Reference Manual
IBM 7950 Data Processing System
Assembly Program HAP III

Reference Manual
IBM 7950 Data Processing System
Assembly Program HAP III

91962 by International Business Machines Corporation

Address comments concerning this manual to:
1BM Corporation
Customer Manuals, Dept. 298
P. O. Box 390
Poughkeepsie, N. Y.

ASSEMBLY PROGRAM HAP III
Autocoder I

HAP III Macro Statements
Programs in HOPS

Operational Cycles .
Types of Programs and Procedures
The Language Processor

Subroutine Linkage

HAP Language

INPUT-OUTPUT FORMAT
Input Format

Output Format

Output Listing

Binary Output

ARITHMETIC MODE INSTRUCTIONS
Statement Field Layout

Null Fields

Major Fields

Operation Field

Address Field

Offset Field

Arithmetic Mode Instructmn Formats
Address Arithmetic

Arithmetic Data or Control Statements

STREAMING MODE INSTRUCTIONS
Basic Concepts

Streaming Instructions

Adjustments

Setup Instruction .

Indexing Words

CONTENTS

W 3 3 U1 W”n

10
11

12
12
15
16
24

32
32
33
34
34
38
46
48
51
60

63
65
68
79
84
95

HMCP STATEMENTS
HMCP Macro Statements
IOD and IOX Statements
Control Word

HCP STATEMENTS

Parameter Entry Statements
Program Name and Limit Statements
Available Debug Facilities

HCP Macro Statements

ENTRY MODE AND DATA DEFINITION
Entry Mode

Data Definition

Rules for DD Statements

CONTROL STATEMENTS
Input-Output Control Statements
Data Defining Statements
Miscellaneous Control Statements

LIBRARY SUBROUTINES

MLIB Macro Instruction .
MTAIL Macro Instruction . .
MUNTAIL Macro Instruction .
Calling a Subroutine from the Library
Executing a Subroutine . .
Preparation of Library Subroutines

APPENDIX A, HAP III MNEMONICS

APPENDIX B, STREAMING MODE SYSTEM

SYMBOLS

APPENDIX C, SYMBOLIC DESCRIPTIONS AND

MNEMONICS FOR IBM 7950
APPENDIX D, REFERENCE CARDS
INDEX

102
102
106

106

108
108
114
119
120

124
124
131
141

150
150
151
151

159

. 159
. 159

160
160
160
161

162
165
166

173
177

ASSEMBLY PROGRAM HAP III

HAP III is a system dependent assembly program which is part of the language pro-
cessor and ultimately assembles all programs to be used within the IBM 7950 Data
Processing System. HAP I consists of Autocoder I, HAP II, and the Language Pro-
cessor Coordinator (LPC) (Figure 1). Autocoder I functions as a macro statement
expander, handling the input macro statements from the 7950 machine control program
(HMCP) and the 7950 operational system control program (HCP), among others, HAP II
provides a one-to-one relationship between input coding and machine language statements,
while LPC coordinates the activities of Autocoder I, and HAP II with the 7950 system,

Input to HAP III consists of:

1. Programs written in HAP language, including arithmetic and streaming
mode instructions, and various macro statements. These statements are
punched on cards and loaded onto 729 tape.

2. HAP language statements produced by the language processor from state-
ments written in ALPHA language.

Output of HAP II consists of:

1. Assembly list tape, which is a 729 tape containing the symbolic output for
those programs written in HAP language.

2. Binary output tape, which is a tractor tape containing each assembled
program in machine language and in a form ready for insertion into the
system library by the library maintenance program.

AUTOCODER 1

In HAP III, the Autocoder I portion processes the input statements and passes them on
to HAPII, Incoming macro statements are expanded into HAP language calling
sequences, and arithmetic and streaming mode instructions, already in HAP II language
format, are not directly operated upon. The programmer need take no special note of
the existence of Autocoder I; if input statements to HAP III are written in the proper
format, their ultimate appearance in machine language will be completely automatic.

I HAP III |

Statements I I

I

| |

HMCP I N I

Arithmetic Mode |A |
Streaming Mode : > Autocoder > HAP | Machine
HCP N 1 I I Language

>

Additional Macros | 5 |

| I

| |

| |

: Lpo }

| ——— I

Figure 1. Components of HAP III

HAP III MACRO STATEMENTS
Macro statements have the following general form:
MOP, argumentl, argumentz, etc.

where MOP represents an operation mnemonic prefixed by the letter M and followed by
up to seven additional alphabetic characters. Any arguments required, including null
arguments, are written in a specified order in the statement field, separated by commas.
Each argument can be a literal or a symbolic address plus or minus an absolute incre-
ment and modified by an absolute index register. For each symbolic address a maxi-
mum of eight alphanumeric characters are permitted, the first of which is alphabetic.

As an example, consider the following sample MADD macro statement:
MADD, A, B, C
With these parameters, the meaning is to load A in the adder, add B and store the result
in location C. To accomplish this, Autocoder I will expand the above macro statement

into the following calling sequence:

L,
+

>

QW >

ST,

The expanded macro, or calling sequence, replaces the original macro in the
source program, and is subsequently assembled by HAP II along with the other sym-
bolic statements.

PROGRAMS IN HOPS

The 7950 operational system (HOPS) accommodates an advanced programming language
(ALPHA) and a program to handle input, output, and tractor data manipulation (HMCP).
Another HOPS program, the 7950 assembly program (HAP), acts as a programming
language in itself and as a step in ALPHA compilation. All of these functions are
integrate d under the 7950 operational system control program (HCP).

The HCP handles the processing of jobs in cycles. A cycle may consist of one or
more jobs; a job may consist of one or more steps. Within a cycle, jobs are logically
processed in the order submitted. When presented to the HCP, the cycle deck allows
completely automatic scheduling and transition from step to step and from job to job for
the duration of the cycle.

OPERATIONAL CYCLES

Two distinet modes in which an operational cycle can be run are the HCP production
cycle and the HCP debug cycle. Many functions of an operational cycle are common to
both modes: however, certain system functions are not needed in a debug cycle while
others are needed only in a debug cycle. Those functions not needed in a debug cycle
(such as operations on permanent tractor data files, permanent library, and so on)
usually are not made available during a debug cycle for system efficiency and for
prevention of damage to permanent material during debugging. Those functions needed
only in a debug cycle (such as debug dump facilities) are not made available in a pro-
duction cycle.

Whether a cycle is a debug or a production cycle is determined by the machine
operator and depends on a parameter furnished with the job requested. Flow charts of
production and debug cycles are given in Figure 2. Note the number of steps within an
operational cycle. These steps form the HCP system, together with several other
programs and stored procedures.

TYPES OF PROGRAMS AND PROCEDURES

The HCP system treats stored procedures and various programs differently depending
on their nature, use, and state of readiness. The broad categories established by the
system are:

System Programs: Those programs which make up the HCP. A system program
is treated as a problem program during language processing and debugging. It is
labeled and treated as a system program during and after replacement in the system
library. System programs include System Control, Job Request Analyzer, Lan-
guage Processor, Program and Procedure Library Maintenance, Program Pre-
Execution Supervisor, Tractor Data Load, Tractor Assignment Optimizer, Pro-
gram Execution Supervisor, Tractor Data Unload, and Tractor Filing System
Maintenance.

Problem Programs: Those operational programs executed with the aid and super-
vision of the system programs, by requesting execution through the job request
language. While a generalized file operation (GFO) may be considered an integral
part of HOPS, the HCP makes no distinction between a GFO and a special purpose
program.

Debug Programs: System or problem programs in the process of being debugged.

Stored Procedures: Job requests having a frequency of use are convenient to retain
in a system library. A stored procedure may contain any JRL request, parameter,
or file card except a stored procedure request or modification card.

L To Next Cycle

4

Preliminary Job
Request Analysis

(JRA-T)

Mapping of Load-
to-Perm Files

(LD)

\

Job Request
Analysis

(JRA-II)

Y

Perm File Load-

Hold File Mapping
(LD)

A

Permanent
Data File

Maintenance I
(FM-])

\

Compilation or
Assembly of

Programs
(LP)

Figure 2,

Permanent Data
File Maintenance II
(FM-ID)

Unloading of
Data Files

(UL)

A

Problem Program
Execution

(XSUP)

<€ — >

Format of
Debug Results

Problem Program
Tractor Assign-

ments (TAO)

A

Loading of
Hold Files

(LD)

A

Problem Program
Pre-Execution
Checking and Prep-

aration (PREX)

Program and
_ | Procedure Library
71 Maintenance

(L)

Operational Cycle Flow Chart

THE LANGUAGE PROCESSOR

The HOPS system provides a language processing function for the programmer, enabling
him to write his programs on the most applicable level and to use more advanced pro-

gramming language techniques.

Programs normally are written in symbolic language, then compiled by the language
processor before being placed in the system library or executed. The HOPS system
also relieves the programmer of much of the burden of data file loading, unloading,
bookkeeping, conversion, and hardware assignments. In addition, it contains powerful
tools for program debugging and it provides the programmer permanent storage for his
program in the system library.

In operation, the compilation or assembly of programs can take place in either a
debug or production mode; however, requests for assembly or compilation in a debug
mode are valid only in a debug cycle. Programs are compiled according to requests
and options in the Internal Request Table, and parameters in the parameter file.

The actual assembly of the program is done by HAP III. Input to the language
processor must be in ALPHA or HAP language. ALPHA language programs can be
given to HAP III only after being processed by the previous phases of the language pro-

cessor.,

The output of the language processor is actually HAP III output and appears in two
forms: Symbolic output is recorded on a 729 list tape for possible off-line printing, and
binary machine language output is recorded on a tractor tape for subsequent inclusion

in the library.
SUBROUTINE LINKAGE

Through the use of the appropriate macro statements, the programmer can call into play
whatever subroutines are available to him from the Library. These macro statements

are described in a later section of the manual.

10

HAP LANGUAGE

HAP III must be able to process statements calling for arithmetic and streaming modes
of system operation, in addition to HMCP input-output operation, data-defining pseudo

operations and miscellaneous operations. Several basic formats for these instructions
and operations exist in HAP language, and are classified as:

Arithmetic Mode Instructions - with the following formats:

Floating point

Miscellaneous, unconditional branch
Direct index arithmetic

Immediate index arithmetic

Count and branch

Indicator branch

Variable field length arithmetic; connect; convert
Progressive indexing

Swap; transmit full words

Branch on bit

Load value with sum

Branch enabled to streaming

Clear memory block

Streaming Mode Instructions - with the following formats:

Streaming instructions (SBBB, SMER, SSER, SSEL, STIR, SQNL,

SILS, SNOP)
Adjustments
Set-up words (ten words)
Indexing
Macro Statements - including HMCP, HCP, and other miscellaneous macros.

11

INPUT-OUTPUT FORMAT

INPUT FORMAT
Coding Sheet

All HAP III statements use the same coding sheets and card formats. Symbolic
machine instructions are written in the statement field of the HAP coding sheet. Sym-
bolic instructions are divided by commas into several fields (operation, mnemonic,
data description, address, offset and so on), These major fields may be further
divided into subfields or may be modified by expressions contained in parentheses,
such as index register specifications, secondary operations in progressive indexing
and so on,

The coding sheet makes it easy to write instructions in a neat and orderly fashion,
Figure 3 shows how arithmetic mode instructions are entered on a HAP coding sheet.
The coding sheet is divided into four fields:

1. Class (first column) identifies continuation cards and comment cards.
2. Name (next eight columns) identifies the statement. May be any pro-

grammer symbol,
3. Statement (next 63 columns) expresses an instruction or pseudo instruction.
4. Identification (last eight columns) identifies the card.

Card identification (columns 73-80) is reproduced on the output listing, but does not
contribute any information to the assembly program for translating instructions.

Punched Card

The format of the coding sheet is directly related to the format of the symbolic
input card; both are divided into the same four fields. The coding sheet is most useful
as a document from which the card punch operator can punch the program directly onto
the input cards. The first instruction from the coding sheet is shown in Figure 4 as it
would be punched on a HAP input card. Note that one line on the coding sheet represents
one punched card. Normally, one machine instruction or pseudo operation is written
per line.

Comment Mark (")

A comment may follow any instruction. The beginning of a comment is sig-
naled by an apostrophe("); the end is usually indicated by the end of the card. For
example:

CONV3L(BU, 64, 8), TABLE 'BEGIN CONVERSION

12

12 NAME gllO
ANYNAME |L(BU,64,8),DATA#X3),7
ADDER, , , |+(BU,8,8), SINES

) U S WO ISV E S

Figure 3. HAP Coding Sheet

I 111 11 1
|
1111
1on|ooouuo|o||no|nu|00|0|o|uu|ououonnnuoonoonunooooouuounuoooonneuoooooonunosoos
1
1

ANYNAME r(au,64,8>,nq79<#x3>,7 \\\

23145878 8ii00 11131‘1518|1I!15202122232425?5?728?9303132]3343535373839404142‘3“4545”48(9505!5753545556575859808152536l55566763597071727374757517787930

lllllllllllllllIIllllllllllllllllllllllII]IlllllIHI]IIIIIII]IHIIIIII]Illlllll
22222222222.22
333333333.333'33.33.33'33'3'3.33
444444'444.4'44'44.4'444'444.444
55'5'55'-55
5588656688EBGS'GBS56666866666656868666655666566656558666666666686888665886668666
77777777777777777777777777.177'77777777777777777777777'I7777777177177777777777777

=)

SoBsssescBoolesBNNNccasgNecNs858806888888806688588086008886883668883888888688388

9999999995993999‘.?5(‘;.‘393
12345678 8]2111213141516 171819 2021227324 2525 27 28 29130 31 32.33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 45 49 50 1 57-53 54 55 56 57 58 59 60 6162 63 64 65 66 67 6 60 19 71 72 73 74 - o1 1 75 5 81
1BM 508)

Figure 4. HAP Symbolic Card

13

Comments are reproduced on the output listing, but do not effect the assembly program
in any way. If an apostrophe (') appears anywhere in the name field, the entire card is
treated as a comment, reproduced on the listing, but not assembled.

Multiple Statement Mark (?)

Several statements may be written in the statement field of a single symbolic
input card with the exception that only one macro statement is allowed per card. Mul-
tiple statements are separated by the question mark character (?), implying the end of
a statement. Therefore, the question mark can never be used in a comment, except
when an apostrophe appears in the name field, signifying that the entire card is to be
treated as a comment.

The following three statements can be arranged as shown for entry on a single
card.

BEGIN L (N), DATA ?+(N), FIRST1 ?-(N), ANGLE

The number of instructions written on one line is limited only by the number of columns
available in the statement field of the card. If a card has more than one instruction in
its statement field, then its name field is associated with the first instruction only.

The remaining instructions are treated as if they appeared on separate cards having
blank name fields.

Continuation Card Mark (*)

The name field and/or the statement field of a symbolic input card can be
continued on subsequent cards by use of a continuation card. A continuation card is
identified by an asterisk (*) punched in column 1. In all other respects it is identical
to the standard symbolic input card. An example of the use of a continuation card is
given on the coding sheet by the following instruction, whose name is REALLONGNAME:

REALLONG L, DATAWORD ?ST, ADDRESS
* NAME

If continuation cards are used to extend the name field, two restrictions apply: the
first character of the name must appear in the name field of the first card, and a name
must consist of not more than 128 characters. A name, regardless of its length, is
always attached to the first statement in the set of cards. Thus, in the example,
REALLONGNAME only applies to L, DATAWORD. The next instruction, ST, ADDRESS

is nameless.

14

Card Blocks, Records, and Files

Several terms are commonly used to describe methods of storing data on
cards. Definitions of these terms appear below, and will be referred to throughout
this manual.

Pinysical Card Block or Record: The amount of data that can be recorded on
one full card.

Logical Card Block or Record: The card space needed for a single HAP lan-
guage statement or statement name. Several statements may appear on one
card through use of the question mark (?), or one statement may require the
use of several continuation cards. Thus a logic card block may be formed by
one or more physical card blocks; or a physical block may contain one or
more logic blocks.

Logic and Physical Card File: All logic records pertaining to one application
or activity form a logic file. A logic file has one or more physical files, thus
all punched cards pertaining to one activity form a logic file; however, they
may be stored in card file drawers, where each drawer is a physical file.

OUTPUT FORMAT

The output of any HAP assembly appears in two forms: a printed listing of the sym-
bolic instructions, and a taped record of the machine language (binary) instructions.
If desired, punched cards can also be output from the assembly.

Several types of instructions are classified under the general title of control state-
ments or pseudo operations, Some of these pseudo operations pertain to control of the
output format; others define data to the assembly program. In general, pseudo opera-
tions may be categorized as follows:

1. Output listing or punching control statements. Although these affect the
format of the output, they do not themselves cause any. instructions to be compiled.

2, Data defining pseudo operations which appear as data in the output formats.

3. Miscellaneous control statements which allow the programmer to directly
control his program and either appear as data or affect the output formats.

Those statements affecting output format will be described in this chapter, other
statements will be discussed later in the manual.

15

OUTPUT LISTING

The output listing produced by HAP contains two types of information. On the right
half of the page, each HAP statement is reproduced as it was punched on the symbolic
input card. On the left half of the page, the location assigned each statement is dis-
played in octal, followed by a numeric representation of the compiled information. A
sample listing appears in Figure 5.

Available Print Formats
Arithmetic Mode Instruction Formats

The following five print formats are available for representing compiled
information numerically:

1. Octal-hex: The octal-hex representation uses two different radices to
represent each half-word instruction compiled by HAP. The first 24 bits of the 32-~bit
half-word are displayed in octal and the last eight bits are given by the two hexadecimal
characters. The hexadecimal number system is based on 15, (any number from 0 to 15
in the decimal system can be written as 0 to 9, A, B, C, D, E, or F in the hexadecimal
system). Thus, any four-bit binary number can be represented by only one hexadecimal
character. For economy, the last eight bits of the 32-bit half-word are represented by
only two hexadecimal characters rather than three octal characters. If a full-word
instruction has been compiled, two half-word octal-hex expressions are used. Note
that a period is supplied on the listing between the sixth and seventh octal characters
(the 18th and 19th hinary bits) to facilitate reading HAP bit addresses.

2. TFloating Point: When a data definition statement with a floating point use
mode is specified, the compiled data entry is printed in octal but is separated into the
components of the floating point format: exponent, exponent sign, fraction, fraction
sign, and data flags (see lines 14 and 15 in Figure 53).

3. Index Word: When the XW pseudo operation is employed to create storage
elements in the format of index words, the printed display of the compiled information
is clearly divided into four fields comprising the index word: value field plus sign,
index flag and two unused bits, count field, and refill field (see line 17 in Figure 5).

4. Octal: Binary signed and unsigned data compiled via a DD statement are
printed on the output listing in straight octal format (see lines 19 or 20 in Figure 5).

5. Decimal: A decimal use mode in a DD statement causes the compiled
data to be displayed in decimal.

16

LT

TIME CLOCK 011000101

PAGE
LOCATION BINARY OUTPUT NAME STATEMENT
000077.00 LOWER MEMORY BOUND
000115.00 UPPLR MECMORY BOUND
1~ 000100.00 SLC,64.
2~ 017777.00+ +00000000 NEXT SYN, (8)17777.0
3- 000100.00 000112.16 10 ABLE LX,7, INDEX -LOAD INDEX
4~ 000100.40 000113.20 80 000000.20 50 L(BU), BAKER
5- 000101 .40 000000.10 87 204000.20 DO CHARLIE ST(BU,4)(V+IC),.8($7)
6= 000102, 40 000101.70 40 BZXCZ,CHARLIE
7- 000103.00 000107.00 60 L(N),DOG
8- 000103.40 000110.00 20 +(N),DOG+1 .
9- 000104.00 000111.00 EO ST(N),FOX
10- 000104, 40 000113.34 80 030000.20 50 L(BU,24),50ME VERY LONG NAME
11— 000105, 40 000113.64 80 030000,20 DO ST(BU,24),SOME OTHER LONG NAME ~TESTING LONG COMMENTS THAT
12- WILL CARRY OVER TO THE NEXT LINE
13~ 000106.40 017777.10 00 B,NEXT
14= 000107.00 0007+ 6777700000000000 +000 DOG DD(N),28671X7,183007S7
15- 000110.00 0022+ 5453370000000000 +TUV
16~ 000111.00 000001.00 FOX DR(BUY, (1)
17~ 000112.00 000113.00+ 000 000004 000000 INDEX XW,ZEBRA, &
18- 000113.0 000000.20 ZEBRA DR(BU, 4), (4)
19~ 000113.20 5703 BAKER (8)DD(BU,12),5703
20~ 000113,34 00067777 SOME VERY LONG NAME
21~ DD(BU,24),28671
22- 000113,64 000000.30 SOME OTHER LONG NAME
23- DR(BU,24), (1)
24~ 000114.14 000100.00 END, ABLE
THIS ASSEMBLY REQUIRED 00000032 SECONDS

Figure 5. Sample Listing of Arithmetic Mode Instructions

Streaming Mode Instruction Formats

In addition to the print formats described, several additional formats are used
in listing the streaming mode symbolic instructions. The appearance of these instruc-
tions is given below, with x's written in place of numbers. Parentheses indicate that
the number within is in binary form; if the number is outside of parentheses, it is in
octal form. The letter U indicates unused bits; for example, U5 means five unused bit
locations, or five zeros. Both streaming and arithmetic mode formats may appear on
the same listing page. Streaming mode formats are:

1. Streaming Instructions: Use the following format.

(XXXX XXXX XXX XX XX XXX X XXX XX XXXX X XXX)

2. Adjustment Instructions:

XX (XX) XXX XXX XXX

3. BES,CLM Instructions:

XXXXXX, XX XX
(octal-hex)

4, Indexing Instruction:

Firs: word: XXXXXXXX: X(XX XX XX) XXXXXX XX(X XX XX XXX)
Second word: XXXXXXXX XXX XXXXXX xxxx U2

5. TX, TXO Instructions: Use a format identical to the first word of the
indexing instruction. No second word is required.

6. IOD, IOX Instructions: Fifteen full words for IOD and three full words
for IOX, each using the following format:

XXXXXX.XX XX XXXXXX.XX XX
Y — N
Octal Hex Octal Hex

7. SPE, PLE Instructions; Use a format identical to IOD, IOX instructions,
except that only two full words are required.

8. TEY Instruction:

XXXKXX XX (X) XXXE (X) XXXXXXXXXX

18

9, LIMits
XXXXXX. XX+ (XXX) XXXXXX XXXXXX

10. Setup: The setup listing uses a unique format requiring 20 printed lines
(Figure 6).

Control Statements and Printed Output
Printing Control Statements

The following control statements directly control the printing of the output
listing but do not compile any machine instructions.

1. Print Single-Spaced: PRNS

This control statement causes the assembly listing to be printed with single spacing.
Double spacing is the normal printing mode, and is the mode in effect for every
assembly except those in which PRNS is specifically written.

2. Print Double-Spaced: PRND

This control statement restores printing to the normal double spacing mode after the
use of a PRNS. At the conclusion of each assembly, the mode is automatically reset
to double space, so that PRND need only be used if it is desired to change mode from
single to double space in the middle of one assembly.

3. No Printing: NOPRNT

This control statement stops printing the output listing until any other printing control
statement is encountered in the program, at which time printing is resumed.

4. Suppress Printing of Unused Symbols: SPNUS

This control statement suppresses printing the list of unused symbols that appears at
the beginning of the output listing. The list is suppressed for the compilation of the
entire program in which the SPNUS appears. Printing the list is not restored until the
beginning of the next assembly,

Print ID (PRNID) Statement
In addition to the statements that actually control the manner in which the
listing is printed, one other printing statement exists that has a slightly different

function in the program. This is the print ID statement, with the following format:

PRNID XXXXXXXKKXXKXXK . . o XX

19

(114

WCH(sooooxxx) Ul WCHN(xx) WOP(xxx) WM(x) WS(x) XCH(xoooooox) XCH(xxx) XOP(xxx) XM(x) XS(x)
YOH(xxxxxxxx) YCN(xxx) YOP(xxx) YM(x) YS(x) ZCH(xoxxxxxx) ZCN(xx) Ul ZOP(xxx) UL 2ZS(x)
SEM(XXXX XXXX XXXX XXKXX XXXX XXX Xxxx Xx) U3

SATH xxxxxxxx SASTM(xxxx) DEBUG(xxxx)

SAVAL xxxxxxxx UB

SCVAL xxxxxx U6 SAM(xx) SCM(x) SCSTM(xxxxx)

SCLM xxxxxx ULl FSTIM(xxoexxxxx) FLIM(xx) FACT(xx)

TBA xxxxxx xx TBAHO(xx) U5 MDM(x)

Ul TAPS(xxxxx) TAPI(xxxxx x) Ul TAPN(xxxxx) Ul TAPJ(xxxxx) U3 TAPM(xxxxx)

Ul TAQS(xxxxx) TAQI(xxxx x) UL TAQN(xxxxx) Ul TAQJ(xxxxx) MOD(XxXxxxxx)

TES(xxxxxx) TEI(xxxxxx x) U5 TEN(3ooocx) TEBM(XXXXXXXX)

SPAO xxxxxx xx TAOHO(xx) TEM(xxxxxx)

U32

Ub SSS(Xxxx XXXX XXXX XXXX XXX XXXX XXXX)

PS xxxxxx xx U8

PIX xxxoxxx Ulb

Qs xooxxx xx U8

QIX xxxxxx Ulk

RS xxoxxx xx U8B

RIX xxxxxx Ulk

Figure 6. Setup Listing Format

Normally, PRNID is the first statement to appear in a program. It instructs
the assembly program to write immediately the entire contents of the card block on the
output tape. PRNID provides for heading the assembly listing with such information as
the problem name, programmer, and so on. A typical PRNID statement might be

PRNID, BCD CONVERSION ROUTINE BY JOE SMITH

If a PRNID appears in the middle of a program, it will appear both at the begin-
ning of the listing and at the point where it actually appeared in the code. When several
PRNID statements appear in one program, they are listed sequentially in one group at
the top of the listing and each one is listed in its appropriate place in the program. The
practice of writing all PRNID statements at the beginning of the listing is useful when a
program being assembled is composed of many subroutines and each subroutine begins
with a PRNID statement. The PRNID's, when they appear at the top of the listing, form
an index of the names of the subroutines included in that assembly.

A very long message may be written following a PRNID; if the message over-
flows the card, continuation cards may be used. An alternate spelling of the mnemonic,
PRNID, is also accepted by HAP,

Miscellaneous Control Statements

Control statements that do not cause any binary information to be compiled
present certain unique printing formats. For instance, DR compiles no binary infor-
mation, therefore HAP prints the number of words and bits reserved by the control
statement as an octal bit address. SYN, on the other hand, can define a symbol in terms
of either an integer value or a HAP bit address value. When the symbol is defined as
a bit address, an octal bit address equivalent is printed in the column where the location
counter setting is usually displayed. If the symbol is defined as an integer, a straight
octal representation of the converted integer is printed where all other compiled state-
ments and data are shown. If the control statement SLC is used, the contents of the
location counter resulting from the appearance of the SL.C are displayed in the usual
column as an octal bit address.

Additional Listing Information
Some additional information is supplied on the listing. For example:
1. Time Clock: The first item to appear on each assembly listing is a binary
representation of the internal time clock showing when the assembly began., The time

required to complete the assembly is displayed in seconds as the last item printed on
the listing. The time clock can be used for identification pruposes.

21

2. Symbol Lists: Four lists of symbols are supplied by HAP at the start of
the listing. The first is a tabulation of those programmer symbols that were not
defined by the programmer, along with the definitions supplied by HAP. The second
list contains all programmer symbols defined by the programmer but are never
referred to or used. The third and fourth lists contain those symbols that are multi-
defined with contradictions and pseudo defined.

3. Column Headings: Headings are placed over each column of information
to clarify where location, binary output, name, and statement appear.

4, Storage Bounds: Immediately following the column headings, upper and
lower storage bounds are printed as octal bit addresses. The boundaries for each pro-
gram are determined by HAP in this manner: The lower memory bound is the address
of the full word in storage immediately preceding the first word used by the program,
while the upper memory bound is the address of the full word in storage that immedi-
ately follows the last word used by the program.

5. Line Numbers: The printed lines on each page are numbered sequentially,
beginning with 1, and the leftmost column on the listing contains these line numbers.
Each page also contains a number that appears at the top of the page, just below the
time clock display. Thus, HAP can easily refer to any line of printed output by page
and line number.

Error Messages

Certain error conditions can be detected by HAP during compilation. (See Section
entitled "Error Condition.") At the completion of an assembly, HAP can list error
messages by page, line number, and field wherein the error occurred. Since many
statements occupy more than one line on the listing (see lines 11 and 12 on the sample
listing), an error message references only the first line occupied by the statement's
binary output.

Error Flags

Tive other error conditions, all caused by incorrect definition of programmer
symbols, can be detected by HAP and reported on the output listing by means of error
flags. These flags are five or six-character symbols that appear on the listing on the
line immediately preceding the first line of the statement that contains the symbol
erroneously defined. The five flags and their meanings are:

1. UNDEF: An undefined symbol has been detected. HAP has assigned to
this symbol the bit address value equal to the first full word location following the
highest full word used by the program in which this symbol appears. If several symbols
are undefined, they are assigned sequential full-word locations from this starting point,
in the order in which they are encountered by HAP.

22

2. QUEST: A multidefined symbol has been encountered. However, the
definitions are not contradictory, that is, two or more definitions of the same pro-
grammer symbol have been found and all definitions assign the identical value to the
symbol. This situation occurs in this sequence of instructions:

SLC, 1000.0
SYMBOL LI, ANOTHERSYMBOL
+I, STILLANOTHER
SYMBOL SYN,1000.0

HAP accepts the definition as legal and does assign the specified value. The appearance
of the flag warns the programmer of the unnecessary multiple definition.

3. MULTI: This flag signals a more serious case of multiple definition where
the definitions are contradictory. If the following two statements were found in a pro-
gram,

A SYN, 100.0
A SYN, 100. 32

the MULTI error flag would appear on the output listing on the line immediately pre-
ceding the second SYN statement. When contradictory definitions occur, HAP assigns
the first value encountered and discards all subsequent definitions.

4, PSEUDO: Pseudo definitions are often called circular definitions and are
best shown by the illustrations below.

A SYN, B
B SYN, A+5

HAP assigns a value of 0 to A and a value of 5 to B.

5. CONTAG: A contagious error occurs wherever a programmer symbol
depends on another programmer symbol which has been erroneously defined in one of
the four ways described above. In the following case,

SLC,500.0
SYN, 1000.0
SYN, 500.0
SYN, A
L(N), B
+(N), A

oo Jite: e 2

MULTI flag would appear on the listing on the line immediately preceding the add state-
ment, and the CONTAG flag would be found on the line preceding the load statement.
HAP would assign the value 500.0 to A and B.

23

Printed Line Carry-over

Because HAP has provision for very long programmer symbols and continuation
cards, the symbolic listing of the contents of the cards may extend over two or more
lines. For example, if the name of the statement is too long to fit in the name column,
it extends into the statement colunin, and the remainder of the statem ent is printed on
the next line, as shown on line 20 and line 21 of the sample listing. Note that even
though the statement uses two lines, the compiled binary information is printed on the
first line. In another instance, the programmer may use a continuation card to append
a very long comment to a statement. An example of a long comment forcing a format
change is seen on lines 11 and 12 in the sample listing.

The reverse situation occurs when several D fields are written on one DD card or
multiple statements are written on a single card. Then the binary output spreads over
two or more lines, while the symbolic duplication of the input card appears on one line.
Lines 14 and 15 illustrate a DD with more than one data entry.

BINARY OUTPUT

In addition to a printed listing, binary information is also output in card-image
form. All binary output from the 7950 assembly program is written on binary output
tape and consists of two files:

1. Binary Output File: containing all information resulting from the actual
assembly of the symbol program.

2. Debug Table File: produced only in debug mode of operation (not pro-
duction mode) and containing all symbols listed in the symbol table for this assembly
and the corresponding location for each.

Each of these files is further subdivided into blocks and records which are described
as follows:

1. Blocks: Standard sized divisions within files consisting of 50 records, or
a total of 750 words. The last block of either the Binary Output File or the Debug
Table File is the only block that may be less than standard size.

9. Records: Standard sized divisions within blocks (card image size) con-
sisting of 15 words, or a total of 960 bits.

Figure 7 illustrates how binary output in card-image form may appear on the binary
output tape. Four types of column binary card-images may be produced: origin, flow,
branch, and PUNFUL.

Binary Output File Debug Table File
N N
/- A r N
Block Block 3
Block 1 | Block 2 | Block 3 | Block 4| (var Block 1 |Block 2 | (Var
1gth) Igth)

Figure 7. Binary Output Tape Showing Output from HAP

24

Card Types
Origin Card

Every binary deck to be loaded into the 7950 system via the standard loader
program must have an origin card as its first card. The origin card contains an origin
address, a checksum, and up to 23 half words of data and/or instructions. The origin
address tells the loader where to start loading the half words of data and/or instructions.
The origin address is taken from the SLC statement, which is normally the first state-
ment in any program following the identifying statements (PRNID and PUNID).

The complete format of the origin card is shown below. In the convention used.
to number card columns and rows, the first number specifies the card column (a number
ranging from 1 through 80). The second number, separdted from the column number by
a period, is the row number. The card is considered to be divided into 12 rows with
the row nearest the top of the card, 0, and the row nearest the bottom of the card, 11.
For example, 10.8 means column 10, row 8.

Card Column and Row Use
1.0-1.11 Code column (origin card--1.9, 1.10, 1,11 punches)
2.0-2.11 Identification column (binary)
3.0-3.11 Sequence number (binary)
4.0-4.11 Checksum
5.0-5.1 Control bits
5.2-5.11 Primary bit count--number of bits to be loaded
6.0-7.11 24-bit origin address
8.0-9.11 Secondary bit count--number of bits to be skipped
or set to zero, as designated by the two control bits
10.0-10.7 Not used
10.8-71.11 Up to 736 information bits
73.0-80.11 Identification (card code)--ignored by the loader

The fields not previously mentioned in the format have the following uses:

1. Code Column: A multiple punch code that tells the loader the type of
card being loaded. For an origin card the code is a punch in 1.9, 1.10 and 1.11.

2. Identification Column: Twelve bits of the 36-bit time clock ($TC)
indicating the status of the clock at the start of each assembly are punched in column 2
of every binary card produced by HAP to identify the assembly. Column 2 is ignored
by the loader.

3. Sequence Number: A binary number computed by HAP to aid the loader
in checking the sequence of cards being loaded. The first card in every deck punched
by HAP is given the sequence number 1, the second is given sequence number 2, and so
on,

25

4. Checksum: A 12-bit field in which the sum of all bits punched on the
card is entered for checking purposes.

5. Primary Bit Count: A 10-bit count telling the loader the number of bits
of binary information (columns 10 through 72) that are to be loaded into storage. Any
number from 0 to 748 can be specified. Bits not intended to be loaded are ignored by
the loader.

6. Secondary Bit Count: A 24-bit count interpreted by the loader in con-
junction with the two control bits.

Bit 5.0 Bit 5.1 Meaning of Secondary Bit Count
0 0 Skip n bits before loading card contents
0 1 Skip n bits after loading card contents
1 0 Set n bits to zero before loading card contents
1 1 Set n bits to zero after loading card contents

Bit skipping or zeroing before loading starts at the origin address. Skipping and zeroing
after loading starts with the bit location immediately following the last bit loaded from
the origin card. Information for skipping or zeroing is determined from the pseudo
operations DR and DRZ. If DR has been given, bit skipping is called for, while DRZ
specifies setting bits to zero. The setting of control bit 5.1 is determined by the posi-
tion of the DR or DRZ in the code. When a DR or DRZ immediately follows an SLC,
skipping or zeroing information can be placed on the origin card and the proper control
bit set before loading the contents of the origin card. The contents are the instructions
or data that follow the DR or DRZ in the program. (See flow card description below.)

7. Identification: In this field HAP punches the card code characters
specified in the last PUNID statement encountered.

Flow Card

A flow card contains 25 half words of data in column binary form, to be loaded
in sequence with the data of the previous card loaded. The format of the flow card is:

Card Column and Row Use
1,0-1.11 Code column (flow card--1.9 and 1.11 punches)
2,0-2.11 Identification number (binary)
3.0-3.11 Sequence number (binary)
4.0-4.11 Checksum
5.0-5.3 Not presently used
5.4-71.11 25 half words of binary information
73.0-80.11 Identification field (ignored by the loader)

26

All columns reserved on a flow card for compiled data or instructions must be used.

No primary bit count is provided for. All of these columns are read by the loader, and
any that contain no punches are interpreted and loaded as zeros. If HAP is constructing
a flow card and a DR or DRZ is encountered before the data columns (5.4-7.11) are full,
HAP immediately changes the card to an origin card. A primary bit count can now be
given so that instructions and data ready to be punched in the card can be loaded, but
the remaining blank columns can be ignored. Now a control bit can be set so that the
skipping or zeroing is done after the contents of the converted origin card are loaded.

Branch Card

A branch card contains an address to which the loader transfers control,
usually the entry address for that portion of the program just loaded. A branch card is
produced as a result of HAP encountering an END card or a TLB card. If no address
is specified with the pseudo operation, control is transferred to the address given as
the origin on the first origin card produced for the subject program.

The format of the branch card is:

Bits Assigned Use
1.0-1.11 Code column (branch card--1.8, 1.9, 1.11 punches)
2.0-2.11 Identification number (binary)
3.0-3.11 Sequence number (binary)
4.0-4.11 Checksum
5.0-5.11 Not presently used
6.0-7.11 24-bit transfer address

The card before the branch card is often forced to be an origin card. As before
with DR or DRZ, if the TLB or END is encountered when the flow card being composed
does not have columns 5.4 through 71. 11 filled, the flow card is changed to an origin
card. The next card will be the branch card.

PUNFUL

A PUNFUL card is a special card requested by the programmer through the
PUNFUL statement. The format of the PUNFUL differs from other cards in that all
80 columns of the card are used for column binary data or instructions.

Binary Output File

Each assembled program becomes one physical file on the binary output tape. A
program is made up of one or more fixed length blocks each containing a part (or all)
of the assembled program in binary card format and each (with the possible exception
of the last) containing 50 records (Figure 8). Each card image occupies 15 words and
contains or represents a variable number of words of the program depending on the
card type (origin, flow, TLB, or branch). The first two card images (origin cards) in
the first block are used to construct the Program Name- Limit Table (see Section entitled
"Program Name and Limit Statements'),

27

1st binary card image (origin card)

2nd binary card image (origin card)

3rd binary card image (flow card)

1st Block
or
50 Records 4th binary card image (flow card)
5th binary card image (flow card)
rl\'—
49th binary card image (flow card)
50th binary card image (flow card)
\
i
|
I
|
l
1st binary card image (flow card)
2nd binary card image (flow card)
Last Block
(may be less
than
50 Records)

Next-to-last binary card image
(origin card)

Last binary card image (branch card)

Figure 8. Card-images on Binary Output Tape

28

Except for the following branch cards, the remaining cards in the binary output file
consist of origin and flow cards containing the assembled binary information.

Branch cards tell the program where to go for its next instruction and are produced
when either of the following instructions is met:

TLB Instruction: which terminates each segment of the assembly.
END Instruction: which terminates the complete assembly and also writes
an EOF on the binary output file.

Debug Table File

Besides the binary output file, an additional file calléd the debug table file, con-
sisting of N blocks, is produced on the library tape when in debug mode of operation.
Each block of this file, except possibly the last, contains 70 records. As an output from
the 7950 assembly program, the file contains each symbol listed in the symbol table (in
IBM BCD sort sequence) along with the corresponding location for each. The debug
table file is accumulated by HAP for use by the HCP.

The card-image sequence consists simply of PUNFUL cards followed by an end of
file mark, indicating the logical end of the file.

Card-Image Control Statements
The following control statements are used to control card-image output.

1. Punch Full Cards: PUNFUL

Full cards (80 columns of column binary information) are punched without checksum,
first word address, identification, and so on.

2. Punch Normally: PUNNOR

This control statement restores normal punching (72 columns) of origin and flow cards
after the use of a PUNFUL.

