JNELR

*%x% [BM CONFIDENTIAL %%

AN APL EMULATOR

L.

IBM PALO ALTO
JUNE

HASSITT

E. LYON

SCIENTIFIC CENTER
20, 1972

ABSTRACT

The APL emulator is a microprogrammed
implementation of an APL processor. An APL
processor provides direct execution of APL
programs., This report defines the architecture
of the APL processor and it gives the
specifications of an integrated APL emulator.
The APL emulator is said to be ‘'integrated'
because it is co-resident with the IBM 370
emulator and it can be wused under standard
operating systems such as 0S or CP/CMS,

This APL emulator is part of a system called
APLM, APLM provides the user with all of the
facilities of APL/360. APLM is fully
operational. The APLM software 1is written in
IBM 370 code and in APL. The APL emulator is
written in IBM 370 model 145 microcode and will
run only on a model 145,

06/20/72 LPASN - IBM CONFIDENTIAL Abs.

TABLE OF CONTENTS

1. . INTRODUCTION
2. THE APL MACHINE
3. THE WORKSPACE ENVIRONMENT
4, EXECUTION
5. INTEGRATED EMULATION
6. INTEGRATED EMULATION AND THE OPERATING SYSTEM
7. THE APLM SYSTEM
8. DEFINITION OF THE APL PROCESSOR
9. THE WORKSPACE
10.) THE CONTROL WORDS
11. THE ADDRESS TABLE
12. THE STACK
12.1 The Use of the Stack
12.2 ftems on the Stack
13. FREE SPACE
14, VARIABLES IN FREE SPACE
15. - AP VECTORS
16. SYNONYMS
17. OPERATORS AND SEPARATORS
17.1 Operators
17.2 Separators
17.3 Special Operators
18. INTERNAL TEXT OF FUNCTIONS
19. INTERNAL TEXT OF STATEMENTS
19,1 Translation of ltems
19.2 Use of Labels
20. 370 REGISTERS AND 'GETV!
20.1 "GETV'!
20.2 Other Comments
21. APL SYSTEM/APL EMULATOR IMTERFACE
22, STATEMENT SCAN AND SYNTAX ANALYSIS
23, FUNCTION INVOCATION
23.1 Function Call
23.2 Temporary Functions
23.3 Exit From Permanent Functions
23.4 Function Return
23,5 Return From a Temporary Function
23.6 Status Indication
24, EXAMPLE VORKSPACE

06/20/72 LPASN = IBM CONFIDENTIAL Page i

25. ~ FUNCTIONS IMPLEMENTED IN APL AND IBM 370 CODE

25.1 The Calling Mechanism
25.2 Scalar Functions
25.3 Complete 370 Functions
25.4 APL Functions
25.5. Microcode/370/APL Functions
25.6 APLRTN
25.7 ’ Shared Input and Qutput
25.8 o Execute =
26. . ERROR RECOVERY :
27. 370 EMULATOR/APL EMULATOR INTERFACE
27.1 APLEC Entry and Termination
27.2 Page Faults
27.3 Interrupts and Quantum Ends
27.4 _ 370 Functions
27.5) Summary Viewpoints
- 28. DEBUGGING AIDS
28.1 DBUG Microcode Routine
28.2 Other Aids
28.3 : An Example
29. CONCLUSIONS
30. ADDITIONAL REFERENCES

31. - MICRO-ROUTINE NAMES :

£ 06/20/72 LPASN - IBM CONFIDENTIAL Page i1

AEI

TABLE OF FIGURES

5.1 A SIMPLE UNI-PROCESSOR

5.2 A MULTI!-PROCESSOR

5.3 A MICROPROGRAMMED MULTI-PROCESSOR

5.4 CONTENTS OF CONTROL STORE

9.1 WORKSPACE FORMAT

10.1 CODES USED IN FIGURE 10.2

10.2 CONTROL WORD MAP

11.1 ADDRESS TABLE ENTRY FORMS

11.2 POSSIBLE ADDRESS TABLE SYNTAX BITS
11.3 POSSIBLE ADDRESS TABLE PRIMARY DESCRIPTOR

BITS
11.4 ADDRESS TABLE P-BIT ASSIGNMENTS
11.5 UNUSED NAME CHAIN EXAMPLE
- 13.1 BASIC FREE SPACE BLOCKS

13.2 GENERAL FREE SPACE BLOCK

14,1 FORMAT OF VARIABLES IN FREE SPACE

14,2 SECOND DESCRIPTOR BYTE DEFINITION

14,3 SECOND DESCRIPTOR BYTE CASES

1.4 FIRST DESCRIPTOR BYTE DEFINITION

14.5 EXAMPLES OF VARIABLES IN FREE SPACE
16.1 ADDRESS TABLE AND FREE SPACE ITEMS BEFORE AND

AFTER A<--B

17.1 OPERATORS ARRANGED BY HEXADECIMAL CODE
17.2 OPERATORS ARRANGED BY FUNCTIONAL GROUP
17.2 SEPARATORS

18.1 INTERNAL FUNCTION TEXT EXAMPLE
20,1 NORMAL GPR ASSIGNMENTS

20,2 GETV REGISTERS - INPUT AND OQUTPUT
20.3 NORMAL FPR ASSIGNMENTS

20. 4 SWITCH BIT ASSIGNMENTS
21.1 SUMMARY OF THE VARIOUS APLXXXX MACROS
21.2 BAL DEFINITIONS FOR APL MACROS

22.1 DTABCST;SN> - THE SYNTAX DECISION TABLE
22,2 SYNTACTICAL TYPES

22,3 TABLE OF ACTIONS SPECIFIED BY DTAB
24,1 EXAMPLE WORKSPACE CONSOLE LISTING

24,2 EXAMPLE WORKSPACE ITEMS

24,3 ; EXAMPLE WORKSPACE DUMP ,

25.1 370 (OR APL) FUNCTION TRANSFER VECTOR
28.1 DEBUGGING SUMMARY SHEET
28.2 DBUG BOX FORMAT

28.3 EXAMPLE DUMP INFORMATION

06/20/72 LPASN - [BM CONFIDENTIAL Page iii

&

1. INTRODUCTION

APL/360 is an interactive time sharing system which
provides interpretive execution of the APL language,
Interpretive execution offers many advantages in producing a
powerful, safe, and elegant programming language, but
interpretation is typically much slower than direct
execution. There are several aspects of the APL language
which make it impossible to provide direct execution of APL
statements using the machine language of existing computers.
The only way of getting direct execution of APL is to
construct a processor specifically for that purpose.
Fortunately the reloadable control store, which is a feature
of some models of the IBM 370, allows us to construct this
APL processor by the use of microprogramming. This manual
defines the architecture of an APL processor and it
describes an emulator for that processor. The APL emulator
is co-resident with the IBM 370 emulator and the manual
describes the interaction between these emulators. If any
processor is to be used effectively then it must be embedded
in suitable software. The APL emulator runs under a
software system which presents the user with all of the
facilities of APL/360. We will use the name APLM to denote
the system composed of the emulator and the associated
software. .

The first part of this manual will explain some of the
novel aspects of APLM and will review the overall working of
the system. The later parts will give a precise definition
of the architecture and of the interface between the APL
emulator and the 370 emulator,

06/20/72 LPASN - IBM CONFIDENTIAL Page 1.1

2. THE APL MACHINE

The meaning of the expression '"IBM 7090 emulator' is
quite obvious; an emulator is a hardware assisted simulator
and an IBM 7090 is a machine which is specified by the |BM
7090 theory of operations manual. The meaning of the
expression 'APL emulator' does not become apparent until we
have described an APL machine. Consider first of all the
use of an IBM 7090. It will involve the following steps.

(a) The programmer writes a program using symbolic
instructions such as 'CLA I' or 'STO J'.

(b) The assembler allocates memory locations for the
program and the variables 1,J,... and it translates the
program into an internal representation whose octal
form is '050000 0 01001', '060100 0 01002', etc.

(c) The 1loader loads the program into memory, possibly
relocates the addresses, and supplies library routines
as required.

(d) Finally the 1loader issues an instruction which causes
the first of the user's instructions to gain control of
the machine. The machine now executes the instructions
specified by the user.

In order to use an APL machine we follow some similar steps:

(a') The programmer writes his programs in the APL language
which is described in the 'APL/360, Users Manual', form
number GH20-0906. A typical statement is 'J<--K+L',.

(b') A translator converts all statements and functions into
internal form. The translation process is as follows.
Convert operators and separators into a 2 byte internal
form. Convert all names into a two byte internal form;
the first name encountered by the translator is
translated into 006C (hexadecimal), the next is 0070,
the next is 0074, and so on for successive multiples of
four. The internal names 0000 through 0068 are
reserved for system use. Having translated operators,
names, and constants (see 'INTERNAL TEXT OF STATEMENTS'
for translation of constants), reverse the order and
add an end of statement marker. |If '006C', '0070', and
'0074' are the internal names of J, K, and L and if

06/01/72 LPASN - {BM CONFIDENTIAL Page 2.1

'1021°', '7001"' and 'A0O01' are the internal
representations of '+', '¢--', and 'end of statement',
then 'J<--K+L' has the internal representation '007.4
1021 0070 7001 006C AQO1'.

(c') APL is most effective in a time sharing environment, so
the 'loader' is typically part of an APL supervisor.
The supervisor allocates a workspace to the user and
places the internal representation of statements and
functions into the workspace. A workspace is simply a
contiguous block of memory which holds the programs and
data of a single user. The supervisor and the machine
will provide input-output, formatting, trigonometric
functions, etc., so the automatic '"library routine'
loading phase of the load does not occur. The user may
load APL library functions at a later stage. The APL
supervisor may swap a workspace in and out of main
memory, and the wuser may perform various editing
functions but eventually the user will ask for
execution and the APL supervisor will bring the
workspace into main memory (main memory could be a
virtual main memory).

{(d') The supervisor 1issues an instruction which causes the
first of the user's statements to be executed. That
first statement can, and usually will, invoke other
user defined functions and so on.

When a new machine is being designed it is wusual to
define the machine 1language and then the symbolic or
assembler language. In the case of the APL machine, the
symbolic language was defined first and now we define (later
in this manual) a machine language; it would of course be
possible to define other APL machines with other internal
representations. The steps a', b', c¢', d' described above
are used by APLM but of course similar steps are used by
APL/360; the essential difference is that step d' is carried
out by an interpreter in the case of APL/360 and by a
processor in the case of an APL machine. In our case the
processor is microprogrammed (just as the IBM 370 model 145
is microprogrammed) but it could be all hardwired.

06/01/72 LPASN - IBM CONFIDENTIAL Page 2.2

3. THE WORKSPACE ENVIRNOMENT

The IBM 370 machine works on a particular instruction
at a time, but it also makes wuse of a global environment
which is specified by the PSW, the contents of the main
storage locations and the 370 registers (fixed point and
floating). The APL machine works on a particular expression
at a time, but it also makes extensive use of the current
environment; the 'current environment' is the active
workspace and the 370 registers. The active workspace
contains the users programs, the values of all his defined
variables, the current status, and the current execution
stack. If the current statement is in a function which was
called from another function which was called from another
function and so on, then the stack contains all the
information pertaining to these function calls; the
information on the stack can be displayed by the APL
commands)SI and)SIlV,

The workspace is divided into four parts, namely

Control words
Address table
Stack

Free space

There is a register denoted by "WORKBASE' which specifies
the address of the beginning of the workspace. The control
words area contains certain fixed constants as well as
current status information. The address table varies in
size. The address table entry at location WORKBASE+n is a
word which describes the properties of the variable whose
internal name is n; thus if WORKBASE contains 123400 and
variable J has internal name '006c' then the word at
location 12346C is the address table entry for J. An
address table entry has one of two forms:

formmm e, ——————————— +
ISP D | v |
o m e — e ————— +
tom e ————,—,————————— +
| S P | A]
D e b T pmp——— +

S specifies whether the entry is a variable, a function, a

06/20/72 : LPASN - |IBM CONFIDENTIAL Page 3.1

LGN

group name, or a shared variable. P specifies whether a
variable has a value or not. [If a variable has a value the
value may be specified by D and V (scalar characters and
logical or short integers are specified this way) or the
value may be specified by the block of memory beginning at
location A-L.

Free space contains the current values of variables and
functions as well as some unused space. The address 'A' in
the previous paragraph is a free space address. If J is an
array, its address table entry will point to a block of the
form:

where D is a sixteen bit descriptor specifying that J is an
array and indicating whether it is logical, integer, real or
character. The half word shown as J contains the internal
name of J. V contains the internal representation of: the
ravel of J, the size of J, the rank of J, and the size of
the ravel of J (see the APL/360 manual for the meaning of
size and ravel). Later sections of this manual provide
further details on the representation of functions and
variables.

06/20/72 LPASN - IBM CONFIDENTIAL Page 3.2

L. EXECUTION

'THE APL MACHINE' stated that the supervisor issues an
instruction which causes the first of the user's statements
to be executed. What actually happens 1is that the APL
system has translated APL statements and functions into an
internal form and has stored them in the free space area of
the workspace, and it has set one of the control words with
the address of the first statement. Execution begins when
the APL system puts the address of this workspace in
WORKBASE and issues the macro 'APLSCAN'. The VYAPLSCAN'
macro then causes the APL emulator to select the appropriate
control word, find the address of the first statement, and
begin execution.

The APL emulator directly executes statements such as
the one illustrated in section 2 (a'), namely:

0074 1021 0070 006C AOO1

The emulator obtains the first two bytes (7004) and examines
the last two bits; in this case these are 00 which indicates
an 'internal name'. The emulator forms WORKBASE+0074 and
finds the appropriate S bits (see 'THE WORKSPACE
ENVIRONMENT'). Assuming that the S bits show that 0074 is a
variable and not a function, the emulator notes this fact
and selects the next item. The low order bits of the next
item (1021) indicate that it is an operator. The emulator
now selects the 0070, finds its S bits, and, assuming that
0070 1is a wvariable, the emulator starts to perform the
addition of variable 0074 and variable 0070. The first
action is to examine the P bits of 0074 and check that the
variable has a value (if not, to signal 'value error'), then
check that it is numeric (if it |is character then signal
‘domain error'), Similar actions are performed for '0070'.
Next the emulator checks to see iif 0070 and 0074 are
scalars, vectors, or arrays, and that their sizes conform.
It then decides on the type (integer or real) of the result,
obtains space for the result, does the additions, checks for
range errors (exponent overflow),, stores the result (which
may be a scalar, vector, or array) and finally proceeds to
the next item in the statement.

The execution of this expression has been described in
some detail in order to demonstrate that the APL processor,
does execute APL statements directly and is fully cognizant
of all the properties of the APL language.

06/20/72 LPASN - IBM CONFIDENTIAL Page 4.1

JEN

5. INTEGRATED EMULATION

The IBM 370 systems support a number of emulators. One
of the outstanding features of these emulators is that they
are integrated with the [IBM 370 system; the IBM 1401
emulator on the IBM 370 Model 145, for example, is not only
co-resident with the 370 emulator, but it also runs under
control of the standard IBM 370 operating system. There are
many advantages to integrated emulation; it is possible for
one to schedule the jobs with the standard operating system
and it 1is possible to wuse IBM 370 devices for 'IBM 1401"
input/output. As a result, integrated emulation greatly
extends the power, efficiency, and usefulness of the
emulation process. The APL emulator is also an integrated
emulator and, with suitable software support, it will run
under any IBM operating system.

The Implementation of an integrated APL emulator
presents some unusual problems which arise because the APL
machine architecture is so radically different from the |BM
370 architecture. The IBM 370 and the IBM 1401 (or the IBM
370 and the |[IBM 7090) are quite different from each other,
but they do share certain basic properties: both machines
use instructions, both machines use addresses, both machines
recognize a limited number of operand types, both machines
assume (with a very 1limited amount of checking) that the
programmer will have decided which operator to use with
which data (for example, integer add for integer data and
floating add for floating data). The APL machine language
has no instructions; rather,it has statements. The APL

machine language has no addresses; it has names. The APL
machine recognizes scalars, vectors, arrays of any size and
shape. The APL machine applies an operator in many

different ways according to the types of the operands,
Despite the radical difference in architecture and despite
many other problems, it has been possible to make an
integrated APL emulator. Before considering the emulator,
the basic mechanism of emulation on IBM 370 machines which
have a reloadable control store should be examined.

Figure 5.1 shows a block diagram of a simple
uni-programmed second generation computer. The processing
unit is all hardware; the memory contains a single program.
In figure 5.2 we show a diagram of a multi-processor. The
hardware has one PSW; the memory contains several programs,
One program is active at one time and its PSW is in the

06/20/72 LPASN ~ IBM CONFIDENTIAL Page 5.1

|
I
I

| PROCESSING| (==~~~ >IREGISTERS| + - =>| PROGRAM
JUNIT I e + | | AND
| |] IDATA
	Fmmmm————— +	
	(==~~~ > PSW	- - +
	Fommommena +	
R L e T T I		
I	I	
L R +		
o m . — - ——--——-		
FIGURE 5.1: A SIMPLE UNI-PROCESSOR		
e + tommm e ————- + e m————————-		
PROCESSING	(=~=-~ >	REGISTERS]
[UNIT	tmmmmme—e +	SAVE REGISTERS
+ = =>	PROGRAM	
	tommm——e e + I	AND
[[{====- >	PSW	- - + IDATA
	o ———-—— + e	
	[SAVE PSW	
		SAVE REGISTERS]
	{mmm e e e >	PROGRAM
		AND
	IDATA	
I R ittt		
		ETC
- - + |
|
|
|
I
|
|
B I -
FIGURE 5.2: A MULT!-PROCESSOR
06/20/72 LPASN - IBM CONFIDENTIAL Page 5.2

LG

| PROCESSING|{=~~=~ >IREGISTERS| |SAVE PSW |
[UNIT | L + ISAVE REGISTERS|
| . + ~ =>|PROGRAM |
| | tommm—m e + [| AND]
[{===== > PSK	- - +	IDATA
	tommmemenet ==	
	ISAVE PSW	
	ISAVE REGISTERS]	
R i T T Tepup >	PROGRAM	
tomrmm e ———— +	AND	
A A IDATA		
	==	
		ETC !
v		
to-eet		
MPSW		
to--—4]	!	
tormcm e ———— +		
vV v		
trmmm - +		
CONTROL		
STORE]		
<		
tmmm e — e - +

FIGURE 5.3: A MICROPROGRAMMED MULTI-PROCESSOR

IMICROPROGRAMS FOR:
| I/0 UNIT CONTROL

|

|

toem—t | 1/0 INSTRUCTIONS |
IMPSW|=- - =>]| 370 CPU EMULATOR |
to———d | 1401 EMULATOR |
| APL EMULATOR |

R e T T pepuppp. +

FIGURE 5.4: CONTENTS OF CONTROL STORE

06/20/72 LPASN = [IBM CONFIDENTIAL Page 5.3

=

hardware PSW register, The other programs are dormant.
When the active program is terminated then its PSW and
register contents are saved in its save area and the PSW and
registers of another program are loaded. Figure 5.3 shows a
block diagram of an IBM 370 microprogrammed multi-processor.
The processing is now controlled by a processing unit and a
microprogram residing in a control store. The processing
unit of figure 5.3 is much simpler, and performs far more
primitive operations, than the processor of figure 65.1.
Typically, the processor of figure 5.1 would contain
floating point hardware, whereas the processor of figure 5.3
has no floating point hardware. The floating point
operations are done by a series of microinstructions under
the control of a microprogram. MPSW denotes the
microprogram status word. In a system 1ike the one shown in
figure 5.3, the processor reflects the basic data formats
(typically 8 bit bytes, 32 bit words, 24 bit addresses). On
the other hand, the microprogram determines the instruction.

set of the machine. For further details see YAn
Introduction to Microprogramming' (I1BM form number
GF20-0385).

The use of microprogramming allows the processing unit
to support a wide variety of operations. An IBM 370 with
the APL and 1401 emulators installed has a control store
whose contents are shown in figure 5.4, The '1/0 UNIT
CONTROL' microprogram performs the detailed control of
certain /0 units, replacing the separate control units used
in System 360. The 'I/0 INSTRUCTIONS' microprogram decodes
the 370 1/0 instructions and commands, initiates /0
operations and posts the status of these operations. The
Y370 CPU EMULATOR' microcode emulates the IBM 370 non-1/0
instructions., The MPSW in the diagram indicates that the
370 CPU microcode is in control, so the processor is
currently executing the 370 instruction which is pointed to
by the contents of the PSW.

