
Off-line diagnostic programs for system test, acceptance test, and field 
maintenance of the IBM 0020 multiprocessing system are executed under 
control of the monitor under discussion. 

The structure of the monitor is based on seven functional components 
which are examined in detail. 

A discussion of the debugging experience during the development of 
the monitor is included. 

An application-oriented multiprocessing system 

V The diagnostic monitor 
by R. Suda 

The Multiprocessing Diagnostic Monitor (MDM) is a special-purpose 
control program for the IBM 9020 system. Although MDM can con­
trol any problem program written to the proper specifications, the 
primary developmental goal was to achieve a flexible capability for 
controlling diagnostic programs in the course of system test, ac­
ceptance test, and field maintenance. 

Our purpose here is to describe the structure of MDM and the 
main techniques used in its development. The MOM-controlled diag­
nostic programs are not discussed. For the most part, the diagnostic 
library is based on serviceability and diagnostic methods along the 
lines of those described by Carter, et al., in a SYSTEM/360 context. 1 

Because the fault-reporting capabilities of the 9020 equipment ex­
tend the standard SYSTEM/360 capabilities (see Part II of this pa­
per), the 9020 diagnostic library is larger, of course, than the stand­
ard library. For brevity in the sequel, an MDM-controlled diagnostic 
program is called a section. 

The minimum subsystem needed by MDM is a Computing Ele­
ment, I/O Control Element, Storage Element, Tape Control Unit, 
and IBM 1052 printer keyboard; additional elements can be con­
trolled up to the maximum system. For the sake of flexibility, 
which is needed particularly during early system test and field 
maintenance, MDM permits the operator to define a list of MDM­
available elements, and then ensures that only these elements are 
used or tested by themselves. This is necessary in the field, where 
it is probable that one subsystem is active on the real-time task 
and another one is performing maintenance. MDM incorporates vari-

116 IBM SYSTEMS JOURNAL • VOL. 6 • NO. 2 • 1967 



ous options for control of sections; these include options for cycling 
through sections, for cycling on error, and many others of utility 
to the field engineer. 

MDM permits three modes of operation. The first is a sequential 
mode in which no section executions are overlapped. The second is 
a multiprogramming mode in which section loading, section execu­
tion, and output printing are overlapped, the intent being to give 
the elements in the defined system a more thorough and realistic 
system test and to help in tracking down intermittent failures. In 
the third MDM mode (which permits multiprocessing), two, three, 
or four Computing Elements simultaneously execute a series of sec­
tions. Since the intent of multiprocessing is to heighten the degree 
of simultaneity, multiprogramming is always used in the multi­
processing mode. The benefits derived from the multiprocessing 
mode are similar to those of the multiprogramming mode. 

Wherever possible, MDM was written in re-entrant code, viz., in 
routines that are not modified during execution and hence can be 
executed by two or more Computing Elements simultaneously. 
Tables and work areas that are assigned to and can be modified by a 
given Computing Element are located in a preferential-storage 
area. Common tables, which are open to modification by more than 
one Computing Element, are controlled by lock bytes; in conjunc­
tion with the TEST AND SET instruction, a lock byte prevents ac­
cess by more than one Computing Element at a time. 

The extensive error-checking facilities of the 9020 equipment are 
complemented by an MDM error-handling module that gathers and 
prints information when an error occurs. For most types of errors 
(particularly for those that cause machine-check interrupts), re­
covery is not attempted; the program has accomplished its purpose 
once an error is detected and diagnostic information printed. 

Since some of the diagnostic sections require the use of specific 
Storage Elements, MDM was given the ability to dynamically re­
locate itself (including re-entrant code as well as preferential-stor­
age areas). When a section makes a request that causes MDM to re­
locate itself, MDM idles all Computing Elements, relocates itself, 
and resumes Computing Element operation at the point of inter­
ruption. MDM can be interrupted at any point and resumed at that 
point in a new location in main storage. 

