
The IBM 9900

Special Index Analyzer

by R. W. Murphy

International Business Machines Corporation

Poughkeepsie, New Yor~

November 17, 1958

THE IBM 9900 SPECIAL INDEX ANALYZER

by

R. W. Murphy
International Business Machines Corporation

Poughkeepsie, New York

The IBM 9900 Special Index Analyzer is IBM's version of the concept of
Continuous Multiple Access Collating developed by Documentation, Incorporated,
Washington, D. C., under a research contract sponsored by the Air Force Office
of Scientific Research, (ARDC) Directorate of Research Communications.

November 1 7, 1958

© 1958 by International Business Machines Corporation

THE IBM 9900 SPECIAL INDEX ANALYZER

The IBM Special Index Analyzer is a machine designed to facilitate reference
to catalogued information. It may be applied to such activities as library
research, or the searching of equipment design specifications. These activities
share the essential problem that, in order to make use of information which
has been stored, most of it must be prevented from having to be considered
by the user. If the user can specify attributes of the information in which he is
interested, the Special Index Analyzer will select out of the files only those
references to items of information which possess that particular association
of attributes. For example, a library searching problem might be to determine
all the material dealing, in the same article, with reliability, transistors, and
digital computers.

An information retrieval system employing the Special Index Analyzer is set
up on the basis that a_document, or other item of information, can be
categorized by a set of terms. The terms may be the names of topics, sub­
jects, or attributes or they may be key-words actually used in documents of
the collection. When items or documents are entered into the system, each is
analyzed to find which terms are pertinent to it and records are made assoc­
iating the item with significant items. The terms are drawn from a pre­
established glossary which is used uniformly throughout the analysis of items
in the collection. These records are then rearranged into a "where found"
index; that is, an index consisting of subdivisions called term files, each of
which includes all the references to which an individual term is pertinent. In
this arrangement the term files are ready for use by the researcher, employing
the IBM 9900 Special Index Analyzer to select out significant references
automatically and accurately.

The operations performed by the Special Index Analyzer are of the type found
in the theory of sets. These are primarily the intersection operation in which
the result is the set of item references containing only those references common
to the two input sets being operated upon, and the union operation which pro­
duces a resultant set containing references from either of the two operand sets.
In addition, the Special Index Analyzer can perform the intersection with the
various complements of the operand sets.

In its application to information retrieval the Special Index Analyzer employs,
as operand sets, term files selected from the index files by the researcher.
In effect, the intersection operations provide the researcher with the means of
narrowing down of the scope of his search in accordance with the degree of
specificity with which he can select term files. The union operation allows him
to apply the narrowing down to as many terms as he feels are significant in his
search.

1

METHODS OF INFORMATION RETRIEVAL AND THE
APPLICATION OF THE SPECIAL INDEX ANALYZER

All information retrieval systems share the requirement that the content of an
item or document to be included in the system must be determined by a trained
analyzer and recorded. Once this has been accomplished, however, the
various retrieval systems differ in the manner in which the records of
information content are maintained and used. In order to characterize the
methods of filing information relating terms and items, a matrix representation
is most useful. In this, the set of terms constituting the glossary is arranged
as one axis of the matrix, while the items of the collection are represented
along the second axis. For each determination that a term relates to an item,
the appropriate position of the matrix is posted with the fact of relationship.
This posting of a relationship will be referred to as an "entry" and may be
written either as a binary mark in the matrix or as the juxtaposition of a term
code with an item code (the unit record form).

THE MATRIX REPRESENTATION OF RETRIEVAL FILES

- an ITEM is a physical object • • • book, document, map, record,
patent ••• which is the object of the search

- a TERM is the name of a topic or attribute of the item

TERMS IN THE GLOSSARY)

004 005 007 009 015 020
(

016 x x
x x x 7

>- 041 0::
<(
0::
co x -....J 042
LU
::c
I-

z 050 x x -
V')

~
~ x LU 089 x I--

093 x x
101 x x 1
103 x x l

)
..- -- ~ ~- ~------ ~~ D ----....J -

3

In this example, as in many practical cases, numerical codes designate both
the terms of the glossary and the items of the collection. Codes which stand
for terms and codes which stand for items will therefore look alike, and must
be distinguished either by context or by adding a supplementary symbol.

