PRELIMINARY MANUAL

HARVEST SYSTEM

MAY 1,1957

Company Confidential

This document contains information of a proprietary nature. ALL
INFORMATION CONTAINED HEREIN SHALL BE KEPT IN CONFI-
DENCE. No information shall be divulged to persons other than IBM
employees authorized by the nature of their duties to receive such
information, or individuals or organizations who are authorized by
the IBM Research or its appointee to receive such information.

IBM Research and Product Development
Poughkeepsie, N. Y.

TABLE OF CONTENTS

General Description of the Harvest System
1.1 Exchange
1.2 External Units
1.3 Memory

1.3.1 Counting in Mem&ry
1.3.2 Existence in Memory
1.3.3 Clearing Memory

1.4 'f‘he Computer

1.4.1 Stream Units

1.4.2 Table Address Assembler

1.4.3 Table Extract Unit _

1.4.4 Statistical Accumulator and Statistical
Counter

1.4.5 lLogical Unit

1.4.6 Match Recognition Units

1.4,7 Byte Masks

1.4.8 Numbering Counter

1.5 Additional Computers and Processing Units
1.6 The Harvest System as Part of a Larger System
1.7 The Busses In Harvest

Exchange and External Units

2,1 The Basic Exchange
2,2 Instruction Control of External Units

2.2.1 Control Word
2.2,2 READ
WRITE
2,2.3 CONTROL
2.2,4 LOCATE
Z2.2.5 DISCONNECT
2.2.6 Control Word Interrogation

2.3 Indicator and Status Interrogation

2.3.1 Exchange Indicators
2.3.2 External Unit Indicators
2.3.3 Status Bits

2.4 External Units

2.4.1 Card Reader

2.4.2 Card Punch

2.4.3 Printer

2.4.4 Magnetic Communication Tape

2.4.5 Operating Stations

2.4.6 Controls and Lights on External Units
3. Memory

1

4. The Harvest Computer

Stream Units ,
Table Address Assembler
Table Extract Unit
General Indexing
Stream Unit Indexing
Statistical Accumulator and Statistical
Counter '
The Logical Unit
The Byte Masks
Match Units
0 The Numbering Counter

L o
v W N

o
~ 0 00 =~

5. System Operation in the Arithmetic Mode

5.1 General Description of Arithmetic Mode

5.1.1 Data Registers and Paths
5.1,2 Binary and Decimal Arithmetic
5.1.3 Sign Byte

5.1.4 VFL Numeric Formats

5.2 Operand Designation

5.2.1 Addressing Convention

5.2.2 Operand Address

5.2.3 Field Length

5.2.4 Second Address

5.2.5 Address Modification

5.2.6 Address Modification for Word

Transmission
5.2.7 Address Designators

5.3 Index Modification

5.3.1 Value and Length

ii

o
W .w W
s W

5.3.5

INCREMENT
Branching and Counting
REPLACE VBY V
REPLACE L BY L
REPLACE LBY V
REPLACE V BY L
RESTORE

5.4 Arithmetic Operations

.

(=]

et ek el
O 00 =] O D W

et

L
—
™

.4.13
.4.14
.4.15
.4.16

poELEEEE e e e e e

Arithmetic Instruction Format
Variable Field Length Arithmetic
LOAD

ADD

STORE

STORE C

COMPARE

DIMINISH

ADD TO MEMORY
MULTIPLY

LOAD AC

CUMULATIVE MULTIPLY
DIVIDE

SHORTEN

ROUND

LENGTHEN

5.5 Binary Connectives

5.5.1

CONNECT

5.6 Word Transmission

5.6,1

RECEIVE
TRANSMIT

5.7 Branching

5.7.1
5.7.2
5.7.3
5.7. 4

BRANCH

NO OPERATION

BRANCH IF I ON

BRANCH IF I OFF

BRANCH IF A ON

BRANCH IF A OFF

COUNT AND BRANCH IF ZERQO
COUNT AND BRANCH IF NOT ZERO

iii

5.8 Indicator Register

5.8.1 Internal Malfunctions
5.8.2 Control

5.8.3 Streaming (Bits 6-30)
5.8.,4 External Units

5.8.5 Index Word Modification
5.8. 6 Arithmetic

5.8.7 Programmer's Tags
5.8.8 Not assigned (Bits 58-63)

5.9 Program Interruption

5.9.1 RESET INTERRUPT
5.9.2 BRANCH ENABLE

5.10 Other Instructions and Features

5.10.1 IDLE

5.10.2 CLEAR MEMORY LARGE
CLEAR MEMORY SMALL

5.10.3 Elapsed Time Clock

5.10.4 Preferred Alphanumeric Code

6. System Operation in the Streaming Mode

6.1 General Deacription
6.2 Data Gating
6.3 Automatic Address Modification for Streaming

6.3.1 Patterns of Address Modification
6. 3.2 Control of Parameters
6.3.3 Parameter Interpretation for Stream

Unit C
Parameter Ranges
Levels of Control
Control Setup
Control Bits and Interrupt Signals
Programmed and Automatic Adjustment
of Indexing Levels

.

coooo
0~ O ;b

6.4 The Functioning of the Logical Unit in Streaming
6.5 Table Lookup and Modification as a Part of
Streaming

iv

6.6 Operation of the Statistical Accumulator
and Statistical Counter

6.7 The Functioning of the Numbering Counter

' in Streaming

6.8 The Control Gating

6.9 Match Character Recognition

6.10 The Stream Interruption System

System Operation in the Merging Mode
Sample Problems

8.1 Problem 1
8.2 Problem 2

Summary

1 Operating Speed

2 Alphabetic List of Instructions
.3 The Basic Harvest System

4 Stream Instruction Fields

O 0 O O

.

General Description of the Harvest System

Harvest is a complete general purpose data processing system con-
sisting of input-output devices and control, memories, and a central
processing computer. It is being designed in such a way that addition~
al computer processing units can be incorporated into the system.

The Harvest system will provide an overall operating speed on data
processing problems from 100 to 500 times faster than is possible
on data processing equipment available today. If floating point
features are added for scientific computing problems, Harvest will
operate from 20 to 50 times faster than is possible on computing
equipment commercially available today.

The Harvest design permits several input-output units, memory
units, and arithmetic and logical units to function simultaneously.
This is accomplished by providing sufficient independent controls
in each of these units, and by providing an asynchronous mode of
operation throughout the entire system,

The system is being designed to operate for extended periods of
time unattended by either operating or engineering personnel. The
reliability necessary for this type of operation will be achieved by
the use of solid state components, by checking all critical operations
throughout the system, by automatic error correction in important
areas, and by a fault location system which is an integral part of the
design.

All memory units in Harvest have a fixed word size of 64 binary

- information bits with additional non-information bits added for

checking. However, controls are provided in the arithmetic and
logical units of the system, hereafter called the computer, to permit
addressing any bit in memory and to adjust automatically for data
which crosses word boundaries. Thus to the programmer, each
type of memory in Harvest may be considered as a continuous array
of binary storage.

The computer operates in parallel on eight information bits, or any
subset of them. This variable sized set, from one to eight bits, is
called a byte. Controls are provided to permit arithmetic operations
on fieldsmp to 64 bits, and logical operations on any size field.

Memory addressing is binary to permit maximum utilization of
mapping and table reference techniques. However, for arithmetic

and logical operations binary, decimal, and other radices are
provided.

Logical operations in the computer are performed at a rate of not
more-than 0.2 microsecond per byte operation. Arithmetic operations
" will be performed at the rate of 0. 2 microsecond per 8-bit byte. The
entire design of Harvest has been based on the principle that all pro-
cesses throughout the system, including input-output, memory refer-
ences, instruction control, etc., must be organized so as to permit

a continuous flow of arithmetic and logical processes on data to
proceed at a rate as close as practicable to the basic rate of 0. 2
microsecond per logical operation.

The Harvest system is divided into three basic areas:

a) The input-output and other external units

b) The memory, consistihg of multiple units with
cycle times of 2.0 microseconds and 0. 5
microseconds

c) The 0.1 microsecond registers and the central
computer (See Figure 1.1)

1.1 Exchange - The Exchange is essentially a small, fixed-pro-
gram computer which performs a function similar to that of
a telephone central switching unit. It provides, by a switching
network, a means of connecting up to 32 different types of
input-output devices into the system. By time sharing, it
permits up to 10 devices to communicate simultaneously with
the main system. The Exchange assembles, where necessary,
the short words from input units such as paper tape readers
into full 64 bit words and, similarly, disassembles full words
into appropriate short words for output devices.

In addition, the Exchange performs the function of capturing a
memory cycle in the specified memory unit and of transferring
words to or from that memory unit. It also does the necessary
memory address bookkeeping to provide the correct location
for the next word to be transferred to or from a memory unit
for a specific input-output device These operations are per-
formed for each of the several input-output devices that are
simultaneously communicating with the main memory system.

1.2

1.2

1.3

External Units - The basic Harvest system will include at
least the following input-output devices:

A 1000 card per minute card reader
A 155 card per minute card punch

A 500 line per minute printer (A printer of
1000 lines or more per minute is contemplated)

Four high performance tape units with a storage
and speed capacity approximately 100 times the
rate of the IBM 727 tape drive

A high performance disk memory with a total
storage capacity of two million or more 64-bit
words and a transfer rate between disk memory
and internal memory approximately the same as
that of the high performance tape units

Four tape units handling IBM 727 tapes
One manual interrogation unit

Memory - The memory system in Harvest consists of one or
more units of 8, 192 words of storage with a 2. 0 microsecond
read-write cycle, and one or more units of 512 words of
storage with a complete read-write access time of 0. 5 micro-
seconds. In addition, one or more single word registers with
0. 1 microsecond access time can also be provided. The
addressing system allows for a total memory capacity of just
over a million words of storage,

The basic Harvest system will contain eight 8, 192 word units
of 2. 0 microsecond storage units, four 512 word units of 0,5
microsecond storage units and 16 single word 0.1 microsecond
registers,

Each of the eight 2. 0 and four 0.5 microsecond memory units

is an independent, asynchronous memory device containing its
own addressing mechanism, address register, and data register.
In addition, the normal manner of address assignment for these
memory units is such that consecutive memory word addresses
are located in different memory units.

1.3

The purpose of this method of address assignments is directly
related to one of the basic advantages of the multiple independ-
ent memory units. If successive memory references are made
to different memory boxes, it will be possible to effect an
average memory access time considerably less than the full
cycle of 2.0 or 0.5 microseconds. For the 0.5 microsecond
units, the average time will approach the bus time of the system.
" Distributing successive memory addresses through the memory
units thus provides an automatic means of optimizing memory
access time without concern on the part of the programmer.

1. 3.1 Counting in Memory - The 0.5 microsecond memory
units in Harvest provide a special function called
""counting in memory'. This feature permits any word
or any binary partition of a word to be used as a counter
under program control. In the counting mode of opera-
tion, the specification of a word and bit address causes
a one to be added to the proper bit position of that word
in memory during one memory read-write cycle. The
cycle, however, may be longer than 0.5 microseconds,
During the same memory cycle that the count in memory
is accomplished, the memory data word to which the
count is added is available for transfer to computer
registers if desired. ‘

1. 3.2 Existence in Memory - The 2.0 microsecond memory
units in Harvest provide a function similar in concept
to counting in memory called '"existence in memory".
In the existence mode of operation, the specification of
a word and bit address causes a one to be combined
with the bit at the specified address by an inclusive OR
logical operation during one memory cycle, During
that same memory cycle, the data word addressed is
transferred to a computer register, This function pro-
vides a rapid means of recording that a particular data
item has occurred and of determining whether the same
item occurred previously,

1.3.3 Clearing Memory - Under program control it is possible
to clear major sub-sections of a memory unit with one
instruction. In the 2.0 microsecond units, sections of
64 words and 1024 words can be cleared with one in-
struction. In the 0.5 microsecond units, sections of
8 words and 64 words can be cleared with one instruction,

1.4

1.4

The Computer - The Computer of the Harvest system consists .

_ of a number of different units interconnectable in a variety of

ways under program control., Two basic modes of operation
are provided in the. Computer: the streaming mode and the
regular instruction mode. ‘

The streaming mode provides a means whereby a series or

two independent series of bytes can be selected from memory

in orderly but complex sequences, called streams. The
streams may be routed through the units of the computer in
any one of a number of possible paths; logical or arithmetic
operations may be performed repeatedly on each successive
byte or pair of bytes and an output stream may be generated
and stored in memory in some other orderly sequence.

The Stream Units of the computer are used as input, output,
and transfer registers for the regular stored program in-
structions of the Harvest system. Streaming and regular
instructions may be readily intermixed.

Adequate indexing controls are provided to permit regular
instructions to be executed with a minimum in loss of time
due to indexing and general bookkeeping.

1.4.1 Stream Units - The computer of the Harvest system
contains three Stream Units: two primarily for input
from memory and one primarily for output to memory.
Each of these Stream Units (SU's) will hold two full
memory words of data. KEach input unit contains a
sufficient amount of built~in control to permit it to
generate an output stream of bytes selected in an

- orderly but complex fashion from the words within
the registers. The third SU can similarly store a
stream of bytes in a complex fashion. The SU built-in
controls permit automatic loading and unloading of the
registers to and from memory without, normally, any
interruption in the stream of bytes being generated or
stored. In the streaming mode of operation, the SU's
required are initially provided with the starting lo-
cation of the streams in memory and the pattern by
which the bytes are to be selected from or stored in
memory. This setup is done for each SU to be used.
The computer operation is set up by a "streaming"
instruction which defines the logical or arithmetic

1.5

1.4.2

1.4.3

1.4. 4

operation to be performed on the bytes and defines the
flow path of the data to and from the various units of

the computer. The operation is then executed repeatedly
until a prespecified condition halts the streaming mode
of operation.

Table Address Assembler - the Table Address Assembler
provides a means of assembling bytes from one or more
SU's together with the contents of a register and a pro-
gram-controlled counter to form addresses for table
lookup, counting in memory, and other similar memory
reference functions.

The Table Address Assembler includes the necessary
controls to enable it to capture a memory cycle in the
memory unit specified by the assembled address, and
to transmit the address to the address register of that
unit.

The Table Address Assembler is intimately associated
with the Table Extract Unit of the computer.

Table Extract Unit - The Table Extract Unit is a data
storage register similar in design to the Stream Units.
Its primary function is to receive data words from
memory as addressed by the Table Address Assembler
and to select from them the appropriate bytes for trans-
fer to other units in the computer. The starting bit
address in a memory word transferred into the Table
Extract Unit is specified by the low order bits of the
address assembled in the Table Address Assembler.’

Statistical Accumulator and Statistical Counter - The
Statistical Accumulator is provided primarily for
accumulating specified bytes from words in the Table
Extract Unit and for counting the number of accumu-~
lations made. Associated with the Statistical Accumu-
lator is a built-in threshold comparator, A pre-de-
termined threshold may be loaded into the threshold
register as a part of the setup operation.

The Statistical Accumulator accepts a parallel input of

up to eight binary digits. Its capacity is 26 binary
digits and sign. The threshold register's capacity is

1.6

1.5

1. 4.5

1. 406

1.4.7

1.4.8

26 binary digits and sign.

The Statistical Counter is normally stepped for each
entry into the accumulator but may be stepped as a
result of other computer conditions. Its capacity is
18 binary digits,

The Statistical Accumulator and Statistical Counter
are most frequently used in conjunction with counting
in memory in a streaming mode of operation. It may
also be used, however, under control of a regular
instruction.

Logical Unit - The Logical Unit (LU) performs a
variety of arithmetic and logical operations on the
successive bytes or pairs of bytes as they flow through
the computer in a streaming mode or regular mode of
operation, The particular operation to be performed
is specified by the operation code of the instruction,
The various operations performed by this unit are de-
scribed in detail later in this manual.

Match Recognition Units - During the streaming mode
of operation, it is possible to monitor input and output
streams for the occurrence of prespecified bytes. The
Match Recognition Units provide a capacity for speci-
fying four different special bytes at any one time. Re-
cognition of a special byte normally causes a break-in
on the streaming mode of operation.

Byte Masks - In order to provide a ready means of
operating upon any size byte from 1 through 8 bits and
of any subset of bits within a byte, several byte masks
are provided at strategic points on the data flow lines
within the computer, The mask format is specified as
a part of the streaming setup.

Numbering Counter - A counter is provided which reads
directly into the second Stream Unit. It is used for
numbering records and sequencing through tables.

Additional Computérs and Processing Units - As stated above,
the Harvest system is being designed to permit adding computer
processing units to the basic system. Such additional units will

1.6

1.7

be connected into the main bus system. in such a way that they
can share the memory units and the input-output exchange with
the basic computer. These additional units will be asynchronous
with respect to the rest of the system.,

One embodiment of this concept, necessary to complete the
Harvest system, is the addition of a high speed arithmetic com-
puter to work in conjunction with the basic data-manipulating
computer described in this manual. This arithmetic computer
will be a completely independent computer, capable of being
operated with or without the data-manipulating computer being
connected into the system.

The normal means of transferring data between two computers
operating in the one system will be through the memory units,
However, direct communication paths will be provided to allow
either computer to initiate an automatic break~in on the other

' computer's operation, Priority control will monitor memory

references to insure that critical memory accesses are executed
and simultaneous references are properly sequenced.

Other special processing units may be attached to this system
which do not contain built-in instruction decoders and which
are essentially adjuncts to one of the computers in the system.
Such units will be addressed and be under control of the in-
struction set of the computer to which the unit is an adjunct.

The Harvest System As Part Of A Larger System - The design
of the Harvest system is proceeding on the assumption of the
existence of a larger assemblage which may contain several
Harvest systems and perhaps other non-Harvest systems, It
is assumed that the different Harvest syastems will contain
different groupings of Harvest units, As a part of this concept,
the individual units of the Harvest system, i.e. the Exchange,
the separate memory units, and the computers, are being
designed in such a way that they can be detached from one
system and attached to another system. In addition, the design
will provide means of communication between system input-
output lines whereby individual input-output devices can be
simultaneously attached to more than one Exchange unit. In
this way, all systems in the larger system can communicate
with one another under break-in program control.

The busses in Harvest are an extremely critical part of the

1.8

overall system., Because different sections of the system,

i.e. the Exchange, the Harvest computer, and other computers
all operate simultaneously, and because extremely high transfer
rates are required between 0.5 microsecond memories and
computers, the demands on the bus system are high, Just how
high, however, cannot be determined until the machine design
has progressed further. Under any circumstances a priority
system must be provided to protect the synchronous input-
output devices, and to schedule simultaneous demands on the
busses. ‘

The asynchronous nature of the majority of the units makes it
possible for any such unit to wait if a bus is in use at the

moment the unit requires it., However, these waits obviously
increase the operation time, Therefore the final bus system
design must be such that waits of this type are kept to a minimum,

1.9

(CARDS

i PRINTERS

| TAPES

2HS
MEMORY

[or— e MM ww— a—

O.5US
MEMORY

- EXCHANGE

— 1
I
|

HARVEST | UNSPECIFIED -

COMPUTER | UNIT
l
e _J

4
0.1 S
MEMORY

HARVEST SYSTEM

FIGURE 4.1

Exchange and External Units

The function of the Exchange is to direct and control the information
flow between many input-output units or external memory units on
the one side, and the internal memory on the other side. In addition,
the Exchange provides a number of common control facilities to be
time -shared among the external units, thus keeping these units as
simple as possible,

The basic Exchange permits up to 32 external units to be connected
to the system. These external units are of the kind which operate
serially, one byte at a time, at any reading or writing rate which
does not exceed 25, 000 bytes per second. Up to 10 such units may
operate simultaneously through the Exchange, each unit either read-
ing or writing.

High-speed tapes and disks follow the same philosophy of control as
the basic Exchange, but separate equipment is required because the
higher speed does not permit as much time-sharing.

A further extension of the basic Exchange is contemplated which will
allow a great many more units of much lower speed to be accommodated
simultnaeously. Among these units will be manually operated devices
and low-speed data units. Specifications for this section are not
complete and will not be provided initially.

The Exchange provides a general method of connecting many differ-
ent kinds of units to a computing system. This will include direct
input from remote sources, output to remote stations, communication
with other computers which are not a direct part of the system, and
input-output units using techniques still under development. ’

To the programmer, the Exchange acts purely as an intermediary
between the computer and the external units. It appears as a passive
device which provides temporary storage of data and controls. The
main thing which concerns the programmer is the amount of simul-
taneous operation and thus the overall rate of information flow pro-
vided by the Exchange. For normal operation, the instructions may
be written as if they directly controlled the external unit concerned
without regard to any other units operating at the same time,.

To explain the philosophy behind the design of the Exchange, a brief
description of the basic Exchange follows.

The Basic Exchange

A simplified diagram with the major information paths of the
basic Exchange is shown in Fig. 2.1.

On receipt of the appropriate signals from the computer to.
initiate a reading or writing operation, the Exchange:

a) Selects a path to the external unit
b) Sets up the unit for reading or writing
c) Assembles incoming information into a

memory word or breaks a memory word
apart as needed for outgoing information

d) Initiates access to memory for successive
words in a block of information

e) Advances the memory address from word
to word

f) Keeps a count of the number of words
transferred

g) Arranges to time-share all these facilities

among many different external units

The Exchange transfers information in accordance with a few
fixed and built-in rules. No attempt is made to have the
Exchange perform editing operations on the data. Editing is’
a function of the computer program.,

The external units are connected to the Exchange by means of

a Cross-point Switch., This switch permits any one of up to

32 units to be connected to any one of up to 10 channels. Once
this connection is established, the switch retains the connection
until a block of information has been read or written. The
connection is then released, and the channel becomes available
for use by another unit. In this way any 10 of the units may
operate simultaneously. If all channels happen to be in use
when a unit is to be started, that unit automatically waits until
another unit has finished.

Once a connection has been established for an input unit, infor-
mation is allowed to flow in, a byte of 8 bits at a time. The
Exchange assembles 8 successive bytes into a memory word,
When a word is full, it is sent to the main internal memory.

For output, a word is obtained from main memory and sent, a
byte at a time, through the Cross-point Switch to the output
unit, , :

For either input or output, timing of successive bytes is entirely
under the control of the external unit. Subject to its maximum
rate of 25,000 bytes per second per unit, the Exchange furnishes
gservice on request.

The heart of the Exchange is the Exchange Memory and associ-~
ated circuits. Here the partially assembled or disassembled
data words are stored for each external unit. When an input
unit demands service, the corresponding data word is sent to
the Word Register. From there, its contents go through the
Data Word Shift Unit which shifts the entire word one byte to
the left to make room for the new byte on the right. Both are
returned to the Exchange Memory via the Memory Drivers.

The path for output information is essentially the same except
that the output byte is extracted from the left end of the Word
Register. The word is then shifted and returned to memory;
this brings another byte into position for the next round.

Each data word has associated with it a count of the number of
bytes assembled or disassembled. When this number reaches
eight, an access to main memory is initiated. /

Accesses to main memory are controlled by means of a control
word which must be furnished by the computer program at the
start of a block. The control word consists basically of a Word
Address and a Word Count. Every time a data word must be
transferred to and from main memory, the control word is
obtained from the Exchange Memory to determine the desired
address in main memory for the data word. Before returning
the control word to the Exchange Memory, the Word Address is
stepped up and the Word Count stepped down by one. This is
done in the Control Word Modification Unit.

There are two ways of terminating a block of information. The

External Unit may signal the end of the block. For example,

a tape may reach a gap on reading. If no such signal has been
given, the Exchange terminates the block when the Word Count
in the control word reaches zero.

To start the whole process of reading or writing a block of infor-
mation, the computer must give a READ or WRITE instruction.
‘The instruction contains an address wiich specifies the external
unit and which also defines the location of the corresponding

data and control words in the Exchange Memory. When the unit
is ready to operate, the Exchange selects a channel through the
Cross-point Switch. From then on the channel controls retain
the address of the external unit to which the channel is connected;
this permits the channel to gain access to the appropriate Ex-
change Memory location for every byte.

The READ or WRITE instruction also contains the address in
main memory of the initial control word to be used by the Ex-
change. This control word address is first sent to the Exchange
which then obtains the actual control word from memory. More-
over, when one control word is exhausted, it can cause another
control word to be obtained from memory automatically.

The Exchange executes several functions, other than reading or
writing, which have to do with external units. These will be
described fully in later sections.

Instruction Control of External Units

The method of program control to be described in this section
applies to all external units. The instructions follow the format
of the arithmetic mode of operation in the computer.

When instructions apply to external units, the computer executes
all address modification. It then sends the addresses and the
decoded operation to the Exchange, which completes the exe-
cution of the instruction by obtaining the operand (control word)
from memory and starting the external unit. This procedure
permits the Exchange before it accepts an instruction to determine
from its stored status indication bits whether the unit is ready,
and to sandwich in the extra cycles necessary to start an operation
into available time periods. If the unit is not ready (for instance,
if the operator has stopped the unit manually for an indefinite
time), the Exchange rejects the instruction. This permits a

program interruption.

The computer waits until the Exchange has signalled that it
has accepted or rejected the instruction. If the Exchange
happens to be quite busy, the computer may have to wait some
tens of microseconds because it is more flexible in its oper-
ation than most external units, which cannot wait. Thus
instructions involving the Exchange may take somewhat longer
than regular instructions of a similar kind.

The computer never waits for the external unit to respond or

to finish the operation, which may take milliseconds to minutes.
The Exchange takes over full control and signals the computer
when the operation is completed. The Exchange absorbs not
only regular starting delays and operating times, but it also
waits for a tape unit to rewind or space over a block, for a

" printer to skip lines, etc., before initiating a new operation.
Thus an instruction which has been accepted by the Exchange
may remain in the Exchange for some time before the operation
can actually begin.

The basic principle is that the Exchange can accept an instruction
from the computer just as soon as the previous operation for the '
same unit has been completed. This permits the computer pro-
gram to continue without being held up by any delays which must
be expected with external units. The Exchange will hold an
instruction, if necessary, to avoid tying up a channel while a

tape unit is rewinding, etc. The Exchange cannot, however,
accept more than one instruction for a given unit at a time. Any
attempt to do this results in a program interruption.

2.2.1 Control Word

READ and WRITE instructions include the address of a
control word in memory to be used by the Exchange in
executing the operation. The control word, as stored

in memory, contains the address of the first data word
in memory and the number of words to be transferred.
Subsequent words are sent to consecutive higher memory
addresses which the Exchange obtains by repeatedly
adding one to the data word address in the control word.

Basically the control word follows the same format as
the index words used by all instructions in the arithmetic

mode. Thus the same word may serve as a control
word while reading a block of data, as an address
modifier giving the base address of the block while
computing, and, again, as a control word while
writing that block.

The data word address is contained in the word address
portion of the Value field, the bit address and sign
portions being unused (see Figure 2. 2).

The word count consists of 15 bits in the Length field
starting at the eighth bit from the right. The seven

bits on the right of the Length field, corresponding to
the number of bits and the sign, are left unused, as

are the five bits on the left of the field. The Exchange
is thus restricted to counting full words, up to a maxi-
mum of 215 words. Counting in the Exchange consists
of subtracting one from the word count each time a word
is transferred until the count reaches zero.

Although the control word can only specify blocks of
information starting at the left end of a full word in
memory and containing an integral number of words
(i. e., a multiple of 8 bytes), an external unit may
terminate operation at any time before the word count
reaches zero. If during reading the last word has not
been completed, the Exchange finishes the shifting
process, filling in zero bits on the right of the last
word, before sending the word to memory.

The Index Tag (XT), at the extreme right, is the samle
tag bit which is available to the programmer during
regular indexing for causing a program interruption.
In the control word the Index Tag may be used to in-
struct the Exchange to obtain another control word
after this one.

The Index Tag is set to 0 when a single control word
defines the block of information for reading or writing.
Sometimes it is desired to write a block which is

pieced together from several scattered memory areas
(grouping), or to read different portions of an incoming
block into different memory areas (distribution). To do
this, a different control word is required for each memory

2.6

area. Each control word gives the first address
and the number of words in its area, and all but the
last have their Index Tag set to 1.

