Copy No.,

REVISED MANUAL
HARVEST SYSTEM

November 13, 1957

Company Confidential

This document contains information of a proprietary nature, ALL
INFORMATION CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE,
No information shall be divulged to persons other than IBM employees
authorized by the nature of their duties to receive such information, or
individuals or organizations who are authorized by IBM Research or its
appointee to receive such information,

IBM Research Laboratory
Poughkeepsie, N, Y.

11/11/57

TABLE OF CONTENTS

H1. Stream Indexing
"Hl.1 Control Parameters and Control Bits
H1l.2 Stream Indexing Setup
H1.3 Operatiozi
H1.3.1 Nested Indexing
H1l.3.1.1 Control Bits
H1l.3.2 Triangular Indexing
H1.3.2.1 Control Bits
H1.3.3 Sequential Indexing
H1.3.3.1 Control Bits
Hl.4 Special Values of Indexing Parameters
H1.5 Automatic Adjustment of Index Level
H1.5.1 Repeat Byte in P (Q)
H1.5.2 Repeat Byte in R
H1.5.3 Skip Byte in P (Q)
H1l.5.4 Runout First Level in P (Q)
Hl.5.5 Runout Second Level in P (Q)
H1.5.6 Runout Higher Level in P (Q)
H1.5.7 Runout Field in P (Q)
H1.5.8 Runout Sequence in P (Q)
H1.5.9 Reset First Level in P (Q, R)
H1.5.10 Reset Second Level in P (Q, R)
H1.5.11 Reset Higher Level in P (Q, R)
H1.5.12 Advance Second Level in P (Q, R)
H1.5.13 Advance Higher Level in P (Q, R)
H1.6 Examples '
© Hl.6.1 Nested Mode
H1.6.2 Sequential Mode
H1l.6.3 Triangular Mode

H2. The Streaming Mode
H2.1 General Operation
H2.1.1 Stream Units P and Q
H2.1.2 Stream Unit R
H2.1.3 Stream Unit T, the Table Address Assembler (TAA)
H2.1.4 Stream Unit U, the Table Extract Unit (TEU)

H2,1.5 Statistical Accumulator (SACC) and Threshold Register (THR)
H2.1.6 Statistical Counter (SCTR)

H2,1,7 Logic Unit (LU)

H2.1.8 F

H2,1.9 Group Signal (G)

H2.1.10 Byte Masks (BM)

H2.1,11

Match Units (W, X,/Y, and Z)

11/11/57

TABLE OF CONTENTS

H2,2 Harvest Setup
H2.2.1 The Setup Words
H2.2.2 Initial and Developed Values of Parameters
H2,2.3 SKIP and SKAM :
H2.3 SBBB - The Stream Byte-by-Byte Instruction
HZ 3.1 Data Gating
H2.3.1.1 Gate #0
H2.3.1.2 Gates #1, #2, #3, #4, #5, and #6
H2.3.1.3 Gate #7
H2,3.1.4 Gate #8
H2.3.1.5 Gates #9, #10, and #11
H2.3.1.6 Gates #12 and #13
H2,3,2 GS - Group Size
" H2.3.3 The STOP Code
H2.3.4 RC - R Control
H2.4 The Action of the Logic Unit in Byte -by-Byte Streaming
H2.4.1 The Byte-by-Byte Operations
H2.4.2 E, F, and G
H2.5 The Functioning of T and U in Byte—by Byte Streaming
H2.5.1 T
H2.5.2 U
H2.6 The Match Units (W, X, Y, Z)
H2.7 The Statistical Accumulator and Statistical Counter (SACC and
SCTR)
‘H2,7.1 SACC
H2,7.2 SCTR
H2.7.3 Other quantities in the SACC and SCTR setup words
H2.8 Automatic Adjustments
H2,9 Stream Indicator Bits
H2.10 The Hybrid Instructions
H2,10,1 SUBR - STREAM UNCONDITIONAL BRANCH
H2,10.2 SCBR - STREAM CONDITIONAL BRANCH
H2.10.3 (Not Yet Specified)
H2,10.4 SMOV - STREAM MOVE
H2,10.5 SCSI - STREAM COUNT AND SET INDICATOR
H2.10.6 SCAD - STREAM CONDITIONAL ADJUST
H2,10,7 SCLM - STREAM CLEAR MEMORY
H2.10.8 SSTC - STREAM STORE AND CLEAR
HZ. 10.9 SMER - STREAM MERGE
H2.10.9.1 Index Control Parameters
'H2.10,9.2 Typel - SIMPLE MERGE UP (DOWN)
H2.10.9.3 Type II - MERGE OFFSET UP (DOWN)
H2.10.9.4 Type III - MERGE SPLIT UP (DOWN)
H2.10.9.5 Merging Files of Unequal Length

11/11/57

TABLE OF CONTENTS

H2.10.10 SSER - STREAM SEARCH -
'H2.10.10.1 Index Control Parameters
H2.10.10,2 Type 0 - RANDOM SEARCH OFFSET
H2.10.10.3 Type I - RANDOM SEARCH SPLIT
H2.10.10.4 Type II <« ORDERED SEARCH OFFSET and
Type III - ORDERED SEARCH SPLIT
H2.10.11 SADD - STREAM ADD
H2.10.12 SMPY - STREAM MULTIPLY
H2.10.13 SMLU - STREAM MULTIPLE LOOKUP
H2.10.14 SILS - STREAM INDIRECT LOAD AND STORE
H2.10.15 SSEL - STREAM SELECT
H2.10.15.1 Index Control Parameters
H2.10.15.2 Type 0 - SELECT OFFSET LEAST (GREATEST)
H2.10.15.3 Type I - SELECT SPLIT LEAST (GREATEST)
H2.10,16 (Not Assigned As Yet)

Harvest Abbreviations

A,B,C,D BASIC registers MOD
ADJ Adjustment MS
ADV Advance MU
BAR Byte address register N
BM Byte mask OFF
BP Branch point P,Q,R
BRA Branch address PAR
BRAM Branch to arith, mode PB
CL Clear PRI
CON -Connection - RA
CPU Céntral Processing Unit RC
E "or" of k and/or 1 and/or mRR
EC End of chain RS
EU ‘Equal-unequal RST
F One bit memory for E S
FL Field length ~ SACC

- G Group SAM
GS Group size SBC
H Higher levels address - SCD
HL Higher level) SCTR .
I Increment SGN
1C Instruction Counter SKAM
IM Index mode ‘ SM
IX Index address SP
J Accumulated increment SU
k One bit signal from LU "SUP
K Cell size in TAA SW
KK Cell size for TAA in SILS T, TAA

instruction TAM

1 One bit signal from LU TB
L ‘Byte output from LU TEU, U
LG Least-Greater bit TG
LS Large-small; load-store THR
LU Logic unit TR
m One bit signal from LU U, TEU
M Partial count . UD
MD Memory distributor UL
MDM Memory distributor mode V
MN

Modulus

Match station

Match unit

Total count

Offset

Harvest registers or SU's
Parity

Parity Bit .

Priority

_ Relative-absolute

R store control
Round robin

' Return to stream indicator

Reset

Effective address
Statistical accumulator
SACC mode

Six bit counter

Search condition
Statistical counter

Sign modifier

Skip to arithmetic mode
Switch matrix -

Span

Stream unit
Supplemental signal
Swallow - non swallow
Table Address assembler
TAA mode

Test bit

Table extract unit

One bit memory device
Threshold register
Triangular indexing
Table extract unit

Up - down ‘

Upper - lower

Start point for TAA address

Match - non match ‘. "W, X, Y, Z Match units or characters

H1.1 10/15/57

H1. Stream Indexing

Generally speaking, the Harvest Computer obtains data from one or
two places in memory, performs some arithmetic or logical operation on
the data, and stores the result in memory. The addresses of the source
(or sources) and destination of the data are independent of each other, and
are modified by independent indexing units. Thus one or two streams of
input data (input streams) are processed and an output stream is stored in
memory,

The pattern of address modification associated with any data stream

" is determined by a number of parameters at each of several levels of index
control. The control levels are chained together so that there are a first
level, a second level, ..., and a highest level of control. There is no
practical limit to the number of control levels that can be chained to one
stream unit. The values of the parameters for each control level are
arbitrary, and are set by the programmer when he sets up the indexing
chain prior to executing a stream instruction.

The manner in which the various levels react with one another also is
determined by the programmer and specified in the various control levels,
Three modes of indexing are available to the programmer; he may choose
nested, sequential, or triangular indexing (these are discussed below) by
setting control bits at the various levels. Some interplay between the three
modes is possible (under the programmer's control).

\
|

{

H1l.1 Control Parameters and Control Bits

Each control level in the index chain consists of two words, For every
level, each pair of words contains the following parameters and control bits:

N, Total Count;

M, Current Count;

I, Increment:

'J, Accumulated Increment, or Field Offset
(depending on index mode);

M, " Index Mode Control Bit;

TR, Triangular Indexing Control Bit;

UL, Upper~Lower Control Bit;

EC, End of Chain Control Bit,

In addition, all levels higher than the second contain

HL, Higher-Level Control Bit

H1.1

H1.1 10/15/57

During stream indexing the first level control parameters and bits
for each stream unit are stored in fixed, addressable registers associated
with the particular stream units. These addresses are summarized in
Figures Hl, la and Hl.1b, The location of the control bits and parameter
fields, and the sizes of these fields are shown in Figure H1. la.

Two additional parameters are kept in addressable Stream Address
Registers associated with each stream unit. They are:

S, Effective Address;
H, Higher Levels Address.

Their addresses are indicated in Figure Hl. la,
Finally, the parameter
BM, Byte Mask,

is kept in the Stream Address Registers associated with each stream unit.
This will be discussed in Chapter H2.

H1.2

H1.2 10/15/57

H1.2 Stream Indexing Setup

In order to prepare the Harvest Computer to execute a stream in-
struction, the programmer must ""set up'' a number of parameters and
controls. To accomplish this, he may TRANSMIT a set of 20 consecutive
"setup" words from somewhere in memory to fixed registers whose
addresses are the 20 consecutive word addresses 13 through 32. In
partlcular, the nine setup words 1 through 9 are transmitted to registers
baving the nine word addresses 13 through 21 (Figure Hl.1la). The contents
of those setup word fields that are indicated as not used have no effect on
Harvest, as the corresponding register positions do not exist,

The first three of these nine setup words contain the parameters
(s, H) (I, N, Control Bits) and (J, M) that are stored in the three registers
that are associated with SU-P. The second three words contain the
corresponding parameters that are stored in the three registers of SU-Q.
The last three contain parameters for SU-R. Parameters for all control
levels higher than the first are stored in consecutive pairs of words starting
at the arbitrary addresses Hy (P), Hy (Q), and Hj (R) corresponding to the
index chains for SU-P, SU-Q, and SU R. Within each control level, the
first word must contain (I, N, Control Bits) while the second must contain’
(J, M). Hg, must be a full word address and all index control words must
lie in memory whose address is less than 212, These words are not trans-
mitted to registers at setup time, but are brought into registers auto-
matically as needed. ‘

At the time of the initial setup for a particular stream operation, S
contains the starting address, S,, for the particular stream unit involved,
H contains the second control 1eve1 address, Hy. Generally speaking, J
and M are initially zero in the nested and triangular indexing modes. In
these cases, the second word of the appropriate control level is entirely
zero.

The entire Harvest setup (including index and all other information)

is summarized in Figure H2.2. Any parameter (bit or field) may be loaded
into or stored from the Harvest setup register by the use of VFL instructions.

H1.3

H1.3 10/15/57

H1l.3 Operation

The Harvest stream unit indexing controls have been designed to
facilitate the control of nested loops, since the read out pattern of most
streams can be described in terms of nested loops. Triangular indexing is
a special case of nested indexing in which the number of times a program
executes a given loop within a loop of the next higher order changes with
every execution of the higher order loop. Sequential indexing is also a
special case of nested indexing. Since the nested mode of operation is basic
_ to the triangular and sequential modes, it will be described first.

The description of stream indexing that follows is summed up in the '
flow chart, Figure Hl. 3,

H1.3.1 Nested Indexing

In this indexing mode the first indexing level controls the byte read
out of the stream unit concerned. Ny bytes ata distance of Ij bits from each
other, having the addresses S, Sg + Iy, 5o + 21y, ..., So * M1 Iys ues
So + (N3-1) I; are read out of memory via the stream register onto some
data path specified in the stream instruction (see Chapter H2). As each new
address is formed it is stored in the effective address register, S, while the
value of the current count, M}, in the M register is increased by 1 and.the
partial accumulated increment Jy = My I1 in the J register is incremented
by I;. This is known as a first level advance. Each time S, Mj, and J)
are updated, M1 is compared with Nj. If My # Nj, then another byte is read
out; if My = Ny, then S = 5, + N I, is decremented by Jy = M; I} = N1 Il’
and J; and Mj are reset to zero. This is the end of the first level and is
also the end of the first iteration at the second level. S and Jp are now in-
cremented by I, while M; is incremented by 1 and compared to N2. This
is a second level advance.

- Assume Mj # Np. then the N bytes S5 + Iz, So + Iy + Ips v..s
So + My I3+ I2y eons Sg (Np-1) Ij + I, are read out. Again, S+ Ij
replaces S, Jj + I replaces Jj, and Mj + 1 replaces M;. Now Mj = Nj
again, S - Jj replaces S, and Jy and Mj are reset to zero. This is again

the end of first level and is also the end of the second iteration at the
second level. .S and Jp are again incremented by Iz, while Mp is incre-
mented by 1 and compared to Np (another second level advance). The
effective address is now S, + 2I;. '

Eventually, during the Np~th iteration at the second level, S becomes
So + (Np -1) Ij + (N, -1) I,. After S+ Ij replaces 5, J; + I; replaces Jy,
and Mj + 1 replaces M;, then Mj = Nj. Now 8 -Jy = 5, + (N2 -1) I
replaces S, and J} and My are again reset to zero. Next S and Jp are in-
cremented by I2 and Mp is incremented by 1. At this point M) is compared

HI1. 4

H1.3 10/15/57

to N, and MZ = Nz, so the second level must be reset. S-J, replaces S,
and Jz and Mz are reset to zero. This is the end of second level and is also
the end of the first iteration at the third level

In general, given a k - level chain, an end of (j + 1)-th level occurs
only immediately after an end of j-th level (j=1, 2, «vs, k=1). After S
is decremented by J:, and J; and Mj are reset to zero, the effective
address is S = 54 + fvlj,,_ II]'+ 1t My 2lj+ 2+t .00 % Mk I. After an
end of j-th level, the next byge is read from S + Ij + 1 unless this address
results in an end of (j + 1)-th level.

H1.3.1.1 Control Bits

(1) EC
Given a k-level cvhain, the End of Chain Control Bit, ECj, must be zero
for all levels j<k., If ECy has the value 1, then after S, J,, and My
are reset the indexing mechanism will halt. Moreover, the End of
Chain P, Q, or R indicator bit (see Chapter H2. 9) will turn on according
as ECy is in the P, Q, or R index chain., ECj also activates a Stop
signal which the programmer may use to advance the computer to the
next instruction,

(2) HL A
The Higher-Level Control Bit, HL, is used to mark a level higher than
the second for purposes of Adjustment. This will be described in '
Chapter H1. 5.

(3) IM, TR
The Index Mode Control Bit, IM, and the Triangular Indexing Control
Bit, TR, must be zero in all control levels in the nested mode.

(4) UL
The value of the Upper-Lower Control Bit, UL, is immaterial in the
nested mode. '

H1l.3.2 Triangular Iﬁdexing

This mode is identical to the nested mode except that on the control
level designated as triangular, after S, J, and M are reset, N is decre-
mented or incremented by 1 depending on the value of UL.

The programmer must note that although in the nested mode all para-

meters are reset to their initial values if indexing is terminated by EC
being 1 for some level, this is not true in the triangular mode. In this mode

H1.5

H1. 3 10/15/57

the final value of N is not equal to the initial value of Nj. The program
must reset this parameter before using this particular setup for another
data pass.

Hi. 3, 2.1 Control Bits

(1) EC, HL
These bits are used as in the nested mode.

(2) IM
This bij: must be zero.

(3) TR
The Triangular Indexing Control Bit must have the value 1 on each
level at which it is desired to change N automatically.

(4) UL

To increment N, set the Upper-Lower Control bit to 1; to decrement
N, set UL to zero.

H1.3.3 Sequential Indexing

In the sequential mode, several consecutive control levels
beginning with the first control the byte read out of the stream unit concerned.

After each byte is read on any control level designated as sequential,
S is incremented by I, M by I, but J is unchanged. Moreover, at the end of
any such level, S ig.incremented by J, Jis unchanged, and only M is reset
to zero. :

Thus each sequential level defines and causes to be read out a field
of N bytes at intervals I from cach other while J defines the distance in bits
(field Offset) between the end of this field and the beginning of the next, In
particular, the value of J for the last level in the sequence may be the
algebraic distance in bits between the end of the last field and the beginning
of the first field in the sequence, The entire sequence then must be nested
in the next higher control level.

H1.6

H1.3 10/15/57

H1.3.3.1 Control Bits

(1)

(2)

(3)

(4)

HL

. This bit is used as in the nested mode,

EC
This bit is immaterial in the sequential levels, but has its regular
meaning in all levels of order higher than the sequential levels.

IM

This bit must have the value 1 in the sequential levels and must have
the value zero in the first non-sequential level. It is immaterial in
all others.

TR, UL

These bits are immaterial in the sequential levels but have their usual
meaning in all others,

H1.7

Hl1.4 ’ 10/15/57

Hl1.4 Special Values of Indexing Parameters

- The parameters M and N are always unsigned, while I and J may be
positive or negative (see Figure Hl, la).

In the nested and triangular modes, if I is zero then J is always
zero. In the sequential mode, J is independent of 1.

N may be zero. But since M (which is non-negative) is always in-
cremented before being compared with N, if N is zero then indexing cannot
advance to a higher level and cannot be terminated by any EC bit until 2
iterations (if this is the first level) or 218 jterations (if this is a higher
level) have been performed. (M resides ina 14 or 18 bit counter.)