The matrix representation is intended as a conceptual device. Most practical
media for the storage of data require that the information contained in the
matrix be converted to a linear sequence of unit records in the process of
filing. The two usual ways of linearizing the matrix are by taldng successive
rows, or else by taldng successive columns. Each row of the matrix
corresponds to a table of contents of one of the items in the library, while
each column corresponds to a 'where-found' listing.

LINEARIZING THE MATRIX FOR DATA STORAGE

All the unit records made of entries to the matrix constitute a grand set
representative of the entire library. The process of linearizing the matrix
arrangement of the grand set results in the distinguishing of subsets which
may be of either one type or another, depending on how the matrix is linearized.
If the subset is taken from a row of the matrix, it contains unit records of
entries all referring to the same item and designating all the terms to which
the item pertains. This ld.nd of subset is therefore a table of contents or item
file, and contains term codes as the essential elements of information. The
complete collection of item files is the grand set, but it is usable as the
catalog of the library.

..._______[:>
The alternate way of separating out subsets of the grand set is by taldng them
from columns of the matrix. Within a subset, all of the unit records will
contain the same term code, but differ in the item codes. This ld.nd of subset,
or term file, tells of all the items where a particular topic, or term, is treated.
The complete collection of term files constitutes an index to the library.

4

WHERE­
FOUND

FILE
~

~-----~--.:-~-:~--~-----~~

(016
004)

··.· ·.·.·.·.· .. ·.·.

