IBM 8104 Data Processing System

Preliminary Manual of Operation
January 10, 1961

IBM CONFIDENTIAL

This document contains information of a proprietary
nature. ALL INFORMATION CONTAINED HER EIN
SHALL BE KEPT IN CONFIDENCE. No information
shall be divulged to persons other than IBM employees
authorized by the nature of their duties to receive such
information, or individuals or organizations who are
authorized by IBM Product Development or its appointee
to receive such information.

IBM Product Development Laboratory

Poughkeepsie, N. Y.

1/10/61

Chapter 1

IBM 8104 Data Processing System

Contents
Section Page
Introduction 1.1 1.1
System Organization 1.2 1.1
Storage Units l.2.1 1.1
Input and Output 1.2.2 1.1
Central Processing Unit 1.2.3 1.2

Formats

Chapter 2

Operand Designation

Contents

Instruction Formats

Indexable Instructions

Decision Instructions

Interruption Instructions
Input-Output Instructions

Variable Field Length Instructions
Byte Address Instructions

Data Format

Indexing

Single Byte Format
Variable Field Format
Single Location Formats
Double Location Formats
Triple Location Formats

Indirect Addressing

Accumulator Operations

STORE ACCUMULATOR

LOAD ACCUMULATOR

STORE FRACTION

LOAD FRACTION

STORE LEFT HALF-FRACTION
LOAD LEFT HALF-FRACTION
STORE RIGHT HALF-FRACTION
LLOAD RIGHT HALF-FRACTION

Control Word Operations
INCREMENT BY ONE
INCREMENT BY TWO
INCREMENT BY THREE
DECREMENT
REFILL

NNV

NINDNNINMNINNDN DNV DNNDNNDN N

VNN N

e s+ s e s e =

pod et el et et et
s & & e e« e

N INVIV IV VIV
Ul W W IV e~

NN NN N NN N
=~ O~ W WV

[S2BNS NG, BEC BRE E) |

W AN et

L R Y =
N UL R WV

Section

1/10/61

Page

ot

.

NINDNNMDNMNN NN N
G Ut o W DWWV -

v
o~

o
~3

VNN DDNDDDND N
O O ® W ™

1/10/61

(Contents - Chapter 2)

Section Page

Address Monitoring 2.6 2.11
Definition of Monitored Area 2.6.1 2.11
Action of Address Monitoring 2.6.2 2.11
Addresses Monitored 2.6.3 2.12
Storage Assignment 2.7 2.13
Control Words 2.7.1 2.13
Accumulator 2.7.2 2.13
Time Clock 2.7.3 2.13
Interval Timer 2.7.4 2. 14
Main Core Storage 2.7.5 2.14
Storage Assignment List 2.7.6 2.15

C 1/10/61

Chapter 3

Instruction Sequencing

Contents
Section Page

Normal Sequential Operation 3.1 3.1
Program Control Words 3.1.1 3.1
Branching 3.2 3.2
Condition Register 3.2.1 3.2
LOAD CONDITION REGISTER 3.2. 1.1 3.3
Branching Operations 3.2.2 3.3
BRANCH IF ANY 3.2.2.1 3.3

BRANCH IF NONE 3.2.2.2 3.3

Storage of Program Control Word 3.2.3 3.4
STORE PCW IF ANY 3.2.3.1 3.4

STORE PCW IF NONE 3.2.3.2 3.4

Program Interruption 3.3 3.5
Storage of Interruption Codes 3.3.1 3.5
Interruption Action 3.3.2 3.5
Program Switching Instructions 3.3.3 3.6
INTERRUPT INTENTIONALLY 3.3.3.1 3.6

ENABLE 3.3.3.2 3.6

ENABLE AND WAIT 3.3.3.3 3.6
Indicators 3.3.4 3.7
Interruption Codes 3.3.5 3.7

Manual Control
System States
System Initialization
Initial Power On
System Status Lights

W Wwwww
R b b
B W N

W Ww W ww
= 0 O O O

C ' 1/10/61

Chapter ¢

Variable Field-Length Data Handling

Contents
Section Page

General Description 4.1 . 4,1
Instruction Format 4.2 4.2
Arithmetic Operatioﬁs 4.3 4.3
Sign Handling 4.3.1 4.3
LOAD FRACTION SIGN 4.3,1.1 4.3

LOAD EXPONENT SIGN . 4.3.1.2 4.3

ADD 4.3.2 4.3
RESET ADD 4.3.3 4.4
Connective Operations 4.4 4.5
Logical Connectives 4.,4.1 4.5
CONNECT 4.4.2 4.5
CONNECT FOR TEST 4.4.3 4.5

C 1/10/61

Chapter 5

Floating Point Arithmetic

Contents
Section Page
General Description 5.1 5.1
Data Format 5.1.1 5.2
Instruction Format 5.1.2 5.2
Sign Control 5.1.3 5.3
Normalization 5.1.4 5.3
The Treatment of Numbers Outside
the Normal Exponent Range 5.1.5 5.4
Noisy Mode 5.1.6 5.6
Floating Point Conditions 5.1.7 5.7
Floating Point Indicators 5.1.8 5.7
Operations 5.2 5.9
ADD 5.2.1 5.9
RESET ADD 5.2.2 5.10
MULTIPLY 5.2.3 5.11
DIVIDE 5.2.4 5.11

C 1/10/61

Chapter 6

Input-Output Operations

Contents
Section ’ Page
Capacity 6.1 6.1
Number of Channels 6.1.1 6.1
Channel Capacity 6.1.2 6.2
Channel Operation 6.2 6.3
Control Word Format 6.2.1 6.4
Definition of Core Storage Area 6.2.2 6.6
Instructions 6.3 6.7
START CHANNEL 6.3.1 6.7
RELEASE CHANNEL 6.3.2 6.7
Input-OQutput Alerts’ 6.4 6.8
General Alerts 6.4.1 6.8
Channel Alerts 6.4.2 6.9

C 1/10/61

Chapter 1

IBM 8104 Data Processing System

1.1 Introduction

The IBM 8104 Data Processing System provides technical process-
ing ability at a low overall systems cost. While a typical systems configura-
tion would include a limited number of low cost input -output units, the system,
being part of the 8000 series, permits attachment of higher performance
external devices. Similarly, the memory capacity can be expanded as the
size of the problems to be solved grows. Finally, the 8104 is purposely
designed to provide an easy transition to the more powerful 8106 and 8112
processing systems.

1.2 System Organization

The basic system consists of a central processing unit, a core
storage unit and input-output devices. Information moves between input -
output devices and core storage under control of channels which are part of
the central processing unit.

1.2.1 Storage Units

The computing system uses core storage units with a read-write
cycle time of 8 useconds. A word consists of 16 information bits and 2
non-addressable redundancy bits. The address space in instructions pro-
vides for addressing of 216(65, 536) word locations. Storage units consist
of 8192 or 16, 384 words. Multiple storage units can be used up to the
maximum addressing capacity.

1.2.2 Input and Output

Input to the system passes from the input devices to core storage
through the channels of the central processing unit. The channel assembles
16-bit words from the 8-bit input information and stores the assembled words
in core storage. The program of the central processor starts the input ope-
ration. When transmission is finished, the processor is signalled. The
channels operate similarly for output. The processor proceeds with com-
putation while the channel completes the operation.

C 1/10/61

The basic system has one channel. Individual input or output
devices can be attached via their control units to the channel. The channel
also permits attachment of a multiplexing unit. ' With this unit, the channel
becomes logically equivalent to several channels which can run simultaneously.
The system can be expanded by the addition of simplex channels, A total of
two of these channels can be provided. Simplex channels have no multiplex-
ing abilities. Their data rate, however, is much higher than the rate of the
multiplex channel. The multiplex channel can process a maximum data rate
of 10, 000 characters per second. The simplex channels can process a maxi-
mum rate of 80, 000 characters per second.

1.2.3 Central Processing Unit

The central processing unit is designed to provide flexible floating
point arithmetic operation as required for technical computation. Normalized
and unnormalized operation is provided. Numbers outside the normal expo-
nent range, such as zero and quasi-infinite, are handled in a straightforward
manner by using an extremum bit. Full sign modification is provided for all
operands. A noisy mode is available to perform significance tests. The
floating point format consists of a 32-bit fraction portion and 16 bits for ex-
ponent, fraction sign, exponent sign, and extremum bit. Since technical
computation also requires efficient decision instructions, a complete set of
branch instructions is provided. Variablefield-length arithmetic and logical
operations are available to facilitate housekeeping and editing, These opera-
tions include fixed point arithmetic and logical connective operations. A
maximum field length of 16 bits is allowed.

All instructions occupy 32 bits.

Besides the functions provided by the instruction set, several
overall machine features are incorporated in the processor.

An interrupt mechanism is provided to allow input-output alerts,
- program alerts, and result alerts to interrupt the computation. The result
alerts set a group of four indicators. The programmer has the option to
allow an interruption by these result alerts, or not, depending upon the
setting of four mask bits. As an optional feature, an interval timer and a
real time clock are provided.

Address modification by indirect addressing is provided for all
instructions. The floating point instructions furthermore permit address
modification by additive indexing. Since vital machine information is stored
at the first addresses of storage, an address monitoring function is provided
which prevents erroneous store operations to all locations with addresses
below 1024 or below 2048.

1.2

STORAGE ADPRESS
REGISTER

1/10/61

i

) CORE

t ARRAY !
|9 -

1

STORAGE DATA
REGISTER

B8 LEFT

B RIGHT

ACCUMULATOR LEFT

ACLCUMUL ATOR RIGHT

Fs EXPONENT | ES

INSTRUCTION ADDRESS

Y

T
COND, | MASK { MODE | IND,

BiL |oFF. | oP cerg

Y

CHANNEL VALVE

r—

CHANNE L MODE

¥

>

C HANNE L CoUNMT

Figure 1 - 8104 Data Paths

1.3

C 1/10/61

Chapter 2

Operand Designation

2.1 Formats

The computer stores information in core storage in 16-bit
locations. Information transmission between storage and the computer is in
parallel, 16 bits at a time. Each 16-bit word is part of an 18-bit machine
word; the extra 2 bits are check bits, not available to the programmer, which
permit single error detection. Within the central processing unit, each check
bit is used as the odd-parity bit of 8 consecutive information bits.