H may be zero. If it is, all parameter and control bits for the
second level will be loaded into the stream indexing mechanism as zero,
and H will remain unchanged. Under these circumstances M, will always
equal 1 and N, will always equal zero when they are compared. Thus the
second level will continue to iterate indefinitely, and indexing must be
terminated by some signal that originates outside of the stream indexing
mechanism involved. '

H1.8

H1.5 10/16/57

H1.5 Automatic Adjustment of Index Level
~ As part of certain streaming mode instructions a number of

Adjustment operations are available. Those that adjust stream indexing
controls are the subject of this section; the rest are discussed in
Chapter H2, 8.
H1.5.1 Repeat Byte in P (Q)
_ The last byte read out of stream register P (Q) is read out again,

after which indexing proceeds normally. This is defined for all indexing
modes.
H1l.5.2 Repeat Byte in R

The next byte read into stream register R is read in over the last
byte after which indexing proceeds normally, This is defined for all
indexing modes.

H1.5.3 Skip Byte in P (Q)

Suppress the read out of the next byte in P (Q) and then proceed
normally. This is defined for all indexing modes. - : :
H1l.5.4 Runout First Level in P (Q)

The remaining bytes in P (Q) are read out and bypass the LU, TAA,

TEU, and all MS's, Indexing then proceeds normally. This is defined for
the nested and triangular modes only.

H1.5.5 Runout Second Level in P (Q)
All bytes read out of P (Q) bypass the LU, TAA, TEU, and all MS's

until the end of second level is reached. Indexing then proceeds normally.
This is defined for the nested and triangular modes only.

H1.9

H1.5 10/16/57

H1l.5.6 Runout Higher Level in P (Q)

All bytes read out of P (Q) bypass the LU, TAA, TEU, and all MS's
until the end of the higher level whose HL bit has the value 1 is reached.
Indexing then proceeds normally, This is defined for all indexing modes;
but in the sequential mode HL may only have the value 1 in a nested level,

H1.5.7 Runout Field in P (Q)

The remaining bytes in the present sequential level in P (Q) are read
out and bypass the LU, TAA, TEU, and all MS's. Indexing then proceeds
normally. This is defined only for the sequential mode.

H1.5.8 Runout Seduence in P (Q)

All bytes in the remaining sequential levels in P (Q) are read out and
bypass the LU, TAA, TEU, and all MS's. Indexing then proceeds normally.
This is defined only for the sequential mode.

H1.5.9 Reset First Level in P (Q, R)

The effective address, S, in P (Q, R) is decremented by Jj, and Ji
and M) are reset to zero. Indexing then proceeds normally, This is
defined for the nested and triangular modes only.

H1.5.10 Reset Second Level in P (Q, R)

S in P (Q, R) is decremented by Jj and Jz, and Jy, JZ.' M, and M,
are reset to zero. Indexing then proceeds normally, This is defined for
. the nested and triangular modes only.

H1.5.11 Reset Higher Level in P (Q, R)

Sin P (Q, R) is decremented by Jyr 920 eees Jp» and these J's and

My, Mo, oeen Mh are reset to zero. Hereh is that level whose HL bit has

the value 1. Indexing then proceeds normally. This is defined for the
nested and triangular modes only.

H1.10

H1.5 10/16/57

H1.5.12 Advance Second Level in P (Q, R)

, S in P (Q, R) is decremented by J3; Jy and M, are reset to zero;
- S and J, are incremented by I; and M; is incremented by 1. Indexing
then proceeds normally. This is defined for the nested and triangular
modes only.

H1.5.13 Advance Higher Level in P (Q, R)

S in P (Q, R) is decremented by J1, Jp, «. s J, -1 these J's and
Mjp, Mz, ..., My _; are reset to zero; S and J,, are incremented by Ip;
and My, is incremented by 1. Here h is defined as in H1,5.11. Indexing
then proceeds normally. This is defined for the nested and triangular
modes only,

H1l.11

H1.6 | 10/16/57

H1.6 Examples

~ The flow of bytes selected from memory by each stream indexing
mechanism and presented to the Harvest data buses fits a well defined
pattern which may be simple or complex. Examples are given here which
illustrate patterns one could expect in the three indexing modes.

H1.6.1 Nested Mode

A stream might consist of one thousand consecutive six-bit bytes
beginning at a particular address. This is a simple stream that requires
only one index control level. The values of the parameters for this level are:

Level I N J M IM . TR UL EC HL
1 6 1000 O 0 0 0 0 1 0

A more complex stream may be described as follows (see Figure

H1. 6.1 for first two levels): read out three overlapping eight-bit bytes
(each byte overlaps the last half of the preceding byte) and then skip six

bits; repeat this three times, each time moving the effective starting point
22 bits, thus giving a six-bit skip; repeat this entire process five times
using the original starting point; finally each time all previously described
steps have been completed repeat them at a new starting point one-hundred
bits from the original starting point, continuing such repetition until a

total of ten cycles have been completed. This complex stream requires four
levels of index control, whose parameters have the following initial values:

Level 1 N J M IM TR UL EC HL
1 4 3 0 0 0 0 0 0 0
2 22 3 0 0 0 0 0 0 0
3 o 5 0 O 0 0 0 0o 0
4 100 10 0 O 0 0 0 1 0

H1l.6.2 Sequential Mode

A pattern of the simpler sequential type is characterized by the
following example (see Figure HI, 6.2). A record consists of twelve 4-bit
decimal digits, It is desired to read out three digits at the beginning of"
the record, skip two, read out two, and then go to the next record. Three
levels of control are used to produce this pattern. Their parameters have
the following initial values: '

Hl.12

H1.6 10/16/57

Level I N J M IM TR UL EC HL
1 4 3 8 0 1 0 0 0 0
2 4 2 -28 0 1 0 0 0 0
3 48 - 0 0 0 0 0 - 0

H1.6.3 Triangular Mode

Consider the followihg array of data:
the numbers a;;, ayp0 By30 3y 2220 a,3r 2312 33 and a;4 are

arranged consecutively in memory. These numbers represent the elements
of three rows of a third order matrix. It is desired to read all elements of
the first row, then the last two elements of the second row and finally the
last element of the third row. Such a readout is illustrated in Figure

HL1. 6. 3a. Such an array of data is called an Upper Right matrix triangle.

In order to read out such a pattern, it is necessary only to be able to change
the value of the total count, N, on that level of indexing that reads a row of
the matrix. For example, if each element of the matrix is a six-bit byte,
then the first level of indexing controls the readout of a row of the matrix,
In this fourth indexing example, the total count for the first level is initially
3. After reading the first row, the total count is decremented by one. Thus
the total count is now 2. After the elements of the second row are read out
the total count is again decremented 1 and the count is now 1.

In addition to this it is necessary to increment at the second level
by four times the byte length, that is, a multiple of the byte size that is one
more than the number of elements in the first row. The size of the incre-~
ment on the second level remains constant throughout the pattern of indexing.
Since there are three rows to be read, the value of the total count for the
second level is 3. The initial setup is as follows:

Level I N J M IM TR UL EC HL
1 6 3 0 0 0 1 0 0 0
2 24 3 0 0 0 0 0 1 0

There are four triangles in every matrix. They are designated
Upper Left, Upper Right, Lower Left and Lower Right. If it were desired
to read the Upper Left triangle from the matrix described above, the output
would be as follows: '

ayys 21ps 2330 @210 3220 2371

H1.13

H1. 6 10/16/517

The corresponding Lower Right triangle consists of the elements

2130 2220 223’ 2317 %30 33

the Lower Left triangle is

all, azl, 8,22, a.31, a.32, a33'

An analogous pattern of indexing may be applied to vectors, Thus,
if a vector consists of the three elements a;, a,, a3, and it is desired to
read these elements out in the order a3, ap, azs 2y, @y 23 then we can
say that we are applying Triangular Indexing to the vector,” Figure Hl.6.3b
illustrates precisely this Lower Right vector, Once again there are four
triangles, Upper Left, Upper Right, Lower Left and Lower Right, The
analogous Upper Left vector triangle produces an array as follows:

~

al, az, a.3, 8.1, az, al;

the Upper Right vector triangle is
a-l’ az, 3.3, azy a3’ a3;

finally the Lower Left vector triangle is
a-l, al, azg a-l, az,l a3o

The following table indicates the values of the control bits and the
parameters for indexing in this fashion:

Triangle TR, | UL, Ingif:igil\r\/‘alue Value of Lo+l Value of Nx‘-l-l ,‘
x Vector|Matrix | Vector|Matrix
Upper Left 1 0 n 0 nl, | n n
Upper Right 1 0 n ' L, (n+l).1x | n n
Lower Left 1 1 1 0 nl n n
Lower Right 1 1 1 "Ix , (1'1-1)1x n .n

n is the order of the matrix, or the dimension of the vector. In all
cases Ix>0.

Hl1. 14

H2. ~10/21/57

H2. The Streaming Mode

Harvest is designed to operate upon a sequence of bytes in an ex~
tremely rapid and automatic manner. This speed is attained by the
simultaneous functioning of several independent indexing and addressing
mechanisms (described in Chapter H1l) and by the sequential processing of
bytes by units working in an assembly-line fashion. In addition to the various
processing units a counter and an accumulator have been provided for
calculating pertinent statistics during the course of byte processing.

In one respect the functioning of Harvest in the streaming mode may
be compared to that of a plug board computer. That is, the operation to be
performed and all the relevant parameters are specified before any action
takes place; then the execution of a single streaming instruction may cause
the logical or arithmetic manipulation of many thousands of data bytes. Of
course the big difference is that the '"plugging' in Harvest is all done under
program control and can be changed completely in a number of microseconds.
Moreover the arithmetic and logical facilities of a general-purpose computer
are always at hand to resolve difficulties that cannot easily be resolved in
the streaming mode. '

~To a large extent the streaming mode is conceptually separate from
the arithmetic mode. The arithmetic section contains the instruction
"BRANCH TO Y AND ENTER STREAMING MODE". Upon this command
the complexion of Harvest changes; the manifold processing units are
activated, and the philosophy of information handling and processing
changes. One of the basic differences between the arithmetic mode and the
streaming mode of operation is that in the streaming mode the programmer
has the responsibility of designating how the Instruction Counter must
change from instruction to instruction, while in the arithmetic mode this is,
in general, automatic. When a streaming instruction indicates a shift to
the arithmetic mode, the normal arithmetic functioning of the Basic
computer is resumed.

In order to diminish the necessity for frequent alternations between
the streaming and arithmetic modes and to gain speed and flexibility in
some vital manipulative operations, the streaming mode is equipped to
~ perform automatically many kinds of "adjustments' upon the stream of data
and the operation applied to it. In addition to the automatic adjustments the
streaming mode has a small repertoire of "hybrid'" instructions which
perform basic arithmetic and logical functions but which utilize the various
indeper{den‘c indexing and addressing facilities of Harvest to gain speed and
genéi‘ality. Lastly, a few streaming conditions are represented in the
indicator register and may stimulate action there upon completion of the
streaming instruction.

H2.1

H2.1 10/21/57

H2.1 General Operation

- Figure H2.1 shows the various functional units of the Harvest CPU
and the data paths and gates that connect them. The general operation of
these units is described in the sections that follow.

H2.1.1 Stream Units P and Q

These units control the input data streams. Each consists of a
double length (128-bit) register (P, -P; or Q_ - Q;), an associated switch
matrix (SMp or SMQ) ; and a built-in indexing unit (see Chapter HI1). - The
SU built-in controls permit automatic loading of the registers with 64-bit
words from memory, normally without any interruption in the stream of
bytes being generated. The streams consist of 8-bit bytes that are read
from the registers and switched to the byte buses for processing.

H2.1.2 Stream Unit R

This unit (consisting of a double length register, R,-R;, the switch
matrix SMR, and a built-in indexing unit) is used primarily to store a data
stream in memory. It switches 8~bit bytes from the byte bus to the proper
positions in its double length register. The contents of these registers”
are then normally stored automatically as full 64-bit words in memory.

H2.1.3 Stream Unit T, the Table Address Assembler (TAA)

The Table Address Assembler provides a means of assembling bytes
from one or more SU's together with the contents of a register and a
program-controlled counter, the Memory Distributor (MD), to form
addresses for table lookup, counting in memory, and other similar memory
reference functions. '

The word referenced in memory may have a 1 added or or-ed to it in
a designated position. Moreover, the original, unchanged word referenced
may be sent to the Table Extract Unit (TEU). ‘

The TAA consists of a 24-bit register, T, an associated switch

matrix, SMT, a base address register, the memory distributor, MD, and
a simplified built-in indexing unit.

H2.2

H2. 1 10/21/57

H2.1.4 Stream Unit U, the Table Extract Unit (TEU)

The Table Extract Unit is a data storage register similar in design
to the Stream Units. Its primary function is to receive data words from
memory as addressed'by the Table Address Assembler and to select from
them the appropriate bytes for transfer to other units in the computer.

A single length register, U, a switch matrix, SMy, and a single-
level built-in indexing unit make up the TEU.

H2.1.5 Statistical Accumulator (SACC) and Threshold Register (THR)

The SACC accumulates input bytes that come from the Logic Unit,
LU, or from the TEU. It may also be stepped by any one of several
1-bit signals from various parts of the CPU. Associated with the SACC is
a special Threshold register, THR, which may be loaded as a part of the
setup operation. Whenever the value in SACC reaches or exceeds the
value in THR, a special 1-bit signal is produced. This signal may cause
special action to take place in the CPU.

H2.1.6 Statistical Counter (SCTR)

The SCTR may be stepped by practically any 1-bit signal from the
Harvest CPU., Its contents may be gated onto the byte bus to SU-R by
Adjustment operations. The SCTR may be reset automatically. It also
may be connected to SMp and have its current contents continuously
available for logical operations.

H2.1.7 Logic Unit (LTU)

The LU performs a variety of arithmetic and logical operations on
the successive bytes or pairs of bytes presented to it. It provides an
8-bit output, L, and three l-bit outputs, k, 1, and m. L may be gated onto
the byte bus. A selected set of the 1-bit signals, k, 1, and m are or-ed
together to produce a 1-bit signal, E. This signal may also be put on the
byte bus, or be used to cause Adjustments.

H2.3

H2.1 10/21/57

H2.1.8 ¥

F is a small memory device used primarily to record the changes
in E. It may be gated to the byte bus or may automatically adjust the flow
of data in the CPU.

H2.1.9 Group Signal (G)

G is a memory device used to record the status of groups of bytes
that pass through the LU. The size of the group is specified in the parti-
cular stream instruction being used. The status recorded is a function of
the three 1-bit signals, k, 1, and m. The output of G is an 8-bit byte that
may be gated to R, or be used to cause Adjustment.

H2.1.10 Byte Masks (BM)

In order to provide a ready means of operating upon any size byte
from 1 through 8 bits and on any subset of bits within a byte the four byte
masks BMp, BMQ, BMR, and BM._ are provided in association with the
corresponding SU's. In particular, BMp indicates which bits are to be
stored in a memory word and which are not. The mask format is specified
as a part of the streaming setup (see Section H1.1 and Figure HI. la).

H2.1.11 Match Units (W, X, Y, and Z)

During the streaming mode of operation it is possible to monitor
input and output streams for the occurrance of prespecified bytes. The
four units W, X, Y, and Z provide a capacity for specifying four different
special bytes at any one time. Automatic adjustment of the data flow may
be initiated upon recognition of a prespecified byte.

H2.4

H2.2 | : 10/24/57

H2.2 Harvest Setup

In order to execute a Harvest stream instruction, the programmer
must initialize, or set up, the Harvest CPU., He accomplishes this by
loading various memor'y positions — i.e., set up registers — with the proper
values of a number of parameters and control bits while in the arithmetic
mode of operation.

Figure H2.2 shows the array of twenty consecutive words (forty
consecutive half words) that comprise the complete Harvest setup, The
setup registers are loaded, just as any memory position is loaded, by
STORE, TRANSMIT, SWAP, etc., instructions. For example, if the
twenty word setup array is stored in memory beginning at location x + 1,
then the parameters contained in the third setup word (righthand column of
numbers, Figure H2.2) may be loaded in to the appropriate setup register
by TRANSMIT two half words from x + 3 to 15 (lefthand column of numbers,
Figure H2.2). By TRANSMIT forty half words from x + 1 to 13, all the
setup parameters and control bits would be loaded in the appropriate setup
registers. VFL instructions may be used to load or store any particular
parameter or control bit. In Figure H2,2, the number directly under a
field is its bit address; the number in the field is its field length (one-bit
field lengths are not designated).

H2.2.1 The Setup Words

Setup words 1 through 9 and 15 through 20 have been described in
Section H1.2. They contain the stream index control parameters and
control bits.

Setup word 10 contains the parameters for the TAA and the MD.
Setup word 11 contains the parameters for the TEU., The use of these
parameters and control bits is described in Section H2. 5,

Setup word 12 contains the parameters for all four MU's, Their
use is discussed in Section H2, 6.

Word 13 contains the parameters for the SACC and SCTR, while
word 14 contains the THR. These parameters are described in Section H2. 7.

Setup word 14 also contains E, F, G (discussed in Section H2. 4. 2),
MOD (Section H2. 4. 1), and RS (Section H2.9).

H2.5

H2.2 10/25/57

H2,2.2 Initial and Developed Values of Parameters

The values of most of the parameters and control bits must be
designated by the programmer in the setup before streaming begins.
However, certain parameters and control bits have values that are de~
veloped during the streaming mode of operation of Harvest, Sy;, BA,
E, F, G, RS.! The programmer is concerned with the values of these
parameters only if streaming has been interrupted; he is not concerned
with their initial values. The abbreviations for these fields are in
parentheses in Figure H2. 2.

