaces the contents of AC(P, 1-35). 

The AC sign is ignored; AC( Q) is unchanged; AC over­
How is not possible. See Figure 10. 

10 

Subtraction 
Subtraction in the 7094-I1 is algebraic and is accom­
plished as follows: 

l. Invert the storage register sign. 
2. Compare the accumulator and storage register 

signs: 
a. If alike, add the contents of the accumulator and 

storage register. 
b. If unlike, complement the accumulator and then 

add the contents of the accumulator and the stor-
age register. , 

3. Place the addition result in the accumulator. 
4. Compare the accumulator and storage register 

signs: 
a. If alike, check for a carry-out of value field posi­

tion l. The coincidence of like signs and a carry­
out of value field position 1 indicates an over­
flow. 

b. If unlike, check for a Q carry: 
1. If there is a Q carry, add 1 to the present ac­

cumulator value field in the low-order position 
and invert the accumulator sign. 

2. If there is no Q carry, complement the accu­
mulator value field. 

Assume the problem -558 - ( +6008 ), where +6008 

is the addressed operand and -558 is the implied 
operand. The result is -6558 , To satisfy machine oper­
and format, convert the quantities to their binary 
equivalents: 
+ 6008 = + 110000 000 
- 558 = - 000 101 101 
Insert these binary numbers into respective data words 
with the lowest order bit going into bit 35. 

6 0 0 
I~o--------__ 011111010101~010!q 
5,1 26272829303132333435 

Storage Register 

o 5 5 

11101010----------0101010bloll111~11 
S,i Q ! P 1 26272829303132333435 

Accumulator 

Bits 1 through 26 are not needed to express the quan­
tities and are therefore all O's. Because accumulator 
bits Q and P are treated as part of the value field and 
the accumulator value is assumed as -558, bits P and 
Q are D's. The addressed operand is positive, so its sign 
bit is a 0, whereas the implied operand is negative, so 
its sign bit is a l. 

Following this procedure, the subtraction is accom­
plished as follows: 

l. Storage Register = + 6008 = + 110 000 000 
Accumulator = - 558 = - 000 101101 



2. Complementingthe storage register sign results 
in the register containing - 110000000. 

3. Comparing the operand signs reveals they are 
alike. 

4. Add: 110000000 
000 101101 

110101101 with bits Q-26 all O's. 
5. The addition result is placed in the accumulator, 

which now contains - 110 101 101. 
6. Comparing the accumulator and storage register 

signs reveals they are alike. 
7. Checking for a Q carry reveals none. 
S. The final answer in the accumulator is 

- 110 101 101 which equals -6558, 

Repeating the problem, but with -558 the addressed 
operand, the operand formats are as follows: 

055 

5, 1 2627 28 29 30 31 32 33 34 35 

Storage Register 

s;a p 1 26272829303132333435 

Accumulator 

In accordance with the procedure, the following takes 
place: 

1. Storage Register = - 558 = - 000 101101 
Accumulator = + 6008 = + 110 000 000 

2. Complementing the storage register sign results 
in the register containing + 000 101 101. 

3. Comparing the accumulator and storage register 
sign reveals they are alike. 

4. Add: 000 101101 
110000000 

110 101101 with bits Q-26 all O's 
5. The addition result is placed in the accumulator, 

which now contains + 110 101101. . 
6. Comparing the accumulator and storage register 

signs reveals they are alike. 
7. Checking for a Q carry reveals none. 
S. The final answer in the accumulator is 

+ 110 101101, which eq;uals +6558, 

Note the identical manner in which the two prob­
lems were handled. In each case, the arithmetic was 
addition. In each case, the sign of the subtrahend 
(storage register operand) was inverted. Subtraction' 
of unlike signs becomes addition and it is not signifi­
cant whether the accumulator is the larger or smaller 
operand. 

Clear and Subtract CLS + 0502 
(I, E) 

With the sign position of Y sent in inverted form, the 

contents of Y replace the contents of AC(S, 1-35). AC(Q, p) 
are set to zero. See Figure S. 

Subtract 
(I, E) 

SUB + 0402 

The contents of Yare algebraically subtracted from the 
contents of the AC. The difference replaces the con­
tents of the AC. This instruction operates the same as 
ADD, except the sign of Y is used in inverted form. AC 

overflow is possible. See Figure 9. 

Subtract Magnitude 
(I, E) 

SBM - 0400 

The sign of Y is ignored and the contents of Yare 
treated as a negative number. This negative number 
is then added algebraically to the contents of the AC. 

The resulting sum replaces the contents of the AC. With 
a minus AC sign, an additive process (signs alike) will 
occur. AC overflow is possible. See Figure 9. 

Multiplication 
In order to simplify the 7094-II multiplication process, 
a review of the basic machine process using only one 
digit of the multiplier at a time is as follows: 

Binary computers perform multiplication by repeti­
tive addition and shifting. The process is similar to that 
used when performing binary multiplication using 
pencil and paper. The basic rule is to add and shift 
when a 1 is decoded in the low-order position of the 
multiplier and to shift without addition when a zero 
is decoded. ' 

Assume the problem is to multiply 158 by 58. On 
paper we would do the following: 

158 = 11012 (multiplicand) 
58 = lOb (multiplier) 

1101 (first multiply by 1) 
0000 (multiply by zero-no add-shift) 

1101 (second multiply by I-shift and 
add) 

1000001 = 1018 

Proof: 158 X 58 = 1310 X 510 = 6510 
1018 = 6510 

In the first step, a 1 is contained in the low-order 
position of the multiplier. With a 1 in this position, 
the first partial product is equal to the value of the 
multiplicand. The second step requires a multiplication 
by O. To accomplish this, O's are added to the first 
partial product formed. The relative position of the 
partial product is maintained by displacing the 0' s left 
one place before the summation. 

The final iteration is a multiplication by 1. The mul­
tiplicand is shifted left and added to the partial prod-
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uct formed as a result of the previous two multiply 
iterations. 

Thus, to perform a multiplication of two binary num­
bers, the state of the low-order position of the multi­
plier is examined to determine whether that iteration 
of the multiply cycle is to be a multiplication by 0 or 
by 1. If the contents of the low-order position is a 1, 
a multiplication by 1 is required and the multiplicand 
is added to any previous partial product formed. If no 
bit is detected in the low-order position of the multi­
plier, a multiplication by 0 is accomplished by adding 
o to the partial product. 

For convenience, three registers are used to program 
a multiplication. The multiplicand is contained in the 
SR, the multiplier in the MQ, and the partial product 
is formed in the AC. The AC and the MQ are shifted 
right after each multiplication by 1 or 0 to sense the 
next higher order position of multiplier and to main­
tain the proper relationship between the partial prod­
uct and the multiplicand. 

Because of the cost to store each partial product 
separately before summation, an addition is performed 
after each iteration and the answer is gradually built 
up in the AC and MQ. A shift counter (sc) is used to 
indicate when the proper number of multiplier bits 
have been processed, and the multiplication is com­
plete. The value to which the sc is set is either the 
length of the multiplier, 3510 bits in the 7094-II or a 
value determined by the decrement field in a variable 
length instruction. 

Assume we are to perform the same problem 
(15s X 5s ), using a binary computer with five-position 
registers. At the start of the problem the registers would 
contain: 

SC = 101 (510) SR = 01101 AC = 00000 MQ = 00101 

MQ ( 5) is sensed to determine if its contains a 1 or 
a O. If MQ( 5) is a 1, the contents of the SR are added to 
the contents of the AC and the result is put into the AC. 

The AC and MQ are shifted right one place to align the 
registers for the next step. This shift puts bit 4 of the 
MQ into position 5 for sensing and also puts the least 
significant bit of the answer into MQ ( 1 ). The registers 
now contain: 

SC=100 SR=0l101 AC = 00110 MQ = 1]0010 

The bracket around the first bit in the MQ indicates 
this bit is part of the partial product. MQ ( 5) is again 
sensed to determine if its contains a 1 or O. Because a 
o is encountered, no addition takes place but the AC 

and MQ are shifted right one place. The registers now 
look like this: 

SC=Ol1 SR=01101 AC=OOOl1 MQ=Ol]OOI 

The 1 in MQ ( 5) requires an addition and a shift. 
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The contents of the SR and AC are added and the result 
placed in the AC. The AC and MQ are shifted right one 
place and the registers now contain: 

SR=01101 AC=01000 MQ=OOI]OO 

MQ( 4,5) now contain the last two bits of the orig­
inal multiplier-both O's. These O's will result in shift­
ing without addition and at the end of the problem 
the registers will contain: 

SC=O SR=01101 AC = 00010 MQ=OOOOl] 

The operation is halted because sc = O. The answer 
is contained in both the AC and MQ which equal 
00010000012 = lOIs = 6510, 

Binary multiplication is performed by examining 
the low-order position of the multiplier to determine 
whether that iteration of the multiply cycle is to be a 
multiplication by 0 or 1. If the contents of the low­
order multiplier position is a 1, a multiplication by 1 
is indicated and the multiplicand (storage register) 
is added to any previous partial product in the AC. The 
contents of the AC and MQ are shifted right one place 
to align the new partial product, and to place the next 
higher order position of the multiplier in the low­
order position of the MQ. If 0 had been detected 
in MQ ( 35), a multiplication by 0 would have been indi­
cated and accomplished by shifting the partial product 
and multiplier without adding the multiplicand. 

Thus, by examining one position of the multiplier 
and adding and shifting for the proper number of iter­
ations, the multiplication is performed. Because one 
position is examined, each iteration performed may be 
considered as a multiplication by either 0 or 1. The 
result of each multiplication is added to the partial 
product which, in turn, is shifted to maintain the 
proper relationship between the partial product and 
the multiplicand. 

In the 7094-II, instead of looking at one digit of the 
multiplier, two digits of the multiplier are decoded at 
a time. It then becomes apparent that on anyone 
iteration, a multiply by 0, 1, 2, or 3 is possible. A mul­
tiplier decoder is used which senses the four possible 
states of MQ ( 34,35) which correspond to four numbers, 
0, 1, 2, 3 in the base four number system. Because 
time is required to decode the states of MQ( 34,35), it is 
necessary on all iterations, except the initial or static 
one, to presense the state of these registers by exam­
ining the condition of MQ ( 32,33 ) . 

The presensing ( or sampling) of MQ ( 32,33) results in 
the setting of the pre-MQ(34,35) triggers. The condition 
of these triggers, along with the pre-string bit trigger, 
determines the decoding for the current iteration 
(multiply cycle). These decoded values indicate the 
number of times the multiplicand is to be added to the 
partial product. 



A multiplication by 0 ( X 0) indicates that the multi­
plicand is not added to the partial product. In a multi­
plication by 1 (x 1), the partial product is increased 
by the amount of the multiplicand. In a multiplication 
by 2 (x 2), the multiplicand is doubled by shifting 
it left one place to the adders. Thus, the partial prod­
uct is increased by an amount equal to two times the 
multiplicand. A multiplication by 3 (x 3) is per­
formed by subtracting the multiplicand from the par­
tial product once and adding an additional four times 
the multiplicand to the partial product during the next 
iteration. 

While it is possible to multiply by four by shifting 
the multiplicand left two places, and additional iter­
ation would be required to perform the necessary 
left shift before adding, and to perform the comple­
ment add cycle. To obviate the necessity for this addi­
tional iteration, a multiplication by 4 is performed by 
increasing, by 1, the next two higher order positions 
of the multiplier after the complement add cycle has 
been performed. Thus a multiplication by 3 is accom­
plished in one multiply iteration, consisting of the 2's 
complement addition of the multiplicand, and the ad­
justment of the next two higher order positions of 
the multiplier. 

A string bit trigger is used to "remember" that a 1 
is to be added to the next two higher order bits of the 
multiplier before they are decoded. This has the effect 
of shifting the multiplicand left two places for each 2's 
complement add iteration performed. Once the string 
bit trigger is set on, it stays on until a X 1 or X 2 addi­
tion occurs. 

The ability to perform base 4 multiplication requires 
the computer to scan multiplier bits at a rate twice as 
fast as for a binary multiplier decoding scheme. Be­
cause of the irregular method of a multiplication by 3, 
additional circuitry is required to remember that a com­
plement addition was performed. The multiplier may 
be adjusted for the next iteration, and so the comple­
ment form of the high-order partial product positions 
is maintained. 

The complement form of the high-order positions of 
the partial product is maintained by utilizing accumu­
lator overflow positions Q and P, which are set during 
each complement add iteration, and remain set until a 
true add is performed. With AC( Q,p) on, l's are gated 
to the high-order position (Q and p) of the adders. 
These positions, gated right to the accumulator regis­
ters one and two, provide the means of setting these 
registers on during the subtraction and during each 
subsequent multiply iteration, until a true add takes 
place. A true add will occur only when a multiplication 
by 1 or 2 is decoded. Because the partial product 
formed as a result ofax 3 iteration contains 1's in 

the high-order positions, it is always necessary to 
terminate a complete multiplication with a true add 
iteration. This "string" of l's in the partial product is, 
during a multiplication by 1, added to the multipli­
cand. As the partial product has been shifted right 
two places each iteration, the highest order position 
of the multiplicand containing a 1 corresponds to a 
position in the partial product included within this 
string of l's, and a X 1 addition generates a 0 in AD( Q). 
The output of AD( Q) is gated directly to AC( p) and 
serves to set 0 in that position at the end of each X 1 
multiplictaion following a' X 3 cycle. On a X 2 multi­
plication with SR gated left one place, there could be a 
carry into AD( Q) which would become a part of the 
partial product in AC( 1) when shifted right two places. 
To prevent this, the output of AD( Q) is blocked to 
AC ( P ), resulting in the reset of AC ( p) and indicating 
that we have just performed a true add. 

The cyclic make-up of the MPY instruction is I, E, 
L, L. Two multiply iterations are performed during E 
time and sixteen iterations are performed during the 
following two L cycles. To allow for an effective con­
tinuous shift of the AC and MQ, the adder outputs are 
gated right two places to the AC; the MQ is shifted right 
two places; and the sc is stepped by two on each itera­
tion (each clock pulse) except the last. The last itera­
tion occurs on the second L 7 clock pulse when the sc 
value is equal to one. On this last iteration, the adder 
outputs are gated right one place to the AC; the MQ is 
shifted right one place; and the sc is stepped by one 
to zero. See Figure 11. 

Multiply MPY + 0200 
(MIN I, E; MAX I, E, 2l) 

The contents of Yare multiplied by the contents of 
the MQ. The 35 most significant bits of the 70-bit prod­
uct replace the AC( 1-35), and the 35 least significant 
bits replace the MQ(1-35). AC(Q, p) are set to zero and 
the signs of the AC and MQ are set to the algebraic sign 
of the product. See Figure 11. 

Multiply and Round 
(MIN I, E; MAX I, E, 3l) 

MPR - 0200 

Multiply and round operates the same as the multiply 
( MPY) instruction, and also adds 1 to the AC contents if 
MQ (1) equals one after the multiplication is complete. 
See Figure 11. 

Round 
(I, l) 

RND + 0760 . . . 0010 

If MQ ( 1) equals one, the AC contents are increased 
by 1. If MQ ( 1) equals zero, the AC contents are un­
changed. In either case, the MQ contents are un­
changed. Note that positions 24-35 of this instruction 
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represent part of the operation code. Modification by 
indexing may change the operation code itself. AC 

overflow is possible. See Figure 13. 

Variable-Length Multiplication 
Variable~length multiplication is fixed-point multipli­
cation with an operand other than 35 bits. The decre­
ment of the instruction is used as the count field in 
variable length multiply. This count (c) is entered into 
the sc to control the number of multiply iterations 
performed, thus specifying· the size of the product. 
The most significant portion of the product is placed 
in the AC. The least significant portion of the product 
is placed in the high-order positions of the MQ. The 
number of MQ positions used will equal the value of 
the count field contents (c). The count specified is 
usually less than 43". With a count less than 43", the 
low order of MQ will contain a number of unused 
positions equal to 438 minus the count field. See Fig­
ure 11. 

If a count of 438 is used, the variable-length instruc­
tion will perform as a fixed-length instruction. A count 
of 60" or greater will cause an II A cycle, (count extend­
ing into positions 12 and 13 of instruction) and the 
count of the II A word will be set into the sc. However, 
this is a program error as variable-length instructions 
are not indirectly addressable. 

Variable-length instructions are used to conserve 
machine time. For example, if the multiplier is never 
more than six digits long, one L cycle can be saved 
during each multiply operation. Figure 12 shows a 
x-y recording of the multiply cycles which occur dur­
ing a typical VLM instruction. It should be noted that 
mq.ny of the lines shown are the same for both fixed 
and floating multiply. 

Variable length Multiply 
(MIN I, E; MAX I, E, 3l) 

VlM + 0204 

Variable-length multiply operates the same as the mul­
tiply (MPY) instruction with the following exceptions: 
The number of multiplier positions to be tested is 
specified by the number in the decrement portion 
(count field) of the instruction. The 35 most significant 
bits of the product replace the contents of AC( 1-35) and 
the number of least Significant bits, as specified by the 
count field (c), replace the contents of MQ (I-C). The 
remaining low-order positions of the MQ will contain 
the original 35-c high-order positions of the MQ. See 
Figure 11. 

Division 
Fixed-point binary division in the 7094-II is accom­
plished by dividing the contents of the AC and MQ, 
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taken together as the dividend, by the contents of the 
SR, the divisor. A 35-position quotient is developed in 
the MQ with the remainder, if any, left in the AC. The 
sign of the MQ is set to the algebraic sign of the quo­
tient, as determined by the SR and AC signs. The sign 
of the remainder remains the same as the sign of the 
dividend. 

The size of the registers restricts the size of the 
factors to be divided. The quotient can never exceed 
35 bits, the maximum length of the MQ. Therefore, the 
sc is set to 43" (3510 ) to control the number of iter­
ations of the divide process and is stepped after each 
iteration. 

If the AC portion of the dividend is equal to or 
greater than the divisor, the quotient will be too large 
for the MQ. This condition prohibits division and turns 
the divide check indicator on. The computer will then 
either stop or proceed, depending on the type of di­
vide instruction. 

The following problem illustrates a hand performed 
binary division. Assuming a 4-bit register, it shows that 
had the AC portion of the dividend been equal to or 
greater than the divisor, a significant bit of the quo­
tient would have had to have been entered into the 
AC; this would constitute a divide check condition. 

AC MQ 

SR = 15s = 1310 0110 
(SR) Divisor 

11 0 1 1"'""1 0-1-0-0 -1-11-0-
11 01 
01 101 

1 101 
o 0000 

0000 
0000 

Quotient (M Q) = 68 = 610 

Dividend 
(AC and MQ) = 1168 = 7810 

6 
13 f78 

Remainder (AC) 

Note in the problem that the' divisor will go once, 
or not at all, into the high-order position of the divi­
dend. Therefore, it is only necessary to determine if 
the divisor is equal to, or smaller than, these positions 
of the dividend. If the divisor is equal to or smaller 
than the selected positions of the dividend, a 1 is put 
into the quotient and the divisor is subtracted from 
that portion of the dividend. If the divisor is larger 
than the selected portion of the dividend, a 0 remains 
in the quotient. Another position of the dividend is 
now taken into account and the procedure starts again. 
These iterations continue until all positions in the divi­
dend have been tested. 

In the 7094-II, the SR and AC are complement-added 
(subtracted) to determine if a reduction of the high­
order positions of the dividend is possible. If a reduc­
tion is possible, these positions of the dividend are 
reduced by the amount of the divisor and the differ­
ence is put into the AC. If a reduction is not possible, 
the AC remains the same. A successful reduction re-



suIts in a 1 being put into the low-order of the MQ. 

Following the reduction attempt, the AC and MQ are 
shifted one place left to bring the next position of the 
AC into alignment and another reduction is attempted. 
The repetitive process continues until all positions of 
the MQ portion of the dividend have been moved to 
the AC. The sc will equal 0 when the division is com­
plete. See Figure 14. 

In fixed-point division, four instructions are used: 
divide or halt (DVH), divide or proceed (DVP), vari­
able-length divide or halt (VDH), and variable-length 
divide or proceed (VDP). Note that three conditions 
are involved in these instructions. First, there are two 
halt-type instructions (DVH) and (VDH). These two 
instructions will stop the computer in I time of the 
next instruction if a divide check occurred. Second, 
there are two proceed-type instructions (DVP) and 
(VDP). These two instructions allow the computer to 
proceed in I time of the next instruction even though 
a divide check occurred, and give the programmer the 
option of testing the divide check indicator with a DCT 

instruction. Third, there are two variable-length type 
instructions ( VDH ) and ( VDP) which allow a count 
other than 438 to be entered into the sc. These two in­
structions are used by the programmer usually when 
his quotient is a fixed length and is less than 35 digits 
long. For more information on these, see "Variable­
Length Division." 

Divide or Halt DVH + 0220 
(MIN I, E; MAX I, E, 5L) 

The contents of AC ( Q-35) and MQ ( 1-35) are divided by 
the contents of storage location Y(1-35). The 35-bit 
quotient replaces the contents of MQ( 1-35) and the 
remainder replaces the contents of AC ( 1-35 ). The MQ 

sign is the algebraic sign of the quotient and the AC 

sign is the sign of the dividend. 
If the magnitude of Y is greater than the magnitude 

of the AC, division takes place. If the magnitude of Y 
is equal to or less than the magnitude of the AC, divi­
sion does not occur and the computer stops with the 
divide check indicator on. For example, if AC ( p) con­
tains a 1, the magnitude of Y is less than the AC con­
tents. If division does not occur, the dividend remains 
unchanged in the AC and MQ. See Figure 14. 