For grouping and distribution, READ and WRITE specify -
~ the first control word to be used. The Exchange can be
set up to obtain a new control word automatically when
the word count on the current control word has reached
zero. For this purpose the program must insert in each
control word, in the otherwise unused center portion,
the 20 -bit address of the next control word. (See bottom
of Figure 2. 2). This is accomplished by a variable field
length STORE instruction. The Index Tag must be a 1.
This process continues until the last control word, with
an Index Tag of 0, is encountered; when the last word
count is exhausted, the Exchange signals the end of the
operation.

The Next Control Word Address field overlaps the normal
Value and Length fields in positions which are not used
for control words but which could affect regular indexing.
If there is interference between the two word formats,
control words to be arranged for grouping and distribution
should be set up separately from the words used for in-
dexing., Such conflict can usually be avoided, however,
because of the nature of indexing for input-output data.
Control words provide the base address for reference

to blocks of input-output data. For base addresses the
Value field will always contain only full-word addresses,
leaving zeros in the right-most seven bits; the L.ength
field is not needed for indexing because base addresses
are generally not subject to incrementing. Interference
is thus avoided whenever the control words used for
grouping and distribution are stored at memory addresses
below 213, so that the high-order seven bits of the Next
Control Word Address may also be left at zero.

The grouping and distribution feature is not available with
high-speed tapes and disks because of time limitations.

Seven status bits are shown in Figure 2. 2 near the right
end of the control word in unused portions of the Length

field. These are inserted automatically by the Exchange
- in the Exchange Memory to indicate the current status

2.2

.2.3

of the corresponding external unit. - Normally, programs
do not require access to the status bits. Provisions have
been made, however, for a program to interrogate the
current control word during the progress of an external
operation. The current status bits, defined in another
section, will then be available to the program.

READ
WRITE

These instructions initiate a reading or writing operation,
The Second Address specifies the external unit and the
effective Word Address specifies the first control word
to be used. The control word, in turn, supplies the in-
formation defining the data addresses in memory, and
the maximum number of words to be transferred. Im-
mediate addressing may not be used.

A block of information is terminated either by a signal
from an external unit or by the word count in the last
control word reaching zero, whichever happens first.

If termination by word count occurs before the unit has
reached the end of a block, the unit continues to the end
by itself, independently of the Exchange, before permitting
another operation to start.

CONTROL

The effective Word Address is sent as control information
to the external unit specified by the Second Address.
/
The control information is decoded by the external unit
to perform such functions as:

Rewind tape

Backspace tape

Space or skip on printer carriage
Turn on RESERVED light

Turn off RESERVED light

A single byte at the left end of the Word Address is

sufficient to specify control for most units; the remainder
is then ignored by the unit.

2.8

2.2.4

2.2.6

LOCATE

The effective Word Address is sent as an address to the
external unit specified by the Second Address.

This instruction is used to set up external addresses on
disk units, electronic printer-plotters, automatic tape
cartridge changers, and similar devices. Access to the
specified location is initiated, but the READ or WRITE
instruction may follow at any time, whether access has
been completed or not.

DISCONNECT

The Exchange will accept a DISCONNECT instruction
while a READ, WRITE, CONTROL, or LOCATE in-
struction is still in progress for the external unit speci-
fied by the Second Address of the DISCONNECT in-
struction. Any operation involving that unit is termin-
ated immediately and the Exchange is released. The unit
continues by itself to the end of its block.

This instruction permits the program to free Exchange
and memory facilities when the program has determined
that the external unit should not or cannot complete a
transfer of information started by a READ or WRITE
instruction.

Control Word Interrogation

Any instruction in the arithmetic mode of program
operation, which calls for a word from a specified lo-
cation, may give the address of an external unit, The
computer sends this address to the Exchange and causes
the Exchange to transmit the current control word corres-
ponding to that unit over the data bus; the word is stored
in the Exchange at that instant. Thus, the control word
will contain the current values of the data address and the
word count, the next control word address, and indications
of the status of the external unit. Interrogating the control
word does not interfere with any operation in progress
using that control word.

For example, specifying an external unit in the Second

2.9

Address of a TRANSMIT instruction or in the effective
Word Address of a RECEIVE instruction, permits the
current state of the control word to be stored in any
memory location or in any register for subsequent
operations. LOAD may be used to enter the word in
Register A so that the status bits may be interrogated
by means of conditional branch instructions. VFL
instructions such as ADD and COMPARE also qualify.
The decoding is done in the computer, and all these
operations give rise to the same action in the Exchange.

Only a source address can specify a control word in

this manner. Information cannot be returned to the
Exchange by giving a destination address. Thus STORE
and ADD TO MEMORY are instructions which do not
qualify. Only READ or WRITE can enter a control word
into the Exchange in the manner described in earlier
sections.

Indicator and Status Interrogation

Whenever the Exchange finishes an operation, successfully or
otherwise, it causes suitable Indicator Bits to be sent to the
Indicator register together with the identification of the external
unit, which appears in an External Unit Address register in the
computer. The indicators will cause a program interruption if
the Interrupt mechanism has been properly set up, thus permitting
the program to take immediate action if desired.

In an alternate mode of operation, one or more of the indicators
may be masked out, thus preventing program interruption, from
these causes. Interrogation of the indicators may be performed
at intervals. This mode may cause delays in external operations.

The purpose of the Interrupt system is to avoid the need for pro-
gramming frequent interrogations during normal external opera-
tions. If it is desired to monitor the progress of a unit or to
discover which units are ready to be used, the program can
interrogate the current Status Bits residing in the control word
location in the Exchange Memory.

The Indicator and Status Bits are defined below.

2.10

2.3.1 Exchange Indicators

The bits listed below are turned on whenever the
Exchange rejects an instruction just given. Program
Interrupt is available before the computer proceeds to
the next instruction, and this defines the instruction at
fault.

Interrupts caused by Exchange indicators do not interfere
with any External Unit Indicators.

a) Select Reject

An instruction was given for a unit which
wasg still selected as a result of a previous
instruction. This rarely happens in
normal programming.

b) Not Ready Reject

An instruction was given for a unit which
was not in condition to be operated, i.e.,
the unit was Not Ready. A Not Ready
Reject may usually be avoided by testing
the Not Ready Status bit in the control
word before issuing the first instruction
to the unit,

2.3.2 External Unit Indicators

Whenever one of the indicator bits listed below is turhed
on, the address of the external unit concerned appears
in the External Unit Address register.

Whenever one of these bits is interrogated, by an Interrupt
or otherwise, it is immediately turned off. Whenever the
External Unit Address register is interrogated and no
further external unit indicators are on, an indication is
given to the Exchange that another external unit Interrupt
will be accepted by the Indicator Register.

Only one external unit Interrupt is sent to the computer

at a time. If another interruption occurs before the first
can be accepted by the computer, the Interrupt conditions

2.11

are stored by the Exchange for later presentation.
Delayed interruptions are presented to the computer

as if they had just occurred. In this manner, all
external unit interruptions can be cleared without
conflict. Delays can be avoided, or at least minimized,
by suitable programming.

a) Normal End

This is the normal end-of-message
signal indicating that an operation
initiated for the unit has been
successfully completed. This in-
dicator being On implies that all
other external unit indicators are
Off,

b) Operator Signal

An operator's signal has been re-
ceived from the indicated unit. This
signal has no functional significance.
It is interpreted by programming, in
whatever manner is desired, to
establish communication between the
operator, who attends to a unit, and
the computer.

c) End of File
The indicated unit has reached an end- '
of-file condition.

d) Cancel

The last operation initiated for the
indicated unit has been terminated with-
out success. This indication does not
include data error. One use for this
indicator is with inquiry stations to _
permit an operator to wipe out a partial
entry by means of a Cancel key. This
indicator also comes on after a DIS-
CONNECT instruction has been given, to

2.12

e)

indicate completion of that operation,
Data Error

The last operation initiated for the indicated
unit has been terminated by a data error.

2.3.3 Status Bits

The status bits appear in bit positions 55 to 61 of the
control words stored in the Exchange Memory. They
are defined to perform specific functions in the Ex-

change and they may not all be useful to the program.

If any of the last five bits, 57 to 61, is on, the Exchange
will reject further READ, WRITE, CONTROL, or
LOCATE instructions for thst unit.

Bit 55

Bit 56

Bit 57

Bit 58

Assign Channel

The Exchange is waiting to assign a
channel to the unit, This implies either
that all channels are currently in use

or that the unit is still busy finishing

an operation independently of the Exchange.

Data Error

This bit corresponds exactly to the Data
Error Indicator of the previous section.

Not Ready

The unit is not in a condition to be operated
from the computer. This bit combines
conditions such as: out of material, stacker
full, operator stop, power off, control
error, and mechanical malfunctioning.

Select for Read

A READ instruction is in progress,

2.13

Bit 59 Select for Write
A WRITE instruction is in progress.
Bit 60 Select for Control
A CONTROL instruction is in progress.
Bit 61 Select for Locate
A LOCATE instruction is in progress.
External Units

This section is restricted to a description of some of the units
which are of design similar to existing units. As new units are
developed, they will follow the same pattern of communication.

High-speed tape and disk units are under development at the
present time for incorporation into the initial computer system.
They are not described here because their detailed operating
characteristics cannot yet be specified. The method of program
control will, however, be the same as that used with the units
which are described here, '

External units are identified by unique addresses which are
different from general memory and register addresses. The
external unit addresses fall into the range (decimal) of 256
through 511.

The same addresses are also used to identify the corresponding
control words stored in the Exchange., The distinction is evident
from the nature of the instruction. If the Second Address of a
READ instruction, for example, is 260, external unit #260 is
referred to. If the Second Address of a TRANSMIT instruction
is 260, the control word currently in the Exchange which belongs
to unit #260 is transmitted over the data bus.

2.4.1 Card Reader
The card reader operates at a rate of 1000 cards per
minute. It handles 80-column punched cards containing

any kind of numeric, alphanumeric, or binary punching.
Cards are fed row by row, 9-row first, past two reading

2.14

2.4.3

stations. At the first station all holes punched in the
card are counted, At the second station, the information
is read and transferred in 12 bursts of 10 bytes each to
the Exchange. Another hole count is made and compared
with the count previously obtained at the first station for
a thorough check, From there on, the information con-
tinues to be checked by the regular parity checking equip-
ment in the system.:

A complete image of the punching in the card is created
in memory, using a bit for each of the 960 punching
positions, with a 1 for a hole and a 0 for no hole. This
image occupies 15 words in memory. The first word

(at the lowest address) consists of the ""9'"-bits of columns
1 to 64. The second word contains the remainder of the
"9ri.row and the "8"-bits of columns 1 to 48, etc.

Card Punch

The card punch operates at a rate of 155 cards per
minute. The unit is mechanically similar to the IBM
535 punch which is used with the IBM 608 calculator.

The card punch creates any kind of 80-column card.
Cards are fed row-by-row, 9-row first, past a reading
station which is left unused in this device, then past

the punching station, and finally a second reading station
to check the punching. Like the card reader, the punch
operates from a 15-word image in memory of the card
to be punched.

The information sent to the punch is checked by means of
parity bits. There the one-bits are counted as the card
is punched. The card is read at a station following the
punching station, and the number of holes in the card is
compared with the previously accumulated count to
obtain a thorough check of the punch.

The cards to be punched must be blank to begin with;
otherwise the punching check will fail.

Printer

The printer operates at a rate of 500 lines of 120 charac-
ters per minute. The unit is mechanically similar to the

2.15

2.4. 4

IBM 720 Wire Printer.

The printer is supplied with information from a memory
area of 15 words containing 120 bytes of 8 bits each.

The information is completely edited beforehand by the
computer and translated to the 6-bit character code used
by the IBM 720 (which is the same code as that used in
the IBM 705 system). The 6-bit character code occupies
the low-order (right-hand) bits of the 8-bit byte; the two
high-order bits are zeros.

The nature of the printing mechanism requires that the
printer receive first, every fourth character starting
on the left, then, every fourth adjacent character, and
so on, For this reason the characters to be printed
imust be arranged in an interleaved fashion in memory:

1, 5, 9, 13, ..., 113, 117, 2, 6, 10,
14, ..., 114, 118, 3, 7, ..., 116, 120

The numbers refer to the printing positions along the
line. This arrangement can be readily programmed,
simultaneously with character code translation, by means
of the streaming mode.

Automatic single or double spacing for each line of print-
ing is set up by CONTROL instructions. When other

than single or double spacing is desired, a CONTROL
instruction to skip to another line must precede the
WRITE instruction which initiates the printing of that line.

Magnetic Communication Tape

The Magnetic Communication Tape (COT) units are used
for reading and writing tape at 15,000 characters per
second. A ''character' consists of 6 information bits.
The unit is mechanically similar to the IBM 729 tape unit
with dual-gap heads, and it handles tapes compatible with
those used on IBM 727 Tape Units in conjunction with
existing auxiliary equipment. ‘

On reading, each 6-bit character is entered into the Ex-
change in the low-order 6 bits of an 8-bit byte; the left

2.16

2.4.5

two positions are filled with 0's. If the number of
characters in an incoming block of information is not

a multiple of 8, the Exchange fills the remainder of the
last word with zeros.

On writing, only the low -order 6 bits of each 8-bit byte
are written, starting at the beginning of the first word.
Blocks must consist of whole words, that is, multiples
of 8 bytes.

COT units are intended primarily to read and write tapes
which can be used on existing machines equipped with

IBM 727 or 729 Tape Units. Since both odd-count and
even-count parity (redundancy) checking is used on existing
equipment, CONTROL instructions are provided for COT
units to set up the odd~ or even-count mode. When in

the even-count mode, bytes consisting of only binary zeros
cannot be written since they leave no recorded spots on the
tape.

For special high-volume applications, a converter to
change four consecutive 6-~bit bytes to three 8-bit bytes,
and vice versa, is planned. This converter would facili-
tate the entry of long streams of binary information or
other differently coded data from COT tape.

Operating Stations

There will be an operator's panel on the computer which
carries Power On and Off buttons and lights, initial
program loading controls, and controls needed for computer
maintenance.

In addition, there will be a separate console consisting of

a number of keys and lights, and a bell. The meaning of
the keys, lights, and bell is defined solely by the program.
The console is connected to the system like any other
input-output unit., The keys are scanned and the bits
entered as input into the system on a signal from the opera-
tor. The lights and bell are set up by the computer as if
they were output bits.

A complete operating station consists of such a console
together with an inquiry station (keyboard for input and

2,17

2.4.6

typewriter for output). The computer may be operated
with none, one, or several operating stations at nearby
or remote locations.

Controls and Lights on External Units

(The following controls and lights apply to card readers,
punches, printers and tape units, with the exception of
printer carriages and automatic tape loading devices.
Carriage controls are conventional. Tape loading controls
have not yet been specified.) '

a) Controls
1. SIGNAL

This key permits an operator to request
computer intervention by causing an automatic
program interruption. The address of the unit
at which the Signal was given is made available
to the program. The Signal has no direct
function in the external unit.

2. START

This key turns on the Ready status if all the
necessary operating conditions are satisfied.

3. STOP

This key turns off the Ready status at the end
of any operation in progress, thus preventing
further operation of the unit from the computer.

4. LOAD

This .kéy brings the medium (cards or tape)
to the proper starting position, provided
Ready is off. (Run-in)

5. UNLOAD
This key brings the medium (cards or tape)

to the point where it can be manually unloaded.
(Run-out)

2.18

b)

6. RESET

This key clears interlocks set by error
(reject) signals.

Lights
1. STOP

This light is On when the power is on but
the unit is not ready to operate under
computer control. It is Off when Ready
goes on, It comes on when the STOP key
is pressed.

2. READY

- The unit is ready to operate under computer

control.
3. BUSY

The unit is busy executing a computer
instruction. '

4. RESERVED

This light is turned on and off by the
computer program. It has no predetermined
meaning, but its main purpose is to notify the
operator that the unit has been reserved for
use by the computer on a previously assigned
program and that it should not be assigned to
another program.

5. EMPTY

The unit is out of paper, at end of tape, out
of cards (hopper empty), etc. '

6. FULL

The stacker of a card reader or punch is
full,

2.19

7. PROTECT

The file protection feature on a tape
prevents writing.

8. SIGNAL

Pressing the SIGNAL key turns this
light on. The first computer instruction
to arrive turns it off. RESET also turns
it off.

9. CHECK
Separate lights may distinguish between

data, control, and mechanical errors
detected by the built-in checking devices:

WORDS FROM
MAIN MEMORY

BUFFER REGISTER

l

}

WORDS TO
MAIN MEMORY

BUFFER REGISTER

/

WORD

(FROM COMPUTER)
CONTROL WORD

I
D
|REGISTER ADDRESS
7
—~ j e/
EXCH':NGE (3 Y
MEMORY DATA WORD CONTROL WORD ADDRESS
SHIFT Y MODIFICATION
REGS.
DATA AND § 5
CONTROL Y
WORDS 1 f j
MEMORY | MEMORY
DRIVERS | ADDRE SSES
J (TO MEMORY)
EXCHANGE . .
MEMORY 1
ADDRESS
SELECTION OUTPUT INPUT
BYTE BYTE
REGISTER REGISTER
FROM CROSS-
POINT SWITCH | EXTERNAL '
UNIT NUMBER
FROM
COMPUTER SCANNER
c 5_—UP TO |10 READ-WRITE
raN CHANNELS
FROM , ;
AND TO | -
UNITS : SWITCH
|
L
UP TO 32

EXTERNAL UNITS

INFORMATION PATHS OF BASIC EXCHANGE

.FIGURE 2.1

/INDEX WORD

VALUE LENGTH -
UNUSED
[INDEX TAG (XT)

UNUSED f—
| BT NUMBER | |
WORD ADDRESS IADDRESS [S NUMBER OF WORDS OF BITS 5|

| 20| 6!1 20 AL

L 7
/// 7 /, ///
- 'DATA WORD ADDRESS |NEXT CONTROL WORD ADDRESS WORD COUNT STATUS

- 20 20 I5 711

tt INDEX TAG {XT)

CONTROL WORD UNUSED

RELATION BETWEEN INDEX AND CONTROL WORDS

FIGURE 2.2

3. Memory

3.1

There are three types of internal memory in the Harvest
system, excluding the special purpose memory in the Exchange.
They are:

a) The 0.5 microsecond cycle type, in units
of 512 words

b) The 2.0 microsecond cycle type, in units
of 8,192 words

c) The 0,1 microsecond transistor registers
The 0.5 and 2.0 microsecond units are magnetic arrays,

The data word size in the memories is 64 bits. Additional bits
are provided for checking. The bus system, connecting the
memories with the remainder of the system, transmits 64-bit
data words in parallel,

Memory is addressed in binary notation. 20 bits of address

are provided in the instruction to address a memory word; the
address capacity is thus 220 or 1, 048,576 words. The Harvest
system will not initially be provided with this amount of memory.
However, to facilitate the later expansion of memory capacity,
the various types of memory have been assigned blocks of
memory addresses as follows:

a) 1 through 255: 0.1 microsecond registers,
(including computer registers)

b) 256 through 511: Exchange memory and Input-
Output units

c) * 2,048 and up: 0.5 microsecond memory
d) 32, 768 and up: 2,0 microsecond memory

The 2.0 and 0.5 microsecond memories will be grouped in
banks of four independently operable memory units (provided
four are available), For these banks, the address assignments
will be such that the two lowest ordered bits of the word address
will select one of the four memories of a particular bank., To

3.4

3.5

explain further, if an address counter starts at 2048 and is
caused to step by one for six steps, the 0.5 microsecond
memories addressed would be:

0. 2048 -- Memory 00
1. 2049 -- Memc;r'y 0l
2. 2050 -~ Memory 10
3. 2051 -~ Mgmor'y 11
4, 2052 -- Memory 00
5. 2053 -~ Memory 01
6. 2054 -- Memory 10

In addition to the normal ability to clear one word of memory
per instruction, one can clear a block of words in a particular
memory unit by a single instruction in about one memory
cycle. The block sizes are 8 and 64 words for a 0.5 micro-
second memory unit, and 64 and 1, 024 words for a 2.0 micro-
second memory unit. The blocks are non-overlapping for a
particular size; they are addressed by specifying any word of
the block, for either size block.

The addresses within a clearable block are spaced four apart.
To clear consecutive addresses, the corresponding blocks
within the other three memories of a bank must be cleared by
giving the instruction four times, incrementing the address’
by one.

The 2.0 microsecond memory has five types of memory
cycles, These are:

a) Read -~ Transfer of data from memory to
the designated register

b) Write -~ Transfer of data from a register
-to memory

c) Or -- Inclusive Or-ing of a memory word
with a word formed by the Table Address

Assembler

3.2

d) Read and Or -- A combination of
operations (a) and then (c)

e) Clear -~ Clearing of the block desig-
nated by the base point address

3.6 The 0.5 microsecond memory has five different types of rAemo-—

3.7

ry cycles. These are:

a) Read -- Transfer of data from memory
to the designated register

b) Write -~ Transfer of data from a register
to memory '

c) Count -~ Adding the contents of memory to
~ a word formed by the Table Address Assembler

d) Read and Count -~ A combination of operations
(a) and then (c)

e) Clear ~- Clearing of the block designated by
the base point address

The Counting and Or-ing in memory is implemented by the
type of logic shown in Figures 3.1 and 3,2. This logic causes
the Counting or Or-ing cycles to be very similar to the basic
Read and Write cycles except that additional time is likely to
be required,

In the Read cycle, the word from the memory register enters
the Output Memory Buffer register and is restored in memory
via the Input Memory Buffer register. The output register
holds the data until the memory bus transfer is made.

In the Write cycle the data word to be stored is entered into
the input register at the same time as the address is entered .
in the Memory Address register. The memory cycle is in-
itiated and the data is stored,

In the Count or Or cycles, the word containing all zeros except
for one bit enters the input register as in a Write cycle., A
Read type cycle is initiated in that the contents of the memory
register are entered into the output register and the contents

3.3

sent to the Table Extract Unit if an extraction is to be per-
formed. Independently of the transmission to the Table Ex-
tract Unit, the Or or Count is implemented, At the completion
of this phase, the Write portion of the cycle is initiated and
the revised word is siored in the addressed memory location.

3.4

FROM MEMORY DATA BUS

|

;gMORY‘*_—‘-" INPUT MEMORY BUFFER REGISTER

]

CARRY CIRCUIT

)

FROM
MEMORY——'-. OUTPUT MEMORY BUFFER REGISTER

Y :
TO MEMORY DATA BUS

MEMORY BUFFER REGISTER DATA FLOW
WHEN COUNTING IN MEMORY

FIGURE 3.1

FROM MEMORY DATA BUS

T0
MEMORY

B e e |

INPUT MEMORY BUFFER REGISTER

4

OR

4

FROM \
MEMORY

OUTPUT MEMORY BUFFER REGISTER

TO MEMORY DATA BUS

MEMORY BUFFER REGISTER DATA FLOW
WHEN OR-ING TO MEMORY

FIGURE 3.2

The Harvest Computer

The computer unit of the Harvest system consists of a number of
different, asynchronous units, 8-bit data busses connecting these
units, 64-bit data busses between some of these units and the main

bus system, and an array of controls and control lines interconnect-
ing all of the computer units with themselves and with the other

major parts of the system, i.e., Memory and the Exchange. Figure
4.1 shows the various units of the computer and the data lines connect-
ing these units.

Registers R; through Ry and Ry through Rg are identical 64-Dbit
registers used in conjunction with the four switch matrices to dis-
assemble 64-bit data words into 8-bit bytes or to assemble 8-bit
bytes into 64-bit words. Their use is described in some detail in
the Stream Unit and Table Extract Unit sections that follow.

The registers Rj through R, and R, through R, are basically identi-
cal in nature to registers R} through Ry, but in some cases do not
contain a full 64 bits of storage. They are used in conjunction with
indexing (i.e. address modification) operations and with instruction
look-ahead and break-in operations. The indexing arithmetic unit

is described in the Indexing Units section that follows. The use of
registers Rj through R, is described in Chapters 5 and 6 under
instruction control.

The layout of Figure 4.1 illustrates a basic design philosophy in the
Harvest system. Every effort is being made to standardize units

such as registers, adders, counters, and switches in order to simplify
design and maintenance and to permit a substantial increase in flexi-
bility by the presence of several units which accomplish identical
functions,

4.1 Stream Units

4.1.1 The Stream Unit (SU) stands between the memory,

l which can emit or accept only full 64-bit words, and
the arithmetic and logical organs which are designed
for 8-bit words, It differs from more familiar
registers in having a much more versatile switching
facility and in having a certain amount of automatic
control provided for its data input and output.

The switching facility in the Stream Unit provides a
flexible and convenient way of handling less-than-full-
word data units o bytes by allowing direct selection

of the byte rather than the indirect "splitting off"
process. Because the 64-bit word boundaries would
appear to the byte user as artificial and annoying
constraints, the memory is thought of not as consisting
of 220 words of 26 bits each but rather of 226 individual
bits. Accordingly a byte is selected by giving its bit
address, a 26 bit number. A byte may then be anywhere
within a word and in particular may be partly in the end
of one word and the beginning of the next,

The basic size was chosen large enough to express an
alphanumeric character in parallel and at the same
time be a power of 2. Byte sizes of less than 8 bits
may be specified by masking operations subsequent to
the SU selection, and fields of more than 8 bits are
handled by successive bytes.

The streaming mode mentioned in the General Descrip-
tion is facilitated by an automatic indexing and memo ry
reference control mechanism associated with each unit.
The utility of this automatization depends upon the
existence of regular patterns in the successive addresses
from which the programmer wishes to obtain bytes. A
discussion of some of these patterns and the mechanism
for generating the appropriate sequence of addresses is
given in the section on SU indexing. Hence the procedures

. and equipment involved in indexing will not be described
here, even though they are employed in streaming oper-
ations. '

Each 26 bit address presented to the SU by the indexing

. 1.

mechanism is used in two different ways. In principle,
the most significant 20 bits are used to select 2 memory
word to be read into the register while the least sig-
nificant 6 bits are used to select the starting bit position
of the byte within that word. In practice, an additional
register is provided into which the following memory
word is read in case the byte referred to extends into

it, and also to maintain smooth flow as the selected byte
pattern moves through the first word and into the fol-
lowing.

Figures 4. 2 and 4. 3 show a byte selection mechanism
which makes it possible to select a byte consisting of
any 8 consecutive bits among the bits contained at the
moment in the two-word register mentioned above, The
byte selection mechanism also provides checking by
means of simple parity. This scheme could be elabo-
rated to include higher levels of parity for error cor-
rection if necessary. The selection is done in two levels

to effect a considerable saving in equipment.

The first of the two levels of selection chooses one
among 8 overlapping sets, each of which consists of 16
consecutive bits from among the bits contained in the
two-word register and supplies these 16 bits, together
with a parity bit, as input to the second level of se-
lection. In the second level, any desired 8 consecutive
bits are selected from among the 16 information bits
which entered the level and these 8 bits form the basic
'"'selected byte''; these 8 can be cut down to a byte of
smaller size by a suitable masking operation after
leaving the byte selection matrix.

Figure 4. 2 shows the first-level selection matrix and

the associated parity generating equipment for one word
of 8 bytes. Most of the parity equipment would be needed
anyway to check words read into the SU from memory.

It is assumed that the word from which the byte selection
is to be made is already in the register. The path along
which it came from the memory is not shown in the figure.

The word is thought of as being separated into bytes
which are denoted by By, By, B, ..., B7. The finally

selected byte need not, of course, coincide with any of
these, but may consist of any 8 consecutive bits chosen
from among the bits contained in the register. Each of
the bytes Bj consists of 8 bits, each of which is con-
nected to one of the vertical lines of the first-level
selection matrix. Between the 8 vertical lines corre-
sponding to the bits of B; and the 8 vertical lines corre-
sponding to the bits of Bj4+] there is another vertical
line which comes from Pj, i+] which is the parity bit
obtained by combining Pj with Pj4+], where Pj is the
parity of Byte i. As can be seen from the figure, the
parity for the whole word is also formed at the same
time,

The first-level selection matrix also has 17 horizontal
lines over which the 16 selected output bits of this level
and the corresponding parity bit pass to be used as in-
put to the second level.