3. Punch Origin: PUNORG

This control statement causes an origin to be punched in every binary card in the output
deck, thus making every binary card produced by HAP an origin card.

4. _No Punch: NOPUN
Punching of the binary output deck by HAP can be halted by the use of the NOPUN con-

trol statement. Punching remains suppressed until a PUNNOR or PUNFUL control
statement is encountered.

29

5. Punch Cards for Symbols: PUNSYM, A, A', A, ..., An

The A; are any legal programmer symbols used elsewhere in the program. After the
entire binary deck has been punched out, one card in the following format is punched out
for each Aj specified.

Card Column Contents
1
2-9 Programmer Symbol
10-12 SYN
13-21 dds
22-25 ,(8)
26-28 Blank
29 Sign
30-38 Bit Address (XXXXXX.XX)
39-41 Blank
42-44 (8)
45 Integer Sign
46-53 Integer
54 -55 Blank
56-60 Index Value (#xx)
61-72 Array Dimensions
73-80 ID specified by the latest PUNID

The SYN cards thus produced permit reassembly of the portion of a program that refers
to symbols defined in another portion not being reassembled. The SYN cards are put in
the symbol table at reassembly time, and the symbols involved are thereby legally
defined.

The format of the card produced by PUNSYM allows for symbols that are defined as
bit addresses, integers, or arrays. When a symbol has been defined as an integer some-
where in the program, PUNSYM yields a card that has the integer definition in columns
44-55, and the fields reserved for a bit address definition or an array definition are left
blank. Note the presence of the radix specifier which denotes that bit address and
integer definitions are always punched in octal. If the symbol is too long to fit in the
name field of one card, HAP automatically supplies a continuation card or cards, Sim-
ilarly, if the array definition is too long to fit on one card, a continuation card is supplied
and the definition is continued beginning in column 10.

6. Punch All: PUNALL

This control statement causes HAP to punch a SYN card for every symbol used in the
program.

30

Punch ID (PUNID) Statement

In addition to the above statements that actually control card-image output, one
other punching statement exists, which is the punch ID statement, with the following
format:

PUNID, XXXXXXXX

PUNID fulfills the same basic function as PRNID (see the Section entitled
"Print ID (PRNID) Statement!) except that the identifying information is punched or
written on tape on the binary output: produced by HAP. The assembly program takes the
first eight characters following the comma that terminates the operation field, and
inserts them in columns 73-80 of every binary card-image produced as output of that
assembly. The following statement

PUNID, IBMSINE1

causes the characters IBMSINEL1 to be inserted in the last eight columns of each binary
card-image produced in that assembly.

The identifying characters represented by X's above may be any legal card
code characters (except ? and '). Every assembly must contain a PUNID statement or
the binary cards will contain no identification other than the time clock setting as de-
scribed in the Section entitled "Origin Card").

31

ARITHMETIC MODE INSTRUCTIONS

The arithmetic mode instructions employ a total of 14 symbolic instruction formats,
each being a slight variation or expansion of the basic HAP instruction format, which

1S:
OP, A
where OP stands for operation code, and A stands for storage location address.

The inclusion of index modification of the principal address expands this basic
pattern to the arithmetic mode format

OP, A (1)

used in unconditional branches, indicator branches, and miscellaneous instructions.
Through the addition of the data description field

OP (dds), A (1)

the format for floating point instructions is obtained. Adding to this format the offset
specification and its index modifier

OP (dds), A(1), OF (1')
the variable field length format is developed.

Other changes in the basic format yield the other HAP formats. For example, the
insertion of the J field to specify the index register being operated on.

OoP, J, A (1)
becomes the basis for the index arithmetic and count and branch formats.

STATEMENT FIELD LAYOUT

The major fields in any HAP format are separated by commas. All possible fields in a
certain format need not necessarily be used. For example, an offset need not always

be specified for every variable field length (VFL) statement. Therefore, a right-to-left
dropout order for major fields has been established; thus, missing fields are compiled
by HAP as if they contained zeros and were added at the end of the statement, A missing
field always compiled in some standard fashion (in this case zero) is referred to as a
null field.

32

The following example shows the complete right-to-left dropout of fields in a VFL
statement and illustrates how the expression of an arithmetic mode statement can vary
within the framework of the format for that class of instructions.,

OP (dds), A (1), OF (I')
OP (dds), A (1), OF

OP (dds), A (1)

OP (dds), A

Note that even when a statement as complex as the VFL is written including only the
essential information, the result is a statement that differs very little from the basic
HAP instruction format previously illustrated. As shown later, even the (dds) field can
almost always be eliminated in the instruction proper.

NULL FIELDS

A major field may be null even if other non-null fields follow. Such is the case if nothing
but the comma denoting the field termination is written, Thus, a VFL instruction written
with its address and index modifier null but with an offset specification following would
appear as:

OP (dds), , OF (I')

Note that it is only the presence of the comma that indicates the missing address field.
If the comma were omitted, HAP would assume that the offset field were null and would
actually compile the offset specification as the address expression,

Some of the components of a major field can be made null simply by omission. For
example, the offset specification in a VFL statement need not be indexed and can be
written

OP (dds), A (I), OF
Similarly, the address expression need not be indexed, and can be written
OP (dds), A, OF

Obviously, if all the components of a major field are omitted (both offset expression and
its index modifier, for example), the field is made null. Normally this is exactly what
the programmer desires, but care must be taken. if the null field occurs in the middle of
the statement. As explained, if the comma denoting the termination of the null field is
also missing, the null field is assumed to be missing from the right-hand end of the
statement.

33

MAJOR FIELDS

Three major fields in the HAP arithmetic mode instructions are the operation field, the
address field, and the offset field. They are common to most instructions and they
illustrate important programming features and facilities of HAP. The operation field,
for example, is common to all instructions and the data description, when used, appears
as a subfield of the operation field. The address field is also common to all instructions,
although it varies considerably in length. The offset field is found only in variable field
length instructions, but it is interpreted as an address field of unusual length. It also
illustrates some unique methods of index modification.

All arithmetic mode instruction fields are unsigned. Any numeric entries that are
negative are converted by HAP and expressed as the two's complement of the entry.
All numeric entries in the illustrations are assumed to be written in the decimal radix.
Entries in other radices are permitted in HAP if the radix is specified in a standard
fashion. See Section entitled "Entry Mode'".

OPERATION FIELD

All 7950 instructions may be expressed by the use of mnemonics in the operation field.
For programming, mnemonics are desirable because they make instructions brief, easy
to remember, and easy to recognize.

A complete list of HAP III mnemonics is given in Appendix A. Note the following
rules for choice of mnemonics. First, the mnemonic should be as brief as possible and
still unambiguously identify the instruction. Second, standard symbols are used for
arithmetic operations: + for add, - for subtract, * for multiply and / for divide. Third,
the receiving register (the register that receives the result of the operation) in arithmetic
operations is indicated by the letter to the left of the arithmetic symbol. In cases where
the result is in the accumulator, the accumulator is assumed but not mentioned in the
mnemonic. For example, + is the mnemonic for straight add where the result is left in
the accumulator, M+ is the mnemonic for add to memory and V+ means add to value.
Fourth, certain basic operations may be altered to invoke immediate addressing by
adding the suffix I as in V+1, add immediate to value.

Null Operation Code Field
A null operation code field occurs if the first character in a statement is a comma, as:

, EXIT (1)

34

HAP treats a null operation field as a special case; it compiles the statement as a half
word with a 24-bit address field, the 25th bit set to 1 and all the rest of the bits set to
0, thus:

24-bit address 1| 000 I

0 232425 27 31

When compiled, this half word appears to be the first half of a full word instruction
because of the one-bit in bit 24 and the zeros following. This can be helpful to the pro-
grammer if, for example, it is desired to load the compiled address field into the value
field of an index register; then load value effective (LVE), which is indexable, can be
used. This instruction examines the half word to determine the class of instructions to
which it belongs and since the half word resembles the first half of a full word instruction,
LVE loads all 24 bits of the address field. If load value (LV) is used, 25 bits will be
loaded (24 bits plus sign) and a one in the 25th bit position makes the value appear nega-
tive. Therefore, use caution when creating value fields in storage by means of state-
ments with null operation fields.

Operation Subfields

At least two types of subfields may be attached to an operation field: a secondary
operation subfield and a data description subfield.

A secondary operation is enclosed in parentheses and follows the primary operation
mnemonic. It is commonly used as a subfield of the operation field in progressive
indexing with VFL instructions.

The data description subfield appearing in the operation field of certain instruction
formats is symbolized by the letter dds enclosed in parentheses.

Data Description (dds)

The data description subfield is required only by the floating point and VFL formats.

It appears within parentheses immediately following the operation mnemonic except in
progressive indexing, where it may precede or follow the secondary operation. The dds
describes three operation code specifications: use mode (M), field length (FL), and

byte size (BS), appearing in the dds parentheses in the same order, separated by commas,
thus:

(M, FL, BS)

In floating point instructions, the data description tells whether the instruction calls
for normalized or unnormalized operations. Only the use mode specification is requested,
field length and byte size are not required. In VFL statements, the data description
specifies signed or unsigned binary or decimal operations. It also describes the field
length and byte size of the data to be used. One additional mode, the properties mode,
may appear in either type instruction (as explained later). Field length and byte size
are not appropriate with the P mode.

35

HAP provides seven mnemonics to designate a use mode:

Normalized Floating Point
Unnormalized Floating Point
Binary (Signed)

U Binary Unsigned
Decimal (Signed)

U Decimal Unsigned
Properties Mode

o oWwaZ

The field length and byte size specifications are normally numeric entries, but they
may be symbolized by the programmer, provided that the symbols are correctly defined
elsewhere in the program.

A typical floating point instruction with data description is:
L (N), SINEX

The data description (N) indicates that a normalized floating point data word located at
SINEX is to be operated upon. In the following VFL instruction

L (BU, 30, 6), ADJUST

the data description describes the data at symbolic location ADJUST as binary unsigned,
30 bits in length, cemposed of six-bit bytes. Note that in cases where the operation

mnemonic is the same for VFL and floating point instructions, it is the data description
that tells HAP to which class the operation belongs and, hence, which operation code to

compile.
Data Entry or Data Reservation Statements

A data description given with any of the four data entry or data reservation
statements (Data Definition (DD), Data Definition Immediate (DDI), Data Reservation (DR),
and Synonym (SYN)) is attached to the symbol in the name field of that statement, and is
automatically invoked whenever that symbol appears in the principal address field of an
arithmetic mode instruction (see Section entitled "Data Definition'). Thus, it is
normally unnecessary to write a data description in arithmetic mode instructions. When
several symbols are joined arithmetically in an address field, the data properties of the
last one written down are invoked for the statement.

When the data description is written as a subfield in the operation field of a
machine instruction, it overrules any other data description derived from a symbol in
the address field for only that statement.

36

P Use Mode
A dds containing the properties mode (P) symbol is written:
(P, DATA)

which specifies that the data description associated with the symbol DATA is to be

invoked as if it had been written out explicitly in this instruction. Thus, in an instruction,
the properties mode invokes a data description that overrules any data description implied
by a symbol in the principal address field,

Null dds Fields

Within a data description field, the usual right-to-left dropout order holds
except that the mode field can never be null, so that.,a data description may appear in
any of the following four forms:

(M, FL, BS)

(M, FL) Byte size is null

(M, , BS) Field length is null

(M) Field length and byte size are null

If the field length is null, a field length of zero (see 7030 Reference Manual;
effectively 64 except in the case of VFL immediate where it is 24) is compiled. How-
ever, if the byte size is null, the byte size compiled by HAP is a function of the mode
specified.

Mode Standard Byte Size
e ——————
D or DU 4
B 1
BU 8
NorU Fixed format of 64 bits; field length and byte size

not appropriate,

Error Conditions

Four error conditions arising from discrepancies between operation and data
description are possible. If HAP encounters any of these, the indicated action is taken
and an error message is printed on the output listing,

1. A programmer error can cause a data description and an operation to be
inconsistent; for example, the operation mnemonic specifies a floating point operation
and the use mode in the data description is binary unsigned. In this case, the operation
overrules.

37

2. No data description is available, either from the symbolic address or an
explicit data description field. If the operation symbol can stand for either VFL or
floating point operations (+, -, * /), the operation is compiled as a VFL operation with
the data description (BU, 64, 8).

3. No data description is available and the operation mnemonic can stand for
a VFL operation only (M + 1, for example). The statement is then assigned a data
description (BU, 64, 8). If the operation is clearly VFL immediate, then (BU, 24, 8)
is assigned.

4. No data description is available and the operation mnemonic can be only a
floating point operation (-A, or *NA). The operation is assembled as normalized floating
point, except for the case of E + I (Add Immediate to Exponent) and its modified forms,
where unnormalized is assumed.

ADDRESS FIELD

The maximum core storage capacity of the 7950 computer is 262,144 words (each word
64 bits in length) or 218 distinct locations. Hence, 18 binary bits can unambiguously
specify any word in 7950 memory.

Any single bit in core storage can occupy one of 64 positions within a word. Con-
ventionally, bit positions in a word are numbered from 0 (the leftmost bit position) to
63 (the rightmost bit position); therefore, six bits are sufficient to specify any bit
position within a 7950 word.

Then, 18 + 6 = 24 binary bits are adequate to address a single bit anywhere in 7950
core storage; the first 18 bits specify a full word and the last six bits specify a bit
position within that word. Such a 24-bit binary address, when appearing in the address
field of a statement, is known as a standard binary bit address, commonly abbreviated
to '"bit address."

General Addressing Rules

In 7950 programming, the address of an instruction need specify only the leading bit of
the operand since the field length of the operand is always known. If the operand is an
instruction, the operation code determines whether the field length is one-half or full
word. If the operand is data, the data description gives the field length; for example,
floating point data always occupy a full word, while the field length of VFL information
is specified explicitly in the dds. '

Instruction or Data Operand Addressing

Certain rules for the location of data or instructions further simplify the
addressing of operands. To address an index word, which always begins at a full word,
only 18 bits are required. A 19-bit standard binary bit address is adequate to address
any instruction, since instructions can only be located to begin at half or full words.
Other examples are:

1. A VFL operand may begin anywhere in core storage; therefore, a 24-hit
standard binary bit address is required.

2. A floating point operand must begin at a full word; therefore, this location
can be specified in 18 bits.

3. I-O control words must begin at a full word, which again can be specified
by 18 bits.

4. Index arithmetic operands can begin at either half or full word locations
and 19 bits are sufficient to address either of these locations.

Instruction Address Fields

A floating point instruction needs only to address floating point data; hence the
size of the address field of a floating point instruction is limited to 18 bits. A VFL
instruction must be capable of addressing any field, or any bit, in storage. Its format,
therefore, provides for a 24-bit address field. In general, HAP instruction formats are
designed to provide the largest address field demanded by the operations of a particular
class. When an instruction does not require a 24-bit address field, a smaller one is
provided, allowing the bits not used as part of the address field to be efficiently used in
other fields of that instruction. This leads to the variations in format already shown.,

Address Field Entries

It is difficult for the programmer to write 24-bit, or even 19 or 18-bit binary addresses
in his program. Instead of a binary address, HAP permits the programmer a choice of
entries in address fields such as:

HAP bit address
Integer
Programmer symbol
System symbol

He o Do =

Address fields are unsigned fields. When a negative quantity is expressed in an
unsigned field, the two's complement of the quantity is computed and compiled by HAP.

HAP Bit Address

A HAP bit address provides a simple means of writing a standard binary bit
address. Thus, the programmer writes two integers separated by a period, such as:

124. 32

The integer to the left of the period specifies the word address portion, while the integer
to the right of the period specifies the bit position within that word. If the example
appeared in the address field of a VFL instruction, HAP would interpret it as "location
124, bit position 32 - the first bit of the second half word.'" Note that the period is
definitely not a decimal point. This can be proven by the following illustration, true
only for bit address notation.

777.1="1777.01

A HAP bit address is translated by HAP and compiled as a 24-bit binary integer.
The period that separates the two integers always lines up between bit positions 17 and
18. If the address field of the instruction is 24 bits long, the binary integer is placed
in that field. If the address field is smaller than 24 bits, the 24-bit standard binary
address must be truncated before it is inserted. For a 19-bit address field, the right-
most five bits are dropped; for an 18-bit address field, the rightmost six bits are dropped.
The sample HAP bit address, 124.32, would yield the proper meaning when inserted in
a 19 or a 24-bit address field, but would be truncated to 124.0 for an 18-bit field.

The only restriction on the size of a HAP bit address is that it must be able to be
expressed in 24 binary bits. If a HAP bit address is symbolized by A.B, then

64A + B < 224

The following three examples are all acceptable HAP bit address representations of the
same address.

505, 17 = 500.337 = 0.32337

Integer Addresses

An integer, written without a period, may also be used to specify an address.
HAP translates an integer into a standard binary bit address, which depends on the
environment in which the integer is found. The operation determines the environment
by the length of the address field. The integer specified is converted to binary and
inserted in the address field with the unit bar placed in the rightmost bit position of the
field.

An integer can be interpreted by the programmer to count in the units that are
specified by the length of the address field. A 24-bit address field specifies bits; an
integer in this field counts bits. A 19-bit field specifies half words; an integer here
counts half words. An 18-bit field specifies full words; an integer here counts full words.

40

Consider the following instruction.
C+ 1, #3, 13

The environment is determined by the operation C + I (Add Immediate to Count). This
instruction has an 18-bit address field, so an integer is inserted with its unit in bit 17.
This is equivalent to

C+ 1, #3, 13.0

and the integer can be considered to count full words. However, the same integer in the
following instruction

V+ I, #3, 13

has a different meaning. Here the V + I instruction has a 19-bit address, and the integer
inserted in this field is equivalent to 13 half words or location 6, bit position 32. This
is the same as writing

V+ 1, #3, 6.32
Advantages of the Use of Integer Addresses

The use of an integer to express an address requires special care on the part
of the programmer since the size of the address field determines the interpretation of
the integer. However, the integer is often the most desirable form of address specifi-
cation, and simpler to use than a HAP bit address. One such case is immediate
addressing.

LI (BU, 12, 8), 1

The load immediate instruction specifies, through its data description, a 12-bit address
field. The integer address, in this case 1, is inserted as an integer in this 12-bit field.
Thus, the instruction is compiled:

«——————— 24-bit address field

000000000001
12-bit subfield

The same load immediate instruction could be written with a HAP bit address specifi-
cation as follows:

LI (BU, 12, 8), 64.0
The two statements are equivalent, but the one written with the integer address is more

desirable because it is simpler to code and, when the statement is reviewed at a later
date, its original meaning is easier to recognize,

41

Programmer Symbols

A programmer symbol can be any sequence of 128 or fewer alphabetic and
numeric characters that conform to the following conditions:

1. It contains only alphameric characters. This example
THISISALONGNAMEZSHOWTHATHAPNAMESCANBESENTENCES
is a proper programmer symbol. This example
A *B
is not a proper symbol.
2. The first character is specifically alphabetic; that is,
A123456
is acceptable, but
6ALPHABET
is not correct.

3. The programmer symbol appears in the name field of a HAP statement at
some point in the program, at which time it is defined and assigned a value that is either
a standard binary bit address or an integer.

BEGIN L (BU, 8, 8), Al23456
The symbol BEGIN is assigned a standard binary bit address equal to the value of the
location counter within HAP at the time this load instruction is encountered in the code.
The HAP location counter always contains a 24-bit standard binary bit address.
In the following case

EIGHT SYN, 8

the symbol EIGHT is assigned the value of the integer 8 through use of the synonym
control statement.

42

Symbols that name instructions are automatically assigned data descriptions by
HAP and are given a field length equal to the length of the particular instruction named
(that is, either 32 or 64 bits), a byte size of 8, and a use mode of binary unsigned (BU).

A programmer symbolized field may contain programmer symbols or system
symbols. Of the fields shown in the instruction formats previously illustrated, all may
contain programmer symbols except the operation field and the mode field of a data
description.

An integer in a programmer symbolized field is always converted to binary,
and is limited in length to the length of the field in which it is to be inserted. An integer
that cannot be expressed in 24 binary bits cannot be symbolized.

System Symbols

System symbols have values that are fixed in the compiler. They are identified
in programmer symbolized fields by the appearance of the special prefix character #,
(which, as one of the nonalphameric characters, can never appear in a programmer
symbol), followed by seven or fewer alphabetic or numeric characters. System symbols
may appear in arithmetic expressions in programmer symbolized fields where, in cases
where restrictions apply, they can be considered the same as numeric entries because
their values are immediately available to the compiler.

All system symbols that represent the addresses of special registers in storage,
such as #AOC (the all ones counter) or special bits in storage, such as #LC (the lost
carry indicator) are bit addresses. All others are real numbers.

The # character alone acts as a special system symbol that provides a stand-
ardized substitute for a name for the current statement. Effectively, the character #
is a bit address which, when it appears in a statement, functions as if it had been defined
by being written in the name field of that statement. If the instruction actually compiles
space in the program, the # symbol represents the value of the location counter at the
time the instruction is encountered by the compiler. The appearance of the # in the
following example:

B, #-2.

means "Branch to the instruction which begins two full words before this branch
instruction" or:

B, #+.32
in which the meaning is "Branch to the next instruction, "' effectively, a 'mo operation.
Another special use of the # character is to prefix any operation code in this

manner: #OP. This directs the compiler to suppress any error indications that arise
in connection with the compilation of this statement.

43

System Symbol Groups

HAP assigns a dds to every system symbol. The system symbols used for
arithmetic mode instructions can be classified in the following groups:

1. Index Register Symbols: The system symbols #0 through #15 or #X0
through #X15 represent index registers 0 through 15, addresses 16.0 through 31.0 in
7950 storage. The advantage.of using a system symbol is that HAP always compiles the
correct value, regardless of the size of the field in which the symbol is written. There-
fore, in the instruction

*+ (N), ARLE(#5)
the index specification involving the system symbol #5 directs HAP to compile correctly
the binary integer 5 in the 4-bit index subfield. Ina similar fashion, HAP correctly
interprets the system symbol when used as an address as in

ST (BU), #X5
and compiles the standard binary bit address 21.0 in the address field of the store
instruction.

2. Special Register Symbols: The names of all the special registers used in
the arithmetic mode portion of the 7950 computer are listed below, along with the system
symbol for addressing each register and the bit address assigned to each system symbol.
HAP also assigns a data description to each symbol with a use mode of binary unsigned
(BU), a byte size of 8, and a field length equal to the length of the register. When a
system symbol for a special register appears in the principal address field of a VFL
instruction, no data description need be written out explicitly in that instruction.

Name Mnemonic Bit Address Length
Word number zero #Z 0.0 64
Interval timer #IT 1.0 19
Time clock #TC 1.28 36
Interruption address #IA 2.0 18
Upper boundary #UB 3.0 18
Lower boundary #1LB 3.32 18
Boundary control #BC 3.57 1
Maintenance bits #MB 4,32 64
Channel address #CA 5,12 7
Other CPU #CPU 6.0 19
Left zeros count #LZC 7.17 7
All ones count #A0C 7.44 7
Left half of accumulator #L 8.0 64
Right half of accumulator #R 9.0 64
Sign byte #SB 10.0 8
Indicator register #IND 11.0 64
Mask #MASK 12.20 64
Remainder register #RM 13.0 64
Factor register #FT 14.0 64
Transit register #TR 15.0 64

44

The use of the system symbol for the indicator register is illustrated as:
L, #IND

No data description need be written explicitly in the load instruction because the dds
(BU, 64, 8) has been attached to the system symbol. This instruction is thus compiled
by HAP to mean, '"Load the contents of the entire 64-bit indicator register into the right
half of the accumulator at zero offset. "

3. Indicator Bit Symbols: The complete list of the system symbols for the
indicator bits are listed in Appendix B. Each system symbol, when prefaced with # and
placed in a programmer symbolized field, represents the correct bit position in word 11
of the indicator named.

The system symbols for the indicator bits are also used as part of the mnemonic
for the branch on indicator instruction. In this usage, however, the # is not required.
The mnemonic for this instruction is composed of the B (representing branch) follewed
by the system symbol for the indicator being interrogated without the # sign. Thus,

BXH is the operation mnemonic for branch on index high, and BXVGZ is the operation
mnemonic for branch on index value greater than zero.

All system symbols in classes 1, 2, and 3 are bit addresses and are assigned
standard data descriptions with mode BU, byte size 8, and a field length equal to the
length of the particular register or bit.

4. _Symbols for Mathematical Constants: Five mathematical constants, useful
in many scientific and engineering problems, can be represented by system symbols.
These system symbols and their values are:

Symbol Mathematical Constant
#E e
#M log1 0®
#N log,,2
#PI m
#INF ©< (infinity)

These five symbols may only be used in a data field of a data definition (DD) statement
where normalized floating point (N) has been specified in the use mode field of the dds.
The following data definition

CONSTANT DD(N), #PI

assigned the floating point equivalent of the quantity # to the symbol CONSTANT.
When CONSTANT is used in the address of a 7950 instruction such as

+, CONSTANT

the normalized floating point data description is invoked and the full word floating point
equivalent of 7 1is added into the accumulator.

45

Index Modification of Address Fields

Index modification of an address field is performed in standard fashion. The index
register to be used is specified as a subfield of the address field. The index subfield is
a four-bit field, enclosed in parentheses, immediately following the address expression.
HAP bit addresses, system symbols, and programmer symbols that are defined as bit
addresses are all proper entries in an index field.

In the case of a bit address entry, the period is assumed to occur at the right end of
the field. Thus, when converted to binary, the rightmost six bits of the entry are trun-
cated, as are the leftmost 14 bits.

System symbols are the simplest to use, acting as if a bit address had been entered.
All of the following entries in the index subfield of an address mean the same:

4,32=4,0=%#4 =20.0=052.0
and all are translated by HAP to mean index register 4.

If an integer is written in the index field, the meaning is entirely different. The
integer tells HAP that the symbol in the address field proper had been defined as an array
and the integer is addressing an element in that array (see data reservation statement
description).

In the case of progressive indexing in a VFL instruction, it is the index register
specified within the address field that is stepped by the immediate address.

OFFSET FIELD

Offset fields are similar in content to address fields; HAP bit addresses, integers,
system symbols, and programmer symbols are all acceptable entries in an offset field.

Integers with Offset Field

The most common entry for an offset specification is an integer. An integer specifies
a count of the number of bits to offset a field from the right end of the accumulator. An
offset field has a fixed length of seven bits. An integer entry is converted to a 24-bit
binary integer by HAP and the rightmost seven bits are placed in the offset field. If a
programmer writes the statement

L (BU, 64), PAYROLLDEDUCTION, 5

HAP assembles the instruction to mean load the 64-bit quantity found at symbolic location
PAYROLLDEDUCTION into the accumulator offset five bits from the right end. Since

the offset field can contain a maximum of seven binary bits, the programmer can specify
any offset from 0 to 127. When specifying offsets of greater than 64 bits or one full word,

46

it may be more convenient to begin counting bits from the left end of the double length
accumulator. This can be done easily by using negative offsets. The offset field is
unsigned, hence HAP translates any negative entry to the two's complement. The 128
bits of the accumulator, proceeding from left to right, are referred to by the offsets
127, 126, ... 0 or, alternatively, -1, -2, -3,... -128,

Programmer Symbols in the Offset Field

If an offset specification is a parameter in a program that may vary from time to time,
it is helpful to use a programmer symbol in place of an integer.

INDENT SYN, 4
(intervening instructions)
ST (BU, 24), WORD1, INDENT
+ (BU, 24), WORD2, INDENT
L (BU, 24), WORDSUM, INDENT

The programmer symbol INDENT in the example above, can be defined as an integer
early in the program (in this case by the synonym statement). If the programmer changes
the SYN card that defines INDENT to

INDENT SYN, 5

and reassembles, all offsets specified by this particular symbol are changed in value to
5 as well,

HAP Bit Addresses in the Offset Field

Exercise care when using HAP bit addresses instead of integers in offset fields because
the length of the offset field is fixed, so an integer always has the same meaning, but

the meaning of a bit address is not immediately clear from its appearance in the instruc-
tion. Also, a bit address is not the natural means of expressing an offset, and it com-
plicates the specification unnecessarily. A HAP bit address here is converted to a 24 -
bit binary integer and the rightmost seven bits are inserted in the offset field while the
leftmost 17 bits are truncated. Any HAP bit address expression that specifies an address
above 1. 63 will overflow the offset field when converted to binary and only the rightmost
seven bits will participate.

System Symbols in the Offset Field

The use of a system symbol to specify an offset is unlikely, but permissible. As pre-
viously stated, a system symbol is equivalent to a numeric entry; therefore, specifying
an offset by means of a system symbol defined as a bit address, such as #IT in this
example:

+ (BU, 32), THISIS, #IT

is the same as writing 1.0 or specifying an offset of 64 bits.

47

Index Modification of Offset Fields

Index register specification is treated in the same way as an index modifier in an address
field, except that the modification can affect the field length and byte size as well as the
offset. The HAP instruction format for VF L statements including the following data
description

OP (M, FL, BS), A,,(I), OF, (I

does not indicate the relationship between field length, byte size, and offset. The internal
VFL instruction format

I X
Address 1000 I P |Length | BS | Offset S | p OPI 1 I’
|

0 17 24 28 32 35 41 44 51 60 63

into which a HAP VFL instruction is translated, does show that the offset field is adjacent
to the field length and byte size fields. The index modifier in the second half word treats
all three fields together as one 16-bit field. For the modification process, the two fields
are aligned as follows:

FL | BS | OFFSET | Instruction

!
|
|

18 bits |6 bits] Index Value Field

If the magnitude of the contents of the value field of the index register does not exceed
26, only the offset field can be modified. If the value field does exceed 26, the byte size
may be affected (by a carry, for example). The diagram above shows how larger value
fields modify byte size and field length. This 7950 feature provides very flexible and
elaborate indexing of certain VFL instruction fields.

ARITHMETIC MODE INSTRUCTION FORMATS

The format of the symbolic instruction varies with the class of arithmetic mode instruc-
tion to which it belongs. Thirteen symbolic instruction formats are given below. Note
that certain of the instructions use numeric subscripts on the A, B, or OF fields. These
subscripts refer to the number of bits needed to correctly address the instruction. The
field Ayg, for example, means that the instruction addressed is a full-word instruction.
Similarly, Ajg or Bjg stands for a half-word instruction, while Agy Or By, means that
any bit in the 64-bit word may be addressed. An offset field, such as OF;, must be
addressed by a seven-bit field.

48

1. Floating Point
OP (dds), Ajgd(I)
Example: ST (U), BUCKET((#2)
This instruction says "Store the contents of the accumulator as an unnormalized floating
point number in the storage location symbolized by BUCKET modified by index register
2."
2. Miscellaneous, Unconditional Branch, SIC
OP, Ajq (1)

Example: B, START(#X12)

This instruction means, "Branch to, or transfer control to, the instruction whose loca-
tion is symbolized by START modified by index register 12."

3. Direct Index Arithmetic
oP, J, A1g9 (1) or OP, J, A19 (I)
Example: LX, #3, XWORD(#6)
This instruction, when executed, tells the computer, '"Load index register 3 with the
contents of the word found at the location symbolized by XWORD modified by index
register 6, "
4. Immediate Index Arithmetic
OoP, J, A19 or OP, J, A18
Example: V + I, #10, 1024

The meaning of this instruction is "Add the address of this instruction to the value field
of index register 10, "

5. Count and Branch
oP, J, Big (K)
Example: CB, #8, BEGIN(#1)
This instruction directs the computer to ""Subtract one from the count field of index
register 8, then test the count field. If it is not zero, branch to the location specified

by the symbolic location BEGIN modified by index register 1. If the count field is zero,
do not branch but proceed to the next instruction in sequence. "

49

6. Indicator Branch
Example: BZM, ERROR(#7)

This instruction, whose operation code mnemonic is partially constructed from the name
of the indicator says ""Branch to the instruction located at the location symbolized by
ERROR modified by index register 7 if the zero multiply indicator is on. If it is not on,
proceed to the next instruction in sequence. "

7. VFL Arithmetic, Connect, Convert
OP (dds), Agy (1), OF, (1')
Example: M + (BU, 24, 8), DUMMY(#9), 6 (#4)
This variable field length operation says "A 24-bit unsigned field composed of eight-bit
bytes is found offset from the right end of the accumulator by an amount equal to six
bits modified by index register 4. Take this field and add it to the field of the same
length that is found beginning at location DUMMY modified by index register 9 in storage.”
8. Progressive Indexing
OP, (OPy) (dds), Agy (1), OF, (1)
Example: ST (V + I) (BU, 24, 8), 30 (#8), 2 (#14)
This VFL instruction with progressive indexing reads "An unsigned 24-bit field composed
of eight-bit bytes is found offset from the right end of the accumulator by 2 modified
by index register 14. Store this field in the storage location specified by the value field
of index register 8. Then increment the value field of index register 8 by 30 bits and
proceed to the next instruction in sequence."
9. Swap, Transmit Full Words
OP, J, Aig (1), A'yg (1)
Example: T, #2, TABLEL(#3), TABLE2(#4)
This transmit instruction means "Transmit the number of full words specified by the
count field of index register 2 from the storage area beginning at location TABLE1 modi-

fied by index register 3 to the storage area beginning at TABLE2 modified by index
register 4."

50

10. Branch on Bit
OP, Agy (1), Byg (K)
Example: BB, ONEBIT(#5), FIXUP(#9)
This instruction is interpreted to mean, "If the bit in storage whose location is ONEBIT
modified by index register 5 is on, branch to the instruction at location FIXUP modified
by index register 9. If this bit is not on, proceed to the next instruction in sequence."
11. Load Value with Sum
LVS, J, X1, Xy, X3, ..
Example: LV5, #3, #5, #6, #7, #8

This instruction reads, '"Add together the value fields of index registers 5, 6, 7, and 8
and store the sum in the value field of index register 3."

12. Branch Enabled to Streaming
OP, Ajg (1)
Example: BES(1), BEGIN (#X12)

This instruction is used to initiate the streaming mode of operation. The meaning of the
example is: "Branch to or transfer control to the streaming instruction whose location
is symholized by BEGIN modified by index register 12."

13. Clear Memory Block
CLM (size), Ajg (1)
Example: CLM (S), JOHN

The instruction reads: "Clear small memory block starting at the address symbolized
by JOHN." The actual number of memory cells cleared and the location of the block
depends on the physical configuration of the memory boxes.

ADDRESS ARITHMETIC

It is often convenient for a programmer to write an address expression of two or more
symbols, integers, bit addresses, and so on. Relative addressing offers a good example
of the need for these expressions. For example, the appearance of a # in an address
field has been shown to have the meaning 'the location of this same instruction." To
refer to a location exactly two full words beyond the location of the instruction containing
the #, it is convenient to write the address expression

#+ 2.0

ol

rather than to assign a programming symbol to this location and address the location by
symbolic name. In another instance, assume a table is known to begin at symbolic
location DATA and to be 20 full words in length. Then, by the use of relative addressing,
the full word immediately following the last word in the table can be addressed by the
expression DATA + 20.0.

HAP offers provisions for the performance of address arithmetic. Virtually any
mixture of HAP bit addresses, integers, programmer symbols, and system symbols can
be combined by addition, subtraction, multiplication, and division to form a single 24-bit
standard binary bit address. Thereafter the truncation (if necessary) and insertion of the
bit address into the appropriate address field is completely standard.

Symbols for addition, subtraction, multiplication, and division are standard, (+, -,
* and /, respectively). Addition and subtraction are the most common arithmetic
operations and, when like quantities are involved, the procedure is completely straight-
forward.

Addition and Subtraction of Addresses
When two HAP bit addresses are to be added together, the points are lined up and the two
quantities are added. If two integers are to be added, the units positions are lined up

pefore the addition is performed. In either of these cases, subtraction is analogous to
addition.

Thus, the address expression in this instruction
L (BU), 8. + 64.0 + 12.3
is treated as
64.0

+ 12.3
84.3 = actual instruction address

In the case of integer expressions, such as
LI (BU, 18, 8), 8+ 2+ 13+ 1
addition takes place

8
2
13
+ _1
24 = actual instruction address

52

The sequence of steps HAP executes to perform addition and subtraction of like
quantities in an address field is:

Converts each quantity to a 24-bit binary integer.

Quantities are aligned with respect to each other.

Numbers are assumed to be signed. Addition is algebraic.

The result is complemented if necessary. (Address fields are unsigned.)
If the field is signed, such as an XW or VF, the sign bit is inserted in the.
correct bit and no complementation occurs.

5. The result is truncated, if necessary, to fit the particular address field.
6. The result is inserted into the correct position in the instruction.

B N e

When unlike quantities are added or subtracted, the sequence executed by HAP is
the same with the exception of a slight modification in step 2. If integers and bit
addresses are mixed, a certain amount of shifting, determined by the environment. must
be performed before addition takes place. For example, in the floating point instruction

+ (N), 64.0 + 20

the address field is 18 bits in length. The rule for positioning bit addresses is clear:

the point must always line up between the 18th and 19th bits in the address field. Earlier
it was explained that an integer is right justified in a field; here the units position falls

in the 18th bit. Thus, the two numbers are aligned as:

. . HAP Bit
18 bltS 6 bltS Address Term
24 bits Integer Term
: 6 bits 18 bits 6 bits I Result
P s e g l — e, oy sl
] |
h ing Point
Address Field [\} S| Operation |10 Tl Eggﬁgﬁonogonnat
0 17 18 28 31

Arithmetic in any Programmer Symbolized Field
Although discussion has been limited to address fields, actually, all previous statements

apply to any field where arithmetic is permitted, that is, any programmer symbolized
field. Three restrictions must be observed.

53

1. No arithmetic may appear in the operation code part of the operation field,
the mode subfield of the data description, or any entry mode. All of these fields are
reserved for designations whose meanings to HAP are absolute and may not be symbolized.

2. No arithmetic may appear in the name field, which is reserved entirely for
the definition of symbols. Only one symbol per statement is allowed.

3. The I or K fields must contain at least one HAP bit address term.

Address Arithmetic with Unlike Quantities

Addition and subtraction of unlike quantities require a complete set of rules for
shifting and truncation. The two basic concepts involved are:

1. Where a bit address has meaning, the point is positioned between the 18th
and 19th bits of the field. If a bit address has no meaning, the entire 24-bit quantity is
treated as an integer and right justified in the field. Index fields are an exception.

2. An integer is always treated as an integer in the environment that is the
size of the particular field. The integer is right justified so that its units position is
aligned with the units position of the field.

Although the following diagrams show the final sum truncated to the appropriate
length, the bits are not actually discarded unless they fall outside the address field of the
instruction. Some operations do not use all of the space available in their address fields
(transmit and input-output select, for example), and in these cases bits may be placed
in the unused portions.

An error indication is given if nonzero bits are discarded when truncation occurs,

except in the case of index fields where a 1 bit in the fifth position from the right (the 16
position) is discarded without error indication.

54

Truncation occurs for particular fields in the following manner:

1. A, Bit Address

Rule:
Note:

Rule:

3. A, Full-Word Address

Rule:

No truncation 24 bits
An integer in
a 24-bit field 24 bits
counts bits
24 bits
2. Ay Half-Word Address 19 bits 5 bits
Leftmost 5
bits and right- 24 bits
most 5 bits
?re truncated I 5 bits 19 bits 5 bits |
rom sum L 1
Note: An integer in a 19-bit field counts half-words
18 bits 6 bits
Leftmost 6 and
rightmost 6 bits 24 bits
are truncated
from the sum : 6 bits 18 bits 6 bits {

Note:

Bit Address Term
Integer Term

Result

Bit Address Term

Integer Term

Result

Bit Address Term
Integer Term

Result

An integer in an 18-bit field counts full words or unit address, control operation,
control word address, and so on, in right I-O address.