Divide or Proceed 
(MIN I, E; MAX I, E, 5L) 

DVP + 0221 

Divide or proceed is the same as the divide or halt 
(DVH) instruction with one exception: When division 

does not occur (divide check condition), the computer 
proceeds to the next sequential instruction. See Fig­
ure 14. 

Variable-Length Division 

Variable-length division is fixed-point division with an 
operand of a length other than 35 bits. The decrement 
of the instruction is used as the count field in variable­
length instructions. This count (c) is entered into the 
sc to control the number of divide iterations per­
formed, thus specifying the number of significant 
digits of the quotient. The count is usually less than 
438 • 

If a count of 431\ is used, the variable-length instruc­
tion will perform as a fixed-length instruction. A count 
of 601\ or greater will cau.se an II A cycle (count extend­
ing into positions 12 and 13 of instruction), and the 
count of the II A word will be set into the sc. However, 
this is a program error as variable-length instructions 
are not indirectly addressable. 

Variable-length instructions are used to conserve 
machine time. The number of positions in the quotient 
is equal to the count and will be contained in the low­
order end of the MQ. See Figure 14. 

Variable-Length Divide or Halt 
(MIN I, E; MAX I, E, 5L) 

VDH + 0224 

Variable-length divide or halt is the same as the divide 
or halt (DVH) instruction with the following exceptions: 
The contents of the count field (c) determines the size 
of the quotient in the low-order positions of the MQ. 

The remainder replaces the contents of AC( 1-35) and 
the 35-c high-order positions of the MQ. If the count 
field is zero, the computer will interpret the instruc­
tion as a no-operation, end op in E time, and proceed 
to the next instruction. See Figure 14. 

Variable-Length Divide or Proceed 
(MIN I, E; MAX I, E, 5L) 

VDP + 0225 

Variable-length divide or proceed is the same as the 
divide or proceed (DVP) instruction with the following 
exceptions: The contents of the count field (c) deter­
mines the size of the quotient in the low-order posi­
tions of the MQ. The remainder replaces the contents 
of AC( 1-35) and the 35-c high-order positions of the MQ. 

If the count field is zero, the computer will interpret 
the instruction as a no-operation, end op in E time, and 
proceed to the next instruction. See Figure 14. 
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Floating-Point Arithmetic 

The range of numbers anticipated during a calculation 
may be extremely large, extremely small or, in some 
cases, unpredictable. Such situations make fixed-point 
arithmetic difficult to work with for two reasons: 

1. The size of the number is limited by the size of 
the register (35 binary bits or 10 decimal digits). 

2. The programmer must keep track of the point in 
all numbers throughout the calculation. 

To meet the needs of the large numbers and to keep 
track of the point automatically, alternative arithmetic 
instructions, called floating-point arithmetic instruc­
tions, are available. 

Floating-point arithmetic is arithmetic dealing with 
numbers in exponential form. The numbers 5.6 X 103 

or 56000 X 10-4 have a familiar form. The numbers 
are made of three parts: a fraction (5.6 or 56000), an 
exponent (3 or -4), and a base (10). 

Floating-point numbers in binary are similar to deci­
mal floating-point numbers. The major difference is 
the base. Numbers in the 7094-II use 2 as a base be­
cause it is a binary computer. The other difference is 
one of terms. Instead of a decimal point, we will call 
it a binary point. 

The following chart gives a comparison of fixed-point 
binary numbers and floating-point binary numbers. 

DECIMAL FIXED-POINT BINARY FLOATING-POINT BINARY 

4 
11 

000 100 0.1 X 2°°1 

001 001 0.1001 X 2100 

Characteristic and Fraction 

Because the 7094-II works in binary, all floating-point 
numbers will be to the base 2. Therefore, to represent 
a floating-point number in the computer, there is no 
need to carry the base along with the number. This 
limits our need to represent the fraction and the ex­
ponent. The exponent is represented in positions (1-8) 
of the word and is now called the characteristic. The 
fraction is contained in positions (9-35). The binary 
point is to the left of the 9 bit. The sign position is 
used to sign the fraction. Word layout takes this for­
mat: 

I I Characteristic I Fraction 
S, 1 89 35 

The value of the number in the characteristic field sig­
nifies the exponent and its sign. The characteristic is 
derived by adding 2008 to the exponent. If the char-
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acteristic is 2008, the exponent is O. If the number is 
201 to 377, the exponent is positive. If it is 0 to 177, the 
exponent is negative. The following chart gives exam­
ples of exponential numbers and their floating-point 
representation: 

EXPONENTIAL BINARY FLOA TING-POINT 

+ 0.1 X 2°11 
- 0.01 X 2°°1 

+ 0.1 X 2- 011 

Sign Control 

s 
+ 
+ 

1-8 
10000011 
10000001 
01111101 

9-35 
1000-----0 
0100-----0 
1000-----0 

1. Addition: With unlike signs and equal factors, the 
answer equals the sign of the original AC. In all other 
cases, the answer equals the sign of the larger factor. 

2. Subtraction: After the sign of the storage word is 
inverted to the SR, the rules for addition apply. 

3. Multiplication: Signs of factors alike, answer plus. 
Signs of factors unlike, answer minus. 

4. Single-precision division: Signs of factors alike, 
quotient sign plus. Signs of factors unlike, quotient 
sign minus. The remainder sign equals the original 
dividend sign unless the dividend is zero. When the 
dividend is zero, the remainder sign is set plus. 

5. Double-precision division: On a divide check con­
dition, the MQ sign is set to equal the AC sign. In all 
other cases, rules for addition apply. 

Normal and Unnormal Numbers 

A floating-point number is in normal form when the 
digit immediately to the right of the point is a signifi­
cant bit (1). If this digit is a zero, the number is in 
unnormal form. The exception to this rule is a normal 
zero; a normal zero is a floating-point number whose 
characteristic and fraction are both zero. 

To process these two types of numbers, instructions 
are divided into two categories, normal and unl1ormal. 
The difference in computer operation is that the normal 
instructions always attempt to produce a normal an­
swer and the unnormal instructions do not. 

Zero Fraction 

A floating-pOint number having a zero fraction is 
treated in a variety of ways because the significance 
of a zero fraction operand depends on the arithmetic 
process to be performed. In addition and subtraction, 
if one operand has a zero fraction, the fraction portion 
of the answer will be the same as the non-zero fraction 
operand. In the computer, a zero fraction operand has 



no effect on the operation; the arithmetic is performed, 
allowing normalization of the non-zero operand frac­
tion, if specified. If both operands contain a zero frac­
tion, the answer has no meaning and can not be nor­
malized, so the AC and MQ are reset to contain normal 
zeros. 

In multiplication, a zero fraction has a different 
meaning and is treated differently. A zero fraction 
multiplicand results in a product containing a zero frac­
tion: anything times zero equals zero. Likewise, a zero 
raised to some power is still zero; thus the operation 
is not performed as the result would be meaningless. 
Also, a zero fraction can not be normalized. Conse­
quently, in a single-precision multiplication, a zero 
fraction multiplicand causes the operation to be ter­
minated and the AC and MQ registers (both charac­
teristic and fraction) to be reset (a normal zero condi­
tion). However, the sign of this normal zero will be set 
plus or minus as determined by the algebraic sign of 
the product. 

Effectively, a multiplier with a zero fraction has the 
same meaning as a multiplicand with a zero fraction: 
the result fraction will be zero. In a normalized single­
precision floating multiply (FMP) with a zero fraction 
multiplier, the AC and MQ registers are reset to a 
normal zero with an affixed algebraic sign. In an un­
normalized single-precision floating multiply ( UFM ) 

with a zero fraction multiplier, the fractions are not 
multiplied but the characteristics are added and the 
product (AC and MQ) has the properly signed char­
acteristics with zero fractions. 

In division, the divisor or the dividend could con­
tain a zero fraction. Each case has a different meaning 
and is treated differently. If the divisor has a zero frac­
tion, the quotient cannot be determined; a divide­
check condition results and the operation is ended. 
The dividend, however, remains unaltered in this case. 
When the dividend contains a zero fraction, the quo­
tient will be zero and the operation is ended. However, 
in this case, the associated characteristic positions of 
the AC and MQ registers, which hold the result of a 
division, are cleared. 

The preceding discussion pertains only to zero frac­
tion operands. In multiplication and division, zero 
fraction results are due to zero fraction operands and 
have already been covered. In addition and subtrac­
tion, a zero fraction result is possible with non-zero 
fraction operands. On a normalized addition or sub­
traction, a zero fraction result causes the AC and MQ 

characteristics to be reset to zero. A zero fraction re­
sult of a unnormalized add or subtract does not reset 
the characteristics, but sets the MQ characteristic 2710 

less than the AC characteristic. 

Arithmetic Operations 

Addition of floating-point numbers is done by adding 
the fractions of floating-point numbers that have equal 
characteristics. The characteristics are set equal before 
the addition by placing the number with the smallest 
characteristic in the AC. The AC fraction is then 
shifted right the number of places equal to the differ­
ence between the SR and AC characteristics (~). Bits 
shifted out of AC ( 35) enter MQ ( 9 ), and bits shifted 
out of MQ( 35) are lost. After shifting stops, the AC and 
SR fractions are added. The sum appears in the AC and 
forms the most significant part of the answer. The 
least significant part is the bits that were shifted into 
the MQ. The MQ characteristic is set 2710 less than the 
AC characteristic to complete an unnormalized floating 
add. If it were a normalizing instruction, a check 
would be made to see if a 1 were in AC( 9). If AC( 9) 
does contain a 1, the operation would be complete; if 
not, the AC would shift left until a 1 did appear in 
AC( 9). Shifting increases the number, so to keep it 
the same, the characteristic is reduced by the number 
of left shifts taken. Floating-point subtraction works 
the same except that the fractions are subtracted. 

Floating multiply is accomplished by multiplying 
the fraction in the SR by the fraction in the MQ. The 
exponents in multiply are added, so in a floating mul­
tiply, the computer adds the characteristics. Because 
2008 had been added to each exponent originally, 200R 

must be subtracted from the characteristic. The most 
significant part of the product is in the AC and the least 
significant part is in the MQ. 

Floating-point divide is accomplished by dividing 
the fraction of the dividend by the fraction of the 
divisor and subtracting the characteristics. During the 
subtraction of the characteristics, the 2008 that is 
added to all exponents is lost. Therefore, before the 
answer is final, 2008 must be added to the quotient 
characteristic. The quotient appears in the MQ and the 
remainder of the dividend in the AC. The remainder 
characteristic will equal the original dividend char­
acteristic -2710 unless a quotient equal to or greater 
than one condition (Q :> 1) existed in E time. When 
Q :> 1 in E time, the remainder characteristic will equal 
the original dividend characteristic -2610, 

Floating-Point Controls 
Because of the additional operations performed in 
floating-point arithmetic, several control devices are 
necessary. Adder separation circuits; a two-stage tally 
counter; seven floating-add control triggers; a four­
stage double-precision synchronizer; and a character­
istic checking circuit are used to control the operations. 
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Adder Separation 

To separate the characteristic and fraction during a 
floating-point instruction, the ability to send the AD( 9) 
carry to AD( 8) is blocked; Systems 03.01.02.1 (4D). 
On a floating-point instruction, the minus output of the 
above block causes input to Systems 02.14.27.1 (IG), 
pin Q, to go plus; thus blocking the "one to AD( 9P)" 
that is used during fixed-point operation. Systems 
02.14.27.1 (2G) shows the four ways an AD(9) carry 
(fraction carry) can increase the characteristic on 
floating-point instructions. 

Tally Counter 

The tally counter (TC), which is normally reset to one, 
is used for both single and double-precision floating 
divide instructions. The final quotient characteristic is 
computed on the first L cycle of such an instruction 
after which the TC is stepped to a value of two. This 
step occurs on the first L 7 ( Dl ) pulse on Systems 
02.10.20.1 (3B). When the instruction operation is 
ended, the TC is reset to one with an Al(Dl) pulse on 
Systems 08.00.32.1 (3F). 

FACT Triggers 

The seven floating-add control triggers (FACT 1-7) are 
used for various operations of single-precision floating­
point addition, subtraction, and multiplication. The 
FACT triggers are also used in the control of all double­
precision floating-point arithmetic instructions. Follow­
ing is a list of the FACT triggers and their main func­
tions: 

FACT 1: used for fraction alignment as determined 
by the characteristic difference (.6.). 

FACT 2: controls addition of the operands and sets 
the SR characteristic into the AC. 

FACT 3: complements the AC or adds one to its con­
tents, as determined by a fraction carry with unlike 
signs during the previous FACT 2. 

FACT 4: controls normalization, including adjustment 
of the characteristic. 

FACT 5: controls fraction overflow shifting, MQ char­
acteristic development, and end operation. FACT 5 is 
used by all floating-point instructions excepting single­
precision floating divide and floating round. 

FACT 6: controls complementing of the MQ fraction 
for cases of unlike signs, where the SR fraction was 
greater than the AC fraction, and the MQ fraction con­
tains significant data. 

FACT 7: controls placement of the MQ data, which 
was corrected in FACT 6, back into the MQ. 

All FACT triggers are normally in the reset (off) con­
dition. See Figure 1 for FACT usage. 
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Type of FACT Number 
Instruction 

FAD, FSB 

DFAD,DFSB 

FMP 

DFMP 

DP FP Divide 

A = Possible 
B = Always 

1 

A 

C 

2 3 4 

C A A 

C A A 

C A A 

C = Always, unless E-End Op Condition 

Figure 1. Fact Usage Chart 

Double-Precision Sync COPS) 

5 

B 

B 

C 

C 

C 

6 7 3&7 

A A 

A A A 

A A 

The double-precision sync controls the different phases 
of all double-precision FP instructions. When DPS = 0, 
various gates for single-precision FP operations are 
operative, so it may be said that the DPS controls both 
single and double-precision instructions. The opera­
tions performed under DPS control are explained in the 
general descriptions of the three main types of double­
precision instructions. 

Floating-Point Trap 

During the execution of floating-point instructions, the 
resultant characteristic in the AC and MQ may exceed 
eight bit positions. The capacity is exceeded if the ex­
ponent goes above + 1778 or below - 2008• Over 
+ 1778 is termed overflow while below - 2008 is 
termed underflow. Floating-point overflow or under­
flow (spill) can occur in either (or both) of the AC 

and MQ registers. 
A unique system of spill identification called floating­

point trap is used to identify the instruction and the 
register condition which cause a floating-point over­
flow or underflow. A floating-point trap is possible 
only when operating in floating-point trap mode. The 
FP trap mode trigger (Systems 02.10.71.1) is reset on, 
thus the computer normally operates in this mode. To 
leave this condition, a LFTM (leave floating-trap mode) 
instruction must be executed. The normal mode of 
operation may then be re-entered by resetting the com­
puter or executing a EFTM (enter floating-trap mode) 
instruction. 

When in floating-point trap mode and upon sensing 
an overflow or underflow, the computer puts the loca­
tion plus one (of the FP instruction causing the spill) 
into the address portion of location 0000. An identify­
ing code, telling whether an underflow or overflow 
occurred, which registers are involved, and whether 
the most significant result is in the AC or MQ, is put in 
the decrement portion of location 0000. The decrement 



positions used and the meaning of a 1 bit in these 
positions are: 

POSITION MEANING 

14 Single-precision divide {MQ register is not an ex-
tension of the AC factor.} 

15 Overflow in AC or MQ, or both registers. 
16 AC overflow or underflow. 
17 MQ overflow or underflow. 

Refer to Figure 2 for possible spill codes resulting 
from floating-point instructions. The following steps 
show how characteristic overflow and underflow is 
recognized and how the spill code is developed: 

1. Underflow or overflow of the MQ characteristic is 
detected by a bit in AD ( p) as the MQ characteristic is 
computed in the adders. MQ overflow trigger 1 is set on 
if AD( p) equals 1 at this time, Systems 02.10.50.1 (3C). 
If AD(Q) equals zero at this time, FP overflow trigger 
1 is also set on to indicate it is an overflow condition, 
Systems 02.10.50.1 (4F). 

2. During the I cycle following the FP instruction, 
underflow or overflow of the AC characteristic is de­
tected by a bit in AC( p). The FP trap trigger is set on if 
AC( p) equals 1 at this time, Systems 02.10.50.1 (3A). 
If AC ( Q) equals zero at this time, FP overflow trigger 
1 is also set on to indicate it is an overflow condition, 
Systems 02.10.50.1 (3B). Note that the FP trap trigger 
is also turned on in the I cycle following any FP instruc­
tion that turns on MQ overflow trigger 1 (as in the pre­
ceding step 1), Systems 02.10.50.1 (3A). 

3. When the FP trap trigger is on, as a result of 
steps 1 or 2 (or both), the trap sequence begins. Only 
the development of the spill codes will be discussed. 
Spill code development is the result of AC (p) status 
and the various triggers that are on as a result of 
steps 1 and 2. 

FP Operation (with 
possible types) Type 

Floating Round (C) ~ A 

Single and Double-
Precision: Add or B 
Subtract (A, B, C); 

) < 

Multiply (A, B, C, D) C 

Double-Prec ision D Divide (A,B,C) 

{ 
E 

Single-Precision F 

Divide (E,F,G,H) G 

H 

Figure 2. Floating-Point Spill Codes 

a. Bit 14: FP divide trigger, Systems 02.10.52.1 (3B). 
This trigger is on whenever a single-precision 
divide takes place. 

b. Bit 15: FP overflow trigger 1, Systems 02.10.52.1 
(3D). 
This trigger on as a result of AD ( p) and not AD ( Q) 
as the MQ characteristic is computed during the 
FP instruction; or AC ( p) and not AC ( Q) in the I 
cycle following the FP instruction. 

c. Bit 16: AC( p) equals 1 in the I cycle following 
the FP instruction. 

d. Bit 17: MQ overflow trigger 1, Systems 02.10.51.1 
(3G ). 
This trigger on as a result of AD (p) when the MQ 

characteristic is computed during the FP instruc­
tion. 

Single-Precision Floating-Point 
Addition and Subtraction 

These instructions algebraically add (or subtract) the 
floating-point numbers in Y and in the AC placing their 
sum (or difference) in the AC and MQ, with the result­
an t characteristic in the AC and a characteristic smaller 
by 27}o in the MQ. The most significant portion of the 
result is found in the AC and the least significant por­
tion in the MQ. Floating-point underflow or overflow 
is possible. Refer to the FAD flow chart (Figure 15) 
for the following discussion. 

If AC ( Q and p) are not equal to zero before the exe­
cution of these instructions, the result will usually be 
incorrect. Non-zero bits inAc( Q or p), initially inter­
preted as part of the AC characteristic, make the AC 

Decrement Position 

AC MQ 14 15 16 17 

- Unfl 0 0 0 1 

Unfl Unfl 0 0 1 1 

Ovfl - 0 1 1 0 

Ovfl Ovfl 0 1 1 1 

- Unfl 1 0 0 1 

Unfl - 1 0 1 0 

Unfl Unfl 1 0 1 1 

- Ovfl 1 1 0 1 
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characteristic larger than the SR characteristic so that 
the SR and AC are always exchanged during E time. 
During this exchange, a 1 will be placed in SR ( s) posi­
tion if there is a 1 in AC( S or p) so that the sign of the 
number may be changed. Any AC( Q) bit is lost and 
both AC( Q and p) are cleared when the contents of 
SR replace the contents of the AC. , 

E time objectives of a single-precision floating add 
(or subtract) instruction are as follows: 

1. Check the AC characteristic for a possible float­
ing-point trap condition (MQ underflow or AC over­
flow). If the preceding condition is possible, set the 
overlap conflict trigger. 

2. Put storage location Y into the SR, setting the SR 

(s) position as determined by the specific instruction. 
3. Reset the MQ. 

4. Determine the characteristic difference (~). 
a. If ~ equals 0, signs are alike, and one of the frac­

tions is normalized (it contains a 1 in the high­
order bit position); set FACT 2 to add the frac­
tions and "end op." 

b. If ~ is less than 100R but does not meet all of the 
above conditions, place the larger word into the 
SR and the smaller word into the AC, set ~ into 
the sc and if ~ is greater than 0, set FACT 1 for 
lining up the fractions. 

c. If ~ is greater than 778 and the larger fraction is 
normalized, "end op," place the larger word into 
the AC and set FACT 5 to compute the MQ charac­
teristic and sign. 

d. If ~ is greater than 77R and the larger word is not 
normalized, place the larger word into the SR, 

reset the AC and MQ, and set FACT 2 which will 
add the larger fraction to zero. 

To determine the characteristic difference, the 2' s 
complement of the AC characteristic is added to the SR 

characteristic. Because of the complement addition of 
the AC characteristic to the SR characteristic, a Q carry 
indicates that the SR characteristic is equal to or greater 

• than the AC characteristic. No Q carry indicates that 
the AC characteristic is larger. Therefore, the word in 
the SR is moved to the AC and the word in the AC is 
moved to the SR to place the smaller word in the AC. 

If ~ equals 0, signs are alike and one of the fractions 
is normalized; the operation can be ended in E time. 
The operation will be completed during E7 because 
the sum will always be a normalized fraction, which 
requires no post shifting for inormalization. 

If ~ is less than l00s, a normal addition is performed 
with one or more L time required. 

If ~ is greater than 778, the resulting sum of the two 
words is equal to the larger word because the smaller 
word would eventually be shifted out of the AC and the 
MQ. It takes 668 shifts to shift a bit from AC fraction 
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position (9) out through MQ fraction position (35). 
~ is checked for 778 rather than 668 because it is easier 
to do in the computer. To save machine time, the AC is 
cleared rather than to allow shifting to take place. If 
the larger fraction is normalized, the operation can be 
ended in E time because the sum will be a normalized 
number and the operation will be completed during E7. 

