
----- ____.-------- 1 · r '. r.c'.ci (;\ \'_.: \F_--==--- c--. (\ • • I I I: \\ -1
~~i':q;_,.0,1 . .·. . . ' .··' :\'\ \1
~.n~), \:_·:\ < ' . '' \ \I

Q;1'
':

NASP-9229-06
NAS Enroute Stage A
Contract FA65WA-1395

NAS OPERATIONAL SUPPORT SYSTEM

USER'S MANUAL

NOSS (UTILITY) Monitor

Model A3d 2.1

15 August 1974

This manual contains reference information for using the NAS
Operational Support System (NOSS) (UTILITY) Monitor in its
interface with other system subprograms.

These change pages update this document to make it compatible
with the NOSS tapes which support the NAS Model A3d2.1
System.

NAS Programming
IBM Federal Systems Division
NAFEC, Atlantic City, New Jersey

CHANGE HISTORY

This {06 level) publication of the NOSS {UTILITY) Monitor User's Manual is current with the NOSS
Composite Tape labeled N3D21x ..

Change Proposal
Level Date Number Comment

01 1 October 1968 Original Publication

02 28 August 1970 Includes changes 1 through 7

03 15 April 1973 Update for A3d 1.2

04 15 August 1973 Update for A3d2.0

05 24 May 1974 A3d2.1 Update

06 15 August 1974 A3d2.l Update

x = lntcst tupc level

PREFACE

This manual provides a general description of the IBM
9020 Utility Programming System and detailed reference
information on the use of the Utility Monitor Subprogram
(UMON). Section I is a summary, indicating the main
features and objectives of the system. Section II is intended
as a Utility Monitor operator's reference manual, presenting
in convenient form information required to use the utility
prog~amming system. Section III is a description of the
System Tape Generation procedures~ The descriptions of
each subprogram have been condensed from more detailed
information given in the publications listed here. Although

references are made to these publications where appro­
priate, the descriptions in Section I are complete enough to
provide an understanding of the functions and the input/
output options of each system component.

The completion of a basic programming course, or its
equivalent in experience, is the prerequisite for using this
manual. Additional information about the utility pro­
gramming system and· its languages (JOVIAL and Basic
Assembly Language) is given in the following publications:

IBM 9020 Data Processing System, Principles of
Operation, Form A22-6852.

lBM 9020 Data Processing System, Symbolic Program
Tape Edit, {SPTEDT).

I

IBM 9020 Data Processing System, System Edit
Subprogram, (SYSEDT).

IBM 9020 Da,ta Processing System, OJmpool Edit
Program, {CMPEDT).

IBM 9020 Data Processing System, Library Edit
Program, (LIBEDT).

IBM 9020 Data Processing System, Library
Subroutines, (LIB ARY).

!BM 9020 Data Processing System Loader Program,
(LOADER).

IBM 9020 Data Processing System, Basic Assembly
Language, {BALASM).

IBM 9020 JOVIAL Language User's Manual,
{JOVIAL).

ii

Text references to the preceding programming docu­
ments include subprogram or program. These differences
will be resolved in a future republication.

This publication includes information presented in the IBM
9020 Data Processing System, System Reference Manual,
Form Number C28-6549 and in the User's Reference
Manual for NOSS Monitor and Basic Processors
(Preliminary). The System SRL was provided under
Contract FA64WA-5223; the NOSS Reference Manual was
provided under Contract FA6SWA-1395. Both manuals
are superseded by this manual.

These change pages update the NAS Operational Support
System (NOSS) User's Manual for the NOSS (Utility)
Monitor, dated 24 May 1974 to make it compatible with
the NOSS tapes which support the NAS Model A 3d2. I
System.

NAS Programming
IBM Federal Systems Division
NAFEC, Atlantic City, New Jersey

1.0

1.1

1.2

1.3

1.4

2.0

2.1

2.2

THE UTILITY SYSTEM

SYSTEM SUMMARY

Components Of The Utility

Programming System

1.2.1 UMON - Utility Monitor Subprogram

1.2.2

1.2.3

1.2.4

1.2.5

SYSEDT - System Edit Subprogram

LIBEDT - Library Edit Subprogram

CMPEDT - Compool Edit Subprogram .. .

SPTEDT - Symbolic Program Tape Edit

Subprogram

JOVIAL - JOVIAL Compiler Subprogram ..

1-1

1-1

1-4

1-7

1-10
1-10

1-10

1-11

1-11 1.2.6

1.2.7
1.2.8
1.2.9

DEBUGG - Debug Subprogram 1-12

BALASM - BAL Assembler Subprogram . . 1-12
LOADER - Loader Subprogram 1-13

System Processor Vs. Problem

Program

1.3.1 System Processors - General Information •.

1.3.2 Problem Programs - General Information •.

1.3.3 Input/Output Characteristics of System

Processors .

1.3.4 Input/Output Characteristics of Problem

Programs

1.3.5 Patching Systems Processors

1.3.6 Patching Problem Programs

1.3. 7 Debugging Differences

1.3.8 Converting a Problem Program to a

System Processor

Utility Library .

SYSTEM CONTROL - UTILITY MONITOR

General Information .

2.1.1 Use of This Section

2.1.2 Initial Program Loading

2.1.3 System Protection

2.1.4 Control Cards, Jobs, and Batches

Monitor Control Cards .

2.2.1 Operator/Batch Control Cards
2.2.2 Job Control Cards

1-13
1-13

1-13

1-14

1-14

1-15
1-16

1-16

1-16

1-16

2-1

2-1

2-1

2-1
2-1

2-2

2-2

2-2

2-2
2.2.3

2.2.4

2.2.5
2.2.6

Job-Type Control Cards 2-7

Processor Control Cards 2-8
Input/Output Control Cards 2-8

$DATA Control Card 2-11

iii

2.3

2.4

2.5

2.6

2.7

CONTENTS

Tape Use and Formats

2.3.1 Identification of System Units

2.3.2 Tape Format Terminology

2.3.3

2.3.4

2.3.5

Record Types .

Buffers

System Unit Tape Formats

Utility System Tape and Storage

Requirements

2.4.1 BAL Assembler - $BAL

2.4.2 JOVIAL Compiler - $JOV

2.4.3 Compool Edit - $CMPEDT

2.4.4 SPT Edit - $SPTEDT

2-11

2-11

2-13

2-13

2-16

2-17

2-18

2-19
2-19
2-19

2-19

2.4.5
2.4.6

2.4.7
2.4.8

System Edit - $SYSEDT 2-19
Library Edit - $LIBEDT 2-19

Object Blocking Routine - $OBJ 2-19
Loader - $XEQ 2-19

Functional Description of Utility

Monitor

2.5.1 Job Control

2.5 .2 I OP ACK

2.5.3 MONIO

2.5 .4 Interrupt Control .. :

Analyzing Storage Dumps

2.6.1 Unit Assignment Table

2.6.2 LISTIO

2.~.3 IOPACK Register Save Table

2.6.4 1/0 Trace Table

2.6.5 1/0 Interrupt Table

IOP ACK Calling Sequences

2.7 .1 General-Input (SYSRDS) Routine

2-20

2-21

2-22

2-25

2-28

2-32

2-33

2-33

2-33
2-33

2-34

2-34
2-34

2.7 .2 System-Input-Unit (SYSJN) Routine 2-34

2.7.3

2.7.4

2.7.5

2.7.6
2.7.7
2.7.8

2.7.9

Tape-Input (SYSR 1) Routine

On-Line Card Reader (SYSRC) Routine .. .

Console-Typewriter-lnpu t

(SYSTRE) Routine

General-Output (SYSWRS) Routine

Tape-Output (SYSWf) Routine

General-Print (SYSPRS) Routine

System-Output-Unit-Print·

(SYSJT) Routine

2-35
2-35

2-36
2-36

2-36

2-37

2-39

2.7 .10 On-Line-Printer (SYSPRT) Routine 2-38
2. 7 .11 Console-Typewriter-Output

(SYSTWR) Routine 2-38

2.7 .12 General-Punch (SYSPUN) Routine 2-39

2.7.13

2.7.14

2.7.15

2.7.16

2.7.17

2.7.18

System-Output-Unit-Punch (SYSJH)
Routine _____

On-Linc-Punch (SYSPC) Routine

Set-Return (SYSSTR) Routine

Unit-Control (SYSCTL) Routine

Set-Return (SYSSR) Routine

Unit-Control (SYSCT) Routine

2-39

2-39

2-40

2-40

2-41

2-41

2.8 Monitor Calls . 2-41

2.8.1 SYSPIN (Initialize Program Interrupts) 2-41

2.8.2 SYSCOM (System Processor-Monitor

Communications) 2-41

2.8.3

2.8.4

2.8.5

2.8.6

2.8.7

2.8.8

2.8.9

2.8.10

2.8.11

2.8.12

2.8J.3

2.8.14

2.8.15

2.8.16

2.8.17

2.8.18

2.8.19

2.8.20

2.8.21

2.8.22

2.8.23

SYSTIM/SYSCLK (Set Up Interval

Timer Routine) 2-42

SYSIO (Tell MONIO Device Needs

Service) . 2-42

SYSDMP (Request Emergency Dump) 2-42

SYSRET (Return to Caller) 2-42

SYSRSL (Request Record from NOSS

System Tape and Return) 2-42

SYSEOJ (Return at End of Processor or

Program Problem)

SYSDEB (Call Debug Subroutine)

SYSTRC (Call Trace Subroutines)

SYSRDS (Call IOPACK for General

Input)

SYSWRS (Call IOPACK for General

Output)

SYSWAT (Call for Operator Message

and Wait for Response)

SYSIOI (Request Monitor Mode for

IOPACK)

SYSIOO (Restore Original PSW Mode)

SYSRTA (Return to Selected Address) .. .

SYSPKY (Set Protect Key in PSW)

SYSSSK (Set Storage Protect Key)

SYSPRS (Call IOPACK to Output

Printimages)

SYSPUN (Call IOPACK to Output

Punch Images)

SYSKMC (Set PSW for Debugging

System)

SYSDTF (Set Up Buffers for LISTIO)

SYSRAS (Request Specified Record

2-42

2-42

2-43

2-43

2-43

2-43

2-43

2-43

2-43

2-43

2-43

2-43

2-44

2-44

2-44

from NOSS System Tape) 2-45

2.8.24 SYSBRA (Monitor-Assisted Program

2.8.25

2.8.26

2.8.27

2.8.28

Transfer)

SYSDTH (Terminate Processing)

SYSCDP (Request Emergency Dump)

SYSLGD (Fatal Logout on I/O

Device Error)

SYSMOP (Terminate 1/0 at End-of-Job

2-45

2-45

2-45

2-45

Phase) . 2-45

2.8.29 SYSLGC (Fatal Logout on I/O

Channel Error) 2-45

iv

2.8.30

2.8.31

2.8.32

2.8.33

SYSTJN (Service Console Typcwri Ll'r

Interrupt) .. _ _ ... __ 2-45

SYSTCE (Record Execution of 1/0

Instruction) . 2-45

SYSWRM (Count Occurance of Selected

Abnormal Conditions) 2-46

SYSPIR (Set Initiate and Interrupt

Routine Addresses) 2-46

2.8.34 SYSTWR (Write on Console

Typewriter) . 2-46

2.8.35 SYSTRE (Read from Console

Tvoewriter) . 2-46
2.8.36 SYSNAP (Core Snap for Program and

Processors . 2-46

2.9 User Messages . 2-46

2.10 Overriding System Protection Features

(USERIO) . 2-50

2.10.1 Nonstandard 1/0 Services 2-50

2.10.2 Organization of I/O and Interrupt-

Control System 2-50

2.10.3

2.11 Batch

2.11.1

2.11.2

2.11.3

2.11.4

2.11.5

2.11.6

2.11.7

2.11.8

Utility Monitor Provisions - User

Input/Output Routines

Create SYSIN Tapes

Tape to Print/Punch

Tape Log _ .. _

Tape Punching

Tape Duplication

Merged Library/Compool (MLC)

Creation

Tape Comparison

Write End-of-File Tapemarks on Tape

3.0 UTILITY SYSTEM TAPE GENERATION

3.1 Introduction _

3.2 SPT Production

3.3 Language Translation

3.3.1 Jobs Without EXTRN's

3.3.2 Jobs With EXTRN's - No Compool

Referenced

3.3.3 Jobs With EXTRN's - Compool

2-53

2-55

2-60

2-64

2-66
2-67

2-67

2-68

2-69

2-70

3-1

3-1

3-1

3-1

3-2

3-2

Reference . 3-2

3.4 SYSOUT Processing 3-3

3.5 SYSEDT Deck Handling 3-3

3.6 System Tape Editing 3-3

3.7 System Tape Testing 3-4

Appendix A PROGRAMMER AIDS A-1

Appendix B GLOSSARY B-2

Figure 1-1

Figure 1-2

Figure 1-3

Figure 1-4

Figure 1-5

Figure 1-6

Figure 1-7

Figure 1-8

Figure 1-9

Figure 1-10

Figure 2-1

Figure 2-2

Figure 2-3

Table 2-1

Table 2-2

Table 2-3

The Utility Programming System for the

IBM 9020 Data Processing System 1-2

Minimum Tape Configuration for the IBM

9020 Utility Programming System 1-3
Approximate Storage Allocation of Major

System Components 1-5
Approximate Storage Allocation at Load

Time 1-5
Relationship of Utility Programming System

Components 1-6
System Operations 1-9
Library Tape Format 1-18
User Program - Library Routine Linkage . . 1-19
Library Routine at Load Time 1-20
Library Tape - Utility System 1

Relationship . 1-21

Sample Control Cards 2-3

Sample Deck for 2-Job Batch 2-4

Sample Job Deck for Generating

NAS Master Tape 2-5

System Input/Output Unit 2-12
I/O Units vs. Buffering 2-22

IOPACK Routines 2-24

.

v

Figure 2-4

Figure 2-5

Figure 2-6

Figure 2-7

Figure 2-8

Figure 2-9

Figure 2-10

Figure 2-11

Figure 2-12

Figure 2-13

Figure 2-14

Figure 2-15

Figure 2-16

Figure 2-17

Figure 2-18

Table 2-4

Table 2-5

ILLUSTRATIONS

Fixed-Length, Unblocked Record Format .. 2-13

Variable-Length, Unblocked Record

Format 2-14

Fixed-Length, Blocked Record Format 2-14
Variable-Length, Blocked Record

Format 2-14
Off-Line Print Format Record 2-15
Format of an SPT Tape Header 2-17
Format of a Library Tape Header 2-17
Format of a Compool Tape Header 1-28
MLC Tape Header Format 2-18
LISTIO Format 2-26
I/O and Interrupt Control System 2-51
IOPACK Routine 2-53
Hardware Initiate and Interrupt

Routine 2-54
Typical User IOPACK and Hardware

Routines 2-56
Sample Job Deck · 2-62

TABLES

Masking Program Interrupts 2-28

Monitor Calls 2-30

1.1 SYSTEM SUMMARY

The IBM 9020 Utility Programming System is a
comprehensive, integrated set of subprograms designed to
facilitate program preparation and testing. It provides both
a JOVIAL compiler and an assembly program permitting
the programmer to write in either JOVIAL or Basic
Assembly Language (BAL) or, subject to certain restric­
tions, in BAL within JOVIAL programs (direct code). The
utility programming system also contains a loader program,
which allocates 9020 storage and calls in routines from the
library (supplied with the system); a debugging system for
facilitating checkout; and a set of input/output routines.
Four edit programs are supplied to provide maintenance of
various system components. The utility programming
system operates under control of the utility monitor, which
allows the processing of stacked JOVIAL and/or BAL jobs.
JOVIAL, BAL, and object programs may appear in any
order within a job.

The utility programming system shown in Figure 1-1
is supplied in the form of a reel of magnetic tape (the
system tape), which contains all of the components. The
system edit program and the utility monitor allow for
adding subprograms, replacing subprograms, and modifying
any of the supplied subprograms on the system tape.

A JOVIAL library, supplied on magnetic tape, contains
approximately 130 library routines. The programmer may
add JOVIAL library routines, as well as BAL programs, to a
library by using the library edit program.

The utility programming system is designed to operate
on an IBM 9020 Data Processing System and requires a
console typewriter, from two to ten (depending on the
functions requested) magnetic tape units, and a minimum
of 256K bytes of storage. Additional storage can be
effectively utilized and a 128K byte version can be created
without JOVIAL capability. The 1402 Card Read Punch
and the 1403 Printer may be used optionally as the input
and output units. The magnetic tape units required by the
various system functions are shown in Figure 1-2. Input/
output units not required by the utility system itself at
object program execution time are available to the object
program.

The utility programming system, as supplied, is de­
signed to support the operation of the following input/
output equipment:

IBM 2400 Series Magnetic Tape Units

1-1

1.0 THE UTILITY SYSTEM

IBM I 052 Console Typewriter
IBM 1402 Card Read Punch
IBM 1403 Printer

The utility monitor controls the operation of a single
central processing unit. It attempts to provide maximum
utilization of asynchronous elements, but is not designed to
operate multiple programs in parallel. The selector channel
(as well as multiplex channel) operations are scheduled for
maximum efficiency by the utility monitor's input/output
system.

The JOVIAL compiler, assembly subprogram, loader
subprogram, and the edit subprograms are designed for
maximum monitor independence and, with proper inter­
faces, may be used with 9020 monitors designed for
different objectives.

All elements of the system are designed to facilitate the
efficient use of the IBM 9020 Data Processing System by
application programmers. The JOVIAL compiler produces
efficient code from statements written in JOVIAL. The
system components provide diagnostic listings, storage
maps, program listings, etc., as appropriate. The program­
mer may request dumps; conditi9nal dumps; or traces in a
JOVIAL program, in an assembly language program, or at
load time, with editing and listing provided in a variety of
formats. All system components attempt to retain program­
mer-assigned names and programmer-designated storage
allocations. For example, the loader attempts to load at the
assembled address; since this is not always possible, storage
dumps indicate both assembled locations and actual load
locations.

Another aid provided for the programmer is a facility
to create and maintain a file of card images on tape. This
tape is called the Symbolic Program Tape (SPT) and is
maintained by the SPT Edit Subprogram. The BATCH
program is used to take card images from an SPT tape and
create a .INPUT tape.

The JOVIAL compiler, the compool facility, and the
JOVIAL library routines together provide for the prepara­
tion of very large programs by a team implementing a
real-time application. The compiler can accept a JOVIAL
program, get and utilize compool ("communications pool"
- a collection of data definitions maintained as a magnetic
tape file), and provide calls for procedures defined within
the JOVIAL program being compiled and for library
routines previously compiled and placed on the library
tape.

~-

I
N

$OBJ $XEQ

OBJBLR LOADER

IPL

UTILITY MONITOR SUBPROGRAM

Job Control
Function

$JOV

JO VI Al

I/O Control I Interrupt Control
Function Function

SVC

DEBUGG

$BAL $SYSEDT $CMPEDT

BALASM SYS EDT CMPEDT

Figure 1-1. The Utility Programming System For The IBM 9020 Data Processing System

$LIBEDT $SPTEDT

LIBEDT SPTEDT

f--'

I
w

.SYS TM

Compilation x

Assembly x

Loading x

System Edit x

Compool Edit x

Library Edit x

SPT Edit x

Object Blocking x
Routine

Key: X
0
blank

NOTES:

Required
Optional
Not needed

.INPUT1 .OU'fPT2 .AWCTL

x x x

x x x

x x x

x x x

x x x

x x x

x x x

x x x

1. .INPUT may be either a tape unit or the on-line card reader.

.LIBl .COMP .SPTl

x 0

0

0

05

05 05

05

05 05

2 .. OUTPT may be either the .PRINT/.PUNCH tape or the on-line printer and card punch.

.WORKl .WORK2

x x

o4 0

08

x

x

x

x

3. The total assumes that tape units are used for .INPUT and .OUTPT and includes any units shown as optional.
4. .WORKl is used if the input to the assembler is a previously compiled JOVIAL source program.
5. An old master tape may be supplied for the edit programs, depending on the type of edit.
6. If a job includes compilation-assembly, and execution, with all options, 10 tapes are required.
7. Under certain conditions WORK3 is not needed for compilation.
8. WORK2 is required for loading if multiple pass executions are to be attempted.

Figure 1-2. Minimum Tape Configuration For The IBM 9020 Utility Programming System

.WORK3 Other TOTAL3

o7 9

7

6

6

6
--

6

6

4

The loader program searches the library, completes
cross references between all programs and library routines,
allocates storage, relocates programs (if required), and
positions the compool-defined data in storage.

While absolute loading is permitted, the system is
designed to produce completely relocatable object pro­
grams. Therefore, absolute location reference is never
necessary with the utility programming system, although
the programmer may, if desired, partially control storage
allocation.

In providing for stacked-job operation, jobs that
include problem-program execution may be interspersed
between jobs that require only compilation and/ or assem­
bly. The system pre-empts portions of storage for the
following purposes: resident monitor (including input/
output elements and certain debugging control facilities);
resident loader; LISTIO's (control blocks for programmer­
designated input/output units); and user assignment table,
reel table (if $REEL cards are present), and RLD infor-

. mation, from loader text, necessary for loading. All other
parts of storage are available to the user's program. If he
requests buffered mput/ output operation, the buffer area is
constructed from storage not otherwise allocated. The
allocation of core storage is illustrated in Figures 1-3 and
1-4.

The storage-protection feature of the IBM 9020 Data
Processing System is supported by the utility programming
system. The utility monitor has a unique protection key;
the programmer may establish other protection keys for
any designated portions of his program.

When an interruption occurs, the utility monitor takes
prespecified action. In certain cases, the programmer may
affect the action by masking the interruption or by
providing a special alternate interrupt-processing routine of
his own.

The utility programming system provides a number of
aids to facilitate the serviceability of its components.
Among these aids are an emergency storage-dump facility, a
trace program, and a block of storage (used by the utility
monitor and the system components for communication,
input/output, error checking, and processing and/or
execution).

The utility monitor controls the system. The program­
mer indicates sequences of operations within a job, prepares
control cards signifying desired options, and supplies data
cards, if desired, along with the programs submitted for
execution. After processing and/ or execution under utility
monitor control, listings, maps, dumps, etc., are returned to
the programmer.

1-4

The operator interacts with the utility monitor in
several ways. Operator action initiates the loading of the
utility monitor itself. Reassignment of input/output units,
detachment and attachment of units, mounting and alter­
nate use of tape. units, all involve messages to and from the
utility monitor via the console typewriter. Furthermore,
messages regarding the results of program, job, and batch
processing are logged for the operator.

Figure 1-5 shows utility programming system inter­
relationships. Control cards that determine the system
component required for a particular task are indicated in
the diagram. Solid connectors indicate paths that are
normally taken; dotted lines signify optional paths. Note
that for the compool, library, and SPT tapes, the option is
determined by the program that will used the information
on the tape and not by the edit program.

Flow of data through the utility programming system
begins at the system input unit (referred to symbolically as
.INPUT). This unit may be either a tape drive or the 1402
card reader; in either case, any system processor or the
programmer may request card images with a calling
sequence which is independent of the physical unit to be .
used. Similarly, the system output unit (.OUTPT)
accommodates listing and punched card output, which may
be placed on a tape unit {for peripheral processing) or on
the 1402 punch and 1403 printer. The operator of the
9020 system specifies which physical devices (tape drives or
1402/1403) are actually used in a particular batch of jobs.

1.2 COMPONENTS OF THE UTILITY
PROGRAMMING SYSTEM

The utility programming system consists of the follow­
ing major components, all included on the system tape:
utility monitor, JOVIAL compiler, assembler, loader,
debugging system, and four edit programs. The library,
supplied with the system, is recorded on the library tape.

The utility monitor (made up of job control, inter­
ruption control, an input/output system, and a commun­
ications region) is the system supervisor. It regulates all
input and output, calls other components as required,
permits communications among system components, and
governs all operations.

The compiler processes source programs written in
JOVIAL to produce output in Basic Assembly Language
(BAL) that can be immediately submitted to the assembler.
Associated with the compiler is the compool tape, prepared
and maintained by the Compool Edit program. This tape is
used to record compools, consisting of collections of data
definitions that can be used by a team of JOVIAL
programmers.

UTILITY MONITOR

-.,, ::g Q),, < Q) ~

~ r;:::I ..= 0 i:i:::)1 0.. 0.. 8 e >. z)1 i:i::: < o,__ ~ <)1 < pi::; C,!;) ~ u5 ~~ i:i::: ~ 0 C,!;)
"O .s

"O 8 r.... ~ 0 ;j ~
~ i:i::: Vl Q ~ ~ .5 Q,) C,!;) >< r.... ~ f-4 ~ .,, "O
~ Q i:.:t:l Q Q) 0 Vl ~ f-4 .,, 0

~ 0 ~ ~ C,!;) i:.:t:l f-4 >< i:.:t:l Q
;u ~ ~~ C,!;) Q i:i:::

....l <l ~
i:Q ~ C,!;) ::> i:.:t:l 0)1 i:i::: ::g i:.:t:l C,!;) i:Q

t:
i:i:::

2 i:.:t:l 0 ::> i:.:t:l i:Q i:.:t:l
....l ~ 0 ~ ::g f-4
s: Vl < i:Q Vl Vl

Vl 0 i:.:t:l 0 >-::g <l 0 u Vl
0 u •
I/ ~ _J.../"

NOTE: Only one of these major components
will be in storage at any specified time.

Figure 1-3. Approximate Storage Allocation Of Major System Components

UTILITY MONITOR

LOADER and DEBUGGING
SYSTEM

Area Available
to User

CV aries with Machine
Sizes)

f--.. - -·- -- - ---
1/0 BUFFERS

RLD INFORMATION (3000 bytes) -

OVERLAID By 1/0 BUFFERS

DEBUG TABLES (2400 bytes) -

ONLY IF USING DEBUG

USER REEL TABLE, ASSIGNMENT

TABLE, LISTIOs (2048 bytes) -

PROTECTED FROM USER

Figure 1-4. Approximate Storage Allocation At Load Time

1-5

9000
Hex
Bytes

Variable
(depending on
machine size

0

9000

cooo

} Variable

End of
Storage

SPT Edit
Program

Assembly
Program

JOVIAL
Compiler

I

$SPT
(BATCH)

UTILITY
MONITOR

Compool
Edit
Program

--,
I

8

$OBJ

Library
Edit
Program

I I

System
Edit
Program

---~----------------~

Loader

Computer

Debugging

--• System

•.OUTPT is either the .PRINT/. PUNCH tape (the normal
arrangement} Of the on-I ine printer and cord punch.
Ordinarily, all information to be printed and/or
punched is first written onto . OUTPT, which is then
processed at a later time to obtain listings and punched
cord decks.

Figure 1-5. Relationship of Utility Programming System Components

1-6

The assembler translates BAL programs into loader
language. Its output may be either printed an(}./ or punched
for later use, or submitted immediately to the loader for
loading into storage and subsequent execution. The sym­
bolic program tape {SPT), maintained by the SPT edit
program, is used by the assembler. This tape can be used to
store BAL programs.

The loader places assembled programs in storage for
execution. In doing this it allocates storage, adjusts the
assembler-assigned addresses, if necessary, prints out a map
of the locations used, and loads the programs.

The debugging system provides for planned dumps and
traces during program execution, for tape dumps, and for
emergency storage dumps when a program cannot be
successfully completed. Debug requests may be submitted
with JOVIAL, BAL, or loader language card decks.

The library system includes the library edit program
(used to add, delete, or insert routines in the library) and
the library itself. The latter consists of approximately 130
support routines supplied with the system.

The system edit program is used to maintain the system
tape, which contains all components of the utility program­
ming system. It can add, delete, replace, or patch system
components.

Figure 1-6 summarizes the operations. performed by
the system components, except for the utility monitor,
which is described in Section 2.

1.2.1 UMON - Utility Monitor Subprogram

The Utility Monitor Subprogram {UMON) gains control
of a computing element when an operator executes an
Initial Program Load (IPL) procedure with a Utility
Program System Tape (.SYSTM) mounted on the selected
subchannel. UMON retains control until it identifies a
requirement for other subprograms to operate. After
transferring control to another subprogram, UMON regains
control as the result of a computing element interruption.

When UMON gains control from an IPL procedure, it
defines the IBM 9020 configuration for the program,
provides appropriate initialization and operator com­
munication, and examines .INPUT to determine the next
job to be performed.

The operations performed by UMON as the result of a
computing element interruption depend upon the type of
interruption and the sense and status data associated with
the interruption. The operations associated with each type
of interruption are briefly described. Following these
operations, control is normally returned to the interrupted

subprograms or the next subprogram required as indicated
by .INPUT.

The Supervisor Call instruction {SVC) interruption
provides subprogram access to monitor routines. These
routines are described in Section 2.0 and deal with the
utilization of input/output, computing, and storage
resources.

The Program interruption identifies potential error
conditions in subprograms. UMON determines if the inter­
rupted subprogram has previously designated (via appro­
priate SVC) a return control point for the specific program
interruption and transfers as appropriate. When no return
control is specified, either the current job is terminated or
all program operations are terminated depending on error

· type.

The Input/Output interruption provides UMON with
sense and status data relating to 1/0 subchannels. UMON
takes appropriate action to update subchannel availability,
initiate pending input/output operations for the sub­
channel, update completed input/output operation status,
and retry 1/0 operations when error conditions are
identified.

The External interruption provides UMON with signal
indications from CCC hardware elements in the system, the
interval timer, and the operator. UMON provides appro=
priate system termination service for error signals, updates
the interval timer and responds to operator signal by
alerting the operator to enter his request via the system
typewriter.

The Machine Check interruption provides UMON with
an indication of hardware detected computing element
errors. UMON terminates program operation for this
interruption.

Where operations must be terminated as the result of
errors, UMON provides facilities to dump appropriate
storage contents for subsequent analysis.

In addition to handling computing element- inter­
ruptions, UMON provides, on request, a set of utility type
services which perform card to tape, tape to card, tape to
print, tape to tape, and tape comparison operations. ~~e
services are calle<:\Jhe BATCH feature.

The inputs to UMON consist of the records on the
utility program system tape, data stored in the communi­
cations region as the result of an interruption or sub­
program operations, operator input messages on the system
typewriter and programmer input card decks containing
control cards, data, and code. The job control cards provide
UMON with information that identifies each job in a batch
and the boundaries of a batch job.

1-7

Component
to which

Intermediate

System Component Intermediate Output is

Operation Control Card Called Input Ou.tput Submitted Final Output

Compilation $JOY Compiler JOVIAL program BAL program on Assembly JOVIAL program

Compool Tape* .WORKl Program listing

Library Tape BAL punched deck*

Assembly $BAL Assembly Compiler output or Object program Loader (if From .OUTPT:

Program BAL program on SPT on .AUXIL and $XEQjob) BAL listing*

and/or system input .OUTPT (if Symbolic Analyzer

$XEQ job); on listing*

.OUTPT only if Punched object deck*

$NONEXjob

Loading Operates only Loader Program Output of Assembly Storage map.

when $XEQ is Program and/or ob- Object program(s)

in effect ject program(s) on are loaded in to

.AUXIL. storage for

Library Tape* execution

~--··· --~--~----- - -----

Debugging DBG cards for Debugging D BG cards prepared Dump and/or Debug Edit Dump and/or trace

$XEQ only System by Assembly Pro- trace on per DBG request

gram or by user. .AUXIL

(Read in from
.A UXIL by loader
along with object

program(s).)

Compool Tape $CMPEDT Compool edit Old compool tape Revised (or new)

Edit Program and/or mod defini- compool tape

tions edit control Listing

cards: TERM state-
ment.

-. ------ -- ---- ---- . ·-·----~-' __ , .--~-~-- -- ------- --

Library Tape $LIBEDT Library Edit Object programs Revised (or new)

Edit Program and/ or library tape; library tape.

edit control cards. Punched object deck*
List of contents

Symbolic Pro- $SPTEDT SPT Edit BAL programs and/ Revised (or new)

gram Tape Program or statements and/or SPT

Edit old SPT; edit control BAL punched deck*

cards. Listings*
List of contents

System Tape $SYSEDT System Edit Old system tape; TXT Revised (or new)

Edit Program and REP loader Ian- System Tape and

guage cards; edit con- List of Contents

trol cards.

*=optional

Figure 1-6. System Operations

1 -8

The control cards indicate the extent and nature of
jobs and batches to the monitor. The control cards indicate
the beginning of each job in the batch, the type of job, the
system capabilities required, the type of 1/0 units to be
used, the presence of programmer-supplied data, the end of
the job, and the end of the batch.

A note on the difference between jobs and batches: A
job normally starts at a $ID card and ends at end of file on
system input. The end of file may be simulated with a 7 /8
EOF card. A batch starts with IPL and continues until the
next IPL. The IPL may be performed manually from the
console, requested via the typewriter, or induced by control
cards on the system input unit.

All the control cards except 7 /8 EOF must have a $ in
column 1; all control cards except the comments card
require a mnemonic starting in column 2. No embedded
blanks are permitted. In the following control card descrip­
tions, braces around entries indicate that one of the
operations is to be selected; uppercase words and letters
must appear exactly as given in the description; lowercase
words and letters indicate the type of data to be supplied
by the programmer.

The control cards fall into the following categories:
job control cards, job-type control cards, capability control
cards, 1/0 control cards, and the $DATA control card.

There are nine job control cards: $(comments),
$PRINT, $ENV, $DATE, $PAUSE, $ID, 7/8EOF, $END,
and $ENDTAPE.

The $DATE control card supplies the date for a batch
of jobs. This card is supplied by the operator as the first
card of the batch.

The $ID control card is required for proper identifica­
tion of each job in a batch. For each job there must be one
$ID control card, which must precede ·all control cards for
the job.

The $ comments control card contains information
that is to be placed on the system output unit and typed on
the console typewriter. This control card is optional; if
used, it must precede another monitor control card. The
information on this card has no effect on the processing of
the job. Columns 2 through 15 are blank. Comments start
in column 16.

The $PRINT card is similar to the $ comment card
except that output is to SYSOUT only.

The $PAUSE control card causes the monitor to enter
a wait loop until the operator depresses the enter key on

1-9

the console typewriter. The comments are placed on the
system output unit and typed on the console typewriter;
they may be used to provide operator instructions. This
control card _is optional; if used, it must precede another
system control card.

The $ENV control card causes the monitor to verify
that the job environment fulfills specified new require­
ments. This card is optional. If used, $ENV cards must
follow the $ID cards and precede the job type control card.
(When specifying several parameters, the user may option­
ally use more than one $ENV card to describe them.)

The $FND control card indicates the end of a batch.
This card precedes the 7 /8EOF card of the last job for each
batch on the system input unit except the last batch, which
is terminated by a $ENDT APE card. The operator may
choose to terminate a batch after any job because of
differences in job requirements.

The job type control cards indicate to the monitor the
nature of the jobs that follow them. One of the following
cards should follow a $ID or a $ENV control card:

• $XEQ - Problem program is to be executed

• $AUX - Object decks, if any, are to be placed on
the system auxiliary tape but are not to b~
executed as a problem pr~gram

• $NONEX - Problem program is not to be ex­
ecuted, and no system processor will read object
decks

If a $XEQ, $AUX, or $NONEX control card is used, it
must be followed by one or more capability control cards,
each of which may be followed by a source program or
other deck according to individual processor requirements.
These cards indicate to the monitor which capability is
required by the job, as follows:

• $BAL - BAL Assembly

• $JOY - JOVIAL Compilation

• $OBJ - Object Blocking (to copy the following
object deck from the system input unit to the
AUXILtape)

Input/Output control cards ($UNIT and $REEL) must
be used to identify an 1/0 units (other than the system
I/O units) used by a job. The monitor uses the information
on these control cards to make unit assignments. As many
of these cards as are needed may be used, but they must
appear immediately after the last problem program deck for
the job. Whenever possible, units are assigned to alternate
channels in the order in which $UNIT control cards appear.

If data cards are used by the problem program in a job,
the data deck must be preceded by the $DAT A control
card and must appear as the last physical portion of the job
deck.

The outputs from UMON consist of data stored in the
communications region, operator output messages on the
system typewriter, programmer card decks on the .PUNCH
unit, programmer listings on the .PRINT unit, and tapes
resulting from card-to-tape and tape-to-card operations.

A detailed description of information required to use
and operate the utility job control functions is provided in
Section 2.

1.2.2 SYSEDT - System Edit Subprogram

The System Edit Subprogram (SYSEDT) is used to
maintain the system tape (on .SYSTM) which contains all
the subprograms of the Utility System. SYSEDT can
replace, insert, or delete an entire subprogram record or
patch portions of a record.

The input to the SYSEDT subprogram consists of
control cards and input decks containing the subprograms
and/or alterations to a subprogram, and the old master
system tape. The control cards call in the system edit
program ($SYSEDT) define the type of operations per­
formed (INDEX, REPLACE, INSERT, DELETE, PATCH,
and TM), identify the input deck that follows (TITLE)~ and
indicate the end of the edit job (a $Control card).