H2.2.3 SKIP and SKAM

As was indicated in Section H2, while Harvest is in the streaming
mode the programmer has the responsibility of designating how the
Instruction Counter, IC, must change from instruction to instruction. In

order to accomplish this, the programmer uses a four bit (three bits plus
 sign) SKIP field (Figure H2. 10) in every stream instruction (whether byte-
by-byte or hybrid). The value of this field is added algebraically to the
current value of the IC at the end of execution of the stream instruction,
giving IC + SKIP as the location of the next instruction to be executed.

The programmer also must indicate whether or not the next in- -~
struction is in the arithmetic mode. If the control bit SKAM (skip to
arithmetic mode) has the value 1, then the next instruction is in the arith-
metic mode; if the value is zero, then the computer remains in the
streaming mode.

H2.6

H2.3 11/12/57

H2.3 SBBB - The Stream Byte-by-Byte Instruction

Byte-by-byte operations require additional parameters not specified
in the setup words. These parameters are presented in the Stream Byte- '
by-Byte Instruction itself. They include:

a) Data Gating - the interconnection of the various processing
' units (H2.3.1)
b) Op Code -~ the operation to be performed in the Logic Unit
(H2.4.1)
c) MOD - the modulus in modular operations; an extra avail-
able 8-bit byte in others (H2.4.1)
d) F Mode -~ the behavior of F (H2.4. 2)

e) GS - the group size (H2. 3. 2) ,.

f) STOP - the criterion for passing to the next instruction
(H2. 3. 3)

g) RC - the control of R storage (H2. 3. 4)

h) SKIP and SKAM - the progression to the next instruction (H2. 2. 3)

H2.3.1 Data Gating

The data paths that are to be used in a byte-by-byte stream operation
are specified by the first fourteen bits of the instruction. Each of these-
fourteen bits refers to a particular gate in the network of data paths (see
Figure H2.1). Some of the gates act merely as switches: i. e., they select
between two possible sources. Most act as true gates: i.e., they permit
or prevent the passage of data, The specific actions of and restrictions on
each gate are described in paragraphs H2.3.1.1 - H2.3. 1. 6. These
restrictions insure that the expected result of an operation is actually
obtained. Other combinations are at the user's risk.

H2.3.1.1 Gate #0

0
1

Data from Register P enters SMp
Data from SCTR enters SMp

L

This gate is used to put the current contents of SCTR on the byte
buses for further processing.

In addition to specifying that Gate #0 is set at 1 one must also set up
Register P indexing to specify what exactly is read out of SCTR. For this
purpose the SCTR acts as a register whose bits 34-49 are the current value
of the SCTR, the other 48 bits all being 0. Only the bit portion of the
addresses generated by P indexing are used when Gate #0 is set at 1.

H2.7

H2.3 10/23/57

H2.3.1.2 Gates #1, 2, 3, 4, 5, and 6

These gates control the paths:

o

- LU
Q —1.U
U —LU
P —T
Q —T
L

N U W W N

For all these gates:

o
|

= closed; no data passes
open; data passes

[
1

Gates #2 and #3 cannot be open simultaneously. They both refer to one input
to the LU.

Gates #5 and #6 cannot be open simultaneously. They both refer to one input
to T.

Gates #3 and #6 cannot be open simultaneously. This ""Figure 8" path has
been dis-allowed because of the extreme difficulty in controlling it satis-
factorily.

Gate #6 cannot be open if Gate #2 is closed. The second level of indexing
of T is controlled by Q when Gate #6 is used.

At least one of Gates #1, #2, #4, and #5 must be open. Some input is
needed.

Gate #3 cannot be open if both Gates #4 and #5 are closed. There must be
an input to T if something is to emerge from U.

Thus there are altogether 25 allowable combinations for these six gates:
any xx0xx0 except 000000
x011x0
x01010
x10x01

For combinations 101100, 101110, and 110101: N;P must be 1.
For combination 110110: Nj}P and N;Q must both be 1.

H2.8

H2.3 10/23/57

H2.3.1.3 Gate #7 -

0 = E - Gate #8
1 =F —Gate #8
H2.3.1.4 Gate #8
¢
L—»MSL

o
W H

Output of Gate #7 —»=MSy,
If the output of Gate #7 is put on the byte bus to MSy,, the significant

bit is put on the leftmost of the eight lines. The righthand seven bits are
made 0. ' :

H2.3.1.5 Gates #9, #10, and #11

000 = no readin to R

001 = U=-e=R

010 = output of MSy = R
011 = not allowed

100 = G=~»=R at end of group
101 = not allowed

110 = not allowed

111 = G—»R at every byte

H2.3.1.6 Gates #12 and #13

no input to SACC

00 =

0l = U=»=SACC

10 = output of MSy~»=SACC
11 = not allowed '

H2.9

H2.3 11/12/57

H2.3.2 GS - Group Size

The GS field defines a group length in terms of the indexing para-
meters of the Stream Units. This length is used for control of G and
assorted adjustment operations. The field is 4 bits long. The first two
bits identify the level of indexing:

00 = end of byte

01 = end of first level

10 = end of second level :

11 = end of higher level (defined by HL control bit — see H1. 1)

The second two bits identify the controlling unit:

00 = SU-P
01 = SU-Q
10 = SU-R
11 = SU-U

Thus 0110 defines the group size as the second level of R. Codes 1011
and 1111 are defined to say that no group size is specified.

H2.3.3 The STOP Code

The STOP Code specifies when to terminate this byte-by-byte in-
struction and progress to the next instruction. If the instruction is stopped
in some other way before this point is reached, this field naturally does not
apply. The first two bits specify the end-of-level signal which controls
the STOP: : ‘

00 = end of byte

01 = end of first level

10 = end of second level

11 = end of chain (defined by EC control bit — see Hl1. 1)

The second two bits identify the controlling unit:

00 = SU-P
01 = SU-Q
10 = SU-R
11 = SU-U

Thus 0100 specifies STOP at the end of the first level in P. Codes 1011

and 1111 are defined as NO STOP. Some other means of getting to the next
instruction must then be arranged.

H2.10

H2.3 11/12/57

H2.3.4 RC - R Control

The first bit of this two-bit field designates how R is to store information
during byte-by-byte operations: ‘

0 = The data formed in R is to be sent to memory, totally obliterating
any previous data in that memory word. Any bits not specified
will be made 0's.

The data formed in R will replace the corresponding bits in
memory but not affect adjacent bits. This is generally slower
than option 0, but more selective. ‘

—
)

In option 0 the R register is then initially all 0's. In option 1 the R register
initially contains the contents of the memory word in which the data will be
stored. As each byte enters, the bits opposite 1's in BMp will replace the
bits already in R; the bits opposite 0's in BMp will have no effect.

The second bit designates how R is to behave at the conclusion of a
byte-by-byte operation:

0 = R is to be stored before proceeding. (This insures that results
which do not occupy a full word will still be stored.)

1 = R is not to be stored. (Storage is to be avoided in some types of
instruction loops.)

HZ.11

H2. 4 ‘ 10/23/57

H2. 4 The Action of the Logic Unit in Byte-by-Byte Streaming

During streaming one may obtain any possible function of a set of
bytes by means of the table lookup facility. Nevertheless a separate Logic
Unit is provided. There are several reasons: many functions are extremely
simple and regular; table lookup slows down when references to memory
occur in a random order; large tables can often be reduced in size by first
performing a simple function on the operands; if a table is to be used, it
must first be read into memory while built-in functions in the LU are
always immediately available.

The LU accepts an input byte from either or both of two sources and
produces one output byte. In a streaming operation the LLU performs the
same function upon each set of sequentially presented inputs. The function,
routing of the bytes, and other details of the stream operation are specified
in advance by means of a series of setup instructions and by the stream in-
struction itself. The setup remains fixed until specifically altered.

The eight lines from registers P and Q or U lead directly to the
eight positions of the LU. The lowest-numbered bit (the leftmost or high-~
order bit) of an input register goes to the leftmost position of the LU.

The 8-bit outputs of the LU correspond bit by bit to the inputs. All
eight bits may travel to each of three possible recipients: R, T, and SACC.

In addition to the byte output the LLU produces three primary 1-bit
signals — k, 1, and m - which are combined in units E, F, and G. These
are described in Section H2. 4. 2.

H2.4.1 The Byte-by-Byte Operations

In the definitions of the operations P represents the input from P.
Q represents the input from Q or U, depending on the data gating. Ifa
function requires two operands — and most do — and only one gate to the LU
is open, the missing operand is automatically taken to be all 0's.

For logical operations bytes are regarded merely as an ordered set

of bits. For comparison and modular arithmetic bytes are regarded as
unsigned positive numbers in binary form.

H2.12

H2. 4 ' 10/23/57

To obtain the expected answer in modular arithmetic P, Q, and MOD
must all have the same byte size -~ just sufficient for representation of MOD -
and be positioned as far to the left as possible. P and Q must already have been
reduced to a value between 0 and MOD-1, inclusive. When MOD is specified
in the setup (see Figure H2. 4) the pertinent bits are to the left; empties on
the right are filled with 0's. BMp and BMQ must have 1's in those positions
corresponding to the proper byte size with 0's in the other (righthand)
positions. For example; proper use of a modulus of 22 requires:

1t

BMp = BMg 11111000

i

MOD 10110000

bytes from P, Q = KEKKK = = =

(A MOD of 10110000 is used not only for 22, but also for 44, 88, and 176.
Which it acts as is determined by the placement and size of P and Q.)

The 32 Byte-by-Byte logical operations are specified by five bits of
the op code of the stream instruction. See Figure H2.4 (the sixth bit says
that the instruction is a byte-by-byte instruction rather than a hybrid
instruction). They are defined as follows:

OP Code L = Byte Output k = 1 1 = 1 m = I

0 Logical Connection 0 Connection all 0 Connection Connection
of even of odd
.parity but parity
not all 0

1 " l 1" 1" i1

Z 1 2 1" 1" "

3 1" 3 " 1" 1"

4 1" 4 " 1" 1

5 1" 5 " " 1"

6 " 6 " " "

7 " 7 " " 1"

8 " 8 " 1" "

9 1" 9 " 1" "

10 1" 10 1" " 1"

11 1" 11 " " "

12 1" 12 " 1" 1Al

13 1" 13 " 1" 1"

14 1 14 " 1t "

15 1" 15 1" 1A "

H2.13

H2. 4 ' 10/23/57

OP Code L. = Byte Output k=1 leal m = 1
16 Max (P, Q) P>Q P=Q P £ O
17 Min (P, Q) " . " "

18 Pif P = Q, otherwise all 0 o " "
19 Pif P= (, otherwise no byte

output " : " i1
20 Pif P # Q, otherwise all 0 " " ' "
21 P if P # Q, otherwise no byte

output " " 1
22 Qif P4 Q, otherwise all 0 b " "
23 Qif P # Q, otherwise no byte

output " T "
24 P-Qif P2Q, otherwise all 0 " " ' "
25 P-Qif P2Q, otherwise no ‘

byte output " " "
26 Q- Pif Q2P, otherwise all 0 " " "
27 Q - Pif Q2P, otherwise no

byte output : " " "
28 P - Q modulo MOD (MOD %£255) " " "
29 Q- P modulo MOD "o g " "
30 P + Q modulo MOD " " " "
31 P + Q modulo MOD " P+ QM P+Q=M P+ Q<M

The 16 Logical Connections referred to above are:

Code Logical Connection PO

' 00 01 10 11
0 0 0 0 0 0
1 P'Q 0 0 0 1
2 P.Q 0 0 1 0
3 P 0 0 1 1
4 P-Q 0 1 0 0
5 o) 0 1 0 1
6 PxQ 0 1 1 0
7 PvQ 0 1 1 1
8 P.Q 1 0 0 0
9 P=EQ 1 0 0 1
10 Q 1 0 1 0
11 PvQ 1 0 1 1
12 P 1 1 0 0
13 PvQ 1 1 0 1
14 PvQd 1 1 1 0
15 1 1 1 1 1

H2.14

H2.4 10/23/57

H2.4.2 E, F, and G

The three primary 1-bit signals of the LU -k, 1, and m - are
manipulated in the units E, F, and G to produce other signals which enter
into the streaming operations. These signals are all calculated at the
same time as the byte L. Since they occur in the first segment of the byte
path — from input register to LU — they are available for controlling the
indexing of the registers feeding the LU.

E is the final one-bit output of the Logic Unit. It may be put on the
byte bus, cause SCTR to step, or cause an adjustment. Itis calculated by
specifying in a 3-bit field in the byte~by-byte instruction which of the bits
k, 1, and m are to be or-ed together. The three bits correspond to k, 1,
and m in that order. Thus an E field of 101 in the instruction means that
E consists of the "or'" of k and m.

F is a small memory device used to record changes in E. It takes
its input from E and changes state according to a 3-bit F field in the byte-
by-byte instruction. The coding there means: -

000 Stay on 1 after the first one has been received
001 Change state on 1 :
010 Set to 1 if the previous bit was 0, the current bit 0

011 " 0, " 1
100 " 1, " 0
101 " 1, " : 1
110 Set to 1 if the previous bit and the current bit are the same

111 " are different

F is set to 0 at the beginning of this byte-by-byte instruction and at every
end-of -group signal occurring during the instruction. The output of F may
be put on the byte bus, cause SCTR to stop, or cause an adjustment,

G is a memory device used to infer and record the status of groups
from analysis of the bytes within the groups. It is fed directly by k, 1, and
m from the Logic Unit. G may stimulate the SCTR or cause an adjustment.
Its output may go to R through Gate 9.

This output is an 8-bit byte:
a) For logic operations 0-15:

Bits 0 and 1: 00 = (does not arise)

u

01 = Group connection all 0
10 = Group connection of even parity but not all 0
11 = Group connection of odd parity

H2.15

H2. 4

b)

c)

d)

10/23/57

Bit 2

i

1 if group connection all 0, 0 if not all 0

Bit 3 = 1 if group connection of even parity, 0 if of odd parity

Bit 4 = 1 if group connection of even parity but not all 0, 0 if
of odd parity or all 0 '

Bit 5 = 1 if group connection nbt all 0, 1ifall O

Bit 6 = 1 if group connection of odd parity, 0 if of even parity

Bit 7 = 1 if group connection of odd parity or all 0, 0 if of e‘ven

parity but not all 0
For operations 16-31:

Bits 0 and 1: 00 = (does not arise)

H il

01 = Group P> Group Q
10 = Group P = Group Q
11 = Group P<Group Q

Bit 2 = 1 if Group P >»Group Q, 0 if Group P < Group Q
Bit3 =1 " __>_ 1" , O if " < "
Bit 4 = 1 " - " , 0if " o n
Bit 5 = 1 " < " , 0if n > "
Bit6 =1 " < " , 0if " z
Bit7=1 ' +# " , 0 - N

if "

The output outlined in (b) above does not really have a straightforward
interpretation for operation 31. However it is put in this category
because of the similarity of its k, 1, and m outputs to those of
operations 16-30. '

Selection of the bits for storage thru R is made by BMR and the R
indexing.

H2,16

H2. 5 10/25/57

H2.5 The Functioning of T and U in Byte-by-Byte Streaming

The Table Address Assembler (T) and the Table Extract Unit (U) are
provided to facilitate the referencing and altering of tabular quantities
stored in memory. T forms table addresses from a Base Address and one
or more bytes, while U converts the extracted word into bytes for further
processing.

The word referenced by T may be extracted. If the word lies in the
2-microsecond memory it may also have a 1 or-ed in the addressed bit
after extraction takes place. If the word lies in the 1/2-microsecond
memory the same or-ing can take place. Alternatively, in the 1/2-micro-
second memory only, the 1 may be added in a selected position after the
extraction. These three functions are referred to as "extraction', "or-ing
in memory'", and "counting in memory". '

For extraction, the address formed by the TAA refers to the left-
hand bit of the first byte that is extracted by the TEU, For or-ing in
memory, the address formed by the TAA refers to the bit in memory to
which a 1 is or-ed. For counting in memory, the address formed by the
TAA — after a modification — refers to the bit in memory to which a 1 is
added. For a combined action e. g., extract and count ~ the formed address
may serve two different functions.

H2,5.1 T

The TAA may accept bytes from two sources. The first is the out~
put of MSp through Gate #4, that is, either P or SCTR. The second is
either the output of MS or the output of MS; , depending on whether
Gate #5 or Gate #6 is open. How the bytes enter and are positioned in the
address is determined both by the parameters given in the T setup word
(#10) and by end-of-level signals coming from P and Q.

The sequence of steps performed in forming the table address are:

1) TBA (the Base Address, spe.cified in the setup word) enters the
cleared address accumulator.

2) If Gate #4 is set at 1; a set of bytes from the first source enters the
address accumulator via the T Switch Matrix and is added to the Base
Address. The number of bytes entered is Nyp. The first byte is
positioned so that its leftmost bit is at the start point V (specified
in the setup). (The positions in the table address are labelled 0-23,
as are the other addresses.) The next byte is positioned so its
leftmost bit is at the point V + Ij. The next, at V + 2I;. At the

H2.17

H2.5 10/25/57

end-of-first-level-in~P signal, readin from the first source is dis-
continued. , The position of entry of the last byte from this source
now has another I} added to it.

If Gate #4 is set at Q, there is no read-in from the first source. V
is not incremented.

3) a) If Gate #4 was set at 1, the start point for the second source is
If Gate #4 was set at 0, the start point for the second source
is V.

b) If either Gate #5 or #6 is set at 1 but not both, a set of bytes from
the second source enters the address accumulator via the T
Switch Matrix and is added to the current contents, The number
of bytes entered is Njy. If Gate #5 is open the bytes come
directly from Q. If Gate #6 is open the bytes come from the
Logic Unit. However in this latter case Gate #2 must also be
open — the actual entry can be 0, if necessary. Then the end-of-
level signal from Q will flow along with the bytes to the TAA and
govern the end of the readin. The first byte. is positioned as in
(3a) above. The next byte is at that position plus I, etc., until
all have been read in.

c) If neither Gate #5 or Gate #6 was set at 1, nothing enters from
source two, and the assembling of bytes is complete at the end
of the readin from source one,

4) If during the readin of bytes from either source the input byte
"hangs over' the right edge of the address mechanism, the excess
bits are disregarded. If the positioning address of the input byte is
negative the entire byte is disregarded.