5. Start FACT sequence. See Figure 3 for the FACT 

sequence flow chart. 
FACT 1 is used to equalize the characteristics and will 

occur only if the characteristic difference (~) equals 1 
or more. For correct operation, ~ should not equal 
more than 1008 in order to set FACT 1; however, if 
AC( Q and p) are not equal to zero at E5 time, it is pos­
sible to have a ~ of 101R or more and to set FACT 1. 

This is possible as AC (Q or p) . equal to 1 blocks turn­
ing on the reset add trigger. With the preceding 
thought in mind, it can be seen that a ~ of 3778 is pos­
sible, with a resulting FACT 1 duration of 12810 clock 
pulses. 

Equalizing the characteristics is accomplished by 
right shifting the AC and MQ fractions the number of 
places equal to ~. With the sc equal to ~ at the start of 
FACT 1, the following operation occurs: On any clock 
pulse that the sc equals 3 or more, the AC and MQ are 
shifted right 2 places and the sc stepped down 2 places. 
On any clock pulse that the sc equals 2, the AC and MQ 

are shifted right 2 places, the sc stepped to zero, and 
FACT 2 is set. On any clock pulse that the sc equals 1, 
the AC and MQ are shifted right 1 place, the sc stepped 
to zero, and FACT 2 set. 

FACT 2 controls the algebraic addition of the two 
fractions as follows: 

1. Regardless of signs: The MQ fraction is sent into 
the SR for zero testing and to facilitate recomplement­
ing the MQ in FACT 6 if necessary. 

2. Signs alike: Add the SR fraction to the AC fraction 
and set the sum into the AC along with the SR charac­
teristic. If a fraction carry occurs as a result of the ad­
dition, turn on the carry trigger to remember that the 
AC and MQ are to be shifted right 1 place in FACT 5. 

AD( 9Q) is sent to AC( 9P) to hold any fraction carry so 
it can be shifted back into AC( 9) in FACT 5. AD( 9P) is 
allowed to carry into AD ( 8) to increase the character­
istic of the sum if a fraction carry occurs. On a normal 
instruction, with no fraction carry, and without a two­
cycle add condition, FACT 4 will be set. If it is an un­
normal instruction, or a normal instruction with a frac­
tion carry, or a two-cycle add condition (pre-end op), 
FACT 5 will be set. 

3. Signs unlike: Add the SR fraction to the 1's com­
plement of the AC fraction and set the sum into the AC 

along with the SR characteristic. 



2 Cycle Add 
Condition 

'\ 

E5 
End Op 

E6 
Fact 2 

E7 
Fact 5 

Yes 

FAD 
E Time 

I 
No 6= Zero 

Signs Alike 
SR or AC(9)=1 Reset Add 

Condition ~ 

~Larger Numbe~ 1\ Normal / 

E5 
End Op 

~ Normal~ 
I \ Instruction r 

Fraction 
Overflow 

Yes 

Yes 

Yes 

~ ~-----' 
Fact 4 

Fact 5 

Figure 3. FAD; Fact Sequence Chart 

Fact Number 

1. 
2. 
3. 
4. 
5. 

6,7. 

Fact 1 

Fact 2 

Signs Alike 

Equal ize Characteristics 
Add Fractions 
Correct AC 
Normalize 
Adjust MQ Char and End Op 
Com pi ement MQ 

No 

No 

} 

1 
6=Z.,o r 

~ ____ J 

1st Cycle 
at E7 (if 
necessary) 

Occurs at E7 if no 
~ Fact 1 and not 2 

Cycle Add Condition 

No 

AC;; SR 
No 

1 
Yes 

MQ = Zero 

No 

Fact 3 

Normal 
Instruction r 

~-----' 

~ 

Fact 4 

I 
No 

AC(9)=One 

Fact 5 

I 
Yes Normal 

Instruction 

Yes 

No 

Fact 6 

Fact 7 

No 

Fact 5 
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a. With fraction carry: An AD( 9P) carry turns on the 
carry trigger to remember that in FACT 3 the addi­
tion result in the AC is in true form. With the AC 

in true form, the AC sign must be made the same 
as the SR sign, so the· SR ( s) to AC ( s) trigger is 
turned on. If the MQ fraction equals zero, FACT 3 

is set to adjust the AC, making it the result of a 2's 
complement addition instead of a 1's complement 
addition. This is done by adding 1 to the AC dur­
ing FACT 3. If the MQ fraction is not zero, FACT 6 is 
set to recomplement the MQ fraction. 

b. No fraction carry: No AD( 9P) carry means the ad­
dition result in the AC is in complement form, so 
FACT 3 is set to recomplement the AC fraction. 

FACT 3 can only occur with unlike signs and is used 
to correct the AC contents as determined by carry trig­
ger status. With the carry trigger off, FACT 3 recomple­
ments the AC fraction and sets FACT 4 or 5 as determined 
by the specific instruction. With the carry trigger on, 
FACT 3 adds 1 to the true 1's complement result in the 
AC, thus making it a true 2's complement result. FACT 4 

or 5 is then set as determined by the instruction. 
FACT 4 is used to normalize the sum in the AC by 

shifting the AC and MQ left until AC( 9) equals 1. AC 

characteristic underflow is possible as each left shift of 
one decreases the AC characteristic by one. 

If AC( 9) equals 1 as FACT 4 is entered, no shifting 
takes place and FACT 5 is set. This is possible under the 
three following sets of conditions: 

1. Normal instruction, like signs, and no fraction 
carry in FACT 2. 

2. Normal instruction, unlike signs, and no fraction 
carry in FACT 2. 

3. Normal instruction, unlike signs, fraction carry in 
FACT 2, and MQ equal to zero. Steps 2 and 3 came from 
FACT 3, step 1 from FACT 2. The only other entry point 
to FACT 4 is from FACT 7, where AC( 9) must equal zero 
on a normal instruction. 

If the AC and MQ fractions equal zero as FACT 4 is en­
tered, FACT 5 is set. Since AC( 9 and 10) are also zero, 
the AC and MQ are shifted left two places and the AC 

characteristic is decreased by 2; however, shifting zeros 
has no effect and reducing the AC characteristic has no 
effect as FACT 5 resets the AC and MQ characteristics 
when the AC and MQ fractions equal zero. 

On any clock pulse where AC( 10) equals 1 and AC( 9) 
equals zero, only one shift is taken; FACT 5 is set. On 
any clock pulse where AC ( 11) equals 1 and AC ( 9 and 10) 

equals zero, two shifts are taken; FACT 5 is set. 
FACT 5 is used to set the pre-end op trigger if it is not 

already on; to set the correct sign into the AC and MQ; 

to adjust the MQ characteristic (or reset the AC and MQ 

characteristics to zero); to shift the AC and MQ frac-
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tions right 1 place if there was a fraction carry with like 
signs in FACT 2; and to check for a floating-point trap 
condition. 

l. Set pre-end op trigger to end op on the next L5 
pulse. 

2. With unlike signs in FACT 2, if a fraction carry 
occurs (AC < SR), the SR ( s) to AC ( s) trigger is set on. 
In FACT 5, with the SR ( s) to AC ( s) trigger on, and the 
AC and MQ fractions are not zero, the SR( s) is set into 
the AC and MQ signs; or, if the preceding conditions are 
not met, the AC ( s) is set into the MQ ( s) . 

3. On a normal instruction, with no fraction carry in 
FACT 2, and when the AC and MQ fractions equal zero, 
the AC and MQ characteristics are reset; or, if the pre­
ceding conditions are not met, the MQ characteristic is 
set to a value 2710 less than the AC characteristic. 

4. With signs alike, and a fraction carry occurs in 
FACT 2, FACT 5 shifts the AC and MQ right 1 place. This 
puts the carry bit located in AC( 9P) into AC( 9) thus 
normalizing the AC contents. 

5. When the MQ characteristic is set 2710 less than 
the AC characteristic, MQ underflow is possible. FACT 5 

checks for this condition and if present, sets the FAD MQ 

overflow trigger on. 
FACT 6 is used to complement the MQ fraction and 

can only occur when the three following conditions are 
met: 

1. Signs unlike (causes 1's complement addition in 
FACT 2). 

2. AC sum in true form (fraction carry) . 
3. MQ fraction not equal to zero (FACT 1 occurred 

and shifted at least one significant bit into the MQ ) . 

Complementing the MQ with the 2's complement is 
the same as making a 2' s complement addition of the 
MQ to all zeros. The MQ contains the low-order posi­
tions of the original AC. Since the 1's complement addi­
tion of the AC gave a true result, a 2's complement ad­
dition to zeros will give the correct result for the MQ 

portion of the answer. 
The following example shows a computer using six­

bit registers, with signs unlike, and with Significant bits 
in the MQ as a result of FACT 1. At the start of FACT 2, the 
register contents are: 

SR 001 101 = 158 
AC 001 010 = 128 (high-order position of original AC) 
MQ llO 000 = 60s (low-order pos~tion of original AC) 

FACT 2 operation 

AC 001 010 
AC llO 101 (signs unlike) 
SR 001 101 

A9t000 010 = 2s 

9P carry } 
MQ ¥= zero Set FACT 6 

FACT 6 operation 

MQ llO 000 

MQ 001 Ill} , 1 2 s complement MQ 
.."..-:-::::--:::~~~ 
MQ 010 000 = 208 



The final result found in the combined AC-MQ regis­
ters is: 21208. 

PROOF 

I I 
SR 151008 = 1310010 

AC-MQ 121608 = 1017510 
I I 

AC-MQ 21208 = 2, 2510 

FACT 7 always follows FACT 6 and puts the corrected 
MQ fraction back into the MQ. FACT 4 or 5 is then set as 
conditions require. 

Floating Add FAD + 0300 
(MIN I, E; MAX I, E, 8l) 

The floating-point numbers in Y and the AC are alge­
braically added together. The most significant portion 
of the result appears as a normal floating-point number 
in the AC. The least significant portion of the result ap­
pears in the MQ as a floating-point number with a char­
acteristic 2710 less than the AC characteristic. The signs 
of the AC and MQ are set to the sign of the larger fac­
tor. The sum in the AC and MQ is always normalized 
whether the original factors were normal or not. If the 
contents of AC( 1-35) contain zeros, the FAD instruction 
may be used to normalize an unnormal floating-point 
number. Floating-point underflow or overflow is possi­
ble. Refer to the FAD flow chart (Figure 15) and to the 
preceding discussion on single-precision FP addition 
and subtraction for detailed machine operation. 

Unnormalized Floating Add 
(MIN I, E; MAX I, E, 5l) 

UFA - 0300 

The floating-point numbers in Y and the AC are alge­
braically added together as in a FAD instruction. No 
attempt is made to normalize; thus the result may be 
an unnormal number. Floating-point underflow or over­
flow is possible. See Figure 15. 

Floating Add Magnitude 
(MIN I, E; MAX I, E, 8l) 

FAM + 0304 

This instruction algebraically adds the positive magni­
tude of the floating-point number in Y to the signed 
floating-point number in the AC, and normalizes the re­
sult. Floating-point underflow or overflow is possible. 
See Figure 15. 

Unnormalized Floating Add Magnitude UAM - 0304 
(MIN I, E; MAX I, E, 5l) 

This instruction algebraically adds the positive magni­
tude of the floating-point number in Y to the signed 
floating-point number in the AC. No attempt is made to 
normalize; thus the result may be an unnormal num­
ber. Floating-point underflow or overflow is possible. 
See Figure 15. 

Floating Subtract FSB + 0302 
(MIN I, E; MAX I, E, 8l) 

This instruction algebraically subtracts the floating­
point number in Y from the floating-point number in 
the AC and normalizes the result. Floating-point under­
flow or overflow is possible. See Figure 15. 

Unnormalized Floating Subtract 
(MIN I, E; MAX I, E, 5l) 

UFS - 0302 

This instruction algebraically subtracts the floating­
point number in Y from the floating-point number in 
theAc. No attempt is made to normalize; thus the re­
sult may be an unnormal number. Floating-point un­
derflow or overflow is possible. See Figure 15. 

Floating Subtract Magnitude 
(MIN I, E; MAX I, E, 8l) 

FSM + 0306 

This instruction algebraically subtracts the positive 
magnitude of the floating-point number in Y from the 
signed floating-pOint number in the AC and normalizes 
the result. Floating-point underflow or overflow is pos­
sible. See Figure 15. 

Unnormalized Floating Subtract Magnitude 
(MIN I, E; MAX I, E, 5l) USM - 0306 

This instruction algebraically subtracts the positive 
magnitude of the floating-point number in Y from the 
signed floating-point number in the AC. No attempt is 
made to normalize; thus the result may be an unnor­
mal number. Floating-point underflow or overflow is 
possible. See Figure 15. 

Floating Round 
(I, l) 

FRN + 0760 ... 0011 

Floating-point add, subtract, and multiply instructions 
produce a double-word result. The instruction FRN 
adds 1 to AC(35) if MQ(9) equals l. (When MQ(9) 
equals 1, the MQ fraction is equal to or exceeds half the 
magnitude of a I-bit in AC position 35.) If adding a 1 
to AC ( 35) results in a 9P carry, the AC is corrected by 
adding 1 to the AC characteristic; shifting AC( 9-34) right 
one place; and putting the 9P carry into AC(9). Floating­
point overflow is possible. See Figure 17. 

Single-Precision Floating-Point Multiplication 
In single-precision FP multiplication, the floating-point 
number in the SR (multiplicand) is multiplied alge­
braically by the floating-point number in the MQ (mul­
tiplier). The product is placed in the AC and MQ. The 
characteristic of the product is contained in AC ( 1-8 ) , 
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the most significant portion of the product fraction in 
AC ( 9-35 ), and the least significant portion in MQ ( 9-85 ) • 

MQ ( 1-8) contains the AC characteristic minus 2710• With 
like signs, the product signs are set plus. On unlike 
signs, the product signs are set minus. 

Two separate operations are performed during a 
Hoating-point multiplication; the characteristics are 
added and the fractions are multiplied. As in all Hoat­
ing-point operations, the value 2008 is the dividing line 
between positive and negative characteristics (expo­
nents ). Because both characteristics contain this value, 
2008 is subtracted from the sum during the character­
istic addition. Fraction multiplication during Hoating­
point arithmetic is similar to fixed-point multiplication 
with AD( 9P,9Q) corresponding to AD( P,Q) and AC( 9P) 

serving the same function as AC( p) in fixed-point; 
MQ( 9,10) corresponds to MQ( 1,2) in fixed-point arith­
metic. 

Floating Multiply FMP + 0260 
(MIN I, E; MAX I, E, 2L) 

The contents of Yare multiplied by the contents of the 
MQ. The most significant part of the product appears 
in the AC and the least significant part appears in the 
MQ. The product of two normalized numbers is in nor­
malized form. If either of the numbers is not normal­
ized, the product may be in unnormalized form. Float­
ing-point underHow or overflow is possible. Refer to 
the FMP How chart (Figure 16) for the following dis­
cussion. 

l. The product signs are algebraically set whether 
multiplication takes place or not. 

2a. If the MQ fraction (multiplier) or the SR fraction 
(multiplicand) are equal to zero, AC( Q-85) and 
MQ(I-85) are reset to zero and the computer proceeds 
to the next instruction. 

2b. If the MQ or SR are not zero, the sum of the char­
acteristics, minus 2008, is placed in AC( 1-8) forming the 
final product characteristic. 

3. If multiplication takes place, SR( 9-85) is multiplied 
by MQ ( 9-35). The 27 most significant bits of the 54-bit 
product replace the contents of AC ( 9-85) and the 27 
least significant bits replace the contents of MQ ( 9-85) • 

4. If AC( 9) equals zero after multiplication takes 
place, the contents of AC ( 10-85 ) and MQ ( 9-35 ) are 
shifted left one place and the AC characteristic is re­
duced by 1. 

5a. After multiplication is finished AC( 9-85) is tested 
for zero in FACI' 5. If this high-order portion of the 
product equals zero, the AC and MQ characteristics are 
reset to zero. 

5b. If AC( 9-85) does not equal zero, the MQ charac­
teristic is set 2710 less than the AC characteristic. 
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Unnormalized Floating Multiply 
(MIN I, E; MAX I, E, 2L) 

UFM - 0260 

The floating-point number in Y is multiplied by the 
floating-point number in the MQ. No attempt is made 
to normalize; thus the result may be an unnormal num­
ber. Floating-point underflow or overflow is possible. 
See Figure 16. This instruction is the same as FMP with 
the following exceptions: 

l. If the MQ fraction (multiplier) is zero, the pre­
end op trigger is not set, as on a FMP instruction, but 
instead the sc is reset to zero. The sc equal to zero pre­
vents fraction multiplication but does allow the addi­
tion of the characteristics. 

2. No attempt is made to normalize the multiplica­
tion result. 

3. If AC( 9-85) equals zero after multiplication is fin­
ished, FACI' 5 does not reset the AC and MQ characteris­
tics as in FMP, and the MQ characteristic is set 2710 less 
than the AC characteristic. 

Single-Precision floating-Point Division 
In single-precision FP division, the floating-point num­
ber in the AC (dividend) is divided by the floating­
point number in storage (divisor) as deSignated by the 
address of the . instruction. The MQ register (S-85) is 
initially reset, whereas this is not true in fixed-point or 
double-precision division. In floating-point division, 
the fraction of the dividend is divided by the fraction 
of the divisor to obtain the quotient fraction of the re­
sult. Division of the fractions is similar to fixed-point 
division. A floating-point remainder of the dividend, if 
any, is left in the AC. The sign of the quotient (MQ) is 
set algebraically as determined by the signs of the AC 

and SR. The sign of the remainder (AC) is the same as 
the sign of the original dividend unless the dividend 
fraction was zero, in which case the AC sign is set 
positive. 

The exponents in a division are subtracted. There­
fore, the characteristic of the MQ (quotient) is deter­
mined by subtracting the SR characteristic (divisor) 
from the AC characteristic (dividend). The extra 2008 

in each exponent is lost in the subtraction of the AC 

and SR characteristics so 2008 must be added to the 
final MQ characteristic. The characteristic of the re­
mainder in the AC is set 2710 less than the original divi­
dend characteristic. 

If the initial factors are normalized floating-point 
numbers, the quotient will also be normal. However, 
no attempt is made to normalize the result. 

The dividend fraction (AC) cannot be twice as large 
as the divisor fraction (SR). If it is two or more times 
greater, the divide check indicator is turned: on, divi-



sion does not take place and the contents of the AC will 
remain unchanged. 

If the dividend fraction, AC ( 9-35 ), is zero, actual divi­
sion does not take place, and the AC is reset to a normal 
zero, with a plus sign. If a divide check condition ex­
isted along with the AC fraction being zero, the divide 
check indicator is turned on in addition to resetting 
the AC. 

Division of the fractions is done in the same manner 
as a fixed-point division except only 2710 reductions are 
attempted in floating-point because the fraction is con­
tained in 2710 positions. 

Single-precision floating divide uses the first step of 
the tally counter to develop the final quotient charac­
teristic. The minimum cyclic time of a single-precision 
floating divide is I,E where division does not take 
place, or a maximum I,E, and 4L cycles when division 
does take place. One reduction attempt is performed 
each clock pulse, starting with the first LO pulse. The 
last reduction occurs on the fourth L2 pulse at which 
time the shift counter is stepped to zero. See Figure 21. 

Floating Divide or Halt 
(MIN I, E; MAX I, E, 4L) 

FDH + 0240 

The floating-point number in the AC is divided by the 
floating-point number in Y. The quotient appears in 
the MQ and the remainder in the AC. The quotient is in 
normal form if both the dividend and divisor are in 
normal form. Floating-point underflow or overflow is 
possible. See Figure 21 for the following discussion. 

1. The MQ sign is set to the algebraic sign of the quo­
tient under all conditions. 

2. Unless the following step 3 occurs, the AC sign re­
mains unchanged, so that the signs of the remainder 
and dividend always agree. 

3. If the AC fraction (dividend) equals zero, the AC 

sign and the AC and MQ characteristics are set to zero. 
The computer then proceeds to the next instruction, 

unless a divide check condition exists, in which case 
the computer halts with the divide check light on. 
(Note: With the AC fraction equal to zero, a divide 
check condition can occur only if the SR fraction is also 
zero. ) 

4. If the AC fraction is equal to or greater than twice 
the divisor fraction (AC 5= 2' SR) , the divide check 
light turns on and the computer halts. The dividend is 
left unchanged and the MQ is left a signed normal zero. 

5. If division does take place, the quotient charac­
teristic is set into MQ ( 1-8). This characteristic value is 
the result of subtracting the SR characteristic from the 
AC characteristic and then adding 2008 to the differ­
ence. Refer to step 7. 

6. After division is completed, the original dividend 
characteristic minus 2710 is set into AC( 1-8), thus set­
ting the remainder characteristic. Refer to step 7. 

7. In steps 5 and 6, the characteristic values may 
be 1 higher than stated. If so, it is the result of the 
AC being equal to or greater than the SR before the first 
divide reduction cycle. This condition is referred to as 
a quotient equal or greater than one (Q 5= 1) condition. 

On a Q 5= 1 condition, the AC characteristic is in­
creased by 1 before any characteristic computing is 
done. Increasing the AC characteristic by 1 is effectively 
the same as shifting the AC left 1 place. If the Q 5= 1 

condition does not exist, the AC and MQ are shifted left 
1 place before divide reduction cycles take place. 