4. A,,. Signed 11-Bit Address

Rule:

Leftmost 13 bits
are truncated from
the sum. Rightmost
11 bits plus sign are
placed in leftmost 12
bits of address field

24 bits

24 bits

11 bits

1 bit

of shift and Add Immediate

to Exponent instructions

Bit Address Term
Integer Term

Result

Bit Address Term

Integer Term

Note: Integer counts number of bits in shift or number of bits to be added to ex-
ponent of floating point word.
5. OF, Offset 24 bits
Rule: Leftmost 17 bits of :
sum are truncated 24 bits
Note: Integers count number —P—————— T
of bits of offset 17 bits 7 bits

Bit address 1.32 = .96 = integer 96

55

Result

6. FL, Field Length 24 bits Bit Address Term
Rule: Leftmost 18 bits
of sum are truncated 24 bits Integer Term
Note: Integers count length W ==~ ————___
of field in bits : 18 bits 6 bits Result
Bit address 1.0 = .64 = 0 not error marked
7. BS, Byte Size 24 bits Bit Address Term
Rule: Leftmost 21 bits
of sum are truncated 94 bits Integer Term
Note: Integers count byte
size in bits I——___‘)Ig'-t-___ 3 bit Resul
.8 = 8 = 0 not error marked 'l____:__li___ 1 esult
8. 1, J 4-Bit Index Fields 18 bits 6 bits Bit Address Term
Rule: Leftmost 20 bits 24 bits Integer Term
and rightmost 6 .
bits of sum are r 20 bits | 4 bits | 6 bits Result
truncated o o

Note:

Integers represent index register number. A “1” in the bit position immediately

to the left of the final sum field is discarded with no error indication.

9. K Single Bit Index Field

Rule: Leftmost 23 bits
and rightmost 6

bits of sum are

18 bits 6 bits Bit Address Term
94 bits Integer Term
m——— ————— —] —
|l 23 bits |1 bit | 6 bitsl Result

truncated

Note: Integers specify either index register 0 or index register 1. A “1” in the bit
position that corresponds to “16” in the sum is discarded with no error indica-

tion.

10. A, I-O Left Effective Address

19 bits

5 bits

Rule: Leftmost 17 and
rightmost 5 bits

24 bits

are truncated from |'
sum

7 bits |5

Note: Integers specify channel address

56

———

bits :

Immediate Operation Address Arithmetic

One special condition exists with immediate operation address fields. In this
case, the treatment of a mixed expression consisting of both integers and bit addresses
differs from the general rules stated previously. The treatment of integers is straight-
forward and the result justified on the left before insertion in the field (see DDI). If two
or more bit address terms are being combined, the arithmetic is performed as usual but
no left justification is done. The field length in the dds is ignored and the point is lined
up between the 18th and 19th bits as in any other field. However, when integer and bit
address terms are to be combined, all terms are considered to be bit addresses; they
are aligned accordingly and the result is inserted as a bit address. The following
immediate operation

LI (BU, 24, 8), 2+ 2.2+ 6
is treated by HAP as if it had been written
LI (BU, 24, 8), .2+ 2.2+ .6
Programmer and System Symbols
Programmer symbols, defined elsewhere in the code as integers or HAP bit
addresses, may participate in the address arithmetic and no restrictions other than
those already outlined need be observed. System symbols defined as bit addresses may
also be used. Therefore,
ANKLEBONE SYN, 20.2
FOOTBONE SYN, 1
L (BU), FOOTBONE + ANKLEBONE - 2 + 888,08
is permissible, while
CIRCLE ST (BU), CIRCLE - #PI
is not allowed, because #PI must be normalized floating point, not binary unsigned.
Number of Terms
There is no limitation on the number of terms that may appear in an arithmetic

expression. Continuation cards must be used if the expression exceeds the space avail-
able on the symbolic card.

57

Multiplication and Division of Addresses

Arithmetic expressions involving multiplication and division are handled differently by

HAP. Here the assembly program recognizes that certain combinations such as two or
more integers, or integers and bit addresses can have meaningful results; while multi-
plying or dividing two or more bit addresses has little meaning, so that, although such
operations are not prohibited, arbitrary rules are imposed on the arithmetic.

In multiplication and division, the basic precept is that both bit address terms and
integer terms are treated as 24-bit integers and the bit address point is forgotten once
the conversion to binary is accomplished. This means that the address expression

2.0 *2
is the same as writing
128 * 2
and no shifting is done.
The two numbers are simply assumed to be integers, are aligned with respect to
each other, and are multiplied or divided on this basis. The result is also treated as
an integer, that is, it is right justified in the field in which it is being inserted. If the

field is smaller than 24 bits in length, all truncation occurs on the left.

The sequence that HAP follows to multiply or divide an address expression which is
a mixture of bit addresses and integers is

1. Converts all terms to 24-bit binary integers.
2. Assumes all terms are signed integers and multiplies or divides as requested.
3. Complements the result if necessary.
4. Truncates the result on the left, if necessary, to fit the particular field.
5. Inserts the result in the field as an integer, that is, right justifies it in the
field.
Illustrations

An illustration of multiplication in an address field shows how three different
expressions using the same numbers will produce three different results. In the first
case

CM1010 (BU), 2 * 2 (#X7)

multiplication of two integers proceeds as would be expected and the arithmetic is:

NI

58

If, however, in the second case the instruction had been written
CM1010 (BU), 2.0 * 2

the multiplication would now be

In a third case, this address expression
CM1010 (CU), 2.0 * 2,0
is multiplied by HAP as

128
X 128
16384

The HAP bit address, when converted to 24-bit binary integer form, specifies an integral
number of bits. The 24-bit representation of any integer is also an integral number of
bits. The arithmetic results, therefore, are also treated as an integral number of bits.
In case one, the answer is four bits as one would expect when multiplying two bits by

two bits. In case two, the answer is 256 bits or four words, from multiplying two words
by two. However, case three presents a multiplication of two-bit addresses wherein

the results can only be arbitrarily defined; in this example, 16384 bits or 256 full words.

Interpretation of Results
The result of multiplication or division can be interpreted by HAP as a bit
address. If the expression is enclosed in parentheses and followed by a period, the
result is treated as a standard binary bit address, that is, it is appended by six zeros
and inserted in the address field with the period lined up between the 18th and 19th bits.
Truncation, if required, will be performed in the manner specified for bit addresses.
To illustrate, the address expression in this instruction -

M + (BU), 200 * 50

yi€lds a result of 10000 which, when inserted in this address field as an integer, would
count bits. If the expression had been written

M + (BU), (200 * 50).

the result 10000 would now be treated as a bit address, or 10000.0, which would count
full words.

59

Two other alternatives are possible. The instruction could be written
M + (BU), 200.0 * 50

where the result is 640,000 which is treated as an integer and inserted in the field when
compiled to yield an integral bit count. Again, by use of the special notation

M + (BU), (200.0 * 50.0).

bit address characteristics are attached to the integer result, yielding an address of
640,000.0.

An expression composed of all four types of arithmetic operations is permissi-
ble, such as

SRD (BU), 200 + 70.0 - 600 * 2 / 4

In this expression, HAP performs the arithmetic operations in the following order:
multiplication, division, addition, and subtraction. The treatment of each term is in
accordance with the rules described previously.

ARITHMETIC DATA OR CONTROL STATEMENTS

Data or control statements are operations created by HAP to provide a simplified means
of performing some special functions that are required in writing most programs. For

a complete description of this type of statement, see the Section entitled "Control State-
ments." Certain data or control statements are used almost exclusively in the arithmetic
mode of operation and will therefore be discussed here. These statements include index
word (XW), value field (VF), count field (CF), refill field (RF), link (LINK), and indi-
cator mask (INDMK).

XW - Index Word
XW, VALUE, COUNT, REFILL, FLAG

The location counter is rounded to the next full word if it is not already at a full-word
address. The contents of the four fields following the operation are compiled in an
index word format. The quantity represented by the symbol VALUE is compiled in bits
0-24 of the full word compiled. COUNT is compiled in bits 28-45 of this word and
REFILL is compiled in bits 46-63. FLAG denotes the index word field composed of
bits 25, 26, and 27. An expression in the flag field of an XW statement is therefore
evaluated modulo 23.

60

If the following statement were encountered by HAP in a program
XW, 1001.50, TOTAL, XWORD2, 4

a full word would be compiled in the format of an index word with 1001. 50 in the value
field, the quantity symbolized by the programmer symbol TOTAL in the count field, and
the quantity symbolized by XWORD2 in the refill field, all converted to binary. The 4
is interpreted as the octal integer 4 in the three-bit flag field, which turns on the index
flag bit in the index word compiled.

Note: Bit 24, the 25th bit in the word compiled, is assumed to be the sign bit for
the value field. All the other fields are unsigned; a negative sign is interpreted in two's
complement form in the usual way.

VF - Value Field

VF, VALUE
The location counter is rounded to the nearest half word if it is not already at a half word
address. The quantity symbolized by VALUE is compiled in bits 0-24 of the next half
word (24 bits plus sign). The location counter stands at bit 25 at the end of the operation.
CF - Count Field

CF, COUNT
The location counter is rounded to the next half word if necessary. The quantity symbol-
ized by COUNT is compiled as an 18-bit integer in bits 0-17. The location counter stands
at bit 18 at the end of the operation,
RF - Refill Field

RF, REFILL

This statement is treated exactly as CF, except the word refill should be substituted for
the word count.

Note: The four operations just defined are given data descriptions by the compiler:;
therefore, they cannot he written by the programmer., Specifically, the index words or
elements created by these orders have had the following data descriptions affixed auto-
matically, and cannot be overrruled in the statement:

Operation Data Description
XwW (BU)
VF (B, 25)
CF or RF (BU, 18)

61

LINK - Link
LINK

The LINK statement provides the programmer with a shorthand notation usually used as
the beginning of an entry or linkage into a subroutine. At the point in the code where the
LINK is encountered, HAP substitutes the operation

LVI, #15, #+ 2

which uses index register 15 to store the instruction counter value of the return instruc-
tion and has become the standard entry mechanism. LINK must be followed by a branch
instruction to complete the entry sequence.

INDMK - Indicator Mask
INDMK, A, A', A", A

The Aj are programmer symbols, system symbols, bit addresses, or integers to specify
any of the indicators in word 11. This control statement causes the location counter to
be rounded to a full word and a 64-bit word is then constructed with 1's in the positions
corresponding to the indicators named. A null field (the absence of any Aj) is compiled
as zero. The bit corresponding to indicator zero, machine check (#MK), is turned on

in the word compiled.

62

STREAMING MODE INSTRUCTIONS

Streaming mode instructions may be separated into four categories: streaming instruc-
tions, adjustments, setup, and indexing. The complete set of streaming mode instruc-
tions is given in the following pages.

In the formats shown here, that part of the instruction in capital letters (not under-
lined) is a nonprogrammer symbol or system symbol and must be written by the pro-
grammer exactly as shown. Fields named in lower case letters must be filled with the
proper codes, as explained in the notes following the instructions. Fields underlined
are to be filled by programmer symbols; that is, any symbolic name chosen by the pro-
grammer. Certain fields require a numeric entry whose radix, if not specified, is
assumed to be binary or octal rather than decimal, which is the normal case. Note is
made of these fields wherever they occur. Fields left blank or omitted are set as indi-
cated in the notes. Commas and parentheses must be used as indicated.

Streaming Instructions

SBBB

SMER

SSER

SSEL

STIR

SQNL

SILS

SNOP
Adjustments

ADJ

(data gates), luop, gs, TA (mode and cell size, parallel-serial, replace
base address, demand parallel synchrony), STOP (stimulus), SETUP
(name)

(up-down, internal-external, simple-offset), gs, STOP (stimulus)

(store data-store address, ordered-random, up-down, simple-offset,
search condition), gs, STOP (stimulus)

(least-greatest, simple-offset), gs, STOP (stimulus)

(replace-take, instruction-data control, up-down, simple-offset), gs,
STOP (stimulus)

(data gates), gs, TA (mode and cell size, parallel-serial, replace base
address, demand parallel synchrony), STOP (stimulus), SETUP (name)

(load-store), gs, TA (mode and cell size, replace base address), STOP
(stimulus), SETUP (name)

(stimulus, tag), reaction 1, reaction 2, reaction 3

63

Setup

SETUP

SECRVIP®

TBA
TAP
TAQ

TE

SSM
DEBUG
PAD
QAD
RAD
SETEND

Indexing
PX
QX
RX
PXO
QX0
RXO

TX
TXO

TEY

(character, connection, mode, span), action
(character, connection, mode, span), action
(character, connection, mode, span), action
(character, connection, mode, span), action

Note: character must be a numeric entry and is assumed binary.
(limit, value), stim, action
(mode, threshold, value), stim
(modulus, group size), luop
(stim), limit, action
(mode and cell size, parallel-serial, replace base address,
demand parallel synchrony)

Note: TAA may be used in place of TA.
(address, TBAHO, MDM)
(IPS, TPI, TPN, TPJ)
(TQS, TQI, TQN, TQJ), TAO, TAOHO, TPM

Note: TBAHO and TAOHO code is 00, 01, 10, 11.
(TEI, TEN, TEBM, TES, TEM)

Note: TEBM must be a numeric entry and is assumed binary.
(mask)
(mask)
(starting data address, initial index table address)
(starting data address, initial index table address)
(starting data address, initial index table address)

(mode, EC/CC, FL, FF, SR, BL, runout or R control,
TRU or TRL, FS), increment, total count, byte mask/
branch address, reset address, current count

(same as above), increment offset, total count offset,
byte mask/branch address, offset, RBL, reset address,
current count
Note: byte mask must be a numeric entry and is assumed binary.

(FL), byte size in increment, count of bytes in record
(FL), byte size in increment, count of bytes in control field,
offset of control field, RBL.

(TEC/TCC, TQ/TR), address, offset signed, TEN count, data
Note: data must be an octal entry, with no radix specified.

64

BASIC CONCEPTS

The general format for the streaming mode instructions is similar to that used for arith-
metic mode instructions, but certain fields must be identified by the programmer, In
general, a complete streaming instruction must give the operation, the data gating, the
operation of the various units in the streaming pipeline (that is, the logic unit, counter,
accumulator, table address assembler, and so on), and a stop code, This must be
followed by five half words of adjustments (stimuli and reactions). Also, the programmer
must specify the contents of a setup area of at least ten full words, to be transmitted into
the 7950 registers before initiating a streaming operation. Further, he must provide at
least two full words of indexing information for each of the three streaming units to be
used in the operation. And, for one operation, he must provide a table whose entries
have a special format. A method provided to do this is covered in the following sections.

Definitions

In general, the terms defined previously under '"Arithmetic Mode Instruction, ' will be
used with no change in the streaming mode instructions. New terms and special meanings
assigned to familiar terms are defined below:

Entry Mode: A method for describing the form in which data appears: either
alphabetic or, if numeric, either decimal, binary, octal, and so on.

Right-to-Left Dropout: As indicated previously, right-to-left dropout means
that missing fields are assumed to have been dropped from the right end of the statement
and their place taken by zeros. A major field may be null even if other non-null fields
follow, as long as the comma denoting the field termination is written.

Statement Fields and Subfields: Statements of the streaming mode are, like
arithmetic mode, separated by commas. Most streaming mode statements are composed
of a primary operation field and one or more secondary fields. Either of these primary
or secondary fields may be further subdivided into one or more subfields. A subfield is
made up of one or more subfield elements. The first subfield is always enclosed in
parentheses. Actually, multiple subfields only occur in the setup instruction, in which
each of the possible statement entries is considered to be one field of a single setup
instruction. Ten full words are therefore possible, with the mnemonic SETUP considered
as the primary operation field, and the mnemonic SETEND terminating the instruction.
Refer to Figure 9 for the use of the terms just described.

General Rules for Streaming Mode
1. 1If all elements of a primary operation subfield are null, the subfield may be

omitted, but the primary operation mnemonic and its following parenthese must still be
retained.

65

Element of

Elements of primary Elements of secon- secondary
operation subfield dary subfield subfield
¥___¥ \ ¥ _¥¢ N v
rSBBB (P-LU, Q-LU, LU-TA), CP.Q, FLIP, TA(ADTE, PA, RBA, DP), STOP(FLzP)I
[y
Primary Primary Secondary Field Secondary Field Secondary
Operation Operation Field Identifier Subfield Identifier Subfield
Mnemonic Subfield
/ \ / \ __/
V VT VT

Primary Operation Field Secondary Field

Primary Operation Mnemonic

SETUP
Elements Element
rW (11110000, PQ, AND, F), IN.KB 1|
T \ v— / \ v—"
Field 1st Secondary 2nd Secondary
Identi- Subfield Subfield
fier
\ _/
e
L _Secondary Field _ i Additional Setup Fields
Elements Elements

4
(Limit, value), FLIP, + 1]
\ \ / \ —/

[sc

Field 1st Secon- 2nd Secondary

Identi- day Sub- Subfield

fier field
\ _/

Y
___ Secondary Field _ __ _ _ __ __ __Additional Setup Fields
SETEND
Terminating Mnemonic
Figure 9. Statement Fields and Subfrelds

66

Secondary Field

2. If all elements of a secondary subfield are null, the subfield may be dropped.
If the subfield were enclosed in parentheses, the parentheses may also be dropped.

3. If all elements of all secondary subfields are null, the entire field, including
field identifier, may be omitted.

4. 1If all elements of any subfield are nonprogrammer symbols, they can be inter-
changed or omitted, as desired. If all elements of any subfield are programmer symbols
or mixed programmer and nonprogrammer symbols, the standard right-to-left dropout
rule applies.

5. All fields in the streaming instructions and in setup may be interchanged or
omitted, as desired. Fields in all other instructions follow the right-to-left dropout
rule.

6. If fields or elements are omitted, the assembly program fills in zeros, with
the following exceptions:

Omitted Fields HAP Fills In_
FLIM 1
TEN 3
PAD
QAD A valid address
RAD

Search condition PEQ (010)
for SSER

7. The radix of all numeric field entries is assumed decimal unless otherwise
specified, Exceptions are byte mask and match characters, whose radix is assumed to
be binary; also the data field in TEY, whose radix is assumed octal.

8. The 7950 assembly program reserves a three word area for a streaming
instruction and its principal adjustments, no matter how many such adjustments are
used. No padding is necessary.

9. I IC+ 3is to be followed by supplementary adjustments and the right half of
location IC + 3 is not used, a CNOP must be inserted at this point.

10, All symbolic names used for streaming mode operations must not exceed eight
characters.

11. A period indicates a logical AND and a V denotes a logical OR. The symbol
XV denotes logical exclusive OR,

12, Although logically correct, SEQ should not be used as an entry in the first level
of indexing because parity errors may result.

67

STREAMING INSTRUCTIONS

In each of the following instruction fields a reference is made to a page number of the
IBM 7950 Data Processing System Reference Manual (September 1, 1961) on which a
more complete explanation of the field may be found.

Stream Byte-by-Byte

The format of this instruction is:

SBBB (data gates), luop, gs, TA (mode and cell size, parallel-serial, replace
base address, demand parallel synchrony), STOP (stimulus), SETUP
(name)

Sample Entry

SBBB (P-LU, Q-LU, LU-TA, TE-R), CP.Q, FL1P, TA (XOR, PA,
RBA), STOP (FL2Q)

Coding of SBBB Fields
data gates (bits 1-12) page 8.6

This field gives the names of the data gates to be opened for the instruction. The
names of the data gates are nonprogrammer symbols and must be written as shown.

68

Lo

TA

TE

SC

12

®

SA

/

R

Gates:

Bit Number

Name

P-LU
Q-LU
TE-LU
P-TA
Q-TA
SC-TA
LU-TA
SC

LU
SC-R
LU-R
TE-R
SC-SA
LU-SA
TE-SA

lllegal Gating Combinations:

Bit Number

7,9,10
9,10
7,11,12
11,12
1,3,4

Name

Q-LU & TE-LU
Q-TA & SC-TA
Q-TA & LU-TA
TE-LU & SC-TA
TE-LU & LU-TA
SC-R & TE-R
LU-R & TE-R
SC-SA & TE-SA
LU-SA & TE-SA

P-LU & TE-LU & P-TA

Note: If a gate is opened leading out of TE (3,10, or 12), a gate must be opened
leading into TA(4,5, or 6). If SC (7) is used, there must be at least one input to

LU(1,2. or 3).

69

luop

(bits 13-17)

page 4.11

This five-bit field gives the logic unit operation code. The programmer must use
nonprogrammer symbols, written as shown:

Octal

Symbolic

N oUW o

o b e e
o Uk WO

20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37

Description

CZ (assumed if no field is written)

CP.Q
CP.NQ
CP

C NP.Q
cQ

C PXVQ
C PVQ

C NP.NQ
C PEQ

C NQ

C PVNQ
C NP

C NPVQ
C NPVNQ
C1

MAX PQ
MIN PQ
EPZ

EPNB
EZP
ENBP

EZQ

ENBQ
GEP-QZ
GEP-QNB
LEQ-PZ
LEQ-PNB
MODP-Q
MOD Q-P
RDX P+ Q
MOD P+ Q

Output larger byte

Output smaller byte

P if P=Q, else zero

P if P=Q, else no output

P if P£Q, else zero

P if P#Q, else no output

Q if P#£Q, else zero

Q if PAQ, else no output
P-Q if P>Q, else zero
P-Q if P> Q, else no output
Q-P if PS Q, else zero
Q-P if P< Q, else no output

P-Q modulo the modulus The modulus
Q-P modulo the modulus is specified
P+Q, no carry propagate in the LU
P+Q, modulo the modulus field in setup.

70

gs (bits 19-21)

page 4.56

This three-bit field is used to define the group size for the logic unit. If no code is
written by the programmer, the field is made zero and the entire stream is treated as a
group. The following nonprogrammer symbols are used:

Code

NOP
FL1P
FL2P
FL1Q
FLIR
W

Z
XVY

TA-mode and cell size

Binary Definition
000 None, each byte is a group
001 Last byte of flagged indexing level
010 Last byte of flagged indexing level
011 Last byte of flagged indexing level
100 Last byte of flagged indexing level
101 Signal from match unit W
110 Signal from match unit Z
111 Signal from either X or Y

(bits 24-25) (bits 26-27) page 4. 31

Since the actual operation performed with the table address assembler depends on
the contents of both mode and cell size, the operation codes are given in a form
descriptive of the operation, not the individual fields. The code is written in nonpro-
grammer symbols, and, if omitted, ADTE is assumed.

Binary Code
0000 ADTE
0001 ADTE
0010 ADTE
0011 ADTE
0100 X
0101 X.
0110 X
0111 X
1000 OR
1001 CT8
1010 CT1e6
1011 CT24
1100 XOR
1101 XCTS8
1110 XCT16
1111 XCT24

Description

-No memory reference. Address is sent
directly to TE. If bit 24 is 0, the cell-size
is ignored.

The word address part of TAO fetches a word
from memory to TE. The bit address is
loaded into TES. (cell-size is ignored)

OR a one into the addressed bit in memory.
Add a one into addressed bit, cell size 8.
Add a one into addressed bit, cell size 16.
Add a one into addressed bit, cell size 24,
Combination of X and OR

Combination of X and count

The assembly program inserts 0000 and 0100 for ADTE and X, respectively.

71

TA - parallel-serial (bit 22) page 4.30

This bit determines whether bytes from P and Q are first OR'ed together and then
added to TBA, or whether they are added serially to TBA without first OR'ing. If not
coded, PA is assumed. The codes are:

Binary Code Description
0 PA Parallel, OR'ed first then added
1 SE Serial addition to TBA
TA - replace base address (bit 23) page 4.31

This bit is coded as follows:

_ Binary Code) Description
0 blank If blank, each address is formed by adding
bytes to TBA.
1 RBA In this case, the first address is formed as

above, but all subsequent ones are formed
relative to the one just preceding.

TA - demand parallel synchrony (bit 28) page 4.33

This bit controls stream flow to the TA and is coded as follows:

Binary Code Description
0 blank Allow bytes to move synchronously to TA.
1 DP Force synchronous movement by MU to TA.
STOP (stimulus) (bits 29-31) page 4.57

In this field the programmer writes the code for the stimulus that is to terminate
the execution of the streaming instruction. If omitted, a NOP is inserted by the assembly
program. Note that a streaming instruction is always terminated by a continue chain
bit = 0 in an indexing level, and in addition, can be terminated by any recognized inter-
rupt, or by the adjustment reaction "go to LC."

Either a satisfied STOP code, 'go to IC," or an interrupt leaves the stream dormant;
it may be resumed, provided nothing in the setup register is disturbed prior to resump-
tion.

72

The STOP codes are:

Octal Code Stimulus
0 NOP No STOP defined, other than continue
chain = 0,
1 FL2P End-of-level in indexing with flag 2 in P.
2 F12Q End-of-level in indexing with flag 2 in Q.
3 FL2R End-of-level in indexing with flag 2 in R,
5 FL3P End-of-level in indexing with flag 3 in P,
6 FL3Q End-of-level in indexing with flag 3 in Q.
7 FL3R End-of-level in indexing with flag 3 in R.

SETUP (name)

This field is given only as a convenience to the programmer, and allows either the
complete TA field (with the exception of DP) or the logic unit op code or group size to be
inserted in a streaming instruction from a SETUP area. If used, only those fields that
are completely blank in the stream instruction will be filled in from the named SETUP
area. For example, TA (mode and cell size, parallel-serial, replace base address)
must be blank in the stream instruction if it is desired to make these entries from the
SETUP area. Noie that the presence or absence of the TA (DP) entry has no effect on
the ability to make these entries. The logic unit op code or group size fields must also
be completely blank if they are to be entered from SETUP.

Stream Merge
The format of this instruction is:
SMER (up-down, internal-external, simple-offset), gs, STOP(stimulus)
Sample Entry
SMER (DN, IN, SIM,), FL1R, STOP (FL2P)
Coding of SMER Fields page 8.13
up-down (bit 13)

Merge up produces a record sequence with control fields in ascending order; merge
down, in descending order. If omitted, the bit is set to UP.

Bit 13 Code Description
0 UP Files are ordered up
1 DN Files are ordered down

73

internal-external (bit 12)

If omitted, this bit is set to IN. The codes and descriptions are:

Bit 12 Code Description
0 IN Entire block takes less than half of internal
memory available.
1 EX Block takes more than half of internal memory.
simple-offset (bit 14)

This bit is set to SIM if omitted. Codes and descriptions are as follows:

Bit 14 Code Description
0 SIM The control field heads the record, and the
entire record may be considered the control
field.
1 OFF For all cases where both conditions for SIM

are not met.
gs (bits 19-21
Refer to the gs field description in section entitled ""Coding of SBBB Fields."
STOP (stimulus) (bits 29-31)

Refer to the STOP (stimulus) description in section entitled '"Coding of SBBB Fields."

Stream Search
The format of this instruction is:

SSER (store data-store address, ordered-random, up-down, simple-offset,
search condition), gs, STOP (stimulus)

Sample Entry

SSER (DA, RAN, UP, SIM, PEQ), FL1R, STOP (FL2P)

74

Coding of SSER Fields page 8.26
store data-store address (bit 11)

If omitted, the bit is set to DA.

Bit 11 Code Description
0 DA Normal search operation.
1 AD Only the address of the record satisfying the

search condition is sent to R, and R indexing
must be set to store a 24-bit address.

ordered-random (bit 12)

The bit is set to ORD if omitted.

Bit 12 Code Description
0 ORD Sets instruction for ordered records in P.
1 RAN Assumes random ordering of P records.
up-down (bit 13)

Refer to the up-down description in section entitled ""Coding of SMER Fields. "
simple-offset (bit 14)

Refer to the simple-offset description in section entitled '"Coding of SMER Fields."
search condition (bits 8-10)

If omitted, this entry is coded PEQ.

Binary Code Condition
000 - - - Invalid
001 PLQ P<Q
010 PEQ P=Q
011 PLEQ P<Q
100 PGQ P >Q
101 PNEQ P#Q
110 PGEQ P2Q
111 --- Invalid

75

gs (bits 19-21)
Refer to the gs field description in section entitled '"Coding of SBBB Fields. "

STOP (stimulus) (bits 29-31)

Refer to the STOP (stimulus) description in section entitled "Coding of SBBB Fields."

Stream Select
The format of this instruction is:
SSEL (least-greatest, simple-offset), gs, STOP (stimulus)
Sample Entry
SSEL (GST, SIM,), FL1R, STOP (FL2P)
Coding of SSEL Fields page 8.36
least-greatest (bit 13)

If omitted, this bit is set to LST.

Bit 13 Code Description
LST Record with least control field is selected.
1 GST Record with greatest control field is selected.
simple-offset (bit 14)

Refer to the simple-offset description in section entitled '"Coding of SMER Fields."
gs (bits 19-21)

Refer to the gs field description in section entitled ""Coding of SBBB Fields."
STOP (stimulus) (bits 29-31)

Refer to the STOP (stimulus) description in section entitled '"Coding of SBBB Fields."

76

Stream Take - Insert - Replace
The format of this instruction is:

STIR (replace-take, instruction-data control, up-down, simple-offset),
gs, STOP (stimulus)

Sample Entry
STIR (RPL, IC, UP, OFF), FL1R, STOP (FL2P)
Coding of STIR Fields page 8.42
replace-take (bit 12)

If omitted, this bit is set to RPL.

Bit 12 Code Description
0 RPL Q records matched in P are inserted in P
file, replacing matched record.
1 TAKE Matched records are deleted from the P
file.
instruction-data control (bit 10)

If omitted, this bit is set to IC.

Bit 10 Code Description
0 IC Instruction control, and replace-take bit is
effective.
1 DC Data control, and the replace-take control

bit is ignored.
up-down (bit 13)
Refer to the up-down description in section entitled "Coding of SMER Fields."
simple-offset (bit 14)
Refer to the simple-offset description in section entitled "Coding of SMER Fields, "
gs (bits 19-21)

Refer to the gs field description in section entitled "Coding of SBBB Fields."

77

STOP (stimulus) (bits 29-31)

Refer to the STOP (stimulus) description in section entitled "Coding of SBBB Fields."

Stream Sequential Look-Up
The format of this instruction is:
SQNL (data gates), gs, TA (mode and cell size, parallel-serial, replace
base address, demand parallel synchrony), STOP (stimulus),
SETUP (name)
Sample Entry
SQNL (P-TA, Q-TA, TE-R), FL1P, TA(CTS, PA, RBA), STOP (FL2R)

Coding of SQNL Fields page 8.62

Tor a discussion of the coding of gs, TA, STOP, and SETUP fields, refer to
section entitled ""Coding of SBBB Fields."

data gates (bits 4, 5, 10, 12)

Only the following data gates are available for the SQNL instructions. For a detailed
description of the data gates, refer to section entitled "Coding of SBBB Fields."

Gate No. Name Function
4 P-TA Bytes go from P to TA
5 Q-TA Bytes go from Q to TA
10 TE-R Table extract output goes to R
12 TE-SA Table extract output goes to SA

Either two or three gates must be specified: P-TA and/or Q-TA and TE-R and/or
TE-SA.

Stream Indirect Load or Store
The format of this instruction is:

SILS (load-store), gs, TA(mode and cell size, replace base address),
STOP (stimulus), SETUP (name)

78

Sample Entry
SILS (LD), FLIR, TA (OR, RBA), STOP (FL2P)
Coding of SILS Fields page 8.56

For a discussion of the coding of gs, TA, STOP, and SETUP fields, refer to
section entitled ""Coding of SBBB Fields. "

load-store (bit 14)
Bit 14 Code Description
0 LD Address from TE goes to Q indexing.
1 ST Address from TE goes to R indexing.

Either LD or ST must be specified.

Stream No Operation
The format of this instruction is:
SNOP

Only the primary operation mnemonic is written; no other fields are coded. For a
full explanation of this instruction, refer to page 8.74 of the IBM 7950 Data Processing
System Reference Manual (September 1, 1961).

ADJUSTMENTS

Each time the machine performs a streaming instruction the instruction counter is
stopped at the location of the streaming instruction. The normal exit is to the instruc-
tion at the third word beyond the streaming instruction, usually called IC + 3. This
leaves five half words which can be used for five adjustments, Each adjustment is
written as follows:

reaction 3
ADJ # (stimulus, tag), reaction 1, reaction 2, or

relative address

For a full explanation of Adjustments, refer to chapter 6, IBM 7950 Data Processing
System Reference Manual.

79

Coding of Adjustment Fields

#

The number of the adjustment may be entered here. For programmer convenience,
the adjustments may be numbered, but this will have no effect on the assembly; they will
be assembled in the order written. Only numbers 1-5 may be used.

stimulus

The programmer writes here the name of the stimulus that will activate the adjust-
ment. The stimuli and octal equivalent of the code are given in the table of Adjustment
Stimuli in the following section.

tag

This field may be omitted (blank), or one of three tags may be used. Each alter-
native is explained below:

1. blank (00) In this case there are three reaction fields; each reaction
is performed if the adjustment is activated.

2. AND (01) In this case the reactions take place only if the stimulus
specified in the next adjustment is also ON. AND must not be used in ADJ 5.

3. BR (10) In this case, the first two reactions are completed, any
active interrupts are taken, all quantities in setup registers are put in true form, and
indexing is frozen such that the first byte of the first reading level encountered is ready
to be read out. If the level being performed at adjustment time is a reading level, the
indexing is frozen such that the byte that causes the adjustment is in the next time zone.
The IC is then set to address the instruction whose name is given in the reaction 3 field,
and the machine leaves the streaming mode.

4, CH (11) If this tag is used, reactions 1 and 2 are completed and then
the adjustment addressed by the reaction 3 field (actually a relative address) is brought
in. If the stimulus specified by the new adjustment is on, the reactions are performed.
The tag of all adjustmdnts in a chain, except the last, must be CH. The stream stimulus
mask (SSM) has no effect on the reactions of adjustments in a chain, except for the first
one that starts the chain.

80

reaction

The programmer writes the names of the desired reactions, separated by commas.
If less than three are given, a NOP will be inserted. Names, code, and a brief descrip-
tion are given in the table of Adjustment Reaction and Codes. In an adjustment, a NOP
may be used in the first or third reaction field, but not the second, unless the tag BR or
CH is used and the third field is a relative address. If this rule is not followed, a NOP
in the second field causes the machine to treat the third reaction as a NOP also.

relative address

If the BR or CH tag is used, reaction 3 becomes a relative address. The reaction
field is only eight bits, and the machine actually uses this as a relative address, adding
it to the contents of IC in such a way that a one in the action field steps IC by a half word.
Thus all extension and chained adjustments must be within the 255 half words following
the streaming instruction.

The programmer must indicate the numeric value of the relative address by any
permitted numeric entry mode or by giving the symbolic value of the relative address
by arithmetic, such as ADJST - STREAM, where ADJST is the name of the extra adjust-
ment or arithmetic mode instruction, and STREAM is the location of the streaming
instruction.

81

Table of Adjustment Stimuli

Octal Stimulus

Description

5 TFL1P
6 TFL2P
7 FL3P
1 FLI1Q
2 FL2Q
3 FL3Q

21 FLIR

22 FL2R

23 FL3R

24 W

26 X

40 Y

37 Z

27 XVY

15 W.X

16 W.Y

11 NW

12 NX

13 NY

14 NZ

17 CCZ

25 SCLIM

30 SCNL.EG
10 SAGETH

32 SABN

31 SALT.EG
50 ELTE

33 FZ

35 FZ.KB1

34 FZ.LB1
36 - FZ.MB1

Flag 1, P Stream

Flag 1, Q Stream

Flag 1, R Stream

W unit signal

X or Y unit signal
W and X unit signal
W and Y unit signal
Not W

End of chain

SCTR = Limit

SCTR # Limit and EG
SACC 2 Threshold

SACC becomes negative
SACC< Threshold and EG 71

End of level in TE
F=0
F=0and KB=1

Octal Stimulus Description

43 KBZ KB =0

45 LBZ LB=0

46 MBZ MB =0

44 KB1 KB=1

42 LB1 LB=1

41 MB1 MB =1

53 KGZ KG =0

55 LGZ LG=0

56 MGZ MG =0

54 KG1 KG =1

52 LG1 LG=1

51 MG1 MG =1

67 F1 F=1

63 F1.KBZ F=1and KB=0

65 F1.LBZ

66 F1.MBZ

64 F1.KB1 F=1and KB=1

62 F1.LB1

61 F1.MB1

70 FZ.EG F = 0 and end of group

73 KGZ.EG KG=0 and end of group

75 LGZ.EG

76 MGZ. EG

74 KG1.EG

72 LG1l.EG
MG1. EG

77 EG (or End of group
EGLOG)

47 STIM (or on) always on

0 NOP
60 INIT Initial

Note: Stimuli 34-36, 61-66, and 70-76 are all AND forms which can be written in

reverse order. For example, FZ.MB1 may be written MB1. FZ.

82

€8

IBM 7950 IBM 7950
Type Group Description Mnemonic Octal Section Reference Type Group Description Mnemonic Octal Section Reference
No Op NOP 000 6.5.7 Specified trigger(s) for this byte B12345
010T5T4T3T2T1
RESET: F and G RSFG 025 4.2.1.4 Disable
sc RSSC 031 4.3.2 for duration of group G12345
SA RSSA 026 6.5.4 011T5T4T3T2T1 6.5.5
STEP: SC by +1 SC+ 1 023 4.3.1 Match units for runout DISMU 315
Statistical SCby -1 sC-1 034 4.3.2
SA by +1 SA+ 1 032 6.5.4 INSERT W in LUO INW 214
X INX 200
READ OUT SA: low order 8 bits ROSSA 052 Y INY 204 6.5.2
to R low order 16 bits RO16SA 046 6.5.4 z INZ 210
entire 24 bits RO24SA 043 MOD INMOD 202
Units MOD in TE out INMODTE 203
READ OUT SC: low order 8bits to R RO8SC 063 6.5.4
entire 16 bits to R RO16SC 073 U RUNOUT P This level ROP 220
Add to TBA SC + TBA 061 6.5.3 Through FL1 ROFL1P 222 6.5.1
FL2 ROFL2P 221
RESET: P This level RSP 344
Through FL1 RSFL1P 346 Q This level ROQ 224
FL2 RSFL2P 345 ©0-%1 Through FL1 ROFL1Q 226 6.5.1
FL3 RSFL3P 347 FL2 ROFL2Q 225
Pipeline
Q This level RSQ 350 MATCH P This level MOP 230
Through FL1 RSFL1Q 352 6.5.1 ONLY Through FL1 MOFL1P 232 6.5.1
Indexing FL2 RSFL2Q 351 U FL2 MOFL2P 231
FL3 RSFL3Q 353
Q This level MOQ 234
R This level RSR 324 Through FL1 MOFL1Q 236 6.5.1
Through FL1 RSFL1R 326 6.5.1 FL2 MOFL2Q 235
FL2 RSFL2R 325
FL3 RSFL3R 327 STORE P STPS 240 6.5.6
ADDRESS Q STQS 244 ne
ADVANCE: P Next level ADP 340
Through FL1 ADFL1P 342 6.5.1 OMIT byte after special byte from P OMP 260
FL2 ADFL2P 341 e Q oMQ 264
FL3 ADFL3P 343 TE OMTE 266 6.5.2
Special byte output of LU OMLU 262
Q Next level ADQ 354 Special byte into R OMR 263
Through FL1 ADFL1Q 356
FL2 ADFL2qQ 355 ©-5.1 REPEAT Special byte from P, RPP 270
FL3 ADFL3Q 357 Special byte from @ RPQ 274 6.5.2
R Next level ADR 320 Misc. Suppress LU output for duration of group SULU 140
Through FL1 ADFLIR 322 6.5.1 Skip space in R SR 304
FL2 ADFL2R 321 e Skip remdining TE extraction, this
FL3 ADFL3R 323 reference SKTE 310 6.5.2
Reference TBA-1 RFTBA-1 361
Table Reference Skip extraction SKTA 362
Unit Reset base address to TBA RSTBA 364 6-5.3
Cancel address OMTA 370

Table of Adjustment Reactions and Codes

SETUP INSTRUCTION

A setup instruction starts with the mnemonic SETUP and ends with SETEND, and causes
ten full words to be reserved in storage. If the programmer writes a complete setup,
he fills this storage space with a complete set of fields. For a partial setup, the pro-
grammer writes SETUP, enters his required fields, then closes with SETEND. The
written setup information is inserted in the proper places and the remaining areas are
either left zero or set arbitrarily to avoid errors during running of the object program,
as indicated in the description of each field.

SETUP and SETEXND Mnemonics

The mnemonics SETUP and SETEND must be used to identify the setup fields. When
HAP encounters SETUP, the location counter is rounded to the next full-word address

and the next ten words are cleared to zero.