5) If the Memory Distributor Mode Bit (MDM) is 0 the assembling of
the table address is now complete. If MDM is 1, this further operation
takes place: Bits 0-17 of the assembled address are each shifted
two places left. (This destroys Bits 0 and 1.) The two bits from
the Memory Distributor field (MD) are put in the vacated positions
16 and 17. The MD then is increased by 1 modulo 4 and will insert
this increased value into the next assembled table address. It
keeps counting modulo 4 on every subsequent address and thus cycles
the addresses through the four interleaved memory units.

HZ.18

H2.5 ’ 10/25/57

6) If extraction is to be performed, the bit portion of the assembled
address is sent to the TEU. If or-ing in memory is to take place,
the bit portion of the address designates where in the memory word
the 1 is to be or-ed. If counting in memory is to take place, the bit
portion of the address is further modified to determine where in the
memory word the 1 is to be added. See below.

- A 3-bit field in the T setup word specifies the TAA mode (TAM).
The bits refer, respectively, to counting in memory, or-ing in memory,
and extraction, and a 1 means that the function takes place. More pre-
cisely:

TAM: 000 = No memory reference is made. The 24-bit table address is
sent directly to the first 24 bits (#0-23) of U.
001 = The referenced word is extracted from memory and sent
to U.
010 = A 1 is or-ed to the referenced word in memory at the position
designated by the bit portion of the address.
011 = The successive performance of operations 001 and 010.

100 = (1/2-microsecond memory only) A 1 is added to the last
position of the cell in memory containing the addressed bit.
(See below for explanation of cell size.) '

101 = (1/2-microsecond memory only) The successive performance
of operations 001 and 100.

110 Not defined.

111

Counting in memory may take place in cells of size 8, 16, or 32. A
counting cell resides entirely within a single memory word and a word is
completely filled with cells of one size. For the three possible sizes of
cells, one memory word contains either 8, 4, or 2 cells respectively. The
one is added to the righthand bit of the cell. If a cell should attempt to
overflow, the entry in the cell will become all 0's, but the attempted carry
will not propagate to the next cell. Moreover the Memory Counter Overflow
Indicator (Bit #43) will go on so that one may check at the end of the
counting operation to see if any cell did overflow. (A more current check
may be managed for 8-bit cells by monitoring the output of U in MSyj.
However the necessary Match Unit is not always available.)

The cell size is determined by the 2-bit K field in the setup word:

00 =8
01 = 16

101 32
11

H2.19

H2.5 10/25/57

The coding sets up the overflow control, To determine where the 1
is to be added to the memory word, the K field is or-ed to bits 19 and 20 of
the assembled table address. In addition, the number 111 is or-ed to bits
21, 22, and 23 of the assembled address. Thus the 1 can be added to the
memory word only in every 8th position — i,e,, at bit positions 7, 15,
ceas 03, ’

Bit #50 of the T setup word is the Replace Bit (RPL). If it is 0,
everything procedes as described above. If itis 1, everything procedes
as described for the formation of the first table address, However then the
initial base address is replaced by the just-formed first address. And on
every subsequent address formation the base address used is the table
address formed just previously.

H2.5.2 u

The address of the word entering the Table Extract Unit is placed
in the word portion of Sy;. The bit address has already come from the TAA
and has been put both in the bit portion of Sy; and in the BAy field. The left
bit of the first byte to be read out is specified by this bit address. After the
first byte has been read out, the bit portion of Syy is increased by Iyj; this
gives the location of the second byte, etc. The number of bytes read out
is Nyy. The only index reset available in U is'to the beginning of the
reference. In this case BAp replaces the bit portion of Syy, and Myy is
set to 0. ' :

If the bit address of the byte to be extracted is so close to the right
edge of the word that fewer than eight bits can be obtained from U, the
overhanging ones are automatically made 0. If the bit address goes higher
than 63 the carry to the word portion of the address is suppressed. Thus
there is cyclic readout in a slightly degraded sense.

Sy and BAy are not set up. They always get their information from

T. If the operation stops at any time Syj indicates the address of the last
byte read out. BMU specifies Byte Mask U. ‘

H2.20

H2.6 10/25/57

"H2.6 The Match Units (W, X, Y, Z)

Four Match Units are provided to monitor the information passing on
the byte buses. The Match Units may be connected to the buses at any of
four Match Stations (MS's) within the computer. MSp monitors the output
of P; MSQ, the output of Q; MSy,, the output of the Logic Unit and its
associated signals; and MSyj, the output of U. Several Match Units may be
connected to the same Match Station, but no unit may be connected to more
than one Match Station.

The Match Units normally look at every byte. Some automatic
adjustments may specifically disable them for one or more bytes. The
RUNOUT indexing level adjustments also disable them,

The operation of the Match Units is specified in one setup word. For
each unit there are 14 bits, and the same format applies to all:

First 8 bits: The Match Character (W, X, Y, Z)
. Next 3 bits: The point of connection (CON)
Oxx: No connection

100: MSp
101: MSp
110: MSg,
111: MSy
Next bit: The Span Bit (SP)

0: The Match Unit compares all 8 bits of the passing bytes
with all 8 bits of the Match Character.

1: The Match Unit compares only the rightmost bit of the
passing bytes with the rightmost bit of the Match
Character.

Next bit: The Swallow Bit (SW)

0: Regardless of whether or not a match occurs, the bytes
pass the Match Station without alteration.

1: If a byte is matched (regardless of SP or MN setting) the
entire byte is suppressed — taken off the bus — and the
next byte from that sending unit is automatically called for.

Last bit: The ''"Match or No-match' Bit (MN)
0: An adjustment is performed on a match.

1: An adjustment is performed on a no-match.

Note: Swallowing takes place only on matches; adjustment, on either
matches or no-matches.

H2.21

H2. 6 10/25/57

The Match Units may send counting pulses to the SCTR or the
SACC - this is determined by the SCTR and SACC setup in the byte-by-byte
stream instruction. However their main function is to signal automatic
adjustments. The word following the byte-by-byte instruction specifies what
these adjustments are to be. See H2. 8,

In the specification of adjustments the '"simultaneous observation of
W and X or of Y and Z' is referred to. The pair W and X are defined to
signal adjustment simultaneously only when their specified recognition
conditions have arisen and they are connected to the two byte buses entering
the Liogic Unit (one to each bus). If P and Q supply the entries, one of W or
X must be connected to MSp, the other to MSq. If P and U supply the two
entries, one of W or X must be connected to MSp, the other to MSy.

If W or X signal simultaneously in this sense, the W-X adjustment
field is first consulted. If this says '"'sum of actions', the W adjustment
is first performed, then the X adjustment. If it says anything else, this
W-X adjustment is performed and the individual W and X adjustments are
disregarded.

Y and Z simultaneity is defined similarly.
Because of the timing involved in an assembly-line processing of

data, the Match Units are not free to perform unrestricted adjustments. -
The restrictions that insure meaningful results are detailed in H2, 8.

H2.22

H2.7 . 10/28/57

H2.7 The Statistical Accumulator and Statistical Counter (SACC and SCTR)

H2.7.1 SACC
4

The basic function of SACC is to accumulate bytes from either the
Logic Unit or the Table Extract Unit. The input from the Logic Unit is
usually either E or F signals or the data itself from P or Q. The input
from U is generally more important in that two frequently-used statistical
functions can be calculated during a table addressing operation. a) During
a count in memory the function

1 £ -1
-z-zi:fi(fi-l)=z x

1 X =

can automatically be accumulated. b) By using ordinary extraction the
function 3 f; W; can be accumulated. An initial value of SACC may be
set up, and everything is then added to this.

Bytes entering SACC may be unsigned or signed. The bits in SACC
are numbered 0-24, with #24 being its sign. Unsigned bytes enter bits
16-23. With signed bytes the lefthand 7 bits enter bits 16-22 while the
rightmost bit of the byte interacts with the sign bit of SACC. In addition
there is the option of having SACC automatically reset to 0 when its value
becomes negative. The first bit of the SACC mode field (SAM) says:

unsigned bytes
signed bytes.

-— O
1

The second bit of SAM says:

[=]
[H

normal accumulation
reset negative values.

-
IH

Associated with SACC is a Threshold Register (THR) which is set up
in advance. When the SACC value equals or exceeds the THR value a signal ’
is generated which sets a bit in the Indicator Register and which may also
cause a count or automatic adjustment. ‘

Whether or not the SACC is being used as an accumulator it may
also have one-bit counts entered into it or be automatically reset to zero,
as governed by the SACC STEP and SACC RST fields in the stream byte-by-
byte instruction. The counts are entered into Bit 22; this is equivalent to
counting by 2's. The reset is always to 0, not to the initial value.

H2.23

H2, 7 | | | | 10/28/57

The coding for SACC STEP gives the source of the counting pulse:

0000 =
0001
0010
0011
0100
0101 1 at end-of-group
0110 = G = 10 at end-of-group
0111 = G = 11 at end-of-group
1000 = match in W

1001 = match in X

1010 = match in Y

1011 = match in Z

1100 = operation in LU

1101 = byte enters R

1110 = end-of-group

1111 = STOP.

';5
o
o
o
8

Q’#*’jt‘it’l

H U W u i

0
1
0
1
0

LI T N R ¢ J 1

The coding for SACC RST gives the source of the resetting pulse:

00 = no reset

01 = match in Z
10 = end-of-group
11 = STOP.

Care must be used in specifying SACC counting and resetting as some
asynchrony with the byte stream may be involved. Counts are entered in
addition to any bytes being entered. If the same stimulus should be specified
for both counting and resetting, the reset will take place and not the count.

SACC overflow and underflow are also represented in the Indicator
"Register,
H2.7.2 SCTR

SCTR is a counter which can count practically any kind of signal

arising in the Harvest processing units, Its current contents may also be
put onto the byte buses by means of Gate #0. (See H2,3,1.)

H2. 24

H2,7 10/28/57

The pulses which step or reset the counter are designated in the
setup word. The SCTR STERP field indicates the source of the count:

000000 No count

000001 Byte from P If Gate #0 is set at 1
000010 EOL, P these mean the readout
000011 EOL, P of the SCTR controls
000100 EOLyP its stepping.

000101 Byte from Q
000110 EOLQ

000111 EOL,Q

001000 EOLyQ

001001 Byte into R
001010 EOL;R

001011 EOLZR

001100 EOLyR

001101 Operation in LU
001110 Address formed in TAA
001111 Byte into SACC

010000 + (or 0) Byte into SACC} These equal option 001111
010001 ~ Byte into SACC if bytes are unsigned.
010010 SACC Z THR (once for every upward

passage)

010011 SACC becomes negative

010100 Match in W

010101 Match in X

010110 Match in Y

010111 Match in Z

011000 No-match in W

011001 No-match in X

011010 No-match in Y

011011 No-match in Z

011100 Matches in W and X simultaneously (only one count)

011101 Matches in Y and Z simultaneously (only one count)

011110 No-matches in W, X, Y, and Z simultaneously (only one count)
011111 =0

100000
100001.
100010
100011
100100
100101
100110
100111
101000

[IR 1 i1l
[l = N

MEEmEHEE "R

I | B TR T

Hoi—‘o._.o

H2.25

HZ.? 11/12/57

101001 Bit 2 of G is 1 at end of group
101010 " "

101011 "
101100 "
101101 "
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101 "
111110 "
111111 "

(only one count)
1

H
noi

1"

]

"

1o

1

(only one count even if both occur)
1"

oo

H .
—_——_ O O i OO MmO OO W

1

1"

i
i}

(two counts if both occur)
"

o

H
=0 = O O MO OO

LI R 1

1"

4 <d < d 4 < S e

BEHEpEEEEBREEEE |
SRR R B R R N
i

=]
o]
|

i on

"

<

specified

The coding for SCTR RST is:

000 = no reset
001 = match in W
010 = match in X
011 = match in Y
100 = SACC becomes negative
101 = SACC is reset
110 = end-of-group
111 = STOP

Care must also be used in specifying SCTR stepping and resetting as
again asynchrony may be involved. If the same stimulus is specified for
both counting and resetting, the reset will take place and not the count.

SCTR overflow is repreéented in the Indicator Register.

H2.26

H2, 7 10/28/57

H2.7.3 Other quantities in the SACC and SCTR setup words

In the right half of the setup word containing THR are five additional
fields. These fields are not set up, but merely represent the addresses
with which some particular machine registers may be addressed, They
are: '

(E) - The value of E

(F) - The value of F

(Q) - The value of G

(MOD)- The MOD register

(RS) - The "Return to Stream'' bit, which is a 1 if an interruption

occurred at the end of a streaming instruction and the next
instruction was to have been a streaming mode,

H2.27

H2.8 ' 10/28/57

H2.8 Automatic Adjustments

Automatic adjustments are designed to facilitate minor modifications
in the presentation of data and in the operations performed on it. They occur
only in connection with byte-by-byte streaming operatlons See Figure H2.8
for the adjustment word format,

When a byte-by-byte instruction occupies the lefthand 64 bits of the
instruction register, the next word from memory contains the associated
adjustment data and is placed in the righthand 64 bits of the instruction
register, One must be careful not to skip + 1 when leaving a stream byte-
by~byte instruction for this would result in the adjustment word being in-
terpreted as an arithmetic or stream instruction.

The adjustment word is divided into nine parts: the first seven parts
contain seven adjustment codes; the eighth gives the priority among adjust-
ments should several signals arise simultaneously; the ninth identifies the
supplementary signal, if any, The following seven signals are the ones
causing automatic adjustment:

1) W

2)

3) [W-X]: Simultaneous signals from W and X (See H2. 6)
4) A specified supplementary signal

5 Y

6)

Kp) [Y-Z]: Simultaneous signals from Y and Z (See H2. 6)

(The setup information for each match unit designates whether an adjustment
signal is to be emitted from that unit on a match or on a no-match.)

The supplementary signal (SUP) is chosen from the following list:

0 none 16 PZQ (at end of group)
1 E=0 17 P=Q "
2 E=1 18 P<£Q "
3 F=0 19 P<Q "
4 F=1 20 P#Q "
5 E=0and F =0 21 Memory count overflow
6 E=0and F =1 22 HLp
7 E=1land F=0 23 HLg
8 E=1landF=1 24 HLR
9 P >Q (any byte tlme) 25 ECp
10 PzQ " 26 ECq
11 P=Q " 27 ECR
12 P4 Q " 28 STOP (includes 25, 26, and 27)
13 P«<Q " 29 End of Group
14 P#+Q " 30 SACC ZTHR
15 P> Q (at end of group) 31 not yet specified

H2.28

H2. 8 . 10/“;8/57

The priority between W and X is fixed: W always precedes X. The
priority between Y and Z is fixed: Y always precedes Z. The priority
among (WX), (YZ), and S is specified by a two-bit field (PRI):

00: (WX) (YZ) (S)
01: (WX) (S) (Y2)
10 or 11: (S) (WX) (Y2)

There follows a list of automatic adjustments with comments upon
the probable restrictions on their use. The numbering is purely for
reference purposes; the actual coding has not yet been assigned. The re-
strictions indicated are those which insure meaningful application of the
adjustments. Any restriction may be ignored at the programmer's risk.
Restrictions on the combination adjustments (#128-255) are the union of all
the restrictions applying to the individual adjustments making up the
combination. :

No op for single signal; sum of op's for MU combinations—~No restrictions
No op
G and go to I. C. + 2 words I.C. refers to the address of the
" " byte-by-byte instruction, not the
" : adjustment word. The stream must
" drain out as it does for STOP, and
" there consequently are no restrictions.
" There is no automatic method of |
" return to the stream instruction - it
" must be programmed.

e = = 0 00 NION0 D W N O
W N = O
N s T L T =

O N UTR WNE=O-O U B W

—
TS
| B |

17 StoreRand gotol.C. +
18 " +
19 " +
20 " +
+
+
+

—
o~

2 words

21 "
22 "
23 ' r
24 "
25 " -
26 " -
27 " -
28 1" -
29 . " -
30 " -
31 v " , -

0 NN O A W N R0 UL W

H2.

32
33
34
35
36
37
38
39
40
41
41a
41b

42
43
44
45
46
47
48
49
50
51
51a
51b

52

53
54

55

56
57
58
59

Repeat Byte from P
Reset L1 P

Skip Next Byte from P
Runout L1 P

Reset Li2P

Advance LP

Runout L, P

Reset LYHP

Advance LygP

Runout LyP

Runout Field in P
Runout Sequence in P

Repeat Byte from Q
Reset L 1Q

Skip Next Byte from Q
Runout L;Q

Reset LipQ

Advance L2Q

Runout L,Q

Reset LIQ

Advance LyQ

Runout LHQ

Runout Field in Q
Runout Sequence in Q

Repeat Byte in R (Read on top
of last byte)

Reset LR

Skip Next Byte in R (Leave
space in R)

Suppress Next Byte in R-
(Suppress before entering R)
Reset L2R

Advance LR

Reset LR

Advance LyR

10/28/57

The indexing of P can be adjusted by:
1) MU's at MSp if either (or both)
Gates #1 or 4 are open

2) MU's at MSq, if Gates #1 and 2 are
both open or if Gates #4 and 5 are
both open

3) MU's at MSy, if Gates #4 and 6 are
both open
4) MU's
both open
5) End-of-level signals from P, Q,
and U in configurations corresponding

at MSy if Gates #1 and 3 are

‘to MSp, MSq, and MSU above.

6) E, F, and G signals if Gate #1 is
open.

The indexing of Q can be adjusted by:
1) MU's at MSp if Gates #1 and 2 are
both open or if Gates #4 and 5 are both
open ,
2) MU's at MSQ if either (or both)
Gates #2 and 5 are open

3) MU's at MSy, if both Gates #4 and 6
are open

4) End-of-level signals from P and Q
in configurations corresponding to
MSp and MS(above

5) E, F, and G signals when Gate #2
is open.

