N. Rochester

This is the best available form of thef‘8106"" manual. We should have it
entirely rewritten within six weeks time. Regards.

J. W, Franklin
Dept 251

Bldg 965
Systems Planning

THE IBM 8106 DATA PROCESSING SYSTEM

(Preliminary Operating Manual)

IBM CONFIDENTIAL

Product Development Laboratory Data Systems Division
International Business Machines Corporation Poughkeepsie, New York

Chapter 1

THE IBM 8106 DATA PROCESSING SYSTEM

Contents

Section Page

Introduction 1.1 1.1

System Organization 1.2 1.3

Storage Units 1.2.1 1.3

Core Storage 1.4

Shared Core Storage 1.4

Core Storage With Fast Channels 1.4

Input -Output 1.2.2 1.5

Central Processor 1.2.3 1.6

System Operation 1.3 1.8

Instruction Sequencing 1.3.1 1.8

Operand Addressing 1.3.2 1.9
Arithmetic and Logical Processing 1.3.3 1. 10
Floating-Point Arithmetic 1.10
Fixed-Point Arithmetic 1.11
Logical Processing 1.12
Control-Word and Decision Operations 1.3.4 1.13
Data Transmission 1.3.5 1. 15
Maintenance 1.3.6 1.16

Table - Features of the system 1.2

Figure 1.1 - System organization 1.3

Figure 1.2 - Data paths 1.7

IBM CONFIDENTIAL

This document contains information of a proprietary nature, ALL INFOR-
MATION CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE, No in-
formation shall be divulged to persons other than IBM employees authori-
zed by the nature of their duties to receive such information, or individuals
or organizations who are authorized by IBM Product Development Labora-
tory or its appointee to receive such information,

Printed in U, S. A.

February 15, 1961 A

£ g ‘r“
B
Chapter 1

THE IBM 8106 DATA PROCESSING SYSTEM

1. 1 INTRODUCTION

The IBM 8106 Data Processing System is designed to satisfy a
wide range of applications. These applications may require a disk- or
tape-oriented system; a system with great data-manipulation facility or a
system for technical computation; a system for conventional daily operation
or one with around-the-clock availability; a system for batch or in-line
processing; a system for scheduled or short-notice processing; a system
operating virtually unattended or requiring extensive man-machine commu-
nication.

To meet these diverse and often conflicting requirements at an
efficient cost-to-performance ratio, two principles have been used in the
systems design.

The first principle is modularity of systems components. A uni-
versal interconnection is provided between the central processor and
input-output to provide maximum freedom in the selection of input-output
units. The choice between a disk- or tape-oriénted system, or any inter-
mediate solution, no longer affects the equipment within the central
processor. Similar remarks apply to other system alternatives. The
modular principle also applies to the size and characteristics of storage
units, and furthermore, extends to the number and characteristics of
central processing units which may be part of a system, Thus, two or
more central processors may communicate with each other and with
input~output units in such a manner that continuous systems availability
is insured, The central processors within a system need not be
identical. For instance, increased technical computing performance may
be achieved by incorporating one or more IBM 8112 processors within
the system.

The second principle applied in the 8106 system design is integra=-
tion of a large number of basic features which enable the system to satisfy
different application requirements., It is expected that each of these features
will be used to some degree in all installations. However, the particular
emphasis which a given feature receives will determine the operating
capability of the system.

FEATURES OF THE SYSTEM

Direct and indirect addressing

Indexing of floating-point operands

Data specification by control words

Chained control words

Program and data relocation

Multiple simultaneous input-output operation

2/15/61 A

Independent instruction streams for input-output channels

Multiplexed processors

Rapid program switching

Address protection

Program interrupt

Maskable indicators

Interval timer

Time clock

Instruction count

Program and data monitoring

Variable precision floating point

Noisy mode for floating-point significance test
Floating-point extremum handling :
Binary and decimal fixed-point arithmetic
Signed and unsigned arithmetic

Arithmetic with single or multiple operands
Processing on fields or streams of data
Data flags

Code translation

Logical connectives

Compressed four-bit numeric data
Extended eight-bit alphanumeric characters
Processing till match, clash or count
Decisions on bits or bytes

Error scan

Automated fault location

The individual cost of each of these features has been reduced
greatly by using a highly integrated design. Registers are shared by

input-output control words, data control words, and operands.

Input-output

channel controls are shared by interrupt functions. Buses serve for serial,
parallel, input-output, diagnostic, and initializing information flow. A
fast-responding priority circuit permits simultaneous data flow through
several input-output channels, flexibility in operand designation, immediate

response to system alerts, and accurate fault location.

1.2

2/15/61 A

1.2 SYSTEM ORGANIZATION

A basic system is composed of a central processor, core"storage,
and input-output. Information moves between input-output devices and core
storage via channels which are part of the central-processing unit. The
central-processing unit further consists of registers, arithmetic devices,
and control circuits necessary for performing operations upon data taken
from core storage. The central processor is controlled by a succession of
instructions which themselves come from core storage. Registers and con-
trols are shared in performing the tasks of channel operations, data mani-

pulation, and instruction modification.

CORE
ADDITIONAL CORE STORAGE STORAGE
CHANNEL [ADDITIONAL CHANNELS
MULTIPEXER ——] PROCESSOR F==

Y
INPUT-OUTPUT UNITS

Figure 1.1 - System organization

1.2.1 Storage Units

The computing system uses core storage units with a read-write
cycle time of two microseconds. A word consists of 64 information bits and
eight nonaddressable redundancy bits. The redundancy bits are provided
for error detection by the central _prbcessor and the input-output units.

The address space in instructions provides for processing directly
on any operation any of 65, 536 (216) word locations numbered 0 to 65,535
consecutively. Some of the low-order addresses are reserved for special

purposes.

1.3

2/15/61 A

1.2.1.1 Core Storage

Storage units contain 4096, 8192, or 16, 384 words. A system
may contain several units of 16, 384 words operating as one logical unit.
Only one storage reference is in process at the same time. These units
also have a two-microsecond read-write cycle time.

1.2.1.2 Shared Core Storage

The computing system permits the use of additional core-storage
units which have two storage bus connections, but which are otherwise
identical to the core-storage units mentioned above. They permit communi-
cation between two central-processing units. These processors may operate
simultaneously, each with their own input-output units, and if desired, each
with additional core storage connected to its own storage bus. The shared
core-storage unit provides a link between the two storage bus systems.
Messages can be exchanged between processors by placing them in the
shared core-storage unit. In particular, the systems can be organized in
such a fashion that, in the case of routine maintenance or malfunction of one
processor, the other processor can keep the system in satisfactory operating
condition. The use of several shared storage units permit more than two
processors to be part of a system.

Shared core storage units contain 4096 or 16, 384 words.

1.2.1.3 Core Storage With Fast Channels

Two types of input-output channels are provided, the types differ-
ing only in individual and in total rate of transmission through the channels.
When high-performance channels are provided in the central-processing unit,
one core-storage unit with fast channels must be employed in the system.
This type of core-storage unit is identical with the unit mentioned under
Storage Units, except that equipment is provided to permit assembling or
disassembling of input-output data at a high data rate. The presence of the
fast channels also serves to reduce the number of storage cycles required
by a channel while transmitting data.

Core-storage units with fast channels contain 4096 or 16, 384

words exclusive of the fast-channel equipmeént. A maximum of eight channels
can be provided.

1.4

2/15/61 A

1.2.2 Input-Output

Input to the system passes from the input devices to storage
through the channels of the central processor. These channels assemble
complete 64 -bit words from the flow of input information and store the
assembled words in core storage locations. The central processor speci-
fies the starting location and the number of input words to be read. While
the central processor proceeds with computation, the channel completes
the input operation and signals the central processor when transmission
is finished.

The same channels operate similarly for output, fetching
core-storage words and disassembling them for the output devices indepen-
dent of computations in the central processor. External storage devices,
such as tapes and disks, may be operated via a channel as if they were
input and output units. '

The basic central-processing unit has five channels which can
operate independently. Four of these basic channels -- the simplex channels--
can be replaced by up to eight fast channels when a core-storage unit with
fast channels is provided in the system. The simplex channels can accommo-
date the data rate of an IBM 7291V tape unit. A maximum of four units with
this data rate can run simultaneously. The fast channels can run units with
a data rate up to 300 kc. The fifth basic channel -- the multiplex channel --
can function either as a single channel or as a connection to a multiplexing
device. When a multiplexing device is connected, the channel is logically
and operationally equivalent to as many as 112 channels. These channels
share a major portion of the channel equipment, and they accommodate the
aggregate data rates required by communication equipment.

A wide variety of input-output units can be attached to the channels--
card readers, printers, magnetic tape units, disk units, communication equip-
ment, displays, and operators' consoles. Some control units permit only one
input-output device to be attached to a channel. Others, such as the magnetic
tape-control unit or the disk-control unit, are designed to allow several units
to be attached to a single channel. When this is done, only one of these units
can be operated at a time. Control units designed for attachment to the mul-
tiplex channel accommodate many units simultaneously. -

1.5

2/15/61 A

1.2.3 ACentral Processor

The central processor performs the basic tasks of instruction
sequencing, operand addressing, and arithmetic or logical processing. A
diagram of the central processor is shown in Figure 1.2 . Operations are
specified one at a time by instructions taken from storage. The operands
specified by the instruction are also obtained from storage. The arithmetic
or logical process specified by the instruction is performed subsequently
and the result returned to storage. The internal registers and data paths of
the central processor permit parallel access to storage. Hence, the fetching
of instructions and data, and the storing of results are performed in parallel.
The high speed of storage permits rapid parallel operation. The actual pro-
cessing operation, which requires great flexibility in the selection of succes-
sive digits or characters to be processed and in the various modes of
processing, is performed serially: a digit or a character at a time. The
combination of parallel data transmission and serial data processing allows
for speed and flexibility in over-all operation.

1.6

I-0

4

2/15/61

MEMORY DA]

[A REGISTER

!

I

Pl

Figure 1.2 - Data paths

1.7

»I1-0
CHECK CHECK
> e
T0
MEMORY
ADDRESS
REGISTER
ADDRESS
SWITCH
mcm[-:mjemsn DECREMENTER
X Y z
s =}
"
CA fe— — A —»
| cB 8 ‘
-~ cc [—

A

2/15/61 A

1.3 SYSTEM OPERATION

1.3.1 Instruction Sequencing

Instructions have a length of one, two, or three 32-bit half-words
with each instruction half-word containing an address. Therefore, one-,
two-, or three-address instructions are available. Instructions of any
length can be intermixed without regard to word boundaries.

Instructions are taken in succession as specified by an instruction
address. Alteration of the succession of instructions is pos sible by branching
operations which can be controlled by several conditions. Automatic inter-
ruption of the normal sequence of instructions will occur under control of
certain system alerts. Part of these alerts are caused by the program in
execution and are identified by indicator bits. The programmer can selec-
tively permit or prevent interruption caused by the program alerts by means
of a set of mask bits. The condition bits, the indicator bits, and the mask
bits identify the condition under which the program is currently executed.
These bits form part of a program control word which contains the essential
information which defines the state of the processor as it executes a given

‘program. The instruction address, mentioned above, is also part of the
program control word. The program control word further contains mode
bits, a prefix address, and an instruction count,

The prefix address is a reference address for the program being
executed. Some information belonging to this program, such as the
floating-point accumulator, is stored relative to the prefix address., The
prefix address also serves as a boundary address in the address-protecting

procedure.

The instruction count is a tool for program diagnosis. The count
is reduced by one for each instruction executed until zero is reached. When
zero is reached, a program interruption is initiated.

The program control word permits rapid program switching. All
information vital to the current program can be preserved by storing the
program control word. When the program is to be resumed, the
program control word need only be loaded into internal working registers to
restore the processing unit to the state belonging to this program. Since the
prefix address is part of the program control word, a change in prefix address
can be part of a switch in program control words. This avoids dumping and
loading of vital registers as part of the change from one program to another.

1.8

2/15/61 A

A program interruption is executed as a switch between the cur-
rent program and the auxiliary program which belongs to the interruption.
As an interruption occurs, the processor is placed in the disabled state and
further interruptions are delayed. Any subsequent interruptions are stacked
in storage and will occur in turn when the processor is placed again in the
enabled state.

Interruptions may be caused by input-output units, by various
program monitoring functions and by exceptional arithmetic results. The
input-output interruptions indicate normal or special termination of a
channel operation. The monitoring functions include an interval timer, the
instruction count, and checks on valid data, addresses and operation codes.
The exceptional arithmetic results include various types of overflows and
are individually maskable by the programmer.

1.3.2 Operand Addressing

Operands are specified by the address parts of the instruction
being executed. In floating-point and a few related operations, an accumu-
lator is used and only one additional operand is specified. All other opera-

. tions specify all operand and result locations, and do not use an accumulator.
Fixe'd—point arithmetic and logical-processing operations, therefore, are-
two- or three-address operations.

The address specified by the instruction may further be modified
by indirect addressing, and in the case of floating-point operands, by
indexing.

Several operand formats can be used. The floating-point format
occupies a full word. The operands of arithmetic or logical processes
occupy fields up to 64 bits in length. Fields of different length may be
assigned to adjacent locations in core storage, even if this means that a
field lies partly in one word and partly in the next. FEach field may be
addressed directly by specifying its start and end in the instruction. The
computer selects the words required and alters only the desired information.
Since the field length is explicitly stated in each instruction rather than being
implied by the data, there is no restriction on the coding of variable
field-length data. In logical operations, long fields which do not have the
restriction of a maximum length of 64 bits may be specified. Thus, editing
operations may be performed upon records rather than individual fields,

In arithmetic instructions, multiple fields may be specified and the arith-
metic process is repeated for each field specified by the given instruction.

Individual characters in a field may occupy four or eight bits,
Thus, a decimal digit may be compactly represented by a binary code of
four bits, or it may be expanded to eight bits when intermixed with alpha-
betic information.

1.9

2/15/61 A

Operand addressing is subject to an address-monitoring system.
All addresses below the prefix address of the current program are protected
from store operations. This permits protection of a supervisory program
against programming mistakes in a subject program. Because it is often
very difficult to predict all the addresses which might be generated by
indexing, indirect addressing or other address modification, the built-in
address-monitoring facilities give far better protection than is possible by
screening the program before execution. This is particularly true when
the program is not yet error-free.

Systems required to process a wide variety of data in many
different ways and on short notice may be arranged to store programs and
files on external media. Because of overlapped processing and input-output
operation, it is impossible to assign in advance the storage areas required
for programs and data. In order to avoid time-consuming and logically
complex address alterations, the relocation mode can be used. This mode
has the additional advantage of isolating, and therefore protecting from
each other, the instruction and data areas belonging to the different programs
which may appear simultaneously in storage.

When programs are run in the relocated mode, all data and ins-
truction addresses are translated prior to addressing storage. A translation
" table associated with the program allows individual relocation of several"
data areas and instruction areas. Relocation takes place in blocks of 256
words. The translation process permits continuous addressing of noncon-
tiguous data areas. Relocation may be performed with all types of operands
and every mode of address modification.

1.3.3 Arithmetic and Liogical Processing

The instruction set includes elementary operations, such as
ADD (A), MULTIPLY (M), and DIVIDE (D), which are altered by modifier
bits. Thus, the operations '"'subtract' or '"add absolute'' are obtained by
use of sign modifiers with an ADD (A) instruction, and are not provided
as separate operations. The same modifiers permit controlling the sign
of a number to be multiplied or divided.

1.3.3.1 Floating-Point Arithmetic

Floating-point arithmetic makes use of a specialized data format
wherein numbers are represented as a signed exponent and a signed fraction
which, together, occupy a full 64-bit word.

2/15/61 A

Floating-point instructions contain sign modifiers which permit
any desired combination of operand signs. They also contain a normalization
modifier which specifies the choice between normalized and unnormalized
operation. Normalization shifts take place four bits at a time. Consequently,
the operating radix for floating point is said to be hexadecimal, rather than
binary. The exponent of the floating-point word is a hexadecimal number
and denotes the power of 16 by which the fraction should be multiplied.

The fraction length may be either 32 or 48 bits as specified by the
precision bit of the floating-point word. The 32-bit fraction length gives the
fastest operating speed. The 48-bit fraction length makes it possible to
compute in single-precision mode for a number of problems which would have
to be done in double-precision otherwise. The two fraction lengths may be
intermixed within one computation.

In order to simplify significance studies, a mode of operation
called '"noisy mode'' is provided in which results are altered in a specified
fashion. Consecutive runs of the same problem in standard and noisy mode
permit an estimate of the significance of the results to be obtained.

Floating-point numbers cover a range between the positive and
‘negative value of the fraction having the maximum exponent. Since the
exponent range is finite, a discontinuity exists between positive and negative
values of fractions having minimum exponent. ' Included in this range is the
number zero. An extremum flag bit has been incorporated in the floating-point
word format to provide a straightforward control of data exceeding the exponent
range or falling within the range of discontinuity.

1.3.3.2 Fixed-Point Arithmetic

The class of fixed-point arithmetic operations is designed to facili-
tate arithmetic on other than the specialized floating-point numbers. The
emphasis here is on versatility and economy of storage. Data may be signed
or unsigned. For unsigned data, the sign is simply omitted in storage, thus
saving space and avoiding the task of assigning signs where there are none.
Unsigned numbers are treated as if they were positive.

All integer operations are available in either decimal or hexadecimal
form by setting the radix modifier bit. Again, the term 'hexadecimal" is used
in preference to "binary'' to indicate that addressing and proces sing proceed
four bits at a time.

A radix-conversion operation is provided to facilitate the use of
decimal input and output while retaining the advantages of hexadecimal opera-
tion within the machine. In this operation, the operand is an integer and may
be converted either from hexadecimal to decimal or from decimal to hexadecimal.

1.11

2/15/61 A

1.3.3.3 Logical Processing

The logical-processing operations are divided into three groups:
connective, translation, and alphameric-comparison operations.

Connective operations provide a simple and orderly fashion for
performing operations which logically combine bits by "and, " "or," and
exclusive or, ! as well as many other nonarithmetic data~handling operations.
Each connective operation specifies two or three storage fields as in integer
arithmetic. Two operand fields are logically combined bit for bit and placed
in the result field. The result is tested for the all-zero condition. The
instruction CONNECT FOR TEST (CT) allows fields to be tested without
altering the contents of storage.

There are sixteen possible ways to combine or connect two bits,
each of these can be specified with the connective operations. Besides the
connectives "and, " '"or, " and "'exclusive or, ' there are connectives to invert,
to replace, and to set bits to zero or one. While the term ''logical connectives"
suggests evaluation of elaborate expressions in Boolean algebra, the connec-
tive instructions have important every-day applications, such as assembling
and testing input-output data. 'Their power lies in the ability to specify fields
“of any length and in any position in storage.

Several modifications, which may be combined in any desired way,
are provided with the connective operations. One modification, the choice
between storing the result or only testing the result, has been mentioned
already. Another modification is the ability to connect a field with a single
four- or eight-bit character. This single character is connected over and
over with the successive characters of the field. A third modification is the
match or clash option. In this option, the result characters are compared
with a four- or eight-bit comparison character. An equality is called a
match; an inequality, a clash. The operation is terminated either on the
first match or on the first clash. This operation has the characteristics of
a search operation. ‘

Translation operations also proceed a character at a time. Either
a four- or eight-bit character is selected from the operand field as the argu-
ment for the table from which the result character is obtained. The result
character is four or eight bits independent of the size of the argument
character. Successive argument characters are used to obtain a stream of
result characters, which are placed in the result field, '

1. 12

2/15/61 A

The translation operations have direct application in code conver-
sion operations. A second application is character-size alteration by
translation from four- to eight-bit size, or vice versa. A third less obvious
application is character reordering. Here, an operand stream of control
characters is used to select, from a translation table containing the subject
data, the result characters in a prescribed order. This reordering function
has application in such editing functions as punctuation insertion.

A fourth application of the translation operations is logical mani-
pulation. Two additional translation instructions, TRANSLATE WITH LEFT
CARRY (TLL) and TRANSLATE WITH RIGHT CARRY (TLR) are provided
to increase the logical power for this class of operations. In these operations,
part of the result character is used as argument for the next character trans-
lation. The two operations differ in the direction of processing. These
translation operations are also used in editing operations, and provide means
for zero suppression and similar functions.

Alphameric-comparison operation differs from the numeric com-
parison operation (provided as part of the arithmetic operations) in the
direction of processing, and in that the field length is unrestricted. Alpha-
meric high-low comparisons are made from right to left by simple binary
subtraction of successive characters. There is no fixed character code
built into the computer. The only requirement is that the binary numbers
representing each character fall into the comparing sequence desired for the
application. If the code used for input or output does not conform to this
comparing requirement, the translate instructions may be used to perform
the desired conversion.

1.3.4 Control-Word and Decision Operations

Every instruction may have its address portions modified by
indirect addressing, or substitutionary indexing. In the case of floating-point
operations, additive indexing is provided as well. The information referred
to in indirect addressing and in indexing is the value field of a control word.
Normally, the instruction and the control word remain unchanged. To alter
the control words is the function of control-word operations.

Each control word contains a count to keep track of the number of
times a program loop has been traversed, or in the case of long fields, the
number of times a word boundary has been passed. A third field in each
control word specifies a refill address from which another control word
may be loaded automatically.

1.13

2/15/61 A

Together, these three fields provide a very convenient indexing
technique. At each traversal of a program loop, an increment is added to
the control-word value and the count is stepped down by one. When the
count reaches zero, the control word is reset by refilling it from the storage
location containing the original value and count. All this may be done with
one instruction at the appropriate point in the loop.

The instruction set permits many other control-word techniques.
An important one is the use of the refill address to indicate the next contro::
word in succession in a chain of control words. Such chains permit the
computation to progress through a series of items which are not stored in
the order in which they are to be used. Chaining can greatly simplify
insertion, deletion, and sorting of items by not requiring rearrangement of
data in storage.

In logical-processing operations, control words are used to specify
operands which have a length greater than 64 bits. The refill address is used
to chain together successive data fields. Thus, the control words permit
entire records or groups of records to participate in a single operation.

The instruction set includes operations for incrementing the value
" field, decrementing the count field, and chaining. Several of these functions
may be combined in one operation. The counting function may also be com-
bined with fixed-point arithmetic in a set of very flexible control-word
modification operations.

While control-word instructions are provided to change control
words explicitly, it is also possible to take advantage of an implicit
control-word modification mode. This mode is provided by the fact that
control words which are used in processing operations are always stored
back into a fixed storage location at the end of the operation. These so-called
"final control words' are carefully updated to reflect correctly the point
reached in processing the operand. The final control words can be used in
subsequent operations involving the same record. This mode of operation
may be applied to advantage in stepping along a string of data of various
lengths without requiring a separate incrementing instruction at each step.

The branching operations alter the instruction counter so as to
change the course of a program. The number of operations is not large, but
modifiers are available to provide a great deal of flexibility. The branch
instruction refers to the four-bit condition register which reflects the result
of the instruction last executed. By means of four select bits, the branch
decision may be based on the state of some or all of the condition bits. The
various options include an unconditional branch and a NO OPERATION (NOP)
instruction. Branch instructions may be coupled with an operation to store
the program control word at any desired location before branching. This
simplifies re-entry to a program from a subprogram.

1. 14

2/15/61 A

The condition register may be loaded prior to a branch operation
from any four-bit location in storage.

1.3.5 Data Transmission

The transmission operation provides the facilities to move a block
of data from one set of addresses to another. The operation may be termi-
nated by a control-word count, or by a match or clash. The match or clash
condition is obtained by comparing one character in each word transmitted
with a comparison character. Additional operations are provided to inter-
change the contents of storage locations and to move half-words.

There are two basic instructions for controlling input-output and
external storage units: START CHANNEL (SRT) and RELEASE CHANNEL (RLS).
Each instruction specifies the unit desired and the storage area involved in the
data transmission, :

The storage area is specified by a control word which contains the
first address in storage and a count of the number of words to be transferred.
The control word also specifies the operation to be performed by the channel.
‘The control word contains a refill address which can specify the address of -
another control word. Control words can thus be chained together to define
storage areas and channel operations to be executed with these storage areas.
This makes it possible to proceed with a series of operations on a given
channel without further attention by the main program.

Input-output control words have the same format as control words
used in indexing and indirect addressing. This important feature greatly
simplifies the processing and sorting of large files,

All instructions for operating external units are executed indepen-
dently of the computer program. A number of data transfers can thus take
place simultaneously, all sharing access to storage. Signalling functions
inform the program when an external process is completed.

2/15/61 A

1.3.6 Maintenance

Throughout the processor, a high degree of checking is used for
data and controls. The internal organization of the processor makes it
possible to halt machine operation when an error is detected. The state of
the internal registers therefore is preserved, and may be used to determine
the type of error and the location of the fault which caused the error. To
facilitate diagnosis, the contents of the machine registers are automatically
scanned and placed in storage when an error is detected. If desired, the
scanned information may be dumped on an output medium, thus producing
an external record of all error counts which occur. This procedure aids in
diagnosing intermittent errors.

When a permanent fault is known to exist in the processor, a
scan-in, as well as a scan-out, may be employed -- internal registers of
the processor are set according to data which resides in storage. Following
this scan-in, a predetermined number of machine cycles is taken, followed ‘
by a scan-out. The scan-in information may be obtained from an input
device; the scan-out information may be dumped on an output device, and a
large number of scans may be taken in succession. Thus, an exhaustive
equipment test may be performed in a short time. '

Machine-scans may also be initiated by program control as an
aid to diagnostic programs.

S 2 5

General Description
Format
Data
Program
Instruction
Control Word
Indirect Addressing
Indexing
Operand Addressing
Byte
Word
Half-Word
Field
Record
Multiple Field
Multiple Word
Address Translation
Relocation Table
Block Boundaries

Addresses Translated

Address Monitoring

Definition of Monitoring Area

Action of Address Monitoring

Addresses Monitored
Control-Word Operations

Conditions
Indicators
Operations

Chapter 2

OPERAND DESIGNATION

Contents

Section

3/10/61 A

Increment Address (1A)
Diminish Count (DC)
Increment Address and Diminish Count (IDC)
Increment Address and Refill (IR);
Diminish Count and Refill (DCR);

Increment Address, Diminish Count, and Refill (IDCR)

Refill (R)

Refill from Address (RA)

NN NNV
NN N e

NNMNDNMNNNMNNNNMNDNNNNNNNNNNNNNNDNDNDNDNNDN

WO @I~ Ut R W

N OO W N e

N

NNV

NIV IV NNNMINNNNDNNDNDNNDNDNNNNNDNNDDN

.27
.27
.27

Contents Chapter 2 (continued)

Accumulator Operations

Conditions

Indicators

Operations
Load Accumulator (L A)
Store Accumulator (SA)

-Store Effective Address, First (SEAF)
Store Effective Address, Last (SEAL)
Data Transmission

Multiple-Word Transmission
Match or Clash
Conditions
Match or Clash
First Count Zero
Last Count Zero
Indicators
Operations
Swap Half-Word (SWH)
Swap (SW) :
Transmit Half-Word (TMH)
Transmit (TM)
Transmit Till Match (TMM); and
Transmit Till Clash (TMK)

Storage Assignment

Relocation Table
Final Data Description
Accumulator
Timer
Time Clock
Interval Timer
Interruption Control Words
Store Interruption Control Word
Fetch Interruption Control Word
Backup Locations
Scan Area
Program Control Word
Arithmetic Tables
Input-Output Area
Data-Buffer Locations
Control-Word Locations
Index Words
Main Core Storage

VIV

[\

\Y]

~N

(NI A SR AR A I oV

NN DN
O 0 O O

. 10

. 10.
. 10.
. 10.

. 10.
. 10.

.11

.11.
11.
.11,
.11.

.11,

.11,
.11,
.11,
.11
.11,

.11.
.11,

3/10/61 A

Section

W N -

[\]

(8} B W NV e

-0 ® ~N O

11
12

Page

2.28
2.28
2.28
2.28
2.28
2.29
2.29
2.29
2.30
2.31
2.31
2.32
2.32
2.32
2.32
2.32
2.32
2.32
2.32
2.33
2.33

2.33
2.34
2.34
2.35
2.35
2.35
2.36
2.36
2.37
2.37
2.37
2.37
2.37
2.38
2.38
2.39
2.39
2.39
2.39
2.40

3/10/61 A

Gontents Chapter 2 (continued)

J

Page

Table - Storage assignments

Figure 2.1 - Example of data formats

Figure 2.2 - Possible numeric fields

Figure 2.3 - Floating-point format

Figure 2.4 - Instruction and control-word formats
Programming note - Indirect addressing
Programming note - Refilling

Programming note - Crossing word boundaries
Programming note - Relocating

Programming note - Fixed-point operations
Programming note - The match byte
Programming note - The time clock

e

w

NIV VNV NNND
W -
O -~J

March 10, 1961 A

Chapter 2

OPERAND DESIGNATION

2.1 GENERAL DESCRIPTION
)) 16
The central processor is capable of addressing 65,536 (2)
words of storage, each containing 64 bits of information. Most of these
locations contain general-purpose information, but some locations have
been assigned for a special purpose. The information obtained from core
storage may be used as data or as program.

Data may be alphameric or numeric. Depending upon the type
of processing to be performed, the data format may be a full word or a
half-word, a field or a record. A field has variable length, and may start
within one word and continue through that word into the next higher addressed
storage location. The length of a field is limited to 64 bits. A record also
has variable length, but it is not limited to 64 bits. Thus, records and fields
can cross word boundaries, and may be placed side by side in storage.

Processing of data proceeds four or eight bits at a time.
Alphameric data consist of characters which are processed in a uniform
manner. Numeric data consist of digits and, where needed, a sign.
Floating-point data consist of a signed fraction and a signed exponent.
Floating-point arithmetic operations make use of an accumulator. All other
operations place their results in general-purpose storage.

Data may be moved internally by a set of data-transmission
operations. To transmit data to and from the accumulator, LOAD
ACCUMULATOR and STORE ACCUMULATOR operations are provided.

The program specifies computer operation by means of instruc-
tions and control words. Instructions are executed sequentially -- control
words are consulted and updated in any desired sequence.

The program specifies processor operation by means of instruc-
a variable-length instruction format is used. Instructinrn addresses may be
modified by indexing or indirect addressing.

The index quantity or operand specification required for this
address modification is placed in control words. Control words are also
used to specify the addresses of the data which take part in input-output
operations. A third use of control words is the specification of the details
of instruction sequencing and interruption.

3/10/61 A

The contents of control words follow a standard pattern. A set
of control-word modification operations is provided to change the various

parts of control words.

Internal registers, in general, are not addressable and do not
preserve information from one operation to the next. The only information
kept in internal registers as the processor proceeds from one operation to
the next is the content of the program control-word register. The program
control word is fetched at the start of a program and stored at the end of a
program. Among the information contained in the program control word is
the prefix address. This address is used as a reference address, and
specifies the location of the index registers and accumulator of a particular
program. The program control word and its prefix address avoid the need
for dumping and loading of registers in switching from one program to
another.

Some applications require program and data to be placed at
different storage locations as processing proceeds. To simplify storage
allocation and address modification for these applications, a relocation
mode may be used. In this mode, the addresses used in a program are
considered symbolic. A translation procedure is used to change them to
actual addresses each time they are used to address storage.