1s~ 1 g07 ;:11

~~~~~rs ~ Jijij IJiliiiii i ii '< 04 ~os~ i ~!~~~~Iii < 04~09 > 

(101 
004) 

(103 
004) 

LINEARIZING BY ROW 

(089 
005) 

... . . . . . . . . . . . . . 
. ·.·-::..:....:..:..:.:· ------+--

(050 ··:::: 
. 007).: 
: . .:: 
.. <<·.· .. ·.<<<::: 

·. ::::;:::;::::: .·.·.· 

.::J[j[jjj:_:: < 093 

.: . : ::: : ... :::.<: 009) . . 

ll~:l 0 601 >Ji 

(050 
015) 

(093 
015) 

(103 
015) 

:···:·.-: ... ~ ~--.·.·:·-:-:~ 

:; 04 620.>::lii 
.·: : :_ .. ~ .... ·-· .. ~ 

(089 
020) 

{<016,004)(016,007) ..• }, {<041,005)(041,007) (041,020) ... } ... 

CATALOG=SET OF ALL TABLES OF CONTENTS 

={Ij} 
AN ITEM FILE, Ij ={ (ij,. tk); j is fixed} 

LINEARIZING BY COLUMN 

{<016, 004) I (101, 004) I (103, 004), • • }, { (041, 005), (089, 005 > • • • }. • • 
INDEX=SET OF ALL WHERE-FOUND FILES 

={Tk} 
A TERM FILE, Tk={(l.j ,tk); k is fixed} 

5 



For information retrieval purposes, the IBM Special Index Analyzer is 
intended to be used with the index containing the "where-found", or term, files. 
Its essential function is to combine a pair of term files to produce a new term 
file, usually containing many fewer term codes than appeared in the original 
files. By means of his selection of the input term files and through his choice 
of the combining operations, the researcher can program the Special Index 
Analyzer to reduce a number of voluminous term files to just one set of item 
references, which meet his specifications, and at the same time, are few 
enough in number to allow the researcher to refer to the items directly. 

The combining operations performed by the IBM Special Index Analyzer are 
operations on sets of item codes. There are only two basic operations which 
can be performed on two operand (input) sets, the intersection (Tl"'\ C) which 
finds the elements common to T and C, and the union (T v C) which places the 
elements occurring in either (or both) of T and Cina resultant set containing 
no duplications. In addition, set theory deals with the complement of a set 
(T), that is, with the set containing all of the elements which are not in T. 
However, since any machine can only develop new sets from sets which are 
specifically introduced, the complement is used in conjunction with intersection 
in the IBM Special Index Analyzer to provide three additional operations 
which complete the range of operations performable on two operand sets. 

OPERATIONS ON SETS IN THE SPECIAL INDEX ANALYZER 

6 



A. INTERSECTION 

T'""' C THE ITEM CODES 
COMMON TO T AND C 

B. INTERSECTION WITH COMPLEMENT 

-
T,..... C THE ITEM CODES 

IN C,BUT NOT INT 

C. INTERSECTION WITH COMPLEMENT 

T'"" C THE ITEM CODES IN T, BUT 
NOT INC 

D. UNION OF COMPLEMENT 
INTERSECTIONS 

(T"' C) u THE ITEM CODES INT 
(Tn C) OR C, BUT NOT IN BOTH 

E. UNION 

Tv C THE ITEM CODES IN 
EITHER TOR C 

IN THE IBM SPECIAL INDEX ANALYZER 

T IS THE TERM FILE ON TAPE 

C IS THE FILE BROUGHT IN FROM CARDS 

7 



Most library search operations will involve more than two term files, to be 
combined by means of various set-theoretic operations arranged into a program 
by the researcher. The program together with the term files serving as 
operands in the program, is equivalent to a set-theoretic expression of several 
variables, and may be rearranged, as the set-theoretic expression is re­
arranged, in order to obtain a simpler or more efficient program. Set theory 
provides the relations by which the expression can be reduced to the form which 
provides the most efficient program. 

The result of taking the intersection of any number of sets depends only on 
what sets are involved and not on the order in which sets are combined, nor 
on the number of times a set is repeated. The same is true in taking the union 
of several sets. 

The complement of any expression can be obtained by taking the complement of 
each term Q.etter or parenthetical term) and interchanging each cup for a cap 
and vice-versa. 

8 



In planning a search, the researcher will usually work out a statement in words 
of the course which the search is to follow. The verbal statement can then be 
written as a set-theoretic expression, using such symbols as Ti, T2, to stand 

for the terms stated. Then, if necessary, the set-theorectic relations are 
used to reduce the complexity of the expression. The final step is to select 
the required term files out of the index and incorporate them with the program 
to obtain the machinable equivalent of the original statement. 

STATEMENT 

EXPRESSION 

SIMPLIFICATION 

PROGRAM 

Retrieve the items dealing with transistors and 
computers but not with production, as well as the 
items dealing with transistors, computers, and 
reliability. 

1. 

2. 

3. 

4. 

5. 

where: T 1 =transistor 

T 2. = computer 

T 3 =production 

T 4 = reliability 

T 1 " T 2.. "(T3 ,., ~) 

Run in T 4 ("reliability" term file) 

Intersection type B with T3 
("production" term file) 

Intersection type B with T2 

("computer" term file) 

Intersection type A with T 1 

("transistor" term file) 

Print out result 

9 



IBM 9900 SPECIAL INDEX ANALYZER 



FUNCTIONAL CHARACTERISTICS OF THE 
