"APL / 360

- LANGUAGE
- TIME-SHARING
~ SYSTEM

A BRIEF DISCUSSION OF |
SOME DISTINCTIVE FEATURES

A Back [
| seace | |ATTN

x.lo

it

Jlo>|
[+

45

=
2
|
oA

S€llow
oz
Q0

BER

€ |
« kkLOCK] alslp F G|

B HE BN

L

Q| R |

QAg
a -
SO —
HA

T | |
:)| oFF |

z
‘THE APL\360 KEYBOARD

The APL\360 Language and Time-Sharing System were
developed at the T. J. Watson Research Center, Yorktown
Heights DNew York. In some respects, the language differs
considerably from conventional programming languages. The
objective of this pamphlet is to present a brief discussion
of some of these differences. For a fuller discussion, the
reader is referred to the works cited in the bibliography.

While the major part of this report is concerned with
the ways in which APL is different from a language Like
FORTRAN, for example, it is also important to note points of
similarity. A FORTRAN programmer can, in general, write an
APL program in just the same way he would write a FORTRAN
program, i.e. without using the special characteristics of
APL which differ from FORTRAN. For example, the FORTRAN
statements

DIMENSION A(5,5)
RETURN

are directly analogous to the APL\360 statements

A<«5 5p0
-0

The differences between the FORTRAN and corresponding
APL statements lie primarily in the greater generality of
APL. For example, the APL equivalent of a 'DIMENSION'
statement specifies not only the dimensions of the wvariable
'A', but also the values of its components. In the example
given, this value is zero for all of them. Thus, the APL
statement is a combination of the FORTRAN 'DIMENSION' and
"DATA' statements. The APL equivalent of a "RETURN'
statement is used not only to return from a subroutine but

also to terminate a 'main-line' program, There <8 no
distinction between the 'desk calculator' and 'program'
mode. All programs are functions. Any funetion may be

'ecalled' from the keyboard or by another function.

The APL\360 keyboard, shown in the frontispiece,

displays the Dbasic symbols used <in the language. In
general, each of the shift characters corresponds to one or
more APL primitive functions. In addition, some functions

are denoted by compound symbols, e.g.® ,! for the logarithm
and factorial functions.

To highlight a few of the important differences between
APL and other programming languages, the following pages
will be devoted to the topics of: ‘

input and output

reduction

compression and expansion

inner, or scalar, or generalized matrix product
outer product

e e o e T e T A e T o e -

INPUT DIRECTLY FROM A TERMINAL IS MERELY THE BASIC APL\360
SPECIFICATION STATEMENT,., FOR EXAMPLE, THE STATEMENT

A«3 3p4 2 1,7 45 9 12 1 2 3

STORES A 3x3 ARRAY, CALLED ‘'A', WHOSE COMPONENTS, IN ROW LIST
ORDER, ARE THE NINE NUMBERS FOLLOWING THE SYMBOL 'p'.

A REQUEST FOR OUTPUT IS EVEN SIMPLER. THE EXECUTION OF ANY APL
EXPRESSION WHICH IS NOT PRECEDED BY A NAME AND A SPECIFICATION

SYMBOL ,'<«', IS IMMEDIATELY FOLLOWED BY A DISPLAY OF THE CALCULATED
VALUE. THUS, THE BASIC '0OUTPUT' STATEMENT CONSISTS MERELY OF TYPING
THE NAME OF THE VARIABLE WHOSE QUTPUT IS DESIRED OR OF SPECIFYING THE
CALCULATION TO BE PERFORMED. TO DETERMINE THE VALUE OF A VARIABLE
'A', ALL THAT IS REQUIRED IS THE FOLLOWING:

A

4 2 1.7
b5 9 12

1 2 3

THE MATRIX VALUES SHOWN ABOVE WERE PRODUCED BY THE COMPUTER AS OUTPUT.
FORMATTING,(INTEGER,LOGICAL ,REAL ,CHARACTER), IS AUTOMATIC.

IF INPUT IS NQT DIRECTLY FROM THE KEYBOARD, BUT IS TO BE REQUESTED BY
A PROGRAM, AN INPUT-OUTPUT SYMBOL,'(l', IS USED AS THE RIGHT-HAND
PART OF A SPECIFICATION STATEMENT. 1IN A PROGRAM, THE STATEMENT:

A<l

WOULD BE WRITTEN TO REQUEST INPUT AT THAT POINT IN THE PROGRAM. WHEN
PROGRAM EXECUTION REACHED THIS STATEMENT, THFE PROGRAM WOULD WAIT FOR
INPUT FROM THE TERMINAL KEYBOARD. WHEN INPUT WAS COMPLETE, (I.E.