Locations in storage are specified by a contiguous set of addresses,
which are numbered from 0 to 65, 535 (216-1). Each location is subdivided
into 4 groups, called bﬂes, of 4 bits each. The bytes of each location are
numbered, from left to right, 0 to 3. Byte 3 of a location may be considered
adjacent to byte 0 of the next higher addressed location. The four bits of each
byte are numbered, from left to right, 0 to 3. Bits may also be numbered
with respect to a full storage location, from left to right, 0 to 15.

Some information words may occupy more than one consecutive

storage location. The addresses of such words are the addresses of their
leftmost storage locations.

2.1.1 Instruction Formats

Every instruction word occupies two consecutive storage locations.
The left location specifies the address of the instruction, and bytes 2 and 3
of the right location specify the operation. Bytes 0 and 1 of the right location
may be used to specify various other functions of the operation.

ADDRFESS OPERATION

.0 I3 24 3l

2.1 1/10/61

2.1.1.1 Indexable Instructions

The accumulator instructions, the control word arithmetic
instructions, and the floating point instructions are indexable. Other in-
structions are not indexable. The index register used is specified by bits
16-23 of the instruction word.

ADDRESS INDEX OPERATIONM

o /6) 24 3l

2.1.,1.2 Decision Instructions

The branching and program-control-word-storing operations are
decision instructions. These operations are conditional upon the value of
selected bits in the condition register. Bits 20-23 of the instruction word
select the bits of the condition register to be tested. Bits 16-19 are not used.

ADDRESS SELECTI OPERATION

4] /e 20 24 3l

2,1.1.3 Interruption Instructions

INTERRUPT INTENTIONALLY, ENABLE, and ENABLE AND
WAIT are interruption instructions. Only the operation code of these in-
structions is used. Bits 0-23 of the instruction word are ‘not used.

2.1 1/10/61

QPERATIONM

0 /e 24 31

2.1.1.4 Input-Output Instructions

The I-O channel is specified by bits 16-23 of the instruction
word.

ADDRESS CHANNEL |OPERATION

[7) 16 24 3

2.1.1.5 Variable Field Length Instructions

Variable field length, or VFL, instructions all specify a location,
a byte, a limit, and an offset. Bits 16 and 17 of the instruction word specify
a byte in the addressed storage location; this specified byte is the leftmost
byte of the field. Bits 18 and 19 specify the position of the rightmost byte in
the field. Bits 20-23 of the instruction word specify the offset.

ADDRESS B | L |oFFSET|QPERATION

7) /6 18 20 24 3l

2.3

2.1 1/10/61

2.1.1.6 Byte Address Instructions

The instructions LOAD EXPONENT SIGN, LOAD FRACTION
SIGN, and LOAD CONDITION REGISTER all use a two bit field, bits 16
and 17 of the instruction word, to indicate a byte within the addressed loca-
tion, byte 0, 1, 2, or 3. This byte is the operand.

ADDRESS 8 QPERAT|ON

0 e 18 24 3l

2.1.2 Data Format

Data formats may either be a single byte, a field o one to four
consecutive bytes, or a word of one, two, or three consecutive storage
locations.

2.1.2.1 Single Byte Format

The conditional instructions and the instructions LOAD EX-
PONENT SIGN, LOAD FRACTION SIGN, and ILOAD CONDITION REGISTER
use the single byte operand format. Bits 16 and 17 of the instruction word
are used to specify the byte within the addressed location. '

2.1.2.2 Variable Field Format

The variable field (VFL) format and details are explained in
Chapter 4.)

2.1.2.3 Sigle Location Formats

The operations REFILL, INCREMENT BY ONE, INCREMENT
BY TWO, INCREMENT BY THREE, DECREMENT, STORE LEFT HALF -
FRACTION, LOAD LEFT HALF-FRACTION, STORE RIGHT HALF -
FRACTION, and LOAD RIGHT HALF-FRACTION use an operand of a single
full location.

2.4

2.1 1/10/61

2.1.2,.4 Double Location Formats

The operations STORE FRACTION and LOAD FRACTION use an
operand of two consecutive locations,

2.1.2.5 Triple Location Formats

STORE ACCUMULATOR, LOAD ACCUMULATOR, the floating
point operations, and the input-output operations all use an operand of three
full storage locations. The accumulator itself occupies storage locations
256, 257, and 258,

The input-output operations use a control word format with the
address in the left location, the mode in the second location, and the count
in the right location.

ADPDRESS MO DE COUNT

In the floating point data format, the exponent, fraction sign,
exponent sign, and extremum bit occupy the rightmost location. Bit 35
specifies the fraction sign, bits 36-43 specify the exponent, bit 46 is the
extremum bit, and bit 47 specifies the exponent sign. The fraction occupies
the two left full locations.

E

FRACTION FlexponenT x|E

A S TS

0 % T3z 36 “ 41

2.5

2.2 1/10/61

2.2 Indexing

255 index registers are available, each occupying a full storage
location. The addresses of these locations are 1 through 255, Indexing may
be specified by any indexable instruction by using the address of an index
register in bits 16-23 of the right location of the instruction; if address 0 is
used no indexing will result.

When indexing is specified, prior to the execution of an instruction,
the address portion of the instruction is fetched and summaed, unsigned, with
the contents of the index register. The low order 16 bits of the sum form the
effective address of the instruction. The address portion of the instruction,
however, remains unchanged in core storage. :

2.6

2.3 1/10/61

2.3 Indirect Addressing

The address part of an instruction is normally used to address
the data upon which the instruction operation is performed. This addressing
mode is called direct addressing. In another mode of addressing, bits 0-15
of the address can be used to address a new word occupying two storage
locations. This word in turn contains an address part which can be used to
address data. The process of using a first level address to obtain a second
level address is called indirect addressing. The second level address can
in turn refer to another new word of which, again, the address can be used.
In this manner, it is possible to extend indirect addressing through many
levels. Indirect addressing has a variety of applications as a programming
tool. :

Bit 24 of an instruction indicates whether indirect addressing
will take place. When bit 24 is zero, direct addressing takes place. When
bit 24 is one, indirect addressing takes place. Indirect addressing may be
specified for each instruction independently and applies only to the address
which is part of that instruction. Indirect addressing is also independent
of the operation to be performed. Conversly the operation, as specified in
bits 24-31 of an instruction, is not altered by indirect addressing.

Each time a word is fetched in indirect addressing, bit 24 is
inspected. When bit 24 is one, indirect addressing continues through another
level, using bits 0-15 to address the next control word. In each level the
address is modified to be coherent with the operation. That is, if the initial
instruction is indexable, bits 16-23 of the control word of each level will be
used for indexing at that level prior to further indirect addressing. If a
byte address or byte limit is specified in the initial instruction, a byte
address and byte limit must be specified in the last level control word..
Channel number, condition selection, and offset are executed as specified
in the initial instruction word. When bit 24 of the control word is zero, a
direct address is indicated at that level.

In indirect addressing, it is possible that the addresses refer to
each other in such a way that they form a loop. As a result the computer
cannot finish its operation and no interruption is accepted. This situation
would be the result of a programmer's error. In order to prevent the
machine from being locked up in this way, indirect addressing will be termi-
nated if still active after one millisecond and interruption code USA, Unending
Sequence of Addresses, will be stored in the interruption stream.,

2.4 1/10/61

2.4 Accumulator Operations

The accumulator operations are indexable. The condition regis-
ter is not altered by these operations, no indicators are turned on.

2.4.1 STORE ACCUMULATOR

The contents of the accumulator are stored into three consecu-
tive locations beginning with the addressed location. The addressed word
may not overlap an accumulator location.

2.4.2 LOAD ACCUMULATOR

Th= contents of three consecutive locations beginning with the
addressed location are loaded into the accumulator.

2.4.3 STORE FRACTION

The contents of the left two locations of the accumulator are
stored into two consecutive locations in storage beginning with the addressed
location. The addressed word in storage may not overlap an accumulator
location.

2.4.4 LOAD FRACTION

The contents of two consecutive locations in storage beginning
with the addressed location are loaded into the left two accumulator locations.
The exponent portion of the accumulator remains unchanged.

2.4.5 STORE LEFT HALF-FRACTION

The contents of the leftmost accumulator location is stored into
the addressed location. An accumulator location may not be addressed.

2.4.6 LOAD LEFT HALF-FRACTION

The contents of the addressed location are loaded into the left-
most accumulator location.. The remainder of the accumulator remains
unchanged.

2.4 o 1/10/61

2.4.1 STORE RIGHT HALF-FRACTION

The contents of the second accumulator location are stored into
the addressed location. An accumulator location may not be addressed.

2,4.8 LOAD RIGHT HALF-FRACTION

The contents of the addressed location are loaded into the second
accumulator location. The remainder of the accumulator remains unchanged.

2.9

2.5 1/10/61

2.5 Control Word Operations

There are five control word operations, all indexable. For each
operation, the condition register is set to reflect the result, no indicators
are affected.

2.5.1 INCREMENT BY ONE, INCREMENT BY TWO, and
INCREMENT BY THREE, '

The contents of the location specified are incremented by one,
two, or three, respectively, '

2.5,2 DECREMENT

The contents of the location specified are decremented by one.

2.5.3 REFILL

The contents of the location at the effective address of the in-
struction are interpreted as a refill address. The contents of the location
at the refill address replace the contents of the location at the effective
address of the instruction. '

2.10

2.6 1/10/61

2.6 Address Monitoring

Information which is in core storage can be classified as data,
instructions and reference information. Information may be used for in-
struction definition, communication with external units or with an operator,
supervision and scheduling of programs, monitoring of program execution,
or problem program execution itself. It is desirable that errors in a pro-
gram will not cause any changes in data, instructions or reference information
belonging to the computer system as a whole. This protection is provided by
defining a monitored area and preventing data stores to all locations within
the monitored area.