The programs executed by the processor often are known to con-
tain mistakes. When these programs are executed, it is important to
protect certain storage areas from erroneous store operations to preserve
proper processor control. Address monitoring provides this storage protec-
tion. The extent of the monitored area is determined by the prefix address.

3/10/61 A

2.2 FORMAT

The system stores information in core storage in 64 -bit words.
Information transmission betweeen storage and processor is in parallel, a
64 -bit full word or 32-bit half-word at a time. Information words of 64 bits
are part of 72-bit machine words. The extra eight bits are single error
detection check bits and are not available to the programmer. Within the
central processing unit, each check bit is used as the odd-parity bit of eight
consecutive information bits.

Words in storage are specified by a contiguous set of addresses
numbered from 0 to 65,535 (2°°-1). Words are subdivided into sixteen groups,
or '"bytes,' of four bits each. In each word, the bytes are numbered from 0
to 15, left to right. Byte 15 of a word may be considered adjacent to byte 0
of the next higher addressed word. The four bits of a byte are numbered
from 0 to 3, left to right. Numbering of bytes and bits within a byte may be
combined by numbering the 64 bits of a word from 0 to 63. The parity bits
are not numbered.

The set of addresses includes the addresses of core storage used
for special purpose. A list of these addresses is described in the storage
assignment section. There are no processor registers which need addressing,
since all necessary information is placed in storage in the course of the
machine operation.

In some operations, information is processed a word at a time;
in others, a half-word at a time. A half-word contains eight bytes of four
bits each and corresponds either to the first half (bits 0-31) or the second
half (bits 32-63) of a full word. In a third group of operations, information
is processed a byte at a time. The byte size may be four or eight bits.
Eight-bit bytes always consist of two consecutive even.and odd numbered
bytes. A group of bytes which is processed serially is calted a field. A
field may start with any byte in a word in storage, and continue through that
word and into the word in the next higher addressed storage location.

Information, whether a full word, half-word, or field, is always
addressed by the leftmost byte. The rightmost byte is either implied by the
operation to be performed or specifically stated as part of the instruction.

In all serial processing operations, operand data are fetched
from storage a half-word at a time or an eight-bit byte at a time. Results
are always stored a half-word at a time. When operand and result data '
fields which overlap partially are chosen, caution should be taken that results
do not replace operands before the latter are fetched for processing. When
operand and result fields are identical, no complications arise except where
noted.

MULTIPL
V= 1 1 Y 1 Y

Figure. 2,1 - Data formats

_ I e
p————— 32-BIT FRACTION FRACTION SIGN EXTR EMUM BIT \

48-BIT FRACTION =.l EXPONENT SIGN

Figure 2.3 - Floating-point data format

2.4

3/10/61 A

2.2.1 Data

Seven data formats are used in the processor. These formats
are closely related and may be considered variations upon the basic field
format. Examples of these formats are shown in Figure 2.1 . The byte,
word, and half-word format correspond to the basic subdivisions of storage
in bytes, words, and half-words. The field format has a length of one to
sixteen 4-bit bytes, or one to eight 8-bit bytes. The field format is not
restricted by word or half-word boundaries, and may start and end with any
byte within a word. In a record, the number of bytes is not limited:. A
record therefore may continue through many words in storage. A multiple
field consists of a set of fields equal in length and with their left-hand
boundaries sixteen bytes apart. The fields, therefore, occupy the same
groups of bytes in successive full words. Multiple fields may cross word
boundaries. The multiple-word format consists of one or more adjacent
full words.

Fixed-point arithmetic operations process data four or eight bits
at a time in hexadecimal or in decimal radix. In decimal arithmetic, the -
digits 0 through 9 are represented by the four-bit binary integers 0000 through
1001. Hexadecimal arithmetic makes use of the same four-bit size with the
values 0 through 15 being represented by the binary integers 0000 through 1111.
The processor uses the hexadecimal rather than binary radix, because process-
ing proceeds four bits at a time. Therefore, the pProcessing resolution is
four bits and not one bit. Otherwise, hexadecimal processing is in all res-
pects equal to binary processing.

Numbers may be signed or unsigned. When present, the sign of
a number is specified by a single bit. A zero indicates a positive sign; a one,
a negative sign.

With the sign, up to three flag bits may be used. Flag bits permit
special identification of numbers and are placed to the left of the sign bit to
form with this bit the four -bit sign byte.

For unsigned numbers, the sign byte is omitted and the sign is
assumed to be plus. During arithmetic operations, all numbers are handled
as if they were signed. When unsigned operands are obtained from storage,
the implied sign is modified as specified by the instruction. Thus, an operand
can be brought in without sign and the result stored with sign or vice versa.

In fixed-point arithmetic, the data fields specified have variable
field length. For unsigned data, the entire field is treated as a positive
integer. With signed data, the rightmost byte is interpreted as a sign byte.
Figure 2.2 shows possible numeric fields.

3/10/61 A

The format for floating-point arithmetic is shown in Figure 2. 3
The two portions of the floating-point word are: left, the fraction; and
right, the exponent. Both fraction and exponent are signed, and have the
hexadecimal radix. The fraction has 32 or 48 numeric bits. Flag bits of
the fraction sign byte serve for the entire floating-point word. The exponent
has two numeric bytes. The flag bits of the exponent sign byte are used for
the extremum bit, which indicates a true zero or infinite quantity, and for.
the precision bit, which specifies fraction length. The third flag bit is ignored.

Logical-processing operations usually process information four
bits at a time, but occasionally processing proceeds eight bits at a time.
Input -output operations always proceed eight bits at a time. Alphameric
characters normally occupy an eight-bit byte. No preferred code sets other
than those implied by a binary collating sequence are assumed by these
processing operations. ’

2.2.2 Program

The processor program consists of instructions and control words
used in the control section of the processor to specify the operation to be
performed. They are stored in core storage and when desired may be -
operated upon as data. Instructions occupy one, two, or three half-words,
They are referred to as "one-address,' 'two-address,' and 'three-address
instructions.' Each of these instruction types may start at bit address 0 or
32. Control words occupy a half-word or a full word and are distinguished
as short or long control words. A long word always has bit address 0, while
a short word may have bit address 0 or 32. The formats used for instructions
and control words are shown in Figure 2.4 . In this figure, the bit address
of all instructions and control words is assumed to be 0. In some cases, this
bit address may be 32, in which case the addresses of the individual fields in
the instruction differ from those shown. For convenience of presentation, all
references of bits and fields will use the numbering of Figure 2.4 .

Instructions and control words follow a basic pattern upon which
some variations are made. This pattern consists of four parts: the address,
the operation or mode, the refill, and the count.

. OPER.
ADDRESS REFILL COUNT

MODE

2.6

ONE-ADDRLESS INSTRUCTION

ADDRESS (17) orkRr,
L " e
0 16 20 24 32 ‘
TWO-ADDRESS INSTRUCTION
ADDRIESS (¥) OPLER, ADDRIESS (L) OPER,
L s | L
0 16 20 24 32 4R 52 56 64
FHRER-ADDRESS INSTRUC TION
i
ADDRIESS (¥) OPLR, ADBDRESS (M) OPER, ADDRESS (L) OPER.
— A 1 1 Il 1
[16 20 24 32 48 52 56 64 860 84 88
SIHORT DATA DESCRIPTION
ADDRESS MODE
i]
[16 20 24 32
LONG DA'TA DESCRIPTION
ADDRESS MODE REFILL (16UN1‘
1 'l
0 16 20 24 32 48 64

Figure 2.4 - Instruction and control word formats

9

3/10/61 A

The entire pattern occupies a full word and is the format of a
long control word. The first two parts of the pattern occupy a half-word
and can appear alone as an instruction half-word or as a short control word.
Records, multiple fields, and multiple words can only be described by the
long format. All other data can be described by the short format.

2.2.2.1 Instruction

The total length of an instruction in half-words is directly related
to the number of addresses necessary to perform the operation. The
half-words are distinguished as the first (F), middle (M), and last (L)
half-word. Each half-word subsection consists of two parts: the address
and the operation.

The address part consists of 24 bits and is leftmost in the instruc-
tion half-word. The first twenty bits specify the byte address, while the last
four bits specify the limit of a field or in branch instructions the branching
conditions. The operation part is rightmost in the instruction half-word and
contains eight bits which are used as class, as code, and as modifier bits.
Class bits specify type of addressing, instruction length, and operation class.
Code bits specify basic operations within a class, whereas modifier bits
specify modifications to these operations.

The last half-word of each instruction has bit 27 as a zero. All
other instruction half-words have this bit as a one. This code bit may be
used to separate an instruction stream into individual instructions. Bit 28
of the first instruction half-word is zero for two-address instructions and
one for three-address instructions. The length of the instruction is deter-
mined from bits 27 and 28 of the first instruction half-word and is verified
against bit 27 of the last instruction half-word. If, in the case of two- or
three-address instructions, bit 27 is not found to be zero, fnterruption code
Operation Code Invalid (OP) is given.

2.2.2.2 Control Word

Control words in general describe information. When this infor-
mation is used as the operand of an instruction, the control word is called a
""data desci'iption." Instructions refer to data descriptions by means of
indirect addressing. Data descriptions may have the short or the long format.

Control words are also used for input-output control, for
instruction-sequencing control, and for interruption control. These control
words all have the long format.

3/10/61 A

The leftmost 24 bits of a data description form the address part
in the same way as for an instruction half-word. The next eight bits are the
mode bits. Mode bits specify type of addressing and type of data description,
including the distinction between a short and a long data description.

DIREC T} SHORT
INDIRECT \ CHAml LONG

1
s
ADDRESS G REFILL COUNT

I

In a long data description, the right half of the full word contains
the refill and the count fields, each sixteen bits in length.

Each field of a data description word is intended for a distinct
purpose. The address field is used to address the operand or series of
operands to which the data description refers. The address field can be
changed by an increment which is either implied or explicitly specified.
Implied increments normally increase the word address by one. Word
address 65,535 (216— 1) is followed by word address zero. The count field
registers the number of times an increment is to be applied. The contents
of the count field are reduced by one whenever a count is specified. A zero
count is followed by a count of 65, 535 (216— 1). An initial count of zero is
interpreted as 65,536 (216). The refill field contains the address of a new
control word that can replace the original control word. Refill can be made
conditional on the count reaching zero or it can be specified to occur uncon-
ditionally. By means of this refill operation a sequence may be established
between control words. Such control words are said to be ''"chained."
Chained control words may specify chained records, multiple fields, or

‘multiple words. The operand addressing and the instruction set take full
advantage of the data description fields for the above purposes. However,

a different use of data description fields is possible if desited. For instance,
the address field may be compared against a limit placed in the count or.refill
field. Sufficient operations are available to permit flexibility in this respect.

In input-output operations, a control word is used to control data

transmission to and from the external units. In these.operations, some of
the mode bits are further defined, as described in Chapter 7.

FLAGS

T

ADDRESS 0 1 REFILL - COUNT

0) 16 20 23 28 32 48 63

2.9

3/10/61 A

The uniformity of format allows a control word to be used both
for input-output and for internal processing operations.

The input-output format is also used for the interruption control
words and in modified form for the program control word.

The program control word format is shown below. The address
field of the program control word is shortened to seventeen bits, leaving
room for mode and condition bits. The address field is used to specify the
next insfruction to be performed. Three mode bits are available to specify
addressing, input-output, and floating-point operating modes. The condition
bits refer to the final condition of the current instruction. The next two bytes
are used for indicator bits. These bits record program alert situations.

The refill field is used for the prefix field and the mask bits. The prefix

field is a truncated full-word address. The eight low-order bits of this
address, the prefix address, are omitted because they are always zero.

Mask bits are ysed in conjunction with the indicator bits and specify which
program alerts may cause an interruption. Further explanation of the purpose
of these fields is found in Chapter 3.

| RELOGATION

CONTROL BIT rINDICATORS
INSTRUCTION COND. ¢ INSTRUCTION
ADDRESS R EG | PREFIX MASK COUNT
20 40 48 63
INPU’I‘ OUTPUT} NOISY MODE
LOCK BIT CONTROL BIT

3/10/61 A

2.3 INDIRECT ADDR ESSING

The address part of an instruction half-word is normally used to
address the data upon which the instruction operation is performed. This
addressing mode is called '"'direct addressing.'" In another mode, bits 0-16
of the address can be used to address a data description which in turn con-
tains an address part that can be used to address data. The process of
using a first-level address to obtain a second-level address is called
"indirect addressing." The second-level address can in turn refer to
another data description of which, again, the address can be used. In this
manner, it is possible to extend indirect addressing through many levels.
Indirect addressing has a variety of applications as a programming tool.

In addition, it should be noted that since some data formats can only be
described by long data descriptions, indirect addressing is required to
specify these formats.

Bit 24 of an instruction half-word or a data description indicates
whether or not indirect addressing will take place. When bit 24 is zero,
direct addressing takes place. When bit 24 is one, indirect addressing takes
place. Indirect addressing applies only to the address which is part of the
instruction half-word and may be specified for each instruction half-word
independently. Indirect addressing is also independent of the operation to
be performed. Conversely, the operation as specified in bits 27-31 of an
instruction half-word is not altered by indirect addressing. Bits 25 and 26,
when used as the byte size modifier and signed-unsigned modifier in two-
or three-address instructions are replaced by the corresponding bits of the
data description. Otherwise, bits 25 and 26 of the instruction half-word
remain unchanged by indirect addressing.

Each time a data description is fetched in indirect addressing,
bit 24 is inspected. When bit 24 is one, indirect addressing continues through
another level, using bits 0-16 to address the next data description. When
bit 24 of the data description is zero, a direct address is indicated. The data
description is short or long accordingly as bit 31 is zero or one. A long data
description is normally obtained from a full word address location. When
bit 16 of the address referring to the control word is one, that is, when it
refers to the right half of a full word address location, the right and left half
of the control word are interchanged. The middle address (M) of a
three-address operation can never refer to a long data description. For
this address, bit 31 is not tested, and a short data description will always
be assumed.

When a refill operation takes place, bit 24 of the new control
word is again inspected, and any indirect addressing which may be specified
is performed. At the end of the indirect addressing operation, bit 31 again
is inspected to distinguish short and long data descriptions.

3/10/61 A

During an input-output operation, no indirect addressing takes
place when a refill operation replaces an input-output control word by its
successor. Bit 24 and 31 of the new control word are always ignored under
these circumstances.

The last data description fetched by a refill or indirect address-
ing operation is retained in its entirety. The processor has enough register
storage to retain the necessary instruction code and modifier bits, as well
as all 64 bits of a long data description. As a result, the processor may
return a long data description to storage at the end of an operation with
updated address and count fields, but otherwise identical to the data descrip-
tion which was fetched. Storing of these final data descriptions is further
described in Section 2.5 .

In indirect addressing, it is possible that through a programming
error the addresses refer to each other in such a way that they form a loop.
As a result, the processor cannot finish its operatibn and no interruption is
accepted. To prevent the machine from being locked in this way, an instruc-
tion will be terminated if still active after one-tenth second, and an interrup-
tion code Unending Sequence will be stored in the interruption stream.

PROGRAMMING NOTE

The indirect-addressing action for bits 25 and 26 makes it possible
to specify byte size and signed-unsigned options as part of a data description.

3/10/61 A

2.4 INDEXING

Floating-point arithmetic, accumulator and control-word
instructions permit address modification by indexing. A total of 255 index
words may be specified by a program.

Bits 16-23 of the instruction are used to indicate the index to be
selected. When these bits are all zero, no indexing takes place, otherwise
these bits are used as the index address. The index words are foum‘i at
locations 1-255 following the prefix location of the program. Therefore,
the address of an index word may be obtained by using the prefix field, bits
32-39 of the program control-word, as the high-order part, and the index
field, bits 16-23 of the instruction as the low-order part.

Some of the index locations are special-purpose locations, such
as final control-word and accumulator locations, and therefore serve a dual
purpose.

Address modification is performed by adding bits 0-15 of the
index word, the value field, to bits 0-15 of the instruction. Both fields are
treated as unsigned hexadecimal integers and any overflow carry is ignored.
Since only bits 0-15 of the index word are used in address modification, the
other bits may be assigned in any desired way. In particular, when the
control-word format is chosen, control-word operations may be used to
change the index value.

It is permissible to specify both indexing and indirect addressing
in one instruction. When both are specified, indexing takes place first, then
the modified address is used in indirect addressing. Following the
indirect-addressing operation, the new data description is inspected again
for any additional indexing. Indexing and indirect addressing will alternate
when each is specified in subsequent data descriptions. When no indexing
is specified, indirect addressing takes place at once. The process termi-
nates when no further indirect addressing is designated. The combined
indexing-indirect addressing process is subject to the one-tenth of a second
time limitation. When the time limit has been exceeded, the interruption code
Unending Sequence (US) will be stored. When a refill operation takes place,
both indexing and indirect addressing may be performed. :

3/10/61 A

2.5 OPERAND ADDR ESSING

The address part of an instruction half-word may be modified
by indexing or indirect addressing, as has been described. The final
address thus obtained is called the "effective address. " When no address
modification occurs, the address part of the instruction half-word is the
effective address. An effective address always contains 24 bits, but depend-
ing upon the operation, less than 24 bits may be required. In each case,
only the applicable part of the effective address is used, the nonapplicable
part being ignored. When a long data description is used to address an
operand, the refill and count field, as well as the effective address, are
used to specify the operand. '

The refill field of a long data description may be used to obtain
a new data description. This new data description may be short or long and
may specify indirect addres sing or indexing, depending upon the state of
bits 31, 24, and for indexable instructions, bits 16-23. The new data des-
cription may also introduce a new byte size and signed-unsigned modifier.

The refill field introduces the possibility of an unending chain of
control words. Because of a pProgramming error, this chain of control
words may result in an unending operation. To. prevent such an operation
from locking the processor, the operation will be terminated after one-tenth
second, at which time the interruption code Unending Sequence (US) will be
stored.

The final values of long data descriptions are placed in core
storage at the completion of the operation. These values are called "final
data descriptions.'" The data deséription.belonging to the first instruction
- address, called the "first final data desaription, " is stored at the address
two above the prefix address of the current Program. The data description
belonging to the last instruction address,.called the '"last final data de scrip-
tion, " is stored at the next higher word address, Short data descriptions are

stored only in data-transmission Ooperations,

The storing of final data descriptions makes it possible to use
them in subsequent operations. The final data descriptions, furthermore,
identify the results of match-type operations,

2.5.1 Byte

The operation LOAD CONDITION REGISTER addresses a single
four -bit byté in memory. For this operation, the first twenty bits of the
effective address are used to specify. the addressed byte. In byte conne-t
and in match-type operations, a single byte is also addressed, The addressed
byte may contain four or eight bits. Accordingly, the first twenty or nineteen

2.14

3/10/61 A

bits of the operand address are used to specify the byte. The choice of byte
size is indicated by the modifiers, bits 25, 57, and 89.

2.5.2 Word

A full-word operand is implied by floating-point operations,
control-word operations, and full-word transmission operations. These
operations use the first sixteen bits of the effective address.

2.5.3 Half-Word

A half-word operand is implied by branch and half-word trans-
mission operations, and whenever indirect addressing is specified. For
these operations, the first seventeen bits of the effective address are used.
The sixteen high-order bits address a full word; the low-order bit
addresses the first or second half of the full word.

2.5.4 Field

Operands of fixed-point or logical-processing operations
normally have the field format. To specify a field, all 24 bits. of the effec-
tive address are used. The sixteen high-order bits address a full word
and the next four bits address the byte in the addressed word which is the
leftmost byte of the field. Bits 20-23 address the rightmost byte of the
field. This byte may be part of the addressed word or of the next higher
addressed word in storage. The word-address of this byte need not be
given since the field length never exceeds sixteen bytes. The leftmost and
the rightmost bytes of the field thus defined are part of the operand. When
the byte address of these two bytes is the same, a field length of one byte
is implied.

2.5.5 Record

In logical-processing operations, a long data description may
be used to address a record when processing from left to right. The
leftmost byte of the record is addressed by bits 0-19 of the data description.
The count field specifies the number of full words in which the record is
placed. This number includes the words in which the leftmost and the
rightmost bytes are located, although these words may not be fully occupied
by the record. When no word boundaries are crossed by a record, the count
is one. When a record crosses a word boundary, the count should be two.
If, in this instance, a count of one instead of two is given, the processing
will terminate either within the first word or at the word boundary.

2.15

3/10/61 A

The byte address of the rightmost byte of the record is specified
by bits 20-23 of the data description.

Only the first and last address of an instruction may refer to a
long data description and thereby specify a record. The middle address of
a three-address instruction cannot specify a record.

Records may be changed by means of a refill function. After
processing the last byte of a record, a new data description may be used to
specify the record with which processing is to continue. The first byte of
the new record follows the last byte of the current record without disruption
of the logical-processing operation. The full-word location of the new data .
description is defined by the refill address of the current data description.
Refill operation only takes place when bit 30 (the chain bit) of the current
data description is one. When the chain bit is zero, no refilling takes place.
As part of a refill operation, the byte size of the record may be changed.

A logical-processing operation may use both fields and records
for operands and results. The operation is terminated when the first termi-
nation of a field or a record occurs. In some operations, termination may
occur even earlier because of other conditions which will be discussed later.

The final data description placed in storage specifies the part of
the record or records which remain to be processed; that is, the address,
count, and refill field of the final data descriptions have been updated to
refer correctly to these remaining record parts. If the entire record were
processed, the byte beyond the rightmost byte of the record is addressed,
and the final count is zero. :

2.5.6 Multiple Field

‘The multiple-field format permits arithmetic operations to be
repeated with a series of operands. A long data description is-used to
address the multiple field, The address part of the data descr{ption is used
to address a field in the same manner as is the case for the field format.
When the numeric operation on the specified field is completed, the word
address of this field is incremented by one and the opération repeated with
the newly defined field. At the same time, the count of the data description
is reduced by one. When the count reaches zero, operation is terminated
unless the chain bit is one, in which case the data description is refilled.
When two multiple fields are used in an operation, the multiple field which
terminates first will terminate the entire operation.~ When one of the
operands in ‘a multiple-field operation is specified by a single field, the data
_in that field is used repeatedly. The middle address of a three-address
instruction cannot refer to a multiple field. '

3/10/61 A

Multiple-field operation may be specified in all floating-point
operations and in fixed-point operations with the exception of DIVIDE.
Multiple field may also be specified in TRANSLATE WITH LEFT CARRY.
The first and last operand should both be a field or both be a multiple field
in all operations except ADD, TRANSLATE WITH LEFT CARRY, and LOAD,
otherwise incorrect results will occur.

The final data descriptions specify the fields which remain to be
processed. If all fields are processed, one field beyond the last field is
addressed and the count is zero. ‘
PROGRAMMING NOTE

The refill operation introduces an entire new record description

and makes it possible to change byte size, signed-unsigned modifiers, length,
and relative location of subsequent fields.

2.5.7 Multiple Word

In full-word data transmission, a long data description may be
used to address multiple words. The address part of the data description
is used to address a word, as in the case of full-word addressing. The
initial count specifies the total number of words to be transmitted. The
word address, bits 0-15, is incremented by one each time a word is trans®
mitted. At the same time, the count is reduced by one. When the count
reaches zero, operation is terminated provided the chain bit of the data
description is zero. If the chain bit is one, the control word is refilled.
When data descriptions are used for both operands of a transmission operation,
the data description which terminates first will terminate the operation. When
a data description is used for only one operand, the effective address of the
other operand is incremented until the operation is terminated by the data
description,

In data-transmission operations, the final data description,
including address, count, and refill fields, specifies the words which remain
to be transmitted. If all words are transmitted, one word beyond the last
word is addressed and the final count is zero.

Two final data descriptions are stored even if only one long
description is specified. A short data description or an instruction half-word
when stored will have the full-word address correctly updated, and bits 24
and 31 will both be zero, and therefore can be used in indirect addressing.
The other bits of this final data description are uncertain and should not be
used.

2. 17

3/10/61 A

Input -output control words also address multiple words. Data
transmission in input-output operations is in several ways similar to
internal transmission; chaining is provided and final control words are
placed in storage. Input-output data transmission and multiple-word defi-
nition are described in Chapter 7.

3/10/61 A

2.6 ADDRESS TRANSLATION

Address translation, provided to allow dynamic'program reloca-
tion, only takes place when the relocation mode is specified in the current
program control word. The relocation control bit, bit 17 of the program
control word, when one, specifies the relocation mode; when zero, no
address translation takes place. Input-output operations are not controlled
by a program control word and therefore are never in the relocation mode.

In the relocation mode, all addresses supplied by and available
to'the program are treated as ''symbolic addresses.' These symbolic
addresses are changed by means of a relocation table to "'actual addresses"
when storage is addressed. As a result of address translation, storage is
divided into 256 blocks which can be individually assigned.

2.6.1 Relocation Table

The relocation table is used to translate a symbolic address into
an actual address. The table has sixteen 8-bit entries and is placed in the
two locations at the prefix address and the next higher word address.

SYMBOLIC ADDRESS

RELOCATION TABLE

- o4|sl 16
P+1 —3

ACTUAL ADDRESS

Bits 0-3 of the symbolic address are ignored. Bits 4-7 of the symbolic
address are used to select an eight-bit entry from the relocation table. This
entry replaces bits 0-7 of the symbolic address, thus forming the actual
address. Bits 8-15 of the symbolic address remain unchanged in the transla-
tion process.

An all-zero entry in the relocation table is called an "empty
address.'” When such an address is obtained in the translation process, the
operation is terminated, and the program is alerted by the interruption code
Empty Address {EA). If several of the symbolic addresses used by an
instruction are empty, only one interruption code will be stored. Following
the detection of an empty address, the instruction address may point either
-to the next instruction in sequence or to the second or third instruction
half-word of the current instruction.

3/10/61 A

2.6.2 Block Boundaries

Entries in the relocation table specify the addresses of 256-word
storage blocks. The translation process makes it possible to refer with a
set of continuous symbolic addresses to noncontiguous storage blocks.,
Because each address occurring in an operation is individually translated,
the data participating in the operation may belong to different blocks. How-
ever, individual fields, records, multiple fields, and multiple words should
be entirely within a block. When a block boundary is crossed, operation is
terminated and the interruption code, Address Invalid (AD) is stored.
Similarly, the instruction address may not be incremented across a block
boundary. Again, the code Address Invalid (AD) will be given if this event
occurs. In order to cross block boundaries for data, the refill feature
should be used. In the case of instructions extending beyond a single block,
a branch instruction should be used. An Address Invalid (AD) code will also
be given when the address in the data descriptions stored in a transmission
operation or the address in the program control word stored in a branch
and preserve operation would have crossed a block boundary, even though-
- the operand or instruction addresses had not yet crossed that boundary. In
these cases the control word is not stored.

PROGRAMMING NOTE
Although a record or multiple field cannot cross a block boundary,

the final control word will address a new block when termination occurs at the
boundary.

2.6.3 Addresses Translated

Addresses are translated only when they are used to address
storage. All addresses placed in storage, such as the addresses in final
data descriptions or program control words, are stored in their updated
symbolic form, :

Address translation includes
1) all effective addresses used in fetching or

storing data or instructions;

2) addresses used in fetching data descriptions
or control words as part of indirect addressing;

3) the address of the initial control word of an
input-output operation, including the RELEASE
CHANNEL instruction; and

3/10/61 A

4) the direct address of a channel in an
input -output instruction.

Addresses not translated are

1) data addresses of input-output operations;

2) addresses relative to the program prefix
address, such as the accumulator, final
control word, and index addresses; '

3) auxiliary addresses generated as part of
instruction execution; and

4) addresses used in storing an interruption code.

2.21

3/10/61 A

2.7 ADDRESS MONITORING

Information in core storage can be classified as data, instructions,
and reference information. Information may be used for communicating with
external units or with an operator, supervising and scheduling of programs,
monitoring of program execution, or for executing problem programs.
Furthermore, a difference between problem programs may be noted. Some
programs are assumed to be operating properly and represent the working
load of the system. Other programs are not yet in the proper operating
form and are executed for debugging purposes. When a single task is per-
formed by the system, usually a number of independent programs can be
recognized which are executed in intermixed fashion. The system
is furthermore capable of performing more than one task at a time, involving
an even greater number of programs identified as independent units. When
several programs are in core storage at one time and executed in intermixed
fashion, errors in one program should not change data, instructions, or
reference information belonging to another program or to the system,

These errors are prevented by defining a monitored area for each program
and prohibiting data storage at all locations within the monitored area. ‘

2.7.1 Definition of Monitored Area

The execution of a program is controlled by a program control
word. The prefix address, bits 32-39 of the program control word, is used
to define the monitored area. Full words in locations up to and including'one
address beyond the prefix address are monitored for data-store operations.
The monitored area therefore includes all locations below the relocation
table (prefix and prefix plus one).

A prefix address of zero provides the equivalent of unmonitored
operation. The next highest possible prefix address is location 256, For
this address, all reference information used for program definition and
communication with external units, as well as a limited amount of
general-purpose storage, is monitored. When it is desired to monitor a
larger amount of instructions or data, a higher prefix address can be chosen.

2.7.2 Action of Address Monitoring

The address-monitoring system is always active. It is indepen-
dent of the enabled or disabled state of the interruption system, the relocation
mode, or the type of instruction being executed. WHen an instruction speci-
fies the storing of data at a protected address, the store operation is nnt
executed and the protected storage location remains unchanged. The execution
of the current instruction is terminated, and the program is alerted to the
attempted store operation by means of the interruption code Data Store (DS).

2.22

3/10/61 A

Address monitoring applies only to store-type addresses, i. e.,
addresses which place information in storage. Even when the new content
of storage is identical to the content prior to the store operation, the address
is called a store-type address.

When the storing of an interruption code causes a program inter-
ruption from an enabled to a disabled program, a disabled program control
word is used subsequently, and the prefix address of that program control
word is used for all subsequent monitoring operations.

In general when a protected address is encountered during an
operation, the operation is terminated. This may or may not result in
complete suppression of the operation. In operations using chained data
descriptions, part of the operation may already have been completed when
the address alarm occurs, and hence, cannot be suppressed.

2.7.3 Addresses Monitored

All store-type addresses designated in the course of an operation
are subject to address monitoring. An address associated with an operation
but not actually used is not monitored. For example, the store program
control word address which is part of a branch operation is not monitored if
the branch is unsuccessful. Core-storage addresses used by input-output
operations are not monitored. An address may cause both an Address Invalid
(AD) and a Data Store (DS) interruption code to be stored. :

Address monitoring includes:

1) the last effective addresses of all operations
involving data storage, including the addresses
obtained as a result of refill operations, and

2) the first and last effective address of a swap |
operation.

Not included in address monitoring are

1) addresses of comparison and connect for test
operations;

+2) channel addresses of input-output instructions,
as well as all data addresses of input-output
operations;

3) auxiliary addresses generated as part of instruc-
tion execution such as LOAD CONDITION REGISTER;

2.23

3/10/61 A

4) addresses used in storing an interruption code;
and

5) the program control word address of an unsuccessful
branch instruction.

PROGRAMMING NOTE

In the relocated mode, additional address protection is dbtained
by means of the relocation table. Only the areas specified by the table
entries can be addressed; all other areas are protected. Since the reloca-
tion table is protected from store operations, the relocated program cannot
change the storage assignment and address-protection specification.