It is obvious that the contents of the MPSW determine
whether the machine 1is executing 1/0 control, an /0
instruction, a 370 instruction, a 1401 instruction, or an
APL statement; the Iimportant question is how does the MPSW
get set? Suppose the MPSW points to part of the 370 CPU
microcode., If a control unit function is needed then there
is a microcode trap, the MPSW is saved, the control function
is done, the MPSW is restored, and the CPU microcode
continues., There are a few other situations which cause a
trap but in general the 370 microcode will retain control
until the end of the current instruction (note that

06/20/72 LPASN - [BM CONFIDENTIAL Page 5.4

8

"instruction' always means a 370 instruction; we will never
use 'instruction' to refer to a microinstruction). At that
point, if an interrupt is pending then the microcode will
switch PSW's, but the 370 microcode still retains control.
The 370 microcode reads the next instruction. If that
instruction is a 370 CPU instruction the MPSW gets set to
point to the 370 CPU microcode. If that instruction is
YAPLEC' the MPSW gets set to the beginning of the APL
emulator microcode. The APL emulator will retain control
until it reaches the end of a program, needs some supervisor
function, or detects an interrupt pending (see later
sections). The APL microcode is also subject to the normal
microcode traps. If the APL emulator detects a request for
APL 1/0 it calls the APL supervisor. The emulator itself
does not do any 1/0. When the APL emulator decides to
relinquish control, it sets the PSW to point to a 370
instruction and sets the MPSW to point to the beginning of
the 370 instruction fetch microcode.

06/20/72 LPASN - IBM CONFIDENTIAL Page 5.5

&

6. INTEGRATED EMULATION AND THE OPERATING SYSTEM

A further feature of integrated emulation is that all
of the emulators will work wunder a single operating system.
The APL emulator is independent. of operating systems; it
will work under DOS, 0S, CP/CMS or any other system for
which APLM software is provided, A single processor will
typically have one APLM supervisor working under the overall
supervision of 0S. However, the emulator will support any
number of users under any number of APLM supervisors and in
a CP system it will support any number of virtual machines.
As we mentioned earlier, the APL emulator is invoked by the
370 instruction 'APLEC XX' where XX is a hexadecimal code
which selects various entries into the emulator. The APL
emulator achieves 1its operating system independence by the
following means: (a) from the point of view of 0S (where 0S
stands for 0S, DOS, CP/CMS, etc.) the APLEC instruction
behaves like any other 370 instruction, (b) the emulator
responds to interrupts in the standard 370 manner, (c) the
emulator honors the write-protect keys on main memory, (d)
the emulator is re-entrant; when the emulator gives up
control it saves the current status 1in the workspace
belonging to the current wuser, (e) the emulator uses the
dynamic address translation hardware in the standard manner,
(f) the APL emulator does no 1/0 operations. To summarize

“the situation: the APLEC instruction initiates a very

complex action of APL emulation but from the point of view
of the operating system, APLEC behaves 1like any other
non-privileged 370 instruction.

06/20/72 LPASN - [BM CONFIDENTIAL Page 6.1

KGN

7. THE APLM SYSTEM

The APLM system runs in an environment like the one
shown in figures 5.3 and 5.4. The system could be written
in IBM 370 code or APL code or a mixture of both. We
decided that the APLM system should be written in [BM 370
code, The prime reasons for this decision were that we
could make use of a large amount of existing code from the
APL/360 system and also the development of the APLM system
could go forward in parallel with the development of the
emulator. The format of the APL/360 and APLM workspaces are
quite different so any code which depends on the internal
details of the workspace had to be completely re-written.
A1l of the code concerned with handling the terminals, doing
1/0, swapping workspace, scheduling users and so on, is
virtually unchanged. In other words, the APLM system is the
same as the APL/360 system except for minor changes in the
supervisor and completely new code for the translator, the
editor, the output format routine and the routines which do
error recovery after a user or system error. The APL/360
interpreter is, of course, completely eliminated; calls to
the interpreter are replaced by calls to the emulator. Some
of the interpreter subroutines, such as the subroutine for
domino (matrix inversion and least squares fit) are still
required. These routines can be modifications of |BM 360
code routines or they «can be written in APL. The APL
emulator has the ability to call system routines which are
written in IBM 370 code or APL machine code. The APL
emulator will directly execute such APL routines without
copying them into the workspace.

The overall environment of a typical APLM system s
like the one shown in figure 5.3. Referring to that figure,
the first partition in memory will typically contain an 0S
operating system. One of the other partitions will contain
the APLM system routines and slots for several workspaces.
The machine will function like a normal IBM 370. 0S will
time-share the CPU between several partitions. When the
APLM partition is in control, then it will spend part of its
time in normal IBM 370 mode controlling terminals, swapping
workspaces, etc. There will come a time when APLM is in
control and one particular workspace is ready for execution.
APLM will bring the workspace into main memory, will set
WORKBASE to point to the workspace and then will give the
APLSCAN instruction. APLSCAN is a special [IBM 370
instruction which alters the contents of MPSW (see figure

06/20/72 LPASN - IBM CONFIDENTIAL Page 7.1

G

5.4) so that it now points to the APL emulator. The APL
emulator does some checks and then, if all is well, it
starts directly executing the APL code in the workspace.

Anyone who writes some [IBM 370 code tends to assume
that this code is executed in contiguous time steps. We
know that in practice the code can be interrupted after
every instruction (and in a few <cases in the middle of an
instruction) and that quite frequently the supervisor will
suspend one task and go off to do another task. The APLM
system can assume (with some limitations discussed below)
that the APLSCAN instruction 1is executed in a single
contiguous time step. In practice, the APL emulator does
test for interrupts at frequent intervals and when they
occur it saves the current status in the current workspace
and hands control to the IBM 370 emulator and the 0S
supervisor, The 0S supervisor will switch tasks in the
normal way and carry out its normal function. Eventually 0S
will resume execution of the APLM task. When the APL
emulator gave up control, it saved the location of the
APLSCAN instruction and set the PSW to point to an APLRESM
instruction. When 0S resumes APLM execution it executes the
APLRESM instruction which gives control back to the APL
emulator which resumes work on the interrupted workspace.
The one complicating aspect of this situation 1is that
APL/360, and hence APLM, is wunlike a normal user program.
APLM does sometimes take control from the supervisor and it
can, therefore, get control during an APL emulator
interrupt. At this stage, the APLM supervisor may choose to
de some 1/0, however, the only actions it can take which
affect the current workspaces are to set the quantum end
flag or the attention flag or reset the resume PSW. The
former actions will cause the APL emulator (when it gets
control) to terminate the APLSCAN at the next convenient
point. The reset PSW action is abnormal and should only be
used if there seems to be a system error.

The microcode in the APL emulator does all 'store into
memory' instructions using the protect key provided by the
most recent APLEC instruction. The APLM system ensures that
this protect key allows a store into the current workspace
only. In the unlikely event of the system or the emulator
making an error, then it could harm the current workspace
but it cannot harm anything outside of that workspace.

We have so far discussed the typical situation of one

APLM system under 0S. The APL emulator is operating system
independent. It could support several APLM systems under 0S

06/20/72 LPASN - IBM CONFIDENTIAL Page 7.2

S

or any other operating system. There are difficulties in
doing this, but the difficulties lie in the system, not in
the emulator. The APL emulator can run under CP or CP/CMS
and it has successfully run over twenty virtual machines,

each with their own APLM system, all apparently active at
~the same time.

06/20/72 LPASN = IBM CONFIDENTIAL Page 7.3

8. DEFINITION OF THE APL PROCESSOR

In this section we begin the task of providing a
precise specification of the APL processor. We have a
microprogrammed implementation of this processor, but we
believe that the architecture described here would be well
suited to a hardware or software implementation.

In order to define the processor, it would be very
convenient if we could refer to an up to date and complete
formal definition of the language. Since this definition is
not available we assume that certain APL concepts are 'well
defined' and that the reader will know the meaning of these
concepts The current sources of information on APL are the
'APL/360 User's Manual' (IBM form number GH20-0906), the APL
program product, and A Formal Definition of APL!
(Philadelphia Scientific Center report number 320-3008 by
R.H. Lathwell and J.E. Mezei). The processor also supports
some new features of APL which are available in the
experimental version of APL/360 produced by the Philadelphia
Scientific Center. We assume that the following concepts
are well defined:

1) Functions, statements, variables.

2) The APL character set and the external (e.g. the
typewritten) form of the language.

3) The value of a variable.

L) The workspace,

5) The status of a workspace.

6) The method of displaying the current status of the
workspace, and the value (or 'no value') of any
variable,

7) For any given workspace which contains any given
functions and variables, then the effects of
'executing' any given statement are known. ‘

The external effects of the execution are that an error
message may or may not result and the workspace status and
the values of the variables will wusually change. An APL
system will contain three major parts:

The ‘'Translator' which translates statements and
functions into internal form and puts them in the
workspace.

The 'Processor' which operates on a workspace and which

06/20/72 ’ LPASN = IBM CONFIDENTIAL Page 8.1

B

usually changes its contents.

The 'Display' which translates values and status into
external form.

It is one of the virtues of APL that the user can never gain
direct access of the internal representation. The user must
phrase his input in terms of the external language, and he
must interrogate the contents of the workspace by way of the
display programs. An APL time sharing system will of course
contain other major parts such as the scheduler, the
swapping program, and so on, but these parts do not enter
into this discussion.

The following sections of the manual will define the
architecture of an APL processor., They describe the
internal representations of the workspace, functions,
statements, variables, etc. These definitions should enable
the system programmer to write suitable Translator and
Display programs. The definition of the actual APL
processor is simply that:

If APL statements and functions are transformed by the
Translator into the form described here,

and the APL processor is invoked,

and the Display program transforms the internal form of
the resultant workspace into a suitable external form,

then the displayed results will conform with the 'well
defined' results of APL.

It might be thought that this is just a round about way of
saying that the APL processor is simply a microprogrammed
version of APL/360, but this 1is not so. APL/360 uses
certain specific methods to compute the results of APL
execution, but there are many other methods which can be
used. The processor can use any method it chooses as long
as it produces the correct results; see the sections on 'AP
VECTORS' and 'SYNONYMS' for some non-obvious methods of
producing results. - There are many different internal
representations corresponding to any external
representation. The processor can produce the result in any
form as long as the displayed result is correct. To give
one example, the vector 1 2 3 ... 100 will usually have an
internal representation which takes 2L bytes of memory but
it may use a representation which takes 416 bytes or 816

06/20/72 LPASN - [IBM CONFIDENTIAL Page 8.2

G

bytes or

06/20/72

indeed any number of bytes.

LPASM - [BM CONFIDENTIAL

Page 8.3

9. THE WORKSPACE

A computing machine works in an environment and the
execution of the machine causes the environment to change.
In an IBM 370 operating in. non-privileged mode the
environment is essentially the PSW, the registers (16 fixed
point and 4 floating point) and a piece of the main memory.
The non-privileged program can not change anything outside
this environment but it can make a supervisor call in order
to get information into and out of its environment. In the
APL machine (that 1is the model 145 operating under the APL
emulator), the environment is the workspace plus the 370
registers. One of the registers specifies the location of
the workspace, the other registers, and the contents of the
workspace specify the current status of the job and of the
workspace. The APL machine has no memory of its own; it
simply operates on a workspace in the manner specified by
the status and by the programs in that workspace. When the
APL machine gives up control (for example in order to allow
an interrupt to be serviced) it does not assume that when it
regains control it will still be operating on the same
workspace,

The main areas of the workspace are shown in figure
9.1. The system areas are used only by the APL system and
are not discussed in this document (with minor exceptions:
see '"DEBUGGING AIDS'). The other areas are summarized below
and discussed in detail in the following sections. The 370
registers are also discussed in a following section.

Free space contains the user's variable values, APL
functions and a block of unused space, The address table
contains a complete description of variables which have no
value and of some scalar variables. For other variables and
for all functions, the address table contains a partial
description and an address. The address points to a block
in free space. The execution stack, or simply the stack, is
a push down list wused by the APL emulator. The control
words contain status information, constants, save areas, and
SO on.

Free space 1is used from both the bottom and top as
shown. When there is insufficient space left the emulator
performs a garbage collection to reclaim any unused blocks.
The stack and the address table both grow towards a definite
boundary between them, Should one of them require

06/20/72 LPASN - [IBM CONFIDENTIAL Page 9.1

. S Gui G G o St — — —— — — — t— t—

IS G G s S G (- —— (oS =S P G —— v Sr— — — t— S—

FIGURE 9.1:

FREE SPACE (BOTTOM)
I

|
v
A
|

FREE SPACE (TOP)

06720772 LPASHN -

(==

T | T o —— —— — A — S— — — —— ——. — —— — —— — —

;G S — OGP T D CHEDS S — ——— ——t — t— —

omm=

WORKSPACE FORMAT

IBM CONFIDENTIAL

LOW CORE ADDRESS

HIGH CORE ADDRESS

Page 9.2

IIE

additional space, however, the boundary may be dynamically
moved. Note especially that the stack grows from high core
addresses to low core addresses. When we speak of the top
item on the stack we refer to the item most recently placed
on the stack. Thus the top stack item is the stack item
with the lowest core address.

06/20/72 LPASN ~ [BM CONFIDENTIAL Page 9.3

T

10. THE CONTROL WORDS

The control words contain constants, addresses, and so
on, which help specify the current status of the workspace.
The only things not included which are necessary to
completely describe the status of a workspace are contained
in the registers (see '370 REGISTERS AND 'GETV''). A map of
the control words is given In figure 10.2; figure 10.1 gives
a listing of the codes wused in the map. Below is an
alphabetic list of the control words and their definitions.
The microcode instructions can conveniently use only small
displacements (<256). These can, however, be either
positive or negative and thus GPR3 is used to point not to
the beginning of the workspace, but higher up (at TMPSAV).
In the codes CBYT refers to the control byte which 1is the
first byte of the word. In the definitions the phrase
"Address table entry for ...' means that the item is in free
space (or in the system or 1is an immediate) and the control
word follows the -conventions described in 'THE ADDRESS
TABLE'. The control word is thus like a reserved name for a
variable which will be used by the emulator or the system.

BLANK Address table entry for a blank character

scalar.
BNDATS Address of the current boundary between the

address table and the stack, This actually
addresses byte zero of the first word below
the stack words,

CALL370F Address of the trénsfer vector for the 370
functions,

CHKWRD Word used on entry to the emulator to check
that a workspace is properly pointed to.
This word contains X'3D8941BB'.

E Address table entry for 2,718...

06/20/72 LPASN - [BM CONFIDENTIAL Page 10.1

B

RELO A
D
R
S
$
X
USED B
E
S
CBYT A
U
v
YA
WRDS -
R11 -
RO3 -

FIGURE 10.1:

06/20/72

Absolute value - no base required
Displacement - absolute needing a base
Relocatable - an address in the workspace
System address - treated like 'A!

System address - treated like 'R’

Save area - specialized treatment

Used by both the emulator and the system
Primarily used by the emulator

Primarily used by the system

Control byte uses address table conventions
Control byte is unused

Control byte contains part of the value
Control byte is zero

Actual number of storage words

Displacement from GPRB
(not used by the emulator)

Displacement from GPR3

CODES USED IN FIGURE 10.2

LPASN = IBM CONFIDENTIAL Page 10.2

LGN

omwmcC

R11

2F8
2FC
308
30C
310
314
318
31C
320
324
348
36C
390
394
398
39C
3A0
3A8
3BC
3C0
3Ch
3C8
3CC
3D0
3D4
3D8
3DC
3EO
3EL
3ES8
3EC
3F0
3FL
3FC
400
Loy
Lo8g

WZWUW>>MM'@W$%%>>>>I><OJ>UO><><><>(DU7<I>U)|>>> or-m?>x
I>3>>}>I>>>3>)>l>>>>>>>>>'<N<NN<<<<CC<C'<<< <O
HEREERNR R R R R R R R R U HH R R OO O R R S W (0O 0

mmMm@oMmMmWoMmMmI mmMmMmmmMmmMmmeoo | moumMmMmMmMmMMmMMmMMMoM ! Mmoo m

RO3

~-A8
-AlL
-98
-94
-90
=-8C
-88
-84
=80
-7C
=58
=34
-10
-0C
=08
-0k

00
+08
+1C
+20
+24
+28
+2C
+30
+34
+38
+3C
+40
+hh
+48
+4C
+50
+54
+5C
+60
+64
+68

CONTROL WORDS

TIDYS
FUZZCTL
SEED
UNUSED
CALL370F
QEND
SCANRTN
SERVRTN
INTRTN
SAVELS
SAVELSB
SAVTDY
FREES
FREET
CHKWRD
FRSTRELO
TMPSAV
UNUSED
XARGO
BLANK
ZEROVAR
ONE
REAL1

Pl

E

MIN

MAX
UNUSED
NULNUMVC
NULCHRVC
INDEX
FILL
TMPNAM
FUNCTION
NEXTINST
TSADR
BNDATS

FIGURE 10.2: CONTROL WORD MAP

06/20/72 LPASN -

IBM CONFIDENTIAL

Page 10.3

FILL

FREES

FREET

FRSTRELO

FUNCTION

FUZZCTL

INTRTN

06/20/72

Fill character to be used by APL coded system
routines. Set by the emulator to 0 if the
right argument is numeric or to blank if
character.

 Displacement of the start of free space plus

L (ie, GPR3 plus FREES 1is the address of the
word after the dummy block at the bottom of
free space).

Displacement of the first word after the top
of free space,

The displacement of the first control word to
require relocation if the workspace is moved.

The internal name of the current APL
function.

Three words for fuzz control. The last two
have zero at the fuzz bit; otherwise they are
complementary., The first of these has zeros
to the left of the fuzz bit and ones to the
right. The first of the three words has
bytes RS LM L0 LF where ...

LF number of half bytes to the right
of the half byte containing the
fuzz bit

LO least exponent such that the
(normalized) number may be unequal
to zero

Lm Mask for testing the first half
byte in cases where the exponent is
L0 (this is the half byte with the
fuzz bit from the last of the three
words) ‘

RS reserved for the system (currently
this happens to be the number of
fuzz bits)

This contains an APLRESM macro. The emulator
points the 370 instruction 1location counter
at this when taking an interrupt.

LPASN - [BM CONFIDENTIAL Page 10.4

INDEX
MAX
MIN

NEXTINST

NULCHRVC
NULNUMVC

ONE
Pl
QEND

REAL1
SAVELS

SAVELSB
SAVTDY

SCANRTN

SEED

06/20/72

Jf X 1indexes an operator this contains the
ceiling of X less the workspace origin.

Address table entry for the largest possible
real number (X'7FF..."').

‘Address table entry for the smallest possible

real number (X'FF...').

Address table entry for the next APL
instruction half word, Byte 0 of this
control word is unused but is not preserved
by the emulator. Thus it must be given
special attention by the system relocate
routine.

Address table entry for a null character
vector.

Address table entry for a null numeric
vector,

Address table entry for 1 (logical).

Address table entry for 3.1h1...

Quantum end control word, Byte 0 contains
the switches (see '370 REGISTERS AND
'GETV''). Bytes 1-3 contain the address of
the system quantum end routine.

Address table entry for 1 (real).

Save area for the non=-370 registers used by
the emulator at interrupt (or other
checkpoint) times. The area format is given
in the '"DEBUGGING AIDS' section.

Backup area for SAVELS.

Save area for the TIDY microcode routine.

Location of the 370 instruction following the
last APLSCAN.

Random number generator's seed value.

LPASN - [BM CONFIDENTIAL Page 10.5

&

SERVRTN

TMPNAM

TMPSAV
TIDYS

TSADR

UNUSED
XARGO

ZEROVAR

06/20/72

Location of the 370 instruction following the
last APLxxxx where Xxxxx specifies some
service function (TIDY, FIND, etc).

Address table entries reserved for temporary
use by the emulator during stack extension,
function call, etc. These two words are
sometimes referred to individually as TMPNAMO
and TMPNAM1.

Temporary save area for the emulator.

Garbage <collection count. This word is
incremented by one every time TIDY is
invoked. Overflow 1is not tested for so
negative values will follow the 1largest

positive value and will eventually turn into
positive values again.,

Address table entry for byte 0 of the next
available word on the stack.

Currently unused,

Extra argument (ie, 'global') for APL coded
system functions.

Address table entry for 0 (logical).

LPASN - [BM CONFIDENTIAL Page 10.6

11. THE ADDRESS TABLE

The address table consists of a series of single word
entries for the various internal names. Any of these
internal names may correspond to a user's external name,
such as 'A' or 'FUN3', or it may be a name that the APL
system is using for another purpose, such as pointing to the
'print name' for some internal name. The APL emulator may
be making temporary use of a name to identify an
intermediate result such as A+B or a name may not be in use
at all. The full details of the address table entries are
given in figures 11.1 to 11.4.

The first byte of the address table entry consists of
four syntax bits and four primary descriptor bits. The
syntax bits might, for example, identify the named item as a
function of two arguments or as a variable (see 'STATEMENT
SCAN AND SYNTAX ANALYSIS' for a description of the syntax
bits and their use). The primary descriptor bits
distinguish between permanent and temporary items, tell
whether or not a variable has a value, and if it does,
identifies it as an addressed value or an immediate value.
Entries with addresses point to byte 0 of the DM word (see
*FREE SPACE').