SETUP normally contains a name, either absolute or svmbolic, in its name field.
An error message indicates the omission of a name on a setup statement. For example:

JOE SETUP
W (01000010, PVQ), IN
PAD (400, PETE)
QAD (500, BILL)
RAD (600, TOM)
SETEND

Setup Fields

As mentioned previously, to write a complete setup of ten words, the programmer
writes SETUP (with a name) followed by the name of the setup fields and the information
to be put in them, then ends with SETEND. Each field name or identifier (such as W,
TA, TAQ, and so on) should appear as if it were the op-code of an instruction, and the
codes in the parentheses following must appear on the same card (or a continuation
card). For example:

SA (U, 125, 0), KBZ is correct, but
X ((8) 377, PQLU, OR, I),
OMALL is not correct, unless the second card is a continuation

card.

W (character, connection, mode, span), action
page 4.9, Reference Manual

character: must be a numeric entry mode and is assumed to be hinary unless
otherwise specified.

84

connection: indicates which part of the stream the character is to be matched. The
code must be written as shown.
Octal Code Description
0 NOP No connection
1 P P only
2 Q Q only
3 PQ P and/or Q
mode: may be coded for OR or AND mode. For example, PQ connection in the
OR mode indicates that both the P and Q units are connected and that a
stimulus signal would arise upon a successful match between the match
character and either a P byte or a Q byte, or both. Similarly, PQ in
the AND mode indicates that both the P and Q units are connected and
that a stimulus signal would arise only upon a successful match hetween
the match character and both the P and Q byvtes simultaneously. In
fact, in AND mode an adjustment stimulus is emitted only when simul-
taneous matches occur, or on an LUO match.
span: coded R for match on right bit only; ¥ for match on full byvte. If omitted,
T is assumed.
action: Depending on the coding, one of the following actions will be taken when
a successful match is made.
Octal Code Description
0 NOP No-operation
1 IN Omit both LU inputs and insert char-
acter in LU Output
2 OM Omit byvte which matched
3 OMALL Omit matched bvte and corresponding
byvtes from other connections
4+ IN.KB1 Omit both LU inputs, insert character
in LU Output, and set KB to 1
5 IN.DMB1 Omit both LU inputs, insert character
in LU Output; and set MB to 1
Sample Entryv: W (11110000, PQ, AND, F), OM

X (character, connection, mode, span), action

character:

page 4.51

See W field (preceding section)

connections:

Octal Code Description
0 NOP No connection
1 P P only
2 Q Q only
3 PQ P and/or Q
4 LU LU only
5 PLU P and/or LU
6 QLU Q and/or LU
7 PQLU (P and/or Q) or LU

mode: may he coded for OR or AND mode. Sece W ficld (preceding section).

In the case of the PQLU connection, the programmer may use the AND
mode to specify P.QVLU or use the OR mode to specify PVQVLU. With
AND mode specified, a signal results from a match with the LU connec-
tion or with both the P and Q connections. If OR mode is used, a signal
arises from a match with cither the P or the Q or the LU connection.
Only the 'OM" action has meaning if 'LU" is connected: anyv others speci-
fied are treated as NOPS.

span and action: See W field (preceding section). Note: A match unit action cannot be
caused by a match at LU alone.

Y (character, connection, mode, span), action
paze 4.53

character: See W field.
connections:
Octal Code Description
0 NOP No connection
1 P P only
2 Q Q only
3 PQ P and/or Q
4 TE TE only
5 PTE P and/or TE
6 QTE Q and/or TE
7 PQTE {P or Qor TE
(P and Q) or (P and TE)
mode: See W field and X field.

span and action: See W field.

86

Z (character, connection, mode, span), action

page 4. 54
character: See W field.
connections:
Octal Code Description
0 NOP No connection
1 TE TE only
2 LU LU only
3 LUTE TE or LU
mode: the mode need not he specified, since only OR mode is used. XNote: No

stimulus signal will he emitted on any match.

span and action: See W field. Note: A match unit action cannot he caused by a match
at LU alone. Only OM action has meaning if LU is connected.

SC (limit, value) stim, action

page 4. 36

limit: hits 2-17 of setup word 35, indicating the limit to which the statistical
counter (SCTR) is set. The programmer may use any symbol or a
decimal number, ranging from 0 to 2167,

value: bits 34-49 of setup word 34, contains the current value of the SCTR
count. Any symbol or a decimal numher may bhe used in the initial
setup, ranging from 0 to 2167,

stim: the programmer enters the code here for the stimulus that controls
stepping of SCTR. Codes must he written as shown helow,

Octal Code Description Octal Code —Description
0 NOP No-Op 3 KG1.EG KG =1 AND End of Group
1 KBl KB=1 6 LG1.EG LG =1 AXND EG
2 LB1 LB =1 7 MG1.EG MG =1 AND EG
1 MB1I MB-=1 34 BYQ Bvte from Q
10 F1 F=1 35 BYSA Any hyvte into SACC
L Fz b= O, . 36 TAO, TAF Address formed in TA
20 W W Unit signal TAD
21 X X Unit signal 27 W.Y WAND Y
22 Y Y Unit signal 16 KBZ.F'Z KB=0ANDF =0
23 Z Z Unit signal 15 LBZ.FZ LB=0ANDF =0
24 ANX NOT X 13 MBZ.FZ MB=0ANDF =0
25 NY NOTY 3 LBZ ILB=0
30 FL1IP Flag 1, P Stream 11 KB1.FZ KB=1AXNDF =0
31 FL1Q Flag 1, Q Stream 12 LB1.FZ LB=1AXNDF =20
32 FL1R Flag 1, R Stream 14 MB1.FZ MB =1 ANDF =0
26 XVY XORY 37 ELTE End of level in TE
33 BYP Byte from P

87

action:

the programmer indicates whether the SCTR is to be incremented by +1
(octal code 0) or decremented by -1 (octal code 1). If omitted, a +1 is
assumed.

Sample Entries:

SC (25), FL1P, +1

SC (, 12), W.Y, -1

SA (mode, threshold, value), stim

page 4.42

88

The entries must be coded as shown.

Description

NOT Z
End of group
1LB=1
Byte into R
KG = 0 AND End of group
LG =0 AND EG
MG =0 AND EG
NOT W AND NOT X
AND NOT Y

mode: bits 56 and 57, setup word 34, used to indicate the operating mode for
the statistical accumulator (SA).
Octal Code Description
0 U Unsigned, 1 byte
1 Ul6 Unsigned, 2 bytes
2 S Signed
3 SR Signed, negative reset
threshold: bits 32-55, setup word 33, the defining condition for the generation of
the SAGETH (SA 2 Threshold) stimulus. Any programmer symbol may
be used.
value: bits 0-23, setup word 34, the actual SA register. Bit 23 is the sign for
S and SR modes. Any numeric entry mode may be used.
stim: this field gives the stimulus that will step SA. If modes S or SR are
used, the stimulus field is ignored, that is, SA cannot be stepped,
except by an adjustment, if signed bytes are being accumulated. SA
can only be stepped in the positive direction. The codes are:
Octal Code Description Octal Code
0 NOP No-Op 10 NZ
1 KBZ KB =0 11 EG
2 LBZ LB=0 12 LB1
3 MBZ MB =0 13 BYR
4 Fi F=1 14 KGZ. EG
5 X X unit signal 15 LGZ.EG
6 Y Y unit signal 16 MGZ.EG
7 NW NOT W 17 NWXY

Sample Entries:

SA (U, 25), X

SA (SR, 112, 0)

LU (modulus, group size), luop

modulus:

group size and luop:

page 4.11

bits 56-63, setup word 36, used in conjunction with the luop codes to

specify the modulus desired (ranging from 1 to 256). Any programmer
symbol may be used and it will be assembled as an eight-bit, unsigned
binary number,

these fields are repeated here for the convenience of the programmer.

If filled in, and the corresponding fields in a streaming instruction are
left blank, then the programmer may, by using the coding SETUP (name)
in the streaming instruction, request HAP to fill these fields from the
named setup area. (See section entitled '""Coding of SBBB Fields')

F (stim), limit, action

stim:

page 4,14

there are nine conditions available to step the F counter. The pro-
grammer writes here the one or more he wishes to use, thus setting
one or more bits from 19 to 27 in setup word 35. If any one of these
conditions is met, the counter is stepped, but it is stepped only once
(if at all) per byte output from the LU. The codes and conditions are:

Bit No. Code
19 KK
20 KL
21 KM
22 LK
23 LL
24 LM
25 MK
26 ML
27 MM

Description

Prior P byte > prior Q byte AND present P

byte > present Q byte

Prior P byte > prior Q byte AND present P
byte = present Q byte

Prior P byte > Prior Q byte AND present P
byte< present Q byte

Prior P byte = prior Q byte AND present P
byte > prior Q byte

Prior P byte = prior Q byte AND present P

byte = present Q byte

Prior P byte = prior Q byte AND present P

byte < present Q byte

Prior P byte < prior Q byte AND present P
byte > present Q byte

Prior P byte <prior Q byte AND present P
byte = present Q byte

Prior P byte <prior @ byte AND present P
byte < present Q byte

89

limit: the limit for the two-bit F counter is written as a decimal number; 1, 2,
3, or 4. If omitted, 1 is assumed. Bits 30 and 31 in setup word 35 are
set by this coding. The F unit counts occurrences of a specified function
of the KB, LB, and MB signals, compares the count against a specified
limit, and issues a signal defined as follows (for a limit other than 1):

F =0: Counter # Limit
F=1: Counter = Limit
action: If the F limit is one, this field may be used to modify the action of the
F counter. Bits 28 and 29 of setup word 35 are used in the following
coding:
Bit No. Code Description
- - - NOP No modification
29 SO Set F =1 on first pulse and then stay
on one
28 I Invert previous value of F for each
pulse
28 and 29 I1SO Combination of 'I' and 'SO!’
Sample Entries:
F (KK), 2
F (XK), 1, SO

TA (mode and cell size, parallel-serial, replace base address)

This field, like group size and luop, is repeated in the SETUP as a convenience to the

" programmer and is subject to the same rules. See section entitled '""LU (modulus, group
size), luop'". Note: TAA may be used instead of TA. The demand parallel synchrony
(DP) entry, usually found in the TA field, can only be entered by the SBBB or SQNL
instruction. If desired, "TA (demand parallel synchrony)" can be entered by SBBB or
SQNL and the remainder of the TA field can be entered from the setup area.

TBA (address, TBAHO, MDM)

page 4.26
address: bits 32-55, setup word 35. The programmer enters here any symbol
he chooses for the memory address to be used as a table base address

(TBA).

90

TBAHO: the programmer enters any additional TBA high-order bits called for
by increased memory capacity. In bit positions 56 and 57 of setup word
35, the following actual binary addresses are coded: 00, 01, 10, 11.

MDM: bit 63, setup word 35. Either MDM is written or the entry is left blank.
If 'MDM' is specified, each address formed references the first avail-
able memory frame. For correct lookup results, the table must be
stored in duplicate. For details on how to set up these tables, see
page 4. 35 of the IBM 7950 Reference Manual. If 'MDM' is not specified,
each address will reference a specific memory frame.

TAP (TPS, TPI, TPN, TPJ)

page 4.28

TPS: This value specifies the bit position in the assembled address to which
the leftmost bit of the first stream byte from P is added. Any pro-
grammer symbol may be used.

TPI; Increment to be added to TPS before the next byte from P is positioned.
Any programmer symbol may be used.

TPN: Total number of bytes from P used to form an address. Any programmer
symbol may be used.

TPJ: Current position in TA register for the byte from P. Usually omitted,
Any programmer symbol may be used.

Sample Entry:
TAP (0, +8, 3)

- TAQ (TQS, TQI, TQN, TQJ), TAO, TAOHO, TPM
page 4.29

TQS: This value specifies the bit position in the assembled address to which
the leftmost bit of the first stream byte from Q is added. Any pro-
grammer symbol may be used.

TQI: Increment to be added to TQS before the next byte from Q is positioned.
Any programmer symbol may be used.

TQN: Total number of bytes from Q used to form an address. Any programmer
symbol may be used.

TQJ: Current position in TA register for the byte from Q. Usually omitted.
Any programmer symbol may be used.

91

TAO:

TAOHO:

Sample Entries:

The initial contents of the TAO (assembled address). Not usually set
up. Any programmer symbol may be used.

Any additional TAO high-order bits called for by increased memory
capacity. In bit position 56 and 57 of setup word 37, the following
actual binary addresses are coded:

00, 01, 10, 11.

Current count of bytes read into TA. Not usually set up. Any pro-
grammer symbol may be used,

TAQ (8, , 1)
TAQ (, +4, 2)

TE (TEI, TEN, TEBM, TES, TEM)

TEI:

TEN:

TEBM:

TES:

TEM:

Sample Entries:

page 4.46

Increment for byte read-out from the TE register. Any programmer
symbol may be used.

Total number of bytes to be read out from TE. Any programmer sym-
bol may be used.

Byte mask to be used for bytes read from TE. A numeric entry mode
must be used and it is assumed binary.

Position in TE from which the first byte is to be read. Note that some
TA modes cause insertion of an address in TES. Any programmer

symbol may be used.

Current count of bytes read from TE. Not usually set up. Any pro-
grammer symbol may be used.

TE (-10, 3, 11111000, 20)
TE (4, 8, 11110000)

92

SSM (mask)
page 6.15

This mnemonic stands for stream stimulus mask. It is a 29-bit field (bits 0-28) in setup
word 33. If a bit is set to one in SSM and the condition specified by this bit occurs while

bit 42 in the interrupt mask register is set to one, then an interrupt will be taken. These
SSM bits are to be coded as follows:

Bit Code Description

0 NW W not match (W)

1 NX X not match (f)

2 NY Y not match (Y)

3 NZ Z not match (Z)

4 w W mateh

5 X X match

6 Y Y match

7 zZ Z match

8 FL1P P indexing flag; FL field = 01
9 FL2P P indexing flag; FL field = 10
10 FL3P P indexing flag; FL field = 11
11 FL1Q Q indexing flag; FL field = 01
12 F1.2Q Q indexing flag; FL field = 10
13 FL3Q Q indexing flag; FL field = 11
14 FL1R R indexing flag; FL field = 01
15 FL2R R indexing flag; FL field = 10
16 FL3R R indexing flag; FL field = 11
17 ELTE End of indexing level, TE unit
i% SAGETH SA crosses threshold in positive direction
19 F1 F = limit
20 SCLIM SC = limit
21 KB1 K (Byte) = 1
22 LB1 L (Byte) = 1
23 MB1 M (Byte) = 1
24 KG1 K (Group) =1
25 LG1 L (Group) = 1
26 MG1 M (Group) =1
27 SABN SA goes + to -
28 CCz CC bit = zero (P, Q,.or R indexing).

Sample Entry:

SSM (FL1P, SCLIM)

93

DEBUG (mask)

This field, bits 60-63 of setup word 33, is used as an aid in debugging. The bits to be
tested are:

ADJ Any adjustment Bit 61
FLAG Any flag Bit 62
BL Any branch level Bit 60
SCAN Scan bit Bit 63

If, for example, the 'FLAG' mask bit is activated, a 'DEBUG! interrupt (indicator
bit 32) is caused each time a flag is encountered: therefore, the programmer must
write a routine to handle such occurrences. Activating the 'SCAN! bit has the additional
effect of freezing the status of all indicators so that they may be monitored. The indi-
cators will be frozen for the duration of the interrupt routine provided the streaming unit
is not used in this interval.

More than one mask stimulus may be activated if desired. Activation of the 'SCAN'
bit alone has no meaning, since this bit cannot cause an interrupt. It should be activated
in conjunction with one or more of the other three, if at all.

Sample Entry:
DEBUG (FLAG, SCAN)
PAD

QAD (starting data address, initial index table address)
RAD page 3.2 - 3.4

starting data address: bit position 0-23 in setup word 39 (P) or 40 (Q) or 41 (R). This
is the 24-bit address of the first byte to be read by P (or Qor
R). Any programmer symbol may be used.

initial index table address: bit positions 32-49 in setup word 39 (P) or 40 (Q) or 41 (R).
This is the address of-the first word of the first level ofgindexing
control for P (or Q or R). Any programmer symbol may be used.

Sample Entry:
PAD (JOE, PETE)
Summary of Setup Instruction
The previous sections have given all the information necessary for a full ten word setup,
contained in the area reserved by the SETUP and SETEND mnemonics. These ten words

must be inserted in the 7950 registers, words 32 to 41, before a streaming instruction
is initiated.

94

However, it should be noted that setup words 42, 43, and 44 are available to the pro-
grammer. They are TEU, R1, and R2, respectively. TEU (the Table Extract register)
should normally be cleared, but may be filled by the programmer if desired. R1 and R2,
the left and right halves of thé R register, may also be filled as desired.

INDEXING WORDS

One general indexing word format is used for all streaming instructions and for certain
instructions one or two other word formats are required. To determine which requires
the additional indexing formats, all streaming instructions are separated into two classes:
collating and noncollating. The collating instructions include SMER, SSER, SSEL, and
STIR. Noncollating instructions are SBBB, SILS, SNOP, and SQNL. Actually, the last
instruction, SQNL, does not fit easily into either class, but for the purposes of this
discussion it will be called a noncollating instruction.

Normal Index Format for All Stream Instructions
Each indexing level for each stream unit requires two full words of information. They
must begin at a full-word boundary, and the address of the first word of the first level

must be in the "initial index table address'" of the PAD, QAD, or RAD setup word.

The letter P, Q, and R are used to indicate which stream unit the indexing is for,
and the letter O indicates that the level is offset. Each level of indexing has the following
format:

PX (mode, EC/CC, FL, FF, SR, BL, Runout or R control, TRU or TRL,

QX p» FS), increment, total count, byte mask/branch address, reset address,
RX current count

or, for offset levels:

PXO] (same as above), increment offset, total count offset, byte mask/
QXO > branch address, offset, RBL, reset address, current count
RXO

Coding of PX, QX, RX, and PXO, QXO, and RXO Fields

A complete explanation of each of the following fields may be found in Chapter 3 of the
IBM 7950 Data Processing System Reference Manual. Where applicable, special
references to the Reference Manual pages are noted.

Mode: (bit 62, higher level, first word) Refer to page 3.10.
Code Binary
NES for nested 0 (NES if omitted)

SEQ for sequential 1

95

EC/CC chain: (it 59, first word) Refer to pages 3.5 - 3.8.

Code Binary
EC for end chain 0 (EC if omitted)
CC for continue 1
chain
FL flags: (bits 57, 58, first word) Refer to page 3. 34.
Code Binary

Omit field for

no flags 0
FL1 01
FL2 10
FL3 11
FF: (bit 60, first word) Refer to page 3.28.

Omit unless FF is intended. Code as FF for first to
follow, so that the next indexing level acts as if it were
a first level, Binary form is 1.

SR: (bit 61, first word) Refer to page 3.14, Suppress Reset.

Omit the field if normal reset is desired. (Binary 0)
Code as SR if it is desired to suppress the reset at
end-of-level (1).

BL: (bit 56, higher level, first word) Refer to page 3.28.

Branch level control, must be nested.
Omit if normal usage is intended. (0)
BL if this is to be a branch level (1)
(see byte mask/branch address field below)

Runout or R
Control: (bits 30, 31, first word) Refer to page 3.33.

For P and Q indexing this is the runout control field, set
as follows:

Code Binary Description
Omitted 00 No effect

R 01 Runout directly to R
M 10 Match only

RM 11 Both R and M

96

For R indexing, bit 30 is not used and bit 31 is the R control
bit, set as follows:

Code Binary Description

Omitted 0 Data stored directly in the R
register.

RC 1 The two words that will contain

the R byte are obtained from
memory to the R register before
the byte enters R.

TRU or TRL: (bits 28, 29, first word) Refer to page 3.22.
Code Binary Description

Omitted 00

TRU 01 Triangular indexing, with the
count decremented by one at the
end of the last iteration of the
level.

TRL 11 Triangular indexing, with the
count incremented by one at the
end of the last iteration of the
level.

FS: first-subsequent toggle (bit 55, first word) Refer to page 3. 34.

Code Binary Description

F, (or 0 This bit is set to 1 by the hard-

omitted) ware to indicate that the level

S 1 has been used, and normally
should not be set by the pro-
grammer,

increment or increment offset: (bits 0-23 or 0-9 and sign, bit 24, first word).

Amount to be added to the address. Any programmer sym-
bol may be used. The increment is 24 bits plus sign in
normal indexing, and 10 bits plus sign for offset levels.

total count or total count offset: (bits 34-49 or 34-46, first word).

Total count for this level.. Any programmer symbol may be
used. Count is an unsigned 16-bit field for normal levels,
13 for offset.

97

byte mask/branch address:

1. byte mask - (bits 24-31, second word, first level). The
eight-bit byte mask appears only in a first level or a virtual
first level. A numeric entry mode must be used, and binary
is assumed.

2. branch address - (bits 26-31 and 50-61, second word, higher
level). Any higher level may be a branch level if bit 56 of the
first word is a 1. (See explanation of BL field, above) In
this case no byte mask is provided, and the next pair of index
words is fetched from the location given by the 18-bit branch
address (formed by adjoining the two fields). The programmer
may use a symbolic or absolute address, and HAP forms the
address, splits it, and stores the bits in the proper field.

reset address: (bits 0-23, second word)

The location at which the initial address is stored, before
the increment is added to form the current byte address.
It should normally be omitted and HAP will insert zero.
Any programmer symbol may be used.

current count: (bits 34-49, second word)
The machine uses this location to keep count of the number
of times the increment is used. It should normally be
omitted and zero is inserted by HAP, Any programmer
symbol may be used.

offset: (bits 10-23 and sign, bit 26, first word) offset level only).

The amount of the offset. Any programmer symbol may
be used. The amount of offset is 14 bits plus sign.

RBL: Residual byte length (bits 34-36, first word, offset level only).

If the final byte to be read by an offset level is not eight
bits in length, this three-bit field gives its length. Any
programmer symbol may be used.

Index Format for the Collating Instructions

In general, the collating stream instructions (SMER, SSER, SSEL, and STIR) handle
two kinds of records, defined as follows:

98

1. Simple: Those records headed by their control field and in which the
entire record may be considered as the control field.

2, Offset: Any record that does not meet both requirements for simple.

The SIM/OFF bit of the stream instruction (bit 14) specifies the kind of record to be
handled and is not to be confused with the offset type of indexing (normal-offset bit,
bit 25, first word of each indexing level).

Simple Records

For simple records the normal indexing parameters of the PX, QX, RX, and PXO,
QX0, and RXO format are used to define the record, as follows:

1. Level 1, using PX, defines the record by putting increment = bits per byte,
and total count = bytes per record. If the total number of bits per record
is not a multiple of the number of bits per byte, so that the residual byte
length is not zero, the indexing level itself must be offset. In this case use
PXO instead of PX, and set offset = 0, and RBL to the proper value.

2. Level 2 defines an entire sequence by putting increment = bits per record,
and total count = records per sequence.

Each level must be nested and have the CC bit set. Levels above the second may
be used, if necessary. The IBM 7950 Reference Manual section on the collating instruc-
tions (page 8.7) should be consulted for details.

Offset Records
For offset records a special table of control field defining words is necessary. Each
entry is a full word, must begin at a full-word boundary, and has the format of the
first word of an offset first level of indexing.

The starting address of this special table is placed in the TBA field of the setup
for the collating instruction and ng; the total number of such words (the number of con-
trol subfields) is put in TPN. A zero in TPN is interpreted as 32 and ny must not be
greater than 32.

The first table word defines the record and has the following format:

TX (FL), byte size in increment, count of bytes in record

The second and any subsequent table words needed are used to define the control
field of the record. They have the following format:

TXO (FL), byte size in increment, count of bytes in control field, offset of
control field, RBL

99

Coding of TX and TXO Fields
FL: same as the FL field in PX or PXO.

byte size in increment:

number of bits per byte. Any programmer symbol may be used.

count of bytes in record:

number of bytes per record; applies to first index table word only. Any pro-
grammer symbol may be used.

count of bytes in control field:

number of bytes per control field; applies to all index table words except the
first. Any programmer symbol may be used.

offset of control field:

number of bits from the start of the record; applies to all index table words
except the first. Any programmer symbol may be used.

RBL:

residual byte length. If the final byte to be read is not eight bits in length, this
three-bit field gives its length.

For one instruction, STIR, the control field definition words are decremented by
one, so that word 2 can be used to define the 2-bit "action" field by putting byte size in
inerement = 2, count of bytes in control field = 1, RBL =0, offset of action field =
number of bits from the beginning of record. (See page 8.42 in the IBM 7950 Reference
Manual.)

When the collating instructions are set for offset mode, the record defining words
are fetched from this table, so that the first level indexing words for P, Q, and R are
ignored by the machine. However, the address put into the "index table address' in
SETUP must refer to these dummy first-level words, and not to the second level words
that define a sequence.

Special TEY Format for SQNL

Sequential table lookup (SQNL) performs a series of lookups, each successive lookup
after the first being performed in a table whose address depends on the result of the
previous table. The SQNL table entry mode are specified by a TEY word with the
following format:

TEY (TEC/TCC, TQ/TR), address, offset signed, TEN count, data

100

Coding of TEY Fields

TEC/TCC:

TQ/TR:

address:

offset signed:

TEN count:

data:

(bit 33) If this is the last in the chain of looked-up words, write
TEC, otherwise put TCC, which sets the bit to 1.

(bit 32) If this is TQ (bit = 0), the offset is sent to the Q unit; if
TR, to the R unit.

(bits 0-17) This address is added to the left-hand 18 bits of TE to
form the address of the next word to be looked up. Any programmer
symbol may be used.

(bits 24-31, and sign, bit 23) This quantity is added to the P or Q
effective address. It may be symbolic or absolute, and a one counts
bits in the stream address.

(bits 18-22) The number of bytes to be read out of TE. This
corresponds to TEN in the normal TA set up. Any programmer

symbol may be used.

(bits 34-63) The field for the looked-up data. An octal numeric
entry mode must be used, and the (8) radix cannot be specified.

101

HMCP STATEMENTS

The programmer usually depends on the 7950 machine control program (HMCP) to control
the input-output requirements of his problem program. The HMCP is an integral part
of the 7950 operational system control program (HCP). It has three general functions:

1. Accessing or manipulating a logic file by READ and WRITE or SPACING
commands.

2. Accessing logic records by PUT and TAKE (blocking and unblocking)
commands.

3. Controlling and processing program interrupts.

For a full description of the function and operation of the HMCP, refer to the IBM
7950 HMCP Reference Manual. HMCP commands are described and itemized below.

HMCP MACRO STATEMENTS

The HMCP macro statéments may be divided into the following six categories (refer
to the IBM 7950 HMCP Reference Manual, chapter 6):

Record handling

Tape spacing

Adjust Symbol File Table
Control operations
Interrupt

Assignment

o Ul A W

Record Handling Macro Statements
1. Basic read command
MREAD, SYMBOL(I), CTLWRD(D

where SYMBOL indicates the file concerned, and CTLWRD indicates the
location of the control word to be used.

2. Read with suppressed EOP indication
MREAD(S), SYMBOL(]), CTLWRD(I)
3. Basic write command

MWRITE, SYMBOL(I), CTLWRD(])

102

4. Write with suppressed EOP indication
MWRITE(S), SYMBOL(I), CTLWRD(J)
5. Basic read block.command
MTAKE, SYMBOL(I), REC AREA(I), n

where REC AREA is the record area in core storage, and n is the number
(0-15) of sequential records skipped before the first record is moved.

6. Selective read block command
MSTAKE, SYMBOL(I), REC AREA(I), n
7. Basic write block command
MPUT, SYMBOL(I), REC AREA(])
8. Selective write block command
MSPUT, SYMBOL(I), REC AREA(D), n
Tape Spacing Macro Statements
1. Space block forward
MSPBLOK, SYMBOL(J)
2. Backspace block
MBSBLOK, SYMBOL(I)
3. Space file forward
MSPFILE, SYMBOL(I)
4. Backspace file
MBSFILE, SYMBOL(I)
Adjust Symbol File Table Macro Statements
1. Set odd parity with no single error correction

MODDNEC, SYMBOL(I)

103

2. Set odd parity with single error correction
MODDECC, SYMBOL(])
3. Set even parity with no single error correction
MEVEN, SYMBOL(I)
4. Set high density
MHD, SYMBOL(I)
5. Set low density
MLD, SYMBOL(])
6. Locate a tape unit
MLOCATE, SYMBOL(]), UNIT#
where UNIT# is the 729 tape unit referenced by the SYMBOL entry.
7. Turn indicator light off
MTILF, SYMBOL(I)
Control Operations Macro Statements
1. Close the file
MENDFILE, SYMBOL(D
or
MWEF, SYMBOL(I)
2. End and release the file
MTERMFILE, SYMBOL(])
3. Rewind the file to the first block
MREWIND, SYMBOL(])
4, End the file and rewind

MENDREW, SYMBOL()

104

5. Rewind and unload
MREWUNL, SYMBOL(])
6. Release the file
MRELEASE, SYMBOL(])
7. Copy control word
MCOPYCW, SYMBOL(I), CW ADDR(])

where CW ADDR is the location where the new control word is to be
entered.

8. Sound gong
MGONG, SYMBOL(])
Interrupt Macro Statements
1. Wait for an interrupt
MWAIT, SYMBOL(I), BR ADDR(])
where BR ADDR is the address to which the program will return.
2. Pseudo branch disabled
MPBD, BRANCH ADDRESS(])
3. Pseudo branch enabled
MPBE, BRANCH ADDRESS(I)
4. Interrupt table adjustment

MINTTBL, INDICATOR + DATA ADDRESS, COUNT, CHAIN ADDRESS,
MASK ON

where INDICATOR is the mnemonic of the interrupt indicator.

DATA ADDRESS is the symbolic or absolute address of the new interrupt
table entry.

COUNT is the number of consecutive words to be entered.

CHAIN ADDRESS is a means for replacing non-consecutive words in the
interrupt table, or words in different locations.

MASK ON is used to set the interrupt indicator mask. A one sets them on;
a zero leaves them unchanged,

105

5. Set mask register bit
MSETMASK, INDICATOR, COUNT, CHAIN ADDRESS, MASK ON OR OFF

where MASK ON OR OFF allows the specified mask bits to be set. A one
in this field sets them on; a zero sets them off,

Assignment Macro Statement
1. Level control
MLEVEL, n
where n is the number of the level to be executed, from 1 to 15.
10D AND IOX STATEMENTS

The programmer writes an input-output definition (IOD) statement for each logical input,
output, or work file required for the execution of the program. The compiler interprets
each IOD statement and forms a 15-word Symbol File Table (SFT) which is then used to
control all operations relative to that symbolic file. Refer to the HMCP IOD statement
chart for available IOD statements, their fields, and proper entries.

The programmer has the ability to specify his own routines for processing I-O
interrupts after the standard HMCP processing routines are completed. The addresses
of these special I-0O interrupt routines appear as operands in an IOX statement which
the programmer writes. Each file referenced by an IOD statement requires an 10X
statement for special processing of the interrupts for that file. The format of the IOX
statement is:

EXIT 10X, EOP, ERROR, EE, SIGNAL

Note that, unlike the IOD statement, the order of fields in the IOX statement is fixed.
Commas must be used to separate the fields in both statements. (Refer to IBM 7950
HMCP Reference Manual.)

CONTROL WORD

A control word regulates the movement of data into core storage from external storage
media. The programmer supplies a control word when using the basic read and write
command; he need not do so when using the blocking routines. The control word has
the following general form:

NAME CW(OP2), DWA, COUNT CHAIN

(Refer to the IBM 7950 HMCP Reference Manual.)

106

LOT

SYMBOL

SYMBOL

SYMBOL

10D (TYPE, DISP, USE, F /V /O, PET, CONTROL), EXIT

1QS
READER
PUNCH .
PRINTER .
CONSOLE .
DISK

10D (TYPE, DISP, USE, F /V / O, PET, LEVEL), EXIT

TRACTOR . 1,2, 3,etc.
to 15

(32-46)

IOD (TYPE, DISP, USE, F /V /O, PET, CONTROL, UNIT, MODE, DENSITY), EXIT

TAPE
INPUT . . D1 Ci U1 ODD HIGH
WORK . . D2 C2 U2 ECC LOW
OUTPUT. . EVEN

C7 U7

D15
(28—.31) (60-63) (4'9) (47,4‘8) (51-:54) (18-‘20) (21-'23) (25.,26) (2;1)

(14: 32)

HMCP IOD Statement Chart

HCP STATEMENTS

In a sense, certain commands or statements called 7950 control program (HCP) connect
the object program to the 7950 operational system.

PARAMETER ENTRY STATEMENTS

At program pre-run time, the problem program is brought into memory and any para-
meters for that program are extracted from the parameter file, checked, converted,
and inserted into machine memory by the problem program pre-execution supervisor.
These activities are carried out according to and by means of a Symbol Translator
Table (STT) which is part of the problem program and is constructed by HAP I from
parameter location entry (PLE) and symbolic parameter entry (SPE) statements.

Parameter Location Entry (PLE) Statement
The format of this statement is:

PARAM E
IDENT PLE(TYPE, MUST), LOCATION, M(#), F(FL, FFL)

PARAM IDENT: The symbolic name for the entry in the STT. It corresponds to the
parameter identification to be specified on a parameter card. PARAM IDENT
may be any comnbination of eight or fewer alphanumeric characters (0 to 9, A to
7) of which tne first must be alphabetic.

PLE: The statement mnemonic.

TYPE: The type of parameter. Available types are:

VBU VFL binary unsigned INT ALPHA integer

VBS VFL binary signed FLT Floating point

VOU VFL octal unsigned HCS HARVEST character
VOS VFL octal signed SYM Symbolic

VDU VFL decimal unsigned FDD File data description
VDS VFL decimal signed

MUST: This field indicates whether or not a particular parameter has to be supplied on
parameter cards accompanying the request for the program in order for the
program to function properly. MUST 1ndlcates that the parameter has to be
supplied; a blank or null field indicates that the parameter need not be specified
each time the program is run.

LOCATION: The 24-bit starting memory area into which the translated parameter value
is to be inserted. Parameter values may be inserted anywhere in pre-run pro-
grammer available memory (Lower Bound - 64.0, Upper Bound 60, 000.0).
LOCATION may be written in absolute or symbolic.

108

#: Depending on TYPE, this field indicates the exact or maximum number of
elements which must or may be inserted into memory. The elements are:

Numbers: VBU, VBS, VOU, VOS, VDU, VDS, INT, FLT.

Characters: HCS - No symbol separator for HCS1; comma (,) for numeric
memory image representation of characters.

Symbols: SYM - Each symbol has an SPE entry; several SPE entries may
point to the same PLE entry; all must have the same field length;
symbols are separated by commayg,).

Fields: FDD - Fields are enclosed by parentheses; Primary and secondary
fields are separated by slash (/); the PLE (#) refers to the total
number of fields.

A blank or null PLE (#) implies the maximum of 2048 numbers, characters,
symbols, or fields, —

E This field indicates whether the (#) field is an EXACT or MAXIMUM number of

M numbers, characters, symbols, or fields. _E indicates EXACT; M indicates
MAXIMUM. A blank implies MAXIMUM. However, if the M field is null, the
entire M (#) fields must be null.

F: This symbol serves to identify to HAP III that the following parenthetical entry
contains field length information.

FL: The total field length of a parameter value element, including sign byte and

fraction length, if any. It is applicable to VBU, VBS, VOU, VOS, VDU, VDS,
SYM, and HCS. No blank is allowed in VBU, VBS, VOU, VOS, VDU, and VDS;

a blank in SYM implies a field length of 24 bits; a blank in HCS implies a field :
length of eight bits. A blank entry is not applicable to INT, FLT, and FDD. The
maximum VBU, VBS, VOU, VOS, VDU, VDS, and HCS field length is 64 bits

and the maximum SYM field length is 24 bits.

FFL: This field indicates the fraction field length; that is, if the parameter number is
fractional or mixed (integer plus fraction), it indicates the number of bits of the
total element field length to be used in expressing the converted fraction. In
conversion, the fraction is rounded to fit the fraction field length. For example,
if the unsigned decimal number 5.5 is to be expressed in a total element field
length of eight bits, with a fraction field length of four bits, the binary result is
01011000. A blank entry for fraction field length implies that parameter numbers
will be integers (but not necessarily INT integers). The FFL is not applicable to
INT, FLT, HCS, SYM, or FDD.

109

Symbolic Parameter Entry (SPE) Statement
The format of this statement is:

SYMBOLIC
PARAMETER SPE, Parameter, PLE Name
NAME

Symbolic Parameter Name: Same as for PLE.
SPE: The statement mnemonic.

Parameter: The value of the symbolic parameter is expressed in absolute or symbolic.
It will be assembled as a 24-bit address. The memory insertion field length is
stated in the associated PLE entry; if fewer than 24 bits, the parameter field of
the SPE entry will be right-truncated by the pre-execution supervisor.

PLE Name: The name of the PLE entry which contains memory insertion address, and
so on. The name of the PLE entry will be assembled as an 18-bit address.

Problem Program Parameters
Expression of Parameters
Numeric Parameters: VBU, VBS, VOU, VOS, VDU, VDS

These parameters can consist of one or more numbers, each expressed in
the same form, all either signed or unsigned and with the same resulting
field length and fraction length as specified by parameter location entry in
the Symbol Translator Table of the problem program. If a signed number
is specified by the PLE entry in the Symbol Translator Table, a 1-bit sign
byte becomes part of the resulting binary number. A missing sign implies
a positive value. If a fraction length is specified by the PLE entry in the
Symbol Translator Table, a fraction point and a fraction value (even if the
value is zero) must be given as part of the number.

All numbers are converted to binary and inserted into problem program
memory according to a field length specified in the PLE entry. If any high-
order significant bits are truncated by this process, the conversion is invalid
and the job is rejected.

110

ALPHA Integers: INT

ALPHA integers are signed whole numbers with a fixed 32-bit field length.
An ALPHA2integer may be from 1-9 decimal digits whose absolute value is
less than 277 = 536,870, 912.

0 0 0 1 1 2 2 2
0---4---8-=-2-ufoo-(-m-dom§aem

Integer Value

Sign
Flags

29

Machine Floating Point: FLT

A FLT floating point number is converted to a conventional 64-bit machine
floating point number., It is expressed externally as:

Sign (may be omitted if positive)

Integer - with a value from 1 to 9

Decimal point

Fraction - from 1 to 15 decimal digits

"E" (exponent indicator)

Exponent sign (may be omitted if positive)

Exponent: from 1 to 3 decimal digits whose value is = 308. If the
exponent is zero, 5, 6, and 7 may be omitted.

DU W N

Example: +2.35E - 15
2.35 (= +2.35E + 9)
2.0 (not 2)

Character Parameters: HCS

A character parameter must begin in the card column immediately following
the equal sign which separates it from the parameter identification.

Characters may be expressed in HCS1 or in a decimal or octal memory
image representation. If no indication is given in the parameter statement,
HCS1 is assumed. Each HCS1 character is expressed in one card column;
blank is a legitimate character. Characters in decimal form are expressed
as 1 to 3 digits S 255 which are converted to binary. Characters in octal
form are expressed as 1 to 3 digits £ 377 which are converted to binary,
Characters in octal or decimal are separated by commas (,); blanks are
ignored.

111

To express a character parameter statement in a mixture of HCS1, dec-
imal or octal characters, the following arrangement has been devised:

1. The special digraph "*2" in a character parameter statement means
"decimally represented characters following." The digraph is not
entered into memory.

2. The special digraph ""*3'" in a character parameter statement means
"octally represented characters following. " The digraph is not
entered into memory.

3. The special digraph '"*1'" in a character parameter statement means
"HCS1 characters following. " The digraph is not entered into mem-
ory. Normally, *1 will be used to return to the HCS1 mode of expres-
sion after writing some or all of the characters in the preceding part
of the statement in decimal and/or octal form.

Example: EXAMPLE = NOW IS THE TIME*2,112,120,
EXAMPLE + 1 = 6*¥1 FOR ALL GOOD *

The parameter in problem program memory appears as follows (with
slashes used here for visual separation):

Space N (0] w Space
00000000/00011101/00011110/00100111/00000000/

I S Space T H
00011000/00100010/00000000/00100011/00010111/

E Space T I M
00010100/00000000/00100011/00011000/00011100/

E 112 120 6 Space
00010100/01110000/01111000/00000110/00000000/.