2.6.1 Definition of Monitored Area

The execution of a program is controlled by a program control
word. Bit 25 of the program control word is used to define the monitored
area. When bit 25 is zero locations 256 through 1023 are monitored for
data store operations. When bit 25 is one the monitored area is extended
such that locations 256 through 2047 are monitored for data store operations.

2.6.2 Action of Address Monitoring

The address monitoring system is active only when the computer
is in the enabled mode. When the computer is in the enabled mode and an
instruction specifies the storing of data at a protected address, the store
operation is not executed and the protected storage location, therefore, re-
mains unchanged. The execution of the current instruction is terminated
and the program is alerted to the attempted store operation by means of the
interruption code DS, Data Store. Address monitoring is only active for
store-type operations. These are operations in which the contents of an
addressed storage location are subject to change.

Programming Note:

In general when a protected address is encountered during an
operation the operation is terminated. This results in complete suppression
of the operation.

2.11

2.6 1/10/61

2.6.3 Addresses Monitored

All addresses used in store-type operations which are specified
in the course of an operation are subject to address monitoring. Although
an address which is associated with an operation is not actually used, it will
nevertheless, be monitored. For example, the store program control word
instruction is monitored whether the instruction test is successful or not.
Core storage addresses which are used by input-output operations are not
subject to address monitoring.

Address monitoring includes the last effective addresses’of all
store-type operations including the refill operations. Not included in
address monitoring are:

1) Channel addresses of input-output instructions as well as
all data addresses of input-output operations.

2) Auxiliary addresses generated as part of instruction
execution,
3) Addresses used in storing an interruption code.

2.12

2.7 1/10/61

2.7 Storage Assignment

The effective address of each instruction provides for a 16 bit
address. This permits addressing of 65,536 (216) storage locations.
Several of these locations are used for specific purposes. The remaining
addresses are available as general purpose core storage. The functions of
the special locations are described in the following sections.

2.7.1 Control Words

There are three types of control words: program control words,
interruption control words, and channel control words, The formats and
details of the program control words {PCW) and the interruption control
words (ICW) are found in Chapter 3 and of the channel control words (CCW)
are found in Chapter 6. The storage assignments of all control words are
listed in 2. 7. 6.

2,7.2 Accumulator

The accumulator occupies locations 256, 257, and 258. It may
be addressed only for fetching information, not for storing. Attempts to
store in these locations result in the storage of an Invalid Address interruption
code.

Floating point words occupy all three accumulator locations in
the same format as floating point data in general storage.

VFL words occupy consecutive bytes of the accumulator. The
offset is the number of bytes to the right of the VFL word and to the left of
bit 32 of the accumulator. The sign of a VFL word in the accumulator is
kept in bit 35,

2.7.3 Time Clock

The time clock is optionally provided to measure time difference
or duration over relatively long periods. This clock consists of location 264
and is stepped by pulses originating from a one cycle per second oscillator.
The time clock is updated at the next time that the interval timer is updated.
The clock measures time in seconds. A full cycle is about 18 hours. Each
time the oscillator delivers a pulse the contents are read out, incremented
by 1 and returned to core storage. The clock runs continually while the
computer is under program control including the time the. computer is
waiting. When the clock reaches its maximum reading of all ones the next
oscillator pulse sets it to all zeros. No indication is given when the clock
recycles to 0.

2,13

2.7 1/10/61

Programming Note:

The time clock can be used to obtain a time of day indication. A
known external time is taken as a reference point and the time clock is set
to a given constant at that time. The time of day at a later time can be ob-
tained by reading the time clock setting and converting the amount to hours,
minutes and seconds taking into account the 18 hour recycle time.

2.7.4 Interval Timer

The interval timer is an optional feature intended to measure
elapsed time over relatively short intervals. The timer consists of a number
16 bits long in location 266; which is stepped down by pulses originating from
a stable oscillator. It can be set to any value at any time and interruption
code TS, time signal, is stored when the time period has ended. Each time
the oscillator delivers a pulse the contents are read out, decremented by 1
and returned to core storage. The oscillator operates at 1024 (210) cycles
per second, or a pulse about every millisecond. Bits 0-6 show time in
seconds. A full cycle is about 1 minute.

The timer runs whenever the machine is operating and includes
the time the computer is waiting. Whenever it goes from one to zero it
stores the interruption code TS in storage. The timer stops upon reaching
zero.

2.7.5 Main Core Storage

All special purpose memory locations operate as general purpose
memory. Addresses from 0 to 65,535 (216-1y are available for addressing
main core storage. Not all of these addresses may be provided in a given
installation, If less than the maximum amount of core storage is provided,
consecutive addresses starting at location 0 are used. The entire effective
address is always used and if this effective address is above the limit of
available memory, interruption code AD, Address Invalid, will be stored.
All locations in main memory are valid word addresses in any operation,
except a store may not be executed to a location of the accumulator.

2.14

2.7 1/10/61
2.7.6 Storage Assignment List

Location Assignment

0 None

1-255 Index Registers 1-255

256-258 Accumulator
259 None
260-261 Intentional Interruption PCW
262-263 : Disabled PCW
264 Time Clock
265 Interval Timer
266-267 None
268-269 Enabled PCW
270-271 Time Signal PCW
272-274 Store ICW
275 None
276-2717 Channel Not Operational PCW
278-279 Channel Busy PCW
280-282 Fetch ICW
283 None
284-285 Unended Sequence of Addresses PCW
286-287 Address Invalid PCW
288-289 2 7., Initial Value ICW
291 None
292-293 Operation Code Invalid PCW
294-295 Data Store PCW
296-317 None ‘
318-319 Maskable Indicator PCW
(8n) - (8n + 2) Channel n CCW
8n + 3 None 40¢<n <127
(8n + 4) - (8n + 5) Channel n End PCW
(8n + 6) -~ (8n + 7) Channel n Special Condition PCW

D10C 1/10/61

Chapter 3

Instruction Sequencing

3.1 Normal Sequential Operation

Normally, instructions are taken in sequential order from succes-
sive locations in storage. These locations are specified by the instruction
address portion of a program control word. This address is incremented
each time an instruction is fetched.

3.1.1 Program Control Words

Each program or subprogram executed by the computer normally
has its own program control word. Separate locations in core storage are
provided for the program control words for the program being executed in
the enabled mode, which is normally the basic program being processed by
the computer, and for each of the programs that are executed as a result of
program interruption. Switching of control of the computer from one pro-
gram control word to another is accomplished by the program interruption
system and the program switching instructions. ‘

A program control word has the format shown below.

Vo Lock BIT
EXTENDPE D fRoTE't.‘NoN CONTROL B'T-\ l I-NO'SY MODE CONTROL BIT

INSTRUCTION ADDRESS - ng‘cf- MASK IND,

) 16 20 24 Z8 31

D10C
3.2 1/10/61
3.2 Branching

The sequence in which instructions are executed may be made
conditional upon the results produced by previous instructions by means of
the branching operations. The condition that is tested is the state of speci-
fied bits in the condition register.

3.2.1 Condition Register

The condition register occupies bits 16-19 of the current program
control word. The four bits of this register are set by most operations to
reflect the result of the operation. All four bits are always set as a group,
never separately. They remain set until the next operation that sets the
condition register.

The conditions recorded in the condition register are listed below.

Control Word Instructions

0 (Not used)

1 Result address zero

2 Result address greater than zero
3 (Not used)

Floating Point Arithmetic Instructions

0 Result less than zero

1 Result zero

2 . Result greater than zero
3 Result infinite

Variable Field-Length Arithmetic Instructions

0 Result less than zero

-1 Result zero
2 Result greater than zero
3 (Not used)

Connective Instructions

0 (Not used)

1 Result zero

2 Result greater than zero
3 (Not used)

The condition register is not altered by any of the branching, pro-
gram switching, input-output, or accumulator storing operations. The
condition register may be stored for later testing by storing the program
control word.

3.2

w g
N =

1/10/60

In addition to the operations listed above, an auxiliaty operation,
LOAD CONDITION REGISTER, is provided to set the condition register to
any desired byte in storage so that this byte may be tested.

3.2.1.1 LOAD CONDITION REGISTER

The byte address part of this instruction, bits 0-17, specifies a
single 4-bit byte in storage. This byte is placed in the condition register.
Bits 18-23 of the instruction are not used.

3.2.2 Branching Operations

Bits 20-23 of the branching instructions select the bits of the con-
dition register to be tested. Each bit in this part of the instruction selects
the corresponding bit in the condition register. If the bit in the instruction
is one, that bit of the condition register is tested. If the bit in the instruction
is zero, the correspondmg bit in the condition register is not tested. Bits
16~19 of the instruction are not used.

3.2.2.1 BRANCH IF ANY

If any of the selected bits of the condition register are on, the con-
tents of the instruction address part of the current program control word are
replaced by bits 0-15 of the effective address of this instruction. If none of
the selected bits are on, control proceeds normally to the next instruction .
in sequence.

3.2.2.2 BRANCH IF NONE

This instruction is similar to BRANCH IF ANY, except that the
branch is successful if none of the selected bits of the condition register are
on, and unsuccessful if any are on.

Programming Note:

If bits 20-23 of the instruction are all zero, then BRANCH IF
NONE becomes an unconditional branch instruction, and BRANCH IF ANY
becomes a ''no operation'' instruction.

3.3

w g
N =

1/10/61

$3.2.3 Storage of Program Control Word

The current program control word can be stored for a later return
of control to the current point in the program. The instruction address stored
is four greater than the address of the current instruction. This allows a
branching instruction to be associated with the program-control-word-storing
instruction. The address stored is thus the proper one for a return of control
to the instruction following the branching instruction.

The program-control-word-storing instructions are conditional in
the same way as the branching instructions. Selected bits of the condition
register are tested, and if the test is satisfied, the program control word is
stored. Otherwise, it is not stored.