2.24

3/10/61 A

2.8 CONTROL-WORD OPERATIONS

Operations are provided to change the contents of control words.
These operations assume the control-word format previously described.
The address part of the control word may be incremented by one, the count
field may be diminished by one, and a conditional or unconditional refill
may be performed.

The increment operation adds one in bit 15 of the address field
of the control word. Any overflow carry from bit position 0 is ignored;
address 0 follows address 65, 535 (2 -1). The increment operation is not
changed by the relocation mode.

The count operation subtracts one from the count field, bits
48-63 of the control word, in bit position 63. A zero count is followed by
a count of 65,535 (2. -1). If the count remains or becomes zero, a condition
bit is set.

The refill operation replaces the control word with the full word
at the location specified by bits 32-47, the refill field of the control word.
Refill occurs when specified by the instruction, either unconditionally or on
the condition that the count field becomes zero. In these control-word
operations, refill is not conditioned by the chain bit, bit 30 of the control
word.

Control-word operations use the one-address format shown below.
The control-word address is specified by bits 0-15 and may be modified by
the index specified by bits 24-31. Neither modifiers nor long data descriptions
are used.

D
ADDRESS INDEX 0100CCC]
1

0 16 24

2.25

3/10/61 A

2.8.1 Conditions

Condition bits 0, 1, and 2 are not used and are always set to zero
for these operations. Condition bit 3 is used in control-word operations and
identifies the state of the count field regardless of the control-word operation.
The condition bit describes the control word after the control-word modifica-
tion is completed, but before any refill takes place. In the operations
REFILL and REFILL FROM ADDRESS, the control word is also described
by the condition bit before refill takes place.

Condition bits always reflect the result of the primary operation
specified in an instruction. The use of control words in addressing, indexing,
or indirect addressing does not affect the setting of condition bits.

Result Count Zero

Condition bit 3 is set to one when the count field is zero. Other-
wise, the bit is'set to zero.

2.8.2 Indicators

No indicators can be turned on by control-word operations.

2.8.3 Operations

The following one-address instructions perform control-word
operations.

INCREMENT ADDRESS (IA)

A one is added in bit 15 of the address field of the control word
specified by the effective address.

DIMINISH COUNT (DC)

The count field of the control word specifiéd by bits 0-15 of the
effective address is reduced by one.

INCREMENT ADDRESS AND DIMINISH COUNT (IDC)

One is added in bit 15 of the control word specified by the effec-
tive address. The count field of the control word is alsoreduced by one.

2.26

3/10/61 A

INCREMENT ADDRESS AND RFFILL (IR)
DIMINISH COUNT AND REFILL (DCR)
INCREMENT ‘ADDRESS, DIMINISH COUNT, AND REFILL (IDCR)

These three instructions are identical to the preceding three
except that the control word is refilled if the count remains or becomes zero.

REFILL (R)

The full word addressed by bits 0-15 of the effective address is
replaced with the full word addressed by the refill field of the word at the
effective address. The condition bits are set according to the original con-
tents of the word in the effective address.

REFILL FROM ADDRESS (RA)

The full word addressed by the effective address is replaced with
the full word addressed by the address field of the word at the effective
address. The condition bits are set according to the original contents of the
word at the effective address. '

PROGRAMMING NOTE

In addition to the control-word operations listed in this section,
fixed-point arithmetic operations may be used to change the contents of con-
trol words. In particular, the vary and count modifiers of these operations
are applicable to the control-word format.

3/10/61 A

2.9 ACCUMULATOR OPERATIONS

A pair of operations is provided to transmit full words to and
from the accumulator. The accumulator is used with all floating -point
operations, hence the data transmitted will normally have the floating-point
format. The accumulator occupies a single full word, and is located at the
prefix address plus four of the current program.

Grouped with this class of operations is a pair of address store
operations employed to prepare addresses to be used in subsequent operations
by indexing or indirect addressing. The addresses are stored in symbolic
form when relocation is specified.

Accumulator operations use the one-address format shown below.
A full-word address is specified by bits 0-15 and may be modified by the index
specified by bits 16-23. The operations are specified by bits 30 and 31.
Modifiers and long data descriptions are not used.

D
ADDRESS INDEX | 00001CC
I

0 16 24

2.9.1 Condition

The condition register is not altered by accumulator operations.

2.9.2 Indicators

No indicators can be turned on by accumulator operations.

2.9.3 Operations

The following four operations form the class of accumulator
operations.

LOAD ACCUMULATOR (LA)

The full word addressed by the effective address is placed in the
accumulator location.

3/10/61 A

STORE ACCUMULATOR (SA)

The contents 6f the accumulator are placed in the location
addressed by the effective address,

STORE EFFECTIVE ADDRESS, FIRST (SEAF)

Bits 0-15 of the effective address replace bits 0-15 of the first
final control word location. The address of this location is two beyond the
prefix address of the current program.

STORE EFFECTIVE ADDRESS, LAST (SEAL)

Bits 0-15 of the effective address replace bits 0-15 of the last
final control word location. The address of this location is the prefix
address plus three of the current program.

3/10/61 A

2.10 DATA TRANSMISSION

Instructions are available to transmit data from one storage
location to another. Transmission may be unidirectional or bidirectional.
In unidirectional transmission, data are removed from one storage location
to another, the data remaining unchanged in the original storage location.
The data originally occupying the receiving storage location are destroyed.
In bidirectional transmission, data are interchanged so that both sets of
data are preserved. Unidirectional transmission of words is specified by
transmit operations; bidirectional transmission by the swap operations.

Data transmission may be performed one half-word or one full
word at a time. When a full-word transmission operation is specified,
either one word or multiple words may be transmitted. Transmission of
multiple words may be terminated by a count, or by a match or clash
condition.

A two-address instruction is used for all transmission operations,
except those which involve comparison for match or clash. Transmission
till match or clash requires a three-address instruction.

D D TF
ADDRESS 0010010 ADDRESS 00000
1 1 SH
0 24 32 56
D D4M D
ADDRESS 0011010 ADDRESS 10000 'ADDRESS 0000000
I 18C 1

0 24 32 56 64 88

Bits 62 and 63 of the two-address instructions specify four operations. In
the three-address instruction, bits 57 and 58 are used as modifiers to
identify the type of match or clash condition required.

3/10/61 A

2.10.1 Multiple-Word Transmission

Transmission of multiple words always involves the use of at
least one long data description, even when match or clash is specified.
When no long data descriptions are specified by the transmission instruction,
only one word is transmitted. Transmission is terminated when the count of
any of the participating data descriptions is reduced to zero, or when the
first match or the first clash occurs. When multiple words are transmitted,
descriptions for both data areas are stored at the completion of the operation.
Long data descriptions are stored in the usual manner. Short data déscrip-
tions, as well as instruction half-words, are stored.also. 'Both of these have
the word address pointing to the next word to be transmitted; bits 24 and 31
are always zero. The remaining bits of the full-word locations in which they
are stored vary according to the details of execution and should not be used.

2.10.2 Match or Clash

Transmission of multiple words may be combined with byte
comparison. One byte of each word transmitted is compared with a com-
parison byte. Equality of the two bytes is called a match; inequality, a
clash. The bytes may be specified with a byte size of four or eight bits.

The comparison byte is the same for the entire operation and is
specified by the middle effective address of the instruction. Bit 57 of the
instruction designates the byte size of both bytes used in the comparison,
When bit 57 is zero, a four-bit byte is used; when the bit is one, an eight-bit
byte is used. Bits 0-19 of the middle effective address specify the address
of the comparison byte with byte size four. For byte size eight, only bits
‘0-18 of the effective address are used. Similarly, bits 16-20 or bits 16-19
of the first effective address are used to specify the byte to be compared within
each word transmitted. ‘

L1

The operation is terminated by the first occurring match or clash
accordingly as bit 58 of the instruction is zero or one. Operation is also
terminated when either multiple-word area is exhausted before the desired
match or clash occurs. However, transmission of the word which caused
the terminating match or clash is completed. The final data description
stored does not address this word, but the next word to be transmitted.

PROGRAMMING NOTE

When the match byte represents an end character separating
grouped records, the final data description identifies the start of a new
record.

3/10/61 A

2.10.3 Conditions
Condition bits 0, 2, and 3 are used in data transmission opera-
tions, while condition bit 1 is always set to zero. The bits identify the cause

which terminated the operation. When more than one cause occurs at the
same time, all corresponding bits are turned on.

Match or Clash

Condition bit 0 is set to one when the operation is terminated by
a match or clash condition; otherwise, the bit is set to zero.

First Count Zero

Condition bit 2 is set to one when the operation is terminated by
a zero count in the long data description specifying the area from which data
are transmitted; otherwise, the bit is set to zero.

Last Count Zero

Condition bit 3 is set to one when the operation is terminated by

a zero count in the long data description specifying the area to which data
are transmitted; otherwise, the bit is set to zero.

2.10.4 Indicators

No indicators can be turned on by data-transmission operations.

2.10.5 Operations

The four 2-address data-transmission instructions and the
one 3-address instruction are listed below and on the following.page.

SWAP HALF-WORD (SWH)

The half-word specified by the first and last effective addresses
are exchanged. No final data descriptions are stored. All condition bits are
set to zero.

SWAP (SW)

The full word specified by the first and last effective addresses
are exchanged. No final data descriptions are stored, and all condition bits
are set to zero. '

3/10/61 A

TRANSMIT HALF-WORD (TMH)

The half-word specified by the first effective address is trans-
mitted to the location specified by the last effective address. No final data
descriptions are stored. All condition bits are set to zero.

TRANSMIT (TM)

The full word or group of words specified by the first effective
address is transmitted to the locations specified by the last effective address.
If one or two long data descriptions are used, the transmission is terminated
when one of the multiple-word areas is exhausted. When no long data des-
cription is used, only one word is transmitted. The descriptions of the data
used in the operation are stored at the end of the operation. -

TRANSMIT TILL MATCH (TMM)
TRANSMIT TILL CLASH (TMK)

The word or group of words specified by the first effective
address is transmitted to the locations specified by the last effective address.
One byte of each word transmitted is compared with the comparison byte
specified by the middle effective address. Operation proceeds until either
one of the multiple-word areas is exhausted, or a match or clash occurs
between the comparison byte and one of the bytes specified by the first effec-
tive address. The descriptions of the data used in the operation are stored
at the end of the operation.

2.33

3/10/61 A

2.11 STORAGE ASSIGNMENT

The effective address of each instruction half-word provides for
a sixteen-bit word address which permits addressing of 65, 536 (216) storage
locations. Several of these locations are reserved for specific purposes,
but the remaining addresses are available as general-purpose core storage.
The functions of each of the special locations are described in the following
sections and the storage locations assigned to these functions are summarized
in the table at the end of the chapter.

Storage assignment is either relative to address 0 or to the
prefix address of the current program control word. When several programs
are in storage concurrently, each may have a different prefix address in its
program control word. Therefore, a different storage assignment is possible
for each program. The storage assignment relative to the prefix coincides
with the first addresses of storage.when the prefix is zero.

2.11.1 Relocation Table

The relocation table used for address translation in the relocation
mode is stored at the prefix address and the next higher address. The table
contains sixteen 8-bit entries. Each entry represents the high-order eight
digits of a storage address which is used to address a 256-word storage block.
A total of sixteen storage blocks can be addressed via the table. If the number
of storage blocks used in a relocated program is less than sixteen, the table
entries not used can be made zero. The use of a zero entry alerts the pro-
gram through the Empty Address (EA) interruption code.

When the prefix is zero, the relocation table is placed’at locations
0 and 1. However, a program with prefix zero is normally of supervisory
nature and is not relocated. Locations 0 and 1 are permanently protected
against data storage and can be loaded only by input operations

2.34

3/10/61 A

2.11.2 Final Data Descriptions

Long data descriptions used in numeric and logical-processing
operations, and all data descriptions or instruction half-words used in
multiple -word transmission, are stored at the end of the operation. These
are the first final and the last final data descriptions. The first final data
description is stored at the location specified by the prefix plus two, and the
last final data description is stored at the next higher full-word address. Since
the prefix address may be 0, final data descriptions may be stored at loca-
tions 2 and 3. For this reason, these locations are not used for any other
purpose. A second use of these locations is in storing bits 0-15 of the effec-
tive address of the instructions STORE EFFECTIVE ADDRESS FIRST and
STORE EFFECTIVE ADDRESS LAST. A third use of the location at the
prefix address plus two is in storing the instruction half-word or data des-
cription of an INTERRUPT INTENTIONALLY instruction. A full word is stored
for these instructions, although the information in the right half-word is
meaningless when no long data description is used.

During processing operations, the data descriptions are updated
and occasionally stored in the final data description locations, since these
locations are used as backup locations for internal registers. Either the
entire control word or its right half is stored. The stored information
usually lags behind the information in the internal registers. When an
operation is terminated because of a Data Store (DS), Invalid Data (ID),
Unending Sequence (US), or Address Invalid (AD) interruption, the stored
information may be useful in diagnosing the program error.

2.11.3 Accumulator

Floating-point operations, and the accumulator load and store
operations make use of an implied accumulator location which has the
address of the prefix address plus four.

The accumulator occupies a full word. In the floating-point
operations, the contents of the word are assumed to have the floating-point
format.

2.11.4 Timer

The time clock and interval timer are stored in location 5.
These are fetched and updated in the processor, and subsequently returned
to storage.

3/10/61 A

2.11.4.1 Time Clock

A time clock is provided to measure time difference or duration
over relatively long periods. It consists of a twenty-bit number which is
stepped up by pulses from a 10-cps oscillator. The time clock is updated at
the moment when the interval timer is also updated. Since the clock measures
time in tenths of seconds, a full cycle is about 29 hours. The value of the
clock occupies bits 0-19 of location 5. Each time the oscillator delivers a
pulse, the contents of location 5 are read out, incremented by one in position
19, and returned to core storage. The clock runs continually while the pro-
cessor is under program control, including the time the processor is waiting,
When the clock reaches its maximum reading of all ones, the next oscillator
pulse sets it to all zeros. No indication is given when the clock recycles to
zero.

PROGRAMMING NOTE

The time clock can be used to obtain a time-of-day indication.
A known external time is taken as a reference point and the time clock is
set to a given constant at that time. The time of day can be obtained by
reading the time-clock setting, and converting the amount to hours, minutes,
and seconds.

2.11.4.2 Interval Timer

The interval timer is intended to measure elapsed time over
relatively short intervals. The timer consists of a 16-bit number which is
stepped down by pulses originating from a stable oscillator. The oscillator
operates at 1024 (210) cps, that is, a pulse about every millisecond. It can
be set to any value at any time, and an interruption code Time Signal (TS)
is stored when the time period has ended. The value of the interval timer
occupies bits 48-63 of location 5. Each time the oscillator delivers a pulse,
the contents of location 5 are read out, decremented by one in position 63,
and returned to core storage. Bits 48-53 show time in seconds. A full
cycle is about one minute,

The timer runs whenever the machine is operating, including
the time the processor waits. Whenever it goes from one to zero, it stores
the interruption code Time Signal (TS). The timer remains at zero until
changed by programming.

3/10/61 A

2.11.5 Interruption Control Words

Two control words are used by the interruption procedure:
the store interruption control word and the fetch interruption control word.
Both control words are specified and placed in their storage locations by
the program which is used to initialize the processing system. The inter-
ruption procedure is described in Chapter 3.

2.11.5.1 Store Interruption Control Word

The store interruption control word is placed in location 6 and
specifies where the interruption codes are to be stored. When a program
alert occurs, the store interruption control word is fetched, used and
updated by the processor and returned to storage after each interruption
code is stored,

2.11.5.2 Fetch Interruption Control Word

The fetch interruption control word is placed in location 7 and
specifies the next interruption code to be fetched from storage. When an
interruption occurs while the processor is enabled or becomes enabled, the
fetch interruption control word is fetched, used and updated by the processor,
and returned to storage after an interruption code is fetched. Interruption
codes are always stored before they are fetched.

2.11.6 Backup Locations

Liocations 8, 9, and 10 are used as backup ‘locations. Some
internal registers are stored in and later retrieved from locations 8 and 9
during the execution of input-output operations. These locations should not
be used for general-purpose storage, since their content may be destroyed
by input-output operations. Location 10 is used in a similar fashion to store
intermediate results of floating-point operations.

2.11.7 Scan Area

Diagnostic information is scanned into storage when a machine
check occurs. To provide fault location, information may also be scanned
from storage into the processor registers. The storage locations used for
scan operations have addresses 16-31. These locations are also used in
the initial program-loading procedure.

3/10/61 A

2.11.8 Program Control Word

Locations 32 and 33 ate set aside for the current enabled and
the current disabled program control word. When the machine is in the
enabled state, reference is made to location 32 for the program control
word. In the disabled state, reference is made to location 33 for the word.

The current program control word is kept in internal registers
and updated in these registers. For certain instructions, the right half of
the program control word is temporarily placed in storage using the.appro-
priate disabled or enabled location as backup location. The control word
which is not in ube remains unchanged in storage. Program control words
are always correctly updated and stored when the machine switches from
the disabled state to enabled state or vice versa.

Locations 34-65 contain the initial disabled program control
words which are fetched from the interruption byte stream under control
of the fetch interruption control word. The control words in these locations
are used but not changed by the processor.

The control words in locations 35-63 corréspond to individual
processor or input-output alerts. Locations 64 and 65 are shared by all
input-output alerts of channels 16-127. Location 34 corresponds to inter-
ruption Code 2. This code does not represent a machine alert, but may be
assigned by the programmer and placed in the interruption stream under
program control.

2.11.9 Arithmetic Tables

The processor uses tables in storage for some of its arithmetic
operations. The proper argument address for the table is formed during.
the operation, and depends upon the type of operation to be performed, as
well as the value of the operand digits processed. Separate tables are
available for hexadecimal and for ‘decimal arithmetic operations.

Locations 72-75 are reserved for a radix conversion table used
by the CONVERT operation.

Locations 76-79 are reserved for a quotient search table used by
the division operations. ~

Locations 80-95 are reserved for a quotient prediction table used
by floating-point division.

2,38

3/10/61 A

Locations 96-115 are reserved for a decimal multiplication table
used by the fixed-point decimal multiplication and division operations. The
equivalent of a hexadecimal multiplication table is provided by internal
equipment.

2.11.10 Input-Output Area

Locations 124 and following are used for data buffers and control
words required in input-output operations, the extent of the area depending
upon the number of channels used in the system. A data-buffer location is
used by the input-output section in the assembly of storage words from bytes
obtained from the external units, or in selecting bytes from storage words
in order to send them to external units. Two data-buffer words are used
per channel. The control-word locations are used to store control words
which control data transfer to and from the buffer area. The regular
simplex channels use two data buffers and two control-word locations per
channel. On the other hand, the multiplexed channels use one control-word
location per channel and do not use any data-word locations.

2.11.10.1 Data-Buffer Locations

Locations 124-127 are used for. the first data-buffer word and
locations 128-131 are used for the second data-buffer word of channels 8-11.

2.11,10.2 Control-Word Locations

Locations 132-135 contain the auxiliary control words for
channels 8-11. Locations 136 and following contain the main control words
for channels 8 and following. A total of 120 channels (numbered 8-127) is
possible such that the highest location used (address 255) would contain
the control word for channel 127. The final control word for the input-output
operations executed by a channel will reside in the main control-word
location for that channel. The final input-output control word for a channel
can be used by the programmer in a manner similar to the use of the final
data description. The final input-output control word always refers to the
next byte to be read or written by the channel.

2.11, 11 Index Words

A total of 255 index words may be specified by a program.
These index'words are located in storage at the addresses prefix plus one
to prefix plus 255. The index words 'are selected by 'bits 16-23 of the
floating-point arithmetic, accumulator, and control-word instructions. An
all-zero field indicates that no indexing is to take place.

2.39

3/10/61 A

2.11.12 Main Core Storage

All special-purpose storage locations operate as general-purpose
storage. All locations in main storage are valid word addresses in any ope-
ration unless restrictions are imposed by the storage-protection feature,

Address 0 follows address 65, 535 when either an implied or an
explicit increment operation is performed. No indication will be given when
this increment occurs as part of operand or instruction addressing, or in
any control-word operation. When fixed-point arithmetic is used for address
computation, the Oversized Result indicator will be set.

Addresses from 0 to 65, 535 (216—1) are available for addressing
main core storage. Not all addresses may be provided in a given installation.
If less than the maximum amount of core storage is provided, consecutive
addresses starting at location 0 are used. The entire effective address is
always used and if it is above the limit of available storage, interruption
code Address Invalid (AD) will be stored. If several of the addresses used
by an instruction are invalid, only one interruption code will be stored.
Following the detection of an invalid address, the instruction address may
point either to the next instruction in sequence or to the second or third
instruction half-word of the current instruction.

The Address Invalid (AD) check includes all addresses actually
used to fetch or store data, including addresses specified in instruction and
control words, and addresses generated as an operation proceeds.

Not checked for Address Invalid (AD) are

1) bits 0-7 of the channel address of an
input -output instruction,

2) the control-word address of a
RELEASE CHANNEL instruction,

3) the addresses of an unsuccessful branch
instruction, and

4) a refill address which is not used.

2.40

3/10/61 A

STORAGE ASSIGNMENTS

0-1 Relocation table (prefix zero)
2 First final data description (prefix zero)
3 Last final data description (prefix zero)
4 Accumulator (prefix zero)
5 Time clock and interval timer
6 Store interruption control word
1 Fetch interruption control word
8-10 Backup locations
16-31 Scan area
32 Enabled program control word (PCW)
33 Disabled program control word (PCW)
34 PCW code 2
35 PCW instruction count (IC)
36 PCW time signal (TS)
37 PCW channel not operational (CNO)
38 PCW channel busy (CB)
39 PCW unended sequence (US)
40 PCW address invalid (AD)
41 ' PCW data store (DS)
42 PCW operation code invalid (OPI)
43 PCW invalid data (ID)
44 PCW intentional interruption (II)
45 PCW input-output alatm (IOA)
46 PCW empty address (EA)
47 PCW maskable indicator (MI)

32+ 2n PCW channel n end (n=8-15) (CnE)
33+ 2n PCW channel n special condition (n=8-15) (CnSC)

64 ‘PCW channels 16-127 end (CE)

65 PCW channels 16-127 special end (CSE)
72-75 Radix conversion table

76-79 Quotient search table

80-95 Quotient prediction table

96-115 Decimal multiplication table

124-127 First data-buffer word channels 8-11
128-131 Second data-buffer word channels 8-11
132-135 Auxiliary control word channels 8-11
136-255 Main control word channels 8-127

Prefix +0-1 Relocation table

2 First final data description
3 Last final data description
4 Accumulator

n Index n (n=1-255)

2.41

March 10, 1961 A

Chapter 3

INSTRUCTION SEQUENCING

Contents

Section

Y,
o
}]‘%

Normal Sequential Operation

Program Control Words
Instruction Address
Instruction Count
Prefix Address
Indicators
Mask
Condition Register
Relocation Control Bit
Input-Output Lock Bit
Noisy~-Mode Control Bit

Instruction Lioading | 3.1, 2
Instruction-Loading Sequence
Tests for Instruction Validity

Branching 3.2

Condition Register 3.2
Control-Word Instructions
Fixed-Point Arithmetic Instructions
Floating-Point Arithmetic Instructions
Alphameric-Comparison Instructions
Connective Instructions
Data-Transmission Instructions
Translation Without Carry Instructions
Translation With Carry Instructions
Load Condition Register (LCR)

Branching Operations 3.2, 2
Branch if Any (BA)

Branch if None (BN)

Preservation of Program Control Word 3. 2.3
Branch if Any and Preserve PCW (BAP)
Branch if None and Preserve PCW (BNP)

Program Switching
Enabled and Disabled Modes
Requirements for Switching Programs

w W
[
.

W WwWWWWWWWWWWWwWLLwWww
L] e e . -

w
D)

e o e o .
—_ =0 OO0 0 Ol UTU DB BB WLWWOWNN -

W W WWwWWwWwWwWwWwWwwwwww
e @ 9 e e ®» &

w W w
w W w

Contents Chapter 3 (continued)

Program Interruption
Storage of Interruption Codes
‘Interruption Action
Program-Switching Instructions
Interrupt Intentionally (INT)
Interrupt Intentionally and Preserve
PCW (INTP)
Indicators
Data Flag P (PF)
Data Flag Q (QF)
Data Flag R (RF)
Generated Extremum Positive (GEP)
Generated Extremum Negative (GEN)
Oversized Result Indicator (OR)
Zero Divisor (ZD)
Interruption Codes
Effect of Alerts on Current Instructions

Table - Processor interruption and codes
Table - Input-output interruptions and codes
Programming note - Instruction count

Programming note - Bit 24 of the program control word

Programming note - Branching and bits 20-23

Ll
S

w i.n w
. -
[SSI S

3.4.4

» ¥
LN
o !

Programming note - Servicing interruption codes

Programming note - Interrupt intentionally
Programming note - Servicing indicators

3/10/61

A

3/10/61 A

Chapter 3

INSTRUCTION SEQUENCING

3.1 NORMAL SEQUENTIAL OPERATION

Normally, the operation of the processor is controlled by
instructions taken in sequential order. An instruction is fetched from a
core-storage location whose address is specified by the instruction ad-
dress portion of a program control word., Subsequently, the instruction
address is changed to address the next instruction in sequence. Any ad-
dress modification required by the fetched instruction is performed and
the modified instruction is then executed. The process is then repeated,
using the new value of the instruction address. Deviations from this
normal sequence of instructions may be caused by branching or program
interruption.

3. 1.1 Program Control Words

Each program or subprogram executed by the processor nor-
mally has its own program control word. The program being actively
executed by the processor at any given time is called the ''current pro-
gram, ' Normally, the program control word for this program, called
the ''current program control word, " is kept in internal registers. The
other program control words are kept in core storage. Unique storage
locations are provided for the program control words for the programs to
be executed for each of the causes of program interruption, These pro-
grams are executed in the disabled mode, and their program control words
are collectively called the ''disabled program control words.'" They are
kept in storage locations 34-65. In addition, the final status of the pro-
gram control word for the current or last previous disabled program is
kept in storage location 33. The program control word for the program
being executed in the enabled mode, which is normally the basic program
being processed by the processor, is kept in storage location 32. Switching
of control of the processor from one program control word to another is
accomplished by the program-interruption system and the program-
switching instructions. A program control word has the format shown
below,

CONDITION REGISTER

INPUT-OUTPUT LOCK BIT
N
INSTRUCTION | ereRix MASK INSTRUCTION
ADDRESS ’ COUNT
i AN

0 16 200 24 \ff 10 43 63
RELOCATION NOISY-MODE INDICATORS
CONTROL BIT LOCK BIT

3/10/61 A

3.1. 1. 1 Instruction Address

Bits 0-16 of a program control word contain the instruction
address, which specifies the half-word in core storage from which the
first section of the next instruction will be fetched, As each instruction is
fetched, the instruction address is changed to address the next instruction
in sequence in storage. The instruction address of a program control word
may also be changed by branching operations,

3,1,1, 2 Instruction Count

Bits 48-63 of a program control word contain the instruction
count, This count is decreased by one each time an instruction is fetched.
When this count reaches zero, interruption code Instruction Count Signal
(ICS) is stored in the interruption stream to cause interruption at the com-
pletion of the current instruction if the system is enabled. Further dis-
cussion of program interruption can be found in a later section of this
chapter, Once the count reaches zero, or if it is initially zero, it is not
decremented further, and no more interruptions occur.

PROGRAMMING NOTE

The instruction count is intended principally as an aid to the de-
bugging of programs. It may be used for this purpose in at least three ways.
First, by setting the instruction count of the program being debugged to one
and then switching to that program, a single instruction will be executed,
and the program then interrupted. This allows the subject program to be
traced instruction by instruction, Second, the instruction count may be
used to break out of any possible infinite loops of instructions in the sub-
ject program., Third, the subject program can be interrupted at any
desired point. For example, the instruction count can first be set to all
ones., The subject program is then run until trouble develops. The in-
struction count at that time is noted. A number a few less than the com-
plement of this count is then set in the instruction count of the subject
program and the program is rerun, It will now be interrupted just before
the trouble develops and it may be traced instruction by instruction from
that point until the cause of the trouble is discovered,

3/10/61 A

3.1, 1.3 Prefix Address

Bits 32-39 of a program control word contain the prefix for
that program. This prefix is used to form the prefix address, which is a
full-word address consisting of the prefix followed by eight zeros. The
prefix address is therefore restricted to a multiple of 256, The prefix
address performs two functions in the processor, First, it controls the
protection of core-storage locations. Storing into all locations below the
prefix address plus two is prevented, as discussed in the section entitled
Address Monitoring, Chapter 2. Second, the implicit storage locations
required by some operations are located relative to the prefix address.
This allows a separate set of such locations for each program having a
s eparate program control word. These locations are described in detail
in the section on Storage Assignment, Chapter 2.

3.1. 1,4 Indicators

Bits 25-31 of a program control word contain the indicators
associated with the program controlled by that word. These indicators
signal the occurrence of various exceptional conditions to the program.
When an indicator is masked on and the interruption system is enabled, the
program will be interrupted if that indicator is turned on. The indicators
are described further in a later section of this chapter.

3.1.1,5 Mask

Bits 41-47 of a program control word contain the mask corres-
ponding to the indicators in bits 25-31, As mentioned above, if a given bit
of the mask is a one, then the corresponding indicator can cause a program
interruption when the interruption system is enabled, If a bit of the mask
is a zero, the corresponding indicator cannot cause an interruption.

3.1.1.6 Condition Register

Bits 20-23 of a program control word contain the condition
register for the program controlled by that word., The bits of this register
are set to describe the results of each operation. For example, after an
addition they indicate whether the sum was positive, negative, or zero. The
bits of the condition register can be tested by the operations BRANCH IF
ANY and BRANCH IF NONE, The condition register can also be set to cor-
respond to any byte in storage by the operation LOAD CONDITION REGISTER,

3/10/61 A

3.1.1,7 Relocation Control Bit

Bit 17 of a program control word is the relocation control bit.
If this bit is zero, addresses are used directly. If this bit is one, ad-
dresses are relocated before being used to address core storage. Relo-
cation was described in Chapter 2.

3,1.1.8 Input-Output Lock Bit

Bit 18 of a program control word is the input-output lock bit.
If this bit is zero, input-output operations proceed normally. If this bit is
a one, any input-output operation encountered in the program controlled by
this word is suppressed, and interruption code Input-Output Alarm (IOA)
is stored in the interruption stream. This feature allows all input-output
activity to be forbidden to a specific program.

3.1. 1.9 Noisy-Mode Control Bit

Bit 19 of a program control word is the noisy-mode control bit,
If this bit is zero, any floating-point operations encountered in the current
program are executed normally, If this bit is one, floating-point oper-
ations are executed in the noisy mode. The noisy mode provides a test of
the significance of floating-point results. It is more fully described in
connection with the floating-point operations.

PROGRAMMING NOTE

Bits 24 and 40 of a program control word are not used. Bit 24
is used in data descriptions to control indirect addressing. If bit 24 of a
program control word is set to zero, then this word may be properly indi-
rectly addressed by a branch instruction to cause a branch to the starting
point of the program described by the program control word.