A variable with an 1immediate value is called an
*address table immediate' and is a scalar character,
logical, or small integer. Character immediates have their
value in the last byte; the next to last byte 1is unused.
Logical immediates have their value in the last bit; the
remaining bits in the last two bytes are zero. Integer
immediates have a 16-bit value in the last two bytes and a
seventeenth sign bit which is vreplicated throughout the
first two bytes when the value is extended to a full word.

The second word of FPR2 is OLOOMNNNN where MNNMMN is the
next available unused name. Whenever a name, say RRRR, is
released to become 'unused', the FPR2 word is stored in the
address table entry for RRRR and then the FPR2 word is
changed to OLOORRRR. This yields a chain of unused names as
shown in figure 11.5. When a name is next requested RRRR
will be given and the address table entry for RRRR read out.
Since this entry is a link in the unused name chain it will
replace the FPR2 word and we thus have restored FPR2 to
OLOONNNN., If three more names are requested we will give
NNNN and QOQQ in the same manner. Then we will give TTTT,

06/20/72 LPASN = I1DM COMFIDENTIAL Page 11.1

SSSS
SSSS

$SSS
PPPP
A..A
v' Qv
DDDD
MUUU

FIGURE

$S§SS=0
S$SSS=2
$S8S8S8=3
SSSS8=9
SSSS=8B
S$SSS=C
SSSS=F

FIGURE

PPPP=0
PPPP=4
PPPP=7
PPPP=9
PPPP=B
PPPP=F

FIGURE

BIT &
BIT 5
BIT 6
BIT 7

FIGURE

06/20/72

POPP AAAA AAAA AAAA AAAA AAAA AAOO
P1PP MUUU ©DDDD VVVV VVVV VVVV VVyy

.Syntax (see figure 11.2)

Primary descriptor (see figures 11.3 and 11.4)
Absolute (virtual) address of the named block

Value

Type descriptor (0=logical, l=integer, L=character)
Sign and unused

11.1: ADDRESS TABLE ENTRY FORMS

Unused name
Variable, non-shared
Function, dyadic
Function, niladic
Function, monadic
Variable, shared
Group

11.2: POSSIBLE ADDRESS TABLE SYNTAX BITS

Unused name not on unused name chain
Unused name on unused name chain
Permanent with no value

Temporary with addressed value
Permanent with addressed value
Permanent with immediate value

11.3: POSSIDLE ADDRESS TABLE PRIMARY DESCRIPTOR BITS

0=Has no value l1=Has value
0=Addressed value l=Immediate value
0=Temporary 1=Permanent

0=Not in use l=In use

11.4: ADDRESS TABLE P-BIT ASSIGNMENTS

LPASN - IBM COMFIDENTIAL Page 11.2

but when the TTTT address table entry is read out it will be
found to not be a link in the unused name chain. In this
case four will be added to the FPR2 word to produce a next
available unused name of UUUU., At the same time a check
will be made to insure that UUUU is a valid name and not the
lowest word in the stack area. This test consists of seeing
that byte 0 of the UUUU entry is zero. Alternatively one
could make a comparison with the contents of BNDATS.

06/20/72 ‘ LPASN - IBM CONFIDENTIAL Page 11.3

NI

FPR2

NNNN

QaQQ

RRRR +--

TTTT
Uuuu

FIGURE 11.5:

06/20/72

IN USE

1IN USE |
+---1040000QQ | <--+
| 1IN USE | |
+==>]0400TTTT |---C--+
[IN USE | | |
===>]OLOONNNN| ===+ |
|IN USE | |
|IN USE | |
[00UUUUUY | < ==~~~ +

| 00UUUUUU |

UNUSED NAME CHAIN EXAMPLE

LPASHN

IBM CONFIDENTIAL

Page 11.4

12, THE STACK

12.1 The Use of the Stack

The stack consists of four registers denoted by R1, R2,
R3, R4 (actually these are the 370 registers GPR1, GPRS,
GPR7, GPRE) and a sequence of memory locations M<TS+4>,
MLTS+8>, MIBSY>. M{BS> is the beginning of the stack.
TS is contained in TSADR and its minimum allowable value is
in BNDATS.

lle would like to avoid repeated memory references so we
keep the top stack items in registers and allow these
registers to be marked 'empty'. The action of pushing an
item onto the stack is as follows:

If Rty is 'empty' then go to OK
If MKTS> is 'end stack' then extend the stack area
MLTS> <-- R4 and TS <-- TS-4

OK: R4y (== R3, R3 <-- R2, R2 <-=R1l and Rl <-- {tem

The end of stack marker 1is the same as an ‘empty'
marker, a zero first byte. An empty item can occur in the
registers, but the emulator never puts one on to the memory
part of the stack. Hence an empty marker can be used to
denote the end of the stack. At the beginning of execution
TS=BS-4 and the stack setup is as follows ('U' denotes an
unused half-byte):

R1 undefined

R2 07UUUUUU = *null?

R3 undefined

RL C0UULUUU = "empty®

M<BS> 08ULULU2 = 'begin stack!
M<BS-4> anything but 'empty!
MCBNDATS+4> anything but ‘empty'
M<BNDATS> 00000000 (hence ‘empty!')

e now begin execution with the sequence:
BEGIN: R3 <-- R4

R <-- ‘empty!
Rl <-- read next (first) APL token

06/20/72 LPASMN - 1BMH COMNFIDENTIAL Page 12.1

KGN

Analysis and execution now proceed with the setup:

R1 APL token
R2 'null'!

R3 'empty!
R4 'empty'

At the beginning of, for example, a dyadic operation the
stack registers will be:

R1 left argument

R2 operator

R3 right argument

Ru4 next item on the stack

The microcode that executes the operator will leave the
result in R2,. It can then branch back to the above BEGIN.
See 'STATEMENT SCAN AND SYNTAX ANALYSIS' for further
details.

12.2 items on the Stack

This section describes operators, names and values on
the stack. The stack can also contain blocks of information
and special stop words (see 'FUNCTIOM INVOCATION').

Each item on the stack is a full word. Bits 0-3 are
the syntax bits and identify the item as an operator,
variable, separator, etc. A complete list of syntax codes
is given in the 'STATEMENT SCAN AND SYNTAX ANALYSIS!
section.

Operators go on the stack with hexadecimal form
*1ABCUUUU' where '1ABC' denotes their opcode and 'UUUU"
denotes unused. The opcodes may go through minor
modification during processing, such as setting of the 'is
indexed! bit. The various opcode bits are further specified
in the "OPERATORS AND SEPARATORS' section.

A name on the stack has the bit form
SSSS UUUL UUUU UUUU NNNN NNNN NNNM MNOO
where the U bits are unused, the N bits give the name and

the S bits give the syntax code. The only syntax codes that
should occur with names on the stack are 2=variable,

06/20/72 LPASN - IBH CONFIDENTIAL Page 12.2

G

3=dyadic function, 9=niladic function and B=monadic
function. VWe do not stack the name's P-bits because they
may be altered while the name is on the stack.

Immediate values may be on the stack with the bit form
0010 1110 MUUU DDDD VVVV VVVV VVVV VVVV

With the exception that the P-bits are 1110 rather than
1111, this is formatted exactly 1like an address table
immediate. However, there is a fundamental difference.
Address table immediates are always permanent variables;
stack immediates are always temporary variables. In a
statement like 'B<--(A<--1.5)+A' A may go on the stack when
it is an address table immediate but it will change to a
non-immediate before the stack entry is used. Because of
this respecification problem address table immediates must
be put on the stack in the name form (as opposed to the
immediate form). Temporary results like 2+3 cannot be
respecified, so they are made into stack immediates if
possible,.

06/20/72 LPASN - 1BM CONFIDENTIAL Page 12.3

13, FREE SPACE

Free space is divided into blocks of words. The first
and last blocks of free space each consist of exactly one
word containing the integer five. The reason for these two
dummy blocks will be discussed later. First let us look at
the basic items which may occur in free space (figure 13.1).

There is only one unallocated block. Whenever space
must be found for an object, the required amount will be
removed from the top or bottom (alternately) of this block.
The first word of the block is pointed to by FREEU (see '370
REGISTERS AND 'GETV''). The rightmost bit of FREEU is 1/0
for the next space to be removed from the top/bottom. The
bit before this bit may have any value, but it will not be
preserved by the emulator.

The second word of an active block is called the 'DN
word'. N is the internal name of the block, Each active
block is associated with a word at location GPR3+N. This
word has the format SPAAAAAA (see 'THE ADDRESS TABLE!
although this word is not necessarily located in the address
table) where AAAAAA is the address of byte 0 of the DN word.
D is a half word which describes the block. Further details
about active blocks will be found in the sections specificly
about them: 'VARIABLES IN FREE SPACE', 'AP VECTORS' and
'SYNONYMS ',

A garbage block is formed whenever an active block is
freed. Whenever this happens the preceding and following
blocks are also checked and, if either/both of them is/are
inactive (garbage or the unallocated block) then it/they are
merged with the newly freed block. Thus free space should
never contain two adjacent inactive blocks (actually the APL
system may generate this situation during cases, like
editing, where it directly plays with free space). The
first and last dummy blocks in free space aid in this
merging procedure; by having an odd space management control
word (the first and last words of any block contain its
space management control word) they 1look like active blocks
and thus freeing the first or last real block does not have
to be a special case for the merging routine to look out
for.' Ve thus see why the dummy words are used and why they
contain an odd number. Now why is it five? VWhen the
garbage collector scans free space these blocks 1look like
active blocks, but with zero bytes for the interior the

06/20/72 LPASM - IBM COMFICEMTIAL Page 13.1

ET

UNALLOCATED BLOCK

- ——— R e i L T T R +
| | | |
| X + 2] X-4 BYTES OF SPACE | X + 2 |
| | | |
tor—————— R il bl T P R +
GARBAGE BLOCK

tmmmm——— R e e i Rt R PP - +
| | | I
| X] X-4 BYTES OF SPACE | X |
| | | I
tmmm———— tm e e e tmmm———— +
ACTIVE BLOCK

e ——— tommm— - A e il T PO . tmmmm——— +
| | : | | |
|l X+ 1 | D: N | X-8 BYTES OF SPACE | X + 1 |
| | : | | i
fmmm———— tmmm———— R e T ppp tmmm e - +
FIGURE 13.1: BASIC FREE SPACE BLOCKS

e ——— e it el T Ty R +
| I | |
| | INTERIOR | C |
I | | |
oo o, e e m e —— e — e o e +

C SPACE MANAGEMENT CONTROL VORD EQUAL TO B+T-4

WHERE B IS THE TOTAL NUMBER OF BYTES IN THE
BLOCK AND T IS 0/1/2 ACCORDING TO THE TYPE
BEING GARBAGE/ACTIVE/UNALLOCATED (IF ACTIVE
THE INTERIOR MUST BEGIN WITH A DN WORD)

FIGURE 13.2: GENERAL FREE SPACE BLOCK

06/20/72

LPASN - IBM CONFIDENTIAL V Page 13.2

block. Since this cannot occur for a true free space block
the routine detects the end of the scan.

With the exception of the two dummy blocks all of the
above may be summarized by figure 13.2.

06/20/72 LPASN =~ 1IBM COMFIDENTIAL Page 13.3

1. VARIABLES IN FREE SPACE

The very general form of variables in free space was
described in the 'FREE SPACE' section. The more specific
forms are shown in figure 14.1. All items are full words
and are full word aligned. The various Vi represent the
value words. We also have the element count in E, the rank
in T, and the shape in R1 R2 .. RT. U...U denotes an
undefined number of undefined words. This is usually nulil
but an expression like 'A<--,A' may produce a non-null case
(see 'SYNONYMS'). The possibility of non-null U...U means
that the location of E must be computed as follows: Let d
be the address of the DN word. Then the address of E is d-38
plus the contents of d-i. T, RT, ... can be accessed by
stepping backwards from E.

Iintegers are stored in full words and reals are stored
in full word pairs (but not necessarily double words) using
the standard 370 representation. Characters are stored
sequentially from left to right in bytes and padded on the
right with undefined bytes if necessary to complete a word.
The bit patterns used for character representation are
defined by the APL system and are of no concern to the
emulator. The emulator only needs to know the
representation for a blank (for the expansion and take
operators) and for this it uses the control word BLANK.,
Logical vectors are stored with eight values per byte and
these bytes are stored sequentially as in the character
case. MWithin a byte the values are stored from right to
left. Hence a logical vector would begin with the elements
E7 E6 E5 EL E3 E2 E1 E0 in the first byte and FE15 E1L FE13
E12 E11 E10 E9 E8 in the second byte. The byte containing
the last element will be padded with undefined bits on the
left if necessary.

The descriptor is delineated in figures 14.2 to 4.4,
It is a half word consisting of bytes DO and D1. 0O is the
'escape' descriptor and is usually zero; the only exceptions
are hexadecimal values of '01' for synonym links (see
'SYNONYMS') and '04' for AP vectors (see 'AP VECTORS'). D1
uses bit 0 to flag these escape cases. D1 has bit & always
off. However, when the microcode is using a variable, a
copy of the descriptor exists in the GPR's. In this copy,
bit 4 of Dl may be used to flag initialization of the
variable by some micro-routine, etc. The descriptor bits of
most interest are bits 123 and 567 of D1; these are well

06/20/72 LPASH - [BlM COMFIDENTIAL Page 14.1

NON-REAL SCALAR C DN VO U...UC

REAL SCALAR

VECTO
ARRAY

R

C DN VO V1 U...U C
CDNVOVI..VNU...UE ¢
C DN VO V1 .. VN U...U R1 R2

FIGURE 1L4.1: FORMAT OF VARIABLES IN FREE SPACE

BIT

SN VTGN O

MEANING IF ON

ESCAPE CASE

NOT SINGLE VALUED
ARRAY

ARRAY OR VECTOR
(ALWAYS OFF)
CHARACTER

REAL

REAL OR INTEGER

FIGURE 14.2: SECOND DESCRIPTOR BYTE DEFINITION

BITS

123

000
001
011
101
111

CASE BITS 567 CASE
SCALAR 000 LOGICAL
VECTOR, E is 1 » 001 INTEGER
ARRAY, E is 1 011 REAL
VECTOR, E not 1 100 CHARACTER
ARRAY, E not 1

FIGURE 14.3: SECOND DESCRIPTOR BYTE CASES

06/20/72

RT TEC

LPASN - IBM COMFIDENTIAL Page 14,2

W

BIT

NOWMEWN O

MEANING

(CURRENTLY UNUSED)
(CURRENTLY UNUSED)
(CURRENTLY UNUSED)
(CURRENTLY UNUSED)

(MUST ALWAYS BE SO0)
(MUST ALWAYS BE SO)
IF AND ONLY IF SYNONYM

HOOHOODOO

IF AND ONLY IF AP VECTOR

LINK

FIGURE 14.4: FIRST DESCRIPTOR BYTE DEFINITION

SCALAR:
0o0o00000GD

SCALAR:
00000011

VECTOR:
00000015

VECTOR:
0000000D

VECTOR:
00000015

ARRAY:
0000001D
00000009

100000
0001nnnn 000186A0 0000000D

«D ‘
0003nnnn 40800000 00000000

.S
0013nnnn LO800000 00000000

NULL (CHARACTER)
0054nnnn 00000000 0000000D

'ABCDEF'
0054nnnn C1C2C3CL4 C5C60000

VALUES=1 0 1 0 0 1 111
0070nnnn E5010000 00000003
0000001D

FIGURE 14.5: EXAMPLES OF VARIABLES

06/20/72

LPASN -~ IBM CONFIDENTIAL

00000011

00000001 00000015

00000006 00000015

SHAPE=3 3
00000003 00000002

IM FREE SPACE

Page 14.3

described by figures 14.2 and 14.3, Particularly useful is
bit 1, the 'pseudo scalar' bit. If this bit 1is on the
variable is null or has more that one element. Thus if the
bit is off, according to the rules of APL, it can frequently
be used as a scalar, whether or not it is one.

Some examples are given in figure 14.5. Characters are
shown in EBCDIC but the APL system may use a different code.

06/20/72 LPASN - IBM COMNFIDENTIAL Page 1L4.4

15. AP VECTORS

An AP vector is a vector of integers which form an
arithmetic progression. Some examples are:

1 2 3
10 13 16 19 22 25
17 3 -11 =25

Any AP vector can be represented in a compressed form: first
element, step between elements, number of elements. The
internal form for an AP vector is as shown below (all
numbers are hexadecimal).

10000:0015f0LD1:NAME

+ +

| |

: FIRST | DELTA |
| : i : |]
+ +

o———

LR R R R IR T d ST A e Y R g gy

Thus the above examples would become:

00000015 OLDlxxxx 00000001 00000001 00000003 00000015
00000015 OLDlyyyy 0000000A 00000003 00000006 00000015
00000015 O4LDlzzzz 00000011 FFFFFFF2 00000004 00000015

The APL emulator does not examine all vectors to see if
they can be represented as AP vectors. But the iota
operator always generates an AP vector if the element count
is greater than one and the emulator will preserve AP
vectors across many operations such as addition of a scalar
(do one addition instead of n of them) and multiplication by
a scalar (do two multiplications instead of n of them).

AP vectors permit many stunts such as allowing ‘'iota
one million" to exist in a small workspace and such as being
able to sum reduce it in very little time. Their real
importance, however, is in subscripting. Programs
frequently wuse subscripts of the form 'A+BxC' where C is an
iota vector. AP vectors allow very efficient processing of
these subscripts. They also, in conjunction with subscript
lists, allow the subscripting microcode routines to
recognize many special cases for efficient evaluation.
There are other instances of real use as well. For example,
let TEXT be a string of N characters and let 1IN be iota N.
Then the emulator will evaluate

06/20/72 LPASN - IBM COMFIDENTIAL Page 15.1

in less time

(TEXT=' ")/IN

and core space than would

the use of AP vectors.

06/20/72

be possible without

LPASN - IBM CONFIDENTIAL Page 15.2

e

16. SYNOMYMS

If B is a vector or an array, then A<--B will usually
cause A and B to become synonyms. In this case a single
copy of the value block will be stored and both A and B will
refer to this block. The use of synonyms will reduce the
space and running time of most APL programs. Assuming that
B is not already a synonym, figure 16.1 shows what happens
for this assignment. T 1is a temporary name and U is
undefined. The quantities shown in the blocks (A, B, C, D,
T, U and -1) are all half word items. The descriptors of A
and B will have the synonym descriptor bits on (see
'"VARIABLES IN FREE SPACE').

Several items can be synonymous; suppose A, B and C are
synonyms. Then the last two items in the blocks which their
address table entries point to are:

A: ' -1 B
B: A c
C: B -1

In other words these items show the neighboring items on the
synonym chain with -1 (actually any half word with the low
bit on) indicating the end of the chain. If the statement
D<--B occurs then the synonym chain becomes A, B, D, C so
that the links items become:

A: -
B:
D:
C:

U@ >
MO OW

A synonym is set up if B is a medium or large nonscalar
(currently this means that the space management control word
is less than 6U4; see 'VARIABLES IN FREE SPACE') and one of
the following is done:

B DF E where DF is a dyadic function
MF B where MF is a monadic function
A<--B and the result will not fit in the old A
,B where B is an array

The last case implies that the various synonym 1links may

have different descriptors and that these descriptors, not
the one in the value block, describe their associated

06/20/72 LPASN - IBM CONFIDENTIAL Page 16.1

AN

BEFORE THE ASSIGNMENT

ENTRY FOR A |-=---- > 2

ENTRY FOR B |==~=~-- > D B | VALUES AND SIZE |
| tm———— e e +

AFTER THE ASSIGNMENT

|

| | tom———— tom——— tmm———— +
IENTRY FOR A |====- I DA UT | -18B |

| | F—————— e ——— temm—e - +

| |

| | tm———— tm———— tommm——— +
[ENTRY FOR B |===--=- > DBl UT | A -1

i | tom——— - temm—m—— +

I I

] | tm———— R et R T +
|[ENTRY FOR T |==-=--=- > D T | VALUES AND SIZE |
|] tommm—- L e ek +
|

FIGURE 16.1: ADDRESS TABLE AND FREE SPACE ITEMS
BEFORE AND AFTER A<--B (THE SPACE
MANAGEMENT CONTROL WORDS HAVE BEEN
OMITTED FOR SIMPLICITY)

06/20/72 LPASN - IBM COMFIDENTIAL Page 16.2

variables. The last two cases imply that if B 1is an array
then A<{--,B will usually set up a8 synonym block and that
B<--,B will simply change the descriptor of B.

If A and B are synonymous then A{--X will cause the old
value of A to be freed and the assignment to be done. If B
was synonymous only with A the the synonym chain reduces to
-1 -1 and in this case the synonym block is freed and B is
made to point directly to the value block.

06/20/72 LPASM =~ IBM CONFIDENTIAL Page 16.3

LG

17. OPERATORS AND SEPARATORS

Operators and separators are represented in 16 bits of
the form:

§SSS DDDD DDDD DDO1

The last two bits are zero-one and they specify that this is
an operator or separator. The first four bits specify the
syntax (see 'STATEMENT SCAN AND SYNTAX ANALYSIS'). The
D-bits distinguish between the various operators. There are
some special’ operators (see 17.4) which have non-standard
form.