MDM components 

The main functional modules of the Multiprocessing Diagnostic 
Monitor are: 

• Initialization 
• Input message analysis 
• Storage allocation 
• Scheduler 
• 1/0 initiation 
• Interrupt handling 
• Output message assembler 

DIAGNOSTIC MONITOR 117 



initialization 

input 

message 

analysis 

storage 

allocation 

118 

The initialization module is designed to start sections in as 
many as four Computing Elements. There are two phases in the 
initialization process. The first occurs after IPL (initial program 
load) and initializes a system containing a single Computing Ele­
ment; the second, which follows certain operator input messages, 
initializes additional Computing Elements. In the first phase, the 
several actions completed before operator intervention include set­
ing crucial registers (base registers, program status words, con­
figuration control registers, address translation registers, preferen­
tial-storage base address registers, and the select register), clearing 
logout areas, and establishing the IPL system elements in MDM 

tables. The IPL elements, which comprise a minimum system, in­
clude a Computing Element, I/O Control Element, Storage Ele­
ment, and loader control unit-usually a Tape Control Unit. After 
being enabled for I/o and external interrupts, MDM is ready for an 
input message from a 1052 printer keyboard or card reader. At an 
attention interrupt, MDM assigns the 1052 as the input device and 
primary output device. Through a console interrupt, MDM can de­
fine the card reader as the input device. 

The second initialization phase is triggered by input message. 
As each additional Computing Element is brought into the system, 
a preferential-storage area is established and its configuration con­
trol register and address translation register are set. Then a write­
direct external start signal is sent to the Computing Element, 
thereby setting the program status word (Psw) from the first eight 
bytes of the configured Storage Element with the lowest address. 
Initialization is then completed by the just-started Computing Ele­
ment. Looking for a task to perform, the Computing Element then 
branches to the scheduler module. 

The Input Message Analysis Module handles the decoding and 
interpretation of input messages. Typical messages provide infor­
mation needed by MDM while loading and running sections, chang­
ing equipment configurations, and setting monitor options. All 
messages are first edited by a common routine that handles dele­
tions, blanks, etc. Control is then passed to individual routines, as 
indicated by the verb in the message (e.g., load, run). The indi­
vidual routines check for format errors and, if errors are found, 
return appropriate messages to the operator. 

Some of the actions requested by input message are stacked and 
processed by other MDM modules in normal sequence. For example, 
a load message is passed on to the loader module. Other requested 
actions may lead to an immediate transition in execution, as in the 
case of messages that require a change in job sequence or equip­
ment configuration. 

The Storage Allocation Module controls the assignment of main 
storage with blocks of two sizes. In loading programs and setting 
up work areas requested by programs, blocks of 4096 bytes are 
used. Blocks of 128 bytes are assigned by MDM for output and load 
messages. This module accommodates the maximum storage al­
lowed by the system (twelve 128K-byte Storage Elements). 

R. SUDA 



Each Storage Element is divided into 32 large blocks; a one-bit 
indicator is maintained in MDM for each block in the system. Thus, 
it takes one word (32 bits) to control large-block allocation for each 
Storage Element and twelve words to control a maximum of Storage 
Elements. Requests for multiple contiguous large blocks can be 
honored by MDM. 

The 32 small blocks in each large block are chained together 
such that the last block in the chain serves as a control area. If all 
32 blocks are allocated and another request is made, a large block 
is obtained, subdivided, and its control block is chained to the pre­
ceding control block. Only one small block can be requested at a 
time. As small blocks are returned, a check is made to see if a large 
block can be returned to the large block pool. In general, large­
block requests from the small-block routine are served with blocks 
from upper storage and similar requests for section loading from 
the lower end of storage. This tends to leave the middle of main 
storage free to satisfy requests for multiple contiguous blocks. 

Two of the six macroinstructions associated with main-storage 
allocation, GET LARGE BLOCKS and RETURN LARGE BLOCKS, 
allow requests for contiguous blocks. Two others, GET SMALL 
BLOCKS and RETURN SMALL BLOCKS, serve requests for one 
block only. These four macroinstructions are self-explanatory. The 
last two, GET DEFINED AREA and RETURN DEFINED AREA, 
permit requests for one or more contiguous large blocks with a 
specific storage address. If the requested area is not available, the 
requesting program is delayed until the desired area is released. If 
the requested area contains MDM, the preferential-storage area, or 
the requesting program, then MDM relocates the contents of the de­
fined area to complete the request. 

Two schedulers exist within MDM, the Task Scheduler and the 
Section Scheduler. An MDM "task" is work that requires an MDM 

module. The MDM Task Scheduler has priority to complete all MDM 

tasks that can be run before entering the Section Scheduler. The 
Task Scheduler scans the task table (which contains one entry for 
each MDM module) for work to do. Work called for by a given entry 
is queued to that entry and identified in a small storage block. 