Just which 17 vertical lines furnish the bits which appear
as output on the 17 horizontal lines is determined by
which of the 8 diagonal lines is energized. This, in
turn, is determined by sending 3 of the 6 bits from the
byte address to the First Level Decoder which then
causes the proper diagonal line to be energized. It
should be remembered that the byte addresses are fur-
nished to the SU by the indexing equipment. Although
the sketch of the first level matrix shows 17 x 72 inter-
sections, only those marked by heavy dots involve any
equipment. Each intersection may be thought of as an
AND element which gives an output on its corresponding
horizontal line when and only when its corresponding
diagonal line and its corresponding vertical line are
energized. Thus any one of 8 different overlapping sets
of 16 consecutive information bits can be selected from
among the bits present in the original word and sent,
together with a corresponding parity bit, for use as
input to the second-level selection matrix. It is clear
from the figure that any 8 consecutive bits among those
in the register will appear in at least one of these over-
lapping sets of 16 bits since successive sets overlap

by 8 bits.

The remaining bits of the byte address pass from the

4.2

Byte Address Register to the Second Level Decoder
where they select one of the 8 diagonal lines of the
second-level selection matrix and cause this line to

be energized. It should be noticed that the short di-
agonal lines at the upper right corner of the matrix
are actually continuations of the longer diagonal lines
below and to the left. Thus, each diagonal line actu-
ally passes through 17 dotted intersections. These
dotted intersections have the same meaning as before.
It is clear from the figure that selecting a suitable

one of the diagonal lines to be energized will make it
possible to use any 8 consecutive bits (among the 17
which enter the matrix) as the 8 bits of the !'Selected
Byte'. The remaining 9 bits form the ""Residue Byte'.
The 8 bits of the Selected Byte form the final output

of byte selection equipment.

The parity Pg of the selected byte and the parity PR
of the residue byte are both formed and combined with
each other to give the parity P of the whole 17-bit
piece. Since a parity bit was included among the 17
bits whose combined parity is expressed by P, this
combined parity will always be constant.

An analogous mechanism in Stream Unit C permits
storage of a byte at any arbitrary memory location.

Table Address Assembler

The Table Address Assembler forms the addresses for the
memory references during the table lookup operations. (Seé
Figure 4.4) The addresses are formed by assembling data
bytes from the byte busses together with a table base address
and, optionally, the contents of a counter. The assembled
address may be used in any of the following ways:

a) Counting or Or-ing in memory without table
lookup, i.e., without making the contents
of the memory register available to the
Table Extract Unit

b) Table lookup for extracting a table entry

c) Table lookup combined with counting oxr Or-
ing in memory

4.5

4.

3

Before the unit is operated,the Base Address, Bit Address,
Increment, and Length registers are set up.

The bit address selects the position in the Assembler register
at which the first byte is to be entered. After each byte is
entered, the bit address is incremented by the first level
increment. This continues until the length for the first level
is exhausted. If the controls indicate that a second source

is to supply data also, the Table Address Assembler is
switched to the other input and data is received and positioned
from the second source until the second length is exhausted.
Only two sources are permitted for each address formed.

After the data for one address has been assembled in the As~
sembler register, the contents of the Assembler register and
the Base Address register are added together and entered into
the Address Accumulator. The address in the Address Accumu-
lator is then sent to the Word-Bit register where the word
portion of the address is sent to memory to start the memory
reference. The bit portion of the address is sent to the Table
Extract Unit. The Assembler indexing controls are reset.

The Assignment Switches and the Memory Distributor (a four-
cycle, 2-bit counter) permit the programmer to sequence
through four memories in an orderly fashion and thus gain

speed for table lookup. The table must, of course, be repeated '
in all four memories in corresponding memory cells.

When the Address Assignment Switch is in the off position, the
bits from the Word Address register are not shifted. When the
Address Assignment Swtiches are in the on position, the bits
in the word portion of the address are shifted left two places

to permit the contents of the Memory Distributor to be entered
into the two low-order bits of the word address. The [Jistribu-
tor advances by one for each address formed.

If Counting or Or-ing to memory is to be done, the bit portion
of the address is Or-ed to one less than the table éntry cell
size. This 6 bit number is then decoded and a one is inserted
into the empty Add One register at the corresponding bit
position, The contents of the Add One register are sent to
memory. '

Table Extract Unit

The Table Extract Unit is used with the Table Address Assembler.

4.6

4.4

Its function is to extract a table entry from the memory word
obtained by the Table Address Assembler. (See Figure 4. 5)

The Table Extract Unit consists of a 64 to 8 switch matrix and
its index controls and one or more sets of Extract registers
and Bit Address registers. The Table Extract Unit is basically
similar to a Stream Unit, except that it does not have the
ability to extract bytes which cross word boundaries and has
only one level of index control. This index control is identical
to the first level of Stream Units A, B, and C.

Because several memory references for table extract may be
underway simultaneously, a separate Extract register is pro-
vided to receive each reference.

Sufficient mechanism will be provided to assure that the words
are taken from the Table Extract Unit in the order in which the
addresses were formed. The Bit Address registers corre-
sponding to the multiple extract registers receive the bit
addresses directly from the Table Address Assembler.

The contents of each table entry are made available a byte at
a time by the index control and switch matrix.

General Indexing
Modification of the Operand Address portion of instructions

in the arithmetic mode is accomplished in the General Indexing
Unit shown in Figure 4. 6.

‘Three distinct operations are performed in this Unit:

a) Modification of the Operand Address

b) © Modification of the index value and the
residual Length

c) Testing of the residual Length
Allinstruction operand addresses are indexable,

The General Indexing Unit contains three registers, each of
which is made up of two or more fields:

a) The Instruction register, IR, includes:
1. A Word Address, WA
2. . A Second Address, SA
3. An Index Address, IA

4. The Operation Code (which does not
enter into consideration here)

The Second Address consists of two subfields:
{a) The Bit Address, BA
(b) The Field Length, FL
For some operations, the entire Second Address
acts as a single address; at other times the Bit
Address is appended to the Word Address to give
a complete Operand Address.
b) The Index register, IX, contains:
1. The Value, V

2. The Residual Length, R

c) The Index Accumulator, IAC, is used to hold any
of the following values:

1. The Operand Address
2. The modified Operand Address
3. The Increment

4. A new Value
5. A new Length

A 26 bit adder with sign control is incorporated in the General
Indexing Unit. It is used to:

a) Form the modified address

b) Increment the Value

c) Decrement the Residual Length
d) Enter a new V or L into the IAC

The Limit Test mechanism signals whether R is positive,
negative, or zero.

Stream Unit Indexing

Figure 4.7 shows the mechanism necessary for address modi-
fication in the Stream Units. Each SU has two built-in levels of
indexing plus higher level indexing from memory. The second
level, however, shares a pair of 6-bit adders and an Effective
Address register with the first level. Moreover, all Stream
Units share one pair of 20-bit adders. .

The Effective Address register holds the address of the next
byte to be read out.

Each indexing level for each SU has an Increment Register, I,
a Residual Length Register, R, and a Length Register, L. The
contents of these registers are used to modify the Effective
Address according to the Control Sequence discussed below.

To keep track of the level in control of the address modification,
each SU has a level control mechanism, This mechanism con-
tains a number, X, designating the level in control. Thus '

"X + 1 replaces X' means control is passed to Level X + 1.

The initialization of the Effective Address Register, and the
actual gating of the Effective Address into the Byte Address
Register (one for each SU, used to select the desired memory
word and the proper byte-line in the Cross Point Matrix) may
be thought of as being part of a Zero-th level of control. The
Control Sequence is as follows:

Level 0, Step (a) Initialize S

(b) Set X equal to 1

4.9

(c) Gate S into Byte Address Register
and proceed to Level X, step (a)

Level X, Step (a) Is Read Suppress bit on?
If NO, read byte and proceed to
Step (b)
If YES, proceed to Step (b)

(b) Replace R by R - I; replace
SbyS +1

(c) IsR =07
If NO, and Reset Suppress bit is
on, go to Level 0, Step (c) (don't
reset X)
If NO, and Reset Suppress bit is
off, go to Level 0, Step (b) (do
reset X)
If YES, proceed to Step (d)
(d) Replace R by L
(e) Is Reset Suppress bit on?
If NO, replace S by S-L (reset S)
If YES, replace X by X + 1 and
proceed to Lievel X + 1, Step (a)
(don't reset S)
The Read Suppress and Reset Suppress bits are associated -
with each level of indexing control. Their use is discussed

in Chapter 6.

The following table indicates the number of bit positions
(excluding the sign) in each register:

4.10

4.6

Level Register
S I R L
0 2ow T - -
] — 8 20 20
2 — 26 26 26
Higher 1| — 26 26 26

*The S Register is the only register without a sign
position.

Each register (S, I, R, and L) is divided into two parts; the low
order six bits and the two, fourteen, or twenty (depending upon
the register) high order bits. The low order bits refer only to
the address of a particular bit within a word, while the high'
order bits refer to the word address itself, '

The 20-bit adders are used only when a word address must change.
The 6-bit adders are used whenever a bit address is changed.

For example, suppose I contains a number less than 64. Tken

if the contents of I and S are added together, the result will not
always mean a new word is to be addressed. However, when
necessary a 20-bit adder cycle is captured and a new word is
addressed.

Statistical Accumulator and Statistical Counter

4.6.1 The Statistical Accumulator can accumulate signed or
unsigned bytes and test its contents against a threshold.
Its mechanism is similar to that used in the first level
of indexing for a Stream Unit. (See Figure 4.8) The
nomenclature used in describing the indexing equipment
is, of course, different from that used here. The
correspondence is as follows:

Register in Indexing Mechanism Function in Statistical
Accumulator
S Register Serves as Accumulator

I Register Furnishes quantity to
: be accumulated

4.11

R Register Serves as residual
Threshold register

Two 26-bit adders Add and subtract
One for Accum. and
one for Thr. Reg.

Modifications

1. Indication when quantity in R Register becomes zero
or negative

2. Overflow indication on S Register

3. Indication when sign of S Register changes
from + to -

4. Provision to suppress negative totals and reset
Accumulator to zero when such totals occur
(This is done or not at programmer's option.)

5.. Accumulation Mode Control inserted between I
Register and both adders

The initial contents of the Accumulator and the Threshold
register are set up by means of a RECEIVE instruction.
After this is done and the accumulation begins, each time
a quantity is added into the Accumulator, the same
quantity with inverse sign is added into the Threshold
Register. Hence, as the accumulated total reaches or
exceeds the preassigned threshold value, the quantity in
the Threshold Register reaches zero or becomes negative.
An indication of this is then given, ‘allowing interruption if
streaming is in progress.

Notice that when the input quantity and the quantity in the
Accumulator are added, their sum is returned to the
Accumulator. At the same time, the same quantity is
subtracted from the Residual Threshold Value and the
result is returned to the Residual Threshold Register. If
the input quantity has a negative sign and the Accumulator

4.7

4.8

Mode Control is set for signed operation, the addition
and subtraction operations are interchanged. ‘

4.6.2 The Counter is an 18-bit binary counter with overflow
indication allowing break-in. Like the Accumulator
and the Threshold Register, it has an address and
hence it is possible to load it initially or to store its
contents by means of an ordinary TRANSMIT instruction.
The source of its one-bit inputs is specified in the stream
instruction.

The Logical Unit

The Logical Unit (LU) of the Harvest computer performs a
variety of logical and arithmetic operations on a pair or a
sequence of pairs of bytes. The streaming and arithmetic
operations performed in the LU are described in Chapters 6
and 5, respectively. :

In conjunction with each LU output data byte, the LU also
generates an associated output control bit whose condition is
determined by the operation being performed and by the input
data bytes. It may be entered onto the byte bus for transfer
to the Statistical Accumulator or Stream Unit C, stimulate a
counter, or initiate control operations.

The Byte Masks

The basic byte size within the Harvest computer is 8 bits., In
order to select the byte size needed in an operation, four byte
masks are provided. In the streaming mode the programmer
explicitly specifies the masks in the setup and may modify them
later as required. In the arithmetic mode the specification of
certain parameters automatically regulates the masks.

Byte Mask 1 is on the output byte bus from Stream Unit A;
BM,, on the output from B; BMj, on the input to C; and BMy,
on the output from the Table Extract unit. In streaming each
mask is able to select not just a byte size, but any subset of

. bits from the 8, When the data passes through BM;, BM;, and

BMy those bits corresponding to 1's in the masks go through
unchanged; those bits corresponding to 0's are made 0's. BMj
has a different effect: the bits corresponding to 1's in the mask
enter Stream Unit C for storage and eventually replace bits in

4.13

4.9

4.10

memory; the bits corresponding to 0's do not enter C and the
memory bits are left unchanged.

The action ¢f BMj, BM3, and BMy is accomplished by forming
the logical And of the data and the mask. This necessitates
registers for the mask and registers for the data. (The re-
gisters for the data are the same ones used for match recogni-
tion at this point.) BM3, on the other hand, is involved in the
actual gating of lines into Stream Unit C and thus is closely
associated with its control mechanism,

Match Units

A Match Unit is a device which compares bytes passing on &
byte bus with a prespecified 8-bit byte. Each Match Unit has

a register containing the match character to be recognized. The
match characters, the associated break-in control data, and the
positioning of the Match Units are all specified in the setup of a
stream operation.

There are four Match Units (W, X, Y, Z) and four points on the
byte busses where Match Units may be connected: Match Stations
1, 2, 3, 4 (Figure 6.1). Each Match Unit can be connected to
only one Match Station at any one time; however, any number of
units (up to four) can be connected to the same Match Station.
Each station contains a byte register. (The register usually is
shared with the corresponding byte mask.) When the byte
enters the register, it is compared with the match characters in
each of the Match Units plugged to this station. Not until all the
comparisons are declared negative is the data byte presented to
the byte bus. If a match is obtained a signal is sent to the
interrupt control and, optionally, to the Index Adjuster. In this
second case nothing is put on the byte bus unless the break-in
instruction specifies it.

The Numbering Counter

The Numbering Counter is a 16-bit binary unit counter which may
be used to count control signals and transfer the count to the

byte busses. This counter has two primary purposes: to provide
a sequence of labels for forming records; and to provide the
Table Address Assembler with a sequence of numbers in order

to visit a series of tables or to count in a series of memory
areas.

The counter may advance automatically on:
a) An address sent to memory

b) A second level advance of the
indexing mechanism of Stream Unit A.

c) A signal from the LU

or may be advanced by regular instruction. The contents of
the counter may be read onto the byte bus, under program
control, via the Stream Unit B shift matrix. The 16 bits of
the counter correspond to the first 16 bits of B. The Stream
Unit B indexing controls govern the read out.

}
WORD PARITY

[' L
TO L

; LI A
OTgng Poui P2l X > f_ 3} = =P o™ P R

PPreene

SELECTED BYTE (8 BITS)

A P P, P, P, P, |_—FIRST BYTE FROM
]) ; ; ;///// NEXT WORD (IN
° 71 1 ' ‘ 1 ADJACENT REGISTER)
lsvre of | + [{ 2 || 3 |/} A7 |1 o |
FYTYETRT Y YRU000D 1 RMRUQPey ¥ POOQU VYV ¢V ARAREAR FTYI199Y

¢ _ © seconp

A S - LEVEL
- S - SELECTION

= P
{ < MATRIX
X
|\ % o

N { { PLUS
i : = CHECKING)
15 |

SECOND LEVEL
DECODER
} oy <®
I 2 3 4 6 7 5 ®
FIRST LEVEL DECODER
DENOTES PARITY LOGIC 3 BITS
BIT ADDRESS
6 BITS

STREAM UNIT 2 LEVEL SELECTION
FIGURE 4.2

~N O O NN - O
A

OUTPUT OR
1///*
8 BITS PI1m '79 BITS
OUTPUT OF |
{ FIRST LEVEL | oF| FCcTED BYTE(8BITS) RESIDUE BYTE (S BITS)
| 3 & 4 4 [[| W f
o | } 1 1 i !
I | 1 L L {
’ I I ¥ i H '
2 nE NN :
{ f
3 : |) i [[!
4 AR EREERNRND
LA) I 4 | | {
HEREREREEAND
° SHEHE
b1 ! i
& P YTl VT
7 IR
TN
PARITY — i~
e T
8 / e : ! L] l
|
N S
10 / NG § : : |
|
{ [
12 /| ‘ Lt
13 / | N N L
14 / NN N Jl
15 / 1] A

SECOND
LEVEL
DECODER

BEER

TO FIRST
LEVEL
DECODER
—t—

BIT ADDRESS(6BITS)

DETAIL OF SECOND LEVEL SELECTION MATRIX

FIGURE 4.3

NOTE:
[P] DENOTES PARITY
LOGIC |

- FROM MEMORY

TO MEMORY

FROM BYTE BUS —

DATA BUS ADDRESS BUS
BASE ADDRESS REGISTER ! WORD BIT
J‘ BIT ADDRESS TO
[\—— TABLE EXTRACT
ADDRESS ACCUMULATOR | UNIT
[
26 BIT ADDER
4
ASSEMBLER REGISTER ! e T —
' \ ' / 4 TABLE ENTRY
OR < CELL SIZE
: / MINUS ONE ,
ASSIGNMENT SWITCHES | DISTRIBUTOR / |
[L J y
| / BIT]
ADDRESS . .
8 TO 26 /
SWITCH MATRIX !
/ | l
N : - S
~ kconer (o DECODER S
\ P _ ~
~ BIT ADD ONE REGISTER €4 BITS
ADDRESS /

TWO LEVELS OF
STREAM INDEXING

L_ TO MEMORY DATA BUS

‘TABLE ADDRESS ASSEMBLER

FIGURE 4.4

FROM MEMORY DATA BUS

FROM TABLE ADDRESS

ASSEMBLER
r———=-—-——7
—_——————y)
e
BIT ADDRESS
REGISTER
Y,

-
'_' e e G CE— eI O CE— Gmmmme e am—— _.‘
F — Emm— ErE— — w—— CEEE e s omem— e _:
EXTRACT REGISTERS
8 BIT DATA: | 64 TO 8
~ BUs SWITCH MATRIX
\ . .
Py DECODER /
~ ‘ /
~ /
-~
\\ {
N - |
[R i
- , BIT
LENGTH | INCREMENT | L-NI | appress [
FROM MEMORY | susTRACT| - ADDER
DATA BUS

J)
TABLE EXTRACT UNIT
| FIGURE 4.5

SA CTR

- —
—0-
IR IAC T IX T
I
WA BA} FL IA OP CODE _ ADDER '} R
W—.J i

O O C
-0 -

\—»-TO INSTRUCTION COUNTER
OR MEMORY ADDRESS

GENERAL INDEXING

FIGURE 4.6

LIMIT
TEST

INITIAL

THRESHOLD
VALUE OVERFLOW INDICATION IF SIGN
INDICATOR CHANGES FROM PLUS
INDICATION IF CONTENTS TO MINUS
BECOME ZERO OR -
NEGATIVE
Tﬁ.fé’é%%ﬁ'a STATISTICAL
VALUE ACCUMULATOR
| ' A
y
SUBTRACT ' ADD OR
OR ADD SUBTRACT
[4
’ TN
‘NPUTTgUé‘gT'TY ACCUMULATION
ACCUMULATED : MODE CONTROL

STATISTICAL - ACCUMULATOR

FIGURE 4.8

5. System Operation‘_in the Arithmetic Mode

5.1

General Description of Arithmetic Mode

In the arithmetic mode of operation, instructions deal with
data in memory, a field at a time, A field may be of any
length from one to 64 bits; it may start at any bit position

in any word in memory and continue through that word and into
the next higher word, Thus, fields of any length from one to
64 bits may be stored in adjacent memory positions, regard-
less of memory word boundaries, and instructions in the
arithmetic mode can directly address such fields.

Variable field length (VFL) instructions are of the single-
address type, The address is assumed to be in one of the
internal computer registers. Among the VFL instructions

are the arithmetic instructions: LOAD, ADD, STORE,
MULTIPLY, DIVIDE, etc. To these are added instructions
for rounding and for setting new fields lengths, which are used
to align the radix points and cast out undesired digit positions.

There are non-arithmetic instructions included under the "arith-
metic mode'" because they resemble the arithmetic instructions
in that their operation extends over variable fields not exceed-
ing 64 bits, The CONNECT instruction, also VFL, provides the
16 "logical connectives' of two binary variables. Other non-
arithmetic instructions deal only with full 64-bit memory words;
the format of these instructions permits a limited second mem-
ory address without indexing. Included among them are instruc-
tions for transmitting full words between two locations, modify-
ing index quantities, and branching,

Space has been left in the format for defining floating-point arith-
metic operations, should a floating-point format prove desirable
in this computer. Floating-point words would have a fixed

length of 64 bits, Some references to floating-point features

will be found in this manual to indicate how such features would
be incorporated, but they are not defined in detail,

5.1,1 Data Registers and Paths

Three data registers, A, B, and C, are involved in
arithmetic operations (Fig. 5.1). These are the
same data registers, with their controls, which are
used in the streaming mode of operation,

5.1

Each register is 128 bits long including sign positions,
The registers communicate with memory in parallel,
64 bits at a time., The registers also communicate
via the Logical Unit (LU), one byte of 8 or less bits

at a time., Selection and alteration of bits out of a

64 -bit memory word occur only over the paths be-
tween the registers, never on the way to or from
memory.

Conversion between parallel and serial representations
takes place in shift matrixes which, for simplicity, are
not shown in Fig. 5.1, The registers themselves do
not have shifting properties.

All three registers can transmit bytes to the LU, but
only register C can receive and assemble bytes coming
from the LU. To permit further operations on results
without going through memory, a direct parallel path
is provided between registers C and A.

The three registers serve the following general func-
tions during arithmetic:

Register B receives the operand from the
specified memory address.

Register A holds the unspecified operand and
receives the result when the result
is not to be returned to memory
immediately,

Register C acts as temporary storage during
arithmetic operations and for trans-
fer of results to memory.

An ADD instruction may serve to illustrate these func-
tions. One of the numbers is assumed to be already in
A. The field length of this number is retained in the
controls of A, The ADD instruction specifies a memory
address and field length for the other number. The
corresponding memory word (and possibly a second
memory word) is loaded into B, The numbers are

then stepped serially out of A and B into the LU, from
right to left, starting at the sign byte. At the same

5.2

time the sum is stepped serially into C, starting

at the right end of C, When the serial addition has
been completed, the contents of C are transferred
in parallel back into A, ready for another operation,

Exceptions to the above general functions are explain-
ed under gpecific instruction headings,

5.1,2 Binary and Decimal Arithmetic

A bit in the arithmetic instructiong specifies either
binary or decimal arithmetic, The adder in the LU
automatically adjusts its mode of operation accord-
ingly. The LU can accommodate up to 8 bits in
parallel, '

Numbers can be signed or unsigned as specified by
one of the instruction modifier bits. For arithmetic
purposes, the numeric part of a field in memory
cannot exceed 60 bits in length without requiring
more than one instruction for each arithmetic oper-
ation. A 4-bit sign byte (see below) can extend the
word length to 64 bits for signed numbers, but un-
signed numbers are restricted to 60 bits altogether,
Within Register A, a double-length result can be
developed,

Binary:

- The numeric portion of binary fields can be of any
length from 1 to 60 bits, The instructions specify
a byte size which refers to the sign byte only; as
explained below, the sign byte can consist of mere-
ly a sign bit or of several additional indicator bits
depending on the byte size specified. This sign byte
is on the right end of the number, Byte size has no
meaning in unsigned binary numbers, which are
always treated as positive.

Since the numeric portion of binary numbers is
homogeneous, the machine automatically adds
them in 8-bit bytes for maximum speed, Only

at the ends, as defined by the starting address

and field length, does the machine adjust its oper-

5,3

5.1.

3

ation, when necessary, to take less than 8 bits.

VFL binary arithmetic can be used to modify signed
or unsigned portions of index, instruction, and .
floating point words in unusual ways not covered by
regular instructions.

Decimal:

Decimal digits are normally represented by the ten
4-bit binary integers, 0000 through 1001, Thus a

byte size of 4 is specified for purely decimal data.

For uniformity, the sign byte of a signed decimal

field is assumed to be the same size as the decimal
digits. Byte sizes of less than 4 bits are meaningless.

Byte sizes greater than 4 can be specified for decimal
numbers. The extra bits are inserted to the left of the
basic 4-bit decimal digit. For byte sizes of 5 or 6 bits,
the extra bits are 1's; for 7 or 8 bit byte sizes, one or
two zeros are inserted in addition. Thus, the digit '"4"
with a byte size of 6 appears as: 110100. With a byte
size of 8, the coding is: 00110100. The sign byte is
treated the same way. Arithmetic operations are
automatically adjusted for byte size by the removal or
insertion of the extra 1's.

Byte sizes of 6 to 8 bits permit decimal digits to be
interspersed with alphabetic characters and still retain
a uniform byte size. The use of two 1's on the left of
the enlarged byte automatically places decimal digits
into the generally accepted character sequence during
a binary comparison.

The field length of decimal numbers may be any
multiple of the byte size chosen, but it is restricted
to multiples of the byte size and to a maximum of 60
or 64 bits, depending on whether the field is signed
or not.

When the byte size for decimal numbers is 4, the
machine adds two decimal digits (8 bits) of each
number in parallel, whenever possible, to attain
greater speed. This adjustment is again automatic.

Sign Byte
The sign byte can be from 1 to 8 bits long, as explained

5.4

in Section 5.1.2. Byte sizes 1, 2, and 3 are valid
only in the binary mode. The eight possible bytes

are:
Byte Size Sign Byte
1 S
2 S Z
3 S 2 T,
4 S Z T, Ty
5 18 27T, T
6 118 2Z T Ty
7 0118 Z T, T
0% 00118 2 T, T

where S = sign bit (0 for plus, 1 for minus)
Z = zero value bit (0 for zero, 1 for not zero)

Ty and T, = Data Tag bits (if 1, each tag bit turns on a
corresponding indicator bit for program
interrupt)

* A code of 0 denotes a byte size of 8.

For unsigned numbers, the sign byte is missing in
memory; but the sign is assumed to be plus, and the
sign byte in the registers is set accordingly. During
arithmetic operations the sign positions in the registers
are handled asg if all numbers were signed. Thus, an
operand can be brought in without sign z.d the result
stored with sign, or vice versa.

The field length includes all the bits of a number, includ-
ing the sign byte if signed.

The Data Tag bits are retained during arithmetic oper-

ations. The corresponding tag bits of the two operands

are Or-ed to form the tag bits of the result. Tag bits

are stored in the sign byte, if any, along with the result.
5.1.4 VFL Numeric Formats

Fig. 5.2 gives examples of various numeric formats
using arbitrary field lengths,

5.5

5.2 Operand Designation

The instruction format for the arithmetic mode is shown in
Fig. 5.3. The left-most seven fields, containing 48 bits in
all, de signate the operand or operands. The remaining 16
bits, starting at the operation code and extending to the pro-
grammer's Instruction Tag bit on the extreme right, specify
the operation to be performed. The functions of these 16
bits will be discussed in later sections.

All address quantities are binary.
5.2.1 Addressing Convention

All variable field length instructions carry 26-bit
addresses which allow them to address any bit in
a working Znemory of up to 2 0 (over 1 million)
words of 2° (64) bits each, Addresses follow a
"left to right' sequence. Reading and writing
operations deal with consecutive words addressed
in ascending sequence. If writing starts in word
address 210, the first word goes to word address
216, the next word to 216 + 1, the next to 216 4
2, and so on., Bit addressing follows the same
pattern, The left-most bit of a word carries bit
address 000000, the next bit 000001, and on to the
last bit address 111111 of the word.

Consistent with this addressing scheme, fields and
bytes within a field are addressed by the address of

the left-most bit. Most streaming operations start at
the byte whose left-most bit is located at the specified
starting address, and step along, byte by byte, in ascend-
ing order of addresses. (The Exchange also operates in
this manner when transmitting information to and from
units a byte at a time, except that it is constrained to
start at the left end of a full memory word.,) A 20-bit
word address and the corresponding 26-bit field address
are related by simply adding 6 zeros to the right end of
the word address,

Although arithmetic operations must proceed from right
to left, in a descending order of addresses, the same
addressing convention is still used. Numeric fields are
addressed by the position of the leftmost, or high-order,
- bit, The correct starting position at the right end (low-

5.6

order) is calculated automatically.
5.2,2 Operand Address

The leftmost 20 bits of the instruction specify the word
address of an operand in memory, The word address, ‘
after modification by indexing, is sent to memory to
select a full 64-bit memory word, Special addresses
permit the word address to select control words current-
ly in the Exchange, and internal computer registers.