17.1 Operators

Operator codes are shown in figures 17.1 and 17.2.
They have the form:

0001 CRZM DEFG Hio01
The bit patterns for individual operators are arranged so

that the emulator can quickly detect various groups of
operations. The bits have the following significance:

C=1 for equal and unequal
R=1 for left and right slash (and their et
overstrikes) and for period

Z=1 for operators overstruck with '=!

M=1 for mixed operators

E=1 for indexable operators
In the case of scalar operators (M=0) FG 1is 00 for
comparisons and 01 for 1logical operations. Also, in the
scalar operator case, character arguments produce a ‘'domain
error' unless C=1, If the emulator detects two contiguous

operators and if either has R=1 then it checks for
reduction, scan or inner or outer product. When the
emulator s actually performing an operation it wusually
holds the operator in the left half of GPRO. However, it
may change certain bits to indicate special conditions. For
example, in scalar operations E is wusually set to 1 if real
arithmetic is needed. Also, Z is set to 1 if an operator is
explicitly indexed. The operators with M=1 and F=1 cause an

06/20/72 LPASN - [IBM CONFIDENTIAL Page 17.1

Rt T S

R it

4

1

f

p

110

<

<

!
e bt -

l

100

Rl T

I ! !

(-]

111

~

y

A
e e i bt 2

v

101

Ll Ly R

L]

I

112

L
l

l

r

X

+

io02

1/}

8

R e it TS
, I
e 4

113

(o}

?

*

L e et
? |
e e e T

103

!

A

¢

115

I

>

2

|
poretommdocotomot

l

ios8

LR e

T

l

€

e s

¥

®

|

118

I

~

! [!

e e TR

108

X

L)

B

114

(N T I I A

R it EEE TR

i04

BV

R e s

B

l

Rt TR PR
I

l

R

11B

om-toc-fo-cto--t
|

l

®

10B

¥

! s |

11D

focmtocotommto——t

i80

te-—do--do--to--t

e

l

131

Z
R R it -

I

188

I
I

/

R 1
|

R N
l

i e 1

155
159

1.
!

I

\

15D

+=-~-SCALAR OPS

e e

7

171

L LR T TR

| ! I

X

179

MIXED OPS-=--=-=-

R e Rt

I I l

O

o

coo0

R R et Tttt

OPERATORS ARRANGED BY HEXADECIMAL CODE

FIGURE 17.1:

Page 17.2

IBM CONFIDENTIAL

LPASN =

06/20/72

== 0O O

Koo

FIGURE 17.2:

400
400
500

FIGURE 17.3:

06/20/72

= O R o

= O = O

1
5
1

% +

LBH o ©

=4 Juo i

LPASN -~

O™ q A

e S ~

3) S 6

> = z <

A -»> N

L x | !
?

€ 4 ¥ 1

> / \ 4

U]

5005 [

500D E

6001
SEPARATORS

IBM CONFIDENTIAL

i < —

7001
8005
AO0X1

« BITS I H D

SCALAR OPS

MIXED OPS

OPERATORS ARRANGED BY FUNCTIONAL GROUP

<«

3
END

Page 17.3

VB

exit to the APL supervisor (except for *). The emulator
does not define the properties of these operators. The
encode and decode operators overstruck with o are the new
operators format and execute. The operators denoted by a
letter within a box are in the development stage. Both
their external symbol and their definition are subject to
change. The emulator implements them by invoking the 370
'box' functions (see 'FUNCTIONS IMPLEMENTED IN APL AND IBM
370 CODE')., The * is used to denote an opcode that cannot
be entered into the workspace via the APL system. This
opcode can only be patched 1in and it 1is wused only by
microprogrammers to test microcode routines before allowing
a permanent usage of the routines.

17.2 Separators

The codes for the various separators are shown in
figure 17.3. The 8005 separator is the bracket used when an
operator is indexed. (It is generated automatically by the
APL system and cannot be entered into the workspace by
overstriking the bracket with a minus.) The X in the end of
statement marker is: 0 for no stop or trace, 1 for trace
(this statement), 2 for stop (before the next statement),
and 3 for both stop and trace. APL functions which are part

of the system may use the separator 500D. This separator
works like 5005 except that it allows an array to be indexed
like a vector. In other words, a 500D type subscript on a

scalar, vector or an array has the same effect as a 5005
type subscript on a scalar, vector or the ravel or an array.
(Like 8005 it cannot be typed by the user.)

17.3 Spectial Operators

A special operator has a 16 bit code ending in 11. The
defined codes are:

ONNN MNNNN KNNNN 0011 go to N in a permanent function
INNN NNNN NNNN 0011 go to N in a temporary function
UUUU UUUU UUUU 0111 make an 'escape' emulator exit
UUUU UUUU UUUuo 1011 perform an indirect operation
VVVV VVVV VVVVY 1111 secondary decode

The purpose of the ‘escape' operation is not defined by the
emulator. In fact the system uses hexadecimal XX07 to flag

06/20/72 LPASN - 1BM CONFIDENTIAL Page 17.4

AIEIN]

an illegal character, where XX gives a representation of the
character, and it uses NNNN TTF7? to flag an assignment to a
stop or trace vector of a function. In this case NNNN is
the internal name of the function and TT is the internal
representation of S or T. The indirect operation is used by
some APL system routines. |If | is the indirect operation
operator and N is a name then Ni causes the emulator to get
the low order eight bits of the address table entry for N
and to wuse these eight bits as the low bits of a scalar
operator. Thus if N is an integer address table immediate
with the value five then the emulator adds 18 to produce the
scalar operator 1805, The secondary decode operation causes
the emulator. to put the word:

0001 0001 1011 1101 VVVV VVVV VVVV 1111

on the stack. This will subsequently be treated like a
'11BD' operation and it will eventually call the IBM 370
function corresponding to '11BD'. The 370 function will
find the VV...11 in the low half of GPRY and it can use it
to select one of many sub-operations.

06/20/72 LPASN - IBM. CONFIDENTIAL Page 17.5

<3

18. INTERNAL TEXT OF FUNCTIOMS

A function has the same internal form as a character
vector, however, the syntax bits in the address table will
distinguish between a variable and a function of 0, 1 or 2
arguments. The internal form of a function is:

C DN HEAD BODY TAIL COMM NB C

C is the wusual space management control word (see "FREE
SPACE'). D is the descriptor of a character vector (0054)
and N is the internal name of the function. HEAD contains
the half word items:

M T S K Z L R L1 L2 ... LN 2 EZ
where we have ...

M highest statement number

T byte offset of TAIL from DN

S system information, not used by the emulator
(currently this is 1 for a locked function, 2 for
a function generated by quad and 4 for a function
generated by execute)
40 + 8 times the the number of locals (decimal)
name of the result or the number 1
‘name of the left argument or the number 1
name of the right argument of the number 1

| name of the Ith local variable
marker for the end of the locals list

Z marker for the end of statement 0

mNr—xxr-NX

Note that since the two low bits of a name are zero we can
use both 1 and 2 to indicate a non-name. The BODY has the
form:

S1 E1 $S2 E2 ... SM EM X EX

where SK is the internal text of statement K (see "INTERNAL
TEXT OF STATEMENTS'). |If the statement is a corment then SK
is absent. EK marks the end of statement K. It contains
the trace bit for statement K and the stop bit for statement
K+l1. X is an 'immediate go to 0'. Further details of EK
and X are given in the 'OPERATORS AND SEPARATORS' section.
The TAIL contains the byte offsets of EZ, E1l1, E2, ... EM as
half word items. COMM contains system information such as

06/20/72 LPASN - IBM COMFIDENTIAL Page 18.1

label names, the comments, and so on. The emulator

concerned with the details of COMM. NB is the

bytes
provides an example of a translated function.

06/20/72 LPASM = [BM COMFIDENTIAL

is not
number of

in the HEAD, BODY, TAIL and COMM. Figure 18.1

Page 18.2

B

THE APL FUNCTION .

Z <-- A F B;C;D;E

Z <-- A+B

b COMMENT ON THIS LINE

C <-- D=*E,
Z:;C;A

WITH A TRACE VECTOR OF 3

" AND A STOP VECTOR OF 1 4
HAS [INTERNAL FORM

00000061 00540074 0004LOOLE 000000LO
006C0070 0078007C 00800084 0002A021
00781021 00707001 006CA001 AQ01008K
10310080 7001007C A0310070 6001007C
6001006C A0010003 AQ01001A 00260028
00340040 00010002 O04BBOOOO 00000054
00000061

WHERE WE HAVE UNDERLIMED ALL EMD OF
STATEMENT MARKERS IMNCLUDING EZ AND EX.
WE NOTE THE FOLLOWING ...

c 0000 0061

DN 0054 0074

M : 0004

T 00L6

S 0000

K 0040

=7 006cC

L=A 0070

R=B 0078

L1=C 007cC

L2=D 0080

L3=E 0084

TAIL 001A 0026 0028 0034 00L4LO
COMM 0001 0002 o0u8B 00CO
NB 0000 0054

FIGURE 18.1: INTERNAL FUNCTIOM TEXT EXAMPLE

06/20/72 LPASN - [IBM COMNFIDENTIAL Page 18.3

19. INTERNAL TEXT OF STATEMENTS

19.1 Translation of Iltems

The external form of a statement may contain comments,
labels, names, constants, operators and separators. See
"OPERATORS AND SEPARATORS' for the various 16 bit codes into
which these items are translated. The remaining items are
translated as follows:

Comments:

Comments should not occur in the body of a function. A
comment statement should be replaced by a null statement; a
null statement consists of an end of statement marker. The
system may store the text of the comment in the COMM region
of the function (see '"INTERNAL TEXT OF FUNCTIONS'). (The
current system gets a block in free space and an internal
name for each comment. These names are stored in COMM.)

Labels:

Labels should not occur in the body of a function. The
system may store labels in the COMM region of the function.
Also see 19.2. "

Names:

An external name is represented by an internal name. An
internal name is a 16 bit number ending with two zero bits.
An external name has the same internal name irrespective of
whether the name 1is the name of a local variable, a shared
variable, a global variable or a function.

Constants:

A constant may be scalar, 16 bit or general. A constant is
translated into a descriptor followed by the internal
representation of the constant, according to the following
bit formats:

Scalar: 0000 ODDD UUUU 0010 VV...
16 Bit: MUUU DDDD UUUL 0110 VV...
General: DDDD DDDD ULUUL 1010 CCCC CCUU VV...
or DDDD E£DDD UUUL 1010 CCCC CCUU UUUU UULU VV...

06/20/72 LPASN = 1Bl COMNFIDENTIAL Page 19.1

B

where U stands for unused and D..D is the descriptor bits
described in 'VARIABLES |IN FREE SPACE'. L is used to flag
label constants (see 19.2). The first type of
representation is used for integer scalars and real scalars.
Integers are in IBM 370 32-bit integer format and reals are
in IBM 370 64-bit floating point format. The 16 bit form is
used for logical, character and-short integer scalars. In
the latter case M is the sign bit. VV... is 16 bits long.
As examples of this representation (in hexadecimal):

0006 0001 logical 1

0106 0040 integer 64

8106 FFCO integer -G6U4

0406 0099 character with internal code of 99

The general form is used for vectors. It could also be used
for arrays although the current system does not do this. In

this case VV... must begin on a full word boundary (hence
the two forms shown) and VV... must be of the form shown in
'VARIABLES IN FREE SPACE'. This implies that it must be
padded out to a full word and should end with an element
count., CCCC CCO0 is equal to four times N+2 where N is the
number of words in VV... As an example, the three element
vector 64 -64 1024 has the internal representation
(assumming that it does not begin on a full word boundary):

510A 001A 0000 0000 0040 FFFF FFCO 0000 0LOO 0000 0003

19.2 Use of Labels

The emulator does not recognize the use of labels. |If
the program contains -->ALPHA and ALPHA is a label attached
to statement 64 then ALPHA has the internal representation
0116 0040. This is the internal representation of the short
integer 64 with the L bit on. The emulator ignores the L
bit. The system may use the L bit when converting from
internal to external form. The user may, of course, use
labels in any legal manner.

06/20/72 LPASM - IBM COMFIDENTIAL Page 19.2

20. 370 REGISTERS AND 'GETV'

Much of the information specifying the current status
of the workspace 1is maintained in the 370 registers.
General register assignments are delineated in figures 20.1
(GPR's) and 20.3 (FPR's). Register usage may vary a little
during some of the microcode routines but the figures
represent the normal state of affairs.

20.1 'GETV'

Consider the execution of a statement such as 'Z<-L+R'
where Z, L, and R are variables. The SCAN microcode will
scan this statement until it has detected the 'L+R'. At
this stage the stack registers (see 'THE STACK') will
contain:

GPR1 = stack word for L
GPR9 = stack word for +
GPR7 = stack word for R
GPRE = null

The SCAN microcode now calls the microcode which does dyadic
operations. The dyadic operations microcode does a GETV on
L (that is, it calls the GETV microcode with GPR1 as input)
and a GETV on R. GETV is used 1in all monadic and dyadic
operations, in assignment and in subscripting. The results
of GETV effect the operation of a large part of the emulator
and a significant part of the system. GPR's 0-2 and 6-8 are
devoted to the left and right arguments and are passed to
GETV to fetch the first value and to change the variable
stack word into the appropriate register setup. Figure 20.2
shows this setup.

If the variable 1is real then the value will be in the -
corresponding floating point registers (FPRO or FPRB).
Logical values will be setup as full words so that they may
be treated like integers, but for character variables only
the rightmost byte of the value register is defined.

The PD DESCRIPTOR is the regular descriptor halfword
(see '"VARIABLES IN FREE SPACE') with P-bits 5 and 6 (see
'*THE ADDRESS TABLE') or'ed into the first byte (which is why
those bits must be 00 in the descriptor). These P-bits

06/20/72 LPASN - IBM COMFIDENTIAL Page 20.1

AL

| 0 I 1 | 2 3 I
Fom et e e e rc e e e, ————— +
|l O |LEFT GETV REGISTERS |
tmmmt |
I 1] |
o |
I 2 | |
o e e e e rrrr e m e e e e ——c————————— -+
| 3 |EMULATOR WORKSPACE BASE REGISTER |
L el e i e T U +
| 4 |ABEN LINKAGE AND MISC |
Fomm e e et e mmn e c e e m et m e r———————— +
| 5 IMISC |
D et g +
| 6 [RIGHT GETV REGISTERS |
-t '
I 71 I
do——t |
| 81 |
Fr e e e e e e e e e e m— e —————— +
| 9 |OPCODE IRESULT NAME |
e Rkttt SRy iy Sy Qg +
| A |LINKAGE AND MISC |
tomm et e e m e r s e m e ——————— +
| B |PRESERVED FOR THE APL SYSTELMN |
Fm e e e e e m e m e —————— +
| C IMISC |RESULT CURRENT ADDRESS |
R e R e T TP +
| D IMASK AND MISC|RESULT ELEMENT COUMT AND MISC |
F o e e — e — e e e ————————————— +
| E INEXT STACK WORD |
Fom e e e e e e — e —————— +
| F |RESULT BYTE |RESULT DESCB1|MASK AND CODE]INDEX VALUE |
dmm e e et e e e r e m e ————————— +

FIGURE 20.1: NORMAL GPR ASSIGNMEMNTS

06/20/72 LPASN - 1IBM COMFIDENTIAL

Page 20.2

'ji;&ag o

11/7|STACK WORD FOR A VARIABLE OR IMMEDIATE

S g g g

12/8|UNDEFINED

o o o e o o = - " = —————————

FIGURE 20.2.,1: GETV REGISTERS = INPUT

fmmm———————— bommm———————— bommmm e ——— tmm——
| 0 | 1 | 2 |

R e ettt L e

|0/6 | VALUE UNLESS IT IS REAL

R el R i Ty pp——

11/71PD DESCRIPTOR | NAME

b R et R T R T p——

1278 MASK | CURRENT ADDRESS

b

FIGURE 20.2,2: GETV REGISTERS - OUTPUT

06/20/72 LPASN - IBM CONFIDENTIAL

....... +

....... +

------- +

------- +

_______ +

Page 20.3

NG

I 0 I 1 | 2 | 3 I
R e e +
| 0 ILEFT VALUE IF IT IS REAL |
==t]
I 11 I
el R b b b b PR, +
| 2 |SWITCHES |[UNALLOCATED BLOCK ADDRESS (FREEU) |
L D i it R T T +
| 3 | 0 L JUNUSED=00 INEXT AVAILABLE NAME |
R bt R b e R T +
| 4 JRESULT VALUE IF REAL, LINKAGE AND MISC |
m—— !
I 51 !
o e e e e e e e e 2 o e e e = o e - +
| 6 |RIGHT VALUE IF IT IS REAL |
G- |
I 71 |
o - - ————————————————————— +

FIGURE 20,3: NORMAL FPR ASSIGMMENTS

RESERVED FOR THE SYSTEM

ATTN = STOP AT STATEMENT END

Y SWITCH=

Z SWITCH* (CURRENTLY UNUSED)
QUANTUIM END DESIRED

DOING SERVICE FUNCTION

INDEX ORIGIN

SET TO 1 BY TIELY (OTHERWISE UNUSED)

BIT

SNOTUVTFE NN O

* USUALLY 0; MAY BE TELPORARILY
SET TO 1 BY THE MICROCODE
(EG, SEE THE GETN ROUTIME)

FIGURE 20.L4: SWITCH BIT ASSIGNMENTS

06/20/72 LPASN - 1Bl COMFIDENTIAL Page 20.4

identify addressed value or immediate value and temporary or
permanent states, A stack immediate is given P-bits 11; the
'permanent' state is set so that the microcode will not
attempt to release the name of the variable after it is used
in the operation. Thus one can count on the NAME being good
only if the wvariable is not an immediate. There is no way
to distinguish, between stack immediates and address table
immediates once they have been through GETV.

GETV will set the current address to point to the
beginning of the value portion of the variable block (of the
value block in the case of synonyms). In later stages of
executing an operator this is usually the address of the
element following the element currently given in the
registers.,

The MASK is not actually setup by GETV; other
processing microcode will set it up if a logical vector is
being used.

The GETV function is available to the APL system
through the APLGETV macro.

20.2 Other Comments

Two bytes (GPRD.0 and GPRF.2) are marked as being masks
in figure 20.1. Both refer to a mask for a logical vector
result. Some operators will use one byte, others will use
the alternative byte. MNever will both be in use as masks
and frequently neither will be. GPRF.2 also serves as the
370 function return code byte (see 'FUMNCTIONS IMPLEMENTED IN
APL AND IBM 370 CODE').

The result byte (GPRF.0) is used to build up a byte of
values prior to storing during some of the cases with
logical vector results. The last byte of the result
descriptor is wusually kept in GPRF.1. The O-origin index
(or its ceiling if real) is kept in GPRF.3 during execution
of indexable operators; the default value is given if an
explicit value was not specified.

Normally the first byte of QEND contains the SV/ITCHES
byte. When the APL microcode has control, however, they are
maintained in the first byte of FPR2. The individual switch
assignments are given in figure 20.4, FPR2 is also
described in 'FREE SPACE' (FREEU) and in 'THE ADDRESS TABLE'

06/20/72 LPASN = IBM CONFIDENTIAL Page 20.5

(NEXT AVAILABLE NAME).

06/20/72

LPASN -

1 BM

CONFIDENTIAL

Page 20.6

LG

21. APL SYSTEM/APL EMULATOR INTERFACE

The most important function of the emulator is to
execute APL statements. The emulator also provides service
functions which can be used by the software to assist the
translator, the 370 functions and the error recovery
procedure. The execution of APL statements and the service
functions are initiated by IBM 370 assembler language macro
instructions. All such macros rely on a single instruction
which has been added to the 370 instruction set. The APL
Emulator Call (APLEC) 1is an RR instruction with opcode 0B.
It is similar to SVC in that the immediate byte gives a call
code and certain registers may be used for arguments and
results. It is dissimilar in that, additionally, GPR3 must
properly address a workspace or a specification exception
will occur. \Wle pointed out earlier that the APL emulator
works in an environment consisting of a workspace and the
370 registers. This environment is assumed throughout this
report. Thus when we say, for example, that APLSCAN will
cause scanning and execution of the workspace we are
assuming that GPR3 addresses a workspace as described
earlier, that GPR1, GPR9, GPR7 and GPRE are properly set up
as stack registers (see 'THE STACK') and so on. Figure 21.1
summarizes the APL macros and figure 21.2 gives the BAL
definitions. The remainder of this section discusses each
macro in the order given in figure 21.1. ‘'Exceptions' may
be real program exceptions (Specification, Data) or an APL
error return signaled by a condition code of 1 and an error
code in GPR5 (all others).