Floating Divide or Proceed 
(MIN I, E; MAX I, E, 4L) 

FOP + 0241 

The floating-point number in the AC is divided by the 
floating-point number in Y. This instruction operates 
the same as the FDH instruction except that on a divide 
check condition, the computer does not halt but pro­
ceeds to the next instruction with the divide check 
light on. The divide check condition may be tested at 
some later time by the DCT instruction. See Figure 21. 
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Double-Precision Floating-Point Arithmetic 

The purpose of floating-point arithmetic is to improve 
the handling of very large or very small numbers rap­
idly and accurately. When a fixed-point fraction is 
changed to floating-point form, the resulting fraction 
may exceed 27 bits. In the 7094-II, circuits which ac­
commodate the longer-length fraction are used when 
operating with double-precision instructions. Double­
precision doubles the fraction-handling capacity there­
by doubling the precision of the result. The end result 
of a double-precision floating-point number is a prod­
uct consisting of characteristic and fraction, the frac­
tion being 54 bits long. 

In all double-precision arithmetic instructions, the 
most significant 27 bits of the answer are contained in 
the AC and the least significant in the MQ. The charac­
teristic is contained in AC( 1-8), and the characteristic 
-27 is contained in MQ(I-8). 

When a double-precision instruction is referenced to 
a location in memory (Y), that location will be placed 
in the storage register (SR) and the next location (Y+1) 
will be placed in the instruction backup register (IBR). 

This double-precision number, consisting of two se­
quential memory locations, is called the addressed 
operand. 

The first memory location referenced (Y) contains 
the addressed operand sign, characteristic, and high­
order fraction. The second memory location is auto­
matically referenced and will be one address higher 
than the first location referenced. It is assumed that the 
sign of the second location equals the sign of the first 
location and that the characteristic equals the charac­
teristic -27 of the first location. Only the fraction bits 
of the second location are used; these bits form the 
low-order fraction of the addressed operand. The ad­
dressed operand is placed in the storage register (SR) 
and the instruction backup register (IBR). 

The second double-precision floating-point number 
is called the implied operand and will be initially lo­
cated in the AC and MQ. This implied operand consists 
of the sign, characteristic, and high-order fraction lo­
cated in the AC, and the low-order fraction located in 
the MQ. The MQ sign is assumed equal to the AC sign, 
and the MQ characteristic is assumed equal to the AC 

characteristic -27. The most significant portion of the 
implied operand will be in the AC and the least signifi­
cant in the MQ. 

The MQ is assigned a characteristic 2710 less than the 
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AC characteristic because the fraction contained in 
MQ ( 9-35) is displaced 27 positions to the right of the 
accumulator binary point, which is the point just to the 
left of AC ( 9 ) . 

On all double-precision instructions, the sense indi­
cator (SI) register is used for temporary storage during 
register exchanging and various addition, multiplica­
tion, and divide operations. This causes the destruction 
of any information contained in the SI register at the 
beginning of a double-precision instruction. 

Since the IBR is used for all double-precision instruc­
tions, overlap is not possible during their E or L cycles. 

The format at the start of a double-precision instruc­
tion, showing register contents, is as follows: 

I: A I 
S,l 89 35 

AC 

I! n-27 ! I 
S,l 89 35 

MQ 

I! m ! C I 
s, 1 89 35 

SR 

I! m-27 ! D I 
S,l 89 35 

IBR 

Where: 
1-8 contains the characteristic, and 9-35 the fraction. 
AC = A . 2n, the most significant part of the implied 

operand. 
MQ = B . 211 - 27, the least significant part of the im­

plied operand. 
SR = C . 2m , the most significant part of the ad­

dressed operand. 
IBR = D . 2m - 27, the least significant part of the ad­

dressed operand. 
For convenience, regroup the numbers into character­
istic and fraction where: 

A = A characteristic and A fraction (A . 211) 
B = B characteristic and B fraction (B . 211 - 27 ) 

C = C characteristic and C fraction (C . 2m ) 

D = D characteristic and D fraction (D . 2m - 27 ) 



Double-Precision Floating-Point 
Addition and Subtraction 
These instructions add (or subtract) A . 2n + B . 2n - 27 

to C . 2m + D . 2m - 27 and place their sum (or differ­
ence) in the AC and MQ with the resultant characteristic 
in the AC and a characteristic smaller by 2710 in the 
MQ. These instructions assume that A . 2n and B . 2n - 27 

have been previously placed in the AC and MQ respec­
tively and that C . 2m and D . 2m - 27 are in consecutive 
locations in memory. For a simplified flow chart of 
these operations, refer to Figure 4. 

Two sets of controls are used in double-precision ad­
dition and subtraction. The floating-add control trig­
gers (FACT 1-7) are used as in single-precision but with 
certain modifications. The double-precision sync (DPS) 

modifies FACT operations and also controls data move­
ment before and after additions. FACT 4 is the only FACT 

not modified by the DPS. 

DPS 0 controls the E time and first LO movements of 
data in preparation for the first add. At the end of LO 
time, the larger of the two operands will be in the Sl 

and SR, with the smaller operand in the MQ and AC. 

They will appear in one of the following two forms. 

SI SR 

l. CD· 2m 

2. A B· 2n 

AC MQ Figure Reference 

B . 2n A Figure 18, Chart 1 
D . 2m C Figure 18, Chart 2 

At the end of LO, FACT 1 is set for pre-normalization 
and the DPS is stepped to one. An E time end op may 
occur if the characteristic difference is greater than 778 
and the larger of the two operands is normalized. When 
this occurs, the larger' of the two operands is placed in 
the AC and MQ and FACT 5 is set to complete the opera­
tion. See Figure 18, Charts 3 and 4. 

DPS 1 controls pre-normalization (FACT 1) and first 
add ( FACT 2). During FACT 1, MQ ( 35 ) is shifted to 
AC( 9) and the AC( 35) to MQ( 9) gates are blocked. Dur­
ing FACT 2, a two's complement add is performed if the 
signs are unlike instead of the one's complement add of 
single-precision. Single-precision controls place the 
contents of MQ( 9-35) in the SR during FACT 2. The AC 

and SR fractions are exchanged following FACT 2 and 
the DPS is stepped to complete the operand relocation 
in preparation for the second addition. Figure 18 
(Chart 5) shows all the register exchanges that occur 
when the DPS is not zero. DPS 2 is used to complete the 
operand relocation in preparation for the second add. 
SI ( 9-35) and SR ( 9-35) are exchanged, the DPS is stepped 
and FACT 2 is set for the second addition. 

DPS 3 controls the second add, MQ adjust, normaliza­
tion, and end operation functions. During FACT 2, any 
AD( 9) carries which were generated under DPS 2 con­
trol are now treated as carries into AD (35). If a true 
add is being performed, the operation will proceed to 

FACT 4 for normalization or to FACT 5 if normalization is 
not required. All single-precision decisions during 
these controls are valid. If a complement add is being 
performed in FACT 2, the single-precision decisions do 
not apply as they are based on a one's complement ad­
dition. If a 9 carry occurs during this complement add, 
it indicates that the answer in both the MQ and AC are 
in true form except that their contents must be checked 
for zero. If this condition occurs, FACT 4 is set for post 
normalization. If a complement add is being performed 

. and an AD( 9) carry does not occur, it indicates that the 
MQ and AC are in two's complement form and must be 
corrected. MQ ( 9-35) is set into SR ( 9-35) by the single­
precision controls of FACT 2 and FACT 6 is set. During 
FACT 6, the complement of SR ( 9-35) is gated to AD ( 9-35 ) 

along with a carry to AD ( 35) and AD ( 9-35) is gated to 
SR ( 9-35 ). The carry trigger is turned on if a carry re­
sulted and FACT 7 and FACT 3 are set. During FACT 7, 

SR ( 9-35) is gated to MQ ( 9-35) and comp AC ( 9-35) is 
gated to AD( 9-35) along with the carry trigger. AD( 9-35) 

is then gated to AC( 9-35) and FACT 4 or 5 is set, depend­
ing on normalization requirements. The instruction is 
then completed under single-precision controls. See 
Figure 19. 

Double-Precision FP Add 
(MIN I, E; MAX I, E, 11 l) 

DFAD + 0301 

The double-precision floating-point number in Y and 
Y + 1 is algebraically added to the double-precision 
floating-point number in the AC and MQ. The most sig­
nificant portion of the result appears in the AC, and the 
least significant in the MQ. The sign of the result is the 
sign of the larger operand. The result is always nor­
malized whether the original operands were normal or 
not. Floating-point underflow or overflow is possible. 
See Figure 19. 

Double-Precision Unnormalized FP Add 
(MIN I, E; MAX I, E, 8l) DUFA - 0301 

The double-precision floating-point number in Y and 
Y + 1 is algebraically added to the double-precision 
floating-point number in the AC and MQ. No attempt is 
made to normalize, thus the result may be an unnormal 
number. Floating-point underflow or overflow is possi­
ble. See Figure 19. 

Double-Precision FP Add Magnitude 
(MIN I, E; MAX I, E, 11 l) 

DFAM + 0305 

The positive magnitude of the double-precision float­
ing-point number in Y and Y + 1 is algebraically added 
to the signed double-precision floating-point number 
in the AC and MQ. The result is normalized. Floating­
point underflow or overflow is possible. See Figure 19. 
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Figure 4. DFAD; Simplified Flow Chart-Sheet 1 of 2 



Add (A+C) 

If Necessary 
;:'l/ to Recomp MQ 

in Fact 6 

Follow Single Precision 
(Fact 5 or 4,5) 

Figure 4. DFAD; Simplified Flow Chart-Sheet 2 of 2 

Double-Precision Unnormalized FP Add Magnitude 
(MIN I, E; MAX I, E, 8L) DUAM - 0305 

The positive magnitude of the double-precision float­
ing-point number in Y and Y + 1 is algebraically added 
to the signed double-precision floating-point number 
in the AC and MQ. No attempt is made to normalize, 
thus the result may be an unnormal number. Floating­
point underflow or overflow is possible. See Figure 19. 

Double-Precision FP Subtract 
(MIN I, E; MAX I, E, 11 L) 

DFSB + 0303 

The double-precision floating-point number in Y and 
Y + 1 is algebraically subtracted from the double-pre­
cision floating-point number in the AC and MQ. The re­
sult is normalized. Floating-point underflow or over­
flow is possible. See Figure 19. 

Double-Precision Unnormalized FP Subtract 
(MIN I, E; MAX I, E, 8L) DUFS - 0303 

The double-precision floating-point number in Y and 

Y + 1 is algebraically subtracted from the double-pr~ 
cision floating-point number in the AC and MQ. No at­
tempt is made to normalize, thus the result may be an 
unnormal number. Floating-point underflow or over­
flow is possible. See Figure 19. 

Double-Precision FP Subtract Magnitude 
(MIN I, E; MAX I, E, 11 L) DFSM + 0307 

The positive magnitude of the double-precision float­
ing-point number in Y and Y + 1 is algebraically sub­
tracted from the signed double-precision floating-point 
number in the AC and MQ. The result is normalized. 
Floating-point underflow or overflow is possible. See 
Figure 19. 

Double-Precision Unnormalized FP Subtract Magnitude 
(MIN I, E; MAX I, E, 8L) DUSM - 0307 

The positive magnitude of the double-precision float­
ing-point number in Y and Y + 1 is algebraically sub­
tracted from the signed double-precision floating-point 
number in the AC and MQ. No attempt is made to nor­
malize, thus the result may be an unnormal number. 
Floating-point underflow or overflow is possible. See 
Figure 19. 

Double-Precision Floating-Point Multiplication 
The object of a double-precision floating-point multi­
ply instruction is to multiply the addressed operand 
located in Y and Y + 1 by the implied operand in the 
AcandMQ. 

If the multiplier is denoted by A . 2n + B . 2n - 27 

and the multiplicand is denoted by C . 2m + D . 2m - 27 

the following arithmetic operation is performed. 
(C· 2m +D' 2m - 27 ). (A, 2n +B' 2n - 27 ) 

The computer performs two multiplications, an add, 
a third multiplication, a second add, and ends with 
the answer in the AC and MQ. A possible fourth multi­
plication (B . D) is not performed as the product is 
insignificant with a 54-bit fraction. 

During E time; A and B, C and D, and A and Care 
tested to see if they are equal to zero. A zero combin­
ation of any of these will result in a zero product, so 
the operation is terminated at the end of E time and 
the registers are set to a normal zero. The signs of the 
product are also set during E time and the fractions . 
are moved in preparation for the first multiply (B . c). 

DPS 0 controls the first multiply and the following 
register swap in preparation for the second multiply 
(A . D). 

DPS 1 controls the second multiply and the following 
register swaps in preparation for the third multiply 
(A . c). The addition of (B . c) + (A . D) is also done 
during the register swapping. If a carry results from 
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this addition, it is remembered by stepping the DPS 

one extra time. 
DPS 2 OR 3 controls the third multiply (A • C). If the 

DPS equals 3 at the end of the third multiply, it means 
a carry occurred on the sum of (B . c) + (A . D) and 
must be added to the final product. If no carry oc­
curred, the DPS will equal 2 at the end of the third 
multiply with the product in its final form except for 
normalizing which is done during DPS 2 or 3 if required. 
FACT 5 controls the MQ characteristic computation and 
the zero testing of the fractions. 

The DFMP flow chart (Figure 20) can be briefly 
summarized as follows: 

1. Add characteristics of the two floating-point oper­
ands (m + n - 200). 

2. Multiply the original MQ fraction by the fraction 
of Y (B . c). 

3. Multiply the original AC fraction by the fraction 
of Y + 1 (A . D). 

4. Add the products of steps 2 and 3 (B . C + A . D). 
5. Multiply the original AC fraction by the fraction 

of Y (A . c). 
6. Add the product of step 5 to the sum of step 4 

[A . C + (B . C + A . D) ]. 

7. Adjust MQ characteristic. 
Three types of instructions use floating-point multi­

ply cycles (Figure 16, sheet 2 of 2) to obtain their 
desired result: single and double-precision multiplica­
tion, and double-precision division. The timings in­
volved are shown in Figure 5. 

338 - sc (14 Clk Pulses Each Mpy) 

Instruction Type Turn On MfY Step SC 
Cycle Tgr 1 By 1- Zero 

Single-Precision E6 2nd L4 Multiply 

Double-Precision 
Multiply 

1st Mpy (B'C) E6 2nd L4 

2nd Mpy (A·D) 3rd L3 5th L1 

3rd Mpy (A'C) 5th L7 7th L5 

Double-Precision 5th LO 6th L6 Divide (Ql'D) 

Figure 5. Timing of Floating-Point Multiply Cycles 

Double-Precision FP Multiply 
(MIN I, E; MAX I, E, 7L) 

DFMP + 0261 

The double-precision floating-point number in Y and 
Y + 1 is multiplied by the double-precision floating­
point number in the AC and MQ. The most significant 
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part of the product appears in the AC and the least 
Significant in the MQ. The product of two normalized 
numbers is in normalized form. If either number is not 
normalized, the product may be in unnormalized form. 
Floating-point underflow or overflow is possible. Refer 
to Figure 20 for the following steps: 

1. The product signs are algebraically set whether 
multiplication takes place or not. 

2a. If the multiplier (A, B) or the multiplicand 
(C, D) is a normal zero, or the high-order fractions of 
both (A, C) are zero, the AC and MQ are reset to a 
signed normal zero and the computer proceeds to the 
next instruction. 

2b. If step 2a is not true, three multiplications take 
place: (B . c), (A . D), and (A . c). The low-order 
parts of the products (B . c) and (A . D) are discarded 
and the remaining high-order parts are added to the 
low-order part of the product (A . C). 

3. At the end of step 2b, if the high-order part of 
the final product is not a normal number, the AC and 
MQ fractions are shifted left one position and the char­
acteristic of the AC is reduced by 1. 

4a. At the end of step 3, if the final product in the 
AC and MQ is zero, the AC and MQ characteristics are 
reset, giving a signed normal zero. 

4b. If the final product is not zero, the AC charac­
teristic equals the sum of the characteristics of Y and 
the original AC, minus 2008 • The MQ characteristic will 
equal the AC characteristic minus 2710• 

Double-Precision Unnormalized FP Multiply 
(MIN I, E; MAX I, E, 7L) DUFM - 0261 

The double-precision floating-point number in Y and 
Y + 1 is multiplied by the double-precision floating­
point number in the AC and MQ. No attempt is made 
to normalize, thus the result may be an unnormal num­
ber. Floating-point underflow or overflow is possible. 
See Figure 20. This instruction is the same as DFMP 

with the following exceptions: 
1. If the AC and MQ fractions (multiplier) are zero, 

the pre-end op trigger is not set as on DFMP, but in­
stead the sc is reset to zero. The sc equal to zero pre­
vents the first multiply (B . c) from taking place but 
all other operations are performed as usual. When this 
condition occurs, FACT 5 will be set on the sixth L 7 
pulse, which is one cycle earlier than under normal 
conditions. 

2. No attempt is made to normalize the final result. 
3. If the final product in the AC and MQ is zero, 

FACT 5 does not reset the AC and MQ characteristics as 
in DFMP, and the MQ characteristic is set 2710 less tha.n 
the AC characteristic. 



Double-Precision Floating-Point Division 

The objective of a double-precision floating-point di­
vide instruction is to divide the implied operand in 
the AC and MQ by the addressed operand located in Y 
and Y + 1. 

If the dividend is denoted by A . 2n + B . 2n - 27 

and the divisor is denoted by C . 2m + D . 2m - 27 the 
follOwing arithmetic operation is performed: 

A . 2n + B ·2n - 27 

C . 2m + D . 2m -27 

This can be separated into two single-precision divide 
operations: 
A . 2n + B . 2n - 27 

where Ql is the high-order quotient and Rl is the re­
mainder from this division. 
Rl • 2n - 27 - QlD • 2n - 27 

= Q . 2n - m - 27 + R . 2n - 54 
C . 2m 2 2 

where Q2 is the low-order quotient and R2 is the re­
mainder from this division. Because the fraction of R2 

is 54 bits removed from the original dividend, it is not 
used. 

The development of the high-order quotient (Ql) 

and remainder (R l ) is accomplished by performing 
a single-precision divide, except that the Sl register is 
reset rather than the MQ. 

The final quotient characteristic is developed and 
put into AC( 1-8) during the first L cycle of this divide. 

The development of the second quotient cannot be 
accomplished in the form shown in equation 2, there­
fore an intermediate step is necessary. 

The factors Ql and D are multiplied together. This 
is accomplished by turning on the block divide trigger, 
placing Ql in the SR, D in the MQ, resetting AC( 9-35), 

and turning on the multiply cycle trigger. The multiply 
cycle trigger will cause multiplication of the fraction 
in the SR by the fraction in the MQ and will place the 
product in the AC and MQ. Because the low-order digits 
of the product in the MQ are 54 bits removed from the 
original double-precision dividend, it is not used. After 
the multiply cycle trigger is turned oH by the sc going 
to 0, the fraction Rl is placed in the storage register 
and the factor QlD located in the· AC is alegbraically 
subtracted from it. This places the fraction Rl - QlD 

in the AC. 

At the end of the development of Rl - QlD, the factor 
C is placed in the SR, MQ ( 9-35) is reset, and the block 
divide trigger IS reset so that a second single-precision 
divide may take place. This time Rl - QlD is divided 
by C, which develops Q2 in the MQ and R2 in the AC. 

At the end of the second divide, the block divide trig-

ger is again turned on, Ql is placed in the SR, AC( 9-35) 

is reset, and FACT 2 is turned on. With FACT 2 on, a 
single-precision normalized floating-add is performed 
(Ql + Q2). Normalization in FACT 4 takes place if 
needed. FACT 5 then computes Q2 characteristic plac­
ing it in MQ ( 1-8), and sets the pre-end op trigger to 
end the operation. Figure 6 shows the characteristics 
and signs of a double-precision divide operation. See 
Figure 7 for a simplified flow chart of double-preci­
sion division. 

CHARACTERISTICS 

SIGNS 

A+B C+fil Q
1 R * 1 Q1D* R1-Q1D Q

2 

~ ~ ~ ~ W R1>Q1D R1<Q1D R1>Q1D R1<Q1D 

+ + + + + + - + -
+ - - + + + - - + 

- + - - - - + - + 

- - + - - - + + -

* Note that Rl and Q1D Always Follow the Sign of A+B 

Figure 6. Double-Precision FP Divide; 
Characteristic and Sign Determination Tables 

Double-Precision FP Divide or Ha It 
(MIN I, E; MAX I, E, 15L) 

DFDH - 0240 

The double-precision floating-point number in the AC 

and MQ is divided by the double-precision floating­
point number in Y and Y + 1. The quotient is a nor­
malized double-precision floating-point number in the 
AC and MQ. Floating-point underflow or overflow is 
possible. 

If the AC fraction (at the start of either divide oper­
ation) is equal to or greater than twice the divisor 
fraction (AC :> 2 • SR), the divide check turns on and 
the computer halts. Since this procedure contains two 
floating-point divide operations, a divide check could 
occur at two diHerent times: (1) If a divide check oc­
curs on the first division, the dividend remains un­
changed and the sense indicator register is cleared. 
(2) If a divide check occurs on the second division, 
the AC fraction contains (Rl - QlD) and the sense reg­
ister contains the quotient (Ql) of the first division. 
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El (03) 

OPS =0 
Zero Test 

AC and MQ 

1 
E2 I E5 1 

Reset SI Diy Ck Test 
Turn on 

1st Cycle Tgr Set MQ Sign 

I I 
1 

Yes Oiv Ck or 
AC and MQ 

No 

=Zero 

E5 E6 r E7 

End Op 
Reset 1st 33S-SC 

Cycle Tgr 

I 
r 

Yes 
Q">1 

No 

E7 

E7 1 
Reset 

1st Cycle Tgr 

1 
lL5 I (03) I 

Compute Diy Cycles 
Quotient under 

Char SC Control 

I J 
4L4 T 

StepDPS-l 
Turn on 

81k Div Tgr 

1 
4L6 r 4L6 

33S-SC 

I 
5LO T 

Step DPS-2 
Turn on Mpy 

Cycle Tgr 

I 

I 
Find !:J. 