For variable field length operations, the 6-bit address
part of the instruction extends the word address to a
complete 26-bit operand address. During the execution
of a VFL instruction, the bit address is used inside the
computer to gelect from a full word the leftmost bit of
the field, On storing, only full words are sent to mem-
ory to be stored at the word address; bits are assembled
in the computer beforehand, Thus, the word address
and the bit address perform different kinds of functions,
Logically, however, the VFL operand address may be
considered to be a single 26-bit number,

Non-arithmetic instructions, which do not operate on
VFL data,. have only the 20-bit word address to select
the operand,

Whenever the effective operand address, after indexing,
is zero, any reference to memory is automatically
suppressed, Address zero is always considered to con-
tain zero, When an operation calls for an operand from
address zero, a zero operand is automatically provided
in the correct format (VFL or floating point, unsigned

or signed with appropriate sign byte). When an operation
indicates storing an operand at address zero, nothing
actually is stored.

5.2,3 Field Length
In VFL instructions, the 6 bit field length specifies the

total number of bits in the operand, from 1l to 64. A
field length of 64 bits is encoded as 000000,

5,7

For signed numbers, the field length includes the -
sign and tag bits, Thus signed and unsigned numbers
with the same numeric bits differ in field length by
the bits in the sign byte,

The field length is omitted from instructions dealing
only with full words from memory.

5.2.4 Second Address

For other than VFL instructions, the bit address and
field length parts of the instruction are combined and
interpreted as a second 12-bit address. The use of
this address depends on the instruction. Most
frequently it is used as an address to designate internal
registers, or a section of memory limited to word
addresses below 4096 (212), or an external unit. An-
other limitation of the second address is that is cannot
be indexed,

When used as a memory address, the aecorid address
is interpreted as a 20-bit address of which the high-
order 8 bits are zeros,

Address Modification

The operand address can be modified before using it
to select the operand by adding an address modifier
(index value). The addition results in an effective
address which is the one actually used in word and bit
selection; the contents of the instruction as stored in
memory, however, are left unchanged.

The index address part of the instruction contains 12
bits which specify the location in memory of an index
word containing the modifier. The index word locations
are thus limited to word addresses below 4096 (212),

The index word format is shown in Fig, 5.4, The

value field on the left is the part that is added to the
address part of the instruction for address modification,
the remainder of the index word being ignored, The
index value field consists of 27 bits: a word address, a
bit address, and a sign. The addition is algebraic,

5.8

The address part of the instruction doea not contain a
sign bit and is always considered positive., The result-
ant effective address must be a positive quantity. Any
invalid address turns on the Invalid Address indicator.

The same index word format is used to modify 26 or 20 bit
operand addresses. When the operation is not of the VFL
type, the 6 bits of the bit addreas are suppressed during
the addition, but the sign is still effective.

The addition takes place in an index adder which is
geparate from the main arithmetic adder in the SLU,
The execution of one instruction may overlap with the
obtaining and modifying of the next instruction.

Negative index values are represented in absolute value
form with sign; any complements occurring during
addition are automatically converted to the absolute
value form.

. When the index address is zero, address mddification is
omitted. This is the normal method of specifying '""no
indexing', :

5.2.6 Address Modification for Word Transmisgsion

A special form of address modification allows both the
effective Word Address and the Second Address to
advance automatically, 8o as to permit a group of con-
secutively stored words to be transferred from one
location to another, with one instruction, This mode
of operation isg explained in the section on Word Trans-
mission.

The stepping up of addresses takes place within the
computer and does not alter the instruction and index
words in memory which are used to initiate the action.

5.2.7 Address Designators
The instruction format (Fig. 5.3) contains three address
designatora which modify the interpretation of the index

address, the word address, and the second addres s,
respectively. The previous descriptions of -

5.9

these addresses apply when the designators are all set
to zero. They are referred to as ''direct” addresses,
Other meanings are listed in the following table.

a. Index Address Designator (IAD - 1 bit)

IAD = 0 : Direct
IAD = 1 :; Indirect

b. Operand Address Designator (OAD - 2 bits)

OAD = 00 : Direct
OAD = 01 : Indirect
OAD = 10 : Immediate

c. Second Address Designator (SAD - 1 bit)

SAD =0 : Direct
SAD = 1 : Indirect

A direct index address specifies an index word in memory
which is used directly to modify the operand address.

An indirect index address specifies a Multiple Index Address
Word in memory (see Fig. 5.5). This word has a format
similar to an instruction word and contains space for three
index addresges in the fields corresponding to the WA,

SA, and IA parts of the instruction. Each address can

be used to specify a separate index word whose value is

to be added to the address part of the basic instruction

to form the final effective address.

The multiple index address word itself contains an IAD.
If the new IAD = 1, the new IA part is used to fetch yet
another multiple index address word. The process of
multiple indexing continues until it encounters an IAD = 0.
Then the last IA is interpreted as a direct index address,
and this becomes the last step in the indexing process.

Multiple indexing proceeds in the order WA, SA, and IA
(if direct). If les s than three index addresses are needed,
the remaining address fields should be set to zero. A
zero address in any of the three fields also terminates

the multiple indexing process. Everything beyond the
zero index address is then ignored.

5.10

Multiple indexing thus permits any number of indexing
values to be added to the operand address. Each
multiple index address word in the chain contributes
two more index addresses except the last word which
can cantribute three. Another feature of multiple
indexing is that there is one 20-bit address in each
word which permits an indexing quantity anywhere in
memory to be specified.

A direct operand address results in an effective address
after modification which directly selects an operand.

An indirect operand address, after modification by
indexing, causes an Indirect Address Word (Fig. 5.5)
to be brought out of memory. This word has a format
and containg another operand address, field length,
index address, IAD and OAD. The new address so
obtained may itself be indexed by means of the index
address brought in with the new address word, - The
new OAD can also indicate "indirect", thus causing
the new effective address to obtain yet another indirect
address word. The process continues until the OAD

" indicates ''direct' or "immediate (see below). The
effective address obtained from the final address word
then selects the actual operand.

An immediate operand address is used to permit
specifying short operands immediately in the address
part of the instruction, without reference to another
memory location. The address may be modified by
indexing, and the effective address is then sent out
over the data bus to become the operand itself,

The bits appear on the data bus and in the receiving
register in the left-most positions of the word. This
exactly corresponds to the original position of the
immediate address in the instruction., The maximum
size of the operand is 27 bits of which the right-most
bit is a sign. The instruction actually can supply only
20 meaningful bits in the high-order positions, but all
the 27 bits of the effective address, including any sign
supplied by the index value, are sent out as data. The
rules for modification of immediate addresses are the
same as for regular addresses,

With VFL operations, the bit address (after indexing)
and the field length are used by Register B to specify
the starting position and the number of bits of the
immediate address to be used in the operation, Thus,
the bit address appears both on the data bus and in the
controls of Register B, and care must be taken with
immediate addresses to produce meaningful results,
Normally, this technique should be restricted to un-
signed data of 20 bits or less,

Immediate operand addresses are not defined for
branching or for operations which normally return data
to memory (such as STORE),

A direct second address is placed into a Second Address
Counter to be used as it stands,

An indirect second address refers to a memory location
containing another instruction word, The second address
part of the word is then substituted in the Second Ad-
dress Counter, Both direct and indirect second addresses
are limited to 12 bits, Indirect second addressing con-
tinues until SAD = 0.

When more than one non-zero address designator appears
in an instruction, the sequence is as follows:

¢ 1, If SAD = 1, the second address substitutions
are made first,

2, Multiple indexing, if IAD = 1, is taken care of
next, to modifying the present operand address.

3. Then, if the operand address is indirect (OAD =
01), the indirect address word is obtained to
replace in the Instruction register the left-most
4 7 bits, up to the OAD, of the original instruction,
The right-most 17 bits, from the SAD on, are
left unchanged.

4. The new contents of the instruction register are
again decoded as if they were a new instruction,
except for the second addres s, Steps 2 and 3
are repeated until the OAD indicates direct (00)
or immediate (10).

5.12

Thus, each new operand address can be subjected

to single or multiple indexing, using the indexing
information carried with the indirect address word.
This implies that the index address information to
modify the final operand address must be stored with
that address in the Indirect Address Word and cannot
be obtained from the original instruction.

Indirect addressing and multiple indexing provide
great flexibility, but possibly at the expense of speed.
The loss in speed, if any, depends on the number of
steps in the instruction modification process and on
the duration of the previous instruction execution with
which the instruction modification overlaps.

Index Modification

The in structions needed to advance and test index words
atored in memory for subsequent use in modifying addresses
of the instructions are referred to as index modification
instructions. Most of them are two-address instructions,

~where the operand address specifies an index word containing

the increment or replacement value, and the second address
specifies the index word to be modified,

The operand address of an index modification inatruction
may itself be indexed to permit the use of a series of
modifiers,

The words involved in index modification follow the index
word format of Fig, 5.4. Each word consists of two 27 -bit
fields, named Value and Length. The remaining bits are not
used during general indexing, but have significance when an
index word is used as a control word in the Exchange,

5.3.1 YValue and Length

The Value field is the field that is added to an operand
address in the normal course of events. When the
Value field is to be changed by regular increments,
the Length field defines the end of the incrementing
process,

Initially, the Value field is set to the Starting Value,
usually zero, The Length field is set to the total

5.13

5.3.2

number of bits to be traversed from start to finish,
During incrementing the increment is added to the
Value and subtracted from the Length, When the »
Residual Length reaches zero, the end of the process
is indicated.

Thus, both fields change continually during the process.
The Residual Length always indicates the number of
bits yet to be covered. Instructions for restoring both
fields to their initial settings are provided.

Index words can also be used for simple counting with-
out address modification. A special instruction is pro-
vided to advance the count and branch in one operation,

INCREMENT

The INCREMENT instruction specifies two index words,
located in memory at the second address and the word
address, each word containing two fields, V and L.

v L
Second Address: Current Value Residual Length
Word Address: Increment (Length)

The increment is added to the current value and sub-
tracted from the residual length. All quantities are
signed, and addition and subtraction are algebraic,

The Residual Length, after the subtraction, is tested
for zero and sign, and the test is retained in the
Indicator Register for subsequent use by a CONDITION-
Al, BRANCH instruction,

The word address may be designated as immediate, so
that the operand address itself can serve as a 20-bit
increment with a zero bit addresas and positive sign,

If the immediate address is also indexed, a non-zero
bit address and either sign may be provided. This
technique often avoids the need for the second index
word to specify the increment.

When an index word is used to hold the increment, the
1, field of that word does not affect the INCREMENT

operation. It may serve to retain the initial getting of
the Residual Length when the simple RESTORE opei‘-

5.14

ation (see below) does not apply.
5.3.3 Branching and Counting

The INCREMENT instruction includes a test to de-
termine whether an indexing process has reached
its limit. The result of the most recent test is
retained in the Indicator register. A Conditional
Branch instruction interrogates the Indicator
register and alters the program depending on

the bit.

To simplify counting, a Count operation is pro-
-vided and explained in detail in the section on
Branching., It is equivalent to an INCREMENT
instruction followed by a Conditional Branch, The
increment is implied to be + 2%, i.e., a one is
added in the low-order position of the word address.
The maximum range of this count i® 0 to 24V -1,

5.3.4 REPLACE VBY V
REPLACE L BY L
REPLACE L BY V
REPLACE V BY L

The REPLACE INSTRUCTIONS CAUSE EITHER THE V

or 1L, field of the index word at the second address to be
replaced by either the V or L field of the index word at
the word address. The word at the word address remains
unchanged. Except for the specified field, the remainder
of the word at the second address also remains unchanged,

REPILACE BY

Field at Field at Word
Instruction Second Address ‘Address
REPILACE V BY V A\ v
REPLACE L BY L L L
REPLACE L BY V L | v
REPLLACE V BY L Vv L

If the entire index word is to be replaced, a TRANSMIT
or RECEIVE instruction is used,

5.4

5.3.5 RESTORE

RESTORE performs the following operations on the
index word at the word address:

a) V is added algebraically to L, the sum
replacing L.

b) V is then set to zero.

Whenever an index word starts with V = 0 and is
modified by use of the INCREMENT or Count instruc-
tions, the index word may be restored to its initial
setting by the RESTORE instruction. V is added to
L, rather than simply replacing it, to permit return-
ing to the original setting even if L. has not yet reach-
ed zero or has gone beyond zero.

Arithmetic Operations

Only variable field length fixed -point arithmetic operations
are defined here.

5.4.1 Arithmetic Instruction Format

Fig. 5.3 shows the positionsof the various parts of the
instruction, The parts designating the operand are
described in Section 5,2, The parts defining the
operation are described below.

The operation code (6 bits) designates the basic oper-
ations, These operations are modified by the modifier
bits listed below, The operation code also distinguishes
between arithmetic, non-arithmetic and streaming oper-
ations, The modifier bits do not have the same meaning
for non-arithmatic operations where they form merely' an
extension of the operation code.

Sign Modifier (SM - 2 bits: 54-55)
The operand sign is modified before starting the operation
without changing the sign as stored in the original loca-

tion. For ADD TO MEMORY, only, the sign modifier
is applied to the number coming from register A,

5.16

SM = 00: Leave operand sign unchanged.
SM = 01: Invert operand sign.

SM = 10: Set operand sign to plus

SM = 11: Set operand sign to minus.

Format Modifier (FM - 2 bits: 56-57)

FM = 00: Unsigned variable field length
FM = 01l: Signed variable field length
FM = 10: Unnormalized floating point
FM = 11: Normalized floating point

For incoming unsigned operands a plus sign is assumed,
and the sign modifier bits then modify this plus sign. The
result in the data register is always signed, but it may be
stored, signed or unsigned. Thus with FM = 00, there is
no distinction between SM = 00 and 10, or between SM = 01
and 11, :

Decimal Modifier (DM - 1 bit: 58)

If DM = 0, the arithmetic operation is binary.
If DM = 1, the arithmetic operation is decimal,

Left Half Modifier (LM - 1 bit: 59)

If LM = 0, all 128 bits of Register A are used in the opera-
tion, starting at the right end. '
If LM = 1, only the left 64 bits of Register A are used in
the operation,

Byte Size (B.S. - 3 bits: 60-62)

Byte Size refers to the specified operand.

If B.S. = 000, the byte size is 8 bits,

If B.S. = 001 to 111, the byte size is 1 to 7 bits, respectively.
For binary numbers (DM = 0), the byte size indication applies
only to the sign byte.

For decimal numbers (DM = 1), the byte size indication applies
to the decimal digits as well as to the sign byte,

Instruction Tag (IT - 1 bit: 63)

Every instruction carries this bit. It is sent to the Indicator
register to permit a program interruption if desired (see
section on Interrupt). It does not affect the operation of the
current instruction in any way.

5.17

5.4,2

5.4.,3

Variable Field Length Arithmetic

All arithmetic operations, other than floating point, operate
on a variable field length basis. These operations proceed
as if the radix point were fixed at the right end of the
number, Adjustment of the right end of the field may be
needed to line up the point.

Single operands are limited to a maximum of 60 bits in
length, not counting sign bits. Intermediate results in
Register A can extend to 120 bits; results longer than 60
bits are stored in two parts, or they are first adjusted to
reduce them to 60 bits or less.

Each operation produces a result of a specific length unless
an overflow occurs., Overflow automatically increases the
result field length to retain all significant bits but the Result
Overflow Indicator is turned on. If the result field attempts
to exceed 120 bits the Register Overflow Indicator is turned
on. The field length of results in Register A is retained

in the index controls from one operation to the next. Thus,
although most instructions do not directly specify the

field length in A, complete control is retained over the
field lengths.

Keeping the field lengths as short as possible can save
memory space and operating time,

-LLOAD

 (SM = 00)

The specified operand is loaded into Register A, replacing
any previous contents of A. The operand is left unchanged
in the original location,

The operation places the one or two 64-bit memory words
containing the operand into A without shifting or relocating
the data. The starting bit address, the field length and
byte size are retained in the register controls to define the
field for subsequent operations,

If the field is signed, the sign byte is inspected and the
proper indicators in the Indicator Register are set.

5.18

5.4.4

5.4.5

LOAD does not affect Registers B or C.

Sign Modifiers

SM = 01: Load with opposite sign.
SM = 10: Load with plus sign,
SM = 11: Load with minus sign.

ADD
(SM = 00)

The specified operand is added algebraically to the con-
tents of Register A.

The sum is first produced in Register C and then returned -
to Register A, replacing the previous contents. The sum
lines up with the right end of A and the rest of the bits are
zero, The operand is left unchanged at its original location.

The field length of the result is defined as the length of

the longer of the two numbers added. If an overflow occurs
beyond the result field length as defined, the field length

is increased by one bit (if binary) or byte (if decimal),

and the Result Overflow Indicator is turned on.

When two numbers are added,the byte gize of the result is
the byte size of the number in A, This holds for either
binary or decimal addition. When storing the result it
may be converted to another byte size.

The Sign and Zero Indicators are set to correspond to the
sum,

ADD alters Registers B and C,

Sign Modifiers

SM=01: Subtract

SM = 10: Add abgeolute

SM= 11: Subtract absolute
STORE

(SM = 00)

5.19

5.4.6

5.4.7

The contents of Register A are stored at the specified
operand address using the apecified byte size. Only as
many bits as specified in the operand field length are
stored. Bits to the right or left of the specified field in
memory remain unchanged. Register A remains un-
changed.

If the specified field length is greater than the field length
of the number in A, the remaining bit positions in memory
are filled with zeros. If the specified field length is less
than that in A, nothing is stored beyond the field length
specified; the remainder of A is scanned and if any more
one-bits are found the Store Overflow Indicator is turned
on,

STORE alters Register C but not B.

‘Sign Modifiers

SM =01l: Store with opposite sign.

SM = 10: Store with plus sign.

SM = 11: Store with minus sign.
STORE C

The contents of Register C are stored at the specified
operand address using the specified byte size. The rules
for field length, overflow, and treatment of bits in memory
are the same as for STORE,

STORE C is used primarily to store the remainder after
DIVIDE.

STORE C alters the contents of B and C. Register A re-
mains unchanged.

COMPARE

COMPARE is the same as ADD in all respects except that
the sum is not returned to Register A which remains
unchanged. The sum does appear in Register C and can be
stored by using the STORE C instruction before another
instruction intervenes which would alter C., The sign
modifiers apply, The Sign and Zero Indicators are set to

5,20

5.4, 8

5.4.9

correspond to the sum,

The chief use of COMPARE (with SM = 01) is to obtain a
non-destructive algebraic comparison of a quantity (A)
in Register A with the specified quantity (B) in memory.
The fields can be of different lengths, The result ia
indicated by the Sign and Zero Indicators.

For example, with SM = 01:

Indicator On Meaning
0 (A) = (B)
+ (non-zero) (A) > (B)
- (A) < (B)

For alphanumeric fields of 60 bits or less use COMPARE
with SM = 01, FM = 00, and DM = 0,

COMPARE, alters Register B,
DIMINISH

DIMINISH is the same as ADD in all respects except that,
if the sum is negative, it is replaced by zero in Register
A, The true sum appears in Register C and can be
stored by using the STORE C instruction before another
instruction intervenes which would alter C, The sign
modifiers apply. The Sign and Zero Indicators are set
to correspond to the true sum in C,

The chief use of DIMINISH is with an unsigned format and
SM =01,

DIMINISH alters Register B,

ADD TO MEMORY

(SM = 00)

The contents of Register A are added to the specified
operand, the sum being returned to the specified operand

address, Bits to the right or left of the specified Memory
area remain unchanged. Register A remains unchanged.

5,21

The specified format modifier and byte size applies to
the operand and the result,

The result has the same field length as the specified
operand. If the sum is longer than the specified field
length, nothing is stored beyond the field length specified;
the remainder of the sum is scanned and, if any non-
zero bits or bytes are found in the sum which were not
stored, the Store Overflow Indicator is turned on.

The Sign and Zero Indicators are set to correspond to the
sum as it is stored. The Data Tag on the operand originally
in Memory controls the Data Tag Indicators. The Or of

the operand Data Tags is the Data Tag of the result,

ADD TO MEMORY alters Register C but not B.

Sign Modifiers

The gign modifier alters the sign of the number coming

from A.
S =01: Subtract from Memory.
S =10: Add absolute value of A to Memory.
S=11: Subtract absolute value of A from Memory,

5.4.10 MULTIPLY

The contents of Register A (the multiplicand) are multi-

plied by the specified operand (the multiplier)., The pro-
duct is formed in Register C after first clearing C. The
product is returned to Register A, replacing its previous
contents,

The length of the product is the length of the multiplicand
plus the length of the multiplier, The byte size of the
product is the byte size of the multiplicand,

Since the factor in Register A can have a length of more
than 60 bits, it is possible for the product to exceed the
register limit of 120 bits. If this occurs, the multiplica-
tion is stopped and the Register Overflow Indicator is
turned on. In this case the multiplicand in A remains un-
changed.,

The Sign and Zero Indicators are set to correspond to
the product. The Data Tag Indicators are set to corres-
pond to the multiplier Data Tags.

5.4.11 LOAD AC

The contents of Register A are first transferred to Regis-
ter C. Register A is then loaded with the specified operand,
as described under LOAD,

LOAD AC is used to load the multiplicand prior to a
CUMULATIVE MULTIPLY operation, preserving the
previous contents of A for addition to the new product,
No other operation should intervene which would alter
the contents of Register C.

The transfer of A to C is made serially via the LU to
line up the number at the right end of Register C, ready
to be added to the new product,

Register B is not changed.
5.4,12 CUMULATIVE MULTIPLY

The contents of Register A (the multiplicand) are multi-
plied by the specified operand (the multiplier), The pro-
duct is added algebraically to the previous contents of
Register C, The sum is finally returned to Register A,
replacing its previous contents,

The length of the result is the length of the field previously
in C, or the sum of the multiplier and multiplicand lengths,
whichever is longer, If an overflow occurs beyond the
result field length as defined, the field length is increased
by one bit (if binary) or byte (if decimal), and the Result
Overflow Indicator is turned on.

The multiplicand should have been loaded by means of a
LOAD AC instruction prior to the CUMULATIVE MULTIPLY
instruction. No instruction should intervene which would
alter the contents of Register C.

The Sign and Zero Indicators are set to correspond to the

result, The Data Tag Indicators are controlled by the
multiplier Data Tags.

5.23

Register B is altered.

5.4.13 DIVIDE

The contents of Register A (the dividend) are divided by
the specified operand (thedivisor), The quotient is
returned to A, replacing the previous contents. The
remainder appears in Register C.

If the remainder is to be retained, it can be stored by
using STORE C. This instruction should follow DIVIDE
before another instruction intervenes which would alter
the contents of C.

Not counting any sign bytes, the number of bits (if binary)
or digits (if decimal) in the quotient is given by the number
of significant bits or digits in the dividend, minus the
number of significant bits or digits in the divisor, plus

one bit or digit. The number of significant divisor bits

or digits excludes any zeros to the left of the most
significant bit or digit in the divisor.

If the divisor is zero, the division is not executed and the
Zero Divisor Indicator is turned on, No quotient is pro-
duced, and the dividend remains in A,

If the significant bits or digits in the divisor exceed the
number of bits or digits in the dividend, the result is a
zero quotient and a remainder equal to the dividend.

These rules treat the divisor as if it were an integer and
produce meaningful quotients and remainders for any non-
zero divisor.

The length of the remainder is the same as the length of
the dividend.

The byte size of the quotient and remainder is the byte size
of the dividend. '

The division process consists of first transferring the
contents of A to C, via the LU, to line up the dividend in C.
The divisor is placed in B. During the division, the quotient
is developed in the left end of C while the dividend is reduced
toward the right end. This leaves both quotient and remainder

5,24

5.4.14

5.4.15

in C. The contents of C are then dumped into A, and the
controls of A are set to the bit address and length of the
quotient, while the controls of C are set to the bit address
and length of the remainder,

The Sign and Zero Indicators are set to correspond to the
quotient, The Data Tag Indicators are set to correspond
to the divisor Data Tags.

Register B is altered.
SHORTEN

The field length of Register A is decreased by removing a
number of bits from the right end of the numeric portion of
the field in A. The sign byte is left in place. The number
of bits to be removed is specified in the Field Length part
of the SHORTEN instruction.

The whole number is passed through the LU to align it at
the right end of Register A and to test the shortened number
for zero., The Sign and Zero Indicators and the sign byte
are set to correspond to the result.

The Operand and Index Address parts of the instruction are
not used.

SHORTEN alters Register C but not B,

In the decimal mode the number of bits removed should be a
multiple of the byte size of A.

ROUND

The field length of Register A is decreased by removing a
number of bits from the right end of the numeric portion

of the field in A and rounding the remaining portion,

ROUND is the same as SHORTEN except that a 1 is added

to the absolute value of the remaining field, in the low-order

position, if

(a) in binary arithmetic, the highest bit dropped is
al, or

(b) in decimal arithmetic, the highest byte dropped is

5,25

a 5 or greater,

Any carry beyond the left end of the field increases the
resultant field length by one bit or byte and turns on the
Result Overflow Indicator,

ROUND alters C but not B,
5.4.16 LENGTHEN

The field length of Register A is increased by inserting a
number of bits to the right of the low-order position of
the numeric portion of the field in A, The sign byte is
left in place. The number of bits to be inserted is speci-
fied in the Field Length part of the LENGTHEN instruc -
tion, ’ '

The inserted bits are zero bits in binary arithmetic and
properly coded zero bytes in decimal arithmetic,

The whole number is passed through the LU to align it at
the right end of Register A.

The Operand and Index Address parts of the inatruction
are not used,

LENGTHEN alters Register C but not B,
Binary Connectives

The LU can provide the 16 connectives of two binary variables,
which are listed in Fig. 5.6. A and B represent a single bit from
each of two operands. The four columns of one-bit results
correspond to the four possible states of A and B, The rows
represent the 16 possible connective functions, coded 00 to 15,

Among the common connectives are:

14 AorB

08 A and B

06 A EXCLUSIVE OR B
09 A MATCHB

03 NOT A

05 NOT B

The trivial connectives A, B, 0, and 1 are included for completeness,

5.26

5,6

Because of the VFL feature, it is possible to operate either

on pairs of single bits or to perform the same operation on all pairs
of bits of longer fields. A series of single-bit operationa can be
uged to evaluate complex logical expressions, The multiple-

bit operations lend themselves to operations on complex patterns

of bits,

5.5.1 CONNECT

The bits of the specified operand (B) are combined with the
bits of the field (A) in Register A, according to the Table
of Connectives (Fig, 5.6). The result is returned to A,
replacing the previous contents,

The Connective Code is specified by the 4 bits of the
Connective Modifier (CM) part of the instruction. (See
Figu 50 3). .

The length of the result is the length of the specified
operand. The original field length of A is ignored.

If the result contains only zero-bits, the Zero Indicator
is turned on. If the result contains one or more one-bits,
the Plus (Non-zero) Indicator is turned on.

The LM modifier applies to CONNECT, The SM, FM, and
DM modifiers and the Byte Size do not apply.

CONNECT alters registers B and C.
Word Transmission

A pair of two-address instructions, RECEIVE and TRANSMIT, are
provided to move full memory words from one location to another,
Only one of the two instructions is used for any given operation,
the difference between them being which of the two addresses is
interpreted as source and which as destination. The two addresses
are the 20-bit Word Address and the 12-bit Second Address,

If the Index Address is zero, no indexing takes place and only one
word is transmitted.

To transmit more than one word, the Index Address is used to
specify an Index Word., The Value part of the Index Word is added

5,27

to the Word Address to obtain the actual starting location. (The
Second Address cannot be so modified). The Length part
specifies the number of words to be transmitted. For successive
words, both the effective Word Address and the Second Address
are advanced by one. There are a number of restrictions to

this process:

(a) Words must be stored at consecutively numbered
addresses, both at the source and destination.