The Section Scheduler is entered after all MDM tasks are com­
pleted. It scans a program-status table, which contains one entry 
for each section in the system, for sections to be run. An entry 
contains information the scheduler needs about a section, such as 
starting address, PSW setting, and section options. In sequential 
mode, each section is run to completion and no monitor 1/0, such 
as loading, is overlapped with section execution. In multiprogram­
ming or multiprocessing mode, each time the monitor gains con­
trol, it steps to the next entry in the program-status table. Thus, 
each section being multiprogrammed gets a somewhat random 
share of running time, a circumstance that is often desirable in a 
diagnostic system. 

Once each pass through the schedulers, 1/0 and external inter­
rupts are allowed, so that new tasks can enter the system and 

scheduler 

DIAGNOSTIC MONITOR 119 



1/0 

initiation 

interrupt 

handling 

interrupts from any pending sections can be processed. At other 
times, MDM is run with interrupts disabled, whereas sections are 
normally run with interrupts enabled. 

The I/O Initiation Module is concerned with r/o for both MDM 

and r/o section use. Within MDM itself, there are two primary r/o 
needs, section loading and message output. The section loader em­
ploys a Load Message Table which contains, among other things, 
the identities of sections to be loaded. The entries in the table are 
set upon receipt of a load message from the operator or upon re­
quest from a section via an svc (sYSTEM/360 supervisor-call instruc­
tion) interrupt. Sections appear on a library tape with their identi­
ties in collating sequence. There are three records per section-the 
header, text, and relocation records. To load a section, the library 
tape is searched on header records until the desired record is found, 
storage is requested, and the text and relocation records are read. 
The relocation record contains relocation data that permit re­
specification of address constants in the text. If the section requires 
r/o devices, these are assigned next. If the requested r/o equip­
ment is not assigned, the section run is delayed until the equip­
ment becomes available. A storage protection key is set for the 
section, and an entry is completed in the first open cell of the pro­
gram-status table. The section is then ready to run. 

The message-output portion of r/o initiation is responsible for 
messages from both MDM and the sections (message formatting is 
governed by another module); it directs device operations and 
checks for r/o error conditions. Another portion of the I/O Initia­
tion Module is normally responsible for the main r/o operations of 
sections. (However, a section can choose to run in the supervisor 
state and thereby take responsibility for initiating all operations 
and handling the resulting interrupts.) This portion gains control 
from the Interrupt Handling Module (described later) as a result of 
an r/o operation for a section running in the problem state. A check 
is made to see if the device specified in the r/o operation has been 
assigned to the section. If the path to the device is not busy, the 
r/o operation is executed. However, if the path is busy, the r/o op­
eration is queued for later execution, and control returns to the 
MDM scheduler. 

MDM has one interrupt-processing routine for each of the five 
types of 9020 interrupts. Initial handling, such as saving general­
purpose registers, is done before control is passed to one of the five 
interrupt routines. Optionally, a section can be set up to handle 
its own interrupts, but they are typically handled by MDM. 

Machine-check interrupt. If a machine check occurs during the op­
eration of a section, a test is made to see if the section wants this 
type of interrupt returned. If yes, a return is made to the section 
via its machine-check PSW. If no, the logout occasioned by the ma­
chine check is printed and the section aborted. If the error oc­
curred during the operation of MDM, the logout is printed, the run 
is terminated, and MDM must be reloaded. 

120 R. SUDA 



1/0 interrupt. There are three classes to consider: MDM device, sec­
tion device, and unassigned device interrupts. At normal-comple­
tion interrupt from an MDM device, control passes to the proper 
MDM module (I/O Initiation or Input Message Analyzer). Channel 
and control unit completion interrupts from MDM devices are queued 
until device completion is received. If a unit check occurs on an 
MDM input device, a repeat message is printed. 

Whenever an 1/0 interrupt occurs in a section enabled for 1/0 

interrupts, return is made to the section via its new r/o PSW. If the 
section is disabled for r/o interrupts, the interruf!t is queued until 
the section is again enabled. If an 1/0 interrupt occurs that does 
not belong to MDM or a section, an error message is printed and 
processing continues. 

External interrupts. Two types of external interrupts are automat­
ically handled by MDM: (1) the READ/WRITE DIRECT instructions 
if used when MDM is starting or stopping processing in another 
Computing Element during initialization, and (2) the Console In­
terrupt Key used in signalling to MDM to read an input message 
from the card reader when the reader is used as the input device. 
At other times, these and all other external interrupts can be used 
by the sections. Diagnose-accessible register interrupts, when not 
used by a section, indicate that a malfunction has occurred; these 
interrupts are handled in MDM by printing an error message. 