I 

~ 
FP Shift 

Left One 
Place 

I 

(A+8)';'C 
1/'v-4L2 

I (02) 

Swap Regs 
for Q l 00 

J 

On Single-Precision} 
FP Multiply-
Figure 16 (Sheet 2) 

Mpy Cycles 
under 

SC Control 

~ 

·(Ql o0) 
5LI-6L6 

7Ll (02) 

7L3 I 
Turn on 

1st Cycle Tgr 

I 

7L5 

7L2 

7L3 

Reset 
81k Diy Tgr 
MQ (1-35) 

7L5 

Set MQ Sign 

End Op 
Reset 1st 

Cycle Tgr 

Yes 

7L7 

7L7 

Swap Regs 
for 

Rl -Ql 0 

7L3 

Swap Regs 

for Rl -
Q

l
0 

C 

7L5 

Diy Ck 

FP Shift 
Left One 

Place 

Reset 1st 
Cycle Tgr 

Diy Cycles 
under 

SC Control 

To Sheet 2 

Diy Ck 
Test 

No 

7L6 

No 

(R l - Q 1D)+C 

SLO-llL2 

/ 

Figure 70 Double-Precision FP Divide; Simplified Flow Chart-Sheet 1 of 2 
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llL6 

llL4 

Turn On 
Blk Div Tgr 

Shift IQ2 
Left One 

Place 

Add 
Q, +Q2 

Fact 3 
Correct AC 

Step 
to DPS {

No Effect on 
DPS Status 
(DPS = 3) 

llL5 llL5 

Q,-SR 

Reset AC 

(On FAD Flow Chart 
\.Figure 15 (Sheet 4) 

Set 
Fact 2 

Fact 6 and 7 
Correct MQ 

Fact 4 
Normalize 

Fact 5 
End Op 

Set 
DPS - Zero 

Figure 7. Double-Precision FP Divide; Simplified Flow Chart-Sheet 2 of 2 
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The overflow or underflow indication will be lost if a 
divide check occurs. See Figure 21 for the following 
steps: 

1. Signs resulting from this instruction are always 
alike: 

a. Before th~ first divide, with or without a divide 
check, when A and B fractions are zero; with 
like signs, the AC and MQ signs are set plus; with 
unlike signs, the AC and MQ signs are set minus. 

b. Before the first or second divide, with a divide 
check only, the AC and MQ signs equal the sign 
of the original AC. 

c. When both divisions take place, the AC and MQ 

signs are the algebraic result of the original 
operands. 

2. Quotient characteristics are developed and re­
tained only when the dividend fractions (A,B) are not 
zero and a divide check does not occur: 

34 

a. If the original AC and MQ fractions (A,B) equal 
zero, the AC and MQ characteristics are set to 
zero. 

b. If A and B fractions are not zero, and a divide 
check occurs before the first divide, the AC and 
MQ characteristics remain unchanged. 

c. If a divide check occurs before the second divide, 
the AC and MQ characteristics will equal zero. 

d. When none of the pregeding conditions occur, a 
successful division takes place, and the AC char­
acteristic will equal the characteristics of A 
minus C, plus 2008 • The MQ characteristic will 
equal the AC characteristic - 2710 , 

Double-Precision FP Divide or Proceed DFDP - 0241 
(MIN I, Ei MAX I, E, 1SL) 
The double-precision floating-point number in the 
AC and MQ is divided by the double-precision floating­
point number in Y and Y + 1. The quotient is a nor­
malized double-precision floating-point number in the 
AC and MQ. This instruction is the same as DFDH ex­
cept on a divide check condition. If a divide check oc­
curs, the computer does not halt but proceeds to the 
next instruction. See Figure 21. 



Abbreviations 
AC 
AD 
Adr 
AR 
Auto 
Blk 
c 

Char 
Clk 
Comp 
Cond 
Ctrl 
DivCk 
Dlyd 
DP 
DPS 
FP 
Gt 
IA 
IBR 
Inst 
Lt 
Mpy 
MQ 
MST 
Op 
Ovlp 
Ovfl 
PC 
POD 
Ppg 
PR 
Prec 
Pri 
Recomp 
Reg 
Rt 
SB 
SC 
Sh 
SI 
SR 
SOD 
SS 
Stg 
TC 
Tgr 
Unfl 

Accumulator Register 
Adder / Adders 
Address 
Address Register 
Automatic 
Block (stop/bar) 
The number of iterations to be performed in variable­

length instructions (in decrement portion of in­
struction) 

Characteristic 
Clock Pulse 
Complement 
Condition 
Control 
Divide Check 
Delayed 
Double-Precision 
Double-Precision Sync 
Floating-Point 
Gate 
Indirect Address 
Instruction Backup Register 
Instruction 
Left 
Multiply 
Multiplier-Quotient Register 
Master Stop 
Operation 
Overlap 
Overflow 
Program Counter 
Primary Operation Decoder 
Propagate 
Program Register 
Precision 
Primary 
Recomplement 
Register 
Right 
Storage Bus 
Shift Counter 
Shift 
Sense Indicator Register 
Storage Register 
Secondary Operation Decoder 
Single-Shot 
Storage 
Tally Counter 
Trigger 
Underflow 

XAD Index Adders 
Y Storage Word (referred to by address portion of cur-

rent instruction) 

Reference Section 

Symbols 
/:::,. 

> 
< 
> 
< 
AB 

* 

A·B 

Characteristic Difference 

(A>B) A "greater than" B 

(A<B) A "less than" B 

(A5 B) A "equals or greater than" B 

(A<B) A "equals or less than" B 

Complement of (AB) 

Block location shown at exit of feeding block 
(used in flow charts thus: 02.13.47.1 *) 

A Times B (multiplication) 

Not Equal (opposite of equal) 
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I Time 
POO 50 

I 
E4 (01) 

SB -SR 

02. 12.S2.2 (SF) 

I 
No CLS Yes 

1 
I I 

E4 (01) E4 (01) 
Block Invert 

SB (S)-SR (S) SB (S) - SR (S) 

02.09.93.1 (2B) 02.09.93.1 (4B) 

1 I 
I 

ES (01) 
E End Op 

08.00.02.2 (4A) 

I 
CLA/CLS CAL 

Instruction 

ES (03) 
ES (03) 

SR (S-3S) 
SR (1-35)--AO -+AO (P-3S) 

02.12.14.1 (2G) 02.12.1S.1 (2H) 

E7 (01) 
E7 (01) 

Set 
SR (S) -+ AC (S) AC (S) Plus 

02.12.37.1 (3E) 02.12.92.1 (20) 

I 

I 
E7 (01) 

AO (Q-35) - AC 

02.12.31.1 (2E) 

I 
Proceed 

Figure 8. Clear and Add; Clear and Subtract; Clear and Add Logical Word 
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No 

A?d 
\ Instruction 

SBM 

E4 (D1) 
Set SR 

Sign Minus 

02.09.93 . 1 (4C) 

T 
E5 (D1) 

E End Op 

08.00.02.2 (4A) 

1 
T 

.--__ -"-Un_l_ik_e-( AC and SR Signs 

E6 (D1) 

AC (0-35) - AD 
-AC 

02.09.91.2 (3B) 

No 

ADM r-

Alike 

E4 (D1) 
Set SR 

Sign Plus 

02.09.93 . 1 (4E) 

E6 (D1) 
AC (0-35) -AD 

-AC 

02.09.91. 2 (3D) 

T 
... 

I Time 
POD 40 

T 
T 

T 
E4 CD1) 
Block 

SB (5) - SR (5) 

02.09.93.1 (2B) 

1 

E6 (D1) 
SR (1-35) - AD 

02.09.91.2 (3E) 

. 1r--_--.:A~I:...::ik~e';".( AC and SR Signs Unlike 

Yes 
AD (1) Cae", ~ 

E7 (D1) 
Turn On 

AC Ovfl Tgr 
02.09.91.2 (2D) 

I 
E7 (D1) 

AC (0-35)-AD 
--AC 

02.09.91.2 (3B) 

T 

No Carry Tgr On 

I 
E7 Set 

Set 
AC (5) Minus 

I 
E4 (D1) 
Invert 

SB (5) - SR (5) 

02.09.93.1 (4A) 

1 

E4 (D1) 
SB-SR 

02.12.52.2 (5F) 

AC<S~ E6(D1) \NO 
1\ OCarry / 

E6 Set 
Set 

CarryTgr 

02.02.40.1 (4H) 

Yes 

E7 (D1) 
AC (0-35)- AD 

-AC 
02.09.91.2 (3C) 

I. 
T 

Plus AC Sign 

'----_-./ 

E7 (D1) 
Carry -+ AD (35) 

02.09.91.2 (3C) 

Minus 

E7 Set 
Set 

AC (5) Plus 

02 . 09 . 91 . 2 (1 F) 02.09.91.2 (lE) 

1 

Proceed 

Figure 9. Add; Add Magnitude; Subtract; Subtract Magnitude Reference Section 37 



I Time 
POD 36 

1 --

E4 (01) 
POD 36 

Exec Ori 
SB--SR End Op In E 

02. 1 2.52. 2 (5F) 02 . 09 . 46. 1 (1 H) 

I 
E5 (01) E5 (01) 

Save AC (Q) AC (Q) --SR (Q) End Op 

~ 02.12.01.1 (3H) 08.00.09.2 

I 
E5 (03) E5 (03) 

SR (5-35) AC (Q-35) 
--AD (P-35) --AD (Q-35) 

02.12.15.1 (2H) 02.12.24.1 (2C) 

I r< AD IP) C,ny r 
r 

Carry --AD (35) 

02.14.27.1 (4G) 

1 
E7 (01) E7 (01) 

Original AC (Q) SR (Q)--AC (Q) AD (P-35) --AC 

~ 02.12.38.1 (2E) 02.12.30.1 (3B) 

t 
Proceed 

Figure 10. Add and Carry Logical Word 
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OBJECTIVES 

1. Zero Test Multiplier, 
Multiplicand, and 
Shift Counter 

2. Reset AC 
3. Set Signs 

SC 

E5 (D1) 
Set Mpy 

Cycle Tgr 1 
02.13.73.1 (lE) 

To Fixed~Point 
Multiply Cycles 

(Sheet 2) 

E2 (D1) 
43

S
-SC 

02. 13.S4. 1 (2A) 

No 

02. 12. 52 . 2 (5F) 

E4 (D1) 
Reset AC 

02.13.73.1 (2B) 

POD 20 
Multiply 

E5 (D1) 
Set MQ and AC 

Signs Plus 

02.13.73.1 (4C) 

E5 (Dl) 
Reset MQ 

02.13.73.1 (2F) 

Zero Test of Multiplier at E3(D1) 
is Invalid if this Instruction is 
Overlapping the Previous 
Instruction. End Op Tgr "ON" 
(from previous instruction) 
Holds Pre-End Op Tgr Reset 
During A3(D1). 
Systems OS.00.1O.1(4C), pin P. 

{ 

Yes 

(3E) 

E5 (D1) 
Pre-End Op 

End Op 
02.13.73.1 (2F) 

Set 
Pre-End Op 

02. 13.73. 1 (*) 

Next Instruction 

Figure 11. Fixed-Point Multiply-Sheet 10f 3 
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OBJECTIVE 

Multiply SR by MQ Fixed-Point 
(1 Mpy Cycle Each Clk Pulse) Multiply Cycles 
Refer to Figure 12 for Relative 
Pulse Timings 

j 

~I 
T A 

~ 
AC (Q-35)--AD E\ H,,' r ~ L4 (Dl) 

~ 
No AC (P) -AD (Q) MPY Inst SC = One Mpy Cycle 

SC < 7 
02.13.77.1 (3D) 

~For Setting~ 
Pre-Tgrs 

Blk Pre-MQ 34 Step SC Sample Sample L4 (Dl) 
Set To Decoder Mpy Ctrl MQ (34,35) MQ (32,33) and SB Tgr Pre-End Op 

02.13.75.1 (3D) 02.13.73.1 (2H) 02.13.77.1 (IA) 02.13.77.1 (1C) 02.13.73.1 (4G) 

I 

T T I 
Pre T grs Pre Tgrs Pre Tgrs Pre Tgrs 

Pre-Tgrs 
34 35 SB 34 35 SB 34 35 SB 34 35 SB 

0 0 0 0 0 0 1 1 0 1 1 3 1 0 1 ~) Octol or or or or 
6 Values 1 1 1 7 0 1 0 2 1 0 0 4 1 1 0 

I I I 
Decode X 0 Decode X 1 Decode X 2 Decode X 3 

02.13.75.1 (3A) 02.13.75.1 (3H) 02.13.75.1 (3C) 02.13.75.1 (3F) 

I I 
i 

I I 
---

Pre-SB Tgr SR (1-35) SR (1-35) SR (1-35)-AD l's-AD (Q,P, 
-SB Tgr -AD Lt I-AD Set SB Tgr 9Q,9P,35) 

02. 13.77. 1 (5H) 02.13.75.1 (3H) 02.13.75.1 (3C) 02.13.75.1 (3F) 02. 13.75. 1 (3 F) 

1 1 1 J 
t 

~ sCeO" 

r(SC> 2) 
No 

+ 

~ Decooe X 2 r- , FI", r' Mpy Cycle 
Each Clk Each Clk Each Clk 

AD (Q-34) AD(35)--MQ(I) 
Sh MQ (1-35) 

Rt l--AC Rt 1 

02.13,73.1 (4D) 02.13.73.1 (4D) 02.13,73.1 (4D) 
Each Clk r-

AD (Q) __ AC (P) 
Set Mpy 

02.13,73.1 (IH) Cycle Tgr 2 

02.13.77.1 (3B) 

I 
Each Clk Each Clk Each Clk Each Clk Each Clk Reset Mpy Step SC Step SC AD (Q-33) AD (34,35) Sh MQ (1-35) 

By 1 By 2 Rt 2--AC --MQ(I,2) Rt 2 Cycle Tgr 1 

03.14.18.1 (3E) 03.14.18.1 (3D) 02.13.73.1 (3H) 02.13.73.1 (3H) 02.13.73.1 (3H) 02.15.61.2 (3H) 

~ I 
MPY or MPR Inst, f 
Steps SC - Zero 

~ 
at 2nd L7 No 
VLM Inst-Variable SC = Zero 

To SC = Zero 
(Sheet 3) 

Figure 11. Fixed-Point Multiply-Sheet 2 of 3 
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VLpA 

Possible Only on 
Even Count ~ 

~Yes No 

MPR, VLM 

(Wait) 

3rd L Cycle on MPR 
Inst, Varioble on ~ 
VLM Inst 

MPR 

L1 (01) 
Set 

Pre-End Op 

02.13.73.1 (3E) 

Reset MPY 
Cycle Tgr 2 

02.13.77.1 (4C) 

MPY 

Next Instruction 

/I /Last Decode Was X 3 
/~ (Possible Only with Even Count) 

L6 (01) 
AC (0-35) --AD 

MO (l) __ AO (35) 
L6 (01) 

AD (0-35) --AC 

Figure 11. Fixed-Point Multiply-Sheet 3 of 3 

Yes 

AC (0-35) --AD 
AC (P) __ AO (0) 

AO (01) 
Reset 

Pre Tgrs 

02.13.77.1 (5E) 

Reset Mpy 
Cycle Tgr 2 

02.13.77.1 (4C) 

~ 
Effective X 1 Operation 

SR (1-35) __ AD L6 (01) 
AD (0-35)--AC 

Reference Section 41 



Line' TEST POINT LEVEL 

1. IB2023C +F 

2. IB3F04M -F 

3. IB2E280 +F 

4. IB2E28C +F 

5. IB3F04P -F 

6. IB3F04N -F 

7. IB3F07L +F 

8. IB3F06L +F 

9. IB3F05L +F 

10. IB3F04L +F 

n. IB2F04B +F 

12. IB2F04C +F 

13. IB2F04D +F 

14. IB2Fl4H +F 

15. IB2J06B +F 

16. IB2J08C -F 

17. IB2J07C -F 

18. IB2J09C -F 

19. lA40240 -F 

ZO. IB2E260 +F 

21. lA4G25B -F 

22. IB2E26C +F 

PROGRAM (All Numbers Octal) 

LINE NAME SYSTEMS 

Mpy Cycle Trigger 02.13. 77. 1(30) 

Gate to MQ 35 02.04. 06. H2F) 

sample MQ 34 and 35 02. 13.77. HIAl 

Sample MQ 32 and 33 02.13.77. HIC) 

SetMQ 35 02. 04. 06. H2F) 

Hold MQ 35 02. 04. 06. H2F) 

MQ32 02. 04. 05. H2H) 

MQ33 02. 04. 06. H2A) 

MQ34 02. 04. 06. 1(2C) 

MQ 35 02. 04. 06. I(2Fl 

Pre MQ 34 Trigger 02. 13.77. 1(2E) 

Pre MQ 35 Trigger 02. 13.77. 1(2F) 

Pre String Bit Tgr 02. 13. 77. l(2G) 

String Bit Trigger 02.13. 77. 1(3H) 

Decode XO 02.13.75. 1(2Al 

Decode Xl 02.13.75. 1(3H) 

Decode X2 02.13.75.1(3e) 

Decode X3 02. 13.75. 1(3F) 

Step SC by 2 03.14.18. 1(30) 

SH RT 2 02. 13.73. 1(3H) 

Step SC by 1 03.14.18. 1(3E) 

SH RT 1 02.13. 73.1(4D) 

r-

~ 

r--

)1\ 

Location 
o 
1 
2 
3 

10 
n 

-

Instruction 
LOQ 10 
VLM 15 11 
TRA 0 
HTR 

15771 
5 

.--U IU IU U \n ~\ f\ 
JLJ U U 

I 
r-

! 

I L f 
--

n ,----

~ ~ 

~ hf-
rl\ II" 
r--.. V--

'-----' 

IL-r 
I~ 

1'---

~ 

r\ 
J 

~ 

Figure 12. Fixed-Point Multiply Cycles; X-V Recording 
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15 (Dl) 
SR(21-3s) 
--XAD 

03.06.03.2 (4H) 

12 (D2) 
AC(Q-3s) -+ AD 

02.12.24.1 (2A) 

Figure 13. Round 

I Time 
POD 76 

RND 

02.09.57.1 (2A) 

L4 (Dl) 
LEnd Op 

00.00.01.1 (3C) 

12 (D2) 
Carry -+ AD(35) 

02. 12. 29. 1 (4C) 

12 (D2) 
Turn On 

AC Ovfl Tgr 
02.10.36.1 (4D) 

15 (Dl) 
XAD--SC 

03.06.03.2(41) 

For Decoding 
/ Instruction 

13 (Dl) 
AD(Q-35)- AC 

02.12.31.1 (2B) 
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OBJECTIVES 

1. Set SC and Zero Check SC 
2. Div Ck Test 
3. Shift Left to Prepare 

for First Div Reduction Cycle 

Min I,E } 
Max I,E,5L 

1 

DVH,DVP 

E2 (D1) 
438 --SC 

(2A) 

No 

1 

Divide POD 22 

+ 

Instruction 

r 
E4 (Dl) 

SB-SR 

02.12.52.2 (5F) 

I 
SC = Zero 

VDH VDP 

E2 (D1) 
SR (3-17) - XAD 

XAD (10-17) -- sc 
(lAl 

Yes 

SR (1-35) --AD 
l's -AD (Q,P) 

AC (Q-35) -- AD 
1--AD (35) 

E5 (Dl) 
End Op 

1 

E6 (Dl) 
Sh AC (Q-35) 
-- Lt 1 

(2D) 

I 

l 
(SR >AC)~ 

No 

E6 (Dl) 
Sh MQ (1-35) 

--Ltl 

(2D) 

To L Time 
POD 22 

(4C) 

Q Carry 

·1 

(4C) 

I 
Div Ck (AC 5 SR) 

Yes~ 

(2B) 

Next Instruction 

I 
E6 (Dl) E5 (D1) 

MQ (l)--AC (35) Turn On 
Div Ck Tgr 

(2D) (2C) 

I 1 

DVP,VDP 
Instruction 

Proceed 

Figure 14. Fixed-Point Division-Sheet 1 of 2 
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Note: Unless otherwise shown, all 
blocks on Systems 02.13.84.1 

{

With Count of 578 

Min I,E 
Max I,E,7L 

E5 (D1) 
Turn On 

T1 Tgr 

(2C) 

DVH,VDH 

E5 (D1) 
Block 

Overlap 

I 
E5 (D1) 
End Op 

1 

I 
12 (Dl) 

Turn On 
MST Tgr 

(2C) 

(2C) 04.20.11.1 (4A) 

I 

Halt 



OBJECTIVES 

1. One Reduction Cycle 
Each Clk Pulse 

2. End Op When SC = Zero 

SC Steps to Zero During 
5th L2 Pulse for DVH, 
DVP Instructions 

L Time 
POD 22 

__ llil 1\ SC=Zero 
Yes 

Note: Unless otherwise shown, all 
blocks on Systems 02.13.84.1 

(Divide Reduction Cycles) 

I 
SR (1-35) -- AD 
l's-AD (Q,P) 

(4C) 

I 

AC (Q-35)-- AD 
1-- AD (35) 

(4C) 

No Q Corry Yes 

Successful 
/'>./ Reduction 

,Y ~ (AC 5 SR) 

AC and MQ are Shifted Right 1 because They Were 
Shifted Left 1 at E6 without Stepping SC in 
Preparation for First Divide Reduction Cycle L5 (Dl) 

End Op 

1 

(2F) 