The INDEX, REPLACE, PATCH, INSERT, TM, and
DELETE cards follow the $SYSEDT monitor control card.
They must appear before the first TITLE card and must be
in the same order as the subprogram records on the tape.
One TITLE card must precede the input deck for each
subprogram record affected, except for a record that is to
be deleted. The TITLE cards and the corresponding input
decks must also be in the same order as the order of
REPLACE, BATCH, and INSERT cards at the beginning of
the deck. If not, the error messages are generated and the
job is terminated. The input deck consists of loader text
(TXT) cards and/or replace (REP) cards; all other loader
language cards are ignored.

The output from the SYSEDT subprogram includes a
revised system tape, an optional listing index of the old
system tape, (an index listing of the new system tape) and
error messages.

A detailed description of information required to use
and operate the system edit functions is provided in the
IBM 9020 Data Processing System, System Edit User's
Manual.

1-10

1.2 .3 LIBEDT - Library Edit Subprogram

The Library Edit Subprogram (LIBEDT) gains control
when the monitor (UMON) identifies a $LIBEDT control
card. The LIBEDT subprogram is used to generate and
maintain a library tape of routines which are available to
JOVIAL and BAL programmers. The subprogram can add,
delete, or insert routines or punch an object deck of any
routine in the library. The LIBEDT subprogram manipu­
lates entire routines only; parts of individual routines
cannot be altered.

The input to the LIBEDT subprogram consists of
control cards, object decks for new routines, and, option­
ally, the old library tape. The control cards (LPUN, LINS,
LDEL) define the operation to be performed.

The outputs from the LIBEDT subprogram consists of
a new library tape, object decks if requested by an LPUN
card, diagnostic messages, and a listing of the library tape.
The information listed for each program on the library tape
includes identification, external symbol dictionary entries,
and procedure description data.

· A detailed description of user/operator instructions and
procedures is given in the Library Edit Program User's
Manual.

1.2.4 CMPEDT - Compool Edit Subprogram

The Compool Edit Subprogram (CMPEDT) gains con­
trol when the monitor (UMON) identifies a $CMPEDT
control card. The CMPEDT subprogram is used to generate
and maintain a compool tape. The subprogram can add,
delete, and replace compools.

The input to the CMPEDT subprogram consists of
control cards, compool definition cards, and the old
compool tape. The control cards (.ADD and .DEL) define
the operations to be performed, the control card (.END)
defines the end of the control cards, and the control card
(.SEG) identifies segments within a compool. The .ADD
and .DEL control cards follow the $CMPEDT control card
and may appear in any order preceding the .END control
card. Any number of compool definitions may be made,
but the data declarations must be preceded by an .ADD
control card. The compool data must be in the same order
as the first set of .ADD cards. A compool definition may
consist of JOVIAL data declarations for arrays, tables and
their strings and/or item definitions (with or without preset
constants), and parameter items. Single items are not
permitted. The last card of each compool description must
be a JOVIAL TERM statement. A compool definition may
also include EQUATE statements but all equated data must
be in the same segment. The JOVIAL language coding

conventions and rules for data declarations apply to
compool descriptions. Any number of compool descrip­
tions may be contained in a compool edit source deck and
sequenced one after the other, the only limits being that no
more than 100 compools are permitted on one tape, and
the tape must be a single physical reel.

The output from the CMPEDT subprogram consists of
diagnostic messages, a tape index, a summary of each
com pool on the new compool tape, and the new compool
tape.

Note: In an R-type compool edit, the tape to be revised
(master tape) may be either an old compool tape or an old
MLC (Merged Library/Compool) tape. In the latter case, an
MLC tape is also created as output with the desired
compool changes made.

Label checking still refers to the old compool tape label, as
it is not altered when an MLC is created.

A detailed description of user/operator instructions and
procedures is given in the IBM 9020 Data Processing
System, Compool Edit Program User's Manual.

1.2.5 SPTEDT - Symbolic Program Tape Edit
Subprogram

The Symbolic Program Tape Edit Program (SPTEDT)
creates and maintains symbolic program tapes (SPT). The
SPTEDT subprogram can add programs to or delete ,
programs from the SPT and can also alter decks already
recorded on the SPT.

The SPTEDT program is a single, self-contained pro­
gram that builds a new SPT from an input of control cards,
source cards, and correction cards. Any programs on the
old SPT that are not deleted or revised are copied onto the
new SPT prior to the conclusion of the edit. The SPTEDT
subprogram produces a dictionary of all programs on the
new SPT and, optionally, a source program listing and/or
punched card deck. Diagnostic messages are issued when
errors are discovered during processing.

The $SPTEDT control card initiates the program.
Additional control cards are used to identify new programs
to be added to the SPT, old programs to be altered, or old
programs to be deleted from the old SPT. Changes to a
single program must be ordered according to sequence
numbers.

The SPT edit program prints a listing of any new or
revised decks. It will assign new sequence numbers to decks
being updated or added unless requested not to do so.

1-11

When the SPT is created or revised, the SPT edit
program prints a list of the programs on the SPT in the
same order as the programs are recorded. This list includes
the names of any programs that were transferred
unchanged.

The input units used are the system input unit and the
old symbolic program tape (optionally).

Outputs from the SPTEDT subprograms are SPTs,
printed listings, punched cards, and diagnostics.

Further details may be found in the IBM 9020 Data
Processing System, Symbolic Program Tape Edit User's
Manual.

1.2 .6 JOVIAL - JOVIAL Compiler Subprogram

The JOVIAL subprogram is called by UMON when a
$JOY control card is encountered on the system input unit.
The major function of the subprogram is to translate
JOVIAL source programs into Basic Assembly Language for
subsequent processing by the assembler. During compi­
lation, the subprogram checks all JOVIAL source program
·statements and issues diagnostic messages when errors are
detected.

When library routines are requested in the source
program the compiler sets up the required BAL calling
sequence within the compiled program to call the library
routine at execution time.

If a compool is requested, the compiler reads the
compool from the compool tape. It writes the BAL DSs
and DCs and descriptive table information on .WORK.I for
BALASM and uses the table information to generate BAL
operative code. Only one compool is used in a job. A
detailed description of the JOVIAL language is given in the
IBM 9020 JOVIAL Language User's Manual.

Programs written in the JOVIAL language are the
primary input to the compiler. A $JOY control card must
appear in front of every JOVIAL source deck submitted for
compilation. Options of the control card include LIST,
PUNCH and ANALYZ, which instruct the BALASM
subprogram to list the BAL source program produced by
the compiler, punch an object deck, and print a cross­
reference listing of all symbols in the program. The
PUNCHS option instructs the compiler to punch a BAL
source deck. Other options are described in the JOVIAL
User's Manual.

Within each source deck, the first card of the program
must be a START card, and the last statement in the
program must be a TERM statement.

Output from the compiler indudes the BAL program,
the JOVIAL source program listing and diagnostic messages
reflecting conditions occurring during compila lion, and the
BAL source deck if the PUNCHS option was specified.

1.2.7 DEBUGG - Debug Subprogram

The debug subprogram gains control when the monitor
identifies that a debug request has been encountered via
supervisor call in the program instruction stream being
executed, and at the end of program execution if dump or
trace information has been written on the auxiliary tape.
The debug subprogram identifies and saves dump and trace
information during program execution and edits and prints
the information on completion of program execution.

Debug requests may be inserted for:

• Trace information on each successful branch
within the trace area

• Dump information each time specified instruction
addresses are reached or specified conditions are
met

• Dump information if program is ooable to
continue

• Logical tape records at end of job

• Physical tape records at end of job

• Trace information after the execution of each
instruction in the trace area

• Timing information for each instruction in the
specified trace area

Inputs to the debug subprogram consist of data stored
in monitor tables by the loader subprogram which identify
dump and trace requests.

Outputs from the debug subprogram consist of the
edited dump and trace printouts of data saved during
program execution.

1.2.8 BALASM - BAL Assembler Subprogram

The 9020 Assembler translates BAL input into a form
acceptable to the Loader program. The assembler provides
program linkage for programs separately assembled that are
to be loaded and executed together. It also examines the
BAL program and prints diagnostic messages when errors

arc found. Tentative storage addresses arc assigned to all
program statements and data which may serve as actual
storage addresses, if available, at load time. The program­
mer may request the use of common storage through the
assembler so that programs within a job can refer to the
same data. (Although similar in purpose, this is completely
separate from the JOVIAL compool.) The assembler
accepts output from the JOVIAL compiler and SYMCOR
BAL source programs from the system input unit, and BAL
source programs previously recorded on the SPT.

The assembler is called by the monitor when the
compiler has completed processing or when a BAL program
(indicated by a $BAL control card) is detected on the
system input unit. When assembly processing is completed,
control is returned to the monitor.

Inputs to the BALASM subprogram include the $BAL
control card which directs the monitor to transfer control
to the assembler and the source code to be assembled. The
$BAL card also allows output options such as program
listings, a cross-referenced listing of all symbols to be
produced, a punched object deck, and an additional deck
containing all program references to the library routines
and compool.

Outputs include a program listing and diagnostic
messages (serious and warning) reflecting conditions
occurring during assembly.

If loading and execution are to take place immediately
following assembly (.XEQ), the object program is recorded
on .AUXIL for submission to the Loader program. The
object program supplies the loader with the following types
of information:

• Text of the program

• Values assigned by the assembler to the program
name and to all symbols used or defined in another
program to be executed at the same time

• The address constants that must be changed if the
program is loaded at a location different than the
one assigned by the assembler

When requested on the $BAL control card or the $JOY
control card, the assembler produces an additional object
deck. This deck contains references to library routines and
compool elements used in the problem program.

The assembler is called by the compiler when compila­
tion is successful. The LIST, PUNCH, and ANALYZ
options from $JOY card are passed to the assembler. Input
in this case is expected by the assembler to come from
.WORKl.

1-12

SYMCOR output similarly appears on .WORK I for
input to the assembler.

The assembler (BALASM) and BATCH are the only
subprograms in the system that allow direct SPT input.

1.2.9 LOADER - Loader Subprogram

The loader subprogram gains control when the monitor
identifies a $XEQ control card and all input is on .AUXIL.
The Loader program assigns storage addresses to the
programs, places them in storage, and prints a record of the
locations used. As soon as loading is complete, control is
returned to UMON.

Historically, loaders serve a dual purpose: to get
programs into memory from some other storage medium,
and to resolve any problems caused by relocation (load
addresses different than assembled addresses).

The use of base registers in the 9020 neatly solves
much of the problem of relocation. However, a certain class
of data, namely address constants, must be rectified on the
basis of final physical load locations.

Input to the loader consists of twelve types of control
cards, five of which are generated by the BALASM
subprograms. The remaining seven are supplied by the
programmer.

The assembler-produced cards (ESD, TXT, DBG, RLD,
and END) provide the loader with the information required
to properly locate and relate loaded programs. The ESD
card provides information concerning the reference by one
program to a symbol defined in another program. The TXT
card contains the actual text of the object program. The
DBG card contains information concerning dumps and
traces. The RLD card provides information of address
constants that must be modified if a program is relocated.
The END card marks the conclusion of a program within a
job and may designate the first executable instruction of
the program (transfer address).

The programmer-produced control cards (REP, ORG,
DBG, COM, TOV, LDT, and PUN) provide load-time
options. The REP card alters an instruction or constant on
a TXT card. The ORG card specifies the desired starting
location of a program. The DBG cards provide debugging
information. The COM card specifies the starting location
of common storage. The TOV card allows segmented
loading and execution of a program. The LDT card
designates the address of the first executable instruction

and signifies the end of the program deck for a job. The
PUN card signifies that an absolute deck is to be punched.

The Loader output consists of a storage map listing,
diagnostic messages data for the DEBUGG subprogram,
punched object decks, or loaded subprograms.

A detailed description of the information and pro­
cedures required for the loading capability is given in the
IBM 9020 Data Processing System, Loader Program User's
Manual.

1.3 SYSTEM PROCESSOR VS. PROBLEM PROGRAM

The 9020 Utility System provides services for two
types of subprograms: system processors and problem
programs. A system processor is a subprogram resident on
the utility system tape (.SYSTM). A problem program is
any program which is not present on the utility system
tape.

1.3 .1 System Proce~ors - General Information

System processors reside on the system tape in absolute
format (i.e., the object code for the processor exists on the
tape in exactly the same way as it will appear in storage
when the processor is loaded). For this reason there are no
special loading problems and the utility monitor may read a
processor directly from the system tape into storage.

Monitor control cards inform the utility monitor of
which processors are to be called. For example, the $JOV
card causes the monitor to read the first phase of the
JOVIAL compiler from the system tape and pass control to
it.

1.3.2 Problem Programs- General Information

The user may select one of four operative procedures
when working with a problem program:

1. Compile - assemble - load- execute

2. Assemble - load - execute

3. Load - execute

4. Compile and/ or assemble

1-13

If the probJem program is to be loaded and executed
(procedures 1, 2, and 3), the object code must first be
placed on the .AUXIL tape. This is done by the assembler if
the input is source input {procedures 1 and 2) or by the
object blocking routine if the input is an object deck
(procedure 3*).

Problem programs are relocatable (i.e., they may be
loaded at a location other than where they are assembled).
As suggested in section 1.2.9, the object code for a problem
program on the .AUXIL tape may differ from the way it
will appear in core. The utility loader is used to read
problem programs from the .AUXIL tape. The loader
resolves externs, loads the program and loads any library
routines which the program references. Appendix A,
Section A.2, "Tracing a Program through Compilation,
Assembly, and Execution" gives a more detailed description
of the load function.

1.3.3 Input/Output Characteristics of System Proce~ors

The I/O environment for any system processor must be
determined during the design phase when writing the
processor. In other words, system processors require not
only a certain number of 1/0 units, but they require
specific logical I/O units. For example, the JOVIAL
compiler requires at least the following: .SYSTEM,
.AUXIL, .SYSIN (tape or card reader), SYSOUT (tape or
printer/punch), .LIB, .WORK!, .WORK2, and ·.TYPE. This
is not to imply that the compiler might not need other tape
units. However, if one of these I/O units were not attached
to the system in which the compiler was to operate, the
compiler- would have to stop execution because of insuf­
ficient 1/0 units.

System processors refer to 1/0 units by system defined
logical unit numbers. These numbers and their correspond­
ing uni ts are:

1 SYS TM
2 SY SIN
3 PRINT
4 PUNCH
S AUXIL
6 .LIB
7 .COMP
8 .SPTl
9 .WORK.I
10 .WORK.2
11 .WORK3
12 .TYPE

*The object blocking routine is a system processor whose sole

purpose is to place object decks on the .AUXIL tape. The monitor

calls the object blocking routine when a $OBJ card is read. See
Section 2.4.7.

The numbers 1-23 may be used as system defined
logical unit numbers. Numbers 18-23 are used only in
special instances, e.g., when non-standard 1/0 devices are to
be used.

After being read in from the system tape, a system
processor must account for the presence of necessary I/O
units. The units .SYSTM, SYSIN, SYSOUT {PRINT and
PUNCH) and .AUXIL need not be accounted for since
these units are always within the system environment. A
system processor, coded in JOVIAL, can check for the
presence of any I/O unit by using the GETLIO library
routine. A system processor coded in BAL must either use
the GETLIO library routine or check the unit assignment
table in the utility monitor. If using the latter method, the
s~stem processor must inspect absolute address X{SFC) to
obtain the starting address of the monitor's Unit Assign­
ment Table. The table consists of 2-word entries, the first
entry being associated with Logical Unit 1, the second
entry with Logical Unit 2, and so on. Each entry has the
following format:

Word 1
Word 1
Word2

Bytes 1 and 2 - Logical unit number
Bytes 3 and 4 - Device add1·ess

Address of associated
LIS TIO

By checking bytes 1 and 2 of the desired en try, the user can
determine assignment. If the logical unit number field of
the entry equals zero, the device is not assigned; the
presence of the logical unit number indicates assignment. If
an 1/0 device required by the system processor's I/O
environment is not assigned, the system processor must
discontinue processing and return control to the utility
monitor.

A system processor is coded so that it can define and
re-define its tape unit record formats and buffering require­
ments during operation. This facility is unique to system
processors and is performed via the SVC SYSDTF or by the
SYSDTF library routine. A single SYSDTF informs the
monitor of record formats and buffering requirements for a
tape mounted on a particular tape unit.

System processors are responsible for issuing tape
mounting and/ or tape saving instructions required during
execution.

1.3.4 Input/Output Characteristics of Problem Programs

A problem program must inform the utility monitor of
the number and types of 1/0 units to be used. However, the
problem program is not concerned with which system­
defined logical units are attached to the system. It is only

1-14

concerned with the number of units attached. For this
reason the problem program does not use the system
defined logical unit numbers (1-17), but instead uses
logical unit numbers 20-99. For each logical unit number
the problem program references, a $UNIT monitor control
card must be supplied.

A $UNIT card identifies one logical unit number used
in the program and specifies the device type (tape, reader,
printer, or punch) referenced by the logical unit number.
The $UNIT card also specifies the record formats and
buffer requirements if the logical unit number refers to a
tape.

A $REEL card may also be supplied with a $UNIT
card. $REEL cards are supplied when mounting instruc­
tions are to be issued by the monitor for the first or only
reel of a tape file. $UNIT and $REEL cards are described in
detail in Section 2.2.5 of this manual.

In contrast to system processor, the problem program
$UNIT and $REEL cards are evaluated prior to the
problem program being loaded and executed. When the
utility monitor encounters $UNIT and $REEL cards at the
end of the input deck, it begins assigning available 1/0 units
(except .SYSTM, .AUXIL, .SYSIN, and .SYSOUT). Any
mounting or saving instructions as identified by $REEL
cards are issued. If there are not enough 1/0 units to satisfy
all $UNIT cards, the monitor will print an appropriate
message and prevent the problem program from loading and
executing. If enough 1/0 units are assigned, the utility
loader loads the problem program and passes control to it.

1.3.5 Patching System Proce~ors

Patches to system processors can be made via card or
via IBM 1052 typewriter keyboard. System processors
comprise one or more system records on the utility system
tape. Separate procedures are used for patching processors
one system record long and for patching processors that are
contained in two or more system records.

The following procedure is used to patch a system
processor one system record in length at load time:

a. Punch the character P in column 9 of the $ control
card (monitor control card) which calls the system
processor.

b. Put all REP cards directly behind the $ control
card.

c. Put a card with a blank in column 1 and the
characters BEGIN in columns 2 through 6 behind
the REP cards.

For system processors exceeding one system record in
length, a special REP card, the propagator, is required when
patching any system record other than the first record. The
format of the propagator REP card is:

12-2-9 punch in column 1
REP in columns 2 through 4
blank in columns 5 and 6
00052C in columns 7 through 12
blank in column 13
001D740 in columns 14 through 19

Each system record after the first record and preceding the
record to be patched must contain a propagator card and a
BEGIN card. The following procedure is used to' patch

• system processors consisting of more than one system
record at load time:

a. Perform all of the steps described previously for
the first system record.

b. Put the propagator REP card and BEGIN card into
the input stream for each system record preceding
the record to be patched.

c. Put the REP cards containing the patch data and
the BEGIN card into the input stream for the
system record being changed.

REP cards (the propagator and patch cards) are
placed in the input stream immediately preceding
the phase of the system processor using those REP
cards. For example, a programmer may wish to
patch the second phase of a processor. If the first
phase of this processor read all the input cards, the
deck set-up would be as follows:

$ID
$NONEX
$XXXXXX: P (proce~or control card with "P" in

column 9)

12
2
9 REP 00052C 001D740

BEGIN
Input deck for processor
REP cards to patch phase 2
BEGIN

The following procedure is used to enter patches via
the IBM 1052 typewriter keyboard during processor
operation:

a. Depress the REQUEST key.

1-15

b. Type PATC on the 1052 typewriter keyboard.

c. Depress ENTER key and wait for CARDS
response.

d. Type card images of REP, and/or PUT, and BEGIN
cards.

PUT is a special method of entering REP cards
using the PATC option. The format is:

o PUT o (6 character hex address) o (hexadecimal
data in contiguous byte strings).

e. Depress ENTER key.

Care must be taken when patching a system processor,
that the processor which is being patched does not
immediately follow a processor of more than one core load,
all in the same job. This would cause the second system
record of the first processor to be patched.

1.3.6 Patching Problem Programs

Patches to problem programs are also made via card or
via IBM 1052 typewriter keyboard. The procedure used for
patching problem programs after loading is the same as the
procedure described for patching system processors using
the IBM 1052 typewriter.

CAUTION

Problem programs are relocatable at load time.
Patching the loaded program requires know­
ledge of absolute core addresses so that REP
and PUT card images can correctly overlap the
contents of those addresses.

1.3.7 Debugging Differences

System· processors cannot use the services of the
DEBUG subprogram. Once a subprogram has been cata­
loged to the utility system tape as a system processor, all
DBG cards containing dump and trace information are
ignored; only system dumps are allowed if processor
operation cannot continue. The DEBUG subprogram over­
lays storage addresses occupied by the system loader, but
the system loader does not load system processors.
Therefore, no storage is available for DEBUG.

Problem programs can use the full facilities of the
de bugging system. Emergency dumps use information from

the DUMPE control card. If no DUMPE card was included
in the problem program, a dump is given from address 0 to
address X' 1 B9F'.

1.3 .8 Converting a Problem Program to a System
Processor

If the user anticipates that a problem program is to
become a system processor, he can code and debug it as a
system processor using the $ENV monitor control card.
The MOD=SYST option must be selected so that the
problem program can use those ·logical unit numbers
reserved for system processors.

If the user has written a problem program and at a later
time wishes to convert it to a system processor, the
following steps should be taken:

a. Determine the symbolic 1/0 units required for the
new processor's 1/0 environment and replace refer­
ences to logical unit numbers 20-99 with
references to logical unit numbers. 0-12. {See
note.)

b. Add the code to check the utility monitor's ,.,
LISTIO's for 1/0 unit availability.

c. Add code to specify record formats and buffering
requirements using SYSDTF.

d. Add code for tape mounting and saving messages ..

e. Obtain an absolute deck for use in cataloging the
subprogram to the utility system tape.

f. Perform the utility system tape generation
procedures explained in Section 3.

Note: When writing a problem program, a user can
reference symbolic 1/0 units in the code and
equate these symbolics via parameter items to
logical unit numbers acceptable to problem pro­
grams. When converting a problem program to a
system processor the user can remove these param­
eter items and supply a new set of parameter items
referencing logical unit numbers used by system
processors.

1.4 UTILITY LIBRARY

The Utility Library Tape contains library routines that
can be requested by any JOVIAL or BAL source program.

1-16

)

Library routines are separately compiled routines that
perform an operation needed by a number of programs.
The library routines are accessed by a specific call and

1 bound to the user's program at load time. Each library
routine has its own unique call which is either a JOVIAL
function or procedure call.

JOVIAL functions are defined procedures that produce
one value each time they are executed. A library routine
that is a function is referenced by a function call. A
function call is not a complete operative statement and
must be used in conjunction with an expression. An
example of a library routine that is a function call is CLC
(Compare Logical Character).

IF CLC(AAA,1 O,BB) NQ 0 $

The function call CLC is contained within the IF
statement.

JOVIAL procedures are defined procedures that can
produce several values each time they are executed. A
library routine that is a procedure is refe~enced by a
procedure call. A procedure call, unlike a function call, is a
complete operative statement. An example of a library
routine that is a procedure call is MVC (Move Characters).

MVC(DATAOT,15,DATAIN) $

All library routines are on the Utility Library Tape.
The Library tape is formatted as follows: header record,
procedure descriptor table, tapemark, external symbol
dictionary table, and library routines and a tapemark. Each
library routine is composed of an identification record and
program records. Figure 1-7 illustrates the format of the
library tape. The library edit program creates and updates
the Library Tape. More information on library edit
can be found in the Library Edit Subprogram User's
Manual.

The information on the library tape is used by the
JOVIAL compiler and the system loader. If the library call
is coded in BAL, then only the system loader is used. If a

program contains a JOVIAL library call, the JOVIAL
compiler searches the Procedure Descriptor Table for an
entry corresponding to the JOVIAL library call. When the
entry is found, the compiler takes the parameter infor­
mation and generates the BAL code to set up the linkage
between user program and the library routine (see Figure
1-8).

The compiler generates the name of the library routine
as an external symbol. If a library call is coded in BAL, the
programmer must supply an extern for the library routine
name. It isn't until load time that the external symbols are
resolved.

During the loading of a program, if the loader
encounters an external symbol, the utility library tape is
searched for a match in the external symbol table. If an
entry is found for the symbol, the loader searches the tape
for the library routine and loads the routine into storage. It
then places the name of the routine and the load address in
a table, which is used to resolve an address constant
produced by the library call. When loading is completed,
the library routine resides in memory and is bound to the
user's program. (See Figure 1-9).

If the library routine is called in BAL, the programmer
writes the parameter information that the JOVIAL
compiler generates.

There are some library routines that are reentrant. A
reentrant library routine is one which can be accessed
simultaneously by programs operating in different comput­
ing elements. The reentrant library routines are coded, such
that the data operated upon is within the user's program.
Thus, input and output of the library routine is contained
within the user's program and the problem of data being
destroyed is eliminated.

Figure 1-10 illustrates the interaction of Library tape
with the Utility Programming system.

For more detailed information on the library, consult
·the Library Subroutines User's Manual.

1-17

HEADER RECORD

PROCEDURE DESCRIPTOR TABLE
-·

TAPEMARK

EXTERNAL SYMBOL DICTIONARY TABLE
..

IDENTIFICATION RECORD

PROGRAM 1 TXT, RLD, REP RECORDS

END RECORD

IDENTIFICATION RECORD

PROGRAM2 TXT,RLD,REPRECORDS

END RECORD

OTHER PROGRAMS

TAPEMARK

TAPEMARK

Figure 1-7. Library Tape Format

1-18

......
I
\0

START EXAP

I .. COMPILER

1. Procedure call is valid

2. Search the Procedure
Descriptor table for
entry

3. Obtains parameter info

MVC(LOCA, 10, LOCB) $
I 4. Inserts linkage in user

programs 14
L l,=A(LOCA) CODE INSERTED

ST l,A4ADRA BY JOVIAL COMPILER

LA l,X'OOA'

ST l,A4LTH

L l,A{LOCB)

ST 1,A4ADRB

LA 10,A4ADRA

L 15,=A(ZVMVC) --------------• 5. Name of library routine

BALR 14,15 --------------~ 6. Branch to library routine
Return to next instruction