External interrupts assigned to a section cause a return to the 
section if it is enabled or cause the interrupt to be queued if it is 
temporarily disabled for those interrupts. External interrupts 
which do not belong to MDM or a section cause the printing of an 
error message. 

Program interrupts. Two classes of program interrupts are consid­
ered-those that occur in MDM and those that occur in a section. 
Because a program interrupt in MDM is viewed as an error condi­
tion, a non-recoverable wait state is entered; MDM must be reloaded 
to continue. Program interrupts in a section are subclassified into 
four categories by MDM. Privileged-operation interrupts (other than 
1/0), such as SET SYSTEM MASK or LOAD PSW, cause MDM to sim­
ulate the privileged operation and return to the section at the next 
instruction. In the case of LOAD PSW, return is made to the address 
in the new PSW. At program interrupt on an r/o instruction, MDM 

transfers control to its I/O Initiation Module. Other program in­
terrupts are returned to the section if it has so requested. If return 
is not requested by the section, other program interrupts are con­
sidered errors, an error message is printed, and the routine is 
aborted. 

Supervisor-call interrupts. svc interrupts are the basic method by 
which the section requests MDM services such as terminate section, 
print message, or load new program. Normally, MDM returns con­
trol to the section. In the case of a "section end" svc, control 
passes to the next section. A section can always request a return of 
control after an svc interrupt. 

DIAGNOSTIC MONITOR 121 



output 

message 

assembler 

Various types of output-message requests can be made by a 
section via an svc interrupt, the distinctions usually being one of 
format. This module's responsibility is merely to format the data 
passed to it by a section and then pass control to the output portion 
of the I/O Initiation Module. 

Debugging experience 

The Multiprocessing Diagnostic Monitor was debugged on the first 
9020 system. Since equipment and programs were tested at the same 
time, the technique found most useful was simply to run in a "hard 
stop" mode that stopped the machine immediately upon detection 
of an equipment error. This facilitated tracing whether errors were 
in equipment or program. 

Individual MDM modules were debugged in conventional ways, 
largely by simulating inputs and checking outputs. The first pack­
age of modules put together enabled MDM to cycle itself and respond 
to input messages, no program loading or running function having 
yet been attempted. A useful debugging tool at this point was a 
built-in trace. As each module was run, it would record that fact 
for later investigation. Built into each module were validity checks 
on data transfers and table references. An error at one of these 
checks could be combined with the trace to help in pinpointing 
problems. The simplex MDM was completed by gradually adding 
other modules, the various options being checked last. 

Duplex debugging presented a more novel situation. The most 
common single problem stemmed from failures to properly use lock 
indicators in modifying or referencing tables, as a result of which 
two Computing Elements would operate on the same table at the 
same time. Because the symptom usually was a loop of some sort 
in MDM, these problems were difficult to resolve. It was usually 
fruitless to trace through the loop since the damage was done be­
fore the loop started. The best method seemed to depend upon a 
close examination of tables for some impossible or improbable con­
dition. With knowledge of the entire program in mind, such exam­
inations would finally lead to the error. It appears that special at­
tention to lockout during the planning and coding phases of multi­
processing programs may repay itself several times over. A lockout 
failure can be difficult to detect since it may take hours before the 
conditions that create the failure again occur. On the other hand, 
MDM code associated with multiprocessing control functions, such 
as starting or stopping other Computing Elements, turned out to 
be fairly straightforward to debug. 

The step from debugging MDM in duplex to debugging in triplex 
turned out to be an easy one because all the problems had been 
solved during duplex debugging. While a configuration with four 
Computing Elements has not been built or tested, it is felt that 
little or no special MDM program debugging would be needed for 
this step. 

122 R, SUDA 



Summary 

The Multiprocessing Diagnostic Monitor was a successful vehicle 
for testing the 9020 system at various levels of assembly and integra­
tion. It has also been used successfully in acceptance testing. Be­
cause its use as a field maintenance tool is still under evaluation, 
along with many other tools, it is difficult to assess its role in the 
field environment. It is being used daily at the sites, a continuing 
improvement program is under way, and no extensive changes have 
been necessary. 

CITED REFERENCE 

1. W. C. Carter, H. C. Montgomery, R. J. Preiss, and H. J. Reinheimer, 
"Design of serviceability features for the IBM SYSTEM/360," IBM Journal of 
Research and Development 8, No. 2, 115-125 (April 1964). 

DIAGNOSTIC MONITOR 123 