F O R Space A
00010101,/00011110/00 100001,/00000000,/00010000/

L L Space G O
00011011/00011011/00000000/00010110/00011110/

(6] D Space
00011110/00010011,/00000000

In expressing the value of a character parameter statement, the

visual separator '**'' may be used. It is not inserted into memory
and, once recognized, is ignored by the system.

112

File Data Descriptors: FDD

The external form and restrictions on the file data descriptor parameter of
a problem program is specified in Tractor File Data Descriptors, 7950
Operational System Control Program Manual. However, the same rules for
parameter identification specification apply here as apply to other problem
program parameters, e.g., the parameter identification may be any sym-
bolic name.

A file data descriptor parameter is converted to the same internal form
as specified in the above manual. As previously mentioned, the programmer
can set a maximum or exact number of field descriptions that it will accept,
but in no case will a data descriptor parameter be accepted which contains
more than 49 field descriptions.

Checking Parameters by the Pre-Execution Supervisor

In general, the value statement of a JRL problem program parameter must be
consistent with the TYPE specified in the Symbol Translator Table of the program,
For example, if the TYPE is VDU, a plus, minus, or alphabetic (A-Z) character is
invalid (excluding comment of course) and causes a job reject.

The number of elements (numbers, characters, symbols, orfields) must be
equal to or less than the amount specified in the Symbol Translator Table of the pro-
gram.

If a fraction length is specified in the Symbol Translator Table, a fraction point
and a fraction value must be given for each VBU, VBS, VOU, VOS, VDU, VDS number.

If the programmer has specified, by means of the Symbol Translator Table,
that a particular parameter_ must be supplied, failure to do so causes a job reject.

Parameter Checking by a Problem Program

After parameters have been translated, system checked, and inserted into
machine memory at program pre-run time, control is given to the problem program to
perform pre-run functions. One of these functions is the specialized checking of the
parameters that have been supplied to the program.

To facilitate the problem program check of parameters, a Used bit is set in the
Symbol Translator Table entry for each parameter which has been supplied and for each
symbolic parameter value which has been selected. In addition, an "ERROR" bit is
reserved in each Symbol Translator Table entry to enable the problem program to tag
any parameters in error.

At the conclusion of a particular program pre-run, control is returned to the
pre-execution supervisor with an indication of "okay" or 'mot okay". If not okay, the
program-selected reason for reject and any Symbol Translator Table entries, which
are error tagged, are listed and the job is rejected.

113

PROGRAM NAME AND LIMIT STATEMENTS

Every problem assembled for use within the 7950 operational system must contain, at
the beginning of the program deck, a program name statement immediately followed by
limit statements defining the memory limits of the required parts of such a program.

The statements, although a part of the source program, do not occupy any of problem
program available memory in the resulting assembled program. The information con-
tained in the statements is used by the HCP as an aid in handling an assembled program
by (1) library maintenance, which prepares it for addition to the HCP library, (2) the
program pre-execution supervisor, and (3) by the program execution supervisor.

Program Name Statement

The program name statement contains the name of the program and can be used to dif-
ferentiate between various versions of a program.

Program Version Indication
A program name can consist of 1 to 15 alphanumeric characters (A-Z, 0-9), but
to facilitate the naming of two or more versions of the "“same' program (that is, an
operational version and a concurrent improved version in the debug stage or Mod I and
Mod II of a program), a 16th character may be appended to the name. In order to make
this indication easier when a program name consists of fewer than 15 characters, this
character is enclosed in parentheses following the program name.
Program Name Statement Format
The program name statement has the following format:
PGN, Program Name
where PGN is the statement mnemonic, and program name is the name of the program,
from 1 to 15 alphanumeric characters. If there is a version indication, the format also
contains one alphanumeric character between parentheses after the program name, as
follows:
PGN, Program Name (a/n)
Program Limit Statements
Various parts of each program occupy different storage areas at different times. The

storage areas may be either library tape space, memory Space before and after pre-
run, or tape space on the cycle program file.

114

Limit Statement Formats

The formats for the limit statements are:

L LIB, First Address, Last Address + 1
L RUN, First Address, Last Address + 1, Entry Address
L SAVE, First Address, Last Address + 1
L PRERUN, First Address, Last Address + 1, Entry Address
L SFT, First Address, Last Address + 1
L STT, First Address, Last Address + 1
L IDD, First Address, Last Address + 1
L ODD, First Address, Last Address + 1

The meanings of the statement mnemonics are:

LIB Library

RUN Execution portion

SAVE Uncleared memory space
PRERUN Pre-execution housekeeping, etc.
SFT Symbol file table

STT Symbol translator table

IDD Input data descriptor area

ODD Output data descriptor area

The remaining parts of the statements are:

First Address: the starting address of the area; an 18-bit field, usually
symbolic.

Last Address: the check address of the area; an 18-bit field, usually
symbolic.

Entry Address: for run and pre-run only, the entry address into the pro-
gram or routine. A 19-bit field, usually symbolic.

Program Name and Limit Table Coding
The memory words referred to in the following sections are the contents of the first
two card images of the program binary output. (See section entitled "Binary Output

File.") Refer to Figure 10 for a representation of the table in memory constructed
from PGN and limit statements,

115

Word

No.
’ 0 Program Name (1-15 Six-Bit HCS) e3l 1
Program Name (Con'd) ;Version
251Ind 31 ~2 p
Start Address | Check Address rograjm
LIB (18-Bits) (18-Bits) 3 FlagBit
Run |, Entry Address 18 4
Save 5
First Card SFT 6
Image from p.c Run|. Entry Address 7
Binary Output 9 18
STT 8
IDD 9
ODD Je 10
Total No. of
J Segs Y 11
/
Limit Flagf' Bit
Start Address [Check Addres
Seg No. 2 Entry Address . (s-Bits (18—Bgcs) s (12
3 13
Second Card 4 14
Image from
Binary Output 15
l 6 16
7 Y A Y \ 17
Limit Flag
Bit

Figure 10, Program Name - Limit Table in Memory

116

Program Name (PGN)

The program name is converted to six-bit truncated 7950 character set (THS)
coding and stored in word 1 (bits 0-63) and word 2 (bits 0-25) of the Program Name-
Limit Table. If there are fewer than 15 characters in the name, the rightmost character
positions are padded with THS blanks (000 000,5). If there is a version indication, the
version indicator character is converted to THS and stored in word 2 (bits 26-31). If
there is no version indication, a THS blank is stored in this character positior. Word
2 (bits 32-63) are set to binary zeros.

Program LIMIT

The start address and check address of each area are converted to 18-bit
addresses and placed in the count and refill fields, respectively, of the appropriate
word. The entry addresses for RUN and PRERUN are converted to 19-bit addresses
and placed in the value fields of the appropriate words.

Words 3 through 10 contain the limit information for LIB, RUN, SAVE, SFT,
PRERUN, STT, IDD, and ODD (one word each) in that order.

Word 11 contains two addresses: the lowest memory location, and the word
following the highest memory location of the assembled program memory area. For a
program of several segments, words 12 through 17 contain the run limits and entries
for the additional segments. For a single segment program, these entries are blank.

The limit statements, as a set, (but in any order) must immediately follow the
PGN control statement card, Any limit statement contained in the source program
which is not in the set immediately following the PGN card is treated as an invalid
operation.

Error Conditions
PGN Statement Errors
If any of the following error conditions occur, the program listing is error flagged
and the PGN error flag, in the heading of block one of the binary output (word 2, bit 63),
is set to 1. The testing for and detection of errors occur in the order listed below; the
processing of a PGN card in error is terminated after the specified action is taken, the

PGN error flag is set to 1, and the listing is error flagged.

1. Any PGN statement contained in the source program not at the beginning
of the program deck is ignored.

2. If the rest of the card is blank following the PGN, words 1 and 2 are set
to binary zeros.

117

3. If the first nonblank character following PGN is not alphanumeric, words
1 and 2 are set to binary zeros.

4. Tf there are more than 15 alphanumeric characters following PGN, before
the end of the card or before a nonalphanumeric character, word 1 (bits
0-63) and word 2 (bits 0-25) will contain the first 15 characters and word
2 (bits 25-63) will be set to binary zeros.

5. If there is a nonblank, nonalphanumeric character before the end of the
card and it is neither a comma nor an open parenthesis, bits 26-63 of
word 2 are set to binary.zeros.

6. If the nonblank, nonalphanumeric character following the program name
is an open parenthesis and

a. if the next nonblank character is not alphanumeric, or if thereare
no more nonblank characters on the card, bits 26-63 of word 2 are
set to binary zeros.

b. if there is more than one character before a closed parenthesis,
bits 32-63 of word 2 are set to binary zeros.

c. if a nonblank character follows the closed parenthesis, and if it is
not a comma, bits 32-63 of word 2 are set to binary zeros.

7. If the PGN control statement is omitted in the source program, words 1
and 2 are set to binary zeros.

LIMIT Statement Errors

If any of the following error conditions occur, the program listing is error
flagged and the LIM error flag bit (index flag: bit 25) is set to 1 in the appropriate limit
word. The testing for and detection of errors occur in the order listed below; the pro-
cessing of an LIM card in error is terminated after the specified action is taken, the
LIM error flag is set to one, and the listing is error flagged.

1. If any one of the complete set of eight limit statements (LIB, RUN, SAVE,
PRERUN, SFT, STT, IDD, ODD) is repeated, the corresponding limit
word is set to zero.

2. If any of the seven limits (LIB, RUN, PRERUN, SFT, STT, IDD, ODD)
are omitted in the source program, the corresponding limit word is set
to zero.

3. If any address cannot be evaluated, or if any required address field is

omitted, the corresponding field in the appropriate word is set to binary
zeros., 7Zero is not accepted as a valid address.

118

AVAILABLE DEBUG FACILITIES

The HAP III language contains a macro statement for the dumping of specified areas of
memory in specified formats.

Also available to the HAP III programmer is a special purpose statement which enables
the same program storage allocation to be retained regardless of whether the program
is assembled in the debug mode or in the production mode. This statement, called a
DNOP, allows debugging instructions to be performed when in the debug mode or to be
"branched around' when in the production mode.

MHAPDUMP Macro Statement

The MHAPDUMP macro is the method by which a HAP program, during program execu-
tion in a Debug Cycle, can request dumps of specified areas of memory in specified
formats. The form of the macro is as follows:

MHAPDUMP, Start Location, Length, Format

where "Start Location' is the 24-bit address of the memory area to be dumped, '"Length"
is the number of words and bits in the memory area to be dumped (from 0.01 to 4095. 63
words), and "Format'" is one of the options available in the Debug Dump Formatter
program. Without explanation here, the available formats are as follows:

HCS ABS N ABS OCT N
CHAR(ggns BS) (pacs o) FLTPT(0, 080 %)
OCT
VFLBU,FL) (ABS pgc, Ny INSTR aBs
T p# C CcTLWD (TAG, g)
Aps OCT NDXWD SYM
VFL(B,FL, BS) (a5, DEC,)
D## C
STR-INSTR N
DU ABS N
VEL(FL.BS) ([ha0 ¢) sTR-seTUPC’

N
STR—INDEX(g,)
R C

The calling sequence of this macro has the form:

DNOP, tag
CNOP
SIC, #PGMIC
BD, #HAPDP
XW, Start Location, , Length @rmaZ’
tag SYN, #

119

DNOP Statement
The format for this statement is:

DNOP, TAG
where DNOP is the mnemonic and TAG is the symbolic tag provided by the programmer
to identify another instruction in the program. When assembling in the debug mode, the
DNOP is replaced by a NOP; and when assembling in the production mode, the DNOP is
replaced by a B (branch) operation. In other words, the DNOP, TAG is changed to NOP,
TAG in the debug mode, or to B, TAG in the production mode.
Assembling in the Debug and Production Mode

The 7950 assembly program must know whether it is assembling in the debug mode or
in the production mode.

When assembling a program in the debug mode, HAP must:

1. Convert all DNOP, TAG statements to NOP, TAG instructions before
assembling them.

2. Assemble all other HAP instructions conventionally.

3. Construct the HAP Debug Symbol Table and attach it to the binary output
of the assembly.

When assembling a program in the production mode, HAP must:

1. Convert all DNOP, TAG statements to B, TAG instructions before assembling
them.

2. Assemble all other HAP instructions conventionally.
3. Omit construction of the HAP Debug Symbol Table.
HCP MACRO STATEMENTS
The following macro statements will be discussed in this section:
MPPMSG
MENDPRUN
MCHANGE
MENDPGM
ENDPRUN and CHANGE are available for use at problem program Pre-Run time;

ENDPGM and HAPDUMP are available for use at problem program exeuction time;
and PPMSG is available at both Pre-Run and execution time.

120

MPPMSG Macro Statement

A program, in either its Pre-Run routine or during program execution, can cause
messages to be written on the System Log by means of the PPMSG macro. Each pro-
gram is limited to five messages, each with a maximum of 89 character, during Pre-
Run and during program execution. The form of the macro is as follows:

MPPMSG, Location, Length

where ""Location' is an 18-bit address and "Length" is the number of words (4-12) which
the message occupies. Three unused words (to allow space for the message header
supplied by the HCP) must precede the program's message; ""Location' points to the
beginning of this three word area and "Length'" includes the three heading words. The
program's message must consist of 6-bit Type-9 BCD characters. Any unused bits in
the last word of the message can contain 'blanks" (20g) or binary zeros.

The form of the calling sequence resulting from the macro is as follows:

SIC, #AVEIC
BD, #PPMSG
BE, Location (#Length)

MENDPRUN Macro Statement

The ENDPRUN macro is the method by which a program indicates to the HCP the com-
pletion or termination of its Pre-Run routine. Its form is as follows:

MENDPRUN, GO
MENDPRUN, STOP

where "GO" indicates that the program parameters, file data descriptors, etc., are
compatible (to the extent that they are checked by the Pre-Run routine) with each other
and with the program's requirements and thus the processing of the program and its
job can continue; and where "STOP' indicates that some error or inconsistency has
been detected and thus the processing of the program and its job is to be stopped.

The form of the calling sequence resulting from the macro is as follows:
MENDPRUN, GO SIC, #AVEIC
BD, #NDPRE
BE, (#1)
MENDPRUN, STOP SIC, #AVEIC

BD, #NDPRE
BE, (#2)

121

MCHANGE Macro Statement

A program, while in its Pre-Run routine, can change the RUN Limits and Run Entry
Address into the program by means of the CHANGE macro. (The RUN Limits define

the area of memory which is to be saved at the end of Pre-Run and brought into memory
at program execution time; in the interests of minimizing System overhead, Data Reser-
vation and other program work areas should not be included in the area defined by the
program RUN Limits.) The form of the macro is as follows:

MCHANGE, RUNSTART, New Value
MCHANGE, RUNLENG, New Value
MCHANGE, RUNENTRY, New Value

The "New Value" for RUNSTART is an 18-bit address, for RUNENTRY is a 19-bit
address, and for RUNLENG is the length in words of the RUN area.

The form of the calling sequence resulting from the macro is as follows:

MCHANGE, RUNSTART, New Value SIC, #AVEIC
BD, #CHANG
BE, New Value(#1)

MCHANGE, RUNLENG, New Value SIC, #AVEIC
BD, #CHANG
BE, New Value(#2)

MCHANGE, RUNENTRY, New Value SIC, #AVEIC
BD, #CHANG
BE, New Value(#3)

MENDPGM Macro Statement

The ENDPGM macro is the method by which a program indicates to the HCP the com-
pletion, termination, or request for the restart of the program from the beginning.
The form of the macro is as follows:

MENDPGM, GO
MENDPGM, STOP
MENDPGM, REPEAT

where "GO' indicates that the program has been successfully completed and thus the
processing of the job can continue; nSTOP" indicates that the program has detected an
uncorrectable error and thus the processing of the program and job is to be stopped;
and "REPEAT" indicates that the program is to be restarted from the beginning (usually
because of an uncorrectable "write! error or because of an uncorrectable '"read' error
of a block written by the program itself). A program can be restarted only once during
a cycle. The mechanism causes the program to be restarted under the same conditions
as when it was first started; that is, all HCP/MCP setup is repeated, including bringing
the program in from the Cycle Program File again.

122

The form of the calling sequence resulting from the macro is as follows:

MENDPGM, GO SIC, #AVEIC
BD, #NDRUN
BE, (#1)

MENDPGM, STOP SIC, #AVEIC
BD, #NDRUN
BE, (#2)

MENDPGM, REPEAT SIC, #AVEIC
BD, #NDRUN
BE, (#3)

123

ENTRY MODE AND DATA DEFINITION

ENTRY MODE

The characters appearing in the statement on a symbolic card are assumed to be either
alphabetic or numeric. When the characters are numeric, HAP assumes they are written
in the decimal radix. It is often more convenient, however, to write a numeric entry

in another radix, such as octal or binary. By means of the HAP entry mode specification,
the programmer can choose other radices, or even describe other properties of the
source language to HAP.

Within the data description field of an arithmetic mode instruction, the use mode,
field length, and byte size describe characteristics of the data that determine the con-
version of the data and its later use at execution time. These characteristics are com-
piled along with the data. The entry mode, however, describes the form in which the
data appears on the card and; therefore, it need not be compiled. The entry mode may
be employed in one of three ways:

1. As a data definition statement entry mode.
2. As a field specification entry mode.
3. As a parenthetical integer entry mode.

Data Definition Statement Entry Mode

An entry mode may be used to specify the properties of all data in a DD or DDI state-
ment. When used thus, it is enclosed in parentheses and appears immediately before
the DD-or DDI mnemonic in the operation field, as follows:

(EM) DD(dds), D, D', D"

The use of the data definition statement entry mode in entering alphabetic information is
explained in the discussion of '""Data Definition Statements''.

Field Specification Entry Modes

Some entry modes may be used to specify the properties of all the fields in a statement
or to specify the properties of one specific field within the statement. One such entry
mode is the F mode; another is the radix specification mode.

F Entry Mode

The F entry mode may appear only in DD or DDI statements where an unnormalized
floating point or binary use mode has been specified. If the F mode is employed as a
statement entry mode within such a statement, it is written enclosed in parentheses

immediately before the operation code:

(F6) DD (BU), 12.36

124

In this case, the entry mode F implies that the data that follow are written in the
decimal radix, are to be converted to binary, and may contain a decimal fraction por-
tion. The integer following F specifies the number of fractional binary bits that are
desired to the right of the binary output following conversion. In the previous example,
the fractional portion to the right of the binary point was limited to six bits in length.
The converted six-bit fractional portion plus the integer portion is right justified in the
appropriate field (in this case a 64-bit field, so leading zeros are supplied by HAP).

Conflicts between the field length specified and the F entry mode can arise where
binary use mode has been written. If the converted data entry is too large to fit in the
field requested, high-order bits are discarded. Whenever the converted entry is smaller
than the field size specified, the problem is less crucial. High-order zeros are supplied.

In the case of unnormalized floating point DD statements, the rules governing the
interpretation of the data and its conversion are identical to the handling of binary use
mode statements except that the converted data entry is always inserted right justified
in the standard fractional portion of the floating point format. The correct exponent,
as determined by the location of the decimal point, is supplied by HAP.

Single Field Specification: Entry mode F may also be used as a field entry mode;
that is, it may be used to specify the properties of one particular field within a DD or
DDI statement without influencing the treatment of any other field in the same statement.
In everyday programming situations, it is common to write DD statements with several
data entries in each statement. 1In this situation, it is often desirable to use different
entry modes for each field. Thus, the programmer may write:

DD(BU), (F6) 12.36, (F2) 187.5, (F8) 1005. 679

Note that when the F entry mode is used as a field entry mode it is still enclosed in
parentheses and appears first in the field. The meaning is the same as when it appears
as a statement entry mode; however, that meaning applies only to the data entry in the
field in which it appears.

Combined Statement and Field Entry Mode: Both statement entry modes and field
entry modes may appear in the same statement. When there are contradictory properties
by the statement and field entry modes, the field entry mode overrules for the case of
the particular field on hand. Entry modes may not appear in a manner that cause paren-
theses within parentheses. In the following example:

(F6) DD (BU), 12.36, (F3) 166.3, 1776

the F6 entry mode rules for data entry fields 1 and 3, while the F3 specification tem-
porarily overrules the statement entry mode for the second data entry only.

125

Radix Specifier

The radix specifier is another entry mode that may be used as a statement
entry mode or a field entry mode. In any programmer symbolized field except the dds
field, numeric integers and bit addresses may be written-in any radix from 2 through
16. The radix is specified by enclosing the appropriate decimal integer in parentheses
and placing it either before the operation code if statement entry mode action is desired,
or at some appropriate place in the field to which it refers when it is employed as a
field entry mode. (The radix specifier usually is the first item to appear in the field.)

If used as a statement entry mode, the radix specified applies to the entire
statement unless individual fields contain their own radix specifier, in which case the
field entry mode overrules the statement entry mode for that field only. If used as a
field entry mode, the radix applies to the entire field unless it is reset before the end
of the field is reached. If no radix is specified, the base 10 is assumed.

Examples:
1. (8) 573 - 84 + 50 (all numbers are in octal)
2. (2) 11011011100011.111100 (bit address written in binary)

3. (5) SAM - 342 (the symbol SAM is not affected by the radix, having been
previously converted to binary. The integer 324 is written in the number
system of the base 5.)

4. (8) 7436. (10) 60 + 9 (the full word portion of this bit address is written in
octal, whereas the bit address portion and the integer 9 are written in
decimal.)

5. (2) DD (B, 16, 8), (10) - 972, 111011110 (the first D field is written in decimal,
the second one is binary.)

The entry mode radix specifies the radix in which an integer is written on the
card but says nothing about the one to which it is converted. At the completion of every
HAP statement, the radix is automatically reset to 10 and remains 10 for the following
statement unless it is changed therein.

Note: An address expression written in hexadecimal must begin with a numeric
character.

Parenthetical Integer Entry Mode
A final HAP entry mode used as a field entry mode is the parenthetical integer entry
mode. This mode permits any integer or pattern of bits to be OR'ed in any bit positions

of an instruction or pseudo operation that produces binary output. The general format
for this entry mode is:

(-n) An+1

126

The symbol . n represents the bit address of the rightmost bit of the field into which the
integer or bit pattern is to be entered. The integer A, +1 is formed as an unsigned field,
n+1 bits in length (because of the custom of addressing bits starting with zero), and
inserted into the leftmost n+1 bits of the addressed instruction or data entry field by
means of a logical OR type operation. Logical OR is used so that the parenthetical entry
may be combined with the existing contents of the particular field addressed or with
other parenthetical entries.

Crossing Field Lines

The field selected by the parenthetical integer entry mode may cross field
lines within a statement as determined by the format of the statement. However, the
parenthetical entry mode is not permitted to cross statement lines. The specification
of the rightmost boundary of the addressed field via .n must therefore be less than or
equal to 31 in a half-word instruction, or 63 in a full-word instruction. Nevertheless,

a maximum of 24 significant bits can be converted in a parenthetical entry. If necessary,
zeros are added to expand to the desired length. When the bit address is specified as

-n, the parenthetical integer expression is assigned a field length of n+1 and is evaluated
modulo 21, A1l parenthetical fields are regarded as unsigned by HAP, so that a nega-

tive number is compiled as the complement, re 20+l ¢ the magnitude of the number.

In the following instruction:
E+1, (.8) 41

the integer 41 is converted to binary and OR'ed into the first nine bits of the E + I instruc-
tion. In the case of an instruction, the position of the entry is determined by counting
bits from the beginning of the instruction, starting with bit zero, no matter which sub-
field of the instruction the integer entry may be written. Thus, in the VFL instruction
format, the parenthetical integer entry may be appended to the address field, as in this
illustration:

+ (BU), DATA (.23) 4, 20
or it may follow the offset specification as in this illustration:
+ (BU), DATA, 20 (.23) 4

In either use, the result would be the same. The rule is that the parenthetical entry
must follow all other information in the field in which it does appear.

127

In the Address Field of a DD Statement

When a parenthetical integer entry mode appears in the address field of a DD
statement, the n specification names the rightmost bit position relative to the beginning
of the field at hand, not relative to the beginning of the DD statement. In other words,
the parenthetical field position is determined by counting bits from the previous comma
forward. In DD statements with multiple data entries, one or many parenthetical entries
may be appended to each such field. Again in the case of DD only, the .n specification
is restricted to be iess than or equal to the field length as given in the data description
of the particular statement.

Consecutive Parenthetical Integers

There is no limit to the number of consecutive parenthetical integer entries
that may be written. Although one entry can conceivably be made to serve any single
instruction or data field, is it often convenient to write several different integer entry
specifications when one wishes to place numbers or patterns of bits in various positions
within an instruction or data field.

Restrictions on Use in Statements

The parenthetical integer entry mode must appear in a statement that compiles
space in storage. Therefore, this mode cannot be used in pseudo operations that give
instructions to the compiler but result in no binary output (SLC, DDI, END, and so on).
The parenthetical entry mode is a modification that may be appended to a D field or to
any programmer symbolized field (or in place of such a field) which is not enclosed in
parentheses. Thus, an index register specification in an address field may not contain
this entry mode. One exception is permitted in DD statements only. Here, a paren-
thetical integer entry may be written in the data description field which is enclosed in
parentheses. When so written as an appendage to the field length or byte size specifi-
cation (but never as a modification of the use mode), the meaning is similar to that of a
statement entry mode. That is, the parenthetical integer entry acts as if it had been
appended to each of the D fields that follow in the DD statement. This unusual notation
permits the insertion of a pattern of bits in every data entry in a multiple D field DD
statement without the necessity of repeatedly writing the parenthetical entry in every
field. In all other respects the parenthetical entry mode behaves exactly as it does
when used as a field entry mode.

Contents of Parenthetical Expressions

Parenthetical expressions may contain anything that goes in a normal address
field (except bit address), but may not contain other information such as alphabetic
messages or real numbers which are permitted in DD or DDI statements. If a pro-
grammer symbol is used as a parenthetical integer entry, any data description associated
with this symbol has no effect on this particular usage of the symbol. All numbers that
appear in a parenthetical field are converted to binary, never to decimal or floating

point.

128

Radix in Parenthetical Expressions

Radix designators are permitted in parenthetical OR fields, separated by
commas from the bit address designation, and the two may be in any order. Thus,
(-32,8) or (8, . 32) signifies a parenthetical integer entry follows that is written in the
octal radix on the card and is to be inserted in the field whose rightmost boundary is
bit position 32.

Examples:
1. L(BU), INFO(.50,8) 17-JOE+(10)4203(4, .22) - 33303 (. 60)1030
2. L(BU), INFO(7) (.20) 1265 (-30) (10) 138-(6) 43 (. 10) 553

The first example is that of a VFL instruction with three consecutive parenthetical integer
entry expressions appended to the address field. Note that arithmetic between integers
and programmer symbols is permitted in forming the integer entry (17g - J OE+420319)
and that when no radix is specified with a parenthetical entry, the current operative

radix is continued. No attempt is made to reset to 10. The radix is assumed to be 10

if no radix has been previously specified in the field to which the parenthetical entry is
appended, and if no radix has been specified as a statement entry mode.

The second example also illustrates three separate parenthetical integer entries
in the address field. Note that the radix need not be specified within the same set of
parentheses as the bit address specification for the integer entry. The radices which
apply in the previous examples are:

Example Number Radix

1 17 8

1 JOE Does not apply
1 4203 10

1 33303 4

1 1030 4

2 1265 7

2 138 10

2 43 6

2 553 6

All numbers that appear within parentheses are interpreted by HAP as decimal numbers.

Form of Numeric Data Entries

Any number written in a DD statement for conversion by HAP must be capable of being
expressed in 64 binary bits. This means that the largest fixed point quantity that can
be converted by HAP is equal to 264 o approximately 20 decimal digits.

129

The floating point data format is a special case. Here the numeric entry is always
converted to a 48-bit fraction and an 11-bit exponent. Therefore, only decimal quantities
that lie within the range 107308 ¢ 10308 can be expressed in floating point format.

Numeric entries in DD statements may be written in a variety of formats. The
two basic formats are the integer format, such as

982104
and the decimal fraction format, as in
-982104.2

These illustrations are written in the decimal radix. As previously described, an entry
mode in the form of a radix specifier can be employed so that the programmer may
write the data entry in one of several radices. If no sign is written, the number is
assumed to be positive. If a BU or DU use mode is given and a sign is written, the sign
is ignored by HAP.

Some special characters may be appended to data entries to provide further flex-
ibility in notation. Three characters used for this purpose are the E suffix, the S (sign
byte), and the X (exponent) entries.

E Suffix on Data Entries

It is often convenient to express a data entry as a number raised to some
power of 10. The suffix letter E is used for this purpose, as in this example:

670. TE7

The meaning of E is to multiply the number that precedes it by 10 raised to the power
expressed by the number that follows it. This number is always interpreted as a
decimal integer. Thus, the above example is interpreted by HAP to mean 670.7 X 107,
The presence of E automatically implies that the entry is written in the decimal radix.
If a floating point use mode is specified, both the E specification and the position of the
decimal point affect the computation of the exponent.

Sign Byte Entry
The letter S is used to enter information into the sign byte of signed data.
Any integer that follows the S is interpreted by HAP as an octal integer. It is converted

to binary and inserted by means of a logical OR into any previously calculated sign byte.

The sign byte generated depends on the byte size specified in the data descrip-
tion; its composition is illustrated by the following table:

130

Byte Size Sign Byte

S

ST

STU

STUV Z = zone bit
ZSTUV S = sign bit
ZZSTUV T

ZZZSTUV U flag bits
ZZ7Z7ZSTUV A%

O 3O U W

A byte size of 1 means that the sign byte is composed only of the sign bit; hence, an

octal 1 is OR'ed into the sign bit position and creates a negative sign. If the specified
byte size had been 4, the suffix S10 would be required to create a negative sign. Because
the logical OR is used for the insertion, the sign byte sign position can be made negative
by either a negative sign written with the numeric entry or by an S-type entry.

Exponent Entry

The suffix letter x may be used if the programmer wishes to create his own
exponent for a floating point data entry. The number following the x is interpreted by
HAP as a decimal integer and is ¢onverted to binary and compiled as the machine ex-
ponent of the floating point number to which it is attached. It overrules and replaces
the exponent computed by HAP in the conversion process, which is completely eradicated
by the replacement process.

DATA DEFINITION

Data are entered and defined in the program by means of certain statements called data
definition statements. In the streaming mode, the setup instruction might be considered
as a data definition statement. More generally (and in the arithmetic mode particularly),
data are identified by some variation of the DD statement.

Data Definition (DD) Statement

The data definition statement provides the programmer with the basic method of entering
and defining data. Its format is:

DD (dds), D, D', D"
Operation Field dds

The dds in the operation field is identical in form and content to that previously
described in the section entitled ""Data Description (dds)'' and must be written in every
DD statement. Thus, a data description may be attached to a symbol at the point of
definition of the symbol, or it may be written as a part of an instruction referring to
the symbol.

131

The data description is invoked whenever the symbol appearing in the name
field of the data defining statement is used in the principal address field of a 7950
instruction. Therefore, a description set down at the point of definition of the symbol
is overruled by a data description appearing in the 7950 instruction that references the
symbol. Whenever overruling occurs, the entire data description specifed in the data
defining statement is overruled. Overruling applies only to the instruction at hand.
Thus, the instruction:

+ (BU), SOMEMORE

explicitly specifies data which are binary unsigned, field length 64, and byte size 8

(field length and byte size derived from null field conventions) to be compiled with this
statement, regardless of the data description written in the statement where SOMEMORE
was defined.

Address Fields

The address fields D, D', and so on, shown in the format above, represent
separate numeric entries which the programmer wishes defined by HAP and converted
to one of several 7950 internal forms. Several numeric entries may be written in one
DD statement, separated by commas. D fields are signed fields if use mode B, D, N,
or U is given, (see section entitled "Data Description (dds)"), if no sign is written, the
positive sign is assumed. The fields are converted and allocated locations in storage
sequentially as separate pieces of data, each having the data description specified. If
too many D fields are written to fit on one card, continuation cards may be used to extend
the statement field of the DD statement. If a symbol appears in the name field, it is
attached only to the first piece of data compiled. When one wishes to name each of the
entries, each must be presented in a separate DD statement with its own name.

Programmer symbols may not appear in the address field of a DD statement
(VF or EXT may be used for this purpose), because certain letters have fixed meanings
not subject to programmer control when they appear in a D field. Bit addresses, simi-
larly, are not permitted in a D field. HAP always assumes that a numeric entry is
written in the decimal radix; therefore, in a DD statement, the programmer need specify
only the form to which he wishes his data entry converted. This is accomplished by the
use mode in the operation field dds. All seven use modes (N, U, B, BU, D, DU, and
P) are acceptable in a DD statement.

DD Statement Use Modes
Use Mode N: If use mode N is specified in a DD statement, as in
FLOATIT DD(N), 1000
the data entry 1000 is converted to its normalized floating point equivalent (in HAP

format), and placed in the full-word storage location henceforth symbolically referred
to as FLOATIT. Note that DD conforms to the normal HAP rounding upward conventions.

132

Use Mode U: If use mode U had been specified in the dds of the above
example, 1000 would have been converted to floating point in the same fashion, but not
normalized.

Use Mode B: Use mode B converts the numeric entry from decimal to entry.
The sign byte is the low-order byte of the converted number, equal in size to the byte
size specified in the dds. The converted entry is placed in a field equal in length to the
number of bits specified in the field length of the dds. If the field length specifies a
field that is too small to contain the converted entry, the number is inserted in the field
with the unit position aligned with the rightmost bit. Any high-order bits that do not fit
in the field are discarded. No rounding up of the location counter takes place. The field
length specified is added to the current setting of the location counter and the numeric
entry is converted and inserted in this field.

Use Mode BU: Use mode BU is essentially the same as B except that the
entry is considered to be unsigned, and no sign byte is created. The entry is converted
and inserted in a field of the length specified in the dds. The byte size specified has no
effect on the conversion since an unsigned operation has been called for and no sign byte
is compiled.

Use Mode D: When use mode D is specified, a character-by-character type
of conversion is called for, wherein each decimal digit in the numeric entry is converted
to the four-bit binary coded decimal form. If the byte size specified in the dds is greater
than 4, high-order zeros are added. If the byte size requested is less than 4, truncation
occurs.

Use Mode DU: If use mode DU is specified, the conversion process is the
same as for D. However, no sign byte is compiled, as none is required for the unsigned
decimal mode.

To illustrate the differences between the binary and decimal modes, consider
the following HAP statements and the resulting fields compiled in storage:

HAP Statements Field Compiled
DD(BU, 4, 1) 1 0001
DD(BU, 12, 4), 12 000000010010

Use Mode P: The P mode references the dds in another statement where the
use mode must be N, U, B, BU, D, or DU. Once the reference is made, the conversion

performed by HAP proceeds according to the rules already outlined.

133

Entering Alphabetic Information

To enter alphabetic information by means of a DD statement, a special entry mode sub-
field must be written, enclosed in parentheses immediately before the operation code as

shown in this format:
(EM) DD (dds), D, D', D', ...

When an entry mode is used in connection with the data of a DD or DDI statement,
it may in this instance (but only in this instance) designate that alphabetic information is
to be compiled.

A second character, known as the end-of-statement character, is entered within
parentheses following the EM. Its presence informs HAP to perform the desired con-
version until this character is reached in the message. The end-of-statement character
may be any acceptable card code character except), ', ?, and blank. This character is
not compiled. (See the section entitled "Sample DD Statement. ')

In the data description (dds), the use mode and field length do not affect the con-
version of the alphabetic characters but are important later if another 7950 instruction
refers to this alphabetic data and does not overrule the implied dds. The byte size
affects the conversion of the characters.

There are five entry modes available for use in entering alphabetic or alphanumeric
messages. Each entry mode serves two functions: it tells HAP that a message is being
entered, and it describes the character set being used and prescribes the type of con-
version required. When alphabetic information is specified, only one entry per DD
statement is permitted.

Entry Mode A

Entry mode A signals the appearance of a message composed only of char-
acter drawn from the standard IBM BCD character set. If byte size 6 is specified in
the data description field (dds), the characters are converted to the six-bit IBM tape
BCD format. If byte size 8 is given, two leading zeros are added to each six-bit byte

during the conversion process.
Entry Mode IQS

IQS tells HAP that the characters in the message are drawn from the 120-
character set appropriate to the console typewriter or printer, and are to be converted
to their eight-bit binary equivalents.

Note: Byte size 8 is normally designated. If byte size 6 is specified, the
two leading bits, although valid, will be dropped.

134

Entry Mode CC

CC is the mnemonic for card code, and delineates that set of characters known
as IBM Hollerith characters. These characters are converted to 12-bit bytes, where
each byte reflects the multiple punch actually read in the appropriate card column. Byte
size 12 must be specified.

Entry Mode Type 9 (T9)

Alphabetic and numeric information are identical in either T9 or A entry mode.
The only difference between the two modes is in the representation of special characters,
as follows:

Type 9 A
HAP Sym- Sym-

Meaning or Use bol | Octal Punch || bol BCD Punch
Add + 40 11 + 60 12
Subtract - 60 12 - 40 11
Begin subfield (53 11-3-38 (34 0-4-8
End subfield) 54 |11 -4-8]|) 74 12-4-8
System symbol # 13 3-8|| $ 53 11-3-38
Divide / 21 0-1 / 21 0-1
Multiply * 32 0-2-38 * 54 11-4-8
Bit address

indicator . 73 12 -3-38 . 73 12-3-38
Instruction

separator ? 74 12 -4-8 ; 52 11 -0
Subfield separator , 34 0-4-38 s 33 0-3-8
Begin comment ' 33 |0-3-8 @ 14 4-8

(unassigned) = 14 4 -8 = 13 3-8

Note the different characters used in each entry mode to indicate a system
symbol, an instruction separator and a begin comment mark. A byte size of either 6
or 8 may be specified. If a byte size of 8 is called for, two leading zeros are added to
each six-bit byte during the conversion process.

Entry Mode HCS

The 7950 character set (HCS) is the name given to a set of alphabetic, numeric,
and special character symbols uniquely defined for the 7950 system. Each symbol may
be represented by a six-bit binary code. The following table shows the relationship
between HCS and type 9 entry mode, using octal notation to represent the six-bit bytes.
Note that either a six-bit or an eight-bit byte may be specified for HCS. If an eight-bit
byte is called for, two leading zeros are added to each six-bit byte during the conversion
process.

135

Symbol HCS T9 Symbol HCS T9 | Symbol HCS T9
0 60 12 A 20 61 b 0 20
1 61 1 B 21 62) 6 73
2 62 2 C 22 63 - 7 60
3 63 3 D 23 64 (10 53
4 64 4 E 24 65) 11 54
5 65 5 F 25 66 + 12 40
6 66 6 G 26 67 / 13 21
7 67 7 H 27 70 ! 14 33
8 70 10 I 30 71 , 15 34
9 71 11 J 31 41 # 16 13

K 32 42 = 17 14
L 33 43 * 76 32
M 34 44 ? 77 74
N 35 45
o) 36 46
P 37 47
Q 40 50
R 41 51
S 42 22
T 43 23
U 44 24
A% 45 25
W 46 26
X 47 27
Y 50 30
y/ 51 31

Sample DD Statement
If the following statement were encountered by HAP:
(AQ) DD (BU, 60, 6), STOP HERE Q

the compiler interprets the A entry mode to mean that the alphabetic data entry on this
card is composed of BCD characters which are to be converted to IBM tape BCD format.
The second character in the entry mode subfield is the end-of-statement character.
Blanks that appear in the message are retained, converted, and stored correctly. A
blank between the comma marking the end of the operation field and the first alphabetic
character is converted.

If the byte size specified is greater than 6, leading zeros are supplied by
HAP. If the byte size is less than 6, leading bits are truncated.

136

If IQS entry mode is specified, the conversion process is similar except that
the characters are converted to the eight-bit inquiry station code. When the byte size
specified is greater than 8, leading zeros are inserted; when the byte size is less than
8, leading bits are truncated. Note that in a DD statement, the byte size of converted
characters may range from 1 through 12, as specified in the dds. However, the byte
size in a 7950 statement may range from 1 through 8 because the byte size field is
restricted to three bits in length. Therefore, byte size is considered modulo 8 by HAP.