STOP $

TERM $

Figure 1-8. User Program - Library Routine Linkage

UTILITY LIBRARY TAPE

Header

Procedure
Descriptor Table

-- MVC

I
N
0

START EXAP

**L
ST
LA
ST
L
ST
LA
L
BALR

END

l,=A(LOCA)
l,A4ADRA
l,X'OOA'
l,4LTH
1,=A(LOCB)
1,A4ADRB

10,A4ADRB
15,=A(ZVMVC) ·--~
14,15

LOAD LIBRARY ROUTINE

LOADER

1. ZVMVC is an external symbol
Search Library External
Symbol Table

2. LOAD Library routine into
memory

3. PLACE ZVMVC and memory
address in table

ZVMVC
ARG
ADRA
LTH

RT

~~~~~~~~~~~~~~~~~~~ ADRB 

STA 
DSE 
DS 
DS 
DS 
DS 
CSEC 
USIN 
USIN 
STM 
DRO 
LR 
USIN 
LM 
BCT 
EX 
LM 
BR 
MVC 

**The instructions are illustrated in symbolic form but 
actually they are in machine language. 

Figure 1-9. Library Routine At Load Time 

SAVE 
PROC 

MVC 

END 

n 

0(1,10), 
0(12) 

.0 
SAVE 

ORA 

t\.VE 

---

~ 

NOSS LIBRARY 

Header 

Procedure 
Descriptive Table 

External 
Symbol 

Table 

MVC 

Identification Record 

Routine 1 

Identification Record 

Routine 2 

1-- - -- -- - - --I 



.,<;;> 

.._. 
I 

N 

SOURCE 

PROGRAM 
LOADED 

COMPILER 

LOADER 

IN MEMORY 

Figure 1-10. Library Tape - Utility System Relationship 

' ' ' 
OBJECT 

Header 

PROCEDURE 
DESCRIPTIVE 

TABLE 

Header 

PDT 

EXTERNAL 
SY~BOL 

TABLE 



2.1 GENERAL INFORMATION 

The utility monitor controls and supervises the oper­
ation of the Utility Support Program. It is the first 
processor loaded at IPL {Initial Program Load) and remains 
in storage through operation of all other processors. It 
regulates the loading of system processors, provides for 
communication between processors, handles all input and 
output devices supported by the system, controls inter­
rupts, provides utility functions through supervisor calls, 
and issues status messages to the operator. 

The monitor consists of five major sections: 

1. Job Control. Governs control-card logic, I/O unit 
assignment, and the loading of system processors. 

2. IOPACK. A collection of 1/0 routines that can be 
used by the programmer as well as by the system 
processors. 

3. MONIO. Maintains asynchronous operations on all 
buffered units receiving requests through IOP ACK. 

4. Interrupt Control. Processes all interrupts. 

5. Communications Region. Address constants, 
tables, flags, etc. used for communication within 
the monitor, between the monitor and processors, 
and between processors. 

2.1.1 Use of This Section 

The expected primary users of this section will be 
programmers with comparable backgrounds. The programs 
they produce, however, and the program requirements 
which must be met by the monitor, may show considerable 
diversity. There are two basic divisions: (1) JOVIAL versus 
BAL source code, and (2) problem programs versus system 
processors. 

The first level of access to monitor services is via 
control cards. This section should be read by all. 

Programmers coding problem programs in BAL need to 
understand IOPACK and non-I/O supervisor calls. 

JOVIAL programs gain access to monitor services via 
library calls, which are described specifically in the Library 
User's Manual and generally in Section 1 of this 

, manual. 

2-1 

2.0 SYSTEM CONTROL - UTILITY MONITOR 

The section on System Processors versus Problem 
Programs is intended for prospective additions to a system 
tape. Related to this is the section on "Overriding System 
Protection Features"; essentially, methods for allowing 
problem programs to run under system processor rules. 

All users should understand at least the basics of the 
monitor sub-function BATCH. 

The 9020 Utility System Program and the monitor 
provide powerful programming aids. They must be used 
prqperly. Read carefully. Any one can learn by mistakes. 
The efficient and productive programmer does it right the 
first time. 

2.1.2 Initial Program Loading 

The Initial Program Loadin,g (IPL) procedure resides at 
the beginning of the system tape. To load the monitor into 
storage, the operator selects the tape drive on which the 
system tape is mounted with the loading switches on the 
system control panel and depresses the load button. The 
IPL procedure loads all the monitor components into 
storage. Once in storage, the monitor analyzes its environ­
ment, responds to operator messages, and assigns available 
I/O equipment. 

2.1.3 System Protection 

The monitor protects itself against destruction due to 
error in controlled programs, either system processors or 
problem programs. To do this, it operates in the supervisor 
state with a PSW protect key of zero, assigns a key of one 
to its own storage area, and assigns a key of two to the 
remainder of storage. When loaded, controlled programs are 
assigned a PSW key of two. Controlled programs may 
change the storage-protect keys for their own storage and 
may change their PSW key to any value except zero or one. 
This is done by supervisor calls. 

The utility system processors also assume the right to a 
PSW key of zero. 

In the USER Mode protection is suppressed and 
accidental or deliberate user destruction of the monitor can 
occur. The USER mode gives greater flexibility of oper­
ation but presents obvious risks. It is used only for a 
particular batch with operator knowledge. 



2.1.4 Control Cards, Jobs, and Batches 

A batch is started at IPL and continues until the next 
IPL; manual IPL was discussed previously. The IPL se­
quence may also be initiated from the typewriter or by 
cards. 

A batch comprises one or more jobs. A job consists of 
one or more functions, such as assembly, loading, and 
execution. Jobs are defined and delimited by monitor 
control cards. 

The various subprograms that may support a job are 
called by monitor control cards. As a rule, these sub­
programs require further control cards of their own. BAL 
assemblies, for example, require a "START" card. 

Monitor control cards are covered in detail in this 
document. Subprogram control cards are discussed in their 
relevant System User's Manual. 

Note the distinction between a batch of jobs and the 
monitor sub-function BATCH. The latter is a subprogram, 
described in paragraph 2.11. One of the functions of 
BATCH is to prepare batches. 

2.2 MONITOR CONTROL CARDS 

Normal sequencing and control of system functions is 
determined by control cards on the system input unit, 
.SYSIN. While .SYSIN may be a card reader or a tape, the 
data is always in card format. 

All the control cards have a $ in colmnn 1 and a 
mnemonic starting in column 2. There are two exceptions: 
the comments card and the 7 /8EOF card. Other data on the 
card starts in column 10 for the $ID card and in column 16 
for all others. 

Monitor control cards are categorized: 

a. Operator/Batch: Defines and delimits the batch. 

b. Job Control: Defines and delimits the job and its 
environment. 

c. Job-type: Indicates type of job (one per job). 

d. Processor: Call a subprogram from the system 

tape. 

e. Input/Output: Primarily defines tape. 

f. $DAT A: Indicates a data deck follows: 

In the following control-card descriptions, braces 
around entries indicate that one of the options is to be 
selected; upper-case words and letters must appear exactly 
as given in the description; lower-case words and letters 
indicate the type of data to be supplied by the programmer. 

Sample control cards are shown in Figure 2-1. Figure 
2-2 illustrates a sample card deck for a 2-job batch. Figure 
2-3 illustrates a sample job deck. 

2.2.l Operator/Batch Control Cards 

There are four control cards that are normally supplied 
by the operator. They are: 

$DATA - date card. Date is any eight characters 
starting in column 16. (nominally mm/dd/yy) 

$END - End of batch is indicated. 

$ENDT APE - End of last batch on .SYSIN is 
indicated. 

7 /8EOF - End of job is indicated. This card is also 
used after $END and $ENDTAPE cards. Seven and 
eight are overpunched in column 1. This card simulated 
an end-of-file on SYSIN. 

2.2.2 Job Control Cards 

There are five job control cards: $ID, $ENV, $PAUSE, 
${comments), $PRINT. 

2.2.2.1 $ID Control Card 

The $ID control card is required for proper identi­
fication of each job in a batch. There must be one $ID 
control card for each job. It precedes all other job control 
cards. The format of the $ID control card ~s: 

Start 

Column 

10 

16 

2-2 

Content 

$ID 

identity 

comment 

Meaning 

This is an identity card. 

This field contains six or less 

characters unique in the batch. 

This field can contain additional 

data, such as the programmer's 

name or building. This card is 

typed through the last non-blank 

column. 

/ 



$ID TEST 01 DOE, J. IBM BLDG 13 

$ FIRST TEST OF A SERIES 

( $PAUSE VERIFY TAPE MOUNTINGS 

$ENV SES=2, SYS=NS0621, SPT=PGMOOl, MOD-USER 

( $XEQ NOSPT, NOLIB, NOCOMP 

( $NON EX NOCOMP, NOLIB 

( $DATA 

( $REEL 30,P,l,2,3 

$UNIT TAPE 43, USERIO, 04C, )08 

$UNIT TAPE 35, IOPACK, FXB, RL00810, BFlO, BUF, 7TRACK, D800, BCD, EVEN 

( $UNIT TAPE 27, IOPACK, VAR, 9TRACK 

( $UNIT READ 28, IOPACK 

( $AUX NOSPT 

Figure 2-1. Sample Control Cards 

2-3 



N 
I 
~· 

Figure 2-2. Sample Deck for 2-Job Batch 

Job 1 

(Execute) 

"'Optional 



7 /HEOF 

Figure 2-3. Sample Job Deck for Generating NAS Master Tape 

2-5 



2.2.2.2 $PAUSH Control Card 

The $PAUSE control card causes the monitor to enter 
a wait loop until the operator depresses the ENTER key on 
the console typewriter; $PAUSE may be used to provide 
operator instructions. This control card is optional; if used, 
it must precede another system control card. The format of 
the $PAUSE control card is: 

Start 
Column 

16 

Content ---
$PAUSE 

comments 

Meaning 

This is a pause. 

This field contains any alpha­
numeric character but cannot 
exceed column 72 in length. Data 
from this field is printed on the 
system output unit and typed on 
the console typewriter before the 
Monitor enters the wait loop. 

2.2.2.3 $(Comments) Control Card 

The $(comments) control card contains information to 
be placed on the system output unit and typed on the 
console typewriter. This control card is optional; if used, it 
must precede another monitor control card. The infor­
mation on this card does not affect the processing of the 
job. Several may be used if necessary. The format of the $ 
comments control card is: 

Start 
Column Content Meaning 

$ This is a comments card. Columns 
2-15 inclusive must be blank. 

16 comment This field contains any alpha­
numeric information including 
embedded blanks. The field 
cannot exceed column 72. 

2.2.2.4 $PRINT Control Card 

The format of a $PRINT card is: 

Start 
Column 

16 

Content 

$PRINT 

comment 

Meaning 

This card is similar to 
the $(comment) card. 

This field contains any alpha­
numeric information including 
embedded blanks. The field 
cannot exceed column 72. 

The difference between $(comment) and $PRINT is 
that the information in column 16-72 is placed on 
SYSOUT only. $PRINT and $(comment) cards may be 
mixed in any order. 

2.2.2.5 $ENV Control Card 

The $ENV control card causes the monitor to verify 
that the job environment fulfills specified requirements. 
This card is optional. If used, $ENV cards must follow the 

2-6 

$ID cards and precede the job-type control card. When 
specifying several parameters, they are placed on one card 
separated by commas, no blanks; more than one $ENV card 
may be used. The format of the $ENV control card is: 

Start 

Column 

16 

Content 

$ENV 

SES=a 

SYS=bbbbbb 

Meaning 

This is an environment control 

card. 

At least "a" (some number) 

storage elements are required. 

Nine is the maximum value 

allowed. 

The characters bbbbbb represent 

a valid system tape label 

indicating the utility system 

tape which must be used to 

process this job. 

NOTE: In case of error, depress the ENTER key to 
terminate this job, and rerun job with this specified system 
tape (i.e., no "OPERATOR OVERRIDE" capability for 
SYS= bbbbbb ). 

LIB=cccccc 

SPT=eeeeee 

CMP=dddddddd 

CLB=ffffffff 

The characters cccccc represent 

a valid library tape label 

spe<;ifying the library tape 

required for this job. 

The characters eeeeee represent 

a valid SPT tape label. This 

field has the same meaning and 

effect as the LIB field. 

The characters dddddddd represent 

a valid compool name. This field 

has the same meaning and effect 

as the LIB field except that the 

compool name is specified and not 

the compool tape label. A full 

eight columns must be allocated 

for the name, using trailing 

blanks if appropriate. 

This option is to be used with 

MLC tapes. The characters 

ffffffff represent a valid 

compool name. This field has 

the same meaning and effect as 

the .LIB field except that the 

compool name is specified and not 

the MLC tape label. A full eight 

columns must be allocated for the 

name, using trailing blanks if 

appropriate. 

) 



NOTE: In case of error, the monitor types ''REQUIRE" 
plus this field from the $ENV card, unloads the erroneous 
tapes, and awaits operator action. One of three actions is 
expected: the operator (1) loads the requested tapes and 
types CONT to request a check of its label, (2) types SKIP 
to omit a job that cannot be executed properly, or (3) 
types OVER if he believes the job should be run with the 
tape he has mounted. In this last case, "OPERATOR 
OVERRIDE" will be printed with the program output. 

Start 

Column Content 

WKl 

WK2 

WK3 

MOD=SYST 

MOD= USER 

Meaning 

. WORK! is required. 

.WORK2 is required. 

.WORK3 is required. 

This job is run in system-debug 

mode. 

The problem program requires 

USERIO facilities. 

The $ENV card advises the monitor to demand certain 
conditions. The programmer is obligated to furnish the 
operator with enough information to meet those condi­
tions, such as correct tape slot numbers and a clearly 
marked request form that agrees with the $ENV cards. 

Any or all of the $ENV options may be used, in any 
order, on one or more $ENV cards. 

Exception: The option CLB or CMP, if used, must be 
the last option on a card. 

Recommendation: The options SES and SYS be first 
when used. 

NOTE: Current design of unit assignment logic prohibits 
the explicit or implicit release of WORK.2 via any com­
bination of options input on $ENV or $XEQ/$NONEX 
control cards. 

If a user desires the priority effects of the $ENV card 
without specifying required tape labels, he may substitute 
six (or eight) asterisks(******) for a library, compool, or 
SPT label to insist only on the right kind of tape being 
mounted, or six (or eight) dollar signs($$$$$$) to insist on 
a drive being assigned with no label checking. 

2-7 

2.2.3 Job-Type Control Cards 

One of three job-type control cards may follow the $ID 
control card for the job. These cards indicate to the 
monitor the nature of the jobs that follow them. 

a. $XEQ - Problem program is to be executed. 

b. $AUX - Object decks are to be placed on the 
system auxiliary tape but are not to be executed. 

c. $NONEX - Problem program is not to be 
executed . 

2.2.3.1 $XEQ Control Card 

The $XEQ (execution) control card indicates that the 
job consists of programs that are to be executed immedi­
ately after processing. The format of the $XRQ control 
card is: 

Start 

Column Content Meaning 

1 $XEQ This field indicates an execution 

call is being made. 

16 NOSP'f This field indicates no symbolic 

program tape is used. 

NOLIB This field indicates the library 

is not used. 

NOCOMP This field indicates compool is 

not used. 

Any combination of options is valid; however, options 
must be separated by commas and no embedded blanks are 
allowed. 

It is erroneous to declare a unit not required on a 
job-type card after declaring it essential on a $ENV card. 
This or any other error in options causes the defective 
option field and any following fields to be ignored. 

Errors that preclude further processing and/or exe­
cution in a subprogram normally do not stop the processing 
of other subprograms in a job but stop execution if further 
job processing cannot continue. 



2.2.3.2 $AUX Control Card 

The $AUX (auxiliary) control card indicates that 
system processors are to place generated object decks on 
the auxiliary tape (.AUXIL) to be read by another 
processor. A typical use of the $AUX control card is when 
BAL Assembler and adaptation assembler outputs are 
placed on .AWOL for the NAS System Edit subprogram. 

The format of the $AUX control card is: 

Start 

Column Content Meaning 

$AUX This is a $AUX card. 

16 NOSPT Same as for $XEQ. 

NO LIB Same as for $XEQ. 

NOCOMP Same as for $XEQ. 

2.2.3.3 $NONEX Control Card 

The $NONEX control card indicates nonexecution 
object decks are not placed on .AUXIL, not executed, nor 
may the user call a processor which reads .A UXIL. The 
format for the $NONEX control card is: 

Start 

Column Content Meaning 

1 $NONEX Do not attempt execution. 

16 NOSPT Same as for $XEQ. 

NO LIB Same as for $XEQ. 

NO COMP Same as for $XEQ. 

2.2.4 Processor Control Cards 

If a $XEQ, $AUX, or $NONEX control card is used, it 
must be followed by one or more processor control cards, 
each of which may be followed by a source program or 
other deck according to individual processor requirements. 
These cards indicate to the monitor the processors which 
are to be called during the job. The control card and its 
associated processor are listed below. 

2-8 

Control Card Processor 

$BAL BAL Assembler 

$JOY JOVIAL Compiler 

$OBJ Object Blocking Routine 

Details on the content and format of these cards can be 
found in the relevant Program Reference Manual, with one 
exception: the $OBJ Card. The Object Blocking Routine 
has one function; the routine copies and "blocks" object 
decks on .AUXiL. The object decks are mostly TXT (text) 
cards, each of which contains up to 56 bytes of assembled 
data. The TXT cards are packed into records of up to' 272 

. bytes. 

No options are necessary on the $OBJ card; comments 
are permitted starting in column 16. 

2.2.5 Input/Output Control Cards 

The 1/0 requirements of system processors are met by 
'·'system units". A system unit is normally either a tape 
drive, a printer, a card reader/punch or a console type­
writer. Other types of devices (i.e., "non-standard 1/0") 
may become system defined units under certain conditions 
(see paragraph 2.2.5.1.3). The utility monitor determines 
the device to be assigned as a standard system unit and 
controls the operation. Tape system units are described in 
detail in paragraph 2 .3 .5. 

A problem program may require its own input or 
output devices which must be defined. The monitor uses 
the information on input/output control cards to make unit 
assignments. As many of these cards as are needed may be 
used, and they must appear immediately after the last 
problem program deck for the job. Whenever possible, units 
are assigned to alternate channels in the order in which 
their control cards appear. 

The following discussion applies to non-system units. 

2.2.5.1 $UNIT Control Card 

The $UNIT control card defines the 1/0 unit to be 
used. There must be one $UNIT control card for every tape 
or other unit used by the job. There are two forms of 
$UNIT card: (1) an IOPACK unit card for normal use, 



utilizing service routines supplied with the utility monitor 
and (2) a USERIO unit card for cases where a user desires 
services not available from IOP ACK. 

2.2.5.1.1 IOPACK $UNIT Card. The format of the 
IOP ACK $UNIT control card is: 

Start 

Column 

1 

10 

16 

19 

Content 

$UNIT 

TAPE 

READ 

PUNCH 

PRINT 

xx, 

IOPACK, 

Meaning 

This is a $UNIT card. 

1/0 unit is a tape. 

1/0 unit is a card reader. 

1/0 unit is a card punch. 

1/0 unit is a printer. 

The character xx represents a 

two-digit logical tape number, 

20-99 inclusive. This number is 

used in the problem program to 

ref er to the unit. 

Monitor 1/0 routines are used. 

NOTE: The preceding specifications are mandatory; the 
following fields are used only when tape is specified as the 
type of 1/0 unit to be used. Some of these fields are not 
mandatory for tape units and may be omitted. The selected 
fields must be in the following order with no embedded 
blanks. Commas do not enclose omitted fields. 

Start 

Column 

26 

Content · 

VAR 

FIX 

VBL 

FXB 

RLn 

Meaning 

Unblocked, variable-length 

tape records are used. 

Unblocked, fixed-length 

tape records are used. 

Blocked, variable-length tape 

records are used. 

Blocked, fixed-length tape 

records are used. 

This field represents the 

physical record length in bytes. 

The character n represents a 

5-digit number, with leading 

2-9 

Start 

Column Content 

BFn 

BUF 

7TRACK 

9TRACK 

Meaning 

zeros if needed. This field is 

omitted if variable-length, 

unblocked, unbuffered records 

are specified. For fixed-length 

records, n indicates the number 

of bytes in a record. (This 

number need not be repeated in a 

write tape operation.) For 

variable-length, unblocked, 

buffered and variable-length, 

blocked records, n indicates the. 

largest possible number of bytes 

in a record; this length 

determines buffer size. Maximum 

allowable physical record length 

is 65,535 bytes. Minimum buffer 

size is 16 bytes. Minimum 

logical record length is 16 bytes 

for VAR and FIX type records and 

16 divided by BFn for FXB type 

records. No minimum length is 

established for VBL type records. 

Maximum logical record size is 

RLn for VAR and FIX type records 

and RLn divided by BFn for FXB 

type records. Maximum logical 

record size for VBL type records 

is RLn-4. 

This field specifies the blocking 

factor. The character n 

represents a 2-digit number 

specifying the number of logical 

records per physical record for 

FXB type records. This field can 

be omitted if the blocking factor 

is one or if the records are of 
variable length. 

The monitor establishes two 

buffers for the fde. This field 

can be omitted if tape records 

are VAR; if so, an unbuffered 

read or write operation is 

assumed, An error results if 

this field is omit_ted for any 

other type of record. 

This field indicates a 

7-track tape unit is used. 

This field indicates a 
9-track tape unit is used. 



Start 

Column Content 

0200 

D556 

D800 

BCD 

BIN 

6 BIT 

Meaning 

This field is required for a 

7-track tape and indicates the 

density of the tape to be used. 

IOPACK uses the code-translator 

mode of operation. This option 

is invalid if VBL is specified. 

IOPACK uses the byte-converter 

mode of operation. 

IOPACK uses the 6-bit mode of 

operation. (For input, 6-bit 

characters are stored as 8-bit 

characters with two leading 

zeros. For Output, 8-bit 

characters are reduced to 6-bit 

characters by truncating the 

first two bits.) 

NOTE 1: This field applies to 7 track tapes only. If the 
field is void and 7TRACK specified, BIN is assumed. 

EVEN Even parity is used. 

ODD Odd parity is used. 

NOTE 2: This field applies to 7-track tapes only. EVEN 
may be used only with BCD or 6BIT mode of operation; if 
BIN is selected, odd parity is always assumed. 

2.2.5.1.2 Problem Program USERIO $UNIT Card. The 
format of the USERIO $UNIT control card is: 

Start 

Column 

16 

19 

26 

Content 

$UNIT 

xx, 

USERIO, 

yyy, 

Meaning 

This is a $UNIT card. 

The characters xx represent a 

two-digit logical unit 

number, 20-99 inclusive. 

Monitor services are not used; 

the user supplies his own 

services. 

The characters yyy represent 

a three-digit hexadecimal 

device address. 

Start 

Column 

30 

Content 

zz 

Meaning 

The characters zz represent 

a two-digit device type, 

06-10 inclusive. 

For each device type specified in a USERIO $UNIT 
card, the user must supply a device initiation routine and a 
device interrupt routine comparable to the routines sup­
plied in MONIO. 

If a user supplies both USERIO and IOPACK $UNIT 
cards for tapes, the USERIO $UNIT cards should appear 
first because their addressing is fixed (declared in the card) 
while any remaining tape units can be selected by IOP ACK 
$UNIT cards. 

Problem program $UNIT cards generally immediately 
precede a $DATA card (see paragraph 2.2.6). 

Detailed instructions for writing USERIO service 
routines are provided in paragraph 2.10. 

2.2.5.1.3 System Processor USERIO $UNIT Card. Some 
system processors may have specific need for use of 
"non-standard" 1/0 devices; e.g., TTY, FDEP, DISK. These 
devices may become system defined units (logical unit 
numbers 18-23) through use of a system processor 
USERIO $UNIT card. The format of this control card is 
nearly identical to the $UNIT card shown in paragraph 
2.2.5.1.2, with the exception of the logical unit number 
values arid the device address (column 26). Here, the device 
address may be MXX, SXX, or XXX, where M indicates any 
multiplexor channel (0,4,8), S indicates any selector chan­
nel ( 1 ,2 ,5 ,6 ,9 ,A) and X is a hex digit. This card must be 
placed immediately before the $ control card which calls 
the system processor, and defines a non-standard device to 
be used by that processor for a particular job. 

This card is given special handling by processor 
LISTGN, which processes $UNIT cards. LISTGN deter­
mines whether the device requested is available by checking 
for 1/0 response on the indicated channel (or on all possible 
channels in the case of M - or S - type channel indicator) 
and device number. If the device is available, an entry for it 
is made in the system unit assignment table, a LISTIO is 
generated, and acceptance of the device is indicated on the 
console typewriter (1052). 

The system processor must supply both a device 
initiation routine, and a device interrupt routine compara­
ble to the routines supplied in MONIO. 

2-10 



At end-0f-file on SYSIN, USERIO entries in the system 
unit assignment table are eliminated both logically and 
physically. Hence, a new USERIO $UNIT card for non­
standard devices is required for each job ($1D ..... 7 /8 EOF), 
but not for extra processor calls within a job. 

2.2.5.2 $REEL Control Card 

A $REEL control card is used for data tapes that must 
be saved, for multireel files, and when a file is to be built 
and saved. 

Each $REEL control card relates to only one $UNIT 
control card. If the $REEL control card is omitted, the file 
is assumed to consist of one tape reel without file 
protection. In this case, the monitor will not pause to allow 
mounts unless (1) a system unit must be removed or (2) a 
prior job requested that the tape on the same physical 
device be saved. A save message is never issued when there 
is no $REEL control card for a unit. 

If the programmer knows the reel number ·of the first 
or only tape to be used, he indicates this number on the 
$REEL control card. If the reel number is unknown or if 
any reel is satisfactory, the programmer punches NORL on 
the $REEL control card. The monitor then assigns a scratch 
tape to the file. (With respect to pauses for mounts, the 
monitor functions as indicated in 1 and 2 above.) 

The format of the $REEL control card is: 

Start 

Column 

1 

16 

19 

21 

Content 

$REEL 

xx, 

N 

p 

xxxx 

Meaning 

This is a $REEL card. 

The characters xx are the 

logical unit number from 

the corresponding $UNIT card. 

The character N indicates file 

prote<...-tion is not used. 

The character P indicates file 

protection is required. 

The characters xxxx represent the 

reel sequence number. The number 

is one to four characters; 

leading zeros may be omitted. 

The reel number is not an 

internal label which is checked 

by a program; it is an external 

label which must be checked by 

Start 

Column Content 

NORL 

Meaning 

the operator. If the programmer 

does not wish to assign a reel 

number to an output tape, he 

should place NORL in the reel 

number field. This field must 

not be blank. A separate NORL 

must be used for each output 

tape not given a reel number. 

The fields on the $REEL control 

card must appear in the order 

given, separated by commas. 

NOTE: With the occurrence of each end-0f-tape or end­
of-file condition, control will be passed to the user 
specified end-0f-file address. It is the user's responsibility to 
issue all save and mount messages after the initial ones 
supplied by the monitor. 

2.2.6 $DATA Control Card 

If data cards are used by the problem program in a job, 
the data deck must be preceded by the $DATA control 
card and must appear as the last physical portion of the job 
deck. The format of the $DATA control card is: 

Start 

Column 

1 

Content Meaning 

$DATA A data deck follows. 

The $DATA card allows the programmer to use .SYSIN 
for input to his program and to include it in a job that 
might for example include assembly of the program that is 
to operate on the data. 

2.3 TAPE USE AND FORMATS 

2.3.1 Identification of System Units 

System units and their prime functions are listed in 
Table 2-1. System units are all tapes except .INPUT, 
.PRINT and .PUNCH, which may be tape or card reader, 
printer, and card punch respectively. If tape I/0 is used in 
place of card reader, printer, and card punch, tape units are 
sometimes called .SYSIN and .SYSOUT. This mode is 
referred to as "off-line" input or output. The tape unit 
.SYSOUT contains both print and punch images. 

2-11 



Table 2-1. System Input/Output Units 

r------------------

Symbolic Name LU 

of Unit Unit Type No. Definition 

.SYSTEM Tape 1 System tape 

.INPUT * 2 System input 

.PRINT ** 3 System print output 

.PUNCH ** 4 System punch output 

.AUXIL Tape 5 Loader input, dump tape 

.LIBl Tape 6 Library tape 

.COMP Tape 7 JOVIAL Compool 

.SPTl Tape 8 Symbolic program tape 

.WORKl Tape 9 Generated source deck transmitted 
from JOVIAL compiler or Symbolic 
Corrector to BAL Assembler, 
secondary work tape for other 
processors as required. 

.WORK2 Tape 10 Output tape for Compool Edit, 
System Edit, SPT Edit, and Library 
Edit primary work tape for other 
processors as required, including 
JOVIAL Compiler and BAL Assembler 

.WORK3 Tape 11 Tertiary work tape for processors 
as required, including JOVIAL 

I Compiler I 

.TYPE Typewriter 12 System console typewriter 

INPUT may be tape (SYSIN) or card reader * 
** PRINT and PUNCH may be tape (SYSOUT) in which case print and punch images are produced on the 

same tape, or the printer and card punch respectively. 

Common practice is to configure a 9020 into two sets: 
an "I/O" computer consisting of one CE, one SE, and four 
or five tapes and a "compute" computer consisting of one 
CE and the balance of the available SE's and tapes. With 
this configuration the I/O computer prepares .SYSIN's and 

prints .SYSOUT's, while the other computer performs the 
jobs on its current .SYSIN, using the faster speed of tape 
input and output. A net saving in time is realized because 
the subprogram running in the I/O computer, BATCH, is 
designated to keep several printers and card sets busy. 

2-12 

The monitor configures to itself as many tape drives as 
are available. If fewer than the twelve units shown in Table 
2-1 are available, the monitor tries to continue if possible. 

NOTE: Although there are 12 units in the list, the 
maximum number of tapes is 10; the typewriter is always 
on-line and .SYSOUT includes print and punch. 

The basic, or minimum I/O complement is: 

.SYSTEM 



.TYPE 

.INPUT 

. PRINT 

.PUNCH 

. AUXIL 

This configuration could exist with two tape drives: 
.SYSTEM and .AUXIL. 

As more tapes are available, the monitor assigns them 
in the following priority sequence: 

a. .UBI 

b .. WORK2 

c .. WORK.I 

d .. WORK3 

e .. COMP 

f. .SPTl 

Tape assignments can be altered by operator actions 
and by $ENV cards. Tapes requested by $ENV cards take 
precedence over the normal priority sequence shown 
previously. 

NOTE: Current NOSS monitor unit assignment logic may 
cause switching of logical and physical units between jobs. 
Programmers are urged to include explicit mount and save 
messages within all programs. Message text should include 
both logical unit number and physical unit assigned. 
Current unit assignments may be obtained from the current 
assignment table. The communications region within the 
NOSS monitor points to the current assignment table. 

Without explicit mount and save messages, the user may 
either save the wrong output tape or mount an input tape 
on the wrong physical unit if the operator is forced to rely 
on the unit assignments typed out at IPL time. 

NOTE: Current design of unit assignment logic prohibitsr 
the explicit or implicit release of WORK2 via any combi 
nation of options input on $ENV or $XEQ/$NONEX 
control cards. 

Section 1 deals with tape requirements for utility 
system processors. 

The formats of the system unit tapes are in some cases 
preset and unchangeable. The system tapes which have 
preset formats are .SYSTM, .SYSIN and .SYSOUT. In other 
cases, notably for the work tapes and non-system units, 
tape format is determined by the program using the tape. 
For non-system units, tape formats are established by 
$UNIT cards; for system units, a supervisor call is provided 
to establish tape format. 

2.3.2 Tape Format Terminology 

Before explaining the types of record formats recog-

2-13 

nized by the utility monitor, it may be beneficial to define 
terms used in describing record formats. The following 
definitions apply to the Utility System . 

a. Physical Record. A group of related fields of 
information treated as a unit, extending from 
interrecord gap (IRG) to interrecord gap is defined 
as a physical record . 

b. Logical Record. More than one group of related 
fields of information can be blocked in one 
physical record. Each such group is defined as a 
logical record. The number of logical records 
within a physical record is the blocking factor. 

NOTE: When reference is made to a "record" in this 
document, the reference is to a logical record. The user 
must become familiar with the manner in which logical 
records and physical records are accessed. Paragraph 2.5.2, 
IOP ACK, gives a detailed explanation of this. 

c. Unblocked Records. An unblocked record is one in 
which the physical record contains only one logical 
record. 

d. Blocked records. A blocked record is one in which· 
the physical record contains more than one logical 
record. 

e. Fixed-length Records. Fixed length records are 
records which are all the same length. For example, 
if all the records on a tape were 24 bytes long, the 
records would be fixed length. 

f. Variable-length records. Variable-length records are 
records which may vary in length. 

2.3 .3 Record Types 

The utility monitor is equipped to handle four types of 
tape record formats as specified by $UNIT cards or by the 
SVC call to SYSDTF. Another record format, the off-line 
print format, may be used by the monitor, but there is no 
way for the programmer to specify this format. The 
formats are fixed-length, unblocked; variable-length, un­
blocked; fixed-length, blocked; variable-length, blocked; or 
off-line print. Each format is described below: 

2.3.3.1 Fixed-Length, Unblocked Records (FIX) 

The physical record is identical to the logical record. 
All physical records have the same length. All records 
appear exactly as they were placed on the tape. Figure 2-4 
illustrates this format. 

Physical Record 
~ 

~RG I I IRG I IRG 

~ 
J.ogical Record 

Figure 2-4. Fixed-Length, Unblo~ked Record Format 



2.3.3.2 Variable-Length, Unblocked Records (VAR) 

There is only one logical record per physical record, 
and physical records may vary in length. Figure 2-5 
illustrates this format. 

PhyGical Record 

IRG I 

Logical Record 

Figure 2-5. Variable Length, Unblocked Record Format 

Physical Record 1 

-r \ r 

IRG 
Logical Logical 

IRG Record 1 Record 2 

Figure 2-6. Fixed-Length, Blocked Record Format 

2.3.3.4 Variable-Length, Blocked Record (VBL) 

In these records, the length of the logical records may 
vary as well as the length of the physical records. The 
blocking factor for each physical record may also vary. 
When 7-track tapes are used, BCD and 6-bit mode are 
invalid for VBL records. 

2.3.3.3 Fixed-Length, Blocked Records (FXB) 

There is more than one logical record per physical 
record. The logical records are a fixed length, as are the 
physical records. Thus, the same number of logical records 
are in each physical record. The length of the physical 
record is equal to the length of a logical record, multiplied 
by the number of logical records per physical record (the 
blocking factor). 

If padding is necessary to complete a physical record, 
it consists of 1 bits on 9-track tapes and 7-track binary 
tapes, and the character 9 (repeated as required) on 7-track 
BCD tapes. For 7-track, 6-bit padding consists of low-order 
1 bits. 

Figure 2-6 illustrates this type of record format. 

Physical Record 2 

~ 

Logical Logical 
IRG Record 3 Record 4 

NOTE: Maximum physical record size for VBL is 32767 
(i.e., X'7FFF'). SVC SYSDTF will not allow a buffer size 
greater than this maximum. 

Figure 2-7 illustrates the format of a variable-length, 
blocked record. 

I IRG I PRS I ms I I L-RCDl I LRS2 I L-Rcn2 I~ ~I LRSn I L-RCDn I IRG 

Key: 

PRS (physical record size) is a 2-byte field which indicates the number of bytes in the physical record, from 
inter-record gap to inter-record gap. The contents of PRS are equal to 2 (its own size)+ 2 X (blocking factor)+ the 
sum of the contents of all the LRS (logical record size) fields. The maximum physical record length permitted is 
65,535 bytes. 

LRS is a 2-byte field that indicates the size in bytes of the logical record immediately following. There is one LRS 
field preceding each logical record. 

L-RCD is the logical record itself. 

NOTE: PRS and LRS are generated by the monitor, and the programmer need not be concerned with these fields. 

Figure 2-7. Variable-Length, Blocked Record Format 

2-14 



2.3.3.5 Off Line Print Format Records (PRT} 

This format is provided for use in off-line printing and 
punching. It is the format used in writing the .SYSOUT 

1 tape, and tapes written in this format can later be processed 
by the tape to print/punch programs provided for 
.SYSOUT tapes. However, the monitor makes no provision 
for reading PRT format records and any program needing 
to read this format must declare the format to be 
variable-length, unblocked and provide its own routine for 
unblocking the records. 

The length of the logical records may vary as well as 
the length of the physical records. There is no fixed 
blocking factor. The maximum physical record size must 
not exceed 675 bytes if standard print/punch programs are 
to process the output tape. When 7-track tapes are used, 
6BIT ODD mode is automatically selected and need not be 
specified. 

The format of an off-line print format record is 
illustrated in Figure 2-8. 

I CC1 I L-RCD1 I RM I cc2 I L-Rcn2 I RM II ..... c_c_n_l..._L-_RC_Dn ______ I 
Key: 

a. CC (caniage control) is a caniage-conti;ol character or punch-image indicator as follows: 

+: No space before printing (never a space after printing, so this means overprint) 

blank One space before printing 

0: Two spaces before printing 

Three spaces before printing 

1: Skip to 1 (restore) before printing 

2: Skip to 2 before printing 

3: Skip to 3 before printing 

4: Skip to 4 before printing 

5: Skip to 5 before printing 

b. V L-RCD is an 80-character punch image 

c. bed X (Generated by the Monitor when writing 7-track tapes in PRT format; caller must use letter Vin the 
image he supplies.) L-RCD is a 160-character punch image in which the first 80 characters represent the bit 
pattern of card rows 12-3 and the last 80 characters represent the bit patterns of card rows 4-9. 

d. L-RCD is the logical record itself, in EBCD on 9-track tape, BCD for 7-track print records, and the format 
described above for 7-track punch records. 

e. RM is a record mark character, hexadecimal (EO) on 9-track tape, hexadecimal (lA) on 7-track tape. 

Figure 2-8. Off-Line Print Format Record (Sheet 1 of 2) 

2-15 



NOTE: Since all information necessary for blocking logical records is available to the user, it is permissible to block 
several records together with record marks and to present them to the monitor in a single call. However, this should not 
be done with punch images since the Monitor assumes that all punch images will be presented individually. 

NOTE: Conversion from EBCD to BCD is performed in accordance with the following list: 

EBCD 

A to Z 

0 to 9 

bl,., comma,* 

RM,-,/,$ 

',@ 

(,% 

),D 

+,& 

=,# 

null (binary 0) 

all others 

Figure 2-8. Off-Line Print Format Record (Sheet 2 of 2) 

2.3 .4 Buffers 

The user must be aware of the buffer requirements for 
reading and writing tapes. There are two types of tape 
operations with which the user is concerned: 

2.3.4.1 Unbuffered Operation 

In an unbuffered operation the user need not specify a 
buffer. Data is directly read into or written from the user's 
data area. This operation is desirable when a program is 
cramped for space since tape records may be up to 65,535 
bytes in length. However, if time is a more important factor 
than core storage, the double-buffered operation should be 
used. 

BCD 

A to Z 

0 to 9 

bl,., comma,* 

RM,-,/,$ 

'(quote) 

( 

) 

+ 

= 

blank 

$ 

2-16 

2.3.4.2 Double-Buffered Operation 

In a double-buffered operation, either the user specifies 
buffers (if the program is operating in system processor 
mode) or the monitor assigns buffer areas (if the program is 
a problem program). In either case two buffers are specified 
for input and for output. The user may specify, in the I/O 
call, an additional area in which to work on his data, or he 
may work on it in the buffer. 

Double-buffered input allows faster processing time 
since the monitor keeps both buffers filled. On a read 
instruction, the data which has been previously placed in 
one input buff er is transferred to the User's input area 
while the next record is being read. On a write instruction, 
data from the user's output area is transferred to the output 



- i(:~_ 1.-,\t: ~ V> 
, r~ ~ e:: (J~l.,v -

' - '- (J 
~-~-~ - ~, ' L (5<·~ t 

~~\ t-{;,. hc.<:::~\t•.,/'c--\'. 

( ~~i7- .!\rc~. ~'-u, 
~<.:;, -~··;c ,•• :(., "-'~ ··-

' 

-.. -

SPT TAPE 
' ' 

FORf"lAT 

A Pa.o<S. lA-rvi . 

· AD POINT i.c--- 1 FIJ------~ 
MARKER 1 PHYSICAL RECORD 

Cc::::1~~t==:21l1•D1· ~ 

5 6 7 
1 10 LOGICAL PER 
"~t _ 1 PHYSICAL RECORD 

~--- 1 CARD IMAGE----~ 
11 2p3 - 4 51 6 7; 8; 

00,50 CljC2l40 xx xx1xx,xx
1
xxl 

Lt_ LOGICAL RECORD ~ ~k. ~t~ ~~(: 
LENGJ.H IN HEX. fft,,ff1M. c e. w · 

l_l.~t:;> 
K HEAD~~ REf_ORD ~ ~AL 

!;' I I i I I I I ; ! I I i I I -; -l I J; ... : 
~- 00 14 xx· xx' LL· LL 1 LL_ LL;LL' LL,40 E2'D7 E3:40_.4o-

1
·40 40-40 40 ·a 03 36j00 50 CB 

lr1· ! I I I I I I ; I I I ! I I ' I .-_ .... 

--- -------- ---------- _________________ ±' ·-c_Q_ _____ _:_ ___ ~----------~-~------- -·-- --- --------~-<' 



/'").[ 

(-

~· 
:-z 
~ 
~J lLr 
~ "' 
~Ii 



buffer; then control is transferred back to the user while 
data is being placed on tape. Paragraphs 2.5.2.2.4 and 
2.5.2.2.5 give detailed descriptions of double buffered 
input/ output. 

2.3.5 System Unit Tape Formats 

It may be of interest to the user to examine the 
formats of some system tapes (e.g., SPT tapes, Library 
tapes). 

The user must understand that because a tape is 
mounted on a particular drive, it does not have to be in the 
same format as the tape usually associated with that drive. 
For example, any tape of any format may be mounted on 
the .SPT tape drive. When SPT tape format is referenced, 
the format is of the tape and not the tape drive. 

The only concern of the user is that 7-track tapes must 
he mounted on 7-track tape drives and 9-track tapes must 
be mounted on 9-track tape drives. 

Formats of the following tapes will be discussed in this 
section: 

a. .AUXILtape 

b. SPTtape 

c. Library tape 

d. Compool tape 

e. MLCtape 

f. SY SIN tape 

g. SYSOUT tape 

If a header record for the tape exists, it is diagramed, 
and general format is given for the rest of the tape. For 
specific format information, the user should see the 
appropriate User's Manual or Program Logic Manual. 

The format of the system tape need not be discussed 
since the user never accesses that tape. 

2. 3.5.1 .A UXIL Tape 

The .AUXIL tape consists of variable-length, unblocked 
~cords. The records normally are 80 to 280 bytes in 
~ngth. This is the format for the tape when records are 

placed there by object blocking, the BAL assembler, or one 
of the support processors. 

The records are object deck card images. Each card 
image makes up one tape record except for TXT (text) 
cards which may be blocked up to 280 bytes. 

The .AUXIL tape does not contain a header record. 

2.3.5.2 SPT Tape 

The format of an SPT tape is variable-length, blocked 
records. Each logical record is 80 bytes in length, and ther.e 
may be a maximum of 10 logical records in one physical 
rec;ord. Therefore, the maximum length of a physical record 
on an SPT tape is 822 bytes. 

Each 80-byte logical record is a card image. The header 
record consists of one record 20 bytes in length. Format of 
an SPT tape header record is shown in Figure 2-9. 

.J. _l . . 
Control Information for variable length, blocked records (see 

Figure 2-7) 

SPT Tape Label 

SPT Tape Label (Cont.) l s 

p T 

Figure 2-9. Format of an SPT Tape Header 

2.3.5.3 Library Tape 

The format of the Library tape is variable-length, 
unblocked records. The records may be a maximum of 
20000 bytes in length. 

The header record consists of one record, 16 bytes in 
length. Format of a Library tape header record is shown in 
Figure 2-10. 

t _J_ .J. 
T T 

Tape Label 

Tape Label (Cont.) I N L 

I B 

Figure 2-10. Format of a Library Tape Header 

2-17 



2.3.5.4 Compool Tape 

The Compool tape format is of variable-length, un­
blocked records. The records may be 16 to 3584 bytes in 
length. 

The header record (Compool Tape Index) is from 20 to 
812 bytes in length, depending on the number of compools 
on the tape. Figure 2-11 shows the format of a compool 
tape header record. 