3.2.3.1 STORE PCW IF ANY

If any of the selected bits of the condition register are on, the cur-
rent program control word is stored in the word at the effective address of
the instruction and the following word. If none of the selected bits are on,
the program control word is not stored.

3.2.3.2 STORE PCW IF NONE

This instruction is similar to STORE PCW IF ANY, except that
the current program control word is stored if none of the selected bits of the
condition register are on, and is not stored if any are on.

3.4

w o
W =

1/10/61

3.3 Program Interruption

The program interruption system provides the means by which the
computer responds appropriately to external signals and to exceptional con-
ditions arising within its own program. When such a signal or exceptional
condition is detected, it causes an interruption code, which is an 8-bit byte
coded to identify the cause for interruption, to be stored in an area in storage
called the interruption stream. At the same time, the interruption trigger,
a control trigger in the circuits of the computer, is turned on if the computer
is in the enabled mode. This trigger is tested at the completion of each ins-
truction. If it is on, an interruption occurs. An interruption consists of a
switch to the disabled mode; an examination of a byte in the interruption
stream; and the initiation of the program corresponding to the value of that
byte, and hence to the cause for interruption. When this program has res-
ponded suitably to the interruption, it switches back to the enabled program,
which continues at the point at which it was interrupted.

3.3.1 Storage of Interruption Codes

Interruption codes are stored in an area of storage called the inter-
ruption stream. The location and extent of the interruption stream is defined
by the initial value of the interruption control word. This initial value is
stored in words 288 through 290 of core storage and has a format similar to
that of an input-output control word.

Upon the detection of an interrupting condition, an interruption code
is stored. This may occur at any time during the execution of an in_sfructic'm
regardless of whether the computer is in the enabled or disabled mode. Each
code is stored at the address currently contained in bits 0-16 of the store
interruption control word. - This control word is stored in words 272-274 of
core storage and has the same format as its initial value stored in words
288-290. Each time a byte is stored, unless the byte had a value of 65 or 66,
the address of the store interruption control word is incremented by one.
Each time this address crosses a word boundary, the count in bits 32-47 of
the control word is decremented by one. When this count reaches zero, the
control word is reset to its initial value.

3.3.2 Interruption Action

The interruption trigger is tested at the completion of each instruc-
tion. If it is on, an interruption results. The current program control word
is stored in locations 268-269 if the computer is in the enabled mode, or
locations 262-263 if it is in the disabled mode. The fetch interruption control
word is obtained from locations 280-282, and the interruption trigger is turned

3.5

w g
W o

1/10/61

off. This control word has the same format and initial value as the store
interruption control word. The byte addressed by this control word is fetched
from storage. If this byte has a value of neither 65 nor 66, the address of the
control word is incremented, and if necessary reset, just as in the storage of
interruption codes, and the computer is placed in the disabled mode. If this
byte is 65 or 66, the control word is not incremented, and the computer is
placed in the enabled mode. In either case, a new program control word is
obtained from storage locations determined by the value of the byte fetched.

If the value of this byte is x, then the program control word is obtained from
locations 4x+2 and 4x+ 3 if x is odd, or locations 4x+ 4 and 4x+ 5 if x is
even. Program execution then proceeds using this new program control word.
If the byte has a value of 65, the computer enters a waiting status during which
it executes no instructions. This status is terminated by the occurrence of an
interrupting condition.

3.3.3 Program Switching Instructions

An intentional interruption to effect a switch to a different program
control word can be initiated by a program switching instruction. There are-
three such instructions. They differ only in the value of the interruption codes
that they cause to be stored.

3.3.3.1 INTERRUPT INTENTIONALLY

This instruction causes an interruption code with a value of 64 to
be stored in the interruption stream. It also turns on the interruption tfigge‘r.
This instruction is used to switch from the enabled to the dlsabled mode. The
address portion of the instruction is not used. : '

3.3.3.2 ENABLE
This instruction is identical to INTERRUPT INT ENTIONALLY,

except that an interruption code with a value of 66 is stored. This instruction
is used to switch from the disabled to the enabled mode.

3.3.3.3 ENABLE AND WAIT

This instruction is identical to INTERRUPT INTENTIONALLY,
except that an interruption code with a value of 65 is stored. This instruction
is used to cause the computer to wait for an external signal before proceeding.
This instruction is valid only if the computer is in the disabled mode. If
executed in the enabled mode, it causes an Invalid Operation Code interruption
byte to be stored.

3.6

w g
W

1/10/61

3.3.4 Indicators

The indicators, located in bits 28-31 of a program control word,
signal exceptional conditions that may occur during the execution of the pro-
gram corresponding to that control word. If an indicator is on; the corres-
ponding bit of the mask, located in bits 20-23 of the program control word,
is on; and the computer is in the enabled mode; interruption code 79,
Maskable Indicator, is stored in the interruption stream. Indicators can be
turned on only by arithmetic operations. Indicators are not turned off auto-
matically, but remain on until turned off by programming. The indicators
are listed below.

28 Generated Extremum Positive
29 Generated Extremum Negative
30 Oversized Result
31 Zero Divisor

3.3.5 Interruption Codes

The interruption codes are listed below. Each code occupies an
8-bit byte. The number of each code in the list below represents the binary
value of the bit pattern that is stored in this byte. The first sixteen codes,
from 64 to 79, are used for computer interruptions. The remaining codes,
from 80 to 255, are used for input-output channel interruptions. Each chan-~
nel requires two codes, therefore a maximum of 88 channels can be accomo-
dated. '

Computer Interruptions

64 Intentional Interruption
65 Programmed Wait

66 Enabled Program

67 Time Signal

68 Channel Not Operational
69 Channel Busy ,

70 Unended Sequence of Addresses
71 Address Invalid

72 Operation Code Invalid
73 Data Store '

74

75

76 Not assigned.

77

78

79 =~ Maskable Indicator

3.7

w g
W

1/10/60

Input -Output Channel Interruptions

For each input-output channel there are two interruption codes:
End and Special Condition. These occupy a pair of codes, 2n and 2n+ 1
where n is the channel number, from 40 to a maximum of 127.

2n Channel n End
2n+ 1 Channel n Special Condition

3.8

1
3.4 1/10/60

3.4 Manual Control

A limited number of control keys and lights are located on the
operator's console. These allow manual control of the computer by the
operator for initial loading of the program and for maintenance purposes.
The lights indicate the state of the machine and whether it is operating

properly.

3.4.1 System States

There are three system states: running, initial, and waiting.
The system can be placed in the initial state at any time by depressing the
INITIALIZE key. When the system is in the initial state, it can be placed in
the running state by depressing the START key. The waiting state is entered
by executing an ENABLE AND WAIT instruction, and the system is returned
to the running state by the first alert encountered.

The RUNNING light, described later, indicates when the system is
in the running state.

3.4.2 System Initialization

The INITIALIZE key may be used for program loading or for manual
termination of computer operation. Depressing this key stops the execution
of instructions by the system. Since 6peration is terminated before the com-
pletion of the current instruction, the original program cannot normally be
resumed., No further instructions are executed until the START key is de-
pressed.

The INITIALIZE and START keys are located on the maintenance
panel which is part of the operator console.

3.4.3 Initial Power On

When the power is turned on, the computer is in the initial state.
All addressable locations may contain random bits not necessarily with cor-
rect parity. No instructions are executed until the START key is depressed.

3.9

3.4,4

follows:

1/10/61

System Status Lights

Two lights are provided to show the status of the system.

1. RUNNING light. This light is turned on when the power
is on.and the system is not in the waiting or initial state.

2. INACTIVE light. This light is turned on when the power
is on but the instruction counter is not being incremented.

Thus, the four possible states of these lights are interpreted as

RUNNING INACTIVE
ot off Power off.
On ‘ Off .‘Running. normally.
Off - On Waiting or initial state.
On On " Trouble: The system is hung up

by repeated machine checks, -
interruptions, or branch instruc-
tions, or by a lost control signal.-

The status lights are located on the maintenance panel.

3.10

D1l0oC 1/10/61

Chapter 4

Variable Field-Length Data Handling_

4.1 General Description

The variable field-length operations operate on a variable-length
data field, which may start at any byte position in storage. The instruction
contains an 18-bit word and byte address that defines the leftmost byte of the
storage field, The instruction also specifies the length of the field, which
may be from one to four bytes, by specifying the position of the rightmost,
or limit, byte within the word.

The second operand in these operations is a field in the fraction
portion of the accumulator. Since this field may be located anywhere in the
fraction portion of the accumulator, the instruction format also contains an .
offset field that defines the low-order byte of the accumulator operand. The
low-order positions of the two operands are aligned for processing. The
results of the variable field length operations replace the accumulator oper-
and. '

4.1

1
4.2 1/10/61

4.2 Instruction Format

The variable field-length operations have the instruction format
shown below,

i ” :
ADDRESS @/,oscssr OPERATION]|

. !

0 o 18 20 24 30

Bits 0-17 specify the byte address of the leftmost byte of the
storage operand. Bits 18 and 19 specify the rightmost, or limit, byte of the
storage operand. This byte may be in either the same word or the next word
following the one. that contains the leftmost byte, subject to the restriction
that the storage field is no greater than four bytes in length. Bit 24 of the
instruction specifies direct or indirect addresvsing. If this bit is zero, the
byte address and limit are used directly. If this bit is one, bits 0-15 of the
instruction are used to obtain an indirect address. This address replaces
both the byte address and limit, but not the offset, specified in the instruction,

Bits 20-23 of the instruction specify the offset of the accumulator
operand. The first of these bits is ignored. The remaining three specify the
number of bytes between the rightmost byte of the accumulator operand and
the right-hand end of the fraction portion of the accumulator.

g
W

1/10/61

4.3 Arithmetic Operations

Two variable field-length arithmetic operations are provided:
ADD and RESET ADD. Both leave the result in the accumulator. Storage of
results is accomplished with the accumulator-storing operations described
in Chapter 2.

4.3.1 Sign Handling

The variable field-length operations address unsigned fields in
storage. If signed arithmetic is desired, the sign of the factor in storage is
contained in the exponent sign byte of the accumulator. This sign can be
examined by the variable field-length arithmetic operations to provide full
algebraic sign control.