3.1, 2 Instruction Loading

The fetching of instructions from storage is controlled by the
current program control word. Normally, this word is kept in internal -
' registers, Some operations require these registers for other uses, how-
ever. During such operations, all or part of the current program control
word is stored in location 32 or 33.

3/10/61 A

3.1, 2. 1 Instruction-Lioading Sequence

Upon the completion of an instruction, the next instruction
must be fetched. If the appropriate program control word is not already
contained in the internal registers, this control word is first fetched from
storage. The half-wordat the storage location addressed by the instruction-
address part of the control word is next fetched. This half-word is ex-
amined to determine whether the instruction is of the one-, two-, or three-
address type. If it is a multiple-address type, the remaining half-words
of the instruction are fetched. As each half-word is fetched, any address
modification called for is performed, and the instruction-address part of
the program control word is incremented to address the next half-word in
storage. As the first half-word of any instruction is fetched, the instruc-
tion count is decreased by one, unless it has already reached a value of
zero. If the instruction is of the three-address type, or for certain two-
address and floating-point instructions, the right half-word of the program
control word is stored after the entire instruction has been fetched. (This
is necessary to make the internal register available for use by some in-
structions of these types.) The operation called for by the instruction is
then executed. '

3.1, 2,2 Tests for Instruction Validity

As an instruction is fetched, it is checked in a number of ways
to determine whether or not it is a valid instruction, The first check is
made to see if the instruction length, as determined from the first half-
word, agrees with the other instruction half-words fetched from memory.
As mentioned in Chapter 2, the last half-word of an instruction should
contain a zero in bit position 27 of that half-word. If it does not, it is an
invalid instruction, and results in the storage of interruption code Oper-
ation Code Invalid (OP) and the suppression of any operation called for by
that instruction. The instruction address will have been updated according
to the length specified in the first half-word.

If the first address of an input-output instruction is direct,
rather than indirect referring to a control word, the instruction is invalid,
and interruption code Operation Code Invalid (OP) is stored.

In addition to these checks, each address actually used to
reference storage is checked to see that it addresses a location actually
provided in the particular installation. If it does not, that is, if the ad-
dress is above the range of available storage locations, interruption code
Address Invalid (AD) is stored in the interruption stream.,

3/10/61 A

3.2 BRANCHING

The sequence in which instructions are executed may be made
conditional upon the results produced by previous instructions by means of
the branching operations. In these operations, the branch is successful,
that is, the instruction address of the current program control word is
replaced by the branch address from the instruction, only if the specified
condition is met, Otherwise, the sequence of instructions proceeds nor-
mally to the next instruction in storage. The condition tested by the
branching instructions is the state of specified bits in the condition register.

3.2.1 Condition Register

The condition register occupies bits 20-23 of the current pro-
gram control word. The four bits of this register are set by most oper-
ations to reflect the result of the operation. All four bits are always set
as a group; never separately. They remain set until the next operation
that sets the condition register,

The types of instructions that set the condition register are
listed below. Each bit, 0-3, is set to one by the condition shown; to zero
by the absence of that condition. Any bits not used by a particular operation
are set to zero. For further details regarding the setting of the condition
register reference may be made to the individual instruction descriptions.

Control-Word Instructions

0 Not used
1 Not used
2 Not used
3 Result count zero

Fixed-Point Arithmetic Instructions

0 Result less than zero or last field less than the first

1 Result zero or last field equal to the first

2 Result greater than zero or last field greater than
the first

3 Result count zero

Floating-Point Arithmetic Instructions

0 Result less than zero

1 Result zero

2 Result greater than zero
3 Result infinite

3.6

3/10/61 A

Alphameric-Comparison Instructions

Last field less than the first
Last equal to first

Last greater than first

Not used

W N = O

Connective Instructions

Operation terminated by match or clash

Result zero

Operation terminated by exhaustion of first field
Operation terminated by exhaustion of last field

W NN =0

Data-Transmission Instructions

Operation terminated by match or clash
Not used

Operation terminated by first count zero
Operation terminated by last count zero

W N = O

Translation Without Carry Instructions

Not used
Not used
Operation terminated by exhaustion of first field
Operation terminated by exhaustion of last field

W N = O

Translation With Carry Instructions

The condition register is set to the value of the last carry
byte,

The condition register is not altered by any accumulator, branching, pro-

gram-switching, or input-output operations. The condition register may
be stored for later testing by preserving the program control word.

3.7

3/10/61 A

In addition to the operations listed above, an auxiliary operation,
LOAD CONDITION REGISTER, is provided to set the condition register to
any desired byte in storage so that this byte may be tested.

LOAD CONDITION REGISTER (LCR)

This instruction occupies a single half-word with the format
shown below. The byte-address part, bits 0-19, specifies a single four=-
bit byte in storage. Bits 20-23 are ignored. Bit 24 specifies whether the
byte address is direct or indirect. Bit 25 is ignored. Bits 26-31 contain
the operation code.

The four-bit byte addressed by bits 0-19 of the effective ad-
dress is fetched from storage and replaces the previous contents of the
condition register,

D
ADDRESS | 000

[T I Iy
0 16 20 24 zslsl

DIRECT ’ f OPERATION
INDIRECT

3,2, 2 Branching Operations

The branching instructions occupy a single half-word, with the
format shown below. The byte-address part, bits 0-19, represents the
branch address. The three low-order bits of this address are ignored.
Bits 20-23 of the instruction select the bits of the condition register to be
tested. Each bit in this part of the instruction selects the corresponding
bit in the condition register., If the bit in the instruction is one, that bit of
the condition register is tested. If the bit in the instruction is zero, the
corresponding bit in the condition register is not tested. Bit 24 of the in-
struction determines whether the byte address is direct or indirect. In-
direct addressing does not affect the selection of bits to be tested. Bit 25
of the instruction is ignored, Bits 26-31 contain the operation code.

SELECT
1

D
ADDRESS 000
1
i 4
0 16 20 24 Zﬂlil
DIRECT ' ' OPERATION
INDIRECT

3.8

3/10/61 A

BRANCH IF ANY (BA)

This operation causes the selected bits of the condition regis-
ter to be tested. If any of the selected bits are on (set to one), the contents
of the instruction-address part of the current program control word are
replaced by bits 0-16 of the effective address of the instruction. If none of
the selected bits are on, control proceeds normally to the next instruction
in sequence,

BRANCH IF NONE (BN)

This operation causes the selected bits of the condition regis-
ter to be tested. If none of the selected bits are on (set to one) the con-
tents of the instruction-address part of the current program control word
are replaced by bits 0-16 of the effective address of the instruction. If any
of the selected bits are on, control proceeds normally to the next
instruction in sequence.

PROGRAMMING NOTE
If bits 20-23 of the instruction are all set to zero, then BRANCH

IF NONE becomes an unconditional branch instruction and BRANCH IF ANY
becomes a ''no operation'' instruction.

3.2.3 Preservation of Program Control Word

Each of the one-address branching operations described above
has a two-address counterpart that preserves the current program control
word in a specified storage location. This stored word may later be used
to return control to the instruction following the braﬁching operation in
normal sequence.

The program control word is preserved in a state pertinent to
the next instruction in storage following the branching instruction. That is,
the instruction-address part contains the address of the next half-word in
storage following the last half-word of the branching instruction, and the
instruction count includes the decrementing associated with fetching the
branching instruction. If the processor is in the relocation mode, the
instruction address is stored in symbolic form.

3.9

3/10/61 A

These operations have the format shown below, The first half-
word is identical to the corresponding one-address branching instruction,
except that the operation code is slightly different. The byte address in the
last half-word, bits 32-51, specifies the location at which the program con-
trol word is stored. The four low-order bits of the address are ignored.
Bit 56 specifies whether this address is direct or indirect. The limit part
of the last half-word is not used, Bits 57, 58, and 60-63 are ignored. Bit
59 is a zero and identifies the last half-word.

SELECT OPERATION
1 ¥
D D
ADDRESS 001 ADDRESS 00010000
I Lo !
1] . 16 20 24 28 32 48 52 56 60 63
DIRECT DIRECT
INDIRECT INDIRECT

BRANCH IF ANY AND PRESERVE PCW (BAP)

This operation is identical to BRANCH IF ANY, using the branch
address in the first half-word, except that first the current progré,m con-
trol word is stored at the full-word location addressed by bits 0-15 of the
effective address of the last half-word of the instruction if the branch is

successful, If the branch is not successful, the program control word is
not stored.

BRANCH IF NONE AND PRESERVE PCW (BNP)

This operation is identical to BRANCH IF NONE, using the
branch address in the first half-word, except that first the current program
control word is stored at the full-word location addressed by bits 0-15 of
the effective address of the last half-word of the instruction if the branch

is successful. If the branch is not successful, the program control word
is not stored.

3/10/61 A

3.3 PROGRAM SWITCHING

A separate program control word is normally used for the main
program and for each of the programs or subprograms associated with the
different causes for program interruption. Switching between these differ-
ent programs is controlled by the program interruption system.

3.3.1 Enabled and Disabled Modes

The processor operates in one of two modes: enabled or dis-
abled. In the enabled mode, the sequence of instructions is controlled by
the enabled program control word stored in location 32, and the program
interruption system is active, so that the occurrence of an interrupting
condition stops the execution of the current program and causes a transfer
to the disabled mode. This interruption action is described more fully
under Program Interruption. In the disabled mode, the sequence of in-
structions is controlled by one of the disabled program control words, which
are stored in locations 34-65, and the program interruption system is dis-
abled. The occurrence of an interrupting condition does not then affect the
execution of the current program until the processor is again placed in the
enabled mode. In either mode, the occurrence of an interrupting condition
causes a code to be stored in the interruption stream.

Usually, any iﬁterrupting condition should be responded to
promptly., Therefore, a program is normally executed in the enabled
mode, When an interruption occurs, the processor is switched to the dis-
abled mode. This serves two purposes. First, it allows a new sequence
of instructions to be executed under control of the disabled program con-
trol word corresponding to that cause for interruption without disturbing
the enabled program, Second, it prevents further interruptions from
occurring while the first interruption is being handled.

The interruption-handling routines are often very similar for
broad groups of problems. For this reason, the disabled parts of a pro-
gram can often be standardized, and only the enabled portion need be
written anew for each problem. In such cases, the disabled program often
takes the form of a 'supervisory program, " usually with additional features
to take care of other common tasks, such as standard input and output
routines and aids for program debugging. The enabled portion of the pro-
gram, perhaps together with some information for the supervisory program,
then becomes a 'problem program'' that is executed under control of the

3.11

3/10/61 A

supervisory program. Only the problem-program portion of the entire
program need be written for each problem to be solved. Not all of the
supervisory program must be executed in the disabled mode. Lengthier
portions or ones requiring external responses may be executed in the
enabled mode, but control is normally retained by the disabled portions,

To save time, the supervisory program may perform the
function of coordinating the execution of a whole group of problem pro-
grams., These problem programs may be "uniprogrammed, " that is,
executed completely sequentially; or 'multiprogrammed, ' that is, executed
concurrently, with two or more problem programs in core storage simul-
taneously and with control switched from one to another according to their
demands on input-output equipment.

Problem programs are very likely to contain mistakes, particu-
larly during the period when they are being checked out. It is therefore
important to protect the supervisory program, and in the multiprogrammed
case, the other problem programs, from any undesired changes caused by
these mistakes. This protection is provided by the relocation and address-
monitoring facilities described in Chapter 2. On the other hand, the super-
visory program is assumed to be trustworthy and essentially free from
mistakes, For this reason, a number of operations are permitted in the
disabled mode that are not permitted in the enabled mode. Most important
of these is the ability to switch to any of the disabled program control words
by means of the INTERRUPT INTENTIONALLY operation.

3.3.2 Requirements for Switching Programs

To switch effectively from one program to another, it is
necessary to do more than simply start fetching instructions from a new
area in storage. A number of other factors, in addition to the instruction
address, are normally unique to a particular program, and therefore must
be changed when programs are switched, For convenience, these factors
are all grouped together in the program control word., The program inter-
ruption system provides the means for placing the processor under control
of a different program control word.

3/10/61 A

The following factors, generally different for each program,
determine the state of the processor for executing that program and are
therefore included in the program control word--

1, The instruction address and instruction count, which
indicate the point to which execution of the program has
progressed.

2. The prefix, which identifies the area in storage as-
signed to this program.

3. The mask, which determines the indicators that can
cause interruption,

4. The indicators and condition register, which des-
cribe results produced by the program, and upon
which later branching operations in the program may
depend.

5. The relocation, input-output lock, and noisy-mode
control bits, which determine the mode in which the
program is run,

One additional factor is important in determining the processing
mode for a given program. This is whether the processor is enabled or
disabled. This, of course, is also determined by the program control
word, but by its location rather than its contents.

3/10/61 A

3,4 PROGRAM INTERRUPTION

The program interruption system provides the means by which
the processor responds appropriately to external signals and to exceptional
conditions arising within its own program. When such a signal or excep-
tional condition is detected, it causes an 'interruption code, ' which is an
eight-bit byte coded to identify the cause for interruption, to be stored in an
area in storage called the "interruption stream.' If the processor is in the
enabled mode, an interruption occurs at the completion of the instruction
being executed when an interruption code was stored. An interruption con-
sists of a switch to the disabled mode, the examination of a byte in the
interruption stream, and the initiation of the program corresponding to the
value of that byte and hence to the cause for interruption. When this pro-
gram has responded suitably to the interruption, it switches back to the
enabled program, which continues at the point at which it was interrupted.
The elements of the program interruption system and the sequence of ac-
tions that take place are described more fully in the following sections,

3.4, 1 ~ Storage of Interruption Codes

Interruption codes are stored in the interruption stream. The
location and extent of the interruption stream is defined by the ''store
interruption control word, " which is stored in location 6 of core storage.
This word has a format similar to an input-output control word, and the
storage of interruption codes is done by the input-output mechanism, Of
bits 19-31, only bits 19, 27, 28, and 30 are used; the others are ignored.
Bit 19, the storage-protection bit, is normally set to one, Bits 27 and 28
must be zero, The address in bits 0-18 is the location at which the next
interruption code is to be stored,

Any of several types of conditions can cause an interruption
code to be stored., These conditions include such events as

1. an attempt to execute an invalid instruction,

2, suppression of an instruction because of the
present machine status,

3. termination of an input-output operation,
4, receipt of an external signal, and

5, occurrence of a specified exceptional data
condition.

Immediately upon the detection of such a condition, an interruption code is
stored. This may occur at any time during the execution of an instruction,
regardless of whether the processor is in the enabled or disabled mode,

3, 14

3/10/61 A

The address in bits 0-18 of the store interruption control word
is incremented by a one in bit position 18 each time a byte is stored, unless
the byte stored has a value of zero or one. The latter cases correspond to
a switch back from the disabled to the enabled mode by the execution of an
INTERRUPT INTENTIONALLY operation. In these cases, the control word
is not incremented, so that the next interruption code is stored immediately
following the last code that is neither zero nor one. In incrementing the
control word, whenever a word boundary is crossed, the count in bits 48-63
is decreased by one. If the count becomes zero, the chain bit, bit 30, is
tested. If it is a one, the control word is refilled from the full-word location
addressed by bits 32-47, and further interruption codes are stored according
to the new contents of location 6. If the chain bit is zero, the storage-protection
bit is turned off. This prevents any further interruption codes from being
stored, and would normally be a programming mistake.

If the address in the store interruption control word is invalid,
the byte will not be stored, but the invalid address will cause another inter-
rupting condition. The processor thus becomes caught in a loop, continually
trying to store bytes.

PROGRAMMING NOTE

Normally, the store interruption control word is refilled with its
own initial value. The interruption stream therefore doubles back on itself,
and is never exhausted. It is only necessary to provide an area large enough
that a given interruption code is serviced before it is written over with a new
interruption code. The length of the area required will depend upon the
frequency of interrupting conditions and the length of time that the processor
may remain in the disabled mode. Normally, two or three words will be
sufficient.

3.4.2 Interruption Action

When the processor is in the enabled mode, an interruption occurs
at the completion of execution of any instruction during whose execution an
interruption code was stored. At this time, the instruction address in the
enabled program control word will be that of the succeeding instruction, with
the possible exception of Address Invalid and Empty Address interruptions.
The interruption occurs even if the store interruption control word has been
exhausted and its storage-protection bit turned off, so that the byte is not
actually stored. An interruption is also initiated by the execution of an
INTERRUPT INTENTIONALLY instruction in either the enabled or disabled
mode.

3/10/61 A

The current program control word is stored in location 32 if
the processor is in the enabled mode, or location 33 if it is in the disabled
mode. The 'fetch interruption control word'' is then obtained from loca-
tion 7. This control word has the same format as the store interruption
control word and normally describes the same storage area. The byte
addressed by this control word is fetched from storage. If this byte is
neither zero nor one, the address of the control word is incremented, and
if a word boundary is crossed the count is decremented, just as in the
storage of interruption codes, and the processor is placed in the disabled
mode. If the count becomes zero, the control word is refilled, regardless
of the value of the chain bit. If this byte is zero or one, the control word
is not incremented, and the processor is placed in the enabled mode.

In either case, a new program control word is obtained. If the
byte fetched has a value from 0-31, inclusive, the new program control
word is obtained from location 32+x, where x is the value of the byte. If
the byte fetched has a value of 32 or greater, the new program control
word is obtained from location 64 if the byte has an even value, or 65 if
the byte has an odd value. Location 64 thus corresponds to a Normal
End on any of the multiplex input-output channels, while location 65 corres-
ponds to a Special Condition on these same channels. If the byte fetched
does not have a value of one, program execution proceeds using the new
program control word. If the byte has a value of one, the processor enters
a waiting status. This status is terminated by the occurrence of an
interrupting condition.

3.4.3 Program-Switching Instructions

An intentional interruption to effect a switch to a different pro-
gram control word can be initiated by a prog'ra‘m-switching instruction.
These instructions have the same format as the branch instructions. The
one-address format is shown below.

1— OPERATION

D
ADDRESS 000

1
[
(4] 16 20 24 28 31

DIRECT
INDIRECT

The one-address instruction has a two-address counterpart
that first preserves the current program control word, just as the branch
instruction does. The format for this instruction is shown on the next
page. The first half-word is identical to the one-address instruction ex-
cept for bit 27. The last half-word contains the full-word address at which

the current program control word is stored. The byte and limit parts of
this half-word are not used.

3/10/61 A

rOl"E RATION

D D
ADDRESS 001 ADDRESS 0000000
i 1
] 1 ! 1 }
0 16 20 24 28 32 48 52 56 6063

DlREC’l" I DIRECT
INDIRECT. INDIRECT

INTERRUPT INTENTIONALLY (INT)

This instruction operates differently in the enabled and dis-
abled modes.

If the processor is in the enabled mode, the full word con-
taining the effective address is stored at the prefix address plus two, the
first final control word location. If the processor is in the relocation
mode, the effective address is stored in symbolic form. If direct ad-
dressing was specified, the first half-word is the instruction itself. The
last half-word is unpredictable. If indirect addressing was specified, it
is the full-word final data description regardless of bit 31, The inter-
ruption code for intentional interruption is then stored in the interruption
stream, and an interruption is initiated. This interruption causes a
switch to the disabled program controlled by the intentional interruption
program control word.

If the program is in the disabled mode, the byte in storage ad-
dressed by bits 0-18 of the effective address is stored in the interruption
stream. A program interruption is then initiated during which the current
program control word is stored at location 33,

INTERRUPT INTENTIONALLY AND PRESERVE PCW (INTP)

The current program control word is stored at the full-word
location specified by bits 0-15 of the effective address of the last half-word
of the instruction. The operation then proceeds as in INTERRUPT
INTENTIONALLY,

PROGRAMMING NOTES

The execution of INTERRUPT INTENTIONALLY, when the
processor is in the enabled mode, serves to switch to the disabled mode
and the supervisory program by way of the intentional interruption pro-
gram control word. Thus, all entries to the supervisory program from the
problem program are handled by the program that services intentional
interruptions,

3/10/61 A

The execution of INTERRUPT INTENTIONALLY, when the
processor is in the disabled mode, can switch to the enabled program or
any desired interruption-servicing program, following the servicing of
any previously stored interruption codes. If the byte addressed has a
value of zero, control will be returned to the enabled program following
the servicing of all interruptions. If the byte addressed has a value of one,
the processor will go into a waiting status following the servicing of all
previous interruptions. It remains in that state until another interruption
occurs,

At this point, it is useful to examine the entire process by
which interruptions are normally handled. Assume that the processor is
executing the enabled program, and that the store and fetch interruption
control words point to the same byte in the interruption stream. An inter-
rupting condition then occurs. This immediately causes a code byte to be
stored in the interruption stream and the store interruption control word to
be advanced to the next byte, At the completion of the current instruction
in the enabled program, an interruption will occur. The program control
word for the enabled program is stored in location 32. The byte that was
previously stored is now fetched from the interruption stream, and the
fetch interruption control word is advanced to the next byte. Again both
interruption control words point to the same byte.

The disabled program control word indicated by the value of the
byte is then fetched, and the program pertinent to this cause for inter-
ruption is executed in the disabled mode, At the completion of this pro-
gram, an INTERRUPT INTENTIONALLY instruction is executed, addressing
a byte with a value of zero. This causes a zero byte to be stored in the
interruption stream at the point indicated by the store interruption control
word and initiates another program interruption. The byte is imme-
diately refetched under control of the fetch interruption control word. This
zero byte causes the new program control word to be fetched from location
32, and thereby causes the resumption of the enabled program.

If a second interrupting condition had occurred before the re-
turn to the enabled program, this code would have been stored in the inter-
ruption stream before the zero code stored by the INTERRUPT
INTENTIONALLY instruction. It would then have been fetched before the
zero code was fetched, and hence the disabled program for this interruption
would be executed before control was returned to the enabled program.
Since the interruption control words are not advanced upon storing or
fetching a zero code, the INTERRUPT INTENTIONALLY instruction at the
end of this second disabled program causes a zero code to be stored on top
of the zero code stored by the first disabled program. This insures that

3/10/61 A

there is never more than one zero code in the interruption stream; and that
this one, if it exists, is at the end of the stream.

3,4.4 Indicators

The indicators, located in bits 25-31 of a program control
word, signal exceptional conditions that may occur during the execution of
the program corresponding to that control word. If an indicator is on, the
corresponding bit of the mask, located in bits 41-47 of the program
control word, is on, and the processor is in the enabled mode; interruption
code Maskable Indicator (MI) is stored in the interruption stream. Indi-
cators can be turned on only by arithmetic operations. The conditions that
turn on each of the indicators are listed below and on the next page. Indi-
cators are not turned off automatically, but remain on until turned off by
programming.

Data Flag P (PF)

This indicator, bit 25, is turned on when an operand is fetched
that has a sign byte in which data flag P (the first bit) is on.

Data Flag Q (QF)

Bit 26 is turned on when an operand is fetched that has a sign
byte in which data flag Q (the second bit) is on.

Data Flag R (RF)

This indicator, bit 27, is turned on when an operand is fetched
that has a sign byte in which data flag R (the third bit) is on.

Generated Extremum Positive (GEP)

Bit 28 is turned on when the extremum bit of a floating-point
result is generated as part of the arithmetic process and the exponent sign
is positive, except when the extremum bit is generated by division by zero.
The indicator is not turned on when the extremum bit is propagated as a
result of inspecting the operand extremum bits.

Generated Extremum Negative (GEN)

Bit 29 is turned on when the extremum bit of a floating-point
result is generated as part of the arithmetic process and the exponent sign
is negative. The indicator is not turned on when the extremum bit is
propagated as a result of inspecting the operand extremum bits.

3/10/61 A

Oversized Result {OR)

This indicator, bit 30, is turned on if the size of the significant
result of a fixed-point or unnormalized floating-point arithmetic operation
exceeds the result-field size. The indicator is not turned on when high-
order zero digits only are left outside the result field. This indicator is
also turned on if a negative result occurs when an unsigned result is speci-
fied, or if the restrictions on the field sizes of a FRACTIONAL MULTIPLY
instruction are not met.

Zero Divisor {(ZD)

Bit 31 is turned on if the divisor is zero. The division operation
is then terminated.

PROGRAMMING NOTE

The servicing of the indicators will normally be different for
each problem program. Thus, it is suggested that the routines to service
them be part of each problem program. When the supervisory program
found interruption code MI in the interruption stream, it would "and' the
mask and the indicators of the enabled program to determine the indicator
that caused the interruption, placing the result in a location accessible to
the enabled program. It would then turn off, in the enabled program con-
trol word, the indicators that caused the interruption and would return
control to the interruption-servicing portion of the problem program.

3. 20

3/10/61 A

3.4.5 Interruption Codes

The conditions that cause each interruption code to be stored
are listed below. Each code occupies an eight-bit byte. The number of
each code in the list below represents the binary value of the bit pattern
that is stored in this byte. The codes thus range from 0-255. The first
sixteen codes, 0-15, are used for processing interruptions. The remaining
codes, 16-255, are used for input-output channel interruptions. KEach chan-
nel requires two codes, therefore a maximum of 120 channels can be
accommodated.

TABLE--COMPUTER INTERRUPTIONS

Enabled Program (EP)

Code 0 can be stored only by the execution of an INTERRUPT
INTENTIONALLY instruction in the disabled mode. When fetched from the
interruption stream, it causes a return to the enabled program.

Programmed Wait (PW)

Code 1 can be stored only by the execution of an INTERRUPT
INTENTIONALLY instruction in the disabled mode. When fetched from the
interruption stream, it causes the processor to enter a waiting status.
This status is terminated by the occurrence of an interrupting condition. At
that time, an interruption occurs in the normal way.

Unassigned

Code 2 is not assigned, and is available for use by the
programmer,

Instruction Count Signal (ICS)

Code 3 is stored when the instruction count in the current pro-
gram control word is reduced to zero during the loading of an instruction,

Time Signal (TS)

This is Code 4 and is stored when the value of the interval
timer goes from one to zero.

3/10/61 A

Channel Not Operational (CNO)

Code 5 is stored when an input-output instruction refers to a
channel that is not provided in the system or to which no unit is connected,
or addresses a unit that is not in an operational state.

Channel Busy (CB)

This code, Code 6, is stored when an input-output instruction
refers to a channel that is busy executing a previous instruction.

Unended Sequence (US)

This is Code 7 and is stored when any operation is not completed
in one second, due for example, to an unended sequence of refill addresses
or indirect-addressing references. The operation is then terminated.

Address Invalid (AD)

Code 8 is stored when an operation (including the fetching of an
instruction) attempts to make a reference to a core-storage location not
provided in the system, except for the transmission of data in an input-output
operation or the chaining of input-output control words. These latter opera-
tions cause a Channel n Special Condition interruption code byte to be stored.
Address Invalid (AD) is also stored when, in the relocated mode, a data field,
record, multiple field or multiple word crosses a block boundary, or the ‘
instruction address is incremented across a block boundary. When an invalid
address is detected during the loading of an instruction, the operation is
terminated immediately. At this time the instruction address of the program
control word may not have been incremented for all half-words of the
instruction.

Data Store (DS)

Code 9 is stored when an operation attempts to store data at a
protected address. This protection is described in more detail in the section
entitled Address Monitoring, Chapter 2.

Operation Code Invalid (OP)

This code, Code 10, is stored when an attempt is made to execute
an instruction in which the instruction length specified in the first half-word
disagrees with the code in the other half-words. The instruction is suppressed.
This code is also stored if the first address of an input-output instruction is
direct. '

3/10/61 A

Invalid Data (IVD)

Code 11 is stored when a decimal arithmetic operation encounters
a byte that does not contain a valid decimal digit. The operation is terminated.

Intentional Interruption (II)

Code 12 is stored when an INTERRUPT INTENTIONALLY
operation is executed in the enabled mode.

Input-Output Alarm (IOA)

This is Code 13 and is stored when an attempt is made to execute
an input-output operation when the current program control word has a one
in bit position 18, the input-output lock bit. The operation is suppressed.

Empty Address (EA)

This code, Code 14, is stored when, during the translation of a
symbolic address into an actual address in the relocation mode, an all-zero
origin is obtained from the relocation table. When an empty address is
detected during the loading of an instruction, the operation is terminated
immediately. At this time the instruction address of the program control
word may not have been incremented for all half-words of the instruction.

Maskable Indicator (MI)

Code 15 is stored when an indicator whose mask bit is one is
turned on if the processor is in the enabled mode.

3/10/61 A

TABLE--INPUT-OUTPUT CHANNEL INTERRUPTIONS

For each input-output channel there are two interruption codes:
End and Special Condition, These occupy a pair of codes, 2n and 2n + 1;
where n is the channel number, from 8 to a maximum of 127, Thus, for
example, the interruption code is 33 for a Special Condition on channel 16.
The multiplex channels, numbered from 16 up to a maximum of 127, have
only a single program control word for End and a single program control
word for Special Condition, although distinct interruption codes are stored.
Thus, when an interruption occurs from one of these channels, the byte in
the interruption stream must be examined to determine the channel causing
the interruption,

Channel n End (CnE)

Code 2n is stored when an input-output operation using channel
n is terminated, provided that the suppress normal termination bit in the
channel control word is zero and that the unit detected no special condition
during the operation.

Channel n Special Condition (CnSC)

This is Code 2n + 1 and is stored when a special condition is
detected on channel n. Such special conditions include the receipt of an
Attention signal from a unit connected to that channel, the detection of an
unusual condition by the external unit during the execution of an operation
on that channel, and the detection by the processor of a program error
associated with that channel. These conditions may be distinguished by
examining the status bits in the control word for the channel and the sense
information available from the adapter. ‘

3/10/61 A

3.4.6 Effect of Alerts on Current Instruction

The storage of an interruption code or the turning on of an indi-
cator constitutes an alert. As noted earlier, an alert may or may not cause
an interruption following the completion or termination of the instruction
currently being executed, depending upon the mode in which the processor
is operating and the value of the mask. The different alerts are independent,
that is, the occurrence of one alert does not affect other alerts. An alert
may, however, cause the execution of the instruction to be terminated,
thereby preventing the detection of a condition that would have resulted in
another alert. Each cause for an alert actuates a single indicator or stores
a single interruption code. Furthermore, each alert results from a single
cause. It is possible, however, for more than one alert to occur during the
execution of a single instruction, due to independent causes.

In general, the execution of the current instruction will be com-
pleted in the event of an alert that--

1. It is not caused by the current instruction. The Time
Signal alert and the various channel alerts are of this type.

2. Is only a warning of a condition that is not necessarily
an error. The data flag indicators are of this type.

3. Occurred because of the result of a completed exe-
cution, The Instruction Count Signal, Intentional
Interruption, Generated Extremum Positive, Generated
Extremum Negative, and Oversized Result alerts are
of this type.

In general, the execution of the current instruction will be sup-
pressed in the event of an alert which indicates that--

1. An operation is not properly defined or cannot be
executed because of the present state of the machine.
Channel Not Operational, Channel Busy, Unended
Sequence, Address Invalid, Empty Address, and Oper-
ation Code Invalid alerts are of this type.