Tape ID 

Tape ID (Cont.) c 

M p Bytes/Index 

name of 

com pool 

·(----.__ ____ .,/ ___________ . 

name of 

com pool 

Figure 2-11. Format of Compool Tape Header 

NOTE: There is no set relation between the order of 
compool names in the index and the order of compools on 
the compool tape. The index order is determined by the 
arrangement of .ADD control cards (preceding the .END 
control card) during an edit, whereas the order of compools 
on the tape is determined by the order of the input data 
decks. However, in an R-type edit, a newly added compool 
generally will be placed last in order in the index and first 
in order on the new tape. 

2.3.5.5 .MLC Tape 

An MLC tape (combined Library-Compool tape) 
consists of variable-length, unblocked records. The first file 
contains the tape header; the second file contains the 
Library; and the third and subsequent files contain the 
compools. The records for the Library file are like those on 
the Library tape and the records for the compool files are 
like those on the compool tape. 

An M LC tape contains a header which is 28 to 820 
bytes in length. MLC tape header format is shown in Figure 
2-12. 

l 

' l 

Library Tape ID 

Library Tape ID (Cont.) c L 

1--·----·--·---

I B bytes in header 

Compool Tape ID 

Compool Tape ID (Cont.) 

ID of 

first compool 

-------

ID of 

last compool 

Figure 2-12. MLC Tape Header Format 

2.3.5.6 SYSIN Tape 

The utility system tape has fixed-length, blocked 
format. There are 810 bytes per record; each record 
consists of ten 81-byte card images. If there are less than 10 
card images for the last record, the record is padded with 
X'F's to 810 bytes. 

The SYSIN tape does not contain a header. 

2.3.5. 7 SYSOUT Tape 

The SYSOUT tape consists of off-line print format 
records. The records contain output print images and may 
contain punched card images. 

There is no header on a SYSOUT tape. 

2.4 UTILITY SYSTEM TAPE AND STORAGE 
REQUIREMENTS 

Each utility system processor requires a certain envi­
ronment in which to operate. The following paragraphs 

2-18 



identify the processor and specify corresponding tape and 
storage requirements. 

The units .SYSTM and .AUXIL are required for every 
system processor. Therefore, these tapes are not included in 
the list of required tapes. The units .SYSOUT and .SYSIN 
are not included. 

2.4.1 BAL Assembler - $BAL 

The tape .WORK2 is optional. ·If it is present, and if 
necessary, the assembler uses it as a work tape. Whenever 
possible, it should be used in an assembly. 

The storage required by the BAL assembler varies with 
the source program size and presence or absence of 
.WORK2. From 2 to 8 SEs may be required. For detailed 
limits see the BAL User's Manual. 

Either LIB or .COMP is necessary when assembling 
with a compool. In addition, .WORKl is required for the 
PUNCHC option. 

2.42 JOVIAL Compiler - $JOY 

The .LIB unit is always required and must have either a 
Library or an MLC tape mounted on it. 

The .COMP unit is required when compiling with a 
compool unless the .LIB drive contains an MLC with the 
correct compool. This unit is not needed when compiling 
without a compool. 

The .WORK.1 unit is always required, and the tape 
mounted there is used as a work tape. The final JOVIAL 
output is generated on this tape for input to the BAL 
assembler. 

The .WORK.2 unit is always required, and the tape 
mounted there is used as a work tape. 

The .WORK3 unit may be released on a NONEX job, 
or on an XEQ job when the JOVIAL Compilation is the 
first deck in the job and the only compilation in the job. 
Otherwise, .WORK.3 is required, and the tape mounted 
there is used as a work tape. 

The storage required by the JOVIAL compiler depends 
on source program size and compool size. From 2 to 8 SEs 
may be required. See the JOVIAL User's Manual for 
detailed limits. 

2.4.3 Compool Edit - $CMPEDT 

The .WORK2 unit is always required and used as the 
unit for the output tape. 

If the edit is an update of an old tape, one other tape 
drive is needed. The tape drive is usually .LIB unless that 
drive is not assigned. If not, .COMP drive is required. 

The storage required by CMPEDT is variable, depend­
ing on Com pool Source size. From 2 to 8 SEs may be 
required. See the CMPEDT User's Manual for detailed 
limits. 

2.4.4 SPT Edit - $SPTEDT 

The .WORK.2 unit is always required and used as the 
unit for the output tape. 

If the edit is an update of an old tape, one other tape 
drive is needed. The tape drive is usually .LIB unless that 
drive is not assigned. If not, the .SPT tape drive is required. 

The SPT edit subprogram always operates in one SE. 

2 .4 .5 System Edit -: $SYSEDT 

The .WORK2 unit is always required and used as the 
unit for output tape. 

If the edit is an update of an old tape, LIB is needed. 

The SYSEDT subprogram al~ays operates in one SE. 

2.4.6 Library Edit - $LIBEDT 

The .WORK.2 unit is always required and used as the 
unit for the output tape. 

If the edit is an update of an old tape, .LIB drive is 
needed. 

The LIBEDT subprogram always operates in two SEs. 

2.4.7 Object Blocking Routine - $OBJ 

There are no tapes required for object blocking. Object 
blocking always operates in one SE. 

2.4.8 Loader - $XEQ 

The .LIB unit is required if ariy deck on .AUXIL 
contains a call to a Library routine. 

The number of SEs required for the loader depends 
entirely on the size of the program(s) being loaded. 

The loader subprogram itself operates in one SE. 

2-19 



2.S FUNCTIONAL DESCRIPTION OF UTILITY 
MONITOR 

The utility monitor initiates processing by calculating 
the size of the storage used, storing this value in the 
communications region, and protecting storage with two 
standard storage-protect keys: X'OOOI' for the monitor and 
X'OOIO' for the remainder of storage. 

Next, the monitor reads from the console typewriter to 
signal that I/O unit reassignments may now be made. If 
standard unit assignments (those made by the monitor) are 
to be used, the operator responds with a TYPE message or 
depresses the ENTER key. If the operator gives a TYPE 
reply, all tape assignments will be typed out followed by 
the message SYSTEM WAITING. At this time the mounting 
of tapes may also take place. Depressing the ENTER key 
means that the standard units are ready and that processing 
may begin at once. The operator can select several messages 
(see Section 2 .9) to alter the standard unit assignments. 
When changes are made in the standard unit assignments, 
the monitor issues messages similar to the following on the 
console typewriter, asking the operator to ready the new 
units: 

**MOUNT 
JNPUT xxx 
.PRINT xxx 
.PUNCH xxx 
AUXIL xxx 
.WORK3 xxx 
SYSTEM WAITING 

where xxx is the physical address of the unit. 

The operator can then mount the proper tapes. 
(System processing does not start until the operator types 
in a CONT message.) 

The monitor pow begins reading input (from the 
system input unit) and searches for the $ID control card, 
which must be followed by a $ENV card or by one of three 
job-type control cards: $XEQ, $AUX, or $NONEX. If the 
monitor does not find one of these control cards immedi­
ately after the $ID card or any $ENV cards, it types a 
diagnostic message on the console typewriter, assumes that 
a $NONEX card is present, and continues processing the 
input file. 

The $XEQ, $AUX, and $NONEX cards must be 
followed by control cards that indicate which components 
of the 9020 Utility System are needed. There is one control 
card for each processor. After examination of the control 
card, the monitor reads into storage the appropriate 
processor or processor phase from the system tape and 
transfers control to it. (A phase is a logical portion of a 
processor and constitutes one storage load.) 

Any further loading of phases or processors is done 
through a supervisor call (SVC) from the processor to the 

2-20 

monitor. The monitor reads in the next phase or processor 
and transfers control to it. 

After the phase or processor has completed execution, 
the monitor ensures that all 1/0 requests are completed 
before the monitor initiates further processing. (Rewinds are 
permitted to overlap into the next activity.) 

Uncorrectable errors encountered during system proc­
essing result in special action. The monitor issues a 
diagnostic message and reads forward to the next dollar ($) 
control card. If an 1/0 unit fails, the monitor asks the 
operator to select an option. 

In a $XEQ job, when all object programs are ready to 
b~ loaded into storage and one or more $UNIT control 
cards are present, the monitor loads the LISTIO generator 
from the system tape. (LISTIO is described in paragraph 
2.5 .2 .7 .) 

The generator then develops the object LISTIOs with 
their unit assignments, and the monitor types out: 

**MOUNT IF REQUIRED 
L.U. xx xxx xxxx 

. L.U. xx xxx xxxx 
etc . 
SYSTEM WAITING 

where: 

xx is the logical unit (LU) number. 

xxx is the physical address of the unit. 

xxx is either the reel number, NORL, or blank if a 
$REEL control arrd is not present. PROTECT may 
appear after a reel number if file protection was 
requested. 

NOTE: If there is no $REEL control card, a SYSTEM 
WAITING message will be issued only if a system unit must 
be removed or a prior job requested a reel to be saved that 
is now on the same physical device indicated in the mount 
message. 

After typing out the SYSTEM WAITING message, the 
monitor waits until the operator replies with a CONT 
message before initiating loading. When loading is finished, 
the monitor assigns buffer areas for each unit requiring 
them and then transfers control to the object program. This 
program has several functions available to it, which are 
performed through the monitor: changing the system mask, 
initializing the program interrupt entry point, and setting 
the protection keys. 

If an I/O failure occurs during program execution, it 
will be handled by MONIO. If the failure is uncorrectable, 
the monitor will issue an appropriate message. 



Looping can be terminated by the operator via the 
1052 attention key or the console interrupt button. 
Termination of the problem program transfers control to 
the end-of-job portion of job control, which calls the 
MONIO mop-up routine. If the termination resulted from 
an error that prevented further processing or made proc­
essing meaningless, a terminal dump is taken and a 
SYSDUMP message is typed on the console typewriter. 
Subsequently, job control issues a JOB TERMINATED 
message. 

After termination, the communications region is reset 
to initial conditions and the system LISTIOs are reinitial­
ized. If a $REEL card was associated with any problem­
program units, save messages are typed as follows: 

**SAVE 
L.U. xx xxx xx.xx 
L.U. xx xxx xxxx 
etc. 

where: 

xx is the logical unit (LU) number. 

xxx is the physical address of the unit. 

xx.xx is either the reel number of NORL, whichever is 
specified. 

There is no wait at this time unless ~tandard system 
units were dismounted because of the previous run. In this 
case, the monitor reassigns units according to the infor­
mation given on the $XEQ or $NONEX card and, as 
necessary, types this message: 

**MOUNT 
.WORKl xxx 
(etc.) 
SYSTEM WAITING 

where: 

xxx is the physical address of the unit. 

The monitor then waits until the proper tapes are 
mounted, and the operator enters a CONT message before 
processing the next job. 

The major sections of the monitor Gob control, 
IOP ACK, MONIO, and interrupt control) are described in 
detail in paragraphs 2 .5. I through 2 .5 .4; 

2.5 .1 Job Control 

Job control performs three related functions: processor 
loading, control-card interpretation, and unit assignment. 

Since processor loading is entirely dependent upon control­
card logic, these two functions are described together in 
the following text. Unit assignment is the selection of a 
physical device for each unit declared on a $UNIT control 
card. Involved with the selection is· the generation of a 
LISTIO for each unit, based upon the information given by 
the $UNIT and $REEL control cards. System unit assign­
ment is based upon a table that is a permanent part of the 
monitor (except in special cases. See paragraph 2.2.5.1.3). 

2.5.1.1 Processor Loading and Control-Card Logic 

Job control is responsible for interpreting the monitor 
control cards and messages and for acting upon them. The 
resulting actions, including processor loadings, are apparent 
from the card descriptions. 

2.5.1.2 Input/Output Unit Assignments 

To know at all times the status, assignment, and 
availability of 1/0 units, job control maintains two internal 
assignment tables and one availability table .. One of the 
assignment tables reflects the current usage of system units 
for each job; the other is derived from the $UNIT control 

· cards for each object program execution. The availability 
table keeps a record of the availability status of all 1/0 units 
attached to the machine, incorporating every change that 
occurs during the processing of a batch. These tables, 
together with the system and user LISTIOs, direct the 1/0 
system in all its actions. 

Input/Output units for problem program use are 
assigned to physical devices in the order in which the 
$UNIT cards are received. In addition, an attempt is made 
to assign each given unit to a channel different from the 
one used in the previous assignment. For example, if the 
first problem program unit was assigned to device 281, and, 
for the second assignment, two scratches - 180 and 280 -
are available, 180 has the higher priority. However, if, for 
the second assignment, a scratch unit (280) and a LIB unit 
(182) are available, 280 is chosen, because reducing 
operator setup time is a more significant factor than the 
consideration of channel. This method of assigning problem 
program units optimizes the overlapping of 1/0 operations. 

Job control assumes, at the start of each job, that the 
12system1/0 units listed in Table 2-1 are available. 

At the beginning of a batch, the .LIBI, .COMP, .SPTI, 
WORK!, .WORK2 and WORK3 tapes may be released from 
system assignment. This is done by means of RELEASE 
operator messages. (See the NOSS Operator's Manual.) 
Only tapes that will not be used by any job in the batch 
may be released. To free additional tapes, the 
USEREADER and USEPRINT /PUNCH operator messages 

2-21 



will free the .INPUT and the .PRINT/.PUNCH tapes by 
allowing the on-line card reader, printer, and card punch to 
be_ the system 1/0 units. The units .SYSTM and .AUXIL are 
always required, must not be dismounted, and cannot be 
released, detached, or reassigned. 

If the programmer requires use of a system tape unit, 
such as SPT. which might normally not be assigned, he can 
free some drives, for the current job only, by using the 
three options provided on the $XEQ, $AUX, and $NONEX 
control cards. This release has no effect upon other jobs in 
the same batch. 

At the start of the $XEQ job,job control assumes that 
all system tapes are mounted, but it makes all assignments 
indicated by operator messages and by $XEQ options. Just 
before execution, it assigns to the drives the unique but 
arbitrary numbers specified by the $UNIT control cards in 
the problem program. 

Having extracted the information from the $UNIT 
control cards, assigned the requested problem-program I/O 
unit numbers to physical tape drives, and allocated buffers 
accordingly, job control types out appropriate instructions 
to the operator. It then waits until the tapes are mounted 
and the operator signals that processing may continue. At 
this point, job control transfers to the first executable 
instruction in the problem program. 

If an I/O unit is unavailable at the start of the batch, 
the operator informs job control by means of a DETACH 
message. Job control then tries reassignment if the detached 
unit contains a system component. Reassignment is per­
formed in accordance with a priority list so that the most 
essential system units are assigned first. The monitor looks 
for a tape drive that does not contain a system component. 
If this fails, it tries to reassign a system unit with lower 
priority. After attempting reassignment of all detached 
system units, it finally checks for the presence of the basic 
system units before processing continues. The batch is 
terminated if any basic unit remains detached. 

252 IOPACK 

IOPACK is a set of I/O routines which are part of the 
Utility Monitor. Whenever a library routine or SVC call is 
initiated to perform an I/O function, the IOP ACK routines 
actually execute the I/O commands. Both system process­
ors and object programs use the IOP ACK routines by using 
Library Routines or SVC calls. 

IOP ACK operates in Monitor state and uses a set of 
special I/O routines (MONIO) to execute its commands. 
IOPACK and MONIO communicate through parameter 

2-22 

blocks called LISTIO's. These blocks contain information 
about the I/O units being used; there is one LISTIO for 
each I/O unit in use during the processing of a job. (LISTIO 
format is descriped in Section 6). IOPACK supports the 
following devices only: tape, card reader, card punch, 
printer, and console typewriter. The read-backward feature 
for tapes is not supported. 

2.5.2.1 IOPACK Functions 

The IOPACK routines perform general I/O functions 
for the programmer. The routines open and close files to be 
used by the job, transmit logical records to or from a 
buffer, determine whether a buffer is ready to be filled or 
emptied, and transfer to an end-0f-file return after the last 
logical record has been taken from the buffer. IOP ACK 
waits until a device is free before calling MONIO, thus 
ensuring that only one I/O request is ever pending for a 
single device. 

2.5.2.2 Buffer Handling 

IOP ACK provides for 3 types of buffered input and 
output: 

1. Unbuffered 

2. Single-buffered 

3. Double-buffered 

Table 2-2 shows the requirements of I/O units vs. 
buffering. 

2.5.2.2.1 Unbuffered 1/0 Operation. In an unbuffered 
operation, IOPACK does nothing until it receives a request 
to transfer data. Then it requests that MONIO transfer one 
physical record to or from a user specified area. It waits for 
the operation to be completed and returns control to the 
user. 

Table 2-2. I/O Units vs. Buffering 

Buffering 

Single Double 

1/0 Unit Unbuffered Buffered Buffered 

Tape 0 0 

Card Reader Input 

) 



Table 2-2. 1/0 Units vs. Buffering (Continued) 

Buffering 

Single Double 

1/0 Unit Unbuffered Buffered Buffered 

Card Punch Output 

Printer Output 

Console 

Typewriter Input Output 

where: 

0 = optional. for input or output 

Input = mandatory for input 

Output = mandatory for output 

Unbuffered operation is mandatory with console typewriter 
inp:ut and optional with tapes. 

2.5.2.2.2 Single-Buffered Input Operation. In single­
buffered input, IOPACK checks whether it has previously 
requested data from the device and, if not, requests that 
MONIO transfer one physical record to a monitor-assigned 
buffer area. It then waits for the operation to be completed 
and error-checked. Finally, IOPACK moves the data to the 
user-specified area, requests the next record from MONIO, 
and returns control to the user. Single-buffered input is 
mandatory with the card reader but not used elsewhere. 

2.5.2.2.3 Single-Buffered Output Operation. In single­
buffered output, IOPACK checks for successful completion 
of any previously requested operation and then moves the 
current data from the user-specified area to a monitor­
assigned buffer area. It then requests that MONIO output 
the record and returns control to the user. Single-buffered 
output is mandatory with the on-line punch and console 
typewriter but not used elsewhere. 

2.5.2.2.4 Double-Buffered Input Operation. In double­
buffered input, IOP ACK first checks whether it is un­
blocking blocked records. If so, and if the last logical record 
delivered was not the last record in a block, all references to 
MONIO can be skipped because the next logical record is 
known to be available. Otherwise, IOPACK checks whether 
it has previously "opened" the device and, if not, requests 

that MONIO transfer one physical record to one of two 
monitor-assigned buffer areas. IOP ACK then waits for the 
operation to be completed and error-checked. In case of 
end of file or catastrophic error, it "closes" the file and 
makes an appropriate exit. For success, it requests that 
MONIO read the next physical record to the alternate 
monitor-assigned buffer area. After MONIO operation or 
without it, as appropriate, IOPACK determines the size of 
the next logical record and either moves it to the 
user-specified area or informs him via general register of its 
location in the buffer area. Double-buffered input is 
optional with tapes. 

2.5.2.2.5 Double-Buffered Output Operation. In double­
buffered tape output, IOP ACK first checks whether it is 
blocking variable-length logical records into multirecord 
physical blocks (VBL). If so, and if the current logical 
record will not fit in the block being constructed, IOP ACK 
checks for successful completion of any previously requested 
operation, requests that MONIO output the record, and 
marks the alternate buff er as current and empty. In either 
case, for VBL operation, IOPACK finishes by moving the 
current data from the user-specified area to the next 
available location in the current buffer area. For all other 
record formats (FIX, VAR, and FXB), IOPACK moves the 
current data from the user-specified area to the next 
available location in the current buff er area. Then it checks 
whether the buffer is full (always true for FIX and VAR) 
and, if not, returns control to the user. If the buffer is full, 
IOP ACK checks for successful completion of any pre­
viously requested operation, requests that MONIO output 
the record, and marks the alternate buffer as being current 
and empty before returning control to the user. Double­
buffered output is optional with tapes. 

In double-buffered output to an on-line printer, 
IOP ACK checks whether the next buff er to be used is 
empty. If not, it waits with interrupts enabled until an 
interrupt occurs and MONIO marks the buffer empty. As 
soon as an empty buffer is available, IOPACK moves in the 
print image. If the opposite buffer is now empty, IOPACK 
requests that MONIO initiate printer operation (not neces­
sary if the printer was currently busy). 

In closing an output file (done only in response to a 
request to write a tapemark), IOPACK ensures that all 
logical records in the buffers are successfully written before 
actually writing the tapemark. 

In processing multireel files, IOP ACK provides for 
unloading reels when an end-of-file or end-of-tape condition 
is detected, for necessary operator communication, and for 
opening the next reel with no indication to the using 
program. Only on the last reel specified will end-of-file or 
end-of-tape status be passed to the user. 

2-23 



2.5.2.3 IOPACK Record Formats 

Files processed by IOP ACK may consist of four record 
formats, as specified on the $UNIT control card, plus 
off-line print format (PRT). The records may be fixed­
length, unblocked (FJX); variable-length, unblocked 
(VAR); fixed-length, blocked (FXB); variable-length, block­
ed (VBL) or off-line print (PRT). These formats are 
described in paragraph 2.3.2. 

Table 2-3. IOPACK Routines 

Class 

Input 

Output General 
Data 

Output Print 
Images 

Output Punch 
Images 

Miscellaneous 

Description 
(from or to) 

General Input 
(any unit) 

System Input 
Unit 

Tape Input 

On-Line Card 
Reader 

Console Type-
writer Input 

General Output 
Tape Output 

General Print 

System Output 
Unit Print 

On-Line 
Printer 

Console Type-
writer Output 

General Punch 

System Output 
Unit Punch 

On-Line 
Punch 

Set Return 
Set Return 
Unit Control 
Unit Control 

2.5.2.4 /OP ACK Routines 

IOPACK consists of 18 routines that perform I/O 
functions for processors and object programs. Table 2-8 
lists and describes the IOPACK routines. Paragraph 2.7 
describes the calling sequences for the various routines. 

How Called Symbol Page 

,SVC SYS RDS 2-34 

BALR SYS JN 2-34 

BALR SYSRT 2-35 

BALR SYS RC 2-35 

SVC SYSTRE 2-36 

SVC SYSWRS 2-36 
BALR SYS WT 2-36 

SVC SYSPRS 2-37 

BALR SYSJT 2-38 

BALR SYSPRT 2-38 

SVC SYSTWR 2-38 

SVC SY SPUN 2-39 

BALR SYSJH 2-39 

BALR SYSPC 2-39 

BALR SYSSR 2-41 
SVC SYSSTR 2-39 
BALR SYSCT 2-41 
SVC SYSCTL 2-39 

2-24 



2.5.2.5 IOPACK and System Input 

The system input unit (.INPUT) contains input to the 
9020 Utility System except for special messages entered at 
the console typewriter. The information on the system 
input unit is read into storage by the IOPACK job-in 
routine, and may be on punched cards or on an externally 
created tape. 

2.5.2.5.1 Card Input. Card input to the utility system is 
in the form of the standard 80-column cards punched in 
Extended Binary.Coded Decimal Interchange Code 
(EBCDIC). The card is punched with one character per 
column, and each card column is represented internally in 
8-bit code, equivalent to one byte of storage. 

2.5.2.5.2 Tape Input. Each physical record on the system 
input tape consists of the image of 10 cards and contains 
810 bytes. No heading precedes the first byte of the first 
card in the record, but separation is made between the 
bytes of different cards. The final byte of the 810 bytes is 
padding and consists of 1 bits. The 7 /8EOF card is 
represented by a tapemark. 

2.5.2.6 IOPACK and System Output 

The system output unit (.OUTPUT or .SYSOUT) 
receives normal output from the 9020 Utility System 
except for special messages outputted to the console 
typewriter. The normal data are outputted by several 
IOP ACK routines oriented to print and punch operations 
and may be directed to an on-line printer and punch or to a 
tape for a later tape to print/punch operation. 

2.5.2.6.1 On-Line Output. Print output is in the form of 
EBCDIC images of 1 to 132 characters each via a 1403 
Printer assumed to be equipped with a PN-1 (PL/ 1 
character set) print chain. 

Card output is in the form of 80-column cards punched 
in EBCDIC code. 

2.5.2.6.2 Tape Output. Tape output is in PRT format 
with block size limited to 676 characters. Each block may 
contain both print and punch logical records. 

2.5.2. 7 LISTIO Tables . 

The LISTIO's are parameter blocks of data and 1/0 
1 unit information that reside in a protected area of storage. 

2-25 

There is one LISTIO for each 1/0 unit used by the 
programs within a specific job. The contents of each 
problem program LISTIO are generated at the beginning of 
the job from $UNIT and $REEL control cards and are 
modified by IOP ACK routines to provide MONIO with the 
necessary information. System LISTIO's are generated by 
the Monitor at the beginning of each batch (and/or when a 
system processor USERIO $UNIT card is validated. The 
problem program and system LISTIO's contain all the 
information needed for communication between IOP ACK 
and MONIO. Figure 2-13 shows LISTIO format. 

2.5.3 M()l'll() 

, MONIO consists of machine 1/0 and interrupt routines 
that maintain asynchronous operations on all 1/0 units that 
have received 1/0 requests through IOPACK. MONIO 
executes the requests, services 1/0 interrupts, handles error 
recovery and typing, and performs 1/0 closing (mop-up) 
after each system phase and each job. MONIO consists of 
three major routines, each of which is executed in the 
monitor state. MONIO communicates with IOPACK 
through LISTIO's, which are blocks of data that contain 
information regarding every 1/0 unit being used by the job. 
The communication is accomplished by flags, which are set 
by MONIO to indicate the current status of the 1/0 unit. 
For example, the activity-requested flag is turned on 
whenever an 1/0 operation is awaiting initiation. Another 
flag that is used frequently by MONIO is the unit-free flag. 
This flag is turned off whenever an operation is initiated on 
the associated 1/0 unit, and is turned on when the 
operation is completed and the unit is again available for 
use. The routines in MONIO use these and other flags in the 
LISTIO to coordinate their functions. 

2.5.3.1 Input/Output Interrupt Routine 

The 1/0 interrupt routine is initiated whenever an 1/0 
interrupt occurs. The old 1/0 PSW is placed in a PSW stack, 
and a new PSW is fetched. The routine then searches the 
LISTIO's to find the cause of the interrupt. MONIO tests 
for errors and determines whether they are correctable, sets 
the corresponding error flags, and queues the appropriate 
error correction procedure in LISTIO. MONIO then sets a 
pointer for the select-scan routine to select a unit on the 
same channel as the interrupt and transfers control to the 
select-scan routine. 

2.5.3.2 Select-Scan Routine 

The select-scan routine can be entered from IOP ACK 
or from the MONIO interrupt routine. IOP ACK calls the 



......t 
t\! s ....... 
C) ......t 

Q) t\! 
"d s t\! ....... 

:><: C) 
Q) Q) 

::t:: Cl 
t t 
0 0 

8 8 

10 16 

18 24 

20 32 

~ 
Q) 28 40 
§ 
C) 

t\! 

'a 
00 

~ 30 48 

38 56 

40 64 

48 72 

Polulor to Noxl LlSTIO on 
This Ch1uuwl 

Pointer to Duffer I 

UnuBed 

l'hyslcul Record Length 
for Buffer I 

llIT 

TT 

Cha1U1el Commnnd Word 

Command 
Code 

Koy 0000 

Data AddrcBs 

Channel Addru1rn Word 

Pointer lo Cha1U1el Command Word 

IOPACK Flags 

Device 
Type 

File Count 

Record 
Type 

Tape 
Mode 

End-of-File Return Addreee 

Buffer Size 

Opcrnllon 
Hequested by 

JOPACK 

nlock Count 

Flags 

Blocking 
Factor 

000 

MONlO Flngs 

MON!O 
Corrccl1011 
Operation 

Figure 2-13. LISTIO Format 

2-26 

l'olnlcr to lh•fft•r O 

Cu rrcnt Hecord Polntc1· 

PhyHlcnl Hecord Lcn1,'1h 
for Buffer 0 

Current Logical l!ocord 
Length 

00000000 

Pointer lo 

Reel ldonliflcallon Table . 

Current 
Record 
NumUcr 

Numhor 
of 

Heels 

Count 

Current 
Heel 

Number 

Truck in 
Error 

Informalion 
Device Addroas 

Trice 
Count 

Error Hetu rn Adilrcea 

Backspace Count 



select-scan routine whenever an 1/0 request is to be 
initiated; the MONIO interrupt routine calls the select-scan 
routine to initiate error correction or stacked operations. 

The select-scan routine searches the LISTIO's asso­
ciated with the specified channel to determine whether any 
1/0 requests, including error correction operations, are 
pending. If a request is found, MONIO attempts to initiate 
the requested operation on that channel. If the request is 
initiated, the device-free and activity-requested flag in the 
LISTIO are turned off. If the request cannot be initiated 
because the channel is already in operation, MONIO returns 
control to the point of interruption; if the request cannot 
be initiated because the unit is not ready, a message is 
typed on the console typewriter and the not-ready flag is 
turned on in the LISTIO. 

2.5.3.3 Input/Output Mop-Up Routine 

The 1/0 mop-up (closing) routine is entered after each 
system phase as well as after each job. If the processing has 
ended successfully, the routine scans the I.:ISTIO's to 
ensure that all requests have been completed before the 
mo.nitor proceeds to the next phase or job. If a unit-free 
flag is off, MONIO pauses until the flag is turned on; if the 
unit-free flag is on, MONIO moves to the next LISTIO. 
When an activity-requested flag is on, MONIO waits until 
the flag is turned off and the corresponding unit-free flag is 
turned on. MONIO does not wait for the completion of 
rewind operations. 

If the mop-up (closing) routine is entered from a phase 
or job that ended unsuccessfully, the unit-free flags are 
turned on for all LISTIO's. Any stacked requests are 
eliminated, and any operations in process are ignored. 

2.5.3.4 MONIO and E"or Co"ection 

When an interrupt is caused by an 1/0 error, MONIO 
attempts to correct the error. When an error correction 
fails, messages from MONIO that describe the error are 
typed on the console typewriter. 

2.5.3.5 Not-Ready Conditions 

If a unit is not ready when requested, MONIO issues a 
message on the console typewriter, requesting the operator 
to ready the unit. Operator response to the message is not 
expected. After the unit is made ready the program retries 
the original request. 

2.5.3.6 Initiation Errors 

A channel has an initiation error if the condition code 
is 3 (channel not operational), if the condition code is 0 to 
a control command (channel has no status to report), or if 
any command is rejected. When an initiation error is 
encountered, MONIO issues a message on the console 
typewriter, and the operator is expected to respond. 

2.5.3. 7 Tape-Read En-ors 

If a tape-read error is encountered, MONIOinitiates an 
error correction procedure. This includes backspacing and 
rereading the record five times. If the error persists, the 
sense bytes are typed out, and the operator is expected to 
respond. 

2.5.3.8 Tape-Write E"ors 

If a tape-write error is encountered, MONIO makes 
several attempts to rewrite the record (including two skip 
and erase commands). If the error persists, the sense bytes 
are typed out, and the operator is expected to respond. 

2.5.3.9 Card-Read Error 

When a card-read error is encountered, MONIO issues a 
message on the console typewriter. The operator is expect­
ed to run the cards out (no processing) from the reader, 
place these cards (usually three, including error card) in the 
read hopper, depress the START button of the card reader, 
and type REPE. 

2.5.3.10 Card-Punch Errors 

If a card-punch error is detected, MONIO issues a 
message on the console typewriter. The operator is expect­
ed to run the cards out (no processing) from the punch, 
discard the error card, place the blank cards in the punch 
hopper, and type REPE. Usually, a faulty card will fall into 
the selected hopper and should be discarded too. 

2.5.3.11 Print Errors 

If a print error is detected, MONIO issues a message on 
the console typewriter, and the operator is expected to 
respond. If the operator types REPE, the print operation 
will be retried. 

2-27 



2.5 .4 Interrupt Control 

Interrupt control is designed to handle any interrupts 
that may occur during processing. There are five interrupt­
control routines, each dealing with one of the five major 
types of interrupts: program, input/output, monitor call, 
external, and machine. 

2.5.4.1 Program-Inte"upt Routines 

A program interrupt is caused by exceptions resulting 
from abnormal or improper use of an instruction or data. 
When this type of interrupt occurs, the current instruction 
is completed, terminated, or suppressed, depending on the 
specific interrupt. 

There are 15 types of program interrupts: operation 
code, privileged operation, execute, storage protection, 
addressing, specification, data, point overflow, exponent 
underflow, significance, and floating-point divide inter­
rupts. These interrupts are machine functions and are 
described in detail in IBM 9020 Data Processing System -
Principles of Operation, Form A22-6852. In addition, 
execution of a supervisor call not recognized by the utility 
monitor is treated as a 16th psuedo-program interrupt to 
permit the user to specify action to be taken via SVC 
SYSPIN. 

The cause of the interrupt is identified by interrupt 
code bits 28-31 of the old PSW. The instruction-length 
code in the old PSW indicates the length, in halfwords, of 
the preceding instruction. In cases where the instruction 
length is not available, the instruction-length field is zero. 

Only four of the 15 types of program interrupts can be 
masked, as indicated in Table 2-4. An interrupt that can be 

Table 2-4. Masking Program Interrupts 

Type of Program 
Interruption Interruption Code 

Fixed-Point Overflow 8 

Decimal Overflow 10 

Exponent Underflow 13 

Significance 14 

-~--~-

2-28 

masked causes a program interruption only if the corre­
sponding mask bit (bit 36, 37, 38, or 39 of the PSW) is set 
to I. If the corresponding mask bit is 0, the interrupt is 
ignored. 

The Set Program Mask (SPM) machine instruction is 
used to mask or unmask the four program interrupts. This 
instruction is described in IBM 9020 Data Processing 
System - Principles of Operation, Form A22-6852. 

At the start of execution of each job, the monitor 
initializes a set of address constants to indicate that each 
type of program interrupt will result in job termination, 
excluding the PSW markable program interrupts. These four 
special cases are set to ignore status (i.e., PSW bits set to 
ziro ). At any time during execution, the user can specify or 
respecify use of his own recovery routines for individual 
interrupts and/or specify job termination for individual 
interrupts via the following calling sequences: 

CNOP 
SVC 

DC 

2,4 

SYSPIN 

A(list) 

where list is the address of a user array, consisting of a 
binary mask and one address constant for each routine 
affected. Each address constant represents the address of 
the programmer's corresponding interrupt servicing routine. 
If the programmer wishes the monitor to process the 
interrupt, he can use DC A(O) as the address constant. 

The user array may be coded as: 

CNOP 
LIST DC 

DC 
DC 

Program Mask Bit 

36 

37 

38 

39 

2,4 
X'xxx' 
A(routine-1) 
A(routine-2) 

Action If Mask Bit ls 
Set to Zero 

Information outside 
register is ignored. 

The overflow informa-
tion is ignored. 

The result is made a 
true zero. 

The result is made a 
true zero. 



) 

DC A(routine-i:i) 

where: 

xxx is a 4-character, hexadecimal mask comprising 16 
bits. Each of these bits (starting at the left) is 
associated with one of the 15 program interrupts (bit 
16 being associated with unrecognizable SVC's) as 
ordered in IBM 9020 Data Processing System -
Principles of Operation. Fonn A22-6852. For each bit 
that is set to 1 in the mask, an address constant, such as 
A (routine-1), must be furnished in the array. For 
example, a mask of: 

0010010010011110 

would mean that address constants are given for 
program interrupts 3, 6, 9, 12, 13, 14, and 15. This 
would be coded as: 

DC X' 249E' 

routine-1, routine-2, and routine-n are the symbolic 
names of the programmer's routines. 

If the programmer has elected to service an interrupt 
himself and has fuitialized interrupt control as previously 
described, then upon occurrence of any such program 
interrupt four events will occur: 

a. Interrupt control of the monitor will process the 
interrupt initially and determine the correct 
address (specified by the SYSPIN monitor call) to 
which control should be passed. 

b. At the time interrupt control transfers to the 
programmer's routine, the contents of the general 
registers and the floating-point registers will be the 
same as at the time of the interrupt. The PSW will 
be unchanged except for its instruction counter 
field and Storage Protect Key. The new PSW 
Storage Protect Key will be matched to the 
programmer's interrupt routine unless that routine 
has a key of zero. If the routine has a key of zero, 
the new PSW Key will be the same as that in the 
old PSW prior to the interrupt. 

c. After executing any corrective action required, the 
routine should restore the general registers as they 

were at the time of entry and then exit through the 
monitor. Either of two exits may be used: 

SVC SYSRET or SVC SYSRTA 

DC AL4 (address) 

d. The monitor interprets the SYSRET exit as requir­
ing return to the point of the program interrupt. 
The SYSRTA exit may be used to cause return to a 
different address, as specified in the DC statement. 

2.5.4.2 Input/ Output Interrupt Routine 

• The 1/0 interrupt routine allows the monitor to 
respond to signals from 1/0 units. The programmer who 
uses the 9020 Utility System need not be concerned with 
how an 1/0 interrupt is processed, since the monitor has 
this responsibility. However, a brief explanation is included 
in the following text. 

A request for an 1/0 interrupt can occur at any time, 
and more than one may occur at the same time. The 
requests are preserved in the 1/0 section of the computer 
until they can be honored. The requests are processed one 
at a time. An 1/0 interrupt can occur only if the current 
instruction has been completed and if the channel present­
ing the request is unmasked. The channels are masked by 
the system mask bits (0-6 and 16-19) of the PSW; masked 
1/0 interrupts remain pending. · 

The interrupt code in the old PSW identifies the 
channel and 1/0 unit causing the interrupt (bits 20-23 and 
24-31 of the old PSW). An interrupt routine is called in by 
the monitor to suit the specific type of 1/0 interrupt. The 
monitor finds the address of the routine, using the unit 
(device} field in the old PSW and information in internal 
tables, and passes control to the routine. When the 
interrupt routine has accomplished its function, control is 
returned to the point of the interrupt. 

2.5.4.3 Monitor-Call Interrupt Routine 

This interrupt occurs as the result of the execution of 
an SVC instruction. A major function of this interrupt is to 
switch the system status from the problem to the supervisor 
state, but the interrupt may also be used f~r other types of 
status switching. The futerrupt code is used to instruct the 
monitor as to the particular function to be performed. The 
monitor calls available to the problem-programmer are 
listed in Table 2-5. These calls are explained in paragraph 
2.8. 

2-29 



Table 2-5. Monitor Calls 

Decimal 
Mnemonic Code Hex. Class* Description Page 

SY SPIN 20 14 p Initialize program interrupts. 2-28 

SYSCOM 2I I5 N Special monitor communication. 2-41 

SYSTIM 22 16 p Set up interval timer routine. 2-32 

SYS IO 23 I7 u Tell MONIO device needs service. 2-42 

SYSDMP 24 I8 p Emergency dump at end of job. 2-42 

SY SC TL 25 I9 p Control Device. 2-40 

SYSRSL 26 IA s Request next record from utility sys- 2-42 
tern tape and return. 

SYSEOJ 27 1B p Processor or problem program final 2-42 
exit to monitor. 

SYSDEB 28 IC M Call debug service routine. 2-42 

SYSTRC 29 ID M Call trace service routine. 2-43 

SYS RDS 30 IE p Call to IOP ACK for general input. 2-34 

SYSWRS 3I IF p Call to IOP ACK for general output. 2-36 

SYSWAT 32 20 p Call for operator message and wait for 2-43 
response. 

SYSIOI 33 2I u Request monitor mode for IOP ACK. 2-43 

SYSIOO 34 22 u Restore original mode after IOP ACK. 2-43 

SYSSTR 35 23 p Set returns {EOF and error) for devices. 2-40 

SYSPKY 36 24 p Set protection key in PSW. 2-43 

SYSSSK 37 25 p Set storage protection key. 2-43 

SYSPRS 38 26 p Call to IOP ACK to output print images. 2-37 

SY SPUN 39 27 p Call to IOPACK to output punch images. 2-39 

SYSKMC 40 28 M Set PSW for debugging system. 2-44 

SYSDTF 4I 29 s Set up buffers for LISTIO. 2-44 

SYSRAS 42 2A M Request specified record from utility 2-45 
system tape and exit to the record. 

2-30 



Table 2-5. Monitor Calls (Continued) 

Decimal 
Mnemonic Code Hex. Class* Description Page 

SYSCLK 43 2B p Initialize timer and its interrupts. 2-32 

SYSNAP 44 2C p Core snap for problem programs and 2-46 
system processors 

SYS BRA 49 31 p SVC assisted branch. 2-45 

SYSIPR 240 FO p Initialize IOCE processor interrupt 2-32 
handling. 

SYSRET 243 F3 p Return from interrupt routine to caller. 2-42 

SYSRTA. 244 F4 p Return from SVC interrupt routine to se- 2-43 
lected address (not to caller). 

SYSDTH 245 F5 u Terminate processing. 2-45 

SYSCDP 246 F6 u Request emergency dump. 2-45 

SYSLGD 247 F7 u Fatal logout on 1/0 device error. 2-45 

SY SM OP 248 F8 M Terminate 1/0 at end of job phase. 2-45 

SYSLGC 249 F9 u Fatal logout on 1/0 channel error. 2-45 

SYS TIN 250 FA u Service console typewriter interrupt. 2-45 

SYSTCE 251 FB u Record execution of 1/0 instruction. 2-45 

SYSWRM 252 FC u Maintain count of occurrence of selected 2-46 
abnormal conditions. 

SYSPIR 253 FD u Set initiate and interrupt routine ad- 2-46 
dresses. 

SYSTWR 254 FE p Write on console typewriter. 2-38 

SYSTRE 255 FF p Read from console typewriter. 2-36 

*Class symbols are as follows: 

P-Unrestricted, including problem programs 
U-Available to monitor and problem programs requesting USERIO 
N-Available to system processors 
S-Available to monitor and system processors 
M-Monitor only 

Misuse of SVC's classified U, N, S, or M normal!y results in a system dump. 

2-31 



2.5.4.4 External-Interrupt Routine 

The external-interrupt routine handles interrupts 
caused by the interval timer or the console interrupt button 
within its own subsystem. 

Other external interrupts result in logout and termina­
tion of processing. Depressing the Console Interrupt button 
on the operator control section of the system control panel 
results in an external interrupt. When this interrupt is 
recognized, the monitor types the message ENTER RE­
QUEST to the operator. The operator may then respond 
with a CONT, END, TERM, PATC, PRIN, IPL, REIP, or 
SK.IP message. 

2.5.4.4.1 Timer Control. If the time value changes from 
positive to negative, the change causes an external inter­
rupt. 

The external-interrupt routine resets the timer to a 
specified value, sums the elapsed time for each job, and 
returns control to the next instruction. The address of this 
instruction is available in the old PSW instruction address 
field. 

The capability exists to allow the programmer multiple 
timer interrupts, evenly spaced, from one initialization call. 

The values are set and each time a timer interrupt is 
processed, the timer is reset to the user value specified. The 
calling sequence is: 

SVC SYSCLK 

DC XL4 'constant' 

DC AL4 (interrupt routine) 

where 

a. Constant is the timer value desired; it occupies a 
full word in the calling sequence but the actual 
value to set the clock is the first 3 bytes with the 
4th byte ignored. The timer is expressed in 300ths 
of a second so the value should be the number of 
seconds before the interrupt multiplied by 300. 
When the programmer receives control after an 
interrupt, slightly more time than the time spec­
ified may have elapsed. 

b. Interrupt routine is the address of the entry point 
for the programmer supplied routine. 

2-32 