APLFIND

A block of free space of the indicated number of bytes will
be found. lts space management control words and the N
portion of its DN word will be completed. It will Dbe

classified as a temporary variable with an addressed value
and its address table entry will be completed. The address
of byte 0 of its DN word will be returned in GPRL. Note
that the number of bytes must include the 12 necessary for
the DN and two control words.

Exceptions: Specification

Workspace Full
Address Table/Stack Full

06/20/72 LPASN = 1BM CONFIDENTIAL Page 21.1

NG

XXXX

FIND
FREE
FRIF
NAME
UNAM
TIDY
SCAN
GETV
GETN
RTN

SRTN
RESM
DIAG

FIGURE 21.1:

06/20/72

ARGUMENT

R5=bytes
R5=name
R5=name
none
R5=name
none
none
see text
see text
none
none
none

‘see text

RESULT

R4=DN addr
none

none
Ri=name
none

none

none

see text
see text
not applic
not applic
not applic
see text

LPASN - IBM

CONFIDENTIAL

FUNCTIOMN

find a free space block
free an item

free an item if temporary
provide an unused name
release an obsolete name
perform garbage collection
scan/execute a workspace
get a stacked variable

get a variable number
normal 370 function return
special 370 function return
resume interrupted workspace
diagnostic function

SUMMARY OF THE VARIOUS APLXXXX MACROS

Page 21.2

&L
&L

&L
&L

&L
&L

&L
&L

&L
&L

&L
&L

&L
&L

&L
&L

FIGURE 21.2.1: BAL DEFINITIONS FOR APL MACROS

06/20/72

MACR

APLEC &CODE

DC
MEND

MACR
APLF
APLE
MEND

0

Y(X'0B0O'+&CODE)

0
IND
C X'63!

MACRO

APLF
APLE
MEND

REE
C X'g3!

MACRO

APLF
APLE
MEND

MACR
APLN
APLE
MEND

RIF
C X'A3!

0
AME
C X'23!

MACRO

APLU
APLE
MEND

MACR
APLT
APLE
MEND

MACR
APLS
APLE
MEND

NAM
C X'y3!

0
IDY
c X'o03!

0
CAN
c X'oo!

LPASN -

IBM CONFIDENTIAL

Page 21.3

MACRO
&L APLGETV &VAR
LCLA &VARC
&VARC SETA X'02!
AlF ('&VAR' EQ '"LEFT').VAROK
&VARC SETA X'68'
AlF (*&VAR' EQ 'RIGHT').VAROK
MNOTE 'BAD VARIABLE SPECIFICATION - RIGHT ASSUMED'
« VAROK ANOP

&L LA 5,&VARC
APLEC X'D3'
MEND
MACRO

&L APLRTN

&L APLEC X'01!
MEND
MACRO

&L APLSRTN

&L APLEC X'02'
MEND
MACRO

aL APLRESHM

&L APLEC X'o02!
MEND
MACRO

&L APLDIAG

&L APLEC X'E3!
MEND

FIGURE 21.2.2: BAL DEFINITIONS FOR APL MACROS

06/20/72 LPASN = IBM CONFIDEMTIAL Page 21.4

A

MACRO
&L APLGETN &VAR,&ENTRY,&TYPE
LCLA &VARC,&ENTRYC,&TYPEC, &ARG
&VARC SETA X'02!
AlF ('&VAR' EQ '"LEFT').VAROK
&VARC SETA X'e8'
AlF ('&VAR' EQ 'RIGHT').VAROK
MNOTE 'BAD VARIABLE SPECIFICATION - RIGHT ASSUMED'
. VAROK AlF ('&ENTRY' EQ 'FETCH').ENTRYOK
&ENTRYC SETA 1
AlF ('&ENTRY' EQ "IMIT').ENTRYOK
&ENTRYC SETA 2
AlF ("&ENTRY' EQ 'CVT').ENTRYOK
MNOTE 'BAD ENTRY SPECIFICATION - CVT ASSUMMED'
+ENTRYOK AIF ('&TYPE' EQ 'LOG').TYPEOK
&TYPEC SETA 1
AlF ('&TYPE' EQ '"INT').TYPEOK
&TYPEC SETA 3
AlF ('&TYPE' EQ 'REAL').TYPEOK
&TYPEC SETA 2
AlF ('&TYPE' EQ 'ASIS').TYPEOK
MNOTE 'BAD TYPE SPECIFICATION - ASIS ASSUMMED'
.TYPEOK ANOP

&ARG SETA &VARC+256*(&ENTRYC+4*&TYPEC)
&L LA 5,&ARG

APLEC X'C3!

MEND

FIGURE 21.2.3: BAL DEFINITIONS FOR APL MACROS

06/20/72 LPASN - |BM CONFIDENTIAL Page 21.5

APLFREE

This releases the free space associated with the named item
unless it is an immediate and, in the case of temporaries,
releases the name as well,

Exceptions: Specification

APLFRIF

This performs an APLFREE if the named item 1is a temporary.
if it is a permanent then nothing is done.

Exceptions: Specification

APLNAME

The next available name will be removed from the unused list
and returned in the right half word of GPRL4; the left half
word is unpredictable. The address table will be unchanged,

Exceptions: Specification
Address Table/Stack Full

APLUNAM

The specified name will be restored to the list of unused
names and the address table so marked.

Exceptions: Specification

06/20/72 LPASN - IBM COMFIDENTIAL Page 21.6

b

APLTIDY

A garbage collection will be done and all relevant pointers
(FREEU, various address table and stack entries, etc)
corrected. The GPR variable addresses (GPR2, 8 and C) will
also be maintained if accurate, but they will be scratched
if not. For example the 370 dominoe function may do an
APLTIDY. If it 1is the dyadic case both the 1left and right
variable GPR's will be maintained, but {if it is the monadijc
case the left variable GPR's are unpredictable.

Exceptions: Specification
Data (see '"DEBUGGING AIDS')

APLSCAN

Scanning and execution of the workspace will commence at the
address specified by the control word "MEXTIMNST'.

Exceptions: Specification
Workspace Full
Stop Vector Request
Value Error

Etc. -- See the emulator routine 'ABEN' for a
complete list of error exits and their codes.

APLGETV LEFT
RIGHT

This gets a variable from the stack and sets it up for
processing (see '370 REGISTERS AND 'GETV''). For the left
(right) variable GPR1 (7) must contain the stack word; the
macro will setup GPR0-2 (6-8).

Exceptions: Specification
Value

06/20/72 LPASH = IBN COMFIDENTIAL Page 21.7

B

APLGETN LEFT ,INIT ,LOG
RIGHT FETCH INT

CVT REAL

AS1S

This gets a number from a variable which has been set up by
the emulator or APLGETV. The <first call should be with
INIT'; this will return the element count in GPRL4 as well
as the first number. Subsequent calls should be with
'FETCH' for each additional element. Cyclic fetching will

be done automatically if the element count is one. |If the
user does his own initialization and fetching 'CVT' may be
used for conversion only. In any case one requests the type

of output desired: logical, integer, real, or 'ASIS', i.e.,
no conversion. GPRL4 will be altered only by the 'INIT'
option.

Exceptions: Specification

Domain Error
Range Error

APLRTN

This returns control from a normal 370 function to the APL
emulator.

Exceptions: Specification

APLSRTN

This returns control from a special 370 function to the APL
emulator.

Exceptions: Specification

06/20/72 LPASN = IBM COMNFIDENTIAL Page 21.8

APLRESM

This returns control from an interrupt or quantum end
condition to the APL emulator. :

Exceptions: Specification
APLDIAG
This macro is for wuse only by microprogrammers. It is a

debugging and diagnostic aid. It is documented only in the
source listings for the APLDIAG decode point in the SERV
microcode routine.

06/20/72 LPASN - 1BIM COMFIDENTIAL Page 21.9

22. STATEMENT SCAN AND SYNTAX ANALYS!S

At the beginning of the execution of an APL statement
the stack contains

U N U E prior

where U denotes undefined, N denotes null, E denotes empty
and 'prior'" denotes whatever was on the stack before the
current function was entered. The SCAN routine changes the
stack to

U N E E prior

and then does the following:

LOOP: Get the next half word from the APL statement.
Increase NEXTINST by two.
Let H denote the half word just read.
Branch on the two low order bits of H.

BITS=00: H is a name.
Get its address table entry.
Put it on the stack.

BITS=01: .H is an operator or separator.
Put it on the stack.

BITS=10: H begins a literal,
If it is a 16 bit literal, then ...
P ut it on the stack as a stack immediate.
Otherwise ...
Get space in free space.
Copy the constant,
Put its S-bits, P-bits and name on the stack.

BITS=11: H is an escape case,
These cases cause an immediate action. MNo further
scanning is done. See ‘'OPERATORS AND SEPARATORS'
for a description of the escape cases.

Having put the item on the stack (and thus erasing the
undefined item at the top of the stack), let ST denote the
syntax bits of the top item on the stack (syntactical types

06/20/72 LPASN ~ 1BM CONFIDENTIAL Page 22.1

are shown in figure 22.2) and let SM denote the syntax bits
of the next-to-top item. If DTABKST;SMN> (see figure 22.1)
is zero then push the contents of the stack as described in
'THE STACK' and go to LOOP. Otherwise do the action
specified in figure 22.3.

End of statement processing (action 10) includes
checking to see if printing is required and checking for
stop, trace, attention and quantum end. If there is a
temporary on the stack and no print or trace is requested
and the 1last action was an assignment, then free the name
and space used by the variable (unless it is a stack
immediate).

The system uses syntax type F for group names. The
emulator should never encounter these names, but if they do
occur due to a user error then the emulator gives a syntax
error.

Some of the dynamic properties of APL can give rise to
some unusual problems, in particular a change of the syntax
type of a variable may produce an error. The emulator
insists on the following rule: if a name has a syntax type
other than 2 then it must have a descriptor of type
character. As an example, functions (see 'INTERMAL TEXT OF
FUNCTIONS') are of type character. The GETV microcode
checks the syntax of all character items and it gives a
syntax error if the syntax type 1is not 2. Consider the
execution of the statement 'Z<--F+A', where F is a niladic
function and A is a variable. The emulator puts entries for
‘null', 'variable A', '+', and 'F' on the stack and then it
calls F. If the function F executes correctly and it has a
result then the emulator will attempt to add A to the result
of F. The addition will cause the emulator to do a GETV of
A. If A is no longer a variable then a syntax error
results., The syntax of A could have changed because A was
made into a shared variable, or because the user stopped the
execution of F and changed A into a function or a group
name. The address table entry for a shared variable does
not point directly to the value of the variable. The method
of storing shared variables is not defined by the emulator,
but the block which the address table points to must be of
type character even if the value is arithmetic.

06/20/72 LPASMN - IBM CONFIDENTIAL Page 22,2

w
—
-
N
W
=
(V]
(22}
~
©o
w0
b=
lo=]
(]
m

SN Aniaine ettt b ettt
c | 1 0 1 0 1 1 1 1 5a 10 1 11 1
1 I 3 2 L 0 L L b L 5a L L 11 1
2 | 0 1 0 1 8 0 0 9 1 10 5b 1 1
3 | 1 5¢ 1 0 1 1 1 1 5a 1 1 11 1
L I 1 0 1 0 14 14 1 1 5a 1 5b 11 1
5 | 12 6 1 0 1 1 1 1 5 1 1 1 1
6 | 1 0 1 0 14 14 1 1 5 1 1 11 1
7 | 1 7 1 13 1 1 1 1 1 1 1 11 1

o e o e o e o = e = - e o = o = = = = - - = = = - - = -

W&

FIGURE 22.1: DTABLKST;SN> - THE SYMTAX DECISIOM TABLE

null

operator

variable

function of two arguments

right parenthesis or right subscript bracket
left parenthesis or left bracket
semi-colon

assignment

right indexed-operator bracket
function of no agruments

end of statement

function of one argument

quad, quote-quad or shared variable
illegal (group)

TOTIDOWONOUMET WN RO

FIGURE 22.2: SYNTACTICAL TYPES

06/20/72 LPASN - IBIM COMNFIDENTIAL Page 22.3

N = O

5a
5b

5¢

00 ~3 O

10
11
12

13
1y

Continue the scan.
Give a syntax error.
Do a dyadic operation. The stack is left operand,

- operator, right operand.

Check for reduction and, if so, do it. Check for
inner or outer product and, if so, encode the
three operators into a single word (for example,
+.X is encoded as the . operator with + and x in
the low half of the word). |If neither reduction
nor product then do action number L.

The stack is operator, operator, operand,
Subtract two from MNEXTINST and .ignhore the top

stack word (the first operator). Do a monadic
operation.
The stack is function, .o Change it to

undefined, function, undefined, ... Do action 5c.
The stack is function, argument, ... Change it to
undefined, function, argument, ... Do action 5c.
The stack is AL F A2, UF Al, or U F U where U is
undefined, F is a function and AN is a function
argurment. Do a function call.

Go to the subscript microcode.

Go to the assignment microcode.

If the top stack item is a '(' then erase it and
the corresponding ')' and pull the stack up. The
alternative is that the i tem is a left
subscripting bracket in which case merely continue

“the scan.

Change syntax type 8 to type 4 and continue the
scan.,

Do the end of statement processing.

Call the APL supervisor shared variable routine.
The top stack item is an indexed operator. Remove
the index and brackets from the stack. [ncode the
index in 9 bits and store it in the stack word for
the operator. Then continue the scan.

Mark the 1left bracket as a left bracket with an
assignment arrow and continue the scan.

Put an empty subscript marker (6201 or 6205) on
the stack and continue the scan.

FIGURE 22.3: TABLE OF ACTIONS SPECIFIED BY DTAB

06/20/72

LPASN = 1Bl COMNFIDENTIAL Page 22.14

23. FUNCTION INVOCATION

This section describes how function call and return
affect the contents of the stack and it shows how the state
indication can be found. The state indication <can be
displayed by use of the APL command)SI.

23,1 Function Call

Suppose the emulator is executing the statement
B <-- (P F Q) +R

where P, Q, R are variables and F is a function of two
arguments with the header information

V1 <~- V2 F V3;Vh4;V5;V6

At the point where the SCAN microcode has read the P then
the stack will be ‘

PFQ)+ R null prior

where ‘'prior' denotes whatever was on the stack at the
beginning of execution of this statement. P F Q and) are
actually in the stack registers (see 'THE STACK') and '+' is
the last item to be put into the memory stack. When we say
that 'P' is on the stack, we of course refer to a full word
item which contains the syntax bits and internal name of P
according to the format described in '"THE STACK'. The
microcode uses the header information of F, and it changes
the stack contents to

Unull EEKLAGWE ... ALWI C 1!) + R null prior
The top four items are in the stack registers and K is the

last item in the memory stack. U is undefined, E is empty
and the items) + R null prior are unchanged.

K = 0000 1111 wuuu wuuu kkkk kkkk kkkk kkoO

where u = undefined and kk ... kk00 = decimal 40 + 8
times the number of local variables (In this case there
are three local variables and 40 + 24 is 64 decimal or
4O hexadecimal so the low half of K is 0040.)

06/20/72 LPASN - IBM CONFIDENTIAL Page 23.1

L = 0000 1111 wuwuuu wuwuuu 0000 0000 0000 0010
(This is a special case of Wn and it marks the end of
the W1l Al Vi2 ... sequence.)

An = address table entry for variable Vn

0010 1111 wuuuu uuuu wwww wwww wwww ww00

Wn =
where ww ... wwO0 = internal name of variable Vn
C = 0000 1010 wuwuuu wuuuu cccc cccec ccece ccl0
where cc ... cc00 = internal name of function which

contains the statement which calls F

I = 0000 1111 wuuu wuuu FiiF FTEiT TiiT iRt
where ii ... ii = offset of next byte of calling
statement, which in this example is the offset of the (

The extension to functions with a greater or less
number of local varibles should be obvious. For functions
with no result then the Al and W1l items still appear but Al
shows 27 ... (hexadecimal) and Wl shows OFUU00O01l. Similarly
with A2, W2 for monadic and niladic functions and with A3,
W3 for niladic functions.

If Vnh is the name of an item which is in free space
then An contains the address of that item. Let x denote the
address of the word An; let v denote the address in the low
24 bits of An. Before function «call, the half word at
location y+2 contains the internal name of Vn. During
function call, we change this half word to x minus GPR3.
This change of the contents of vy is necessary for correct
operation of workspace relocation and garbage collection.

The function call microcode, sets the address table
entries of V1, V2, V3, V4, ... to no value and then it gives
V2 the value P and it gives V3 the value Q. If P is a large
vector or array the 'giving'! V2 the value P means that P and
V2 are made into synonyms. The emulator does, of course,
process correctly those complicated cases in which P or Q or
both P and Q have the same name as V1 or any other local
variable. The statement:

U <==- X G X
where G has the header

X<--AGED

06/20/72 LPASH - IBM COMFIDENTIAL Page 23.2

B

illustrates one of the more complex cases.

23.2 Temporary Functions

In APL/360 the user can type a single statement which
receives immediate execution. The emulator requires that
such single statements should be converted (by the
translator part of the APL system) into a function. |If the
user types the statement

A<--B +¢C

then the translator supplies a head and a tail and the
emulator actually sees an internal representation of a
niladic function having a temporary name. We will refer to
this construct as a temporary function.

There are two other occasions when temporary functions
are used. A statement such as

P<K--Q + g X

where X is a character string with value 'A<{--B+C' and e is
the execute operator, requires that the character string X
should be treated as an APL expression. This is implemented
as follows: Vlhen the emulator sees the execute operator
then it calls the APL system. The system builds a temporary
function, t, like the one above and returns the name of t to
the emulator. The emulator now behaves as though the
statement had been written

P<--Q+t

and it calls t using the mechanism described in the previous
section. Quad input is also implemented in this way.

The use of temporary functions is a simple but powerful
way of unifying several different concepts in APL; for

example multiple nested execute operations are easily
handled in this way.

23,3 Exit From Permanent Functions

06/20/72 LPASN - IBM COMFIDENTIAL Page 23.3

Consider a function F which contains N statements. The
program will exit from F if any of the following statements
occur:

-->

-=-> integer where the integer is less than 1 or
greater than N

--> expression where the expression reduces to an
integer >N or <1

Execution of statement N with no branch

The first case causes the emulator to signal a syntax error;
the system should trap the error return and do the
appropriate action. The third case is similar to the second
case. The fourth case is also similar to the second case
because the translator always includes a fictitious '-->0!
after statement N. As cases two, three, and four are being
executed the stack contains

--> V E E K L ...

where V is a constant or a variable, E denotes empty, and K

L ... denotes the sequence described in 'Function Calll.
The first four items are in the stack registers and the K L
«es @re in memory. Assuming that V is a scalar (or a
vector) and assuming that V (or the first element of V) is
an integer less than one or greater than N, then the
emulator frees the space used by VvV, if necessary, and then
it does a function return.

23.4 Function Return

The contents of the stack registers can be ignored, so
using the example of 23,1 the stack is

K L A6 W6 ... AL W1 C I) + R null prior

The emulator uses the value of K as an offset on the current
stack address and picks up C and |. Ve said in section 23.1
that C begins with a zero bit; however, C may now begin with
zero or 1. After C has been put on the stack then the user .
may have suspended execution and then erased the function
named by C. Obviously it would be dangerous to return to a
non-existent function so when the erasure occurs then the
APL system changes the first bit of C to 1, and on detecting
this case the emulator takes an 'ERASE' type exit. If the

06/20/72 LPASN - 1Bl CONFIDENTIAL Page 23.4L

8

first bit of C is zero then function return continues.

The emulator now goes through the stack and does the
following:

a) Get Wn and hence get the name of Vn
b) If Vn has acvalue in free space then release this space
c) Get An and store it in the address table entry for Vn

d) If An points to an address in free space then plant Vn at
that address

There are two variations on this theme. Before doing steps
a) through d), save the current value of Vi, if any, because
this is the result. Also, if Wn 1is an odd number then
ignore subsequent steps because this 1is an empty slot
corresponding to a no argument or no result.

The emulator now checks that the function has a result,
and it gives the result the temporary name t, it sets the
stack (and stack registers) to

U t U) + R Null prior

restores MEXTINST (from I) and FUNCTIOM (from L) and returns
to the SCAN microcode routine. |If the function has no
result then it checks that the top of the stack is null and
that the next instruction is an end of statement.

23.5 Return From a Temporary Function

The return from a quad input or an execute temporary
function requires special action, The APL system traps this
case by use of the 'stop' bit in the end of statement
marker. Let us now consider temporary functions resulting
from single statements. The operator '-->' with no argument
produces a syntax error which the APL system also traps.

There are two other cases, namely
(1) -->n

(2) successful execution of the statement with no branch

06/20/72 LPASN - 11BN CONFIDENTIAL Page 23.5

n stands for a scalar integer. Statements of the form '-->
expression' are either in error or reduce to case (1).

Consider case (1). This case has arisen because the

user had typed '--> n'; at the beginning of the execution of

this statement, the stack was either empty or the head of
the stack was .a STOP VWORD (see 23.6). After executing the
statement, the emulator frees the temporary function. At
this point the stack registers are irrelevant and the stack
in memory has the form

Koo'.