4.3.1.1 LOAD FRACTION SIGN

This instruction addresses a single byte in storage. The limit
and offset fields of the instruction are ignored. The byte is placed in the
fraction sign byte of the accumulator. The remainder of the accumulator is
left undisturbed. The condition register is not altered. ‘

Modifier:
Negative Sign. If this modifier bit is on, the sign bit (rightmost

bit) of the byte is inverted before placing in the accumulator.

4.3.1.2 LOAD EXPONENT SIGN

This instruction is identical to LOAD FRACTION SIGN, except
that the byte is loaded into the exponent sign byte of the accumulator, instead
of the fraction sign byte. The same modifier applies.

4.3.2 ADD

The instruction addresses a field in storage. This field is added
algebraically to the contents of the accumulator at the specified offset. The
result replaces the contents of the accumulator to the left of the offset. If
the sign of the accumulator is changed, the entire accumulator is recomple-
mented. The sign of the accumulator operand is contained in the fraction
sign byte of the accumulator. The sign of the storage operand is contained in

4.3

D10C :
4,3 : , 1/10/61

the exponent sign byte of the accumulator. If significant bits of the storage
operand overlap the left end of the accumulator, due to an offset greater than
4, the Oversized Result indicator is turned on. This indicator is also turned
on if a carry is propagated beyond the left end of the accumulator. The con-
dition register is set according to the resulting contents in the entire accumu-
lator.

Modifiers:

Unsigned. If this modifier bit is on, the sign bit of the storage
operand is ignored, and taken as positive.

‘Negative. If this modifier bit is on, the sign bit of the storage

operand is inverted before use. This modifier acts after the unsigned modi-
fier. '

4.3.3 RESET ADD

This operation is identical to ADD, except that first the entire
accumulator, including fraction sign, exponent, and exponent sign,is ‘cleared
to zeros, Consequently, the unsigned modifier has no effect on the result.

1
4 : 1/10/61

4.4 Connective Operations

Each of the connective operations can specify any one of the six-
teen possible binary connectives. Two operands, one in storage and one in
the accumulator, are combined bit for bit, using the connective specified, to
produce a result field. This result field may replace the operand field in the
accumulator or may be tested and then discarded. ‘

4.4.1 Logical Connectives

The particular connective to be used is specified by bits 28-31 of
the instruction. The code in these four bits is composed of the result bits
obtained for each of the possible combinations of m and a, where m is a bit
from the storage operand, and a is the correspondmg bit from the accumu-
lator operand. In this code, the first bit represents the result when m and a
are both zero. The second bit represents the result when m is zero and a is
one. The third bit represents the result when m is one and . a is zero. The
fourth bit represents the result when m and a are both one.

4.4.2 CONNECT

The addressed storage operand is combined with the accumulator
field specified by the offset in accordance with the logical connective speci-
fied, The result field replaces the accumulator operand. The remainder of
the accumulator remains unchanged. The condition register is set according -
to the value of the result field placed in the accumulator. The contents of
the remaining portions of the accumulator do not affect the setting of the con-
dition register. The Oversized Result indicator cannot be turned on by a
CONNECT operation.,

4.4.3 CONNECT FOR TEST

This operation is identical to CONNECT, except that the result
field is not placed in the accumulator, but is used only to set the condition
register and is then discarded. The accumulator remains unchanged.

Programming Note:

Variable length fields are stored by combining the field to be
stored with the remaining portions of the word or words into which it is to
be stored. This combination is done in the accumulator, using connective
and accumulator loading operations. The full words are then stored using

D1oC
4.4 1/10/61

accumulator storing operations. The sign of a result in the accumulator
may be combined with the field to be stored by using a CONNECT operation
that addresses the first byte of location 258 (the fraction sign of the accumu-
lator), thus moving the sign to the fraction portion of the accumulator.

4.6

D10C 1/10/61

Chapter 5

Floating Point Arithmetic

5,1 General Description

A floating point number consists of a signed exponent + E and a
signed fraction +F. The quantity expressed by this number is the product
of the fraction and the radix 16 raised to the power of the signed exponent,
or +F 162E | The exponent is an eight bit binary number. The fraction
bits are grouped together in four bit bytes to form an eight digit fraction
with the hexadecimal point to the left of the high order digit.

There are four basic floating-point instructions, ADD, RESET
ADD, MULTIPLY, and DIVIDE, supplemented by LOAD and STORE instruc-
tions that are used to transmit data between the accumulator and storage
locations. By means of modifiers, the basic instructions may be manipulated
to furnish a versatile floating-point performance. Provision is made for the
direct or indirect addressing of data in conjunction with indexing, modification
of the sign of the addressed operand, and the choice of normalized or unnor-
malized operation.

The fractions of all arithmetic results contain eight hexadecimal
digits. Not all of these digits need be significant; furthermore, as a result
of calculation, the number of significant digits may be reduced. In order to
simplify significance studies, a mode of operation called ''noisy mode'" is
provided, by which standard results are altered in a specific manner. By
processing a program both in standard and in noisy mode, an estimate of the
significance of the results may be obtained.

Floating point numbers cover a range between the positive and
negative values of the fraction having the maximum exponent. Since the ex-
ponent range is finite, a discontinuity exists between the positive and negative
values of the fraction having the minimum exponent. Included in this range
is zero. An extremum bit has been included in the exponent field to provide
straightforward interpretation of data which exceed the exponent range or fall
within the range of discontinuity.

1/10/61

5.1.1 Data Format

Floating point numbers are represented in the following 48-bit

format.
FRACTION SIGN —) EXTREQVI}‘\' XS ngsNENT
FRACTION -~ |ExponeENnT |
5 TR T T

The fraction occupies the first 32 bits of the data field. Bits 32-35
contain the fraction sign byte, of which only bit 35 is used to indicate the
fraction sign. The fraction is positive or negative according as bit 35 is zero
or one. Bits 32-34 are ignored by the machine. The eight bits of the expo -
nent are located in bit positions 36-43. Floating point numbers whose ma%—’
nitudes range between 16253 and 16"256, or approximately 10307 and 10-308
may be represented to a precision of eight hexadecimal digits. '

The exponent sign byte occupies bits 44-47. Bits 44 and 45 are
unassigned and ignored by the machine. The extremum bit, indicative of an
exponent outside the normal range, is assigned to bit 46. The exponent sign
is represented by bit 47 in the same manner as bit 35 represents the fraction
sign.

A floating point number is stored in three consecutive 16-bit words.
The non-usage of bits 32-35 and 46-47 is motivated partly by the desire to
provide a measure of compatibility of data format with that of larger machines,
and partly by the need to treat fractions and exponents as fixed point numbers.
For the latter reason, the exponent and the fraction signs cannot be placed
together in a single byte. The unassigned bits correspond to facilities, such
as the provision of data flags, that are available only in the larger machines.

| 5.1.2 Instruction Format

All floating point instructions are of single address, 32-bit form.
This single address, contained in bits 0-15 of the instruction field, specifies
one operand of the floating-point operation to be formed. The second operand
is always in the accumulator. Bits 16-23 of the instruction specify the index
address. The address field of the index register specified is added to the
address field of the instruction to form an effective address. A zero index
field indicates that the instruction is not indexed. Finally, bits 24-31 contain
the operation code .

1/10/61

ADDRESS INDEX OPERATION

0 16 24 33

Bits 27 and 28 of the instruction code contain the fixed code 11 to
indicate that the instruction belongs to the floating-point class. Bit 24 is
zero or one according as the operand is directly or indirectly addressed.
Bit 25 distinguishes between normalized (0) and unnormalized (1) modes of
operation. The sign of the addressed data is utilized or ignored according
as bit 26 is zero or one. In either event, the effective sign of the operand
is determined in conjunction with bit 29, the sign modifier bit, as described
in (5. 1.3) . Finally, bits 30 and 31 specify one of the four basic floating-
point instructions. '

5.1.3 Sign Control

The sign of an operand from storage is modified by bits 26 and 29
to form an effective sign as follows: '

 Bit 26 Bit 29

0 0 retain the sign (bit 35) as it

comes from storage
0 1 invert the sign before operation
1 0 impose a plus sign
1 1 impose a minus sign

If bit 26 is zero, the original sign of the operand is preserved or
inverted according as bit 29 is zero or one. Whenever bit 26 is one, bit 29
of the instruction replaces bit 35 of the operand as its sign.

In no case is the sign of the operand altered in core storage.

5.1.4 Normalization
A quantity can be represented with the greatest precision by a

floating-point number of given fraction length when that number is normalized.

A normalized floating-point number always has a non-zero, high-order fraction

digit. If one or more high-order fraction digits are zero, the number is not

in normalized form. The process of normalization consists of shifting the

fraction until the high-order digit is non-zero, and altering the exponent by

the amount of the shift.

v g
=t

1/10/61

Bit 25 in the operation code field of the instruction format is zero
or one according as the operation is to be performed in the normalized or
unnormalized mode.

When normalized operation is specified, the operands need not be
normalized, but the result of the operation is normalized, except when it
has a zero fraction or its exponent lies outside the normal range. In these
circumstances, which are characterized by the extremum bit of the result
being one, the normalization is suppressed.

When unnormalized operation is specified, the result fraction re-
mains as it is without a normalization cycle. High-order zeros in the fraction
are not eliminated. If a fraction overflow bit is produced, it is lost and the
Oversized Result (OR) indicator is turned on. ' ' '

A normalized fraction has a magnitude in the range 1>F > 1/16.
The magnitude of an unnormalized fraction lies in the range 1 >F >0. Since
hexadecimal numbers only are considered in floating~point operations, all
shifts are an integral number of hexadecimal digit positions, i.e., all shifts
are multiples of four bit positions.