The programmer may also provide his own interrupt 
routine for a single timer interrupt by using the following 
calling sequence: 

SVC 

DC 

DC 

SYS TIM 

XL4 'constant' 

AL4(interrupt routine) 

where the parameters are the same as for SYSCLK. 

The programmer-supplied routine is constructed ac­
cording to the same rules as previously given for program 
interrupts. 

2.5.4.4.2 JOCE Processor Interrupts. The programmer 
must provide his own interrupt routine for interrupts 
received by his execution in the IOCE Processor by using 
the following calling sequence: 

SVC SYSIPR 

DC AL4 (interrupt routine) 

where interrupt routine is the address of the entry point for 
the programmer supplied routine. 

The programmer-supplied routine is constructed ac­
cording to the same rules as previously given for program 
interrupts. 

2.5.4.5 Machine-Interrupt Routine 

When the machine-interrupt mask bit is I , a machine 
interrupt terminates the current instruction and transfers 
control to the emergency logout processor. 

2.6 ANALYZING STORAGE DUMPS 

This discussion is provided to aid programmers in 
debugging. The following information provides absolute 
storage addresses of interest to the user. The addresses are 
given in hexadecimal. 

ADDRESS 

4F6 

524 

so 
4FC 

SFO 
664 

CONTENTS 

Name of last system record read 

Last$ control card read 

Timer 

Date from $DATE card 

Machine size in bytes. 

First byte of available storage above 

program or processor (Double word 

aligned) 



The following information is provided to aid users in 
debugging some of the more difficult program and hard­
ware problems related to 1/0. It is presented as a 
debug-oriented description of the most significant tables. 

Note: In case of PSW restart dump, history is frozen at the 
time the restart button is depressed. In case of PRIN 
operator-requested dumps, 1/0 instruction history is frozen 
at the time of device-end following operator's typed address 
and length specification while 1/0 interrupts have been 
suppressed since the Attention key was depressed. In case 
of SYSDUMP, the history includes 1/0 operations which 
wrote initial dump records on .A UXIL. 

2.6.1 Unit Assignment Table 

A pointer at address 005FC gives the starting address of 
this 2-word-per-entry table, which is arranged in order by 
logical unit number. The contents of the bytes are as 
follows: 

a. 0-1 Logical unit number (If 0, the unit does not 
exist for this job.) 

b. 2-3 Physical device address 

c. 4-7 Address of associated LISTIO. 

2.6.2 LISTIO 

LISTIO' s are described in the· Utility Monitor PLM 
The most significant fields are the following: 

a. Byte 48, bit 1 on and bit 3 off (xlxOxxxx) 
Device is free, and no operation has been re­
quested. 

b. Byte 48, bit 2 is on (LIFG2) - Device is not ready, 
and the monitor expects a device-end interrupt 
when it becomes ready. 

c. Bytes 64-65 (LIFLC) - Current file position for 
tapes. 

d. Bytes 66-67 (LIBLC) - Current physical record 
position within file. (Positive numbers are mea­
sured from a start of file, negative numbers from 
end of file.) 

e. Bytes 62-63 (LIDV A) - Physical device address. 

2 -33 

2.6.3 IOPACK Register Save Table 

This 16-word table at address 000700 contains registers 
0-15, saved the last time IOP ACK was called. Note the 
following: 

a. Register 14 and 15 values are stored as if the call 
was BALR 14, 15, even for IOPACK routines 
called via SVC. 

b. Register 1 save word may contain output value 
being returned to the caller. 

c. SYSTWR and SYSTRE do not use this save ai:ea. 

d. In SYSDUMP output, this area is set by SYSDUMP 
calls to IOP ACK. 

2.6.4 1/0 Trace Table 

This is a cyclic table of fifty 2-word entries, giving a 
coded history of 1/0 instructions executed. The table starts 
at address 000800, while 0007F8 contains a pointer to the 
last used entry. The 16 hexadecimal digits in an entry may 
be described as 

IDDDSSSS CONNNNNN 

where: 

I is the instruction code 

1-SIO 
2-TIO 
3-IDO 

DDD is the physical device address. 

SSS is the device status (if presented by the device). 

C is the condition code (for control operations, 1 with 
channel-end status on SIO indicates success; for data­
transfer operations, SIO should invoke CC=O response.) 

0 is the last four bits of the CCW operation code. The 
most common codes are: 

1or9 write 
2 or A read 
4 sense 



NNNNNN is the count - how many times this exact 
instruction caused this exact response without the 
intervention of a different instruction or a different 
response. 

2.65 1/0 Interrupt Table 

This is a cyclic table of fifty 4-word entries recording 
the 1/0 old PSW followed by CSW for the last 50 1/0 
interrupts. This table starts at address 000990; 007FC 
contains a pointer to the last used entry. 

2.7 IOPACK CALLING SEQUENCES 

The IOP ACK section of the utility monitor consists of 
18 routines which perform I/O functions for processors and 
object programs. These routines set end-of-file and error 
returns for 1/0 units, perform tape positioning and carriage 
control functions, read and write tape, read and punch 
cards, print, and perform system 1/0 functions. Ten of the 
routines each have a symbol that serves as an operand for 
register 15, which is normally used to transfer to these 
routines via the Branch and Link Register instruction 
(BALR}. The other eight routines each have a symbol that 
serves as an operand for a supervisor call (SVC). These 
symbols are permanently defined in the assembler. A 
subprogram can use the symbols without defining them. 
Table 2-2 gives the IOPACK routines by class, their mode 
of call, their corresponding symbols, and their page of 
reference. 

2.7.1 General-Input (SYSRDS) Routine 

The general-input routine reads from tape or the 
on-line card reader according to options on $UNIT control 
cards. The SYSRDS routine also reads from the system 
input unit when logical unit 2 is called for and from the 
console typewriter when logical unit 12 is called for. 
Normally, it presents one logical record to the user in 
accordance with the data and count parameters and sets 
status according to actual record length transferred. In case 
of end-of-file or error, SYSRDS consults control infor­
mation stored by the set-return routine and terminates the 
job or transfers to a user recovery routine, as appropriate. 

The operation of SYSRDS described in the preceding 
sentence applies to all units except 2 and 12. Console 
typewriter problems and SYSIN errors are resolved within 
the monitor, and control is returned to the user only after 
successful I/O has occurred (i.e., Set-Return may not be 
used to change options for these two units). SYSIN dollar 
cards and EOFs are indicated by a $ in column 1 of the 
image. $END, $ENDTAPE, and 7 /8EOF (delimiting $cards) 
return a record length of 1; all other $cards return a normal 
record length (i.e., currently 80). The user may read and 
process any $card(s) and continue to read the input stream 
:hrough any non-delimiting $card if he wishes. Trying to 
read past a delimiting $card or 7 /8EOF will cause job 
termination, a diagnostic, and a SYSDUMP. 

2-34 

The calling sequence for the general-input routine is: 

SVC SYSRDS 
DC AL4(1ist) 

where list is the address of the following out-of-line 
parameter list: 

where: 

DC 
DC 
DC 

F'xx' 
A( data) 
F'count' 

xx is the logical unit number of the input unit. 

data is either the address of the data area or a register 
number. Any number less than 14 is assumed to be a 
register number, provided buffered operation is being 
used. With register specification, IOPACK leaves the 
record in the buff er and presents its address in the 
indicated register. (Register specification is not per­
mitted for logical unit 2 or logical unit 12 or an on-line 
card reader.) 

count specifies the number of data bytes to be 
transmitted. IOP ACK never presents more than one 
logical record. 

Register 1 normally is set to number of bytes trans­
ferred. However, on end-of-file or error it is used to 
transfer to the recovery routine. 

2.7 2 System-Input-Unit (SYSJN} Routine 

Note: The following routine is obsolete. Support 
for SYSJN has been scheduled to be immediately 
removed from both the assembler and the monitor. 
All existing program references should be changed . 
to SVC SYSRDS on logical unit 2. The following 
description is provided only to aid in this 
conversion. 

The system-input-unit routine reads from the system 
input unit. The system input unit is either a tape unit or the 
card reader depending on the assignment made by the 
operator. 

If an object program or any system processor attempts 
to read any monitor control card or 7 /8EOF card, a 
corresponding flag is set, the card is -saved for later 
processing by the monitor, and in either case a $is inserted 
in the first character of the card image presented to the 
user. If the user attempts to read the following card, 
control is transferred to the job control section of the 
monitor, which terminates the job. 

The job is terminated if an uncorrectable read error is 
encountered on the system input unit. 



The SYSJN calling sequence is different for problem 
programs and system processors. 

The calling sequence for a System processor is: 

L 
CNOP 
BALR 
DC 
DC 

15,SYSJN 
2,4 
14,15 
A( data) 
A(eof) 

where data is the address of the data area, and eof is the 
address of the processor's end-of-file routine. 

The calling sequence for a problem program is: 

L 
CNOP 
BALR 
DC 

15,SYSJN 
2,4 
14,15 
A( data) 

where data is the address of the data area. 

2.7.3 Tape-Input (SYSRT) Routine 

_Note: The following routine is obsolete. Support 
for SYSRT has been scheduled to be immediately 
removed from both the assembler and the monitor. 
All existing program references should be changed 
to SVC SYSRDS on the desired logical unit. The 
following paragraphs are provided only to aid in 
this conversion. 

The read-tape routine reads an input tape with or 
without buffering, depending on an option selected on the 
$UNIT control card. If buffers are requested, two buffers 
are used and initially filled when the first read-tape is 
executed. The size of the buffers is also specified on the 
$UNIT control card. When buffers are used, a call to the 
read-tape routine results in one of two operations, depend­
ing on the information specified in the second entry of the 
parameter list. If the address of a data area is given, the 
next logical record is moved to the data area; if a register 
number is given, the address of the next logical record is 
placed in the specified register and no data are moved. 
(Registers 14 and 15 cannot be used for this purpose, 
because they are used in linkage to IOP ACK routines.) 
When one of the buffers is empty, it is filled with records 
from the input tape. 

If buffers are not requested, the next record is read 
directly into the specified data area. If a register number is 
specified when no buffers are used, an error message is 
printed and the job is terminated. Control is returned to the 
calling program after the operation is completed. 

Regardless of buffering specifications, the read-tape 
routine performs certain operations whenever it is used. 
7he routine inserts the total number of bytes of the logical 

record into the parameter list. The high-order bit of the 
byte count is set to one if a byte-converter check occurred 
during the read operation. If blocking was specified on the 
$UNIT control card and the byte-converter check occurred 
when a blocked .record was read, the high-order bit is set to 
one when the last logical record of the block is moved. The 
error return is taken if an uncorrectable error is encoun­
tered and all the logical records read up to that point have 
been moved to the data area. The tape is positioned at the 
end of the unreadable record when the error return is 
taken. The end-of-file return is taken when all the logical 
records have been moved to the data area and there are no 
more logical records to be read. 

The calling sequence for the read-tape routine is: 

L 
CNOP 
BALR 
DC 

15,SYSRT 
2,4 
14,15 
A(list) 

where list is the address of the following parameter list: 

DC 
DC 
DC 

F'xx' 
A( data) 
F'count' 

where: 

xx is the 2-digit logical unit number of the input tape. 

data is either the address of the data area or a register 
number. Any number less than 14 is considered a 
register number. When a register is specified, IOPACK 
places the address of the record in the specified 
register. 

count contains the total number of bytes in the logical 
record. This count is supplied by IOPACK. 

Note: The parameter list must be out of line because the 
routine returns control to the instruction immediately after 
the DC in the calling sequence. 

2.7.4 On-Line Card Reader (SYSRC) Routine 

Note: The following routine is obsolete. Support 
for SYSRC has been scheduled to be immediately 
removed from both the assembler and the monitor. 
All existing program references should be changed 
to SVC SYSRDS where the 2-digit logical unit 
number of the card reader is provided on the 
$UNIT control card. The following paragraphs are 
provided only to aid in this conversion. 

This routine allows the programmer to use an on-line 
card reader that is not serving as the system input unit. The 
read-card routine moves a card image from the buffer to the 
specified data area and initiates a Card Read command to 

2-35 



read the next card 'into the buffer. Card reading is a 
single-buffered operation. The error return is taken if an 
uncorrectable error is encountered and the last card in the 
buffer has been moved to the data area; the end-0f-file 
return is taken after the last card has been moved to the 
data area. 

The calling sequence for the read-card routine is: 

L 
CNOP 
BALR 
DC 

15,SYSRC 
2,4 
14,15 
A(list) 

where list is the address of the following parameter list: 

DC F'xx' 
DC A( data) 

where: 

xx is the 2-digit logical unit number of the card reader. 

data is the address of the data area (80 bytes). 

Note: The parameter list must be out of line, because the 
routine returns control to the instruction immediately after 
the DC in the calling sequence. 

2.7.5 Console-Typewriter-Input (SYSTRE) Routine 

The read-console-typewriter routine reads the infor­
mation typed into the console typewriter. This operation is 
unbuffered. When the information has been read, control is 
returned to the instruction immediately after the second 
DC statement in the calling sequence. 

The calling sequence for the read-console-typewriter 
routine is: 

where: 

SVC 
DC 
DC 

SYSTRE 
AL3(data) 
ALl(count) 

data is the address of the area in which the information 
is to be placed. 

count is the number of characters to read (minimum 2, 
maximum 132). : 

Note: The 1052 read buffer is not re-initialized via the 
CANCEL key. The following example illustrates the point. 

Operator types 123456 
Operator hits CNACEL key 
Operator types 9876 
Operator depresses ENTER key 
Program finds in 1052 read area 987656 

2-36 

To prevent this undesired situation, the operator must enter 
trailing blanks if the proper response is shorter than the 
incorrect response which was CANCELed. 

2.7 .6 General-Output (SYSWRS) Routine 

The general-output routine outputs data records to 
tape, to the on-line printer with single-spacing, and to the 
on-line punch according to options selected on $UNIT 
cards. The SYSWRS routine also outputs to the console 
typewriter when logical unit 12 is called for. The general­
output routine accepts one logical record from the user on 
each call in accordance with the data and count parameters 
and sets stat us (contained in register 1) to zero except as 
follows. In case of end-of-tape or error, SYSWRS consults 
information stored by the set-return routine and infor­
mation from $REEL cards and either issues a message to 
the operator to mount a new reel, terminate the job, or 
transfers to a user recovery routine. 

The calling sequence for the general-output routine is: 

SVC 
DC 

SYSWRS 
AL4(1ist) 

where list is the address of the following out-0f-line 
parameter list: 

where: 

DC 
DC 
DC 

F'xx' 
A( data) 
F'count' 

xx is the logical unit number of the output unit. 

data is the address of the data area. 

count is the number of data bytes to be transmitted. 

In case of failure of the operation or end-of-tape 
register 1 is used to transfer to a recovery routine. 

Note: On PRT format tapes (SYSOUT), SYSWRS prefixes 
the record with a blank as it assumes the caller has not 
included carriage control but wants to print single space. 

2.7 .7 Tape-Output (SYSWT) Routine 

Note: The following routine is absolete. Support 
for SYSWT has been scheduled to be immediately 
removed from both the assembler and the monitor. 
All existing program references should be changed 
to the general-output routine (SVC SYSWRS). The 
following paragraphs are provided only to aid in 
this conversion. 



\ 
1 

The write-tape routine writes an output tape with or 
without buffering, depending on the option selected on the 
$UNIT control card. If buffers are requested, two buffers 
are used, and a call to the write-tape routine causes a logical 
record to be moved from the data area to an output buff er. 
When one of the buffers is full, the contents of the buffer 
are written on the output tape. If buffers are not requested, 

·the logical record is written onto the tape directly from the 
data area. Control is returned to the calling program when 
the operation is complete and checked. 

The error return is taken when an uncorrectable error is 
encountered. If no number is present or if the list of 
numbers on the $REEL control card is exhausted, the 
end-0f-file return is taken. 

,, I 

If the .$REEL control card requested file protection for 
this file, no attempt is made to write,on the tape. An error 
message is issued, and thejob is terminated.-

The calling sequence for the write-tape routine is: 

L 
CNOP 
BALR 
DC 

15,SYSWT 
2,4 
14,15 

.A(Iist) 

where list is the address of the following parameter list: 

where: 

DC 
DC 
DC 

F'xx' 
A( data) 
Fcount' 

xx is the 2-digit logical 1Jnit number of the tape. 

data is the address of the data 8l'ea. 

count is the number of byt~s in the logical record if 
variable-length blocked or unblocked; if the records are 
fixed-length blocked or unblocked, the count is speci­
fied on the $UNIT control card and need not be given 
~e. . 

Note: The parameter list must be out ofline, because the 
routine transfers control to the instruction immediately 
after the DC in the calling sequence. 

2.7 .8 General-Print (SYSPRS) Routine 

The general-print routine outputs print images to tape, 
to an on-line printer, and to an on-line punch according to 
options selected on $UNIT cards. The SYSPRS routine also 
outputs to the system output unit' when logical ·unit 3 is 
called for and to the console typewriter when logical unit 
12 is called for. When writing o~ tape, SYSPRS assumes in 
each call the user has presented one logical record, but in 
outputting to on-line devices, SYSPRS assumes the user 
may have blocked several records together using record 
marks (X'EO') to separate the individual logical records. 
The SYSPRS routine processes end of tape, uncorrectable 

error conditions, and successful operation in the same· 
manner as the SYSWRS routine. 

When writing on 9-track tape, SYSPRS writes the data 
exactly as presented, blocking records in standard 9020 
format if specified. 

When writing on 7-track tape, SYSPRS proceeds 
according to $UNIT card options. Note that this will not 
normally produce usable results since PRT record format 
cannot be declared on $UNIT cards but is only declared 
internally by the monitor when appropriate for SYSOUT. 

In outputting to the on-line· printer, SYSPRS unblocks 
records according to· record marks and prints each individ­
ual record as a separate image, using the first character for 
carriage control. Records may be 2 to 133 characters long 
including the carriage control byte and. are· positioned 
according to carriage control character as follows (there is 
no space after printing): 

Character Spacing 

+,& No space before printing (overprint) 

blank 1 space before printing 

0 2 spaces before printing 

3 spaces before printing 

1-5 Skip to channel 1-5 before printing 

·In outputting to an on-line punch, SYSPRS unblocks 
records according to record marks, inspects the first 
character of each individual record (assumed to be the 
carriage control byte). and punches the remainder (up to 80 
characters) in pocket 3 if the carriage control character is a 
W, pocket 2 otherwise. 

In outputting to the c6nsole typewriter, SYSPRS 
unblocks records according to record marks and prints each 
record (up to a limit of 132 characters per record). 

The calling sequence for the general-print routjne is: 

SVC 
DC 

SY SP RS 
AL4(list) 

where list is the address of the following out-of-line 
parameter list: 

DC F'xx' 
DC A( data) 
DC F'count' 

where: 

xx is the logical unit number of the output unit. 

2-37 



data is the address of the data area. 

count is the number of data bytes to be tmnsmitted. 

In case of failure of the operation or end of tape 
register 1 is used to transfer to a recovery routine. 

2. 7 .9 System-Output-Unit-Print (SYSJT) Routine 

Note: The following routine is obsolete. Support . 
for· SYSJT has been scheduled to be immediately 
removed from both the assembler and the monitor. 
All existing program references should be changed 
to the general-print routine (SVC SYSPRS) on 
logical unit . 3 (the system output unit). The 
following paragraphs are provided only as an aid in 
this conversion. 

The job-print routine writes 132-character records from 
a data area on either a tape unit or the on-line printer 
according to the unit assignment of the system output unit 
(.PRINT). If the unit specified is a tape unit, the records are 
blocked. The job is terminated if an uncorrectable error is 
encountered. The ~equence is as follows: 

where: 

L 
CNOP 
BALR 
DC 
DC 

15,SYSJT 
0,4 
14,15 
H'cc' 
A(da~) 

cc specifies. one of the following carriage-control code 
numbers: 

0 - Suppresses spacing 

1 - Spaces one line after printing 

2 - Spaces two lines after printing 

3 - Spaces three lines after printing 

4 - Skips to· channel 2 after printing 

5 - Skips to channel 3 after printing 

6 - Skips to channel 4 after printing 

7 - Skips to channel S after printing 

9 - Skips to new page after printing 

11 - Spaces one line immediately 

12 - Spaces two lines immediately 

13 - Spaces three lines immediately 

14 - . Skips to channel 2 immediately 

15 - Skips to chan.nel 3 immediately 

16 - Skips to channel 4 immediately 

17 - Skips to channel S immediately 

19 - Skips to new page 

24 May 1974 

data is the address of the data area. One print line is 
written each time SYSJT is called. The data parameter 
is required, although its contents are ignored when the , 
carriage control number is l1 to 19. 

2.7.10 On-Line-Printer (SYSPRT) Routine 

Note: The following routine is obsolete. Support 
for SYSPRT has been scheduled to be immediately 
removed from the assembler. All existing program 
references should be changed to the general print 
routine (SVC SYSPRS)-with the 2-digit logical unit 
number of the printer as specified on the $UNIT 
card. The following description is retained only as 
an aid to this conversion. MONITOR support for 
SYSPRT will remain for BATCH. 

This routine allows the programmer to use . an on-line 
printer that is not serving as the system output unit. The 
print routine moves 132 characters from the data area to 
the output buffer and initiates the print operation. The 
error return is taken if an uncorrectable error is encoun­
tered. 

The calling sequence for the print routine is: 

L 
CNOP 
BALR 
DC 

15,SYSPRT 
2,4 
14,15 
A(list) 

where list is the address of the following parameter list: 

DC 
DC 
DC 

F':xx' 
A( data) 
F'cc' 

where: 

xx is the 2-digit logical unit number of the printer, as 
specified on the $UNIT control card. 

data is the address of.the data area, unless the carriage 
control code is 11, 12, or 13, in which case it is all 
zeros. 

cc specifies a carriage-control number from 0 to 19, as 
listed in paragraph 2. 7 .9. 

Note: The parameter list must be out of line, because the 
routine returns control to the instruction immediately after· 
the DC in the calling sequence. 

2.7.11 Console-Typewriter-Output (SYSTWR) Routine 

The write-console-typewriter routine types information 
on the console typewriter from a. data area. This operatior 

2-38 NASP-9229-05 



is a single-buffered operation. When the information has 
been typed, control is returned to the instruction imme­
diately after the second DC statement in the calling 
sequence. 

The calling sequence for the write-console-typewriter 
routine is: 

where: 

SVC 
DC 
DC 

SYSTWR 
AL3(data) 
ALl(count) 

data is the address of the data area containing the 
information to be typed. 

count is the number of characters to be written 
(minimum 2, maximum 132). 

2.7.12 General-Punch (SYSPUN) Routine 

The general-punch routine outputs punch images to 
tape and to the on-line punch according to options selected 
on the $UNIT cards. The SYSPUN routine also outputs to 
the system output unit when logical unit 4 is called for and 
to the console typewriter when logical unit 12 is called for. 
The SYSPUN routine processes end-of-tape, uncorrectable 
error conditions and returns status in the same manner as 
SYSWRS. The general punch routine never assumes the user 
has done any blocking within his program and processes 
data as follows to permit SYSPRS and SYSPUN to output 
to common files. 

When writing on 9-track tape, SYSPUN prefixes each 
record with a character "V" to identify it as a punch 
record, pads it to a total length of 81 characters, and blocks 
records in standard 9020 format if specified. 

Whea...... writing on -track tape, YSPUN proceeds 
according t~UNIT card ptions. Note t this will not 
normally produ usable res ts since PRT re d format is 
appropriate (and s ected by th onitor for SY ) but 
cannot be declared on $UNIT card . ' 

When writing on the on-line punch, SYSPUN punches 
the record exactly as presented (up to 80-characters). When 
writing on the console typewriter, SYSPUN prints the 
record exactly as presented (up to 80 characters). 

The calling sequence for the general-punch routine is: 

where: 

SVC SY SPUN 
DC AL4(list) 

DC 
DC 
DC 

F'xx' 
A( data) 
F'count' 

where: 

xx is the logical unit number of the output unit. 

data is the address of the data area. 

count is the number of data bytes to be transmitted. 

In case of failure of the operation or end of tape, 
register 1 is used to transfer to a recovery routine. 

2.7 .13 System-Output-Unit-Punch (SYSJH) Routine 

Note: The following routine is obsolete. Support 
for SYSJH has been scheduled to be immediately 
removed from both the assembler and the monitor. 
All existing program references should be changed 
to the . general punch routine (SVC SYSPUN) 
where the logical unit number of the output unit is 
4 (system punch output). The following descrip­
tion is retained only as an aid in this conversion. 

The job-punch routine either punches cards or writes 
blocked card images on tape from a data area, depending on 
the wiit assignment of the system output unit (.PUNCH). 
The job is terminated if an uncorrectable error is encoun­
tered. 

The calling sequence for the job-punch routine is: 

L 
CNOP 
BALR 
DC 

15,SYSJH 
2,4 
14,15 
A( data) 

where data is the address of the· data area. One card image is· 
written each time SYSJH is called. 

2.7 .14 On-Line-Punch (SYSPC) Routine 

Note: The following routine is obsolete. Support for 
SYSPC has been scheduled to be immediately 
removed from both the assembler and the monitor. 
All existing program references should be changed 
to the general punch routine (SVC SYSPUN) with 
the 2-digit logical unit number of the on-line punch 
as specified on the $UNIT card. The following 
description is retained as an aid in this conversion. 

This routine allows the programmer to use an on-line 
punch that is not serving as the system output unit. The 
punch-card routine moves a card image from the data area 
to the output buffer and initiates the punch operation. 
Card punching is a single-buffered operation. 

The error return is activated if an uncorrectable error is 
encountered. 

2-39 



The calling sequence for the punch-card routine is: 

L 
CNOP 
BALR 
DC 

15,SYSPC 
2,4 
14,15 
A(list) 

where list is the address of the following parameter list: 

where: 

DC 
DC 

F'xx' 
A( data) 

xx is the 2-digit logical unit number of the card punch. 

data is the address of the data area. 

Note: The parameter list must be out of line, because the 
routine returns control to the instruction immediately after 
the DC in the calling sequence. 

2.7.15 Set-Return (SYSSTR) Routine 

The set-return routine furnishes IOPACK with end of 
file (end of tape) and error return addresses for each unit 
being used in a job. These addresses are expected for each 
unit declared on a $UNIT card. For limited-use programs, 
however, the programmer may prefer to have IOP ACK 
terminate the job in case of an unexpected end of file or 
uncorrectable error. The error return is the address of a 
routine to which control should be transferred if an 
uncorrectable error is discovered; the end-<?f-file return is 
the address of a routine to which control should be 
transferred when an end-of-file (when reading) or an end-of­
reel (when writing) is encountered. 

The calling sequence for the set-return routine is: 

SVC SY SS TR 
DC AIA(list) 

and LIST is the out-of-line parameter list: 

LIST DC 
DC 
oc 

F'logical unit' 
A( end-of-file routine) 
A( error routine) 

end-of-file is the address of a routine to handle either of the 
following two situations: 

1. End-of-file (when a tapemark is encountered dur­
ing a read operation). 

2. End-of-reel encountered while writing when no 
more reels are specified on $REEL control card. 

Note 1: If the return address contains a zero (i.e., DC 
F'O') and the exit is taken, a diagnostic is printed and a 
SYSDUMP is taken. THIS IS DEFAULT. 

Note 2: If the return address contains a one (i.e., DC F'l ') 
and the exit is taken, a diagnostic will be printed and the 
job terminated WITHOUT a dump. 

2-40 

Note 3: In transferring to a recovery routine, the monitor 
restores registers 2-15 as for a normal return and loads 
register 1 with the address of the recovery routine for use as 
a base register. 

2.7.16 Unit-Control (SYSCTL) Routine 

The unit-control routine performs one of a variety of 
control operations. The operations that the user may 
request with a single call are as follows: 

a. Backspace block. (This operation is only valid 
following read or backspace block. Following read, 
it will backspace the tape one physical record for 
unbuffered operation and two physical records for 
buffered operation and then "close" the file so 
that the next read operation reads the next logical 
record. Following backspace block, the operation 
backspaces the tape one physical record.) 

b. Backspacing files. (At the completion of this 
operation, the tape is positioned ready to read the 
tapemark that stopped the operation.) 

c. Backspacing records. (This operation is valid only 
if buffering has not been requested.) 

d. Forward-spacing files. (At the end of this opera­
tion, the tape is positioned after the tapemark that 
stopped this operation. If end-of-tape is encoun­
tered, it is treated as an uncorrectable error.) 

e. Forward-space record. (This operation is valid only 
if buffering has not been requested.) 

f. Rewinding files. 

g. Rewinding and unloading files. 

h. Writing tapemarks. (If buffers are being used, the 
contents of the buffers are placed on the tape 
before the tapemark is written. If the $REEL 
control card requested file protection, no attempt 
is made to write the tapemark; an error message is 
issued, and the job is terminated.) 

i. Writing tapemarks on, and rewinding files. (The 
qualifications for item h also apply to this opera­
tion.) 

j. Writing tapemarks on, and rewinding and unload­
ing files. (The qualifications for item h also apply 
to this operation.) 

The end-of-file return is taken if end of file is sensed 
during a forward-space or backspace record or block 
operation. The error return indicated via SYSSTR is taken 
in case of uncorrectable error. 

The calling sequence for the tape-control routine is: 

SVC 
DC 

SYSCTL 
AL4(list) 



where list is the address of the following parameter list: 

1 where: 

DC 
DC 

F'xx' 
CL4 'mnemonic' 

xx is the 2-digit logical unit number of the tape 
involved in the operation. 

mnemonic is one of the following, depending on the 
operation desired: 

Mnemonic Operation 

BSB Backspace block 

BSF Backspace file 

BSP Backspace record 

FSF Forward-space file 

FSP Forward-space record 

RWD Rewind 

RUN Rewind and unload 

WTM Write tapemark 

TMR Write tapemark and rewind 

TRU Write tapemal'k, rewind, and unload 

Note: .The parameter list must be out of line because 
the routine returns control to the instruction imme­
diately after the DC in the calling sequence. 

2.7.17 Set-Return (SYSSR) Routine 

Note: Support for SYSSR has been scheduled to 
be immediately removed from both the assembler 
and the monitor. All existing program references 
should be changed to SVC SYSSTR. One SVC 
SYSSTR call must be provided for each unit for 
which returns are being supplied. 

This is an obsolete routine which functions identically 
to SYSSTR. The only difference is the calling sequence 
which is: 

where: 

L 
CNOP 
BALR 
DC 
DC 
DC 
DC 

15,SYSSR 
0,4 
14,15 

~:~: } 
A( end of file) repeated yy times 
A( error) 

yy is the total number of units for which returns are 
being supplied. 

xx is the logical unit number. 

other values are as for SYSSTR. 

2.7.18 Unit-Control (SYSCT) Routine 

Note: Support for SYSCT has been scheduled to 
be immediately removed from both the assembler 
and the monitor. All existing program references 
should be changed to SVC SYSCTL. 

This is an obsolete routine which functions identically 
to SYSCTL. The only difference is the calling sequence 
which is: 

L 
CNOP 
BALR 
DC 

15,SYSCT 
2,4 
14,15 
A(list) 

where list is the same as for SYSCTL. 

2.8 MONITOR CALLS 

This section contains an explanation of all monitor 
supervisor calls which are available to the problem­
programmer. 

2.8.1 SYSPIN (Initialize Program Interrupts) 

This SVC is discussed in paragraph 2.5 .4.1. 

2.8.2 SYSCOM (System Processor -
Monitor Communications) 

Use of this SVC is restricted to system processors not 
perlnitted to store directly into monitor communications 
tables (including jobs being run as MOD = SYST). 

The required calling sequence is: 

CNOP 2,4 
SVC SYSCOM 
DC A(args) 

ARGS DC F'flags' 
DC CL2' ' 
DC CL6'name' 

or alternate form 

DC F'flags' 
DS F'unused' 
DC F'new SYSDUMP start address' 
DC F'new SYSDUMP end address' 

2-41 



where: 

ARGS is the address of an out-of-line argument area. 

FLAGS indicates action as described later. 

NAME is the name of the required system tape record 
(when appropriate), or the new SYSDUMP start ad­
d.re~ preceded by a full word of zeros. 

VAL - new end address for SY SD UMP. 

SYSCOM will take one of the following actions 
according to the value of FLAGS: 

x'OOOl' Read record "NAME" from the system 
tape, and exit to it. 

x'0002' Read record "NAME" from the current 
file on the system tape, and return to caller. 

x'0006' Same as 0002, but read patch cards from 
SYSIN before entering the new processor. 

x'OOOS' Same as 0001, but read patch cards from 
SY SIN before entering the new processor. 

x'0008' Modify SYSDUMP limits (i.e., start and 
end dump limits). 

x'OlOO' Processor has successfully completed 
operation. 

x'0200' Processor was unable to complete success­
fully, and anything written on .A UXIL is meaning­
less. The job may be continued as a nonexecute 
job. 

x'0400' Because of serious problems, the job must 
be terminated; however, a storage dump is not 
justified. 

x'0800' Because of serious problems (probable 
program error), the job should be terminated with 
a system dump. 

x'l 000' Because of catastrophic problems, the 
batch should be terminated; however, a storage 
dump is not justified. 

x'2000' Because of catastrophic problems (prob­
able machine failure or monitor error), the batch 
should be terminated with an on-line emergency 
dump. 

Note: Contents of GPRs (General Purpose Registers) not 
transparent across SVC SYSCOM. 

2.8.3 SYSTIM/SYSCLK (Set Up Interval Timer Routine) 

This SVC is discussed in paragraph 2.5.4.4. 

2.8.4 SYSIO (Tell MONIO Device Needs Service) 

This SVC is available to IOP ACK and comparable 
USERIO routines to notify MONIO of the need for service. 
The address of the LISTIO controlling the device must be 
stored in CRCHPT before executing the SVC. MONIO will 
start the device (unless the channel is already busy) and 
then return. 

2.8.5 SYSDMP (Request Emergency Dump) 

This SVC will cause the monitor to terminate the job 
and dump storage in accordance with emergency dump 
debug cards, or dump storage if the job had not DUMPE 
debug cards. 

2.8.6 SYSRET (Return to Caller) 

Though available to all users, this SVC must be used 
only to return control from SVC routines for which the 
specified exit is SYSRET or SYSRTA. SYSRET returns to 
the instruction following original SVC. 

2.8. 7 SYSRSL (Request Record from NOSS system 
tape and Return) 

This SVC is available only to system processors 
transferred from the utility system since its design violates 
storage-protect rules. 

2.8.8 SYSEOJ (Return at End of Processor 
or Problem Program) 

This SVC is available to all users for final return to the 
monitor. 

2.8.9 SYSDEB (Call Debug Subroutine) 

This SVC is restricted to debugging system use, 
although the loader will insert this SVC in problem 
programs being loaded with debug requests. 

2-42 



2.8.10 SYSTRC (Call Trace Subroutines) 

This SVC is subject to the same rules as SYSDEB. 

2.8.11 SYSRDS (Call IOPACK for General Input) 

This SVC is discussed in paragraph 2.7.1. 

2.8.12 SYSWRS (Call IOPACK for General Output) 

This SVC is discussed in paragraph 2.7.6. 

2.8.13 SYSWAT (Call for Operator Message and 
Wait for Response) 

This SVC has only limited utility since it will always 
type "PROGRAM WAITING" and always require an 
operator response of "CONT." 

2.8.14 SYSIOI (Request Monitor Mode for IOPACK) 

This SVC is available to IOPACK and comparable 
USERIO routines to ask that the PSW be changed to 
Monitor mode and assigned a zero-protect key. 

2.8. l 5 SYSIOO (Restore Original PSW Mode) 

This SVC is used by IOPACK to restore original mode 
(monitor/problem) and original storage-protect key. Other 
programs may use this SVC after SYSIOI only if they have 
not made intervening calls to IOP ACK. 

2.8.16 SYSRTA (Return to Selected Address) 

Though available to all users, this SVC must be used 
only to return control from SVC routines for which the 
specified return is SYSRET or SYSRTA. 

SYSRTA assumes a calling sequence of the form: 

SVC SYSRTA 
DC AIA{ADR) 

where ADR is the address to which to transfer control. 

2.8.17 SYSPKY (Set Protect Key in PSW) 

This SVC changes the storage-protect key in the PSW. 
At the start of execution, this key is set to 0010. However, 

if the programmer has changed the storage-protect key for a 
block of storage, the key in the PSW must also be changed 
to the same value set for the block if it is intended to store 
data in that block. The following calling sequence is used to 
change the storage-protect key in the PSW: 

SVC 
DC 

SYSPKY 
H'xx' 

where xx is the new storage-protect key (in decimal, from 
2-1 S). The monitor replaces bits 8-11 of the PSW with 
the storage-protect key requested in the calling sequence. 
However, it first checks to see that the requested key is not 
0000 or 0001, which would permit the user control over 
the complete system. 

2.8.18 SYSSSK {Set Storage Protect Key) 

The following calling sequence is used to change the 
storage-protect key in any storage block( s) outside the 
monitor area: 

CNOP 2,4 
SVC SYSSSK 
DC H'xx' 
DC H'yy' 
DC A(zz) 

where: 

xx is the new storage-protect key (0-15 if store­
protect only is desired, 16 + desired key value if store 
and fetch protection are both desired). 

yy is the number of consecutive blocks of 2048 bytes 
each. 

zz is the starting address. 

At execution time, the monitor sets the storage-protect 
key for the number of blocks specified. It checks to see 
that the starting address given has four low-order zeros (to 
avoid a specification interrupt) and that it is not within the 
monitor area. It also checks to see that each block to be 
given a storage-protect key is within the limits of the 
particular machine (to avoid an addressing interrupt). If any 
of these tests fail, a diagnostic message is produced and the 
job is terminated. 

2.8.19 SYSPRS (Call IOPACK to Output Print Images) 

This SVC is discussed in paragraph 2.7 .8. 

2-43 



2.8.20 SYSPUN (Call IOPACK to Output Punch Images) 

This SVC is discussed in paragraph 2 .7 .12. 

2.8.21 SYSKMC (Set PSW for Debugging System) 

This SVC is restricted to debugging system use. 

2.8 22 SYSDTF (Set Up Buffers for LISTIO) 

This SVC is restricted to use by system processors. To 
use, buffers must be assigned within the processors' storage 
area, the device must be free (not busy and no waiting 
request for operation) and the appropriate calling sequence 
must be used. Return is in line. 

To specify variable blocked records, the following 
calling sequence is used: 

SVC SYSDTF 

DC AL2{logical unit) 

DC AL4(address of buffer 0) 

DC AL4(address of buffer 1) 

DC AL4(address oof buffer 0 + 2) 

DC AL4{address of buffer 0 + 4). 

DC AL4 (0) 

DC X'04' 

DC AL2{buffer size) 

DC ALl(l) 

DC AL1(3) 

DC X'mode command for 7-track. tape' 

Note: Maximum buffer size for VBL records is 32767 
(i.e., X'7FFF') 

For variable-length records, the following calling 
sequence is used: 

SVC SYSDTF 

DC AL2(1ogical unit) 

DC AL4{address of buffer 0) 
-

DC AL4{address of buffer 1) 

DC AL4{address of buffer 0) 

DC AL4 (0) 

DC AL4(0) 

2-44 

is: 

is: 

DC 

DC 

DC 

DC 

DC 

X'04' 

AL2(buff er size) 

AU (1) 

AU (2) 

X'mode command for 7-track. tape' 

For fixed-length blocked records, the calling sequence 

SVC SYSDTF 

DC AL2 (logical unit) 

DC AL4 (address of buffer 0) 

DC AL4 (addre~ of buffer 1) 

DC AL4 (address of buff er 0) 

DC AL4 (address of buffer 0 +logical 

record length) 

DC AL4 (logical record length) 

DC X'04' 

DC AL2 (buffer size)* 

DC AU {blocking factor) 

DC ALI (1) 

DC X'mode command for 7-track tape' 

*Logical record length multiplied by blocking factor. 

For fixed-length records, the calling sequence is: 

SVC SYSDTF 

DC AL2 (Logical unit) 

DC AL4 (address of buffer 0) 

DC AL4 (address of buffer 1) 

DC AL4 (address of buffer 0) 

DC AL4 (0) 

DC AL4 (logical record length) 

DC X'04' 

DC AL2 (buf~er size) 

DC ALI (1) 

DC ALI (0) 

DC X'mode command for 7-track tape' 

For unblocked unbuffered records, the calling sequence 

SVC SYSDTF 

DC AL2 (logical unit) 



DC AL4 (0) 

DC AL4 (0) 

DC AL4 (0) 

DC AL4 (0) 

DC AL4 (0) 

DC X'OO' 

DC AL2 (0) 

DC ALl (1) 

DC AU (2) 

DC X'mode command for 7-track tape' 

2.823 SYSRAS (Request Specified Record from 
NOSS System Tape) 

This SVC is available only to system processors 
transferred from the utility system since its design violates 
storage-protect rules. 

2.8.24 SYSBRA (Monitor-Assisted Program Transfer) 

This SVC is unrestricted but is intended for use in 
program patches. 

SYSBRA assumes a calling sequence of t_he form: 

SVC 
DC 

SYSBRA 
AL4 (adr) 

where ADR is the address to which to transfer control. 

2.825 SYSDTH (Terminate Processing) 

This SVC is restricted to monitor use. 

2.8.26 SYSCDP (Request Emergency Dump) 

This SVC is restricted to monitor use. 

2.827 SYSLGD (Fatal Logout on 1/0 Device Error) 

This SVC is restricted to monitor and USERIO routines 
which have detected an I/O device error which is serious 
enough to justify terminating processing with a logout 
message. 

2-45 

SYSLGD assumes a calling sequence of the form. 

SVC SYSLGD 

DC XL'O' STATUS BYTE 

DC XL3'0' DEVICE ADDRESS 12 BIT 
(RIGHT JUSTIFIED) 

DC XL8'0' csw 

oc XL8'0' ccw 

DC X'O ... O' SENSE BYTES ONE OR M9RE 

2.8.28 SYSMOP (Terminate 1/0 at End-of-Job Phase) 

This SVC is restricted to monitor use. 

2.829 SYSLGC (Fatal Logout on 1/0 Channel Error) 

This SVC is restricted to monitor and USERIO routines 
which have detected an 1/0 channel error which is serious 
enough to justify terminating processing with a logout 
message. 

SYSLGC assumes a calling sequence of the form: 

SVC 

DC 

DC 

SYSLGC 

XL'O' 

XL3'0' 

CHANNELSTATUSBYTE 

DEVICE ADDRESS 12 BITS 
(RIGHT JUSTIFIED) 

2.8.30 SYSTIN (Service Console Typewriter Interrupt) 

This SVC is restricted to monitor use. 

2.8.31 SYSTCE (Record Execution ofl/O Instruction) 

This SVC (code 251) is available to USERIO and 
should immediately precede every machine I/O instruction. 
SYSTCE records information as to what was attempted and 
the resulting condition code and CSW, but returns control 
to the user as if the instruction had been executed in line. 
(Executed instructions may not use register 11, 14, 15 as 
base.) 



2.8 .32 SYSWRM (Count Occurrence of Selected 
Abnormal Conditions) 

This SVC (code 252) is intended for monitor use but is 
not restricted. The routine maintains a table of locations 
where SVC SYSWRM has been executed with a count of 
number of times for each location. The table is not readily 
accessible to users because it is not at a fixed location 
within the monitor. 

2.8.33 SYSPIR (Set Initiate and Interrupt 
Routine Addresses) 

This SVC is available only to programs using USERIO 
and is used to inform the monitor of entry points to 
user-service routines comparable to MONIO, for use with 