~Ac~a~dSR r 
es Signs 0 

L7 (Dl) 
Set MQ (S) 

L7 (Dl) 
Sh AC (Q-35) 

-Rtl 

L7 (D1) 
AC (35)- MQ (1) 

L7 (Dl) 
Sh MQ (1-35) 

-Rt1 Alike 

L7 (Dl) 
l-MQ(S) 

(21) 

Figure 14. Fixed-Point Division-Sheet 2 of 2 

(2G) 

Proceed 

(2G) (2G) (2G) 

1 1 
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OBJECTIVES 

1. Check for Possible Trap 
2. Set SR Sign 
3. Check for 2 Cyc Ie 

Add Condition 

r< '58 ~ UFS l' 
K'AMOC UAM 

FAD or UFA 

Yes 

f< 'SM oc USM 7' 

POD 30 
PR (9) = Zero 

1- AD (9P) 

02.14.27.1 (3D) 

E2 (Dl) 

AC (Q-8)-AD 

02.13.47.1 (3B) 

E3 (Dl) 
AC (Q-8) -- AD 

02.13.47.1 (3A) 

Blocked During 
~Faet 1 

Check for AC Char < 338 
./ (MQ Unfl Possible) 

I 

E2 (Dl) 
l's-AD 
(4,5,7,8) 

02.13.47.1 (3B) 

E3 (Dl) 
l's--AD 
(Q,P,8) 

02.13.47.1 (3A) 

""" rJ "f 
Check for AC 

Yes 

\ 
E2 (D2) 
Q Carry 

Possible Trap 
Condition 

Set Ovlap 
Confl i ct T gr 

02.13.47.1 (2A) 

1 
Char '5 3778 

r--__ ----4II--__ ~~--~---...,(AC Ovfl Possible) , t E4 (Dl) 
SB--SR 

E4 (Dl) 

No 

E4 (Dl) 
Set SR 

Sign Minus 
Set SR 

E4 (Dl) 
Block 

E4 (Dl) 
Invert 

SB(S)-SR(S) 
02.09.93.1 (4A) 

02.12.52.2 (5F) 
Sign Plus 

02 . 09 . 93 . 1 (4C) 02.09.93.1 (4.E) 
SB (5) - SR (5) 
02.09.93.1 (2B) 

~(D3) 
AC (Q-8)--AD 

l--AD (8) 

02. 13.47. 1 (3C) 

No 
6.= Zero 

E5 (D3) 
SR (1-35) -- AD 

02.13.47.1 (3C) 

Yes 

No SR and AC 
Signs Alike 

Yes 

Note: Overlap confl iet tgr is set at L5 time 
whenever the AC char <: 37, Systems 02. 13.45. 1 (31) 

2 Cycle Add 
~Condition 

Yes ~~ ______________________ N~o SRorAC 

(9) = One 

E5 (Dl) 
End Op 

Pre End Op 

02.13.47.1 (2E) 

To FAD 
(Sheet 2) 

E5 (Dl) 
Set Fact 2 

02.13.47.1 (2F) 

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 1 of 8 
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OBJECTIVES 

1. Determine Characteristic 
Difference (I:::.) 

2. Reset MQ 

From FAD 
(Sheet 1) 

3. Prepare for AI ignment 
of Fractions 

4. Start Fact Sequence 

~(Gate to SR and AC - No Set) 

Ir------.---~I 

E5 (01) 
Reset MQ 

02.13.47.1 (3~) 

I 

E5 (01) 
AC (9-35) -- SR 
AD (9-35) -AC 

02.13.47.1 (3D) 

(AC <: SR)--, 

Desired Condition ~Yes E5 (01) 
AD (Q) Corry 

Logic Block~ 
(1-5H), (21)) 

E5 CP Set 
Turn Reset 

Add Tgr On 

02.13.47.2 (3E,3F) 

E5 (01) 
Pre-End Op 

End Op 

02.13.47.2(4B,4C) 

SR-AC 

~ 
E6 (01) 

SR (S-8) -- AC 
AD (9-35) -- AC 

02.13.47.2 (4G) 

E6 CP Set 
Set Fact 5 

02.13.47.2 (3G) 

To Fact 5 
(Sheet 7) 

To Fact 2 
(Sheet 4) 

+ 
E5 (01) 

Block Set 
to SR and AC 

02.13.47.1 

E5 (01) 
AD (lor 2) 

= One 
No 

Yes 
SR (9) = One 

Yes Fact 2 On 

02.13.51. 1 

No 

No 

No 

02.02.40.1 

Reset Add 
Tgr On 

02.13.61. 1 

E6 (01) 
AD (1-8) 
--SC 

No 

02.13.47.2 (21) 

NO/ 1:::.= Zero 

1\ 02.13.47.1 

E6 CP Set 
Set Fact 1 

02.13.47.2 (lH) 

To Fact 1 
(Sheet 3) 

E5 (01) 
AC (S,P-8)- SR 

SR (S-8)-AC 

02.13.47.1 (lG) 

I 

~(AC >SR) 

No 

No 

E5 CP Set 
Allow 

SR and AC 
Set 

E5 (01) 
AD (lor 2) 

= Zero and AC 
(Q-P) = Zero 

;I 
Swap SR and AC 

E5 CP Set 
Turn Reset 
Add Tgr On 

02.13.47.2 (40) 

I 

AC (9) = One Yes 
and ~----------------~ 

AC (Q-P) = Zero (5B) 

Yes 

E6 (01) 
Reset 

AC and MQ 

E5 (01) 
Pre-End Op 

End Op 

02.13.47.2 (4A) 
02.13.47.2 (5H) "\ 

Will Add Larger 
Fraction to Zero 

Yes 

(4E) 

E6 CP Set 
Set Fact 2 

02.13.47.2 (31) 

To Fact 2 
(Sheet 4) 

Original AC \ 
Value 

.....-+ AC ...-~ __ -L. ____ ----., 

E6 (01) 
SR (S -8) -- AC 

AD (9-35) -- AC 
02. 13.47. 2 (4G) 

E6 CP Set 
Set Fact 5 

02.13.47.2 (3G) 

To Fact 5 
(Sheet 7) 

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 2 of 8 
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OBJECTIVE 

Equal ize Characteristics 
(1-32 Clock Pulses) 

Note: Up to 128 Clk Pulses 
(t.=377), ifAC(QorP)=l 
at E5 Time (Blocks Turn-On 
of Reset Add Tgr) 

From FAD 
(Sheet 2) 

~SCfO 

Fact 1 

02.13.49.1 
; 

Starts at E7 
(If Necessary) 

(SC>l)~ 

~ SC = On. }-'Y...;:;e;:..s --------, 

Step SC 
By 1 

03.14.18.1 (3E) 

? Each Clk 

Sh AC (9P-35) Rt 1 
Sh MQ (9-35) Rt 1 

02.13.49.1 (2E) 

I 
AC (35) 

-MQ (9) 

02.13.49.1 (2E) 

1'----_....--..-1 __ ----'1 
~Each elk 

+ + 
Step SC Sh AC (9P-35) Rt 2 

By 2 Sh MQ (9-35) Rt 2 

03.14.18.1 (3~) 02.13.49.1 (20) 

l 1 
1 

No 
SC < 2 

Yes 

+ 
AC (34,35) 

-MQ (9,10) 

02.13.49.1 (20) 

I 

Set Fact 2 

02. 13 .49. 1 (1 C) 

To Fact 2 
(Sheet 4) 

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 3 of 8 
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OBJECTIVE 

Add Fractions 
(1 Clock Pulse) 

Note: Overlap Conflict Tgr is 
set at L5 whenever the AC 
Char <: 37, Systems 02.13.45.1 (31) 

Allow Fraction True Add~ 
Carry To 
I ncrease Char 

~ + + 
Ppg AD (9P) AC (9-35) 

Carry - AD (8) -AD 

02.13.51.1 (3B) 02.13.51.1 (3C) 

1 1 

+ 
, 

MQ (9-35) AD (Q-8) 
-SR -AC 

02.13.51.1 (3F) 02.13.51.1 (IG) 

1 ~ 

Fact 2 

02.13.51. 1 

1 

Yes 
Signs Alike 

SR (1-35) 
--AD 

02.13.51. 1 (40) 

AD (9-35) 
-AC 

02.13.51.1 (3F) 

\1 
MQ Fraction Blocked on + to SR 

~ E6(Dl) 
\ Pre-End Op 

DP Divide 

Yes Signs Alike 

2 Cycle 

Y 
,//V' Add Condition es 

(2F) 

AC in True 

No 

~"'=I 1",',"cHo" 

Form-Change ~ 
Sign 

r\ 
CP Set 

Set Fact 4 

02.13.52.1 (2E) 

To Fact 4 
(Sheet 6) 

t 
AD (9P) Carry 

No 

(2G) 

Fraction Carry 

Yes ~f- (Will Shift AC Right 
One Place in Fact 5) 

(2H) 

CP Set 
Set Fact 5 

02.13.52.1 (*) 

To Fact 5 
(Sheet 7) 

No 

~CompAdd 

AC (9-35) 
--AD 

02.13.51.1 (4C) 

Fraction Carry 
TOAC/ 

AD (9Q) 
--AC (9P) 

POD 30 
l--AD (9P) 

02.14.27.1 (3D) 

yes/ \I'JO __ 
\AD (9P) Carry / 

CP Set 
Turn On 
Carry Tgr 

02.12.32.1 (3D) 02.13.51.1 (4G) 

(AC < SR)~ 
Yes 

Turn On 
SR (S) -- AC (S) 

Tgr 
02.13.52.1 (20) 

CP Set 
Set Fact 6 

No 

02.13.52.1 (2C) 

To Fact 6 
(Sheet 8) 

AD (9P) Carry 

MQ 
Fraction 

~ 1 
SR = Zero 

~(AC5SR) 

No 

(2A) 

Yes 

(2B) 

CP Set 
Set Fact 3 

02.13.52.1 (*) 

To Fact 3 
(Sheet 5) 

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 4 of 8 
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OBJECTIVE 

Correct AC 
(1 Clock Pulse) 

Fraction Carry in 
Fact 2 and MQ 
Was Zero ~ 

AC (9-35) 
--AD 

02.13.53.1 (3A) 

I 

Yes 

1--AD (35) 

02.13.53.1 (4B) 

1 

Set Fact 5 

02.13.53.1 (5D) 

To Fact 5 
(Sheet 7) 

No 

Fact 3 

02.13.53.1 

Carry Tgr On 

02.02.40.1 

AD (9-35) 
--AC 

02.13.53.1 (3D) 

Normal 
Instruction 

fV Can Enter Fact 3 
Only If Signs 
Are Unlike 

No 

Yes 

;IV No Fraction Carry 
in Fact 2, 
Recomplement AC 

AC (9-35) 
--AD 

02.13.53.1 (3C) 

Set Fact 4 

02.13.53.1 (4G) 

To Fact 4 
(Sheet 6) 

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 5 of 8 
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Set 
Fact 5 

OBJECTIVE 

Normalize AC 
(1-27 Clock Pulses) 

Yes 

(4D) 

Yes 

(5B) 

Yes 

(5C) 

Yes 

(5D) 

AC (9) = One 

AD (Q-8) 
-- AC 

02.13.55.1 (2G) 

AC and MQ 
(9-35) = Zero 

AC (10) = One 

AC (11) = One 

No 

L5 (Dl) 
Set End Op 

02.13.55.1 (*) 02.13.55.1 (2H) 

To Fact 5 
(Sheet 7) 

T 

No Yes 

1-- AD (8) 

02.02.04.1 (2E) 

No 

No 

No 

Yes 

I ,-
AC (9-12) Yes 

= Zero 

Sh AC and MQ 
(9-35) Lt 1 

02.13.55.1 (2F) 

Fact 4 

02.13.55.1 

\NO 
AC(10)=onj 

AC (Q-8)-AD 
l's -- AD (Q-7) 

02.13.55.1 (4A) 

L5 (Dl) 
No 

MQ(9)- AC(35) 

02.13.55.1 (2F) 

l 
Yes 

Fact 5 

AC (9-35) - SR 
Zero Test 

02.13.55.1 (2C) 

MQ (9-35)- SR 
Zero Test 

02.13.55.1 (2C) 

AC 9 = 1, AC 10 = 1 
or 

AC 9 = 1, AC 10 = 0 
or 

AC 9 = 0, AC 10 = 0 
\ J 

" 

~~C (~= ze,~, es and 0 

AC (10) = One 

, 
~ AC (9 and 101' ! = Zero 

AC (9) = One 
Fact 5 is Set, and 
No Shifting Occurs 

Sh AC and MQ MQ (9 and 10) 
(9-35) Lt 2 -- AC (34 and 35) 

02.13.55.1 (2E) 02.13.55.1 (2E) 

1 

No 

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 6 of 8 
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OBJECTIVES 

1. Adjust MQ Char 
2. Rt Sh 1 (to Normal ize) if 

Fraction Carry in Fact 2 
3. Set Signs 
4. End Op 

(1 Clk Pulse) 

AC Char 

\ 1 
Set 

AC (Q-8)-AD 
lIs-AD 
(Q-3,6,8) Pre-End Op 

(4B) (3C) 

Fact 5 

02.13.57.1 

AC (9-35)-SR 
Zero Test 

(4B) 

\~ 1 ____ ~1~----~ 

This Line Blocked On 

Note: Unless otherwise shown, all 
blocks on Systems 02.13.57.1 

I 

~ 
1 \ POD 26 

'-------' 

MQ (9-35)-SR 
Zero Test 

(3A) 

Yes 

\ 
Note: DP POD 26 
Zero Checks MQ (9-35), 
Systems 02.12.05.1. (5G) 

2 1s Comp 
of 33

8 

~o 'r-es AC (9P) = Zero 
(5F) 

DFAD E End Op rJ 
~Kes Signs Alike No 

and 
Carry Tgr On 

~ SR=Zero ~ 
1- (5F) \ / 

AC (9P-35) 
-AD 

Signs Unlike (AC Z SR) 

AC<SR ~N SF On SR (5)- AC (S) Off 
Tgr 

(2E) 

b/(N3
0
D) Normal ~ 

1 (3 D\ I nstruct ion / 
'--___ oJ 

AD (1-8) 
-MQ (1-8) 

Reset AC (Q-8) 
and MQ (1-8) 

(*) 

Turn On 
FAD MQ Ovfl Tgr 

(3G) 

(3F) 

I 
AD (9P-34) Rt 1 -. AC 

AD (35) - MQ (9) 

I 

Reset 
Fact 5 

(2H) 

(5C) 

~ --\ SR = Zero 
Yes 

I 
Sh MQ (9-35) 

-Rtl 

(2H) 

1 

SR (S)- AC (S) 
SR (5) -MQ (S) 

(1C) 

AC (S) -MQ (5) 

(2B) 

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 7 of 8 
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OBJECTIVE 

Complement MQ Fraction 
(I Clk Pulse) 

SR (9-35) 
--AD 

AD (9-35) 
-- SR 

OBJECTIVE 

(3E) 

Put Corrected MQ 
Fraction Back in MQ 
(1 Clk Pulse) 

Set Fact 4 

Fact 6 

(4B) 

I-AD (35) 

(4B) 

Set Fact 7 

(Ie) 

Fact 7 

(4G) 

SR (9-35) 
-MQ (9-35) 

Yes 

(IH) 

Set Fact 5 

Note: Unless otherwise shown, all 
blocks on Systems 02.13.59. I 

Set 
Pre-End Op 

( IF) 

Figure 15. Single-Precision FP Addition and Subtraction-FAD; Sheet 8 of 8 
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OBJECTIVES 

I. Compute Product Characteristic 
2. Zero Test Multiplier Fraction and 

Multiplicand for a Normal Zero 
S t S· e Igns 

4. Reset AC (9-35) to Zero 
Single Prec 

Nate: Unless otherwise shown, all 
blocks on Systems 02.13.79.1 

Floating Mpy 
POD 26 

1 
I 

EI (DI) Note: Overlap Conflict Tgr is set 

MQ (1-8) EI (DI) at L5 whenever the AC Char <' 37, 

--+ SR 33
8
-SC Systems 02.13.45.1 (31) 

(4E) (4E) 

I 
MQ Char -AC I 
~ I I Zero Test of Multiplier Fraction 

E2 (DI) E2 (D2) at E3 (DI) is Invalid if FMP 
Instruction is Overlapping the SR (1-8) -AD MQ (9-35) - SR Preceeding Instruction. End Op AD (Q-8)-AC Zero Test Tgr "ON" (from previous instruc-

(IA) 
MQ Char - 200 

(2B) tian) Holds Pre-End Op Tgr Reset 

j t During A3 (D I). 

j --AC 
/ Systems 08.00.10.1 (4C), pin P. 

r -, 
E3 (Dl) 

No E3 (DI) Yes 
E3 (DI) SR = Zero t_ I's -AD (Q,P, I) AC (Q-8) -AD 

AD (Q-8) --+ AC 
p/FMP 

(4A) (4A) U F M -s-.",. No Normal Yes 

~ I I l Instruction 

2's Comp I 
2008 E4 (DI) Multipl icand E3 (DI) E3 (DI) 

SB -SR "v-SR Reset SC Set Pre-End Op 

02.12.52.2 (5F) (ID) (IE) 

I 1 
Zero Test 
Multiplicand~ f t 

E5 (DI) 
No SR and MQ Yes 

No Yes 

~ 
Signs Alike 

SB = Zero 

E5 (DI) E6 (DI) E6 (DI) 
Pre-End Op Set AC and MQ Set AC and MQ 

End Op Signs Minus Signs Plus 

(IE) (3B,4B) (3B) 

I I 
I 

I T I 
E6 (DI) E6 (DI) E6 (DI) t'"o' p,",,,, Characteristic 

AC (Q-8) -AD SR (1-8)-AD AD (Q-35) - AC AC (9-35) Reset 

(4D) (4D) (4D) to Zero 

~ I ,./ 1 1 
MQ Char SR Char 
- 200 

No Pre-End Op On Yes 

I 
E7 (DI) 

No SC = Zero Yes Reset AC (Q-8) 

I ~ I 
and MQ (1-35) 

(3E) 

E6 (DI) 
MQ=O I Turn On Mpy (UFM) L5 (DI) 

Cycle Tgr I LEnd Op 

(2F) 02.13.81. I (2G ,4H) 

+ I 
To Floating-Point 
Multiply Cycles 

(Sheet 2) Next Instruction 

Figure 16. Single-Precision FP MultipIY-FMP; Sheet 1 of 2 
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OBJECTIVE Floating-Point 
MultifilY SR and MQ Fractions Multiply Cycles 
(14 C k Pulses) Refer to Figure 12 
For Relative Pulse Timings 

t 1 t 
Zero Shift r AC (9-35) AC(9P)- ~M~CYd.j Counter -AD AD (9P,9Q) 

Possible Only on / Value Number 

DUFM (When 02.13.79.1 (4F) 02.13.79.1 (4F) 

AB = Zero) I ~ For Setting ~ 
For Last FP Pre-Tgrs 

Mpy Cycle 
Blk Pre-MQ 34 Step SC Sample Sample 

~ to Decoder Mpy Ctrl MQ (32,33) and SB Tgr MQ (34,35) 

02.13.75.1 (lE) 02.13.73.1 (2H) 02.13.77.1 (lC) 02.13.77.1 (lA) 

Gated By SC Not Zero ........... 1 
I 1 I 

Pre Tgrs Pre Tgrs Pre Tgrs Pre Tgrs 
Pre-Tgrs 34 35 SB 34 35 SB 34 35 SB 34 35 SB 

0 0 0 0 0 0 1 1 0 1 1 3 1 0 1 :} Octal or or or or Values 1 1 1 7 0 1 0 2 1 0 0 4 1 1 0 

I I I 
Decode X 0 Decode Xl Decode X 2 Decode X 3 

02.13.75.1 (3A) 02.13.75.1 (3H) 02.13.75.1 (3C) 02.13.75.1 (3F) 

I I 
1 

Pre-S.B Tgr SR (1-35) SR (1-35) SR (1-35) -AD l's -AD (Q,P, 
-SBTgr -AD Lt 1-AD Set 5B Tgr 9Q,9P,35) 

02.13.77.1 (5H) 02.13.75.1 (3H) 02.13.75.1 (3C) 02.13.75.1 (3F) 02.13.75.1 (3F) 

l 1 1 , 
(Last (14th) Mpy Cycle) 

SC :> 2 (Always = 3 on Next to 

Yes No f Last Cycle) 
Steps sc 

I 
sc = One 

-zero~l j 
Each Clk Each Clk Each Clk 
Step SC AD (9Q-34) AD (35) - MQ (9) ~ No 

By 1 Rtl-AC Sh MQ (9-35) Rt 1 Decode X 2 

03.14.1B.l (3E) 02.13.79.1 (4H) 02.13.79.1 (4H) 

I 1 Each Clk 
J AD (9Q) 

I -AC (9P) 

No Yes 
02.13.79.1 (31) 

SC = Zero 1 
I I T T 

Reset Mpy Each Clk Each Clk Each Clk Each Clk 
Step SC AD (9Q-33) AD (34,35) Sh MQ (9-35) Cycle Tgr By 2 Rt2-AC -MQ(9,10) Rt 2 

02.13.77.1 (4C) 03.14. lB.l (3D) 02.13.79.1 (4G) 02.13.79.1 (4G) 02.13.79.1 (4G) 

t I 1 1 I 
1 (SC> 1) 