Data Definition Immediate (DDI) Statement

The DDI statement performs the same basic function as DD; that is, it provides the
mechanism for entering and converting data. The data, however, if the DDI statement
is used, are specifically intended to be used as an immediate operand in an immediate
instruction.

More specifically, DDI is the only convenient method for compiling decimal infor-
mation in the address field of an immediate instruction. Data in an immediate address

are always converted to binary, never to decimal, regardless of the use mode specified
in the data description.

The format of the DDI statement is:
ANYNAME DDI (dds), D

The data entry in a DDI statement is converted according to the use mode specified
in the dds. The resulting field cannot exceed 24 bits in length; if it does, high-order
bits are lost. This field is inserted, right-justified, in a 24-bit field in the HAP symbol
table. The field length specified in the dds is ignored at this point. When a 7950 immediate
operation references this data through the symbol that appears as the name of the DDI
statement, a field of the length specified in the implied dds or the overruling dds (if one
is given) is extracted from the right end of the appropriate symbol table entry and is
inserted left-justified in the instruction address field.

Sample DDI Statement

In the following example

IDATA DDI(DU, 4, 4), 4
LI, IDATA

the converted field created in the symbol table is
000000000000000000000100
while the 24-bit address field of the load immediate instruction will be compiled as:

010000000000000000000000

137

If the load immediate instruction had contained an overruling dds, such as:
LI (DU, 8, 4), IDATA
the address field, after compilation would contain the following:

000001000000000000000000

If a signed use mode is given, such as:
LI (D, 8, 4), --IDATA

then the symbol table entry would be
000000000000000000000100

and the instruction address field would be compiled as follows:

010010000000000000000000

Restrictions on DDI Statement

If the length of the converted data entry is greater than the field length specified,
high-order bits (from the left) are truncated before insertion into the address field. Only
the decimal or binary use modes, and the P mode, are allowed in a DDI statement. The
floating point use modes are not appropriate in immediate addressing, and hence are not
acceptable. Any entry mode that is allowed in a DD statement, including the alphabetic
entry mode, is accepted in a DDI statement as well. If the field length is null in the
specified dds, 24 is assumed by HAP.

Thus, DDI is purely definitive in character; it compiles no space or binary
output in storage. Data are converted and entered only in the symbol table. Data so

defined that are referenced symbolically by a 7950 instruction are also inserted in the
address field of that instruction.

Synonym (SYN) Statement
The synonym statement (SYN) provides another mechanism for defining a symbol in
terms of an integer, a bit address, or another symbol. The other symbol eventually is

defined as an integer or bit address. The format of the SYN statement is:

ANYNAME SYN (dds), Y

When one writes
A SYN, 6

the meaning is that whenever A is written in the program, the effect is the same as if 6
had been written. The meaning of SYN is always one of exact substitution.

138

SYN Address and (dds)

The entry in the address field of the SYN statement is converted to binary and
inserted right-justified in a 24-bit field in the symbol table. In this process, SYN is
similar to DDI, in that neither statement compiles space in storage.

SYN statements may have their own data description; any dds that appears in
a SYN is attached to the symbol in the name field, but in no way affects the conversion
of the entry in the address field. When a 7950 instruction references the symbolic name
of a SYN statement, the dds attached to that symbol is invoked as in DD. If no dds is
given in a SYN statement, none is attached to the symbolic name. Then a dds must be
explicitly written in an instruction that references a symbol defined by such a SYN state-
ment.

Index Registers with SYN

Index registers may be attached to the expression appearing in the address
field of a SYN statement. Thus, in the SYN statement:

A SYN, B (#3)

the index register specification is attached to the address expression, so that, the
instruction

+(N), A
is synonymous with
+ (N), B (#3)
If an index register is specified in the principal address field of the instruction proper,
it overrules any other index register specification for that instruction only. In the above
example, if the normalized floating point add instruction had been written:
+(N), A (#6)
this would be synonymous with
+ (N), B (#6)
Circular Definition

A circular definition may arise through the use of a sequence of SYN cards,

as:
A SYN, B
B SYN, C
C SYN, A

All symbols in such a sequence are assigned a value of 0 by HAP.

139

Data Reservation (DR) Statement
This statement has the following format:
A DR (dds), N

The DR reserves storage space for data. It causes N fields of the kind described in the
data description to be reserved; that is, the location counter is skipped forward a quantity
in bits equal to the product of N and the field length specified in the dds. If N is negative,
no reservation is made and the location counter is not adjusted. Any symbol A appearing
in the name field of a DR statement is attached to the first field reserved, as is the data
description. Thereafter, whenever A appears as the principal address in an instruction,
this dds is invoked in the same manner as with DD and DDI statements. Thus:

SAVE DR (BU, 8, 8), 10

reserves ten 8-bit fields by skipping the location counter forward 80 bits. The dds
(BU, 8, 8) is attached to SAVE and SAVE is attached to the first eight-bit field reserved.

When either one of the floating point use modes is given in the data description of
the DR statement, the floating point data block being reserved is forced to begin at a full
word address. HAP automatically rounds the location counter to the next full-word
address to accomplish this; thereby insuring that each floating point data word begins at
a full-word address.

If no dds is given, the symbol appearing in the name field is assigned the normalized
floating point use mode by HAP.

Data Reservation and Set to Zero (DRZ) Statement

By appending a Z to the DR mnemonic, a slightly different statement, data reservation
and set to zero, is formed. The format is:

A DRZ (dds), N

This operation is identical to DR, but it performs the additional function of setting
all reserved fields to zero. DR reserves fields but makes no attempt to clear them to

zZero.
Extract (EXT) Statement
The general form of this statement is:
A EXT, (I, J, COUNT) STATEMENT

It differs in form from the other data definition statements but it is included in this
class because it does manipulate or define data.

140

The extract statement as given in its form above has the following meaning:

First, compile STATEMENT as if it were any acceptable 7950 instruction or pseudo
operation that produces binary output. Then extract from this statement the subfield that
is equal in length to the number of bits specified by COUNT. The subfield begins at bit
I of that statement and ends at bit J. The extracted subfield is then actually compiled
in the position in the code where the EXT occurs.

Any symbol A appearing in the name field is assigned a data description BU, a field
length equal to COUNT (or J - I + 1), and a byte size of 8, and is attached to the subfield
compiled.

Any two of the three parameters, I, J, and COUNT, are sufficient to adequately
describe the subfield to be extracted. All three can be written if the programmer so
desires, but if fewer than three are written, the usual right to left dropout rules, as in
the dds. Therefore, the permissible alternatives are:

(I, J, COUNT)
I

(I, , COUNT)
(, J, COUNT)

The terms I, J, and COUNT may contain any number of symbolic integers. A bit address
is improper, however, and is treated as a 24-bit binary integer.

If EXT is used to specify the extraction of anything beyond the range of the single
statement that follows it, up to 64 zeros are added.

Example:
EXT (18, 47) +(B, 18, 7), 73.16

First the full word instruction + (B, 18, 7), 73.16 is formed. Then bits 18 through
47 (the first bit in the instruction is numbered zero, according to custom) are extracted
and placed in the program being compiled. The dds (BU, 30, 8) is formed. The location
counter is advanced 30 bits.

RULES FOR DD STATEMENTS.
The acceptable formats for entering data can be classified according to the use mode

written in the data description field of the DD statement. Normally, an element listed
in the general format may be omitted if it is not needed to specify the data.

141

The data entries in a DD statement are restricted to real numbers. Bit addresses
would have no meaning here and are not allowed. In addition, programmer symbols are
not permitted. As a special case, where normalized floating point has been specified in
the data description, the system symbols for certain mathematical constants are accepted.

Arithmetic expressions (that is, combination of two or more numbers by means of
addition, subtraction, multiplication, and division to form one data entry) are permitted
in all DD statements regardless of the use mode specified. Such arithmetic is specified
using standard symbols; that is, addition (+); subtraction (-), multiplication (*), and
division (/). HAP performs the arithmetic and compiles a single constant. Multiplications
are performed first, proceeding from left to right, and then the additions and subtractions

are completed.

HAP does the necessary bookkeeping to insure that floating point data entries are
always compiled at addressable full words; the location counter is rounded up to the
nearest full word, if necessary, in order to accomplish this.

Rules are given below for DD statements used to enter data in floating point and
VFL form.

Normalized Floating Point
Format:

Name: DD(N), #XX...XX.X...XXE+8n
The number is converted to a normalized floating binary number consisting of an 11-bit
signed exponent, a 48-bit fraction, and a 4-bit sign byte. If no sign byte has been
entered by means of an S, the sign preceding the number is used with the flag bit set to
zero. If a different binary exponent is desired, it can be entered following an x, as
follows:
Format:

Name: DD(N), +XX...XX.X...xxEtyyySnXzzz

Examples:

1. DD(N), 54.73 E 4

54,73 x 104 is converted to floating binary. The sign bit is zero
(= plus), and the flag bits are zero (that is, entire sign byte is zero).

2. DD(N), -54.73 E 4
or DD(N), 54.73 E 4 S 10

In this case the sign bit is set to one (negative) and the flag bits are
Zero.

142

3. DD(N), -54.73 E4S5

The sign bit is one, since the number is negative, and flag bits T and
V are one. U is zero.

4. DD(N), 1, 3E-5, -45.7, 128 17

This example illustrates the multiple entry feature. This single DD
statement compiles four 64-bit floating point words and advances the
location counter accordingly.

5. DD(N), 1/3, 472*351, 4-7*5/21 S 4
Note: Sign byte entered in last D field.
6. DD(N), 27.9/31.4/12/14 E 5, 4+3*7/5%6

The number produced in the first case is:

27.9
31.4 X 12 X 14 X 10°

3XT7TX6
5

7. As an additional convenience, certain symbols are defined by which con-
stants involving irrational numbers can be entered:

in the second: 4 +

#P1 m

#E e

#M logqgye

#N logg2

#INF » (infinity)

Thus, one can enter a number such as 4 m X 107 by writing:
DD(N), 4 * #PI, 1E - 7.
Unnormalized Floating Point

Format:

Name (Fn)DD(U), +xx...X.X...xE+yyySn X+n
or

DD(U), (Fn) *xx...xx.X...xE+yyySnX+n, (Fn) +xx...etc.

143

The number is converted to binary with the correct number of binary fractional places
as specified by the (Fn) entry mode; and a correct exponent is computed and entered.
This exponent is overruled and replaced by that following the X if X is used (necessary
only if the programmer desires an incorrect exponent). The entry mode (Fn) can come
before the DD, in which case it applies to all D fields of the statement, or it may form
the first element of a D field, in which case it overrules the one given before the DD.
Either the X or the S or both may be omitted or their order may be interchanged.
Omitting S has the same effect here as in the normalized case. Omitting X allows the
correct exponent to remain as computed. Leaving out the sign, decimal point, or E is

permitted as in normalized numbers.

Examples:
1. DD(U), (F21) -343.7, (F10) 432

Two numbers are compiled. In the first, 343 is converted as an
integer and . 7 is converted to a 21-bit fraction. They are joined
and placed in the rightmost bits of the fraction portion of the
floating point word, and the eorrect exponent (in this case 27) and
sign are supplied. In the second D field, 432 is converted to a
binary integer. Because ten fractional bits are specified, but no
decimal fraction is written, the ten rightmost bits of the fraction
field are set to zero and the number is entered with its rightmost

bit in position 50.
2. (F15)DD(U), 767.52, 767.52X-12 S11

The (F15) applies to both D fields. In the second, the computed
exponent is overruled by the specified one and the number is made

negative by means of the specified sign byte.

3. (F15)DD(U), 767.52, (F20) 767.52 S11 X-12, 398
This example is identical to example 2 except that in the second
field, the operation entry mode (F15) is overruled by a field entry

mode (F20), and the order of S and X is interchanged, which makes
no difference. (F15) still applies to 398, however.

Missing Entry Mode
If the entry mode is omitted, two cases are possible:
1. If the number entered is an integer, (F0) is understood.

2. If the number entered is a decimal fraction, it is converted to an
unnormalized floating point number.

144

Missing Entry Mode Examples
1. DD(U), 17, 17X-35

In the first case, 17 is converted to binary and placed in the fraction
with its rightmost bit in position 60 and an exponent of 48 supplied.
In the second field, the same thing is done except that the exponent
is set to -35.

2. DD(U), 17.5

In this example 17.5 is converted to normalized floating binary

and stored as such. However, instructions whose normalization
bits depend on the symbol in the name field of this pseudo operation
have them set to unnormalized.

Note: 17 E S5 is an integer and will be recognized as such.
17 E-5 is a decimal fraction and will be normalized.
17.5 E5 is an integer but will be treated as a fraction and normalized.
Thus, a normalized integer can be assigned use mode
"unnormalized. "

An integer greater than 248 is stored as a normalized number.
Binary Signed VFL

Formats:

(Fn)DD(B, FL, BS), txX...X.X...xE+yy Sn
DD(B, FL, BS), (Fn) +xx...x.X...xE+yy Sn
(R)DD(B, FL, BS), +xX...xx Sn
DD(B, FL, BS), (R) +xx...xx Sn

A data definition of binary signed data may have either (Fn) or (R) entry modes,
but not both at the same time. (Fn) implies that the data following it are written in a
decimal radix, whereas (R) implies that the number following it is an integer. An
integer subject to a radix entry mode must be written without the aid of E because E is
not defined for a radix other than 10. A decimal fraction must have a controlling (Fn)
entry mode. There is no easy way to convert to a fixed point number without specifying
the binary scaling. In the data description either the field length or byte size or both
may be omitted. The implied field length in this case is 64, the implied byte size is 1.
The sign byte need not be specified unless the programmer desires to have flag or zone
bits different from zero. Note that the sign bit position changes for a byte size less
than 4. To make a number negative, specify the sign byte as:

BS=1, S1
BS = 2, S2
BS = 3, S4
BS = 4, S10

145

If 2 number has no entry mode at all, it must be a decimal integer, but may in this case
be written with the aid of the E notation.

Examples:
1. (F7)DD(B, , 4), .005E3813, -17, 143. 2811, (8) 77760, 777
Implied field length is 64. Octal specification in the fourth D field
overrules (F7) written before DD, but (F7) still applies to 777.
2. (2)DD(B, 16, 8) 1101018377, (10) - 972, 111011108201
Binary entry, overruled in only the second D field.
3. (F12) DD(B, 24), 1.324E3, -72, 1E-4, 3.4E-4S1
Implied byte size is 1.
4. DD(B), 1489, -1272, 1491, (F13) -972.16, 1394881, 12E5

Decimal integers, except where a field entry mode is written.
Binary Unsigned VFL

Formats:

(Fn)DD(BU, FL, BS), xXX...X.X... xEt+yy

DD(BU, FL, BS), (Fn) ¥X...X.X.. .xE+yy

(R)DD(BU, FL, BS), xX...XX

DD(BU, FL, BS), (R) xx...xX

(Az)DD(BU, FL, BS), alphabetic information to ''z"
(IQSz)DD(BU, FL, BS), alphabetic information to "'z"
(Pz)DD(BU, FL, BS), alphabetic information to "'z"
(CCz)DD(BU, FL, BS), alphabetic information to ''z"

Numeric entry is exactly the same as in binary signed data except that no sign
byte is formed, and if the byte size is left out of the dds, it is set to 8. Any sign or
sign byte (with §) written with mode BU is ignored. The alphabetic modes are permitted
here; they are explained in the section entitled "Entry Mode." Note that the alphabetic
entry mode must precede the DD, that there can be only one D field per statement, and
that if the field length is omitted, it is set equal to 64. If the byte size is omitted in
entry mode CC, BS = 12 is implied.

Examples:

1. (F13)DD(BU, 30), 17.2, 183, (8) 70707

146

2. (A*)DD(BU, 48, 6), GLORIOUS FRIDAY, THE 13TH. *

The mode and field length have no effect on the conversion and
storage; they are used in compiling instructions that refer to the
name of this statement. Field length 48 indicates that the pro-
grammer wants to process these characters in groups of eight.

3. (IQSS)DD(BU, 32, 8) EIGHT BIT BYTES
Decimal Signed VFL
Formats:

(R)DD(D, FL, BS), +xx...xxx Sn
DD(D, FL, BS), + (R) xx...xx Sn
DD(D, FL, BS), +xx...xxEyy Sn
(Fn) has no meaning for mode = D or DU.

The two decimal modes in DD and DDI statements represent the only cases in
which HAP converts numbers to an internal decimal radix. The radix entry mode
indicates the radix in which the numbers are written on the card. Thus, it is possible
to write an integer in binary or octal and have it converted to decimal for machine use.
If no entry mode is given, decimal to decimal is implied. The E notation can be used
to multiply an integer by positive powers of 10. If either the field length or byte size
is omitted, the implied values are FL = 64, and BS = 4.

Examples:
1. DD(D), -9534812, + 173E5, 18E10S13
Field length = 64; byte size = 4. A 4-bit sign byte is formed.
Decimal-to-decimal conversion.
2. (2)DD(D, 20), 11101000110187
Byte size = 4. Binary-to-decimal conversion.
3. DD(D, , 8), 432E3

Field length = 64. Decimal-to-decimal conversion.

Four binary zeros are inserted in the zone positions of each byte.

147

Decimal Unsigned VFL
Formats:

(R)DD(DU, FL, BS), xX...XX

DD(DU, FL, BS), (R) xx...XX

DD(DU, FL, BS), xx...xxxEyyy

(Az)DD(DU, FL, BS), alphabetic information to A
(IQSz)DD(DU, FL, BS), alphabetic information to A

The numeric conversion is just as in decimal signed mode except for the omission
of the sign byte. Alphabetic conversion is exactly as in the binary unsigned mode, except
that instructions referring to these data are compiled as decimal operations. For alpha-
betic entry, implied field length is equal to byte size.

Examples:
1. DD(DU), 8430051, (8) 77241, 82E10
Field length = 64; byte size = 4.
An octal-to-decimal conversion is inserted between two decimal-
to~-decimal conversions.
2. (IQS3)DD(DU, , 8), SEEK AND SIGNAL 3

Field length = 8.

Summary of Rules for DD Statements

Entry Mode Appropriate Use Modes

Fn U, B, BU

R B, BU, D, DU, N, U
A BU, DU, U

1QS BU, DU, U

CcC BU, DU, U

T9 BU, DU, U

HCS BU, DU, U

Note: Use mode N should have no entry mode.

Special Field Entry Appropriate Use Modes
S N, U, B, D
X N, U

148

The floating decimal notation, using E to designate multiplication by powers of 10,
is appropriate to all modes.

If the field length is omitted from the dds, it is assigned a value of 64. The maxi-
mum permissible field length for a DD statement is 64.

The parenthetical integer entry mode is appropriate in any DD statement, no matter
what use mode has been written. The following examples illustrate the use of general
parenthetical integer entry with DD:

1. DD(N), 572(.59)1, 347.89E12 (.63, 2)1011

In the second case the sign byte is specified by means of (. n)
entry.

2. DD(B), (F9) -35.7(.24)SAM + 4

The address SAM + 4 is placed in the first part of the 64-bit field,
followed by the converted humber -35. 7.

3. (8)DD(BU), 4762(.10)707(10, .20)34
707 is written in octal, 34 in decimal.
4. DD(BU, 12(.2)7, 8), 787, 788

All numerals are in decimal. Binary 111 is OR'ed into the three
high-order bits of each 12-bit data field created.

149

CONTROL STATEMENTS

Control statements are used in HAP to provide the programmer with a simple method

of controlling the program. Control statements are a kind of pseudo operation, so named
because they are not machine instructions; they do not exist in machine circuitry, but
they resemble machine instructions in format. The general format is:

NAME POP (dds), A ()

The pseudo operation or control statement code field appears first in the statement.
The operation mnemonic is symbolized by POP. A dds, if appropriate, appears as a
subfield of the operation field and is enclosed in parentheses.

The address field may contain a wide variety of entries that are not always addresses
in the strict sense of the word. Some addresses can include index register specifications.

INPUT-OUTPUT CONTROL STATEMENTS

The programmer usually avails himself of the facilities of the 7950 machine control pro-
gram (HMCP) in order to satisfy the input-output requirements of his problem program
at execution time. In order to control the output of the assembly program, he uses the
HAP printing and punching control statements. These statements, described previously,

are listed below.

Printing Control Statements

PRNS Print Single-Spaced
PRND Print Double-Spaced
NOPRNT No Printing
SPNUS Suppress Printing of Unused Symbols
PRNID (or
PRINID) Print Identification

Punching Control Statements

PUNFUL Punch Full Cards
PUNNOR Punch Normally
PUNORG Punch Origin

NOPUN No Punch

PUNSYM Punch Cards for Symbols
PUNALL Punch All

PUNID Punch Identification

150

DATA DEFINING STATEMENTS

Several statements define or specify data to HAP. Most of these statements are employed
in the arithmetic mode (see the section entitled '"Data Definition'); the major exception
being the setup and TEY statements in the streaming mode of operation (see sections
entitled "Setup' and '"Special TEY Format for SQNL'").

Arithmetic Mode Data Definition

DD Data Definition

DDI Data Definition Immediate

DR Data Reservation

DRZ Data Reservation and Set to Zero
SYN Synonym

EXT Extract

Streaming Mode Data Definition

SETUP Stream Setup Statement
TEY SQNL Data Word

MISCELLANEOUS CONTROL STATEMENTS
Miscellaneous HAP control statements may be grouped as follows:

Location counter control
Symbol change

Error message control
No operation

End and terminate loading

(S0 VU SR

Location Counter Control
Set Location Counter (SLC)

In normal assembly operations, cards are read in sequence. The number of
bits needed for each instruction or piece of data is added to a location counter maintained
by HAP to aid in the assigning of addresses to instructions and data. A principle of
rounding upward is followed, guaranteeing that an instruction, VF, CF, or RF, begins
exactly at a half-word address, and that index words, control words, and floating point
data begin only at full-word addresses.

The SLC control statement provides for setting the assembly location counter
to any values at any point in the assembly process, thus giving the programmer complete

control over the location of his code. The format of the statement is:

A SLC, Y

151

The SLC statement resets the location counter to the value of the bit address
Y. The next instruction is compiled at this address, subject only to rounding upward
conventions. Following an SLC, the location counter is advanced once more in normal
fashion until another SLC statement resets it.

Y must be a bit address expression, either numeric or symbolic, whose value
is positive. If an integer is specified in this field, it is treated as an integer in a 24-bit
address field; that is, it is interpreted as specifying a number of bits. Subject to this
interpretation, it is evaluated correctly, but an error indication is given on the listing.

Any symbol in the name field is effectively ignored, but is entered in the
symbol table.

If the following statement appeared in a program:
SLC, 100.32

it would cause the HAP location counter to be reset to 100. 32. If the instruction following
the SLC were a VFL instruction, it would be compiled at 100.32. If it were a floating
point data word, it would be compiled at 101.0.

Set Location Counter Relative (SLCR)
The format of this control statement is:
SLCR, Y

SLCR resets the HAP location counter to the address Y in much the same
fashion as SLC. However, SLCR also stops binary punching, so that locations of state-
ments following SLCR are assigned relative to the location specified in SLCR but none
of the statements appears in the binary output. This is the same as if all symbols in
the name field of the statements that follow the SLCR were defined by SYN statements,
and is more convenient for the programmer.

In the most common usage,
SLCR, ©0

resets the location counter to 0, and all symbols following are assigned locations relative
to 0. One application of SLCR might occur in the definition of table formats. In the

following sequence

SLCR, 0
PRICE DD (BU, 24, 8), 0
QUANTITY DD (BU, 6, 8), 0
ONHAND DD (BU, 10, 8), 0

152

the evaluation of the symbols are:

PRICE = 0.0
QUANTITY = 0. 24
ONHAND = 0. 30

If the table in question begins at location 2000. 0, and this address is placed in the value
field of index register 6, the relative addressing of items in the table can be accomplished
as follows:

L, QUANTITY (#6)
*, PRICE (#6)

These instructions would be compiled by HAP as:

L, .24(#6)
*, 0.0(#6)

One advantage of this method is the ease with which the dds of one of the statements can
be changed without requiring compensating changes in any of the others. The definitions
can also be reordered with no other changes in the statements required and all address
assignments are recomputed by HAP relative to the SLCR address.

SLCR is allowed to set the location counter to an address below 41g without
causing an error message to be printed. This is not the case if SLC had been used. The
locations subsequently assigned often are below 41g as well, but they are usually indexed
to produce addresses above the first 32 storage locations. In many ways SLCR is
equivalent to STL.C followed by a NOPUN. An SLC must be issued to restore binary
punching of the output deck.

Symbol Change
Tail and Untail

Difficulty with multiply-defined symbols can arise when two programs, written
by different people at different locations, are assembled together. By appending a unique
programmer symbol as a tail to every symbol in his program, a programmer can be
assured that each of his symbols are uniquely defined, regardless of what other programs
are assembled with his program.

The TAIL control statement has the following format:
TAIL, ANYSYMBOL
It appends the symbol that appears in its address field as a tail to every symbol in the
statements that follow the tail statement until another tail statement, or an untail state-

ment, is given. A tail symbol can be any permitted programmer symbol; it may be
composed of as many as 128 alphanumeric characters, the first of which must be

alphabetic.

153

When tailing is used, certain restrictions apply to the basic programmer
symbols to be tailed. The last two characters of the basic symbol are used for a
special character that indicates tailing is being used and for a character to represent
the tail symbol. Therefore, a programmer symbol of more than 126 characters cannot
be tailed. As many as 256 distinct tail symbols can be used within any one program.

Tailing Levels

HAP permits up to ten levels of tailing; that is, as many as ten different tail
symbols may be appended to each programmer symbol within a block of code. When
only one level of tailing is used, two characters must be subtracted from the maximum
size of a programmer symbol to be tailed. In multi-level tailing, an additional char-
acter must be subtracted for each additional level of tailing. If n = the number of levels
of tailing, n + 1 characters must be subtracted from the maximum size programmer
symbol. Thus, if six levels of tailing are to be used, the maximum size programmer
symbol that may appear in that tailed block is 121 characters in length; when ten-level
tailing is specified, the longest programmer symbol may be 117 characters in length.

To facilitate multi-level tailing, a subfield is added to the basic tail statement
format, as follows:

TAIL, (n)DOG

where n refers to the level of tailing to which the given tail symbol is to be assigned.
If the level is not specified, the first level is assumed.

The tail continues to be added to every programmer symbol encountered at
the level specified until an untail statement or a tail statement that specifies the same

level is found. An untail statement untails all levels up to and including the level speci-
fied in the address field. For example, the statement

TAIL, (6)DOG
specifies DOG as a sixth level tail, and

UNTAIL, (6)
untails the first six levels. Note that

UNTAIL, (1)

is equivalent to

TAIL, (1)

154

but

UNTAIL, (2)
is not equivalent to

TAIL, (2)
because UNTAIL, (2) untails the first and second level, while TAIL, (2) tails the
second level only with a blank, or effectively untails it. Clearly then, if it is desired
to untail one level when multi-level tailing is being done, the best method is a tail
statement that specifies the level but has a blank tail symbol field, as in

TAIL, (6)

The normal reference may be made from one symbol to another within the
same tailed block. However, when reference is made from a block tailed by DOG, for
example, to a possible multi-defined symbol BOB in another block tailed by CAT, the
statement should read

+ (N), BOB#CAT
If the symbol BOB has been tailed at several levels, they must all be mentioned:

+ (N), BOB#CAT#TAYLE

If reference is made from a tailed block to a possible multi-defined symbol
in an untailed block, only the # is required after the symbol, as in

+ (N), BOB#

The # alone (actually # followed by a blank) tells HAP that the reference is to the
untailed symbol BOB, not the BOB defined in the tailed block.

Error Message Control
Suppress Error Messages (SEM)
This statement has the following format:
SEM, 1, 2, 3, ...

The code SEM, followed by a blank address field, causes all error messages
detected in statements that follow the SEM statement to be suppressed on the output
listing. Any particular message or group of messages may be suppressed by writing
the numbers identifying the messages in the address field, separated by commas. Thus,

SEM, 8, 2

suppresses the printing of error message 2 and 8 only.

155

Resume Error Messages (REM)
The REM statement has the following format:
REM, 1, 2, 3,

An REM restores normal error message printing on the listing after an SEM
has been used. The ability to specify individual messages or all messages at once is
also available with REM. Thus, following the statement

SEM, 9, 16, 18
the control statement

REM, 16

restores normal error printing to message 16, while messages 9 and 18 remain
suppressed.

No Operation
Conditional No Operation
The format of this statement is:
A CNOP

The CNOP is used to insure that the instruction or data immediately following
the CNOP is assigned a full-word address by HAP.

When a CNOP is encountered, the location counter is immediately rounded up
to the nearest half-word address if it is not already at a half-word address. Then HAP
examines the location counter. If it now stands at a full-word address, the CNOP is
ignored. If, however, the location counter is set to a half-word address, the instruc-
tion NOP is compiled. This has the effect of advancing the location counter 32 bits or
one half-word to the next full-word address.

Any symbol A appearing in the name field is assigned a full-word address
when the CNOP is ignored; or a half-word address when a NOP is compiled.

In the following example:

SLC, 100.32
CASE1 CNOP

L(BU, 24, 8), ASSIST
CASE2 CNOP

+ (N), FLOATINGONE

the appearance of the first CNOP causes a standard NOP instruction to be compiled at
location 100.32. The load instruction is compiled at 101.0. The symbol CASE1 is
assigned the value 100.32. When the second CNOP is encountered, the location counter

156

stands at 102.0. The CNOP is then ignored, the floating point add instruction is com-
piled at storage location 102. 0, and the programmer symbol CASE?2 is assigned the
value 102.0. Thus, CASE2 becomes the symbolic location of the floating point instruc-
tion.

End and Terminate Loading
END Statement
The format of this statement is:
END, Y

A card containing the code END signals the end of an assembly. Therefore,
an END card must appear as the last card of every symbolic program deck. When HAP
recognizes an END card, it punches out a branch card with an address Y. This branch
card is included as the last card of the binary output deck produced by HAP. When the
binary deck is loaded, the branch card causes control to be transferred to the instruc-
tion located at Y.

Since the instruction located at Y is the first instruction in the program to
be executed, Y usually specifies the location of the first instruction in a program. This
use of END is illustrated in the following example:

SLC, 1050.
BEGIN L (BU, 24), DATA

(intervening code)

END, BEGIN

The END statement does not have to address the first instruction in a program. The
programmer is free to select any instruction he wishes to be executed first. If the END
address is a programmer symbol, HAP correctly substitutes the binary bit address
equivalent. If the address is a numeric entry, it follows the rules of any 24-bit address
field. An integer written in this field is interpreted as a number of bits. A bit address
compiles correctly, so care must be taken to include the period unless an integer ex-
pression is specifically intended.

Any symbol appearing in the name field is.effectively ignored by HAP, but
the symbol is placed in the symbol table.

157

Terminate Loading and Branch (TLB)
This statement has the following format:
TLB, Y

The statement TLB is similar to the END statement with one major distinction:
it does not stop the assembly process. Therefore, TLB may be assembled at any point
in the symbolic deck where a transition card is desired. The branch card thus produced
interrupts the loader when encountered in a binary deck and transfers control to the
instruction at location Y. The remainder of the program must be loaded under program

control.

158

LIBRARY SUBROUTINES

The HAP III Processor provides facilities for the inclusion of subroutines which exist

in the HOPS subroutine library. Library routines are stored in symbolic form and are
compiled with the problem program requesting them. Since the subroutines are in sym-
bolic form, the problem programmer must take care to insure that the symbols in his
program differ from those in the subroutines used. The programmer must also have
some means for inserting library subroutines into his program and for adding additional
subroutines to the library when necessary. Finally, once the subroutine is inserted in
the problem program, the programmer must be able to execute it as often as required.
Various macro instructions and instruction sequences are available to perform these

duties.
MLIB MACRO INSTRUCTION
MLIB, Id

The MLIB macro causes the symbolic coded subroutine or subprogram (known on the
library file by the identifier Id) to be inserted in the source program in place of the
MLIB statement. The identifier, Id, must be a valid HAP III tag of eight alphameric
characters or less. Id is the name associated with the subroutine on the library file
and, in general, is the tag defining the entry point to the subroutine.

The problem programmer is responsible for tailing the symbols in the library
subroutine to make certain that they are not identical to those in his own symbolic pro-
gram. The macros MTAIL and MUNTAIL are employed for this purpose.

MTAIL MACRO INSTRUCTION

MTAIL, symbol
The MTAIL macro generates the HAP instruction

TAIL, (n) symbol
where the tail level '"n'"" is determined by the MTAIL macro and is equivalent to the
depth of MTAIL nesting, and where symbol is any valid HAP programmer symbol of
eight or less characters. The MTAIL macro will control nested blocks of code up to
a maximum depth of ten levels. Note: An MTAIL macro may not be used within the

range of a HAP TAIL instruction and vice versa. The HAP TAIL instruction controls
a block code completely exclusive of MTAIL control.

159

MUNTAIL MACRO INSTRUCTION
MUNTAIL

The MUNTAIL macro closes off an MTAIL'd block of code. It produces the HAP instruc-
tion

TAIL, (n)

where "n'"' is the highest tailing level currently in force. Every tailed region of a pro-
gram initiated by an MTAIL must be closed by MUNTAIL.

CALLING A SUBROUTINE FROM THE LIBRARY

The problem programmer defines the relative.location of the library subroutine within
his program by writing the MLIB statement at the point of request. Several MLIB
statements with the same identifier cause the subroutine to be provided at each point.of
request.

To insure that the symbols of the subroutine and those of the symbolic program
are unique, the following standard sequence should be employed:

Id SYN, #
MTAIL, symbol
MLIB, Id
MUNTAIL,

where Id is the name of the subroutine, and symbol is any valid HAP programmer sym-
bol up to eight characters in length. The above sequence holds for the requesting of
lower level subroutines from within a subroutine. Nesting of subroutines is permitted
up to a maximum of ten levels.

EXECUTING A SUBROUTINE

When calling for the execution of a library subroutine the following standard instruction
sequence must be employed:

SIC, #15
B, Id

XW, Number of output parameters, Number of input para-
meters, Total number of parameters

VF, Current location of the first parameter

XW, Base address of first parameter, Length of first para-
meter, Basic element type

VF, Current location of second parameter

XW, Base address of second parameter, Length of second
parameter, Basic element type

160

where the basic element type is coded according to the following table:

Code Type
1 F
2 INT
3 BIN1
4 BIN2
5 BASIC
6 HCS1
7 HCS2

PREPARATION OF LIBRARY SUBROUTINES

The following general rules apply when preparing library subroutines:

1.

The first physical statement of the subroutine must be the first executable
statement.

Parameters are secured from the address information provided in the calling
sequence relative to #15.

Return from the subroutine should be made via #15 to the location following
the index word of the last parameter.

161

Assigned HAP III mnemonics,
symbols, are listed on th
column designate notes

eral, identify a particular class of operation.

APPENDIX A

HAP III MNEMONICS

including both operation codes and system
e following pages. The numbers in the Footnote

that follow the listing. These footnotes, in gen-

s that may be expanded in a

standard way to produce other operations. Where footnotes specify how
particular modified operation mnemonics may be constructed, these mne-
monics do not appear explicitly in the listings.

The following abbreviations, used in the Type column, identify the
symbolic instruction type.

Type

9&%%%%%%6@%%%@éﬂ@%Cﬂfﬂ%%%%@%(ﬁ%(ﬂ@*éﬂ%%@%%*@%%%{ﬁ*

Mne-
monic

EEERRE6
% o]

HMAwg Q- e

Foot-
note

N R SR R IRl I SR L S S

|5

DO et et bt i DO DO ket bt DO b O RO O RO RO DO RO RO DO

VFL
Floating Point

System Symbol (in Type 9, substitute #)

Index

Count and Branch
Branches and Miscellaneous
Branch on Bit

Transmits

1-O Select or Control Word

Name

Address Invalid
Accumulator Equal
Accumulator High
Accumulator Low
All Ones Count
Boundary Control
Binary Transit
Channel Address
Channel Busy Reject
Console

CPU Signal

Other CPU
Channel Signal
Data Fetch

Disk

Data Store
Decimal Transit

e

End Exception
Exchange Control Check
Exchange Check Reject
End of Operation
Exchange Program Check
Execute Exception
Factor

Interruption Address
Instruction Fetch
Instruction Check
Instruction Reject
Indicators

Inquiry Station
Imaginary Root

Interval Timer

Left Half of Accumulator
Lower Boundary

Lost Carry

Lost Significance

Left Zeroes Count
Log,.e

Mask

Maintenance Bits
Machine Check

‘Word Bit
No. Address
11 16

11 61

11 62

11 60

7 44-50
3 57

11 39

5 12-18
11 8

11 5

6 0-18
11 13

11 20

11 19

11 40

11 11

11 3

11 6

11 12

11 9

11 18

14 0-63
2 0-17
11 21

11 1

11 2

11 0-63
11 25

1 0-18
8 0-63
3 32-49
11 22

11 26

7 17-23
12 21-49
4 0-63
11 0

162

Type

PP PP DL PP PHRD

PDPPAPADPL PPN PRSD

PP L PP

w» » P » meaeeaaaamam@mwwemmmwmmmm%%wmaamw

Mne-
monic

Foot-
ndte

[

P Bl DO RO DO = DD DD NHENNHI\')&HM

[3 SRR

NJ!OIO[O[ONJN)N)!ON[ONJ»—!HHHHH.—IH»—-»-»-:)—u-l)—w-i-'ta

»

(SR

Name

To-Memory Operation

Log, 2

Noisy Mode

Operation Invalid

Punch

Partial Field

Program Indicators

T

Printer

Preparatory Shift Greater
Than 48

Right Half of Accumulator

Reader

Result Greater Than Zero

Result Less Than Zero

Remainder

Result Negative

Remainder Underflow

Result Zero

Sign Byte

Time Clock

Tape Chanels 1...X

T Flag

Transit

Time Signal

Tape X (X is a numerical
designation)

Upper Boundary

U Flag

Unit Chegk

Unit Not Ready Reject

Unended Sequence of
Addresses

V Flag

Index Zero

Index One

Index Two

Index Three

Index Four

Index Five

Index Six

Index Seven

Index Eight

Index Nine

Index Ten

Index Eleven

Index Twelve

Index Thirteen

Index Fourteen

Index Fifteen

Index Count Zero

Index Equal

Index Flag

Index High

Index Low

Zero Multiply

Exponent Flag Positive

Exponent Range High

Exponent Range Low

Exponent Overflow

Exponent Underflow

Index Value Greater Than
Zero

Index Value Less Than
Zero

Index Value Zero

‘Word Number Zero

Zero Divisor

Word Bit
No. Address
11 55
11 63
11 15
11 23
11 41-47
11 27

9 0-63
11 58
11 58
13 0-63
11 59
11 34
11 57
10 0-7
1 28-63
11 35
15 0-63
11 4

3 0-17
11 36
11 10
11 7

11 17
11 7
16 0-63
17 0-63
18 0-63
16 0-63
20 0-63
21 0-63
22 0-63
23 0-63
24 0-63
25 0-63
26 0-63
27 0-63
28 0-63
29 0-63
30 0-63
31 0-63
11 48
11 53
11 38
11 54
11 52
11 33
11 28
11 30
11 31
11 29
11 32
11 51
11 49
11 50

0 0-63
11 24

ALPHABETIC LIST OF OPERATIONS

Type

v
F
v
F
A}

F
v
F
v
F
A}

F
F
v
v
F
F

v
v
F

R

loNoNoNoNe Nalaitel

-

~m

RO RO e

e e B R e B B B B B B B

helReiheReialalic el

o m

Mne-
monic

+MG
+MG

—MG
-MG

°A +

CBZR

CM

CTL
cv

D + MG
D—
D — MG
DCV

DLWF

Foot-
note

RO LWD W

~N

10

® 00 ® W

- —
(=)

[B B B ¥ fe> W >N e Y §

L NN N o>

=

Name

Add

Add

Add to Magnitude

Add to Magnitude

Subtract

Subtract

Subtract from Magnitude
Subtract from Magnitude
Multiply

Multiply

Multiply and Add

Multiply and Add

Multiply Absolute and Add
Multiply Immediate and Add
Multiply Negative and Add
Multiply Negative and Add
Multiply Negative Absolute and Add
Multiply Negative Immediate and Add
Divide

Divide

Branch

Branch on Bit

Branch on Bit and Set to One
Branch on Bit and Negate
Branch on Bit and Zero

Branch Disabled

Branch Enabled

Branch Enabled and Wait
Branch Relative

Branch on Zero Bit

Branch on Zero Bit and Set to One
Branch on Zero Bit and Negate
Branch on Zero Bit and Zero
Connect

Add Immediate to Count
Subtract Immediate from Count
Count and Branch

Count, Branch, and Refill

Count and Branch on Zero Count
Count, Branch on Zero Count, and Refill
Copy Control Word

Connect to Memory

Connect for Test

Control

Convert

Add Double

Add Double to Magnitude
Subtract Double

Subtract Double from Magnitude
Convert Double

Load Double

Load Double with Flag

Multiply Double

Divide Double

Add to Exponent

Add Absolute Immediate to Exponent
Add Immediate to Exponént
Subtract from Exponent

Subtract Absolute Immediate from Exponent

Subtract Immediate from Exponent
Execute

Execute Indirect and Count
Add to Fraction

Subtract from Fraction
Compare

Compare

Compare Count

Compare Count Immediate
Compare If Equal -
Compare Field

Compare Field If Equal
Compare Field for Range
Check Light On

Compare Magnitude

Compare Magnitude for Range

Foot-
note

Mne-

monic

Type

KR
KR
Kv
KVI
KVNI

NS

=
RIFN

=
g
-
S

=
=
=]
72}
BRSNS

K
+
=)

M -MG 3

NOP

RCZ

[IR

w
=
=1
~N Ut W]

V+1I 9

"“"""""‘"—]r—]'-]"-l"""]'—]'—]'—l"‘*"[’1’11<’11"11<"‘mﬁg’ﬁ'ﬁ’ﬂ<m“’ﬂ"‘mmmgzzﬂj<'ﬂ<&1<’!1<’11<"11<"11<<<""""‘""“"‘"‘*"m"1<<<"‘”""11<"‘""""TJ<
=

163

Name

Compare for Range

Compare for Range

Compare Value

Compare Value Immediate
Compare Value Negative Immediate
Load

Load

Logd Count

Load Count Immediate

Load Converted

Lodd Field

Load Factor

Load Factor

Locate (same as Select Unit)
Load ‘Refill

Load Refill Immediate

Load Value

Load Value Effective

Load Value Immediate

Load Value Negative Immediate
Lodd Value with Sum

Load Index

Load Transit Converted

Load Transit and Set

Load with Flag

Load with Flag

Add to Memory

Add to Memory

Add One to Memory

Add to Absolute Memory

Add Magnitude to Memory
Add Magnitude to Memory
Subtract from Memory

Subtract from Memory

Subtract One from Memory
Subtract from Absolute Memory
Subtract Magnitude from Memory
Subtract Magnitude from Memory
No Operation

Refill

Refiill on Count Zero

Read

Release

Rewind

Rename

Reciprocal Divide

Store Count

Suppress End of Operation
Store Field

Shift Fraction

Shift Fraction Left (same as SHFA)

‘Shift Fraction Right (same as SHFNA)

Store Instruction Counter If
Store Low Order

Store Negative Root

Store Refill

Store Rounded

Store Rounded

Store Root

Store

Store

Select Unit (same as Locate)
Store Value

Store Value in Address

Swap

Swap Immediate

Swap Backward

Swap Backward Immediate
Store Index

Transmit

Transmit Immediate

Transmit Backward

Transmit Backward Immediate
Add to Value

Add Immediate to Value

Add to Value and Count

Add to Value, Count, and Refill
Add Immediate to Value and Count

Mne- Foot-
Type monic note Name
1 V+ICR 9 Add Immediate to Value, Count, and Refill
I vV-I 9 Subtract Immediate from Value
I v-1C 9 Subtract Immediate from Value and Count
I V—-ICR 9 Subtract Immediate from Value, Count, and Refill
E w Write
E WEF Write End-of-File
M Z Store Zero

FOOTNOTES

1. This mnemonic is a system symbol. It must be prefixed by the char-
acter “#”’ whenever used.

2. This mnemonic is both an indicator mnemonic and a system symbol.
It must be prefixed by the “#” whenever it is used as a system symbol in
a symbolic field of some instruction. This mnemonic may also be used
directly to express a Branch on Indicator instruction by being substituted
for the letter “I”” in any of the following four formats:

BI Branch on Indicator
BIZ Branch on Indicator and Zero
BZI Branch on Zero Indicator

BZIZ Branch on Zero Indicator and Zero

The mnemonics BI, BIZ, BZI, BZIZ are not in themselves legal
operation codes. Any of the integers 0 through 63 may also be substituted
for 1 if it is desired to designate an indicator numerically.

