The described control program dynamaically schedules the operational
activities performed by the 1BM 9020 multiprocessing system. Schedul-
wng 18 based on program execution requirements and allows dynamic
switching of Computing Element assignments.

Storage resources are dynamically allocated by the control program to
guard against the mutual interference of concurrent operations.

The trace capability of the control program s described because of its
importance to the checkout and evaluation of multiprocessor systems.

An application-oriented multiprocessing system

III Control program features
by J. A. Devereaux

In designing a control program for the 18M 9020 system discussed
in Part II of this paper, the main programming challenge was to
provide for the simultaneous operation of two or more Computing
Elements (processing units) without having one interfere with the
others. The obvious approach, that of preassigning specific func-
tions to each Computing Element, is too inflexible. In fact, any
scheme based on the habitual notion that Computing Elements
should be the focal point of control is apt to lead to inflexibilities.

In real-time applications such as the Federal Aviation Admin-
istration’s National Airspace System for enroute air traffic control,!
short response times are coupled with stringent reliability require-
ments to preclude a permanent assignment of specific jobs to spe-
cific Computing Elements. An approach that permits dynamic
scheduling of Computing Element operations is more appropriate
for the requirements of such a system. Accordingly, the design of
the control program for the National Airspace System is based on
the concept that programs are the focal point of control and that
Computing Elements are allocated to programs according to the
needs of the application.?

To implement this concept of operation, each application pro- organization
gram is broken down into units called subprograms. Each subpro-
gram is assigned an operational priority, and the priority itself is
represented by an appropriate entry in the control program’s sched-
uling table. If a subprogram is re-entrant — i.e., simultaneous-
ly available to more than one Computing Element — it occupies
multiple entries in the table, one for each instance of execution.

IBM SYSTEMS JOURNAL - VOL. 6 + NO. 2 - 1967 95

Figure 1 Relationship of NAS

programs

—>{ INTERRUPTION ’

CONTROL
PROGRAM

OPERATIONAL
ERROR
ANALYSIS

PROGRAM

OPERATIONAL
SUBPROGRAMS

flow of
control

control
program
re-entrance

96

Whenever a subprogram requires an instance of execution, an
available Computing Element is allocated according to the sub-
program’s priority. The appropriate scheduling table entry is
updated to reflect the allocation. With the aid of its scheduling
table, the control program ensures that the subprogram operations
of a given Computing Element do not conflict with each other or
with the operations of other Computing Elements.

Organizationally, the entire monitoring and control funetion is
accomplished by two system programs: the control program and
the Operational Error Analysis Program (oEap). Only the multi-
processing features of the control program are discussed here,
whereas the oEAP is described in detail in Part IV. The schematic
in Figure 1 shows the general relationship among system and ap-
plication programs.

In general, the control program gains control of a Computing
Element as the result of an interruption in a subprogram. After
appropriate action is taken by the control program, control is either
returned to the interrupted subprogram or to another subprogram,
depending upon the type of interruption and subprogram priority.
Error indications are passed on to the Operational Error Analysis
Program, which identifies the malfunctioning element and passes
its identity back to the control program to effect system recovery
and resume normal processing. The approach to system recovery
is fairly straightforward; if an element has failed, it is replaced with
a redundant element through reconfiguration control. During nor-
mal system operation, checkpoints are established and critical data
are stored on magnetic tape. In the course of a recovery operation,
data for the last checkpoint are used to reload suspect Storage
Elements. To avoid possible confusion, only one Computing Ele-
ment is active during the recovery process; others are held in the
wait state until normal operation has been resumed.