5.1.5 The Treatment of Numbers Qutside the Normal Exponent Range

A number outside the normal exponent range is characterized by
its extremum bit (bit 46) having the value one. In the interests of simplicity
and consistency, all numbers with an extremum bit of one and a negative
exponent sign are treated by the machine as if they were zero. All numbers
with an extremum bit of one and a positive exponent sign are treated by the
machine as infinite. Such numbers are referred to as True Zero (TZ) and
Quasi Infinity (QI), respectively. In both cases, the fraction and the fraction
sign are ignored. Should a zero fraction be generated during an operation,
the extremum bit is set to one and the exponent sign is set negative. No
normalization of the fraction occurs.

Since the floating-point representation is quasi-logarithmic in
nature, the quantity zero is not strictly representable. By suitable definition
of machine operations, any number in the range (+F 16-259) is given the arith-
metic properties of zero. Similarly, any numbe;greater than F 16256 jg
constrained by the machine specifications to have the arithmetical properties
of infinity. ’

The following table defines the results of floating-point operations
for every combination of ranges of the operands. Operands within the normal
exponent range are designated by A or S, depending on whether they were in
the accumulator or in storage at the beginning of the operation.

5.4

)
T

Acc
Storage

QI
S
TZ

Acc
Storage

QI

TZ

cc
Storage

QI
S
TZ

1/10/61

ADD

QI A TZ
Acc* - Sto Sto
Acc A_—%_—S Sto
Acc Acc Acc

MULTIPLY

QI A TZ
Acc Sto Sto*
Acvc A-S Acc
Acc Sto Acc

DIVIDE

QI A TZ
Acc* TZ Acc
Acc A/S Acc
Acc Q1 QI

If either or both operands are outside the normal exponent range,
then in the case of ADD or MULTIPLY, either the accumulator will be un-
changed or else the addressed operand from storage will replace the contents

of the accumulator.

In DIVIDE, the accumulator will either be unchanged, or

else will have its extremum bit and exponent sign adjusted to reflect the ap-
propriate extremum condition.

The starred (*) cases above represent the most conspicuous or -
worst cases, since the result is mathematically ambiguous (o ~o, = x 0,

o0 [eo, or 0/0).

5.5

o g
—

1/10/61

Programming Note:

In the above cases, if either of the operands and the result has an
extremum condition, the extremum is propagated and no indication is made
that such propagation occurred, although, of course, the corresponding bit
in the condition register (5. 1./f) will be turned on. On the other hand, the
result of A+S, A+S, or A /S may be a normally representable number, or
else an extremum condition may be generated and the extremum bit set to
one. An indication of such generation is made separately for a positive and
a negative exponent sign, these situations being known generally as exponent
overflow or exponent underflow, respectively. In most cases, overflow
represents an error in analysis or scaling, although on occasion a program-
mer will wish to propagate it. The overflow condition is indicated by the
Generated Extremum Positive (GEP) indicator. On the other hand, exponent
underflow is expected and the programmer will usually wish to treat it as a
true zero. The underflow condition is indicated by the Generated Extremum
Negative (GEN) indicator.

5.1.6 Noisy Mode

The normalization process used with floating point operations
introduces zeros into the lower order fraction bits whenever left-shifting
occurs. This procedure may result in a loss of significance during the
course of a program. Assistance in the study of such effects is provided
by means of the '"noisy mode'" of operation. Noisy mode provides for the
introduction of hexadecimal fifteen rather than zero in the low-order digit
positions during each hexadecimal left-shift associated with normalization.
Extra dividend digits required during a division are also filled ''noisily".
Processing a program both in standard and in noisy mode provides an esti-
mate for the study of significance loss as a result of fraction truncation.

The choice of standard or noisy mode is specified by the setting
of the Noisy Mode Control bit in the control word of the program. Standard
or noisy mode is called for according as this bit is zero or one. Noisy
mode influences normalized operations only; unnormalized operations are
unaffected.

5.6

v g
L

1/10/61

5.1.7 Floating-Point Conditions

The condition register is affected by the result of a floating point
operation in the following manner. '

Condition of Arithmetic Result Condition Bit Set
In the normal exponent rangeé and

less than zero ‘ 0
Extremum Negative (zero result) 1
In the normal exponent range and

greater than zero 2
Extremum Positive (infinite result) 3

These conditions are mutually exclusive and collectively exhaustive. After
every floating point instruction, there will always be exactly one non-zero
bit in the condition register.

5.1.8 Floating Point Indicators

Any of the indicators may be affected as a result of a floating point
operation. Indicators are not turned off automatically, but remain on until
turned off by programming. The conditions that turn on each of the indicators
are listed below.

Generated Extremum Positive (GEP) (Exponent Overflow) This
indicator is turned on when an extremum positive result is gene-
rated by a floating-point operation. The indicator is not turned
on when the extremum is propagated as a result of inspecting the
operand extremum bits.

Generated Extremum Negative (GEN) (Exponent Underflow) This
indicator is turned on when an extremum negative result is gene-
rated by a floating-point operation. The indicator is not turned on
when the extremum is propagated as a result of inspecting the
operand extremum bits.

5.7

o g
—

1/10/61

Oversized Result (OR) This indicator is used only in unnorma-

lized operation, when it is turned on for fraction overflow in ADD
operations, or in DIVIDE operations if the dividend fraction is not
less than the divisor fraction.

Zero Divisor (ZD) This indicator is set when the divisor in a

DIVIDE operation is zero. The division operation is then termi-
nated. At the time of termination, the quotient will be in the
extremum positive condition. In spite of this, the GEP indicator
is not turned on. The ZD and GEP indications are mutually
exclusive. : '

5.8

1
5.2 1/10/61

5.2 Operations

There are only four floating-point operations, namely, ADD,
RESET ADD, MULTIPLY, and DIVIDE.

5.2.1 ADD

The addition of two floating point numbers consists of an exponent
comparison and a fraction addition. The exponent of the addressed operand
is subtracted from the operand in the accumulator. The fraction of the num-
ber with the algebraically smaller exponent is shifted right a number of digit
positions equal to the exponent difference, truncated and added to the fraction
of the number with the greater exponent. If the exponent difference is greater
than or equal to eight, no addition of fractions takes place, and the number
with the greater exponent is treated as the sum.

The fraction sign of the addressed operand is modified by the sign
modifiers (5. 1. 3) prior to the addition. The larger of the two exponents is
used as the exponent of the sum. For unnormalized operations, the addition
is now complete. If there is an overflow digit, it does not enter the accumu-
lator, but turns on the Oversized Result (OR) indicator.

For normalized operations, the entire sum fraction together with
overflow is shifted to form a normalized fraction, and the exponent is adjusted
accordingly. The normalization does not take place for a zero fraction.
Instead, the GEN indicator is turned on (5.1.5). In the noisy mode, any left
shift during normalization will cause hexadecimal fifteens rather than zeros
to fill the vacated low-order digits.

The exceptional cases, when one or both of the operands is outside
the normal exponent range, are summarized in (5. 1.5). To recapitulate, if
the accumulator operand is infinity, or the operand from storage is zero,
the contents of the accumulator are accepted as the sum or difference. For
the remaining situations, zero accumulator and non-zero storage operand,
or infinite storage operand and non-infinite accumulator, a RESET ADD
operation is performed.

All the indicators except Zero Divisor (ZD) may be affected by a
floating-point addition. However, the Oversized Result (OR) indicator can
only be turned on for an unnormalized ADD operation in which a fraction
overflow occurs.

5.9

0C

D1
5.2 1/10/61

Programming Note:

Floating point comparisons may be simulated by means of a sub-
traction, after which the result of the comparison will be reflected in the
condition register. No account is taken of the sign of the result if it is in
the extremum positive or extremum negative range.

5.2.2 RESET ADD

The RESET ADD instruction is equivalent to an ADD instruction
for which the operand in the accumulator is always in the extremum negative,
or True Zero, condition. If the addressed operand has a positive extremum,
it is simply loaded into the accumulator without any modifications; if the
operand is True Zero, the True Zero condition is propagated into the accu-
mulator, and no loading takes place. Finally, if the operand is in the normal
exponent range, its sign is modified under the control of bits 26 and 29 of the
instruction word before loading. After loading, it is normalized if normali-
zation is specified. The noisy mode operates for RESET ADD instruction
by filling with fifteens the low order digits vacated by left-shifts.

The LOAD accumulator instruction is closely related to RESET
ADD, but the latter has more versatility as a result of the various modifiers,
such as sign manipulation and normalization, that may influence it. The
price of this versatility is a longer instruction execution time.

The only indicator that can be affected by RESET ADD is the
Generated Extremum Negative (GEN) indicator, and then only in the excep-
tional case that the addressed operand is a new data word with zero fraction
and normal exponent range. : .

Programming Note:

The LLOAD and STORE instructions result in simple transmissions
of data between an addressed location in storage and the accumulator. If the
data in storage is already in the form desired, and no modifications such as
sign manipulation or normalization are necessary, then the LOAD is faster
and more direct than a RESET ADD. If it is required to modify data in the
accumulator before storing it, a RESET ADD instruction addressing the
accumulator itself is an effective means of doing so.

ALY,
[N

1/10/61

5.2.3 MULTIPLY

The operand specified by the effective address, the multiplicand,
is multiplied by the operand in the accumulator, the multiplier. The expo-
nent, fraction and sign of the product replace the original contents of the
accumulator.

' Multiplication of floating point numbers consists of an exponent
addition and a fraction multiplication. The sum of the exponents is used as
the exponent of the unnormalized intermediate result. The two 8-digit frac-
tions of the operands are multiplied to form an 8-digit product. This product
is normally made up of the high-order digits only of the double-length product.
For normalized operation, however, if the highest order digit is zero, it is
disregarded, and the product is filled out by taking in the highest of the low-
order product digits. The remaining low-order digits of the complete double-
length product are not preserved. The product sign is determined by the
rules of algebra, using the accumulator sign and the effective sign of the
addressed operand.

If a normalized product is required, the intermediate product
fraction is post-normalized and the exponent adjusted accordingly. When
noisy mode is specified, low-order digits are filled with hexadecimal fifteens
in the usual manner. For unnormalized operation, no further action is taken
on the intermediate product,

The exceptional cases, when one or both of the operands is outside
the normal exponent range, are summarized in (5.1.5). If the accumulator
operand is infinity, or it is zero and the operand from storage is non-infinite,
the contents of the accumulator are accepted as the product. For the remain-
ing situations, infinite storage operand and non-infinite accumulator operand,
or zero storage operand and normal range accumulator operand, the operand
from storage is brought into the accumulator.