WHEN THE CARRIAGE RETURN KEY WAS DEPRESSED), THE INPUT WOULD BE STORED
AND IDENTIFIED BY THE NAME 'A'. THE INPUT COULD BE A SCALAR, A
VECTOR, A MANY-DIMENSIONED ARRAY, A CHARACTER STRING OR ARRAY, OR

ONE OF SEVERAL OTHER POSSIBILITIES.

SINCE MORE THAN ONE SPECIFICATION STATEMENT IS PERMITTED IN A SINGLE
LINE, THE INPUT STATEMENT CAN BOTH STORE A VALUE AND PROVIDE AN
ARGUMENT FOR A FUNCTION. THE STATEMENT

A<+/0

STORES ONLY THE SUM OF THE INPUT VALUES (THE ROW SUM IF THE INPUT
IS A MATRIX).

THE STATEMENT
A<+ /B<[]

STORES THE INPUT VALUES AS 'B' AND THEIR SUM AS 'A'.

IN CONVENTIONAL PROGRAMMING LANGUAGES, MANY REPETITIVE OPERATIONS
ARE MOST CONVENIENTLY PERFORMED WITH 'DO' LOOPS OR THEIR
EQUIVALENTS. IN MANY CASES, THIS SEQUENTIAL KIND OF PROGRAMMING
IS NOT NEEDED IN APL,

COMPONENT -BY-COMPONENT OPERATIONS. IF WE WISH TO MULTIPLY THE
COMPONENTS OF A VECTOR CALLED 'QUANTITIES' BY THE CORRESPONDING
COMPONENTS OF A VECTOR CALLED 'PRICES',THE APL STATEMENT TO

DO IT WOULD BE
EXTENSIONS«QUANTITIESxPRICES

AS A RESULT OF THIS CALCULATION, THE VECTOR ‘'EXTENSIONS' WOULD
BE THE VECTOR OF COMPONENT-BY-COMPONENT PRODUCTS. NOTHING ANALOGOUS
TO A 'DO' LOOP WOULD BE NEEDED.

IF WE HAD ONE TAX RATE WHICH APPLIED TO ALL THESE PRODUCTS AND WE
WISHED TO CALCULATE A VECTOR OF INDIVIDUAL TAXES BY ITEM, THE
STATEMENT

ITEMTAXES«TAXRATEXEXTENSIONS«QUANTITIES*PRICES

WOULD DO THIS FOR US, IN ADDITION TO DOING THE MULTIPLICATIONS
DESCRIBED ABOVE.

THE RULE IS THAT ANY DYADIC FUNCTION DEFINED FOR SCALARS IS CARRIED
OUT COMPONENT-BY-COMPONENT FOR COMPATIBLY DIMENSIONED OPERANDS., IF
ONE OF THE OPERANDS IS A SCALAR, IT WILL BE TREATED AS AN ARRAY

OF IDENTICAL COMPONENTS WHICH HAS THE SAME DIMENSIONS AS THE OTHER
OPERAND. IN OTHER WORDS, SCALAR MULTIPLICATION OF ANY ARRAY IS
POSSIBLE, AND SO ARE SCALAR ADDITION, SUBTRACTION, DIVISION,
EXPONENTIATION, AND SO OWN.

REDUCTIQN. ANOTHER IMPORTANT PLACE IN WHICH APL ELIMINATES THE NEED
FOR 'DO' LOOPS IS IN THE 'REDUCTION' OF A VECTOR TO A SCALAR, A
MATRIX TO A VECTOR, AND SO ON. A COMMON EXAMPLE OF SUCH REDUCTION IS
THE ADDITION OF ALL THE COMPONENTS OF A VECTOR TO GET A SCALAR SUM,
OR MULTIPLICATION OF THE COMPONENTS TO GET A SCALAR PRODUCT. THESE
OPERATIONS ARE CUSTOMARILY SYMBOLIZED BY THE GREEK LETTERS T AND T IN
MATHEMATICS OR STATISTICS TEXTS. THEY WOULD ORDINARILY BE CALCULATED

BY A ' DO ' LOOP IN FORTRAN.
IN APL, REDUCTION IS SYMBOLIZED BY A FUNCTION SYMBOL FOLLOWED BY A '/'.

+/ IS DIRECTLY EQUIVALENT TO %
x/ IS DIRECTLY EQUIVALENT TO I

AS IS CHARACTERISTIC OF APL, ANY APPROPRIATE FUNCTION SYMBOL MAY
PRECEDE THE '/'. FOR EXAMPLE, THE LOGICAL FUNCTIONS 'OR',(Vv),
AND 'AND',(A), CAN BE USED TO REDUCE LOGICAL VECTORS. SO CAN SUCH
FUNCTIONS AS 'MAXIMUM',([), 'MINIMUM',(L), AND OTHERS.