device types 6 through 10. SYSPIR assumes a calling 
sequence of the form: 

CNOP 2,4 

SVC SY SP IR 

DC A(inter) type 06 

i>C A( start) 

DC A(inter) type07 

oc A( start) 

DC A(inter) type 08 

DC A( start) 

DC A(inter) type 09 

DC A( start) 

DC A(inter) type 10 

DC A( start) 

where: 

start is the address of the routine that starts IO for the 
device type (0 if not used.) 

inter is the address of the routine that services 
interrupts for the device type (0 if not used). 

2.8.34 SYSTWR (Write on Console Typewriter) 

This SVC is discussed in paragraph 2.7 .11. 

2-46 

2.8.35 SYS1RE (Read from Console Typewriter) 

This SVC is discussed in paragraph 2.7 .5. 

2.8.36 SYSNAP (Core Snap for Programs and 
Processors) 

This SVC can be used by any program (problem 
program or system processor) to dump the general purpose 
registers and one area of core storage to SYSOUT. 

SYSNAP assumes a calling sequence of the form: 

SYSNAP EQU 

SVC 
DC 

44 

SYSNAP 
AL4 (LIST) 

where LIST is the out-of-line parameter list: 

LIST DC 
DC 

A(Dump Start) 
A(Dump End) 

Although this service is extremely useful in development 
testing, its prime use is anticipated to be in the area of PTR 
analysis and verification where it will be invoked via REPs. 

Constraints: 

a. EQU required in source usage 
b. Output is Hex only 
c. Duplicate lines are not bypassed 
d. Cannot be used to dump the last eight words of 

core storage. 

2.9 USER MESSAGES 

. Messages generated by the Utility System are classified 
in three groups: 

1. Normally of interest only to the computer oper­
ator. These are outputted via the console 
typewriter and described in the Utility System 
Operator's Manual. 

2. Normally of interest only to the computer user. 
These are outputted via the system output unit 
(SYSOUT) and described below. 



3. Normally of interest to both the operator and the 
user. These are outputted via both SYSOUT and 
the console typewriter, are described below and in 
the Utility System Operator's Reference Manual, 
and are flagged with an asterisk below. 

The user messages are as follows: 

* 

* 

xxxxxx NOT A SYSTEM PROCESSOR 

Either the preceding $control card specifies a 
processor name which is not on the system tape or 
the card is at an incorrect position in the job deck. 
Job processing will skip to the next $ control card, 
and execution will not be permitted. 

- -OUT OF SEQ OR INV CD- -

Either a non-$control card was read when a 
$control card was required or a $XEQ, $NONEX, 
or $AUX card has errors in its option fields. 

In case of a non-$control card, the job is termin­
ated. Errors in $XEQ, $AUX, or $NONEX option 
fields terminate scanning of the card but do not 
otherwise affect job operation. 

Note: The entire card is printed with the 
overlaying columns 40-65 of the card in error. 

BADENVCARD 

The preceding $ENV card has errors in grammar. 
Any fields not aheady processed will be ignored. 

* BAL 

Either the assembler has been called via a $BAL 
card, or JOVIAL or SYMCOR processing is com­
plete and the BAL assembler is being called to 
assemble their output. 

* DEBEDT 

Debugging output was placed on .AUXIL during 
problem program execution and/or SYSDUMP 
output has been placed there and/or tape dump 
debug cards were included in the object deck. The 
edit portion of the debugging system is being called 
to reduce and print this data. 

ELAPSED TIME 00/00/00 

Time in hours, minutes, and seconds required to 
process the last job. (Time is measured from IPL to 

2-47 

* 

end of first job and from end of previous job to 
end of current job.) 

END OF BATCH - PT.UH/mm L.xxxxxx 
C.xxxxx 

Current batch of jobs has completed. If SYSOUT is 
online, only "END OF BATCH" is printed. If 
SYSOUT is to tape, the entire message is printed. 
Content of the new fields is as follows: 

PT. HH/mm 

L.xxxxxx 

C.xxxxx 

Estimated print time for this 
batch assuming a high-speed 
printer (i.e. 1100 Lpm). If a 
low-speed printer is to be used 
for printing, double this 
estimated print time. 

Lines output to SYSOUT 
during this batch. 

Punch cards output to 
SYSOUT during this batch. 

* END OF JOB 

Job is finished. 

EOF OR $END ON SYSIN 

A program has requested a record to be read from 
the system input unit. The previous record deliv­
ered to the program or system processor was a 
$END, $ENDT APE or 7 /8EOF control card and 
the program was expected to do final housekeeping 
and return control to the monitor without request­
ing more input from SYSIN. (For easy recognition, 
the image presented contained a $ as its first 
character and a record length of 1 .) The request is 
ignored, the message is printed as part of the 
output, and the job is terminated with a 
SYSDUMP. 

* ERRCOND 3 

A processor has returned control to the utility 
monitor, but all processor classification flags are 
off. 

* ERR ON BASIC UNIT 

The system has encountered an error or unex­
pected end of file on a basic system unit. The job 
will be terminated. 



* ID MISSING 

* 

The $ID control card for this job is either missing 
or out of place. The system generates a blank name 
for the job and continues processing. 

INV AUD IO LINKAGE 

An IOP ACK linkage has been found to be in error 
because of improper boundary alignment of param­
eters, improper data address or byte count on 
output operations, or incorrect linkage register 
loading. A system dump is taken, and the job is 
terminated. Registers 14 and 15, appearing on the 
dump, may be consulted to determine the location 
of the bad linkage. 

UNEXPECTED EOF, EOT, or ERROR 

An unexpected end-of-file was encountered while 
reading, or an unexpected end-of-tape was en­
countered while writing, or a permanent I/O error 
has been encountered (to which the operator typed 
in CONT). To eliminate this diagnostic (and dump) 
initialize EOF /ERR Returns with SVC SYSSTR. 

* LISTGN 

The LISTIO generator has been called to assign 
·devices for $UNIT cards. 

* USERIO LOG UNT ERROR 

A system processor $UNIT card has an invalid 
logical unit number specified. Job will be termi­
nated. 

* USERIO CRD TYP ERROR 

A processor $UNIT card does not correctly indi­
cate USERIO. Job is terminated. 

* USERIO DEV TYP ERROR 

illegal device type in a processor USERIO $UNIT 
card. The job will be terminated. 

* USERIO DEV ADR ERROR 

The device address specified on a processor $UNIT 
card is not legal, or is invalid. Termination of job. 

2-48 

* 

* 

* 

* 

* 

DUP USERIO L.U. NUM OR DEV ADR, CARD 
IGNORED 

The logical unit number or the device address on a 
processor USERIO $UNIT card duplicates that of 
an existing system unit. Card is ignored. 

SYSTEM USERIO L.U. XX -ACCEPTED 

A non-standard I/O device is available for use by a 
system processor, and has been defined as a system 
unit. 

SYSTEM USERIO L.U. XX NOT AVAILABLE, 
CONTINUING 

A requested non-standard I/O device is not avail­
able to processor, but job will continue. 

LOADING 

Loading has begun. 

LOADING ERROR NO XEQ 

The loader has found an error while loading. 
Execution has been suppressed. 

* SUPPRESSED LOADING 

Because of previous indicated errors, or because of 
operator request, the job will not be executed. 

LOG UNIT xx NOT IN ASSGNMNT TBL 

An I/O operation has been requested on logical 
unit xxx, but this unit cannot be located in the 
assignment table. (This condition occurs if no 
$UNIT control card was given for the logical unit.) 
The message is printed as part of the output, and 
the job is terminated. 

LU. xx, PU. xxx -
xxxx IS INV AUD CONTROL MNEMONIC 

A control operation has been requested, and the 
parameter list specified xxxx (an invalid code) as 
the mnemonic in di ca ting the type of control to be 
performed. The message is printed as part of the 
output, and the job is terminated. 

LU. xx, PU. xxx -
BSP (or FSP) REQ ON BUFFERED UNIT 

A request has been made for either a backspace­
r e co rd operation or a forward-space-record 



operation, but the $UNIT control card for this unit 
has specified that buffers should be used. The 
message is printed as part of the output, and the 
job is terminated. 

LU. xx, PU. xxx - FILE PROTECTED 

A write operation is requested for logical unit xxx, 
but the $REEL control card for this unit specified 
that the tape should be file-protected. The request 
is ignored, the message is printed as part of the 
output, and the job is terminated. 

LU. xx, PU. xxx -
ILLEGAL DEVICE TYPE FOR SYSPRS (or 
SYSPUN or SYSRDS or SYSWRS) 

An 1/0 operation has been requested which cannot 
be performed by the device selected. 

LU. xx, PU. xxx -
ILLEGAL DEVICE TYPE FOR UNIT CONTROL 

A tape-control operation has been requested, but 
the device specified in the parameter list is not a 
tape. The request is ignored, the message is printed 
as part of the output, a storage dump is taken, and 
the job is terminated. 

LU. xx, PU. xxx -
INVALID DELIVERY AREA FOR READ 

A read operation has been requested for unit xxx, 
but the parameter list specified either a register 
number greater than 13 or a storage address in an 
area of storage occupied by the monitor. The 
request is ignored, and the job is terminated. 

LU. xx, PU. xxx -
LRS (or PRS) INV AR BLKED REC 
GREATER THAN BUF SIZE 

A read-tape operation has been requested, but the 
logical record (or physical record) size of a 
variable-blocked record proves to be greater than 
the buffer area. The message is printed as part of 
the output, a storage dump is taken, and the job is 
terminated. 

LU. xx, PU. xxx - RCD LNG LESS THAN 16 

A write tape operation has been requested for unit 
xxx, but this request would cause IOP ACK to 
create a noise record, i.e., a tape record of less than 

2-49 

* 

* 

* 
* 
* 
* 

16 bytes. The request is ignored, the message is 
printed as part of the output, and the job is 
terminated. 

LU. xx, PU. xxx -
RCD SIZE GREATER THAN BUF SIZE 

A write operation has been requested, but an error 
has been made in the parameter-list length specifi­
cation. The message is printed as part of the 
output, a storage dump is taken, and the job is 
terminated. 

MOUNT xxxxxx ON yyyyy - SYSTEM WAITING 

Indicated library, Compool, or SPT tape, specified 
on a $ENV card was not mounted, and the 
operator has been asked to change tapes. 

NONEX ASSUMED 

A $XEQ, $AUX, or $NONEX control card was not 
found. The system assumes a $NONEX card with 
no units deleted. 

OPERATOR OVERRIDE 

The operator has continued the job without 
complying with the "MOUNT" message printed 
immediately above. Presumably, he had reason to 
believe that the $ENV card specified an incorrect 
tape label. 

OPERATOR REQUESTED REST xxxxxx 

or 

OPERATOR REQUESTED SKIP xxxxxx 

The operator has requested restart of a job (or skip 
to a job), where xxxxxx is the name of the 
requested job as given in columns 10-15 of the 
$ID control card. This message is printed to show 
why the current job was terminated with incom­
plete output. 

REQUIRE MOD=SYST 

REQUIRE MOD=USER 

REQUIRE SES=a 

REQUIRE SYS=bbbbbb 

Any of these messages are printed to identify the 
$ENV card request which, unmet, forced job 
termination. 



* SYSDUMP 

A dump of main storage has been initiated as a 
result of an error or operator message. 

XEQ(LIB is xxxxxx) 

This message indicates that loading is complete, 
execution is starting, and the library tape labeled 
xxxxxx was used for any library routines required 
for the job. 

JOB TERMINATED 

This message indicates that an error was found that 
caused the current job to be terminated. 

BATCH TERMINATED 

This message indicates that an error was found 
which caused an entire batch of jobs to be 
terminated. 

2.10 OVERRIDING SYSTEM PROTECTION FEATURES 
(USERIO) 

Under three conditions, a user may need capability 
normally prohibited by the utility monitor: 

1. To read patch cards for system processors. 

2. To be permitted monitor mode during problem 
program execution. 

3. To provide nonstandard 1/0 services to any type of 
device. 

For any of these conditions, the user may specify 
"USERIO" when submitting the job. 

Patching system processors is discussed in paragraph 
1.3.4. 

To be permitted monitor mode during program execu­
tion, the progranuner should specify "USER" on the $ENV 
card or specify "USERIO" to the operator and include the 
following BAL sequence in the program: 

SVC SYSIOI 

NI X'68A', X'FE' 

This will change the PSW to supervisor state with 
protect key of zero and 1/0 and external interrupts 

enabled. Register contents after SYSlOl are unpredictable. 
The NI instruction changes CRSL7 to indicate IOPACK is 
not opera ting. 

2.10.1 Nonstandard 1/0 Services 

The standard 1/0 routines in the 9020 Utility System 
for tape, card reader, card punch, printer, and console 
typewriter devices. The user may, however, wish to add 
nonstandard routines for these devices or 1/0 routines for 
other devices. 

Any user 1/0 routine must exist within the framework 
of the present 9020 1/0 and interrupt control system. 
Before writing his own 1/0 routine, the user must become 
familiar with the standard method of preparing 1/0 
routines, and with the provisions offered by the utility 
system monitor. 

2.10.2 Organization of 1/0 and Interrupt-Control System 

Figure 2-14 diagrams the 1/0 and interrupt control 
system included in the utility system monitor. IOP ACK is a 
set of routines that controls overlap and blocking, validates 
parameter lists, and directs operations. Interrupt control 
handles interrupts, including all that result from 1/0 and 
SVC instructions. The IOP ACK routine transfers control to 
MONIO, which initiates an 1/0 operation on the specified 
device. For his own 1/0 routine, the user must write an 
IOPACK routine, the MONIO channel commands and 
status-testing code (hardware initiating routines), and in­
terrupt routines. 

The system can be understood best through an exam­
ple. The problem program requests an 1/0 operation by a 
call (BAL with parameter list) to IOP ACK. IOP ACK puts 
itself in supervisor mode by executing an SVC SYSIOI; 
after validating linkages, it tests the LISTIO for the 
requested device to determine if the device is free. When 
the device is free, IOP ACK moves the address of the current 
LISTIO to location CRCHPT (in the conununications 
region), sets request flags in the LISTIO, and executes an 
SVC SYSIO to call MONIO. 

Note: It is imperative that the user disable 1/0 interrupts 
before setting a pointer in CRCHPT and before setting 
request flags in the LISTIO. 

Next, interrupt control, responding to the SVC SYSIO, 
exits to the MONIO initializing routine, which fetches the 
device type from the LISTIO and looks it up in the table 
MNLIST. For each device type, MNLIST has the address of 
two routines. The first is the starting address of the routine 

2-50 



N 
I 
Vl 

Problem Program 

I/O Call 

IOPACK 

SVC SYS!OI 

Interrupt •r 
Control 

MON IO 

---
Hardware 
Initiating 
Routine for 
Device 1 

Figure 2-14. 1/0 an~lnterrupt Control System 

Device Free --
Yes 

SVC SYSRET 

SVC SYS IO 

.. , 
Branch on 
Contents of 
MNLIST 

,~ 

,~ 

Hardware 
Initiating 
Routine for 
Device 2 

•• .. -

1~ 1" 
] 

'SVC ,SYSIOO ,I/O 1Interrup~ 

No 
-----

SVC. SYSRET. ,, 
N 

y Branch on - More Request Contents of - 'MNLIST -

J~ ,~ 
--1llo. .... 

,~ 

Hardware 
... Interrupt 
jr Routine for 

Device l 

Hardware 

-1 .. Interrupt 14--1 Routine for --
Device 2 



that handles interrupts for the device type; the second is 
the starting address of the routine that initiates the device. 
At this time, the initiating address is taken. The hardware 
initiating routine then tries to execute the necessary 1/0 
instructions. If the initiating routine finds the channel or 
device busy, it returns control without initiating, and the 
request flag in the LISTIO remains on. After return to the 
initializing routine, the LISTIO's are searched for any 
requests that can be initated. After attempting to initiate 
any requests found, MONIO returns control to IOP ACK via 
interrupt control. At this point, IOPACK executes an SVC 
SYSIOO to restore the operating mode (the first five bytes 
of the PSW) to its original state and returns to the problem 
program. 

On an 1/0 interrupt, interrupt control calls the MONIO 
initializing routine to determine which channel interrupted 
and to search that channel's LISTIO chain for the corre­
sponding device address. Next, according to the device 
type, MONIO branches to the interrupt address supplied in 
MNLIST to service the interrupt. If no device address 
match is found at this time, the interrupt is ignored. In 
either case, MONIO scans all other LISTIO's for the same 
channel and attempts to initiate any for which the request 
flag is set. 

2.10.2.1 Standard IOPACK Routine 

The standard IOP ACK routine first executes an SVC 
SYSIOI to enter the supervisor mode, enabled for inter­
rupts. Next, the routine does its bl~cking, deblocking, and 
related manipulation of logical records. If it is necessary to 
perform an 1/0 operation, the routine must test the LISTIO 
of the desired device to determine if the free flag is set to 
one and the request flag is set to zero. When this condition 
is met, IOP ACK disables interrupts, sets the request flag to 
one, and places in CRCHPT the address constant that 
points to the current LISTIO. Finally, IOPACK executes an 
SVC SYSIO, transferring control to the MONIO intializing 
routine and from there to the hardware initiating routine. 
The IOP ACK routine can pass parameters to the "initiating 
routine via the LISTIO. See Figure 2-15. 

2.10.2.2 Standard Hardware Routines 

The hardware initiating routine starts the device; while 
the hardware interrupt routine handles interrupts (returning 
control to the initiating routine for error correction when 
appropriate). Both routines communicate with IOP ACK 
through the LISTIO and CRCHPT. Errors may be corrected 

2-52 

and CCW's constructed by either the hardware initiate 
routine or IOP ACK. 

For convenience, the MONIO initializing routine house­
keeps general registers 5 through 12 as follows: 

5 - Device addre~ 

6 - Direct exit (to MNXET when channel is busy) 

7 - Scan exit (to MNXOT when channel is free) 

8 - Kill-batch exit (to MNKL) 

9 - Notused 

10 - Interrupt routine address 

11 - Initiate routine addre~ 

12 - Current LISTIO address 

Register housekeeping is provided by the initializing 
routine and by MNXET and MNXOT. The console type­
writer may be used freely, but registers 5-12 must be 
restored before exit. See Figure 2-16. 

2.10.3 Utility Monitor Provisions -
User Input/Output Routines 

The moriitor provides an option on the $UNIT card 
and a special supervisor call that allow user 1/0 routines to · 
exist within the 9020 System. 

By punching USERIO in place of IOP ACK on the 
$UNIT control card, the user causes that card to be 
interpreted. in a special way. The most important point is 
that a hardware device address is specified by the user. The 
LISTIO generator will not try to assign a device address but 
accepts the user-supplied address. {A check is made, 
however, to see that this address i~ not assigned to a basic 
system unit - .INPUT, .PRINT, .PUNCH, .AUXIL, or 
.SYSTM. If the address is assigned to a basic unit and 
USERIO request is for a problem program, the job will be 
terminated. System processor USERIO requests are also 
checked for identical device addresss. If the address 
duplicates that of an existing unit, a diagnostic is issued and 
the request is ignored.) Also, a flag is set in the communica­
tions region (in CRIOSW) to show that a user 1/0 routine 
has been requested. 



No 

Enter 

SVC SYSIOI 

Perform 
Blocking 

Operations 

Disable 
Interrupts, Set 
Request Flag 

On, Set CRCHPT 

MONIO 
Initiate 

Figure 2-15. IOPACK Routine 

No 

Yes 
SVC SYSIOO 

2-53 



Initiate 

Enter 

Bad 

Start Device Set Up for Hetry 
Mm_._--1 --~-

Busy 

Set Request and 
Free Flags Off 

Bad . 

Yes 

Figure 2-16. Hardware Initiate and Interrupt Routine 

2-54 

Interrupt 

Enter 

Good 

Set Free Flag On 



Before attempting to initiate an l/O device, the user 
must give the monitor the address of his 1/0 interrupt and 
hardware initiating routines. This is done by an SVC 
SYSPIR, as follows: 

CNOP 2,4 
SVC SY SP IR 
DC A (interrupt) for device type 06 
DC A (initiate) 

DC A (interrupt) for device type 07 
DC A (initiate) 

DC A (interrupt) for device type 08 
oc A (initiate) 

DC A (interrupt) for device type 09 
DC A (initiate) 

DC A (interrupt) for device type 10 
DC A (initiate) 

All these entries must be given in the order listed even if 
. some are unused. 

The format of a USERIO $UNIT control card is 
explained in paragraphs 2.2.5.1.2 and 2.2.5.1.3. 

The device type field is used by the MONIO cover 
routine to determine which interrupt/initiating routine is to 
be called. It is recommended that similar devices be given 
the same device type. 

For problem programs, USERIO cards must precede 
IOP ACK $UNIT cards so that physical units specified on 
these cards will not be assigned to logical units specified on 
the latter cards. 

210.3.1 Precautions 

The user 1/0 routine becomes, in effect, a part of the 
utility monitor and can, if in error, destroy the monitor. 
The writer of the user I/ 0 routine must guard against errors 
in his 1/0 routine, as well as bad linkages and other errors 
from the calling program; also, he must make certain that 
his devices are dormant at end of job. 

The LISTIO constructed for a user device has only the 
physical device address, the device type, the channel 
pointer, the request flag, the free flag, and the critical unit 
flag (for example, .SYSTM). The channel address word 
(CAW) is also set for a system processor USE RIO request. 
The user can employ the other LISTIO fields as desired. 

The lBM 9020 Utility System 1/0 support (i.e., 
IOPACK and MONIO) is not recursive. Therefore, the 
system mask may not be set to 1 bits while an 1/0 routine 
is operating. (This restriction does not apply to IOPACK 
routines until they set flags in the LISTIO or set a point in 
CRCHPT. The console typewriter, however, may be used 
freely.) 

No dynamic dumps may be taken in 1/0 routines. 

2.10.3.2 Suggestions 

Typical structure of a user hardware initiating routine 
is shown in Figure 2-17. 

The user can obtain the address of a particular LISTIO 
by executing this linkage to the LIOGET routine: 

L 
BALR 
DC 

15,CRLGET 
14,15 
H 'logical unit' 

where logical unit is the logical unit number. When this is 
executed, the LISTIO address will be placed in register 13. 
If the designated logical unit has not been assigned (i.e., it 
has no LISTIO), register 13 will be set to zero. The user 
routine must be in the Supervis~r mode (by executing an 
SVC SYSIOI) before this linkage is executed. 

The user can find the addresses of all communications 
region locations from the utility monitor listing. These 
addresses are fixed and can be equated to absolute 
expressions when interfacing with the utility system moni­
tor. 

2.11 BATCH 

The BATCH routine is a monitor facility which allows 
for several off-line operations to be handled simultaneously 
in a small machine configuration. A maximum of three 
operations requiring print/punch groups can be done at one 
time. Simultaneous operations include: 

2-55 

a. Create a utility system format SYSIN tape with 
either cards, or cards and an SPT tape as input. 

b. Create an unblocked card image tape. 

c. Print tapes in SYSOUT, SYSIN, unblocked print 
record, hexadecimal dump, or alphabetic dump 
format. 



02/14/67 SOATE 
SID USEIO USERIO DEMONSTRATION Ll~TING 
SN ONEX 
SBAL 
USER ID 

NOLIB,NOCOM~,NOSPT 

LIST,PUNCH,ANALVl 
START 0 ,. 

I 

••• ••• ••• • ••• 

FOLLOWING DECK IS INTENDED TO SHOW UV EXAMPLE THE NECESSARY 
CODING FOR USING THE USERIO fE~TURE Of THl 9020 NOSS 
MONITOR. THC DECK IS JN!~THREE '.PA~TS • 

1. IOPACK ROUTINECOIRECTLY CALLEO BV US~R-INTERFACES WITH MONIOt 
• 
~•• 2. MONIO START ROUTINECCALLEO FROM IOPACK AND ACTUALLY 
••• EXECUTES SIO AND TESTS-SUCC~SS OF OEVICE INITIATION> • 
• 
••• 3. HONIO INTERRUPT ROUTINECCALL(O CY 1/0 INTERRUPT CONTROL 
••• AS A RESULT OF AN INTERRUPT ON ITS DEVICE TYPE - ANALYlES 
••• DEVICE STATUS ANO USUALLY FLAGS IT AS F~fE OR DIRECTS 
••• THE HARDWARE START ROUTINE IN ATTEMPTING RECOVERY) • 
• • 
• INITIAL HOUSEKEEPING 
• ANY COMBINATION OF ONE TO FIVE TYPES OF DEVICES MAY BE IMPLEMENTED 
• BY WRlTING ROUTINES AND FILLING CHOSEN ENTR~ES IN SVC SYSPIR. 

CNOP 2,4 
SVC SYSPIR 
DC AIHAROENO,HAROSTRT) 
DC ACO,OI 
DC AC0,.0) 
DC AI0,0) 
OC ACO,O) 

• EQUATES 
CRCHPT EQU X'bl4 1 

CRLGET EQU X1 630 1 

TRACE EQU X'f8' 

TYPE b DEVICf 
TYPE 1 DEVICE 
TYPE 0 DEVICE 
TYPE 9 DEVICE 
TYPE 10 DEVICE 

LIST DSECT 20 WORD LISTIO (CONTROL TABLE> 
• EMPTY SPACE IS AVAILABLE FOR USERIO PURPOSES 
LCHAIN OS lf SEARCH LINKAGE - DON'T TOUCH 
EA OS 7F 
LCCW OS 10 
LCAW OS lF 
E~ OS lf 
Lf LAGS OS lC 
• • • 
LflAGP OS lC 
EC DS bC 
UJfYPE OS lC 
EU OS 3C 
LlrLAG OS lC 
H US lC 
LO VA OR us lH 
c: f OS lU 

Figure 2·-17. Typical User IOPACK and Hardware Routines (Sheet 1of4) 

2-56 

CCW (NORMAL POSITION) 
CAW (NORMAL POSITIONt 

dO - 08 - USERIO 
40 - FREE 04 -
20 - 02 - ERROR 
10 - REQU~STfD 01 -
DO NOT TOUC It 

DEVICE TYPE 

PIWBABL Y IGNORE 

Ot:VICE f\IHHU:~S 



L(Qf AO 
U:RRAD 
PROG 
• • 

OS ACOI 
US ACOI 
CSECT 

I 

EOF RETURN ISEE SYSSR) 
ERR RETURN CSEE SYSSRt 

• . l 
····················································~················ • IOPACK CLOGICAL IOCSI 
• NORMALLY WRITTEN AS A SUBROUTINE, THOUGH NOT NECESSARILY. 
• ALWAYS PAIR SYSIOI ANO SYSlOO 
• PRESUMED CALL IN EXAMPLE IS 
• L 15,•ACSOFTSTARTI 
• CNOP 2,4 
• .BALR 14,15 
• OC ACARG) 
ll OSEC T TO DESCRIBE ARGUMENT AREA 

LOGICAL UNIT ARG OS H 
PROG CSECT 
• SUGGESTED CODE WILL REQUEST MONITOR HOOE, PROMISE SYSIOO, AND 
• SAVE REGISTERS. 
SOFTSTRT SVC SYSIOI 

x 

••• ••• 
LPA 

• 
••• ••• 

••• 
LP8 

ULR 12,0 
USING •,12 
L 11,oco,eJ 
USING ARG,11 
MVC X,ARG 
L 15,CRLGET 
BALR 14, 15 
DC H•b• 
l TR 13, 13· 
BZ DEATH 
US I NG LIST, 13 
Cll LDTYPE,6 

SYSIOI DESTROYED 15-ANYWAY 12 IS STANDARD 

8 HAS COPY OF 14 
.14 ALSO WAS LOST IN SYSIOI 
LOGICAL UNIT FOR CRLGET 

LOGICAL UNIT 
WAS THERE A LOGICAL UNIT 
NO-CALLER GOOFED 
CAN REFEREN~E LISTIO 

BNE DEATH LU HAS WRUNG DEVICE TYPE 
DETERMINE ADDRESS AND LENGTH OF DATA OR REQUIRED CONTROL COMMAND • 
IF NONE REQUIREOCBLOCKING, ETC.) GOTO LPC • 
TM LFLAGs,x•10 1 IS REQUEST FLAG ON 
BNE LPA WAIT FUR PREVIOUS BUFFERED OPERATION 
TH lflAGS,X 1 40 1 IS PREVIOUS OPERATION FINISHED 
Bl LPA NO-WAIT 
USE FOLLOWING ONLY IF YOUR MONIO ROUTINE SUPPORTS IT • 
TM LFLAGS,x•o2• 
BNE IOfRROR (DETECTED OY YOUR HONIO ROUTINEt 
CONSTRUCT ccw•s IN AREA ASSIGNED THIS OEVICECLCCWI • 
CONSTRUCT CAW IN AREA ASSIGNED THIS DEVICE ILCAW) • 
SSH ·x•oooo• HUST INHIUIT INTERRUPTS 
ST 13,CKCttPT ser POINTER FOR MONIO 
01 LFLAGS,X 1 10' INDICATE NEED FOR SIO 
SVC SYSIO CALL HONIO 
SSH •X'FFFO' ALWAYS RE-ENABLE INTERRUPTS 
GOTO LP6 OR LPC AS APPROPRl4TE IOR EVEN LPAt. 
TH LFLAGs,x•10• FOR UNBUFFERED OPERATION IOPACK 
ONE LPB WAI rs FOR· SllCC:ESSFUL DEV ICE ENO 
TM LFLAGS,X 1 40 1 

BZ lP8 

Figure 2-17. Typical User IOPACK and Hardware Routines (Sheet 2 of 4) 

2-57 



••• 
LPC 
• 

• • 

IF YOU WA I TED
1 

YOU CAN TEST FOR SUCCES s • 
5VC SYSIOU PAIRS Wlftt SYSIOl/RESJORES ORIGINAL 

u 
OROP 
l TORG 

4(0.141 
11.12.13 

, . 

REGISTERS 
RETURN TO CALU:ft 

. : ' ~ . 

···································~································· t HONJO (PHYSICAL IUCS) j · 1. 
1 • . ! I , 

•••• WARNING-HARDEND GETS CALLED WHENEVER DEVICE INTERRUPTS-EVEN IF 
• NOT SELECTEO. HAROSTRT GETS CALLED IF REQUEST FLAG IS ON ANO THERE 
• IS ACTIVITY ON THE CHANNEL AND DEVICE IS FREE. THEREFORE YOU ARE 
• HULTIPROGRAHHING -1- LEVEL ANO·,SHOULO NOT C:All ANY COMMON UR LIBRARY 
• ROUTIN~S FROH HAROSTRT OR HARD£NO. THIS rs WHY THE LISTIU 
• HAS COMMUNICATION FIELDS. ' 
• 
•REGISTERS 0-4 ARE AVAILABLE -·5-12 HUST DE RESTORED If CHANGED. 

USING HARDSTRT,11 SET FOR YOU 
US I NG LIST, 12 . 

HARDSTRT TH LEFLAG,X'20' HA$ YOUR INTERRUPT 1 ROUTINE HARKED . 
• 'UNIJ NQT READY- If SO WAIT FOR DEVICE END INTERRUPT~ 

BNER 1 GIVE CONTROL 10 ~NXOT 
01 LflAGS,X'50 1 SET FREE ANO REQUEST 
HVC 7214),LCAW (If YOU ~EPT CA~ IN LISJIOt 

• HA IS NORMAL FOR DATA TRANSFER COMMANDS, HU f ~ fOR CONTROL. 
HA SVC TRACE MAINTAIN Hf STORY FOR DEBUGGING 

SIO 0151 PRECEDE All 1/0 lNSTRUCTIONS WITH TRACE 
BNE TROL DATA COMMAND ~HOULO GIVE cc~o 
NI LFLAGS,X 1 AF' SAY NOT REQUf STEn AND NOT FREE IGUODI 
NI LEFLAG 1 X'BF 1 SAY BUSY 
OR 6 JO MNXET CDONEt 

•TRBL• PLAY THIS BY EAR, YOU HAVE INTERRUPTS DISABLED ANO CAN 
• USE SIO, TIO, ETC, ALWAYS PRECEDED BY SVC TRACE 
• 1052 IS AVAILABLE ISYSTWR, SYSTREt BUT NO OTHlR 1/0 
TRBL SVC SYSTWR 

UC AlllHESSAGE) 
DC All(l 1 MESSAGE) 

• FOR SERIOUS TROUBLE, 6ATCH CAN BE KILLEO WITtt ON-LINE EHERGlNCY DUMP, 
BR 8 JO HNKL 

• OR INTERRUPTS HAY BE PERHITTEO 8Y RETURNING TO IOPACK OH BUSY CONO. 
HR 1 TO HNXOT 

•CONTROL IS SIMILAR BUT CSW IS EXPECTED TO BE STORED ON SUCCESS. 
HB NI LFLAGS,X 1 Af' NOT REQUESTED ANO NOT FREE 

U4 68,X'04 1 LOUK FOR OEVICt ENO 
OER b MNX[T IF OEVIC:C NOT DONE 
HVI LEfLAG,X 1 40 1 SAY NOl BUSY 
UI LflAGS,X 1 40' SAY FREE-All DONE 
UR 1 ro MNXOT TO SCAN REST Of CHANNEL 
OROP 11, 12 

•HONIO INTERRUPT ROUTINE••••• 
• 

USINfi HARDEN0 1 10 SET FOR YOU 

Figure 2-17. Typical User IOPACK and Hardware Routines (Sheet 3 of 4) 

2-58 

I 
/ 



USING LIST,12 
• AGAIN YOU HAVE MACHINE, SAHE REGISTER LIMITS. 
• PERHAPS YOU IGNORE INTERRUPTS BEFORE DEVICE ENO. 
HARDENO TH X'44', X'04' 

BER 1 TO HNXOT WAITING FOR DEVICE ENO 
• IF YOU NEED TO RETRY THE OPERATION SET REQUEST ANO FREE AND 

BR 11 GO BACK TO HAROSTRT. * OTHERWISE NORMAL SUCCESS EXIT IS 
01 lflAGS,x•1to• SAY FREE. HARDSTRT CLEARED REQUEST. 
BR 1 10 HNXOT-ll.l DONE • •• 

IUERROR NOP 
DEATH SVC 
MESSAGE DC 

0 (NORMALLY GENERATE A PRINTED COHMENTJ 
SYSOMP ONE SOLUTION TO CALLER GOOFS 
C•USERIO DEVICE HAS TROUBLE' POSSl8LE COMMENT 

ENO 
SUNIT 21,USERI0,03C 1 06 

Figure 2-17. Typical User IOPACK and Hardware Routines (Sheet 4 of 4) 

d. Log any tape. 

e. Punch a SYSIN tape, an AUXIL tape, a hexadeci­
mal tape, or an unblocked card image tape. 

f. Write end-of-file tape marks on tape. 

Other off-line operations performed by BATCH, but 
which lock out all other operations are: 

a. Create a merged library and compool tape. 

b. Duplicate one tape onto another one. 

c. Compare two tapes in SYSOUT, SYSIN, SPT, or 
hexadecimal tape format. 

d. Create a 7-track SYSOUT tape from a 9-track 
SYSOUT. 

The use of BATCH in an off-line and input/output 
system set up is described in Section 3, System Tape 
Generation. If a hard copy of a deck which is only resident 
on tape is wanted, then the punching of a .SYSIN or 
.AUXIL tape can be very useful. 

The duplication of tape from 9-track to 7-track or just 
a straight duplication can be used for tape backup, or to 
make use of the 1401, or 7-track drives on the 9020. 

Except for the generated SYSIN tape, which is always 
written on .AUXIL, all tape assignments are made by 

2-59 

operator messages ass1gmng specific drives to specific 
functions. Every tape drive listed in the IPL time MOUNT 
message, and normally any other attached tape, is available 
for any BATCH function (except as noted under individual 
functions). 

Control of BATCH is via typewriter input messages. 
These must be entered in response to one of the three 
following control messages: 

1. INITIALIZE BATCH - The processor has just 
been loaded via the IPL message BATCH. 

2. GO! - BATCH awaits a new set of· control 
messages in response to the typewriter sequence: 
depress REQUEST key, wait for ENTER RE­
QUEST, depress ENTER key. 

3. TRY AGAIN ST ART ING WITH 
xxxxx-----BATCH rejected the first message 
indicated (xxxxx) but has not yet decoded any 
following submessages. All of these remain in the 
message area, and what is typed at this time will 
replace a corresponding portion of the original 
messages. It is not necessary to retype the entire 
original message; change only the portion that was 
incorrect. (If new submessages are shorter, blanks 
may be left at the end of any submessage. 
However, if they are longer the entire remainder of 
the message must be retyped.) 



2.11.1 Create SYSIN Tapes 

To initiate SYSIN tape generation, stack job decks in 
the reader and type in CTT. For an unblocked card image 
SYSIN, stack job decks in the reader and type CTT/N. In 
final job processing SYSIN will be on tape. Use $ENDTAPE 
instead of $END to terminate the last batch to be loaded 
on any SYSIN reel. (Decks for more than one reel may be 
stacked.) 

BATCH scans all cards written on the generated SYSIN 
and types a summary consisting of significant portions of 
each $ID, $UNIT, $REEL, and $ENV control card. 

BATCH enables the programmer to submit any assort­
ment of decks (or selected portions of those decks) 
prestored on one or more SPT's with insert, delete, merge, 
or replace cards on SYSIN. To use this service, proceed as 
follows: 

a. Place selected card decks on an SPT tape. BATCH 
imposes only two restrictions: 

1. The tape label must be unique. 

2. Each card image on the SPT tape is assumed to 
contain an 8-character sequence number in 
columns 73-80, and cards in each file must be 
in order if updates are to be used. 

Assuming that the submitted decks are acceptable 
·to SPTEDT, BATCH may process any of these 
decks. 

b. Assign a unit(s) for the SPT tape(s). To assign a 
drive for SPT, enter the message SPTnnn. More 
than one drive may be assigned by typing in several 
SPT messages with different unit numbers. The 
units will be used in the order assigned as requests 
for new tapes are processed. 

c. Prepare job deck. To control merging of cards from 
SPT tapes, include $SPT control cards in the 
following formats as appropriate: 

Column 1 
1 0 

$SPT zzzzzz 

$SPT zzzzzz 

$SPT zzzzzz 

$SPT zzzzzz 

1 
6 

xxxxxx 

x:xxxxx,yyyyyyyy 

******,yyyyyyyy 

2-60 

where: 

xxxxxx is SPT tape label from the $SPTEDT card. 

yyyyyyyy is SPT file name from the APROG card. 

zzzzzz is an optional SYSIN resequencing specification. 
The field may be blank, or may contain RESEQ, 
NORES, or ABSNR. 

The first format, specifying only a tape label, 
serves to select the specified tape (normally for a 
subsequent $SPT card specifying file name but not 
tape label), is considered a $ control card, and 
serves no other purpose. It may appear any place in 
a job deck prior to other $SPT control cards for 
the same tape. 

The second format, specifying tape label and file 
name, serves to select the specified tape and 
initiate processing of the named file. It is self­
sufficient and does not require a preceding $SPT 
tape select card. 

The third format, containing******in the tape 
select field, serves to initiate processing of the 
named file of the currently selected tape. If one or 
more $SPT cards of this format are used, they 
must be preceded by a $SPT card specifying tape 
label. 

The fourth format is used where a $ control card is 
required only to satisfy the BATCH rule that 
processing of an SPT file may be terminated only 
by a $ control card or 7 /8EOF card. 

Follow the $SPT file select card (second or third 
format) with INS/FINIS, DEL, merge, and replace 
cards in the same manner as for an SPT update 
(except that BATCH will accept any valid sequence 
number without demanding an identical number 
from tape for INS and DEL cards). Terminate 
processing the file with whatever $ control card is 
appropriate. (Note that the last form of $SPT card 
is provided for the special case where no $ control 
card is desired in the generated SYSIN deck and no 
other $SPT card is appropriate. Also note that, for 
the corresponding case where a $ control card is to 
be inserted without terminating file processing, the 
user must place his card (with other cards as 
appropriate) between INS and FINIS cards and 
place a pseudo-sequence number of$$$$$$$$ on 
the $control card.) 



For card to tape errors using an SPT tape, some of 
the messages produced are: 

$SPT** **FILE:xxxxxxyyyyyyyy: DELaaaaaaaa, 

$SPT****FILE:xxxxxxyyyyyyyy: INS aaaaaaaa 

bbbbbbbbAFTERcccccccc 

AFTERcccccccc 

$SPT****FILE:xxxxxxyyyyyyyy: MERGE/REPLACEbbbbbbbbAFTERcccccccc 

$SPT****FILExxxxxxyyyyyyyy: NO FINIS FOR INSaaaaaa 

$SPT****FILE:xxxxxxyyyyyyyy: SPT CARD HAS AN ERROR 

$SPT****FILE:xxxxxxyyyyyyyy: RESEQUENCED SPT NUMBERS OVER 99999000 

MOUNT SPT-xxxxxx- ON DRIVE yyy (not aaaa bbbbbb). 

For all but the last error message, looking at the 
deck should be enough to find the problem. 

The last error message indicates either the wrong · 
tape was mounted or the wrong tape was requested 
on the instructions to the· operator. The operator 
may respond to this message in one of three ways: 

L Mount the correct SPT tape. 

2. Type in 'CAN'. This cancels the SPT request. 

3. Type in 'IGN' and load the SPT down. This 
causes BATCH to ignore the tape label and use 
the SPT that is mounted. 

BATCH can resequence the card images placed on 
SYSIN tape. Resequencing is identical to SPTEDT 
resequencing. This function permits knowledge of 
the new sequence number prior to performing the 
actual SPT edit. 

Columns 10,-14 of the $SPT card are . used to 
designate the. type of· resequencing desired. When 
columns 10-14 are blank or contain ABSNR, 
BATCH performs no resequencing. 

When columns 10-14 of the $SPT card contain 
RESEQ, the cards are resequenced by 1000. The 
source change cards are applied to the SPT file, 
inserting, deleting, or replacing as necessary. Each 
record is then assigned a new sequence number 
which is 1000 greater than the last number. The 
record with the new number is then written on the 
SYSIN tape. 

When columns 10-14 of the $SPT card contain 
NORES, only those cards appearing· within an 
INS/FINIS sequence and containing blanks in 
columns 73-80 are assigned a sequence number. A 
card within an INS/FINIS is considered blank if a 
number which is present in the card is lower than 
the last assigned number. A number which is 

24 May 1974 2-61 

contained in the card and is in higher collating 
sequence is accepted and used by BATCH. Alpha­
betic characters are acceptable if they are in higher 
collating sequence. 

When the NORES option is used, incrementing 
occurs by one. BATCH creates a new sequence 
number by using the last valid sequence number 
and updates starting at the least significant (one's) 
digit, generating carry updates only as far to the 
left as necessary. Any digits updated by BATCH in 
'any character position contain only the Hollerith 
characters 1 through 9, never zero (0). 

For example, an insert of 12 cards between 
sequence numbers 00005000 and 00006000, with 
all cards except the seventh containing blanks, 
produces the following results: · 

original card 00005000 
insert card 1 
insert card 2 
insert card 3 
insert card 4 
insert card 5 
insert card 6 
insert card 7 (with number 00005997) 
insert card 8 
insert card 9 
insert card 10 
insert card 11 
insert card 12 
original card 00006000 
original card 00007000 

00005000 
00005001 
00005002 
00005003 
00005004 
00005005 
00005006 
00005997 
00005998 
00005999 
00006111 
00006112 
00006113 
00006114 
00007000 

Note: It can easily be seen that card number 00007000 is 
an original card, since this mode never generates a zero. 

BATCH interprets every $SPT card individually, 
and performs sequencing as indicated on that $SPT 
card. That type of sequencing continues until 
either a new $ID card or a new $SPT card is 

· encountered. 

NASP-9229-05 



The sample job deck (Figure 2-18) references 
three files on two SPT tapes. The first reference is 
to a JOVIAL source deck on tape JD0419. A 
START card was inserted before the $SPT card, 
presumably because there was no START card in 
the SPT file. 

The second reference is to an object deck on tape 
JD0422. The DEL card is probably meaningless 

I 

1 DEL 

since card number 99999999 does not normally 
exist. 

The third reference is to a data deck, again on tape 
JD04 l 9. The control cards delete all except cards 
00000901 through 00004899. These cards are then 
resequenced from 00002000 through 04000000. 
The $SPT card represents 00001000. 

00004900,999999999 

I DEL 00000000,00000900 

/$SP'r JD0419, DATAB 

I $DATA 

L DEL 99999999 

L $SPT JD0422, OBJl 

LsoBJ 
1 GOTO BET A $ 00001001 

l $SPT **00,JVIALlll 

l START JSPT I-' 

1 j_JOV LIST_._ PUNC~tANAL YZ t--

1 $XEQ NOSPT 

l $SPT JD0419 
.-

I-' 

$ID TSPT IBM J. DOE ~ 

t-

t-

t--

~ 

~ 

t-

~ 

1--

Figure 2-18. Sample Job Deck 

2-62 

J. 

\ 



2.11.1.1 SYSIN Oeation Using Conditional Copy 

This facility is an extension of the basic SYSIN 
creation outlined in the preceding paragraphs. This cap­
ability provides a method for conditionally extracting data 
from an SJYf file. The burden of duplicate maintenance is 
eased when all source data relating to a particular program 
resides on one SJYf file. The differentiation between code 
applicable to versions of the same program will be 
accomplished by the use of control statements recognized 
only by BATCH. These control statements may exist either 
as card input or may actually reside on the SJYf file itself. A 
user-invoked SPT option specifying the version(s) of code 
desired from the SPT file will permit the extraction of data 
from the tape. 

This BATCH facility will permit, for example, a 3dl .0 
version of a given program to be produced from a combined 
3c/3d source SPT file by extracting as output {SYSIN) only 
the code which applies to the 3d version. Thus, code 
common to both versions appears only once in an SPT file. 

BATCH will now recognize two new $SPT cards 
(MATCH and MATCX) as well as a new file alteration card 
(ALLOW). 

The new $SPT cards have the following form: 

Column 1 

$SPT 
$SPT 

10 

MATCH 
MATCX 

16 

AA,BB, ... . 
AA,BB, ... . 

From 0 to 5 positional 2-byte parameters beginning in 
column 16 on the MATCH or MATCX card will be 
permitted by BATCH. 

The new file alteration card has the following form: 

Column 10 16 

ALLOW AA,BB, .... 

From 0 to 19 positional 2-byte parameters beginning in 
column 16 on the allow card will be permitted by BATCH. 

The following rules will apply to the MATCH or 
MATCX option: 

a. If no MATCH or MATCX option is detected, 
BATCH will operate exactly as it does now (i.e., all 

2-63 

data on SPT transferred to SYSIN including 
ALLOW cards; if present). 

b. An encountered MATCH or MATCX option will 
remain in effect until overridden by another 
MATCH or MATCX option or by a $ID card. 

c. A MATCH or MATCX option without parameters 
{blanks in columns 16--29) accepts all source as 
eligible. 

d. A MATCH or MATCX option will accept as eligible 
all source encountered prior to the first ALLOW 
card, per SPT file. 

The following rules will apply to the ALLOW File 
Alteration card: 

a. ALLOW cards will be stripped from output 
(SYSIN) if a MATCH option is in effect; however, 
all ALLOW cards will be transferred to SYSIN if a 
MATCX option is in effect. 

b. ALLOW arguments apply to all source following 
until another ALLOW card is encountered, per SPT 
file. 

c. ALLOW cards with no· arguments (blanks in 
columns 16-71) indicate that source following will 
always be included in output {SYSIN). 

Following are examples of job setup and expected 
results: 

Example 1 

SPT Con ten ts: 

fllt:4 AP ROG 
ALLOl-4 .4A 

~f lLE' STARl 0 
A°LLOW 4B 

·- ~.F.U.E'!_ __ 5fARf X' 100·, 
ALLOW 4C .. 

XFILE4 STARf X'200' 

* CARD 
• CARO 
• CMW 
• C'\Kll 
• CARD 
* C~Ru 
• C.\IW 
* CA~u 
* CARtJ 

ALLOW 
100 liF FI Lt 4 
200 UF FfLE 4 
300 OF FILE 4 
400 UF FILE 4 
'>00 OF F llf 4 
600 OF File 4 
700 OF FfLF 4 
'100 Uf fllt 4 
'JOO OF F Ill:: 4 

ENU XFILE4 

FILE 4 00001000 
. 00002000 
l 00003000 
i 00004000 

00005000 
00006000 
00007000 
000013000 
0000~000 
00010000 
OOOllOOO 
00012000 
00013000 
00014000 
00015000 
00016000 
000 l 7000 
OOOLBOGO 



Control Card Input: 

1 10 16 

$ID NAME 
$BAL LIST, ANAL YZ 
$SPT MATCH 4B 
$SPT SPT002, FILE 4 

Assembler Output: 

------
~90R! llDOP 2 LJN( SVl'PC'L (;P OPEq~NO-CC~~fNlS I[;£!. T 

·-4·-----· - -
000 !Oil l)OCOI l!F I l !'it 51 l!ll x •too• cocc~ccc 

er.cc~ .. CflPC. !CC CF FIL!: 1, ,_ COCC'iCCO_ 
CllCC3 • Cfll:IC 200. [F FIL'; 4 : OOClOOOO 
l)QCOL. • Cl\f.lC ~oo r:F FI l i:; 4 

: CCC! lCCC_ 
Ql)CO~ • Cf.Pr LCC CF F llf; 4 ccc12cco 
coco~ • ( flPC '·OC ('F FI~ C: t. CCOl~ljQQ 

CCCC"I • c.A r. C' ~cc C!' Fll7 4 .. --ace 1 t.c·ca 
ooooa .. (Mlf "ICC .CF FILE 4 - OC015000 

OOCC'i " C/.llC [00 CF FILE 4 CCClHCC-.. 
.CCC tC • (f!PO ccc CF F ll ~ 4 OOCl "IOCQ 

OC0\00 OOCll Et.O XCILE4 ooqJECCO 

-a--•--•••----

In example 1 the proper START card was selected by 
using the MATCH "4B" control card. The "ALLOW blank" 
card was used to include all source from that point to the 
end of file (or next ALLOW control card). · 

Example 2 

SPT Contents: 

f llf2 AP ROG FtLE 2 
-XFILEl START 0 
* Cl\KU 100 OF FILE 2 
~ C/1Kll 200 UF FILE 2 

I * CARO 300 UF FILE 2 r·-.·--.· · - - ALLOW 2A --· · -- ··-- ·------

* CARD 400 OF FILE 2 
. ALLO~ 2B 
* C4RO 500 OF FILE 2 

ALLOl'I 2C 
*CARD 600 uF FILE 2 

-·-- .. . ALL0\1 2D,2A. 

* CARO 700 uF FILE 2 
- ALLOll 2B t2C 

*CARD 800 UF FILE 2 * C4RU qoo OF FlLE·2 
END XFlLE2 ··-

00001000 
00002000 
00003000 
0000400°0 
00005000 
00006000 

. 00007000 
00008000 
00009000 
00010000 
00011000 
00012000 
00013000 
00014COO 
00015000 
00016000 
00017000 

2-64 

Control Card Input: 

1 10 
$ID NAME 
$BAL 
$SPT MATCH 
$SPT 

ALLOW 
ALLOW 
ALLOW 

Assembler Output: 

16 

LIST, ANAL YZ 
2A,2C 
SPT002, FILE2 
2E 
2D 
2A 

73 

00003500 
00006000 
00008000 

..'.:AO UB..l_ADO-{ z __ J.J NE...SY ~:SQ.L_!le _ _o.e.f R.A'ID:'. CO ~\.'4f N J.S._I;) E~ T. 

OOOCOO. __ .... _ .. 00001 XF ILE.2._ __ .START. 0 .•. , . ~----~-OOOC:ZOJ'.J 
. 00002 1< CARD 100 OF FILE 2 I 00003C'.;0 
---·-·-·--·--- ___ 00003 * CAR0.500 OF_FILE 2 ----- -~~l..OOOO'Jc.:n 

00004 • CA~O 600 OF F !LE 2 . j 00011 OCO 
----- ___ 0000~--* C'A;J..U •. 700 OF. .F.ILE. 2__ -·-· -~· 00013"010 

I _gggg~_ ;_ ~!~g __ ~gg g~~~:~~: -~ --. ~ ,-· -:J_ggg;~g~~ 
~~~~~---··· oooo_ts~-- ... -··-·:=~~~~~-~FIL E2 :; 1' 00017GOO. 