3. This operation code may be suffixed by the letter “I” to invoke
immediate addressing.

164

4. This VFL operation code may have the following suffixes:

I Immediate
N Negative
NI Negative Immediate

5. This operation code may be suffixed by the letter “N” to invoke the
negative sign modifier.

6. This floating point operation code may be suffixed by the letter “A”
to invoke the absolute sign modifier.

7. This floating point operation code may have the following suffixes:

N Negative
A Absolute
NA Negative Absolute

8. Count and Branch operation may have the following suffixes:

+ Add one to value
- Subtract one from value
H Add half to value

9. This operation code may be used to indicate either an immediate
indexing operation or the secondary operation of any VFL instruction.

10. This operation mnemonic specifies, potentially, 16 connect instruc-
tions. Four binary digits are written directly after the operation code
to select a particular one of the 16 instructions. This operation code is
also subject to Footnote 3.

11. This code may be used as a secondary operation with I-O select
orders that are subject to end-of-operation interrupts.

12. These mnemonics are mathematical constants.

APPENDIX B

Streaming Mode System Symbols

Symbol Bit Address Field Length
DEBUG 33. 60 4
ERRIND 38.0 8
F 35.19 13
HR 32.0

MOD 36.56 8
PBS 39.55 9
PCBSL 38.8 7
PCBSR 38.16 16
PIX 39.32 18
PS 39.0 24
PCSCAN 38.15 1
QBS 40.55 9
QIX 40. 32 18
QS 40.0 24
R1 43.0 64
R2 44.0 64
RBS 41.53 11
RIX 41. 32 18
RS 41.0 24
SA 34.0 24
SAMODE 34.56 2
SASTM 33.56 4
SATH 33. 32 24
SC 34.34 16
SCLIM 35.2 16
SCMODE 34.58 1
SCSTM 34.59 5
SSM 33.0 29
SSS 38.36 24
TAO 37.32 26
TBA 35.32 26
TE 42.0 64
TEBM 37.24 8
TEI 37.6 7
TEM 37.58 6
TEN 37.18 6
TES 37.0 6
TPI 36.6 6
TPJ 36.19 5
TPM 36.27 5
TPN 36.13 5
TPS 36.1 5
TQI 36.38 6
TQJ 36.51 5
TQN 36.45 5
TQS 36. 33 5
WCHAR 32.0 8
WCON 32.9 2
WM 32.14 1
wOP 32.11 3
WSP 32.15 1
XCHAR 32.16 8
XCON 32.24 3
XM 32. 30 1
XOP 32.27 3
XSP 32.31 1
YCHAR 32.32 8
YCON 32.40 3
YM 32.46 1
YOP 32.43 3
YSp 32.47 1
ZCHAR 32.48 8
ZCON 32.56 2
ZOP 32.59 3
ZSP 32,63 1

Meaning

DEBUG code

error indicator register
F unit

harvest registers
modulus

bootstrap for P
bootstrap, program controlled,
left part

bootstrap, program controlled,
right part

index table, P stream
start address, P stream
program controlled scan bit
bootstrap for Q

index table, @ stream
start address, Q stream
first word of R unit
second word of R unit
bootstrap for R

index table, R stream
start address, R stream
SACC register

SACC mode

SACC stimulus

SACC threshold

SCTR register

SCTR limit

SCTR mode

SCTR step stimulus
stream stimulus mask
stream stimulus status register
TA output

table base address

table extract unit

byte mask for TE
increment

count of bytes

number of bytes

initial address, TE unit
increment

reset address

count of bytes

number of bytes

initial offset, P stream
increment

reset address

number of bytes

initial offset, Q stréam
W match character

W connections

W mode, OR/AND

W operation

W span bit

X match character

X connections

X mode, OR/AND

X operation

X span bit

Y match character

Y connections

Y mode, OR/AND

Y operation

Y span bit

Z match character

Z connections

Z operation

Z span bit

APPENDIX C

SYMBOLIC DESCRIPTIONS AND MNEMONICS FOR IBM 7950

The following list of mnemonics may be used with HAP II and HAP 111
A symbolic description of the mnemonic is given to assist the programmer.
The operations symbols used are defined at the start of each section. Note
that the same letter (*“a” and “m’ for example) has a different definition
for floating point and for VFL. Carefully read the definition for each set.
A more detailed description of the operation is in the IBM 7030 Reference

Manual. Form A22-6530.

A specific title for each mnemonic is not given in cases where the
mnemonic is derived from the basic operation by changing the sign and

absolute modifiers.

In the case of VFL operations, the unsigned modifier must be implied
by the data referred to or be explicitly stated in a dds.

FLOATING POINT OPERATIONS

Notation for Symbolizing the Floating Point Operations OP(dds), AlS(I)

Accumulator Operands

a = bits (0-59) of the accumulator, and the accumulator sign,
bit 4 of the sign byte register.

b = bits (60-107) of the accumulator, and the accumulator
sign.

ab = bits (0-107) of the accumulator, and the accumulator
sign.

e(a) = bits (0-11) of a.

f(a) = bits (12-59) of a, and s(a).

s(a) == bit 4 of the sign byte register.

SB(a) = bits 4-7 of the sign byte register.

Fl (a) = bits 5-7 of the sign byte register.

Storage Operands

m = bits (0-59) of the storage word, and its sign, bit 60.

M = L(m) = the effective address.

e(m) = bits (0-11) of m.

f(m) = bits (12-59) of m, and s(m).

s(m) = bit 60 of the storage word. _

SB(m) = bits (60-63) of the storage word.

I

Fl (m)

bits (61-63) of the storage word.

$FT = Factor operand; SB($FT) = bits (60-63) of $FT.

$RM = Remainder operand.

Add

+ atm ————>
- a—m ——>
+A at|m| ——>
—A a—|m| —>

o PP

Add to Memory
M+ m+a —> m

M- m—a ——> m
M+A jm|]+a ——> m
M-A |m|—a —> m

Add to Fraction

F+ £(ab)+f(m) —> f(ab)
F— £(ab)—f(m) —> £(ab)
F+A f(ab)+[f(m)|->f(ab)
F—A f(ab)—|f(m)|~>f(ab)

b is unchanged.
Fl (a) is unchanged.

Fl(m) remain unchanged.
The entire accumulator and
SB(a) remain unchanged.

e(m) is ignored; the add is
performed with e(a) on both
operands.

The normalized mode oper-
ates in the same way as in
D+.

166

Add to Exponent

E+ e(ab)+e(m) —>|e(ab)
E— e(ab)—e(m) —> e(ab)
E+A e(ab)+|e(m)| > e(ab)

E-A e(ab)—le(m)| > e(ab)

Add Immediate to Exponent

E+1 e(ab)+e(M) —>e(ab)
E-I e(ab)—e(M) —>e(ab)
E+AI e(ab)+[e(M)| —>e(ab)
E—AI e(ab)—|e(M)| —>e(ab)

Shift Fraction

SHF f(ab)2¥ —> f(ab)
SHFN f(ab):2-¥ —> f(ab)
SHFA f(ab)-2M| —> f(ab)
SHFNA f(ab)-2-|M| -> f(ab)

SHFL f(ab)-2|¥| —> f(ab)
SHFR f(ab)-2-[M| - f(ab)
Double Add

D+ ab+m ——>» ab
D— ab—m ———>» ab
D+A ab+|m| ———> ab
D-A ab—|/m| ——> ab

Add to Magnitude

+MG R =|a]+m
-MG R = |a|-m
+MGA R =|[a|+ |m]
—MGA R=|a]— |m|

Double Add to Magnitude

D+MG R = [ab]+m
D-MG R=|ab|-m
D+MGA R = [ab|+ |m|
D—-MGA R = |ab|— [m]

Add Magnitude to Memery

M+MG R=mtla|
M-MG R=m—|a|
M+MGA R = |m| + |a]
M-MGA R = |m| — |a|

Multiply
° a'm ————> a
N a—m ——> a

"A a'lm| —> a
*NA a—|m| ——> a

Double Multiply

D® asm ——>» ab
D*N a'—m —> ab
D*A a'm| ———> ab
D*NA a'—|m| —> ab

o

[

o -

. f(m) is ignored.
. Strap—II will assemble as unnor-

malized unless the normalized
mode is requested by referring to
normalized data or by using the
dds = (N).

. The unnormalized mode is given

unless overruled by dds = (N).

. Left shift if bit 11 of M = 0.
. Right shift if bit 11 of M = 1.
. The operation is not affected by

the normalized modifier.

. The exponent is not adjusted for

the shift. e(a) is unchanged.

. On a right shift, zeroes are intro-

duced in bit 12.

. PSH indicator goes on if the ex-

ponent difference exceeds 48.

.R—> aif R=0.
. 0—> f(a) if R < 0 and e(a) is

unchanged.

. s(a) is unchanged in either case.

.R—>-abif R=0.
. 0——>f(ab) if R < O and e(a)
1

is unchanged.

. s{a) is unchanged in éither case.

R —> mif s(R)=s(m)

. 0 —> f(m) if s(R) # s(m).
. s(m) is unchanged in either case.

. b in unchanged.

. (108-127) of accumulator are un-

changed.

Multiply Factor and Add

o+ m'($FT)+ab—>ab
oN+ —m-($FT)+ab->»ab
eA+ |m|-($FT)+ab—>ab
ONA+ —|m|-(SFT)+ab—>ab
Divide

/ a/m ————>a

/N a/—m ———>a

/A a/m! ——>a
/NA a/—{m| ——>a

Reciprocal Divide

R/ mia ———>a
R/N —m/a ———>a
R/A im{/a ——>a
R/NA —m'/a ——>a

Double Divide

ab/m ———> ab
ab’'—m ——> ab
: ab/!m] —> ab
NA ab/—m’ —> ab

S5oT
Yo

Store Root

SRT Va —>m
SNRT -\Va ——>m
SRTA via] ———> m
SNRTA —a, ———>m
Load

L m oe————>a
LN -m ——>a
LA Imi{ ——>a
LNA -m! —>a
Double Load

DL m —————>a
DLN —1m ———>a
DLA m' ————>a
DLNA - m, ———>a

Load with Flag Bits

LWF m ——>a
LWFN -m —>a
LWFA m ——>a
LWENA —Im] -——>a

Double Load with Flag Bits

DLWF m ———>a
DLWFN -—-m —>a
DLWFA m ——>a

DLWFNA —'m}{ ——>a

Load Factor

LFT m ———-> SFT
LFTN -m —> S$FT
LFTA 'm ———> $FT
LFTNA —'m —————> $FT
Store

ST a ———>m
STN - —>m
STA ‘a —>m
STNA —a ———>m

. The contents of $FT remain un-

changed.

1. No remainder is generated.

2. Quotient is 48 bits.

3. Pre-normalization of the operands
is independent of the normalizas
tion modifier.

4. b is unchanged.

1. Performed similarly to divide.

2. b is unchanged.

1. Remainder in $RM.

2. 0—>b except bit 60, which contains
a continuation of f (a).

3. No rounding.

4. SB(a)—>SB($RM).

5. Result capable of being rounded in
a subsequent instruction.

1. ab and SB(a) are unchanged.

1. 0 —> Fl(a).

2. b is unchanged.

1. 0 —>b.

2. 0—> Fl(a)

1. Fl(m) —> Fl(a).

1. 0 —>b.

2. Fl(m) —> Fl(a).

1. ab and SB(a) are not changed.

2. s(m) —> (60)$FT.

. 0—> (61-63)$FT.

1. Fl(a) —> Fl(m).

5]

. ais unchanged.

Store Ro

SRD
SRDN
SRDA
SRDNA

unded

a ——>m
—~a ————>m
a]| ———>m

—la

Store Low Order

SLO b ~——> f(m)
SLON b ——> f(m)
SLOA [b]| ——>f(m)
SLONA —|bf ———> f(m)
Compare

K am

KN a:—m

KA a:im|

KNA a:—|mj

Compare for Range

KR a:m

KRN ar—m

KRA a:im|

KRNA a:—Im]|

Compare Magnitude

KMG a:m

KMGN a:—m

KMGA a:|m]

KMGNA a:—m]|

Compare Magnitude for Range
KMGR a:m

KMGRN a:—m

KMGRA a:m|

KMGRNA a:—'m!

[ol I

. A one is added in bit (60)b prior
to the store: a and (60)b are
unchanged.

. Fl(a) — Fl(m).

. e(a) -48 —>e(m).
. Fl(a) —> Fl(m).

. e(a) is unchanged.

. Indicators AL, AE, and AH are
set as follows:
AL issettooneif a<<m
AE issettooneifa=m
AH is set tooneif a >m
. Zero exponents of different sign
are considered equal.

. If the exponent difference is 48 the

larger of the numbers is per sign
and exponents regardless of frac-
tions.

. If AH is off prior to this op, no

indicators will be changed.
. If AH is on:
AL is unchanged.
AE is set to one if a < m.
AH is set to one if a = m,

. Same as Compare, except for ac-

cumulator comparand.

. Same as Compare for Range, ex-
cept for accumulator comparand.

VARIABLE FIELD LENGTH OPERATIONS

Notation for Symbolizing the Variable Field Length Operations OP(dds),

Ay,

), OF (")

.Accumulator Operands

a = the accumulator operand whose:
1. Low order bit is defined by the offset;

2. Byte size is four for decimal arithmetic, eight for binary

a

Storag

m = the storage operand whose:

arithmetic;

3. Length includes all bits in the accumulator to the left of the

offset;

4. Sign is indicated by bit four of the sign byte register.

= the accumulator operand, a, but without sign.
a0 = the accumulator operand, a, with offset = 20.

e Operands

1. High-order bit is defined by the bit address;

2. Byte size may be any number from one to eight,

but is

assumed to be four in the instruction lists below;
3. Length is defined by the field length in the dds;
4. Sign is bit s in the sign byte.

m =the storage operand in which all bytes are processed as data;

167

a positive sign is assumed.

The unsigned storage operand is designated by the dds.
Bits 7.17 and 7.18 are the leftmost two bits of $LZC.
$FT = Factor Operand; s($FT) = bit 60; FL($FT') = bits (61-63).

$TR = 64-bit Transit Register.

Integer Operations

Operations which can have an immediate operand are followed by (I),
except for #+,

Add
+

atm———>a
a-m-——>a

Add To Memory

M+
M—

m+a ——>m
m—a ——>m

Add to Magnitude

+MG
~-MG

R=a+m

—a—Im

Add Magnitude To Memory

M+MG
M-MG

Multiply

°
*N

R=m+a
R=m-a

am ——> a9
a'—m ——> ag,

Multiply Factor and Add

L
&N

Divide

/
/N

Load

LN

m'($FT)+a —>a
—m'($FT)+a—>a

a/m ————>a
a/—m ——>a

m——>a
-m ——————> a

Load with Flag Bits

LWF
LWFN

m-—————>a
-m—>a

(I) 1.

(I) 1.

WM

(I) 1.

(I) 1.

(I) 1.

(I) 1.

(I) 1.

. The entire

If the sign changes, bits to the
right of the offset are comple-
mented.

R—>a if R=>0.

. 0—>-entire accumulator if

R <O

. s(a) is not changed by these

operations.

. R—>mif s(R) =s(m).
. 0—>mif s(R) #s(m).

. s(m) is not changed.

Multiplication takes place only
if mode = B or BU.

. The decimal mode gives LTRS

and 00, to bits 7.17 and 7.18.

. The length of a or m must be

= 48 bits in binary multiply.

. The portion of the accummu-

lator not containing the prod-
uct is set to zero.

Write: *I+
and ¢NI+ for an immediate
operand.

. Multiplication takes place only

if mode = B or BU.

. Decimal mode gives LTRS

and 10, to bits 7.17 and 7.18.

Divide takes place only in the
binary mode.

. Decimal divide gives LTRS

and 01, in bits 7.17 and 7.18.

. The remainder is placed in

$RM. The remainder sign,
(60) $RM, is the same as the
original s(a). F1 ($RM) = 0.

. Bits to the right of the offset

are cleared.

0—>Fl1(a).
accumulator is
cleared before the load.

Fl1(m)—>Fl(a).

168

Load Factor

m —— > $FT (I) 1. 0—>(61 — 63) $FT.
-m ——— > $FT 2. The offset field is ignored.

LFT
LFTN

Load Transit and Set

LTRS m —— > $TR (I) 1. Offset—>$AO0OC.
LTRSN ~ -m ———> §TR 2. 11,—>bits 7.17 and 7.18.
3. Indicator $BTR = 1 and

$DTR = 0 if mode is B or BU.
Indicator $DTR = 1 and
$BTR =0 if mode is D or DU.

Store

ST a———>m 1. SB(a)—>SB(m).

STN —a————>m 2. If the byte size is greater than
four:
Binary: zone bits of the sign

byte register are
stored in SB(m).

Decimal: zone bits of the sign
byte register are
stored in each byte
of m.

Store Rounded

SRD
SRDN

These operations are the same as the corresponding
Store operations, except for:

a. Binary: a one is added one bit to the right of the offset,
prior to the store.

b. Decimal: 0101 is added one byte to the right of the offset,
prior to the store.

c. The accumulator is unchanged, even if rounding occurs.

Add One to Memory

M+1 m+l ————>m 1. The one is added to the low
M-1 m—] ———>m order byte.

2. The offset field is ignored.
Compare
K a:m (I) 1. The Compare operations set the AL, AE, and
KN a:—m AH indicators.

AL is set to one if: a <m
AE is set toone if: a =m
AH isset toone if: a > m
2. All bits to the left of the offset in the accu-
mulator participate in the compare.

Compare for Range

KR a:m
KRN a:—m

(I) 1. If the AH indicator is off prior to the opera-
tion, it is executed as a NOP.
2. If AH is on:
AL is unchanged.
AL is set to one if a << m
AH is set to one if a = m

Compare If Equal

KE a:m
KEN a:—m

(I) 1. If the AE indicator is off, no changes will
occur.

2. If the AE indicator is on, the indicators are
set as in Compare, K.

Compare Field

KF a:m (I) 1. The indicators are set as in Compare.

KFN a:—m 2. The length of the accumulator comparand is
the same as the length of the storage com-
parand.

3. The matching bits of both operands are com-
pared.

Appendix 49

Compare Field for Kange

KFR a:m
KFRN a:—m

(I) 1. The accumulator comparand is the same as
in Compare Field, KF.
2. The indicators are set as in Compare Range,
KR.

Compare Field If Equal

KFE a:m
KFEN a:—m

(I) 1. The accumulator comparand is the same as
in Compare Field, KF.
2. The indicators are set as in Compare If
Equal, KE.

Logical Connectives OP(dds), A24 (1), OF7 (1)

Note: If the operand from storage has a byte size (BS) less than eight,
then eight minus BS (8 — BS) leading zeros are added to each byte from
storage before the connect takes place. However, the storage operand is
not changed in Cxxxx or CTxxxx.

Connect to Accumulator

Cxlxexsx_} Result—>a
Connect to Memory
CMx 1XoX3Xy Result—>m

Connect for Test

CTx xo%gx, Result is not stored.

X1XoXsX, is a four-bit binary configuration to describe the type of con-
nective; it is summarized:

Let: m=a bit from storage (may be an inserted leading zero if the
byte size is less than 8.)

a =a bit from the accumulator corresponding to m. The accu-
mulator byte size always = 8.

x; = desired result if m =0 and a=10
Xo = desired resultif m =0 anda=1
xg = desired result if m=1and a=0
xy =desired resultif m = landa =1

Example: C1010 (BU, 64, 4), 0 will complement the entire 128-bit
accumulator.

Pseudo-Connectives

LF=C0011
SF = CM0101

LF (Load Field)
SF (Store Field)

Immediate Connects

To indicate immediate addressing, write: CIx1x2x3x4, CTIx1x2x3x4,
and LFI.

$AOC = All ones count register.
$LZC = Left zeros count register.

After a connective operation the two registers, $AOC and $LZC contain
the indicated counts of the result, Because the result may not occupy the
entire accumulator, $A0C and $LZC may not give the total count of ones
and left zeros of the accumulator. However, these counts always give the
correct count in CM or SF.

Convert Instructions

Definitions:

ap = accumulator in decimal, four-bit bytes with specified offset.

ag = accumulator in binary with specified offset.

agog = accumulator in binary with offset = 20.

aggg = accumulator in binary with offset = 68.

my = storage operand in binary with specified byte size and field length.
my, = storage operand in decimal with specified byte size and field length.
$TR = 64-bit transit register with a sign byte in the rightmost four bits.

Note: The conversion goes: from decimal to binary if the mode given
is decimal; from binary to decimal if the given mode is binary.

Convert

cv ap —>apgg if mode = D or DU 1. In binary a
or apgeg—>a; if mode = B or BU field of 48 bits
CVN —8p —>-apgge is used.

Oor —aggg —>ay 2. The entire
accumulator
to the left of
the offset is
used.

Double Convert

DCV a, —> apog 1. In binary, a
or agog —> ap field of 986 bits

DCVN —ap apgg is used.

or —age, —>a; 2. The entire
accumulator
to the left of
the offset is
used.

Load Converted
LCV m,——> ap (I) 1. s(m)—>s(a)

or myg——> a; 2. 0—>Fl(a)

LCVN —mp———> ag (1) 3. The entire accumu-

lator is cleared be-
fore the load.

or —my——>> ay

Load Transit Converted

LTRCV mp—> $TRy (I) 1. The accumulator
or my——> $TR, and offset are
LTRCVN —m,——> $TR, (I) ignored.
or —my——> $TR, 2. 0—>FI($TR)
3. s(m)—>s($TR)
4. The entire $TR is
cleared before the
load.

Progressive Indexing

Any VFL or Connective operation (when not immedidate) may have a
second operation enclosed in parentheses. The second operation may be
VzI, V=ICorV =«ICR.

Format: OP(OP,)(dds), Ay, (]), OF, (I')

Notes: 1. The original value field J is the effective address of operation.
Ay, is the immediate operand specified by J in V 1, and so
on, and the value field of J is incremented by = Ay, accord-
ing to=1. The incrementing takes place subsequent to
note 1.

3. J may be $XO.

INDEXING OPERATIONS

Notation for symbolizing the Indexing Operations

Index Word Operands

J =bits (0 — 63) of the index word
V =bits (0 — 24) of J.

C =Dbits (28 — 45) of J.

R =bits (46 — 63) of J.

Storage Word Operands

m = bits (0 — 63) of a storage word.

V(m) = bits (0 — 24) of m if the second operand is V. (sign of V is
in bit 24)

V(m) =bits (0 — 17) of m if the second operand is C or R.

Immediate Operands

m =bits (0 — 18) of the effective address if the second operand is V.
m=bits (0 — 17) of the effective address if the second operand is C
or R.
Notes: 1. For clarity, the titles to the indexing and the branch opera-
tions have been omitted.

169

Direct Index Arithmetic

9. The indicators XF, XCZ, XVLZ, XVZ, and XVGZ are set
by all of the direct and immediate index operations except
KV, KC, KVI, XVNI, and KCI. These indicators are set be-
fore the refill (if any) takes place.

KV, KC,....,KCI set the index compare indicators XL,
XE, and XH.

OP, I, Ay (D)

LX m —>J Ag
LV V(m) —V 1. M =44 (1)
LC V(m) —>»C 2. m = (M)
LR V(m) —> R 3. Cy= The count field of J after modifica-
tion
SX J —>m 1. Ajg
sv V —> V(m)
sC C———>V(m) 1. 0—> (18-24) of m.
SR R —>V(m) 1. 0—> (18 -24) of m.
V+ V+V(m)—> V 1. ThereisnoV — etc.
V+V(m)—V
vV+C c-1——>C,
V+V(m) >V
V+CR C-1 —>»C,
(R) ——>(1) i C; =0
SVA V —> V(m) 1. V is truncated to 18, 19, or 24 bits, as is
appropriate for the instruction containing
V(m).
LVE (M)» —>V 1. (M) means contents of M
(M)t = « (M)
(M)n = « e (Myn-t
KV —>V:V(m) 1. Indicators: XL, XE, XH are set by KV and
KC—> C:V(m) KC. This setting is the only output of
KV and KC.
J—>(R($X0)) 1. Used for saving and restoring index regis-
RNX M —> R($X0O) ters.
m —>]
LVS (special format): LVS,], Ay, A2, ..., A"
n ' 1. The sum may include any subset of-the
> veah VD index words, each one appearing no more
i=1 than once,

Immediate Index Arithmetic

2. No indexing of the address field is allowed.

OP, 1, Ay

1. None of the immediate index instructions allow for indexing

Notes:
of the address. A,y is the effective address and is represented
by A below.
2, The output of KVI, KVNI, and KCI is the setting of indi-
cators XL, XE, and XH.
LVNI —A —>V 1. (19 - 23) of V are set to 0.
LVI A —>V 1. (19 - 24) of V are set to 0.
LCI A —>C
LRI A —>R
V+1 V+A ——>V
V-1 V-A ——>V 1.
V+A —>V 1
vire §
161 c A is appended by 5 zero bits
(V-A ——>V 1 - for the operation.
V-IC 1C71 _.sC
+A —»V 1.
V+ICR {C-1 ——>C
(R) —> (N ifCy =0
V-A —>V 1
V-ICR /|C-1 ——>C
(R) —>(NifCy =
C+1 C+A —>C,
Cc-1 C-A —>GC,

170

KVI

KVNI

KCI

Count and Branch Operations

CB

CBR

CBZ

CBRZ
or
CBZR

Note:

Unconditional Branch Operations:

B
BR

BE

BD

BEW

NOP

Branch on Bit Operations:

BB

BZB

Note:

Branch on Indicator Operations

BIND

(0-18) of V:A 1. (19 -24) of V are compared with
Z€ros.

(0-18) of V:A 1. (19 -23) of V are compared with
zeros and (24) of V is compared
with 1 (minus).

C:A

OP, 7, Byy (K)

—

. K may be only 0 or 1.
M =the effective ad-
dress of B19 (K).

3. IC, is the value of the
instruction counter
where the CB instruc-

C -1 —>C,
IC, +0.32 > ICif Cy=0 2.
M ———>ICifCy#0

C,~-1—>C,
IC, +0.32 - 1Cand (R)>(J)

if (?2 =0 tion is located.
M ————>ICif Cy#0 4. C; and C, are the
count field of J before
C; -1 —>Cy and after the count

IC, +0.32 >ICifCy0
M ———>ICifCy=0

C,-1 —>C,
IC, +0.32 >ICif Cy#0
M ————> ICand (R)—>(])

portion of the instruc-
tion, respectively.

ifCy=0
In addition to the stated functions, the value field of J may be
modified by placing +, —, or H after the above mnemonics, The

modification of V takes place regardless of C, and before the
refill (if any).

Example: In addition to the given functions of CB, we have:

CB leave V alone

CB+ V+1.0 —>V
CB—- V—-10 >V
CBH V+0.32 >V

OP, Ajq (I)

1. The unconditional branch in-
structions are the only branch
instructions which allow a 4 bit

SEnable > IC index field, I. The conditional

lM branch instructions may have

. only a 1-bit index field, K.
(Dlsable____> IC 2. IClyis the value of the instruc-

M —>1C
IM+IC, +0.32 ——> IC

?‘M tion is located (i.e., the leftmost
Enable bit of the instruction).
M
Wait —> IC

IC, +0.32 ———> IC
OP, Ay, (1), Byy (X)

IC, +0.32 - ICifm; =0 1. my =(Aq (1)), the bit being

My, ——> ICifmy=1 tested.
2. My =B,4(K), the branch ad-
IC, + 1.0 > ICifm;=1 dress.

My ———> ICifm; =0 3 K=0orl;1=1-15

The BB and BZB may have a suffix, Z, 1, or N, which, respec-
tively, will set m; to zero or to one, or negate it. This function
is independent of the success of the branch. For example, the
following branch on bit instructions are permissible and performi
the stated functions as well as:

BB BZB leave m alone
BBZ BZBZ 0 —>my
BB1 BZB1 1—>my
BBN BZBN —my —>m;

BIND, By, (K)

1cy + 0.32 - ICifind.=0 1. The indicators may not be set
M ————> ICifind. =1 to 1 or negated with a BIND
operation.

BZIND IC; +0.32 —> IC if ind. =1

M —————> ICifind. =0

Notes: 1. The letters “IND” in BIND are replaced by the appropriate

indicator mnemonics as shown in note 2 below.

Mnemonic

52

2. The above operations can have .a suffix, Z, which will cause

MK
IK
1
EK

TS
CPUS

EK]J
UNRJ
CBJ

the indicator being tested to be set to zero independently of
the success of the branch. For example, BZXPOZ will set
indicator XPO to zero arbitrarily. We may have: BXPO;
BZXPO; BXPOZ; and BZXPOZ. The following list indicates
all of the indicator mnemonics which may be used in BIND,
Bg(K), and their bit addresses.

Bit Address

Name

EQUIPMENT CHECK

Machine Check 11.0
Instruction Check 11.1
Instruction Reject 11.2
Exchange Control Check 11.3
ATTENTION REQUEST
Time Signal 11.4
CPU Signal 11.5
INPUT-OUTPUT REJECTS
Exchange Check Reject 11.6
Unit Not Ready Reject 11.7
Channel Busy Reject 11.8
INPUT-OUTPUT STATUS
Exchange Program Check 11.9
Unit Check 11.10
End Exception 11.11
End of Operation 11.12
Channel Signal 11.13
(not available) 11.14
INSTRUCTION EXCEPTION
Operation Invalid 11.15
Address Invalid 11.16
Unended Sequence of
Addresses 11.17
Execute Exception 11.18
Data Store 11.19
Data Fetch 11.20
Instruction Fetch 11.21
RESULT EXCEPTION
Lost Carry 11.22
Partial Field 11.23
Zero Divisor 11.24

RESULT EXCEPTION-FLOATING POINT

IR Imaginary Root 11.25
LS Lost Significance 11.26
PSH Preparatory Shift

Greater than 48 11.27
XPFP Exponent Flag

Positive 11.28
XPO Exponent Over-

flow 11.29
XPH Exponent High 11.30
XPL Exponent Range

Low 11.31
XPU Exponent Under-

flow 11.32
M Zero

Multiply 11.33
RU Remainder Under-

flow 11.34

FLAGGING
TF T Flag 11.35
UF U Flag 11.36
VF V Flag 11.37
XF Index Flag 11.38
TRANSIT OPERATIONS
BTR Binary Transit 11.39
DTR Decimal Transit 11.40
1BM 7030

PROGRAMMER INDICATORS

PGO or PG

INDEX RESULT

XCzZ Index Count Zero
XVLZ Index Value Less than
Zero

XVZ Index Value Zero
XVGzZ TIndex Value Greater
Than Zero
XL Index Low
XE Index Equal
XH Index High
ARITHMETIC RESULT
MOP To-Memory Operation
RLZ Result Less than Zero
RZ Result Zero
RGZ Result Greater than
Zero
RN Result Negative
AL Accumulator Low
AE Accumulator Equal
AH Accumulator High
MODE
NM Noisy Mode

TRANSMIT OPERATIONS:

Notes: 1.

11.48

11.49
11.50

11.51
11.52
11.53
11.54

11.55
11.56
11.57

11.58
11.59
11.60
11.61
11.62

11.63

OP, J, Ayg(I), A}g(T")

Full words are transmitted in all Transmit and Swap instructions.

2. In the immediate operations, J is the count of the number of full

words transmitted. J must be < 16.

transmitted.

If J=0, 16 words are

3. In the others (the direct transmission) the count field of J has
the number of full words to be transmitted.

Transmit Forward
T M) —>(My)

(M]+1) —>(M,+1)

ete.

Transmit Forward Immediate

TI (M) —> (M)
(Mj+1) —> (My+1)
etc.
Transmit Backward
TB (M) —> (My)
(My—1) —> (Mg—1)
ete.

Transmit Backward Immediate

TBI (M) —> (My)
(M;~1) —> (My—1)
ete.
Swap Forward
SWAP (M) <—>(My)
(Mj+1)<—>(M,+1)
etc.

Swap Forward Immediate

SWAPI (My) <> (My)
(M +1)<—>(My+1)
etc.

171

1. M, is the effective address of
Aqgr(I)

2. M, is the effective address of
AL (1)

1. Both blocks are referred to in a
backward direction.

Swap Backward

SWAPB (M) <—>(M,)
(M;—1)<—>(My—1)
etc.

Swap Backward Immediate

SWAPBI (M) <—>(My)
(My—1)<—>(My-1)
ete.

MISCELLANEOUS OPERATIONS: OP, A19(I)
Store Instruction Counter If

SIC IC;+1.0—>(0-18) of 1. SIC; NOP will not store the IC.

AIQ(I) if the following
half word branch in-
struction is executed.

Refill
R (Ry) ————> (M) 1.
Refill If Count Is Zero

R, = refill field of word M.

RCZ (Ry) ————>(M)
if C field of M =0

Execute

EX Execute ———— > (M) 1. The instruction located at M is
executed.
2. Control then goes to the instruc-
tion following EX.

Execute Indirect and Count

EXIC Execute ————>(M)? 1. The instruction whose address is
(M) +1 ————> (M) located in M is executed.

Store Zero

Z 0 ——m8 —— (M) 1.

Full word of zeros.

INPUT-OUTPUT INSTRUCTIONS: OP, A;(I), A;g(1")

Locate A7 (1) represents a channel address; A;g(1") represents:
1. The address of one of several units attached to chan-
Loc nel A;(I); in this case LOC or SU must be given
before a RD or W addressing this channel;
Select Unit 2. An address on the disk specified by A;(I).
LOC = SU.
SU
Read
RD A7 (I) represents a channel address; a reading operation

is initiated for this channel (or for a unit attached to
this channel if more than one unit is available and has

172

been readied by a LOC instruction). Als(l’) is the
address of a control word.

Write
w Initiates a writing operation. Analogous to RD except
that the skip flag of the control word is ignored.
Release
REL Immediately terminates any operation in progress at the

unit specified in A, (I), the channel address, or in the
last unit at A;(I) selected by a LOC instruction, if
A7(I) consists of more than one unit.

Copy Control Word

ccw The current control word corresponding to the addressed
channel A7(I) is sent to AIS(I’).

LOC(SEOP) Same as LOC, SU, RD, W, REL, CTL except the SEOP
RD(SEOP) bit in control word is set to 1; thus, program interruption
W (SEOP) on completion of an operation is suppressed, provided no
REL(SEQOP) exception conditions, such as unit check and end ex-
CTL(SEOP) ception, are encountered.

SU(SEOP)

Control
CTL Initiates performance of certain functions at the chan-

nel indicated by A7(I), or at the last unit selected by
an LOC instruction. The functions are indicated:
General 1/0 Unit (Standard for A,¢(I))
Aqg(I") = 016g Reserved Light of
017g Reserved Light On
116g Read-Write Check Light On
0573 ECC Mode
1574 No ECC Mode
Card Reader and Card Punch
Standard, except A18(I') =2 also causes a card to
be offset in the stacker.
Tape Units
Standard, but in addition:
Ag(T') = 057g ECC Mode, Odd Parity
57g No ECC Mode, Odd Parity
156¢ No ECC Mode, Even Parity
1368 Rewind Tape
0768 Space Block (record)
1768 Backspace Block (record)
0778 Space File
1775 Backspace File
117g Write Tape Mark (EOF mark)
0565 Erase Long Gap
0365 High-Density Mode (556 bits/inch)
037g Low-Density Mode (200 bits/inch)
0165 Remove End of Tape Condition
137¢ Rewind and Unload
Inquiry Station, Printer, Console
Standard, except codes 057¢ and 157g are missing.
On Console, A g(I') =177; causes the gong to
sound.