(b) The Second Address cannot be indexed.

(c) The Seclond Address can only specify addresses below
4096 (21%), Tkis does include all registers and high-
speed memories, however.

(d) Fields other than full 64-bit memory words cannot
be moved this way.

This pair of word transmission instructions is provided to permit
either the source address or the destination address to be
unrestricted. VFL instructions or the streaming mode should

be used for more flexible manipulation of data,

5.6.1 RECEIVE
TRANSMIT

RECEIVE and TRANSMIT both move full 64-bit memory words
from one get of locations to another. The only distinction
is which address is the source and which the destination:

Source Destination
RECEIVE Word Address - Second Address
TRANSMIT Second Address - Word Address

The effective Word Address, after indexing, and the
Second Address specify the two locations for the first word
to be transmitted.

The Sacond Address and the effective Word Address are

then stepped-up by 1 (in terms of words) and 2~ is sub-
tracted from the Length part of the specified Index Word.

5,28

5.7

The new Liength is tested for zero or negative contents,
Additional words are transmitted and the addresses and
the Length are modified until the Length becomes zero
(including the Bit Address part) or negative (if the Bit
Address part was not zero), The process then terminates.

If the Index Address is zero, the Word Address is not
modified and only one word is transmitted,

The contents of the source address are not changed.

The data registers are not affected by the instructions
unless they are specified by one or both of the addresses,
If one of the data registers is specified, its controls are
not changed.

The operatiori modifiers do not apply.

Branching

Immediately after the Instruction Counter contents have been

sent to Memory to obtain a new instruction, the Instruction Counter
is stepped up by one to indicate the location of what is normally the
next instruction, The branch instructions, however, permit the
instruction sequence to be altered by inserting a new address in
the Instruction Counter; the next instruction will then be obtained
from this new location. ‘

The unconditional branch instruction, BRANCH, always inserts a
new instruction location, In addition, the Second Address is used
to specify a word where the old Instruction Counter setting can be
stored. Since at this time the Instruction Counter has already
been stepped up, what is stored at the Second Address is the loca-
tion of what would have been the next instruction without branching,
If the Second Address is set to zero, the Instruction Counter is not
stored and some time is saved,

By changing a single bit in the Operation Code from 1 to 0, the
BRANCH instruction is converted to NO OPERATION,

A second unconditional branch instruction, BRANCH ENABLE, is
described in the section on program interruption.

The conditional branch instructions, BRANCH IF I ON/OFF and
BRANCH IF A ON/OFF, replace the Instruction Counter contents

5,29

only if a specified condition is satisfied; if the condition is not
satisfied, the Instruction Counter continues the present in-
struction sequence,

The conditional branch instructions perform a wide variety of
tests by permitting any one bit in the Indicator Register or in
Register A to be interrogated. The Indicator Register, which
is described in another section, contains all of the machine
conditions needed for testing, Any bit stored in memory may
be tested by first loading the corresponding memory word into
Register A and then using the conditional branch instructions,
The Bit Address specifies which bit position in the desired regi-
ster is to be tested,

By changing a single bit in the Operation Code from 1 to 0, the
BRANCH IF I (A) ON instruction is converted to BRANCH IF I (A)

OFF,

Another pair of conditional branch instructions, COUNT AND
BRANCH IF ZERO/NOT ZERO, combine advancing a count in

an index word with conditional branching to test the count, Here
the bit address is not used, Instead, the Second Address specifies
the location of the Index Word containing the count,

All branch instructions may be indexed., The effective word
address is sent to the Instruction Counter when branching occurs,

In the conditional branch instructions, the bit address participates
in the indexing as if these were VFL instructions; only the effective
Word Address and the effective Bit Address have different functions,
The field length is not used.

If the effective Word Address is zero, no branching occurs.

5.7.1 BRANCH

After advancing by one from the location of the present
instruction, the Instruction Counter contents are stored
in the leftmost 20 bits of the word specified by the Second
Address; the remainder of the word is left unchanged,

Branching then occurs; that is, the Instruction Counter
contents are replaced by the effective Word Address part
of the instruction,

If the effective Word Addreas is zero, no branching occurs,

5. 30

5,7.2

5.7.3

5,7.4

The Instruction Counter contents, which are not replaced,
are still stored.

If the Second Address is zero, the Instruction Counter is
not stored.

NO OPERATION

This instruction does nothing except set the Instruction
Tag Indicator with its own Instruction Tag bit, All other
parts of the instruction are ignored,

The Operation Code for NO OPERATION may be changed
to BRANCH by changing a single bit from 0 to 1. Thus

the operand designation of the NO OPERATION instruction
is frequently that of a BRANCH instruction, but no branch~-
ing occurs,. ‘

BRANCH IF I ON
BRANCH IF I OFF
BRANCH IF A ON
BRANCH IF A OFF

The Instruction Counter is set to the effective Word Address,
i.e., branching occurs, if a specified condition ig satisfied,
If the condition is not satisfied, the Instruction Counter is
advanced by 1, i, e,, no branching occurs,

BRANCH IF I ON tests the bit in the Indicator Register
specified by the effective Bit Address. If the bit is On (1),
branching occurs. If the bit is Off (0), no branching occurs,

BRANCH IF I OFF also tests bits in the Indicator Register.
If the specified bit is Off (0), branching occurs, If the bit
is On (1), no branching occurs,

BRANCH IF A ON and BRANCH IF A OFF are similar to
the first two instructions, except that they test bits in
Register A,

If the effective Word Address is zero, no branching occurs
in any case,

COUNT AND BRANCH IF ZERO
COUNT AND BRANCH IF NOT ZERO

The Second Address of these instructions specifies an

5,31

Index Word. 26 is algleaically added to the Value part
of the Index Word and 2~ is subtracted from the Length
part, The low-order six bits are not altered, The modi-
fied Index Word is returned to its storage location,

The entire Length field is tested for zero to determine
whether branching should occur,

COUNT AND BRANCH IF ZERO causes branching if the
resultant Length field is zero.

COUNT AND BRANCH IF NOT ZERO causes branching if
the resultant Length field is not zero,

If the effective Word Address is zero, no branching occurs
in any case, but the Index Word is still modified.

Indicator Register

The Indicator Register contains 64 bits, The individual bits are
turned On (set to 1) or turned off (set to 0) at the time certain
specified conditions occur in the computer system, Each bit is
also turned Off when it is interrogated, either by a conditional
branch instruction or by an automatic program interruption,

The entire Indicator Register contents may be sent out over the

data bus by instructions giving the address of the Indicator Register,
This may be for the purpose of storing the Register contents in
Memory or for manipulation in the dataregisters. Interrogating

the entire Indicator Register in this way resets the entire Register

to zeros, Bits cannot be stored in the Indicator Register by address-

ing it.

For the purpose of program interruption, the bits in the Indicator
Register have a built-in priority. Priority decreases from left
to right. The conditions are listed below in the order of decreas~

ing priority,

5.8.,1 Internal Malfunctions

0, Control Error
1. Information Error
2. Memory Error

5,32

5,8,2 Control

5.8.3

5.8.4

3.

Invalid Instruction

An instruction has not been executed because
the operation is meaningless,

Invalid Address

An instruction has not been executed because the
address is meaningless in conjunction with the
specified operation,

Elapsed Time

The Elapsed Time Clock, an internal clock, has
gone through zero, '

Streaming (Bits 6-30)

These are the conditions which result from and can
interrupt streaming operations. They are listed in
section 6, 10, :

Exte rnal Units

For indica.tors 33 to. 38 the "“indicated unit'" is that
identified by the External Unit Address Register,

31,

32.

33,

Exchange Error
Selecf Reject

The Exchange rejected an instruction because the
unit was already selected by a previous instruction.
Thisg Indicator should not be masked so that program
interruption may occur before the computer takes up
the next instruction,

Not Ready Reject
The Exchange rejected an instruction because the
unit was not in condition to be operated. This

indicator should not be masked so that program in-
terruption may occur before the computer takes up

5.33

the next instruction.
34, Normal End

The last operation initiated for the indicated unit
has been successfully completed,

35, Operator Signal

An operator's signal has been received from the
indicated unit,

36. End of File

The indicated unit Haa reached an end -of -file
condition,

37. Cancel
The last operation initiated for the indicated unit
has been terminated without success, This indica~
tion does not include data error,

38, Data Error

The last operation initiated for the indicated unit
has been terminated by a data error,

39. Other Computer

This Indicator is turned on by the program in another
Computer connected to the same memory bus system,

5.8.5 Index Word Modification

These indicators retain the result of the test made during
the last modification of an Index Word,

40, Length less than zero
- 41, Length equal to zero

42, Length greater than zero

5,34

5.9

5,8, 6 Arithmetic

These indicators retain the tests made during the last
arithmetic operation which affected them,

43,
44,
45,
46,
47,
48,
49,
50,

51,
52,

53,

Resgult Overflow

Store Overflow

Register Overflow

Zero Divisor

Result less than zero

Result zero

Result greatér than zero

Exponent Overflow

Exponent near Overflow Reserved for

floating point arithmetic
Exponent Underflow

'Exponent near Underflow

5,8.7 Programmer's Tags

54,
55,
56,

57,

Instruction Tag
Index Tag
Data Tag T1

Part of VFL sign byte
Data Tag T2

5.8.8 Not assigned (Bits 58-63)

Program Interruption

All machine conditions relevant to operational programs are
retained in a 64-bit Indicator Register (see Section 5,8), The
conditions may be interrogated by conditional branch instructions
inserted at specific points in a program, Alternatively, the con-
ditions may be permitted to interrupt a program automatically, i.e.,

5,35

when they occur and without specific tests being inserted in the
program,

The Program Interruption feature is so designed that a program
written without detailed knowledge of the feature may be inter-
rupted at any time and control turned over to a master program,
The often intricate procedure for taking care of the various con~
ditions causing interruption can be a task for the master program,
On completing the special procedure, the master program can
return control to the interrupted program at the precise point

of interruption, v

If several conditions exist at the same time, each of which may
cause interruption, a built-in priority system permits interroga-
tion of each condition in turn, The program is aware of only one
interruption condition at a time, specifically the one that had the
highest priority at the time of the Interrupt., Other conditions are
retained in the Indicator Register, When another interruption is
permitted to occur, the one with the highest priority at that time
will function; this includes all conditions held over as well as any
which occurred in the meantime,

A 64-bit Mask Register is provided which permits the programmer
to choose the conditions which may or may not interrupt his pro-
gram, A 1 in a given position of the Mask Register permits in-
terruption by the corresponding position of the Indicator Register;
a zero in the Mask Register will prevent Interrupt for that condi-
tion, Thus interruption requires that a 1 exist in corresponding
positions in both registers. A conditional branch instruction may
still be used to interrogate any Indicator Register position, re- '
gardless of the state of the corresponding Mask Register bit,
Having once interrogated a given condition, either by interruption
or by conditional branching, that bit in the Indicator Register is
turned off (set to zero), Interrogation does not alter the Mask
Register, '

When an interruption occurs during streaming,the stream is stopped
immediately at the byte at which the condition is recognized,

When a condition requiring interruption occurs during the execution
of non-streaming instructions, the interruption becomes effective
at the end of the execution of the current instruction and before

the next instruction has had a chance to make any irreversible
changes. The possibility of an Interrupt does not prevent the
instruction controls from fetching the next instruction and per-
forming address modification; but all permanent changes, such

5.36

as branching or index word modification, are held up until the
execution of the previous instruction has been completed and
it is verified that no Interrupt will take place,

The Instruction, Index, and Data Tags cause an interruption
before the execution of the instruction which obtained the tags,

When an interruption occurs, the next instruction to be executed

is selected in a special way. Its location is determined by adding
the position of the bit in the Indicator Register, which caused the -
Interrupt, to the contents of one or more Interrupt Address Re~
gisters, It will be possible to set these up so that certain stream
interruption conditions can refer to 0.1 registers, The Instruction
" Counter, which contains the location of what would have been the
next instruction if no Interrupt had taken place, is not consulted.
(See Figure 5,7) '

The position in the Indicator Register of the bit which caused the
interruption is given by the Leftmost One Identifier (LOI). The
LOI scans the masked outputs of the Indicator Register from
left to right, in the direction of decreasing priority. When the
highest-priority bit to cause Interrupt is found, the LOI turns

it off and makes available 6 bits which represent the position

of the Interrupt bit in the Indicator Register.,

The 6-bit output of the LOI is added to the 6 low-order positions
of a 20-bit Interrupt Address Register, (By means of a RESET
INTERRUPT instruction, this register must have been previously
set up to contain the starting address of a table of 64 instructions
representing the 64 possible actions to be taken as the result of
an interruption,) The selected instruction is placed in the In~
struction Register for decoding and execution in the normal
manner, after which the Instruction Counter again takes over
control, The Interrupt Address register ig not altered,

Usually, the table will contain a set of BRANCH instructions

which store the old contents of the Instruction Counter at a suit~
able memory location and place the start of the program appropriate
to the Interrupt in the Instruction Counter, If the special in-
struction found in the table does not change the Instruction Counter,
the next instruction to be executed will be that selected by the old
Instruction Counter contents, If the interruption occurs during

the execution of a streaming instruction, the Instruction Counter
contents will specify the same instruction, If a sequence of
arithmetic mode instructions is interrupted, the Instruction

5,37

Counter contents designate the instruction after the last one
executed,

As soon as an interruption occurs, the interruption mechanism

is shut off to prevent any further interruptions from interfering
with the program which attends to the current interruption. The
interruption mechanism is reactivated by giving a BRANCH
ENABLE instruction; usually this is also the instruction which
returns to the interrupted program, Interrupt is automatically
enabled whenever an instruction is given which puts the machine
into the streaming mode., The first interruption may occur before
streaming starts, \

The RESET INTERRUPT instruction does two things. First it
disables the Interrupt feature so as to permit the program to
set up a new Interrupt procedure. Then it enters the effective
Word Address into the Interrupt Address Register, Generally
this instruction is followed by a RECEIVE instruction to reload
the Mask Register, and BRANCH ENABLE, to enable the
interruption mechanism again,

If it is desired to ignore and reset a given interruption condition
without special programming, a BRANCH ENABLE instruction
with zeros in the Word, Second, and Index Addresses is placed
in the corresponding position of the 64-word table, When this
interruption occurs, the interruption feature is immediately
enabled again and the original program is allowed to continue
(no branching).

5.9.1 RESET INTERRUPT

The interruption mechanism is turned off to prevent
program interrupts from occurring after this and sub-
sequent instructions, The effective Word Address, after
indexing, is entered into the Interrupt Address Register,

If the effective Word Address is zero, the Interrupt

Address Register is not altered; the RESET INTERRUPT
instruction then merely disables the interruption feature,

5.9.2 BRANCH ENABLE
The BRANCH ENABLE instruction is similar to BRANGCH

except that is also enables the program interruption
feature to function again if a previous interruption or a

5,38

RESET INTERRUPT had disabled it.

The first interruption may occur immediately after
the Instruction Counter has been set to its new value
by the BRANCH ENABLE instruction,

If the effective Word Address is zero, no branching
occurs, The Instruction Counter contents are still
stored and program interruption is still enabled,

5,10 Other Instructions and Features
5,10,1 IDLE

The IDLE instruction causes the program to wait
indefinitely with the Instruction Counter set at the next
higher instruction location, No operations are executed
by the computer,

If program interruption had been enabled previously,
an interruption condition set up by an external unit can
restart the program at the point defined by the inter-
ruption feature, Otherwise the program must be re-
started manually by pressing a Start key.

Only the Operation Code portion of the instruction has
any meaning, ‘

5.10,2 CLEAR MEMORY LARGE
CLEAR MEMORY SMALL

The effective word address of the instruction designates

a block of memory which is cleared; that is, the next
time any word in this block is referred to, all its informa-
tion bits will be found to be zero,

For 0.5 microsecond memory CLEAR MEMORY LARGE
clears a block of 64 words; CLEAR MEMORY SMALL
clears a block of 8 words,

For 2.0 microsecond memory CLEAR MEMORY LARGE

clears a block of 1024 words; CLEAR MEMORY SMALL
clears a block of 64 words,

5,39

5.10.3

The appropriate high-order bits designate the address

of the block to be cleared. When any address belonging
to a block is given, all addresses within the block and the
memory unit are cleared,

When memory units are grouped in fours with addresses
sequenced through the entire group, only a block in one
of the units is cleared, Thus, when memory units are
grouped in fours, the two low-order bits of the word
address indicate which of the four units is cleared; the
words cleared then occupy every fourth address,

Elapsed Time Clock

The Elapsed Time Clock is intended to measure elapsed
time over relatively short intervals of a minute or less,
It can be set to any value at any time, and program in-
terruption is available when the time period has ended,

The Elapsed Time Clock consists of a counter 20 bits
long which is continually stepped down by pulses origina-~
ting from a stable oscillator, The oscillator operates

at 16,384 (214) cycles per second, or a pulse about every
61 microseconds, No attempt is made to correct the
clock for long~term drifts,

The fifteenth stage from the right measures time in
seconds, A full cycle is 64 seconds,

As long as the power is on, the clock never stops, When-
ever it goes from zero to all ones, it turns on the Elapsed
Time Indicator in the Indicator Register to permit Program
Interrupt if desired.

The clock may be set to a new value at any time by using
regular instructions which give the address of the clock.
This turns off the indicator., The clock then continues
stepping down from that value, and the first indication

of having gone through zero signals the end of the present
time interval,

Similarly, the contents of the counter may be read out
at any time, with regular instructions, This does not
change the setting of the clock or the indicator. The
counter contents appear as bits 0~19 on the data bus,

5.40

(To get a time-of-day indication, a more conventional
clock may be connected to the Exchange as an external
unit, Such an external clock could be properly regulated
and supplied from a geparate power source 8o as to pro-
vide continuity over long time intervals without inter-
ference from computer operations, It could also serve
to calibrate the internal clock, An external clock is

not provided as part of the basic system,)

5.10,4 Preferred Alphanume}:ric Code

The Harvest computer has no built-in alphanumeric

code because one of its outstanding characteristics is

the ease with which it can translate from one code to
another by programmed table look-up., It is expected
that the computer will normally deal with external equip-~
ment using many different codes,

From the table look~up point of view, the only require-
ment of a usable code is that all distinguishable char-
acters be represented by unique bit combinations, Cer-
tain additional characteristics are desirable, however,
For sequencing operations, such as merging and sorting,
a standard character sequence is desired, and it is at
least preferable for the decimal digits to be directly
usable for arithmetic operations in their coded form.,

For this purpose, a preferred alphanumeric code has
been drawn up in Figure 5,8, The six significant bits
are shown in the leftmost six positions of an 8-bit byte,
The dashes indicate that the rightmost two bits are ar-
bitrary. When a six-bit byte is used, the two bits on the
right are dropped.

This code exhibits the standard IBM character sequence
when compared on a straight binary basis. The decimal
digits are represented by the first ten binary integers in
the middle four bit positions; the two ones on the left
serve to preserve the alphanumeric sequence, Decimal
arithmetic has been defined to provide these one bits
automatically when larger than 4-bit bytes are chos en,

5.41

— 1 REGISTER B

TO ANDS 7] REGISTER A = LOGICAL
MEMORY > ?EJ,‘;

A
— 1 REGISTER C

— 8-BIiT BYTES
=== 64-BIT WORDS

ARITHMETIC DATA PATHS

FIGURE 5.1

I
5
("
9 N| & 4
Zlao|?|H 2l .
O|8|w|g|E|Z| BT POSITION RELATIVE TO ADDRESS OF FIELD
z|Q|>-lWwlZiw
S|lo|o|uw|@al |o|i|2]|3|4a]|s]6]|7]8]|o]t0]n]iz]13]14]15]
v 81 8|8/8|B|8]B]B|B 8- NUMERIC BIT
D- DECIMAL DIGIT
vlr|e|v| | |8lB|B|B|B[B|B|B]|S e oIT
Tz) DATA
vlzfio|v sls|s|s|B|B|B|B|s]Z TS TAG BITS
vzl sls[s]B]|B]B]B]B|s]z]™
vializ|v Ble[s|s]e[s[s]B]s]|z]T.]W
v|olis|v Blelels|s|e]|e|s|o]o]i]i]|s]z]n]m
vi |4]|8] |v . ., D, . D,
LI | LI N
vializ| |v L .0, | o, Islzlwly
vl slre| [v| [+[i] | o, [t{i] | o,
vispz| {vl [v]i] | (o, [t]i]s]z]n]n
v (ofiel fv| [ofo|t]t| , o, Jojoli|s] |, |0
violis| [v| fofolt|i] | /o Jolo|i]i]s]z]n]x
EXAMPLES OF VFL NUMERIC

FIGURE 5.2

- 311

— INSTRUCTION TAG (IT)
— BYTE SIZE (BS)

— LEFT HAND MODIFIER (L.M)
— DECIMAL MODIFIER (DM)

— FORMAT MODIFIER (FM)
- SIGN MODIFIER (SMm)

OPERATION
(48 BITS)

ejl2l21li

— OPERATION CODE (0OPC)

121112 1

— SECOND. ADDRESS 'DESIGNATOR {SAD)
— OPERAND ADDRESS DESIGNATOR (OAD) -
— INDEX ADDRESS DESIGNATOR (1AD)

— INDEX ADDRESS (1A)

—FIELD LENGTH (FL)

FIGURE 5.3

OPERAND DESIGNATION
(48 BITS)

(S A}
SECOND ADDRESS

A

c

WORD ADDRESS {(wA)

|

)
% ™
T
—
iYa)
o
<« »
O 0
& hy
e
o
a
A\.l
a L28
w g >
X X ~—
Q w
o a
<« o)
2 L
O w
= >

INSTRUCTION FORMAT

(ARITHMETIC MOCE)

VALUE - LENGTH '
{w) (L)
I I T I
20 { e | . 20 I g :l l
o > B | !
{ | t L |
WORD ADDRESS BIT UNUSED WORD ADDRESS BIT
ADDRESS ADDRESS
~ SIGN

~ INDEX WORD FORMAT

FIGURE 5.4

['LINDEX TAG(XT)
UNUSED
SIGN

INDIRECT ADDRESS WORD

20 6 6 12 | 2 =
_J .
me FL IA U_o ap UNUSED
IAD
MULTIPLE INDEX. ADDRESS WORD
#2 #3
20 12 12 |
19
WA SA IA } UNUSED
IAD

FORMATS DERIVED FROM INSTRUCTION WORD

FIGURE 5.5

(CM)

RESULT WHEN

CONNECTIVE | LOGICAL| A B AB A B AB
CODE |FUNCTION| 1 1 | 0 01 00
00 0 0 o 0)
0l A-B 0 0 0 I
02 A-B 0 0 | 0
03 A 0) | I
04 A-B 0 b 0 0
05 B 0 | 0 !
06 AVB 0 I | 0
o7 AvVB) i [|
08 A-B | 0 0)
09 A=B |) 0 [

1o B | 0 []
I AvB | 0 | ;
12 A [| 0 0
|3 AVE | | 0 N
| 4 AVB [[[0
15 | l | | N

TABLE OF CONNECTIVES

FIGURE 5.6

=
p—

INSTRUCTION REGISTER
&% &
90 Oz
+1 RO ;_go
PROGRAM INTERRUPT 88 g% INDEX REGISTER
1
INDICATOR REGISTER 'zggggs”; T C;S’ﬁ%? Aggggss | OPERATIONE= | vALUE | LENGTH
i ¥
MASK REGISTER CST% DECODER
T e
AND. CIRCUIT
\ \f J
MASTER ,h%‘g
STREAM ONE ~
CONTROL IDENT. i T
INDEX
ADDER
4 .
INDEX
ACCUMULATOR
NOTE: INSTRUCTION COUNTER |

=—=MAIN DATA PATHS TO
AND FROM MEMORY

INDEX WORD MODIFICATION
“PATHS NOT SHOWN

-

INTERRUPT ADDRESS

MEMORY ADDRESS

INSTRUCTION CONTROL SYSTEM

FIGURE 5.7

-~ O rcd O©Q rd O rd O rkdl O M O i O O i QO = O et © =~ O = O = O md O = O =
Z0] OO0 M= OO~ O O r = O O v = CO == OO0 Frlrd OO m =l © O i =
m.b C O CO rm e rm O OOC e=t i i OO OO0 e v rd rd O OO © md o=t =4 =i
ma& OO OO ©CQO OO ™ ri red v red rd =4 =t OO OO OO OO m rird =i vmd ==t =4 =
m3 [NeolloNoelNoNoNoellollollolellleollelllollolle) L e e B B I I B B e R B e e e B |
TZ Ea T T I B B B I I B I I P s e D e | L B B B IR i e T e T B B R T S S e
=
mn —~ OO CO OO0 OOOOCCOOO O OC O OO0 OO OO OO0 OO0

o OO OO0 OO0 OO OOOCOO OO O COCO 000000000 OO
M Ok D>3X M N O =A@ Wy O~ 0O
H
@)

o
(&

O~ O~ OO O ~O0~O0O — O m O O rd ©Ord O Ord O rd O O i
wlo CO rmrd OO0 mirm O O rm m O O ™ m—i QO ™~ OO mimM OO mm~m O O ™ =~
.n_b OO0 OO Hrdrdrt O OO O i = i —i CO OO mMrrded OO0Q O — — mi =
=
%4 OO OO0 OO OO m™ rmird rd rd rd i COOCO OO0 OO0 ™t = i
A, ™ CO OO OO0 OoOCOO0OD OO0 © Ll B T R e B I I B I I T e i e
Bl [Nl NelNeNeNeNollelNeNeNoNe Xl e OO OO OO OO OCTCOOOC OO O

o OO OO OCO0OOCO OCOO0OOOOCOC O OO OC O OO OO0 OO0 OO0OO0 OO0 O
g o RIex i~ ~2x@ <MUAHKUL «=MA3Z0nN
B
O
A ——

&
jei
g |3
s —
0 o)

PREFERRED ALPHANUMERIC CODE

FIGURE 5.8

6. - System Operation in the Streaming Mode

6.1

General Description

The Harvest System is especially proficient for the per-
formance of streaming operations in which a single simple
operation is performed upon a large number of operands.

In general these operands are bytes, but in some operations
several of these are taken together as a field.

The serial (byte-wise) processing part of the Harvest System
is shown in the diagram of Figure 6.1. This part of the
system, the registers shown in Figure 4.1, and the instruction
interpreting mechanism and general indexing mechanisms
previously described constitute the Harvest Computer.

The machine in streaming mode is best understood by noting
its analogy to a device in which ball bearings are conducted to
and through various processing units by pipes. Single bytes of
data are presented to the 8-bit bus by the Stream Switch
Matrices A and B in the upper left-hand corner of the diagram.
They pass through Byte Masks BM] and BM2 which select
subsets of the 8-bit bytes. They then pass either into the
Logical Unit (LU) where they are combined in some prescribed
fashion to make another byte, or into a Table Address Assem-

~ bly unit where one or more bytes from A or B or both are

combined to make a memory address. This address may in
turn be used either to modify the contents of memory or to
cause the contents of the addressed location to be presented
to the byte bus by the Table Extract Unit.

The output bytes presented by the Logical Unit may be sent to
an 8-64 converter which embeds them in words to be stored in
memory. Alternately or simultaneously, they may be sent to
a Statistical Accumulator (SACC) where they are accumulated
with a current total, or back to the Table Address Assembler
for use in a memory operation. The bytes presented to the bus
from the Table Extract unit may also be sent to any of these
destinations or back to the input of the Logical Unit.

Not only may bytes from memory be thus processed, but counts
may be accumulated and presented to the busses for processing
by the Numbering Counter (NCTR). At several Match Stations
located along the bus system, the passing bytes may be

compared with one or more preselected Match Characters.

If any byte is identical to one of the match characters, the
streaming action may be interrupted or index levels adjusted.
It should be observed that several successive bytes may be
at different stations of the 'pipeline' at any one instant.