IBM SPECIAL INDEX ANALYZER 

The IBM Special Index Analyzer is composed of three units, the first unit is a 
modified IBM 26 Card Punch which is used primarily for reading cards when 
operated with the system. It may also be employed as a standard card punch 
when the Special Index Analyzer is not in operation. The second unit is the 
logical and intermediate storage unit and contains both the control equipment 
and a paper tape punch and reader for retaining the intermediate results of 
operations. The final unit is a typewriter which is used for automatically 
printing the results of the search. 

The Special Index Analyzer functions as a collator working with six-digit codes, 
rather than with complete card records. Codes within a term file are always 
maintained in numerical sequence allowing the Special Index Analyzer to 
operate upon term files containing hundreds or thousands of item codes. Item 
codes are read one by one from either of two inputs, one of which is the card 
reader and the other, the paper tape reader. After being read, a comparison 
is made between the two, and depending on how they compare and what operation 
is being performed, one or neither of the codes may be punched in paper tape 
and a new code brought in for the next cycle. 

11 



The five operations for combining sets all make use of both the card reader 
and the paper tape reader, and punch the resultant set into paper tape. In 
addition, there are certain "housekeeping" operations used for initiating a 
program and for reproducing the final result in a convenient form. In starting 
a new program, the first term file must be reproduced on paper tape before it 
can be combined with the second term file. After all of the term files called 
for by the program have been combined, the result will appear in the paper 
tape, from which it is usually printed out on a form. 

DATA FLOW IN THE SPECIAL INDEX ANALYZER 

The index, or master file for information retrieval, is maintained on standard 
IBM punched cards. It will be composed of individual decks of cards each deck 
conveying the item codes corresponding to one term code. In turn, each deck 
or term file will consist of one or more cards, depending on how many items 
are associated with that one term. Since it is necessary in setting up a program 
to select manually the appropriate term files from the index, punched card 
decks form a convenient and inexpensive storage medium. In addition, as new 
material is added to the library, the individual term decks can be extended to 
include the additional retrieval data. For this purpose, the Special Index 
Analyzer provides an alternative mode of operation which reproduces data 
from paper tape into new term cards. 

12 



I-' 
w 

-~:: 

I BM SPECIAL INDEX ANALYZER 
,, " 

TERM B c:c=.====::::=11 
1laMi 1 ITEMS 1 

"A" B·: II I I I 

TERM I"\ c: ' .. ' I I 

TERM ITEMS I 

'A' I • •• I I I I 

TERM 
''A." 

" "' I II I ... ,. •• -· - u_•,,.,; ··--·-·-·:.-~:.·.:~ ...... ; ... ;~ ... 
••I • J'.r ~··• • -~ 

TERMi ITEMS 

•A' I 
1 

1 1
1 c:-----:qv::;~;~::=j ! I I I 

I •':I I I 
• I REPR.OOUCE 

,, ,, 
TERM B TERM! 1ITEMS 

'8 1·! I 
I 11 ! I I 

I 
I 

I 
I 

TERM 

'B' 
I '1 

ITEMS 1 
I I 11 

I I I 
I I I 

TERM A"B 
ITEM 12 

.. 34 

....._ , 

TERM 

TERM 
•A" B" 

PRINTOUT 

TERM 

')\ "'B" 
·• ..... ~ ..•. :.· ,,, .• ~ ... -:·,.: •. ~:.-.;:: .~H-·r•·· ,...... ;·a· z:r 

MATCH 



A single term card has space for thirteen six-digit codes, plus two additional 
digits. Of the thirteen code positions, one is reserved for the term code which 
identifies the term deck to which the card belongs. The two additional digit 
positions will customarily be used for a sequence number to locate the card 
within the term deck. The remaining twelve code spaces are available for item 
codes. These are punched in sequence from left to right across the card, with 
any excess positions left blank. The Special Index Analyzer recognizes the 
start of a new term deck by means of an X-punch in column 1 of the first card 
of the deck, whether the deck contains one or more cards. The X-punch does 
not interfere with the use of the first column for numeric data, but alphabetic 
punching should not be used in this column. 

CARD FORM 

If it is desired to punch additional data into the card, either alphabetic or 
numeric, successive six-digit fields may be used. The inclusion of additional 
information will require that the term code and the item codes be shifted to the 
right, and will reduce the number of item codes that can be fitted on the card. 
This additional data is not processed by the Special Index Analyzer. The format 
employed for the term cards is stored in the machine by means of a specially 
punched card, retained on the alternate program drum of the IBM 26 Card 
Punch component. 

The output of the Special Index Analyzer is printed by means of a typewriter 
onto a form designed for convenient use by the researcher. It is important 
to retain a trail of the search, along with the item codes produced by the search. 
The Special Index Analyzer accomplishes this by first printing across the top 