The MULTIPLY operation affects the generated extremum indicators
GEP and GEN. They are turned on for exponent overflow and underflow,
respectively.

5.2.4 DIVIDE

The operand in the accumulator, the dividend, is divided by the
operand from storage, the divisor. The sign, fraction, and exponent of the
quotient replace the original contents of the accumulator. No remainder is
retained by this operation.

1
2 1/10/61

In a normalized DIVIDE, both dividend and quotient are pre-
normalized and their exponents adjusted accordingly. If, after pre-
normalization, the dividend fraction is greater than or equal to the divisor
fraction, the quotient must be normalized by an effective right shift and
its exponent increased by one. If the divisor fraction is the greater, no
such post-normalization adjustment is necessary to obtain the quotient in-
final normalized form.

In the noisy mode, additional dividend bytes required as the divi-
sion progresses are supplied noisily.

For an unnormalized DIVIDE operation, the divisor is pre-
normalized and the dividend is shifted in synchronism with the divisor. If
the resulting dividend fraction is greater than or equal to the divisor frac-
tion, the Oversized Result (OR) indicator is turned on. If the divisor fraction
is the greater, the division proceeds. The quotient thus obtained is not
post-normalized. ‘

- The quotient exponent is the difference of the dividend and divisor
exponents, augmented by one in the normalized case when the dividend frac-
tion is not less than the divisor fraction. If the quotient exponent overflows
or underflows, the GEP or GEN indicator, respe’ctivély, will be turned on.
The sign of the quotient is determined by the rules of algebra, using the.
accumulator sign and the effective sign of the addressed operand.

The exceptional cases, when one or both the operands are outside
the normal exponent range, are summarized in (5. 1.5). In no case is the
accumulator fraction disturbed. If the dividend is infinite, or the division
is zero, the quotient will be in the extremum positive condition. A zero
divisor also causes the zero divisor (ZD) indicator to be turned on. A zero
dividend and non-zero divisor will put the quotient in the extremum negative
condition. ' -

All the indicators are affected by the DIVIDE operation. The
conditions for turning on the various indicators have been mentioned above.

D 10C : 1/10/61

Chapter 6

Input -Output Operations

Data is recorded on and read from external media by input-output
units. The operation of these units is controlled by adapters which may be
designed to control a single input-output unit, several units of the same type,
or several different units. The central processing unit contains the facilities
necessary to control the flow of information between adapters and core storage.
Some of these facilities are also used for other functions of the computer.

The design of an adapter depends on the units which it controls.
The interface between adapter and computer, however, is the same for all
types of adapters; no modification of the computer is necessary for the
connection of any type of adapter. A common set of instructions is used by
the computer to control all types of adapters.

All adapters operate serially, sending or receiving one 8-bit byte
at a time. Two bytes are required to transmit a storage word of 16 bits.
A parity bit is provided with each byte transmitted between adapter and com-
puter to check the transmission. :

When an input-output instruction is given, the program is delayed
a few microseconds while the computer determines whether the operation
can be executed. If the input-output operation cannot be executed, an alert
is given before the program is resumed. Once an operation has been initiated,
no other instructions are needed for its completion, including the assembly or
disassembly of information and the housekeeping of addresses. The program
is alerted when the operation is completed. Thus, it is possible for data pro-
cessing to proceed simultaneously with several input -output operations. The
only effect of overlapped input-output operations on the computer program is
increased execution time.

6.1 Capacity

6.1.1 Number of Channels

The facilities required in the central processing unit for the con-
nection of an adapter are called a channel. The central processing unit pro-
vides one channel, the multiplex channel, which can be connected to a single
adapter, or it can, without modification, accommodate multiplexing facilities.
These facilities can provide up to 86 channels for the attachment and simul-
taneous operation of adapters. Two optional channels, called simplex channels;
suitable only for the connection of a single adapter, can be provided in the
central processing unit. :

6.1

o g
Pt

1/10/61

The simplex channels are assigned addresses 40 and 41, If a single
adapter is connected to the multiplex channel, the channel is assigned the ad-
dress 42. If a channel multiplexer is attached, the channels it provides may
be assigned any subset of the addresses 42 through 127, as determined by the
design of the multiplexer.

6.1.2 Channel Capacity

The capacity of a channel, i.e., the maximum rate of information
transmission, is determined by the number of channels concurrently in opera-
tion and the byte rates of the units connected to these channels. The simplex
and multiplex channels operate in different ways and, therefore, have different
capacities.

The capacity of channel 40 {or the capacity of channel 41 if channel
40 is not in operation) is 80,000 bytes per second. If both simplex channels
are in operation, the capacity of channel 41 is 44, 000 bytes per second and
their combined byte rates cannot exceed 100, 000 bytes per second. If neither
of the simplex channels is in operation and if no interruptions occur during
an input-output operation, the capacity of the multiplex channel is 18,000
bytes per second. '

If the byte rate of an adapter exceeds the capacity of the channel
to which it is connected, or if the total byte rate of all channels in operation
is too high, information may be lost. Other timing restrictions must be ful-
filled for successful operation,and information may be lost even though the
byte rate of a unit is less than the capacity of the channel to which it is con-
nected. If information is lost during an input-output operation because of
timing restrictions, an indication is given at the end of the operation.

Programming Note:

It is possible to operate a single type 7291V tape unit or to operate
simultaneously two type 7330 tape units using the simplex channels. A single
'~ 7330 tape unit may be operated at low density on the multiplex channel if
neither of the simplex channels is in operation.

6.2

o g
N

1/10/61

6.2 Channel Operation

Each of the channels is capable of executing four operations:
read, sense, write, and control. During read and sense operations (input
operations), information flows from the adapter to storage; during write
and control operations (output operations), information flows in the opposite
direction. Data is transferred by a read or write operation, and the sense
and control operations are used to transfer control information.

An input-output operation is initiated by a START CHANNEL
instruction which specifies the channel to be used and the location of a
control word which defines the area of storage to be used and the operation
to be executed.

When a START CHANNEL instruction is given, the computer
tests the status of the specified channel. If the channel is either busy or not
operable, an alert is given. If the channel is operable and not busy, the
computer fetches the specified control word and stores it in a register
(simplex channel) or in the channel control word locations (multiplex channel)
associated with the channel. The appropriate command is then sént to the
adapter and information transfer is begun.

Data recorded on an external medium is divided into blocks. The
length of a block depends on the medium; e.g., a block may be a card, a
line of printing, or the information recorded between two consecutive gaps
on tape. Reading and writing operations always start at the beginning of a
block and are terminated at the end of the block or when the specified storage
area is exhausted, whichever occurs first.

The amount of information which can be transferred during a sense
or control operation is limited by the design of the adapter. These operations
are also terminated when the specified storage area is exhausted if this oc-
curs first.

When an input-output operation is terminated, the channel control
word indicates how much of the specified storage area was used and any
special conditions which occurred during the operation. This control word
is stored in locations 8n, 8n+ 1, and 8n+ 2, where n is the channel address.

1/10/61

Control Word Format

Input-output control words have the format shown below.

SUPPRESS NORMAL TERMINATION DATA/CONT RoL.
SUPPRESS SHORT RECORD ‘l rDIREcTION

ADDRESS STATUS | OP. COUNT

i L 1 [| i -
T 24 28 32 47
ATTENTION J L SHORT RECORD

NORMA L END DATA CHECK
UNUSUAL END PROGRAM CHECK

Bits 0 through 16, Address:

This field in the original control word specifies the first 8-bit byte

in storage to be used. In the final control word, it addresses the byte follow-
ing the last byte used.

Bits 18 through 23, Status Bits:

At the end of an input-output operation, these bits indicate the

occurrence of certain conditions during the execution of the operation. Their
contents at the beginning of an operation is ignored.

18

19

20

21

Attention: This bit indicates that an Attention signal has been
received from the channel. It can be turned on at any time
whether the channel is busy or idle.

Normal End: This bit indicates that no unusual conditions
occurred during the execution of the input-output operation
just terminated. An Attention signal is not considered an
unusual condition.

Unusual End: This bit indicates that an unusual condition was
detected by the adapter during the execution of an operation.

A list of the conditions which may be detected by the adapter
is given in section 6.4.2 .

Program Check: This bit is turned on if the channel attempts

to transmit information to or from a storage location which is
not provided. The operation is terminated immediately.

6.4

22

23

1/10/61

Data Check: This bit is turned on if the channel receives a
byte with incorrect parity from an adapter during an input
operation. It is never turned on during an output operation.

Short Record: This bit indicates that an input operation was
terminated by the adapter because the end of the block on the
external medium was reached before the storage area defined
by the control word was filled. It is never turned on during
an output operation.

Bits 24 through 27, Operation Code:

These bits specify the input-output operation to be executed and

modify the interruption given at the end of the operation. They are not
altered during the operation.

242

25

26

27

Suppress Short Record: For input operations, if this bit is
zero and the Short Record bit is on at the end of the operation,
a Special Condition interruption is given. If this bit is on, a
Normal End interruption is given unless another special condi-
tion occurred during the operation. Output operations are not
affected by the Suppress Short Record bit.

Suppress Normal Termination: If this bit is on, all Normal
End interruptions are suppressed. Special condition inter-~
ruptions are not affected.

Data /Control: If this bit is zero, data is transferred
between the adapter and storage. If the bit is on, control
information is transferred to or from the adapter. Control
information transmitted to the adapter can be used to select
a particular unit attached to the adapter, change the mode

of operation of the adapter, or to initiate certain operations
such as, rewind a tape. Control information transferred to
storage is used to determine the status of the adapter follow-
ing an Attention signal or an Unusual End.

Direction: If this bit is zero, an input operation is speci-
fied and information is transferred from the adapter to
storage. A one specifies an output operation during which
information is transferred to the adapter.