The presentation of the original input bytes from memory is
accomplished by the Stream Units, each of which consists of

1) one or more registers for the receipt of 64 bit words from
memory, 2) a 64-8 Switch Matrix which selects any contiguous
eight-bit subset of a 64-bit word or two consecutive 64-bit
memory words, and 3) an indexing mechanism capable of
selecting bytes from menwry in orderly but complex fashions.
The whole assembly may be considered as a device for mapping
the memory of the system into a set of bytes that are presented
as if read from a very high speed tape eight channels wide.
This mapping from a fairly slow real memory into a very fast
virtual tape may include overlapping, repetition, skipping, and
other useful patterns.

A similar Stream Unit performs the opposite function of re-
ceiving the bytes presented to it and causing them to be stored
at memory locations selected in a complex fashion without
disturbing the contents of the rest of memory. The individual
components of the Stream Units are shown on the diagram. The
indexing mechanisms, together with those that control the Table
Address Assembler and the Table Extract Unit, are shown as

a single block labelled Index Controls. The 64-8 Switch
Matrices of Stream Unit A, Stream Unit B, and the Table
Extract Unit are labelled simply A, B, and E. The 8-26 Switch
Matrix associated with the Table Address Assembler is labelled
D, and the 8-64 Switch Matrix associated with Stream Unit C is
labelled C. The registers themselves are shown only in dotted
outline.

The byte sources, byte sinks, and byte processing units are
linked by several possible data paths, shown in heavy lines in
Figure 6. 1. Selection of the paths which will be used for any
particular operation is termed data gating. It is accomplished
by designating which of the gates, symbolized by circles in the
diagram, will be open to permit data to flow through them. A
bit is provided in the stream instruction format for each of the
gates; a one bit causes the corresponding gate to be open. The
gates are numbered according to the address of the controlling

6.2

6.2

bit within the instruction word. Only one gating may be in
effect during a single streaming operation; changes in gating
are effected by stopping the stream and interpreting another
stream instruction.

The SU's impart to data a structure of several levels. Each
stream instruction provides for stopping the stream when some
specified SU reaches the end of a byte, first level, or second
level. Alternatively, no provision need be made for stopping
the stream at the end of a level of indexing; in this case the
stream is stopped only by interruption. Interruptions can be
caused by any of the Match Units, by signals from the counters
and Statistical Accumulator, by end of indexing levels in the
SU's, or by external signals. Different causes of interruption
automatically cause the program to proceed from distinctive
points. Furthermore, certain conditions arising from the
operation of the Logical Unit or Match Units may cause stream
indexing to be modified automatically without interrupting
streaming.

Some of the bits used to control these stream interruptions are
set up at the time the streaming is set up. Others are speci-
fied in control gating; the diamond shaped symbols in Figure
6.1 show the gates that may be so controlled. Each gate is
numbered with the address of the bit within the stream instruc-
tion that controls it,

Data Gating

The data paths that are to be used in a stream operation are
specified by the fourteen bits in the stream instruction, Each
bit corresponds to a gate in the data paths, Timing of bytes is
controlled from downstream; that is, if A ig connected to the
Logical Unit, bytes pass from A only when the Logical Unit
signifies that it is ready to receive a byte. Of course, A must
also have a byte ready to present,

The actions of the gates are as follows:

Gate 0 is used to govern the parallel transfer of data into the
64-8 Switch Matrix, This matrix is shared by the B registers
and by the Numbering Counter. When this bit is set to zero,
Switch Matrix B operates from the registers of Stream Unit B,
When it is one, the matrix presents bytes from the NCTR. This
gate is completely independent of other gates,

6.3

Gates 1 and 2 govern the passage of bytes from Switch Matrices
A and B, respectively, into the Logical Unit. The Logical

Unit causes these bytes to be presented simultaneously whenever
both Gate 1 and Gate 2 are open. Either Gate 1 or Gate 2 may
be used alone for operations that require only one input.

Gates 3 and 4 govern the passage of bytes from Switch Matrices
A and B respectively into the Table Address Assembler., When
only one of these gates is open, the TAA causes bytes to flow
from the corresponding unit until a complete address, as desig-~
nated by the TAA first level length, is formed. This address

is sent to memory and the TAA indexing controls are reset for
the next repetition of the operation., When both Gate 3 and Gate
4 are open, bytes are taken from Switch Matrix A until the TAA
first indexing level is ended, then bytes are taken from B until
the table address is complete. Increment Ij is used for spacing
the bytes taken from A, increment I3 is used for spacing the
bytes taken from B. Gates 3 and 4 may be used in any combin-
ation with Gates 1 and 2.

Gates 5 and 13 govern the entry of the one-bit signal output from
the Logical Unit into the high-order (most significant) bit position
of the byte bus., Gate 5, when open, causes the one -bit gignal to
replace the high order bit of the normal LU output at a point
below the Match Station associated with the LU and above all

the gates that distribute the LU output byte. Gate 13, when
open, causes the one-bit signal to replace the high-order bit

of the normal output if Gate 7 is open. If Gate 7 is closed, the
one -bit signal enters the high-order bit position and zeros are
entered on the other bit positions. Gate 13 thus permits sending
the one-bit LU output to the Statistical Accumulator even though
the eight-bit LU output is being sent to the TAA or to C. Gates
5 and 13 may be open at the same time, and this mode of oper-
ation will prove desirable in some cases. The operation of
either of these can be meaningful only when there is at least

one input to the Logical Unit, since it will not emit a signal
without some input. Gates 5 and 13 are independent of Gates

3 and 4.

Gates 6, 7, and 8 govern the passage of the byte output from the
LU to C, to the Statistical Accumulator, or to the Table Address
Assembler, respectively. The timing of the passage of a byte
presented by the LU into one of the downstream units is also
governed by the downstream unit, except that if more than one

of Gates 5, 13, 6, 7 and 8 are open, the output is passed
only when all of the downstream units to which the LU is
connected are ready for it. Gates 6, 7 and 8 are mean-
ingfully open only when there is at least one input to the
LU. Any combination of themm may be open at the same
time, and any of therm may be open when Gate 5 is open.
Gate 8 may not be open when Gate 3 is open. When Gates
5 and 7 are open, it is redundant to open Gate 13.

Gates 9, 10, 11 and 12 govern the passage of bytes from
the Table Extract to the Logical Unit, C, the Statistical
Accumulator, and the Table Address Assembler, respec-
tively. Timing is governed by the readiness of all connect-~
ed downstream units, as is the case with Gates 6, 7 and 8.
Gate 9 may not be open when Gate 2 is open. Gate 10 may
not be open when Gate 6 is open. Gate 11 may not be open
when Gates 7 or 13 are open. Gate 12 may not be open
when Gate 4 is open. Some caution must be used to insure
meaningful and terminated operation whenever Gates 8 and
9 are open for the same operation or whenever Gate 12 is
open,

When Gate 8 or Gate 12 is open, the Table Address Assem-
bler operates with respect to the sequential acceptance of
data and the information of addresses just as if Gate 3 or 4
respectively were open.

Gates R and R are not subject to program control. Gates R
are open only during runout operations, at which time Gates
R are closed,

Automatic Address Modification for Streaming
6.3.1 Patterns of Address Modification

~As described earlier, each Stream Indexing Mechanism
automatically performs a complex selection of bits
from memory. These are received in the Stream
register and presented, via the Switch Matrix, as a
series of 8-bit bytes.

Generally speaking such a flow of data fits a well defined
pattern which may be simple or complex. For example,
a stream may consist of one-thousand consecutive six~
bit bytes beginning at a particular address. This is a

6.5

6.3.2

simple stream that requires only one level of address
modification.

A more complex stream may be described as follows
(see Figure 6.2): read out three overlapping eight-bit
bytes (each byte overlaps the last half of the preceding
byte) and then skip six bits; repeat this three times,
each time moving the effective starting point 22 bits,
thus giving a six-bit skip; repeat this entire process five
times using the original starting point; finally each time
all previously described steps have been completed re-
peat them at a new starting point one-hundred bits from
the original starting point, continuing such repetition
until a total of ten cycles have been completed. This
complex stream requires four levels of address modi-
fication.

A third and simpler type of stream pattern is charac-
terized by the following example (See Figure 6. 3). A
record consists of twelve 4-bit decimal digits. It is
desired to read out three digits, skip two, read out two,
and then go to the next record. Five levels of address
modification are used to produce this pattern,

Control of Parameters

In order to fully determine any of the stream patterns
described above, the programmer must specify:

a) S = Start Point Address
b) BM = Byte Mask (regulates Byte Size)
and for each level, k, of addre;ss modification needed:
c) I(k) = Increment (in bits)
d) L(k) = Length (in bits), the product of
the Increment and the number of iterations

to be performed on the level

e) Several control bits (described in Section
6. 3. 8)

£f) A3(k) = Address of 3rd-level setup words

6.6

During the operation an auxiliary quantity is generated
in the index mechanism:

g) R‘k = Residual Length, the Length minus the
sum of all increments already made on this
level. Initially Ry = Li.

In the first of the above examples the values of the para-
meters are B = 6, I = 6, and N = 1000,

In the second example the byte size is B = 8. The first
level of address modification requires that I} = 4,

N} =3 (N} giving the three eight-bit bytes, I locating
these bytes four bits apart),and Lj = 12. The second
level of modification gives I = 22, N, = 3 (N giving

the three repetitions of the first level pattern, I
advancing the address over sixteen bits for the over-
lapped bytes plus six bits for the skip),and L = 66. For
the third level I3 = 0, N3 = 5 (five repetitions of the
entire two level pattern using the same starting address)
and by special definition, L3 = N3 = 5, while the fourth
level has I4 = 100, N4 = 10 (ten repetitions of the entire
three level pattern using starting addresses one-hundred
bits apart),and Ly = 1000,

For the third example, B = 4, since the characters are
in 4-bit decimal notation. Now, referring to Figures

6.2 and 6.3, one can see that the pattern of address
modification is fundamentally different for the second
and third examples. In the second example, after each
new second level increment is added,the entire cycle of
first level incrementing and resetting takes place. In
fact after each increment is added on any level, the
entire cycle of incrementing and resetting for all lower
levels takes place. Moreover, just prior to incrementing
on a higher level, the next lower level is reset. (The
length, L, is subtracted from the Effective Address.)
However, in the third example after the entire first

level cycle of incrementing takes place, the first level

- is not reset. The second level increment is added
immediately, and again no reset occurs. Then the third
level cycle takes place. The fourth level is used to reset
the Effective Address (I4 is negative). Now this four
level pattern is repeated for each fifth level increment.

6.7

The values of the parameters for the third example, then,
are as follows: I} = 4 (equal to the byte size) and N; = 3
(to read out three characters); I = 8 (to skip two charac-
ters) and Np = 1; I3 = 4 (the byte size again) and N3 = 2

(to read out two characters); I4 = ~28 (to reset to be-
ginning of the record) and Ny = 1; finally, Iy = 48 (to
jump over twelve 4-bit decimal digits to the beginning of
the next record) while N5 = total number of records to

be processed. ’

In particular, note that in the second example the first
level Increment does not equal the Byte size (as it does
in the first example). Negative Increments are also
permissible, in which case the Length is also negative.
Moreover, an Increment of zero (I3 in the second
example) is perfectly permissible (whence, as indicated
above, by special definition, the Length equals the
Number of Iterations), as is a value of zero for the
Number of Iterations (in this case the L.ength is defined
to be zero). The latter means only that for the level

of modification that has N = 0, iterations will continue
indefinitely. For example, it is desired to read a record
of indefinite length a byte at a time. Here a special
character might be appended to the record and N be set
to zero, A Match Unit would be used to terminate
streaming upon recognition of this end-of-record symbol.

6.3.3 Parameter Interpretation for Stream Unit C

. With respect to Stream Unit C, the Start Point Address
is the address at which the unit will start storing the
output stream. The interpretation of the other parameters
remains as described in Section 3 above.

6.3.4 Parameter Ranges

The parameters for the first level of control are limited

to the following sizes: I must be on the range -255 to

+255 (including the extreme values) while L = NI must lie

on the range -(220 - 1) to +(220 - 1) (including the extremes).
For the second and higher levels, the parameters range

as follows: I may have one of the values --(226 ~ 1) through
+(2.26 - 1), and NI may not be less than -(2.26 - 1) nor
greater than +(226 - 1),

6.8

6.3.5

6.3.6

6‘ 3'7

Levels of Control

There is no practical limit to the number of levels of
automatic address modification that may be associated
with the Stream Units. The control parameters for each
of these are independent of those used with the other two.

Control Setup

The setup data for the streaming mode of operation of
the Harvest Computer must include the address of the
first word of a separate block of memory for each
Stream Unit to be used.

The first word of each block used contains S, BM, and
Il; the second contains R}, the control bits for level 1,
and Ll; the next two contain A3, IZ' R,, the control bits
for level 2,and L,. If higher levels are present, they
require two words each and contain Iy, Ry, control bits
of level k,and Lj. Field A3 designates the first control
word for the third level. The second word and the words
for higher levels must follow consecutively. The values

- of all parameters must be given in binary notation. A

RECEIVE instruction is used to set up Harvest for stream-
ing. At the appropriate point in the interpretation of this
instruction the parameters for the first two levels of
address modification are automatically entered into the
Control registers of the particular Stream Unit being
initialized. The parameters for the third and higher
levels of control are automatically made available as
needed, their temporary values being held in the memory
words that held their initial values.

A RECEIVE instruction may be used to set up (or change

the setup of) a particular Stream Unit. Here the RECEIVE
instruction carries the address of the first word of the

block of memory words that contains the control parameters.
Finally, a TRANSMIT instruction may be used to load any
Control Register associated with any Stream Unit directly
from the Extract Register or to move the contents of any
Control Register into the Extract Register.

- Control Bits and Interrupt Signals

Associated with the parameters of each level of control

6.9

is an END OF LEVEL control bit. If on a particular
control level this bit is set to the value one, then the
particular Stream Unit being controlled by this set of
parameters will stop reading out bytes after the last
iteration is executed on the specified control level. In
addition, the parameters of this control level will be
reset; i.e., R will be replaced by L and if RESET
SUPPRESS is OFF - see below - the Effective Address
will be decremented by L. However, at this point the
normal control sequence (cf. Chapter 4) is interrupted.
An Indicator Bit that may be sensed for interruption is
set to the value one. No further action takes place at
this Stream Unit until initiated by subsequent programmed
instructions (cf. Section 6. 3. 8, below).

END OF LEVEL control bits may be set on any number
of control levels associated with a given Stream Unit.
Each register has an associated End of First Level
Indicator Bit, an End of Second Lievel Indicator Bit, and
an End of Higher Level Indicator Bit.

Thus, if several END OF LEVEL control bits are set for
levels higher than the second, the control sequence at the
end of each such level will cause the End of Higher Level
Indicator Bit to turn on. In this situation it will generally
be necessary to determine by programmed instructions
which level has caused the Indicator Bit to be set. If k-th
and higher level END OF LEVEL bits are ones, the level
that caused the Indicator Bit to turn on may be determined
by testing the parameter R associated with the highest
level concerned. If this R is equal to L, the associated
level set the Indicator Bit; if R is not equal to L, a lower
level set the Indicator Bit.

A second control bit associated with each level of control is
the READ SUPPRESS bit. The second example of Section
6. 3. 2 above requires that bytes be read out prior to each
first level advance only (i.e., prior to each time I; is
added to the Effective Address). This means that READ
SUPPRESS is On (set to one) for all levels higher than

the first. The third example above requires byte readout
prior to each advance of both the first and third levels.
Thus READ SUPPRESS is On for the second, fourth and
fifth levels.

6. 10

Finally, a RESET SUPPRESS bit is available to the
programmer. If this bit is On (set to the value one),
then after the particular level concerned, the k-th
level, say, has advanced Ny times, R is replaced by
Ly, but the Effective Address is not decremented by
Ly. Furthermore, Ny , ; advances on the (k + 1)-th
level will take place (with or without readout) before the .
first level can regain control. On the other hand, if
this bit is Off, the Effective Address (after Ny 'advar;ces
on the kth level) is decremented by Lk and control -
immediately reverts to the first level. The third ex-
ample above has the RESET SUPPRESS bit On for the
first four levels, but not for the fifth level, while the
second example has the RESET SUPPRESS bit Off for
all levels.

6.3.8 Programmed and Automatic Adjustment of Indexing Levels

Modification of the normal indexing control sequence,
known as index adjustment, may be performed auto-
matically during the course of streaming by certain
signals, according to controls specified by the programmer
in the stream instruction. These same modifications may
be performed after a stream has been interrupted or has
reached its normal stop. :

The operations of index adjustment are:

0. DByte Repeat: R; is incremented by I
and the effective address of the next byte
is decremented by I so that the last byte
is repeated.

1. First Level Advance: R, is decremented
by I, and the effective address is incremented
by I} so that the byte which would normally be
next is skipped.

2. First Level Reset: R; is reset to Lij and the
effective address is decremented by L] - Ry.

3. First Level Runout: Operation (1) is repeated

with the successive bytes being presented on
the special Runout bus. Normal indexing control

6.11

sequences take place until the end of the
first level is reached, when a second

level advance is executed. The byte first
presented is the sarne as the byte in the
Logical Unit when the signal is given. The
end-of-first-level Indicator is not turned on.

4, Second Level Advance: Operation (2) is
executed. then R is decremented by I,
and the effective address is incremented

by Ip.

5. Second Level Reset: Operation (2) is
executed, then R is reset to Ly and the
effective address is decremented by L2 - R;.

6. Second Level Runout: Operation (3) is
repeated until the end of the second level is
reached, when a third level advance is exe-
cuted. The end-of-level Indicator is not
turned on.

7. High Level Runout: Operation (6) is repeated
until the end of a high level is reached. The
end-of-high-level Indicator is not turned on.

The index adjustment operations are controlled by the Index
Adjuster (ADJ). This can be gated to receive the one-bit
output signal from the Logical Unit or the signal from any
of the Match Units. It has three modes of response to its
input signal. One of these is selected for a streaming
operation by bits 44 and 45 of the instruction. The modes
are:

00 Adjuster output is the same as input,

0l The Adjuster is set to one when the first
one input is received and is only reset
when its output initiates some action.

10 The Adjuster changes state from zero to
one or one to zero each tirce as one is
received,

A fourth mode, 11, may be specified in the instruction.
In this mode the Adjuster emits a one output when the

instruction is interpreted and before streaming actually

6.12

commences. It is not active during the streaming
operation proper. This mode may be used for pro-
grammed adjustment of index levels, with or without
any other action being specified in the stream in-
struction,

The output of the Adjuster goes to a bit in the Indicator
Register and may cause stream interruption. The
programmer may also specify any appropriate one of the
~eight index adjustment operations to be performed on
each Stream Index Mechanism whenever the Adjuster
output is a one. This selection is specified by bits
26-43 of the stream instruction as follows:

Bits Value Action

26.- 29 0000 No adjustment of Unit A
1000 Operation (0)
1001 Operation (1)

1111 Operation (7)

30 - 33 0000 No adjustment of Unit B
1000 Operation (0)

LI]

1111 Operation (7)

34 - 37 0000 No adjustment for Mechanism C
1000 Operation (0)

LN

1111 Operation (7)

38 - 40 000 No adjustment for Mechanism D
001 . Operation (1)
010 - Operation (2)
011 Operation (3)
100 Operation (4)
101 Operation (5)
110 Operation (6)
111 Operation (7)
41 - 43 000 No adjustment for Mechanigm E
111 Operation (0)
001 Operation (1)
010 Operation (2)
011 Operation (3)

6.13

6.4

The Functioning of the Logical Unit in Streaming

During streaming one may obtain any possible function of a

set of bytes by means of the table lookup facility. Neverthe-
less a separate Logical Unit is provided. There are several
reasons: many functions are extremely simple and regular;
table lookup slows down when references to memory occur in a
random order; large tables can often be reduced in size by first
performing a simple function on the operands; if a table is to be
used, it must first be read into memory; built-in functions in
the LU are always immediately available.

The LU accepts an input byte from either or both of two sources
and produces one output byte. In a streaming operation the LU
performs the same function upon each sequentially presented set
of inputs. The function, routing of the bytes, and other details
of stream operation are specified in advance by means of a
series of setup instructions and by the stream instruction itself.
The setup remains fixed until specifically altered.

In addition to the byte output the LU also produces an associated
one-bit signal. This signal

a) may control the Index Adjuster

b) may cause the Statistical Counter or the
Numbering Counter to step

c) may be gated into the output channel in
place of the high order bit of the normal
byte output

d) may be directly entered into the eighth bit
position from the right of the Statistical
Accumulator

e) may cause a stream interrupt.

The 8 lines from Registers 1 and 2 lead directly to the 8
positions of the LU. The lowest-numbered bit (the left-most
or high-order bit) of a register goes to the left-most position
of the LU. The 8-bit outputs from LU correspond bit by bit
to the inputs. All 8 bits travel to each of the three possible
recipients. The Statistical Accumulator receives the 8 in its

6. 14

right-most (low-order) bits. Switch Matrix C eliminates un-
wanted bits by means of B3. The Table Address unit assembles
its data by Or-ing, and unwanted bits travelling as 0's have no
effect there.

If the 1-bit generated in the LU is gated into the output in place

of the normal output, it is put in the left-most bit. This is natural
since all read-out is measured from the left, If this modified
output is sent to the Statistical Accumulator - or if the one-bit

is put in directly - the entry is into the 8th bit from the right.

This means that the Statistical Accumulator will be stepping by
128 rather than by 1. A single bit, 62, in the stream instruction
governs whether the one-bit signal from the LU will be that
specified in the operation description (bit 47 is 0) or its inverse
(bit 47 is 1). '

The LU functions are listed below: (A and B represent the
two inputs)
1-bit output

Title Byte Output = 1 if
Stream Logic - Non Zero Logical Connectives Logical Con-
0 - 15 as shown in nection is # 0
Figure 5. 6
Stream Logic - odd Logical Connectives Parity of Logical
parity 0 -15 Connectives = 1
: Modifiers
Stream Select 0000 Max. (A, B) ' A>B
0001 Max. (A, B) A =B
0010 Max. (A, B) ALB
0100 Min. (A, B) : A>B
- 0101 © Min. (A, B) A =B
0110 Min. (A, B) A<B
1000 A when A = B, other- A =B
wige 0
1001 A when A # B, other- A#B
wise 0
1010 A - B if A> B, other- A7JB
wise 0 :
1011 B -AifB>A, other- BZA
wise 0

6.15

6.5

1-bit output

Title Byte Output = 1 if

Stream Modular Add- A 4+ B mod M . A+ B>M
Carry

Stream Modular A+ B mod M A+ B =M
Add-Zero '

Stream Modular A - BmodM A=3B
Subtract

Stream Modular B -AmodM A=B

Reverse Subtract

For logical purposes bytes are regarded merely as an ordered set
of bits. For comparison purposes bytes are regarded as unsigned
- i. e., positive - numbers in binary form. For modular arithme-
tic bytes are regarded as unsigned numbers in binary form and

as already reduced to a value between 0 and M -~ 1, inclusive.

For logic and comparison there is no restriction on B and B)
although one must carefully calculate what effects the masks intro-
duce. For diminish and modular arithmetic B} must equal B

and have 1's in the left-most positions corresponding to the byte
size and 0's in the waste positions on the right. For modular
operations A, B and M are all represented by the same size byte,
this size being just sufficient to represent M. In the LU they

are positioned to the left. When M is specified in the setup, the
pertinent bits are to the left; empties on the right are filled with
0's.

Table Lookup and Modification as a Part of Streaming

The Table Address Assembler and Table Extract Unit are pro-
vided to permit the reading and altering of tabular quantities
stored in memory. Tabular quantities are stored in memory
cells which are obtained by dividing memory words into sub-
multiples of 1, 2, 4, 8, 16, 32, or 64 bits. Thus a memory
cell is a Field of length 2K 0¢K< 6, whose left-most bit has a
bit address of m- 2K, 0¢ m< 2(6“K)-1. Four operations are
possible, and two bits, 46 and 47, of the streaming instruction
indicate which is to be performed:

00 Clear the small block of memory containing
the addressed location

6.16

10 Transfer the contents of the addressed memory
word to the Table Extract Unit and set its controls
to read out only that cell

11 Count or Or in the addressed memory cell and
transfer the contents to the Table Extract Unit,
setting its controls to read those contents,

The Table Address Assembler provides for the acceptance of
bytes from each of two different sources. Each source may
have its own byte size. As indicated in the section on Data
Gating, bytes from one source are taken until a field from that
source, defined by L1 in the TAA controls, is complete; then
bytes from a second source are accepted until the second field,
defined by L) in the TAA controls, is complete. The address
formed by the sequence of bytes thus assembled is Or-ed with
the contents of a Table Base Address register which provides
the bits necessary to complete a twenty-six bit address. A
two-bit counter, the Memory Distributor (MD), may be so
arranged that it steps after each complete address is formed and
permits successively formed addresses to refer to successive
memory boxes regardless of the byte data used to form the
address. Bit positions 0 and 1 of the assembled address are
discarded. (If either is different from zero, the Invalid Address
Indicator is turned on.) Bit positions 2 - 19 of the formed
address become bit positions 0 - 17 of the address sent to
memory. The MD contents become bit positions 18 and 19 of
the address sent to memory. Bit positions 20 - 25 of the
address go straight to the Table Extract Unit.

When the complete address is formed, the word part is sent

to memory and the TAA indexing controls are reset for another
~operation. The bit address is sent to the Table Extract Unit

to govern the read-out of the cell contents.

The Table Address Assembler indexing controls are simple,
providing only an initial address (S), a first level increment (Iy),
a second level increment (I3), a first level field length (Lj), and
a second level field length (Ly). The sum of L] and Lp may not
exceed twenty-six bits.

The Table Extract Unit consists of a.-64-8 Switch Matrix E, and
one or more registers that receive the word transferred from
memory. Associated with E is a set of first level indexing con-
trols that provide an initial address, an inc rement, and a field

6.17

6.6

length. These controls are usually set from the information
formed by the Table Address Assembler. No table entry may
lie across the boundary between two 64-bit memory words,

so that a 6-bit increment, and a 6-bit first level field length
suffice.

Setup formats for the Table Address Assembler and the Table
Extract Unit are shown in Figure 6. 6. Rj and R are set to
L, and L} at the time of stream setup. Other values may be
stored and reloaded in case of stream interruption. The start
point address for the Table Extract Unit is usually furnished
by the Table Address Assembler in the table lookup process.

The Table Extract Unit is also used by a stream type instruction.
STREAM INSERT BYTE causes the instruction word to be sent
to the Table Extract Unit, whose controls are set to cause the
eight bits 54 - 61 of the instruction to be entered on the byte

bus. This is known as the immediate byte. Any Data and
Control Gating may be used to direct the byte through a desired
stream operation,

Operation of the Statistical Accumulator and Statistical Counter

These two units are used primarily for making certain simple
statistical calculations upon a stream of bytes without slowing
down the streaming process.

During the process of counting in memory, it is possible to
obtain the previous count, f;, from the memory and add this
count into the Statistical Accumulator before returning the new
count to the memory.

When using the Logical Unit to compare successive bytes from
A with the corresponding bytes from B, it is possible to send
the bit 1 or the bit 0 to C depending on whether the bytes are
equal or not, while at the same time accumulating the sum of
the successive bits in the Statistical Accumulator and counting
their number in the Statistical Counter.

Both the Statistical Accumulator and the Statistical Counter have
overflow indicators which allow interruption of streaming and
transfer to ordinary programmed operation.

The Statistical Counter can be connected to count the entries

made to the Statistical Accumulator, to count the 1's appearing

6.18

in the sequence of 1-bit signals generated by the Logical Unit,
or to count the bytes entered into Stream Unit C.

A streaming operation specifies the gating which determines the
sources of information for the Statistical Accumulator and the
Statistical Counter. This gating has already been discussed else-
where, but the method of setting up the initial contents of the
special registers and their modes of operation will be described
here,

The Statistical Accumulator and its Threshold Register are set
up as shown in Figure 6. 7.

Only the left-most 2 of the 8 bits of the control field are needed
in controlling the mode of operation.

The first control bit determines whether the Statistical Accu-
mulator is to interpret the 8-bit numbers it receives for accumula-
tion as unsigned 8-bit numbers, or as 7-bit numbers with signs

on the right. A zero bit causes unsigned accumulation, a one

bit causes signed accumulation. In unsigned accumulation, the

8 data bits enter the right hand 8 positions of the register (positions
18 to 25), not counting the sign position. In signed accumulation,
the left 7 data bits enter positions 18 to 24 of the Accumulator

and a zero bit is filled in position 25. The rightmost (sign) bit
enters the sign position.