The indexing of C may be adjusted by:
1) MU's at MSp, if Gates #1 and 10
are both open

2) MU's at MS(, if Gates #2 and 10
are both open -

3) MU's at MSj, if Gate #10 is open
4) MU's at MSy if Gates #3 and 10
are both open or if Gate #11 is open
5) End-of-level signals in con-
figurations corresponding to MSp,
MS@Q, and MSy above

6) E, F, and G signals when Gate #10
is open.

H2. 30

H2.

60

61
62
63
64
65

66

67

68
69
70

71
72

73

74

75
76
77
78

Reset T (Cancel Address)

Repeat Byte from U
Reset L1 U

. 8kip next Byte from U

Runout 1, U

Go to next reference in U
immediately

Skip next reference in U after
finishing this one ‘
Skip all references in U for the
duration of group; do not finish
this one.

Suppress output of Gate #8
Insert P in place of L} P, Q are.

Insert Q in place of L the logical
operands.

Insert MOD in place of L
Reverse P, Q in L definitions
for next byte

Reverse P, Q in L definitions
for remainder of group

Insert MOD in place of U

Ignore W on this byte
Ignore X on this byte
Ignore Y on this byte
Ignore Z on this byte

10/28/57

This adjustment may be made by:

1) MU's at MSp if Gate #4 is open
2) MU's at MS if Gate #5 is open
3) MU's at MSy, if Gate #6 is open.

U indexing may be adjusted by:

1) MU's at MSp when Gates #1 and 3
are both open

2) MU's at MSyy when at least one of
Gates #3, 11, or 13 is open :

3) End-of-level signals from P and U
in configurations corresponding to
MSp and MSy above

4) E, F, and G signals when Gate #3
is open.

The LU may be adjusted for #68-73

1) MU's at MSp if Gate #1 is open

2) By MU's at MSq if Gate #2 is open
3) By MU's at MS(if Gate #3 is open
4) By MU's at MSy, if at least one of
Gates #6, 10 or 12 is open.

Only if Gate #12 had been closed and
#13 open. Controlled only by M5y,

or end-of-level in U. Opens Gate #12
and closes Gate #13 for this one byte
only.

1) Can be given by W,X, Y, or Z only
for MU's with lower priority and when
attached to same MS or if associated
in a sense defined for simultaneous
signals

2) Can be given by SUP (#0-20) with
similar restrictions

3) A match unit should not disable
itself by this adjustment,

H2.31

H2.

79
80
81
82
83
-84
85
86

87

88

89

90

.91

92

93

94
95

Disable W for next byte
Disable X for next byte
Disable Y for next byte
Disable Z for next byte
Disable W for duration of group
Disable X for duration of group
Disable Y for duration of group
Disable Z for duration of group

Step SACC (by 2) (This count is
in addition to any specified by
SACC setup or coming in as a
byte)

Reset SACC

Step SCTR (by 1) (This count is
in addition to any specified by
the SCTR setup)

Reset SCTR

Read last 7 bits plus sign of
SACC into R :

Read last 15 bits plus sign of
SACC into R

Read last 23 bits plus sign of
SACC into R

Read last 8 bits of SCTR into R
Read all 16 bits of SCTR into R

10/28/57

1) Can be given by MU's connected

to same MS or when associated in a
sense defined for simultaneous
signals

2) Can be given by SUP (#0-20) with
similar restrictions,

1) Anytime if SACC is being used
merely as a counter

2) By MU's at MSj, if Gate #12 is
open '

3) By MU's at MSyy if Gate #13 is
open

4) At end-of-group or STOP.

1) Anytime if SCTR is being used
merely as a counter
2) If Gate #0 is open;
a) By MU's at MSp if Gates #1 or
4 are open
b) By MU's at MSQ if Gates #1
and 2 or Gates #4 and 5 are both
open
c) By MU's at MSL if Gates #4
and 6 are both open
d) By MU's at MSyy if Gates #1
and 3 are both open.

Only at STOP or End-of-Group

H2.32

H2.8 10/28/57

128 17 + 68 - 173 75 + 76
129 18 + 68 174 75 + 77
130 19 + 68 175 75 + 78
131 20 + 68 176 76 + 17
132 21 + 68 177 76 + 78
133 22 + 68 178 77 + 18 -
134 23 + 68 ' 179 75 + 76 + 77
135 24 + 68 180 75 + 76 + 78
136 25 + 68 181 75 + 17+ 18
137 26 + 68 182 76 + 77+ 78
138 27 + 68 183 75 + 76 + 77 + 78
139 28 + 68 ‘
140 29 + 68 ~ 184 79 + 80
141 30 + 68 185 79 + 81
142 31 + 68 186 79 + 82

’ 187 80 + 81
143 17 + 69 188 80 + 82
144 18 + 69 189 81 + 82
145 19 + 69 190 79 + 80 + 81
146 20 + 69 191 79 + 80 + 82
147 21 + 69 192 79 + 81 + 82
148 22 + 69 193 80 + 81 + 82
149 23 + 69 . 194 79 + 80 + 81 + 82
150 24 + 69
151 25 + 69 195 83 + 84
152 26 + 69 196 83 + 85
153 27 + 69 197 83 + 86
154 28 + 69 198 84 + 85
155 29 + 69 199 84 + 86
156 30 + 69 200 - 85 + 86
157 31 + 69 201 83 + 84 + 85

202 83 + 84 + 86

158 17 + 70 203 83 + 85 + 86
159 18 + 70 204 84 + 85 + 86
160 19 + 70 205 83 + 84 + 85 + 86
161 20 + 70
162 21 + 70
163 22 + 70
164 23 + 70
165 24 + 70
166 25 + 70
167 26 + 70
168 27+ 70
169 28 + 70
170 29 + 70
171 30 + 70
172 31 + 70

H2, 33

H2.8 10/28/57

206 37 + 47

207 37 + 56

208 37 + 65

209 37+ 47 + 56

210 37+ 65 + 56

211 37+ 47 + 56 + 68
212 37+ 65+ 56 + 68
213 37+ 47+ 56 + 69
214 37+ 65+ 56 + 69
215 37+ 47 + 56 + 70
216 37+ 65+ 56 + 70
217 37+ 47 + 56 + 71
218 37+ 65+ 56 + 71
219 37 + 60

220 47 + 60

221 37+ 47 + 60

222 72 + 79

223 72 + 80

224 72 + 81

225 72 + 82

226 73 + 83

227 73 + 84

228 73 + 85

229 73 + 86

230 56 + 67

H2. 34

HZ2.9 ' ' 10"/'25/57

H2.9 Stream Indicator Bits

Although the streaming mode provides within itself for most
eventualities a few conditions are nevertheless represented in the general
Indicator Register. HoWwever these bits are tested only at the end of a
streaming instruction and an instruction may take a long time to complete,
so too much dependence cannot be placed on them for remedying stream
conditions.

The seven bits referring directly to streaming are:

#43 = Memory Count overflow

#44 = SCTR overflow or underflow
#45 = SACC overflow

#46 = SACC=2THR

#47 = End of Chain in P

#48 = " Q

#49 = " R

i

In addition, Bit #18 is on whenever a streaming mode instruction is being
executed, '

These bits are tested only at the end of an instruction, Once they
go on, they stay on until they are turned off by -

-a) causing an interruption, or
b) a conditional instruction, or
c) a VFL instruction.

All interruption instructions are automatically in arithmetic mode.
Therefore there is a special trigger - the RS bit — which goes on whenever
an interruption occurs at the end of a streaming operation and the next
instruction was to have been in a streaming mode. It stays on until it is
reset, It is addressed as Bit #50 of the setup word containing THR.

H2, 35

H2,10 10/28/57

H2.10 The Hybrid Instructions

In addition to the byte-by-byte streaming operations Harvest provides
a set of sixteen instructions with a format very similar to the format of the
basic VFL instructions. We call these sixteen '"hybrid instructions' since
they are not byte-by-byte but yet utilize or apply to the Harvest concept of
streaming information.

The first eight of them are primarily one-performance instructions,
often occurring at the completion of a byte-by-byte operation. They are
used either to specify some special operation not present in the basic machine
or to generalize some basic instruction in a logically satisfying manner.
STREAM CLEAR MEMORY is representative of the first aim; STREAM
CONDITIONAL BRANCH, of the second.

The second set of eight are true '""hybrid' instructions. They are
closely analogous to some of the basic VFL instructions, but they utilize
the tremendous power, flexibility, and speed that the multiple indexing and
control mechanisms of Harvest provide. They operate on fields and govern
a large number of executions with but one instruction and the accompanying
stream setup. ' '

The instruction formats are given in Figure H2.10.

H2.36

H2.10 10/28/57

H2.10.1 SUBR - STREAM UNCONDITIONAL BRANCH

This instruction is used to store the present contents of the in-

struction counter and to perform an unconditional branch. The branch
address is either relative or absolute.

1.

2.

The Branch Address is modified by the designated index word.

If the indexed branch address is 0 no branch is made, and the next
instruction is designated by the SKIP field.

If the indexed branch address is not 0, the 2-bit Branch Code designates
the location of the next instruction:

00 = Relative branch up: next instruction is taken from location
[Address of present instruction + indexed Branch Address]

01 = Relative branch down: next instruction is taken from location
[Address of present instruction — indexed Branch Address]

10} Absolute branch: next instruction is taken from location

11} [Indexed Branch Address]

If a branch is taken, the present contents of the instruction counter are
stored in the location specified in the instruction (address portion of
designated 1/2-word). If the storage location is 0, no store takes
place.

The BRAM bit applies if a branch is taken; the SKAM bit applies if a
SKIP is made. Each means:

L]

next instruction is in streaming mode
= next instruction is in arithmetic mode.

- O
1

H2.37

H2.10 10/28/57

H2.10.2 SCBR - STREAM CONDITIONAL BRANCH

The instruction produces a branch or not Adep'ending on the parity of
any selected bit in memory. The address of the test bit may be auto-
matically augmented by 1 in preparation for the next test. The parity of the
test bit may be altered or set as desired.

1. The bit address is modified by the designated index word to derive the
location of the test bit. If the indexed bit address is in word 0, the
test bit is defined to be O,

2. If the test bit matches bit 24 of the instruction, a branch is taken. If it
does not match, the instruction designated by the SKIP field is secured.

3. The 2-bit Branch Code applies when the branch is taken:

00 = Relative branch up: next instruction is taken from location
[Address of present instruction + Branch Address]

01 = Relative branch down: next instruction is taken from location
[Address of present instruction ~ Branch Address]

10{.. Absolute branch: next instruction is taken from location

11 [Branch Address]

4, a) If the Branch Address is 0 and the ADV bit is 0, then no branch is
taken, and the normal SKIP applies. ’

b) If the Branch Address is 0 and the ADV bit is 1, then a 6-bit
counter (which is set to 0 at the beginning of the operation) is stepped
by 1 before this instruction repeats. If this 6-bit counter steps to
64, the resultant overflow prevents further repetition of the in-
struction, and the next instruction is taken from SKIP + 1.

5. The BRAM bit applies when a branch is taken; the SKAM bit applies
when the SKIP is taken. Each means:

0
1

next instruction is in streaming mode
next instruction is in arithmetic mode.

I u

6. Whether there is a branch or not, the RST bits modify the test bit after
testing: ‘

00
0l
10
11

leave unchanged
invert

set to 0

set to 1

B i H B

H2, 38

H2.10 10/28/57

This field naturally has no effect if the indexed test bit address was in
word 0.

7. Whether there is a branch or not, the ADV bit modifies the bit address
given in the instruction, after testing:.

0 = leave unchanged'
1 = increase by 1 bit.

H2.10.3 Not yet specified,

H2. 39

H2. 10 10/28/57

H2.10.4 SMOV - STREAM MOVE
The instruction is used to move a field from any register or memory
word to Stream Unit R during a halt in the streaming operations. It is

particularly useful in adjoining identifications to processed fields.

1. Bits 25 and 26 designate the source of the field to be moved:

00 = fixed address
0l =P
10 = Q
11= 70T

2. With option 00 above, the Address (bits 0-23) is modified by the
specified index word to give the location of the first bit of the field to
be moved. With the other three options, bits 0-24 of the instruction
are modified by the index word., For P and Q this entire quantity is
added to the present effective address to give the location of the first
bit of the field to be moved. For U, only the last seven bits (6 + sign)
are added to the present effective address to g1ve the location of the
first bit of the field to be moved.

3. The 13-bit field (12 + sign) labelled "Offset in R" is added to the pre~
sent effective address in R to give the location of the first bit of the-
destination of the field.

4, Now the field of length 1-64 (FL =0 if field length is 64 bits) is moved
to R.

5. After the movement the effective addresses of P, Q, R, and U are set
again to the addresses they possessed before the MOVE instruction
was given.

6. The fields read from a fixed address or from U cannot cross a word
boundary. If such a movement is attempted, the portion of the field
read into R which would have come from the other side of the word
boundary is automatically made all 0's,

7. At the conclusion of the operation, the next instruction is taken from the
location specified by the SKIP field, The SKAM bit means as follows:

0 = next instruction is in streaming mode
1 = next instruction is in arithmetic mode,

H2. 40

H2. 10 : 10/28/57

- H2,10.5 SCSI - STREAM COUNT AND SET INDI\CATOR

This instruction is used to count the number of 0's or 1's in a
designated field and to set an indicator bit depending on the relative sizes
of the count and a comparison field in the instruction.

1. The Bit Address is modified by the designated index word. If the word
part of the address is 0, no operation is performed, and the next

instruction is immediately secured from the location designated by the
SKIP field,

2, If the bit address does not refer to word 0, the field starting at that
bit and of 1en_gth..<_64, as gpecified by FL, is examined and either 0's
or 1's counted according to whether the parity bit is 0 or 1.

3. The number of 0's or 1's counted is then compared with the comparison
value given in the instruction. Indicator bit 61, 62, or 63 is set
according to whether the count was less than, equal to, or greater than
the comparison value. The actual count is available in the counter at
the end of the operation. If the count is 64, the attempted carry is
used to set bit #63. However the counter contents will indicate 000000,

4. If the count is <63, the location of the next instruction is taken from
SKIP, If the count is 64, SKIP + 1 is used. In either case the SKAM
bit means:

0
1

next instruction is in streaming mode
next instruction is in arithmetic mode.

o

H2. 41

HZ2.10 10/28/57

H2.10.6 SCAD - STREAM CONDITIONAL ADJUST

This instruction allows one to perform any two of the adjustment
operations depending on the parity of any selected bit in memory. The
‘address of the test bit may be automatically augmented by 1 in preparation
for the next test. The parity of the test bit may be altered or set as ’
desired.

1. The bit address is modified by the designated index word to derive the
location of the test bit. If the indexed bit address is in word 0, the
test bit is defined to be 0.

2, If the test bit matches bit 24 of the instruction, adjustments are made.
The two 8-bit adjustment fields in the instruction refer to the same
8-bit adjustment codes used for automatic adjustments., Normally
Adjustment 1 will be made first, then Adjustment 2, Then the instruction
designated by the SKIP field is secured.

3. If the first adjustment is a NO-OP the second adjustment is disregarded.
If the first adjustment is a BRANCH, the next instruction is taken from
the designated location, and the second adjustment field and SKIP field
of the present instruction are disregarded. If the first instruction is
neither NO-OP nor BRANCH it is performed; if then the second in-
struction is a BRANCH, the next instruction is taken from the de-
signated location, and the SKIP field of the present instruction is
disregarded, ‘ '

4. The BRAM bit applies when an adjustment BRANCH is taken; the
SKAM bit applies when the SKIP is taken. Each means:

0
1

i

next instruction is in streaming mode
next instruction is in arithmetic mode,.

i

Any branch here to arithmetic mode must refer to an instruction
gstarting at the beginning of a word.

5. Whether there are adjustments made or not, the RST bits modify the
test bit, after testing:

00 = leave unchanged
01 = invert

10 = setto O

11 = setto 1

This field does not apply if the indexed test bit address was in word 0.

H2. 42

H2.10 10/28/57

Whether there are adjustments made or not, the ADV bit modifies the
bit address given in the instruction, after testing:

0 = leave unchanged
1 = increase by 1 bit,

H2.43

HZ.10 10/28/57

H2.10.7 SCLM - STREAM CLEAR MEMORY

This instruction enables one to clear blocks of words in memory.

Two sizes of blocks are available both for the 1/2-microsecond memory
and the 2-microsecond memory.

CLEAR MEMORY

1.

The word address is modified by the specified index word. The bit
portion of the resultant address is disregarded,

A block of memory is now cleared, the block sizes for the two speeds
of memory are given by the LS bit:

' 1/2usec Zusec
0: small 8 words 1024 words
1: large 128 words 16384 words

The block which is cleared consists of the set of éonsecutive words
which starts at a multiple of the block size and which contains the
indexed word address.

After clearing, the next instruction is taken from the location de-
signated by the SKIP field, The SKAM bit means as follows:

0 = next instruction is in streaming mode
1 = next instruction is in arithmetic mode.

H2. 44

H2. 10 ' 10/30/57

H2.10.8 SSTC -~ STREAM STORE AND CLEAR

This instruction transmits a half-word frém one specified location

to another., The source may optionally be cleared.

1.

Z.o

The store address is modified by the designated index word. The last
5 bits of the bit portion of the address do not apply.

The half-word at the source address is stored in the half-word at the
indexed store address, If the source half-word was part of a setup
word and some of the bits were unass;tgned, the unassigned bits are
mapped as zeros, :

After the transfer the source half-word may be cleared:

CL: O = do not clear
1 = clear

After the transfer the index value may be incremented by one half-word.

ADV: 0 = do not advance
1 = advance

After the operation the next instruction is secured from the location..
designated by the SKIP field. SKAM means

0 = next instruction is in streaming mode
1 = next instruction is in arithmetic mode.