In example 2 the ALLOW cards were manipulated via
the input control card stream.

Note 1: In both examples the special $SPT match card
precedes the normal $SPT card. If the order is reversed, the
BATCH function will be turned off upon detecting the
dollar sign on the special match card.

Note 2: MATCH or MATCX once invoked remains in effect
for the entire job. Thus, if regular "no MATCH or no
MATCX" steps and MATCH or MATCXjob steps are mixed
in a job, the "no MATCH or no MATCX" steps must come
first.

2.11.2 Tape to Print/Pu11:ch

The tape to print/punch capability of BATCH allows
for either printing, punching, or printing and punching a
utility monitor-generated SYSOUT. Other tapes can be
printed in special formats as noted in the possible suffixes
to the initiation message.

To initiate tape-to-print/punch operation, mount a tape
to be processed on an available drive (7- or 9-track as
appropriate excluding SYSOUT) and enter one or more of
the following messages as appropriate, starting with a TIP
message to select the processing mode and associate a tape
drive with the print/punch group.

TIPp nnnaa (,dddd,mmmm)

Start to process the tape on drive nnn using print/
punch group p. Options assumed are to start from
present position and to print and punch to end of file.
Mode of processing is controlled by field aa as follows:

(field missing or other than /S, /N, /X, /A, or /0)
tape is assumed to· be utility system SYSOUT
format and will be processed according to carriage
control fields in the tape records.

/S - tape is assumed to be utility system SYSIN
format and will be printed single-spaced.

/N -:- tape is assumed to co~tain unblocked print
images, which will be printed 'single-spaced.

/X - tape is assumed to be unformatted and will
be printed in hexadecimal (hex/dump).

/A - tape is assumed to be unformatted and will
be printed in alphanumeric characters (alpha/
dump).

/0 - tape is assumed to be an OS format SYSOUT
tape and will be processed according to carriage
control fields in the tape records if present. If not,
records will be printed single-spaced. The maxi-

. mum blocksize supported is 1160 bytes.

The part of the message (,dddd,mmmm) is density and
mode for 7-track tapes other than SYSOUT; SYSOUT
is assumed as density 556, odd parity, no byte
converter. If these fields are not present, density 800,
odd parity is assumed. The possible values for dddd can
be D200, D556, D800. The values {or mmmm can be:

BIN - The tape was written using a byte converter
(utility system tape, Library, compool, SPT, or
SYS IN)

·EVEN - The tape was written with even parity.

EVENT- The tape wa.s written with even parity in
Binary Coded Decimal· (BCD).

ODD - The tape was written with odd parity.

ODDT - the tape was written with odd parity in

Some of the options associated with tape to print/
punch are:

a. ALLp

Continue processing to end of tape.

b. STPp

Stop processing with print/punch group p. When
restarting the print/punch, start at least two
records in front of stopping point.

c. NPRp NPUp PRTp PUNp

Only the most recent of these messages is appli­
cable to group p. NPR means no print but punch.
NPU means no punch but print. PRT and PUN
each mean both print and punch.

d. BSRp ccccc

Backspace record (about five lines per record).
Character pis the printer/punch group with which
the tape to be positioned is associated. Character
ccccc, a decimal number of one or more digits
(separated from p by one space), is the number of
times the operation is to be executed .

e. BSFp ccccc

Backspace file - see BSR.

f. FSFp ccccc

Forward space file. - See BSR.

g. FSRp ccccc

Forward space record. - See BSR.

h. RWDp

Rewind.

i. RUNp

Binary Coded Decimal (BCD). Rewind and unload.

24 May 1974 2-65 NASP-9229-05

j. TRNp n

Translate the tape being processed according to the
requested EBCDIC character translation. Character
p is the print/punch group with which the tape to
have special translation is associated. Character n, a
decimal number from 0 to 2 (separated from p by
one space), is the translation table wanted. The
possible values are: ·

(1) 0 - printed as if online (includes sense and
retries)

(2) 1 - uses 48-character set translation table.

(3) 2 - Use the complete character set as found
on the PL l print chain. Includes both(%,(; #,
=; +, &; etc.) Note: This is assumed if TRN is
not typed .in.

BATCH types each $ID card processed and types EOF
for each end of file and end of tape when completing an
ALL request.

Note: The console typewriter should be monitored for any
of the following messages. The message implies incorrect
tape format· {unlikely with utility system SYSOUT tapes),
wrong tape mounted, possible hardware error (if associated
with SENSE-RETRY messages), or the operation needs
access to another .SE.

BATCH prints the following me~ages on the printer
involved as appropriate:

•••••••••••••••••••••••BAD PRINT/PUNCH TAPE FORMAT••••••••••••••••
•••••••••••••••••••••••oVERLENGTH PRINT RECORD••••••••••••••••••••

. •~•••••••••••••••••••••()VERLENGTH TAPE RECORD•••••••••••••••••••••

Tape format does. not conform to specifications for
utility system SYSOUT or SYSIN tapes as appropriate, or
the tape was processed with the second SE unavailable and
record size exceeds buffer size.

The most common causes are:

a. Incorrect tape mounted; mount a SYSOUT (or
SYSIN) tape.

b. SYSOUT tape was not rewound before being
written by utility system, space forward one or
more files until valid data appear.

c. Operator generating SYSOUT did not allow utility
system to cycle through end of batch before
unloading the SYSOUT tape. Consider tape com­
pletely printed.

Other possible causes are user error such as an incorrect
call to utility system print routines or incorrect format on a
tape not written by utility system but supposedly conform­
ing to utility system rules.

2.11.3 Tape Log

Tape logging can be used to determine the number and
size of records and files on a tape. The input message for
tape log is in the format:

TLGp XXX(,dddd,mmmm)

where:

p - the number of the printer the output is to go onto.

2-66

xxX - the physical addfess of the tape.

dddd - optional dem1ity for 7-track tapes only (not
required if density is 800 unless mmmm field is used).
Possible values are:

D200
DSS6
D800

mmmm - optional mode for 7-track tape only (not
required if ODD parity is desired). Possible values are:

BIN - the tape was written using a byte converter.
(Examples are utility system, Library, compool,
SPT, or SYSIN tapes).

EVEN - the tape was written with even parity.

EVENT - the tape was written with even parity in
the Binary Coded Decimal (BCD).

ODD - the tape was written with odd parity.

ODDT - the tape was written with odd parity in
Binary Coded Decimal (BCD).

For a 7-track tape with no density, or mode specified
density 800 bpi; ODD parity is assumed.

The printer output is in the form:

FILE XXXXX; RECORD NUMBER XXXXX;
NUMBER OF BYTES (16) XXXXXX;
NUMBER OF BYTES (10) XXXXX;
NUMBER OF WORDS (10) XXXXX

For the first record of each file a hexadecimal and an
alphabetic dump of up to 256 bytes is taken.

All of the options for tape to print/punch except (d)
are valid for tape log and have the same meaning they do
for tape to print/punch.

2.11.4 Tape Punching

Several special types of tape may be wanted on cards.
This capability produces a punched deck from a SYSIN,
.AUXIL, or any other tape. The message is in the format:

TPNp XXX(/c) (,dddd,mmmm)

where:

p - the number of the print group for the punch onto
which the output is to go.

XXX - the physical address of the tape.

/c - for a special tape. This can have the values:

/T - punching an .AUXIL tape. The tape will be
punched on loader format text cards.

/S - punching a SYSIN. The cards will be punched
out as read in. They will also be listed unless NPRp
is specified.

/N - punching an unblocked tape. The cards will
be punched out as read in.

BLANK - The tape will be punched on loader format
cards with one deck per tape fde.

dddd,mmmm - refer to tape logging.

An .AUXIL tape is only one file; so, the end of file is
assumed as the end of tape.

All of the tape to print/punch options are valid for tape
punching except (d).

2-67

NPRp is valid for punching a SYSIN and it means to
punch, but not print.

2.11.5 Tape Duplication

BATCH can duplicate any tape written according to
the following rules:

a. Records may not be less than 16 bytes or more
than 65,535 bytes long. (All records written under
control of the utility monitor conform to this
rule.)

b. A tape may contain any number of files but must
have two consecutive tapemarks recorded to indi­
cate end-of-tape. (Utility system, Library, com­
pool, SPT, SYSIN, and SYSOUT tapes follow this
rule.)

To duplicate a tape, mount it on any drive (except
SYSOUT, which cannot be read). Mount a scratch tape on
another drive (except SYSOUT, which cannot be read for
checking). Be sure at least two SE's are available. Tape
reading and writing will be unbuffered if two SE's are
available, and buffered if three or more SE's are available.
Type the following message as instructions to BATCH:

DUPxxx,yyy
or

DUPxxx,yyy ,dddd
or

DUPxxx,yyy ,dddd,mmmm

where:

xxx is physical address of tape to be copied. yyy is
physical address of the tape or tapes to . be written on.
Where more than one tape is to be generated as the
form yyl/yy2/yy3/etc. (For most efficient operation
select a different channel for each consecutive unit
specified.) dddd is density for any 7-track tapes
involved (not required if density is 800 unless mmmm
field is used). Possible values are:

D200
D556
D800

mmm is mode of reading or writing on any 7-track
tapes involved. Possible values are:

field omitted - suitable for almost all 7-track to
7-track duplication.

(Exceptions are even parity tapes and tapes with
records longer than 65,535 six-bit bytes. A typeout
appears if this problem exists.)

BIN

required for duplicating between 9-track and 7-
track when byte converter use is required. (Exam­
ples are utility system, Library, compool, SPT, or
SYSIN tapes.)

Note: Utility SYSOUT tapes should never be duplicated to
a different track format.

EVEN

required if 7-track tapes involved are even parity.

EVENT

required if 7-track tapes involved are Binary Coded
Decimal (BCD) with even parity.

ODD

optional if 7-track tapes are odd parity. ODD is
assumed unless designated otherwise.

ODDT

required if 7-track tapes involved are Binary Coded
· Decimal (BCD) with odd parity.

BATCH duplicates records and tapemarks to and
including the double tapemark at the end of tape, rewinds
and unloads unit xxx, and types one of the following
messages:

FILE COUNT fff, RECORD COUNTxxxxx
FILE COUNT fff, RECORD COUNT xxxxx,
WARNING yy

RECORDS MORE THAN 65535 BYTES LONG

where:

ff is number of files copied

xxxxx is number of records copied

yy if present, is a warning of possible failure. If copying
from 7-track tape without specifying mode and tape
was originally written using byte converter (BIN),
repeat specifying BIN mode. Otherwise, assume dupli­
cation failed unless the tape is known to contain yy
records each exactly 65,535 bytes long.

2-68

Then, BATCH proceeds in one of the following ways:

a. More tapes are to be recorded. Reassign the first
yyy (written just previously) as xxx and repeat the
duplication.

b. The last tape has been recorded. Reassign yyy as
xxx for a read only pass to validate the last tape
recorded.

c. The read only pass is complete. Process the next
operator request.