If the second bit is 1, the Statistical Accumulator will refuse

to retain negative totals and will reset itself to 0 whenever such
a total occurs, If it is 0, the Accumulator will retain negative
totals.

An indicator will be turned on and stream interruption will be
permitted whenever the sign of the accumulated total changes
from plus to minus, No indication is given when the sign changes
from minus to plus.

Interruption is optional under control of the interruption mask.
Whenever the total in the Statistical Accumulator equals or exceeds
the threshold value, an indicator will be turned on, allowing a
stream interruption,

The Statistical Counter is set up according to figure 6. 7.

" Each of the three Statistical Registers has an address and can be
used by means of regular instructions for clearing, loading, and

6.19

6.7

6.8

storing.

The STREAM INSERT BYTE can be used for entry of single
bytes into the SACC. The SACC mode last specified by the
control bits governs the STREAM INSERT BYTE instruction.

The Functioning of the Numbering Counter in Streaming

It is often desirable to assign a serial number to fields or re-
cords which are passed through the computer or which are
formed during a streaming operation. It is also desirable to .
cause successively formed memory addresses to refer to
different tables. For these and other purposes there is pro-
vided a Numbering Counter, NCTR, sixteen bits long. This
counter is provided with an overflow detector which can cause
stream interruption. It may be set to some initial value or
stored by an ordinary Receive or Transmit instruction, as
shown in Figure 6. 7.

The NCTR may be connected to count fields read from Stream
Unit A, to count the number of addresses sent to memory from
the Table Address Assembler, or to count one-bits from the
Logical Unit.

The contents of the Numbering Counter may be entered into the
processor a byte at a time by using Switch Matrix B and the in-
dexing controls for Stream Unit B. This is accomplished by
setting Gate 0 to one.

The Control Gating

The diamond-shaped symbols on Fig. 6.1 represent gates in the
one-bit control lines which may be opened to connect the various
counters and their actuating signals.

Gates 14, 15, and 16 gate the signals that actuate the Numbering
Counter. . Gate 14 causes the NCTR to count the number of memory
addresses formed in the Table Address Assembler. Gate 15 causes
it to count bits whose value is one in the one-bit signal output of the
Logical Unit. Gate 16 causes the NCTR to count fields passed
from Stream Unit A as defined by the end of the first level of in-
dexing. Only one of these three gates may be open at a time.

Gate 17 permits the one-bit signal from the Logical Unit to be
sent to the Index Adjuster. Alternatively the ADJ may be actuated

6. 20

6.9

by signals from the Match Units,

Gate 18 permits the two-bit contents of the Memory Distributor
to be entered into the two low-order bit positions of the word
portion of the address formed in the Table Address Assembler.

Gates 19, 20, and 21 gate the signals that actuate the Statistical
Counter. Gate 19 causes the SCTR to count bytes entered into
Stream Unit C, Gate 20 causes the SCTR to count the total
number of signals, zeros, and ones, from the one-bit output

of the Logical Unit. (See the action of Gate 15 described above.)

Gate 2] causes it to count the number of entries made into the
Statistical Accumulator. Only one of these three gates may be
open at a time,

Match Character Recognition

Match Units are provided to stop the stream when an end-of - '
stream marker passes or to modify the operation when particular
characters are presented (especially those indicating uncertain
data) or to modify the course of streaming based upon what is
fetched in the table-look-up process.

Harvest provides four Match Units, W, X,Y and Z, each attach-
able to any of four Match Stations within the computer - the out-
put of A (after BM]), the output of B (after BM,), the output of
the LU, and the output of the Table Extract Unit (after BM4).
Several units may be connected at one position but no single unit
can be connected to more than one position, These connections
are specified by bits in the Match Unit itself,

Each Match Unit is supplied with an 8-bit match character in the
set up shown in Figure 6. 7. The unit signals when the bits on the
byte bus match those in the match character. This signal, or its
inverse, sets an indicator which may initiate stream interruption.
Independently, the signal, or its inverse, can be sent to the Index
Adjuster.

At each Match Station, the data byte is compared with all the
Match Units positioned there. The data go no farther until it is
ascertained that there is no match with any of the special chara-~

cters at this position,

The Match Units monitoring the output of the Table Extract Unit

6. 21

test every byte presented in the same fashion. If a decision

is to be made by means of arbitrary bits entered in a table,
these arbitrary bits must form a byte of the same size as that
used in reading out the rest of the tabular entry and must form
a character which does not appear among the other bytes.

6.10 The Stream Interruption System

Stream interruption is effected in much the same manner as
ordinary program interruption (See Chapter 5).

The Selection of the first instruction after interruption does not
alter the Instruction Counter; the Instruction Counter does not
step to the next value after fetching a stream instruction until
the instruction is completely executed (i. e., The stop condition
is satisfied).

The first instruction after interrupt may be a single operation,
after which the Instruction Counter fetches and continues execu-
tion of the stream instruction that was interrupted. Alternatively,
the first instruction after interruption may be a BRANCH, which
may store and replace the contents of the Instruction Counter.

The twenty-five stream indicator bits are as follows:

6 SCTR overflow

7 NCTR overflow

8 SACC overflow

9 SACC sign change from plus to minus

10 SACC equal to originally set Threshold

11 Match Unit W

12 Match Unit X

13 Match Unit Y

14 Match Unit Z

15 Index Adjuster

16 LU Signal

17 L;A=End of first indexing level in Stream Unit A

18 LB

19 L,C

20 LA =End of second indexing level in Stream Unit A

21 L,B

22 L,C

23 L A=End of a higher indexing level in Stream Unit A
H

24 LygB

25 LyC

26 - 30 Not assigned

6. 22

System Operation in the Merging Mode

7.1

For relatively short records, sorting by moving the records
is an efficient and orderly process. Since the Stream Units
provide an automatic flow of data from memory, a large

part of tne bookkeeping associated with binary merge sorting
can be relegated to the SU control mechanism. Several Merge
operations are included in tie Harvest Computer instruction
get.. Tney are described in Section 7.4 below.

It is assumed that records to be merged are in two blocks.

It is desired to merge the two blocks of records into one
block. The ordering of the records depends upon the relative
values of their control fields.

Record Format

The Merge instructions used in Harvest permit Handling a gen-
eral record format. A control field or subfield may be no
longer than 64 bits, and may be offset not more than 225 bits
from the beginning of the record. If, however, there is only
one control field and it occurs at the beginning of the record,
the entire record may be treated as if it were the control

field and its length is virtually unlimited.

A typical record is shown in Fig. 7.le. Here the record con-
sists of 76 bits with a 34 bit control field split into three parts.
The first control subfield is 12 bits in length and is offset

zero bits from the record beginning. The second subfield is
15 bits long and is offset 57 bits from the start of the record.
The third subfield, 7 bits long, is offset 22 bits from the
start.

Problem Parameters

There are six parameters associated with SU merging.
They are:

a) Lj, Record Length
b) L2, Input Block Length

c) L3, Output Block Length

T.4.

d) Jl’ Control Field Offget
e) J3; Control Field Length

f) W, Size of Output Working Area

All six parameters express (in binary notation) the number of
bits in the respective block orfield, When J,= 64, it is repre-
sented by 000000, L, # nL] where n is the number of records
in each Input Block, while L3 %212, :

In Harvest, the first two parameters are used to control the
Automatic Address Modification mechanisms in Stream Units

A and B (see Section 4,5), while W is used to control Stream
Unit C. Generally speaking, Jy and J are used by the Merge
instructions to locate the control fields for comparison pur-
poses, Thus the Merge instruction obtains and compares con-~
trol fields of length J» located J] bits from the beginning of
each of two records, These records enter A and B, one record
in each, As the result of the comparison, a record from one of
these registers is read into C for automatic storage in memory,
The parameter L, then, is precisely the Length required to
control the first level of address modification in all three SU!'s;
L, is the Length required by the second level of A and B, and
W controls the second level of C,.

The Merge Instructions

The MERGE UP and MERGE DOWN instructions may be used
for merging records for which it is assumed that the control
field is the entire record. Six more Merge instructions are
provided for more complicated operations, (See Fig, 7.2 for
format.) The MERGE OFFSET UP and MERGE OFFSET DOWN
instructions are used for merging records having a single con-
trol field offset from the beginning of the records., The MERGE
SPLIT UP and MERGE SPLIT DOWN instructions are used in
conjunction with MERGE BRANCH UP and MERGE BRANCH
DOWN for merging records with split control fields. The UP
and DOWN instructions produce ascending and descending se-
quences, respectively.

a) MERGE UP (DOWN)

The two records are compared. If the com-
pared bytes are equal, the common byte goes
to C. :

If the byte from A is lower (higher) than the byte
from B, move the remainder of the record from
A without further comparison and reset B,

If the byte from A is higher {(lower) than the byte
. from B, move the remainder of the record from
B without further comparison and reset A,

If the records are identical, the bytes are consid=
ered as having passed from A to G, and B's con~
trols are reset, '

The operation stops only upon interruption, which
is normally set up for End-of-Second -Level on A
and B. :

The index address field is not used.

Thesge instructions assume that the control field is
the entire record. .T1 and J are not used, Three
gituations can arise: ' '

1. the records are identical;

2, control fields are identical, but data
fields are not;

3. control fields differ,

In the first case, it is immaterial which record is
moved to 8U C., In the second case, it is assumed
that it is also immaterial since the sort is used to
arrange control fields, If this assumption is unsat-
isfactory, a MERGE OFFSET must be used, In the
third case, the decision as to which record to move
is made on the basis of the relative sizes of the con~-
trol fields which begin the record; and only that por-
tion of the records common to both control fields has
already been moved at the time the decision is made,

b)

MERGE OFFSET UP (DOWN)

The two control fields specified by the offset and‘
field length are compared, and one of the records
is then moved to C.

If the control field from A is lower (higher) than
or equal to the control field from B, move the
record from A and reset B.

If the control field from A is higher (lower) than
the control field from B, move the record from
B and reset A.

The operation stops only upon interruption, which
is normally set up for end of second level on A and

B.

The index address field is not used,
MERGE SPLIT UP (DOWN)

The two control fields specified by the offset and
field length are compared, and if they are not
equal, one of the records is moved to C.

If the control field from A is lower (higher) than
the control field from B, move the record from A
and reset B,

If the control field is higher (lower) than the con-
trol field from B, move the record from B and
reset A, .
If the two control fields are equal, go the next
instruction,

When the end of the comparison and subsequent
record moving is reached, the operation stops.

If the compared fields were unequal, the next
instruction is taken from the location specified

in the index address field of the instruction, If
the compared fields were equal, the next instruc-
tion in sequence is executed,

7.4

7.5

d) MERGE BRANCH UP
(MERGE BRANCH DOWN)

The operation is identical to that of the MERGE
OFFSET instructions except that it stops when
the end of a first level of indexing is reached in
A or B (i.e., after each record is moved to C).
The next instruction is always taken from the
location specified in the Index Address. This
instruction is customarily used to terminate a
sequence of MERGE SPLIT instructions. Inter-
ruption on the end of second index level is
normally used to stop merge instruction loops.

Us e of the Merge Instructinns

Four examples follow, illustrating how four types of
records may be merged using the instruction types
described above, In all cases it is assumed that the
ascending control field sequence is desired. (If the
descending order were desired, the corresponding
DOWN orders would be used.)

a) See Fig, 7.la. A MERGE UP instruc-
tion is used,

The value of LI is 30 for all SU's.

b) See Fig, 7.1b, One MERGE OFFSET UP
instruction is used, The parameter values
arele:Sanszzlz., ’

The value of Ly is 28 for all SU's,

'¢) See Fig, 7.lc. A loop of two instructions
is used,

The first is MERGE SPLIT UP with para -
meter values J, = 10 and JZ =15, The
Index Address is the address of the instruc-
tion itself,

The second instruction is MERGE BRANCH

UP with parameter values J; = 30 and J, =
10, The Index Address is‘the address of the

7.5

7.6

MERGE SPLIT UP instruction,

The value of L1 is 50 for all SU's.
d) See Fig. 7.1d, A loop of three instruc-
tions is used,

The first is MERGE SPLIT UP with para-
meter values J, = 21 and J, = 11, The
Index Address is the address of the instruc-
tion itself,)

The second is also a MERGE SPLIT UP
with parameter values J; ®# 53 and J,
= 10, The Index Address is the address

- of the first MERGE SPLIT UP instructions,

The last instruction in the loop is MERGE
BRANCH UP with parameter values Jj = 0
and J = 14, The Index Address is the
address of the first MERGE SPLIT UP
instruction,

The value of Lj is 64 for all SU's,
Control Signals and Runout

After all records of one of two input block s have
passed on to Stream Unit C, it will be necesgsary
to run out the records of the other block, This

is accomplished by stream interruption, The
End-of-Second-Lievel control bits must be set to
One in SU's A and B. This will cause a program
interruption and a transfer of control to one of two
stream orders used to run out the block,

These orders may be STREAM LOGIC and have

-ADJ = 11, (cf. Section 6.3.9), The adjustment

operations are Second Level Runout for Unit

A or B (according as the End -of-Second ~Lievel signal

comes from Unit B or A) and Second Level Reset
for Unit B or A, |

7.6

7.7

Typical Control Sequence

a)

b)

d)

MERGE OFFSET causes the)control fields of
two records to be compared, The control
field from A is less than the one from B, so
that the record in A is moved to C for storage.

This is the last record in the block moving
through A, Therefore, the End-of-Second -
Level-in-A Indicator Bit comes on, causging
an interruption which transfers control to a

STREAM LOGIC instruction. The remainder of
the block of records moving through B is moved
to C for storage and the End-of-Second-Level -
in-B interrupt signal is suppressed. The second
level control in both A and B are reset.

Instruction control returns to the MERGE OFFSET
instruction,

7.7

Sample Problems

8.1

Problem 1:

Given two records each containing an unknown number of five-
bit bytes, and each record followed by an end of stream byte,

it is desired to add corresponding pairs of bytes together, bit-
by-bit modulo 2. The process is to be terminated as soon as
the shorter stream runs out, Only every other group of four
bytes is to be examined (i.e,, the first, third, fifth, ..., group
in each stream)., Furthermore it is desired to store the re-
sultant stream densely in memory, and also to count the number
of zero bytes in the output stream, The end of stream byte is
defined to be 11111,

The Setup Words needed and the values of the parameters in
each are as follows:

a) Word 1: S = address of fir»st bit in first record
Bl 511111000
I; = 00000101+
b) Word 2: Ry = 00000 00000 00000 10100+
Es=0,~DS=0, TS = 0
L, = 00000 00000 00000 10100+
c) Word 3: A = zero
I, = 00000 00000 00001 01000+
d) Word 4: RZ' = zZero
E=0, DS=1, TS=0
L2 = Zero
e) Word 5: S = address of first bit in second record

B2=11111 000

I = 00000101+

8.1

f) Word 6: same as Word 2
g) Word 7: same as Wozxd 3
h) Word 8: same as Word 4

i) Word 9: S = address of location in which first
bit in resultant stream is to be stored

B3 = 11111000
I, = 00000101+
J) Word 10: R, = zero
En0, DS=20, TS =0
Lj = zero
k) Words 11 through 15 not used; may be all zero
1) Word 16: W, X, 211111000
W connec‘tio»n = 001
X connection = 010
Y, Z connections = 000

All other fields not used; may be
all zero

m) Word 17 not ﬁsed; may be zero
n) Word 18: SCTR = zero, NCTR # zero
o) Word >19: stream portion of Indicator Mask =
0100011000000000000000000
The computer is set up by a RECEIVE order (TRANSMIT might
be used instead). The Word Address of this order is the location

of Setup Word 1, while the Second Address is the address of S
for Stream Unit A, The Index Address is the location of an Index

8.2

Word that has 19 x 2 in its Length field (i.e., L =
00000000000000010011000000+), and the rest zero.

The various fields of the Stream instruction are as follows:

a) Data Gating: 01100010000000

b) Control Gating: 01000000

c) Stop: 0011

d) ADJ to Index Controls: zero

e) ADJ Mode: 00

£) TAA Mode: 00

g) Operation Code: STREAM LOGIC NON-ZERO

h) Logical Connective: 0110

i) Modifier: zero

)] LU Signal Invert: 1

k) Programmer's Tag Bit: not used, may be zero
The stream portion of the Indicator ‘Mask has been set to interrupt
streaming if the SCTR overflows, or if either end-of-stream byte
is recognized. In the former case, control is transferred to
whatever routine the programmer has written to take care of this
situation (such a program is not discussed here). In the latter
case, if either stream runs out, control is transferred to a
TRANSMIT order. This instruction has the address of the NCTR
as its Sedond Address and the memory location at which it is

degired to store the contents of the NCTR as its Word Address,

Thus the entire program consists of the following words and in-
structions:

a) Nineteen words of setup information

b) A RECEIVE instruction used to set up the
Computer

8.3

c) An Index Word that delineates the nineteen
word Setup block

d) The STREAM instruction

e) A BRANCH instruction that transfers control
to a subroutine that takes care of NCTR
overflow

f) Two TRANSMIT instructions that store NCTR
contents in memory (one for Match Unit W
interrupt, the other for Match Unit X interrupt)

g) The first instruction of the next program (may
be in memory directly following second TRANSMIT
insatruction) :

Problem 2:

Given two records each a thousand four-bit bytes in length, look
up an eight-bit signed value in a table using one byte from each
record to form the address. Accumulate all values found unless
the value is 10101010, Count the number of values accumulated.
If at any time the partial sum equals or exceeds 220, terminate
the stream operation and branch te subprogram 1. If the total
sum is less than 220, proceed to subprogram 2. Do not change
any parameters already in the registers, except as needed for
this problem.

The Setup Words needed for this problem and the valuesof their
parameters are as follows:

a) Word 1: 8 = address of first bit in first record
Bl = 11110000
I1 = 00000100+

b) Word 2: R) = 00000.00011 11101 00000+
E=x1,DS=0, TS =0
Lj = 00000 00011 11101 00000+

s

c) Word 5: S = address of first bit in second record
B2 =1111 0000

I, = 00000100+

d) Word 6: same as Word 2 except E = 0

8.4

e) Word 13: S =01111
Rj = 00100+
L, = 00100+
I, =00100+

f) Word 14: BA s XXXXXXXXXXXXXXX0000000000
(where the X's represent the address of
the firast word of the table)

R, ® 00100+
L, =00100+
I, = 00100+

g) Word 15: S = zero
B4 =11111111
Ry, = 000110+
Li =000110+
I; =000110+

h) Word 16: W = 10101010
W connection s 100
X, Y, Z, connections = 000
All other fields not used; may be all zero

i) Word 17: Accumulator = zero »
Threshold = 00000100000000000000000000+
Bit number 27 = 1 (signed values)
Bit number 28 = (normal accumulation)

b)) Word 18;: SCTR = zero

k) Word 19: Stream portion of Indicator
Mask = 0000110000000000000000000

As in Problem 1, the Computer is set up by RECEIVE order, Here
it is necessary to use several such instructions, as Words, 3, 4,

7 through 12 must not be entered into the machine. The first
RECEIVE order and its Index Word load Setup Words 1 and 2

the second pair loads Words 5 and 6, the third loads Words 13
through 19,

8.5

The Stream instruction fields follow:
a) Data Gating: 00011000000100
b) Control Gating: 00000001
c) Stop: 0101
d) ADJ to Index Controls: zero
e) ADJ Mode: 00
f) TAA Mode: 10
g) Operation Code: any stream operétion code

except that for STREAM|
INSERT BYTE

h) Logical Coﬁnective: not used; may be zero

i) Modifiers, not used; may be zero

J) LU Signal Invert: not used; may be zero

k) Programmer's Tag Bit: not used; may be zero

The stream portion of the Indicator Mask has been set to interrupt
streaming if the Accumulator contents equal or exceed the thres-
hold, or if a special character is recognized. In the former case,
control is transferred to the first instruction of subprogram 1,

In the latter case control is transferred to an instruction which
resets the first level in Unit E. This order calls for the next
value to be read from the Table Extract Unit and read into

Match Station 4. The previous special character had already
been discarded. If this latest value is a normal byte, control
reverts to the STREAM instruction. The Stream Stop field is
used to terminate streaming on an End-of-lst-Level signal from
Stream Unit A. Control is then transferred to the first instruction
of subprogram 2. This latter transfer takes place only after any
interruptions (caused by the last bytes being read out of Stream
Units A and B) have been taken care of,

The words and instructions for this program, then, are as
follows:

8.6

1)

g)

h)

Eleven words of Setup information

Three RECEIVE instructions used to set up the
computer,

Three Index Words that index the RECEIVE instructions
through the Setup Words.

The table of values, and a RECEIVE instruction with
associated Index Word to load the table in
memory,

The STREAM instruction

A BRANCH instruction that transfers control to
subroutine 1 upon SACC interrupt.

A RESET FIRST LEVEL IN UNIT E instruction
that prevents a special character from being

accumulated.

The first instruction of subprogram 2 (must
follow STREAM instruction in memory)

8.7

Summary

9.1

Operating Speed

The operating speed of an asynchronous machine, such as
Harvest, depends on a large number of factors. The problem
itself contributes many variables to the speed equation. Other
variables are introduced by the form of the machine and by the
manner in which the problem is set up in it. Because of this
complexity, a set of simple rules for estimating operating
speeds must be developed. Later paragraphs in this section
provide a preliminary set of such rules to be used until a more
accurate set can be established.

As one of the steps in developing this system, a program is
being written for the IBM 704 which will accurately time any
given program and produce a timing chart showing what portions
of the system are in operation at each instant. The program is
being written in such a way that it can readily be changed to
evaluate the effect of changes to the internal mechanism of the
system.

Project Silo calls for determination of the speeds of the memo-
ries by August 1, 1957. It appears at this time that the schedule
will be met, and that both the 0.5 and 2.0 microsecond memory
cycles can be achieved. It is possible that both memories can
be increased in size without sacrificing speed and with a re-
duction in the cost per word of memory. It is also possible that
a considerable further saving in total memory cost might be
made by assembling a very large memory unit, e.g. one of
65,000 words, with a cycle time somewhat longer than 2.0 micro-
seconds. The possibilities in this direction will be known by
July 1, 1957.

The bus mechanism over which the several parts of the system
communicate with one another is not fully defined, and exact
data on its operation will not be available until after an accepta-
ble system has been bench tested.

The speed of addition and subtraction will be between 0.1 and 0.2
microseconds per 8 bit byte for binary arithmetic. Decimal
arithmetic may be slower due to the conversion cycles necessary
in the use of a basically binary adder for decimal arithmetic.

The time required to multiply two 32-bit binary numbers will
lie between 5 and 15 microseconds. More exact data must
wait upon detailing of the circuits involved.

The total time required to execute an instruction will depend
upon the kind of memory in which it is stored, the extent to
which the instruction is indexed, the location of the data, the
complexity of the look ahead feature, the nature of the bus
system, and the other simultaneous activities of the computer,
Until more is known, the rules below should be used for esti~
mating operating speeds. An endeavor has been made to be
conservative in establishing these rules. In particular, it is
expected that much of the memory reference time of the arithme-
tic mode instructions will be overlapped with the arithmetic
time. To the extent that this is achieved, the times quoted here
will be reduced.

Arithmetic Mode Instructions

1. Allow 1.0 microsecond for each data operand memory
reference.

2. Allow 1.0 microsecond to execute a data addition,
subtraction, or similar operation regardless of field
sizes.

3. Allow 15 microseconds to execute a multiplication

regardless of field sizes.

4. Allow 30 microseconds to execute a division regardless
of field sizes.

5. Allow 1.0 microsecond for each level of indirect
addressing.

6. Allow 1.0 microsecond for each level of indexing above
the first.

7. Allow 1.0 microsecond to execute instructions without

data operand addresses.

8. Allow 1.5 microsecond per word for word transfer
instructions such as TRANSMIT and RECEIVE.

Streaming Mode Instructions

Choose the times as stated for the slowest of the following
streaming operations which are concurrent.

1. Allow 0. 2 microsecond per byte, or pair of bytes
when the pair is operated on simultaneously, for
Streaming operations within the Harvest Computer.

2. Allow 0. 2 microsecond per byte for each data byte
assembled in the TAA in table lookup operations
which sequence through four 0.5 microsecond
memories.

3. Allow 0. 3 microseconds per byte for each data
byte assembled in the TAA in random table lookup
using four 0.5 microsecond memories.

4. Allow 0. 5 microseconds per address assembled in
the TAA in table lookup operations which sequence
through four 2.0 microsecond memories.

5. Allow 1.0 microsecond per address assembled in
the TAA in random table lookup operations using

four 2.0 microsecond memories. .

Merging Mode Instructions

1. Allow 1.0 microsecond per control field per record
plus 1.0 microsecond per word per record for each
record passed through the LU into Stream Unit C
during Merge instructions.

Alphabetic List of Instructions

Time Estimate Refer to
Abbr, Operation (Microseconds) Section
ADD ADD v 2 5.4.4
Add operand into Register A.
ADM ADD TO MEMORY 3 . 5.4.9

Add Register A to operand
in memory.

9.3

Time Estimate Refer to

Abbr, Operation (Microseconds) Section
BAF BRANCH IF A OFF 1 5.7.3

Test a bit in Register A
and branch if zero.

BAN BRANCH IF A ON 1 5.7.3
Test a bit in Register A and
branch if one,

BEN BRANCH ENABLE 1 5.9.2
Store Instruction Counter,
enable Interrupt, and branch.

BIF BRANCH IF I OFF 1 5.7.3
Test a bit in Indicator
register and branch if zero.

BIN BRANCH IF I ON 1 5.7.3
Test a bit in Indicator
register and branch if one.

BRA BRANCH 1 5.7.1
Store Imnstruction Counter and
branch,

CBN COUNT AND BRANCH IF NOT 2 5.7. 4
ZERO

Count up in Index word and
branch if residual Liength not
zZero.

CBZ COUNT AND BRANCH IF ZERO 2 5.7. 4
Count up in Index word and
branch if residual Length zero.

CML CLEAR MEMORY LARGE 2 5.10.2
Clear a large memory block.

CMP COMPARE 2 5.4.7
Compare Register A with operand
and set indicators.

Abbr,

Time Estimate
Operation {Microseconds)

-CMS

CNC

CTL

cCuUM

DIM

DIV

IDL

INC

LAC

CLEAR MEMORY SMALL 2
Clear a small memory block.

CONNECT 2
Form specified logical

connection of Register A and
operand, leaving result in A.

CONTROL 2
Send control signals to external
unit,

CUMULATIVE MULTIPLY 16
Multiply Register A by operand,

add product to Register C, and
return result to A.

DIMINISH 2
Add operand to Register A, and
place sum in A if positive, other-
wige zero.

DISCONNECT 2
Disconnect external unit
immediately.

DIVIDE 31
Divide Register A by operand,
placing quotient in A and remainder
in C,

IDLE -
Wait for interruption.

INCREMENT 2
Add Increment to Value, subtract
Increment from Length, and set
indicators. “

LOAD AC 2
Transfer Register A to C and
load A,

Refer to

Section

5.10.2

5.5.1

2.2,3

5.4.12

5.4.8

2,.2.5

5.4.13

5.10.1

5.3.2

5.4.11

Time Estimate Refer to

Abbr., Operation (Microseconds) Section
LNG LENGTHEN 1 5.4.16

Insert zeros to the right of
Register A.

LOC LOCATE 2 2.2. 4
Send address to external unit.

LOD LOAD 1 5.4.3
‘ Load operand intoc Register A.

MBD MERGE BRANCH DOWN Note 1 7.4
Compare control field; move
high or equal record and
branch.

MBU MERGE BRANCH UP Note 1 7.4
Compare control field; move
low or equal record and
branch.

MDN MERGE DOWN Note 1 7.4
Compare entire record and
move high or equal record.

MOD MERGE OFFSET DOWN Note 1 7.4
Compare control field and
then move high or equal record.

MOU MERGE OFFSET UP Note 1 7.4
Compare control field and
then move low or equal record.