H2. 45

H2. 10 . 11/7/57

H2.10.9 SMER - STREAM MERGE

For relatively short records, sorting by moving the records is an
efficient and orderly process. Since the Stream Units provide an automatic
flow of data from memdry, a large part of the bookkeeping associated with
binary merge sorting can be relegated to the SU control mechanism.,

It is assumed that records to be merged are in two blocks. It is
desired to merge the two blocks of records into one block. The ordering of
the records depends upon the relative values of their control fields.

The MERGE instructions used in Harvest permit handling a general
record format, A control field or subfield may be no longer than 64 bits,
and may be offset not more than 4095 bits from the beginning of the record.
If, however, there is only one control field and it occurs at the beginning
of the record, the entire record may be treated as if it were the control
field and its length is virtually unlimited.

The SIMPLE MERGE UP and SIMPLE MERGE DOWN instructions
may be used for merging records for which it is assumed that the control
field is the entire record. Four more MERGE instructions are provided
for more complicated operations., (See Figure H2,10.9a for format.) The
MERGE OFFSET UP and MERGE OFFSET DOWN instructions are used for
merging records having a single control field offset from the beginning of
the records. The MERGE SPLIT UP and MERGE SPLIT DOWN instructions
are used in conjunction with MERGE OFFSET UP and MERGE OFFSET
DOWN for merging records with split control fields. The UP and DOWN
instructions produce ascending and descending sequences, respectively.

Referring to the instruction format shown in Figure H2,10.9a, the
TYPE field is coded as follows:

TYPE | Instruction
00 or 01 SIMPLE MERGE (Type I)
10 MERGE OFFSET (Type II)
11 MERGE SPLIT (Type III)

Figure H2,10.9b shows the general plan of the Merge loop. The
various types of Merge instructions differ in the manner in which they
determine what record is to'be moved. After this has been determined,
the same general control sequence is executed by all six merge instructions.
The control sequence is diagrammed in Figure H2,10.9c.

H2. 46

H2.10 10/30/57

H2.10.9.1 Index Control Parameters

The first level index control parameters for SU-P and SU-Q are used
to define the record: I; is equal to the byte size and Nj is equal to the
number of bytes in a record. The second level parameters define the input
block: I, is equal to the record length in bits (I = NjIj) and N, is equal
to the number of records in an input block. During internal sorting, initially
N; = 1. It doubles after each internal merge pass and has a final value
equal to half the total number of input records that are to be accomodated in
memory. The third level is used to locate the next input block: I3 is equal
to the input block length (i.e., I3 = NpI3), and as such doubles after each
internal merge pass. I; has the initial value I, and the final value equal
to

(half the total number of input records that are to be accomodated
in memory) x (the length of a record in bits).

N3 may be set equal to zero during internal merging.

Only the first level of indexing need be used in SU-R for an internal
or external merge pass. Its parameters define the total output block: Iy
is equal to the byte size and N, is equal to the total number of bytes in the
entire output block.

During an external merge pass N2p and Np(y remain constant at.
half the total number of input records that are to be accomodated in memory.
I3p and I35 may now be set at zero, while N3p and N3Q keep track of the
total input block size. They have an initial value of 1 and double after every
complete external pass.

For internal passes the Merge instructions may be set to branch
after the output block is filled by setting the Branch Point Control Bit, BP,
to the value 1. Filling the output block terminates an internal pass, and
necessary bookkeeping may be taken care of by ordinary programming.

For external passes the BP bit is set to the value zero and the Merge
instructions branch after an input sub-block (second level in P or Q) is
emptied. The external pass terminates when two input blocks (third level
in P and Q) have been merged.

For internal and external passes, the Merge instructions skip
whenever a record has been moved and neither an input nor output block
has been emptied or filled. '

If BP = 1 then whenever moving a record from P (Q) results in an

end of second level in P (Q) a second level runout is executed in Q (P), just
as is wanted in internal merging.

H2.47

H2.10 10/30/57

H2.10.9.2 Type I - SIMPLE MERGE UP (DOWN)

These instructions assume that the control field is the entire record.
FL and OFF are not used. Three gituations can arise:

i) the records are identical;
ii) control fields are identical, but data fields are not;
iii) control fields differ.

In the first case, it is immaterial which record is moved to SU-R.
In the second case, it is assumed that it is also immaterial since the sort
is used to arrange control fields. If this assumption is unsatisfactory, a
MERGE OFFSET must be used. In the third case, the decision as to which
record to move is made on the basis of the relative sizes of the control
fields which begin the record; and only that portion of the records common
to both control fields has already been moved at the time the decision is
made. '

1. Corresponding bytes from two records are compared, and
a. if the compared bytes are equal, the common byte goes to R;
b. if the byte from P is less (greater) than the byte from Q, the

remainder of the record from P is moved to R without further
comparison and index level 1 of Q is reset;

c. if the byte from P is greater (less) than the byte from Q, the
remainder of the recard from Q is moved to R without further
comparison and index level 1 of P is reset;

d. if the records are identical, the bytes are considered as having
passed from P to R, and the first index level of Q is reset.

2. TFor both the UP and DOWN instructions, if the record is moved from
P (Q), and

a. there results an end of second level in P (Q), and
(1) BP = 0, then branch;
(2) BP = 1, then runout the second index level in Q (P); now if

(a) there results an end of first level in R, then branch;
(b) there does not result an end of first level in R, then ekip;

b. there does not resilt ah end of second level in P (Q), then skip.

H2. 48

H2.10 10/30/57

3. Ifa l? is taken, the next instruction is obtained from location
IC + SKIP If SKIP = 0, then the current 1nstruct10n is repeated
(without a new memory reference)

4. For SIMPLE MERGE, SKIP = 0.
5. If a branchis taken, then if
a, BRA = 0, a skipoccurs instead of a branch;

b. BRA # 0, the usual BRANCH CODES apply (see, for example,
Section H2.10.1, Paragraph 3).

6. The BRA is indexed by the contents of the index register specified
by IX.

7. BRAM applies if a branch is taken:
BRAM = 0 next instruction in streaming mode;
BRAM = 1 next instruction in arithmetic mode.
SKAM does not apply, as a skip in merging is always to a stream
instruction,

H2.10.9.3 Type II - MERGE OFFSET UP (DOWN)

This instruction is used to merge records that have a single
control field offset from the beginning of the record. It is also used in

conjunction with MERGE SPLIT (Section HZ. 10. 9. 4) instructions to merge
records whose control field is split into several subfields. The following

control sequence is for non-split control fields.

1. The two control fields of length specified by FL (FL = 0 for fields of
length 64 bits) offset a number of bits specified by OFF from the

beginning of the records are compared: byte -by-byte, from high order

(1efthand) bytes to low order (rlghthand) bytes and if

a. the control field from P is less (greater) than or equal to the
control field from Q, the record from P is moved to R, and
index level 1 of Q is reset;

b. the control field from P is greater (less) than the control field
from Q, the record f.rom s, moved to R, and index level 1 of
P is reset, -

2 and 3. Same as Section H2.10.9.2, Paragraphs 2 and 3.

H2.49

HZ. 10 10/30/57

iy

4. For MERGE OFFSET not used in conjunction with MERGE SPLIT,
SKIP = 0.

5, 6, and 7. Same as Section H2.10.9.2, Paragraphs 5, 6, and 7.

For split control fields, assume there are n subfields (n€8). One
MERGE SPLIT instruction is used for each of the first n -1 subfields, and
a MERGE OFFSET instruction is used for the n -th subfield. In this case,
in Paragraph 1 above the OFF specifies the offset (positive or negative) in
bites from the end of the (n -1)~th subfield; and in Paragraph 4 above,

SKIP = 1 -n,

H2.10.9.4 Type III - MERGE SPLIT UP (DOWN)

‘ This instruction is used in conjunction with the MERGE OFFSET
(Section H2. 10, 9. 3) instruction to merge records whose control field is
split into several subfields. Assume there are n such subfields where
n £8; then n -1 MERGE SPLIT instructions in sequence followed by one
MERGE OFFSET instruction form an instruction loop that will determine
which of a pair of records is to be moved. (The use of the MERGE OFFSET
in this loop is described in Section H2,10.9. 3.)

1. The k -th pair (k=1, ..., n -1) of control subfields of lengths
specified by FL (FL = 0 for fields of length 64 bits) offset a number of
bits (positive or negative) specified by OFF from the ends of the (k -1)th

pair of subfields if k 21 or the beginnings of the records if k = 1 are
compared (by the k -th MERGE SPLIT instruction) byte-by-byte, from
high order (lefthand) bytes to low order (righthand) bytes; and if

a. the control subfield from P is equal to the control subfield from Q,
the instruction at IC +1 is executed [the (k +1)-th MERGE SPLIT
if k<n -1, otherwise the MERGE OFFSET];

b. the control subfield from P is less (greater) than the control subfield

from Q, the record from P is moved to R, and index level 1 of Q
is reset;

c. the control subfield from P is greater (less) than the control subfield

from Q, the record from Q is moved to R, and index level 1 of P
is reset.

2 and 3. Same as Section H2.10,9.2, Paragraphs 2 and 3.

4. For the k-th MERGE SPLIT instruction (k =1,, n-1), SKIP = 1 -k,

H2.50

H2.10 11/1/57

5, 6, and 7. Same as Section H2,10.9.2, Paragraphs 5, 6, and 7.

H2.10.9.5 Merging Files of Unequal Length

The Merge instructions can be used readily to merge two ordered
files of unequal length. The first level index control parameters for SU-P
and SU-Q are used (as in Section H2.10.9.1) to define the record, and I,
is equal to the record length in bits (I = N;I;). Npp is equal to the
number of records in the P-file, while N3 is equal to the number in
Q-file. Since this merge is a one pass operation, the Np's remain fixed.

Once again only the first level of indexing is used in SU-R and it
defines the total output block. 1I; is equal to the byte size and Nj is equal to
the total number of bytes in the entire output block [NflR = N;p (N2p + NZQ)].

_ Finally, the Branch Point Control Bit, BP, should be set to 1 so that
whenever one complete file has been moved to R, the other will be runout
to R also.

H2.51

H2. 10 . 11/6/57

H2.10.10 SSER - STREAM SEARCH

It is often necessary to search through a file of records to find all
records whose control fields are, say, equal to that of another record.
Alternatively, it might be necessary to search for all records whose control
fields are greater than each of the control fields of records in a second
file. Harvest contains a family of SEARCH instructions which permit searchmg
a file under very general conditions.

As in the MERGE instructions, a general record format may be
handled. A control field or subfield may be no longer than 64 bits, and may
be offset not more than 4095 bits from the beginning of the record. Only
SEARCH OFFSET and SEARCH SPLIT instructions are defined, and UP and
DOWN ordering of records does not apply. The SEARCH OFFSET is used
to search records having a single control field offset from the beginning of
the record, while SEARCH SPLIT instructions are used in conjunction with
SEARCH OFFSET to handle records with split control fields. (See
Figure H2.10. 10a for format.)

The SEARCH instructions assume that the file being search is
indexed by SU-P and that the master file (one or more records) is indexed
by SU-Q. If the "'search condition'" is met, the record is moved from P to
R. There are six search conditions that may be chosen from; they are
designated by the three bit SCD field (Figure H2.10. 10a) according to the
following table:

SCD Move record if
000 P=Q
001 - P2Q
010 P<Q
011 P>»Q
100 or 101 P=Q
110 or 111 P#Q

If the file to be searched is in sort with respect to the control fields,
the search operation may be speeded up (provided the search condition is
not P = Q or P # Q) by using an ORDERED SEARCH. This is accomplished
by immediately moving the remainder of the file from P without further '
searching, once the search condition is met. The control sequence shown
in Figure H2.10. 10c shows three entry points A, B, and C. If the
programmer chooses ORDERED SEARCH (operation Types II or III), the
control sequence is entered at B or C; if he chooses RANDOM SEARCH
(operation Types 0 or I), the sequence is entered at A or C (see also
Figure H2,10.10b). The programmer must use RANDOM SEARCH if the
search condition is P = Qor P # Q. Moreover, the ordering of the control
fields must be ascending if the search condition is P2 Q or P >Q,
but descending if the conditon is P£ Q or P<Q.

H2.52

H2.10 ' 11/6/57

If the master file contains more than one record, it may be desirable
to perform a round robin search (each control field from the P-file is com-
pared with each control field from the Q-file). The Round Robin Control
Bit, RR, determines whether or not a new record will be fetched by SU-Q
after each complete examination of the P-file (see Figure H2,10.10c). It
is assumed that the round robin search will be performed only with RANDOM
SEARCH and search conditions P = Qor P # Q.

The TYPE field (Figure H2.10. 10a) is as follows:

TYPE | Instruction
00 RANDOM SEARCH OFFSET (Type 0)
01 RANDOM SEARCH SPLIT (Type I)
10 ORDERED SEARCH OFFSET (Type II)
11 ~ 'ORDERED SEARCH SPLIT (Type III)

H2.10.10.1 Index Control Parameters

The first level index control parameters for SU-P and SU~-Q are used
to define the record: I is equal to the byte size and Ny is equal to the number
of bytes in a record. The second level parameters define the input file:

I, is equal to the record length in bits (I = NyI;), Nz2pis equal to the number
of records in the P-file, and Nz the number of records in the Q-file.

Only the first level of indexing need be used in SU-R. I, is equal to
the byte size. If it is desired to limit the size of the output file, then Ny
should be set equal to the total number of bytes in the entire output file.

If no limitation is desired, then N} may be set to zero.

H2.10,10.2 Type 0 - RANDOM SEARCH OFFSET

This instruction is used to search a file of randomly ordered records
that have single control fields offset from the beginnings of the records. It
is also used in conjunction with RANDOM SEARCH SPLIT (Section H2. 10.10. 3)
instructions to search records whose control fields are split into several
subfields. The following control sequence is for non-split control fields.

I. The two control fields of length specified by FL (FL = 0 for fields of
length 64 bits) offset a number of bits specified by OFF from the
beginnings of the records are compared byte-by-byte, from high
order (lefthand) bytes to low order (righthand) bytes; and if

H2.53

H2. 10 _ 11/7/57

a. the search condition as specified by SCD (see Section H2. 10. 10) -
is satisfied, the record from P is moved to R, and index level 1 of
Qis reset;

b. the search condition is not satisfied, the record in P is bypassed

(index level 2 of P is advanced), and index level'l of Q is reset.
Regardless of whether the record in P is moved or bypassed, if

a. there results an end of second level in P or an end of first level
in Q, and

(1) RR = 0, then branch;
(2) RR =1, then advance the second index level in Q; now if

(a) there results an end of second level in Q, then branch;
(b) there does not result an end of second level in Q, then skip;

b. there does not result an end of second level in P oran end of first
level in Q, then skip.

If a skip is taken, the next instruction is obtained from location

IC + SKIP. If SKIP = 0, then the current 1nstruct10n is repeated (w1th~
out a new memory reference),

For RANDOM SEARCH OFFSET, SKIP = 0.

If a branch is taken, then if

a. BRA = 0, a gkip occurs instead of a branch;

b. BRA £0, the usual BRANCH CODES apply (see, for example,
Section H2.10.1, Paragraph 3).

The BRA is indexed by the contents of the index register specified by IX.
BRAM applies if a branch is taken:

BRAM = 0, next instruction in streaming mode;

BRAM = 1, next instrucltion in arithmetic mode.

SKAM does not apply, as a skipin searching is always to a stream
instruction.

H2. 54

H2. 10 ' 11/7/57

For split control fields, assume there are n subfields (n %8). One
RANDOM SEARCH SPLIT instruction is used for each of the first n -1
subfields, and a RANDOM SEARCH OFFSET instruction is used for the

n -th subfield. In this case, in Paragraph 1 above, the OFF specifies the
offset (positive or negative) in bits from the end of the (n -1)-th subfield;
and in Paragraph 4 above, SKIP = 1 -n.

H2.10.10.3 Typel - RANDOM SEARCH SPLIT

This instruction is used in conjunction with the RANDOM SEARCH
OFFSET instruction (Section H2. 10. 10. 2) to search a file of randomly
ordered records whose control fields are split into several subfields.
Assume there are n such subfields where n £8; thenn -1 RANDOM
SEARCH SPLIT instructions in sequence followed by one RANDOM SEARCH
OFFSET instruction form an instruction loop that will determine whether a
record is to be moved or bypassed. (The use of the RANDOM SEARCH.
OFFSET in this loop is described in Section H2.10.10. 2.)

1. The k ~th pair (k =1, ..., n-1) of control subfields of lengths specified
by FL (FL = 0 for fields of length 64 bits) offset a number of bits
(positive or negative) specified by OFF from the ends of the (k -1)-th
pair of subfields if k > 1 or the beginnings of the records ifk=1 are
compared (by the k -th RANDOM SEARCH SPLIT instruction) byte-by-
byte, from high order (lefthand) bytes to low order (righthand) bytes;
and if

a. it is not determined whether or not the search condition as specified
by "SCD (see Section H2.10.10) is satisfied (that is, if the control
subfield from P is equal to the control subfield from Q), the
instruction at IC + 1 is executed [the (k + 1)-th RANDOM SEARCH
SPLIT if k <n -1, otherwise the RANDOM SEARCH OFFSET]

b. it 1s determined that the search condition 1s satisfied, the record
from P is moved to R, and index level 1 of ¢ Q is reset;

c. it 1s determined that the search condition is not satisfied, the record
in P is bypassed (index level 2 of P is advanced), and index level of
1 of Qis reset.

2 and 3. Same as Section H2.10.10.2, Paragraphs 2 and 3.

4. For the k -th RANDOM SEARCH SPLIT instruction (k = .o, n=1),
SKIP = 1 -k.

5, 6, and 7. Same as Section H2.10.10. 2, Paragraphs 5, 6, and 7.

H2.55

H2.10 11/7/57

H2.10.10.4 Type Il - ORDERED SEARCH OFFSET and
Type III - ORDERED SEARCH SPLIT

The use of these instructions is almost identical to the use of the
Type 0 - RANDOM SEARCH OFFSET and Type I - RANDOM SEARCH
SPLIT. They are used when the file to be searched (P-file) has its records
ordered by control fields.