Yes Double- No 

~ 
Precision 

~ DP r L5 (Dl) ~Ac(~=u~>i End Op 
Instruction 

(4H) 
and Normal 

Type 02.13.B1.,1 (2G) Instruction 

/ Normalize 1 Place 

1 
L6 CP Set L6 (Dl) L6 (01) L6 (Dl) 
Turn On l's - AD (Q-B) AD (Q-B)-AC Sh AC and MQ 

To FP Divide To DFMP Fact 5 AC(Q-B)-AD MQ (9) - AC (35) (10-35) Lt 1 
Figure 21 (Sheet 5) Figure 20 (Sheet 2) 02. 13.Bl.l (3H) 02.13.Bl.l (4G, I) 02.13.B1.1 (4G, I) 02.13.B1.1 (4G,I) 

1 I 

To FAD, Fact 5 
Figure 15 (Sheet 7) 

Figure 16. Single-Precision FP MultiplY-FMP; Sheet 2 of 2 

Reference Section 55 



1-AD (9P) Ppg AD (9P) 
Carry -+ AD (S) 

03.01.02.1 (3D) 02.13.51.1 (2B) '" / Allow Fraction Carry to ~ 

I 
AD (9P) Carry 

--AD(S) 

02. 02 . 23. 1 (4B) 

I 

I 
L5 (D1) 

1--AC (9) 

Increase Characteristic 

02.10.27.1 (3F) 

I 

LEnd Op 

OS.00.01.1 (3C) 

Next 
I Time 

I Time 
POD 76 

1 

No MQ (9) = one~es 
AC (Q) = Zero (2A) 

02.10.27.1 

Figure 17. Floating Round 

56 

SR (21-35) 
-XAD 

03.06.03.2 (4H) 

T 

1 
XAD--SC 

03.06.03.2 (41) 

I 

MQ(9)e
o"r-

f 
For Decoding 
Instruction 

ACChar ~ Ovfl ~ 
Yes AC (P) = One No 

12 (D1) 
Turn On FP 

Trap Tgr 

02.10.50.1 (3A) 

T 
Proceed 

I 
12 (D1) 

Turn On FP 
Ovfl Tgr 

02.10.50.1 (3B) 

1 



E5 E6 
5, 1-8, 9-35 5, 1-8,9-35 

5R (9-35) - MQ 5R (9-35) - AC 
MQ (9-35) - SR AC (9-35) -+ 5R 

AC A A A A A A 

MQ B B B 8 B C 

5R C C C C C B 

51 
IBR 0 0 0 0 0 0 

Chart 1 Conditions: Carry Tgr On (AC <: 5R) 
Normal Add (~ <: 77) 

E5 E6 

5R (9-35) - MQ 5R (9-35) - AC 
MQ (9-35)- 5R AC (9-35) -+ 5R 
5R (5-8) -AC 
AC (5-8)-5R 

AC A A A C C A 

MQ B B B B B C 

5R C C C A A B 

51 

IBR 0 0 0 0 0 0 

Chart 2 Conditions: Carry Tgr Off (AC > 5R) 
Normal Add (6 <: 77) 

E5 E6 

5R (9-35) - MQ IBR (9-35)- 5R 
MQ (9-35) - 5R 5R-+51 

AC A A A A A A 

MQ B B B B B C 

5R C C C C C B 

51 
IBR 0 0 0 0 0 0 

Chart 3 Conditions: Carry Tgr On (AC <: 5R) 
Reset Add (6) 77) 

E7 
5, 1-8,9-35 

5R (9-35) -+ MQ 
MQ (9-35) - 5R 

A A B 

B B C 
C C A 

0 0 0 

or 

E7 

IBR (9-35) -+ 5R 
5R- 51 

C C 8 

B B C 

A A A 

0 0 0 

or 

E7 

5R (9-35) -+ MQ 
MQ (9-35)- 5R 
5R (5-8)-AC 

A A A 

B B C 

C C 0 

C C B 
0 0 0 

5R (9) = One (End Op Tgr On) 

E5 E6 

5R (9-35) -+ MQ 
MQ (9-35) -+ 5R 
5R (5-8)-+AC 
AC (5-8) -5R 

AC A A A C C A 

MQ B B B B B C 
5R C C C A A B 

SI 

IBR 0 0 0 0 0 0 

Chart 4 Conditions: Carry T gr Off (AC > 5R) 
Reset Add (6 > 100) 

E7 

5R (9-35) -+ MQ 
MQ (9-35) - 5R 
5R (5-8) -AC 

C C A 

B B C 
A A B 

0 0 0 

AC (9) = One (End Op Tgr On) 

Note: On charts 1-4, register contents are shown at 
beginning of indicated clock pulses. 

Carry Tgr On 
(AC" 5R) 

AC MQ 5R 51 

OPS = 1, Fact 1 B A 0 C 

DPS=l, Fact 2 B A ........ 0 C 

DPS = 1, Fact 0 B + 0_ A_ :-A C 

A"*' ---.. ~B+ 0 OPS = 2 A /C 

DPS = 3, Fact 2 A B+'O .... C' C 

OPS = 3, Fact 2 A+C B+O 8+0 C 

Chart 5: OPS > Zero 

Figure 18. DFAD; Register Exchange Charts 

IBR 

0 

0 

0 

0 

0 

0 

LO 11 
5, 1-8,9-35 5, 1-8, 9-35 

AC 

0 

0 

IBR (9-35) - 5R 
5R-51 

A A B A 

B B A B 

C C C C 

C 
0 0 0 0 

Corry Tgr On (AC <: 5R) 
Reset Add (6 > 77) 
5R (9) = Zero 

LO 

5R (9-35) - AC 
AC (9-35) - 5R 

C C B C 

B B C B 

A A 0 A 

A A A A 

0 0 0 0 

Carry Tgr Off (AC >5R) 
Reset Add (6 > 100) 
AC (9) = Zero 

10 

5R (9-35) - AC 
AC (9-35)-+ 5R 

C C A C 

B B 0 B 

C C C C 

C C B C 
0 0 0 0 

10 

A A A A 

B B B B 

A A C A 

0 0 0 0 

Carry Tgr Off 
(AC> 5R) 

MQ 5R 51 

C B A 

C ........ B A 

B+O C )-C A 

C~ ~ "'B+ 0 /A 

C B+ I( A;' A 

A+C B+O B+O A 

A 

B 

C 

C 
0 

11 

C 

B 

A 

A 

0 

11 

Fact 5 

C 

B 

C 

C 
0 

11 

Fact 5 

A 

B 
A 

0 

IBR 

0 

0 

0 

0 

0 

0 

8. 
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0 

C 
0 

0 

C 

B 

A 

0 

C 

0 

A 

B 
0 

A 

B 

C 

0 

Reference Section 57 



r 
E4 (01) 
Invert 

r< 
SB(S)- SR(S) 

02.09.93.1 (4A) 

-1 

E5 (01) 
Turn Reset 

Add Tgr On 

02. 13.47.2(3E)(3F) 

I 

POO 30, PR(9) = 1 
OPS = Zero 

1---AO(9P) 

02.14.27.1 (30) 

I 

OFSB No or 
OUFS 

~ 
OFAM 

or 
OUAM 

E4 (01) 
Block 

SB(S) --SR(S) 

02.09.93.1 (2B) 

1 

02.12.52.2 (5F)l 
03.08.13.1 (5C>j 

I 
E5 (03) 

AC (Q-8) ___ AO 
1--AO (8) 

02.13.47.1 (3C) 

I 

SR;; AC ~ 

~Yes 

I 
E5 (01) 

Turn On 
Carry Tgr 

02.13.65.1 (lE) 

I 
AO (lor 2) 

=One 
No 

E4 (01) 
Set SR 

Sign Plus 

02.09.93.1 (4E) 

E4 (01) 
SB--SR 
SB---IBR 

E5 (01) 
SR(9-35) --- MQ 
MQ(9-35) -- SR 

02.13.65.1 (3B) 

Q Carry 

Normal 
Add 

~ 

To/:::;. <: 77 
(OFAO Sheet 2) 

~Blocked Ouring 
Fact 1 

No 

I 
OFSM N\\ O~~M 

I 

~ OFAO or 
OUFA 

OPS = Zero 
SR(1-35)--AO 

02.13.65.1 (lA) 

C 
B 

J 

Yes 

I 
E4 (01) 
Set SR 

Sign Minus 

02 . 09 . 93 . 1 (4C) 

1 

NO/ 
AC> SR 

No 

I 
E5 (01) 

SR(S-8) --AC 
AC(S -8) --SR 

02.13.47.1 (lG) 

I 
AO (lor 2) 
= Zero and 

AC(Q, P)=Zero 

AO (lor 2) Zero 
~ Indicates /:::;.> 100

8 Yes 

E5 (01) 
Turn Reset 

Add Tgr On 

02.13.47.2 (40) 

-

(
To Reset Add 

. (OFAO Sheet 2) 

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 1 of 6 

58 



OBJECTIVE 

From OFAO 
(Sheet 1) 

b. <: 77 

If Not E End Op Condition 
Swap Registers For 
First Addition (B+O) 

I 
E6 (01) 

B 
A 

AD (9-35) - AC 
AC (9-35) - SR 

02.13.65.1 (3C) 

I 

SR 5 AC 

~Yes 

+ 
E7 (01) A 

SR (9-35) --MQ C 
MQ (9-35) - SR 

02.13.65.1 (3~) 

I 
LO (01) 

D IBR (9-35)- SR 
C SR-SI 

02.13.65.1 (3E) 

1 

E6 (01) 
AD (1-8)- SC 

02.13.47.2 (21) 

T 

Carry Tgr On No 

02.02.40.1 

I 
LO (01) 

Step OPS-l 

02.13.65.1 (11) 

I 
LO (01) 

Set Fact 1 

02. 13.65. 1 (1 H) 

• To OPS = 1, Fact 1 
(OFAO Sheet 3) 

No 

SR 5 AC 

~Yes 

SR (9) = One Yes 

(3C) 

From OFAO 
(Sheet 1) 

Reset Add 

02.13.61. 1 (40) 

Q Carry 

E5 (01) 
Pre-End Op 

End Op 

0AC > SR 

NoF 

No 
AC (9) = One 

and Yes 
AC (Q, P) = Zero (4A) 

E End Op Condition: 

( 1. b. 5100 

{

b.- SC 
Blocked If 
Reset Add T gr On 02.13.47.2(*) 

/ 2. Larger Number Norma 
3. AC (Q, P) = Zero 

/AC 

1 
E7 (01) 

IBR (9-35)- SR 
SR-SI 

02.13.65.1 (3F) 

I 
LO (01) 

AD (9-35) - AC 
AC (9-35) - SR 

02.13.65.1 (3G) 

I 

> SR -...r---...... ~ Carry Tgr On 

1\ 02.02.40.1 

D 
A 

I 

SR:> AC 

Yes j 

I 

E6 (01) 
IBR (9-35) - SR 

SR- 51 

02.13.65.1 (3H) 

D 
B 

E7 (01) E7 (01) D or B 
C SR (5-8)-- AC SR (9-35) --MQ 

MQ (9-35) - SR 

02.13.65.1 (31) 02.13.65.1 (31) 

/ l 
Characteristic 

of Larger Numb(\e 

No Carry T gr On 

02.02.40.1 

10 (01) 
Set Fact 5 

02.13.65.1 (IF) 

To FAD, Fact 5 
Figure 15 (Sheet 7) 

I 

Yes 

10 (01) 
AD (9-35) - AC 
AC (9-35)-- SR 

02.13.65.1 (3A) 

T 

D 
B 

C 
A 

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 2 of 6 
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OBJECTIVES 

1. Equal ize Characteristics If Necessary or Reset 
AC and MQ Fractions If Reset Add Condition 

2. Set Fact 2 

Note: 1-AO (9P),Systems 02.14.27.1 (3~) 
blocked During Fact 1 

I 

SC 5 2 
~No 

SC = One 

I 

Yes 

No 
SC = Zero 

Step SC 
By 1 

03.14.18.1 (3E) 

Step SC Sh AC (9P-35) Rt 2 MQ (34,35) 
By 2 Sh MQ (9-35) Rt 2 - AC (9,10) 

03.14.18.1 (3~) 02.13.49.1 (2H) 02.13.49.1 (2H) ~ 

I 1 I CAC = Low Order \ 
L--___ .-___ *_----------' MQ = High Order) 

Set 
Fact 2 

02.13.49.1 (Ie) 

ToOPS=I, Fact 2 
(OFAO Sheet 4) 

Yes 

J 
No 

SC < 2 

OPS = 1 
Fact 1 

"Block" 
AC (35) - MQ (9) 

AC(34,35)-MQ(9,10) 

No 

02.13.49.1 (50) 

Reset Add 
Tgr On 

02.13.61.1 

Yes 

Reset 
AC and MQ (9-35) 

Yes 

Sh AC (9P-35) Rt 1 
Sh MQ (9-35) Rt 1 

I 
MQ (35) 

-AC(9) 

02.13.67.1 (3A) 

02.13.49.1 (21) 02.13.49.1 (21) 

1 /1 
/ 

MC = Low Order \ 
,MQ = High Orde~ 

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 3 of 6 
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DPS == 1, Fact 2 OBJ ECTIVES 

1. Add (B + D) 
2. MQ Fraction --SR DPS == 1 

Fact 2 

Note: When a choice of factors is shown at 
the side of a block, the first factor listed is 
a result of SR :> AC at E5 (C:> A). 

3. Reset Fact 2 
(1 Clk Pulse) 

I 
Fact 2 

1 

D or B SR (1-35) 
-AD 

Fact 2 
1--AD (9P) 

Fact 2 
AC (9-35) --AD 

02. 13. 51. 1 (3C) 

I 

I 

02.13.51.1 (4D) 

I 
True Add~ 

Yes 

T 
CP Set 

02.14.27.1 (3D) 

T 

Signs AI ike 

.. 
I 
T 

CP Set 

I 

~ 2's Comp Add 

No 

I 
Fact 2 

B or D AC {9-35) __ AD 

02.13.51.1 (4C) 

1 

T 
CP Set Fact Set 

Reset Fact 2 A or C MQ (9-35)--SR AD (9Q)--AC (9P) AD (Q-8)-AC 

02.13.51.1 (5E) 02.13.51.1 (2F) 02.12.32.1 (3D) 02.13.51. 1 (lG) 

I 1 1 
T 

DPS == 1, Fact Zero OBJECTIVES 
'\ Remember Fraction 

Carry of B + D 

1. Start Reg Swapping For 
2nd Add (A + C) 

2. Step DPS--2 
(1 Clk Pulse) 

A or C 
B+D 

I 
Fact Zero 

SR (1-35)--AD 

02.13.67.1 (3C) 

1 
T 

CP Set 
AD (9-35)-AC 
AC (9-35) -- SR 

02.13.67.1 (3C) 

I 
T 

DPS == 1 
Fact Zero 

1 
T 

Fact Zero 
Block Set 

To AC (9P) 
02. 13.67.1 (3C) 

1 
T 

Fact Set 
Step DPS--2 

{02.13.67.1 (2C) 

I 

~ Fact Zero because Fact 
Tgr Set is Blocked under 
DPS == 1, and Fact 2 

DPS == 2, Fact Zero OBJECTIVES 

1. Complete Reg Swapping 
For 2nd Add (A + C) 

2. Step DPS--3 
3. Set Fact 2 

(1 Clk Pulse) 

DPS == 2 
Fact Zero 

I 
SI (9-35)-SR 

SR (9-35) --MQ 

02.13.67.1 (3D) 

1 
T 

Step DPS--3 

02.13.67.1 (2D) 

I 

C or A 
B+D 

I 

Set Fact 2 

02.13.67.1 (2E) 

1 

To DPS == 3, Fact 2 
(DFAD Sheet 5) 

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 4 of 6 Reference Section 61 



DPS = 3, Fact 2 OBJECTIVES 

1. Add (A + C) Plus Fraction 
Carry from First Add 

2. B + D Sum -+ SR 
3. Set Next Fact Tgr 

(1 Clk Pulse) 

I 

DPS = 3 
Fact 2 

I 
For Fact 6 ~ 
(If Necessary) 

Fact 2 Fact 2 C or Fact 2 1 - AD (35) If 
MQ (9-35) - SR B + D SR (1-35) -+ AD A AC (9P) - AD (35) Carry from B + D Addition 

02.13.51.1 (2F) 02.13.51.1 (40) 02 •. 13.67.1 (3F) 
,#'1/ 

IL------_----..-__ ----li 

Yes 
$;9"' AUk. r--

To FAD, Fact 2 
Figure 15 (Sheet 4) 

Fact 2 
A or C AC (9-35) _ AD ~ l's Comp Add 

02.13.51.1 (4C) 

Final AC Char ~ AD (a=~8fe~ AC 

02.13.51.1 (lG) 

CP Set A + C (Plus Any Carry From 

Fact Set 
Set 

Fact 4 

02.13.67.1 (21) 

To FAD, Fact 4 
Figure 15 (Sheet 6) 

Yes 

AD (9-35) - AC B + D Addition) 

02.13.51.1 (2F) 

AC in True Form ~ 

Yes 
AD (9P) Carry 

I 
Fact Set 
Set SR(S) 

-AC(S) Tgr 

02.13.67.1 (1\) 

+ 
Normal 

Instruction 
No 

, 
Fact Set 

Set 
Fact 5 

02.13.67.1 (2H) 

To FAD, Fact 5 
Figure 15 (Sheet 7) 

AC in Comp Form 

No~ 

Fact Set 
Set 

Fact 6 

02.13.67.1 (2G) 

To DPS = 3, Fact 6 
(DFAD Sheet 6) 

I 
Fact Set 

Reset 
Carry Tgr 

02.13.67.1 (2G) 

I 

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 5 of 6 
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DPS = 3, Fact 6 OBJECTIVES 

1. Recomplement B + D 
2. Set Facts 3 and 7 

(1 Clk Pulse) 

Turn Carry 
Tgr On 

02. 13. 59. 1 (1 E) 

B + D in AD (9-35)- SR 
True Form~ 

02.13.59.1 (3E) 

DPS = 3, Facts 3 and 7 OBJECTIVES 

1. Recomplement A + C 
2. Set Next Fact T gr 

(1 Clk Pulse) 

Fact 7 Fact 3 

Fact 6 
SR (9-35)-AD ~Recomp B + D 

l-AD(35) /' 
02.13.59.1 (48) 

Fact Set 
Set Fact 3 

02.13.59.1 (ID) 

Fact Set 
Set Fact 7 

02.13.59.1 (1C) 

B + D to MQ~ SR (9-35)- MQ AC (9-35) - AD 
Fact 3 

I-AD (35) 
Carry from 
B + D Recomp 

02.13.59.1 (31) 02.13.53.1 (3C) 02.13.53.1 (48) 

A+C 

CP Set 
Final Sum in AD (9-35)- AC 
True Form ~ 

02.13.53.1 (3E) 

Fact Set 
Set Fact 4 

02.13.53.1 (4G) 

Fact Set 
Set Fact 5 

Figure 19. Double-Precision FP Addition and Subtraction-DFAD; Sheet 6 of 6 
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OBJECTIVES 

1. Compute Product Char 
2. Zero Test Multiplier and Multiplicand 
3. Set Signs 
4. Reset AC (9-35) to Zero 
5. Prepare for First Mpy (B· C) 

I T 

POO 26 
and 

PR (9) 

I 

T 
E2 (02) 

1 

Note: Unless otherwise shown, all 
blocks on Systems 02.13.81.1 

verla~~onfHctTgr 

E2 (02) 

Is Set at l5 Whenever 
the AC Char :;( 37, 
Systems 02.13.45.1 (31) 

El (01) E2 (01) 
338 -SC AC (S) -MQ (S) AC (9-35)-SR 

Zero Test 
MQ (9-35)-SR 

Zero Test 
02.13.79.1 (4E) (4A) 

I I 
I 

I I 

Subrra" 200~ E3 (01) E3 (01) 

l's-AO(Q,P,I) AC (Q-8) -AO 
from Char AO (Q-8)-AC 

02.13.79.1 (4A) 02.13.79.1 (4A) 

I I 
T 

02.12.52.2 (5F)!. 
03.08.13.1 (5CU 

E4 (01) 
SB--SR 
SB-IBR 

I 
E5 (01) 

AC (9-35) -- SR 
SR (9-35) - SI 

(4C) 

I 

I 
E6 (01) 

Set AC and MQ 
Signs Minus 

02.13.79.1 ~!:~ 
I 

I 
E6 (01) 

AC (Q-8) --AO 
SR (1-8) --AO 

No SR and MQ 
Signs Alike 

1 

Yes 

I 
E5 (01) 

Reset MQ (1-8) 

(4C) 

I 

I 
E6 (01) 

Set AC and MQ 
Signs Plus 

02.13.79.1 (3B) 

I 

I 
E6 (01) 

AO (Q-35) 
--AC 

(3A) 02.13.79.1 (2B) Zero Test of Multiplier (AB) 

I I 
T 

~o E3 (01) >-Y....,.~_s _-, 
SR = Zero ~ 

1....-___ -/ AB = Zero 

at E3 (01) is Invalid if DFMP 
Instruction is Overlapping the 
Preceeding Instruction. End 
Op Tgr "ON" (from previous 
instruction) Holds Pre-End Op 
Tgr Reset Ouring A3(01). 
Systems 08.00.10.1(4C),pin P. 

I 
No 1 OUFM 

E3 (01) 
Reset SC 
-Zero 

02.13.79.1 (10) 

1 
T 

E4 (01) 

~--'---.. 