2. Completion of the execution might destroy infor-
mation. Data Store and Input-Output Alarm alerts are
of this type.

In some cases, conditions that would normally cause an alert
which would suppress the execution of an instruction are not detected until
the execution has progressed to a point where the instruction can no longer
be completely suppressed. In these cases, the execution of the instruction

3. 25

3/10/61 A

is terminated and the alert given as soon as the condition is detected. This
is the situation in the following cases--

SP25T

1, An Invalid Data alert.

2. An Address Invalid or Empty Address alert in
operations using long data descriptions when the ad-
dress results from stepping or refilling a valid
address.

3. A Data Store alert when a protected address is
encountered due to refilling,

March 10, 1961 A

Chapter 5

FLOATING-POINT ARITHMETIC

Contents

Section e

;

General Description
Data Format
Instruction Format
Sign Control
Normalization
Data Flag Bits
Numbers Outside the
Normal Exponent Range
Noisy Mode
Floating-Point Conditions
Floating-Point Indicators
Data Flag P (PF)
Data Flag Q (QF)
Data Flag R (RF)
Generated Extremum Positive (GEP)
Generated Extremum Negative (GEN)
Oversized Result (OR)
Zero Divisor (ZD)
Operations 5.2
Add (A)
Reset Add (RADD)
Multiply (M)
Divide (D)

))
. .

G e o

U b W N

.

L]
e e
L]
G W=

« .

O o~y

[S2BNSING NN) |
¢

.

= = 0 0 00 00 00000000 =1~

o)

[TR

. D

Programming note -~ Comparisons 5,10
Programming note - Accumulator 5.10
Programming example - Division modifications 5,12

March 10, 1961 A

Chapter 5

FLOATING-POINT ARITHMETIC

5.1 GENERAL DESCRIPTION

A floating-point number consists of a signed exponent ¥ E and
a signed fraction t F, The quantity expressed by this number is the pro-
duct of the fraction and the radix 16 raised to the power of the signed ex-
ponent, or. +F. létE . Both exponent and fraction are expressed in four-
bit bytes representing hexadecimal digits. E is an integer in the range
-255=E = 255 and F is either an eight- or twelve-digit fraction with a
hexadecimal point to the left of the high-order digit.

There are basically only four floating-point instructions: ADD,
RESET ADD, MULTIPLY, and DIVIDE, These, together with LOAD
ACCUMULATOR and STORE ACCUMULATOR, are all one-address in-
structions and are the only instructions to make use of an accumulator at
an implied address. The accumulator is located at the address prefix +4.
Its contents have the same format as any other storage locations, and may
be used as an addressed operand in any instruction. By locating the accum-
ulator relative to the program prefix, a separate accumulator for every
program is provided. This obviates clearing and storing the accumulator
contents in multiprogramming situations when passing from one program
to another.

By means of modifiers, the basic instructions may be aug-
mented to furnish a versatile floating-point performance. Provision is
made for direct or indirect addressing, indexing, modifying the sign of
the addressed operand, normalized or unnormalized operation, and the
choice of eight or twelve hexadecimal digits of precision.

The fractions of all arithmetic results contain the standard
eight or twelve digits, accordingly as the minimum of the two input pre-
cisions is eight or twelve digits. Not all of these digits need be signifi-
cant; furthermore, as a result of calculation, the number of significant
digits may be reduced. To simplify significance studies, a mode of
operation called ''moisy mode'' is provided, by which standard results are
altered in a specific manner. By processing a program, both in standard
and in noisy mode, an estimate of the significance of the results may be
obtained.

3/10/61 A

Floating-point numbers cover a range between the positive and
negative values of the fraction having the maximum exponent. Since the
exponent range is finite, a discontinuity exists between the positive and
negative values of the fraction having the minimum exponent. Included in
this range is zero. An extremum bit has been included in the exponent
field to provide straightforward interpretation of data which exceed the
exponent range or fall within the range of discontinuity.

The multiple-field feature may be used with all four
floating-point instructions., By this means, a series of floating-point
operations on operands stored in successive storage locations may be per-
formed by one instruction which refers to a long data description.

5.1.1 Data Format

Floating-point numbers are represented by the following full-

word format. 7 , .
THREE FLAG BITS PRECISION BIT

Y L i

X
T T l I
' } FRACTION IPQRS| EXPON. PIE!S ?
L 1
F

L—— 32-BIT FRACTION —— el FRACTION SIGN EXTR EMUM EIT—j \

48-BIT FRACTION "{ EXPONENT SIGN

The fraction field occupies the first 48 bits of the data word. The frac-
tion may be either of twelve hexadecimal digit precision, in which case it
occupies the full field; or of eight-digit precision, in which case bits 32-47
will not influence, although in some circumstances they may be altered by,
floating-point operations, The precision of the result fraction of a
floating-point operation is the minimum of the two input precisions.

Bits 48-51 contain the fraction sign byte, consisting of three
data flags P, Q, and R, and the fraction sign bit. The fraction is positive
or negative accordingly as bit 51 is zero or one. Eight exponent bits
occupy bits 52-59. Floating-point numbers whose magnitude ranges be-
tween 16 and 16725 , or approximately 10 and 10_308, may be
represented to a precision of twelve hexadecimal digits.

3/10/61 A

The exponent sign byte occupies bits 60-63, Bit 60 is unassigned.
Its value is ignored by the central processor. Bit 61, the precision bit,
indicates the fractional precision, which is eight or twelve digits accord-
ingly as this bit is zero or one. The extremum bit, indicative of an ex-
ponent outside the normal range, is assigned to bit 62. The exponent sign
is represented by bit 63 in the same manner as bit 51 represents the
fraction sign.

The contents of the accumulator have exactly the same format
as data in any other storage location.

5. 1.2 Instruction Format

All floating-point instructions are of the single address, half-
word form. This single address, contained in bits 0-15, specifies one
operand of the arithmetic operation to be performed. The second operand
is always in the accumulator. Bits 16-23 specify the index address. The
address field of the index register specified is added to the address field
of the instruction to form an effective address (see Chapter 2 for full de-
tails), A zero index field indicates that the instruction is not indexed.
Finally, bits 24-31 contain the operation code. ot

NORMALIZED; NEGATIVE
UNNORMALIZED; rOl’ERATlON
]
DNS P
ADDRESS INDEX ol
IUA N

0 16 24 t 30 31

e s P

"Bits 27 and 28 of the operation code contain the fixed code 01

to indicate that the instruction belongs to the floating-point class. Bit 24 is
zero or one accordingly as the operand is directly or indirectly addressed.
Bit 25 distinguishes between normalized (0) and unnormalized (1) modes of
operation. The sign of the addressed fraction is utilized or ignored accord-
ingly as bit 26 is zero or one., In either event the effective sign of the
fraction is determined in conjunction with bit 29, the sign-modifier bit, as
described on the next page, Finally, bits 30 and 31 specify one of the four
basic floating-point instructions.

5.3

3/10/61 A

5.1.3 Sign Control

The sign of a fraction from storage is modified by bits 26 and
29 to form an effective sign as follows:

Bit 26 Bit 29 Modification
0 0 Retain the sign (bit 51) as it comes
from storage
1 Invert the sign before operation
Impose a plus sign
1 Impose a minus sign

If bit 26 is zero, the original sign of the fraction is preserved
or inverted accordingly as bit 29 is zero or one. Whenever bit 26 is one,
bit 29 of the instruction replaces bit 51 of the fraction as its sign.

In no case is the sign of the fraction altered in core storage.

5.1.4 Normalization

A quantity can be represented with the greatest precision by a
floating-point number of given fraction length when that number is nor-
malized. A normalized floating-point number always has a nonzero, high-
order fraction digit. If one or more high-order fraction digits are zero,
the number is said to be in unnormalized form. The process of normal-
ization consists of shifting the fraction until the high-order digit is nonzero
and altering the exponent by the amount of the shift.

Bit 25 in the operation code field of the instruction format is
zero or one accordingly as the operation is to be performed in the nor-
malized or unnormalized mode.

When normalized operation is specified, the operands need not
be normalized, but the result of the operation will be normalized, except
when it has a zero fraction or its exponent lies outside the normal range.
In these circumstances, which are characterized by the extremum bit of
the result being one, normalization is suppressed.

When unnormalized operation is specified, the result fraction
remains as it is without a normalization cycle, High-order zeros in the
fraction are not eliminated. If a fraction overflow bit is produced, it is
lost and the Oversized Result (OR) indicator is turned on.

5,4

3/10/61 A

A normalized fraction has a magnitude in the range 1>F=1/16.
The magnitude of an unnormalized fraction lies in the rangel > F=0. Since
hexadecimal numbers only are considered in floating-point operations, all
shifts are an integral number of hexadecimal digit positions, i.e., all shifts
are multiples of four bit positions.

5.1.5 Data Flag Bits

It is sometimes desirable to mark certain data to indicate
that special handling is required. In some circumstances it may be
necessary to attach more than one mark to each data word and to treat the
marks selectively. The flag bits P, Q, and R in the fraction sign byte
permit such indicative marking. These flags, if present in a data word
brought from storage, set corresponding indicators which permit
selective action when the flag bits are encountered.

Flag bits present in an operand are not propagated into the

result, i.e., the accumulator flag bits are always zero upon the com-
pletion of a floating-point instruction.

5. 1.6 Numbers Outside the Normal Exponent Range

A number outside the normal exponent range is characterized
by its extremum bit (bit 62) having the value one. In the interests of
simplicity and consistency, all numbers with an extremum bit of one and
a negative exponent sign are treated by the machine as zero. All num-
bers with an extremum bit of one and a positive exponent sign are
treated by the machine as infinite. Such numbers will be referred to as
zero and infinity, respectively, In both cases, the fraction and the
fraction sign are ignored. Should a zero fraction be generated during an
operation, the extremum bit is set to one and the exponent sign is set
negative. No normalization of the fraction occurs.

0 NEGATIVE —#e———— 00— gl POSITIVE ®

2335 ~-235 - 5
-F-162%3 -Fe167%% Fe1672%3 F.16%5%

Should the result of any floating-point instruction, both of
whose operands are in the normal exponent range, lie within the range
-F 167255 through F + 16”243 it is made zero by turning on the ex-
tremum bit. _Similarly, if the result of such an instruction is greater
than +F -« 16255 or less than -F - 16255, it is made infinity by turning
on the extremum bit. The programmer is alerted by means of the GEN
or GEP indicator, respectively.

5.5

3/10/61 A

The table below defines the result of floating-point operations
for every combination of ranges of the operands. Operands within the nor-
mal exponent range are designated by A or S, depending on whether they
were in the accumulator or in storage at the beginning of the operation.

RS
RN

ADD

Acc

Storage , o A 0
0 Acc* Sto Sto
S Acc Ats Sto
0 Acc Acc Acc

MULTIPLY

Acc

Storage 00 A 0
o0 Acc Sto Sto*
S Acc A-S Acc
0 | Acc* Sto Acc

DIVIDE

Acc

Storage ‘ o0 A 0
w | Acc* 0 Acc
S t Acc A/S Acc
0 Acc ‘ I~ 00 3¢

If either or both operands are outside the normal exponent range,
then, in the case of ADD or MULTIPLY, either the accumulator will be un-
changed or else the addressed operand from storage will replace the contents
of the accumulator. In DIVIDE, the accumulator will either be unchanged,
or else will have its extremum bit and exponent sign adjusted to reflect the
appropriate extremum condition.

The starred (*) cases above represent the most conspicuous or
worst cases, since the result is mathematically ambiguous (|- «, « x0,
wfw, or 0/0),

In the above cases, if either of the operands and the result have
an extremum condition, the extremum is ''propagated' and no indicator
alert is made that such propagation occurred, although the corresponding bit
in the condition register will be on. On the other hand, the result of A 1S,
A . S, or A/S may be a normally representable number, or eise an extre-
mum condition may be ''generated' and the extremum bit set to one. An
indication of such generation is made separately for a positive and a nega-
tive expouent sign, these situations being known generally as exponent over-
flow or exponent underflow, respectively. In most cases, overflow repre-
sents an error in analysis or scaling, although on occasions a programmer

5.6

3/10/61 A

will wish to propagate it, The overflow condition is indicated by the Gener-
ated Extremum Positive (GEP) indicator. On the other hand, exponent
underflow is expected and the programmer will usually wish to treat it as a
zero, The underflow condition is indicated by the Generated Extremum
Negative (GEN) indicator. In the case of a result with an intermediate
exponent overflow that is subsequently removed by postnormalization, the
result will be in the normal exponent range, and the GEP indicator will not
be turned on.

5.1. 7 Noisy Mode

The normalization process used with floating-point operations
introduces zeros into the lower order fraction bits whenever left-shifting
occurs. This procedure may result in a loss of significance during the
course of a program. Assistance in the study of such effects is provided by
means of the ''moisy mode" of operation. Noisy mode provides for the intro-
duction of hexadecimal fifteen rather than zero in the low-order digit po-
sitions during each hexadecimal left-shift associated with normalization.
Extra dividend digits required during a division are also filled noisily.
Processing a program both in standard and in noisy mode provides an
estimate for the study of significance loss as a result of fraction truncation,

The choice of standard or noisy mode is specified by the setting
of the noisy-mode control bit in the control word of the program. Standard
or noisy mode is called for accordingly as this bit is zero or one. Noisy
mode influences normalized operations only; unnormalized operations are
unaffected.

5.1.8 Floating-Point Conditions

The condition register is affected by the result of a floating-point
operation in the following manner.

Condition of arithmetic result Condition bit set

In the normal exponent range

and less than zero ‘ 0
Extremum negative (result zero) 1
In the normal exponent range

and greater than zero 2
Extremum positive (result infinite) 3

These conditions are mutually exclusive and collectively exhaustive. After
every floating-point instruction, there will always be exactly one nonzero
bit in the condition register,

3/10/61 A

5.1.9 Floating-Point Indicators

Any of the indicators may be affected as a result of a floating-
point operation. Indicators are not turned off automatically, but remain on
until turned off by programming. The conditions that turn on each of the
indicators are listed below,

Data Flag P (PF)

Bit 25 is turned on when an operand is fetched that has a frac-
tion sign byte in which data flag P (the first bit) is on.

Data Flag Q (QF)

This indicator, bit 26, is turned on when an operand is fetched
that has a fraction sign byte in which data flag Q (the second bit) is on.

Data Flag R (RF)

Bit 27 is turned on when an operand is fetched that has a frac-
tion sign byte in which data flag R (the third bit) is on.

Generated Extremum Positive (GEP) (exponent overflow)

Bit 28 is turned on when an extremum positive result is gener-
ated by a floating-point operation. The indicator is not turned on when the
extremum is propagated as a result of inspecting the operand extremum bits,

Generated Extremum Negative (GEN) (exponent underflow)

Bit 29 is turned on when an extremum negative result is gener-
ated by a floating-point operation. The indicator is not turned on when the
extremum is propagated as a result of inspecting the operand extremum
bits.

Oversized Result (OR)

This indicator, bit 30, is used only in unnormalized operation,
when it is turned on for fraction overflow in ADD operations, or in DIVIDE
operations if the dividend fraction is not less than the divisor fraction.

Zero Divisor (ZD)

Bit 31 is set when the divisor in a DIVIDE operation is zero.
The divisicn operation is then terminated. At the time of termination, the
quotient will be in the extremum positive condition. In spite of this, the
GEP indicator is not turned on, The ZD and GEP indicators are mutually
exclusive,

5.8

3/10/61 A

5.2 OPERATIONS

There are only four floating-point operations; namely, ADD,
RESET ADD, MULTIPLY, and DIVIDE.

ADD (A)

The addition of floating-point numbers consists of an exponent
comparison and a fraction addition. The exponent of the addressed operand
is subtracted from the exponent of the operand in the accumulator. The
fraction of the number with the algebraically smaller exponent is offset right
a number of hexadecimal digits equal to the exponent difference. If the ex-
ponent difference is greater than or equal to 12 (for 48-bit precision), or
greater than or equal to 8 (for 32-bit precision) no addition takes place, and
the number with the greater exponent is treated as the sum. These oper-
ations are equivalent to right-shifting the fraction with the smaller exponent
until the exponents agree, truncating it to match the fraction with the larger
exponent, and then adding.

The fraction sign of the addressed operand is modified by the
sign modifiers prior to the addition. A 12- or 8-digit addition takes place
accordingly as 48- or 32-bit precision is specified by the minimum of the
two operand precisions. The larger of the two exponents is used as the
exponent of the sum. For unnormalized operations, the addition is now com-
plete. If there is an overflow digit, it does not enter the accumulator, but
turns on the Oversized Result (OR} indicator.

For normalized operations, the entire sum fraction together with
overflow is shifted to form a normalized fraction, and the exponent is ad-
justed accordingly. The normalization does not take place for a zero
fraction. Instead, the GEN indicator is turned on. In the noisy mode, any
left-shift during normalization will cause hexadecimal fifteens rather than
zeros to fill the vacated low~-order digits.

The exceptional cases, when one or both of the operands is out-
s1de the normal exponent range, are summarized in section 5. 1. 6. To
recapitulate, if the accumulator operand is infinity, or the operand from
storage is zero, the contents of the accumulator are accepted as the sum or
difference. For the remaining situations, zero accurmulator and nonzero
storage operand, or infinite storage operand and noninfinite accumulator, a
RESET ADD operation is performed.

All the indicators except Zero Divisor (ZD) may be affected by
a floating-point addition. However, the Oversized Result (OR) indicator can
only be turned on for an unnormalized ADD operation in which a fraction
overflow occurs.

5.9

3/10/61 A

PROGRAMMING NOTE

Floating-point comparisons may be simulated by means of a
subtraction, after which the result of the comparison will I+ reflected in
the condition register. No account is taken of the sign of the result if it is
in the extremum positive or extremum negative range.

RESET ADD (RADD)

The RESET ADD instruction is equivalent to an ADD instruction
for which the operand in the accumulator has a twelve-digit precision and is
always in the extremum negative, or zero, condition. If the addressed oper-
and has a positive extremum, it is simply loaded into the accumulator with-
out any modifications; if the operand is zero, the zero condition is propagated
into the accumulator, and no loading takes place. Finally, if the operand
is in the normal exponent range, its sign is modified under the control of
bits 26 and 29 of the instruction word before loading. After loading it is
normalized, if normalization is specified. The noisy mode operates for
RESET ADD instruction by filling with fifteens the low-order digits vacated
by left-shifts.

The LOAD accumulator instruction is closely related to RESET
ADD, but the latter has more versatility as a result of the various modi-
fiers, such as sign manipulation and normalization. The price of this
versatility is a longer instruction execution time. RESET ADD also differs
from LLOAD in that the former leaves the accumulator flag bits P, Q, and
R set to zero, after setting flag indicators, if any.

The indicators affected by RESET ADD are the data flag indi-
cators PF, QF, and RF, and the Generated Extremum Negative (GEN)
indicator. GEN can only be turned on if the addressed operand is a new data

word with zero fraction and normal-range exponent.

PROGRAMMING NOTE

The LOAD ACCUMULATOR and STORE ACCUMULATOR in-
structions result in simple transmissions of data between the effective ad-
dress in storage and the accumulator location of prefix +4. If the data in
storage is already in the form desired, and no modifications such as sign
manipulation or normalization are necessary, then a LOAD instruction is
faster and more direct than a RESET ADD, If it is required to modify
data in the accumulator before storing the data, a RESET ADD instruction
addressing the accumulator itself is an effective means of doing so.

3/10/61 A

MULTIPLY (M)

The operand specified by the effective address, the multipli~-
cand, is multiplied by the operand in the accumulator, the multiplier. The
exponent, fraction, and sign of the product replace the original contents of
the accumulator.

Multiplication of floating-point numbers consists of an exponent
addition and a fraction multiplication. The sum of the exponents is used
as the exponent of the unnormalized intermediate result. Depending on the
precision specified, two 8-digit or two 12-digit fractions are multiplied to
form an 8- or 12-digit product, respectively. This product is normally
made up of the high-order digits only of the double-length product. For
normalized operation, however, if the highest order digit is zero, it is
disregarded, and the product is filled out by taking in the highest of the low-
order product digits., The remaining low-order digits of the complete double-
length product are not preserved even if the normalization of the product
requires more than one left-shift. The product sign is determined by the
rules of algebra, using the accumulator sign and the effective sign of the
addressed operand.

If a normalized product is required, the intermediate product
fraction is postnormalized and the exponent adjusted accordingly. When
noisy mode is specified, low-order digits are filled with hexadecimal fif-
teens in the usual manner, For unnormalized operation, no further action
is taken on the intermediate product.

The exceptional cases, when one or both of the operands are out-
side the normal exponent range, are summarized in section 5.1, 6. If the accu-
mulator operand is infinity, or if it is zero and the operand from storage
is noninfinite, the contents of the accumulator are accepted as the product.

For the remaining situations, infinite storage operand and noninfinite
accumulator operand, or zero storage operand and normal-range accumu-
lator operand, the operand from storage is brought into the accumulator.

The indicators affected by the MULTIPLY operation are the data

flag indicators PF, QF, and RF, and the generated extremum indicators,
GEP and GEN.

DIVIDE (D)

The operand in the accumulator, the dividend, is divided by
the operand from storage, the divisor. The sign, fraction, and exponent
of the quotient replace the original contents of the accumulator. No re-
mainder is retained by this operation.

3/10/61 A

In the normalized mode, the DIVIDE instruction operates in such
a manner as to utilize all the digits of the dividend, regardless of the rela-
tive magnitude of the dividend and divisor fractions. If relative shifting of
the fractions is required, the exponent quotient is adjusted accordingly.
The final quotient is always in normalized form.

In the noisy mode, additional dividend digits required as the
division progresses are supplied as hexadecimal fifteens instead of zeros.

If the dividend fraction in an unnormalized DIVIDE is not less
than the divisor fraction, the Oversized Result (OR) indicator is turned on,
and the Qperation is terminated. If the divisor fraction is the greater, the
division proceeds as in the normalized case, except that leading zeros in
the quotients are n<t suppressed, and the dividend is not offset left.

In all cases the quotient fraction is truncated after the appro-
priate number of digits (eight or twelve depending upon the precision
specified) are obtained. No rounding of the quotient fraction takes place.

The quotient exponent is the difference of the dividend and
divisor exponents. If the quotient exponent overflows or underflows, it will
turn on the GEP or GEN indicator, respectively. The sign of the quotient
is determined by the rules of algebra, using the accumulator sign and the
effective sign of the addressed operand.

The exception cases, when one or both the operands are outside
the normal exponent range, are summarized in section 5. 1. 6. In no case
is the accumulator fraction disturbed. If the dividend is infinite, or the
divisor is zero, the quotient will be in the extremum positive condition. A
zero divisor also causes the Zero Divisor (ZD) indicator to be turned on.

In this case, the GEP indicator is not turned on, since the operation of the
two indicators is mutually exclusive. A zero dividend and nonzero divisor
will put the quotient in the extremum negative condition.

All the indicators are affected by the DIVIDE operation. The
conditions for turning on the various indicators have been mentioned above.

PROGRAMMING EXAMPLE

The example below exhibits the quotients obtained when the
four-digit dividend 0001,0100,1000,0111x 160 is divided by the four-digit
divisor 0011,0101,0010,0110 x 160, using the modifications indicated.

Modification Quotient obtained
Unnormalized OOOO,OllO,OOlO,llleléO
Normalized 0110,0010,1101,1111x16~1
Normalized, noisy mode 0110,0010,1110,0100x 16-1

5.12

March 10, 1961 A

Chapter 7

INPUT-OUTPUT OPERATIONS

Contents

Section

)
o
}T‘g

General Description
Channels
Number of Channels
Channel Capacity
Instructions
Instruction Format

NNNNSNNA
W W WwNN N -
N

N -

Instructions
Start Channel (SRT)
Release Channel (RLS)
Instruction Alerts 7.3.3
Address Invalid (AD)
Unended Sequence (US)
Input-Output Alarm (IOA)
Channel Not Operational (CNO)
Channel Busy (CB)

.
VOOV OOV OONNITOTOOO U UIUTW W W -

NNNNNNNNNNNNININNNNNNNNNNNNNNNNNEN

Control Words 7.4
Operations 7.4.1
Control- Word Format 7.4.2
Address
Short-Block Test .
Operation Code .
Suppress Normal Termination .
Data/Control .
Direction 10
Flags 10
Skip 10
Multiple .10
Chain 10
Refill 10
Count 10
Definition of Storage Area 7.4.3 10
Chaining 7.4. 4 11
Multiple Operation 7.4.5 11
Stopping 7.4.6 7.11
Skipping 7.4.7 7.12

Contents Chapter 7 (continued)

Termination
Channel Control Words
Address
Storage Protection
Attention
Status Bits
Unusual End
Program Check
Operation Code
Flag Bits
Refill
Count
Terminating Alerts

Channel n Normal End (CanNE)
Channel n Special Condition (CnSC)

Channel Operation

Simplex-Channel Sequences
Multiplex-Channel Sequences

Programming note - Operating tape units

NN
(S 2008,
N NN NN

.

NN
oo o
N
NNNNNNNNNNNSNN

.13
.13

13
13
14
14
14
15

17
. 17
.17
.17

17
17
17
18
18
19

7.4

March 10, 1961

Chapter 7

INPUT-OUTPUT OPERATIONS

7.1 GENERAL DESCRIPTION

Data are recorded on and read from external documents by
input-output units., Operation of these units is controlled by adapters which
may be designed to control a single input-output unit, several units of the
same type, or several different units. The facilities required in the
central-processing unit for the connection of an adapter are called
"channels, ' A channel initiates input-output operations, controls the flow
of information between an adapter and storage, and alerts the program
when an input-output operation is completed.

The design of an adapter depends on the units which it controls.
The interface between an adapter and the processor, however, is standard
for all types of adapters; no modification of the processor is necessary for
the connection of any adapter. All adapters and channels are controlled by
the same set of instructions and control words. The START CHANNEL
instruction initiates an operation or a sequence of operations which uses a
single channel. The instruction specifies the channel to be used and the
first control word in a chain of control words. Each control word specifies
a storage area and the operation to be executed by the channel. Thus, a
chain of control words may specify several operations, each using one or
more storage areas.

When an input-output instruction is given, the processor deter-
mines whether the channel is available. If not, an alert is given before the
program is resumed. If the channel is available, a channel control word,
which is used to direct the operation, is formed from the first control word
in the chain, and the program is resumed. No other instructions are re-
quired for the execution of the input-output operation. Thus, it is possible
for data processing to proceed simultaneously with several input-output
operations. The only effect of overlapped input-output operations on the
program is increased execution time.

All adapters operate serially, sending or receiving one 8-bit
byte at a time. A ninth bit, the parity bit, is provided with each byte trans-
mitted between an adapter and the processor to check the transmission.

The channel assembles eight bytes into a storage location during an input
operation. During an output operation, words from storage are disassem-
bled into eight bytes.

3/10/61 A

Data recorded on an external document may be divided into
""blocks. ' The length of a block depends on the document, e. g., a block
may be a card, a line of printing, or the information recorded between two
consecutive gaps on a tape. An input-output operation is always termi-
nated at the end of the block or when all the storage areas specified for the
operation are exhausted, whichever occurs earlier.

¢

When an operation is terminated, a test is made to determine
if any "special condition' occurred during its execution. If a special con-
dition is detected, an alert is given and the sequence of operations is not
continued. If no special condition is detected, an alert may or may not be
given, and the next operation in the sequence, if any, is initiated. When a
sequence of input-output operations is terminated, the channel control word
is found in a fixed location. Three status bits in the channel control word
indicate the conditions causing termination.

3/10/61 A

7.2 CHANNELS

7. 2.1 Number of Channels

Three types of channels may be provided in the processor:
multiplex, regular simplex, and fast simplex channels. One multiplex
channel is provided in every processor. It can be connected to a single
adapter, or it can, without modification, accommodate multiplexing
facilities which can provide up to 112 channels for the attachment of
adapters., Any number of these adapters can be operated simultaneously,
provided the capacity of the multiplex channel is not exceeded. Simplex
channels are suitable only for the connection of a single adapter. The pro-
cessor is provided with either two to four regular simplex channels or with
four to eight fast simplex channels. Fast channels differ from regular
channels only in the maximum data rate which can be accommodated, "All
three types of channels are controlled by the same instructions and control
words,

7.2.2 Channel Capacity

Adapters connected to the processor are serviced on .a priority
basis. The lower the channel address, the higher the priority. An adapter
connected to the multiplex channel or a group of adapters connected to a
multiplexer attached to the multiplex channel are assigned lower priority
than adapters connected to the simplex channels,

The capacity of a channel, i.e., the maximum rate of infor-
mation transmission, is determined by the number of channels of higher
priority in operation and the byte rates of the adapters connected to them.
A limitation is imposed on both the average byte rate and the maximum
service time of the adapters in operation. (Average byte rate and maxi-
mum service time are defined in an appendix to this manual.) The table
below gives the number of adapters that can be operated simultaneously
on a regular simplex channel if none of these has an average byte rate
exceeding the specified value or a maximum service time less than the
specified value.

Average byte rate Maximum service time Number of
(Bytes per second) . {microseconds) adapters
222,000 9 1
129, 000 11 2
91, 000 13 3
70, 000 15 4

3/10/61 A

If none of the simplex channels are in operation, an adapter
with an average byte rate of 143, 000 and a maximum service time of 22
usec can be operated. The capacity of the fast simplex channels will be
specified in a later edition of the manual.

The capacities shown on the previous pages are based on the
assumption that chaining is not specified (chaining is described in section
7. 4. 4), If chaining is specified, the average byte rate will be reduced.

If the average byte rate of an adapter exceeds the capacity of
the channel to which it is connected or if the maximum service time of the
adapter is less than the service time of the channel, an "'overrun'" occurs
and information is lost. The adapter detects this condition and gives an
Unusual End signal at the end of the operation which causes the channel to
alert the program.

PROGRAMMING NOTE
It is possible to operate four IBM 729 IV.tape units simul-
taneously, if byte conversion (eight-bit mode) is specified for all of the

operations. Without byte conversion (six-bit mode), two 729 IV units can
be operated simultaneously,

7.4

3/10/61 A

Te3 INSTRUC TIONS

An input-output instruction specifies the channel to be used and
the location of the chain of control words which specify the operations to
be executed.

Te3el Instruction Format

Input-output instructions have the format shown below. Bits
17-23, 25, 49-55, 57, 58, 60-62 are ignored.,

ADDRESS LIM.[i]| | 110011 ADDRESS LIM.

i
0 16 20 24 32 48 52 56 59 63

The first address gives the location of the first control word in
the chain of control words which specify the sequence of input-output
operations to be executed, This address must be indirect, and may be ‘
followed by other indirect addresses before the first control word is reached,
The control word is always obtained from the fullmword location specified by
bits 0-15 of the last indirect address, Bit 16 of the last indirect address
normally is zero. If bit 16 is one, the left and right halves of the control word
are interchanged as obtained from storage. If the first address is direct
(i.e., bit 24 is zero), an Operation Code Invalid alert will be given and the
instruction will be suppressed.

The last instruction address may be either direct or indirect as
specified by bit 56, Bits 40~47 of the effective address give the address of
the channel to be used. The simplex channels are assigned consecutive
addresses beginning with address 8., If a single adapter is connected to the
multiplex channel, the channel is assigned address 16, If a channel
multiplexer is attached, the channels it provides may be assigned any of the
addresses 16~127, If the specified channel address is 0-7 or 128255, or
any unassigned address from 8-127, a Channel Not Operational alert will be
given, and the instruction will be suppressed,

7¢3.2 Instructions

If bit 63 in the instruction is off, the START CHANNEL instruc-
tion is specified; RELEASE CHANNEL is specified if the bit is on.