The control sequence in Section H2.10.10. 2 applies to ORDERED
SEARCH OFFSET if Paragraph l.a. is changed to

"the search condition as specified by SCD (see Section H2. 10. 10)
is satisfied, the record from P and all remaining records from
the P-file are moved to R, and index level 1 of Q is reset",

and Paragraph 4 is ché.nged to
"For ORDERED SEARCH OFFSET, SKIP = 0",

Similarly, the control sequence in Section H2.10.10. 3 applies to
ORDERED SEARCH SPLIT if throughout Paragraph 1 ORDERED replaces
RANDOM, if Paragraph 1.b. is changed to

it _i__s_ determined that the search condition _i_g satisfied, the
record from P and all remaining records from the P-file are
moved to R, and index level 1 of Q is reset',

and Paragraph 4 is changed to

"For the k -th ORDERED SEARCH SPLIT instruction
(k=1, ..., n-1), SKIP = 1 -k'".

H2.56

HZ2.10 - 10/28/57

H2.10.11 SADD - STREAM ADD

This instruction produces“iﬂn R the sum of an operand from P and
an operand from Q. The addition may be accumulative. The number of
operands involved in the intermediate sums as well as the general pro-
gression of operands through memory are defined by the stream indexing.
The field lengths and signs of the operands are defined in the instruction.

1. P and Q supply the two operands, and R forms and stores the results.
All numbers are integral, in binary notation, and, if mgned have a
1-bit sign at the right hand end.

2. SGNp, SGNg, and SGNg specify the signs of the operands and results.
Each means:

00 = unsigned number

01 = unsigned number

10 = signed number, taken with this sign

11 = gsigned number, but taken with opposite sign

3. FLp, FL and FLR give the field lengths. FLp-and FLg may be
from 1 to%/—i (000000 64), and FLi may be from 1 to 128 (0000000 =128),
The FL includes the sign, if present.

4., If a result exceeds FLR, the right hand end of the field remains
anchored and the overflow occurs to the left. These overflow bits are
lost. Indicator Bit #30 is turned on. Moreover, the result may not
occupy space in more than two adjacent words. If it extends to the
left of two consecutive words, those bits are permanently lost. (This
applies to intermediate results, also.) Again #30 is turned on.

5. The indexing mechanisms of P and Q define the start points of fields
only, and are entirely unrestricted. The actual movement of the fields
is done by the basic arithmetic field length mechansims.

6. The R indexing mechanism both positions the results in i‘nemory and
determines the number of results accumulated in one place before
storing. It again defines the start points of fields.

a. If nested indexing is used, accumulation is for the duration of the
first level. If Ny = 1, for example, there is no accumulation of
results. Here I} must equal 0, and is made 0 (for this instruction
only) regardless of the set up specifications.

H2.57

H2. 10 | : 10/28/57

b. If sequential indexing is used, the end of each sequential level in-
dicates the end of accumulation. All the I's on the sequential levels
must equal 0, and are made 0 (for this instruction only) regardless
of the set up specifications.

4

7. The whole operation stops at the end of highest level in R. At the con-
clusion of the operation, the next instruction is secured from the

location specified by SKIP. The SKAM bit acts as follows:

= next instruction is in streaming mode
1 = next instruction is in arithmetic mode.

H2.58

H2.10 10/28/57

H2.10.12 SMPY - STREAM MULTIPLY

This instruction produces in R the product of an operand from P and
and operand from Q. The multiplication may be accumulative. The number
of operands involved in the intermediate products as well as the general
progression of operands through memory are defined by the stream indexing.
The field lengths and signs of the operands are defined in the instruction.

1. P and Q supply the two operands, and R forms and stores the results.
All numbers are intergral, in binary notation, and, 1f signed, have a
1-bit sign at the right hand end.

2. SGNp, SGN@, and SGNp specify the signs of the operands and results.
Each means:

00 = unsigned number

01 = unsigned number

10 = signed number, taken with this sign

11 = signed number, but taken with opposite sign

3. FLp, FLQ, and FLp give the field lengths. FLp and FLn may be from
1 to 64 (000000 = 64), and FLp may be from 1 to 128 (0000000 = 128).
The FL includes the sign, if present,

4. If a result exceeds FLp, the right hand end of the field remains
anchored and the overflow occurs to the left. These overflow bits are
lost. Indicator Bit #30 is turned on. Moreover, the result may not
occupy space in more than two adjacent words. If it extends to the left of
two consecutive words, those bits are permanently lost. (This applies
to intermediate results, also.) Again #30 is turned on.

5. The indexing mechanisms of P and Q define the start points of fields
only, and are entirely unrestricted. The actual movement of the fields
is done by the basic arithmetic field length mechanisms.

6. The R indexing mechanism both positions the results in memory and
determines the number of results accumulated in one place before
storing. It again defines the start points of fields.

a. If nested indexing is used, accumulation is for the duration of the
first level. If Ny = 1, for example, there is no accumulation of
results. Here I} must equal 0, and is made 0 (for this instruction
only) regardless of the set up specifications.

H2.59

H2.10 10/28/57

b. If sequential indexing is used, the end of each sequential level
indicates the end of accumulation. All the I's on the sequential levels
must equal 0, and are made 0 (for this instruction only) regardless
of the set up specifications.

7. The whole operation stops at the end of highest level in R. At the con-
clusion of the operation, the next instruction is secured from the

location specified by SKIP, The SKAM bit acts as follows:

= next instruction is in streaming mode
1 = next instruction is in arithmetic mode.

H2. 60

H2.10 . 10/28/57

H2.10.13 SMLU - STREAM MULTIPLE LOOKUP

This instruction takes a given entry through a succession of tables.
There are two types differing in the generality of the placement of results
and the progression through and location of tables.

1. If the TYPE bit is 0:

a. P's indexing mechanism determines a sequence of 19-bit (1/2-word)
addresses, each of which is the start point address of a 24 bit base
address.

Q's indexing mechanism determines a series of parameters.
R's indexing mechanism determines a series of initial arguments.
b. The general operation will be:

The first argument and the first parameter will look up an entry in
the first table.

The result from the first table and the second parameter will look
up an entry in the second table.

Finally, the result from the last table will replace the original
argument in the memory word.

c. P determines the sequence of base addresses for the successive
tables. If P uses sequential indexing, the end of each sequential
level defines the end of the table lookup process on one argument.

If P uses nested indexing the end of the lst level defines the end of
the table lookup process on one argument. The 24-bit base
addresses go in parallel to the TAA mechanism and are added to the
base address specified in the TAA setup.

The entries from Q are added to the combined base address just -
mentioned. They are positioned by the second level of TAA indexing.
The number of bytes coming from Q is determined by the 1st level

of indexing of Q. All levels must be nested.

R supplies the initial argument. It, and intermrediate arguments, are
added to the partially formed address in TAA. They are positioned

by the first level of TAA indexing. The number of bytes coming from
R is determined by the lst level of indexing of R. All levels of indexing
must be nested. The initial arguments must be of length £ 24 and
cannot cross word boundaries. The intermediate arguments must

H2. 61

H2.10 10/28/57

be of the same length as the initial ones and also cannot cross word
boundaries. The first levels of R and U must be set up identically.

d. BMp, BMR, and BMy must be specified.
e. The whole opefation stops at end of highest level in R.
2. If the TYPE bitis 1:
a. P's indexing mechanism determines a series of initial arguments.
Q's indexing mechanism determines a series of parameters.
R's indexing mechanism determines the storage location of the results.

The intermedidte values themselves contain information about the
base address of the next table.

b. The general operation will be:

The first argument and the first parameter look up an entry in the
first table.

The result from the first table and the second parameter look up.
an entry in the second table.

Finally, the result from the last table is stored in a designated
location.

¢. The first level of indexing of P defines the initial argument. All
levels must be nested. The bytes from P act as the first source for
T for the first look up. Intermediate results come from U and must
be of the same size as the initial arguments. These intermediate
results act as the first source for second and later look ups.

The parameters from Q act as the second source for T. All levels
must be nested. The end of the successive lookups on one argument
is determined by the end-of-second-level signal in Q.

R stores the final results.

The intermediate results cannot cross word boundaries in U.

Either the intermediate results or the parameters must contain the

locations of the base addresses of successive tables relative to the
original base address. A few bits often suffice.

H2.62

H2.10 10/28/57

d. BMp, BMg, BMpg, and BMy must be specified.
e. The operation stops at end of highest level in P.

3. When the operation stops the next instruction is secured from the
location specified by the SKIP field. The SKAM bit says:

0
1

next instruction is in streaming mode
next instruction is in arithmetic mode.

H oy

H2.63

H2.10

H2.10.14

10/28/57

SILS - STREAM INDIRECT LOAD AND STORE

This instruction transmits fields from Q to R. FEither the address

of Q or the address of R is an indirect address obtained by table lookup with
data from P as the arglment.

I.

4.

Bit LS specifies LOAD or STORE:

0
1

=

LOAD (indirect address for Q)
STORE (indirect address for R)

The data specified by the first level of P reads into T as the first
source.

There is no second source. P indexing must be nested.

The TAA behavior is as follows:

TAM: 000

KK:

001

i

o11}

100
101
110
111

After SQ

olc]_

Huu

The assembled address is sent to S or SR for LS= 0 or 1,
respectively.

The reference is sent to Sy or Sy for LS = 0 or 1,
respectively.

The address portion of the half-word referenced by the °
first 19 bits of the assembled table address is sent to S
or SR for LLS = 0 or 1, respectively. Then the bit in
memory addressed by the whole 24-bit assembled table -
address has a 1 or-ed to it.

(1/2-microsecond memory only) The address portion of
the half-word referenced by the first 19 bits of the assembled
table address is sent to SQ or Sp for LS =0 or 1, re-
spectively. Then this same address portion of the memory
word has a 1 added to it in a position determined by the KK
field. (The K field of the T setup is not effective.)

1 added in position 20 of address (count by 8 bits)

" 19 " (count by 16 bits)

" 18 " (count by 32 bits)

" 17 " (count by 1 word)

" 16 " (count by 2 words)
" 15 " (count by 4 words)
" 14 " (count by 8 words)
"o 13 " (count by 16 words)

or Sy is supplied with an indirect address (LS = 0 or 1,

respectively) the data specified by the first level of Q is transmitted
serially to R.

H2. 64

H2. 10 10/28/57

5. a. For LS = 0 (load) all stream indexing for P, Q, R, and T must be
specified except S, second and higher levels of Q, and Iy,

Is

b. For LS = 1 (store) all stream indexing for P, Q, R, and T must be
' specified except Sg, second and higher levels of R, and I2T.

6. The operation stops at the end of highest level in P. The next
instruction is located by the SKIP field. The SKAM bit means:

0 = next instruction is in streaming mode
1 = next instruction is in arithmetic mode.

H2. 65

HZ. 10 11/8/57

H2.10. 15 SSEL - STREAM SELECT

The SELECT instructions provide an efficient method for selecting
from a file of records that record with the least or greatest control field.

. As in the SEARCH instructions, a general record format may be
handled. The maximum permissible control field or subfield is 64 bits, and
the maximum permissible offset is 4095 bits. SELECT OFFSET and
SELECT SPLIT are defined, and UP and DOWN ordering does not apply.
The SELECT OFFSET is used with records having single control fields,
while SELECT SPLIT is used in conjunction with SELECT OFFSET for
records with split control fields.)

Figure H2.10.15a gives the format for the SELECT instruction. The
Least-Greater Control Bit, LG is coded as follows:

LG | Action
0 Select least
1 Select greatest

The TYPE field is coded as-follows:

TYPE | Instruction
0 SELECT OFFSET (Type 0)
1 SELECT SPLIT (Type 1)

Figure H2.10. 15b shows the SELLECT control sequence.

H2.10.15.1 Index Control Parameters

Only one record file is involved. The address of the first record is
setup initially in Sy the address of the second record is setup in Sp.

The first level index control parameters for all three stream units
define the record: I is equal to the byte size and N, is equal to the number
of bytes in a record.

The second level parameters are needed in P only, and define the
input file: I, is equal to the record length in bits (Iz = N1 Ij) and N2p is
equal to the total -number-of-records-in-the-file minus one.

I12. 66

H2.10 bi/8/57

HZ2.10.15.2 Type 0 - SELECT OFFSIT LEAST (ZREATEST)

The instruction is used with records having a single control field.
It is also used in conjunction with SELECT SPLIT (Section H2.10. 15, 3)
instructions to select from records whose control fields are split into several
subfields. The following control sequence (see Figure H2.10. 15b) is for
non-split control fields.

1. The two control fields of length specified by FL (FL = 0 for fields of
length 64 bits) offset a number of bits specified by OFF from the
beginnings of the records are compared byte-by-byte, from high order
(lefthand) bytes to low order (righthand) bytes; and if

a. The control field from Q is less (greater) than or equal to the
control field from P, the first index level of P is advanced and
SQ is reset;

b. the control fieldfrom Q is greater (less) than the control field frorﬁ
P, then Sp is reset and replaces 5S¢, and the first index level of P
is advanced.

2. Regardless of whether S, is reset or replaced, if
a. there results an end of second level in P, the first index level of Q
is run out (i.e., the record addressed by S50 is moved to R) and a
branch is taken;
b. There does not result an end of second level in P, then SKIP.
3. If a skip is taken, the next instruction is obtained from location
IC + SKIP. If SKIP = 0, then the current instruction is repeated
(without a new memory reference),
4, For SELECT OFFSET, SKIP = 0
5. If a branch is taken, then if

a. BRA = 0, a skip occurs instead of a branch;

b. BRA # 0, the usual BRANCH CODES apply (see, for example,
Section H2.10.1, Paragraph 3).

6. The BRA is indexed by the contents of the index register specified by IX.

H2.67

H2.10 11/8/57

7. BRAM applies if a branch is taken:
BRAM = 0, next instruction in streaming mode;
BRAM = 1, next instruction in arithmetic mode.

SKAM does not apply, as a skip in selecting is always to a stream
instruction.,

For split control fields, assume there are n subfields (n%8). One
SELECT SPLIT instruction is used for each of the first n -1 subfields, and
a SELECT OFFSET instruction is used for the n -th subfield. In this case,
in Paragraph 1 above, the OFF specifies the offset (positive or negative) in
bits from the end of the (n -1)-th subfield; and in Paragraph 4 above,

SKIP = 1 ~n. :

H2.10.15.3 Typel - SELECT SPLIT LEAST (GREATEST):

The instruction is used in conjunction with the SEARCH OFFSET
instruction (Section H2. 10. 15. 2) for records whose control fields are split
into several subfields. Assume there are n such subfields where n £ 8;
then n -1 SELECT SPLIT instructions in sequence followed by one SELECT
OFFSET instruction form an instruction loop that will determine whether
the Q record address is to be reset or replaced. (The use of the SELECT
OFFSET in this loop is described in Section H2. 10. 15, 2.)

1. Thek-thpair(k=1, ..., n-1) of control subfields of lengths specified
by FL (FL = 0 for fields of length 64 bits) offset a number of bits
(positive or negative) specified by OFF from the ends of the (k -1)-th
pair of subfields if k >1 or the beginnings of the records if k = 1 are
compared (by the k -th SELECT SPLIT instruction) byte-by-byte, from
the high order (lefthand) bytes to the low order (righthand) bytes; and if

a. the control subfield from Q is equal to the control subfield from P,
the instruction IC + 1 is executed [the (k + 1)-th SELECT SPLIT
if k<n-1, otherwise the SELECT OFFSET] ;

b. the control subfield from Q is less (greater) than the control subfield
from P, the first index level of P is advanced and Sq is reset;

c. thecontrol subfield from Q is greater (less) than the control subfield
from P, the Sp is reset and replaces Sy, and the first index level
of P is advanced.

2 and 3. Same as Section H2. 10. 15, 2, Paragraphs 2 and 3.

H2. 68

H2.10 ' : : 11/8/57

4. For the k~th SELECT SPLIT instruction (k =1, ..., n-1),
SKIP = 1 -k. ‘
5, 6, and 7. Same as Section H2.10.15.2, Paragraphs 5, 6, and 7.

H2.10.16 Not assigned as yet.