of the page the term codes entering into the search, connected by letter symbols 
standing for the operations used to combine each term file with the result of 
previous operations. The term codes thus appear in the order in which they 
were used. The item codes resulting from the sequence of operations are 
listed in a vertical column down the left-hand edge of the page. Tirls format 
provides ample room for the researcher to add further notes alongside each 
item code. 

RESULT FORM 

14 



I 
c 
tt:"' TERM <~ar: 
c.;Jw"' CODE DOCUMENT CODES 

::im 
::E o:O: 

1 2 3 4 5 6 7 g 10 11 12 
.. 

"'" B --·_!• tt: UIZ 

~ 00 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 _, 
~ 12 3 4 5 I 71 11011121314 1511111111!1 21 i223242521 27212131131JZ 33305•31• ••11424344 454647414150 51525354$556 5751591Dl112 136465&167&1 i9JD11727371 J57&1171791D <[ 

Id 11 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 > 
Lo.I 

>-
-;l 2 2 222222 222212 222222 222222 222222 222222 222222 222222 222222 222222 222222 222222 222222 tt: 

I-
z Lo.I 

<[ 3 3 333333 333333 333333 333333 333333 333333 333333 333333 333333 333333 333333 333333 333333 tt: 
>< 
Lo.I z 
c 44 444444 44 44 44 44 44 44 44 4444 444444 444444 444444 44 44 44 444444 44 44 44 444444 444444 4444.44 Cl 
!: -I-
_, 5 5 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 555555 <[ 

::! ::E 
~ 66 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 666666 tt: 

II. 
Cl 

Ul 11 
.... 

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 z 
Cl 
Cl 
en 88 888888 88 88 88 88 88 81 888818 818888 888888 888888 888888 88 88 88 888888 888888 888888 888888 :a; 
en 1111 
::E 99999999999999999999999999999999999999999999999999999999999999999999999999999999" 
!!! I z 3 I 5 I 1 I I 1011 121314111111II1i~2122 2324z5J.21aaa1i U1u111•if•·••1aa.t. .... , ••• ,15253M5!i515751!11m161621364151117••10111273 74 7511177171• 

0 0 
INFORMATION RETRIEVAL 

0 ® 0 

SPECIAL INDEX ANALYZER 0 

0 

0 1Bft1 0 

0 0 

NEW TERM CODE 

0 0 

0 TERM CODES 0 

0 DOCUMENT CODES REMARKS 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

15 



FILE MAINTENANCE 

As new items are added to the library, the index file must be extended to include 
retrieval data for the additions. The first step in the procedure is to assign the 
item code next in sequence. Then it must be determined which terms of the 
glossary apply to the new item. A series of cards are punched all containing 
the code for the new item, and each containing the code for one of the terms 
determined to be applicable. The standard card form is used for this purpose, 
but it will normally be of a contrasting color to distinguish it from the regular 
cards in the file. The term code is punched in the regular field, and the item 
code occupies the first item field. The other positions of the card are left 
blank. 

At this stage, each addition card must be brought together with the term deck 
bearing the same term code. It may be decided to bring the term file up-to-date 
immediately, in which case the term deck is removed from the file and the up­
dating performed. Alternatively, the addition card may be filed as such with 
the term deck, and the updating postponed until a suitable number of additions 
have been collected or until the term file is to be used in a search. 

The Special Index Analyzer is used to bring the new item codes into the regular 
term deck. This may be accomplished with the regular union operations applied 
to the old term file and to each of the addition cards, which carry an X punch 
in Column 1 as though they were new term decks. The result is punched into 
blank cards using the appropriate operation. Since non-item data normally are 
not punched in the punch-out operation, the resulting new term deck is then 
gang-punched to include the term code, and punched for the sequence number. 

Two variations on this procedure may be utilized if desired. To eliminate the 
external gang-punching of term code, the input deck may be preceded by a 
command card calling for the "Read in New Term Number" operation, and 
punched with the term code in the regular field. This term number will then 
be reproduced into the output deck. The second variation is intended to conserve 
time where very long term files are to be reproduced. By pressing a special 
start key, the lack of an X punch in the first term card can be ignored, so that 
instead of the complete old term deck, only the final card need be brought in. 

16 



New terms may also be added to the glossary and the appropriate term files 
built up. If a term is completely new, and appearing for the first time in new 
items, the previously prepared term files will be unaffected. If however the 
term was not previously applied to items already in the library, then all of the 
items where it might be significant must be reanalyzed. The most probable 
situation will occur where a term file has become too large and the term sub­
divided into finer categories. In this case, only items in the term file in 
question must be reinvestigated. It may also be desirable, in the event that 
certain combinations of term files are repeatedly employed, to add the 