3/10/61 A

START CHANNEL (SRT)

This instruction initiates the sequence of input-output operations
specified by the chain of control words which it addresses. If the addressed
channel is busy or not operational, the appropriate interruption code is
stored and no operation is initiated.

RELEASE CHANNEL (RLS)

If the addressed channel is busy, this instruction causes infor-
mation transfer to be terminated immediately. Any alert which results from
an input-output operation terminated by this instruction is not suppressed.
The first address given in this instruction is not used in the operation, but
may cause an Empty Address alert if the instruction is given in the re-
location mode.

7.3.3 Instruction Alerts

One of the following alerts is given when a specified sequence of
input-output operations cannot be initiated. Other alerts, described in
section 7.5, are given when an operation is terminated or when an Attention
signal is received from an input-output unit.

If conditions exist that could cause more than one of these alerts,
only the alert appearing first on the list below is given.

The first two alerts in this list can be caused by any instruction
and are fully described in Chapter 3. They are described here as they apply
to input-output instructions. All other alerts listed here can be caused only
by input-output instructions.

When any of these alerts occurs, the instruction causing it is
suppressed. :

Address Invalid (AD)

This alert is given if the processor detects an invalid, indirect
address while obtaining the control word or channel address specified by
an input-output instruction,

Unended Sequence (US)

This alert results if the program is not resumed within one
second after an input-output instruction is given.

7.6

3/10/61 A

Input- Output Alarm (IOA)

If the input-output lock bit of the current program control word
is on, an input-output instruction will cause this code to be stored in the
interruption stream. This alert permits a supervisory program to monitor
all input-output instructions given by a problem program before they are
executed. Thus, a problem program can be prevented from using an input-
output unit or an area of storage assigned to another program.

Channel Not Operational (CNO)

This interruption code is stored if the adapter connected to the
addressed channel is not operational, It is also stored if no adapter is
connected to the addressed channel, or if the channel is not provided in the
system.

Channel Busy (CB)

This interruption code is stored when an instruction addresses

a channel which is executing a sequence of operations initiated by a previous
instruction.

7.7

3/10/61 A

7.4 CONTROL WORDS

A channel is capable of executing a series of operations, such
as read or write, specified by a chain of control words and initiated by a

START CHANNEL instruction,

One or more consecutive control words are used to specify each
input-output operation, Each control word defines an area of storage to be
used, The first control word associated with an operation specifies the
operation, and the last control word indicates whether another operation
follows., Operations are executed in the order specified in the chain of
control words,

7.4.1 Operations

Each channel is capable of executing four operations: read,
sense, write, and control, During read and sense operations (input
operations), information flows from the adapter to storage; during write and
control operations (output operations), information flows in the opposite
direction, Data are transferred by a read or write operation, and sense
and control operations are used to transfer control information.

A control operation is used to change the mode of operation of
an adapter, to select a unit connected by the adapter or to initiate any
operation other than reading or writing, such as rewind of a tape, seek of
a sector in a disk file, and stacker selection of a card device, A control
operation is terminated as soon as the controlling information is sent to
the adapter, and the channel and adapter are available for further use.

The unit however may require more time to complete the control operation
thus initiated, and in that case is not ready for further operation,

A sense operation is used to transfer control information from
the adapter to storage, This information can be used to determine if
certain conditions occurred during the preceding operation, such as out of
material, data check, or unit not ready. '

The amount of information transferred during a sense or control
operation is limited by the design of the adapter, These operations are also
terminated when the specified storage area is exhausted if this occurs first,

Ted,2 Control-Word Format

The control words which specify an input-output operation have
the format shown below., The contents of bits 16 - 22 are ignored.

OPERATION CODE
SHORT BLOCK TESTl I‘ r" FLAGS

ADDRESS] 1 REFILL COUNT

7.4.2.1 Address

Bits 0 - 15 specify the first location in the storage area defined
by the control word,

Te4.2,2 Short~Block Test

If bit 23 is on in the first control word which specifies an input
operation, a testis made to determine if the operation is terminated before
all of the storage areas defined for the operation are exhausted, If a short
block is detected a special condition alert is given at the end of the operation.

If bit 23 is off the test is not made, This bit is ignored in all
other control words,

7.4.2.3 Operation Code

Bits 25 « 27 specify the operation to be executed and whether or
not an alert should be given at the end of an operation during which no
special conditions occur, In all control words used to specify an operation,
the state of all bit positions 26 must be the same; i, e., all ones or all ZEeros,
The same rule applies to bit 27, If they are different, the operation will be
terminated when the area defined by the previous control word is exhausted;
a special condition alert will be given, and the sequence of operations will
not be continued,

Suppress normal termination

If bit 25 is on in the last control word used to specify an
operation, and if no special conditions occur during the opera=~
tion, no alert will be given when the operation is terminated,
If this bit is off in the last control word, an alert will always
be given at the end of the operation,

Data /Control

If bit 26 is off, data are transferred between the adapter
and storage, If bit 26 is on, control information is transferred.

7.9

3/10/61 A

Direction

If bit 27 is zero an input operation is specified; a one specifies
an output operation.

7.4.2.4 Flags

Bits 28 - 30 are used to specify variations of the basic
operations, to indicate the last control word associated with an operation,
and to indicate the last control word in a chain.

Skip

Bit 28 is used to suppress the transfer of information to
storage during an input operation.

Multiple

In the last control word associated with an operation,
bit 29 specifies whether or not another operation follows. In
all other control words bit 29 can be used to facilitate the
operation of input-output units which are incapable of termin-
ating data transfer immediately when signalled to stop by the
computer.

Chain

- Bit 30 indicates the last control word associated with an
operation.

7.4.2.5 Refill

If either the chain flag or the multiple-operation flag is on,
bits 32 - 47 contain the address of the next control word in the chain.

7.4.2.6 Count

Bits 48 - 63 specify the number of 64-bit storage locations
in the area defined by the control word.

7.4.3 Definition of Storage Area

The number of locations in the area of storage defined by a
control word is specified by the count field. If the count field is zero,
the area contains 65,536 (2~) locations. Locations in the area have
consecutive addresses beginning with the address specified in the control:
word. During an input-output operation, the locations in the defined area
are used in order of increasing addresses. Location 65, 535 is followed
by location 0. .

7.10

3/10/61 A

Any storage location provided in a system can be used in
executing an input-output operation, If a reference is made to a location
not provided in the system, however, the operation is terminated
immediately and an alert is given,

Te4.4 Chaining

The chain flag, bit 30, in each control word specifies whether
or not it is the last control word associated with an operation.

If the chain flag is one, a new control word is obtained from
the location specified in the refill field when the defined area is exhausted.
The operation is then continued using the storage area defined by the new
control word,

If the chain flag in a control word is zero, the operation
specified by the control word is terminated when the defined storage area
is exhausted, and if the data recorded on the external document is divided
into blocks, the document is advanced to the beginning of the next block
before another operation is executed using the unit. Therefore, operations
using these units must start at the beginning of a block.

The chaining feature permits information to be rearranged as
it is transferred between storage and an input-output unit. It also
permits a block of information to be transferred to or from noncontiguous
areas of storage, and is necessary for the skipping and overrun features,

Tede5 Multiple Operations

The last control word of an operation is-identified by a zero in
bit 30, the chain flag, If bit 29, the multiple flag, in this control word is
on, another operation follows. This operation is initiated when the '
previous operation is terminated, unless a special condition is detected at
the end of the previous operation. If the multiple flag and chain flag are
zero, the end of the chain of control words has been reached,

This feature permits the program to initiate the transmission
of multiple blocks of data with a single instruction, It also permits a single
instruction to select a particular input-output unit connected to a channel
and then to transfer data to or from this unit.,

Te4.6 Stopping
During output operations a Stop signal is sent to the adapter

when the data area defined by the last control word associated with the
operation is exhausted. Following the Stop signal no more information is

7.11

3/10/61 A

transferred to the adapter, During input operations a Stop signal is not
sent because the amount of information to be transferred is normally
determined by the input unit, If additional data is transmitted by the unit,
it is not placed in storage and a long-block condition is indicated at the end
of the operation.

For those input units which do not have a natural block length,
a Stop signal will be provided when the area defined by a control word with
both bits 29 and 30 on is exhausted, Because bit 30, the chain bit, is on
another control word is obtained, and any additional data transmitted
by the adapter is placed in the storage area defined by this control word
This feature also provides a means for suppressing a long~block test for
those units which terminate data transfer as soon as a Stop signal is
received, In that case the area defined by the additional control word is
not used,

Ted.7 Skipping

Bit 28, the skip flag, specifies whether or not information is
transferred to storage during an input operation, If the skip flag is zero,
a normal input operation is specified,

If the skip flag is one, no information is transferred to storage,
The operation of the adapter is continued, however, and the computer counts
the bytes transmitted by the adapter, If the chain flag is one, a new control
word is obtained when enough bytes have been received to fill the defined
storage area, If the skip flag in the new control word is off, subsequent
bytes are transferred to storage, The skip flag is ignored during output
operations,

The skipping feature, when combined with chaining, permits

selected portions of a block of information from an input unit to be placed
in storage,

7.12

3/10/61 A

7.5 TERMINATION

The operation of a channel is controlled by the '"channel control
word! stored in location n + 128, where n is the channel address, When an
operation is initiated, the first control word specifying the operation is
stored in the channel control=word location, As the operation progresses,
the channel control word is modified repeatedly, When the storage area
specified by the control word is exhausted, either the next control word in
the chain is stored in the channel control-word location and the operation
proceeds or the operation is terminated, When the operation is terminated
the channel control word indicates any special conditions which occurred
during the operation and the number of word and/or bytes in the defined
storage areas which were not used, The channel control word can be ex~
examined by the program at any time, The following section describes its
status at the end of an operation. The way in which the channel control
word is modified during an operation is described in section 7, 6.

When an input~output operation is terminated, the program may
be alerted by means of the interruption system, The code stored in the
interruption stream identifies the channel, and distinguishes between a
normal and special termination,

Tebel Channel Control Words

The format of a channel control word at the end of an operation

is shown below, »
STATUS BITS

ATTENTION OPERATION CODE
STORAGE PROTECTION 3] r ‘-FLAG BITS

ADDRESS 0 1 REFILL COUNT

TebHelel Address

If no special condition occurs during an operation in which all
of the defined areas are used, bits 0 - 18 address the first byte following
the last area defined, If an operation is terminated by the adapter before
the defined areas are exhausted, this field addresses the first byte in the
defined areas which was not used,

Tebals?2 Storage Protection
If bit 19 is zero during an input operation, bytes will not be

placed in storage., The storage protection bit is always zero at the end
of an operation,

7.13

7e5.1.3 Attention

Bit 20 is turned on when an Attention signal is received from
the input-output unit, It is not altered by the initiation of an operation or
by chaining, It is never turned off by the computer, and therefore, must
be turned off by the program when the Attention signal is serviced,

7.5.1.4 Status Bits

Bits 21 -~ 23, are turned on during an operation if certain special
conditions occur., They are reset when the next operation is initiated,

Unusual end

Bit 21 is turned on at the end of an operation if the adapfer
indicates that it detected a special condition during the operation,
Some of these special conditions are .-

a., An operation is specified which the addressed unit is
not designed to execute (e.g., a read operation for a
printer),

b. An operation is specified which the addressed unit is
not capable of executing because of its present status
(e« g., a read operation for a tape unit which is
rewinding).

Ce An undefined control code is sent to the adapter during
the execution of a control operation.

d. A data error is detected by the adapter, The adapter
makes this check even though the channel is skipping

or the defined storage areas have been exhausted.

e. The adapter detects a malfunction of one of its .
components,

f, The unit reaches an out~of-~-material condition (e« 8o
an empty card hopper, a full card stacker, the end of
a tape).

g« A tape mark sensed,

h, A byte of information is lost during the operation
because of timing restrictions,

7.14

3/10/61 A

Program check

Bit 23 is turned on if the computer detects any of the
following programming errors during an operation,

de

Ce

€.

Short block, The number of bytes transmitted during
an input operation is insufficient to fill the storage
area or areas specified, This test is made only if
bit 23 is on in the first control word associated with
the operation, When a short block is detected, the
address field gives the location of the first byte in
the defined areas not used,

Liong block. During an input operation the adapter
tries to transmit one or more bytes to storage after
the defined storage area or areas are filled, The
extra bytes are not placed in storage, The count
will always be zero and the chain flag will be off in
the channel control word. The long«block test can
be suppressed by a procedure described in section
7e4,6.

Invalid data address, The computer attempts to
transmit information to or from a storage location
not provided. Operation is terminated immediately,
and the invalid data address appears in the channel
control word, This test is suppressed when skipping
during an input operation,

Invalid refill address, During an input-output
operation the computer attempts to obtain a control
word from a storage location not provided., The
operation is terminated immediately, and the invalid
refill address appears in the channel control word,

If the address specified for the first control word

associated with an operation is invalid, the operation
is not initiated and an Address Invalid (AD) alert is
given,

Incorrect operation code, The operation code specified

in a control word, other than the first control word
associated with an operation, differs from the corres=

ponding bits in the first control word. The operation is

terminated immediately, Although the control word
containing the incorrect operation code is inspected,
it is not placed in the channel control=word location,

7.15

f.

3/10/61 A

The preceding control word, as modified by the
operation will be found in the channel control-word
location, The count will be zero, and the chain flag

will be on.

Unending sequence of control words. If an input~output
operation is terminated by the adapter before all the
control words associated with the operation are used
and if no special conditions have been detected, the
computer obtains the remaining control words one by
one until a control word is found in which the chain
flag is off, If this process requires more than one
second, a programming error is indicated.

7.16

3/10/61 A

7.5.1.5 Operation Code
Bits 25-27 identify the last operation executed.
7.5. 1.6 Flag Bits

Bits 28-30 contain the flags specified in the last control word
used,

7.5.1.7 Refill

Bits 32-47 contain the refill address specified in the last control
word used.

7.5.1.8 Count

Bits 48-63 are normally zero at the end of an operation. If an
operation is terminated by the adapter or by an invalid data address, the
count indicates the number of fully or partially unused storage locations in
the area defined by the last used control word.

7. 5., 2 Terminating Alerts

The code stored in the interruption stream by either of the two
alerts described below identifies the channel with which the alert is
associated,

Channel n Normal End (CnNE)

This alert is given when an input-output operation using channel
n is terminated normally and the suppress normal termination bit, bit 25,
is off in the last control word used to specify the operation. If a subsequent
operation is specified by the chain of control words, it is initiated imme-
diately. If the operation is terminated normally and the suppress normal
termination bit is on, no alert is given.

Channel n Special Condition (CnSC)

This alert is given when an input-output operation using channel
n is terminated, if either the attention bit or any of the status bits are on in
the channel control word at the end of the operation. If a subsequent ope-
ration is specified by the chain of control words, it is not executed. This
alert is also given if an Attention signal is received from channel n when
the channel is not busy.

1. 17

3/10/61

7.6 CHANNEL OPERATION

Input operations using the simplex channels and all operations
using the multiplex channel are controlled by the channel control word
associated with the channel used for the operation, An "auxiliary control
word" associated with each simplex channel controls output operations
using the channel, The channel control word associated with the channel
is stored in location n + 128 where n is the channel address, and the
auxiliary control word associated with a simplex channel is stored in
location n + 124, Two other storage locations, n + 116 and n + 120,
associated with each simplex channel, are used as buffers,

Three types of sequences~~setup, information transfer, and
endinge~are executed by a channel during an input~output operation. A
setup sequence is initiated by a START CHANNEL instruction or may follow
an ending sequence, During this sequence the first control word used to
specify an operation is fetched from storage, modified, and stored in the
channel control-word location or the auxiliary controleword location, Then
the appropriate command is sent to the adapter,

An information-transfer sequence is initiated by a service
request from the adapter, During this sequence a byte is transmitted to
or from the adapter, and the channel control word may be modified, For
a simplex channel, information may be transferred between the defined
storage area and a buffer location, and if an output operation is in progress,
the auxiliary control word may be modified,

An End or Unusual End signal from the adapter initiates an
ending sequence, During this sequence the adapter is reset in preparation
for another operation, If the conditions for an alert exist, a byte is stored
in the interruption stream, If another operation is specified by the chain
of control words and no special conditions occurred during the current
operation, a setup sequence follows this sequence,

The contents of the fixed locations associated with a channel
can be inspected by the program at any time except when one of the above
sequences is being executed, This is useful for determining the progress
of a current operation, Furthermore, if the prefix address is zero, the
program can alter the contents of the channel and auxiliary control words,
and thus, change the course of an operation, Only data-transmission
instructions should be used for this purpose.

7.6.1 Simplex-Channel Sequences

During the setup sequence for an input operation using a simplex
channel, bits 16-18 of the channel control word are set to zero. The

3/10/61 A

Attention bit in the channel control word is not altered by this sequence or
any of the other sequences described in this section, A Read or Sense
command is sent to the adapter,

During the setup sequences for an output operation using a
simplex channel, the first control word specifying the operation is modified,
as described above for an input operation, and stored in the channel
control-word location., The control word is then further modified by
incrementing the word address (bits O - 15) by one and decrementing the
count by one, and the resulting control word is stored in the auxiliary
control-word location, The first two words in the defined area are
transferred to the buffer locations associated with the channel, and a Write
or Control command is sent to the adapter,

An information~transfer sequence for an input operation
transmits a byte from the adapter to one of the buffer locations associated
with the channel, When the buffer is filled, its contents are transmitted
to the storage location addressed by the channel control word, provided
the storage~protection bit is on and the skip bit is off, Then the address in
the channel control word is incremented and the count is decremented,
Thus, the control word always addresses the location into which the word
being assembled is to be placed.

An information~transfer sequence for an output operation
transmits a byte from one of the buffers associated with the channel to the
adapter, When a full word has been sent to the adapter, the auxiliary
control word is transmitted to the channel control-word location, Then,
if the storage-protection bit is on, the address in the auxiliary control word
is incremented, the count decremented, and the buffer refilled from the
storage location designated by the new address., Thus, during an output
operation, the channel control word always addresses the location containing
the word being disassembled, and the auxiliary control word addresses
the next location in the defined storage area,

During an ending sequence, bits 16 « 18 in the channel control
word are set to address the byte following the last byte used,

If a buffer is partly filled during an input operation, its entire
contents are transferred to the storage location specified by the address
in the channel control word., The contents of the unfilled byte positions
in this buffer are not predictable,

7.6.2 Multiplex-Channel Sequences

The setup sequence for all operations using the multiplex
channel is identical to the setup of an input operation for a simplex channel,

7. 19

3/10/61 A

During an information-transfer sequence, a byte is transmitted
from the byte position in storage specified by the byte address in the
control word (bits 0 - 18) to the adapter if the direction bit (bit 27) is on.
Transmission in the opposite direction takes place if the direction and skip
bits are off, Next, the byte address is incremented by one byte., If a
carry results from bit 16 to bit 15 (i.e., a word boundary is crossed), the
count is decremented by one,

During an ending sequence, bits 16 - 18, which specify the next

byte to be transferred, remain unchanged, If a word is partially filled
during an input operation the unused bytes are not changed,

7.20

SY.25

March 10, 1961 A

Chapter 8

MANUAL CONTROL AND SYSTEM MAINTENANCE

Contents

Section e

;

General Description
System Panel

Power Controls
Power On, CPU Storage Key and Light
System Power Off Key
Emergency Power Off Pull Switch
CPU Fuse, CPU Thermal, Storage Fuse,

and Storage Thermal Lights

Systemm Mode Switch 8.2.2
Normal and AUL
FUL Mode
Scan Test and LUL
Read and Loop

Operator Controls 8.2.3
Running Light
Wait Light
Enabled Light
Disabled Light
Parity Check Light
Initialize Key
Start Key
Input Channel Selection Switches
Output Channel Selection Switches

Customer Engineering Controls 8.2.4
Single Cycle Key and Light
Storage Address Switches
Set and Display Key
Cycle Step Key
Process Control Lights
Scanner Lights

o o

.1
.2
2.1

P o ® 0
VNN NN

WNNOOO OO Ut R R R R R D RN

.

PRPOXPOO0000000PERPPND00R0®PR0

System States 8.3 .
Initial State 8.3.1 .
Running State 8.3.2 .

3/10/61

Contents Chapter 8 (Continued)

Waiting State 8.3.3

System Status Lights 8.3.4
Initial Program Loading 8.4
Checking 8.5

Extent of Checking 8.5.1

Machine State Recording 8.5.2

Program Restart 8.5.3 8.14

Programmed Fault Location 8.5.4
Mechanized Fault Location 8.6

Scan Test 8.6.1

Load and Unload 8.6.2 8.16
Manual Fault Location 8.7

Single Cycle 8.7.1

Scoping 8.7. 2 8.18
Marginal Checking 8.8
Figure 8,1 - System panel 8.
Figure 8, 2 - System states 8.
Figure 8,3 - Scan-out pattern 8.
Figure 8.4 - Normal and AUL mode 8.
Figure 8.5 - FUL mode 8.
Figure 8.6 - Scan-in pattern 8.
Figure 8,7 - Scan test or LUL mode 8.
Figure 8.8 - Loop mode 8.
Programming note - Initial state 8.
Programming note - Arithmetic tables 8.

o] b e e = 00 AW
O =] U1 W =

o

March 10, 1961 A

Chapter 8

MANUAL CONTROL AND SYSTEM MAINTENANCE

8.1 GENERAL DESCRIPTION

Initial program loading, recovery from processor malfunctions,
and system maintenance are accomplished by means of a "scanner.' The
controls of the scanner are independent of the processing controls, but the
scanner uses the main data paths of the processor. The operations exe-
cuted by the scanner are called ""system operations. " These are executed
in a sequence determined by manual controls, rather than by a stored pro-
gram. The scanner can load a program into storage from an input unit and
initiate its execution. When a malfunction is detected by a checking circuit
in the processor, the scanner records the state of most of the processor
triggers in storage or on an external document and then restarts the pro-
gram at a predetermined place. The scanner can detect and locate faults in
the data paths, or the processing or input-output controls by executing a
diagnostic procedure specified on external documents. The results of this
procedure are recorded on external documents.

A system panel is provided for manual control of the’ system by
an operator or a customer engineer., The panel can be located on the right-
hand side of a universal console, or it can be an independent unit. It con-
tains the keys, switches, and lights neces sary to control the processor
power supplies and the scanner. A set of lights indicates the state of the
system and signals the operator if a malfunction occurs from which the pro-
cessor cannot recover automatically. A complete set of controls is provided
for the manual location of faults in the scanner controls by means of a single-
cycling technique, and similar but rudimentary controls are provided for the
processing and input-output controls., Facilities have also been provided for
executing any operation or part of an operation repeatedly so that an
oscilloscope can be used to locate faults.

3/10/61 A

8.2 SYSTEM PANEL

The lights, keys, and switches described in this section are
provided for manual control of the central-processing unit and for system
maintenance. These controls are located on the system panel, illustrated
in Figure 8, 1, which can be attached to the right-hand side of a universal
console or can be an independent unit. The controls are directly connected

to the processor.

8. 2.1 Power Controls

POWER ON, CPU STORAGE Key and Light

Depressing this key turns on the d-c power supplies for the
processor and storage units in the proper sequence. It also closes the
line contactors in the input-output adapters. A light mounted inside the
key indicates the d-c power is on.

SYSTEM POWER OFF Key

Depressing this key turns off the d-c power supplies for the
processor and storage units in the proper sequence, and turns off power
to the input-output adapters.

EMERGENCY POWER OFF Pull Switch

Pulling this switch turns off all power immediately beyond the
entry terminal in every unit in the system.

CPU FUSE, CPU THERMAL, STORAGE FUSE, and
STORAGE THERMAL Lights

These four lights indicate that a thermal-protection switch is
open in the processor or a storage unit, or a fuse is blown in one of these
units,

WAIT PAR CHK

© ¢

RUNNING DISABLED ENABLED

o O O

CPU
FUSE THERMAL
STORAGE
USE THERMAL
POWER ON YSTEM
CPU Pgwf:;EOFF
STORAGE
NORMAL
FULg O oAUL
Lol oREAD
SCAN TEST oLOOP
SCAN MODE

P 4 2 |
o O O o O O O O O
SCANNER
- o7 = le P il =™
o O O o O O O @)
CHANNEL SELECTION STORAGE ADDRESS
INPUT ouTPUT

EMERGENCY
POWER

OFF

rrco

SINGLE
START INITIALIZE CYCLE CYCLE
MODE STEP

SET
&
DISPLAY

Figure 8.1 - System panel

3/10/61 A

8. 2.2 System Mode Switch

This is a seven-position rotary switch which is used to select
the system mode. The modes are listed below along with their uses.

NORMAL and AUL (Automatic Unload)

These modes are used for normal productive operation. They
are discussed in sections 8.4 and 8. 5.

FUL Mode

This mode can be used by the operator to record the state of
the triggers in the processor. It is discussed in section 8. 5. 2.

SCAN TEST and L.UL (Load and Unload)

These modes are used in the mechanized maintenance pro-
cedures for the system and are discussed in section 8. 6.

READ and LLOOP

These modes are used in the manual maintenance procedures
for the system and are discussed in section 8. 7.

8.2.3 Operator Controls

These lights, keys, and switches are used by the operator to
control the system during normal productive operation.

RUNNING Light

This light is turned on for 1/10th second every time an instruc-
tion is obtained from storage, except an instruction following a successful
branch instruction.

WAIT Light

This light is on when the processor is in the initial or waiting
state.

ENABLED Light

This light is on if the processor is enabled.

8.4

3/10/61 A

DISABLED Light

This light is turned on every time the processor enters the
disabled mode., It remains on as long as the processor is disabled, but
never less than 1/10th second.

PARITY CHECK Light

This light is turned on for 1/10th second every time the pro-
cessor or a storage unit detects a parity error.

INITIALIZE Key

Depressing this key places the system in the initial state,
which is described in section 8, 3,

START Key

When the system is in the initial state, depressing this key
causes the processor to execute the sequence of system operations speci-

fied by the system-mode switch. This key is inoperative when the system
is in the running or waiting state,

INPUT CHANNEL SELECTION Switches

These two lb6-position switches specify the channel to be used
for input data during the initial program-loading procedure, or a mech-
anized or manual maintenance procedure. The positions of these switches
are designated 0, 1,.....,9, U, V,.., Z.

OUTPUT CHANNEL SELECTION Switches
These two 16-position switches specify the channel to be used

for output data when recording the state of the processor triggers in the AUL

or FUL mode, or during a mechanized maintenance procedure. The sixteen
positions of these switches are designated 0, 1,....., 9, U, V,.., Z.

8.2.4 Customer Engineering Controls

SINGLE CYCLE Key and Light

This key is used to place the processor in either the automatic
or single-cycle mode. These two modes combine with the seven modes
which can be selected by means of the SYSTEM MODE switch to give a total
~of fourteen systems modes. If the system is in the automatic mode,

3/10/61 A

depressing this key places the system in the single-cycle mode. Depress-
ing the key a second time returns the system to the automatic mode. A
light mounted inside the key indicates that the system is in the single-cycle
mode,

STORAGE ADDRESS Switches

These four 16-position switches specify a storage location.
They are used in conjunction with the SET AND DISPLAY key for displaying
the contents of the specified location. The STORAGE ADDRESS switches
are also used in the read mode to specify the storage location to be loaded.

SET AND DISPLAY Key

Depressing this key causes the contents of the storage location
specified by the STORAGE ADDRESS switches to be displayed in the DATA
REGISTER lights of the storage unit. This key is operational only when
the system is in the single-cycle mode.

CYCLE STEP Key

When the processor is placed in the single-cycle mode it stops.
Each time this key is depressed, the processor is advanced one cycle.
This key is not operational when the processor is in the automatic mode.

PROCESS CONTROL Lights

These lights partially indicate the state of the processing
controls. They are used for manual maintenance of the system.

SCANNER Lights

These lights indicate the state of the scanner controls and are
used for manual maintenance of the scanner.

8.6

3/10/61 A

8.3 SYSTEM STATES

There are three system states: initial, running, and waiting.
These states and the transitions between them are shown in Figure 8. 2.

POWER ON

START KEY

INITIALIZE KEY

INITIAL

RUNNING

INITIALIZE KEY INPUT—OUTPUT
OR TIME SIGNAL
INTERRUPTION

INTERRUPT
INTENTIONALLY
INSTRUCTION

Figure 8.2 - System states

8.3.1 Initial State

The system can be placed in the initial state at any time by de-
pressing the INITIALIZE key, This terminates all input-output operations
in progress and resets the adapters to a predetermined state, If a program
is in progress, its execution is terminated without completing the current
operation. The contents of the triggers in the processor are then placed
in storage locations 17-31 in the manner illustrated in Figure 8.3, If a

time clock and interval timer are provided in the processor, they are
stopped. ‘

When the system is in the initial state all parts of the system
are inactive, When power is restored to the system after being turned off,
the system will be in the initial state. Depressing the START key causes
the system to leave the initial state and enter the running state.

PROGRAMMING NOTE

When the system is placed in the initial state the program is
stopped before completion of the current instruction. Therefore, the
program normally cannot be resumed.

STORAGE LOCATION

20

2l

22

23

24

25

26

27

28

29

30

31

BYTE POSITION

Figure 8.3 - Scan-out pattern

W REGISTER Z REGISTER
ERROR READ IN INST. LOAD
TRIGGERS | TRIGGERS STATES &P R,
8 8 8
D REGISTER E REGISTER
ERROR READ IN PROC. |proC|MULT | HEX He [sERay
TRIGGERS TRIGGERS Lg'%%L cTL.l CTR | SIM BiTs
8 16 5 3 4 4 5 3
b REGISTER B REGISTER
FI/O INSTR. TRG.
ERROR LOCAL RINGS %’{I% JOB & 1/0 | STOP I/0 DX|R/S | W/C
TRIGGERS g, b,c, BITS CH.CODE| RING | TRG. TRG. | TRG. | TRG.
8 17 6 i| e 6 5 5 4 4
a REGISTER- A REGISTER
ERROR PRIORITYJ INST. LOAD‘; T, T2 |seriAL
TRIGGERS PIPE LOCAL RING|4| PRESERVE REGISTER [T; T, [BITS
8 8+1 7 | i6 4 4
C REGISTER
ERROR
TRIGGERS
8
D REGISTER E REGISTER
i [] L A 1 1 1 i [l L 1 1 [l
) I 1 I I] 1 [1 1) 1 I I
0 | 2 3 4 6 7 8 9 10] 12 13 14 15

3/10/61 A

8.3.2 Running State

When the system is in the running state, the processor is always
busy executing an instruction or a system operation. The input-output
channels may or may not be in operation. Instructions and system opera-
tions are never executed in the initial or waiting states.

8.3.3 Waiting State

If an INTERRUPT INTENTIONALLY instruction which ad-
dresses a byte containing the code Programmed Wait (PW) is executed, the
system is placed in the waiting state. In this state, no instructions are
executed, but input-output operations may continue, and the time clock and
interval timer will continue to run. The system is returned to the running
state when an Input-Output Alarm or Time Signal alert occurs.