H2. 69

REGISTER ADDRESS
13(16,19)

14 (17,20)

15 (18,21)

AS NEEDED,
CONTROL LEVELS
OTHER THAN
THE FIRST
ARE STORED

IN REGISTERS

27 (29,31)
AND
28 (30,32)

-
STREAM UNIT P(Q,R; ADDRESS REGISTERS

o T 38 52
FIRST CONTROL LEVEL
iq m 373 T4 6 Ie'1TUNE
| T |4 | N CMRLL
14 36 A4 XN
56 57 58 59
i)
25) I lt 3 4 M 0
0 36

SECOND CONTROL LEVEL IDENTICAL TO FIRST BUT STORED AT Ho & Ho+1
THIRD CONTROL LEVEL

25 I | B 3e N S MHeTTNE
N LCMRL
0 32 FE AN
55 56 57 58 59
25] I T YA IE " 10 3
0 32

ALL OTHER CONTROL LEVELS ARE IDENTICAL TO THIRD

STREAM INDEX CONTROL PARAMETERS

FIGURE H1.1a

SETUP WORD
1 @4,7)

2 (58)

3 (6,9)

STORED AT
Ho+ 2

Ho+3

STREAM UNIT

N

PARAMETER

Sp

HpP
BMp

Ip
Nip

(CONTROL dITS)p

Jip
Mip

Sa
Hq
BMq

Iiq
Niq
(CONTROL B|T3)|Q

Jig

Nir
(CONTROL BITS),q

JIR
Mir

ADDRESS

13.0

13.38
13.52

14.14
14.36
14.56

15.0
15.36

16.0

16.38
16.52

17.14
1736
17.56

18.0
18.36

19.0
19.38
19.52

20.14
20.3€
20.56

21.0
21.36

FIELD LENGTH

REGISTER

24

STREAM INDEX ADDRESSES

FIGURE H1.1b

-

16

20

2l

NESTED & TRIANGULAR : SEQUENTIAL
Y IMx =07 |
. /

S —BAR S—=BAR
READ READ
BYTE BYTE
]
Mx+ | —e=Mx Mx+1—=Mx
‘St+Ix—=S S+Ix —=S
Jx+Ix—==Jx

S+dx —=S | ;
O—eMx X | —~X

0 — Mx
0 —=Jx

STREAM INDEXING CONTROL SEQUENCE

FIGURE H1.3

8 BITS

e - - — —— o

TIME

Osl

NOTE : |
L4 ---- READ BYTE
- — |INCREMENT EFFECTIVE
8 __ ADDRESS
I <+— DECREMENT EFFECTIVE
8 ADDRESS
-EI-—--
=30 =12
=22
---—8——-—
I
——-8——-
I
8 ___
Ii
Ji
I2
——‘8—-—
& LI
LI
| _8_ __
| 2
Ji
Iz
J2:=312=66 -I
]
2 % 9 e ¢ 2 ¢ e ¢ ¢ 9 <
A 5on ik g N -
£ E PR S8R 5
Lo -t o+
r N
L

EFFECTIVE ADDRESSES AT CORRESPONDING TIMES

NESTED INDEXING (TWO LEVELS)

FIGURE H1.6.1

TIME

NOTE:

4 BITS ---- READ BYTE
1 =4 — INCREMENT EFFECTIVE
' ADDRESS
4 ~— DECREMENT EFFECTIVE
L ADDRESS
4 _
I
4=8
——4——
Eealid
| 4.
I
Jo=-28
I3=48
4.
I
4
I
ETC.
38 3 @ g 88 3 ¢ ¢
=% % IR 5 5 5
£ ¢ g z %
F

EFFECTIVE ADDRESSES AT CORRESPONDING TIMES

SEQUENTIAL INDEXING
(SEQUENCE OF TWO LEVELS NESTED IN A THIRD)

FIGURE H1.6.2

TIME

NOTE:
---- READ BYTE
— [NCREMENT EFFECTIVE ADDRESS
<—— DECREMENT EFFECTIVE ADDRESS

1=4
[9i2_
I)
93
I
Ji = B3I =(12
b= 41,416
L
-‘13.2.2- OBSERVE CHANGING COUNT N.
|l I
G23_
I
J| = 21|=8
Iz .
933
I
J =1,=4
Ip
———————
Jp=310248
g ¢ ¢ ¥ @ g 9 e ¢ <
R A A S R o
v L g
b ‘3\ ¥

EFFECTIVE ADDRESSES AT CORRESPONDING TIMES

TRIANGULAR [INDEXING
(UPPER RIGHT MATRIX TRIANGLE)

FIGURE HI.6.3a

" NOTE:

r.?... ---- READ BYTE
=4, — INCREMENT EFFECTIVE
Ji=L=4 ADDRESS
154 —~=— DECREMENT EFFECTIVE
oz ADDRESS
I
93|
I
J;=21|=8
I
W & OBSERVE CHANGING COUNT N,
= L AND NEGATIVE INCREMENT I3
- __0_2" .
L
as
Iy
J =3[0 =12
I>
/ J2=312=-;|2
! |
3 5 5 6 %
S % 5 ¥ ¢
PR "‘:p e,
Ox N ox
% 5 &
Y 2 v
Vax /“
% b,
SR
o
>

EFFECTIVE ADDRESSES AT CORRESPONDING TIMES

TRIANGULAR INDEXING
(LOWER RIGHT VECTOR TRIANGLE)

FIGURE HI|.6.3b

A S S |
MEMORY? W | X l Y | Z
1 " ne e
Po 64 Pi 64
> ' W XYZ
r Y/
SMe BMp MSP 8
64+8) R
SCTRe] ,
B
W XY 2
\\
8
SMq BMq MSq]
64+8 1 2)(3 4 5)(6
8 8 8 8
ey se s | SMr
Qo Qi Vg nem oL T(TAA) S [MD]
G = L__ [0 (MEMORY)
MEMORY 8 g N m__
A U (TEU)
W SMuy
MSL X 1 8
_ ; BMuy
SMR |e N L8 jﬁ?
8+64 MSU Y
A e
12
Ro Ri 8, _
1 2
SACC 24 1
CLVIEMORY THR 241] STREAM DATA PATHS

FIGURE H2-1

cBbe

19 4 |9 : ’
SUBR BRA | IX IC STORE If?ﬁes oooonEFmplz
(o] 28 3 5 5354 5960
24 pl2 TA 19 2 AL ol
scer[** T8 ADDR | [R&ptx BRA | coaJaeE[ooouHsmpl_
0] X 252728 32 8 5354 5960
4 WA | BA 2 Ma 6 13] R n
SMOV o=t sl 1x | FL|° oFFinR X oom las""".
(] 8 32 8 54 5? 60
24 R3/a [6 6 B
COMP
scs| WA | Ba EX|x | FL [come onoonlﬁlsxupp
0 24 28 32 38 54 5960
24 2 A4 8 8 S{4
scap|~ TB ADDR l Hﬁsm IX | ADJL1 | ADJ 2 0101 [Kls|t
2452728 32 40 54 5960
SCLM WA L '1x 010! |Klskilt
0] 28 54 5960
ssTc[°STORE ADDR | 0 °1x | ° source aoor | XJonr R elt
0 %2728 32 54~ 5960
19 R 14 6 13 2 4
SMER BRA | o gﬁ X | FL OFF Itcogﬂtoool G
(] 4252728 32 38 Sl 5354 60
SSER ﬁ BRA Seol 3 1x|° FL | oFF |.*.le BR|§‘IOOII Skplt
o 22 252728 3 38 5354 60
2SR si2s 6 6 7 4
SADD L Solad FLp | FLg | FLg [o]le! l skipfY
224 26 32 38 44 54 59 60
2S2S2S 6 6 7 4
+
SMPY bSaSaS FLp | FLa| FLR lon gsx.q-
2 24 26 32 38 44 54 5960
Si4
SMLU N 1001 [§lswpf?
27 54 5960
3 2 ol
SILS KKls o [§iskelt
24» 54 59 60
sseL [® BRA Sl P 2 orr ferl o [iSelt
o] 262728 32 38 51 5354 60

OP CODES OOIO!I & 11111 NOT AS YET ASSIGNED

HYBRID

STREAMING MODE
INSTRUCTION FORMATS

FIGURE H2.10

10

SETUP REGISTER

I3

14

20

2l

22

23

24

25

26

27

5

28

29

30

31

32

SETUP WORD

FORMAT
24 4 TN\a 12 :
Sp | Hp ® BMp
0 38 52
14 i ' a 14 6 el
| e |t Nip ;ﬁaﬁ
14 36 56575859
25 <3k 0
J‘IP ' t MIP
) 36
* Sa | ? Mg 8 BMg %
) 38 52
i4 T a4 6 —TEhTUNa
| o [Nio %MRE
T
14 36 565758 59
T3 0 23
25 Jig | | 2 Miq
) 36
24 Sn | <3 T2 n, 5 BM,
) 38 52
: "} uR It K* N s TellTL
R A iR .OMR
14 36 5& 5758 59
25 3 <34
? 1R | E I 0 3
) 36
24 4.T\4 16 6 M2
TBA l Iit 1Y° Iop 6 v IEI:S;ZK[&MD
5 32 38 a 5 52 55 5758
3 3
24 (Sy) | ®ap "My (5 Ny N7y, 18 BMy
) 26 32 38 25 52
8 3 sSM8 3 OJJSM 8 3 CJSswm 3 Cds
W 2 P! Y wN__ 2 PN
 ep 14 2 252627 32 40 43333546 54 575859
25 SACC It X sctR 19 &
0 34
25 THR A E® 6) [® mop B
6) 25 3233 34 42 50
25 4 118 1]
fue i Nue ekt
0 32 55565758 59
25
Jup H X|® Mup 9
0 32
[25 18 -
Inq It NHQ 2 EE"&;E &
0 32 55565758 59
5
JHQ [I 4118 MHQ o) 4
0 32
25 I8 5 HENT
ThR It NHR ML
32 LN
5556 5758 59
[ﬁ T i 38 Mir) 7}
0 32

HARVEST SETUP

FIGURE H2.2

20

INSTRUCTION WORD

8

3 4 !
“ paTa GATING F °F [&s [° mop [Stor{Sacel [Psctr [3 ['%C?EPC"D%"EI‘?K'P'f
<

4 4 153 [
0 14 17 20 24 32 36 SAOC C.42 SSTR 55 89 60
RST RST

STREAMING MODE
BYTE-BY-BYTE FORMAT

FIGURE H2.4

ADJUSTMENT WORD

8 8 8 2B
'w B x [Pwx [Supanyl® v z Y-2 pa{ SuP
(o) 8 16 24 32 40 48 57 59

STREAMING MODE
ADJUSTMENT FORMAT

FIGURE H2.8

10011 Ngmgw[!

+|2

O-NEXT INSTRUCTION STREAMING MODE IF BRA

I=NEXT INSTRUCTION ARITHMETIC MODE IF BRA
OO-RELATIVE BRANCH UP

[T
S O1-RELATIVE BRANCH DOWN
10
o | ”}- ABSOLUTE BRANCH
l._.Ll
o 0-NO ROUND ROBIN
. / | -ROUND ROBIN
EE 00 -RANDOM SEARCH OFFSET (TYPE O)
39iT——_| Ol —RANDOM SEARCH SPLIT (TYPE I)
g |0 -ORDERED SEARCH OFFSET (TYPE II)
ll1~ORDERED SEARCH SPLIT (TYPE II)
000 - P<Q
00l- P2Q
010 - P<Q
< Oli- P>Q
o
@ 100
o1~ P=Q
o 1o
m} P#Q

STREAMING MODE SEARCH FORMAT

FIGURE H2.10.10qa

o (55—
G
o (EB)
=

0
(N

SCO |7
Is P£Q?

O

RUNOUT
LEVEL 1
OF P

ORDERED

RUNOUT
LEVEL 2
OF P

STREAMING MODE
SEARCH CONDITIONS

FIGURE H2.10.10b

ADVANCE
LEVEL 2
OF P

RUNOUT
LEVEL 1
IN P

(®

RUNOUT
LEVEL 2
NP 7

ADVANCE
LEVEL 2
IN P

1

RESET
LEVEL |

IN Q

END OF LEVEL

N 2 IN P OR LEVEL
1 IN RZ

ROUND ROBIN

ADVANCE
LEVEL?2
IN Q

END OF

LEVEL 2

IN Q? /

GO TO
IC+ SKIP

STREAMING MODE
SEARCH CONTROL SEQUENCE
FIGURE H2.10. 10¢

BRANCH

TEST BRANCH
CODE; SEE
BRAM

- Y

8 Q
o4 MEM - ¥

o= MEM

2%
295
295

[}
TABLE f t
BASE ——— - - -

ADDR

i+l

STREAMING MODE
STREAM MULTIPLE LOOK UP DATA FLOW
TYPE O

@ 8 8 8 -
-a-{U —---—-—..IU-——- fost |J —%ﬂ?l)
] MEM ' o~ MEM ‘ | ={ MEM
. 8 + @ 8 _| + @ 8 +
TABLE r | T
BASE el ‘)
ADDR

i+1—>j

. STREAMING MODE
STREAM MULTIPLE LOOK UP DATA FLOW

TYPE I

FIGURE H2.10. 13

SSEL

O-NEXT INSTRUCTION STREAMING MODE IF BRA
| =NEXT INSTRUCTION ARITHMETIC MODE IF BRA

I l%l mor it

OO -RELATIVE BRANCH UP
| Ol —RELATIVE BRANCH DOWN

& 10

© Y —~ ABSOLUTE BRANCH
2

-

.
©

o

bi'&\‘l O - SELECT LEAST

| - SELECT GREATEST

0 -SELECT OFFSET (TYPE O)
| -SELECT SPLIT (TYPE I

BRA

9

STREAMING MODE
SELECT FORMAT

FIGURE H2.10.150

SELECT LEAST (GREATEST)

ADVANCE

LEVEL 2
IN P

RESET
Sa

Sp
Sp—+Saq
1
ADVANCE
LEVEL 2
INP
L
i
END OF
O
N LEVEL 2
~ IN P?
NO BRANCH

RUNOUT
' LEVEL 1
IN Q

/ Is
BRA

GO TO
Ic +SKIP

STREAMING MODE

SELECT CONTROL SEQUENCE

FIGURE H2.10.15b

BRANCH

TEST BRANCH
CODE; SEE
BRAM

CONDITIONAL BRANCH

0 —SBC

-

L(TB) = BA+IX
1G=TB

N |>T8

NO BRANCH
@=—1Is TG PB?)—{T ~——10~TB
'

NO BRANCH
Is BRA=07?

BRANCH|

BA+ADV—=BA

ABSOLUTE
NO COUNT , COUNT
Is ADV=0 7 R
RELATIVE DOWN
SBC+1+SB IcGOrSTR% -
GO TO OVERFLOW '
IC +SKIP Is SBC < 647] RELATIVE UP
| GO TO
60 TO IC + BRA
—— |
IC +SKIP+1
SEE . | 4
SKAM
SEE
BRAM

STREAMING MODE

CONTROL SEQUENCE FOR
CONDITIONAL BRANCH

FIGURE H2.10.2

CONDITIONAL ADJUST

l

L(TB)=BA+IX
TG=T8B

NO ADJUSTMENT A

@-——-(Is TG = PB?

NO ADJUSTMENT

~—()=—Is ADJ1=NO OP?
ADJUST

ADJ1=BRANCH?

\

BA+ADV—=BA

DO ADJ 1

NO 2nd ADJUSTMENT,

~—Des ADJ2=NOOP?>—~(r\D——l
ADJUST

BRANCH

s ADJ2=BRANCH?)—s(Y —1 1
e———— DO ADJ 2 Do BRANCH
SPECIFIED BY
GO TO ADJUSTMENT
IC + SKIP OP CODE
SEE
SKAM

STREAMING MODE
CONTROL SEQUENCE FOR
CONDITIONAL ADJUST

FIGURE H2.10.6

SMER

X
a
+&
o
g P O-NEXT INSTRUCTION STREAMING MODE IF BRA
= wvee | ~NEXT INSTRUCTION ARITHMETIC MODE IF BRA
oN
I OO-RELATIVE BRANCH UP
3055 Ol—RELATIVE BRANCH DOWN
P
n § llol}—ABSOLUTE BRANCH
(®)
2]
-
('S
[7e]
< O ~MERGE UP
"HE°/ | =MERGE DOWN
.N_ O .
(e o~ SIMPLE MERGE (TYPE I)
> |0~ MERGE OFFSET (TYPE II)
Il - MERGE SPLIT (TYPE)
0-NO 2nd LEVEL RUNOUT; BRANCH AFTER INPUT
BLOCK EMPTIED
| -2nd LEVEL RUNOUT;BRANCH AFTER OUTPUT
- BLOCK FILLED
1 4
@®
o)

STREAMING MODE
MERGE FORMAT

FIGURE H2.10.9q

(START)

SKIP TO
BEGINNING
OF LOOP

1

DETERMINE
RECORD TO
BE MOVED

MOVE
RECORD

|

END OF
BLOCK?Y

BRANCH TO
SUBROUTINE

STREAMING MODE
GENERAL MERGE LOOP

FIGURE H2.10.9b

DETERMINE

RECORD TO
BE MOVED 1
MOVE RE- MOVE RE-
CORD FROM CORD FROM
P Q
RUNOUT LEVEL I| RUNOUT LEVEL |
OF P OF Q
RESET LEVEL | RESET LEVEL |
OF Q OF P

END OF \

END OF
N LEVEL 2 LEVEL 2
OF P? OF Q7

RUNOU BRAN. RUNOUT

RUNOUT RUNOUT
LEVEL 2 LEVEL 2
OFQ OF P

END OF
LEVEL |

OF R?

! TEST
GO TO Is BRA=0? BRAN. CODE
IC + SKIP SEE BRAM

SEE SKAM

STREAMING MODE
GENERAL MERGE CONTROL

SEQUENCE

FIGURE H2.10.9¢

	000
	001
	002
	003
	004
	H1.01
	H1.02
	H1.03
	H1.04
	H1.05
	H1.06
	H1.07
	H1.08
	H1.09
	H1.10
	H1.11
	H1.12
	H1.13
	H1.14
	H2.01
	H2.02
	H2.03
	H2.04
	H2.05
	H2.06
	H2.07
	H2.08
	H2.09
	H2.10
	H2.11
	H2.12
	H2.13
	H2.14
	H2.15
	H2.16
	H2.17
	H2.18
	H2.19
	H2.20
	H2.21
	H2.22
	H2.23
	H2.24
	H2.25
	H2.26
	H2.27
	H2.28
	H2.29
	H2.30
	H2.31
	H2.32
	H2.33
	H2.34
	H2.35
	H2.36
	H2.37
	H2.38
	H2.39
	H2.40
	H2.41
	H2.42
	H2.43
	H2.44
	H2.45
	H2.46
	H2.47
	H2.48
	H2.49
	H2.50
	H2.51
	H2.52
	H2.53
	H2.54
	H2.55
	H2.56
	H2.57
	H2.58
	H2.59
	H2.60
	H2.61
	H2.62
	H2.63
	H2.64
	H2.65
	H2.66
	H2.67
	H2.68
	H2.69
	_Fig_H1.1a
	_Fig_H1.1b
	_Fig_H1.3
	_Fig_H1.6.1
	_Fig_H1.6.2
	_Fig_H1.6.3a
	_Fig_H1.6.3b
	_Fig_H2-1
	_Fig_H2-10
	_Fig_H2-2
	_Fig_H2-8
	_Fig_H2.10.10a
	_Fig_H2.10.10b
	_Fig_H2.10.10c
	_Fig_H2.10.13
	_Fig_H2.10.15a
	_Fig_H2.10.15b
	_Fig_H2.10.2
	_Fig_H2.10.6
	_Fig_H2.10.9a
	_Fig_H2.10.9b
	_Fig_H2.10.9c