The two low order bits of K may be 01, 10, or 11. If the
bits are 10 then this is the end of stack marker and the
emulator takes a normal end of execution exit. [If the bits
are 01 then the bits were originally 11, corresponding to a
stopped function, but the function has been erased; in this
case the emulator takes an 'EMPTY' exit. If the bits are 11
then this requires the restart of a stopped function. K
contains the name of the stopped function. The emulator
puts this name into the control word 'FUNCTION' and now does
a normal 'go to' in the context of that function.

In case (2), that is successful execution of the
statement with no branch, then the emulator takes a normal
exit from the emulator and does not free the space used by
the function.

23.6 Status Indication

The execution of an APL program can be terminated in
several ways. Typical examples are (a) the program
completes successfully or (b) the emulator detects an error
or an exceptional condition such as 'workspace full' or (c)
the emulator detects a stop bit at the beginning of a
statement or (d) the wuser gives an attention. In all of
these cases the current status is determined by the control
words FUNCTIOMN, MEXTINST, and TSADDR, together with the
contents of the stack. The status can be displayed by use
of the APL commands)SI and)SIiV., In this section we
describe how this status is determined.

In this section the word stack will refer to the stack

in memory; the contents of the stack registers are
irrelevant. Iltems are placed on the stack in one of three

06/20/72 LPASN =~ IBlM CONFIDENTIAL Page 23.6

LG

ways: (1) The SCAN microprogram may use the stack for
intermediate working. (2) The function call microcode saves
certain information which 1is described in a previous
section. (3) If an error or stop is encountered then the
APL system puts a stop word on the stack. Let us denote
these three types of stack information as 'SCAN BLOCK',
YCALL BLOCK', and 'STOP WORD"'. At the beginning of
execution in a clear workspace, the stack contains just one
word which is the 'BEGIN STACK' word.

Suppose the user types in a statement which the system
embeds in a temporary function T1. Suppose T1 calls
function F, statement 8 of F calls G and G has an error at
statement 5. Suppose the user now types in another
statement, which the system embeds in a temporary function
T2, Suppose T2 calls function H and H has an error at
statement 3. The stack contents and status are

Stack Comment Status
TSADDR ==>
STOP WORD HC3> =

CALL BLOCK T2 calls H
SCAN BLOCK T<1> :
STOP WORD G<5> =
CALL BLOCK F calls G F<8>
SCAN BLOCK F<8>
CALL BLOCK Tl calls F
- SCAN BLOCK Ti<1>
BEGIN STACK

A STOP WORD has the form
STOP = 0000 1111 1HL FEED MNNN NMMN NNNN NNP1

where NN...NNOO gives the internal name of the function in
which the statement occurred and Ill...l1lIl gives the
statement number. P is usually one but it gets set to zero
if the function NN...NNOO is erased or edited in a way which
damages the stack. If H has the internal name 007C then a
stop at statement 3 would give the STOP VWORD 0803007F
hexadecimal. A SCAN BLOCK can contain any item which the
SCAN microprogram will push into the stack. All of these
items are single words of the form

SSSS

where SSSS can be 0000 through 0111. If SSSS is 0000 then
the next four bits are always 0111 so that this case (which

06/20/72 LPASM - IBli COMFICENTIAL Page 23.7

TNET

is the null item) has the form

NULL = 0000 0111
The CALL BLOCK is described in a previous section, but
notice that it always begins with a word of the form (jtem K
of section 23.1)

CALL = 0000 1111 00
Finally the BEGIN STACK word has the form

BEGIN =. 0000 luuu wu... uull

where u stands for undefined; in practice the BEGIN STACK
word is 08000002 hexadecimal.

If the system is going to analyze the stack then it
must start at the top of the stack which is (contents of

TSADR)+4, If the emulator has just done a ‘'successful
completion' exit then the top of the stack will be a STOP
WORD or the BEGIMN STACK word. If the emulator has just

encountered a stop bit in a begin of statement then the top
of the stack will be a CALL BLOCK. The system will then
place a STOP WORD on the stack. |If the emulator has just
encountered an error then the top of the stack may be (a)
part of a SCAN BLOCK or (b) the beginning of a CALL BLOCK or
(c) a STOP WORD or (d) the BEGIN STACK word. The system
can analyze the situation in the following way: If the top
of stack word begins with 00001 then it is a CALL WORD or
STOP WORD or BEGIM STACK word. Otherwise it is part of a
SCAN BLOCK. If the top of the stack is part of a SCAN BLOCK
then it will erase this word (by increasing TSADR by 4) and
repeat the analysis. When this analysis is complete then
the top of the stack word has the form

0000 1... e o @ ..xn

where xn=00 indicates a CALL BLOCK, 10 indicates the BEGIN
STACK word, and 01 or 11 indicates a STOP WORD. |If the top
of the stack is a CALL BLOCK, then the system will add a
STOP WORD to the stack; it will form this word from the
contents of FUNCTIOM and NEXTINST.

To summarize the situation, starting at the top of the
stack it is possible to distinguish STOP VORDs, beginning of
CALL BLOCK words, the BEGIN STACK word and words which
belong to SCAN BLOCKs. Having recognized a STOP WORD it is

06/20/72 LPASMN - IBM COMFIDENTIAL Page 23.8

B

possible to determine the statement number and function
name. Having recognized a beginning of a CALL BLOCK it is
possible to skip over that BLOCK or to find the name of the
calling function or to find the names and old values of alil

local variables.

06/20/72 ‘ LPASN - IBM COMFIDENTIAL Page 23.9

24, EXAMPLE WORKSPACE

In this section we provide a workspace which has
intentionally been setup to produce an error, thus supplying
an example with information on the stack, shadowed variables
and so on. Figure 24,1 gives the console listing for the
example, figure 24.2 delineates several key items and figure
24,3 gives a dump of the workspace.

In figure 24,2 we see that the workspace was loaded and
the GO function executed. A 'domain error! occurred and
then we see 'DUMP NO 00000001'. Normally the APL system
would not produce a dump, but this was run using a version
of the system especially coded to provide system and
microcode debugging information. The remainder of the
console listing is as would occur with the standard APL
system. It shows the status indicators, the shadowed
variables, function definitions and current variable values.

Figure 24,2 gives the symbols 1in sequence by both
external name and by internal name as well as several other
Iltems. We note here that on the dump the displayed GPR's

‘are those active when the system provided the dump; the

GPR's of interest to us are stored in locations 270A8 to
270EL4 In the sequence GPRL4, ..., GPRF, GPRO, ..., GPR3 (see
'DEBUGGING AIDS'). Thus GPR3 is found to be 273A0. Since
'A' has internal name 0070 its address table entry 1is at
273A0+70 or 27410.

The beginning of free space was calculated as follows:
FREES (at 27390) is C70. This is a displacement so we add
GPR3 (273A0) to give 28010. Since FREES points to the first
real block in free space, the dummy block is the preceeding
word (at 2700C).

The stack in the workspace dump (figure 24.3) shows a
temporary function calling GO and GO calling F which then
calls G. The dump is worth studying in detail to find such
things as a shadowed AP vector (P in GO) and a synonym chain
linking an array (A) and a vector (shadowed Q).

06/20/72 LPASN -~ IBM CONFIDENTIAL Page 24.1

AL

)JLOAD EXWKSP
SAVED 13.59.36 06/06/72

GO
DOMAIN ERROR
DUMP NO 00000001
GL1]l X<«U+2

A
)SIV
GL1] = @ U X
FL[3] R Q p B A Z
Gol2]
veolOlv
v GO

(11 R+3 3pP+19
[2] R F(13)0,x13
Y

vFLOlv

V Z«A F B;P;Q;:R
(1] Q<,A
[2] =~ R<A+B
[3] Z<ALG'X':;33]

v

vGeLOlv
. V X<«G U3Q
(1] X<«U+2

FIGURE 24.1.1: EXAMPLE WORKSPACE CONSOLE LISTING

06/20/72 LPASN - IBM CONFIDENTIAL Page 24.2

JVARS

A B R v
A
i 2 3
L 5 6
7 8 9
=)
5
* i 2 3
2 L 6
3 6 9
R
2 4 6
6 9 12

FIGURE 24.1.2: EXAMPLE WORKSPACE CONSOLE LISTING

06/20/72 LPASN - IBM CONFIDENTIAL Page 24,3

EXTERNAL INTERNAL ENTRY VALUE OR

NAME NAME ADDRESS ADDRESS

A 0070 27410 36794

B 0078 27418 367A8

F 0074 27414 28034

G 0088 27428 2809C

GO 0094 27434 280E8

P 007¢C 2741C NO VALUE

Q 0080 27420 NO VALUE

R 0084 27424 36754

u 0090 27430 IMEDIATE 'x'
X oosc 2742C NO VALUE

Z 006C 2740C NO VALUE

Z 0o6C 2740C NO VALUE

A 0070 27410 36794

F 0074 27414 28034

B 0078 27418 367A8

P 007¢C 2741C NO VALUE

Q 0080 27420 NO VALUE

R 008%L 27424 36754

G 0088 27428 2809C

X 008C 2742C NO VALUE

U : 0090 27430 IMEDIATE 'X!
GO 0094 27434 280ES8

ITEM ADDRESS VALUE

GPR3 270E0 - 273A0 (SEE TEXT)
GPRB _ 270C0 27000 (SEE TEXT)
TSADR 27404 27F4C

NEXTINST 27400 280BC

FUNCTION 273FC 0088

BNDATS 27408 27C08

FREE SPACE - BEGIN 27390 2800C (CALCULATED)

FREE SPACE - END 27394 367FC (CALCULATED)

FIGURE 24.2: EXAMPLE WORKSPACE ITEMS

06/20/72 LPASN = IBM CONFIDENTIAL Page 24.4

ZL/0z/90

- NSVd1

AVILNIJIdNOD W8I

S*t7 93ed

GPR
GPR

(o R o)

FPR
FPR
FPR
FPR

O ENO

027000
027020
027040
027060
027080
0270A0
0270C0
0270E0
027100
027120
027140
027160
027180
0271A0
027240
027260
027280
0272A0
0272C0
0272E0
027300
027320
027340
027360
027380
0273A0
0273cC0

nn

ionounon
LU T | e LA T T N T N O T IO 1 A I 1

i nn e nnuan

00000000 000140F1 00000037 00000000 000164DC 00000008 FFFD9002 06010002
20036758 10211021 0001404C 000141FL4 00013090 00027000 000135B0 5001376A

0000000000000000
83028204L04L0004LAL
20021FL800000000
000000000000O00QO

81818181 81818182
20036758 10211021
00000000 00000000
FFOLOOFE 70016766
00001174 00027000
00028172 FFFFAOO01
100214BC 00027000
26040061 F00273A0
00000000 00000000
0000FCO0 000OF800
00000000 00780000
92935900 00000000
00000000 00000000

00000000 00000000
00000000 60000005
00000000 00000000

00000000 07000000
0B100B11 50030B00
000003FF FFFFF800
0B020000 FOO1EDCE
8C023935 B7232340
FO0247CE F7022388
F0027348 700D0BOO
00000002 00000002
2F0L4008D 2F000000

FIGURE 24.3,1:

000167LE
100214BC
00028184
00000000
0001A71A
21023625
F003677C
00013090
81870E81
0000F794
4LD5856LA
00020000
00000000

0 027240 SUPPRESSED LINE(S)

80000001
00000000
00000000

TO 0272C0 SUPPRESSED LINE(S)

00000000
F002017E
00000000
LooOOLGC
00000008
B70544061
00000000
00000000
2F000001

EXAMPLE WORKSPACE DUMP

00000008
00036C00
00000000
00036D10
LOO1AB7A
06010002
00710100
5E565900
F161F1F5
00000010
9293888D
00000000
00000000

F00273A0
00027000
04000498
00000000
00036C00
00000008
00026300
00000000
870E8883
00001158
52578DLE
00000000
00000000
SAME AS ABOVE ...
84000000 00000000
00000000 00000000
00000000 00000000
SAME AS ABOVE
00000000
50000800
00000000
00000000
10211021
DF020340
00000000
00000000
2B0192D0

000164DC
00016390
00000000
00036D12
00036E18
00000002
07040088
0650584D
00CFE701
O0000F7F8
5B5B5858B
00000000
00000000

FFFD9002
00036C10
00000000
0000116E
00000002
20036758
00000061
00000000
00000100
00000001
81870E81
00000000
00000000

00000000
00000000
00000000

00000000
00000000
00000000

0000000GO
F002017E
0001DF28
F00273A0
07040088
FOO1ALF6
0oo0o00C70
00000000
2B0192EL

00000000
0005EA06
830192B4
F002731C
F00230BC
70000B03
0000FL460
00000000
2B0192F8

00000000
00000004
FO002017E
0402626F
FO027430
B7232340
3D8941BB
00000000
2B01930C

06010002
A00164D8
00000000
0000EG72
0002816E
10211021
06040090
00000000
ooooo0cCoo0
07000000
870E8883
00000000
00000000

00000000
00000000
00000000

00000000
0A803502
FOO1ABAC
F002780C
F0027430
F002736C
0000004y
00000000
2B019320

cL/0e/90

- NSVd1

TVILNIAT4NOD WeI

9°hZ °3ed

0273E0
027400
027420
027440
027460
027800
027820
027840
027860
027880
027co0
027C20
027CL0
027F40
027F60
027F80
027FA0
027FCO
027FEOQ
028000
028020
028040
028060
028080
0280A0
0280C0
0280E0
028100
028120
028140
028160
028180
0281A0
0281C0
0281E0

w4 uunn

L O O T O T TR TR

2F000000 2B028014 2B028024
FO00280BC 2B027Fu4C 2B027C08
27000042 2B036754 BB02809C
27000000 27000000 27000000

0 027800 SUPPRESSED LINE(S)

27000000 27000000 27000000
2FO4LO05A 2FO0L005B 2F040050
2B0281A0 04L00049C 00000000
00000000 00000000 00000000
TO 027C00 SUPPRESSED LINE(S)
= 00000000 00000000 00000000
FF0O00000 FFO00000 FF000000
TO 027F40 SUPPRESSED LINE(S)

FF000000
27000000
60016001
2B0281ED
27000000
0F000002
0F000018
0000000D
006C0070
70010084
0003A001
0001002A
A0010003
0000000D
00091109
A0010106
A0010014
00000028
0000002D
00710L4A0Q
00000008
01F10C00

FIGURE

FF000000
0F020090
2E010003
0F020084
0F020070
27000018
07000000
00540048
0078007C
A001L4005
001A0024
00000030
A0010016
0000006D
7001007¢C
00031109
00380054
00010001
00000015
00000001
00000009
007104A0

24.3.2:

FF000000
27000042
60016001
27000000
27000000
0F000001
08000002
00000000
00800084
60010106
003000LA
008C0001
00240000
00540094
1101510A
10251591
00000000
00010002
08D10C10
00000002
00000003
FFFFQO070

27000000
27000054
27000042
27000000

SAME AS ABOVE

2F0L0063
2F0L0061
00000000
00000000

27000000 OFFE0070
2B036794 3B02803Y4
2F040061 9B0280ES
27000000 27000000
2FOLOOLA 2FO4LOOLF
2F0LOOSE 2B0280DS8
00000000 00000000
00000000 00000000

SAME AS ABOVE

FF000000
FF000000

FF000000 FF0O00000
FFO00000 FF000000

SAME AS ABOVE

FF000000
0F020001
62016001
OFFEOO80
0F00006C
27000018
00000005
0000000D
0002A001
00036001
00000000
00900080
000o0002cC
0002005A
00160000
11114001
00000060
A0010094
00000001
00000003
00000003
00000011

OFFEQ030 OFFEQ002
27000000 OFD1008C
40054005 07010084
28028188 O0F02007¢C
OF000094 OFO000054
OF000001 27000018
0000000D 00500044
00000065 00540074
00701109 70010080
04060061 00885005
00000058 00000065
0002A001 01060002
00000039 0000000D
00000028 00010001
00000003 00000003
01060003 11095001
0000006D 0000002D
A0010003 A0010014
00000001 00000009
00000004 00000005
00000002 00000009
00000011 01D10BBS

EXAMPLE WORKSPACE DUMP

OFFEOQ090
2B0367A8
27000000
27000000

2F0LOOLB
99028158
00000000
00000000

FF000000
FF000000

2B0281F4
OFD10074
OFFEOOLO
27000000
07010084
0F000001
00000000
00030050
A0010078
00707001
00000039
10210090
00540494
00010002
00000002
00740084
00540498
00180000
00000015
00000006
0000003D
007104A0

2F040088
27000054
27000000
27000000

2F0L0059
040OOLAS
00000000
00000000

FF000000
FF000000

0F020080
0F000042
OFFE0002
0F020078
0F000028
0F0004938
0000000D
0oo0o00040O
10210070
006CA001
00540088
7001008C
01505800
A0010106
70010084
A0010003
0001001E
00000020
0000003D
00000007
00000011
OO070FFFF

2L/02/90

-~ NSVd7

L°hZ 93ed

TVILNIG14ANOD Wgl

028200
028220
028240
036740
036760
036780
0367A0
0367C0
0367E0
036800
036820
036840
036860
036C00
036C20
036CL0
036C60
036C80
036CA0

036CCO-

036CEOQ
036D00
036D20
036D40
036E00
036E20
036EL0
036E60
036E80
036EAQ

Lowonon 4 nn

LU O e O O VR O T

wuwwwun—~unun aouy

00000011 O0O0O0E54A 00000000
00000000 00000000 00000000

00000000
00000006
00000003
00000011
00000006
0000003D
0000046C
0000048C
00000000

00000000
0001674E
00000008
00036D1C
00000001
00000000
00000000
00000000
00001000
00000000

00000000
00000006
00000002
0000003D
00000003
00000014
00000470
00000490
00000000

00000000
00036C10
LOOIABLA
0003682C
00000000
00000000
00000000
00000000
00000000
00000000

0 036740 SUPPRESSED LINE(S)

00000000
00000009
00000009
00710078
00000006
08D10LAD
00000474
00000494
00000000

0 036C00 SUPPRESSED LIME(S)

00000000
00036C20
00000000
000000600
00000000
00000000
00000000
00000000
00008D8D
00000000

O O036E00 SUPPRESSED LINE(S)

00000000 00000000 00000000
0001A71A L4LOO1D4GA 0001D79C
00000002 00000000 00000010
00FCFCFC FCFCFCFC FCFCFCO1
00000000 00000000 00000000
TO 037000 SUPPRESSED LINE(S)

000000060
00000000

SAME AS ABOVE

0000E5LA
0000000C
0000003D
00000001
00000009
00000001
00000478
80000000
00000000

ean

00000000 00000000
00000000 00000000
0000003D 00710084
0000000A 0000000E
00000011 01F10070
00000002 00000003
00000003 00000003
00000001 00000003
0000047C 00000480
060000000 00000000
00000000 00000000

SAME AS ABOVE

00000000
60016742
00001158
00000000
00000000
00000000
00000001
00000000
gD8D8D8D
00000000

SAME AS ABOVE

00000000
0000EGAD
0000010A
84000212
00000000

SAME AS ABOVE

00016390 00036C00
0001674LE 000167LE
OO00E6AD0 0001E309
00000000 0000FD13
0001A71A 700199BC
00000000 00000000
00001158 0000116E
00000000 00000000
50589293 4E929357
00000000 00000000
00000000 00000000
0001E309 00000094
00036D17 00000000
00036C37 00000000
06000000 00000000

® e o0 0

FIGURE 24.3.3: EXAMPLE WORKSPACE DUMP

00000000
00000000

00000002
00000012
007104A0
00000002
00000002
00000014
ooooousgy
00000000
00000000

00036C10
F00273A0
00000094
00000001
A002086GE
00000000
00000000
00000000
92930D5A
00000000

0001A71A
0000010A
00000212
00000005
00000000

00000000
00000000

00000004
00000003
ocoooBB8
00000004
00000009
00000005
ooooougs
00000000
00000000

A00164D8
000164DC
00000039
cooo00000
0000FD10
00000000
00000000
00000000
0D5B9293
00000000

5001B002
00000000
00036E18
00000000
00000000

&

25. FUNCTIONS IMPLEMENTED IN APL OR IBNM/370 CODE

Most of the APL operations are done by the microcode
but some of them are done by APL functions or IBM/370 code.
There are several reasons -for using non-microcoded
functions. There is only a small amount of control store
and the amount of microcode has to be strictly limited. For
some operations, the 370 code is almost as fast as a
microcode implementation would be. Some operations are used
relatively infrequently and they do not justify the use of
microcode. Some operations, such as input/output, require
extensive interaction with the operating system; putting
them in microcode would not improve performance and it would
make the emulator system dependent. Some operations, such
as domino (matrix divide and least squares fit) are
obviously at a higher level than operations such as plus and
minus; it is natural to put these operations in APL or 370
code,

25.1 The Calling Mechanism

The non-microcode functions are used in several ways
but they are all called in the same way. There is a control
word named CALL370F which contains an address which we will
denote by C. Beginning at Location C, there is a transfer
vector with one entry per APL or 370 function. The transfer
vector entries are shown in figure 25.1. Suppose the APL
emulator is in control and it decides to call the dyadic
Ibeam 370 function. The emulator puts the arguments of the
Ibeam into the general purpose registers using the process
specified in the section '370 REGISTERS AND '‘GETV'', It
sets GPRL equal to C. It sets the 370 instruction location
counter equal to C + hexadecimal §i4 (according to the table
the dyadic Ibeam entry is 84) and it exits to the 370
emulator. Location C + 84 contains a branch to the 370
function which does the dyadic lbeam and it can use GPRL as
a base register. The 370 function computes the result, if
any, and uses an APLRTN instruction to return control to the
APL emulator. The transfer vector, the 370 functions and
the APL functions are resident in the APL system; the
functions are re-entrant and may be used by any number of
users.