8.3.4 System Status Lights

The RUNNING and WAIT lights indicate the state of the system
as follows:

Running Wait State

On Off Running normally ,

Off On Programmed waiting or initial state

Off Off Trouble--the processor is hung up because

of a malfunction of the controls or it is
executing only successful branch
instructions.

8.9

3/10/61 A

8.4 INITIAL, PROGRAM LOADING

Provision has been made for loading a program into storage and
initiating its execution under external control. This procedure is neces sary
when the power is turned on, and to recover from some programming mis -
takes and system malfunctions. The program can be loaded from any input
unit connected to the machine which is capable of transmitting all possible
eight-bit bytes to the processor (e.g., a card-reader or tape unit). Loading
a program from a unit which is capable of transmitting only a restricted set
of bytes (e.g., a console typewriter) is not possible.

Program loading is initiated by placing the system in the initial
state by depressing the INITIALIZE key or by turning the power on. The
input unit from which the program is to be loaded is selected by means of
the INPUT CHANNEL SELECTION switches located on the system panel.
These switches may be set either before or after the INITIALIZE key is
depressed. The system must be placed in either the normal or AUL mode.

Once the processor is placed in the initial state, it is inactive
until the START key is depressed. This permits the operator to load the
program deck or tape on the selected input unit. When the START key is
depressed, the following sequence of system operations is executed. This
sequence and all other sequences of system operations that can be executed
in the normal or AUL mode are illustrated in Figure 8.4

1. One block of data is read from the selected unit, and the first
fifteen words are placed in storage locations 16-30. The first word of this
block gives the contents of the program control word at the beginning of the
program being loaded. The remaining fourteen words read from the specified
unit contain the program to be initiated. If the block contains more than
fifteen words, the additional words are not placed in storage. No termination
alert is given by the channel.

2. The word in location 16 is transmitted to the D and E registers,
and the processor controls are set to a predetermined state.

3. The system enters the running state, and the program is
initiated with the execution of the instruction specified by the program control
word.

PROGRAMMING NOTE

The initial loading procedure does not alter the arithmetic tables.
If these are incorrect, they must be corrected by the initial program before
a decimal multiplication, a conversion or a division operation can be executed.
The initial loading procedure also does not alter the interruption control words.
These words should be loaded to specify where the interruption codes are to
be stored.

3/10/61

INITIAL

STATE

START
KEY

LOAD
16-30

START
PROCESSING

—

PROGRAMMED

SCAN- IN
17-30

SCAN
h

PROCESSING

DISABLED

ENABLE

CYCLE

SCAN OUT
I7-31

NORMAL MODE

—

AUL MODE

UNLOAD
16-30

Figure 8,4 - Normal or AUL mode

8. 11

A

3/10/61 A

8.5 CHECKING

Equipment is provided for automatic detection of system mal-
functions and for recording the information needed for fault location. When
a malfunction is detected the contents of processor triggers are placed in
storage and, if desired, this information is transmitted to an output unit,
Then processing is restarted with a program control word obtained from a
fixed location.

8.5.1 Extent of Checking

Data is represented in the processor by eight-bit bytes, to
which a ninth odd parity bit is added. Every byte used in an arithmetic or
a logical operation and every byte placed in storage is checked for correct
parity. In order to provide continuity of data checking the parity is pre-
served in storage and in the processor registers, and whenever a byte is
changed a new parity bit is generated independently of the new byte. Logi-
cal circuits are designed such that single-component faults will always
produce incorrect parity. The processor contains eight check circuits so
that eight bytes can be checked simultaneously as they are placed in stor-
age. These circuits, which are shown on the data-flow diagram
given in apperidix II, are also used to check serial arithmetic and proces-
sing operations. The control section of the processor has been designed so
that malfunctions in a large part of controls will result in parity errors in
the data being processed. Therefore the data-check circuits also provide
a large degree of control checking.

Errors introduced with input data will normally be detected by
the input units or their adapters. Data-transmission errors detected during
input-output operations do not initiate the recording of the processor state
or the program restart procedure,

8.5.2 Machine State Recording

If a malfunction is detected while the system is enabled, pro-
cessing is stopped during the cycle in which the malfunction is detected,
and the contents of processor registers and triggers remain unchanged
while they are recorded in storage locations 17-31. The register contents
are placed in storage with correct parity. Any necessary parity correc-
tions are indicated by data bits in the following storage location. These
bits and any other bits which have no parity associated with them are
grouped in eight-bit bytes and have a correct parity bit affixed to them
during the recording process. Figure 8.3 shows the contents of locations
17-31 after the recording operation has taken place.

8.12

3/10/61 A

During the recording process no input~output sequences are
executed, As a result an overrun condition may occur in an unbuffered
adapter and lead to a subsequent Unusual End from the adapter.

If the processor is disabled when a malfunction is detected, the
state of its registers and triggers is not recorded in storage. Since the
processor is always disabled before it is restarted following the detection
of a malfunction, a recording of the processor state is protected from re-
placement by recordings resulting from later malfunctions.

Malfunctions are detected only when the processor is executing
instructions or input-output operations in either the normal mode or the auto-
matic unload (AUL) mode. In the normal mode the program is restarted after

the recording operation. In the AUL mode the contents of location 17-31
are transmitted to the unit attached to the channel selected by the OUTPUT
CHANNEL SELECTION switches after the recording process and before
the program is restarted. The selected output unit should be reserved for
this purpose when the processor is in the AUL mode.

The FUL mode permits the operator to obtain the state of the
processor at any moment. This is accomplished by depressing the
INITIALIZE key which stops the processor and records its state in storage

locations 17-31. Then an output channel is selected by means of the

OUTPUT CHANNEL SELECTION switches and the system is placed in the
FUL mode. When the START key is depressed the contents of locations

16-30 are transmitted to the selected output unit. The sequence of system
operations executed in the FUL mode is illustrated in Figure 8,5. The

initial program-loading procedure must be used to restart the processor,

INITIAL
STATE

START KEY

UNLOAD
16—30

Figure 8.5 - FUL mode

3/10/61 A

8.5.3 Program Restart

After a malfunction is detected and the required scan-out and
unload procedures are executed, the processor is disabled and a new pro-
gram control word is obtained from location 16. Then normal processing
is restarted. Processing starts with the instruction specified by the new
program control word. All input-output operations in process when the
malfunction was detected are resumed.

8.5.4 Programmed Fault Location

An instruction, SCAN, is provided to facilitate the location of
processor faults by a program. If this instruction is given when the sys-
tem is disabled, the system operations shown in Figure 8.4 are executed.
Normal processing is stopped and the contents of storage location 17-30
are placed in the processor registers and triggers in the manner illustrated
in Figure 8.6. The processor is then advanced the number of cycles speci-
fied in bits 58-63 of location 29, and the resulting state is recorded in
locations 17-31., If the system is in the normal mode, processing is then
restarted with the instruction specified by the program control word in
location 16, If the system is in the AUL mode, the contents of locations
16-30 are transmitted to the unit selected by the OUTPUT CHANNEL
SELECTION switches before processing is restarted.

All input-output operations in progress when this instruction is
given are suspended while the system operations described above are exe-
cuted. When processing is restarted the input-output operations which
were in progress are resumed. If an unbuffered adapter is in operation an
overrun condition may occur. If a SCAN instruction is given when the system
is enabled, none of the system operations described above are executed, and
processing is continued.

The scanner also provides a means for placing data with in-
correct parity in storage. This data can then be used to test the operation
of the checking circuits. By means of a scan-in operation, the processor
controls are placed in a state that cannot occur in normal operation,

When the processor is advanced, the contents of registers a-A and b-B
are or-ed and placed in the storage location specified in register c. In
this way any eight-bit byte, except all zeros, can be stored with even
parity.

. STORAGE LOCATION

7

20

21

N
N

N
(&)

N
H

N
(&

26

27

28

29

30

D REGISTER E REGISTER
LOCAL RINGS BYTE CTLS |Preserve | INST LOAD seriaL| PROCESS |, RO
a,b,c BITS REG. BITS airs | BUS LoaD |- (A
17 9 6 8 4 7 5
b REGISTER B REGISTER
PRESERVE|INST 1L0AD(%) wor- | ATT. | evre | END |2/0 DX
REG. |LOCAL RING|/|carors| TRG. fcounter| TRG. | TRG.
7 7]l a] s 5 5 5
a REGISTER A REGISTER
<~ PRESERVE REG.
2
C REGISTER
[PARTIAL TEST
T 1/0 JOB & |NUMBER
PRIORITY BYTE | R/S | w/c
LOCAL CH OF
PIPE ocal REQ.| TRe.[TRe.| CH | OF
4 9 ! 6 | 4 4 4 6 6
Leno STORE TRG.
Il 3 [l 1 | l [l i] [[l i
I 4 ! ! 4 1 I L] 1 1 1 U
1 2 3 4 5 6 7 8 9 10 u 12 13 14 15

BYTE POSITION

Figure 8.6 - Scan-in pattern

8.15

3/10/61 A

8.6 MECHANIZED FAULT LOCATION

The LUL and scan-test modes facilitate the location of pro-
cessor faults by mechanized procedures. The sequence of system
operations which can be executed in these modes is illustrated in Figure 8. 7,

8.6.1 Scan Test

The scan-test mode is used to locate faults in the processor
data paths, and in the processing and input-output controls. The fault loca-
tion procedure is initiated by placing the system in the initial state and
selecting the scan-test mode. An input and an output channel are then
selected, and a deck or a tape which specifies the fault-location procedure
is loaded on the input unit. When the START key is depressed one block
of data is read by the input unit and the first fifteen words are placed in
storage locations 16-30. If the block contains more than fifteen words the
additional words are ignored., The contents of locations 17-30 are then
placed in the registers and triggers of the processor using the pattern
shown in Figure 8. 6. If the full test is specified, i.e., bit 25 in storage
location 29 is off, the processor is advanced by the number of cycles
specified in bits 58-63 of location 29, The contents of the processor
triggers are then recorded in locations 17-31, and a second block is read
by the input unit and compared with locations 16-30, If any differences
are detected, the contents of storage locations 16-30 are transmitted to
the selected output unit. The procedure is repeated until one of the input-
output units signals an Unusual End. If the contents of the processor trig-
gers are identical with the second block, no information is transmitted
to the output unit and the process is repeated immediately. If a partial
test is specified, i.e., bit 25 in location 29 is on, the processor is not
advanced and its state is not recorded. The second block read from the
input unit is compared with the information obtained from the first block.

8.6,2 Load and Unload

The LUL mode is used to locate faults in the scanner controls,
the storage unit, and some of the data paths. The procedure is the same
as in the scan test except that as soon as a block of data has been read
from the input unit and placed in location 16-30, it is immediately trans-
mitted to the output unit. The procedure is repeated until one of the
input-output units signals an Unusual End.

8.16

INITIAL
STATE

EY

START 1
R

LUL

LOAD ¢

ISCAN TEST

PARTIAL
TEST

SCAN IN
17-30

1F ULL TEST

SCAN OUT
I7-31

1

Cs—

COMPARE

16-30 SAME

DIFF] ERENTl

'L 16-30

UNLOAD

Figure 8.7 - Scan test or LUL mode

8.17

3/10/61

A

3/10/61 A

8.7 MANUAL FAULT LOCATION

Manual fault location is necessary when the processor is in-
capable of executing a mechanized fault-location procedure or when the
mechanized procedure does not locate a fault with sufficient precision.
Two system modes, loop and read, and the customer engineering controls
on the system panel are provided to facilitate these procedures.

8.7.1 Single Cycling

Controls are provided for single cycling the processor and for
displaying a specified storage location. When the processor is operated in
this manner, the states of all the triggers in the scanner controls and the
most important triggers in the processing and input-output controls are
displayed on the system panel. During manual fault-location procedures
it is often desirable to enter the information into storage. This can be
accomplished by means of the read mode. The system is placed in the
initial state and the read mode selected. Bytes of information can then
be entered from the selected input unit and placed in the location specified
by the STORAGE ADDRESS switches. The first byte is placed in the left-
hand byte position of this location, and the subsequent bytes are placed in
successive byte positions to the right,

8.7.2 Scoping

The loop mode is provided to facilitate fault location by means
of an oscilloscope. The sequence of system operations executed in this
mode is shown in Figure 8. 8. The system is placed in the initial state and
the loop mode selected. When the START key is depressed a block ot data
is read by the selected input unit and placed in storage locations 16-30.
The contents of locations 17-30 are then transmitted to the processor trig-
gers, and the processor is advanced the number of cycles specified in bits
58-63 of location 29. The scan-in and cycle operations are then repeated
continuously, thus providing the repetitive signals required by an oscillo-
scope. The process can be stopped by depressing the INITIALIZE key.

8.18

Chapter 9

TIMING
Contents
Section Page
General Description 9.1 9.1
Timing of Instructions 9.2 9.2
Control Word and Address
Arithmetic Instructions 9.2.1 9.3
Decision Instructions 9.2.2 9.3
Transmit and Swap Instructions 9.2.3 9.4
Fixed-Point Arithmetic Instructions 9.2.4 9.5
Floating-Point Arithmetic Instructions 9.2.5 9.8
Logical Instructions 9.2.6 9.9
Input-Output Instructions 9.2.7 9,10
Time Clock and Interval Timer 9.2.8 9. 12

Timing example - Transmission

Timing example - Fixed-point arithmetic
Timing example - Floating-point arithmetic
Timing example - Translation

Timing example - Input-output-

']

© O O O O
—_ O 00 O

3/10/61 A

Chapter 9

TIMING

9.1 GENERAL DESCRIPTION

Timing in the machine is governed by a clock which provides
l1-usec intervals for processing cycles and 2-usec intervals for cycles
requiring access to storage. Performance is substantially enhanced by
overlapping processing and storage whenever possible. If processing takes
place during a storage cycle, the processing cycle is extended to coincide
with the storage cycle. The execution of any instruction requires an integ-
ral number of processing and storage cycles. However, before storage
may be used, it must be established that no activity having a higher priority,
such as input- output, is engaging storage. This priority request always
requires a processing cycle, which whenever possible is overlapped with a
storage cycle from another source.

Even if there is no input-output activity, overlapping of process-
ing and storage cycles is still possible, since there are in the processor
several control areas whose activities can overlap. The amount of over-
lapping depends therefore on the complete state of the machine, and succinct
rules cannot always be given for determining it. For this reason the instruc-
tion times presented in this chapter are provided in the form m(n), where
m is the maximum time required for an instruction, assuming no overlap,
and (n) is the time when the overlapping conditions are the most favorable.
Where m and (n) are equal, only m 1is written. All times are in micro-
seconds (usec).

Should an activity of higher priority be using storage or some
part of the processor, the instruction currently being executed will wait
until the facilities are available. No account of this variable waiting time
is taken in assessing the time required to execute an instruction, since this
time is included in the instruction time of some other activity.

3/10/61 A

9.2 TIMING OF INSTRUCTIONS

The complete time required to execute an instruction is influenced
by such factors as indirect addressing, relocating, indexing, crossing of
word boundaries, and the refilling of control words. Except where indicated,
the basic times ignore these factors. In the absence of specific information
under each instruction, the following times should be added to any calculation.

Indirect Addressing and Relocation

For the first level of indirect addressing, or for relocated
addresses, 2 usec for all but the last address of any instruction, for which
the time is 3(2) usec; 3(2) usec for each subsequent level of indirect
addressing or for relocated refill addresses.

Indexing

For each indexed address 9(4) usec, except for floating~point
instructions for which the last level of indexing takes 7 (2) usec.

Interruptions

For all interruptions, 12(9) usec are required to place the
appropriate code in the interruption stream, except for I/O interruptions,
for which the figure is 8(6) usec; and a further 12(7) usec to fetch the code
from the interruption stream and enter the disabled mode.

Multiple Field or Record

Where the multiple-field or record format is used 3(2) usec
in addition to the indirect addressing time, are required to place each con-
trol word initially in a location relative to the prefix. Furthermore, 6(4)
usec must be added each time a control word is fetched, updated, and res-
tored; namely after each set of fields is processed in a multiple-field -
operation, or when a word boundary is crossed in a record operation. If
two control words require updating at the same time, only 10(8) usec are
needed. Each refill of a control word takes 3(2) usec.

In the case of the multiple-field format, the instruction time
saved for all but the first set of operands is 3(2) usec for one-address,
5(4) usec for two-address, and 14 (12) for three-address instructions.

Miscellaneous

No additional time is spent on address monitoring, condition
and indicator setting, or noisy mode.

3/10/61 A

9.2.1 Control Word and Address Arithmetic Instructions
Instructions Basic time
INCREMENT ADDRESS 10(7)
DIMINISH COUNT A 10(7)
INCREMENT ADDRESS AND DIMINISH COUNT 10(7)
Refill 12(9)
DIMINISH COUNT AND REFILL {;Io ofill | 10(7)
INCREMENT ADDRESS,))
DIMINISH COUNT AND REFILL 4 Refill | 12(9)
No refill 10(7)
REFILL 12(9)
REFILL FROM ADDRESS _ 12(9)
STORE EFFECTIVE ADDRESS, FIRST/LAST 6(4)
9.2.2 Decision Instructions
Instructions Basic time
BRANCH IF ANY/NONE ' 3(2)
INTERRUPT INTENTIONALLY Enabled , o 6(4)
Disabled 12(8)
LOAD CONDITION REGISTER 7(4)
BRANCH IF ANY/NONE '
. Successful 9(6)
AND PRESERVE PCW {Unsuccessful 5(4)
INT ERRUPT INTENTIO}\IALLY Fnabled 12(8)
AND PRESERVE PCW Disabled 18(12)

3/10/61 A

9.2.3 Transmit and Swap Instructions

Instructions Basic time Basic time
single operation multiple operation

TRANSMIT 11(8) 13(8) + 4W

TRANSMIT TILL MATCH/CLASH 20(16) 20(14)+ 5w

TRANSMIT HALF-WORD : 11(8) -———

SWAP 16(13) ———-

SWAP HALF-WORD 17(13) S—
Where W is the number of words transmitted.

The multiple-word transmission instruction times do not include
the initial indirect addressing to the control words. The control words are
kept in the processor registers, and hence do not have to be fetched and
stored after each word is transmitted. Each refill of a control word requires
3(2) usec for the first field or 2 usec for the last field.

TRANSMISSION EXAMPLES

Transmit a block of ten words, the last field only indirectly
addressing a control word.

Calculation = 13(8) + 10x4 + (3)2 = 56(50) usec

Transmit three blocks of ten words each, to a thirty-word
area, the first field being indirectly addressed.

Calculation
Transmit = 13(8) + 30x4 + 2 = 135 (130)
Refill = 2x3(2) = 6 (4)
Total time (usec) = 141 (134)

9.4

3/10/61 A

9.2.4 Fixed-Point Arithmetic Instructions
Instructions Basic time
LOAD 14(10) + N(0)
ADD . 14(10) + N(0) +[N,(0) + 7(5) R
CONVERT 18(14) + [22+ 3N Ny
NUMERIC COMPARE 14(10) + N(0)
ADD AND PLACE 23(18) + N(0) + E\II_(O) + 7(5] R
Hexadecimal 23(18/N,, [6+NJ
FRACTIONAL MULTIPLY {Decimal 23(18)+N,, [10+3N]
Hexadecimal 23(18)* N, [6+N]
Decimal 23(18)+N, [18+12N_]
D 2
TVIDE {Hexadecimal 23(18)+N, [18+4N
Where N is the number of digits in the longest field addressed,
Nf is the number of digits in the first field addressed,
Nm is the number of digits in the middle field addressed,

NA is the number of digits in the last field addressed, and

R is one or zero accordingly as recomplementation is or
is not required. (Recomplementation is required if the effective signs of
the operands differ and the first operand is greater in absolute magnitude
than the second.)

. In the above formulas, quantities in brackets are factors of a
product; those in parentheses are lower bounds (due to overlap) on the im-
mediately preceding numbers. In calculating the number of digits in the

various fields addressed, the sign byte should not be included. Processing
of the sign, whether present or implied, is included in the fixed-point times.

The following times must be added whenever eight-bit byte,
half-word, or full-word boundaries are crossed.

Field Eight=bit Half-word Full-word
Instructions addressed boundary boundary boundary
LOAD, ADD, CONVERT, First - 3(2) 3(2)
NUMERIC COMPARE, and Middle 3(2) -—- -—-
ADD AND PLACE '‘Last --- 3(2) 6(4)
MULTIPLY, and First -—- 2N, 2N,
FRACTIONAL MULTIPLY Middle 2 -—- -
(decimal) Last -—— 2N, 8(6)N,.
MULTIPLY, and First --- 3(2)Ny, 3(2)Ny,
FRACTIONAL MULTIPLY Middle 2 -—- -—-
(hexadecimal) Last - 3(2)N., 9(6)N,.
First 8N, 8N 4
DIVIDE (decimal) Middle --- 8N, 8N p
Last - .
First --- 12(8)N,. 12(8)N 4
DIVIDE (hexadecimal) Middle -—- 12(8) Ny, 12(8)N 4
Last -—— -—- -—-
Where N, is the number of digits to the right of the boundary specified.

The sighed-unsigned, byte, sign-inversion, and vary modifiers

do not influence fixed-point instruction times.

The count modifier will add

7(5) usec to the instruction time; plus 2 usec if a refill is required.

FIXED-POINT ARITHMETIC EXAMPLES

Accumulate the sum of nine unsigned fields, eight of which
are in the first address position and one in the last address

position.

Assume that the first field, of seven-digit length,

crosses a half-word boundary and that the last field, of 11-digit
length, crosses a full-word boundary.

Operation performed

ADD

Cross half-word boundary (1st field)
Cross full-word boundary (last)

Store initial CW
Update CW

9.6

Calculations

8x14(10) - 7x5(4) + 8x11(0) + 2
8x3 (2)
8x6 (4)

3 (2)
8x6 (4)
Total time (usec)

167(54)
24(16)
48(32)

3(2)
48(32)
290(146)

nu

]

3/10/61 A

Note: If the first and last fields were positioned more suitably,
48(32) usec could be saved, ‘

Add a constant field (middle address) to a series of fifty fields
(first address) and place the result in a series of fifty fields (last
address). Assume that the first and last fields cross no half- or
full-word boundaries, and that the middle field crosses only one
eight-bit boundary (best case). All fields have four digits.,

Operation performed Calculations

ADD AND PLACE 50x23(18)«49x14(12)+ 50x4(0)+ 5(4)= 669(316)
Cross eight-bit boundary 50x3 (2) = 150(100)
Store initial CWs 2x3 (2) = 6(4)
Update two CWs 50x10(8) =500(400)

Total time (usec) = 1325(820)

Fractional multiply (hexadecimal) the first field (16 four-bit
bytes; fifteen digits and a sign) by the middle field (16 four-bit
- bytes; fifteen digits and a sign), and place the result in the last
field (16 four-bit digits; unsigned). Let each field occupy a full
word.

Operation performed Calculations

FRACTIONAL MULTIPLY 23(18) + 15[6(4) + 15] =338(303)
Cross half-word boundary 15x3(2) + 8x3(2) = 69(46)
Cross eight-bit boundary x2 = 14(14)

Total time (usec) = 411(363)

9.7

3/10/61 A

9.2.5 Floating-Point Arithmetic Instructions
Basic time - Basic time

Instructions (8-digit precision) (12-digit precision)
ADD 26(12) 34
RESET AND ADD 26(12) 34
MULTIPLY 100(28) 280
DIVIDE 274 ' 880
LOAD ACCUMULATOR 7(6) 7(6)
STORE ACCUMULATOR 7(6) 7(6)
Operations
Normalization 14(4)Ny+ 6(4) 14(4)Ng + 6(4)
Recomplementation 20(6) 24(6)
Normalization and recomplemen-

tation 14(4)Ng + 20(10) 14(4)N0 + 24(10)
Where N@ is the number of digit positions to be normalized.

For all floating-point instructions certain conditions, such as
propagated extremum, cause the instruction to be terminated early. If the
fractional part of the accumulator is unaltered, such early terminations
result in an instruction time of 12-14 usec. If the accumulator fraction is
replaced, the instruction time is 18-20 usec. Reference to the section in
Chapter 5 on the treatment of numbers outside the normal exponent range
will determine whether or not the accumulator fraction is altered.

For floating-point instructions, no additional time is required
when operands cross half-word boundaries. For one level of indexing add
7(2) usec. For more than one level of indexing, the last level takes 7(2)
usec and all earlier levels 9(4) usec. ‘

FLOATING-POINT ARITHMETIC EXAMPIL.E

Add in the relocation mode two levels of indexing and one
level of indirect addressing.

Operation performed Calculations
ADD (32-bit fraction) = 26(12)
Index = 9(4)
Relocate = 3(2)
Indirect = 3(2)
Index = 7 2)
Relocate = 3(2)
Total time (usec) = 51(24)

9.8

3/10/61 A

9.2.6 Logical Instructions
Instructions Basic time
CONNECT /BYTE CONNECT 13(10) + N(0)
CONNECT/BYTE CONNECT TILL MATCH/CLASH 22(18) + N(0)
CONNECT/BYTE CONNECT FOR TEST 13(10) + N(0)
CONNECT/BYTE CONNECT FOR TEST TILL
MATCH/CLASH 22(18) + N(0)
CONNECT/BYTE CONNECT AND PLACE 22(18) + N(0)
TRANSLATE 20(16) + 3(2)N:
* TRANSLATE WITH CARRY LEFT/RIGHT 21(17) + 3(2)N
ALPHAMERIC COMPARE 13(10) + Ny, (0)
Where N is the number of bytes in the shortest field or record

addressed, and

N, is the number of identical high-order bytes in two
operands.

The following times must be added wherever half-word and
full-word boundaries are crossed.

Field Eight-bit Half-word Full-word

Operations | addressed boundary boundary boundary
. First -—- 2 2
Translation Last L 2 5(4)
| First -—— 3(2) 3(2)
All others Middle 3(2) -—- ---
Last -——— 3(2) 6(4)

TRANSLATION EXAMPLE

Translate 80 eight-bit characters from one code to another,
both fields starting on full-word boundaries.

Operation performed Calculations
TRANSLATE 20(16) + 80x3(2) + 5(4) = 265(180)
Cross boundaries 19x2 + 10x2 + 9x5(4) = 103(94)
Update CWs 10x10(8) = 100(80) -
Store initial CWs 2x3(2) = 6(4)
Total time (usec) = 474(358)

Note: if both the first and last fields did not cross a word boun-
dary at the same time, the updated CWs time would be 10x6(4)+ 10x6(4).

9.9

3/10/61 A

9.2.17 Input-Output Instructions

Instructions Basic time
START CHANNEL 9(7)
RELEASE CHANNEL 11(9)

Control-Word Operations

Read or S Simplex channel 3(2) + 2B+ 13(11) W
ead or sense Multiplex channel 3(2) + 12(9)B
‘ Simplex channel 7(6) + 2B + 16(14)[W- 1]
Write or Control Multiplex channel 3(2) + 12(9)B
Where B is the number of bytes processed, and

W is the number of words processed.

Attention Signals

Channel not busy (Including storage of instruction byte) 14(11)

Channel busy Simplex channel with Write or Control 11(8)
Otherwise 7(3)

Operations

End (bits 29 and 30 of CW set 00 or 10

regardless of SNT command) 8(6)
Store interruption byte for input-output termination | 8(6)
Refill (bits 29 and 30 of CW set 01 or 11) 6(4)
Restart (bits 29 and 30 of CW set 10) 8(5)

Normally, each refill of an input-output control word requires
3(2) usec. However, if an operation ends before all data word areas (defined
by 01 or 11 codes) are used, each refill required before a control word con-
taining a zero in bit 30 is reached, will require 8(6) usec.

9.10

3/10/61 A

The skip flag does not influence the execution time of any
input-output instruction.

The Attention signals refer to signals initiated at the input-output
units themselves. The time required to store interruption codes resulting
from Attention signals is included.

The times quoted refer to the time during which storage and/or
processor are engaged by input-output activities. The real-time elapsed
between the beginning and the end of an input-output operation depends on the
units addressed.

INPUT-OUTPUT EXAMPLE

An input-output chain of Read's on a simplex channel.

Setting of

Commands bits 29, 30 SNT
Control (select) 10 On
Read 01 --
Read (750 characters) 01 --
Read 10 Off
Read (1000 characters) 10 Off
Control (rewind) 00 On
Operations performed Calculations
START CHANNEL = 9 (1)
Control 7(6) + 2x2 + 16x0 = 11 (10)
End = 8 (6)
Refill CW = 8 (5)
Read 3(2) + 750x2 + 94x13(12) = 2725(2630)
End = 8 (6)
Refill CWs ‘ 2x6(4) + 8(5) = 20 (13)
Read 3(2) + 1000x2 + 125x13(12) = 3628(3502)
End = 8 (6)
Refill CW : 8 (5)
Control 7(6) + 1x2+ 16x0 = 9 (8)
End = 8 (.6)
Store two End bytes in interruption stream = 16 (12)

Total time (usec) = 6466(6216)

9.11

3/10/61 A

9.2.8 Time Clock and Interval Timer

The interval timer is updated every 1/1024 of a second and the
time required for this updating is 10(7) usec. The time clock, updated
approximately every 1/10 of a second, is advanced simultaneously with the
interval timer, and hence has no call on machine time.

9.12

3/10/61 A

8.8 MARGINAL CHECKING

Jack plugs have been provided in the processor so that a
portable buck-boost d-c supply can be connected in series with the -12
volt power supply for two independent sections of the processor.

INITIAL
STATE

START KEY 1

LOAD
16—30

!

SCAN IN |
16—30

!

CYCLE

Figure 8.8 - Loop rhode

APPENDIX I

8106 INSTRUCTION CODE

When an option exists between choices of a modifier, the first
mentioned option is indicated by a zero in the appropriate bit position. The
symbol used in a bit position always indicates that the second of the two
choices is used when the bit is a one. Bit positions marked z may be set to

either one or zero.