combination to the index under a new term code standing for the combination. 
This action adds no new information to the retrieval index, but may add to the 
convenience or speed of searching. 

17 



SPEED OF OPERATION 

In its usual operation, the Special Index Analyzer will be working with term 
files of various lengths, ranging from tens of items to thousands. The 
intersection of two term files may also contain a wide range of items, from a 
small fraction of one of the original files to the entirety of the smaller original 
file. Thus the operating times experienced in practice will follow a statistical 
distribution around average values which are typical for the installation. 

The basic speed of the Special Index Analyzer is 18 cycles per second. A 
cycle may consist of reading or punching a character in paper tape or card, 
typing a character, or performing certain internal operations. In general, 
each item code of six characters requires 8 cycles (0. 444 sec), including 6 
cycles for reading into a register, one cycle for comparison and one for re­
setting or for transferring the contents of the register. Each of the two ihputs 
and the output channel makes use of a separate register for storing the term or 
item code and all three can operate concurrently. However, unless the two 
input registers contain equal codes, only one of the inputs will be actuated prior 
to processing the next code. The major portion of the time required to perform 
one pass will be due to the processing of item codes. However, there will also 
be contributions due to the reproduction of term codes at the start of the pass, 
and due to the feeding up to the item code portion of each succeeding card in the 
term deck. 

18 



TIMING OF AN INTERSECTION 
OPERATION 

OF NEW TERM DECK 

CODE TJ CODE T2 CODE 2 
RD TERM RD TERM RD ITEM j 

~---~-+,........._TR_.A_N_S_FE_R __ .._,_+_T,_R_A_N_SF_E_R_....- TRANSFER 

PCH TERM PCH TERM 
CODE T1 CODE T2 

START OF NEW CARD 

PCH TERM 
CODE TJ 

PCH ITEM 
CODE 21 

RD ITEM 
CODE6 

RD ITEM 
CODE7 

+TRANSFER 

PCH ITEM 
CODE 3 

TIME FOR ONE INTERSECTION OPERATION 

~ - 0.25 + 
... 

FEED tST 

CARD 

g 
L 1g 

A 

REPRODUCE 

TERM CODES 

+ + 

FEED+ SPACE 

OVER NON-ITEM 

DATA IN SUC-

"HOUSEKEEPING" STEPS COMMON TO ALL 

COMB IN ING OPERATIONS 

19 

WHERE: 

l 

t. 

NUMBER OF THE 

COMBINED TERMS 

NO, OF ITEM CODES 

IN THE l th TERM 

DECK 

NO. OF ITEM CODES 

ALREADY ON TAPE 

NO. OF ITEM CODES 

IN RESULT TAPE 



For determining the time required to perform an entire program of several 
combining operations, it is easiest to determine the total number of distinct 
(non-overlapping) readings or punchings of item codes. Once this total has 
been obtained it is multiplied by 0. 444 seconds and added to the time required 
by the housekeeping steps. In all complete programs, there will be in addition 
to the combining of term files, an initial stage of reproducing the first term 
deck on paper tape, as well as a final stage of printing out the results. 

A program of intersections only is probably the most common type and is 
therefore most indicative of machine performance. For this type of program, 
the number of distinct input-output steps is obtained by writing the number 
involved in each stage: 

1st. stage - reproduce T, on tape 
2nd. stage - form T, "I;_ 
3rd. stage - form T 1 "'~ n T 3 

rth. stage - form T, I"'\ ••• "~ 
(r+I) st. stage - print T, "·· · r. T,.. 

n "'"'i.-=r {J 
~I + L..lt: I ,q, 

Thus, for a program of intersections only, the time required depends upon the 
total number of item codes involved and upon which term file is chosen to be 
first, and is independent of the numbers of item codes in the intermediate and 
final intersections. 

This expressi-0n presupposes that the reading of paper tape is being performed 
sufficiently in advance of punching to allow the minimum length of four inches 
of tape between the stations. If the data to be punched in tape, including both 
terms and items should be less than six codes, then blanks will be inserted to 
keep the length of tape at the minimum. These blanks will require additional 
time to be read on the next pass, however the total time added will, in general, 
be very small. 

The total time required to perform a program of intersections of r term files 
thus becomes: 

0.22 r 2 +- 0.47r + o.44£ 1 + 0.52 L::: ~:~ ~i 

20 



The time required to perform any one of the other set-theoretic operations 
is exactly the same as for performing the intersection operation. This is 
because the two input term files are read separately, except when item codes 
are equal, or in other words, except for the item codes belonging to the 
intersection. Punching of the result into paper tape always overlaps a reading 
of one or both inputs, and does not contribute to the time. However, the number 
of item codes in the intersection of the two operand sets is not generally lmown 
beforehand, and therefore the size of the result set from these other operations 
cannot be predetermined. Unlike the case of the intersection operation 