06/20/72 LPASN - 1IBli CONFIDENTIAL Page 25.1

NN

25,2 Scalar Functions

Consider the execution of 'L d R' where L and R are
variables and d 1is a scalar dvadic operator. The emulator
does the steps described in the section on '"GETV' then it
does the following: .

check for character arguments

if L and R are both scalar, then
do operation
check for 16 bit result, if so, put on stack
else get space, store result and put descriptor
and name on stack
go to DONE

if either L or R or both are non-scalar, then
check that size of L conforms with size of R
get space for result
go to EXIT if null result

LOOP: do operation on first elements of L and R
store result
go to exit if all elements have been done
get next two elements and go to loop

EXIT: put descriptor and name on stack

DONE: free the space used by L and R if necessary
Actually there is another step which is not described above;

if the results of integer arithmetic overflow, then we
convert all existing results to floating point and continue

in floating point mode. If the operation is plus, minus,
less than, etc., then the 'do operation' step 1is done
completely in the APL emulator. |In the following cases we

go to a 370 function using the calling mechanism described
in the previous paragraph:

power, log, real residue, binomial, circular
We also «call the '370 function' for real divide and some
cases of real multiply but in these <cases the transfer
vector entries reduce to: '

DDR L,6 and MDR L,6
APLRTN APLRTN

06/20/72 LPASH - IBIM COMFIDENTIAL Page 25,2

00
10
20
30
Lo
50
60
70
80
90
A0
BO
Co
DO
EO
FO

unused oL unuSed
unused 14 floor
unused 224 multiply
power 34 deal
unused LL unused
unused 54 unused
unused 64 residue
logarithm 74 unused

m lbeam 84 d Ilbeam
share-in 94 share-out
take AL drop

d iota B4 member
unused Ch unused
execute D4 unused
inner prod E4 outer prod
m box FL d box

unused
rolil
unused
circle
unused

I roll
unused
divide
xten stack
decode
grade up
unused

m dominoe
scan

m format

share-post

oC
icC
2C
3C
LC
5C
6C
7€
8C
9cC
AC
BC
CcC
DC
EC
FC

unused
factorial
binomial
unused
unused
unused
unused
unused
xten name
encode
grade down
rotate

d dominoe
reduce

d format

unused

FIGURE 25.1: 370 (OR APL) FUNCTIOMN TRANSFER VECTOR
(m=monadic, d=dyadic; 00 through 7C are

06/20/72

scalar functions;
special functions which must return

with APLSRTN)

LPASN - IBM

88,

CONFIDENTIAL

8C and F8 are

Page 25.3

A

In these two cases the calling mechanism may seem somewhat
elaborate but it ensures a clean interface between the APL
and 370 emulators. In all of these dyadic scalar cases we
are calling a 370 function with two 32 bit or 64 bit
arguments and we expect a 32 bit or 64 bit result. The APL
emulator does all the analysis of the arguments, fetch of
the operands one at a time, .conversion, if necessary,
storing of result and counting the number of operations that
must be done. As the 'DDR L,6' implies, the left and right
operands are real, they are in FPRL and FPR6, and the result
goes in FPRL, The 370 functions must save and restore any
registers they use (other than FPRY, GPRY4, GPR5 and GPRA).
If the 370 functions detect an error (for example, negative
input to be logarithm routine) then they should go directly
to the appropriate error exit in the APL system, The 370
functions may look at the descriptor bits (see the section
on 'GETV') to determine the properties of the arguments.

The reduction and inner and outer product routines go
through a similar sequence and they call the same 370
functions in the same way. The monadic operations, namely:

floor, ceiling, factorial and roll

use a similar process. There input is in FPR6 and, in the
case of factorial and roll, the result should go in FPRL,
The 'floor' routine is required to do several things
according to the following rules:

Let X=GPR9 byte 1 bit 0
Y=GPR9 byte 1 bit 1
Z=GPRF byte 2 bit 0
A=contents of FPR6

if X=0 then set R equal to the ceiling of A, else set R
equal to the floor of A

if Y=1 then put R into FPRAL

if Y=0 and R can be expressed as a 32 bit integer, then put
it in GPR5, else set Z=1 and put R in FPRY4

There is also a 370 function called 'l roll' which sets GPR5

equal to a random choice from iota N where M is the integer
in GPRG.

06/20/72 LPASN - 1BM CONFIDENTIAL Page 25.4

b

25.3 Complete 370 Functions

In @ case such as 'L d R' where d stands for dyadic
Ibeam, then the emulator goes through 'GETV' for L and R and
then calls the 370 dyadic Ibeam function immediately. The
emulator has checked that L and R have a value and if they
were functions or shared variables then it will have got
their values, but it does no other checking. On entry to
the 370 function the registers are as specified by 'GETV!',.
The 370 function should compute the result and put the stack
entry for the result in GPR9. The result can be a stack
entry for one of the following:

null

a stack immediate

a temporary or permanent variable
an APL function

A1l APL operations which can be used by the ordinary users
must have a result. The null result can be wused by system
programmers but they must take care that it is syntactically

correct. In the first three cases, the APL emulator will
free the space used by the arguments, if necessary, and
return to the SCAN microcode. The fourth case is discussed

below. Monadic 370 functions are treated in the same way
except that the 'left' argument will be missing and an
immediate zero will have been substituted.

25.4 APL Functions

Any of the complete functions (but not the scalar
functions of 25.2) may be written in either 370 code or in
APL or in both; the emulator does not care which is used and
the system programmer can make the choice. Suppose the
system programmer decides to write dyadic domino in APL. He
writes the appropriate APL function, gets the internal
representation of the APL function and produces a CSECT.
The easiest way of getting the CSECT is to punch the
internal representation on cards in the form

DC X'hexadecimal internal representétion of APL function!
and assemble it using the 0S or DOS assembler. The CSECT is
loaded as part of the APL system, lihen the APL ernulator

detects the dyadic domino operator, them it calls the
appropriate 370 function. That 370 function should get a

06/20/72 LPASN = IBM COMFIDENTIAL Page 25.5

&

temporary name, let us call it 't', in the user's workspace.
It should set the address table entry for 't' to:

3F address of CSECT for APL domino function
and should set GPR9 to
3F uu internal name of t

and do an APLRTN. After the return the emulator will detect
the syntax of '3!' so it calls the dyadic APL function whose
name is 't', Notice that only one copy of the domino
function exists, but it can be wused by any number of users;
the arguments for the function, the local variables, and the
status are stored in the wuser's workspace. When the
emulator returns from a function which has the immediate bit
on (see 'THE ADDRESS TABLE' for immediate bit) then it frees
that name. This description should not be taken to imply
that the domino in APLM is in APL code; one early version of
ALPM did have an APL domino, but it may have been changed to
370 code. This would not require any change to the APL
emulator,

25.5 Microcode/370/APL Functions

In the case of functions like domino or shared
input/output, the emulator has no interest in what the
functions do or how they do it. As long as they do not
destroy the integrity of the workspace or the registers,
then any action or inaction is allowed, In the case of a
function like encode, then the operation is regarded as part
of the APL processor and the microcode, 370, APL functions
should complement each other, In these cases the
microprogrammer will have specified what cases the microcode
will do and what additional information it will provide to
the non-microcode functions.

25.6 APLRTN

The APLRTN instruction causes the following action.
The APL emulator gets control, it checks the CHKWRD (see
'370 EMULATOR/APL EMULATOR INTERFACE'), and then it looks at
byte 2 of GPRF, and it interprets that byte as follows:

06/20/72 LPASN = 1BM CONFIDENTIAL Page 25.6

uuuu uu00 return from scalar dyadic operation
(see 25.2)

uuuu wu0l return from scalar monadic operation
(see 25.2)

uuuu uulo return from complete function
(see 25.3 and 25.4)

uuuu 0011 return from shared output or execute
(see 25.7 and 25.8)

uuuu 0111 return from shared input or execute
(see 25.7 and 25.8)

In the cases which we have described so far then the

emulator will have set GPRF byte 2 before it exits to be 370
emulator so the 370 functions do not have to be aware of
this byte, but some other cases will change this byte.

25.7 Shared Input and OQutput

The emulator does not initiate any input or output, but
it does call the system whenever 1/0 is required, If the
the end of an APL statement is reached, and the stack is not
null, and the last operation was not an assign, then the
emulator takes a 'print/trace' exit from APLSCAN. Another
type of 1/0 is initiated when the emulator detects a shared
variable or the quad symbol. Let S represent the quad or
quad prime symbol or a shared variable. Uhen the microcode
SCAN routine reads the S then it calls the 370 'share-in'
or 'share-out' function. At this stage the stack is:

1) S {- ...
2) S XX oo
3) S<ovdd XX 0w
b) S<ool> <= L.,

in GPR1 (see
Case one causes a
other three cases cause a 'share-in'
exit. In cases three and four, the svstem will have to
search down the stack wuntil it finds the first closing
bracket and then it can distinguish between the two cases,

where xx is any symbol other than '<-'. S is
'THE STACK'), and GETV has not been done.
'share-out' exit; the

In case 6ne, the third item on the stack (which is in

06/20/72 LPASMN - [IBM COMNFIDENTIAL Page 25.7

GPR7) will be a variable. The system should check that the
variable has a wvalue and then transmit the appropriate
information to the shared memory processor. The system
should now move GPR7 into GPRY and APLRTN. The contents of
GPR1 and 7 will not be used, The emulator will have set
GPRF byte 2 to 3 before exit.

Now let us consider case two where S is not quad. The
system should do the input and store the result in the
workspace. The system should form either a stack immediate
(if the result is a scalar logical, character or short
integer) or a stack entry for a temporary variable. |In the
latter case the system should have stored the result in the
workspace. The stack entry should be put in GPR1 and an
APLRTN should be given. The quad input case is similar to
the ordinary input case, except that the system should form
a temporary function which contains the internal text of the
input. The system should put the stack entry for a niladic
function in GPR1 and then APLRTN.

After the system has found the closing bracket and has
distinguished between cases three and four then °it should
proceed as follows. For case three, simply proceed as in
case two, For case four, proceed as follows: The stack
entry for the «closing bracket was originally 40.... It is
now L48... (see action 13 in 'STATEMENT SCAN AND SYMTAX
ANALYSIS'). It should now be changed to 4C.... Replace
GPR1 by the stack entry for a permanent variable which
contains the latest value of S, then APLRTH. If there are
no errors (possible errors are value, domain, index and
workspace full), the emulator will do the subscripted assign
and then it will call the 'share-post' 370 routine. At this
stage GPRF will contain the name of the subscripted
variable, that is, the name which was formerly in GPR1l. The
system should communicate whatever information is necessary
to the shared memory processor, and then it should APLSRTN.

25.8 Execute

Suppose the APL emulator encounters eX where e stands
for the execute operator. The enulator will do a '"GETV' and
call the 370 execute-operator function. That function
should check that X is a legal character string, convert it-
to internal form, embed it in a temporary function 't' (see
the section. on 'Temporary Functions' in "FUNCTION
INVOCATION'), set GPRY with the stack entry for 't' and

06/20/72 LPASN = 1Bl CONFIDENTIAL Page 25.8

B

return. The emulator now follows the actions specified in
section 25.4., 't' may call other functions, including, of
course, a recursive call to the function which called Tt'.
The internal form of 't' should contain a trace bit at the
end of the statement one (there is only one statement).
When the trace is reached, the emulator takes a normal trace
exit. The system should save bit 4 of byte 2 of GPRL4; 1let
us denote this bit by 'a', The stack contains the function
call block for the call of ‘t' (see the 'Function Call' part
of 'FUNCTION INVOCATION'), The system should remove the
call block from the stack and then:

If bit a=0 proceed as in shared input. Set GPRF byte 2 to
7, GPR1 equal to the result of the execute (if any) or null
and GPR9,7... equal to the previous contents of the stack.
Give an APLRTN.

If bit a=1 then the execute ended with an assign and the
emulator has to ensure that eX in the context ...teX... does
produce a result whereas eX in the context eX,... does not
cause printing. In this case, proceed as in 'shared
output', namely, set GPRF byte 2 to 3. GPRI and 7 are
undefined. GPR9 is the result of the execute. GPRE, ... has
the previous contents of the stack.

Obviously the procedure outlined in this section is not

simple but it requires very little extra 370 code or
microcode and it gives a very powerful facility.

06/20/72 LPASN = [BM COMFIDENTIAL Page 25,9

26. ERROR RECOVERY

The use of the emulator may cause various errors to be
detected. These errors can be divided into several types:

1) Errors in the user's program or data.

2) 'System error' return fron APLSCAN.

3) Specification, data or addressing exceptions.

L) Errors other than type 1 and 3 on return from APL
macros other than APLSCAN.

The first type of error will cause a 'syntax error', 'value
error', etc. to be signalled on return from APLSCAN. This
type of error is discussed below. The second and third type
of error implies that the system or the emulator or the
hardware has a bug. It will be necessary to dump the
workspace and to trace the cause of the error; see
'DEBUGGING AIDS'. When this type of error is detected then
the workspace may contain unknown errors and execution on
this workspace should not be continued. The fourth type of
error is almost certainly due to a system program error and
the cause should be easy to determine,

Errors of type two, three and four should happen very
infrequently. Errors of type one may happen quite
frequently and they are a normal part of APL execution.
When these errors occur the system should print out an
appropriate message and then clean up the stack. To clean
up the stack the system should delete all memory-stack
entries back to the nearest STOP WORD, BEGIN STACK word or
function CALL BLOCK. If a deleted item is the stack entry
for a temporary variable then the name and the free space
associated with the name (if any) should be freed; there is
an APL macro for doing this. If the |tem which remains at
the top of the stack is a CALL BLOCK then the system should
add a STOP WORD. The method of analysing the contents of
the stack is given in the section on 'Status Indication!
(see '"FUNCTION INVOCATION'). The data needed for the STOP
WORD is found in the workspace in FUNCTIOM, MEXTINST and in
the tail of the current function. Part of the stack
information 1is held in the general purpose registers.
During the SCAN process, the registers will have the format
described in 'THE STACK'; at other times the format of these
registers will vary according to the operation being
performed. When an error occurs the format of these
registers is unclear. It is possible that these registers

06/20/72 LPASN - IBM COMFIDENTIAL Page 26.1

will contain the name of some temporary variables. The name
and space of these variables must be released. These names
cannot be determined from the registers, but they can be
determined as follows: Search the address table for entries
which belong to temporary variables. If such an entry is
found then search all SCAN BLOCKs on the stack (see 'Status
Indication' for a definition of SCAN BLOCK) for a use of the
temporary variable. If no use is found then free the name
and its associated block in free space (if any). This
search requires the system to look at every address table
entry however the search is fast and it only occurs when APL
execution has terminated due to a user error.

There is another area which the error recovery
procedure must check. The control word TMPNAMO usually has
the form 27...; after an error exit, if TMPNANO is 29...
then it should be changed to 27... and the space whose
address is in the low 24 bits of TMPNAMO must be freed.
The same remarks apply to TMPNAMI. These control words are
used to hold function arguements during the function call
process, The arguements will have received permanent names
by the time the function is entered and the control words
will have been reset to 27... THMPNAMO may be wused to hold
the result of a function during the function return
processing.

If an error occurs in a locked function, a system
function, or a temporary function used for quad prime or
execute, then the system will need to take special action.
These actions are not defined by the emulator.

06/20/72 LPASN - IBM CONFIDENTIAL Page 26.2

27. 370 EMULATOR/APL EMULATOR INTERFACE

An earlier section described the APL macros which
provide the interface between the APL system and the APL
emulator. This section is concerned with the interface
between the two emulators.

27.1 APLEC Entry and Termination

The only way for the APL ermulator to gain control of
the CPU is for the 370 emulator to process the APLEC
instruction. When the 370 emulator encounters an APLEC
instruction then the microcode does one of two things: (a)
If the APL emulator is not installed on this machine then
give an operation execption. (b) If APL is installed then
activate it. When APL is activated it first checks the
contents of CHKWRD; if it is 1incorrect then APL gives a
specification exception, otherwise APL proceeds with
emulation of the workspace. The test of CHKWRD safeguards
against APL activation as a result of a wild branch in some
370 program. If the emulator s working with a virtual
memory then the test of CHKWRD accomplishes another vital
function: It insures that the control words page of the
workspace is in real memory. If the page is not in real
memory when the APLEC instruction is encountered then a page
fault results and the 370 supervisor takes the normal page
fault action of swapping the page into core and retrying the
APLEC instruction. Page faults are disusssed in greater
detail below.

Termination of the APLEC instruction s alvays
accomplished by branching to APLI.XITNRM for a normal exit
with condition code zero or by branching to APLM.XITERR for
an error exit with condition code one. The APLM
micro-routine then retrieves the address following the APLEC
from SCANRTN or SERVRTN and sets it up as the 370
instruction location. A return to I-cycles then passes
control back to the 370 emulator. '

06/20/72 _ LPASN - 1BM CONFIDENTIAL Page 27.1

27.2 Page Faults

The APL emulator must reference many memory locations

during a single APLEC execution, It cannot anticipate
possible page faults and force all pages to memory prior to
real execution. Rather, page faults must merely cause

execution to be suspended in a particular workspace until
the required page is available. Meanwhile execution may
continue in another workspace. The following paragraphs
detail this process using 'page fault' to mean a real
translation exception; mere refreshing of the associative
registers is handled by a microcode trap which is
transparent to the APL emulator.

When the 370 page fault routine is activated it tests
for a 1401 emulation opcode and, if doing 1401, it branches
to a different set of instructions. This routine has been
altered to also test for an APLEC opcode and, if doing APL,
it branches to the APL page fault routine,

The APL page fault routine compares the faulting
micro-address with that of the micro-instruction in APLM

which reads CHKWRD. |If a match occurs it merely returns to
the 370 page fault routine for normal 370 page fault
processing. If there is a mismatch then the APL emulator

was actively working in a workspace and must be
checkpointed. Local storage and the faulting micro-address
are saved in SAVELS and the 370 instruction location
register is set to point at the resume APLEC in INTRTM. The
faulting memory address 1is then loaded into an appropriate
register and a branch made to the instruction in APLM that
reads CHKWRD. This causes a re-faulting that APL will allow
370 to process since it occurs on the 'read CHKWRD'
micro-instruction.

then the paging software has the required page
available and thinks it s re-executing the faulting 370
instruction it will actually be executing the resume APLEC
and the APL emulator will continue with the workspace
execution.

06/20/72 LPASN - 1BM COMFIDENTIAL Page 27.2

b

27.3 Interrupts and Quantum Ends

As well as making many memory references, execution of
an APLEC may require considerable time, at least in
comparison to the execution times for most other 370
instructions. Thus the APL emulator must be able to pause
periodically. This is done in a manner similar to the above
page fault processing. |If the hardware requests a pause for
an interrupt (11 latch set) the APL emulator will checkpoint
itself in SAVELS exactly as above, set the 370 instruction
location counter to point at INTRTN and do a return to
l-cycles from APLM. The workspace will be resumed later
just as in the page fault case.

Such an interrupt might be caused by a time-out
initiated by the 370 APL system supervisor. If so it will
set on the 'quantum end desired' switch and cause resumption
of the workspace by the APL emulator. As well as polling 11
the APL emulator polls the quantum end switch. If on, the
emulator will checkpoint itself in SAVELS, set the 370
instruction location register to the contents of QEND (i.e.,
it will point to the 370 APL system's quantum end routine)
and do a return to I-cycles from APLM. As above, the
workspace can be resumed later but to do so the 370 APL
system must explicitly execute an APLRESH.

27.4 370 Functions

The APL emulator is intended to co-reside with the 370
emulator and must therefore limit the amount of control
store it uses. To meet this end it has been necessary to
put some of the slower and less frequently used opcodes,
such as domino, and some of the cases where we wish to share
the 370 enulator's microcode, such as floating divide, in
external code (BAL or APL). Some of the less frequently
used emulator features, such as extending the name table,
have also been put in external code. The specific linkage
conventions, etc., are discussed in 'FUNCTIONS IMPLEMENTED
IN APL AND IBMH 370 CODE': here we merely complete our
description of the interface between the 370 and APL
emulators.