6.5

D10C
6.2 1/10/61

Bits 32 through 47, Count:

This field in the original control word specifies the number of
16-bit locations in the defined storage area. In the final control word, it
indicates the number of locations in the defined area which were not used.
If either the original storage area or the unused storage area at the end
of an operation begins with the righthand byte of a storage location, this
location is included in the count.

The original contents of bit 17 and bits 28 through 31 are ignored
by the channel.

6.2.2 Definition of Core Storage Area

The defined storage area contains one or more bytes with consecu-
tive addresses. The control word addresses the byte with the lowest address.
If this is the lefthand byte of a storage location, the area contains an even
number of bytes, and this number is twice the count given in the control word.
If the control word addresses the righthand byte of a location, the number of
bytes in the area is odd and one less than twice the count. During the input-
output operation, the bytes in the defined area are used in order of increasing
addresses beginning with the byte addressed by the control word. The last
byte in the defined area is always the righthand byte of a storage location.

If the count is zero, it is interpreted as 65,536 (2.16). Thus, it
is impossible for a control word to define an area containing no bytes. A
zero count provides a convenient way of indicating that the amount of infor-
mation transferred is to be governed by the block size of the external medium.

When executing an input-output operation, any storage location can
be used., If a reference is made to a location above the limit of available
storage, however, the operation is terminated immediately and the Program
Check bit (bit 21) in the channel control word is turned on.

6.6

o U
W

1/10/61

6.3 Instructions

Input-output instructions have the format shown below.

ADDRESS CHANNEL OPERATION

o 16 24 31

Bits 0 through 15 specify the location of the control word which
defines the area of core storage to be used. This address is direct if bit 24
is zero; otherwise, it is indirect.

The channel to be used is specified by bits 16 through 23. The
instruction will be rejected and code CNQO, Channel Not Operational, will
be stored in the interruption stream if the channel address is 0 through 39

or any unassigned address above 39,

The operation code is given in bits 25 through 31,

6.3.1 START CHANNEL

This instruction initiates the input-output operation specified by
the control word which it addresses. If the adapter connected to the addressed
channel controls two or more input -output units, the instruction applies to the
unit last selected. If the addressed channel is busy or not operational, the
appropriate interruption code is stored and no operation is initiated.

6.3.2 RELEASE CHANNEL

If the addressed channel is busy, this instruction causes information
transfer to be terminated immediately. The only interruption code which can
be stored as a result of a RELEASE instruction is CNO, Channel Not Opera-
tional. The interruption code which results from an input-output operation
terminated by this instruction, however, is not suppressed. The control word
address given in this instruction is ignored.

6.7

1
6.4 1/10/61

6.4 Input-Output Alerts

In order to permit the effective simultaneous execution of a pro-
gram and several input-output operations, the latter are interlocked with the
program by means of the interruption system. Two types of alerts are used,
general alerts and channel alerts.

6.4.1 General Alerts

For these five alerts, the code stored in the interruption stream
does not indicate the channel with which the causing condition is associated.
Since these alerts can occur only during the initiation of an input- output
operation, the channel can be determined from the last 1nstruct10n executed
before interruption , if the computer is enabled.

If conditions exist that could cause more than one of these alerts,
only the alert appearing first on the list below is given.

. The first three alerts in this list can be caused by other instruc-
tions. They are described here only as far as they apply to input-output
instructions. All other alerts listed here can be caused only by input-output
instructions.

When any of these alerts occurs, the causing instruction is
suppressed.

Code 71, Address Invalid (AD)

This alert results if the control word address of an input-output
instruction refers to a core storage location not provided in the
system.

Code 70, Unended Sequenée of Addresses (USA)

This alert results if a sequence of indirect control word addresses
is not terminated by a direct address within one millisecond.

Code 72, Operation Code Invalid (OP)

If the input-output lock bit of the current program control word
is one, any input-output instruction will cause this code to be
stored in the interruption stream. This feature permits the
supervisory program to monitor all input-output instructions
given by a problem program before they are executed. Thus, a
problem program can be prevented from using an input-output
unit or an area of core storage assigned to another program.

6.8

1
4 1/10/61

Code 68, Channel Not Operational (CNO)

This interruption code is stored if the adapter connected to the
addressed channel is not operational. It is also stored if no
unit is connected to the addressed channel, or if the channel is
not provided in the system.

Code 69, Channel Busy (CB)

This interruption code is stored when an instruction addresses
a channel which is busy.

6.4.2 Channel Alerts

The codes stored in the interruption stream by the two alerts
described below identify the channel with which the alert is associated.
These codes are of the form 2n+ a where''n'" is the channel address and
"a'' denotes the type of alert.

Code 2n, Channel n Normal End (CnNE)

This code is stored when an input-output operation using channel
n is terminated, unless suppression of normal termination is
specified in the control word or a special condition occurred
during the operation. A short record is not considered a special
condition if the Suppress Short Record bit is on in the control '
word.

Code 2n+ 1, Channel n Special Condition (CnSC)

This code is stored when an input-output operation using channel
n is terminated if a special condition occurred during the opera-
tion. It is also stored immediately if an Attention signal is
received from channel n when the channel is not busy.

Special conditions which can occur during an input-output operation

are:

1. An Attention signal may be received from the adapter.

2. The adapter may indicate the end of the operation by an Unusual
End signal.

3. The channel may attempt to transmit information to or from a

location which is above the limit of available storage.

6.9

1
4 1/10/61

4. A byte of information with incorrect parity may be detected
by the channel during an input operation.

5. During an input operation, the end of the block of data may
be reached before the count in the control word is reached.
This is considered a special condition only if the Suppress
Short Recagrd bit in the control word is zero.

All special conditions which occur during an operation are
indicated by the status bits of the channel control and at the
end of the operation.

If aChannel n Special Condition alert is caused by either an
Attention signal or an Unusual End signal, the program can determine the
exact cause of the alert by means of a sense execution. Several possible
causes of an Unusual End are:

1. An operation was specified which the addressed unit is not
designed to execute (e.g., a read operation specified for a
printer).

2. An operation was specified which the addressed unit is not

capable of executing because of its present status (e.g., a
read operation specified for a tape unit which is rewinding).

3. An undefined control code is sent to an adapter during the
execution of a control operation. '

4. A data error is detected by the unit.
5. The é,da.pter detects the malfunction of some of its components.
6. The unit has reached an out-of-material condition (e.g., an

empty card hopper, a full card stacker, the end of a tape).
7. A tape mark has been sensed.

8. ‘A byte of information was lost during the operation because
' of timing restrictions.

6.10

D10C 1/10/61
Appendix

Instruction Formats

Floating point, control word, and accumulator operations.

ADDRESS INDEX |OPERATION

0 /b 24 3l

Channel operations.

ARDRESS CHANNEL |OPERATION

0 : : /6 24 3l

Variable-field-length operations.

ADRDRESS B | L |OFFSET|OPERATION

0 ‘ e 18 20 24 . 3l

Decision operations.

ADORESS l SELECT|OPERATION

o] /6 20 24 3l

Interruption operations.

ADORESS ' OFERATION
0 /6 24]
Control Word Formats
Channel control word.
ADDRESS MO0 DE : COUNT
[»] 16 32 £7

D10C
Appendix

Program control word.

ConND,
INSTRycTIoN ADDRESS REG, | MASK MoDE | IND.

Q 13 20 24 28 3

Data Formats

Floating point,
WoRro GBovwpary

Y . Y {/ <z

1/10/61

‘ 3
3 FRACT IO N es [orronentes]
< 3

Full word.

Y Y Y , v
T e T T T T T e e S
= [N D]

o

Variable~length field.

%(Y‘ e Y. N

\\\'\f,\a

DI0C
Appendix 1/10/61

Operation Codes

Code bits 24-31

Floating Point Arithmetic Operations

iuallncec

i direct-indirect
u normalized-unnormalized
a sign-absolute
n positive-negative
00 reset add
01 add
10 multiply
11

divide

Accumulator Operations

i0010scc

i direct~-indirect
s load-store
00 accumulator
01 right half-fraction
10 left half-fraction
11 fraction
Control Word Operations
i0l1l0ccc
i direct-indirect

diminish one
increment one
increment two
increment three

- O O O O
O - = O O
O -~ O - O

refill
~ Channel Operations
i101000c¢
i direct-indirect
0 start
1 release

DI0C
Appendix

(Operation Codes)

Load Condition Register Operation

i0101010

i

Load Sign Operations
i0001lnlc

i

direct-indirect

direct-indirect
positive-negative
fraction sign
exponent sign

Variable-Field-Length Arithmetic Operations

i 0aldlnoOc

i

Connective Operations

ilt Oxxxx

i
XX XX

Decision Operations

i00001lcc

i

— e~ OO

Interruption Operations

i00000cc

i

direct-indirect
signed-unsigned
positive-negative
reset add

add

direct-indirect
store-test
connective code

direct-indirect
branch if any
branch if none
store PCW if any
store PCW if none

direct-indirect

interrupt intentionally
enable and wait
enable

A-4

1/10/61

D10C
Appendix 1/10/61

Operation Times

Cycles usec

Floating Point Operations

1. Add and Reset Add 11 110

2. Multiply 38 380

3. Divide : 50 500
Accumulator Operations

1. One word transferred 3 30

2. Two words transferred 4 40

3. Three words transferred 5 50
Control Word Operations

1. Increment or Decrement 4 40

2. Refill 5 50
Channel Operations

1. Start Channel (simplex) 5 50

2. Start Channel (multiplex) 8 80

3. Start Channel (unsuccessful) 2 20

4. Release channel 2 20
Variable-Field-Length Operations

1. Without word boundary

crossover : 4 40
2. With word boundary
crossover 5 50

Sign Byte Load and Condition Load 4 40
Interruption and Decision Operations

1. Unsuccessful 2 20

2. Successful interruptions 2 20

3. Successful branches 3 30

4. Successful store PCW 4 40
Indexing 2 20
Indirect Addressing 2 _ 20