EM 7950 Reference Card

ADJUSTMENT AND SETUP STIMULI

Form R22-976.
Printed in U.S.A

ADJUSTMENT REACTIONS

STIMULUS ADJSTM SASTM SCSTM $sS SSM
MNEMONIC (Octal) (Octal) (Octal) .38, 33,
Indexing FL1P 5 30 40 8
FL2P 6 — 41 9
FL3P 7 — 42 10
FL1Q 1 31 43 11
FL2Q 2 - 44 12
FL3Q 3 — 45 13
FLIR 21 32 46 14
FL2R 22 — 47 15
FL3R 23 — 48 16
Match w 24 — 20 36 4
Stim X 26 5 21 37 5
Y 40 6 22 38 6
z 37 — 23 39 7
NW i 7 _ - 0
NX 12 - 24 — 1
NY 13 — 25 — z
NZ 14 10 - - 3
w.X 15 - —
w.y 16 — 27
XvYy 27 - 26
NWXY — 17 —
Other Data BYP - - 33
BYQ — - 34
BYR — 13 -
BYSA — - 35
ELTE 50 — 37 49 17
EG 77 n —
TAF - - 36
Misc INIT 60
NOP 0 0 0
cCcz 17 — — - 28
STIM 47
. ADJSTM SASTM SCSTM SSS | SSM
LU Stim (Octal) (Octal) (Octal) 3 |33
AND'ing* [no EG FZ F1 [no EG |no EG FZ
FZ. 33 70 7
F1. 67 4 10 51 {19
KBZ. 43 63 1 16
KB1. 44 35 64 1 11| 53 (21
LBZ. 45 65 2 5 15
iB1. 42 34 62 |12 2 12} 54 (22
MBZ. 46 66 3 13
MBI1. 41 36 61 4 14| 55 |23
KGZ. 53 73 14
KGT. 54 74 3 56 |24
LGZ. 55 75 15
LG1. 52 72 [57 |25
MGZ. 56 76 16
MG1. 51 71 7 58 |26
SA & SC AND'ing | no EG
Stim SAGETH | 10 50 |18
SALT. 31
SABN 32 27
SCLIM 25 52 (20
SCNL. 30
Other SSS ACRé 59
Bits FRCT**
F reset 61
F counter 62, 63

Mnemonics in the left column of the above table must be used in ADJ, SA, 5C, and SSM statements. No
mnemonic may be used in a statement for which it does not exist; for example, W as an SA stimulus
*When no AND'ing is desired for the AND’ing stimuli, delete the period. When AND'ing is desired, add

the mnemonic at the top; i.e., MB1.FZ
**The system symbol FRCT includes the F reset and the F counter

173

Note: Hexadecimal (base 16) A=10, B=11,C=12, D=13, E=14, F=15

apg (T
stu [g| R2 E
s b e bt oy
0 6 8 16 24 3l
ADJ (stimulus, tag), reaction 1, reaction 2, reaction 3
Tag Field: 00 blank 10 For BR and CH, reaction {
01 AND 11 CH relative address
Type Group Description Mnemonic Octal Hr
NO OP NOP 000 0
RESET: Fand G RSFG 025 1
sC RSSC 031 1
SA RSSA 026 [
STEP: SChby +1 SC+1 023 1
SChby —1 SC—1 034 it
STATISTICAL SAby +1 SA+1 032 1
UNITS READ OUT SA: low order 8 bits ROBSA 052 2
toR low order 16 bits RO16SA 046 2
entire 24 bits RO24SA 043 2
READ OUT SC: low order 8 bits to R RO8SC 063 3
entire 16 bits to R RO16SC 073 3l
Add to TBA SC+ TBA 061 3
RESET: P — This Level RSP 344 E.
thru FL1 RSFLIP 346 E¢
FL2 RSFL2P 345 E!
FL3 RSFL3P 347 E/
Q — This Level RSQ 350 E¢
thru FL1 RSFL1Q 352 E/
FL2 RSFL2Q 351 ES
FL3 RSFL3Q 353 Et
R This Level RSR 324 D.
thru FL1 RSFLIR 326 D¢
FL2 RSFL2R 325 D:
FL3 RSFL3R 327 D;
INDEXING Z5vaNCE: P — Next Level ADP 310 K
thru FL1 ADFL1P 342 EZ
FL2 ADFL2P 341 E1
FL3 ADFL3P 343 EZ
Q — Next Level ADQ 354 EC
thru FL1 ADFL1Q 356 EE
FL2 ADFL2Q 355 EC
FL3 ADFL3Q 357 EF
R — Next Level ADR 320 D(
thru FL1 ADFLIR 322 Di
FL2 ADFL2R 321 D1
FL3 ADFL3R 323 DI
TABLE Reference TBA-1 RFTBA-1 361 F1
REFERENCE Skip Extraction SKTA 362 F2
Reset Base Address to TBA RSTBA 364 F4
UNIT Cancel Address OMTA 370 F8
Specified Trigger(s) for this byte B12345 010 T;T,T,T.
DISABLE Specified Trigger(s) for duration of group G12345 011 T5T,4TsTy
Match Units for Runout DISMU 315 Ccr
INSERT Win LUO INW 214 8C
X INX 200 80
Y INY 204 84
z INZ 210 88
MOD INMOD 202 82
MOD in TE out INMODTE 203 83
RUNOUT P — This Level ROP 220 90
thru FL1 ROFLIP 222 92
FL2 ROFL2P 221 91
Q — This Level ROQ 224 94
thru FL1 ROFL1Q 226 96
FL2 ROFL2Q 225 95
MATCH ONLY P — This Level MorP 230 98
PIPELINE thru FL1 MOFLTP 232 9A
FL2 MOFL2P 231 99
Q — This Level MoQ 234 9C
thru FL1 MOFLIQ 236 9E
FL2 MOFL2Q 235 9D
STORE ADDRESS P STPS 240 A0
Q STQS 244 A4
OMIT byte after special byte from P OMP 260 BO
Q oMmQ 264 B4
TE OMTE 266 BS
Special byte output of LU OMLU 262 B2
Special byte into R OMR 263 B3
REPEAT special byte from P RPP 270 B8
Q RPQ 274 BC
Suppress LU output for duration of group SULY 140 60
MISC Skip Space in R SKR 304 C4
Skip remaining TE extractions, this ref. SKTE 310 c8

SETUP

All mnemonics used in the setup word diagrams are system symbols. SA and SC stimuli
are in the “Adjustment and Setup Stimuli” Table. Boldface type indicates nonprogrammer
symbols and system symbols. talicized items may be any programmer symbol

W X Y z
WCHAR Iol oM bt woun | €10 M vorer | © {0 1Y zome Sl
32 ' 0] “plu 0! b 01 pM o[l
Ik N N "
gt e b bbb b b binresesd i b vpvp e
0 8 It K416 24 27 3032 40 43 4648 56 58 6 63
W (CHARACTER, connection, mode, span), action
Connection Codes Action Codes
Octal w X Y 4 Octal Code Action
0 NOP NOP NOP NOP 0 NOP No operation
1 P P P TE 1 IN Insert char in LUO
2 Q Q Q L 2 OM Omit matching byte
3 PQ PQ PQ LUTE 3 OMALL Omit all on match
4 —— [A] TE —_ 4 IN.KB1 Insert and force KB1
5 — PLU PTE —_ 5 IN.MB1 Insert and force MBI
6 — Qu QlE —— 6 notused No operation
7 — PQLU PQTE —— 7 notused No operation

If mode is coded AND, a 1 enters WM; if OR or blank, a 0 enters WM.

In AND mode an adjustment stimulus is emitted only when synchronous simultaneous
matches occur or on an LUO match.

Span bit 1 is coded R, match on right bit only; F, match full byte.

This format is also used for X, Y, and Z match units. All MATCH CHARACTERS must be numeric
and are assumed to be binary

SA | DE
13 SSM 0 SATH STM{BUG
pivarrra g vp e via i yeavn pra by beaea g epantd it irgatyl)

29 32 56 60 63

SSM(mask) mask code mnemonics are in the "Adjustment and Setup Stimuli” Table

DEBUG(mask) code: BL — Bit60 — Any branch level
ADJ — Bit61 — Any adjustment
FLAG — Bit62 — Any flag
SCAN — Bit 63 — Must be on to enable a debug scan

S| SA s
Al M.
34 SA ENBS | O SC 0 :0 O st
[FSTEEETESIEINENEIRTNEN YRS RRTINENENANTRRTEUR NI R NNS S NI BTV
34 5 5456 59 62
SA (mode, threshold, value), stim
SC (limit, value), stim, action
Samode Codes Scmode Codes
Octal Code Action Octal Code Action
o v Unsigned, 1 byte o +1 Step plus one
1 Ulé Unsigned, 2 bytes 1 -1 Step minus one
2 S Signed
3 SR Signed, negative reset
|
0 SCLM TBA l o
o F ol
35 I [BS M
INNISENSSINSITISINIRUSNNE NN (EURUNET| wnnanddin
02 719 32 58 63

F (stim), limit, action

F Stim, Limit, and Action Mnemonic Codes

Bit Code Meoning Bit Code Meaning

19 KK OKB1.KB1 26 ML OMB1.1B1

20 KL OKB1.L81 27 MM OMB1.MB1

21 KM OKB1.MB1 28 I Invert with F limit 1

22 LK OLB1.KB1 29 SO Stay On with F limit 1
23 LL OLB1.LB1 30 l 1,2, { Limit 1 to 4, blank sets
24 M OLB1.MB1 31 3,4 1 Flimit 1

25 MK OMB1.KB1 28 & 29 IS0 Stay On with F limit 1

TBA (address, TBAHO, MDM)
TBA high order bits — code this in actual: 00, 01, 10, 11.

Logic Unit Signal Generation Table

Luor K81 if LB if MBI if
0-17 Connective Result has odd Result zero Result has even
parity parity and not 0
20-35 Compare or P>Q P=Q P<Q
subtract
36 RDXP+Q P+ Q=256 —— P+ Q<256
37 MODP+Q suppressed suppressed suppressed

174

]
TPM 1o TQS [TO :orou TQ4 | MOD
|

2@ T

1
|

36 RS | TPI | TPN [of TPJ |O
!

NN st b bed by dbonne b vvenad by adiperedoangl
] 6 1113 1719 23 27 3133 38 4345 495 56 63

TAP (TPS, TPI, TPN, TPJ)

TAQ (TQS. TQ/. TQN, TQJ), TAO, TAOHO, TPM

LU (modulus, group size), luop

TAO high order bits — code this
in actual: 00, 01,10, 11.

T

Il e
TES | TEL || Bs | TEN

|

1

T

TEBM TAOQ | TEM
37 }
1

suvandiaspadleeaad o g e orrn pP0n e ORI LINIRbILLL
0 6 13 18 24 32 58 &

TE (TEI, TEN, Tem, TES, TEM)
Note: TEBM must be numeric and is assumed to be binary.

F
ERR PCB
S| PCBSR 0 5SS R
38 IND s E ’ .
La1d i iiatd 1ida a3y ea e r it et iigy
0 8 1416 32 36 5961 63
The error indicators are: 0 = P 2=R 4=TA 6 = SLAM
1=Q 3 = SACC 5=TE 7 = SIGMA
INDEX SETUP WORDS
PS 0 PIX 0 PBS
39
[SERCEISREIRFRNSSRUNRINE ISR RIS S AR NN INNE U NN NA AU NUNEE!
Qs 0 Qix 0 Q8S
40
prrertrrrarert s ven e et ety ier g laiignetl
41 RS 0 RIX 0 RBS
prrv e tverrtereerrr e r e lverreeyrded et el EeIgag
0 24 32 50 53 55 63
PAD
QAD > (starting data address, initial index table address)
RAD
OTHER SYSTEM SYMBOLS
Address Length Code Meaning
3.57 1 BC Boundary control
3.58 1 — Error inject CPU
3.59 1 — Error inject HPU
3.62 1 Sl Setup interrupt
3.63 1 FMP High performance storage protect
32 — HR Setup registers
42. 64 TE Table extract
43. 64 R1 R data register 1
44, 64 R2 R data register 2
INDICATORS
Address CPU Code HPU Code HPU Meaning
11.25 IR INC Incomplete instruction
11.26 Ls LST Lost stimulus
11.27 PSH EW Extract wraparound
11.28 XPFP MCO Memory count overflow
11.29 XPO SAO SA overflow
11.30 XPH sCoO SC overflow
11.31 XPL LWM Look up in wrong memory
11.32 XPU DSCT Debug scan taken
11.33 M STK STIR check
11.34 RU RNIF Record not in file
11.35 TF BPR Break point reached
11.41 PGO HMK Setup arithmetic error
11.42 PG1 ISSM Interrupt on SSM
11.43 PG2 F3P EOL-P with flag 3
11.44 PG3 F3Q EOL-Q with flag 3
11.45 PG4 F3R EOL-R with flag 3
11.46 PG5 DTS Delayed time signal

HAP OPERATION CODES

5
DATA | DATA bl T
A
SBBB K cares LUoP (i8S “cs, %
Lidlitl Liadiiyl 1L 111 14
o 8 B v 2426 293

SBBB (data gates), luop, gs, TA (mode and cell size, parailel-serial, replace base ad-
dress, demand parallel synchrony), STOP (stimulus), SETUP (name)

KP.'? ST

SMER 0 bMooI0fGS] 0 |
N|

INSENBEUENT] 11 Liliganid f

1215 ® 22 33

SMER (up-down, internal-external, simple-offset), gs, STOP (stimulus)

s

SSER o koflloopes | o A
P

1id0111111 11 INEESENENEEN]
8 U 15 132 293

SSER (store data-store address, ordered-random, up-down, simple-offset, search con-
dition). gs, STOP (stimulus)

L's| Sr

SSEL 0 oI es | 0 9
INUEETINNSN] TN ININENUNNEEN]

0 1315 19 22 29.31

SSEL (least-greatest, simple-offset), gs, STOP (stimulus)

a-p- 3
> X=R i
=0

S
]
1jI00)0IGS 0
STIR i %

Fadi=Ri e kod

IUFNNENET| SNV NUNN NI
0 10 5 19 22 29 31

STIR (replace-take, instruction-data control, up-down, simple-offset), gs, STOP (stimulus)

DATA GATES

o

cs|ol
Pl P

ISR SEIuE] 1111 11 11l 11

0 45 1012 15 19 2224228 3

SQNL 0 0 |Rojopies E

==

SQNL (data gates), gs, TA (mode and cell size, parallel-serial, replace base address,
demand parallel synchrony), STOP (stimulus), SETUP (name)

U S
o [l o [lfos A ksl b
SILS cR i T
L1l ITESNUENE il 11 J L 1l
0 4 15 19 23 6 293

SILS (load-store), gs, TA (mode and cell size, replace base address), STOP (stimulus),
SETUP (name)

0 1000 0
ol

SNOP

IS NENENEESENEEE] RN NINEN]

0 15 8 3

Note: . Boldface type is used for nonprogrammer symbols and system symbols.
ltalicized items may be any programmer symbol

175

Bit Number
1
2
3
4*
5%
[
7
7

SBBBE MNEMONIC CODES

DATA GATES — 12 Bit Field; Bit 8 Always 0

Mnemonic Bit Number Mnemonic
P-LU 9 LU-R
Q-Lu 10* TE-R
TE-LU 11 LU-SA
P-TA 12* TE-SA
Q-TA 6,7 SC-TA
LU-TA 7,9 SC-R
SC(bit7 =1) 7.1 SC-SA
LU (bit7 = 0)

*Gates which may be used with SQNL

Octal Mnemonic
cz
cP.Q
CP.NQ

o

15 CNPVQ
16 CNPVNQ
17

Octal Mnemonic
0 NOP
1 FL1P
2 FL2P
3 FQ

Binary*
00xx
01xx
1000
1001
1010
101
1100
1101
1110
1

LUOP — Logic Unit Operation Code (5 Bits)

Function Octal Mnemonic Function
zero 20 MAXPQ Maximum of Pand Q
PQ 21 MINPQ Minimum of P and Q
PQ 22 EPZ Pif P=Q or zero
PQ v PQ 23 EPNB Pif P=Q or no byte
PQ 24 EZP P if P=£Q or zero
PQv PQ 25 ENBP P if P5£Q or no byte
PQv PQ 26 EZQ Q if P%Q or zero
PQvPQvPQ 27 ENBQ Q if P=~Q or no byte
PQ 30 GEP—QZ P—Qif P>Q or zero
PQv PQ 31 GEP—QNB P—Qif P>Q or no byte
PQv PQ 32 LEQ—PZ Q—Pif Q=P orzero
PQv PQ v PQ 33 LEQ—PNB Q—Pif Q=P or no byte
PQvPQ 34 MODP—Q Modular P—Q
PQvPQV PQ 35 MODQ—P Modular Q—P
PQvPQvVPQ 36 RDXP+Q P+Qnocarryout

PQVPQVPRVPQ 37 MODP+Q Modular P+Q

GS — Group Size (3 Bits)

Octol Mnemonic

None 4 FLIR Flag 1in R

Flag 1in P 5 W Match signal from W
Flag2in P 6 1 Match signal from Z
Flag1in Q 7 XVYy Match signal from X or Y

TA — Mode and Cell Size (4 Bits)

Mnemonic Function

ADTE Address is sent directly to TE

X Extract word from memory, send to TE
OR OR a one into addressed bit in memory
cT8 Add a one into addressed bit, cell size 8
CT16 Add a one into addressed bit, cell size 16
CT24 Add a one into addressed bit, cell size 24
XOR Combination of; X and OR

XCT8 ?

XCT16 Combination of X and count

XCT24)

“x may be either 1 or 0

Field
PS

RBA

DP

Octal Mnemonic
¢ NOP
1 FL2P
2 FL2Q
3 FL2R

TA — One-Bit Fields

Binary Mnemonic Function
0 PA Bytes OR’ed before adding
1 SE Bytes added sequentially
o} blank Form each address on TBA
1 RBA Form address on preceding address
0 blank Allow bytes to move asynchronously to TA
1 DP Force synchronous movement by MU to TA

STOP — Stop Stimulus (3 Bits)

Stimulus Octal Mnefonic Stimulus
onlyCC =0 4 NOP only CC =10
flag2in P 5 FL3P flag3inP
flag2in Q 6 FL3Q flag3in Q
flag 2in R 7 FI3R flag 3in R

OTHER INSTRUCTION MNEMONIC CODES
Field
Use Name Binary Mnemonic Function
SMER, SSER, } up 0 UP Files are ordered up
STIR 1 DN Files are ordered down
SMER IN 0 IN 1 Entire sort is done infernally
1 EX The sort requires external I-O
SMER, SSER, } SIM 0 SIM Control field is entire record
STIR, SSEL f 1 OFF Offset control field
SSER DA 0 DA Entire records are stored
1 AD Record address is stored
SSER ORD 0 ORD Records are ordered
1 RAN Records are not ordered
SSER SCD 000 —_ Invalid — do not use.
001 PLQ P<Q
010 PEQ P=Q
on PLEQ PLQ
100 PGQ P>Q
101 PNEQ P=£Q
110 PGEQ PZ2Q
m —_ Invalid — do not use.
SSEL LST 0 LST Select the least
1 GST Select the greatest
STIR RPL 0 RPL Replace matched records
1 TAKE Delete matched records
STIR IC 0 Ic Instruction control, RPL bit used
1 DC Data control, ignore RPL bit
SILS LD 0 LD Address from TE — Q indexing
1 ST Address from TE = R indexing

Either LD or ST must be specified

ARITHMETIC MODE

BES, address (1)

INSTRUCTIONS

xxxxxx. 24z Ox,¢ Branch enable to stream initiate

BES(R), address (I) xxxxxxX. 64g Ox1s Branch enable to stream resume

CLM(S), address (1) xxxxxx. 323 Ox;5 Clear memory small block

CLM(L), address (1) Xxxxxx. 72g Ox;¢ Clear memory large block

COLLATING INSTRUCTION TX TABLE WORDS
INCREMENT u TOTAL COUNT .
INCR OFF I OFFSET 0 Rs o fif]o
TOT COUNT, OFF
NN TN SUNEENANEEN Y] IWERE NI I}'jlllllllllllllj JSENENI 1i]
0 10 2 34 37 52 5759 63

First word not offset: TX(FL), byte size in increment, count of bytes in record

First word offset: TXO(FL), byte size in increment, count of bytes in record, , RBL
Second word STIRonly: TXO(FL), 2, 1, offset of action field

All following words: TXO(FL), byte size in increment, count of bytes in control field,

offset of control field, RBL

Note: TXO sets NO, bit 25, to a one

STIR ACTION FIELD

The two-bit data action field is coded: 0 = insert, 1 = take, 2 = replace, 3 = check

SQNL DATA WORD FORMAT

ADDRESS TEN |4 OFFSET jg DATA

Ldvnibeatnaepreytlaapafioriqngy SNSRI NN NN NN NNNEENANUEN]

0 18 23 3234 63
TEY(TEC/TCC, TQ/TR), address. offset signed, TEN count, DATA

Note: The initial SQNL data word must be stored in word 42 of setup in the following
format: TEY(TEC), address

176

INDEXING WORDS

45 INCREMENT +N+PUT 3 o TOTAL COUNT . F”i .
FHOH LRI ISi
49 INCR OFF OFFSET I B, | TOT COUNT, OFF
53 NN EE IR ENEEREN] SN EENIENINSE RIS NE T 1 1
0 10 23 30 M 37 50 &

First level, First word for P and Q. R is identical except bit 30 unused.

BYTE

46 RESET ADDRESS 0| CURRENT COUNT 0

50 MASK

54 SRS SIEENUNEEENENEUNISNENNNVNEN] ANV ESEENIENNINSSSNENENNNEUENE
0 2 234 63

First level, Second word for P, Q, and R.
pu INCREMENT [a] | ToTAL couNT il
URAM| O 0 L

51 [NcR OFF | OFFSET Fa, [ToT COUNT, OFF

55 Lopbanv o b paLeperangl TN SRS ENE AN NI 1
o 10 2 0 ¥ ¥ 50 555759 &

Higher level, First word.
Note: Identical to First level, First word except for bits 56 and 62.

48 RESET ADDRESS O{BRHO |0} CURRENT COUNT BRLO 0

52

56 ppprtatarenarrrp e b deena bl ni e bp il
2426 3234 50 62

Higher level, Second word for P, Q, and R.

Non-offset levels:

PQ)§(t (mode, EC/CC, FL, FF, SR, BL, Runout or R control, TRU or TRL, FS), Increment,
RX ‘ Total count, BYTE MASK/Branch address, Reset address, Current count
Offset levels:

PXO l

Qxo (same as above), Increment offset, Total count offset, BYTE MASK/ Branch address,
RXO § Offset, RBL, Reset address, Current count

Note: BYTE MASK must be numeric and is assumed to be binary

MNEMONIC CODED FIELDS

Field Binary Mnemonic Function
TR 0 - If zero, ignore UL field. If one, consult UL for
1 TRU or TRL triangular indexing.
uL 0 TRU UL = 0, decrement N
1 TRL UL = 1, increment N
Runout 00 — No effect
RM 01 R Run-out directly 1o R
(for P 10 M Match only
and Q) n RM Both Rand M
R control 0 — Data stored directly in R
(bit 31 in R) 1 RC Fetch before storing in R
FS 0 — First-subsequent toggle. First = 0,
1 S subsequent = 1. Not set by programmer
BL 1 BL Branch level, must be nested
FL 00 - Flag control field. 00 = no flag
o1 FL1 Flag 1
10 FL2 Flag 2
11 FL3 Flag 3
cC 0 EC End chain
1 cc Continue chain
FF 1 FF A First level follows this level
SR 1 SR Suppress Reset at end of level
NS(mode) 0 NES Nested mode
1 SEQ Sequential mode
PROGRAMMER SYMBOLIZED FIELDS
Field Binary Function
Increment 24 bits, sign Amount added to address
Incr Offset 10 bits, sign Amount added to address (in offset)
Offset 14 bits Amount of offset
Bit 24 0 Increment sign (+)
1 Increment sign (—)
Bit 25 0 normal 7(This bit, NO, is set by either
1 offset PXO, QXO, or RXO
Bit 26 0 Offset sign (+)
1 Offset sign (—)
Total count 16 bits Total count to be reached
Tot count, off. 13 bits Total count to be reached (in offset)
RBL 3 bits Residual Byte Length, for last offset byte
Reset address 24 bits Location in which initial address is stored
Current count 16 bits Number of times increment is used
BYTE MASK 8 bits Byte mask in first levels
Branch 6 bits Branch address, high order | = .
Address % 12 bits Branch address, low order } in higher levels

A ENTRY MCOE
ACDITION+SUBTRACTICN CF ACDRESSES
ALCDRESS ARITHMETIC

ACDRESS ARITHMETIC SHIFT DIAGRAMS
ACDRESS ARITHMETIC WITH UNLIKE QUANTITIES
AUCRESS FIELD

AUCCRESS FIELD ENTRIES

ACORESS FIELDS

ACJUST SFT MACRO STATEMENTS
ACJUSTMENT FIELCS,CODING

ACJUSTMENT INSTRUCTION FORMAT
ACJUSTMENT NUMBER

ACJUSTMENT REACTICNS AND CODES TABLE
ACJUSTMENT STIMULI TABLE

ALJUSTMENTS

ACJUSTMENTS (FORMAT)

ALPHA INTEGERS (INT)

ALPHABETIC INFCRNATION, ENTERING

AND (ADJUSTMENT TAG)

ARITHMETIC DATA OR CONTROL STATEMENTS
ARITHMETIC IN ANY PROGRAMMER FIELD
ARITHMETIC MOLE DATA CEFINITICN
ARITHMETIC MOLE INSTRUCTICN FCRMATS
ARITHMETIC MOCE INSTRUCTIONS
ASSEMBLING IN CEBLG AND PRODUCTION MODE
ASSIGNMENT MACRC STATEMENT

AUTCCCDER '}

BASIC CCNCEPTS, STREAMING MODE
BES,CLM INSTRLCTICN FCRMAT
8INARY CUTPUT

BINARY CUTPUT FILE

BLANK (ACJUSTMENT TAG)

BLOCKS

BR {ACJUSTMENT TAG)

BRANCH CARD

BRANCH ENABLELC TC STREAMING FCRMAT
BRANCH CN BIT FORNMAT

BYTE SIZE (8S)

CALLING A LIBRARY SUBROUTINE

CARC BLCCKS,RECORLS,ANC FILES

CARC IMAGE CONTRCL STATEMENTS

CARC TYPES

CC ENTRY MODE

Cr (ACJULSTMENT TAC)

CHARACTER PARAMETERS (HCS)
CIRCULAR CEFINITICN

CLEAR MEMCRY HELOCK FORMAT
CNOP,CONCITIONAL NC OPERATION
CCCING SHEET

CCLUMN FEADINCS

CCMMENT MARK

CCNNECT FCRMAT

CUNSECUTIVE PARENTHETICAL INTEGERS
CCNTAG

CONTINUATION CARC MARK

CCNTRCL OPERATICNS MACRQO STATEMENTS
CONTRCL STATENMENTS

CCNTRCL STATEMENTS ANC PRINTED OUTPUT
CCNTRCL WCRD

CCNVERT FCORMAT

CCUNT FIELD (CF)

CCUNT+BRANCH FORMAT

CATA CEFINING STATEMENTS

DATA CEFINITICN

DATA CESCRIPTION (CDS)

CATA ENTRY OR DATA RESERVATION DDS
CATA GATES (SE88B)

CATA GATES (SCNL)

DL STATEMENT

CC STATEMENT ENTRY MOCE

CC STATEMENT RULES

CC STATEMENT RULES,SUMMARY OF
U0 STATEMENT SAMPLE

CCyBINARY SIGNEC VFL
CE+BINARY UNSIGNEC VFL
CC,CECIMAL SIGNED VFL
OCoCECIMAL UNSIGNED VFL
CCyMISSING ENTRY MODE
CL,NCRMALIZED FLOATING POINT
CC,UNNORMALIZED FLOATING POINT
OCI STATEMENT

CC1 STATEMENY RESTRICTIONS
CC1 STATEMENT SAMPLE

CEBLG FACILITIES AVAILABLE
UEBUG (MASK) FIELD ENTRIES
CEBUG PROGRANMS

CEBLG SAMPLE ENTRY

CEBUG TABLE FILE

CECIMAL FORMAT

134
52
51
55
54
38
39

132

103
80
18
80
e3
g2
79
63

111

134
80
60
53

151

11,32
120
106

65
18
24
24,27
20
24
80
27
51
51
35

160
15
29
25
135
80
11
i39
51
156
12
22
12
50
128
23
4
104
150
19
106
50
61
49

151
13

35

36

68

78
131
124
141
148
136
tus
146
w7
148
Tuk
142
143
137
138
137
119

9y

Su
24,29
16

INDEX

177

CEFINITICNS, STREAMING MOCE

DIRECT INDEX ARITHMETIC FCRMAT
DNOP STATEMENT

DR STATEMENT

DRZ STATEMENT

E SUFFIX ON DATA ENTRIES

END AND TERMINATE LOACING

END OF STATEMENT CHARACTER

END STATEMENT

LNTRY MCDE

ENTRY MCDE ANC DATA DEFINITION
ENTRY MCDE, STREAMING

ERRCR CCNOITICNS (OPERATICN + DDS)
ERRCR FLAGS

ERRCR MESSAGE CONTROL

ERROR MESSAGES

EXECUTING A LIBRARY SULBROUTINE
EXPCNENT ENTRY

EXT STATEMENT

F ENTRY MCDE

F FIELD ENTRIES

F SAMPLE ENTRY

Fs ACTICN

Fo LIMIT

Fo STIM

FIELD LENGTH (FL)

FIELC SPECIFICATICN ENTRY MODES
FILE CATA DESCRIPTCRS (FDC)
FLOATING POINT FORMAT

FLOW CARD

GENERAL ADDRESSING RULES

GENERAL RULES FCOR STREAMING MCODE
GS (SEEB)

GS {(SMER)

GS (SSER)

GS (SSEL)

GS (STIR)

HAP BIT ADDRESS

HAP BIT ADDRESSES IN THE CFFSET FIELD
HAP LANGUAGE

HCP MACRC STATEMENTS

HCP STATEMENTS

HCS ENTRY MCDE

HMCP 100 STATEMENT CHART

HVMCP MACRC STATEMENTS

HVCP STATEMENTS

HCPS PRCGRAMS

ICENTIFICATION,TIME CLOCK
ILLUSTRATICONS CF ALCDRESS MULTIPLICATICN
IMMEDIATE INDEX ARITHMETIC FORMAT
IMMEDIATE OPERATICN ACDRESS ARITHMETIC
INCEX FCRMAT,NCRMAL,FCR STREAMING
INDEX MCDIFICATION OF ADDRESS FIELDS
INDEX MCDIFICATION OF OFFSET FIELDS
[NDEX REGISTER SYMBOLS

INDEX REGISTERS WITH SYN

INDEX WCRLC FORMATY

INDEX WCRD (Xw)

INDEXING FORMAT FGR CCLLATING INSTRUCTIONS
INCEXING (FORFMAT)

INDEXING INSTRUCTION FORMAT

INDEXING WORDS

INDICATCR BIT SYMBOLS

INDICATCR BRANCH FORMAT

INDICATCR MASK (INCMK)

INPUT FCRMAT

INSTRUCTION ACDRESS FIELDS

INSTRUCTICN OR CATA OPERAND ACCRESSING
INSTRUCTICN-DATA CONTROL (STIR)
INTCGER ADDRESSES

INTEGER ADDRESSESs»ADVANTAGES OF USE
INTEGERS WITH CFFSET FIELC
INTERNAL-EXTERNAL (SMER)
INTERPRETATION OF MULT. OR DIV. RESULTS
INTERRUPT MACRO STATENMENTS
INTROCUCTION (HAPIII)

IOD AND ICX STATEMENTS

ICD, ICX INSTRUCTICN FCRMAT

ICS ENTRY MODE

I-0 CCNTRQOL STATENENTS

I-0 FCRMAT

LANGUAGE PROCESSOR
LEAST-GREATEST (SSEL)

LIBRARY SUBROLTINES

LIMIT STATEMENT ERROR CCNDITICNS
LIMIT STATEMENT FCRMATS

LIMITS INSTRUCTION FORMAT

65
49
120
140
140

130
157
134, 136
157
124
124
65
37
22
155
22
160
131
140

124
89
90
30
90
89
35

124

113

16,49
26

38
65
71
Ty
76
76
7

40
u7
11
120
108
135
107
102
102

139

105

1C6
18
134
150
12

10
76
159
18
115
19

LINE NUMBERS

LINK (LINK)

LISTING INFORMATICN,ACDITIONAL
LCAC VALUE WITH SUM FCRMAT
LCAC-STCRE (SILS}

LCCATION COUNTER CONTROL
LOGICAL AND PRYSICAL CARD PILE
LCGICAL CARD ELOCK OR RECORD
LU FIELC ENTRIES

LU, GROUP SIZE

LUy LUOP

LU, MCOULUS

LLOP (SEBB)

MACHINE FLOATING POINT(FLT)
MACRC STATEMENTS (HAP III)

MAJOR FIELDS

MATHEMATICAL CCNSTANT SYMBOLS
MCHANGE MACRO STATEMENT

MENCPCM MACRO STATEMENT

MENLPRUN MACRC STATEMENT
MHAPDUMP MACRC STATEMENT
MISCELLANEOUS CONTROL STATEMENTS
MISCELLANEQUS INST. FCRMAT

MLIE

MPPMSC MACRO STATEMENT

MTAIL

MULTIE

MULTIPLE STATEMENT MARK
MULTIPLICATION AND OIVISICN OF ADDRESSES
MUNTAIL

NC CPERATION

NCPRNT

NCPUN

NULL C0S FIELCS

NULL FIECLCS

NULL CPERATION CODE FIELD

NUMBER CF TERMS IN ARITHMETIC

NUMERIC DATA ENTRIES,fFORM OF

NUMERIC PARAMETERS (VBU,VBS,VOU,VO0S,VDU,VCS)

UCTAL FCRMAT

OCTAL-HEX FORMAT

UFFSET FIELD

OFFSET RECORDS

CPERATICN FIELC

CPERATICN FIELC OCS

CPERATICN SUBFIELCS
CPERATICNAL CYCLES
CRCERED-RANDOM (SSER)

CRIGIN CARD

ORIGIN CARD CHECKSUM

ORIGIN CARD CCCE

ORIGIN CARD ICENTIFICATION
ORIGIN CARD PRIMARY BIT CCUNT
ORIGIN CARD SECCNCARY BIT COUNT
ORIGIN CARD SEQUENCE NUMBER
QUTPUT FORMAT

CLTPUT LISTING

P USE MCDE

PAC, GAC, RAD FIELC ENTRIES

PAD, INITIAL INCEX TABLE ADDRESS
PAD SAMPLE ENTRY

PAD, STARTING UATA ADCRESS
PARAMETER CHECKING BY PRE-EX. SUPER
PARAMETER CHECKING BY PROBLEM PROGRAM
PARAMETER ENTRY STATENMENTS
PARENTHETICAL INTEGER CONTENTS
PARENTHETICAL INTEGER CROSSING FIELDS
PARENTHETICAL INTEGER ENTRY MCODE
PARENTHETICAL INTEGER IN ADDRESS CF 0D
PARENTHETICAL INTEGER RESTRICTIONS
PCGN STATEMENT ERRCR CCNCITIONS

PGN STATEMENT FCRNAT

PHYSICAL CARD BLOCK OR RECORD

PLE MNEMCNIC

PLE STATEMENT FIELD ENTRIES

PLE STATEMENT FCRMAT

PLE,LV

PLE,F

PLE,FFL

PLE,FL

PLE,LCCATION

PLE.MUST

PLE,PARAM IDENT

PLE,TYPE

PLb,=

PREPARATION OF LIBRARY SUBROUTINES
PRINT FCRMATS AVAILABLE

PRINTEC LINE CARRY-CVER

PRINTING CONTRCL STATEMENTS

22
62

51
79
151
15
15
89
89
89
89
70

(BB
7,11
34
45
122
122
121
119
21,151
u9
159
121
159
23
|10
58
160

156
19
29
37
33
3u
57
129
110

16
16
L6
99
34
131
35
8
75
25
26
25
26
26
26
25
15
16

37
94
94
9y
94
113
113
108
128
127
126
128
128
"r
11y
15
108
108
108
109
109
109
109
108
108
108
108
109
161
16
24
19,150

PRND

PRNIC

PRNS

PROBLEM PROGRAM PARAMETERS

PROBLEM PROGRAMS

PROGRAMMER + SYSTEM SYMBOL ARITHMETIC
PROGRAM LIMIT STATEMENTS

PROGRAM NAME AND LIMIT STATEMENTS
PROGRAM NAME AND LIMIT TABLE CODING
PROGRAM VERSICN INCICATIGMN
PROGRAMMER SYMBOLS

PROGRAMMER SYMBOLS IN THE OFFSET FIELD
PROGRAMS AND PROCEDURES (HAPIII}
PROGRESSIVE INCEXING FORMAT

PSEUCC

PUNALL

PUNCHED CARD

PUNCHING CONTRGCL STATEMENTS

PUNFUL

PUNFUL CARD

PUNID

PUNNOR

PUNCRG

PUNSYM

PXyCXyRX FIELC ENTRIES
PXyCXsRXyAND PXQ,CX0,RX0 FIELC CODING
PX OR PX0 BL

PX CR PX0O BYTE MASK/BRANCH ADDRESS
PX CR PXQ CURRENT COUNTY

PX CR PX0 EC/CC

PX GR PXO FF

PX CR PXO FL

PX CR PXO FS

PX OR PXO INCREMENT (CFFSET)

PX CR PXC MODE

PX CR PXC OFFSET

PX CR PXC RBL

PX CR PX0O RESET ACDRESS

PX CR PX0O RUNCUT CR RCCNTROL

PX CR PXO SR

PX CR PXO TOTAL CCUNT (CFFSET)

PX CR PXO TRU CR TRL

PX0,QX0,RX0C FIELD ENTRILS

QUEST

RADIX IN PARENTHETICAL EXPRESSIONS
RADIX SPECIFIER

REACTION (ADJUSTMENT)

RECLRC HANCLING MACRO STATEMENTS
RECCKLCS

REFILL FIELD (RF)

RELATIVE ADDRESS (ADJUSTMENT)
REM,RESUME ERRCR MESSAGES
REPLACE-TAKE (STIR)

RIGHT-TC—-LEFT CROPOUT, STREAMING

SA FIELC ENTRIES

SA SAMPLE ENTRY

SA, MCDE

SA, STIM

SAy THRESHOLD

SA, VALLE

SEBE FIELDS, CCDING

SEBBy SAMPLE ENTRY

SBBE, STREAM-BYTE-BY-BYTE
SC FIELC ENTRIES

SC SAMPLE ENTRY

SC, ACTICN

SC, LIMIT

SCy STIV

SCy, VALLUE

SLARCH CONDITICN (SSER)
SEM,SLPPRESS ERRGR MESSAGES
SETENC MNEMONIC

SLTUP FIELDS

SLTUP FCRMAT

SETUP (FORMAT)

SETUP INSTRUCTICN

SETUP INSTRUCTICN SUMMARY
SETUP MNEMONIC

SETUP (NAME)-(SRBE)

SIC FCRMAT

SIGN BYTE ENTRY

SILS FIELCS,CCCING

SILS, SAMPLE ENTRY

SILS, STREAM INCIRECT LCAC OR STORE
SIMPLE-CFFSET (SMER)
SIMPLE-CFFSET (SSEL)
SIMPLE-CFFSET (SSER}
SIMPLE-CFFSET (STIR)
SIMPLE RECCRDS

SINGLE FIELD SPECIFICATION

110

23

129
126
gl
102
24
61
81
156
X4
65

€8
89
88
a8
eg
88
68
68
68
87
88
€8
er
ar
87
75
155
2
84
19
o4
84
94
a8y
73
49
130
79
79
78
4
76

24
99
125

R22-9789

BN

International Business Machinas Corporation
Data Processing Division
112 East Post Road, White Plains, New York

‘Y'STN Ul pajuld 111 dVH 066Z Wl

6846-CTY

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	xBack