A special case of tape duplication is conversion of a
}-track SYSOUT tape from a 9-track SYSOUT tape. A
straight duplication from the 9-track to 7-track will not
produce the desired results so the following message is
used:

SYS xxx, yyy

where:

xxx is the physical unit number of 9-track SYSOUT
tape to be converted.

yyy is the physical unit number of the 7-track tape the
converted SYSOUT data is to be written on.

All of the normal duplication restrictions hold.

When the SYSOUT conversion is completed the
message

END SYSOUT CONVERT

is typed and the tapes unloaded.

2.11.6 Merged Library/Compool (MLC) Creation

To reduce the number of tape drives required for
JOVIAL compilation, Library and compool data may be
merged onto a single (MLC) tape.

BATCH can merge library data from a library or
Merged Library Compool (MLC) tape with compool data
from a compool or MLC tape to create a MLC tape. MLC
tapes can then be mounted on UBI for use by the JOVIAL
compiler or BAL assembler when there are insufficient tape
drives to permit assignment of a separate .COMP drive.

Proceed exactly as for DUP except for control message
format which is:

MLCxxl ,xxc,yyy

where:

xxl is the physical address of the tape with library
data.

xxc is the physical address of the tape with compool
data.

yyy is the physical address of the tape or tapes to be
written in the same manner as for DUP.

2.11. 7 Tape Comparison

The tape compare capability of BATCH can be used to
determine the differences or lack of differences between
two tapes. There are several limitations, restrictions, or
special conditions for tape compare. They are:

1. There must be at least 2 SE's. For hex compares,
tape reading will be unbuffered when two SE's are
available, and buffered when three or more SE's
are available.

2. For a compare of SYSOUT tapes, the tapes must
be either both 9-track tapes or both 7-track tapes.

3. The compare is terminated by th~ end of one tape
or by accumulating a number of errors which
exceeds: SO+ (0.1 x number of records processed).

4. The file will be read out and compare suspended
for 20 errors in a file. ·

S. When one tape reaches end of file the other will be
read and printed out until it also reaches end of
file.

6. For end of tape on one tape, the other tape will be
read to end of file and then the compare is
finished.

7. For SYSOUT tapes, the first header on each page
and all punched cards are ignored for the compare.

8. For SPT tapes, the header record is ignored and
comparison starts with file 2.

9. All EBCDIC tape compares will attempt to find a
match for records which do not match. Both tapes
are searched 25 logical records down the tape
before a compare error is declared.

10. For comparison of SYSIN or SPT tapes, the last
eight card columns (73-80) are ignored.

The input message for the first tape is:

CMP p XXX(/c) (,dddd,mmmm)

where:

p - the number of the printer which generates output.

XXX - the physical address of the tape.

/c - for a special tape. The possible values are:

/p - two SPT tapes to be compared
/y - two SYSOUT tapes to be compared
/s - two SYSIN tapes to be compared
BLANK - any two tapes to be compared.

dddd,mmmm - refer to tape logging.

The message for the second tape is:

CMPX XXX(,dddd,mmmm)

·where:

XXX - the physical addre~ of the tape

dddd,mmmm - refer to tape logging.

It is possible that comparison may be wanted starting
with other than the first file.

To position a tape to be compared at other than the
load point the message is:

POSP fff ,rm

where:

p - the printer as assigned by CMP p or an X if CMPX is
to be spaced.

fff - the file at which the compare is to start (zero,
blank or 1 if the first file)

mr - the record within the file at which the compare
is to start (zero, blank, or 1 if the first record).

The output will be found on both the printer and the
typewriter. For two tapes which compare exactly, the
message

**NO DISCREPANCIES

is typed out.

2-69

The possible typewriter messages before the compare
starts are:

(a) **NOT ENOUGH INPUT FOR COMPARE
ENTER REQUEST AGAIN -

Both units for the compare were not defined. Just
type the one needed and depress the ENTER key.

(b) CMP p ILLEGAL POSITION REQUEST -

An end of file was encountered while trying to
position to the requested record. Type the correct
position request and depress the ENTER key.

(c) ***CMPp BAD TAPE FORMAT. TYPE SKIP TO
END COMPARE -

The tape mounted on the specified unit is not in
the format the compare message indicates. If the
wrong tape is mounted, mount the· correct tape
and enter. Type in "SKIP" to end the compare at
this point.

The printer messages are:

(a) ***FILE 123; RECORD 12345; TAPE CMP p -

This is the position of the specified tape when the
error was detected.

(b) LENGTH CMPn = yyyyy CMPX = yyyyy

This message follows (a)-when in a hexadecimal
tape compare, the non-compare was caused by
record length. n represents the print group the
output is going to and yyyyy represents the place
taken by the physical lengths of the two records.

(c) ***MATCH FOUND THROUGH TAPE
POSITIONING -

This message follows (a) when a match has been
found for an EBCDIC compare. The record will

follow this. This will then be followed by a
printout of all records up to the one which
matched.

(d) **SKIPPED TO NEXT FILE, 20 ERRORS THIS
FILE-

The 20th error in a file has just been printed out.
The tapes are spaced to the next file and processing
continues.

(e) **THERE WERE 10 MISMATCHED RECORDS

This is the summary message which is printed and
typed at the end of the compare.

In addition to the above messages up to 256 bytes in a
hexadecimal tape compare or the logical record in an
EBCDIC compare are printed.

The "ALLp" and "TRNp n" messages have the same
meaning for tape compare that they do for tape to
print/punch.

When the compare is completed by either end of file, if
"ALLp" was not typed, or end of tape, if "ALLp" was
typed, the tapes that were compared are unloaded.

2.11.8 Write End-of-File Tapemarks on Tape

BATCH writes end-of-file tapemarks on any tape. To
accomplish this, mount the tape on any drive except
SY SO UT. Type the following message as instructions to
BATCH:

WTMxxx/n

where:

2--70

xxx is the physical address of the tape to be written.

/n is optional and, when included, designated the
number of tapemarks to be written. One tapemark is
written when /n is not included; n tapemarks are
written when /n is included.

3:1 INTRODUCTION

This section is intended to provide optimized proce­
dures for utility system tape generation. To ensure all
conditions are described, this set of procedures assumes
new system tape generation rather than old system tape
update.

New system tapes are produced to add new system
processors or to change existing processors. Source state­
ment changes or new source language subprograms general­
ly require production of new SPT's and subsequent
program compilation and/ or assembly. The work flow for
utility system tape generation includes the following steps:

a. Build new SPT's (Symbolic Program Tapes).

b. Use SPT's to compile and/or assemble off-line

c. Obtain absolute decks from SYSOUT tapes

d. Set up decks for system tape edit.

e. Run SYSEDT

f. Test the new utility system tape.

3.2 SPT PRODUCTION

After completion of subprogram debug and test, the
source decks are cataloged on SPT's using the SPT edit
subprogram (SPTEDT). Each subprogram constitutes one
file on SPT; therefore, multifile SPT's are recommended to
reduce the tape volume required. The arrangement of
subprograms on the multifile SPT is optional; structuring
the SPT so that its Subprogram sequence conforms to the
job sequence saves time because it minimizes tape move­
ment during language translation.

The SPT contains a tape label file and should contain a
tape summary file, subprogram source statement files,
autochart source statement files, and compool source
statement files. The tape label content is optional; however,
it is recommended that the creation date be part of the
labeling convention to simplify update procedures. The
contents of the tape summary file are also optional but
should include such information as name, length, and other
descriptive file information. Following the tape label and
tape summary files are the subprogram source statement
files. Autochart source statement files and/or compool

3-1

3.0 UTILITY SYSTEM TAPE GENERATION

source statement files can either follow the appropriate
subprogram file or can be grouped following the subpro­
grams.

3.3 LANGUAGE TRANSLATION

The symbolic program tapes produced from source
statement decks and appropriate control cards are the input
for compilation and/ or assembly. The object deck output
of language translation is either in executable (core image)
form or in relocatable form. Those object decks in core
image form can be cataloged directly on the utility system
tape using the system tape edit subprogram; object decks in
relocatable form require additional processing.

Object decks are in relocatable form when the subpro­
gram contains external references (EXTRN's) or when the
program is to be loaded at an address other than the address
where it was assembled. It will be assumed in the document
that all system processors are assembled at the address
where they are to be loaded.

EXTRN's are generated for. JOVIAL subprograms by
the JOVIAL compiler and for BAL subprograms by the
programmer. An EXTRN is required whenever the subpro­
gram calls a separately assembled subprogram, calls a
Library Routine, uses a compool, or references a symbol
which is not defined in the same assembly.

Addresses for external references are supplied at load
time by the utility system loader. Therefore, subprograms
containing external references must be processed by the
utility loader to obtain core image object decks (absolute
object decks). The general sequence of events associated
with absolute object deck production is:

a. Language translation off-line to produce a
.SYSOUT tape and an .AUXIL tape containing
relocatable object deck images.

b. Execution of the loader subprogram using the PUN
card option to obtain executable object deck
images on the .SYSOUT tape.

c. Punching executable object decks from .SYSOUT
using the BATCH feature of the utility system
monitor.

The following paragraphs supply a detailed description
of input and output for language translation. Each

description is associated with an appropriate language
translation situation.

3.3.1 Jobs Without EXTRN's

The control card sequence for each job of this type is:

$ID
$NONEX
$BAL
or
$JOY
$SPT
7
8EOF

LIST, PUNCH, ANAL YZ

tape label, file name

The output for each job is a subprogram listing and an
absolute object deck ready for editing to the utility system
tape.

3.3.2 Jobs With EXTRN's - No Compool Referenced

The suggested control card sequence for each job of
this type is:

$ID
$XEQ (This card causes the program to be

loaded after compilation and/or
assembly)

$OBJ (This card inust precede the PUN '
12 card.)

2PUN (This card causes an absolute deck
9 to be punched.)

$BAL LIST, PUNCH, ANALYZ
or

$JOY
$SPT tape label, file name
7
8EOF

The output for each job is a listing, an object deck, and
an absolute deck. Selection of the PUNCH option on either
the $BAL card or the $JOY card causes a relocatable object
deck image to be produced in addition to the absolute
object deck image. The relocatable deck is not necessary,
but useful in case further debugging is required.

If the PUNCH option and the PUN card are both used,
two object deck images are produced. The user must
separate the relocatable deck from the absolute deck, retain
the relocatable deck for future use, and continue processing

3-2

using the absolute deck. If the PUNCH option is not
selected, only an absolute deck is produced.

Note: Although the lowest address at which a subprogram
can be loaded by the system loader is X'COOO', system
processors can be loaded as low as X'9000'. When using the
system loader to obtain an absolute deck the user must
specify the ST ART card address in the PUN card. If the
system loader cannot honor the start address it will
physically place the subprogram at the first available
address and output from that address, but the text card
images are assigned addresses starting at the address
specified in the PUN card.

3.3.3 Jobs With EXTRN's - Compool Reference

Jobs containing references to compool require special
consideration depending on how the compool is used. The
following cases describe the uses of the compool.

Case 1: Compool origin is at a lower address than the
subprogram but does not contain preset constants.

Case 2: Compool origin is at an address higher than the
subprogram.

Case 3: Compool origin is at a lower address than the
subprogram and contains preset constants.

In cases 1 and 2 the absolute deck images are produced
from the starting load address of the subprogram. The PUN
card in case 1 should specify the same address as the start
of the lowest addressed compool object deck. The PUN
card in case 2 should specify the same address used in the
subprogram START card. In case 3 the absolute deck
images should be produced from the starting load address
of the compool so that the preset constants will be included
in the absolute deck. Therefore, the PUN card address
specification must be the starting load address of the
com pool.

The suggested control card sequence for jobs with
compool references is:

$ID
$XEQ
$OBJ
12
2
9PUN

$JOY LIST, PUNCH, ANALYZ, PUNCHC, LISTP

$SPT tape label, file name
7
8EOF

I
/

)

The output for this type job is a program listing, a
relocatable object deck, an absolute object deck, a punched
deck image of compool segments, and a compool listing.
The PUNCHC option on the $JOV card causes the compool
segments to be loaded with the subprogram for the PUN
run of the system loader. It also causes punched deck
images of the compool segments to be written on
.SYSOUT. Without this option, compool segment object
code will not be placed on the .AWCTL tape and the
program will encounter loading errors. The LISTP option
on the $JOV card causes a BAL listing of the compool
segments to be generated.

3.4 SYSOUT PROCESSING

The absolute object deck images on the .SYSOUT tapes
must be converted to punched card form for the system
tape edit subprogram. The BATCH function of the utility
system monitor is used to make the conversion. The
computer operator is instructed as to which .SYSOUT tapes
are to be punched by use of a job request slip. After
punching, the decks are separated by the subprogram using
the names supplied in the $ID cards.

3.5 SYSEDT DECK HANDLING

Special handling may be required by. certain absolute
object decks before they can be used as input to the utility
system tape edit subprogram. Absolute object decks
directly produced by the assembler contain a $OBJ card
which must be removed prior to the tape edit operation.
Absolute object decks for single core loads that exceed
X'FFFE' bytes in length are automatically split into
X'FFFE' byte records by SYSEDT. The entire deck size
must appear on the control card, for the parent
component and SYSEDT generates record names for the
overflow records. Absolute decks containing a compool
consisting of preset constants origined at an address lower
than the origin of the subprogram or absolute decks
containing overlays can be sequenced for SYSEDT to
facilitate transfer of control when the system processor is
loaded for execution.

An understanding of utility system tape structure and
of how the utility system monitor reads records from the
system tape provides a basis for the deck handling
requirements specified in the following paragraphs. The
utility system tape consists of multiple files, each file
consisting of system tape records functionally grouped. The
utility monitor's absolute loader section reads the system
tape, loads the processor into core storage, and transfers
control to the first byte of the first record read.

When a subprogram contains a compool consisting of
preset constants origined at an address lower than the

subprogram, an adjustment must be made to prevent
transfer of control to the compool at load time. Two
methods are available to the user to ensure correct transfer
of control. A programmed branch (to branch to the address
of the first program instruction) can be patched into the
deck at SYSEDT time using a REP card or the following
procedure can be implemented:

a. Split the absolute deck separating the compool and
the subprogram·.

b. Place a completed INSERT card with an A in the
continuation field in front of the subprogram deck
to indicate a continuation record follows.

c. Place a completed INSERT card with an R in the
continuation field in front of the compool deck
and place the compool deck behind the
subprogram deck.

d. Run SYSEDT.

The absolute loader section of the utility monitor loads
the subprogram deck as the first system record even though
it is origined at an address higher than the compool. The
absolute loader then loads the compool; control is
transferred to the first byte of the subprogram.

When more than one core load of a subprogram is
necessary, each overlay is contained in a separate system
tape record. All overlays of a particular subprogram must
be grouped in a single tape file.

When a compool containing preset constants origined
at an address lower than that of the first overlay is used, the
first overlay is designated the first system record of the file
and the compool is designated the continuation record
(designation is done by use of INSERT cards). The
remaining overlays are each designated as separate system
records.

If more than one assembly is used in any overlay, all
the absolute decks resulting from language translation can
be put on a single tape record if the total length does not
exceed X'lOOOO' bytes. Continuation records are generated
by SYSEDT for components which exceed X'FFFE' bytes.

3.6 SYSTEM TAPE EDITING

When all decks are ready, the remaining control cards
for the system tape edit subprogram are added, and the
SYSEDT job is run. The decks should be ordered so that

3-3

the most frequently used system processors are placed first
on the utility system tape.

The system tape label should be meaningful to the user.
Inclusion of the creation date is recommended as part of
the user's labeling convention.

3.7 SYSTEM TAPE TESTING

After the system tape has been produced it should be
tested. The user may select test cases for each system
processor, run a series of jobs to exercise each processor,
and inspect the output.

)

A.I INTRODUCTION

The information contained in this appendix is a
collection of specific aids which should be of help to the
programmer. If more specific information is desired, con­
sult the appropriate User's Manual.

A.2 TRACING A PROGRAM THROUGH COMPILATION,
ASSEMBLY, EXECUTION

A.2.1 Writing a JOVIAL Program

When a programmer intends to write a JOVIAL
program, he should first design the program completely.
The program is broken into logical tasks and then a detailed
flowchart is drawn. Only after these have been done should
the coding begin.

The programmer should be careful when coding his
program to include meaningful comments and remarks.
Remarks are made before each task or logical section in the
program. These explain what the section is to do. Com­
ments appear beside each instruction; they give an idea of
what the instruction does. The programmer should take
care that his listing is reasonably formatted because
comments cannot extend beyond Column 66.

When the programmer feels that his program is of a
reasonable size and is properly coded and formatted, he
creates an SPT tape with his source program. This will
eliminate the possibility of lost cards or shuffled decks.

A.2.2 Compiling

When the programmer has coded a significant amount
of his program, he may begin compiling. The entire
program need not be coded before it is compiled. For
example, if only some data declarations were coded and
keypunched, they could be compiled to uncover any errors
in table or item format.

To compile a job, the programmer needs the following
cards:

$ID

$NONEX or $XEQ

Appendix A. PROGRAMMER AIDS

{
$JOY 1 Source Deck
7/8EOF

The utility monitor reads the $ID, $XEQ or $NONEX,
and $JOY cards. If the program is to be loaded and
executed after compilation, the $XEQ card is used, and the
monitor sets a switch to indicate that the program is to be
executed. If the program is only to be compiled, then the
$NONEX card is used.

The $JOY card informs the monitor that a JOVIAL
source program follows. The monitor checks the options
field on the $JOY card and sets the necessary switches.
Then the monitor calls the JOVIAL compiler from the
utility system tape. The compiler reads the source program
deck and tries to convert it into assembler language (BAL).

There are four types of errors which the compiler may
encounter.

1. Fatal - A fatal error (such as a system error) forces
the compilation to be abandoned.

2. Major - An error of major severity causes the
compilation to be abandoned after the phase of the
compiler where the major error was encountered.

3. Serious - A serious error allows all compilation to
be completed, but the program will not be
assembled by the assembler.

4. Warning errors - These errors cause warning
messages to be issued, but compilation continues.

The compiler processes and prints the input deck. If no
errors of at least serious severity are encountered, the
compiler puts its assembly language output on the .WORK.I
tape to be read in by the BAL assembler.

The compiler calls the BAL assembler from the system
tape. The assembler reads the assembly language input from
WORK.I. It generates object code from the BAL input. This
object code is placed on the .AUXIL tape if the program is
to be executed.

If the programmer supplied the LIST option on the
$JOY control card, the assembler prints a listing of the

A-i

BAL input. If the ANALYZ option was selected, the
assembler prints a listing which shows all symbols and
references to them. If the PUNCH option has been selected
on the $JOY card, the assembler would punch an object
deck.

The assembler recognizes two types of errors: possible
and serious.

1. Possible errors do not prevent the program from
being loaded and executed.

2. Serious errors prevent execution of the program.

Let us assume that a program has been successfully
compiled and assembled, and that the object code was
placed on the .AUXIL tape by the assembler. The monitor
would then call the utility loader from the system tape into
storage. The loader would examine the object code on the
.AUXIL tape and, if possible, would load the program into
storage. Control would then be passed to the program.
When the program completes execution (this is done via the
STOP statement, the SYSCOM library routine, or a
program interrupt), all debug requests (dumps and traces)
are honored. Finally, the monitor regains control and
continues to the next job.

A.3 HOW TO GET AN ABSOLUTE DECK

When a program object deck which contains EXTRN's
is punched for a BAL or JOVIAL program, it is in
relocatable format. This is not true for programs with no
EXTRN's unless the programs are assembled at an address
other than the address where they are loaded. The section
assumes all programs are assembled and loaded at the same
address.

To place a program on the system tape the program
must be in absolute format: the punched deck is a core
image of the program. Before the method of obtaining an
absolute deck can be explained, it must be known that
programs which require an absolute deck are those which
contain EXTRN's. To obtain an absolute deck, the program
must first be loaded so that all EXTRN's will be resolved.
Then the core image of the program is punched. To do this,
the following control cards are used:

$ID

$XEQ (even though the program is not to be
executed, the $XEQ card is used to
indicate that the program must be
loaded.)

$OBJ

12
2
9PUN

f$BAL}
l$JOV

source deck

(This card must precede the PUN card.)

(This card causes the absolute deck to
be punched.)

7
8EOF

A-2

The format of the PUN card is as follows:

column 1-4

12
2
9PUN

7-12 14-17

start address processor name

The start address is the address at which to begin
punching. For example, if the program had a start address
of X'9000', it would actually be loaded at X'COOO'. If the
PUN card contained an address of X'9000', punching would
begin at X'COOO' but relocation would be adjusted so that
the absolute deck began at X'9000'.

The processor name is punched in columns 73-76 of
the absolute deck,

A.4 HOW LIBRARY ROUTINES ARE REFERENCED

It may be to the programmer's advantage to understand
the logic involved when he issues a call to a Library routine.
For this example, it will be assumed that the program
involved is coded in JOVIAL.

The programmer codes a call to a Library Routine in
his program when his program is compiled; the JOVIAL
compiler checks to see that the call references a real Library
routine. The compiler then generates a BAL calling se­
quence to the Library routine. It also generates an EXTRN
for the Library routine. The EXTRN is generated because
the Library routine itself is not present until load time.

The program is then assembled and placed on the
.AUXIL tape. At load time the utility loader loads the
programs on the .AUXIL tape and also loads the Library
routines from the Library tape. All EXTRN's are resolved
and control is passed to the program.

Compilation - The Library tape must be present for
compilation. The JOVIAL compiler reads the Procedure
Descriptor Table from the Library tape so that it may
validate Library routine calls, generate the calling sequences
and EXTRN's.

Assembly - It is not necessary for the Library tape to
be present during an Assembly since the BAL Assembler
never uses the tape.

Load Time - If any Library routines are used, the
Library tape must be present at load time. The utility
loader uses the Library ESD Table to resolve EXTRN's and
loads Library routines from the Library tape.

A.5 HOW EXTRN's ARE USED AND RESOLVED

It is often necessary for a program to reference a label
which is not within the program itself. For example, if a
call to a Library routine is generated in a JOVIAL program,
the Library routine name is not defined within the
program.

Any name referenced in a program which is not defined
in the program must be identified by an EXTRN (external
symbol). EXTRN's indicate to the BAL assembler that even
though this symbol is not present at assembly time, it will
be present at load time.

The JOVIAL compiler generates EXTRN's for the
following conditions:

a. Calls to Library routines

b. Calls to separately assembled programs

c. Use of a compool (one EXTRN is generated for
each compool segment referenced).

At load time there must be one entry point for each
EXTRN. (This is not intended to imply that for each point
there must be an EXTRN.) Entry points exist in the
program where the symbol is defined. The one exception to
this rule is a program name. If an EXTRN is defined in
program A identifying the program name of program B,
then program B need not contain an entry point for the
program name. Program names are considered by the loader
to be entry points.

An example of programs using EXTRN's and entry
points follows:

Program A Program B Library

STARTPROGA STARTPROG B ZWPRINT

ZVMVC

GOTOPROGB $

MVC (xx, yy, zz) $

TERM$

The JOVIAL compiler generates within Program.A:

EXT RN
EXTRN

PROGB
ZVMVC

The BAL assembler cannot assemble object code for
instructions that reference labels which are not defined in
the program being assembled. Therefore, the assembler
generates zeros in the object code where the address of the
symbol would normally go. However, this address must be
placed in the object code before the program is allowed to

· execute. Replacing this address is the job of the utility
loader.

A-3

The utility loader is responsible for resolving EXTRN's.
When the loader is called from the system tape by the
utility monitor, all programs are on .AUXIL in object
format. The loader first . reads a table of Library routine
names from the Library tape (if one is used). It then scans
the programs on the .AUXIL tape and builds a table of
entry points and EXTRN names and their addresses. The
loader then resolves the EXTRN's by replacing the zero
fields of instruction with the correct addresses. Now the
program(s) can be loaded into storage for execution.

A.6 HOW THE COMPOOL IS USED

This section is most beneficial if discussed in two
subsections: how to compile using a compool, and how to
load and execute using a compool.

A.6.1 Compilation with a Compool

The programmer must be sure that the START card
indicates that a compool is to be used. ·

The compool tape must be present on the .COMP tape
drive or an MLC (Merged Library Compool) on the .LIB
tape drive for compilation.

The options PUNCHC and LISTP may be used on the
$JOV control card. The PUNCHC option will cause
compool segment object decks to be punched and the
LISTP option will cause a BAL listing of the compool to be
generated.

A.6.2 Loading and Execution with a Compool

To execute a program using a compool, the program­
mer must be sure that both his program and the compool
segment object decks are on the .AUXIL tape before being
loaded.

There are three (3) ways to put compool segment
object decks on .AUXIL. For these examples it will be
assumed that _the jobs are to be compiled, assembled,
loaded, and executed.

1. If there is only one deck in the job (the deck to be
compiled), the PUNCHC option must be selected
on the $JOV card. This will cause 'the compool
segment object decks to be placed on .AUXIL.
Without the PUNCHC option only the program
object code will be placed on .AUXIL, and loading
errors will result.

2. If the programmer wishes, he can place the
compool segment object decks (obtained from a
previous PUNCHC run) in the job input stream.
Then the PUNCHC option would not be included
on the $JOV card.

3. Sometimes it is desirable to load only those
compool segments which are used by the program
so that a minimum amount of core is used for
execution. To do this the programmer will include
only those compool segment object decks which
his program references. It is usually necessary to
load in this manner since some compools are so
large that all segments cannot be loaded in avail­
able storage.

Of course, the program deck is included in the
input stream. For this case, where some segment
decks are omitted, it is necessary for the program­
mer to provide a dummy deck so that the
EXTRN's for the omitted segments will be re­
solved. The programmer may do this by creating a
small assembly deck with omitted segment names
as entry points and labels.

A-4

A.7 SETTING END-OF-FILE AND ERROR RETURNS .
FOR TAPES

Whenever a programmer is to perform some 1/0
function using tapes, he must consider the end of file or
error conditions which may occur. The programmer usually
provides routines to handle these conditions; however, if
desired, the utility monitor will assume control under these
conditions.

There are two methods through which the programmer
can provide for the routines to handle end of file of errors
encountered on tapes:

1. By interrogating output parameters of Library
routines.

2. By setting returns for tape units.

A.7.1 Method 1

Since the JOVIAL language does not provide input/
output instructions, Library routines are used to specify
1/0. Most Library routines provide output parameters
which may be interrogated by a program to determine if an
end of file or error condition was encountered.

For example, if the programmer wished to read from a
tape unit, he may use the REED Library Routine and check
for end of file or error. An example of the code he would
produce is:

REED (10, TABL, SOO=BDITM) $

IF BDITM EQ 1 $

GOTOEOFRT$

IF BDITM EQ 2 $

GOTOERROU$

GOTO GOOD$

In this example the program reads from logical unit 10
into an internal area (TABL) not more than 500 bytes of
data. If an end of file was encountered, a branch is taken to
a routine labeled EOFRT. If an error was encountered, a
branch is taken to the routine labeled ERROU. If neither
an end of file nor error was encountered, a branch is made
to routine labeled GOOD.

)

If the programmer intends to interrogate output
parameters of Library routines in the manner shown above,
he must issue a call to the SETRET Library routine prior to
the initial use of any of those Library routines. The SETRET
routine initializes tape units and allows the programmer to
interrogate output parameters from Library routines using
these tape units. Unless the SETRET routine is used, an end
of file or error condition will cause control to pass the
utility monitor and the job will be terminated.

A.7.2 Method 2

The programmer may wish to specify end of file and
error return addresses prior to the initial call to an I/O
Library routine. Then if an end of file or error condition is
encountered on the specified unit, control is passed to the
user's specified routine. This is done by using the SETRET
Library routine. An example of this method is:

SETRET (6, EOFIT, ERRIT) $

SETRET (10, TIFOE, TIRRE) $

REED (6, INPT, 24=) $

RYTE (10, INPT, 24=) $

The items EOFIT, ERRIT, TIFOE, and TIRRE are
defined in the program and each item contains an address.
The coding shown above results in the following action:

a. Logical unit 6 and logical unit 10 have returns set
for them.

b. The program reads from logical unit 6 into location
INPT for a length of no.t more than 24 bytes.

c. If an end of file was encountered, control is passed
to the address specified in item EOFIT; if an error
was encountered, control is passed to the address
specified in item ERRIT.

d. The RYTE routine causes 24 bytes of information
from location INPT to be placed on logical unit 10.

e. If an end of file is encountered, control is passed to
the address specified in item TIFOE; if an error is
encountered control is passed to the address
specified in item TIRRE.

f. The SETRET routine takes precedence over the
checking of output parameters (i.e., if an end of

file or error condition is encountered and the
SETRET r?utine was used for that particular unit,
control is passed to the appropriate routine before
the interrogation of output parameters is executed.

g. SETRET may not be used for the system tape,
SYSIN, or SYSOUT.

A.8 WRITING PROCEDURES AND FUNCTIONS IN A
JOVIAL PROGRAM

It is often desirable for a JOVIAL programmer to
include closed compound procedures, functions, and/ or
procedures within his program. These routines are usually
coded to perform a particular service for the program. For
example, some programmers prefer to do all printing within
one routine instead of having many printing instructions
interspersed throughout the program. Routines like this,
with one purpose, are coded in JOVIAL in the form of
closed~ompound procedures, functions, or procedures.
These are described generally below and in detail in the
JOVIAL Language User's Manual.

A.8 .1 Closed-Compound Procedures

This type of routine contains no input or output
parameters. It performs a service and usually is called from
several places in the program. A programmer would include
a closed~ompound procedure in his program when he
wants a certain service provided, but there are no variables
involved. For example, suppose every time a program was
to type a message, certain items were to be initialized to
zero. Then a closed~ompound procedure would be practi­
cal to type the message and initialize these items.

A.8 .2 Functions

A-5

A function is a routine which contains input param­
eters and produces a value. A function call is contained
within a JOVIAL statement. For example, if REVRS were
a function which provided the two's complement of an
integer item, the function may be called by:

IF REVRS (ITMl) EQ NEG $

GOTOPSTV$

Likewise, the function may be called by:

NEGTV = REVRS (ITMl) $

In either case, the function is called and returns a value.
The GETLIO Library routine is an example of a function.

A.8.3 Procedures

Procedures are routines which receive input parameters
and may produce several output parameters. Most Library
routines are procedures (e. g., REED, SETRET, RYTE).
Procedures are used in a program when there may be several
input parameters and a certain function is to be performed
other than just producing an output value. For example, a
procedure to print a line may be coded with input
parameters to specify the address from which to print and
the length of the print image. The output may consist of
one parameter specifying whether or not the line was
printed.

A-6

A.9 HOW THE COMPILER HANDLES INPUT/OUTPUT
PARAMETERS

The first statement in a procedure or function is a
PROC statement. This statement contains the names of the
input-parameters, and in the case of procedures, the output
parameters. The calls to procedures and functions also
contain the names of input and output parameters. The
parameters specified in the call are defined outside of the
function or procedure while the parameters specified in the
PROC statement are defined internal to the procedure or
function.

When the compiler encounters a call to- a procedure or
function, it stores the input values in the input parameters
of the PROC statement. Then it allows the procedure or
function to operate. The procedure return is made and the
compiler stores the output parameters from the PROC
statement into the output parameters in the call, then
processing continues with the next statement.

ASCII - American Standard Code for Information Interchange.

assembler - The system component that translates a BAL source

program into loader language.

BAL - Basic Assembly Language.

batch - A collection of jobs that are intended to be executed

serially in a single computer run; these jobs constitute the

system input file.

block - A collection of contiguous data, covered by one base

register.

blocking factor - The number of logical records that make up one

physical record.

canonical form - An irreducible, ordered representation.

character position - The location of a character within a table;

character positions are counted from left to right within the

table, counting the first as zero.

common storage - A special section of storage that enables

programs within a job to define a common storage area and

manipulate data within it. The address of common storage is

relocatable by the loader.

compiler - The system component that translates a JOVIAL source

program into BAL.

compool - A collection of data declarations that can be used by a

group of programs (communications pool).

compool edit program - The system component that creates and

maintains the compool tape.

control card - A punched card containing information that

indicates to a system component the nature of the job or

operation to be performed.
correction cards - Punched cards used to merge, delete, replace, and

insert statements in a source program recorded on the SPT;

these cards may be used at assembly time to make temporary

alterations, with the SPT edit program to make permanent

alterations, or with the BATCH processor to create a SYSIN

tape containing temporary alterations.

data processing system - The physical machine configuration of a

computing system, including a central processing unit, storage,

and input/output units.

debug edit - The system component used by the debugging system

to print out traces and storage and/or tape dumps in the format

requested by the programmer.

debugging system - The system component that handles execution­

time debug requests submitted by the programmer, emergency

dumps when a job cannot be successfully completed, and

post-execution dumps.

down - Describes an input/output unit that is not available for use

because it is inoperative, disconnected, etc.

EBCDIC - Extended Binary-Coded Decimal Interchange Code

end-of-file return - The address to which control is transferred

when an end-of-file condition is detected on an 1/0 unit.

B-1

Appendix B. GLOSSARY

entry point - A symbol that is defmed in one program and can be

referred to by another program. Entry points are defined to the

assembler by an ENTRY pseudo-operation.

error return - The address to which control is transferred when an

error condition is encountered on an 1/0 unit.

execution time - The period of time during which any program is

being executed.

external symbol - A symbol used in the operand of a statement in

one program, but defined in another program. The sym1Jol is an

entry point in the program in which it is defined. External

symbols are defmed to the assembler by an EXTRN pseudo­

operation.

file protection - A condition indicating a reel of tape that can be

read only.

function - A defined procedure that produces one value each time

it is called by the using programs. It is called from within a

JOVIAL statement.

interrupt control - The portion of the monitor that handles any

interrupts that may occur during processing.

interrupt stack - An area in the communications region where the

PSW is stored when an interrupt occurs.

IOPACK - A collection of monitor routines that process input/

output requests for problem programs and system components.

job - One or more programs which are intended to be executed as a ·

single unit; each of the programs may require compilation or

assembly prior to loading and execution.
job control - The portion of the monitor that performs system

loading, control card logic, and input/output unit assignm~t.
library - A collection of IBM supplied routines that can be used by

the system and the programmer; the programmer may write

JOVIAL routines and BAL programs to be added to the library

by using the library edit program.

library edit program - The system component that creates and

maintains the library tape.

LISTIO - A parameter block of data and input/output unit

information about units being used by a job; there must be one

LISTIO for each unit.
loader - The system component that places object programs into

storage for subsequent execution; in doing this, the loader

assigns storage addresses, prints a map of storage used, loads any

requested library routines, and furnishes linkage for inter­

program references.

logical record - A logical unit of information contained within one

physical record.
MONIO - A collection of monitor input/~utput machine-oriented

routines that maintain asynchronous operations on all units

receiving requests through I OP ACK.

monitor - See utility monitor.

object deck - A punched card deck containing the loader language

object code for a program.

object program - A program in loader language.

phase - A logical portion of a processor that contitutes one storage

load.

physical record - All of the information recorded between two

interrecord gaps on a tape.

position header - The location of the assembled address of an

address constant that must be relocated.

problem program - A user program submitted to the 9020 Utility

Programming System for processing and/or execution.

procedure - A series of JOVIAL statements that may be entered

from the using program by a call, and, upon completion, return

control to the point of departure.

process file - The basic unit of information that the compiler

creates when translating the source program.

procemng - Preparation of a program for execution, involving one

or more of the system processors (see processor).

proceswr - The system components that provide services for the

programmer; i.e., the JOVIAL compiler, the assembler, the

utility leader.

production program - A program that has been debugged and

operates according to the objectives established by the program­

mer.

real-time processing - Processing affected by external activities

occurring at the same time as the e~ecution of the program.

relocation header - The identity of a symbol whose relocated

address must be suppli~d.

segment - As much of the process file as the compiler can handle

for analysis at one time. Also, one of possibly several distinct

portions of a compools.

source deck - A punched card deck containing BAL or JOVIAL

source language statements to be processed by the assembler or

the compiler and the assembler.

source program - A program written in either BAL or JOVIAL.

SPT edit program - The system component that creates and

maintains the symbolic program tape.

symbolic program tape (SPT) - A tape used to store card image

. data. Programs stored on the SPT may be altered temporarily

by BATCH to create an input tape, by the assembler during

assembly, or permanently by the SPT edit program.

system edit program - The system component that creates and

maintains the system tape.

system maintenance job - A job that involves creating or

maintaining one of the tapes used by system components; i .. e.,

the system tape, the library tape, the compool tape, and the

SPT.

system tape - The tape that contains all the system components.

utility monitor - The system component that supervises the

processing of all jobs, handles interrupts, and regulates input/

output.

utility programming system - The programming support package

for the IBM 9020 Data Processing System.

B--2