Normal 
Instruction 

Yes 

OFMP 

E3 (01) 
Pre-End Op 

02. 13.79. 1 (1 E) 

AC (9-35) - AO ft/Zero Check A Fraction 
l's_AO (9P,35) / 

I 
E5 (01) 

SB--SR 
= Zero 

(1C) 

r< '--___ ..J 

~C = Zero 

Yes 

No y,;CD = Zero 
E5 (01) Yes 

SB-IBR 
= Zero (3C) 

Yes ~NO/ E5(Dl) 1\ AO (9P) Carry (20)~ 

AC = Zero 
E5 (01) 

Pre-End Op 
End Op 

02.13.81.1 (*) 02.13.79.1 (40) / 02.13.79.1 (40) 

I 
Char of A+C --+ AC (Q-8) 1 T 

L-________ R~e~se_t_A~C~(~9_-3~5~) __________ ~--------._------------------~ 
i 

Yes Pre-End Op No 

1 

E7 (01) 
Reset 

AC (Q-8) and 
MQ (1-35) 

02.13.79.1 (3E) 

T 
Next Instruction 

Figure 20. Double-Precision FP MultipIY-DFMP; Sheet 1 of 2 
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I 
E6 (01) 

A SR (9-35)- SI 
C SI (9-35)-SR 

(48) 

I 
t 

I 
E6 (01) 

Turn on Mpy 
Cycle Tgr 

(3B) 

I 

To Floating-Point 
Multiply Cycles 

Figure 16 (Sheet 2) 



OBJECTIVES 

1st Pass - Prepare for 2nd Mpy (A.O), 
Reset AC 

2nd Pass - Prepare for 3rd Mpy (A'C), 
Add B'C + A'O 

3rd Pass - Normalize One Place If 
Necessary, Set Fact 5 

No 

From Floating-Point 
Multiply Cycles 

Figure 16 (Sheet 2) 

L4 (01) 
OPS = 2 or 3 
and SC <: 7 

Yes 

7L4 (01) 
Pre-End Op 

Note: Unless otherwise shown, all 
b locks on Systems 02. 13.83. 1 

Occurs While 

f SC = 3 Ouring 
Third Multiply 

(4A) 

End of 1st 
and 2nd Mpy~ 

No 

. 
Pre-End Op 

3rd Pass Only 
(End of 3rd Mpy) 

Yes? 

1st Pass Only 

v!/ DPS =Z~O \NO 

Both 1st and 
2nd Passes 

/ No 

~nd Pass Only ~ 

D'S = 1 / y",j I NO\ DPS=3 ); 1\ / lstPass 

L5 (01) \ 2nd Pass 
IBR (9-35)- SR } DorB.C,v...---______ .. 

SR (9-35)-- MQ Cor A 
(2B) ...---__ 1..-_---. l 

2L6 (01) 
SR (9-35) - MQ 
MQ (1-35)- SR 

2L7 (01) 
Reset 

AC (9-35) 

(20) 

(2E) 

'-----r-----J 

B'C r 
A'D l 

r-----I-----. 
L6 (01) 

338 - SC 

5L6 (01) 
SR (9-35) - AO 
AC (9-35) -- AO 

l--AO (9P) 

(3G) 
AC (9-35) -- IBR 

(2C) B'CorD'A 
L..---"--l-"';"~ 

2ndP~as + r 
\yes L7 (01) No 

OPS 1 Tgr 
On 

L7 (01) 
corB'C( SR-SI 
AorC SI (9-35)- SR 

5L7 (01) 
Turn On Mpy 

Cycle Tgr 

-

(2F) (2H) 

_____ ------ll / 

Ll (01) 
Step OPS 

For 3rd Mpy 

For 2nd 
Mpy~ 

'--_--r __ (3_E)--' ~ 

3L3 (01) 
Turn On Mpy 

Cycle Tgr 

(2H) 

1st Pass - Step OPS -+ 1 (3rd L Cycle) 
2nd Pass - Step OPS - 2 or 3, Mpy Cycles 
of 3rd Mpy Occuring at Same Time 
(6th L Cycle) 

To Floating-Point 
Multiply Cycles 

Fiaure 16 (Sheet 2) 

Figure 20. Double-Precision FP MultipIY-DFMP; Sheet 2 of 2 

5L6 (01) 
AD (9-35) 
--AC 

5L6 (Dl) 
Step OPS -+ 2 

(3G) 

(IF) 

, 

I 
7L6 (01) 

Oue to Carryon 
B'C + A'O 

7L6 (01) 
AC (9-35) - AO 

1--AO (35) AO (9-35) - AC 

1 

No 

I 

(4H) 

T 
7L7 (01) 

AC (Q-8)-AO 
l's - AO (Q-8) 

(3F) 

1 

(4H) 

AC (9) = zer)o~~es 
and Normal 
Instruction 

7L7 (01) 7L7 (01) 
Sh AC and MQ 
(10-35) - LT 1 

MQ (9) - AC (35) 
AO (Q-8)- AC 

1 
(21) 

7L7 (01) 
Set Fact 5 

(lD) 

To FAO, Fact 5 
Figure 15 (Sheet 7) 

(21) 
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A 

OBJECTIVES 

1. Zero Test AC and MQ 
2. Oivide Check Test 
3. Set MQ Sign 

E2 (01) 
Reset 

51 (S-3S) 

(3A) 

(1st Cycle Tgr On) 

E2 (01) 
Reset 

MQ (1-3S) 

Floating-Point Oivide 

E2 (01) 
Turn On 

1st Cycle Tgr 

02. 13.89. 1 (SF) 

El (03) 
AC and MQ '(9-3S) 
-- Zero Test 

02.13.88.1 (20) 

+ 

(2A) 

Yes / AC and MQ 
\ (9-3S) = Zero 

E4 (01) 
SB-SR 
SB-IBR 

E3 (01) 
Turn On 

9P Carry Tgr 

02.13.89.1 (3A) 

} 
. 02. 12.S2.2 (SF) 

03.08.13.1 (SC) 

Note· Unless otherwise shown, all 
blocks on Systems 02.13.8S.1 

No 

I 
El (03) 

ArIO-R) __ An 

l's -AO(4,S,7,8) 

02.13.88.1 (20) 

~~e'fI"" 
Q Ca"y j Ye, ~ 

t 
No 

Also if AC(Q or P) 
EqualOne~ 

E3 (01) 
Block 

Overlap 

02.13.88.1 (2E) 

~ Entry Point 
for 2nd Oivide 
OPS = 3 

I 
AS (01) 

Reset 

AS (01) AS (01) 

t 2nd Oivide 
;-v(OPS = 3) 

~ D~=Ze'a r: (From Sheet S) MQ (5) 
(2B) 

T 

No 

AC (9-3S) -- AO 
l--AO (9P) 

(2B) 

Yes 

SR (9-3S) 
-AO (9P-34) 

(2B) 

AC and SR 
Signs 
Alike AC 5> (2'SR) 

AC and MQ = I 
Zero t 
O~ / 9' Carry T9' \ Off _ 

j\o2.13.89.1(2A); 

AS (01) 
Set MQ (5) 

Minus 

(21) 

I 
AS(OI) 

Turn On Oiv Ck .1 Block Overlap 

r 
AS (01) 
End Op 
Reset 1st 

Cycle Tgr 
(SO) 

~o \Yes 

AO (9P) Carry r 
I 

AS (01) 
Turn On 
Tl Tgr 

(SO) 

End Op 
Reset 1st 
Cycle Tgr 

(20) 

To FP Oivide 
(Sheet 2) 

/ '---__ .---.:....(S_0:...t) 

Overlap Not Blocked 1~ ________ l~_'-i---__ ~l~ _____ -----I 
If ~ivide or Proceed , 
Instruction 

1 
Yes 

OPS = 3 

L6 (01) 
Reset 

AC (Q-8) 

02.13.88.1 (2G) 

(Oiv Ck) No 
j 

r-
~ PR (5) 

A7 (01) 
AC (5) 

-MQ (5) 

(2H) 

9P Carry 
Tgr On 

~r< 

Yes (AC and MQ = 0) 

E7 (01) 
Reset 

AC (S,Q-8) 
(2G) 

t 

I 
E7 (01) 

Reset 
MQ (1-8) 

(2G) 

I 
T 1 PR (5) r< TlT9'Oo 7 12 (01) 

Turn On 
and MST Tgr 

PR (9):\: Zero 
04.20.11.1 (4B) E7 (01) 

MQ (5) 
-AC(S) t 

(2F) 
Proceed Halt 

1 

Figure 21. Floating-Point Divide (Single and Double-Precision}-Sheet 1 of 6 
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OBJECTIVES 

1. Get Char Difference (6.) 
2. Check For Q :> 1 

A6 (01) A6 (01) 
SR (9-35) - AD 

i 's - AD (9Q,9P) 
AC (Q-35) - AD 
1- AD (35) 

(2A) (2A) 

Q:>l~~< >~ Yes No 
AD (9P) Carry 

A6 (01) 
Turn On 

9P Carry Tgr 

02.13.89.1 (4A) 

Off 

A7 (01) 
Reset 

E7 (01) 

1st Cycle Tgr 
SR (1-8) -AD 
l's-AO (Q,P) 

From FP Divide 
(Sheet 1) 

1st Cycle Tgr 

A6 (01) 
338 - SC 

(20) 

On 

Note: Unless otherwise shown, all 
blocks on Systems 02.13.86.1 

A6 (01) 
Ppg AD (9P) 

Carry - AD (8) 
(lA) 
~ En~ 

'--___ -J 

\ 
Adds 1 to AC Char if 
AC:> SR On 1st Oiv 
Only (Effectively Shifts 
AC left 1 Place) ~ 

1st Divide 
Only 

I 
Yes 

E6 (01) 
AD (Q-S) 
-AC 

(2B) 

(Subtract SR Char from AC Char) 

r 
E7 (01) 

AC (Q-S) 
-AD 

E7 (01) 
Carry 

-AD (8) 

E7 (01) 
AD (Q-8) 6. 
-AC 

02.13.S9.1 (50) (4C) (4C) (4C) (4C) 

A7 (01) 
Sh AC (9-35) 

-Lt 
(2C) 

(Q < 1)"" 

Off 
9P Carry Tgr 

A7 (01) 
MQ(9)-

AC (35) 
(2C) 

~ 

1 

On No 

A7 (01) 
Sh MQ (9-35) Q

1 -Lt 
(2C) 

1 

To FP ~ivide 
(Sheet 3) 

Figure 21. Floating-Point Divide (Single and Double-Precision}-Sheet 2 of 6 

~2ndOivide 
OPS=3 / 

'--___ ..J 

L7 (01) L7 (01) 
SI (S)- MQ (S)-

SR (S) AC (S) 
02.13.SS.1 (2A) 02.13.88.1 (2A) 

1 ~ /1 
\ 

Occurs 4 times (7th through 
10th L Cycle) while OPS = 3 

Q
2 
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OBJECTIVES 

1. Develop Final Quotient Char 
2. Divide Reduction Cycles 

~ 
LTime r-No Blk Div and Yes 

1st Cycle 
Tgrs Off 

(
From FP Divide 

(Sheet 2) 

Yes A4(D1) ~ 
SC = Zero / 

Note: Unless otherwise shown, 
all blocks on Systems 02.13.86.1 

~ 
/ 

Develop Final Quotient 
Characteristic (FP Ovfl 
or Unfl is Possible) 

L Time 
1st Step 

'--___ oJ 

Yes 

Add 200 to t::. 

~ 
L5 (D3) 

1-AD(1) 

02.10.43.1 (21) 

~ ~(S) i-
L6 (D1) 

AD (Q-8) 

Final 
Quotient 
Character i st i c 

-- AC "'-
(21) """t::.+200~ 

L..-----r------' 

L6 (D1) 
AD (1-:-8) 
-SR 

02.10.44.1 (3B) 

t 
AC (Q-81 
-AD 

J 

L6 (D1) 
SR (1-8) 
-MQ 

(2E) 

02.10.44.1 (3B) I; 
Original Divisor Char 

t::.+2t ~L 

Each Clk 

SR (9-35) -+ AD 
l's-AD (9Q,9P) 

Each Clk 
AC (Q-35) 
-AD 

Each Clk 
1--AD(35) 

L7 (D1) 
SR (1-8) 
-MQ 

L7 (D1) 
MQ (1-8) 
-SR 

L7 (D1) 
Step 

TC--2 

(2E) 

d _ \ sc = Zero 

Each Clk 
Sh MQ (9-35) 

-Lt1 

(2F) 

No 

(2E) 

(Divide Reduction Cycles) 

Each Clk 
MQ (9)-­

AC (35) 

Each Clk 
Step SC 

(2E) 02.10.44.1 (3C) 

Each Clk 
Sh AC (9-35) 

-Lt1 

(2F) (2F) 2.12.35.1 (4D) 

t 
To FP Divide 

(Sheet 4) 

Figure 21. Floating-Point Divide (Single and Double-Precision}-Sheet 3 of 6 
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02.10.44.1 (3C) 02.10.20.1 (3B) 

I 

(AC:; SR) 

AD (9P) 
Carry 

Yes ~ Successfu I 
Reduction 

Each Clk 
AD (9-35) 

-AC (9P-34) 

2.12.32.2 (4D) 

Each Clk 
1-MQ (35) 

2.04.06.1 (4H) 

1 

t::. 



From FP Divide 
(Sheet 3) 

ft remainder, as dividend 1 Original Divisor Char 
vely shifted left one 

I T p I :; 1 condition, or ~ 
if ted left.1 place on 

L4 (D1) L4 (D1) L4 (D1) " If SP o;v {Re.UIt 01 dition (in E time, with-
g the shift counter). Sh AC (9P-35) SR (1-8) AC (Q-8) b,. + 200 If DP Div L Time 

s in correct position as - Rt1 --AD --AD 1st Step 

tered into MQ(35) on 

Note: Shi 
was effecti 
place on Q 
actually sh 
Q < 1 con 
out steppin 
Quotient i 
l's were en 
successful 
of MQ(34) 

reduction cycles, instead 
02.13.86.1 (2G) 02.13.86.1 (2G) 02.13.86.1 (2G) 

I 1 J as in fixed-point. 

T 
Double-

Original Dividend Char* 2's Comp 
Precision ~ _ 

PR (S) + / -" 
of 2710 r ~ T f 

4L4 (D1) 4L5 (D1) 4L5 (D1) 
AD (Q-8) AC (Q-8) l's- AD (Q,P, , -AC --AD 1,2,3,6,8) 

02.13.86.1 (4G) 02.13.86.1 (2E) 02.13.86.1 (2H) i\ D~ = Zeco !J- 1 
02.13.63.1 ! 

4L5 (D1) 
DPS = 3 4L5 (D1) AD (Q-8) 

t End Op -AC 

L4 (D1) 4L4 (D1) llL4 (D1) 02.13.86.1 (2H) 02.13.86.1 (2H) 

Turn On Step Step ~ Original Dividen Blk Div Tgr DPS-1 To DPS 
"-No Effect T Char - 2710* 

d 

02.13.86.1 (2G) 02.13.86.1 (2G) 02.13.86.1 (2G) 
on DPS Status ) 1 Proceed * Note: May Be + 1 , 

End of 2nd End of First 

Divide (D~ f\ ;tV'Divide 
~No 

DPS = 1 
Yes 

J I 
4L6 (D1) 4L6 (D1) 4L6 (D1) 

C SR (S-35) 33g- SC IBR (9-35) 
To FP Divide -- SI -- SR 

D 

(Sheet 6) 
02.13.87.1 (2A) 02.13.87.1 (2A) 02.13.87.1 (2A) 

I I 
OBJECTIVES: Single Precision 

1. Set Char of Remainder (AC) 
I I 2710 Less Than Dividend 

2. End Op 4L7 (D1) 4L7 (D1) 4L7 (D1) 
Rl AC (S-35) Q

1 MQ (S-35) SR (9-35) D 

-IBR -SR -MQ 

02.13.87.1 (2B) 02.13.87.1 (2B) 02.13.87.1 (2B) 

OBJECTIVES: Double-Precision I I 
Prepare For Mpy (Q 1 • D) 

QI-
SR? For MPY I I D-MQ Q 1 'D Reset AC 

5LO (D1) 5LO (D1) 5LO (D1) 
C-SI Save Reset Step Turn On Mpy 
R1-IBR AC (9-35) DPS- 2 Cycle Tgr 

02.13.87.1 (2C) 02.13.87.1 (2Cl 02. 13,87. 1 (1 C) 

l I 

To Floating-Point To Multiply 
Multiply Cycles ~Q1'D 

Figure 16 (S heet 2) 

Figure 21. Floating-Point Divide (Single and Double-Precision}-Sheet 4 of 6 
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Rl 

C 

OBJECTIVES 

1. Add R1-Q10 

2. Prepare for 2nd ~ivide 
R1- Q 10 

C 

R1-Q10_AC} 
C-SR For Oivide 
Reset MQ 
Q1-S1 (Save) 

I 
7L1 (01) 

Rl 
IBR (9-35) 

--SR 

I 

7L2 (01) 
SR (9-35) Q1D 
-AO 

(2E) 

7L2 (01) 
Turn on 9P 
Carry Tgr 

2.13.89.1 (5A) 

7L3 (01) 
SI (S-35) 
-SR 

(2H) 

Yes 

Q1 

Q1 
(20) 

7L2 (01) 

AC (9-35) 
-AO 

AO (9P) 
Carry 

7L3 (01) 
SR (S-35) 
--SI 

1 

From Floating-Point 
Multiply Cycles 

Figure 16 (Sheet 2) 

Note: Unless otherwise shown, 
all blocks on Systems 02.13.87.1 

~ OPS=2 \NO_ 
~ SC=Zero / 

I I 
7L1 (01) 711 (01) 711 (01) 
SR (9-35) Reset 9P Reset Pre-
--MQ Carry Tgr MQ Tgrs 

(20) (20) (20) 

1 I 

I 
7L2 (01) 7L2 (01) 7L2 (01) 

1-AO (35) AO (9-35) MQ (9-35) 
1-AO (9P) -AC -SR 

(2E) (2E) (2F) (2F) 

R1-Q1D I 
.rt/ R1< Q1 0 (Addition Result in Comp Form, 

/'. Recomp AC) 
No 

Gated by 9P Carry 
Tgr Off·~ 

~~--------~~~----------~~ 

I 

(2H) 

7L3 (01) 

AC (9-35)-AO 
1--AO(35) 

(2G) 

7L3 (01) 
AO (9-35) 
--AC 

(2G) 

7L3 (01) 
Reset 

MQ (1-35) 

7L3 (01) 
Turn On 

1st Cycle Tgr 

(2H) 

7L3 (01) 
Step 

OPS-3 

(2H) 

To FP Oivide 
(Sheet 1) 

(2H) 

cb 
To 

2nd ~ivide 
A ~ Entry Point 

7L3 (01) 
Invert 
AC (S) 

(2G) 

I 

f 
7L3 (01) 
Turn Off 

Blk Div Tgr 

(2H) 

1 

Q1 

I 
7L3 (01) 
Reset 9P 
Carry Tgr 

I 

Figure 21. Floating-Point Divide (Single and Double-Precision)-Sheet 5 of 6 
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Q1 

OBJECTIVES: 

1. Check Q2 Fraction 

2. Prepare For Addition (Q1 + Q2) 

I 
llL5 (01) 
SI (S-35) 
-SR 

(2B) 

I 

1 I 
llL5 (01) llL5 (01) 

Reset Reset 
AC(9-35) OPS - Zero 

1 
(2B) 

Do Normal 
FAD 

Q 1+Q2 

To FAD, Fact 2 
Figure 15 (Sheet 4) 

(2B) 

i 

C From FP Divide 
(Sheet 4) 
~-

Note: Unless otherwise shown, 
all blocks on Systems 02.13.88.1 

OPS=3 ~ Blk Oiv No 
Tgr On 

Yes 

Off 

Q2 Fraction Displaced 

~2610 Positions Less 

/. Than Q 1 Fraction 

9P r=0~n ____________ -, 
Carry Tgr 

11L5(01) 
Set Fact 2 

(2B) 

-

I I 
llL5 (01) llL5 (01) 

MQ(9)- Sh MQ (10-35) 
AC(35) -Lt1 

(2C) (2C) 

1 J 

Fact Sequence: Fact 4 Will Occur 
Only When AC (9) = Zero 

AC(S) = SR(S) 

AC(S) ISR(S) 
and Q2 = 0 

Fact 2,(4),5 

Fact 2,6,7,(4),5 

Fact 2,3,(4),5 

Q2 

Figure 21. Floating-Point Divide (Single and Double-Precision}-Sheet 6 of 6 
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Appendix 

Principal Triggers Used During Arithmetic 
Operations 

TRIGGER NAME 

ACOvH 
Blk FP Div 
Carry Tgr 
9 Carry 
9P Carry 
Clk Drive 
DPS 1-3 
DivCk 
EndOp 
FACT 1-7 
FADMQOvH 
First Cycle 
FPDiv 
FP OvH #1 
FPOvH #2 
FP Trap 
FP Trap Mode 
MST 
Mpy Cycle #1 
MpyCycle #2 
MQ OvH #1 
MQ OvH #2 
MQ String Bit 
Ovlp Conflict 
Pre-End Op 
Pre MQ 34 
Pre MQ 35 
Pre MQ String Bit 
Reset Add 
SR (S)-AC (S) 
T1 

72 

SYSTEMS LOCATION 

02.10.36.1 
02.13.89.1 
02.02.40.1 
02.10.37.1 
02.13.89.1 
02.13.44.1 
02.13.63.1 
02.10.53.1 
08.00.09.2 
02.13.49.1-02.13.59.1 
02.13.57.1 
02.13.89.1 
02.10.52.1 
02.10.52.1 
02.10.50.1 
02.10.51.1 
02.10.71.1 
04.20.11.1 
02.13.77.1 
02.13.77.1 
02.10.51.1 
02.13.04.1 
02.13.77.1 
03.08.17.2 
08.00.10.1 
02.13.77.1 
02.13.77.1 
02.13.77.1 
02.13.61.1 
02.13.61.1 
02.10.53.1 
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