ONE -ADDRESS INSTRUCTIONS

Bits 24-31

Floating-Point Arithmetic (indexed)

iua 01 n
i

C

- -_— 0 O

[

= =)

Direct-Indirect
Normalized-Unnormalized
Sign-Absolute
Positive-Negative

RESET ADD

ADD

MULTIPLY

DIVIDE

Accumulator Operations {indexed)

iz 0 0 01
i

C

_——0 O

Decision Operations

iz 0 0 0O
i

C

O = O

C

— O e O

(o]

_——O O

Direct-Indirect

LOAD ACCUMULATOR

STORE ACCUMULATOR

STORE EFFECTIVE ADDRESS, FIRST
STORE EFFECTIVE ADDRESS, LAST

Direct-Indirect

INTERRUPT INTENTIONALLY
LOAD CONDITION REGISTER
BRANCH IF ANY

BRANCH IF NONE

Control-Word Operations (indexed)

iz 100 c
i

o OO OO

C

——0 O =~ = OO

o]

_ O O OO

Direct-Indirect

REFILL FROM ADDRESS

REFILL

DIMINISH COUNT

DIMINISH COUNT AND REFILL

INCREMENT ADDRESS

INCREMENT ADDRESS AND REFILL

INCREMENT ADDRESS AND DIMINISH COUNT

INCREMENT ADDRESS, DIMINISH COUNT,
AND REFILL : '

TWO-ADDRESS INSTRUCTIONS
Bits 24-31 Bits 56-63
Integer Arithmetic

i 8ul 01 c¢cc i 8 uoOdnocyv
i i Direct-Indirect
8 8 Four-Eight
u u Signed-Unsigned
d Hexadecimal-Decimal
n Positive-Negative
c Count
v Vary
LOAD
ADD
CONVERT
COMPARE

—_——0 O
O =~ O

Connective Operations

i 81 1 0 00 c¢c izt 0 x x x x

i i Direct-Indirect
8 Four-Eight
t Store-Test
X X X X Connective code
z 0 CONNECT
8 1 BYTE CONNECT

Alphameric-Comparison Operations

iz 110010 iz 2 0 2z 2z z =z
i i Direct-Indirect

Transmission Operations

iz 01 0 010 iz 2 0 2z 2z c h

i i Direct-Indirect
h Full word-Half word
0 TRANSMIT
1 SWAP

Decision Operations

izOlOOccizzOzzzz

i i Direct-Indirect
0 0 INTERRUPT INTENTIONALLY
AND PRESERVE PCW
0 1 BRANCH IF ANY AND
PRESERVE PCW
11 BRANCH IF NONE AND

PRESERVE PCW

Channel Operations

izllOOllizzOzzzc

Direct-Indirect
0 START CHANNEL
1 RELEASE CHANNEL

L~V

THREE-ADDRESS INSTRUCTIONS

Integer Arithmetic

i
i

Connective Operations

Bits 24-31

8 u 1

8

8 1

8

00N N N

1

1

1

1

c

-0 O

C

— O O

0 ¢ ¢

OO

= O =~ O

Translation Operations

i
i

Transmission Operations

i

8 0

8

8 0

8

1

1

1

1

0

0

c
0
0
1

1

C

[

0

i
i

i

Bits 56-63

8 ul z z z z

8

0 0 o N

C

0O 0NN

z 1 z z z z.

(o

l z z z z

l z z z =z

i

i

i

Bits 88-95

8 u 0 d n ¢ v

z t 0 x x x x

X X X X

8 z 0 z z 2z =z

z z 0 z z z z

Direct-Indirect
Four-Eight
Signed-Unsigned
Hexadecimal-Decimal
Positive-Negative
Count

Vary

ADD AND PLACE
FRACTIONAL MULTIPLY
MULTIPLY

DIVIDE

Direct=Indirect

Four-Eight

Match-Clash

Store=-Test

Connective code

CONNECT AND PLACE

BYTE CONNECT AND PLACE
CONNECT TILL MATCH-CLASH
BYTE CONNECT TILL MATCH-CLASH

Direct=-Indirect

Four-Eight

TRANSLATE

TRANSLATE WITH LEFT CARRY
TRANSLATE WITH RIGHT CARRY

Direct~Indirect
Four-Eight
Match-Clash

DATA PATHS
L ! 1
\Lr \L bl ' ' M
¢
9
L
[2 £
. J0 1/0 & -> /0
8 : |
o) —
] o OI T WO f>\ZO tn O+
WO ; b
| Wz ‘f; lSW\}TCti- O-D—@ |
4 W3 5 PNt ZOLU ;
ZIR i ?
W
SwW4 [[
¢ il N +[*2
MAR CAWRTE) NVAETD !
/T)(‘m T Zl REFILL ' 1/
EA. ' 14
® 9
9
W 2
])
| [in P LU 4o
‘ vYY 9y XY STRAL
T U \J I T 2 1 3 e]
| Qopreds | Zeaws |P X Y E|pRE ,MASK, * COUNT " 7
o %< WU |
L] 4 =
)< T i DOQ
N 1)
+ — i L
O IX
L \k TRUE OR _COMPLEMENT 1 —
v =10 IX *
| f 31 | g - %
‘ ” 3 [§
[VAT
D T T T3 CA A o "1 Tz T3
| P T
ot N\\ 1/4'/ 74 4
ch O <‘ W Ix ’ 1.*) i
' Py
[
T | l T é S j|7 r AvZ . 2
O 1 J 1 Z 1 3 CB B) 1 1 3
S P e —.
Q< pO
o l\ X 1/1// —0 .4
ﬁfc = |x\>qﬁ/;x 9
X >
é[> , \l ——% [
[1]] 1 CC
o s - |
ba |
5 '
INTERNATIONAL BUSINESS MACHINES CORP. DATE CHANGE NO. DATE CHANGE NO. NOTE DEVELOPMENT NO.
v ne[SYSTEMS DIAGRAM < X anvatobsgésgc.‘no.
PRESERVE DESIGN mooel] BIOG
CONTROLS « DETAIL

CHECK oraW [T [3-14-Gl
APPRO CHECK

.8, CO. NO. 378W 41748

<« Fold out

Appendix II - Data flow paths in the 8106

A - 12

APPENDIX II

DATA FLOW PATHS IN THE 8106

APPENDIX III

CORRECTIONS TO THE MANUAL AND MACHINE CHANGES

6/15/61 A

This appendix contains final corrections to the manual and
machine changes to document the current state of planning in the 8106.
Some of the corrections are "rewrites' to clarify or re-emphasize a point;
others are changes in hardware. KEach correction is stated, then the ap-
propriate sections of the manual are rewritten to incorporate the change.
The rewritten material is designated by page number and line number from
the top (counting all headings and lines) so that the holder of a manual may
paste the correction over the original copy, if desired.

Hardware Change--CONVERT Instruction

Bit 28 of the last half-word of instruction refers to the radix
of the middle field. If bit 28 is zero, conversion is from decimal to hexa-
decimal; if one, vice versa.

(p 4.4, replace paragraphs starting at line 6)

In the last half-word of instruction, bit 28 specifies whether the
radix is decimal (1) or hexadecimal (0). In the CONVERT instruction, bit
28 of the last half-word refers to the radix of the middle field. If bit 28 is
zero, conversion is from decimal to hexadecimal; if one, vice versa. Bit
29, in conjunction with bit 26 of the first half-word of instruction, deter-
mines the effective sign of the first operand, as described under Sign Control.

Finally, bits 30 and 31 of the last half-word of instruction are
the count and vary modifiers, respectively.

(p 4. 10, replace paragraph starting at line 28)

The CONVERT operation enables data to be converted from
decimal to hexadecimal, or vice versa. The data field addressed by the
first effective address is converted as an integer from decimal to hexa-
decimal if the radix modifier is zero; and in the opposite manner if the
modifier is one. The result is placed in the field specified by the last
effective address. If the last field is not large enough to contain the signi-
ficant digits of the result, the Oversized Result indicator will be turned on.
Note that bit 28 of the last half-word of this instruction refers to the radix
of the middle field.

A-15

6/15/61 A

Clarification--ADD and ADD AND PLACE Instructions

A zero result in an ADD or an ADD AND PLACE instruction
will have the sign of the second field.

(p 4. 10, replace paragraph starting at line 23)

The sign modifier and the signed-unsigned modifier provide
means for performing subtraction and absolute-value operations. A zero
signed result will have the sign of the last field.

(end of paragraph)

(p 4.11, replace three lines starting at line 18)

Subtraction and absolute-value operations may be performed,
as in ADD. A zero result will have the sign of the middle field.
(end of paragraph)

Clarification--Condition Register Setting

The zero-result bit in the condition register will be turned on
if the result field (A) is zero, even if the Oversized Result indicator is on.

(p 4.8, replace paragraph starting at line 9)

Bit 1 is on when the arithmetic result is zero (plus or minus)
even if the Oversized Result indicator is on. Also, bit 1 is on in
numeric-comparison operations when the second operand is equal to the
first (plus zero = minus zero).

{end of paragraph)

Hardware Change--Instruction Codes

Interchange the codes for FRACTIONAL MULTIPLY and ADD
AND PLACE. '

(p A-T7, interéhange codes starting at line 12)

01 (for ADD AND PLACE)
00 (for FRACTIONAL MULTIPLY)
A-17

6/15/61 A

Hardware Change--Programmed Scan

If the processor is disabled, the input-output operation START
CHANNEL 1 will initiate the sequence of system operations scan-in, cycle,
and scan-out. Processing will then be resumed with a new program control
word obtained from location 16. If the processor is enabled, a START
CHANNEL 1 instruction will cause a Channel Not Operational alert.

(Correction to p 7. 6 has been combined with another
correction for that page)

(p 8. 14, replace three lines starting at line 9)

If the input-output instruction START CHANNEL 1 is given
when the system is disabled, the programmed scan procedure shown in
Figure 8.4 is executed.

(p 8. 14, replace three lines starting at line 18)

location 16. If the processor is enabled, a START CHANNEL 1 instruction
will cause a Channel Not Operational alert.
(end of paragraph)

Clarification--Storage and CPU Thermal Lights

The Storage and the CPU Thermal Lights will turn on before
the thermal-protection switch (which shuts off all power) is tripped.

(p 8.2, add to end of the page)

The Storage Thermal Light and the CPU Thermal Light will
turn on before the thermal-protection switch (which shuts off all power)
is tripped.

A-19

6/15/61 A

Hardware Change--Time Signal and Interval Timer

The input-output instruction START CHANNEL 0 causes the
contents of the Interval Timer to be decremented by one every millisecond.
When the count reaches zero, the Time Signal interruption will be stored
in the interruption stream. The decrementation continues. Decrementation
of the Interval Timer is stopped when the input-output instruction RELEASE
CHANNEL 0 is executed. When in operation, the Interval Timer consumes
approximately one per cent of the available time: When inoperative, no
time is consumed by the timer.

(p 7.6, replace paragraphs starting at line 1)

START CHANNEL (SRT), START CHANNEL 1, and 0

The START CHANNEL instruction initiates the sequence of
input-output operations specified by the chain of control words which it
addresses. If the addressed channel is busy or not operational, the appro-
priate interruption code is stored and no operation is initiated.

The instruction START CHANNEL 1 initiates a programmed
scan procedure if the processor is in the disabled mode. If the processor
is enabled, this instruction causes a Channel Not Operational alert.

Another instruction--START CHANNEL 0--causes the contents
of the Interval Timer to be decremented by one every millisecond. When
the count of the timer reaches zero, a Time Signal interruption will be
stored,

RELEASE CHANNEL (RLS) and RELEASE CHANNEL 0

If the addressed channel is busy, RELEASE CHANNEL causes
information transfer to be terminated immediately. Any alert which results
from an input-output operation terminated by this instruction is not sup-
pressed. The first address given in this instruction is not used in the
operation, but it may cause an Empty Address alert if the instruction occurs
in the relocation mode.

The instruction RELEASE CHANNEL 0 terminates the decremen-
tation of the Interval Timer.

(p 3.21, replace paragraph starting at line 27)

This is code 4 and it is stored when the value of the Interval
Timer goes from one to zero. Decrementation of the timer can be initiated
by the special instruction START CHANNEL 0 and can be stopped by the
special instruction RELEASE CHANNEL 0.

- - . = = = - -

A-21

6/15/61 A

(Continued--hardware change on the interval.timer)
(p 2.36, add to end of page)

The input-output instruction START CHANNEL 0 initiates the
decrementation of the Interval Timer by one every millisecond. Decremen-
tation of the timer is stopped when the instruction RELEASE CHANNEL 0
is executed. During operation, the Interval Timer consumes approximately
one per cent of available time. When inoperative, it consumes no time.

Clarification--Unended Sequence (US)

Interruption code 7 is stored when any operation is not completed
in one-tenth of a second; for example, if a START CHANNEL or RELEASE
CHANNEL instruction is still indirecting after the time limit.

(p 3.22, replace three lines starting at line 9)
This is code 7 and it is stored when any operation is not completed

in one-tenth second, due, for example, to an unended sequence of refill ad-
dresses or indirect-addressing references. The operation is terminated.

Clarification--System Mode Switch

The System Mode Switch is a six-position rotary switch used to
select the system mode. The normal mode is used for production operation.

(p 8.4, replace paragraphé starting at line 1)

8.2.2 System Mode Switch

This is a six-position rotary switch used to select the system
mode. The modes are listed below along with their uses.

NORMAL Mode

The normal mode is used for normal production operation. It
is discussed in section 8.4 .

A-23

6/15/61 A

(Cont inued--syst em mode switch clarification)
(p 8.10, replace line 15)

depressed. The system must be placed in the normal mode.

(p 8.10, replace line 21)

in the normal mode are illustrated in Figure 8.4

(p 8.11, change caption of figure)

Figure 8.4 - The normal mode

(p 8.13, replace paragraph starting at line 9)

Malfunctions are detected only when the processor is executing
instructions or input-output operations in the normal mode. The program
is restarted after the recording operation.

(delete rest of paragraph)

(p 8.3, correct Figure 8.1 by deleting the refe-
rence to AUL on the scan mode switch)

(p 8.11, correct Figure 8.4 by deleting reference
to AUL, the connecting lines to and from the block
labeled UNLOAD 16-30, and the block itself.)

A-25

6/15/61 A

Clarification--Fixed-Point Instructions

The multiple-field feature is available for all fixed-point
instructions, except DIVIDE. Only with an ADD, a LOAD, or a NUMERIC
COMPARE instruction may either the first operand or the last, or both,
employ the multiple-field format.

(p 4.3, replace paragraph starting at line 11)

The multiple-field feature is available for all fixed-poitit
instructions, except DIVIDE. Only with ADD, LOAD, or NUMERIC
COMPARE may either the first operand or the last, or both, employ a
multiple-field format. With CONVERT, ADD AND PLACE, MULTIPLY,
or FRACTIONAL MULTIPLY, the first and last operand must be in the
same format; both must be single fields or multiple fields. When one of
the operands in these four instructions is a single field, the instruction
will terminate after a single operation. The middle address of a three-
address instruction cannot refer to a multiple field. Should the middle
address refer to a long data description, only the left half-word will be
used as a short data description.

Clarification——Selecting the Four Bits of an Eight-Bit Byte

In the eight-bit mode, the low-order bit of the limit address
determines which four bits of the eight-bit byte are to be used in numeric
processing.

(p 4.5, replace paragraph starting at line 7)

The low-order bit of the byte and limit addresses is ignored
in addressing the eight-bit byte. In the eight-bit mode, the low-order bit
of the limit address determines which four bits of the eight-bit byte are to
be used. The left or right four bits of the eight-bit byte will be used
accordingly as the low-order bit of the limit address is zero or one.

 m mn e r . - me . e -

A-27

6/15/61 A

Clarification--System Panel

A system panel is provided for manual operation of the system
by an operator or customer engineer. This panel can be located on the
right-hand side of the universal console, or it can be located in an indepen-
dent unit which contains a suitable plug for connection to the main frame.

(p 8.1, replace paragraph starting at line 18)

A system panel is provided for manual control of the system
by an operator or customer engineer. The panel can be located on the
right-hand side of the universal console, or it can be located in an indepen-
dent unit which contains a suitable plug for connection to the main frame.
The panel contains the keys, switches, and lights necessary to control the
processor, the power supplies, and the scanner. A set of lights indicates
the state of the system and signals the operator if a malfunction occurs
f rom which the processor cannot recover automatically. A complete set
of controls is provided for the manual location of faults in the scanner
controls by means of a single-cycling technique, and similar but rudimen-
tary controls are provided for the processing and input-output controls.
Facilities have also been provided for executing any operations or part of
an operation repeatedly so that an oscilloscope can be used to locate faults.

6/15/61 A

Clarification--Chapter 5, addition of a page, 5.13

The Sign of a Zero Exponent

In cases where normalization causes a zero exponent, the sign
of the exponent is the same as that of the nonzero exponent before norma-
lization. Where no normalization is required, the sign of a zero exponent
is the same as that of the exponent of the operand originally in the accumu-
lator, with two exceptions. One, ih ADD, if the addressed operand has a
zero exponent, and the exponent of the accumulator operand is less than
zero, the sign of the zero exponent is preserved. Two, in RESET ADD,
the sign of a zero exponent of the addressed operand is carried into the .
accumulator. - ’

Operands with Zero Fraction
(follows last paragraph of section 5. 1.6)

An operand with a zero fraction and exponent in the normal
range will behave like any other number with a normal-range exponent.
However, a Generated Extremum Positive condition will take precedence
over a Generated Extremum Negative condition. For example, if the sum
of the exponents in a multiplication is greater than 255, the Generated
Extremum Positive indicator will be turned on. The Generated Extremum
Negative indicator will not be affected, in spite of the fact that if the multi-
plication were completed a zero fraction would result.

6/15/61 A

Clarification--FRACTIONAL MULTIPLY Instruction

The correct operation of FRACTIONAL MULTIPLY requires
that the field addressed by the first effective address contain the same
number of digits as the result field addressed by the last effective address;
e.g., a first field consisting of eight 8-bit bytes (eight digits) with a last
field of sixteen 4-bit bytes (sixteen digits) will turn on Oversized Result.

(p 4.9, replace paragraphs starting at line 1)

The indicator will also be turned on if a negative result arises
when an unsigned result has been specified. Oversized Result will be
turned on in FRACTIONAL MULTIPLY if the number of digits in the field
addressed by the first effective address differs from the number of digits in
the result field addressed by the last effective address. Oversized Result
will also be turned on if the number of digits in the middle effective address
is not a multiple of the field addressed by the first effective address.

Zero Divisor

This indicator is turned on when a divisor is zero. The opera-
tion is suppressed, except that the sign byte is placed in a signed quotient
field.

(p 4. 12, replace paragraph starting with line 11)

Correction operation of this instruction requires that the field
addressed by the first efféctive address contain the same number of digits
as the result field addressed by the last effective address; e.g., a first
field consisting of eight 8-bit bytes (eight digits) and a last field of sixteen .
4 -bit bytes (sixteen digits) would be incorrect. Also, the number of digits
in the field addressed by the middle effective address must be a multiple
of the number of digits of the first field. If either of these conditions is
not met, Oversized Result will be turned on.

Editor's Error--Operand Designation

(p 2.1, replace paragraph starting with line 28)

To permit operations which require one, two, or three addresses,
a variable-length instruction format is used. Instruction addresses may be
modified by indexing or indirect addressing.

A-31

APPENDIX 1V

THE IBM 8104 DATA PROCESSING SYSTEM

A-33

THE IBM 8104 DATA™PROCESSING SYSTEM

1. Description

The IBM 8104 will be the smallest scientific member of the
8000 series of systems compatible with the IBM 8106. While basically
a scientific computer, the data-processing ability of the 8104 will be such
that it can be used for either scientific or data-processing applications.
The system can operate in either single- or double-precision mode, and
the programmer can specify the mode through the program control word.

The single-precision format occupies a half-word--32 bits
with a 24-bit fraction, and the double-precision format occupies a
full” word--64 bits with a 48-bit fraction. Thus, to change precision, the
programmer will at most reassembleé his program and modify his data.
Furthermore, prior to running a single-precision 8104 program on the
8106, the programmer will have to reassemble his data and place it in
the double'—precision format. All programs not using single-precision
floating point will be load-deck (i.e., binary) compatible with the 8106.

Assuming a 40 per cent use of single precision and a 60 per
cent use of double precision, the 8104 will have a performance of approxi-
mately 1, 2 times that of the IBM 709 on a '""Gibson'' mix,

2. Instruction Set
The instruction set of the 8104 will be a subset of the 8106
instruction set, and will utilize the same machine codes. The following

is a list of the 8104 instructions and modifiers.

One-Address Instructions

FLOATING ADD -- Modal
FLOATING MULTIPLY -- Modal
FLOATING DIVIDE -- Modal
LOAD ACCUMULATOR -- Modal
STORE ACCUMULATOR -- Modal
INCREMENT ADDRESS

DIMINISH COUNT

INCREMENT ADDRESS AND DIMINISH COUNT
LOAD CONDITION REGISTER
BRANCH IF ANY

BRANCH IF NONE .

INTERRUPT INTENTIONALLY

A-35

Two-Address Instructions

ADD

NUMERIC COMPARE

TRANSMIT

TRANSMIT HALF-WORD

BRANCH IF ANY AND PRESERVE PCW
BRANCH IF NONE AND PRESERVE PCW
INTERRUPT INTENTIONALLY AND PRESERVE PCW
BYTE CONNECT

CONNECT

BYTE CONNECT FOR TEST

CONNECT FOR TEST

Three-Address Instructions

MULTIPLY

FRACTIONAL MULTIPLY

DIVIDE

TRANSLATE

TRANSLATE WITH RIGHT CARRY
TRANSLATE WITH LEFT CARRY

Instruction Modifiers

Direct-Indirect -- can be used with all instructions

Indexing -- same restrictions as in the 8106

Sign inversion -- can be used with all arithmetic instructions

Signed-Unsigned/Absolute -- can be used with all arithmetic instructions

Normalized-Unnormalized -- can be used with all floating-point instructions

Radix -- hexadecimal only

Vary -- can be used with fixed-point ADD

Byte size -- all logical instructions can specify a byte size of four or eight
bits. However, the following restrictions must be observed.
For the TRANSLATE instruction, the table and destination
field must specify the same byte size. TRANSLATE WITH
CARRY LEFT /RIGHT instructions must have a table byte
size of eight, and a source and destination byte size of four

Connectives -- all sixteen logical connectives are provided

A-36

When the precision-mode bit in the program control word is on
(i.e., the system is operating in the single-precision floating-point format)
all the one-address instructions designated '"Modal' in the list on page 1
will have their effective address shifted right one bit position (i.e., halved) -
when the address is placed in the storage-address register. The low-order
bit will be used to determine which half-word of the 32, 768 possible words
addressable by the remaining 15 bits is to be used. Thus, the 8104 can
address a possible 65,536 floating-point operands, regardless of the preci-
sion mode being used.

All fixed-point arithmetic instructions (ADD, MULTIPLY,

DIVIDE, and NUMERIC COMPARE) will operate only on half-word formats
(i.e., 32-bits). If unsigned arithmetic is specified, the sign byte, which
occupies four bits, is ignored. Variable field length is possible with all

of the logical connectives and the translation instructions. Fields operated
upon by the connectives must fall within a half-word, and fields operated
upon by the translation instructions must fall within a full word. All data
descriptions indirectly addressed by the 8104 will have bit 31 set to zero by
the assembly program. Thus, if an 8104 program is run on an 8106, the
data descriptions will be interpreted by the 8106 as short data descriptions.

The 8104 will have 255 index words, with indirect addressing
and indexing having the same relationship as in the 8106.

3. Operational Characteristics

All floating-point operations will use a 64-bit register accumu-
lator. An eight-bit serial adder will perform all arithmetic.

Storage will have an access time of 8 usec, and a storage word
will contain 32 information bits and 4 check bits. Two storage words will
. be required for one logical word. The minimum storage size will be 2, 048
logical words. Initially, the system will be offered with storage sizes of
2,048, 4,096, or 8, 192 logical words. ‘

The 8104 will have an interruption system like the one provided
in the 8106, with an interruption queue, and store and fetch interruption
control words. Program control words will be compatible with those of the
8106. There will be some form of storage protection on the 8104 which will
be compatible with the storage-protection concept of the 8106.

A-37

A minimum of four channels will be provided, all of which can
operate simultaneously. One will be used for a program-controllable
typewriter attached to the console as a standard device. Two of the chan-
nels will have a maximum data rate of at least 7, 000 bytes per second (bps),
and the fourth will have a maximum data rate of 50, 000 bps. The following
two channels are field installable: a second high-speed channel which can
operate alone at 50,000 bps and at a reduced rate if the other high-speed
channel is operating, and a multiplexing channel with a maximum data rate
of at least 7, 000 bps. "All input-output units will be connected to the system
through the DSD standard interface.

The input-output control words will have a count but no refill
address, nor will there be chaining between control words.

The operations and maintenance console will be a part of the
central-processing unit.
4, Installation Characteristics

A. The 8104 will be housed in a rack-and-panel arrangement.
Normal colors will be available.

B. Cabling and raised-floor requirements will be the same
as those for the 8106.

C. Power requirements will be approximately 3 kva. Voltage,
frequency variation, and transients will be the same as for the 8106.

D. Temperature, humidity, vibration, and shock limitations
will be the same as for the 8106.
5. Noise Criteria

The 8104 will not exceed the maximum noise level specified by
DSD Acoustical Standard 1-1-1710-6. '

A-38

APPENDIX V

THE IBM 8108 HIGH-SPEED FLOATING-POINT ATTACHMENT

A-39

6/8/61

THE IBM 8108 HIGH-SPEED FLOATING-POINT ATTACHMENT

1. General Description

The IBM 8108 will be an attachment to the IBM 8106 to provide
increased internal performance for all floating-point and indexing opera-
tions. Floating-point operations of the 8106 will utilize the 8108 to gain
speed, but will produce results logically and mathematically identical to
those achievable in the 8106 alone.

The following table indicates the increased performance
obtainable through attachment of an 8108 to the 8106 central-processing
unit (times are in microseconds).

8106 Instruction Time 8108 Instruction Time

8-digit 12 -digit 8 -digit 12-digit-

Instructions precision precision precision precision
RESET ADD 26 34 10 10
ADD 26 34 10 10
MULTIPLY 100 280 19 24
DIVIDE , 274 880 24 28
LOAD/STORE ACCUMULATOR 7 7 5 5
Operation

Indexing 7 7 3 3

The 8108 will act in lieu of, and not in addition to, the
floating-point arithmetic facilities of the 8106. The same set of
floating-point instructions available on the 8106 will operate in the
8106-8108 combination. Complete upward compatibility from the 8106
to the 8106-8108 combination will be the design objective. Thus the
operational characteristics will be identical with those described in
Chapter 5 of the current 8106 operating manual. In fact, the 8108 will
be strictly a parallel floating-point engine equipped with a double-length
(24 hexadecimal digits) accumulator, and facilities for sign and exponent
manipulation. All decoding of instructions, address modification other
than indexing, and transferring of data between the 8108 and storage in
the 8106 will remain the responsibility of the 8106; and the times for
such functions will remain unaffected.

A-41

6/8/61

2. Upwards Program Compatibility

All numeric quantities involved in the input to and output from
the 8108 will be identical to those involved in floating-point operations
on the 8106. The only possible program incompatibility acceptable will
be that due to the increased speed at which programs will be run in the
. 8108. Thus, a program executed in the 8106-8108 combination might
overtake an input-output operation and cause a condition that could not
exist in the 8106 system alone.

Since the 8108 will have a hardware accumulator while the 8106
has an implied accumulator at storage location prefix + 4, certain conditions
will be specified under which the 8108 accumulator will be stored at the
location prefix+ 4, and under which the location prefix+ 4 will be loaded
into the hardware accumulator, if strict program compatibility is to be
maintained. To this end a trigger will be provided which will be off or on
accordingly as the accumulator contents are in prefix+ 4 or in 8108 hard-
ware. The situations resulting from the shuttling of accumulator contents
between the 8108 accumulator register and 8106 storage location prefix+ 4
are described below.

a) The 8108 accumulator is stored in prefix+ 4 and the trigger
is turned off when --

1) the current instruction is multiple-address, or

2) there is an interruption.

b) The contents of location prefix + 4 are loaded into the 8108
accumulator and the trigger is turned on when the current instruction is a
floating-point or STORE ACCUMULATOR instruction.

c} The LOAD ACCUMULATOR instruction loads the 8108
accumulator and turns on the trigger.

The effect of these arrangements will be to leave the accumulator contents
in the 8108 accumulator registers for strings of floating -point instructions,
and to leave the 8108 accumulator register dormant for strings of
nonfloating-point instructions. '

Two minor areas of possible incompatibility are covered by
the following restrictions.

A-42

6/8/61

1) The 8108 accumulator register will be stored in location
prefix + 4 for any instruction, including a floating-point instruction whose
first effective address is prefix+ 4, whenever the trigger is on. This,
for example, preserves the legitimacy of squaring the contents of the
accumulator by means of a floating MULTIPLY instruction addressing
location prefix+ 4.

2) Index addresses 0, 1, 4, and 5 are rendered inoperative.
This answers any difficulties raised by attempting to index the backup
locations for the 8108 accumulator register.

The loading or storing of the 8108 accumulator will add 3 usec to the time
of the causative operation.

3. Double-Precision Arithmetic

To take advantage of the double-precision potential inherent in
the 8108 double-~length accumulator, a precision-mode bit will be provided
in the program control word. There will be no extra instruction codes,
but the floating-point instructions will be interpreted slightly different in
the double-precision mode. Factors common to all floating-point instruc-
tions in the double-precision mode are --

a) Whenever the high-order accumulator fraction and the
accumulator exponent are stored in location prefix+ 4, the low-order
accumulator fraction, furnished with the appropriate exponent, will be
stored in location prefix+ 5. If the accumulator exponent is less than or
equal to -244, the resulting floating-point number in prefix+ 5 will be in
the extremum negative condition. Similarly, whenever the contents of
prefix+ 4 are loaded into the 8108 accumulator, the contents of location
prefix + 5 will be loaded into the low-order accumulator. The exact con-
ditions under which this storing and loading take place have been described.

b) During normalization of a floating-point result, the entire
24-digit accumulator fraction is shifted. Only if the entire result fraction
is zero will the Generated Extremum Negative indicator be turned on and
the extremum bit be given a value of one.

c) There is no double-precision noisy mode and no eight-digit
double-precision mode.

d) Direct-indirect addressing, indexing, signed~unsigned, and

normalized-unnormalized modifications to the basic floating-point instruc-
tions will be available in the double-precision mode.

A-43

6/8/61

No special load or store instructions will be provided for the
low-order accumulator; the low-order accumulator fraction will be loaded
and stored by programming. A complete double-precision number may be
loaded into the accumulator by the LOAD ACCUMULATOR instruction
followed by an ADD instruction. The TRANSMIT instruction, whose first
address is prefix+ 5, will serve to store the low-order accumulator in an
‘acceptable amount of time (17 usec). ‘

With the double~precision mode, floating-point operations in
which double-precision results are obtained from double-precision
operands may conveniently be programmed.

A Comments pertinent to the individual floating-point instructions
and the LOAD/STORE ACCUMULATOR instructions are listed below.

LOAD ACCUMULATOR

This instruction will load the high-order accumulator and clear
- the low-order accumulator.

STORE ACCUMULATOR

, This instruction will store the high-order accumulator and
leave the low-order accumulator undisturbed.

RESET ADD

The low-order accumulator will be cleared at the start of this
instruction.

ADD

If the exponent of the operand from storage is greater than or
equal to the exponent of the operand in the accumulator, the double ~-precision
accumulator operand will be added to the single-precision storage operand
to give a double-precision sum. If, however, the storage exponent is less
than the accumulator exponent, the low-order fraction of the accumulator
operand will be lost. In this case, a single-precision accumulator operand

will be added to a single-precision storage operandto give a double-precision
sum.

A-44

6/8/61

MULTIPLY

The low-order fraction of the accumulator operand will be
ignored. A single-precision accumulator operand will be multiplied by a
single-precision storage operand to yield a double-precision product.

DIVIDE

A double-precision dividend in the accumulator will be divided
by a single-precision divisor from storage to yield a single-precision
quotient. The remainder will not be preserved, but may be obtained by
programming. At the completion of a division, the low-order accumulator
fraction will be cleared.

A-45