During subprogram execution, all interruptions are enabled (per-
mitted to occur) and the subprograms operate in the problem state.
The interrupt-service routines of the control program, on the other
hand, are executed with interruptions disabled. Thus, once inter-
rupted, a given Computing Element will not be interrupted again
until the current interruption is processed. Although this limits
the number of possible simultaneous instances of control program
execution to one per Computing Element, the possibility of simul-
taneous instances of control program execution by different Com-
puting Elements places other restrictions on the design of the con-
trol program. The principal restriction is that routines that are not
re-entrant, as well as routines that access common control data,
must be protected against overlapped execution. This protection
is provided with the aid of the TEST AND SET instruction. If the
code or data related to the TEST AND SET instruction are not avail-
able (i.e., are already allocated for control program execution by
another Computing Element), the waiting Computing Element
loops until the desired code or data are available. To preclude a
hung system, countdowns are built into the TEST AND SET loops,

J. A. DEVEREAUX

Figure 2 Dynamic scheduling

EVENTS 1 2 3 4 5
T T T T
CONTROL PROGRAM [‘
SUBPROGRAM A
Y
SUBPROGRAM B ./
|-
SUBPROGRAM A
OPERATION CONTINUED
BY AVAILABLE CE

TIME ——»
COMPUTING ELEMENTS EVENT DESCRIPTION

1 CONTROL PROGRAM ASSIGNS CE2 TO SUBPROGRAM A
2 SUBPROGRAM A INTERRUPTION

3 CONTROL PROGRAM ASSIGNS CE1 TO SUBPROGRAM A
4 CONTROL PROGRAM ASSIGNS CE2 TO SUBPROGRAM B
5 SVC FINIS SUBPROGRAM A

CEl

CE2

N

allowing a loop to be bypassed after a reasonable delay. This en-
sures that Computing Elements will eventually reach a stage where
external interruptions are enabled so that an element failure can be
detected.

The operation of the system, as described thus far, is similar to
that observed in any single processor system using multiprogram-
ming techniques. However, there is a more interesting aspect of the
operation with multiple Computing Elements. While an interrupted
Computing Element is executing one of the interrupt routines of
the control program, an idle Computing Element can be allocated
to continue the execution of the interrupted subprogram. Poten-
tially, this form of dynamic scheduling can reduce the overall ex-
ecution time for the subprogram. An example of this is suggested
by Figure 2.

Overlapped operations, in general, imply a requirement for cen-
tral control of all common storage resources. One of the principal
implications of this requirement for subprogram design is that sub-
programs must use the storage allocation services of the control
program.

Dynamic storage allocation is implemented by SVC, the super-
visor-call instruction, which generates a distinctive interruption.
During its execution, let us say, a subprogram needs a particular
storage resource. At this point, the subprogram identifies its re-
quirements to the control program with the aid of SvC. If the
storage resource is available, the control program allocates the re-
source and returns Computing Element control to the subprogram.
When the subprogram no longer requires the allocated storage re-
source, it identifies the resource as available—again communicating

CONTROL PROGRAM

scheduling

dynamic
storage
allocation

97

98

Figure 3 Dynamic storage allocation
EVENTS 1 2 3 4 5 6 7 8

CONTROL PROGRAM = -
| B

SUBPROGRlAM A YR Y}

SUBPROGRAM B ; }

SUBPROGRAM B
SUSPENDED UNTIL
LOCK 1 {S AVAILABLE

TIME ——

COMPUTING ELEMENTS EVENT DESCRIPTION

[Jea
CE2

CONTROL PROGRAM ASSIGNS CE2 TC SUBPROGRAM A

CONTROL PROGRAM ASSIGNs CE1 TO SUBPROGRAM B

SUBPROGRAM A

CONTROL PROGRAM REASSIGNS CE2WITH LOCK 1 TO A
Vi

Vi NL
CONTROL PROGRAM REASSIGNS CEIWITHLOCK 1 TOB
CONTROL PROGRAM REASSIGNS CE2 TO A

QONOM B W=
0
c
@
3
§
z
>
=
@
»

with the aid of SVC. If a requested storage resource is already in
use, the operation of the subprogram is suspended until the re-
source becomes available. An example of this is shown in Figure 3.

Three types of storage resources—areas, blocks, and lines—are
defined:

Areas. An area is a portion of storage containing data or code that
are common to two or more subprograms and that cannot be ac-
cessed simultaneously without potential loss of information. Areas
are locked and unlocked by subprograms.