COMPRESSION
"COMPRESSION' IS THE OPERATION OF SELECTING ELEMENTS FROM AN
ARRAY. AN EXAMPLE, SHOWING THE COMPRESSION OF A STRING OF LETTERS
MAY HELP MAKE THIS CLEAR.

10110 1/'ABCDEF'
ACDF

NOTE THE SELECTED LETTERS ARE THOSE WHICH CORRESPOND IN POSITION TO
'1'S IN THE LOGICAL VECTOR PRECEDING THE SLASH. '

COMPRESSION USES THE SAME SYMBOL ,'/', AS REDUCTION BUT PRECEDES
IT WITH A LOGICAL VECTOR RATHER THAN A FUNCTION SYMBOL.

LOGICAL VECTORS CAN BE GENERATED BY USE OF THE RELATION FUNCTIONS.
IF 'A' IS A VECTOR, '3<A' IS A VECTOR, WITH THE SAME NUMBER OF
COMPONENTS AS ‘'A', BUT WITH ZEROES WHERE 'A' HAS COMPONENTS
GREATER THAN OR EQUAL TO 3 AND ONES WHERE 'A' HAS COMPONENTS LESS
THAN 3. IF 'A' IS A VECTOR OF INTEGERS, THE VECTOR '2]|A',

(THE VECTOR OF RESIDUES MODULO 2 OF THE COMPONENTS OF A) IS ALSO
A LOGICAL VECTOR SINCE ITS ONLY COMPONENT VALUES ARE ZERO OR ONE.
CAN BE USED TO COMPRESS 'A' AS FOLLOWS:

A<3 4 5 9 12 16 17

(214)/4
3 5 9 17

AND,OF COURSE, THE RESULT OF THE COMPRESSION CAN BE REDUCED, THUS

x/(2|4)/A
2295

"GIVES US THE PRODUCT OF ALL THE ODD COMPONENTS OF 'A'.

EXPANSION

s s s e T s

'"EXPANSION' IS THE OPERATION INVERSE TO COMPRESSION. TO ILLUSTRATE
WITH A CHARACTER STRING:

1 011 0 1\'ACDF'
A CD F

AND WITH A NUMERICAL VECTOR:

10110 1\1 2 3 4
1 0 2 3 0 4

IT

T s e e S S S S - . e s e . e T e o . e e T S G e S S o

FOR THOSE UNFAMILIAR WITH THE MATHEMATICAL NOTION ‘INNER' OR
'SCALAR' PRODUCT, IT CAN BEST BE INTRODUCED BY A RETURN TO THE
QUANTITIES-PRICES EXAMPLE GIVEN ABOVE. IN CALCULATING A BILL, WE
MULTIPLY QUANTITIES BY PRICES AND ADD THE RESULTS TO GET THE TOTAL
AMOUNT OF THE BILL. THIS CAN BE DONE IN APL AS A COMBINATION OF
COMPONENT-BY-COMPONENT MULTIPLICATION AND SUM REDUCTION.

QUANTITIES+«2 3 4 5

PRICES+1 1.5 2 2,375

+/QUANTITIES xPRICES
26,375

THE RESULT SHOWN AT THE LEFT IS THE COMPUTER-CALCULATED AMOUNT OF
THE TOTAL BILL.

FOR MANY PURPOSES, IT IS USEFUL TO SYMBOLIZE THIS COMPONENT-BY-
COMPONENT OPERATION COMBINED WITH A SUBSEQUENT REDUCTION OPERATION
AS A SINGLE, COMPOUND OPERATION, SYMBOLIZED ,(IN THIS CASE), BY

THE SYMBOLS '+.x',0R, IN GENERAL, BY THE REDUCTION OPERATION, A
DOT, AND THE COMPONENT-BY-COMPONENT OPERATION. OUR BILL TOTAL, FOR
EXAMPLE, COULD BE CALCULATED AS FOLLOWS:

QUANTITIES+ .xPRICES
26.375

THIS CONVENTION IS PARTICULARLY USEFUL WHEN WE WISH TO PERFORM MATRIX
MULTIPLICATION, SINCE SUCH MULTIPLICATION IS MERELY THFE CALCULATION
OF THE INNER PRODUCT SHOWN ABOVE FOR ALL COMBINATIONS OF ROWS IN THE
PREMULTIPLYING MATRIX WITH COLUMNS IN THE POSTMULTIPLYING MATRIX.

AN EXAMPLE WILL ILLUSTRATE THIS:

A<«3 3p19
A it Ricz RIC3
’\Mﬁw,: ‘ '“_»m\m%ﬁ - 2¢
4 5 BN W b6
- ol e
7 8 9 v 9 i T
A+ . xA

30 36 L2
66 81 96
102 126 150

AGAIN, AS IS CHARACTERISTIC OF APL, ANY TWO DYADIC SCALAR FUNCTIONS
CAN BE SUBSTITUTED FOR THE '+' AND 'x' OF THE CONVENTIONAL
MATRIX MULTIPLICATION.