All breakouts to 370 functions are processed through
the S370 microcode routine. There are no microcode linkages
or working storage to be saved. This routine merely sets
the 370 instruction location counter to point to the

06/20/72 LPASH = IDI COMFIDENTIAL Page 27.3

&

appropriate entry in the 370 function transfer vector using
CALL370F and branches to the common exit portion of APLM.
When the 370 function is complete it will issue an APLRTN.
The 370 emulator will decode the APLEC and branch to APLI;
APLM will then recognize the ‘return' APLEC code and branch
to the S370 routine which will send control back to the
appropriate place,

Some of the emulator features which are coded as 370
functions, such as address table extension, require saving
of microcode 1linkage and work registers. These checkpoint
themselves in SAVELS as in the page fault case prior to
going to S370. The corresponding 370 functions terminate
with APLSRTN rather than APLRTN. This special return does
not trickle back through S370; rather, the checkpointed
information is recovered and control passed back to the
invoking micro-routine via APLM and INTR.

27.5 Summary Viewpoints

There are two major ways to look at the APLEC
instruction. Each s given a paragraph description below.
The first viewpoint is that seen from the 370 emulator, The
second is that seen, or at least rationalized, by the APL
system programmer.

The APLEC instruction is a slow conditional branch as
far as the 370 emulator is concerned., It sees two cases:
Sometimes APLEC is decoded into the APL emulator and after
awhile a return to l-cycles is made with the 370 instruction
location counter pointing at the point following the APLEC.
At other times the return is accompanied by an instruction
location counter pointing to some vastly different address
(INTRTN, c(QEND), or some point in the 370 function transfer
vector). In both cases the time spent in the APL emulator
is considerably Tlonger than is spent executing a 370 'BC'
instruction. The only way in which APLEC is different from
other 370 instructions is that it may be decoded at location
Xyz, but cause a page fault as if it had decoded at location
abc.,

llhen the APL system prograrmmer writes APLSCAN he uses
it like a normal 370 instruction whose execution will always
be followed by the execution of the next sequential

‘instruction. He may know that the APL emulator can

temporarily breakout at a different point such as the 370

06/20/72 LPASH = 11BN COMFIDENTIAL Page 27.4

function for domino; in fact most
written by APL system programmers.

of the 370 functions were
But the 370 functions

are logically viewed as mere extensions of the microcode.
When the APLSCAN is complete, control will return to the

next instruction.

06/20/72 LPASN - IBIt1 COMF

IDENTIAL Page 27.5

ALEH

28. DEBUGGING AIDS

There are several debugging aids available. These are
discussed below 1in 28.1 and 28.2. An example is then
discussed in 28.3. Figure 28.1 summarizes much of the
debugging aids information. These aids have been of great
value during the early development stages but are of much
less importance now since bugs occur quite infrequently.

28.1 DBUG Microcode Routine

The DBUG microcode routine may be either active or
Inactive. When active it monitors all entries to and exits
from the APL emulator (except the TIDY data exception: see

28.2) and provides useful debugging information. It
represents considerable entry/exit overhead and should be
inactive, or not even assembled, in an ideal situation., |If

the DBUG routine 1is included in a microcode coreload, then
after a normal IMPL DBUG is inactive. Let XX denote 'the
DBUG module' of the coreload (the value of XX may be found
by consulting the DBUG routine listing for the coreload).
To activate the DBUG routine the following control words
must be patched in as part of the IMPL procedure (l.e. in
the patch deck) or later (i.e. using the console
alter/display facility):

0000XX80 at APLM.CHECK.OX
0000XX81 at APLM.SETNSI.00
0100XX80 at PAGE.REFALT

DBUG may be deactivated by patching these locations back to
their assembled values.

The DBUG routine uses a 'DBUG BOX' stored in the
workspace. The DBUG box is at the location GPRB+(the
contents of control store location XX08). The format of the
DBUG box is given in figure 28.2.

When DBUG is active and any call is made to the APL
emulator, the DBUG box is updated and the APLEC in byte 0-1
of word 0 of the DBUG box is executed. Similarly any exit
from the APL emulator will be filtered through the APLEC in
bytes 2-3 of this word. This provides two convenient
address stop locations for emulator/system tracing.

06/20/72 LPASMN - IBM CONFIDENTIAL Page 28.1

zL/0¢/90

- NSVd1

i

AV ILNIAI14N0D

2°8¢ 93ed

1°8Z 3¥N9l4

°
°

L3I3FHS AYVKWHAS 2i199Nn43a

G

DEBUG BOX

nB 10 08 11
*C *E 0B »A
o 11 12 13

*E = 00 If entry
05 If page fault exit
03 If other exit

prior *C+EOB=*A *A = APLEC code if «E s 00
prior 10111213 *C:H = ILC and CC If *E Is not 00
PFADR or ECNUM 10 = key
11-3 = location
PFADR = fault address In bytes 1-2
if «E is 05
ECNUM = total emulator call number
If *»E Is not 05
APLEC CODES
00 SCAN 03 TIDY 63 FIND C3 GETN
01 RTN 23 NAME 83 FREE D3 GETV.
02 RESM 43 UNAM - °* A3 FRIF E3 DIAG
SPECIAL MICRO ADDRESSES
XX00 total emulator call number
XX0hL emulator call count down number
XX08 DEBUG BOX R11 dispalcenent
XXoc¢ return to l-cycles
XX10 one Instruction stop-loop
XX80-XX8C DBUG transfer vector

"ALTER/DISPLAY USING MICRO-ADDRESS TRAP

1. ADR COMP C
ADDRESS CO
RATE
DIALS

2. When trap

3. When done
RATE to SI

ONTROL
MPARE

STOP (down)

CTR WORD ADR TRAP

PROCESS

‘XX10wxyz (wxyz=mlcro address)

occurs press ALTER/DISPLAY, etc,

you should be back In the loop at XX10. Set
NGLE CYCLE to check NREG, If it Is not XX10

WORKSPACE DISPLACEMENTS
R11 RO3 CONTENTS
OA8 - SAVE REGS 4 TO 3
2F0 -—- DEBUG BOX
2F8 -A8 TIDYS
2FC -Ah CPUTFUZX
300 -A0 sKipPl1
304 -9C CPUTFUZIM
308. -98 SEED

3ncC -94 UMUSED
310 =40 CALL370F
314 -8C QEND

318 -88 SCANRTN
31¢C -84 SERVRTN
320 -80 INTRTN
324 -7C SAVELS
L8 -58 SAVELSH
36C =34 SAVTDY
390 -10 FREES
A9y -0C FREET
398 -08 CHKYRD
39¢C -04 FRSTRELO
3A0 00 TMPSAVO
3AL +04 TMPSAV1
3A8 +08 UMNUSED
38C +1C XARGO
3Ico +20 BLAMK
3Ch +24 ZEROVAR
3C8 +28 OME

30C +2C REALL
300 +30 P1

30y +34 E

308 +38 MIN

inc +30 MAX

3E0 +40 UNUSED
3EL +4h NULNUMVC
3E8 +48 NULCHRVC
3EC +4C 1HDEX
3F0 +50 FILL

IFL - +54 THMPMNAM
3FC +5C FUMCTION
400 +60 MEXTINST
Loy +64 TSADR
408 +68 BMDATS
LOC +6C ° BEGIN USER NAMES
SAVELS FORMAT

324=1.510 334ha=
I08=1515 3384V
3201818, AI0HI

b,

(82]
.

you are temporarlly .in a 370 trap: set RATE to PROCESS
and push START, say 'B0O0' and repeat thls step,

ADDRESS COMPARE = CTR WORD ADR
Push CONTROL ADDRESS SET.
Push START several tlnmes,

Repeat step 1 and push START,

WORD
WORD
WORD
WORD
WORD
WORD

MEwpoHRO

where ...

*E

*A
*C:high
10

11-3
PFADR

ECNUM

[0B 10 0B 11|
[*C *E 0B =*A|
110 11 12 13}
|prior *C*EQB*A|
Iprior 10111213
|PFADR or ECNUM|

00 if entry log

05 If page fault exit log
03 If other exit log
APLEC code If *E is 00

ILC and CC if *E js not 00

key

location ‘
fault address in bytes 1-2
(bytes 0 and 3 are junk)
if *F is 05

total emulator call number
If *E is not 05

FIGURE 28.2: DBUG BOX FORMAT

06/20/72

LPASN - IBM CONFIDENTIAL

Page 28.3

o Kb e

&

In figure 28.2 ECNUM is the current value of control
store location XX00. At IMPL this location is set to zero
and location XX04 is set to minus one. On each real
emulator call (the pseudo calls out of the DBUG box are
ignored) XX00 is incremented and XX04 is decremented. The
microcode instruction DBUG.STOP.0 will be executed only when
the countdown word reaches Zero, This mechanism is for use
with bugs that occur deeply imbedded in an APL function.
With only one APL user on the system the count-up word can
be set to zero and the workspace run. When the bug occurs
ECNUM determines a setting to key into the count-down word.
Using the microcode address stop switch it is now possible
to rerun the workspace and stop on the entry during which
the problem will show up. Then one can micro-step, etc.

The DBUG package also contains a 'return to l-cycles'
at XX0C and a 'stop and branch to XX10' at XX10. The first
of these is useful in recovering from an APL emulator
disaster (such as a micro=~loop). "The second is wuseful in
conjunction with alter/display and the microcode address
trap console feature.

28.2 Other Aids

In other sections of this document we have described
the APL emulator and the emulator/system interface. We have
deliberately avoided any specification of the system. This
gives the system programmer greater flexibility in designing
the system and allows him to change the system without
modifying the microcode. In this section we have described
the DBUG box which is in the system's part of the workspace.
We further note that the system usually precedes each APL
macro with

LM 4,3,X'A8%(11)

and follows the macro with a corresponding STM. These
things are true for the present system but they are not part
of the emulator or system specifications.

During garbage collection the TIDY microcode routine
checks each active block in free space for a correct back
pointer (address table or stack entry). On errors it gives
a data exception with the PSW pointing at the word after the
DN word. On these dumps the collection will be partly done;
it will have proceded to the error block so the free space
format may look strange. This code could be removed if the

06/20/72 LPASN =~ IBM CONFIDENTIAL Page 23.4

TN

emulator and system could be judged perfect, but it costs
relatively little in terms of overhead.

On exits for page faults, to take interrupts, or any
other exit that passes through the INTR microcode routine,
local storage will be saved in SAVELS. The format is: LS14,
LS15, LS16, LS17, W, Vv, |, LS13 (the linkage register), SUTL
where SUTL is SPTL with U(3) replacing P. This 1is a
permanent emulator feature.

On APL error exits, i.e., exits which pass through the
ABEN microcode, 1local storage 1is saved in SAVELSB in the
same format as above; however, the ABEN routine will have
altered a few of the registers (see the microcode listing
for details). This is temporary code which should be
removed eventually.

In addition to the above aids there are the obvious
things to 1look for in workspace dumps: what is NEXTINST?
the current APL opcode (GPR9)? the common linkage registers
(GPRA, FPR4, GPRD)? the error linkage register (GPRL)?

Finally there is the APLDIAG instruction. This is used
mainly in testing areas where there may be a machine
malfunction or a misunderstanding of the microcode
instruction specifications. Consult the source listings for
comments at the APLDIAG decode point in the SERV routine.

28.3 An Example

Figure 28.3 lists debugging information found in a
workspace dump. We will begin to examine the dump as an
illustration of debugging techniques. The actual control
store addresses and microinstruction sequence numbers are
obviously valid only for the APL emulator as assembled on
the date of the dump.

We first note that the emulator last exited for a page
fault (DBUG BOX: THIS EXIT). The faulting address was
5L00XX (DBUG BOX: PFADR). This is outside the address space
of the particular machine which was running (DUMP PSW
confirms an addressing exception) so the emulator must have
developed a bad address.

The microinstruction causing the page fault was at
control store location 5BE8 (SAVELS: LINK) which s

06/20/72 LPASN -~ IBM CONFIDENTIAL Page 28.5

TGN

0B100B11
4L0050B00
F0027322
L0000BO1
FO016340
54540020

005L006C
2B0280LL
0001002C
00000003
0054006C
FO0274L00
F0028030
03025BES
9C013127

7002359D
00000000
386021900

o nun w0 un

nnn

PSEUDO CALLS

THIS EXIT

THIS LOC

LAST ENTRY

LAST LOC
PFADR

LS1k
LS15
LS16
LS17
W
vV
I
LINK
SUTL

GPRA
FRPL
GPRD

FF050005 40027322

DBUG BOX

SAVELS

LINKAGE REGISTERS

DUMP PSW

FIGURE 28.3: EXAMPLE DUMP INFORMATION

06/20/72

LPASN -

1BM

CONFIDENTIAL Page 28.6

FUNN.131. That instruction is '"RDH LS17 ADJ,W+2' and we can
see that W was indeed 0054006C (SAVELS: W).

The bad contents of W look suspiciously like the DN
word for a character vector (D=0054). This can be quickly
supported: GPR3 is added to 006C to find the address table
entry for the variable with internal name 006C. This entry
is 9B028034, Syntax code 9 is a niladic function and the
internal form of all functions 1is 'character vector'.
Indeed, when we look at location 028034 we find the 0054006C
DN word. We now have a good handle on the bug which we
suspect to be in the function call mechanism.

Some of the other debugging information which might
have proved useful includes: The emulator was last entered
by a return from the 370 function (DBUG BOX: LAST ENTRY)
having an APLRTN at address 016340-2 (DBUG BOX: LAST LOC).
There is a history of ASGN calling GETV (LINKAGE REGISTERS:
GPRA) and of SERV calling FREE (LINKAGE REGISTERS: GPRD).

06/20/72 LPASN - IBM CONFIDENTIAL Page 28.7

29. CONCLUSIONS

The architecture of the APL processor and the design of
the 370 emulator/APL emulator interface was completed in
October 1970. The implementation of both microcode and
software was begun soon afterwards. Some design changes
were made as the implementation progressed, but on the whole
few changes were necessary. Shared variables were added at
a later stage, but since the bulk of the shared variable
processing is done by the software, few changes were
required in the emulator. Almost all of the microcode
debugging was done using simulation. An initial and partial
version of the emulator and the APLM system was operational
in November 1971. A complete emulator and APLM system was
running successfully and reliably in April 1872. It is
reasonable to expect that any system will contain some
errors; one of the problems with errors in microcode is that
they may be confused with hardware errors and they may cause
the operating system to fail disasterously. The APL
emulator has been used for several months on a model 145
which supports general scientific computing and systems
programming under a CP operating system (the system is
similar to CP/67 but operates on a model 145). Puring this
time the emulator has never caused the system to fail and
has never caused an error which looked 1like a hardware
problem,

The execution of APL programs is done partly by the
microcode and partly by the software. At the current time
the status is as follows ...

(a) Completely in microcode:

statement scan and syntax analysis

management of free space and garbage collection
function call and return

plus, minus, negative, signum

magni tude, maximum, minimum

all logical operations

all comparisons

size, reshape, catenate, laminate, ravel

index generator, compress, expand

reverse, transpose

goto, assignment, subscripting

integer cases of times, residue, floor, ceiling

06/20/72 LPASH =~ 1BM COMFIDENTIAL Page 29.1

(b) Analysis and operand fetch/store in microcode;
operation on one element or one pair of elements is
done in IBM 370 code:

power, exponential, logarithm, binomial
circular, real residue, factorial

real multiply, pi, divide, reciprocal
real floor, real ceiling

(c) Done by the APLM system; may be in APL or IBM 370 code:
grade up, grade down, roll, deal, domino
scan, format, translation part of "'execute, lbeam
input/output

(d) The remaining items are:

index of currently in APL; will be
microcoded

membership same

encode, decode currently in APL; will be
partially microcoded

take, drop in microcode if the left
argument has one element;

otherwise in APL but will be
in IBM 370 code

rotate in APL if the right argument
is an array; otherwise in
microcode

inner product in APL if either argument is
an array; otherwise in
microcode

outer product same

reduction scalar and non-AP vector in

microcode; rest in APL

The microcode for the APL emulator occupies 20K bytes of
control memory and can co-reside with an IBI! 370 emulator
which will fit in the remaining 44K bytes. Ve could
conveniently have put the items in class (d) and the items
in rows three and four of «class (b) in microcode but will
not do so because of a lack of space. The use. of IBM 370
code for items in rows one and two of class (b) is quite
satisfactory and we can see no reason for microcoding them.
Likewise, there is no reason to alter class (c); the grade
operation might seem like a good candidate for microcode but
a superficial examination indicates that on the model 145
the microcode would not be appreciably faster.

06/20/72 LPASN - IBM CONFIDENTIAL Page 29.2

It is obvious that a project of this size and
complexity will utilize the programs, techniques and
co-operation of a number of people. The emulator was
written in a microprogramming Jlanguage designed by D. L.
McNabb and J. R. Walters ('MPL/145 A Language and Compiler
for System/370 Model 145 Microprogramming', Palo Alto
Scientific Center report number ZZ20-6410). The use of this
language played a major part in helping us to write and
debug the APL emulator and we believe that it provides
excellent documentation for the finished product. The
debugging of the emulator was greatly simplified by an
excellent and reliable assembler and simulator provided by
the model 145 group in SDD, Endicott; we are also indebted
to W. Decker, R. Dunbar, G. Kinsella and E. Wassel of that
group for answering many questions about the workings of the
hardware and the assembler and simulator. The authors of
this report were responsible for the design of the
architecture as well as the writing and debugging of the
microcode. M. J. Beniston was responsible for the design
and implimentation of all the APLM software for use under
CMS; this work, to be reported elsewhere, includes the
software for the translator, the editor, shared variables,
error recovery, format, the 370 functions, etc. J. W,
Lageschulte used the APL/360 and CMS/APLM systems to develop
the stand alone and O0S versions of APLM. H. R. Penafiel
wrote an early version of the translator and part of an
interpreter in IBM 370 code which was used in checking out
the sof tware. R. J. Creasy provided advice and
encouragement throughout the project, wrote a number of the
APL system functions and solved one of our major problems by
pointing out that the problem could not occur.

06/20/72 LPASN - IBM COMNFIDENTIAL Page 29.3

30. ADDITIONAL REFERENCES

A. Hassitt, J. W. Lageschulte and L. E. Lyon,
"Implementation of a High Level Language Machine!',
accepted for publication in the CACH (this is an
unclassified version of IBM Palo Alto Scientific Center
report number ZZ20-6402)

This describes an earlier and different microcoded
version of APL on the model 25. It shares many of
the concepts and is somewhat more narative.

A. Hassitt and L. E. Lyon, "Efficient Evaluation of
Array Subscripts of Arrays", 1IBM Journal of Research
and Development, 16 No. 1, 45-57 (1972)

This provides an APL description of the methods
used by the microcode subscripting routines.

06/20/72 LPASN -~ IBM COMFIDENTIAL Page 30.1

AL L

31. MICRO-ROUTINE NAMES

Other portions of this document refer to specific
microcode routines by name (i.e. SCAN or GETV). These are
the names wused for the routines during most of the
development stages. When the routines were actually merged
with the 370 routines it became necessary ' to rename the
routines. The corespondence follows:

DEVELOPMENT NAME FINAL NAME
ABEN . PLAA
APLM PLAB
APVX o PLAC
ASGN , PLAD
BASE . PLBW
CHIX ~ PLAE
CMEX PLAF

~ COMA ' , PLAG
-~ COPY . PLAH
 DBUG - ~ PLDB
DIVI R PLBX
DMIX ~ _ PLAI
'DYAD _ " PLAJ
- DYOP PLAK
DYOV S ~ PLAL
DYSC - PLAM
DYVC o PLAN
EPSI - o PLBY
FINS ~ PLAO
FRNS - - PLAP
FUNN - - ~ PLAQ
GETN o - PLAR
GETV -, = PLAS
GOGO . ‘ PLAT
INDA PLAU
INDB ~ PLAV
INDC . ~ PLAW
INDD SO - PLAX
INDE v PLAY
INTR ~ PLAZ
MMIX - PLBA
“MNAD 2 v ~ PLBB .
CMULT ' - PLBC

L PAGE' | - : PLBD -

06/20/72 S ~ LPASN - IBM CONFIDENTIAL ~ Page 31.1

L

YNTCLY

PROD . PLBE

REAL : PLBF
REDU - L ’ PLBG
ROTA . ~ PLBH
RSHP | . PLBI
SCAN S PLBJ
SCN2 PLBK
SERV , PLBL
. SKIP . PLBM
STOR PLBN
SYNN | | ~ PLBO
$370 S PLBP.
TIDY ‘ PLBQ
TKDP ~ PLBR
TRAN . PLBS
TRED o PLBT
UNEN S PLBU

XTEN ~ PLBV

06/20/72 ~ LPASN - IBM CONFIDENTIAL Page 31.2 .