Blocks. A block is a section of contiguous storage within a general
storage pool. The general storage pool is subdivided into subpools,
each subpool consisting of a specified number of fixed-size blocks.
Blocks are leased and released by subprograms. When allocated to
the subprogram, a block may be used as a temporary work area
for a particular instance of the subprogram’s execution or as a
storage area for data to be queued to a subprogram or device. Dy-
namic block allocation eliminates some of the inherent duplication
in assigning separate work areas for each subprogram and increases
the value of re-entrant subprograms.

Lines. A line is a section of storage used to identify communication
paths to subprogram and device queues. A limited number of lines
are associated with each subprogram and device; data to be com-
municated must reside in a general storage block. A subprogram
can transfer control of an allocated block of storage to a subpro-
gram or device queue via an appropriate line. Lines are reserved
and canceled by subprograms.

J. A. DEVEREAUX

The control program ensures that storage requests are made in
a consistent manner, thereby guarding against the possibility of
mutual suspensions. For example, if Subprogram A requests all of
one type of storage and Subprogram B requests all of another type,
both subprograms could be permanently suspended if each re-
quested storage of the type currently allocated to the other. To
avoid this, the control program ensures that lines are requested
before blocks, which in turn must be requested before areas. If a
particular type of storage is allocated to a subprogram, additional
storage of the same type cannot be requested by the subprogram
until all of that type storage is appropriately released or unlocked.
A violation of these conventions is treated in the same way as a
program interruption error, and execution is terminated. When
storage is properly requested and is available in the amount re-
quested, the control program returns control of the Computing
Element to the requesting subprogram. If the desired storage re-
sources are not available, the control program suspends execution
of the requesting subprogram until they become available; it also
reschedules the Computing Element that had been executing the
requesting subprogram.

At an early stage in the design of the control program, a de-
cision was made to incorporate a trace feature at critical points in
the control program logic. Because the feature has proved to be
significant in evaluating and checking multisystem operation, a de-
scription of it and some of the results obtained are mentioned.

The trace procedure generates timing analysis records (TAR’s)
that reflect many of the critical events and actions occurring dur-
ing system operation. The TAR’s are assembled sequentially in a
buffer; when full, the buffer is recorded on magnetic tape. Two or
more buffers are provided to allow TAR assembly and recording to
proceed concurrently. (In the event that too little buffer storage is
available, overflow counts are updated in the header of the last-
filled buffer to reflect the number of TaAR’s per Computing Element
that were not recorded. No attempt is made to delay control pro-
gram operation because of inadequate buffer storage.)

Before the first TAR is stored in an empty buffer, the overflow
counts are reset to zero and the elapsed time since startup/startover
is stored in the buffer header. The elapsed time is measured in units
of 1/2 second. In the event of buffer overflow, the elapsed time
allows proper alignment of recorded buffers with regard to time.

The data in a TAR includes an event code, a Computing Ele-
ment identity, and the identity of the time interval during which
the event occurred. The time interval is obtained from a designated
interval timer that is reset every 1/2 second to cause a timer inter-
ruption every 1/2 second. The units of the interval timer are 1/300
second with resolution of 1/60 second (i.e., the value in the timer
is reduced by 5 every 1/60 second). Depending upon the type of
event, additional data in a TAR may include a subprogram identity,
a storage address, and an interruption code. Regardless of event
type, each TAR requires two words (eight bytes) of buffer storage.

CONTROL PROGRAM

avoiding
mutual
lockout

timing
analysis

99

100

Figure 4 Timing analysis record format

o 4 16 20 31

WORD 1 CE TIMER VALUE EVENT CONDITION

WORD 2 SUBPROGRAM LOCATION

CE COMPUTING ELEMENT

The format of the double-word Tar, shown in Figure 4, also
provides a 4-bit field to identify the event type by a hexadecimal
code (0 through F). Since TAR generation involves additional con-
trol-program overhead of approximately 150 microseconds per TAR,
generation is placed under the control of a 16-bit mask. If the
mask bit corresponding to an event code is set to 1, a TAR is gen-
erated for that event type. The setting of the mask may be changed
at operator request.