Al . +A
10 11 12
13 14 15
16 17 18

THIS IS THE KIND OF CALCULATION USEFUL, FOR EXAMPLE, IN CRITICAL-PATH

CALCULATIONS.

- o o a y e e o o

THE MOST FAMILIAR EXAMPLE OF AN OUTER PRODUCT IS THE MULTIPLICATION
TABLE. FOR EXAMPLE, TO CALCULATE A MULTIPLICATION TABLE OF THE FIRST
FIVE INTEGERS, WE COULD AVAIL OURSELVES OF THE \ FUNCTION WHICH,
GIVEN AN ARGUMENT 'N', GENERATES A VECTOR OF INTEGERS FROM 1 TO N,
USING '"\5' AS BOTH PREMULTIPLIER AND POSTMULTIPLIER, THE

CALCULATION OF A MULTIPLICATION TABLE WOULD BE DONE AS FOLLOWS:

(15)e,.,x15

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
L 8 12 16 20
5 10 15 20 25

LIKE THE INNER PRODUCT, THE OUTER PRODUCT IS DENOTED BY A COMPOUND
SYMBOL., IN THE OUTER PRODUCT, HOWEVER, THE REDUCTION FUNCTION SYMBOL
IS REPLACED BY THE 'NULL' SYMBOL, 'o', ANOTHER ILLUSTRATION

MAY HELP FURTHER CLARIFY THE IDEA OF 'QUTER PRODUCT'. THE

FOLLOWING FUNCTIONAL EXPRESSION CALCULATES THE SQUARES, CUBES, SQUARE
ROOTS AND CUBFE ROOTS OF THE FIRST FIVE INTEGFRS:

(15)0.%2 3,2 3

1 1 1 1

4 : 8 1.414213562 1.25992105
9 27 1.732050808 1.44224957
16 64 2 1.587401052
25 125 2,236067977 1.709975947

THE OUTER PRODUCT IS EXTREMELY USEFUL IN THE 'PIVOTING' OPERATIONS
CHARACTERISTIC OF MATRIX ALGEBRA.

T A -

A BRIEF DISCUSSION OF THIS TYPE CAN HARDLY DO MORE THAN SUGGEST A
FEW OF THE FEATURES IN WHICH APL\360 DIFFERS FROM OTHER PROGRAMMING
LANGUAGES, READERS INTERESTED IN EFFICIENT ALGORITHMIC LANGUAGES
APPLICABLE IN A WIDE VARIETY OF ENDEAVORS ARE URGED TO CONSULT THE
REFERENCES LISTED ON THE BACK COVER. READERS INTERESTED IN
'INTERACTIVE' TIME-SHARING SYSTEMS WILL ALSO FIND MANY OF THESE
PUBLICATIONS TO BE OF INTEREST.

BIBLIOGRAPHY!

‘Berry, P.C., APL\360 Primer, IBM Corporation, 1968.

vBerry, P.C., APL\1130 Primer, IBM Corporation; 1968.

Breed, L.M., and R.H. Lathwell, "The Implementation

of APL\360", ACM Svymposium on Experimental
Systems for Applled Mathematics, Academlc Press,
1968.

Falkoff, A.D., and K.E. Iverson,"The APL\360 Terminal
Systen r ACM Symposium on Experimental Systems
for Applied Mathematics, Academic Press, 1968.

Falkoff, A.D., K.E. Iverson, and E.H. Sussenguth, "A
Formal Description of System/360", IBM Systems
Journal, Volume 3, Number 3, 1964. :

Iverson, K.E., A Programming Language, Wiley, 1962,

Iverson, K.E., Elementary Functions: an algorlthml :
treatment Science Research Assoc1ates, 1966

IVerson, K.E., "The Role of Computers in Teachlng"
~ Queen's Papers in Pure and Applied Mathematics,
Volume 13, Queen's Unlver51ty, Kingston, Canada,
1968, .

Lathwell, R.H., 'APL\ 360 Operator's - Manual, IBM
Corporation, 1968. T

Lathwell, R.H., APL\360: System Generation and
Library Maintenance, IBM Corporation, 1968. ’

Pakln, S., APL\360 Reference Manual, Science Research
Associates, 1967.

- Rose, A.J., Videotaped APL Course, IBM'Corporation,

~Smillie, K.W., Statpack 1l: An APL Statistical
' - Package, Publication No. 9, . Department of
Computing Science, Unlver31ty of = Alberta,
Edmonton, Canada, 1968. AR R

GOETZ .85
B0

. GOETZ .us6
87 16313 532211622

- GoErTZ .187
.28 778 2723000

gommE e h