MPY MULTIPLY 16 5.4.10
Multiply Register A by operand
and return product to A.

MSD MERGE SPLIT DOWN Note 1 7.4
Compare control field; if
unequal move high record
and branch, if equal go to next
instruction,

9.6

Abbr.

Operation

MSU

MUP

NOP

RCV

RED

RES

RIN

RLL,

RLYV

RND

MERGE SPLIT UP
Compare control field; if
unequal move low record
and branch, if equal go to
next instruction,

MERGE UP
Compare entire record and
move low or equal record.

NO OPERATION
Go to next instruction.

. RECEIVE

Consecutive words go from
memory to locations at
Second Address.

READ

Time Estimate
(Microseconds)

Note 1

Note 1

1.5 per word

Start external unit reading per

control word.

RESTORE

Add Value to Length, then set

Value to zero,

RESET INTERRUPT

Load Interrupt Address Register

and turn off Interrupt.

REPLACE L BY L

Replace Length at Second Address

by Length at Word Address.

REPLACE LBY V

Replace Length at Second Address

by Value at Word Address,

ROUND

Remove bits from the right of

1

Register A and round the remainder,

9.7

Refer to

Section

7.4

7.4

5.7.2

5.6.1

2.2.2

5.3.5 .

5.9.1

5.3,4

5.3.4

5.4.15 -

Abbr.

Time Estimate
Operation (Microseconds)

RVL

RVY

SHR

SIB

SLP

SLZ

SMC

SMR

REPLACE VBY L 2
Replace Value at Second

Address by Length at Word
Address,

REPLACE VBY V 2
Replace Value at Second

Address by Value at Word

Address.

SHORTEN 1
Remove bites from the right of
Register A.

STREAM INSERT BYTE 1
Put immediate byte on byte bus
from Table Extract Unit.

STREAM LOGIC-ODD PARITY Note 2
Form specified logical connec-

tion of bytes and signal if number

of ones in result is odd.

STREAM LOGIC-NON ZERO Note 2
Form specified logical connec-

' tion of bytes and signal if

result is not zero.

STREAM MODULAR ADD- Note 2
CARRY

Add bytes using specified

modulus and signal if carry.

STREAM MODULAR REVERSE Note 2
SUBTRACT

Form difference of byte B

minus byte A using specified

modulus and signal if result

is zero.

9.8

Refer to

Section

5.3.4

5.3.4

5.4. 14

6.4

6. 4

6. 4

6.4

Time Estimate Refer to

Abbr. Operation (Microseconds) Section
SMS STREAM MODUIAR Note 2 6.4
SUBTRACT

Form difference of byte A
minus byte B using specified
modulus and signal if result
is zero.

SMZ STREAM MODULAR ADD- Note 2 6. 4
ZERO '
Add bytes using specified
modulus and signal if result
is zero.

SSL STREAM SELECT Note 2 6. 4
Compare bytes, giving either
byte or the difference as
result, as specified.

STC STORE C 3 5.4. 6
Store Register C in memory.

STO STORE 3 5.4.5
Store Register A in memory.

TMT TRANSMIT 1.5 per word '5.6.1
Store consecutive words from
Second Address in memory.

WRI WRITE 2 2.2.2
Start external unit writing per
control word.
Note 1: Allow 1.0 microsecond per control field per record plus
* 1.0 microsecond per word per record for each record
passed through the LU into Stream Unit C during Merge
instructions.

Note 2: Choose the times given in Section 9. 1 under Streaming

Mode Instructions, using the time of the slowest con-
current operation.

9.9

9.3 The Basic Harvest System

A summary of the functional units that comprise the basic
Harvest System follows:

a) One Harvest Computer

b) Eight units of 8, 192 words of 2.0
microsecond memory

c) Four units of 512 words of 0,5
microsecond memory

d) Sixteen single word registers with
0.1 microsecond access time

e) One Exchange

f) One 1000 card per minute card
reader
g) One 155 card per minute card
punch
h) One 500 line per minute printer
i) Six high performance tape mechanisms
i) One high performance disk memory

k) Four tape units handling IBM 727 tapes

1) One console with manual inquiry station

9.10

9.4

Stream Instruction Fields

Bits Use

0-13 Data Gating

14-21 Control Gating

Constraints on Data and Control Gating are such that any instruction
may specify only one open gate in each of the following groups:

2,
3,
4,
6,
7y
11,
14,
19,

9
8

12
10
11
13
15, 16
20, 21

Gates 0, 1, 5, 17 and 18 may each be opened or closed independent

of other gating.

22-25 Stop Codes

26~-43 Index Adjuster

0000
1000
1001
1010
1011
1100
1101
1110
1111

A B. C D E
26-29 30-33 34.37 38-40 41-43
No adjustment 000 No adjustment No adjustment
Repeat byte
Advance first level 001 Advance first level Advance first level
Reset first level 010 Reset first level Reset first level
Runout first level 011 Runout first level Runout first level
Advance second level 100 Advance second level Not used
Reset second level 101 Reset second level Not used
Runout second level 110 Runout second level Not used
Runout high level 111 Repeat byte Repeat byte

44.45 Adjuster Mode

46-47 TAA Mode

48-53 Op Code -

54-57 Connectives

9.11

58-61 Modifiers for Stream Select Instruction

0000
0001
0010
0lo0
0101
0110
1000
1001
1010
1011

Byte Output

Max. (A, B)

Max. (A, B)

Max. (A, B)

Min. (A, B)

Min. (A, B)

Min. (A, B)

A if A = B, otherwise 0

A if A # B, otherwise 0

A - B if A> B, otherwise 0
B~ Aif BY>A, otherwise 0

or 54-61 Modulus or Immediate Byte

62 LU Invert

63 Instruction Tag

9.12

Signal Output one if

A>B
A=D5
ALB
A7 B
A=B
A<B
A=B
A#%B
AZB
BgA

INDEX WORD

UNUSED
1‘ INDEX TAG (XT)

VALUE LENGTH -
UNUSED r
|
LBt | NUMBER | |
WORD ADDRESS IADDRESS [NUMBER OF WORDS OF BITS si
20| 6!l 20 LT
N7 W7
DATA WORD ADDRESS |NEXT CONTROL WORD ADDRESS WORD COUNT STATUS
' 20 20 I5 7\

CONTROL WORD

RELATION BETWEEN INDEX AND CONTROL WORDS

FIGURE 2.2

tt INDEX TAG (XT)
UNUSED

—~

\
HIGH SPEED DISK p=m

’ ‘LOW lSPEED DISK).—

i

BUS
JUNCTION

]

us BUS
?UNCTION JUNCTION
1 |) A d &
| I S S N I |
| P ———
~ce~{ SWITCH MATRIX -0
- TABLE
STREAM STREAM STREAM EXTRACT
Y 2.0uSEC UNIT A ‘ UNIT B ‘ ‘UNIT c ‘ ONIT | i sgsggés
| J MEMORIES § ! 2 . 2 l = J = 1.1 w TABLE LOGICAL COUNTER |]
[R] (Ra J l 3 ‘ [4J l 5J 6 r s ADDRESS UNIT STATISTICAL
£ XCHANGE 20us 2048 2.0u8 2.018 ASSEMBLES accumuLaTor] | |0 5,8 05uS
[« 1 > SWITCH MATRIX
i)
PRINTER h SWITCH MATRIX
——— []
N % I S {SWITCH MATRIX fomes
CHARACTER Y Y Y]‘;’
RECOGNITION 1 |
" 8US
JUNCTION JUNCTION
S 1 J
i l] BUS
BUS
l S URCTION JUNCTION
TYPEWRITER
L \ i 1] %
’ ¥
BUS BUS
JUNCTION __JUNCTION
INSTRUCTION STREAM UNIT
1 LOOK AHEAD 1 INDEX REGISTERS 4) INDEXING s e 1
s y w O S
| 5
>
) §
Rj \ Ry i Rm _T “ ¥ LEVEL L i f § LEVEL 2]
INSTRUCN ‘ op .. l oP COR'NT RESIDL RESID'L Tlen T T TRESID'L INCREM'T |LEN'TH
coumea! lWA l sa | 1a ico:e!' -Lwn lsn 1a | OB lec | IVALUE RSOy TRt |REMEL INCREM'T|LEN'TH S il CREM'T [LEN'T
7 = - o e <>
) | 1
d L ‘] ‘] Y] J o } 1
BUS BUS
JUNCTIOR JUNCTION
. | |

HARVEST SYSTEM

— Figure 4.1

. | [For] Foﬂ B _\~—F0R TABLE
B su_al SU-C LOOKUP AND

| TABLE EXTRACT

'F.\'J‘
! =

—

. 9 - }CARRY

oL

’ B

— 4 —t—— =T T 20 BITS

+

——

20 BITS

<+

——

Ry

WORD
ADDRESS

CONTROL

STREAM INDEXING

FiGURE 4.7

I
wl &
a N|& 4
Zlo|?2 2| g .
o|5|w|g|%|Z| BT POSITION RELATIVE TO ADDRESS OF FIELD
2lelE|a|z|@
Zlala|i|B|S] |o|il2]3|als|s|7]e]s]o]n]iz]13]1a]is]
LEGEND
v 81V Ble|ejB|B|BIBID B-NUMERIC BIT
D-DECIMAL DIGIT
9 Ble|B|B|{B|B[B|B]S S-SIGN BIT
121 Z-ZERO BIT
Tz) DATA
vi|zfiolv slsls|e|BlB|B|B|S|Z T § TAG BITS
I sle[s|B[B]B|B|B[S|Z|T
vi|alielv Ble|B|B[B[B[B|B|S|Z|T|T
violie|v sle|s|e|s|e]|s|s|ofoft]|i]|s]|Zz]|T|T
vi |als| |v L. D, | D,
T 1 T}
viahz| |v . D, Lo, [slz]w|n
vl lelie| |v| OT0T 7 1ot T[] | o,
vlelizl vl [W[i] | (o [t]r]s|zimemw
T T At L™
vl lolie|l vl [Tolo]t]r] , o, Jofoli[t] , P,
soliel [vl [ololt]1] | /o, fojo]i]|t]|s|z|w|n

EXAMPLES OF VFL NUMERIC
FORMATS

FIGURE 5.2

=] —INSTRUCTION TAG {IT)
—BYTE SIZE (BS)
=] _ LEFT HAND ‘MODIFIER (LM)
=~ =] —DECIMAL MODIFIER (DM)
mm ~| —FORMAT MODIFIER %g@'nozzmﬁzm
<@ ~f —siGN MODIFIER (sm) J MODIFIER (CM)
& ©
Oll\
: — OPERATION CODE ({(OPC)
A 4
) =] — SECOND ADDRESS DESIGNATOR (SAD)
™| — OPERAND ADDRESS DESIGNATOR (OAD)
—] —INDEX ADDRESS DESIGNATOR (1AD)
— INDEX ADDRESS (IA)
ﬂ I7s)
Z a
m ww —FIELD LENGTH (FL)
<« & A .
= 3])
Oy < © A
S” %) 12
uw o -9 o |
Q Z TE
@ S Pt
ol 2 a
4 » <
& B o k @
& «© s
o o
w <
2 ET:
»n 0 3>
n a W
& @ P
-a m
] P ol
= &
o Q .
@ & :
o (]
3 =
Y R J

INSTRUCTION FORMAT

(ARITHMETIC MODE)

5.‘3

FIGURE

INDEX TAG(XT)

VALUE < LENGTH |
(V) (L) l
T l T r
20 -S| 20 b s :t
A 8 l !
| i i i 1
WORD ADDRESS BIT UNUSED WORD ADDRESS BIT
- ADDRESS ADDRESS
SIGN

INDEX WORD FORMAT

FIGURE 5.4

UNUSED
SIGN

INDIRECT ADDRESS WORD

20 6 [12 It 2 17
) _ |
~ FL IA Lt_o ap UNUSED
IAD
MULTIPLE INDEX. ADDRESS WORD
#2 #3
20 i2 12 |
19
WA SA IA 1 UNUSED
IAD

FORMATS DERIVED FROM INSTRUCTION WORD

FIGURE 5.5

(C™) RESULT WHEN
CONNECTIVE| LOGICAL| AB AB A B A B
CODE |FUNCTION| I | 10 01 00
00 0 0) 0 0
ol A-B 0 0 0 I
02 A-B 0 0 I 0
03 A) 0 a |
04 A-B 0 | 0 0
05 B 0 | 0 |
06 AvB) l | 0
07 AvB 0 | I I
08 A-B [0 0)
09 A=B | o 0 |
o B | 0 | 0
I AvB | o] | |
12 A | ! 0 0
|3 AVE | | 0 O
| 4 AVB | [| 0
15 | l [| N

TABLE OF CONNECTIVES

FIGURE 5.6

BIT POSITION
012 3 4567

601000O0TO0

00100001

00100010
00100011

0061006100
00100101

001 00110

00100111

60101000

6 0101001

0010616010

001016011

00101100

00101101

00101110

00101111

060011060O0°TC0
00110001
00110010
00110011
001106100

00110101

00110110

00110111

00111000
00111001

00111010

00111011

00111100

6001111¢01

0011111¢0

00111111

CHARACTER

BIT POSITION

01 23 4567

Q
R
S

0 00O0O00O0O 01

T

U
v

w

X
Y

000O0O0OT1T10

00001000

Z

00001100

000061101

000O011T10

00001111

0
1

2
3

4
5
6
7
8
9

00011000

CHARACTER

bJjo 000O0OO0DO

(Blank)

10 000O0O0T1C0

&0 0000011

${00000100
¥*10 00 00101

-

/100000111

?

%10 0001001

10 00 01010

@ooo0oo01011

A0 0OO0O10O0©O0CO

BJ0OOO1O0O0OO0O!'1
cC|0o001001090

DI0-0O0O1 0011

E00O0101 00

F|0o 0010101

G0 060010110

H[0O 001 0111

I

JJ0 0011001
Kiooo1l11010
L0 0011011

M0 0011100

N|o0O11101

olooo11110

PJ0OOOC1 1111

PREFERRED ALPHANUMERIC CODE
FlGURE 5.8

OVERFLOW«—|

@

————a
= | IR -
n | § s
STOP & (H cE Lo/
CONTROL| |H o F [mDEX
NDI- | | T [ADJUSTMENTS
CATORS \ [)
L o @ £® _
“““““ | SAQ CoA——3Rr-ow
L i i EQUAL THRESHOLD
N S : ‘
——PARALLEL & BYTE (O DATA gATES " 1StIR e THR;
| BUSES

|- BIT PATHS > CONTROL GATES

Figure 6.1 DATA and CONTROL PATHS in the STREAMING MODE

B=8 NOTE:

fr e s - - -

.- ---~ READ BYTE
=3 : —= INCREMENT EFFECTIVE
| B__ ADDRESS
- ~— DECREMENT EFFECTIVE
I | | | ADDRESS
_____ B__ '
Ii, . CONTROL BITS
Ly={31,=]l2 ,
. 2 AND
1,=22 | | LEVEL 1 |HicHER
j B READ SUPPRESS| OFF | ON
J-ZI-—-'.-- : RESET SUPPRESS| OFF | OFF
I
L ___B__
L
y —
- I2
I B__
I
| ____B _
I
B B__
4 I
Ly
L2
Y -) ‘ L2=31|=
Gy By Px Py Op Oy Uy Ur 0 0, 0,
R PR b b %R R %
S 88 8 R S %R ¥
L N Y oooo
- f - \;‘ -«

EFFECTIVE ADDRESSES AT CORRESPONDING TIMES

EXAMPLE 2 FIRST AND SECOND LEVELS
OF ADDRESS MODIFICATION

FIGURE 6.2

1SN

TIME

L=4 NOTE:
B ‘ -—-~=-READ BYTE
I - — INCREMENT EFFECTIVE
L, ADDRESS :
' B —~—— DECREMENT EFFECTIVE
- ADDRESS
luf o
Ix=5
B _
I3=4
8 _
I3
B I4=-28
I5=48 N
I
s
1
ETC.
"y Gx Ox g e Gp % e G
Yoo [R S YA
S A v v 5 % o
W wow PARICS)
L ‘o.\' 'o‘\' S“
Y ®©
S

EFFECTIVE ADDRESSES AT CORRESPONDING TIMES

CONTROL BITS
LEVEL 12 3 4 5.
READ SUPPRESS | OFF | ON'| OFF| ON | ON
RESET SUPPRESS | ON | ON | ON| ON | OFF

EXAMPLE 3, FIVE LEVELS OF ADDRESS
~ MODIFICATION

FIGURE 6.3

60

S0

40

30

20

(0]

INSTRUCTION TAG BIT

LU SIGNAL INVERT O NORMAL

N <+ 171 | INVERT
- MODIFIERS
il MODULUS OR IMMEDIATE BYTE
- LOGICAL CONNECTIVE
- w0
- OPERATION CODE .
n O CLEAR SMALL MEMORY BLOCK
. ' |<'> (::roegrhc':TH '“r“é‘%ﬂ”&ém%'?a'%' oNLY
- %I TAAMODE I COUNT AND FETCH
- N1 ADJUSTER MODE[OOADJUSTER SAME AS INPUT
N © 0 | ADJUSTER STAYS AT ONE AFTER FIRST ONE RECEIVED ON INPUT
- Q 10 CHANGES STATE WHEN ONE RECEIVED ON INPUT _
- 11 ADJUSTER EMITS ONE PULSE WHEN INSTRUCTION IS
[INTERPRETED
e
-3 DEFINED IN SECTION 6.3
- Q&

: P-4
[~ X O
=~ wWo
~ 0O
- Z 00 END OF BYTE
— : O! END OF FIELD (FIRST LEVEL)
-] |0 END OF RECORD (SECOND LEVEL)
N Il NO STOP
Co_ | L.
= [0O STREAM UNIT E

v Ol STREAM UNITA
-, © I0 STREAM UNIT B
= i1 STREAM UNITC

Ez
" > >
[98
-
- o AS SHOWN IN FIGURE 6.1
|- 2)
-
-~
- O
™ <
- =
e o
=)

STREAMING MODE INSTRUCTION FORMAT
| FIGURE 6.4

SETUP WORD
1(5,9)

2(6,10)

3(7,11)

4(8,12)

GENERAL INDEX WORD {‘INDEX TAG
| T | I
| _
VALUE } S LENGTH | s
; 261 8 ! 26, 1{\ |
FORMATS OF FOUR CONSECUTIVE WORDS USED TO SET-UP BUILT-IN INDEXING
LEVELS FOR A SINGLE STREAM UNIT
1 | |
| | | l
[26l , 8[1f/2
: | 1 [
Ry | SfElD L | =s><
6 I 201{1]1 6 | 20 1)/2
! | I
Az | ! 1, | s
|
20 O\ 8 | 26 1|/2
: l | 1
Ro | :SED Lo % :S
[26111 | 26,1)/2

" LEGEND

S -START POINT BIT ADDRESS

B-BYTE MASK ASSOCIATED WITH UNIT

Ix-INCREMENT FOR LEVEL K
E-END OF LEVEL

Q- READ- SUPPRESS

STREAM UNIT SETUP FORMAT

FIGURE 6.5

Rk - RESIDUAL LENGTH FOR LEVEL K

Lk ~LENGTH FOR LEVEL K

A —ADDRESS OF THIRD LEVEL SET-UP WORDS

X —UNUSED BITS

T —RESET-SUPPRESS BIT

SETUP
WORD

15

TABLE ADDRESS ASSEMBLER SETUP FORMAT

‘ X isl |
20 5{' 8 ! 521' 55: i 51
1 T | T
l | I | | |
BA | | 5 Ro lsl Lo IS | I, ‘S
: 26/l ! 51! 51! ! 5/1

TABLE EXTRACT .UNIT SETUP FORMAT

] | i
| | l l I
) | (S) l B Ry |S Ly 1S I ls
! 8 6|l 61! 61

B-BYTE MASK FOR BMy4

SETUP FORMATS

FIGURE 6.6

MATCH SETUP FORMAT

SETUP
WORD

16

N

| e e s]

=

o e s e et

B e

S
——

18

=<

{o ADJUSTER SIGNAL ON MATCH

| ADJUSTER SIGNAL ON NON-MATCH
O MATCH-NONMATCH SIGNAL NOT GATED TO INDEX

O SET INDICATOR ON MATCH
| SET INDICATOR ON NON-MATCH

000 NO CONNECTION
. 00l STATION 1

0l0 STATION 2

Oll STATION 3

100 STATION 4

CHARACTERS

SACC SETUP

ADJUSTER
| MATCH—-NONMATCH SIGNAL GATED TO INDEX ADJUSTER '

. |s
1
STATISTICAL ACCUMULATOR }
' 26ii|! 6

THRESHOLD

1
S

26112

i SIGNED

UNSIGNED
0 NORMAL

NON- NEGATIVE
SCTR SETUP

MD

SCTR NCTR

8 I8y 2 6 10

iByly2

SETUP FORMATS
FIGURE 6.7

CONTROL FIELD DATA
| : 20 10
DATA CONTROL FIELD DATA
8 12 8
DATA CONTROL FIELD 4 DATA |CONTROL FIELD2 DATA
10 15 5 10 10
CONTROL FIELD 3 DATA |CONTROL FIELD 1 DATA CONTROL FIELD 2
14 7 i 2| 1
| CONTROL
CONTROL FIELD 4 DATA FIELD DATA CONTROL FIELD 2 DATA
i2| 10 3 7 28 15 4

SOME TYPICAL RECORDS FOR MERGING

FIGURE 7.1

MERGE UP (DOWN)

=3 OP CODE
6 |
Lir
MERGE OFFSET UP (DOWN)
< J o < OP CODE
8 6 6 |
Lot
MERGE SPLIT UP (DOWN)
MERGE BRANCH UP (DOWN)
J, Jp | INDEX ADDRESS OP CODE
18 8 6 12 6 18
trr

MERGE INSTRUCTION FORMATS

FIGURE 7.2

PRELIMINARY MANUAL - HARVEST SYSTEM

ERRATA May 15, 1957

p. 1.5 1.4, par 1, line 5
For "regular instruction mode' read "arithmetic mode"

p. 2.1: par 4, line 3
"gimultnaeously' should be ''simultaneously"

P. 2.13: - 2,3,3, par 2, line 3
"'thst" should be 'this"

p. 4.3: 4,1, 2, par 2, line 7
For "among the 16 information bits'" read "among the
first 15 of the 16 information bits"

p. 4.5: par 1, line 8
- For "17 dotted intersections' read '"17 intersections!

par 1, line 9
For "dotted intersections' read "intersections"

par 1, line 12
For "among the 17" read "among the 15 of the 16
information bits" '

par 1, line 16 | ,
For '"of byte' read "of the byte'

p. 4.6: par above 4, 3, line 1 »
For 'the bit portion ... cell size." read '"the bit portion
of the address (a 6-bit field) is Or-ed to a 6-bit number
that has a value one less than the table entry cell size, "

p. 4.9: 4.5, par 1, line 5
For "Address register with the' read ""Address register,
S, with the"

p. 4.10: Step (e) should read
'""(e) Is Reset Suppress bit on?

If NO, replace Sby S - L (reset S) and
proceed to Step (f)

If YES, proceed to Step (f) (don't reset S)

-1~

(f) Replace X by X + 1 and proceed to new Level
X, Step (a)"

p.- 4.15: line 9
For "first' read '"'leftmost"

Fig 4.1: For "Table Address Assembles' read "Table Address
Assembler! :

Fig 4.7: For "W' read "WA" and for ""B" read "BA'.

p. 5.1: 5.1, par 2, line 6
For 'fields' read 'field'.

p. 5.9: par 3, line 2
For "SLU" read "LU",

p. 5.12: Item 2
For "modifying" read '"modify"

p. 5.15: 5.3.4, par 1, line l
' For "The REPLACE INSTRUCTIONS CAUSE EITHER
THE V or L, ..." read 'the REPLACE instructions -
cause either the V or L..." :

p. 5.41: 5.10.4, par 3 should read
"For this purpose, a preferred alphanumeric code
. has been drawn up in Figure 5.8, The six significant
bits are shown in the rightmost six positions of an
8-bit byte. The leftmost two bits are zero. When a
6-bit byte is used, the two bits on the left are dropped."

Fig 5.3: SM & FM fields combine to be "CONNECTIVE MODIFIER
(CM)" field.

For "OPERATION (48 BITS)'" read "OPERATION
(16 BITS)".

p. 6.11: par 6.3.8
Item 2. should read "effective address is decremented
by L1 - R} and R, is reset to L,"

p. 6.12:

p. 6.13:

p. 6.16:

p. 6.20:

Fig 6. 1:

‘Fig 6. 2:
Fig 6. 3:

Fig 6. 4:

Fig 6. 5:

Item 5 should read ''then effective address is
decremented by L, - Ry and R, is reset to L)"

Bits 38 - 40

The code 111 should be defined as Operation (0)
as in Bits 41 - 43,

There is no Operation (7) for Mechanism D,

par above 6.5, lines 1 and 3
For "B, and "B," read "BM;" and "BM,"

par above 6.5, line 8

For '"in the setup' read "in the STREAM
instruction'

6.5 Between 00 and 10 codes, insert the following:
"01 Count or Or in the addressed memory

cell (without transferring contents to TEU)"

6.7, par 3, line 4
For "Gate 0" read ""Gate 0"

In "MATCH'" at top, use "ADJ'" instead of "T"
For "S*!" read "S'".

For "L, = 3I; = 66" read "L = 3I; = 66",
For "Iz = 5! read "I = 8",

For "S*'" read "S",

For '"01 END OF FIELD (FIRST LEVEL)" read
"01 END OF FIRST LEVEL",

For "10 END OF RECORD (SECOND LEVEL)”
read ""10 END OF SECOND LEVEL",

Setup word 1(5,9)
For "B'" read "BM",

Fig 6.5 (cont.)
Setup words 2(6, 10) and 4(8, 12)

For "D" read "]S?", and for "T" read "T'",
S

Fig 6.5, 6.6, 6. 7:
Use "+' instead of "S" for sign bit (19 places)

Fig 6. 7: Setup word 17)
Interchange functions of the two control bits

p. 7.4: Item c), par 3, line 1
For 'field is higher' read 'field from A is higher",

p. 7.6: Item d), par 3, lines 2 and 3
For "J, = 10" read ""J, = 11",

p. 8.1: item a), line 2
For "Bl' read "BMI“

Item e), line 2
For "B2'" read "BM,'"

p. 8.2: Item i), line 3
For "B3” read "BM3”

. p. 8.3 2 lines below Item k)
For "SCTR'" read "NCTR"

p. 8.4: 8.2, par 1, lines 5 and 7
’ For "2_20” read '"215n,

Item a), line 2
For "B1" xead "BMI".

Item c), line 2
For "B2" read "BMZ".

p. 8. 5: Item f), line 1
' Should be "BA = XXXXX XXXXX XXXXX 0000 0000 000"

-4

p. 8.5: (cont.)
. Item g), line 2
For "B4" read “BM4"

Item i), line 2
Should be "Threshold = 00000 00000 1 00000 00000 00000+ "

Item i), line 3)
Should be "Bit number 27 = O(signed values)"

Item i), line 4
Should be "Bit number 28 = 0(normal accumulation)"

p. 6.6: 6. 3. 2, item b)
: For "Byte Size' read '"Byte Size, BS"

6. 3.’2, item d)
For "number of iterations to be' read "Number Qf‘ Iterations,
N(k)’ to be!!,

p. 6.7: par 2, line 2 :
For "B = 6" read "BS = 6",

par 3, line 1
For "B = 8" read "BS = 8"

par 4, line 1
~For "B = 4" read ""BS = 4"

Figs 6.2 and 6.3
For '"B" read ""BS'",

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	_Fig_2.2
	_Fig_4.1
	_Fig_4.7
	_Fig_5.2
	_Fig_5.3
	_Fig_5.4
	_Fig_5.5
	_Fig_5.6
	_Fig_5.8
	_Fig_6.1
	_Fig_6.2
	_Fig_6.3
	_Fig_6.4
	_Fig_6.5
	_Fig_6.6
	_Fig_6.7
	_Fig_7.1
	_Fig_7.2
	errata_1
	errata_2
	errata_3
	errata_4
	errata_5