Since a series of TAR’s represents a sequence of events with re-
spect to time, it is possible not only to trace the activity of Com-
puting Elements, channels, and devices but to examine the inter-
actions of subprogram executions. Figure 5 shows an actual trace
(developed from recorded Tar’s) of a small portion of an integra-
tion test of the control program. The purpose of the test was to de-
termine whether the control program could effectively control the
activities of three Computing Elements. The subprograms repre-
sented in the trace are as follows:

zMEX External interruption routine of the control program

zMsX Supervisor-call interruption routine of the control program

zmpP Dispatcher of the control program

zMTA A subprogram that schedules other subprograms on a peri-
odic basis and is scheduled every 1/2 second by the ex-
ternal interruption routine

PEO2 A one-instruction (SVC FINIS) subprogram scheduled by
ZMTA every second

PE03 A test subprogram with a permanent loop

The trace verifies that the control program performed correctly
during the integration test. No more than one Computing Element
was ever assigned to PE03 at any time, and an idle Computing Ele-
ment was always immediately assigned to resume PE03 processing
following a Computing Element’s external interruption from its code.
The re-entrant capabilities of the control program were also veri-
fied.

In addition to their use as a checkout aid, Tar’s provide a basis
for evaluating system performance. Since each Tar records the
time interval during which the indicated event occurred, a sequence
of TAR’s reveal (to the nearest 1/60 second) the execution time of
each identified operation bounded by two Ta®r’s in the recorded se-
quence. From the TAR sequence, an off-line processing unit can

J. A. DEVEREAUX

Figure 5 Trace of integration test
EVENTS 1 2 3 4 5 6 7 8 9 10 11 12 13 14
I I

I T T 1T 1T T 11

MASTER INTERVAL TIMER VALUE
000— 091

INTERVAL TIMER VALUE

|

RESET TO 091 AFTER
UNDERFLOW

I

ZMSX

ZMoP ‘ A W A

IMTA

PEO2

PEO3 L

TIME ——»

COMPUTING ELEMENTS EVENT OESCRIPTION

ZMDP INTERRUPTION (CE3 TIMER)
PEO3 INYERRUPTIO'P‘CEé%EZ TIMER)

RS ZMDP
PEO3 INTERRUPTION (CE1 TIMER)
CE3 ASSIGNED TO PEO3

CE2
CE1 ASSIGNED TO PE02
SVC FINIS ZMTA

PE02
CE1 ENTERS ZMDP
CE2 ENTERS ZMDP

»u-
REREConNoaswN~

=

3

N

=

5

3

therefore calculate such statistics as: the average subprogram ex-
ecution and delay time, the percentage of time that channels and
devices are utilized, and the Computing Element idle time. Al-
though the clocking resolution limits the accuracy of each subpro-
gram execution time, the average execution times determined from
large samples will normally be very accurate.

In managing systems resources, the control program schedules
operations in such a way that an idle Computing Element can con-
tinue the execution of a subprogram where an interrupted Comput-
ing Element left off. Storage resources in the form of lines, blocks,
and areas are dynamically allocated to permit concurrent operation
of subprograms without mutual interference. Because the control
program is re-entrant, it can be entered at any time by any Com-
puting Element via the interruption mechanism of the 9020 system.
The control program coordinates the Operational Error Analysis
Program and all application programs.

CONTROL PROGRAM

summary

101

Timing analysis records generated by the control program pro-
vide a useful tool for system evaluation and checkout. The data
provided by these records permit detailed time traces of the sys-
tem’s operation and performance statistics.

CITED REFERENCES

1. System Description of National Airspace System Enroute Stage A, Federal
Aviation Administration, Washington, D. C. (April 1965).

2. M. E. Conway, “Multiprocessor system design,” AFIPS Conference, Pro-
ceedings of the Fall Joint Computer Conference 24, 139146, Spartan Books,
Washington, D. C. (1963).

102 J. A. DEVEREAUX