performed successively in a program, the size factor does not cancel, but 
remains significant in programs utilizing these other operations. 

An upper bound can be determined for these more complex programs, if it is 
assumed that there are no item codes common to the intermediate intersections 
of term files. This assumption is equivalent to assuming that the size of the 
intermediate term file is the sum of the sizes of the two component term files 
for the two operations, 'union' and 'union of complement intersections', or 
that it is the same size as the non-complemented term file for the two 'inter­
section with complement' operations. 

In the case of a program consisting of all union operations for combining term 
files, the upper bound of the number of distinct input-output operations is: 

1st. stage - reproduce T, 
2nd. stage - form T, v T2. 
3rd. stage - form T, v T z. v J3 

r-th. stage - form T; u · ·· u Tr 
(r+1) st. stage - print out T; v · · · u Tr 

21 



PROGRAMMING THE IBM SPECIAL 
INDEX ANALYZER 

Programming the Special Index Analyzer consists of arranging a sequence of 
term decks to serve as the input data, and then, at the start of reading each 
term deck, calling for a particular operation. Two modes of programming 
the machine are provided, the automatic mode and the manual mode. The 
automatic mode makes use of command cards in addition to the term cards, 
and allows the entire search procedure to continue without operator attention, 
except possibly for reloading the feed hopper and emptying the stacker. 

In general, the manual mode will cause the Special Index Analyzer to stop after 
reading each term deck. The operator causes the machine to continue with the 
next operation by pressing the appropriate operation button. If the operation 
is one of the combining types, the Special Index Analyzer will only continue if 
there is a term deck in the field hopper. The type-out can be called for whether 
or not there are cards in the hopper. However, if it should be desired to type 
out an intermediate result and then continue with a combining operation, the 
paper tape must be repositioned by the operator, so that the last punched term 
file can be read again in the continuation of the program. 

The automatic mode of operation permits as extensive a search as desired to be 
performed entirely automatically after the term decks have been assembled, 
placed in the hopper, and the 11Start11 button pushed. The automatic mode may 
be used either with or without command cards. A command card is used 
preceding each term deck for which a combining operation clifferent from the 
previous is wanted. If no command card is used, the next term deck is com­
bined with no change of operation type. Type-out, however, is not done 
automatically unless there is a type-out card in the hopper. Thus, if hopper 
capacity is insufficient for a set of term decks, the machine will stop and 
await further action by the operator. 

22 



TYPE-
RESULT OUT 

CODE OPERATION SET SYMBOL DESCRIPTION 

0 TYPE AND PUNCH Type out term and i tern codes 
from tape, and punch item 
codes into term codes. Punch 
new term code if previously 
programmed • 

1 READ IN NEW TERM Read in new term code from 
CODE command card in preparation 

for final punch-out operation 
(codes 0 or 7) 

2 INTERSECTION T'"' C A Put item codes common to 
term fi I e from tape and to 
term file from cards into tape. 

-
3 INTERSECTION WITH T'"' C Put into tape item codes from 

COMPLEMENT FROM B cards, provided they are not 
TAPE read from tape previously 

prepared. 

-
4 INTERSECTION WITH T"C Put into tape item codes not 

COMPLEMENT FROM c on cards but in tape. 
CARDS 

5 UNION OF (T" c.) Put into tape item codes not 
COMPLEMENT u cT.--C) D common to tape and cards. 
INTERSECTIONS 

6 TYPE OUT Type out I ast-punched paper 
tape in standard format. 

7 PUNCH OUT Punch out last-punched item 
codes from tape in term card 
format. Punch new term code 
if previously programmed. 

8 UNION TvC E Put into tape item codes 
appearing in either or both 
tape and cards. 

23 



RULE FOR TIMING A TYPICAL SEARCH 

The total time T required to perform a program of intersections of r term 
decks is: 

Total time, T= o.22r2.+0.47r+0.441, + 0.53 ~ !~r 1.i 
Where: 

r = number of term decks 
1, =number of items in the ith term deck 
i = 1, 2, 3, etc. depending upon whether'it is the 1st, 2nd, or 3rd, etc. 

term decks 
J.;. =number of items in the ith term deck 

Following is an example of the calculation of time required for the intersection 
of three term decks. 

Terms Deck Cards per Deck Items per Deck 

Reliability second 25 (25· 12) = 300 
Transistors first 20 (20· 12) = 240 
Digital Computers third 30 -- (30· 12) = 360 

75 Cards 900 Items 

Result of typical intersection: 

T = (0. 22· 9) + (0. 47· 3) + (0.44· 240) + (0. 53' 900) 
1. 98 + 1. 41 + 105. 60 + 477. 00 = 585. 99 seconds 

585. 99 seconds 
60 seconds 

= 9. 77, or 10, minutes required machine time for the 
intersection of three term decks. 

24 



IBM 
® 

International Business Machines Corporation 

590 Madison Avenue, New York 22, New York 

PRINTED I N U . S. A . 


